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Networks

by

Mohamed A-Salam Ali.B.Sc (Eng)

Abstract

Pipeline systems range from the very simple to very large and quite complex ones. 

They may be as uncomplicated as a single pipe conveying water from one reservoir to 

another or they may be as elaborate as an interconnected set of water distribution 

networks for a major metropolitan area. Individual pipelines may contain several 

kinds of pumps at one and or at an intermediate point; they may deliver water to or 

from storage tanks. A system may consist of a number of sub-networks separated by 

differing energy lines or pressure levels that serve neighbourhoods at different 

elevation, and some of these may have pressurised tanks so that the pumps need not 

operate continuously. In order that these transfer systems will adequately fulfil their 

intended functions, they may require the inclusion of pressure reducing or pressure 

sustaining valves. These days an understanding of some particular numerical method 

and the ability to implement them on a computer, for obtaining solutions for a large 

problem is a vitally needed skill. Computations associated with engineering practice 

have changed dramatically in the past quarter century from the estimation of a few 

key values by using a slide rule to the generation of pages of computer output that are 

the result of detailed simulations of system performance. In the steady state analysis 

and design of networks, a large system of non-linear equation must be solved. In these

Computer Aided Analysis of Flow and Pressure in Pipe
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work a computer program has been developed which carries out the regular 

simulation of steady state pressure and flow in pipe system. The computer program is 

written in C Language, to solve the basic pipe system equations using linear method. 

Basically the program reads input data defining the parameter for each pipe and each 

junction in the network. Connecting node number is the only geometric data in put for 

each pipe. From this data, the basic system equations are generated and solved.
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CHAPTER ONE

INTRODUCTION AND JUSTIFICATION

1.1.Introduction

The term network analysis is usually taken to refer to the “analysis of flows and head 

losses in a pressurised distribution system under given demand conditions. Some 

methods for steady state hydraulic system can be used to solve for unknown pressure 

and flows in the networks. The solution of the steady state problem can be achieved 

when the flows in each pipe are determined under some specified patterns of supply 

and consumption.

1.2.A Computer as a Tool for Analysis and Design

The advent of the computers significantly enhanced our ability to analysis flow. 

Computer models for analysing pipe flows and pressures in water distribution 

networks are used through out the world is essential tools for the efficient operation 

and improvement of very complex systems. In presented here an overview of how 

computers can be used to support flow analysis is presented here. Most analysis and 

design problems do not have a single correct answer. The design may begin the
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solution process by developing a mathematical model of the physical system. 

Typically this model contains several parameters for which the engineer may select 

values. The range of possible parameter values is called the design space. The 

engineer searches the design space to find the best solution based on a set of 

performance criteria. This search can be a tedious process, even for a simple model 

with a few parameters. The simplest way in which computers can be used to support 

this process is to simply automate the calculation procedure. The engineer specifies a 

set of parameter values, and the computer calculates the corresponding system 

performance. Computer support becomes more desirable as the complexity of an 

analysis increases. The design process can be further automated if the computer 

model can be predict system performance for several sets of parameter values. In 

general, no matter how simple or complicated the design problem may be, a computer 

permits a more through search of the design space and therefore enhances the 

possibility of finding a better solution to the design problem.

Computer hardware provides the capability to perform the calculations required 

supporting flow analysis. Computer software is required to put this capability to work 

in particular problem. In general, some types of software are available to support fluid 

mechanics analysis. First, task-specific software permits the user to make an analysis 

of a selected class of problem by simply entering the physical characteristics of the 

problem. For example, pipe network program to analyse the flow through a system of 

connected pipes. The user simply inputs the physical characteristics of the system, and 

the program performs all the calculations required to predict system performance. 

Second, the most general-purpose software to support flow analysis is programming 

language. The engineer must formulate the sequence of calculations to be performed
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and then instruct the computer to perform them by issuing a series of commands in 

the form of the program.

1.3.Aim of Study

This work gives detailed illustration on the development and use of a computer 

program, which permits simulation of steady pressure and flow in pipe distribution 

systems transporting liquid. The basis of the program is a direct solution of the basic 

pipe system hydraulics using a linearization method and solver linear algebra to 

handle the non-linear terms in the energy equation.

The computer program is written to analysis steady state flows and pressure for pipe 

distribution system. The program can be applied to other liquids, but does not 

generally apply to gas flow unless the assumption of constant density is acceptable. 

The program is written to accommodate any piping configuration and various 

hydraulic components such as pump, valve, and other components, which produce 

significant head loss. Computation carried out using English unit of CFS, GPM, MGD 

or standard international (SI) unit. The computer program, which provides network 

analysis and simulation, may be applicable to water distribution system as well. The 

program caters for hydraulic simulation and a description of the programs 

functionality’s is given later.

1.4. Method of Approach

Description of the method that has been used in the simulation is depicted in the flow 

chart Fig. 1.1.
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1.5.layout of Thesis

This thesis is divided into five chapters following this introductory chapter. Chapter 

two presents a review of elements of basic fluid mechanics that are pertinent to pipe 

system hydraulics. Chapter three, Concentrates on analysis techniques and completely 

describes the primary alternative approaches to the formulation of mathematical 

model for pipe system; then method for solving each of them is presented. Chapter 

four presented the new work and the technique, which has been used in the simulation 

with some example. Conclusion is presented in chapter five.
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ChAPTER TWO

REVIEW OF FUNDAMENTALS

2.1 Introduction

Fluid mechanics is the branch of engineering science that is concerned with force and 

energies generated by the fluids at rest and motion. The study of fluid mechanics 

involve applying the fundamental principle of mechanics and thermodynamic to 

develop physical understanding and analytic tools that engineers can used to design 

and evaluate and processes involving fluid.

The most engineering curricula require fluid mechanics because its principles and 

methods find many technological applications such as:

1-Fluid transport, 2-Energy generation, 3- Environments control and Transportation 

Fluid transport is the movement of fluid from one place to anther so that the fluid may 

be used or processed. Examples include home and city water supply system, cross

country oil, natural gas and agricultural chemical pipelines, and chemical plant piping. 

Engineer involved in fluid transport might design systems involving pumps, 

compressors, pipes, valves, and host of other components.

In addition to designing a new system, engineers may evaluate the adequacy of 

existing systems to meet new demand, or they may maintain or upgrade existing 

systems. Very little useful energy is generated without fluid movement. Typical
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energy conversion devices such as steam turbines, reciprocating engines, gas turbines, 

hydrodynamic cycles of these devices usually require fluid machinery such as pumps, 

or compressors to do work on the fluid. Auxiliary equipment such as oil pumps, 

carburettors, fuel-injection systems, boiler draft fans, and cooling system also 

involves fluid motion.

Environmental control involves fluid motion. Most building heating systems use a 

fluid to transport energy from a combustion process or other heat source to the heated 

spaces. In air-conditioning systems the circulating air is cooled by a flowing 

refrigerant. Similar processes occur in automobile engine cooling systems, in machine 

tool cooling systems, and in the cooling of electronic components by ambient air. 

With the exception of space travel, all transportation takes place within a fluid 

medium (the atmosphere or a body of water). The relative motion between the fluid 

and the transportation device generates a force that opposes the desired motion. The 

application of fluid mechanics to vehicle design can minimise this force. The fluid 

often contributes in a positive way, such as by floating a ship or generating lift on air 

plane wings. In addition, ships and aeroplanes derive propulsive force from propellers 

or jet engines that interact with the surrounding fluid. These examples are by no 

means exhaustive. Other engineering application of fluid mechanics includes the 

design of canals, harbours, and dams. The design of large structures must account for 

the effects of wind loading. In environmental engineering and biomedical 

engineering, engineers must deal with natural occurring flow processes in the 

atmosphere and lakes, rivers, and seas or within the human body.

The phenomena of fluid motion are central to the filed of meteorology and weather 

forecasting. Few engineers can function effectively without at least a rudimentary 

knowledge of fluid mechanics. Large numbers of engineers deal primarily with
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process devices and, systems in which knowledge of fluid mechanics is essential for 

intelligent design, evaluation, maintenance, or decision making. One needs to obtain a 

firm grasp of the fundamentals of fluid mechanics.

These fundamentals include a knowledge of the nature of fluid and the properties used 

to described them, the physical laws that govern fluid behaviour, the ways in which 

these laws may be cast into mathematical form, and the various methodologies that 

may be used to solve engineering problems.

2.2.Fluid Properties

2.2.1.Density (p)

The mass per unit volume is referred to as the density of the fluid and is denoted by 

the Greek letter p. The dimensions of density are mass per length cubed or % .  The

English system of units (abbreviated ES) use Slug for the unit of mass and feet for the 

unit of length. The dimensions commonly used in connection with the E S  system of 

units are force F, length L and time T. .In the international system, SI, the common 

dimensions are mass, M, length, L, and time T, Thus using LFT, dimensions for the 

slug can be obtained by relating mass to force through the gravitational acceleration, 

g, i.e. FPorce = M Massg  (acceleration of gravity). Thus since the unit of acceleration are 

f/S2 the units of density are,



In the English system

In the international system (system international Units) of unit SI, which is an 

outgrowth of the metric system, mass is measured in the unit of the gram, gr. (or 

kilogram, kg, which equals to 1000 grams). Force is measured in Newton, N, and 

length in meters, (m), a Newton is the force required to accelerate l.kg mass at 1%2. 

The units of density in the SI system are:

The conversion of density from the ES system to the SI system or vice versa can be

density of several common fluids are presented in Appendix A, Table A.1-A.2. 

Several other fluid properties are directly related to density. The specific volume (v), 

is define by

m3 m4
kS  _  N ~ s—r

determine by substituting the equivalent of each dimension doing this

1 Slug

f t 3

The density of water equals to 1 .4 9 ^ ~  o r1000— - ( 1 ^ - ) .  Numerical values of
f t  m cm

P
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It is of considerable use in thermodynamics but is seldom used in fluid mechanics.

The Specific weight (y) sometimes referred to as the unit weight is the weight of fluid 

per unit volume, and is denoted by the Greek letter y. The specific weight thus 

dimensions of force per unit volume. Its units in the ES and SI systems respectively

lb , N  
—-rand —r

Or

%  
m 2 — s~

The specific weight is related to the fluid density by the acceleration of gravity or

Y = g p  2.1

Since g  = 32.2 (9.81 ), the specific weight of water is
s s

W ) = 32.2(1.94) = 62.4 ~ ( E S )
J*

W ) = 9.81(1000) = 9 8 1 0 ^ (5 7 )
m

The specific gravity of the fluid is the ratio of the density of the fluid to the density of 

a reference fluid. The defining equation is

P free

1 0



Because specific volume, specific weight, and specific gravity are all directly related 

to density, they all are constant if the density is constant.

2.2.2.Viscosity (jx)

Another important fluid property is its viscosity (also referred to as dynamic or 

absolute viscosity). Viscosity is the fluid resistance to flow, which reveals itself as a 

shearing stress within a flowing fluid, and between a flowing fluid and its container. 

The viscosity is given the symbol ji Greek letter and it is defined as the ratio of the

AV
shearing stress x to the rate of change in velocity, V, or mathematically— This

Ay

definition results in the following important equation for fluid shear.

AV oou = ------  2.2
Ay

AV
in which — - is the derivative of the velocity with respect to the distance y  The 

Ay

AV . , .    . , .derivative —  is called the velocity gradient. Eq. (2.2) is valid for viscous or laminar
Ay

flow but not for turbulent flow when much of the apparent shear stress is due to the 

exchange of momentum between adjacent layers of flow.
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From Eq.2-2 it can be determined that dimensions of viscosity are force multiplied by

F * ttime divided by length squared or—— . Its units in the ES and SI system are
L

respectively,

I b - s  Slug N.s
—T j-o r— and —

f t  f t - s  m

Or

Kg/ms

Dyne sec
Occasionally the viscosity is given in poises \Poises = \ — —r— . or 1

cm'

N - s
Poise = 0.1— r—. Because of its frequent occurrence, the absolute viscosity is 

m

divided by the fluid density and is called the kinematic viscosity, v. The Kinematic 

viscosity thus is

The dimensions of kinematic viscosity are lengths squared per time. Common units 

for v in the ES and SI system respectively are:

1
s s

1 2



Another often used unit for kinematics viscosity in the metric system is the Stoke (or

cm2
centistoke =0.01 Stoke). One stoke equal 1------,

sec

The viscosity of many common fluids such as water depends upon temperature but 

not the shear stress or dv/dy. Such fluids are called Newtonian fluids to distinguish 

them from non-Newtonian fluids whose viscosity does depends upon dv/dy. Table 

A .l gives values of the absolute and kinematic viscosity of water over a range of 

temperatures. Table A.1-A2 in Appendix A contains viscosities of several common 

fluids.

2.2.3.Pressure

Pressure is a fluid property of importance. Most fluid mechanics problem involves

prediction of fluid pressure or with the integrated effect of pressure over some surface

or surface in contact with the fluid. Unlike density, which is usually one of the known

quantities in fluid mechanics, pressure is usually an unknown quantity to be

determining by analysis or experiment. Pressure is defined as follows.

the normal compressive force per unit area acting on real or imaginary surface in the

fluid

P = lim—  
da

Pressure is expressed in units of force per unit area and is measured with respect to 

one of two datum’s. Pressure measured relative to local atmospheric pressure is called
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gauge pressure. Pressure measured or define relative to zero pressure is called 

absolute pressure. Gauge and absolute pressures are related as follows.

Absolute pressure =gauge pressure + atmospheric pressure in vicinity o f gage.

To convert from gage pressure or absolute pressure, you must know the atmospheric 

pressure at the time and location of measurement. Often this information is not

available. In such cases, a “standard” value of 101,330 pa (14.696 abs; 29.92
In

in.Hg, abs)is used for atmospheric pressure. The actual atmospheric pressure can be 

measured with an instrument called a barometer.

In many situations that arise in fluid mechanics, one is more concerned with the 

difference of pressure than with levels of pressure. Pressure difference is the same 

whether the pressure is considered as absolute or gage, as long as all pressures are 

based on a datum. A pressure difference (say, between two locations in a pipeline) is 

not expressed in either “gauge” or “absolute” units; this designation applies only to 

pressure level.

2.3.The fundam ental Principles

Much computation in engineering and the physical sciences are based on a relatively 

few fundamental principle and concepts. Most important among these are Newton’s 

laws of motion, and conservation of mass, energy, and momentum. With limited 

exception mass is not created or destroy, energy is only converted form one to 

another, and momentum is only changed by force acting through time. In fluid
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mechanics the quantification of the conservation of mass is referred to, as the 

continuity equation in its various forms. An expression of the conservation of energy 

frequently used in hydraulics is Bernoulli equation. The momentum principle is 

extremely useful in determining external force acting on moving fluids. The equation 

obtained from theses three conservation principles are the most fundamental equations 

used for solving fluid mechanics problem.

2.3.1.Continuity

In more general forms, mathematical equations, which embody the principle that mass 

is conserved, are differential or integral equation. This is the case because in general 

the quantities which describe the flow, such as point velocities, are functions of 

position in space and time. For flows whose variables vary with a single space co

ordinate, and do not vary in time, an algebraic equation can be used for describing the 

fact that mass is conserved. Flow that does not change in time is called “steady flow”, 

and if only one space co-ordinate is used the flow is one-dimensional.

In solid mechanics the conservation of mass principles is applied by simply noting 

that the mass of any body remains constant. When dealing with the fluid flow it is 

generally more convenient to deal with the amount of fluid mss passing a given 

section of the flow rather than to keep track of the position of all individual particle of 

fluid. Thus the continuity equation will deal with mass flux passing a section of flow 

instead of mass alone. Mass flux is simply the flow of mass or mass per unit time, and

has the unit of ^ Û  in the ES system and —  in the SI system. 
s s
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Denoting mass flux by G it can be related to density p  the area through which flow 

occurs and the fluid velocity by:

G = pAV  = pQ 2.4

in which A is the cross-sectional area of the section and V is the average velocity of 

the flow through the section. The area A is normal to the direction of the velocity. The 

symbol Q in the later of Eq.(l-4) is the volumetric flow rate with dimension of L/Ç 

and given by:

Q = VA 2.5

For steady flow in a conduit the mass flow through two section denoted by subscripts 

1 and 2 of pipe some distance part must be equal if the flow is steady.

Therefore:

G ,= G 2 

so that

p \  A y V y  “  P 2 A j V %  2.6

Eq (2.6) is one of the continuity equation. For fluids that are incompressible, i.e. 

whose densities are constant regardless of the pressure, the continuity equation 

reduces to

Q\ — Qi 

16



so that

Occasionally the weight of flows rate W is wanted. It equals

W  = gG  = gpAV  = yAV 2.8

In dealing with a junction of two or more pipes the continuity principle states that the 

mass flow into the junction equals to the mass flow out of the junction. 

Mathematically this principle is,

= 2 > 0 i  = 0 2.9

in which the subscript (i) take on the values for the pipes, which join at the junction 

and the summation, indicates the sum of the G with proper regarded for the sign. 

Again for incompressible flows Eq.(2-9) reduces to,

Y j Q i  = 0 2.10

Equation 2.9 or 2.10 will play an important role in the analysis of networks of pipes. 

Junctions in such networks one commonly referred to as nodes. If the velocity is not 

constant through the flow section, calculus can be used to determine the mass, weight, 

or volumetric flow rates past a section.

A,V, = A2V2 2.7
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2.4.Conservation of Energy (Bernoulli Equation):

Flowing water contain three forms of energy which are of interest in hydraulic. Due to

its motion it possesses kinetic energy, and it contain two forms of potential energy,

one by virtue of its elevation and the other by virtue of its pressure.

Energy can be defined as the ability to do work. Work result from force moving

through some distance and therefore energy has the dimensions of (force * length) FI.

In a fluid flow the amount of energy passing a section will increase with time simply

because more fluid will have passed that section. Consequently, it is more convenient

to deal with energy per unit of fluid, or E/M = Fl/ m . In the ES, energy per unit mass has

, „ lb  — ft , . t niT N  - m  m  ,
the units of --------- , and m the SI units are  . The energy per unit mass due to

Slug kg

the elevation of the fluid is gz, in which z is the vertical distance above some datum

and g is the acceleration of gravity. The energy per unit mass resulting from the

pressure is — in which p is the fluid pressure. The kinetic energy per unit mass of 
P

V2fluid is —  . The sum of these three energies is,

P  V 2E = gZ + ^  + —  2.11
P  2

Energy/unit mass due to elev. + due to pressure + kinetic

18



2.4.1.Potential Energy due to Elevation per Unit Mass

Consider a mass of fluid with its centre of mass a distance z above an elevation datum 

as shown in Fig. [2.1]

With respect to the datum this mass possesses potential energy equivalent to its ability 

to do work in falling through the distance z. This work equals its Weight (i.e. its mass 

time the acceleration of gravity) multiplied by the distance z or g M  z. To get the 

energy per unit mass, g M  z is divided by the mass M giving gz or the first term on the 

right of Eq.(2-11).

Fig. 2.1 energy per unit mass due to elevation

19



2.4.2.Potential Energy due to Pressure per unit Mass.

A section in which the pressure of fluid is used to do work, for example, the fluid 

pressure in the vessel is used to transfer fluid to a distance I. If the average pressure 

acting over the piston is P, the fluid pressure force on the piston is PA in which A is 

the area of the piston. Thus the energy obtained from the fluid is doing the work in 

moving the piston through the distance 1, equals PA). The mass of fluid doing this 

work is that contained in the cylinder between the initial and final position of the 

piston, a distance 1 apart, or M= p A 1. Consequently the energy per unit mass of the

fluid due to pressure equals ——  = —. The second term on the right of Eq(2-11).
pA l p

2.4.3.Kinetic Energy per Unit Masses.

1 2The kinetic energy of any mass M equals half the mass times the velocity, or —M V . 

To obtain the kinetic energy per unit mass this quantity is divided by M  resulting in 

~ V 2 or the final term in Eq (2-11).

2.4.4.Total Energy per Unit Mass.

The three simple descriptions of the conservation of energy help in visualising the 

three forms of energy per unit mass that water flowing in a pipe contains. In using 

these in a conservation of energy equation it is necessary to account for what happens 

to the energy level between two level positions along the flow path or pipeline.

2 0



Whenever fluid passes a fixed wall or boundary, fluid friction exists. This friction 

changes some of the useful flow energy into heat, or other forms of energy, which are 

non-recoverable from the hydraulic viewpoint. Methods for determining the 

magnitude of this lost energy per unit mass of flowing fluid will be discussed. For 

now it will be simply denoted by El .

A pump may exist in a pipeline, which supplies energy to each unit mass of fluid 

passing through it, or a turbine may extract energy therefrom. Em will denote these 

mechanical energies with the subscript standing for all forms of external mechanical 

energy. A pump produces a positive amount of Em in the fluid and a turbine produces 

a negative amount.

With these additional symbols for energy losses and all other forms of mechanical 

energy, the conservation of energy between two section within flow denoted by 1 and 

2 respectively, such as depicted in the sketch below, is given by.

Ex + Em = E2 + Ei (2-12a)

Upon substituting from Eq.(2-ll)

2 1



P V1 P V2
gZ l + ^  + ^ - E m  = gZ2+ ^  + ^  + El (2-12b)

p  2g p  2

This equation is very important in computations dealing with incompressible fluid 

flow.

2.4.5.Energy and Hydraulic Grade Lines.

The energy Grade line, also called the Energy Line or simply El, is a plot of the sum 

of the three terms in the work-energy equations, which is also the Bernoulli sum:

P V2— I------ h z 2-13
7 2S

Since each term has units of length, one can conveniently superimpose a diagram of 

the behaviour of each energy term, and the sum, on a drawing of the physical flow 

problem. For example, a Pitot tube, inserted into a flow to cause locally at its tip a 

point of zero velocity so the velocity head is converted into additional pressure head 

there, will cause the liquid to rise to the elevation of the EL for that point in the flow. 

The Hydraulic Grade Line, or HGL, is the sum of only the pressure and elevation 

heads. The sum of these two terms is also called the piezometric head, which a can be 

conveniently measure by a piezometer tube inserted flush into the side of a pipe. It is 

also important to recognise that any HGL can quickly be located on a diagram if the 

EL has already been located; downward measure by the amount of local velocity head 

from the EL to locate the HGL.
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Fig.2.3 portrays the relation of the individual heads terms to the EL and HGL and the 

head that is lost between section 1 and 2

Figure 2.3 the Eland HGL in relation to individual heads and the heads loss

The heads loss is responsible for representing accurately two kinds of real fluid 

phenomena, head loss due to fluid shear at the pipe wall, called pipe friction, and 

additional head loss caused by local disruptions of the fluid stream. The head loss due 

to pipe friction is always present throughout the length of the pipe. Valves, pipe 

bends, and other such fittings cause the local disruptions, called local losses. Local 

losses may also be called minor losses if their effect, individually and/or collectively, 

will not contribute significantly in the determination of the flow; indeed, sometimes 

minor losses are expected to be inconsequential and are neglected. Or a preliminary
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survey of design alternatives may ignore the local or minor losses, considering them 

only in a later design stage.

2.4.5.Conversion of Energy per Unit Weight to Power

Available information for pump and turbine refer to power and efficiency and not the 

energy per unit weight of fluid through the device. Therefore, equations are needed 

relating Em to power or horsepower Hp. These equations are.

for a pumps, and

for turbines

P =
yQHp _ W* Hp 

7] 77

And

Hp =

Hp =

yQHp _ WHp 
550rj 550/7

yQHp _ WHp 
746/7 746^

P  = {yQHt)r] = (iWHt)T]

Hp = (
yQHOn ()WHt)r]

550 550

Hp
(;vQHt)7 (WHt)?!

746 746

ES (2-14a)

SI (2-15a)

(2-14b)

ES (2-15b)

SI (2-15b)

Considering the dimension of the quantities involved one can derive equation (2-14) 

and (2-15). Power is the rate of doing work or work per second. The energy exchange 

between the fluid and the device comprises the work and therefore energy lost or 

gained per second by the fluid should be equated to power after begin modified by the
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efficiency of the device in carrying out this conversion. Since H m and H p for a pump 

or H, for turbine) is energy per unit weight. We can obtain power by multiplying H m 

by the weight flow rate W=p Q. the factor 550 and 746 in equation 2-14 and 2-15 are 

the conversion of power to horsepower in the ES and SI systems respectively, since

lHp=550---------(1 hp=746 ------).
s s

2.6.Momentum Principle in Fluid Mechanics:

The third conservation principle, that of momentum, provides an additional powerful 

tool to solve many fluid flow problem, particularly those dealing with external 

devices acting on the fluid system, such as at elbows, junction, and reducers or 

enlargers. A widely used equation resulting from the momentum principal is

F  = pQ(V,\-VJ  2.16

in which F  is the resultant force (a vector with magnitude and direction) which acts 

on the fluid in a control volume being analysed, V2,VX are the average velocities (also 

vector) leaving and entering the control volume respectively. The problem, which is 

handled in here, will not be solved by use of the momentum equation.
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CHAPTER THREE

PIPE NETWORKS ANALYSIS

3.1.Introduction

This chapter describes the analysis of steady flow in pipe systems. The analysis or 

design of a pipe system is accomplished by patching together the information about 

the pipes, and components. In analysis problem the system configuration is given and 

the solution process endeavour to determine the discharge in every pipe and the 

pressure, etc at every node of the network, and pressure drop or required pumping 

power to maintain flow in the system. The analysis of a pipe network can be one of 

the most complex mathematical problems that engineers are called upon to solve, 

particularly if the network is large, as occurs in the water distribution systems of 

even quite small cities. This analysis is needed whenever significant changes in 

patterns or magnitudes of demand or supplies occur in municipal water or natural gas 

distribution systems. These changes occur whenever new residential subdivisions or 

industries are attached to the existing systems or new sources of supply are tapped. In 

the recent years a number of significant improvements have occurred in the method 

and techniques used to analysis steady flow in large pipe networks. Some commonly 

used algorithms for pipe networks analyses are described in this section. Details can 

be found in the references cited for each method.
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3.2.History o f Analysis and Design of Pipe Networks.

Steady state analysis of pressure and flow in piping system is a problem of great 

important in engineering. The basic hydraulic equations describing the phenomena 

are non-linear equations, which can not be solved directly. These equations have 

been expressed in two principal fashions. They have been written in terms of the 

unknown flow rate in the pipes that referred to as loop equation. Alternatively, they 

have been expressed in terms of unknown heads at junctions throughout the pipe 

system (node equation). Several algorithms have been proposed for solving these 

equations and there is a considerable amount of published material dealing with pipe 

network analysis, and some principal contribution of historical interest will be cited 

here. Hardy-Cross [4]- formulated two methods one of them considered only closed 

loop networks with no pumps, a method for solving the loop equation based on 

adjusting flow rate to individually balance each of the energy equation is described. 

This method was very widely and is often referred to as the Hardy-Cross method. 

Although it is not as widely used, Hardy-Cross-described a second method for 

solving the node equation by adjusting the head at each node so that the continuity 

equation is balanced. A number of subsequent papers have appeared which further 

described these methods or computer programs utilising these methods. [5-6-7-8-9J 

Because the adjustments are computed independent from each other, convergence 

problem using the method described by Hardy Cross was frequently noted and 

procedures developed to improve convergence. Martin and Peters [10] and EPP and 

Fowler [11] described a procedure to simultaneously compute the flow adjustment 

for closed loop system. Based on the N-R method this procedure had much improved 

convergence characteristic and formed the basis for more general application [12-8]
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Both methods just described for solving the loop equation require an initial balance 

set of flow rate and converge depends on a degree on how close this initial set of 

flow rate is to the correct solution. A method, developed by Wood [15], solves the 

entire set of hydraulics equation simultaneously after linearization the non-linear 

terms in the energy equation. This procedure was first described for closed loop 

system [13] and has subsequently been modified for more general application 

[14,15], A similar approach has been developed for the node equation where all the 

node equations are linearized and solved simultaneously, and Shimmer and Howard 

[16] described this method for closed loop system. Additional reference to this 

method has been mad in reference [17.118].

