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Abstract

The scattering of magnetic flux tubes 1n superconductors 1s studied First, we
mtroduce the Abehan-Higgs model, which describes vortices in a superconductor,
and the Euler-Lagrange equations which mumrmize the energy density given by this
model Static vortex solutions satisfying these equations are reviewed. A technique
proposed by on Manton [1] in which slowly changing solutions are approximated by a
special family of ime-independent solutions 1s descnbed. Time-dependent solutions
over small intervals are also studied Then the existence and the symmetries of the
nme-dependent solutions are studied. This analysis rules out all cases other than 0°,
90° or 180° scattering of two vortices The proof of the Cauchy-Kowalewsky:
theorem for a system of first order quasi-linear partial differential equations of (n+1)
independent variables and m unknown functions 1s given. The Taylor expansion of
the 1mtal data near the ongin 1s studied. The Cauchy Kowalewsky: theorem 1s
apphed to find the solutions of the ime-dependent Euler-Lagrange equations near the
onigm. This study proves that our solution describes 90°scattering Mathematica
programs to calculate the series solutions are also suppled.
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Chapter 1

Introduction

Over the years, sohtons and soliton-like solutions of non-linear partial differenual
equations have been studied m great detail One of the most important results of
these studies was the discovery of the unusual behavior of solitons in a scattering
process. In recent years, mainly based on an idea by Manton [1], results for the
scattering of soliton-like objects, hike magnetic monopoles [2], CP! skyrmions [3-6],
and cosmic strings or vortices [7} have been obtained. Important numernical work has
also been done for example on cosmic strings or vortices (8-13] and skyrmions m
(2+1) dumensions [14-16]. We consider the work on the scattering of vortices to be
of particular importance because, unlike the other soliton-like objects mentioned,
vortices can be produced m the laboratory and with conventional techniques [17], 1t
may be possible to study their collisions expennmentally.

Among the theoretical predictions for the scattering of soliton-like objects
scattering at 90° is one of the most exciting. For slowly moving vortices at the point
between type I and type II superconductivity, there 1s analytic evidence, based on the
slow-motion approximation, for scattering at nght angle [7]. If the repulsion between
the vortices increases and they cannot come very close anymore, we would expect to
see a switch over to backscattering at a certain value of the repulsion. There
numerical evidence that for fixed repulsion an increase n the velocity can bring the
vortices close enough together again to produce scattering at rnight angles. In ref




(18], an approximation method, which involves lineanzatnon of the equations, has
been used to show 90° scattering. This work 1s continued and brought to a
conclusion 1 this thesis, where 90° scattering for certain mitial data 1s shown

mathematically ngorously on the level of the Ginzburg-Landau equations.

In the second chapter, we introduce the Abehan Higgs model and discuss
previous studies to find tme-independent solutions which munmmze the energy
density. In the third chapter, we discuss two approximation techmques for tume-
dependent solutions One of the techmques is based on Manton's work [1] in which a
slowly changing solution 1s approximated by a special famly of time-independent
solutions The second technique studies the ume-dependent solution over a small
time interval only, 1.e, we study the scattering of slowly moving vortices from shortly
before to shortly after their collision. In the forth chapter, we study the existence and
the symmetnes of solutions of the Cauchy problem with 1minial conditions constructed
from static solutions and approximate ttme-dependent solutions. We find that, for
our 1mtial conditions, only 0°,90° or 180° scattering 1s possible. In the fifth chapter,
we rewrnite the time-dependent Euler-Lagrange equations as a system of first order
quasi-linear partial differential equations and discuss the proof of the Cauchy-
Kowalewsky1 theorem for a system of first order quasi-linear partial differential
equatons of (n+1) independent vanables and m unknown functions In the sixth
chapter, we give the Taylor expansion of the imtial data and apply the Cauchy-
Kowalewsky1 theorem to find a senies solutions near the ongin. This solution shows
90° scattering.




Chapter 2
The Abelian Higgs Model

In this chapter we discuss the Abehan Higgs model in general and in particular, the
Euler-Lagrange equations which minimize the action of this theory. We will introduce
the Lagrangian and the energy density, and study the static solutions which sausfy
the equations of motion and give fimte energy. The stanc solution which 1s of
particular interest describes two vortices sitting on top of each other. We wall also
show that the Abelian Higgs model is mnvanant under a U(1) gauge transformation

2.1 Lagrangian and Euler-Lagrange Equations
The Abehian Higgs model describes a superconductor in a magnetc field in z- direc-
tion. The Lagrangian density is given by

f,:%(D“(D)(D“d)). —%F,NFW —%(|<1>|2 -1), 2.1)

where ® 1s the complex Higgs field,

D,®=9,0-1AD, n=0,1,2, (2.2)

1s the covariant denivative, and the gauge fields F,, are defined in terms of the real
gauge potentials A, as

F,=0,A,-3,A, W,v=0,1,2. 2 3)




The 1ndices are lowered and raised with the metric tensor g=diag(+1,-1,-1) Ths
model is related to the Ginzburg-Landau model. For the special class of
configurations which are constant in one direction (say z) and under the assumption
that the gauge potential A, 1s zero, the Ginzburg-Landau model reduces to the two

dimension Abelian Higgs model which 1s given by the Lagrangian (2 1)

The equations of motion can be dertved from the Lagrangian (2 1) by using the
usual variational technique. In our case, we have the equations

0 (02 )\ o _ 0
ax” \aAv,p, JdAv ’
2.4)
o () 3 _
ax” \aq),p P ’
where
dAv od
Avp =—, Op=—r
e e
These yield the equattons of motion (Euler-Lagrange equations)
D*D, &+ a0 -1)=0
WP+ |“~1)=0, (2.5)
3, F* +§(<1>‘ (D" @) —d)(D"(D)") =0. 2.6)

The Abehan Higgs theory given by (2.1) represents a classical gauge field
theory which 1s characterized by a group of symmetnes not associated with any
physical coordinate transformation in space-time. The property of a gauge theory 1s
gauge invariance, e, the mvanance of the Lagrangian under a group of
transformations which can be different at different points 1n space-time This mnphes
that 1f the original fields are a solution of the equations of motion, so are the gauge
transformed fields. In our case the Lagrangian (2.1) 1s invariant under the gauge
transformation

d __)d)r_:e-l(ptx)q), All _)A; = Ail —-a“(p(x), (2.7)




where
o (x) =0(t,x;,%,), e Me yq).

Since 1t 15 easy to show that

(DP.(D)’ ::e_‘(P(X)(Dp(D) , |d)| = Id)' ,
(2.8)
F.,=F,

v?

we can establish the invanance of the Lagrangian given by (2.1) under the gauge
transformation (2 7). We also see that if (P,A,) 1s a solution of the equation of

motion (2.5), {2.6), so1s the transformed solution (&, A; ).

2.2 Time-Independent Solutions

We will discuss 1n this section special static solutions of the equations of motion (2.5),
(2.6) wmith A; =0, which mummze the potential energy. The existence of these

solutions has been proven by Plohr {19]. Plohr has proven that these equations have
n-vortex solutions which minimize the potential energy given by

E=JB(D,¢)(D,¢)* +3(F,) +4(of —1)2] d*x. 2.9)

To find static solutions of the equations of motion, let us consider functions of the

form
A (r,0) =€, x na(r)/r?,
(2 10)
in8
®(r,0)=¢e f(r), 1,j=1,2
where
€y =€5 =0, £, =—€, =1
We substitute (2.10) into the ime-independent Euler-Lagrange equations
p,p'0+4 (|0 -1) =0, 2.11)
3,F +4(0" (D'®)-(D'®)") =0 2 12)




E,X, +E,X, +€,%, =0, 1,3,k=1,2

we can denve

0,F" = rlzx,ev (@) (2.13)
D,D'® = :r—l([rf’(r)]’— nf (')[‘i(') l )e“", (2.14)
®*(D'®)-d(D'®) = 2ix,nev L i (’)[‘j(’ )1l (2 15)
From (2.12), (2.13) and (2.15) we obtam
[@(rir) -4 2(’)[‘:(’) “1_o, 2 16)
and from (2.11) and (2.14) we can derive
f oy - LD I gy 720y -11=0. @.17)

According to Plohr [19], there exist functions a(r) and f(r) which satisfy the above
equations and minmimize the potential energy (2.9).

For A=1, there actually exist first order equations whose solutions
automatically solve the second order equations (2.11) and (2.12). To see this we set
@ =@, +1®, and A=11n (2.9) and integrate by parts, which yields

E=J'8d2x=% j x[[0, @, +4 )T 0,0, - A ® )+
(2 18)
[(0201 + A2 D7) £ (012 - AD1)]? +

[z £ (0} + &2 —D/ﬂ’-]i%fd"-xl’nz :




where € 1s the energy density. The upper sign and lower sign 1s taken according to
whether the winding number n, which 1s given by

n=okfdx F,, (219)

1s positive or negative. Jaffe and Taubes [20] have shown, that n measures the
number of times

®_(0) = im P(7,0), (2.20)

r—eo

which 1s a2 unimodular complex number for each 8, winds around the unit circle in the
complex plane while @ goes from 0 to 2 n 1s therefore an nteger that does not
change when fimite smooth energy configurations are changed continously, and this 1s
why the number (2.19) occurs in the functions (2 10) The sets of finute-energy
functions with different winding numbers n are called topological sectors

Now the ntegral (2.18) gives a potential energy greater than or equal to 2ini®
with equality if and only 1f n

/

(D, +iD,)® =0, E,=F(®* —1). (2.21)
1 2 12

These equanons are known as the Bogomol'ny: equations. It is easy to see that solu-
tions of these equations satisfy the Euler-Lagrange equations (2.11) and (2.12) for
A=1. Tt has also been shown [20] that the Plohr solutions [19] satisfy the
Bogomol'ny1 equations A=1. To evaluate the functions a(r) and f(r), let us
substitute the solution (2.10) into the Bogomol'ny: equations, which yields

ren — 3 WD —a(r)]
fiin==% - ;

(2.22)

2
na'(r)=$r[f (zr-)_l]’

where the upper sign is taken if n 1s positive, and the lower sign 1s taken if n 1s
negative We will come back to these equations when we use the functions (2 10) for
n=2 as part of our tmtal data.




