
A Practical Assessment of Network
Orientated Load Control for the

Intelligent Network

by

Navinder Singh Wathan, BEng

Thesis submitted as a requirement for the attainment of the degree of
Masters of Engineering

Supervised by Prof. Thomas Curran

School of Electronic Engineering, Dublin City
University

October 2003

1 hereby certify that this material, which I now submit for assessment
on the programme of study leading to the award of MSc in
Telecommunication is entirely my own work and has not been taken from the
work of others save and to the extent that such work has been cited and
acknowledged within the text of my work

Date: /-xotx-t- .

TABLE OF CONTENTS

1 INTRODUCTION... 1

1.1 M o t i v a t i o n ..1

1 .2 O b j e c t iv e s ...1

1.3 M e t h o d o l o g y ...1

1.4 S t r u c t u r e .. 2

2 THE INTELLIGENT NETWORK... 2

2.1 In t r o d u c t io n ... 2

2 .2 H i s t o r y ..3

2 .3 T h e C o n c e p t u a l M o d e l ...5

2 .4 E x a m p l e S e r v ic e Im p l e m e n t a t io n s ..11

2 .5 C u r r e n t a n d F u t u r e R o l e O f T h e in t e l l ig e n t N e t w o r k .. 17

2 .6 L o a d C o n t r o l M e c h a n is m s ..17

2 .7 S u m m a r y .. 2 0

3 THE INTELLIGENT NETWORK MODEL................................ 21

3 .1 In t r o d u c t i o n ...21

3 .2 S t r u c t u r e a n d O p e r a t io n 2 3

3 .3 S u m m a r y .. 2 7

4 NETWORK ORIENTATED LOAD CONTROL: THE
MARINER SYSTEM... 28

4 .1 In t r o d u c t i o n ...2 8

4 .2 T h e o r e t ic a l D e s c r ip t io n ... 3 0

4 .3 I m p l e m e n t a t i o n ..4 3

4 .4 S u m m a r y .. 4 7

5 EXPERIMENTS AND RESULTS.. 49

5.1 In t r o d u c t i o n ...4 9

5 .2 E x p e r im e n t a l S e t u p ...5 2

5 .3 In t e g r a t io n E x p e r im e n t s .. 5 5

iii

5 .4 E v a l u a t io n E x p e r im e n t s ... 5 9

5 .5 R o b u s t n e s s E x p e r i m e n t s ...7 6

5 .6 S u m m a r y ...8 7

6 CONCLUSION AND FUTURE WORK......................................89

6.1 In t r o d u c t io n ... 8 9

6 .2 S t a n d a r d IN L o a d C o n t r o l ...9 0

6 .3 G l o b a l IN C o n t r o l S t r a t e g y ...9 2

6 .4 A u t o m a t ic C a l l R e s t r ic t io n ... 9 3

6 .5 T h e M A R IN E R S y s t e m ...9 4

6 .6 L o a d C o n t r o l S y s t e m C o m p a r i s o n .. 9 7

6 .7 C o n c l u s i o n ... 9 8

6 .8 F u t u r e W o r k ... 9 9

GLOSSARY... 101

REFERENCES...103

APPENDIX A: MARINER INFORMATION FLOWS.............................108

APPENDIX B: IN MODEL...110

B .l S S F ... 1 10

B .2 S C F ... 1 16

B .3 T r a f f ic G e n e r a t o r ... 1 22

B .4 S e r v ic e E x e c u t i o n ...124

APPENDIX C: MARINER SYSTEM...127

C .l R A A ...127

C.2 RMA..130

A Practical Assessment of Network Orientated Load Control for
the Intelligent Network

MEng Thesis by Navinder Singh Wathan

Abstract

The purpose o f this thesis is to assess a new method o f controlling load in Intelligent

Networks (INs). This will be done through the analysis o f experimentation results and

comparison with existing methods o f IN load control. This exercise will result in the

investigation and validation o f the proposed benefits being offered by this new

methodology and the unveiling of its disadvantages. The methodology is known as

network-orientated load control for the IN.

Network-orientated load control is demonstrated using the MARINER Service Traffic

Load Control System developed by the European Commission’s Advanced

Communication, Technologies and Services (ACTS) Multi-Agent Architecture for

Distributed Intelligent Network Load Control and Overload Protection (MARINER)

Project. This system is shown to be a network-orientated load control application

operating at the service level, built specifically for Intelligent Networks.

Network-orientated load control is then assessed by deploying the MARINER System on

a model o f the IN, and running an exhaustive series of experiments. These experiments

are structured to test the proposed benefits, limitations and disadvantages o f network-

orientated load control.

The conclusions drawn from the results o f these trials are then compared with existing IN

load control characteristics, and used to make an assessment o f network-orientated load

control for the Intelligent Network.

Acknowledgements

I would like to thank Prof. Thomas Curran and the IN Group at Teltec for the invaluable

guidance, support and friendship they have given me throughout my work on this project.

Further, I would like to thank the MARINER Group as a whole, for all the input and

motivation they gave me in reaching the completion of this project.

I would also like to thank my family, my friends and Jasvin for making sure I saw this

through to the end. And also my gratitude to Moby, Nustrat Ali Khan and David Gray for

providing the music that allowed me to focus on this.

Finally, I would like to thank you, the reader, for acknowledging my work by attempting

to assimilate it and possibly re-using it.

Thank you all.

1 INTRODUCTION

1.1 M o t iv a t io n

The purpose o f this thesis is to assess a new method of controlling load in Intelligent

Networks (INs). This will be done through the analysis o f experimentation results and

comparison with existing methods o f IN load control. This exercise will result in the

investigation and validation of the proposed benefits being offered by this new

methodology and the unveiling o f its disadvantages. The methodology is known as

network-orientated load control for the IN.

This document is suitable for both newcomers to the field o f Intelligent Networks and

Load Control, as well as experts interested in new methods o f the application o f Load

Control to Intelligent Networks.

1.2 O b jec tive s

The objectives o f this body o f work are as follows:

• The introduction and demonstration o f network-orientated load control for the IN

• The validation of network-orientated load control through experimentation

• The comparison o f network-orientated load control to existing IN load control

methodologies

• The investigation o f the limitations and disadvantage o f network-orientated load

control

1.3 M e t h o d o l o g y

As a means o f introducing and demonstrating network-orientated load control, the

MARINER Service Traffic Load Control System developed by the European

Commission’s Advanced Communication, Technologies and Services (ACTS) Multi-

Agent Architecture for Distributed Intelligent Network Load Control and Overload

1

Protection (MARINER) Project [MARINER] is used. The MARINER System is a

network-orientated load control application operating at the service level, built

specifically for Intelligent Networks.

Further, in order to accurately assess the operation o f network-orientated load control, a

model o f the IN is used. This model emulates the operation existing Intelligent Networks

conforming to the International Telecommunication Union IN Capability Set 2 [Q1200]

standard.

The benefits, limitations and disadvantages of network-orientated load control is then

investigated using an exhaustive set o f trials on the IN model, with the MARINER

System applied to it.

The conclusions drawn from the results o f these trials are then compared with existing IN

load control characteristics.

1.4 St r u c t u r e

Chapter 2 introduces the Intelligent Network. This introduction includes a brief history

o f its development followed by a theoretic description o f the Intelligent Network

Conceptual Model (INCM). These descriptions are then enhanced by examples o f

existing service implementations. The chapter then explains the role o f the Intelligent

Network in today’s context, and then focuses on load control elements o f the INCM in

line with the objectives o f this document. An example o f an Intelligent Network

overload, occurring in April 2000, is then given as a means of analysing the operation

and effectiveness o f these load control elements in ‘real’ environments. Finally, the

chapter concludes with a summary. Readers familiar with the Intelligent Network need

not read this chapter.

Chapter 3 describes the Intelligent Network model used as the trial platform for the

network-orientated load control methodology. It goes through the motivation and

objectives o f the model, as well as its design and development. This is followed by a

description o f the model structure and operation. A summary o f the chapter is then

presented.

2

Chapter 4 introduces the MARINER Service Traffic Load Control System as an

implementation o f network-orientated load control for Intelligent Networks. A

description o f the motivation and objectives o f both network-orientated load control and

the MARINER System is given. This is followed by a theoretical description o f the

operational algorithm and the system operation. Then a treatment o f the implementation

o f the system is given, before the chapter is summarized.

Chapter 5 describes the experiments that were carried out on the MARINER System and

their results. First, the experiment setup is described. This is followed by descriptions o f

the experiments and their results. These descriptions are categorized into three groups;

the integration experiments, which investigate the validity o f the MARINER System as a

network-orientated load control system, and its integration to the IN.; the evaluation

results, which evaluate the various aspects of the MARINER System; and the robustness

experiments, which explore the limitations of the MARINER System. The chapter is

then summarized.

Chapter 6 compares network-orientated load control to existing IN load control

mechanisms and presents the conclusions o f this body of work. First, the MARINER

System is compared with three representative load control methodologies using the

criteria and conclusions put forth in Chapter 5. Then, the thesis conclusions are

presented, followed by a brief description o f the future work to be carried out based on

these conclusions.

3

2 THE INTELLIGENT NETW ORK

2.1 I n t r o d u c t io n

The Intelligent Network (IN) is an architectural concept that provides for the real time

execution of network services and customer applications in a distributed environment o f

interconnected computers and switching systems. Its definition also includes support for

the creation, implementation and management o f these services and applications

[Fayn96].

Instead o f supporting the building o f customised, performance-intensive services, it was

realised quite early on that the IN would be much more useful and universally acceptable

if it adhered to certain principles o f independence. Namely,

• Service independence. The IN supports all services that use the common service

independent building blocks (SIBS - see § 2.3.2). Among the current IN services are

the Freephone service, the Virtual Private Network (VPN) service, the Ringback

service and the Account Card Calling service.

• Switch independence. The IN maintains a clear logical separation between the

service execution functions, and the basic switching functions.

• Network independence. Although first developed for the public switched telephone

network (PSTN), the IN concept is applicable to several different types of networks,

which include the mobile communications network, packet switched public data

network (PSPDN), integrated service digital network - both narrow-band (N-ISDN)

and broad-band (B-ISDN).

The rest o f this chapter will provide a basic introduction to the Intelligent Network. First,

a brief history is detailed. This is followed by a description o f the Intelligent Network

Conceptual Model. Then, examples o f IN service implementations using this model are

described. Following this is a section on the current and future role of the IN, followed

by a focus on its load control abilities. Then, the chapter summary is presented.

2

It was not until 1986 that the phrase “Intelligent Network” had come to be associated

with the architectural concept described above. However, its roots lie in the 1960s, when

the first Stored Program Control Exchanges were deployed and introduced computer

technology into the telecommunication network. These systems could support services

such as Call Forwarding, Call Waiting and Centrex on a local level.

By the late 60s, rudimentary 800 number services, such as the Inward Wide Area

Telecommunication Service (INWATS), were already available in long distance

networks. These services were deployed on crossbar switches, which made

implementation complex and cumbersome. In 1976, the advent o f the first electronic

switches in the AT&T long distance network greatly eased this burden.

However, it was only in the mid 70s, that the key innovation for IN was first deployed.

The Common Channel Signalling No 6 (CC6, which was known as Common Channel

Interoffice signalling or CCIS in the US) was initially used only for the transmission o f

address digits and trunk status information. It was soon proposed that the signalling

system be used for communication between a network database and the switches in the

network, and this laid the foundation for the IN concept.

In the early 80s, the concept saw fruition when two services based on it; the Calling Card

and 800 number service (CCIS INWATS) were deployed. This development triggered

work at Bell Labs o f the US towards creating an open platform with primitive messaging

between the switch and the service execution entity, which could be used to create

different services. The initial result o f these activities was the Direct Service Dialling

Capabilities (DSDC) architecture and the first services implemented on it were the 800

number service and the Software Defined Network (SDN), the predecessor o f the Virtual

Private Network service. This architectural concept soon spread all over the globe, with

France and Germany introducing the Freephone service in 1983 and the UK in 1985,

using AT&T products. In Japan, NTT implemented its own Freephone service in 1985.

In 1984, Bell Systems was dissolved into the Regional Bell Operating Companies

(RBOCs). As a result, Bellcore (the research company associated with the RBOCs)

began work on the total separation o f service features from the switching process,

2.2 H ist o r y

3

particularly influenced by the RBOCs multiple-vendor equipment supply. This first IN

endeavour at the local network level resulted in a version of IN called IN2 which, while

being very ambitious, was never realised. Then the Multivendor Interactions Forum was

formed to include the many equipment vendors in the development process. What came

out o f it was the Advanced Intelligent Network (AIN) which is being implemented in the

US in small steps (AIN 0.1 was launched in 1992) [Vasic99].

In 1989, the International Consultative Committee for Telegraph and Telephone (CCITT,

now International Telecommunication Union or ITU-T) and the European

Telecommunication Standardisation Institute (ETSI) started work on the standardisation

o f IN. A phase structured development process was started, which aimed to completely

define the target IN architecture. Each phase of development intended to define a

particular set o f IN capabilities, known as Capability Sets, which contained the services

and service features that could be constructed with the available functionality at that

particular evolution of the IN. In March 1992, the first capability set (CS-1) was

approved, but a revised version was released in 1995, known as CS-1R. Currently, the

latest approved version is the CS-2.

4

The Intelligent Network Conceptual Model (INCM) was designed to incorporate the

concepts which define the IN. In itself, it should not be considered to be an architecture,

but rather a model for the design and description o f Intelligent Networks [Q1201].

The INCM offers four different views o f the IN, each on a different level o f abstraction -

called a “plane” - and defines the mapping between those views. These planes are

depicted in Figure 2.1 [Q1201], each representing a different aspect o f service building.

The two upper planes focus on service creation and implementation, whereas the lower

two planes addressing the physical IN architecture.

2.3 T h e C o n c e p t u a l M o d e l

5

2.3.1 Service Plane (SP)

This is the uppermost plane o f the INCM, which offers the most abstract view o f the

Intelligent Network. It describes services from the user’s perspective, and is not

concerned with how the services are implemented within the network. The services are

composed of one or more service features, which may either be core features that carry

the main functionality o f the service, or optional parts offered as enhancements to the

telecommunication service [Q1202] [Q1222].

2.3.2 Global Functional Plane (GFP)

The plane second from the top presents a view demonstrating the IN view o f service

creation by putting together modules o f reusable network functionality. It does not

include a view o f the network and its details. These “modules o f reusable network

functionality” are called Service Independent Building Blocks (SIBs) and have formal

descriptions that include service-specific and instance-specific parameters, possible

execution outcomes and results, as well as errors that may occur.

The Basic Call Process (BCP) is a special SIB that is invoked for all calls, and handles

basic connectivity. Services in the SP are described in the GFP in terms o f the point at

which the BCP should be interrupted (Point o f Initiation or POI), the chain o f SIBs that

need to be executed, and the point at which the BCP is resumed once the IN-specific

processing is completed (Point o f Return or POR). Figure 2.2 illustrates service

description in the GFP [Q 1203] [Q1223].

6

This plane offers a view of the network as a collection o f Functional Entities (FEs). The

physical location o f these functional entities is not visible. Each FE can perform a

number o f Functional Entity Actions (FEAs) and the FEs communicate by sending

Information Flows (IFs) to each other. The FEAs are further broken up into Elementary

Functions (EFs). SIBs in the GFP are realised in the DFP by a sequence FEAs and their

resulting IFs. Figure 2.3 depicts the IN DFP Model [Q1204][Q1224].

2.3.3 Distributed Function Plane (DFP)

CCAF - Call Control Agent Function
CCF - Call Control Function
SCEF - Service Création Environment Function
SCF - Service Control Function
SDF - Service Data Function
SMAF - Service Management Access Function
S MF - Service Management Function
SRF - Service Resource Function
SSF - Service Switching Function

Figure 2.3 - The IN Distributed Function Model

7

• The Call Control Agent Function (CCAF) provides the user with access to the

network and serves as an agent between the user and the service-providing

capabilities o f the Call Control Function.

• The Call Control Function (CCF) carries the basic call and/or connection

functionality, acting at the request o f the CCAF. It provides triggers for accessing IN

functionality.

• The Service Switching Function (SSF) processes the triggers received from the CCF

and identifies the service control triggers. It manages the signalling between the CCF

and the SCF and modifies the call processing in the CCF, when requested by the SCF.

The CCF and SSF are tightly coupled and are usually implemented together. The

reason they are maintained as separate FEs is that the SSF is used to represent the IN-

specific part o f the switching functionality. The CCF, on the other hand, represents

the non-IN, basic call processing functionality.

• The Service Control Function (SCF) is the central functional entity o f the IN. It

controls the execution o f IN implemented services. It performs service processing

primarily through the communication with the SSF, from which requests for

processing arrive and to which the SCF sends related call control instructions. The

SCF also interacts with SDF to get or set network-stored information required by the

service and with the SRF when special resources are required.

• The Service Data Function (SDF) contains customer and network data and is queried

by the SCF during service processing.

• The Service Resource Function (SRF) contains specialised hardware resources

required for IN services, mainly for user interaction, such as announcement players,

tone generators, voice recognition and digit collection devices. Other SRFs include

text to speech synthesisers, protocol converters and conference bridges. It is

controlled during service processing through interactions with the SCF.

The FEs related to service creation and management are described below:

The following FEs are related to the execution o f IN services:

8

• The Service Creation Environment Function (SCEF) provides an environment for the

definition, development, testing and online deployment o f services.

• The Service Management Access Function (SMAF) is the equivalent o f the CCAF in

the service management domain o f the IN. It provides managers with access to the

SMF.

• The Service Management Function (SMF) allows the deployment and provision o f IN

services and manages and updates most o f the other FEs (CCF, SSF, SCF and SDF).

It also provides online management functions, such as the collection o f billing and

statistical information.

2.3.4 Physical Plane (PP)

On the physical plane, a full view o f the physical network is available. It shows the

Physical Entities (PEs) present in the network and where the functional entities are

located, in terms o f physical entities. The PEs associated with IN service execution are

as follows:

• The Service Switching Point (SSP) is a switch that contains the CCF and the SSF. In

the case that it is a local exchange, it also contains the CCAF

• The Service Control Point (SCP) contains the SCF and may also contain the SDF.

• The Service Data Point (SDP) contains the SDF.

• The Intelligent Peripheral (IP) contains the SRF and possibly a CCF/SSF to provide

external access to its switching matrix.

The service creation and management PEs are listed below:

• The Service Management Point (SMP) contains the SMF and possibly the SMAF

when the manager is working directly on the SMP machine. It may also include the

SCEF.

• The Service Creation Environment Point (SCEP) contains the SCEF.

• The Service Management Access Point (SMAP) contains the SMAF. It is a point of

access for a manager to the SMP and behaves like a terminal attached to the SMP.

9

There are three other PEs defined in for the IN which, unlike those listed above, do not

have a one-to-one mapping with a FE.

• The Adjunct (AD) operates somewhat like the SCP, with the exception that it is

directly connected to the SSP without a signalling network separating the two. The

AD is used mainly when high-speed communication between the two entities is

required.

• The Service Node (SN) is similar to the AD in that it is directly connected to an SSP.

However, apart from a SCF, it also contains a SDF, SRF and a CCF/SSF. The

CCF/SSF is not accessible from outside the SN, while the SRF has such accessibility.

The SN may be used as any other IP by any SCF.

• The Service Switching and Control Point (SSCP) combines the SSP and SCP in one

node. It contains the SCF, SDF, CCAF, CCF SSF and possibly the SRF. Although

the functionality provided is the same as that o f a separate SSF and SCF, the

interfaces between these FEs within the SSCP are proprietary [Q1205].

An important aspect o f this view o f the IN is the definition o f protocols, which are used

for the communication between PEs, depending on which FEs they contain. The protocol

used is known as the Intelligent Network Application Protocol (INAP). It is a user o f the

Remote Operations Service Element (ROSE) protocol, which contains primitives suitable

for communication between physically remote entities and is standardised through the

ITU-T recommendations X.219 and X.229. ROSE, in its turn, is contained in the upper

layer o f the Transaction Capabilities Application Part (TCAP) [Q771]. TCAP may use

the lower layers o f most protocols for network layer functionality, and in the case of

INAP, the SS7 signalling stack is used [Q1208] [Q1228].