Wood and Charles [13] developed The linear theory method which can also be 

regarded as an application of the Newton-Raphson technique in the sub-domain of 

loops, but it requires the solution of a large system of equations (number of loops + 

number of nodes) although reducing the risk of failures. The optimisation methods 

by Coollins et al., [19], Contro and Franzettilb, [20]], minimise a non-linear convex 

objective function subject to linear equality and inequality constraint using 

mathematical optimisation techniques. The advantage is obvious since the convexity 

of the objective function obtained to the linear constraints guarantees the existence 

and uniqueness of the solution. Unfortunately the numerical solution of the problem 

requires efficient non-linear programming algorithms, thus reducing the practical 

when dealing with a large complex networks. A method was developed by Todini 

[21], which may be regarded as a bridge between the optimisation method and the 

Netwon-Raphson based techniques in that it starts from minimisation of slightly 

modified model Collins et al [19]. In order to prove the existence and uniqueness of 

the solution of the partly linear and partly non-linear system to be simultaneously
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solved in terms of the nodal head and unknown flows in pipes The Netwon-Raphson 

technique is then applied in this enlarged space of flow and heads where the proof of 

the existence and incite of the solution holds, which is the key to the unconditional 

convergence of the method.

3.2.1.Convergence Problem

Convergence problem is largely unreported for the improved methods developed for 

solving the loop equation. However, additional convergence problems have been 

reported for methods based on the node equation since Hardy Cross [4] first alluded 

to such problem. In his original paper by Hardy Cross he noted that “convergence 

was slow and not very satisfactory” when employing the head adjustment method he 

developed. This was attributed to using initial head estimates, which were not very 

good. Of the two methods described by Hardy Cross, the method of adjusting flows 

becomes the most widely used method. Convergence problem using this method was 

also recognised, however, and several suggestions were made for improving 

convergence. Investigations have advocated the use of an over-relaxation factor to 

multiply the flow adjustment factor [4-13] Hoag and Weinberg[22] suggested using a 

selective procedure for choosing loops as a mean of accelerating convergence . It 

appears that these and other procedures suggested for improving convergence of this 

method will improve only certain situation and will not assure convergence. 

Dilligham [6] stated that when the method of adjustment heads at individual nodes is 

applied to a large network it may not converge or may converge very slowly. He 

described some procedures for improving convergence. Rodinson and Rossum [9] 

who developed a computer program based on this method say that,” convergence is
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slow when a network contains short length of large diameter mains and convergence 

is not assured if there are dead end mains”. They further state that “ convergence 

may not occur if check valves are present“. The method of simultaneously adjusting 

heads normally gives convergence much more rapidly which lead (Limoux) to state 

for which convergence was assured [18]. However, it appears that this assessment is 

optimistic and problems have been noted with this method. Shamir and Howard [16] 

who also reported that there is a possibility that a solution can not be obtained have 

noted oscillations. Liu also stated “for poor initial input the method (simultaneous 

node adjustment) may diverge from the true solution or converge slowly”[18]. 

Collins and Kennington presented some data which documented convergence 

problem for a large network using this method [23],

The reliability of the algorithm employed for network analysis is of great 

importantnce. Failure to obtain a solution is an inconvenience as the failure leads to 

poor design or management of water distribution systems. The purpose of this study 

is to document reliability problem, which may occur using various popular 

algorithms.

Problem of slow convergence and lack of convergence for some mentioned methods 

have been reported and in particular an extensive reliability study was carried out by 

Wood [24], the most extensively used algorithms were tested under a wide variety of 

conditions. Wood and Rayes [25] also published the result of this thorough research. 

According to their finding, only the method of “simultaneous path” (loop equation 

solved with a Newton-Raphson algorithm) ,and the linear theory method (the 

gradient algorithm) and the linear theory method (the gradient loop-algorithm), not 

the original method published by Wood and Charles [13] are recommended for the
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reliable solution of the water distribution network analysis problem, since the rest of 

the algorithms tested shown ’’significant convergence problem”.

The “simultaneous path” and the linear theory method were compared with the new 

gradient method, based on a simple ill-conditioned problem. Todini (1979) and Pilati 

and Todini [28] originally proposed the gradient method. Their result showed that the 

gradient method has the advantage over the simultaneous path adjustment method 

and the linear theory method described as following.

It can directly solve partly looped and partly branched networks, while for the 

simultaneous path method the problem needs to be transformed into an equivalent 

looped network, prior to the application of the iterative algorithms. This has to be 

done by the user (manually) or incorporated in additional subprogram. The gradient 

method does not need a loop or path definition as in the case of the simultaneous 

path adjustment and the linear theory method. Even though a computer can also do 

this task, it implies an additional computational cost. The gradient method can solve 

in straightforward way networks that during certain periods of operation can become 

disjointed (due to the action of check valves or pressure reducing valves, for 

example). The simultaneous path adjustment and the linear theory method can not 

cope with this situation, although it might be possible to implement an additional 

subroutine that could solve this shortcoming. Again this means additional 

computational cost. The reliability of the method, in term of its ability to converge 

for both flows and the piezometric heads, under extreme cases based on ill 

conditioned problems, makes it desirable for optimum intervention to avoid 

convergence problem. In addition, this has been implemented on personal computer, 

given low requirement of memory and its high speed. The algorithm needs about
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40% of the memory need for the linear theory method and only 5% more than the 

simultaneous path adjustment method.

Each of these methods requires special iterative computation where the solution is 

improved until a specified convergence criterion be met. If a sufficiently stringent 

convergence criterion is met, the solution will be essentially identical for all 

methods. In some cases, however, it is not possible with certain algorithms to meet a 

specified convergence criterion regardless of the number of trials completed. In other 

cases a seemingly stringent convergence criterion may be met but the solution is still 

in considerable error. Convergence difficulties such as these have been previously 

noted and reported.

3.3.Basic Relation Between Network Element

The two basic principle, upon which all network analysis is developed are (1) the 

conservation of mass, or continuity principle and (2) the work energy principle, 

including the Darcy-Weishbch or Hazen-Willams equation to define the relation 

between the head loss and the discharge in a pipe. The equations that are developed 

from the continuity principle will be called the junction continuity equations, and 

those that are based on the work energy principle will be called the energy loop 

equations. The number of these equations that constitute a non-redundant system of 

equations is related directly to fundamental relation between the number of pipes, 

number of nodes and number of independent loops that occur in the branches and 

looped networks. In defining these relation NP will be denoted to the number of 

pipes in the networks. NJ will denote the number of junctions in the networks, and
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NL will denote the number of loops around which independent equations can be 

written. In defining junctions, supply source will not be numbered as a junction. A 

supply source is a point where the elevations of energy line, or hydraulic grade line is 

established and a junction or node is a point where two or more pipes join. A node 

can exist at each end of a “dead end ” pipe; this instance is an exception to the usual 

rule, where only one pipe is connected to the node. In branched system there are by 

definition no loops, and NL=0 for any branched system, or NP=NJ-1, unless a 

reservoir is shown at the end of one pipe and this is not considered to be a junction, 

then NP =NJ. This situation actually occurs. Figure 3.1 and 3.1b depict a small- 

branched network and a small looped network respectively.

Figure 3.1 (a) a small-branched system. (b) A small looped system

In the branched system the number of nodes is 7 and the number of pipes is 6 (one 

less that the number of node) whereas in the looped system there are 12 pipes and 9 

nodes, i.e., the number of nodes is less than the number of pipes.

For a looped network the number of loops (around which independent energy 

equations can be written) is given by
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NL =NP-NJ- (3.1)

If the network contains two or more supply sources,

NL=NP- (NJ-l)=NP-NJ+l-— (3.2)

If the network contains less than two supply sources and the flow from the single 

source is determined by adding all the other demands, then this source is shown as a 

negative demand and the source is called a node. This case is noted in the small 

looped network in fig 3.1 so that NP=12,NJ=9 and /VL=12-(9-10)=4.

Equation 3.2 also applies for branched system with NL=NP-NJ+1=0, since branched 

system can have at most one supply source. Actually, every pipe system must have at 

least one supply source, but sometimes the source is not shown since the discharge 

from this supply source is known , and the source is replaced by a negative demand, 

which is a flow coming into this junction, equal to the sum of other demands. When 

this is done, the elevation of the energy line (HGL or pressure) must be specified at a 

node so the other HGL elevation can be determined. Energy loops that begin at one 

supply source and end at another called is pseudo loops, i.e., these loops do not close 

on themselves. The number of pseudo loops, which are numbered as part of NL, 

equal to the number of supply source minus 1. In forming a pseudo loop all supply 

sources must be located at the end of the pseudo loop. It is generally possible to form 

more loops that are needed to produce the set of independent equations. As each loop 

if formed, see that at least on pipe in the new loop is not a part of any prior loop, in 

this way the formation of redundant loops can usually be avoided.
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3.4.Algorithms for Pipe Networks

The development of new methods has been possible mainly due to the availability of 

digital computer, allowing for the use of more sophisticated mathematical techniques 

Another motivation for the development of new algorithms has been clearly the 

unreliability of the existing methods when dealing with some ill-conditioned 

problems. Optimum design and operation routines also need to be based on robust 

analysis algorithms.

Piping system are constructed by piecing together components. These components 

transport the fluid, change its direction, control flow rate, divide it, speed it, or slow 

down .In addition to conveying fluids, most of the components are responsible for 

mechanical energy loss. Only the pump does not contribute a net loss! But instead 

increase the fluid’s mechanical energy. Analysis of pipe consists of relating flow 

variables, such as energy loss and flow rate, to pipe system parameters, such as size, 

shape, length, and number and location of fittings.

3.4.1.Pipe Networks Geometry

Basic geometrical considerations for pipe networks are summarised as follows. A 

pipe network is comprised of a number of pipe sections, of constant diameter section 

which can contain pumps and fittings such as bend and valve. The end point of the 

pipe section are nodes which are identified as either junction nodes or fixed grad 

nodes .A junction node is a point where two or more pipe sections join and is also a
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points where a flow can enter or leave the system. A fixed grade is a point where a 

constant head is maintained such as a connection to a storage tank or reservoir or to 

constant pressure region. In addition primary loops can be identified in a pipe 

network and these include all closed pipe circuit within the networks which have no 

additional closed pipe circuit within them.

When junction nodes and fixed grad nodes, and primary loops are identified the 

following relationship hold.

P = j  + l + f  (3-3)

In which p= number of pipes; j= number of junction nodes; 1= number of primary 

loops, and f= nmuber of fixed grade nodes.

3.4.2.Basic Equation

Pipe networks equation for steady -state analyses have been commonly expressed in 

two ways. Equations, which express mass continuity and energy conservation in term 

of the discharge in each pipe section, have been referred to as loop equations and this 

terminology will be followed here.

A second formulation, which expresses mass continuity in term of head at junction 

nodes, produces a set of equations referred to ass node equations.
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3.4.3.Loop Equation

Equation (3.3) offers basic formulation for a set of hydraulic equations to describe a 

pipe system. In terms of the unknown discharge in each pipe, a number of mass 

continuity and energy conservation equations can be written equalling the number of 

pipes in the system. For each junction node continuity relationship equating the flow 

in to the junction ( Qin ) to the flow out ( Qout) is written as:

X Qin -X Q o u t = Qe —3.4

Here Qe represents the external inflow or demand at the junction nodes. For each 

primary loop the energy conservation equation can be written for a pipe section in 

the loop as follows:

! / / /  = £ Ep{l -  equation) —(3.5)

in which HL= energy loss in each pipe section including minor losses, and EP = 

energy put in to the liquid by pumps. If there are fixed grad nodes (f -1) 

independent energy conservation equation can be written for paths of pipe section 

between any two-fixed grad nodes as follows:

AE = 'Z H l- Z  E p ( f -1  -  equation) —(3.6)
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in which AE= the head difference between the fixed grade nodes. The terms in the 

energy equation can be expressed as function of flow rate. Thus, the continuity 

equation (3.4) and the energy equation (3.5) and (3.6) form the set of p simultaneous 

equations in terms of unknown flow rate, which are termed as the loop equation. 

Since these are non-linear equations, no direct solution is possible. Their algorithm 

for solving the loop equation are presented.

3.4.4.Node Equations

The analysis is carried out in terms of an unknown total head H, at each junction 

nodes in the pipe system. The basic relationships used in the continuity relationships 

Eq 3.4 the flow rate, in the pipe section are connecting nodes labelled a and b, is 

expressed in term of the head at junction nodes a, Ha, the head at the other end of the 

pipe section, lib , and the loss coefficient for the pipe, Kab. This

Qab = H a -H b
K.ab

-(3.7)

This expression assumes that the pipe 

relationship is used of the form

section contain no pump and a head loss

hi = KQn ■ -(3.8)
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in which the term K= the loss coefficient for the pipe section and is a function of a 

pipe parameter and flow condition and is dependent on the head loss expression used 

and may include minor loss term. The exponent (n) also is dependent on the head 

loss expression used. Combining Eq 3.4 and 3.7 gives:

5 >
b= 1

H a - H h
K,ab

= Qe ----------------(3.9)

This expresses continuity at junction nodes a in which N  pipes connect, in terms of 

the head at Ha, and the head at adjacent nodes, Hb, the sign of the term in the 

summation is dependent on whether, the flow is into or out of the junction nodes a. A 

total of j equations are written in this manner.

The basic set of equations can be expanded to incorporate pumps. For each pump, 

junction nodes are identified at the suction and discharge sides of the pumps. Two 

additional equations can be written as terms of two additional unknown heads at the 

suction, and discharge side of the pump and the adjacent heads. One equation 

expresses flow continuity in the suction and discharge lines using equation (3.7) and 

a second equation relates the head change across the pump to the flow in either the 

discharge or suction line.

For pipe networks of (j) junction nodes and NP pumps a set of (j+2 NP) equations 

are obtained. These represent the full set of pipe network node equations which are 

expressed in terms of the unknown head at junction nodes and pumps suction and 

discharge head at all pumps in the pipe system. Like the loop equation, these are non

linear algebraic equations and no direct solution is possible.
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3.5.Algorithm for Solution o f Loop Equation:

Three methods for solution of the loop equations have been developed and are in 

significant use today. Each use gradient methods (Newton extrapolation) to eliminate 

non-linear term from the energy equation.

3.5.1.Single Path Adjustment (path) Method:

This method of solution was described by Hardy cross (4) and is the oldest and most 

widely used technique. The original method was, however, limited to closed loop 

system and includes only line losses. The procedure has since been generalised. The 

method of solution is summarised as follows.

1. Determine an initial set of flow rate, which satisfy continuity at each junction 

node

2. Compute a flow adjustment factor for the path of pipes for each energy 

equation, which tend to satisfy the energy equation written for that path. The 

application of this correction factor will not disturb the continuity balance.

3. Use improved solution for each trial step 2 until the average correction factor 

is within a specified limit.

The flow adjustment factor for a path is computed from the energy equation for that 

path and is intended to correct the flow rate so that the energy equation is satisfied. 

However, a correction for a particular path will disturb the energy relationship for the 

other entire path, which have common pipes. A trial with this method requires a flow
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adjustment to all paths in the pipe networks (/ loops and f-1 path between fixed grade 

nodes).

3.5.2.SimuIation Path Adjustment (S-Path) Method:

In order to improve the convergence characteristic, a method of solution was devised 

which simultaneously adjusts the flow rate in each path of pipes representing energy 

equation (3.8). This method can be summarised as follows.

1. Determine an initial set of flow rate, which satisfy continuity at each junction 

mode

2. Simultaneously compute a flow adjustment factor for path, which tend to 

satisfy the energy equation without disturbing the continuity balance.

3. Use improved solution and repeat step 2 until the average flow adjustment 

factor is within specified limit.

The simultaneous path flow adjustment factor requires the simultaneous solution of 

(1+f-l) equation. Each equations accounts for the unbalance in the energy equation 

due to incorrect values of flow rate and includes the contribution for a particular path 

as well as contribution from all other paths, which have pipes common to both paths. 

Sets of (l+f-1) simultaneous linear equations are formed in terms of flow adjustment 

factor. This linear equation can be solved using standard procedures and the solution 

provides an improved set of balance flow rate, which can be used, for another trial. 

Trails are repeated until a specified accuracy is attained.
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3.6.Algorithm for Solving o f Node Equation:

3.6.1.Single Node Adjustment (nodes) Method

This method is summarised as follows:

1. Assume a reasonable head for each junction nodes in the system. This 

assumed head does not have to satisfy any condition. However the better the 

initial assumption the fewer the required trials.

2. Compute the head adjustment factor for each junction node, which tends to 

satisfy flow continuity at the junction.

3. Repeat step 2 until the average correction factor for heads is within a 

specified accuracy or some other specified convergence criterion is satisfied.

The head adjustment factor is the change in head at a particular node, which will 

result is satisfying continuity equation (3.4) considering the head at the adjacent 

nodes as fixed. Again a gradient approximation is used to compute the required head 

change. A single trial for this method requires the adjustment of the head for each 

junction node within the pipe system. The trials continue until the specified 

convergence criterion is met.

3.6.2.Simultaneous Node Adjustment (s-node) Method:

This method is based on a simultaneous solution of the basic equation pipe networks 

and requires linearization of these equations in terms of approximate values of the 

head (16). This produces set of (j+2np) simultaneous linear equations (in which NP 

is the number of pumps). These equations are solved as follows, starting with any
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assumed values for the junction node heads these linear equation are solved 

simultaneously for an improved set of junction node heads. These heads are then 

used to linearized the set of node equations and the procedure is repeated until 

subsequent calculation satisfy a stated convergence or accuracy criterion.

This method is based on a simultaneous solution of the basic hydraulics equation for 

the pipe system and has been reported for closed loop system (13) and general 

system (15). Since the energy equation for the paths are non-linear one and no direct 

solution is possible, these equations are first linearized in terms of an approximate 

flow rate, Q, in each pipe to make solvable in iterative fashion. This is traditionally 

obtained via a Taylor expansion of the head loss-flow relationship h (Q), retaining 

only the linear terms.

3.7.Linear Method

Or simply:

where:

h(Q) = head loss (gain) in the link produced by the flow q.

Hj = h(Q) Evaluated at Q = .

J, = the gradient of h (Q), evaluated at Q = Ql
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Qi = a pervious flow solution around which the linearization is carried out.

AQ = flow correction for all links in the loop or path.

Introducing equation (3.11) into (3.6), for every loop or energy path of the network, 

taken one at a time:

<5E, = £ / / , + ( £ /,)A & -(3 .1 2 )
K K

for all loop or path “k”, k= l,2 .. .NL,

where the summation are carried out over all the links is belonging to the k-the path. 

Equation (3.12) can be solved for the scalar flow correction:

A a  = -----------  (3.13)

for all paths “k”, k = l,2 .. .NL

The flow correction AQk is computed for every loop or path and is applied to the 

entire link in the loop, in order to improve their closeness to the simultaneous 

fulfilment of equation (3.1) and (3.2).

This indeed the Hardy-Cross method (loop version) formulated in 1936 and 

extensively used for hand computation (and some simple computer application these 

today). Also this method is referred to as a single (path adjustment) algorithm.

On considering all the loop correction simultaneously (instead of one at a time as in 

the previous case). Equation (3.12) become a vectorial function and it must 

incorporate an additional term to cater for the flow correction made in neighbouring 

loops;
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SEt = + (2 > ,)A &  + Z « A & )  --(3 .1 4 )
K K K

Equation (3.14) is valid for every loop or path “k” and the summation are carried out 

over all the links in that loop.

AQk refer to the loop correction of loop (k)

and AQn refer to the correction of the loop n ^  k  neighbouring the loop k with the

sign of AQ„ being compatible with that of AQk 

Reordering equation (3.14) gives:

( Z W Q  + 'Z V A Q ,)  = SE, ~ Y , H < --(3-15)
K K K

The first term of the left side of the equation (3.15) caters for the flow correction

over all the link in the path “Af” while the second term of the equation include the 

effect of the flow correction in the neighbouring path. When equation (3.15) is 

written for all the path, the whole left hand side of the resulting system of equation 

can be expressed as the product of an (NL*Nl) symmetric characteristic matrix by 

(NL*1) vector of flow correction AQ . The right hand side become an (NL *1) vector 

of difference between available head and the total head losses in each path.

This is the so-called “simultaneous path adjustment” method and the system (13) is 

solved in a recursive fashion as many times as necessary to get the flow corrections 

smaller than a pre-established accuracy.

If instead of expressing equation (3.12) in term of d Q is left as a function of the 

explicit difference Q — Qi:
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SEt = Y ,H , +'ZJJ>(Q -  Q,) --(3 .1 6 )
K K

se•„ =  + 2 « e )  -  ’E m  - - ( 3 . 1 7 )
K K K

which when reordered gives:

X  C/,G) = £  ~ H ^  +SE* - < 3 ■18)
K K

for all paths “k”, k= l,2 .. .NL

When equation (3.18) is written for all the paths, the left side can be expressed as the 

product of non-symmetric (NL*NT) characteristic matrix by an (NT*1) vector of 

flows per link, while the right hand side is an (NL*1) vector.

The (1+f-l) equation (3.18) linearized energy equation has to be coupled to the (j) 

continuity equation (3.4) to form a set of p simultaneous linear equations in terms of 

the flow rate in each pipe. For the linear method an initial flow rate is needed but was 

not required to satisfy continuity according to Wood and Charles [13], For this 

method an initial flow rate based on a constant flow velocity in arbitrary direction 

was assigned. The solution provided by the coupled systems of equations (3.4) and 

(3.18) has superior convergence properties than the original one, as recognised by 

Wood [15].

3.8.Gradient Algorithms

The main distinctive characteristic of this method from the rest of the existing 

methods is the fact that it is based on the gradient operator being applied over both
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the heads and the flows and not only to one of them. In order to find a solution of the 

system of partly linear and partly non-linear equation describing the network flow 

problem, the application of N-R technique in the space of both unknown pipe flow 

and unknown nodal heads, where the existence and unity of the solution can proved, 

leads to an extremely convergent scheme. R. Salgado,and Todini[27] showed the 

necessary conditions for the steady state flow are simply the simultaneous fulfilment 

of nodal balance and the head loss-flow relationship; see also Tondini and Pilati 

[28]for details on the derivation of the alternative gradient formulation. Figure 3.2 

shows the main flowchart of the computer program developed for the global gradient 

algorithm.

3.9.Steady Incompressible Flow in Pipe Networks

Analysis and design of pipe networks create a relatively complex problem, 

particularly if the network consists of a lager number of pipes as frequently occurs in 

the water distribution system of large metropolitan area, or natural gas pipe network. 

Professional judgement is involved in deciding which pipes should be included in a 

single analysis.

Obviously it is not practical to include all pipes which deliver to all customers of a 

large city, even though they are connected to the total delivery system. Often only 

those main trunk lines which carry the fluid between separate sections of the area are 

included, and if necessary analysis of the networks within this section may be 

included. In water distribution system, the steady-state analysis is a small but vital 

component of assessing the adequacy of a network.
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Start (1=0)

Read Data:
-Gene Data: title, No. Of links, nodes and sources, detention criteria, 

Formula, printout options.
-Link data: initial and final nodes, length, diameter, roughness, type link 
-Nodal Data: type o f node, consumption, ground level, fixed heads

Assemble matrix of coefficients: A

A=[Alt{NAnT 'A t]
Assemble right-hand side vector: b 
b = -A ll(NAliy lAuQi
Reduce A and b to cater for fixed head nodes

Perform incomplete decomposition o f A « [Z][Z]7

solve\L lAL 1 \ lfH M) = L xb Via the conjugate gradient algorithm, 
get: Hi+1

Update flow (generate first flow solution if 1=0)

Qm  = ( I - m ^ A ^ Q i - i N A ^ A ^ H ,i+l

Print results

Stop

Figure 3.2 flowchart o f computer program GRAD (the global gradient algorithm)
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Such analysis is needed each time to changing patterns of consumption or delivery 

are significant or add-on feature, such as supplying new subdivision, addition of 

booster pumps, or storage tanks changing the system. In addition to steady flow 

analysis, studies dealing with unsteady flows or transient problem, operation and 

control, acquisition of supply, optimisation of networks performance against cost, 

and social implication should be given consideration but are beyond the scope of this 

study.

The simulation of the steady flow in pipe networks is based on the mathematical 

representation of the network components and their connectivity through an 

appropriate topological system of nodes and elements.

The behaviour of the network elements is simulated by applying the energy equation 

while, in order to simulate the interaction between the network elements, the 

continuity equation has to be satisfied at any network node. The aforementioned 

equation along with the boundary conditions constitutes a non-linear system of 

equations, which describe mathematically the behaviour of the whole piping system. 

The steady state problem is considered solved when the flow rate in each pipe is 

determined under some specified patterns of supply and consumption. The supply 

maybe from reservoir storage tanks and/or pumps or specified as inflow or outflow at 

some point in the networks.

3.9.1.Types of Pipe Flow Problems

The hydraulic engineer is confronted with many problems in the planning, design 

and operation of pipe supply system. The problem can be divided into analysis and 

design types both for steady flow and unsteady flow.
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The analysis of steady flows in simple pipes may be for rate (given the head loss) or 

for head loss (given flow rate). The same calculations apply to compound pipes (in 

parallel or series) although solution of more than one equation are then involved. 

When it comes to branched or looped networks more sophisticated methods become 

necessary.

The design problem is usually treated as a steady state problem that for known head 

and draw-off, the engineer has to select the pipe layout and diameter and reservoir 

location and size. The latter aspect, namely reservoir sizing is really unsteady state 

flow problem which may be often solved using steady-state equation. Multiplying 

draw-off rate by time may assess net outflow over the peak draw-off period.

For more rapid variation in flow (rigid column) surge theory or even elastic water 

hammer theory is necessary to determine heads and transient flows. Computer 

analysis is practically essential. Once to determine steady-state flows or head.

The design problem associated with unsteady flows is the determination of pipe 

thickness, and the operating rules for valves, pump.. .etc

3.9.2.Method of Solution

Where complex pipe networks are utilised for water distribution it is not easy to 

calculate the flow in each pipe or the head at each point. Even if the flow-head loss 

equation assumed is explicit for each given pipe length, diameter and roughness, the 

non-linear relationship between the head loss and flow makes calculations difficult. 

In un-looped tree-like networks the flow will be defined by the draw-off but if the 

pipe networks incorporated closed loops flow are unknown as well as head at the 

various nodes.

5 0



The complexity of the pipe networks, as well as the facilities available for 

computation, will dictate which method of analysis is to be utilised. Many of the 

following methods can be performed manually whereas computer are required for 

more complex methods, particularly where unsteady flow is involved

1. Equivalent pipes for compound pipes in series.

2. Equivalent pipes for complex pipes in parallel

3. Trial and error methods for multiple reservoir problems

4. Analytical solution of flow-head loss equation for compound pipes

5. Analytical solution of flow-head correction for pseudo-steady flow

6. Iterative node head correction for predominantly branched networks(by hand 

computer)

7. Iterative loop flow correction for looped networks (by hand or computer)

8. Simultaneous solution of the head loss equation for all pipes by matrix or 

iterative method

9. Linearization of head loss equation and iterative solution for head at nodes

10. Linearization of head loss equation and iterative solution for flow in pipes

11. Analytical solution of rigid column unsteady flow equation

12. Numerical solution of finite difference form of rigid column acceleration 

equation ,head loss equation and continuity equation

13. Graphical analyses for unsteady rigid column flow.

14. Graphical analysis for unsteady elastic water hammer

15. Finite difference and characteristic solution of differential water hammer 

equation-using computer. Valve, pump, vaporisation, release system and 

branches may be considered
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3.9.3.General Equation

1. Continuity of flow at junction (net flow in draw-off must be zero)

2. Head difference between nodes equal to friction head loss in the pipes linking 

them. Minor losses and velocity head are generally neglected or included in 

the friction term, or an equivalent length pipe is added to the pipeline to allow 

for minor losses.

