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Abstract

Certain classes of solutions to Einstein’s field equations admit singularities from which
light can escape, known as ‘naked’ singularities Such solutions contradict the Cosmic
Censorship hypothesis, however they tend to occur 1n spacetimes with a high degree of
symmetry It 1s thought that naked singularities are artifacts of these symmetries, and
would not survive when the symmetry 1s broken

In particular, a rich source of naked singularities 1s the class of self-similar spherically
symmetric spacetimes It 1s the purpose of this thesis to test the stability of these solutions
and examine 1f the naked singularity persists

We first consider the propagation of a scalar field on these background spacetimes
and then study gauge-invariant perturbations of the metric and matter tensors We
exploit the spherical symmetry of the background to decompose the angular part of the
perturbation 1n terms of spherical harmonics Then we perform a Mellin transform of
the field to reduce the problem to a set of coupled ordinary differential equations, and
seek solutions for the individual modes The asymptotic behaviour of these modes near
singular points of the ODE’s 1s used to calculate a set of gauge mvariant scalars, and we
examine the finiteness of these scalars on the naked singularity’s horizons

The background spacetimes we examine are the self-similar null dust (Vaidya) so-
lution, the self-similar timelike dust (Lemaitre-Tolman-Bondi) solution, and finally a
general self-similar spacetime whose matter content 1s unspecified save for satisfying the
domimant energy condition

In each case examined we find the Cauchy horizon, signalling the presence of a naked
singularity, 1s stable to linear order, a surprising result that suggests naked singulari-
ties may arse in physical models of gravitational collapse The second future similarity
horizon which follows the Cauchy horizon is unstable, which suggests that the naked
singulanty 1s only visible for a finite time

V1



List of Figures

11 The domain of dependence for a closed achronal set S 2

12 Portions of the conformal diagrams for {(a) Kruskal-Szekeres and (b) Reissner-
Nordstrom spacetimes 3

13 The effects of certain types of fields on a cloud of particles 14

21 Possible conformal diagram for a 4-S spacetime admitting a globally naked

singularity 38
22 Conformal diagram for 4-S spacetime with censored singularity 39
41 The convention used for the spherical coordinates 60
42 Spherical harmonics plotted on the sphere as 7 = rg + Re(Y;™) 62

71 The lnes ¢ = 1 and & = 1 plotted n the Re(s), u parameter space for

0 < p < p4 (even parity perturbation) 124
72 The lines 0 = 1,2 and & = 1,2 plotted n the Re(s), u parameter space for

0 < i < ps (even parity perturbation) 125
7 3 Integrating over a contour in the complex plane of s 126

74 The lines 0 = 2 and & = 2 plotted 1n the Re(s),y parameter space for
0 < p < ps (0odd party perturbation) 131

Vil



Chapter 1

Introduction

While General Relativity (GR) 1s today considered the most accurate description of space
and time 1n the large, for the first half of 1ts life an important aspect of GR was brushed
under the carpet singularities A singularity is a point 1n spacetime* at which the grav-
itational field diverges As GR 1s a mathematical theory which cannot handle infinities,
we say that at a singularity the laws of physics break down However a number of impor-
tant early solutions to the field equations, such as the Schwarzschild solution, contained
singularities, and thus the theory seemed to be predicting 1ts own demise

These singular solutions were not considered physically significant as they occurred
in 1dealized models with a high degree of symmetry, such symmetry was not thought to
exist 1 nature and consequently singularities were not thought hkely to exist in nature
either However, the singularity theorems of Hawking and Penrose (see Hawking and Ellis
[28]) changed this attitude They were able to show that, under some reasonable criteria
which we will not go into in great detail, certain classes of collapse would nevitably
result 1 a singulanty, without making any assumptions about spacetime symmetries
Consequently there was a surge of interest 1n singularities and 1n particular black holes
A black hole 1s the region which typically surrounds a singularity and is the interior to an
event horizon (that surface marking the limit from which hght can escape to infinity from
the neighbourhood of the singularity), this has the effect of cutting off the singularity
from the external universe

Unfortunately the singularity theorems said very little about the nature of the sin-
gularity, they merely conclude 1t must exist In particular, there are some spacetime

models which collapse to a singularity that 1s not covered by an event horizon a naked

"This section 1s meant as an overview or general discussion, we leave to the next section a definition
of spacetime, geodesics and other important concepts in GR



singularity These solutions represent a pomnt at which all physical laws must break down,
and moreover they have the potential to influence the external universe, threatening pre-
dictability i physical laws everywhere

The existence of naked singularities 1s obviously very undesirable, so much so that
Penrose hypothesised that 1in nature ‘there exists a “cosmic censor” who forbids the
appearance of naked smgularties, clothing each mn an absolute event horizon’ [43] As
this hypothesis 1s the crucial open question which motivates this thesis, we will give 1t a
precise definition (for a detailed discussion see Wald [48])

We will define a manifold to be a space which 1s locally similar to Euclidean space
m that 1t can be covered by coordinate patches Timelike curves describe the paths of
observers who move with a velocity less than that of light, and null curves describe the
paths of light rays Therefore the timelike curves through any pomt must lie between the
null curves through that point to the future or past, regions called the future and past
null cones respectively

Consider the manifold M contaming the closed achronal set S (that 1s, no two points
1n S are connected by a timelike curve) We define the future (respectively past) domain of
dependence of S, denoted D*(S) (respectively D~(S)), to be all points p € M such that
every past (respectively future) causal (1e timelike or null) curve through p intersects
S See Figure 11 In this picture, the paths of hight rays follow lines of £45° We see
that for every pont in D*(S), for example, the past null cone of that point must fully
Intersect &

Figure 11 The domain of dependence for a closed achronal set S
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Figure 1 2 Portions of the conformal diagrams for (@) Kruskal-Szekeres and (b) Reissner-
Nordstrom spacetimes &S 1s a closed achronal set The Cauchy horizon, H, and future
null infimty, J+, are also shown

The union of DT (S) and D~ (S) 1s called the domain of dependence, D(S) If D(S) =
M, then S 1s called a Cauchy surface A spacetime that contains a Cauchy surface 1s
called globally hyperbohic We may formulate Penrose’s hypothesis thus

Cosmic Censorship Hypothesis (CCH) (1) All physically reasonable spacetimes
are globally hyperbolic

The motivation behind this formulation 1s that M may be taken to be spacetime, and
S may typically be taken to be a hypersurface ¢t = constant Due to the nature of the
field equations, if we specify Cauchy data on &, the mitial data slice, then we will know
the solutions to the field equations everywhere in D(S), hence the term Cauchy surface
If D(S) = M, then the solution to Eimnsten’s field equations are known throughout
spacetime

On the other hand, if there were a region of spacetime outside of the domain of
dependence of &, we would not be able to predict the solutions to the field equations
there, based on data specified on & This breakdown 1n predictability 1s exactly what
the CCH attempts to rule out The boundary between D(S) and the region beyond 1s
called the Cauchy horizon, H, and 1t 1s the presence of a Cauchy horizon which signals a
departure from global hyperbolicity Thus we may rephrase the CCH as

Cosmic Censorship Hypothesis (2) No physically reasonable spacetimes contain
Cauchy horizons



To be precise, this s the strong formulation of the CCH We should note that there
1s also a weak version, and we can loosely differentiate between the two thus the strong
version of Cosmic Censorship says that no observer may see a singularity, whereas the
weak version says that no observer at infinity may see the singularity All the naked
singularities 1n this thesis are globally naked, and thus we will use the strong version as
formulated above

In Figure 1 2 (a) we give the conformal diagram for Kruskal-Szekeres spacetime, which
15 globally hyperbolic and thus satisfies the CCH However, we see from Figure 12 (b),
the conformal diagram for the Reissner-Nordstrom solution, that this spacetime 1s not
globally hyperbolic We see that for the surface S there 1s a region of M outside of
D(S), and the corresponding Cauchy horizon 1s marked with H The past null cone of
an observer i this region would contain the singularity, that 1s, the singularity 1s visible
to an observer travelling through this region, the singularity 1s naked Does this imply a
failure of the CCH?

The answer 18 no, for the following reason Chandrasekhar and Hartle {7] have shown
that Linear perturbations in the metric tensor within D(S) grow without bound as one
approaches the Cauchy horizon, 1n fact the Cauchy horizon 1itself becomes singular The
surface H 1n Reissner-Nordstrom spacetime 1s therefore unstable, to be more precise, H
has a blue-sheet 1nstability, as the wavecrests of light impinging on ‘H pile up on top of
one-another and are infinitely blue-shifted

Thas 1s interpreted to mean that an observer attempting to cross the Cauchy horizon
will view the entire history of the universe at a glance, a sight of infinite energy which
would destroy him or her This prevents an observer from crossing H and looking on the
singularity, and thus the Reissner-Nordstrom solution does not violate the CCH

If the Reissner-Nordstrom solution contains Cauchy horizons, but does not violate the
CCH, does this mean we must rephrase the Cosmic Censorship hypothesis? Again no,
and the reason 1s 1n our understanding of the words “physically reasonable” A physically
reasonable spacetime must satisfy a number of criteria, foremost among them being (1)
the dominant energy condition and (2) genericity The dominant energy condition places
restraints on the stress-energy-momentum tensor and will be discussed n detail in §2 2
The genericity condition 1s hard to define precisely, however for the purpose of this thesis
we will take 1t to mean that spacetime 1s not unrealistically symmetric, or that spacetimes
which evolve to contain naked sigularities must not depend on fine-tumng of imitial
data The Reissner-Nordstrom spacetime 1s spherically symmetric and thus we must

perturb 1t away from spherical symmetry to satisfy the “physically reasonable” condition



The perturbed spacetime then does not contain a naked singularity, and the CCH 1s
corroborated

There are other possible counter-examples to the CCH, for example the Kerr spacetime
[48], certain classes of self-similar perfect fluid [42] and dust [30] solutions, and the self-
similar scalar field [8], all of which have a high degree of symmetry Further, there are
Cauchy horizons 1n spacetimes containing colliding plane waves [16], and there may be
naked singularities 1n spacetimes featuring critical collapse [17], which depend on a fine
tuning of imitial data However, 1n order to be a strong counter-example to the CCH a
naked singularity must be stable As mentioned above, the way to test for stability 1s to
perturb the background spacetime and examine whether the naked singularity persists
or not, 1t does not for Reissner-Nordstrom, will 1t persist for these other spacetimes?

It 1s the purpose of this thesis to perform a stability analysis of a class of these possible
counter examples to the CCH As self-similar spherically symmetric (4-S) spacetimes are a
rich source of possible counter examples to the CCH, we will devote our attention to these
spacetimes In particular, and 1n increasing order of generality, we will consider the self-
similar Vaidya (null dust) spacetime, the self-similar Lemaitre-Tolman-Bond: (timelike
dust) spacetime, and finally we consider a generic 4-S spacetime, that 1s without specifying
the matter content {save for satisfying the dominant energy condition)

The layout of the thesis will be as follows In the remainder of this chapter, we provide
a brief overview of some of the important concepts and defimtions of General Relativity,
and troduce any relevant equations which will be used elsewhere in the thesis We
conclude the chapter with some important mathematical defimtions and theorems relating
to the solutions of singular ordinary differential equations which will be used throughout
the thesis

In Chapter 2 we will describe precisely what self-similar and spherically symmetric
mean, and what 1s required for the dominant energy condition to be satisfied We go on
to derive the conditions under which a 4-S spacetime collapses to a naked singularity, and
then derive the two special solutions we will consider, the self-similar Vaidya and LTB
spacetimes

As a starting point 1 our stability analysis, in Chapter 3 we will consider the propaga-
tion of a mimimally coupled massless scalar field to a generic 4-S spacetime which admits
naked singularities This scalar field 1s 1n essence a toy model to familiarise ourselves
with the procedures of a perturbation analysis The scalar field 1s described by a wave
equation, and we expect the perturbation to solve wave-like equations Also, the scalar
field analysis displays the main features of a perturbation analysis



e decomposition 1n terms of spherical harmonics,

e using the Mellin transform to reduce the evolution equations to ordinary differential

equations for each mode of the field,

e finding the asymptotic behaviour of the solutions for these modes near certain

singular points,
¢ using these solutions to construct certain mnvarant scalars,
e mitial regularity conditions on the axis and past null cone of the origin,

e finally allowing a specified class of solutions to impinge on the Cauchy horizon and

possibly beyond

The main results of this analysis have appeared 1n [40]

The scalar field of Chapter 3 1s a toy model In Chapter 4 we describe a more sophis-
ticated approach gauge invariant linear perturbations of the metric and matter tensors,
which corresponds to the true perturbation of the spacetime We will motivate the de-
composition using spherical harmonics by giving first a description of scalar multipole
decompositions from the Newtoman viewpoint Then we describe 1n detail the perturba-
tion formalism of Gerlach and Sengupta {13, 14], paying particular attention to the 1ssue
of gauge 1nvariance

In Chapter 5 we begin the analysis of perturbations of spacetimes We consider
Minkowsk: spacetime, and examine all modes of both even and odd parity perturbations
of flat, vacuum spacetime This 1s necessary as we must be sure no singularities develop
m the absence of matter, and for other reasons which we will discuss at the appropriate
time

Chapter 6 sees the perturbations of our first non-empty spacetime the self-simular
Vaidya solution We choose this background as a starting point since the metric and
matter tensors can be written down 1n a very sumple manner, and the condition for
the background to admit a naked singularity 1s especially simple As this 1s the first
analysis of a non-flat spacetime we will go into some detail in this chapter, and examine
all perturbation modes of both even and odd parity The mam results of this analysis,
and that of the preceding chapter, have appeared in [41]

In Chapter 7 we turn our attention to a more realistic model of collapse than the
Vaidya solution, the self-similar timehke dust or Lemaitre-Tolman-Bondi (LTB) space-
time This solution represents the collapse of a perfect fluid with vanishing pressure, and
1s used extensively in models of stellar collapse



Finally, in Chapter 8 we consider perturbations of generic 4-S spacetimes which admit
naked singularities Unfortunately, in our quest for genericity we find a hmitation as we
are not specifying the background matter tensor we cannot say anything useful about the
perturbed matter tensor Thus to make headway we must consider a vamishing matter
perturbation As we will describe, this 1s not a problem for odd parity perturbations,
however there are only trivial solutions 1n the even parity sector

In Chapter 9 we present our conclusions, and some suggestions for further work

The perturbation formalism of Gerlach and Sengupta which we describe 1n Chapter 4
1s very robust in that 1t can be applied to any spherically symmetric background More-
over, the formahism has been tailored for the longitudinal gauge, which we will discuss 1n
detail later, which simplifies the matter perturbation terms Thus this formalism has been
used by a number of authors 1n order to describe perturbations of spherically symmetric
spacetimes, among them perturbations of critical behaviour in the massless scalar field
by Frolov [11, 12] and Gundlach and Martin-Garcia [19], perturbations of timelike dust
solutions by Harada et al {22, 23], and perturbations of perfect fluids by Gundlach and
Martin-Garcia [20, 18] These analyses (with the exception of Frolov’s) primarily rely on
numerical evolution of the perturbation equations, there 1s a gap 1n the lhiterature with
regards to analytic or asymptotic solutions to perturbations of these spacetimes, which
this thesis attempts to fill

In broader terms, perturbations of the metric tensor can be thought of as modelling
gravitational waves, an important topic in the current scientific communmity This formal-
1sm has been used for exactly that purpose by numerous authors such as Harada et al
(22, 23, 24], Sarbach and Tigho [45], and similar analyses by Nagar and Rezzolla [35]

