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Abstract

The dynamucs of magnetic monopoles 1s studied Since we set up an mtial
value problem compatible with the slow-motion approximation, our investigation
requires a thorough understanding of the static solutions Therefore we review
those aspects of SU(2) Yang-Mulls-Higgs theory in (3+1)-dimensional Minkowski
space-time necessary for our study, 1n particular, the invariance of the theory under
SU(2) gauge transformation, the Bogomol’ny1-Prasad-Sommerfield limit, certain
associated linear equations and their relation to the Riemann-Hilbert problem We
review the ansatz for n-monopole solutions which leads to the existence of a
GL(2,C) gauge transformation The construction of this transformation, which
before was not given 1n explicit form, 1s our main contribution to setting-up of the
imtial value problem This gauge provides analytic real solutions of the monopole
equattons Our studies lead us to suitable series solutions which we use to
construct a Cauchy problem guided by the 1dea of the slow-motion approximation
Then the existence of a umque time-dependent series solution of this problem near
the ongin 1s shown by using the Cauchy-Kowalewsky: theorem Finally, we use
Mathematica to find the leading terms of the solution which we then use to study
the scattering of two monopoles QOur most interesting finding is evidence of 90°
scattering



Chapter 1

Introduction

In recent decades, these has been great interest in soliton solutions of
nonlinear partial differential equations {see, ¢ g, Ref 1) A soliton 1s a solution of

a nonlnear equation or of a system of equations which retains 1ts form over [time

even after interaction with other solutions The word soliton was comned by
Zabusky and Kruskal after their dicovery that when two or more Korteweg-de
Vries solitary waves collide they do not break up and disperse The solitary \‘vave
was first observed and described by the Scottish scientist and engineer, John gcott
Russell Whilst observing the movement of a canal barge, he noticed a type of

watel wave on the surface of the canal which kept 1ts shape for a very long time

More recently, starting with the work of Nielson and Oleson [2], ‘t Hooft [3]
and Polyakov {4], soliten-like solutions have been found in the Yang-Mills-Higgs

theories  As fundamental theories for different gauge groups, we have the




following examples of Yang-Mills-Higgs theories (I) The electromagnetic
interactions” The gauge group G is the abelian umitary group U(1), and the Higgs
field @ and the Higgs potential V(@) are not present (II) The electromagnetic
and weak mtractions: The gauge group G is the non-abelian unitary group U(2),
and the Higgs field ® 1s a real four-component vector or a complex two-
component vector (III) The strong intractions The gauge group G 1s the non-

abelian group SU(3) and there is no Higgs field @

As an effective theory, we have the examples of the Ginzburg-Landau
theory of superconductivity Here the group G 1s the unitary group U(1) and the
Higgs field @ 1s a two-component real field or one complex field Of great interst
are also the Grand Unified Theories In these theories the gauge group G 1s a Lie
group which contains the electro-weak group U(2) and the strong group SU(3) as
subgroups For example, the Lie group SU(S) could be used and different Higgs
fields have been tried to describe the experiments Both these theories have
soliton-like solutions, the vortex solutions of the Ginzburg-Landau theory and the
magnetic monopoles of the Grand Unified Theories [S] A simplified version of a
Grand Umfied Theory which still has monopole solutions, 1s the SU(2) theory
where the gauge group G 1s the special unitary group SU(2) and the Higgs field ©

1s a real 3-component vector

The magnetic monopole has a long history going back to Dirac [6] Dirac
hypothesized the existence of separate magnetic poles and showed that the
existence of a magnetic pole did not lead to any contradiction on principle with
modern physical 1deas He concluded “ Under these circumstances one would be
supriseed 1f Nature had no use of 1t” Monopoles reemerged as solutions of the
nonlinear system of hyperbolic equations in Minkowski space in Yang-Mills-
Higgs theory These monopoles are soliton-like objects because they have the
same stability of solitons Monopoles, however, seem to generate radiation and do

not seem to emerge unscathed from collisions



After Prasad and Sommerfield had found an explicit monopole solution [7],
the construction of monopole solutions became very important (see, e g, Refs 8,
9 and 10). Ward [11-14] was the first to construct multi-monopole solutions. In
this method the information contained in a self-dual gauge fields is coded in a
certain analytic complex vector bundle 1n terms of a transition matrix This leads
to a procedure for generating self-dual solutions of the Yang-Mills-Higgs
equations Following the geometrical study by Atiyah and Ward [15], which leads
to a series of Ansatze A_ for n>1, Comngan, Fairlie, Yates and Goddard [16]

used the R gauge to write down the explicit construction of the Atiyah and Ward

Ansatze This method is known as the splitting of the transition matrix or the

solution of the Riemann-Hilbert problem

The axially symmetric time-mdependent solution describing two monopoles
sitting on top of each other at the origin of R* was presented by Ward [12] His
construction was not completed, however, the solutions were left in terms of
complex-valued functions of x, y and z Ward showed the existence of a gauge
transformation 1in which the solutions become real-valued functions, but such a
gauge transformation was not given in explicit form Ward [13,14] also introduced

a new sequence of Ansatze A which generates n monopoles solution These

Ansatze lead to a (4n-1)-parameter family of solutions describing n-monopoles
sitting somewhere 1n space  For n=2, the solution 1s a function of one separation
parameter p  For p=0 the solution reduces to the axial symmetric solution For p
different from zero, the solution describes two monopoles located at two distinct
points 1n space, the distance between them being related to p This solution was
found to be not symmetric about any axis in space, even about the line joining
them Commgan and Goddard [17] constructed a static monopole solution of 4n-1

degrees of freedom generalising the Ward two monopole solution

In recent years, there has been considerable interest in studying the
scattering of solitons and soliton-like objects, like vortices or monopoles [18-21]

These studies are based on the 1dea of the slow-motion approximation proposed

7




by Manton [22] 1n the context of SU(2) monopoles [23] For vortices, Ruback
[24] applied the idea that for A =1 and at low energies, the Bogomol’nyi solutions
can be used to approximate time-dependent solutions In Ref. 25 we used a series
solution approach to the study of the scattering of two vortices In that work we
formulated a Cauchy problem and proved that a unique global finite-energy
solution of the Ginzburg-Landau equations exists We studied the symmetry of
the solution which leads to a left-nght and up-down symmetry of the energy
density Then we used the Cauchy-Kowalewsky: theorem to prove that a local
solution of these equations exists near the origin We used this series solution to
establish 90° scattering Using the same techmque, n/n scattering can be
established [26]

In this thesis, we will study scattering of monopoles in the SU(2) model
The SU(2) model is chosen for the following reasons First, the SU(2) model has
many features in common with Grand Unified Theories Second, the SU(2) model
in the Prasad-Sommerfield limit, 1 ¢ with A = 0, and the Ginzburg-Landau theory
with A =1 have many features in common This enables us to use some of the
methods from Ref 25 Finally, to have a hope of success 1n applying our analytic

techmques a fairly simple model has to be chosen

In the second chapter, we will introduce the Yang-Mills-Higgs theory in
(3+1)-dimensional Minkowsk: space-time As an example, we study the SU(2)
model and show that the Lagrangian of this model and the equations of motion are
invanant under a SU(2) gauge transformation We discuss also the Bogomol’nyi-
Prasad-Sommerfield himit 1in great detail and at the end of this chapter we will
study the one-monopole solution In the third chapter, we introduce associated
linear equations and prove that the compatibility conditions of these equations are
the self-duality conditions We will then study the Riemann-Hilbert problem and
the reality of the 2-monopole solutions These studies lead to the existence of a

GL(2,C) gauge transformation which was not given before in explicit form At



the end of this chapter, we will study this gauge transformation and write 1t down

tn explicit form

In the fourth chapter, we will introduce an ansatz given by Ward which
leads to a (4n-1)-parameter family of solutions. These solutions describe n-
monopoles sitting somewhere in space We will study this ansatz for n=2 to
construct the two-monopole solution We will study also the reality and the
regulanty of these solutions and continue our discussion of the previous chapter
At the end of this chapter we review the splitting of the transition matrnix for n=2
In the fifth chapter, we will set up a Cauchy problem for the equations of motion
Guided by the 1dea of the slow-motion approximation, we wili find suitable imtial
data from the series expansions of two separated monopoles solutions In the
sixth chapter, we will study the existence of a unique series solution of this
Cauchy problem near the origin by applying the Cauchy-Kowalewsky1 theorem
Then we will use Mathematica to find the series solutions of this Cauchy problem
near the origin At the end of this chapter we will use these series solutions to

study the scattering of two monopoles This study shows 90° scattering



Chapter 2

Yang-Mills-Higgs Theory

In this chapter we mtroduce the Yang-Mills-Higgs theory in (3+1)-dimensional
Minkowski space-time M* We study the SU(2) model as an example and give the
Euler-Lagrange equations (the equations of motion) We will also show that the
Lagrangian of the SU(2) model and the equations of motion are invariant under
SU(2) gauge transformations We discuss the Bogomol’nyi-Prasad-Sommerfield
limit and introduce the Bogomol’ny1 equations, which are known as the monopole
equations Then we will prove that any solutions of these equations, with A= 0,
will solve the time-independent equations of motion At the end of this chapter the

one-monopole solution 1s studied
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2.1 The Model

In this section we discuss the Yang-Mills-Higgs model in (3+1)-dimensional
Minkowski space-time M* with Lagrangian

£=—%F:VF;“’—%(Du<I))S(D“ ).~ V(@) @1

Here p,v =023, where the indices p and v are raised and lowered with the
metric g=diag(-1,+1,+1,+1) The gauge potentials A, take their values in the Lie
algebra g of a Lie group G. As a Lie algebra valued vector, we can write

A, = Ajt?, a=1,2,3,...,¢, where £ is the dimension of the Lie algebra g, and where

1* are the generators, which we chose to be hermitian with metric I, The Higgs
field @ takes 1ts values in a vector space L ,1e @ 1s a vector of m real functions

®*, s=1,2,3, ,m, where m 1s the dimension of the vector space L with metnic I

[27] The Higgs fields @° are m real functions and the gauge potentials A’ are 4/

real functions of the time variable t and the space variables x', 1=1,2,3

The potential V(®) 1s taken to be a 4-th degree polynomial in @ of the form

V(@) = %(Idf =17 (22)
where the modulus of the Higgs field @ 1s defined by

& = o', (23)
The gauge fields are defined as

Fi, =0,A% -0,A% - C;‘CA';ACV, (24

HV
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in terms of the gauge potentials A} and the structure constants (y. of the Lie

algebra g, with C2 +C& =0 The generators 1 of the Lie group G satisfy the

commutation relation
[ra,rb] =1C5 ¢, , 25)

where the commutator (the poisson bracket), [x,y]=xy-yx, 1s skew-symmetry and

satisfies the Jacobi 1dentity
[%.[y, 2] + [v.[z. x]]+[z.[x,¥]] = O

The gauge fields defined by (2 4) can also be express in the form
F,=E,t.=0,A,-0,A, +i[A,A,] (2 6)

To define the covarniant derivative of the Higgs field ® we use an m-

dimensional representation of the group and of its generators t* Then,
(D,D) =8, +1A2 (1), D', 27)

1s the covanant derivative For example, if we choose L = g, then the Higgs field
@ will take 1ts values 1n the Lie algebra of the Lie group G, and as a Lie algebra
valued vector ®=®%?*, a=1,2,3, ,/ Then, the defimtion of the covanant

denivative, (2 7), reads
(D, ®)* =8,0" - C5,A O° (28)

Next we will list some of the important examples of the Yang-Mills-Higgs

theories, 1 e, we briefly describe important Yang-Mills-Higgs models for different

12




gauge groups As fundamental theories, we have the following examples: (I) The
electromagnatic interractions. The gauge group G 1s the abelian unitary group
U(1), and the Higgs field ® and the Higgs potential V(®) are not present. (II)
The electromagnatic and weak intractions The gauge group G is the non-abelian
unitary group U(2), and the Higgs field @ 1s a real four-component vector or a
complex two-component vector (III) The strong mtractions: The gauge group G

1s the non-abehian group SU(3) and there 1s no Higgs field @

As an effective theory, we have the following example The Ginzburg-
Landau theory of superconductivaity: The group G is the unitary group U(1) and
the Higgs field @ 1s a two-component real field or one complex field Of great
interest are also Grand Unified Theories The gauge group G 1s a Lie group which
contains the electro weak group U(2) and the strong group SU(3) as subgroups
For example, the Lie group SU(5) and different Higgs fields have been tried to
describe the experiments A simple model 1s SU(2) theory The gauge group G
1s the special umitary group SU(2) and the Higgs field @ 1s a real 3-component
vector We chose to study this SU(2) model for the following reasons (1) The
SU(2) mode! has many features of the Grand Umfied Theories (2) The SU(2)
model with A =0 and the Ginzburg-Landau theory with A =1 have many

features 1n common

2.2 The SU(2) Model

In this thesis, as an example which has many features of the Grand Unified

Theories, we chose the gauge group G to be the non-abelien group SU(2) which 1s
of dimension £=3 We choose the Higgs field <& to be a real 3-component vector

Then the Lagrangian (2 1) will take the form

£=—%Fjv1?;“ —%(Dud))a(D“CD)a ~V(@) 2 9)

13




If we express the generators of the gauge group 1n terms of the Pauli matrices

S R T () I ™

11
[—oa —ob]=%eab°o° @.11)

The gauge fields (2 4) and the covanant derivatives (2 8) of the Higgs field @ can

be written 1n the form
E, = 0,A% —8 A% —e™ADAS, (212)
(D, @)* = 5,0° - ™AL D°, (213)

respectively, with €j53 = +1, and the ¢ tensor totally antisymmetric Note that

" 4, =283, where & 15 the Kronecker delta

Next we will prove that the Lagrangian of the SU(2) model (2 9) 1s invariant

under the gauge transformation
(A", D) > (A™, D) = (0A 0™ +1(F'0)o ™, 0de™), (2 14)

where @ 1s an element of the Lie group SU(2) and ®=®%, To prove the

invariance of the Lagrangian (2 9), we use the fact that, 0o ™' = I, which yields

o(8,0™")=-(3,m)e™ (2 15)

