SIMULATION OF PRODUCTION SCHEDULING IN MANUFACTURING SYSTEMS

MUJANAF EZAT AGHA, B.Eng.

The thesis submitted to Dublin City University in Fulfilment of the requirement for the award of degree of Master of Engıneering

Supervisor: Dr. M. A. Al-Baradie

Dept of Mechanıcal and Manufacturing Engineering Dublin City University, Dublın 9 11th February, 1993

To
My
Home
Parents
Sister ,Brothers
Wife, Daughters (Azza and Liela) \& son (Muhanad)

MIA

DECLARATION

I hereby certify that this materıal, which I now submit for assessment on the programme of study leading to the award of Master of Engineering is entirely my own work and has not been taken from the work of others save and the extent that such work has been cited and acknowledged within the text of my work

ACKNOWLEDGMENTS

First of all I would like to express my special thanks to the Syrian Government who sponsored this research
I indebtedness as well as my gratitude are due to my supervisor Dr M A Al-Baradie for his continuous help, the many things I learned from him during discussions in his office and encouragement during my M Eng Studies
I would lıke to thank professor $M \mathrm{~S} J$ Hashmı for his guidance and support throughout the project I wash to express my farthful thank to the members of my Master Engineering Commıttee, Professor M M Ahmad, Professor M S J Hashmı and Dr M A Al-Baradie They provided through two hours period the direction needed in this research, and their comments to my work made significant contributions

I wish to express my sincere thanks to the general director of the Scientific Studied and Research Centre (Syria), my supervisors at home Eng R Al-kudsi, Dr G Mosa and Dr S Tuhma for helping me by one way or another
I specially thank my wife Sohela, Ebrahem Bacha for her constant encouragement and who has been waiting for me so long My love to daughters and son who kept quiet while I was at home
Finally, to my beloved parents who encourage me all my life, and all those who have been walting for me so long, I dedicate this very modest contribution

ABSTRACT

Research into production scheduling environments has been primarily concerned with developing local priority rules for selecting jobs from a queue to be processed on a set of individual machines Most of the research deals with the scheduling problems in terms of the evaluation of priority rules with respect to given criteria These criteria have a direct effect on the production cost, such as mean make-span, flow-tıme, job lateness, ın-process inventory and machıne idle tıme

The project under study consists of the following two phases The first is to deal with the development of computer models for the flow-shop problem, which obtain the optimum make-span and near-optimum solutions for the well-used criteria in the production scheduling priority rules
The second is to develop experimental analysis using a simulation technique, for the two main manufacturing systems, 1 Job-shop
2 Flexible Manufacturıng System
The two manufacturing types were investigated under the following conditions

1 Dynamıc problem conditions
11 Different operation time distributions
111 Different shop loads
lv Seven replications per experıment with different streams of random number
v The approximately steady state point for each replication was obtained

In the FMS, the material handling system used was the automated guided Vehıcles (AGVs), buffer station and load/ unload area were also used The alm of these analyses is to deal with the effectiveness of the priority rules on the selected criteria performance The SIMAN software simulation was used for these studies

Definition of Subscripts, Symbols \& Terms

n	number of jobs
m	number of machines
B	objective function (a selected criterion)
P	pure flow-shop problem
$\mathrm{C}_{\text {max }}$	make-span (elapsed time for a schedule)
$p_{32}=t$	processing time of job j on machine m
n X m	problem flow-shop matrix (or processing time matrıx)
q	a given sequence of flow-shop permutation
J	Job J
1	machine 1
K_{2}	number of operation
F	a flow-shop problem
G	a general job-shop
$\mathrm{F}_{\text {max }}$	maxımum flow-tıme
F	mean flow-tıme
L	mean job lateness
$\mathrm{O}_{3 \mathrm{~mJ}}$	operation m_{j} of Job J
r^{\prime}	the ready time of job J
d_{3}	the due date of job J
$W_{J}=1$	all jobs are equally ımportant
n^{1}	number of sequences in a ($\mathrm{n} \times \mathrm{X}$) problem sıze
W-I-P	work in process (number of jobs in shop)
AMCTs	average mean completion tımes for jobs
AWTs	average waıting times for jobs
AITs	average ıdle, tımes for machınes
ANOVA	analysis of varıance
FMS	flexible manufacturing system
AGV	automated guided vehicle
CNC m/c	computer numerical control
QC	qualıty control

CONTENTS

Chapter 1. INTRODUCTION 1
Chapter 2. LITERATURE SURVEY 5
21 Introduction 1
22 Optimum approaches 6
221 Enumeration 7
a Complete enumeration 7
b Implicit enumeration 9
b 1 Branch and Bound 9
b 2 Branch and Domınate 10
b 3 Dynamıc programming 10
c Constructive approaches 11
d Mathematical programming 11
d 1 0-1 Integer models 11
d 2 Binary disjunctive LP models 12
23 Heuristic methods 12
231 Priority rules 13
232 Monte Carlo methods 16
233 Neighbourhood methods 17
24 Computer aided-simulation of production scheduling applications 18
241 Computer simulation of flow-shop 21
242 Computer simulation of job-shop 21
243 Computer simulation of flexible flow-shop 23
244 Computer simulation of flexible manufacturing system 25
25 Simulation language review 32
251 Overview 32
252 Commercial Simulation Software Review 33
Chapter 3. PRODOCTION SEQUENTIAL SCHEDULING 38
31 Introduction 38
32 Descrıption of a Generai Machıne Scheduling Problem 39
33 Restrictive assumptions 41
331 Restriction on the machines 42
332 Restriction on the jobs 42
34 Scheduling Costs and Measure of Performances 43
341 Crıterıa based upon minimızing Completion Times 44
3 4.2 Criterıa based upon
mınımızing machıne Idle Tımes or maximızing machıne utılızatıons 44
343 Criterıa based upon
minımizing inventory costs 45
a Waiting Times criteria 45
b Work-In-Process crıterıa 45
344 Crıterıa based upon Due Date
(minimizing of the Lateness and Mean Lateness of Jobs) 45
35 Problem Class̃ıficatıons 45
351 Open and closed shop problem 46
352 A single machine problem ($\mathrm{n} / 1 / \mathrm{B}$) 46
353 A pure (or Permutation)
Flow-shop Problem 47
354 A Flow-shop problem 48
355 A Job-Shop Problem 49
356 Nature of the requirement specification and scheduling environment 51
1 Deterministic and stochastic requirement 51
2 Static and dynamıc environment 51
Chapter 4. PRODUCTION SCHEDULING STUDY FOR THE OPTIMIZATION OF FLOW-SHOP PROBLEM: 52
41 Presentation of $n / m / P / B$ Problem 52
42 The Throughput Time for a Schedule 53
43 The Development of a Computer Programme for Determining the Make-Span of a Schedule 56
431 Experımental Results 58
44 The Development of an Explicit Enumeration Computer Programme for Sequencing Optimization 61
441 The Characteristics for Optımizing the Make-Span Computer Programme 63
442 Experımental Results 63
443 Verıfıcation of Efficıency of the optimal Make-Span Solution 69
444 Computation Time 70
445 Economy Consideration for the Proposed Method 70
Chapter 5. A COMPUTER SIMULATION ANALYSIS FOR THE FLOW-SHOP SCHEDULING PRIORITY RULES 72
51 Sequential Scheduling Rules in Production Scheduling 72
52 Classification of Schedulıng Rules 72
521 Sımple Prıorıty Rules 73
522 Combination of Simple Priority Rules 74
523 Heuristic Scheduling Rules 75
53 Priority Rule Environments 75
54 Priority Rules Information Required 76
55 A Computer Sımulation based Priority Rules 77
55 I Cholce of a Priority Rule 77
56 Development of a Computer Simulation Programme for Measuring the Effectıveness of Several Prıorıty Rules 77
561 Statement of the Procedure Method 79
562 Effectiveness Evaluation of the Priorıty Rules 82
563 Evaluating the Prıorıty Rules Vs the Make-Span under Different WIP and Shop Sızes 82
564 Evaluatıng the Prıorıty Rules Vs
the Mean Completion Time Criterion under Different WIP and Shop Sizes 88
565 Evaluating the Prıorıty Rules Vs the Average Total Waiting Time Criterion under Different WIP and Shop Sizes 93
566 Evaluating the Prıorıty Rules V the Average Total Idle Time Criterion under Different WIP and Shop Sizes 99
Chapter 6. A COMPUTER SIMULATION ANALYSISFOR EVALUATING THE JOB-SHOPPRIORITY RULES105
61 The Performance Plane for The Job-Shop Problem 107
62 A Computer Simulation of Production Scheduling using the SIMAN Software 112
63 The Model Frame of SIMAN's Sımulation Production Scheduling 113
64 The Experımental Frame of SIMAN's Simulation Production Scheduling 114
65 The Selected Procedure for Estimating the Mean and Varıance of Random Varıables for the Multiple Criteria 114
651 Estimating the Mean for the Approx Steady-State Job-Shop Simulation 117
66 The Experımental Analysis of the Simulation Results under Different Prıorıty Rules Vs Multıple Crıterıa 118
661 The Selected Steady-State Points for The Two Comparison Phases 121
662 The Effect of the Varıous Prıorıty Rules on the Proposed Criteria under Three Types of Arrival Time
Distributions and Shop Loads 127
663 The Effect of the Various Prıorıty Rules on the Proposed Criteria under Three Types of Operation Time Distributions and Shop Loads 135
67 The Experımental design of
The Simulation Observations under Study 144
Chapter 7. A SChEDOLING OF ADTOMATED JOB-SHOP
OR FLEXIBLE MANOFACTURING SYSTEM 149
71 Introduction 149
72 Elements of Flexible Manufacturing System 150
721 Processing Stations 150
722 Load/Unload Station 150
723 An Automated Material Handlıng System 150
724 Buffer Storage at Work-Stations 151
73 A Simulation Study for Evaluating the FMS Prıorıty rules Vs the Multiple Criteria 151
731 The System Elements Description 152
732 The Performance Plane for the FMS's AGV Case Study 155
733 The Experımental Analysis for the FMS's AGV Sımulation Results 158
734 Effectıveness of the Varıous Priority Rules on the Proposed Criteria under the Three Exponential Job Arrıval Patterns Loads 159
735 Effectiveness of the Number of AGVs on the FMS's Multi-Criteria When using AGV's Different Speeds 167
74 The Experimental Design of the Sımulation Observation 175
Chapter 8. Conclusion and Recommendation
for Further Work 177
81 Conclusions 177
81 Recommendation for Further Work 184
RERERENCES 185
Appendix 196
A The Throughput Time Formula for A schedule A1
B The Make-Span Computation Programme List B1-B2
C A Complet matrix processing time for problem 2C1-C2
D The Optimum Make-Span Programme List forthe Flow-Shop ProblemD1-D7
E The Programme List of the Effect ofThe Priority Rules on the SelectedCrıteria for the Flow-Shop ProblemE1-E10
F Percentage Points of the F Distribution F1
G The SIMAN Model Codes and Programme forthe Job-Shop Scheduling Priority RulesG1-G5
H The SIMAN Experıment Elements Programme forthe Job-Shop Schedulang Priorıty Rules H1-H2
I The SIMAN Model Codes for the Case Study FMS I1
J The SIMAN Experiment Elements forthe Case Study FMS J1-J5

List of Figures

No. Description
21 Comparison of real system and sımulation model 19
22 Economical Manufacturing Concept 31
23 Hıstorical development of sımulation packages in the UK 34
24 Historical development of simulation packages in the USA 35
31 3-job 3-machıne job-shop schedulıng problem 40
32 3-Job 3-machine flow-shop schedulıng problem 41
33 Job work-flow through machines in a pure flow-shop environment 47
34 Job work-flow through machınes in
flow-shop environment 48
35 Work-flow at a typical machine in a job-shop 49
36 Job flowing through the machines in
3-jobs 9-machınes job-shop 50
41 (5×4) matrix processing time of a pure flow-shop 54
4 2a Planning sheet showing processing time of job 1 54
4 2b Planning sheet showing processing time of job 2 54
4 2c Planning sheet showing processing time for job 3 54
4 2c Planning sheet showing processing time for job 3 54
4 2d Planning sheet showing processing time of job 4 55
42 e Planning sheet showing processing time of job 5 55
43 The main feature of the flow control chart to calculate Make-Span 60
44 The main feature of the flow control
chart for optımal Make-Span $1 n$

	$\mathrm{n} / \mathrm{m} / \mathrm{p} / \mathrm{c}_{\max }$ problem	2
45	Distrıbution of Make-Spans for (10 X 20)	
	processing time matrix (problem 4)	68
46	(5 x 3) processing time matrix (problem 5)	69
47	Computation times for different problem sizes	1
51 a	Effect of the rules Vs AMS under 5 shop machines	85
51 b	Effect of the rules Vs AMS under 10 shop machines	85
51 c	Effect of the rules Vs AMS under 15 shop machines	86
5 1d	Effect of the rules Vs AMS under 20 shop machines	86
5 le	Effect of the rules Vs AMS under 25 shop machines	87
5 1f	Effect of the rules Vs AMS under 30 shop machines	87
52 a	Effect of the rules Vs MCT under 5 shop machines	90
52 b	Effect of the rules Vs MCT under 10 shop machines	91
52 c	Effect of the rules Vs MCT under 15 shop machines	91
52 d	Effect of the rules Vs MCT under 20 shop machines	92
52 e	Effect of the rules Vs MCT under 25 shop machines	92
52 f	Effect of the rules Vs MCT under 30 shop machines	93
53 a	Effect of the rules Vs AWT under 5 shop machines	96
53 b	Effect of the rules Vs AWT under 10 shop machınes	96
53 c	Effect of the rules Vs AWT under 15 shop machınes	97
53 d	Effect of the rules Vs AWT under 20 shop machınes	97
53 e	Effect of the rules Vs AWT under 25 shop machines	98
53 f	Effect of the rules Vs AWT under 30 shop machines	98
54 a	Effect of the rules Vs AIT under 5 shop machines	101
54 b	Effect of the rules Vs AIT under 10 shop machines	102
54 c	Effect of the rules Vs AIT under 15 shop machines	102
54 d	Effect of the rules Vs AIT under 20 shop machines	103
54 e	Effect of the rules Vs AIT under 25 shop machines	103
54 f	Effect of the rules Vs AIT under 30 shop machines	104
61	Planning sheet for a number of identical machines to be used for process three workpleces	
	in Job-shop	107
62 a	Job sequencing sheet for workpiece 1, in job-shop under Uniform $(300,550)$ distribution due date	107
6 2b	Job sequencing sheet for workpiece 2 , in job-shop under uniform $(300,550)$ distribution due date	108
63	The proposed job arrival distributions in job-shop	109

6.4: The approx. steady-State points (31880) in the σ plots for the SPT rule flow-time variables under Unif. Arrival and Expo. Operation Time and 70\% load 124
6.5: The approx. steady-state points (46880) in the σ plots for the EDD rule flow-time variables under Unif. Arrival and Expo. Operation Time and 77\% load 124
6.6a: The approx. steady state points (31880) in the σ plots for the LPT rule flow-time variables under Unif. Arrival and Expo. Operation Time and 70\% load 125
6.6b: The approx. steady state points (31880) in the σ plots for the LPT rule flow-time variables under Unif. Arrival and Expo. Operation Time and 70\% Load 125
6.7a: The Static-SLK rule flow-time variables plot in the $1^{\text {th }}$ Rep. (run) under Norm. Arrival and Expo. Operation Time and 70% load 126
6.7b: The approx. steady-state point (10000) in the moving-average plot for the static-SLK flow-time variables plot. in Fig. 6.7a 126
6.8: The mean flow-time Vs. the priority rules under different job arrival patterns and shop-sizes 128
6.9: The job lateness Vs. the priority rules under different arrival patterns and shop loads 130
6.10: The machines idle time Vs. the priority rules under three arrival patterns and shop loads 131
6.11: The mean jobs completed Vs. the priority rules under the three arrival patterns and shop loads 133
6.12: The mean total WIPs Vs. the priority rules under the three arrival patterns and shop loads 134
6.13: The mean flow-time Vs. the priority rules under the three operation time patterns and shop loads 137
6.14: The mean lateness Vs. the priority rules under the three operation time patterns and shop loads 138
615 The mean idle times Vs the priority rules under the operation time patterns and shop loads 140
616 The mean jobs completed Vs the prıorıty rules under the three operation time patterns and shop loads. 142
617 The mean total WIPs Vs the priority rules underthe three operation time patterns and shop-load 143
71 Planning sheet for a number automatic machines to be used for processing three work-pieces in FMS 153
7 2a A Job sequencing sheet for the work-prece 1 inthe FMS under Uniform (250,400) distributiondue date153
7 2b A job sequencing sheet for the work-piece 2 in
the FMS under uniform (250,400) distribution due date 153
7 2c A job sequencing sheet for the work-piece 3 in the FMS under uniform $(250,400)$ distribution due date 153
73 The lay-out of the two FMS's AGVs priority rules 154
74 The proposed exponential job arrıval distribution with three different FMS loads 155
75 The effect of the priority rules on the mean flow time under three different machine FMS loads 160
76 The effect of the priority rules on the mean job lateness under three different FMS loads 161
7 The effect of the priority rules onthe total idle times under threedifferent machine FMS loads162
78 The effect of the priority rules on the total WIP under three different machine FMS loads 163
79 The effect of the priority rules on the mean Pick-up waiting under the three different FMS loads 164
710 The effect of the prioraty rules on the mean jobs completed under the three different FMS loads 165
711 The effect of the priority rules on the mean AGVs idle times under the different FMS loads 166
712. Effect of the number of AGVs on the FMS's mean flow-time when using four different AGV speeds 168
713 Effect of the number of AGVs on the FMS's mean jobs lateness when using four different AGV speeds 169
714 Effect of the number of AGVs on the FMS's mean m / c idle times when using four different AGV speeds 170
715 Effect of the number of AGVs on the FMS's mean WIP when using four different AGV speeds 171
716 Effect of the number of AGVs on theFMS's Pick-up waiting when using fourdifferent AGV speeds172
717 Effect of the number of AGVs on the FMS's mean Jobs completed when using four different AGV speeds 173
718 Effect of the number of AGVs on the FMS's mean idle times when using four different AGV speeds 174
719 The two FMS's AGVs layout network(11 intersections and 13 links) (in appendix page J5)

List of Tables

No. Description
21 Notations for the job scheduling problem 8
22 Selected Priorıty Rules[41] 15
31 Possible number of sequences of up to 10 jobs for a pure flow-shop problem 48
41 (20 X 90) a pure flow-shop processing times matrix 59
42 A computer print-out for the Make-Span (problem 2) 59
4 3. A computer print-out for the optimal Make-Span (problem 3, repetition of problem 1) 66
4 4. A (10 X 20) processing time matrix (problem 4) 68
45 Comparison of five heuristic approaches with the proposed computer method 68
46 Computer computation tames for different ($\mathrm{n} \times \mathrm{m}$) problem sizes 71
51 A (16 X 33) processing tımes matrix (problem 9) 80
52 A computer print-out for problem 9 81
5 3a Observed AMSs of 500 runs Vs the proposed rules 83
53 b Observed AMCTs of 500 runs Vs the proposed rules 89
5 3c Observed AWT's of 500 runes Vs the proposed rules 94
5 3d Observed AITs of 500 runs Vs the proposed rules 100
61 Probability Distribution selection due to [62], [107] and Hines, W W, and
Montgomery, D C [1980][122] 106
6 2. The simulation period types for different arrival time patterns (the first, comparison phase) 123
63 The simulation period types for different operation time patterns (the second comparison phase) 123
64 ANOVA for simulation data of the response variables under the two factorials of the priority rules and Job arrival pattern workloads 147
6.5 ANOVA for simulation data of the response

variables under the two factorials of
the priority rules and operation
time patterns 148

71 ANOVA for simulation data of the response varıables (performance criteria) under the two factorials of the seven priorıty rules and three FMS work-loads 176

CHAPTER ONE

1. INTRODUCTION:

In any manufacturing system there are a serıes of activities that transform raw or semı-raw materials into semı or finıshed goods Production scheduling is one of the most important manufacturing activities which allocates machines over time to perform a collection of tasks (job sequencing problem) Scheduling problems are very common occurrences A problem could involve jobs in a manufacturing plant, aırcraft waiting for landing clearance, a programme to be run on a computer A good dealing of job sequencing implies high machine utilızation, mınımum make-span or flow-tıme and low inventory (work-ın-process) whıle maıntaınıng customers fulfılment

In the past research, a number of researchers had worked on machine scheduling problems in the hope of finding

1 Optimal solution (e , mathematical models such as lınear programmıng models and branch-and-bound method) of the problems

2 Near-optimal solution (i e, heuristic procedures such as a random procedure and stralghtforward prıority rules)

In recent tames, most of the studies have turned to deal with machine scheduling problem using the heuristic procedures The priority rules as a heuristic procedure is a somewhat more economical method than others and also it handles a very large problem with a light computational effort This facılıty becomes more powerful when the simulation technique is applied In general, with regard to job sequencing, most researchers classify the manufacturing systems into three main types

- Flow-Shop (Transfer Line)
- Job-Shop (Batch production)
- Flexible Manufacturing System

The objective of this project is three-fold
1 To deal with the flow-shop problem with respect to the optimal and near-optımal make-span using the selected priority rules This shop in which each job has the same order to be processed on machines (unidirectional process)
2 To study the job-shop problem in which each job is not in the same order for processing (multıdırectional process) The objective $1 s$ to evaluate the effectiveness of the various priority rules with respect to the selected criteria
3 To study the Automated Guıded Vehicle (AGV) in the Flexible Manufacturing System (FMS) problem, where the AGV is the main tool for the material handling system Also in this study each job is not in the same order of processing The first objective in the third study is to evaluate the different prıority rules with respect to various criteria The second objective is to consider the effect of number of AGVs on the FMS multi-criteria when using AGV's different speeds
The project consists of the following Chapters

Chapter two surveys the work previously carried out to investigate the traditional machine scheduling problem It covers three main areas, optimum approaches, heuristic methods and computer simulation of production scheduling

Chapter three gives an overview of production scheduling The following machıne scheduling envıronments are discussed

- Description of a general machine scheduling problem
- Restrıctıve assumptions on the machıne and job
- Scheduling costs and measure of performances (crıteria)
- Problem classifications

Chapter four presents a production scheduling study for the flow-shop problem A basic formula to obtain the throughput time (make-span) for a schedule is presented
This formula has been used as a main tool to develop a computer programme This programme could be used for solving a large job
sequencing problem (90 jobs to be processed on 90 machines). The objective is to evaluate the make-span and individual job completion time for any selected order (job sequence).
This programme is the basic step to develop another computer programme which gives an exact (optimum) solution for make-span for up to 10 jobs ($3.628800 \mathrm{E}+6$ different job sequences) on 90 machines. The proposed optimum solution would, of course, be a practical tool for flow-shop scheduling, where $\mathrm{n} \leq 10$ and m ≤ 90 and the CPU time (386 based PC with 16 MHz) is reasonable in the case of low and medium work-in-process and low, medium and high utilization levels.

Chapter five reports a special presentation for sequential scheduling rules in production scheduling. It includes, classification of scheduling rules, priority rule environments (static and dynamic rules), priority rules information required (local and global rules). Also a general computer simulation based priority rules have been developed. This programme is mainly used as a tool for measuring the effectiveness of the most used priority rules in a pure flow-shop problem. It can read data for 90 jobs to be processed on 90 machines and it could be used for a deterministic or stochastic ($n \mathrm{X} \quad \mathrm{m}$) processing times matrix. The effectiveness of the priority rules have been evaluated with respect to the following wellknown criteria under 500 simulation runs with different random number seeds:

- Make-Span.
- Total Mean Completion time.
- Total job Waiting times.
- Total machine idle times.

In all ($\mathrm{n} \times \mathrm{m}$) shop sizes tested the SPT rule gives the best value with respect to the make-span as reported by Coway[51]

Chapter six mainly deals with the job-shop scheduling problem. A comprehensive study for the effectiveness of the priority rules with respect to the well-known criteria for job-shop problem are presented. The SIMAN software for the job-shop
scheduling simulation has been used For more accurate results the steady state point was taken into account during the estimation of the mean and varıance of random varıables for the multiple criteria
The total experımental simulation runs are equal to 882 replications These results were under individual three operation time distributions and three job arrival time distributions with low, medıum and high workloads
Also the SPT rule was the domınant rule against the mean flowtime, lateness, in-process inventory and jobs completed

Chapter seven has been devoted to study the flexible manufacturing system with automated guided vehicles The following four main elements are comprised into the system
1 Processing stations
2 Load/Unload station
3 Automated Guıded Vehıcles (AGVs)
4 Buffer storage at work-station
In the FMS the control logic and material flow are very complex, but can be successfully examıned through the use of a computer simulation
The SIMAN software simulation is used for this study Also the approximate steady state point was taken into account during the estimation of the mean and variance of random variables for the multiple criteria
The total experımental simulation runs are equal to 231 replications These results were under exponential job arrival distrıbutions with three different means These means were suıtable according to low, medıum and hıgh FMS loads
The objectives from this study are two-fold The first objective is to evaluate the different priority rules with respect to varıous criteria The second objective is to consider the effect of the number of AGVs on the FMS multicriterıa when using AGV's dıfferent speeds under the selected SPT priority rule for job sequencing Also the SPT rule was the dominant rule with respect to the mean flow-tıme, lateness, inprocess inventory and jobs completed

CHAPTER TWO

2. LITERATURE SURVEY:

2.1 INTRODUCTION:

The literature survey for this research includes a comprehensive study of scheduling problems. During the last three decades of effort a considerable number of papers have been published and a review of these papers is given in this Chapter. The beginning of the scheduling problem came just in the mid-fifties in the form of a paper presented by Johnson 1954[1]. This paper discussed the scheduling of n-jobs on two machines flow-shop. The rule is: Select the shortest processing time (SPT rule). His paper is the most important reference to scheduling problem. The algorithm assumes that the set-up and tear down time are included in the total operation time. Shortly after, Jakson[1955][2] \& Smith[1956][3] derived a new algorithm concerning the problem of sequencing several jobs on a single machine so as to minimize maximum tardiness or to minimize the sum of completion time. Akers[1956][4] used a graphical method to solve the sequencing problem for two-jobs on m machines. In this non-numerical method, work on job X is presented by an X-vector and on $j o b Y$ by a Y-vector, whilst work carried out on both job X and $j o b Y$ is presented by the vector sum of X and Y. Through several equally acceptable solution we can determine the optimum solution. However, this method is limited to two jobs only. Conway, Maxwell and Miller[1967][5] and Baker[1974][6] discussed the limited case of the single and two machines problem in more details, followed by Rinnooy Kan[1976][7], while White[1969][8] derived the same results using dynamic programming. Campbell, Dudek \& Smith[1970][9] used a multiple application of the Jonson rule for two machines. They created (M-1) auxiliary scheduling
problems and applied the Jonson rule to each of them in turn and then picked out the best solution Szware[1977][10] extended the Jonson rule to solve the sequencing of a three machines problem Pınedo[1981][11] discussed an approach which minımızes the Expected completion time for n jobs on 2 machines, when the processing time for all jobs are derived from exponential distribution Bera[1984][12] has developed algorithms to determine a very near-optimal solution for waiting tıme, idle time and make-span for flow-shop problem He used economical parrs of jobs
In view of this, a brief survey and discussion will be presented on work previously carried out to investigate the scheduling problem This will be discussed under the following three types of scheduling algorithms

2.2 OPTIMUM APPROACHES:

They are the basis for many heuristic and provide the foundation for contınuing research in machine scheduling

221 Enumeration
a Complete
b Implicit
b 1 Branch-and-Bound
b 2 Branch-and-Dominate
b 3 Dynamıc Programming
c Constructive
d Mathematıcal Programming
d 1 0-1 Integer models
d 2 Binary Disjunctive LP Models

2.3 HEURISTIC APPROACHES:

Large size industrial problems are left to heuristic methods which give reasonable near-optimum solutions

231 Prıorıty rules

2.4 COMPUTER-AIDED SIMULATION OF PRODUCTION SCHEDULING APPLICATION

2.2 OPTIMUM APPROACHES:

Complexity theory due to Cook[1971][13] and Rennooy Kan[1976] [7] suggests that no polynomial time optimum algorithm will be found for the $\mathrm{n} / \mathrm{m} / \mathrm{G} / \mathrm{B}$ problem* except in a limited number of special cases (e. g. certain one and two machine problem).

2.2.1 ENUMERATION:

a. COMPLETE ENUMERATION:

Let(s) be the set of all feasible solutions for the general machine sequencing problem. Since (s) is finite, an optimal schedule can always be found by complete enumeration of elements of (s) [Rinnooy Kan, 1976][7]. Unfortunately a computer evaluating 100,000 schedules would still need almost three days to evaluate this number of schedules Rinnooy Kan[1976][7]. However, nowadays CPU time could be more powerful for dealing with complete enumeration scheduling problem, especially for n/m/P/B problem. Ezat, Agha.M and Al Baradie, M. [1992][14] have developed a computer programme algorithm which deals with the optimal job sequence for $n / m / P / C_{\max }$ (i,e The CPU time for $10 / 90 / \mathrm{P}^{\prime} \mathrm{C}_{\mathrm{max}}$ problems is about 2.5 hours on 386 PC with $16 \mathrm{MH}_{2}$). Backer[1974][6] and Giffler and Thompson[1960[15] had offered an algorithm which created an active schedule with respect to disjunctive arcs. The limitation of this algorithm is that it presents precedence relations that cannot be determined before a schedule is constructed. Also it is not adequate to capture

[^0]Table 2.1: Notations used for the job scheduling problem.
n/m/P/B: is the n Jobs, m machines, pure flow-shop problem where B is the measure of performance
n/m/F/B: is the n Jobs, m machınes, flow-shop problem where B is the measure of performance
n/m/G/B: ls the n jobs, m machıne, general job-shop problem, where B ls the measure of performance
$\mathbf{n} / 1 / F_{\max }$ ls the n jobs, single machine where the alm is to manımıse flow time
$n / 1 / L_{\max }$ Is the n Jobs, single machine where the alm is to minımise lateness
n/2/F/F max is the n jobs, two machines, flow-shop problem in which the aim is to minimise flow time
n/2/G/F $\mathrm{F}_{\max }$ is the n Jobs, two machınes, general job-shop in which the alm is to minimise flow time
$2 / m / F / F_{\max }$ is the 2 Jobs, m-machines, flow-shop problem in which the alm is to minimise flow tame
$n / m / P / C_{\max }$ ls the n-jobs, m-machines, p permutation or pure flow-shop problem where the alm is to minımıse make-span
The class P: consists of all problems for which algorithms with polynomıal tıme behavıour have been found
The class NP: 1 s the set of problems for which algorithms with exponential behaviour have been found
$\Pi_{1} \alpha \Pi_{2}$: problem I_{1} is polynomially reducible to problem \mathbb{I}_{2}
NP-complete: we say that a problem II lying in NP is NP-complete If every other problem in NP is polynomialiy reducible to II, that is

II' α II for all II' lying in NP

NP-hard : we say that a problem lying in NP-complete is NPhard when the assoclated recognition problem is NPcomplete cannot solve the optimisation problem in polynomıal tıme
sequence dependent set-up and tear down time in every case [Preston, White, JR K et al ,1990][16]

b. IMPLICIT ENUMERATION:

The strategy of implicit enumeration attempts to minimaze an objective function without considering every possible solution explicitly Implicit enumeration schemes examine increasingly smaller subsets of feasible solutions until these subsets definitely do not contain improved solutions Unfortunately, all ımplıcıt enumeration approaches for the determination of an optimal schedule, appear to be susceptible to the combinatorial natural of these problems, when they are tested on the multıple-resource version (more than 50 activities) This statement was investigated in practıce by Baker[6] The three principal methods of implicit enumeration are Branch-andBound, Branch-and Dominate and Dynamic Programming

b. 1 BRANCH-AND-BOUND:

This method is a typical technique of implicıt enumeration or tree search method which can find an optimal solution by systematically examanıng the subsets of a feasible solution In fact, it does not refer to a specific solution procedure rather, it $1 s$ an approach which can be applied to many combinatorial problems Its easy implementation and often surprising efficiency to a much large class of problems Agın, $1966[17]$, and [Wood and lawler, 1966] [18] gave more general survey It was first used in the context of maxed integer programming by [Land \& Dolg, 1969][19] and for the travelling salesman problem by [Eastman, 1959] [20] Then it was applied to scheduling problems by [Ignall \& Schrange,1965][21] for n/3/F/C $\boldsymbol{m a x}$, Brooks \& White ,1965][22] and Conway, et al,1967][5] for $n / m / G / C_{\max }$ The lımıtation of this algorithm is that the make-span is the only criterion which can be evaluated Balas[1969][23] offered an alternatıve branch-and-
bound approach based upon the disjunctive graphs using a search tree (i e sequence) of conjunctive graphs Raimond, JF[1968][24] proposed an algorıthm to solve the general (m>3) problem by a branch-and-bound technıque using the linear programming with mixed variables and graph theory His algorithm yields an optimal solution, it may be used without modifications or with little changes to find the sub-optimal solution for very large problems Lominici[1965][25] had developed an independent specific formulation for the exact solution of the three machine scheduling problem

b. 2 BRANCH-AND-DOMINATE:

Branch-and Dominate, which is simılar to branch-and-bound, differs in the pruning approach Suppose for example, that there is a set of conditions from which we can deduce all the schedules at one node which can not do better than the best schedule at some other node Clearly, we may elımınate the first node from further consideration, then the second node dominate the first Usıng dominance conditions may shorten the search sufficiently that, overall, a reduction in computational requirements is obtained Indeed, this had been found in practice by Baker[1974][6], Rınnooy Kan[1976][7] and Lageweg, et al [1977][26] The computational problems facing branch-and dominate are the same as branch-and-bound from the starting point of computational complexity

b. 3 DYNAMIC PROGRAMMING:

Dynamic programming methods have been used to solve a limited number of machine scheduling problems These problems have mainly been $n / m / P / B$ and in particular the $n / 1 / P / B$ [Held \& Karp,1962][27] The sıze of the search graph (simılar to the branch-and-bound) is often superpolyminal and the pruning mechanisms inherent in the equations may be rather weak [Rinnooy Kan,1976][7] Further, a very large number of
intermediate calculations must be stored in memory. This method is usually used only for single machine problems up-to 25 jobs. Also it requires a lot of calculation, far more than any other solution that we have met [French, 1982][28].

c. CONSTRUCTIVE APPROACHES:

Constructive approaches are based on building an optimal schedule in a single pass, by following a simple set of rules. These approaches have been developed for certain specific scheduling problems known to be the class P. Among these are: $n / 1 / F, n / 1 / L_{\text {max }}, n / 2 / F / F_{\max }, n / 2 / G / F_{\max }$, and $2 / m / F / F_{\text {max }}$ [Rinnooy Kan,1976][7] and [French,1982][28]. Generally, most n jobs, 1 and 2 machines problems lend themselves to efficient optimal solution methodologies derived from constructive approaches. Constructive algorithms have not provided the general optimal solution methods for more than 2 machines. Johnson's Algorithm for ($\mathrm{n} / 2 / \mathrm{F} / \mathrm{F}_{\max }$) problem may be extended to a special case of the $\mathrm{n} / 3 / \mathrm{F} / \mathrm{F}_{\max }$ problem.

d. MATHEMATICAL PROGRAMMING:

In fact this was the earliest method to be used to solve NP-hard problems by [Bowmann,1959][29] and [Wagner,1959][30], then by [Pritsker, et.al,1969][31]. This method is a general form of a mathematical programming which consists of formulating the scheduling problem as mixed integer, linear or non-linear programming problems. The models from the literature fall into two categories: 0-1 integer models and binary disjunctive models:

d.1 0-1 INTEGER MODELS:

Bowmann,1959[29] first developed a mathematical programming formulation of the machine scheduling problem. His model was a 0-1 integer mathematical programme in which he had tried to
take an advantage of the simplex method which can be used to solve linear programming problems, but failed to find a good algorithm as scheduling problems need extensive number of $0-1$ variables and constraints. Wagner,1959[30] presented an approach which is suitable for only $n / m / P / B$ problem. Pritsker,1969[31] offered a more compact model of this form.

d. 2 BINARY DISUUNCTIVE LP MODELS:

Manne, 1960[32] used Zero-One integer decision variables in linear inequalities which defined a partial machine sequence. The resulting problem is solved as a mixed integer programme. Greenburg,1968[33] used linear inequalities defined by a particular partial machine sequence. The resulting family of problems are solved as a set of linear programmes, one for each distinct sequence. White, et al 1986[34] offered a non-linear mathematical programming formulation with quite different properties. In their model the disjunctive constraints are realized by some of the constraint equations.