The central aim of this thesis 1s to use this formalism to describe perturbations of
self-similar collapse There are a number of reasons we are interested in self-similar
spacetimes they are a rich source of naked singularities, the ability to define a similarity
coordimate can reduce the complexity of the field equations considerably, and finally there
are indications that self-similar solutions can act as attractors in the collapse of non-self-
similar solutions, for example Harada [21, 26] In fact, Carr and Coley [4] have gone as
far as to propose a ‘stmlarity hypothesis’, with which they claim that solutions in general
relativity will naturally evolve to a self-similar form The stabihity of the Cauchy horizon
in self-similar collapse has been tested at the eikonal level by Waugh and Lake [50], and
at the semi-classical level by Harada and Miyamoto [27]

Chapters 1, 2 and 4 are intended to set up the problem for analysis, and thus are not
(entirely) the original work of the author Chapter 5 applies the perturbation formalism



to Minkowski spacetime, and thus some of the results 1n this chapter would be well known
Chapters 3, 6, 7 and 8 are entirely the work of the author, and represent the first analytic
(as 1n non-numerical) examination of the perturbations of self-similar spacetimes to test
the stabihity of the Cauchy horizon

The main result of this thesis 1s that in each case we examine, the Cauchy horizon

formed 1n self-similar collapse 1s stable due to linear perturbations

Throughout this thesis we set G = ¢ = 1 unless otherwise stated, and follow the
conventions of Wald [48] In Chapters 1, 2 and 3 we use lowercase Latin indices to denote
coordinates on the 4-dimensional spacetime manifold, and from Chapter 4 on we use the

convention set out in that chapter

1.1 A primer on differential geometry and General Rela-

tivity

In this section we give a brief overview of General Relativity and the relevant equations,
geometrical objects etc for this thesis

Einstein’s theory of General Relativity extends his theory of Special Relativity (SR) to
include gravity In SR, the fundamental invariant which all inertial observers (coordinate
systems) agree on 1s no longer the distance between two pomts in space, but instead
the interval between two events An event 1s a point 1 space at a moment 1n time,
which leads to considering space and time jomed mn a four dimensional continuum called
spacetime An event in spacetime therefore has coordinates (1, x, y, ), for example, where
t 18 standard time and z, y, z are rectangular coordinates The interval between two nearby

events, ds, 1s given by
ds® = —dt? + dz? + dy? + d2?, (111)

where dt 1s the difference 1n the time coordinates and so on Note the negative sign before
dt?, this means the matrix whose diagonal contains the coefficients of the line element will
have trace (signature) +2, and one negative eigenvalue plus three positive eigenvalues, by
our convention A (four dimenswonal) spacetime with this property 1s called Lorentzian
Consider a vector field 7 (1 e through each point there 1s a unique vector) 1n spacetime

We can 1nterpret a vector field as describing a directional derivative of a function, which



we write as

Uf =v 910 = (vaaa)f7

where f 1s some function and we use the shorthand 8, = 9/9z® Here z°® represents a

set of coordimates, and a runs from 0 to 3, for example D=t ==y =2
Throughout this thesis summation over repeated indices 1s imphed
Thus 7 = v%d,, 1n other words 8, forms a basis for all vectors v, and v® are the

¢ 1s a tangent vector which 1s

components of the vector ¢ in this basis More precisely, v
defined on the tangent space spanned by the coordinate basis 9,
We define an additional vector space, the dual (or cotangent) vector space, whose

basis dz® 1s the dual to the coordinate basis such that
dz”(0p) = 0y,

where 67 = 1 1f a = b and 0 otherwise 15 known as the Kronecker delta Dual vectors
are those defined on the dual vector space as a linear combination of the dual basis, 1e
vedz® A tensor of type (or rank) (k,{) 1s an object which takes k dual vectors and I
ordinary vectors and returns a function For example, the stress tensor 1s of type (0,2),
if 1t takes as 1ts input two vectors pointing in the z-direction, 1t returns a function the
stress/pressure 1n the z-direction We will use the ‘abstract index notation’, and denote
a tensor of type (k,l) as
Talag akb1b2 b
Furthermore, a tensor of type {k,{) must satisfy the following transformation rule in
changing from coordinates z* to z®

taq fay b by
Tall ar2 o“;c Ox or ax Oz Tal ay aj

b, b Hgm dz% ozt Pz bibz b (112)

Tensors of rank (0, 1) are ordinary vectors, called contravarnant, and tensors of rank (1,0)
are dual vectors, called covariant

We introduce the metric as the generalised mner product used to find the lengths of
vectors Using the index notation, this 1s

=7 7= guv*’

Ne



More precisely, the metric 1s a symmetric tensor of type (0,2) The entries in g, are

found from the line element by
ds® = gapdz®dz®

We formally define spacetime as a Riemanman manifold M (a space which 1s made up
of pieces of Euclidean space) endowed with a metric g, of Lorentzian signature, and 1s
denoted (M, gq5)

Due to the Lorentzian nature of spacetime, there are three possibilities for the lengths
of vectors positive, zero and negative We call these vectors spacelike, null and timelike
respectively Timelike vectors are tangent to the path of inertial (freely-falling) observers
whose velocity 1s less than that of light, null vectors are tangent to the paths of light rays,
and spacelike vectors everything else If the mner product of two vectors 1s zero they are
orthogonal, and n this sense null vectors are self-orthogonal If the inner product of two
null vectors 1s < 0, then one 1s ingong (1t approaches the axis as we move forwards in
time), the other outgoing, and both poimnt into the future or past, if their 1nner product
18 > 0 then one powts into the future and the other into the past

GR builds on this to include gravity in the following way 1n essence, matter curves
spacetime and 1t 1s this curvature which we experience as a gravitational field Objects
travelling through spacetime follow the straightest paths possible, however because space-
time 1s curved, the paths the objects follow are also curved, this 1s why the earth’s orbit
curls around the sun Information about the curvature of spacetime 1s contained in the
metric, 1 general the components of gq; will be functions of the coordinates The line
element given 1 (1 1 1) now represents a flat spacetime entirely devoid of matter, named
after Emstein’s mentor Minkowski

A cornerstone of GR. 1s the 1dea that all inertial observers will discover the same laws
of physics Since each observer will have a preferred coordinate system based on their
motion, 1t 15 important that a law of physics does not depend on a particular choice of
coordinates, 1 e 1t should be covariant This 1s encapsulated in the following principle

Principle of Covariance All physical laws should be written covariantly (1n tensor

form) to ensure equivalence 1n different coordinate systems

Tensors are naturally covariant, if we maintain the tensor equation A, = By + Coup
1s true 1n one coordinate system, 1t must be true in all coordinate systems In particular,

though a tensor may have different components depending on the coordinate system

10



used to write them down, if a tensor vanishes 1n one coordinate system 1t does so n all
coordimate systems

However, the ordmary derivative, denoted 9, = 0/9z® or sumply ,q, of a tensor 1s
not covariant, 1t does not transform according to (1 12) Instead, we must construct a
covariant derivative, denoted V, or |5, using a connection ‘There are many connections

to choose from but most inportant 1s the metric connection, defined as

%, = 39 (Bbgeu + Begba — Dugsc)
Using this we define the covariant derivative of a tensor of type (k,1) as

e o _ a1 ax a1 d ag _d a1 Gy _
VT by bx_acT o bz+F dCT by bz+ %, .T d b

bic .

The metric connection 1s such that V. g,, = 0

As mentioned before, the path of a freely-fallmg object will deviate from a straight
line as 1t moves through non-flat spacetime Instead 1t follows a geodesic, the path which
15 locally of shortest length We find the equation for a geodesic in the following way
consider a curve parameterized by u, that 1s 1ts coordinates are z%(u)}, then the tangent
vector to the curve 18 given by X® = dz%/du A freely-falling object 1s non-accelerating,
that 15 A? = X°®V,X? = 0, where A® 1s the acceleration This 1s equivalent to

d?a dadb da'db 0 ('null)

@2% ,pe &2 &7 _ ar” ar” _

gz T e 5 =0, and goy— +1 (spacelike) (113)
-1 (timnelike)

When X*“ 1s timelike the parameter u, often denoted 7, 1s the proper time, that 1s, the time
mterval between two events measured by an observer moving along the curve connecting
the two events

We see that when the spacetime 1s flat, and 1ts metric 1s given by (1 1 1), the con-
nection vamishes and the geodesic equation 1s hinearly solved, recovering the straight line
motion of Newtonian mechanics The reason Newtoman mechanics 1s such a good approx-

mmation 1s seen 1n the principle of equivalence, which we give in the following mathematical
form

Principle of Equivalence At any pownt in spacetime, the metric connection can
be transformed away

In other words, spacetime 1s locally flat, that 1s, the spacetime metric can always be

11



written 1 the form (111) locally A genune gravitational field 1s one in which the
connection cannot be transformed away everywhere simultaneously, and to test this we

construct from the metric connection the Riemann tensor given by
Ryeq = 0cyg — 04l %c + Tl e — Tl eq

If the Riemann tensor 1s non-vamshing then the connection cannot be transformed away

everywhere (since the Riemann tensor contains derivatives of the connection)
Contracting the Riemann tensor gives the Rical tensor, Rgp = R%,, = G°®Reagp, and

contracting the Ricc tensor gives the Ricci scalar, R = R?, = g®R,, From these we

form the Einstein tensor, defined as
Gab =Ry — %gabR

The Emnstein tensor, Gg, contans all the information regarding the geometry of
spacetime (up to degrees of freedom) On the other hand, the stress-energy-momentum
tensor, Ty, contains information about the matter/energy in the spacetime For example,
for a timehike observer with tangent vector v, the contraction T,sv*0° 1s the local energy
density measured by that timelike observer Einstein put these two concepts together,
resulting i the famous (covariant) field equations of General Relativity,

Gop = 87Ty, (114)

Wheeler has succinctly summed up this relationship between matter and geometry thus

“matter tells space how to curve, space tells matter how to move” 1

But how does the gravitational field makes 1tself felt at a distance? The earth curves
spacetime around 1t, but how does the moon know? Gravity, like electromagnetism,
propagates as a wave Vibrations i the stuff of spacetime itself travel through the
cosmos, generated by the motions of matter In fact, one of the most significant efforts
of the international scientific community at the moment 1s the attempt to detect such
gravitational waves

We will consider gravitational waves moving through vacuum Thus the matter tensor

TWithout meaning to take away from the achievement of Emstem, 1t 1s worth noting that he wasn’t
the first to suggest that space was curved The non-Euchdean geometries of Bolyar and Lobachevsky
lead some to suggest that the universe was hyperbolic (negatively curved) or elliptic (positively curved),
as opposed to Euchdean (flat) The essence of this 1dea lives on 1n the Friedmann-Robertson-Walker
cosmological models
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vamshes, and the field equations tell you that therefore the Ricci tensor also vamishes So
what 15 left? Consider a field of particles following timelike geodesics with unit tangent
vectors v® = dz®/dr = 1%, with v%, = —1, separated by displacement vectors dz%, with
v20z, = 0 As a wave of gravitational radiation passes through, the paths of the particles

will deviate according to the equation of geodesic deviation
5z% = R%, v v°ozt (1159)

The Riemann tensor has twenty independent components, split between ten 1n the Riccl

tensor and the remamning ten 1in the Weyl tensor Cgpeq, 1n the following manner

Robed = Coaped + ga{cRd]b + Ra[cgd]b - %Rga[c 9d)b;

where X4 = % (Xgp — Xpo) 15 the antisymmetric part of a tensor Thus 1n vacuum we
can replace the Riemann tensor in (1 1 5) with the Weyl tensor

We can decompose the Weyl tensor by constructing a null tetrad (1e a group of four
null vectors) To do this we take v® and three spacelike vectors, s%, ¢§ and 3, and combine

them to form four null vectors

0% =" 4 5%, w® = %(t'f + 1t§),
n® =% — 5% w* = %( 1 —13),

sice %6, = (v* + 5%)(vg + 8q) = V%4 + 20%5, + 5%8, = -1+ 0+ 1 =0, and so on Here
* means complex conjugation All the information in the Weyl tensor 1s contained mn the
five Newman-Penrose Weyl scalars, which are found by contractions of the Weyl tensor
with elements of the null tetrad,

Yy = Cabcdlawblcwda
\1’1 = Cabcdlawblcnd,
Uy = Cabcdlawbncw*da
P = Cabcdlanbwwnda
T, = Cabcdnaw*bncw*d

We may give a physical meaning to each of these scalars by considering the Petrov clas-
sification of gravitational fields

13
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Figure 1 3 The effects of certamn types of fields on a cloud of particles (a) A type N field
causes movement 1n a plane perpendicular to the wave direction, (b) a type IIT field’s
effects are also planar however they contain the wave direction, and (c} a type D field
will distort a sphere mnto an ellipsoird The symbols O (perpendicular to the page), =
and | represent the propagation direction of the wave

The Petrov classification groups together spacetimes which share important charac-
teristics 1n the following way the Weyl tensor can be considered as a 4 x 4 matrix with
4 eigenvalues The Petrov classification groups spacetimes according to the multiplicity
of these eigenvalues Analogously, we could classify spacetimes according to the num-
ber and multiplicity of the principal null directions There are five Petrov types (six
including conformally flat spacetimes) but only three are of interest with regards to this
thesis Petrov type N, type II] and type D We note a spacetime may be made up of
superpositions of fields of different Petrov types

Szekeres [47] examined the effect of each of these three fields on the cloud of particles
mentioned above, see Fig 13 For type N fields, Fig 1 3(a), the cloud of particles is
distorted only in the plane perpendicular to the direction of the field’s propagation Thus
type N fields represent pure transverse waves, and moreover 1t can be shown that for
type N fields the Weyl scalars ¥, 5 3 can be set equal to zero Thus we can interpret ¥
and U4 as the purely transverse wave terms 1n the £¢ and n® directions respectively
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Type 111 fields agamn distort a ring of particles i a plane, Fig 1 3(b), only now the
plane contains the direction of the field’s propagation Thus type I17 fields represent
longitudinal waves, with ¥y and U3 representing the longitudinal component in the ¢¢
and n? directions respectively

Finally, for type D fields the effect 1s no longer planar A sphere of particles 1s
distorted 1nto an ellipsoid whose major axis 1s in the direction of the field’s propagation,
Fig 1 3(c) This matches exactly the tidal force experienced by an object falling towards a
spherically symmetric source, and 1n fact the group Petrov type D contains all spherically
symmetric spacetimes (and thus all background spacetimes considered 1n this thesis) In
spherically symmetric spacetimes the only non-zero Weyl scalar 1s ¥y, and Szekeres calls
this the Coulomb term

1 2 Mathematical preliminaries

121 The Mellin transform

If we consider the Laplace transform of f(t), a function defined for all ¢ > 0, given by

F(s) = /0 et (b,

and make a change of dependent variable ¢ — 1n z, the mtegral becomes
oo dz
o f ()2
[ =es
This 1s the Mellin transform, which we formally define as

o0

G(s) = Mlg(z)) = /0 g(2)7~*1dz, (121)

with s € C (in some literature s 1s replaced with —s) For this transform to exist, there
will be a restriction on the allowed values of s, typically to lie in a strip in the complex
plane with o7 < Re(s) < a3 The inverse Mellin transform 1s given by

g(z) = MG(s)] = =S e 2°G(s)ds, (122)

271-2 c—100

where ¢ € R 15 such that o7 < ¢ < 0 To recover the original function from the Mellin

transform, we integrate over the vertical contour in the complex plane of s given by

15



Re(s) = ¢ We emphasize, as this will be crucial later, that we do not integrate over all
values of s 1n the mterval o7 < Re(s) < o9, only over the vertical contour defined by a
specific value of Re(s) m this interval, which we are free to choose We will make use of

the following theorem

Theorem 1 2 1 (Mellin Inversion Theorem)

