# EXISTENCE THEOREMS <br> FOR $90^{\circ}$ VORTEX-VORTEX SCATTERING 

Fawzi Abdelwahid B.SC.

Submitted in fulfillment of M.SC. degree by research

Dublin City University<br>Dr. J. Burzlaff (Supervisor)<br>School of Mathematical Sciences

August 1993

## Declaration

I hereby certify that this material, which I now submit for assessment on the programme of study leading to the award of M.SC. is entirely my own work and has not been taken from the work of others save and to the extent that such work has been cited and acknowledged within the text of my work.


ID No. 21700604

Date: $2419 / 1993$

## Acknowledgements

I would first like to thank my supervisor, Dr. J. Burzlaff, for his helpful comments and discussions throughout my research.

I wish to express my deepest gratitude to my whfe Manam for her support during my studies

I would also like to thank all the research students for helpful duscussions.
Finally, thanks to Kieron Murphy for helpful discussions on all subjects related to the computer.

## Dedicated

To my mother Mabrouka


#### Abstract

The scattering of magnetic flux tubes in superconductors is studied First, we introduce the Abelian-Higgs model, which describes vortices in a superconductor, and the Euler-Lagrange equations which minumze the energy density given by this model Static vortex solutions satusfying these equations are reviewed. A technique proposed by on Manton [1] in which slowly changing solutions are approximated by a special family of time-independent solutions is described. Time-dependent solutions over small intervals are also studied Then the existence and the symmetries of the tume-dependent solutions are studied. This analysis rules out all cases other than $0^{\circ}$, $90^{\circ}$ or $180^{\circ}$ scatterng of two vortices The proof of the Cauchy-Kowalewsky1 theorem for a system of first order quasi-hnear partial differentual equations of ( $n+1$ ) independent variables and $m$ unknown functions is given. The Taylor expansion of the inital data near the ongin is studied. The Cauchy Kowalewskyı theorem is applied to find the solutions of the tume-dependent Euler-Lagrange equations near the origin. This study proves that our solution describes $90^{\circ}$ scattering Mathematica programs to calculate the series solutions are also suppled.


## Contents

Chapter 1
Introduction. ..... (2)
Chapter 2
The Abelian Higgs Model
2.1 Lagrangian and Euler-Lagrange Equations ..... (4)
2.2 Time-Independent Solutions ..... (6)
Chapter 3
Approximate Time-Dependent Solutions
3.1 The Slow-Motion Approximation ..... (9)
3.2 Approximate Solutions for Small Time Intervals ..... (13)
Chapter 4
Global Existence and Symmetry of Solutions
4.1 Global Existence.(15)
4.2 Reflection and Rotation Symmetries ..... (19)
Chapter 5
The Cauchy Problem
5.1 Associated First-Order Quasi-Linear System. ..... (23)
5.2 The Cauchy-Kowalewskyi Theorem. ..... (28)
Chapter 6
Time-Dependent Series Solutions6.1 Taylor Expansions for the Initial Data.(35)
6.2 Local Series Solutions ..... (39)
Chapter 7
Conclusions. ..... (46)
Appendix A
Program Listings ..... (A.1)
Bibliography

## Chapter 1

## Introduction

Over the years, solitons and soliton-like solutions of non-linear partal differental equations have been studied in great detal One of the most important results of these studies was the discovery of the unusual behavior of solitons in a scattering process. In recent years, mainly based on an idea by Manton [1], results for the scattering of soliton-like objects, like magnetic monopoles [2], $C P^{1}$ skyrmions [3-6], and cosmic strings or vortices [7] have been obtained. Important numerical work has also been done for example on cosmic strings or vortices [8-13] and skyrmions in ( $2+1$ ) dimensions [14-16]. We consider the work on the scattering of vortices to be of particular importance because, unlike the other soliton-like objects mentioned, vortices can be produced in the laboratory and with conventional techniques [17], it may be possible to study their collisions expenmentally.

Among the theoretical predictions for the scattering of soliton-like objects scattering at $90^{\circ}$ is one of the most exciting. For slowly moving vortices at the point between type I and type II superconductuvity, there is analytic evidence, based on the slow-motion approximation, for scattering at right angle [7]. If the repulsion between the vortices increases and they cannot come very close anymore, we would expect to see a switch over to backscattering at a certain value of the repulsion. There is numencal evidence that for fixed repulsion an increase in the velocity can bring the vortices close enough together again to produce scattering at right angles. In ref
[18], an approximation method, which involves linearization of the equations, has been used to show $90^{\circ}$ scattering. This work is continued and brought to a conclusion in this thesis, where $90^{\circ}$ scatterng for certan mintal data is shown mathematacally ngorously on the level of the Ginzburg-Landau equations.

In the second chapter, we introduce the Abehan Higgs model and discuss previous studies to find ame-independent solutions which minimize the energy density. In the third chapter, we discuss two approximation techniques for tumedependent solutions One of the technuques is based on Manton's work [1] in which a slowly changing solution is approximated by a special famuly of time-independent solutions The second technique studres the tume-dependent solution over a small tume interval only, i.e, we study the scattering of slowly moving vortices from shortly before to shortly after their collision. In the forth chapter, we study the existence and the symmetries of solutions of the Cauchy problem with inttal conditions constructed from static solutions and approximate tume-dependent solutions. We find that, for our intial conditoons, only $0^{\circ}, 90^{\circ}$ or $180^{\circ}$ scatterıng is possible. In the fifth chapter, we rewrite the tume-dependent Euler-Lagrange equations as a system of first order quasi-linear partual differential equations and discuss the proof of the CauchyKowalewskyi theorem for a system of first order quasi-linear partal differential equations of $(n+1)$ independent vanables and $m$ unknown functions In the sixth chapter, we give the Taylor expansion of the inttal data and apply the CauchyKowalewskyi theorem to find a senes solutions near the origin. This solution shows $90^{\circ}$ scattenng.

## Chapter 2

## The Abelian Higgs Model

In this chapter we discuss the Abelian Higgs model in general and in particular, the Euler-Lagrange equations which minımize the action of this theory. We will introduce the Lagrangian and the energy density, and study the static solutions which satusfy the equations of motion and give finte energy. The static solution which is of particular interest describes two vortices situng on top of each other. We will also show that the Abelian Higgs model is invariant under a $\mathrm{U}(1)$ gauge transformation

### 2.1 Lagrangian and Euler-Lagrange Equations

The Abelian Higgs model describes a superconductor in a magnetac field in $z$ - direction. The Lagrangian density is given by

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2}\left(D_{\mu} \Phi\right)\left(D^{\mu} \Phi\right)^{*}-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-\frac{\lambda}{8}\left(|\Phi|^{2}-1\right)^{2}, \tag{2.1}
\end{equation*}
$$

where $\Phi$ is the complex Hıggs field,

$$
\begin{equation*}
D_{\mu} \Phi=\partial_{\mu} \Phi-\imath A_{\mu} \Phi, \quad \mu=0,1,2, \tag{2.2}
\end{equation*}
$$

is the covariant derivative, and the gauge fields $F_{\mu v}$ are defined in terms of the real gauge potentrals $A_{\mu}$ as

$$
\begin{equation*}
F_{\mu \nu}=\partial_{\mu} A_{v}-\partial_{v} A_{\mu}, \quad \mu, v=0,1,2 \tag{23}
\end{equation*}
$$

The indices are lowered and raised with the metric tensor $g=d \operatorname{lag}(+1,-1,-1)$ This model is related to the Ginzburg-Landau model. For the spectal class of configurations which are constant in one drection (say z) and under the assumption that the gauge potential $A_{3}$ is zero, the Ginzburg-Landau model reduces to the two dimension Abelian Higgs model which is given by the Lagrangian (21)

The equations of motion can be derived from the Lagrangian (21) by using the usual variational technique. In our case, we have the equations

$$
\begin{align*}
& \frac{\partial}{\partial x^{\mu}}\left(\frac{\partial \mathscr{L}}{\partial A_{v, \mu}}\right)-\frac{\partial \mathscr{L}}{\partial A_{v}}=0, \\
& \frac{\partial}{\partial x^{\mu}}\left(\frac{\partial \mathscr{L}}{\partial \Phi_{, \mu}}\right)-\frac{\partial \mathscr{L}}{\partial \Phi}=0, \tag{2.4}
\end{align*}
$$

where

$$
A_{v, \mu}=\frac{\partial A_{v}}{\partial x^{\mu}}, \quad \Phi_{, \mu}=\frac{\partial \Phi}{\partial x^{\mu}}
$$

These yreld the equations of motion (Euler-Lagrange equations)

$$
\begin{align*}
& D^{\mu} D_{\mu} \Phi+\frac{\lambda}{2} \Phi\left(|\Phi|^{2}-1\right)=0  \tag{2.5}\\
& \partial_{\mu} F^{\mu v}+\frac{i}{2}\left(\Phi^{*}\left(D^{\nu} \Phi\right)-\Phi\left(D^{\vee} \Phi\right)^{*}\right)=0 \tag{2.6}
\end{align*}
$$

The Abelan Higgs theory given by (2.1) represents a classical gauge field theory which is charactenzed by a group of symmetries not associated with any physical coordinate transformation in space-tume. The property of a gauge theory is gauge invariance, i.e, the invanance of the Lagrangian under a group of transformations which can be different at different points in space-tıme This imphes that if the original fields are a solution of the equations of motion, so are the gauge transformed fields. In our case the Lagrangian (2.1) is invariant under the gauge transformation

$$
\begin{equation*}
\Phi \rightarrow \Phi^{\prime}=\mathrm{e}^{-1 \varphi(x)} \Phi, \quad A_{\mu} \rightarrow A_{\mu}^{\prime}=A_{\mu}-\partial_{\mu} \varphi(x), \tag{2.7}
\end{equation*}
$$

where

$$
\varphi(x)=\varphi\left(t, x_{1}, x_{2}\right), \quad \mathrm{e}^{-\mathrm{I} \varphi(x)} \in \mathrm{U}(1) .
$$

Since it is easy to show that

$$
\begin{align*}
& \left(D_{\mu} \Phi\right)^{\prime}=e^{-i \varphi(x)}\left(D_{\mu} \Phi\right), \quad|\Phi|^{\prime}=|\Phi|, \\
& F_{\mu \nu}^{\prime}=F_{\mu \nu}, \tag{2.8}
\end{align*}
$$

we can establish the invanance of the Lagrangian given by (2.1) under the gauge transformation (27). We also see that if ( $\Phi, A_{\mu}$ ) is a solution of the equation of motion (2.5), (2.6), so is the transformed solution ( $\Phi^{\prime}, A_{\mu}^{\prime}$ ).

### 2.2 Time-Independent Solutions

We will discuss in this section special static solutions of the equations of motion (2.5), (2.6) with $A_{0}=0$, which minumize the potential energy. The existence of these solutions has been proven by Plohr [19]. Plohr has proven that these equations have n-vortex solutions which minimize the potential energy given by

$$
\begin{equation*}
\mathrm{E}=\int\left[\frac{1}{2}\left(D_{1} \Phi\right)\left(D_{1} \Phi\right)^{*}+\frac{1}{4}\left(F_{t y}\right)^{2}+\frac{\lambda}{8}\left(|\Phi|^{2}-1\right)^{2}\right] d^{2} x . \tag{2.9}
\end{equation*}
$$

To find static solutions of the equations of motion, let us consider functions of the form

$$
\begin{align*}
& A_{1}(r, \theta)=-\varepsilon_{i j} x, n a(r) / r^{2}, \\
& \Phi(r, \theta)=e^{i n \theta} f(r), \quad \quad 1, \mathrm{j}=1,2 \tag{210}
\end{align*}
$$

where

$$
\varepsilon_{11}=\varepsilon_{22}=0, \quad \varepsilon_{12}=-\varepsilon_{21}=1
$$

We substutute (2.10) into the tume-independent Euler-Lagrange equations

$$
\begin{align*}
& D_{i} D^{i} \Phi+\frac{\lambda}{2} \Phi\left(|\Phi|^{2}-1\right)=0,  \tag{2.11}\\
& \partial_{\imath} F^{\ell}+\frac{1}{2}\left(\Phi^{*}\left(D^{\prime} \Phi\right)-\Phi\left(D^{\imath} \Phi\right)^{*}\right)=0 \tag{212}
\end{align*}
$$

Using

$$
\begin{aligned}
& \partial_{t}=\left(\frac{x_{t}}{r} \partial_{r}-\varepsilon_{\imath} \frac{x_{i}}{r^{2}} \partial_{\theta}\right), \\
& \varepsilon_{\jmath k} x_{t}+\varepsilon_{k} x_{\jmath}+\varepsilon_{\imath \jmath} x_{k}=0, \quad \quad 1, \mathrm{j}, \mathrm{k}=1,2
\end{aligned}
$$

we can derive

$$
\begin{align*}
& \partial_{1} F^{y}=\frac{n}{r^{2}} x_{i} \varepsilon^{y}\left(\frac{a^{\prime}(r)}{r}\right)^{\prime},  \tag{2.13}\\
& D_{\imath} D^{\prime} \Phi=\frac{-1}{r}\left(\left[r f^{\prime}(r)\right]^{\prime}-\frac{n^{2} f(r)[a(r)-1]^{2}}{r}\right) e^{\iota n \theta},  \tag{2.14}\\
& \Phi^{*}\left(D^{J} \Phi\right)-\Phi\left(D^{j} \Phi\right)^{*}=2 x_{i} n \varepsilon^{y} \frac{f^{2}(r)[a(r)-1]}{r} \tag{215}
\end{align*}
$$

From (2.12), (2.13) and (2.15) we obtan

$$
\begin{equation*}
\left[a^{\prime}(r) / r\right]^{\prime}-\frac{f^{2}(r)[a(r)-1]}{r}=0, \tag{216}
\end{equation*}
$$

and from (2.11) and (2.14) we can denve

$$
\begin{equation*}
\left[r f^{\prime}(r)\right]^{\prime}-\frac{n^{2} f(r)[a(r)-1]^{2}}{r}-\frac{\lambda r}{2} f(r)\left[f^{2}(r)-1\right]=0 . \tag{2.17}
\end{equation*}
$$

Accordng to Plohr [19], there exist functions $a(r)$ and $f(r)$ which satisfy the above equations and minimize the potental energy (2.9).

For $\lambda=1$, there actually exist first order equations whose solutions automatically solve the second order equations (2.11) and (2.12). To see this we set $\Phi=\Phi_{1}+l \Phi_{2}$ and $\lambda=1 \mathrm{in}$ (2.9) and integrate by parts, which yields

$$
\begin{gather*}
\mathrm{E}=\int \varepsilon d^{2} x=\frac{1}{2} \int d^{2} x\left[\left[\left(\partial_{1} \Phi_{1}+A_{1} \Phi_{2}\right) \mp\left(\partial_{2} \Phi_{2}-A_{2} \Phi_{1}\right)\right]^{2}+\right. \\
{\left[\left(\partial_{2} \Phi_{1}+A_{2} \Phi_{2}\right) \pm\left(\partial_{1} \Phi_{2}-A_{1} \Phi_{1}\right)\right]^{2}+}  \tag{218}\\
\left.\left[F_{12} \pm\left(\Phi_{1}^{2}+\Phi_{2}^{2}-1\right) / 2\right]^{2}\right] \pm \frac{1}{2} \int d^{2} x F_{12},
\end{gather*}
$$

where $\varepsilon$ is the energy density. The upper sign and lower sign is taken according to whether the winding number $n$, which is given by

$$
\begin{equation*}
\mathrm{n}=\frac{1}{2 \pi} \int d^{2} x F_{12}, \tag{219}
\end{equation*}
$$

is positive or negative. Jaffe and Taubes [20] have shown, that n measures the number of times

$$
\begin{equation*}
\Phi_{\infty}(\theta)=\lim _{r \rightarrow \infty} \Phi(r, \theta) \tag{2.20}
\end{equation*}
$$

which is a unimodular complex number for each $\theta$, winds around the unit crrcle in the complex plane while $\theta$ goes from 0 to $2 \pi n$ is therefore an integer that does not change when finite smooth energy configurations are changed contunously, and this is why the number (2.19) occurs in the functions (210) The sets of finite-energy functions with different winding numbers n are called topological sectors

Now the integral (2.18) gives a potential energy greater than or equal to $2|n| \pi$ with equality if and only if

$$
\begin{equation*}
\left(D_{1} \pm i D_{2}\right) \Phi=0, \quad F_{12}=\mp\left(|\Phi|^{2}-1\right) . \tag{2.21}
\end{equation*}
$$

These equations are known as the Bogomol'nyı equations. It is easy to see that solutions of these equations satisfy the Euler-Lagrange equations (2.11) and (2.12) for $\lambda=1$. It has also been shown [20] that the Plohr solutions [19] satusfy the Bogomol'nyr equations $\lambda=1$. To evaluate the functions $a(r)$ and $f(r)$, let us substutute the solution (2.10) into the Bogomol'nyı equations, which yields

$$
\begin{align*}
& f^{\prime}(r)= \pm \frac{n f(r)[1-a(r)]}{r}, \\
& n a^{\prime}(r)=\mp \frac{r\left[f^{2}(r)-1\right]}{2}, \tag{2.22}
\end{align*}
$$

where the upper sign is taken of $n$ is positive, and the lower sign is taken of $n$ is negative We will come back to these equations when we use the functions (210) for $n=2$ as part of our inital data.

## Chapter 3

## Approximate Time-Dependent Solutions

In this chapter we dıscuss two approxımation techniques for time-dependent solutions. One of the techniques is based on Manton's approach [1] in which slowly changing solutions are approximated by a special famlly of time-independent solutions. For simplicity, this technique is illustrated in the context of the $C P^{1}$ model The second technique studies the time-dependent solution over a small time interval only, so that in this interval the solution does not differ much from the solution at $t=0$.

### 3.1 The Slow-Motion Approximation

The slow-motion approximation for vortex scattering was discussd by Ruback [7]. Ruback apphed the idea, originally proposed by Manton [1] in the context of SU(2) monopoles, that for $\lambda=1$ at low energies the Bogomol'ny solutions can be used to approximate tume-dependent solutions. As we have seen the potential energy is bounded below by a positive topological charge, and for a given topological sector, this bound is saturated if and only if a certan system of first order non-linear equations (Bogomol'nyi equations) is satısfied. It can, also be shown that the submanifold or moduli space of these minmal energy solutions has dimension 2 n In the slow-motion approximation it is assumed that the approximate tume-dependent solution is a family of time-independent solutions which minmize the potential energy in a given topological sector. The action is then minumuzed for this 2 n parameter famuly of solutions to the Bogomol'nyı equations with time-dependent parameters

For the $U(1)$ model this calculation is not explicit To illustrate the method we bnefly dıgress from the $\mathrm{U}(1)$ model and discuss this approximation for the $C P^{1}$ model following Ward [3]. The $C P^{1}$ model in ( $2+1$ ) dimensions is given by the Lagrangian

$$
\begin{equation*}
\mathcal{L}=\left(1+|u|^{2}\right)^{-2}\left(\partial_{\mu} u\right)^{*}\left(\partial^{\mu} u\right), \quad \mu=0,1,2 . \tag{31}
\end{equation*}
$$

If we use the Euler-Lagrange equation

$$
\frac{\partial}{\partial x^{\mu}}\left(\frac{\partial \mathcal{L}}{\partial u_{\mu}}\right)=\frac{\partial \mathcal{L}}{\partial u},
$$

we derive the classical equation of motion ansing from (31),

$$
\begin{equation*}
\left(1+|u|^{2}\right) \partial_{\mu} \partial^{\mu} u=2 u^{*}\left(\partial_{\mu} u\right)\left(\partial^{\mu} u\right) . \tag{3.2}
\end{equation*}
$$

This model again has different topological sectors.