Chapter 3

Approximate Time-Dependent
Solutions

In this chapter we discuss two approximaton techniques for ime-dependent solutions.
One of the techmques 1s based on Manton's approach [1] in which slowly changing
solutions are approximated by a special family of time-independent solutions. For
simplicity, this techmque 1s illustrated 1n the context of the CP! model The second
technique studies the time-dependent solution over a small time 1nterval only, so that
1n this interval the solution does not differ much from the solution at t=0.

3.1 The Slow-Motion Approximation

The slow-motion approximation for vortex scattering was discussd by Ruback [7].
Ruback applhed the 1dea, origmally prqposcd by Manton [1] n the context of SU(2)
monopoles, that for A =1 at low energies the Bogomol'ny1 solutions can be used to
approximate time-dependent solutions. As we have seen the potential energy 1s
bounded below by a positive topological charge, and for a given topological sector,
ths bound 1s saturated if and only if a certain system of first order non-linear
equations (Bogomol'nyi equations) 1s satisfied. It can also be shown that the
submanifold or moduli space of these mimnal energy solutions has dimension 2n In
the slow-motion approximation 1t is assumed that the approximate time-dependent
solutton 1s a famuly of time-independent solutions which muinumize the potential energy
m a given topological sector. The action 15 then munimuzed for this 2n parameter
famuly of solutions to the Bogomol'ny: equations with time-dependent parameters




For the U(1) model thts calculation 1s not explicit To 1llustrate the method we
briefly digress from the U(1) model and discuss this approximatton for the CP! model
following Ward [3]. The CP! model in (2+1) dimensions 1s given by the Lagrangian

L=+ ?@uy@*w),  p=012. 3 1)
If we use the Euler-Lagrange equation

_a_(_ai) %

oxt | du, | ou’
we derive the classical equation of motion ansing from (3 1),

(1+[u? )00 u = 2u* (3,u) (3 u). (3.2)

This model again has different topological sectors.

In the charge-two sector, the family of static finite-energy solutions (static
lumps) can be wrtten 1n the form

u=o+Pz+y)z2+6z+¢)7!, o (3.3)

where o,B,y,d and € are complex parameters and z = (x! +1x2)/2. The 1dea of the
approximation for slowly moving lumps 1s as follows' We assume that the solutions
of the equations of motion (3.2) are of the form (3 3) where the parameters depend
ont We then substitute (3 3) 1nto the action which 1s then munimized This leads to
ordinary differential equations for the parameters as functions of t. Solving these
equations, yields the approximate time-dependent solutions

Before we persue this 1dea, we use the requirement of finite energy and certain
symmetries to set ¢ =B=8=0. Then we change the form of the parameters
(v,Y*,€,€%) to (R,y,0,0) according to the equations

v(t) =Re¥siny,
(3.4)
£(f) =Re" cosy.

Next 1f we substitute a solution of the form (3.3) with parameters given by (3.4) into

10




the kinetic energy functional given by the Lagrangian (3.1) °

T =J’(1+|u|2 Y2 d2x. (3.5)

For functions of the form (3.3) the rest of the action is just a multiple of the winding
number and does not contribute to the Euler-Lagrange equations Thus we obtain

T = [[R*R?|2* +%| +8‘2 +62g2+
2 (lzl4 cot® y +ef* sec® yesc y+2csc? v Re(zzs‘))+

ZR\[!R'I(|2|4 cot \ +sec y csc Y Re(z2%¢" )) -

266(|¢f* + Re(z2€"))-2ROR™ Im(22€")- 0
2ROR ™ Im(z%€")-2\yd tan y Im(z%e"*)-
2y coty Im(z%€" ) Ad’x,
where we have used the abbreviation
A=p /(|27 +ef') a7

The 1ntegration can now be performed and the kinetic energy can be used to
define a metric on the four dimensional parameter space. First one obtains

T =ER'R? +pRy + VR + R(19? + 00 + H?), (3.8)

where &,11,v, 1,6 and ® are functions of \ only and are given by

E=E/2, n=(K-E)s/c,

3.9
v=K-(E/2), T=52v,
G =—SC|, © =c2%,

11




with s=siny, c=cosy and K =K(cosy), E=EFE(cosy) are complete elliptic
integrals of the first and second kind, respectively. The metric G 1s defined by

T - GVS‘S/,

where S =R, §2=¢, S =0, S* =y. The geodesic equations which minimize the
time-1ntegral of the kinetic energy (3.8) can be wnitten as

GiS7 + Gy, 8'87 —(Gyu$'87) /2 =0, (3 10)

where Gy, =0Gy /95t and G, = G, for 1,,k=1,2,3,4. In our case we have to solve
these equations for

Giz2=G13=G24=G31 =0

and
Gii=E/2R, G =s(K-E)/2c,
311
Gor = Rs2(K -1 E), Gas =—Rs?(K-E)/2,
Ga=Rc*E /2, Gas = R(K~1E).

Only some of the solutions to the geodesic equations have been found explicitly
One famuly of solutions 1s

W = VYo, R:T(Q2+IZ)/§0, ¢=G=tan“( 20t ) 3 12)

Q2 _t2

As 1s expected, the functions (3 12) do not belong to a solution which satisfy the
Euler-Lagrange equations. Furthermore, although this mught be plausible, 1t is by no

means proven that (3 12) leads to an approximate solution for slowly moving lumps

For the Abehan Higgs model the situation 1s more comphcated The 2n-para-
meter family of 2-vortex solutions 1s not known explicitly, 1e, there 1s no analogue of
(3.3) Ruback [7] has used symmetries of the Lagrangian to find constraints on the
metric  Furthermore, his examination of the metric indicates that a certain angle

which parametenzes the parameter space has be identified modulo ®. This imphes
90° scattering for head-on-collisions.

12




3.2 Approximate Solutions for Small Time Intervals
In ref [18] the functions, which were used by Ruback to study the metrzc and by
Wemnberg [21] to find the zero modes of static solution, were used to show the
existence of time-dependent solutions to the full Euler-Lagrange equations that
describe 90° scattering. In this approach we consider an approximate solution of the
Euler-Lagrange equations (2 5), (2.6) of the form

&1, %)= D(x)+ d(t, ),

(3.13)
A, %)= AE)+AG,%), Ao(1,X)=0,

where ( ﬁ,,&) 1s the static solution for two vortices sitting on top of each other. The
perturbations (A,,®) on the static solution are represented by (7:(1‘ (J’E)+tB,,7~»(p(f)
+1{) which 1s small because it 1s assumed that A=1+X, 0<X<<l, te(-¢,¢g),
£ <<1, where (§+AQ,A, + Aa,) satsfy the static equations of motion Lineanzed n A
Hence the equatons for (B,,£) can be linearized The 1dea 15 to study the scattering
of slowly moving vortices from shortly before to shortly after their collision.

If we substitute (3.13) 1nto the equatnons of motion (2.5) and (2 6), using the
fact that (/i,,(b) are the static solutions of the time-independent Euler-Lagrange

equations (2.11), (2.12), and keeping only the linear terms 1n (A,,®), we can derive

(3.19)

NS ~ %
99,4, +2(8%,8-82,8") =0,
where te(e,e), € <<1 and
b=, —id, £ =3.4,-3,A,




Equations (3.14) are sausfied 1f

E=2f(r)k(r),

(3.15)
(8.8 =( = 00 i (r) + 203 228 k() + 2k,
r
1s chosen, where k satisfies the equation
rk7(n)+rk’(r) - k(n[4+r: f2(n]=0. (3 16)

Studying the zeros of |®|> reveals that this solution describes 90° scattering. The
problem with this approach 1s that this linearization has not been jusufied n a
mathematically ngorous fashion In this thesis we will bring this approach to a mathe-
matically rigorous conclusion.

14




Chapter 4

Global Existence and
Symmetry of Solutions

In this chapter we will study the solution of the equations (2.5), (2.6) for certain
mtial data, and show following ref. [22] that a umique global time-dependent solution
exists. For the existence proof, the equations (2.5), (2.6) are rewntten as a system of
first order partial differential equations and an iteration formula is applied We use
the 1teration formula to show that the solution of the Cauchy problem has a left-right
symmetry and an up-down symmetry.

4.1 Global Existence

In this section we will show that a unique global time-dependent solution of the

equations (2.5), (2.6) for certain initial data exists, by showing that the assumption of
ref. [22] are sausfied. To do this let us first subtract a background field (ﬁ),ﬁp) and
write

O(1,%) = B(Z)+ 91, %),

“.1)
A”(t,f) =A (D) +a,(1,X).
Subsutution 1nto the Euler-Lagrange equations (2 5), (2.6), yields
DH(Dud)+ Dr (Dup)+ 5 @ +9)(|d+ ¢ -1) =0, (4 2-a)

15




0,F* + 5@+ [D" @+ 92 @+ D" (G+o)] =0, (@25

;
where 3
i

F,=3,(A,+a)-0,(4, +a,). 4.3)

i
For the background field we chéose the static solution (2.10) with n=2,

b
!