10

This section introduces the possible implementations of three IN services using the four

views described in the INCM. These services are also those that were implemented in the

IN Model described in Chapter 3.

2.4.1 The Restricted User Service

2.4.1.1 SP View

Basic call forwarding allows the user to redirect incoming calls to a different number

transparent to the calling party. The Restricted User Service is a variation o f this service,

in which the calling party must enter a specified Personal Identification Number (PIN)

before the call is forwarded to the other number [MARINERD4].

2.4.1.2 GFP View

This service comprises the following SIBs:

• Basic Call Processing (BCP) - Initial Message Flows

This SIB sets a trigger for incoming calls to the service user. In the event o f an

incoming call, the SIB initiates the chain o f SIBs required to execute this service.

• User Interaction

This SIB prompts the calling party for the PIN number, and collects the digits.

• Verify

This SIB verifies the PIN number.

• BCP - Call Setup

This SIB connects the calling party to the forward destination.

2.4 E x a m pl e Se r v ic e Im p l e m e n t a t io n s

11

2.4.1.3 DFP View

The DFP view for this service is illustrated by the Inform ation Flows betw een the

Functional Entities in Figure 2.4.

SRF SSF SCF

V
Initia ID P

ConnectToResource

Setup w
Setup (Conf)

Pro mpt& Col lectUserln fo

User Interaction
PlayAnnouncement

PACULResult

CancelAnnouncement

Release
Connect

Figure 2.4 — Information Flows of Restricted Access Call Forwarding Service

2.4.1.4 PP View

The Physical Entities utilised for this service are the IP, SSP and SCP.

12

2.4.2 The VPN Service

2.4.2.1 SP View

The VPN Service creates a logical sub-network spanning a single or multiple IN network

domains, which appears to a specific group of users as a private network, providing the

type of services normally associated with private exchanges [MARINERD4].

2.4 .2.2 GFP View

This service comprises the following SIBs:

• Basic Call Processing (BCP) - Initial Message Flows

This SIB arms a trigger for users who initiate this service during call processing.

When the trigger is encountered, the SIB initiates the chain o f SIBs required to

execute this service.

• Status Notification

This SIB captures the private number o f the called party input by the calling party.

• Translate

This SIB checks the private number against the network database and gets the

network number of the called party

• BCP - Call Setup

This SIB connects the two parties. It them monitors for an off-hook by the calling

party and ends the service processing.

13

2.4.2.3 DFP View

The DFP view for this service is illustrated by the Information Flows betw een the

Functional Entities in Figure 2.5.

SDF SSF SCF

w
InitialDP

ReqEventReportBCSM w
EventReportBCSM

Search

Search (Results)
w

a
Connect w

EventReportBCSM

User Interaction

w
EventReportBCSM

ReleaseCall

Figure 2.5 - Information Flows of VPN Service

2.4.2.4 PP View

The Physical Entities utilised in the VPN service are the SDP, SSP and SCP.

2.4.3 The A utom ated Ring back Service

2.4.3.1 SP View

This service allows a calling party, upon receipt of an engaged tone for a specific called

party, to request that a call be automatically initiated to that called party once their

present call has been terminated [MARINERD4].

14

• Basic Call Processing (BCP) - Initial Message Flows

This SIB arms a trigger for users who initiate this service during when the engaged

tone is encountered. When trigger is set off, the SIB initiates the chain o f SIBs

required to execute this service.

• User Interaction

This SIB informs the calling party that the ringback service is in operation.

• BCP - Event Report

This SIB monitors for the termination of the called party’s present call.

• BCP - Call Initiation

This SIB initiates a call to the called party and monitors for an off-hook.

• BCP - Call Setup

This SIB re-connects to the calling party and monitors for an off-hook.

• BCP-Call Setup

This SIB returns both parties to normal call processing.

2.4.3.2 GFP View

This service comprises the following SIBs:

15

2.4.3.3 DFP View

The DFP view for this service is illustrated by the Information Flows betw een the

Functional Entities in Figure 2.6.

SRF SSF SCF

InitialDP

ConnectT oResource

Setup w
Setup (Conf)

PlayAnnouncement

CancelAnnouncement

Release
ReqEventReportBCSM

User Interaction
w

EventReportBCSM

Connect

ReqEventReportBCSM

t/ser Interaction
EventReportBCSM

InitiateCallAttempt

ReqEventReportBCSM

User Interaction
w

EventReportBCSM

Continue

Continue

Figure 2.6 - Information Flows of Ringback Service

16

The Physical Entities utilised in the Automatic Ringback service are the IP, SSP and

SCP.

2.5 C u r r e n t a n d F u tu r e R o le O f T h e in t e l l ig e n t N e t w o r k

Today, more than 80% [Mine98] o f the PSTN operators use the IN, or one o f its

derivatives, to execute telecommunication services. These services range from,

Automated Ringback to Telebanking.

With the IN having had the lion’s share o f investment and customer trust for so long,

operators moving to wireless technologies such as GSM and GPRS, as well as Internet

Telephony, want to maintain the IN as the de facto telecommunication service execution

architecture. Research projects such as the EURESCOM’s P916 [P916] and ETSI’s

TIPHON [TIPHON] are currently attempting to standardise methods in which this can be

achieved.

2.6 L o a d C o n tr o l M e c h a n is m s

The IN CS-2 provides two mechanisms for controlling the traffic going into an SCF, in

the event o f congestion. These are Call Gapping and the Service Filter SIB [Q1224].

• Call Gapping - This mechanism is activated by the SCP, upon congestion, by sending

a Call Gap request to the SSP. It involves the use o f a timer set to expire after a gap

interval g. For each call arriving at the switch, the gap interval timer is checked. If

the timer is inactive, the call is accepted and the timer is set. Until this timer expires,

all further arriving calls will be unconditionally blocked. After the gap interval has

elapsed and the timer is inactivated, the first call to arrive is accepted and serviced

and the gap interval timer is set again. This mechanism is illustrated in Figure 2.6

[Tsolas92].

2.4.3.4 PP View

17

Call requests

to switch

Key:

Accepted call: \

Blocked call: ^

/ /

h ---------------- Hg

Figure 2.9 - Call Gapping Mechanism

• Service Filter SIB - the SIB limits the number o f calls that are allowed through an IN

by filtering calls with given characteristics. The filtering is applied only to those calls

related to IN-provided service features that request the assistance o f IN functions.

Calls are blocked at the SSP and provided treatment for a specified duration (which

may be infinite) at specified intervals. Service Filter is initiated by the subscriber.

These mechanisms have the following characteristics:

■ reactive - they react to a resource overload after it has commenced, rather than

ensuring that traffic is prevented from gaining access to the resource in instances

where it would cause one or more resources to overload. More predictive controls

that ‘see’ and control overloads as it approaches would be more efficient;

■ node-oriented - they aim to protect individual resources from overload. Lack o f

interaction between independent controls can have undesirable effects, such as the

propagation o f overload throughout the network. A network-oriented approach, where

control decisions are co-ordinated in a manner that ensures optimal performance o f

the network as a whole would be more desirable;

■ static - they rely on static parameters to control traffic load, therefore they cannot

provide optimal control in all traffic conditions, with the result that they tend to cause

oscillations in resource utilisation. In addition use o f static control parameters makes

them difficult to configure in large-scale networks that may provide a changing mix

o f service offerings. To overcome these difficulties dynamic controls, which

continually compute control parameters based on information regarding current

traffic conditions are required;

18

■ operate at a low level (typically throttling requests based on dialled digits) - they

cannot provide a sufficient degree o f differentiation between service types and traffic

sources. Application-level controls, which are straightforward to configure, would

allow the network operator greater flexibility in the setting o f priorities between

service types, thereby helping to ensure that Quality-of-Service constraints specified

in Service Level Agreements (SLAs) are always met.

The next section illustrates these characteristics through a brief case study o f an

Intelligent Network overload that occurred in Easter 2000.

2.6.1 Intelligent Network Overload Case Study

In Easter 2000, an Intelligent Network utilising the Call-Gapping load control mechanism

experienced abnormal continuous spiky traffic, which lead to a network-wide crash. The

sequence o f events was as follows [KhorasaniOl]:

■ early that morning, all set-top boxes o f a certain Satelite Television Operator

(STO) began pushing calls to the STO’s 0800 number . These boxes were

configured to repeat calls to engaged destination numbers for a fixed period, then

sleep for a while and try again. This pattern was repeated for a day.

■ the Intelligent Network SCP node started to get flooded with 0800 calls, and

triggered call gapping. However, due to a miss-configuration, the SSP it was

coupled to did not correctly interpret the call gapping messages and continued to

flood the SCP with requests. Simultaneously, the SSP itself ran out o f resources and

started issuing “resource limitation” signals requesting the SCP to reject incoming

requests. The SCP however, possibly due to the tremendous load, ignored these

requests, which lead to the congestion of the SS7 signalling links and the crash o f the

SSP.

■ The backup and redundancy systems o f the network then began redirecting the

traffic to other SSP-SCP couplings, which also subsequently crashed. This was

possibly due to a combination o f existing high traffic levels and the abnormal call-

flows being seen. This lead to the falling over o f a large portion o f the network

within 5 hours.

19

The Intelligent Network (IN) began as Stored Program Control Exchanges in the 1960’s.

Since then, it evolved into an architectural concept that provides for the real time

execution o f network services and customer applications in a distributed environment o f

interconnected computers and switching systems.

This concept is formalised in the Intelligent Network Conceptual Model (INCM). The

INCM offers four different views of the IN, each on a different level o f abstraction -

called a “plane” - and defines the mapping between those views. The two upper planes

focus on service creation and implementation, whereas the lower two planes address the

physical IN architecture. Staring from the uppermost plane, they are the

• Service Plane - it describes services from the user’s perspective, and is not

concerned with how the services are implemented within the network

• Global Function Plane - it presents the IN view o f service creation by putting

together modules of reusable network functionality. It does not include a view o f

the network and its details.

• Distributed Function Plane - it offers a view of the network as a collection o f

Functional Entities (FEs). The physical location o f these FEs is not visible.

• Physical Plane - it shows the Physical Entities (PEs) present in the network and

where the functional entities are located, in terms o f physical entities.

Currently, the IN hosts a multitude o f services to a major part o f the telecommunication

service customer base. Further, current research trends point towards the extension o f the

use IN into the wireless communication and Internet domains.

With so much reliance on this architecture, its load control capabilities have become of

paramount importance to network operators. Currently, these capabilities are limited to

static, localised, message level gapping mechanisms initiated by the network resource

when it experiences an overload. The Easter 2000 crash clearly illustrates that these

mechanisms are circumspect and not robust enough to handle unpredictable traffic

conditions.

2.7 S u m m a r y

20

3 THE INTELLIGENT NETW ORK MODEL

3.1 I n t r o d u c tio n

The previous chapter described the Intelligent Network Conceptual Model (INCM)

through its four levels o f abstraction. This chapter goes on to describe a software model

o f some o f the Functional Entities o f the INCM built according to the definitions set out

in the Distributed Functional Plane level of abstraction. This is done through the

description o f the design, development and operation o f the model. First however, the

motivation and objectives o f the model is presented.

3.1.1 Motivation

The IN model was built to fill the need for a tool with which the performance o f new IN

applications and services could be tested and realistically evaluated before their

deployment on ‘live’ networks. The scope o f the usage this tool is as follows:

• an application development test-bed upon which a mechanism could be exposed to

various extremes in real environments and improved to show better performance and

robustness

• a simulation environment with which the performance o f existing networks could be

used as benchmarks

• an evaluation platform upon which the relevant performance meters o f an application

or service could be measured and reported.

This model was used to test and evaluate the MARINER Service Traffic Load Control

System (described in Chapter 4) as an enhancement to the existing IN load control

mechanisms as described in § 2.6

21

3.1.2 Objectives

The motivations o f the IN model resulted in a set o f objectives that governed the

following stages o f its development. These objectives are as follows:

• To operate according to the definitions set out in the IN Capability Set 2 Distributed

Functional Plane.

• To reflect the operation of currently deployed INs as closely as possible.

• To match the performance o f currently deployed INs within the limitation set by the

scale o f the model.

• To be easily configurable for any number o f nodes.

• To easily enable the introduction and execution o f any number o f service types.

• To enable the modelling the different incoming service traffic load patterns.

• To enable the user to monitor the performance o f the individual IN nodes and the

network as a whole.

3.1.3 Design and Development

The realisation o f the above objectives posed certain requirements on the development

process o f the model. The model had to be distributed, flexible, platform independent

and robust.

• Distribution - In order to accurately reflect a real network, the modelled IN entities

had to be distributed, operating independent o f each other.

• Flexibility - the emulation o f differing numbers o f entities, service types and traffic

patterns required that the model be flexible enough to easily accommodate the

introduction and withdrawal of IN entities and service types, and changes in service

request arrival rates.

• Independence - in order for the model to operate over large distributed systems, it

had to be independent of the various operating systems used.

22

• Robust - in order to reliably carry out the trials and experiments with various traffic

loads, the model had to be robust, with well-defined error conditions and recovery

mechanisms.

These characteristics in turn shaped the design methodology and the choice of

implementation tools.

• Common Object Request Broker Architecture (CORBA) - using CORBA allowed for

the implementation o f distributed software entities which seamlessly located and

communicated with each other. This allowed the model to be distributed.

• Object Orientation (0 0) - using the 0 0 methodology in the design allowed for a

completely modular implementation, which easily accommodated the introduction

and withdrawal of various objects. This allowed the model to be flexible.

• Java - the need for platform independence, and the use o f 0 0 , made Java the natural

choice o f an implementation language. It also made it relatively easy to implement a

Graphic User Interface to the model for monitoring purposes.

3.2 Str u c tu r e a n d O p e r a tio n

The figure below illustrates the entities that comprise the IN Model, and their inter­

relations. The many-to-one connections o f SSF to SCF was based on IN models

appearing in [Nyberg94][Kihl99][Kwiatkowski94].

Figure 3.1 - The IN Model

23

The rest o f this section will explain the operation o f these entities individually.

3.2.1 Service Switching Function

The SSF is structured as illustrated in Figure 3.2.

I T o A g e n t I
I S y s te m
¡(v ia S C F)I

The following steps describe the operation o f the SSF [MARINERD8]:

• The Traffic Generator sends a service request to the SSF interface

• The Service Initiator queries the Service Admission Control on whether to accept the

service request

• The Service Admission Control informs the Service Traffic Controller o f the

incoming request and checks Routing Table for an execution SCF address for that

service type. If one exists, the SCF address is returned to the Service Initiator with a

positive query result.

• The Service Initiator starts a Service Factory, which creates the Service State

Machine for that particular service type.

• The Service State Machine executes the SSF side states for the service type and

communicates INAP operations with the SCF

Service Traffic
C ontroller

Service A dm ission
Control

Routing Table
Service Factory

Service Initiator Service State
M achines

Figure 3.2 - SSF Structure

24

• The Service Traffic Controller monitors the service request arrival rate and updates

the Routing Table with service type SCFs

3.2.2 Service Control Function

The SCF structure is illustrated in Figure 3.3.

T o A g e n t
I S y s te m I
I______________ I

Figure 3.3 - SCF Structure

The following steps describe the operation of the SCF [MARINERD8]:

■ On receiving a service execution request from the SSF, the Service Initiator starts a

Service Factory.

■ The Service Factory creates the Service State Machine for the service type requested.

■ The Service State Machine executes all the SCF side states o f the service type and

communicates the service INAP operations with the SSF.

■ The Service State Machine Interface also forwards messages to and from the SSF

Service Traffic Controller to the Agent Interface.

■ The Agent Interface provides the Agent System with all the information pertaining to

the SCF load and processing capacity, and traffic arrival rates at the SSFs.

S erv ice
In itia to r

 ■
A gent

In terface
(iQ ua n tifier)

T o S S F

Serv ice State
M ach ines

Serv ice
fa c to ry

Load T able

25

3.2.3 Traffic Generators

The Traffic Generator generates service requests to the SSF. The service requests are

generated randomly from a Poisson distribution with a configurable mean arrival rate.

The TG also contains the functionality to trigger an immediate or delayed burst in traffic

to allow for the modelling of bursty and unpredictable traffic patterns.

3.2.4 Monitoring System

The monitoring system was designed to provide both a long and short-term view o f the

operation o f the IN Model. Performance information is periodically extracted from the

various entities o f the IN Model. This information is then fed into a Graphic User

Interface (GUI) and saved to a spreadsheet.

The GUI provides the user with the real time performance of the model through various

micro and macro views o f the user’s choice.

The spreadsheet provides the user with long term trends in the model’s performance

through various graphs o f the user’s choice.

26

This chapter introduced and described the IN Model. It was built as a tool for the

gauging o f the performance of most new mechanisms and applications built for the IN.

In doing so, a set o f objectives was developed for the model.

These objectives stressed that the model be conformant to the current IN standards, and

perform within the limitations of currently deployed INs. They also required that the

model be scaleable, flexible and configurable so as to model the various network

environments and incoming traffic patterns. Further, the need for a means of monitoring

the performance meters o f the model was stressed.

In order to meet these objectives, the model had to be designed to be distributed, system

independent, flexible and robust. These design constraints led to the choice o f

methodology and implementation tools that were used in the development of the model.

Finally, this chapter detailed the structure and operation of the model as a whole, and

each o f its entities individually.

The IN model described in this chapter was developed as part of the MARINER Project.

This candidate was responsible for the design and development o f all the components of

the IN model. This endeavour however, would have been impossible without the

guidance and advice o f the rest o f the MARINER Project participants, especially the

TELTEC IN Group.

Chapter 5 o f this document will describe and illustrate examples o f the successful usage

o f the IN model in evaluating the MARINER Service Traffic Load Control System.

3.3 S u m m a r y

27

4 NETW ORK ORIENTATED LOAD CONTROL: THE M ARINER

SYSTEM

4.1 I n t r o d u c t io n

Changing regulatory environments world-wide are driving the evolution towards a more

open communication infrastructure, with an ever increasing number o f licensed carries

and service providers demanding interconnects at different functional levels. Exposure to

the Internet has raised customer expectations for the types o f services that should be

offered by the public telecommunications infrastructure, principally that they support a

mix of media types, can be customised to meet the individual’s needs and that they will

be available on-demand, regardless o f user location or terminal equipment capabilities.

These trends are encouraging development of more open, technologically heterogeneous

and dynamically evolving networks where the task o f dimensioning resources to meet the

performance requirements o f an, as yet unknown, set o f services and their associated

usage demands is increasingly difficult. In this context the requirement for a managed

load control system is becoming more and more a necessity when designing a service

environment that will meet the prevailing commercial and regulatory requirements.

With current trends towards the convergence o f the Internet, mobile telephony and

traditional landed networks, much research is going into the utilisation o f the stability and

reliability o f Intelligent Networks for the implementation o f the converged services

[P916] [Wathan99].

As described in § 2.6, currently deployed IN load control techniques tend to focus on the

protection of individual network resources, detecting overload after it occurs and

subsequently invoking rate-based throttling mechanisms configured by means of static

parameter values. In closed, over-dimensioned networks where overloads rarely occurred

these controls have proven adequate. However, in the open, resource-constrained

networks o f the future, existing controls are inadequate in that they are static, reactive,

node-orientated and operate at the message level [Komer94]. This is illustrated by the

crash o f Easter 2000, as described in § 2.6.1.

28

These observations point towards the conclusion that the extended use o f existing

approaches would not meet the service levels required now and in the immediate future in

order to support, for example, multiple service providers, greater IN interconnectivity and

GSM CAMEL services. In order to meet the challenge of providing functionally

enhanced services with the capability for greater interconnectivity within an improved

service level environment, a network orientated load control mechanism is required. This

mechanism has the following capabilities [Komer91]:

■ Network Orientated - it monitors all nodes in its domain and distributes traffic evenly

between the available nodes such that traffic is only quenched when the whole

network is operating at maximum capacity [Lodge97].

■ Proactive - it uses this network wide view o f the IN to discern the onset o f an

overload, and takes measures to distribute and control the incoming traffic.

■ Adaptive - its control parameters continuously adapt to the latest network conditions.