3. . Dynamic equation of motion -  only where acceleration or deceleration of 

water is significant.

3.10.Reducing Complexity o f Pipe Networks:

In general, pipe networks may include series pipes, parallel pipes, and branching 

pipes (i.e. pies that form the topology of a tree). In addition, elbow valves, meter, and 

other device which cause local disturbances and minor losses may exist in pipes. All 

of the above should be combined with or converted to an “equivalent pipe” in 

defining the networks to be analysed. The concept of equivalent is useful in 

simplifying networks. Methods of defining equivalent pipes for each of the above 

mentioned occurrence follows.

3.10.1.Series Pipes

It is possible to replace series pipes by an equivalent pipe. This can be done to 

simplify a system by reducing the number of pipe. It can also be used as a design aid
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where a good design can be obtained using pipes of any diameter and finally the 

equivalent series pipe can be sized (using available diameter) which has the same 

hydraulic properties wood [25]

The method for reducing two or more pipes of different size in series will be 

explained by reference to the diagram below. The same flow must pass through each 

pipe in series Fig 3.3. An equivalent pipe is a pipe, which will carry this rate and 

produce the same head loss as two or more pipes, or Jepson [8]

Hfe = Y Jh f i - <  3.19)

Expressing the individual head losses by the exponential formula gives,

KeQ'w = K tQn' + K2Q"2 + ..... = £ * , 0 " ' ------(3-20)

For network analysis Ke and ne are needed to define the equivalent pipes hydraulic 

properties. If the Hazzen-Willams equation is used, all the exponents «=1.852, and 

consequently

Kc, = Kl + K 2+  = £ * , -  (3.21)

Or the coefficient Ke for the equivalent pipe equals the sum of K of the individual 

pipes in series.

Equation (3.21) can be written in different way for an equivalent length as.
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W - W + W  =  L  =  L ' + L l  ( 3 -2 2 )

where LI  and L2 are the lengths of pipes with diameter D1 and D2 respectively and 

De is the diameter of a pipe length 1 which is equivalent to the series pipe. In terms of 

the equivalent diameter the length of pipe of diameter D2 can be computed as

l 2 = l v A- j  
f  Di V-87

v A y

-1
(3,23)

If the Darcy-Weishbach equation is used, the exponents n in Eq (3.20) will not 

necessarily be equal, but generally these exponents are near enough equal to that the 

ne for the equivalent pipe can be taken as the average of these exponents and Eq (3- 

21) used to compute Ke.

3.10.2.Series Pipe Flow with Pump(s)

The solution of pipe flow problems involving pump normally requires the data from 

pump characteristic curves to be used. However, if a computer is used to solve these 

problems, such reading can no longer be done in this way. But the resolution of this 

problem is not difficult as part of the computer solution of this kind of problem, 

sufficient data are supplied to the program so that the head HP can be expressed as a 

polynomial in discharge that fits the pump-curve data.
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Let the pump characteristic curve for the head hp be expressed by second-order 

polynomial Hp=aQ+bQ+c, in which the coefficients a,b,and c are determined by the 

use of three IIp.Q data pairs that bracket the expected range of operation of the 

pump. To obtain the coefficients, three equations are written by substituting reach 

data pair into the polynomial to obtain

aQ\ + bQ\ + c = H pi „.(3.24)

aQl + bQ2 + c = Hn

aQ\ + bQ> +c = H P}

In matrix equation (3.24) becomes

a 2 a i M K 1
a 2 a i

v  H
a 2 a i H » .

which can be solved in various ways to determine the coefficients.

An alternative approach is to use the Lagrangian interpolation. Lagrange’s formula is

B  +  J g - a x g - a )  „  . Æ f f i i r i  H  ( 3 .2 5
'  o a - a x a - a )  ( a - a x i a - û )  p ( a - a x a - a )

)

The head Hp is again expressed as quadratic equations in Q, but the terms are 

rearranged from the earlier approach. The coefficients a,b and c can be found by 

expanding the numerators. Letting
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( a - a x a - a )

Hpi -(3.26)
( & - & X & - & )

c _  « a ______
( a - a x a - a )

it is shown that

a = c, + c2 + c3

^ = -2[fe2+ a > ? , + t e  - e , K + ( e .  - a h ] - ( 3 . 2 7 )

C  =  0 2 0 3 C I +  Q i Q l C2 +  G l 0 2 C 3

Irrespective of which approach is used, the result can be interesting in a computer 

program so that the need to read from a pump characteristic curve during the solution 

can be avoided.

3.10.3.Parallel Pipes

It is often necessary to analyse a system with parallel lines. An existing system may 

have such lines and system improvement often take the fonn of lines laid parallel to 

the existing ones. In any case it may be desirable to use the concept of an equivalent 

pipe to represent parallel ones Fig 3.4. This concept is especially useful for system 

simplification or to check change of this type proposed for an existing system. In 

reality each parallel pipe adds one loop to the system and would require a change in 

the basic system data. However with nothing more than a pipe line data change the 

effect of a parallel pipe can be investigated if the concept of an equivalent pipe used,
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The basic principle behind the concept of an equivalent pipe is to replace parallel 

pipes by a single pipe, which will transport the same total flow rate for the same head 

difference between the connecting junction.

H f = h f = h f = h f  = ------------ (3.28)

The total flow rate will equal the sum of the individual flow rate or

e = a + a = Z  a ---(3.29)

Solving the exponential formula ( H f  = kQ") for Q and substituting into Eq.(3.29) 

gives

i i
' Hf' ( Hf' - J i t «2

- z i s l
V / U J U J

— (3.30)

If the exponents are equal, as will be the case in using the Hazan-Williams equation, 

the head loss (hf)_may be eliminated from Eq (3.30) giving

t i I

K;I /

the above can be written for an equivalent diameter for example if the subscript 1 

represents a pipe and the subscript 2 represents an existing or proposed pipe parallel
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Figure 3.3 Series Pipes

Figure 3.4 Parallel Pipes
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to pipe the relationship for the diameter of the equivalent pipe obtained from the 

Hazan Williams equation is

D. = Q ( L ^
.54

£),2'63 V
.54

A 2'63
Ce \  L \ ) Ce \ L 2

.38

— (3.32)

where D, C and L are the diameter, the Hazan-Willamis roughness coefficient and 

length respectively and the subscript e represents the equivalent pipe. To use this 

expression, the equivalent length Le and the Hazan-Williams coefficient Ce are 

chosen as desired and the equivalent diameter De computed from the above 

expression. For example consider that an existing 1000’; 6” line is paralleled by a 

new 1100’; 10” line the following data holds

Cl=90 C2=130 

D1=6” D2=10” 

L1=100’L2=110’

If Le is taken as 1000’ and Ce as 130 the equivalent diameter is computed to be 

De=10.45” . A pipe with this L, C and D is equivalent to the two pipes in parallel and 

will give the same total flow rate and the same junction pressure.

When the Darcy-Weishbach equation is used for the analysis, it is common practice 

to assume N as equal for all pipes and use Eq (3.32) to compute the Ke for the 

equivalent pipe.
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3.10.4.Branching System

In a branching system a number of pipes are connected to the main to form the 

topology of tree. Assuming that flow is from the main into the smaller laterals it is 

possible to calculate the flow rate in any pipe as the sum of the downstream 

consumption or demand. If the laterals supply water to the main, as in a manifold, the 

same might be done. In either case by proceeding from the outermost branches 

toward the main or “root of the three” the flow rate can be calculated, and from the 

flow rate in each pipe the head loss can be determined using the Darcy-Weichbaher 

or Hazan-Williams equation. In analysing a pipe network containing a branching 

system, only the main is included with the total flow rate specified by summing from 

the smaller pipes, upon completing the analysis the pressure head in the main will be 

known. By subtraction individual head loss from the known head, the head or the 

pressures at any point throughout the branching system can be determined

3.11.Equations Describing Steady Flow

3.11.1 System of Q-Equations

The analysis of flow in pipe networks is based on the continuity and energy equation 

laws as described in chapter one. To satisfy continuity, the mass, weight, or 

volumetric flow rate into a junction must equal the mass, weight, or volumetric flow 

rate out of a junction. If the volumetric flow rate is used this principle, as discussed 

in chapter 2, can be expressed mathematically as,
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YjQ out - £ g w z  = c  --------- (3.33)

in which C is the external flow at the junction (commonly consumption or demand). 

C is positive if flow is into the junction and negative if it is out from the junction.

If a pipe network contain (J) junctions (also called nodes) and all external flows are 

known then (J-l)  independent continuity equations of the form of Eq.(3.33) can be 

written. The last, or the (J) continuity equation, is not independent; that is, it can be 

obtained from some combination of the first {J-l) equation. Each of these continuity 

equations is linear, i.e., Q appears only to the first power.

In addition to the continuity equation, which must be satisfied, the energy principle 

provides equation, which must be satisfied. These additional equation are obtained 

by noting that if one adds the head losses around a closed loop, taking into account 

whether the head loss is positive or negative, that upon arriving at the beginning 

point the net head losses equal zero. Mathematically, the energy principle gives L 

equations

' Z W  = 0 ...........(3.34)
L

Y j H I/ = AWS
L

When the head losses are expressed in terms of the exponential formula, then these 

equations take the form
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Y . K fJ '  = 0 ------ (3.35)

Y ,K ,Q ’ = A WS

In which the summation includes the pipes that form the loop. If the direction of the 

flow should be in the opposite direction of that was assumed when the entire loop 

equations were written, such as Qi become negative, then there are two alternatives: 

one is to reverse the sign in front of this terms, i.e., correct the direction of the flow. 

The second, which is generally preferred when writing a program to solve these 

equations, is to rewrite the equations as follows:

'E m  |e,r'= o--(3.36)

S c a l a r =aws

A pipe network consisting of (J} junctions and (L} non-overlapping loops and (N) 

pipes will satisfy the equation

N  = ( J - 1 )  + L ----------- (3.37)

(If all of the external flows are not known, then all junction equations are 

independent and available for use as will be discussed in the next chapter).

Since the flow rate in each pipe can be considered unknown, there will be (N) 

unknowns. The number of independent equations, which can be obtained for a 

network, as described above are (J-1+L)i Consequently the number of independent 

equations is equal in number to the unknown flow rates in the N  pipes. The (j-1)
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continuity equation are linear and the L energy (or head loss) equations are non

linear. Since large networks may consist of hundreds of pipes, systematic methods, 

which utilise computers, are needed for solving this system of simultaneous 

equations. The solution of the equations can be verified by substituting into each of 

the equation. It is relatively easy to determine flows in individual pipes, which also 

satisfy the (J-l) continuity equations. However, the correct flow rates, which 

simultaneously satisfy the L energy equations, are virtually impossible to obtain by 

trial and error if the system is large.

After solving the system of equations for the flow rate in each pipe, the head losses 

in each pipe can be determined. The HGL-elevation at the nodes or at any point 

along the pipe can be found by starting at a known HGL-elevation and repeatedly 

applying the exponential formula for head loss to each pipe. By subtracting the head 

loss from the head at the upstream junction, plus accounting for difference in 

elevation, if this were the case. If the network is branched system, then the in

equations consist of only junction continuity equations. These can be solved, given 

the discharge in every pipe, with a linear algebra solver. Thereafter the individual 

heads are computed from the head loss equation for each pipe. In some problems the 

external flows may not be known. Rather the supply of water may be from reservoirs 

and/or pumps. The amount of flow from these individual sources will not only 

depends upon the demands but also will depend upon the head losses throughout the 

system
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3.11.2.System of H-equations

If the head (either the total head or the piezometric head, since the velocity head is 

generally ignored in determining heads or pressure in pipe networks) at each junction 

is initially considered unknown instead of the flow rate in each pipe, the number of 

simultaneous equations which must be solved can be reduced in number. The 

reduction in number of the equations, however, is at the expense of not having some 

linear equations in the system.

To obtain the system of equations, which contain the head at the junction of the 

networks as unknown, the (J-l) independent quantity equations are written as before. 

Thereafter the relationship between the flow rate and head loss is substitute into the 

continuity equation. In writing these equations it is convenient to use a double 

subscript for the flow rate. These subscripts correspond to the junction at the ends of 

the pipe. The first subscript is the junction number from which the flow comes and 

the second is the junction number to which the flow is going. Thus (Q12) represents 

the flow in the pipe-connecting junction (1) and (2) assuming the flow is from 

junction (1) to junction (2) see Figure [3.5]. If the flow is actually in this direction 

(Q12) is positive and (Q21) equals minus (Q12). Solving for (Q) from the 

exponential formula (using the double subscript notation) gives

Q ij =
H k

\  ^¡j j
-(3 .3 8 )
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If equation (3.38) is substituted into junction continuity equation (3.33), the 

following equation results:

I
h , - h A "if z H , - H j ]nJK> J Kl J = C -— (3.39)

Upon writing an equation of the form Eq (3.39) at (j-1) junction, a system of (J-l) 

non-linear equations are produced.

As an illustration of this system of equation with the heads at the junction as the 

unknowns, consider the simple one loop network fig 3.5 which consists of three 

junction and three pipes. In this network two independent continuity are available 

and consequently the head at one of the junction must be known. In this case at [1] 

the two-continuity equations are

Qn +  Qi 3 — Qji +  Qji

Qi\ + Qn = ~Qj2

Although in the second equation the flow in pipe 1-2 is towards the junction, the 

flow rate (Q21) is not preceded by a minus sign since the notation 2-1 takes care of 

this. Alternatively the equation could have been written at junction 2 and 3 instead of 

1- and 2. Substituting Eq. (3.38) into these continuity equation gives the following 

two equation to solve for the heads, H2 and H3 (HI is known and the subscript of the 

H ’S denote the junction number);
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1 1

k ,2 J  K „

1— —   ̂  ̂ 2 3 ¡> = -C 2 ~(3.40)
^ , 2  J  1  K* I

Since a negative number can not be raised to a power, a minus sign must precede any 

term in which the subscript notation is opposite to the direction of flow, i.e. the 

second form of equation as given in parentheses is used. System of these equations 

will be referred to as H-equation.

Upon solving this non-linear system of equations, the pressure at any junction (J) can 

be computed by subtracting the junction elevation from the head (hj) and then 

multiplying this difference by or the specific weight of the fluid. To determine the 

flow rates in the pipes of the network, the now known heads are substituted into Eq. 

(3.38).

3.11.3.System of AQ -Equations

Since the number of junction minus 1 (J-l) will be less in number than the number of 

pipes in a networks by the number of loops L in the networks, the last set of h 

equations will generally be less in number than the system of q equations. This 

reduction in number of equations is not necessarily an advantage since all of the 

equations are non-linear and may contain many terms. These equations consider the 

loop corrective discharges or AQ ’s as the primary unknowns. These corrective
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discharges or AQ ’s will be determined from the energy equations that written for NL 

loops in the networks, and thus NL of these corrective discharge equations must be 

developed. To obtain these equations, the discharge in each pipe of the network is 

replaced by an initial discharge, denoted by Qoi, plus the sum of all of the initially 

unknown corrective discharge that circulate through the pipe I or

e,. = e 0, + Z Aa - - ( 3-41)

in which the summation includes all of the corrective discharges passing through 

pipe i. The initial discharges Qoi must satisfy all of the junction continuity equations. 

It is not difficult to establish the initial discharge in each pipe so that the junction 

continuity equations are satisfied. However, these initial discharges usually will not 

satisfy the energy equations that are written around the loops of the network.

Equation 3.37 is based on the fact that any adjustment can be added (accounting for 

sign) to the initially assumed flow in each pipe in a loop of the network without 

violating continuity at the junction. It is very important to understand the validity of 

this decomposition; it may help to note that any AQ entering the junction as it flows 

around a loop must leave that junction, and vice versa see Fig.3.6. Because of this 

fact, we decide to establish NL energy loop equations around the NL loops of the 

network, in which each initial discharge plus the sum of the corrective loop

discharges ^ A g i s  used as the discharge.

The junction continuity equations are satisfied by the initial discharge Qoi and are not 

a part of the system of equations. Th corrective discharges can bee chosen as positive 

if these circulate around the loop either in the clockwise or counter-clockwise
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Figure 3.5 a network with three pipes and three junctions.

Figure 3.6 a two-loop portion of a network
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direction. It necessary to be consistent within any one loop, but the sign convention 

may change from loop to loop, if desired. A corrective discharge adds to the flow£?0, 

in the pipe I if  it is in the same direction as the pipe flow, and it subtracts from the 

initial discharge if  it is in the opposite direction.

To summarised how the AQ are obtained, replace the Q ’s in the energy loop 

equations, Eq 3-34 and 3-35, by

a  = 0 „ ± 2 > & — ( 3 - 4 2 )

Here the summation includes all corrective discharges which pass through pipe I, and 

the plus sign is used if the net corrective discharge and pipe flow are in the same 

directions; otherwise the minus sign is used before the summation. Thus Eqs 3-34 3- 

35 become

Y jK -fa t  ± X! AQt}”' = 0 (Head loss around loop I)

£ * ,{ & , ± 2 > & } " ' = AWS— p - « )

To automate the choice o f  sign, these equations can be rewritten as

£ j r , { a , ± 2 > f t ) & , ± E A& r ' = 0

£ * :,{& / ± Z A2*|e.< ± 2 Aa r '  = A^S1—(3.44)
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3.12.Solving Networks Equations

3.12.1 Newton Method for Large Systems of Equation

These are System of algebraic equations to describe the relation between the 

discharges, pressure, and other variables and parameters in a pipe network. Many of 

the equation in these systems of equations are non-linear. A good method for solving 

non-linear equations is therefore needed. Numerous methods exist, but the Newton 

method is the methods of choice her. Its application to the solution of the in

equations, the H-equations and the AQ -equations will be discussed in this section. 

To treat the unknown discharges (when using the Q-equation, the unknown heads 

(when using the H-equation), and the unknown corrective loop discharges (when 

using the AQ -equations) in a uniform way, the primary unknown variable in this 

section will be called the vector {jc} .

The Newton iterative formula for solving a system can be written as

W (m+U)={x}w - [ i ) r M (m)-(3 .4 5 )

Here x  is an entire column vector {x} of unknowns, {f } is an entire column vector

of equations, and {l)}H is the inverse of matrix {£>}, which is the Jacobian. The 

Jacobian occurs in several applications in mathematics, and it represents the 

following matrix of derivatives:
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M -

dFx dF{
fix. dx2 dxn
dF2 dF2 sf2
fix. dx2 fixfl

dFf t dFI t

fix. fix2 dxn

- (3 .4 6 )

Likewise {x} and {f } are actually

W -

K

*2

■v s II A

.V F n .

-(3 .4 7 )

Eq. (3.45-3.48) indicates that the Newton methods solve a system of non-linear

equations by iteratively solving a system of non-linear equations because {d}"' {f } 

represents the solution of the linear system of equations

M M  -(3 .4 8 )

That is, the vector that is subtracted from the current estimate of the unknown vector 

{x} in Eq3.45 is the solution {z} to the linear system of equations that is Eq3.48. In 

practice are therefore sees that he Newton method solves a system of equations by 

iterative formula

{x}(",+1) = {x}"' -{ z } —(3.49)
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Where {z} is the solution vector that is obtained by solving [Z>]{z} = {f } ? If the 

system should actually contain only linear equations then first iterative will produce 

the exact solution.

The development of Eq. (3-45.48.49) follows, one begins by using a 

multidimensional Taylor series expansion to evaluate the individual equations Fi in 

the neighbourhood of an initial estimated solution that are called {xj which are 

presumed to be near the actual solution:

F1(m+1) = F /m) + ^  Ax, + ^ A x2 + ...... + — Axn + 0(A x2) = 0
dxx dx2 dxn

F ( m + \ ) = p l m )  + ^ L A x ^ + ^ 2 A x 2 + ..... + - ^  Ax„ + 0(AJC2 ) -  0
dx] dx2 dxn

F <.+I> = F M  + Ax, + Ax2 + ..... + f i  Ax, + 0(A xJ) = 0
oxx ox2 oxn

-(3.50)

When one uses matrix notation and makes the substitution Ax; = x\m 0 -  x\m), this 

system of equations becomes

di\ dF\;

X
(m) dxx dx2 dx„ '('«+0 _ v(m)'.'VI .A'l

F2 dF2 dF2 dFn
1 I

V(m+D _ v(m)
2 2+ dxx dx2 dxn <

dF„ dFn 3F„ V("i+D v(.m) r  n Xn ,
dxx dx2 dxn_

= 0 —(3.51)

Which can be written compactly as {f }{"'] + [Z)J"'j({x}(m+l) -  (x}(m) = {o}and solved 

for {x}(m+1) to produce Eq. (3.45).
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CHAPTER FOUR

SIMULATION

4.1.Introduction

The purpose of a water distribution networks is to supply system user with the amount 

of water and to supply it within adequate pressure. A system may be subject to a 

number of different loading conditions, such as fire demand at different nodes, peak 

daily demands, a series of patterns varying through a day or a critical load when one 

or more pipes are broken. A loading condition is defined as pattern nodal demand Fig 

4.1-4.2 shows example networks for two loading conditions. In order to insure a 

design is adequate, a number of the critical conditions must be considered during the 

design process. The ability to operate under a variety of load patterns has been 

equated with a reliable networks Templeman,[29].

To meet the pressure requirements and varying demands, the designer can incorporate 

a number of components into the network. Pipes, whose function is to convey water 

between nodes, are the most obvious. The cost of the pipe is related to the type of the 

material and its diameter. The design of a water distribution system can be separated 

into two parts, the layout and design. The layout problem for a water distribution 

system is to select the sites, given a set of candidate location for different components. 

The design problem, on the other hand, is to determine the optimum sizes of the
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Figure 4.1 pipe system

Figure 4.1.b-pipe system
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components, for example, for pipe diameter, given the location Kevin E. Lansey and 

Larry.W. Mays[30]

In addition to pipes, pumps can be included in the system at locations throughout the 

networks. Pumps are comprised of an initial cost based on the size, and an energy 

cost, which is a function of the amount of water pumped. The designer may choose to 

use a single pump or a group of pumps working in series or in parallel, depending 

upon the demand and reliability requirements. Tanks are also useful in a networks for 

storage in emergency condition, to help smooth the peak demands throughout a day 

and to make use of energy price difference. The price of a tank is a function of the 

volume and elevation, in the case of elevated tanks. Both regulating valve and control 

valve may also be incorporated.

4.2.Pipe System Characteristics

It is necessary to describe the feature of the piping system using data, which assigns 

numerical value to the pertinent system characteristics. Parts of this data refer to as 

physical characteristics of the pipe system components and the rest to pressure and 

flow requirements imposed on the system. Also a general description of pipe system 

configuration and pipe system parameters which require data input. This section 

includes a general description of pipe system configuration and pipe system parameter 

which require data input.

4.3.Pipe System Geometry

The principal element in the pipe system are pipe sections which are constant 

diameter sections which can contain fittings such as bends, valves and pump as shown
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in Fig.4.2. The end points of pipe section are called nodes and are classified either as 

junction nodes or fixed grade nodes (FGN). These are shown in Fig.4.4 and Fig.4.5.

4.3.1.Junction Node

A node where two or more pipes meet or where flow put in or removed from the 

system .If a pipe diameter change occurs at a component such as a valve or a pump, 

this point is a junction node.

4.3.2.Fixed Grade Nodes (FGN)

A node in the system where both the pressure and elevation (or hydraulic grade lines) 

are known is usually connected to a storage tank or reservoir or a source or discharge 

point of specific pressure. Each system must have at least one fixed grade node.

4.3.3.Primary Loop

A close pipe circuit is one with no closed pipe circuits contained within it. When the 

junction primary loops, and fixed grade nodes are properly identified as described 

above the following relation holds for all pipe system. Wood and rays [31]

P = J  + L + F - l  (4.1)

where: -

>  P= number of pip sections

>  J= number of junction nodes

>  L= number of primary loops

>  F= number of fixed grade nodes

76



Figure 4.2 Pipe Section

Figure 4.3 Junction Node
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In addition, open loops (pseudo-loops) can be identified in a pipe system. An open 

loop is defined as a non-intersection path of pipes that does not contain a closed path 

between any two fixed-grade nodes. It follows from this definition that in any 

connected network with Nf fixed-grade nodes, the number of open loops NE equals 

(F-l) Paul F. Boulos,Don J. Wood-[32]. A proper identification of pipe section, 

junction nodes, a fixed grade node and primary loop is useful to assure a proper 

system description. Prior to coding data for a pipe network the pipe sections should be 

numbered and counted, and the junction nodes numbered and counted, and the fixed 

grand nodes labelled usually by A, B, C, .. .etc. Before proceeding Eq. (4.1) should be 

verified. Fig 4.6 illustrates this procedure. It shows the number of pipe sections and 

junction nodes and labelling the fixed grade node and a verification of Eq (4.1) is 

made. Although non-consecutive numbering is allowed, consecutive numbering (pipe 

section 1 to p  and junction 1 to j) is suggested to help minimise any possible mistakes.

4.4.Pipe System Components

Data regarding the physical characteristics of the components in the pipe system must 

be obtained prior to making a computer analysis. A general description of the 

components, which are incorporated in the program and the necessaiy data, follows:

4.4.1.Pipe Section

The total length, inside diameter and the roughness of each pipe section must be in 

put as data .The designation of a pipe roughness depends on the head loss equation 

used. Estimating the head loss due to the friction in closed pipes is an important task 

in the solution of many practical problems in different branches of the engineering 

profession Giles et al., [33]. There are several equations, which are often used to
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Figure 4.5 Fixed Grade Nodes

Figure 4.6 sample pipe system demonstrating
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evaluate the friction head loss (i.e.conversion of energy per unit weight into a non- 

recoverable form of energy). Because most users are primarily interested in water 

distribution system, the most widely used such equation is the Hazen-Williames 

Equation, which was developed primarily for this purpose and is normally used to 

compute line losses.

Q = 1.31 ZChw * A * R06i * S 0M (4.2)

Q = 0.849 * Chw * A * R0M * S 0M................... SI

in which

>  Chw is the H- W roughness coefficient.

>  S is the slop of the energy line and equals HF/L.

>  R is the hydraulic radius defined as the cross-sectional area divided by the 

wetted perimeter, P and for pipes equals D/4.

If the head loss is desired with Q known the II-W  equation for pipe can be written as.

HJ Chwn52d A*2Qn52 (A 

with (d) and (I) in feet or

8.52 * I05 * Z,
" C W  85 V ' 87g L852  ...........

with (d) in inches and (1) feet

/ / /  =
10.49 * L

C h w '^ d ^ Q '* 52
-SI
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If this expression is to be employed, the roughness coefficient depends on the type 

and condition of each pipe and Table 4.1 gives the Hazen-Williames Equation along 

with some representative value for this coefficient. However, the variation of age 

depends somewhat on the location of water distribution system and sometimes-field 

tests are required to obtain reliable values of the Hazen-Williames Roughness 

Coefficient for old pipes.

Another method, which is the most fundamental sound method for computing the 

head loss, is by mean of the Darcy-Weisbach equation Dake, [34]; Jepson [35] and 

Grant, [36], Darcy-Weisbach equation can be written as:

----------- (4.4)
7 d 2 g

in which:

>  f  - Is a dimensionless friction factor whose determination is described in the 

following pages.