14




Making use of the identity (2 15), we can easily prove the following
(DY = (8,0+i[A,,, D)) =0(D Do, (2 16-a)
o r__ -1
F,=(0,A,-0A,+1[A,A,])=0F,0 (2 16-b)

Hence (2 16-a,b), with the fact that tr(A B)=tr(B A), yields

(D,®)*(D*aY, = 2tr{(D,®)(D*DY) = (D &) (D*®),, (2 17-a)
FRE = 2t F, F*) = F2,EY, (2 17-b)
@ = 2@ = 2t(D D) = | TP, (2 17-¢)

which establishes that the Lagrangian (2 9) 1s mvariant under the SU(2) gauge

transformatson (2 14)

2.3 The Equations of Motion

In this section we will dernive the equations of motion corresponding to the
Lagrangian (2 9) To do that, we will use the usual vanational technique, which in

our case, leads to the variation equattons

ofor) ar .
ax“LacD; J ot (2 18-2)
ol ar) or

- =0 -
0X”L6A3,HJ a0 (2 18-b)

15




where

or O op*
Vik T ggh? BT o

First if we use the vartation equatton (2 18-a) and the Lagrangian (2 9), then

we can denve the following

aa(ﬁ =—(D"D), ac?)a (D, )¢ - ;; = —(D*®), (A 52) - ;‘;
— e A(DHD), - g 2 19)
i (agﬁf)j =" »((DF’@L i ‘SdEfAZCDf))’
which can be easily simplified to the form
a,(a (gé)a)): -a{(D*@) 838 = -au( D @), (2 20)

Next the variation equation (2 18-b) and the Lagrangian (2 9) yield the

following
of 1 d 3
— @k _ T d _ P D d
OAY 2 OA® Fou = (D7) aAi( o

and 1f we make use of ;6% =6:5? 8587, then we can easily wnte the above

equation 1n the form

16



oL
oA®

= AF* - (D'D), D,

We can also derive

a{a(:iaj = a{-%Fg’c a(afA S (aPAi -0, A‘; gl AEAf,)}

which yields

( )
a£ l o vea voa —_
. a(apA:)J: o Srpeeres -atmi) ol

Substituting (2 19) and (2 20) into the equation (2 18-a), yields

8,(D*®) —e*AR(D D), - ;; =(p Do) - ;; =0,

which can be written in the form

V(D)

DuD“CD: >0

And substituting (2 21) and (2 22) into the equation (2 18-b), yields

8"~ ALE +2™ (D'D), @, = (D, F*) +&**(D'®), @, =

which can be written 1n the form

17

221)

(2 22)

(2 23)



D,F™ = -i[®,D"®]. (2 24)

The equations (223) and (224) are the equations of motion of the
Lagrangian (2.9), which are also known as the Euler-Lagrange equations Jaffe
and Taubes [5] proved that finite energy ensures that solutions to these equations

satisfy the boundary conditions

D] — 1, IF

uv

>0, [D@-0, (2 25)

uniformly as & —> o That the equations of motion are mvariant under the gauge

transformation (2.14) follows from the invanance of the Lagrangian (2 9) It can
also be shown by using the same techmiques we have used in the previous section
We will consider any two solutions (A,,®) and (A}, ®’) of these equations to
describe the same physical situation if they are related to each other by the gauge

transformation (2 14)

2.4 The Monopole Equations

In this section we will introduce the Bogomol’nyi-Prasad-Sommerfield (BPS) limit
[28,7] and prove that any solution of the Bogomol’ny1 equations, with Ag =0, will

satisfy the equations of motion To do that, let us consider the potential energy

=143 l 1Rt i 1 I }
5/&_Id x{z(BaBa)+2(D ) (D'D) + V@), (2 26)
where

1 1 yk

B' = 26" Fy, (227)
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1s the non-abelian magnetic field. Note that the spatial indices of €”* are raised

and lowered with the metric g=diag(+1,+1,+1) and that g5, =1.

Bogomol’nyi [28] pointed out that the potential energy E, can be written in

the form
E,= f d’x{%[B; T (D'w),] + V(CD)}if d3x{B;(D'CD)a} (228)

The last integral 1s always an integer multiple of4xn [S]. Thus integer n 1s called

“the monopole number Equation (2 28) implies that £, > 4inint  If we consider

the equality
£, =4z, (229)

then for A > 0, the only solution of the equation (229)1s £, =n =0, and (2 ?:9)
can only be satisfied for A =0; if [n|>0 A =0 1s the Bogomol’ny1-Prasad-

Sommerfield (BPS) hmit [28,7] In the Bogomol'nyi-Prasad-Sommerfield limit

the potential energy (2 28) attains its lower bound 1f the fields satisfy the equations
B' = +D'D, (2 30)

with 1=1,2,3, and for n>0 or n<0, respectively Equations (2 30) are known as the
Bogomol’ny1 equations In the following, we will concentrate on n>0 The n<0

case can be dealt with 1n a similar fashion

In this limit any static solution of the equations (2 30), with Ay =0, also

satisfied the equations of motion To prove this fact and to prepare for the
monopole construction 1n the next chapter, we study the following two results 1n

the BPS limit  (I) If we 1dentify @ with A4 and assume that all the fields are x, -

19




independent, then the Bogomol’nyi equations (2 30) for n>0 are equivalent to the
self-duality conditions

F;xv = F;:v 23 1)

Here Fj, ate the dual fields

* 1 po
Fp,v = Eepvch

for p,v,p,0=1,2,3,4, X eR*, with metnic g=diag(+1,+1,+1,+1) We can write

down the self-duality conditions in the form
F,=Ey;, Fy =-F,, F,=F, (232)
(II) Under the same assumptions, the equations of motion,

D'F,, =0, . (2 33)

are equivalent to the time-independent equations of motion (2 23) and (2 24),

where the equations (2 33) are the equations of motion of the Lagrangian of the

Yang-Mills model 1n Euclidean space R*, which 1s of the form

! y
L= F

To prove the first result, we write down the Bogomol’nyt equations (2 30)

for 1=1,2,3, and 1dentify @ with A, Hence, for example for =1, the two sides of

equations (2 30) can be written as follows

20



D'®=D,®=,®+1[A,,P)=F,, | (2.34-a)

1
B'= ‘2‘(8123F23 +£"2F,,) = ,, (2 34-b)

Hence (2 34-a,b), yields the first condition of (2.32) Simularly, 1f we wnte down
(2 30) for 1=2,3, then we will get the other two conditions, which will establish the

first result

To prove the second result, we write down (2.33) for u=4 and p=12,3, as

follows

D'F,, =0, D'F, =0, (2 35)

1v

’

which can be rewritten 1n the form

D’F,, =0, (2 36-a)
D*F4 +D'F, =0, (2 36-b)

respectively If we identify A, with @, then we can write the following

F,=D,0, (237)
which yields
D*F, =1[®,D @) (2 38)

Now (2 36-a) and (2 37) yield

o1 )



DD'® =0, | (239)
and if we make use of (3.37) and (3.38) then (3 36-b) can be written in the form
D F¥=i[®,D'd]. | (2 40)

The equattons (2 39) and (2 40) are just the time-independent equations of motion
(2 23) and (2 24) 1n the BPS limit, which establishes the second result

The two results together with the Bianchi identity

1

v
DFW—O, (241)

establish the fact that the Bogomol’ny1 equations, with A =0, are equivalent to
.the time-independent equations of motion (2 23) and (2 24) m the BPS himit This
unplies that any x4-independent solutions of the self-duality conditions will
satisfy the ime-independent equations of motion In addition, any solutions of the
Bogomol’ny1 equations (2 30), with Ay =0, satisfying the boundary conditions
(2 25) are known as the monopole solutions and hence the Bogomol’ny1 equations

(2 30) become the monopole equations

L

2.5 The Prasad-Sommerfield Monopole

For monopole number n=1, solutions of the equations of motion (2 23) and (2 24),

and of the Bogomol’ny1 equations (2 30), are not too difficult to find 't Hooft
[3] and Polyakov [4] found a monopole solultlon of the equations of motion n
terms of radial functions The existence of radial functions with the night
properties was rigorously proven by Tyupkin et al [29] In the BPS limut, the

solution can actually be given explicitly on terms of elementary functions This
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was done by Prasad and Sommerfield [7] without making use of the Bogomol'nyi
equations (2.30) With the help of the Bogomoi’nyi equations, the construction of

the n=1 monopole solutions is much simpler [8], as we will show now.

The Higgs field @ is a linear combination of the generators t*, where the
coefficients are function of the space variable x' The simplest combination of

such a Lie algebra valued function 1s x,t* Therefore, because of the first

asymptotic condition in (225), we would 'try x,t"/r, where rz,/x‘xl.

Furthermore, the simplest forms of possible gauge potentials A, are, EqyX°T",

x,x’t,,and t, Because of the third condition in (2.25), asymptotically we want
D®= (D ®)*t, = (5,0° - APd)t, =0, (2 42)

tohold We find that A, of the form A, = —¢, x'r?t? satisfies equation (2 42)

ay

The expression we have so far are not defined at the origin, so 1t 1s natural to

try the following ansatz

a J

=@ “:K(r)-)-(;*‘ca, A, =AM =, H() 1" 2 43)
r

ay

Thus yields the following

1 —— 1+ —5x'x%, (2 44-2)
r r ro

H X .2 2
B' = (7) rt! —(Ej XX 4a +—2Er‘ - —=x'x*7? (2 44-b)
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Now the Bogomol’nyi equations (2 30) are used (for n>0), which leads to

the following equations

r2¥K=H(2—H), %=K(I—H) . (2 45)
After a change of vanables,

K(r) = k(r) -%, H(r) = 1-r1h(r) (2 46)
we have \

k'(r) = -h*(x), h(r) = -h()k(r) (2 47)

Equations (2 47) yield |

(kz(r)—hz(r))’ =0, }

i

and because of the asymptotic condition, k — 1, and h — 0 as r — o, k?-h%=1

must hold Hence, finally we have k' = 1-k?,'which yiclds

1
k(r) = coth(r), h(r) = smhkr) (2 48)

f

b

We have chosen those solutions of (2 30) which satisfy the asymptotic
condition (2 25) at infinity, and have the correct behaviour at the origin to make

them smooth solutions In fact,

@(112+2“ 16+)I“ ’ 250
=l-——r"+—1r" - r T -
3745 945" T ams X (2 50-a)
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1 7 31 127 )
A =—¢ |=_ 2 4_ —r°+....| x't° 2.50-b
‘ 830(6 3607 T15120° 604800 (2.50-b)

are the first few terms in the Taylor series representation of the solutions This

shows that @°, A? € Cw(RS)

Equations (2 43), (2 46) and (2 48) also show that

1
1
1

B=0=%=0

|
Hence the maximum of the Higgs potentials (2 2) 15 at the origin Fig. 1 shows
that for the Prasad-Sommerfield monopole the maximum of the potential energy

density

K? H? K}(1-H)* H?Q2-HY
€= +—+ 5 + 7
2 r r 2r

1 4
=— ——coth(r) cosech(r)+2 coth? (r) cosech? (r)+ cosech® (r), (@251)
r r

i1s also at the origin  In the following, we will sometimes refer to the zeros of |Q
as the locations of the monopoles, although the location of an extended object 1s

not strictly defined

In this section we have seen that the construction of the n=1 monopole
solution 1s not too difficult The construction of monopoles with n>1 turned out

to be much more involved We will turn to this construction 1n the next chapter

!

r
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Contour plot of the energy density 1n the xy-plane

Sommerfield monopole

for the Prasad
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Chapter 3

General Monopole Construction

In this chapter we introduce associated linear equations known as the Lax-pair
equations and prove that the compatibility conditions of these equations are the
self-duality conditions To solve these equations we will study the Riemann-
Hilbert problem and because the solution of this problem may not lead to real-
valued solutions, we will study the reality of these solutions in great detail This
study will lead us to the existence of a GL(2,C) gauge transformation which
before was not given 1n explicit form We W:l“ study this gauge transformation

and write 1t down 1 explicit form At the end of this chapter, this gauge

transformation 1s studied 1n detail




3.1 The Associate Linear Equations

In this section we show that solutions of the self-duality equations (2.31) can be
found by solving associated first order linear differential equations. These Lax-
pair equations were given by Zakharov [30]. 1 They also are the starting point of
the Ward construction [11,12,13] To do ﬂn§, we' introduce first the associated
linear equations

M,k =1(D_k) 31

Here a,a'=12, M, =A_,-LA,,, and k is a 2x2 matrix The differential

operator D, 1s defined by

0

D, =0, —C0y7> Oy = — 32
o a'l C a’2 (+X¢] x> ( )

|

The coordinates x*® and x* are related through the equation

(x" x2) (x4 x? +1x'
- ,

x*! x?) \-x?+x' x* -1

!

