
Designing Role-Based View for Object-Relational Databases

Ling Wang

B.Sc.

A thesis subm itted for th e degree of

M ASTER OF SCIEN CES

to the

DCU
Dublin City U niversity

School of Computing

Supervisor: Mark Roantree

June 2003

D eclaration

I hereby certify th a t th is m aterial, which I now subm it for assessm ent on the program m e of stu d y

leading to th e aw ard of M.Sc. is entirely my own w ork and has not been taken from th e work of

o thers save and to th e ex ten t th a t such work has been cited and acknowledged w ithin th e te x t of

my work.

/ i I

Signed ------- ^ ^ 1

S tu d en t ID 51186403

D ate June 2003

i

Acknowledgment s

I would like to express my sincere th an k s to my supervisor Dr. M ark R oantree, for his help, in terest

and encouragem ent over th e last six teen m onths.

I own a large deb t of thanks to th e m em bers of In teroperab le System s G roup, who was always

willing to discuss my problem s w ith technical support and proof-reading. D alen K am bur, D am ir

Becarevic and G erald O ’Connor, your help m ake th is thesis possible.

I would like to acknowledge th e significant inpu t of Jianm ing Zou. On m any occasions I m ust

have bored him by ta lk ing abou t my research problem s I were having w ith the thesis, b u t he

always listened and m ade be believe th a t I could do it. I would like to th a n k him for his patience,

encouragem ent and faith in me.

Finally, th is thesis is dedicated to my parents.

Designing R ole-Based View for O bject-R elational D atabases Ling W ang

A bstract

In a federated d atabase system , a view m echanism is crucial since it is used to define exportable

subsets of d a ta ; to perform a v irtu a l restruc tu ring d atase t; and to construct the in teg rated schema.

T he view service in federated da tabase system s m ust be capable of reta in ing as m uch sem antic

inform ation as possible. T he object-oriented (0 - 0) m odel was considered the su itab le canonical

d a ta m odel since it m eets the original criteria for canonical model selection. However, w ith the

em ergence of stronger object-rela tional (0 -R) m odel, the re is a clear argum ent for using an 0 -

R canonical m odel in the federation. Hence, research should now focus on th e developm ent of

sem antically powerful view m echanism for th e newer model. M eanwhile, the availability of real

0 -R technologies offers researchers the oppo rtun ity to develop different forms of view mechanism s.

T he concept of roles has been widely studied in 0 - 0 m odelling and developm ent. T he role model

represents som e characteristics th a t th e trad itio n a l 0 - 0 model lacked, such as ob ject m igration,

m ultiple occurrences and contex t-dependent access. W hile m any forms of 0 - 0 views were designed

for the 0 - 0 canonical model, one option was to ex tend the 0 - 0 model to incorporate a role model.

In a role m odel, th e real en tity is m odelled in th e form of a role ra th e r th a n an object. An object

represents th e perm anen t properties of an en tity is a roo t object; and an ob ject represents the

tem porary properties of an en tity is a role object.

The con tribu tion of th is research is to design a view system th a t employees the concept of roles

for the 0 -R canonical m odel in a federated d a tab ase system . In th is thesis, an exam ination of the

current 0 - R m etam odel is provided first in order to provide an environm ent for recognising the role-

view m e ta d a ta and m easuring the view perform ance; th en a Roleview D efinition Language (RDL)

is in troduced , along w ith the sem antics for defining v irtu a l classes and generating v irtua l extents;

finally, a w orking pro to type is provided to prove th e role-based view system is im plem entable and

the syn tax is sem antically correct.

C ontents

A c k n o w le d g m e n ts ii

A b s t r a c t iii

1 I n t r o d u c t io n 1

1.1 A F ederated D atabase A rc h ite c tu re ... 1

1.2 O bject-O rien ted Views .. 3

1.3 O bject-O rien ted R o l e s .. 4

1.3.1 Role F e a tu r e s .. 4

1.3.2 Role U s a g e ... 5

1.4 M otivation &; C ontribu tion ... 6

1.4.1 Issues R egarding T erm ino logy .. 7

1.5 Conclusions & D issertation L a y o u t ... 7

2 R e la te d R e s e a r c h 9

2.1 E x tended S m a llta lk ... 9

2.2 D O O R /M M .. 12

2.3 Galileo ... 15

2.4 Sum m ary of A n a ly s is .. 18

2.5 C o n c lu s io n s .. 19

3 E x te n d in g t h e O -R M e ta m o d e l 21

3.1 T he O bject-R elational M e ta m o d e l .. 21

3.1.1 O bject-R elational T y p e s ... 22

3.1.2 O bject-R elational Tables .. 25

3.1.3 O bject-R elational V ie w s ... 27

3.1.4 O bject-R elational TViggers.. 28

3.1.5 S u m m a r y .. 29

Declaration i

iv

3.2 E xtending the 0 -R M e ta m o d e l .. 29

3.2.1 Role-Based View M e ta m o d e l .. 29

3.2.2 M etam odel E x te n s io n s .. 30

3.2.3 Im plem enting th e M etam odel E x te n s io n s .. 32

3.3 C o n c lu s io n s .. 34

4 D e s ig n in g R o le -B a s e d V ie w s fo r O -R D a ta b a s e s 35

4.1 In tro d u c tio n .. 35

4.2 Defining Role-Based Views .. 36

4.2.1 Role-Based View S e m a n tic s .. 36

4.2.2 Role-Based View Definition S y n ta x ... 37

4.2.3 Role-Based View Definition E x a m p le s ... 39

4.2.4 G enerating E x ten ts for V irtu a l C la sse s ... 41

4.3 R estructu ring O p e r a t i o n s .. 44

4.3.1 Class Level O p e ra t io n s ... 44

4.3.2 O bject Level O p e ra t io n s .. 46

4.4 C o n c lu s io n s ... 47

5 I m p le m e n ta t io n 49

5.1 Server Im p le m e n ta tio n ... 49

5.1.1 Defining O-R M e ta -U D T s .. 50

5.1.2 Defining Roleview M e ta - U D T s ... 51

5.2 Defining Roles .. 53

5.2.1 Parsing R D L ... 53

5.2.2 Building Roleview Processor ... 54

5.3 E x p e r im e n ts ... 55

5.4 C o n c lu s io n s ... 59

6 C o n c lu s io n s 60

6.1 Thesis S u m m a r y .. 60

6.2 F urther R e s e a r c h .. 61

A R olev iew Metamodel DDL 66

B R D L G r a m m a r 71

C R D L R o le D e c la r a t io n C la s s 76

CONTENTS v

D RDL Roleview Declaration Class 79

E R D L M a in C la ss 90

List of Figures

1.1 Five-Level A rchitecture of F D B S.. 2

1.2 W ebsite Schem a w ith Role E xtensions.. 3

1.3 Im age S chem a... 5

1.4 Im age Schem a w ith Role E xtensions.. 6

2.1 E x tended Sm alltalk & O ur A pproach.. 12

2.2 D O O R /M M &; O ur A pproach .. 15

2.3 Galileo & O ur A pproach... 17

3.1 O bject-R elational M etam odel Overview.. 22

3.2 O bjec t-R elational Types M e tad a ta .. 24

3.3 O bject-R elational Tables M e tad a ta ... 26

3.4 O bjec t-R elational Views M e tad a ta .. 28

3.5 O bjec t-R elational Triggers M e tad a ta .. 29

3.6 Roleview M etam odel... 30

3.7 O bjec t-R elational M etam odel & E xtensions.. 31

3.8 O bject-R elational Roleviews M etad a ta .. 32

3.9 O bjec t-R elational P resen ta tion of Roleview M etam odel.. 33

4.1 W eb Design Schem a... 39

4.2 Roleview E xam ples... 40

4.3 Im ageView w ith E x te n ts .. 43

4.4 TextV iew w ith E x ten ts ... 44

5.1 P ro to ty p e Overview ... 49

5.2 V irtu a l O -R &: Roleview M eta-U D T s... 51

5.3 P arse RD L Using A N TLR 2.7.2.. 54

5.4 Roleview D efinitions in R D L .. 55

5.5 Roleview Processor E xecu tion .. 57

5.6 D isplay Roleviews.. 58

vi

List of Tables

4.1 Scope Issues 36

Chapter 1

In troduction

T he concept of federated da tabase system s is w here heterogeneous databases can com m unicate

w ith each o ther th rough an in terface provided by a canonical model. A federated d a tab ase system

is s tru c tu red as follows: d a ta resides in heterogeneous databases or inform ation system s; each

p artic ipa ting database schem a is tran sla ted to a canonical m odel nam ed th e com ponent schema;

view schem as are defined as subsets of the com ponent schema, and shared w ith o ther databases

or inform ation system s; view schem as are exported to a global or federated server where they

are in teg rated to form m ultiple global or federated schema. W ith a highly flexible architecture,

the federated database system s no t only provide location transparency b u t contain advantages

of conventional view system s such as a v irtua l restruc tu ring of th e physical d a tase ts to m eet the

requirem ents of different users.

M any federated database system s developm ent tasks have been addressed, including schem a tran s­

lation, access control, negotiation and schem a in tegration [SL90]. A view m echanism is crucial

since it is used to define exportab le subsets of d a ta ; to perform a v irtu a l restru c tu rin g dataset;

and to construc t the in teg rated schema. T he view service in federated d a tab ase system s m ust

be capable of retain ing as m uch sem antic inform ation as possible, for exam ple it should retain

inform ation regarding inheritance and associations between classes.

As the form of object-oriented (O-O) federated database system [BE96] is a specialised form of

federated d atabase system s, ODM G model [CB97], th e s tan d ard m odel for 0 - 0 databases, is used

to represent th e com ponent schem a in m any proposals [PBE95, BE96, R ad96, KR01, RKB01],

However, as th e popularity of th e ODM G m odel declines, and w ith the em ergence of stronger

ob ject-relational (0 -R) m odels (O racle 9i for exam ple), there are now genuine op tions for canon­

ical m odels using the original c rite ria for canonical m odel selection [SCGS91]. Hence, research

should now focus on the developm ent of sem antically powerful view m echanism for th e newer

model. M eanwhile, the availability of real 0 -R technologies such as Oracle 9i offers researchers the

op p o rtun ity to develop different form s of view mechanism s.

1.1 A Federated Database Architecture

Sheth and Larson [SL90] proposed a five-level arch itecture for federated da tabase system s (FDBS)

which is now widely accepted s tan d ard arch itecture for these system s. T he five-level architecture

is illu stra ted in figure 1.1:

• L o c a l L a y e r . T he local schem a contains each partic ipa ting databases or inform ation sys­

tem s. I t describes the logical schem a of an autonom ous da tab ase which m ay be unaw are of

1

CHAPTER1. INTRODUCTION 2

Federated Schema
(Global View)

Federated Schema
(Global View)

Export Schema
(Qbject-Relational Vii

Export Schema
Ibject-Relational Viev£

Export Schema
Ibject-Relational V

Component Schema
(Object-Relational Model)

Component Schema
(Object-Relational Model)

Local Schema

External Schema
(User Data Model)

External Schema
(User Data Model)

External Schema
(User Data Model)

Local Schema

External Layer

Federated Layer

Export Layer

Component Layer

Local Layer

Figure 1.1: Five-Level A rch itecture of FDBS.

th e existence of federated da tab ase operations [SL90].

• C o m p o n e n t L a y e r . T he com ponent schem a contains th e transform ed local schem a and

is presented in term s of th e canonical model. T he O -R m odel is considered th e canonical

m odel since it m eets th e original criteria for canonical m odel selection [SCGS91]. I t plays

two specific roles: the transfo rm ation of d a ta from local schem a represen tation to th e O-R

representation; and th e retrieval and updating of d a ta in th e local schema. T he O -R m odel

th a t th e com ponent schem a presents m ust supply a powerful view m echanism in order to

build th e exportab le schem a. A lthough the curren t O -R view m echanism does not fully

suppo rt the semantic relativism m etric [SCGS91], it provides an oppo rtun ity to develop a

richer and powerful view service.

• E x p o r t L a y e r . N ot all d a ta of a com ponent schem a m ay be available to th e federation and

its users. T he export schem a represents a subset of a com ponent schem a th a t is available to

th e federation [SL90]. An expo rt schem a is considered local view schem a, which is shared w ith

o ther da tabases or inform ation system s. T he view m echanism perform s v irtua l restruc tu ring

da tase ts of com ponent schem a. A filtering process is used for checking queries and enforcing

access restric tions on specific d a ta in order to define views.

• F e d e r a te d L a y e r . T he federated schem a is an in teg ration of m ultip le export schemas.

Hence, a federated schem a is also considered global view schem a. D a ta from the export

schem a is m erged using a constructing processor to form th e federated schem a or global

schema. T he view m echanism plays an im portan t role of construc ting th e in teg rated schem a.

C om m and decom posing and d a ta m erging are the functionalities th a t th e view m echanism

m ust supply. O ur research curren tly deals w ith the issue of local view schema, defining the

federated schem a is for fu rther research.

• E x te r n a l L a y e r . T he ex ternal schem a contains a subset of th e federated schem a by using

filtering processor (if required). In th is schema, a fu rth e r d a ta m odel transform ation is

required for th e purpose of transla ting th e global schem a to an end-user preferred d a ta

model. Since the E xtensib le M arkup Language (XM L) [GroOl] represents a s tan d ard for

encoding an d istribu ting d a ta portab le across various p latform s, it is an op tion th a t the d a ta

is modelled in th e XM L form at in the ex ternal schema.

CHAPTER 1. INTRODUCTION 3

□ Entity / Root O Role <0> Multiple Role

Figure 1.2: W ebsite Schem a w ith Role Extensions.

1.2 Object-Oriented Views

In a FDBS, a view m echanism m ust contain powerful features because it is used to define exportab le

schemas; to perform v irtua l restruc tu ring of datasets; and to in teg rate global or federated schemas.

Different form s of 0 - 0 views [SLT91, Run92, SAD94] try to provide th e sem antic restruc tu ring

power for canonical m odel requirem ents [SCGS91]. A lthough there is no s ta n d ard solution to

properly address the m etam odel or behaviour issues, th e 0 - 0 view m echanism s provide the rig id ity

th a t satisfies th e requirem ents of canonical model in a FDBS. Those features are exam ined as th e

following:

• Base class and v irtu a l class are separated . T he issue of placem ent is a g rea t concern if a

defined v irtua l class is included in the base hierarchy. In a class hierarchy, each class has

its own ex ten t and no overlap exists between class ex ten ts. However, w ith th e v irtual class

inside th e class hierarchy, it is not possible to ensure th a t query results are disjoint. A

separated hierarchy of base and v irtua l classes m ust exist in the 0 - 0 m odel. Thus, any view

m echanism s for 0 - R databases should m ain ta in a separa te hierarchy for th e 0 -R base and

v irtua l types.

• O bject preserving sem antics is used to represent 0 - 0 views. These sem antics are used to

bind th e base and v irtua l classes and perform updates. W ith object preserving sem antics,

persisten t references are generated for base classes only. I t guarantees correct m appings

between v irtua l and base objects, and subsequently provides a reliable u p d a te m echanism .

W here references to v irtua l ob jects are required, the base references are used.

• A view is considered a v irtua l schem a ra th e r th a n a v irtu a l class. A FDBS requires its view

m echanism reta in as m uch sem antic inform ation as possible. This requirem ent em erged from

the s tu d y on FDBS in [SCGS91]. Hence, m ost researchers defined an 0 - 0 view as a v irtu a l

schem a ra th e r th a n a v irtu a l class. I t is m ore powerful if it perm its m ultip le classes w ith a

single view. W hile defining the 0 - 0 view m echanism , a proposed query is used to generate

the ex ten ts for included v irtua l classes.

CHAPTER 1. INTRODUCTION 4

1.3 Object-Oriented Roles

W hile defining a view m echanism for th e 0 - 0 d a ta m odel, one op tion is to extend the d a ta m odel

to incorporate a role model. T he real world en tity is m odelled in th e form of a role ra th e r th a n an

object. In th is section, we describe th e concept of a role and dem onstra te the sem antic power th a t

th e 0 - 0 d a ta m odel cannot represent. Figure 1.2 p resents an sam ple schem a w ith role extensions.

A web docum ent is represented by WebDocument class in the w ebsite schema. I t is com posed of

classes Image, L ay er and T ex t. A L ayer class associates w ith classes Image, T ext and F la sh . An

Image class is th e roo t class of role classes ImgMap and A nim atedlm g. In other words, an Image

ob ject is allowed to be view as an ImgMap object and an A nim atedlm g object a t the sam e tim e.

T he role class A nim atedlm g is represented as a m ultip le role class, w here the m ultiple occurrences

of a single role o b ject is allowed. I t associates w ith F la s h class while an Anim atedlm g object

partic ipa ting in a F la s h object. T he T ext class is also a roo t class of role class A nim atedTxt

because we assum e a T ex t o b ject is considered an Anim at edT xt role w hen it appears in a F la s h

object. In th is sam ple schem a, th e re are two root classes exists, which are Image class and T ex t

class, along w ith th ree role (including m ultiple role) classes, which are ImgMap, A nim atedlm g and

A nim atedTxt.

T he Role data model, an extension of the network m odel, is credited as th e first d a ta m odel th a t

in troduced an explicit notion of roles [BD77]. A role is a concept th a t lacks sem antic rigidity. For

a concept to be a role, it is always in a relationship w ith o ther roles or entities; and represents only

the extrinsic properties of the real-w orld entity. Ind iv iduals can en ter and leave th e ex ten t of the

concept w ithou t losing the ir iden tities [FBCP01]. On th e o ther hand , a n a tu ra l type (e.g. class or

type) is characterised by sem antic rigidity, it represents th e in trinsic p roperties of th e real-world

entity. An individual of a n a tu ra l type cannot drop its type w ithou t losing its identity. A role

is considered th e tem porary aspect of a natu ra l type. For exam ple, in figure 1.2, A nim atedlm g

is defined as a role since to be an Anim atedlm g th e appearance in a F la s h is required, and the

d isappearance does not lead to a loss of its root identity. In o ther words, an Image ob ject still

exists even though it does not play a role of A nim atedlm g. On th e contrary, Image is a n a tu ra l

type, because an Image object will always rem ain an Image and being an Image is independent of

th e existence of any relationships.

1.3.1 Role Features

M any features of roles have been identified in last decade, some conflicting w ith others, so th a t

there is no single definition of a role [SteOO], T he following are the m ost im portan t features of roles

th a t have been widely accepted:

• Roles can be acquired and abandoned dynam ically. A role represents the extrinsic features

of an ob ject due to its partic ipa tion in an event, and it is created when the participa tion

begins. If the ob ject stops participa ting , the role m ay cease to exist and all its p roperties and

behaviour no longer hold. For exam ple, in figure 1.2, an Image object is allowed to play an

ImgMap role originally, and gain a new role Anim atelm g la ter, while reta in ing the first role.

I t is also allowed th a t an Image object loses its ImgMap role and gains an A nim atedlm g role.

• Each role of an object has its own properties and behaviour. A role is used to represent one

specific s ta te of a m ulti-faceted object, T he properties and behaviour th a t th e role holds,

p resents only the extrinsic aspects of the object. In figure 1.2, root class Image and role

classes ImgMap and A nim atedlm g represent different p roperties and behaviour.

CHAPTER 1. INTRODUCTION 5

F igure 1.3: Image Schema.

• A n object m ay play different roles sim ultaneously. T his is one of th e m ost b roadly accepted

properties of th e role concept. Since a role is usually regarded as a special ‘ty p e ’, it am ounts

to the m ultiple classification of objects. Instead of exclusive and perm anent relationships, the

relationship between an ob ject and its role is dynam ic and tem porary. T he typical exam ple

is th a t an Image ob jec t plays role ImgMap and role A nim atedlm g a t th e sam e tim e.

• A n object m ay play th e same role several tim es. T h is is fundam ental concept in th e real world

w ith an exam ple being a s tu d en t registering a t several universities. Unlike w ith different

roles however, it does no t correspond to m ultiple classification. T h is situation is described

as m ultiple occurrences [GSR96]. T he m ain reason for distinguishing m ultiple occurrences

in th e sam e role is th a t each occurrence of th e o b ject in a role is associated w ith a different

sta te . For exam ple, in figure 1.2, an Anim atedlm g role object appears w ith different rotation

in different F la s h objects.

• A role can be transferred betw een different objects. I t is useful to let a concrete role be

d ropped by one ob ject, and picked up by o ther objects , or even to specify th e properties of a

concrete role w ithou t nam ing a p articu la r role player. For exam ple, th e ImgMap role can be

transferred from one Image ob ject to another Image object. N ote th a t m any role features are

transferred w ithou t changing, w hile o thers m ust be re-com puted in light of the new en tity
playing the role. For exam ple, in figure 1.2, if th e rotation of an Image is ‘+90’ for being

an Anim atedlm g role , then th e rotation property m ust be recom puted should th a t role be

transferred.

1.3.2 Role Usage

T he role concept was proposed as a way to overcome th e lim ita tions of classical ob ject m odels.

It cap tu res evolutionary aspects of real-w orld objects th a t cannot be m odelled by tim e-dependent

p roperty values and th a t are not well cap tu red by the generalisation rela tionsh ip [DPZ02]. Follow­

ing are th e exam inations of how th e no tion of roles relax those lim itations:

• O b je c t M ig r a t io n . Consider th e sam ple schem a presented in figure 1.3, w here an Image

ob ject cannot be modelled as an Anim atedlm g o b ject if it is originally defined as an ImgMap

CHAPTER 1. INTRODUCTION 6

I 1 Entity / Root C Z D Role Multiple Role

F igure 1.4: Im age Schem a w ith Role Extensions.

ob ject. In the 0 - 0 m odel, each ob ject is identified by a unique object identifier. Hence,

an Image object lISG ' is identified by different identifiers when it moves from being an

A nim atedlm g object to an ImgMap object. T h is problem is resolved by using the role concept

in ob jec t modelling. Figure 1.4 illu strates th a t Image is specified as an o b ject (root) class,

and ImgMap and Animat edlmg are two role classes of Image class. A ccording to the feature

of th e roles, an object can acquire or abandon th e roles dynam ically w ithou t changing the

iden tity of th a t object. Image */5 G ’ now can be represented by an Image ob ject w ith an

ImgMap role in the beginning; and w ith an ex tra role A nim atedlm g afterw ards.

• M u l t ip le O c c u r re n c e s . In the real world, it is possible th a t m ultiple occurrences of the

sam e o b ject exist. Considering the previous exam ple again, Image object lISG ’ is an an im ated

im age and represented as an instance of A nim atedlm g class. However, it la te r participates

in an o th er F la s h ob ject as an an im ated image. In the 0 - 0 model, an ob ject becomes an

instance more than once of th e sam e class is no t possible. One of the role features is th a t

an ob ject can play th e sam e role m any tim es sim ultaneously. Hence, in figure l . j . , Image

‘/iSG' is represented as an Image object w ith one A nim atedlm g role, where allows m ultiple

occurrences. In o ther words, representing th e sam e object as more th an one instance of the

sam e class (role class) is possible.

• C o n te x t - d e p e n d e n t A c c e ss . T he 0 - 0 m odel has no ability to view a m ulti-faceted ob ject

in a pa rticu la r perspective [DPZ02]. Considering th e previous exam ple again, if Image object

lISG ' is specified as an ImgMap object, it can never be viewed as an A nim atedlm g object.

T his obstacle is released w ith the concept of roles. In figure 1.4, Image ‘TSG’ is allowed to

be observed separately e ither as an ImgMap role or an A nim atedlm g role.

1.4 Motivation & Contribution

In a FD B S architecture, it is necessary for each partic ipa ting system to provide a description

(view definition) of its shareable d a ta in a sem antically rich m anner. T he 0 - 0 m odel offers some

sem antic power by defining ob ject views. However, a role m echanism m ay provide a flexibility while

CHAPTER 1. INTRODUCTION 7

reta in ing th e expressive qualities. T he original criteria for canonical m odel selection [SCGS91] has

shown th a t an ob ject based m odel is th e m ost suitable d a ta m odel. T he O -R model, another ob jec t

based d a ta m odel, has been strongly developed in last few years, and th e re is a clear argum ent

for using an O -R canonical m odel because of its increasing sim ilarity to 0 - 0 model and its m ore

w idespread acceptance (Note: In th is research, we regard th e la tes t version of Oracle to be th e O -R

s tandard). In th e O -R m odel, sim ilar objects are grouped in to a type, which defines the s tru c tu re

and behaviour of its instances. T ypes are organised in to a type hierarchy, w here the s tru c tu re

and behaviour of several types can be abstracted into a com m on supertype. G eneralisation and

specialisation are the com m on properties of the O-R m odel. T he collection type in the O -R m odel

is used to represent th e aggregation and com position relationships. W hile defining a type in th e

O -R model, th e method is declared to im plem ent the behaviour th a t users w ant objects of th a t

ty p e to perform [OraOl]. F urtherm ore, the view m echanism supplied by th e O-R model provides

an opp o rtu n ity to develop a richer and more powerful view service to m eet th e canonical m odel

requirem ents.

T he 0 - 0 m odel and th e O -R model present sim ilar su itab ility as canonical models in th e federa­

tion . In our research, th e O -R m odel is considered th e canonical m odel because it provides new

experim ents. T he m otivation of our research is to define a new view system which is based on th e

concept of roles in th e O -R d a ta model. O ur contribu tion is 2-fold: to exam ine the deploym ent

of th e la test O -R m odel (bo th as a m odel and m etam odel) and to specify and im plem ent a view

m echanism which is role-based. W ith th e exam ination of th e model, we outline its su itab ility to

m eet th e canonical m odel requirem ents, and also clarify th e possibility of extending its m etam odel

to facilita te roles. Specifically, an extended S truc tu red Q uery Language (SQL: 1999) [GP99] is used

to provide th e specifications and m appings to support restruc tu ring , and to generate ex ten ts for

th e v irtua l classes of view m echanism .