In the charge-two sector, the family of static finte-energy solutions (static lumps) can be written in the form

$$
\begin{equation*}
u=\alpha+(\beta z+\gamma)\left(z^{2}+\delta z+\varepsilon\right)^{-1} \tag{3.3}
\end{equation*}
$$

where $\alpha, \beta, \gamma, \delta$ and $\varepsilon$ are complex parameters and $z=\left(x^{1}+i x^{2}\right) / 2$. The idea of the approximation for slowly moving lumps is as follows' We assume that the solutions of the equations of motion (3.2) are of the form (3) where the parameters depend on $t$ We then substutute (33) into the action which is then minumized This leads to ordinary differential equations for the parameters as functions of $t$. Solving these equations, yields the approximate time-dependent solutions

Before we persue this idea, we use the requirement of finte energy and certan symmetries to set $\alpha=\beta=\delta=0$. Then we change the form of the parameters $\left(\gamma, \gamma^{*}, \varepsilon, \varepsilon^{*}\right)$ to ( $R, \psi, \theta, \phi$ ) according to the equations

$$
\begin{align*}
& \gamma(t)=\operatorname{Re}^{i \phi} \sin \psi \\
& \varepsilon(t)=\operatorname{Re}^{\iota \theta} \cos \psi \tag{3.4}
\end{align*}
$$

Next if we substitute a solution of the form (3.3) with parameters given by (3.4) into
the kinetic energy functoonal given by the Lagrangian (3.1)

$$
\begin{equation*}
T=\int\left(1+|u|^{2}\right)^{-2}|\dot{u}|^{2} d^{2} x \tag{3.5}
\end{equation*}
$$

For functions of the form (3.3) the rest of the action is just a multuple of the winding number and does not contribute to the Euler-Lagrange equations Thus we obtan

$$
\begin{aligned}
T=\int & {\left[R^{2} R^{-2}|z|^{4}+\dot{\phi}^{2}\left|z^{2}+\varepsilon\right|^{2}+\dot{\theta}^{2}|\varepsilon|^{2}+\right.} \\
& \dot{\psi}^{2}\left(|z|^{4} \cot ^{2} \psi+|\varepsilon|^{2} \sec ^{2} \psi \csc ^{2} \psi+2 \csc ^{2} \psi \operatorname{Re}\left(z^{2} \varepsilon^{*}\right)\right)+ \\
& 2 \dot{R} \dot{\psi} R^{-1}\left(|z|^{4} \cot \psi+\sec \psi \csc \psi \operatorname{Re}\left(z^{2} \varepsilon^{*}\right)\right)- \\
& 2 \dot{\phi} \dot{\theta}\left(|\varepsilon|^{2}+\operatorname{Re}\left(z^{2} \varepsilon^{*}\right)\right)-2 \dot{R} \dot{\phi} R^{-1} \operatorname{Im}\left(z^{2} \varepsilon^{*}\right)- \\
& 2 \dot{R} \dot{\theta} R^{-1} \operatorname{Im}\left(z^{2} \varepsilon^{*}\right)-2 \dot{\psi} \dot{\phi} \tan \psi \operatorname{Im}\left(z^{2} \varepsilon^{*}\right)- \\
& \left.2 \dot{\psi} \dot{\theta} \cot \psi \operatorname{Im}\left(z^{2} \varepsilon^{*}\right)\right] A d^{2} x,
\end{aligned}
$$

where we have used the abbreviation

$$
\begin{equation*}
A=|\gamma|^{2} /\left(|\gamma|^{2}+\left|z^{2}+\varepsilon\right|^{2}\right)^{2} \tag{37}
\end{equation*}
$$

The integration can now be performed and the kinetic energy can be used to define a metric on the four dimensional parameter space. First one obtains

$$
\begin{equation*}
T=\xi R^{-1} \dot{R}^{2}+\mu R \psi+\nu R \dot{\psi}^{2}+R\left(\tau \dot{\phi}^{2}+\sigma \dot{\theta} \dot{\phi}+\omega \dot{\theta}^{2}\right) \tag{3.8}
\end{equation*}
$$

where $\xi, \mu, v, \tau, \sigma$ and $\omega$ are functions of $\psi$ only and are given by

$$
\begin{array}{ll}
\xi=E / 2, & \mu=(K-E) s / c \\
\mathrm{v}=K-(E / 2), & \tau=s^{2} v,  \tag{3.9}\\
\sigma=-s c \mu, & \omega=c^{2} \xi
\end{array}
$$

with $s=\sin \psi, \quad c=\cos \psi$ and $K=K(\cos \psi), E=E(\cos \psi)$ are complete ellptic integrals of the first and second kind, respectavely. The metric $G$ is defined by

$$
T=G_{y} \dot{S}^{\prime} \dot{S}^{\prime}
$$

where $S^{1}=R, S^{2}=\phi, S^{3}=\theta, S^{4}=\psi$. The geodesic equations which mummze the tume-integral of the kinetic energy (3.8) can be written as

$$
\begin{equation*}
G_{k,} S^{\prime}+G_{k, l} S^{\prime} \dot{S}^{\prime}-\left(G_{y, k} \dot{S}^{\prime} \dot{S}^{\prime}\right) / 2=0 \tag{310}
\end{equation*}
$$

where $G_{k, t}=\partial G_{k j} / \partial S^{\iota}$ and $G_{l j}=G_{\jmath \iota}$ for $1, j, \mathrm{k}=1,2,3,4$. In our case we have to solve these equations for

$$
G_{12}=G_{13}=G_{24}=G_{34}=0
$$

and

$$
\begin{array}{ll}
G_{11}=E / 2 R, & G_{14}=s(K-E) / 2 c, \\
G_{22}=R s^{2}\left(K-\frac{1}{2} E\right), & G_{23}=-R s^{2}(K-E) / 2,  \tag{311}\\
G_{33}=R c^{2} E / 2, & G_{44}=R\left(K-\frac{1}{2} E\right) .
\end{array}
$$

Only some of the solutions to the geodesic equations have been found explicitly One famuly of solutions is

$$
\begin{equation*}
\psi=\psi_{0}, \quad R=T\left(Q^{2}+t^{2}\right) / \xi_{0}, \quad \phi=\theta=\tan ^{-1}\left(\frac{2 Q t}{Q^{2}-t^{2}}\right) \tag{312}
\end{equation*}
$$

As is expected, the functions (312) do not belong to a solution which satisfy the Euler-Lagrange equations. Furthermore, although this might be plausible, it is by no means proven that ( 312 ) leads to an approximate solution for slowly moving lumps

For the Abelian Higgs model the situation is more complicated The 2n-parameter family of 2-vortex solutions is not known explicitly, 1 e , there is no analogue of (3.3) Ruback [7] has used symmetries of the Lagrangian to find constrants on the metric Furthermore, his examination of the metric indicates that a certan angle which parameterizes the parameter space has be identified modulo $\pi$. This imphes $90^{\circ}$ scattering for head-on-collisions.

### 3.2 Approximate Solutions for Small Time Intervals

In ref [18] the functions, which were used by Ruback to study the metric and by Weinberg [21] to find the zero modes of static solution, were used to show the existence of tume-dependent solutions to the full Euler-Lagrange equations that describe $90^{\circ}$ scattering. In this approach we consider an approximate solution of the Euler-Lagrange equations (25), (2.6) of the form

$$
\begin{align*}
& \Phi(t, \vec{x})=\hat{\Phi}(\vec{x})+\tilde{\Phi}(t, \vec{x}), \\
& A_{t}(t, \vec{x})=\hat{A}_{i}(\vec{x})+\tilde{A}_{i}(t, \vec{x}), \quad A_{0}(t, \vec{x})=0, \tag{3.13}
\end{align*}
$$

where $\left(\hat{A}_{i}, \hat{\Phi}\right)$ is the static solution for two vortices sittung on top of each other. The perturbations $\left(\tilde{A}_{i}, \tilde{\Phi}\right)$ on the static solution are represented by $\left(\tilde{\lambda} a_{i}(\bar{x})+t B_{i}, \tilde{\lambda} \varphi(\bar{x})\right.$ $+t \zeta$ ) which is small because it is assumed that $\lambda=1+\tilde{\lambda}, 0<\tilde{\lambda} \ll 1, t \in(-\varepsilon, \varepsilon)$, $\varepsilon \ll 1$, where ( $\hat{\phi}+\tilde{\lambda} \varphi, \hat{A}_{i}+\tilde{\lambda} a_{1}$ ) satisfy the static equations of motion linearized in $\tilde{\lambda}$ Hence the equations for ( $B_{1}, \zeta$ ) can be linearized The idea is to study the scatterng of slowly moving vortices from shortly before to shortly after their collision.

If we substatute (3.13) into the equations of motion (2.5) and (26), using the fact that $\left(\hat{A}_{l}, \hat{\Phi}\right)$ are the static solutions of the tume-independent Euler-Lagrange equations (2.11), (2.12), and keeping only the linear terms in ( $\left.\tilde{A}_{\iota}, \tilde{\Phi}\right)$, we can derive

$$
\begin{aligned}
& \hat{D}^{\prime} \hat{D}_{l} \tilde{\Phi}-2{ }_{l} \tilde{A}^{\prime} \hat{D}_{l} \hat{\Phi}-l \hat{\Phi} \partial^{\prime} \tilde{A}_{l}+\frac{1}{2} \tilde{\Phi}\left(|\hat{\Phi}|^{2}-1\right) \\
& +\frac{1}{2} \hat{\Phi}\left(\hat{\Phi} \tilde{\Phi}^{*}+\hat{\Phi}^{*} \tilde{\Phi}\right)+\frac{1}{2} \bar{\lambda} \hat{\Phi}\left(|\hat{\Phi}|^{2}-1\right)=0, \\
& \partial^{*} \tilde{F}_{y}+\tilde{A},\left.\hat{\Phi}^{2}\right|^{2}+\frac{i}{2}\left[\tilde{\Phi}^{*}(\hat{D}, \hat{\Phi})-\tilde{\Phi}\left(\hat{D}_{j} \hat{\Phi}\right)^{*}\right]+ \\
& +\frac{l}{2}\left[\hat{\Phi}^{*}(\hat{D}, \tilde{\Phi})-\hat{\Phi}(\hat{D}, \tilde{\Phi})^{*}\right]=0, \\
& \partial^{\prime} \partial_{0} \tilde{A}_{1}+\frac{l}{2}\left(\hat{\Phi}^{*} \partial_{0} \tilde{\Phi}-\hat{\Phi} \partial_{0} \tilde{\Phi}^{*}\right)=0,
\end{aligned}
$$

where

$$
\mathrm{t} \in(\varepsilon, \varepsilon), \varepsilon \ll 1 \text { and }
$$

$$
\hat{D}_{i}=\partial_{i}-i \hat{A}_{i}, \quad \tilde{F}_{i y}=\partial_{i} \tilde{A}_{j}-\partial_{j} \tilde{A}_{i} .
$$

Equations (3.14) are satusfied if

$$
\begin{align*}
& \xi=2 f(r) k(r), \\
& \left(B_{1}, B_{2}\right)=\left(\frac{-2 \sin \theta}{r}\left[r k^{\prime}(r)+2 k(r)\right], \frac{-2 \cos \theta}{r}\left[r k^{\prime}(r)+2 k(r)\right]\right), \tag{3.15}
\end{align*}
$$

is chosen, where k satusfies the equation

$$
\begin{equation*}
r^{2} k^{\prime \prime}(r)+r k^{\prime}(r)-k(r)\left[4+r^{2} f^{2}(r)\right]=0 \tag{316}
\end{equation*}
$$

Studying the zeros of $|\Phi|^{2}$ reveals that this solution describes $90^{\circ}$ scattering. The problem with this approach is that this linearization has not been justfied in a mathematically rigorous fashion In this thesis we will bring this approach to a mathematically rigorous conclusion.

## Chapter 4

## Global Existence and Symmetry of Solutions

In this chapter we will study the solution of the equations (2.5), (2.6) for certan untal data, and show following ref. [22] that a unique global time-dependent solution exists. For the existence proof, the equations (2.5), (2.6) are rewritten as a system of first order partal differential equations and an iteration formula is applied We use the iteration formula to show that the solution of the Cauchy problem has a left-right symmetry and an up-down symmetry.

### 4.1 Global Existence

In this section we will show that a unique global time-dependent solution of the equations (2.5), (2.6) for certain intial data exists, by showing that the assumption of ref. [22] are satusfied. To do this let us first subtract a background field ( $\hat{\Phi}, \hat{A}_{\mu}$ ) and wnte

$$
\begin{align*}
& \Phi(t, \vec{x})=\hat{\Phi}(\vec{x})+\varphi(t, \vec{x}) \\
& A_{\mu}(t, \vec{x})=\hat{A}_{\mu}(\vec{x})+a_{\mu}(t, \vec{x}) . \tag{4.1}
\end{align*}
$$

Substatution into the Euler-Lagrange equations (25), (2.6), yields

$$
\begin{equation*}
D^{\mu}\left(D_{\mu} \hat{\Phi}\right)+D^{\mu}\left(D_{\mu} \varphi\right)+\frac{\lambda}{2}(\hat{\Phi}+\varphi)\left(|\hat{\Phi}+\varphi|^{2}-1\right)=0 \tag{42-a}
\end{equation*}
$$

$$
\begin{equation*}
\partial_{\mu} F^{\mu v}+\frac{i}{2}(\Phi+\varphi)^{*}\left[D^{v}(\hat{\Phi}+\varphi)\right]-\frac{i}{2}(\Phi+\varphi)\left[D^{v}(\hat{\Phi}+\varphi)\right]^{*}=0, \tag{4.2-b}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{\mu v}=\partial_{\mu}\left(\hat{A}_{v}+a_{v}\right)-\partial_{v}\left(\hat{A}_{\mu}+a_{\mu}\right) . \tag{4.3}
\end{equation*}
$$

For the background field we choose the static solution (2.10) with $\mathrm{n}=2$,

$$
\begin{array}{ll}
\hat{\Phi}(\bar{x})=e^{2, \theta} f(r), & \hat{A}_{t}(\bar{x})=\frac{-2 \varepsilon_{i j} x_{j} a(r)}{r^{2}}, \\
\hat{A}_{0}(\bar{x})=0, & 1, \mathrm{j}=1,2 .
\end{array}
$$

As initial data we choose

$$
\begin{align*}
& \varphi(0, \bar{x})=0, \quad a_{0}(0, \bar{x})=0, \\
& a_{2}(0, \bar{x})=0, \quad \mathrm{i}=1,2, \\
& \partial_{t} a_{0}(0, \bar{x})=0, \\
& \partial_{1} \varphi(0, \bar{x})=2 f(r) k(r), \\
& \partial_{t} a_{1}(0, \bar{x})=\frac{-2 \sin \theta}{r}\left[r k^{\prime}(r)+2 k(r)\right],  \tag{4.4}\\
& \partial_{t} a_{2}(0, \bar{x})=\frac{-2 \cos \theta}{r}\left[r k^{\prime}(r)+2 k(r)\right] .
\end{align*}
$$

To show that a unique global time-dependent solution of the Cauchy problem (4.2a-b), (4.4) exists, we will show that the background field satsfies the following conditions:

$$
\begin{array}{lll}
\hat{A}_{0}=\partial_{t} \hat{A}_{1}=\partial_{t} \hat{\Phi}=0, & \partial_{i} \hat{A}_{i}=0 & \mathrm{i}=1,2 \\
\sup _{x \in R^{2}}|\underbrace{\partial_{\partial^{\prime}} \partial_{k} \cdots}_{m} \hat{A}_{i}|<\infty, & & \mathrm{m}=0,1, \tag{4.6}
\end{array}
$$

$$
\begin{align*}
& \sup _{x \in R^{2}} \underbrace{\partial_{i} \partial_{j} \cdots}_{m} \hat{\Phi} \mid<\infty,  \tag{4.7}\\
& \left(|\hat{\Phi}|^{2}-1\right) \in L^{2}, \quad \mathrm{~m}=0,1,2, \\
& \hat{F}_{y} \in \mathscr{H}_{2}, \tag{4.8}
\end{align*} \quad \hat{\nabla_{i}} \hat{\Phi}=\left(\partial_{i} \hat{\Phi}-i \hat{A_{i}} \hat{\Phi}\right) \in \mathscr{H}_{2},
$$

For the subtracted field

$$
\begin{align*}
& \Psi^{t}=\left(a_{0}, p_{0}, a_{1}, p_{1}, a_{2}, p_{2}, \varphi, \pi^{*}\right), \\
& p_{\mu}=\partial_{t} a_{\mu}, \quad \pi^{*}=\partial_{0} \varphi-l a_{0} \varphi, \tag{4.9}
\end{align*}
$$

our minal data satisfy

$$
\begin{equation*}
\Psi^{t} \in \mathscr{H}^{(2)}:=\left(\mathscr{H}_{3} \times \mathscr{r}_{2}\right)^{4} . \tag{4.10}
\end{equation*}
$$

Moreover, the Lorentz condition

$$
\begin{equation*}
\partial_{\mu} a^{\mu}=0, \tag{411}
\end{equation*}
$$

and the Gauss equation

$$
\begin{equation*}
\Delta a_{0}-\partial_{t} \partial_{t} a_{i}=\frac{l}{2}\left[(\hat{\Phi}+\varphi)\left(\pi+i a_{0} \hat{\Phi}^{*}\right)-\left(\hat{\Phi}^{*}+\varphi^{*}\right)\left(\pi^{*}-l a_{0} \hat{\Phi}\right)\right] \tag{4.12}
\end{equation*}
$$

hold at $t=0$ Here $\mathscr{H}_{s}$ is the Sobolev space of distributions f with finte norm

$$
\|f\|_{x_{s}}^{2}=\|f\|_{L^{2}}^{2}+\left\|\partial_{l} f\right\|_{L^{2}}^{2}+\cdots+\|\underbrace{\partial_{1} \partial_{j} \cdot}_{L^{2}} f\|_{L^{2}}^{2}
$$

and $\mathscr{H}_{0}$ denotes $L^{2}$, i.e, if $f \in \mathscr{H}_{s}$ then $f \in L^{2}$ and its derivatives are also in $L^{2}$.
Obviously $\hat{A}_{0}=\partial_{t} \hat{A}_{t}=\partial_{t} \hat{\Phi}=0$ and a short calculation shows that

$$
\partial_{t} \hat{A}_{i}=-2 \varepsilon_{i j} x_{j} \frac{x_{i}}{r}(a(r) / r)^{\prime}=0
$$

since $\varepsilon_{y} x_{t} x_{J}=0$. From ref. [19] we also know that the functions f and $a$ are $C^{\infty}$ maps on $[0, \infty)$. Their asymptonc behavior at the ongin is

$$
\begin{equation*}
f \sim \alpha r^{2}, \quad a \sim \beta r^{2}+\gamma r^{4} \tag{4.14}
\end{equation*}
$$

At infinty, $a-1, \mathrm{f}-1$, and all their derivatuves decay exponentially These properties guarantee that the conditions (4.6)-(4.8) hold.