>  d: - is the diameter

>  L: - is the length of the pipe.

>  V: - is the velocity of flow.

>  g: - is the acceleration of gravity.

The friction factor, f, is a function of the Reynolds number, Re, and relative roughness 

of the pipe (i.e. e/D, where e is the pipe roughness). The Reynolds number is a 

dimensionless term representing the ratio of inertial to viscous forces Giles et al., [33] 

that is defined as:
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Table 4.1 values of C in Hazen-Wlliams Equation

Type of pipe Condition C

New all sizes 130

12” + over 120

5 years old 8” 119

4” 118

24” 113

10 years old 12” 111

4” 107

24 + over 100

Cast iron 20 years old 12” 96

4” 89

30” + over 90

30 years old 16” 87

4” 75

30” + over 83

40 years old 16” 80

4” 64

40” 77

50 years old 24” 74

4” 55

Welded steel Value of C the same as for cast-iron pipes, 5 years older

Riverted steel Value of C the same as for cast-iron pipes, 10 years

older

Wood stave Average, regardless of age 120

Concrete Large sizes, good workmanship, steel forms 140

Concrete lined Large sizes, good workmanship, wooden forms 120

Centifugally spun 135

Vitrified In good condition 110

Plastic or Drawn Tubing 150
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u VD Re = -----
v

-((4.5))

where is v  the kinematics viscosity of the fluid (L2/T)

The relationship between f, on the one hand, and Re and e/D, on the other hand, varies 

in complexity depending on the flow regime. While f  is only a simple and direct 

function of Re for laminar flow, the equation for estimating f  in the turbulent flow 

region is more complex. According to Giles et al. [33], these relationships are, 

respectively:

/  = —  for Re < 2100 - —(4.6) 
Re

i f
= - 21o g l0

e 2.51 
3.1D + R ^ J f

/o rR e >  4000— (4.7)

The Colebrook equation, represented by Eq-(4.7), is transcendental or implicit with 

respect to f. For this reason, it is usually solved either by trial-and-error or using an 

iterative solution scheme. Alternative solutions of the Colebrook equation are also 

available after employing some assumptions, which often reduce Eq. (4.7) to an 

explicit one. Among the many approximations implemented are those for a wholly 

rough pipe when the flow becomes independent of Re as the latter becomes very 

large, thereby neglecting the second term in Eq. (4.7). Other equations, such as that of 

Blasius Streeter and Wylie, [37], have been suggested for obtaining an explicit 

solution for f. The Blasius equation, however, is only applicable to smooth pipes and 

Re in the range of 3000-100000 Giles et al., [33]. More equations for estimating f
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were developed to simplify the iterative process. Murdock [38] and Miller [39] each 

presented an equation for the friction factor in an explicit form. However, their 

equations were meant to produce good initial estimates for the iterative solution 

scheme of the Colebrook equation, thereby dramatically reducing the number of 

iterations required to achieve accurate solutions. Solving their proposed equations 

Independently involves some error that may become substantial when the parameter 

e/D and Re are outside the established ranges Streeter and Wylie, [37],

The hydraulic analysis of branched and looped pipe networks often involves the 

implementation of a tedious and time-consuming iterative procedure that requires 

extensive use of computers Mohtar et al., [40] and Gerrish et al., [41]. The same is 

applicable for the design and hydraulic analysis of large-scale microirrigation and 

sprinkler irrigation systems where the accuracy of the numerical analysis is crucial. 

The hydraulic analysis of sub-main units using the finite element formulation, for 

example, results in excessively large systems of algebraic equations to be solved 

iteratively Bralts et al., [42]; Gerrish et al., [41] and Gerrish et al., [43], The number 

of equations varies with the number of pipe elements and flow outlets within the 

system and may reach the order of thousands. While the Darcy-Weisbach equation is 

the most fundamentally sound and accurate equation for computing frictional head 

losses in closed conduit flow, several other empirical equations, such as the one by 

Hazen-Williams Brater et al., [44], are often utilised for this purpose and it is 

described in references Bralts and Segerlind, [45]; Haghighi et al., [46] and Mohtar et 

al., [40], Otherwise, approximate explicit solutions of the Colebrook equation are 

carried out to eliminate the need for calculating the friction factor, f, iteratively Kang 

and Nishiyama, [47]. The approximate direct solution of the Colebrook equation is 

implemented since the sub-main unit is discretized into thousands of pipe elements
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resulting in large systems of non-linear algebraic equations to be solved iteratively, 

making it impractical to solve for f  iteratively within each pipe section and during any 

given iteration.

Users have the option to employ the Darcy-Weisbach Equation for computing the 

head loss. This expression can be applied to systems transporting water and also 

liquid other than water. If this option is employed, the roughness for each pipe section 

corresponding to the Darcy-Weisbach expression must be input as data as well as the 

kinematics viscosity of the liquid for that system.

Table 4.2 gives the Darcy-Weisbach Equation along with the explicit relationship for 

the friction factor employed in the program and some typical value for roughness for 

new pipe. This parameter depends on type and condition of the pipe.

4.4.2.Pump

Many different types of pumps exist but centrifugal pumps are most frequently used 

in water distribution systems. Centrifugal pumps impart energy to the water through a 

rotating element called an impeller and may be classified in two types, centrifugal and 

exile flow, depending upon the direction the water is forced. The number and angles 

of the blades on the impeller and the speed of the pump motor affect the operating 

characteristics of centrifugal pumps. Fig 4.7 shows a pump curve for a centrifugal 

pump relating the flow to the amount of head added by the pump. Also shown is the 

efficiency curve, which defines how well the pump is transmitting to the water the 

energy, supplied to the pump motor. Two points are of interest on the pump curve; the 

shutoff head, and the normal discharge or rate capacity. The shutoff head is the head 

output by the pump at zero discharge while the normal discharge head is the discharge
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Table 4.2 values of the Darcy-Weishbach Equation

Material e(ft) e(m)

Riveted steel 0.003-0.03 0.0009-0.009

Concrete 0.001-0.01 0.0003-0.003

Cast iron 0.00085 0.00026

Galvanised iron 0.005 0.00015

Asphalted cast iron 0.0004 0.00012

Commercial steel 0.00015 0.000045

Wrought iron 0.00015 0.000045

Drawn tubing 0.000005 0.0000015

Plastic pipe 0.000005 0.0000015

Where: -

fL V 2
hLP =  (Darcy Weishbach Equation)

2 gd

r —  2 5s  5.74 2

[logW l ^ )]

F= friction factor 

R= Reynolds Number 

s  =Roughness (ft.)

Table [4.1] values of C in Hazen-Wlliams Equation
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head where the pump is operating at its most efficient level. Variable speed motors 

can drive pumps at a series of rotative speed, which would result in a set of pump 

curves for the single pump. Usually, however to supply a given flow and head, a set 

of pumps is provided to operate in series or parallel and the number of pumps 

working depends on the flow requirements. This makes it possible to operate the 

pump near their efficiency. There is a wide range of pumps and corresponding pump 

characteristic curve but the relationships do not cover the continuous domain. Nor is 

their relationship, which could approximate the pump characteristic curves with a 

parameter describing the pump. Thus, the selection of a specific curve for a task 

requires finding what is available and most closely fits the project’s needs.

A pump can be included in any line of the pipe system. The characteristics of the 

pump can be described in two ways. The useful powers the pump put in to the system 

(in horsepower or kilowatts) can be specified. The useful power refers to the actual 

power, which is transformed into an increase in pressure head, and kinetic energy of 

the liquid as it passes through the pump. This method of describing a pump is 

particularly useful for a preliminary analysis or design when the specific operating 

characteristics of the pump are not known. The useful power can be easily computed 

from a typical head-discharge data point using the following

rr „ (Head )(Disch arg e.CfS)(Liquid .Density
Usefu -  power = --------------------- 5 5Q — ------------ (4.8)

Alternately the relationship between the head added H-pump and discharge, Q, can be 

described by point of operating data, exponential curve can be fit to obtain a pump 

characteristic curve describing the pump operation of the form (Kevin E.Lansey and 

Larry W. Mays [30]. J Krope and D Goricanec[51]
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Figure 4.7 system curve



Hpmup = AQ2 + BQ + He

Ep = H I -  CQ (4.9)

where

H-pump = pump pressure head.

He = cut off which represent the pressure head ast zero flow.

C,n = constants of the pump characteristic curve Haghighi et al.,[48].

A topically concave curve with H-pump increasing and Q decreasing is seen in Fig 

4.7. The computer program will determine the coefficient C and exponent n for the 

curve from the pump cut-off head, HI, and the two additional points of the opreating 

data (Head-Discharge) in put for this purpose, Fig 4.8 depicts this representation. The 

data points are shown along with the curve of the form of Eq (4.9), which passed 

through these data pints. An example for this is as follows

A pump head Ep, flow rate ( 0  relation is used of the form:

where C and n are determine by passing the curve through H2, Q2 and H3, Q3 

These are computed as

Ep = H l-C Q " <4.9)
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Figure (4.8) system curve
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And

C  = (771 -  H2) 
Q3N

(4.11)

This expression holds in range (0<=Q<=Q3). Above Q3 the characteristic is 

extended at a constant slope (as shown in figure 5) equal to the slope of Equation 

evaluated at Q-Q3.

The characteristic has the form:

Ep = A + SQ  (4.12)

where

S = -nCQ3n~x--------------- (4.13)

A  = H3 -  SQ3--------  — -(4.14)

The exponential relation given in Eq (4.9) represents the pump very well between 

zero flow and the third data point H3 and Q3 but is not suitable for negative flow and 

may not be suitable for flow in excess of Q3.

It possible, however, the solution of the hydraulic equation required Q pump flow rate 

outside the range of adequate pump representation by Eq (4.9) (the pump is not 

suitable for the conditions specified. A pump described by the opreating data has a 

check valve, which is closed if  the flow reversal occurs. This indicates that the pump 

cut off head is not adequate to overcome the system grade caused by other factors,
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and the pump as described is unable to operate. A message that the check valve is 

closed will be generated if this situation occurs.

If the solution indicates that the pump is operating at flow rate above the third data 

point Q3 then it operates on a straight line described by EP=A-SQ where the slop is 

the same as given by equation 2 at Q=Q3. The computer determines the values of a 

and s as described on the next page. This gives a characteristic, which is more realistic 

than Eq (4.9) gives for Q>Q3 and will better simulate a typical pump curve in this 

region.

If the pump operates out of the range Q1<Q<Q3 then the pump is considered to be 

operating out of it normal range and a message to this effect it generated.

Because using pump data, which is not compatible with the system requirement, may 

lead to poor results, it is suggested that initial analysis be carried out with constant 

power specified.

A third method of incorporating the effect of the pump into the system may be 

desirable if the analysis is to be made for a situation where the discharge pressure is to 

be specified or fairly closely known. For this application the pump discharge is taken 

as a fixed grade node with a grade designated using the specified pump discharge 

pressure. If the pump is on external line this fixed grade is simply a supply reservoir. 

If the pump is on an internal line (booster pump) then this application is identical to 

that for a pressure regulator with the regulated pressure being the discharge pressure 

of the pump.

Finally, a pump of unknown size is to be selected to input a specified amount of water 

into the water distribution system the pump station can be represented as a junction 

node. The desired inflow can be specified at this node and the analysis will compute
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the pump discharge, which would be required to produce the specified inflow. This 

application are illustrated in Fig 4.9

4.4.3.Minor Loss Components

A number of components in the pipe system such as valve, junction, bends, 

meter...etc , alter the flow pattern in the pipe creating additional turbulence which 

result in head loss in excess of the normal frictional losses in the pipe and this kind of 

losses may be substantial and should be, included in an analysis of the flow 

distribution of that system. The need to include such losses depends on the relative 

importance of theses losses to the line loses and the user must make this judgement. 

Theses additional head losses are tenned minor losses (m). The minor loss may vary 

somewhat with flow condition but it is usually sufficient to consider this to be 

constant for a certain component. If the pipelines are relatively long these losses are 

truly minor and can be neglected. In short pipe lines they may represent the major 

losses in the system, or if the device causes a large loss, such as a partly closed valve, 

its presence has dominant influence on the flow rate. In practice the engineer must use 

professional judgement in deciding if and how many “minor losses” should be in this 

analysis of fluid distribution system.

Using the concept of a minor loss coefficient M, which is a term, used to multiply the 

velocity head to give the concentrated head loss at the component, includes the losses. 

Hence, the loss is given by:

M V 2
Him = --------------- (4.15)

2g
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where

M -  a fitting loss due coefficient obtained experimentally Miller,[39]

V- the line velocity in FPS, M/S

F C C t YYl
g= gravitational acceleration 3 2 .2  j . (9.81---- r-).

Sec Sec

The minor loss coefficient may vary somewhat with the flow condition but is usually 

sufficient to consider this to be constant for a certain component. Some values, which 

are normally used for common fittings, are given in Table 4.3. Numerically M has the 

same value in (E) and (SI) units.

It is often necessary to compute a value for M data (observed or furnished by the 

manufacturer) for a particular component. If the pressure drop a cross the component

is known for a specific flow, the value of M can be easily computed. As an illustration

of this, suppose the sprinklers for a watering system were known to require a pressure 

of 13.2 Psig to discharge 90 GPM in a 2-inch line.

The pressure drop across the sprinkler is 13.1 PSIG or 30.23 feet head. For 

90G/W,the velocity in a 2”  line is 9.19 FPS. Hence the minor loss coefficient for the 

sprinkler is

Him = fitting head loss in feet



Table 4.3-loss coefficient for common fitting

Fitting M

Globe valve, fully open 10.0

Angle valve, fully open 5.0

Swing check valve, fully open 2.5

Gate valve, fully open 0.2

Gate valve, Va open 1.0

Gate valve, 14 open 5.6

Gate valve, Va open 24.0

Short-radius elbow 0.9

Medium-radius elbow 0.8

Long-radius elbow 0.6

45 Elbow 0.4

closed return bend 2.2

Tee, through side outlet 1.8

Tee, straight run 0.3

Coupling 0.3

45 Wye, through side outlet 0.8

45 Wye, straight run 0.3

Entrance

Square 0.5

Bell mouth 0.1

Re-entrant 0.9

Exit 1.0
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4.4.4.Check Valve

These valves allow flow only in the specified direction. If conditions exist for flow 

reversal, the valves shut and the line carries no flow.

4.4.5.Pressure Regulator Valve (PRV)

These valves are designed to maintain a specified discharge pressure PR, which is 

lower than the pressure upstream from the PRV. Inclusion of PRV’s require only that 

a junction node be designated at each PRV location and the data is prepared for this 

representation of the pipe system. A PRV is, actually modelled in the computer 

simulation as shown in Fig 4.10 as two nodes. The upstream node is a junction node 

with a flow demand set equal to the flow through the PRV. The downstream node is a 

fixed grade node with a total grade equal to the elevation of the PRV plus the set

p
pressure head —  . The head loss through the valve is dependent upon the downstream

r

pressure and not on the flow in the pipe.

Two situations can occur which can keep the PRV from maintaining the set pressure. 

Due to PR V bypasses in the system connections from the high to low pressure regions 

the PRV  cannot control the downstream pressure which will exceed the set pressure. 

In this situation the flow will reverse through the PRV. A check valve may be 

designated in the line downstream from the PRV, which will close in this situation. 

The upstream pressure drop below the set pressure. In this case the PRV  is increasing 

the pressure and acting as a booster pump, which is incorrect, unless this specific 

application (which is discussed in a later section) is desired. The analysis should be 

repeated with the PRV removed if this situation occurs. If either of the above
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A

Figure 4.10 PRY in line

A

Figure 4.11 Representation as junction node and fixed grade node for solution of a
network equation
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situations occur the user will be alerted to this fact. The analysis of systems with PRV 

is discussed more fully in a later section on specific application of the program.

4.4.6.Storage Tanks

For regular simulation a connection to storage tank represents a fixed grade node with 

grade specified as the elevation of the water surface.

4.5.Pressure and Flow Specifications

Certain data is required to describe system pressure and flow specification. The most 

important of these are the flow demands at the junction node for the situation being 

investigated. For a system, analyses are carried out with no inflows or outflows 

specified but for most certain flow requirements are specified at designated junction 

nodes and the pressure and flow distribution is determined for this situation. At any 

junction node the external inflow or outflow requirement may be specified. Also the 

elevation of junction nodes must be specified if the pressure are to be calculated. 

Values for the elevation of junction nodes are not required to compute the flow 

distribution and only effect the pressure calculation at the junction nodes. Thus, 

elevation need only be specified where values of pressure are desired.

At each fixed grade node the total grade (pressure head plus elevation) is known and 

must be specified. These values are shown on the schematics. This means that the 

elevation of surface levels reservoir and storage tanks must be specified for regular 

simulation.

If there are pressure requirement at fixed grade nodes these are incorporated into the 

grade and must be specified. If there are pressure regulating valves or pressure 

sustaining valves in the system the regulated pressure must be specified.
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Flow direction for lines with pumps, check valves and pressure regulating valves must 

be specified in the data input and this is done by the order the connection nodes for 

the pipe section are input. Flow direction is assumed to be from the first to the second 

node n the order the data is input.

4.6.Formulation and Solution of System Equation

4.6.1.Basic Equation

Pipe network equations for steady state analysis have been commonly expressed in 

two ways. Equations, which express mass continuity and energy conservation in terms 

of the discharge in each pipe section, have been referred to as loop equation and this 

terminology will be followed here. Second formulations, which express mass 

continuity in term of grades at junction produces a set of equations, referred to as 

node equation. It has been shown that the loop equations have superior convergence 

characteristics and these relationship are utilised in this program:

4.6.2.Loop Equation

Equation (4.1) which define the relationship between the number of pipes, primary 

loops, junction nodes and fixed grade nodes offers a basis for formulating a set of 

hydraulic equations to describe a pipes system. In terms of the unknown discharge in 

each pipe, a number of mass continuity and energy conservation equations can be 

written equalling the number of pipe in the system. For each junction node a
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continuity relationship equating the flow into the junction (Qin) to the flow (Qout) is 

written as

Y jQ in ~ ^  Qout = Qe J-Equation (4.16)

NPIX,a-9,=° h a  nj
¿ = 1

Here Qe represents the external inflow or demand at the junction node. For each 

primary loop the energy conservation equation can be written for pipe section in the 

loop as follows;

Y H l  = £ E b --------------L-Equation (4.17)

where

HI. energy loss in each pipe (including minor loss)

Ep. energy put in to the liquid by as pump

If there are no pumps in the loop then the energy equation states that the sum of the 

energy loss around the loop equals to zero.

If there are fixed grade node, f-1  independent energy conservation equations can be 

written for a path of pipe section between any two fixed grade nodes as follows:

AE = X H I - Z E b  F -1  equation (4.18)

where E is the difference in total grade between the two-fixed grade nodes. Any 

connected path of pipes within the pipe system can be chosen between thesis nodes. 

When identifying these (f-1) energy equations cares must be taken to avoid



redundancy. The best method to avoid this difficulty is to either choose all parallel 

path starting at a common node like A-B, A-C, A-D...etc or to use a series 

arrangement where the previous ending node for a path is the stating node for the next 

path like A-B, B-C, C-D.... etc. Either of these methods will result in (f-1) equations 

with no redundancy

As an additional generalisation Eq(4.17) can be considered to be a special case of 

Eq(4.18),where the difference in total gradeE is zero for a path which forms a close 

loop. Thus, the energy conservation relationship for a pipe network is expressed by L 

+ f-1 path equation of the form given by Eq (4.18).

The junction and path equations constitute a set of P simulation non-linear algebraic 

equations referred as loop equations which describe steady state flow analysis based 

on the loop equation and requires the solution of this set of equation for the flow rate 

in each line. To do this the path equations must be expressed in terms of the flow rate, 

which is done as follows.

Note that the energy loss in a pipe is HI, the sum of the line loss is Hip and the minor 

loss is Him. The line loss IIlp expressed in terms of the flow rate is given by:

where Kp is a pipeline constant which is a function of line length L, diameter d, and 

roughness C, or friction factor F, and n are an exponent. The value of Kp and n 

depends on the energy loss expression used for the analysis.

For the Hazen-Williames Equation

Hip = KpQ (4.19)

(4.20)
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and the exponent n=l .852 .The constant X depends on the unit used and has a value X 

is equal to 4.73 for English units and X= 10.69 for SI units.

For the Darcy-Weisbach Equation

and the exponent n= 2

The minor loss in a pipe section (Him) is given as

where Km is a function of the sum of the minor loss coefficients for the fitting in the 

pipe section and the pipe diameter is given by

For a pump described by the useful power input the pump energy term Ep is given by

Him = KmQ2 ---------- (4.21)

Km = 0 .2517Z^-
d

(4.22)

(4.23)

where Z is a function of the useful power of the pump (Pu) and the specific gravity of 

the liquid (S) and is:

1 0 2



Z = English unit (4.24)s

7 _ 0.10197PWZ/ —
5

(SI units)

If the pump is described by the operating data, The in range operation is described by

Utilising equations (4.19-4.25), the path (energy) equation expressed in term of the 

flow rate is:

The continuity equation (4.16) and the energy equation (4.26) form the P 

simultaneous equations in terms of unknown flow rates, which are labelled the loop 

equations. Since these are non-linear algebraic relationships no direct solution is 

possible. Several algorithms for solving the loop equations have been developed and 

the linear method is the most reliable method.

Ep = A + BQ + CQ2 ------ (4.25)

(4.26)

Or

AE  = Z(KpQ" + KmQ2) -  Z(A + BQ + CQ2)
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This algorithm makes use of gradient method to handle the non-linear flow rate (Q) 

term in the energy equation (4.26). The right side of the equation (4.26) represents the 

grade difference across a pipe section carrying a flow rate (Q) so that,

f(Q )  = Z(KpQ" +KmQl ) - Z ^ ----------- (4.27)

If the pump is described by points of operating data the energy equation can be 

written as

f(Q )  = U K PQn + KmQ2) -  Z(A  + BQ + CQn)

The function and its gradient is evaluated at an approximate value of the flow rate Qi, 

are used in the algorithms presented for solving the loop equation. The grade 

difference in a pipe section based on Q=Qi is:

f (Q i) = Hi = Z(KpQi2 + KmQi2) - I — --------- (4.28)
Qi

Hi = Z(KPQi" + KmQi2 ) - Z ( A  + BQi + CQi") 

and the gradient evaluated at Q=Qi is:

r (Q i)  = Gi = = Qi = n K p Q r' + 2 KmQi +

4.7.Solution o f loop Equation
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Or

The term Hi and Gi as defined above are used in the following discussion of the linear 

method for solving the loop equation and in the computer program developed herein. 

The linear method is based on a simultaneous solution of the basic hydraulic equation 

for the pipe system and has been reported for closed loop system Eq (4.1). Since the 

energy equation for the paths are non-linear these equations arc first linearized in 

terms of an approximate flow rate Qi in each pipe. This is done by taking the 

derivative of the variable in Eq (4.26) with respect to the flow rate and evaluating 

them at Q=Qi using the following approximation

/(&.,)=/(0)+|ka„ - a) (4-30)
oQ

-  f(Q i ) + G,(Q,+] - Q t )

The path equation can be written as

a e = 2 / © « ) = £ / ( S ) + 2 > - ( a * .  - e , )

where the summation refers to summing over each pipe. For loop AE  =0,so that

Gi =  n K p Q i + 2 KmQi -  (B + 2 C g / ) -------------(4.29)
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£ a a > , = B a a  -  / ( a »

For a path between two-fixed grade nodes the Ais is a constant, then

Z a a „ = E ( G< a - / ( a ) ) + A £

when this relationship is applied to the energy equation Eq (4.26), the following 

linearized equation result:

ZG iQ  = 'Z (G iQ i-H i)  -(4.31)

The sum refers to each pipe in the path. Eq (4.31) is employed to formulate (L+F-l) 

energy equations, which one combined with the junction Eq (4.16), to form a set of 

(Np) simultaneous linear equations in terms of the flow rate in each pipe.

NP

cI j  +  'Y j^ j,n Q n= ~  0
n=i

For each junction in the system ”j ”, j= l,2...N J

Z a a „  = 1 ; « ? , a - / < a »

1 0 6



3 F , 8 F  8 F

S Q \ s q 2 SQ n
sf2 5F2 §F2

< 5 0 , s q 2 ' S Q n

m * SFn
$ Q \ 8 Q 2 S Q n

Qi+i
Qi+2 • —  ■

A

Using a set of initial flow rate Qi in each pipe, the system of linear equations is solved 

for Qi+1 using matrix procedure. This new flow rate Qi+1 is used as the known 

values to obtain a second solution of the linear equations. This procedure is repeated 

until the change in flow rates (Qi+1 -Qi) in insignificant.

The technique used to solve the system of equations is as follows. Based on an 

arbitrary initial value for the flow rate in each pipe in the system the linearized 

equations are solved using matrix for solving the linear equations. This set of the flow 

rate is used to linearize the equations and the second solution is obtained .The 

procedure is repeated till the change in the flow rate obtained in successive trials is 

insignificant. Because all flows are computed simultaneously convergence is expected 

and occurs very fast compared to other procedures. Usually few trials are required for 

a high degree of accuracy even for large system.

Now some details of how the method works in practice is shown. The network in 

figure 4.12 is considered and the data in the figure and the table 4.4-4.6 are used to 

form and solve the system of equations.
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These seventeen-pipe tree type systems shown represent a green watering system for a 

nine-hole golf course. The system discharge water through sprinklers at known 

elevation into the atmosphere. Therefore, each discharge point is a fixed grade node 

with the grade equal to the sprinkler elevation (discharge pressure =0). The analysis 

will compute how much flow can be delivered at each sprinkler. The data for the 

system are shown and three operating data points describe the pump

F ig u re  4 .1 2  1 7  p ip e  tre e  type w a te rin g  system  p ~ 1 7 , l - 0 , j = 8 J =  1 0
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F \ =  Q \ ~  Q i ~  0 5  =  0

Ft = Qi — Q3 — Qa — 0

F i =  Q s ~ Q b ~ Q i  = 0  

Fa ~  Q 5 ~ Q b  ~  Q i  ~  0  

F$ = Q(, -Qio ~ Q\ i = 0 

^ 6  =  0 1 0  ~  Q\ 2  ~  0 1 3

F j  =  0 |  | 0 1 4  _  0 1 5  =  0

=  0 1 5  — 0 1 6  — 0 1 7  =  0

For the linear method an initial flow rate is needed but are not required to satisfy the 

continuity equations Wood [25]. The initial flow rate for the linear method is based on 

a constant flow velocity in an arbitrary direction.

The energy equations around each loop or path in the systems are written as follow.