This allows it to always have a realistic view o f network usage and incoming traffic

[Langlois91].

■ Application Orientated - it operates at the application level, controlling and

distributing service requests according to the service type and its importance to the

operator [RajaRatnam96].

The MARINER project has developed a dynamic service traffic load control system

based on these characteristics. The remainder o f this chapter describes the manner in

which this system accomplishes the above in two phases. First, a theoretical treatment of

the operation o f the system is detailed. Then, a description of the implementation o f the

system is given.

29

4.2 T h e o r e t ic a l D esc r ipt io n

The MARINER System fundamentally consists o f two types o f monitoring and control

entities and a single actuating module. Namely, these are the Resource Monitoring Agent

(RMA), the Resource Allocation Agent (RAA) and the Service Traffic Controller (STC).

These entities utilise token-based algorithms to accomplish network-wide, application-

level load control [MARINERD8]. This section describes the token concept and the

algorithm used, along with the operation and communication o f these entities. The

MARINER information flows mentioned below are defined in Appendix A.

4.2.1 The Token-based Approach

Traffic load control can be viewed as a distributed resource allocation problem. On one

hand, there is the desire to serve arriving service requests, which are often unpredictable

and bursty with regard to time, rate and volume. On the other hand, all the resources in

the network have finite capacity and must be managed for optimal allocation amongst the

arriving requests. In the MARINER model, resource usage is controlled by means o f

tokens - if an arriving request is to be admitted to the network then it is granted a token

that allows it use all the resources it will need for the duration o f the service session. By

matching the number of tokens generated to the number o f service sessions that can be

handled by the network the strategy ensures that resources will not overload.

Tokens are generated by RAAs, which uses information received from RMAs regarding

future resource availability and expected future service-request arrival rates. The RAA

employs an optimisation algorithm for the generation o f tokens. Once generated the

token_allocations are communicated to the STCs. Tokens are then used by STCs to

allow service sessions access to the resources (e.g. SCP central processors, databases)

they need to complete successfully - they are representative o f the ‘quantity o f resource’

that will be used by a session. The main benefits o f employing a token-based control

strategy are that the number of sessions admitted can be strictly controlled, thereby

preventing overloads during periods of high traffic loading and that token generation can

be readily tailored to enforce service level priorities based on factors such as revenue

30

generating potential and SLA constraints. The token generation algorithm is described

below.

This algorithm was developed by the MARINER Project [ETSIJSUB], To describe the

algorithm in detail the following notation is introduced. Consider a network that consists

o f / SCFs, J service types, and K SSFs. Moreover, let i , j , and k denote an arbitrary SCF,

service type, and SSF respectively, and let r(j) denote the revenue generated by a class j

request.

All STCs at SSFs maintain IJ pools o f tokens, one for each SCF and service type pairing.

Each time SCF i is fed with a type j session initiation one token is removed from the

associated pool at the STC. An empty pool indicates that future requests for that service

type will be rejected at that SSF. The pools are refilled as a result o f the token generation

process, carried out at the RAA. Inputs to the token generation process are estimated rates

o f service session request arrivals at SSFs, available processing capacity over a period of

T time units (the length o f the next interval), and service session processing requirements.

Available processing capacity, c, and service session processing requirements, pi = P i(l) ,

... ,pi{J) are indicated directly in the r e s o u r c e _ d a t a messages sent from the RMA to

the RAA. Estimated rates o f service session request arrivals at SSFs are calculated by the

RAA using information contained in all the r e s o u r c e _ d a t a and n o t i f i c a t i o n

messages it has received; they are denoted by qk = #*(/), ... ,qk(J)- Note that if interval

duration, T, is o f the order of tens o f seconds then the arrival rates measured/estimated

over the past interval will be a good prediction of the arrival rates in the coming interval.

The RAA will also use profit values, rk = r*(7), ... ,r*(/), which are pre-specified by the

network operator during the token generation process; these allow for the enforcement of

priorities between service types based on their relative profit value. Profit values will take

into account aspects such as revenue generated by successful sessions o f that service,

financial penalties associated with rejecting a session o f that service type, or customer-

perceived service importance.

Tokens are generated such that expected overall utility, measured as total profit, over the

next T time units is maximised. The method is to allocate tokens one by one such that the

expectation of marginal utility to marginal cost is maximised in each allocation. During

31

the process, records are kept o f the total remaining processing capacity, the number o f

tokens that have been generated, and the costs associated with the transactions. These

records are denoted by s i9 «/,*(/), and c,•,*(/) respectively.

The marginal utility u of an additional token is the expected profit associated with it. It is

computed as the profit associated with consuming it times the probability that it will be

consumed during the interval. Let «*(/') be the marginal utility associated with allocating a

type j token to SSF k and let «*(/') be the total number o f type j tokens held by SSF k By

interpreting the expected number o f service requests qk(j) as the average of a Poisson

distribution, we obtain utij) as

«* o) = h u) X w 1 w!e' ,*a)
w=nk(j)+1

The marginal cost v o f an additional token is the expected revenues from alternative ways

o f spending the same resources. It is computed as the total revenue expected from all

alternative allocations o f the same amount o f processing capacity. Let v,(/) be the

marginal cost associated with issuing a type j token from SCF i. By using the definition

o f utility above we obtain v,{/) as

j ’=i k '= i P i y j >

For computational purposes it is convenient to rewrite the equation above as

V/ 0) = Pi (j)wi where

w, = Y Y —

Let an (i, j , A:)-allocation refer to assigning a type j token from SCF i to SSF k. The

marginal utility per marginal cost <$.*(/) suc^ an action is

Si,kU) = uk(J) î(J)

Thus 5i k(j) expresses the derivative o f the utility function with respect to the processing

required for an (i ,j , A:)-allocation. The generation process seeks to maximise total overall

utility by distributing the resources in a series o f allocations such that each allocation

32

results in a maximal increase in overall utility. The optimal allocation in each step is thus

the one with the highest derivative.

We are now ready to state the algorithm formally:

Step 1: Initialisation.

For all SSFs & = 1,..., K :

For all SCFs i = 1 and all services j = \ ,

Set the allocations ni k (j) = 0 and costs ci k (j) = 0.

For all services j = 1 ,.. .s J:

Set all marginal probabilities n k (J) = e~q,U)

Set all accumulated probabilities n* (J) = 1 - n k (j) .

Set all marginal utilities uk (j) = rk 0)11^ (J) .

Forali SCFs i= 1,

Set all remaining processing capacities = ci .

Set all accumulated ratios w. =
y=l k=1 P i U)

For all services j - 1 , . . / and all SSFs k = 1 ,.. . , K:

Set the allocations nitk(j) = 0 and costs ci k (j) = 0.

For all services j = 1 , . . J:

Set all marginal costs vt(J) = Pi(j)wi-

Step 2: Identify optimal allocations.

For all SCFs i = 1,..., / for which s,>0,all services j = 1, ...J, and all

SSFs À:= 1,..., K:

List the allocations that maximise <$,*(/).

Step 3: Arbitrage between several optimal allocations.

If more than one allocation is optimal, select one candidate (/ ', / , k!) as

described in § 4.2.1.1.

Step 4: Perform optimal allocation.

Let

33

Let cPU') = crW) + vk' (f) -

Let sr =sr - p r (f) .

Step 5: Update internal variables.

Let 7rk, (f) := 7rk,(j')q k, (/) / nk, (f) .

Let

Let =

For all SCFs z= 1 , let w, :=w,.- r k.(j ')nk. (J ') /pt(f) .

For all SCFs / = 1 , / and all services j = 1 , . . J let v, (y) = p. (J)wi .

Step 6 : Loop statement.

If there exists at least one SCF i for which Si > 0, then go to step 2, else

STOP.

When the process terminates, all supplies (in terms of processing capacity) will have been

distributed between the demands (in terms o f tokens). Token allocations are stored in an

Z/K-dimensional matrix which is placed into t o k e n _ a l l o c a t i o n messages that are

sent to the RMAs that submitted r e s o u r c e _ d a t a messages.

4.2.1.1 Arbitration

If, at any round in the algorithm, some utilities u and demands v are identical, e.g.

because o f identical SCFs or identical arrival predictions, several candidates will be

identified in step 2. From the point of view o f global utility, this is not a problem and any

candidate can be selected from the list, e.g. at random. It may, however, be preferable to

apply other criteria when selecting a candidate. A culling procedure among the

candidates can be applied; which may contain a number o f steps as follows:

Supplies Si. To ensure even loads, lightly loaded SCFs are preferred to heavily loaded

ones. This is achieved by identifying the maximal supply among the transaction

candidates and excluding the ones with a lower supply.

Step size pi(j): To maximise expected overall utility, larger steps in terms o f resources

spent must be preferred to smaller ones. This is achieved by identifying the maximal step

size among the transaction candidates and excluding the ones with smaller step sizes.

34

Provider concentration «/(/'): To ensure stability against sudden load changes with respect

to specific services, SCFs are encouraged not to focus on particular services. This is

achieved for each service by identifying the transaction candidates that refer to the lowest

number o f issued tokens and excluding the ones that have issued more tokens.

Fairness «*(/)A?*(/): To ensure fairness, even under conditions where the demand is much

higher or much lower than the supply, utilities must be brought to 0 or />(/) independent

o f allocation «*(/). This is achieved for each SSF and service by identifying the

transaction candidates that have issued the lowest allocation of tokens relative to demand

and excluding the ones that have higher relative allocations.

Supplier concentration «*(/): To ensure stability against sudden load changes with respect

to specific services, SSFs are encouraged not to focus on particular SGFs for particular

services. This is achieved for each SCF and service by identifying the transaction

candidates that have issued the lowest number of tokens and excluding the ones that have

issued more tokens.

If more than one candidate remains after the culling procedure above more criteria can be

added, and eventually random selection applied to ensure an unbiased distribution of

tokens.

35

4.2.2 Operation in Normal Traffic Loading Conditions

RAA RM A STC

Figure 4.1: Service traffic control under normal traffic loading conditions

The Message Sequence Chart shown in Figure 4.1 illustrates the operation o f the token-

based control strategy in normal conditions (i.e. when the volume of service traffic

arrivals is not sufficient to cause overload of any network resources). The figure shows a

RMA associated with a network resource; for the purposes of this document it is assumed

that only one type o f resource (an SCP central processor) is being controlled, however the

MARINER system can be used to control multiple resource types. Token generation

takes place at discrete intervals corresponding to expiry of timer T l, the duration of

36

which is set by the RAA. During token generation, sufficient tokens are allocated to

control service traffic over the coming interval.

Prior to token generation the RMA will (at expiry of T5) access performance data from

the SCF regarding the current rate at which service sessions are being initiated by SSFs.

This information is collected on a per-service, per-SSF basis. In normal conditions no

service session requests are being rejected at the SSFs, therefore these rates are indicative

o f service session arrival rates, which can in turn be used as an estimate of arrival rates

for the coming interval. The RMA also accesses data that allows it to estimate the

processing costs per service type and currently available processing capacity at the SCF.

Once it has collected this information it forwards it to the RAA (in a r e s o u r c e _ d a t a

message) so that it arrives before the specified token generation deadline.

Once the token generation deadline is reached the RAA will collate the information

received from all RMAs into service session arrival rates per service per SSF, service

processing costs per service per SCF and individual SCF processing capacities. The RAA

will use these as inputs into the token generation process. Token allocations are

generated on a per service, per SSF, per SCF basis, i.e. a token is used at a particular SSF

to admit a session o f a particular type which will use the resources o f a particular SCF.

The RAA inserts token allocations into a data structure of SSFs, SCFs and service

identifiers. This data structure, along with the time to the next token generation and the

token generation deadline is sent in a t o k e n _ a l l o c a t i o n message to all the RMAs

that submitted r e s o u r c e _ d a t a messages. The token_allocation message also contains

an intervallD parameter that can be used by the other entities to ascertain the validity of

the message when it is received.

On receiving a t o k e n _ a l l o c a t i o n , the RMA extracts the information regarding the

next token generation time and forwards the t o k e n _ a l l o c a t i o n message to the SSFs

indicated therein. The RMA forwards the t o k e n _ a l l o c a t i o n message to the SSFs

such that it reaches them as close to the beginning o f the next interval as possible. In

doing so it utilises previous measurements o f the latency between the sending of a

t o k e n _ a l l o c a t i o n and the subsequent reception o f the

t o k e n _ a l l o c a t i o n _ a c k acknowledgement message. It is noted that if the RAA

37

places complete token allocation information (relating to all SSFs and all SCFs) into the

t o k e n _ a l l o c a t i o n messages sent to each RMA then SSFs will receive multiple

copies, thereby increasing the robustness of the system. For large networks this may

prove too large a communication overhead, in which case the RAA may reduce the

amount of messaging through selective filtering of the information contained in the

t o k e n _ a l l o c a t i o n s sent to RMAs.

When the SSF receives the t o k e n _ a l l o c a t i o n , it is passed to the STC, which

extracts the tokens allocated to it from the data structure, updates its internal token pool

and sends a t o k e n _ a l l o c a t i o n _ a c k message to the RMA. New token allocations

invalidate old ones. Each time a service session request arrives at the SSF, the STC is

queried on whether to accept it. The STC uses its token pool as the basis for deciding

whether to accept a request or not. It can use tokens on a continuous basis or employ a

more complex algorithm based, for example, on measurements o f the current rate of

token usage with the aim of imposing an even rate o f token usage over the interval until

the next allocation arrives. In any case once tokens for a particular service type are

exhausted, future requests for sessions of that type will be rejected.

4.2.3 Operation in High Traffic Loading Conditions

During conditions o f high loading, where tokens are being exhausted rapidly at one or

more SSFs the estimates o f service session request arrival rates generated by the RMAs

will not accurately reflect the actual arrival rates at the SSFs. In order to indicate to the

RAA that it is likely to require more tokens for a particular service type than had been

allocated for the current interval an STC will send one or more n o t i f i c a t i o n

messages to the SCF/RMAs.

A n o t i f i c a t i o n message can indicate two types of situation, either (a) tokens for a

service type are expected to become exhausted before the end o f the current interval, or

(b) the tokens have been exhausted and a number of requests have been rejected. In the

former case the n o t i f i c a t i o n is sent when a pre-specified threshold percentage of

the tokens have been used and the n o t i f i c a t i o n indicates the fraction o f the interval

that has passed before this threshold was reached. In the latter case the n o t i f i c a t i o n

38

simply indicates the fraction o f the interval that had passed and the number o f requests

that have been rejected.

The STC sends n o t i f i c a t i o n messages to the RMAs, which forward them to the

RAA at the same time they send the RAA their own estimates (in r e s o u r c e _ d a t a

messages) of SSF arrival rates. The RAA then uses the information in the RMA estimates

and the n o t i f i c a t i o n messages to form its own estimates o f arrival rates. The

operation o f the system in high loading conditions is illustrated by Figure 4.2.

RAA RM A

R A A : R esource A Uocation A gen l T l : RA A Interval T im er T5: RM A C om putation S tart T im er
R M A : R esource M onitoring A gent T2: RA A Token G eneration D eadline T im er T6: RM A Token A llocation D ead line T im er
STC : S erv ice T raffic C ontro ller T3: RM A Interval T im er T7: STC Token Lifetim e T im er

T4: RM A Token G eneration D eadline T im er

Figure 4.2: Service traffic control under high traffic loading conditions

39

The degree o f effectiveness o f the token-based control is to an extent dependant on two

temporal constraints: firstly r e s o u r c e _ d a t a messages from the RMA should arrive at

the RAA before the token generation deadline; secondly at least one

t o k e n _ a l l o c a t i o n message should be received at the STC before the start o f the

next interval. To allow the system dynamically adjust its operational parameters so that

both o f these timing constraints are met two error messages are introduced:

l a te _ _ d a ta _ w a r n in g and l a t e _ a l l o c _ w a r n i n g .

The operation o f the system in response to the reception o f a l a t e _ d a t a _ w a r n i n g

message is illustrated by Figure 4.3. By keeping the length o f Timer T5 as long as

possible the RMA attempts to get an as up-to-date an estimate as possible of the load of

its associated SCF resources. However if T5 is too long the r e s o u r c e _ d a t a message

sent to the RAA will arrive late and no tokens will be allocated for the SCF for the

coming interval. Upon reception o f a late r e s o u r c e _ d a t a the RAA sends the

originating RMA a l a t e _ d a t a _ w a r n i n g message, which causes the RMA to reduce

the length o f subsequent T5 timers. The l a t e _ d a t a _ w a r n i n g indicates the amount o f

time after the token generation deadline that the r e s o u r c e _ d a t a arrived; this value is

used in the calculation o f the amount by which T5 should be reduced. It is noted that if

the RAA sets the token generation deadline conservatively, it may still be able to take

account o f a ‘late’ r e s o u r c e _ d a t a message (arriving sometime within some preset

time after T2 expiry) and subsequently send a t o k e n _ a l l o c a t i o n to the RMA in

question. After a pre-specified number o f intervals the RMA may increase T5, however

this should not be done if the RMA has received n o t i f i c a t i o n messages during

those intervals.

The operation o f the system in response to the reception o f a l a t e r a l l o c _ w a r n i n g

message is illustrated by Figure 4.4. The RAA uses timer T2 to ensure the token

generation process starts in sufficient time to allow the propagation o f

t o k e n _ a l l o c a t i o n messages to all STCs in advance o f the start o f the next interval.

Whilst meeting this constraint is its priority the RAA also attempts to keep T2 as long as

4.2.4 Dynamic Timing

40

possible so that the information received from RMA/STCs and used as input to the token

generation process is as up-to-date as possible.

RAA RM A STC

Figure 4.3: Response of system to l a t e d a ta w arning message

41

R A A RM A S T C

Figure 4.4: Response of system to l a t e a l l o c w arning message

As indicated previously the RMA attempts to forward t o k e n _ a l l o c a t i o n messages

so that they reach their destination STC in time for the next interval. If the RMA receives

the t o k e n _ a l l o c a t i o n from the RAA too late to make this possible, it sends a

l a t e _ a l l o c _ w a r n i n g to the RAA, indicating the time interval by which the

42

received t o k e n _ a l l o c a t i o n was late. On receiving this message, the RAA decreases

the token generation deadline by an amount calculated using the lateness interval

indicated in the l a t e _ a l l o c _ w a r n i n g . In the event that the RAA receives a

l a t e _ a l l o c _ w a r n i n g requiring the token generation deadline to be less than a pre­

specified fraction, Deadline Limit, o f the interval length, the interval length is increased

instead. The token generation deadline is communicated to the RMAs in

t o k e n _ a l l o c a t i o n messages, therefore the newly calculated deadline cannot be

used for the current interval; as illustrated in Figure 4.4, it comes into effect for the next

interval.

4.3 I m p l e m e n t a t io n

This section provides a description o f the implementation o f the MARINER Service

Traffic Load Control System. Figure 4.3 illustrates the structure o f the o f the MARINER

System implementation.

Figure 4.3 - MARINER System Implementation

43

The Resource Monitoring Agents (RMA) and the Resource Allocation Agents (RAA)

were implemented on the IKV++ Grasshopper Intelligent Agent System. The Service

Traffic Controller (STC) was implemented as part o f the SSF in the IN Model described

in Chapter 3. The rest o f this section describes the Grasshopper System and the three

entities.

4.3.1 The Grasshopper Intelligent Agent System

Grasshopper™ [GRASSHOPPER] is a mobile agent development and runtime platform

that is built on top of a distributed processing environment. It is implemented in Java,

and is designed conformant to the Object Management Group’s Mobile Agent System

Interoperability Facility (MASIF)[MASIF].

The implementation for the MARINER System includes Grasshopper FIPA extensions

that includes the following agents:

■ the Agent Communication Channel (ACC), which facilitates agent communication

■ the Directory Facilitator (DF), which allows agent to locate each other

■ the Agent Management Service (AMS), which manages the agent start-up and

maintains a list o f live agents.