- - -2¢, x,alr
¢,(.-x-)=6219f(r)’ 1A‘(j):_-’21—(2’
| r
{
Ay(%)=0, 1)=1,2.
As nitial data we choose i
|
|
¢(0,) =0, a,(0,%) =0,
{
a,(0,3)=0, =12, |

|
|
a,ao(O,f)=0, J{
1

0,0(0,%) =21 (r)k(r),

. ; 4.4)
0,4,(0,%) = 2 im 6 [rk’(r)+2k(r)],
l
‘
_ |
0,a,(0,%)= 2cos® [rk'(r)+ ‘2k(r)].

|

|

To show that a unique global tizme—depcndent solution of the Cauchy problem

(4.2a-b), (4.4) exsts, we will show that the background field satisfies the following
condrtions:

|
i
Ay=0,A =0d=0, af,/i, =0 i=12 .5)
|
i
|

SUP, o |9,9h-++Aif <o, m=0,1, 4.6)

m

16
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supxeRzla,a,- -<D|<oo, m=0,1.2, @.7)
m
(18] -1)e 2, Vd=(0b-idd)ek,
,‘ 4.8)
E eX,, 3’A e¥,
|
For the subtracted field :
{
V! =(ay, Py, PGy, Py ),
| (4.9)
p, =94,, T* = 0oP - 1409,
our 1mtal data satisfy J
t
W ex®i=(Hy x¥p)t. | (4.10)
!
Moreover, the Lorentz condmor];
d,a" =0, ! (4 11)
i
and the Gauss equation l
|
e & g 2 2
Ag0 = 3:d,a, =—[(®+9)(m +ia®*) —(&* +9*)(n* —10,D)], (4.12)

2

i
1

f
hold at t=0 Here X, is the Sobolev space of distributions f with finite norm
!

2
, (413)
2

|
111, =/ +usfp+-+[oid,- 1]
| s

L

and X, denotes e af fei s then lf € [? and 1ts derivatives are also in L2,

{
1

o o .|
Obviously Aj = 0,4, =9,® =0]and a short calculation shows that
|
A X £
d,A =-2¢ x “(a(r)/r) =0,
. r |

:
P17
|
|




1

since €, x,x, =0. From ref. [19] w‘e also know that the functions f and a are C™

maps on {0,0). Therr asymptotic behavior at the ongin 1s
l

f~ar?, a~Ppri+yrt. 4.14)

:
|
At infinity, a-1, f-1, and all their dérivauves decay exponentially These properties
guarantee that the conditions (4.6)-(4:.8) hold.

The function k that satsfies !;equatlon (3.16) has the following asymptotic
behavior at the ongin: 1

k~cr?+c,r (4.15)

!
t
|
It also decays exponentially at infimty. This implies that the condition (4.10) holds.
From @, =a, =a, =0 at t=0, 1t 1s clear that the Lorentz condition (4.11) holds at
=0 By substituting the ininal conditions (4.4) into the Gauss equation (4.12) and
using the equation (3.16), we can eaéily prove that these initial conditions will satisfy
the Gauss equation (4.11) at t=0. Now we have proved that all the conditions are
satisfied to guarantee the existence of; a unique global solution of the Cauchy problem
We can also easily show that the energy 1s imually, and is therefore always, finite.
An essential element of the proqf in ref. [22], which 1s based on Segal's existence
and uniqueness theorem [23}, is an iteration method. The method starts with rewnting
the Cauchy problem (4.2), (4.4) in the form

1

Y = —1A¥ +J,

i 4 16)
where the operator A 1s defined by 1
rooo |
- 0T 00 ; 0 1
A=Roor of lr_[A——mz ]
000T |
|
The vector J is given by %
i

Jl=(lej2sJ3’J4’159-]69]71’;-]8)5 (4.17)
With Jl =J3 :JS =J7 =0, and

|
i
!18
i
|




where vV, = a, —-ia,.

J, =m*ay— é[(&)* +o" )" —(d 1+ (p)n]-

i (4.18)
a,(do" + 210 +d*g) /2,
|
|

!
Toz = —-;~[<i>* (V. D) - &)(@,ci))*h m2a, + AA,+
S[(@ +o') Ao +ad)+(B+o) Ao +ad)]-
f (4.19)
1@ +0NTi0)- @+ o)V.0)']-

o @dr-0,8) i=1,2,
l

1
|
}

~ A

Jg=m*o-id,(Ad)-iA(Vd) +‘;A<i> -12,(a.0)-ia (V 0)+
{

laoﬂt’—21AI(V,(p)—A‘Z(p¥2al(§,<i>)—z<i>(alal)+
| (4.20)
u . Aok
(a“ai*)d>+ipo<b -;¢(|(]1,|2 -1)-

Holo+of -1+ (00 49+ 97
\
|
i
|

4.2 Reflection and Ro:tation Symmetries

In the this section we will use (4.16) to discuss the symmetry of the solution

The solution of the Cauchy problem! (4.16) can be obtained as the solution of the

following integro-differential equation’

,
¥(t, %) = e W0, 1)+ [ dste- A= (¥ (). (4.21)
T
|
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In turn we can solve this integro-differential equation by using the Picard Method [23].

The Picard procedure for solving g4.21) is to set up a sequence of successive
approximations ‘¥, defined by the formula

|

¥ (%)= (0,%)+ j ids{e‘“a("’)J(‘I-‘n (s))), (4.22)
0

where i
1

¥5(0.%) = (a0, po, a1, p1,az, p2,¢,1*)(0, %), (4.23)

with the mtial data (4.4). We now establish certain symmetries of the imitial data ¥,

and use (4.22) to establish these symmetres for the successive approximations ‘¥,
and finally for the solution of (4.21).

i
The first transformation we study is (x,,x,) — (—x;,—x, ). Under this

transformation the initial data change as follows
1

w(0,-%) = ¥(0,%),

] (4.24)
where }
¥ =(ay, py.—a,— Py —ay,—D,. 9, 1),
{
which can be wnitten as ‘
|
¥(0,-%) = M,'¥(0,%), { (4 25)
|
where '
1 0 00
lo-roo i_ 10
Mi=lo o -1 ol I\— 0 1]. (4 26)
0 0 0 1[I ;
|
We see that {
\
T(P(0,-)) = MiJ (#(0,); [m,.4]=o0, @“27)
and '
exp{—Ar} MW (0, %) = M exp{-1d1}'¥s (0, %). (4.28)

|
|
%20




|
|

Which implies that ¥, (¢,-X) = M ¥, (¢,X) for all ne N. From this follows

Y(t,-x)=MY¥Y(,X),

|
g (429)

|
for the solution ¥. !
]
Next we study the reflection (x;,x2) = (—x;1,x2). Under this transformation

the ininal data change as follows :
l

IP(ty_xl7-x2)=M2\Il(t9xl$x12)’ (4.30)

|

where 1

1

-1 0 0 O |
M—OIOO ;I"[IO] 4.31
>“fo 0o -1 of ' "lo 1l (4.31)

0 0 0 C

|
|
and CV =V*. Furthermore ‘
l
J' (0,—x1,x2)=—.’, (‘O,xl,xz), 1=2,6
|
J4(0,-x1,%) = J4(0, %1, %),
; (4.32)
Jg(0,—x1,x2) = J*3(0,x1,x2),
|
|
which imphes |
1
f
JCF(0,~x,x2)) = M2J (¥ (0%, x2)). (4.33)
|
-~ |
Again, we have [M2 , A] =0and ¥, (lt,—xl X2 ) =M, (¢,x,,X, ). From this follows

|

W(t,-x,,%,) = MW (t,x, ,xzi), (4.34)

|
|

By combimng the two transformations we can also study the reflection
(x1,x2) = (x1,—x2). We find that W (¢,x1,—x2) = M3¥(1,x1,x2 ), where

for the solution W¥.

!
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-I 0 O

-1 0

M3 = Mle = i (4.35)
0

0 O
0 O

— 0 © OO

i
Under the transformation considered the energy density

|
1 2 1 2 1 2 1 2 7\ 2 2
€=—|Do®|" +=|D.D|" +—F  +=F5 +—(|D|" -1) ,
J1Do®f* + (D@L + 2 F} 42 K+ =(0f 1)
I
1s mvanant. This means that the solution which satisfies our imtial conditions has left-
right symmetry and up-down symme:try for all ume t. Hence there exist only three
possibiliies when two vortices collide 1n a head-on colhision such that our 1nal data

are realized at t=0. We describe these three cases in the following diagram:

i

J

l

; [ 4
)
]\ — e &
o
‘I .
;
! case(l)
‘1 L
{ 90" Scattering
1
1
|
— H—>
) il > e e & w32 (2J) e) 2w >ee (““)—). @)
|
case(2) ‘ case(3)
|
180° Scattering | 0° Scattering.
:
diagram(I)
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Chapter 5 |

The Cauchy-Problem

!

l
In this chapter we will rewnte the ime-dependent Euler-Lagrange equations as a sys-
tem of first-order quasi-hnear parnal differential equations with coefficients which
depend only on the unknown functilons. We will then discuss the proof of the
Cauchy-Kowalewskyi theorem ([24] for a system of first-order quasi-linear partial
differential equations of (n+1) independent vanables and m unknown functions.

5.1 Associated First-Order Quasi-Linear System

In this section we will show that the time-dependent Euler-Lagrange equations can be

rewritten as a system of first-order quasi-linear partial differential equations To do
|
thus, let us substitute

D=y +uw,, A = u,, iAz = Uy, Ay = ug, G.1)
t

mto the equations (2.5), (2.6), which y*lelds

O, = 2wy + douy, —uul —u, 4 2+, 0,0 + U0, +

| (5.2)

Aoz A A
230U, +2u,0,u, -Euf --2—u,u/§ +-2—u, +

2 X
w5 - 2us0gu, — L‘zaou53
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|
|
f
|
|
83112 =0}u, + 95, ‘“2“32 ~u?uf ~1y0Uy — U0,y —

A, A A
2u,0,u — 21,0, ‘“‘2'“3 ‘5“2”12 +5“2 +

uz“s2 + 2UsOoiy + 10 glis,

|
i

ag“s = a%“s — 0,0 4y + U0y — U, 0\l — "3“12 - “3“% +0,dglUs,

Ogihy = 0314y = 31Dl + 1401y = Uy oy —Uylhy —Ug14] +2,9 ks,

a(z)us = a‘aoug + azaou4 S ‘]

{
|
where 1

3y =9/ 0x,, i:az/éxj, u=0,1,2.
|
We can write our initial data in the form

1

,(0,%)=a, (%) 191, (0, %) =B, (%), (5.3)
where

o, (X)=f(r)cos20, o, (%)= f(r)sin20,

(x3(x’)=_72a(r)sm6, a4(f)=-‘:1a(r)cose,

os(X)=0,

54

Bi(X)=2f(r)k(r), B (x)=0,

|

|

By(%) ==ZsnB(rk’ +2k), i B (%) = =2 cosB(rk’ +2k).
|

Bs(x)=0 1

To reduce the order of the Caucﬁy problem (5.2),(5 3), let us assume

i
l
|
%24
|
t




|
00 2 (N 1
R™ = dold, P 250 " = ou,,

0%y
(5.5)
q(21) - 82u” S(Oll) =_{_ aoalu” S(021) - aoazu‘
{
740 _ E),zu,, 7@ = Bgu,, i)=1,2,3,4,5.