The corresponding 8 junction continuity equations are:

f t = KpiQ? +KniiQ ?-head  + K p]Q !+ Km]Q22 + K pjQ; + K,,hQl = 

F ig u re  4 .1 3  energy) e q u atio n  betw een (A-B) p ip e  [ 1 - 2 ]
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f 2 = K piQ! + Km$  -  head + =

F ig u re  4 .1 4  en erg y  e q u atio n  betw een (A -C ) p ip e  [ 1 - 2 - 4

./; = K &  + ^ , a 2 - ^ a d  + + Km70 72 + ^ 0 ? + =

F ig u re  4 .1 5  E n e rg y  eq u a tio n  betw een (A -D ) p ip e  [ 1 - 5 - 7 - 8 ]

n o



u  = K PiQr + Km$  -  head  + Kp}Qns + KmiQ] + KpiQ] + K„hQ,f + Kp&  + Km$  = 

F ig u re  4 .1 6  e n erg y  eq u atio n  betw een (A -E) p ip e  [ 1 - 5 - 7 - 9 ]

f 5 = k Pxq :  +  Kmie ,2 -  hea d  +  + a:„150 52 + + * ffl60 2 + +

+ K PS&:* + =

Figure 4.17 energy equation between (A-F) p ipe  [1-5-6-11-15-16]
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A  = Kp 0'; + Km$  -  head + K &  + Km̂  + + ^ „ Q u  +

F ig u re  4 .1 8  en erg y  eq u atio n  betw een (A -G ) p ip e  [ 1 - 5 - 6 - 1 1 - 1 7 ]

f ,  = KPIQ: + Km$  -  head + + K H&  + K„,50 62 + +

F ig u re  4 .1 9  en erg y  eq u a tio n  betw een (A -H ) p ip e  [ 1 - 5 - 6 - 1 1 - 1 4 ]
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/ ,  =  K p$  +  / ^ g , 2 -  head +  +  K m<£ +  +  K m#0 62 +  +  ^ ( g  +

^ a  + ^ f i S -

F ig u re  4 .2 0  e n erg y  eq u atio n  betw een (A -l) p ip e  [ 1 - 5 - 6 - 1 0 - 1 2 ]

A  = k Piq : +  -  head +  + * mje 2 + + J ^ G G , + a t ^ q 2 +

K pnQ i+ K miiQn =

F ig u re  4 .2 1  e n e rg y  eq u atio n  betw een (A -J) p ip e  [ 1 - 5 - 6 - 1 0 - 1 3 ]
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Since the energy for the path are non-linear these equations are fist linearized in terms 

of an approximate flow rate Qoi for each pipe. Taking the derivative of the energy 

equations with respect to the flow rate this can be done. Equation (4.30) is applied on 

the non-linear equations and the following systems of equations are been obtained.

f ^ - e , + f ^ e 2 + 1 ^ 0 3 = f ^ - 0 , -  m . ) + m > ) + ^9 0  dQ2 903 90, 902 903

^ - 0 1 + ^ 0 2+ ^ 0 4 = ^ - 0 1 - F 2(0 1) + ̂ - JP1(0 2) + ̂ - JF2(0 4) + A£2 
9 0  902 90 4 90, 902 904

dF3 n  , dF3 n  dF3 n  F (O \ i dF* F (Q \ \ dFi F ( O 'IIa-o P/O ¿I/O 3/0 _ 3/0 3(01) 3 V05/ + - -^3(07) +90, 905 90 7 90g 90, 905 907

dF
3 F8(0 8) + A£ 3

90s

, D F 4  n  , . d F A f }  \ n  _ F ( n ^ +  ^ _ F ( n ^ , ^ ± _ F ( n

an a  3/0 an 3/0 ^4(0i) + 4̂ (0s)+ 4̂V.07) +90, 905 90 7 909 90, 902 907

9K4 Q9- F 4(Q9) + AE4
9 0

—  01 + —  05 + —  06 + —  0  I + —  015 + —  0 ,6 = —  01 -  ̂ 5 (01) + 90. 905 906 90,, 90,5 ^ 15 9 0 ,6 90,
c)FT^05-^5(05) + T7f 0 6- ^ ( 0 6) + ̂ L 0 i,-^ (0 n )  + T ^ 0 .5 -^ (0 ,5 ) + 905 9 0 6 9 0 n 90,5

dF
X T "!06 - ^ ( 0 J  + A ^3=0
9016

—  01 + - ^ - 0 5 + —  0 6 + — 0 „ + — 0 5 +  —  017 = —  0 , - ^ ( 0 , )  + 90, 905 906 90,, 90,5 ^ ,5 90 ,7 90,
9F dF dF dF
^ 0 5 - ^ ( 0 5) + ^ f 0 6 - ^ ( 06) + ̂ 0 n - ^ ( 0 n) + ^ 0 i 5 - ^ ( 0 15) + 905 906 90„ 90,5
dF

6 0 17- JP,7(0,7) + AZ'6 =O017 -117V>il7/ 1 ‘-^6
90,7

3F 3F 3F c)F
-¿¿-a  + -¡¿T  05 + 06 + - z j - a  1 + ^ - 0 , 4  = T ^ 0 1  — W O  + - F7(Q5) +90, 905 906 90,, 90,4 90, 905
r)/'1 f}/*'
^ f - ^ ( 0 6 )  + ^ - ^ ( 0 . , ) + ^ f  ̂- F 7(Q14) + AB7 =0 
906 90,, 90,14
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dF„ dF„ 5FS 9 F „  dF„ 0F„ . dF„
~T7rQ\ +  TTT Qs +  "T^r~06 +  _ n  0 ,0  +  012 _  T T T 0 i  _  -fg (0 8  )  +  TTT" 05  _  8 (0 5  )90, 9Q5 6Qb dQl0 dQn dQ, 3QS

^ - - F ,( Q Ù  + ^ - - F , ( . Q J  + ^ - -  F,( a , )  + A £,
9 0 6 dQu, SQi2

+ ^ l o  + ^ - n  I dF* n  - dFgn  f (o \ \  dFs n f (o \ i
3/0 Gt + A n  3/0 3/0 ^10 3/0 ^'3 ~~ 3/0 ̂  9 (Gl / 05 ^(Gs)+
9 0 ,  9 0 5 5Q6 9 0 io  dQn dQ, SQ5
dF BF 8F
^ - Q e -  f9(Q6) + - ^ G i  0 -  ̂ (G ,o) + ^ rG > 3  -  ^ ( G 13) + A£ 9906 90,0 90 ,2

Now the solution of the equations is started by using the equation [D]{Z}={F},

{Qm}={Qm+l} {Zj. In this case the system of equations are solved repeatedly for 

updated vector {z} until it is close to be sufficiently small. D is the Jacobian matrix 

which is contain all the information about the system.

- 1  1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 - 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 - 1  1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 - 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 - 1 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 - 1 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 - 1 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1 1 l

ÔFg dFg dFn
0 0 0 00 0 0 0 0 0 0 0 0 0

dQi dQi dQi
ÔF]n dF,n dFin

0 0 0 0 0 0 0 0 0 0 0 0 0 0
90, dQi d a
dF"  0 0 0 an . n dFu dFn

0 0 0 0 0 0 0 0 0
9 0 dQ, 907 90s
9^2 n 0 0

sf12 n dFn
0

dFn
0 0 0 0 0 0 0 0

v a SQs dQ, 909

dF 3 n 0 0
dF,3 dF, 3

0 0 0 0
dFu

0 0 0
dFn dFn

0
50i 905 906 90,o 90,5 906
apM 0 0 0

dF,A dFl4
0 0 0 0

dFH
0 0 0

dF, 4
0 9^4

90, dQ dQ 90 9G 90,7
9^5 0 0 0

dF,5 dF[5
0 0 0 0

dF, 5
0 0 9^5 0 0 0

90, 905 906 9 0 , 9014
9̂ 6 „

0 0
dF]6 dFl6

0 0 0
dFl6

0
dF]b

0 0 0 n 0
9 0 905 906 900 ^Qn
dF 7 dF,-, dF,7 dF, 7 dF,-,

17 0 0 0 0 0 0 0 0 1) 0 0 0
9 0 905 906 90,o 903
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f p 1 [ Z ' l
Fi Z2

P3 Z3
P. 2 4
Ps 2S
P6 26
P7 Z7

Pg 2«
P9 and {z} = <Z,j
Pio 2,0
P, 2„
P¡2 z t2
P i 2,3
p4 z,4
P 5 2,5
P 6 2,6
A i . .2 ,7,

where is:

F ,= ~ Q , - F , ( S , )  + ̂ - & -  F , m  + ~ Q , - F , ( Q , )  + A£, 
dQi dQ-i 90,

P/? /ÌK1
p0 = T“ ôi -  / j o ( ö ) + a  - p¡o( a ) +T7T 0» - Pîo(a)+a£2 

9 0 ,  9 0 2 Ô 0 4

ae, « a  s a  se,8

^ = ~ a  -fla(ñ)+f^ a  - « a )+ |^ a  - Jwa)+— a -^(&)+m4
9 0 1  9 0 5  9 0 7  9 0 9

F¡1= ^ - Q l - F ¡1(Qt) + ^ 3 - Q ¡ -F „ (Q ,) + ^ - Q í -F ,¡iQí ) + ^ - Q u -F „ (Q u) + 
ai7 90, a/^^ös 506 90, i
~ 0 , 5  -  ^ ( ß is )  + “ f  Ö>7 -  *¡,(0 ,)  + A£5 
9 0 , 5  9 0 , 7

^ = S t a - í ; 4 ( a ) + ^ - a - í ' , . ( a ) + S 1 a - - f ; , ( a ) + ^ 1 e 1 - í :4 (a ,i)+
3/7 9 0 ,  a / r  9 0 5 9 0 6 9 0 , ,

14 0,5 (ô ,5) + e r  ô l7 -  P 4(ô,7) + A£6
90,5 90,17
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F,i = ^ r Q , - F l> m  + ̂ r - Q l ~F„(Q>) + ̂ - & - F li(Qi) + ̂ r Q „ - F A Q ll)+  
QF dQ\ dQs SQ6 00,,
7 7 f 0 4 - ^ 5(G.4) + A£ 7
dQu

c)F r)F r)F r)F
Fi6= - ^ Q i - F ib(Q[) + - ^ Q 5-F (Q 5) + - ^ Q 6 - F l6(Q6) + - ^ - Q w - F l6(Q,0) + 
dF dQ\ dQs 8Q6 8Q]0
z ^ Q n - F l6(Ql2) + AEs
dQn

BF r)F r)F r)F
F n = - ^ r Q i - F n (Qi) + - ^ Q i - F ll(Q5) + - ^ Q 6- F l7(Q6) + ^ Q l0- F ll(Ql0) +
dF„
dQu

dQ, dQ, d e 6 dQl0
Ql3 ~ Fiy(Qn) + A t9

Because the initial flow is needed and it is not required to satisfied the continuity 

equation, it is based on constant flow velocity, which can be selected.

Qon = nDl n =number of pipe 1,2,3.. .NP

Based on an arbitrary initial value for the flow rate Qoi in each pipe the energy 

equations are linearized and can be solved using matrix for solving the linear 

equation.The coefficient matrix is a square matrix with NP rows and columns. The 

coefficient matrix will have the values 0,1,or - 1  for the junction equation and the 

value for the derivative of the energy equations. The row number corresponds to the 

junction number and the path for the system and the column numbers corresponded to 

the pipe number. Upon properly defining the coefficient matrix and the known vector, 

a standard linear algebra is called to solve the linear system.
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4.8.Computer Program

The computer program is written in C, to solve the basic pipe system equations using 

the linear method just described. Basically the program reads input data defining 

parameter value for each pipe and pressure and flow specification. The only 

geometric data input is the connecting node number for each pipe. From this input, the 

basic system equations are generated and a number of checks are made to make sure 

the system is geometrically feasible (not disconnected).

Several items should be noted about the program:

>  Water is assumed for the liquid unless otherwise specified.

>  The Flazen-Williams equation is used for a simulation unless otherwise 

specified

>  A maximum of 20 trial is allowed for simulation unless otherwise 

specified

>  The calculation continues until a relative accuracy of 0.005 is attained 

unless otherwise specified. The relative accuracy is defined as the sum of 

the change in flow rate ( absolute) between the last two trial divided by the 

sum of the flow rate (absolute) .this is given by,

y o - Q i
Relative.Accuracy =

The basic system equations are solved using linear algebra solver. Appendix (A) A 

complete listing of the program is given in on the appendix (B)
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3. No o f pipes

4. No. o f  junction nodes

5. No. o fP R V ’s

6. Additional data keying various programs option

4.8.2.2.Pipeline Data

1. Connecting node length. N odel#, Node2#.

2. Diameter

3. Roughness

4. Minor loss coefficients

5. Pump power (pump data)

6. Grade (if this connects a FGN)

4.8.2.3.Pump Data

Pump is described by pump data and head-discharge data for three operating points

(Ql. HI. Q2. H2, Q3, H3)

4.8.2.4.PRV’s Data

1. Junction node number for PRV

2. Pipe number -downstream for PRV

3. Grade set by PRV

4.8.2.5. Junction Node Data

1. Demand (Qj)

2. Elevation

1 2 0



3. Junction node number

1. Key for full or limited output

2. No. of junction nodes summary of maximum and minimum 

pressures

3. No. of pipes for limited output

4. No. of junction for limited output

4.8.3.Discussion of Data Coding

4.8.3.l.Junction Node Data

The only data junction node which is essential to the solution are flow rates entering 

or leaving the system at junction nodes and this data must be input for all junction 

nodes with external flows in the system. If pressure calculations are desired, the 

junction node elevation must be input. However, if there is no demand at a junction 

node and a pressure calculation for that junction node is not needed then no data input 

for that junction node is necessary.

4.8.3.2,Output Option

The users select full or limited output. If full output is selected, result for all pipes 

and junction nodes will be output for all simulation. If limited output is selected, by 

the user only the results the pipes and junction selected in the summary of the result. 

The program is also designed to summarise the maximum and minimum pressure in

4.8.2.6.0utput Option

1 2 1



the system and the user can input the number of junction nodes to be included in the 

summary.

4.8.3.3.Data Check

This option will allow the computer to read and check all the input data. This option is 

useful for checking physical data by hand before going to the expense of the analysis.

4.8.3.4.Geometric Data Verification

While inputting a minimum of geometric data is convenient, it creates a situation 

where checking the geometry described is not possible. The only geometric data, 

which is input, are the connecting nodes for each pipe, and if this is input incorrectly 

it is probable that the data will be accepted with the result that the system geometry is 

incorrectly represented. The computer will detect and identify disconnected system. 

The input data summary includes a list of pipes connecting each junction node which 

can be checked by the user against system geometry and, if verified, will assure that 

the input data for connecting nodes is correct. An option is available for computer 

verification of this data. If this option is used the computer will check pipes 

connecting junction nodes generated using the input data against additional data input 

for this purpose. A successful check of this data will assure the user that this system is 

geometrically correct. The use of this option is keyed by non-zero entry in the system 

data and this requires that the connecting pipes at each junction node be input in 

ascending numerical order on the junction data. A successful verification will produce 

a verifying message while an unsuccessful verification will produce a message 

identifying this error and the junction node where it occurred and will suppress the 

analysis until this discrepancy is removed.
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4.8.3.5.Maximum Number of Trials

This limit is set at 20 unless a different limit is specified as the ninth number on the 

system data. It is unlikely that this limit will ever be reached, but it is imposed to 

guard against an unforeseen convergence problem (this conceivably could be caused 

by a check valve or pump operating extremely close to its boundary condition). This 

option will also allow a small number of trials to be run if desired.

4.8.3.6.Relative Accuracy

This parameter determines when the solution is accepted. It is defined as the total 

(absolute) change in flow rate in the pipes from the previous trial divided by the total 

(absolute) flow rate and is set at 0.005 unless this option is employed to change this 

value. Inserting the desired relative accuracy as the tenth number on the system data 

does this. If this field is left blank the value of 0.005 is used which provides an 

extremely accurate result. A summary of the result of many problems indicates that an 

average of six trials will produce this accuracy although more (or less) may be 

required for certain problems. It is unlikely that the user will want to exercise this 

option and change the relative accuracy and such a change is not recommended.

4.8.3.7.Specific Gravity of Liquid

Unless specified by the user, water is assumed to be the liquid being transported. 

Other liquids are considered by inserting a non-zero entry as the eleventh number on 

the system data. This is the specific gravity of the liquid being considered (ratio of 

liquid density to water density).
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4.8.3.8.Kinematics Viscosity of Liquid

A non-zero input in this field for this parameter (system data) allows the use of the 

Darcy-Weisbach equation for head loss calculation and the kinematics viscosity, 

which is needed to employ this relationship. If the filed is left blank the Hazen- 

Williams head loss equation is used which is appropriate for water distribution 

system. For other liquids (and for water, if desired) the Darcy-Weisbach equation 

should be used and this option requires the input of the value for the kinematics 

viscosity (in ftA2/s or mA2/s for the SI units).

4.8.3.9.Non-consecutive Pipe Numbering

Non-consecutive numbering of the junction nodes is always acceptable. However, it is 

assumed that the pipes are numbered 1-p and the data is input in this order unless this 

option is employed. Using option which is keyed by a non-zero entry in the system 

data a pipe number is input ending in the pipe line data for each pipe. This pipe 

number used for all subsequent input-output operation.

4.8.3.10.Pump Operating Data Input

The description of a pump by three points of operating data (pairs of head-discharge 

data) is keyed by a negative one (-1) entry as the eighth number on the pipe line data. 

The three points should represent a wide variety of operating data. This is a very 

effective means of describing a pump and also accounts for out of range pump 

operation. The input data defines the normal range of operation as well as providing 

data within that range. A representative useful power will be computed from the 

operating data if a negative two (-2) is used, and this feature is useful if convergence 

problems are noted.
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Each time a simulation is made computer time is used to generate the loops and path 

for energy equations and this produces additional time consumption for large systems. 

In order to avoid this an option allows the user to generate this data as input data

4.8.4.Computer Messages and Warning

A number of checks of geometric conditions and other data input are made and a 

message is produced if an error is detected. The following is a list of messages, which 

is a result of a condition, which makes an analysis impossible, and execution 

termination results.

4.8.4.1.System is Disconnected-Check-Input Data

This message means that part of the system is not connected to the rest by a pipe 

section, which is not acceptable and probably caused, by incorrect input data for 

connecting nodes or, perhaps, the missing of a pipe. The input data summary must be 

checked and the data corrected.

4.8.4.2.Data Input for Pipes Connecting Junction -Do not Check

This message is produced if  the data input for connecting pipes at the indicated 

junctions nodes does not check the data generated from connecting node input.

4.8.3.11.Geometric Data Generation and Input
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4.8.4.3.The R elation P=J+L+T-1 is no t Satisfied  -C h e c k  In p u t D ata

The computer uses the connecting node data input for the pipe to generate Loop and 

path data. If this basic geometric relationship is not satisfied after generation of the 

loop and path data this message is generated. It is likely that one of the earlier 

messages connecting node data will also be generated if these conditions accrue. The 

input summary must be checked, particularly the connecting pipes of the junction, and 

the data need to be corrected.

126



Examples

This application is the principal one, which refers to steady state analysis of pressure 

and flow in piping system for given set of conditions. The user via the input data can 

choose a number of different sets of conditions. Some examples are provided to 

illustrate a variety of program applications for regular simulation. The results for 

these examples are discussed in this section.

Example 1:

Figure represents a small distribution system, which transports water fed by a large 

main, which maintains a pressure of 60 psig. The piping system carries water to 

storage tank and also discharges water at four other locations. The simulation is 

carried out to determine how much water can be delivered at specified pressure. For 

this simulation the source of water and all the delivery points are treated as fixed 

grade nodes with total grades known (elevation plus pressure head). The grade at the 

source (60 psig at elevation of 50 ft) is for example, computed as 

50+60* 144/62.8=188.46.and all grades are computed in this manner. For different 

lengths of pipe, 1 find the discharge in each pipe and the head at all node and the 

change in head loss for each pipe in the system.

The chart in Figure 4.22 can show the effect on each node and the head loss in the 

system by changing the length of pipe, 1. The pressure and the head at node (1) is 

affected more by changing the length of pipe (1) Node if slightly affected by this 

change and higher head loss occur in pipe one.
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The input and out put file for example 1 is listed in file name (EXAMOUT1- 

EXAMOUT2).

Example 2:

For the small network below do the following:

1. For the specified physical system, find the discharge in each pipe and the head 

at all nodes.

2. Find the head that the pump must produce so that the discharge through pipe 5

into the reservoir is = 1.0 f t 3! s

Q 4.5 4.0 3.5

Hp 54 50 44

The 8 unknowns are Qi,Q2,Q3,Qa,Q5,H i,H 2,H 3 . The solution is as follows. This can 

be regarded as the solution to an analysis problem since all of the physical features of 

the networks are known, and the solution describes the performance of this existing



network in response to the specified demands. The chart in figure 4.23 shows the head 

and HGL at each node for different elevations. It is noted that the head at the junction 

is equal to the HGL-elevation when the elevation at the junction equals to zero

Figure 4.23 Small network with 2 reservoirs and 4 pipes, 3 junction 

The input and out put file for example 1 is listed in file name (EXAMIN8- 

EXAMOP9).

Example 3:

Figure 4.24 depicts a network with 19 pipes and 12 nodes. The nodal demands sum to 

10ftA3/s, and this charge must come from two reservoirs .the steady sate solution is 

listed in file EXAMOP5. All pipe diameters are in inches and lengths in feet. The 

largest head loss, 24.3 ft, occurs in pipe 1 that supplies the network from a reservoir, 

and the third largest head loss, 21.7 ft occurs in the other reservoir supply line in pipe

5. The number of simultaneous equations to model this steady flow problem is 19. Six 

of them real loop energy equations and one is a pseudo loop that connects the two 

reservoirs.
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The solution of the steady problem will be sought for all the demands. At node 9 the 

demand gradually increases from 1.2 to 1.5 ft3/s.

Results from steady flow are shown in file EXAMOP5. The results from this solution 

are also compared for each step. It is clear that the pressure at node 9-5-10-11-12 one 

affected more by changing the demand at node 9 than that of other node in the system 

and the flow in pipe which is very close to the nodes [13-14-15-16-17-18-19]

increase.

Figure 4.24 system with 2 reservoirs and 19 pipes 12 node

The input and out put file for example 1 is listed in file name (EXAMOUT5- 

EXAMOP5).



The pipe and other data for 14-pipe network supply with reservoirs are given. A 

solution is obtained using the input data for the following cases.

1. Finds the heads at all nodes as well as the discharges in all 14-pipes.

2. All the demands are considered unknown, and the heads are given in the input 

data.

3. Find the solution with a pump inserted in line 14 and a specified reservoir 

water surface elevation.

4. The solution with different water surface elevation in tank 1 .from 2650-2550. 

The results are shown in figures 4.25 and it is noted here that the demand at node [1] 

is =0 when the water surface elevation =2587.58 ft. In this point either one has to 

supply the junction [1] or keep the water surface elevation over this limit to avoid the 

flow in the opposite direction. From the result in the table it is clear that when the 

water surface level changes, the head loss in pipe one also changes till the head at 

node [1] get value higher than the water level in the tank. At this point supply to the 

system.

64.144+2548.6=2612.744<2650 (water surface)

51.418+2548.6=2600.00==2600 (water surface)

48.634+2548.6=2597.00>2587.58 (water surface)

40.886+2548.6=2589.486>2550 (water surface)

The head at node [1] is equal to the water surface level at 2600 feet.

Example 4:
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Figure 4.25 pipe network with 14 pipe and 9 junction

The input and out put file for example 1 is listed in file name (EXAMIN- 

EXAMPLE1).
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File Input & Output 
Example [1]



AM0UT1. October 9, 2000 Page 1

7 2 6 0
1 1 8 8 . 4 6 2 86 . 4 6  4 6 4 . 6 2
0 1 3 0 0 0 . 3 3 3 1 1 0 0 . 3 4 9
0 1 1 5 0 0 . 1 6 6 1 1 0 0 . 0 8 7 2
1 2 2 0 0 0 . 3 3 3 1 1 0 0 . 3 4 9
0 2 1 0 0 0 . 1 6 6 1 1 0 0 . 0 8 7 2
0 1 2 0 0 0 . 1 6 6 1 1 0 0 . 0 8 7 2
0 2 3 0 0 0 . 1 6 6 1 1 0 0 . 0 8 7 2
0 2 80 0 . 3 3 3 1 1 0  0 3 4 9

5 1 0 0 . 0  6 3 3 . 0 8  7 8 9 . 2 3

0 1 3 0 . 4 3  50  
0 9 7 . 4 4  40



AM0UT2. October 9, 2000 Page 1

P i p e  D a t a :

P i p e
No .

N o d e
# 1

N o d e
#2

L e n g t h D i a m e t e r R o u g h n e s s  
C o e f .

F l o w r a t e H e a d l o s s

1 0 1 2 0 0 . 0 0 . 3 3 3 1 1 0 . 0 0 0 0 0 0 1 . 3 7 4 5 9 . 8 3 0
2 0 1 1 5 0 . 0 0 . 1 6 6 1 1 0 . 0 0 0 0 0 0 - 0 . 2 1 3 - 4 2 . 1 7 1
3 1 2 2 0 0 . 0 0 . 3 3 3 1 1 0 . 0 0 0 0 0 0 1 .  013 3 4 . 0 3 2
4 0 2 1 0 0 . 0 0 . 1 6 6 1 1 0 . 0 0 0 0 0 0 - 0 . 2 2 1 - 2 9 . 9 8 0
5 0 1 2 0 0 . 0 0 . 1 6 6 1 1 0 . 0 0 0 0 0 0 - 0 . 1 4 8 - 2 8 . 6 3 1
6 0 2 3 0 0 . 0 0 . 1 6 6 1 1 0 . 0 0 0 0 0 0 - 0 . 1 8 0 - 6 1 . 5 1 9
7

N o d e
0

D a t a
2 8 0 . 0 0 . 3 3 3 1 1 0 . 0 0 0 0 0 0 - 0 . 6 1 3 - 5 . 4 2 0

N o d e  Demand E l e v a t i o n He a d  P r e s s u r e H G L - e l e v .

1 0 . 0 0 0 5 0 . 0 0 0 7 8 . 6 3 1 3 4 . 0 7 3 1 2 8 . 6 3 1
2 0 . 0 0 0 4 0 . 0 0 0 5 4 . 6 0 0 2 3 . 6 6 0 9 4 . 6 0 0

P i p e D a t a  :

P i p e N o d e N o d e L e n g t h D i a m e t e r R o u g h n e s s F l o w r a t e H e a d l o s s
No . # 1 #2 C o e f .

1 0 1 1 0 0 . 0 0 . 3 3 3 1 1 0 . 0 0 0 0 0 0 1 . 6 6 5 4 2 . 6 5 4
2 0 1 1 5 0 . 0 0 . 1 6 6 1 1 0 . 0 0 0 0 0 0 - 0 . 2 5 6 - 5 9 . 3 4 9
3 1 2 2 0 0 . 0 0 . 3 3 3 1 1 0 . 0 0 0 0 0 0 1 . 2 1 8 4 7 . 8 1 7
4 0 2 1 0 0 . 0 0 . 1 6 6 1 1 0 . 0 0 0 0 0 0 - 0 . 2 3 4 - 3 3 . 3 7 6
5 0 1 2 0 0 . 0 0 . 1 6 6 1 1 0 . 0 0 0 0 0 0 - 0 . 1 9 1 - 4 5 . 8 0 8
6 0 2 3 0 0 . 0 0 . 1 6 6 1 1 0 . 0 0 0 0 0 0 - 0 . 1 8 5 - 6 4 . 9 1 5
7 0 2 8 0 . 0 0 . 3 3 3 1 1 0 . 0 0 0 0 0 0 - 0 . 7 9 9 - 8 . 8 4 8

N o d e D a t a  :

N o d e Demand E l e v a t i o n Head P r e s s u r e H G L - e l e v .

1 0 . 0 0 0 5 0 . 0 0 0 9 5 . 8 0 9 4 1 . 5 1 7 1 4 5 . 8 0 9
2 0 . 0 0 0 4 0 . 0 0 0 57 . 9 9 6 2 5 . 1 3 2 9 7 . 9 9 6

P i p e D a t a  :

P i p e N o d e N o d e L e n g t h D i a m e t e r R o u g h n e s s F l o w r a t e H e a d l o s s
No . # 1 #2 C o e f .