4.3.2 Service Traffic Controller

The STC, residing within the SSF, controls the acceptance o f new service session

requests at the SSF through the use of token allocations received from an RAA. It:

• accepts t o k e n _ a l l o c a t i o n messages from RMAs and uses the intervallD

parameter contained therein to decide whether to update its data. If an update is to be

done it extracts and stores token allocations for the next interval and the length o f that

interval;

• at the expiry of current interval timer (T7), it updates the token pool and starts a new

interval timer using the new token allocations and interval length contained in the

t o k e n _ a l l o c a t i o n (s) ;

44

• on receipt o f a t o k e n _ a l l o c a t i o n message, it optionally calculates token usage

thresholds per service that once surpassed will trigger the sending o f a

n o t i f i c a t i o n message during the next interval. This calculation is based on

token allocations and pre-specified threshold percentages for each service;

• receives requests for permission to accept a new service session from the SSF. It

checks the corresponding token pool. If the session is to be accepted, it indicates this

and the destination SCF address to the SSF and subtracts a single token from the

corresponding token pool. If the session is to be rejected it indicates this to the SSF;

• sends a n o t i f i c a t i o n to RMAs when the number o f tokens remaining for a

particular service falls below the pre-calculated service threshold. This

n o t i f i c a t i o n indicates the service type and the fraction o f the interval that has

passed up to the time when the n o t i f i c a t i o n is generated;

• optionally sends one or more n o t i f i c a t i o n to RMAs when it has exhausted its

tokens for a particular service (or set of services). These n o t i f i c a t i o n messages

can be sent immediately upon token exhaustion and/or at subsequent time intervals.

In the latter case the n o t i f i c a t i o n will indicate the number o f service session

requests that have been rejected since token exhaustion;

• optionally re-uses the last t o k e n _ a l l o c a t i o n message it received if a new one

has not been received at the expiry o f current interval timer (T7).

A more detailed description o f the implementation o f this function with the SSF is

available in Appendix B.

4.3.3 Resource Monitoring Agent

The Resource Monitoring Agent is associated with one or more network resource types.

In the case o f the SCF, it monitors the SCF resources’ available processing capacity,

estimates session arrival rates on a per service per SSF basis and reports this information

to the RAA. It:

• sends and receives messages to and from the RAA and STCs;

45

• upon expiry o f timer T5 accesses data relating to current service request arrivals rates

by service and SSF at the SCF. Also accesses data that relates to the SCF resources’

available processing capacity and the processing cost for sessions o f the service types

supported by that SCF. Places this information in a r e s o u r c e _ d a t a message and

sends this to the RAA;

• receives t o k e n _ a l l o c a t i o n messages from the RAA and extracts information

regarding the interval length and token generation deadline. Uses this information to

calculate the duration o f timers T4, T5 and T6;

• forwards t o k e n _ a l l o c a t i o n messages to STCs;

• upon receipt o f a l a t e _ d a t a _ w a r n i n g , decreases the length o f timer T3 by an

amount calculated using the information on the latency o f the bid contained in the

l a t e _ d a t a _ w a r n i n g ;

• keeps measurements o f the latency between itself and STCs and uses this information

to ensure that the STC receives the t o k e n _ a l l o c a t i o n messages as close to the

beginning o f the new interval as possible;

• sends a l a t e _ a l l o c _ w a r n i n g to the RAA if t o k e n _ a l l o c a t i o n is received

after the expiry of timer T6.

A more detailed description o f the implementation classes o f this function is available in

Appendix C.

4.3.4 Resource AIlocation Agent

The RAA controls network resource loads in a co-ordinated manner through receiving

data from RMAs and STCs, the running o f the token generation process and the

propagation o f token allocation to STCs. It:

• upon expiry o f timer T2 (or at some preset time thereafter) collates data received in

r e s o u r c e _ d a t a messages from the RMAs to form estimates o f service arrival

rates on a per service per SSF basis. If n o t i f i c a t i o n messages have been

46

received then the information contained therein is also used in the formation of

service arrival rate estimates;

• sends l a t e _ d a t a _ w a r n i n g messages to RMAs whose r e s o u r c e _ d a t a

messages arrived after the expiry o f T2. The l a t e _ d a t a _ w a r n i n g indicates the

degree o f latency of the r e s o u r c e _ d a t a message;

• runs the token generation process to generate token allocations on a per SCF, per

SSF, per service type basis;

• sends t o k e n _ a l l o c a t i o n messages containing the token allocations, the duration

o f the next interval, and the token generation deadline, to all RMAs;

• shortens T2 if a l a t e _ a l l o c _ w a r n i n g message is received. The new token

generation deadline will only be sent out with the next t o k e n _ a l l o c a t i o n and

therefore only be enforced in the following interval;

• increases the interval length if the newly calculated token generation deadline

corresponds to less than the Deadline Limit o f the current interval length.

A more detailed description of the implementation classes o f this function is available in

Appendix C.

4.4 Su m m a r y

With the exponential growth of the telecommunication service traffic spurred by

changing regulations and the convergence o f the internet, mobile telephony and landed

networks, current load control mechanisms for Intelligent Networks are seen as

inadequate in that they are reactive, node-orientated, static and operate at the messaging

level.

Network orientated load control mechanisms provide a solution to these inadequacies in

that they are inherently network-orientated, proactive, dynamic and operate at the

service-level. The MARINER Service Traffic Load Control System attempts to provide

the IN with a network orientated load control mechanism that is better prepared to handle

the challenges on the horizon. This is accomplished through the following steps:

47

• Resource Monitoring Agents monitor the current loads of the IN resources (such as

the SCF processing capacity) and service traffic arrival rates. This data is

periodically reported to the Resource Allocation Agent.

• The Resource Allocation Agent uses this data to assess the various IN resources’

availability and traffic arrival rates at the SSFs. Using these assessments, it

periodically allocates resource usage to the SSFs using the Service Traffic Controllers

built into them according to the service type priority level (profit) set by the operator.

• The Service Traffic Controllers distribute incoming service traffic to the IN resources

according to the resource usage information it received from the Resource Allocation

Agent. I f it exhausts the resource usage allocated to it for a particular service type

before the next allocation arrives, the Service Traffic Controller begins to reject

service requests o f that type and notifies the Resource Allocation Agent of this.

• If the Resource Allocation Agent receives notifications from the Service Traffic

Controllers, it processes them, discerns the nature (service type, extent and location)

o f the impending overload, and reassigns resources to maximise network-utilisation

and operator-profit from the overload while protecting individual nodes from

overloading.

This candidate was responsible for the design and development o f the Service Traffic

Controller and significantly contributed to the development o f the Resource Allocation

Agent and the Resource Monitoring Agent. This endeavour however, would have been

impossible without the contributions, guidance and advice o f the rest o f the MARINER

Project participants, especially the TELTEC IN Group and IKV for the Grasshopper

FIPA Platform.

The next chapter uses experimental data to verify the operation and performance o f the

MARINER System.

48

5 EXPERIMENTS AND RESULTS

5.1 I n t r o d u c t io n

This chapter details the experiments that were carried out on the MARINER Service

Traffic Load Control System as part o f the effort to demonstrate and analyse the

performance o f this system as a network orientated load control mechanism for the

Intelligent Network. These experiments explore the following characteristics of the

MARINER System:

• adaptive load control - its ability to integrate with the IN, and adapt its load control

parameters to the network and traffic conditions

• network-orientation - the ability to balance load among the available nodes,

maximising network utilisation while protecting individual nodes from overloads

• service-orientation - the ability to differentiate between service types, and maximise

service profit (§ 4.2.1) as set by the operator.

• proactive - its ability to distribute and control a spontaneous traffic overload.

• robustivity - the ability o f the system to recover from node or agent malfunctions and

lost or corrupted communication

• the limitations o f the system

The experiments were structured into three phases, with each phase feeding its results

into the next phase, while further testing the conclusions drawn from the previous phase.

The first phase comprised the integration experiments. These experiments verified that

the Trial Platform operated according to the MARINER System as described in Chapter

4, hence confirming that all subsequent experiments performed on the Trial Platform

were indeed testing the MARINER System. Further, the experiments were also used to

test that the MARINER System integrated successfully with the IN Model described in

Chapter 3. This was followed by the evaluation experiments. These experiments tested

the performance o f the MARINER System against the criteria set out in § 5.1.1. Finally,

49

the robustness experiments were carried out. These tested the robustness of the

MARINER System in various error conditions and explored its limitations. In describing

the above process, this chapter is structured in the following manner. First, the

experimental setup is described. This is followed by sections on the experiments and

results from each phase o f the experiment process. Finally, the results of the experiments

are summarised and analysed. Further descriptions o f these trials are available in

[MARINERD8] ['Wathan2000].

5.1.1 Evaluation Criteria

The Evaluation Experiments that were carried out analysed the performance and

behaviour of the MARINER System against the following criteria.

• Overload Protection

The load control system must control the network load to match the offered load in

all circumstance except when the offered load exceeds the safe maximum of 90%

of the capacity o f the network. In the case when the offered load exceeds the safe

maximum, the load control system must maintain the network load at the safe

maximum. In the case when the offered load increases or decreases rapidly, the

load control system must ensure that the accepted load matches the offered load as

closely as possible without exposing the network to an offered load above the safe

maximum.

• Load Distribution

The load control system must ensure the equal distribution o f the offered load

among all nodes within the controlled network. In the case where the offered load

comprises multiple service types, the load control system must ensure the equal

distribution o f the offered load o f each service type among all nodes capable o f

executing that service type.

• Service Differentiation

The load control system must always ensure that the network capacity is utilised

such that the network profit is maximised. Specifically, in the case where the

50

offered load exceeds the safe maximum capacity of the network, the load control

system must distinguish between the service types that make up the offered load

and ensure that the service requests are rejected according to their profit value to

the network, the least profitable being the first to be rejected.

These criteria were chosen due the fact that they were considered by this candidate to

accurately measure the effectiveness and practical value o f any load control system. This

consideration is supported in [Arvidsson99] where it is stated that they accurately

represent the viewpoints o f the network operator, network users, and the network itself.

These criteria have also been used to evaluate other network management systems

including the Global IN Congestion Control Strategy [Lodge2000], and Automatic Call

Restriction [Williams94], as well as in the discussions presented in [Arvidsson97],

[Pettersson96], [Williams2002], [Hnatyshin2001], [Dovrolis2000] and [Mohapi2000].

Other popular criteria used for the evaluation o f load control systems are Service Fairness

[Lodge2000], [Folkestad96], Source Fairness [Whetten2000][P8132000] and

Minimisation o f User Delay [Kant95][Williams2002]. These criteria were deemed

unsuitable for use in the evaluation of the MARINER System for the following reasons.

• Service Fairness

Service Fairness is defined by [Rumsewicz96], [Galletti92] and [Tsolas92] as a

strategy where, in response to an overload, the load control system should reject

only the service type that is causing the overload. This criterion was not chosen

because it ignores the fact that most current networks are governed by multiple

Service Level Agreements ensuring that services types are distinguished and treated

based on their importance and urgency to both the network provider and the

network user. In the event o f an overload, it is therefore more important that the

network attempts to service the most number o f requests o f the most important

service rather than reject service requests based on the service type causing the

overload.

• Source Fairness

51

Source Fairness is defined by [Hac98] as a criterion where, in response to an

overload, the load control system should ensure that it only rejects load from the

sources (SSPs) causing the overload. This criterion was not chosen because it too

does not distinguish between Service Types and their importance to the Network

Operator and Users.

• Bound User Delay

Bound User Delay is defined by [Kant95] as a requirement for the load control

system to ensure that the average length of time each user must wait for service

implementation to be completed should not be exceed a Maximum User Delay

during an overload. This criterion was not chosen due to the fact that it was

considered to be pertinent only for load control systems operating at the service-

messaging levels, which could lead to service completion times varying by large

amounts during an overload. Since the load control system being evaluated in this

paper operates at the service level, once a service request is accepted, the resources

it requires (represented by tokens in the SSP) are committed, ensuring no large

discrepancies between service completion times during an overload.

5.2 E x p e r im e n t a l Setu p

5.2.1 Trial P la tform

The Trial Platform consists of a CORBA-based IN Model described in Chapter 3, the

Grasshopper Platform and the MARINER System described in Chapter 4.

52

Figure 5.1 - The Trial Platform

The IN Model served to model a distributed IN environment containing SCPs, SSPs and

Traffic Generators. The SSPs were equipped with Service Traffic Controllers (STCs) as

described in § 4.3.2. The STCs were set to send Notifications only when tokens for a

particular service type were exhausted, and to re-use the last token__allocation if a new

one did not arrive in time. The design also included the integration o f load control

agents, while providing maximum de-coupling between the operations o f the IN Model

and the agents. Hence, making it possible to introduce new versions o f agents and load

control strategies without necessitating modifications to the model.

For the purposes of the trial, the model is able to execute three different services. The

design of the model however allows for the inclusion of further service with only minor

modifications. The three services are as described below.

5.2.1.1 Service 0: Restricted User

This service was implemented as described in § 2.4.1 (See Appendix B). The total

numbers o f instructions carried out at each network element are as follows:

SSP: 135,000 instructions[RBi]

53

The profit associated with a successful session of the Restricted Access Call Forward

service is 1 profit unit.

5.2.1.2 Service 1: Virtual Private Network

The service was implemented as described in § 2.4.2 (See Appendix B). The total

number o f instructions carried out at each network element is as follows:

SSP: 97,500 instructions

SCP: 240,000 instructions[RB2]

The profit associated with a successful session of the VPN service is 5 profit units.

5.2.1.3 Service 2: Automatic Ringback

The service was implemented as described in § 2.4.3 (See Appendix B). The total

numbers o f instructions carried out at each network element are as follows:

SSP: 242,500 instructions[RB3]

SCP: 300,000 instructions

The profit associated with a successful session o f the Ringback service is 10 profit units

5.2.2 Standard Trial Configuration and Assumptions

The standard configuration for the experiments were as follows:

■ An IN network comprising of 6 SSPs and 2 SCPs running on a single system.

■ Traffic Generators generating service requests o f all three types to the IN network at

an equal rate.

■ 2 RMAs and one RAA operating on the Grasshopper Platform running on a single

system.

It should be noted that in order to obtain meaningful results, both the load offered to the

network and the load processed by the SCFs are measured as percentages o f the total

SCP: 160,000 instructions

54

processing capacity of all the SCFs in the network. Therefore, in the case where 100%

load is offered to the network, all the SCFs in the network would have to be working at

full capacity in order to service all the requests being generated by the Traffic Generator.

Further, auction intervals are used as a measure o f the passage o f time in the experiments,

where on auction interval is the fixed interval in milliseconds between to auction

processes within the Distributor Agent.

The following assumptions are used in all experiments:

■ Service users never abandon ongoing service sessions, thus it is not necessary to

implement the signalling required for premature session termination.

■ Processing requirements remain constant for a particular signal over all sessions o f

that service type.

■ All network links are identical and provided by 10MB Ethernet.

■ All SCFs have identical hardware and software configurations and support all

services.

■ The targeted safe maximum load for an SCF is 90% [Sabourin91].

■ All [NW4]Traffic Generators originate requests for services according to independent

Poisson processes.

■ Any delay at SSFs is related to processing only.

■ For all scenarios, the mean arrival rates for all services are equal unless stated

otherwise.

5.3 I n t e g r a t io n E x p e r im e n t s

The integration experiments investigated all aspects o f the Trial Platform in order to

verify that it operated in accordance with the MARINER System, as described in § 4.2.

This was done to verify that all subsequent experiments carried out on the Trial Platform

did indeed test the performance o f the MARINER System. These experiments were

carried out during the development period of the system so that the results could be fed-

back into the development process and used to improve the system.

55

5.3.1.1 Basic Platform Setup

Objective(s) o f experiment: To verify that the MARINER Agent System interacts with

the IN Model such that the platform operates as described

in § 4.2.1

Experimental setup: Standard Configuration

Experimental procedure: Configure a standard IN network and deploy the

Grasshopper agents on it. Turn on traffic generation at 35%

steady load and verify that token allocations are taking

place and that load is being distributed.

5.3.1.2 Agent Dynamic Timing

Objective(s) o f experiment: To verify that MARINER Agents dynamically adjust their

timing values to adapt to the environment as described in §

4.2.3.

Experimental setup: Standard Configuration.

Experimental procedure: Proceed as in experiment 1 with the interval set at 60

seconds and the RMA and RAA timers set at an initial

value o f 35s. Under a 35% steady load verify that token

allocations are taking place and monitor the timing values

of the MARINER Agents.

5.3.2 Integration Results

5.3.2.1 Experiment 1: Basic Platform Setup

Through the duration o f this experiment, the IN Model successfully generated and

executed services while the MARINER Agents monitored and controlled the network

load through the implementation o f the market-based strategy in the manner described in

§4.2

56

Further to achieving its objectives, this experiment allowed for the fine-tuning o f the

configuration parameters o f both the IN Model and MARINER System, hence assuring

consistency throughout the remainder o f the trial.

5.3.2.2 Experiment 2: Agent Dynamic Timing

This experiment tests the ability o f the RMA and RAAs to dynamically adapt their

operation times to the network environment. The results of the experiment should show

the RMA Computation Start Period (T5 in Figure 4.3) increase at the beginning until it

reaches the point where the RMA is accessing the SCP at the very latest it can without

missing the token generation deadline. At this stage, the RMA Computation Start Period

will fluctuate about this point as the RMA attempts to increase it further and the RAA

sends late_data_wamings, forcing the RMA to decrease it. This fluctuation allows the

RMA to rapidly adjust to a change in the network.

In the RAA, the results should show the RAA increasing the Token Generation Deadline

Period (T2 in Figure 4.4) until it reaches a point where the Token Generation Procedure

occurs as late as it can, while ascertaining that the token_allocation reaches the STC at

the beginning o f the next Interval. At this stage, the Token Generation Deadline Period

should fluctuate about this point as the RAA attempts to increase it further and the RMA

sends late_allocation_warnings, forcing the RAA to decrease it. This fluctuation allows

the RAA to rapidly adjust to a change in the network.

RMA Timing

N » t- P» « N
N n n (1 n n

I n te r v a l

^ ^ ^ m E S S

RMA Computation Start Period |

Figure 5.2 - RMA Dynamic Timing

The graph shows that the RMA Computation Start Timer is working as expected. From

its initial value o f 35s, it gradually increases with every interval to the 47s. At this point,

the RAA sends a late_data_warning to the RMA causing it to reduce the Timer period

to 43s. It then attempts to increase the period in the subsequent intervals until a warning

is received. This cycle repeats itself for the duration of the experiment.

RAA Timing

§ 50

il
1«

*- n in

Auction Interval RAA Token Generation Period

Figure 5.3 - RAA Dynamic Timing

The graph shows that the RAA Token Generation Timer is working as expected. From

its initial value o f 35s, it gradually increases with every interval to the about 52s. At this

58

point, the RMA sends a late_allocation_warning to the RAA causing it to reduce the

Timer period to about 45s. It then attempts to increase the period in the subsequent

intervals until a warning is received. This cycle repeats itself for the duration o f the

experiment. The interval length stays at 60s.

The results o f this section have shown that Trial Platform does work as described in §

4.2, in accordance to the MARINER System. This finding allows all subsequent

experiments on the Trial Platform to test and demonstrate the performance o f the

MARINER System.

5.4 E v a l u a t io n E x p e r im e n t s

The Evaluation experiments tested the load control and overload protection aspects o f the

Trial Platform and hence, the MARINER System.

5.4.1.1 Normal Load Under Steady State

Objective(s) o f experiment: To verify that the system operates as required under a

steady state load.

Experimental setup: Standard Configuration

Experimental procedure: Configure a standard IN network and deploy the

MARINER agents on it. Start traffic generation at the

normal steady state rate o f 35% and capture load

information for the network. By analysis of the loading data

verify that the MARINER agents are operating correctly.

5.4.1.2 Excessive Load Under Steady State

Objective(s) o f experiment: To verify the operation o f MARINER agents under

excessive steady state load.

Experimental setup: Standard Configuration with traffic generator set for arrival

rates amounting to:

2.1 95% Load

59

Experimental procedure: Configure a standard IN network and deploy the

MARINER agents on it. Start traffic generation with

services 0 and 2 having a normal (as in Experiment 1)

arrival rate and service 1 having an elevated arrival rate so

that the total traffic generated is as described in he

experimental setup. Capture load information for the

network. By analysis of the loading data verify that the

MARINER agents are operating correctly.