2.3 HEURISTIC METHODS:

So far we have briefly discussed methods which reached exact solutions. Unfortunately, the optimum methods of the scheduling problem, suggest that optimum approaches to large NP-hard problems which will fail in this objective within reasonable overall time [French,1982][28]. Faced with the historical experience and the implications of the optimum methods, machine scheduling researchers have pursued solution techniques not predicated on optimality [Rinnooy Kan,1976][7]. Also investigators have sought to develop new heuristics capable of providing good schedules, if not optimal ones. Palmer [1965][35] obtained a quick near-optimum solution for $n / m / F / F_{\max }$ using slope-index. Gupta[1971][36] produced a heuristic method for n-job through m machine which was easy to solve. Dennenbring[1977][37] designed a rule which attempted to be
maxture between the Palmer[35] \& Campble, et al[9] methods This method found the optimal sequence in about 35% of all cases ($\mathrm{n} \leq 6, \mathrm{~m} \leq 10$) Arumugma, et al[1981][38] evaluated two new loading rules based on the monetary value of the job Sarin \& Elmagharaby[1984][39] produced a heuristic method, which translated the optımal solution for one processor, into a solution of m processor with arbitrary precedence related jobs The measure of performance is to minimize the weighted completion time
Given below are the better used heuristic approaches which form the basis for most of the developments

2.3.1 PRIORITY RULES:

Prıorıty rules indıcate how to assign a specific job to a specific machine at a given time, when a machine becomes avaılable for process [Rowe and Jackson, 1956[40]
The literature library involves numerous priority rules which have been considered
Panwalker \& Iskander[1974][40], for example, survey over 110 prioraty rules
A few of the studies are, Rowe[1956][41], Conway, et al [1967][5], Baker,1974[6], Jones,C H [1977][42], French[1982] [28], John, et al[1982][43], Schrıber[1991][44] and Ezat, A Mujanah \& Al-Baradıe, M [1993][45]
Prıority rules may be conveniently classified by their transient characteristics and by the information required to implement them Thus, a static priority rule does not change as a function of the passage of time, while a dynamic one leads to be an opposite active schedule [French] [28]
A local priority rule requires only information about the jobs to be processed on a machine, while a global rule requires more information about jobs, machines and queue lines It follows that the global rules gave more cost processing information than lead the global prıority rules [Conway, et al][5] Table 22 shows the classification of a few typical of the more
common priority rules
Dzıelınkı, $1960[46]$, LeGrande, Earl, 1963[47], Nanot, 1963[48], Conway, 1964[49] and Nelson,1965[50] found that, of all local prıorıty rules, SPT rule minımized the mean flow time Conway, however, found that a rule formed by combining the shortest processing time rule with a rule which considers the work content of the next queue, could give a slightly better result than the SPT rule by itself

In point of view of the processing time based rules, due to [Conway and Maxewll,1962][51] noted that, in a sıngle-server environment the SPT rule was optimum with respect to certain criteria (mınımıes mean flow time and lateness) For the point of the external discussion of assigning due date to arriving Jobs [Conway,1965a[52], Conway and Maxwell[51] found that, the SPT rule also minımızes the mean lateness and the number of tardy jobs
Also [Elvers, 1973][53] studied the performance of 10 priority rules over five varıations of the TWK (Based total work content) due date assignment method (setting the due date as 3, 4, 5, 6 and 7 times the total job processing time) Approxımately 250 jobs per run, having unıformly distrıbuted arrival times $H e$ found that when the due date is set six times the total processing time or less, the SPT (shortest processing time) rule performed best with respect to a tardiness criterion The SRPT (smallest remainıng processing time) rule also performed well, while EDD (Earliest Due date) rule performed the worst rule

Eilon and Coterıll[1968][54] and Eilon, et al[1975][55] who addressed a modification of the SI(SPT) rule that will be in the form of SI/SI(F) It took into account due dates (which SI does not) and helped to reduce the delays incurred for very long jobs The authors were pleased wath the results obtained from using SI/SI/F modification rule
The most commonly used rule involving a shop characteristic (arrival time and random) is FCFS, FASFS and RANDOM [Conway,1965a][56] tested a varıation between the FCFS rule with FASFS

Related to	Rule Symbols	Definition of rules
Processing Time	SPT LPT SRPT LRPT	Shortest Processing Time Longest Processing Time Shortest Remaining Processing Time Longest Remaining Processing Time
Due Date	EDD StS DyS OPNDD	Earliest Due Date Static Slack due date - arrıval tame Dynamic Slack due date - the remaining expected flow time the current date Earliest Operation Due Date, assuming the allowed flow time is divided equally among operation
$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { Operation } \end{aligned}$	FOPR MOPR	Fewest Operation Remaining Most Operation Remaining
Arrıval Tame \& Random	FCFS LCFS FASFI RANDO	First Come First Service Last Come First Service First at Shop First In Select in RANDOM order
Machine Attrıbute	NINQ WINQ	Select Job whose next operation is on the machine with the smallest queue Select job whose next operation is on the m / c with the least work
```Combinat- -lon of simple rules```	FCFS/   SPT   SEQ	Select jobs based on SPT, but for jobs whose waiting time is greater than a specific value, use FCFS rule   Consider work-in-process value of the job, elapsed waiting time and the number of operation

Table 2.2: Selected Priority Rules[41]

He found that, FASFS was slightly better than FCFS on flow time mean and slightly worse on tardiness However, Rochette and Sadowskı,1978[57] found that, FASFS did better than FCFS on tardıness for 13 to 15 replicatıons Also Rochette \& Sadowskı tested NOP rule (the number of operation remaining) This rule performed much worse on tardiness, than all other rules tested Philıp, et al,1984[58], presented an experımental analysis of Job-shop system to test four prıorıty rules ( SPT, FCFS, FASFS and RANDOM) under three levels of shop utilisation Their results indicate that, the SPT rule gave the best performance for all conditions of workload

### 2.3.2 MONTE CARLO METHODS ( Probabilistic priority)

The idea of a monte carlo or random sampling approach is sımple
Use some random devıce, construct and evaluate ( X ) sequences, and identıfy the best sequence in the sample The difficult and ımportant issues surrounding this method involves two tactical problems [Baker, 1974][6]

1- What particular device should be used to generate random numbers ?

Baker's idea is that making equally lıkely cholces among resolutions in priority rule algorithms is not the same as making equally likely choıces among the set of schedules which establish the population Instead, a given schedule is generated with a probability that varıes oppositely with the number of disagreements in it

2- What conclusion can be drawn regarding the best sequence in the sample ?

The conclusions one can draw are directly related to the population size, the sample size, and that distribution of solution values for the population Given that the population sıze is typically enormous, that the sample size is typically small, and the underlyıng distrıbution is always unknown, only one substantial conclusion can be drawn This is that the best
sequence in the sample.
In brief, monte carlo method is a variable procedure for obtaining reasonable solution having a limited amount of computational dealing. In more complicated scheduling problems, this method have provided effective heuristic procedure. Also it appears to be competitive with other general purpose heuristic methods. However, the task for research is to determine, how these issues which mentioned above should be resolved to arrive at an active monte carlo procedure [Baker, 1976[6].

### 2.3.3 Neighbourhood Methods:

Neighbourhood search technique begin with any feasible schedule, adjust this somewhat, check whether the adjustment has made any improvement. Continuing in this cycle of adjustment and testing until an improvement measure is achieved. Two related concepts which are the basis of this method are the neighbourhood sequence and the neighbourhood generating mechanisms for these sequences [Baker,1976][6]. A neighbourhood generating mechanism is a method of taking one sequence as a seed and systematically creating a collection of related sequences ( i.e the neighbourhood sequence).
A general algorithmic description for the family of neighbourhood search techniques, is given below [French, 1982][28].

Step 1. Obtain a sequence to be an initial seed and evaluate it with respect to the given performance measure.

Step 2. Generate and evaluate all the sequences in the neighbourhood of the seed. If none of the sequences are better than the seed with resect to the given measure of performance, stop. Otherwise proceed.

Step 3. Select one of the sequences in the neighbourhood that improved the measure of performance. Let this sequence be the seed. Return to step 2.
The search procedure of this family of algorithms terminates
with a sequence that is a local optimum (with resect to the given neighbourhood structure)
Unfortunately, there are in general no way to guarantee or even know either that the terminal sequence is also a global optımum
However, few experıments [Spachıs and Kıng, 1979][59] indicated that, fundamental neıghbourhood search algorithm described above, $1 s$ faırly relıable as a general purpose heurıstic procedure [Baker, 1976][6]

### 2.4 COMPUTER AIDED-SIMULATION OF PRODUCTION SCHEDULING APPLICATIONS:

An early definition of simulation 1 s written by West Churchman[1963][60], as
, "x simulates $y$ " is true if and only if (a) $x$ and $y$ are formal system, (b) y is taken to be the real system, (c) $x$ is taken to be an approximation to the real system, and (d) the rules of validity in $x$ are non-error-free '
A recent definition by Robert Shannon[1982, p 633][61], a respected authority in sımulation, is as follows
'Simulation is the process of designing a model of a real system and conducting experıments with this model for the purpose either of understanding the behaviour of the system or of evaluating various strategies for the operation of system ' A more recent definition according to [SIMAN simulation software, by Pegden, Shannon and Sadowskı,1990][62] is as follows
'The process of designing a model of a real system and conducting experiments with this model for the purpose of understanding the behaviour of the system and/or evaluating varıous strategies for the operation of the system '

Due to [Vılleneuve, et al 1988][63], Figure 21 shows the interpretation of this definition as the relationship between the real system and the simulation model


Figure 2.1: Comparison of real system and simulation model

Thomas et al[1966][64], trace the origin of simulation to the early sampling experıments of Gosset, W A, who publıshed under the name Student [Student, 1908][65] However, the modern simulation techniques have been found through the works of [Von Neuman, 1951][66] His work involved the analysis of nuclearshıelding problems through a technique called " Monte Carlo analysis" which became the fundamental to simulation modelling Thomas and DaCosta, $1979[67]$ noted in thear survey that simulation is mainly applied to the following areas

* Analysis of Commercial Aır Transportation Systems
* Analysis of Computing Facılıty Operations
* Milıtary Operations Analysis
* Evaluation of Machıne Replacement Polıcies
* Nuclear Fuel Cycle Analysis
* Management Gamıng
* War Gamıng
* Environmental Impact Analysis
* Forest Resource Management
* Corporate Planning
* Machıne Requirements Plannıng
* Evaluation of health Care Delıvery System
* Manpower Planning
* Flow \& Job Shop Scheduling
* Instructional Modelling for Higher Education
* Transportation planning
* Communications Network Analysis
* Financial Analysis
* Production and inventory Control Analysis
* CAD / CAM / FMS-CIM

Also simulation has been applıed to process application such as [Mıller, 1987][68]

* Agriculture Chemıcals
* Aır Separation
* Desalınatıon
* Fermentation
* Inorganıc Chemıcal
* Metals
* Natural Gas
* Oıl
* Plastics
* Power
* Synthetıc Fuels
* shale and tar sands
* Water treatment

Today, due to [Taha, Hamdy, A ][1988][69] simulation is a powerful tool for the analysis of a varıety of manufacturing systems, such as production scheduling, inventory control, materıals handlıng, flexible manufacturing, project scheduling, manpower allocation, relıabılıty and maıntenance

In point of view of production scheduling, Conway, Maxwell and Miller, 1967[5] had given an excellent introduction to the interrelation between queuing theory and stochastic scheduling Their researchers provide an excellent introduction to simulation in the context of the flow and job shop [1967,

## Chapter 11]

Computer Simulation can be efficiently applied to the following four activities of production scheduling environment [Carrie, A, 1988][70]

### 2.4.1 Computer Simulation of Flow-Shop (transfer line) :

It is to investigate the extent to which inter-stage buffer storage can manımase the loss of output of the line due to break downs at work stations [Buzacott][71] Due to Conway, Johnson and Miller,1959[72] an experımental investigation was carried out by means of a queue network simulation program for the Burroughs 220 Through their investigation on pure flow shop (is a shop in which there is only one path, that work can follow - each machine has a fixed predecessor and successor), separate runs were made for the number of jobs equal two, four and six times the number of machines Also comparisons between priority rules were made on the same set of sample jobs (2000 Jobs per sample) The results showed that, the shortest operation rule was better for every shop size with respect to ıdle tıme\%
Hon, $k \quad k$ and Ahmad, $M$ M,1985[73] in their study on transfer lines, they demonstrated that, computer simulation is a costeffective method in the analysis of transfer line performance, and it can be applied for 1 dentıfyıng the crıtıcal machine on the transfer line for machine replacement or refurbishment programme

### 2.4.2 Computer Simulation of Job-Shop:

A computer simulation in job-shop environment deals in particular, the effectiveness and assessment of different priority rules on the shop's ability to achieve near-optimum solution for many criteria There are many articles and books which have been published on the simulation of the job-
scheduling problem Conway, Johnson and Maxwell [1959][72] had carried out an experimental investigation on job shop for the Burroughs 200 by means of a queue network simulation programme The computer simulation carried out separate replications for the number of jobs (the sample size at least 2000 jobs) equal to two, four and six times the number of machines Comparisons between priority rules (random and shortest operation time) were made on the same set of sample jobs with regard to the mean waiting time, system state and utilızation They believed through the experimental investigation that, the shortestoperation rule deserve a further consideration and potentially was a great practical significance
Earl LeGrande[1963][47] has developed a factory simulation system using actual operating data belong to Hughes Aircraft Company, El Segundo Division The simulation process in his work was used as a study tool to evaluate the effectiveness of several priority rules with respect to the various criteria under constant conditions His simulation analysis shows that the SPT rule gives the best total relatıve rank if all crıterıa are welghted equally
Conway[1965a][52] reported a portion of the results of an investigation of different priority rules, in a job shop by means of computer simulation The criteria of comparison are varıous measures of work-ın-process inventory The simulation experıments were executed on an IBM 650 and IBM 7090 and the programmes had been written in SIMSCRIPT[74] He noted that, the SPT rule under every measure clearly dominated all the other rules (RANDOM, FCFS, FASFS, LPT, TWKR, MWKR and FOPNR) Moore, and Wilson[1967][75] had summarized the results of many digital simulation experıments seeking principles of scheduling design valid for job shops They pointed to the assumptions of the simulation model, such as job arrival, service time distributions, shop utilization, routing jobs, period simulation running and selected priority rules were discussed Eilon, and Cotterıll[1968][54] carried out a sımulation study of a hypothetical shop with several machines under alternative priority rules His simulation was carried out on the IBM 7090
at Imperial College, the simulation came to an end when 5000 completed jobs emerged from the system The simulation model was under negatıve-exponentially distrıbuted inter-arrıval and processing times The main simulation running results were concerned with a comparison between the effectiveness of the $S$ rules (glvang preference to short operations), FCFS and $L$ rules (which gives priority to long operation) They concluded that, the SPT rule performs best with respect to several crıteria, but not for minimising the varıance of throughput tımes (Make-Span) or mıssed due-dates Jones,1973[42] presented an economıc framework for evaluating heuristic priorıty rules in the classic job shop situation In his study, simulation trials demonstrated the possible existence of cost structures which favour priority rules other than shortest processing time
Phılıp, et al[1984][58] studied a computer simulation on job shop scheduling They described the effectiveness of different priority rules under varıous workload conditions The mean flow tame per job had been used as the measure of performance with respect to SPT, FCFS, FISFS and LCFS rules The SPT rule was the best performer for all levels of shop workload Ramesh and Cary[1990][76] have developed a framework for the efficient job-shop scheduling considering the flow time, lateness and number of late jobs as the main criteria They have developed scheduling strategies to the man-machine approach as well The algorithms developed in their research tested and evaluated against the traditional scheduling methods using simulation studies Through 10 observations of simulation results jointly with ANOVA analysis, show that the scheduling algorithms, due date rule and the processing time variances and their interactions significantly affected the performance measures

### 2.4.3 Computer Simulation of Flexible Flow-Shop:

In this group of flexible shop, due to Wittrock\{1985\}\{77\} a
scheduling flexıble flow-line can be defined as follows Several part types must be produced each days There are several banks of identical machines Each part must be processed by at most one machine in each bank Each part visits the machıne banks in the same order There is a buffer which has a large capacity and operates There are machines to load and unload parts into and out of the system Finally, there is an automated transport system to move parts from one machine to another In addition to general-purpose machınes, it can contain special-purpose machines, robots and some dedicated equipment [Browne, et al 1984][78]
A number of researches have dealt with computer simulation for the operation of flexible flow-shop Some of these researches have performed by large industrial concerns Hanıfin[1975][79] used GPSS as a simulation language to develop an automated flow lıne systems for actual transfer lınes at Kokomo Work of Chrysler Corporation His computer model was based on the operation of these machining flow lines The model was developed to deal with several specific problem areas at Chrysler His investigation considered the effect of adding up three storage buffer areas of three specıfic location along the lıne $H e$ also investıgated the effect of different average tool change times
Due to Buzacott, et al[1978][80] in their research on simulation running on flexible transfer lınes $H e$ concludes that each main factor affecting the transfer line output such as inter-operational stock, could be studied indıvidually and furthermore, interaction effects could also be examined in detall

Flexıble Assembly line is a class of transfer line Koenıgsberg and Mamer, 1981[81] are the authors who have dealt with flexible assembly systems in more detalls [Buzacott and Yao 1982][82] and [1986[83] They considered an assembly system consisting of a work transporter to feed work stations and a carousel conveyor Using simple queuing theory results they analyzed each component of the system - the loading/unloading of the carousel conveyor used for sorting work-ın-process, dispatching
work onto the work transporter and the processing of work at each work station. such assembly systems, which involve work transporter and central storage, appear to offer promise in overcoming some of the problems of conventional assembly lines. Because the flexible assembly systems are considerably cheaper than FMSs [Riley and Yarrow,1983[84]. It is possible that FASs may be adopted more rapidly. FASs rely on human intervention for the release of jobs and initiating movement of jobs between stations, although the dispatcher is provided with detailed information on the status of all jobs on the system. Thus, it is desirable to investigate simple priority rules and with the performance of the dispatcher.
Lay and Schiefele[1985][85] reported a simulation model for a flexible assembly system using SLAM II as simulation language. The aim of the simulation study was to arrange the assembly system in a way that the used resources (e.g work stations, workpiece pallets etc.) contribute effectively to a high productivity rate.
O'Gorman, Gibbons, and Browne, J.[1986][86] described a Simulation SLAM based model of hypothetical Flexible Transfer Lines. The study had compared the SPT, LPT and FCFS rule as well as Johnson's algorithm with respect to total throughput time. They got an important concept that a simulation language is a powerful tool in the evaluation and development of FMS.

### 2.4.4 Computer Simulation of Flexible Manufacturing Systems:

The fundamental definition of an FMS is, in the words of [Buzacotte and Shanthikumar,1980][87], "A flexible manufacturing system (FMS) consists of machines where production operations are performed, linked by a material handling system and all under central computer control".
In United States Office of Technology Assessment concept,
"A flexible manufacturing system (FMS) is a production unit capable of producing a range of discrete products with a
minımum of manual intervention. It consists of production equipment workstations (machine tools or other equipment for fabrication, assembly, or treatment) linked by a materialhandling system to move parts from one workstation to another, and it operates as an integrated system under full programmable control" The use of simulation in the design and control of FMSs is widely accepted around the world It offers the most fascinating production method for the computer controlled factory Therr use allows one to [Ranky,1986][88], [Greenwood Nıgel R , 1988] [89] and [Carrie, 1988] [70] achıeve the following

* Increase in productivity ( often by 25\% )
* Decrease in production cost ( often by 50\% )
* Manufacture parts on order, rather than to stock them in inventory
* Decrease in inventory and Work-In-Process to a lower level
* Save at least $30 \%$ of labour
* Improve equipment utilızation by at least $50 \%$
* Reduce floor space by at least $50 \%$
* Provide 100\% inspectıon, thus 1 ncreasıng the qualıty of the product
* Decrease the amount of often repetitive, or hazardous physical work and increase the need for intelligent human
* Provide a reprogrammable, almost unmanned manufacturing facılıty

Due to [Ranky,1986][88], in point of view of computer simulation in FMSs scheduling concept, the major benefit is that

* The overall planning level can utilıze the scheduling system of the CIM business data processing system
* The FMS loadıng sequencing programme can be a relatıvely simple and fast "n" Job, one processor scheduler (the single processor being the whole FMS, as a system)
* The FMS dynamic schedule can be a single processor, but applied for each of those cells on which the component is going to be processed every time and mmediately after the
disruption occurs in the system
In terms of the analytical models of simulation FMSs, a review reported by Buzacott, and Yao,1986[82] was organized around the research groups as follows
- Purdue
- Draper Labs
- MIT (Massachusetts Institute of Technology) or (LIDS) (Laboratory for Information and Decision Systems)
- Harvard
- France
- Toronto


## purdue

The basic analytical model of this group has been CAN-Q developed by Solberg,1977[90] The system is modelled as a closed queuing network, in which the customers are the jobs to be processed by the system, and the servers are the machines At all stations, the FCFS rule is a queue priority rule, the service tıme distributions are exponential, all jobs will never be blocked at any stations, machines are always avaılable for processing at any stations The throughput of the system is defined as the throughput of the load/unload at which jobs enter and leave the system This model has been widely used for prelimınary design of FMSs and studying some of the issues in production planning However, the model will not in general yıeld satisfactory performance evaluations if, with FCFS rule, the service time distribution are not exponential

## Draper Labs

Hildebrant[1980][91] was the first to consider the overall production planning and control problems of FMSs He classified decisions into two types resource and temporal decision, and he used different levels for resources in which he fands the mix, sequence, and input time for jobs Software tools and some heuristic rule are developed on each long, medium and short term decision making The alm of this work is to develop a
decision support system to aid in decision making, regarding an FMS on three level of terms

## MIT (LIDS)

This group's work on FMS, $1 s$ part of a large research project which includes transfer lines, assembly/dısassembly networks as well as FMSs [Gershwan,et al 1981][92]
In FMS modelling [Kımemıa and Gershwin,1985][93] used the closed queuing network to study the optimal routing/loading of an FMS The objective is, to minimize the production rate This objective was studied through a detailed simulation model of an IBM printed cırcuit card[93] (or board) assembly facılity It was found that, the optımal policıes generated by the model are superior to other policles in terms of smoothing production against disruptave events such as repaırs and faılures

## Harvard

The group presented the FMS as queuing network with general servers and a limited storage space at the stations for a particular set of parameters, the network studied by using simulation Then in order to optimize some criteria, the central problem is to derive the corresponding gradients, 1 e, it is to study the sensitivity of the system performance to its parameters An approach called "perturbation analysis" was developed for this purpose by Ho,1984[94] The basıc idea of perturbation analysis is to observe a given sample path (nominal path), obtaıned from a detaıled simulation and to consider a question related to the occurrence of a specific event in the nominal path, which were perturbed Through this perturbed path, it could be known that it is effected on the interested system criteria

## France

In modelling FMSs, Cavarlle and Dubols,1982[95] walve the exponential assumption of the closed queuing network model The starting point is the following relation, known as the mean value equation (assume single server station)

$$
W(N)=\mu^{-1}+\mu^{-1} \quad Q(N-1)
$$

The equation says that in a close network of queues with population $N$, the mean delay of $a \operatorname{job}$ at a station, $W(N), 1 s$ the sum of its own mean service time (this service time is nearly deterministic) at that station $\mu^{-1}$, and the mean time to complete serving all other jobs which are already at that station Here $Q(N-1)$, observed at the job's arrıval point, is to be evaluated in a system with one less job ( $N$ - 1) This fact is known as the arrival-point theorem [Sevcik and Mitranı [1981][96] an arrıving job observed the behavıour of a network with itself excluded It plays a critical role in constructing the MVA algorithm (the Mean Value Analysis)

## Toronto

Buzacott, 1982a[97] was the first researcher reported about FMSs performance modelling for this group He emphasised on (i) limited local storage capacıty, and (ıl) general service-tıme distribution Three basic hıerarchical decision structures were focused

Pre-release Planning Decıding which Jobs are to be processing, identifying constraints on operation sequence

Input Control Determining the sequence and timing of release of jobs to the system

Operational Control Ensuring movement between machines and decıding which job is to be processed next by a machıne Also [Yao and Buzacott,1986a][98] developed a general service time problem approach The $1 d e a$ of this approach is to replace the general network by an (approximately) equivalent exponential network, where each station is characterızed by a set of state dependent service rates This approach gives accurate solutions to general networks and also recovers the classical product-form models in the case of exponential service tımes
The analytical simulation model approaches that have been developed by varıous groups was discussed. These approaches enable variety of issues connected with FMSs design and operation

Some of the more recent research on computer simulation of FMSs scheduling have been reported by

Aanen, Galman and Nawıjn[1989][99], They studied a real-lıfe FMS shop at the Dutch Institute of applied physics of TNO and the Institute of metals TNO (Apeldoorn) One of the objectives of this system is to produce a wide varıety of parts in small batches Due date, routing, capacities of the machines and the tool magazınes, tool and jaw changing times, lımıted fixture capacity, fixturing and clamping tımes and limited number of operators and transport devices had to be taken into account

Niemı and Davies[1989][100], noted through their research that the maximum utılızation of an FMS implies optimum job sequencing and effective method for programming the different computer controlled elements of the system The research described sımulation of an intelligent cell control system for a robot served FMC (flexible manufacturing cell), where job sequencing is based on demand from the cell and user-set priorıty

Montazerl and Wassenhove[1990][101] have discussed the characteristics of a general-purpose, user-oriented discrete event simulator for FMS The performance of a number of prıorıty rules were subsequent analyzed using their modular sımulator to mımıc the operation of a real-lıfe FMS Results showed that, priority rules had a large impact on varıous system performance measures, such as ave machıne utilization, ave WIP and ave buffer utilızation Considering the high ınvestment costs of FMS, it is certainly worthwhile to choose the best priority rule by use of simulation They concluded that SPT rule performs quite well with respect to ave waiting tıme per part and ave buffer utılızation Whıle LPT (longest processing time) rule showed good results with respect to machine utilization

Muller, Jackman and Fitzwater[1990][102] have discussed FMSs in terms of interfaced with the real-time control database so that initial conditions could be determined In their research they discarded the transient simulation running times that to
be before with a steady state Simulation results provide analysis with information, to make improvements in the short term schedule with better work order release decisions Emelyanov, Gendler and Felman[1990][103] reported a survey on FMSs They attended to the concept, kinds and indicators of FMSs Their paper gave fifty references as well

In point of view an FMSs simulation-economic analysis, [Boër and Metzler,1985][104] concluded the economic relationship between different manufacturing systems as shown in Figure 22 Also they noted that the important operational costs, can be evaluated only, if a simulation analysis is performed


Figure 2.2: Economical Manufacturang Concept.

In brief the simulation model serves as the designer's experımental laboratory allowing him to determine the system performance in response to changang conditions This helps to minımize the risk associated with an FMSs and insures that, it delivers the required results

### 2.5 SIMULATION LANGUAGE REVIEW:

### 2.5.1 Overview:

One tool which can aid the process of rapidly matching production responses to strategic and operational objectives such as production scheduling is computer simulation
With computer simulation, a model of the system under study is constructed using a simulation language Thıs language gives structure to the model building process, by providing special modelling constructs, that relate to the system under study Fortunately, there are many different "languages" available for building computer simulation models The majority of industrial sımulation languages deal with discrete event simulation Due to Taha[1988][69], discrete event simulation, in which observations are gathered only at selected points in time, when certain changes take place in the system
Problems concerning resource allocation, job sequencing (Thesis's aım), materıal handlıng, queuıng, transportation, etc , are best handled by discrete event simulation
On the other hand, continuous simulation requires that observations be collected continuously at every point in time Examples are radıoactive processes, chemıcal reaction processes, heating and cooling processes, etc

More recent simulation languages provide both discrete and continuous varıable simulation capabilities such as GASP IV,1974[105] (USA), SLAM II[106](USA), SIMAN[62](USA), WITNESS[107](UK), ECSL[108](UK), GPSS,1972[109] and Taha,[69] General purpose computer programming languages, such as Pascal, fortran, C, Lisp, and others, can be used to develop simulation models Many simulation languages provide also an interface to a general purpose programming language This allows the user to develop special purpose functions and/or routines required for a particular model
Most of the simulation software packages, e g, SIMAN[62](USA),

SLAM II[106](USA), HOCUS[110](UK), BEAM[111](USA), WITNESS[107] (UK), and others, provide graphic aids (an anımated scene) for model development, and display of the results for many problems, a graphic display can be a very useful aid in viewing system operation [Hurrion,1978][112] and [Grant and Weiner, 1986][113]

### 2.5.2 Commercial Simulation Software Review:

Grant and Weıner[1986][113], addressed that in the Unıted States there were about 500 anımated simulation systems installed with compared to less than 10 in 1982 Carrie[1988] [70], reported a historical development of more than 30 packages in the UK and USA In Fıgures 23 and 24 he linked the simulation packages in the UK and USA into two famıly trees respectively The following review will be devoted, and briefly discusses some of the most well-known simulation software

## 1. GASP IV:

Due to Prıtsker[1974,p 16][105], "a GASP IV programme is made up of (FORTRAN) sub-programmes linked together by an executive routine, that organises and controls the performance of the sub-programmes" Specıfically, GASP IV includes routines to perform the following tasks

* Trme advance and status update
* Inıtıalızation
* Data storage and retrieval
* Location of state conditions and entities
* Data collection, computation and reporting Monitoring and error reporting
* Random deviate generation
* Various miscellaneous routines

The analyst needs to be fully conversant with the routines provided in order to make proper use of these collections However, it is easier than writing from scratch in FORTRAN and sımılar problem oriented languages


Fig 23 Historical Development of simulation packages in the UK


## 2. ECSL:

Extended Control and Simulation Language [Clementson, 1985][108] applies the simple activity scan approach ECSL code $1 s$ interpreted, the ECSL system and the interpreter being written in FORTRAN Thus ECSL may run on any machine which supports a FORTRAN compiler and offering sufficıent storage ECSL programme has the following sections

* Definitions
* Inıtialızation
* Activities
* Finalızation
* Data

ECSL provides sampling routines and random number streams it is entirely orıented towards programming simulation problems However, because of the interpreter, this is possibly at the expense of efficient execution Despite being interpreted, an ECSL programme can not be stopped and restarted in the same way as most BASIC programmes

## 3. WITNESS:

WITNESS [AT\&T Istel Ltd,1991][107] is probably one of the most developed of the generic manufacturing models it has been used in several non-manufacturing environments The basic elements of WITNESS are parts, machınes, conveyers, buffers, labour, vehıcles and tasks To create and run a model, WITNESS provides three phase guided by menus and prompts These phases are

* Define the operational elements
* Detaıl the operating characterıstics of the elements
* Display the elements in the model


## 4. GPSS:

Due to Pıdd, 1988[114], the GPSS (General Purpose System Simulator) [109] is the best-known block diagram system for
simulation GPSS is based around the 1 dea of a block diagram which models the flow of entities through a network Consider a single server queue, GPSS being ideal for such simulation A skeleton GPSS program mıght look as follows

* Generate
* Queue
* selze
* Depart
* Advance
* Release
* Terminate

GPSS has an appealing simplicity Hence it has an obvious application for simulatıng systems in which the entities follow relatively predictable paths in which their interaction is slight However, GPSS has relatively poor creation for random number generator, thus it could lead to sampling errors

## 5. SIMAN:

SIMAN[1991][62], from System Modelling Corporation, is a general purpose, microcomputer based and anımation system It is first which used to build the sımulation model of the system Then CINEMA is used to construct an animation lay-out, which is graphically depicting the physical components of the system being modeled Then the SIMAN simulation model is executed in conjunction with the CINIMA lay-out to generate a graphical anımation of the system dynamics
More details concerning SIMAN software, will be discussed through out Chapters 6 and 7 , in this thesis

## CHAPTER THREE

## 3. PRODUCTION SEQUENTIAL SCHEDULING:

### 3.1 Introduction:

Every Industrial organization has a number of scheduling problems The production sequential scheduling is the most mportant problem of scheduling encountered an production planning and control, yet it is at the same time the main factor in estimating the production cost in a factory Thas chapter wall be devoted to machine scheduling problems The magnitude of the problem can be illustrated as follows

1- Consıder a given number of jobs each of which requires one or more operations An operation is the processing of a specific job, through a specific machıne (processors or facılıty), it is important to determine the starting time of the operations as well

2- Job sequencing or job scheduling consists of determining the order or sequence in which the machınes will process work so as to optimise some criteria The selection of the criterion in a particular case will depend on the individual requirements of the decision maker

In terms of production cost in the factory, estimating the cost of a part $1 s$ closely linked to the efficient sequencing of the job through manufacturing lines The most important criteria of the cost involved through job sequencing are make-span (total completion time), machine idle time (machine utılızatıon), waıtıng tıme for jobs (work-ın-process), mean completion time of job and job lateness

### 3.2 Description of A General Machine Scheduling Problem:

Machine scheduling problems can be usefully stated as sequencing, a set of entities which pass through the shop are called $n$ Jobs ( $J_{1}, J_{2}, \quad J_{n}$ ) and a set of works done on them at $m$ machınes ( $M_{1}, M_{2}, M_{n}$ ) are called operatıons (tasks) m $\left\{O_{j}, O_{j}, ., O_{j \mathrm{~m}}\right)$ These operations to be performed in a strict technological sequence which is called a routing, where j-1, , $n$ is the job number and $1-1, \quad, k_{j}$ is the position of the operation in the sequence Each job has a ready time or release date $r_{\text {, }}$ to be avalable for processing, and must complete processing by $d_{J}$, the due date of job $J_{J}$ Each operation $O_{j ı}$ requires a specific machıne $M_{s}$ for processing
 operation Thus the job sequencing can be defined as the ordering of the operations on jobs at the machines This job is undergo to routing or technological constraints, so that the best value 15 obtained for some of crıteria appropriate to the system For general job-shop problems there are no restriction upon the form of the technological constraints Each job has its own processing order and this has no relation to the processing order of any other job However, an important special case arıses, when all the jobs have the same processing order This kınd of shop $1 s$ called a flow-shop problem Geometrically the job sequencing ordering which can be produced as a projected time-table is called a Gantt chart, [Henry, L Gantt[1918][115]

The most of scheduling researches report a typical machine scheduling problem with ready times equal zero (this 15 the static scheduling problem) and no due dates The criterion is to mınımıze the maxımum time to complete all jobs (make-span or $C_{\max }$ ) Hereafter, Figures $31(\mathrm{a}, \mathrm{b}$ and c ) and $32(\mathrm{a}$ and b ) respectively show two simple data, job sequencing, feasible solution Gantt charts for deterministic job-shop and flow-shop problem

Fig 3 la Processing Times for each job on each machine Processing Time

Machines		M1	M2	M3
Jobs	J1	4	2	7
	$J 2$	3	5	6
	J3	2	4	3

Fig 3.1b. Job sequencing of processing jobs on machines

Processing Sequence			1st	2nd
Jobs	J1	M3	M1	M2
	J2	M2	M3	M1
	J3	M2	M1	M3

Fig 3 1c Feasible Solutıon Gantt chart


Figure 3.1 ( $a, b$ and $c$ ): 3-job 3-machine job-shop scheduling problem.

Fig 3 2a Processing time for each job on each machine

Machines		1	2	3
Jobs	1	5	6	3
	2	4	3	4
	3	3	3	3

Fig. 3 2b Feasible solution Gantt chart


Figure 3.2 ( $a$ and $b$ ): 3-job 3-machine flow-shop scheduling problem.

### 3.3 Restrictive assumptions:

The more apparent statement of the machıne scheduling problem with zero ready times specifies a number of restrictive assumptions These assumptions were noted throughout the lıterature of [Rınnooy Kan,1976][7] and [French,1982][28]

### 3.3.1 Restriction on the machines:

Unless stated otherwise, the following restrictions are to be placed on the machınes
M1 The number of machines $m$ is known and fixed (a deterministic problem)
M2 All machınes are avaılable at the same instant and are independent
M3 All machınes remain avaılable during an unlımıted time perıod (breakdown not allowed) However, this assumption is stated in Chapter (7) where a machine required maintenance at a certain period of time and therefore no job can be processed during that time
M4 Each machıne $m\left(M_{1}, M_{2}, \quad, M_{m}\right)$ is either waiting to process the next job, operating on $a \operatorname{job}$ or having finished its last Job
M5 All machines are equally important That is their speeds of processing are the same
M6 Each machine has to process all jobs assigned to it (a deterministic problem)

M7 Each machine can process not more than one job at a tıme

### 3.3.2 Restriction on the jobs:

Unless stated otherwise, the following restrictions are to be made on the jobs
J1 The set of jobs are known and fixed in advance
J2 All jobs are available at time zero and independent However, this assumption does not often hold, see Chapters ( 6 and 7), where each job has a release date $r$, which previously not avaılable
J3 All jobs remain avaılable during an unlımited time period However, this assumption is stated in Chapters (6 and 7) for where each job requires due date $d_{j}$, that is a tame by which processing should be completed
J4. At any instant of time, each job is either warting for the
next machine, being processed or processing is complete

All jobs are equally important ( $W_{J}=1$ for all $J=1,2,3, \quad, n)$, where $W_{J}$ is denoted to weight assigned to job j (the relatıve important of each of these job n) Each job must be processed by all the machınes assigned to $1 t$ ( $a$ determinıstıc problem) Each job is processed by one machine at a time Preemption is not allowed That is each operation once started has to be completed without interruption This assumption is relaxed in the case of a lower bound being obtaıned
All processing tıme anclude any set-up and tear-down tıme and fixed and independent-sequence Baker[1974][6]
considered this problem in more terms

Conway et al[1967][5] gave more descrıptıons for the stochastic nature of some scheduling problems Such type of problems are not included in the M1, M2, J1 and J2 This random data is stated later in Chapters (4, 5, 6 and 7)
In brief, these assumptions were mentioned during two previous items jointly with the choice of criteria representing only a component of a schedule's cost Due to [French,1982][28], in practice it $1 s$ the total cost that we wish to minimize

### 3.4 Scheduling Costs and Measure of Performances:

The objective in all scheduling problems taken into account in this thesis is to obtain an optimum or near-optimum job sequence, with respect to a given criterıon This criterion is called the measure of performance (the objective function) They are numerous, complex, and often conflicting Mellor[1966][116] lists 27 distinct scheduling goals System costs, however, are often difficult to measure or even to 1 dentıfy completely Thus, the measure of system performance which are aggregate scalar quantities and which contain either
 referred to simply as performance measure [baker,1974][6]

### 3.4.1 Criteria based upon minimizing Completion Times:

The main criteria in this category are
1 Make-Span or maximum completion time Is the time to complete all jobs J (1 e)

$$
\max _{1<j<n}\left(C_{j}\right)
$$

2 Mean Completion Tıme (l e)

$$
C=(1 / n) \sum_{j=1}^{n} C_{j}
$$

3 Flow Tame Is the mean of the time that $J_{3}$ spends in processing (l e)

$$
F_{j}=C_{j}-r_{j}
$$

4 Mean Flow Tıme (i e)

$$
F=(1 / n) \sum_{j=1}^{n} F_{j}
$$

3.4.2 Criteria based upon minimizing machine Idle Times or maximizing machine utilizations:

The Idle Time on machine $M_{1}$ is equal to

$$
I_{i}=C_{\max }-\sum_{j=1}^{n} P_{f i}
$$

Where $C_{\text {max }}$ is the make-span and the second element of this
equation is the total processing time on machine $M_{1}$ Their difference gives the period for which the machine is idle Due to French[1982][28] the mean ldle tıme, may be chosen to achıeve maxımum machıne effıcıency

### 3.4.3 Criteria based upon minimizing Inventory costs:

## a. Waiting Times criteria:

a 1 The waiting time of $J_{J}$ on machine $M_{1}$ is the elapsed time between the completion of $O_{J_{2}}$ and the start of processing of $\mathrm{o}_{\mathrm{J}}{ }_{\mathrm{J}+1}$
a 2 The total waiting time of $J_{3}$ is as follows

$$
W_{J}=\sum_{i=1}^{m} W_{\rho}
$$

b. Work-In-Process criteria[52]:

It is the amount of Work-In-Process (number of jobs)at tıme $t$

### 3.4.4 Criteria based upon Due Dates( minimizing of the Lateness and Mean Lateness of jobs):

If due dates have been assigned to jobs, and since the cost of schedule is usually related to how we miss target dates by, obvious measure of performance are
a The Lateness which defined as the difference between the completion time of $J_{j}$ and the its due date ( $L_{j}=C_{j}-d_{j}$ )
b The Mean lateness which defined as followed

$$
L=(1 / n) \sum_{j=1}^{n}\left(L_{j}\right)
$$

### 3.5 Problem Classifications:

In this section, each scheduling problem requires processing $n$ jobs on $m$ machines so as to satisfy the objective of the
criteria. Therefore, each scheduling problem has a well-defined set of jobs, machines and performance measures.

For this reason, scheduling problems are characterized by 4-parameter notation n/m/G/B [conway, et al,1965][5] and French [1982][28] to be defined below:
$n$ is certain job characteristic(is the number of jobs).
$m$ is the number of machines.
$G$ is the machine environment (describes the flow pattern within the machine shop).
$B$ is the optimality criterion (describes the performance measure by which the schedule is to be evaluated.
Table 2.1 (page 8) described most of the types of job-shop problems.

### 3.5.1 Open and closed shop problem:

The open shop problem in which each job j consists of a set of operation $\left\{\mathrm{O}_{j 1}, \mathrm{O}_{\mathrm{j} 2}, \ldots, \mathrm{O}_{j \mathrm{~m}}\right\}$. But the order in which the operations are processed is immaterial. Also in an open shop environment no inventory is stocked, all production orders are by customer request and it means sequencing only, whereas in the closed shop problem the orders are fulfilled from an inventory and it means not only sequencing, but lot-sizing, consequently the manufacturing system produces part for inventory, rather than for customer.

### 3.5.2 A single machine problem (n/1/B):

The n/1/B problem is considered as follows: Each of n jobs has to be processed without interruption through a single machine. The machine cannot process more than one job at a time. Each job $j$ has a processing time $P_{j}$. Given any sequence of jobs the completion time $C_{j}$ for job $j$ can be obtained assuming that processing starts at time zero, in this case the make-span for all job sequences is equal. In this type of shop in which there is a single machine, the total number
of distinct solutions is therefore $n '$, which is the number of different permutation of $n$ elements Also aggregate performance measures that might be defined includes the following [Baker,1974][6]

Mean flow time, Mean tardiness, Maxımum Flow time, maxımum tardiness and number of tardy jobs

The $n$ jobs, single machine problem is very important in the case of loading sequencing the FMS, because the entire FMS can be considered as one single processor (machine) [88].

### 3.5.3 A Pure (or Permutation) Flow-Shop Problem (Figure 3.3):

We have $a n / m / P / B$ problem in which each job $J$ has the same sequence of operation (unidirectional), also all machines m have to handle the jobs in the same route as shown in Fig 33 The processing time of each job $J$ on machine 1 , denoted by $P_{11}$, is given Once a job has started on a machine it must be completed on that machine without interruption The objective is to find a job sequence that optimize the selected criterion


## Figure 3.3: Job work-flow through machines in a pure flow-shop environment.

In a pure flow-shop problem we have (n') different job sequences Table 31 (page 48) shows the possible sequences for up to 10 jobs to be processed on machınes

Number of   Jobs	2	3	4	5	6	7	8	9	10
Possible   Sequences	2	6	24	120	720	5040	40220	362880	3628800

Table 3.1: Possible number of sequences of up to 10 jobs for a pure flow-shop problem.

### 3.5.4 A Flow-shop problem (Figure 3.4):

We have a $n / m / F / B$ problem, There are $n$ jobs to be processed on m machines. Each job J has the same sequence of operations, but some jobs may overtake other job through some machines (i e, the machınes may handle the jobs in different orders) as shown in Fig 34 Also each job $J$ has a processing time $P_{j 2}$ on machine 1 . once the processing of $a \operatorname{job}$ on a machine has started, it must be completed without interruption


Figure 3.4: Job work-flow through machines in flow-shop environment.

In flow-shop problem there are ( $n$ ') different job sequences possible for each machine, and therefore ( $n^{\prime}$ )m different schedules to be examıned

Due to Ranky[1986][88], in terms of production methods, both of a pure flow-shop and flow-shop problems mannly applied in the cases of transfer lines (assembly lines) and flexible flow-lines These methods of production are sufficlent and very productive, but they are inflexible and require large batch sizes to offer an economic solutions The objective is to find
a job sequence on machines that optimize the selected criterion

### 3.5.5 A Job-Shop problem (Figure 3.5 and 3.6):

We have $a n / m / G / B$ problem in which each job $J$ has a specified number of operations $\left\{\mathrm{O}_{11},, \mathrm{O}_{j m_{1}}\right\}$ of other jobs In other words there are $n$ jobs waiting to be processed on machines and the order of jobs is not the same or unidirectional Because the work-flow in a job-shop is a multi-directional type of the flow, each machine in the shop can be characterized by the input and output flows of work shows in Figure 35 below


Pigure 3.5: Work-flow at a typlcal machine in a job-shop.

For scheduling purpose the information that is needed from the process lay-out is the time required and the order in which the operation jobs are to be carried out on the specified machines The objective is to determine a job sequence which subject to restrictions on the order in which the job can be performed, will optimize the selected criteria
Figure 36 describes the nature of job flowing through a job shop environment


Figure 3.6: Job flowing through the machines in 3-jobs
9-machines job-shop.

The most important features of the job-shop problem are the following points:
a It can handle a variety of jobs at the same time, this is a flexible situation since the jobs can be different and there are no restrictions on their routing
b The machines are shared by different jobs
c Different jobs or batches can have different priority
d As results the procedures and outputs are equally applicable to all types of intermittent production systems

The major disadvantages of the job-shop scheduling method is that it is off-line, since it applied for a fixed period of time In another hand job arrival and real-time changes cannot be accurately planned because of the lake of an overall material handling and real-time operated computer control system

### 3.5.6 Nature of the requirement specification and scheduling environment:

## a. Deterministic and Stochastic Requirement:

The scheduling problem is called deterministic if the number of jobs and their ready times are known and fixed In the stochastic problems the job fale (processing times, job sequence, due date and arrival times) is uncertain

## b. Static and Dynamic environment:

Because the processing times and all other parameters are known and fixed, the scheduling problem is called static Whereas the problems in which jobs arrived randomly over a perıod of time are called dynamıc

Due to Ranky[1986][88], Most scheduling to be studied are determinıstıc and statıc, in other words were developed as if the manufacturing environment was static and its behaviour "fully known" for at least a finıte length of time, whereas in real lıfe, manufacturıng systems are stochastic and dynamıc Unfortunately, scheduling theory and practice are far apart and many mathematical models do not work in practice In thas thesis, we shall apply the two kinds of requirement and environment scheduling problem through Chapters (4, 5, 6 and 7)

## CHAPTER FOUR

## 4. PRODUCTION SCHEDULING STUDY FOR THE OPTIMIZATION OF THE FLOW-SHOP PROBLEM:

### 4.1 Presentation of $n / m / P / B$ problem:

In this chapter we consider the general permutation or pure flow-shop problem under precedence constraints This problem, indicated by $n / m / P / B$, can be described as follows

There are $n$ jobs numbered $1,2,3, n$, and machines numbered $1,2,3, \quad, m$, each job $\mathrm{J}(\mathrm{J}=1, \mathrm{n}$ ) has to be processed through the $m$ machines in the same order and the skipping is not allowed
The processing time of each job $J$ through each machine 1 , denoted by $P_{j 2}$
Once a job has started through a machine it must be completed through that machine without interruption The criterion for optimization in this pure flow-shop is to find a job sequence that minımızes the maximum completion time

$$
\left(B=C_{\max }\right) \text { or (make-span) }
$$

which is the elapsed time between the first job being started on the first machine and the last job being completed on the last machıne
In this type of job sequence in which the order of jobs is the same on all the machines, so that if an order is decided or chosen for the first machine, then this will be maintained through all the following stages
This type of problem generates, for $n$ jobs, $n^{\prime}$ job sequences

### 4.2 The Throughput Time for a Schedule:

As pointed out in Section 32 , Figure 31 c and 32 b , the Gantt chart could be used to produce a workable schedule, then the job completion times may be determined direct from a Gantt chart presentation This method is only useful for a limited number of ( $n \mathrm{X}$ m) pure flow-shop problem, because the chart will be confused too much Another solution cholce, in particular for computer applications, due to King[117] this make-span may be determıned directly by analytıcal permutation as stated in Appendix A
Hence the throughput time to complete the total schedule $\mathrm{C}_{\max }$ is give by the following formula