1 0 1 3 0 0 . 0 0 . 3 3 3 1 1 0 . 0 0 0 0 0 0 1 . 1 9 3 6 9 . 0 4 3
2 0 1 1 5 0 . 0 0 . 1 6 6 1 1 0 . 0 0 0 0 0 0 - 0 . 1 8 6 - 3 2 . 9 5 7
3 1 2 2 0 0 . 0 0 . 3 3 3 1 1 0 . 0 0 0 0 0 0 0 . 8 8 6 2 6 . 5 6 2
4 0 2 1 0 0 . 0 0 . 1 6 6 1 1 0 . 0 0 0 0 0 0 - 0 . 2 1 4 - 2 8 . 2 3 6
5 0 1 2 0 0 . 0 0 . 1 6 6 1 1 0 . 0 0 0 0 0 0 - 0 . 1 2 0 - 1 9 . 4 1 7
6 0 2 3 0 0 . 0 0 . 1 6 6 1 1 0 . 0 0 0 0 0 0 - 0 . 1 7 7 - 5 9 . 7 7 6
7 0 2 8 0 . 0 0 . 3 3 3 1 1 0 . 0 0 0 0 0 0 - 0 . 4 9 6 - 3 . 6 6 0

N o d e D a t a :

N o d e Demand E l e v a t i o n Head P r e s s u r e H G L - e l e v .

1 0 . 0 0 0  5 0 . 0 0 0  6 9 . 4 1 8  3 0 . 0 8 1  1 1 9 . 4 1 8
2 0 . 0 0 0  4 0 . 0 0 0  5 2 . 8 5 6  2 2 . 9 0 4  9 2 . 8 5 6
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File Input & Output 
Example [2]



AMIN8. October 9, 2000 Page 1

5 4 1 0  
5 90
4 1 4 0 0 0  1 . 0  . 0 0 0 1 6 7  4 . 2  
1 3 6 0 0 0  . 6 6 7  . 0 0 0 1 6 7  1 . 3
1 2 4 0 0 0  . 6 6 7  . 0 0 0 1 6 7  1 . 5
2 3 3 0 0 0  . 5 0 0  . 0 0 0 1 6 7  0 . 5  
0 3 2 0 0 0  . 5  . 0 0 0 1 6 7  1 . 0
1 . 5  1 2 6  0
1 . 2  98 0
1 . 0  95 0 
- 4 . 7  1 3 0  0



AMIN8. October 9, 2 00 0 Page 1

5 4 1 0  
5 90
4 1 4 0 0 0  1 . 0  . 0 0 0 1 6 7  4 . 2  
1 3 6 0 0 0  . 6 6 7  . 0 0 0 1 6 7  1 . 3
1 2 4 0 0 0  . 6 6 7  . 0 0 0 1 6 7  1 . 5
2 3 3 0 0 0  . 5 0 0  . 0 0 0 1 6 7  0 . 5  
0 3 2 0 0 0  . 5  . 0 0 0 1 6 7  1 . 0
1 . 5  1 2 6  50
1 . 2  98  40
1 . 0  95  30  
- 4 . 7  1 3 0  20



LAM0P9 . October 9, 2000 Page 1

D e v i c e s  c a u s e d  t h e  f o l l o w i n g  c h a n g e s  i n  h e a d s  
D e v i c e  1 i n  p i p e  1 C h a n g e  i n  h e a d  = 5 0 . 9 8 5
P i p e  D a t a :

P i p e  N o d e  N o d e  
No .  # 1  #2

L e n g t h D i a m e t e r  .R o u g h n e s s  
C o e f .

F l o w r a t e H e a d l o s s

1 0  1
2 1 3
3 1 2
4 2 3
5 0 3 

N o d e  D a t a :

4 0 0 0 . 0
6 0 0 0 . 0
4 0 0 0 . 0
3 0 0 0 . 0
2 0 0 0 . 0

1 . 0 0 0
0 . 6 6 7
0 . 6 6 7
0 . 5 0 0
0 . 5 0 0

0 . 0 0 0 1 6 7
0 . 0 0 0 1 6 7
0 . 0 0 0 1 6 7
0 . 0 0 0 1 6 7
0 . 0 0 0 1 6 7

4 . 1 0 3
1 . 1 9 2
1 . 4 1 1
0 . 2 1 1

- 0 . 4 0 3

2 6 . 4 5 9
2 9 . 1 2 9
2 6 . 6 2 5

2 . 5 0 3
- 5 . 4 4 7

N o d e  Demand E l e v a t i o n He a d P r e s s u r e H G L - e l e v .

1 1 . 5 0 0  0 . 0 0 0  1 2 4 . 5 2 6  5 3 . 9 6 1
2 1 . 2 0 0  0 . 0 0 0  9 7 . 9 0 1  4 2 . 4 2 4
3 1 . 0 0 0  0 . 0 0 0  9 5 . 3 9 8  4 1 . 3 3 9  

D e v i c e s  c a u s e d  t h e  f o l l o w i n g  c h a n g e s  i n  h e a d s  
D e v i c e  1 i n  p i p e  1 C h a n g e  i n  h e a d  = 4 7 .  
P i p e  D a t a :

1 2 4 . 5 2 6
9 7 . 9 0 1
9 5 . 3 9 8

. 013

P i p e  N o d e  N o d e  
N o . # 1  #2

L e n g t h D i a m e t e r R o u g h n e s s  
C o e f .

F l o w r a t e H e a d l o s s

1 0  1
2 1 3
3 1 2
4 2 3
5 0 3 

N o d e  D a t a :

4 0 0 0 . 0
6 0 0 0 . 0
4 0 0 0 . 0
3 0 0 0 . 0
2 0 0 0 . 0

1 . 0 0 0
0 . 6 6 7
0 . 6 6 7
0 . 5 0 0
0 . 5 0 0

0 . 0 0 0 1 6 7
0 . 0 0 0 1 6 7
0 . 0 0 0 1 6 7
0 . 0 0 0 1 6 7
0 . 0 0 0 1 6 7

3 . 7 3 0
1 . 2 3 2
1 . 4 5 0
0 . 2 3 3

- 0 . 3 8 6

27  . 3 2 7
3 1 . 0 0 0
2 8 . 0 0 0  

3 . 0 0 0
- 5 . 0 4 6

N o d e  Demand E l e v a t i o n He ad P r e s s u r e H G L - e l e v .

1 1 . 0 4 9
2 1 . 2 1 6  
3 1 . 0 7 9

P i p e  D a t a :

0 . 0 0 0
0 . 0 0 0
0 . 0 0 0

1 2 6 . 0 0 0
9 8 . 0 0 0
9 5 . 0 0 0

5 4 . 6 0 0  
4 2 . 4 6 7  
4 1 . 1 6 7

1 2 6 . 0 0 0
9 8 . 0 0 0
9 5 . 0 0 0

P i p e  N o d e  N o d e  
N o .  # 1  #2

L e n g t h D i a m e t e r  :R o u g h n e s s  
C o e f .

F l o w r a t e H e a d l o s s

1 4  1
2 1 3
3 1 2
4 2 3
5 0 3 

N o d e  D a t a :

4 0 0 0 . 0
6 0 0 0 . 0
4 0 0 0 . 0
3 0 0 0 . 0
2 0 0 0 . 0

1 . 0 0 0  
0 . 6 6 7  
0 . 6 6 7  
0 . 5 0 0  
0 . 5 0 0

0 . 0 0 0 1 6 7
0 . 0 0 0 1 6 7
0 . 0 0 0 1 6 7
0 . 0 0 0 1 6 7
0 . 0 0 0 1 6 7

4 . 7 0 0  
1 .  5 3 6  
1 . 6 6 4  
0 . 4 6 4  

- 1 . 0 0 0

3 4 . 2 1 3  
4 6 . 7 9 9  
3 6 . 2 8 5  
1 0 . 5 1 3  

- 2 9 . 4 9 9

N o d e  De mand E l e v a t i o n He a d P r e s s u r e H G L - e l e v .

1 1 . 5 0 0
2 1 . 2 0 0
3 1 . 0 0 0
4 - 4 . 7 0 0  

P i p e  D a t a :

0 . 0 0 0  
0 . 0 0 0  
0 . 0 0 0  
0 . 0 0 0

1 6 6 . 0 2 2  
1 2 9  . 7 3 6  
1 1 9 . 2 2 3  
2 0 0 . 2 3 4

7 1 . 9 4 3
5 6 . 2 1 9
5 1 . 6 6 3
8 6 . 7 6 8

1 6 6 . 0 2 2
1 2 9 . 7 3 6
1 1 9 . 2 2 3
2 0 0 . 2 3 4

P i p e  N o d e  N o d e  L e n g t h  D i a m e t e r  R o u g h n e s s  F l o w r a t e  H e a d l o s s



AM0P9 . October 9, 2000 Page 2

No. #1 #2 Coef.

1 4 1 4 0 0 0 . 0 1 . 0 0 0 0 . 0 0 0 1 6 7 1 . 4 8 8 4 . 0 0 0
2 1 3 6 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 1 . 2 3 2 3 1 . 0 0 0
3 1 2 4 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 1 . 4 5 0 2 8 . 0 0 0
4 2 3 3 0 0 0 . 0 0 . 5 0 0 0 . 0 0 0 1 6 7 0 . 2 3 3 3 . 0 0 0
5 0 3 2 0 0 0 . 0 0 . 5 0 0 0 . 0 0 0 1 6 7 - 0 . 3 8 6 - 5 . 0 4 6

N o d e  D a t a :

N o d e  Demand E l e v a t i o n  He a d  P r e s s u r e  H G L - e l e v .

1 - 1 . 1 9 4 0 . 0 0 0 1 2 6 . 0 0 0 5 4 . 6 0 0 1 2 6 . 0 0 0
2 1 . 2 1 6 0 . 0 0 0 9 8 . 0 0 0 4 2 . 4 6 7 9 8 . 0 0 0
3 1 . 0 7 9 0 . 0 0 0 9 5 . 0 0 0 4 1 . 1 6 7 9 5 . 0 0 0
4 - 1 . 4 8 8 0 . 0 0 0 1 3 0 . 0 0 0 5 6 . 3 3 3 1 3 0 . 0 0 0

P i p e D a t a :

P i p e N o d e N o d e L e n g t h D i a m e t e r  :R o u g h n e s s F l o w r a t e H e a d l o s s
No . #1 #2 C o e f .

1 4 1 4 0 0 0 . 0 1 . 0 0 0 0 . 0 0 0 1 6 7 4 . 7 0 0 3 4 . 2 1 3
2 1 3 6 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 1 . 5 3 6 4 6 . 7 9 9
3 1 2 4 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 1 . 6 6 4 3 6 . 2 8 5
4 2 3 3 0 0 0 . 0 0 . 5 0 0 0 . 0 0 0 1 6 7 0 . 4 6 4 1 0 . 5 1 3
5 0 3 2 0 0 0 . 0 0 . 5 0 0 0 . 0 0 0 1 6 7 - 1 . 0 0 0 - 2 9 . 4 9 9

N o d e D a t a :

N o d e Demand E l e v a t i o n He a d P r e s s u r e H G L - e l e v .

1
2
3
4

P i p e

1 . 5 0 0
1 . 2 0 0
1 . 0 0 0

- 4 . 7 0 0
D a t a :

5 0 . 0 0 0
4 0 . 0 0 0
3 0 . 0 0 0
2 0 . 0 0 0

1 1 6 . 0 2 2
8 9 . 7 3 6
8 9 . 2 2 3

1 8 0 . 2 3 4

5 0 . 2 7 6
3 8 . 8 8 6
3 8 . 6 6 3
7 8 . 1 0 2

1 6 6 . 0 2 2  
1 2 9 . 7 3 6  
1 1 9 . 2 2 3  
2 0 0 . 2 3 4

P i p e
N o .

N o d e  N o d e  
# 1  #2

L e n g t h D i a m e t e r  :R o u g h n e s s  
C o e f .

F l o w r a t e H e a d l o s s

1 4 1 4 0 0 0 . 0 1 . 0 0 0 0 . 0 0 0 1 6 7 1 . 4 8 8 4 . 0 0 0
2 1 3 6 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 1 . 2 3 2 3 1 . 0 0 0
3 1 2 4 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 1 . 4 5 0 2 8 . 0 0 0
4 2 3 3 0 0 0 . 0 0 . 5 0 0 0 . 0 0 0 1 6 7 0 . 2 3 3 3 . 0 0 0
5 0 3 2 0 0 0 . 0 0 . 5 0 0 0 . 0 0 0 1 6 7 - 0 . 3 8 6 - 5 . 0 4 6

N o d e D a t a :

N o d e Demand E l e v a t i o n He a d P r e s s u r e H G L - e l e v .

1
2
3
4

■ 1 . 1 9 4
1 . 2 1 6
1 . 0 7 9

- 1 . 4 8 8

5 0 . 0 0 0
4 0 . 0 0 0
3 0 . 0 0 0
2 0 . 0 0 0

7 6 . 0 0 0
5 8 . 0 0 0
6 5 . 0 0 0  

110.000

3 2 . 9 3 3
2 5 . 1 3 3
2 8 . 1 6 7
4 7 . 6 6 7

1 2 6 . 0 0 0
9 8 . 0 0 0
9 5 . 0 0 0  

1 3 0 . 0 0 0
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File Input & Output 
Example [3]



IAM0UT5 . October 9, 2000 Page 1

19 12 2 0
1
0
1
1
4
0
2
1
3
4 
6
7
8
5

2 0 0  5 2 1 0
2000 
2000 
2 5 0 0  
2 5 0 0  
2000 
3 8 0 0  . 
3 5 0 0  . 
3 2 0 0  .

8 4 0 0 0  .
5 3 5 0 0  .
6 2 5 0 0  .
7 3 8 0 0  .
9 2 5 0 0  .

6 10  3 0 0 0
7 11  3 5 0 0
8 12  3 2 0 0
10  9 3 2 0 0
11 10 2000

1 0 . 0 0 0 4 1 7  1 . 1  
. 8 3 3 3  . 0 0 0 4 1 7  1 . 1  
. 8 3 3 3  . 0 0 0 4 1 7  1 . 1  
. 8 3 3 3  . 0 0 0 4 1 7  1 . 1  
1 0 . 0 0 0 4 1 7  1 . 1  
. 8 3 3 3  . 0 0 0 4 1 7  1 . 1  

0 0 0 4 1 7  1 . 1  
0 0 0 4 1 7  1 . 1  
0 0 0 4 1 7  1 . 1  
0 0 0 4 1 7  1 . 1  
0 0 0 4 1 7  1 . 1  
0 0 0 4 1 7  1 . 1  
0 0 0 4 1 7  1 . 1  
. 0 0 0 4 1 7  1

8 3 3 3  
8 3 3 3  
8 3 3 3  
6666 
6666 
6666 
66 66  
.6666 , 
.6666 , 
.6666 . 
.6666 .
.6666

12 1 1  3 5 0 0  . 6 6 6 6

0 0 0 4 1 7  1 
0 0 0 4 1 7  1 
0 0 0 4 1 7  1 
. 0 0 0 0 4 1 7  
. 0 0 0 4 1 7 1.1

0 . 7 5 1 7 5 . 7 4 0 . 0
0 . 7 5 1 6 4  . 7 8 0 . 0
0 . 7 0 1 7 5 . 1 4 0 . 0
0 . 6 5 1 8 8 . 3 3 0 . 0or~iH

1 5 5 . 4 9 0 . 0
1 . 0 0 1 5 9 . 7 9 0 . 0
0 . 8 5 1 6 2 . 4 4 0 . 0
0 . 7 5 1 6 5 . 4 4 0 . 0
2 . 5 0 1 4 8 . 1 5 0 . 0
1 . 0 0 1 4 9 . 7 4 0 . 0
0 . 7 5 1 5 1 . 1 5 0 . 0
0 . 8 0 1 5 2 . 1 1 0 . 0
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P i p e  D a t a :

P i p e
No .

N o d e
#1

N o d e
#2

L e n g t h D i a m e t e r  R o u g h n e s s  
C o e f .

F l o w r a t e H e a d l o s s

1 0 1 2 0 0 0 . 0 1 . 0 0 0 0 . 0 0 0 4 1 7 5 . 3 0 0 2 4 . 2 7 0
2 1 2 2 0 0 0 . 0 0 . 8 3 3 0 . 0 0 0 4 1 7 2 . 1 7 1 1 0 . 9 6 0
3 1 3 2 5 0 0 . 0 0 . 8 3 3 0 . 0 0 0 4 1 7 0 . 4 0 7 0 . 5 9 9
4 4 3 2 5 0 0 . 0 0 . 8 3 3 0 . 0 0 0 4 1 7 2 . 1 2 8 1 3 . 1 8 9
5 0 4 2 0 0 0 . 0 1 .  000 0 . 0 0 0 4 1 7 5 . 0 0 0 2 1 . 6 8 1
6 2 5 3 8 0 0 . 0 0 . 8 3 3 0 . 0 0 0 4 1 7 1 . 4 2 1 9 . 2 8 9
7 1 6 3 5 0 0 . 0 0 . 8 3 3 0 . 0 0 0 4 1 7 1 . 9 7 2 1 5 . 9 4 9
8 3 7 3 2 0 0 . 0 0 . 8 3 3 0 . 0 0 0 4 1 7 1 . 8 3 5 1 2 . 7 2 0
9 4 8 4 0 0 0 . 0 0 . 8 3 3 0 . 0 0 0 4 1 7 2 . 2 2 2 2 2 . 9 1 5

10 6 5 3 5 0 0 . 0 0 . 6 6 7 0 . 0 0 0 4 1 7 0 . 5 4 4 4 . 3 0 0
11 7 6 2 5 0 0 . 0 0 . 6 6 7 0 . 0 0 0 4 1 7 0 . 5 0 1 2 . 6 3 0
12 8 7 3 8 0 0 . 0 0 . 6 6 7 0 . 0 0 0 4 1 7 0 . 4 2 8 2 . 9 9 4
13 5 9 2 5 0 0 . 0 0 . 6 6 7 0 . 0 0 0 4 1 7 0 . 8 6 6 7 . 3 2 7
14 6 10 3 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 4 1 7 0 . 9 2 8 1 0 . 0 2 9
15 7 11 3 5 0 0 . 0 0 . 6 6 7 0 . 0 0 0 4 1 7 0 . 9 1 3 1 1 . 3 4 9
16 8 12 3 2 0 0 . 0 0 . 6 6 7 0 . 0 0 0 4 1 7 1 . 0 4 3 13 . 3 6 4
17 10 9 3 2 0 0 . 0 0 . 6 6 7 0 . 0 0 0 4 1 7 0 . 3 3 4 1 . 5 9 8
18 11 10 2 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 0 4 2 0 . 4 0 7 1 . 3 1 0
19 12 11 3 5 0 0 . 0 0 . 6 6 7 0 . 0 0 0 4 1 7 0 . 2 4 3 0 . 9 8 8

N o d e D a t a  :

N o d e Demand E l e v a t i o n He a d P r e s s u r e H G L - e l e v .

1 0 . 7 5 0 0 . 0 0 0 1 7 5 . 7 3 0 7 6 . 1 5 0 1 7 5 . 7 3 0
2 0 . 7 5 0 0 . 0 0 0 1 6 4  . 7 7 0 7 1 . 4 0 0 1 6 4 . 7 7 0
3 0 . 7 0 0 0 . 0 0 0 1 7 5 . 1 3 1 7 5 . 8 9 0 1 7 5 . 1 3 1
4 0 . 6 5 0 0 . 0 0 0 1 8 8 . 3 1 9 8 1 . 6 0 5 1 8 8 . 3 1 9
5 1 . 1 0 0 0 . 0 0 0 1 5 5 . 4 8 0 6 7 . 3 7 5 1 5 5 . 4 8 0
6 1 . 0 0 0 0 . 0 0 0 1 5 9 . 7 8 1 6 9 . 2 3 8 1 5 9 . 7 8 1
7 0 . 8 5 0 0 . 0 0 0 1 6 2 . 4 1 0 7 0 . 3 7 8 1 6 2 . 4 1 0
8 0 . 7 5 0 0 . 0 0 0 1 6 5 . 4 0 4 7 1 . 6 7 5 1 6 5 . 4 0 4
9 1 . 2 0 0 0 . 0 0 0 1 4 8 . 1 5 3 6 4 . 2 0 0 1 4 8 . 1 5 3

10 1 . 0 0 0 0 . 0 0 0 1 4 9 . 7 5 1 6 4 . 8 9 2 1 4 9 . 7 5 1
11 0 . 7 5 0 0 . 0 0 0 1 5 1 . 0 6 1 6 5 . 4 6 0 1 5 1 . 0 6 1
12 0 . 8 0 0 0 . 0 0 0 1 5 2 . 0 4 0 6 5 . 8 8 4 1 5 2 . 0 4 0

P i p e D a t a  :

P i p e  N o d e N o d e L e n g t h D i a m e t e r  :R o u g h n e s s F l o w r a t e H e a d l o s s
No . # 1 #2 C o e f .

1 0 1 2 0 0 0 . 0 1 . 0 0 0 0 . 0 0 0 4 1 7 5 . 4 8 1 2 5 . 9 0 8
2 1 2 2 0 0 0 . 0 0 . 8 3 3 0 . 0 0 0 4 1 7 2 . 2 6 1 1 1 . 8 4 3
3 1 3 2 5 0 0 . 0 0 . 8 3 3 0 . 0 0 0 4 1 7 0 . 4 1 8 0 . 6 2 9
4 4 3 2 5 0 0 . 0 0 . 8 3 3 0 . 0 0 0 4 1 7 2 . 1 8 3 1 3 . 8 4 7
5 0 4 2 0 0 0 . 0 1 . 0 0 0 0 . 0 0 0 4 1 7 5 . 1 1 9 2 2 . 6 9 0
6 2 5 3 8 0 0 . 0 0 . 8 3 3 0 . 0 0 0 4 1 7 1 . 5 1 1 1 0 . 4 2 9
7 1 6 3 5 0 0 . 0 0 . 8 3 3 0 . 0 0 0 4 1 7 2 . 0 5 2 1 7 . 2 2 2
8 3 7 3 2 0 0 . 0 0 . 8 3 3 0 . 0 0 0 4 1 7 1 . 9 0 1 1 3 . 6 0 3
9 4 8 4 0 0 0 . 0 0 . 8 3 3 0 . 0 0 0 4 1 7 2 . 2 8 6 2 4 . 1 9 8

10 6 5 3 5 0 0 . 0 0 . 6 6 7 0 . 0 0 0 4 1 7 0 . 5 9 4 5 . 0 5 1
11 7 6 2 5 0 0 . 0 0 . 6 6 7 0 . 0 0 0 4 1 7 0 . 5 3 7 2 . 9 8 9
12 8 7 3 8 0 0 . 0 0 . 6 6 7 0 . 0 0 0 4 1 7 0 . 4 4 8 3 . 2 5 2
13 5 9 2 5 0 0 . 0 0 . 6 6 7 0 . 0 0 0 4 1 7 1 . 0 0 4 9 . 7 0 7
14 6 10 3 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 4 1 7 0 . 9 9 5 1 1 . 4 5 5
15 7 11 3 5 0 0 . 0 0 . 6 6 7 0 . 0 0 0 4 1 7 0 . 9 6 3 1 2 . 5 4 3
16 8 12 3 2 0 0 . 0 0 . 6 6 7 0 . 0 0 0 4 1 7 1 . 0 8 8 1 4 . 4 6 7
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17 10 9 3 2 0 0 . 0 0 . 6 6 7 0 . 0 0 0 4 1 7 0 . 4 9 6 3 . 3 0 4
18  11 10 2 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 0 4 2 0 . 5 0 0 1 . 9 0 1
19  12 11 3 5 0 0 . 0 0 . 6 6 7 0 . 0 0 0 4 1 7 0 . 2 8 8 1 . 3 4 1

N o d e  D a t a :

N o d e Demand E l e v a t i o n He a d P r e s s u r e H G L - e l e v .

1 0 . 7 5 0 0 . 0 0 0 1 7 4 . 0 9 2 7 5 . 4 4 0 1 7 4 . 0 9 2
2 0 . 7 5 0 0 . 0 0 0 1 6 2 . 2 4 9 7 0 . 3 0 8 1 6 2 . 2 4 9
3 0 . 7 0 0 0 . 0 0 0 1 7 3 . 4 6 3 7 5 . 1 6 7 1 7 3 . 4 6 3
4 0 . 6 5 0 0 . 0 0 0 1 8 7 . 3 1 0 8 1 . 1 6 7 1 8 7 . 3 1 0
5 1 . 1 0 0 0 . 0 0 0 1 5 1 . 8 1 9 6 5 . 7 8 8 1 5 1 . 8 1 9
6 1 .  0 0 0 0 . 0 0 0 1 5 6 . 8 7 0 6 7 . 9 7 7 1 5 6 . 8 7 0
7 0 . 8 5 0 0 . 0 0 0 1 5 9 . 8 6 0 6 9 . 2 7 2 1 5 9 . 8 6 0
8 0 . 7 5 0 0 . 0 0 0 1 6 3 . 1 1 1 7 0 . 6 8 2 1 6 3 . 1 1 1
9 1 . 5 0 0 0 . 0 0 0 1 4 2 . 1 1 2 6 1 . 5 8 2 1 4 2 . 1 1 2

10 1 . 0 0 0 0 . 0 0 0 1 4 5 . 4 1 6 6 3 . 0 1 3 1 4 5 . 4 1 6
11 0 . 7 5 0 0 . 0 0 0 1 4 7 . 3 1 6 6 3 . 8 3 7 1 4 7 . 3 1 6
12 0 . 8 0 0 0 . 0 0 0 1 4 8 . 6 4 5 6 4 . 4 1 3 1 4 8 . 6 4 5

P i p e  ]D a t a !

P i p e  N o d e N o d e L e n g t h D i a m e t e r  R o u g h n e s s F l o w r a t e H e a d l o s s
No . # 1 #2 C o e f .

1 0 1 2 0 0 0 . 0 1 . 0 0 0 0 . 0 0 0 4 1 7 5 . 6 3 2 2 7 . 3 1 4
2 1 2 2 0 0 0 . 0 0 . 8 3 3 0 . 0 0 0 4 1 7 2 . 3 3 7 1 2 . 6 2 3
3 1 3 2 5 0 0 . 0 0 . 8 3 3 0 . 0 0 0 4 1 7 0 . 4 2 6 0 . 6 5 0
4 4 3 2 5 0 0 . 0 0 . 8 3 3 0 . 0 0 0 4 1 7 2 . 2 2 9 1 4 . 4 1 4
5 0 4 2 0 0 0 . 0 1 . 0 0 0 0 . 0 0 0 4 1 7 5 . 2 1 8 23 . 5 4 9
6 2 5 3 8 0 0 . 0 0 . 8 3 3 0 . 0 0 0 4 1 7 1 . 5 8 7 1 1 . 4 5 3
7 1 6 3 5 0 0 . 0 0 . 8 3 3 0 . 0 0 0 4 1 7 2 . 1 1 9 1 8 . 3 1 5
8 3 7 3 2 0 0 . 0 0 . 8 3 3 0 . 0 0 0 4 1 7 1 .  9 5 5 1 4 . 3 4 9
9 4 8 4 0 0 0 . 0 0 . 8 3 3 0 . 0 0 0 4 1 7 2 . 3 3 9 2 5 . 2 8 1

10 6 5 3 5 0 0 . 0 0 . 6 6 7 0 . 0 0 0 4 1 7 0 . 6 3 7 5 . 7 6 1
11 7 6 2 5 0 0 . 0 0 . 6 6 7 0 . 0 0 0 4 1 7 0 . 5 6 7 3 . 3 1 7
12 8 7 3 8 0 0 . 0 0 . 6 6 7 0 . 0 0 0 4 1 7 0 . 4 6 5 3 . 4 8 3
13 5 9 2 5 0 0 . 0 0 . 6 6 7 0 . 0 0 0 4 1 7 1 . 1 2 4 1 2 . 0 2 3
14 6 10 3 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 4 1 7 1 . 0 5 0 1 2 . 6 7 9
15 7 11 3 5 0 0 . 0 0 . 6 6 7 0 . 0 0 0 4 1 7 1 . 0 0 3 1 3 . 5 4 8
16 8 12 3 2 0 0 . 0 0 . 6 6 7 0 . 0 0 0 4 1 7 1 . 1 2 4 1 5 . 3 8 6
17 10 9 3 2 0 0 . 0 0 . 6 6 7 0 . 0 0 0 4 1 7 0 . 6 2 6 5 . 1 0 4
18 11 10 2 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 0 4 2 0 . 5 7 6 2 . 4 4 8
19 12 11 3 5 0 0 . 0 0 . 6 6 7 0 . 0 0 0 4 1 7 0 . 3 2 4 1 .  6 6 1

N o d e  1D a t a '

N o d e De mand E l e v a t i o n H e a d P r e s s u r e H G L - e l e v .