The function $k$ that satisfies equation (3.16) has the following asymptotic behavior at the ongin:

$$
\begin{equation*}
k \sim c_{1} r^{-2}+c_{2} r^{2} \tag{4.15}
\end{equation*}
$$

It also decays exponentally at infinty. This implies that the condition (4.10) holds. From $a_{0}=a_{1}=a_{2}=0$ at $t=0$, it is clear that the Lorentz condition (4.11) holds at $t=0$ By substituting the intal conditions (4.4) into the Gauss equation (4.12) and using the equation (3.16), we can easily prove that these inital conditions will satsfy the Gauss equation (4.11) at $t=0$. Now we have proved that all the conditions are satisfied to guarantee the existence of a unique global solution of the Cauchy problem We can also easily show that the energy is intrally, and is therefore always, finite.

An essental element of the proof in ref. [22], which is based on Segal's existence and uniqueness theorem [23], is an iteration method. The method starts with rewniting the Cauchy problem (4.2), (4.4) in the form

$$
\begin{equation*}
\partial_{t} \Psi=-i \tilde{A} \Psi+J \tag{416}
\end{equation*}
$$

where the operator $\tilde{A}$ is defined by

$$
\begin{align*}
& \tilde{A}=i\left[\begin{array}{cccc}
\Gamma & 0 & 0 & 0 \\
0 & \Gamma & 0 & 0 \\
0 & 0 & \Gamma & 0 \\
0 & 0 & 0 & \Gamma
\end{array}\right], \quad \Gamma=\left[\begin{array}{cc}
0 & 1 \\
\Delta-m^{2} & 0
\end{array}\right] .  \tag{4.17}\\
& \text { ector } J \text { is given by } \\
& J^{t}=\left(J_{1}, J_{2}, J_{3}, J_{4}, J_{5}, J_{6}, J_{7}, J_{8}\right),
\end{align*}
$$

with $J_{1}=J_{3}=J_{5}=J_{7}=0$, and

$$
\begin{align*}
& J_{2}=m^{2} a_{0}-\frac{l}{2}\left[\left(\hat{\Phi}^{*}+\varphi^{*}\right) \pi^{*}-(\hat{\Phi}+\varphi) \pi\right]-  \tag{4.18}\\
& a_{0}\left(\hat{\Phi} \varphi^{*}+2|\hat{\Phi}|^{2}+\dot{\Phi}^{*} \varphi\right) / 2, \\
& J_{21+2}=-\frac{i}{2}\left[\hat{\Phi}^{*}(\hat{\nabla}, \hat{\Phi})-\hat{\Phi}(\hat{\nabla}, \hat{\Phi})^{*}\right]+m^{2} a_{l}+\Delta \hat{A}_{l}+ \\
& \frac{1}{2}\left[\left(\hat{\Phi}^{*}+\varphi^{*}\right)\left(\hat{A}_{i} \varphi+a_{l} \hat{\Phi}\right)+(\hat{\Phi}+\varphi)\left(\hat{A}_{i} \varphi^{*}+a_{l} \hat{\Phi}^{*}\right)\right]- \\
& \frac{l}{2}\left[\left(\hat{\Phi}^{*}+\varphi^{*}\right)\left(\nabla_{\imath} \varphi\right)-(\hat{\Phi}+\varphi)\left(\nabla_{\iota} \varphi\right)^{*}\right]-  \tag{4.19}\\
& \frac{l}{2}\left[\varphi^{*}\left(\hat{\nabla}_{i} \hat{\Phi}\right)-\varphi\left(\hat{\nabla}_{l} \hat{\Phi}^{*}{ }_{1}^{*}\right],\right. \\
& \mathrm{i}=1,2 \text {, } \\
& J_{8}=m^{2} \varphi-i \partial_{l}\left(\hat{A}_{l} \hat{\Phi}\right)-i \hat{A}_{l}\left(\hat{\nabla}_{l} \hat{\Phi}\right)+\Delta \hat{\Phi}-i \partial_{t}\left(a_{l} \varphi\right)-i a_{1}\left(\nabla_{l} \varphi\right)+ \\
& l a_{0} \pi^{*}-2 \hat{A}_{l}\left(\nabla_{\imath} \varphi\right)-\hat{A}_{\imath}^{2} \varphi-2 a_{l}\left(\hat{\nabla}_{\imath} \hat{\Phi}\right)-l \hat{\Phi}\left(\partial_{\imath} a_{1}\right)+ \\
& \left(a_{\mu} a^{\mu}\right) \hat{\Phi}+i p_{0} \hat{\Phi}-\frac{\lambda}{2} \hat{\Phi}\left(|\hat{\Phi}|^{2}-1\right)-  \tag{4.20}\\
& \frac{\lambda}{2}\left[\varphi\left(|\hat{\Phi}+\varphi|^{2}-1\right)+\hat{\Phi}\left(|\varphi|^{2}+\hat{\Phi}^{*} \varphi+\hat{\Phi} \varphi^{*}\right)\right],
\end{align*}
$$

where $\nabla_{i}=\partial_{i}-i a_{i}$.

### 4.2 Reflection and Rotation Symmetries

In the this section we will use (4.16) to discuss the symmetry of the solution The solution of the Cauchy problem|(4.16) can be obtained as the solution of the following integro-differential equation

$$
\begin{equation*}
\Psi(t, \bar{x})=e^{-\bar{A}\{ } \Psi(0, \bar{x})+\int_{0}^{1} d s\left\{e^{-\overline{-} \tilde{t}(t-s)} J(\Psi(s))\right\} \tag{4.21}
\end{equation*}
$$

In turn we can solve this integro-differentral equation by using the Picard Method [23]. The Picard procedure for solving (4.21) is to set up a sequence of successive approximations $\Psi_{n}$ defined by the formula

$$
\begin{equation*}
\Psi_{n+1}(t, \bar{x})=e^{-i \tilde{A}!} \Psi_{n}(0, \bar{x})+\int_{0}^{t} d s\left\{e^{-i \bar{A}(1-s)} J\left(\Psi_{n}(s)\right)\right\} \tag{4.22}
\end{equation*}
$$

where

$$
\begin{equation*}
\Psi_{0}^{t}(0, \vec{x})=\left(a_{0}, p_{0}, a_{1}, p_{1}, a_{2}, p_{1}, \varphi, \pi^{*}\right)(0, \vec{x}), \tag{4.23}
\end{equation*}
$$

with the intial data (4.4). We now establish certain symmetries of the initral data $\Psi_{0}$ and use (4.22) to establish these symmetnes for the successive approximations $\Psi_{n}$, and finally for the solution of (4.21).

The first transformation we study is $\left(x_{1}, x_{2}\right) \rightarrow\left(-x_{1},-x_{2}\right)$. Under this transformation the inttial data change as follows.

$$
\begin{equation*}
\Psi(0,-\bar{x})=\hat{\Psi}(0, \bar{x}) \tag{4.24}
\end{equation*}
$$

where

$$
\hat{\Psi}^{\prime \prime}=\left(a_{0}, p_{0},-a_{1},-p_{1},-a_{2},-p_{2}, \varphi, \pi^{*}\right)
$$

which can be written as

$$
\begin{equation*}
\Psi(0,-\bar{x})=M_{1} \Psi(0, \vec{x}) \tag{425}
\end{equation*}
$$

where

$$
M_{1}=\left[\begin{array}{cccc}
I & 0 & 0 & 0  \tag{426}\\
0 & -I & 0 & 0 \\
0 & 0 & -I & 0 \\
0 & 0 & 0 & I
\end{array}\right], \quad I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] .
$$

We see that

$$
\begin{equation*}
J(\Psi(0,-\bar{x}))=M_{1} J(\Psi(0, \vec{x})) ; \quad\left[M_{1}, \tilde{A}\right]=0 \tag{4.27}
\end{equation*}
$$

and

$$
\begin{equation*}
\exp \{-\iota \tilde{A} t\} M_{1} \Psi_{n}(0, \bar{x})=M_{1} \exp \left\{-L \tilde{A}_{t}\right\} \Psi_{n}(0, \bar{x}) \tag{4.28}
\end{equation*}
$$

Which implies that $\Psi_{n}(t,-\bar{x})=M_{1} \Psi_{n}(t, \bar{x})$ for all $n \in N$. From this follows

$$
\begin{equation*}
\Psi(t,-\bar{x})=M_{1} \Psi(t, \bar{x}), \tag{429}
\end{equation*}
$$

for the solution $\Psi$.

Next we study the reflection $\left(x_{1}, x_{2}\right) \rightarrow\left(-x_{1}, x_{2}\right)$. Under this transformation the initual data change as follows

$$
\begin{equation*}
\Psi\left(t,-x_{1}, x_{2}\right)=M_{2} \Psi\left(t, x_{1}, x_{2}\right), \tag{4.30}
\end{equation*}
$$

where

$$
M_{2}=\left[\begin{array}{cccc}
-I & 0 & 0 & 0  \tag{4.31}\\
0 & I & 0 & 0 \\
0 & 0 & -I & 0 \\
0 & 0 & 0 & C
\end{array}\right], \quad I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],
$$

and $C V=V^{*}$. Furthermore

$$
\begin{align*}
& J_{1}\left(0,-x_{1}, x_{2}\right)=-J_{1}\left(0, x_{1}, x_{2}\right), \\
& J_{4}\left(0,-x_{1}, x_{2}\right)=J_{4}\left(0, x_{1}, x_{2}\right),  \tag{4.32}\\
& J_{8}\left(0,-x_{1}, x_{2}\right)=J_{8}^{*}\left(0, x_{1}, x_{2}\right),
\end{align*}
$$

which mples

$$
\begin{equation*}
J\left(\Psi\left(0,-x_{1}, x_{2}\right)\right)=M_{2} J\left(\Psi\left(0, x_{1}, x_{2}\right)\right) \tag{4.33}
\end{equation*}
$$

Again, we have $\left[M_{2}, \tilde{A}\right]=0$ and $\Psi_{n}\left(t,-x_{1}, x_{2}\right)=M_{2} \Psi_{n}\left(t, x_{1}, x_{2}\right)$. From this follows

$$
\begin{equation*}
\Psi\left(t,-x_{1}, x_{2}\right)=M_{2} \Psi\left(t, x_{1}, x_{2}\right), \tag{4.34}
\end{equation*}
$$

for the solution $\Psi$.

By combining the two transformations we can also study the reflection $\left(x_{1}, x_{2}\right) \rightarrow\left(x_{1},-x_{2}\right)$. We find that $\Psi\left(t, x_{1},-x_{2}\right)=M_{3} \Psi\left(t, x_{1}, x_{2}\right)$, where

$$
M_{3}=M_{2} M_{1}=\left[\begin{array}{cccc}
-I & 0 & 0 & 0  \tag{4.35}\\
0 & -I & 0 & 0 \\
0 & 0 & I & 0 \\
0 & 0 & 0 & C
\end{array}\right] .
$$

Under the transformation considered the energy density

$$
\varepsilon=\frac{1}{2}\left|D_{0} \Phi\right|^{2}+\frac{1}{2}\left|D_{l} \Phi\right|^{2}+\frac{1}{4} F_{y}^{2}+\frac{1}{2} F_{0 t}^{2}+\frac{\lambda}{2}\left(|\Phi|^{2}-1\right)^{2},
$$

is invariant. This means that the solution which satisfies our initial conditions has leftnght symmetry and up-down symmetry for all tume $t$. Hence there exist only three possibulities when two vortices collde in a head-on collision such that our inital data are realized at $\mathrm{t}=0$. We describe these three cases in the following diagram:


## Chapter 5

## The Cauchy-Problem

In this chapter we will rewnte the tume-dependent Euler-Lagrange equations as a system of first-order quasi-linear partal differental equations with coefficients which depend only on the unknown functions. We will then discuss the proof of the Cauchy-Kowalewskyi theorem [24] for a system of first-order quasi-linear partal differential equations of $(n+1)$ independent variables and $m$ unknown functions.

### 5.1 Associated First-Order Quasi-Linear System

In this section we will show that the time-dependent Euler-Lagrange equations can be rewntten as a system of first-order quasi-lnear partal differentual equations To do this, let us substitute

$$
\begin{equation*}
\Phi=u_{1}+i u_{2}, \quad A_{1}=u_{3}, \quad \mathrm{~A}_{2}=u_{4}, \quad \mathrm{~A}_{0}=u_{5}, \tag{5.1}
\end{equation*}
$$

into the equations (2.5), (2.6), which yields

$$
\begin{gather*}
\partial_{0}^{2} u_{1}=\partial_{1}^{2} u_{1}+\partial_{2}^{2} u_{1}-u_{1} u_{3}^{2}-u_{1} u_{4}^{2}+u_{2} \partial_{1} u_{3}+u_{2} \partial_{2} u_{4}+ \\
2 u_{3} \partial_{1} u_{2}+2 u_{4} \partial_{2} u_{2}-\frac{\lambda}{2} u_{1}^{3}-\frac{\lambda}{2} u_{1} u_{2}^{2}+\frac{\lambda}{2} u_{1}+  \tag{5.2}\\
u_{1} u_{5}^{2}-2 u_{5} \partial_{0} u_{2}-u_{2} \partial_{0} u_{5},
\end{gather*}
$$

$$
\begin{aligned}
& \partial_{0}^{2} u_{2}= \partial_{1}^{2} u_{2}+\partial_{2}^{2} u_{2}-u_{2} u_{3}^{2}-u_{4} u_{4}^{2}-u_{1} \partial_{1} u_{3}-u_{1} \partial_{2} u_{4}- \\
& 2 u_{3} \partial_{1} u_{1}-2 u_{4} \partial_{2} u_{1}-\frac{\lambda_{1}}{2} u_{2}^{3}-\frac{\lambda}{2} u_{2} u_{1}^{2}+\frac{\lambda}{2} u_{2}+ \\
& u_{2} u_{5}^{2}+2 u_{5} \partial_{0} u_{1}+u_{1} \partial_{0} u_{5}, \\
& \partial_{0}^{2} u_{3}= \partial_{2}^{2} u_{3}-\partial_{2} \partial_{1} u_{4}+u_{1} \partial_{1} u_{2}-u_{2} \partial_{1} u_{1}-u_{3} u_{1}^{2}-u_{3} u_{2}^{2}+\partial_{1} \partial_{0} u_{5}, \\
& \partial_{0}^{2} u_{4}= \partial_{1}^{2} u_{4}-\partial_{1} \partial_{2} u_{3}+u_{1} \partial_{2} u_{2}-u_{2} \partial_{2} u_{1}-u_{4} u_{1}^{2}-u_{4} u_{2}^{2}+\partial_{2} \partial_{0} u_{5}, \\
& \partial_{0}^{2} u_{5}= \partial_{1} \partial_{0} u_{3}+\partial_{2} \partial_{0} u_{4},
\end{aligned}
$$

where

$$
\partial_{\mu}=\partial / \partial x_{\mu}, \quad \partial_{\mu}^{2}=\partial^{2} / \partial x_{\mu}^{2}, \quad \mu=0,1,2
$$

We can write our inital data in the form

$$
\begin{equation*}
u_{t}(0, \bar{x})=\alpha_{2}(\vec{x}) \quad \partial_{0} u_{t}(0, \bar{x})=\beta_{t}(\bar{x}) \tag{5.3}
\end{equation*}
$$

where

$$
\begin{array}{l|l}
\alpha_{1}(\bar{x})=f(r) \cos 2 \theta, & \alpha_{2}(\vec{x})=f(r) \sin 2 \theta, \\
\alpha_{3}(\vec{x})=\frac{-2}{r} a(r) \sin \theta, & \alpha_{4}(\vec{x})=\frac{2}{r} a(r) \cos \theta, \\
\alpha_{5}(\vec{x})=0, & \\
\beta_{1}(\bar{x})=2 f(r) k(r), & \beta_{2}(\bar{x})=0, \\
\beta_{3}(\vec{x})=\frac{-2}{r} \sin \theta\left(r k^{\prime}+2 k\right), & \beta_{4}(\vec{x})=\frac{-2}{r} \cos \theta\left(r k^{\prime}+\right.  \tag{5.4}\\
\beta_{5}(\vec{x})=0 &
\end{array}
$$

To reduce the order of the Cauchy problem (5.2),(53), let us assume

$$
\begin{array}{lll}
R^{\left(000_{i}\right)}=\partial_{0}^{2} u_{i}, & P^{\left(0 i_{i}\right)}=\partial_{0} u_{i}, & q^{(1,)}=\partial_{1} u_{i}, \\
q^{(2 i)}=\partial_{2} u_{i}, & S^{\left(01_{i}\right)}=\partial_{0} \partial_{1} u_{i}, & S^{\left(02_{i}\right)}=\partial_{0} \partial_{2} u_{i}  \tag{5.5}\\
T^{(11 t)}=\partial_{1}^{2} u_{i}, & T^{(22 i)}=\partial_{2}^{2} u_{t}, & \mathrm{i}, \mathrm{j}=1,2,3,4,5 .
\end{array}
$$