1.4.1 Issues Regarding Terminology

T his research describes th e deploym ent of a role-based view system for O -R databases. I t provides

a new look a t an a lte rn a te view m echanism , which is based on the O -R industry standard . A

relation is the only possible s tru c tu re in the relational d a ta model. Hence, a base relation is used

to refer to a rela tion contain ing physical data , and a v ir tu a l relation is a relation derived using a

query on base or v irtu a l schema. T he relational model handles real world entities by m odelling

them as relations. T he flat feature of the relational m odel m akes it im possible to handle com plex

objects and ob ject hierarchy. However, the object m odels (0 - 0 and O-R) contains complex ob jects

and a view may involve the construction of a single v irtua l ob ject of m ultip le v irtua l objects. Some

researchers regard a view as a single v irtua l class, and o thers regard a view as a v irtual schema.

In our research, a view is regarded as a v irtua l schem a to m eet the original criteria of canonical

m odel in FDBS. T he te rm of roleview is used to represen t a new O -R view mechanism th a t

con tains m ultip le v irtu a l classes. T he te rm of root is used to specify th e s ta tic com ponent of th e

view, which presen ts th e in trinsic properties of an ob ject, and role is th e te rm th a t specifies th e

dynam ic com ponent of th a t view, which presents the extrinsic properties.

1.5 Conclusions &; Dissertation Layout

In th is chapter a general in troduction to FDBS is provided, toge ther w ith th e functionalities th a t

the view m echanism m ust provide. T he existing 0 - 0 view m echanism s present th ree main features,

which are base class and v irtu a l class m ust be separated; ob ject preserving sem antics is used to

CHAPTER 1. INTRODUCTION 8

represent the views; a view is a v irtua l schem a style ra th e r th a n a v irtua l class style. We also

stud ied the notion of role concept and role usage. T he O -R m odel is regarded as the canonical

m odel since its popularity is growing, and finally the concept of roles is used to build a new view

m echanism ra th e r th an th e trad itio n a l 0 - 0 views.

In chap ter 2, we exam ine some p ro jec ts th a t have im plem ented the role concept in practice. The

con tribu tion and lim ita tions of each pro ject are listed, while th e differences to our approach are

also clarified.

In chap ter 3, we analyse th e curren t O -R m etam odel. A full descrip tion of the m etaclasses are

presented. Before extending th e m etam odel, a study of our view m etam odel is introduced. T he

extended m etam odel provides th e capability of recognising roles and roleviews. Finally, we briefly

describe the extended m etam odel.

In chap ter 4, we present our view model. T he sem antic issues are discussed and a com plete

specification is provided. T he extended SQL: 1999 is used to define the m echanism , and a view

display system uses th e m ethodology for ex ten ts to display views.

In chap ter 5, we in troduce th e details of p ro to ty p e and th e experim ents are provided. In chapter

6 we conclude the thesis and discuss the fu tu re work.

Chapter 2

R elated Research

0 - 0 m odelling and developm ent have been w idely stud ied in research and developed in industry.

However, the re are still some problem s requiring for solutions. One of these problem s, th e lack of

adequate ob ject evolution mechanism s, also knowing as role modelling, has a ttra c te d th e a tten tio n

of m any researchers. Different proposals for ex tend ing th e trad itiona l o b ject m odel w ith role

m echanism s have been published. As our view system is bu ilt on the base of role concept, it is

necessary to study the existing role proposals and present a com parison of the ir features. In th is

chap ter we clarify the differences betw een those proposals and our solution. F urtherm ore, we list

the functional requirem ents th a t a su itab le view m echanism of federated system s m ust represent.

For m any years ob ject roles have been stud ied in 0 - 0 literatu re . Some researchers concentra ted

on theore tica l aspects [RS91, A B G 093 , SteOO, DPZ02], while o thers focused on im plem entation

[GSR96, Won98, AAGOO, JHPS02]. In th is chap ter, we take a close look a t some recent p rojects

which represent roles in practice. Each pro ject is stud ied according to th e following criteria: the

con tribu tions and th e lim itations, th e contex t of roles and views (if present) and the beneficial

features th a t we m ay use. All exam ples illu stra ted in th is chapter are based on th e schem a in

figure 1 .4 .

2.1 Extended Smalltalk

G ottlob et al. [GSR96] extended th e existing 0 - 0 program m ing language Smalltalk by adding

classes such as O b jec tW ith R o les and RoleType to su p p o rt the role m echanism sim ilar to OBD

[KS91]. T he roo t of the role hierarchy is represented as a subclass of O b jec tW ith R o les , and every

role type is specified as a subclass of R oleType. T he ob ject m igration and contex t-dependen t access

issues are relaxed in th is approach. T h e prim e con tribu tion of the work is th a t m ultip le occurrences

is enabled by defining a new type Q u a lifie d R o le T y p e . W ith th a t type, it is possible to model

a real world en tity th a t has several occurrences of one single role. To be able to d istinguish the

different occurrences of a role type of a single object, the occurrence has to be uniquely identified

via a qualifying a ttr ib u te . The following exam ples illu stra te the definitions of ob ject w ith role

extensions in E x tended Sm alltalk.

E x a m p le 2.1 Smalltalk Root Definition.

/ / Root Type Definition

ObjectWithRoles / / start the root type definition

subclass: #Im age / / root Image is a subclass of O bjectW ithR oles

9

CHAPTER 2. RELATED RESEARCH 10

instanceVariableNames: ‘img-id name size resolution content

background source’

classVariableNames: 1 ’ / / variables at the class level are null

poolDictionaries: 1 ’ / / string of pool names

category: ‘Im ageView’. / / category name string

/ / Root Object Definition

ISG < = Image new. / / create a new object of Image type

ISG img-id: 1001. / / assign values to instance variables

ISG name: ‘ IS G ’.

ISG size: ‘ 60k’.

ISG resolution: ‘ 144p ’-

ISG content: ‘ logo \

ISG background: ‘ w hite’.

ISG source: 1 c :\\G ra p h ic s \\’.

In example 2 .1, roo t ty p e and root ob jec t are defined. T he roo t type Image is defined as a subclass

of O b jec tW ith R o les . T he roo t class represents the supertype in a role hierarchy nam ed ImageView,

and it is also provided as a param ete r in addition to th e role-specific instance variables. T he root

ob ject ISG is defined by sending th e message Image new. T he definitions of role type and role

ob ject are illu stra ted in example 2.2.

E x a m p le 2 .2 Smalltalk Role Definition.

/ / Role Type Definition

RoleType / / start the role type definition

defRoleType: #Im gM ap / / ImgMap is a subclass o f RoleType

instance VariableNames: ‘map-name shape href coordinates target ’

classVariableNames: 1 ’ / / variables at the class level are null

poolDictionaries: 1 ’ / / string of pool names

category: ‘Im ageView’ / / category name string

roleSuperType: #Im age. / / specify its root type

/ / Role Object Definition

/ / create new role object, which corresponds to ISG root object

ISGImgMap <- ImgMap newRoleOf: ISG.

ISGImgMap map-name: ‘isg-ban’. / / assign values to instance variables

ISGImgMap shape: ‘oval’.

ISGImgMap href: lwww.google, com ’.

ISGImgMap coordinates: {125, 50}.

ISGImgMap target: ‘s e lf’.

http://www.google

CHAPTER 2. RELATED RESEARCH 11

T he role ty p e definition s ta r ts w ith the m essage defR oleT ype, and ro le S u p e rT y p e is used to

present th e supertype in th e role hierarchy. In th e previous exam ple, class Image is specified as

the su p e rty p e of role type ImgMap. T he supertype of a role ty p e could be a subclass of RoleType

or O b je c t Of R o les . In o ther words, a role can be played by e ither a root or an o th er role. W hile

defining a role object, th e m essage newRoleOf is used for representing an o b ject as the ancestor of

the new role type instance. In th is case, role o b ject ISGImgMap is played by th e roo t object ISG.

E x a m p le 2 .3 Smalltalk QualifiedRole Definition.

/ / QualifiedRole Type Definition

QualifiedRoleType / / start the qualified role type definition

/ / Animatedlmg is a subclass o f Q ua lifiedR o leT ype

def QualifiedRole Type: # Animatedlmg

instanceVariableNames: ‘width height coordinates rotation tween scale’

class VariableNames: 1 ’ / / variables at the class level are null

poolDictionaries: ‘ ’ / / string o f pool names

category: TmageView’ / / category name string

roleSuperType: # Image / / specify its root type

class OfQualifying Obj: #Flash. / / specify the qualifier

/ / QualifiedRole Object Definition

isgLogo < - Flash new name: ‘isgJogo’. / / create a new object of F lash

/ / create new qualified role object, which is qualified by isgLogo object

AnimatedLisg < - Animatedlmg newRoleOf: ISG qualifiedBy: isgLogo.

trLogo <- Flash new name: ltrJ,ogo’. / / create a new object o f F lash

/ / create new qualified role object, which is qualified by trLogo object

AnimatedL.tr <- Animatedlmg newRoleOf: ISG qualifiedBy: trLogo.

In the final exam ple, th e qualified role type and object are defined. T he a t tr ib u te c ls s O fQ u a li-

fy ingO b j is provided as a param ete r in addition to the role-specific instance variables and instance

m ethods. T he m ethod new R oleO f: an O b je c t q u a l if ie d B y : q u a l i f y ingO bj is predefined for

creating new qualified role objects.

Extended Sm alltalk supports creating new objects based on th e role concept ra th e r th a n im plem ent­

ing th is concept w ith th e cu rren t 0 - 0 model. T he au thors try to model ob jects in an object-role

form at ra th e r th an in 0 - 0 form at. However, our focus is on how to res tru c tu re or review the

defined objects , which have been stored in 0 - R databases. A lthough th is proposal resolves m any

issues th a t th e trad itional 0 - 0 model presents, th e role definition is based on one single individual

object. Each root ob ject or role object is generated individually. However, we concentra te on

generating a collection of ob jects w ith th e capability of restruc tu ring in a new view system . The

term of m u l t i r o l e in our approach is used to address the issue th a t Q u a lifie d R o le T y p e resolved.

Figure 2.1 represents th e differences between E x tended Sm alltalk and our approach. T he prem ier

difference is th a t E xtended Sm alltalk concentra ted on extending th e 0 - 0 m odel a t the local layer;

and we focus on developing a new view service a t the view layer by extending th e 0 -R m etam odel.

CHAPTER 2. RELATED RESEARCH 12

View Layer

«-QB Schema ! Repository Schem;

Object Instances
Smalltalk defined

.metadata t^pes_ _

Extended metadata types
(ObjectWithRoles, RoleType,

QualifiedRoleTvpe),

Object-Oriented Database

E x te n d e d Smalltalk

Object-Relational (Oracle 9/) Database

Our Approach

Local Layer

Figure 2.1: Extended S m alltalk &; O ur Approach.

2.2 DOOR/M M

W ong et al. proposed a dynam ic object-oriented da tab ase program m ing language w ith role and

m ultim edia extensions [Won98]. T he th ree contribu tions are: supporting ob ject m igration; ex tend­

ing m ultim edia ob jects w ith the notion of roles; and in teg ra ting views and roles.

T he issue of ob ject m igration is resolved by representing roles w ith the role class nam es and the ir

values instead of th e global unique identifier. R epresenting roles w ith a unique identifier offers

the following advantage: it d istinguishes a role from o th e r roles; it recognises a role as th e same

role even if its s ta te is changed; it models class m igration by adding and deleting roles to an

object. However, th is unique role identifier schem e still causes problem s like dangling references

and historical inform ation representation if we allow a reference to a role [WCL97). For exam ple,

if a m anager position is replaced by another person, all references to the m anager should change

to the new m anager (who is represented by a different role identifier). Hence, a role o b ject is

represented by the com bination between role class nam e and role object value in th is approach.

T he issue of m ultip le in stan tia tion is not discussed explicitly. A uthors only specify a boolean

expression in order to distinguish m ultip le occurrences. In th e case of m ultip le roles satisfying the

expression, th e system will only re tu rn one of them for th e sake of sim plicity and efficiency.

A newly designed language, the D O O R database program m ing language (DL), is used to define

the roles. Following are th e key constructs:

1. (make < c l a s s > £ subclass-of . . .)

2. (make < v i r t u a l - v i e w > existing-instances . . .)

3. (make < m a te r ia l i s e d - v i e w > existing-instances . . .)

4. (make an-existing-object-class ‘ slot 1 . . .)

5. (make an-existing-role-class an-existing-instance ‘ slot 1 . . .)

T he keyword make is used to create a class (either ob ject class or role class), a v irtua l view,

a m aterialised view, an object, or a role. These construc to rs are represen ted by the following

exam ples, which are based on the schem a in figure 1.4

 DB Schema

Relational Data &
Object Instances

Oracle 9/ defined
metadata jypes_________

Extended metadata types
(Roleview, Root, Role,

MultiRole)____________ -

Repository Schema,

CHAPTER 2. RELATED RESEARCH

E x a m p le 2 .4 D O O R /M M Root Definition.

/ / Root Class Definition

(define <Image> / / start the root class definition

(make <class>

/ / specify the attributes

‘slots (list ‘img^id ‘name ‘size ‘resolution ‘content ‘background ‘source)

‘label “< Im age>”) / / specify the label of root class

/ / Root Object Definition

(define ISG / / start the root object definition

(make <Image>

‘img-id 1001 / / assign values to root attributes

‘name “IS G ”

‘size “60k”

‘resolution “144p ”

‘content “logo”

‘background “white”

‘source “c : \\ G raphics\\ ”)

In example 2.4, roo t class and roo t ob ject are defined separately. F irs t make is used to create

root class and th e second p a r t is used to create a roo t object.

E x a m p le 2 .5 D O O R /M M Role Definition.

/ / Role Class Definition

(define <ImgMap> / / s t a r t the role class definition

/ / it is defined as a subclass o f R o l e

(make <class> ‘subclass-of (list <Role>)

‘player-domains (list <Image>) / / specify its root class

/ / specify the role class attributes

‘slots (list ‘map_name ‘shape ‘href ‘coordinates ‘target)

‘label “<Im gM ap>”) / / specify the label o f role class

//R o le Object Definition

(define ISGImgMap / / start the role object definition

(make <ImgMap> ISG / / specify its root object

‘map-name “isg-ban” / / assign values to role attributes

CHAPTER 2. RELATED RESEARCH 14

'shape “oval”

‘href “www.google.com”

‘coordinates {125, 50}

‘target “se lf”)

In example 2.5 , ImgMap is defined as a role class which is considered the subclass of R ole. The

message p la y e r_ d o m a in s is used to specify the roo t class. In th e role object definition, ISG is used

to specify th e roo t ob ject w hich is corresponded to th e role object ISGImgMap.

In D O O R /M M , views are m odelled as m ultiple rep resen tations and abstractions of a m ultim edia

object. Roles are m odelled as an object-based specialisation of a m ultim edia ob ject for dynam ic

extension, as well as in teg rating th e heterogeneous types of inform ation in the 0 - 0 model. In o ther

words, ob jects and roles (but not views) are regarded as logical entities, and its views are regarded

as v irtu a l rep resen tations of these logical en tities [Won98]. T h e view definition in th is approach is

represented by th e following exam ple.

E x a m p le 2 .6 D O O R /M M View Definition.

(define ISG-view / / start the view definition

(make < virtual-view> (list ISG) / / specify the base root object

‘img-id 1001 / / retrieve the attributes

‘name “ISG ”

‘size “60k”

‘resolution “144p ”

‘content “logo”)

(define ISG ImgMap-view / / start the view definition

(make < virtual-view> (list ISGImgMap) / / specify the base role object

‘map-name “isg-ban” / / retrieve the attributes

‘href “www.google.com”)

As example 2.6 illustrates, a view is specified as a v irtu a l en tity of a roo t or role ob ject. Hence,

ISG -view represents roo t object ISG; and ISGImgMap-view is a v irtua l rep resen tation of role ob ject

ISGImgMap. W hile defining views in D O O R /M M , some a ttr ib u te s of base roo t or role ob ject are

allowed to be hid. Each view definition is based on one single ob ject (root or role). However, in

our approach, we regard a view as a w rapper of m any re la ted logical objects. A lthough th e au thors

claim th a t a view may be defined by ex tracting th e ab s tra c t and references from o ther views to

represent m ultifaceted features of a m ultim edia ob ject, there is no p ro to type or im plem entation

supported . W e differ from th is approach by providing a role-based v irtual schem a ra th e r th an ju s t

a concept of single roo t or role. Figure 2.2 represents th e differences between D O O R /M M and

our approach. D O O R /M M defines a new object-role m odel a t the local layer and th e m ultim edia-

ob ject views are specified based on single root or role object; and the m etam odel issue is not

properly addressed. O ur approach extends the existing 0 -R m etam odel in order to sup p o rt the

view definitions a t th e view layer.

CHAPTER 2. RELATED RESEARCH 15

-DR Rr.hftma ! Repository Schema,

Multimedia Object ■ DL defined metadata
Instances 1 types (Object, Role, View)

Relational Data &
Object Instances

Oracle 9/ defined
_metadataj^pes_________

Extended metadata types
(Roleview, Root, Role,

MultiRole)_________ ■

Repository Schema.

View Layer

Local Layer

Object-Oriented Multimedia Database Object-Relational (Oracle 91) Database

DOOR/MM Our Approach

Figure 2.2: D O O R /M M & O ur Approach.

2.3 Galileo

A lbano et al. focused on developing views for 0 - 0 d a tab ases w ith the sem antics of viewing op­

era tions in th e con tex t of Galileo 97, which is a strongly typed database program m ing language

and supports ob jects w ith role concept [AAGOO]. In Galileo 97, operators are defined in o rder to

create the roo t and roles : mkT is used to construct th e ob jec t of type T; in S ex tends dynam ically

an ob ject w ith a new subtype S of T, w ithou t changing its identity, b u t w ith th e possibility of

changing its behaviour; inS adds a new role to an ob ject, and returns a reference to th is new role

of th a t object. A n object expression in Galileo 97 always denotes one specific role of an ob ject.

T he roo t and role definitions are illu stra ted by th e following examples.

E x a m p le 2 .7 Galileo Root Definition.

/ / Root Type Definition

let rec type Image <-> [/ / start the root type definition

imgJid: int; / / specify the root attributes

name: string;

size: string;

resolution: string;

content: string;

background: string;

source: string j

/ / Root Object Definition

let ISG := mklmage (/ / create a root object ISG

[img-id := 1001; / / assign values to root attributes

name := “IS G ”;

size := “60k”;

resolution := “144-P ”i

content := “logo”;

CHAPTER 2. RELATED RESEARCH 16

background := “white”;

source := “c :\\G ra p h ic s \\”])

In example 2.7, th e ro o t type and roo t object are defined. T he root type is defined by passing

the message l e t r e c ty p e and the roo t ob ject definition s ta r ts w ith th e opera to r mklmage. T he

following exam ple illu stra tes the role type and role ob jec t definitions. T he role type is defined as

a sub type of Image. T h e operator inlmgMap is used to create a role object which is played by ISG

object.

E x a m p le 2 .8 Galileo Role Definition.

//R o le Type Definition

let rec type ImgMap < - > is Image and [/ / start the role type definition

map-name: string; / / specify the attributes

shape: string;

href: string;

coordinates: integer array;

target: string]

//R o le Object Definition

/ / create role object, specify its root object ISG

let ISGasImgMap := inlmgMap (ISG,

[map-name := “isg-ban”; / / assign values to role attributes

shape := “oval”;

href := “www.google.com”;

coordinates := {125, 50};

target := “se lf”])

7

In Galileo, au tho rs assert th a t the role mechanism cano t cope w ith the rela ted problem of giving

different views of th e sam e object w ithou t affecting its behaviour. T he object w ith role extensions

are introduced as real objects th a t have been explicitly construc ted using the mk or in opera to rs ,

and the views are defined as virtual objects th a t change ob jects interface. A v irtua l ob ject has the

sam e identity as the base object; if it is based on a com bination of several objects, then its iden tity

is a com bination of th e identities of base objects. A v ir tu a l object can add, remove, and renam e

fields of its base ob ject, moreover a v irtual ob ject can have its own instance variables, which are

accessed by its own m ethods.

T he view definition in Galileo s ta rts a t the class level. T he view type specifies th e s tru c tu re of

v irtua l ob ject, and th e constructors, such as p r o j e c t , renam e, e x ten d and tim es, build v irtu a l

objects. Example 2.9 dem onstrates th e view definition.

CHAPTER 2. RELATED RESEARCH 17

View Layer

Rrftonnft ¡ Repository Schema______ v DB Srhama ! Repository Schema______

! Galileo 97 defined metadata
Object 1 types (Object, Role) Local Layer

Instances }■--
i Extended metadata types ^

Extended metadata types ^
(Roleview, Root, Role,

(View) ___________ I MultiRole)__________

Object-Relational (Oracle 9 i) DatabaseObject-Oriented Database

Galileo Our Approach

F igure 2.3: Galileo & O ur A pproach.

E x a m p le 2 .9 Galileo View Definition.

/ / View Type Definition

let type ImgView :=

<Image> view [/ / specify the base object type, v iew is type constructor

name; / / attributes list

size;

resolution;

/ / Vitural Object Definition

/ / virtual object of ISG, which is defined as an object of Image type,

let ISGImgView :=

ISG project [/ / specify the base object, p r o je c t is restructure operator

name; / / selected attributes

size;

resolution;

content]

/ / virtual object of ISG, which has been extended with the role type ImgMap.

let ISGImgMapView :=

(ISG as ImgMap) project [/ / base object ISG is extended as ImgMap

content]

map-name;

href]

CHAPTER 2. RELATED RESEARCH 18

A uthors s ta te th a t roles and views are com m on since they bo th allow an object to be extended.

However, roles considered ob ject extensions m ay modify the behaviour of the original object

w hereas views do not modify its behaviour. T h e contribution of th is proposal is th e clarifica­

tion of the rela tionsh ip between roles and views, and th e different sem antics of m ethod overriding

and evaluation in views and roles. The essential differences between roles and views are:

• T he set of roles of an o b ject is p a rt of th e ob ject itself, and th e ob jec t can be tested w ith the

pred icate i s a l s o to find o u t which role it has; while a view is conceptually external to the

object.

• A dding a new role to an object transform s its type into a sub type, while the corresponding

view operation e x te n d produces an ob ject whose type may not be rela ted to th e original one.

• T he behaviour of an ob ject changes when it gains a new role, while it is not affected by the

creation of a new v irtua l object.

A lthough some view operations are specified in th is proposal, which present more flexibility th an

the D O O R /M M proposal, th e view is still based on one single object ra th e r th an a collection of

objects. F urtherm ore, the prem ise of defining a view is th a t the o b ject has to be well specified

w ith role extensions by using Galileo 97. In o ther words, if the sto red ob ject is no t m odelled in

the object-ro le form at, the view of th a t object cannot be im plem ented and view opera to rs have

no use. Figure 2.3 represents th e differences betw een th is approach and our solution. T he ob ject

view specified in Galileo is based on the extension of object-role moel, which is defined by Galileo

97; and it is th e v irtu a l represen tation of single ob ject. We differ because we ex tend the s tan d ard

O-R m odel w ith a stan d ard da tabase program m ing language SQL: 1999 to define th e O -R view as

v irtua l schema.

2.4 Summary of Analysis

T he role proposals described in th is chapter provide different aspects of the role concept, while

some of them also discusses the view m echanism s which in tegrated w ith roles. In general, there

are few broad role features em erged from those definitions:

• A root ob ject plays m any role objects a t th e sam e tim e. All th e proposals agree th a t a root

ob ject plays m any role ob jects a t the sam e tim e. T he benefits of th is feature is th a t instead

of the perm anen t relationship presented in 0 - 0 model, the rela tionsh ip between a roo t object

and role object is dynam ic and flexible. In the real world, there is a possibility th a t an object

does no t associate w ith any roles currently, instead being a p o ten tia l player in the future.

For exam ple, a person o b ject may play a role of s tuden t eventually. None of the proposals

pay any a tten tio n to th is possibility, w hereas it should be possible in a roleview system .

• M ultiple occurrences of roles should be perm itted . B oth E xtended S m alltalk and D O O R /M M

discussed th is issue, w ith th e la tte r providing only an expression to distinguish m ultiple

occurrences. Extended Sm alltalk represents th is issue by defining a new type which is tightly

associated w ith a qualifier type. M ultiple occurrence is also a key task in our approach.

A role ty p e m u l t i r o le is defined to su p p o rt m ultiple in stan tia tio n w ithou t th e associated

qualifier type specification. In our appraoch, a m u l t i r o le is considered ano ther form of role

ra th e r th a n a to ta lly different role form at, which E xtended S m alltalk represented.

CHAPTER 2. RELATED RESEARCH 19

• A roo t ob ject acquires and abandons a role o b ject dynam ically. W hile abandoning a role

ob ject, the root ob ject still exists. The deletion of a roo t ob ject causes th e deletion of its

role objects. All of the proposals present a loosed coupled relationship between roo t and

roles. A root ob ject is allowed to add or remove its role ob jects dynam ically T his dynam ic

p roperty comes close to ob ject m igration or dynam ic re-classification. All of the proposals

address th a t a role canno t be defined unless its roo t exists in the database schema. In o ther

words, th e role existence depends on its root. T he roo t o b ject will not lose its iden tity when

its roles are removed from the schema; conversely, a role ob ject is lost when its roo t ob ject

is deleted from th e schema.

2.5 Conclusions

In th is chapter, some of th e m ajo r research pro jects on roles are exam ined. According to th e

em erged key characteristics, together w ith the analysis of th e 0 - 0 view m echanism s from chapter

one, we provide the functional requirem ents for a su itab le federated view m echanism . These

requirem ents are sum m arised as the following:

• A roleview is a w rapper of root and roles, which are considered v irtua l classes. A roleview

is defined as a v irtu a l schem a rather th a n a single v irtu a l class. T he view m echanism in

D O O R /M M is one m ultim edia-object based. A lthough th e au thors assert th a t the schema-

based view is supported also, there is no p ro to ty p e or im plem entation provided. T he view

m echanism in Galileo is also one object based. A view is defined as a v irtua l roo t or role. Such

represen tations do no t m eet th e requirem ents from th e s tu d y of federated da tabase system s

[SCGS91]. In order to re ta in as much sem antic in form ation as possible, our view system

w raps m ultip le re la ted v irtua l classes (root and role) to represent the underlying schema.