Untl now x* were the standard coordinates on the Euchidian space R* Now we
treat x* and x*® as the coordinates of the complexified Euchdian space At the

end of the construction we, of course, have to 'go back to the real coordnates x*

The fields A ., and A, are related through the equation
|

Aggdx™® = A dx* | (34)

a'a

Grven the linear equations (3 1) 1t 1s easy to prove that their compatibility

!
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conditions are the self-duality conditions. To prove this fact we rewrite the linear

equations (3.1) in the form

(M, ~iD, )k =0 | 35)

i

Then by operating on (3 5) with the operator £**D,, we can write down the

following equation

£ Dy (Mo k) - 8D, Dok =0, (3 6)

where g!! =% =0, and g2 =—¢21=1. The commutativity of the derivative D,

!
and the anti-symmetry of the symbol £*® lead to the following identity

£7“D_ Dk =0 | 37

4

Making use of this identity and of (3 5), we can write down (3 6) 1n the form

(e**DeMqy +18**MaMe )k =0, 33

where the left-hand side 1s a product of the matrix 1 brackets and the matrix k

If we choose the matrix k such that det k=0, then the left matrix of equation

(3 8) must be the zero matrix, which leads to the following equation

|

DM, —IM,M, —~D,M, +1M;M, =0 . 39
Also, by making use of

Fra pp = PuaB s~ OppAaa + lAgwsAgpl, (3 10)
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with B,B’= 1,2, we can easily write equation (3 9) as a polynomial of degree two in

C as follows,

Fi21 = C(F221 + Fii22) +C2F12,22 =0 (311)
Equation (3 11) implies the three conditions,

Fu,zx =0, F12,22 =0, F12,21 + Fll,22 =0 € 12)

To prove that the conditions (3 12) are equivalent to the self-duality

conditions (2 32), we use the relation (3 4) and express the fields A, 1n terms of

A, as
1 1,
Ay = 5(A4 - 1A3), Ay = E(AA +1A3),
’ (3 13)
~1 -1
v Ap = _2'(A1 +1A2)’ Ay = 7(A1 - 1A2)
By using (3 3), we can express the dernivatives d,,. in terms of J,, as
1 1
Oy = (2 - 185), O = (34 +183),
| (3 14)
-1 -1/
O =5 (0, +18,), 0y =5 (0,-1,)

Substituting (3 13) and (3 14) into (3 12), 'we can write down these three
conditions 1n the form of the self-duality conditions (2 32) Thus establishes that
the compatibility conditions of the linear equations (3 1) are the self-duality

conditions
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3.2 The Riemann-Hilbert Problem

Any analytic nonsingular matrix function G of a complex variable A defined in a
neighborhood of the unit circle admts a decon%lposition G() = ¢oAd.,, where
15 analytic in the interior of the unit circle, ¢ in the exterior of the unit circle
mcluding oo, and A 1s a diagonal matrix whose entries are integral powers of A
Any such decomposition is called a Birkhoff decomposition, which unfortunatety
1s hard to find In the case where the dlagona{l matrix A 1s equal to the identity
matrix, the Birkhoff decomposition 1s called the solution of the Riemann-Hilbert
problem (R-H-P)
|

We have proved m the previous section that the problem of finding solutions
of the self-duality conditions (2 32) can be reduce to finding matrices A;u, and k
which satisfy the linear equations (3 1) The A . matrices can be obtained from
a nonsingular matrix k 1f (Dm,k)k_I is a linear function 1n ¢. In this section we
will show that such a matrix k can be found by lstudymg the solution of the R-H-P
To do that, let us assume first that g 1s an analytic matrix in the annular region
U, nU_ containing the umt circle || =1 Here U, contains the pomnt £ =0,
and U_ contains the pomnt £ =c We assume also that detg =1, and that g

satisfies the equations {

D,E=0, o' =12 | (3 15)

The R-H-P 1s to find two matrices Ei with unit determinants, such that

- |
|

=k k., | (3 16)

where k, are analytic matrices in U, and U_, respectively Operating on both

sides of (3 16) with the operator D yields
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(DK KT = (Do ko )KL (3.17)

!
The left-hand side is clearly a Taylor series in §, and the Laurent expansion on the

right-hand side can not contain any higher powérs than €. Hence both sides of the
equation (3 17) are a linear function in £, which establishes that solutions of the

self-duality conditions can be found by solving'the R-H-P

Furthermore, we would like to ensure that the solutions of the R-H-P, which
solve the self-duality conditions, have the following properties:

(1) The gauge potentials A, (x) must take their values in the Lie algebra g of the
Lie group SU(2), 1€ the fields A (x) must sat{sfy,

tr(A,, (x))=0, ‘ (3 18-a)
AL (x)=A,(x) (3 18-b)

Here A} 1s the hermitean conjugate of A, defined as follows, (A=A,

where Ku 1s the complex cojugate To ensure that the solution of the R-H-P leads
to solutions satisfying the conditions (3 18-a,b) we will study in the next section
the reality conditions in great detail and our study will continue in the next

chapter (2) It 1s also required that the solutions of the self-duality conditions

must be independent of the fourth component x* 1n order to be time-independent
solutions of the equations of motion, 1€, the solutions must satisfy the time
independence condition |

8yA, =0 ‘ 3 19)

n
In the next chapter, we will see that this requirement can be incorporated 1n the

construction of the transition matrix ‘
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(3) The solutions must have finite energy, or; according to (2.29), finite winding
number n. This condition will also be discugsed in the next chapter, where we
construct the n=2 monopole. ‘

(4) An essential requirement 1s that the ﬁelds:}Au (x) are C*(R3) functions. We
will only need that the construction of the tran!sitlons matnx leads to C” functions

for monopoles close together [14] This will be shown below.

3.3 The Reality Condition

Given any transition matrix which allows for the decomposition (3 16), the

solution of the R-H-P may not lead to real solutions. In this section we would

like to 1mpose conditions on the transition matrix such that, for real x*, the fields

A, (x) take their values in the Lie algebra g of the Lie group SU(2) To do that,

we prove the following If the transition matrix g(¢,x) satisfies the conditions

|
|

[BEGX] =8(-¢"%), | (3 20-a)

det( g )=1, ‘ (3 20-b)
|
then 1n some gauge, the fields A, (x) will take their values 1n the Lie algebra g of

the Lie group SU(2), 1e the A  (x) satisfy the properties (3 18-a) and (3 18-b)

'
L
|

We use the fact that both sides of (3 17) are linear functions 1n £ and write,

|
'
'

Aa’l ‘QAaQ = l(Da"]z+)i€:l= I(DQ'E—)E:IL (3 21)

which 1s equivalent to the associate linear equations (3 1) Furst, 1f we choose the
matrices k. such that det(Ei )=1, then (3 21) implies that the trace of A,(x) 1s

zero which establishes that the fields A, (x) have the property (3 18-a)
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|
i
Next we will prove that in some gauge; the fields A (x) have the property
(3.18-b). If we make use of the condition (3.20-2), then (3.16) yields

~ ~ — * —~ ~ —«i *
(9 PRCTAR Y| IR N (6 PR CTERT)

The analyticity properties of k, and k_ imply that both sides of the above
equation are independent of ¢, which allows us to write the products in the form

t

K@ofR (-2 0] =K@k (L 0] = M) (322)

Now & can be set equal to zero in (3 22), which implies that the matrix M(x) 1s

hermitian

The solution of the R-H-P does not determine k , and k_ uniquely In fact,

there exists the gauge freedom,

~

k, >Qk,, k. -0k (3 23)

|
Here the matrix Q (x) 1s an element of the general linear group GL(2,C) The
!

gauge transformation (3 23) yields

AY > AM = QAT (3" Q) (3 24)
The invanance of the Lagrangian (2 9) under t}]‘us gauge transformation, which we
proved 1n the previous chapter, imply that the gauge fields A™™(x) solve the

equations of motion if the A* (x) do

|
'

Under the gauge transformation (3 23)1 the matrix M(x) transforms as

follows,
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M(x) - Q(x) M(x) Q' (x) . (3 25)

Since we can choose Q (x) such that afier the transformation (3 23) we have
|
|

Q (x) M(x) O (x)=+1, (3 26)

we can achieve that M(x)= +1I holds m equatton (3 22) Here I 1s the identity

matrix We assume from now on that such a gauge transformation has been made
The hermiticity condition, A}, = A, can be written as
a

AL =Ay, A;1 =—-Ap,, | (3 27)
which 1s equivalent to ‘

[Au _CA12 ]* = E[A2l - ("E_I)Azz] ' € 28)

If we make use of

A, -CA, =1[Dik, )Tk (Q),

(3 29)

Ag—(~E ™Ay, =T K (-THRN=T ),
|
where |

Df =0y -Coy,, DEC_ =0y, "(“E_})azza (330)

then the equation (3 28) can be written n the form
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[(DFK, ©)K;' O =8I0 k(T HIK (™. (3.31)

We now want to show that (3.31), and that therefore the hermuticity
condition, hold. Making use of (3.22) with M=xI, we get

[k, @ =k g™ (3 32)

-

Together with the 1dentities

Df =g D},
(3.33)
(D5, (K (6) =k, (D5 ©)),

the rnight-hand side of the equation (3 31) can be obtained from the left-hand side
This establishes that the fields A, (x) satisfy the property (3 18-b)

3.4 The Gauge Transformation

In this section we will find the gauge transformation (3 23) by writing down the

gauge matrix € in explicit form To do that let us first wnite the matrix M 1n the

form

M(x) = J | (3 34-a)
My

Equation (3 22) implies that the matrix M 1s hermitian and

m, My, —m,m,, =1 (3 34-b)
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The eigenvalues of the matrix M are

1 ,
Ay = 5{(m“\+ myy) £y, +my)? —4}. (3.35)

|
'

The fact that the matrix M 1s hermitian implies that the eigenvalues A, , are
real functions of x. To ensure that A,, € R and A, #4,, we have to restrict our

attention to one of the cases

1
|
3

my+m,, >2, | (3.36-a)
m,, +my, <2 | (3.36-b)

The eigenvalues given by (3 35) imply that the case (3 36-a) corresponds to the
upper sign 1n (3 26), and the case (3 36-b) corresponds to the lower sign

We now solve our problem of finding an analytic matrix Q satisfying the
equation

I
1
|
1

O (x) Q(x)== M7 (x) (3 37)

If we choose to work with the upper sign, we can find the matrix ) as follows

First we assume that €2 15 a hermitian matrix of the form

(Q, Q)
O(x) =L J (3 38-a)
Q) Qo i .
|
with g
!
Q11 - 2152, =1 (3 38-b)
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|
!
|

Then by substituting (3 34) and (3 38-a) into jequatlon (3 37), we can write down

the following equations,

|

v i
oy +€0y (Y, = My, On + (Y, = my,, (339

Qy (€4 + Q) = —myy, Q,, (€Y, +922) =-my,; (3 40)

Solving equations (3 39) by making use of (3 38-b) yields

' -1
Q,+Q, =1, Q) — 0y, = (myy ~m, )}, (3 41)
where

|
Tl = i\ﬂ +m;; +myp; i (3 42)

From the equations (3 40) we obtam for Q,, and Q, ,

i
-1 -1
Q, =-m, [}, Q,, =-my, [, ,: (3 43)
The equations (3 41) can be solved to give Q1 and O, n the form

-1 ‘ -1
Q“ = (l+m22)r , sz = (1+m“)1"l (3 44)

Now the matnix Q (x) in the gauge transformation (3 23) can be written

(1+m,, -m,,
Q=T ! (3 45)
—m,, l+m,
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1
|
|
The gauge matrix (3.45) satisfies the equation’ (3.26) and hence the reality of the
fields A (x) is guaranteed. In the hext chapter we will see that the matrix (3.45)

leads to the reality of the solutions when we write down the series solutions of the
monopole equations We will also see that the series expansion of the function I,
of (3 42) does not vanish at the origin which will guarantee the regularity of the
solutions This imphes that Q of (3 45) ensures both the reality and the regularity
of the solutions This will become clear m the next section
E

In addition, if we choose to work with ;the upper sign of (3.37), it is also

possible to assume that Q 1s skew-herrmteari, and M satisfies (3.36-a) In this

case we found the matrix Q has the form

(1-my, m;, |
Q-=r; } | (3 46)

m,, 1—my,

where

1"2 :iJ2—(m;|+m22) (3 47)

b
Furthermore, 1f we choose to work with the lower sign of (3 37), then we will
have the following cases (1) If we assume tﬁat Q 1s hermitean and M satisfies
(3 36-b), then the matrix Q can be found in the form (3 46) (2) If we assume that

Q 1s skew-hermitean and M satisfies (3 36-a),5 then the matrix Q can be found 1n

the form (3 45)
l

We will see m the next chapter that the series expansion of the function [,

|
vanishes at the origin which will lead to the singularnty of the series solutions To
ensure regularity of the solutions, we will ‘restrlct our attention, In the next

chapters, to a matrix Q of the form (3 45) I




3.5 Factorization of the Gauge Matrix

In this section we build up the gauge matrix (3.45), which we have found in the
previous section, as a product of two matrices. This study will show that the
gauge transformation (3.32) v;rith Q of the form (3 45) consists of two gauge
transformations, the first 1s a GL(2,C)-gauge transformation to ensure the reality
of the solutions and the second 1s a U(2)-gauge transformation to ensure the
regularity of the solutions Therefore this study will clarify that the gauge

transformation (3 32) with (3 45) 15 a two-1n-one gauge transformation
Let us study again our problem of finding a matrix , such that

QOMQ' =+, (3 48)

and use the fact that the matrix M can be diagonalized with a unitary matrix, say

P This can be written as,

P*MP =D, (349
where D 1s a diagonal matrix By using technmiques of linear algebra we can find
the matrix P as follows First we find the eigenvalues of the matrix M, as we did
in the last section, and the corresponding normalized eigenvectors Then with the
help of the identity

mp —A = —(my; —A2), (3 50)

we can write the matrix P in the form

(351)
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where
N? = myA, + m A, —2. (3.52)

Using (3 51), the diagonal matrix D of (3 49) can be written in the form

D =L J (3 53)
0 A »

Equation (3 49) can be changed to
(PIT)* M(PIT) = 1 (3.54)

If we restrict our attention to the case (3 36-a), the matrix [T can take the form

)
J (3 55)

~ | [my ~2y) -m, )
&= = _L J (3 56)
Vi Aymy, -M(my, —2,)
where
dy, = my, ~ 24, + my, A (3 57)

Equation (3 57), as we will see i the next chapter, implies that the series

expansion of the function d,, vamshes at the origin  This will lead to the
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singulanty of the solutions of the monopole equations. So the ‘textbook’
approach to the problem (3 48) leads to singular solutions, whereas the solution
from section 3.4 is regular Of course, we can always turn one into the other by a .
unitary matrix ®, which will ensure the regularity of the solutions. Without the

result from the previous section such a unitary matrix 1s very hard to find

If we make use of the result of the previous section, it 1s possible to write

this unitary matrix in explicit form To find this matrix, let us first write © as

