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Abstract

The scattering of magnetic flux tubes in superconductors is studied First, we 
introduce the Abehan-Higgs model, which describes vortices in a superconductor, 
and the Euler-Lagrange equations which minimize the energy density given by this 
model Static vortex solutions satisfying these equations are reviewed. A technique 
proposed by on Manton [1] in which slowly changing solutions are approximated by a 
special family of time-independent solutions is described. Time-dependent solutions 
over small intervals are also studied Then the existence and the symmetries of the 
time-dependent solutions are studied. This analysis rules out all cases other than 0°, 
90° or 180° scattenng of two vortices The proof of the Cauchy-Kowalewskyi 
theorem for a system of first order quasi-linear partial differential equations of (n+1) 
independent variables and m unknown functions is given. The Taylor expansion of 
the initial data near the origin is studied. The Cauchy Kowalewskyi theorem is 
applied to find the solutions of the time-dependent Euler-Lagrange equations near the 
origin. This study proves that our solution describes 90° scattenng Mathematica 
programs to calculate the senes solutions are also supplied.
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Chapter 1

Introduction

Over the years, solitons and soliton-like solutions of non-linear partial differential 
equations have been studied in great detail One of the most important results of 
these studies was the discovery of the unusual behavior of solitons in a scattering 
process. In recent years, mainly based on an idea by Manton [1], results for the 
scattering of soliton-like objects, like magnetic monopoles [2], CP1 skyrmions [3-6], 
and cosmic strings or vortices [7] have been obtained. Important numerical work has 
also been done for example on cosmic strings or vortices [8-13] and skyrmions in 
(2+1) dimensions [14-16]. We consider the work on the scattering of vortices to be 
of particular importance because, unlike the other soliton-like objects mentioned, 
vortices can be produced in the laboratory and with conventional techniques [17], it 
may be possible to study their collisions experimentally.

Among the theoretical predictions for the scattering of soliton-like objects 
scattering at 90° is one of the most exciting. For slowly moving vortices at the point 
between type I and type n superconductivity, there is analytic evidence, based on the 
slow-motion approximation, for scattering at right angle [7]. If the repulsion between 
the vortices increases and they cannot come very close anymore, we would expect to 
see a switch over to backscattenng at a certain value of the repulsion. There is 
numerical evidence that for fixed repulsion an increase in the velocity can bring the 
vortices close enough together again to produce scattering at right angles. In ref
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[18], an approximation method, which involves linearization of the equations, has 
been used to show 90° scattering. This work is continued and brought to a 
conclusion in this thesis, where 90° scattering for certain initial data is shown 
mathematically ngorously on the level of the Ginzburg-Landau equations.

In the second chapter, we introduce the Abelian Higgs model and discuss 
previous studies to find time-independent solutions which minimize the energy 
density. In the third chapter, we discuss two approximation techniques for time- 
dependent solutions One of the techniques is based on Manton's work [1] in which a 
slowly changing solution is approximated by a special family of time-independent 
solutions The second technique studies the time-dependent solution over a small 
time interval only, i.e, we study the scattering of slowly moving vortices from shortly 
before to shortly after their collision. In the forth chapter, we study the existence and 
the symmetries of solutions of the Cauchy problem with inmal conditions constructed 
from static solutions and approximate time-dependent solutions. We find that, for 
our initial conditions, only 0°,90° or 180° scattering is possible. In the fifth chapter, 
we rewrite the time-dependent Euler-Lagrange equations as a system of first order 
quasi-linear partial differential equations and discuss the proof of the Cauchy- 
Kowalewskyi theorem for a system of first order quasi-linear partial differential 
equations of (n+1) independent variables and m unknown functions In the sixth 
chapter, we give the Taylor expansion of the initial data and apply the Cauchy- 
Kowalewskyi theorem to find a series solutions near the origin. This solution shows 
90° scattering.
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Chapter 2

The Abelian Higgs Model

In this chapter we discuss the Abelian Higgs model in general and in particular, the 
Euler-Lagrange equations which minimize the action of this theory. We will introduce 
the Lagrangian and the energy density, and study the static solutions which satisfy 
the equations of motion and give finite energy. The static solution which is of 
particular interest describes two vortices sitting on top of each other. We will also 
show that the Abelian Higgs model is invariant under a U(l) gauge transformation

2.1 Lagrangian and Euler-Lagrange Equations
The Abelian Higgs model describes a superconductor in a magnetic field in z- direc­
tion. The Lagrangian density is given by

is the covanant derivative, and the gauge fields are defined in terms of the real 
gauge potentials as

- f a ?  - 1)2, (2.1)

where O is the complex Higgs field,

£>/!> = |X=0,1,2, (2.2)

F,v = d ,A  - 9 vAi> H,v=0,l,2. (2 3)
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The indices are lowered and raised with the metric tensor g=diag(+l,-l,-l) This 
model is related to the Ginzburg-Landau model. For the special class of 
configurations which are constant in one direction (say z) and under the assumption 
that the gauge potential A3 is zero, the Ginzburg-Landau model reduces to the two

dimension Abelian Higgs model which is given by the Lagrangian (2 1)

The equations of motion can be denved from the Lagrangian (2 1) by using the 
usual variational technique. In our case, we have the equations

J L iJ L V — =o
dx** vcMv,|j. J  dAv

(2.4)
d 

dx•*
rJ L ) - d L = o

d<P ’

where

dAv 3<i>

These yield the equations of motion (Euler-Lagrange equations)

D ^ 0 + |i> ( |a> |2 - l )  = 0 , (2.5)

+ i  (°*(I)V(I>) “<&(£>v<5)* )=°- (2-6)

The Abelian Higgs theory given by (2.1) represents a classical gauge field 
theory which is characterized by a group of symmetries not associated with any 
physical coordinate transformation in space-time. The property of a gauge theory is 
gauge invariance, i.e, the invariance of the Lagrangian under a group of 
transformations which can be different at different points in space-time This implies 
that if the original fields are a solution of the equations of motion, so are the gauge 
transformed fields. In our case the Lagrangian (2.1) is invariant under the gauge 
transformation

0  —><E>/= e '1<|,<*><l>, \  - d ^ i x ) ,  (2.7)
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<p(x) = q)(r,xi,x2), e 'I<pw€ U(l).
w here

Since it is easy to show that

(2.8)

we can establish the invariance of the Lagrangian given by (2.1) under the gauge 
transformation (2 7). We also see that if (0 ,A ^) is a solution of the equation of
motion (2.5), (2.6), sois the transformed solution (O ',A ') .

2.2 Time-Independent Solutions
We will discuss in this section special static solutions of the equations of motion (2.5),
(2.6) with \  = 0 , which minimize the potential energy. The existence of these

solutions has been proven by Plohr [19]. Plohr has proven that these equations have 
n-vortex solutions which minimize the potential energy given by

To find static solutions of the equations of motion, let us consider functions of the 
form

E= + \ { fv )2 +!(|a>|2 - i ) 2] d 2x. (2.9)

Al (r,Q) = - £ IJx ]na(r) /  r 2,

(2 10)

® ( r , e ) = e  f ( r  ), i j= l>2

where

1̂1 “  2̂2 “ £12 e21 “  I*

We substitute (2.10) into the time-independent Euler-Lagrange equations

(2.11)

(2 12)
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Using

a ,= ( 7 3r~ e,v 89}

eJkx, + £bXj +evxt = 0 , i,j,k=l,2

we can derive

a'(r)
d ,F‘} = — x,e,J i *r )

(2.13)

From (2.12), (2.13) and (2.15) we obtain 

[a'(r)/r] =0,  (2 16)

and from (2.11) and (2.14) we can denve

W '(r)1' _ " 2/ l r X ^ ) - i P _ ^ / ( r ) [ / I ( r ) _ l l j 0  (217)
r z

According to Plohr [19], there exist functions a(r) and f ( r )  which satisfy the above 

equations and minimize the potential energy (2.9).

For A,=l, there actually exist first order equations whose solutions 
automatically solve the second order equations (2.11) and (2.12). To see this we set 
O = Oj +*<I>2 and ^=1 in (2.9) and integrate by parts, which yields

E = [  ed2x = j  j  d 2x[[ O i <D1 + a i<i>2 ) +  0 2* 2 -  a 2<s>i )] 2 +
2

(2 18)
[(02^1 + A 2 0 2 )i(3 l^2  *“ Ai<I>i)]2 +

[F12 ± (<S>2 + <¡>1 - 1) /  2]2] ± I J  d 2xFn ,
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where 8 is the energy density. The upper sign and lower sign is taken according to 
whether the winding number n, which is given by

(2 19)

is positive or negative» Jaffe and Taubes [20] have shown, that n measures the 
number of times

which is a unimodular complex number for each 0 , winds around the unit circle in the 
complex plane while 0 goes from 0 to 2 k  n is therefore an integer that does not 
change when finite smooth energy configurations are changed continously, and this is 
why the number (2.19) occurs in the functions (2 10) The sets of fimte-energy 
functions with different winding numbers n are called topological sectors

Now the integral (2.18) gives a potential energy greater than or equal to 2\n\% 
with equality if and only if r

These equations are known as the Bogomol'nyi equations. It is easy to see that solu­
tions of these equations satisfy the Euler-Lagrange equations (2.11) and (2.12) for 
X=l. It has also been shown [20] that the Plohr solutions [19] satisfy the 
Bogomol'nyi equations X=l.  To evaluate the functions a(r) and / (r), let us 

substitute the solution (2.10) into the Bogomol’nyi equations, which yields

where the upper sign is taken if n is positive, and the lower sign is taken if n is 
negative We will come back to these equations when we use the functions (2 10) for 
n=2 as part of our initial data.