5.4.1.3 Excessive Load for Limited Periods

Objective(s) o f experiment: To verify the operation of MARINER agents under

excessive load for limited periods.

Experimental setup: In this case, the network load is modified by having a

higher arrival rate for Service 1 that only last for a short

period as follows. First the network is exposed to normal

load for 30 intervals, then to an overload for 10 intervals,

simulating a spontaneous high traffic period. This is

followed by an exposure to 75% of the overload for 10

intervals, simulating rejected customers re-dialling. Finally,

the network is exposed to a normal load. The extent of the

overload is as follows:

3.1 95% Load

3.2 120% Load

Experimental procedure: Configure a standard IN network and deploy the

MARINER agents on it. Start traffic generation as

described in experimental setup and capture load

information for the network. By analysis of the loading data

verify that the MARINER agents are operating correctly.

2.2 120% Load

60

Objective(s) o f experiment: To verify the operation of MARINER agents under

excessive localised load for limited periods.

Experimental setup: In this case use normal load for all nodes except one SSP.

At this SSP generate excessive traffic of 120% Load for 10

intervals followed by excessive traffic of 75% of 120%

load for 10 intervals. Then, resume normal loading.

Experimental procedure: Configure a standard IN network and deploy the

MARINER agents on it. Start traffic generation as

described in experimental setup and capture load

information for the network. By analysis of the loading data

verify that the MARINER agents are operating correctly.

5.4.2 Evaluation Results

In this section, the theoretical result of each of the evaluation experiments is first

presented. This is followed by the observed result, presented in graphic form. At the end

of each experiment, the obtained results are analysed.

The presented graphs are as follows:

■ The first graph shows the individual and average SCP loads as a percentage of their

full processing capacity across the duration of the experiment. This graph serves to

explore the degree of success achieved by the Mariner System in balancing the load

across the network, and protecting the network in an overload.

■ The next graph shows the difference between the load arriving into the network and

the load accepted for execution. It serves to illustrate the sensitivity of the Mariner

System.

■ The third graph displays the breakdown of the services being executed by the

network. The degree of success achieved in evenly balancing the services accepted in

normal loads and the preferential treatment of the more profitable services in

5.4.1.4 Localised Excessive Load For Limited Periods

61

overloads is illustrated in this graph. The graph also illustrates an estimate of the

traffic load being offered to the IN model.

5.4.2.1 Experiment 1: Normal Load Under Steady State

In this experiment, the network load should remain at 35%, matching the offered load as

closely as possible. All SCPs should receive an equal distribution of the accepted load,

and hence should closely match the average SCP load. Further, with the network load

well below the safe network maximum of 90%, all three services should be treated

equally, with no service requests being rejected by the IN network.

Load Balancing

Auction Interval

p Scf200 load Scf201 load----------Average SCP Load |

Figure 5.4 - Load Balancing at Normal Load

The graph shows that under a steady load of 35%, the SSPs distribute load evenly

between the available SCPs .

62

Offered Load - Accepted Load

Auction Interval

Figure 5.5 - Load Difference at Normal Load

This graph shows that less than 1% of the offered load was ever rejected by the SSPs

when the system was under a steady load of 35%.

Accepted Load by Service

|— Average SO Load CZZ) Average S1 Load IZ^J Average S2 Load — Estimated Offered Load j

Figure 5.6 - Service Balancing at Normal Load

63

Figure 5.6 confirms that under normal steady state conditions, the network treated the

three services equally, with an insignificant number of service rejections.

The results above verify that the MARINER System successfully controls and distributes

the offered load when the traffic is at a steady normal level.

5.4.2.2 Experiment 2.1: 95% Excessive Load Under Steady State

In this experiment, the MARINER agents should maintain the network load at the safe

maximum of 90%, quenching only 5% of the offered load. Further, the requests for the

less profitable services should the ones most quenched.

Load Balancing

| Scf200 load Scf201 load — -Average SCP Load]

Figure 5.7 - Load Balancing at 95% Load

The graph shows that under a steady load of 95%, the SSPs distribute load evenly

between the available SCPs .

64

Offered Load - Accepted Load

Auction Interval

Figure 5.8 - Load Difference at 95% Load

This graph shows that approximately 20% of the offered load was rejected when the

system was offered a steady load of 95%.

Accepted Load by Service

Auction Interval

| Average SO Load tZZ3Average S1 Load IZZ3 Average S2 Load — Estimated Offered Load |

Figure 5.9 - Service Balancing at 95% Load

65

Figure 5.9 shows that under an excessive load of 95%, the network rejected the service

with the lowest profit value (Service 0) and accepted all requests of the service with the

highest profit value (Service 3).

The results above verify that the MARINER System successfully maximises profit and

distributes the offered load when the traffic is at a steady excessive level just above the

90% SCP safe limit. However, they also show that at this level, the accepted load is

over-controlled such that 15% of the offered load was unnecessarily discarded. The

reason behind this is that at a level so close to the safe limit, the inaccuracy of the single

notification option set in the experimental setup (§ 5.2.2) is magnified. Setting the STC

to send multiple notifications would solve this problem.

5.4.2.3 Experiment 2.2: 120% Excessive Load Under Steady State

In this experiment, the MARINER agents should maintain the network load at the safe

maximum of 90%, quenching 30% of the offered load. Further, the requests for the less

profitable services should the ones most quenched.

Load Balancing

F Scf200 load............Scf20l load---------- Average SCP Load |

Figure 5.10 - Load Balancing at 120% Load

The graph shows that under a steady load of 120%, the SSPs distribute load evenly

between the available SCPs.

66

Offered Lead - Accepted Load

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

Auction Interval

Figure 5.11 - Load Difference at 120% Load

This graph shows that approximately 35% of the offered load was rejected when the

system was under a steady load of 120%.

Accepted Load by Service

Auction Interval

[¡^■Average SO Load CZZ3Average S1 Load c m Average S2 Load Estimated Offered Load |

Figure 5.12 - Service Balancing at 120% Load

67

Figure 5.12 shows that under an excessive load of 120%, the network rejected the service

with the lowest profit value (Service 0) and accepted all requests of the service with the

highest profit value (Service 3).

The results above verify that the MARINER System successfully maximises profit and

distributes the offered load when the traffic an excessive level. It is also observed that a

slight amount of over-controlling is still manifested by the system with approximately 5%

of the load being unnecessarily discarded. As in experiment 2.1, this is a result of using

the single notification option in the STC. It should be noted that the degree over­

controlling is drastically reduced with higher overloads. A more accurate result could be

achieved using the multiple notification option.

5A2A Experiment 3.1: Excessive Load of 95% for 20 Intervals

In this experiment, the MARINER agents should maintain the network load at 35% until

the arrival of the spike. Then, the network load should increase with the offered load

until reaching the 90% safe maximum, and be maintained at that level for the duration of

the spike. At this stage, 5% of the arriving service requests should be quenched, with the

less profitable services having the most number quenched. When the spike falls to 75%

of its value, the network load should fall with it, and accept all service requests. At the

end of the spike, the network load should fall back to 35%, and all service requests

should be serviced.

68

Load Balancing

Auction Interval

| Scf200 load Scf201 load--------Average SCP Load]

Figure 5.13 - Load Balancing at 95% Spike

The graph shows the network load was distributed evenly between the available SCPs

throughout the experiment.

Offered Load - Accepted Load

Auction Interval

Figure 5.14 - Load Difference at 95% Spike

The figure above illustrates that the network accepted nearly all the offered load in the

periods before and after the traffic spike. In the first phase of the spike, when the offered

69

load was at the 95% level, the network initially rejects about 30% of the offered load, but

gradually settles to about 15%. In the second phase of the spike, the network eventually

settles to rejecting about 3% of the offered load.

Accepted Load by Service

120 ----------------------

3
_i

Auction Interval

[^■ A verage SO Load CZJAverage S1 Load CUAverage S2 Load —»—Estimated Offered Load |

Figure 5.15 - Service Balancing at 95% Spike

The figure shows that all service requests were accepted in the periods before and after

the spike. In the first phase of the spike, the system gradually rejected all of the least

profitable service requests (Service 0) and none of the most profitable service requests

(Service 2). In the second phase of the spike, the system rejected only a small proportion

of the Service 0 requests.

The results of this experiment show that the MARINER System is successfully able to

adapt to spontaneous multi-phased sharp increases in traffic. The individual graphs show

that the offered load was successfully controlled and distributed, while the network was

protected against the sudden overload.

A point of note is that the network has a tendency to over-control the accepted load on

the on-set of a spike, but quickly adapts to the optimum level. This effect is a result of

the MARINER System attempting to ensure protection against an overload whilst the

traffic level is rising.

70

In this experiment, the MARINER agents should maintain the network load at 35% until

the arrival of the spike. Then, the network load should increase with the offered load

until reaching the 90% safe maximum, and be maintained at that level for the duration of

the spike. At this stage, 30% of the arriving service requests should be quenched, with

the less profitable services having the most number quenched. When the spike falls to

75% of its value, the network load should fall with it, and accept all service requests. At

the end of the spike, the network load should fall back to 35%, and all service requests

should be serviced.

5.4.2.5 Experiment 3.2: Excessive Load of 120% for 20 Intervals

Load Balancing

Auction Interval

F Scf200 load........... Scf201 load Average SCP Load |

Figure 5.16 - Load Balancing at 120% Spike

The graph shows the network load was distributed evenly between the available SCPs

throughout the experiment.

71

Offered Load - Accepted Load

Auction Interval

Figure 5.17 - Load Difference at 120% Spike

The figure above illustrates that the network accepted nearly all the offered load in the

periods before and after the traffic spike. In the first phase of the spike, when the offered

load was at the 120% level, the network initially rejects about 47% of the offered load,

but gradually settles to about 30%. In the second phase of the spike, the network

eventually settles to rejecting about 10% of the offered load.

72

Offered Load by Service

CM «M W «

Auction Interval

| A v e r a g e SO Load □ Average S1 Load CZZ3Average S2 Load —»—Estimated Offered Load |

Figure 5.18 - Service Balancing at 120% Spike

The figure shows that all service requests were accepted in the periods before and after

the spike. In the first phase of the spike, the system gradually rejected all of the least

profitable service requests (Service 0) and none of the most profitable service requests

(Service 2). In the second phase of the spike, some of the Service 0 requests were

accepted.

The results of this experiment show that the MARINER System is successfully able to

adapt to spontaneous multi-phased sharp increases in traffic to an extreme level. The

individual graphs show that the offered load was successfully controlled and distributed,

while the network was protected against the sudden overload.

A point of note is that the network has a tendency to over-control the accepted load on

the on-set of a spike, but quickly adapts to the optimum level. This effect is a result of

the MARINER Architecture attempting to ensure protection against an overload whilst

the traffic level is rising.

5.4.2.6 Experiment 4: 120% Localised Excessive Load for 20 Intervals

Although the spike only occurs at a single SSP, the MARINER Agents should have a

similar response towards the network as in the event of the global spikes in Experiment 3.

73

Load Balancing

Auction Interval

| Scf200 load Scf201 load Average SCP Load |

Figure 5.19 - Load Balancing at Localised 120% Spike

The graph shows the network load was distributed evenly between the available SCPs

throughout the experiment.

Offered Load - Accepted Load

•» m m
Auction Interval

Figure 5.20 - Load Difference at Localised 120% Spike

The figure above illustrates that the network accepted nearly all the offered load in the

periods before and after the traffic spike. In the first phase of the spike, when the offered

load was at the 95% level, the network initially rejects about 60% of the offered load, but

74

gradually settles to about 35%. In the second phase of the spike, the network eventually

settles to rejecting about 20% of the offered load.

Offered Load by Service

140 -- -----------

Figure 5.21 - Service Balancing at at Localised 120% Spike

The figure shows that all service requests were accepted in the periods before and after

the spike. In the first phase of the spike, the system gradually rejected all of the least

profitable service requests (Service 0) and none of the most profitable service requests

(Service 2). In the second phase of the spike, the system rejected only a small proportion

of the Service 0 requests.

The results of this experiment show that the MARINER System is successfully able to

adapt to local spontaneous multi-phased sharp increases in traffic. The individual graphs

show that the offered load was successfully controlled and distributed, while the network

was protected against the sudden overload.

A point of note is that the network has a tendency to over-control the accepted load on

the on-set of a spike, but quickly adapts to the optimum level. This effect is a result of

the MARINER System attempting to ensure protection against an overload whilst the

traffic level is rising.

75

The robustness experiments were designed to exhaustively examine the robustness and

limitations of the Trial Platform and hence the MARINER System. The experiments

were categorised into three error conditions, namely

■ the malfunctioning of platform components

■ the increase in network delays

■ the loss of communication messages

5.5.1.1 RMA Malfunction

Objective(s) o f experiment: To verify that the system operates correctly when the RMA

malfunctions.

Experimental setup Standard Configuration

Experimental procedure: Configure a standard IN network and deploy the

MARINER agents on it. Start traffic generation at an

excessive steady state rate of 95% and capture load

information for the network. Force a RMA shutdown and

monitor the IN Platform. By analysis of the loading data

verify that the MARINER agents are operating correctly.

5.5.1.2 RAA Malfunction

Objective(s) o f experiment: To verify that the IN System operates correctly when the

RAA malfunctions.

Experimental setup: Standard Configuration

Experimental procedure: Configure a standard IN network and deploy the

MARINER agents on it. Start traffic generation at the

normal steady state rate of 35% and capture load

information for the network. After 15 intervals, force a

RAA shutdown and monitor the IN Platform for 15

5 .5 R o b u s t n e s s E x p e r i m e n t s

76

5.5.1.3 SCP Malfunction

Objective(s) o f experiment:

Experimental setup:

Experimental procedure:

5.5.1.4 SSP Malfunction

Objective(s) o f experiment:

Experimental setup:

Experimental procedure:

intervals. Increase traffic generation to 120% for 20

intervals and monitor the IN Platform. By analysis of the

loading data verify that the MARINER agents are operating

correctly. Repeat the experiment and shutdown the RAA

during the spike. By analysis of the loading data verify that

the MARINER agents are operating correctly.

To verify that the system operates correctly when an SCP

malfunctions.

Standard Configuration

Configure a standard IN network and deploy the

MARINER agents on it. Start traffic generation at a steady

state rate of 85% and capture load information for the

network. After 15 intervals, force an SCP to shutdown and

monitor the IN Platform. By analysis of the loading data

verify that the MARINER agents are operating correctly.

To verify that the system operates correctly when an SSP

malfunctions.

Standard Configuration

Configure a standard IN network and deploy the

MARINER agents on it. Start traffic generation at a steady

state rate of 85% and capture load information for the

network. After 15 intervals, force an SSP to shutdown and

monitor the IN Platform. By analysis of the loading data

verify that the MARINER agents are operating correctly.

77

5.5.1.5 resource_data Delay

Objective(s) o f experiment: To verify that the system operates when a resource_data

message from the RMA is delayed.

Experimental setup: Standard Configuration

Experimental procedure: Configure a standard IN network and deploy the

MARINER agents on it. Start traffic generation at the

normal steady state rate of 35% and capture load

information for the network. After 15 intervals, force a

delay in a resource_data message from one RMA and

monitor the IN Platform. By analysis of the loading data

verify that the MARINER agents are operating correctly.

5.5.1.6 token_allocation Delay

Objective(s) o f experiment: To verify that the system operates correctly when an

token_allocation is delayed.

Experimental setup: Standard Configuration

Experimental procedure: Configure a standard IN network and deploy the

MARINER agents on it. Start traffic generation at the

normal steady state rate of 35% and capture load

information for the network. After 15 intervals, force a

delay in a token_allocation from the RAA and monitor the

IN Platform. By analysis of the loading data verify that the

MARINER agents are operating correctly.

5.5.1.7 resource_data Message Loss

Objective(s) o f experiment: To verify that the system operates correctly when a

resource_data message from the RMA is lost.

Experimental setup: Standard Configuration

78

Experimental procedure: Configure a standard IN network and deploy the

MARINER agents on it. Start traffic generation at the

normal steady state rate of 35% and capture load

information for the network. After 15 intervals , force one

RMA to not send a resource_data message and monitor

the IN Platform. By analysis of the loading data verify that

the MARINER agents are operating correctly.

5.5.1.8 token_allocation Message Loss

Objective(s) o f experiment: To verify that the system operates correctly when a

token_allocation message to one of the RMAs is lost.

Experimental setup: Standard Configuration

Experimental procedure: Configure a standard IN network and deploy the

MARINER agents on it. Start traffic generation at the

normal steady state rate of 35% and capture load

information for the network. After 15 intervals, force the

RAA not to send a token_allocation to one of the RMAs

and monitor the IN Platform. By analysis of the loading

data verify that the MARINER agents are operating

correctly.

5.5.1.9 notification Message Loss

Objective(s) o f experiment: To verify that the system operates correctly when a SSP

notification message to one of the RMAs is lost.

Experimental setup: Standard Configuration

Experimental procedure: Configure a standard IN network and deploy the

MARINER agents on it. Start traffic generation at the

normal steady state rate of 120% and capture load

information for the network. After 15 intervals, force the

SSP not to send a notification to one of the SCPs and

79

monitor the IN Platform. By analysis of the loading data

verify that the MARINER agents are operating correctly.

Objective(s) o f experiment:

Experimental setup:

Experimental procedure:

5.5.1.10 token_allocation ack Message Loss

To verify that the system operates correctly when SSP

token_allocation_ack message to one of the RMAs is

lost.

Standard Configuration

Configure a standard IN network and deploy the

MARINER agents on it. Start traffic generation at the

normal steady state rate of 35% and capture load

information for the network. After 15 intervals, force the

SSP not to send a token_allocation_ack message to one

of the SCPs and monitor the IN Platform. By analysis of

the loading data verify that the MARINER agents are

operating correctly.

80

In this section, the theoretical result of each of the evaluation experiments is first

presented. This is followed by the observed result presented in graphic form and an

analysis of the result.

5.5.2.1 Experiment 1: RMA Malfunction

In the event that a RMA were to malfunction and shutdown, the processing capacity of

the SCP it represents would not be made available to the SSPs, and hence the RAA

would not allocate any tokens for it. This would mean that the SSPs would stop sending

service requests to this SCP and the load on it would diminish to zero. This situation

would prevail until the subsequent intervention by the management system which would

re-install the coupling between one of the SSFs and the SCF, with the use of only

traditional IN Load Control and no load distribution by that SSF, as described in § 2.6.

5.5.2 Robustness Experim ents Results

Load Balancing

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Auction Interval

F Scf200 load Scf201 load----------Average SCP Load |

Figure 5.22 - RMA Malfunction

The results of this experiment show that when a RMA malfunctions, the load on the SCP

it represents diminishes to zero, reducing the overall capacity of the network. The

81

MARINER System, however, continues to protect the network against the excessive

offered load, and continues to control and distribute the available capacity in the network.

5.5.2.2 Experiment 2: RAA Malfunction

As stated in § 4.3.2, the STC has been equipped with a safety mechanism that re-uses the

last token_allocation in the event that the SSP does not receive a new token_allocation

at the beginning of the current interval. This process is repeated until a new

token_allocation is received.

A malfunction and subsequent shutdown of the RAA will result in a stoppage new token

allocations to the STCs. The STCs should then continue to use the last token_allocation

they received, until intervention by the network management system, whereby the

traditional IN distribution and load control described in § 2.6 is re-installed.

Accepted Load by Service

60

' V v \ .— ^ T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

Auction interval

I — Series2 CZU Series3 cm Series4 —» - Series 1]

Figure 5.23 - RAA Malfunction at Normal Load

This result shows that if the RAA shutdown during a normal loading period, the

MARINER System is not able to modify is accepted load pattern to maximise profit

82

when exposed to a spontaneous increase in traffic. However, the system continues to

operate and protect the network against the overload.

Accepted Load by Service

140 ---

Auction Interval

|^■ A ve rage SO Load CZJAverage S1 Load CZZ)Average S2 Load Estimated Offered Load |

Figure 5.24 - RAA Malfunction at Spike

This result shows that if the RAA malfunctioned during a period of excessive load on the

network, the service type(s) rejected during the overload would continue to be rejected

once the offered load resumes its normal levels. The MARINER System however,

continues to protect the network and distribute the rest of the service load(s).