• O bject-preserving sem antics is an issue. T he role p ro jec ts we studied in th is chap ter aim to

ex tending the 0 - 0 model w ith role extensions. Hence, ob ject-generating sem antics is used to

identify the new m echanism . In Extended S m alltalk and Galileo, a unique identifier identifies

th e role object; in D O O R /M M , the com bination of role class nam e and a pivotal role ob ject

value is the role ob ject identifier. On the o ther hand, object-preserving sem antics is an evident

in some 0 - 0 view m echanism s, such as Cocoon [SLR+ 94] and M ultiview [Run92], where

views are defined as the v irtu a l entities of existing objects. In our approach, th e roleview is

com posed of m any v irtua l classes. I t is possible th a t th e roo t object and th e role ob ject base

on one single entity. In th is case, the am biguities are caused if the identifiers of th e v irtua l

ob jects (roo t ob ject and role object) are b o th specified by the object-preserving sem antics. A

solution to th is issue is provided in chapter four, where transien t-ob ject-genera ting sem antics

is used to identify the role ob ject and object-preserving sem antics is used to identify th e root

object.

• A clear sem antics m ust be provided to generate th e view ex ten t. In D O O R /M M , the view

m echanism is defined a t th e ob ject level. Each view definition is considered one single v irtua l

m ultim edia object. In Galileo, although a view type is defined a t the class level, each view

object is generated individually. A constructor is provided to generate a single view object

ra th e r th a n collection of view objects in D O O R /M M and Galileo. However, generating th e

view ex ten t is an issue in some 0 - 0 view proposals, w here a view is considered v irtu a l schem a

[SAD94, Run92]. A query is proposed to generate th e ex ten ts of th e v irtua l classes. However,

it is necessary to display a num ber of classes for which one class determ ines th e ex ten ts of all

connected classes. In our approach, a roleview is also considered v irtua l schem a. Hence, the

CHAPTER 2. RELATED RESEARCH 20

questions abou t generating ex ten ts arise, such as how to generate th e ex ten t of each v irtua l

class; how to jo in these ex ten ts and generate the ex ten t for the en tire v irtua l schema; and

how to avoid th e overlap between each v irtu a l class ex ten t. A clear sem antics is provided

in th e roleview definition in order to clarify the ex ten ts specifications. A full description of

business rule and sem antics are introduced in chapter four.

A t th is po in t, our roleview system m ust provide these functional requirem ents, along w ith present­

ing role features listed in the sum m ary of analysis. Before th e new view system is in troduced in

chapter four, it is necessary to study and ex tend th e existing O -R m etam odel in order to support

our roleview m etaclasses.

Chapter 3

E xtending th e O-R M etam odel

M ost of the la tes t versions of rela tional databases, such as Oracle, Sybase and Inform ix extend

th e rela tional m odel w ith new constructors to sup p o rt objects. In general, these databases have

appeared in the m arket before th e approval of th e stan d ard , hence th e cu rren t version of 0 -

R databases do not fully su p p o rt th e SQL: 1999 [GP99] specification. In our research, 0 rac le9 i

[OraOl], th e la test version of th e Oracle database, is considered the s ta n d ard m odel because it

supports m ost features of th e SQL: 1999 specification. T he purpose of th is research is to specify a

role-based view system in O -R databases, hence, it is necessary to exam ine th e O -R m etam odel to

see how it m ight support roles. If not, it is necessary to extend the m etam odel which will support

the roleview definition and sto re new m e tad a ta in th e schem a repository. From now on we will

refer to O racle9i as th e O -R d a tab ase and Oracle9« m etam odel as th e s tan d ard O -R m etam odel.

3.1 The Object-Relational Metamodel

As an am algam ation of rela tional and 0 - 0 d a ta models, the O -R model is com plex. M any ap­

plications need access to th e com plex structu res th rough m etadata . A m e ta d a ta m odel provides

interfaces for ex tracting com plete definitions of logical database objects. T he O -R database stores

m e tad a ta in the schem a reposito ry as s ta tic tab les and views [OraOl]. T he base tables store

inform ation abou t the d a tab ase and only th e vendor m ay access these tables. However, views

sum m arise and display th e inform ation stored in th e base tables and decode th e base tables into

useful inform ation for m e ta d a ta queries. Users are allowed to observe m etatab les by accessing

these views.

Figure 8.1 presents an overview of the O-R m etam odel. In an O -R m etam odel, a schem a is

a collection of s tru c tu red d a ta or schem a objects. Schem a objects (nam ed as ALL.OBJECTS in

the schem a repository) are created and m anipulated by SQL and stored as m e tad a ta . Schem a

objects include m any struc tu res, such as types, tables, views, triggers, sequences, s to red procedures,

indexes, synonyms, clusters and database links etc. O ur research focuses on th e study of the

logical s tru c tu re of databases, hence the schem a objects which relate to th e physical struc tu res not

discussed. A full version of O -R m etam odel analysis is presented in [Wan02a]. T he relevant schem a

objects are classified in four sections: types, tables, views and triggers. In figure 3.1 , ALL_OBJECTS

plays th e role of container, holding all schem a objects in the database. ALLOTYPES, ALL_TABLES,

ALL_VIEWS and ALL_TRIGGERS represent different types of objects.

21

CHAPTER 3. EXTENDING THE O-R METAMODEL 22

Figure 3.1: O bject-R elational M etam odel Overview.

3.1.1 O bject-R elational Types

A fully s tru c tu re d O -R model m ust present some cornerstone characteristics, including base type

extension, inheritance and com plex ob jects [SM96]. T he O -R m etam odel represents those charac­

teristics as ob ject extensions, which is discussed as following [OraOl]:

• In an O -R m odel, users are allowed to specify an user-defined d a ta type (U D T), according

to the required built-in da ta types. This feature makes it easier for developers to w ork w ith

com plex d a ta such as image, audio and video. A n U D T stores s tru c tu red d a ta in its n a tu ra l

form and allow applications to retrieve it in th a t form. An instance of an U D T is an object,

which is identified by a unique ob ject identifier (O ID). O bjects in O -R model are n o t isolated,

they link each other th rough association, inheritance and aggregation/com position .

• U D Ts are organised into a type hierarchy, w here th e s tru c tu re and behaviour of several U D Ts

can be ab s trac ted into a com m on supertype. A single inheritance model is supported : the

sub type can be derived from only one paren t type. I t inherits all th e a ttr ib u tes and m ethods

of its d irect supertype. A sub type can add new a ttr ib u te s and m ethods, and m ay override any

of the inherited m ethods. Furtherm ore, a sub type can itself be refined by defining another

sub type which derives from it, thus building up type hierarchies.

• A rich collection of complex ob jects are suppo rted using collection types: varray and nested
table. A varray is an ordered collection of elem ents and stored as opaque ob ject like RAW or

CHAPTER 3. EXTENDING THE O-R METAMODEL 23

CLOB. A nested tab le is an unordered set of d a ta elem ents, all of th e sam e datatype. I t is a

n a tu ra l way to im plem ent aggregation or com position, which is not specified in the SQL: 1999

specification. Collection types whose elem ents are them selves d irectly or indirectly ano ther

collection type, build up m ulti-level collection types. B o th single-level collection types and

m ulti-level collection types can be used w ith columns in a tab le or w ith ob ject a ttr ib u tes in

object tables.

Figure 3.2 provides an overview of m ajo r types-m etadata contained in the O -R m etam odel. In th is

section, we also discuss how th e object extensions of O -R m odel are represented in the m etam odel.

For a full description of how to access th e O -R m etadata , please refer to [0 ’C02].

• A L L _ T Y P E S . ALL.TYPES is used to represent all th e U D Ts defined a t th e database schema.

An U D T is an abs trac tion of a real-w orld en tity and has th ree com ponents: nam e, a ttr ib u tes

(viewed from ALL_TYPE_ATTRS) and m ethods (viewed from ALL_TYPE_METHODS). It is a tem ­
plate, w hereas an in stan tia ted type is called an object. A n U D T provides only the structu re ,

and th e ex ten ts are sto red in ob ject tab les (viewed from ALL_0B JECT.TABLES) for the purpose

of m anipulation . An object can be retrieved into an o b ject view (viewed from ALL.VIEWS)

according to u se rs’ requirem ents. An object view (or typed view) is regarded as a vir­

tu a l object tab le, w here each row in th e view is an ob ject. A colum n ob ject (viewed from

ALL_TAB_COLUMNS) is used to describe an U DT occupied tab le column.

• A L L _ T Y P E _ A T T R S . T he a t tr ib u te s of an U D T m odel represent th e s tru c tu re and s ta te

of the real-world entity. A ttrib u te s are either bu ilt-in types such as v a rc h a r2 , in te g e r ,

BLOB or o ther U D Ts (viewed from ALL.TYPES). Hence, th e re are dual relationships between

ALL_TYPE_ATTRS and ALL_UDTS: an U D T is a com position of a ttr ib u te s and methods; an

a t tr ib u te also associates w ith an U D T because of its d a ta type; an a t tr ib u te can be a R E F

type (viewed from ALL_REFS), which represents the association between two UDTs.

• A L L _ T Y P E _ M E T H O D S . The m ethods of an U D T are functions or procedures w ritten in

P L /S Q L or Java and stored in the database, or w ritten in a language and stored externally.

M ethods im plem ent operations th a t th e application perform s on th e real-world entity. A

m ethod is allowed to take some argum ents as param eters (viewed from ALL_METHOD_PARAMS)

and m ay re tu rn results (viewed from ALL_METHOD_RESULTS) if it is defined as a function.

They fall into th ree categories: m em ber m ethod, s ta tic m ethod and com parison m ethod.

• A L L _ M E T H O D _ P A R A M S . Each m ethod of an U D T is allowed to have zero or m any

param eters. T he d a ta ty p e of a param ete r is either a bu ilt-in type or m ore complex, an U D T

(viewed from ALL.TYPES).

• A L L _ M E T H O D _ R E S U L T S . T he difference between a function and a procedure is th a t

function re tu rn s values b u t procedure does not. If users specify th e m ethod as a function,

the valuable resu lts will be re tu rned to the system. T he result of a m eth o d may associate

w ith ALL.TYPES also because its d a ta ty p e is allowed to be either a bu ilt-in type or a complex

UDT.

• A L L _ C O L L _ T Y P E S . A collection type is another form of U D T, as it represents a collection

of com plex objects. A collection type describes a d a ta u n it m ade up of an indefinite num ber

of elem ents, all of th e sam e d a ta type. T he collection types include array types (viewed

from ALL.VARRAYS) and tab le types (viewed from ALL_NESTED_TABLES). ALL_COLL_TYPES

provides the ab s tra c t s truc tu re of collection types.

CHAPTER 3. EXTENDING THE O-R METAMODEL 24

0..1
ALL OBJECT TABLES

0..1

Viewed From
Figure 3.3 Ì
Viewed From
Figure 3.4

be defined by

o.:
Typed View

: datatype of

ALL VIEWS

ALL TYPES
OWNER :VARCHAR2
TYPE NAME: VARCHAR2
TYPE_OID: RAW
TYPE_CODE: VARCHAR2
ATTRIBUTES: NUMBER
METHODS: NUMBER
FINAL : VARCHAR2
SUPERTYPE_OWNER: VARCHAI
SUPERTYPE NAME : VARCHAR2
LOCAL_ATTRiBUTES: NUMBER
LOCAL_METHODS: NUMBER
TYPEID : RAW

contains

1..*
ALL TYPE METHODS

OWNER: VARCHAR2
TYPE_NAME : VARCHAR2
METHOD_NAME: VARCHAR2
METHOD_NO: NUMBER
METHOD_TYPE: VARCHAR2
PARAMETERS : NUMBER
RESULTS: NUMBER
FINAL: VARCHAR2
OVERRIDING : VARCHAR2
INHERITED : VARCHAR2

contains

h, is

ALL METHOD PARAMS
OWNER : VAf<CHAR2
TYPE NAME : VARCHAR2
METHOD_NAME: VARCHAR2
METHOD_NO: NUMBER
PARAM_NAME: VARCHAR2
PARAM_NO: NUMBER
PARAM_MODE: VARCHAR2
PARAM_TYPE_MODE: VARCHAR2
PARAM_TYPE_OWN ER : VARCHAR2
PARAM TYPE NAME : VARCHAR I

0..1

ALL TYPE ATTRS
OWNER: VARCHAR2
TYPE NAME: VARCHAR2
ATTR NAME: VARCHAR
ATTR_TYPE_MODE: VARCHAR2
ATTR TYPE OWNER : VARCHAR2
ALL_TYPE_NAME : VARCHAR2
ATR_NO: NUMBER
INHERITED: VARCHAR2

ALL COLL TYPES
OWNER : VARCHAR2
TYPE_NAME : VARCHAR2
COLL TYPE : VARCHAR2
UPPER_BOUND : NUMBER
ELEM_TYPE_MOD : VARCHAR2
ELEM_TYPE_OWNER : VARCHAR2
ELEM TYPE NAME : VARCHAR2

ALL REFS
0..1

Viewed From
Figure 3.3

be defined as

ALL METHOD RESULTS
OWNER : VARCHAR2
TYPE_NAME : VARCHAR2
METHOD_NAME: VARCHAR2
METHOD_NO: NUMBER
RESULT_TYPE_MOD : VARCHAR2
RESULT_TYPE_OWNER : VARCHAR2
RESULT TYPE NAME : VARCHAR2 I

1..*

0..1

0..1 'be storecT

ALL VARRAYS
OWNER: VARCHAR2
PARENT_TABLE_NAME: VARCHAR2
PARENT_TABLE COLUMN: VARCHAR2
TYPE_OWNER: VARCHAR2
TYPE_NAME : VARCHAR2
LOB_NAME: VARCHAR
RETURN TYPE: VARCHAR2

1..*

contains

-be storne

ALL NESTED TABLES
OWNER: VARCHAR2
TABLE NAME: VARCHAR2
TABLE_TYPE_OWNER: VARCHAR2
TABLE_TYPE_NAME: VARCHAR2
PARENT_TABLE_NAME : VARCHAR2
PARENT_TABLE_COLUMN : VARCHAR2
RETURN TYPE: VARCHAR2

Figure 3.2: O bject-R elational T ypes M etadata.

CHAPTER 3. EXTENDING THE 0-R METAMODEL 25

• A L L _ V A R R A Y S . A varray is an ordered se t of d a ta elem ents. Users m ust specify the

m axim um num ber of elem ents while defining a varray. If it is sufficiently large, th e bu ilt-in

type BLOB can be used to store such varray. A varray can be used as th e d a ta ty p e of a colum n

of tab le (viewed from ALL_TAB_COLUMNS). If a varray is involved in a multi-level collection

type, it is possible th a t th e varray associates w ith o th e r varrays or nested tables (viewed from

ALL.NESTED.TABLES).

• A L L _ N E S T E D _ T A B L E S . A nested tab le is an unordered set of elem ents, all of th e sam e

d a ta type. I t has a single column, and th e ty p e of th a t colum n is either a built-in type or an

U D T. If th e colum n in a nested tab le is an U D T, th e tab le can also be viewed as a m ulti-

colum n tab le , w ith a colum n for each a t tr ib u te of th e UDT. A nested tab le may associates

w ith o ther nested tab les or varrays (viewed from ALL.VARRAYS) and build up a m ulti-level

collection type.

3.1.2 O bject-R elational Tables

As th e basic un it of d a ta storage in the O-R m odel, tab les hold all of the user-accessible da ta . A

definition of a tab le includes: tab le nam e, colum n nam e, colum n d a ta ty p e , column w idth or scale

and precision (if d a ta ty p e is NUMBER). In tegrity constra in ts and triggers can also be defined for a

table. O bject tab le is a special kind of tab le th a t holds ob jects and provides a relational view of

the a t tr ib u te s of those objects. O bjects th a t appear in ob ject tab les are called row objects; and

objects appear in tab le colum ns or as a ttr ib u te s of o the r ob jects are called column objects. In th is

section, an overview of m e tad a ta for O -R tab les (figure 3.3) is represented. We also discuss how

the ob ject extensions are em bedded th e relational base.

• A L L _ A L L _ T A B L E S . ALL_ALL_TABLES contains all relational tables th a t store th e rela­

tiona l fo rm at of da ta , and all object tab les th a t sto re user-defined objects in th e schem a

d atabase. I t is an aggregation between ALL.TABLES and ALL_OBJECT_TABLES.

• A L L _ T A B L E S . All relational tables can be viewed a t ALL.TABLES. A tab le is com posed of

a t least one tab le colum n (viewed from ALL_TAB_COLUMNS), and specified by some constra in ts

(viewed from ALL.CONSTRAINTS). A trigger (viewed from ALL_TRIGGERS) usually associates

w ith tables. As an im p o rtan t m echanism in th e O -R model, relational views (viewed from

ALL.VIEWS) are created on the base of tables.

• A L L _ O B JE C T _ T A B L E S . As s ta ted previously, an U D T only defines the s tru c tu re of

entity. As th e O-R database uses object tab le to hold objects, it provides a ta b u la r view

of an U D T (viewed from ALL.TYPES). An object tab le is also com posed of tab le colum ns

(viewed from ALL_TAB_COLUMNS). T he pre-requisite to object tab le definition is th a t th e base

U D T m ust be defined and stored in th e schema. An object tab le can be viewed in two

ways: a single colum n tab le in which each row is an object, perform 0 - 0 operations or a

m ulti-colum n tab le in which each a ttr ib u te of th e U D T occupies a column, perform rela tiona l

operations [OraOl]. T he first represen tation allows ob jects to be accessed through an 0 - 0

application; and the la tte r representation allows ob jects to m eet th e relational form at, w hich

are accessed as relational data . In an ob ject tab le, objects th a t occupy com plete rows are

considered as row objects; object th a t occupy tab le colum ns in a larger row, or are a ttr ib u te s

of o the r objects, are viewed as column objects. O b jec t tab les are th e overlap between th e

0 - 0 concept and relational d a ta model. T he real-world en tity is defined as U D T which is

sim ilar to a class in th e 0 - 0 model, and stored in a ta b u la r form at which the relational m odel

recognises.

CHAPTER 3. EXTENDING THE 0-R METAMODEL 26

stores Viewed From [\

n 1 J 1
Figure 3.2

OWNER : VARCHAR2
TABLE NAME : VARCHAR2
NUM_ROWS : NUMBER
OBJECT_ID_TYPE : VARCHAR2
TABLE_TYPE_OWNER : VARCHAR2
TABLE_TYPE : VARCHAR2
NESTED : VARCHAR2

OWNER : VARCHAR2
CONSTRAINT_NAME : VARCHAR2
CONSTRAINTTYPE : VARCHAR2
TABLE_NAME : VARCHAR2
R_OWNER : VARCHAR2
R_CONSTRAINT_NAME : VARCHAR2
DEFERRABLE : VARCHAR2
VALIDATED : VARCHAR2

involves

1..*

OWNER : VARCHAR2
CONSTRAINT_NAME : VARCHAR2
TABLEJvlAME : VARCHAR2
COLUMN_NAME: VARCHAR2
POSITION : NUMBER

Figure 3.3: O bject-R elational Tables M etadata .

CHAPTER 3. EXTENDING THE 0-R METAMODEL 27

• A L L _ T A B _ C O L U M N S . B oth rela tional tab les and object tables are com posed of columns.

Each ta b le requires a t least one colum n. T he d a ta ty p e of each colum n is allowed to be a built-

in type or an U D T (viewed from ALL.TYPES) or a collection type (viewed from ALL.VARRAYS

or ALL.NESTED.TABLES). If an ob ject tab le is viewed as a m ulti-colum n table, th en each tab le

colum n stores the corresponding a ttr ib u te of the U D T (viewed from ALL_TYPE_ATTRS). I t is

possible th a t a tab le colum n is a REF d a ta ty p e (viewed from ALL.REFS) for th e purpose of

referencing ano ther ob ject. A colum n is allowed to associate w ith constra in ts (viewed from

ALL_CONS_COLUMNS) and triggers (viewed from ALL_TRIGGER_COLS).

• A L L _ R E F S . A REF is a logical po in ter to a row object. I t is specified while defining an UDT.

T he reason for discussing REF in O -R tab les section, ra th e r th an 0 -R types section is th a t it

is the link between two objects, n o t o b ject s tructu res. In o ther words, a REF is represented

as an o b ject tab le colum n (viewed from ALL_CONS_COLUMNS). REFs m odel th e associations

between objects, especially m any-to-one relationships in order to reduce th e need for foreign

keys. An easy navigation between ob jects is provided by th is m echanism . ALL.REFS stores

the inform ation of object tab le colum ns th a t references to o ther UDTs.

• A L L - C O N S T R A IN T S . T he O -R d a tab ase uses integrity constra in ts to prevent invalid

d a ta en try into tables. Users are allowed to define in tegrity constra in ts to enforce th e business

rules which m ust be associated w ith th e inform ation in th e database. A n in tegrity constra in t

is defined for tables (viewed from ALL_TABLES) and stored in the schem a repository. I t can

also be applied to a view (viewed from ALL.VIEWS). Each integrity constra in ts of a tab le or a

view includes m any constra in t colum ns (viewed from ALL_CONS_COLUMNS), which clarify the

individual constrain t.

• A L L -C O N S -C O L U M N S . W hile specifying a tab le column, an in tegrity constra in t is as­

sociated according to users requirem ents. For tables, an integrity constra in t (viewed from

ALL.CONSTRAINTS) im poses rules only on the colum n (viewed from ALL_TAB_COLUMNS) in

which it is defined.

3.1.3 O bject-R elational Views

A view m echanism is an im p o rtan t feature of the O -R model. Like a table, a view is com posed

of columns (viewed from ALL_TAB_COLUMNS); unlike a table, a view does not allocate any storage

space, nor does a view actually contain d a ta or objects. R ather, a view is defined by query

ex tracts and derives d a ta or ob jects from tab les th a t the view references. In th is section we focus

on discussing object views, which is th e conjunction between relational d a ta and ob ject based

applications. Figure 3.4 provides an overview of m e ta d a ta included in th is section. T he relational

view is defined as untyped view and th e object view is nam ed as typed view in th e O -R m odel. We

discuss them separately although they are represented by one class ALL_VIEWS.

• U n ty p e d V iew . A n untyped view presents the relational view and can be though t of

as a v irtu a l table. Users are allowed to use it in m ost places where base tab les (viewed

from ALL.TABLES) can be used, also m ay query it w ith some restric tions (viewed from

ALL_CONSTRAINTS) as the subsets of tab le constrain ts. W hile specifying th e restric tions on a

table, users cannot define a constra in t on a colum n whose d a ta ty p e is an U D T. Views also

associate w ith triggers w ith some restric tion (viewed from ALL_TRIGGERS).

• T y p e d V ie w . A typed view is an extension of th e relational view m echanism . I t is useful

in p ro to typ ing or transition ing to 0 - 0 applications because th e d a ta in th e view can be

CHAPTER 3. EXTENDING THE 0-R METAMODEL 28

F igure 3.4: O bject-R elational Views M etadata.

taken from rela tional tab les and accessed as if th e tab le were defined as an object tab le

[OraOl]. A typed view is also a v irtua l rep resen ta tion of U D T (viewed from ALL.TYPES). I t

is though t of as a v irtua l ob ject table. T he ex ten t of typed view is generated w ith selecting

objects from the base U D T ex ten t stored a t ob ject tables. W hile specifying a typed view,

it is th e responsibility of users to define OID as a com bination of colum ns in th e defining

select (typically th is will be a com bination of p rim ary keys used in th e query).

3.1.4 O bject-R elational Triggers

Triggers (figure 3.5) are user-defined procedures th a t execute im plicitly w hen an INSERT, UPDATE,

or DELETE sta tem en t is issued against the associated tab le (viewed from ALL_TABLES), against a

view (viewed from ALL_VIEWS), or when database system actions occur [OraOl]. Triggers are sim ilar

to stored procedures. However, procedures and triggers differ in the way th a t they are invoked. A

procedure is explicitly executed by a user, application, or trigger. Triggers are im plicitly fired by

the system when a triggering event occurs, no m a tte r w hich user is connected or which application

is being used.

A lthough, users canno t explicitly define triggers on views, they can be defined for the underlying

based tables referenced by th e view. T he O -R database sup p o rts the definition of logical constra in ts

on views. User can w rite norm al INSERT, UPDATE, and DELETE sta tem en ts against th e views.

INSTEAD OF triggers are activated for each row of the view th a t gets modified.

• A L L _ T R IG G E R S . ALL.TRIGGERS is used to describe all the triggers have been defined at

the da tabase schema. Its basic parts , such as event or sta tem en t, restric tion and action are

represented by th e a ttribu tes .

• A L L _ T R IG G E R _ C O L S . ALL_TRIGGER_COLS is used to describe the use of colum ns in

triggers or in triggers on tables, which is associated w ith tab le colum ns.

CHAPTER 3. EXTENDING THE 0-R METAMODEL 29

Figure 3.5: O bject-R elational Triggers M etada ta .

3.1.5 Sum m ary

T he 0 - R m etam odel provides a b e tte r understanding of 0 -R d a ta model. I t specifies interde­

pendencies am ong concepts used to build an O-R schema, some inherent constra in ts , and ab s trac t

syn tax of corresponding d a ta descrip tion sta tem ents. As s ta ted previously, th e m etam odel supports

the object extensions of the 0 -R m odel, such as object types, collection types and type hierarchy.

Furtherm ore, ob ject tab les and ob ject views, the intersection betw een 0 - 0 m odel and relational

model are supported also. A lthough the m e tad a ta of a role-based view system is no t provided in

the m etam odel, it offers us th e oppo rtun ity to develop different forms of view m echanism . T he

next step is to ex tend the m etam odel w ith th e m e tad a ta construc ts needed to specify a role-based

view mechanism.

3.2 Extending the O-R Metamodel

In th is section, we provide extensions to the 0 -R m etam odel. A m etam odel of our role-based view

system is presented first; then we present an extended 0 - R m etam odel; and finally, the im plem en­

ta tio n is briefly introduced. N ote th a t only the m ajor issues abou t the m etam odel extensions are

covered due to th e thesis length lim it. For a full description of how to ex tend th e 0 -R m etam odel,

please refers to [Wan02b].