Then the equations (5.2) can be rewritten as

$$
\begin{equation*}
R^{(00 \imath)}=G_{1}\left(u_{J}, P^{(0 j)}, q^{(1 J)}, q^{(2 J)}, T_{1}^{(11 j)}, T^{(22 J)}, S^{(01 j)}, S^{(12 J)}, q_{x_{2}}^{(1 j)}, P_{x_{1}}^{(0 j)}, P_{x_{2}}^{(0 j)}\right) \tag{56}
\end{equation*}
$$

where

$$
\begin{align*}
G_{1}= & T^{(111)}+T^{(221)}-u_{1} u_{3}^{2}-u_{1} u_{4}^{2}+u_{2} q^{(13)}+u_{2} q^{(24)}+ \\
& 2 u_{3} q^{(12)}+2 u_{4} q^{(22)}-\frac{\lambda}{2} u_{1}^{3}-\frac{\lambda}{2} u_{1} u_{2}^{2}+\frac{\lambda}{2} u_{1}+ \\
& u_{1} u_{5}^{2}-2 u_{5} P^{(02)}-u_{2} P^{(05)} \\
G_{2}= & T^{(112)}+T^{(222)}-u_{2} u_{3}^{2}-u_{2} u_{4}^{2} u_{1} q^{(13)}-u_{1} q^{(24)}- \\
& 2 u_{3} q^{(11)}-2 u_{4} q^{(21)}-\frac{\lambda}{2} u_{2}^{3}-\frac{\lambda}{2} u_{2} u_{1}^{2}+\frac{\lambda}{2} u_{2}+  \tag{5.7}\\
& u_{2} u_{5}^{2}+2 u_{5} P^{(01)}-u_{1} P^{(05)}, \\
G_{3}= & T^{(223)}-q_{x_{2}}^{(14)}+u_{1} q^{(12)}-u_{2} q^{(11)}-u_{3} u_{1}^{2}-u_{3} u_{2}^{2}+P_{x_{1}}^{(05)}, \\
G_{4}= & T^{(114)}-q_{x_{2}}^{(13)}+u_{1} q^{(22)}-u_{2} q^{(2 i)}-u_{4} u_{1}^{2}-u_{4} u_{2}^{2}+P_{x_{2}}^{(05)}, \\
G_{5}= & P_{x_{1}}^{(03)}+P_{x_{2}}^{(04)}
\end{align*}
$$

And the initral conditions (5.3) will take the form

$$
\begin{equation*}
u_{i}(0, \bar{x})=\alpha_{i}(\bar{x}), \quad P^{(0 i)}(0, \bar{x})=\beta_{t}(\vec{x}) \tag{5.8}
\end{equation*}
$$

If we differentrate the equations (55) with respect to $t$, the Cauchy problem (5.2), (5.3) can be rewritten in the form

$$
\begin{align*}
& \frac{\partial u_{i}}{\partial t}=P^{\left(0_{t}\right)}, \quad q_{t}^{(1 t)}=P_{x_{j}}^{\left(0_{t}\right)}, \quad q_{t}^{\left(2_{t}\right)}=P_{x_{2}}^{\left(0_{i}\right)}, \\
& S_{t}^{\left(0 t_{i}\right)}=R_{x_{1}}^{\left(00 i_{i}\right)}, \quad S_{1}^{\left(02_{i}\right)}=R_{x_{2}}^{\left(00 t_{2}\right)}, \quad T_{1}^{\left(11_{1}\right)}=S_{x_{1}}^{\left(01_{1}\right)} \\
& T_{t}^{(22 t)}=S_{x_{2}}^{(02 t)}, \quad P_{t}^{(0 t)}=R^{\left(00 t_{t}\right)},  \tag{59}\\
& R_{t}^{\left(00 i_{i}\right)}=F_{1}\left(u_{J}, P^{(0 \rho)}, q^{(1 \jmath)}, q^{(2 \jmath)}, T_{i}^{(11)}, T^{(22 \jmath)},\right. \\
& \left.S^{(01 j)}, S^{(02 J)}, R^{(00 j)}, P_{x_{k}}^{(0 j)}, S_{x_{k}}^{(01 j)}, S_{x_{k}}^{(02 j)}, R_{x_{k}}^{(00 j)}\right), \quad \mathrm{k}=1,2
\end{align*}
$$

with the initual conditions

$$
\begin{aligned}
& \begin{array}{ll}
u_{1}(0, \bar{x})=\alpha_{i}(\vec{x}), & P^{\left(0 t_{i}\right)}(0, \vec{x})=\beta_{\imath}(\vec{x}), \\
q^{(1,)}(0, \vec{x})=\alpha_{\imath, x_{1}}(\vec{x}), & q^{(2 i)}(0, \vec{x})=\alpha_{i, x_{2}}(\vec{x}),
\end{array} \\
& T^{(11 t)}(0, \vec{x})=\alpha_{\iota, x_{1}, x_{1}}(\vec{x}), \quad \quad T^{(22 i)}(0, \vec{x})=\alpha_{i, x_{2}, x_{2}}(\vec{x}), \\
& S^{(01 i)}(0, \vec{x})=\beta_{\imath, x_{1}}(\vec{x}), \quad \quad S^{(02 i)}(0, \vec{x})=\beta_{\imath, x_{2}}(\vec{x}), \\
& R^{\left(00_{2}\right)}(0, \bar{X})=F_{2}\left(\alpha_{\jmath}, \beta_{J}, \alpha_{J, x_{1}}, \alpha_{J, x_{2}^{2}}, \alpha_{\jmath, x_{1}, x_{1}}, \alpha_{\jmath, x_{2}, x_{2}}, \beta_{J, x_{1}}, \beta_{J, x_{2}}, \alpha_{J, x_{1}, x_{2}}, \beta_{J, x_{1}}, \beta_{J, x_{2}}\right), \\
& 1, \mathrm{j}=1,2 \ldots, 5
\end{aligned}
$$

where

$$
\begin{align*}
F_{1}= & S_{x_{1}}^{(011)}+S_{x_{2}}^{(021)}-2 u_{1} u_{3} P^{(03)}-u_{3}^{2} P^{(01)}-2 u_{1} u_{4} P^{(04)}-u_{4}^{2} P^{(01)}+ \\
& u_{2} P_{x_{1}}^{(03)}+P^{(02)} q^{(13)}+u_{2} P_{x_{2}}^{(04)}+P^{(02)} q^{(24)}+2 u_{3} P_{x_{1}}^{(02)}+2 P^{(03)} q^{(12)}+ \\
& 2 u_{4} P_{x_{2}}^{(02)}+2 P^{(04)} q^{(22)}-\frac{3 \lambda}{2} u_{1}^{2} P^{(01)}-\frac{\lambda}{2} u_{2}^{2} P^{(01)}-\lambda u_{1} u_{2} P^{(02)}+\frac{\lambda}{2} P^{(01)}+ \\
& u_{5}^{2} P^{(01)}+2 u_{1} u_{5} P^{(05)}-3 P^{(05)} P^{(02)}-2 u_{5} R^{(002)}-u_{2} R^{(005)},  \tag{5.11-a}\\
F_{2}= & S_{x_{1}}^{(012)}+S_{x_{2}}^{(022)}-2 u_{2} u_{3} P^{(03)}-u_{3}^{2} P^{(02)}-2 u_{2} u_{4} P^{(04)}-u_{4}^{2} P^{(02)}-
\end{align*}
$$

$$
\begin{align*}
& u_{1} P_{x 1}^{(03)}-P^{(01)} q^{(13)}-u_{1} P_{x_{2}}^{(04)}-P_{i}^{(01)} q^{(24)}-2 u_{3} P_{x_{1}}^{(01)}-2 P^{(03)} q^{(11)}- \\
& 2 u_{4} P_{x_{2}}^{(01)}-2 P^{(04)} q^{(21)}-\frac{3 \lambda}{2} u_{2}^{2} P^{(02)}-\frac{\lambda}{2} u_{1}^{2} P^{(02)}-\lambda u_{2} u_{1} P^{(01)}+\frac{\lambda}{2} P^{(02)}+ \\
& u_{5}^{2} P^{(02)}+2 u_{2} u_{5} P^{(05)}+3 P^{(05)} P^{(02)}+2 u_{5} R^{(001)}+u_{1} R^{(005)},  \tag{5.11-b}\\
F_{3}= & S_{x_{1}}^{(023)}-S_{x_{2}}^{(014)}+u_{1} P_{x_{1}}^{(02)}+P^{(01)} q^{(12)}-u_{2} P_{x_{1}}^{(01)}-P^{(02)} q^{(11)}- \\
& u_{1}^{2} P^{(03)}-2 u_{1} u_{3} P^{(01)}-u_{2}^{2} P^{(03)}-2 u_{3} u_{2} P^{(02)}+R_{x_{1}}^{(005)},  \tag{5.11-c}\\
F_{4}= & S_{x_{1}}^{(014)}-S_{x_{2}}^{(013)}+u_{1} P_{x_{2}}^{(02)}+P^{(01)} q^{(22)}-u_{2} P_{x_{2}}^{(01)}-P^{(02)} q^{(21)}- \\
& u_{1}^{2} P^{(04)}-2 u_{1} u_{4} P^{(01)}-u_{2}^{2} P^{(04)}-2 u_{4} u_{2} P^{(02)}+R_{x_{2}}^{(023)},  \tag{5.11-d}\\
F_{5}= & R_{x_{1}}^{(003)}+R_{x_{2}}^{(004)} . \tag{511-e}
\end{align*}
$$

To show that the Cauchy problem (5.2), (5.3) is equivalent to the new Cauchy problem (5.9), (5.10), we will prove that a solution $\left(u_{l}, P^{(0 .)}, q^{(1 t)}, q^{(2 t)}\right.$, $\left.T^{(11 t)}, T^{(22 t)}, S^{(01 t)}, S^{(022)}, R^{(001)}\right)$ satisfies the Cauchy problem (5.2), (5.3). It is clear from (5.9) that $\partial_{0} u_{i}=P^{(0 t)}$ and $\partial_{0} \partial_{2} u_{t}=P_{x_{2}}^{(0 t)}=q_{t}^{(2 t)}$, which imples $\partial_{2} u_{t}-q^{(2 t)}$ $=\Omega(\vec{x})$. But at $t=0, \Omega(\vec{x})=\alpha_{t, x_{2}}(\vec{x})-\alpha_{t, x_{2}}(\vec{x})=0$, and this implies $\partial_{2} u_{t}=q^{(2 t)}$ Analogously, we can prove that $\partial_{1} u_{t}=q^{\left(1 t_{1}\right)}$. Also $S_{t}^{(01 t)}-R_{x_{1}}^{\left(00_{t}\right)}=0$ mplies $\partial_{0} \partial_{1} u_{t}-$ $S^{(01 i)}=\Pi(\bar{x})$. But the initual condition at $t=0$ imples that $\Pi(\vec{x})=0$, and this proves that $\partial_{0} \partial_{1} u_{t}=S^{(01 t)}$. Analogously, we can also prove that $\partial_{0} \partial_{2} u_{i}=S^{(02 t)}$ Simularly by using the same technique as above we can prove $\partial_{1}^{2} u_{t}=T^{(11 t)}, \partial_{2}^{2} u_{t}=T^{(22 t)}, \partial_{0}^{2} u_{t}=$ $R^{(00 t)}$. We have rewritten our problem as a first order system of quasi-linear partual differentral equations (5.9) with intial conditions given by (5.10). Note that each term on the right-hand side of the equations (5.9) contains ether one first-order derivative of an unknown function or no denvative at all.

To rewrite the terms which do not contan a derivative we introduce the function $V$ which satusfies

$$
\begin{equation*}
V_{t}=0, \quad V(0, \bar{x})=x_{1} \tag{512}
\end{equation*}
$$

Clearly $V=x_{1}$, and we can muluply each term, which before did not contan a denvative, by $V_{x_{1}}$. Now the problem (5.9), (5.10), (5.12) is of the form

$$
\begin{equation*}
\frac{\partial u_{i}}{\partial t}=\sum_{p=1}^{2} \sum_{j=1}^{46} H_{t, j, p}\left(u_{1}, \ldots, u_{46}\right) \frac{\partial u_{j}}{\partial x_{p}} \tag{513}
\end{equation*}
$$

with the intual condations given by

$$
\begin{equation*}
u_{t}(0, \vec{x})=\Phi_{\iota}(\vec{x}), \quad 1=1,2, \ldots, 46 \tag{5,14}
\end{equation*}
$$

By using the substitution $u_{t}-\Phi_{i}(0, . ., 0)$ for $u_{t}$, we can always arrange that the intal conditions give zero at the ongin

### 5.2 The Cauchy-Kowalewskyi Theorem

We include in this section the discussion of a fundamental theorem due to Cauchy and Kowalewskyı assurng that there exists an unique analytic solution of a certan class of Cauchy problems which contanss our Cauchy problem. The Cauchy problem which we consider is a system of first order partial differential equations of the form

$$
\begin{equation*}
\frac{\partial}{\partial \xi} u_{i}=\sum_{\mathrm{v}=1}^{n} \sum_{j=1}^{m} G_{\mathrm{yj}}\left(u_{1}, \ldots, u_{m}\right) \frac{\partial}{\partial \eta_{\mathrm{v}}} u_{j} \tag{515}
\end{equation*}
$$

with the initial conditions

$$
\begin{equation*}
u_{t}\left(0, \eta_{1}, \ldots, \eta_{n}\right)=\Phi_{1}\left(\eta_{1}, \ldots, \eta_{n}\right) \tag{516}
\end{equation*}
$$

with

$$
1=1,2, \ldots . ., \mathrm{m}
$$

where $G_{i v}\left(u_{1}, \ldots, u_{m}\right)$ and $\Phi_{1}\left(\eta_{1}, \ldots, \eta_{n}\right)$ are analytic functions with respect to all their arguments in some neighbourhood of the ongin. Furthermore, $\Phi_{1}(0, \ldots, 0)=0$ for $1=1, \ldots ., \mathrm{m}$ In section 5.1 it was shown that our vortex-vortex scattering problem is of the form (5.15), (5.16) with analytic functions $G_{y y}$, and in section 6111 will be shown that the initual data have the required analyticity.

The idea behind the Cauchy-Kowalewsky1 theorem is to consider a related Cauchy problem which has a uniquei formal power senes solution as well as the Cauchy problem (5.15), (5.16), and to prove the following two important facts:
(i) The formal power senes solution of the related problem is a majorant of the formal power senes solution of the onginal problem (5.15), (516); (ii) The formal power senes solution of the related problem is in fact a solution (in the ngorous sense) in some neighbourhood of the origin. This shows that the formal power series solution of the problem (515), (5.16) is in fact a solution.

Now if we assume that the problem (5.15), (5.16) has a formal power series solution of the form

$$
\begin{equation*}
u_{1}\left(\xi, \eta_{1}, \ldots, \eta_{n}\right)=\sum_{k_{0}, k_{1}, k_{n}=0}^{\infty} c_{k_{1} k_{1}-k_{n}} \xi^{k_{0}} \eta_{1}^{k_{1}} . . \eta_{n}^{k_{n}}, \tag{5.17}
\end{equation*}
$$

then it is easily to prove the uniquence of this solution- The inital conditions (5.16) are a condation on $c_{0 k_{1}, k_{a}}^{t}$. Then the equation (5.15) at $\xi=0$ is equivalent to conditions on $c_{1 k_{k}}^{i} k_{n}$. If we differentrating (5.15) with respect to $\xi$ we can find recursively all the coefficients $c_{k_{0}}^{t} k_{n}$.

Next we will introduce the Cauchy problem related to the Cauchy problem (5.15), (5.16) While we do this we will also show the first fact, namely, that the formal power series solution of the related problem is a majorant of the formal power senes solution of the onginal problem. To do this let us consider a function $f\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right)$ at the point $(0, \ldots, \ldots, 0)$. If we assume that the function $f\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right)$ is analytic at this point then there exists a neighbourhood $\mathrm{N}(0)$ wherein f can be represented by a convergent power senes of the form
where

$$
\begin{equation*}
f\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right)=\sum_{k_{1}, k_{n}=0}^{\infty} a_{k_{1}} \quad k_{k_{n}} x_{1}^{k_{1}} \ldots . x_{n}^{k_{n}}, \tag{518}
\end{equation*}
$$

If we assume also that the power senes given by (5.18) is convergent at the point $x_{1}=\cdots=x_{n}=\rho$, where $\rho>0$, then for any set of non-negative integer $k_{1}, ., k_{n}$ there exists a number M such that

$$
\begin{equation*}
\left|a_{k_{1}-k_{n}}\right| \leq \frac{M}{\rho^{k_{1}++k_{n}}} \tag{5.20}
\end{equation*}
$$

This inequality implies that the series

$$
\begin{equation*}
S=M \sum_{n=0}^{\infty}\left(\frac{x_{1}+\ldots+x_{n}}{\rho^{n}}\right)^{n}, \tag{5.21}
\end{equation*}
$$

for

$$
\left|\left(x_{1}+\cdots+x_{n}\right) / \rho^{n}\right|<1
$$

1s a majorant of the series (5.18). This can be easily seen as follows $S$ can be written in the form

$$
\begin{equation*}
S=M \sum_{k_{1}, k_{n}=0}^{\infty} \alpha_{k_{1}} \frac{x_{1}^{k_{1}} \cdots x_{n}^{k_{n}}}{\rho^{k_{1}++k_{n}}} \tag{5.22}
\end{equation*}
$$

where the coefficients $\alpha_{k_{1}}$, are positive integers. This fact together with the mequality ( 5.20 ) yields that

$$
\begin{equation*}
\left|a_{k_{1}} \quad k_{n}\right| \leq \frac{M \alpha_{k_{1}} k_{n}}{\rho_{1}^{k_{1}++k_{n}}}, \tag{5.23}
\end{equation*}
$$

and this proves that the series (5.22) is also a majorant of (5.18).

To proceed with our discussion of the Cauchy-Kowalewskyı theorem, we will use the analyticity of our data to define the functions $G_{y \mathrm{v}}$ and $\Phi_{\imath}$ in terms of power senes as

$$
\begin{equation*}
\Phi_{1}\left(\eta_{1}, \ldots, \eta_{n}\right)=\sum_{v_{1}, ~, ~ v_{n}=1}^{\infty} a_{v_{1}}^{i} v_{n} \eta_{1}^{v_{1}} \ldots \ldots . \eta_{n}^{v_{n}}, \tag{5.24}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{v v}\left(u_{1}, \ldots, u_{m}\right)=\sum_{v_{1 r}, ~ v_{m}=0}^{\infty} b_{v_{1}-v_{m}}^{v_{v}} u_{1}^{v_{1}} \ldots u_{m}^{v_{m}} . \tag{5.25}
\end{equation*}
$$

These power serres are convergent in the region

$$
\left|\eta_{1}+\cdots+\eta_{n}\right| \leq \rho, \quad\left|u_{1}+\cdots+u_{m}\right| \leq \rho
$$

for small $\rho$.