```
\(C_{\text {max }}=F\{q(n, m), m\}\)
 \(=\max [f(q(n-1, m), m\}, f(q(n, m), m-1\}]+t\{q(n, m), m\}\)
```

The significance of this analytical permutation is that, in $\mathrm{n} / \mathrm{m} / \mathrm{P} / \mathrm{C}_{\max }$ problems it could be determıned by any job feasible sequence value for $n$ ' permutations

Hereafter, the application work for the above procedure is ıllustrated Assume we have a pure flow-shop with four identical machines which process five type of jobs The ( 5 X 4) problem matrix for Processing time to complete each operation of each job (set-up and tear-down are included in the processing time) and the machine descriptions are shown in Figures 41 and $42(a, b, c$ and d) respectively

## CHAPTER FOUR

## 4. PRODUCTION SCHEDULING STUDY FOR THE OPTIMIZATION OF THE FLOW-SHOP PROBLEM:

### 4.1 Presentation of $n / m / P / B$ problem:

In this chapter we consider the general permutation or pure flow-shop problem under precedence constraints This problem, ındıcated by $n / m / P / B$, can be described as follows

There are $n$ jobs numbered $1,2,3, n$, and machines numbered $1,2,3, \quad, m$, each job $j(j=1, n)$ has to be processed through the $m$ machines in the same order and the skipping is not allowed
The processing tıme of each job j through each machine 1, denoted by $P_{32}$
Once a job has started through a machine it must be completed through that machine without interruption
The criterion for optimization in this pure flow-shop is to find a job sequence that minimizes the maximum completion time

$$
\left(B=C_{\max }\right) \text { or (make-span) }
$$

which is the elapsed time between the first job being started on the first machine and the last job being completed on the last machine
In this type of job sequence in which the order of jobs is the same on all the machınes, so that if an order is decided or chosen for the first machine, then this will be maintained through all the following stages
This type of problem generates, for $n$ jobs, $n '$ job sequences

### 4.2 The Throughput Time for a Schedule:

As pointed out in Section 3 2, Figure 31 c and $3 \mathrm{2b}$, the Gantt chart could be used to produce a workable schedule, then the job completion times may be determıned direct from a Gantt chart presentation This method is only useful for a limited number of ( $\mathrm{n} \times \mathrm{m}$ ) pure flow-shop problem, because the chart will be confused too much Another solution choice, in particular for computer applications, due to Kıng[117] this make-span may be determined dırectly by analytıcal permutation as stated in Appendix A
Hence the throughput time to complete the total schedule $\mathrm{C}_{\max }$ is gave by the following formula

```
\(C_{\max }=F\{g(n, m), m\}\)
 \(=\max [f\{q(n-1, m), m\}, f\{q(n, m), m-1\}]+t(q(n, m), m\}\)
```

The significance of this analytical permutation is that, in $\mathrm{n} / \mathrm{m} / \mathrm{P} / \mathrm{C}_{\max }$ problems it could be determined by any job feasible sequence value for $n$ ' permutations

Hereafter, the application work for the above procedure is illustrated Assume we have a pure flow-shop with four identical machines which process five type of jobs The ( $5 \times 4$ ) problem matrix for Processing tame to complete each operation of each job (set-up and tear-down are included in the processing time) and the machine descriptions are shown in Figures 41 and 42 (a, b, c and d) respectively

Machines		1	2	3	4
$\mathbf{J}$	1	10	12	8	18
	2	9	7	4	12
	3	5	7	4	10
	4	6	8	0	8
		5	13	11	9

Figure 4.1: (5 x 4)matrix processing time of a pure flow-shop.

All jobs are assumed to operate with a first-come-first-service (FCFS) rule 1 e, 12345 job sequence This sequence is one of the $5^{\prime}=120$ possible job sequences

$\mathbf{J}$	Op No	Description	Machine	Tıme
$\mathbf{O}$				
$\mathbf{B}$	1	Turning	1	10
	1	2	Millıng	2
12				
$\mathbf{1}$	Drıllıng	3	8	
	4	Grinding	4	18

Figure 4.2a: Planning sheet showing processing time of job 1.

$\mathbf{J}$	Op No	Description	Machine	Tıme
$\mathbf{O}$				
$\mathbf{B}$	1	Turning	1	9
	2	Mılling	2	7
$\mathbf{2}$	3	Drılling	3	4
4	Grinding	4	12	

Figure 4.2b: Planning sheet showing processing time of job 2

J	Op No	Description	Machine	Time
B	1	Turning	1	5
	2	Milling	2	7
3	3	Dralling	3	4
	4	Grinding	4	10

Figure 4.2c: Planning sheet showing processing time for job 3.

$\mathbf{J}$	Op No	Description	Machine	Time
$\mathbf{O}$	1	Turning	1	6
	4	2	Milling	2
8	Drılling	3	8	
4	Grinding	4	8	

Figure 4.2d: Planning sheet showing processing times of job 4.

$\mathbf{J}$	Op No	Description	Machine	Tıme
$\mathbf{O}$				
$\mathbf{B}$	1	Turning	1	13
	$\mathbf{5}$	2	Milling	2
11				
	4	Drılinng	3	9
5	Grinding	4	16	

Figure 4.2e: Planning sheet showing processing time of job 5.
The expected throughput time (make-span) and completion times for each job at each machine for the above application work are therefore computed using the formula (4 1)
The solution method may be divided into 4 phases according to the number of machınes

Phase 1. To determine the completion time of all the 5 jobs to be processed only on the machıne $m=1$

```
f(1,1)= max {f(0,1),f(1,0}}+t(1,1)=t(1,1)=10
f(2,1) = max {f(1,1),f(2,0)}+t(2,1)=f(1,1)+t(2,1)=10+9=19
f(3,1)= max {f(2,1),f(3,0)}+t(3,1)=f(2,1)+t(3,1)=19+5 = 24
f(4,1)= max {f(3,1),f(4,0)}+t(4,1)=f(3,1)+t(3,1)=24+6=30
f(5,1)=\operatorname{max}{\underline{f(4,1),f(5,0)}+T(5,1)=f(4,1)+t(5,1)=30+13=43}
```

Phase 2. To determine the completion tıme of all 5 jobs to be processed only on the machine $m=2$
$f(1,2)=\max \{f(0,2), f(1,1)\}+t(1,2)=f(1,1)+t(1,2)=10+12=22$
$f(2,2)=\max \{f(1,2), f(2,1)\}+t(2,2)=f(1,2)+t(2,2)=22+7=27$
$f(3,2)=\max \{\underline{f}(2,2), f(3,1)\}+t(3,2)=f(2,2)+t(3,1)=27+7=34$

```
f(4,2)= max {f(3,2),f(4,1)}+t(4,2)=f(3,2)+t(4,2)=34+8=42
f(5,2)= max {f(4,2),f(5,1)}+t(5,2)=f(5,1)+t(5,2)=43+11=54
```

Phase 3. To determine the completion time of all 5 jobs to be processed only on the machıne $m=3$

```
f(1,3) = max {f(0,3), f(1,2)}+t(1,3)=f(1,2)+t(1,3)=22+8=30
f(2,3) = max {f(1,3),f(2,2)}+t(2,3)=f(1,3)+t(2,3)=30+4=34
f(2,3) = max {f(2,3), f(3,2)}+t(3,3)=f(3,2)+t(3,3)=34+4=38
f(4,3) = max {f(3,3), f(4,2)}+t(4,3)=f(4,2)+t(4,3)=42+0=42
f(5,3) = max {f(4,3), f(5,2)}+t(5,3)=f(5,2)+t(5,3)=54+9 = 63
```

Phase 4. To determine the completion time of all 5 jobs to be processed on only the machine $m=4$

```
f(1,4) = max {f(0,4), f(1,3)}+t(1,4)=f(1,3)+t(1,4)=30+18 = 48
f(2,4)= max {f(1,4),f(2,3)}+t(2,4)=f(1,4)+t(2,4)=48+12=60
f(3,4) = max {f(2,4),f(3,3)}+t(3,4)=f(2,4)+t(3,4)=60+10 = 70
f(4,4) = max {f(3,4),f(4,3)}+t(4,4)=f(3,4)+t(4,4)=70+8=78
f(5,4)= max {f(4,4),f(5,3)+t(5,4)}=f(4,4)+t(5,4)=78+16=94
```

We note that The throughput time (make-span) to complete the entire schedule was derived from the last step of the final phase(4) Hence, the Make-Span is $C_{\max }=94$ unit times

### 4.3 The Development of a Computer Programme for Determining The Make-Span of a Schedule:

The procedure in Section 42 which mentioned above consumes much tıme to obtain Make-span, especially for a medium and large flow-shop problem when the optımum or near optımum sequence is the objective on the other hand, It should by now be clear that except in very special production circumstances it is not possible
a to guarantee to produce an optimum schedule or
b to sweep through all possible feasible schedules and select the "best"

Furthermore, even if only a single feasible solution is sought, the tedium of producing that solution by hand in a practical situation is considerable $T$ revise that solution as each new batch of jobs arrive is even more tedious, and frequently "manual" methods are euther simple "first-come-first-service" (FCFS) systems, or only one machine is loaded in the hope that others will "follow"

The computer, of course, has the abılıty to devour tedious work, and therefore it would seem that scheduling is ideally suited for computer operation

The alm of this section is two-fold as follows

First, it is to develop a very quick computer solution which will make it possible to solve faırly large sequencing problems using the formula (4 1) which was mentioned in section 42
It is intended that the computer solution will be kept quick and simple enough so that no more than 1 second is required for problems on the order, 90 jobs to be processed on 90 machınes The objectıves are the Make-Span and indıvıdual job completion time for any selected job sequence

The second alm of this computer programme is that, it is the basic step to develop another computer programme which gives an optımum or exact solution for Make-span This programme will be discussed later in section (4)
The specific class of job sequencing problems under study in the following logical progression computer programme is that defined by the assumptions stated in section 33
A computer program for Make-Span criterion is written in $C$ language using 386 PC and is shown in Appendix $B$ The main feature for the flow-control chart needed to write this programme is shown in Figure 43

### 4.3.1 Experimental Results:

The following four simple steps should be dealt with a computer
a Enter ( n X m) processing times matrix to be solved for Make-Span (In dat) is the name given to the file containing matrix
b Run the program according to its path, two question should be replıed through a screen

1 Enter number of jobs
2 Enter number of machınes
c Press, Enter and the result will be displayed on a screen
d a question will be displayed on a screen?
Do you want another job sequence $y / n \geqslant$ Hereafter, two selected problems will be solved using the 386 based PC

## Problem 1:

Recall to the (5 X 4) pure flow-shop in section 42 through Figures 41 and $42(\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d$)$ The following computer solution will be displayed

```
Number of Jobs \(=5\)
Number of machines \(=4\)
 The Completion Tame for job \(1=48\)
 The Completion Time for job \(2=60\)
 The Completion Tame for job \(3=70\)
 The Completion Time for job \(4=78\)
 The Make-Span or Completion Time for last Job \(=94\)
Do you want another job sequence \(\operatorname{l} y / n\)
```

problem 2:
There is (27 X 90) pure flow-shop problem, Tables 41 and 42
shown the processing times matrix and a computer solution for the Make-Span respectively as follows

9	2	6	7	6	8	10	0	0	6	0	8	5	2	8	10	10	0	0	0
9	7	7	3	9	1	2	8	0	6	2	1	2	9	2	1	4	3	1	6
7	3	2	10	1	2	9	0	8	1	8	3	7	3	3	10	2	9	9	8
6	6	9	0	9	3	10	4	4	6	2	1	4	5	7	1	8	9	6	3
7	4	3	9	2	3	10	9	9	5	5	0	0	7	2	0	10	6	6	6
10	0	2	5	6	2	7	8	7	4	5	2	4	7	1	7	9	9	3	2
2	2	3	10	10	9	5	4	6	9	4	1	2	7	0	6	4	1	5	10
5	5	6	0	3	6	10	8	2	10	0	3	4	9	10	4	4	10	8	6
9	6	10	3	1	3	9	5	4	9	8	2	8	4	2	6	3	5	2	5

Table 4.1: A (20 X 90) pure flow-shop processing times matrix (complete matrix elements are shown in Appendix C).

```
Number of jobs = 20
Number of machınes = 90
 The Completion Tıme for Job 1 = 457
 The Completion Time for Job 2 = 517
 The Completion Time for Job 3 = 531
 The Completion Tıme for Job 4 = 534
The Completion Time for Job 5 = 558
The Completion Time for Job 6 = 567
The Completion Time for Job 7 = 577
The Completion Tame for Job 8 = 582
The Completion Time for Job 9 = 599
The Completion Tame for Job 10 = 610
The Completion Time for Job 11 = 629
The Completion Time for Job 12=635
The Completion Tame for Job 13=655
The Completion Time for Job 14 = 659
The Completion Tame for Job 15 = 661
The Completion Time for Job 16 = 686
The Completion Time for Job 17 = 689
The Completion Time for Job 18=714
The Completion Time for Job 19 = 732
The Make-Span or completion tıme for the last Job = 747
```

Table 4.2: A computer printout for the Make-Span (problem 2)


Figure 4.3: The main feature of the Flow control chart to calculate Make-Span.

### 4.4 The Development of an Explicit Enumeration Computer Programme for Job Sequencing Optimization:

The purpose of this section is to find all possible optimum Job sequences and/or optimal Make-Spans for $n$ Jobs to be processed through m machines in the same order and no skipping between machınes is allowed (a pure flow-shop problem) This type of shop reduces enumeration of all permutations of jobs from ( $\mathrm{n}^{\prime}$ )" to $\mathrm{n}^{\prime}$
Both Branch-and-Bound [Ignall, et al,1969][21] and dynamic programming [Held, et al,1962][27] approaches (implicit enumeration approaches) deal with job sequencing optimızation by the checking of every possible schedule, but unlike explicit or complete enumeration
Here in this section the job sequence optimization will be dealt with by a complete enumeration of all possible schedules The complete enumeration approach to be studied is economical to use for low and medium work in process and low, medium and hıgh shop utılızations, especially when a low CPU time is avaılable ( 1 e, maınframe network)
The programme is coded in $C$ language as shown in Appendix $D$ It can reads data for ( $90 \times 90$ ) problem matrix and it could be used for deterministic or stochastic processing times Pseudo-random-numbers are generated using a multiplication congruence method for stochastic processing times in the range of single or double numbers Also the seed function is used in the programme for a new sequence of pseudo-random numbers This approach is based on sweeping through all possible feasible schedules for $n^{\prime}$ using a link-lıst method
The main feature for the flow-control chart need to write this programme is shown in Figure 44


[^1]
### 4.4.1 The Characteristics for Optimizing The Make-Span Computer Programme:

This programme has multı-objectıves for $n / m / P / C_{\max }$ problem It considers the problem of the simultaneous determination of the followings

1 (An arbıtrary solutıon) Job sequences and theır Make-Span
2 Optimal job sequence and its Make-Span value
3 (An arbitrary solution) Frequencies for all job sequences
4 CPU tıme for the solution

### 4.4.2 Experimental results:

The following four simple steps should be carried out on a computer
al In the case of a deterministic input-data, Enter ( n X m) processing tames problem to be solved
a2 In the case of a stochastic input-data, (see item b 4 below)
b Run the programme according to $2 t s$ path, two questions should be replied through a screen
1 Enter number of Jobs
2 Enter number of machine
3 Enter number of runs (this item will be used later in chapter (5)
4 Enter seed number (this Item is used only for stochastic ( $n \mathrm{X}$ m) processing tımes matrix)
c Press, Enter and the results will be dasplayed on a screen (in general, they are shown as follows Three applications will be presented in this Section The first will be the $5 / 4 / P / C_{\max }$ problem stated in Sections 42 and 431 as shown in Figures 41 and $42(a, b, c$ and $d)$

## Problem 3 (repetition of problem 1):

Recall to the deterministic (5 X 4) pure flow-shop problem Section 42 , in Figure 41 and $42(\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d)
The following computer solution will be displayed as shown below in Table 43 (pages 64, 65, 66)

## 5 Jobs, 4 Machines

## phase 1



2	4	5	3	1	Make-Span $=92$
2	5	3	4	1	Make-Span $=94$
2	5	3	1	4	Make-Span $=94$
2	5	4	3	1	Make-Span $=94$
2	5	4	1	3 Make-Span $=94$	
2	5	1	4	3	Make-Span $=94$
2	5	1	3	4	Make-Span $=94$
3	2	1	4	5 Make-Span $=86$	
3	2	1	5	4 Make-Span $=86$	
3	2	4	1	5 Make-Span $=84$	
3	2	4	5	1	Make-Span $=87$
3	2	5	4	1	Make-Span $=89$
3	2	5	1	4 Make-Span $=89$	
3	1	2	4	5 Make-Span $=89$	
3	1	2	5	4 Make-Span $=89$	
3	1	4	2	5 Make-Span $=89$	
3	1	4	5	2 Make-Span $=89$	
3	1	5	4	2 Make-Span $=89$	
3	1	5	2	4 Make-Span $=89$	
3	4	1	2	5 Make-Span $=87$	
3	4	1	5	2 Make-Span $=87$	
3	4	2	1	5 Make-Span $=84$	
3	4	2	5	1	Make-Span $=87$
3	4	5	2	1	Make-Span $=90$
3	4	5	1	2	Make-Span $=90$
3	5	1	4	2	Make-Span $=92$
3	5	1	2	4 Make-Span $=92$	
3	5	4	1	2	Make-Span $=92$
3	5	4	2	1 Make-Span $=92$	
3	5	2	4	1	Make-Span $=92$
3	5	2	1	4	Make-Span $=92$
4	2	3	1	5 Make-Span $=84$	
4	2	3	5	1 Make-Span $=87$	
4	2	1	3	5 Make-Span $=89$	
4	2	1	5	3	Make-Span $=89$
4	2	5	1	3	Make-Span $=92$
4	5	5	2	1	3

```
5 2 3 4 1 Make-Span = 97
5 2 3 1 4 Make-Span = 97
5 2 4 3 1 Make-Span = 97
5 2 4 1 3 Make-Span = 97
5 2 1 4 3 Make-Span = 97
5 2 1 3 4 Make-Span = 97
5 3 2 4 1 Make-Span = 97
5 3 2 1 4 Make-Span = 97
5 3 4 2 1 Make-Span = 97
5 3 4 1 2 Make-Span = 97
5 3 1 4 2 Make-Span = 97
5 3 1 2 4 Make-Span = 97
5 4 3 2 1 Make-Span = 97
54 3 1 2 Make-Span = 97
5 4 2 3 1 Make-Span = 97
542 1 3 Make-Span = 97
5412 3 Make-Span = 97
5 4 1 3 2 Make-Span = 97
5 1 3 4 2 Make-Span = 97
5 1 3 2 4 Make-Span = 97
5 1 4 3 2 Make-Span = 97
5 1 4 2 3 Make-Span = 97
5 1 2 4 3 Make-Span = 97
5 1 2 3 4 Make-Span = 97
 Number of Job Sequences = 120
```

Phase 2
$32415=$ Optimum Job Sequence , Optimal Make-span $=84$
CPU time in seconds $=5.879121$

## Phase 3

Make-Span's Frequencies:
For the Make-Span $=84:$ The Frequency $=4$
For the Make-Span $=85:$ The Frequency $=2$
For the Make-Span $=86:$ The Frequency $=4$
For the Make-Span $=87:$ The Frequency $=10$
For the Make-Span $=89:$ The Frequency $=14$
For the Make-Span $=90:$ The Frequency $=4$
For the Make-Span $=91:$ The Frequency $=6$
For the Make-Span $=92:$ The Frequency $=16$
For the Make-Span $=94:$ The Frequency $=30$
For the Make-Span $=95:$ The Frequency $=6$
For the Make-Span $=97:$ The Frequency $=24$

Table 4.3: A computer print-out for the optimal Make-Span (problem 3, repetition of problem 1).

Table 43 has been divided into three phases as follows

The first phase indıcates to all possible job sequences for problem 3 It shows that the optimum solution has four job sequences (indicated by underline), each of them has the same value of the optimal Make-Span which it is equal to 84 units time

The second phase gives the selected optimal job sequence and its Make-Span value and it has the following job sequence
( 32415 ) with optimal Make-Span $=84$ We note that the CPU tame to solve this problem is very low and it is equal to 588 units time
The third phase is also 1 mportant to take into account for distributions, it gives the frequencies for all individual Make-Spans In general, these frequencies in turn could be used to plot a distribution of make-Spans for a ( n X m) problem matrix Heller[1960][118], concludes that "the numerical experiments show that the distribution of schedule-times (Make-Spans) for large number of samples is normal" He reported that this normality can be used to determine decisiontheoretical rules to terminate sampling when the cost of contınued sampling exceeds the expected gain from further sampling This conclusion will be clarıfied through the problem 4 in the next paragraph

The second application (problem 4) will deal with a more complicated problem than the previous one (problem 3) It has 10 types of jobs to be processed on 20 machınes ( (10 X 20) processing times matrıx) as stated in Table 44 All the processing times were selected randomly ranging from $0-10$ using a special programme which was written in $C$ language using 386 based PC with 16 MHz clock speed
Figure 45 shows the distribution of all possible Make-Spans for problem 4 We note that this distribution is farrly normal [118]

|  | 7 | 3 | 1 | 9 | 2 | 6 | 4 | 2 | 9 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 0 | 5 | 8 | 8 | 8 | 9 | 7 | 0 | 4 | 3 |
|  | 0 | 4 | 7 | 5 | 3 | 8 | 5 | 9 | 9 | 8 |
|  | 3 | 9 | 5 | 1 | 10 | 2 | 4 | 7 | 2 | 7 |
|  | 0 | 0 | 5 | 8 | 10 | 5 | 2 | 8 | 6 | 6 |
|  | 8 | 8 | 2 | 3 | 8 | 6 | 0 | 8 | 9 | 0 |
|  | 9 | 10 | 3 | 2 | 3 | 5 | 0 | 2 | 8 | 4 |
|  | 6 | 6 | 8 | 8 | 0 | 5 | 6 | 9 | 6 | 3 |
|  | 5 | 1 | 1 | 5 | 0 | 10 | 3 | 7 | 7 | 4 |
|  | 4 | 4 | 3 | 5 | 10 | 9 | 7 | 9 | 8 | 2 |
|  | 5 | 8 | 3 | 5 | 10 | 0 | 0 | 8 | 5 | 4 |
|  | 6 | 5 | 2 | 9 | 0 | 6 | 8 | 6 | 5 | 1 |
|  | 5 | 6 | 1 | 5 | 1 | 0 | 10 | 0 | 7 | 6 |
|  | 8 | 7 | 6 | 9 | 9 | 7 | 4 | 3 | 9 | 8 |
|  | 7 | 10 | 9 | 9 | 4 | 2 | 1 | 9 | 6 | 9 |
|  | 1 | 10 | 0 | 4 | 9 | 2 | 4 | 2 | 7 | 3 |
|  | 5 | 9 | 6 | 3 | 9 | 6 | 4 | 8 | 10 | 6 |
|  | 0 | 6 | 4 | 3 | 3 | 3 | 8 | 9 | 10 | 7 |
|  | 8 | 8 | 6 | 3 | 1 | 10 | 8 | 7 | 7 | 2 |
|  | 8 | 8 | 1 | 6 | 9 | 5 | 2 | 7 | 3 | 10 |

The following is the proposed procedure solution

## Problem 4:

10 Jobs 20 Machınes