Then the equations (5.2) can be rewritten as

0 2 22 01 12 0
R = G (u,, PO g, ¢, TN, T4 5O 02D o) pO) pOiy (5 ¢)
|

where 1
i
G = T(m) + T(m) - ulu32 - u}lﬁ + uzq(m + uzq(w +
J
A, A
2“3‘1(12) +2u q(22) 13 —EW‘% +5“1+
|
i
uu? - 2usP —u, PO
G, = T12) | 722 _ uzugz — e} i‘ q(13) q(24) _
| G.7)
A A A
2u,q"" = 2u,q® -3 — Sl i+
E
i + 2usP ~u P, |
1
G3 — T(223) q£124) + ulq(12) 1{ _ u3u22 + Px(lOS) ,
I
|
Gy =T — g +u g™ —uyq ll —uguy ~uul +PO,
|
Gy = PO + PO 1
And the 1m1itial conditions (5.3) will talfe the form
i
u,(0,%) =, (%), PO2(0,%) =B, (%) (5.8)

f

If we differentiate the equations (5 5) with respect to t, the Cauchy problem
(5.2), (5.3) can be rewritten tn the form

|
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oy, (01 (1) (01 (21 (01
Dl A @ =F
i
(0:) (00:) 02:) (00:) (1) (0L
S, =Rx1 , S, !Rz T =le
59
(22:1) (02:) (01) (00:)
1% =57, PO = R™,
RO = F(u,,P®,q®,q®) TN 7@,
SO, §O RO pO) O 02 RO ey o
|
|
with the 1nitial conditions '
i
- = "D -
u,(0,x)=0,(x), P (0,%)=p (),
| (5 10)
70, %) =a,, (), 0,9 =a,, (),
(lh) (0 x) at »X 11( )’ T(zzt)(o 'x) al X2.X2 (X),
sV, %) = Buq (%), lS(oza 0,%)= B"xz (%),

1% ? J,xz O

R 0,%)=F(a, |3],

J"z"x’ai"z"z [3111 Blzz JX.%0? lel B]"z

|
i 1y=1,2...5
where {
!
|
1P + PO 41y P09 1 pODg@9 4 5 pOD | p@) )
{

Fi = Sg)ll) + SS:Z]) _2u1u3P(03) _ug»P(O 2u U, P(O4) _uZP(Ol) +

{
i

2u PP + 2P0 —-%ufP(&') —%ugp("‘) — hagyu, PO +%P‘°D +

I
w2 PO + 2u,u P - 3P(°5)P(°2)$— 2u R — 3y, RO, (5.11-a)

1
l

Fy = SO 4 SO _ 2,4, PO -, 2POD _ 314, PO 2Pl
{
v26
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1
i
'
]

" Px(los) _pOD a3 _ " Px(zm) _ P(m) 24 ~2u, P(m) 2 P(o3) q(l y
2u PO -2 PRy _ 327\ W2 P(oz) 72“ 2P _ gy, POV +2£_ PO

2P + 2uusP® +3P PP + 2u ROV 41 R®, (5.11-b)

!

023 14 02 o1) (12 o1 02) (11
F3=SJ(‘1 )"S:(:(: )+u1Px(1 ) 4+ pf )q( ()_usz(l ) _ p¢ )q( ) _

'

2P 20, P —uZP® _ 204, PO 1+ RO, (5.11-¢)

H

014 013 02 o1y (22 01 02) (21
Fy = SO0 — SO 44 PO 1 pOGED _yy pOD _ pODg @ _
1

!
1

uf P =20, PP — i3 PO ~ 20,1, PP 4 R, (5.11-d)
Fy = RY% + RO, | (5 11-e)

i

1
To show that the Cauchy prob1¢m (5.2), (5.3) 1s equivalent to the new Cauchy
problem (5.9), (5.10), we will prove that a solution (i, PO, W g
T 7@ GO o(02) p(00)) satisfies the Cauchy problem (5.2), (5.3). It 1s clear
from (5.9) that dou; = P and qoazu, = Px(zo‘)— q®”, which imphes 9,u, — g
=Q(x). But at =0, QX)=a,, (¥)~0,, (¥)=0, and this mmples ,u, = g*"
Analogously, we can prove that d,u, ‘|= g1, Also §° - Rffo’) =0 wmnplies 9,d,u, —
SOM=T1(x). But the mnal condition at t=0 implies that T1(¥)=0, and this proves
that 9,0;u4, = S Analogously, welcan also prove that 3,9,u, = S Similarly by
using the same technique as above we can prove ofu, = T, 9%y =T g%y =
R We have rewritten our problem as a first order system of quasi-linear partial
differential equations (5.9) with mitial condmons given by (5.10). Note that each term
on the night-hand side of the equaUOqs (5.9) contains either one first-order denvative
of an unknown function or no denvati\:'/e at all.
|
To rewrtte the terms which do né)t contain a denivative we introduce the
function V which satisfies

V, =0, V(0,%)=x, . (512)




\

1

|

]

’:
Clearly V =x;, and we can muluply each term, which before did not contain a
denvative, by V, . Now the problem l(5.9), (5.10), (5.12) is of the form

1
1

-)zij,,p(ul, u46)a”’ (513)
at p=1j=1 dx »
with the intial conditions given by |

u,(0,%) = B, (%), ‘; 1=1,2,...,46. (5,14)
|

By using the substitution u, —<I>‘(O,..l,0) for u,, we can always arrange that the imual
conditions give zero at the ongin |

5.2 The Cauchy-Kowlalewskyi Theorem

We include 1n this section the discussion of a fundamental theorem due to Cauchy and
Kowalewsky: assuring that there exists an unique analytic solution of a certain class
of Cauchy problems which containsi our Cauchy problem. The Cauchy problem

which we consider 1s a system of first 'order partial differential equations of the form
!

{

n m a
= G, 515
” 2, 2Ottt 30 O1)
]
i

with the mnitial conditions

?
%,(0.0y5-.00M,) = @, (My,... M), (5 16)

|

1

with |
4

4

J

where G, (u, ..,u4,) and ¢,(n1,...,nn) are analytic functions with respect to all
their arguments 1n some nelghbourhodd of the origin. Furthermore, ® (0,....,0) =0

for 1=1,....,m In section 5.1 1t was shown that our vortex-vortex scattering problem
1s of the form (5.15), (5.16) with analytlc functions G, and 1n section 6 1 1t will be

shown that the 1n1tial data have the required analyticity.
i

!
The 1dea behind the Cauchy-Kowalewsky: theorem 1s to consider a related

Cauchy problem which has a unique' formal power senes solution as well as the
Cauchy problem (5.15), (5.16), and to prove the following two important facts:

28
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:

|
(i) The formal power series solutioil of the related problem 1s a majorant of the
formal power sernes solution of the (’gﬂginal problem (5.15), (5§ 16); (ii) The formal
power series solution of the related, problem 1s 1n fact a solution (in the ngorous
sense) m some neighbourhood of the origin. This shows that the formal power
series solution of the problem (5 15),;(5.16) 1s 1n fact a solution.

|

Now if we assume that the prc;>blem (5.15), (5.16) has a formal power series
|

hd |
w (&M ) = Dch, LB MY, (5.17)
ko ky, k,=0

1

'

|
then 1t 1s easily to prove the umqucn(,le of this solution* The 1mihal conditions (5.16)
are a condition on ¢, , . Then the equation (5.15) at =0 1s equivalent to
conditions on ¢, , . If we d1ffcrc1:1uat1ng (5.15) with respect to & we can find
recursively all the coefficients ¢, .

solution of the form

i
1

Next we will introduce the Cziuchy problem related to the Cauchy problem
(5.15), (5.16) While we do this we will also show the first fact, namely, that the
formal power series solution of the|related problem 1s a majorant of the formal
power sernes solution of the onginal ‘problem. To do this let us consider a function
Fx,x, .. ,X,) at the pomt (0,1‘ ....... 0. If we assume that the function
F(x,%,,......,x,) 15 analytic at this Point then there exists a neighbourhood N(0)

wherein f can be represented by a convergent power senies of the form
J

i
FOXynX,)= X8, X X, (5 18)
k. k=0

where

. B 1 ak,-i» +Iz_f(0)
bk Rkt oxhloxt

' (5 19)

1

!
If we assume also that the power sc'pes given by (5.18) 1s convergent at the point

x, =---=x, =p, where p> 0, then fqr any set of non-negative integer %,, .,k, there

«
exists a number M such that '
|

M

lay, .| < S (5.20)
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This inequality imphies that the series

S= MZ(i*"')—;*ﬂ) : (5.21)
n=0

for
<1

|(x1+---+x,‘)/p"

1s a majorant of the series (5.18). This can be easily seen as follows: S can be
written 1n the form

i xl/cl v
S=M Yo, LT (5.22)
, .k,.=(;‘ ke pk,+ +k,

f

where the coefficients o, , are posive integers. This fact together with the
mequality (5.20) yields that

a, k.ls———ii‘f"::' ; (5.23)

and this proves that the senes (5.22) 1s also a majorant of (5.18).

To proceed with our discussion of the Cauchy-Kowalewsky1 theorem, we will
use the analyticity of our data to define the functions G,, and @, m terms of power

series as
(Mo m,)= D@, M), (5.24)
Viy V=1
and
Gw(ul,...,um)= Zbc’l"ﬁv_‘ul”‘....u:‘". (5.25)

These power series are convergent 1n the region
[n,+---+n,|<p, b+ +u,| <p,

for small p .