Using the result which has been derived above, we can easily show that the power series ( 524 ), ( 5.25 ) are majorized by the power senes

$$
\begin{equation*}
\Psi_{1}\left(\eta_{1}, \ldots, \eta_{n}\right)=M \sum_{K=1}^{\infty}\left(\frac{\eta_{1}+\ldots+\eta_{n}}{\rho}\right)^{K}, \tag{5.26}
\end{equation*}
$$

and

$$
\begin{equation*}
\overline{G_{v v}}\left(u_{1}, \ldots, u_{m}\right)=M \sum_{K=1}^{\infty}\left(\frac{u_{1}+\ldots+u_{m}}{\rho}\right)^{K}, \tag{5.27}
\end{equation*}
$$

respectuvely, which yields

$$
\begin{equation*}
\Psi_{九}\left(\eta_{1}, \cdots, \eta_{n}\right)=\frac{M\left(\eta_{1}+\cdots+\eta_{n}\right)}{\rho-\eta_{\cdots} \cdot-\eta_{n}}, \tag{5.28}
\end{equation*}
$$

and

$$
\begin{equation*}
\vec{G}_{v, v}\left(u_{1}, \ldots, u_{m}\right)=\frac{M}{1-\frac{u_{1}+\ldots+u_{m}}{\rho}} . \tag{5.29}
\end{equation*}
$$

Now if we assume that $A_{v_{1}}^{2} v_{n}$ and $B_{v_{1}}^{\iota v} v_{m}$ are the coefficients of the above power ser1es then

$$
\left|\begin{array}{ll}
a_{v_{1}}^{s} & v_{n}
\end{array}\right| \leq A_{v_{1}}^{l} \quad v_{n}, \quad\left|\begin{array}{ll}
b_{v_{1}} & v_{m} \tag{5.30}
\end{array}\right| \leq B_{v_{1}}^{s v} v_{m} .
$$

In other words, the coefficients of the power senes (5.28), (5.29) are non-negative and not smaller than the absolute values of the corresponding coefficients of the power series (5.24), (5.25).

We now consider the related Cauchy problem

$$
\begin{equation*}
\frac{\partial}{\partial x} V_{t}=\sum_{v=1}^{n} \sum_{j=1}^{m} \bar{G}_{t j v} \frac{\partial}{\partial y_{v}} V_{j}, \tag{531}
\end{equation*}
$$

with the intial condition

$$
\begin{equation*}
V_{i}\left(0, \eta_{1}, \ldots, \eta_{n}\right)=\Psi_{i}\left(\eta_{1}, \ldots, \eta_{n}\right) \tag{532}
\end{equation*}
$$

as a majorant Cauchy problem of the onginal Cauchy problem (5.15), (5.16). Agan let us assume that the above problem has a series solution of the form

$$
\begin{equation*}
V_{i}\left(\xi, \eta_{1}, \ldots, \eta_{n}\right)=\sum_{k_{0}, k_{1}, k_{n}=0}^{\infty} C_{k_{0} k_{1} k_{n}}^{L} \xi^{k_{0}} \eta_{1}^{k_{1}} \ldots \eta_{n}^{k_{n}}, \tag{533}
\end{equation*}
$$

where the new quantaties $C_{k_{0} k_{n}}^{t}$ can be evaluated from $A_{v_{1}}^{\prime} v_{n}$ and $B_{v_{1}}^{u v} v_{m}$ in the way the onginal coefficients $c_{k_{0} k_{k} k_{n}}^{i}$ in (5.17) were obtained from the $a_{v_{1}}^{i} v_{n}$ and $b_{v_{1}}^{\prime v} v_{m}$. In other words,

$$
\begin{equation*}
C_{k_{0} k_{1} k_{n}}^{c}=P_{k_{0} k_{1} k_{n}}^{c}\left(A_{v_{1} v_{n}}^{d}, B_{v_{1}}^{\iota v} v_{m}\right), \tag{5.34}
\end{equation*}
$$

where the polynomials $P_{k_{0} k_{1} k_{n}}^{\lambda}$ have non-negative coefficients. This yields

$$
\left|\begin{array}{ccc}
c_{k_{0} k_{1}}^{*} & k_{n} \tag{5.35}
\end{array}\right| \leq C_{k_{0} k_{1}}^{1} k_{n},
$$

1.e., the power senies (5.33) is a majorant of (5.17).

Next we will show that the inttal value problem (5.31), (5.32) has a solution which can be expanded into the power senes (5.33) which will prove the convergence of the power series. To do this, let us assume that

$$
\begin{align*}
V_{1}\left(\xi, \eta_{1}, \ldots, \eta_{n}\right) \equiv V_{2}\left(\xi, \eta_{1}, \ldots, \eta_{n}\right) & \equiv \cdot \equiv V_{m}\left(\xi, \eta_{1}, \ldots, \eta_{n}\right) \\
& \equiv V\left(\xi, \eta_{1}, \ldots, \eta_{n}\right) \\
& =V(\xi, z) \tag{536}
\end{align*}
$$

where $z=\eta_{1}+\ldots+\eta_{n}$. Substituting this solution into (5.31), (5.32), we will get the first order partual differentual equation

$$
\begin{equation*}
[(\rho-m V) / \rho] V_{\xi}(\xi, z)-(n m M) V_{\imath}(\xi, z)=0, \tag{5.37}
\end{equation*}
$$

with the initual condition

$$
\begin{equation*}
V(0, z)=\Psi(0, z) \tag{5.38}
\end{equation*}
$$

where

$$
\Psi(0, z)=\frac{M z}{\rho-z}
$$

The first order partial differental equation (5.37) has the form

$$
\begin{equation*}
A(V) V_{\xi}+B(V) V_{2}=0 \tag{5.39}
\end{equation*}
$$

with the inital condition

$$
\begin{equation*}
V(0, z)=\Psi(0, z) \tag{5.40}
\end{equation*}
$$

This first order partal differential equanon has a solutions which satısfies

$$
\begin{equation*}
A(V) z-B(V) \xi=C(V) \tag{541}
\end{equation*}
$$

where $C(V)$ is an arbitrary function that can be evaluated by using the inital condition (5.40). If we substite $\xi=0$ and $V=\Psi(z)$ into the equation (5.41) we will get $C(\Psi)=A(\Psi) z$, and if we invert the function $V=\Psi(z)$ to obtain $z=\Omega(V)$, we see that the function $C(V)$ is determened by the relation $C(\Psi)=A(\Psi) \Omega(\Psi)$. This shown that the solution satasfies

$$
\begin{equation*}
V(\xi, z)=\Psi\left(z-\frac{B(V)}{A(V)} \xi\right) . \tag{5.42}
\end{equation*}
$$

Applying this method, the solution of our first order partual differential equation (5.37) can be written in the form

$$
\begin{equation*}
V(\xi, z)=\Psi\left(z+\frac{(n m M)}{(1-(m / \rho) V)}\right) . \tag{5.43}
\end{equation*}
$$

From the intial condition (5.38) we can find the solution in the form

$$
\begin{align*}
V(\xi, z)=M[ & {\left[z+\left(n m M /\left(1-\frac{V}{\rho}\right)\right) \xi\right] / } \\
& {\left[\rho-\left[z+\left(n m M /\left(1-\frac{V}{\rho}\right)\right) \xi\right]\right], } \tag{5.44}
\end{align*}
$$

which can be written as the quadratac equation

$$
\begin{equation*}
\left(1-\frac{z}{\rho}\right) V^{2}-\left[\frac{M}{\rho}(z-n \rho \xi)+\frac{r}{m}\left(1-\frac{z}{\rho}\right)\right] V+\frac{\rho M}{\rho m}(z+n m M \xi)=0 \tag{5.45}
\end{equation*}
$$

This quadratic equation has the root
-EMBED Equation $\quad V(\xi, z)=\frac{\rho}{2(\rho-z)}\left[\frac{M}{\rho}(z-n \rho \xi)+\frac{\rho}{m}((\rho-z) / \rho)\right.$

$$
\begin{equation*}
\left.-\left[\left(\frac{M}{\rho}(z+n \rho \xi)-\frac{\rho}{m}((\rho-z) / \rho)\right)^{2}-4 M^{2} \frac{n \rho \xi}{\rho}\right]^{1 / 2}\right] \tag{5.46}
\end{equation*}
$$

which gives $V(\xi, z)=0$ at $\xi=0, z=0$. Finally, because the quadratic equation (5.45) has a discriminant different from zero at the ongin and in a neighbourhood of the ongin where the root can be expanded into a convergent power sernes in $\xi$ and $\mathbf{z}$. Thus the convergence of the majorant senes (5.33) and hence the convergence of the ongnal series (5.17) is proved in a certain neighbourhood of the ongin and the existence of an analytic solution of our Cauchy problem (5.15), (5.16) is completely established.

## Chapter 6

## Time-Dependent Series Solutions

In this chapter we will study the Taylor senes expansion of our inital data which was used in the previous chapter. We will use these series as mital conditions to the equations (5.2), which are the Euler-Lagrange equations (2.5), (2.6). Next we will find the series solutions of this Cauchy problem near the ongin which exist due to the Cauchy Kowalewskyi theorem.

### 6.1 Taylor Expansion For The Initial Data

In this section we will find series solutions of the functions $a(r), f(r)$ and $\mathrm{k}(\mathrm{r})$ near the ongin by using Taylor series expansion. To do this we investugate the senes solution of the second order couple partial differential equations

$$
\begin{align*}
& r^{2} f^{\prime \prime}+r f^{\prime}-4 f-\frac{\lambda}{2} r^{2} f\left(f^{2}-1\right)-4 f a(a-2)=0  \tag{6.1}\\
& r^{2} a^{\prime \prime}-r a^{\prime}-r^{2} f^{2}(a-1)=0 \tag{6.2}
\end{align*}
$$

and the second order defferential equations (3.16). To find the solution of the equations (6.1), (6.2) and (3.16), we will first investigate the series solution at the origin by using Taylor senes of the form

$$
\begin{equation*}
f(r)=\sum_{n=2}^{\infty} f_{n} r^{n}, \quad a(r)=\sum_{n=2}^{\infty} a_{n} r^{n}, \quad k(r)=\sum_{n=-2}^{\infty} k_{n} r^{n} \tag{6.3}
\end{equation*}
$$

From ref. 19, we know that $f$ and $a$ start with $r^{2}$-terms and equation (3.16) shows that $k_{-1}=k_{0}=k_{1}=0$.

If we substutute the Taylor series (6.3) into the equations (6.1), (6.2), (3.16), and solve it for the respective coefficients, we will find that the coefficients of the odd powers of $r$ are equal to zero. Hence the the senes solutions (6.3) can be written as

$$
\begin{align*}
& f(r)=\sum_{n=1}^{\infty} f_{n} r^{2 n}, \quad a(r)=\sum_{n=1}^{\infty} a_{n} r^{2 n}, \\
& k(r)=\sum_{n=-1}^{\infty} k_{n} r^{2 n} . \tag{6.4}
\end{align*}
$$

To prove that only even powers of $r$ appear, let us substitute

$$
\begin{align*}
& f(r)=\sum_{n=1}^{N} f_{n} r^{2 n}+\tilde{f}_{n} r^{2 N+1}+\ldots,  \tag{6.5}\\
& a(r)=\sum_{n=1}^{N} a_{n} r^{2 n}+\tilde{a}_{n} r^{2 N+1}+\ldots, \tag{6.6}
\end{align*}
$$

and

$$
\begin{equation*}
k(r)=\sum_{n=-1}^{N} k_{n} r^{2 n}+\tilde{k}_{n} r^{2 N+1}+\ldots \tag{6.7}
\end{equation*}
$$

into the equations (6.1), (6.2) and ( 316 ) respectively. Comparing the coefficients of the $r^{2 N+1}$-terms in (6.1) yields $\left(4 N^{2}+4 N-3\right) \tilde{f}=0$ which imples $\tilde{f}=0$. The same arguments for equations (6.2) and (3.16) yreld $\tilde{a}=\tilde{k}=0$. In this way, we proved (64) by induction.

Next by substututing (64) into (6.1) and comparing the coefficients of $r$ on both sides, we can evaluate the coefficients of the Taylor senes for $f(r)$ in the form

$$
\begin{align*}
f_{n}= & \frac{-1}{4\left(n^{2}-1\right)}\left\{\frac{\lambda}{2}\left[f_{n-1}-\sum_{t=2, m=1}^{n-2, t-1} f_{m} f_{t-m} f_{n-t-1}\right]-\right. \\
& \left.4 \sum_{t=2, m=1}^{n-1, t-1} f_{m} a_{t-m} a_{n-t}+8 \sum_{m=1}^{n-1} f_{m} a_{n-m}\right\}, \quad \quad(\mathrm{n}>3), \tag{6.8}
\end{align*}
$$

with, e.g., $f_{2}=\frac{-\lambda}{24} f_{1}-\frac{2}{3} f_{1} a_{1}$, and $f_{3}=\frac{1}{8} f_{1} a_{1}^{2}-\frac{1}{4} f_{1} a_{2}-\frac{1}{4} f_{2} a_{1}-\frac{\lambda}{64} f_{2}$.

Sumularly by substututing (6.4) into (6.2) and again comparing the coefficients of $r$ on both sides, we can evaluate the coefficients of the Taylor senes for $a(r)$ in the form

$$
\begin{equation*}
a_{n}=\frac{1}{4 n(n-1)}\left[\sum_{t=2, m=1}^{n-2,1-1} f_{m} f_{t-m} a_{n-t-1}-\sum_{m=1}^{n-2} f_{m} f_{n-m-1}\right], \quad \quad(\mathrm{n}>3), \tag{69}
\end{equation*}
$$

with, e.g., $a_{2}=0$ and $a_{3}=\frac{-\lambda f_{1}^{2}}{24}$. Finally we substutute (6.4) into (3.16) and compare the coefficients of $r$ on both sides Thus we can evaluate the coefficients of the Taylor series for $k(r)$ in the form

$$
\begin{equation*}
k_{n}=\frac{-1}{4\left(n^{2}-1\right)}\left[\sum_{\iota=2, m=1}^{n, t-1} f_{m} f_{t-m} k_{n-t-1}\right] \quad(\mathrm{n}>1) \tag{6.10}
\end{equation*}
$$

with $k_{0}=0$.

We will prove by inductions that the inequalities

$$
\begin{align*}
& \left|f_{k}\right| \leq \frac{M^{k}}{(k+1)^{2}}  \tag{6.11}\\
& \left|a_{k}\right| \leq \frac{M^{k}}{(k+1)^{2}}  \tag{6.12}\\
& \left|k_{k}\right| \leq \frac{M^{k}}{(k+1)^{2}} \tag{613}
\end{align*}
$$

hold for sufficiently large k and $M \geq 1$, which will establish the convergence of the Taylor senes solution (6.4) near the ongin. Using the inequality

$$
\begin{align*}
\sum_{n_{1}=1}^{n-1} \frac{1}{\left(n_{1}+1\right)^{2}} \frac{1}{\left(n-n_{1}+1\right)^{2}} & \leq \int_{\frac{1}{2}}^{n-\frac{1}{2}} \frac{d x}{(x+1)^{2}(n-x+1)^{2}}, \\
& \leq \frac{4}{(n+2)^{2}}\left[\frac{1}{3}-\frac{1}{2 n+1}+\frac{1}{n+2} \ln \left(\frac{2 n+1}{3}\right)\right] \\
& \leq \frac{1}{(n+2)^{2}} o(1), \tag{614}
\end{align*}
$$

and taking the absolute value of (6.8), we can prove the inequalty (611) as follows,

$$
\begin{align*}
& \left|f_{n}\right|=\left|\frac{1}{4\left(n^{2}-1\right)}\right| \left\lvert\,\left\{\frac{\lambda}{2}\left[\frac{M^{n-1}}{n^{2}}-\sum_{i=2, m=1}^{n-2, i-1} \frac{M^{m}}{(m+1)^{2}} \frac{M^{i-m}}{(l-m+1)^{2}} \frac{M^{n-i-1}}{(n-i)^{2}}\right]-\right.\right. \\
& \left.4 \sum_{t=2, m=1}^{n-1, t-1} \frac{M^{m}}{(m+1)^{2}} \frac{M^{1-m}}{(\imath-m+1)^{2}} \frac{M^{n-\iota}}{(n-t+1)^{2}}+8 \sum_{m=1}^{n-1} \frac{M^{m}}{(m+1)^{2}} \frac{M^{n-m}}{(n-m+1)^{2}}\right\} \mid \\
& \leq\left|\frac{1}{4\left(n^{2}-1\right)}\right| \left\lvert\,\left\{\frac{\lambda}{2}\left[\frac{M^{n-1}}{n^{2}}-\sum_{m=1}^{i-1} \frac{M^{m}}{(m+1)^{2}} \frac{M^{n-m}}{(n-m+1)^{2}}\right]+\right.\right. \\
& \left.\frac{8 M^{n}}{(n+1)^{2}}-4 \sum_{m=1}^{i-1} \frac{M^{m}}{(m+1)^{2}} \frac{M^{n-m}}{(n-m+1)^{2}}\right\} \mid \\
& \leq\left|\frac{1}{4\left(n^{2}-1\right)}\right|\left|\frac{\lambda}{2}\left[\frac{M^{n-1}}{n^{2}}-\frac{M^{n-1}}{(n+2)^{2}}\right]+\left[\frac{8 M^{n}}{(n+1)^{2}}-\frac{4 M^{n}}{(n+3)^{2}}\right]\right| \\
& \leq\left|\frac{1}{4\left(n^{2}-1\right)}\right|\left|\frac{\lambda}{2}\left(\frac{M^{n-1}}{n^{2}}\right)+\frac{8 M^{n}}{(n+1)^{2}}\right| \leq \frac{M^{n}}{(n+1)^{2}} . \tag{6.15}
\end{align*}
$$

Similarly by taking the absolute value of (6.9), we can prove the inequalty (612) as follows,

$$
\begin{align*}
\left|a_{n}\right| & \left.=\left|\frac{1}{4 n(n-1)}\right| \sum_{i=2, m=1}^{n-2, t-1} \frac{M^{m}}{(m+1)^{2}} \frac{M^{i-m}}{(i-m+1)^{2}} \frac{M^{n-i-1}}{(n-i)^{2}}-\sum_{m=1}^{n-2} \frac{M^{m}}{(m+1)^{2}} \frac{M^{n-m-1}}{(n-m)^{2}} \right\rvert\, \\
& \leq\left|\frac{1}{4 n(n-1)}\right|\left|-\frac{M^{n-1}}{(n+1)^{2}}+\sum_{m=1}^{i-1} \frac{M^{m}}{(m+1)^{2}} \frac{M^{n-m-1}}{(n-m+1)^{2}}\right| \\
& \leq\left|\frac{1}{4 n(n-1)}\right|\left|\frac{M^{n-1}}{(m+2)^{2}}-\frac{M^{n-1}}{(n+1)^{2}}\right| \\
& \leq\left|\frac{1}{4 n(n-1)}\right| \left\lvert\, \frac{M^{n}}{(m+2)^{2}}\right. \\
& \leq \frac{M^{n}}{(n+1)^{2}} . \tag{616}
\end{align*}
$$

Finally, by taking the absolute value of (6.10), we can prove the inequalty (6.13) as follows,

$$
\begin{align*}
\left|k_{n}\right| & =\left|\frac{1}{4\left(n^{2}-1\right)}\right|\left|\sum_{i=2, m=1}^{n, l-1} \frac{M^{m}}{(m+1)^{2}} \frac{M^{i-m}}{(i-m+1)^{2}} \frac{M^{n-i-1}}{(n-i)^{2}}\right| \\
& \leq\left|\frac{1}{4\left(n^{2}-1\right)}\right|\left|\sum_{m=1}^{1-1} \frac{M^{m}}{(m+1)^{2}} \frac{M^{n-m-1}}{(n-m+1)^{2}}\right| \\
& \leq\left|\frac{1}{4\left(n^{2}-1\right)}\right|\left|\frac{M^{n-1}}{(n+2)^{2}}\right| \\
& \leq \frac{M^{n}}{(n+1)^{2}} . \tag{6.17}
\end{align*}
$$

From the senes representation (6.4) of the functions $f, a$ and $k$ follows the analytucity of the intial data (5.3).