```
Number of Job Sequences = 3628800
2 10 7 1 9 4 4 8 5 6 3 = Job Optımum Sequence
Optımal Make-Span = 183
CPU time = 2 5 = Hrs
```



Figure 4.5: Distribution of Make-Spans for (10 x 20) processing time matrix (problem 4)

### 4.4.3 Verification of Efficiency of the Optimal Make-Span Solution:

The computer procedure under study is a fairly dominant method than many algorithms that have been studied [Palmer][35], [Campble, Dudek and Smıth][9], [Dannengrıng][37], [Gupta][36] and Al-Qattan[119], especially for $n \leq 10$ and $m \leq 90$ (see Section 441 problem 4) Due to[119] Problem 5 below (Figure 4 6) has been solved using the above most known heuristic approaches Table 45 reports a comparison of dıfferent heuristic approaches with the proposed procedure

## Problem 5:

MACHINES		1	2	3
	$\mathbf{1}$	6	8	2
$\mathbf{J}$	2	4	1	1
$\mathbf{B}$				
$\mathbf{S}$	3	3	9	5
	4	9	5	8

Figure 4.6: (5 x 3) processing time matrix (problem 5).

Method	Job Sequence	Make Span	$\begin{aligned} & \text { method } \\ & \text { Limatation } \end{aligned}$
Palmer	3,5,4,2,1	37	$30 \%$ optimum
$\begin{gathered} \text { Campbell, } \\ \text { et al } \end{gathered}$	3,5,4,1,2	35	Economical $n \leq 8 \&$ is not guarantee
Dannenbrıng	3,5,4,1,2	35	$\mathrm{n} \leq 6, \mathrm{~m} \leq 10 \&$
Gupta	5, 3, 4, 1, 2	36	An optimum is not guarantee
Al-Qattan	3,4,5,1,2	34	CMSs only \& optımum not guarantee
The proposed method	3,4,5,1,2	34	An optimum is guarantee

Table 4.5: Comparison of five heuristic approaches with the proposed computer method.

### 4.4.4 Computation Time:

The computation time for the proposed computer method varies according to ( $\mathrm{n} \times \mathrm{m}$ ) problem size The measure of CPU times were used in conjunction with five sets of problems with $n$ ranging from 5 to 9 were worked Each set contains 10 groups of machines $(5,10,20,30,40,50,60,70,80$ and 90$)$ The problems were constructed with random processing times ranging from 0-10, these were generated at random according to the sub-programme which is written within the proposed programme Table 46 and Figure 47 contains the computation time data and their increased curves on the ( 5 sets of jobs X 10 groups of machınes) = 50 problems
We note from Figure 47 that the length of the CPU time which seek an optimal Make-Span (according to the proposed method and using 386 based $P C _16 M H z$ ) for the $n / m / P / C_{\max }$ problem has the following features

1 It is sensitive to an increase in the number of jobs for a given number of machınes

2 It is not so sensitive to an increase in the number of machınes for a given number of jobs
3 For long and medium term schedulıng, where $n \leq 9$ and $m \leq 90$ the CPU time is reasonable in the case of low and medium WIP and low, medium and hıgh shop loads

4 For short term scheduling, where $n \leq 7$ and $m \leq 60$ the CPU time is reasonable in the case of low W-I-P and low, medium and high shop loads

### 4.4.5 Economic Consideration for The Proposed Method:

In view of the economic considerations, Each manufacturing company which would consider using the proposed method would, of course, do so under a different set of cırcumstances There would be many varıables to consider in attempting to determine a break-even point between optimum or near-optimum solution
techniques This, of course, presupposes that the company has a cholce Nowadays, the selection of an optimum solution is dependant on the CPU tıme avaılabılıty

number of	Jobs	5	6	7	8	9
CPU time   in seconds	5	038	104	643	55	611
	10	06	462	121	108	1190
	20	071	319	235	212	2348
of different	30	093	462	348	316	3507
	40	126	61	463	420	4664
Machines	50	143	742	576	524	5820
	60	165	896	689	628	6977
	70	192	102	803	732	7249
	80	209	117	917	836	8280
	90	231	131	103	940	9294

Table 4.6: Computer computation times for different ( $n \mathrm{Xm}$ ) problem sizes.


Figure 4.7: Computation tımes for different problem sizes.

## CHAPTER FIVE

## 5. A Computer Simulation Analysis for the Flow-Shop Scheduling Priority Rules

5.1 Sequential Scheduling Rules In Production Scheduling:

It would be extremely difficult to formulate and simultaneously solve the entire scheduling problem in terms of the complete enumeration of a large size scheduling problem. The explicit enumeration of a large size scheduling problem is really not possible. For example, a $(15 \times 10)$ pure flow-shop problem would have (15! = 1.3076E12) possible job sequencing. Whereas, (5x6) flow-shop problem size would have $\left((5!)^{6}=2.986 E 12\right)$. In this flow-shop problem case even if only $1 \%$ of permutations is feasible, they would constitute 2.9561 E 12 permutations which is still prohibitive for enumeration. On the other hand, sequential priority rules for production scheduling are heuristic methods of job sequencing indicate how to assign a specific job to a specific machine at a given time, when a machine becomes available for process. In other words priority rules are designed and selected to maximize the expectation of given variables, thus avoiding enumeration.

### 5.2 Classification of Scheduling Rules:

Usually, when dealing with the sequencing problem, terms such as scheduling rules, priority rules, or heuristic are often having the same meaning. Gere[1966][120] has attempted to distinguish between the above three definitions. He considers priority rule or priority function is that rule which assigned
to each relevant job a scalar value, the mınımum (or maxımum) of which determines the job to be selected over all others for scheduling In the case of a tie, the job with smaller job number is selected Also he defines a heuristic to be simply some "rule of thumb," whereas a scheduling rule dictates what Job is to be scheduled in preference to all others, in the gıven cırcumstances
A scheduling rule may include one or more heuristic and/or one or more priority rule

Hereafter, the scheduling rules may be classified into three categories The following sections address the selected common known priority rules each of these in turn [41] (The first ten rules which are the most studied in the literature [5], [40], [42], [43], [52] and [44] will be used through the thesis as required)

### 5.2.1 Simple Priority rules:

This section is further divided into subcategories based on information related to

## I. Rules involving processing time:

1 SPT Select the job with the "Shortest Processing Time" (also called SIO, SI (Shortest Imminent operation time)
$\mathrm{P} 1 \leq \mathrm{P} 2 \leq \mathrm{P} 3 \leq \ldots \leq \mathrm{P}_{\mathrm{n}}$
2 LPT Select the job with the "Largest Processing time"
$\mathbf{P} 1 \geq \mathbf{P} 2 \geq \mathrm{P} 3 \geq \ldots \geq \mathrm{P}_{\mathrm{n}}$
3 SRPT Select the job with the "Smallest Remaining or Content Processing Time"

$$
\sum_{i=1}^{m} P_{1} \leq \sum_{i=1}^{m} P_{2} \leq \sum_{i=1}^{m} P_{3} \leq \quad \leq \sum_{i=1}^{m} P_{n}
$$

4 LRPT. Select the Job wath the "Longest Remainang or
content Processing Time".

$$
\sum_{i=1}^{m} P_{1} \geq \sum_{i=1}^{m} P_{2} \geq \sum_{i=1}^{m} P_{3} \geq \ldots \geq \sum_{i=1}^{m} P_{n}
$$

## II. Rules involving The selected Arrival Time \& Random:

5. FCFS: "First Come First Service". Select the first job to arrive at (W.S.) a machine queue is to be sequenced first (also called FIFO -First In First Out-)
6. LCFS: "Last Come First Service". Select the last job to arrive at (W.S.) a machine queue is to be sequenced first (also called LIFO -Last In First Out-).
7. FASFS: "First Arrived at Shop, First Service". The first job arriving in shop serves first.
8. Random: " Random selection is randomly assigned". Select in random sequence.
III. Rules involving due dates:
9. EDD: Select the job with the Earliest Due Date.
10. STSlack: Select the job with minimum Slack time. Is equal to due date $d_{j}$ minus the time of arrival at the machine.
IV. Rules related to machines:
11. NINQ: Select the job that will go on to its next operation where the machine has the shortest queue.
5.2.2 Combination of Simple Priority Rules:
12. FCFS/SPT: From jobs waiting for more than a specific time, select according to FCFS; if all waiting jobs are in the queue for a smaller duration, select
according to SPT
13 Cost Value Divide jobs in two classes, high and low cost value Select the job from the high cost value with FCFS, then from the class
14 SMOVE Select the job that will go on to the next operation where the machine has the shortest"critıcal" queue If there are no critical queue, use FCFS
15 SOR Use the SPT rule, but give preference to those jobs that will go to "critical" queues (queue with only small amount of work waiting )

### 5.2.3 Heuristic Scheduling Rules:

16 Alternate Operation If selection of a job according to some simple rule makes another job "critical" (such as positıve lateness), see the effect of the job already selected Repeat, if some other job(s) is affected
17 LAH (Look Ahead) [120] Study the effect of scheduling a job (determined by a simple rule) on another job that may arrive in the queue before the schedule job 1s completed
18 SHOPNH Select the job with SPT rule, but hold if a few jobs in the queue and another job with smaller processing time is expected soon (Keep machine idle untıl this job arrıves)
The following two sub-chapters may be conveniently classify the priority rules by their environment and by scope of information required in order to implement them

### 5.3 Priority Rule Environments:

* Static prıorıty rules
* Dynamic priority rules

In general, the static priority rules can be applied at the
beginning of the scheduling period and result in a fixed schedule for the period In other words, static rules are rules in which the value of the priority rules do not change with

1 the passage of time
2 The relative progress of a job in relation to other jobs
3 Disturbances in the shop (1 e machine breakdown)


#### Abstract

Whereas the dynamic ones changing over tıme The static priorıty rules can be broadly classified into three types as follows


1 Processing time based rules
2 Due date based rules
3 Selected Arrival time \& random based rules

The dynamic priority rules can be adopted by the combination and heuristic priority rules (as mentioned before in this chapter)

### 5.4 Priority Rules Information Required:

* Local priorıty rules
* Global priorıty rules

Local priorıty rules require information only about those jobs that are walting at a machine, The most simple priority rules (they mentioned in the Section 52 1) may be classified under local priority rules (Moor, et al,1961)[75]
Global priority rules require more information about jobs or machine states at other resources or waiting lines (such as look ahead rule[120]), hence they have higher cost information processing systems than the local priority rules However, global priority rules would be Justifiable only if it was proven more effectıve than local rules

### 5.5 A Computer Simulation based Priority Rules:

Many computer simulations have been implemented in order to use priority rules for job sequencing. During the past three decades (since Conway,1964[49]) few manual systems use priority rules. However, the experimental evidence shows that only under exceptional circumstances is a computerized rule likely to be worth implementing in preference to a manual one.

In addition, the primary objectives of the simulation work through this research have been to compare specific operating procedures, to test broad conjectures about priority rules.

### 5.5.1 Choice of a Priority Rule:

Experimentation with a computer simulation model has made it possible to compare effectiveness between various priority rules, therefore the choice between priority rules must rely on reported computer simulation results. A set of simulation analyzed measure of performances for a number of well-known rules is given through the Sections 5.6 and 6.1 . The details of the use of the rules are given in section 5.2.1.

### 5.6 Development of a Computer Simulation Programme for Measuring the Effectiveness of Several priority rules:

The study described in this section is to obtain an efficiently solvable new method of the pure flow-shop scheduling problem through measuring the effectiveness of several priority rules. For this purpose an approach based on computer simulation of deterministic and stochastic pure flow-shop scheduling versus the six priority rules has been developed.
Many researchers have been successful in developing efficient solution algorithms for $\mathrm{n} / \mathrm{m} / \mathrm{P} / \mathrm{C}_{\max }$ problem with two and three machines by Johson,1954[1], his aim was the optimal Make-Span. For general problem size due to Ignall et al[1965][21],

Campbell, et al[1970][9], Gupta[1971][36], Dannenbring [1977][37], theır algorıthms dealt with the approxımate solution and the exact solution is not guaranteed Bera[1983] [12] has obtaıned the optımum Make-Span, Waıtıng Tıme and Idle Time only for $\mathrm{n} \leq 6$ and $\mathrm{m} \leq 6$ However, this section will deal the approxımate solution for job sequencing using the priority rules The programe under study was coded in $C$ language as stated in Appendix $E$ It can read data for ( $90 \times 90$ ) problem size and it could be used for deterministic or stochastic (n $\mathrm{X} m$ ) processing times matrix
Pseudo-random-numbers are generated using Lehmer multiplication congruence method for stochastic processing times in the range of single or double numbers (i e, 0-99) This range was selected to lamıt the elements of ( $\mathrm{n} \times \mathrm{m}$ ) processing times matrix for each replication or run (Number of runs will be mainly used through discussing the effectiveness in Section 56 ) The output provides the basis for evaluating the measure of effectiveness for the following six priority rules

```
1 FCFS rule, First Come First Service
2 SPT rule, Shortest Processing Time
3 LPT rule, Longest Processing Tame
4 SRPT rule, Smallest Remaıning Processing Tıme
5 LRPT rule, Largest Remaınıng Processing Tıme
R RANDOM rule, Select an operation at Random
```

    In our study, due to random number generated for
    processing times, the jobs sequence for random rule
is equal to FCFS rule

Gere, Jr[1966][120] has defined the effectiveness of a priority rules as follows
The effectiveness of a priority rule is measured by the expected value of criterion function which results when the rule is followed

In this section the basic interest in our computer simulation is to determine the effectiveness of the different priority rules with respect to minimize the following well-used measure
of performances under many times of runs

1 Average Make-Span (maxımum completion time)
2 Average Mean Completion Times for jobs (AMCTs)
3 Average Total Warting Times for jobs (ATWTs)
4 Average Total Idle Tımes for machınes (ATITS)

### 5.6.1 Statement of the Procedure Method:

To compare the six priority rules under identical conditions with respect to the four criteria which have been mentioned above The same random seed of pseudo-random-generated per run or replication was used for all the prıoraty rules The following four steps should be carried out on a computer
a1 In the case of deterministic input-data, Enter ( $n \mathrm{X}$ m) processing times problem to be solved
a2 In the case of stochastic input-data, (see item b 4 below)
$b$ Run the programme according to its path, two question should be answered through a screen

1 Enter number of jobs
2 Enter number of machines
3 Enter number of replications or runs to be tested for obtaining the criterion's average value
4 Enter seed number of runs (This item is used only for stochastic ( $\mathrm{n} \times \mathrm{m}$ ) processing times problem)
c Press, the Enter Bottom and the results will be displayed on a screen
Problem 9 (page 80) illustrates the computer procedure of the comparison between the different six rules with respect to the following criteria

- Make-Span


## Problem 9:

This problem has 16 types of jobs to be processed on 33 machines in the same order The keyboard writing should be displayed on the computer screen as follows

```
Number of jobs \(=16\)
Number of machines \(=33\)
number of runs \(=1\)
Seed number \(=33\)
```

Then, the randomly selected (16 X 33 ) processing times matrix and output data will be displayed as shown in Tables 51 and 52 respectıvely

20	19	27	20	10	8	6	12	16	5	24	28	21	20	23	7
27	6	16	5	28	25	1	19	27	24	12	7	8	24	30	29
4	9	5	6	8	25	9	29	18	6	6	4	30	8	30	7
19	21	5	6	28	6	7	14	28	15	9	14	21	13	8	5
24	3	18	0	11	16	10	8	6	15	1	13	8	30	29	1
22	23	6	0	11	12	5	1	14	3	25	8	18	4	26	30
11	20	8	20	14	22	10	6	12	22	27	8	14	14	0	28
2	27	12	23	2	8	8	17	4	17	12	9	11	21	30	13
29	5	13	27	8	26	2	12	13	3	9	9	13	16	8	24
2	1	14	24	23	22	17	4	1	10	28	13	9	25	16	13
1	13	16	22	16	5	29	10	1	12	5	17	30	30	10	12
12	23	15	27	30	21	26	16	16	16	7	23	22	10	0	19
20	21	2	17	22	9	0	7	14	26	15	10	25	18	18	10
4	3	18	29	10	3	14	12	16	18	12	21	19	3	18	13
0	24	27	0	12	18	0	0	5	11	11	6	13	8	0	27
28	19	2	9	8	30	14	5	8	19	19	30	4	29	3	1
29	1	23	29	29	19	8	16	5	6	3	0	10	26	9	4
19	13	13	13	1	10	16	28	14	11	9	18	3	26	2	14
17	11	23	17	18	27	26	10	26	10	6	25	28	10	24	30
18	5	6	6	29	6	2	19	4	25	30	25	13	21	18	15
13	4	2	10	17	30	12	22	30	4	5	4	16	18	12	3
18	1	7	21	3	21	1	2	24	23	9	6	27	13	16	20
14	9	2	0	0	13	8	28	22	17	27	18	9	19	23	30
26	21	13	10	18	28	5	22	10	9	5	16	4	2	7	8
3	10	8	18	27	30	14	21	21	1	6	5	13	14	5	22
26	12	26	23	12	30	22	27	0	9	16	30	21	20	27	15
1	7	9	11	3	5	20	25	25	20	6	3	25	4	18	12
19	27	23	28	10	3	20	20	18	30	17	27	1	8	7	6
16	15	1	0	16	25	4	22	20	27	4	0	15	23	18	26
15	17	17	0	6	14	22	26	3	4	17	30	17	29	23	1
2	7	11	8	27	17	26	22	26	26	12	17	8	11	13	17
9	3	25	18	22	10	2	5	5	3	1	4	17	26	15	17
22	1	15	13	23	5	15	24	22	4	16	0	26	4	1	29

Table 1.5: A (16 X 33) processing tımes matrix (problem 9).

```
16 Jobs, 33 Machines, Random seed = 33, (Number of runs) = 1
```


## Average MAKE-SPAN

```
Rule 1 FCFS = 1029
Rule 2 SPT(SI) = 909
Rule 3 LPT(LI) = 1042
Rule 4 SRPT = 993
Rule 5 LRPT = 1014
```

Average MEAN COMPLETION TIME

```
Rule 1 FCFS = 792
Rule 2 SPT(SI) = 733
Rule 3 LPT(LI) = 784
Rule 4 SRPT = 782
Rule 5 LRPT = 751
```

Average Total Waıting Time