3.2.1 Role-Based View M etam odel

The purpose of th is section is to present the m etam odel of the role-based view system and provide

a b e tte r understanding of our view model. An UML class d iagram tool is used to present the

m etam odel in an 0 - 0 perspective (figure 3.6). T here are five m etaclasses existing in our role-

based view m etam odel: R olev iew class is com posed of Root and R o le classes; each R oot class or

R ole class is com posed of A t t r i b u t e and Method classes. T he details of each m etaclass and the

relationships between them are now presented:

♦ R o le v ie w C lass . T his is th e container for th e root and role classes. A n aggregation relar

tionship exists between th e R olev iew and R ole class. A R ole is p a r t of R o lev iew but it is

possible th a t a R olev iew exists w ithout the existence of R ole class. However, a R oleview

does not exist if the Root class is not included. B oth th e R oot class and R ole class are

CHAPTER 3. EXTENDING THE O-R METAMODEL 30

I
contains

_ L
Roleview

RoleviewJD : number
Roleview_Name: String

contains

o.:

Root
RootJD : number
Root_Name: String
Attributes: number
Methods : number

has

0 ..*

{bag}

multirole

Role
RoleJD: number
Role_Name: String
Root: String
IsMultiple: String
Attributes: number
Methods: number

has 1..*

0..*
Met:hod

MethodJD
Method_Na
Method_Ov
Method_No
Method_Ty|
Parameters
Result: Stri

: number
m e: String
/ner: String
: number

pe : String
: String

ing

has
0./

Attribute
AttrJD : number
Attr_Name : String
Attr_Type_Mode : String
Attr_Type_Name : String
Attr_Owner: String
Attr No : number

Figure 3.6: Roleview M etam odel.

com posed of A t t r i b u t e and Method classes, which are discussed later. A R olev iew instance

is identified by a system -generated OID represented by a ttr ib u te R o lev iew .ID .

• R o o t C la s s . A Root class is com posed of A t t r i b u t e and Method class. T here is a one-to-

m any rela tionsh ip between Root class and R ole class. A Root instance m ay associate w ith

m any R ole instances; bu t a R ole instance only associates w ith one single Root instance. In

th is association, if the instance of R ole class is a m u l t i r o le , it allows m ultiple occurrences

of the sam e R o le instance to occur. T he keyword bag represents th is situation . A Root

instance is identified by a system -generated R o o t.ID .

• R o le C la s s . T his is the class th a t represents th e s tru c tu re of all defined role objects. A R ole

class is com posed of bo th A t t r i b u t e and M ethod class. T he a ttr ib u te I s M u lt ip le represen ts

the type of R ole instance, which is either a m u l t i r o l e or a norm al (single) role. Each R ole

instance is identified by an unique identifier Role_ID .

• A t t r i b u t e C la s s . This class is used to represent the properties of Root or R ole classes. T he

a ttr ib u te A ttr_O w ner specifies th a t it associates w ith a Root or R ole class. T he A t t r i b u t e

class presents the s ta te of root or role class as th e ALL_ATTRIBUTES m etaclass p resen ts the

s ta te of U D T in the O-R m etam odel. An ATTRIBUTE instance is identified by a system ­

generated A t t r .I D .

• M e th o d C la s s . T his class is used to represent th e functions or procedures in which a Root

or R ole instance perform s behaviour. T he a ttr ib u te M ethod.Owner is used to specify th a t it

associates w ith a Root or R ole class. T he M ethod class presents the behaviour of roo t or role

class as the ALL.METHODS m etaclass presents th e U D Ts behaviour in th e O -R m etam odel. A

Method instance is allowed to take some param eters and may re tu rn results as well. I t is also

identified by a system -generated M ethod.ID .

3.2.2 M etam odel Extensions

W hile extending th e curren t O -R m etam odel w ith th e additional m etaclasses, it was im p o rta n t to

specify the relationships between the new classes and th e original metaclasses. Figure 3.7 presents

CHAPTER 3. EXTENDING THE 0-R METAMODEL 31

F igure 3.7: O bject-R elational M etam odel &; Extensions.

an overview of the ex tended m etam odel. The extension m etaclasses have a prefix ls y s J for clarity.

The rela tionsh ips betw een the role-based view m etaclasses and th e 0 -R m etaclasses are clarified.

Figure 3.8 presents the role-based views m e tad a ta section from an im plem entational perspective.

T he d a ta ty p e of each a ttr ib u te s is now converted to SQL: 1999 data types and the role-based view

m etaclasses are linked to th e 0 -R m etaclasses represen ted a t o ther sections. Each m etaclass of the

role-based view m etam odel is discussed separately.

• S y s_ R o le v ie w . T he sy s .R o le v ie w class is a logical s truc tu re th a t refers all ob jects in

a role-based view. Since ALL.OBJECTS is defined as th e logical s tru c tu re of schem a ob­

jects, sy s_R o lev iew is viewed as the ex tra conten t of ALL_OBJECTS. Each sy s_ R o lev iew

is identified by a system generated R oleview _ID , as w ith any o ther schem a object in th e

m etam odel. As figure 3.7 shows ALL_OBJECTS is now th e aggregation of sy s_R o lev iew ,

ALL_TYPES, ALL_TABLES, ALL.VIEWS and ALL_TRIGGERS. A root is the s ta tic p a rt of a role-

based view, hence it is necessary to specify a po in ter to th a t root. T he a t tr ib u te Root

represents the reference.

• S y s_ R o o t. A sys_R oot can be viewed as a v irtu a l represen tation of an existing U D T w ith

the intrinsic properties. In the O-R schem a repository, U D Ts can be seen in the ALLOTYPES

view. Hence, a specified sys_R oot m ust be based on an underlying U D T. However, it is

possible th a t an existing U D T is no t associated w ith any sy s .R o o t class. I t is supported

th a t one single U D T is specified in several sys_R oo t classes, which are associated w ith

different sy s .R o le v ie w classes, according to different requirem ents. For exam ple, if an U D T

P e rso n is specified in a root class in one roleview P ro fe ss io n a l_ V ie w ; it can also appear in

th e roo t class of roleview Academic.View. In sys_R oo t m etaclass, the a t tr ib u te T ype.R ef

CHAPTER 3. EXTENDING THE 0-R METAMODEL 32

________«ys_Root_______
Root_Name: VARCHAR2
Type_Ref: REF ALLJYPES
SuperType: VARCHAR2
Attributes: NUMBER
Methods: NUMBER

associates

Roleview_ID : RAW
Roleview_Name : VARCHAR2
Root : REF sys_Root V

associates
i—0.

contains

has

o.:

has

{bag}

multirole

sys_Attribute
Attr_Name : VARCHAR2
AttrjDwner : VARCHAR2
Type_Attr_Ref : REF ALL_ATTRS

1..*
0..*

sys_Method
Method_Name: VARCHAR2
Method Owner: VARCHAR2
Type_Method_Ref: REF ALL METHODS

sys_Role
Role_RID : RAW
Role_Name: VARCHAR2
Type_Ref: REF ALL_TYPES
Root: VARCHAR2
IsMultiple : VARCHAR2
Attributes: NUMBER
Methods: NUMBER

0..*

has

Y
references
 V
ALL TYPE METHODS

references

ALL_TYPE ATTRS

Viewed From
Figure 3.2

Figure 3.8: O bject-R elational Roleviews M etadata.

is a REF d a ta ty p e , which references the base UDT. B ecause each type is organised into type

hierarchy in th e O -R model, there is a possibility th a t a sys_R oo t based U D T is the sub type

in a type hierarchy. Hence, th e a ttr ib u te SuperType is used to store the nam e of supertype

or null value if th e base type has no supertype. C om pared w ith the Root class represented

in figure 3.6, sys_R oo t m etaclass loses th e a t tr ib u te Root_ID . T he reason we remove th is

a t tr ib u te is th a t a sys_R oo t is the v irtual rep resen tation of an existing U D T and does not

contain any objects. T he ob ject preserving sem antics is used to m aintain the sam e unique

identifier.

• S ysJF to le . T he m etaclass s y s .R o le is a v irtua l rep resen ta tion of an existing U D T w ith the

extrinsic p roperties. Like sy s .R o o t, a sy s_R o le is also based on an existing U D T and tightly

depends on its existence. If the U DT th a t s y s .R o le based does not exist, th e specification of

sy s_R o le has no use. O n th e o ther hand, it is possible th a t an existing U D T is not associated

w ith any s y s .R o le . One single U DT is allowed to be specified in several sy s_ R o le classes of

different sy s_ R o lev iew classes. For exam ple, U D T S tu d e n t m ay be specified in a role class

of roleview P ro fe s s io n a l_ V ie w and Academ ic.View . T he a ttr ib u te Type_Ref is used to

reference th e base UDT. A s y s .R o le object is identified by th e object preserving sem antics

along w ith a system -generated transien t OID Role_RID.

• S y s _ A t t r ib u te . A s y s .A t t r i b u t e class represents the p ro p erty of the sy s_R oo t or sy s_R o le

class. Classes sys_R oo t and s y s .R o le are v irtua l rep resen tations of existing UDTs, hence,

there is no physical d a ta existing in s y s _ A t t r ib u te class. W e specify a m appings between

s y s . A t t r i b u t e and ALL_TYPE_ATTRS, where the physical d a ta can be found.

• S y s _ M e th o d . A sys.M ethod represents the function or procedure th e sys_R oo t or sy s_R o le

class contains. Since the m ethods of an U D T have been sto red in the schem a repository, the

sy s .M ethod needs only to reference the stored m ethod ra th e r th a n define a new m ethod.

T here is also a m appings specified between sy s.M eth o d and ALL_TYPE_METHODS.

3.2.3 Im plem enting th e M etam odel Extensions

In reality, th e role-based view m etaclasses m ust be defined as new m eta-U D Ts and stored in the

schem a repository along w ith o ther existing m eta-U D Ts. O bject references are used to express the

CHAPTER 3. EXTENDING THE 0-R METAMODEL 33

Column RoleList (of sys_RoleLlst (as table of
REF sy«_R°le))

REF

references sys_Role_ObjTab

Object Table sys_Root_ObjTab (of sys_Root)

Root_Name Type_Ref SuperType Attributes Methods RoleList Rool_Attribute Root_Method

VARCHAR2
(30) (P.K)

references
sys_OracleT ype_View

VARCHAR
2(30)

NUMBER NUMBER NESTED TABLE
sys_RoleList

NESTED TABLE
sys_AtttrList

NESTED TABLE
sys_MethodList

Object Tabls sys_Role_ObJTab (of sys_Role)

Role_RID Role_Name Type_Ref Root IsMultiple Attributes Methods Role_Attribute Role_Method

RAW (16) VARCHAR2
(30) (P.K)

references
sys_OracleT ype_View

references
sys_Root_ObjTab

VARCHAR
2(3)

NUMBER NUMBER NESTED TABLE
sys_AttrList

NESTED TABLE
sys_MethodList

Column Role_Attribute / Column Root_Attribut0 (of sys_AttrList (at table of sys_Attribute))

Attr_Name Attr_Owner Type_Attr_Ref

VARCHAR2 (30) (P.K) VARCHAR2 (30) (P.K) references sys_OracleType_Attr_View

Column Role_Method / Column Root_Method (of >ys_MethodList (as table of sys.Method))

Method_Name Method_Owner Type Method Ref

VARCHAR2 (30) (P.K) VARCHAR2 (30) (P.K) references sys_OracleType_Method_View

Figure 3.9: O bject-R elational P resen ta tion of Roleview M etam odel.

relationships between them ; and collection types m odel the m ulti-value a ttr ib u te s . Furtherm ore,

an O-R perspective is presented in o rder to sto re and m anipulate th e m eta-objects. T he standard

d a ta definition language is used to define th e m eta-U D Ts. T here are two step s to com plete the

im plem entation of m etam odel extensions, w ith a fully described p ro to type provided in Appendix
A.

1. T he O -R M eta-U D Ts Definitions. T he O -R m odel stores m e tad a ta in th e schem a repository

as s ta tic tables and views. T he base tab les store inform ation abou t th e associated database

and users are no t allowed to access these tables. I t is necessary for our approach to place

a num ber of ‘v ir tu a l’ U D Ts th a t represent the s tru c tu re of the O -R m etam odel. Hence,

sy s_O rac leT ype is specified to represent th e existing U D T structu re , sy s_ O ra c le T y p e _ A ttr

presents the s tru c tu re of U D T a ttr ib u te s and sys_O racleT ype_M ethod p resen ts the UDT

m ethods s tructu re . F urtherm ore, we m ust specify the corresponding m eta-o b jec t tables based

on the existing O-R m eta-view s in order to query and m an ipu la te the m eta-ob jects. As the

result, the m e tad a ta presented in th e O -R m eta-views can be accessed and referenced through

the m eta-tables we defined.

2. T he Role-Based View M eta-U D T s Definitions. We now define the role-based view m eta-

U D Ts which represent the m etam odel extensions. T here are five new m eta-U D T s: sys_R olev iew ,

s y s .R o o t, sy s_R o le , s y s _ A t t r ib u t e and sys.M ethod . I t is very im p o rta n t to specify a

clear m appings between these new m eta-U D T s and th e v irtua l U D Ts defined previously.

For exam ple, th e a t tr ib u te T ype-R ef of s y s .R o o t references sy s_ O rac leT y p e and a ttr ib u te

Type_Attr__Ref of s y s _ A t t r ib u t e references sy s_ O rac leT y p e _ A ttr . O nce th e new m eta-

U D Ts are defined com pletely, it is necessary to specify the corresponding m eta-ob ject tables

which sto re and m anipu la te th e roleview m eta-objects. Figure 3.9 illu stra tes th e role-based

view m eta-U D Ts in an O -R perspective. A full description of th e m etam odel im plem entation

is discussed in chapter 5.

Object Table sys_Roleview_ObJTab (of sys.Roleview)

RoleviewJD Roleview_Name Root

RAW (16) VARCHAR2 (30)
(P.K)

references
sys_Root_ObjTab

CHAPTER 3. EXTENDING THE O-R METAMODEL 34

3 .3 C o n c l u s i o n s

One of th e functions of this thesis is to exam ine th e la tes t version of O -R m etam odel. T he O-R

m odel is com plex and the exam ination of its m etam odel provides a b e tte r understand ing of how it

works. An O-R m etam odel contains the m eta ob jects sto red in the schem a repository. I t is divided

into four sections: O -R types, O -R tables, O-R views and O -R triggers. E xtending the rela tional

m odel w ith ob ject extensions is one of th e characteristics of the O -R model. I t is represented

a t th e O -R types section by providing some new features, such as allowing user to define new

ob ject types; using collection types to present rich o b ject collection; and group ob ject types into

type hierarchy. In th e O-R m etam odel, the s tru c tu re of U D Ts are specified a t the O -R types

section, while ob jec t storage is represented a t the O -R tab les section. O bject table, a new o b ject

type, is defined to sto re the 0 - 0 concept based U D Ts in a tab u la r form at which the rela tional

m odel recognises. I t is the overlap between the 0 - 0 concept and the rela tional model. O b jec t

tab les provide a rela tional perspective for th e 0 - 0 based U D Ts, and on th e o ther hand, O -R

views provide an o b jec t perspective for the relational da ta . In the O-R views section, ob ject views

present the functionality th a t ab s trac ts the relational d a ta in an 0 - 0 form at. T he O -R triggers

section present th e ob jec t extensions of the relational triggers.

T he m ajo r con tribu tion of th is thesis is to define a role-based view mechanism in th e O-R model.

However, th e cu rren t O -R m etam odel does not su p p o rt role-based view m etada ta . Hence, it

is necessary to ex tend th e m etam odel w ith ex tra m etaclasses in order to m odel the new ob ject

types. T he ex tended O -R m etam odel is also in troduced in th is chapter. T here are two steps to

com plete th e extensions: first is to discuss the role-based view m etam odel; second is to specify the

relationships betw een th e existing O -R m etaclasses and th e new metaclasses. W hile in troducing

th e role-based view m etam odel, an UML design tool is used to represent the s tru c tu re and each

individual m etaclass is discussed. An extension is provided by clearly specify the associations

betw een existing m etaclasses and new defined m etaclasses. Once the concept and sem antics are

discussed, we offer a brief in troduction of im plem enting th e ex tended m etam odel.

Chapter 4

Designing Role-Based Views for
O-R D atabases

In th is chap ter a role-based view mechanism is described. T hroughou t the rest of th is chapter

and in subsequent chapters, it is assumed th a t ‘v irtu a l schem a’, ‘view schem a’, ‘roleview’ and

‘subschem a’ have th e sam e m eaning, i.e. they refer to a role-based view, and each te rm m ay be

used while describing how a role-based view is created and stored in 0 -R databases.

In §4.1 a general in troduc tion of a roleview is provided. A roleview is a subschem a as it includes

m ultiple v irtua l classes. T he specification of v irtua l classes are also introduced. In §4.2 th e sem an­

tics and syn tax of roleview are presented, along w ith th e generation of roleview extents. In §4.3,

we in troduce a num ber of restruc tu ring operators which are used to derive new v irtua l classes or

m anipulate th e v irtu a l class objects. Finally, some conclusions are offered in §4.4.

4.1 Introduction

T he view m echanism in a FDBS m ust retain as m uch sem antic inform ation as possible in order to

meet the original c r ite ria for canonical model selection [SCGS91]. T he perception of a view is th a t

of a subschem a, possibly containing m ultiple v irtua l classes. In our role-based view system , the root

and role classes are v irtu a l classes, composed of ex isting UDTs. A v irtu a l class is au tom atically

constructed and sto red in th e schem a repository w hen roleview is processed. An existing U DT

may be used by m ultip le v irtua l classes in m ultiple roleviews. In an O -R database, a single schem a

comprises m ultip le U D Ts, while th e extended m odel includes m ultiple roleviews and v irtu a l classes.

The relationships between th e database schema, base U D T, view schem a, root class and role class

are illu stra ted in table 4-1-

W hile specifying v irtu a l classes of a roleview, the re are two allowable restruc tu ring options: pro­
jection and selection [Wan03]. T he projection op tion is used to select certain a ttr ib u te s from the

base U D T as th e v irtu a l a ttr ib u te s while discarding o ther U D T a ttr ib u te s . I t is expressed by the

s e l e c t clause. In th e O -R m odel, an U D T is used to present the s tru c tu re of an en tity and an

extent is a collection objects of the sam e UDT. T hese ob jects are sto red in an ob ject tab le for

the purpose of query or m anipulation . T he selection is used to select ob jects from the base U D T

extent to form th e ex ten t of v irtua l classes. T his operation consists of selecting rows of object

tables which satisfies certain conditions, and it is expressed by the w here clause.

35

CHAPTER 4. DESIGNING ROLE-BASED VIEWS FOR 0-R DATABASES 36

Entity A Entity B Relationship Description

DB Schema Base UDT 1 - n A database schema comprises many UDTs.

DB Schema Roleview 1 - n A roleview is a subset of the base schema,
many are defined using one database
schema.

DB Schema Virtual Class
(Root Class & Role Class)

1 - n A database schema comprises multiple
virtual classes although never it directly
references them.

UDT Virtual Class
(Root Class & Role Class)

m - n An UDT may be redefined In multiple virtual
classes; and more than one UDTs are used
to form a single virtual class.

Roleview Base UDT m - n An UDT may participate in multiple
roleviews, and any roleview may associate
with more than one UDT.

Roleview Root Class 1 -1 Each roleview only contain one single root
class. A root class only belongs to one
roleview.

Roleview Role Class 1 - n A roleview may contains multiple role
classes. Each role class only belong to one
roleview.

Table 4.1: Scope Issues.

4.2 Defining Role-Based Views

Traditionally, a view definition is a d a ta definition s ta te m en t which incorporates a d a ta m anipula­

tion com m and. For exam ple, a view s tru c tu re is defined, a query is used to specify th e s tru c tu re

and to generate the ex tents of th e v irtu a l classes, and th e entire view definition is stored in the

database. T his s tan d ard is m ain ta ined by providing ou r role-based view declaration , b u t is ex­

tended to allow m ultiple class redefinitions, in order to construct a subschem a of m ultiple v irtua l

classes. A form of extended SQL: 1999 is needed where th e new object type ro le v ie w is added to

th e list of existing ob ject types such as ty p e and t a b l e . T he keyword c r e a t e ro le v ie w indicates

th a t v irtual schem a and its com ponents m ust be construc ted and stored in th e schem a reposito ry

Before defining the role-based view in an 0 -R database, it should be ensured th a t the O -R m eta­

m odel has been extended w ith role-based view m etaclasses. T he proposed roleview m echanism is

based on clear sem antics. T he 0 - R m odel uses U D Ts to describe the real-w orld entities, and th is

concept is extended by using v irtua l classes to describe th e v irtual entities. T here are th ree steps

to design a roleview specification language: understand ing the semantics; th e syn tax to define the

roleviews; and the generation of the extents.

4.2.1 Role-Based View Sem antics

A roleview is a nam ed collection of v irtu a l classes based on the defined U D T s in the database

schema. Those U D Ts may be connected either th rough inheritance or associations. T he nam e

of th e roleview, the nam es of all v irtu a l U D Ts (root and role classes) and base U D Ts m ust be

explicit in the roleview definition. F urtherm ore , the s tru c tu re of each v irtua l U D T m ust be clearly

specified in the roleview definition. T he sem antics of roleviews are as follows:

• Each v irtua l class is based on an existing U D T, w ith v irtual m eta-types and m eta-objects

stored in the schem a repository. I t is users’ responsibility to ensure th e existence of base

UDTs. T he system will throw an error exception if th e base U D Ts canno t be found in the

schem a repository. In the O -R m odel, U D Ts are organised into a ty p e hierarchy, w here the

s tru c tu re and behaviour of several U D Ts can be ab s trac ted into a com m on supertype. Hence,

CHAPTER 4. DESIGNING ROLE-BASED VIEWS FOR 0-R DATABASES 37

it is possible th a t a v ir tu a l class is based on an U D T which is a sub type in a type hierarchy.

If th a t U D T in a roo t class, we assum e th a t the roo t class also inherits th e properties and

behaviour from the supertype of its base U D T. If th a t U D T in a role class, the role class

does no t inherits the properties and behaviour from th e supertype of its base U D T.

• A roleview contains m ultiple v irtua l classes. T he roo t and role classes are v irtua l represen­

ta tio n s of existing UD Ts. An object defines th e perm anen t properties in a roo t object, while

each role ob ject defines some of its tran sien t p roperties. In o ther words, a roo t and role class

p resent different characteristics of a real-world entity.

• A roleview contains only one root class, while th e num ber of role classes is infinite. T he root

class is a s ta tic com ponent of th e roleview while a role class is dynam ic. T he roleview is

deleted if its roo t class is dropped from the d atabase while it does not lose its identity if one

of its role class is dropped.

• A ro o t ob ject m ay play m ultiple role objects or the sam e role ob ject m ultiple tim es. A role

ob ject cannot exist w ithou t its root object. D eleting a root ob ject implies deleting all of its

role objects.

• An ob ject preserving sem antics is used to identify th e root object. No new identifiers are

construc ted as a result of a new root object. W here a root class is derived from a base

U D T, th e base U D T identifier is used, and the onus is on the roleview m echanism to provide

access to th e ro o t class. Every a ttr ib u te and rela tionsh ip p roperty in the roleview schem a is

connected to th e base U D T equivalent.

• T he role ob ject is identified by a com pound identifier which com prises th e ob ject identifier

of th e base U D T and a system generated transien t role ob ject identifier. W hile defining roo t

and role classes, it is possible th a t the base U D Ts are e ither link to each o ther or not. In th e

first case, it is no t necessary to use the object preserving sem antics in a role ob ject because

its roo t ob ject has th e sam e object identifier as its base U D T, and th is U D T links to th e

role base U D T through either inheritance or association relationship. In th e second case, we

m ust use the ob ject preserving sem antics to identify th e role object, otherw ise, there is no

any references to specify the link between a role ob ject and its base U D T object. For th e

purpose of sim plicity and non-am biguity, we use a com pound identifier to identify the role

objects. T he ob ject preserving sem antics is used to m apping th e role ob ject to its base U D T

object; and the ob ject generating sem antics is used to represent the dynam ic feature of roles.

T he system only generate the transien t identifier a t th e run tim e ra th e r th a n compile tim e.

• Derived a ttr ib u te s and relationships m ust connect to existing a ttr ib u te s and relationships.

T he root and role classes are the v irtua l classes of the base UDT. T here are no new a ttr ib u te s

or relationships generated in the roleview definition.

4.2.2 Role-Based View Definition Syntax

We now provide a syn tax for defining roleviews. T here are two elem ents involved in defining

a v irtua l schema: first it is necessary to define the s tru c tu re of th e newly defined schema; and

second, it is necessary to specify queries which are used to select objects from th e base schema,

which generate an ex ten t for each v irtua l class. In th e first case, it is necessary to provide the

nam es of base U D Ts and the properties contained w ith in those v irtua l classes. In the la tte r case,

it is necessary to identify th e queries and ensure the re is no overlap betw een each ex ten t. T he

c r e a t e ro le v ie w declaration is used to define v irtua l schem a, and in th is chap ter a full BN F

CHAPTER 4. DESIGNING ROLE-BASED VIEWS FOR 0-R DATABASES 38

gram m ar is provided for th is extension to SQL: 1999, and th e p ractice of num bering production

rules has been adop ted to aid la ter explanations. T he to p level of form at is illu stra ted in definition

1, and in definition 2 and definition 3 the expansions are provided. N ote th a t a form of B N F

used by the A N T L R [Ant03] parser library is employed, as th is was used to construct the parser

developer for th is research. I t is described in full in chap te r 5 together w ith details of p ro to type

and experim ents. A n earlier version of view definition sy n tax is presented in [WR03].

D e f in it io n 1 Roleview Statement.

“create” “roleview” roleview-name: Identifier “as”

rooLdcl

(role-dcl)*

In the sta tem en t show n in definition i , there are two portions, and a s tric t ordering exists so th a t

they m ust be specified according to the ir ordering in the definition. T he root class m ust be specified

first in the definition, and th e role classes are specified afterw ards. A ccording to th e definition,

only one root class exists in the sta tem en t, while zero or m ore role declarations are allowed in th e

sta tem ent. T he ‘(rule)*' form at indicates th is option. In definition 2 , m ore details regarding r o o t

and r o l e declara tions are illustrated .