If g(2) 1s preceunse continuous on the positwve real numbers and the integral

G(s) = /Ooo 75 g(2)dz

18 absolutely convergent when o1 < Re(s) < o9, then g s recoverable via the inverse

Mellwm transform from its Mellin transform G

A series ¥ Ay, 18 absolutely convergent 1if the series Y | Ay, | converges This theorem 1s
particularly useful as 1t saves us from having to perform the inverse Mellm transform, we
merely need to show that G(s) does not diverge 1n the relevant interval and the theorem
guarantees the mnverse Mellm transform exists As we will see, the Mellin transform 1s
particularly suited to differential equations arising in self-stmilar spacetimes, see Chapter
2

The Mellin transform can be extended to functions of many variables, 1n particular we
shall be interested 1n functions of z (or y), a self-similar coordinate, and 7, a coordinate
related to the areal radius of a spherically symmetric spacetime Since 0 < 7 < oo covers
the entire spacetime, we will take the Mellm transform of such functions, say g{z,7), over
r We denote the Mellm transform then as

Mlg(z,7)] = G(z,s)

The Mellin transform of the z derivatives of g(z,r) can be found by reversing the order

of integration and differentiation, as mn

39(31,7‘) _/oo Bg(x,r) -s5—1 _ 9 /oo —s—1 _ 0
M[_Bx ]—- A 5" dr—(9z ; g(z,r)r dr—a—xG(x,s)

The Melhn transform of the r derivatives of g(z,r) can be found using integration
by parts by first noting that in the equations governing perturbations of self-similar
spacetumes written using coordinates (z,7), the nth r-derivative of any dependent variable

g(z,r) 15 always multiphed by r*¥ Thus we will be taking the Mellm transform of these

'This 15 due to the homothetic Kiling vector being t% + r%
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combinations, for example

00 o
m [ 298| / =% g = [T_sg(xvr)]w + s/ g(z,7)r=°"ldr = sG(z, s),
or 0 or 0 0

provided the boundary term in the square brackets vanishes, which places restrictions on
s and g For the second derivative, we find

M [r2g—j‘g] = (s — 1)G(z, s),

and 1n general we obtain

n n,.5
M [r"%’%] =73 %r: G(z,s),
which suggests we can quickly perform a Mellin transform of an equation by replacing
g(z,r) with r°G(z, s) (this 1s the analogue to the Laplace transform shortcut of writing
f(z,r) as e F(xz,s)) A partial differential equation n (z,r) will therefore be reduced
to an ordmary differential equation contaimning the parameter s and derivatives of G(z, s)
wrt z Then the solution for G(z, s) 1s multiplied by 7° and integrated over a vertical
contour 1 the complex s plane to recover the original function g(z,r) The conditions
under which we can perform this integration are set out in Theorem 121 (the Mellin
mverston theorem)

Once we have reduced the partial differential equations to ordinary differential equa-
tions (ODE’s), we must solve these for the Mellin transformed quantities These equations
typically contain a number of singular points corresponding to important surfaces in the
spacetime, at which we must find qualitative behaviour of solutions Here our analysis
most often falls into one of two classes either a second or higher order ODE 1n one
variable with regular singular points, which we discuss in the next section, §1 3 2, or a

first order system of ODE’s with regular or irregular singular points, which we discuss in
8133

122 Frobenius theorem

This theorem 1s very useful for giving infinite series solutions to ODE’s near regular

singular pomts, thus first we must define what a regular singular point 1s the nth order
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ODE mn f(z) has a regular singular point at z = 0 if the ODE 15 of the form
2" f (@) + 2" (@) fO V(@) + +ba(2)f(2) = 0, (123)

with each b, analytic at £ =0 Thus we can Taylor expand each &, about z = 0, and we
denote such as expansion as

oo

bi(z) =) bymz™

m=0

The simple case of each b, constant 1s called the Euler equation We consider the point
z = 0 for simplicity in presentation, an equation with a singular pont at ¢ = o can be
transformed to the above standard form by a simple transformation

The theorem of Frobenius 1s most famihar for the second order differential equation,
which we give here

Theorem 1 2 2 (2nd order Frobenus theorem)
If f{z) solves the equation

22 f"(z) + zby (z) f'(z) + ba(z) f(z) = 0

with by, by analytic at z = 0, then we define the (2nd order) indicial equation as

I

LX) = AA—-1) +bigA+byyp

Depending on how the roots A1, Ay of the indicial equation (hereafter indicial exponents)

are related to each other, a basis of hinearly independent solutions, fi(z) and fo(z), around
z =0 15 defined thus

Casel M\ — A2 ¢ Z
[e o] oo
filg) =Y Apz™™M, foz) = > Bya™th
m=0 m=0
Case 2 )1 = g
(o] o0
@)=Y Ang™™M,  fo(z) = filz)lnz + Y Bpaz™™h

m=0 m=}

18



Case3 A\ —A2=neZ

fl@) =Y Anz™™, fo(z) =kfilz)nz + ) Bpa™te,

m=0 m=0
where A1 > Ay and k may or may not be zero

Ao = By =1 and A,, and By, are determined by recurrence relations involving the

coefficients of the ezpansions of the b,

Note that in Case 2 there must be a logarithmic term 1n the second solution, however
in Case 3 there may or may not be We will later give explicitly how to calculate the
constant &

It will be important to generalize this theorem to nth order ODE’s 1n later sections,
i particular the case where there are a number of indicial exponents differing by inte-
gers To elucidate this fully, we will next describe i detail how to derive the constants
corresponding to k& above for the 3rd order ODE with indicial exponents 0, 1, 2, as this 1s
of crucial importance to the scenario that arises in Chapter 7 Then, for completeness,

we will give a general theorem due to Littlefield and Desax [32]

Consider the 3rd order ODE n f(z),
Lif) = 2*fO (@) + 201 (@) 1" (2) + 2 ba(2) ' (2) + bs(2)f (2) = 0, (124)

where the b, are analytic near z =0 We propose an nfinite series solution near z = 0 of

the form
¢= Z Am()‘)xm+)‘
m=0
Subbing this solution 1n we find

Ll¢] = i Apm+X)(m+A=1)(m+ - 2)$m+)\

m=0

oo x o
+b1 Y Am(m+AN)(m+ A= D™ + 5y Y Apn(m+ N)z™ A + by Y Apa™

m=0 m=0 m=0

For this to be an actual solution we require the coefficient of each power of z to be zero,
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the coefficient of z* 15
Ag [)\ — 1 ()\ 2) + b (]A(/\ - 1) + bg)()/\ + b3,0] = AoIg(/\)

Thus for this to vanish we must choose A such that I3(A) = 0 The particular case we are
interested 1 18 when by o = bpg = b3p = 0, as then the three roots are 0,1,2 We order
these highest first and label them A, A2, A3 as 2,1, 0 respectively

Setting the coefficient of each power of = 1n turn to zero, we derive a recursive rela-
tionship for each coefficient A, ()), such as

Ag
Al(/\) = m [b1 1/\( — 1) + bz’lz\ + b3,1],
Ag
Ax(X) = TLOtD [b1,2A(A = 1) + ba 2 X + b3 9)
A1{A)
K(/%%T[bl 1A+ DA+ b2a(A+1) +b34],

1

m
_ mnz::lAm_n [bm(m —n+A)(m-—n+A—1)+b(m—n+X) +b3,n]

The first solution 1s easily described, simply
fi(z) = oz, = Aoz? + A1(M)2® + Ao (M)t +

In fact this 1s the procedure for all solutions if the indices A do not differ by mtegers
However, 1f they do as m this situation, when we examine ¢ [y=», we see A;(A2) contains
in the denominator Is(A2 + 1) = I3(A;) = 0, and thus 18 undefined

Instead we consider as a possible second solution

¢ = Ap(A— 1)zt + Y Bn(N)z™

From L[¢] we find the coefficient of z* 15 Ag(A — 1)I3()\), and the next term vamshes if

(A-1)4

R Cea]

[braA(A = 1) + b2 1A + b3 1],
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but since I3(A + 1} = (A + 1)A\(A — 1), the diverging term cancels and so B;(A2) exists

Thus the diverging term 1s removed from every coefficient thereafter, for example

Ar(M )

By(Xg) = Bi(X2)

and so on But when we examine the full solution when A = XAy, we find

Pla=r, = (A2 —1)Apz + 191()\2)972 + Ba(Ao)z® +
Bi(X2) 22 Ba(X2)A0 5 ]
Ag Bi(h)
By{A\
= 114(102) [Ag.’L‘2 + Al()\1)$3 -+ ]

_ Bi(N\)
= Tfl(m)’

that 1s to say, this proposed solution 1s not linearly independent of the first solution In
general we write

Bl()\Q):h {(/\ /\2)A1(>\2)]
Ag A-t A A()

For the actual second solution we take a hint from the Euler equation, and find

_ 7 A _ A
falz) = 8/\ . (Aow + Ap(A —1)z" Inz
= dBTn()‘) m-+A - m4A
m=1 m=1 A=Az

But from the previous work we know the last series 1s a multiple of the first solution
Thus our second solution 1s

pta) = g 22020 g 0y 4 Z Bn| g,

A= A2 A=X2

where By = Ag(A — 1)

The procedure for the third solution 1s similar we posit a solution as

¢ =NApz* + Y Cr(N)z™

m=1
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The coefficient of z* 15 A2A4gI3()), the coefficient of z*T! 15 zero if

A4y

C) = ————
! LA+1)

[bl,l)‘()‘ - 1) -+ b2,1>\ + b3,1]
and so on Note the A2 means that C;(A3) vanshes, and thus ¢ [y, begins at z2, just
as fi(z) does In fact, we can show that ¢ | =», 15 a multiple of f,(z), to be precise

2
$lr=ns = lu m [)\ 1;4120(/\)] fi(z)

What’s more, the derivative 1s a multiple of the second solution, so 1n fact the third

solution 1s given by the second derivative,

32
fa(z) = 8_;25

A=Az

Thus our three linearly independent solutions to (1 2 4) are (with a shght renaming

of coefficients)

@) = D Apz™t?
=0
folz) = ;gg[(k_“h ]1 mmX_:oA xm+2+ZBmm
fw =y [ mZ_OA
+2 m Lidx (’\2‘410 )] ZBzm+1+Zsz (125)

m=0 m=0

In terms of the coefficients of the differential equation, these limits are

(A=1A ()
o [ S5 = e,
A2 Az(A
}13(1)[ AQO( )] = —4b31(ba1 +b31),

d [ X2A(\)
}%[ﬁ( Ap )] = b

Now we give a theorem by Littlefield and Desai [32] to generalise this analysis to nth
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order equations, however we only describe the case when the roots of the indicial equation
differ by integers and do not repeat Suffice 1t to say that when the roots repeat there

must be a logartthmic term 1n the solution

Theorem 1 2 3 (nth order Frobenius theorem)
Let f(z) solve an ODE of the form (12 3) Then the wndicial equation 1s

LA =2MA=1) A-n+1)+boMA-1) (A—-n+2)+ +by_10A+bnyp
Arrange the roots of the indicial equation into groups differing by integers, and order them
{/\la A23 1/\11 }

such that A, > A1 Then a linearly independent solution corresponding to A, 1s

J x gt
Hlay=3 (ﬁz K, log ™"z 2_:0 3 [ M) Am| :cm“l)

=1

where

and

f=d-nen,  g=UTOZD Gl g

123 Methods for systems of ordinary differential equations with sin-
gular points

For a first order system Y' = M(z)Y we define p as the least number such that the
system can be written near £ = 0 as

1 o0
Y=—{J+ Apz™ 1Y, (12 6)
zP =

and near 7 = oo as

[se]
Y = —gP2 (J +3 Ama:_m) Y 127)

m=1
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with J # 0 and constant

We classify singular points and describe the solution as

p = 0, Regular pomnt It 1s sufficient for the sake of this thesis to know that the solu-
tions near a regular point are themselves regular, as the following theorem (Cod-
dington and Levinson [9]) shows

Theorem 12 4 Consider the linear system Y' = MY where Y € R* and M 1s
an n X n matnz  If the coefficients of M are continuous on some open wnterval
I, which may be unbounded, there exists on I one and only one solution ¢ to the
system satisfying

o(ry=¢ Vrel,
with £ € R™ satisfyung |€] < oo 1s arbitrary

p = 1, Regular singular pomt Also known as a simple singularity or a singularity of
the first kind Here we distinguish solutions depending on whether the eigenvalues
of J given above differ by an integer or not If they do not, we apply Theorem
12 5 immedately If they do, we reduce those eigenvalues individually until they
are equal using Theorem 12 6, and then apply Theorem 125 (see {9])

Theorem 1 2 5 In the system (1 26) withp =1, of J has eigenvalues which do
not differ by positive integers, then, wmn a disc around z = 0 not containing another
singular pownt, (1 2 6) has o fundemental matrmz ® (whose columns are linearly
independent solutions) of the form

[o o]
& = Pz, where P(z)= Z ™ Py, Py=1I

m=0

Theorem 1 2 6 Let the distinct exgenvalues of J wn (1 2 6) be (disregarding mults-
phcity) py, ik, (k < N, where N 1s the order of the system), and let the repeating
eigenvalue be p, There 1s a matrz V (z) such that Y = VQ transforms (1 2 6) into

R Y O~ m
m=1

where J has eigenvalues py, e — 1, ,px V s gwen by the n x n matriz

V =dwag(l, ,1,z, ,z,1, 1), with z appearing in entry1 to 1+ 3 — 1, where
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i, 18 of multiplicity )

p > 2, Irregular singular point Also known as a non-simple singularity or a singu-

larity of the second kind Here we distinguish solutions depending on whether you
can diagonalize J given mn (127) If J has distinct eigenvalues, then J 15 diag-
onalizable and we apply Theorem 127 If J has multiple eigenvalues and J can
only be reduced to Jordan normal form, then we apply Theorem 12 8 to remove
off-diagonal terms (see Eastham [10]) When the eigenvalues are repeated zeroes,
this has the effect of reducing the order of the singularity, as happens in this thesis
m Chapter 6

There 1s a class of problems 1n between sometimes a matrix has multiple eigenvalues
and yet can still be diagonalized In this case, there 1s a straightforward theorem
given by [10] if A; = 0 (as 1s sometimes the case when a high order equation 1s

written as a first order system) If not there 1s a cumbersome solution given by {9]

Theorem 127 Let J have distinct ergenvalues py, ,uny Then (126) with

p 2 2 has a fundamental matriz
o0
& = Pxlled where P(z) = Z 2™ Pp, Py=1,
m=0

R 15 a duagonal matriz of complex constants, and H 1s a matriz polynomual (r =
p-2)

mr+l v

— L — (2} (2) © _
H r+lH0+ 7nH1-+- +zH,., H, dmg(p1 , ’”N)’ 1y y

For brevity’s sake, we give the following theorem only for p = 2, as this is the case
that arises 1n this thesis

Theorem 1 2 8 We transform J to its Jordan normal form J, and write the blocks
of J as pl + pE, where E 1s the matriz unth 1’s along its super-diagonal and zeroes

elsewhere For each block of f, define the matrices

11 1/2 1/(N — 1)!
01 1 1/(N —2)"
D = dwag(l,pz, ,(pz)"7!), B= [ =2 ,
1
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where N 15 the order of the system Then the transformation Y = D™1BW gwes
the system

o
W'=|pl+D'D"'+B7'D <Z Amm"") D-lB] W,

m=1

and the leading order coefficient matriz has had its off-diagonal terms removed
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Chapter 2

Self-similar spherically symmetric

(4-S) spacetimes

21 Defimtions and a line element for 4-S spacetimes

The Einstein field equations for a completely general spacetime are a system of quasi-
linear, coupled, four-dimensional partial differential equations Any attempt to draw
useful mformation about the solutions from the field equations 1s severely hampered
without making some simplifying assumptions about the nature of the solution The two
assumptions we will make use of in this thesis are spherical symmetry and self-similarity
We will begin by defining rigorously what these notions mean, beginning with spherical
symmetry

A spacetime 1s defined as a four dimensional Riemannian manifold M endowed with a
metric tensor g, with signature 42, and 1s denoted (M, g,5) Spherical symmetry means
that there 1s a preferred curve in M, called the axis, at each point (moment in time)
along this axis, the spatial part of the metric tensor 1s invariant under any rotation about
this point Thus M can be considered to be a two dimensional Lorentzian manifold A2
crossed with two-spheres S? Setting the coordinates on M? constant, the metric tensor
reduces to the metric of a two-sphere,

ds?| g, = r?(d6* + sin® 0dg?) = r2d?,

where (0, ¢) are angular coordinates on the two-sphere with the ranges 0 < 6 < 7 (colati-
tude) and 0 < ¢ < 27 (azimuth) r 1s a function of the coordinates of M2, and 15 defined
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in terms of the surface area of the two-spheres A,

AN Y2
(&)

and thus 1s called the areal radius There are no cross terms 1n df, d¢ as the spacetime 1s
invanant under reflections m the angular coordinates (this 1s implicit m the defimtion of

spherical symmetry)
0> m—0, ¢—=2r—¢

The spacetime must further be invariant under translations in the angular coordinates

(rotations),

9_'>Q+907 ¢'—)¢+¢0)

and thus @, ¢ may only appear 1n the metric functions in the two-sphere portion

Thus we have derived the “2+2” split of Gerlach and Sengupta [13],[14] which we
shall use later in Chapter 4 1f the coordinates on M? are denoted =4, then the metric
for a spherically symmetnic spacetime can be wniten

ds? = gapdz?dz? + r(zC)(d6? + sim® 0d4?),

where gap = g4p(z®) 1s the metric on M?