```
Rule 1 FCFS = 3120
Rule 2 SPT = 2708
Rule 3 LPT = 2457
Rule 4 SRPT = 2856
Rule 5 LRPT = 2564
```

Average Total Idle Time

Rule 1	FCFS
Rule 2	$=6087$
Rule 3	$=6274$
Rule	SRPT
Rule 5 LRPT	$=8262$
	$=4896$
	$=7351$

Computation time in seconds $=2912088$
Table 5.2• A computer print-out for problem 9.

Table 52 above shows the comparison between the six priority rules under study with respect to three criterla (Make-Span, Mean Completıon Tıme for Jobs and Idle Time of machınes) We clearly note from this table that the rule which minimise each of the three criteria for problem 9 is as follows

- SPT rule mınımıze the Make-Span criterion
- SPT rule manimize the Mean Completion Time criterion
- LPT rule manamaze the Waıting Time criterion
- SRPT rule minimize the Idle Time criterion


### 5.6.2 Effectiveness Evaluation of The Priority Rules:

In order to reduce the effect of bias from one run testing to another and in another hand, because a relatively large number of runs are necessary to get accurate information about the behaviour of the scheduling process, the effectiveness of the priority rules were evaluated via the average of a large number of runs of randomly simulated problems, (number of runs, say 500 will probably be found in reasonable number of runs by Thompson[1960][121]).
The effectiveness evaluation is tested on a complete different factorial experiment for the six rules, four criteria, 72 different problem sizes; i.e., 10 -shop sizes (5, 10, 15, 20, 25, and 30 machines), and 12 levels of Work-In-Process (number of jobs in shop) equal to (5, 10, 15, $20,25,30,35,40,45$, 50, 55 and 60) and 500 runs with different streams of the seed number (in the range of $0-10$ for processing times matrix) were executed. All the 72 problems are considered to be a non-due date problems and job ready times equal to zero (a static problem).
The computational results for the 72 problems stated above are given through Tables 5.3(a, b, c and d), and their discussions are clarified through the following four sections:

### 5.6.3 Evaluating the Priority Rules Vs. the Make Span under different WIP and Shop sizes:

The observed Make-Span data are stated in Table 5.3a. This data report the measure of effectiveness between the rules with respect to the average Make-Span under 500 runs at different shop sizes.
A note of interest from Figures $5.1(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$ and f) is that the rule which tends to minimize the average make-span for low, medium and high WIP and all different shop sizes (in general, $n / m / P / C_{\max }$ problem size) is the $S P T$ rule (Shortest

Processing Time rule), While the rules SRPT, FCFS and LRPT are quite equal to each other The LPT rule ( Longest processing Time) gives the worst performance over other

Table 5.3a: Observed AMSs of 500 runs Vs. the proposed rules.

$\begin{array}{\|c} \text { Problem } \\ \text { Sıze } \end{array}$	Average Make-Spans				
	FCFS	SPT	LPT	SRPT	LRPT
$5 \times 5$	58	54	62	58	58
$10 \times 5$	92	85	100	91	92
$15 \times 5$	124	115	136	123	123
$20 \times 5$	154	144	172	153	153
$25 \times 5$	184	173	207	184	183
$30 \times 5$	214	202	241	212	213
$35 \times 5$	243	232	276	242	242
$40 \times 5$	270	258	308	269	270
$45 \times 5$	301	287	345	299	301
$50 \times 5$	330	316	379	329	328
$55 \times 5$	358	342	413	356	356
$60 \times 5$	385	370	446	385	384
$5 \times 10$	91	87	96	91	91
$10 \times 10$	131	124	138	130	130
$15 \times 10$	166	159	178	166	167
$20 \times 10$	200	192	216	200	200
$25 \times 10$	234	225	254	233	233
$30 \times 10$	266	258	291	266	267
$35 \times 10$	299	288	327	298	297
$40 \times 10$	329	319	362	328	327
$45 \times 10$	360	349	399	359	358
$50 \times 10$	391	379	436	391	391
$55 \times 10$	421	410	472	421	420
$60 \times 10$	452	440	506	451	450
$5 \times 15$	124	120	127	124	123
$10 \times 15$	167	161	174	167	167
$15 \times 15$	207	199	217	206	206
$20 \times 15$	242	235	255	241	241
$25 \times 15$	278	269	294	277	276
$30 \times 15$	311	302	332	310	310
$35 \times 15$	345	336	372	344	344
$40 \times 15$	378	369	408	376	378
$45 \times 15$	412	402	446	410	410
$50 \times 15$	444	434	482	442	442
$55 \times 15$	474	465	521	474	474
$60 \times 15$	506	495	555	504	505

Continuing of Table 5.3a:

$\begin{array}{\|c} \text { Problem } \\ \text { Size } \end{array}$	Average Make-Spans				
	FCFS	SPT	LPT	SRPT	LRPT
$5 \times 20$	155	151	158	154	155
$10 \times 20$	201	195	207	200	201
$15 \times 20$	243	236	252	242	242
$20 \times 25$	282	273	294	280	281
$25 \times 20$	318	311	334	317	318
$30 \times 20$	355	346	373	353	353
$35 \times 20$	389	380	412	388	389
$40 \times 20$	424	415	451	423	423
$45 \times 20$	456	447	488	456	456
$50 \times 20$	490	482	525	489	489
$55 \times 20$	523	515	564	523	523
$60 \times 20$	557	546	602	556	555
$5 \times 25$	185	180	188	184	184
$10 \times 25$	234	229	241	235	234
$15 \times 25$	278	271	287	277	278
$20 \times 25$	318	311	329	317	317
$25 \times 25$	358	349	371	356	355
$30 \times 25$	394	387	412	392	395
$35 \times 25$	430	421	452	430	430
$40 \times 25$	465	457	491	464	464
$45 \times 25$	501	493	530	498	499
$50 \times 25$	536	526	568	534	533
$55 \times 25$	569	561	606	568	569
$60 \times 25$	603	594	644	602	601
$5 \times 30$	213	209	218	213	214
$10 \times 30$	265	260	271	266	265
$15 \times 30$	311	305	321	311	312
$20 \times 30$	354	347	366	354	354
$25 \times 30$	394	388	408	393	394
$30 \times 30$	434	425	449	432	432
$35 \times 30$	470	461	489	469	468
$40 \times 30$	507	498	529	505	505
$45 \times 30$	542	534	570	542	542
$50 \times 30$	577	569	608	576	577
$55 \times 30$	613	605	649	612	612
$60 \times 30$	646	638	685	646	645



Fig. 5.1a: Effect of the rules Vs. AMS under 5 shop machines.


Fig 5.1b: Effect of the rules Vs. AMS under 10 shop machines.


Fig. 5.1c: Effect of the rules Vs. AMS under 15 shop machines


Fig. 5.1d. Effect of the rules Vs. AMS under 20 shop machines.


Fig. 5.1e: Effect of the rules Vs. AMS under 25 shop machines.


Fig. 5.1f: Effect of the rules Vs. AMS under 30 shop machines.

### 5.6.4 Evaluating the Priority Rule Vs. the Mean Completion Time Criterion under Different WIP and Shop Sizes:

The data in Table 53 b and their plots in Figs $52(\mathrm{a}, \mathrm{b}, \mathrm{c}$, $d$, $e$ and f) show the performance against the level of the work-in-process (WIP) under different shop sizes The following analyses give a comparison between the proposed rules with respect to (AMCTs) Average Mean Completion Times

1 The SRPT rule which schedules jobs with the smallest remaining or content processing time first, has the smallest value for average mean completion time under all levels of W-I-P and shop sizes

2 For SPT and FCFS based rules respectively, they give a higher value of the mean completion time than the SRPT rule in the same level of problem sizes

3 The LRPT and LPT rule respectively ranks fourth and fifth (after SRPT, SPT and FCFS rule) in the following ranges

* $\mathrm{n} \geq 10$ and $\mathrm{m} \leq 5$
* $\mathrm{n} \geq 20$ and $\mathrm{m} \leq 10$
* $\mathrm{n} \geq 30$ and $\mathrm{m} \leq 15$
* $\mathrm{n} \geq 35$ and $\mathrm{m} \leq 20$
* $n \geq 40$ and $m \leq 25$
* $\mathrm{n} \geq 50$ and $\mathrm{m} \leq 30$

In general, as noted in Fig $52(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$ and f$)$ that when $m$ increases and $n$ decreases the LRPT rule is less important than LPT rule with respect to the average mean completion time criterion
In some problem sizes (Table 5 b) such as $n=5$ and $m=5$, $\mathrm{n}=15$ and $\mathrm{m}=10, \mathrm{n}=40$ and $\mathrm{m}=25$ and $\mathrm{n}=45$ and $\mathrm{m}=30$ the LPT rule is equal to the LRPT rule

Table 5.3b: Observed AMCTs of 500 runs Vs. the proposed rules.

$\begin{aligned} & \text { Problem } \\ & \text { SIze } \\ & \text { n X m } \end{aligned}$	Average Mean Completion Times				
	FCFS	SPT	LPT	SRPT	LRPT
$5 \times 5$	42	38	46	37	46
$10 \times 5$	60	54	67	51	67
$15 \times 5$	77	69	87	66	85
$20 \times 5$	92	84	107	80	103
$25 \times 5$	109	100	126	93	121
$30 \times 5$	124	114	145	106	139
$35 \times 5$	139	130	165	120	156
$40 \times 5$	154	143	183	132	172
$45 \times 5$	169	158	203	145	191
$50 \times 5$	185	173	222	159	207
$55 \times 5$	199	187	241	171	223
$60 \times 5$	213	201	260	184	239
$5 \times 10$	71	67	76	65	77
$10 \times 10$	93	87	99	83	101
$15 \times 10$	113	106	122	101	122
$20 \times 10$	131	124	143	117	142
$25 \times 10$	149	142	164	134	161
$30 \times 10$	167	159	184	150	181
$35 \times 10$	184	176	204	166	198
$40 \times 10$	200	192	224	180	216
$45 \times 10$	217	208	244	195	234
$50 \times 10$	233	224	264	211	252
$55 \times 10$	248	240	284	225	269
$60 \times 10$	265	256	303	240	286
$5 \times 15$	101	97	104	93	107
$10 \times 15$	125	120	131	113	134
$15 \times 15$	147	141	155	134	157
$20 \times 15$	167	160	177	151	178
$25 \times 15$	186	179	199	170	199
$30 \times 15$	204	197	219	186	217
$35 \times 15$	223	215	241	204	238
$40 \times 15$	240	233	261	220	257
$45 \times 15$	258	251	282	237	275
$50 \times 15$	276	267	302	253	293
$55 \times 15$	292	284	323	269	311
$60 \times 15$	309	300	342	284	329
$5 \times 20$	129	125	133	120	137
$10 \times 20$	155	151	161	142	165
$15 \times 20$	180	174	187	164	190
$20 \times 20$	201	194	210	184	212
$25 \times 20$	221	214	233	203	235
$30 \times 20$	241	234	254	222	255
$35 \times 20$	260	252	276	240	275
$40 \times 20$	279	271	297	258	295
$45 \times 20$	297	288	318	275	313
$50 \times 20$	315	307	338	292	332
$55 \times 20$	333	325	359	309	352
$60 \times 20$	350	342	380	325	370

Continuing of Table 5.3b:

$\begin{aligned} & \text { Problem } \\ & \text { Size } \\ & \text { n X m } \end{aligned}$	Average Mean Completion Times				
	FCFS	SPT	LPT	SRPT	LRPT
$5 \times 25$	157	153	161	146	164
$10 \times 25$	186	180	191	172	196
$15 \times 25$	211	204	218	194	223
$20 \times 25$	233	227	242	216	246
$25 \times 25$	255	248	265	236	268
$30 \times 25$	276	269	288	256	291
$35 \times 25$	295	288	310	275	311
$40 \times 25$	315	307	331	293	331
$45 \times 25$	334	327	353	310	351
$50 \times 25$	353	345	374	329	370
$55 \times 25$	371	364	395	347	390
$60 \times 25$	389	382	416	364	409
$5 \times 30$	184	180	188	172	193
$10 \times 30$	214	209	219	199	225
$15 \times 30$	241	235	248	224	254
$20 \times 30$	265	259	274	247	279
$25 \times 30$	288	281	298	268	303
$30 \times 30$	310	303	321	289	325
$35 \times 30$	330	322	343	308	346
$40 \times 30$	350	342	366	327	366
$45 \times 30$	369	363	388	347	388
$50 \times 30$	389	382	409	365	408
$55 \times 30$	408	401	431	383	428
$60 \times 30$	426	419	451	401	446



Fig. 5.2a: Effect of the rules Vs. MCT under 5 shop machines.


Fig. 5.2b: Effect of the rules Vs. MCT under 10 shop machines.


Fig. 5.2c: Effect of the rules Vs. MCT under 15 shop machines.


Fig. 5.2d: Effect of the rules Vs. MCT under 20 shop machines.


Fig. 5.2e: Effect of the rules Vs. MCT under 25 shop machines.


Fig. 5.2f: Effect of the rules Vs. MCT under 30 shop machines.

### 5.6.5 Evaluating the Priority Rules Vs. the Average Total Waiting Time Criterion under Different WIP and Shop Sizes:

The programme output data under 500 runs are scheduled and plotted in Table $53 c$ and Figures $53(a, b, c, d, e$ and f) They show the results for the effect of the proposed rules with respect to the average waiting time at varıous problem sizes As mentioned before the programme running was carried out under the same randomly processing time matrixes for each run The two lower curves illustrated in Fig 5 3a indicate that The SRPT and LPT are quit equal to each other when 5 shop machines is used (low shop load) at different WIP While in the range of $n \leq 25$ and $m \leq 30$ the SRPT rule $1 s$ the dominate rule than other, in contract the LPT rule tends to be better than other in the range of $n \leq 30$ and $m \leq 30$ The SPT
rule glves the poor performance than others when the problem size is greater than ( $5,10 \mathrm{xm}$ ) Finally the FCFS rule's curve shows a better performance than the LRPT rule curve with respect to the average waıting time for most problem sizes

Table 5.3c: Observed AWTs of 500 runes Vs . the proposed rules.

Problem Size n X m	Average Total Waiting Times				
	FCFS	SPT	LPT	SRPT	LRPT
$5 \times 5$	39	34	40	19	52
$10 \times 5$	133	150	121	82	162
$15 \times 5$	261	343	228	186	311
$20 \times 5$	420	610	357	316	491
$25 \times 5$	632	947	516	485	697
$30 \times 5$	828	1335	687	651	921
$35 \times 5$	1069	1803	873	852	1164
$40 \times 5$	1317	2317	1077	1085	1418
$45 \times 5$	1577	2870	1308	1304	1719
$50 \times 5$	1901	3528	1548	1592	2011
$55 \times 5$	2209	4264	1831	1846	2355
$60 \times 5$	2492	5029	2114	2154	2679
$5 \times 10$	61	59	65	34	84
$10 \times 10$	225	249	205	148	276
$15 \times 10$	425	522	372	306	507
$20 \times 10$	705	898	585	532	808
$25 \times 10$	1010	1375	821	796	1150
$30 \times 10$	1374	1944	1105	1129	1537
$35 \times 10$	1731	2540	1371	1418	1934
$40 \times 10$	2120	3220	1677	1786	2347
$45 \times 10$	2577	3972	2011	2157	2779
$50 \times 10$	3047	4843	2361	2610	3312
$55 \times 10$	3550	5819	2801	3119	3845
$60 \times 10$	4097	6787	3184	3587	4368
$5 \times 15$	83	79	82	46	111
$10 \times 15$	286	315	271	192	351
$15 \times 15$	571	662	500	412	671
$20 \times 15$	912	1119	761	684	1040
$25 \times 15$	1316	1678	1081	1044	1482
$30 \times 15$	1751	2312	1416	1423	1941
$35 \times 15$	2236	3059	1784	1841	2470
$40 \times 15$	2732	3858	2148	2276	3023
$45 \times 15$	3334	4800	2592	2848	3608
$50 \times 15$	3976	5791	3058	3415	4304
$55 \times 15$	4544	6841	3535	3956	4959
$60 \times 15$	5272	7944	4034	4573	5640

Continuing of Table 5.3c:

$\begin{aligned} & \text { Problem } \\ & \text { Sıze } \\ & \mathrm{n} \mathrm{X} \mathrm{~m} \end{aligned}$	Average Total Waıtıng Tımes				
	FCFS	SPT	LPT	SRPT	LRPT
$5 \times 20$	97	96	99	55	132
$10 \times 20$	344	377	317	231	422
$15 \times 20$	672	777	592	483	797
$20 \times 20$	1085	1294	924	832	1241
$25 \times 20$	1552	1921	1291	1231	1754
$30 \times 20$	2084	2656	1692	1685	2316
$35 \times 20$	2674	3485	2135	2193	2959
$40 \times 20$	3295	4393	2611	2773	3601
$45 \times 20$	3914	5333	3079	3375	4255
$50 \times 20$	4692	6522	3608	4007	5043
55 X 20	5385	7672	4166	4673	5854
$60 \times 20$	6201	8920	4746	5393	6672
$5 \times 25$	115	111	115	62	148
$10 \times 25$	391	417	362	265	475
$15 \times 25$	766	865	689	559	914
$20 \times 25$	1221	1449	1061	953	1407
$25 \times 25$	1794	2181	1510	1444	2016
$30 \times 25$	2380	2962	1966	1914	2693
$35 \times 25$	3034	3872	2462	2525	3370
40 X 25	3721	4847	2966	3133	4090
$45 \times 25$	4508	6006	3578	3837	4935
50 X 25	5330	7141	4174	4569	5757
55 X 25	6140	8434	4806	5361	6671
60 X 25	7096	9846	5438	6181	7619
$5 \times 30$	124	123	128	71	167
$10 \times 30$	432	463	404	295	533
$15 \times 30$	846	952	768	630	1012
$20 \times 30$	1363	1593	1190	1059	1577
$25 \times 30$	1967	2341	1670	1567	2233
$30 \times 30$	2618	3212	2189	2131	2946
$35 \times 30$	3379	4197	2766	2798	3754
$40 \times 30$	4179	5278	3370	3497	4558
$45 \times 30$	4977	6483	3990	4275	5486
$50 \times 30$	5887	7718	4639	5070	6396
$55 \times 30$	6760	9102	5333	5899	7380
$60 \times 30$	7807	10562	6079	6851	8401



Fig. 5.3a: Effect of the rules Vs. AWT under 5 shop machines.


Fig. 5.3b: Effect of the rules Vs. AWT under 10 shop machines.


Fig. 5.3c: Effect of the rules Vs. AWT under 15 shop machines.


Fig. 5.3d: Effect of the rules Vs. AWT under 20 shop machines.


Fig. 5.3e: Effect of the rules Vs. AWT under 25 shop machines


Fig. 5.3f: Effect of the rules Vs. AWT under 30 shop machines.

### 5.6.6 Evaluating the Priority Rules Vs. the Average Total Idle Time Criterion under Different WIP and Shop Sizes:

As discussed in the last three sections, the output programme data provide information (results) to evaluate the priority rules performance and to select a proper job sequence to be processed on avaılable machınes

The programme data on the Total Average Idle Time considered in this section are summarızed $1 n$ Table 5 3d

Figures $54(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$ and f) show the comparisons between the proposed rules as follows

Figures $54(a, b, c, d, e$, and $f)$ show that the FCFS rule performs the mid-quality performance between the other at all the proposed WIP and utılızation levels

The LRPT rule performs better than any other rules for the ATIT criterıon for the 5-machınes shop, while the SPT rule improves its performance when the range $n \leq 40$ and $m \leq 5$ is used as ıllustrated in Figure $54 a$

In the range of $n \geq 10$ the LRPT rule is more dominate, compared to other at any utilızation level as shown in Figures $54(b$, $c, d, e$ and $f$ ), while the $S P T$ rule tends to be the secondqualıty performance in this range

Finally, the SRPT rule gives poor quality performance when the utılızatıon level increases at a given WIP as cleared in Figures $54(a, b, c, d, e$ and $f)$, while the LPT rule performs more effectuveness than the SRPT when the utılızation level (shop load) decreases at a guven WIP

Table 5.3d: Observed AITs of 500 runs Vs. the proposed rules.

$\begin{aligned} & \text { Problem } \\ & \text { Size } \\ & \mathrm{n} \text { X m } \end{aligned}$	Average Total Idle Times				
	FCFS	SPT	LPT	SRPT	LRPT
$5 \times 5$	36	38	38	55	21
$10 \times 5$	63	56	78	83	41
$15 \times 5$	84	70	114	104	56
20 X 5	97	81	152	123	70
$25 \times 5$	110	89	184	136	82
$30 \times 5$	125	100	218	149	96
$35 \times 5$	139	112	252	165	105
40 X 5	146	116	283	172	117
$45 \times 5$	157	123	318	184	126
$50 \times 5$	171	134	353	199	138
$55 \times 5$	180	140	388	207	144
$60 \times 5$	187	146	417	217	151
$5 \times 10$	133	129	129	180	80
$10 \times 10$	223	200	252	285	147
$15 \times 10$	290	262	358	363	210
$20 \times 10$	339	310	442	423	253
$25 \times 10$	389	337	545	474	296
$30 \times 10$	429	386	624	516	338
$35 \times 10$	477	416	717	566	375
$40 \times 10$	518	450	803	607	410
$45 \times 10$	545	482	891	641	443
$50 \times 10$	581	514	983	687	482
$55 \times 10$	620	545	1061	713	508
60 X 10	652	573	1139	752	544
$5 \times 15$	262	264	276	367	158
$10 \times 15$	436	399	466	565	300
$15 \times 15$	563	521	659	708	406
20 X 15	672	634	824	833	507
$25 \times 15$	761	709	981	930	590
$30 \times 15$	853	801	1138	1021	680
$35 \times 15$	943	861	1300	1109	749
$40 \times 15$	1014	917	1439	1183	813
$45 \times 15$	1083	998	1585	1265	892
$50 \times 15$	1152	1050	1722	1334	947
$55 \times 15$	1222	1117	1875	1405	1018
$60 \times 15$	1266	1146	1986	1450	1063
$5 \times 20$	439	419	428	585	268
$10 \times 20$	702	667	753	897	500
$15 \times 20$	919	864	1043	1147	670
20 X 20	1089	1017	1291	1325	830
$25 \times 20$	1237	1170	1501	1484	973
$30 \times 20$	1368	1280	1727	1627	1087
$35 \times 20$	1509	1404	1947	1774	1221
$40 \times 20$	1620	1516	2150	1906	1329
$45 \times 20$	1720	1610	2357	2013	1431
$50 \times 20$	1826	1706	2562	2122	1517
$55 \times 20$	1947	1814	2770	2239	1619
$60 \times 20$	2051	1900	2996	2351	1712

Continuing of Table 5.3d:

$\begin{aligned} & \text { Problem } \\ & \text { Sıze } \\ & \text { n X m } \end{aligned}$	Average Total Idle Tımes				
	FCFS	SPT	LPT	SRPT	LRPT
$5 \times 25$	612	608	631	847	409
$10 \times 25$	1003	978	1091	1299	727
$15 \times 25$	1323	1257	1461	1624	971
$20 \times 25$	1557	1495	1793	1895	1184
$25 \times 25$	1769	1677	2072	2099	1371
$30 \times 25$	1956	1859	2377	2324	1569
$35 \times 25$	2160	2031	2681	2548	1739
$40 \times 25$	2302	2193	2984	2720	1892
$45 \times 25$	2479	2354	3229	2864	2048
50 X 25	2639	2478	3497	3016	2181
$55 \times 25$	2780	2626	3742	3183	2338
$60 \times 25$	2898	2760	4026	3344	2444
$5 \times 30$	838	816	834	1127	528
$10 \times 30$	1382	1313	1432	1742	967
$15 \times 30$	1750	1667	1936	2181	1311
$20 \times 30$	2067	1972	2337	2537	1600
$25 \times 30$	2368	2280	2748	2853	1876
$30 \times 30$	2637	2501	3110	3118	2088
$35 \times 30$	2861	2761	3493	3393	2322
$40 \times 30$	3084	2964	3844	3596	2533
$45 \times 30$	3306	3173	4207	3848	2742
$50 \times 30$	3481	3346	4476	4037	2935
$55 \times 30$	3730	3522	4869	4275	3124
$60 \times 30$	3880	3685	5154	4455	3263



Fig. 5.4a: Effect of the rules Vs. AIT under 5 shop machines.


Fig. 5.4b: Effect of the rules Vs. AIT under 10 shop machines.


Fig. 5.4c: Effect of the rules Vs AIT under 15 shop machines.


Fig. 5.4d: Effect of the rules Vs. AIT under 20 shop machines.


Fig. 5.4e: Effect of the rules Vs AIT under 25 shop machines.


Fig. 5.4f: Effect of the rules Vs. AIT under 30 shop machines.

## CHAPTER SIX

## 6. A Computer Simulation Analysis for <br> Evaluating the Job-Shop Priority Rules:

In Chapters 4 and 5 the analytical studies have been limited to the flow-shop problem These studies in which the natural static problem, unidırectional process of jobs on machines and ready time and due date are equal to zero were concerned In this Chapter the job-shop problem in which the dynamic version, flow job sequence is not unidirectional and ready times and due dates for jobs are not equal to zero will be considered in the analysis

In the dynamac problem, jobs arrive to the shop randomly over time, also scheduling is generally carried out by means of priority rules Using these rules the job sequence is selected for processing on a machıne according to a specıfic routing of a good criteria
The effects of priority rules in dynamic job-shop environment are very difficult to analyze by the traditional analytical techniques The use of computer simulation has became a useful tool for this problem [5] and [6]
Experimental procedure with a computer simulation model has made it possible to compare alternative priority rules and generally develop a suitable environment for reducing the production cost

In terms of probability distribution selection, Table (6 1) glves the characterıstics of different probabılıty distrıbution that maght influence a modeller to select a particular distribution to represent an activity (random variable)

Distribution	Parameters	Applications
Beta	(Alpha1, Alpha2)	* An absence data model   * Activity durations in the PERT networks
Discrete	$\begin{aligned} & \left(\mathrm{CumP}_{1}, \mathrm{Val}_{1},\right. \\ & \mathrm{CumP}_{2}, \mathrm{Val}_{2}, \end{aligned}$	* Discrete assignments of the job type   * An arriving entity for the batch size
Erlang	(ExpoMean, K)	* To complete the task time
Exponential	(Mean)	* To model random arrıval   * To breakdown processes   * To lifetimes
Gamma	(Beta, Alpha)	* To complete some task   * Machining, repair and breakdown times
Lognormal	(Mean, StdDev)	* Relıabılıty models   * Maıntainabilıty Engng
Normal	(Mean, StdDev)	* cycle times   * The limit theorem applies
Poisson	(Mean)	* Tame units( The number of arrival or departures)
Triangular	(Mın, Mode, Max)	* For unknown distribution   * The lack of reliable data
Uniform	(Mın, Max)	* Is used when over a finite range are considered to be equally lıkely
Weıbull	(Beta, Alpha)	* Reliabilıty models such as the life time of a device   * For non_negatıve task that are skewed to the lıfe tames

Table 6.1: Probabılity Distribution selection due to [62], [107] and Hines, W. W , and Montgomery, D. C. [1980] [122].

Before dealing with the simulation of the job-shop under study the following section will discuss the conceptual performance plan of the job-shop problem

### 6.1 The Performance Plan for the Job-Shop problem:

The system being modeled is a machıne job-shop which consists of six machine groups (Fig 6 1) Each group consists of a number of identical machines as shown In this Figure there are three specific workpıeces (numbered 1, 2 and 3) which have to be processed on these machines The work flow pattern is not in the same order and skipping is allowed (multidirectional processes) as shown in Figures ( $62 \mathrm{a}, 6 \mathrm{ab}$ and 62 c ) The ratio of the three workpieces distribution numbers were selected as follows $24 \%$ for workpieces 1, $44 \%$ for workpieces 2 , and $32 \%$ for workpıeces 3

Machine   Group No	Machine Type	Number of   Machines
1	Casting Units	14
2	Lathes Station	5
3	Planers Station	4
4	Drılls Station	8
5	Shapers Station	16
6	Polıshing Station	4

Fig. 6.1: Planning sheet for a number of identical machines to be used for process three workpieces in job-shop.

Operation   Sequence	Machıne   Type		Different Time Distributions		
			$\underset{(\text { Mean })}{\text { Exponential }}$	$\begin{gathered} \text { Unıform } \\ (\operatorname{Mnn}, \operatorname{Max}) \end{gathered}$	$\begin{aligned} & \text { Normal } \\ & \text { (Mean,StdD ) } \end{aligned}$
1		Casting	125	120,130	125,2 5
2		Planing	35	20,50	35,7 5
3		Turning	20	15,25	20.25
4		Polish-	60	40,80	60,10
Exitsys		-ing			

Fig. 6.2a: Job sequencing sheet for workpiece 1, in job-shop under Oniform $(300,550)$ distrıbution due date.

Operation	Machıne Type	Different Tıme Distributions		
Sequence		Exponential (Mean)	$\begin{aligned} & \text { Unıform } \\ & \text { (Mın,Max) } \end{aligned}$	$\begin{aligned} & \text { Normal } \\ & \text { (Mean, StdD } \end{aligned}$
1	(5) Shaping	105	80,130	105,12 5
2	(4) Drilling	90	70.110	90,10
$3$	(2) Turning	65	55,75	65,5

Fig. 6.2b: Job sequencing sheet for workpiece 2, in job-shop under uniform( 300,550 ) distribution due date.

Operation   Sequence	Machine Type	Different Tıme Distributions		
		Exponentral   (Mean)	$\begin{aligned} & \text { Unı form } \\ & \text { (Mın, Max) } \end{aligned}$	Normal   (Mean, StdD )
1	(1) Casting	235	170,300	235,32 5
2	(5) Shaping	250	100,400	250,75
3	(4) Drilling	50	20,80	50.15
4	(3) Plannıng	30	13,47	30.85
5 Exitsys	$\begin{array}{r} \text { (6) Polish- } \\ -\mathrm{Ing} \end{array}$	25	19,31	25,3

Fig. 6.2c: Job sequencing sheet for workpiece 3, in job-shop under uniform ( 300,550 ) distribution due date.

In this machine job-shop, the problem will be discussed under the following factors which are considered important

## 1. Three levels of Arrival Tıme Distributions (the shop loads):

The experımental procedure under study will be dealt with at three levels of job arrıval process or shop loads This arrıval process makes the workpleces enter the system one at a time according to the following proposed probabılıty distributions shown in Figure 63

The		The shop load
Three	1- Exponentıal(9), (8 2) and (7)	Low load (\%70)
Different	2-Uniform (7,11), (65,10) and	medi load(\%77)
Arrıval	$(4,10)$	High load (\%85)
Processes	$3-\underset{(7,15)}{\text { Normal }}(9,1), \quad(825, .875) \text { and }$	
Where:		
(9), (8 2) and (7) are the mean for the expo patterns,		
(7,11), $(65,10)$ and $(4,10)$ are the (min.,max) for the		
uniform patterns and   $(9,1)(8.2,0.875)$ and (7,15) are the (mean, $\sigma$ ) for the		
normal patterns		

Fig. 6.3: The proposed job arrival distrıbutions in job-shop.

## 2. The work flow pattern:

As mentioned before the machine job-shop is not a unidirectional flow and operation skipping between machines $1 s$ allowed, $e g$, such a processing is possible

$$
3 \longrightarrow 1 \longrightarrow 4 \longrightarrow 6 \longrightarrow 1 \longrightarrow-6 \longrightarrow 2
$$

## 3. Processing Time Distributions:

The following three distributions have been selected as they are widely used in the job-shop simulation
1 Uniform, it has been used by Schriber[109]
2 Exponential, (commonly utilızed in [52], [42] [43], [55] and [75]
3 Normal, it has been used by Jones [42]
4. Due Date Distribution for the expected lead time:

Jones, C [1973][42] has reported that the delivery commitments is the second important criteria for judging
the efficiency of priority rules after shop utilisation Uniform Distribution with minımum (300 mınutes) and maxımum ( 550 mınutes) (randomly selected for each job) is selected as being the most approprıate because, it offers the best balance for the lead tımes expected in practice

## 5. The Selected Job-Shop Prıority Rules:

Due to Conway, $R$ W[52], John, et al[43] and Moore, et al[75], the following seven commonly tested rules which have been selected for our investigation in this chapter are

1 Shortest Processing Tıme rule (SPT)- For its practical application and generally excellent performance in so many ınvestıgatıons Conway, et al[5]
2 Longest Processing Time rule (LPT)- to show that it maxımızes whatever $S P T$ rule minımıze [5] In general, ıt has less practical applıcations than other rules
3 First Come Fırst Service rule (FCFS)- for its simple application and the most democratic of all rules John, et al[42]

4 Last Come First Service rule (LCFS) Conway, et al [5] noted that this rule is used when the job arriving have been stacked in such a way (a high job-shop load) that the latest arrival is the most accessible and thus the one selected
5 First Arrived at Shop First Service (FASFS)
6 Earliest Due Date (EDD) (i e a lead time)

$$
d_{f(1)} \leq d_{f(2)} \leq d_{f(3)} \leq . \quad \ldots \leq d_{f(\mathrm{n})}
$$

7 Static Slack (StS) - It is equal to due date minus the tıme of arrıval at the machine centre

## 6. Selecting the Measure of Performances:

Most sequencing systems can be put into several of numerous
complex criteria according to whether their measure of performance is specified, Mellor[116] lists 27 distinct scheduling goals
Most researchers such as Conway[52], Earl Legrande[47] and Hollier[123] take into account that the basic problem of job shop operation 1 s one of balancing the costs of carrying Work-In-Process, having idle machıne or machıne utilızation level (or shop load) and meeting specıfıed order due dates To have a low degree of average idle machınes, a shop process would need much waiting in machine queues so that machines were ever idle thus, if the orders (workpieces) have specified due dates the result will be higher in work-in-process costs and poor scheduling performance $T$ have orders meet their due dates or lateness, the shop would need enough machınes so that orders could be processed without delay This, in turn, would result in higher average idle machines
In this study of the job-shop scheduling, each order (job) must be planned and controlled according to the selected five crıterıa as follows

## 1. Minimize Job Lateness:

It is the time between when $a$ job is completed and when It was due to be completed
2. Minımıze Mean Flow Times:

It is the amount of time a job spends in the shop
3. Minimize Machine Idle Tumes.

It is the fraction of time when the machines are non-productive

## 4. Minimize Work-In-Process:

It is the unfinıshed workpıeces during processing, it is usually due to workpieces waıting for avaılable machınes
5. Maxımize Completion Jobs or production rate:

It is the output produced in a given period of time Shop
capacity is often defined as the maximum production rate that can be obtaıned

## 7. Job-Shop Load Levels:

The shop will be simulated under three levels of loading

$$
1 \text { Low at approx } 70 \%
$$

2 Medium at approx 77\%
3 High at approx 85\%

Also in this study, there is a high degree of job-shop interaction due to the variety of orders, arrival time distributions, varıable processing time distributıons and due date distribution This interaction causes certain machines to become critical (idles), and walting queues Orders which are held up at one point are affecting future machines through which they must pass Therefore, orders must be scheduled with an allowance for waiting and they must be dispatched in such a way that the schedules will tend to be met This affects the accuracy of the scheduling procedure (the priority rules selection) and hence the entire job-shop production cost

The following section (6 2) will discuss the concepts and methods for simulating the job-shop problem under study which mentioned above using the SIMAN language This software will be used for evaluating the performance of the prıority rules with respect to the varıous criteria under different shop loads and processing time distributions

### 6.2 A Computer Simulation of Production Scheduling using the SIMAN Software:

The SIMAN modelling framework is divided into two frames They are the system model and the experıment model frame

The system model defines the physical elements of the system (machines, parts flow, worker, storage points, transporters, information, etc )
The experıment frame specifies the experımental conditions under which the model is to run, including elements such as inıtıal condıtıons, resource avaılabilıty, type of statıcs gathered, and the length of run The experiment frame also includes the analyst's specifications such as the schedules for resource (machınes) avaılabılıty, the routing (sequences). parts,etc
The two sections below will report the basic concepts which deal only with the model and experiment frame of computer simulation for the job-shop under study (C D Pegden, et al[1990][62] give more information about the simulation in manufacturing systems

### 6.3 The Model Frame of SIMAN's Simulation production Scheduling:

The objective $1 s$ to use the simulation model to develop and evaluate the effectiveness of varıous priority rules with respect to different criteria under different shop loads and processing tımes distrıbutions
Processes are modelled by using a block dıagram
The block dıagram is a lınear, top-down flow graph depıcting the process through which the entities (parts flow) in the system move
The block diagram may be constructed in either a graphical flow-chart form or in an equivalent statement (pseudo-code) form In our simulation study for the proposed job-shop described in section 61 the model programme will be created using the SIMAN statement form
The procedure in Appendix $E$ will discuss step-by-step the proposed job-shop model

### 6.4 The Experiment Frame of SIMAN's Simulation production Scheduling:

As discussed earlier, a SIMAN simulation programme comprises both a model and experıment The Pseudo Codes statement that have developed through Section 62 for the proposed job-shop represents only the model frame (the first portion) of the simulation programme In this Section 62 the experiment frame has yet to be specified, it includes the length of the simulation run, the number of replications of the simulation, the characteristics of machines and queues, the measure of performances, the selected criteria output data and then plot files, etc The experiment programme codes are called elements and in the current problem they will be specified in statement form using text editor
In Appendix $F$, the step by step experiment programme will be developed for the proposed job-shop

### 6.5 The Selected Procedure for Estimating the Mean and Variance of random variables for the multiple Criteria:

Simulations are run in order to gain an understanding of the behaviour of the system under study The objective of the simulation analysis is to estimate the value(s) of one or more unknown parameters by applying appropriate statistical techniques to the data collected from the simulation Pritsker, A Alan B[1986][106] proposed five procedures according to a considerable amount of research for estimating the mean and variance of random variables Each of these five approaches will be brıefly represented as follows

## 1. Replication:

In the replication approach, several runs are executed, each
with a different stream of random numbers After deleting the warm-up period (run-in period), each run $1 s$ made to represent a single batch From run $u$, we obtain a value of $X_{u}$ (a random varıable) and the mean of the $X_{u}$ and Varıance[ $X_{u}$ ] value over $U$ runs are used as an estimate of the parameters of interest, those are respectively as follows

$$
\begin{equation*}
\overline{X_{u}}=\frac{\sum_{u=1}^{U} X_{u}}{U} \tag{61}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{Var}\left[\overline{X_{u}}\right]=\frac{1}{U} \sigma \tag{62}
\end{equation*}
$$

The replication procedure has the desirable property that observations are truly independent Another advantage is that it can be used for both terminating and steady-state or transient warm-up period analysis However, this procedure has a disadvantage which is that a transient warm-up period must be deleted from each run

## 2. Sub-intervals:

In the sub-interval approach, only one simulation run is executed After deleting the initial transient warm-up period, the remainder of the run is divided into $H$ equal batches, with each batch average representing a single observation Thus, if each batch has $b$ samples of stochastic process $X_{u}(s)$, where $s$ $=1,2,3$, $s$ then a batch sample mean, $X_{u}$, in computed from

$$
\begin{equation*}
X_{k}=\frac{\sum_{s=1}^{b} X_{u}(s)}{b} \tag{6.3}
\end{equation*}
$$

If the sub-interval are independent then Eq. 6.1 and 6.2 are used to estimate the mean $X_{u}$ and variance $\operatorname{Var}\left[X_{u}\right]$ of random variable, respectively.

## 3. Regenerative Cycle:

This approach is similar to the sub-interval method in that it divides a simulation run into intervals which are referred to as cycles. A cycle starts when a specific state of the system is reached in which future behaviour is independent of the past behaviour. However, this method is actually designed to alleviate the problems associated with both the replication and sub-interval methods.

## 4. Parametric modelling:

This approach for employing parametric modelling involves the collection of sample values from a simulation and then fitting an equation(s) to the observed data values. This approach is similar to the one used when attempting to describe real world systems by fitting equations to data obtained from the system. This approach has a lack of knowledge of the reliability of the model.

## 5. Covariance and the use of Spectral Estimation:

This approach estimates the auto_variance from the sample output and use these in a spectral analysis. It has not produced reliable point estimates.

In our case of simulation for the proposed job-shop the replication method was selected as the statistical methodology
used in the experimentation This selected replication procedure was chosen according to many reasons as follows

- It has more efficient independent observations than other methods
- Each replication has a different stream of random numbers and it represents as a single batch
- It is simple to determine the start of the steady-state range

Hereafter, section 651 below will discuss the effect of transient condition on the random variables and how could the steady-state be evaluated

### 6.5.1 Estimating the Mean for The Steady-State Job-Sop Simulations:

In a discrete and non-terminating simulations especially in stochastıc job-shop sımulations, they do achıeve a steady-state Which pass through a transient phase In modelling the proposed job-shop the system wall begin the simulation in the empty and idle condition, the initial jobs wıll arrıve at an un-congested system with idle machınes Hence, the early arriving jobs will quickly move through the system and the performance measure will all be biased downward during the early part of simulation After the system has had tıme to "warm-up", queues will form, and the system will begin to exhibit its true long-term behaviour Observations collected after the Warm-up perıod will be representative of steady-state behaviour, whereas observations collected during the transient phase will make the proposed job-shop appear to function better than it really does
When tryang to analyze steady-state performance, we must deal with the bias introduced by the starting conditions (This is not a problem in termınating systems-Seıla[[1990][124]-, because we are specifically interested in evaluating the
transient response of these systems to their fixed starting conditions ) However, Eilon \& Hodgson[55] suggested that the transient period (run-in perıod, as they called it) have only a slight effect on priority rule comparison results These results were obtained through a simulation of job-shop model whıch was carried out at Imperial College, London The question naturally arıses as to how to select the warm-up period (or deletion amount) Due to Welch, [1983][125] and Law and Kelton, [1991][126], the sımplest and most general technique for determining the warm-up period (or truncation point) is a replication procedure (see section 651 ) using a visual determination, 1 e , selecting the point from a mean random variable plot of the simulation response over time In the plots with large fluctuations (or high frequency oscillations) in the response, this process can be improved using a moving average $\bar{X}_{1}(w)$ (where $w$ is the window or moving average size and is a positive integer) to smooth the response

### 6.6 The Experimental analysis of the Simulation results under different Priority rules Vs. multiple criteria:

The following factorials summarise the conceptual plan of the job-shop scheduling to be simulated

1. Three types of Workpiece Arrıval

Distributions
2. Jobs Work Flow
3. Three types of Processing Time
Distributions : Exponentıal, Unıform and Normal
4. Workpieces Due Date: Unıform $(300,550)$
5. Five Performance

Measures : Mean Flow-Time,

Mean Lateness,
Mean production Rate (Job Completed), Mean Total Machıne Idle Tımes and Mean Total Work-In-Processes

6. How the Performance<br>Measure Is Determined: The simulation duration will be achieved under 13120 Minutes (Approx 45 weeks, 8 hours per day) excluding the warm-up period (transient portion) The warm-up period will be individually determined for each replication using the replication visual determination procedure (see Chapter 65 1)

7. Seven Priority Rules: FCFS, LCSF, SPT, LPT, FASFS, EDD and Statıc-SLK
8. Three Shop Loads : Approx , Low \%70,

medium	$\% 77$ and
high	$\% 85$

In order to compare the seven priority rules under as close to ıdentıcal condıtıons as possible, each rule was presented individually with the same set of jobs to be processed The jobs arrıve at the same time, in the same arrival patterns and the processing times from one run to another A "run" consisted of having the shop follow a particular rule throughout having a 13120 (Approx 45 week's operation) scheduling period The only thing that changed from one run to another was the order in which the jobs were processed on the various machines 1 e , as determined by the priority rule employed Finally, the simulation was executed on the job-shop under seven priority rules through the following two comparison phases

## The first comparison phase:

7 priority rules were simulated under
3 Job arrıval distrıbutions ( Expo , Unıf and Norm )
3 Shop loads (approx 70\%, 77\% and 85\%)
1 Type of processing time distribution (Exponential)
$7=$ R Replications with different stream random numbers,
$R \geq 51 s$ the number of replications were found a reasonable number for testing by Law and Kelton[1991][126]

In total, the first comparıson phase involved 441 experımental simulation runs

## The second comparison phase:

7 priorıty rules were sımulated under
1 Type of Job arrıval (Exponential)
3 Shop loads (approx 70\%, \%77\% and 85\%)
3 Type of processing time distributions (Exponentıal, Unıform and Normal)
7 Replications with different stream random number In total, the second comparıson phase anvolved 441 experımental simulation runs

The total experımental simulation runs for both comparison phase, are equal to 882 , each run with data being taken on approxımately 1300-1850 jobs

The following sections will discuss the experımental results for the first and second comparison phases respectively

### 6.6.1 The Selected Steady-State Points for the Two Comparison Phases.

The job-shop was analyzed only when the steady state conditions were reached and the transient period was eliminated from the analyses In eliminating the bias due to the initial condition, the simulation runs for the shop model was carried out for each case of the three arrival patterns (the first comparison phases) or the three operation time patterns (the second comparison phase) and seven prıority rules through seven replications Hence, the simulation runs ( 3 loads $x 7$ rules $x$ 7 replications) consisting of 147 runs for each comparison phase
A replication procedure for estimating the length of the transient portion for each case of the two comparison phases was used and it may be summarized within the following five items

1 The flow-time or its standard deviation has been taken as the variable to be estimated
2 The selected varıable varıation was plotted as a function of the simulation time for each case The moving average plot was used for the flow-tıme variable
3 Here, the estimate of the starting point of the approximate steady-state was defined by visual inspection (see the next paragraph)
4 The desired statistical observations were collected by rerunning the simulation model with the transient portion truncated
5 Some random number replication streams were rejected due to the long delay in achieving the steady-state point Hence, other suitable random number replications were selected

Tables 62 and 63 summarize the starting and ending points of the approxımate steady-state for each case of the three arrıval time distributions (Table 62) or the three operation time
distrıbutions (Table 6 3) under seven priority rules were tested
The selected steady-state plots are shown in Figures ( 6 4-6 7) These plots show the co-ordinates of some of the flow-time varıable varıations and their moving averages for their standard deviation) as a function of sımulation tıme

It was hoped that a single starting point of the steady-state could be used for all the seven priority rules for each case of the two comparison phases
This property is to ald the comparison of the results as shown in Figures (6 4-6 6)
Also we noted from Figures (6 4-6 7) the following features

1 Some of the proposed simulation cases have an individual steady-state starting point as shown in Figures (6 4 and 6 5)

2 The standard deviation and flow-time variation curves for the SPT rule are more horizontal and smooth than the other rules (especially the LPT rule) as shown in Figures ( 6 4, 6 6a and $6 \mathrm{6b}$ ) However, Eilon, et al's results[55] found that the bias was in favour of the SPT rule and against the LPT rule
3 The start of the steady-state points for the SPT rule are too close to the starting load points than other rules, especially in the low and medium shop-loads as shown in Figure 64

			The Type of Simulation Period		
The   Comparison Phases	The   Type   of   Load	The   Pattern of Arrtime	Max   Simulation   Running   Period	$\begin{aligned} & \text { Warm_Up } \\ & \text { Perıod } \end{aligned}$	Steady_state   Period for   Observatıon   Data Collecting
The	\%70   Load   App	Expo Unıf Norm	$\begin{aligned} & 21120 \\ & 45000 \\ & 23120 \end{aligned}$	$\begin{aligned} & 8000 \\ & 31880 \\ & 10000 \end{aligned}$	$\begin{aligned} & 13120 \\ & 13120 \\ & 13120 \end{aligned}$
	877   Load   App	Expo Unıf Norm	$\begin{aligned} & 21120 \\ & 60000 \\ & 19120 \end{aligned}$	8000 46880 6000	$\begin{aligned} & 13120 \\ & 13120 \\ & 13120 \end{aligned}$
Phase	885   Load   App	Expo Unıf Norm	$\begin{aligned} & 21120 \\ & 29000 \\ & 19120 \end{aligned}$	8000   15880   6000	$\begin{aligned} & 13120 \\ & 13120 \\ & 13120 \end{aligned}$

Table 6.2: The simulation period types for different arrival time patterns (the first comparison phase).

			The Type of Simulation Period		
The Comparison Phases	The Type of Load	The   Pattern   of   OpTimes	Max   Simulation   Running   Period	$\begin{aligned} & \text { Warm_Up } \\ & \text { Perıod } \end{aligned}$	Steady_state   Period for   Observation   Data Collecting
The	870 Load	Expo Unıf Norm	$\begin{aligned} & 21120 \\ & 39620 \\ & 37120 \end{aligned}$	$\begin{aligned} & 8000 \\ & 26500 \\ & 24000 \end{aligned}$	$\begin{aligned} & 13120 \\ & 13120 \\ & 13120 \end{aligned}$
Second	877   Load	Expo   Unif   Norm	$\begin{aligned} & 21120 \\ & 35620 \\ & 55120 \end{aligned}$	$\begin{aligned} & 8000 \\ & 22500 \\ & 42000 \end{aligned}$	$\begin{aligned} & 13120 \\ & 13120 \\ & 13120 \end{aligned}$
Comparison   Phase	$885$   Load	Expo Unıf Norm	$\begin{aligned} & 21120 \\ & 30620 \\ & 28120 \end{aligned}$	$\begin{aligned} & 8000 \\ & 17500 \\ & 15000 \end{aligned}$	$\begin{aligned} & 13120 \\ & 13120 \\ & 13120 \end{aligned}$

Table 6.3: The simulation period types for different operation time patterns (the second comparison phase).


Fig. 6.4: The approx. steady-State points (31880) in the $\sigma$ plots for the SPT rule flow-time variables under Onif. Arrival and Expo. Operation Time and 70\% load.


Fig. 6.5: The approx. steady-state points (46880) in the $\sigma$ plots for the EDD rule flow-time variables under Onif. Arrival and Expo. Operation Time and 77\% load.


Fig. 6.6a: The approx. steady state points (31880) in the $\sigma$ plots for the LPT rule flow-time variables under Onif. Arrival and Expo. Operation Tıme and 70\% load.


Fig 6.6b: The approx. steady state points (31880) in the $\sigma$ plots for the LPT rule flow-time variables under Onif. Arrıval and Expo. Operation Tıme and 70\% Load.


## Flowine

Fig. 6.7a: The Static-SLK rule flow-tıme varıables plot in the $1^{\text {th }}$ Rep. (run) under Norm. Arrival and Expo. Operation Time and 70\% load.

1


Fig. 6.7b: The approx. steady-state point (10000) in the moving-average plot for the static-SLK flow-time varıables plot in Fig. 6.7a.

## 6.6 .2 The Effect of the Various Priority Rules on the Proposed Criteria Under Three Types of Arrival Time Distributions and Shop Loads:

As mentioned in item 6 of Section 6.1 (page 110) that there are five selected criteria which will be considered for evaluating the job-shop priority rules.

Hereafter, the following items will discuss the analysis of the experimental simulation results for the chosen criteria each in turn of the first comparison phase:

## 1. Mean Flow-Time: (Figs 6.8a, 6.8b and 6.8c)

The data and their plots in Figs. $6.8(a, b$ and $c$ ) show that the rule which minimize the mean flow-time is the SPT rule in the low, medium and high shop-loads and exponential, uniform and normal job arrival patterns. While the LPT rule has the highest values of the mean flow-time. This results is agreement with the earlier researchers such as Ram, and Schriber[1990][44]. On the other hand, EDD based rule gives the worst performance only when the high shop-load and uniform arrival pattern is applied as shown in Figure 6.8c. Elvers's studied [1973][53] gives a similar result for this rule with respect to similar job arrival pattern. The FCFS, LCFS, FASFS and St. SLK give different performances for each other especially in the low and medium shop-loads and all the proposed job arrival patterns. Also as shown in Figs. $6.8 b$ and $6.8 c$ for the medium and high shop-loads especially in the exponential and uniform arrival patterns that the FASFS tends to be slightly better than FCFS based rule. This result is in agreement to the result had been found by Conway[1965a][52] and Rochette et al[1976][57].

One important conclusion can be drawn from the above results which is that the effect of the different arrival patterns on the priority rules is not a significant variable for a given shop-load. This conclusion is in agreement to Elvers's studies[53].

priority Rules



Fig. 6.8 ( $a, b$, and $c$ ). The mean flow-time Vs. the priority rules under different job arrıval patterns and shop-sizes.

## 2. Mean Job Lateness: (Fig. 6.9a, 6.9b and 6.9c)

In this context a negative value for lateness means that the job finıshed early $A$ job is tardy only if lateness is greater than zero

From comparing the performance characterıstics of the priority rules, the data and their plots in Figures 6 9a, $69 b$ and $69 c$ show that

Under the SPT rule there are no lateness of any job The jobs begin to be tardy when the shop-load is increased However, under the medium and high shop-loads of the three arrival patterns and assigning the due date conditions the SPT rule glves better performance than the other with respect to the job lateness While the LPT rule tends to perform poorly at most of the job-shop conditions In the high shop-load and all the proposed arrıval patterns the LCFS and St SLK rules give faırly good results respectively with respect to the job lateness While in the low and medium shop-loads and all arrıval patterns the FCFS, LCFS, FASFS, EDD and Sts SLK perform quit equal to each other as shown in Figures $69 b$ and 69 c
3. The Mean Idle Time: (Figs. 6.10a, 6.10b and 6.10c)

The results drawn in Figure 6 10a show that the LPT, SPT, FASFS and LCFS rules give the worst performance with respect to the machines idle time respectively This result is concluded Just when the $70 \%$ load and exponential arrival pattern are applied While the LPT rule tend to be the best rule when the normal arrival pattern is applied The other rules perform equally well in all applıed arrival patterns
In Figure 610 b when the $77 \%$ load and all arrival patterns are applied the LPT rule glves the worst performance, while the other rules tend to be equal to each other

Also the LPT rule gives the worst performance when the $85 \%$ load and all arrıval patterns are applied as shown in Figure 6 10c, While the SPT rule tends to be the best rule The other rules perform equally well


Priority Rulas


Priority Rules

Fig. 6.9(a, b and c): The job lateness Vs. the priority rules under different arrival patterns and shop loads.


Priority Rules


Fig. $6.10(\mathrm{a}, \mathrm{b}$ and c$)$ : The machınes 1 dle time Vs . the priority rules under three arrival patterns and shop loads.

## 4. The Mean Completed Jobs: (Figs. 6.11a, 6.11b and 6.11c)

In Figures 6 11c when the $85 \%$ shop-load and all arrival patterns are applied the SPT rule gives the best performance with respect to jobs completed While the LPT rule tends to be the worst rule
In Figure $611(a$ and b) the EDD rule gives good performance when the $70 \%$ and $77 \%$ shop-loads and Exponential pattern are applied Figure 6 11a show that in the case of the $70 \%$ shopload and Normal arrıval pattern the FSAFS rule tends to gives poor qualıty-performance than other While the LPT rule gives the worst performance in the other cases of the shop-loads and arrival patterns as shown in Figures 6 11a, $611 b$ and 611 c Also these Figures show that for all other rules (FCFS, LCFS, St SLK) perform equally well in all cases of the shop-loads and arrival patterns not mentioned before
5. The Mean Total WIP (Figs. 6.12a, 6.12b and 6.12c)

In this context of the mean total WIP criterion under six machines groups Figures $612(\mathrm{a}, \mathrm{b}$ and c$)$ show that the SPT rule is better for every condition tested
Whale the LPT rule gives the worst performance These results are in agreement with the results had been carried out by Conway[52]
The other rules (FCFS, LCFS, FASFS, EDD and St SLK) perform approximately equal values as shown in Figures 6 12a, 612 b and 6 12c


Priority Rulas


Priority Rules


Priority Rules

Fig. $6.11(\mathrm{a}, \mathrm{b}$ and c$)$ : The mean jobs completed Vs . the priority rules under the three arrival patterns and shop loads.



Priority Rules

Fig. $6.12(a, b$ and $c):$ The mean total WIPs Vs. the priority rules under the three arrival patterns and shop loads.

### 6.6.3 The Effect of the Various Priority Rules on the Proposed Criteria Under Three Types of Operation Time Distributions and Shop Loads:

In the previous section 662 the evaluation of the six priority rules have been discussed under the three job arrival distributions (Expo Unif and Norm ), shop-loads (Approx 70\%, $77 \%$ and $85 \%$ ) and a commonly known single pattern of the operation time distribution (exponential pattern) were applied In this section the job-shop simulation has been carried out under a commonly known single pattern of job arrival (exponential pattern), Three operation time distributions (Expo Unıf and Norm) and also three shop-loads were applıed

Hereafter, the following atems will discuss the analysis of the experımental simulation results for the chosen criteria each in turn for the second phase

## 1. Mean Flow-Time (Figs 6 13a, 6.13b and 6 13c)

As shown in Figures $613 \mathrm{a}, 6 \mathrm{13b}$ and $(613 \mathrm{c}$, only when the exponential operation time pattern is applied) the SPT rule is the best with respect to the mean flow-time This result has been found by the major comparatıve studies (LeGrande [1963] [47], Conway[1965a][52] and Ezlon et al[1968][55])
While the LPT rule gives the worst performance, especially at the low and medium shop-loads (Figs $613 a$ and 6 13b) The other rules (LLFS, St SLK, FCFS, EDD and FASFS) perform approximately equal quite well only in the low and medium shoploads as shown in Figures 6 13a and 6 13b

In the uniform and normal operation time patterns and Approx $85 \%$ shop-load (Figure 613 c ) the $S P T$ rule gives less performance with respect to the mean flow-time While the LCFS tends to be the first quality-performance (In general, the LCFS
rule is less important when used in job-shop environment As the author's Knowledge the LCFS rule has not yet been studred by the job-shop environment researchers)
The St SLK gives a good performance in this level of shop-load for all operation time patterns, while the FCFS and EDD rules glves less performance than the St SLK rule

## 2. Mean Lateness: (Figs. 6 14a, 6.14b and 6.14c)

Since lateness is just the algebraic difference between the completion time and a given due date, due to conway[5] it can be expected that the mean of this criterion will be mınımızed by the rule in which the mean flow-time is minimized Hence, according to item one of this section and Figures 6 14a, 6 14b and ( 614 c , only when the exponential arrival pattern $1 s$ applied) the SPT rule is the best performance with respect to the mean lateness While the LPT rule gives the worst performance at the same shop conditions when the low and medium shop-loads and all operation time patterns are applied the other rules (FCFS, St SLK, LCFS, FASFS and EDD) give approximately quite equal well as shown in Figures 6 14a and 6 14b
In Figure 6 14c when the high load and uniform and normal operation time patterns are applied, the LCFS gives the best performance than other rules while the SPT rule tends to be the second quality-performance The St SLK ranks the third in the high load and all operation time patterns are applied, While the FCFS, FASFS and EDD respectively decrease in their performance when the high shop-load is applied



Priority fules


Fig. 6.13(a, b and c): The mean flow-time Vs. the priority rules under the three operation time patterns and shop loads.


Priarity Rulas


Priority Rules


Priority Rulas

Fig. $6.14(\mathrm{a}, \mathrm{b}$ and c$):$ The mean lateness Vs. the priority rules under the three operation time patterns and shop loads.

The data in Figures $615 a$ and $615 b$ when the low and medium shop-loads and three operation patterns are applied show the following results

1 The FASFS rule is the best rule when Exponential and uniform operation time patterns are applied, while the LPT rule tends to glve the worst performance The other rules (SPT, FCFS, LCFS, St SLK and EDD give an approxımately equal well performance in the same shop conditions
2 When the normal operation time pattern is applied, the LPT rule gives a good performance than the others Whale the St SLK rule gives less performance than the others The other rules give an approximately equal well performance with respect to the Mean total idle time
But Figure 6 15c shows that when the high shop-load (approx 85\%) and the three operation time patterns are applied the SPT rule is the dominate rule over all other rules tested In contrast, the LPT rule gives the worst performance The other rules gives equal well to each other in the same shop conditions


Priority Rules

Fig. 6.15(a, b and c): The mean rdle times Vs. the priority rules under the operation time patterns and shop loads.

In Figure 6.16a, when the shop-load is low (Apprix. 70\%) and the three operation time patterns are applied, all rules tend to be approximately quite equal. But in figure 6.16b, when the shop-load is medium (Approx. 77\%) and the exponential operation times are applied the LPT rule gives poor performance. While all the other rules give approximately good results with respect to mean jobs completed.
As shown in Figure 6.16c when the high shop-load (Approx. 85\%) and the three operation patterns are applied, the SPT rule is the dominate rule over all the others. This result is according to most researcher's studies such as Jones[42]. While the same Figure 6.16 c shows that the LPT rule gives the very worst performance especially when the exponential operation time pattern is applied. The other rules (FCFS, LCFS, FASFS, Static. SLK and EDD) respectively at the same conditions give fairly good results.

## 5. Mean Total WIP: (Figs. 6.17a, 6.17b and 6.17c)

Figures 6.17a, 6.17b and 6.17c show that the SPT rule tends to have its greatest advantage than the other rules with respect to the mean total WIPs. While the LPT gives the poor performance. This results tend to be more apparent when the high shop-load (Approx. 85\%) and the three operation time patterns are applied. Most researchers such as Conway[52] and LeGrande[47] have reported similar results in their research. It is important to note that when the exponential operation pattern and high shop-load (approx. 85\%) are applied all rules performance tend to be better than at the low or medium shoploads with respect to mean WIP.
In Figures 6.17a, 6.17b and 6.17c the other rules (FCFS, LCFS, FAFSF, St. SLK and EDD) give approximately similar performances especially when all the operation time patterns and only medium and high shop-loads are applied.


Fig. 6.16(a, b and c): The mean jobs completed vs. the priority rules under the three operation time patterns and shop loads.



Priority Fulé


Priority Rulé

Fig. 6.17(a, b and c): The mean total WIPs Vs. the priority rules under the three operation time patterns and shop-load.

### 6.7 The Experimental design of the Simulation Observations Under Study:

The results of the simulation experiment were then into an Analysis Of VArıance (ANOVA) technıque This technıque appears suitable for examinıng a number of factors significantly in its effect on the outcome of an experıment Various levels of factors can be tested in order to determine whether effects are consistent throughout the range of variation Since several factors are being varied simultaneously, information can be obtained concerning the various interactions as well as the main effects
Seven replications of the job-shop simulation experiments have been achieved by the different randomization procedure In view of the wide range of possible variability, replication provides a greater assurance that signıfıcant testes are not confounded with a large experımental error

In the present samulation the hypothesis to be tested are whether there is a sıgnıficant difference among the proposed priority rules with respect to the proposed criteria under the following individual conditions studied

1 The three Exponential job arrival distribution workloads (approx $70 \%, 77 \%$ and $85 \%$ loads)
2 The three operation time patterns (Exponential, Unıform and Normal) and $85 \%$ workload of the exponential job arrıval pattern is applied
Hereafter, The ANOVA computations using the IBM software for the above two conditions are presented in Tables 64 and 65 with respect to the five response varıables (mean flow-tıme, lateness, total Idle times, jobs completed and total work-in processes This outcomes wall discuss in turn as follows

## 1. The Two factorials ANOVA of the seven priority rules and three exponential job arrival patterns workloads:

Table 64 summarizes the ANOVA for the response varıables (The seven criteria measured) Since the calculated for all " $\mathrm{F}_{\mathrm{o}}$ " values ( $\mathrm{MS}_{\text {factor }} / \mathrm{MS}_{\text {error }}$ ) (see the sixth column in table 6 4) of the response variables are greater than the critical $\mathrm{F}_{05 \mathrm{v} 1 \mathrm{v} 2}$ (see the seventh column in Table 64 and Appendix F) values at the 005 confidence level for the following factors and interactions

- The proposed priority rules (7 levels)
- The exponential job arrıval pattern workloads (3 levels)
- The interaction between the above two factors

These factors and its interactions can be sald to have a slgnıfıcant effect on the output of the job-shop with respect to the response crıterıa, especially on the different arrıval load factors

## 2. The two factorials ANOVA of the seven priorıty rules and the three operation time distributions:

Table 65 summarizes the ANOVA for the response variables (The seven criteria measured) Since the calculated for " $\mathrm{F}_{\mathrm{o}}=0685$ " value $\left(\mathrm{MS}_{\text {factor }} / \mathrm{MS}_{\text {error }}\right)$ of the Mean Total Idle Times criterion is less than the critical $\mathrm{F}_{05 \mathrm{v} 1 \mathrm{v} 2}$ values $=\mathrm{F}_{052126}=$ 3 at the 005 confidence level (see the seventh column in Table 65 and Appendix F) for the three operation time factor These factor can be sald to have not a significant effect on the output of the job-shop system wath just respect to the WIP criterion

Also, since the calculated for " $_{\text {o }}=135$ " value ( $\mathrm{MS}_{\text {factor }} / \mathrm{MS}_{\text {error }}$ ) of the Mean Total WIPs criterion is less than the critical $\mathrm{F}_{05 \mathrm{v} 1 \mathrm{v} 2}$ values $=\mathrm{F}_{0512126}=175$ at the 005 confidence level for the interaction of the priority rules and the three operation time factors

These factors can be said to have not a significant effect on the output of the job-shop system with Just respect to the WIP criterion
But, for the other " $F_{0}$ " values (see the slxth column of table 65 and Appendix F) of the other factors, since they are greater than The critical $F$ os vivz values (see the seventh column of Table 17) at the selected 005 confidence level for the following factors and interactions

- The proposed priority rules (7 levels)
- The three operation time patterns under $\% 85$ workload (3 levels)
- The interaction between the above two factors

These factors and its interactions can be sald to have a significant effect on the output of the job-shop with respect to the response crıteria, especially on the different priority rules

Source of Varıation	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~A} \\ & \mathrm{R} \end{aligned}$	Degree of Freedom	Sum of Squares	Mean of Square	Fo   Value	
The	FT	6	20398020	3399670	504	21
Priority	IT	6	71698	1193	252	21
Rules	La	6	19447790	3241298	432	21
	JD	6	831456	1064864	398	21
	WIP	6	1083083	180514	120	21
The	FL	2	20754500	10377250	154	3
Expo	IT	2	330013	16501	349	3
Arrıval	La	2	21956130	10978065	146	3
Patterns	JD	2	1064864	532432	1528	3
Loads	WIP	2	1602932	801466	531	3
Inter_	FL	12	11267230	938936	504	175
action	IT	12	57775	4815	1018	175
	La	12	10440410	8700343	116	175
	JD	12	632128	5267733	1512	175
	WIP	12	5891083	4909235	$32 \quad 52$	175
Error	FT	126	8491216	67390		
	IT	126	59607	473		
	La	126	9451336	75010		
	JD	126	439104	348495		
	WIP	126	190210	150961		
Total	FT	146	60910960	Notations   FT is the Flow Time   IT is the Idle Time   La is the job Lateness   JD is the jobs completed		
	IT	146	519092			
	La	146	61295670			
	JD	146	2967552			
	WIP	146	4365335			
Percent	FT	\%86		VAR Is the response varıables		
of	IT	\%89				
Criterıa	La	\%85				
Varıabı_	JD	\%85				
lıty	WIP	\%95				

Table 6.4: ANOVA for simulation data of the response variables under the two factorials of the priority rules and Job arrival pattern workloads.

Source of Variation	$\begin{aligned} & \text { V } \\ & \text { A } \end{aligned}$	Degree of Freedom	Sum of Squares	Mean of Square	$\begin{gathered} \text { Fo } \\ \text { Value } \end{gathered}$	
The Priority   Rules	FL   IT   La   JD   WIP	$\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 99003680 \\ & 206566 \\ & 98549600 \\ & 2009504 \\ & 3340514 \end{aligned}$	16500613 3428 16424933 3349173 5567523	$\left\|\begin{array}{ll} 156 & 5 \\ 130 & 8 \\ 111 & 9 \\ 112 & 2 \\ 108 & 3 \end{array}\right\|$	$\begin{array}{ll} 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \end{array}$
The   Operation   Time   Patterns	$\begin{aligned} & \text { FL } \\ & \text { IT } \\ & \text { La } \\ & \text { JD } \\ & \text { WIP } \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 1531328 \\ & 359 \\ & 1533712 \\ & 15744 \\ & 402076 \end{aligned}$	$\begin{aligned} & 765664 \\ & 18 \\ & 766856 \\ & 7872 \\ & 201038 \end{aligned}$	$\left\|\begin{array}{ll} 7 & 26 \\ 0 & 685 \\ 5 & 22 \\ 2 & 64 \\ 39 & 2 \end{array}\right\|$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$
Inter_ action	$\begin{array}{\|l\|} \mathrm{FL} \\ \text { IT } \\ \text { La } \\ \text { JD } \\ \text { WIP } \end{array}$	$\begin{aligned} & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 13039580 \\ & 11746 \\ & 13036500 \\ & 169504 \\ & 83048 \end{aligned}$	$\begin{aligned} & 1086632 \\ & 979 \\ & 1086375 \\ & 14125 \\ & 692067 \end{aligned}$	$\left\lvert\, \begin{array}{ll} 10 & 3 \\ 3 & 73 \\ 7 & 4 \\ 4 & 73 \\ 1 & 35 \end{array}\right.$	$\begin{array}{ll} 1 & 75 \\ 1 & 75 \\ 1 & 75 \\ 1 & 75 \\ 1 & 75 \end{array}$
Error	$\begin{aligned} & \text { FL } \\ & \text { IT } \\ & \text { La } \\ & \text { JD } \\ & \text { WIP } \end{aligned}$	$\begin{aligned} & 126 \\ & 126 \\ & 126 \\ & 126 \\ & 126 \end{aligned}$	$\begin{aligned} & 13289250 \\ & 33034 \\ & 18498110 \\ & 376192 \\ & 645982 \end{aligned}$	$\begin{aligned} & 105470 \\ & 262 \\ & 146810 \\ & 2985,65 \\ & 5126 \\ & 24 \end{aligned}$		
Total	$\begin{aligned} & \text { FL } \\ & \text { IT } \\ & \text { La } \\ & \text { JD } \\ & \text { WIP } \end{aligned}$	$\begin{aligned} & 146 \\ & 146 \\ & 146 \\ & 146 \\ & 146 \end{aligned}$	$\begin{aligned} & 12686380 \\ & 250834 \\ & 13161790 \\ & 2570944 \\ & 4471620 \end{aligned}$			
Percent of Criteria Varıabı_ lıty	$\begin{aligned} & \text { FL } \\ & \text { IT } \\ & \text { La } \\ & \text { JD } \\ & \text { WIP } \end{aligned}$	$\begin{aligned} & \% 90 \\ & \% 87 \\ & \% 86 \\ & \% 85 \\ & \% 86 \end{aligned}$				

Table 6.5: ANOVA for simulation data of the response variables under the two factorials of the priority rules and operation time patterns.

## CHAPTER SEVEN

## 7. A Scheduling of Automated Job-Shop or Flexible Manufacturing System:

### 7.1 Introduction:

This Chapter $1 s$ mainly concerned with the application of the job sequencing of the priority rules to the AGV in flexible manufacturing system The well-known priority rules will be evaluated with respect to various criteria Also section $\binom{7}{3}$ in this Chapter will discuss the effect of the number of AGVs on the FMS's Multi-criteria when using AGV's different speeds

In scheduling FMS, Due to a high varıety of workpieces, automated transporter system and operating under computer control, the performance of scheduling priorıty rules depends very heavily on the criterion chosen as well as on the configuration of the production system in hand In general, the scheduling FMS has greater flexibılıty to rush order and special customer requests especially when the randomorders are applıed These properties are truly if the following maın items are used in a FMS

1 Reprogrammable machines with automated tool or hand changing
2 Machıne buffers
3 An automated materıal (workpieces) handling system
4 A sufficient number of tools to be a shıft
5 The priority rules for each job are described in a part programme

Hereafter, the following section (7 2) will discuss the main types of facılıtıes (actıvıties) which may be included in the FMS

### 7.2 Elements of Flexible Manufacturing System (FMS):

There are four basic elements of an FMS

### 7.2.1 Processing Stations:

Most work-stations which they may be included in FMS are typıcally computer numerical control (CNC) machınes (machining centres), inspection and QC stations, assembly operation areas sheet metal processing machınes and forging stations

### 7.2.2 Load/Unload Stations:

The stations in which the workpieces have to be introduced or departs respectively are called load/unload stations The workpieces are fixed and placed on pallets by human operators or robots Usually load/unload stations are located at the same station

### 7.2.3 An Automated Material Handling System:

This system should perform the following four functions

1 Transports varıety of workpıeces and subassemblies between the processing stations or processing station buffers and load/unload stations

2 Allows the workpleces to move from any one processing station in the FMS to any another processing station

3 Achleves different job sequences on the varıous processing stations in the FMS, and to take substitutions when certain processing station are busy.

4 It $1 s$ connected wath the computer control network to

Three common types of equipment that have been used to transfer workpieces between stations in an FMS include:

1. Conveyor systems (roller or cart-on-track conveyors).
2. Vehicles (Rail-cars or Automated guided vehicles), later on, the FMS simulation under study will deals with the AGVs as a tool for transporting.
3. Industrial Robots, later on the FMS simulation under study will deals with the stationary robots as a tool to handel the workpieces to and from the buffer machine stations.

### 7.2.4 Buffer Storage at Work-Stations:

In most FMSs, the buffer storage work-stations are used to serve the important function of providing load/unload buffers to the machines and are thus a form of in-process storage. These buffers normally have two pallet-stand (machine shuttle) in front of each machine. One provides a queuing position for process waiting to go on to the machine, and the other a queuing position for transport waiting to be taken away from it. The main objective of machine shuttle is to maximize machine utilization.

### 7.3 A Simulation Study for Evaluating The FMS Priority Rules Vs. The Multiple Criteria:

The FMSs are quite expensive and efforts must be made to obtain low investment risk.
Simulation is found to be a very effective tool in design, implementation, operation and job sequencing of the dynamic interactions in the FMSs.
The following section will present the FMS case study. This study will deal with the evaluating of the various priority
rules with respect to different criteria under low, medium and high shop-loads (approx 70\%, 77\% and $85 \%$ respectively)

### 7.3.1 The System Elements Description:

The proposed case study analysis, the FMS which has the following elements

- One load/unload station with handling time according to the triangular ( $1,2,3$ ) distribution
- Three different automatic work-stations (Fig 7 1) are used to process 3 workpıeces (Fig $72 \mathrm{a}, \mathrm{b}$ and c)
- One automatıc co-ordınate measurıng machıne (Fig 7 1)
- Two AGV carrier pallets with 100 ft/mınute, two cırcular loops with a common centre track, two spurs for entering and exiting workpieces and one AGV charge and staging area are provided The length of all the AGV's track (The spur length + processing track length + stage area loop + one common centre track) is equal to 810 ft as shown in Appendix J
- Four buffer work-stations (1 e , each machıne is served by a two-position pallet exchange mechanism to change the palletised components between the AGV and the work-station)
- Four stationary robots are located at each work-station for plck-up the work-pieces between the workstation's pallet mechanism and AGV

Machıne   No	Machıne Type
1	CNC-Lathe m/c   2
3	Horızontal Machining   Co_ordinate Measuring   $m / c$
4	CNC_Mıllıng m/c

Fig. 7.1: Planning sheet for a number automatic machines to be used for processing three work-pieces in FMS.

Operation	Machıne	Exponential Operation Tıme Distribu
Sequence	Type	Mean
1	$(1)$ Turning	40
2	$(4)$ Mıllıng	30
3	$(3)$ Measur	20

Fig. 7.2a: A Job sequencing sheet for the work-piece 1 in the FMS under Uniform $(250,400)$ distribution due date.

Operation	Machıne	Exponential Operation Tıme Dıstrıbu
	Sequence	Type

Fig. 7.2b: A job sequencing sheet for the work-piece 2 in the FMS under uniform $(250,400)$ dastribution due date.

Operation	Machine	Exponential Operation Tıme Distrıbu
Sequence	Type	Mean
	(2)Horızen	33
	(4) Millang	25
3	(3)Measur	18

Fig. 7.2c: A job sequencing sheet for the work-plece 3 in the FMS under uniform (250,400) distribution due date.

Figure 73 below illustrates the FMS lay-out for the proposed system


### 7.3.2 The Performance Plane for the FMS Case Study:

In this FMS, the case study will be discussed under the following factors are considered important

1 The ratio of the three work-pieces distribution numbers were selected as follows ( $25 \%$ for work-piece $1,40 \%$ for work-pıece 2 and 35 for work-plece 3 ) (Fig 7 2a, 7 2b and 72 c ) These work-pieces enter the system according to the exponential job arrival distribution with three different means (32, 29 and 25), these means are suitable to the low, medıum and high shop loads respectively as shown in Fig 7.4

The   Proposed   three   different   job arrıval   loads	123	Exponential $(32)$   Exponential $(29)$   Exponential $(25)$			FM	loads
				Approx	$70 \%$	(low load)
				Approx	77\%	(medıum load)
				Approx	85\%	(hıgh load)

Fig. 7.4: The proposed exponential job arrıval distribution with three different FMS loads.

2 The work flow pattern will be multidirectional processes between the work-stations and skipping is allowed, eg. such a processing below is possible

$$
3 \longrightarrow 5 \longrightarrow 1 \longrightarrow 4 \longrightarrow 2 \rightarrow 1 \longrightarrow 5
$$

3 Processing time distribution is exponential with different means as shown in Fig $72(\mathrm{a}, \mathrm{b}$ and c )

4 Due date distribution for the expected lead time of the

Jobs is uniform with minımum 250 and max 400 minute

The seven important system performance criteria were selected for the priority rules evaluation are as follows

1 Minimize the mean flow tame
2 Minımıze the job lateness
3 Minımıze total machıne idle tımes
4 Mınımıze total work-ın-process for machine queues
5 Mınımıze total waıtıng for pıck up (AGV ınput queues + in-process queues)

6 Maximize the completion jobs or production rate
7 Mınımıze total AGV's idle tımes

7 The FMS will be simulated under three levels of loading such as follows

- The low levels at $70 \%$
- The medium levels at 77\%
- The hıgh levels at 85\%

22 production days for simulation replication with overall production time is equal to 10560 minutes (480 minutes per day) are applied
930 mınuets break for each 8 hours.
10 The mean time between cleaning and re-lubrication for the
machınes, $1 s$ expressed as Lognormal distribution with mean 15 minutes and a standard deviation of 3 minuets [62]

As discussed in Chapter 6 that, the orders must be scheduled with allowance for in-process waiting, loading queue and the AGV's idle times as well Also they must be dispatched in such away that the schedules will be met This affects the accurate of the scheduling procedure (the priority rule selections) and hence the entire FMS production cost and reasonable AGV's idle times
For simulating the FMS case study which mentioned above, the SIMAN simulation language will be used for evaluating the following two comparison phases

## The first comparison phase:

The effectuveness of the performance of the proposed priority rules with respect to the varıous criteria under the following conditions

- 7 priorıty rules were simulated under
- 1 job arrıval dıstrıbution (exponentıal) (Fıg 7 1(a, $b$ and c),
- 3 FMS shop loads (approx 70\%, 77\% and 85\%),
- 1 type of processing time distribution (exponential) (Fig 74 ),
- 2 AGV are used for transporting, $100 \mathrm{ft} / \mathrm{minu}$ ts of the AGV speed,
- 7 replications with different stream of the random numbers and
- 147 sımulation runs (7 different loads $x 7$ priority rules $x 7$ replications for each load) were executed for this comparison phase


## The second comparison phase:

The effectiveness of the number of AGVs on the FMS's multicrıterıa when using AGVs's different speeds under the following conditions

- The SPT rule will be the priority rule from which the job will be processed on the machines
- 1 type of job arrival distribution with mean 25 (approx 85\% FMS load),
- 1 type of processing time distribution (exponential) as shown in Fig $72 \mathrm{a}, \mathrm{b}$ and c ).
- 1, 2, 3 and 4 the number of AGV will be separately used for sımulating wath
- 3 different AGV speed $(60,100,140$ and 180 ft/minute and
- 7 replications with different stream of random numbers
- 83 simulation runs ( 3 AGV $x 4$ different speeds $x 7$ replicatıons for each case) were executed for this comparison phase

The Model and Experiment frames of the SIMAN's simulation production scheduling of the proposed FMS case study are stated in Appendix (I and J)
Also as discussed in sections (65) and (6 5 1) in the last Chapter that the selected procedure and steady-state point for estimating the mean and variance of random variables (observations) for the proposed criteria are the replication procedure and visual determination respectively

### 7.3.3 The Experimental Analysis for the FMS Simulation Results:

The proposed FMS's AGV also was analyzed when the steady state conditions were reached and the transient portion was elımınated from the simulation runs

A replication procedure for estimating the length of the transient portion for each case of the two comparison phases was used as was reported in section 65 and 651 Also it was hoped that a single starting point of the steady state could be used for all the seven priority rules

The following two sections will discuss the output data of the experimental results for the two FMS comparison phases respectively

### 7.3.4 Effectiveness of the Various Priority rules on the proposed Criteria Under the Three Exponential Job Arrival Pattern Loads:

This discussion will deal with the FMS conditions in the first comparison phase (Section 73 2), where the exponential job arrıval pattern $1 s$ applıed under three FMS loads and 2 AGVs with $100 \mathrm{ft} / \mathrm{m}$ nute are used

Hereafter, the following items will discuss the analysis of the experımental simulation results for the chosen criteria which mentioned in Item 6 of Section 732


Fig 7.5: The effect of the priority rules on the mean flow time under three different machine FMS loads.

Figure 42 shows the variation of the mean flow-time against the seven priority rules under three levels of FMS loads (Approx $70 \%, 77 \%$ and $85 \%$ ) and 2 AGVs with $100 \mathrm{ft} / \mathrm{m} 1 \mathrm{n}$ The SPT rule 1 s the domanant rule over the other rules, especially when the $\% 85$ machıne FMS load is applıed Li-Yen Shue, 1991[127] in his FMS scheduling study reports that, the SPT rule gives the best value with respect to the mean flow-time than other rules (not addressed in this thesis) While the other rules give less performance than the SPT rule when the three machine FMS loads are applied as shown in the ranking below

Approx 70\% load

- LCFS
- Statıc-SLK
- EDD
- FASFS
- FCFS
- LPT

Approx 77\% load

- Statıc-SLK
- FCFS
- EDD
- LCFS
- FASFS
- LPT

Approx 85\% load

- LCFS
- Static-SLK
- FCFS
- EDD
- FASFS
- LPT
give better performance respectively than the others, while the LPT rule gives the worst performance (Fig 75)


Priority rules

Fig. 7.6: The effect of the priority rules on the mean job lateness under three different FMS loads

## 2 The Mean Job Lateness: (Fig. 7 6)

As shown in Fig 7 6, the SPT rule gives the best performance over the other rules with respect to the jobs lateness criterion Whale the other rules give less performance than the SPT rule when the three machıne FMS loads are applıed as shown in the ranking below

Approx 70\% load

- LCFS

Approx 77\% load

- Statıc-SLK

Approx 85\% load

- Statac-SLK
- FCFS
- LCFS
- EDD
- EDD
- Static-SLK
- FASFS
- LCFS
- FCFS
- FCFS
- FASFS
- EDD
- LPT
- LPT
- FASFS
- LPT

The ranking above indicates that the Statıc-SLK and LCFS rules give better performance respectively than the others, while the

LPT rule gives the worst performance (Fig 7 6)
In general, as indicated for the mean flow-time criterion (Fig 75 ), also the performance of the seven rules with respect to the jobs lateness tend to become more distınguishable as the FMS load becomes heavier
3. The Total Mean Idie Times\%: (Fig. 77)


Priority rules

Fig. 7.7: The effect of the priority rules on the total idle times under three different machine FMS loads.

From Fig 77 we conclude that the ranks between the rules are as follows

Approx 70\% load Approx 77\% load Approx 85\% load

FCFS
SPT
FASFS
LCFS
LPT
EDD
Statıc-SLK

SPT SPT
EDD
FCFS
LPT
LCFS
FSAFS
Statıc-SLK

EDD
FASFS
FCFS
Statıc-SLK
LCFS
LPT

The above three ranks show that, there are not any rule give
the best total mean idle times\% for all load levels were tested But The SPT and EDD rules rank the first and second respectively when the load levels are Medıum and high While the FCFS and SPT rules take respectively the first and second rankings when the low load level is applıed
Also Fig 77 shows that the Static-SLK gives the highest values of the mean total \%idle times when the low and medium load levels are applied, while the LPT rule tend to give the worst performance when the high load levels is applied

## 4. The Total Work-In-Processes: (Fig. 7.8)

For the low, medıum and high machıne FMS loads the SPT rule produces a lower work-ın-process than the others as shown in Fig 7 8, while the other rules are vary substantially from the low to high machine FMS loads However, the LPT rule gives the worst performance when the Machine FMS loads are low and medıum, whereas the LCFS rule tends to become the poorer performance for a high load as shown in Fig 78


Fig. 7.8: The effect of the priority rules on the total WIP under three different machine FMS loads.

## 5. The Mean Jobs Pick-up Waiting: (Fig. 7.9)

Under the conditions of the proposed FMS the values of the mean jobs pick-up waitıng tend to be near-optımum for all the rules tested as shown in Fig 79 These rules give approximately equal value to each other for all machıne FMS loads But as expected, most rules give greater values when the machine FMS load increases This good performance may be due to the fact that the selection of the number and speed of the AGV are very well as it will be discussed later in section (7 3 5)
In general, according to the proposed case study as shown in Fig 79 that the Statıc-SLK, SPT or FASFS and LPT rule gives the best performance respectively for the low, medium and high loads FMS loads


Priority Rules (Expo Arrival Time)

Fig. 7.9: The effect of the priority rules on the mean Pick-up waiting under the three different FMS loads.


Priority Rules

Fig. 7.10: The effect of the priority rules on the mean jobs completed under the three different FMS loads.
6. The Mean Jobs Completed: (Fig 7.10)

In this context of the mean jobs completed, all rules vary substantıally from low to hıgh machıne FMS loads, 1 e, (FCFS and LCFS rules respectively give the best performance when the machine FMS load is low, while the SPT or EDD tend to give better result when the medium load is applied as shown in fig 710 But an the high load of the FMS the SPT rule still keeps at the first ranking with respect to the mean jobs completed, while FCFS and LPT rules take respectively the second and worst rankıng)


Priority Rules

Fig. 7.11: The effect of the priority rules on the mean AGVs ldle times under the different FMS loads.
7. The Mean Total AGVs Idle Times: (Fig. 7.11)

Fig 711 we shows that the ranks between the rules are as follows

Approx 70\% load	Approx 77\% load	Approx 85\% load
FCFS	SPT	SPT
LCFS	EDD	EDD
SPT	FCFS	FASFS
FASFS	LPT	FCFS
LPT	LCFS	Statıc-SLK
EDD	FSAFS	LCFS
Statıc-SLK	Statıc-SLK	LPT

The above three ranks show that, there is not any rule give the best total AGVs idle times for all the load levels at the same time But the SPT and FCFS rules respectively rank at first and second when the load levels are Medium and high While the

FCFS and LCFS rules take the first and second rankings respectively when the low load level is applied
Also Fig 711 shows that the Static-SLK gives the highest values of the mean total AGVs idle times when the low and medium load levels are applied, while the LPT rule tends to be the worst performance when the high load levels is applıed

### 7.3.5 Effectiveness of the Number of AGVs on the FMS's Multi-Criteria When Using AGV's Different Speeds:

In section 731 , The material handling procedure in the proposed case study for evaluating of the various priority rules in FMS, was Automated Guıded Vehıcles System (AGVS) Thıs system has two steering wheel AGVs with 40-200 ft/minute They are unidirectional drıven between the loading/unloading automated machines, through two circular loops with a common centre track, a spur for loadıng/unloadıng workpıeces, a small loop to store and charge the idle AGVs as shown in Fig 73 This section will deal with the FMS conditions in the second comparison phase (Section 7 2), where the exponential job arrıval patterns $1 s$ applied under $85 \%$ FMS load
The results evaluating wall describe the performance of different number of $\operatorname{AGVs}(1,2$ and 3 ) with 4 speeds for each case (40, 100, 140 and $180 \mathrm{ft} / \mathrm{minute})$

The following multiple criteria will be tested under the selected SPT rule

- Mean Flow-Tıme
- Mean Job Lateness
- Mean Total Machine Idle Times
- Mean Total Work-In-Process for machıne queues
- Mean Total Wartıng for Pıck-Up
- Mean the Completion Jobs
- Mean Total AGV's Idle Tımes

A replication procedure for estimating the length of the transient portion for 83 simulation runs (3 AGV x 4 dıfferent speeds $x 7$ replication for each case) was used
Hereafter, the following items will discuss the analysis of the experımental simulation results for the chosen criteria which mentioned above

1. The Mean Flow-Tıme: (Fig. 7.12)


## Fig. 7.12: Effect of the number of AGVs on the FMS's mean flow-time when using four different AGV speeds

Figure 712 shows that the flow-time decreases as the AGVs speed increase The decreasing gab becomes less when the number of AGVs increase Also it is noted from this Figure that the minımum flow-time is obtained, when the number of AGVs is equal to two with $180 \mathrm{ft} / \mathrm{minutes}$ While, when the one AGV with low AGV speed ( $60 \mathrm{ft} / \mathrm{m} ı n u t e$ ) is used the worst performance is obtained However, one AGV with $180 \mathrm{ft} / \mathrm{m} \leadsto n u t e$ (a high AGV speed) is also gives a low flow-tıme value This case ıs Just acceptable when one of the AGVs in the selected minımum flowtime case (mentioned above) is out of order (1 e, overall status).


Fig. 7.13: Effect of the number of AGVs on the FMS's mean jobs lateness when using four different AGV speeds.

In this context, Fig 713 shows that when the two AGVs with their maximum speeds ( $180 \mathrm{ft} / \mathrm{manute}$ ) are applied, the minimum jobs lateness is obtaıned Whıle, the maxımum jobs lateness is obtained, when the FMS uses one AGV with its minımum speed ( 60 $\mathrm{ft} / \mathrm{m}$ nute) In general, due to Conway, et al[5], it is true that job lateness criterion maximızes (or mınımızes) whatever flow-tıme criterıon maxımızes (or mınımızes) This is also fact as shown in Figures 712 and 713 and also was confirmed by the results obtaıned by Conway, et al[5]
3. The Total Mean Machine Idle Times: (Fig. 7.14)


Fig. 7.14: Effect of the number of AGVs on the FMS's mean m/c
ldle times when using four different AGV speeds.

As shown in Fig 714 when two AGVs with $100 \mathrm{ft} / \mathrm{m}$ nute are applied the mınımum mean machine idle tımes are obtained In contrast, The worst performance criterion is obtained, when one AGV with its mınımum speed ( $60 \mathrm{ft} / \mathrm{mınute)}$ are applied The last conclusion is expected because the transportation system is unable to achieve a proper amount transporting of the workpıeces for processing
Also it is important to note from Fig 714 that when using two (optımum case) or three AGVs in the system, a small different in the criterion performance is obtained for each of the four AGV speeds

This case is true because the processing system approximately has been reached to the stable running


Number of FMS s AGV

Fig. 7.15: Effect of the number of AGVs on the FMS's mean WIP when using four different AGV speeds.

From data in Fig 715 show that, when using the 3 AGVs with different speeds, the best and stable performance of the FMS work-ın-process are obtained This result is expected since the jobs in the processing queues are pıcked-up in a short time at arriving While the worst performance is obtained when the one AGV with low speed ( $60 \mathrm{ft} / \mathrm{minute}$ ) are used Also this result is expected since one AGV wath low speed are used


Number of FMS s AGV

Fig. 7.16: Effect of the number of AGVs on the FMS's Pıck-up waiting when using four different AGV speeds.

As shown in Figure 7 16, the pick-up waiting (in-process queue + load/unload queue) is vary substantially when the number and speeds of AGVs are increased In the proposed case study the best criterion performance $1 s$ obtained when the 2 AGVs with high speed ( $180 \mathrm{ft} / \mathrm{minute}$ ) or 3 AGV with high speed are applied In contrast, when one AGV with low, medium and high speed is applıed, the worst value of criterion performance is obtaıned

The above conclusions in this context are expected, since the lower number of the AGVs with lower speeds could make the new or finished jobs to walt for more time for picking-up


Number of FMS s AGV

Fig. 7.17: Effect of the number of AGVs on the FMS's mean jobs completed when using four different AGV speeds

Figure 717 shows that in the case of using the 2 AGVs with medium Speed ( $100 \mathrm{ft} / \mathrm{m}$ nute), the system gives the highest number of jobs completed than other cases were tested while the lowest numbers of the jobs completed is obtained, when the one AGV with low and medium speeds respectively (60 ft/minute and $100 \mathrm{ft} / \mathrm{m} n \mathrm{nute})$ are used
The other tested cases tend to give approximately equal value to each other wath respect to the jobs completed