D e f in it io n 2 Root & Role Statement,

root-dcl:

“root”

qualifier-dcl

role-dcl:

“role | multirole ”

qualifier-dcl

In th is definition, r o o t_ d c l and r o le _ d c l are illustrated , along w ith a sub-declaration q u a l i -

f i e r _ d c l which is used by b o th declarations. T he root declara tion uses th e r o o t keyword followed

by a q u a l i f ie d _ d c l declaration . T he role declaration s ta r ts w ith the optional keyword r o l e or

m u l t i r o le , followed by a q u a l i f ie d _ d c l declaration. T he keyword m u l t i r o l e indicates m ultiple

occurrences, while th e keyword r o l e indicates the single occurrence.

D e f in it io n 3 Production Rules,

qualifier-dcl:

class-name: Identifier “o f” type-name: Identifier “is”

sqLdcl

CHAPTER 4. DESIGNING ROLE-BASED VIEWS FOR 0-R DATABASES 39

Figure 4.1: Web Design Schem a.

In th e sta tem ent of q u a l i f i e r _ d c l , an identifier is used to specify the nam e of root class or role

class, followed by the keyword o f and another identifier w hich indicates the nam e of existing U D T.

T h is declaration is finished by th e substa tem en t s q l_ d c l . T he s q l_ d c l expression perform s the

s e l e c t . . .from . . .w h e re . . . s ta tem en t in SQL:1999. T he s e l e c t . . . su b sta tem en t is used to

restruc tu ring the properties by pro jec tion option; the f ro m . . . substa tem en t is used to specify the

underlying UDTs; th e w h e re . . . substa tem en t deals w ith restric ting the ex ten t of U D Ts by the

selection condition.

4.2.3 Role-Based View D efinition Exam ples

T hroughou t the rem ainder of the thesis, the pragm atics of roleviews are dem onstra ted th rough a

num ber of examples. In th is section, we provide the in itial exam ples of how to define a roleview. In

figure 4-1, a web design schem a is presented and in figure 4-2 two roleview schem a are illu stra ted

which are based on th e web design schema. As figure 4-1 shown, a WebDocument is com posed

of Image, T ex t and L ayer UDTs. A L ayer U D T associates w ith Image and T ex t UDTs. An

Image U D T is th e supertype of ImgMap and Animat edlmg. A L ayer U D T also associates w ith

U D T F la s h and Animatedlmg. U D T Image, ImgMap and A nim atedlm g are grouped into a type

hierarchy and th e subtypes inherits th e properties and behaviour from its supertype. T here are

two subschem a defined on the base of sam ple schema: ImageView (figure 4 ‘%(o')) and TextView

(figure 4-2(b)). T he roleview ImageView represents the en tity Image w ith all of its different aspects.

T he perm anent p roperties are s tru c tu re d in to root class ImgRoot, which is based on U D T Image;

and th e transien t p roperties are s tru c tu re d into role class ImagMapRole based on UDT ImgMap

CHAPTER 4. DESIGNING ROLE-BASED VIEWS FOR 0-R DATABASES 40

L.._, 1 UDT I. . I Root C D Role 1 J RoleView

Figure 4.2: Roleview Exam ples.

and A nim atedlm gR ole based on U D T A nim atedlm g. In th is roleview, the associations between

base U D Ts are also derived, roo t ImgRoot links to U D T L ayer and role A nim atedlm gR ole links

to U D T F la s h . T he roleview TextV iew represents th e T ex t en tity and its role A nim atedT xtR ole.

We assum e th a t a T ext object plays a role of an im ated te x t when it appears in a F la s h object.

Hence, th e T ex t U D T is the base for b o th root and role classes. T he derived association is divided

into th e association between root class w ith U D T L ayer and role class w ith U D T F la sh .

N ote th a t th e re are two options for generating ex ten ts for root and role classes: e ither retrieve the

entire ex ten t of the underlying U DT; or select only th e subset of ex ten t th rough th e projection

option. Since we concentrate on defining the roleview s tru c tu re in th is section, th e roo t and role

ex ten ts are sim ply generated by retrieving th e en tire ex ten ts of based UD Ts. A full discussion on

ex tents is provided in section 4-2.4-

E x a m p le 4 .1 ImageView Definition,

create roleview ImageView as

root ImgRoot of Image is (

select *

from Image-ObjTab)

role ImgMapRole of ImageMap is (

select map-name, shape, href

CHAPTER 4. DESIGNING ROLE-BASED VIEWS FOR 0-R DATABASES 41

from, ImgM ap- ObjTab)

multirole AnimatedlmgRole o f Animatedlmg is (

select rotation, tween, scale, fla jre f

fro m Anim at edlmg_ Obj Tab);

In example | l a roleview is com prised by th ree base UDTs: Image, ImgMap and Animatedlmg. Al­

though the processing of a roleview definition is not covered un til la ter in th is chapter, it is possible

to explain w hat h appens w ith th is sam ple definition. A new roleview ImageView definition will

be stored in th e schem a repository. T he ImageView defines one root ImgRoot and the two roles

ImgMapRole and A nim atedlm gR ole. T he la tte r is a m u l t i r o l e where m ultiple occurrences are

allowed. T he ap p ro p ria te properties are easily retrieved from th e m e tad a ta repository, w ith new

role m e tad a ta generated and stored in the extended 0 - R schem a repository. ImgRoot, ImgMapRole

and A nim atedlm gR ole are based on previously defined U D Ts, and ImgMapRole and A nim atedlm -

gR ole are re stru c tu red using the projection option. T he derived relationship is represented by the

a t tr ib u te f l a _ r e f .

T he previous exam ple illu stra tes th a t the root and role classes m ay be based on different U D Ts.

However, it is also possible for the roo t and role classes to be based on a single U D T provided

th a t a ttr ib u te sets are disjoint. Figure 4.2(b) illustrates th is option, w here a T ex t ob ject links to

a F la s h object, it ac tua lly plays a tem porary role as an im ated tex t.

E x a m p le 4 .2 TextView Definition,

create roleview TextView as

root TxtRoot of Text is (

select text-id,format, font, color, style, layer.ref

from Text-ObjTab)

role AnimatedTxtRole o f Text is (

select tween, scale, transform, rotation, flasL.ref

from TexL.ObjTab);

In example 4-2, roo t T x tR oot and role A nim atedT xtR ole are based on a single U D T T ex t. T he

associations between U D T L ayer, T ex t and F la s h are derived by root class and role classes:
a ttr ib u te l a y e r _ r e f specified in the roo t declaration; a ttr ib u te f l a s h _ r e f specified in th e role

declaration.

In a real world scenario, it is possible th a t an object exists only w ith its in trinsic properties and

acquires a transien t role afterw ard. A typical exam ple is w here a person becomes an em ployee a t

some point in tim e. T hus, it is possible to define a roleview w ith a root b u t no role specifications

and la te r restru c tu re th e roleview w ith adding a role specification.

4.2.4 G enerating E x ten ts for V irtua l Classes

As s ta ted previously, a roleview definition includes defining th e s tru c tu re and generating th e ex­

ten ts for v irtual classes. In th e last section, we provide clear sem antics for defining the s tru c tu re of

roleview and the v irtu a l classes. It is a com plex issue while generating the ex ten ts for each individ­

ual v irtua l class and ensuring no-duplication or am biguities between each ex ten t. T he sem antics

of generating ex ten ts are as follows:

CHAPTER 4. DESIGNING ROLE-BASED VIEWS FOR 0-R DATABASES 42

• T he ex ten t of each v irtua l class is generated separately. In a roleview, a query is used to

specify th e s tru c tu re and generate the ex ten t for th e v irtu a l class. M ultiple queries exist

because m ultip le v irtu a l classes are included in a roleview definition. T he extent of each

v irtua l class is generated individually after th e s tru c tu re is defined. T h e projection option

presented by th e w here clause is used to filter th e base U D T objects and generate the ex ten ts

as result. If no w here clause is specified, th e entire ex ten ts for the underly ing UDTs are used

to create th e ex ten ts of th e v irtu a l classes.

• To generate the ex ten t for a role class, it is necessary to take th e ex ten t of the base U D T,

and apply some p red icate to generate the v irtua l ex ten t. W here a v irtu a l class is a role class,

an ex ten t is generated for th e role class and its root class. In our roleview schema, each root

class m ay have m ultip le role classes. Hence, th e roo t ex ten t contains th e extents of all its

role classes by default. For exam ple, the ex ten t of role class S tu d e n t contains 2 ob jects and

the ex ten t of role class Employee contains 1 object, then th e ex ten t of the ir root class P e rso n

contains those 3 ob jects autom atically .

• A root class is also a v irtua l class of base U D T, hence, th e ex ten t of the roo t class is generated

by applying th e pro ject option to its base U D T exten t. In addition , it is expressed by the

union of the ex ten ts of all of role classes. In order to elim inate the overlap in the union, a filter

function distinct() m ust be applied to the root class. I t is sim ilar to th a t of d istinct query in

SQL:1999. T he expression of roo t ex ten t is: Eroot = d i s t i n c t (E (P r o o t) U E(Prole l^ u

^^role2^ ••• u E p̂rolei^1

T he next step is to generate ex ten ts for v irtual classes using th e sem antics. Example 4-3 generates

th e specific ex ten t of the roleview from example 4-1-

E x a m p le 4 .3 ImageView Definition with Extent,

create roleview Image View as

root ImgRoot of Image is (

select *

from Image-ObjTab

where name = ‘F i s c h i r ^

role Img Map Role of ImageMap is (

select map-name, shape, href

from ImgMap-ObjTab

w here map_name = ^ c u . b a n ’ o r shape = ‘r e c ta n g le * ,)

multirole AnimatedlmgRole of Animatedlmg is (

select rotation, tween, scale, fla jre f

from Animatedlmg^ObjTab

w here tw een != f s h a p e ’J;

Figure 4-8 illustrates how the ex ten ts of root and role classes are generated for example 4-8- T he

non-shaded colum ns and rows are no t p a rt of the view specification bu t are p a r t of base UD Ts.

1The projection option is expressed by P (), which is applied to the virtual class specification.

CHAPTER 4. DESIGNING ROLE-BASED VIEWS FOR 0-R DATABASES 43

Layer

Flash

i .1 Root 1 I Role i I UDT L____ J RoleView

Figure 4.3: Im ageView w ith Extents.

T he m u l t i r o le A nim atedlm gR ole {auto,m otion} is represen ted using two rows. T here are two

role objects in th e ImgMapRole class (which gets its ex ten t from th e ImgMap_ObjTab ob ject table)

and one ob ject in th e A nim atelm gRole class. T hese th ree objects are p a rt of the root ex ten t by

default. In add ition , th e Image nam ed as ’F i s c h e r ’ is selected as root object according to the

roo t specification. Hence, the root ex ten t includes 4 objects . T he ex ten t for root class ImgRoot is

generated as follows: EIm gR oot= E(PIm gR oo t) U E (P Im gM apR ole) U E (PA nim atedIm gR ole)

In the illu stra ted roleview definition, it is allowed th a t a roo t class and its role class m ay be based

on a single U D T. Example 4-4 expands the definition shown in example 4-2 w ith a w here clause,

and figure 4-4 illu stra te s the result.

E x a m p le 4 .4 TextView Definition with Extent,

create roleview TextView as

root TxtRoot of Text is (

select text-id, format, font, color, style, layer-ref

from Text-ObjTab

w here t e x t . i d = ‘2 0 0 2 ^

role AnimatedTxtRole of Text is (

select tween, scale, transform, rotation, fla~ref

from Text-ObjTab

w here tw een = fm o tio n } o r tw een = 's h a p e ',) ;

T he ex ten t of U D T T e x t is divided into TxtR oot ex ten t and A nim atedT xtR ole extent. A ccording

to th e root specification, there is one T ex t object is selected as th e roo t object. According to the

role specification, th e re are two T ex t objects are selected in to the role ex ten t. As s ta ted previously,

these two ob jects are p a rt of the roo t ex ten t by default. T he root ob ject T ex t ‘2002’ does not

play role A nim atedT xtR ole currently; hence there are th ree roo t ob jects in th e root extent. T he

expression of ro o t ex ten t is: ET x tR o o t= E(PX x tR o o t) U E(PA nim atedX xtR ole)

lmage_ObjTab (of Image)

¡mg id , jJ!ze layerjef

oof

ISG 60k 144p logo none c:\\ 500

1002 Fischár 120k 72p banner black e:\\img\\ 508

1003 DCU 20k 72p banner white e:\\img\\ 501

1004 ISG 60k 144p — ..lQQQ
. . .

c:\\ 500

(bag)

isg_ban rectangle www.computlng.dcu.le/~isg

dcu_ban oval www.dcu.ie

ca_web oval www.sina.com

rotation
-

auto motion 72 isgjogo

ccw shape 144 dcujogo

auto motion 72 trjogo

lmgMap_ObjTab (of ImgMap) Animatedlmg_ObjTab (of Animatedlmg)

http://www.computlng.dcu.le/~isg
http://www.dcu.ie
http://www.sina.com

CHAPTER 4. DESIGNING ROLE-BASED VIEWS FOR 0-R DATABASES 44

Text_ObjTab (of Text)

tex tjd format font color laye rje f tween scale transform rotation flash_ref

2001 none arial black 500 motion 72 none auto isgjogo

2002 heading 2 arial red 501 null null null null null

2003 preformatted verdana orange 508 shape 72 none ccw trjogo

textjd format ,on, color styla

2001 none arial black arial

2002 heading 2 arial red roman

2003 preformatted verdana orange arial

layer_ref

500 _

508

I Layer

tween scale transform rotation

motion 72 none
.

auto Isgjogo

null null null null null

shape 72 none ccw trjo go

Root L _ l Role [= □ UDT Role View

Flash

Figure 4.4: TextView w ith E xtents.

4.3 R estructuring O perations

In th is section, res tru c tu rin g operations th a t m odify th e s tru c tu re of a roleview are described.

T he operations fall in to two catalogues: class level and object level. T here are th ree operations

of restruc tu ring roleviews, which are renam e, add and d ro p operators. T hey are originally used

to restruc tu re th e defined U D T in SQL: 1999. We m odify these operators and allow them to

restruc tu re th e v irtu a l classes of roleview. T here are also th ree operations th a t m anipulate role

objects, which are a c q u ir e , abandon and m ig ra te operators. Each opera to r is expressed in B N F

form at and followed by an example.

4.3.1 Class Level O perations

T he form al expression of class level restruc tu ring operations are represented in definition 4-

D e f in it io n 4 Class Level Restructuring Operations.

“alter” “roleview” roleview-name: Identifier

rename_ope \

addLope |

drop-ope

rename-ope:

“rename” “root \ role” oldLclass^name: Identifier “as” new-class-name: Identifier

adcLope:

“add” (role-adcLdcl) *

CHAPTER 4. DESIGNING ROLE-BASED VIEWS FOR 0-R DATABASES 45

role-addLdcl:

“role | multirole” class-name: Identifier “of ” type-name: Identifier “is ”

(sqLdcl)2

drop-ope:

“drop ” (role-drop-dcl) *

role-drop.dcl:

“role | multirole” class-name: Identifier

N ote th a t th e keyword a l t e r is used to em phasise the altera tion of a roleview. T h e th ree possible

expressions are all optional.

• renam e

T he rename expression is used to renam e the v irtu a l classes. T here are two argum ents: the first is

th e existing v irtua l class identifier and th e second is a new v irtual class identifier. If the new v irtual

class identifier already exists in th e extended schem a repository, an error message will be generated.

A sim ple exam ple is given in example 4-5. W hile a v irtual class is renam ed, th e m e ta d a ta stored

in th e schem a repository is au tom atica lly updated .

E x a m p le 4 .5 Rename Operation,

alter roleview ImageView

rename role AnimatedlmgRole as Frame

• add

T he add expression is used to allow th e root class to require role classes. T he keyword r o l e or

m u l t i r o le clarify th e type of role class. N ote th a t a s q l_ d c l su b sta tem en t is used to construct

the class s tru c tu re and generate th e extents, which is sim ilar w ith th e specification of role class

in a roleview. For example, roo t ImgRoot requires a new role class LogoRole, w hich is based on

existing U D T Image. Example 4-6 illustrates th is operation. Each s ta tem en t con tains m ultiple

operations. However, if one opera tion fails, the system will rollback and unsto re th e updates.

E x a m p le 4 .6 Add Operation,

alter roleview ImageView

add role LogoRole of Image is (

select type, size from Imagt-ObjTab)

2T h e s q l . d c l expression has been d iscussed a t th e sec tion §4.2.2.

CHAPTER 4. DESIGNING ROLE-BASED VIEWS FOR 0-R DATABASES 46

• d rop

T he drop expression allows the root class to remove its role classes. T he keyword r o l e or m u l t i r o l e

is used to clarify role type. Like add operation, each s ta tem en t allows m ultip le d rop operations

to be executed. O ne failure causes th e rollback of th e whole sta tem en t. T h is operation is only

em ployed to role class, because dropping the root class results th e roleview lost its identity. The

d ro p operation is illu stra ted in example 4 • 7.

E x a m p le 4 .7 Drop Operation,

alter roleview Image View

drop role LogoRole

;

4.3.2 O bject Level O perations

T here are th ree ob jec t level operations are em ployed to the roleview definitions. T hey offer a

flexibility th a t a roo t object may acquire or abandon its role object; and a role object m ay be

transferred betw een different root ob ject. I t is no t an option th a t a roo t or role object can be

transferred betw een different roleviews.

• a c q u ir e

D e f in i t io n 5 Acquire Operation.

“acquire” “role | multirole” class-name: Identifier

“fro m ” “roleview” roleview-name: Identifier

“where” “root” sqLcondition

T he a c q u ir e o p era to r is used to u p d a te a role ex ten t by placing a new o b ject into a role ex ten t

(and root ex ten t by default). Note th a t substa tem en t s q l_ c o n d i t io n is im ported from SQL: 1999

w here clause [GP99]. I t is also possible to acquire a new m ultirole by using the a c q u ir e m u l t i r o l e

com m and. An inform al expression is shown in example 4-8-

E x a m p le 4 .8 R oot O bject Acquire Role O bject.

a cqu ire ro le ImgMapRole

from ro le v ie w ImageView

where roo t Im gRoot. img_id * '1 0 0 3

• abandon

D e f in i t io n 6 Abandon Operation.

“abandon” “role | multirole” class-name: Identifier

“fro m ” “roleview” roleview-name: Identifier

“where” “root” sqLcondition

CHAPTER 4. DESIGNING ROLE-BASED VIEWS FOR O-R DATABASES 47

T he abandon o p e ra to r is executed when a root ob ject does no t play a role ob ject anym ore. A root

ob ject cannot be dropped unless its base U DT is removed from database schema. T he substa tem en t

s q l . c o n d i t i o n is also reused from SQL: 1999. Example 4.9 shows th e syntax.

E x a m p le 4 .9 A bandon Role O bject from R oot O bject.

abandon r o le ImgMapRole

from ro le v ie w ImageView

where roo t Im gRoot. img_id - ‘1003’;

Once again, there are two im p o rtan t conditions th a t guaran tee th is operation succeeds: th e root

“1003” exists in th e roo t ex ten t; and it definitely has an ImgMap role. O therw ise, an error m essage
will be generated.

• m ig ra te

D e f in it io n 7 Migrate Operation.

“migrate” “role ” class-name: Identifier

“from ” “roleview” roleview-name: Identifier

“where” “root” sqLcondition

“to ” sqLcondition

T he M ig ra te o p era to r perm its th e changing of a roo t ob ject while retain ing all role inform ation.

U nder norm al circum stances th is requires a num ber of opera tions to delete all roo t and role da ta ,

and then add new roo t and role d a ta [GSR96]. T his is no t necessary where a new object ‘replaces1 an

existing one. For th e purpose of sim plicity and efficiency, only single role object can be transferred .

I t is not suppo rted th a t the m ovem ent of m ultirole object. A gain, the sqLcondition is im ported

from SQL: 1999, it provides th e sam e functions th a t w here condition presents. Following is an

exam ple of m ig ra te operation .

E x a m p le 4 .1 0 M igrate Role O bject.

m igrate r o le ImgMapRole

from ro le v ie w ImageView

where roo t ImgRoot.name = ‘ISG ’

to ImgRoot .name = ‘DCU’;

4.4 Conclusions

In th is chapter th e deploym ent of a role-based view system for O -R databases was presented, it is

the m ajor con tribu tion of th is thesis. In an O-R model, th e real world en tity is represented by an

U D T, each schem a is com posed by m any UDTs. Correspondingly, th e v irtua l en tity is represented

by a role or root class, which is th e v irtua l class of existing U D T; and each roleview is com posed by

m any v irtual classes. T he relationships between base schema, U D T, roleview and v irtua l classes

were illustra ted in th is chapter.

CHAPTER 4. DESIGNING ROLE-BASED VIEWS FOR 0-R DATABASES 48

T he sem antics of defining a roleview were discussed before providing the syntax. In general, it

falls in to tw o catalogues: the rules for specifying individual v irtua l class and th e rules for w rapping

m ultip le v irtu a l classes together. A v irtu a l class cannot be specified unless the base U D T has

been defined and stored in the database. T he roleview is considered v irtua l schem a, only one

roo t class exists w hereas the num ber of roles class is infinite. A roo t ob ject is identified by object

preserving sem antics, and the identifier of a role ob ject com bines th e base U D T ob jec t identifier

and a system generated transien t identifier. T he definition of a roleview is com pleted by defining

th e s tru c tu re and generating th e ex ten ts for th e included v irtua l classes. T he syn tax is expressed

in a form al BN F form at and followed by th e real examples. T he generation for v irtu a l extents

is represented by providing a clear sem antics first, and extending th e previous exam ples w ith the

ex ten t specifications.

In the last section, we provided num ber of restru c tu rin g operations th a t allow a roleview to be

modified and m anipulated . T he operations fall in to two catalogues: class level and o b jec t level. A t

th e class level, a roleview is restruc tu red by renam ing the v irtua l class, adding or deleting v irtua l

classes. A t the object level, a root ob ject can acquire or abandon its role objects, a defined role

ob ject is allowed to be transferred between different roo t object in a roleview.

At th is po int, we have offered th e roleview concept and sem antics of defining roleview, along w ith

th e O -R m etam odel extensions in troduced in last chapter. T he im plem entation of th e roleview

m echanism is discussed in chapter 5.

Chapter 5

Im plem entation

One of the goals of th is research is to deploy a role-based view system for O-R databases. Since

th e curren t O -R m etam odel does no t support the roleview, th e first step of th e im plem entation is

to extend th e m etam odel w ith ex tra metaclasses. T hese m etaclasses m ust be stored in the schem a

repository, along w ith existing m etaclasses. T he nex t s te p is to define th e Roleview Definition

Language (RDL) in B N F form at and use A N TLR to parse th e gram m ar; and generate the sem antic

actions for each of th e production rules. The th ird step is to specify th e roleview examples using

RDL and store the m e ta d a ta in the database. All of th e roleview exam ples provided in th is thesis

are defined and sto red in the O -R database and are th u s all syn tactically correct.

T he p ro to type system is com posed of a server side and client side pro to type, it is illu strated in

figure 5.1. T he server side pro to type extends the O -R m etam odel; and th e client side p ro to type

validates RD L and sto res the m e tad a ta in the schem a repository . T he details of building a server

side p ro to type is provided in §5.1. In §5.2 a discussion on client side p ro to type is presented. In

§5.3 details of experim ents are described, and in §5.4, som e conclusions are drawn.

5.1 Server Implementation

T he server side p ro to ty p e aims to ex tend the O-R m etam odel w ith roleview m etadata . T he e x tra

m etaclasses and m eta-ob jects m ust be stored in the schem a repository along w ith the existing

m etaclasses and m eta-objects. In reality, the server side p ro to type is divided in to two sections:

v irtual O -R m eta-U D T definitions and roleview m eta-U D T definitions.

F igure 5.1: P ro to type Overview.

49

CHAPTER 5. IMPLEMENTATION 50

5.1.1 Defining O-R M eta-U D T s

As s ta ted previously, the O -R m e ta d a ta is sto red in the schem a reposito ry as s ta tic tab les and views.

The base m eta-tab les store in form ation abou t th e associated da tabase and only the vendor may

access these m eta-tables. Hence, it is necessary for our approach to place a num ber of v irtua l m eta-

U D Ts th a t represent the m etam odel. These v irtua l m eta-U D Ts are defined by using SQL: 1999
d a ta definition language.

According to the extended m etam odel presented in chap ter 3, the roleview m etam ode] associates

w ith Type, T y p e ^ A ttr ib u te and Type.M ethod. T hey can be observed in m eta-view s ALL_TYPES,

ALL_TYPE_ATTRS and ALL_TYPE_METHODS. Hence, th e first s tep is to define th e U D Ts which copy

th e s tru c tu re of O -R T ype, T y p e _ A tt r ib u te and Type.M ethod. T he following scrip t presents how

to construct a v irtual U D T for O -R Type:

c r e a te ty p e sy s .O ra c le T y p e a s o b je c t (

Type_Name v a r c h a r 2 (3 0) ,

Type_0ID ra w (1 6) ,

Typecode v a r c h a r 2 (3 0) ,

A t t r i b u t e s num ber,

M ethods num ber,

F in a l v a r c h a r 2 (3) ,

SuperType_Owner v a r c h a r 2 (3 0) ,

SuperType.Nam e v a r c h a r 2 (3 0) ,

L o c a l_ A tt r ib u te s num ber,

L ocal_M ethods n u m b e r);

T he next step is to create an o b ject view for the v irtua l m eta-U D T. As s ta ted previously, the

m e tad a ta can only be seen in th e rela tional metarviews. Hence, it is necessary to ab s trac t the

relational view into an 0 - 0 form at, w here th e ta b u la r d a ta is represented by an OID like any other

objects. In an O -R model, the ob jec t view provides th is functionality. T he scrip t of creating object

view for sy s .O ra c le T y p e is p resen ted as the follows:

c r e a te v iew sys_O racleT ype_V iew o f sy s .O ra c le T y p e

w ith o b je c t i d e n t i f i e r (Type_0ID) as

s e l e c t Type_Name, Type_0ID , T ypecode, A t t r i b u t e s ,

M ethods, F in a l , SuperType_O w ner, SuperType_Name,

L o c a l„ A t t r ib u te s , L ocal_M ethods

from ALL.TYPES;

T he last s tep is to create the o b ject tab le for the v irtual m eta- U D T, and u p d a te ob ject tab le by

retrieving th e m eta-objects represen ted in th e object view. T he ob ject view generated in last step

is only a v irtu a l 0 - 0 rep resen tation of m e tad a ta , it is not possible th a t o ther m eta-ob jects can

access or link those m eta-objects. Hence, we m ust create the m eta-ob ject tab le which physically

store the m eta-objects. As the resu lt, th e ‘unaccessible1 relational m e ta d a ta is represented in an

0 - 0 form at and can be accessed by o ther m eta-objects. T he scrip t of creating ob ject tab le for

sy s .O ra c le T y p e is presented as th e follows:

CHAPTERS. IMPLEMENTATION 51

± Oracle SQL4 Plus
File Ed■V- ' /• ; : i»<

SQL*Plus: Release 9.2.0.1.0 - Production on Thu Jun 12 19:43:05 20O3

^Copyright (c) 1982, 2002, Oracle Corporation. All rights reserved.