(0) = lim , 0) » (2.20)

( D l ± i D 2) ^  =  0 ,  F12 =  +(|<&l2 - l ) . (2.21)

f ( r ) =  ± rc /(r)[ l-f l(r)]
r

(2.22)
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Chapter 3

Approximate Time-Dependent 
Solutions

In this chapter we discuss two approximation techniques for time-dependent solutions. 
One of the techniques is based on Manton’s approach [1] in which slowly changing 
solutions are approximated by a special family of time-independent solutions. For 
simplicity, this technique is illustrated in the context of the CP1 model The second 
technique studies the time-dependent solution over a small time interval only, so that 
in this interval the solution does not differ much from the solution at t=0.

3.1 The Slow-Motion Approximation
The slow-motion approximation for vortex scattering was discussd by Ruback [7]. 
Ruback applied the idea, originally proposed by Manton [1] in the context of SU(2)

I
monopoles, that for X = 1 at low energies the Bogomol’nyi solutions can be used to 
approximate time-dependent solutions. As we have seen the potential energy is 
bounded below by a positive topological charge, and for a given topological sector, 
this bound is saturated if and only if a certain system of first order non-linear 
equations (Bogomol’nyi equations) is satisfied. It can t also be shown that the 
submanifold or moduli space of these minimal energy solutions has dimension 2n In 
the slow-motion approximation it is assumed that the approximate time-dependent 
solution is a family of time-independent solutions which minimize the potential energy 
in a given topological sector. The action is then minimized for this 2n parameter 
family of solutions to the Bogomol’nyi equations with time-dependent parameters
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For the U(l) model this calculation is not explicit To illustrate the method we 
briefly digress from the U(l) model and discuss this approximation for the CP1 model 
following Ward [3]. The CP1 model in (2+1) dimensions is given by the Lagrangian

(3 1)

If we use the Euler-Lagrange equation

we denve the classical equation of motion arising from (3 1),

(1+ |m|2 > 3 ^ «  = 2m* (d^uXd^u). (3.2)

This model again has different topological sectors.

In the charge-two sector, the family of static finite-energy solutions (static 
lumps) can be written in the form

where a , p, y, 8 and £ are complex parameters and z = (jc1 + ix2) /  2. The idea of the 

approximation for slowly moving lumps is as follows* We assume that the solutions 
of the equations of motion (3.2) are of the form (3 3) where the parameters depend 
on t We then substitute (3 3) into the action which is then minimized This leads to 
ordinary differential equations for the parameters as functions of t. Solving these 
equations, yields the approximate time-dependent solutions

Before we persue this idea, we use the requirement of finite energy and certain 
symmetries to set a  = p = 8 = 0. Then we change the form of the parameters 
(Y> Y* ,£,£*) to (/?,\|/,0,<J>) according to the equations

y(i) = R e^sm \|/,

e(i) = Re,e cosy .

Next if we substitute a solution of the form (3.3) with parameters given by (3.4) into

M =  a  +  (p z + Y )(z 2 +  8z +  e )-1, (3.3)

(3.4)
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the kinetic energy functional given by the Lagrangian (3.1) v

T  = j { l  + \u\2)~2\u\2d 2x.  (3.5)

For functions of the form (3.3) the rest of the action is just a multiple of the winding 
number and does not contribute to the Euler-Lagrange equations Thus we obtain

T  = J[fl2/ r 2|z|4 +<p|z2 + e f + 0 2|e|2+

V2(|z|4 cot2 y+|e|2 sec2 ycsc2 \|/+2csc2 \j/Re(z2e*))+

2/?\jiR_I(| z|4 cot \\f+ sec v  csc \|/ Re(z2e*)) -

(3 6)
2<j>0(|e|2 + Re(z2e ') ) -2 ^ R - '  Im (z V )-

2 RQR'1 Im(z2e*)-2\j/<}>tan\|flm(z2£*)- 

2\j/0cot \\f Im (zV  )]a^2jc,

where we have used the abbreviation

M y | 2 /(M 2 4 2 H 2)2 (3 7)

The integration can now be performed and the kinetic energy can be used to 
define a metric on the four dimensional parameter space. First one obtains

T  = t y l^R 2 + jx/ty + vR\\r2 + /?(T<j>2 + o0<f> + a>02), (3.8)

where £,|I,v ,t,< j and CD are functions of \\f only and are given by

\  = 2, \i  = ( K - E ) s / c9

(3.9)
\  = K - ( E / 2 ) ,  x = 52v,

o  = CO = c2£,
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with 5 = sin\|/, c = cos\|i and K  = ^(cosXj/), E = E(cos\\f) are complete elliptic 
integrals of the first and second kind, respectively. The metnc G is defined by

T = g 9s w ,

where Sl =R,  S2 = $ , S3 = 0, S4 = \|/. The geodesic equations which minimize the 

time-integral of the kinetic energy (3.8) can be written as

G*SJ + G t o S W - ( G 9jeS 'SO / 2 = 0, (3 10)

where Gk]%l = dGkj / d S l and GtJ = GJt for ij,k=l,2,3,4. In our case we have to solve 

these equations for

G \2  = Gl3 = Cr24 = G34 = 0

and
Cm = E / 2 R , G14 = s ( K - E ) / 2 c ,

(3 11)
G22 =/?52( a : - |£ ) ,  G23 = - R s2(k - e ) /2 ,

G33 = R c 2 E / 2 ,  G44 = * ( J P - iE ) .

Only some of the solutions to the geodesic equations have been found explicitly 
One family of solutions is

y  = Yo, R = T(Q2 + t2) / f ,0, <t> = 0 = ta n -^ - ^ 2-j (3 12)

As is expected, the functions (3 12) do not belong to a solution which satisfy the
Euler-Lagrange equations. Furthermore, although this might be plausible, it is by no
means proven that (3 12) leads to an approximate solution for slowly moving lumps

For the Abelian Higgs model the situation is more complicated The 2n-para- 
meter family of 2-vortex solutions is not known explicitly, i e, there is no analogue of
(3.3) Ruback [7] has used symmetries of the Lagrangian to find constraints on the 
metnc Furthermore, his examination of the metnc indicates that a certain angle 
which parametenzes the parameter space has be identified modulo 71. This implies 
90° scattenng for head-on-collisions.

tI
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3.2 Approximate Solutions for Small Time Intervals
In ref [18] the functions, which were used by Ruback to study the metric and by 
Weinberg [21] to find the zero modes of static solution, were used to show the 
existence of time-dependent solutions to the full Euler-Lagrange equations that 
describe 90° scattering. In this approach we consider an approximate solution of the 
Euler-Lagrange equations (2 5), (2.6) of the form

Hence the equations for (£,,£) can be linearized The idea is to study the scattering 

of slowly moving vortices from shortly before to shortly after their collision.
s

If we substitute (3.13) into the equations of motion (2.5) and (2 6), using the
fact that (A,,<I>) are the static solutions of the time-independent Euler-Lagrange 
equations (2.11), (2.12), and keeping only the linear terms in (Â ,Ô ), we can derive

<I>(i,x) = è (x )  + Ô(f,.x),

(3.13)

A

where (A,,<I>) is the static solution for two vortices sitting on top of each other. The 
perturbations (An<&) on the static solution are represented by (Xat(x) + tBlfX(p(x) 
+ r£) which is small because it is assumed that X = l + X, 0 < X « 1, te ( -e ,e ) ,

A ^  A ^  mw

e « 1, where (<|) + Axp, A + X a t) satisfy the static equations of motion linearized in X

A A »» A A A 1 Ar f t  A \

2

+I<j>(<îmî>* +é>*ô)+ix<î>(|<ï>|2 - 1) = o,

d'Fv + Â ,|ô j2 + -[Ô * (Ô JÔ )-Ô (Ô J<Î>)*|+
2 •*

(3.14)

where te(e,e), e « 1  and
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Equations (3.14) are satisfied if

§ = 2 / ( r ) * ( r ) ,

(3.15)

( f t . Bz) = p E i ®  [rk'{r) + 2fc(r)], ~2 ̂ °S 9 [rk'{r) + 2k(r)] j ,

is chosen, where k satisfies the equation

r2k"(r) + r k \ r ) ~  k(r)[4 + r2f 2 (r)] = 0 . (3 16)

Studying the zeros of |0 |2 reveals that this solution describes 90° scattering. The 
problem with this approach is that this linearization has not been justified in a 
mathematically ngorous fashion In this thesis we will bring this approach to a mathe­
matically rigorous conclusion.
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Chapter 4

Global Existence and 
Symmetry of Solutions

In this chapter we will study the solution of the equations (2.5), (2.6) for certain 
initial data, and show following ref. [22] that a unique global time-dependent solution 
exists. For the existence proof, the equations (2.5), (2.6) are rewritten as a system of 
first order partial differential equations and an iteration formula is applied We use 
the iteration formula to show that the solution of the Cauchy problem has a left-nght 
symmetry and an up-down symmetry.