### 6.2 Local Series Solutions

In this section we use Mathematica to find the series solutions of the the umedependent Euler-Lagrange equations (5.2) near the ongin up to any order, and show that the solutions describe $90^{\circ}$ scattening. Let us assume that the senes are of the form

$$
\begin{align*}
& u_{1}(t, \vec{x})=\sum_{\imath, j, p=0}^{\infty} u_{1}[\imath, j, p] x_{1}^{2} x_{2}^{\jmath} t^{p}, \\
& u_{2}(t, \bar{x})=\sum_{\imath, j, p=0}^{\infty} u_{2}[l, j, p] x_{1}^{1} x_{2}^{\top} t^{p}, \\
& u_{3}(t, \bar{x})=\sum_{i, j, p=0}^{\infty} u_{3}[i, j, p] x_{1}^{i} x_{2}^{j} t^{p},  \tag{6.18}\\
& u_{4}(t, \vec{x})=\sum_{t, j, p=0}^{\infty} u_{4}[\imath, \jmath, p] x_{1}^{t} x_{2}^{J} t^{p}, \\
& u_{5}(t, \vec{x})=\sum_{i, J, p=0}^{\infty} u_{5}[i, J, p] x_{1}^{i} x_{2}^{\jmath} t^{p},
\end{align*}
$$

To evaluate the coefficients of these senes, we substitute (6.18) into (5.2). Solving this equations for its coefficients yields

$$
\begin{aligned}
& u_{1}[m, n, k+2]=\left\{(m+1)(m+2) u_{1}[m+2, n, k]+(n+1)(n+2) u_{1}[m, n+2, k]+\right. \\
& \sum_{4_{1}, h_{1}, p_{1}=0}^{m, n, k} \sum_{m_{1}, n_{1}, k_{1}=0}^{m-q_{1}, n-l_{1}, k-p_{1}}\left[u_{1}\left[i_{1}, j_{1}, p_{1}\right]^{*}\right. \\
& \left.u_{5}\left[m_{1}, n_{1}, k_{1}\right] u_{5}\left[m-l_{1}-m_{1}, n-J_{1}-n_{1}, k-p_{1}-k_{1}\right]\right]- \\
& \sum_{i_{1}, \mu_{1}, p_{1}=0}^{m, n, k} \sum_{m_{1}, n_{1}, k_{1}=0}^{m-h_{1}, n-\mu_{1}, k-p_{1}}\left[u_{1}\left[i_{1}, J_{1}, p_{1}\right]^{*}\right. \\
& \left.u_{3}\left[m_{1}, n_{1}, k_{1}\right] u_{3}\left[m-i_{1}-m_{1}, n-J_{1}-n_{1}, k-p_{1}-k_{1}\right]\right]- \\
& \sum_{\mu_{1}, \mu_{1}, p_{1}=0}^{m, n, k} \sum_{m_{1}, n_{1}, k_{1}=0}^{m-ц, n-\mu_{1}, k-p_{1}}\left[u_{1}\left[l_{1}, j_{1}, p_{1}\right] *\right. \\
& \left.u_{4}\left[m_{1}, n_{1}, k_{1}\right] u_{4}\left[m-i_{1}-m_{1}, n-J_{1}-n_{1}, k-p_{1}-k_{1}\right]\right]- \\
& \sum_{m_{1}, n_{1}, k_{1}=0}^{m, n, k}\left[\left(k_{1}+1\right) u_{5}\left[m_{1}, n_{1}, k_{1}+1\right] u_{1}\left[m-m_{1}, n-n_{1}, k-k_{1}\right]\right]+ \\
& \sum_{m_{1}, n_{1}, k_{1}=0}^{m, n, k}\left[\left(m_{1}+1\right) u_{3}\left[m_{1}+1, n_{1}, k_{1}\right] u_{2}\left[m-m_{1}, n-n_{1}, k-k_{1}\right]\right]+ \\
& \sum_{m_{1}, n_{1}, y_{1}=0}^{m, n, k}\left[\left(n_{1}+1\right) u_{4}\left[m_{1}, n_{1}+1, k_{\mathrm{I}}\right] u_{2}\left[m-m_{1}, n-n_{1}, k-k_{1}\right]\right]- \\
& 2 \sum_{m_{1}, n_{1}, k_{1}=0}^{m, n, k}\left[\left(k_{1}+1\right) u_{2}\left[m_{1}, n_{1}, k_{1}+1\right] u_{5}\left[m-m_{1}, n-n_{1}, k-k_{1}\right]\right]+ \\
& 2 \sum_{m_{1}, n_{1}, k_{1}=0}^{m, n, k}\left[\left(m_{1}+1\right) u_{2}\left[m_{1}+1, n_{1}, k_{1}\right] u_{3}\left[m-m_{1}, n-n_{1}, k-k_{1}\right]\right]+ \\
& 2 \sum_{m_{1}, n_{1}, k_{1}=0}^{m, n, k}\left[\left(n_{1}+1\right) u_{2}\left[m_{1}, n_{1}+1, k_{1}\right] u_{4}\left[m-m_{1}, n-n_{1}, k-k_{1}\right]\right]+ \\
& \frac{\lambda}{2} u_{1}[m, n, k]-\frac{\lambda}{2} \sum_{4_{1}, h_{1}, p_{1}=0}^{m, n, k} \sum_{m_{1}, n_{1}, k_{1}=0}^{m-\eta_{1}, n-j_{1}, k-p_{1}}\left[u_{1}\left[l_{1}, j_{1}, p_{1}\right]^{*}\right. \\
& \left.u_{1}\left[m_{1}, n_{1}, k_{1}\right] u_{1}\left[m-i_{1}-m_{1}, n-j_{1}-n_{1}, k-p_{1}-k_{1}\right]\right]-
\end{aligned}
$$

$$
\begin{align*}
& \frac{\lambda}{2} \sum_{u_{1}, \mu_{1}, p_{1}=0}^{m, n, k} \sum_{m_{1}, n_{1}, k_{1}=0}^{m-q_{1}, n-\mu_{1}, k-p_{1}}\left[u _ { 1 } \left[l_{1}, J_{1}, p_{1} \mu_{2}\left[m_{1}, n_{1}, k_{1}\right] *\right.\right. \\
& \left.\left.u_{2}\left[m-l_{1}-m_{1}, n-J_{1}-n_{1}, k-p_{1}-k_{1}\right]\right]\right\} /(k+1)(k+2),  \tag{6.19}\\
& u_{2}[m, n, k+2]=\left\{(m+1)(m+2) u_{2}[m+2, n, k]+(n+1)(n+2) u_{2}[m, n+2, k]+\right. \\
& \sum_{4, \mu_{1}, p_{1}=0}^{m, n, k} \sum_{m_{1}, m_{1}, k_{1}=0}^{m-h_{4}, n-j_{1}, k-p_{1}}\left[u_{2}\left[i_{1}, j_{1}, p_{1}\right]^{*}\right. \\
& \left.u_{5}\left[m_{1}, n_{1}, k_{1}\right] u_{5}\left[m-l_{1}-m_{1}, n-J_{1}-n_{1}, k-p_{1}-k_{1}\right]\right]- \\
& \sum_{h_{1}, p_{1}, p_{1}=0}^{m, n, k} \sum_{m_{1}, \eta_{1}, k_{1}=0}^{m-h_{1}, n-h_{1}, k-p_{1}}\left[u_{2}\left[l_{1}, j_{1}, p_{1}\right]^{*}\right. \\
& \left.u_{3}\left[m_{1}, n_{1}, k_{1}\right] u_{3}\left[m-t_{1}-m_{1}, n-j_{1}-n_{1}, k-p_{1}-k_{1}\right]\right]- \\
& \sum_{h_{1}, j_{1}, p_{1}=0}^{m, n, k} \sum_{m_{1}, n_{1}, k_{1}=0}^{m-q_{1}, n-j_{1}, k-p_{1}}\left[u_{2}\left[i_{1}, j_{1}, p_{1}\right]\right. \\
& \left.u_{4}\left[m_{1}, n_{1}, k_{1}\right] u_{4}\left[m-\imath_{1}-m_{1}, n-\jmath_{1}-n_{1}, k-p_{1}-k_{1}\right]\right]+ \\
& \sum_{m_{1}, n_{1}, k_{1}=0}^{m, n, k}\left[\left(m_{1}+1\right) u_{5}\left[m_{1}+1, n_{1}, k_{1}\right] u_{1}\left[m-m_{1}, n-n_{1}, k-k_{1}\right]\right]- \\
& \sum_{m_{1}, n_{1}, k_{1}=0}^{m, n, k}\left[\left(m_{1}+1\right) u_{3}\left[m_{1}+1, n_{1}, k_{1}\right] u_{1}\left[m-m_{1}, n-n_{1}, k-k_{1}\right]\right]- \\
& \sum_{m_{1}, n_{1}, k_{1}=0}^{m, n, k}\left[\left(n_{1}+1\right) u_{4}\left[m_{1}, n_{1}+1, k_{1}\right] u_{1}\left[m-m_{1}, n-n_{1}, k-k_{1}\right]\right]+ \\
& 2 \sum_{m_{1}, n_{1}, k_{1}=0}^{m, n, k}\left[\left(k_{1}+1\right) u_{1}\left[m_{1}, n_{1}, k_{1}+1\right] u_{5}\left[m-m_{1}, n-n_{1}, k-k_{1}\right]\right]- \\
& 2 \sum_{m_{1}, n_{1}, k_{1}=0}^{m, n, k}\left[\left(m_{1}+1\right) u_{1}\left[m_{1}+1, n_{1}, k_{1}\right] u_{3}\left[m-m_{1}, n-n_{1}, k-k_{1}\right]\right]-
\end{align*}
$$

$$
\begin{align*}
& 2 \sum_{m_{1}, n_{1}, k_{1}=0}^{m, n, k}\left[\left(n_{1}+1\right) u_{1}\left[m_{1}, n_{1}+1, k_{1}\right] u_{4}\left[m-m_{1}, n-n_{1}, k-k_{1}\right]\right]+ \\
& \frac{\lambda}{2} u_{2}[m, n, k]-\frac{\lambda}{2} \sum_{1_{1}, h_{1}, p_{1}=0}^{m, n, k} \sum_{m_{1}, n_{1}, k_{1}=0}^{m-\iota_{1}, n-\lambda_{1}, k-p_{1}}\left[u_{2}\left[l_{1}, j_{1}, p_{1}\right]^{*}\right. \\
& \left.u_{1}\left[m_{1}, n_{1}, k_{1}\right] u_{1}\left[m-i_{1}-m_{1}, n-j_{1}-n_{1}, k-p_{1}-k_{1}\right]\right]- \\
& \frac{\lambda}{2} \sum_{4_{1}, 1,1, p_{1}=0}^{m, n, k} \sum_{m_{1}, n_{1}, k_{1}=0}^{m-\varsigma_{1}, n-h_{1}, k-p_{1}}\left[u_{1}\left[l_{1}, j_{1}, p_{1}\right] \mu_{2}\left[m_{1}, n_{1}, k_{1}\right] *\right. \\
& \left.\left.u_{2}\left[m-u_{1}-m_{1}, n-J_{1}-n_{1}, k-p_{1}-k_{1}\right]\right]\right\} /(k+1)(k+2),  \tag{6.20}\\
& u_{3}[m, n, k+2]=\left\{(n+1)(n+2) u_{3}[m, n+2, k]+(m+1)(k+1) u_{5}[m, n+1, k+1]-\right. \\
& (n+1)(m+1) u_{4}[m+1, n+1, k]+ \\
& \sum_{m_{1}, n_{1}, h_{1}=0}^{m, n, k}\left(m_{1}+1\right) u_{2}\left[m_{1}+1, n_{1}, k_{1}\right] u_{1}\left[m-m_{1}, n-n_{1}, k-k_{1}\right]- \\
& \sum_{m_{1}, n_{1}, k_{1}=0}^{m, n, k}\left(m_{1}+1\right) u_{1}\left[m_{1}+1, n_{1}, k_{1}\right] u_{2}\left[m-m_{1}, n-n_{1}, k-k_{1}\right]- \\
& \sum_{4_{1}, h_{1}, p_{1}=0}^{m, n, k} \sum_{m_{1}, n_{1}, k_{1}=0}^{m-\iota, n-s_{1}, k-p_{1}} u_{1}\left[u_{1}, j_{1}, p_{1}\right] u_{1}\left[m_{1}, n_{1}, k_{1}\right] * \\
& u_{1}\left[m-u_{1}-m_{1}, n-J_{1}-n_{1}, k-p_{1}-k_{1}\right]- \\
& \sum_{h_{1}, j_{1}, p_{1}=0}^{m, n, k} \sum_{m_{1}, n_{1}, k_{1}=0}^{m-u_{1}, n-\mu_{1}, k-p_{1}}\left[l_{1}, j_{1}, p_{1}\right] u_{2}\left[m_{1}, n_{1}, k_{1}\right] * \\
& \left.u_{2}\left[m-l_{1}-m_{1}, n-J_{1}-n_{1}, k-p_{1}-k_{1}\right]\right\} /(k+1)(k+2), \tag{6.21}
\end{align*}
$$

$$
\begin{aligned}
u_{4}[m, n, k+2]= & \left\{(m+1)(m+2) u_{4}[m+2, n, k]+(n+1)(k+1) u_{5}[m, n+1, k+1]-\right. \\
& (n+1)(m+1) u_{3}[m+1, n+1, k]+
\end{aligned}
$$

$$
\begin{align*}
& \sum_{m_{1}, n_{1}, k_{1}=0}^{m, n, k}\left(n_{1}+1\right) u_{2}\left[m_{1}, n_{1}+1, k_{1}\right] u_{1}\left[m-m_{1}, n-n_{1}, k-k_{1}\right]- \\
& \sum_{m_{1}, n_{1}, k_{1}=0}^{m, n, k}\left(n_{1}+1\right) u_{1}\left[m_{1}, n_{1}+1, k_{1}\right] u_{2}\left[m-m_{1}, n-n_{1}, k-k_{1}\right]- \\
& \sum_{\eta_{1}, h_{1}, p_{1}=0}^{m, n, k} \sum_{m_{1}, n_{1}, k_{1}=0}^{m--_{1}, n-h_{1}, k-p_{1}} u_{1}\left[l_{1}, j_{1}, p_{1}\right] u_{1}\left[m_{1}, n_{1}, k_{1}\right]^{*} \\
& u_{1}\left[m-l_{1}-m_{1}, n-J_{1}-n_{1}, k-p_{1}-k_{1}\right]- \\
& \sum_{4_{1}, l_{1}, p_{1}=0}^{m, n, k} \sum_{m_{1}, n_{1}, k_{1}=0}^{m-r_{1}, n-f_{1}, k-p_{1}} u_{1}\left[l_{1}, j_{1}, p_{1}\right] u_{2}\left[m_{1}, n_{1}, k_{1}\right]^{*} \\
& \left.u_{2}\left[m-l_{1}-m_{1}, n-J_{1}-n_{1}, k-p_{1}-k_{1}\right]\right\} /(k+1)(k+2),  \tag{6.22}\\
& \left.(n+1)(k+1) u_{4}[m, n+1, k+1]\right) /(k+1)(k+2) \tag{6.23}
\end{align*}
$$

To solve these equations recursively we can use the intial data to find $u_{n}[l, J, p]$ for $\imath, J=0,1,2, \ldots ; p=0,1$. By backsubstitution we can find the other unknown coefficients of the senes (6.18) up to any order

We first evaluate the unknown coefficients, with $1, j, p=0,1,2,3,4$, of the series (6.18). With the help of Mathematuca, the functions $u_{1}, u_{2}, u_{3}, u_{4}$ and $u_{5}$ can be easily evaluated. We find, up to order 4,

$$
\begin{align*}
u_{1}= & x_{1}^{2} f_{1}-\frac{\lambda x_{1}^{4} f_{1}}{24}-x_{2}^{2} f_{1}+\frac{\lambda x_{2}^{4} f_{1}}{24}-\frac{2 t^{4} a_{1} f_{1}}{3}-4 t^{2} x_{1}^{2} a_{1} f_{1}- \\
& \frac{2 x_{1}^{4} a_{1} f_{1}}{3}+\frac{2 x_{2}^{4} a_{1} f_{1}}{3}+2 t f_{1} k_{-1}+\frac{\lambda t^{3} f_{1} k_{-1}}{9}-\frac{8 t^{3} a_{1} f_{1} k_{-1}}{9} \\
& -\frac{4 t x_{1}^{2} a_{1} f_{1} k_{-1}}{3}-\frac{4 t x_{2}^{2} a_{1} f_{1} k_{-1}}{3}-\frac{\lambda x_{1}^{2} f_{1} k_{-1}}{12}-\frac{\lambda t x_{2}^{2} f_{1} k_{-1}}{12},  \tag{624}\\
u_{2}= & 2 x_{1} x_{2} f_{1}-\frac{\lambda x_{1}^{3} x_{2} f_{1}}{12}-4 t^{2} x_{1} x_{2} a_{1} f_{1}-\frac{4 x_{1}^{3} x_{2} a_{1} f_{1}}{3}-\frac{4 x_{1} x_{2}^{3} a_{1} f_{1}}{3}-\frac{\lambda x_{1} x_{2}^{3} f_{1}}{12}, \tag{6.25}
\end{align*}
$$

$$
\begin{align*}
& u_{3}=-2 x_{2} a_{1}-\frac{8 t^{3} x_{2} f_{1}^{2} k_{-1}}{3}-t x_{1}^{2} x_{2} f_{1}^{2} k_{-1}-t x_{2}^{3} x_{2} f_{1}^{2} k_{-1}-8 t x_{2} k_{1},  \tag{626}\\
& u_{4}=\frac{-8 t^{2} x_{1} f_{1}^{2} k_{-1}}{3}-t x_{1}^{3} f_{1}^{2} k_{-1}-t x_{1} x_{2}^{2} f_{1}^{2} k_{-1}-8 t x_{1} k_{1},  \tag{627}\\
& u_{5}=-8 t^{2} x_{1} x_{2} f_{1}^{2} k_{-1} . \tag{628}
\end{align*}
$$

These solutions have, of course, the symmetries discussed in section 4.2

In the same way $|\Phi|^{2}$ can be calculated. Up to order 4, we find

$$
\begin{align*}
|\Phi|^{2}= & x_{1}^{4} f_{1}^{2}+2 x_{1}^{2} x_{2}^{2} f_{1}^{2}+x_{2}^{4} f_{1}^{2}+4 t x_{1}^{2} f_{1}^{2} k_{-1}-4 t x_{2}^{2} f_{1}^{2} k_{-1}+4 t^{2} f_{1}^{2} k_{-1}^{2}+ \\
& \frac{4 \lambda t^{4} f_{1}^{2} k_{-1}^{2}}{9}-\frac{\lambda t^{2} x_{1}^{2} f_{1}^{2} k_{-1}^{2}}{3}-\frac{\lambda t^{2} x_{2}^{2} f_{1}^{2} k_{-1}^{2}}{3}-\frac{32 t^{4} a_{1} f_{1}^{2} k_{-1}^{2}}{9}- \\
& \frac{16 t^{2} x_{1}^{2} a_{1} f_{1}^{2} k_{-1}^{2}}{3}-\frac{16 t^{2} x_{2}^{2} a_{1} f_{1}^{2} k_{-1}^{2}}{3} . \tag{6.29}
\end{align*}
$$

In addition to the symmetries of section 4.2, $|\Phi|^{2}$ is also invariant under the transformation $\left(t, x_{1}, x_{2}\right) \rightarrow\left(-t, x_{2},-x_{1}\right)$.