5.5.2.3 Experiment 3: SCP Malfunction

The effect of a SCP malfunction and subsequent shutdown on the system as a whole

would be very similar to that of a RMA malfunction. The RMA would cease to be able

to contact the malfunctioned SCP and hence stop sending resource data to the RAA. This

would result in no tokens being allocated for the malfunctioned SCP and the SSPs

ceasing to forward service requests to that SCP. The only notable difference between the

effects of the two malfunctions is that in the interval within which the SCP malfunctions,

the SSPs would continue to forward requests to that SCP, but would no processing would

take place, hence resulting in those service requests being dropped. Therefore, for some

part of an interval, the system would not be functioning at maximum profit value.

83

Accepted Load by Service

100

Auction Interval

| ■ ■ Average SO Load CZZ] Average S1 Load d Z) Average S2 Load — Estimated Offered Load |

Figure 5.25 - SCP Malfunction

The results of this experiment show that when an SCP malfunctions, the load sent to it

diminishes to zero, reducing the overall capacity of the network. The results also shows

that the load on the remaining SCF has increased to its maximum (the graph shows

average load on the two SCFs). This indicates that the MARINER System attempts to

redistribute its share of service traffic to other available SCFs, before beginning to reject

incoming requests. The result is a marked improvement over existing IN systems wherein

SSF-SCF coupling would result in total loss of all services traffic coming into the

coupled SSF. Further, the system continues to protect the network against the excessive

offered load, and continues to control and distribute the available capacity in the network.

5.5.2.4 Experiment 4: SSP Malfunction

An SSP malfunction and subsequent shutdown should only manifest itself as a reduction

in the load offered to the System.

84

Accepted Load by Service

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Auction Interval

|— Average SO Load IZ U Average S1 Load CZJ Average S2 Load —» - Estimated Offered Load |

Figure 5.26 - SSP Malfunction

The result shows that if an SSP malfunctions, the overall load offered to the network is

reduced. However, the MARINER System continues to operate with the reduced offered

load.

5.5.2.5 Experiment 5: resource_data Delay

Figure 5.22 shows that the MARINER System suffers from no adverse effects in the

event that a resource_data messages are not available for one or more intervals.

In the event of a delay in the resource_data from a RMA, the capacity of the SCP it

represents is not made available to the SSPs for that interval. Further, the portion of

requests it received from the SSPs during the last interval is not taken into account during

the token allocation process. This would result in the SSPs receiving fewer tokens for the

next interval, and hence possible rejecting service requests.

5.5.2.6 Experiment 6: token_allocation Delay

A delay in a token_allocation message from an RMA to an STC has no effect on the

MARINER System’s ability to operate successfully due to the built in redundancy

provided by more than one RMA sending a token allocation message to an STC.

85

5.5.2.7 Experiment 7: resource_data Message Loss

Figure 5.22 shows that the MARINER System suffers from no adverse effects in the

event that resource_data messages are not available for one or more intervals.

In the event of a loss of the resource_data from a RMA, the capacity of the SCP it

represents is not made available to the SSPs for that interval. Further, the portion of

requests it received from the SSPs during the last interval is not taken into account during

the token allocation process. This would result in the SSPs receiving fewer tokens for the

next interval, and hence possible rejecting service requests.

5.5.2.8 Experiment 8: token_allocation Message Loss

A loss of a token_allocation message has no effect on the MARINER System’s ability

to operate successfully due to the built in redundancy provided by the RAA sending the

complete token_allocation message to all RMAs, and more than one RMA sending a

token_allocation message to an STC.

5.5.2.9 Experiment 9: notification Message Loss

A loss in a notification message from an STC has no effect on the MARINER System’s

ability to operate successfully due to the built in redundancy provided by the STC

broadcasting its notifications to all the RMAs in its vicinity.

5.5.2.10 Experiment 10: token_allocation_ack Message Loss

A loss in a token_allocation_ack message from an STC has no effect on the MARINER

System’s ability to operate successfully due to the built in redundancy provided by the

STC broadcasting its token_allocation_acks to all the RMAs in its vicinity.

86

The criteria used to evaluate MARINER System as a network orientated load control

mechanism for the Intelligent Network was set out in § 5.1. With respect to the

experiments described in § 5.3 to § 5.5, these criteria may be expressed as the following:

1. Overload Protection: To limit the load at all SCF nodes to 90% of its processing

capacity

2. Overload Protection: To rapidly adapt to changes in the offered load.

3. Load Distribution: To distribute the load offered to the network such that the

individual SCF loads are as close as possible to the average SCF load

4. Service Differentiation: To continuously maintain the accepted load at the level of the

offered load in normal loading conditions and to reject the service requests according

to their profit value in excessive loading conditions, so as to maximise the overall

network profit at all times

5. Robustness: To maintain a minimum operating performance matching that of existing

IN Load Control mechanisms (see § 2.6) in the event of a malfunction or

communication errors

The various experimental results described in § 5.3 to § 5.5 demonstrated the degree to

which the above criteria had been met by the MARINER System and highlighted areas

requiring improvement. A summary of this is listed below:

■ § 5.4.2.1 demonstrated that under normal loading conditions, the MARINER System

successfully meets criteria 2, 3 and 4 in that the all the offered load is accepted into

the IN and evenly distributed among the available SCFs

■ § 5.4.2.2 and § 5.4.2.3 showed that under heavy loading conditions, the MARINER

System meet criteria 1 through 4. However accepted loads closer to the 90% level

would be more desirable, and better usage of notifications is seen as one method of

overcoming this limitation.

5.6 S u m m a r y

87

■ § 5.4.2.4 through § 5.4.2.6 demonstrate the sensitivity of the MARINER System to a

sudden increase in network-wide and local offered load. The results specifically

illustrate the success of the system in achieving criterion 2, while still satisfying

criteria 1, 3 and 4. The results also highlight a short lapse is in the recovery time to a

sudden decrease in offered load.

■ § 5.5.2.1 through § 5.5.2.4 show that the system meets criterion 5 in the event of the

loss of any of the IN or system functional entities.

■ § 5.5.2.5 through § 5.5.2.10 show that the system meets criterion 5 in the event of any

degree of communication loss between its functional entities.

Current and future work on the Trial Platform intends to investigates the following

possibilities:

■ Investigating more effective use of the notification messages to enable the system to

better achieve the 90% resource usage limit in all excessive load scenarios.

■ Investigating a more scalable system that utilises a hierarchical approach for the

control of large systems i.e. local network RAA’s behaving as RMA’s in larger

networks and sending monitoring data to a central RAA.

■ Investigating a more flexible system with STC’s incorporated within H.323

Gatekeepers and GSM Switches.

88

6 CONCLUSION AND FUTURE WORK

6.1 I n t r o d u c t io n

In order to complete the analysis of the performance of the MARINER Load Control

System, it is necessary to compare it with one or more other IN load control strategies.

The following criteria was used to select the IN Load Control Systems that were used for

this comparison:

1. The comparison system must implement one or more load control strategies for

Intelligent Networks

2. In order for an accurate comparison to be made, the comparison system must be

well defined by publicly available documentation, specifically in the areas of its

performance in the areas of overload protection and load control.

3. In order to ensure that the performance of the MARINER System is analysed

against a commercially deployed load control system, at least one of the

comparison systems must have been deployed on an existing commercial

Intelligent Network

4. In order to ensure that the performance of the MARINER System is analysed

against similar advanced load control systems, at least one of the comparison

systems must utilise adaptive load control strategies, and attempt to maximise

generated revenue/profit.

Based on these criteria, the following systems were selected for comparison. The

Automatic Call Restriction load control system that is currently deployed in the BT

Horizon Intelligent Network was selected due to the fact that it meets criteria 1, 2 and 3.

It has been well documented in [Williams94] and [Williams2002]. The Global IN

Control Strategy which is an adaptive load control system that seeks to maximise

revenue/profit generation, was selected due to the fact that it meets criteria 1, 2 and 4. It

is well documented in [Lodge99] and [Lodge2000]. Additionally, the standard Intelligent

Network Load Control mechanisms, as described in Chapter 2, were also selected due to

89

the fact these mechanisms have been standardised and feature in most current

implementation of Intelligent Networks.

In order to ensure a fair comparison, the criteria used for evaluating the MARINER

System, as stated in Section 5.1.1, is used as the comparison criteria.

Sections 6.2 to 6.5 give an overview of each system and specify their behaviour against

each of the comparison criteria. Section 6.6 then presents a table, comparing the load

control systems. Finally, Section 6.7 draws conclusions from this body of work, and

Section 6.8 states the on-going future work that extend from this platform.

6.2 S t a n d a r d IN L o a d C o n t r o l

As described in Chapter 2, standard IN-CS2 load control comprises mainly the Code

Gapping and Service Filtering mechanisms. These mechanisms have the following

features:

• Standardised - the Code Gapping and Service Filtering mechanisms have been

standardised in the IN Capability Set 2.

• Reliable - existing mechanisms have been tried and tested on existing INs, and

further developed based on real performance data

• Node-orientated - an overloaded SCF informs the SSF its coupled with to begin

blocking incoming requests. The state of the network as a whole is never consulted

prior to load shedding.

• Message-orientated - on the activation of either mechanism, the SSF throttles INAP

messages required for service execution, and not the service requests themselves.

• Non-prioritised - these mechanisms are incapable of differentiating between services,

since they operate on the Functional Plane.

• Static - the current mechanisms utilise static parameters to control traffic load,

therefore they cannot provide optimal control in all traffic conditions, with the result

that they tend to cause oscillations in resource utilisation.

90

• Reactive - current mechanisms react to a resource overload after it has commenced,

rather than ensuring that traffic is prevented from gaining access to the resource in

instances where it would cause one or more resources to overload

6.2.1 Overload Protection

As described in § 2.6, standard IN load control protects the network against prolonged

overloads of single nodes through the gapping of incoming messages. This allows the

node to process its existing queues, and hence reduce its load. When offered a steady

load exceeding the safe maximum network capacity, standard IN load control

mechanisms would be able to maintain the average accepted load at the safe maximum.

However, due to use of standard gap intervals, the accepted load will oscillate around the

safe maximum.

Further, due to the fact that these load control mechanisms require the onset of an

overload before sending the gapping requests, they would not be able to react to spiky or

rapidly changing offered load, which could lead to at least one interval where the SCP is

exposed to an overload.

6.2.2 Load Distribution

In standard INs, SSFs and SCFs are nearly always coupled, forming networks of mated

pairs [ETSI_SUB]. Hence, little or no load distribution is implemented.

6.2.3 Service Differentiation

As described in § 2.6, standard IN load control mechanisms operate in the Distributed

Functional Plane, hence gapping or quenching messages, irrelevant of the service type

they perform. This prevents these mechanisms from being able to differentiate between

service types.

91

The Global IN Control Strategy (GCS) involves the formulation of mathematical

optimisation problems whose solution defines the best possible coefficient values to be

used by a percentage thinning load throttle residing at SSPs. The optimisation involves

the maximisation of generated revenue subject to load constraints on SCPs and SSPs, as

well as constraints to ensure that pre-defined weightings (similar to service profit)

between service types are reflected in the percentage thinning coefficients.

The strategy consists of two independent optimisation processes, one operating at the

SCP and the other at SSPs. At set intervals the SCP optimisation process is invoked and

takes as input estimations of IN service request arrival rates at SSPs for the coming

interval, SCP target utilisation, service type weights and other service-related

information. It outputs percentage thinning coefficients for each IN service type / SSP

pairing in the network. These values are transferred to the SSPs, which use them as inputs

into their optimisation processes. SSP optimisation may serve to modify the percentage

thinning coefficients in light of local loading constraints and estimated arrival rates and

processing requirements of non-IN service types. Full details of this process can be

found in [Lodge99], [Lodge2000].

6.3.1 Overload Protection

In § 6.3.1 of [Lodge2000], an extensive set of simulation results clearly illustrate the

behaviour of the GCS with respect to steady-state Overload Protection. Figure 6.3 shows

that when exposed to a steady offered load of 120%, GCS maintains the SCP load at safe

maximum threshold. However, some oscillation is apparent around safe maximum due to

use of percentage thinning as load throttle

In § 6.3.5 of [Lodge2000], simulation results show the behaviour of the GCS when

exposed to spiky traffic, where the offered load rapidly alternates between 60% and

120%. Figure 6.29 shows that in this scenario, the GCS requires up to one interval to

adapt the percentage thinning throttle values, leading to a short period where the SCP is

exposed to the overload with the onset of the spike and a short period of excessive service

rejection after each spike.

6 .3 G l o b a l IN C o n t r o l S t r a t e g y

92

Figure 6.29 also shows that when the offered load is within the safe maximum threshold,

the SCP load matches it.

6.3.2 Load Distribution

The GCS does not have any load distribution capabilities, and operates specifically to

control the load on a single resource.

6.3.3 Service Differentiation

Figures 6.6 and 6.32 in § 6.3 of [Lodge2000] illustrates that GCS is able to differentiate

between service to maximise revenue generation in both a steady overload of 120% and

spiky traffic, where the offered load rapidly alternates between 60% and 120% of the

network capacity.

6.4 A u t o m a t ic C a l l R e s t r ic t io n

The Automatic Call Restriction (ACR) control uses the rate of call failure in the SCP to

detect overload. The control enforces an upper limit to this rate by activation and

updating of call restrictions at the SSPs. It also distinguishes between call streams such

that restrictions are only applied to the call stream causing an overload (service fairness),

before they are applied to other call streams. This control uses leaky bucket monitors at

the SCP to monitor the rate of call rejection by call stream, and based on these values,

calculates appropriate call gaps, which are communicated to the SSPs.

The ACR control also attempts to control outbound traffic from the SCPs to other

network destinations, to control the demand sent to the network, by monitoring the call

rejection rates to these destinations. Full details of this process can be found in

[Williams94], [Williams2002].

§ 6.3 of [Williams2002] evaluates the performance of ACR using an experiment that

simulates an offered SCP load of 100%, which rapidly increases to over 300% due to the

failure of another SCP in the simulated network, and then decreases back to 100% when

93

the failed SCP recovers. The result of this experiment is used to evaluate the

performance of ACR with respect to the evaluation criteria set out in § 5.1.1 of this paper:

6.4.1 Overload Protection

Figure 7 in § 6.3 of [Williams2002] shows that when the SCP is exposed to a steady

offered load of 300%, ACR successfully maintains the SCP load at the safe maximum

threshold.

This figure also illustrates that at the onset and the end of the overload, ACR is not able

to immediately respond the change in the offered load, leading to under-control and over­

control.

With respect to the behaviour of ACR when the offered load is within the safe maximum

network capacity, Figure 7 shows that accepted load matches the offered load before and

after the overload.

6.4.2 Load Distribution

ACR does not have any load distribution capabilities, and operates specifically to control

the load on a single resource. However, it does have the capability of operating in

tandem with an external load distribution system.

6.4.3 Service Differentiation

The ACR implements service fairness and hence does not attempt to distinguish between

services for the maximisation of network profit.

6.5 T h e MARINER S y s te m

As described in Chapter 4, the MARINER System is a network-orientated load control

mechanism developed for the IN by the MARINER Project. It has the following

characteristics:

• Standard-compliant - the system was designed in compliance to IN CS-2, but is not

itself part of any existing standard.

94

• Non-tested - the system has only been tested on an emulation of the IN.

• Network Orientated - the system monitors all nodes in its domain and distributes

traffic evenly between the available nodes such that traffic load is only shed when the

whole network is operating at maximum capacity. In this manner individual node

protection is still maintained.

• Proactive - the system uses a network wide view of the IN to discern the onset of an

overload, and takes measures to distribute and control the incoming traffic.

• Adaptive - the control parameters of the system continuously adapt to the latest

network conditions. This allows it to always have a realistic view of network usage

and incoming traffic.

• Service-orientated - the system operates at the application level, controlling and

distributing service requests according to the service type and its importance to the

operator.

6.5.1 Overload Protection

The experimental results described § 5.4.2.2 through 5.4.2.6 show how the MARINER

System protects nodes from overloads by sensing increases in service traffic and

proactively distributing the load across the network, so as to avoid the need of load

shedding until all capacity within the network has been utilised. It then sheds load by

rejecting service requests at the SSFs.

Figures 5.9 and 5.12 illustrate that the MARINER Load Control System is successfully

able to protect the network against steady offered loads of 95% and 120%. It is observed

that a varying degree of over-control manifests itself in both scenarios. However, it is

also noted that configuring the system to use multiple notification messages would

remove this effect.

Figures 5.15 and 5.18 show that system is successfully protects the network against

sudden surges in offered load, without at any time exposing the protected nodes to an

overload. At the onset and end of the spike, a small amount of over-control is observed,

but this is rapidly corrected. %

95

Figure 5.6 shows that under normal steady offered load, the MARINER System ensures

that the accepted matches the offered load.

6.5.2 Load Distribution

Figures 5.4, 5.7, 5.10, 5.13 and 5.16 illustrate that the MARINER Load Control System is

able to successfully distribute the accepted load between the available SCPs for offered

loads of both steady and spiky in nature ranging from 35% to 120% of the network

capacity. In doing this, it allows for optimum use of all available capacity in the network.

This prevents service request rejection and loss of revenue unless all the capacity within

the network is being utilised.

Figure 5.25 shows a further advantage of load distribution in the MARINER Load

Control System in that it increases the network robustness towards the malfunction or

shutdown of a processing node by re-routing its share of traffic to other available nodes.

6.5.3 Service Differen tiation

Figures 5.6, 5.9, 5.12, 5.15 and 5.18 clearly illustrate how the MARINER System is able

to differentiate between service types in steady and bursty offered loads ranging from

35% to 120% of the network capacity. The figures also show that when forced to reject

traffic due to excessive incoming traffic, the MARINER rejects service requests of least

priority first. This facility gives network operators using the MARINER System the

following advantages:

• The ability to maximise the revenue generated from their network at all times.

• The ability to allow third-party services into their network with the confidence that

the capacity allocated to them can be regulated and limited so as to not harm their

network, in the event of irresponsible usage by the third parties.

• The ability to have Service Level Agreements automatically enforced by the network.

It should be noted that these results also further emphasize the reasons neither service-

faimess or source-faimess is used as an evaluation criterion in this paper.

96

6 .6 L o a d C o n t r o l S y s t e m C o m p a r i s o n

Criterion Standard GCS ACR MARINER

Overload

Protection:

Staying close to

but under safe

maximum

network capacity

processor target

utilisation during

overload.

NO

Accepted

Load

oscillates due

to use of

standard gap

intervals.

PARTIAL

Some oscillation

is apparent

around safe

maximum due to

use of

percentage

thinning as load

throttle

YES

Accepted Load

maintained

below safe

maximum

using variable

gap intervals

YES

Accepted Load

slightly below safe

maximum. Use of

tokens ensures safe

maximum not

exceeded.

Overload

Protection:

Immediate

reaction to

overload onset

and end.

NO

Up to one

control

interval

before gap

put in place.

NO

Up to one control

interval before

percentage

thinning in place.

NO

Up to one

control interval

before gapping

put in place.

YES

Immediate reaction

due to volume of

accepted requests

limited by token

allocation size.

Load Distribution:

Equally between

all available

SCPs offering

required service

type

NO

Mated SSF-

SCF

messaging

excludes load

distribition

NO

Operates

specifically to

control the load

on a single

resource.

NO

Operates

specifically to

control the load

on a single

resource.

YES

Use of token strategy

and manipulation of

SSF routing tables

enables load

distribution

Service

Differentiation:

Ensuring profit

maximisation

NO

Operation at

DFP

excludes

Service

Differentiation

YES

Optimization of

percentage

thinning

coefficients

allows for Service

Differentiation

NO

Adherence to

service

fairness

excludes any

Service

Differentiation

YES

Tokens generated so

as to differentiate

between services and

maximise profit.

97

• Standard IN Load Control is insufficient due to being highly prone to oscillations

and not robust to changes in offered load due reliance on standard gap intervals.

• ACR shows that the application of dynamic sets of gap intervals shows a marked

improvement by reducing oscillation, but still lacks in the area of robustness to

bursty traffic.