```
7. The Mean AGVs's Idle Tımes: (Fig. 7.18)
```



Number of FMS s AGV
$\begin{aligned} & \text { Fig. 7.18: Effect of the number of AGVs on the FMS's mean } \\ & \text { idle times when using four different AGV speeds. }\end{aligned}$

As shown in Figure 7 18, the best tested case which has reasonable AGVs's idle time is, when the 2 AGVs with medium speed (100 ft/minute) are used
This conclusion is expected since the best utilisation of the AGVs is approximately 85\%

Also Figure 718 shows that the $100 \%$ AGV utılisation is obtained when the one AGV with low or medium speed are used These results are expected since the work in process (Fig 715 and 7 16) and machine idle times (Fig 7 14) are too high Finally, the high value of AGV idle times\% are obtained when the two or three AGVs with high speed are used These results suggest that two AGVs may be sufficient for the operation of this system

### 7.4 The Experimental Design of the Simulation Observations:

In this section the experımental design will deal with the effects of the three FMS loads (approx $70 \%, 77 \%$ and $85 \%$ ) for the proposed seven priority rules This experıment will be measured under the proposed seven FMS performance criteria (response varıables) (mean flow-time, jobs lateness, mean idle tımes, mean AGV idle times, mean jobs completed, mean WIP and mean pick-up waiting)
The experımental desıgn is a complete-random, two-way ANOVA (Analysis Of VArıance) which is (the seven priority rules) $x$ (the three FMS loads) factorial experiment with seven observations per each cell

Hereafter, the results of the two-way ANOVA using the IBM software are shown in Table 71
In order to interpret the ANOVA computations, since the calculated for all " $\mathrm{F}_{\mathrm{o}}$ " values ( $\mathrm{MS}_{\text {factor }} / \mathrm{MS}_{\text {error }}$ ) (see the sixth column of Table 71 and Appendix F) of the response variables are greater than the critical $\mathrm{F}_{0} \mathrm{vivz}$ (see the seventh column of Table 7 1) values at the selected 005 confidence level, the two proposed factors and their interaction can be said to have a significant effect on the output of the FMS with respect to the response criteria This effect has a very decided effect for the three FMS loads on the mean FMS and AGV idle times\% As the results obtained from the experımental design, all the prioraty rules, the three FMS loads and the interaction wath the priority rules and three FMS loads, would play a major role to control the performance criteria
Also Table 71 shows that, about (79\%, 78\%, 79\%, 69\%, 52\%, 50\% and $79 \%$ ) respectively of the variability in the mean Fiow-time, idle time, Job lateness, jobs completed, work-ın-process, pickup waiting and AGV idle time are explained by the priority rules used in the system, the work-loads and the priority rules-work-loads interaction we note that the variability of
the mean flow-tıme, jobs lateness, machine idle times and AGV idle times are high in comparison with the other criteria

Source of Variation	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~A} \\ & \mathrm{R} \end{aligned}$	Degree of Freedom	Sum of Squares	Mean of Square	Fo   Value	$\begin{array}{\|c} \mathrm{F} 0056126 \\ \mathrm{~F} \\ \hline 05 \\ \mathrm{~F} \\ \hline \end{array}$
The   Priority   Rules	FT   IT   La   JD   WIP   PUW   AIT	$\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 13010140 \\ & 4743 \\ & 13023470 \\ & 28436 \\ & 222364 \\ & 103 \\ & 1464 \end{aligned}$	$\begin{gathered} 2168357 \\ 158 \quad 1 \\ 2170578 \\ 47393 \\ 37061 \\ 0172 \\ 244 \end{gathered}$	376   121   393   939   $\begin{array}{lr}10 & 1 \\ 3 & 43\end{array}$   82	$\begin{array}{ll} 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \end{array}$
The   Expo   Arrıval   Patterns   Loads	FL   IT   La   JD   WIP   PUW   AIT	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 7988600 \\ & 4687 \quad 4 \\ & 7371186 \\ & 68366 \\ & 1444 \\ & 376 \\ & 1066 \quad 59 \end{aligned}$	$\begin{aligned} & 3994300 \\ & 23437 \\ & 3685593 \\ & 34183 \\ & 722 \\ & 1888 \\ & 531 \quad 3 \end{aligned}$	693   1796   668   678   197   376   1789	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$
Inter_   action	FL   IT   La   JD   WIP   PUW   AIT	$\begin{aligned} & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 6017440 \\ & 558 \quad 24 \\ & 5584948 \\ & 45992 \\ & 13074 \\ & 1474 \\ & 185 \quad 51 \end{aligned}$	$\left\lvert\, \begin{array}{ll} 501453 & 4 \\ 46 \quad 52 & \\ 465412 & 4 \\ 3832 & 67 \\ 108 & 95 \\ 0 & 12 \\ 15 & 46 \end{array}\right.$	$\begin{array}{ll} 8 & 7 \\ 3 & 57 \\ 8 & 43 \\ 7 & 6 \\ 2 & 97 \\ 2 & 51 \\ 5 & 2 \end{array}$	$\begin{array}{ll} 1 & 75 \\ 1 & 75 \\ 1 & 75 \\ 1 & 75 \\ 1 & 75 \\ 1 & 75 \\ 1 & 75 \end{array}$
Error	FT IT La JD WIP PUW AIT	$\begin{aligned} & 126 \\ & 126 \\ & 126 \\ & 126 \\ & 126 \\ & 126 \\ & 126 \end{aligned}$	$\begin{aligned} & 7260184 \\ & 164467 \\ & 6954952 \\ & 63566 \\ & 462235 \\ & 615 \\ & 374 \quad 83 \end{aligned}$	$\left\lvert\, \begin{array}{lll} 57620 & 51 \\ 13 & 05 & \\ 55198 & 03 \\ 504 & 49 & \\ 36 & 69 & \\ 0 & 05 & \\ 2 & 97 & \end{array}\right.$		
Total	FT La JD WIP PUW AIT	$\begin{aligned} & 146 \\ & 146 \\ & 146 \\ & 146 \\ & 146 \\ & 146 \\ & 146 \end{aligned}$	$\begin{aligned} & 34276370 \\ & 736461 \\ & 32934560 \\ & 206360 \\ & 9597 \quad 38 \\ & 1242 \\ & 176933 \end{aligned}$	Notations   FT is the Flow Time   IT is the Idle Time   La is the job Lateness   JD is the jobs completed   PUW is Pick-up Waiting   AIT is AGV idle Times   WIP is the Work_In_Process   VAR Is the response   varıables		
```Percent of Crıterıa Variabi_ lıty```	FT   IT   La   JD   WIP   PUW   AIT		\%			

Table 7.1: ANOVA for simulation data of the response variables (performance criteria) under the two factorials of the seven priority rules and three FMS work-loads.