(0, @)

®= J, (3 58)
0, 0,

0,0 -0,,0, =1, ©,=0,, 0, = '®21 (359

It follows from (3 26) and (3 48) that the umtary matrix ® 1s
0=00" (3 60)
Finally, by substituting (3 45) and (3 56) into (3 60) we can write

: ((1+1,)(1-m, A) m,(1+4,) )
®=

G 61)
SNEM —m,, (1+4,) (1+2)(I=my )
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Chapter 4

The n=2 Monopole Solutions

In this chapter we will introduce an ansatz g, which leads to a (4n-1)-parameter
family of solutions These solutions solve the time-independent equations of
motion (2 23) and (2 24), and describe n-monopoles sitting somewhere 1n space
We will study 1n great detail the ansatz g, for n=2 and then construct 2-monopole
solutions of the monopole equations which will be used to discuss the scattering
of two monopoles We study also the reality of these solutions The regularity of
these solutions will be investigated 1n great detail and at the end of this chapter the

splitting of the transition matrix for n=2 1s reviewed
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4.1 The Ward Ansatz

In the previous chapter we showed that solutions of the equations of motion
(2.23,24) can be found by studying the solution of the R-H-P for a suitable

transition matrix g, In this section we will study an ansatz for g,, given by

Ward [12,13,14] and generalised mn Refs 17,31, which leads to n-monopole
solutions Ward works with the four complex coordmates (©,,®,,7,,m,) on

twistor space, which are related to the coordinates xpq by
w1 X11 X1 (14
= (41)
w2 X21 X22 n2
Then the solutions of these equations form a complex projective line in CP3

space, so to each pomnt 1n R* there exists a complex line in CP3, and each pont

in the complex projective space CP3 les on exactly one such line, unless
n, =, = 0, and 1n this case the twistor fibration sends 1t to infimity. If we remove

the subspace n, = 0 by assuming that =, and n, are not both equal to zero, and

factor the =, -space by the proportionality relation 7, ~ An,, where A 1s a non-

zero complex constant, then we obtamn the complex projective space CP'  This

space can be covered with two patches U, and U_ If we set { = n, / &y, then
we can assume that the patch U, contains the point £ =0 (x, = 0), and the patch
U_ contams the point {=c (n; =0) We define also U, n"U_ to be the

annular region containing the umit circle | = 1

Next we write the equation (4 1) 1n the form,
O = X Ty + X7,

(42)

Wy = Xg Ty + XMy,
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and define new coordinates u and v,

B=10,/T,, v=10,/m, 43)
Making use of (4 2) yields,

W&, x) = 1X,y,6 + 1X 4, V(€. x) =1x,07 +1x,, (4 4)

where p(G,x) for fixed x 1s an analytic function of { m U, and v({ x) 1s an

analytic function of ¢! m U_  Furthermore, for real x, (G, x) and v(¢, x) are

related to each other through the reality condition,

BGx) = ~v(-C%) (45)
We also define

o€ x) = 1€ x) - (G, %), (4 6)

such that for fixed X, ®({,x) 1s an analytic function of ¢ and ' n the annular

region U, mU_  Itisclear that o (£, x) satisfies the reality condition,

(6, x) = o(-C",x) (4 7)

~

J

Ward [12,13,14] and Cornigan and Goddard [17] suggested that a

transition matrix of the form,

(e CDre) (e

gn(€>x):L J’ (4 8)
q—ne—m Wne—m .
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is a good starting point to solve the R-H-P. Here the function vy, ((,x) is a

polynomial of degree nin ¢ and ™' and satisfies the reality condition

Vn(6x) = yu(=C,x) 49)

The solution of the R-H-P for g, of the form (4.8) leads to n-monopole solutions

of the time-independent equations of motion (2.23) and (2,24) These solutions
belong to a (4n-1)-parameter family of solutions, where the (4n-1) parameters

describe the position and the phase angle of each monopole [17].

The transition matrix gn(&,X) is an analytic function for all x € M, where M

is some region in R* For fixed x, g, is an analytic function of £ and £™' only 1n

some annular neighbourhood N [16,17], say
N={C5, <g<d}, (4 10)

such that the neighbourhood N contains the umt circle |¢f =1 Using conditions
(47) and (49), 1t 15 easy to sec that the transition matrx (4 8) satisfies the
conditions (3 20-a,b), which leads to the reality of the fields A, The dependence
of g, on x only through the combination (4 6) ensures the x* -independence

which guarantees that the solution of the R-H-P will lead to solutions satisfying

the ttme-mdependence condition (3 19)

Because n this thesis we are mnterested 1n studying the scattering of two

monopoles, we express g, for n=2, which yields

(\ug‘(e“’+e’“’) Qze"”\‘

“g'z(c,x):L J 411)
€—2e—m wze—w
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The function w,(&,x) is a polynomial of degree 2 in § and ¢™', which will be
discussed below. In the remainder of this chapter we will show how to construct

the 2-monopole solutions with the right properties from this transition matrx.

4.2 The Solution of the R-H-P

In this section we will construct the 2-monopole by solving the R-H-P for g, of
the form (4 12) Because the solution of the R-H-P is very hard to find for the

transition matrix g,, let us introduce first an equivalence relation (~) as follows-
A matrix g, 15 said to be equivalent to the matnix g, (written g,~g,), 1f there
exist two matrices A, and A_ both of them 1n the special linear group SL(2,C),

such that
g =A_gA,, (4 12)

where A, 1s an analytic function in M x U,, and A_ 1s an analytic function 1n

M x U_ If we choose

(¢? o ) et eV
g = P Py = ————, (4 13)
0 Q_ WZ (H)Va C)
1t 1s easy to find the matrices A, and A_, which are of the form
(e_v ()\ ( 0 —et \
A :L J A+:L J (4 14)
0 e’ e’H Czwze*“

The function p, of (4 13), for fixed x, can be expanded as a Laurent series of

the form
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= SALT “.15)

Here the coefficients A, (r =0+1+2+...) are functions of x and the parameters

These coefficients can also be found from the contour integral

_ b g
Ap =547 pydg, (4 16)

where the contour integral is taken around the unit circle || =1 and is such that

the coefficients A, are analytic functions of x in the region M. Furthermore, the

fact that the transition matrix (4.13) satisfies D.g, = 0 y1elds,

Dep, =0 @17)
Equation (4 17) implies that the coefficients A, must satisfy,
aa’lAr—aa’ZAr-H: 0 (4 18)

To solve the R-H-P, we first assume that the transition matrix (4 13) can be
split as follows,

g, =k, (4 19)
-where the matrices k, and k_ are of the form,
k! —(a b) d-bc=1 420
1=l 4> ad-bc=1, (420)
' —[a B] ad—PBy =1 (421
- 'Y 6 3 Y -
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Here a,b,c and d are analytic functionsin M x U, ,and o,B,y and 6 in Mx U_.

By operating on the both sides of (4.19) with the operator (3.2) and making
use of D,.g, =0 we find

ki (Do k) =k.(Dyk') =L (&%) (4.22)
Substituting (4 20,21) into (4 22) yields

(dD,a-bD,c  dD_b-bD_d)

L_.(,x)=
« (&%) LaDa,c—cDa,a bD c—dD_a

(8D o —BD,.y 8D, - PD_35)

= (423)
aD_.y -yD,o BD, .y —6D .

The analyticity properties of the matrices k,, k_ and the fact that the coefficients

A, satisfy the partial differential equation (4 18) imply that L_.(§,x) 1s a linear

function in £ only, which allows us to write
[Agy = CAL) = Lo (G ) (4 24)
If we choose the R, gauge, we can follow the splitting of Ref 16 for a

matrx of the form (4 13), which will be explained 1n detail 1n the last section of

this chapter The linear function L (£, x) can be given 1n the form

| | [(0uF +63,,F) 209,,E )
L,(GX) === (4 25)
2P 25,6 ~(8,,F+Cd,,F)
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Here A, and 8, are as defined by (3 13) and (3 14), respectively, and the

functions E, F and G are given by

|
>
>
|
>

F= G=—2 (4 26-a)

A A

A must be a non vamshing function of x, which is given by

A=A —AA, (4 26-b)

The equation (4 24) with L _.(£,x) of the form (4 25) can be easily expanded for

a’=1,2 to give the fields A ., i the form
8,,F 0 \‘ I( ~0,F —252,13\l
-1 -
Ap = EL J’ Ap = —Z?L J’
-20,,G ~0,,F 0 0,,F
427)
I( -8,,F —26“15\| I( 0, F 0 \|
-1 -1
Ap=r ’ An=on
2F 2
0 0,,F -20,,G ~0,,F
Making use of (3 13,14), we can express the fields A, i terms of A as
follows,

. ( -8,F ~(8, —18,)E)
A, :—L ,
2K\ (8, +18,)G d,F
(4 28-a)
, ( OF 1(8, —18,)E)
A, =— ,
: 2FL—1(84+161)G ~3F
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o,F . -i(8—i0,)E

1
A, =— ,
3 92F
(8, —i9,)G -o,F
(4 28-b)
—0;F (8, —18,)E
1
A4 = E
(8, +18,)G &;F
7

The fields A, (=® ) and A, (=1,2,3) solve the time-independent equations of

motion (2 23,24), and for g, of the form (4 13) these solutions describe two

monopoles sitting somewhere 1n space

4.3 The Reality of the Solutions

The fields ® and A, must satisfy (3 18-a,b) 1n order to be real-valued solutions

but when we write them down as functions of x',x* and x*, we discover th«;lt they
are complex-valued functions In the previous chapter we proved that the gauge
(3 23) exists and guarantees the reality of these fields In this section we will
study the reality of these fields and continue our discussion from the previous

chapter First we make use of (4 19) and write (4 12) 1n the form
%, = Ak, A, (4 29)
The fact that the transition matrix g, satisfies the reality condition (3 20-a) yields
(kO(ATAD (k)" = (kA NATY (k)

and the analyticity property of our matrices imphes that both sides of the above

equation are indeed independent of { This yields
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(K (AT (ALY (kD) = (k) (A (AT (KDY = M, (4.30)

where the superscript zero labels the -independent term of the corresponding

Taylor expension 1n {™' or & respectively, and the matrix M 1s a function of x.

To find the matrix M, we use the notation from section 4.2 and the results of

the sphitting 1n section 4.5, which yields,

( 8o —Bo) [ev 0 ] { 0 e’ ]o {'&o —Eo)
M = — >
L—Yo oo J 0 e”) \—e™" & iye’) \-bo ag

4.31)
(do ~bo) [ 0 —e¥ J (e'“ 0]° ( 8o —%J
- —Co ap ) e Erype™ 0 e} \—Bo ol ’
where
dozczz'yoz , CO:dZZSOZﬁi
¢,=G/+F, d, =E/+F,
(4 32)
2 2
a0:_|§)C|A|—2> B():lgod|A|

By substituting (4 32) into (4 31), we can easily find the matrix M, and by using
this matrix we can write down the matrnix Q of (3 45) in explicit form The series
expansion of the gauge matrix Q will be discussed 1n great detail in the next

chapter

To write the fields A uof (4 28-a,b) 1n the real gauge we make use of the

gauge transformation (3 24) and
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3 b _iAr2
1 | A Aw i
A=At == : (4.33)
2 Z{ A +iA) A}

Then the real fields ¢ and A can be found and are given by
1 - -
@’ = ?{Q@F— 01282, 0,G +£4, ale},

1 ~ ~
o 1@t = “15{291291163F‘Q%2 6,,G+<, ale} )
(4 34-a)
1 ~ —~
(D’l + iqyz = E{“Z%loqzagF"‘%alzG -Q%l aIZE}’

“1( ~ = :
AP = —{Q0,F +,,0,0,3G ~ 5,0 OE | — 21{91151922 - lealgﬂ}’
F

l
(4.34-b)
1 ~ =
Al +1A7 = f{‘szszazF“Q?izauG +0, 643E} _21{92181922 ‘szalgzl},

l(~ ~ =
1 ~ =

(4 34-c)
1 ~ =

I - <
A = {80, F+10,,0,8,6 +190, BB} - 21{010:9, - 01,0, },
1

(4 34-d)
1 ~ =
Ay +1AY = E{ZQzlgzza‘xF*‘ 105,0,G +1€%, ale} ~21{0,,0,0, ’szazﬂzl},
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where

~

B, =0, +19,, Og3 = 04 +105, Q=0+, (4.35)

The fields A} given by the formulas (4 34-a,b,c,d) are real-valued functions.