• GCS performs better than standard mechanisms with respect to accepted load

oscillations and dynamically computes control parameters with the goal of

maximising profit whilst protecting the SCP from overload.

• MARINER matches the performance of ACR and GCS in the areas of steady state

overload protection and service differentiation respectively, but out-performs all the

comparison strategies in robustness to rapid changes in the offered load and load

distribution.

6.7 C o n c lu s io n

The completion of this assessment of network-orientated load control has shown that it

offers the following advantages over existing Intelligent Network Load Control and

Overload Protection Systems:

• It protects network nodes in a proactive manner; resulting in an immediate reaction to

sudden changes in the offered load and, in an overload, complete utilisation of the

network capacity, without endangering the network resources.

• It offers load distribution capabilities to the operator

• It allows the operator to prioritise services, improving their ability to maximize

network profit and honor Service Level Agreements.

At the same time, the following limitations of the mechanism have been unveiled:

• The over-protection of network resources when exposed to an offered load slightly

over the safe maximum network capacity.

This comparative analysis of the four strategies shows the following:

98

• The lack of a standard manner of implementing network-orientated load control

• The lack of performance data from real Intelligent Networks

Finally, it was shown that the MARINER System, as an implementation of a network-

orientated load control system, out performed existing representative implementations of

standard, traditional and more advanced Intelligent Network load control systems in the

areas of overload protection, load distribution and service differentiation.

In summary, network-orientated load control is a definite enhancement over existing load

control mechanisms for Intelligent Networks. However, it needs to be standardized and

through those efforts, further tested and validated on real networks.

6 .8 F u t u r e W o r k

The following is an overview of the development and enhancement work being explored

and implemented on network orientated load control systems.

6.8.1 Multiple Notification Investigation

In response to the tendency of the MARINER System to over-protect the network

resources when exposed to traffic loads slightly over the safe maximum network

capacity, investigations are being carried out on the use of multiple notification messages

from the STC to the RMA, resulting in a reduction of the inaccuracy of single

notifications and the RAA being better informed about the traffic situation prior to the

auctions.

6.8.2 Standardisation Activities

A submission [ETSI SUB] has been made to ETSI in order to initiate the standardisation

of network orientated load control systems. The response has been encouraging, with

more detailed presentations to the Working Groups planned in the months ahead.

99

6.8.3 Scalability

Further trials on the MARINER System are being designed in order to evaluate the

scalability of network orientated load control. In a large network, it is envisioned that

hierarchical auctions would be held, where RAAs would participate in auctions, playing

the role of RMAs of their local sub-network. Each layer would then have its own RAA.

The areas that are being investigated are the optimum number of agents per layer; the

efficiency of the tree-like structure; efficient methods of combining the RAA and RMA

roles in sub-network RAAs.

6.8.4 Distributed SCF Load Control

Recently, there has been much work in exploring the possibility of splitting the IN SCF

functionality into separate CORBA objects distributed across the network. Currently,

investigations are being carried out on the possible of using the network-orientated load

control to efficiently cope with the traffic demands on these distributed SCFs.

6.8.5 Internet Telephony

The usage of network-orientated load control for Internet Telephony is also being

explored. Possible methods of controlling the load on Internet Telephony Gatekeeper

and Gateway resources are described in the paper [Wathanl999].

100

GLOSSARY

CORBA Common Object Request Broker Architecture

CS-1 Capability Set 1

CS-2 Capability Set 2

DFP (INCM) Distributed Functional Plane

ETSI European Telecommunications Standards Institute

EURESCOM European Institute for Research and Strategic Studies in

T elecommunication

FE Functional Entity

GFP (INCM) Global Functional Plane

GSM Global System for Mobiles

GPRS General Packet Radio Service

IDL Interface Definition Language

IN Intelligent Network

INAP Intelligent Network Application Protocol

INCM Intelligent Network Conceptual Model

ITU-T International Telecommunication Union - Telecommunication

Standardisation Sector

MARINER Multi-Agent Architecture for Distributed IN Load Control and

Overload Protection

0 0 Object Orientation

PP (INCM) Physical Plane

CAMEL Customised Applications for Mobile Network Enhanced Logic

RAA Resource Allocation Agent

101

SCF Service Control Function

SCP Service Control Point

SIB Service-Independent Building Block

SP (INCM) Service Plane

SSF Service Switching Function

SSP Service Switching Point

STC Service Traffic Controller

TIPHON Telecommunications and Internet Protocol Harmonisation over

Networks

VPN Virtual Private Network

RMA Resource Management Agent

102

REFERENCES

[Arvidsson97] A. Arvidsson, S. Pettersson and L. Angelin, “Profit Optimal Congestion

Control in Intelligent Networks”, in Proceedings of the 15th International Teletraffic

Congress, pp. 911-920, Washington D. C., USA, 1997.

[Arvidsson99] A. Arvidsson, B. Jennings, L. Angelin and M. Svensson, “On the use of

Agent Technology for IN Load Control”, in Proceedings of the 16th International

Teletraffic Congress (ITC-16), vol. 3b, pp. 1093-1105, Edinburgh, Scotland, June 1999.

[CORBA] Object Management Group (OMG), “The Common Object Request Broker

(CORBA): Architecture and Specification ”, Revision 2.0, July 1995.

[Dovrolis2000] C. Dovrolis, P. Ramanathann, “Proportional Differentiated Services, Part

II: Loss Rate Differentiation and Packet Dropping”, in Proceedings of IEEE/IFIP

International Workshop on Quality of Service (IWQoS), pp. 53-61, Pittsburgh PA,

U.S.A, June 2000.

[ETSI_SUB] B. Jennings, N. Wathan, R. Brennan and C. Smith, “Network-oriented

Load Control for IN: Benefits and Requirements”, Submission to ETSI SPAN on behalf

of the ACTS-MARINER project, May 2000.

[Fayn96] I. Faynberg, L. Gabuzda, M. Kaplan, and N. Shah, “Intelligent Network

Standards: their Application to Services”, pub. McGraw Hill, New York, U.S.A, 1997

[Folkestad96] A. Folkestad, P. Osland and P. Emstad, “On Load Control for Service Data

Points”, in Proceedings of the 4th International Conference on Intelligence in Networks,

Bordeaux, France, November 1996.

[Galletti92] M. Galletti, F. Grossini, "Performance Simulation of Congestion Control

Mechanisms for Intelligent Networks", in Proceedings of 1992 International Zurich

Seminar on Digital Communications, Intelligent Networks and their Applications, Zurich,

Switzerland, 1992.

[GRASSHOPPER] IKV++, “Grasshopper Basics and Concepts”, release 1.1 Feb 1999,

available (Sept 2000): http://www.grasshopper.de/index.html

103

http://www.grasshopper.de/index.html

[Hac98] A. Hac and L. Gao, “Analysis of Congestion Control Mechanisms in an

Intelligent Network”, International Journal of Network Management, vol. 8, pp. 18-41,

1998.

[Hnatyshin2001] V. Hnatyshin and A.S. Sethi, “Avoiding Congestion Through Dynamic

Load Control”, Proc. ITCom-2001, SPIE's International Symposium on The Convergence

of Information Technologies and Communications, CO pp. 309-323, Denver, U.S.A, Aug

2001

[Kant95] K. Kant, "Performance of Internal Overload Controls in Large Switches", I

Proceedings of the 28th Annual Simulation Conference, pp 228-237, Phoenix, U.S.A,

April 1995

[KhorasaniO 1] Mehdi Khorasani, Dr. Lionel Sacks, “Integrity: An Interaction Case

Study”, in Proceedings of the London Communications Symposium, London, United

Kingdom, September 2001.

[Kihl99] Maria Kihl, “Overload control strategies for distributed communication

networks”, PhD. Thesis, Faculty of Technology, Lund University, Lund, Sweden, March

1999.

[Komer91] Ulf Komer, “Overload Control of SPC Systems” in Proceedings of the 13th

International Teletraffic Congress, Copenhagen, Denmark, 1991.

[Komer94] U. Komer, C. Nyberg and B. Wallström, “The Impact of New Services and

New Control Architectures on Overload Control”, in Proceedings of the 14th

International Teletraffic Congress, pp. 275-283, Antibes Juan-les-Pins, France, 1994

[Kwiatkowski94] M. Kwiatkowski, B. Northcote, “Calculating Mean Delays in

Intelligent Networks Under Overload”, in Proceedings of the Australian

Telecommunication Networks and Applications Conference (ATNAC), Melbourne,

Australia, December 1994.

[Langlois91] F. Langlois, J. Regnier, “Dynamic Congestion Control in Circuit-Switched

Telecommunications Networks”, in Proceedings of the 13th International Teletraffic

Congress (ITC 13), Copenhagen, Denmark, 1991.

104

[Lodge97] F. Lodge, D. Botvich, T. Curran, “A fair algorithm for throttling combined IN

and non-IN traffic at the SSP of the Intelligent Network”, in Proceedings of IEEE

Teletraffic Symposium, Manchester, United Kingdom, March 1997.

[Lodge99] F. Lodge, D. Botvich and T. Curran, “Using Revenue Optimisation for the

Maximisation of Intelligent Network Performance”, in Proceedings of the 16th

International Teletraffic Congress, pp. 953-965, Edinburgh, Scotland, June 1999.

[Lodge2000] F. Lodge, “An Investigation into Intelligent Network Congestion Control

Techniques”, PhD. Thesis, School of Electronic Engineering, Dublin City University,

Ireland, 2000.

[MAGEDANZ96] T. Magedanz, R. Popescu-Zeletin, “Intelligent Networks: Basic

Technology, Standards and Evolution“, International Thomson Computer Press, 1996

[MARINER] ACTS-MARINER Project Consortium, “The European Commission’s

Advanced Communication, Technologies and Services (ACTS) Multi-Agent Architecture

for Distributed Intelligent Network Load Control and Overload Protection (MARINER)

Project”, available (Sept 2000): http://www.cordis.lu/infowin/acts/rus/projects/ac333.htm

[MARINERD4] ACTS MARINER Project Consortium, “MARINER Deliverable 4:

Specification of Final IN Load Control Strategy and Multi-Agent System for deployment

on Trial Platform”, May 1999, available (Sept 2000): http://www.teltec.dcu.ie/mariner

[MARINERD8] ACTS MARINER Project Consortium, “MARINER Deliverable 8”,

May 2000, available (Sept 2000): http://www.teltec.dcu.ie/mariner

[MASIF] Object Management Group (OMG), “Mobile Agent System Interoperability

Facility”, Revision 1.1, 1998

[Mine98] Roberto Minerva, Corrado Moiso, Gabriele Viviani, “The Middleware ate the

Verge between Internet and Telecom Services”, in Proceedings of the 5th International

Conference on Intelligence in Networks, Bordeaux, France, May 1998

[Mohapi2000] S. Mohapi and H.E. Hanrahan, “Value-based service differentiation for

distributed NGN service platforms”, in Proceedings of the South African

Telecommunications Networks and Applications Conference, Drakensberg, South Africa,

September 2002

105

http://www.cordis.lu/infowin/acts/rus/projects/ac333.htm
http://www.teltec.dcu.ie/mariner
http://www.teltec.dcu.ie/mariner

[Nyberg94] H. Nyberg and B. Olin, “On load control of an SCP in the Intelligent

Network”, in Proceedings of the Australian Telecommunication Network and

Applications Conference, Melbourne, Australia, December 1994.

[P8132000] “Technical Development and Support for European ATM Service

Introduction”, P813 Project Deliverable 5 Recommendations on Traffic-related

Implementation Issues Volume 1 of 4, February 2000.

[P916] EURECOM P916 Project Consortium, “Supporting of H.323 by IN”, available

(Sept 2000): http://www.eurescom.de/public/proiects/P900-series/P916/P916.htm.

[Pettersson96] S. Pettersson, “Some Results on Optimal Decisions in Network Oriented

Load Control in Signaling Networks”, University of Karlskrona/Ronneby Technical

Report, ISRN HKR-RES-96/11-SE, Karlskrona, Sweden, 1996

[Q1200] ITU-T, “General Series Intelligent Network Recommendation Structure”

(Recommendation Q.1200), ITU-T, 1999

[Q1201] ITU-T, “Principles of Intelligent Network Architecture”(Recommendation

Q.1201), ITU-T, 1993

[Q1202] ITU-T, “Intelligent Network - Service Plane Architecture”(Recommendation

Q.1202), ITU-T, 1998

[Q1203] ITU-T, “Intelligent Network - Global Functional Plane Architecture”

(Recommendation Q.1203), ITU-T, 1998

[Q1204] ITU-T, “Intelligent Network Distributed Functional Plane Architecture”

(Recommendation Q. 1204), ITU-T, 1993

[Q1205] ITU-T, “Intelligent Network Physical Plane Architecture” (Recommendation

Q.1205), ITU-T, 1993

[Q1208] ITU-T, “General Aspects of the Intelligent Network Application Protocol ”

(Recommendation Q.1208), ITU-T, 1998

[Q1222] ITU-T, “Service Plane for Intelligent Network Capability Set 2”

(Recommendation Q.1222), ITU-T, 1998

106

http://www.eurescom.de/public/proiects/P900-series/P916/P916.htm

[Q1223] ITU-T, “Global Functional Plane for Intelligent Network Capability Set 2”

(Recommendation Q.1223), ITU-T, 1998

[Q1224] ITU-T, “Distributed Functional Plane for Intelligent Network Capability Set 2”

(Recommendation Q. 1224), ITU-T, 1998

[Q1228] ITU-T, “Interface Recommendation for Intelligent Network Capability Set 2”

(Recommendation Q.1228), ITU-T, 1999

[Q771] ITU-T, “Signalling System No. 7 - Functional Description of Transaction

Capabilities” (Recommendation Q.771), ITU-T, 1994.

[Rajaratnam96] M. Rajaratnam, F. Takawira, “Modelling multiple Traffic Streams

Subject to Trunk Reservation in Circuit-Switched Networks”, in Proceedings of IEEE

GLOBECOM 1996, Sydney, Australia, November 1996.

[Rumsewicz96] M. Rumsewicz, “A simple and effective algorithm for the protection of

services during SCP overload”, in Proceedings of the 4th International Conference on

Telecommunications Systems, Nashville, U.S.A, March 1996.

[Sabourin91] T. Sabourin, G. Fiche, M. Ligeour, "Overload Control in a Distributed

System", in Proceedings of the 13th International Teletraffic Congress (ITC 13), pp 421-

427, Copenhagen, Denmark, 1991.

[TIPHON] ETSI TIPHON Project, “The European Telecommunications Standards

Institute Telecommunications and Internet Protocol Harmonization Over Networks

Project”, available (Sept 2000): http://www.etsi.org.

[Tsolas92] N. Tsolas, G. Abdo, R. Bottheim, “Performance and Overload Considerations

when Introducing IN into an Existing Network”, in Proceedings of International Zurich

Seminar on Digital Communications, Zurich, Switzerland, 1992.

[Vasic99] J. Vasic, “The Internet Integrated Intelligent Network”, MSc. Thesis, School of

Electronic Engineering, Dublin City University, Ireland, 1999.

[Wathan99] Navin Wathan, Brendan Jennings, Dr. Thomas Curran, “Application of

MARINER Agents to Load Control in IP Telephony Networks”, in Proceedings of the

ACTS CAMELEON Workshop, Karlskrona, Sweden, September 1999.

107

http://www.etsi.org

[Wathan2000] Navin Wathan, Dr. Thomas Curran, “The MARINER Trial Platform: A

Model of a Load Control System for Intelligent Networks”, in Proceedings of IEEE

International Conference On Networks (ICON) 2000, Singapore, September 2000.

[Williams94] P M Williams, ‘A novel automatic call restriction scheme for control of

focused overloads’, in Proceedings of the 11th UK IEEE Teletraffic Symposium,

Cambridge, United Kingdom, 1994.

[Williams2002] P M Williams, M J Whitehead, “Realising effective intelligent network

overload controls”, BT Technology Journal, Voi 20, July 2002.

[Whetten2000] Whetten, B. and G. Taskale, “An Overview of Reliable Multicast

Transport Protocol II”, IEEE Networks, Voi 14, pp. 37-47, January 2000.

APPENDIX A: MARINER INFORMATION FLOWS

resourcedata
Sender
Receiver
SSPServiceRequest
ScfCapacity

identifier of RMA
identifier of RAA
2-dimensional array o f token bids by SSP/service

a double holding the SCF processing capacity

token_allocation
Sender identifier of RAARMA
Receiver identifier of RMA/STC
Allocation a three-dimensional array of token allocations, per service per SCP per SSP
IntervallD integer uniquely identifying the interval for which this token_allocation is

valid
IntervalLength length in milliseconds of the next interval
Deladline length in milliseconds of next token generation deadline

token_allocation_ack
Sender identifier of STC
Receiver identifier of RMA
IntervallD integer uniquely identifying the interval for which this acknowledgement

relates
RelativeTime (signed) time in milliseconds before/after arrival of to k e n _ a llo c a t io n

and expiry of Timer T7 (See Figure 4.1)

108

Sender identifier of STC/RMA
Receiver identifier of RMA/RAA
Serviceldentifier identifier of service type the notification refers to
RelativeTime fraction into current interval notification generated
Rejections number of sessions rejected in current interval prior to notification

I ate_d a t a_war n i n g
Sender identifier of RAA
Receiver identifier of RMA
Duration time in ms that re so u rc e _ d a ta arrived late

late_alloc_warning
Sender identifier of RMA
Receiver identifier of RAA
Duration time in ms that token a l lo c a t io n arrived late

notification

109

APPENDIX B: IN MODEL

B.l SSF

mainQ
StcO
AdrnissionControlQ
ServiceCounterQ

| SarweSunto 1 ____ IL -W JL —
AdmissionControl

1
1
i

■ I
ServiceLogic |

| incReqCounterQ
incDpCbunterQ
getReqCounterO
getDpCounterO 4

incReqC

f c ; f

1------

)unter(

serviceReq(service)
VoiceServiceQ
RingbackServiceO
VPNService

1 Default StatesresourceAvailableO

TrafTicControlSemœO
resourceAvailableO
updateTokens() serxJNoti ficationO*

sendAckO

7 updateTokensQ

| VoiceService jmm VPNService :'.c~ .^7 tri Ringbackiìerviee
' ■■W.WWWLLP
TraffieC^ntroî Service

1 Service
1 states i l l

' Service
states

Service
states

seiidNotificaiionQ
sendAckO
connect_extO

.

k i k ì \ A i "" i
I •
¡connect_e\10

t v ? f
J i [

—J----------------------
initiatorAclrrpl

L Receive
Messages

■

1
InitiatorAc

Received
Messages

-> creates -O extends — -> invokes method ■ implements interface

Figure B .l - The SSF Class Diagram

110

The SSF classes and their relationships are illustrated in Figure B.l. It operates as

described in § 3.2.1. Below are the class descriptions.

B.1.1 Admission Control

The Admission Control class implements the Tglnterface. Each time the serviceReq(m

service_key) method is called, it does the following:

• It verifies the service type being requested

• It requests that the ServiceCounter increment the serviceRequestCounter of the

service type by calling incReqCounter(semce_A:e’y).

• It checks that there are resources available to execute the request by calling the

resourceAvailable(service_key) method in the Stc. It is returned either a nullAddress

or a particular scfAddress.

• If a nullAddress is received, it requests that the ServiceCounter increment the

serviceDroppedCounter of the service type by calling the mcDpCounter(service_key).

• If an scfAddress is returned, it creates the ServiceLogic class of the service type

BA.2 Initiator Ac

The InitiatorAc class is an interface class generated from a CORBA IDL file. It

simulates the INAP messages using the TcSignalling.idl interface defined in the OMG

IN/CORBA Specification. Below is the InitiatorAc IDL

interface lnitiatorAc:TcSignaling::TcUser{

oneway void request_event_report_bcsm();
oneway void release_call();
oneway void prompt_and_col!ect_userJnformation();
oneway void connect_to_resource();
oneway void initiate_call_attempt();
oneway void connect();
oneway void continue^);
oneway void connect_ext(in lnControlAndMonitor::TokenAllocation
token_allocation);

111

The InitiatorAcImpl class implements the InitiatorAc interface. An object of this class is

instantiated for every service request by a child of the ServiceLogic class representing the

service type requested. Every time a method in this class is called, it calls a method of

the same name in the ServiceLogic class e.g.

public void release_call() {

serviceLogic.releaseCall();

B.L4 RingbackService

The RingbackService class inherits from the ServiceLogic class and implements the Ssf-

side state machine illustrated § B.4.3. It receives messages through the InitiatorAcImpl

class and sends messages through the SimpleDialogHandler class.