Using the result which has been denived above, we can easily show that the
power series (5 24), (5.25) are majorized by the power series
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K
‘I’,(m,-..,n,)=MZ(“ii“—") : (5.26)

K=l P
and
(4.4 \
G, (.. ,u,,)=M2(“'—“p‘ﬁ) : (5.27)
K=l

respectively, which yields

M(Th'*'"'”\ )
\P,(T] ,"',TL.)= - ’ (5-28)
‘ p-m----,
and y
G, (... U,,) = ————. (5.29)
W l_ul+.;).+um

Now 1f we assume that A, , and B,‘,’lv v, are the coefficients of the above power seri-

es then

b'JV

v, Va

s
ay, v

SA.““ vy ?

<B", . (5.30)

~

In other words, the coefficients of the power series (5.28), (5.29) are non-negatuve
and not smaller than the absolute values of the corresponding coefficients of the
power series (5.24), (5.295).

We now consider the related Cauchy problem

2y-335,2v, (5 31)

with the 1nitial condition

v.(0,n,,..,m,) =¥ (N..m,)s (5 32)

as a majorant Cauchy problem of the onginal Cauchy problem (5.15), (5.16). Agamn
let us assume that the above problem has a series solution of the form

V;(éinl’” 9nn)= Ecliolq Ic,,gkonfl---n:"’ (5 33)
kkalr -kfl=0
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where the new quanuties C, , can be evaluated from A, , and B;’l" v 10 the way
. and b;” , . In

the ongmal coefficients Clkok, y, I (5.17) were obtained from the a, .,

other words,

Cip =P (4, B", ), (5.34)

kﬂkl ku

where the polynomuals P,, , have non-negative coefficients. This yrelds

[t 1] <Ci 1 (5.35)

1.e., the power seres (5.33) 1s a majorant of (5.17).

Next we will show that the imtial value problem (5.31), (5.32) has a solution
which can be expanded 1nto the power senies (5.33) which will prove the convergence

of the power series. To do this, let us assume that

V(&) =V, @Em.an,) = =V, (6 n,,0m,)
=V(&n,....n,)
(5 36)
=V(&,2),

where z=m,+...47M,. Substituting this solution 1nto (5.31), (5.32), we will get the

first order parnal differental equation

[(p~mV)/pIV,(§,2) - (nmM)V,(E,z) = 0, (5.37)
with the mmtial condition -
v(0,2) = ¥(0,2), (5.38)
where
w(0,2)= M~
p-z
The first order partial differential equation (5.37) has the form
(5.39)

A(V)V, +B(V)V, =0,
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with the initial condition
V(0,2)="¥(0,2). (5.40)
Thas first order partial differential equaton has a solutions which satisfies
A(V)z-B(V)§=C(V), (541

where C(V) 1s an arbitrary function that can be evaluated by using the nitial condition
(5.40). If we substite E=0 and V =¥(z) into the equation (5.41) we will get
C(¥)=A(¥)z, and if we nvert the function V =¥(z) to obtain z =Q(V), we see
that the function C(V) 1s determined by the relation C(¥) = A(¥)Q(¥). Ths shown
that the solution satisfies

_ _B)
V(E,2)= ‘P(z Y1) a). (5.42)

Applying this method, the solution of our first order partial differential equation
(5.37) can be written 1n the form

_ (nmM)
V(E,2)= ‘P(z+-——(1_(m/p)v)). (5.43)

From the inmtial condition (5.38) we can find the solution 1n the form

V(E,2)= M[[z+ (nmM /(1 —%))g:l/

Vv
[P ~[z+(mmM /(1 —F))iﬂ, (5.44)
which can be wntten as the quadratic equation

(1 —ﬁ)vz —[%(z —npk) +£(1 —i)]v +g—1’:[(z+ nmME) = 0. (5.45)

This quadratic equation has the root
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EMBED Bquanon V(5,5)= 52— X (s-np) 42 o-2/p

172

2
-[[ﬂ(wnp&)—ﬂ«p—z)/p)J _am? ﬁpﬁ] (5.46)
p m p

which gives V(€ ,z)=0 at £=0, z=0. Finally, because the quadratic equation (5.45)
has a discnminant different from zero at the ongin and in a neighbourhood of the
ongin where the root can be expanded into a convergent power sertes i £ and z.
Thus the convergence of the majorant series (5.33) and hence the convergence of the
ongnal series (5.17) is proved in a certain neighbourhood of the ongin and the
existence of an analytic solution of our Cauchy problem (5.15), (5.16) 1s completely
established.
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Chapter 6

Time-Dependent Series
Solutions

In this chapter we will study the Taylor senies expansion of our inital data which was
used m the previous chapter. We will use these series as iunial conditions to the
equations (5.2), which are the Euler-Lagrange equations (2.5), (2.6). Next we will
find the seres solutions of this Cauchy problem near the origin which exist due to the
Cauchy Kowalewsky: theorem.

6.1 Taylor Expansion For The Initial Data

In this section we will find series solutions of the functions a(r), f(r) and k(r) near
the ongin by using Taylor series expanstion. To do this we investigate the senes
solution of the second order couple partial differential equations

T - 4f ‘%'Zf(fz —1-4fa(@-2)=0, (©.1)
r2aﬂ_ral_r2f2(a_1)____0, (62)
and the second order differential equanons (3.16). To find the solution of the

equations (6.1), (6.2) and (3.16), we will first investigate the series solution at the
origin by using Taylor senes of the form

=S i ar)=Tasr", k()= T kr. 6.3)

n=2 n=2 n=-2
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From ref. 19, we know that f and a start with 72-terms and equation (3.16) shows
that k_; = ko =k, =0.

If we substitute the Taylor series (6.3) into the equations (6.1), (6.2), (3.16),

and solve 1t for the respective coefficients, we will find that the coefficients of the odd
powers of r are equal to zero. Hence the the series solutions (6.3) can be written as

f= ilfnrz", ar)= Ta,r,

n=|
(6.4)
k(ry= 3 k r*.
n=—1
To prove that only even powers of r appear, let us substitute
N oo oom 7 2N
fy=ZhrT+fire (6.5)
n=1
N 2N+
a(r)= Yar*" +ar""+.., (6.6)
n=]
and
N - N
k(ry= Ykr® +k,r* V4., 6.7)

n=-1

mto the equanons (6.1), (6.2) and (3 16) respectively. Comparing the coefficients of
the r*¥*!_terms 1 (6.1) yields (4N?+4N —3)F =0 which mphies f =0. The same
arguments for equatons (6.2) and (3.16) yield =k =0. In this way, we proved
(6 4) by induction.

Next by substituting (6 4) into (6.1) and comparing the coefficients of r on both
sides, we can evaluate the coefficients of the Taylor series for f(r) 1n the form

_ -1 )" n~2,-1
fn - 2(72__:1—){5[}:—1 - mef;-—mfn-l—ljl-

=2,m=1

n—l,x—l n-1
4% fa_a +8Y fman_m}, 0>3),  (6.8)
1=2.m=1 m=1
~A 2 1 1 1 A
Wb e 8fy =5y hmghen nd =g her ~ g =g ha g
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Similarly by substituting (6.4) into (6.2) and again comparing the coefficients of r on
both sides, we can evaluate the coefficients of the Taylor series for a(r) in the form

’

n-2

n~2,1~1
1 [ Z fmf;—manﬂ—l Z f fn—m—1:|’ (n>3)’ (6 9)

an =
4n(n - 1) =2.m=1

A £2
with, e.g., a,=0 and a3=~%—. Finally we substitute (6.4) into (3.16) and

compare the coefficients of r on both sides Thus we can evaluate the coefficients of
the Taylor senies for £(r) mn the form

1 ni—1
b= 4(n 2—1)[_5‘,,f -m n—«—] (m>1),  (6.10)

with k5 =0.

We will prove by inductions that the inequalities

< —
AR 7 +1)2 , (6.11)
k
L
la,|< TSR (6.12)
k
<
lk|< = (6 13)

hold for sufficiently large k and M 21, which will establish the convergence of the
Taylor senies solution (6.4) near the ongin. Using the 1nequality

n—1 1

> J
m=1(n, +1)* (n—n, +1) ! (x+1)° (n x+1)?’
2

4 1 1 1 2n+1
< 2 P + In
(n+2) 3 2n+1 n+2 3

< 1
(n+2)?

o), (6 14)
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and taking the absolute value of (6.8), we can prove the mequalty (6 11) as follows,

1 A M’PI n-2,4~1 M™ M:™ M’l-l—l
\ful = 221 Vol 2 Z 2 N2 |
4(n°-1) 2! n w=2me1 (M1 (—=m+1)* (n—1)
n—le-1 M7 M M n-l  pgm M
2 2 2 +8 2 2 2
wam=t (Mm+1)° G=m+1)* (n-1+41) ma(m+1)* (n—m+1)
n—-1 ;-1 m n-m
< 1 & M _ Z M M .
an* -1 |12] i* Sm+1)? (n-m+1)?

42

(n+1)?  Zm+1)? (n-m+1)?

1 2\'- Mn—l_ Mn—l N 8Mn _ 4Mn
an* -1 12| n* +2)?*| | (+1)? (n+3)?

1 A(MH) sM" | __M"

a?-n| 20 #? ) D T (e

sM" =1 M MT™ }

IN

IA

(6.15)

Similarly by taking the absolute value of (6.9), we can prove the mequalty (6 12) as
follows,

la |_ 1 n-2~1 Mm Me™ Mn—l—] —n—Z M™ Mn—m—l l
" ann=D)| |dma (1D (G—m41? (=i (m+D? (n-m)?|
n—1 -1 m n~m-1
1 M _+ 5 M : M :
4n(n-1)| | (n+D? [ 20n+1)? (n—m+1)?|
< 1 Mn—l _ M"_ll
“lan(n-1)| [(m+2)?  (n+1)?]
<1 M*
dn(n-1)| (m+2)*
M’l
< . 6 16
(n+1)2 (6 16)
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Finally, by taking the absolute value of (6.10), we can prove the inequalty (6.13) as

follows,
1 na-1 Mm Mt—m Mn—l—-] l
'kn|= 2_ 2 7 AERY)
412 =1)| | te (m+1)? G=m+1? (n=2)?]
1 -1 Mm Mn—m-l |
<
4(n? -1) ,,‘Z;I(m+1)2 (n—m+1)?]
n-1
o1 M |
4(n* -1)| [(n+2)?
<M
(n+1)?