4.1 Global Existence
In this section we will show that a unique global time-dependent solution of the 
equations (2.5), (2.6) for certain initial data exists, by showing that the assumption of 
ref. [22] are satisfied. To do this let us first subtract a background field (O, ) and
wnte

i>(i,x) = i>(x)+cp(i,x),
(4.1)

Substitution into the Euler-Lagrange equations (2 5), (2.6), yields

D»*( ¿VI>)+ D»(Dt<p)+ y  (4>+ (p )( |0+ <p|2 - 1) = 0, (4 2-a)
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1  (<D+ cp)* [d  v (4>+ (p)] -  (O + (p)[/)v ( è + <p)]* = 0 , (4.2-b)

]

where i
fiiJI

^ v e 3 n ( ^ +flv ) - 3v ( ^  + ̂ ) -  (4-3)
I

I
For the background field we choose the static solution (2.10) with n=2,i

r 2

A)(^) = 0, ij=l,2.
1

1
As initial data we choose |

I

<p(0,x) = 0, flb(0,*j = 0,
I

a,(0,.x) = 0, i=l,2, |

d,a0( 0,x) = 0, j
l

9 |(p(0 ,i) = 2 / (r)k(r) , '■

d,a1(0,x) = - ^ ^ - [ r k ' ( r ) + 2 k ( r ) ] ,

-_9 r*r>c A 1d,a2( 0,x)=----— [rfc'(r)+2fc(r)],

(4.4)

To show that a unique global time-dependent solution of the Cauchy problem 
(4.2a-b), (4.4) exists, we will show that the background field satisfies the following 
conditions: i

4 , = 3 ,4  = 3 ,6  = 0 , 3 ,4 = 0  i=l,2 (4.5)

!
SUPxe/?2l5 A -" A j<00> j  m=0,l, (4.6)

w  ;

i

ii1
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sup, ^
m

(4.8)

(4.9)

(|i>|2 - l ) e L 2, V i4  = (316 - i A , 6 ) e J f 2
II

F e  X2, dfA.eX,.IJ * 1 J 1l
I

For the subtracted field I

=(a0'Po'av P v a2'P2'V'Ki)»
I

p jl =  d , a l l , 7t* = 3 0cp-iao(p,
i
i

our initial data satisfy |
ti

V  eJi(2):=(Jf3 xJf2)4. j (4.10)
I
-I]

Moreover, the Lorentz condition
fi
j

= 0 , : ( 4 11)
|

and the Gauss equation i

l
t o o - d td,a, =-[(<&+<p)(7t + i'a0<i>* )-(<!>* + <p‘ )(jt* - ¡ a 06 ) ] ,  (4.12)

iI
j

hold at t=0 Here Xs is the Sobolev space of distributions f  with finite norm

and X0 denotes Z?, i.e, if /  e Xs then f  e i} and its derivatives are also in L2.
ii

Obviously Aq = dtAt = 3 ^  = 0) and a short calculation shows that

3A  -  — (a(r) l r) = 0 .1 r  i
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since z tjx txj  = 0. From ref. [19] we also know that the functions f and a are C°° 

maps on [0,©°). Their asymptotic behavior at the origin is

At infinity, a-1, f-1, and all their derivatives decay exponentially These properties

It also decays exponentially at infinity. This implies that the condition (4.10) holds. 
From a0 = ax = a2 = 0 at t=0, it is clear that the Lorentz condition (4.11) holds at

t=0 By substituting the initial conditions (4.4) into the Gauss equation (4.12) and

satisfied to guarantee the existence of a unique global solution of the Cauchy problem 
We can also easily show that the energy is initially, and is therefore always, finite.

An essential element of the proof in ref. [22], which is based on Segal's existence 
and uniqueness theorem [23], is an iteration method. The method starts with rewriting 
the Cauchy problem (4.2), (4.4) in the form

/ - o r 2, a ~ P r ] + 7r 4. (4.14)

guarantee that the conditions (4.6)-(4.8) hold.

The function k that satisfies ¡equation (3.16) has the following asymptotic
1

behavior at the ongin: !

k ~ c tr 2 + c2r2. (4.15)

using the equation (3.16), we can easily prove that these initial conditions will satisfy 
the Gauss equation (4.11) at t=0. Now we have proved that all the conditions are

d,*? = - ¡ A Y  + J , (4 16)

where the operator A is defined by

T 0 0 0 
~ . 0 T 0 0
A~l o o r  o 

o o o r
r  =

The vector J  is given by

(4.17)

with J, = J 3 = Js = J-j = 0 , and

18
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J2 =  m2a0 -  “ [ ( 6 *  +  <p* )n* -  ( 6

a0(i»(p* +2|<I)|2 +<i>‘(p)/2,

(4.18)

/z,+2 = --[0 * (V ,6 )-d (V ,0 > )* ]+ m 2a, +AA,+
2 i

■̂ ■[(6* + <p*)(Acp+ a,<I>) + (4>+ (p)(A,cp* + a,4>* )]■

i [ ( 6 *  + (p'XV.ip) -  (4> + cpXV.cp)*]-

(4.19)

i= l,2 ,

7g = m2cp -  id, ( ^ s )  -  iA, (V ,$) +:a4) -  id, (a,<p) -  iat (V(cp) ■

1

ia0 7C* ̂ iA^V.cp) -  A \p  -  2a, (V ,6 ) -j<I>(3,a,)+

(a a ^ Q + i p  <I>--<i>(|<f>|2 - l ) -  
* 2

—[(p(|4>+ q>|2 - 1)+ 6(|cp|2 + 6*cp+ 4>cp*)],

(4.20)

where V( =d,  -  la

4.2 Reflection and Rotation Symmetries
In the this section w e w ill use (4.16) to discuss the symmetry of the solution 

The solution of the Cauchy problem (4.16) can be obtained as the solution of the 
following integro-differential equation

t
' F ( i , x )  =  e - A ' i r ( 0 , i ) + J d r { e ^ M ; ( > p ( j ) ) } ,  ( 4 . 2 i )
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In turn we can solve this Integra-differential equation by using the Picard Method [23], 
The Picard procedure for solving (4.21) is to set up a sequence of successive 
approximations ¥  defined by the formula

where

+1 ('•*> = (0, i )  + J  W .  ( i ))},

^  (0, x)  = (flo, po, ax, pi , a2, p i , cp, n* )(0, x ),

(4.22)

(4.23)

with the initial data (4.4). We now establish certain symmetries of the initial data V0 

and use (4.22) to establish these symmetries for the successive approximations VF„,
and finally for the solution of (4.21). I!

j

The first transformation we study is {x^,x2) -»  ( - x l t - x 2 ). Under this 

transformation the initial data change as follows'

(4.24)

where

= (ao’Po<-ai ’- P v - a2’-P2-V’n , )>
i

which can be written as

m - i )  = Mim i ) ,

where

(4 25)

M, =

- / 0 0 0 -
0 - I 0 0
0 0 - / 0

.0 0 0 / .
-[i ?] (4 26)

and

We see that j

1 r i
W O , - * ) )  = M i / ( ¥ ( 0,*)).: [Ml, A\  = 0 ,

1

1

exp{-Mi}A/i'Pn(0 ,I ) = M\ exp;{-zAi}*FB(0,x).

(4.27)

(4.28)

2 0



1

Which implies that Wn (r, - x )  = M \ ¥ n (r, x)  for all ne N . From this follows 

for the solution *F.

(4 29)

Next we study the reflection (x\ , jc2 ) —> (-X i,x 2). Under this transformation 

the iniual data change as follows

v¥ ( t i- x u x2) = M2'F(f,*i ,* 2), (4.30)

where

M2 =

■-/ 0 0 0 -
0 I 0 0
0 0 - I 0 ’

.0 0 0 c
-K ?]• (4.31)

i=2,6

(4.32)

and CV -  V*. Furthermore

i1
J, (0, , x2) = - J ,  (0 ,XUX2),

\
i

I 1
/ 4(0#- * 1#x2) = / 4( 0 ,xu x2),

!
\

/ 8 (0, -Xi ,x2) = J \ ( 0 9x u x 2)9
1
II

which implies \
\
I

W O , - * ,  ,x2)) = M2J m  0,1*, ,*2 )). (4.33)
j

Again, we have [m 2,aJ = 0 and ¥ „ ( /, - x x ,x2 ) = M2'¥n (/, xx,x2 ). From this follows

^ ( t ,  - x , , * 2) = Af2̂ ( i ,  , * 2'), (4.34)

for the solution . |
!

By combining the two transformations we can also study the reflection
(x\, x2) -> to  # - x 2). We find that *F(r, jci , - x 2) = Af3*F(r, jci , x2), where
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M3 = M2Mx =

0 0 P"
0 - I 0 0
0 0 I 0
0 0 0 c

(4.35)

Under the transformation considered the energy density
!

e = ̂ 0o|2 +i|AO |2 + I f * + 1 f * +|(|<t|2 - i ) 2,

is invanant. This means that the solution which satisfies our initial conditions has left-i

nght symmetry and up-down symmetry for all time t. Hence there exist only three 

possibilities when two vortices collide in a head-on collision such that our initial data 

are realized at t=0. We describe these three cases m the following diagram:

t  
• •

case(l) 

90° Scattering

(i)

case(2) 

180 ° Scattering

( 2 ) ‘(2)

case(3)

0° Scattering.

diagram(I)
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Chapter 5
i

The Cauchy-Problem
i
I
i

In this chapter we will rewrite the time-dependent Euler-Lagrange equations as a sys­
tem of first-order quasi-linear partial differential equations with coefficients which 
depend only on the unknown functions. We will then discuss the proof of the 

Cauchy-Kowalewskyi theorem [24] for a system of first-order quasi-linear partial 
differential equations of (n+1) independent variables and m unknown functions.