It 15 always possible, though not always useful, to let the function r be one of the
coordinates on the mamfold M2 We will let t denote the other coordinate on M2, and
find 1ts nature below We wish M2, a 2-dimensional manifold, to be Lorentzian, thus g4p
must have one positive and one negative eigenvalue With A, B, C arbitrary functions of

t,r we can write the metric therefore as
ds* = —A%dt> + 2A B dt dr + C?%dr? + r2dQ)?
There 1s freedom 1n the ¢ coordinate to make the transformation
e’*dt' = Adt — Bdr,

which knocks out the cross term dt dr This diagonalizes the line element and 1s equivalent
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to choosing t' orthogonal to 7, that 1s, if V,¢' 1s a covaniant vector pomting m the t'-
direction, and V,r points 1n the r-direction, then ¢*®V,#'Vyr =0 Renaming B? + C? =
e* and t' = t, we have the canonical form for the metric tensor of a general spherically

symmetric spacetime,
ds? =~/ g2 + M) gr? 4 2 (alO2 + sin? 9d¢2) (211)

We see the length of a covarniant vector pointing in the ¢-direction, V¢, 1s —e™ < 0, and
thus ¢ 1s a timelike coordinate, whereas 1,8, ¢ are spacelike (The nature of coordinates
can vary as we move 1nto different regions of spacetime For example, when you cross the
Schwarzschild radius, the ¢ coordinate becomes spacelike and the r coordinate timelike
More on this later )

In deriving this line element, we have chosen the coordinates on the sphere to be
0, ¢, and the coordinates on M? to be ¢,r These may not always be the most convenient
coordinates, often 1t 15 useful to use a null coordinate, that 1s, a coordinate u or v such that
u,v = constant describes a null geodesic Spherically symmetric spacetimes are Petrov
type D (see §1 2) and thus we can always define two radial null directions One of these
1s mngoing and the other 1s outgoing

Suppose we wanted to write the metric for a spherically symmetric spacetime using
the mgoing null coordinate We consider the geodesic equations given 1n §12 From
(211), we see a radial (6 = ¢ = 0) null (ds® = 0) geodesic solves

% = ie’\%,
with the plus and minus denoting outgoing and ingoing null geodesics respectively As-
suming that A and v are C' functions of ¢ and r, the theory of ordinary differential
equations guarantees that there 1s a solution of the form ¢t = £ T(r) + ¢, where ¢ 15 a
constant If we transform to a new time coordinate, t — ¢ = ¢ — 7+ T'(r), then the ingoing
null geodesics are sumply ¢ + r = ¢ The constant of integration labels each ingoing null
geodesic, and we denote with v therefore the ingoing null coordinate v = {+r To remove
t from the hine element (21 1) we let t = v — T(r), and dt = dv — (dT"/dr)dr The line
element then becomes
daT

dT 2
ds® = —e* |dv? —2—dvdr + [ — ) dr?| + *dr? + r2d0?
dr dr
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But since t = T + ¢, then dt/dr = dT/dr = e%, and thus the dr? term cancels
Renaming some terms, the line element for a general spherically symmetric spacetime 1n

(v,7) coordinates will be
ds? = —2F e dv? + 2e¢¥dv dr + r2dQ? (212)

We will call these advanced Bondi coordinates (Note there 1s some coordinate freedom
left 1n v to make a transformation v — V(v)) Similarly, we could choose to use both

mgomng and outgomng null coordinates, in which case the line element becomes
ds? = —2¢"H dudv + r2dQ?, (213)
where f = f(u,v) and r = r(u,v), the so-called double-null form

The method used above essentially involved choosing appropriate coordinates to place
restrictions on the metric functions However we can describe symmetry 1n a covariant
way, by using Killing vectors

A vector field £ will describe a symmetry, or an 1sometry (distance preserving map-
ping), 1if the metric 1s unchanged by an infinitesimal motion 1n the direction £* This
motion 1s described in a covariant manner by the Lie derivative £ with respect to &4,
which we wili briefly outline as 1t i1s of importance here and in Chapter 4 the vector
field £ ‘carries along’ the metric tensor g, from the point with coordinates z¢ to the
pomt z'¢ = z% + e£* (this 1s the active view of a coordinate transformation) The Lie
derivative 1s defined as the difference between the metric tensor at z'®, gqp(z’), and the

metric tensor from z* carried along to z'* at z'®, g/, (z'), 1n the imt ¢ — 0, that 1s

oz — g ('

Thus a spacetime will have a symmetry 1if there 1s some vector €% such that
Le gap = Valp + Vo = 0,

where the formula L¢ gop = Vo + Vo follows from the definition of the Lie derivative
This 1s known as Killing’s equation and any vector satisfying this equation 1s called a
Killing vector

For example, consider the two-sphere with line element ds? = d6? + sin? d¢? If the
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components of £ are a(f, ¢) and ((6, ¢), then Killing’s equations are
ag=0, a4+ sin? 08s =0, acosf+smbfys=0

Differentiating the second equation w r t 6, we can solve to give § = —cot 0f(¢) +C and
o' = —f, and then the third equation gives f” + f = 0 and a = f' The general solution
15 therefore

fo = —Asin¢ + Bcoso
~ \ —cot@(Acos¢+ Bsmg) +C |’

and thus there 1s a three parameter family of solutions to Killing’s equation As the
Killing vector fields of S? are also Killing vector fields of M = M? x $2, in general a
sphenically symmetric spacetime will have (at least) three Killing vectors

The Lie derivative can be used to define another type of symmetry called self-similarity,
or homothety A symmetry 1s when the metric does not change as we move 1n the di-
rection of symmetry, L¢gep = 0 On the other hand, a (continuous) self-stmlarity 1s
when the metric changes 1n a manner proportional to itself as we move in the direction

of self-similarity, that 1s £ 1s a homothetic or self-similar vector field 1if

L¢ 9ab X Gab

More precisely, a (proper) homothetic Killing vector field £° 1s one such that L¢gqp = kg,
and a Killing vector field 1s a subset of this class with £ =0 By a constant rescaling of
&% we can assume without loss of generality that & = 2 for a proper homothetic Killing
vector field (1 e one for which k # 0)

For a spacetime to be both spherically symmetric and self-similar therefore, there must
be three Kilhng vectors and a homothetic vector Working in (v, 7) coordinates, with the
metric as given 1 (2 1 2), a homothetic vector must solve the equations &, p +&p.0 —2gap =
0 If€* = (a(v,r), B(v,r)), then the rr equation gives @ = a(v) and the 86 equation gives
B =r We make a further coordinate transformation v — v’ to set a(v) = v Then the

remalnlng equatlons are
m/),u + r‘/),r =0, 'UF,v + TF,T =0,

in other words, %), = §*F, =0
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We may solve these PDE’s using the method of characteristics We define the char-
acteristics of the PDE by (v,7) = (v(s),7(s)) satisfying

dv dr

= = = 214

ds ds | ( )
Then defining F(s) = F(v(s),7(s)) we find

dF OFdv OFdr
£=%£+8—T£ZUF,@+TF¢=O
and so F 1s constant along the characteristics Integrating (2 1 4), we find that the char-
acteristics are given by ¥ = constant, and thus z = v/r labels the different characteristics
Since F 1s constant on characteristics, we can write F = F(z), and stmilarly ¢ = ¥(z)
We will call this £ the similarity variable, or coordinate As a coordinate 1ts nature
1s changeable however, going from timelike to null to spacelike and so on Surfaces over
which a similarity variable changes from timelike to spacelike and vice versa are called
similarity horizons, and will be discussed 1n more detail in the next section
To conclude, the canonical form for the hine element of a self-stmilar, spherically

symmetric spacetime 18
ds? = —2Fe® dv? + 2¢¥dv dr + r2dQ?, (215)

with F = F(z) and ¢ = v(z), where z = v/r

2 2 Energy conditions

In Chapters 2 and 7 we will perturb a generic self-similar, spherically symmetric spacetime
endowed with the metric described above The term ‘generic’ 1s key, as we wish to
make the analysis very general and thus do not wish to specify the matter content of
the spacetime However the background matter content cannot be completely arbitrary,
there are a number of important restraints which any realistic physical system must obey
These restraints will give us a handle on the metric functions defined 1 (2 1 5} and make
the perturbation analysis feasible

There are three energy conditions, the weak, the strong and the dommant Consider
Einstein’s field equations,

Rop — %gabR = 87 Tyh
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Taking the trace gives R = —87T, and we can write
Ry = 87I'(Tab - %‘gabT)

This equation holds for all observers, for example an observer with unit timelike tangent

vector &2,
Rap€96" = 8m(Tupt%® + 1T) (221)

As mentioned 1n Section 1 2, the quantity T,,£%€° represents the energy density measured
by this timelike observer (see below), and 1s considered to be non-negative for a physically
realistic matter model This 1s the weak energy condition Requiring the entire term on
the right hand side of (22 1) to be non-negative 1s the strong energy condition, and
therefore 15 equivalent to Rqp£%? > 0 Note some authors consider the weak energy
condition to be T,;£%¢° > 0 for all null %, 1n which case the strong energy condition

imphes the weak energy condition We will combine the two 1n the following definitions
28]

Weak energy condition T,;v%0® > 0 for all future-pointing causal {non-spacehke)

vectors v®

Strong energy condition Rg,uv%® > 0 for all future-pointmg causal (non-spacelike)

vectors v*

To interpret these conditions we note that all matter tensors representing what 1s
beheved to be physically reasonable matter models are diagonalizable (can be reduced to
principle axes) [48] Thus T, takes the form

Top = plaly + P1TaTs + P2Yalh + P32428,

where {4, T4, ¥a, 2o} 18 an orthonormal basis with ¢, timelike and z,, y,, 2, spacehke p
represents the rest energy density of the matter field, and p; 23 are called the principle
pressures/stresses Then the weak energy condition 1s satisfied when

p20, p+p. 20, =123,
and the strong energy condition 1s satisfied when
ptpL+p2+p3 20, p+p 20, =123
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There 1s a third energy condition, which requires
p.>_|p1" Z=1,2735

that 1s, the energy density 1s non-negative and dominates the stresses present This 1s
known as the dominant energy condition, and derives from the fact that —7%¢ b represents
the density of momentum measured by a tumelike observer with future-pointing tangent
vector €% This leads to the definition

Dominant energy condition For all future-pointing timehke £2, the vector
—Tabéb 18 non-spacelike and future-pointing

This can be shown to be equivalent to requiring that the local speed of sound 1is not
greater than the local speed of light The reason this condition 1s relaxed into the strong
and weak energy conditions 1s that some effects violate the dominant energy condition,
for example Hawking radiation (see Wald [48]) The dominant energy condition imples
the weak energy condition, but there are no other implications between these conditions

Now we will derive the appropriate energy conditions for a self-similar spherically
symmetric spacetime We wish our spacetime to satisfy the dominant energy condition,

which as mentioned imphes the weak energy condition Thus we require
T’ > 0 = Rgpv®® > %R v%v,,

for all causal v®* Taking v® = % to be null means we require Rp0%¢® > 0 Let us
denote with £5 and £2 the outgoing and ingoing null directions respectively Solving
gabﬁifﬁ_ = g% % =0 and gabﬁiel’_ = —1 1n the (v,r) coordinates gives

6= (LFeY), 6= (0,-eY),

and, calculating the Ricci tensor 1n (v, 7) coordinates, we find the strong and weak energy
conditions 1mply Rabéﬁ_ﬁﬁ_ > 0 and Rg;0% % > 0, which 1s equivalent to

zy’ <0, (22 2a)
e (F' + zF%¥y') < 0 (22 2b)

The dominant energy condition includes these mequahties as well as Rgg > 0 For a
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self-similar spherically symmetric spacetime this 1s equivalent to
1-2F +2z(F' + Fy¢') >0 (2 2 2c)

Note the dominant energy condition returns a number of other 1nequalities [40], however
the three given here are sufficient for the analysis we wish to carry out Note also the

energy conditions are ordinary differential equations 1n z

2 3 Conditions for a naked singularity

To consider a solution to the field equations as a possible counter-example to the Cosmic
Censorship hypothesis, we must be certain any naked singularities do not appear because
they are inserted ‘by hand’ in the 1mtial data Thus we 1mpose a number of regularity
conditions on the region of spacetime prior to the formation of the singularity Then we
will specify the conditions required for a naked singularity to emerge

We take our regularity conditions to be the following there 1s a regular axis where
all curvature mvariants are finite for a non-zero fimte time before the formation of a
singularity In addition there are no trapped or marginally trapped surfaces in the initial
configuration (A trapped surface 1s a two-dimensional spacelike manifold where the ex-
pansion of both 1ngoing and outgoing null geodesics 1s negative The boundary of a region
of trapped surfaces 1s called the apparent horizon Trapped surfaces signal the presence
of singularities, which 1s why we wish to rule them out in the imtial configuration) These
conditions place further constraints on the metric functions

We will work 1n advanced Bondi coordinates using the line element given n (2 1 5),
ds? = —2Fe®dv® + 2¢¥dv dr + r2dQ?,

with F = F(z) and ¢ = ¢(z), where £ = v/r We will call the point where the singularity
forms the scaling origin @, and denote the past null cone of @ with A/ The past null
cone of © may be called the threshold v labels the past null cones of r = 0 and 1s taken
to increase nto the future, and we can 1dentify v = 0 with A, so that (v,r) = (0,0) at O
Taking v to measure proper time along the regular center » = 0 exhausts all remaining
coordinate freedom

We require regularity of the axis to the past of @ and of ' The axis 1s given by r = 0
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for v < 0 and thus z = —oo That v measures proper time along the axis we require

hm 2Fe®¥ =1

T =00

The Misner-Sharp mass 1s defined by
m= —g—(l - gabVaerr) = g(l - 2F),

and thus we measure the invariant m/r3 as 1t has the same units as other curvature
mvariants, for example the Ricci scalar For m/r3 to be finite as 7 — 0 we require