6.17)

From the series representation (6.4) of the functions f,a and k follows the

analyticity of the imtial data (5.3).

6.2 Local Series Solutions

In this section we use Mathematica to find the series solutions of the

the tme-

dependent Euler-Lagrange equations (5.2) near the ongin up to any order, and show

that the solutions describe 90° scattering. Let us assume that the senes are of the

form

Uy (t,f) = z i [l,jsP]xix%tp ’
1,7.p=0

uZ(I’X.) = ZuQ[I’J,p]xllxi’tp,
8,7,p=0

u(1,X)= Y usli, 7, plxixde?,
1,7,p=0

u (,X)= Y uglt, 7, plxixde?,
4J.p=0

us(t, %)= Y, usli, j, plxixse®,
t,7,p=0

(6.18)

To evaluate the coefficients of these series, we substitute (6.18) into (5.2).

Solving this equations for its coefficients yields
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w [m, n,k +2] = {(m+1)(m+2)u, [m+2,n,k]+ (n+ 1)(n+2)u,[m,n+2,k]+

mak m—in—j k-p

2 Z[“l[ivjlvpll*

4.1 =0 mym Jg=0

uslmy, m,kyJuslm =3 —my,n—jy —n,.k-p, —kl]]_

mpnk  m-yn—jpk-p )

Z z[ul[il’flvpl]*

4,0, =0  mym k=0

uy[my, ny, ko Jus[m—iy —my,n—j —ny k- p, —kll]—

mpnk  m=lyn-jk=p

)Y Sl ji. o 1*

W =0 myn k=0

Ug[my,my, by Juy[m— 8 ~my,n— j —ny k— p k1] -

mn,k
X [k +Duslmy,my, by + ey [m—my,n =y e~k 1]+
my,m k=0

mn.k
Z[("H +Duglmy +1,n, 5 Juy [m —my,n~n k "k1]]+
mlv"'l»kl=0

mpnk
[(nl +l)u4[ml,n] +1,k1]uz[m~ml,ﬂ—nl,k—kl]]—

mmn ’kl =0

mpnk
2 2[(k1 + Dy [my ny by + uslm —my,n—n  k—ky ]]+
ml‘"hkl=0

mnk '
my Ry =0

mnk
2 Z[(”I+1)l‘2[ml,nl+1,k1]u4[m_ml,”—nl,k—kl]]+
mlt"l-kl=o
mnk m—y.n—jk—p

%“1{m’”’k]_% 2 2[“1[‘1,!1’171]*

0 p=0  mym iy=0

wlmy,n ko wm—iy ~my,n— p —n k- p, ‘kl]]‘
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mpak m—y.n—j,k—p_

) DA AR AN

=0 m.n k=0

uylm =1, —my,n— =y, k= py =k ]} (e + 1)k +2), (6.19)

wlm,nk+2]= {(m+1)(m+2)u2[m+2,n,k]+(n+1)(n+2)u2[m,n+2,k]+

mnk m—y.n—j.k—p

z [uz[ilsjl’pll*

Py =0y jg =0
ustmy, ny kg Juslm~1y —my,n— j —ny, k- p, ‘kl]]_

mnk m—iy,n—j k—-p

2 [uz[h,fpm]*

WP =0y =0

mnak m—yn—j k—p
[uz L. N
=0 myny k=0

gLy, my, by Juglm—y —my,n— jy —n k- p; _kl]]+

mn.k
E[(ml +Dus[my +Lny, b Jw (m—m ,n—n k- k ]]—

my,ny Jy =0

mn.k -
[+ DugLmy + 1,y ky Ty [m =y n =y ke — k1) -
my,ny k=0

mnk
S [+ DugImy,ny + 1,k Juy Im =y ,n = ny k- k1] +
k=0

munk
2 X[+ Dwlmy,ny,ky + uslm —my,n—ny k- k1] -
"H'nl'kl=0

mn.k

2 z[(m1 + Dy [m, +l,nl,kl]u,j[m—ml,n—n,,k—kl]]—
my,ny k=0
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mn.k
2 Y [y +yulmyng +1,k 1wy lm = my n—ny =k, 1]+
m .k =0

mak m—y,n—-j k—p

%uz[m,n,k]-% > Z[u2[ll9jl’pl]*

w1 =0 mym k=0

wlmy,ny, ey Joyy [m =iy = my,n— j, —ny, k~ p, ‘kl]]*

mnk m—yn—j.k~p

% 2 Z[“z[llvjpplluz[mlv”pkl]*

0JuP=0  mym =0

wlm—y —my,n— j = n,k~p, ~k |} (k+ 1)k +2), (6.20)

[, n,k +21 = {(n+ D(n+2)u;[m,n+2,k]+(m+1)(k + Dug[m,n + 1,k +1] -

(n+D)(m+Du,[m+1,n+1,k]1+

mn. k
2 (my + Dugy[my +1,ny, by Ty [m—my,n—ny ke — k] -

my,ny g =0

mn.k

my,my k=0

mak  m—yn—fy k-p

Z%[‘lslvﬁ]ux[’"ls"l’kl]*

=0 myn k=0

wlm—y —m,n-p -n,k—p —k]-

mpk m-—y.n—) k—p

> 2“3[‘1’11’171]%[’”1’”1”‘1]*

4,51, =0  my iy Jy=0

wlm—y —my,n— g —n,k—p, -k 1} (k+1)(k+2), (6.21)

uy[m, n,k +2] = {(m +1)(m+2)u,[m+ 2,n, k1 + (n+ 1)k + Dug [m, n+ 1,k +1]

(n+)(m+ 1 [m+1,n+1,k]+
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mn.k
S (g + Duylmy,ny + Lk Ju Im—my,n—n, k—k;]-
ml,nl,lqr-o

m,n.k
Y (ny + Dy lmy, ny + L,k Juy [m—my,n—ny k—k,1-
my,ny k=0

mnak m—y.n—j k—p

2 2 gLy, gy, o Juy Imy, my, by 1%
4, ,p1=0  myn k=0

wim-y—my,n—j —n,k—p —k]-

mpnk  m-yn=jk-p

2 2 g [y gy, Dy Juy Ly g b 1

4.3.p =0 myn k=0

us[m,n,k+2]=((m+1)(k+Diy[m+1,n,k+1]+

(n+ D)k +Du,[mn+LEk+1])/ (k+1)(k+2) (6.23)

To solve these equations recursively we can use the imtial data to find w,[i,, p] for
1,7=0,1,2,..; p=0,1. By backsubstitution we can find the other unknown
coefficients of the senies (6.18) up to any order

We first evaluate the unknown coefficients, with 1, 7, p=0,1,2,3,4, of the series
(6.18). With the help of Mathematica, the functions u;,u,,us,1, and us can be easily
evaluated. We find, up to order 4,

A f
24

Mg f, 2daf,

~xnfi+ 24 3

2 2.2

2x/af; | 254, il + Ak, 8fafik

3 9 9
2 2 2 2
_ 4Lx1 alfik_l _ 4l‘x2(11f]k_1 _ }\.txl fik—l _ lazﬁk_l (6 24)
3 3 12 12
A 4rd A ] 3
u, =2xx, f; ~—=27L Xohy — 4 x,x,0,f, - ad x32a1f1 - x,x;a,f, -kx‘l?fl ) (6.25)
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3 2
Uy = =20, —§5—x23f1—’-‘i —txZx, [Tk _y — txaxy Pk — 8ix,k) (6 26)
2 2
Uy =ﬁ_x;i_ki‘txlgf12k—1 —x,x; 2k ~ 8,k (6 27)
2 2
us = —81°x,%, fik_,. (6 28)

These solutions have, of course, the symmetries discussed 1n section 4.2
In the same way |®|® can be calculated. Up to order 4, we find
2
O = x{ £;2 +2x7x3 £ + x5 £ + dox £k —4ncs £k + 40 2 +

a1 WP AP fE Reta kD
9 3 3 9

16:°x% a f,zk_2 . 6t2x§ a flzk_21 ‘
3 3

(6.29)

In addition to the symmetries of section 4.2, |®? 1s also invanant under the transfor-
mation (t,x,,X,) = (=,x,,—X;).