IIi
5.1 Associated First-Order Quasi-Linear System
In this section we will show that the time-dependent Euler-Lagrange equations can be 
rewritten as a system of first-order quasi-linear partial differential equations To do 
this, let us substitute !

i

0  =  m, + im 2, A, = «3, |a2 = k 4, A0 = m5 , (5.1)
>
I
I

into the equations (2.5), (2.6), which fields

d2QUx = + djM, -«,«3 - U ^ + U ^ d J«3 + +

i (5.2)
.  ̂ X. i 3 A. 2 ^

+  2M4a 2M2 - - M ,  - - U 1U2 + - U i +

J

m1m5 ” ̂ U5^0U2 ~ ̂ ^0^5’

I
1 23
I



3o«2 = t fu 2  + d\ìÌ2 -  -  «2W4 “ U\^2U4 ~

“ lUAd2Ul * — 1% - ~ U 2UX + —M2 + 
2 < 2 2

«2«! +2^530«! +^90^5,
I]

^ 0̂ 3 = ^«3 "  ̂ 2^1M4 + M1̂ 1M2 ”  ̂ 1̂ 1 ~~ **3#? ~ ̂ 3«! + ̂ 1^0W5 »
J

9qW4 = 9 2w4 +w132m2,- ^ 5 2m1 - « 4̂  “ W4m̂  + 3230m5,

^0M5 = 3i9qW3 + , 1

where

öji — 3 / ¿ l = d 2 / K fi = 0 , 1, 2 .

We can write our initial data m the form

w,(0,*) = <*,(*) ¡30H ( 0 ,* )  =  & ( * ) , (53)

where

aj(X) = / ( r )  cos 2 0 ,

-2
a 3(jc) = — a(r)sin 0 , 

r

a 5(jc) =  0 ,

ß1(je) = 2/(r )* (r) ,

ßs(*) = ~pLsmQ(rk'+2k),

a 2(*) = / ( r )sin 20,

0C4 (3c) = —a(r)cos0 , 
r

ß2(*) = 0 ,

p4(J) = ^ c o s 0(f*/ + 2Jfc).

Ps(*) = 0 j
I

To reduce the order of the Cauchy problem (5.2),(5 3), let us assume

(5.4)
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Then the equations (5.2) can be rewritten as

*<°°‘> = c  (u}, Pi0j), ,7’(n' ), T (22j) , S ™ , S(t2j), q ™ , P̂ , P®» ),

where !

(5 6)

(111) , —(221)g - t + r 12 . (13) (24)
M1M3 “  “ lU4 +  “ 2? +  «2? +

2« , ^  + 2u4<7(22) - - M? + *  «,+

G2 = r (112) + r '222>-M2u32-u2u42 Tu1<7(13> - Ulq™

X 2 ^-M 2Ml+^-M2 +

«2«! + 2m5P (01) ,

o ,  = T < ®  - < >  + « , , »  -,* ,« !>  . / f > ,
I

G4 = r<'“ > -< *>+«,«<«> -  ̂ j )  -«4«2 -«4M|+ < 5).

G p(Q3)+ F (04)
3 *1 *2

And the initial conditions (5.3) will take the form

u,(0,x) = a ,(x ), P<°->( 0 ,x ) =  p,(3c)

(5.7)

(5.8)

If we differentiate the equations (5 5) with respect to t, the Cauchy problem
(5.2), (5.3) can be rewritten m the form



/?,(00° =F,(ur P ^ \ q M , q{2j), T {Uj), T ™ ,
1
J
(

5(01 j) ̂  s mj) ̂  R{wj)' p m  ̂  s (o\j) ̂  s m j ) ̂  R(ooj) ^  k=j 2
11
I

with the initial conditions
1

»(00 m^ u,J(0>x) = p,(je)>

q(2,)(0,x) = a IX2(x),

T (22‘)(0,x) = a l̂ X2(x), 

S(O2l\ 0 , x )  = ^ i (x),

(5 10)

u,(0,x) = a,(x) ,  

q(U)(0,x) = a lXi(x),

T (1U)(0,x) = a liXiXi(x),

S(0U>( 0,x) = p,'Xi(x),

R \ 0 , X )  = F, ( a ; , [3; , a JXi, a ;>X2, a } ^ , o.JX2H, P;J[i, P; ^ 2, ct; ^  *2, ft JXi, Py ̂ ),

where

Fi = S * n) + S f ’> - 2Hl«3P (03> -M32/><01> - 2Mi«4? ^  - u 42/><0» +
II

^ p W )  +  p (0 2 )? (13) +  +  p (02) ̂ (24) +  2 lh p m  +  2 p (0 3 )i?(12)

u ] P ^  +2m1m5/’(05) - 3 P (05)P (02) - 2u5/?(002) - « 2fl(005\ (5.11-a)

F2 = S f  2> + S f 2) -  2m2«3/>(03> - u^Pm  - 2m2m4/>(04) -  u42/>(02) -



Uipm _ p m qw _ uip m _ p w ) q m _ 2u3p m  _ 2Pm )qm  _

2u4p ™ »-2P(04Y 2 1 ) - ^ P ^ - h i ^ P ™  + |p (02) +
t

ujPm  + 2u2u5Pm  + 3 P (05)P<02> +2m5/?(001)+ « 1̂ 005>, (5.11-b)

F3 = S<°23> -  5<°U) + MlP^2) +  P < ° V «  -  « 2 ^ °  -  P (02)<?(11) -ii
ufPm  -  2 u ^ P m)  -  u*Pm  -  2«,«2Pm  + , (5.11-c)

I
t

Fa = S<°14) - S £ 13) + « ,P ^2> +Pm q ™  - i h P ^  - P ^ q W  -
1

u2Pm  - 2 m,m4/>(01) -n f/» (04) ~2u4U2P m + R ^ \  (5.11-d)

F5 = ^ “ 3)+ ^ f 4). : (5 11-e)
i
1

To show that the Cauchy problem (5.2), (5.3) is equivalent to the new Cauchy 

problem (5.9), (5.10), we will prove that a solution (ui , / ,(°‘), q^1'1 ,q(2r>, 
(̂110 ^(220^ ( 010̂ ( 020^ ( 000) satlsfies the Cauchy problem (5.2), (5.3). It is clear 

from (5.9) that = P^0l) and d0d2ul = f£0l) = q\2l\  which implies 32mj -<7(2') 

= Q(x). But at t=0, Q(^) = a iJt2i( ^ ) - a IX2(x)=0, and this implies d2ut = q{2l) 

Analogously, we can prove that dxut = q(U\  Also 5i(01t) -  R(̂ ° l) = 0 implies -

5(01° = n (x ). But the initial condition at t=0 implies that n (x)= 0 , and this proves 
that = S(0U\  Analogously, wejcan also prove that 9032w, = S(02i) Similarly by
using the same technique as above we can prove dxut = 7 (lli), b\ut = T(22t), dlut = 

R(00l). We have rewritten our problem as a first order system of quasi-hnear partial 
differential equations (5.9) with initial conditions given by (5.10). Note that each term

i
on the right-hand side of the equations (5.9) contains either one first-order denvative 
of an unknown function or no denvative at all.

ii
To rewrite the terms which do not contain a denvative we introduce the 

function V  which satisfies
i

v ;= o , v,(o ,^ )= x 1 : (512)
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Clearly V = x}, and we can multiply each term, which before did not contain a 
denvative, by VXl. Now the problem (5.9), (5.10), (5.12) is of the form

7)u 2 46 du
 « 4 6 )? - .  (5 13)ot p= \ d x p

with the intial conditions given by i
!
I

= ; 1=1,2,..„46. (5,14)
II1

By using the substitution w, - 0 4(0,.. ,0) for m(, we can always arrange that the initial 

conditions give zero at the ongin t

5.2 The Cauchy-Kowalewskyi Theorem
We include in this section the discussion of a fundamental theorem due to Cauchy and 
Kowalewskyi assuring that there exists an unique analytic solution of a certain class 
of Cauchy problems which contamsi our Cauchy problem. The Cauchy problem
which we consider is a system of first !order partial differential equations of the form

!i

dq v=i j=i crT|v
i
1

with the initial conditions i
ii

M,(01Tl1,...,'n„) = O 1(Tl1,.. . , r iJ ,  (5 16)I
I
I

with i
i= l,2, m |

i
where ..,«„) and <I>l(,n1,...,T|fl) are analytic functions with respect to all
their arguments in some neighbourhood of the ongin. Furthermore, (0,......0 ) = 0

for i=l,....,m In section 5.1 it was shown that our vortex-vortex scattenng problem 
is of the form (5.15), (5.16) with analytic functions Gyv, and in section 6 1 it will be

shown that the initial data have the required analyticity.
ii

The idea behind the Cauchy-Kowalewskyi theorem is to consider a related 
Cauchy problem which has a unique" formal power senes solution as well as the 
Cauchy problem (5.15), (5.16), and to prove the following two important facts:
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(i) The formal power senes solution of the related problem is a majorant of the 
formal power senes solution of the onginal problem (5.15), (5 16); (ii) The formal 
power senes solution of the related j  problem is in fact a solution (in the ngorous 
sense) in some neighbourhood of the origin. This shows that the formal power 
senes solution of the problem (5 15),;(5.16) is in fact a solution.