Let us summanze the results we can obtain by considering the symmetries of the solution whose global existence was proven in Section 4.1: First, ff by using functions like $|\Phi|^{2}, F_{y}^{2}$, or $\varepsilon$, there is a way of defining the positions $\left(x_{1}^{a}(t), x_{2}^{a}(t)\right)$, $a=1,2$, of exactly two separate vortices, these two position must lie either on the $x_{1}-$ axis or the $x_{2}$-axis with equal distance from the ongin (We will use the zeros of $|\Phi|^{2}$ to define these positions) Any vortex which does not he on either axis immedrately leads to three other vortuces because of the left-right and up-down symmetry of our solution. Since our solution is continuous, these positions will change contanuously such that at $\mathrm{t}=0$ the two positions coincide, and after the collision the vortices move again on etther the $x_{1}$-axis or $x_{2}$-axis. This only allows for $0^{\circ}, 90^{\circ}$, or $180^{\circ}$ scattering. Any approximate solution can clearly distinguish between these three cases. We have calculated the analytic solution near the ongin, which exists according to the Cauchy-Kowalewskyı theorem, and found a further symmetry. This symmetry tells us that $|\Phi|^{2}$ looks the same at times $\pm t$ before and after the collision if together with the transformation $\pm t \rightarrow \mp t$ we exchange the $x_{1}$ and the $x_{2}$-axis. This means we have $90^{\circ}$ scattering.

All that is left to show is that there is in fact a way of defining the positions of vortices and that there are actually exactly two vortices before and after the collision Of course, we can use the zeros of $|\Phi|^{2}$ for our definition since we know that superconductivity is destroyed at the center of a vortex For approximate solutions we would look for the munuma of $|\Phi|^{2}$. In our case the easiest way of finding these is to sum the ame-1ndependent terms and the linear terms in $\Phi$, which are given by the initial data alone. This leads to the expression

$$
\begin{equation*}
|\Phi|^{2}=f^{2}\left(1+4 t \cos 2 \theta+4 t^{2} k^{2}\right), \tag{6.30}
\end{equation*}
$$

from ref. 18 For $t \neq 0$, expression (6.30) has exactly two zeros, namely at $r=\rho$, $\theta=\pi / 2$ and $\theta=3 \pi / 2$ for $t>0$, and at $r=\rho, \theta=0$ and $\theta=\pi$ for $t<0$ Here $\rho$ is the point where $k(\rho)=1 /(2|t|)$. This complete our analysis.

## Chapter 7

## Conclusions

Our amm was to discuss vortex-vortex scattering in a mathematically ngorous way on the level of the Ginzburg-Landau equations. Guided by various results obtaned previously, we have formulated a Cauchy problem with Cauchy data which describe two flux quanta both situng at the ongin. For this problem we have proven the following: Furst, a unique global finite-energy solution exists. This is the minimal requirement that for our data there is a solution for $-\infty<t<\infty$. The existence proof also shows how to construct the solution as a limit of a sequence. Using the symmetry of the imital data we can obtain our second main result which is a left-nght and up-down symmetry, in particular, of the energy density and of $|\Phi|^{2}$. This rules out all cases other than $0^{\circ}, 90^{\circ}$ or $180^{\circ}$ scattering of two vortices. Third, we have shown that a local solution exists near the ongin, and have used this solution to establish $90^{\circ}$ scattering. Our arguments depend on the fact that, using $|\Phi|^{2}$, we can define the location of the vortices and find that there are exactly two for $t \neq 0$.

## Appendix A

## Program Listings

## Step[0]

```
Clear[a,f,k,g,z,d,x1,x2,t]
Clear[s1,s2,m,n,q,11,11,p1,m1,n1,q1,1,,p,u1,u2,c0,c1,c2]
Clear[A1,A2,U,U1,U2,U3,U4,U5,Ut1,Ut2,At1,At2]
Clear[01,02,03,04,05,06,07,08,09,010,011,012,013,014,
O15,016,O17,018,019,020,021,O22,O23]
```


## Step[1]

```
f[1]:=f[1]
f[2]==Expand[-(g/24)*f[1]-(2/3)f[1]*a[1]]
f[3]:=Expand[(1/8)*f[1]*(a[1])^2-(1/4)*f[1]*a[2]-(1/4)*f[2]*a[1]-
(g/64)*f[2]]
f[n_Integer]:=Expand[(-1/(4(n^2-1)))*(g/2)*(f[n-1]-
        Sum[f[m]*f[1-m]*f[n-1-1],{1,2,n-2},{m,1,1-1)])+
        (1/(4(n^2-1)))*(4*Sum[f[m]*a[1-m]*a[n-i],{1,2,n-1},{m,1,1-1}]-
        8*Sum[f[m]*a[n-m],{m,1,n-1]])] /,(n>3)
a[1]:=a[1]
a[2].=0
a[3]:=Expand[(-1/24)*((f[1])^2)]
```

$\mathrm{a}\left[\mathrm{n}\right.$ _Integer]: $=\operatorname{Expand}\left[(1 /(4 \mathrm{n}(\mathrm{n}-1)))^{*}(\operatorname{Sum}[\mathrm{f}[m] * \mathrm{f}[1-\mathrm{m}] * \mathrm{a}[\mathrm{n}-1-1],\{1,2, \mathrm{n}-2\}\right.$, $\{\mathrm{m}, 1,1-1\}]-\operatorname{Sum}[\mathrm{f}[\mathrm{m}] * \mathrm{f}[\mathrm{n}-\mathrm{m}-1],\{\mathrm{m}, 1, \mathrm{n}-2\}])] \quad / ;(\mathrm{n}>3)$
$\mathrm{k}[-1]:=\mathrm{k}[-1]$
$\mathrm{k}[0]=0$
$\mathrm{k}[1] \cdot=\mathrm{k}[1]$
$\mathrm{k}\left[\mathrm{n} \_\right.$Integer $]=\operatorname{Expand}\left[\left(1 /\left(4\left(\mathrm{n}^{\wedge} 2-1\right)\right)\right) * \operatorname{Sum}\left[\operatorname{Sum}[\mathrm{f} 11]^{*} \mathrm{f}[\mathrm{n}-\mathrm{i}-\mathrm{J}-1] * \mathrm{k}[\mathrm{j}]\right.\right.$,
$\{1,1, \mathrm{n}-\mathrm{J}-2\}],\{j,-1, \mathrm{n}-3\}]] \quad / ;(\mathrm{n}>1)$

## Step[2]

[A]
$\mathrm{O} 1\left[\mathrm{x} 1 \_, \mathrm{x} 2 \_, 0 \_\right]=\left(\left((\mathrm{x} 1)^{\wedge} 2-(\mathrm{x} 2)^{\wedge} 2\right) /\left((\mathrm{x} 1)^{\wedge} 2+(\mathrm{x} 2)^{\wedge} 2\right)\right)^{*}$
$\operatorname{Sum}\left[\mathrm{f}[1]^{*}\left((\mathrm{x} 1)^{\wedge} 2+(\mathrm{x} 2)^{\wedge} 2\right)^{\wedge},[1,1,8\}\right] ;$
$\mathrm{O} 2\left[\mathrm{x} 1_{-}, \mathrm{x} 2 \_, 0 \_\right]=$Together [\%],
$\mathrm{U} 1\left[\mathrm{x} 1_{2}, \mathrm{x} 2 \ldots, 0\right]=$ Expand[\%],
O3[x1_, x2_,0_] $=\left((2 \times 1 \times 2) /\left((x 1)^{\wedge} 2+(x 2)^{\wedge} 2\right)\right)^{*}$
Sum[f[1]*((x1)^2+(x2)^2) $\left.{ }^{\wedge},(1,1,8\}\right] ;$
$\mathrm{O} 4\left[\mathrm{x} 1_{-}, \mathrm{x} 2_{-}, 0\right]=$ Together[ $\%$ ],
$\left.\mathrm{U} 2\left[\mathrm{x} 1 \_, \mathrm{x} 2 \_, 0\right]\right]=$ ExpandAll $[\%]$;
O5[x1_, x2_,0_] $=2^{*}\left(\operatorname{Sum}\left[f[1]^{*}\left((x 1)^{\wedge} 2+(x 2)^{\wedge} 2\right)^{\wedge},\{1,1,8\}\right]^{*}\right.$
$\left(\operatorname{Sum}\left[k[1]^{*}\left((\mathrm{x} 1)^{\wedge} 2+(\mathrm{x} 2)^{\wedge} 2\right)^{\wedge},\{1,1,8\}\right]+\right.$
$\left.\left.\mathrm{k}[-1]^{*}\left((\mathrm{x} 1)^{\wedge} 2+(\mathrm{x} 2)^{\wedge} 2\right)^{\wedge}(-1)\right)\right)$,

O6[x1_,x2_,0_]=Together[\%],
Ut1[x1_,x2_,0] $=$ ExpandAlI[ $\%]$;
$\mathrm{Ut} 2\left[\mathrm{x} 1 \_, \mathrm{x} 2 \_, 0 \_\right]=0$;
O7[x1_,x2_,0_]=-2*x2*Sum[a[1]*((x1)^2+(x2)^2)^(1-1),\{1,1,8]];
O8[x1_,x2_,0_]=Together[\%];
$\mathrm{A} 1\left[\mathrm{x} 1_{-}, \mathrm{x} 2 \_, 0 \_\right]=$Expand[\%];
$09\left[x 1_{-}, x 2_{2}, 0 \_\right]=2^{*} x 1^{*} \operatorname{Sum}\left[a[1]\left((x 1)^{\wedge} 2+(x 2)^{\wedge} 2\right)^{\wedge}(1-1),(1,1,8)\right]$,
$\mathrm{O} 10\left[\mathrm{x} 1_{\text {_, }} \mathrm{x} 2 \_, 0 \_\right]=$Together[ $\%$ ];
A2[x1_,x2_,0_]=Expand[\%];
O11[x1_, $\left.x 2_{\_}, 0\right]=-4 * x 2^{*} \operatorname{Sum}\left[(1+1)^{*} k[1]^{*}\left((x 1)^{\wedge} 2+(x 2)^{\wedge} 2\right)^{\wedge}(1-1),\{1,1,8\}\right]$,
$\mathrm{O} 12\left[\mathrm{x} 1 \_, \mathrm{x} 2 \_, 0 \_\right]=$Together[\%];
At1[x1_,x2_,0_]=Expand[\%],
$013\left[\mathrm{x} 1_{-}, \mathrm{x} 2_{-}, 0_{-}\right]=-4^{*} \mathrm{x} 1^{*} \operatorname{Sum}\left[(1+1)^{*} \mathrm{k}[1]^{*}\left((\mathrm{x} 1)^{\wedge} 2+(\mathrm{x} 2)^{\wedge} 2\right)^{\wedge}(1-1),\{1,1,8]\right]$,

O14[x1_,x2_,0_]=Together[\%];
At2[x1_,x2_,0_]=Expand[\%];

## [B]

> u1[0,0,0] $=$ Coefficient[z*U1[x1,x2,0],z]/. x1->0 / x2->0,
> $\operatorname{Do}\left[\mathrm{If}\left[1+\mathrm{j}>0, \mathrm{u} 1[1, \mathrm{j}, 0]=\operatorname{Coefficient[\mathrm {U}1[\mathrm {x}1,\mathrm {x}2,0],(\mathrm {x})^{\wedge }1(\mathrm {x}2)^{\wedge }\mathrm {J}]}\right.\right.$ $/ . x 1->0 / . x 2->0,],\{1,0,16\},\{1,0,16\}]$,
> $\mathrm{u} 2[0,0,0]=$ Coefficient $[\mathrm{z} * \mathrm{U} 2[\mathrm{x} 1, \mathrm{x} 2,0], \mathrm{z}] / \mathrm{x} 1->0 / . \mathrm{x} 2->0$;
> $\operatorname{Do}\left[\operatorname{If}\left[1+\mathrm{j}>0, \mathrm{u} 2[1, \mathrm{j}, 0]=\operatorname{Coefficient[U2[\mathrm {x}1,\mathrm {x}2,0],(\mathrm {x}1)^{\wedge }1(\mathrm {x}2)^{\wedge }\mathrm {J}]}\right.\right.$
> $/ . x 1->0 / . x 2->0,],\{1,0,16\},[j, 0,16\}]$,
> $\mathrm{u} 1[0,0,1]=$ Coefficient $\left[z^{*} \mathrm{Ut} 1[\mathrm{x} 1, \mathrm{x} 2,0], \mathrm{z}\right] / . \mathrm{x} 1->0 / \mathrm{x} 2->0$;
> $\operatorname{Do}\left[\operatorname{If}\left[1+\mathrm{j}>0, \mathrm{u} 1[1, \mathrm{j}, 1]=\operatorname{Coeffic} 1\right.\right.$ ent[Ut1 $\left.[\mathrm{x} 1, \mathrm{x} 2,0],(\mathrm{x} 1)^{\wedge} 1(\mathrm{x} 2)^{\wedge} \mathrm{J}\right]$ /. $x 1->0$ /.x2->0 ,] , $\{i, 0,16\},\{, 0,16\}] ;$
> $\mathrm{u} 2[0,0,1]=$ Coefficient $\left[z^{*} \mathrm{Ut} 2[\mathrm{x} 1, \mathrm{x} 2,0], \mathrm{z}\right] / \mathrm{x} 1->0 / . \mathrm{x} 2->0$;
> $\operatorname{Do}\left[\operatorname{If}\left[1+\mathrm{j}>0, \mathrm{u} 2[1, \mathrm{j}, 1]=\operatorname{Coefficient}\left[\mathrm{Ut} 2[\mathrm{x} 1, \mathrm{x} 2,0],(\mathrm{x} 1)^{\wedge} 1(\mathrm{x} 2)^{\wedge} \mathrm{J}\right]\right.\right.$ $/ . x 1->0 / . x 2->0,],\{1,0,16\},\{j, 0,16\}]$,
> c1 $[0,0,0]=$ Coefficient[z*A1[x1,x2,0],z]/. x1->0 /. x2->0;
> $\operatorname{Do}\left[\left[f\left[1+\mathrm{j}>0, \mathrm{c} 1[1,1,0]=\operatorname{Coefficient}\left[\mathrm{A} 1[\mathrm{x} 1, \mathrm{x} 2,0],(\mathrm{x} 1)^{\wedge} \mathrm{i}(\mathrm{x} 2)^{\wedge} \mathrm{j}\right]\right.\right.\right.$ $/ . x 1->0 / . x 2->0$,],\{i,0,16\}, $\{1,0,16\}] ;$
> c2[0,0,0] $=$ Coefficient[ $z^{*}$ A2 $\left.[x 1, x 2,0], z\right] / . \times 1->0 / . \times 2->0$; $\operatorname{Do}\left[\operatorname{If}\left[\mathrm{i}+\mathrm{j}>0, \mathrm{c} 2[1, \mathrm{j}, 0]=\operatorname{Coefficient[A2[\mathrm {x}1,\mathrm {x}2,0],(\mathrm {x}1)^{\wedge }\mathrm {i}(\mathrm {x}2)^{\wedge }\mathrm {J}]}\right.\right.$ $/ . x 1->0 / . x 2->0$,],\{1,0,16\}, $\{j, 0,16\}\} ;$
> c1 $[0,0,1]=$ Coefficient[ $z^{*}$ At1 $\left.[x 1, x 2,0], z\right] / . x 1->0 / . x 2->0$,
> $\operatorname{Do}\left[\right.$ If $\left[1+\mathrm{j}>0, \mathrm{c} 1[\mathrm{i}, \mathrm{j}, 1]=\right.$ Coefficient[At1[x1,x2,0],(x1) $\left.{ }^{\wedge} \mathrm{i}(\mathrm{x} 2)^{\wedge} \mathrm{j}\right]$
> /. x $1->0 / . \times 2->0,],[1,0,16),\{j, 0,16)]$,
> c2[0,0,1]=Coefficient[ $\left[z^{*} \operatorname{At1}[\mathrm{x} 1, \mathrm{x} 2,0], \mathrm{z}\right] / \mathrm{x} 1->0 / . \mathrm{x} 2->0$,
> $\operatorname{Do}\left[\operatorname{If}\left[i+\mathrm{j}>0, \mathrm{c} 2[\mathrm{i}, 1,1]=\operatorname{Coefficient}\left[\operatorname{At} 2[\mathrm{x} 1, \mathrm{x} 2,0],(\mathrm{x} 1)^{\wedge} 1(\mathrm{x} 2)^{\wedge}\right]\right]\right.$ /.x1->0 /.x2->0 ,] , $\{1,0,16\},\{1,0,16\}] ;$
> $\operatorname{Do}[\mathrm{c} 0[\mathrm{i}, \mathrm{j}, \mathrm{p}]=0,\{1,0,16\},\{\mathrm{j}, 0,16\},\{\mathrm{p}, 0,1\}] ;$

## Step[3]

[A]