CHAPTER EIGHT

8. CONCLUSIONS and RECOMMENDATION for FURTHER WORK

8.1 Conclusions:

The production scheduling systems, described through out the last four Chapters respectively can be used for job sequencang for the followang three manufacturing environments

1. The flow-shop:

In this type of shop, the optımal and near-optimal solutions versus the selected criteria has been discussed as follows
(a). The optimal make-span:

A computer programme has been developed for obtaining the optımal make-span
This programme can read data for (10×90) processing times matrix (this size of problem was carried out using 386 based PC with 16 MHz) and it could be used for deterministic or stochastic processing times However, the size of the problem mentioned above increases according to the used PC
From the experimental results discussed, it can be concluded that this approach allows the optimum solution of faırly medıum sequencing (10×90) of a pure flow-shop problem size
(b). Near-optimum for the following selected criteria:

- Ave make-span
- Ave mean completion time
- Ave total warting time
- Ave total idle tıme

In this context, a simple computer simulation programme has been developed This programme was used to obtain the nearoptimal selected criteria for the pure flow-shop problem through measuring the effectiveness of the following priority rules

- First Come First Service (FCFS rule)
- Shortest Processing Time (SPT rule)
- Longest Processing Time (LPT rule)
- Smallest Remaining Processing Time (SRPT rule)
- Largest Remaınıng Processing Tıme (LRPT)
- Select a job at random (RANDOM rule)

The effectiveness evaluation was tested on a completely different factorial experiment for the six rules, four criterla, 72 different problem sizes $\{10$-shop-sizes $(5,10,15$, 20, 25 and 30 machines), 12 levels of number of jobs in shop equal to $(5,10,15,20,25,30,35,40,45,50,55,60)$ and runs with different stream of the random numbers

The simulation results show that the following conclusion are Justified

- The shortest processing time rule (SPT) glves the lowest value for the average make-span in all levels of shop sizes and work-ın-processes While LPT rule tends to give the worst performance
- The smallest remaining processing time rule (SRPT) tends to give the best performance with respect to average mean completion time under all levels of WIP and shop sizes While the LPT rule gives the poorest performance
- In terms of the average total waiting time as a criterion, no single rule gives the best performance simultaneously for all the tested (n X m) size problems Fig 5 3a shows that, in the range of the $5 \leq n \leq 25$ and $m \leq 30$ the SRPT is a more dominant rule than the others In contrast, the LPT rule tends to be the better rule than the others in the
range of the $5 \leq n \leq 30$ and $m \leq 30$ whale the SPT rule gives a poorer performance than the others when the problem size is greater than (5, 10 Xm) as shown in Figs $53(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ and f)
- Also no sangle rule gives the best performance simultaneously for all the tested (n X m) size problems wath respect to the Average total idle time
The plots in Figs $54(\mathrm{a}, \mathrm{b}, \mathrm{c}$, and d) show that, the FCFS rule glves a fairly good performance at all levels of the proposed WIP and m-machine shop While the SRPT rule gives a poorer performance when the utilızation level increases at a given WIP as shown in the set of Fig 54

Ezat, A Mujanah and Al-Baradıe, M [14] in their report give a comparison between the above priority rules and the optimal make-span They suggested that the near-optimal make-span could be economically obtained using the SPT rule as a tool for job sequencing in the flow-shop problem

2. The Job-Shop:

In this type of shops, the two comparison phases of the experimental results have been discussed using the SIMAN sımulation software The first phase was under the three job arrival distrıbutions (Expo, Unıf and Norm) and loads when the processing time distributions are exponential The second phase was under three types of processing time distribution (Expo, Unıf and Normal) when the job arrival pattern is exponential The performance of a wide range of priority rules (FCFS, LCFS, SPT, LPT, FASFS, EDD and Static-SLK rule) with respect to the following well-known criteria have been analyzed

- Mean flow-tıme
- Mean jobs lateness
- Mean total machıne adle tımes
- Mean completion time
- Mean work-ın-process

All the tested cases were under approx (1450-1850) jobs completed through the simulation replications

From the obtained data which were plotted in the sets of Figures (6 8-6 17) show that, a number of concluding remarks can be drawn as follows

- No single priority rule in this study exhibits the best performance for all of the varıous criteria simultaneously as shown in Figures (6 8-6 17)
- The SPT rule clearly domnates all the other rules tested with respect to the three criteria used (mean flow-time, mean Jobs lateness and mean total work-in-processes) This results was under all job arrival patterns and the exponential processing tımes
- In contrast, the LPT rule gives the worst performance with respect to the same criteria mentioned in the previous item at the same conditions of simulation while the other rules (LCFS, FCFS, FASFS, Static-SLK and EDD) tend to be approx equal to each other
- Under a more realistic model of the real lıfe of the shop-load (approx 85\%) (Jones[42]), the SPT rule gives the best performance in comparison with the other rules tested with respect to machine utilızations as shown in the set (a, b and c) of Figures 612 and 617 While the LPT rule gives the worst performance in comparison with the other rules
- The effect of increasing the shop-load was the increase of job congestion (WIPs), the reduction of total machine idle times, the raising of mean lateness, the raising of mean flowtime and the increase of jobs completed, that is for most of the priority rules as shown in the set of the (a, b and c) of
- Most rules tested were sensitive to shop-load changes (Figures $68(\mathrm{a}, \mathrm{b}$ and c$)-617(\mathrm{a}, \mathrm{b}$ and c$)$ This conclusion 1 s also adopted by the ANOVA results as shown in section 671 and Table 64
- The job-shop performance is somewhat effected by the Jobs arrıval patterns and greatly effected by the operation time patterns as shown in the set of the (a, b and c) of Figures (6 8 and 6 13) and (612 and 6 17)
- To this author's knowledge, the LCFS rule has never been evaluated by any researchers against any other rules with respect to a given criterion However, the LCFS rule in our study was compared under a high shop-load (approx 85\%), exponential arrıval pattern and both the normal and uniform operation time patterns This rule under the above tested conditions gives the best performance with respect to the mean flow-time and jobs lateness While the SPT rule ranks the second with the same job-conditions
- The ANOVA results in Table 64 show that the priority rules and job arrıval pattern workloads have a significant effect on the output of the job-shop with respect to all the proposed criterıa
- The ANOVA results in Table 65 show that the priority rules do not have a significant effect on the output of the Job-shop with respect to the mean total idle times But they have a faırly significant effect on the other crıterıa Also the Operation time patterns have a high effect on the output of the job-shop with respect to all the proposed criteria

3. The Flexible Manufacturing System with AGVS:

Flexible manufacturing systems combine the flexıbılıty of job
shops to produce a variety of various workpiece types with the efficiency of flow-lines (transfer lines) to produce products with high machine utilızation, short lead times and reasonable work-in-process inventory The above properties of an FMS make the production scheduling the main activity for evaluation The basic interest within this activity is to determine the effectiveness of different priority rules with respect to given crıteria

The study described in Chapter 7 has been adopted to evaluate the effect of the 7 different priority rules (FCFS, LCFS, FASFS, SPT, LPT, EDD and Statıc-SLK) on the following 7 wellknown criterıa

- Minimize the mean flow-time
- Minimize the mean job lateness
- Mınımıze the mean total machıne idle times
- Minimize the mean total work-in-processes
- Minımıze the mean total waiting for AGV pıck-up
- Minimize the mean completion time
- Minımize the mean total AGV's idle times

A system configuration consisting of three different workpıece types which enter the system according to the three exponential patterns with means (32 for a low load, 29 for medium load and 25 for high load), one load/unload station, 4 automated machines, 4 buffer work-stations, four stationary robots in front of each machine for handling and 2 AGVs with $100 \mathrm{ft} / \mathrm{min}$ for material handling system The system was under the exponential processing time patterns

In summary, under the above conditions the following conclusions can be made based on the results of Chapter 7

- The priority rule which is more effective in minimizing the flow-time, job lateness and work in process is the SPT rule These properties are under the three ($70 \%, 77 \%$ and 85% FMS load levels While The LPT gives the worst performance in
comparison with other rules. Most of these results agree with the study reported by Li-Yen Shu[1991][127].
In fact, the above criteria are the most important for estimating an FMS scheduling cost[5][101], thus, the selected SPT rule for an FMS job sequencing is the best decision for the master scheduling department. Also the SPT rule has a fairly good performance with respect to the other criteria as follows:
- Concerning the mean total idle times, no single rule tends to be the better rule simultaneously for all FMS loads. But the SPT rule gives a good result, only when the medium and high FMS loads are applied. While the FCFS rule improved its performance against the SPT rule when the low FMS load is applied.
- When the mean job pick-up waiting criterion is considered, all rules tend to be approximately equal to each other for all FMS loads. Also most rules give greater value when the FMS load increases.
- In the context of the mean jobs completed, all rules vary substantially from low to high FMS loads as shown in Fig. 7.10, i.e., (The FCFS and LCFS rules respectively give the best performance when the FMS load is low, while the SPT or EDD rules tend to give better results when the medium FMS load in applied.

Hereafter, the conclusion will be discussed when the system conditions are under a different number of AGVs with AGV's different speeds:

- All criteria performance tend to be at worst case when the 1 AGV with low ($60 \mathrm{ft} / \mathrm{min}$) or medium ($100-140 \mathrm{ft} / \mathrm{min}$) speeds are applied. In contrast, a good criteria performance is obtained when the used number of AGV with high speed were increased. This role is effective since the gap difference between each case is still high.
- Also from the experimental results, the scheduler could evaluate which is the best economical choice for the number of AGVs with suitable speeds. The experimental results in section

735 (as shown through the data in Figs 712-7 18 show that, the best cholce to be selected for the FMS running is when the 2 AGV with $180 \mathrm{ft} / \mathrm{min}$ are applied

8.2 Recommendation for Further Works:

Further extensions to this project fall into three main production scheduling categories as follows

1. Flow-shop (transfer line):

Chapter 4 has developed a method for finding a feasible and an optımal solution for make-span of n jobs on machines for the flow-shop situation Further work can be undertaken to develop suitable optimality models for other criteria without and with machine buffers, such as job waiting time, machine idle time

2. Job-Shop (patch production):

Most researchers have turned their interest to study the conventional job-shop as a tool for evaluating the selected priorıty rules Schrıber, and Ram[1990][44] recently argued in therr study that, the SPT rule may not be the best rule for reducıng flow-tıme, job lateness and work-ın-process This fact is justified if sequencing flexibility is presented in product structures This approach could be more effective if a comprehensive research with other job-shop conditions are presented

3. Flexible Manufacturing System:

Nowadays, the applıcation of the artıficial intelligence field (or expert system technology) to production scheduling is presented to develop a computer programme to solve complex problems that are impossible to solve numerically
Many different aspects of expert systems have relevance to sımulation, therefore more studies could be adopted by researchers to make the computer simulation more powerful for the production scheduling

REFERENCES

There are many excellent books and artıcles in varıous journals and proceedings on the subject of the production scheduling method and its applications A list of References which related to the thesis subject 2 s given below
[1] Johnson, s. M. "Optimal two-and-three stage Production Scheduling with set-up times included " Naval Res Logistic Quart 1 (1954), Research report 43, pp 61-68
[2] Jackson, J. R "An extension of Johnson's results on job-lot scheduling "Naval Res Logist Quart, Vol 3, No 3, Sep 1956, pp 201-224
[3] Smıth, W. E. "Varıous Optimızers for Single-Stage Production "Naval Res Logistıc. Quart , 1956, pp 59-66
[4] Akers, S. b. "Graphıcal Approach to Productıon Scheduling Problems "Operations Res , 4, 1956, pp 244-245
[5] Conway, R. W, Maxell, W. L, \& Miller, L W." Theory of schedulıng "Addıson-Wesley, Readıng, Mass,1967
[6] Baker, K. R. "Introduction to Sequencing and Scheduling " John Wiley, New York, 1974
[7] Rinnooy Kan, A. H. G. "Machıne Scheduling Problem Classification, Complexity and Computation " martınus Nıjhoff, the hague, Holland 1976
[8] White, D. J. "Dynamic Programming " Olıver \& Boyd, Edinburgh, 1969
[9] Campbell, H. G., Dudek, R. A. \& Smith. M. L."A heuristic algorıthm for N -јob and M-machine Sequencing Problem " Management Science, 16, 1970 pp 630-673
[10] Szwarc, w. "Optımal two machines ordering in the 3 x n flow-shop problem " Operations Res , 25, 1977, pp 70-77
[11] Pindo, M. "Note on the two machines job-shop with exponentıal processing tımes ", Naval Res Logistic Quart 28. 4, 1981, pp 693-696
[12] Bera. H. "To mınımıze waıtıng time of jobs, idle tıme of
machınes and total elapsed time for N Jobs on M machınes, $2^{\text {nd }}$ Joint Inter Conf on Production Engıneering, Leicester Polytechnic, 1983, p 290
[13] Cook, S. A. "The complexity of theorem providing procedures In Proceedings of the Third Annual ACM Symposium on the Theory of Computing Association of Computing Machinery, New York, pp 151-158
[14] Ezat, Agha, M. and El Baradie, M. "A computer AldedSimulation for the Optimızation of Flow-shop Scheduling Vs Different Priority Rules " Proceedings of the Ninth Conference of the Irish Manufacturing Commıttee (IMC-9), Sep 1992, pp 139-150
[15] Giffler, B \& Thompson, G L "Algorıthm for Solving Production Scheduling Problems " Operation Res , Vol 8, 1960, pp 487-503
[16] Preston, White,K. JR. et al "Job-shop scheduling limits of the binary disjunctive formulation " INT J Prod Res 1990, Vol 28, pp 2187-2200
[17] Agin, N. "Optimum seeking with branch and bound " Mgmt Scl , 13, 1966, pp 176-185
[18] Lawler, E. L., and Wood, D. E. "Branch and Bound Methods A Survey," Operation Res , Vol 14, No 4 July-Aug , 1966, pp 1098-1112
[19] Land, A. H. and Doig, A. G "An automatic method for solving discrete programming problems " Econometrica 28, 1960, pp 497-520
[20] Eastman, W L. "A solution to the travelling salesman problem " Econometrica 271959
[21] Ignal, E. and Shrange, L "Bounds for Optimal Scheduling of n jobs on m processors " Operatıon Res , 13, 3, 1965, pp 400-412
[22] Brooks, G. H. and white, C. R "An algorithm for finding optimal or near optimal solutions to the production scheduling problem " J Ind Eng , 1965, 16, pp 34-40
[23] Balas, E. " Machıne schedulıng vıa disjunctıve graph, Operations Res , 17, 1969, pp 941-957
[24] Riamond, JF. "An algorıthm for exact solution of the
machine scheduling problem " IBM, NY, Mar 1968, Scientific Centre Report No 320-2930
[25] Lominicki, z. A. "A branch and bound algorithm for the exact solution of the three machine scheduling problem " Ops Res Q 16, 1965, pp 89-100
[26] Legeweg, B. J., et al "Job-Shop Scheduling in Implicıt enumeration " Mgmt Sci , 24, 1977, pp 441-450
[27] Held, M. and Karp, R. M. "A dynamic Programming approach to Sequencing Problems " J SIAM, 10, 1962, pp 196-210
[28] French, S. "Sequencing and Schedulıng" An introduction to the mathematics of the job-shop" Ellis Horwood Serıes, 1982
[29] Bowman, E. H. "The scheduling-Sequencing problem " Operation Res 7, 1959, pp 621-624
[30] Wagner, H. M. "An integer programming model for machine scheduling " Naval Res Logıstıc, Quart 6, 1959, pp 131140
[31] Pritsker, et al "Multi-project scheduling with limited resources, A Zero-One Programming Approach " Management SC1, 1969, pp 93-108
[32] Manne, A S."On the job-shop scheduling problem " Ops Res 8, 1960, pp 219-223
[33] Greenburg, H. H. "A branch and bound solution to the general scheduling problem " Ops Res 16, 1968, pp 353361
[34] White, K. Prıston, Rogers, R. V. and Pılkey, W D., " Formulation of the job-shop scheduling problem as an LP with restricted basis " May, 1985
[35] Palmer, D. S. "Sequencing through a multi-stage process in the minımum total time- a quick method of obtaining a near optimum " Ops Res 16, 1965, pp 101-107
[36] Gupta, J. N. D. "A functional heuristic algorithm for the flow-shop scheduling problem " Ops Res Q 22, 1971, pp 39-47
[37] Dennenbring, D. G. "An evaluation of flow-shop sequencing heuristics " Mgmt Sci 23, 1977, pp 1174-1182
[38] Arumugam, v. and Ramani, s. "Comparison of simple loading
rules in a real-world job shop" Simul Counc Proc Ser, 9, 1, 1981, pp 9-20
[39] Sarin, S. C and Elmaghrapy, S.E "Bounds on the performance of a heuristic to schedule Precedence related jobs on parallel machınes " International Journal of Production Res 22, 1, 1984, pp 17-30
[40] Rowe, A. J. and Jackson, J. R."Research problems in production routing and scheduling "J Ind Engng, May-June, 1956
[41] Panwalker, S. S. and Iskander, W."A survey of scheduling rules " Ops Res 25, 1977, pp 45-61
[42] Jones, C H. "An economic evaluation of job shop dispatching rules " Mgmt Scl Vol 20, No 3. NY, USA, Nov , 1973, pp 293-307
[43] John, H. Blackstone, JR, et al "A state-of-the-art survey of dispatching rules for manufacturing job shop operations "Int J Prod Res, Vol 20, No 1, 1982, pp 27-45
[44] Schrıber, T. J, et al "Performance of Dispatchıng Rules Under Perfect Sequencing Flexibility" The Winter Simulation Conference 1990, ISBN 0-911801-72-3, pp 653-658
[45] Ezat, Agha, M and Al-Baradie,"Flow-Shop Scheduling Effect of Various Prıority Rules on Minimizing Multiple Crıterıa) 30th International MATADOR Conference (UMIST)
31 Mar -1 Apr ، 1993 (The paper has been selected inclusion in the Conference, according to ref No 205 on 1712 1992)
[46] Dzielinski, B P. and Baker, C T."Simulation of a Simplıfied Job Shop" M Scle , 6 3, Apr 1960 p 311
[47] LeGrande, Earl,"The Development of a Factory Simulation System Using Actual Operating Data " Mgmt Tech , 3 1, May, 1963, p 1
[48] Nanot. Y. T."An experımental investigation and Comparative Evaluations of Priority Disciplınes in JobShop Like Queuing Network " Mgmt Sci Res Report 87, U C L A , December 13, 1963
[49] Conway, R. W."An experımental Investigation of Prıorıty Assignment in a Job Shop " Rand-RM3789-PR, Feb 1964
[50] Nelson. R. T."A Simulation Study and Analysis of a Twostation Waitıng Line Network Model " Mgmt Sci Res Report 91, U C L A , January 5, 1965
[51] Conway, R. W. and Maxwell, W. L."Network Dispatching by shortest operation discipline " Ops Res 10, 51, 1962
[52] Conway, R. W."Prıorıty dispatching and work-ın-process inventory in a job shop " J Ind Engng 16, 228, 1965a
[53] Elvers, D. A."Job shop dispatching rules using various delivery date setting criteria " Prod Inventory Mgmt Vol 14,1973, p 62
[54] Eilon, S. and Cotterill. D. J."A modified SI rule in job shop sequencıng, Int J Prod Res ,Vol 7, No 2, 1968, pp 135-145
[55] Eilon, S. et al "Experiments with SI rule in job shop scheduling " Simulation, 24,1975 , p 45
[56] Conway, R. W."Priority dispatching and job lateness in a job shop " J Int engg VOL 16, 1965b, P 123
[57] Rochette, R., et al. "A Statistical comparison of the performance of simple dispatching rules for a particular set of job-shops", Int J Prod Res , 14, 1976, p 63
[58] philıp, Y. Huang, et al. " Workload vs Schedulıng Polıcıes in A dual-Resource Constranned Job Shop " Coput \& Ops Res Vol 11, No 1, 1984, pp 37-47
[59] Spachis, A. S. and King, J R. "Job-shop scheduling Heuristics With Local Neighbourhood Search " International Journal of Production Research, Vol 17, No 6, 1979, pp 507-526
[60] Churchman, C. W. "An Analysis of the concept of Simulation "In A C Hogatt, \& F E Bolderston (Eds), Symposuim on Simulation Models Cincinnati, OH SouthWestern Publishing Co
[61] Shannon, R. E "Introduction to Model Building " In H J Hıghland, V W Chao, \& O Madrıcal (Eds), Proceedıng of Winter Simulation Conference, Piscataway, NJ The Institute of Electrical and Electronic Engineers, 1982,
pp 632-636
[62] Pegden, C. D, Shannon, R. E, Sadowski, R. P. "Introduction to Simulation Using SIMAN " System Modelling Corp under McGraw-Hıll, Inc Publisher, 1990
[63] Villeneuve, L. (Ecole Polytechnic of Montreal), Gharbi, A., and Hassen, M. A. "Sımulation for Manufacturing Firms " Arab school of Scıence \& Technology, (Product development \& Production Engıneerıng), 12th summer session 1988, sponsored by Scientific Studied and Research Centre, Damascus (Syrıa), pp 1-15
[64] Thomas, H. N., Balinty, J. L., Burdic, D S. and Chu, K. "Computer Simulation Techniques " New York, John Wıley and son, Inc 1966
[65] Student,"On the probable Error of a mean " Biomettrica, 6, (1), 1908
[66] Von Neuman, J. "Varıous Technıques used in Connection with Random Digits, 'Mote carlo Method' National Bureau of Standards Applied Mathematics Series, 12
[67] Thomas, G. and DaCosta, J. "A sample Survey of Corporate Operations Research " Interfaces, 9 (4), 1979, pp 102-111
[68] miller, K. R. "Manufacturing Simulation A new Tool for Robotics, FMS and Industrial Process Design " Madison, GA SEAI Technical, 1987
[69] Taha, H. A. "Sımulation Modellıng and SIMNET " PrenticeHall International Edıtions, 1988
[70] Carrıe, A. "Sımulation of Manufacturıng Systems " john Wıley, 1988
[71] Buzacott, J. A. "The effect of station breakdowns and random processing times on the capacity of floor lines with in-process storage "AIIE Transactions, Vol 4, 1972, pp 308-312
[72] Conway, R. W., Johnson, B. M. and Maxwell, w L. "A queue Network Simulator for the Burroughs 220 "Communications of the Assoc for Computing Machinery 2,12,1959, pp 20-23
[73] Hon, K.K. and Ahmad, M. M. "A computer simulation study on transfer line performance ", lst International Conference on Simulation in Manufacturing, Stratford-

Upon-Avon, UK, 5-7 1985, pp 359-366
[74] Markowitz, H. M., et al "SIMSCRIPT-A Sımulation Programming Language " Prentice-Hall, New York 1963, (old version)
[75] Moore, J. M. and Wılson, R. G. "A review of simulation research in job-shop scheduling $n \mathrm{~J}$ Proc Inv Mgmt, Vol 8, 1967, pp 1-10
[76] Ramesh, R. and Cary, J. M. "An efficient approach to Stochastic Job-shop Scheduling Algorıthms and empirical investigations " Computers ind Engng Vol 18, No 2, State Unıv of New York at Buffalo, 1990, pp 181-190
[77] Wittrock, R. J. "Scheduling Algorıthms for Flexible flow lines", IBM J Res \& Development, July 1985 V 29 PT 4 pp 401-412
[78] Browne, J., Dubois, K, Rathmill, S P Sethi, and Steck, K. E. "Classıfication of Flexıble Manufacturing System " The FMS Magazine, April, 1984, pp 114,117
[79] Hanifin, L. E., Liberty, S. G. and Taraman, K. "Improved Transfer Lines Efficiency Utilizing System Sımulation " Technıcal Paper MR, Socıety of Manufacturing Engıneers, Dearborn, M1ch , 1975, pp 75-169
[80] Buzacotte, et al. "Transfer Line Design and Analysis-An Overview", A I I E FALL Conf Atlanta GA, 1978, pp 277-286
[81] Koenıgsberg, E. and Mamer, J., "The analysıs of production processes " School of Business Admınıstration, Unıv of Calıfornia, Berkely, 1981
[82] Buzacott, J. A. and Yao, Dávıd, D. W. "Flexible Manufacturing Systems A Review of Analytical Models " Working paper \#82-007, Dept of Industrial Engng , Unıv of Toronto, ORSA/TIMS meeting in Detroit in April 1982
[83] Buzacott, J. A. and Yao, Davıd, D. W. "Flexible Manufacturing Systems A Review of Analytical Models " Mgmt Scı Vol 32 No 7, July 1986, pp 890-905 (An earlier version of this paper was [73])
[84] Riley, F. and Yarrow, E. P. "A new approach to Assembly Machine Justification " Proc $2_{\text {nd }}$ European Conf Automated

Manufacturıng, Bırmıngham, UK , 1983
[85] Lay, K. and Schiefele, M. "Simulation of a flexible Assembly System " $1_{\text {st }}$ International Conf on Simulation in Manufacturıng, Stratford-Upon-Avon, UK, 5-7 March 1985, pp 141-149
[86] O'Gorman, P., Gibbons, J and Browne, J "Evaluation of Scheduling System for A Flexible Transfer Line Using A Sımulation Model " FMSs Methods and Studies, Edited by A Kusiak, Elsevier Scı Pub B V (North-Holland), 1986
[87] Buzacott, J. A. and Shanthikumar, J. G. "Models for Understanding Flexible Manufacturing Systems " AIIE Trans , 12, 4, Dec 1980, pp 339-350
[88] Ranky, P. G. "Computer Integrated Manufacturing Introduction with case studies " Englewood Cliffs, NJ Prendice-Hall, International, 1986
[89] Greenwood, Nigel R. "Implementing Flexible Manufacturing System " Macmıllan Education Ltd, 1988
[90] Solberg, J. J. "A Mathematical Model of Computerızed Manufacturing Systems " Proc $4_{\text {th }}$ Int Conf Production Res Tokyo, Japan, 1977
[91] Hildebrant, R. R "Scheduling Flexıble Manufacturing System When Machines Are Prone to Failure " Ph D Dissertation, Dept of Aeronautics and astronautics, Massachusetts Instıtute of Technology, Cambrıdge, MA, 1980
[92] Gershwin, S. B., Athans, M. and Ward, J. E. "Complex Materıals Handling and Assembly Systems " Proc $8_{\text {th }}$ NSF Grantees' Conf Production Res and Technology, 1981
[93] Kimemıa, J. G. and Gershwin, S. B. "Flow Optimızation in Flexible Manufacturing Systems " Internat J Production Res , 22. 1985, pp 81-96
[94] Ho, Y. C. "Perturbation Analysis of Discrete Event Dynamic Systems " Proc 1_{1} ORSA/TIMS Conf FMS, Ann Arbor, Mıchıgan, 1984
[95] Cavaille, J. B. and Dubois, D. "Heurıstic Method Based on Mean Value Analysis for Flexible Manufacturing Systems Performance Evaluation " Proc $21_{\text {st }}$ IEEE Conf Decision and

Control, Orlando, FL, 1982
[96] Sevcik, K. C. and Mıtrani, I. "The Distribution of Queuing Network States at Input and Output Instants," J Assoc Comput March ,28, 1981, pp 358-371
[97] Buzacott, J. A. " 'Optimal' operating rules for automated manufacturıng Systems " IEEE Trans on Automatic Control, Vol AC_27, No 1, 1 982a,pp 80-86
[98] Yao, D. D. and Buzacott, J A. "The Exponentialization Approach in Flexible Manufacturing Systems models with General Processing Times " Eruopian J Opr Res , 24, 1986a, pp 410-416
[99] Aanen, E., Gaalman, G. J. and Nawijn, W M. "Planning and Scheduling in an FMS " Engng Costs and Production Economıcs, Vol 17, No, 1-4 aug 1989, pp 89-97
[100] Nıemi, E. and Davies, B J. "Simulation of an optimizing FMS-cell control System " Robotics and ComputerIntegrated Manufacturing, Vol 5, No 2-3 1989, pp 229-234
[101] Montazeri, M. and Van Wassenhove, L. N. "Analysis of Scheduling rules for an FMS " Internat J of Production Res , Vol 28, No 4, Apr 1990, pp 785-802
[102] Muller Daniel, J., Jackman, J. K. and Fitzwater, C "A Sımulation-Based work order release mechanısm for a flexıble manufacturing system " 90 Winter Simulation Conf Publ by IEEE Service centre, Pıscateway, NJ, USA 1990, pp 599-602
[103] Emelyanov, S. V., Gendler, M. B. and Felman, D. P "Flexibilıty of Manufacturing Systems Concept, Kınds, Indicators 'A Survey' "Problems of Control and Information Theory, Vol 19, 1990, pp 615-180
[104] Boer, C. R. and Metzler, V. "Simulation for economic evaluation of advanced manufacturing " (BBC Brown Boveri \& Co Ltd, Switzerland), $1_{\text {st }}$ Internat Conf on Sımulation in Manufacturıng, 5-7 March 1985, pp 251-260
[105] Pritsker, A. A. B., "The GASP-IV Simulation Language, John Wıley, New york, 1974
[106] Pritsker, A. Alan B., "Introduction to Simulation and SLAM II, A Halsted Press Book, John Wiley \& Son, 1986
[107] WITNESS User's Manual, "Istel Ltd, Redditch, England, 1986"
[108] Clementson, A. T.,"ECSL User's Manual, Cle-Com Ltd, Birmıngham, 1985"
[109] Schriber, T. J. ,"Sımulatıon Using GPSS", John Wıley \& Sons, Inc , NY, NY 1974 Or Minuteman Software 1988
[110] HOCUS User Manual, "P-E Information Systems, Egham, England"
[111] BEAM User Manual,"CMS Research Inc ,Oshkosh, Wisconsın, USA"
[112] Horrion, R. D., "An investigation of Visual interactive simulation methods using the job shop scheduling problem," J of the Operational Res Socrety, 29, 1978, pp 10851093
[113] Grant, J. W. and Weiner, S. A., "Factors to consider in choosing a graphically Anımated Simulation system," Industrial Engineerıng ,Aug 1986, p36
[114] Pıdd, M., "Computer Sımulation in Management Scıence " John Wiley \& Sons, Second Edition 1988 "
[115] Clark, Wallace, (His work was orıgınally transferred from Henry Gantt), Sur Isaac Pıtman \& Sons Ltd
[116] Mellor, P. "A Review of Job Shop Sequencing", Operational research Quarterly, 1966 V 17 No 2, pp 161-171
[117] King, J. R "Production Plannıng and Control, An Introduction To Quantitative Methods", Pergamon International Library Of Science, Technology, Engineering and Social Studies , Publısher Robert Maxwell, M C , 1975
[118] Heller, J. "Some Numerıcal Experıments for an M X J Flow Shop and its Decision Theoretical Aspects,"Operational Research 8, No 2 march 1960
[119] Al-Qattan, P. E. et al. "Systematic Approach to Cellular Manufacturıng System Design" Elsvier Science Publıshers B V 1989, pp 415-424
[120] Gere, J. W. "Heurıstic in Job Shop Scheduling," Management Sci 13, 1966, pp 167-190
[121] Thompson,G. L. "Recent Development in the Job shop Scheduling Problem" Nav Res Logist Q 7,1960, p 585
[122] Hines, w. W and Montgomery, D C. "Probability and

Statistic in Engineering and Management Science, "John Wıley \& Sons,1980
[123] Hollıer, R. H. "A Sımulation Study of Sequencing in Batch Production", Opnl Res Quart, V 19, 1968, pp 389-407
[124] Andrew, F. Selia, "Output Analysis for Simulation", The Winter Simulation Conference 1990, ISBN 0-911801-72-3, pp 49-54
[125] Welch, P. D. "The Statıstical Analysis of the Simulation Results," The Computer Performance Modelling Handbook, S S Lavenberg,ed, pp 268-328, Academıc Press,1983 NY USA
[126] Law, A. M. and Kelton, W D. "Simulation Modelling and Analysis, Second Edition, McGraw-Hıll, 1991, NY USA
[127] Li-Yen Shue, "Schedulıng Study of A FMS System", Advances in Computer Science Application to Machinery, the International Conference on CAD of Machinery, Beıjıng Chına, Sep 16-20, 1991, pp 440-445

APPENDIX

APPENDIX A:

"Throughput Time Formula For A Schedule"

We will consider that $n X m$ zitrix is the problem of n jobs numbered $1,2,3$, n to be processed on m machines, numbered 1, 2, 3, m in the same order, that $x=x(\jmath, c)$ is an $n X m$ matrix in which the cth column contains a sequence of permutation, $q(1, c), q(2, c), c(3, c), \quad q(n, c)$ of jobs numbers $1,2,3, \quad, n$, where $q(\jmath, c)$ is the number of the job which is put $J_{\mathrm{rh}} 2 \mathrm{n}$ sequence on the cth machine The following notations will be used

$$
\begin{aligned}
t= & t(J, 1) \text { is an } n X \text { matrix describing the processing } \\
& t ı m e s \text { for job } J \text { on machine } 1
\end{aligned}
$$

$\mathrm{f}\{\mathrm{q}(\jmath, 1), 1\}=$ expected completion tame of job number $q(J, 1)$ on machıne 1.

Then, the earliest time at which the processing time of job $q(J, 1)$ the $j t h$ job on the 1 th machine can be completed, 1 e the notation $f\{q(\jmath, 1), 1\}$ is governed by either the time at which machine 1 becomes available to accept the job or the time which the job completes processing on the machine $1-1$
Time at which machine 1 is ready to recelve job
$q(\jmath, 1)=F\{q(\jmath-1), 1$,$\} the job at which job q(\jmath-1,1)$, the one prior in sequence on machine $工, ~ i s ~ c o m p l e t e d ~$
In another hand, time at which job $q(j, 1)$ is available to be sequence to machıne $I=f(q(J, 1), 1-1\}$ the time that $\jmath o b q(J, 1)$ is completed on the previous machine $1-1$
Thus the expected completion tame of job $q(J, 1)$ on machine 1 is equal to

$$
f\{q(\jmath, 1), 1\}=\max [f\{q(\jmath-1,1), 1\}, f\{q(\jmath, 1), 1-1\}]+t\{q(\jmath, 1), 1\}
$$

Hence the throughput time to complete the total schedule $C_{\max }$ is give by (The application problem as stated on pages (53-56)) $C_{\max }=F\{q(n, m), m\}=\max [f(q(n-1, m), m\}, f(q(n, m), m-1)]+t\{q(n, m), m\}$

APPENDIX B:

/* The Make-Span calculation programme:*/

\#anclude <stdio h> \#include <stdlıb h> \#nnclude <conio h>
int $T[90][90], f[90][90]$, temp [90][90],
int $1, j, n, m, n u m b e r, x$, index[90],
char C ,
FILE *fp,*fp2,
main()
(
$f p=$ fopen("1n dat", "r"),
fp2 $=$ fopen("out dat", "w"),
printf(" \nEnter Number of Jobs "),
scanf("\%d", \&n),
fprintf(fp2,"Number of jobs $=\% d \backslash n ", n)$,
printf(" \nEnter Number of machines "),
scanf("\%d", \&m),
fprintf(fp2,"Number of machines $=\% d \backslash n ", m$),
fprintf(fp2,"\n"),
fprintf(fp2,"The results for the first sequence of the
jobs $1234567 n\left(n^{\prime \prime}\right)$,
/* Read in data in matrix ABCD */
for ($1=1,1<m+1,1++$)
\{
for ($\mathrm{J}=1, \mathrm{~J}<\mathrm{n}+1, \mathrm{~J}++$)
\{
fscanf(fp,"\%d", \&number),
$T[J][1]=$ number,
temp[]][1] = number,
\}
\}
label $\mathrm{f}[1][1]=\mathrm{T}[1][1]$,
for ($1=2,1<m+1,1++$)
\{
$\mathrm{f}[1][1]=\mathrm{f}[1][1-1]+\mathrm{T}[1][1]$.
\}
for ($1=2,1<n+1,1++$)
\{
$\mathrm{f}[1][1]=\mathrm{f}[1-1][1]+\mathrm{T}[1][1]$,
)
for ($]=2, j<m+1, j++$)
\{
for ($1=2,1<n+1,1++$)
\{
$\mathrm{f}[\mathrm{I}][\mathrm{J}]=\max (\mathrm{f}[1-1][\mathrm{J}], \mathrm{f}[1][\mathrm{f}-1])+$
T[1][J],

Appendix B continued：

```
    }
    }
    /* Dısplay Result */
    system("cls"),
    pruntf("\n"),
    l =m,
    for ( J=1,J<n,j++)
    {
        printf(" Completion Tame for Job %%",]),
        prantf(" = %r\n",f[J][I]),
        }
        printf(" The Make-span or Completion Time for the
            last Job = %1\n",f[n][1]),
    for (J=1,J<n,J++)
    {
        fprintf(fp2," Completion Time for Job %i",J),
        fprıntf(fp2," = %l\n",f[J][1]),
    }
    fprıntf(fp2,"The Make-span or Completıon Tıme for the
                                    Last Job = %ı\n",f[n][口]),
    fpruntf(fp2,"\n"),
/* Option to rearrange matrix */
printf(" Do you want another run ? y/n \n"),
scanf("%c",&c),
lf ( }\textrm{C}===''Y'
    pruntf(" Enter new matrix \n "),
/*fpruntf(fp2,"\n"),*/
    fprintf(fp2," New sequence \n"),
    for ( l = 1,1<n+1,1++)
    {
                scanf("%工",&&),
                fprintf(fp2," %ュ",x),
                fpruntf(fp2,"\n"),
                lndex[l] = x,
    }
for ( }1=1,1<n+1,1++
{
    for( J=1, J<m+1, J++)
    {
        T[I][]] = temp[Index[I]][J],
    /* fprıntf(fp2,"\n"),*/
    }
}
goto label,
}
}
```


APPENDIX C:

" A complete matrix processing time for problem 2 in Pages 58-59".