Now if we assume that the problem (5.15), (5.16) has a formal power senes 
solution of the form

w,(S>T|p-,'n„)= v ît'  (5.17)
*0**1» ¿*=0

then it is easily to prove the uniquence of this solution- The initial conditions (5.16) 
are a condition on Then the equation (5.15) at £=0 is equivalent to
conditions on cllki ^ . If we differentiating (5.15) with respect to \  we can find
recursively all the coefficients ^ . 1

i
ii

Next we will introduce the Cauchy problem related to the Cauchy problem
(5.15), (5.16) While we do this we will also show the first fact, namely, that the 
formal power series solution of thej related problem is a majorant of the formal 
power senes solution of the onginal problem. To do this let us consider a function
/(*!>*2,................,xn) at the point (0,;... ,0). If we assume that the function
f ( x 1,x2 ....... ,xn) is analytic at this point then there exists a neighbourhood N(0)

wherein f can be represented by a convergent power senes of the form
i
i

60

/ ( * 1>*2».......>*«)”  k J X x n*, (5 18)
*1. *,=0

where |

1 3t,+ !+*"/(0)

If we assume also that the power senes given by (5.18) is convergent at the point 
=**• = xn = p, where p> 0, then for any set of non-negative integer kl9 .,kn there

exists a number M such that i



This inequality implies that the series

n=0
(5.21)

for
|(x , + - + x. )/ P Í< 1

is a majorant of the series (5.18). This can be easily seen as follows* S can be 
wntten in the form

00 v̂ l
S = M  I « tl

.*.=0 P
(5.22)

where the coefficients ^ are positive integers. This fact together with the 

inequality (5.20) yields that

\a K (5.23)

and this proves that the senes (5.22) is also a majorant of (5.18).

To proceed with our discussion of the Cauchy-Kowalewskyi theorem, we will 
use the analyticity of our data to define the functions G and in terms of power

senes as

and

2 X  v X ' 1i»”’
Vi- .v„=l

V.r .V-sO

(5.24)

(5.25)

These power senes are convergent in the region 

h i  +* * * +Tln| ^ P > K+- ■ *+Wm| ^  P»

for small p .

Using the result which has been denved above, we can easily show that the 
power series (5 24), (5.25) are majorized by the power senes
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p I
and

f .ta ...... (5.26)

(5.27)

respectively, which yields

M p li+ -+ T l,)
P - T 1 - - T 1 .

(5.28)

and

(5.29)

P

Now if we assume that and are the coefficients of the above power seri­

es then

In other words, the coefficients of the power senes (5.28), (5.29) are non-negative 
and not smaller than the absolute values of the corresponding coefficients of the 
power senes (5.24), (5.25).

We now consider the related Cauchy problem

with the initial condition

as a majorant Cauchy problem of the onginal Cauchy problem (5.15), (5.16). Again 
let us assume that the above problem has a series solution of the form

(5.30)

(5 32)

(5 33)
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where the new quantities Cko K can be evaluated from and B1̂  in the way 
the original coefficients c^. ^ in (5.17) were obtained from the a!Vi and v̂ . In

other words,

(5.34)

where the polynomials ^  have non-negative coefficients. This yields

i.e., the power series (5.33) is a majorant of (5.17).

Next we will show that the initial value problem (5.31), (5.32) has a solution
which can be expanded into the power series (5.33) which will prove the convergence
of the power series. To do this, let us assume that

where z = 'n1+...+T|/l. Substituting this solution into (5.31), (5.32), we will get the 

first order partial differential equation

 T l.)

(5 36)
= V&,z),

[(p -  mV) / p F ç ( t  z) -  (nmM)Vz(Ç, z) = 0, (5.37)

with the initial condition -

v(o,z)= m z ), (5.38)

where
Af z

¥ (0  ,z) = —
p - z

The first order partial differential equation (5.37) has the form

(5.39)
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with the initia] condition

v ( o , z ) = m z ) . (5.40)

This first order partial differential equation has a solutions which satisfies

A{V)z-B(V)ï ,  = C(V), (5 41)

where C(V) is an arbitrary function that can be evaluated by using the initial condition 
(5.40). If we substite ¡; = 0 and V = 'P(z) into the equation (5.41) we will get 
C('P) = i4('F)z, and if we invert the function V = 'F(z) to obtain z = £i(V), we see 
that the function C(V) is determined by the relation C^F) = A('P)£2('P). This shown 

that the solution satisfies

Applying this method, the solution of our first order partial differential equation 
(5.37) can be written in the form

(5.42)

(5.43)

From the initial condition (5.38) we can find the solution in the form

V(Ç,z) = M  z+(nmM  /  (1——))Ç /
P

P -  [z + (nmM /  (1 ——))% , 
P

(5.44)

which can be written as the quadratic equation

(5.45)

This quadratic equation has the root
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•EMBED Equation V (£, z) =_  P
2(p -z )

— { z -n p % )+ ^ - ( (p - z ) /p )  
p m

— (z + n p ^ )--2- ( (p -z ) /p )  j - 4 M 2 —  
P m )  p

1/2

(5.46)

which gives V(^,z)=0 at £=0, z=0. Finally, because the quadratic equation (5.45) 

has a discriminant different from zero at the ongin and in a neighbourhood of the 
ongin where the root can be expanded into a convergent power senes in % and z. 

Thus the convergence of the majorant senes (5.33) and hence the convergence of the 
onginal series (5.17) is proved in a certain neighbourhood of the ongin and the 
existence of an analytic solution of our Cauchy problem (5.15), (5.16) is completely 
established
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Chapter 6

Time-Dependent Series 
Solutions

In this chapter we will study the Taylor series expansion of our initial data which was 
used in the previous chapter. We will use these series as initial conditions to the 
equations (5.2), which are the Euler-Lagrange equations (2.5), (2.6). Next we will 
find the series solutions of this Cauchy problem near the ongin which exist due to the 
Cauchy Kowalewskyi theorem.

6.1 Taylor Expansion For The Initial Data
In this section we will find series solutions of the functions a(r), f ( r )  and k(r) near 

the origin by using Taylor series expansion. To do this we investigate the senes 
solution of the second order couple partial differential equations

r2/ " + r f ' - 4 f  ~ \ r 2f ( f 2 - 1) - 4 fa{a -  2) = 0, (6.1)

r2a " - r a ' - r 2f 2( a - 1) = 0, (6.2)

and the second order differential equations (3.16). To find the solution of the 
equations (6.1), (6.2) and (3.16), we will first investigate the series solution at the 
origin by using Taylor senes of the form

f ( r ) =  l f nr \  a(r)= ± a nr \  k(r) = £  k r \  (6.3)
n=2 n=2 «=-2
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From ref. 19, we know that /  and a start with r2-terms and equation (3.16) shows 

that =&o = k\ = 0 .

If we substitute the Taylor series (6.3) into the equations (6.1), (6.2), (3.16), 
and solve it for the respective coefficients, we will find that the coefficients of the odd 
powers of r are equal to zero. Hence the the series solutions (6.3) can be written as

into the equations (6.1), (6.2) and (3 16) respectively. Comparing the coefficients of 
the r1N+l-terms in (6.1) yields {AN2 +4N -  3)f  = 0 which implies /  = 0. The same 

arguments for equations (6.2) and (3.16) yield a - k -  0. In this way, we proved 
(6 4) by induction.

Next by substituting (6 4) into (6.1) and comparing the coefficients of r on both 
sides, we can evaluate the coefficients of the Taylor series for /  (r) in the form

f (r)= l f nr 2n, a(r)= l a nr2n,

(6.4)

To prove that only even powers of r appear, let us substitute

f ( r ) = l f y + f nr 2N+i+. (6.5)

(6.6)

and

(6.7)
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Similarly by substituting (6.4) into (6.2) and again comparing the coefficients of r on 
both sides, we can evaluate the coefficients of the Taylor series for a(r) in the form

a = 1
* 4 n ( /i- l)

«-2,1—1 n—2
I  /„ / .- .A -m  -  I

j= 2/n= l m-1
(n>3), (6 9)

-V i2with, e.g., a2 = 0 and Qg = "'24 finally we substitute (6.4) into (3.16) and

compare the coefficients of r on both sides Thus we can evaluate the coefficients of 
the Taylor series for k(r) in the form

k = — ^ —  
" 4(n -1 )

»,1-1

i=2,m=\
(n>l), (6.10)

with kQ = 0 .

We will prove by inductions that the inequalities

M 1

(jfc+iy
(6.11)

k l £
M

* (k+l)2

M k
*' (*+ l)2

(6.12)

(6 13)

hold for sufficiently large k and M > 1, which will establish the convergence of the 
Taylor senes solution (6.4) near the ongin. Using the inequality

Ï  '
/

dx
"1=1 («, + 1)‘ ( n - n x + 1)2 J (x + l )2 (n -  x  + 1)2 ’

|_3 2n + l n + 2 I  3 J(« + 2)

 1 _

(n + 2)‘
ö(l) , (6 14)
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and taking the absolute value of (6.8), we can prove the mequalty (6 11) as follows,

\fn\ =
1 ' M "_1 »-2̂ .-1 M,-m W»-,-l '

4(n2 -1 ) P . »* .=2^n=l("i + l)2 ( / - m  + 1)2 ( r t- i )2 .