Furthermore, the x*-dependence will disappear at the last stage of the calculation

as we will see later

4.4 The Regularity of the Solutions

From analytical considerations [5] we have the general result that all solutions are
smooth 1n an appropriate gauge In this section we want to be more specific and

study the regularity of the fields A} given by the formulas (4.34-a,b,c,d). For a
certain choice of p, we will show explicitly the existence of Taylor expansion of

the transition matrix (4 13) as a function of the spatial coordinates and the
parameters 1n some neighborhood of the origin  We will show also that this
expansion leads to power series solutions satisfying the monopole equations This
study will show that the existence of such analytic solutions depends on the
construction of the transition matrix (4 13) We do so because 1n the next chapter
we are going to use the series solutions of the monopole equations to construct
suitable 1nmitial conditions for the equations of motion (2 23) and (2 24) Series
expansions were used before by Soper [32] to study the symmetries of 3 and 4

monopole solutions

It follows from the formulas (4 34-a,b,c,d) that the regularity of the
functions E, F and G of (4 26-a) and the nonvanmishing of the function F lead to the
regulanity of the fields A} From the spliting of the transition matrix (4 13),

which will be discussed 1n the next section, 1t 1s clear that the regulanty of the
functions E, F and G follows immediately from the regularity of the coefficients of

the Laurent expansion (4 15) and the nonvanishing of the determinant (4.26-b)
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To show the existence of Taylor series expansions of the A functions in some

neighborhood of the origin for certain choices of the function p,, let us first

define the annular region N of (4.10) for n=2 by investigating the roots of the
equation y,=0 That the polynomial , satisfies the reality condition (4.9)

implies that the roots of the equation y,=0 come in two pairs, (o,-a™!) and

(B—B™") Therefore, we always have two roots o and B lying inside the unit

circle [¢f =1 This enables us to define 8, and 8_ of (4 10) as follows,

B} R o_ = min{|a"|,

B[} (4.36)

5, = max{|a|,

For certamn data, we assume that an analytic series expansion of the function
p, as a function of the spatial coordinates and the parameters exists in some
neighbourhood, M say, of the origin Then we can write this expansion as a
Laurent series in £ 1n some annular region N contained m N It 1s clear that this
Laurent series 1s analytic for every (x,&) € M x N with coefficients analytic in M
On the other hand, for a Laurent series of the function p, as a function of 1 the
annular region N, we can use the contour integral (4 16) But we found that
proceeding 1n this order the expressions for the 2-monopole solutions are complex
and not regular functions of x',x* and x* Furthermore, these expressions are

very complicated, so any gauge transformation, as suggested in [12], to remove

such singularities 1s very hard to find

To prove explicity the existence of analytic series solutions of the monopole
equations 1n some nerghbourhood of the origin, we consider the axially symmetric

solutions [12,13] Ward chose to work with

v, (G x) =0®(§,x)+n” /4 (437)
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The function p, of (4.13) can be written in the form

( 1 1 ) e2-xs¥2) | e2(-x_c“—z)
—rn2ix? — 4
P2=1e o im/2)  o+i(n/2) - ’ (4 38)

with x, = x' +1x* The transition matrix (4 13) with p, of the form (4 38) leads

to series solutions describing two monopoles sitting on top of each other at the

origin

With the help of Mathematica we expanded the function p, as a Taylor

series of the spatial coordinates in the neighbourhood of the origin  Then we used

this expansion to find the functions A for r = 0,+1,42. Up to 3-rd order we find

8§ 32 128 ¢
Az :[(n_z- n_)XZ (____ 4 ) J 21x s

8 32 16 128 16 128 21x*
A :(——x -7 X, x T T TR )RR _ U J ",
! T S ( n4) B (th )

(4 39)

8 064 16 128 . 21x*
A[——“ PERG J

8 32 5 16 128 16 128 21x4
= Tt e - T Jen

8 32 128 gt
A =(_— - ———z ) tx
D) (nz n4) ( i )zx

By making use of (4 26-b) and the series expansions (4 39) we find the series

expansion of the determinant A 1n the form
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(_ 64 1024 256 2048 )e.m‘ (4 40)

2
- X X_+{(—-
(4 1t6)+_(1'[4 TCG)

It 15 clear from (4 39) and (4.40) that the functions A, for r = 0,+1,+2 have power

series expansions, and additionally, can be shown to satisfy (4 18) The
expansions (4.40) shows that the determinant (4 26-b) has power series expansion

and this expansion does not vanish at least in some neighbourhood of the origin

contamed in M This implies that the functions E, F and G have power series
expansions 1n this neighbourhood From the series expansions (4 39) and (4 40),

we can see that the function F does not vanish in some neighbourhood of the

origin contained 1n M either We found also I’ , of (3.42) to be a non vanishing

function and the gauge matnx Q of (3.45) to be an analytic function of x',x? and

x’ This guarantees the regularity of the fields Al

To be sure that the Taylor series expansion of the function p, leads to
analytic series solutions with the right properties, we went further and calculated
the fields A}, The fields A} are found to be real power series in x',x? and x?
only, which, of course, satisfy the monopole equations (as can be easily checked

using Mathematica) As an example, the series expansions of the Higgs fields ¢*

up to 4-th order are given

24 40 320 48 1664
<I>"=(( X -y Qe T -y (124 - )(x—y)z}

48 80 64 96 3328

2 :((4~—2—)xy+(4+—-7——‘—)(x y+xy*)- 24+ 75~ )Xy22]:
T 3n 1t

(4 41)

32 768 16 512
=((4— s - n ey - (2 22y)
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The leading terms of the Higgs fields (4.41) have the same behaviour as the
solutions discussed by Brown, Prasad and Rossi [33]. We conclude that the
solutions of the monopole equations can be found in terms of analytic power

series 1n the nelghbou}hood of the origin by starting with a function p, with the

nght properties and by choosing a suitable gauge

4.5 The Splitting of the Matrix g,(C,x)

In this section we will find the matnices k, and k_ of (4 20) and (4 21). Our study
1s a review of the splitting of Refs 13, 16, but we will use different techniques n
some stages of the splitting. To find these matrices we substitute the matrices

(4 20) and (4.21) into the equation (4.19). This substitution leads to the following

equations
a=at?+cp,, B=b&%+dp,, 4 42)
y=ct?, §=d¢? (443)

We assumed that a, b, ¢ and d are analytic functions in the region Mx U, and
o,B,y and & 1n the region M xU_ This enables us to write the Taylor series of

the functions a, b, ¢ and d 1n the form
a=2ack,  b=2blY, c=2clt  d=2dlf, (4 44)
k=0 k=0 k=0 k=0

and the functions o, B,y and & in the form

D N R P TN Ty Yo (445)

h=0
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Here the coefficients of these Talylor series are analytic functions of X in the

region M

Substituting (4.44) and (4.45) into (4.43) implies that the functions ¢ and d

are polynomials of degree two 1n £ of the form
2 2
e= 2 g, d=>d,¢t, (4.46)
L=0 L=0

and the functions y and & of (4 45) are polynomuials of degree two 1n &' of the

form
2 2
v=2¢,,67", 6= 2.d, ¢t (447)
L=0 L=0 .

So we have

Yo = Ca, Yy =€y Y2 =Cq»

(4 48)
60:d2, Slzdl’ 62:d0

If we substitute the functions (4 44) and (4 45) into the equations (4 42), we

can express the coefficients a,, b, o, and B, n terms of the coefficents ¢, and

d, This substitution yields

2 2
ay :_ZCLAL—2—k’ b, :_ZdLAL—z—k’ (4 49)
L=0 L=0
2 2 .
Oy :Z(:)CLAuk’ B :gdLAuk (4 50)
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The vamshing of the coefficients of ¢ in the Laurent series of a&? +cp, and

b2 +dp, yields

M

2
CIA,_l = O, ZdlAl—l =O. (4 51)
1=0

1=0

The constraint ad — bc =1 for the functions (4.44) imphes

ad —be = (a,d,y — beCe) +{(a,dg +20d,) = (bycy + by, )+

w 2

2. 2(a,_ d ~b,_c )tk=1 (452

k=2L=0

By making use of (4 49) and (4 51) we can prove that the coefficient of £ 1n

(4 52) 1s 1dentically zero The coefficients of £* for k>1 can be simply given by

2 2 2 2 2
Lzo(ak—LdL -b,_c)=- ZZ(CldLAI—Z-k+L)+LZOZO(dICLAl-—Z—IHL)

L=01=0
which also 1s clearly zero Now (4 52) 1s reduced to the following condition
a,dg—byc, =1 (4 53)

We can use the same technique and show that the constraint ad— By =1

can be reduce to the condition
agd, =By, =1 (4 54)

If we substitute (4 44) and (4 45) nto (4 23) and make use of (4 46) and

(4 47), we can find the matrix elements of the matrix (4 23),
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L, L L, L
La,(C,x)=[ 11 12J=[ 1 ﬁlZJ’ (4.55)

21 L22 L21 22

with L,, =-L,, and £22 =-L,,. The matrix elements can be simplified as

follows First we can write L,; 1n the form

L,, =(dy8,,a, — byd,.,Cp) +
C(dg0,ma) — b10,1C0) +E(d,0518g — Dy0,11€1) —E(d 8,280 = byBiaCy) +
2 (o812, +d10542; +d,05489 —doOpp8) —d;8,,80) =

¢? (b,0,.1C0 + 11041€) + 040,15 —b,0,,€4 = yD,2¢) +

{(dLaa'lak~L - dLaa'Zak—L—I) _(bk—Laa’ch - bk-L-laa'ch)}Qk (4 56)

MN

Q0
2
k=3L=0

Making use of (4 18), (4 49) and (4 51) we can prove that the coeffictent of £? 1n
(4 56) 1s 1dentically zero By making use of (4 49), we can also write the

coefficients of £* for k>2 1n the form

2 2
—Z ZCIdL(aa'lAl—z—k+L - dLaa’2Ax—2—k+L+l)’ (4 57)

1=0L=0
which 1s zero, because of (4 18)
Now the equation (4 56) 1s reduced to

Ly = (dgb,18) —~ 040, Cp) +E(dg0,qa; — b0y 1€4) +8(d,0,.20 — b0, €,) =

G(do8yn20 — BBynCo)- . (4 58)
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Using the same techniques we can find L,, and L,, in the form
L|2 = (doaquo - boaaqdo) +Q(doau'lbl - blaa'ldo) +€(dlaa'lb0 - boaa'ldl) -
&(do9ubg = byB2d0) (4 59)

Ly =(84801€0 = Co8qr120) +8(210y01€ — C00121) +E(@0 01 €1 = €1850130) —

C(a(0,:2Co = C(0q280) (4 60)

Again using the same techmques we can write f,“ , f'u and fm in the form
I:n = (A% = BOo1€2) = (4105000 = BPurn€1) = (d38,50, = B18yC,) -

G(d30,,%) = BOu2C,) (4 61)

fﬂz = (00yiCy —C20,10g) — (CTqnCy — €1850n0) — (4,85 C5 = €,8,701 ) —
(0005125 = C3002%) (4 62)

A

Loy = (040,15 = €30,:104) = (0g0n €y = €1F500g) —{,8,12C5 — €500t ) —

G(04002C5 = €30417%) (4 63)

For simplicity we follow Ref 16 and choose the R, gauge

dy=c, =0, ¢, =d, =+F (4 64)
In the R, gauge, (4 51) reduces to the two equations

CoA_ +c,Ay =0, d,Ay+d,A =0, (4 65)

and the conditions (4 53) and (4 54) change mto b,c,=-1 and a.d, =1
Becausc ¢y = d, = F holds, (4 65) leads to
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G E
“ T YT oo
where E, F and G are as defined by (4 26-a)

Now (4.58), (4.59), (4 61) and (4 63) enable us to write the matrix (4.23) in

the form
—(b0,1€o +5d,0,,0) €(d 01 by = byyd))

La, €. x)= . (467)
(040,121 = €1020%g) (b0 Co +Ed,0,900)

Finally, if we make use of

-1 / 1
b40,:1Co = E_aa'lF’ d,0,1bg —be0,d, = 'f?aa'lE’
(4 68)
— 1
d, 0,000 = Eaa'zF’ 0L0yr2C) — €10,y 0y = ¥ 042G,

we can write the matrix (4 67) 1n the form (4 25)
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Chapter 5

The Cauchy Problem

In this chapter we will set up an mitial value problem for the equations of motion
(2 23) and (2 24), in the BPS limit For the mitial data we will use a transition
matrix which leads to solutions for two separated monopoles Guided by the 1dea
of the slow-motion approximation we will use these solutions to construct suitable
imtial conditions for the equations of motion This completes the construction of

the Cauchy problem which we will solve 1n the next chapter
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5.1 Problem Formulation

The slow-motion approximation for monopoles was proposed by Manton [22] It
was extensively used by Atiyah and Hitchin [23]. Recently, the validity of the
approximation was rigorously shown under certain conditions [33] The slow-
motion approximation starts with the (4n-1)-parameter family of minima 4xx),

A (x) of the potential energy, 1¢ with the solutions of the Bogomol'ny:

equa';lons The parameters are then allowed to become time dependent This
means that within this approximation, the 1imtial data are such that
®(0,%) +t6,(0,x) and A (0,x)+t5 A (0,x) satisfy the Bogomol’ny1 equations,
up to linear terms 1 t. We will construct such data below but then use them 1n the

full equations

To propagate the imtial data in time, we use the equations of motion (2 23)

and (2 24) Equation (2.23) can be wrnitten in the form
Sod" = 0T +26™ ANFD° — 26 A 0,0 + D 9,AL -
e DA, - ADAZDY + APATD® + ASALD —APAPE - 6D
Equation (2 24) for v=1,2,3 and 1,)=1,2,3 reads
AL = OTAT+80 Aj—8,0 AT —e AN AT +eATO AC -

ALDAL +

26" A50AY +26™AT0A" — " ADAG + ¢
AgASAG -~ ATAAY ~ AJATAL +ATASAT +™D%0 @ -

@AD"+ ©°A D (52)
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The remaining equation (2.24) for v=0 is the Gauss equation
B0B,A] — A —EacA DAL —EucATBAL +26,, ACOAG+AYAS) -
AX(AGAL) 4Dy B0D; + A G (D, D) — D, (DyAG) = 0 (5.3)

This equation does not propagate Aj mn time, but rather provides a constraint on
A} We will solve it to find a Ag(0,x). Since we work with power series near the

origin, we will actually only provide a power series solution of (5.3) for A§ which
may not be the expansion at the origin of a solution with the right asymptotic
behaviour at infinity to ensure finite energy. In this respect our initial data may be
different from those of the slow-motion approximation To ensure finite energy,
the asymptotic form of our data, given n terms of power series at the origin, has to
be chosen appropriately We are, of course, free to choose any asymptotic form of
our imtial data if we do not mind loosing contact with the slow-motion
approximation Differences in asymptotic behaviour, however, should make no

difference to our local investigation near the origin

We still have no equation for the evolution of Aj We also still have to deal
with the gauge freedom (2 14) The gauge freedom allows us to choose the
Lorentz condition

A, =0, (5 4)

which we use to determine 8yA,(0,x) The Lorentz condition (5 4) also provides

the time evolution of Aj in the form

BoAd =,0,A1 (55)
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We can also use the Gauss equation (5.3) to write (5.5) in the form
BRAS =BT A+, ADDAL +E4 ATBAT — 264 A DAL~ AG(A,) +
AL(ASAD) + £, 0,000, — Af (@D ) + Dy (ByAL). (5.6)

Here we have followed the strategy used for vortex scattering [25). There it

can be shown [34] that solutions to the second-order equations for @ and A exist

and that the Lorentz condition and the Gauss equation are propagated. Since the
global existence proof for monopoles [35] 1s not given in the Lorentz gauge, we
will later on solve equations (5.1), (5.2) and (5 5) 1n terms of power series and

check that the Lorentz condition and the Gauss equation hold for all time.