1 —2F — 0, thus for a regular axis we require
F(—OO) = %1 1/)(—00) =0

The 1interior to A, and N 1tself, must be regular, that 15 F, ¢ € C?(—~oc,0], since N
15 given by v = 0 = z That there are no trapped surfaces nterior to, or intersecting N,
demands

g®¥VrVr = 2F > 0,

that 1s, r remans spacelike Thus we require F > 0 for z € (—00,0], and we note an
apparent horizon will form for F =0

We demonstrate that there must be a curvature singularity at O n the following
way consider again the curvature invariant m/r® Smce F > 0 for z € (—00,0], we see
= = zp < 015 timehke and thus we can approach @ along £ = zg Then m/r® will diverge
at O unless F = % for z € (—00,0) Simlarly the mmvariant

1
Rygg = F(l - 2F+2.’E(F’ +F’(/J’))
r

will diverge at O unless 1 = constant for £ < 0, however to match at the axis this
constant must be zero Therefore to avoid a curvature singulanity at O the region interior
to A must be flat Avoiding this trivial case means there 1s a curvature singulanty at O
(Note the Vaidya spacetime s empty 1n the region mnterior to O, thus we will prove the
existence of the singularity for Vaidya spacetime 1n the appropriate section )

Now we will describe the conditions under which this singularity 1s naked A globally
naked singularity 1s one from which null geodesics can escape to future null infimty J+

(the surface at which all future pointing null geodesics end) Locally naked singularities,
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on the other hand, admit null geodesics which leave the singularity but may not necessarily
make 1t all the way to J* All the backgrounds we consider 1n this thesis admit globally
naked singularities, i opposition to the strong and weak CCH

The outgomng radial null geodesic (orng) equation of our self-similar spherically

symmetric spacetime 1s

ar _ Fe¥ = G(z)
dv

Since z = v/r, we may rephrase the geodesic equation as

dr
dz _ T vgy
dv 72

1

We will prove the following proposition

Proposition 2 1 There 15 an outgoing radial null geodesic emerging from O of and only

if there exists a positive real root to zG =1

Proof Consider a pomt in spacetime with z-coordinate z, such that z, > 0 Since
1 —2zG > 0 at z = 0, therefore erther 1 — G > 0 for z € [0,z,], or 1 — 2G = 0 for
some zp € (0,zp] In the first case, through this pont there 1s a umque orng, 7, by
standard theorems of ordinary differential equations Since 1 —zG > 0, by (2 3 1) we see
dz/dv > 0 and thus z decreases as v decreases Tracking back along -y, to v = 0 there
are two possibilities either r — r* > 0 1n which case we miss the singularity, or 7 — 0
If 7 — 0 we calculate the limit z; = lim, g z(v)|,, as

1 1 1
lim
v]0

2 =lm > = lim =
YT wodr/dv

G(z)  G(m)’
using ’'Hépital’s rule, with 2; < z, Therefore 1 — z;G(z;) = 0 which contradicts the
criterion that 1 — G > 0 for z € [0,z,] Thus there can be no outgoing radial null
geodesics which reach the singularity 1n the past in the region z € (0,z,] 1f 1 —2G > 0
this region

In the second case of 1 — zG = 0 for some zg € (0, z,], we see z(v) = zq solves (2 3 1)
and therefore £ = g 1s an outgoing radial null geodesic Since G = Fe¥ and F > 0 prior
to the formation of an apparent horizon, we must have zo > 0 Moreover, since all curves
z = constant focus at the origin, z = z( represents an outgoing radial null geodesic which

emanates from the singularity at O, concluding the proof O

We will call the first real root to G = 1 the Cauchy horizon, and denote 1t z = z
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Figure 21 Possible conformal diagram for a 4-S spacetime admitting a globally naked
singulanity There are three sumilarity horizons at which the similarity coordinate z 1s
null z = 0 denoted N, z = z. shown dashed, and = = z, shown as a double hne We
identify z = z, as the Cauchy horizon, and will call z = z, the second future similarity
horizon (SFSH) The apparent horizon 1s shown as a bold curve

We note the length of the vector pointing i the z-direction 1s

by (1 —
45V = 2 x(:G D (232)

and thus z = 0 and the roots of zG = 1 are null hypersurfaces These hypersurfaces mark
the transition of the similanty coordinate z from timelike (zG < 1) to spacelike (zG > 1)
and back again, and thus we call them ‘stmilarity horizons’ The Cauchy horizon 1s the
first (future) sumilarity horizon, and subsequent roots of G = 1 represent additional

(future) similarity horizons If there are no real roots then the singularity 1s censored

A general picture of collapse 1n 4-S spacetimes 1s beginning to emerge there 1s a
regular axis on which all curvature mnvariants are finite for a non-zero finite time, and
in addition there are no trapped surfaces in the mitial configuration Then there 1s an
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Figure 2 2 Conformal diagram for 4-S spacetime with censored singulanity, corresponding
to the case of no real roots to G =1 A spacelike singularty forms at r =0 for v > 0

mevitable curvature singularity at the scaling origin, which 1s naked 1if and only if there
are real roots to an equation nvolving the metric functions

There are still a number of possible configurations of this collapse, for example the
nature of the singularity and apparent horizons and so on Let us consider the case where
zG = 1 has two positive real roots, as this matches the self-similar Vaidya and Lemaitre-
Tolman-Bond1 dust models considered 1n this thesis (see next sections) We will denote
the first root z = . and the second z = z, Consider an or n g passing through a pomnt
which has z-coordinate z = z4 where z. < x4 < z. As we follow this curve into the past,
the umiqueness of solutions to {2 3 1) prevents this curve from crossing ¢ = . or T = z,,
and thus each orng n this region must meet the singularity in the past Therefore
there 15 a family of outgoing radial null geodesics through the pomnt v = 0,7 = 0, and
thus the singulanty 1s null The spacetime diagram for this 4-S collapse scenario 1s given
m Figure 21 We see from (2 3 2) that the apparent horizon, given by F =0 = G, 1s
spacelike ‘

The possible end-states of collapse have been classified by Nolan [36] and Carr and
Gundlach [5) Figure 2 1 corresponds to there being two distinct real roots to the equation
zG =1 As the roots approach one another, the first and second similarity horizons
draw closer A double root means the first and second horizons coincide, resulting 1n an
istantaneously or marginally naked singularity Aside from briefly in Chapter 3, we will
not consider marginally naked singularities i this thesis

The other most likely outcome of collapse 1s for a singularity to form which 1s spacelike
and allows no null geodesic to escape This black hole case arises when there are no real

solutions to zG' = 1, and 1s shown 1n Figure 2 2
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2 4 Special cases

In Chapters 3 and 7 we will test the stability of the naked singularities arising from 4-S
collapse by coupling with a scalar field and by perturbing using an odd party pertur-
bation In the second case 1t 1s possible to perturb only the metric tensor and not the
matter tensor, thus in both these cases 1t i1s not necessary to specify the matter content
exphcitly, merely requiring the matter field to satisfy the dominant energy condition 1s
sufficient However, 1n order to perturb using an even parity perturbation, we must per-
turb both the metric and matter tensor and thus we must specify what the background
matter content 1s

In choosing the background solution we have a number of requirements we seek a
self-similar spherically symmetric spacetime, admitting naked singularities for a non-zero
measure set of mitial data, whose metric and matter functions may be solved for in
closed form A good introductory model which contains all the essential features 1s the
self-similar collapsmg null dust (Vaidya) solution This 1s not the most physical solution,
so we further consider the self-similar timelike dust (Lemaitre-Tolman-Bondi) solution
In the following sections we give the essential structure of these two solutions, and in

Chapters 5 and 6 we perturb them each m turn

241 Self-similar Vaidya spacetime

This models a dust fluid following ingoing null geodesics Thus the matter tensor has no
pressure/stress terms, only energy density p Since we are considering a null fluid the

matter tensor 1s built from null vectors, and thus the Vaidya matter tensor 1s
Top = plals,

where £, 1s an 1ngoing null vector Using the advanced Bond: coordinates described
above we set £, = —0,v = —42 Thus we can use the self-similar metric given 1 (21 5)
to calculate the Einstein tensor, and the field equations tell us the only non-zero entry in
the Einstein tensor 1s 1in the vv slot The rr component of the field equations gives ¥ =
constant which w1o g we can set equal to zero The 66 component returns F” = 0, and

thus we let ' = az + b The vr component fixes b = 1/2, and the remaining equation 1s

2
8mp = —— I
r
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Setting A = —%a gives the self-similar Vaidya solution as

F=i1-)), 9@)=0, p=z (241)

" 8nr2

The Vaidya solution can alternatively be found by taking the Schwarzschild solution
m advanced Bondi coordinates and replacing the mass term with a function of v To make
the solution self-similar this must be a linear function of v, m(v) = Av Thus we recover
the Schwarzschild solution by setting Av = constant, and we recover flat spacetime by
setting A = 0 Note the energy conditions (2 2 2) restrict A > 0

For v < 0 we set A = 0 and thus the interior of v = 0 1s flat As we cross v = 0
we enter the matter filled region and hence the title ‘threshold’ for the past null cone
of the origin @ When the matter collapses to the origin O the density, p = A/8nr2,
diverges Alternatively, if we consider the Kretschmann scalar given by K = RapcqRObd =
(21)\/r2)2, we see this scalar diverges as we approach the singularity along z = constant
(unless A = 0 of course) Thus there 1s a singularity at O

If we consider the equation describing outgomng null geodesics, (2 3 1), we see there 1s

a naked singularity if and only if there 1s a real solution to
Az —z+2=0
The lowest root to this equation 1s
w=%(1—\/1_——8>:)5xc, (242)

and exists, 1e 1s real, for 0 < A < 1/8 This sitmilarity horizon represents the first null
geodesic to leave the singularity and escape to future null infinity, and thus z = z. 1s the
Cauchy horizon

For the self-similar Vaidya spacetime, there 1s one more similarity horizon,
1
xzﬁ(1+\/1—8)\)zxe (243)

For 0 < A < 1/8 these sumilarity horizons are distinct and the singulanty is globally
naked, the causal structure 1s as shown in Figure 21 For A = 1/8 these horizons comncide
and the singularity 1s imnstantaneously (marginally) naked, we will not consider this case
n this thesis For A > 1/8 a black hole forms, see Figure 2 2

The second similarity horizon 1s, in the purely self-similar Vaidya case, the last null
geodesic to leave the singularity and escape to future null infinity, and thus can be called
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the event horizon However, to have an asymptotically flat model, we can match across
v = vy > 0 with the exterior Schwarzschild spacetime, by setting m(v > v,) = constant,
m this case £ = z. would not be the event horizon Thus we will call z = z, the second

future similarity horizon (SFSH)

242 Self-ssmilar Lemaitre-Tolman-Bond1 (LTB) spacetime

This solution describes dust particles which move along timelike geodesics, and thus has

a matter tensor of the form
Tab = pPUguyp,

where u,u® = —1 The advanced Bondi coordmates which we found so useful in the
preceding sections are not suitable for this spacetime, as the fluid no longer moves along
null geodesics Instead we use co-moving coordinates that 1s, we let coordinate ¢ point
i the direction of fluid flow {and increase into the future) such that »® o< §¢, and choose
r orthogonal to ¢, that 1s u®*V,r = 0 This r coordmate 1s no longer necessarily the areal
radius, which we instead denote with R = R(¢,7) Thus a line element for a spherically

symmetric timehike dust 1n co-moving coordinates can be written
ds? = —e’(tT)gy? 4 Mir)gy? 4 R(t,r)d)?

To normalise u? such that uu, = —1 we find u® = e~?/2¢ Conservation of energy
momentum requires u® to be geodesic, that 1s u®V,u? =0 The b = r component of this
equation gives Ov/Jr = 0, and thus v = v(t) There 1s freedom 1n the ¢ coordinate to set

v = 0 without loss of generality, and our line element becomes
ds® = —dt? + A gp? 4 Rz(t, r)d92

We generate the Einstein tensor from this line element and solve the field equations
The {r component of the field equations 1s
_ 2R 9

——[2lnR’],

A==
R 0t

where dot and prime denote differentiation wrt ¢ and r respectively Integrating gives
e* = H(r)R'"?, where H(r) 1s a constant function of integration The rr component gives
H (1 +R?+ ZRR) —1=0 Since (RRQ) = R(R2 + 2RR), we can 1ntegrate this equation
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to give

(24 4)

where a(r) 1s another constant function of integration (we take the negative root for
collapse), and f(r) = 1/H — 1 Finally the field equation Gy = 87T} gives

1 2

- 245
87 R*R' ( )

p

Thus the field equations are solved up to two functions, f(r) and of(r)

We nterpret these functions following [23] We recall the defimtion for the Misner-
Sharp mass as m = %(1 — g®V,RV:R) = %3(1 + R? — e *R?) = o Alternatively, if
we consider the dust cloud to be made up of mfimtesimally thin spherical shells, and
integrate the density times the surface area of each of these shells from 0 to R, we find
the mass mside a sphere of dust particles of radius R Thus

R(t,r) T
m(r) = / 4nR%pdR = / 4mpR2R'dr = a(r)
0 0
The other function f(r} 18 called the specific energy of the dust fluid, and for the sake of

simplicity we will consider the case of marginally bound collapse, by setting f(r) =0
With f(r) = 0 we can solve (2 4 4) as

R3 = —m(r) [tc('r) - t]z,

for some function t.(r) Finally our remaining coordinate freedom allows us to choose r
such that R(t = 0,7) = r Using this, we find t.(r) = g\/r3/—2m, and thus once we have
specified m(r) (or alternatively p(r)) we have completely determined all the unknowns
From (2 4 5) we see the density diverges when R = 0, that 1s when t = ¢.(r) This
18 the curvature singularity known as the shell-focusing singularity, and we can interpret
the function t.(r) then as the time of arrival of each shell of fluid to the singularity
Note there 1s an additional singularity known as the shell-crossing singulanty when
R’ =0 We will not consider this singulanty as one may extend spacetime non-uniquely
through the shell crossing sigularity, see Nolan [37] To rule out the occurrence of the

shell-crossing singularity we take R' > 0 for all r > 0, see Nolan and Mena [39]
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Thus the line element for marginally bound timelike dust collapse 1s
ds? = —dt* + R™*dr* + R%dQ?