 .............. a , . . — r ^ 2 + » I -----------------------2,m=i("» + l r  (i-m  + l r  (n - i  + 1) m=i(rn + l) (n-m  + 1)'

1 t !  Mm Af"-m
4(n2 -1 ) 12 n2 m=i(m + l)2 (n -m  + l)2_

8M" „ {=} M m
- 4 X

M"'
( «  +  ! )  m = l ( w  +  l) (B- «  + !)■

1 X ' M K_1 A/"-1 i ' 8Mn 4M n
4(n2 -1 ) 2 n2 (n+ 2)2_

T
_(n + l)2 (n+3)2 J

1 8M"
4(n2 -1 ) 2 ^ n2 J (n + l )2

M n 
(n + l):

(6.15)

Similarly by taking the absolute value of (6.9), we can prove the mequalty (6 12) as 
follows,

«-2̂ -1 M m

m + 1)2 ( i- m  + 1)2 ( n - i ) d 

M "-1 + £  M m
m= 1

? M m M n~m~ i

!(»« + 1)2 (n -m )2

(n + l)2 m=i(m +l)2 (n -m + 1 )2

M B-l M n-1

(m + 2)2 (n +1)2

M n
(m + 2)2

(n + l) :
(6 16)
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Finally, by taking the absolute value of (6.10), we can prove the inequalty (6.13) as
follows,

1
4 (w2 -1 ) I

1
4(n2 -1 ) 1

1
4(n2 -1 )

Mm M ‘~m
(m + 1)2 ( i - m + 1 ) 2 (n - i ) 2

<-1 M m M n-m- 1

■“ i(m + l)2 ( n - m  + l)2

M n- 1

0n + 2y

M n

(«+D2 * (6.17)

From the senes representation (6.4) of the functions f ya and k follows the 
analyticity of the initial data (5.3).

6.2 Local Series Solutions
In this section we use Mathematica to find the series solutions of the the time- 
dependent Euler-Lagrange equations (5.2) near the ongin up to any order, and show 
that the solutions describe 90° scattering. Let us assume that the series are of the 
form

K l ( f , * ) =  ' Z u l [ l , j , p ] x { x £ t p ,
W.P= 0

U2( t , x )=  J^U2 Ìt,J,p]x{xitP,
t,j,p= 0

Uî(t,x)= '£u3[i, j ,p]x{xitp ,
0

(6.18)

u4( t ,x )=  'Zu4[i,j,p]x‘ix i t p,
IJ*P- 0

oe

«5 ( * , * )  =  J dU5[ i , J , p ] x { x i t P,
IJ,P=0

To evaluate the coefficients of these senes, we substitute (6.18) into (5.2). 
Solving this equations for its coefficients yields
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Mj [m, n, k + 2] = {(m + l)(m + 2)ux [m+ 2, n, k] + (n + l)(n + 2)ux [m, n + 2, k ]+

m,n,k m-^ ,k~p1

*Wi.Pi=0 ^,^,^=0

- m x, n - j x- n x, k -

£  I W h J i ’Pi'i*

- m x, n - j x- n x, k - p x

m,n,k m-ti ,k-pi
£  s t a t w i - P i ] *

Wi»Pi=° »H,»!,*1=0

w4 [/n,, /i,, 3m4 [/w — ̂  — mx, « — — /i,, A: — pj — ]] —

m,n,k
X [ ( & 1  + l ) H j [ m 1, n 1, £ 1 + l ] M i [ 7 H - m 1, / î - « 1, £ - £ 1] ] +
,**=()

S K « ,  + l ) « 3 Í wíl + l , « i , ¿ i ] í < 2 [ / M - » I 1, n - « I , ¿ - ¿ I ] ]  +  
witrti A=o

m,n,*

"H»niA=0

m,nt*

m,n,k
2  £ [ ( « i  + 1 ) « 2 [ » î i , « i + l , / r 1]M4 [ / w - / w 1, r t - n 1, ^ - X r 1] ] +

m,n,* m -ii,« -;! ,À -Pl

X  X W W i . f l ] *
‘¡.h,Pl=0 rnl,ni =0

- m x, n - j x- n x, k - p x -A :,]]-
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myntk m-il,n-jl,k-pì_
T  X  ' L [ u 1i h , J i , p 1i i2[ni1,n l , k l ]*

Wi.ft=0 m1,n1,Ä1=0

u ^ m - i y - n l , k - p l - k , ] ] } / ( k  + l ) ( k  + 2) ,

U2Í m , n , k  + 2] = { ( / n + l ) ( m + 2 ) u 2[m + 2 ,n ,k ]  + (n + l ) (n  + 2)u2[m,n  + 2 ,k]  +

m,n,k m-iltn-jl,k-p1
£  s  [ « 2 i i 1. y 1 . P 1 i *

u ^ m y ^ k ^ u ^ m - i y - m x, n - ] x - n i , k - p i - * , ] ] -

m,n,k
X  X  [ M W i . P i l *

*i»AtPi=0 Wi.«iA=0

u 3 [TOJ , n í , ¿ 1 ]M3 [ O T - í 1 - m p / i - y ,  - n , , f c - p ,  - * , ] ] -

m ,«,* m _ti »«-7i >k-px
Z  X  [ « 2  I w i .  a  1

W1! *«1*̂ =0

M4 [ m „ n i , ^ i ] « 4 [ m - i i  - w , , n - y ,  - £ [ ] ]  +

m,n,*
X [ ( m i +  l ) w 5 [ m i + 1» n\ » ¿ i l Mi [w* -  m x, n  -  n , , k  -  kx ] ]  -

m1,n1,A1=0

m,n,k
X [ ( > » i  +  1)m3 ["* i + h n i , k x\ul [ m - m l , n - n l , k - k l i [ -

«li»!.*i“0

X  [(«1 +  l ) H 4 [ m 1 , n 1 +  l , * 1 ]w 1[ / n - / H 1 , / i - B 1 ,/fc-jfc1 ] ]  +

2 S [(^ i + l)Wi['Wi»'ii* î + l]w5[m -m 1,rt--rt1,fc-fc1] ] -

m,«,*

2  X [ ( m i + 1)M i[ /n ,  + 1, « I ,* , ]M 3 t m —/ » ! , «  — n,,>fe — Jfcj]] —

41

(6.19)



m,n,k
2 S  [(ni + l)M i[ /« it / i1 + l , £ 1]M4[ m - m 1, n - r t 1, £ - & ! ] ]  +

m,«,* .¿-ft
\ ih \ r n ,n , i t \ - \  X  Z K I W p A J *

mj.nj ,^=0

m,n,* **”H »«“A

li.Ji.Pi=0 mitniA=0

M3[m,n,fc+2] = {(n+l)(M+2)H3[m ,«+2,^]+(/n  + l)(fc+l)MJ[m,n + l,^  + l ] -

(n + l)(m + 1)m4 [m +1, n + 1, fc]+

mtnfk
X  (» » i + 1)«2 [»»i + 1 ,  « i , * i M  [m -  m 1, n -  « , , k  -  £ , ] -
,^=0

X ("ii + l)«i [nh + 1. ni » K ]U2 [m -  m,, n -  n,, k -  kt ] -
mi»niA-0 

m,n,k m-^n-ji^k-pi
X  yL u i [ h > h ’P M . m i , n x, k x\*

h>h*Pi=Q mltrt1,A1=0

“i[w - <1 - m l , n - j l - n l , k  — p l - ¿ J -

m,n,k m~ii tn j\tk 

Wl.ft-O mj.nj ,^=0

M j l m - j j  - m l , n - j l - n i , k - p i - £ , ] } / ( / :  +  l)(/fc +  2 ) ,

u4 [m, n, k +2] = {(m+l)(m+2)u4 [m+2, n, fc]+ (n+1)(£+1)k5 [m, n +1, k +1] 

(n +1 )(m + 1)«3 [m + 1, n + 1, k )+
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^ { n l ^ \ ) u 2[mu nxJr\,k ì\uì[ m - m ì, n - n x, k - k x\ -
mi»niA=°

m,n,k
^ ( n l -\‘\)uì[miynl ^ ì , k ì]u2[ m - m lyn - n ì, k - k ì]

m,n,k m-i^n-j^k-fr

h’JhPi =o mi » ni A =0

u ^ m - i y - m v n - j x- ni, k - p 1 - fe ,] -

m,n,k

l\>h *Pi=0 w*i A^i=0

-¿ ,]} /( / :  + l)(A: + 2), (6.22)

w5[m,/i,& + 2] = ((m + l)(/: + l)M3fw + l,« ,^  + l]+

(n + l)(fc + 1)m4 [m, n + 1, k + 1]) /  (k + \)(k + 2) (6.23)

To solve these equations recursively we can use the initial data to find un[ i j ,p ]  for
i9j  = 0,1,2,. .; p = 0,\.  By backsubstitution we can find the other unknown
coefficients of the series (6.18) up to any order

We first evaluate the unknown coefficients, with z,7,/? =0,1,2,3,4, of the senes
(6.18). With the help of Mathematica, the functions uu u2iu3, uA and u5 can be easily 
evaluated. We find, up to order 4,

2*i Q1/1 1 2^2 ü]f\ 1 2iffc 1 ^  /i^-i 8* a i/i^-i
3 3 1 9 9

fli/1̂ -1 4tx2fli/i^-i /i^-i -̂tx2f\k-\
3 3 12 12 ’ }

«, = 2 W , (6 25)
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(6 26)

(6 27)

u5 = - 8  t2x xx 2f 2k_v (6 28)

These solutions have, of course, the symmetnes discussed în section 4.2

In the same way |<1>|2 can be calculated. Up to order 4, we find

4 l xAf 2k 2_x f c W /i2** 32r4fl1/ 12̂ 1
9 3 3 9

\6 t2 x \a x f  2 k 2x \6 t2 x \a xf  2 k l x
(6.29)

3 3

In addition to the symmetnes of section 4.2, |0 |2 is also invanant under the transfor-
mation (r, xx, x2) -> ( - t , x2 > - x r) .