1 0 . 7 5 0 0 . 0 0 0 1 7 2 . 6 8 6 7 4 . 8 3 1 1 7 2 . 6 8 6
2 0 . 7 5 0 0 . 0 0 0 1 6 0 . 0 6 3 6 9 . 3 6 1 1 6 0 . 0 6 3
3 0 . 7 0 0 0 . 0 0 0 1 7 2 . 0 3 6 7 4 . 5 4 9 1 7 2 . 0 3 6
4 0 . 6 5 0 0 . 0 0 0 1 8 6 . 4 5 1 8 0 . 7 9 5 1 8 6 . 4 5 1
5 1 . 1 0 0 0 . 0 0 0 1 4 8 . 6 1 0 6 4 . 3 9 8 1 4 8 . 6 1 0
6 1 . 0 0 0 0 . 0 0 0 1 5 4  . 3 7 1 6 6 . 8 9 4 1 5 4 . 3 7 1
7 0 . 8 5 0 0 . 0 0 0 1 5 7 . 6 8 8 6 8 . 3 3 1 1 5 7 . 6 8 8
8 0 . 7 5 0 0 . 0 0 0 1 6 1 . 1 7 0 6 9 . 8 4 0 1 6 1 . 1 7 0
9 1 . 7 5 0 0 . 0 0 0 1 3 6 . 5 8 7 5 9 . 1 8 8 1 3 6 . 5 8 7

10 1 . 0 0 0 0 . 0 0 0 1 4 1 . 6 9 2 6 1 . 4 0 0 1 4 1 . 6 9 2
11 0 . 7 5 0 0 . 0 0 0 1 4 4 . 1 3 9 6 2 . 4 6 0 1 4 4 . 1 3 9
12 0 . 8 0 0 0 . 0 0 0 1 4 5 . 7 8 5 6 3 . 1 7 3 1 4 5 . 7 8 5

P i p e  ]D a t a :
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P i p e  N o d e  
N o .  #1

N o d e
#2

L e n g t h D i a m e t e r R o u g h n e s s  
C o e f .

F l o w r a t e H e a d l o s s

1 0 1 2 0 0 0 . 0 1 . 0 0 0 0 . 0 0 0 4 1 7 5 . 7 8 3 28  . 7 5 6
2 1 2 2 0 0 0 . 0 0 . 8 3 3 0 . 0 0 0 4 1 7 2 . 4 1 5 13 . 4 4 0
3 1 3 2 5 0 0 . 0 0 . 833 0 . 0 0 0 4 1 7 0 . 4 3 2 0 . 6 6 8
4 4 3 2 5 0 0 . 0 0 . 8 3 3 0 . 0 0 0 4 1 7 2 . 2 7 6 1 4 . 9 9 9
5 0 4 2 0 0 0 . 0 1 . 0 0 0 0 . 0 0 0 4 1 7 5 . 3 1 7 2 4 . 4 2 5
6 2 5 3 8 0 0 . 0 0 . 8 3 3 0 . 0 0 0 4 1 7 1 . 6 6 5 12 . 5 4 0
7 1 6 3 5 0 0 . 0 0 . 8 3 3 0 . 0 0 0 4 1 7 2 . 1 8 6 1 9 . 4 4 0
8 3 7 3 2 0 0 . 0 0 . 8 3 3 0 . 0 0 0 4 1 7 2 . 0 0 8 1 5 . 1 0 4
9 4 8 4 0 0 0 . 0 0 . 8 3 3 0 . 0 0 0 4 1 7 2 . 3 9 1 2 6 . 3 7 7

10 6 5 3 5 0 0 . 0 0 . 6 6 7 0 . 0 0 0 4 1 7 0 . 6 8 1 6 . 5 3 9
11 7 6 2 5 0 0 . 0 0 . 6 6 7 0 . 0 0 0 4 1 7 0 . 5 9 9 3 . 6 6 8
12 8 7 3 8 0 0 . 0 0 . 6 6 7 0 . 0 0 0 4 1 7 0 . 4 8 2 3 . 7 2 7
13 5 9 2 5 0 0 . 0 0 . 6 6 7 0 . 0 0 0 4 1 7 1 . 2 4 6 1 4 . 6 3 7
14 6 10 3 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 4 1 7 1 . 1 0 4 1 3 . 9 4 3
15 7 11 3 5 0 0 . 0 0 . 6 6 7 0 . 0 0 0 4 1 7 1 . 0 4 2 1 4 . 5 6 9
16 8 12 3 2 0 0 . 0 0 . 667 0 . 0 0 0 4 1 7 1 . 1 5 9 1 6 . 3 1 0
17 10 9 3 2 0 0 . 0 0 . 6 6 7 0 . 0 0 0 4 1 7 0 . 7 5 4 7 . 2 3 2
18 11 10 2 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 0 4 2 0 . 6 5 0 3 . 0 4 2
19 12 11 3 5 0 0 . 0 0 . 6 6 7 0 . 0 0 0 4 1 7 0 . 3 5 9 2 . 0 0 5

N o d e D a t a s

N o d e  Demand E l e v a t i o n He a d  P r e s s u r e H G L - e l e v .

1 0 . 7 5 0 0 . 0 0 0 1 7 1 . 2 4 4 7 4 . 2 0 6 1 7 1 . 2 4 4
2 0 . 7 5 0 0 . 0 0 0 1 5 7 . 8 0 4 6 8 . 3 8 2 1 5 7 . 8 0 4
3 0 . 7 0 0 0 . 0 0 0 1 7 0 . 5 7 6 7 3 . 9 1 6 1 7 0 . 5 7 6
4 0 . 6 5 0 0 . 0 0 0 1 8 5 . 5 7 6 8 0 . 4 1 6 1 8 5 . 5 7 6
5 1 . 1 0 0 0 . 0 0 0 1 4 5 . 2 6 4 6 2 . 9 4 8 1 4 5 . 2 6 4
6 1 . 0 0 0 0 . 0 0 0 1 5 1 . 8 0 4 6 5 . 7 8 2 1 5 1 . 8 0 4
7 0 . 8 5 0 0 . 0 0 0 1 5 5 . 4 7 2 67 . 3 7 1 1 5 5 . 4 7 2
8 0 . 7 5 0 0 . 0 0 0 1 5 9 . 1 9 9 6 8 . 9 8 6 1 5 9 . 1 9 9
9 2 . 0 0 0 0 . 0 0 0 1 3 0 . 6 2 8 5 6 . 6 0 5 1 3 0 . 6 2 8

10 1 . 0 0 0 0 . 0 0 0 1 3 7 . 8 6 0 5 9 . 7 3 9 1 3 7 . 8 6 0
11 0 . 7 5 0 0 . 0 0 0 1 4 0 . 9 0 3 6 1 . 0 5 8 1 4 0 . 9 0 3
12 0 . 8 0 0 0 . 0 0 0 1 4 2 . 8 8 9 6 1 . 9 1 9 1 4 2 . 8 8 9

P i p e  D a t a :

P i p e  N o d e  N o d e L e n g t h D i a m e t e r R o u g h n e s s F l o w r a t e H e a d l o s s
N o .  # 1  #2 C o e f .

1 0 1 2 0 0 0 . 0 1 . 0 0 0 0 . 0 0 0 4 1 7 6 . 0 8 5 3 1 . 7 4 7
2 1 2 2 0 0 0 . 0 0 . 8 3 3 0 . 0 0 0 4 1 7 2 . 5 7 2 1 5 . 1 7 8
3 1 3 2 5 0 0 . 0 0 . 8 3 3 0 . 0 0 0 4 1 7 0 . 4 4 2 0 . 6 9 8
4 4 3 2 5 0 0 . 0 0 . 8 3 3 0 . 0 0 0 4 1 7 2 . 3 7 1 16 . 2 2 0
5 0 4 2 0 0 0 . 0 1 . 0 0 0 0 . 0 0 0 4 1 7 5 . 5 1 5 2 6 . 2 2 5
6 2 5 3 8 0 0 . 0 0 . 8 3 3 0 . 0 0 0 4 1 7 1 . 8 2 2 1 4 . 8 9 8
7 1 6 3 5 0 0 . 0 0 . 8 3 3 0 . 0 0 0 4 1 7 2 . 3 2 0 2 1 . 7 8 5
8 3 7 3 2 0 0 . 0 0 . 8 3 3 0 . 0 0 0 4 1 7 2 . 1 1 3 1 6 . 6 5 2
9 4 8 4 0 0 0 . 0 0 . 8 3 3 0 . 0 0 0 4 1 7 2 . 4 9 5 2 8 . 6 1 9

10 6 5 3 5 0 0 . 0 0 . 6 6 7 0 . 0 0 0 4 1 7 0 . 7 7 3 8 . 2 9 0
11 7 6 2 5 0 0 . 0 0 . 6 6 7 0 . 0 0 0 4 1 7 0 . 6 6 3 4 . 4 3 6
12 8 7 3 8 0 0 . 0 0 . 6 6 7 0 . 0 0 0 4 1 7 0 . 5 1 8 4 . 2 5 3
13 5 9 2 5 0 0 . 0 0 . 6 6 7 0 . 0 0 0 4 1 7 1 . 4 9 5 2 0 . 7 5 5
14 6 10 3 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 4 1 7 1 . 2 1 0 1 6 . 6 0 6
15 7 11 3 5 0 0 . 0 0 . 6 6 7 0 . 0 0 0 4 1 7 1 . 1 1 8 1 6 . 6 7 1
16 8 12 3 2 0 0 . 0 0 . 6 6 7 0 . 0 0 0 4 1 7 1 . 2 2 7 1 8 . 1 8 7
17 10  9 3 2 0 0 . 0 0 . 6 6 7 0 . 0 0 0 4 1 7 1 . 0 0 5 12 . 4 3 9
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18 11  1 0  2 0 0 0 . 0  0 . 6 6 7  0 . 0 0 0 0 4 2  0 . 7 9 5
19 12 1 1  3 5 0 0 . 0  0 . 6 6 7  0 . 0 0 0 4 1 7  0 . 4 2 7

N o d e  D a t a :

N o d e  De ma nd  E l e v a t i o n  H e a d  P r e s s u r e  H G L - e l e v .

1 0 . 7 5 0 0 . 0 0 0 1 6 8 . 2 5 2 7 2 . 9 0 9 1 6 8 . 2 5 2
2 0 . 7 5 0 0 . 0 0 0 1 5 3 . 0 7 5 66 . 3 3 2 1 5 3 . 0 7 5
3 0 . 7 0 0 0 . 0 0 0 1 6 7 . 5 5 5 7 2 . 6 0 7 1 6 7 . 5 5 5
4 0 . 6 5 0 0 . 0 0 0 1 8 3 . 7 7 5 7 9 . 6 3 6 1 8 3  . 7 7 5
5 1 . 1 0 0 0 . 0 0 0 1 3 8 . 1 7 7 5 9 . 8 7 7 1 3 8 . 1 7 7
6 1 . 0 0 0 0 . 0 0 0 1 4 6 . 4 6 7 6 3 . 4 6 9 1 4 6  . 4 6 7
7 0 . 8 5 0 0 . 0 0 0 1 5 0 . 9 0 3 6 5 . 3 9 1 1 5 0 . 9 0 3
8 0 . 7 5 0 0 . 0 0 0 1 5 5 . 1 5 6 6 7 . 2 3 4 1 5 5 . 1 5 6
9 2 . 5 0 0 0 . 0 0 0 1 1 7 . 4 2 2 5 0 . 8 8 3 1 1 7 . 4 2 2

10 1 . 0 0 0 0 . 0 0 0 1 2 9 . 8 6 1 5 6 . 2 7 3 1 2 9 . 8 6 1
1 1 0 . 7 5 0 0 . 0 0 0 1 3 4 . 2 3 2 5 8 . 1 6 7 1 3 4  . 2 3 2
12 0 . 8 0 0 0 . 0 0 0 1 3 6 . 9 6 9 5 9 . 3 5 3 1 3 6 . 9 6 9

4 . 3 7 1  
2 . 7 6 2
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Figure 4.A Pressure at Node [1-2-3-4-5-6]
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Figure 4.A8 Pressure at Node [7-8-9-10-11-12]
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Figure 4.A9 Flow in Pipe [1-2-3-4-5-6]



Figure 4.A10 Flow in Pipe[7-8-9-10-11-12]
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Figure 4.A11 Flow in pipe [13-14-15-16-17-18-19]
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Figure 4.A12 Head at Junction [1-2-3-4-5-6]
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Demand at Node 9

Figure 4.A13 Head at Junction [7-8-9-10-11-12]

Figure 4.A14 The effect by Changing Q9 on Pressure at [1-6]

Figure 4.A15 The effect by Changing Qj9 on ressure at[7-12]
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Figure 4.A17
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Figure 4.A18
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File Input & Output 
Example [4]
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14 9 2 0
1 2 6 0 0  14 2 5 0 0
0 1 1 5 0 0 1 . 0 0 0 1 6 6 6 6 7  9 . 7
1 2 1 0 0 0 . 6 6 6 6 7  . 0 0 0 1 6 6 6 6 7 2 . 9
2 3 2 0 0 0 . 6 6 6 6 7  . 0 0 0 1 6 6 6 6 7 1 . 7
5 3 1 0 0 0 . 6 6 6 6 7  . 0 0 0 1 6 6 6 6 7 0 . 2
3 4 2 0 0 0 . 5  . 0 0 0 1 6 6 6 6 7  . 9
6 4 1 0 0 0 . 5  . 0 0 0 1 6 6 6 6 7  . 5
1 5 2 0 0 0 . 6 6 6 6 7  . 0 0 0 1 6 6 6 6 7 2 . 7
5 6 2 0 0 0 . 5  . 0 0 0 1 6 6 6 6 7  . 8
1 7 1 2 0 0 . 6 6 6 6 7  . 0 0 0 1 6 6 6 6 7 2 . 9
7 8 2 0 0 0 . 6 6 6 6 7  . 0 0 0 1 6 6 6 6 7 1 . 7
5 8 2 0 0 0 . 6 6 6 6 7  . 0 0 0 1 6 6 6 6 7 0 . 8
8 9 1 2 0 0 . 6 6 6 6 7  . 0 0 0 1 6 6 6 6 7 1 . 4
9 6 1 2 0 0 . 6 6 6 6 7  . 0 0 0 1 6 6 6 6 7 1 . 2
0 9 1 5 0 0 . 6 6 6 6 7  . 0 0 0 1 6 6 6 6 7 1 . 3

1 . 3 2 5 4 8 . 6 2 4 1 0
1 . 2 2 5 2 2  . 8 2 4 0 5
1 . 0 2 5 0 4 . 1 2 4 0 0
1 . 4 2 4 8 1 . 1 2 3 4 0
0 . 9 2 5 0 4 . 3 2 4 0 5
1 . 5 2 4 8 5 . 4 2 3 5 0
1 . 2 2 5 1 8 . 1 2 4 0 5
1 . 0 2 4 9 1 . 6 2 4 0 0
1 . 5 2 4 9 1 . 6 2 3 7 0
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P i p e  D a t a :

P i p e
N o .

N o d e
# 1

N o d e
#2

L e n g t h D i a m e t e r R o u g h n e s s  
C o e f .

F l o w r a t e H e a d l o s s

1 0 1 1 5 0 0 . 0 1 . 0 0 0 0 . 0 0 0 1 6 7 9 . 7 1 4 5 1 . 4 1 8
2 1 2 1 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 2 . 8 8 7 2 5 . 8 1 0
3 2 3 2 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 1 . 6 8 7 1 8 . 6 4 4
4 5 3 1 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 0 . 1 9 4 0 . 1 7 9
5 3 4 2 0 0 0 . 0 0 . 5 0 0 0 . 0 0 0 1 6 7 0 . 8 8 1 2 3 . 0 1 6
6 6 4 1 0 0 0 . 0 0 . 5 0 0 0 . 0 0 0 1 6 7 0 . 5 1 9 4 . 3 0 7
7 1 5 2 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 2 . 6 6 3 4 4 . 2 7 5
8 5 6 2 0 0 0 . 0 0 . 5 0 0 0 . 0 0 0 1 6 7 0 . 7 9 2 1 8 . 8 8 9
9 1 7 1 2 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 2 . 8 6 4 3 0 . 5 0 7

10 7 8 2 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 1 . 6 6 4 1 8 . 1 7 3
11 5 8 2 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 0 . 7 7 7 4 . 4 0 5
12 8 9 1 2 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 1 . 4 4 0 8 . 3 2 0
13 9 6 1 2 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 1 . 2 2 7 6 . 1 6 4
14

N o d e
0

D a t a  :
9 1 5 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 1 . 2 8 6 8 . 4 9 6

N o d e Demand E l e v a t i o n He a d P r e s s u r e H G L - e l e v .

1 1 . 3 0 0 2 4 1 0 . 0 0 0 1 3 8 . 5 8 2 6 0 . 0 5 2 2 5 4 8 . 5 8 2
2 1 . 2 0 0 2 4 0 5 . 0 0 0 1 1 7  . 7 7 2 5 1 . 0 3 4 2 5 2 2 . 7 7 2
3 1 . 0 0 0 2 4 0 0 . 0 0 0 1 0 4 . 1 2 8 4 5 . 1 2 2 2 5 0 4 . 1 2 8
4 1 . 4 0 0 2 3 4 0 . 0 0 0 1 4 1 . 1 1 2 6 1 . 1 4 8 2 4 8 1 . 1 1 2
5 0 . 9 0 0 2 4 0 5 . 0 0 0 9 9 . 3 0 7 4 3 . 0 3 3 2 5 0 4 . 3 0 7
6 1 . 5 0 0 2 3 5 0 . 0 0 0 1 3 5 . 4 1 8 5 8 . 6 8 1 2 4 8 5 . 4 1 8
7 1 . 2 0 0 2 4 0 5 . 0 0 0 1 1 3 . 0 7 5 4 8 . 9 9 9 2 5 1 8 . 0 7 5
8 1 . 0 0 0 2 4 0 0 . 0 0 0 9 9 . 9 0 2 4 3 . 2 9 1 2 4 9 9 . 9 0 2
9 1 . 5 0 0 2 3 7 0 . 0 0 0 1 2 1 . 5 8 2 5 2 . 6 8 6 2 4 9 1 . 5 8 2

P i p e  :D a t a :

P i p e  :Node N o d e L e n g t h D i a m e t e r  !R o u g h n e s s F l o w r a t e H e a d l o s s
N o . # 1 #2 C o e f .

1 0 1 1 5 0 0 . 0 1 . 0 0 0 0 . 0 0 0 1 6 7 9 . 7 1 2 5 1 . 4 0 0
2 1 2 1 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 2 . 8 8 6 2 5 . 8 0 0
3 2 3 2 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 1 . 6 8 9 1 8 . 7 0 0
4 5 3 1 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 0 . 2 0 6 0 . 2 0 0
5 3 4 2 0 0 0 . 0 0 . 5 0 0 0 . 0 0 0 1 6 7 0 . 8 8 0 2 3 . 0 0 0
6 6 4 1 0 0 0 . 0 0 . 5 0 0 0 . 0 0 0 1 6 7 0 . 5 1 9 4 . 3 0 0
7 1 5 2 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 2 . 6 6 4 4 4 . 3 0 0
8 5 6 2 0 0 0 . 0 0 . 5 0 0 0 . 0 0 0 1 6 7 0 . 7 9 3 1 8 . 9 0 0
9 1 7 1 2 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 2 . 8 6 3 3 0 . 5 0 0

10 7 8 2 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 2 . 0 3 2 26  . 5 0 0
1 1 5 8 2 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 1 . 3 7 4 1 2 . 7 0 0
12 8 9 1 2 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 0 . 0 0 0 0 . 0 0 0
13 9 6 1 2 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 1 . 2 3 1 6 . 2 0 0
14 0 9 1 5 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 1 . 2 8 5 8 . 4 7 8

N o d e  D a t a !

N o d e Demand E l e v a t i o n He a d P r e s s u r e H G L - e l e v .

1 1 . 2 9 8 2 4 1 0 . 0 0 0 1 3 8 . 6 0 0 6 0 . 0 6 0 2 5 4 8 . 6 0 0
2 1 . 1 9 7 2 4 0 5 . 0 0 0 1 1 7 . 8 0 0 5 1 . 0 4 7 2 5 2 2 . 8 0 0
3 1 . 0 1 5 2 4 0 0 . 0 0 0 1 0 4 . 1 0 0 4 5 . 1 1 0 2 5 0 4 . 1 0 0
4 1 . 3 9 9 2 3 4 0 . 0 0 0 1 4 1 . 1 0 0 6 1 . 1 4 3 2 4 8 1 . 1 0 0
5 0 . 2 9 1 2 4 0 5 . 0 0 0 9 9 . 3 0 0 4 3 . 0 3 0 2 5 0 4 . 3 0 0
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6 1 . 5 0 5  2 3 5 0 . 0 0 0  1 3 5 . 4 0 0  5 8 . 6 7 3  2 4 8 5 . 4 0 0
7 0 . 8 3 1  2 4 0 5 . 0 0 0  1 1 3 . 1 0 0  4 9 . 0 1 0  2 5 1 8 . 1 0 0
8 3 . 4 0 6  2 4 0 0 . 0 0 0  9 1 . 6 0 0  3 9 . 6 9 3  2 4 9 1 . 6 0 0
9 0 . 0 5 5  2 3 7 0 . 0 0 0  1 2 1 . 6 0 0  5 2 . 6 9 3  2 4 9 1 . 6 0 0

D e v i c e s  c a u s e d  t h e  f o l l o w i n g  c h a n g e s  i n  h e a d s
D e v i c e  1 i n  p i p e  14 C h a n g e  i n  h e a d  = 5 3 . 4 1 7
P i p e  D a t a :

P i p e
No .

No d e
#1

N o d e
#2

L e n g t h D i a m e t e r R o u g h n e s s  
C o e f .

F l o w r a t e H e a d l o s s

1 0 1 1 5 0 0 . 0 1 . 0 0 0 0 . 0 0 0 1 6 7 9 . 6 3 7 5 0 . 6 4 0
2 1 2 1 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 2 . 8 6 5 2 5 . 4 3 5
3 2 3 2 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 1 . 6 6 5 1 8 . 1 8 8
4 5 3 1 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 0 . 2 0 6 0 . 2 0 0
5 3 4 2 0 0 0 . 0 0 . 5 0 0 0 . 0 0 0 1 6 7 0 . 8 7 1 2 2 . 5 4 0
6 6 4 1 0 0 0 . 0 0 . 5 0 0 0 . 0 0 0 1 6 7 0 . 5 2 9 4 . 4 5 7
7 1 5 2 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 2 . 6 3 6 4 3 . 4 2 3
8 5 6 2 0 0 0 . 0 0 . 5 0 0 0 . 0 0 0 1 6 7 0 . 7 7 9 1 8 . 2 8 3
9 1 7 1 2 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 2 . 8 3 6 2 9 . 9 5 2

10 7 8 2 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 1 . 6 3 6 1 7 . 6 1 4
11 5 8 2 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 0 . 7 5 1 4 . 1 4 2
12 8 9 1 2 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 1 . 3 8 7 7 . 7 5 6
13 9 6 1 2 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 1 . 2 5 0 6 . 3 8 6
14

N o d e
0

D a t a  :
9 1 5 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 1 . 3 6 3 9 . 4 6 5

No d e Demand E l e v a t i o n Head[ P r e s s u r e H G L - e l e v .

1 1 . 3 0 0 2 4 1 0 . 0 0 0 1 3 9 . 3 6 0 6 0 . 3 8 9 2 5 4 9 . 3 6 0
2 1 . 2 0 0 2 4 0 5 . 0 0 0 1 1 8 . 9 2 5 5 1 . 5 3 4 2 5 2 3 . 9 2 5
3 1 . 0 0 0 2 4 0 0 . 0 0 0 1 0 5  . 7 3 7 4 5 . 8 1 9 2 5 0 5 . 7 3 7
4 1 . 4 0 0 2 3 4 0 . 0 0 0 1 4 3 . 1 9 7 6 2 . 0 5 2 2 4 8 3 . 1 9 7
5 0 . 9 0 0 2 4 0 5 . 0 0 0 1 0 0 . 9 3 7 4 3 . 7 3 9 2 5 0 5 . 9 3 7
6 1 . 5 0 0 2 3 5 0  . 0 0 0 1 3 7 . 6 5 4 5 9 . 6 5 0 2 4 8 7 . 6 5 4
7 1 . 2 0 0 2 4 0 5  . 0 0 0 1 1 4 . 4 0 9 4 9 . 5 7 7 2 5 1 9 . 4 0 9
8 1 . 0 0 0 2 4 0 0 . 0 0 0 1 0 1 . 7 9 5 4 4 . 1 1 1 2 5 0 1 . 7 9 5
9 1 . 5 0 0 2 3 7 0  . 0 0 0 1 2 4 . 0 4 0 5 3 . 7 5 1 2 4 9 4 . 0 4 0

D e v i c e s c a u s e d t h e  f o l l o w i n g  c h a n g e s  i n  h e a d s
D e v i c e 1. i n  p i p e  14 C h a n g e  i n  h e a d  = 5 2 . 7 6 9
P i p e  D a t a :

P i p e  N o d e N o d e L e n g t h D i a m e t e r  !R o u g h n e s s F l o w r a t e H e a d l o s s
No . #1 #2 C o e f .