Let us summanze the results we can obtain by considering the symmetries of the
solution whose global existence was proven in Section 4.1: First, if by using
functions like @I, F}, or €, there is a way of defiming the posiions (x{ (z), x5 (1)),
a=1,2, of exactly two separate vortices, these two position must lie either on the x; -
axis or the x,-axis with equal distance from the ongin (We will use the zeros of
|®I> to define these posiions) Any vortex which does not Le on either axis
immediately leads to three other vortices because of the left-nght and up-down
symmetry of our solution. Since our solution is continuous, these positions will
change continuously such that at t=0 the two positions coincide, and after the
collision the vortices move again on either the x,-axis or x,-axis. This only allows
for 0°,90°, or 180° scattering. Any approximate solution can clearly distinguish
between these three cases. We have calculated the analytic solution near the ongin,
which exists according to the Cauchy-Kowalewsky: theorem, and found a further
symmetry. This symmetry tells us that I®I*> looks the same at times +t before and
after the collision if together with the transformation +# — ¥t we exchange the x,
and the x,-ax1s. This means we have 90° scattering.
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All that 1s left to show 1s that there 15 1n fact a way of defining the positions of
vortices and that there are actually exactly two vortices before and after the
collision Of course, we can use the zeros of |®|* for our definiuon since we know
that superconductivity 1s destroyed at the center of a vortex For approximate
solutions we would look for the mimma of (®>. In our case the easiest way of
finding these 1s to sum the time-independent terms and the linear terms in &, which
are given by the intial data alone. This leads to the expression

[DF = f2(1+41c0s 260 + 41%k?), (6.30)

from ref. 18 For t#0, expression (6.30) has exactly two zeros, namely at r =p,
8=n/2and 0=3n/2 fort>0,and at r=p, 6 =0 and 8 = x for t<0 Here p 1s the
point where k(p) =1/ (2i#]). This complete our analysis.
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Chapter 7

Conclusions

Our aim was to discuss vortex-vortex scattering i a mathematically rigorous way on
the level of the Ginzburg-Landan equations. Guided by various results obtained
previously, we have formulated a Cauchy problem with Cauchy data which describe
two flux quanta both situng at the ongin. For this problem we have proven the
following: First, a umque global finite-energy solution exists. This 15 the munimal
requirement that for our data there 1s a solution for —ee <z < eo. The existence proof
also shows how to construct the solution as a it of a sequence. Using the
symmetry of the imtal data we can obtain our second main result which 1s a left-right
and up-down symmetry, m particular, of the energy density and of |®[*>. This rules
out all cases other than 0°, 90° or 180° scattering of two vortices. Third, we have
shown that a local solution exists near the onigin, and have used this solution to
establish 90° scattering. Our arguments depend on the fact that, using [®[?, we can
define the location of the vortices and find that there are exactly two for t#0.
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Appendix A

Program Listings
Step[0]

Clear[a,f k,g,z,d,x1,x2,t]
Clear[s1,s2,m,n,q,11,;1,p1,m1,nl,q1,1,,p,ul,u2,c0,cl,c2]
Clear{A1,A2,U,U1,U2,U3,U4,U5,Ut1,Ut2,At1,At2]
Clear[01,02,03,04,05,06,07,08,09,010,011,012,013,014,
015,016,017,018,019,020,021,022,023]

Step[1]

f1}:=f]1]

f[2])-=Expand[-(g/24)*{[1]-(2/3)f[1]*a[1]]

f{3]):=Expand[(1/8)*f[1]*(a[11)"2-(1/4)*{[1]*a[2]-(1/4)*f[2]*a[1]-
(g/64)*{12]]

f[n_Integer]:=Expand[(-1/(4(n"2-1)))*(g/2)*(f[n-1]-
Sum(flm}*f[1-m]*f[n-1-1],{1,2,n-2},{m,1,1-1} ]+
(1/(4(n"2-1)))*(4*Sum[f[m}*a[r-m]*a[n-i], (1,2,n-1},{m,1,1-1}]-
8*Sum[flm]*a[n-m},{m,1,n-1}])} /,(n>3)

a[1]:=a[1]

a[2).=0
a[3):=Expand[(-1/24)*((f[1])"2)]

Al




a[n_Integer]:=Expand[(1/(4n(n-1)))*(Sum{f{m]*f[1-m]*a[n-1-1],{1,2,n-2},
{m,1,1-1}]-Sum[f[m]*{[n-m-1],{m,1,n-2}D]  /;(n>3)

k[-1]:=k[-1]
k[0]-=0
k[1]-=k[1]
k[n_Integer] =Expand[(1/(4(n"2-1)))*Sum([Sum([f[1]*f[n-i-j-1]*k[j],
{1,1,n)-2}],{j,-1,n-3}]] fi(n>1)
Step[2]

[A]

O11x1_,x2_,0_]=(((x DA2-(x2)M)/(x1)A2+(x2)A2))*
Sum[fTi}*((x1)A2+(x2)A2)YM,{1,1,8)];

02[x1_,x2_,0_]=Together[%],

Ul(x1_,x2_,0_]=Expand{%],

O3[x1_,x2_,0_J=((2 x1 x2)/((x ) 2+(x2)A2))*
Sum([fl1]*((x1)A2+(x2)A2)",(1,1,8}];

O4[x1_,x2_,0_)=Together[%],

U2[x1_,x2_,0_]=ExpandAll[%];

O5[x1_,x2_,0_]=2*(Sum[f[1]*((x 1)A2+(x2)A2),{1,1,8} ]*
(Sum{k[1]*((x1)A2+(x2)A2)M, (1,1,8} 1+
K112+ (x2)A2M (- 1)),

06[x1_,x2_,0_]=Together[%],

Utlx1_x2_,0_J=ExpandAll[%];

Ut2[x1_,x2_,0_1=0;

O7(x1_,x2_,0_]=-2*x2*Sum[a[1]*((x1)A2+(x2)A2)"1-1),{1,1,8} ];

O8[x1_,x2_,0_]=Together[%];

Alfx1_x2_,0_)J=Expand[%];

O9[x1_,x2_,0_]=2*x1*Sum[a[1]]((x ) 2+(x2)A2)*(1-1),(1,1,8}],

010[x1_,x2_,0_]=Together[%];

A2[x1_x2_,0_]=Expand[%];

O11[x1_,x2_,0_]=-4*x2*Sum[(1+1)*k[1]*((x )A2+(x2)A2)*(1-1),{1,1,8}],

012[x1_x2_,0_]=Together[%];

Atl[x1_x2_,0_]=Expand[ %],

O13{x1_,x2_,0_]=-#*x1*Sum[(1+1)*k[1]*((x ) 2+(x2)"2)"(1-1),{1,1,8)],

A2




[B]

014[x1_,x2_,0_}=Together[%];
A2[x1_,x2_,0_]=Expand[%];

u1[0,0,0]=Coefficient[z*U1[x1,x2,0],z)/. x1->0 / x2->0,
Dol[Iff1+j>0,ul{1,),0]=Coefficient{U1{x1,x2,0],(x 1 )M(x2)"]

/x1->0 /.x2->0,] ,{1,0,16},{;,0,16}1,
u2[0,0,0]=Coefficientjz*U2[x1,x2,0],z]/. x1->0 /. x2->0;
Do[If[1+3>0,u2[1,j,0]=Coefticient{U2[x 1,x2,0],(x1)M(x2)/]

/x1->0 /x2->0,] ,{1,0,16},{3,0,16}],
u1]0,0,1]=Coefficient[z*Ut1[x1,x2,0],z}/. x1->0 / x2->0;
Do[If[1+)>0,u1[1,3,1]=Coefficient[Ut1[x1,x2,0],(x 1 )M(x2)"Y]

/. x1->0 /x2->0 },{i,0,16},{3,0,16}];
1u2[0,0,1]=Coefficient{z*Ut2[x1,x2,0],z}/. x1->0 /. x2->0;
Do[If[1+)>0,u2[1,3,1]=Coefficient[Ut2[x1,x2,0],(x 1 )M (x2)}]

/x1->0 /x2->0,],{1,0,16},{j,0,16}],
¢1[0,0,0]=Coefficient{z*A1[x1,x2,0],z)/. x1->0 /. x2->0;
Do[If{1+3>0,c1[1,3,0]=Coefficient{A1{x1,x2,0],(x ) i(x2)}j]

/x1->0 /x2->0 ,),{i,0,16},{;,0,16}1;
c2[0,0,0]=Coefficient[z*A2[x1,x2,0],z)/. x1->0 /. x2->0;
DofIffi+3>0,c2[1,},0]=Coefficient[A2[x 1,x2,0],(x )M (x2)M]

/x1->0 /.x2->0 ,},{1,0,16),{;,0,16}1;
c1[0,0,1]=Coefficient[z*At1[x1,x2,0],z)/. x1->0 /. x2->0,
Do[If[1+j>0,c1[iy,1]=Coefficient[ At1{x1,x2,0],(x1)M(x2)N]

/. x1->0 /x2->0,},(1,0,16},{3,0,16)1,
¢2[0,0,1]=Coefficient[z*At1[x1,x2,0],z]/. x1->0 /. x2->0,
Do[Ifli+;>0,c2[i,),1]=Coefficient[ At2[x1,x2,0],(x1)M(x2)"]

/x1->0 /.x2->0,] ,{1,0,16),{3,0,16}1;
Do[c0[i,3,p]=0,{1,0,16},{3,0,16},{p,0,1}};

Step[3]

[A]

Do[Do[
ul[m,n,q+2]=(1/((q+1)(q+2)))*((m+1)*(m+2)*ul[m+2,n,q]+

(n+1)*(n+2)*ul[m,n+2,q}+
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Expand{Sum[ulf1l,j1,p1]*cO[m1,n1,q1]*cO[m-il-m1,n-j1-nl,q-pl-ql1],
{11,0,m},{31,0,n},{p1,0,q},{m1,0,m-11},{n1,0,n-31},{q1,0,g-p1}]]-
Expand[Sum[ul[11,j1,p1]*c1{m1,n1,q1]*c1[m-il-m1,n-j1-nl,q-p1-q1],
{11,0,m},{j1,0,n},{p1,0,q},{m1,0,m-11},{n1,0,n-31},{q1,0,q-p1}1}-
Expand[Sum[ul[11,j1,p1]*c2[m]l,nl,q1]*
c2[m-il-ml,n-j1-nl,q-p1-q1},{i1,0,m},{;1,0,n},{p1,0,q},
{m1,0,m-i1},{n1,0,n-1},{q1,0,9-p1}]]}-
Expand[Sum[(q1+1)*cO[m1,n1,q1+1]*u2[m-m1,n-nl,q-q1],
{m1,0,m},{n1,0,n},{q1,0,q}]11+
Expand[Sum[(m1+1)*c1[m1+1,n1,q1]*u2fm-ml,n-nl,q-q1],
{m1,0,m},{n1,0,n),(q1,0,q} 11+
Expand[Sum[(n1+1)*c2[m],n1+1,q1]*u2[m-m1,n-nl1,q-q1],
{m1,0,m},{n1,0,n},{q1,0,q}1]-
Expand[2*Sum[(q1+1)*u2[m1,nl1,q1+1]*c0[m-m1,n-nl,q-q1],
{m1,0,m},{n1,0,n},{q1,0,q}]1+
Expand[2*Sum[(m1+1)*u2[m1+1,n1,q1]*c1[m-m1,n-nl,q-q1],
{m1,0,m},{n1,0,n},{q1,0,q}11+
Expand[2*Sum[(n1+1)*u2[m1,n1+1,q1]*c2[m-m1,n-nl,q-q1],
{m1,0,m},{n1,0,n},{q1,0,q}]]+Expand([(g/2)*ul[m,n,q]]-
Expand[(g/2)*Sum[ul[il,j1,p1]*ulfm1,nl,q1]*
ul[m-il-m1,n-j1-nl1,q-p1-q1],{11,0,m},{31,0,n},{p1,0,q},
{m1,0,m-i1},{n1,0,n-j1},{q1,0,q-p1}]]-
Expand[(g/2)*Sum[ul[il,j1,p1]*u2[ml,nl,ql1]*
u2[m-11-ml,n-jl-nl,q-p1-q1],{11,0,m},{j1,0,n},{p1,0,q},
{m1,0,m-i1},{n1,0,n-j1},{q1,0,q-p1 }1D);