Do[Do[

```
ul[m,n,q+2]=(1/((q+1)(q+2)))*((m+1)*(m+2)*ul[m+2,n,q]}
    (n+1)*(n+2)*u1[m,n+2,q]+
```

Expand[Sum[u1[11,j1,p1]*c0[m1,n1,q1]*c0[m-i1-m1,n-j1-n1,q-p1-q1], $\{11,0, m\},\{\mathrm{j} 1,0, \mathrm{n}\},\{\mathrm{p} 1,0, \mathrm{q}\},\{\mathrm{m} 1,0, \mathrm{~m}-11\},(\mathrm{n} 1,0, \mathrm{n}-\mathrm{\jmath} 1\},\{\mathrm{q} 1,0, \mathrm{q}-\mathrm{p} 1\}]\}-$
Expand[Sum[u1[11,j1,p1]*c1[m1,n1,q1]*c1[m-i1-m1,n-j1-n1,q-p1-q1], $\{11,0, m\},\{j 1,0, n\},\{p 1,0, q\},\{m 1,0, m-11\},\{n 1,0, n-11\},\{q 1,0, q-p 1\}]\}-$
Expand[Sum $\left[\mathbf{u} 1[11, \mathrm{j} 1, \mathrm{p} 1] * \mathrm{c} 2[\mathrm{~m} 1, \mathrm{n} 1, \mathrm{q} 1]^{*}\right.$
c2[m-i1-m1,n-j1-n1,q-p1-q1],\{il,0,m\},\{j1,0,n\},\{p1,0,q\}, (m1,0,m-i1),(n1,0,n-j1\},\{q1,0,q-p1\}])-
Expand[Sum[(q1+1)*c0[m1,n1,q1+1]*u2[m-m1,n-n1,q-q1], \{m1,0,m\},\{n1,0,n\},\{q1,0,q\}]\}+
Expand[Sum[(m1+1)*c1[ml+1,n1,q1]*u2[m-m1,n-n1,q-q1],
$\{\mathrm{m} 1,0, \mathrm{~m}\},(\mathrm{n} 1,0, \mathrm{n}\},\{\mathrm{q} 1,0, \mathrm{q}\}]\}+$
Expand[Sum[(n1+1)*c2[m1,n1+1,q1]*u2[m-m1,n-n1,q-q1], \{m1,0,m\},\{n1,0,n\},\{q1,0,q\}]]-
Expand[2*Sum[(q1+1)*u2[m1,n1,q1+1]*c0[m-m1,n-n1,q-q1],
$\{\mathrm{m} 1,0, \mathrm{~m}\},\{\mathrm{n} 1,0, \mathrm{n}\},\{\mathrm{q} 1,0, \mathrm{q}\}]]+$
Expand[2*Sum[(m1+1)*u2[m1+1,n1,q1]*c1[m-m1,n-n1,q-q1], \{m1,0,m\}, $(\mathrm{n} 1,0, \mathrm{n}\},\{\mathrm{q} 1,0, \mathrm{q})]]+$
Expand[2*Sum[(n1+1)*u2[m1,n1+1,q1]*c2[m-m1,n-n1,q-q1], $\{\mathrm{m} 1,0, \mathrm{~m}\},\{\mathrm{n} 1,0, \mathrm{n}\},\{\mathrm{q} 1,0, \mathrm{q}\}]]+\operatorname{Expand}\left[(\mathrm{g} / 2)^{*} \mathrm{u} 1[\mathrm{~m}, \mathrm{n}, \mathrm{q}]\right]-$
$\operatorname{Expand}\left[(\mathrm{g} / 2) * \operatorname{Sum}\left[\mathrm{u} 1[\mathrm{i} 1, \mathrm{j} 1, \mathrm{p} 1]^{*} \mathrm{u} 1[\mathrm{~m} 1, \mathrm{n} 1, \mathrm{q} 1]^{*}\right.\right.$ u1[m-i1-m1,n-j1-n1,q-p1-q1], $\{11,0, m\},\{11,0, n\},\{p 1,0, q\}$, $\{\mathrm{ml}, 0, \mathrm{~m}-\mathrm{i} 1\},\{\mathrm{n} 1,0, \mathrm{n}-\mathrm{j} 1\},\{\mathrm{q} 1,0, \mathrm{q}-\mathrm{p} 1\}]\}-$
Expand[(g/2)*Sum[u1[i1,j1,p1]*u2[m1,n1,q1]* $\mathrm{u} 2[\mathrm{~m}-11-\mathrm{m} 1, \mathrm{n}-\mathrm{j} 1-\mathrm{n} 1, \mathrm{q}-\mathrm{p} 1-\mathrm{q} 1],\{11,0, \mathrm{~m}\},\{\mathrm{j} 1,0, \mathrm{n}\},\{\mathrm{p} 1,0, \mathrm{q}\}$, (m1,0,m-i1 \},[n1,0,n-j1],\{q1,0,q-p1 \}]]);

```
u2[m,n,q+2]=(1/((q+1)(q+2)))*((m+1)*(m+2)*u2[m+2,n,q]+
    (n+1)*(n+2)*u2[m,n+2,q]+
    Expand[Sum[u2[11,\1,p1]*c0[m1,n1,q1]*
    c0[m-11-m1,n-\jmath1-n1,q-p1-q1],{11,0,m},{j1,0,n},{p1,0,q},
    {m1,0,m-il},{n1,0,n-j1},{q1,0,q-pl}]}-
    Expand[ Sum[u2[11,11,p1]*c1[m1,n1,q1]*
    c1[m-11-m1,n-j1-n1,q-p1-q1],{11,0,m},{j1,0,n},{p1,0,q},
    {m1,0,m-11},{n1,0,n-j1},{q1,0,q-p1}]]-
    Expand[Sum[u2[11,]1,p1]*c2[m1,n1,q1]*
    c2[m-i1-m1,n-j1-n1,q-p1-q1],{il,0,m},{11,0,n},{p1,0,q},
    {ml,0,m-11},{n1,0,n-j1},{q1,0,q-pl}]}+
    Expand[Sum[(q1+1)*c0[m1,n1,q1+1]*u1[m-m1,n-nl,q-q1],
```

$\{ח 1,0, \Omega\},\{\Omega 1,0, \pi\},\{Q 1,0, Q\}]]=$
Expand[Sum[(m1+1)*c1[m1+1,n1,q1]*u1[m-m1,n-n1,q-q1], (m1,0,m),\{n1,0,n\},\{q1,0,q\}]\}$\{m 1,0, m\},\{n 1,0, n\},\{q 1,0, q\}]]+$
$\operatorname{Expand}[2 * \operatorname{Sum}[(\mathrm{q} 1+1) * \mathrm{u} 1[\mathrm{~m} 1, \mathrm{n} 1, \mathrm{q} 1+1] * \mathrm{c} 0[m-\mathrm{m} 1, \mathrm{n}-\mathrm{n} 1, \mathrm{q}-\mathrm{q} 1]$, $\{\mathrm{m} 1,0, \mathrm{~m}\},\{\mathrm{n} 1,0, \mathrm{n}\},(\mathrm{q} 1,0, \mathrm{q})]]-$
Expand $\left[2 * \operatorname{Sum}\left[(\mathrm{~m} 1+1)^{*} \mathrm{u} 1[\mathrm{~m} 1+1, \mathrm{n} 1, \mathrm{q} 1] * \mathrm{c} 1[\mathrm{~m}-\mathrm{m} 1, \mathrm{n}-\mathrm{n} 1, \mathrm{q}-\mathrm{q} 1]\right.\right.$, $\{\mathrm{m} 1,0, \mathrm{~m}\},\{\mathrm{n} 1,0, \mathrm{n}\},\{\mathrm{q} 1,0, \mathrm{q}\}]]-$
Expand[2*Sum[(n1+1)*u1[m1,n1+1,q1]*c2[m-m1,n-n1,q-q1], $\{\mathrm{m} 1,0, \mathrm{~m}\},\{\mathrm{n} 1,0, \mathrm{n}\},\{\mathrm{q} 1,0, \mathrm{q}\}]]+$ $\operatorname{Expand}\left[(\mathrm{g} / 2)^{*} \mathrm{u} 2[\mathrm{~m}, \mathrm{n}, \mathrm{q}]\right]-$ Expand[(g/2)*Sum[ $\mathrm{u} 2[11, \mathrm{j} 1, \mathrm{p} 1] * \mathrm{u} 1[\mathrm{~m} 1, \mathrm{n} 1, \mathrm{q} 1] *$
$\mathrm{u} 1[\mathrm{~m}-11-\mathrm{m} 1, \mathrm{n}-\mathrm{j} 1-\mathrm{n} 1, \mathrm{q}-\mathrm{p} 1-\mathrm{q} 1],\{11,0, \mathrm{~m}\},\{j 1,0, \mathrm{n}\},\{\mathrm{p} 1,0, \mathrm{q}\}$,
$\{\mathrm{m} 1,0, \mathrm{~m}-11\},\{\mathrm{n} 1,0, \mathrm{n}-\mathrm{j} 1\},\{\mathrm{q} 1,0, \mathrm{q}-\mathrm{p} 1\}]]-$
$\mathrm{u} 1[\mathrm{~m}-11-\mathrm{m} 1, \mathrm{n}-\mathrm{j} 1-\mathrm{n} 1, \mathrm{q}-\mathrm{p} 1-\mathrm{q} 1],\{11,0, \mathrm{~m}\},\{j 1,0, \mathrm{n}\},\{p 1,0, q\}$,
$\{\mathrm{m} 1,0, \mathrm{~m}-11\},\{\mathrm{n} 1,0, \mathrm{n}-\mathrm{j} 1\},\{\mathrm{q} 1,0, q-\mathrm{p} 1\}]]-$ Expand[(g/2)*Sum[u2[i1, $1, \mathrm{p} 1]^{*} \mathrm{u} 2[\mathrm{~m} 1, \mathrm{n} 1, \mathrm{q} 1]^{*}$ $\mathrm{u} 2[\mathrm{~m}-11-\mathrm{m} 1, \mathrm{n}-\mathrm{j} 1-\mathrm{n} 1, \mathrm{q}-\mathrm{p} 1-\mathrm{q} 1],\{11,0, \mathrm{~m}\},\{\mathrm{j} 1,0, \mathrm{n}\},\{\mathrm{p} 1,0, \mathrm{q}\}$,
\{m1,0,m-i1 \},\{n1,0,n-j1\},\{q1,0,q-p1\}]]);
A. 5
Expand[Sum[c2[11, $1, \mathrm{p}]]^{*} \mathrm{u} 1[\mathrm{~m} 1, \mathrm{n} 1, \mathrm{q} 1] *$
$\mathrm{u} 1[\mathrm{~m}-11-\mathrm{m} 1, \mathrm{n}-\mathrm{j} 1-\mathrm{n} 1, \mathrm{q}-\mathrm{pl} \mathrm{q} 1],\{\mathrm{i} 1,0, \mathrm{~m}\},\{11,0, \mathrm{n}),\{\mathrm{p} 1,0, \mathrm{q}\}$,
$\{\mathrm{m} 1,0, \mathrm{~m}-1 \mathbf{1}\},\{\mathrm{n} 1,0, \mathrm{n}-11\},\{\mathrm{q} 1,0, \mathrm{q}-\mathrm{p} 1\}]\}-$
Expand[Sum[c2[11,j1,p1]*u2[m1,n1,q1]*
$\mathrm{u} 2[\mathrm{~m}-11-\mathrm{ml}, \mathrm{n}-\mathrm{j} 1-\mathrm{n} 1, \mathrm{q}-\mathrm{p} 1-\mathrm{q} 1],\{\mathrm{i} 1,0, \mathrm{~m}\},\{\mathrm{j} 1,0, \mathrm{n}],\{\mathrm{p} 1,0, \mathrm{q}]$,
(m1,0,m-11\},\{n1,0,n-j1],\{q1,0,q-p1)]]);
[B]

Do $[\mathrm{If}[(1+\mathrm{j}+\mathrm{p})>4, \mathrm{co}[\mathrm{i}, \mathrm{p}, \mathrm{p}]=\mathrm{c} 1[1, \mathrm{j}, \mathrm{p}]=\mathrm{c} 2[1, \mathrm{l}, \mathrm{p}]=0],\{1,0,4\},\{\mathrm{\jmath}, 0,4\},\{\mathrm{p}, 0,4\}]$,
$015=\operatorname{Sum}\left[u 1[1, \mathrm{j}, \mathrm{p}]^{*}(\mathrm{x} 1)^{\wedge} \mathrm{i}(\mathrm{x} 2)^{\wedge} \mathrm{J}(t)^{\wedge} \mathrm{p},\{1,0,4\},(\mathrm{j}, 0,4),\{\mathrm{p}, 0,4\}\right]$,
U1[x1_,x2_,t] $]=E x p a n d[\%] ;$
$016=\operatorname{Sum}\left[\mathrm{u} 2[1, \mathrm{j}, \mathrm{p}]^{*}(\mathrm{x} 1)^{\wedge}{ }^{\wedge}(\mathrm{x} 2)^{\wedge}\left(\mathrm{j}()^{\wedge} \mathrm{p},\{1,0,0,4\},\{\mathrm{j}, 0,4\},\{\mathrm{p}, 0,4\}\right] ;\right.$
U2[x1_,x2_t_]=Expand[\%],
$\left.017=\operatorname{Sum}\left[\mathrm{c} 1[1, \mathrm{j}, \mathrm{p}]^{*}(\mathrm{x} 1)^{\wedge_{1}(\mathrm{x} 2}\right)^{\wedge}(\mathrm{f})^{\wedge} \mathrm{p},\{1,0,04\},\{1,0,4\},\{\mathrm{p}, 0,4]\right] ;$
U3[x1_,x2_,t] $=$ Expand[\%];
$018=\operatorname{Sum}\left[c 2[1, j, p]^{*}(x 1)^{\wedge}(\mathbf{x} 2)^{\wedge}(t)^{\wedge} p,\{1,0,4\},(1,0,4\},[p, 0,4\}\right]$,
U4[x1_,x2_t] $]=$ Expand[\%];

U5[x1_,x2_,t]=Expand[\%];

## Step[4]

Length $[\mathrm{U} 1[\mathrm{x} 1, \mathrm{x} 2, \mathrm{t}]-\mathrm{U} 1[-\mathrm{x} 1, \mathrm{x} 2, \mathrm{t}]$;
Length[U1[x $1, \mathrm{x} 2, \mathrm{t}]-\mathrm{U} 1[\mathrm{x} 1,-\mathrm{x} 2, \mathrm{t}]$;
Length[U2[x1,x2,t]+U2[-x1,x2,t]];
Length $[\mathrm{U} 2[\mathrm{x} 1, \mathrm{x} 2, \mathrm{t}]+\mathrm{U} 2[\mathrm{x} 1,-\mathrm{x} 2, \mathrm{t}]]$;
Length[U3[x $1, \mathrm{x} 2, \mathrm{t}]-\mathrm{U} 3[-\mathrm{x} 1, \mathrm{x} 2, \mathrm{t}]$ ],
Length[U3[x1,x2,t]+U3[x1,-x2,t]];
Length[U4[x1,x2,t]+U4[-x1,x2,t]];
Length[U4[x $1, \mathrm{x} 2, \mathrm{t}]-\mathrm{U} 4[\mathrm{x} 1,-\mathrm{x} 2, \mathrm{t}]$;
Length[U5[x1,x2,t]+U5[-x1,x2,t]];
Length[U5[x1,x2, t]+U5[x1,-x2,t]],
Step[5]

Step[6]
$\operatorname{Print}[" \mathrm{U} 1[\mathrm{x} 1, \mathrm{x} 2, \mathrm{t}]=\mathrm{=}, \mathrm{U} 1[\mathrm{x} 1, \mathrm{x} 2, \mathrm{t}]] ;$
Prnnt["U2[x1,x2,t]=",U2[x1,x2,t]],
Prnnt["U3[x1,x2,t]=",U3[x1,x2,t]]; Prnnt["U4[x1,x2,t]=",U4[x1,x2,t]]; Print["U5[x1,x2,t]=",U5[x1,x2,t]]; Prınt["U[x1,x2,t]=",U[x1,x2, t]];

## Bibliography

[1] N. S. Manton, Phys. Lett. B 110 (1982) 54.
[2] M. F. Atyah and N. J. Hitchin, Phys. Lett. A 107 (1985) 21, Philos. Trans. R. Soc. London A 315 (1985) 459; The Geometry and Dynamics of Magnetic Monopoles (Prınceton U. P., Princeton 1988).
[3] R. S. Ward, Phys. Lett. B 158 (1985) 424.
[4] A M. Din and W. J. Zakrzewski, Nucl. Phys. B 253 (1985) 77.
[5] I. Stokoe and W. J. Zakrzewskı, Z. Phys. C 34 (1987) 491.
[6] R. Leese, Nucl. Phys. B 344 (1990) 33.
[7] P. J Ruback, Nucl. Phys. B 296 (1988) 669.
[8] E. P. S. Shellard, Nucl. Phys. B 283 (1987) 624.
[9] P. Laguna-Castllo and R. A. Matzner, Phys Rev. D 36 (1987) 3663.
[10] R. A. Matzner, Comput. Phys. 2 (1988) 51.
[11] K. J M. Monarty, E. Myers and C Rebbı, Phys. Lett. B 207 (1988) 411, J. Comp. Phys. 81 (1989) 481.
[12] E P. S. Shellard and P. J. Ruback, Phys. Lett. B 209 (1988) 262.
[13] P. Laguna and R. A. Matzner, Phys. Rev. D 41 (1989) 1751.
[14] R. Leese, M. Peyrard and W. J. Zakrzewski, Nonlmearily 3 (1990) 387, 773.
[15] W. J. Zakrzewski, Nonlinearily 4 (1991) 429.
[16] M. Peyrard, B. Piette, and W. J. Zakrzewskı, Nonlınearily 5 (1992) 585, 601
[17] R. P. Huebener, Magnetic Flux Structures in Superconductors (Springer, New York 1979).
[18]P. McCarthy, M. Sc. Thesis, Dublen City University (1991); J. Burzlaff and P McCarthy, J. Math. Phys. (1991) 3376.
[19] B J. Plohr, Doctoral Dissertation, Princeton University (1980), J. Math. Phys 22 (1981) 2184.
[20] A. Jaffe and C. Taubes, Vortices and Monoples (Birkhauser, Boston 1980)
[21] E J. Weinberg, Phys Rev. D 19 (1979) 3008.
[22] J. Burzlaff and V. Moncrief, J. Math. Phys. 26 (1985) 1368.
[23] I. Segal, Ann. Math. 78 (1963) 339.
[24]See, e.g., I. G. Petrovsky, Lectures on Partal Differental Equations (Interscience, New York 1954).
[25] W. Rühl, University of Kaiserslantern, unpublished report (1977).