Connected to:
0racle9i Enterprise Edition Release 9.2.0.1.0 - Production
With the Partitioning, OLAP and Oracle Data Mining options
JSeruer Release 9.2.0.1.0 - Production

SQL> SELECT TYPE_NAME FROM USER_TVPES;
!
TVPE_NAME

ISVS ATTRIBUTE
SVSJJTTRLIST
SVSJ1ETH0D
SVSJ1ETH0DLIST
SVSJJRACLETVPE
SVS_ORACLETVPE_ATTR
SVS_ORACLETVPE_METHOD
SVSJIOLE
SYSJÏOLELIST
SYS_ROLEUIEW
SVS ROOT

11 rous selected.

SQL> I

Figure 5.2: V irtua l O-R & Roleview M eta-U D Ts.

c r e a t e t a b l e sys_O racleT ype_O bjT ab of sy s_ O rac leT y p e (

Type.Name p r im a ry k e y) ;

i n s e r t i n to sys_O racleT ype_O bjT ab

s e l e c t * from sys_O racleT ype_V iew ;

O ther v irtual O-R m eta-U D Ts, s y s _ O ra c le T y p e _ A ttr ib u te and sys_O racleT ype_M ethod are

defined following th e same procedure. T he full sc rip t is presented in Appendix A.

5.1.2 Defining Roleview M eta-U D T s

As th e extended m etam odel presented in chapter 3, the re are 5 m eta-U D Ts acquired: sy s_R o lev iew ,

sy s_R oo t, s y s .R o le , s y s .A t t r i b u t e and sys_M ethod. W hile defining roleview m eta-U D Ts, it is

im p o rta n t to specify th e relationships between th e new m eta-U D Ts and th e v irtual O -R m eta-

U D Ts. In the extended O-R m etam odel, sys_R oot and sy s_ R o le associate w ith sy s .O ra c le T y p e ;

s y s _ A t t r ib u t e links to sy s_ O rac leT y p e _ A ttr , and sys_M ethod links to sys_O racleT ype_M ethod.

T he association between the m eta-U D T s is described by a built-in d a ta ty p e REF. T he scrip t of

defining roleview m eta-U D Ts is presented as th e follows:

c r e a t e ty p e s y s _ A t t r ib u te a s o b je c t (

CHAPTER 5. IMPLEMENTATION 52

A ttr_Nam e v a r c h a r 2 (3 0) ,

A ttr_O w ner v a r c h a r 2 (3 0) ,

T y p e_ A ttr_ R ef REF sy s _ O ra c le T y p e _ A ttr) ;

c r e a t e ty p e sys_M ethod a s o b je c t (

Method_Name v a r c h a r 2 (3 0) ,

M ethod.O w ner v a r c h a r 2 (3 0) ,

Type_M ethod_Ref REF sy s_ O rac leT y p e_ M eth o d);

c r e a t e ty p e s y s . A t t r L i s t as t a b l e of s y s _ A t t r i b u t e ;

c r e a te ty p e sy s .M e th o d L is t a s t a b l e o f sy s .M e th o d ;

c r e a te ty p e sy s_ R o le as o b je c t (

R ole.R ID RAW(1 6) ,

Role.Name v a r c h a r 2 (3 0) ,

Type_Ref REF sy s_ O rac leT y p e ,

R oot REF sy s_ R o o t,

I s M u l t ip le v a r c h a r 2 (3 0) ,

A t t r i b u t e s num ber,

M ethods num ber,

R o le _ A tt r ib u te s y s . A t t r L i s t ,

R ole_M ethod s y s .M e th o d L is t) ;

c r e a te o r r e p la c e ty p e sys_R oot a s o b je c t (

Root_Name v a r c h a r 2 (3 0) ,

Type_Ref REF s y s .O ra c le T y p e ,

SuperType v a r c h a r 2 (3 0) ,

A t t r i b u t e s num ber,

M ethods num ber,

R o le L is t s y s _ R o le L is t ,

R o o t .A t t r ib u te s y s _ A t t r L i s t ,

Root_M ethod s y s _ M e th o d L is t) ;

c r e a te ty p e s y s .R o le L is t a s t a b l e of REF sy s_ R o le ;

c r e a te ty p e s y s .R o le v ie w as o b je c t (

Roleview_Name v a r c h a r 2 (3 0) ,

R oleview _ID r a w (1 6) ,

R oot REF sys.R oot);

Note th a t the re are th ree collection types are defined in the scrip t, they are used to represent the

collection of m eta-ob jects . As figure 5.2 illustrated , 5 roleview m eta-U D T s are defined and stored

in the schem a repository, along w ith 3 v irtual O-R m eta-U D Ts. In addition , 3 collection U D Ts

CHAPTER 5. IMPLEMENTATION 53

are defined to com plete th e extensions. As th e result, there are 11 m eta-types are defined in the

server side pro to type.

Since th e roleview m eta-U D T s model the s tru c tu re of roleview m eta-objects, it is necessary to

define th e roleview m eta-ob ject tab les th a t sto re the roleview m eta-objects. T h e scrip t of defining

ob ject tab les for the roleview m eta-types is p resen ted as the follows:

c r e a t e t a b l e sys_R oot_O bjT ab of sy s .R o o t (

p r im a ry key (R oot_N am e),

Type_Ref r e f e r e n c e s sys_O racleT ype_O bjT ab)

n e s te d t a b l e R o le L is t s t o r e a s sy s_ R o le s ,

n e s te d t a b l e R o o t .A t t r ib u te s to r e a s s y s .R o o t„ A t t r ib u te s ,

n e s te d t a b l e Root_M ethod s to r e a s sy s .R o o t.M e th o d s ;

c r e a t e t a b l e sys_R ole_O bjT ab of s y s .R o le (

p r im a ry key (R ole_R ID , R o le .N am e),

Type_Ref r e f e r e n c e s sys_O rac leT ype_O bjT ab ,

R oot r e f e r e n c e s sys_R oot_O bjTab)

n e s te d t a b l e R o le _ A ttr ib u te s to r e a s s y s _ R o le _ A tt r ib u te s ,

n e s te d t a b l e Role_M ethod s t o r e a s sy s_ R o le_ M eth o d s;

c r e a t e t a b l e sy s_ A ttr ib u te _ O b jT a b of s y s _ A t t r ib u t e (

p r im a ry key (A ttr.N am e , A ttr_ O w n e r) ,

T y p e_ A ttr_ R ef r e f e r e n c e s sy s_ O ra c le T y p e _ A ttr_ O b jT a b);

c r e a t e t a b l e sys_M ethod_O bjTab o f sys_M ethod (

p r im a ry key (Method_Name, M ethod.O w ner) ,

Type_M ethod_Ref r e f e r e n c e s sys_O rac leT ype_M ethod_O bjT ab);

c r e a t e t a b l e sys_R oleview _O bjT ab o f sy s_ R o lev iew (

p r im a ry key (R o le v ie w .ID) ,

R oot r e f e r e n c e s sy s_ R o o t_ O b jT ab);

5.2 Defining Roles

T he client side p ro to ty p e is also divided into two sections: parsing RDL and building roleview

processor. Some background technologies such as A N TLR , O racle JD B C T h in D river and JD K

are required to com plete th e prototype. These technologies are in troduced briefly along w ith the

p ro to type details.

5.2.1 Parsing RDL

RDL is specified in B N F form at and parsed by A N TL R 2.7.2 in the client side prototype. T he

la test version of A N T L R can be ob ta ined a t w w w .a n tlr .o rg . A N T L R is a parser and tran sla to r

tools th a t le ts one define language gram m ar in e ither A N TLR or A ST syntax . I t is m ore th an ju s t

http://www.antlr.org

CHAPTER 5. IMPLEMENTATION 54

D ire c to ry o f D : \c re a te R o le u ie u \R o le u ie w D e f in i t io n \s rc

1 0 /04 /2003 16:22 <DIR>
1 0 /0 4 /2 0 0 3 16 :22 <DIR>
0 5 /04 /2003 2 0 :30 <DIR> con i
22 /0 4 /2 0 0 3 11 :21 3 ,6 6 6 t . g

;

18 /04 /2003 12 :41 1 ,038 r u n .c l a s s ¡ |
2 2 /04 /2003 11:22 8 ,1 1 0 L .ja v a
2 2 /0 4 /2 0 0 3 11:22 8 ,202 P . ja v a
22 /0 4 /2 0 0 3 11:22 396 PTokenTypes. ja v a
2 2 /0 4 /2 0 0 3 11 :22 316 P T o k en T y p es .tx t
18 /04 /2003 12 :41 5 ,218 L .c la s s
1 8 /0 4 /2 0 0 3 12 :41 607 P T o k en T y p es.c la ss V;

1 8 /0 4 /2 0 0 3 12 :41 5 ,4 3 7 P .c l a s s
2 2 /0 4 /2 0 0 3 11 :21 862 r u n . j a v a

10 F i l e (s) 33 ,852 b y te s
3 D ir< s) 1 ,2 9 4 ,9 5 8 ,5 9 2 b y te s f r e e

iWa;
m
?fy:
-

D :\c re a te R o le u ie u \R o le g ie u D e f i n i t i o n \ s r c > j a v a a n t l r .T o o l t . g
ANTLR P a r s e r G e n e ra to r U ers io n 2 .7 .2 1989-2003 jG uru.com •

D: \c r e a t e Ro le g ie u \Ro le g ie uDe f in i t io n \ s r c > 1

F igure 5.3: Parse RD L Using A N TLR 2.7.2.

a g ram m ar definition language, however, th e tools provided allow one to im plem ent th e A N TLR

defined gram m ar by au tom atica lly generating lexers and parser in e ither Java or S at her [Ant03].

In our p ro to type , A N TL R is used to parse RDL and generated the Java files, which represen t the

lexers and parsers. N ote th a t RDL m ust be saved as a .g file and execute w ith com m and line:

ja v a a n t l r .T o o l F ilenam e

If an error occurs while validating RDL p roduction rules, the program m e is te rm inated by throw ing

an exception. If the validation is successful, th e parsers and lexers are generated. Since RDL

contains 1 parser and 1 lexer, the re are 3 Java files and 1 Text file gen e ra ted . Figure 5 .3 represents

th e results of parsing RDL. T h e detailed RDL is provided in Appendix B.

5.2.2 Building Roleview Processor

T his ta sk is com pleted by specifying Java program m e which takes th e RDL variables and stores

them to the pre-defined m eta-tab les. T here are 2 class libraries required:

• O racle JD B C T hin D river 3.0

Oracle JD B C is a s tan d ard Java interface for connecting from Ja v a to databases. JD B C T hin

driver provides the power and flexibility to use dynam ic SQL sta te m en ts in Java program m es

[OraOI]. Using JD B C , a calling program m e can construc t SQL s ta te m en ts a t runtim e. T he JD B C

program m e is com piled and run like any o ther Java program m e. No analysis or checking of the

SQL 9 ta tem en ts is perform ed. Any errors th a t are m ade in SQL code raise run tim e errors. T he

la test version JD B C 3.0 provides two types of drivers, which are T h in driver and O CI. T h e reason

we chose the T h in driver is th a t it is a 100% pure Java driver, and ta rge ted for O racle JD B C

applets b u t can be used for applications as well. Because it is w ritten entirely in Java, th is driver

CHAPTER 5. IMPLEMENTATION 55

input.tKt - Notepad

c r e a t e rol e v i ew imgview as

role

root imgRoot of image i s (
s e l e c t * from lmage_objTab)
imgMapRole of imgMap is (
s e l e c t map_name, p o s i t i o n from imgMap_objTab)

m u l t i r o l e AnimateimgRole of Animatedlmg i s (
s e l e c t r o t a t e , tween, f laR ef from Animatedimg_objTab);

cre a t e roleview
root TxtRoot

ro le

Txtview as
of Text i s (

s e l e c t t e x t _ i d , format, f o n t , s i z e s , layRef from Text_objTab)
AnimatedTxtRole of Text i s (
s e l e c t color , s t y l e , f la Ref from Text_objTab);

Figure 5.4: Roleview Definitions in RDL.

is p la tform -independent. I t does no t require any add itiona l Oracle software on th e client side.

O racle JD B C T h in driver can be ob ta ined a t w w w .oracle .com . In our p ro to type , Oracle JD B C

T h in driver is used as th e class lib rary for building th e roleview processor.

• JD K 1.4

JD K 1.4 is dow nloaded from w w w .java .sun .com . It is considered a class library th a t provides

environm ents for creating and ed iting Java source code, and com piling and debugging program m es.

In our pro to type, j d k l . 4 \ j r e \ l i b d irectory is set in th e PATH variables because it contains the

Java R untim e facilities th a t are used w hen users execute a Java program m e. T he Java R untim e

takes care of retriev ing w hat it needs from the archive w hen the program executes.

To store the roleivew m e ta d a ta in th e schem a repository, a roleview processor is program m ed th a t

takes the roleview definitions as inpu t, connect to th e database , pass the roleview m e tad a ta to

P L /S Q L Engine and finally store the m e tad a ta to th e m eta-tab les. In our p ro to type , there are 3

Java classes specified in the processor. T he detailed code are provided in Appendix C, D and E.

5.3 Experiments

All of the roleview exam ples provided in th is thesis are defined and stored in the schem a repository.

T he prem ise of designing these roleview exam ples is th a t a W eb Design Schem a has been defined

in th e database. T he base schem a is defined by using SQL: 1999 in O racle9i Release 9.2.0.1.0

database. T he scrip t of defining th e schem a is represen ted as the follows:

c r e a te ty p e L ay er a s o b je c t (

l a y e r _ id num ber,

name v a r c h a r 2 (3 0) ,

w id th i n t e g e r ,

h e ig h t i n t e g e r ,

v i s i b l e v a r c h a r 2 (3 0) ,

b ackg round v a r c h a r 2 (3 0)) ;

http://www.oracle.com
http://www.java.sun.com

c r e a t e ty p e F la s h a s o b je c t (

f l a s h . i d num ber,

name v a r c h a r 2 (3 0) ,

ty p e v a r c h a r 2 (3 0) ,

s i z e v a r c h a r 2 (3 0) ,

backg round v a r c h a r 2 (3 0) ,

r a t e v a r c h a r 2 (3 0) ,

p u b lish e d B y v a r c h a r 2 (3 0)) ;

c r e a te ty p e Image a s o b je c t (

im g .id num ber,

name v a r c h a r 2 (3 0) ,

s i z e i n t e g e r ,

r e s o l u t i o n v a r c h a r 2 (3 0) ,

c o n te n t CLOB,

backg round v a r c h a r 2 (3 0) ,

so u rc e v a r c h a r 2 (3 0) ,

lay R ef REF L ayer) n o t f i n a l ;

c r e a te ty p e ImgMap u n d e r Image (

map.name v a r c h a r 2 (3 0) ,

shape v a r c h a r 2 (3 0) ,

h r e f v a r c h a r 2 (3 0) ,

c o o r d in a te s i n t e g e r ,

t a r g e t v a r c h a r 2 (3 0)) ;

c r e a te ty p e A nim atedlm g u n d er Image (

w id th v a r c h a r 2 (3 0) ,

h e ig h t v a r c h a r 2 (3 0) ,

c o o r d in a te s i n t e g e r ,

r o t a t i o n i n t e g e r ,

tw een v a r c h a r 2 (3 0) ,

s c a le b o o le a n ,

f la R e f REF F l a s h) ;

c r e a te ty p e T ex t a s o b je c t (

t e x t . i d num ber,

fo rm a t v a r c h a r 2 (3 0) ,

s i z e i n t e g e r ,

CHAPTER 5. IMPLEMENTATION

CHAPTER 5. IMPLEMENTATION 57

jD: \ c r e a t e R o l e u i e u \ R o l e u i e u D e f i n i t i o n \ s r c > j a u a a n t I r . T o o l t . g
ANTLF. P a r s e r Generator U ers ion 2 . 7 . 2 1989-2003 jG u ru .con

D: \ c r e a t e R o l e u i e w \ R o l e v i e w D e f in i t i o n \ s r c > j a u a c ja u a

D: \ c re a t e Ro l e v i e u\Ro l e v i e wDe f in i t io n \ s rc > j au a run
s y s _ f t t t r ib u te _ O b jT a b i n s e r t i s c o m p l e t e d .
sys_i toot_0fojTab i n s e r t i s c o m p le t e d .
s y s _ f i t t r ib u t e _ O b j T a b i n s e r t i s c o m p l e t e d .
s y s _ A t t r i b u t e _ O b j T a b i n s e r t i s c o m p le t e d .
sy s_ R o o t update i s co m p le te d .
R oleu ie w C r e a te d .

s y s _ A t t r i b u t e _ O b j T a b i n s e r t i s c o m p le t e d .
sys_Root_ObjTab i n s e r t i s c o m p le t e d .
s y s _ f i t t r ib u t e _ O b j T a b i n s e r t i s c o m p le t e d .
|sys_Root update i s co m p le te d .
R o le v i e w C r e a te d .

|D: \ c r e a t e R o l e u i e u \ R o l e u i e w D e f i n i t i o n \ s r c > ra

Figure 5.5: Roleview Processor Execution.

c o n te n t CLOB,

c o lo r v a r c h a r 2 (3 0) ,

s t y l e v a r c h a r 2 (3 0) ,

tw een v a r c h a r 2 (3 0) ,

s c a le v a r c h a r 2 (3 0) ,

t r a n s f o r m v a r h c a r 2 (3 0) ,

r o t a t i o n v a r c h a r 2 (3 0) ,

la y R e f REF L ay e r,

f la R e f REF F l a s h) ;

c r e a t e t a b l e L ayer.O b jT ab o f L ayer;

c r e a t e t a b l e F la sh .O b jT a b o f F la s h ;

c r e a t e t a b l e Image_ObjTab o f Image;

c r e a t e t a b l e ImgMap_ObjTab of ImgMap;

c r e a t e t a b l e A nim atedlm g_0bjTab of A nim atedlm g;

c r e a t e t a b l e T ext_O bjTab o f T ex t;

T he roleviGw schem a ImageView and TextView are defined as the v irtua l represen tations of base

schema. A lthough the experim ents were conducted w ith in a labo ra to ry environm ent, they dem on­

s tra te th a t the deploym ent of role-based views for O -R databases is syn tactically correct. Figure
5.4 illu stra tes the roleview definitions. In ImgView definition, th e base UDTs, Image, ImgMap and

CHAPTER 5. IMPLEMENTATION 58

SQL*Plus: Release 9.2.0.1.0 - Production on Sun Jun 1 15:31:13 2003

Copyright (c) 1982, 2002, Oracle Corporation, fill rights reserved.

Connected to:
0racle9i Enterprise Edition Release 9.2.0.3.0 - Production
With the Partitioning, OLAP and Oracle Data Mining options
JSeruer Release 9.2.0.3.0 - Production

?

SQL> select Roleuiew_Nane from sysRoleuiewObjTab;

ROLEUIEW NAME

ImgMap_ObjTab and Anim atedlmg_ObjTab contain the objects. Note th a t there are no any new

attrib u tes specified in root or role specifications, every a ttr ib u tes of v irtual class m ust be retrieved

from the base UDTs. In TxtView definition, bo th root class T xtR oot and role class A nim atedTx-

tR o le are based on one U D T Text.

IMGUIEW
TXTUIEW

SQL> select Rootnane fron sysRootObjTab;

ROOT NAME

IMGROOT
TXTROOT

SQL> select Rolenane, IsMultiple fron sysRoleObjTab;

ROLE NAME ISMULTIPLE

IMGMAPROLE
ANIMATEIMGROLE
ANIMATEDTXTROLE

false
true
false

SQL>

Figure 5.6: Display Roleviews.

Animatedlmg have been stored in the schem a repository and the object tables, Image_ObjTab,

A roleview definition may be complex and long because it includes m ultiple v irtual class specifi­

cations. RDL allows m ultiple roleview definitions to be saved a t one single file as inpu t for the

purpose of easy m aintaining. In figure 5.4, ImageView and TextView are specified in one single

file, however, the roleview processor only process one definition a t a tim e.

Once a roleview is defined, the roleview processor takes the roleview definition as inpu t and store

the roleview m etada ta in the m eta-tables. Figure 5.5 illustrates th a t the roleview exam ples have

been successfully executed. N ote th a t the roleview definition is processed in order. W hile executing

a roleview definition, if one of the insertion or update is failed, the processor will rollback the SQL

queries and throws an error message.

CHAPTER 5. IMPLEMENTATION 59

Figure 5.6 illu stra te s the sto red roleview m etada ta , w hich displays th e resu lt of roleview processor.

In m eta-tab le sy s_ R o lev iew _ O b jtab , ImgView and TxtV iew are stored; ImgRoot and T x tR oo t are

stored in m eta-tab le sys_R oot_O bjTab; and sys_R ole_O bjT ab stores m etarobjects ImgMapRole,

A nim atedlm gR ole and A nim atedT xtR ole . In th is thesis, we only provide som e simple SQL queries

to display th e roleview definitions, which are represen ted as the follows. A more sophisticated

roleview query system is presented in [0 ’C03].

E x a m p le 5 .1 Query Root of a roleview.

select Root.Root-Name

from sys-Roleview-ObjTab r

where r.Roleview-Name = ’Im gView ’;

E x a m p le 5 .2 Query Roles of a root,

select role. *

from sys-Root-ObjTab root, TABLE (root.RoleList) role

where root.Root-Name = ’TxtV iew ’;

E x a m p le 5 .3 Query Roles of a roleview.

select re.Role-Name

from sys-Roleview-ObjTab rw, sys-RooLObjTab rt, TABLE(rt.RoleList) re

where rw.Roleview-Name = ’Im gView ’

and rw.Root.Root-Name = rt.Root-Name;

5.4 C onclusions

T he deploym ent of the roleview system is represented by a working p ro to type . I t includes the

server side and client side im plem entations. T he server side p ro to type is used to ex tend th e O-R

m etam odel w ith roleview m etaclasses; and the client side p ro to type is com posed of RD L an a

roleview processor.

T he server side p ro to type is bu ilt by defining the v irtu a l O -R m eta-U D T s and roleview m eta-

U D Ts in the schem a repository. T he scrip ts of m eta-U D T s were represen ted and key issues were

highlighted. A t the client side, RDL gram m ar was parsed by using A N T L R parser, a roleview

processor was bu ilt to store the roleview m e tad a ta to th e pre-defined m eta-tab les . T he technologies

were in troduced in order to provide a b e tte r understand ing of the p ro to type . Finally, we offered

th e experim ents which dem onstra te th e concept of roleview are im plem entable, and th e sem antics

are syntactically correct.

Chapter 6

Conclusions

T he aim of th is research was to dem onstrate th a t a s tan d ard such as th e O -R m odel could be used

as a basis for defining roleviews. Unlike o ther federated d atabase research, one of th e objectives of

th is research was to reuse th e existing d a ta m odel and concepts, and thereby, elim inate the need

to define a new p rop rie ta ry model. A second objective was to deploy a roleview system for O-R

databases, ra th e r th a n a trad itional 0 - 0 view m echanism . In th is chap te r a review of th e thesis is

presented in §6.1; and op tions for fu rther research are discussed in §6.2.

6.1 Thesis Sum m ary

In chapter one, an in troduction to federated d atabase system s was presented. T he Sheth and

Larson arch itec tu re adopted by m any researchers was described. In federated database system s,

a view m echanism is crucial as it is used, to define exportab le subsets of data ; to perform a

v irtu a l restruc tu ring of d a ta ; and to construct th e in tegrated schem a. Hence, a federated view

m ust be form ed in a sem antic rich m anner. In th e last decade m any researchers defined different

forms of 0 - 0 views since th e 0 - 0 m odel was considered the su itab le canonical model before the

em ergence of the O -R m odel. T he rigidity of existing 0 - 0 view m echanism s was discussed in th is

chapter. W hile defining 0 - 0 views for the ob ject model, one op tion was to ex tend the d a ta m odel

to incorporate a role m odel. T he concept of a role was in troduced, along w ith th e role features

and role usage. T he cu rren t O -R m odel has no facility to provide a rich view m echanism , b u t it

provides an o p p ortun ity to develop the role-based view m echanism . T he aim of th is research was

to employ th e role concept, enhance its capabilities to construc t a view schem a, and dem onstrate

the usability of th is idea th rough a working p ro to type and series of experim ents using the O-R

model.

One of the problem s in 0 - 0 m odelling was the lack of adequate ob ject evolution mechanisms,

also knowing as role m odelling. The notion of roles presented m any features th a t th e trad itional

0 - 0 m odel lacked, such as ob ject m igration, m ultiple occurrences and contest-dependent access.

In chapter two, an exam ination and com parison of some of th e existing 0 - 0 role projects were

presented. T he o u tp u t from th is critical analysis provided the requirem ents for the design of a

role-based view m echanism for th is research.