u2[m,n,q+2]=(1/((q+1)(q+2)))*((m+1)*(m+2)*u2[m+2,n,q]+
(n+1)*(n+2)*u2[m,n+2,q]+
Expand[ Sum[u2[11,}1,p1]*cO[m1,n1,q1]*
cO[m-11-m1,n+1-n1,q-p1-q1],{11,0,m},{j1,0,n},{p1,0,q),
{m1,0,m-i1},{n1,0,n-1},{q1,0,q-p1}1])-
Expand[ Sum[u2[11,1,p1]*c1{ml,nl,q1]*
cl{m-11-ml,n-j1-n1,q-p1-q1},{11,0,m},{31,0,n},{p1,0,q},
{m1,0,m-11},{n1,0,n-j1},{q1,0,q-p1}1]-
Expand[Sum[u2[11,)1,p1]*c2{m1,nl,q1]*
c2[m-il-ml,n-j1-n1,q-p1-q1],{i1,0,m},{31,0,n},(p1,0,9},
{ml1,0,m-11},{n1,0,n-j1},{q1,0,9-p1}]1+
Expand{Sum[(q1+1)*c0[m1,n1,q1+1]*ul[m-m1,n-nl,q-q1],
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{[If1d-bo b} {1f-up u} { yr-wp w)

‘{{b'o1d}*{uQ () {wrp 11} [1b-1d-b* u-1 f-u‘ jwr- [ -wifzn

«[ 1D Tu Tz, [1d* [P 11]zn]wng, (z/3)]puedxy
-[[f1d-beg‘rb}*{1f-u‘g u){Tr-wip [}

{{brorrd} (uo ) (wrg 1} (1b-1d-b yu-y f-u' pw-pr-wjyn

«[ 1D Tu pw] g [1d*r [ 11]zr]wng . (z/3) Jpuedxy
-[[bu‘mzn,(z/8)Jpuedxy

+[[{bQ‘1b}*{uwp u}{wrg Tu}

“[1b-b [u-u pw-w]zo, [Tb* 1+ [u w] [ ny(1+1 w) Jun g, ZJpuedxy
-[[{b*0'1b} {u‘p*ru}‘ {wrp T}

‘[1b-bu-u [w-w] o, [1b U T+ {w] [ (1 +[w)]wng 7 ]puedxy
-[[{b'0"1b) {u‘Q1u}* {w* Tu}

‘[1b-b ru-u pur-wr] o, [T+ 1b U [w] [y (1+ 1 b) Jung 4 Z]puredxq
+[[{bo* b} {u'p ru}* {wrg Tw}

‘[1b-b ru-uyw-wrf o, b1+ U Tw]Zo.(1+ 1 u) Jwung]puedxy
-[[{b‘0*1b}*{u‘Q*yu}  {wg T}

‘[1b-beru-u‘ pur-wa] y o [ b [ut [+ Jw] 19, ( 1+ wr) JumGJpuedxy
-[[{b‘o'1b} {up Tu} {wro T}



v

-[[{b‘o*1b}* {u‘p Tu}* {w'y Tu}

‘[1b-b* u-u fw-w)zn, [ b T+ u uif o, 1+ u) Jumg]puedxy

-[[(b'0* b} {up Tu} {w'Q* ur}

‘[1b-b*Tu-u yw-w] [y [1b 1+ U Tw]zn, (1+7 U) Jung]puedxg

+{1+0 T+u ] 004 (1 +W) 4 (T+D)+[b* T +U¢ [+U] 04 (T +10) 4 (T +U)
-[D U T+W] 7o (THu) (1+u) 1 (((T+D)(1+D))/ D=[T+b u'wi]zo

‘([f{1d-bo b} {1 fu‘pru) { r-wep T}

‘(b'o‘rd) {uorrf} {wro 11} [1b-1d-b yu-1 f-uyw-1r-wijzn

«[ 1D Tu qujgn, [1d i) poJungjpuedxy

-[[{1d-bg* b} (1 f-ug ru}{yr-wrQ Tw]}

‘(b0 1d}*{uo1f) {wro v} [1b-1d-b ru-1f-u' - r-wirn

«[Ib Tu pw]pn, [1d f11)1oJuingJpuedxg

-[[{b'g‘1b}*(u‘g*1u} {wrp [}

‘[1b-b*yu-u‘ Twi-ta]gn, [ [ b* U T+ ] [0, (1+ W) jung]puedxy

-[[{b'0' b} {up u} {wQ T}

‘[1b-b* pu-u pw-wa] oy [y b pu [+ {w]zng(1+ Jw) fung Jpuedxg

+[1+D U [+wW]004 (1+D) 5 ([+)+[D [+U [+U] 20, ([+W) (1 +1)
-[b z+u w12, (Z+W) 4 (1+W)((Z+D)(1+D))/ D=[z+b u‘w] 1o



Expand[Sum[c2[11,j1,p1]*ul[m],nl,q1]*
ul[m-11-m1,n-j1-n1,q-p1-q1},{i1,0,m},{;1,0,n},{p1,0,q},
{m1,0,m-11},{n1,0,n-j1},{q1,0,9-p1}]}-
Expand{Sum[c2[11,j1,p1]*u2[ml,nl,q1]*
u2{m-11-m1,n-j1-n1,q-p1-ql1],{i1,0,m},{31,0,n},{p1,0,q},
{m1,0,m-11},{n1,0,n-j1},{q1,0,q-p1}11);

cO0[m,n,q+2]=Expand((1/(q+1)*(q+2))*((m+1)*(q+1)*c1{m+1,n,g+1]+

[B]

(n+1)*(g+1)*c2[m,n+1,q+1])],
{ mv0’6'q) » { n’O’G'q } ] s { q,O,Z}]

Dol[If] (i+)+p)>4,ul[1,),p)=u2]1,),p]=01,{1,0,4},{3.0,4},(p,0.4}];
Do[Ifl(1+)+p)>4,c0[i3,p]=c1[1,),p]=c2[1,),p]=01,{1,0.4},{1.0,4},{p.0,4}],
O15=Sum[ulf1,),p*(x 1 i(x2)"()"p,(1,0,4},{j,0,4},(p.0,4}1,
U1l{x1_,x2_.t_]=Expand[%];
O16=Sum[u2(1,),p]*(x1)1(x2)"j(1)"p, {1,0,4},{3,0,4},{p.0,4}1];
U2[x1_,x2_,t_]=Expand[%],
O17=Sum[c1[1,1,p]*(x 1) 1(x2)"1()"p.{1,0,4},{3,0,4},{p,0.4}1;
U3[x1_,x2_,t_)=Expand[%];
0O18=Sum|c2[1,j,p]*(x1)M(x2)M(H)"p,(1,0,4},{3,0,4}.{p,0,4}],
U4[x1_,x2_.t_}=Expand[%];

019=8um(c0(1,),p]*(x 1'1(x2)"j()"p,{1,0,4},{3,0,4},{p,0,4)];
US[x1_,x2_,t_]=Expand[%];

Step[4]

Length[U1[x1,x2,t]-U1[-x1,x2,t]};
Length{U1[x1,x2,t]-U1[x1,-x2,t]];
Length[U2[x1,x2,t]+U2[-x1,x2,t]];
Length[U2{x1,x2,t]+U2[x1,-x2,t]];
Length[U3[x1,x2,t]-U3[-x1,x2,t]],
Length{U3([x1,x2,t]+U3[x1,-x2,t]};
Length(U4[x1,x2,t]+U4(-x1x2,t]1;
Length[U4[x1,x2,t]-U4[x1,-x2,t]];
Length[U5(x1,x2,t]+U5[-x1,x2,t]];
Length[US{x1,x2,t]+U5[x1,-x2,t]],
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[9]da3S

(zx-1x]n-frexix]nlwsusy

‘(x1x-1n-frex ix]nlpduay

‘(b-‘1x-ZxIn-[ex 1xIn]wsuay

Uyo'd) (F0 1) (v o'} v (VI X))+ [dFrlplums={T1"zx T 1XIn
‘Upo'd) {v0o 0} {0t} To=[d[Jp*p<(d+(+DB1loq

(yodY tro) {pom) [‘0<3/ 0<-zx/ 0<-1x/[dvMW(ZX)(1%)
‘¢zoNuaroyzeod=[d‘r'1]p‘o<(d++n)iyloq

‘0<-1/ 0<-TX '/ 0<-1x */[2'€T0x2]us101320D=[0"0"0lP

‘(% ]puedxg=cz0

‘[120+0Z0Ipuedxg=7Z0

ev(Bzxix]zn)lpuedxa=1z0

‘lev(Bex‘ 1x]1 )Ipuedxg=0z0

[s1da1S



LY

(b oxrxIn’ =0, uug
((Doxrxien’ =B Txixisn. bhund
(b xivn’ . =pexixipn. ruad
Ihexixlen’ . =hexrxien. uud
‘[Degxixlen’.=pex‘1xlzn. g
Ihzxixiin=kexrxlin.hueg
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