We, however, are interested in self-similar collapse, and thus we look for a homoth-
etic Killing vector field £¢ which solves the equation Vo€, + Ve — 294 = 0 If £° =
(at,r), B(t, 7)), this returns four equations,

a=1, R?B=d, PBR'+BR -R +aR =0, BR' +aR—-R=0

From the first equation we can write & =t + Fy(r), for arbitrary F1 Since SR" + 'R’ =
(BR'), we may combine the third and fourth equations to give ¢ = 0, and thus we may
change the origin of ¢ to set & =t The second equation therefore gives 8 = F(r), and

we can make a coordinate transformation to set 8 = r The remaining equations are
t(R)+r(R) =0, tR+rR —-R=0

The first of these equations 18 £29, R’ = 0 whuch, as we saw before, 1s solved 1f and only 1f
R’ 15 a function of a similarity vanable, i this case y = ¢/r Thus if we set R = rG(y),
where G 1s a function of the similarity variable, we have dR/dr = G — y(dG/dy), which
1s solely a function of y

Thus the line element for a self-similar spherically symmetric timelike dust will be
ds? = —dt> + (G — yG')?dr? + r?G?dQ?, (246)

where here a prime denotes differentiation w rt argument We may use this metric now
to generate the Einstein tensor and examine the field equations, still using the co-moving
coordmates The rr component of the field equations 1s G2 + 2GG" = 0 Integrating
yields GG™ = p?, where p 1s some constant The #t component then gives

B _L GGI2
P~ 8 R2G2(C — 4Gy

which 1s why we chose GG’ = p? > 0 Finally integrating this equation and using
R|i=0 = r we can solve for G as

G(y) = (1 — uy)*?, (247)
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where py = —gp We note that flat spacetime 1s recovered by setting p =0

1

There 1s a shell-focussing singularity therefore at y = 4= Since

OR/0r = (1 — py)*/3 (1+ %uy(l - .“y)—l) )

we see that prior to the formation of the shell focussing-singularity, y < p~l = 1-puy >0,
thus R > 0 This rules out the formation of shell-crossing singularities prior to the

formation of shell-focussing singularities

The last 1ssue 1s to examine the causal structure of the spacetime Radial null geodesics

satisfy

_ /
dr_:tR’

with the plus and the minus describing ingoing and outgoing null geodesics respectively

Since ¢ = yr this equation may be rewritten as

ay _ 1o pr_
dr_r(:bR y)

If there 1s some y = constant which 15 a root of the right hand side of this equation,

1t represents a null geodesic which reaches the singularity 1n the future/past Thus the
Cauchy horizon, y = y, 1s given by the first real zero of

G-yG -y=0, (248)
if one exists, and the past null cone of the origin, y = y,, 18 given by the root of
G-yG +y=0 (249)

Since G = (1—py)?/3, we find there 1s a Cauchy horizon, and therefore a naked singulaty,
if 4 15 1n the range

0 < p < py, e = 0638014

Moreover, when 1 18 1n this range, there 1s one past null cone of the origin y,, there 1s an
additional future similarity horizon at y = ye > y., as g — ps, Ye — Yc, and as g — 0,
¥p = ~1,y.— 1 and ye = 00

Thus when 0 < p < u., we again have a spacetime with the structure given in Figure

45



21 The scaling origin at which the singularity initially forms 1s the pomnt (¢,r) = (0,0)
The apparent horizon forms when ¢**V,RV,R = 0 which 1s equivalent to dG/dy = 1

This occurs at y % (1 + (%@)3), that 1s, after the formation of the shell-focusing

singulanty at y = ﬁ
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Chapter 3

Scalar field propagating on 4-S

spacetime

As discussed 1n the previous section, there 1s a class of self-similar spherically symmetric
spacetimes which collapse to form a naked singularity when the metric functions satisfy
certain conditions These solutions represent possible counter examples to the Cosmic
Censorship hypothesis as discussed in Chapter 1 To better understand how much of a
threat to the CCH these solutions are, we must examine their stability In this chapter we
mimmally couple a massless scalar field to a self-similar spherically symmetric spacetime
whose matter tensor 1s undefined, save for satisfying the dominant energy condition
Further we consider spacetimes which develop a naked singularity at some time, and
which contain no trapped surfaces prior to A, as set out 1n the previous chapter
We will use the (v,7) coordinates, and thus the line element 1s

ds® = —2Fe*dv® + 2e¥dv dr + r?dQ?,
with F = F(z) and ¢ = ¢¥(z) where z = v/r, and the metric functions must satisfy

2y’ <0,
e’ (F' + zF?%e¥y’) <0,
1-2F+2z(F' + Fy') > 0

A massless scalar field ¢ must satisfy the massless Klein-Gordon (wave) equation,

00 =@, = (~g) 83, [(—9) g 3,2] = 0
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We will measure the flux of this scalar field, F = u*V,®, where u® 1s tangent to a radial

(u? = u? = 0) timelike observer Our imitial regularity condition 1s that F must be finite

on N, and we allow this finite field to evolve then up to the Cauchy horizon and beyond
The flux of a scalar field m (v, ) coordinates 1s

F=u"d®,+ud,,

where u,u% = —1 Thus to measure the flux on relevant surfaces we must understand the
nature of the components of the tangent vector u® of arbitrary radial timelike geodesics
Let the coordinates of a future pointing radial timelike observer be 2%, and let the geodesic
describing the observer’s motion be parameterised by the proper time 7 such that z° =
z%(7) Then the components of the tangent to this timelike geodesic will be v* = dz®/dr,
that 1s ¥ = v and «” = r, where a dot denotes differentiation wrt proper time

A detailed analysis of these components was carried out by Nolan 1n [40], and we
summarise the main findings here in Propositions 3 1 and 32 First some defimtions of

asymptotic relations (see e g Chapter 3 of [3])
e f(z) =0(g(z)) as ¢ — zo 1ff I constant ¢ st |f(z)]| < c|g(z)| as z — zp

e f(z) =o0(9(z)) as ¢ — zp ff for any € > 0, | f(z)| < €|lg(z)]| as z — 2o Note this 1s
often denoted f(z) < g(z), z = x¢

e We define ~ by the condition f(z) ~ g(z) as x — zo ff f(z) — g(z) = o{g(z)) as
T — Iy

Proposition 3 1 For any future pownting radial tamelike geodesic crossing N, we have

o(T) = weT +var? + O(13),
r(r) = ro+nr+0(r%),

and thus v ~ ug, r ~ 11 as 7 — 0, where 7 = 0 describes the point where the geodesic

crosses N'

Proposition 3 2 Suppose that G and ¢ are differentiable at x = z., the Cauchy horizon
Then all radial timelike geodesics whose nitial points are sufficrently close to the Cauchy
horizon will cross the horizon in fimte time Using coordinates (x,v), for any radial
timelike geodesic crossing the horizon, the components of the tangent T and v have finite

non-zero values
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3.1 Solving the scalar wave equation

Now we examine the scalar wave equation for @ We exploit the spherical symmetry of

the background spacetime and spht the scalar field,
®(v,z,0,¢) = T(v,z)A(6, 9),

where we use the advanced null coordinate v, the homothetic coordinate z, and the

standard angular coordinates 6,¢ Then the line element 1n these coordinates reads

1 2¢e¥ 2
ds? = 2¢¥ (= — @ ) dv? — 2V dvdz + Z-dQ2,
z z2

2

where G = Fe¥ By using separation of variables the scalar wave equation splits into two
PDE’s, the first n v, z,

27 (é - G) Tew+ gy — 2°G'Ty — 20T, — keT = 0 (311)
and the second m 8, ¢,

Agg+cotfAy+csc?0A 44+ kA =0, (312)

where k 1s the separation constant

We will see in the next chapter that the 8, ¢ equation 1s solved by the spherical
harmonics, A(6,¢) = Y;™(0, ¢), where l = 0,1,2  1s the multipole mode number, and
k =1l +1) with ! € N for periodicity reasons Thus this separation 1s essentially a
multipole decomposition (see Chapter 4)

Since the spherical harmonics are well understood, we need only solve the v, z equa-
tion We reduce this from a PDE to an ODE by taking the Mellin transform of the
equation over v (see Section 1 3 1), defined by

H(z,s) =M[T(v,z)] = /(')00 T(v,z)v"* " dv,

which amounts to replacing T'(v,z) with v*H(z,s), where s 1s an as yet unconstrained
complex parameter Equation (3 1 1) thus reduces to an ODE m H(z, s),

1
222 (5 - G) H" + (25 — 20*G)H' — (1—3 +1(+ 1)e¢) H=0 (313)
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Performing the inverse Mellin transform on the solution of this ODE over a contour in the
viable range of s will return the solution to (3 1 1), and then summing over the spherical
harmonics will return the scalar field @

This ODE has a number of singular points, namely z = 0 and the roots of zG = 1,
the lowest of which we have defined to be z., and the second to be z, The canonical

form of a second order linear ODE 1n a neighborhood of z = z¢ 1s
(z — 20)?H" + (z — zo)b1(z)H' + ba(z)H =0,

and when we write equation (3 1 3) 1n 1ts canonical form 1n the neighborhood of = zq,

we find

s—2°G’ [z —1x9 25+ 1l +1)e¥z [z — 1o\
bi(z) = 1-zG z ’ bo() = - 2(1 - zG) T

We will examine zg = 0, or N, first

Past null cone

Since b1 (z) and b2(z) are both C! 1n a neighborhood of z = 0, we can use the method of
Frobemus to solve (31 3) on /' * (see Section 1 3 2) The indicial exponents are 1, —s
As 1t stands we cannot make any assumptions about s, however later analysis shows 1f
—Re(s) > 1 the flux of the scalar field will be always infimte on A/, thus we only consider
—Re(s) < 1
It 1s possible for 1 and —s to differ by an integer and so the method of Frobemus
yields the following expression for the general solution to (31 3) in a neighborhood of

z =0,

o 0] oo o0
H(z,s)=c¢, Z amz™ ! + ¢ {klnx E amz™ ! + Z bmmm_s} (314)

m=0 m=0 m=0

In this expression, ¢; and ¢y are arbitrary constants, ag = bg = 1 with k = 0 1f 1 and
—s do not differ by an integer, agp = 1,bp = 0 with £k = 1 1f 1 and —s are equal, and
ap = bp = 1 and k may or may not vanish if 1 + s = p for some positive integer p

The flux of the scalar field, F = u*V,®, given that ® = v*H(z,s) (we may omit the

*To use the method of Frobemus the coefficients b, (z), b2(z) should be analytic at z = 0 However,
to obtain the required information about H 1t 1s sufficient to use a finite expansion with appropnate
remainder terms, 1e with b;,b, € C' at =0 Thus we only require the metric coefficients to be C? at
z =0, and similarly at z = z. and £ = z. We assume this henceforth
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angular part) 18

Flv,r) = v0,® + 10,9,
S L L
=V Trer] T | P2 or )

1 US+1
= v [svs_lH + —vsH'] +7r [— 5 H'}
r T

Using our general solution near the past null cone of the origin, the expression for the
flux on N 1s

o0 ’Um+3 00 ,Um+s+l
Fi(v,r) = Z am(m+ s + l)rm+1 -7 Z am(m+1)m, (315)
m=0 m=0
2 v ™Mt
Folv,7) —U{me+1m+1 3+1+k2[1+ 1)ln(;)]amm}
m=0 m=0(
o0 m+3s+1
{Zb m—mﬂ kZ[1+(m+1)1n(%)]am%}(316)
m=0

where the 1 subscript denotes the ¢; part of the general solution for H given m (3 1 4),
and likewise the 2 subscript The finiteness of v, 7 on A has been given 1n Proposition 1
We see that for the flux to have a finite measure on N’ (away from the singularity),

that 1s when v = 0 and r = constant, we require
Re(s) > 0

Under this condition we let the scalar field evolve towards the Cauchy horizon, and ex-
amine 1ts flux there (Techmically, we have shown that each mode of the Mellin transform
of the flux 1s fimite on the past null cone, rather than the flux itself See §3 2)

Cauchy horizon

We seek the indicial exponents near £ = z., however near this singular pomnt b, and b,
are 1n the form g Thus we use 'Hoprtal’s rule to give
2G' - (z — z.)

bulee) = hm S halee) = — oo

) 25 + pe¥z)
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With z.G(z.) = 1 by definition, the denominators are 1+ z2G‘(z.), however 1t is unclear
whether this term vanishes or not

Consider the function W(z) = zG —1 Then W(z.) = 0, and from our previous
assumptions on F,1) we have W € C?(—c0,z,) If W has a double root at z = x, then

T = x 15 a local max/min, and thus W'{z;) =0 Then

1
W'(ze) = —(1+2¢G'(ze)) = 0,
c
and thus the denominators 1n b; and by given above are zero On the other hand, we note

that simce we have assumed a regular axis,

m W(z)= hm zFe¥ —1<0

T——00 T——00

Thus if z = z, 15 the distinct lowest root of W, then W crosses the z-axis from below
and thus W’ > 0, that 1s

14+ z2G'(z.) > 0,

since z. > 0 Physically we interpret the difference so a distinct lowest root describes
the collapse pictured 1n Figure 2 1, with two distinct future similarity horizons and a
globally naked singularity in between Multiple lowest roots means the first and second
similarity horizons coincide, giving a marginally, or instantaneously, naked singularity

The two cases will lead to very different analyses, thus we treat them separately
(1) Unaque lowest root

In this case by (z), by(z) are C! on z = z,, thus z. 15 a regular singular pomnt and we
can use the method of Frobenius Since by(z.) = 0, the indicial exponents are 0,1 — b,

where

72G'(z.) — s

=) S e 71

We find the sign of G'(z.) n the following way

Smce hmg, o W = —o0, and the first zero of W 1s at z., therefore W < 0 for
z € (—00,z.) Also, since G = Fe¥ and F > 0 for z € (—00,z.) to rule out trapped
surfaces before the formation of the singularity, we have 0 < zG < 1 for z € (0,z.)
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Thus, since ¢’ < 0 for z > 0 from energy condition (2 2 2a), we find

sGFY > Fy/,
= zF2¥y > Fy,
= F' 4 zF%%y > F + Fy',
= 0> F +zF%%) > F' + Fy',

where 1n the last line we have used the second energy condition (222b) Thus G' =
eV(F' + Fy') <0 for z € (0,z.), and we conclude that

G'(z:) <0

Our mitial regularity condition required Re(s) > 0 Under this condition, and using
the work above, we can say that b, < 0, hence 1 — b, > 0, which allows us to order the
indicial exponents Thus a general solution near z = x, will be

o0 [, o] oo
H(z,5)=C1 Y _ An(™' 7% 4+ G, {kln( D Am( 4> Bm("‘} (317)
m=0 m=0 m=0

where ( = z — z., and the coefficients have the same structure as (3 14) From this we
calculate each component of the flux,

c0o o0
Fr=av" Y (m+1=b)Aml™ % +vs0°™ 1 Y Ap(mH0, (318)
m=0 m=0
Fy = zv° [k > AmnC(m+1-be) +1]¢™ % + 3 BmmC"‘_ll
m=0 m=0

+vsv®!