Let us summanze the results we can obtain by considenng the symmetnes of the
solution whose global existence was proven in Section 4.1: First, if by using
functions like IOI2, F 2, or e , there is a way of defining the positions (jcf (r),jc| (i)),

a = l ,2, of exactly two separate vortices, these two position must lie either on the xx- 
axis or the x2-axis with equal distance from the ongin (We will use the zeros of 

|<I>|2 to define these positions) Any vortex which does not he on either axis 
immediately leads to three other vortices because of the left-nght and up-down 
symmetry of our solution. Since our solution is continuous, these positions will 
change continuously such that at t=0 the two positions coincide, and after the 
collision the vortices move again on either the Jtr axis or x2-axis. This only allows 
for 0 \9 0 ° , or 180° scattenng* Any approximate solution can clearly distinguish 
between these three cases. We have calculated the analytic solution near the ongin, 
which exists according to the Cauchy-Kowalewskyi theorem, and found a further 
symmetry. This symmetry tells us that |<I>|2 looks the same at times ± t before and 
after the collision if together with the transformation ±t  - » +t we exchange the x1 
and the jc2-axis. This means we have 90° scattenng.
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All that is left to show is that there is in fact a way of defining the positions of 
vortices and that there are actually exactly two vortices before and after the 
collision Of course, we can use the zeros of |0 |2 for our definition since we know 
that superconductivity is destroyed at the center of a vortex For approximate 
solutions we would look for the minima of |0 |2. In our case the easiest way of 
finding these is to sum the time-independent terms and the linear terms in <£, which 
are given by the initial data alone. This leads to the expression

IOI2 = / 2 (1 + 4r cos 26 + 4tzk2), (6.30)

from ref. 18 For t* 0 ,  expression (6.30) has exactly two zeros, namely at r = p, 
0 = 7t /2  and d = 3 n / 2  for t>0, and at r  = p, 8 = 0 and 0 = 7t fort<0 Here p is the 
point where k(p) = 1 /  (2|i|). This complete our analysis.
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Chapter 7

Conclusions

Our aim was to discuss vortex-vortex scattering in a mathematically rigorous way on 
the level of the Ginzburg-Landau equations. Guided by various results obtained 
previously, we have formulated a Cauchy problem with Cauchy data which describe 
two flux quanta both sitting at the origin. For this problem we have proven the 
following: First, a unique global finite-energy solution exists. This is the minimal 
requirement that for our data there is a solution for - « > < / <  oo. The existence proof 
also shows how to construct the solution as a limit of a sequence. Using the 
symmetry of the initial data we can obtain our second main result which is a left-nght 
and up-down symmetry, in particular, of the energy density and of |0 |2. This rules 
out all cases other than 0°, 90° or 180° scattering of two vortices. Third, we have 
shown that a local solution exists near the origin, and have used this solution to 
establish 90° scattering. Our arguments depend on the fact that, using jOj2, we can 
define the location of the vortices and find that there are exactly two for t* 0.

)

46



Appendix A

Program Listings

Step[0]

Clear[a,f,k,g,z,d,xl ,x2,t]

Clear[sl,s2,m,n,q,il.jl,pl,inl,nl,ql,i,j,p,ul,u2,c0,cl,c2]
Clear[ A 1, A2,U,U 1 ,U2,U3,U4,U5,Ut 1 ,Ut2,At 1, At2]

Clear[01,0 2 ,0 3 ,0 4 ,0 5 ,0 6 ,0 7 ,0 8 ,0 9 ,0 1 0 ,0 1 1 ,0 1 2 ,0 1 3 ,0 1 4 , 

0 15 ,016 ,017 ,018 ,019 ,020 ,021 ,022 ,023]

Step[l]

f[l]:=f[l]
f[2] -=Expand[-(g/24)*f[ 1 ]-(2/3)f[ 1 ] *a[ 1]] 

f[3]:=Expand[(l/8)*fïl]*(a[l])A2-(l/4)*f[l]*a[2]-(l/4)*f[2]*a[lh  
(g/64)*f[2]]

f[n_Integer]:=Expand[(-l/(4(nA2-l)))*(g/2)*(f[n-l]-
Sum[f[m]*f[i-m]*ftn-i-1], {i,2,n-2}, {m, 1 ,i-1 ) ])+ 
(l/(4(nA2-l)))*(4*Sum[f[m]*a[i-m]*a[n-i], {i,2,n-1}, (m, l,i-1} ]- 
8*Sum[f[m]*a[n-m],{m,l,n-l}])] /,(n>3)

a[l]:=a[l]
a[2].=0

a[3]:=Expand[(-l/24)*((f[l])A2)]
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a[n_Integer]:=Expand[(l/(4n(n-l)))*(Sum[f[rn]*f[i-m]*a[n-i-l],{i,2,n-2}, 
{m ,l,i-l }]-Sum[f[m]*f[n-m-l],{m,l,n-2}])] /;(n>3)

k[-l]:=k[-l]
k[0]-=0
k[l]-=k[l]

k[n_Integer]-=Expand[(l/(4(nA2-l)))*Sum[Sum[f[i]*f[n-i-j-l]*k[j],
{i, 1 ,n-j-2} ], {j ,-1 ,n-3} ]] /;(n>l)

Step [2]

0 1 [x l_ ,x2_,0J =(((x 1 )A2-(x2) A2)/((x 1 )A2+(x2) A2))* 

Sum[f[i]*((xl)A2+(x2)A2)Ai, {l, 1,8}]; 
C)2[xl_,x2_,0J=Together[%],
U1 [x l_,x2_,0_]=Expand[%],
0 3[x l_ ,x2_ ,0 j= ((2  x l x2)/((x 1 )A2+(x2)A2))*

Sum[f[i] * ((x 1) A2+(x2) A2)Ai, { i, 1,8 J ]; 
O4[xl_,x2_,0J=Together[%],
U2[x 1 _,x2_,0_]=Expand All [% ]; 

O5[xl_,x2_,0J=2*(Sum[fIi]*((xl)A2+(x2)A2)Ai, {j, 1,8 }]* 

(Sum[k[i]*((xl )A2+(x2)A2)Ai, {i,l ,8}]+ 
k[-1 ] *((x 1 )A2+(x2)A2) A(-1))), 

O6[xl_,x2_,0J=Together[%],
Utl [xl_,x2_,0_]=ExpandAlIf%];
Ut2[xl_,x2_,0J=0;
07[x l_,x2_,0J=-2*x2*Sum[a[i]*((x 1 )A2+(x2)A2)A(i-1), {i, 1,8} ];
08  [xl_ ,x2_,0J =Together[%];
Al[xl_,x2_,0_]=Expand[%];
09[x l_,x2_,0J=2*x 1 *Sum[a[i]((x 1 )A2+(x2)A2)A(i-1), {l, 1,8} ], 
010[xl_,x2_,0_J=Together[%];

A2[xl_,x2_,0J=Expand[%];

Oll[xl_,x2_,0J=-4*x2*Sum [(i+l)*k[i]*((xl)A2+(x2)A2)A(i-l),{i,l,8}],
012[xl_,x2_,0_]=Together[%];
Atl[xl_,x2_,0_]=Expand[%],

013[xl_,x2_,0_]=-4*xl*Sum [(i+l)*k[i]*((xl)A2+(x2)A2)A(i-l),{i,l,8}],
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1

Ol 4[x l_,x2_,0J=Together[%] ;
At2[x l_,x2_,0_] =Expand[%] ;

[B]

ul[0,0,0]=Coefficient[z*Ul[xl,x2,0],z]A x lo O  / x2->0, 
Do[lf[i+j>0,ul [1 j,0]=Coefficient[U 1 [xl,x2,0],(xl)Ai(x2)Aj]

Axl->0 Ax2->0J ,{i,0,16},0,0,16}], 
u2[0,0,0]=Coefficient[z*U2[xl,x2,0],z]/. xl->0 A x2->0; 
Do[If[i+j>0,u2[i,j ,0]=Coefficient[U2[x 1 ,x2,0] ,(x 1 )Ai(x2)Aj]

Axl->0 /.x2->0,] ,{i,0,16},{j,0,16}], 
ul[0,0,l]=Coefficient[z*Utl[xl,x2,0],z]A xl->0 /  x2->0; 
Do[lf[i+j>0,u 1 [i,j, 1 ] =Coefficient[Ut 1 [x 1 ,x2,0] ,(x 1 )Ai(x2)Aj]

A x l ->0 /.x2->0 ,] ,{i,0,16),{j,0,16}]; 
u2[0,0,l]=Coefficient[z*Ut2[xl,x2,0],z]A x l->0 A x2->0; 
Do[If[i+j>0,u2[i,j, l]=Coefficient[Ut2[x 1 ,x2,0] ,(x 1 )Ai(x2)Aj]