One objective was to im plem ent the view language and display services in order to prove th a t the

roleview schem a could be constructed , and to provide an environm ent for testing views. Hence,

the extensions to the O -R m etam odel was described in chap ter three. Before extending the O -R

m etam odel, it was necessary to exam ine the existing m etam odel and clarify the possibility for role

60

CHAPTER 6. CONCLUSIONS 61

extensions. T h e exam ination of O -R m etam odel was presented first, along w ith th e analysis of

th e role-based view m etam odel. In th e process of ex tending the O -R m etam odel, the discussions

on associating m etaclasses were em phasised. T he o u tp u t from th is work was the capability of

representing roles as an extended m etam odel.

T he m ajor con tribu tion of th is thesis was to define a view definition language. RDL was presented

in chap ter four. O ne objective in designing RDL was th e need to define the export schem a (localised

view). These schem as m ay be bu ilt by w rapping m ultip le v irtua l classes. Hence, it was necessary

to clarify th e sem antics. A nother objective was to query and display the view schem a, hence,

th e dem onstra tion of generating v irtu a l class ex ten ts was also necessary. T he m ethod for defining

v irtu a l ex ten ts w as presented, along w ith the sem antics of how view processing takes place. An

exportab le schem a in the federated database system m ay require restruc tu ring opera tions, and

thus, some class and object level restruc tu ring opera tions were introduced.

T he concept of role-based view system , and the sy n tax of RDL were proved by im plem enting

a working p ro to type . In chapter five, th e details of p ro to type im plem entation was provided. All

exam ples illu stra ted in th is thesis were constructed and queried to te s t the perform ance of roleview

schema, and to provide d a ta for fu tu re research.

6.2 Further Research

T he O-R m odel is a new model, which is based on th e relational model, while dem onstra ting the

com plex capabilities of the 0 - 0 m odel. I t has been strongly developed in last few years, and

there is a clear argum ent for using an O -R canonical m odel because of its increasing sim ilarity to

0 - 0 m odel and its m ore w idespread acceptance. M oreover, using th e O -R model in th e federated

da tabase system s provides new experim ents th a t th e trad itio n a l 0 - 0 m odel lacked. Since it is a

new experim ent, m any further research are w aiting for th e exploration. O utlined below are prim ary

areas for fu ture work.

• Behaviour

One of the s tren g th s of O-R model is the ability to incorporate behaviour into an o b je c t’s U D T

definition. T he sem antics of ob jects and their opera tions can be encapsulated w ith in the U D T

ra th e r than buried in application program m e code. T he behaviour of an ob ject is represented

by method in th e O -R model. I t can be w ritten in e ither P L /S Q L or any o ther program m ing

languages. M ethods w ritten in P L /S Q L or Java are sto red in the database; m ethods w ritten in

o ther languages such as C are stored w ith the application program m e. In the la tte r case, a view

mechanism canno t incorporate an o b je c t’s operations since it cannot access the behaviour. In the

first case, a lthough th e m ethods can be accessed, th ey are not fully im plem ented in th e current

version of O -R m odel. From a federated perspective, incorporating behaviours w ith views is a g reat

challenge. C urrently , one m em ber of In teroperab le System s G roup (ISG) focus on studying the

behaviour of federated views [KR01]. T he perform ance of roles will be improved if th e behaviour

is added to th e roleview model.

• In teg ration

T he objective of th is research is to develop a sem antic rich view system for the O -R m odel, which

is considered th e su itab le canonical m odel in the federa ted database system s. As s ta te d previously,

a federated view m ust provide the functionalities for define export schem a (localised view) and

CHAPTER 6. CONCLUSIONS 62

federated schem a (global view). In th is thesis, a powerful localised view is defined by using RDL.

However, th e issue of schem a in tegration was not covered. In com parison to building exportable

schema, th e federated schem a requires com plex restruc tu ring and integration operations. Hence,

fu rther research can be carried on a t the area of extending th e roleview system to facilitate vari­

ous in teg ration operations, which allow the federated system to com bine roleviews from separate

databases or in form ation system s.

• D elegation

D elegation is an im p o rta n t concept to enrich the 0 - 0 m odel on the concept and im plem entation

levels. One essential m otivation to in troduce delegation is to be seen in th e shortcom ings of

inheritance to m odel certain aspects of the real world entity. T here is a rem arkable am ount of

work on 0 - 0 model which represents delegation [BD96, M al95, FraOO]. However, th e current O -R

model does no t represen t th is extensional inheritance feature. In th is thesis, a role-based view

system is designed from an im plem entation po in t of view, w hich allows the O -R m odel to suppo rt

the concept of delegation. Hence, it is necessary to carry on th e fu rther research a t th e area of

studying delegation from a concept point of view.

Bibliography

[AAGOO]

[ABG093]

[Ant03]

[BD77]

[BD96]

[BE96]

[CB97]

[DPZ02]

[FBCP01]

[FraOO]

[GP99]

[GroOl]

[GSR96]

[JHPS02]

A lbanoand, A., A ntognoni, A. and Ghelli, G., View O perations on O b jec ts w ith

Roles for a S tatically T yped D atabase Language, in Knowledge and Data Engineer­
ing , vol. 12(4), pp. 548-567, 2000.

A lbano, A. et al., A n O bjec t D a ta M odel w ith Roles, in The 19th Conference on Very
Large Databases, pp. 39-51, Dublin, Ireland, 1993.

A N TLR , Com plete Language T ransla tion Solutions, jG uru , 2003, URL w w w .a n tlr .

o rg .

B achm an, C. and D aya, M., T he Role C oncept in D a ta M odels, in The Third Interna­
tional Conference on Very Large DataBases, pp. 464-476, Tokyo, Japan , O ctober 6-8,

1977.

B ardou, D. and Dony, C., Split O bjects: A Disciplined Use of D elegation w ith in Ob­

jects , in Conference on Object-Oriented Programming, Systems, Languages and Appli­
cations, OOPSLA 96, pp. 122-137, New York, U nited S ta tes, 1996.

B ukhres, O. and E lm agarm id, A., Object-Oriented Multidatabas Systems, P ren tice Hall,

1996.

C atte ll, R. and Barry, D ., The Object Database Standard: ODMG 2.0, M organ Kauf­

m ann, 1997.

D ahchour, M., P iro tte , A. and Zimányi, E ., A Generic Role M odel for D ynam ic Ob­

jects , in The 14 th Advanced Information Systems Engineering ntem ational Conference,
C A iSE ’02, Toronto, C anada , May 27-31, 2002.

Fan, J. e t al., R epresenting Roles and Purpose, in First International Conference on
Knowledge Capture, K -C ap’01, V ictoria, B .C ., C anada, O ctober 21-23, 2001.

F rank , U., Delegation: A n Im p o rtan t C oncept for the A ppropria te Design of O bject

M odels, in Object-Oriented Programming, vol. 13(3), pp. 13-18, 2000.

G ulu tzan , P. and Pelzer, T ., SQL-99 Complete, Really A n Example-Based Reference
Manual of the New Standard, R&D Books M iller Freem an, Inc., 1999.

G roup, W. S. W ., X M L Schema, in , 2001, URL www.w3c.org.

G o ttlob , G., Schrefl, M. and Röck, B., E xtending O bject-O rien ted System s w ith Roles,

in A C M Transactions on Information System s , vol. 14(3), pp. 268-296, 1996.

Jodlowski, A. et al., O bjects and Roles in th e S tack-B ased A pproach, in The 13th
International Workshop on Database and Expert Systems Applications, D EXA ’02, pp.

514-523, Aix En Provence, France, 2002.

63

http://www.antlr
http://www.w3c.org

BIBLIOGRAPHY 64

[KR01]

[KS91]

[Mal 95]

[0 ’C02]

[0 ’C03]

[OraOl]

[PBE95]

[Rad96]

[RKB01]

[RS91]

[Run92]

[SAD94]

[SCGS91]

[SL90]

K am bur, D. and R oantree, M., Using S tored B ehaviour in O bject-O rien ted D atabases,

in The \ th International Workshop Engineering of Federated Information Systems,
EFIS2001 , pp. 61-69, Berlin, Germany, O ctober 9-10, 2001.

K appel, G. and Schrefì, M., O bjec t/B ehav iou r D iagram s, in Proceedings o f the 7th
International Conference on Data Engineering, IE E E Computer Society Press, Kobe,

Ja p an , 1991.

M alenfant, J ., On th e Sem antic D iversity o f D elegation-B ased P rogram m ing L an­

guages, in Conference on Object-Oriented Programming, Systems, Languages and A p­

plications, OOPSLA 95, pp. 215-230, New York, U nited S tates, 1995.

O ’C onnor, G., A M etam odel Interface of O bject-R elational D atabases, Tech. Rep.
ISG-02-07, D ublin C ity University, G lasnevin, D ublin 9, Ireland, 2002, URL www.

c o m p u t in g .d c u . ie /~ is g .

O ’C onnor, G., A M etad a ta Interface to Access E xtended O -R M eta-Inform ation, Tech.
Rep. ISG-02-13 , D ublin C ity University, G lasnevin, D ublin 9, Ireland, 2003, U RL www.

c o m p u t in g .d c u . ie /~ i s g / .

O racle, Oracle9i Database Concepts Releasel (9.0.1), A88856-02, 2001.

P ito u ra , E ., Bukhres, O. and E lm agarm id, A ., O bject O rien ta tion in M ultida tabase

System s, in AC M Computing Surveys, vol. 27(2), pp. 141-195, 1995.

R adeke, E ., E xtending ODM G for F ederated D atabase System s, in The 7th Interna­
tional Workshop on Databases and Export System s Applications, DEXA ’96, pp. 304-

319, Zurich, Sw itzerland, 1996.

R oantree , M ., Kennedy, J. and Barclay, P., In teg rating View Schem ata Using an Ex­

tended O bjec t Definition Language, in The 9th International IFCIS Conference on

Cooperative Information Systems, CoopIS 2001, pp. 150-162, Trento, Italy, S eptem ber

5-7, 2001.

R ichardson, J. and Schwarz, P., Aspects: E xtending O bjects to S upport M ultiple,

Independen t Roles, in Clifford, J. and King, R., eds., The A C M SIGMOD International
Conference on Management of Data, SIG M O D ’91, pp. 298-307, Denver, Colorado, M ay

29-31, 1991.

R undenste iner, E., M ultiview: A M ethodology for S upporting M ultiple Views in

O bject-O rien ted D atabases, in The 18th International Conference on Very Larger
Databases, VLD B’92, pp. 187-198, Vancouver, C anada, 1992.

Santos, C. D., A biteboul, S. and Delobel, C., V irtu a l Schem a and Bases, in Proceedings
o f the International Conference on Extensive Data Base Technology, E D B T ’94, PP-

81-94, Springer-Verlag, Cam bridge, U .K ., 1994.

Saltor, F ., Castellanos, M. and Garcia-Solaco, M ., S u itab ility of D a ta Model as C anon­

ical M odels for Federated D atabases, in AC M SIGMOD Record, 1991.

Sheth , A. and Larson, J ., Federated D atabase System s for M anaging D istribu ted , H et­

erogeneous and A utonom ous D atabases, in A C M Computing Surveys, vol. 22(3), pp.

183-236, 1990.

[SLR+94] Scholl, M. H. e t al., T he C O C OO N O bject M odel, Tech. Rep. 211, E T H Zürich, De­

p artm en t Inform atik, 1994.

BIBLIOGRAPHY 65

[SLT91]

[SM96]

[SteOO]

[Wan02a]

[Wan02b]

[Wan03]

[WCL97]

[Won98]

[WR03]

Scholl, M., Laasch, C. and Tresch, M., U pdatab le Views in O bject-O riened D atabases,

in Proceedings of the 2nd International Conference on Deductive and Object-Oriented

Daabases, pp. 189-207, Springer Verlag, 1991.

S tonebraker, M. and M oore, D., Object-Relaional DBM Ss The Next Great Wave, ^ o r ­

gan K aufm ann P ublishers, Inc., 1996.

S teim ann, F ., On th e represen tation of roles in ob ject-o rien ted and conceptual mod­

elling, in Data Knowledge Engineering, vol. 35(1), pp. 83-106, 2000.

W ang, L., An A nalysis of O bject-R elaional M odel, Tech. Rep. ISG-02-06, D ublin City

University, G lasnevin, D ublin 9, Ireland, 2002, URL w w w .c o m p u tin g .d c u .ie /~ is g /.

W ang, L., E xtending th e O bject-R elational M etam odel to F acilita te the Definition of

Roles, Tech. Rep. ISG-02-11 , D ublin C ity University, G lasnevin, D ublin 9, Ireland,

2002.

W ang, L., Designing Roles for O bject-R elational D atabases, Tech. Rep. ISG-03-02,
D ublin C ity University, G lasnevin D ublin 9, 2003, URL w w w .co m p u tin g .d u c .ie /

~ is g / .

W ong, R ., C hau, H. and Lochovsky, F ., A D a ta M odel and Sem antics of O bjects w ith

Dynam ic Roles, in The 13th International Conference on Data Engineering, pp. 402-

411, 1997.

W ong, R ., H eterogeous and M ultifaceted M ultim edia O bjec ts in D O O R /M M : A Roles-

Based A pproach w ith Views, in Parallel and Distributed Computing, vol. 56, pp. 235-

250, 1998.

W ang, L. and R oantree, M., Desigining Role-Based View for O bject-R elational

D atabases, in The 5th International Workshop Engineering Federated Information Sys­
tems, E F IS ’03, Coventry, UK, 2003.

http://www.computing.dcu.ie/~isg/
http://www.computing.duc.ie/

Appendix A

Roleview Metamodel DDL

********** O racle M eta-U D Ts Definitions **********

c r e a te ty p e sy s .O ra c le T y p e a s o b je c t (

Type_Name v a r c h a r 2 (3 0) ,

Type.OID ra w (1 6) ,

Typecode v a r c h a r 2 (3 0) ,

A t t r i b u t e s num ber,

M ethods num ber,

SuperType_Owner v a r c h a r 2 (3 0) ,

SuperType_Name v a r c h a r 2 (3 0) ,

L o c a l .A t t r i b u t e s num ber,

L o ca l.M eth o d s n u m b er);

c r e a te ty p e sy s_ O ra c le T y p e _ A ttr as o b je c t (

Type_Name v a r c h a r 2 (3 0) ,

A ttr.N am e v a r c h a r 2 (3 0) ,

A ttr_Type_M od v a r c h a r 2 (3 0) ,

A ttr_Type_O w ner v a r c h a r 2 (3 0) ,

Attr_Type_Nam e v a r c h a r 2 (3 0) ,

L eng th num ber,

P r e c i s io n num ber,

S c a le num ber,

C haracter_S et_N am e v a r c h a r 2 (3 0) ,

A ttr_N o num ber,

I n h e r i t e d v a r c h a r 2 (3)) ;

66

c r e a t e ty p e sys_O racleT ype_M ethod as o b je c t (

Type_Name v a r c h a r 2 (3 0) ,

Method_Name v a r c h a r 2 (3 0) ,

Method.No num ber,

Method_Type v a r c h a r 2 (3 0) ,

P a ra m e te rs num ber,

R e s u l ts num ber,

I n h e r i t e d v a r c h a r 2 (3)) ;

c r e a te view sys_0 rac leT ype_V iew o f sy s .O ra c le T y p e

w ith o b je c t i d e n t i f i e r (Type.Name) as

s e l e c t Type_Name, Type_0ID , T ypecode, A t t r i b u t e s ,

M ethods, SuperType_O w ner, SuperType^Name, L o c a l .A t t r i b u t e s ,

L ocal^M ethods

from USER.TYPES;

c r e a te view sys_O rac leT ype_A ttr_V iew of

sy s_ 0 ra c le T y p e _ A ttr w ith o b je c t i d e n t i f i e r (Type_Name,

A ttr.N am e) a s

s e l e c t Type_Name, A ttr_N am e, A ttr_Type_M od,

A ttr_T ype_O w ner, A ttr_Type_N am e, L eng th ,

P r e c i s i o n , S c a le , C haracter_S et_N am e, A ttr .N o , I n h e r i t e d

from USER_TYPE_ATTRS;

c r e a te view sys_O racleType_M ethod_V iew of

sys_O racleT ype_M ethod w ith o b je c t i d e n t i f i e r (Type_Name,

Method_Name) as

s e l e c t Type_Name, Method.Name, Method_No,

M ethod_Type, P a ra m e te r s , R e s u l t s , I n h e r i t e d

from USER.TYPE.METHODS;

c r e a te t a b l e sy s_ 0 rac le T y p e _ 0 b jT ab of sy s_ O rac leT y p e (

Type^Name p r im a ry k e y) ;

c r e a te t a b l e sy s_ 0 ra c le T y p e _ A ttr_ 0 b jT a b o f sy s_ O ra c le T y p e _ A ttr (

APPENDIX A. ROLEVIEW METAMODEL DDL

A P P EN D IX A. ROLEVIEW METAMODEL DDL

p rim a ry key (Type_Name, A ttr_ N am e));

c r e a te t a b l e sys_O racleT ype_M ethod_O bjT ab of sys_O racleT ype_M ethod

(p rim a ry key (Type_Name, M ethod.N am e)) ;

********** Insert m e tad a ta to O racle M eta-U D T s **********

i n s e r t i n to sys_O rac leT ype_O bjT ab

s e l e c t * from sys_O racleT ype_V iew ;

i n s e r t i n t o sy s_ O rac leT y p e_ A ttr_ O b jT ab

s e l e c t * from sy s_ O rac leT y p e_ A ttr_ V iew ;

i n s e r t i n t o sys_O racleT ype_M ethod_O bjT ab

s e l e c t * from sys_Q racleT ype_H ethod_V iew ;

********** Roleview M eta-U D T s D efinitions **********

c r e a te ty p e s y s _ A t t r ib u te a s o b je c t (

A ttr_Nam e v a r c h a r 2 (3 0) ,

A ttr .O w n er v a r c h a r 2 (3 0) ,

T ype_A ttr_R ef REF s y s _ O ra c le T y p e _ A ttr) ;

c r e a te ty p e sy s.M ethod a s o b je c t (

Method_Name v a r c h a r 2 (3 0) ,

Method_Owner v a r c h a r 2 (3 0) ,

Type_M ethod_Ref REF sy s_ O rac leT y p e_ M eth o d);

c r e a te ty p e s y s .A t t r L i s t a s t a b l e o f s y s _ A t t r ib u te ;

c r e a te ty p e sy s_ M eth o d L ist as t a b l e o f sy s .M eth o d ;

c r e a te ty p e s y s .R o o t;

/

c r e a t e ty p e sys_R ole a s o b j e c t (

R ole.R ID RAW(1 6) ,

Role_Name v a r c h a r 2 (3 0) ,

T y p e .R ef REF sy s_ O ra c le T y p e ,

R oot REF sy s_ R o o t,

I s M u l t ip le v a r c h a r 2 (3 0) ,

A t t r i b u t e s num ber,

M ethods num ber,

R o le _ A tt r ib u te s y s _ A t t r L i s t ,

R ole_M ethod s y s _ M e th o d L is t) ;

c r e a t e ty p e s y s _ R o le L is t as t a b l e of REF s y s _ R o l e ;

c r e a t e o r r e p l a c e ty p e sys_R oot a s o b je c t (

Root_Name v a r c h a r 2 (3 0) ,

Type_Ref REF sy s_ O ra c le T y p e ,

SuperType v a r c h a r 2 (3 0) ,

A t t r i b u t e s num ber,

M ethods num ber,

R o le L is t s y s .R o l e L i s t ,

R o o t .A t t r ib u te s y s _ A t t r L i s t ,

R oot.M ethod s y s _ M e th o d L is t) ;

c r e a t e ty p e sy s_ R o lev iew as o b je c t (

Roleview_Name v a r c h a r 2 (3 0) ,

R oleview _ID ra w (1 6) ,

Root REF s y s _ R o o t) ;

/

c r e a t e t a b l e sys_R oot_O bjT ab of sy s .R o o t (

p r im a ry key (R oot_N am e),

T ype.R ef r e f e r e n c e s sy s_ 0 rac le T y p e _ 0 b jT ab)

n e s te d t a b l e R o le L is t s to r e a s s y s .R o le s ,

n e s te d t a b l e R o o t_ A ttr ib u te s to r e as s y s _ R o o t_ A tt r ib u te s ,

n e s te d t a b l e Root_M ethod s to r e a s sy s_R oo t_M ethods;

c r e a t e t a b l e sy s_ R o le_ 0 b jT ab of sy s_R o le (

p r im a ry key (R o le .R ID , R o le .N am e),

T ype.R ef r e f e r e n c e s sy s_ 0 ra c le T y p e _ 0 b jT a b ,

APPENDIX A. ROLEVIEW METAMODEL DDL

Root r e f e r e n c e s sy s_ R o o t_ 0 b jT ab)

n e s te d t a b l e R o le _ A tt r ib u te s t o r e a s s y s _ R o le _ A t t r ib u te s ,

n e s te d t a b l e Role_M ethod s t o r e as sy s_R o le_M ethods;

c r e a t e t a b l e s y s_ A ttr ib u te _ O b jT a b of s y s .A t t r i b u t e (

p r im a ry key (A ttr_N am e, A ttr_ O w n er) ,

T y p e_ A ttr_ R ef r e f e r e n c e s sy s_ 0 ra c le T y p e _ A ttr_ 0 b jT a b) ;

c r e a t e t a b l e sys_M ethod_0bjT ab of sys_M ethod (

p r im a ry key (Method_Name, M ethod.O w ner) ,

Type_M ethod_Ref r e f e r e n c e s sy s_ 0 rac le T y p e _ M eth o d _ 0 b jT ab);

c r e a te t a b l e sy s_R o lev iew _0b jT ab o f sy s_R o lev iew (

p r im a ry key (R o le v iew _ ID),

Root r e f e r e n c e s sy s_ R o o t_ 0 b jT a b);

APPENDIX A. ROLEVIEW METAMODEL DDL 70

Appendix B

RDL G ram m ar

^ *

Roleview definition gram m ar for parsing and creating the role-based

subschem a in an 0 -R d atabase

**I

/ / im port java package which includes th e user-defined classes

im p o rt com .linkToJD B C .* ;

I *

Class: P

E xtends: Parser

D ate: A pril 2003

A uthor: Ling W ang

Desc: Roleview is defined in BN F syntax, th en parsed and

tran sla ted by Antor-2.7.2. T he definition is an extension of SQL: 1999

* j

c l a s s P e x te n d s P a r s e r ;

o p t io n s {

k * 1;

>

/ / begins by declaring global schem a objects

co m .lin k T o JD B C .R o leD ec la ra tio n r d = new com.lin k T o J D B C .R o le D e c la ra tio n O ;

com .linkToJD B C .C onnectToL ing c = new com .linkT oJD B C .C onnectT oL ingO ;

71

II PR (i)

/ / In a specification, one of m ore definitins are allowed, th e y are executed separately

s p e c i f i c a t i o n

(d e f i n i t i o n) +

EOF

APPENDIX B. RDL GRAMMAR 72

/ / PR (2)

/ / Only one ty p e of co n stru c t is allowed: a roleview schem a and it is te rm inated by a semicolon

(SEM I)

d e f i n i t i o n

{

r d = new c o m .lin k T o JD B C .R o le D ec la ra tio n O ;

c = new com .linkToJD B C .C onnectT oL ingO ;

>

(ro le v ie w _ d c l SEMI)

{

c . s t a r t 0 ;

>

}

/ / P R (4)

/ / T he roleview specification

ro le v ie w _ d c l

(" c r e a te " " ro le v ie w " ro lev iew .n am e "as"

" ro o t" ro o t.n a m e "o f" roo tT ype.nam e " i s " r o o t_ s q l

(r o l e .d c l) *

)

I

/ / P R (4a)

/ / T he token is read and stored in m emory

ro lev iew _nam e

r:IDENTIFIER

{

c . setRoleViewNam e (r . g e tT e x t ()) ;

>

)

/ / P R (4b)

/ / T he token is read and sto red in m emory

roo t_nam e

r:IDENTIFIER

{

c . setRootNam e (r . g e t T e x t ()) ;

>

>

/ / P R (4c)

/ / T he token is read and sto red in memory

rootType_nam e

r:IDENTIFIER

{

c.se tR ootT ypeN am e (r . g e t T e x t ()) ;

>

)

I I P R (4d)

/ / T he role specification, which is allowed to be m ultiple

r o l e . d c l

r o l e . p r e f i x ro le_nam e "o f" ro IeT ype .nam e " i s " r o l e _ s q l

{

c . s e tR o le D e c la r a t i o n (r d) ;

>

}

11 P R (4d_a)

/ / Clarify th e type of role

r o l e . p r e f i x

" r o l e " { r d . s e t l s M u l t i p l e (f a l s e) ;}

APPENDIX B. RDL GRAMMAR 73

A P P E N D IX B. RD L G R A M M A R

I

" m u l t i r o le " { r d . s e t l s M u l t i p l e (t r u e) ; }

}

/ / P R (4d_b)

/ / T h e token is read and stored in m em ory

ro le_ n am e

r:IDENTIFIER

{

rd .se tR o leN am e (r . g e t T e x t ()) ;

>

)

/ / P R (4d_c)

/ / T he token is read and stored in m em ory

ro leT ype_nam e

r:IDENTIFIER

{

rd .se tR o leT ypeN am e (r . g e t T e x t ()) ;

>

}

/ / P R (4d_d)

/ / Role SQL sta tem en t is read as a record and stored in m em ory

r o l e _ s q l

s : STATEMENT

{

r d . s e t S q l (s . g e tT e x t ()) ;

>

I

/ / P R (4e_a)

/ / R oot SQL sta tem en t is read as a record and stored in m em ory

r o o t_ s q l

(

n:STATEMENT

{

c . s e tR o o tS q l (n . g e tT e x t ()) ;

>

) +

9

j ***

Class: L

E xtends: Lexer

D ate: April 2003

A uthor: Ling W ang

Desc: A ntlr-2.7.2 lexer specification of the parser class

***j

c l a s s L e x te n d s L ex e r;

/ / Tokens

IDENTIFIER

(fa , . . ‘z ’ I (k , . . <Z } I I | V | V) +

>

/ / Tokens as a record

STATEMENT

(* (’ I ') ’) ! r (f \ r ' I ‘ \n> I < ;>))+

I

/ / W hitespace

WS

(‘ * I ‘ \ t ’ | ‘ \r> f\n> { n e w lin e () ; > I ‘ \ n ’

■C n e w lin e () ; >)

{ $se tT y p e(T o k en .S K IP) ;> //ig n o re th is token

)

/ / P u n ctu a tio n

SEMI

<. >

APPENDIX B. RDL GRAMMAR 75

Appendix C

RDL Role D eclaration Class

y *

* Class: R oleD eclaration

* Desc: read th e role token, specified in class ConnectToLing

* A uthor: Ling W ang

* D ate: A pril 2003

* j

/ / im port the library, including the user-defined package

p ackage com .linkToJDBC;

im p o rt j a v a . s q l . * ;

im p o rt j a v a . u t i l . * ;

im p o rt j a v a . i o . * ;

im p o rt j a v a . l a n g .* ;

p u b l ic c l a s s R o le D e c la ra t io n {

p r i v a t e S t r i n g roleN am e;

p r i v a t e S t r i n g ro leT ypeN am e;

p r i v a t e S t r i n g r o le S q l ;

p r i v a t e i n t n u m b e rO fA ttr ;

p r i v a t e V ec to r a t t r s = new V e c to r O ;

p r i v a t e b o o le a n i s M u l t ip le ;

/ / constructor

p u b l ic R o le D e c la ra tio n Q {

roleN am e = n u l l ;

roleTypeNam e = n u l l ;

76

APPENDIX C. RDL ROLE DECLARATION CLASS 77

r o le S q l = n u l l ;

i s M u l t ip le = f a l s e ;

/ / overload

p u b l ic R o le D e c la ra t io n (R o le D e c la ra tio n r) {

roleN am e = r .getR oleN am eO ;

roleTypeNam e « r .getR oleTypeN am eO ;

r o le S q l = r . g e t S q l O ;

i s M u l t ip le = r . g e t l s M u l t ip l e O ;

/ / overload

p u b l ic R o le D e c la ra t io n (S t r in g r , S t r i n g t , b o o le a n m,

S t r i n g s q l) {

roleN am e = r .to U p p erC aseO ;

roleTypeNam e = t .to U p p erC aseO ;

i s M u l t ip le = m;

r o le S q l * s q l ;

>

p u b l ic S t r i n g getRoleNam e () {

r e t u r n roleN am e;

p u b l ic S t r i n g getRoleTypeNam e () {

r e t u r n roleTypeN am e;

p u b l ic S t r i n g g e tS q l () {

r e t u r n r o le S q l ;

p u b l ic i n t getN um berO fA ttr () {

r e t u r n n u m b e rO fA ttr ;

p u b l ic V e c to r g e t A t t r s () {

r e t u r n a t t r s ;

p u b l ic b o o le a n g e t l s M u l t ip le () {

r e t u r n i s M u l t ip le ;

}

p u b l ic v o id setR oleN am e (S t r in g r o l e) {

roleN am e *= r o l e . toU pperC ase () ;

>

p u b l ic v o id setRoleTypeN am e (S t r in g ty p e) {

roleTypeNam e = ty p e .to U p p e r C a s e () ;

>

p u b l ic v o id s e t l s M u l t i p l e (b o o le a n m) {

i s M u l t ip le * m;

>

p u b l ic v o id se tN u m b erO fA ttr (i n t number) {

num berO fA ttr * num ber;

}

p u b l ic v o id s e t A t t r s (V e c to r l i s t s) {

a t t r s = l i s t s ;

>

/ / remove unw anted token

p u b l ic v o id s e tS q l (S t r in g s q l) {

S t r i n g tmp = s q l . r e p l a c e (*)* , ‘ ’) ;

r o le S q l = tm p . r e p la c e (f (* , f 1) ;

>

APPENDIX C. RDL ROLE DECLARATION CLASS

Appendix D

RDL Roleview D eclaration Class

^***

Class: C onnectToLing

Desc: read th e token and store th e token in pre-defined m eta-tab les.