Z Bm¢™ + kIn( i Amgmﬂ-"c} (319)

m=0 m=0

Using the finiteness of v, z given 1 Proposition 2, we see that if b, < 0, that 151f s > 0,
this expression 1s fimte on the Cauchy horizon,1e whenz —z,=( =0
Thus 1n the case of xG' = 1 having a unique lowest root, a scalar field with a finite

flux on the past null cone of the origin N, will have a finite flux on the Cauchy horizon

(1) Multiple lowest root

If z2G'(z.) + 1 = 0, z, 15 an wrregular singular pomt of (31 3) and the method of
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Frobenius no longer applies Note that this 1s a special case which one would expect
to correspond to a set of measure zero 1n the class of spacetimes under consideration,
and thus 1s of lesser interest from the context of the Cosmic Censorship hypothesis, we
give the analysis merely for completeness, and to present some of the methods used for
irregular singular points

We label n = 2, — z and examine solutions to the ODE 1n the asymptotic limit | 0
We assume the solution to (3 1 3) can be written 1n the form

H(n) = e,

transforming (31 3) to an ODE 1n h(y) Now we assume the common property near
rregular singular points [3],

h=o(h?), nlo0

where the overdot denotes differentiation with respect to 7 (3 1 3) becomes a quadratic
n h,
s I(1+ 1)

h2{(:1:c—7})‘“(37c‘77)2G}_(3+($6_n)2G>h~-’Bc—"7+ 2

, n40(3110)

If we consider zG = 1 to have a lowest root of multiplicity &, then we can write 1ts Taylor

series around n = 0 as

P& (0
. (0)

- + O('r]k+l)

1~ (z.—n)G(n) = P(n) =

This means 1if the lowest root 1s of multiphcity k, we need the metric functions to be
C* This 1s not too much of a restriction however, since the class of functions with roots
of multiphicity & becomes very small as & increases, meaning we are dealing with a very
special case 1n this analysis

We can make the approximation
s+ (e — )G ~ s+1, nl0,

and since we assume the metric coefficients are at least C?, we can approximate e¥ by
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the first term 1n 1ts expansion, ¢, mn the imit 7 , 0 Thus we arrive at a quadratic 1n h,

n*(h)? —ah~pB, 710, (3111)
k(s +1) = k! (i+l(l+1)c0)
“T2P®0) U 2.PE(0) \z. 2 ’

where a, 8 > 0 (if Re(s) > 0) and constant in the it [ 0, and k£ > 1 This quadratic

has two solutions corresponding to two linearly independent solutions of (3 1 3), which

are
mo= —gogr o),
B Bt 2+
hy = St (k+1)+0( ), nd0

At this point we verify our earlier assumption, namely

h=o(h?), 7l0
Thus we have constructed two solutions to (3 1 3),

Hi(n) = n’“eXP{—(kfl)nl‘k+0(n)} (3112)

Hy(n) = exp{O(n)} (3113)

Both of these functions and their derivatives are finite 1n the limit | 0, £ — =z if
Re(s) > 0, and thus the resulting expressions for the flux of the scalar field on the
Cauchy horizon are finite

We summarize thus

Proposition 3 3 Let spacetime (M, g) be self-simalar and spherically symmetric, satisfy
the domanant energy condition, and admit a Cauchy horizon £ = x, Assume also that
gab € C? at x =z, Then a scalar field which has a finite fluz on N, the past null cone
of O, will also have a finite fluz on the Cauchy horizon

Second future similarity horizon

We have found that the Cauchy horizon formed n the collapse of self-similar spherically

symmetric spacetimes 1s stable with respect to an mfallmg scalar field But what comes
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after the Cauchy horizon? When there 1s a unique lowest root to £G = 1, the Cauchy
horizon 1s followed by a distinct second future similarity horizon (SFSH), denoted z = z.,
which 1s the next root to zG =1

Since the scalar field evolved through the Cauchy horizon without divergence, we will
assume W € C?(—o0,z,), where W = zG — 1 We will consider only the case where
T = T, 18 a distinct root of W, and thus we have W(z,) = 0, W > 0 for z € (z,ze),
and W/(z.) < 0 In the same manner as at the Cauchy horizon, the method of Frobenius

gives indicral exponents near z = z, as 0 and 1 — b, where

2G'(ze) — 5

T S S 1

Since W'(z,) < 0 and z, > 0, we have 22G'(z.) +1 < 0 Also, writing G = (W + 1),
we have

G(5g) = ~W'() xig[W(ze) +1],

and since W(z.) = 0 and W'(z,.) < 0, this means G'(z,) < 0 Finally since we are only
considering Re(s) > 0, we have b, > 0

Our expression for the flux of a scalar field near the SFSH will be exactly as i (3 1 8),
(319), only with z, replaced everywhere with z, Consider the first term n F,

o o]
zv® Z (m +1 — b)) An(z — zo)™ b
m=0
This term will diverge on z = z, (unless b, = 1, but this would require s = —1)

The final picture 1s this a scalar field with a finite flux on the past null cone N
will evolve onto and through the Cauchy horizon without divergence However, when
the scalar field reaches the second future similarity horizon, 1ts flux will diverge There
will be a distinct SFSH 1n the most general scenario of self-similar spherically symmetric
collapse, which 1s of most interest from the point of view of Cosmic Censorship

In brief the naked singularity persists after perturbation by a scalar field, but only
for a fimite time We will see that this 1s a general feature of perturbations of naked
singularities formed 1 4-S spacetimes
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3 2 The stability of modes

In this section we discuss some of the finer points of the issue of performing the inverse
Mellin transform The comments of this section are relevant for subsequent Chapters
We have derived an invariant scalar which we wish to examine on certain surfaces in
spacetime In this case, the scalar 1s the flux, 7 We have found the conditions under
which the basis of solutions for the Mellin transform of F, which we will denote F; and
F,, are finite on the past null cone of the origin, however this 1s not quite enough to
guarantee that we may use the Mellin inversion theorem to recover the flux F The full

solution for the Mellin transform of F on v = 0 1s a linear combination of the form
F'pnc = 61(3) IFle(va r, S) + 02(3) FIQ)(U) T, S),

where p denotes the solutions on the past null cone of the origin Importantly, the
‘constants’ ¢; and ¢z may depend on s To perform the inverse Mellm transform of F
we would need to know something about these coefficients The 1ssue becomes more
complicated on the Cauchy horizon, as each solution on the past null cone 1s ‘scattered’
to the solutions on the Cauchy horizon,

FY = di(s)F] + do(s) 5, I} = ds(s) F{ + da(s) 5,

where ¢ denotes a solution near the Cauchy horizon Now to perform the inverse Mellin
transform of F we would need to know information about the scattering coefficients d,(s)

This scattering problem 1s technically extremely difficult to solve, and 1s beyond the
scope of this thesis However, while a fimite F;,Fo may not be a suffictent condition to
guarantee the mverse Mellin transform exists, 1t 1s clear that 1t 1s an absolutely necessary
condition, as if [} or [Fy were to diverge at some point then there would be no hope of
the inverse Mellin transform existing at that point

We will adopt the following as our mimmimum stability requirement that for the
inverse Mellin transform to exist we must at least have each component of the basis of
solutions for the Mellm transformed quantities fimite on the surface in question This 1s
equivalent to asserting that each individual mode remains finite Indeed every solution
of the ODE corresponds to a general solution of the PDE obeying the ansatz T'(v,z) =
v’ H(z,s) What we have shown 1s that every mode which 1s finite on the past null cone
15 also finite on the Cauchy horizon

From (31 5),(316), we see that this mimmum stability requirement 1s satisfied on
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the past null cone for Re(s) > 0, and that under this condition the minimum stabihty
requirement 1s automatzically satisfied on the Cauchy horizon While this 1s not conclusive
proof that the flux of the scalar field, as recovered from the inverse Mellin transform, 1s
finite on the Cauchy horizon, 1t 1s a strong mdication that the flux of the scalar field does
not diverge there On the second future similarity horizon however, we see that even this
minimum stability requirement 1s not satisfied, and thus the flux certainly diverges there

For the rest of this thesis we will use this minimum stability requirement, and examine
the fimteness of individual modes rather than attempt to perform the inverse Mellin
transform While Chapters 5 and 6 use the minimum stability requirement, 1t 1s only

when we reach Chapter 7 that this becomes an 1ssue and needs more discussion
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Chapter 4

Formalism describing gauge
invariant perturbations of

spherically symmetric spacetimes

41 Spherical harmonics - Multipole decompositions

While spherical symmetry 1s a good approximation for stars, planets, moons and so on,
the fact 1s that stars are not spheres The huge energies nside the star, and the fact
that stars are not 1solated in an otherwise empty universe, will cause distortions of the
star’s surface These distortions are n fact crucial for gravitational radiation Birkhoff’s
theorem says that the vacuum outside a spherically symmetric mass will be static, that
18, no radiation can be present But on an even more basic level, as soon as a star begins
to rotate 1t will stop being spherical and will bulge at the equator, a deformation called
the quadrupole

So while stars are not spherical, they are close to spherical and thus we may consider
them as a sphere plus ‘bulges’ These ‘bulges’ may be quantified by the spherical har-
monics, an mfinite series of functions defined over the sphere which contain all possible
deformations, to describe the shape of a particular star one simply chooses the relevant
spherical harmonics to 1nclude

The quickest way to get at the spherical harmonics, imndeed their definition, 1s as the

angular part to the solution of Laplace’s equation 1n spherical coordinates,

b 18 (aV\ | 1 0oy 1 v
vv_r261‘ " or +r231n089 Smeao +r23m20?ﬁ— ’
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Figure 41 The convention used for the spherical coordinates

where r € [0, 00) 1s the radiwus, 6 € [0, 7] 1s the colatitude measured from the z-axis, and
¢ € [0,27) 1 the azimuth, see Figure 4 1

Solutions are found from separation of variables, V(r,6,¢) = R(r)©(8)®(4), giving
three equations,

r?R"+2rR' - Il +1)R = 0,
" +m?® = 0,

1 2
9(51n9@')l+[l(l+1)— i ]@ = 0,

sin sm* g

where a prime denotes differentiation w r t argument, and [, m are separation parameters
The first equation 1s sumply solved*, as 1s the second, and after a change of dependent
variable cos@ = z € (1,—1) we recognise the third equation as the associated Legendre
equation of degree [ and order mm The solutions to these two second equations will be
bounded wrt 6 (1e at the poles) and periodic wrt ¢ (1e ®(0) = &(2x)) 1f [,m are

mtegers, | > 0 and —! < m <[, and are called the (surface) spherical harmonics We will

*Not so in cylindrical coordmates the radial equation 1s Bessel’s equation, which 1s why Bessel’s
functions are sometimes called cylinder (harmonic) functions
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define the normahsed spherical harmonic as (49)

where P(z) 1s the solution to Legendre’s equation The spherical harmonics are orthonor-

mal,
T p2w , ,
/ / Ylm* len sin gdgdgb = 61 l/émm y
0 JO

where * represents complex conjugation, and form a complete set, that 1s every function,
whether 1t 15 a solution of Laplace’s equation or not, continuous over a sphere may be

decomposed 1nto an mfinite series of spherical harmonics over the mode numbers I, m,

[e's} I
F0,8) =" ArY™06,9)

1=0 m=-1

Picking out individual modes will specify which sort of deformation from the sphere
you want When m = 0, the ¢ dependence 1n the spherical harmonic drops out, and thus
these modes represent axisymmetric deformations The regions over the sphere where the
spherical harmonic has the same sign divide the sphere into bands of latitude, or zones,
and thus the m = 0 modes are called zonal harmonics See, for example, Fig 42 (a)
This 1s the ! = 2,7 = 0 mode In this case P{ = 1(3cos?6 — 1), and thus the spherical
harmonic has one sign near the poles and another near the equator We can use this
mode to describe how oblate/prolate the deformed sphere 1s

For {m] = [ modes, we find P} goes hke sin™#, which does not change sign as 6
varies Thus these modes only change sign as ¢ varies, and the regions over the sphere
with the same sign are divided into wedges defined by lines of longitude, and are called
sectoral harmonics The other modes divide the sphere into tiles or tesserae and thus are
called tesseral harmonics (see Fig 4 2)

These spherical harmonics have a very practical application 1n the multipole expan-
sion Imagine a haphazard collection of matter particles For an observer outside of this
cloud of particles, the gravitational potential in Newtonian gravity will solve Laplace’s

equation, and thus we can write the potential, V, as

o {
V(r6,¢)=>_ > (Ar'+Br ") Cn¥™(6, ),
1

=0 m=—
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Figure 4 2 Spherical harmonics plotted on the sphere as r = 7o+ Re(Y™) (a) Thel =2,
m = 0 zonal harmonic This describes a bulging at the equator and 1s typical of rotating
bodies (b) The I = m = 5 sectoral harmomc (c) The I =7, m = 4 tesseral harmonic

with A, B, C constants Let us consider the gravitational potential of a star Requiring
the potential to vanish as r — oo sets A; =0 Renaming some constants gives

o'} 1 i
e —— {BO—Z ) (5) czmylm},

=1 m=—1

where R 1s the equatorial radius of the star For large r > R the first term dominates,

therefore to leading order 1n £ we could treat the system of masses as a pomnt source, and
thus this lowest mode 1s called the monopole Since minus the gradient of the potential
gives the force, minus the gradient of the first term returns the familiar inverse square
law of force for pont sources As the potential of a point source extends 1n all directions
equally we see this 1s the spherically symmetric mode

Including further terms will describe more accurately the distribution of matter in
the source Consider a source with azimuthal symmetry (axisymmetry), then the gravi-

tational potential 1s given by

Vi(r,0) = “Gfl {1 - i«]z <§)1PI(COSQ)} :

=1

where the numbers .J; are the gravitational moments The first moment, ! = 1, 1s called the
dipole, and can be set to zero by choosing the center of mass as the origin of coordinates

The | = 2 mode 1s called the quadrupole and describes the amount of bulge at the equator
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All rotating objects will bulge at their equator, for example [44] the sun has J, = 2x 1077
whereas the earth has a larger quadrupole!, with J; &~ 1 x10™% The next term quant:fies
how much north/south asymmetry there 1s For the earth, J; ~ —2 x 1075, since there
are more land masses 1n the earth’s northern hemisphere, and so on

Multipole expansions can also be used to describe the electrostatic potential, and this
1s where the names for the modes come from The [ = 1 mode describes two oppositely
charged particles and thus 1s called the dipole The [ = 2 mode describes two pairs of
oppositely charged particles, and thus 1s called the quadrupole The next 1s the octupole,
and so on In fact, all physical potentials satisfying a 1/d law can be expressed using a

multipole expansion,

Viz) = / ) sy

|z — |
where p 15 the charge or mass density, for example [29]

Finally some 1mportant considerations from the powmnt of view of radiation 1n general
relativity Fields are classified from the form of the potential generating the field, thus
Newtonian theory 1s a scalar field as 1ts potential 1s the scalar described above, electro-
magnetism 1s a vector field as 1ts potential 1s a vector, and general relativity treats gravity
as a tensor field as the metric tensor can be thought of as the potential

Every field has an integer spin number associated with 1t, a scalar field has spin 0,
a vector field spin 1 and a tensor field spin 2 An important theorem {34] says that a
radiation field of spin S will manmifest at modes [ = S and above A scalar field therefore
may be spherically symmetric, such as the monopole of the Newtonian potential discussed
above A vector field, such as electromagnetism, can not be spherically symmetric, there
must be two poles, north and south Thus electromagnetic radiation begins at the dipole
Gravitational radiation 1n general relativity begins at the quadrupole, that 1s in vacuum
the monopole and dipole terms do not evolve with time Birkhoff’s theorem guarantees
spherically symmetric spacetimes, which contain only monopole terms, are static Con-
servation of momentum can be used to rule out the dipole term 1n vacuum [34], however

we will explicitly show 1n §5 1 2 and §5 2 2 that a choice of coordinates can set the dipole

to zero

nterestingly, the earth’s quadrupole 1s in fact decreasing, for the following reason during the ice-age
the weight of ice around the poles caused the earth to bulge more at the equator, with the receding of
the 1ce-sheets the earth 1s returning to a more spherical shape This 1s called glacial rebound
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To visuahse this consider the first three zonal harmonics projected onto a plane con-
taining the r-axis The | = 0 mode 1s a circle, and thus any rotation about the origin
will preserve symmetry spin 0 The [ = 1 mode bulges in the top half, and thus a
360° rotation 18 needed to preserve symmetry spin 1 Lastly the I = 2 mode bulges at
the equator but is still north/south symmetric, and thus a 180° rotation will preserve
symmetry spin 2

The reason we mention this 1s that perturbations in the metric and matter tensor can
be used to model gravitational radiation, the physical scenario we examine 1s a spacetime
which 1s acted on by gravitational waves

For completeness we describe how to calculate directly the mass quadrupole for a
nearly-Newtoman system of masses Analogous to electromagnetism, we define the re-

duced (traceless) quadrupole moment tensor as [34]

I, = /p(mzmj - %J,Jrz) d3:c,

where p 1s the density, indices 7,7 run over the three spatial coordinates, and the z, are
the components of the position vector r for each mass in the system The energy radiated
from this system 1s proportional to the third time derivative of the reduced quadrupole
moment Note that when this tensor 1s reduced to principle axes (1 e diagonalized), the
tensor given above has one independent component, and this i1s sometimes called the
quadrupole moment [31]

4.2 (Gauge nvariant perturbations

The basic umit of GR from which everything else 1s built 1s the metric tensor, which can
be considered the potential for the Riemann tensor, representing the gravitational field
We seek to perturb this potential Since the unperturbed quantity (the background)
1s spherically symmetric, the perturbed metric will be close to spherical and thus the
spherical harmonics are the obvious basis to describe the perturbation