Axl->0 /.x2->0, ] , {i,0,16},0,0,16}], 
cl[0,0,0]=Coefficient[z*Al[xl,x2,0],z]A x l ->0 A x2->0; 
Do[lfli+j>0,c 1 [î j,0]=Coefficient[ A1 [x 1 ,x2,0] ,(x 1 ) Ai(x2)Aj]

Axl->0 Ax2->0 ,],{i,0,16},{j,0,16}]; 
c2[0,0,0]=Coefficient[z*A2[xl,x2,0],z]A xl->0 A x2->0; 
Do[If[i+j>0,c2[i,j,0]=Coeffìcient[A2[x 1 ,x2,0],(x l)Ai(x2)Aj]

Axl->0 Ax2->0 ,],{i,0,16),0,0,16}]; 
cl[0,0,l]=Coefficient[z*Atl[xl,x2,0],z]A x l->0 A x2->0, 
Do[lf[i+j>0,c 1 [i j , 1 ]=Coefficient[ At 1 [xl ,x2,0] ,(x 1 )Ai(x2)Aj]

A x l ->0 Ax2->0 ,] ,{i,0,16},0,0,16}], 
c2[0,0,l]=Coefficient[z*Atl[xl,x2,0],z]A x l->0 A x2->0,
Do[If[i+j >0,c2[ij, 1 ]=Coefficient[ At2[x 1 ,x2,0] ,(x 1 )Ai(x2)Aj]

Axl->0 Ax2->0,] ,{i,0,16},0,0,16}]; 
Do[c0[i,j,p]=0,{i,0,16},0,0,16},{p,0,1}];

Step [3]

[A]

Do[Do[
ul[m,n,q+2]^ l/((q+ l)(q+ 2)))*((m+l)*(m+2)*ul[m+2,n,q]+

(n+l)*(n+2)*ul[m,n+2,q]+
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Expand[Sum[u 1 [i 1 j  1 ,p 1 ] *cO[m 1 ,n 1 ,q 1 ]*cO[m-i 1 -m 1 ,n-j 1 -n 1 ,q-p 1 -q 1 ], 
{il,0,m },{]l,0,n},{pl,0,q},{m l,0,m -il},{n l,0,n-jl),{ql,0,q-pl}]]- 
Expand[Sum[ul[il jl,p l]*cl[m l,n l,q l]*cl[m -il-m l,n -jl-n l,q -p l-q l], 
{il, 0,m},{jl,0,n}, {pi, 0,q}, {ml, 0,m -il},{n l,0, n-jl },{ql,0,q-pl 111- 
Exp and[Sum [ul[il,jl,pl]*c2[m l,nl,ql]*  

c2[m -il-m l,n-jl-nl,q-pl-ql],{il,0,m },{jl,0,n},{pl,0,q},
{ml ,0,m-i 1}, {n 1,0,n-j 1}, {ql ,0,q-p 1} ]]- 
Expand[Sum[(ql+l)*cO[ml,nl ,ql+l]*u2[m-m l,n-nl,q-ql], 
{m l,0,m },{nl,0,n},(ql,0,q}]]+
Expand[Sum[(ml+l)*cl[ml+l,nl,ql]*u2[m -ml,n-nl,q-ql],

{m l,0,m },{nl,0,n},{ql,0,q}]]+
Expand[Sum[(nl+l)*c2[ml,nl+l,ql]*u2[m-ml,n-nl,q-ql],
{m l,0,m },{nl,0,n),{ql,0,q}]]-
Expand[2*Sum[(ql+l)*u2[ml,nl,ql+l]*cO[m-ml,n-nl,q-ql],
{m l,0,m ),{nl,0,n],{ql,0,q}]]+
Expand[2*Sum[(ml+l)*u2[m l+l,nl,ql]*cl[m -ml,n-nl,q-ql],
{m l,0,m },{nl,0,n),{ql,0,q)]]+
Expand[2*Sum| (n 1+1 )*u2[ml ,n 1+1 ,q 1 ]*c2[m-m 1 ,n-n 1 ,q-q 1 ],
{m l ,0,m}, {n 1,0,n }, {ql ,0,q) ]]+Expand[(g/2)*u 1 [m,n,q]]- 
Expand[(g/2)*Sum[ul[il jl,p l]* u l[m l,n l,q l]*  

ul[m -il-m l,n-jl-n l,q-pl-q l],{il,0 ,m },{jl,0,n},(p l,0,q},
{m l,0 ,m -il}, {n 1,0,n-j 1}, {ql ,0,q-p 1} ]]- 
Expand[(g/2)*Sum[u 1 [i 1 j  1 ,p 1 ]*u2[m 1 ,n 1 ,q 1 ]* 

u2[m -il-m l,n-jl-nl,q-pl-ql],{il,0,m },{jl,0,n},{pl,0,q},
{ml ,0,m -il} ,{nl ,0,n-j 1}, {ql ,0,q-pl}]]);

u2[m,n,q+2]=(l/((q+l)(q+2)))*((m+l)*(m+2)*u2[m+2,n,q]+
(n+l)*(n+2)*u2[m,n+2,ql+
Expandf Sum [u2[iljl,p l]*c0[m l,nl,ql]*  

c0[m -il-m l,n-jl-nl,q-pl-ql],{il,0,m },{jl,0,n),{pl,0,q},
{m l ,0,m -il}, {n 1,0,n-j 1 ), {q 1,0,q-p 1 ) ]]-
Expand[ Sum [u2[iljl,p l]*cl[m l,n l,q l]*
cl[m -il-m l,n-jl-nl,q -pl-ql],{il,0 ,m ),{jl,0 ,n},{pl,0 ,q},
{ml ,0,m-i 1}, {n 1,0,n-j 1}, {ql ,0,q-pl} ]]- 
Expand[Sum[u2[il ,j 1 ,pl]*c2[ml ,nl ,ql]* 

c2[m -il-m l,n-jl-nl,q-pl-ql],{il,0,m J,{jl,0,n},(pl,0,q}, 
{m l,0.m -il},{n l,0,n-jl},{ql,0,q-p l}l]+  
Expand[Sum[(ql+l)*cO[ml,nl,ql+l]*ul[m-ml,n-nl,q-ql],
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Expand[Sum[c2[i 1 ,j 1 ,p 1] *u 1 [ml ,n 1 ,ql ] * 
ul[m -il-m l,n-jl-n l,q-pl-q l],{il,0 ,m },{jl,0,n},{pl,0,q}, 
{ml,0,m-il },{nl,0,n-jl },{q l,0 ,q-pl}]]- 
Expand[Sum[c2[i 1 ,j 1 ,p 1 ] *u2[ml ,nl ,ql ] * 

u2[m -il-m l,n-jl-nl,q-pl-ql],{il,0,m },{jl,0,n},{pl,0,q},
{ml ,0,m-i 1}, {ni ,0,n-j 1}, {ql ,0,q-pl ) ]]);

cO[m,n,q+2]=Expand[(l/(q+l)*(q+2))*((m+l)*(q+l)*cl[m+l,n,q+l]+ 
(n+l)*(q+l)*c2[m,n+l,q+l ])],

{m,0,6-q}, {n,0,6-q ) ], {q,0,2} ]

Do[IfI(i+j+p)>4,ul[ij,p]=u2[ij,p]=0],{i,0,4},{j,0,4},{p,0,4}]; 
Do[If[(i+j+p)>4,c0[i,j,p]=cl[ij,p]=c2[ij,p]=0],{i,0,4},{j,0,4},(p,0,4}], 
015=Sum[u 1 [i,j,p]*(x 1 )Ai(x2)Aj(t)Ap, {i,0,4}, {j,0,4}, {p,0,4} ],
U1 [xl_,x2_,tJ=Expand[%];

016=Sum[u2[ij,p]*(xl)Ai(x2)Aj(t)Ap,{i,0,4},{j,0,4},{p,0,4}];
U2[x l_,x2_,t_]=Expand[%],

017=Sum [cl[ij,p]*(xl)Ai(x2)Aj(t)Ap,{i,0,4},{j,0,4},{p,0,4)];
U3[x l_,x2_,t_)=Expand[%];
0 18=Sum[c2[i j,p] *(x 1 )Ai(x2)Aj(t) Ap, {i,0,4}, {j,0,4}, {p,0,4} J, 
U4[xl_,x2_,t_]=Expand[%];

0 19=Sum[cO[i j,p] *(x 1 )Ai(x2)Aj(t)Ap, {i,0,4}, {j ,0,4}, {p ,0,4} ] ;
U5[x l_,x2_,t_]=Expand[ %] ;

Step [4]

Length[U 1 [x 1 ,x2,t]-U 1 [-x 1 ,x2,t]];
Length[U 1 [x 1 ,x2,t]-U 1 [x 1 ,-x2,t]];
Length[U2[x 1 ,x2,t]+U2[-x 1 ,x2,t]] ;
Length[U2[x 1 ,x2,t]+U2[x 1 ,-x2,t]] ;
Length[U3[x 1 ,x2,t]-U3[-x 1 ,x2,t]],

Length[U3[xl,x2,t]+U3[xl,-x2,t]];
Length[U4[xl,x2,t]+U4[-xl,x2,t]];
Length [U4[x 1 ,x2,t]-U4[x 1 ,-x2,t]];

Length[U5[xl,x2,t]+U5[-xl,x2,t]];
Length[U5[x 1 ,x2,t]+U5[x 1 ,-x2,t]],
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