B.1.5 ServiceCounter

The ServiceCounter class maintains two counter arrays. The reqCounter array keeps

count of the number of requests for the different service types. The dpCounter array

keeps count of the number of requests rejected by the SSF for the different service types.

This class is used by the monitoring system.

B.1.6 ServiceLogic

The ServiceLogic class is the parent class of the service execution classes and

implements the default states and error conditions for out of state messages received by

the InitiatorAc interface.

B.1.7 SimpleDialogHandler

The SimpleDialogHandler class is used to send messages to particular SCFs. This class

is instantiated by the child classes of the ServiceLogic class per service request. On

B.1.3 InitiatorAcImpl

112

instantiation, it binds to the AeFactory interface of the SCF that is assigned to execute the

particular service request. A successful bind process returns a reference to a Responder

interface. The SimpleDialogHandler then invokes calls on this interface pertaining to the

messages it is instructed to send by the service logic states.

It also instantiates a InitiatorAcImpl object and sends it to the SCF AcFactory during the

bind.

B.1.8 S s f

The Ssf class contains the main() method in the SSF. It is responsible for the following:

• It instantiates the AdmissionControl, ServiceCounter and Stc classes.

• It initialises the CORBA Orb and the Basic Object Adaptor

• It registers the Tglnterface to the Interface Repository

• It registers the interface implementation

B.1.9 Stc

The Stc class implements the Service Traffic Controller functionality described in

Chapter 4. It does the following:

• It instantiates a TrafficControlService object for each SCF in the network

• It maintains a pool of tokens for each of the service types

• It maintains a timer, set to expire every tokenAllocationlnterval

• It restarts the timer, refreshes the pool with a new tokenAllocation and calls the

sendAck(token allocation_ack) method in all TrafficControlService objects when the

\iy&dLioT6kens(tokenAllocatiori) method is called

• If no tokenAllocation is received before the timer expires, it refreshes the pool with

the last allocation

113

• It subtracts a token from the service type pool when the

resourceAvailable(serv/ce7);/?e) method is called, and return the address of the SCF to

which that token is assigned

• If no token are available in the service type pool, it returns a nullAddress, and calls

the sendNotification(«o///?ca^'o«) method in all TrafficControlService objects. Only

one notification per service type is called per interval

B.1.10 Tglnterface

The Tglnterface class is an interface class generated from a CORBA IDL file. It allows

service requests into the SSF. Below is its IDL

interface Tglnterface {

oneway void serviceReq (in ServiceKey service_key);

B.1.11 TrafficControlService

The TrafficControlService class inherits from the ServiceLogic class. It however, does

not implement a specific service type state machine, but instead is part of the SSF Service

Traffic Control functionality. An object of this class is instantiated for each SCF in the

network. It does the following:

• On instantiation, it instantiates a SimpleDialogHandler object

• When the sendNotification {notification) method or the

sendAck {token _allocation_ack) is called, it inserts the notification or

acknowledgement as a CORBA Any type, into the extension field of an InitialDp

INAP operation and calls the initaXDp_ext{extension) method of the

SimpleDialogHandler.

• When the connect_ext(ejctension) method is called, it extracts the CORBA Any type,

verifies that it is a tokenAllocation and calls the updateTokens{tokenAllocation) in the

Stc

114

The VoiceService class inherits from the ServiceLogic class and implements the Ssf-side

state machine illustrated § B.4.1. It receives messages through the InitiatorAcImpl class

and sends messages through the SimpleDialogHandler class.

B.1.13 VPNService

The VPNService class inherits from the ServiceLogic class and implements the Ssf-side

state machine illustrated § B.4.2. It receives messages through the InitiatorAcImpl class

and sends messages through the SimpleDialogHandler class.

B.1.12 VoiceService

115

B.2 SCF

Scf

rrainO
AcFactcrylrrplO
NferinerD&taDistribuioit)
ServiceCamterQ

AcFactory [
A ! createKespœderAcO
: T

ResponderAc

A !: T
AcFactorylmpl

createResponderAcO
RespondsrAcInplO

ServiceCounter
incCounterO
incPbaseCounterO
getCounterValiieO

NferinerD&taDistiibiitor 1
I

1
1| ServiceLogic

initialDp_extQ
1
1
I Default States

resourceDataQ, 1

t ÎxaterValui ackListQ, * ‘ t
|

notificationListO, 1
ut€cjui|ter() token AllocationO, I

1

t 1H
incCounterO

4 - ! i ^ ❖

ResponderAdnpl
Receive Messages

H r

• 1

m
VPNService

resourceDataQ,
ackList(),
notificationList(),
tokenA11ocation()

i---
incHiasfïCamterO

Service
states

ScGRAAlnrol H i ,

RingbackService
Sendee
states

VoiœService
Service
states

re
Scf2RMAImpl

Scf2RMAImpl
acklistQ
notification_listO
token_allocati on()

I

j resource_data(),
I ack_list(), f j notification_!ist(),

' token_allocation()

¡1— _

SinpleDialogHandler
Send Messages

incPlxiseCounterO

Scf2RMA

HncPhaseCouricjO

:
' ■ / • 1.; .. . -,'c V

Ml

MM

> creates -O extends — > invokes method

116

The SCF classes and their relationships are illustrated in Figure B.2. It operates as

described in § 3.2.2. Below are the class descriptions.

B.2.1 AcFactory

The AcFactory class is an interface class generated from a CORBA IDL file. It allows

service requests into the SCF. Below is the AcFactory IDL

interface AcFactory {

ResponderAc create_responder_ac(in InitiatorAc initiator_ac)

raises (TcSignaling::NoMoreAssociations);

};

B.2.2 AcFactorylmpl

The AcFactorylmpl class implements the AcFactory interface. When the

create responder method is called, it instantiates a ResponderAcImpl object and passes it

the InitiatorAc reference. It then returns the reference to the ResponderAclmpl object.

B.2.3 MarinerDataDistributor

The MarinerDataDistributor class implements the resource control functionality in the

SCF and is the communication bridge between the SSFs and the MARINER System. It

does the following:

• When the '\n\\.\dXDy_QyA.(ssfAddress, extension) method is called, it verifies that the

extension is a recognised MARINER Information Flow e.g. token allocation ack,

notification and stores the message.

• When the 'mcCo\mtex(serviceType) is called, it calls the ServiceCounter

\nCo\mtex(serviceType) method.

• When the \o\ter)A\\oc2X\on(tokenAUocation) method is called, it inserts the token

allocation into the extension field of the Connect INAP operation as a CORBA Any

Figure B.2 - The SCF Class Diagram

117

type and sends it to all the SSFs by calling the connect ext(extension) method of their

InitiatorAc interfaces

• When the getResourceData() method is called, it calls the getCounterValueQ method

of the ServiceCounter object to attain the counter values and returns it to the caller.

• When the getAckList() method is called it returns the token_allocation_acks it has

received

• When the getNotification() method is called, it returns the notifications it has received

B.2.4 ResponderAc

The ResponderAc class is an interface class generated from a CORBA IDL file. It

simulates the INAP messages using the TcSignalling.idl interface defined in the OMG

IN/CORBA Specification. Below is the ResponderAc IDL

interface ResponderAc:TcSignaling::Tcllser{

oneway void initial_dp(in ServiceKey service_key, in

lnControlAndMonitor::Ss7Address ssf_address);

oneway void initial_dp_ext(in lnControlAndMonitor::Ss7Address

ssf_address,in any extension);

oneway void event_report_bcsm();

oneway void prompt_and_collect_user_information_result();

B.2.5 ResponderAcImpl

The ResponderAcImpl class implements the ResponderAc interface. On receiving an

'm\i\d\Dy(ssfAddress, serviceKey), it verifies that the service logic for the requested

service type is available in the SCF. It returns a no implement error if the service logic is

unavailable. Otherwise, it does the following:

• It calls the 'mcCo\mter(serviceKey) method of the MarinerDataDistributor

118

• It instantiates the ServiceLogic child object that executes the requested service type

Following that, everytime it receives an INAP operation method call, it calls the

corresponding method in the ServiceLogic object.

If it receives an initialDp_ext(ss/4 ¿/dress, extension), it calls the initialDp ext method in

the MarinerDataDistributor class.

B.2.6 RingbackService

The RingbackService class inherits from the ServiceLogic class and implements the Scf-

side state machine illustrated § B.4.3. It receives messages through the

ResponderAcImpl class and sends messages through the SimpleDialogHandler class.

B.2.7 S c f

The Scf class contains the main() method in the SCF. It is responsible for the following:

• It instantiates the AcFactorylmpl, MarinerDataDistributor, Scf2RMAImpl and

ServiceCounter classes.

• It initialises the Orb and the Basic Object Adaptor

• It registers the AcFactory and Scf2RMA interfaces to the Interface Repository

• It registers the interfaces’ implementations

B.2.8 Scf2RMA

The Scf2RMA class is an interface class generated from a CORBA IDL file. It allows

the RMA to push requests and information flows to the SCF. Below is the Scf2RMA

IDL

interface Scf2RMA{

readonly attribute ResourceData resource_data;

readonly attribute NotificationList notificationjist;

readonly attribute AckList ackjist;

119

void auction_result(in AuctionResult anAuctionResult);

B.2.9 Scf2RMAImpl

The Scf2RMAImpl class implements the Scf2RMA interface. For each method call it

receives, it calls the corresponding method in the MarinerDataDistributor class.

B.2.10 ServiceCounter

The ServiceCounter class maintains counters for the number of service requests received

for each service type, and the number of service phases executed by the SCF.

• When the incCounter(serviceType) method is called, it increments the service type

requested counter.

• When the incPhaseCounter(serviceType, servicePhase) method is called, it

increments the service-type-phase counter.

• When the getCounterValue() method is called, it returns the values of all counters.

B.2.11 ServiceLogic

The ServiceLogic class is the parent class of the service execution classes and

implements the default states and error conditions for out of state messages received by

the ResponderAc interface.

B.2.12 SimpleDialogHandler

The SimpleDialogHandler class is used to send messages to particular SSFs. This class is

instantiated by the child classes of the ServiceLogic class per service request. On

instantiation, it binds to the InitiatorAc interface of the SSF forwarding the particular

service request. The SimpleDialogHandler then invokes calls on this interface pertaining

to the messages it is instructed to send by the service logic states.

120

The VoiceService class inherits from the ServiceLogic class and implements the Scf-side

state machine illustrated § B.4.1. It receives messages through the Responder Ac Impl

class and sends messages through the SimpleDialogHandler class.

B.2.14 VPNService

The VPNService class inherits from the ServiceLogic class and implements the Scf-side

state machine illustrated § B.4.2. It receives messages through the ResponderAcImpl

class and sends messages through the SimpleDialogHandler class.

B.2.13 VoiceService

121

B.3 T r a f fic G e n e r a t o r

TrafficGenerator
SpikeTimer()
GeneratorThreadQ

UIMonitorGeneTatotThTead

SpikeTimer
UIMonitor()
startSpike()
stopSpike()

startGenerator()
stopGenerator()
startSpike()
stopSpike

r>extends -^invokes methodcreates

Figure B.3 - The Traffic G enerator Class D iagram

The Traffic Generator classes and their relationships are illustrated in Figure B.3. It

functions as stated in § 3.2.3. In order to simulate various traffic patterns, these classes

read obtain configuration information from a properties file listed below.

SERVICES 3
SO_ARRIVAL_RATE 7
S1_ARRIVAL_RATE 7
S2_ARRIVAL_RATE 7
TYPE n o / / S p i k e - l o c a l , g l o b a l o r n o
STARTTIME 1 0 / / i n m i n u t e s
SPIKE_PERIOD 0 / / i n s e c o n d s
MULTIPLIER 8 . 6 5

Next, are the class descriptions.

B. 3.1 GeneratorThread

The GeneratorThread class generates service requests o f its assigned service type. It does

so by calling the serviceReq(serviceType) method on the SSF Tglnterface. This is done

continuously, with random intervals extracted from a Poisson distribution with a mean

arrival rate read from the properties file.

122

• startGenerator() starts the service request generation

• stopGenerator() stops the service request generation

• starlSpike(multiplier) increases the Poisson Distribution mean by the multiplier for a

period lasting the interval

• stopSpike() returns the Poisson Distribution mean to its original value

B.3.2 UIMonitor

The UIMonitor class monitors the user interface for input. A recognised input leads to

either the startSpike() or stopSpike() method being called on the SpikeTimer class.

Unrecognised inputs return a text string describing the recognised inputs.

B.3.3 SpikeTimer

The SpikeTimer class simulates sudden increases in service traffic.

Provided there is to be a spike (Type is either local or global), it starts a timer for the

duration o f the StartTime and on its expiry calls its own startSpike(Mw/ft/?//er, Service)

method. It also starts another timer for the spike duration. On its expiry, it calls the

stopSpike() method.

Its startSpike(Mw/frp/z'er, Service) method calls the startSpik^(Multiplier) method in the

GeneratorThread object o f the stated service type. If called while a traffic increase is in

progress it returns an error.

Its stopSpike() method calls the stopSpike() method in the GeneratorThread object.

If the type is local, only one instance o f the SpikeTimer will simulate a traffic increase.

The SpikeTimer class also instantiates the UIMonitor class upon its own instantiation.

B. 3.4 TrafficGen erator

The TrafficGenerator class contains the mainQ method of the TrafficGenerator. It does

the following:

• It initialised the CORBA Orb and Basic Object Adaptor

123

• It binds to a SSF Tglnterface interface

• It instantiates GeneratorThread objects for each service type stated in the properties

file.

• It also instantiates the SpikeTimer object

B .4 Se r v ic e E x e c u t io n

Below are the state transition diagrams o f the three services modelled by the IN Model.

BAA Restricted User Service

Figure B.4 - The Restricted User Service State T ransition D iagram

124

B.4.2 VPN Service

Figure B.5 - The VPN Service State T ransition D iagram

125

B.4.3 Ringback Service

send
InitialDP

initiateChllAtterrpt Wait \ ReqE\RfpBCSvl

SCF State Transition

send
Continue

send
Continue

/ send \
CbmectToResaixx

send
ReqEvRepDCSVl

send \
InitiateGJlAttaipt

send
ReqEvReptìCSM I

send ^
Cot meet

send
ReqLMfcpBCSM

Figure B .6 - The R ingback Service State Transition D iagram

126 Ì

C. APPENDIX C: MARINER SYSTEM

C.l RAA

RAAInterfaœ

Tirnat)
DemandO
Suppig
ResourceAllocatorO
deadlineExpiredO
sencfTokmAllocationO
resouroeDötaO
notificationO
late_all(X_wamingO

___ iïKdTinHÛ.

_ _ _ _ _

startTimerO
modTimerO

Resource Allocator
setOfferO
gstOfifersO
clearQfifersO

startAllocationO
Demand

setBidO
modBidO
getBidsO
clearBidsO

> creates [>extends — -^invokes method • • •}> implements interfk^

Figure C .l - The RAA classes

The RAA functions as described in § 4.3.4. Figure C.l illustrates the RAA classes and

their relationships. Below are the class descriptions.

C .l A D em a n d

The Demand class maintains an array of all token requests by SSF and Service Type

received in a particular token allocation interval.

• setB\d(tokenRequest, ssf, serviceType) inserts a new tokenRequest into the array

position dictated by ssf and serviceType.

• modBid(tokenRequest, s s f serviceType) modifies a particular array entry.

127

• getBidsQ returns the token request array.

• clearBidsQ clears the array.

C.1,2 RAA

The RAA class contains the main() of the RAA. It also implements the RAAInterface

interface. It does the following:

• It instantiates the ResourceAllocator, Timer, Demand and Supply objects.

• It calls the startTimer(token_allocation_interval) method in the Timer object.

• For each resourcQ_data(resource_data) method call received, it extracts the SSF

token requests, and SCF capacities from resourcedata and calls the

Demand.setBid(tokenRequest, s s f serviceType) and the Supply.se\.Offex(capacity, scf)

respectively.

• When the notification (notification) method is called, it calculates the increased

tokenRequest from the notification data, and calls the Demand.modBid(tokenRequest,

s s f serviceType) method with the new tokenRequest.

• When the late_alloc_waming(/7erzoJ) is called, it calls the Timer.modTimer(-/?enc>d)

method, to decrease the timer by the period. In subsequent intervals, if no more

warnings are received, it will increase token_allocation_interval with increments o f 1

second by calling the same method.

• When the deadlineExpired() method is called, it calls the

ResourceAllocator.startAllocation() method.

• When the sendTokenAllocation(tokenallocation) method is called, it sends the

token_allocation to all the RMAs by calling the

RMAInterface.token_allocation(token_allocation) method.

C.1.3 RAAInterface

The RAAInterface is an interface class that allows the MARINER Information Flows

(See Appendix A) into the RAA. It has following methods:

128

v o id r e s o u r c e _ d a t a (R e s o u r c e D a t a r e s o u r c e _ d a t a)

v o id l a t e _ a l l o c _ w a r n i n g (i n t p e r io d)

v o id n o t i f ic a t io n (N o t i f ic a t io n n o t i f ic a t io n)

C.1.4 ResourceAllocator

The ResourceAllocator class implements the MARINER algorithm. When the

startAuction() method is called, it gets the SSF tokenRequests and SCF capacities by

calling the Demand.getBids() and Supply.getOffers() methods respectively. It then clears

the requests and capacities by calling the clear methods. The algorithm is then run,

resulting in a tokenAllocation. The ResourceAllocator then calls the

RAA.sendTokenAllocation(tokenAllocation) method.

C.1.5 Supply

The Supply class maintains an array of all resource capacity by SCF received in a

particular token allocation interval.

• setOffer(capacity, scf) inserts a new capacity into the array position dictated by scf.

• getOffers() returns the capacity array.

• clearOffers() clears the array.

C.1.6 Timer

The Timer class continuously countsdown an interval when the startTimer(z>*temz/)

method is called. Every time it completes the countdown, it calls the

RAA.deadlineExpired() method. When the modT\mQr(period) is called, it modifies the

countdown interval period.

129

C.2 RMA

> creates [>extends — *invokes method • • inplerrents interface

Figure C.2 - The RM A classes

The RMA functions as described in § 4.3.3. Figure C.2 illustrates the RMA classes and

their relationships. Below are the class descriptions.

C.1.7 Timer

The Timer class continuously countsdown an interval when the startTimer(z«/erva/)

method is called. Every time it completes the countdown, it calls the

RMA.deadlineExpired() method. When the modTimer(period) is called, it modifies the

countdown interval period.

C.1.8 RMA

The RMA class contains the main() method o f the RMA. It also implements the

RMAInterface interface. It does the following:

130

• It instantiates the Timer and RMA2SCF objects

• When the token allocation(token allocation) method is called, it calls the

RMA2SCF.sendTokenAllocation(/0&e«_<2//0az/zc>H) method.

• It calls the startTimer(interval) method in the Timer object.

• When the deadlineExpired method is called, it calls the

RMA2SCF.getResourceData(), the RMA2SCF.getNotifications() and the

RMA2SCF.getAcks methods.

• When the late_data_waming(/?erzW) is called, it calls the Timer.modTimer(-/?en0£/)

method, to decrease the timer by the period. In subsequent intervals, if no more

warnings are received, it will increase the interval with increments of 1 second by

calling the same method.

C.1.9 RMAInterface

The RMAInterface is an interface class that allows the MARINER Information Flows

(See Appendix A) into the RMA. It has following methods:

v o id t o k e n _ a l l o c a t i o n (T o k e n A l l o c a t i o n t o k e n _ a l l o c a t i o n)

v o id l a t e _ d a t a _ w a r n i n g (i n t p e r io d)

C.1.10 RMA2SCF

The RMA2SCF class is responsible for communication with the SCF. Whenever any

method is calld upon it, it calls the corresponding method on the SCF Scf2RMA

interface.

131