5.2 Expansion of the Transition Matrix

In this section we wiil introduce a transition matrix given mn Ref 36 This
transition matnx leads to solutions describing two separated monopoles The
corresponding solutions will be used 1n the next section to construct suitable
imtial conditions for the equations (5 1), (5 2) and (55) In Ref 36 the transition

matnx is written in the form

(£ &,n,v) C‘l\ LMDR (W)
J’ 7

g(Q,x,s)zt , f=f +f = + (5.7
- 0

It leads to a solution describing two separated monopoles with the distance

between them related to € Here € 1s a non-negative real number and the other
parameters were removed by a rigid motion m x'x*x’-space The functions {1 and

v are analytic in M x U, and in M xU_, respectively, and they are given by
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A-v=2w8"", 20=(n-v), (58)

where p and v are given by (4.4). The function ¥ is a polynomial of degree two
in £ and £ of the form

Y=w? +52, 82 =1-dec-¢™? (59)

The transition matrix (5 7) is equivalent to the matrix (4 13) To see this, we

set p, = f(i,v,€) Then by choosing A_ and A, in the form

-2 £2-1 2 -1 £,
A= A

- +

= , (5 10)
1 -G ~Cf, -1

we can easily prove that g=A_g,A  This implies that g(£,x,g) 1s equivalent to

the transition matrix (4 13), which enables us to write g(Z, x,&) 1n the form

(& feuy)
J (511)

g(f;,x,s>=L o

We are now able to use the results of the previous chapter The fact that 5’
1s an analytic function of € enables us to find the Taylor expansion of the function

8~" 1n the form

§7'(8,5) =Cy(e) +C, (£,8) +C_(8,) (512)
For small €, we find

Co(e)=1—%€, C*(€,€)=%EC2, C-(e,é)%s?z (513)
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This means we can wnte (i and v of (5.8) in the form

(G, x) = Co(e)u+20C, (,0), UG, x) = Cy(8)v—200C_(&,0). (5-14)

In equation (5.13) C,(g) is obviously a function of € only, and the functions
C.(e,l) and C_(g,£) are analytic functions in the regions U, and U_,

respectively. These functions are also related to each other through the reality

condtion
C,(50)=C_(e,-C™", (515)
which yields
AG,x)=—A-C",x). (5 16)

If we regard the transition matrix (5 11) as a function of the separation
parameter €, we can expand 1t as a power series of € 1n the neighbourhood of the

origin For small €, this expansion can be written in the form

g(C,x.8) = 85, X) +& £(6,%), (5 17)
where §(¢,x) and (&, x) are functions of x and € only For €=0, the transition

matrix §(€,x) leads to solutions equivalent to the Ward axisymmetric solutions

studied 1n the previous chapter The Taylor expansion (5 17) leads to the solution
AN = AN +E AN (%), © (518)
up to first order 1n €

Multiplying the transition matrix (5 11) on the left and on the right by

69




a—(n/4)v 0 0 _e(nl4)ﬁ

I = H+ = P
0 e(n/4)0 e—(n/4)ﬁ cZ\Pe—(nM)p

respectively, yields

2)os™! | ~(n\2)es~!
(e(" 8 e C"Ze—(n\Z)ms—l}
~ b 4
G- | (519)
L C-z e—(n\z)ma“ \_Ije—(n\Z)(nZS-l J

which satisfies the conditions (3 20-a,b). This will guarantee the reality of the
solution (5 18) of the monopole equations To guarantee the regularity of the
solutions we have to be sure that Taylor series expansions of the functions
A, (g,x) (r=0,%1+2) exist and lead to non vamishing A(e,x) and F For £=0,
the series solutions of the monopole equations reduce to the axisymmetric series
solutions discussed 1n section 44 In this hmit we showed explicitly that the
series expansion of the transition matrix leads to series solutions in some
neighbourhood of the ongin  For small values of €, the transition matrix (5 11) 1s
an analytic function of € This fact will guarantee the existence of the series
solutions for small € 1n some neighbourhood of the origin and the non-vanishing
of A(e,x) and F Thus 1s sufficient for our discussion The general result, that all

solutions are smooth 1n an appropriate gauge, can be found in Ref 5

5.3 Expansion of the Matrices M and Q

In this section we will write down the Taylor series expansions of the matrices M
and €, corresponding to (5 11), in the neighbourhood of the origin as functions of
x To do that, we will make use of (4 31) and the splitting of section 4 5 This

enables us to write the matrix M, with m,,,m,,,m,, and m,, in the form
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E (x2 —¢)
-(n/2)Cy(e)z ‘\/FA + A J + —
A ( 2TJF ) 4T

B
K
Bk

S

E — |(x2 —s)
e~ (W2)Coe)z _ («/_A + )
N

(5 20)
m,, =%__§_e(u/2)co(e)z (‘\/_A + j}_ )(x —-€)
i G (x2 —¢)
= e(n/Z)C,,(e)z (‘\/FA A ) - &)
'\/F -2 _\/F -1 4\/E
— 3 B 0
m); =8, ﬁe-(uIZ)Co(e)z“ \/—PTe("lz)Co(s)Z_-——o 0 (x? —g)=——(x2—¢ s
12 =8y Bo 4 (x; —¢) 45( 2_¢)

a
4r(x ~e)=1a, JFe-(W2Cue)z _ B, FemCuterz _ 040(x3—s)

Here x, = x'+1x* and z=x> It 1s clear from (5 20) that m,,, m,, are real and

my; = My,

With the help of Mathematica we found the Taylor series expansions of the
matrix M of (5 20) and the gauge matrix Q of (3 45), which we used to guarantee
the reality of the series solutions of the Bogomol’ny: equations Using the results
of chapter 4, we can easily show that the series expansion of the matrix M does
indeed exist 1n some neighbourhood of the ongin and that the inequality
m,, +m,, +2 > 0 holds, which guarantees the non-vamshing of the gauge matrix
Q Here we will write down these expansions up to 4-th order In order to find
the time-dependent solutions up to 4-th order, we had to find the series expansions
of the matrices M and Q up to the 6-th order, but we will not write down the

higher order terms.
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If we make use of the Taylor series expansion (5.17) and the splitting

discussed in section 4.5, then the series expansion of the matrix M can be written

up to any order. Up to the 4-th order, we find 1n terms of x, = x'tix? and z=x?,

2 3 754

1 €
m“—1+§xix§—§z+%z2—z—8z3+ﬁz4+ .—g(xf+xf+xixf)—
(1 n? 3 E:(1 th) 3, &n (31t 11:3)2
8(g =g X+ TE(g T XX F gz T pg)XiE
In n’ . en’ n? x° -
e 128 %% 16 Z to T o5 2562 Y
1 =2 n? ) en’ 3 et 4
— +—2 -—2z*+ 21-
o 128725657 T6a © T34’ t (5-21-3)
2 3 4
T £
m22=1+§xix_+5z+%zz+%z3+ﬁz4+ —g(xi+xf+xixf)—
1 =2 1 n? £T In nd
N3 e 3 _Z- N2
B(g ~ g - TB(g T XX m g 2l — Kzt
(3_“ TC_B 2 i 2 (l+i fj_ 2.2
o6 1285 16 £ TG g T 256 E
nt onf L, en® , en®
{128 25657 "ea ? T3mal (521-b)

7 1 n? £ 1
m,, =M, ==X +(——-——)x+xf—(5—g)xfzz+ ~5(1+5x3)—

(—1—’ i 4 (l S_ﬂi 2,2 (l ﬁ ﬁ 3

{6 256" ~HG 256 X TEG TR R TG
RSN S B S 1 LY 2

P Pt +e(l-——-—— -

6371607 TG X el g gsgIxx

(1 n2+n4)4 5
1 nt =, -
%2716 T 768”7 (521-)
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Next by substituting (5 21-a,b,c) into (3.45) we can write down the series

expanston of the gauge matrix Q in the form

A 2 73 nt

Q =1+Lx2x2+—z+—zz+-—z3+
1 327 4 32 384 6144

g
4 e w2 W22
FARS -32(x++x_+x+x_)—

2 3

a(i-%)x%(_ —s(%—%)ng —£z+s(3£2—%6-)xfz+

8(312_5516))(32—86%222 +8(%+ 1?21 - 13.;4)"122 ¥

E(TIE+ 13(:22 } 1324)"322 _%23 ) ;::4 2+ (5 22-2)
Q, = l+éxixf —§z+§—;zz —%23 +671t:4 AR -%(xi +x2 +x2x2) -

8(3—12—;?26)xix_ —e(gli—z-n—;)x x3 +?—zz—e(;—2—%36)xiz—

5(3%_ 27[536)"32‘ 86n42 3 +8(%+ 13(;122 B 1224”‘322 "

8(33+13(;t224_ 1824)x322+%z3_ ;;t; 2+ (5 22-5)
Q,=Q, ——% f—(é—g—:)x+x3 +(Z+1j22—8)x322+ —Z(1+-;—xf)+

S(@_%)Xi +e(%—§%)xfxf +8(%—g—:)x+x_ +s(-é—%2)x+xf -

1 3 =,
128 819207 (22)
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5.4 Expansion of the Initial Data

In this section we will complete the construction of the Cauchy problem by
choosing suitable initial conditions for the equations (5.1), (5.2) and (5.5). We
will choose conditions which are compatible with the slow-motion approximation.

Using the solution (5.18), we can write down the initial conditions

Oa(0,x) = A~ (x), A*(0,x)=A"*(x), (5.23)

do0 a(0,x) = AJ(x), 50Af(0,x) = A?(x), (5.24)

where we have used A4=04a, and t=x°(=-x0). Up to linear terms in t, the

corresponding functions A a(t,x), Oa(t,x) are minima of the potential energy and

satisfy the Bogomol’'nyi equations (2.30).

To write the initial conditions (5.23) and (5.24) as Taylor series, we expand
the transitions matrices g(¢,x) and g(C,x) as functions ofx in the neighbourhood
of the origin. These expansions lead to the solutions (5.18). The reality and the
regularity of the solutions (5.18), which we have proved, guarantee the reality and
the regularity of the initial conditions (5.23) and (5.24). The Taylor expansions of
the matrices g(C,x) and g(C,x) in the neighbourhood of the origin were found
using Mathematica. From these expansions we found the functions Ar (r=
0,+1,+2) which are analytic and satisfy the equation (4.18). We found also that
the determinant A and F are non-vanishing functions of x in some neighbourhood

of the origin. This guarantees the regularity of the solutions (5.18) and hence the

regularity of the initial data (5.23) and (5.24).

In the previous section we wrote down the leading terms of the Taylor
expansion of the gauge matrix Q . Next by making use of this expansion and

(4.34-a,b,c,d) we found the time-independent series solutions of the equations of
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motion (2.23) and (2 24) to be analytic real valued functions of x,y and z only,
where we have replaced the coordinates x',x? and x’ with x,y and z, respectively
The imtial conditions of the equations (5.1), (5.2) and (5.5) as Taylor series can be
written down by making use of (5.23) and (5.24). First by making use of (5 23)

we can write the imitial conditions for the Higgs field ®* at t=0 in the form

CD'(O ) (—37r+7r3) 2+(—5n+51r3+7r5) 4+(57c s nd 4y
X) = (o P iairey
s 32X "6 T3 T2 6 384 512
3w w , 13n 3 30 ., -13n 3 3 .
3V g e X Ty e TaseY 2
(5 25-a)
3n w St Sn° w 3 -5t 5S¢ ®°
@ (0,x) = (— +—)xy + +—+ + 3
O%) =+ 1+ g+ 105 T 356 Y (g T o T 2se™ *
13n 3n° 3n° 5
=3 e
TEZ 7!4 TC4 71:4
O (0,x) = (-2 + Szt (B 3—2))(22 +(=3+ 3—2)y2z +(2- E)Z3
For the gauge potentials A7 we obtain
2 3 3 5 3 5
AI(O x)=(L—n—)yz+(2n—Zt————n——)xzyz+(2n——7}—-—n——)y3z+
o 4 8 8 128 8 128
~5n 25n3+5n5 ;
4 792 T1927%
(5 25-b)
2 3 3 5 3 5
A2(O x):(- " +n—)xz+(—2n+1t—+l-)x3z+(—2n+l+—)x 27+
A 4 g g8 ' 128 g 128"

Sm 25m Sm

(T T2 192
2 4 4 4
A3(O ) (1 TC +(3 Tt )2 (3 s 3 3 b 2
X)=(1—- )+ -T)X y+ (o -0y +(3+—
| g VTG T YTy B,
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2 3 3 5 11:3 ﬂS

1 S =w )4 T3 2
= (—_-= ———— _———— +
A0 =( g )Xz+(2n -~ o)X 2+(2n -~ T
-5m 2sn3+5n5 2
4 192 T192’%
(5.25-c)
2 s w o 2 S &
==L LN 27— — — ——)y>
A5 (0,x) (4 8)yz+(21t P 128)xyz+(1r g 128)yz+
-5t 25%° Sm
PR I UL
030 = 14 ot (T (e Ty 4 (3= yxg?
20,0 = (CL=x+ (G + X+ + %y + (B - g
' 3 3 5
A0 =Tyt Cm e Ty G- T Tyt
3O =H 16 2796 256 2796 256
S5 3n’ 2
(—37r+—6-4—+1—2§)xyz,
(5 25-d)
2 -7 7'[3 2 -7 7'[3 TCS 4 n 7'[3
S T -, T T T .2
A3 000 = (g (g v Ty
n o n ., 3 5n° 3w’ 2, 3m 5%t 3,
G T2 7512 TG s 25 X M, gt aseY