Appendix C continued:

APPENDIX D:

/* The Optımum Make-Span Programme Listing */

```
#nnclude <conio h>
#mnclude <stdio h>
#Include <alloc h>
#mnclude <stdlib h>
#ınclude <tıme h>
#define RANGE 11
#define MAX 32767
typedef struct NODE{
    long num,
    long val,
    struct NODE *next,
```

 \}NODE,
 NODE *make_NODE (vord),
NODE *lınk_data(long),
void del_NODE (NODE *),
void insert_NODE (NODE * , NODE *),
vold remove_NODE (NODE *),
void dump_list (NODE *),
void perm2(ant *, ant),
vold store(vold),
void ran(),
void readdata(void),
NODE *head,
\#define OFF 0
\#defıne ON 1
vold process (int n, int m),
int $T[90][90], f[90][90], t \operatorname{emp}[90][90]$,
ant $1, j, n, m$, number, x, index[90], seq[90], maxımum $=10000$,
long count $=0$,
int num,
int amount, column,
long now,
long int yy,runs,y,ave,average, result,
ant output $=O N$,
char c ,
FILE *fp,*fp2,
vold insert_NODE (NODE *at, NODE * ins)
\{
ins->next=at->next,
at->next=1ns,
)
vold remove_NODE (NODE *node)
\{
/* removes the next node down */
NODE *old,

Appendix. D continued:

```
old=node->next,
node->next=node->next->next,
free(old),
}
NODE *make_NODE()
{
NODE *ret,
If((ret=(NODE *)malloc(slzeof(NODE)))==NULL)
        {
        printf("Out of memory program halted\n"),
        exit(0),
        }
return(ret),
}
vOId del_NODE(NODE *node)
{
free(node),
}
NODE * link_data(long data)
{
static unt flag=0,
static NODE *head,
NODE * new_NODE,
NODE *current,
NODE *old,
lf(flag==0){
                        head=make_NODE(),
                        head->val=0,
                head->num=0,
                        head->next=NULL,
                        flag=1,
                    }
old=head,
current=head->next,
while(current){
        \imathf(data<current->val)
                            {
                    new_NODE=make_NODE(),
                    new_NODE->val=data,
                    new_NODE->num=1,
                    1nsert_NODE(old,new_NODE),
                    return(head),
                    }
        If(data==current->val)
```


Appendix D continued:

```
    current->num++,
    return(head),
    }
lf(data>current->val)
    {
    old=current,
    current=current ->next ,
    }
    }
    new_NODE=make_NODE (),
    new_NODE->val=data,
    new_NODE->num=1,
    Insert_NODE(old,new_NODE),
return(head),
}
vold dump_lıst(NODE *head)
{
NODE *current,
FILE *out,
out=fopen("out dat","w+"),
current=head->next,
while(current)
{
If(output==ON) {
    printf("For the Make-Span = %ld The Frequency = %ld
    \n",current->val,current->num),
    fprintf(fp2, "For the Make-Span = %ld The Frequency =
    %ld \n",current->val,current->num).
        }
    fprintf(out,"%ld\t\t%ld \n", current->val,current->num),
    current=current ->next,
}
Eclose(out),
prantf("\n"),
for(1=0,1<n,1++)
{
fprintf(fp2,"%d ",seq[I]),
}
Eprıntf(fp2," = Optımum Job Sequence, Optımal Make-Span =
    %d",maxımum),
prıntf(" Problem matrıx size "), prıntf("( %d X %d ) \n",n,m),
}
maın( Int argc,char *argv[])
{
```


Appendix D continued:

```
    {
unsigned seed,
    If(*argv[1]=='n') output=OFF,
    fp2 = fopen("out dat","w+"),
    printf(" \nEnter number of Jobs ")./* =
        %d\n",n),*/
    scanf("%d",&n),
    printf(" Number of Jobs = %d\n",n),
    printf(" \nEnter Number of machines "),
    scanf("%d",&m),
    prıntf(" Number of machınes = %d\n",m),
    printf(" \nEnter number of runs "),
    scanf("%d",&runs).
    printf(" Number of runs = %d\n",Yy),
    column = n,
    printf(" \nEnter random seed "),
    scanf("%d",&seed),
    printf(" Random seed = %d\n",seed),
    prantf("\n"),
    srand(seed).
    {
    clock_t start, end,
    start=clock(),
    /* Read in data in matrix (n X m) problem */
    for (YY=0,YY<runs,YY++)
    {
    maxımum=10000,
    ran(),
    readdata(),
/* fprıntf(fp2," \n Optımal job sequence problem " ),
    fprintf(fp2," \n\n"),*/
    fprıntf(fp2," %d Jobs, %d Machınes, Random seed = %d
        \n",n,m,seed),
    fprintf(fp2," Number of runs = %d
        \n",Yy),
    for(1=0,1<n,1++) Index[1]=1+1,
    perm2(Index,n),
    printf("Number of Job Sequences = %ld\n",count),
    fprintf(fp2," Number of Job Sequences =
    %ld\n",count),
    fprintf(fp2,"\n"),
    for(1=0,1<n,1++)
    {
    printf("%d ",seq[1]),
    fprintf(fp2,"%d",seq[1]),
    }
prıntf(" = Optımum Job Sequence, Optımal Make-span =
```


Appendix D continued:

```
    %d\n",maximum),
    fprıntf(fp2," = Optımum Job Sequence , Optımal Make-span
        = %d\n"',maxımum),
    result = maxımum,
    ave=ave+result,
/* system("cls"),
    fprintf(fp2,"\n"),
    fprıntf(fp2,"%d Jobs, %d Machznes, the Pure Flow-Shop,
            (Number of runs) = %d \n",n,m,yy),
    fprintf(fp2,"\n"),
    average = ave/runs,
/* prıntf(" Average Optımal Make-Span = %d \n",average),
    fprıntf(fp2,"Average Optımal Make-Span = %d \n",average),
*/
    end = clock(),
    printf(" CPU time in seconds = %f \n", (end-start) /
            CLK_TCK),
        printf(" \n"),
/* fprıntf(fp2," Make-Span's Frequencles "),
            printf("( %d X %d ) \n\n",n,m),*/
/* fprıntf(fp2,"\n"), */
    fprintf(fp2,"CPU time in seconds = %f \n", (end-start) /
        CLK_TCK),
    fprintf(fp2," \n"),
    fprıntf(fp2," Make-Span's Frequencies "),
    fprintf(fp2,"\n\n"),
/* fprıntf(fp2," Problem matrıx sıze"), fprıntf(fp2,"( %d
                        X %d ) \n\n", n,m), */
    dump_lıst (head),
    }
    }
}
vold process(1nt n,int m)
{
/* The Make-Span Formula used */
1nt 1,J,
    f[1][1] = T[1][1],
    for ( }1=2,1<m+1,1++
    {
        f[1][1] = f[1][1-1] + T[1][1],
    }
    for ( l=2, l<n+l,1++)
    {
        f[1][1] = f[1-1][1] + T[1][1],
    )
    for ( J = 2, J<m+1,J++)
```


Appendix D continued:

```
        for ( }1=2,1<n+1,1++
        {
        f[I][J] = max(f[I-1][]], f[I][]-1] ) +
            T[1][]],
        }
    )
return,
}
vold store(vold)
{
static int co=0,
count++,
    for(1=1,1<=n,1++)
                            {
            for(J=1, J<=m, J++)
                {
                        T[1][J]=temp[Index[1-1]][]],
                }
            }
            process(n,m),
            1f(output) {
            for(1=0,1<n,1++)
                            {
                    printf("%d ",Index[1]),
                    fprıntf(fp2,"%d ",index[1]).
                    }
            printf("Make-Span = %d\n",f[n][m]),
            fprıntf(fp2,"Make-Span = %d\n",f[n][m]),
            head=llnk_data((long)f[n][m]),
            }
            If(max_mum > f [n] [m])
            {
            maxımum=f[n][m],
            for(1=0,1<n,1++)
                        {
            seq[1]=1ndex[1],
                }
            }
}
void perm2(1nt *s,int n)
{
1nt l,
\mathrm{ nt tmp,}
```


Appendix D continued:

```
If (n == 1)
store(),
    for (1=0, l< n, ++1)
        {
        tmp = s[0],
        s[0] = s[1],
        s[I] = tmp,
        perm2(&s[1],n-1),
        tmp = s[0],
        s[0] = s[I],
        s[I] = tmp,
        }
}
    vold ran( )
{
FILE *fp.
        fp = fopen("In dat","w"),
        amount = n*m,
        count = 0,
        for(1=0, l<amount, 1++)
        {
            y=random(11),
            fprantf(fp,"%-3I",y),
            count+t,
            lf (count == column)
            {
                            fprintf(fp,"\n"),
                        count = 0,
                }
    Eclose(fp),
}
vold readdata( vold )
    {
    FILE *fp,
        fp = fopen("In dat","r"),
        for ( 1=1,1<m+1,1++)
        {
            for( }J=1,J<n+1,J++
            fscanf(fp,"%d",&number),
            T[]][I] = number.
            temp[]][I] = number,
            }
        }
        fclose(fp),
}
xxxxxxx End the Programme xxxxxx
```


APPENDIX E:

```
/* Effect of the priority rules on the criteria programme */
```

```
#Include <stdio h>
#nnclude <stdlib h>
#znclude <conio h>
#Include <string h>
#include <time h>
#define RANGE 10
#define MAX 32767
```

int intcmp(int a, int $b)$,
vold process(vold),
void rule2(void).
vold rule3(vold),
vold dısplay (vold),
vold readdata (vold),
void rule4 (void),
void rule5 (void).
void sort4(void),
vold ran(),
1nt $T[90][90], f[90][90], t \operatorname{mp}[90][90]$,
int $1, j, k, 1, n, m, n u m b e r$,
char x ,
Int Index[90], store[90], store2[90], sum[90], store3[90],
p[90], z[90], su[90],
char C ,
int rulenum,
int amount, count,y,column,
long now,
double num,
int yy,runs,
long int idle, idle1, result6, result7, av1, av2, av3, av4,
av5,av,result8,
long int a,a1,a2,a3,a4,a5,
long int average, average1, average2، average3, average4,
average5, result,
long int result1, result2, ave, ave1, ave2, ave3, ave4, ave5,
result3, result4, result5,
FILE *fp,*fp2,
main()
\{
\{
unsıgned seed,
fp2 = fopen("out dat","w+"),
printf(" \nEnter Number of Jobs "),
scanf("\%d", \&n),
printf(" \nEnter Number of machines "),
scanf("\%d", \&m),
printf("\nEnter number of runs "),
scanf("sd", \&runs);
printf("\nEnter random seed "),

Appendix E continued:

```
scanf("%d",&seed),
srand(seed),
column = n,
clock_t start, end,
start = clock(),
    /* Read in data in matrıx ABCD */
/* prıntf(" %d Jobs, %d Machınes \n\n",n,m), */
    for ( YY=0,YY<runs,YY++)
    {
prıntf(" MAKESPAN RUN %d \n",yy),
    ran(),
    rulenum =1,
    readdata(),
    process(),
    display(),
    average1 = averagel+ result,
    ave1 = ave1 + result2,
    av1 = av1 + result8,
    a1 = al + result5,
    rule2(),
    display(),
    average2 = average2 + result,
    ave2 = ave2 + result2,
    av2 = av2 + result8,
    a2 = a2 + result5,
    readdata(),
    process(),
    rule3(),
    dısplay(),
    average3 = average3 + result,
    ave3 = ave3 + result2,
    av3 = av3 + result8,
    a3 = a3 + result5,
    readdata(),
    process(),
    rule4(),
    display(),
    average4 = average4 + result,
    ave4 = ave4 + result2,
    av4 = av4 + result8,
    a4 = a4 + result5,
    readdata(),
    process(),
    rule5(),
    display();
    average5 = average5 + result,
```


Appendix E continued:

```
    ave5 = ave5 + result2,
    av5 = av5 + result8,
    a5 = a5+ result5,
    readdata(),
    process(),
    } /* end of yY loop */
    system("cls"),
    printf("\n"),
    fprintf(fp2,"\n"),
    fprıntf(fp2," %d Jobs, %d Machınes, Random seed = %d,
                            (Number of runs) = %d \n\n", n,m,seed,yy),
/* printf("%d Jobs, %d Machines \n\n", n,m), */
fprintf(fp2," Average MAKE-SPAN \n\n"),
prıntf("Average MAKESPAN (Number of runs) = %d
                                    \n\n",Yy), */
    printf("\n\n"), */
    average = averagel/runs,
            printf(" Rule FCFS = %d \n",average), */
        fprintf(fp2," Rule 1 FCFS = %d \n\n",average),
        average = average2/runs,
            printf(" Rule SPT(SI) = %d \n",average), */
        fprıntf(fp2," Rule 2 SPT(SI) = %d \n\n",average).
        average = average3/runs,
/* prıntf(" Rule LPT(LI) = %d \n",average), */
    fprıntf(fp2," Rule 3 LPT(LI) = %d \n\n",average),
    average = average4/runs,
/* printf(" Rule SRPT = %d \n",average), */
    fprıntf(fp2," Rule 4 SRPT = %d \n\n",average),
    average = average5/runs,
/* printf(" Rule LRPT = %d \n",average), */
    fprıntf(fp2," Rule 5 LRPT = %d \n\n",average),
        end = clock(),
        fpruntf(fp2,"\n"),
        fprintf(fp2,"Computation time in seconds = %f
            \n",(end-start) / CLK_TCK), */
    fprıntf(fp2,"\n"),
/* fprintf(fp2,"problem matrix size ( %d x %d)
                                    \n", n,m),
    printf("\n"),
    fprintf(fp2,"\n"), */
    fprıntf(fp2,"Average MEAN COMPLETION TIME \n\n"),
        printf("Average MEAN COMPLETION TIME RUNS %d
                                \n\n",yy), */
    printf("\n\n"),
    ave = avel/runs,
        printf(" Rule 1 FCFS = %d \n\n",ave), */
        fprintf(fp2," Rule 1 FCFS = %d \n\n",ave),
        ave = ave2/runs,
    /* printf(" Rule 2 SPT(SI) = %d \n\n",ave), */
    fprantf(fp2," Rule 2 SPT(SI) = %d \n\n",ave),
    ave = ave3/runs,
```


Appendix E continued:

```
    /* prıntf(" Rule 3 LPT(LI) = %d \n\n",ave), */
        fpruntf(fp2," Rule 3 LPT(LI) = %d \n\n",ave),
        ave = ave4/runs,
    /* prıntf(" Rule 4 SRPT = %d \n\n",ave), */
        fprıntf(fp2," Rule 4 SRPT = %d \n\n",ave),
        ave = ave5/runs,
    /* printf(" Rule 5 LRPT = %d \n\n",ave), */
        fprıntf(fp2," Rule 5 LRPT = %d \n\n",ave),
    /* prıntf("\n"). */
        fprintf(fp2,"\n"),
    /* prıntf("Average Total Waıting Tıme Runs %d \n\n",yY),*/
        fprintf(fp2,"Average Total Waıtıng Time \n\n"),
    /* printf("\n\n"), */
    av = av1/runs,
    /* prlntf("Rule 1 FCFS = %d \n\n",av), */
        fprantf(fp2,"Rule 1 FCFS = %d \n\n",av),
        av = av2/runs,
    /* printf("Rule 2 SPT = %d \n\n",av), */
        fprintf(fp2,"Rule 2 SPT = %d \n\n",av),
        av = av3/runs,
    /* printf("Rule 3 LPT = %d \n\n",av), */
        fprintf(fp2,"Rule 3 LPT = %d \n\n",av),
        av = av4/runs,
    /* printf("Rule 4 SRPT = %d \n\n",av), */
        fprintf(fp2,"Rule 4 SRPT = %d \n\n",av),
        av = av5/runs,
    /* prantf("Rule 5 LRPT = %d \n\n",av), */
        fprintf(fp2,"Rule 5 LRPT = %d \n\n",av),
        fprantf(fp2,"\n"),
    /* printf("\n"), */
        fprıntf(fp2,"Average Total Idle Tıme \n\n"),
        fpruntf(fp2,"\n\n"),
        a = al/runs,
        fprintf(fp2,"Rule 1 FCFS = %d \n\n",a),
        a = a2/runs,
        fprantf(fp2,"Rule 2 SPT = %d \n\n",a),
        a = a3/runs,
        fprıntf(fp2,"Rule 3 LPT = %d \n\n",a),
        a = a4/runs,
        fprintf(Ep2,"Rule 4 SRPT = %d \n\n",a),
        a = a5/runs,
        fprintf(fp2,"Rule 5 LRPT = %d \n\n",a),
        end = clock(),
        fprantf(fp2,"Computation tame in seconds = %f in", (end
                        - start) / CLK_TCK),
                                    /* end of maln */
}}
}
void ran( voud )
{
```


Appendix E continued:

```
    fp = fopen("ln dat","w"),
    amount = n*m,
    count =0;
    for( l=0,1<amount,1++)
    {
        y=random(11),
        count++,
        fprıntf(fp,"%-3ı",y),
        if ( count == column)
        {
            fprintf(fp,"\n"),
            count = 0,
        }
    }
fclose(fp),
)
void readdata( void )
{
    fp= fopen("an dat","r"),
    for ( l=0,1<m,1++)
    {
        for( j=0, J<n, J + + )
        fscanf(fp,"%d",&number),
        T[J][ı] = number,
        temp[]][1] = number,
        }
        }
    Eclose(fp),
}
void rule4( void )
{
lnt var,
    for ( }1=0,1<n+m,1++
    {
        sum[1] =0,
        mndex[1] =0,
    }
    rulenum = 4,
    for(j=0, J<n,j+++)
    {
        for(1=0,1<m,1++)
        {
        sum[]] = sum[]] + temp[J][1],
        Index[j] = sum[]],
        result3 = sum[j],
            }
```


Appendix E continued:

```
    }
    sort4(),
}
vold sort4 ( vold )
{
                            qsort(andex,n,slzeof(Index[1]),strcmp),
            for(1=0,1<n,1++)
        {
            ] =0,
            while((Index[1] '= sum[]]) && (J<n))
                    J++,
            for(k=0,k<m,k++)
                        {
                            T[1][k] = temp[j][k],
                    }
            sum[]] = 9999.
            )
            for ( }1=0,1<n-1,1++
            { temp[1][0] = store2[1], }
            process(),
}
vold rule5( vold )
{
    for ( 1=0,1<n+m,1++)
            sum[1] =0,
            Index[1] =0,
        }
        rulenum = 5,
        for(1=0,1<n,1++)
        {
            for (J=0, J<m, J++)
            {
            sum[1] = sum[I] + temp[1][]],
            Index[1] = Index[1] + temp[1][]],
            }
}
            qsort(&index,n,slzeof(Index[1]),strcmp),
        for ( J=0, J<n, J++)
        {
    store[n-]-1] = Index[]],
    }
    for ( J=0,J<n,J++)
    {
    Index[]] = store[]],
}
    for(1=0,1<n,1++)
    {
    ] =0,
```


Appendix E continued:

```
            whıle((Index[1] '= sum[]]) && (J<n))
                    ++],
                    for(k=0,k<m,k++)
                        {
                        T[I][k] = temp[]][k],
                }
    sum[j] = 9999,
    )
    for (l=0,1<n,1++)
    { temp[1][]] = store2[1], }
    process(),
    }
vold rule2 ( vold )
{
    /* It allows the program to sort the values */
    rulenum = 2,
                        for(J=0, J<n,J++)
                                    Index[]] = temp[]][0],
                }
/* sorting the first row by using the qsort method */
                        qsort(&index,n,sizeof(Index[1]),strcmp),
for(1=0,1<n,1++)
{
            J =0,
            while((1ndex[1] '= temp[J][0]) && (J<n))
                ++],
            for (k=0,k<m,k++)
                        {
                        T[1][k] = temp[J][k],
                }
            store2[J] = temp[]][0],
            temp[J][0] = 9999,
            }
            for (1=0,1<n,1++)
            { temp[1][0] = store2[x], }
        process(),
    } /* end of rule2() */
vord rule3( vord )
    rulenum =3,
        for(J=0,J<n,J++)
        {
            Index[]] = temp[j][0],
        }
/* sorting the first row by using the qsort method */
        qsort(&index,n,slzeof(Index[1]), strcmp),
for ( J=0, J<n, J++)
{
    store[n-]-1] = Index[]],
```


Appendix E continued：

```
        }
        for ( J=0,J<n,j++)
        Index[]] = store[]],
        }
        for(1=0,1<n,1++)
        {
        J =0,
        whrle((Index[1] '= temp[]][0]) &&& (]<n))
            ++丁,
        for (k=0,k<m,k++)
            T[I][k] = temp[j][k],
        }
        temp[J][0] = 9999,
        }
    process(),
}
int intcmp(Int a,int b)
{
return(a-b),
}
vold process( vold )
label f[0][0] = T[0][0], /* the Make-Span formula */
    for ( 1=1, 1<m,1++)
        f[0][土] = f[0][土-1] + T[0][1],
        }
        for ( 1=1, 1<n,1++)
        {
        f[I][0] = f[1-1][0] + T[1][0],
        }
        for ( J = 1, J<m, J++)
        for ( }1=1,1<n,1++
        f[I][]] = max( f[I-1][]], f[I][]-1] ) + T[I][]],
        }
    } /* end of process */
void dısplay ( void)
        system("cls"),
        printf("\n"),
        l =m-1,
            for(J=0, J<n-1, J++)
            {
            resultl= f[J][1],
            }
            /* printf(" result rule %_ = % \n",rulenum,f[n-1][1]),
            printf(" = %I\n",f[n-1][土]),
```


Appendix E continued:

```
fprintf(fp2," result rule %1 =
    %ュ\n",rulenum,f[n-1][1]), */
result = f[n-1][1],
{
l = m-1,
for(J=0,J<n-2,J++)
{
resultl =resultl+ f[J][1],
}
result2 = (result1 + result)/n,
/* printf("mean completion time = %1",result2),
fprintf(fp2,"Mean completion time for rule %i =
    %口\n",rulenum, result2),
fprintf(fp2," = %ı\n",result2), */
}
for(1=0,1<n+m,1++)
{
p[1]=0,
sum[1] = 0,
}
            count = 0,
            p[0]=0,
            for ( }=1=1,1<m,1++
            {
            p[1] = p[1-1]+T[0][1-1],
            }
            for(1=0,1<m,1++)
            {
            count = 0,
                    for(J=0,J<n,J++)
                    {
                    count = count + T[]][I],
                    }
                    sum[1] = count,
                    }
                            {
for(1=0,1<m,1++)
{
for(J = 0, J<n,j++)
{
printf("\n"),
ldle =f[n-1][I]-sum[I]-p[I],
result5 = f[n-1][1]-sum[1]-p[1],
}
printf("\n"),
}
J =n-1,
for(1=0,1<m-1,1++)
{
result5 = result5 + f[n-1][1] -sum[1]-p[1],
```


Appendix E continued:

```
}
    /*
prıntf("Total ıdle time = %1",result5),
    fprıntf(fp2,"Total rdle time for rule %l = %1\n",
        rulenum,result5),
    fprintf(fp2," = %%\\",result5), */
    {
    for( }\textrm{f}=0,\textrm{J}<n+m,\textrm{J}++
    {
    z[J]=0,
    su[J]=0,
}
    z[0] = 0,
    for ( }\textrm{J}=1,\textrm{j}<n+1,\textrm{J}++
    {
    z[]] = z[]-1] +T[]-1][0],
    }
    for(J=0, J<n, J++)
        count = 0,
        for(1=0,1<m,1++)
        {
        count = count + T[]][1],
        )
        su[]] = count,
    )
        {
        prıntf("\n"),
        l= m-1,
        for(J=0,J<n,J++)
        {
        printf("\n"),
        result8 =f[]][1] -su[]]-z[]],
        {
        prontf("\n"),
        }
        1 = m-1,
        for(J=0, J<n, J++)
        {
        result8 = result 8 + f[]][1] - su[]] - z[]],
        }
            /* end of dısplay() */
}
}
})
```

$\boldsymbol{f}_{0 \text { os }}$.

	Degrees of freedom for the Numerator (n_{1})																		
	1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	∞
1	1614	1995	2757	2246	2302	2340	2368	2389	2405	2419	2439	2459	2480	2491	2501	2511	2522	2533	2543
2	1851	1900	1916	1925	1930	1933	1935	1937	1938	1940	1941	1943	1945	1945	1946	1947	1948	1949	1950
3	1013	955	928	912	901	894	889	885	881	879	674	870	866	864	862	859	B 57	855	853
4	771	694	659	639	626	616	609	604	600	5%	591	586	580	577	575	572	569	566	563
5	661	579	541	519	505	495	$+88$	482	477	474	468	462	456	453	450	446	443	440	436
6	599	514	476	453	439	428	421	415	410	406	400	394	387	384	381	377	374	370	367
7	559	474	435	412	397	387	379	373	368	364	357	351	344	341	338	334	330	327	323
8	532	$4{ }^{4}$	407	384	369	358	350	344	339	335	328	322	315	312	308	304	301	297	293
9	512	$+26$	386	363	348	337	329	323	318	314	307	301	294	290	286	283	279	275	271
10	4%	$+10$	371	348	333	322	314	307	302	298	291	285	277	274	270	266	262	258	254
11	48.4	398	359	336	320	309	301	295	290	285	279	272	265	261	257	253	249	245	240
$1 /$	175	187	119	1/6	111	100	291	285	280	275	269	262	254	251	247	243	238	234	230
11	167	381	311	918	303	298	(8)	111	171	267	260	25]	246	242	238	234	230	415	211
14	460	374	334	311	2\%	285	276	270	265	260	253	246	239	235	231	227	222	218	213
15	454	368	329	306	290	279	271	264	259	254	248	240	233	229	225	220	216	211	207
16	449	363	324	301	285	274	266	259	254	249	242	235	228	224	219	215	211	206	201
17	445	359	320	2%	281	270	261	255	249	245	238	231	223	219	215	210	206	201	1%
18	441	355	316	293	277	266	258	251	246	241	234	227	219	215	211	206	202	197	192
19	438	352	313	290	274	263	254	248	242	238	231	223	216	211	207	203	198	193	188
0	435	349	310	287	271	260	251	245	239	235	228	220	212	208	204	199	195	190	184
21	432	347	307	284	268	257	249	242	237	232	225	218	210	205	201	1%	192	187	181
22	430	344	305	282	266	255	246	240	234	230	223	215	207	203	198	194	189	184	178
23	428	342	303	280	264	253	244	237	232	227	220	213	205	201	1%	191	186	181	176
24	426	340	301	278	262	251	242	236	230	225	218	211	203	198	194	189	184	179	173
25	424	339	299	276	260	249	240	234	228	224	216	209	201	1\%	192	187	182	177	171
26	423	337	298	274	259	247	239	232	227	222	215	207	199	195	190	185	180	175	169
27	421	335	2%	273	257	246	237	231	225	220	213	206	197	193	188	184	179	173	167
28	420	334	295	271	256	245	236	229	224	219	212	204	19	191	187	182	177	171	165
29	418	333	293	270	255	243	235	228	222	218	210	203	194	190	185	181	175	170	164
30	417	332	292	269	253	242	233	227	221	216	209	201	193	189	184	179	174	168	162
40	408	313	284	261	245	234	225	218	212	208	200	192	184	179	174	169	164	158	151
60	400	315	1%	153	237	225	211	210	204	199	192	184	179	10	169	139	133	147	137
120	392	307	268	245	229	217	209	202	1\%	191	183	175	166	161	155	155	143	135	125
∞	384	300	260	237	221	210	201	194	188	183	175	167	157	152	146	139	132	122	100

[^2]
APPENDIX G:
 The SIMAN Model Codes for the Job-Shop Priority Rules.

1. The CREATE Pseudo-code allows to the workpieces (the entuties) enter into the model

The CREATE Pseudo-code, one of several mechanisms for entering entities into the model, is typically used to model arrival processes in which entities (workpieces) sequentially enter the model according to a specıfied pattern
In our problem workpieces inter the job-shop one at a time with probabılıty distrıbuted random times between arrivals (later on the proposed priority rules will be simulated using three different arrival times distributions shown in Fig 23)
2. The ASSIGN Pseudo-code allows the assignment of a value to a SIMAN varıable or entıty attrıbute

This statement lets the arriving workpieces to be assigned fıve varıables as follows

1 The part number It is assigned as

$$
j=j+1
$$

Hence,

```
Part type=j
```

2 The part type

This could be defined by using the random varıable DISCRETE according to probabilities specified in the form of a cumulative probability distributions In our current problem the set of discrete values (workpieces) consists of 1,2 and 3 workpiece, and the corresponding cumulative probabilities are 0 24, 068 and 1 0, respectively Note that the second (068)

Appendix G continued:

and last value (0.1) was obtained by adding 0.44 (the
probability of a workpiece 2) to 0.24 (the probability of a workpiece 1) and adding 0.32 (the probability of a workpiece 3) to 0.68 , respectively, where the first value (0.24) is the probability of a workpiece 1. Hence,
The second assignment is as:

```
Part Type = DISCRETE(0.24,1,0.68,2,1.0,3):
```

3. The release time: It is defined as follows:
```
ArrTime = TNOW:
```

4. The Due Date: It is defined as follows:
```
Due Date = TNOW + Uniform(300,550):
```

5. The Static slack: It is defined as follows:
```
Static Slack = Due date - ArrTime;
```

The complete model for the ASSIGN statement is as follows:

```
ASSIGN: J=J+1:
    PartNo=j:
    NS=DISCRETE (0.24,1,0.68,2,1.0,3):
    PartType=NS:
    ArrTime =TNOW:
    DueDate = TNOW+Uniform(300,550):
    StaticSlack = DueDate-ArrTime;
```

3. The ROUTE Pseudo-Code allows the unconstrained movement of the workpieces from one machines to another. In the proposed job-shop the operation time includes the set up and transportation times. The model statement for transportation is as follows:
4. The STATION Pseudo-Code is the point of the model to which workpieces are transferred according to them route. It

Appendix G continued:

allows the workpieces to replace its processing from one machine to another according to the limited range In the current job-shop the model statement for this range 1 s as follows

STATIONS: 1-6;

5. The qUEUE Pseudo-Code: This statement is used to provide waltıng space to the workpieces for processing In our case the QUEUE statement is modeled as follows

QUEDES: M; Where M is the number of machines $=1-6$
5. The SEIZE Pseudo-Code allocates the machine unit M to the workpiece In our current job-shop workpieces arriving at QUEUE-SEIZE statement combination wait their turn in the QUEUE statement to be allocated one unit of the machine If at least one of machine is idle at a time an workpiece arrives at the preceding QUEUE statement, then the number of busy units of machine is increased by one, and the workplece passes through the SEIZE statement without waiting in the preceding QUEUE statement On the other hand, if all the units of machine are busy, the workpieces is held in the preceding QUEUE statement until a unit of machıne becomes avaılable for allocation to the workpıece In this case the SEIZE statement is modeled as follows

```
SEIZE: Machine(M);
```

6. The DELAY Pseudo-Code Once the workpiece has been allocated the necessary machınes, it typically engages in time-consuming activities, in general, such as set up, operation times and inspection In the current job-shop the set up and inspection time are included within the operation time In this case the DELAY statement is modeled as follows

Appendix G continued:

DELAY: OpTime,

The details of operation times for jobs are located within the experımental element programme in sub-chapter ()
7. The RELEASE Pseudo-Code releases the machine unit M from the workprece The released machine became idle and is then avaılable for allocatıon to workpieces waiting at SEIZE statement In the current Job-shop the RELEASE statement is modeled as follows

```
RELEASE: Machıne (M):
    Next (Next Operation)
```

8. The Exit System STATION is the final STATION allows the workpieces to exit the proposed job-shop The statement code of this step is modeled as follows

STATION. ExitSystems;

The steps of the model numbered $3,4,5,6$ and 7 are called station sub-model
8. The tally Pseudo-Code This statement records some of the observational data during the simulation execution according to the TALLIES element in the experıment frame In our current job-shop the TALLY statement is coded as follows

TALLX: FlowTime, INT(ArrıTıme);
TALLY: Lateness, TNOW-DueDate;
8. The COUNT Pseudo-Code increments the jobs which has been done by the machines and exit the job-shop The limit of the counting is defined in the counTERS element in the experıment frame This statement is coded in the model frame as follows

Appendix G continued:

COUNT: JobsDone,
9. The BEGIN and END pseudo-Codes are entered in the beginning and in the end of the model programme as shown in the final model programme Fig 24
\#\# The SIMAN Model Programme for The Job-Shop Priority Rules \#\#

BEGIN,		
Create	CREATE	Expo (7)
		MARK (ArrTime),
	ASSIGN	M=ENTER,
	ASSIGN	$\mathrm{J}=\mathrm{J}+1$
		PartNo=J,
	ASSIGN	NS $=$ DISCRETE $(024,1,068,2,10,3)$
		PartType=NS
		ArrTime=TNOW
		DueDate=TNOW+UNIF $(300,550)$
		StS=DueDate-ArrTıme,
Nextop	ROUTE,	To next operation
	STATION,	1-6, No of the Stations
	QUEUE,	M, \quad Queues 1-6
	SEIZE	Machıne (M), Get machıne
	DELAY	OpTime, Processing Times
	RELEASE	Machine (M)
		NEXT (NextOp), Release machıne
	STATION,	ExitSystem, Exit submodel
	TALLY	FlowTime, INT (ArrTime),
	TALLY	LateNess, TNOW-DueDate,
	TALLY	Make_Span, TNOW,
	COUN'T	JobsDone
		DISPOSE,

[^3]
APPENDIX H:

PROJECT,	3Jobs 6M/Cs Job Shop, Mujanah,
ATTRIBUTES	OpTime Oeration Time
	Arrtime Arrival Time
	PartNo
	Part Type
	DueDate
	StS, Static Slack (Static SLK)
STATIONS	1, Casting
	2, Lathes
	3, Planers
	4, Dralls
	5, Shapers
	6, Polıshers
	7, Enter
	8, ExitSystem, Exit System
QUEUES	6,
	xxxxx The selected priority rule x xxxx
RANKINGS	1-6, LVF (OpTıme), SPT rule
RESOURCES	Machıne (6), 14, 5, 4, 8, 16, 4,
,	xxxxx The Jobs sequences \& Operation Times xxxxx
SEQUENCES	
	6, expo (60) \& ExitSystem
	2,5 , expo (105) \& 4, expo (90) \& 2, expo (65)
	\& ExitSystem
	$3, \operatorname{expo}(30) \& 6, \operatorname{expo}(25) ~ \& ~ E x i t S y s t e m, ~$ JobsDone, Jobs Done
COUNTERS	
	xxxxx The Output Simulation Data x xxxx
TALLIES	FlowTame ', "F DAT" Flow tame
	LateNess,
DSTATS	1, NQ(1), Caster Queue
	2, NQ(2), Lathes Queue

Appendix H continued:

APPENDIX I:

The SIMAN model codes for the FMS

	CREATE	Expo(25) 'High FMS load	
		MARK (Arrival Tıme),	
	ASSIGN	$\mathrm{J}=\mathrm{J}+1$	
		PartNo=J,	
	ASSIGN	$\mathrm{NS}=\operatorname{DISC}(025,1,065,2,10,3)$	
		PartType=NS	
		Arrival Tıme=TNOW	
		DueDate $=$ TNOW $+\operatorname{UNIF}(250,400)$	
		StS=DueDate-Arrıval Tıme	
	QUEUE,	AGV Load Queue,	
	REQUEST	AGV (SDS), , Load_Unload,	
	DELAY	TRIA (1,2,3), 'Man Loading tıme	
	TRANSPORT	AGV, SEQ,	
	STATION,	CNC_Lathe-CNC_Mılııng,	
	DUPLICATE	1, Process	
		NEXT (AGVChk),	
Process	QUEUE,	CNC_Lathe Queue + (M-CNC_Lathe),	
	SEIZE	Machine (M-CNC_Lathe+1),	
	DELAY	Process Time,	
	RELEASE	Machıne (M-CNC_Lathe+1),	
	QUEUE,	AGV In_Process Queue,	
	REQUEST,	, M-CNC_Lathe+1	
		AGV(SDS),	
	DELAY	1, 'Robot loading time	
	TRANSPORT	AGV, SEQ,	
	STATION,	Load_Unload,	
	DELAY	TRIA $1,2,3)$, 'Man Unloading time	
	DUPLICATE	1, JobOut	
		NEXT (AGVChk),	
JobOut	TALLY	Flow_Tame, INTERVAL (
		Arrıval Tıme),	
	TALLY	Lateness, TNOW-Duedate,	
	COUNT	JobsDone	
		DISPOSE,	
	BRANCH,	1	
		IF, NQ (AGV Load_Queue) +	
		NQ (AGV In_Process Queue)	
		$=0$, Stage $\bar{A} G V$	
		ELSE, NoStage,	
StageAGV	TRANS PORT	AGV, Stage,	
	Station,	Stage,	
NoStage	FREE	AGV	
		DISPOSE,	
END, \quad xxxxx The End Of Programme xx			

APPENDIX J:

The SIMAN Experiment Elements for the FMS

BEGIN, PROJECT, ATTRIBUTES	
	3Job 4Mach, FMS with AGV System, Mujanah,
	Arrıval Tıme
	Process Time
	DueDate
	StS
	PartNo
	PartType
	Anim_Att,
QUEUES	1, AGV Load Queue 'Load Queue
	2,AGV In_Process Queue ' Buffer Storage
	3, CNC_Lathe m/c Queue
	4, Horızental Machinıng Queue
	5, Co_ordinate Measuring m/c Queue
	6, CNC_Mılling m/c Queue,
SCHEDULES	1, $1 * 48 \overline{0}, 0 * 30$ I Brake time
	Re-replication time
RESOURCES	Machıne(4), sched (1),sched(2),
, xxxxxxxxx The priority rule xxxxxxx	xxxxxxxxx The prioraty rule xxxxxxx
RANKINGS	1-6, LVF (Process Time),
xx	xxxxxxxxx The FMS Activities x xxxxxx
STATIONS	CNC_Lathe m/c, 2
	CNC_Horızental Machining, 3
	Co_Ordinate Measuring m/c,4
	CNC_Mılling m/ $\mathrm{C}, 5$
	Load_Unload, 1
	Stage, 9,
xxxxxxxxx Job Sequencing xxxxxxxx	
SEQUENCES	
	Load_Unload
	, Process Tıme=expo(
	26)\%
	CNC_Horızental Machinıng , Process
	CNC_Lathe m/c , Process Tame=Expol

Appendix J Continued:

	```25)& Co_Ordinate Measurıng m/c, Process Time=Expo( 17) & Load_Unload```
	3. CNC_Horizental m/c , Process Time=Expo( 33) $\overline{\&}$
	Load_Unload,
COUNTERS	JobsDone,
INTERSECTIONS	1,.10 ' The conection points
	2, 10
	3,10
	4, 10
	5, , 10
	6, , 10
	7, , 10
	8, , 10
	9,10
	10, ,10
	11, 10,
xxxxxxx	The specification of the AGVs paths $x \times x \times x \times x$
LINKS	1, $6,1,10,10$, Spur 'The Load \& Unload area $2,, 6,7,6,10$
	3, 7,10, 10
	4, ,10,11,4,10 'The Staging area \& Charging room 5, ,11,2,8,10
	6, $2,3,8,10{ }^{\prime} \mathrm{CNC}$ LLathe \& Horize Machinıng area $7,3,8,5,10$
	8, ,8,4,10,10
	9, 4, 5, 7,10 ' Co_ordinate Measu \& Mıllıng area $10,5,6,3,10$
	11, , 8, 7, 12,10
	12, , 10, 9, 6, 10
	13, 9, 11, 1, 10,
NETWORKS	1,AGV System, 1-13,
xxxxxxx	The specıfication of the AGVs $x \times x \times x \times x \times$
TRANSPORTERS	1,AGV, 2, NETWORK (AGV System),
	$1000, \operatorname{LINK}(12)$,
TALLIES	1,Flow_Time - ', "FL DAT"
	2, Lateness,
, xxxxxxxx	The output data commands xxxxxxxx

## Appendix J continued:



The above intersection and link elements respectively illustrate the number of intersections which is equal to 11 , each of length 10 (the length of all intersection $=11 \mathrm{x} 10$ $\mathrm{ft}=110 \mathrm{ft}$ ) and the number of links which is equal to 13 , each of length as shown below and according to Figure 64

Link 1 From point 1 to 6 equal to 100 ft
Link 2 From point 6 to 7 equal to 60 ft
Lank 3 From point 7 to 10 equal to 10 ft
Link 4 From point 10 to 11 equal to 40 ft

## Appendix $J$ continued:

```
Link 5 From point 11 to 2 equal to 80 ft
Link 6 From point 2 to 3 equal to 80 ft
Link 7 From point 3 to 8 equal to 50 ft
Link 8 From point 8 to 4 equal to 100 ft
Link 9 From point 4 to 5 equal to 70 ft
Link 10 From point 5 to 6 equal to 30 ft
Link 11 From point 8 to 7 equal to 120 ft
Link 12 From point 10 to 9 equal to 60 ft
Lank 13 From point 9 to 11 equal to 10 ft
```

In the next page, Figure 719 illustrates the FMS's AGV layout network, where the numbers from 1 to 11 are called the intersections (in The SIMAN code element) from which the link between two intersections is defined (i e the link number 1 and 2 are defined respectıvely between the intersections $1 \& 6$ and $6 \& 7$ and so on as shown in the SIMAN experiment programme (the LINKS element) in Appendix J page J2

## Appendix $J$ continued:



Fig. 7.19: The two FMS's AGVs layout network (11 intersections
and 13 links)


[^0]:    * Table 2.1 describes the following job scheduling problem notations.

[^1]:    Figure 4.4: The main feature of the flow-control chart for optimal Make-Span in $n / m / P / C_{\max }$ problem.

[^2]:    "Percentage points of the $F$ Distribution"

[^3]:    xxxxx End of The Programme xxxxx