We perform a multipole decomposition of the perturbation, sphitting it into an infinite
series of modes the monopole, dipole, quadrupole and so on, just as in the previous
section Importantly however, the perturbation 1s a tensor and thus we must construct
scalar, vector and tensor bases over which to decompose the perturbation A formalism for
such a process has been given by Gerlach and Sengupta {13, 14], and we will review that
formalism in the next sections First we will give a useful description of the background
quantities
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We perform a 2+2 spht of spacetime into a mamfold spanned by z# = (t,7) co-
ordinates denoted (M? gap), crossed with umt two spheres spanned by z® = (6, ¢)
coordinates and denoted (S?,7,) A spherically symmetric spacetime will therefore have

a metric and matter tensor given by

guvdztdz” = gan (z€)dzAdz? + r?(z€)yapdzda?,

tydotde” = tap(zC)dz?dz? + 1€ r? (2€)yapdz da®

For the remainder of this thesis, capital Latin indices will denote coordinates on M?,
lowercase Latin indices will denote coordinates on S?, and Greek mndices the 4-dimensional
spacetime (1e z# = (z,2%)) 715 a function on M? and gives the areal radius (see §2 1)

Covariant derivatives on M, M? and S? are respectively denoted

Guwx =0, gAB|IC = 0, Gabc=0,

and a comma defines a partial derivative
The field equations (1 1 4) can be separated then into an equation on M?2,

C —
Gap = _2(UA|B +v4qug) + (2’()C| + 3’Ucvc -r 2)gAB = 87ntam,
and an equation on §?
G, = 2(’UC|C +vov® — R) = 8nt?,

where v4 =7 4/r R 15 the Gaussian curvature of M2, the manifold spanned by the time
and radial coordinates, and thus equals half the Ricc1 scalar of M2

421 Angular decomposition

We write a non-spherical metric perturbation

Guv = Guv + huu (t,r,0,9),

where from now on an over-tilde denotes background quantities, similarly for the matter

perturbation
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If we consider the perturbation to be small, we can extract the linear part of the field

equations for the perturbed spacetime

(huu,a’a - hua,uya - hau,u’a + haa,H,V) + hHVR + gul’(haﬁ’a’ﬂ B haﬂ,ﬂﬂ - h‘aﬂRaﬁ)
= —16mAty,, (421)

The spherical harmonics form a basis for functions, and from the spherical harmonics
we can construct bases for vectors,

{ Yo , Sa= eabx,,} (422)

»

and tensors,
1
{ Yy » Zap=Yer+ I+ Y7 , Se b)} (423)

where we have suppressed the mode numbers I, m, X4 = %(Xab + Xp) 1s the symmetric
part of a tensor, and ey 1s the anti-symmetric pseudo-tensor with respect to S? such
that €45, = 0 Using these, we decompose the perturbation in terms of scalar, vector and
tensor objects defined on M?, times scalar, vector and tensor bases defined on S?

When we compute the linearized Einstein equations for a perturbed spacetime de-
composed 1n this way, we find they naturally decouple mto two sectors, even and odd
Gundlach and Martin-Garcia’s [20] definition 1s the most straightforward ¥ that sector
whose bases are m even powers of €,? 1s called even (or polar or spheroidal), that sector
whose bases are in odd powers of €, 1s called odd (or axial or toroidal) We will denote
with e, o even and odd parity objects respectively where there may be confusion As these
two sectors naturally decouple we may consider them separately a prior: In subsequent
sections there 1s no need for the e, 0 markers as the parity will be clear

We write the even metric and matter perturbation as

Be - hagY “Y, A — AtagY AtSY
we Symm  r2(KY ey + GZy) | o Symm T ALY yep + A2 Zgy )]

}The standard definition 1s found from spatial inversion # — —& objects which transform with parity
(=1)"*! are odd, those with parity (—1) are even
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and the odd metric and matter perturbation as

e 0 h%Sa AP — 0 At4S,
uv ’ wv
Symm  h S, Symm At S,y

Note that we will use r and v#, rather than the more rigorously appropriate 7,94, to
denote those defined on the background, for ease of notation
Thus the even parity perturbation is defined by two symmetric two-tensors, two two-

vectors and four scalars,
{hAB, Atag, h%, Aty G, K, At Atz} (424)
whereas the odd parity perturbation 1s defined by two two-vectors and two scalars,
{ °, ALy, h, At} (425)

We will call these the “bare” perturbation objects

When we write out the field equations (4 2 1) for this metric and matter tensor, we
identify the left and right hand side coefficients of the scalar, vector and tensor spherical
harmonic bases given 1 (42 2),(423), and these are our evolution equations for the
perturbation

The great simplification 1s that these equations are 1n terms of two-dimensional ob-
jects (42 4),(425), and their derivatives, defined on the (background) mamfold M?2,
and m particular since we are working to linear order, all the connections used to cal-
culate derivatives, e g ha|p, are those defined on the background This makes actually
calculating the perturbation equations much easier

It 1s important to note that the bases given above n (4 2 2),(4 2 3) are not always
linearly independent For [ = 0 all of the basis functions vanish except for Y-y, and for
l =1, Z,, and S, 4) vamsh This 1s clear for [ = 0, the monopole, since then the spherical
harmonic 1s a constant,

1
= —2\/7_r

For the dipole mode { = 1, this involves a little more calculation so we will just give an

vy

example the three spherical harmonics for ! =1 are

3 3
YO—I = e"‘f’,/g—wsme, YOO = ﬂgsme, YOI = —e"i’\/ %sma
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The tensor basis Z,, 1s
Zay = Yap+YYah =Y — T Y + Y Yas,
the components of which m (8, ¢) coordinates are
Yoo+ 7Y, Y 4p +cos@ sinfYy + sm?0Y, Ygg —cot@Yy,

each of which vanish for { =1

Thus some equations do not exist 1 these cases, and we must consider ! = 0 and
! = 1 separately from the more general [ > 2 case This 1s not much of a problem when
the background 1s vacuum since, as already noted at the end of Section 4 1, gravitational
radiation (which 1s what these perturbations model} manifests at the quadrupole mode
and above (we will explicitly show this m Sections 512,513 and 52 2) In matter filled
backgrounds however this 1s not necessarily the case, and thus requires further analysis

We delay giving the perturbation evolution equations since the perturbation variables,

as we have defined them thus far, are not gauge 1mnvariant

422 Gauge mvariance

Two spacetimes are 1dentical 1if they only differ by a diffeomorphism [48] (we take the
passive view of a diffeomorphism as a coordinate transformation) There 1s a danger that

if you add a “perturbation”

Juv = guu + h,um (42 6)

you are 1n fact still looking at the same spacetime after undergoing a coordinate transfor-
mation, rather than after being perturbed in a physically meaningful way To escape this
problem we must only interest ourselves in those objects which do not change under an
infimtesimal coordinate (gauge) transformation These are called gauge mvanants, and
are the true measure of a physically meaningful perturbation

More precisely they are 1dentification gauge invariant (see Stewart and Walker [46])
The reason we use the term identification gauge invariant 1s that general relativity has
a fundamental ambiguity in how you 1dentify pomnts in different spacetimes Consider
the five-dimensional mamfold M, containing the unperturbed spacetime, (Mg, §uv), and
the perturbed spacetime, (M1, gy, + hyu) Thus € parameterizes a family of perturbed
spacetimes, (Mg, Guu + €hyy), With e = 0 denoting the background spacetime and € = 1
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denoting the perturbed spacetime we are considering

We define the 1dentification mapping as a vector field 4, defined on M, such that
two points pg € Mg and p; € M; are the same 1f they lie on the same integral curve of
# To linear order, the metric tensor on Mj 1s then the Lie derivative (see §2 1) of the

metric tensor on My, 1n the direction of 4, evaluated on My That 1s,

guv + h/,w = ['u gp.ule:ﬂ

Another vector field, ¥, would define another 1dentification mapping, this time of
pomts 1n (Mo, §py) to points m (M, §uy + Ry ), agan by the Lie derivative, but now in
the direction of ¢ The difference between these two i1dentifications 1s

(G + b)) = (G + Byp) = (‘Cugtw - Ev@w)

e=0

If we define the vector field £¢# = (@ — 7)|c=0, then we can say that the gauge change
induced on the metric perturbation by any vector field £ is

h';w - E;w = hp,u + Lfg;w» (4 2 7)

where an overbar will represent gauge transformed objects Importantly, this 1s the Lie

derivative of the background metric tensor g,,, and thus we have

Efguu = Vufu + vufua

with V,, the covariant derivative associated with the background metric
We perform a multipole decomposition of the vector field £# using the spherical har-

monics and the vector bases given 1n (4 22) Again there 1s an even and an odd part,

o_ [ £4Y o_[ 0
é“_<§°Y,a>’ f“‘(é"sa)

Now we can write down how all of the perturbation objects m A, and At,, transform
For example, we give the gauge transformation of the even parity off-diagonal metric
perturbations

hav ~hap =Vl + Voba = {€oa —T* 4} + {€ap — T¥, 464}

Since we are working to linear order, the connection coefficients are those defined on the
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background,

T, = 35" {Gaup + Gowa — Gavw } = 33" (T‘27bc)’ )

Thus ['B ,, = 0, and since §% = r~2y% we have '/, = v46¢ Thus
hap — hap = K Y — haYy = (§°Y,b)’A + (§AY),,, —2048%Y)
and so
R —ha = Ea+r2(€8/r%) 4

We give the gauge transformations for all the bare perturbation objects Firstly the even
parity,

hap —hap = €ap+Epa
he — RS = 2(¢e /.2
A _A £A+T (§ /7' ),A >(metrzc)
K-K = 4,4
G-G = 2°/r? )
Atap — Atap = TAB|C§C +TCB§C|ATCA§C|B )
AtS — ATy = tapeP + srte (e )r?
A1 2 1Ali§ 20 A(‘S " )’A e (matter)
At — At = 57 (rta),Af
A2 - AT = o )

and then odd parity,

Wy =Ty = rE /) }(metm)

h—h = ¢
At — Aty = $t%,r%(€°/r?),a (matter)
At — AT = 110.°

The next step 1s to construct the gauge invariants, that 1s we take linear combinations
of (4 2 4), {4 2 5) to form objects which do not change under a gauge transformation For

example, consider the combination

K — 204 (b — 177G ,)
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How does this change under a gauge transformation? Using the above we find
K =20 (% - 472G ) — {K — 20 (8% - 4G ) }
= 20gs - 20 €4 +12(6 /%) 4 - 32 (20 /rY) ]

=0

Thus this combination does not change under a gauge transformation, 1t 1s gauge nvari-

ant We give the complete set of gauge invariants, firstly even panty

kap = hap-— (pA|B +pB|A) (metmc) (4 ) 103.)
k = K -—2vipy
Tap = Atap-— fAB|C;DC - EACPCIB - EBCPCM
Tx = At —1,5c - r4{(1°,/4)G,a

T! = Atl - (pC/r2) (2, /2),c +1(1 + 1) (B2, /4)G (matter) (42 10b)

T? = Af - (r2%,/2)G

e

where pg = A% — %rzG,A, and secondly odd parity

ka=hS —r? (h/r2)’A} (metric) (4211a)

Ly = At — (i,/2)h,

L = At— (i) } (matter) (4211b)

Before proceeding a caveat when ! = 0, 1, we cannot construct a set of gauge invariant
objects like those given above for the same reason that there are less equations in these
sectors the vamishing of some or all of the bases given 1n (42 2),(423) Thusforl =1
modes we can at best construct only partially gauge invariant objects, and for [ = 0 all
remnants of gauge invariance are lost This will be discussed 1n more detail 1n the relevant
sections ahead

The perturbation evolution equations are then recast entirely in terms of the gauge
mvanants [13, 14] As previously mentioned, not all equations apply 1n each sector and

so we denote the mode numbers for which each equation 1s valid Again, firstly the even
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parity equations,

- Dy o
2 (kapic — kcap — kepla + 2Gaskcp’) — 254v°kp" ¢

(l+1 1, = ~
+gAB( ( 2 ) +§(GCC+ Gaa)+R>kDD+ 2(1},4](:,3 +vgk,a +k’A]B)
+§AB(21)C|D + 40%0P — GCD)k'CD
-1 +2
—gAB <2k,c © +6vck,c————( M+ )k>

'I"Z
_ (l(l D LGl G 27%) kap = —167Tap, (120) (4212a)
r

~ +1 C 5 a
— (/CCC|D[D + chc — —(Ter‘)‘kcc> ot (k’Cl +2’UCk,C +Ga k)

+ (kop' P +20kgpl® + 2517 + 0P Ykop ) = ~167T7, (12 0) (4212b)
>

kot —kac'® + ke —vakeC = —167T4, (1>1) (4212)
koA =—162T% (1>2) (4212d)

and then odd parity,

- [r4(k‘4/r2)lc -~ r4(kc/r2)|A]|C + (I —1)(l +2)k* = 167r°LA, (1>1) (4213a)

k44 =16rL (1>2) (4213b)

Note there are no odd parity equations for [ = 0, this 1s because there is no { = 0 odd
perturbation A spherically symmetric perturbation would have a scalar angular part
and thus be of even panty (see (4 24) with [ = 0) Note also that the divergence of the
term 1n square brackets in (4 2 13a) 1s 1dentically zero, thus the two odd parity equations
mmply a conservation equation,

(rQLA)lA =(-1D(0+2)L (t>1) (4214)

Now we have our procedure we may choose any spherically symmetric background
whatsoever, calculate the background quantities such as R, v# etc, and then sumply(')
generate, for [ > 2 modes, the complete set of equations given above for the compete set
of unknown gauge mvariants There are eleven even parity unknowns (4 metric and 7
matter), and five odd parity unknowns (2 metric and 3 matter) However, there are only

seven equations 1n the even sector, and three in the odd sector Clearly we need more
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mformation, and we find this information from the background by choosing a specific
gauge

The objects we are measuring are gauge 1nvariant, that means we can perform any
gauge transformation on them and they remain the same There is an especially useful
gauge choice we can make, called the Regge-Wheeler or longitudinal gauge This consists
of transforming to a specific gauge via the gauge transformation generated by

2 2
@M“:(;—%GM>YWA+(%GKVM&>®% (4215)

mn which & = G =k =0 For example, consider the function G A gauge transformation
takes G to G — 2¢°/r? But we are setting £° = 72G/2, thus we have transformed to a
coordinate system 1n which G = 0 Now, not only are there less unknowns, but also the
bare perturbations (4 2 4), (4 2 5) and the gauge invanants match, that is, we can make
the 1dentifications

hap =kap | Atap = Tas
& =0 Ats =Ty and hj’q =ky4 At°A =Ly
K=k At =T h=0 | Ata=1L

G=0 A2 =T2

Therefore using the Regge-Wheeler gauge means our bare matter perturbations are au-
tomatically gauge invariant, and thus we can use information about the background to
simphfy some perturbation terms These two bonuses make solving the system of per-

turbation equations feasible

Code used to calculate the field equations

The perturbation field equations given m (4 2 12), (4 2 13) would be extremely laborious
to calculate by hand To save time and to reduce the rnisk of error we have calculated
these equations using the Mathematica package

We define the coordinates, and the metric and matter tensors, on M? using a vec-
tor and 2 x 2 matrices respectively Using these we calculate the (background) metric
connection, covariant derivative, Riemann tensor and so on Summation over indices 1s

performed using the Sum command in Mathematica, for example

vAv4 = Sum[vup[a)*vdown[a),{a,1,2}]

73



The perturbation variables are unknown functions defined on M?, eg k = k(z?), and
we calculate the field equations 1n terms of these unknowns Each component of the field
equations 1s then taken as an individual equation

We perform straightforward algebraic manipulations of these equations to cast them
mn a more tractable form, for example removing the second derivatives The use of
Mathemat