3
A(0,x)=0

By making use of (5 24), the imitial conditions for the time derivative of the

Higgs field @ 1s found to be

4 3_71: 7t_3) 2
256 192 12288"° (32 7256

© 0y = T, 15T 11n3) (LT3 sn° S5
{(00=16 750 ~ 256"

25n S Swd v (19n St o 12y
-— + -—— +
256 768 1228877 T\128 256 T 2048’F Y

(

—121n+37n3 +49n5) 30, On a0 117°
32 256 2048 °

)yzz2 +

(
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9n 3n\ , 25rc3  ti5x 3 9n 25k 3 n5
16 64)Xy+ (71 768 1536 y 16 768 384)Xy

650 15n3 15\
(6 +T2FTI) Yz o
(5.26-a)
13n4 37t4 2

@2U)-(1-T) 2+ T2 25K+ (5 - w - Xy 2+

The analogous formulas for the gauge potentials A* read

: —57i2 7i3 -203ti 5tc3 1775 2
AU(0,)-(="+ P2+ 24 2P e

-59n  9*’ , ] .5k 47jt3 T77ns,

(“6T +H «+37iQ)y Z+<T +"256"~3072)yZ '
(5.26-b)

2 5712 71 15713 53715 3
V °'x><— T xz+(4"~ 1™~ 3072)x z+

7n 19«3 375 2 -57t 1097t3 41t
(T -1S-SM )xy z+(~ “Si~+T35i)xz



—13n 211: 175
128 T 1024

)x yz+

5’ 77:5) +(§73+47n 771:5) 3
TRETT A 256 307277°°

(5.26-¢)
1 l7t 3 xt

3 3n
A0 = (=TI Gt =+ (T

32 4764 768 -

5
(E_L_ET‘_)XZ

128

“3n 3’ -57n  13%° 11n5
Al (x,0)=
3 (00) = (g " XY+ (T e sag

-23n Tn® n° , 15n 25¢ 15%°

61 T768 T388 Y4 T g5 T 0%

)X}y +

(5 26-d)
3

—n Sn 9n’ , l4lm = 55%°

0 _-n i - 4
5400 = 2 T067 256" (56 " 96 12288F T
- 3’ R —191'c+ 7’ 5n° )
(U6 256" " os6 T334 T 12288 (128 2048)X
—27n+53n3+23n5 s 2+(3n+131t3 ™,
X —_—_—
8 T312 T102a X T T TS TV E
(l’iﬂi) 2+(37r2 _7n3 1371:5) .
g8 64’7 TV 8 384 6144’
A3 0 — i i
(0 = (=T vz

To write down the 1nitial condition for the field Aj, we assume first that at

t=0, A, has the form

A2(0,x) = Z e, X'y (527)
L)k=0
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To find the coefficients of the power seres (5.27), we make use of the fact that the
initial conditions satisfy the Gauss equation (5 3). Substituting the power series
(5.27) and the initial conditions found above into the Gauss equation, we can find

the coefficients of (5.27) up to any order. Up to 4 th order we found

AL (0,x) =0,

2 T 3n 2 T 37T3 2
AO(O,X) = (_—_)X Z+(——_)y z,

8 256 8 256
(5.28-a)
2 4 2 4
A2(0,%) = (e — )Xy + (e =)y x
o\ 192 " 1536"F Y "\ 192 " 1536

The coefficients of the power series (5 27) are not determined uniquely by (5 3)

We have chosen a simple solution for which the Gauss equation 1s satisfied

Next, by using the Lorentz condition (5 4), we can write down the 1itial

a
condition for A, which 1s

3 5
Al (0.x)= (2 lin® =
(5 28-b)
3 S 3 5
2 11n 2 lnw o,
Ao OX) =T T X 2 e Y

A, (0,x)=0

This given us a complete set of initial data
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Chapter 6

Time-Dependent Series Solutions

In this chapter we will study the Cauchy-Kowalewskyi theorem This study leads
to the existence of a unique series solution of the Cauchy problem, formulated in
the previous chapter, in the neighbourhood of the origin  We will use
Mathematica to write down the leading terms of this time-dependent series
solution We will study also the symmetry of this solution under reflexton on the

coordinates planes At the end of this chapter the position of the two monopoles

1s studied This study shows 90° scattering
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6.1 The Cauchy-Kowalewskyi Theorem

In this section we will show the existence of a unique series solution of our initial
value problem (5.1,2,5), (5.25,a,b,c,d), (5.26,a,b,c,d) and (5.28,a,b). We do this by
using the Cauchy-Kowalewskyi theorem which assures the existence of a unique
analytic solution of a certain class of Cauchy problems. We first troduce a
Cauchy problem which will help us to prove the existence of a unique analytic

solution of our initial value problem. We choose the equations

NgE

c'i‘ul n
P2

& Ky (o, oug)— i=l,.,m 6.1)
=1

>
1 axk

The equations (6 1) describe a system of first order partial differential equations

Here we assume that the K, (u,,...,u,,) are analytic functions of their arguments

1in some neighbourhood of the origin  We also assume that the initial data of the

unknown functions u, at t=0,
u,(0.x, %) =K (xp, ), (62)

are such that the IZ, (x!, ,x*) are analytic functions of (x!, ,x") I some

neighbourhood of the origin with IZI (0, ,0)=0 The last condition can be always
achieved for any imtial data, and hence for our system, by substituting

u,—K, (0, ,0) foruy,

The system (6 1) with the initial conditions (6 2) constitutes a Cauchy
problem A umque analytic solution, 1n some neighbourhood of the origin, say O,
of this problem exists according to the Cauchy-Kowalewskyr theorem  To
illustrate this, let us assume that the solution of this problem has the series

expansions
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ui(t,x,,...,xn)= £ JotPx{"...x&. (6.3)

jodrr—gd 0

Uniqueness of an analytic solution of this problem in some neighbourhood of the
origin means that any two analytic solutions must coincide in this neighbourhood.
Now the first terms in the Taylor series expansions about the origin are
determined by the initial conditions (6.2) and the other coefficients will be
determined uniquely from the conditions (6.1). This establishes the uniqueness of

the solution.

To prove the existence of a solution ofthe Cauchy problem (6.1) and (6.2) it
is enough to prove that the power series (6.3) is convergent in O and satisfies the
equations (6.1) and the initial data (6.2). The last two requirememts follow
immediately from the fact that the coefficients of the power series (6.3) are
determined uniquely from the initial data (6.2) and recursion relations following
from (6.1). The convergence of the power series (6.3) can be proved by using the
method of majorants. Here we only give the idea of the proof, which can be found
in Ref. 37 and for a system of the form (6.1) can by found in detail in Ref. 38.
The idea of this method is based on the fact that for each function analytic in some
neighbourhood of the origin there exists a function which majorizes it; i.e. for any
function, say T, analytic in some neighbourhood of the origin there exists a
function analytic in the same neighbourhood such that the coefficients of its
expansion in powers of its arguments are non-negative and not smaller than the
absolute values of the corresponding coefficients of the power series expansion of
the function Using this fact and some elementary techniques one can easily

establish the convergence of the power series (6.3).

Finally, our Cauchy problem (5.1,2,5), (56.25,a,b,c,d), (5.26,a,b,c,d),
(5.28,a,b) can be easily reduced to a Cauchy problem of the form (6.1), (6.2).
Hence, by making use of the fact that our initial data (5.25,a,b,c,d) and

(5.26,a,b,c,d) and (5.28,a,b) represent power seies expansions of analytic functions
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of the form IZ,, we can easily establish the existence of a unique series solution of

our Cauchy problem.

6.2 Local Series Solutions

In this section we wall find the series solution of the Cauchy problem (5.1,2,5),
(5.25,a,b,c,d), (5.26,a,b,c,d) and (5 28,a,b) 1n some neighbourhood of the ongin
With the help of Mathematica we will wrnite down the leading terms of this series
solutton. First, let us assume that the series solutions of our Cauchy problem

have the form

L%y, 2) = Tutln)pqlxyizets, (6 4-2)
1,J,p,q4=0 i
Al(t,x,y,2) = Zvi’[w,p,q]x'y’z"tq , (6 4-b)
1,5,P,q=0
with r=0,1,2,3

The unknown coefficients of the power series (6 4-a,b) can be found as

follows First substituting (6 4-a,b) into (5 1), yields

0 [1,3,0,q+21={(q+ D(@+2) {1+ DA +2)*u[1+2,5,p,q]+

(J+D+2)*u®[1,3+2,p,q]+ (p+ D(p+2) *u®[1,5,p+2,q]+

LLP.q
i [28 " (q+1)*V(t))[1_’Ia.]"'.]I’p_'plaq_ql]*uc[lia.llapl’ql +1]-

1, 01.P1,9,=0
2abc %0 ¢
e (Q+D*vii—1,)=),p-pna—qFuy +1,3,p,9] -
2abc * b ‘ c
e (+D*vali-1,)-3,p-pq - Fu [y, +L,pLq]-
abc b PN
267 (p+ D *va[i=1,5- 5,0~ p,q -, Fu’liy, j;, g, + 1]+
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R PO " bre &
e (q+ ) *ui-iyj- ji,p~P1,q— G volin, ji,pr.q + 1]+
abc . *1.€ .. o br. .
e (i+D*ui—-i,j-jLPp-Pu9—qlvilii +LjL,pLql+
abc . *..50: 2 b
e (J+D*uli-i,j—),Pp—-PL,q9 - V2, h +Lp1,q ]+

, . b ]
Sabc(P"'l)*uc[l—lh.]—JhP—131,C1*CI1]*V3[11J|,P1 +1,q;]-

"'I:J'Jlfpl»q_ql b ar. b
(Vo[ll,Jl,Pl,Q1]*V0[12,J2,P2,Cl2]— Ve[t inPLqr
12,J2,P2,92=0

. br s s s s s
V:‘[lz,Jz,Pz,Ch])*u [1-iy-i2,J-J1=J2,P—P1 - P2,4- % — Q2]+

=1, J=h,p-P1,0-%
b b b
i (Vo[ll>Jl:p]’ql}*VO[IZ’JZaPZan]_Vr (11,3, PQu ]
12,)2,P2 ,QZ=O

b
Vili2,32.P2,02]) ¥ 0 =1y = 12.3= i = ]2.P— 1~ P2.q -, —Cb.]” (6.5)

Substitution mnto (5 2) leads to the next nine formulas For j=1 we find

a -1 a
vilL3p.q+21={(g+1Xq+2)) " {a+ D@+ Dvia+1,5,p,q+ D)~
a+DU+Dv5a+1,3+1,p,q) =~ 1+ D(p+DviG+15,p+1,q) +

O+ DU+2)vi (1,1+2,p,9) +(p+ D(p+2)vi (1,3, p+2,9) —

1,1,p.9
b b
i O[Sa C(q+ 1) * Vi [1_lls_]_.llap_pl)q_ql]*vg[lla.ll’pl,ql + 1]—
0GP0 =

b b

g’ C(1+1)*V1 [1—1|,J_JI,P—PlsCl—CIl]*Vf[h +1,,p1,q1]-
abc ¥ b c

e (+D)*vi[i—=1,)=),p-PLq-q Vo[, n+LpLdi]-
b b

g’ c(1+1)*Vl [1—1131‘Jlap_PlsQ*QI]*Vg[ll,JhPl +1,q,]+

b b
26™(q+ D) *volt—11,)— 11, — P1,a — Q@ ¥ Vi [1, 31, P + 11—

b ) b
220+ D*vili= 1, 3,p = P — Qi v Dy + L3, pr,q, ] -
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c R b .
26+ D * vl = 1,3 = J1,p~ Pioq = L Vi i + LPuai] -
2abc *,Cr: 2 ox s bre
e (p+D*vili-ipj-jiLP-Puq—akvilinjLp + L]+
abe . *0r: . Cre .
g A+ *voli—1,j=J,p~Puq—qi]*volii + 1L, j1,p1,q1 1
abc * b . Cre
e (+D)*vit=1,)=ji,p=P,q - Qi *vilis + 1 )1,p1,q, ] -
abc ,. * o0 ¢ .
g (A+D)*va[1-1,)=-),P—P1,q - Qi ¥ va[y + 1,31, p1,q1 1
be - b
Eac(1+1)*Va[l“lhl'Jl,P—PhQ‘(h]*Vg[ll+1=J1,P1,QI]‘“

b . R Cre R
e+ ) *u’[1—ij,) = ji,p— P1nq — @ P’ +1,51,P1q1]-

“ll,J_Jlfplaq—ql b b b
(Vo[ll,Jl,Pl,Ch]* Vol12,J2,P2,92] = Ve [11, 1, P15, Qi J*
12,)2,P2,q2=0

b . .
\z [lz,Jz,pz,qz])*Vi’[l—lx —12,)=J1 = J2,P~P1 —P2,9—~q1 —q2]~

'—n,J—ni—pn,q—qu b , b
, (VO[lhjbplaCIl]*VO[12:J2sp2,q2]— Vi1 )P q
12,)2,P2,92=0

. b
Vil2,J2,P2,G2]) ¥V~ 11 =12,0= Ji = J2, D= P1 — P2,4 — Qs — 42 ]

'—'I,J—ﬂfphqﬂh b a a
(U [, nspnaieviliz, 12, P2, 92 ] = w'{, i, P *

12.)2,P2.92=0
i02.02P2. @) * 0 =1 12,0 3 - 3P - —P2a -~ )] (66)