A uthor: Ling W ang

D ate: April 2003

* j

/ / im port th e lib rary and user-defined package

package com.XinkToJDBC;

import java.sql.*;

import java.util.Vector;

import java.util.Random;

import java.sql.Types;

p u b l ic c l a s s C onnectToL ing {

p r i v a t e S t r i n g r o o tS q l ;

p r i v a t e S t r i n g u r l = " j d b c : o r a c l e : th in :@ k iw i. i s g .c o m p u t in g . d c u . i e :1 5 2 1 :k iw i"

p r i v a t e S t r i n g u s e r = " lw a n g " ;

p r i v a t e S t r i n g pwd « " lw an g ";

p r i v a t e C o n n e c tio n con;

p r i v a t e S ta te m e n t s tm t;

p r i v a t e S ta te m e n t ro o tS tm t;

p r i v a t e S ta te m e n t ro le S tm t;

p r i v a t e S ta te m e n t a t t r S tm t ;

p r i v a t e S ta te m e n t u p d a te R o o tS tm t;

p r i v a t e S ta te m e n t ro le v ie w S tm t;

79

p r i v a t e S t r i n g ro leview N am e;

p r i v a t e S t r i n g rootN am e;

p r i v a t e S t r i n g rootT ypeN am e;

p r i v a t e S t r i n g roo tSuperT ypeN am e;

p r i v a t e i n t n u m b e rO fA ttr ;

p r i v a t e V e c to r r o le D e c L is t = new V e c to r O ;

p r i v a t e V e c to r a t t r L i s t * new V e c to rO ;

/ / connect to da tab ase

p r i v a t e v o id connectionD B O th ro w s E x c e p tio n {

Class.forName("oracle.jdbc.driver.OracleDriver");

con * DriverManager.getConnection(url, user, pwd);

}

/ / close to da tab ase

p r i v a t e v o id c loseD B O th ro w s E x c e p tio n {

c o n . c l o s e () ;

}

/ / set token to be upper case in order to query in SQL

p u b l ic v o id se tR o leV iew N am e(S trin g s) {

roleview N am e = s ;

ro leview N am e * ro lev iew N am e .to U p p e rC ase O ;

>

/ / set token to be upper case in order to query in SQL

p u b l ic v o id se tR o o tN a m e (S trin g s) {

rootNam e = s ;

rootN am e = roo tN am e.toU pperC aseO ;

>

/ / set token to be upper case in order to query in SQL

p u b l ic v o id se tR o o tT y p eN am e(S trin g s) {

rootTypeNam e = s ;

rootTypeN am e = ro o tT y p eN am e.to U p p erC aseO ;

>

/ / trim the token and can be recognised by JD B C

p u b l ic v o id s e tR o o tS q l (S t r in g s) {

S t r i n g tmp = s . r e p l a c e (*)* , ‘ 3) ;

APPENDIX D. RDL ROLEVIEW DECLARATION CLASS

A P P E N D IX D. RD L R O L E V IE W D E C LA R A TIO N CLASS

r o o tS q l = tm p . r e p l a c e (f (, , * }) ;

>

/ / insert a new R oleD eclaration to the vector

p u b l ic v o id s e tR o le D e c la r a t io n (R o le D e c la r a t io n rd) {

r o l e D e c L i s t . add(new R o le D e c la r a t io n (r d)) ;

>

/ / w rite in to m eta tab le sys_Roleview

p r i v a t e v o id w ri te T o S y s _ ro le v ie w () th ro w s E x c e p tio n {

ro le v ie w S tm t = c o n .c r e a te S ta te m e n t () ;

/ / generate the OID for each roleview

S t r i n g r i d = g e n e ra te O b je c tlD O ;

/ / s tring stores the query for updating

S t r in g B u f f e r i n s e r t = new S t r i n g B u f f e r () ;

i n s e r t . a p p e n d (" i n s e r t in to sy s_ ro lev iew _ O b jT ab \n

s e l e c t iH) ;

i n s e r t . ap p e n d (ro le v ie w N am e);

i n s e r t . ap p en d (" * , ' ") ;

i n s e r t . a p p e n d (r id) ;

i n s e r t .a p p e n d (" ' , R E F (c)\n from sys_R oot_O bjTab c

w here \ n ") ;

in s e r t .a p p e n d (" c .R o o t .N a m e = ' ") ;

i n s e r t . append(rootN am e + ") ;

i n s e r t . ap p en d (" \ n ") ;

/ / add into the batch file, only execute w hen ’com m it’ called

ro le v ie w S tm t. a d d B a t c h (in s e r t . t o S t r i n g O) ;

i n t [] co u n ts = r o le v ie w S tm t. e x e c u te B a tc h O ;

>

/ / w rite in to m eta tab le sys_Root

p r i v a t e v o id w r i te T o S y s .r o o t () th ro w s E x c e p tio n {

s tm t = c o n .c r e a te S ta te m e n t () ;

ro o tS tm t = c o n .c r e a te S ta te m e n tQ ;

/ / s tring stores the su p e rty p e of root based U D T

S tr in g B u f f e r s q l = new S tr in g B u f f e rO ;

s q l . a p p e n d (" s e le c t supertype_nam e from u s e r_ ty p e s

w here ty p e .n am e = , ") ;

s q l . append(rootTypeN am e + " ; ;

/ / execute the query

R e s u l tS e t r s = s tm t .e x e c u te Q u e r y (s q l . to S t r i n g ()) ;

/ / retrieve th e results

w h ile (r s . n e x t O) {

rootSuperTypeN am e = r s . getString("SUPERTYPE_NAME");

>

/ / close th e query s ta tem en t

s t m t . c l o s e () ;

/ / s tring stores th e query of u pdating m eta tab le

S t r in g B u f f e r f ir s tR o w = new S t r i n g B u f f e r () ;

f i r s tR o w .a p p e n d (" in s e r t i n t o sys_R oot_O bjT ab \n

s e l e c t * ") ;

f irs tR o w .a p p e n d (ro o tN a m e) ;

f i r s tR o w .a p p e n d (" * , R E F (c), * ") ;

firs tR o w .ap p en d (ro o tS u p e rT y p eN am e + " ’ , ") ;

f irs tR o w .a p p e n d (n u m b e rO fA ttr +

" , 0 , s y s _ R o le L is t () , s y s . A t t r L i s t () , sy s_ M e th o d L is t() ") ;

f i r s tR o w .a p p e n d (" \n from sy s„ 0 ra c le T y p e _ 0 b jT a b c \n

w here c.Type.N am e = ,n) ;

f irs tR o w .a p p e n d (ro o tT y p e N a m e);

f i r s tR o w .a p p e n d (" ; \ n ") ;

/ / in sert th e first row sys_Root

r o o tS tm t . e x e c u te U p d a te (f i r s tR o w .to S t r in g 0) ;

/ / s tring stores the query for u pdating nested tab les

f o r (i n t i = 0; i < a t t r L i s t . s i z e () ; i+ +) {

S t r in g B u f f e r n s tT a b le s ~ new S t r i n g B u f f e r () ;

n s tT a b le s . ap p en d (

" i n s e r t in to t a b l e (\ n s e l e c t R o o t_ A ttr ib u te from

sys_R oot_O bjTab r \ n ") ;

n s tT a b le s . append ("w here r.R oot_N am e = 1") ;

n s tT a b le s .a p p e n d (ro o tN a m e + "*) \ n ") ;

n s tT a b le s .a p p e n d (" s e l e c t ,M) ;

n s tT a b le s . ap p en d ((S t r in g) a t t r L i s t . e l e m e n t A t (i)

+ ,n);

APPENDIX D. RDL ROLEVIEW DECLARATION CLASS

n s tT a b le s . append(rootTypeN am e +

REF(c) from sy s_ O rac leT y p e_ A ttr_ O b jT ab c \ n ") ;

n s tT a b le s . append("w here c .A ttr .N a m e = * ") ;

n s tT a b le s . ap p e n d ((S t r in g) a t t r L i s t . e le m e n tA t(i)

+ and c.Type_Name = , ") ;

n s tT a b le s . append(roo tT ypeN am e);

n s tT a b le s . ap p e n d (" 1 \ n ") ;

/ / execute th e nested tab le updating

r o o tS tm t . e x e c u te U p d a te (n s tT a b le s . t o S t r i n g ()) ;

}

S y s te m .o u t .p r in tIn (" s y s _ R o o t_ 0 b jT a b i n s e r t i s

c o m p le te d .") ;

>

/ / u p d a te m e ta tab le sys_Root after sys_Role insertion com pletes.

p r i v a t e v o id u p d a te S y s .R o o t() th row s E x c e p tio n {

u p d a teR o o tS tm t = c o n .c r e a te S ta te m e n t () ;

/ / loop of vector sto res as role tokens.

f o r (i n t i = 0 ; i < r o le D e c L is t . s i z e () ; i+ +) {

R o le D e c la r a t io n r = (R o le D e c la ra tio n) r o l e D e c L i s t . g e t (i) ;

/ / string sto res the updating query

S t r in g B u f f e r n s tT a b le s = new S t r i n g B u f f e r () ;

n s tT a b le s . a p p e n d (

" i n s e r t in to t a b l e (\ n s e l e c t R o le L is t from

sys_R oo t_0b jT ab r \ n ") ;

n s tT a b le s . append("w here r.R oot_N am e = ’ ") ;

n s tT a b le s .a p p e n d (ro o tN a m e + "*) \ n ") ;

n s tT a b le s . a p p e n d (" s e le c t REF(c) ") ;

n s tT a b le s . append ("from sys_R o le_0b jT ab c \ n

w here c.Role_N am e = '") ;

n s tT a b le s .a p p e n d (r .g e tR o le N a m e () + " , ") ;

n s tT a b l e s . a p p e n d (" \ n ") ;

/ / execute th e u p d ate

u p d a te R o o tS tm t.e x e c u te U p d a te (n s tT a b le s . t o S t r i n g O) ;

>

S y s te m .o u t .p r in t ln (" s y s _ R o o t u p d a te i s c o m p le te d .") ;

APPENDIX D. RDL ROLEVIEW DECLARATION CLASS

A P P E N D IX D. RD L R O L E V IE W D E C LA R A TIO N C LASS

}

/ / w rite in to m eta tab le sys_role

p r i v a t e v o id w r i te T o S y s _ ro le () th ro w s E x c e p tio n {

/ / loop of size of vector stores roles

f o r (i n t i * 0 ; i < r o le D e c L is t . s i z e () ; i++) {

R o le D e c la ra t io n r = (R o le D e c la ra tio n) r o le D e c L is t . g e t (i)

r o le S tm t « c o n .c r e a te S ta te m e n t () ;

/ / string stores th e update query of first row of m eta tab le

S t r in g B u f f e r f i r s tR o w = new S t r i n g B u f f e r () ;

f i r s tR o w .a p p e n d (" in s e r t in to sys_R ole_O bjT ab \n

s e l e c t ’ ") ;

f irstRow.append(r.getRoieName());

firstRow.append("}, REF(o), REF(r), *");

firstRow.append(r.getlsMultipleO) ;

firstRow.append("*, ");

f irstRow.append(r.getNumberOfAttr() +

" , 0 , s y s . A t t r L i s t () , sy s_ M e th o d L is t() ") ;

f i r s tR o w . ap p e n d (

" \n from sy s_ 0 rac le T y p e _ 0 b jT ab o , sys_R oot_O bjT ab

r \n w here o.Type_Name = ,n) ;

f i r s tR o w . a p p e n d (r . getR oleTypeN am e()) ;

f ir s tR o w .a p p e n d ("* and r.R oot_N am e * * ") ;

firs tR o w .ap p en d (ro o tN am e + " ,n) ;

f i r s tR o w .a p p e n d (" \n ") ;

/ / execute the u p d a te for first row

r o le S tm t . e x e c u te U p d a te (f ir s tR o w . t o S t r i n g ()) ;

/ / for the purpose of insert nested tab les

f o r (i n t j = 0; j < a t t r L i s t . s i z e Q ; j+ +) {

/ / string sto res the query

S t r in g B u f f e r n s tT a b le s = new S t r i n g B u f f e r () ;

n s tT a b le s . ap p en d (

" i n s e r t i n t o t a b l e (\n s e l e c t R o le _ A ttr ib u te

from sys_R ole_Q bjT ab r \ n ") ;

n s tT a b le s . append("w here r.R ole_N am e = ,n) ;

n s tT a b le s .a p p e n d (r .g e tR o ie N a m e () + " ’) \ n ") ;

A P P E N D IX D. RD L R O L E V IE W D E C L A R A T IO N C LASS

n s tT a b le s .a p p e n d (" s e le c t * ") ;

n s tT a b le s . ap p e n d ((S t r in g) a t t r L i s t . e le m e n tA t(j)

+ >");

n s tT a b le s . a p p e n d (r . getR oleTypeN am e() +

REF(c) from sy s_ O rac leT y p e_ A ttr_ O b jT ab c

\ n ") ;

n s tT a b le s . ap p en d ("w h ere c .A ttr_N am e = * ") ;

n s tT a b le s . ap p e n d ((S t r in g) a t t r L i s t . e le m e n tA t(j)

+ "> and c.Type.N am e = ’ ") ;

n s tT a b le s . a p p e n d (r . getR oleTypeN am e()) ;

n s tT a b le s . ap p e n d ("* \ n ") ;

/ / execute th e nested tab les u p d a te

r o le S tm t . e x e c u te U p d a te (n s tT a b le s . t o S t r i n g ()) ;

}

>

>

/ / w rite into m eta tab le sys_A ttribute

p r i v a t e v o id w r i t e T o S y s _ a t t r i b u te (S t r in g name, S t r i n g

typeNam e, S t r i n g s q l) th ro w s E x c e p tio n {

s tm t = c o n .c r e a te S ta te m e n t () ;

a t t r S tm t * c o n .c r e a te S ta te m e n t () ;

/ / execute th e query th a t retrieve th e m e tad a ta

R e s u l tS e t r s = s t m t . e x e c u te Q u e ry (s q l) ;

R e su ltS e tM e ta D a ta rsm d = r s .g e tM e ta D a ta Q ;

num berO fA ttr = rsm d . getC o lum nC ount() ;

/ / insert queries

f o r (i n t i * 1; i <= n u m b e rO fA ttr ; i+ +) {

a t t r L i s t . ad d (rsm d . g e tC o lu m n L a b e l(i)) ;

/ / string stores the query

S t r i n g i n s t = " i n s e r t i n to sy s_ A ttr ib u te _ O b jT a b

s e l e c t 7

S t r in g B u f f e r i n s e r t = new S t r i n g B u f f e r () ;

i n s e r t . a p p e n d (in s t) ;

i n s e r t . a p p e n d (rsm d .g e tC o lu m n L a b e l(i)) ;

i n s e r t . ap p en d (" } , , n) ;

in s e r t .a p p e n d (n a m e) ;

i n s e r t . ap p e n d (

REF(s) from sy s_ O rac leT y p e_ A ttr_ O b jT ab

w here s .A ttr_N am e = * ") ;

i n s e r t . ap p e n d (rsm d . g etC o lum nL abel(i)) ;

i n s e r t . ap p e n d ("* and s.Type_Name = ' ") ;

i n s e r t . append(typeN am e + " ’ ") ;

/ / add to th e batch file

a t t r S t m t . a d d B a tc h (in s e r t . t o S t r i n g O) ;

>

/ / execute till ‘com m it’ is called

i n t [] u p d a teC o u n ts = a t t r S t m t . e x e c u te B a tc h O ;

/ / close th e s ta tem en t of retrieving m e tad a ta

s t m t . c l o s e () ;

S y s te m .o u t .p r in t ln (" s y s _ A tt r ib u te _ O b jT a b i n s e r t i s

c o m p le te d .") ;

>

/ / w rite into m eta tab le sys_m ethod

p r i v a t e v o id w riteT o S y s_ m eth o d () {>

/ / the only public m ethod be called from A N TL R specification

p u b l ic v o id s t a r t () {

/ / ca tch all the execeptions throwed by private m ethods

t r y {

c o n n e c tio n D B O ;

co p y O rac leM etaO ;

c o n .s e tA u to C o m m it(fa ls e) ;

w r i te T o S y s _ a t tr ib u te (ro o tN a m e , roo tT ypeN am e,

r o o t S q l . t o S t r i n g ()) ;

w r i te T o S y s .r o o t () ;

f o r (i n t i = 0; i < r o le D e c L is t . s i z e Q ; i+ +) {

R o le D e c la ra t io n r o l e s = (R o le D e c la ra tio n)

r o le D e c L is t . g e t (i) ;

w r i te T o S y s _ a t t r ib u te (r o le s .g e tR o le N a m e () ,

ro le s .g e tR o le T y p eN am e O ,

r o l e s . g e tS q lQ) ;

APPENDIX D. RDL ROLEVIEW DECLARATION CLASS

r o l e s . se tN u m b e rO fA ttr(n u m b e rO fA ttr) ;

r o l e s . s e t A t t r s (a t t r L i s t) ;

>

w r i te T o S y s _ r o l e () ;

u p d a t e S y s J lo o t () ;

w r i te T o S y s _ ro le v ie w () ;

c o n .co m m it() ; / / s ta r t execute all s ta tem en ts

c o n . s e tA u to C o m m it(tru e) ;

S y s te m .o u t .p r in t ln (" R o le v ie w C r e a te d . \ n ") ;

} c a tc h (E x c e p tio n ex) {

S ystem , e r r . p r i n t In (ex . g e tM e ss a g e O) ;

/ / i f any of s ta tem en ts is failed, rollback all insertions

t r y {

c o n . r o l l b a c k () ;

S y s te m .o u t . p r in t ln (" T h e t r a n s a c t i o n i s r o l l e d

b a c k . \ n ") ;

} c a tc h (SQ LException s) {

S y stem . e r r . p r i n t (s . g e tM essag e ()) ;

}

>f i n a l l y {

t r y {

i f (a t t r S tm t != n u l l) {

a t t r S t m t . c l o s e () ;

>

i f (ro o tS tm t != n u l l) {

r o o tS tm t . c l o s e () ;

>

i f (ro le S tm t != n u l l) {

r o l e S tm t . c l o s e () ;

>

i f (u p d a teR o o tS tm t != n u l l) {

u p d a te R o o tS tm t. c l o s e () ;

>

i f (ro le v ie w S tm t != n u l l) {

r o le v ie w S tm t. c l o s e () ;

APPENDIX D. RDL ROLEVIEW DECLARATION CLASS

A P P E N D IX D. RDL R O L E V IE W D E C L A R A T IO N CLASS

>

c lo se D B O ;

} c a tc h (E x c e p tio n e) {

e .p r in tS ta c k T r a c e O ;

>

>

>

/ / generate OID for roleview

p r i v a t e S t r i n g g e n e ra te O b je c tlD O {

S tr in g B u f f e r u id = new S t r i n g B u f f e r () ;

Random random = new RandomO;

S t r i n g r o le v ie w ld = n u l l ;

/ / set th is random to be 32 b it b inary

f o r (i n t i = 0; i < 4 ; i++) {

i n t tmp = r a n d o m .n e x t ln t () ;

u i d . ap p e n d (I n t e g e r . to H e x S tr in g (tm p)) ;

>

r o le v ie w ld = u i d . t o S t r i n g O ;

r e t u r n r o le v ie w ld ;

>

/ / copy the new values from O racle m eta tab les to sys_O racleType_O bjtab,

/ / sys_O racleType_A ttr_O bjTab and sys_O racleType_M ethod_O bjTab;

p r i v a t e v o id copyO racleM eta () th ro w s E x ce p tio n {

s tm t = c o n .c r e a te S ta te m e n t () ;

/ / u p d a te the m eta tab le sys_O racleType

S t r in g B u f f e r o ra c le T y p e = new S t r i n g B u f f e r () ;

o r a c le T y p e .a p p e n d (" in s e r t in to s y s _ 0 ra c le T y p e _ 0 b jT a b \n ") ;

o r a c le T y p e .a p p e n d (" s e le c t * from sy s_ O ra c le T y p e _ V ie w \n ");

o ra c le T y p e .a p p e n d ("w h e re type_nam e n o t

in (\ n ") ;

o r a c le T y p e . a p p e n d (" s e le c t ty p e .n a m e from s y s_ 0 ra c le T y p e _ 0 b jT a b)") ;

/ / u p d a te the m eta tab le sys_O racleType_A ttr

S t r in g B u f f e r o ra c le T y p e A ttr = new S t r i n g B u f f e r () ;

o r a c le T y p e A t t r .a p p e n d (" in s e r t i n t o s y s _ 0 ra c le T y p e _ A ttr_ 0 b jT a b \n ") ;

o r a c le T y p e A t t r . a p p e n d (" s e le c t * from sy s_ O ra c le T y p e _ A ttr_ V ie w \n ") ;

oracleTypeAttr.append("where (type.name, attr_name) not

in (\n");

oracleTypeAttr.append("select type.name, attr_name

from sys_OracleType_Attr_ObjTab)");

// update the meta table sys_OracleType_Method

StringBuffer oracleTypeMethod = new StringBuffer();

oracleTypeMethod.append("insert into sys_OracleType_Method_ObjTab\n");

oracleTypeMethod.append("select * from sys_OracleType_Method_View\n");

oracleTypeMethod.append("where (type_name, method_name)

not in (\n");

oracleTypeMethod.append("select type_name, method_name

from sys_OracleType_Method_ObjTab)");

stmt. executeUpdate(oracleType.toStringQ);

stmt. executeUpdate(oracleTypeAttr .toStringO) ;

stmt.executeUpdate(oracleTypeMethod.toStringO);

stmt.close();

>

APPENDIX D. RDL ROLEVIEW DECLARATION CLASS 89

Appendix E

RDL M ain Class

y *

Class: run

Desc: executable m ain class

A uthor: Ling W ang

Date: A pril 2003

* y

import java.io.*;

class run{

public static void main(String[] args) {

/ / read the in p u t from a saved file

File f = new File("D:\\createRoleview\\RoleviewDefinition\\input.txt");

FilelnputStream finput = null;

try {

finput = new FileInputStream(f);

}catch (Exception e) {

System.err.println("exception: " + e);

>

try {

L lexer = new L(new DatalnputStream(finput));

// call ANTLR specification

P parser = new P(lexer);

parser. specif icationO ;

}catch (Exception ex) {

90

A P P E N D IX E . RD L M A IN C LA SS

ex.printStackTrace();

>

>