For }=2,3 we can find similar formulas for v3[1,j,p,q +2] and valL, 1,p,q+2] To
find the other three formulas, we substitute the power series (6 4-a,b) into the

equation (5 5) This grves

volL 1 pa+2]1=((@+1q+2)) {0+ 1@+ D *vi(+1,5,p,q+ )+

G+D@+D*v3(,)+ Lp,g+ D +(p+1)(@+1) *v3(,5,p+L,g+ 1) 67)
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Making use of the initial data (5.25,a,b,c,d), (5.26,a,b,c,d) and (5.28,a,b) we
can find the coefficients u®[1, j,p,q] and vi[i, j,p,q] for 1j,p=1,2,3,..., q=0,1, then
by backsubstitution the unknown coefficients for i,j,p=1,2,3,...; g=2,3, .; can be
found easily. This will enable us to write the leading terms of the series solution

of our Cauchy problem. To do that, we use Mathematica. Up to fourth order we

found
(Dlt | t+(7t 7173 t4 (37r 753) 2+(37t 753) 2
=—t+(=—-—I)t — (-2 +(—~-2)y -
(t%.5,2) = 7o t+ (56 ~ 763 8§ 32 g 327
(6.8-a)
S Sn' o s Sm Sn° w s 13m 3’ 3’ 2 2
67388 512% "6 382 5127 t(g es 256X % T
13n 3n® 3’ ,, I5n 1&° , 3n n°_ , =m 3. ,
—— (o - WK = (o) — (= =),
8 ~6a 2567 2 Y30 T 56 )™ (37 0s6Y TG 108
(I)Z(t ) 3In 7 ) (57'E 5n3 ns) 3
=—(—-—Xy - (- —-T)Xy -
X:¥,2) = (= 1% (T 95 T 3560 Y
(6 8-b)
S Sw ow o g Mmoo O
(8 " T02 7256 T T3y T g T Y
@ (t —2ﬁ) (3“—4)2 (3ﬁ)2+2ﬁ)3+
(>x7y>z)_-( 4 VA 32 X Z 32 y Z ( 48 z
(6 8-c)
1 lz_t 2_*_512. 13n4)t2+(i ﬁt_z_ _3Eit2 (2 Ztit:;
A=zt (G+ g~ 256 ™ 27 (G 10 250 2
Alt )_iﬁ +(2 ﬁi)z_l_z _T_ti_Tti;,
l( ’Xa)I’Z _( 4 S)YZ ( n 8 128 X YZ ( n 8 128)y -
(6 9-a)
2 Ton 192Y% Hg TR (m T gt Y2
Az(t ) (5TE2 7'[3) 2 TC3 'TT.S ) 2 (2 ‘ﬂl3 L 3
XY,Z)=—(—-—")xz-Qn-———-—— -Qn-———-—
(55> F T e G R T rIL
(6 9-b)
57t+25713 57t5) 3 Sn? 7r3)t ( 1 = 2
5n LN LS SIS . i
2 TIo2 1) T e (nm Tt pitxe,
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2 4 4 4
3 7 3 n 3 n 3 T 2
Al s(l-—=)y+ (- ——=)y -(3-)yz -
6%y, 2) = (- + G- pX V(¥ ~C3p)7
1 3 07t , 3 7 =t
— e —— e — o — e e — — +
G Y G Y G5 7Y
2 4 2 4 (69-0)
3 5Sm 3n 2 T 3n 3
2 Ty (e - Tty
G+ %1 "128'%% *(Ggq 768t Y
nz 7_|:3 3 5 TC3 nS
| 3
Az(t,x,y,z):(T—?)xz+(2n—?-l—2§)x z+(2n—?——12—8)xyzz—
(6.10-a)
Sn 25n° Sn 3 o ©on 2
T X2 — (- )tz (M- —— + o)t
(G "o 102~y et gt e
) st A o
2
Az(t,x,y’z):(T—?)YZ'F(ZW—?—E%‘)X y2+(2ﬂ~?—ﬁ)y3z_
(6 10-b)
(27£+——257t3 S AR +( —117t3+~7it2
7 T Top 1907 Ty TR T gt Y2
TC2 TC4 TC4 7\',4
3 3 2 2
A ()X (e —)x (S L
(6 10-c)
(3 3n2t 5 11n4)t3+( “4)t )
3 3 AT 3. om
R e R Ty Lo
(9 Sn? 51r4t 5 (n2 ' )t3
9 m i o4 W T
2T ed 128 TG T et
T T T TC3 Tts T TIS TCS
Alct LT e )Xy (o m - ——)xy -
3( :Xay’z) (2 16)Xy+(2 96 256)x y+(2 96 256)Xy
(6 11-a)
5 3 5
(3n ~—5£—3L)xyzz - (3—n—i7[—)txy+(7t —l-ln—+n*)t2xz
64 128 8 64 64 128" %
A (txy2) (Tt (B T e R
(XY, 2) =~ =5 (79, "X F Y
(6 11-b)
7 _T[_S_ in Sn’ 3n 2 2 3_11: s’ 31:5 2 2

55 35X

(E A 4 b
47192 5127 T3 128 256% 2. 128 256" 7
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3 5

3 3 3
T S 9, @mw 3m_ , m wn_, 7w llnt =

2 2

— . (e T e (— _ — —_(———— =)t
2 067256 ~ Q67258 "G 6 T g Tset X Y
x 1n® o 22 T n 3 1’ n 4
—— —— —_— — _______t
T2 256" Y "6 192" "oz 136

2 4 }
Altxy.2) = (o= txyz (6.11-c)
LY, 64 128 :

3 5

Abtxy.2) = 21— e " yxyz (6.12-a)
olL%. Y, 32 64 Y '

T 37 bis 3
2 r 2 2 Lo 2r 2 _
AO(t9x:YsZ)_(8 256)x Z+(8 256)yz

(6.12-b)
3 5 3 5 3
lln ) 2 1ln T 2 In w4

) )Xz (=)t
(a1 2T X 2 (et %

n2 TE4 7'[2 4 Snz 11:4
3 & 3, 3, O T2 )
Ao(LX.Y,2) = (17 ~T536)X Y+ (1o " 1536y ¥+ (g~ 25/t ¥ (612-b)

6.3 The Symmetry of the Solutions

In this section we study the symmetry of the ttme-dependent series solutions found
in the previous section under reflexion on the coordinate planes First under the

transformation
(t,x,y,z) = (t,-X,Y,2), (6 13)

we found the time-dependent series solutions (6 8-a,b,c), (6 9-a,b,c), (6 10-a,b,c),
(6 11-a,b,c) and (6 12-a,b,c) change as follows

(@) (o) AL (A0 (A [
F e A Y B
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Ayl (Al ap) [-Ap)
Al > [+A2], Ali—> +A3J. (614)
Aj) \-aAl A)) \-A;

We now show that this symmetry of the solution is a consequence of the

symmetry of the equations of motion and of the initial data Define

O (1,%,%,2) = (1) ' (t,-x,y,2), Al(t,x,y,2) = (-1)* 'AX(t,-x,,2),

K; (t,x,5,2) = (-1)* A (t,~X,y,2), K;'(t,x,y,z) =(-1)*Aj(t—x,y,2),
Ad(t,x,y,2) = (1) A3 (t~x,Y,2), (6 15)

where @, A:’1 is a solution. Now consider (5.1) for a=1,

6f)d>] = 8?@, + 5:;(1)1 + aicpl +2(A00yP3 — Ag30,P2) ~ 2(A ;0,05 — A ;0,D,) -
2(A50,@5 — Ay30,Dy) = 2(A 3, 03D3 — A 330D, ) +H{(D30,A p — P,0,A3) —
(D30\A 1, ~ ©,0A13) = (P30,A 5 —Dy0,A43) = (030;A 3 ~ 0, 03A33) -
Dy (Agi A —AnAL —AjAp —AyAy)-
O3(AgAp—ANA 3~ ApAy —AyAp)+

@, (Aéz +A(2)3 “Afz ‘A123 'A§2 _A§3 ‘Agz - Agz) (6 16)

By substituting (6 15) mnto (6 16), we can easily see that the solution @*, Kﬁ also
satisfies the equation (6 16) and the imtial data (5 25} and (526) and (5 28)

Using the same techniques we can easily complete the proof by showing @, Kﬁ 1S

a solution of the other equations too Uniqueness now implies that @ = @* and

Aﬁ = Aﬁ This general result 1s, of course, reflected in the symmetry (6 14) of the

series solutions.
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Next, under the transformation

(t.x,y,z) -» (t.x,-y,2), (6.17)

the time-dependent series solutions change as follows:

i\ f 1> ( 1> /
fol r+o 'l al f-Al rAp tAp
02 -> _<D2 A? > +A? s A2 —» —A;22
I<t3J .
-A 3i 1A 3 e/
( 1> /7 .\ / i\
a; A (aln _Aq-
A3 —» +tA* A2 _y +Aq # (618)
A3J] A3 LA 3 L Ag
Under the transformation
(tx,y,z) -* (t,x,y,-z), (6.19)

we have the following behaviour of the time-dependent series solutions:

01 4. al i-Ap Al Al
8:23 +003\]> Ar > -AED A2 A2
- ALY +A3 A3, \*A,;fs
s (Al' Fash
) +aa s A2 -» -A2 (6.20)
A3 TAI |

Using the same techniques we have used for the transformation (6.13), we
can show that (6.18) and (6.20) follow from the symmetry of the equations of

motion and of the initial data. The important consequence is that

P o« Fox ~y4 FU (621)



remains invariant under the transformations (6.13), (6.17) and (6.19). These
transformations represent reflexions on the coordinates planes. This means that

the two monopoles are forced to lie on any one of the coordinates axis. This rules

out all cases other than 0°, 90° or 180°scattering.

6.4 The Monopole Locations

In this section we will investigate the positions of the the two monopoles for

different times. We will do that by studying the zeros of the modulus of the Higgs

field ®. First using (6.8-a,b,c) we can write |G2 up to fourth order in the form

i.2 n2 2 74 x 2 ™Mx 2 9tt2 3tc4 né 4
A = 256t ~64~_ 256 +( 64 ~256)ty +( 64 ~ 128 + 1024)X +

9rc2 3n4 n6 4 15712 lltcd 2 2 3tc2 nd 22
(~64~" 128 +1024)y +("256__ 2048)t X “(256_2048)t Y +

n 2 - 4 5 4 4
Yn in ft 2 2 2ft 2 2 ft 2
(1 T -« +512)xy +(4"" “(4-" -'i6)E +
9n2 19n4 22 3tu2tc4 76 2 2
1 - et — — )t +(12- — - — _+ — +
T 7 107 I VA SR R Gl
- 2 4 6 4 6
J7c 71 70 2 2 2 A~ 1 7 A~ 4
(12~— -T +72 )y z - (8-* +0'% )z’ (6722)

Next we used Mathematica to plot the level surfaces of |<g2 in the xy-plane
for different times. First for t=-0.16, we found that the two monopoles lie on the
y-axis as shown in Fig. 2. As tincreases the two monopoles start moving towards
the origin (Fig. 3). At t=0 they will sit on top of each other at the origin as shown
in Fig. 4. For t>0, the two monopoles start separating on the x-axis (Figs. 5,6).
This study shows that the two monopoles scatter at 90°. Different from the

scattering of soliton-like objects such as vortices [25], the scattering is non-trivial

9



in the sense that the distance between the two monopoles is not an even function
of tme The distance between the monopoles a umt of time before the collision is
different from the distance a unit time after. This shows that their velocities have

changed. This has also been seen 1n the slow-motion approximation [23].

Fig 2

Contour plot of |(H21n the
xy-plane for t=-0 16
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Fig 3

Contour plot of l(ﬂzm the
xy-plane for t=-0 12

Fig 4

Contour plot of lCﬂz in the
xy-plane for t=0
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Fig §

Contour plot of |(ﬂzm the

Xy-plane for t=0 12

Fig 6

Contour plot of |Cﬂ2 in the
xy-plane for =0 16
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Chapter 7

Conclusions

Guided by the 1dea of the slow-motion approximation and encouraged by our
results of Ref 25, our aim 1n this thesis was first to find suitable mitial data for the
equations of motion of the SU(2) Yang-Mills-Higgs model In order to study and
understand the scattering of two monopoles we then used the time-dependent
solutions of the constructed initial value problem The results of this thesis add to
a long hst of results on scattering of solitons and soliton-like objects The
techniques used, which allow an investigation at the centre of the scattering
process, complement other techniques, in particular those of the slow-motion

approximation
In the previous chapters we studied in detail the SU(2) model as an example

of the Yang-Mills-Higgs theory in (3+1)-dimensional Minkowski space-time We

discussed the Bogomol’ny1-Prasad-Sommerfield limit and introduced associated
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1

[

linear equations. We proved that the compatibility conditl!ons of these equations
are the self-duality conditions. We also studied the Riemann-Hilbert problem and
the reality of the 2-monopole solutions This study led!to the existence of a
GL(2,C) gauge transformation which was not given before in explicit form.

The first new contribution to the theory was to find this gauge transfor-
mation and to write 1t down 1n explicit form Applying the standard techmques of
linear algebra we found a gauge matrix which was a van"lshlng function at the
origin This led to the singularity of the time-independent S(;lutxons Theoretically
it is known that a unitary gauge transformation can be; used to remove this
singularity but this transformation is very hard to find stl;g different techmiques
1n section 3 4 we found a gauge matrix which guaranteed the regularity and the
reality of the time-independent solutions Using this gauge matnx we found the
unitary gauge transformation. This result was essentlall to set up a Cauchy

problem with analytic data for the equations of motion

i

We then proved the existence of a umque series soyllutlon of this Cauchy
problem near the ongin We used Mathematica to find the sertes soluttons of the
Cauchy problem near the origin  Using this series solution we were able to show
that the two monopoles lie on any one of the coordinates axis which ruled out all
cases other than 0°, 90° or 180° scattering Next we used Mathematica to plot the
level surfaces of |@” 1n the xy-plane for different times This study showed that

the two monopoles scatter at 90° It showed also that the scattering 1s non-trivial
in the sense that the distance between the two monopoles 1s not an even function
of ime This proved that their velocities have changes, a result also seen in the
slow-motion approximation Our results show the power of the series solution
approach Its obvious limitation 1s, of course, that it only allows for local

investigations
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