1 0 1 1 5 0 0 .  0 1 . 0 0 0 0 . 0 0 0 1 6 7 9 . 7 1 2 5 1 . 4 0 0
2 1 2 1 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 2 . 8 8 6 2 5 . 8 0 0
3 2 3 2 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 1 . 6 8 9 18 . 7 0 0
4 5 3 1 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 0 . 2 0 6 0 . 2 0 0
5 3 4 2 0 0 0 . 0 0 . 5 0 0 0 . 0 0 0 1 6 7 0 . 8 8 0 23  . 0 0 0
6 6 4 1 0 0 0 . 0 0 . 5 0 0 0 . 0 0 0 1 6 7 0 . 5 1 9 4 . 3 0 0
7 1 5 2 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 2 . 6 6 4 4 4 . 3 0 0
8 5 6 2 0 0 0 . 0 0 . 5 0 0 0 . 0 0 0 1 6 7 0 . 7 9 3 1 8 . 9 0 0
9 1 7 1 2 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 2 . 8 6 3 3 0 . 5 0 0

10 7 8 2 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 2 . 0 3 2 2 6 . 5 0 0
11 5 8 2 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 1 . 3 7 4 1 2 . 7 0 0
12 8 9 1 2 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 0 . 0 0 0 0 . 0 0 0
13 9 6 1 2 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 1 . 2 3 1 6 . 2 0 0
14 0 9 1 5 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 1 . 4 9 6 1 1 . 2 7 3

N o d e  D a t a :



N o d e  De mand  E l e v a t i o n  He a d  P r e s s u r e  H G L - e l e v .
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1 1 . 2 9 8 2 4 1 0 . 0 0 0 1 3 8 . 6 0 0 6 0 . 0 6 0 2 5 4 8 . 6 0 0
2 1 . 1 9 7 2 4 0 5 . 0 0 0 1 1 7 . 8 0 0 5 1 . 0 4 7 2 5 2 2 . 8 0 0
3 1 . 0 1 5 2 4 0 0 . 0 0 0 1 0 4 . 1 0 0 4 5 . 1 1 0 2 5 0 4 . 1 0 0
4 1 . 3 9 9 2 3 4 0 . 0 0 0 1 4 1 . 1 0 0 6 1 . 1 4 3 2 4 8 1 . 1 0 0
5 0 . 2 9 1 2 4 0 5 . 0 0 0 9 9 . 3 0 0 4 3 . 0 3 0 2 5 0 4 . 3 0 0
6 1 . 5 0 5 2 3 5 0 . 0 0 0 1 3 5 . 4 0 0 5 8 . 6 7 3 2 4 8 5 . 4 0 0
7 0 . 8 3 1 2 4 0 5 . 0 0 0 1 1 3 . 1 0 0 4 9 . 0 1 0 2 5 1 8 . 1 0 0
8 3 . 4 0 6 2 4 0 0 . 0 0 0 9 1 . 6 0 0 3 9 . 6 9 3 2 4 9 1 . 6 0 0
9 0 . 2 6 6 2 3 7 0 . 0 0 0 1 2 1 . 6 0 0 5 2 . 6 9 3 2 4 9 1 . 6 0 0
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14 9 2 0
1 2 5 5 0  14; 2 5 0 0
0 1 1 5 0 0 1 . 0 0 0 1 6 6 6 6 7  9 . 7
1 2 1 0 0 0 . 6 6 6 6 7  . 0 0 0 1 6 6 6 6 7 2 . 9
2 3 2 0 0 0 . 6 6 6 6 7  . 0 0 0 1 6 6 6 6 7 1 . 7
5 3 1 0 0 0 . 6 6 6 6 7  . 0 0 0 1 6 6 6 6 7 0 . 2
3 4 2 0 0 0 . 5  . 0 0 0 1 6 6 6 6 7  . 9
6 4 1 0 0 0 . 5  . 0 0 0 1 6 6 6 6 7  . 5
1 5 2 0 0 0 . 6 6 6 6 7  . 0 0 0 1 6 6 6 6 7 2 . 7
5 6 2 0 0 0 . 5  . 0 0 0 1 6 6 6 6 7  . 8
1 7 1 2 0 0 . 6 6 6 6 7  . 0 0 0 1 6 6 6 6 7 2 . 9
7 8 2 0 0 0 . 6 6 6 6 7  . 0 0 0 1 6 6 6 6 7 1 . 7
5 8 2 0 0 0 . 6 6 6 6 7  . 0 0 0 1 6 6 6 6 7 0 . 8
8 9 1 2 0 0 . 6 6 6 6 7  . 0 0 0 1 6 6 6 6 7 1 . 4
9 6 1 2 0 0 . 6 6 6 6 7  . 0 0 0 1 6 6 6 6 7 1 . 2
0 9 1 5 0 0 . 6 6 6 6 7  . 0 0 0 1 6 6 6 6 7 1 . 3

1 . 3 2 5 4 8  . 6 2 4 1 0
1 . 2 2 5 2 2 . 8 2 4 0 5
1 . 0 2 5 0 4 . 1 2 4 0 0
1 . 4 2 4 8 1 . 1 2 3 4 0
0 . 9 2 5 0 4 . 3 2 4 0 5
1 . 5 2 4 8 5 . 4 2 3 5 0
1 . 2 2 5 1 8 . 1 2 4 0 5
1 . 0 2 4 9 1 . 6 2 4 0 0
1 . 5 2 4 9 1 . 6 2 3 7 0
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P i p e  D a t a :

P i p e
No.

N o d e
# 1

N o d e
#2

L e n g t h D i a m e t e r R o u g h n e s s  
C o e f .

F l o w r a t e H e a d l o s s

1 0 1 1 5 0 0 . 0 1 . 0 0 0 0 . 0 0 0 1 6 7 1 0 . 8 9 1 6 4 . 1 4 4
2 1 2 1 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 3 . 2 3 0 3 2 . 0 0 2
3 2 3 2 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 2 . 0 3 0 26 . 4 4 8
4 5 3 1 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 0 . 0 2 7 0 . 0 0 6
5 3 4 2 0 0 0 . 0 0 . 5 0 0 0 . 0 0 0 1 6 7 1 . 0 5 7 32  . 4 4 0
6 6 4 1 0 0 0 . 0 0 . 5 0 0 0 . 0 0 0 1 6 7 0 . 3 4 3 2 . 0 1 0
7 1 5 2 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 3 . 0 8 0 5 8 . 4 4 4
8 5 6 2 0 0 0 . 0 0 . 5 0 0 0 . 0 0 0 1 6 7 1 .  0 2 2 3 0 . 4 3 5
9 1 7 1 2 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 3 . 2 8 1 39  . 5 6 7

10 7 8 2 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 2 . 0 8 1 2 7 . 7 1 3
11 5 8 2 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 1 . 1 3 1 8 . 8 3 6
12 8 9 1 2 0 0  . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 2 . 2 1 2 1 8 . 6 7 2
13 9 6 1 2 0 0 . 0 0 . 667 0 . 0 0 0 1 6 7 0 . 8 2 1 2 . 9 2 7
14

No d e
0

D a t a  :
9 1 5 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 0 . 1 0 9 0 . 0 9 7

No de Demand E l e v a t i o n He a d P r e s s u r e H G L - e l e v .

1 1 . 3 0 0 2 4 1 0 . 0 0 0 1 7 5 . 8 5 6 76  . 2 0 4 2 5 8 5 . 8 5 6
2 1 . 2 0 0 2 4 0 5 . 0 0 0 1 4 8 . 8 5 4 6 4 . 5 0 3 2 5 5 3 . 8 5 4
3 1 . 0 0 0 2 4 0 0 . 0 0 0 1 2 7  . 4 0 6 5 5 . 2 0 9 2 5 2 7 . 4 0 6
4 1 . 4 0 0 2 3 4 0 . 0 0 0 1 5 4 . 9 6 6 6 7 . 1 5 2 2 4 9 4 . 9 6 6
5 0 . 9 0 0 2 4 0 5 . 0 0 0 1 2 2 . 4 1 2 5 3 . 0 4 5 2 5 2 7 . 4 1 2
6 1 . 5 0 0 2 3 5 0 . 0 0 0 1 4 6 . 9 7 6 6 3 . 6 9 0 2 4 9 6 . 9 7 6
7 1 . 2 0 0 2 4 0 5 . 0 0 0 1 4 1 . 2 8 9 6 1 . 2 2 5 2 5 4 6 . 2 8 9
8 1 . 0 0 0 2 4 0 0 . 0 0 0 1 1 8 . 5 7 6 5 1 . 3 8 3 2 5 1 8 . 5 7 6
9 1 . 5 0 0 2 3 7 0 . 0 0 0 1 2 9 . 9 0 4 56 . 2 9 2 2 4 9 9 . 9 0 4

P i p e  :D a t a  :

P i p e  :Node No d e L e n g t h D i a m e t e r  :R o u g h n e s s F l o w r a t e H e a d l o s s
No . # 1 #2 C o e f .

1 0 1 1 5 0 0 . 0 1 . 0 0 0 0 . 0 0 0 1 6 7 13 . 7 9 1 1 0 1 . 4 0 0
2 1 2 1 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 2 . 8 8 6 2 5 . 8 0 0
3 2 3 2 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 1 . 6 8 9 18 . 7 0 0
4 5 3 1 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 0 . 2 0 6 0 . 2 0 0
5 3 4 2 0 0 0 . 0 0 . 500 0 . 0 0 0 1 6 7 0 . 8 8 0 2 3 . 0 0 0
6 6 4 1 0 0 0  . 0 0 . 500 0 . 0 0 0 1 6 7 0 . 5 1 9 4 . 3 0 0
7 1 5 2 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 2 . 6 6 4 4 4 . 3 0 0
8 5 6 2 0 0 0 . 0 0 . 5 0 0 0 . 0 0 0 1 6 7 0 . 7 9 3 1 8 . 9 0 0
9 1 7 1 2 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 2 . 8 6 3 3 0 . 5 0 0

10 7 8 2 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 2 . 0 3 2 2 6 . 5 0 0
11 5 8 2 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 1 . 3 7 4 1 2 . 7 0 0
12 8 9 1 2 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 0 . 0 0 0 0 . 0 0 0
13 9 6 1 2 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 1 . 2 3 1 6 . 2 0 0
14 0 9 1 5 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 1 . 2 8 5 8 . 4 7 8

N o d e  D a t a :

N o d e Demand E l e v a t i o n He a d P r e s s u r e H G L - e l e v .

1 5 . 3 7 8 2 4 1 0 . 0 0 0 1 3 8 . 6 0 0 6 0 . 0 6 0 2 5 4 8 . 6 0 0
2 1 . 1 9 7 2 4 0 5 . 0 0 0 1 1 7 . 8 0 0 5 1 . 0 4 7 2 5 2 2 . 8 0 0
3 1 . 0 1 5 2 4 0 0 . 0 0 0 1 0 4 . 1 0 0 4 5 . 1 1 0 2 5 0 4 . 1 0 0
4 1 . 3 9 9 2 3 4 0 . 0 0 0 1 4 1 . 1 0 0 6 1 . 1 4 3 2 4 8 1 . 1 0 0
5 0 . 2 9 1 2 4 0 5 . 0 0 0 9 9 . 3 0 0 4 3 . 0 3 0 2 5 0 4 . 3 0 0
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6
7
8 
9

P i p e D a t a  :

1 . 5 0 5  
0 . 8 3 1  
3 . 4 0 6  
0 . 0 5 5

2 3 5 0 . 0 0 0
2 4 0 5 . 0 0 0
2 4 0 0 . 0 0 0
2 3 7 0 . 0 0 0

1 3 5 . 4 0 0  
1 1 3 . 1 0 0  

9 1 . 6 0 0  
1 2 1 . 6 0 0

5 8 . 6 7 3
4 9 . 0 1 0
3 9 . 6 9 3
5 2 . 6 9 3

2 4 8 5  . 4 0 0  
2 5 1 8 . 1 0 0
2 4 9 1 . 6 0 0
2 4 9 1 . 6 0 0

P i p e
No .

No d e
# 1

N o d e
#2

L e n g t h D i a m e t e r  :R o u g h n e s s  
C o e f .

F l o w r a t e H e a d l o s s

1 0 1 1 5 0 0 . 0 1 . 0 0 0 0 . 0 0 0 1 6 7 9 . 7 1 4 5 1 . 4 1 8
2 1 2 1 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 2 . 8 8 7 2 5 . 8 1 0
3 2 3 2 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 1 . 6 8 7 1 8 . 6 4 4
4 5 3 1 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 0 . 1 9 4 0 . 1 7 9
5 3 4 2 0 0 0 . 0 0 . 500 0 . 0 0 0 1 6 7 0 . 8 8 1 2 3 . 0 1 6
6 6 4 1 0 0 0 . 0 0 . 5 0 0 0 . 0 0 0 1 6 7 0 . 5 1 9 4 . 3 0 7
7 1 5 2 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 2 . 6 6 3 44  . 2 7 5
8 5 6 2 0 0 0 . 0 0 . 5 0 0 0 . 0 0 0 1 6 7 0 . 7 9 2 1 8 . 8 8 9
9 1 7 1 2 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 2 . 8 6 4 3 0 . 5 0 7

10 7 8 2 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 1 . 6 6 4 1 8 . 1 7 3
11 5 8 2 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 0 . 7 7 7 4 . 4 0 5
12 8 9 1 2 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 1 . 4 4 0 8 . 3 2 0
13 9 6 1 2 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 1 . 2 2 7 6 . 1 6 4
14  

N o d e  :
0

D a t a  :
9 1 5 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 1 . 2 8 6 8 . 4 9 6

N o d e Demand E l e v a t i o n He a d P r e s s u r e H G L - e l e v .

1 1 . 3 0 0 2 4 1 0 . 0 0 0 1 3 8 . 5 8 2 6 0 . 0 5 2 2 5 4 8 . 5 8 2
2 1 . 2 0 0 2 4 0 5 . 0 0 0 1 1 7 . 7 7 2 5 1 . 0 3 4 2 5 2 2 . 7 7 2
3 1 .  0 0 0 2 4 0 0 . 0 0 0 1 0 4 . 1 2 8 4 5 . 1 2 2 2 5 0 4 . 1 2 8
4 1 . 4 0 0 2 3 4 0 . 0 0 0 1 4 1 . 1 1 2 6 1 . 1 4 8 2 4 8 1 . 1 1 2
5 0 . 9 0 0 2 4 0 5 . 0 0 0 99 . 3 0 7 43 . 0 3 3 2 5 0 4 . 3 0 7
6 1 . 5 0 0 2 3 5 0 . 0 0 0 1 3 5 . 4 1 8 5 8 . 6 8 1 2 4 8 5 . 4 1 8
7 1 . 2 0 0 2 4 0 5 . 0 0 0 1 1 3 . 0 7 5 4 8 . 9 9 9 2 5 1 8 . 0 7 5
8 1 . 0 0 0 2 4 0 0 . 0 0 0 9 9 . 9 0 2 4 3 . 2 9 1 2 4 9 9 . 9 0 2
9 1 . 5 0 0 2 3 7 0 . 0 0 0 1 2 1 . 5 8 2 5 2 . 6 8 6 2 4 9 1 . 5 8 2

p i p e  :D a t a  :

P i p e  :Node N o d e L e n g t h D i a m e t e r  :R o u g h n e s s F l o w r a t e H e a d l o s s
N o . # 1 #2 C o e f .

1 0 1 1 5 0 0 . 0 1 . 0 0 0 0 . 0 0 0 1 6 7 9 . 7 1 2 5 1 . 4 0 0
2 1 2 1 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 2 . 8 8 6 2 5 . 8 0 0
3 2 3 2 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 1 . 6 8 9 1 8 . 7 0 0
4 5 3 1 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 0 . 2 0 6 0 . 2 0 0
5 3 4 2 0 0 0 . 0 0 . 5 0 0 0 . 0 0 0 1 6 7 0 . 8 8 0 2 3 . 0 0 0
6 6 4 1 0 0 0 . 0 0 . 5 0 0 0 . 0 0 0 1 6 7 0 . 5 1 9 4 . 3 0 0
7 1 5 2 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 2 . 6 6 4 4 4 . 3 0 0
8 5 6 2 0 0 0 . 0 0 . 5 0 0 0 . 0 0 0 1 6 7 0 . 7 9 3 1 8 . 9 0 0
9 1 7 1 2 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 2 . 8 6 3 3 0 . 5 0 0

10 7 8 2 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 2 . 0 3 2 2 6 . 5 0 0
11 5 8 2 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 1 . 3 7 4 1 2 . 7 0 0
12 8 9 1 2 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 0 . 0 0 0 0 . 0 0 0
13 9 6 1 2 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 1 . 2 3 1 6 . 2 0 0
14 0 9 1 5 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 1 . 2 8 5 8 . 4 7 8

N o d e  D a t a :

N o d e Demand E l e v a t i o n He a d P r e s s u r e H G L - e l e v .

1 1 . 2 9 8  2 4 1 0 . 0 0 0  1 3 8 . 6 0 0  6 0 . 0 6 0  2 5 4 8 . 6 0 0
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2 1 . 1 9 7 2 4 0 5 . 0 0 0 1 1 7 . 8 0 0 5 1 . 0 4 7 2 5 2 2  . 800
3 1 . 0 1 5 2 4 0 0 . 0 0 0 1 0 4 . 1 0 0 4 5 . 1 1 0 2 5 0 4 . 1 0 0
4 1 . 3 9 9 2 3 4 0 . 0 0 0 1 4 1 . 1 0 0 6 1 . 1 4 3 2 4 8 1 . 1 0 0
5 0 . 2 9 1 2 4 0 5 . 0 0 0 9 9 . 3 0 0 4 3 . 0 3 0 2 5 0 4 . 3 0 0
6 1 . 5 0 5 2 3 5 0 . 0 0 0 1 3 5 . 4 0 0 5 8 . 6 7 3 2 4 8 5 . 4 0 0
7 0 . 8 3 1 2 4 0 5 . 0 0 0 1 1 3 . 1 0 0 4 9 . 0 1 0 2 5 1 8 . 1 0 0
8 3 . 4 0 6 2 4 0 0 . 0 0 0 9 1 . 6 0 0 3 9 . 6 9 3 2 4 9 1 . 6 0 0
9 0 . 0 5 5 2 3 7 0 . 0 0 0 1 2 1 . 6 0 0 5 2 . 6 9 3 2 4 9 1 . 6 0 0

P i p e D a t a

P i p e  ;No de N o d e L e n g t h D i a m e t e r  :R o u g h n e s s F l o w r a t e H e a d l o s s
N o . #1 #2 C o e f .

1 0 1 1 5 0 0 . 0 1 . 0 0 0 0 . 0 0 0 1 6 7 9 . 4 3 7 4 8 . 6 3 4
2 1 2 1 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 2 . 807 24  . 4 7 1
3 2 3 2 0 0 0  . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 1 .  607 1 7 . 0 2 7
4 5 3 1 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 0 . 2 3 9 0 . 2 6 1
5 3 4 2 0 0 0 . 0 0 . 5 0 0 0 . 0 0 0 1 6 7 0 . 8 4 7 2 1 . 3 7 1
6 6 4 1 0 0 0 . 0 0 . 5 0 0 0 . 0 0 0 1 6 7 0 . 5 5 3 4 . 845
7 1 5 2 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 2 . 5 6 6 4 1 . 2 3 8
8 5 6 2 0 0 0 . 0 0 . 5 0 0 0 . 0 0 0 1 6 7 0 . 7 4 4 16  . 7 8 7
9 1 7 1 2 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 2 . 7 6 4 28  . 5 2 1

10 7 8 2 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 1 . 5 6 4 1 6 . 1 8 9
1 1 5 8 2 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 0 . 6 8 2 3 . 4 7 2
12 8 9 1 2 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 1 . 2 4 7 6 . 3 5 3
13 9 6 1 2 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 1 . 3 0 9 6 . 9 6 2
14 0 9 1 5 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 1 . 5 6 3 12 . 2 3 0

N o d e  D a t a

N o d e Demand E l e v a t i o n He a d P r e s s u r e H G L - e l e v .

1 1 . 3 0 0 2 4 1 0 . 0 0 0 1 2 8 . 9 4 6 5 5 . 8 7 7 2 5 3 8 . 9 4 6
2 1 . 2 0 0 2 4 0 5 . 0 0 0 1 0 9 . 4 7 5 4 7 . 4 3 9 2 5 1 4 . 4 7 5
3 1 . 0 0 0 2 4 0 0 . 0 0 0 9 7 . 4 4 8 4 2 . 2 2 7 2 4 9 7  . 4 4 8
4 1 . 4 0 0 2 3 4 0 . 0 0 0 1 3 6 . 0 7 7 5 8 . 9 6 7 2 4 7 6 . 0 7 7
5 0 . 9 0 0 2 4 0 5 . 0 0 0 92 . 7 0 9 4 0 . 1 7 4 2 4 9 7 . 7 0 9
6 1 . 5 0 0 2 3 5 0 . 0 0 0 1 3 0  . 9 2 2 5 6 . 7 3 3 2 4 8 0 . 9 2 2
7 1 . 2 0 0 2 4 0 5 . 0 0 0 1 0 5 . 4 2 6 4 5 . 6 8 4 2 5 1 0 . 4 2 6
8 1 . 0 0 0 2 4 0 0 . 0 0 0 9 4 . 2 3 7 4 0 . 8 3 6 2 4 9 4 . 2 3 7
9 1 . 5 0 0 2 3 7 0 . 0 0 0 1 1 7 . 8 8 4 5 1 . 0 8 3 2 4 8 7 . 8 8 4

P i p e  D a t a :

P i p e  N o d e  N o d e L e n g t h D i a m e t e r  :R o u g h n e s s F l o w r a t e H e a d l o s s
N o . #1  #2 C o e f .

1 0 1 1 5 0 0 . 0 1 . 0 0 0 0 . 0 0 0 1 6 7 8 . 4 1 3 3 8 . 9 8 0
2 1 2 1 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 2 . 8 8 6 2 5 . 8 0 0
3 2 3 2 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 1 . 6 8 9 1 8 . 7 0 0
4 5 3 1 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 0 . 2 0 6 0 . 2 0 0
5 3 4 2 0 0 0 . 0 0 . 5 0 0 0 . 0 0 0 1 6 7 0 . 8 8 0 2 3 . 0 0 0
6 6 4 1 0 0 0 . 0 0 . 5 0 0 0 . 0 0 0 1 6 7 0 . 5 1 9 4 . 3 0 0
7 1 5 2 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 2 . 6 6 4 44 . 3 0 0
8 5 6 2 0 0 0 . 0 0 . 5 0 0 0 . 0 0 0 1 6 7 0 . 7 9 3 1 8 . 9 0 0
9 1 7 1 2 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 2 . 8 6 3 3 0 . 5 0 0

10 7 8 2 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 2 . 0 3 2 2 6 . 5 0 0
11 5 8 2 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 1 . 3 7 4 12 . 7 0 0
12 8 9 1 2 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 0 . 0 0 0 0 . 0 0 0
13 9 6 1 2 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 1 . 2 3 1 6 . 2 0 0
14 0 9 1 5 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 1 . 2 8 5 8 . 4 7 8

N o d e  D a t a :
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1 0 . 0 0 0 2 4 1 0 . 0 0 0 1 3 8 . 6 0 0 6 0 . 0 6 0 2 5 4 8 . 6 0 0
2 1 . 1 9 7 2 4 0 5 . 0 0 0 1 1 7 . 8 0 0 5 1 . 0 4 7 2 5 2 2 . 8 0 0
3 1 . 0 1 5 2 4 0 0 . 0 0 0 1 0 4 . 1 0 0 4 5 . 1 1 0 2 5 0 4 . 1 0 0
4 1 . 3 9 9 2 3 4 0 . 0 0 0 1 4 1 . 1 0 0 6 1 . 1 4 3 2 4 8 1 . 1 0 0
5 0 . 2 9 1 2 4 0 5 . 0 0 0 9 9 . 3 0 0 4 3 . 0 3 0 2 5 0 4 . 3 0 0
6 1 . 5 0 5 2 3 5 0 . 0 0 0 1 3 5 . 4 0 0 5 8 . 6 7 3 2 4 8 5 . 4 0 0
7 0 . 8 3 1 2 4 0 5 . 0 0 0 1 1 3 . 1 0 0 4 9 . 0 1 0 2 5 1 8 . 1 0 0
8 3 . 4 0 6 2 4 0 0 . 0 0 0 9 1 . 6 0 0 3 9 . 6 9 3 2 4 9 1 . 6 0 0
9 0 . 0 5 5 2 3 7 0 . 0 0 0 1 2 1 . 6 0 0 5 2 . 6 9 3 2 4 9 1 . 6 0 0

P i p e  :D a t a :

P i p e  :Node N o d e L e n g t h D i a m e t e r  :R o u g h n e s s F l o w r a t e H e a d l o s s
No . #1 #2 C o e f .

1 0 1 1 5 0 0 . 0 1 . 0 0 0 0 . 0 0 0 1 6 7 8 . 6 2 4 4 0 . 8 8 6
2 1 2 1 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 2 . 5 7 6 2 0 . 7 7 7
3 2 3 2 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 1 . 3 7 6 12  . 7 3 0
4 5 3 1 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 0 . 3 8 9 0 . 6 2 4
5 3 4 2 0 0 0 . 0 0 . 5 0 0 0 . 0 0 0 1 6 7 0 . 7 6 5 1 7 . 6 8 7
6 6 4 1 0 0 0 . 0 0 . 5 0 0 0 . 0 0 0 1 6 7 0 . 6 3 5 6 . 2 4 9
7 1 5 2 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 2 . 2 7 8 32  . 8 8 3
8 5 6 2 0 0 0 . 0 0 . 5 0 0 0 . 0 0 0 1 6 7 0 . 6 2 3 1 2 . 0 6 1
9 1 7 1 2 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 2 . 4 7 1 23  . 0 2 9

10 7 8 2 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 1 . 2 7 1 1 0 . 9 7 0
11 5 8 2 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 0 . 3 6 6 1 . 1 1 6
12 8 9 1 2 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 0 . 6 3 6 1 . 8 3 4
13 9 6 1 2 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 1 . 5 1 2 9 . 1 1 2
14 0 9 1 5 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 2 . 3 7 6 2 6 . 9 7 2

N o d e  D a t a :

N o d e De mand E l e v a t i o n He a d P r e s s u r e H G L - e l e v .

1 1 
2 1
3 1
4 1
5 0
6 1
7 1
8 1 
9 1

P i p e  D a t a :

. 3 0 0

. 2 0 0

. 0 0 0

. 4 0 0

. 9 0 0

. 5 0 0

. 2 0 0

. 0 0 0

. 5 0 0

2 4 1 0 . 0 0 0
2 4 0 5 . 0 0 0
2 4 0 0 . 0 0 0
2 3 4 0 . 0 0 0
2 4 0 5 . 0 0 0
2 3 5 0 . 0 0 0
2 4 0 5 . 0 0 0
2 4 0 0 . 0 0 0
2 3 7 0 . 0 0 0

9 9 . 1 1 5  
8 3 . 3 3 7  
7 5 . 6 0 7

1 1 7 . 9 2 1
7 1 . 2 3 1

1 1 4 . 1 7 0
8 1 . 0 8 6
7 5 . 1 1 5  

1 0 3 . 2 8 2

4 2 . 9 5 0  
3 6 . 1 1 3  
32  . 7 6 3  
5 1 . 0 9 9  
3 0 . 8 6 7  
4 9 . 4 7 4  
3 5 . 1 3 7  
32 . 5 5 0  
4 4 . 7 5 6

2 5 0 9 . 1 1 5  
2 4 8 8 . 3 3 7  
2 4 7 5 . 6 0 7  
2 4 5 7 . 9 2 1  
2 4 7 6 . 2 3 1  
2 4 6 4 . 1 7 0  
2 4 8 6 . 0 8 6
2 4 7 5 . 1 1 5  
2 4 7 3 . 2 8 2

P i p e  N o d e  N o d e  
N o .  # 1  #2

L e n g t h D i a m e t e r R o u g h n e s s  
C o e f .

F l o w r a t e H e a d l o s s

1 0 1 1 5 0 0 . 0 1 . 0 0 0 0 . 0 0 0 1 6 7 1 . 4 3 3 1 . 4 0 0
2 1 2 1 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 2 . 8 8 6 2 5 . 8 0 0
3 2 3 2 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 1 . 6 8 9 1 8 . 7 0 0
4 5 3 1 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 0 . 2 0 6 0 . 2 0 0
5 3 4 2 0 0 0 . 0 0 . 5 0 0 0 . 0 0 0 1 6 7 0 . 8 8 0 2 3 . 0 0 0
6 6 4 1 0 0 0 . 0 0 . 5 0 0 0 . 0 0 0 1 6 7 0 . 5 1 9 4 . 3 0 0
7 1 5 2 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 2 . 6 6 4 4 4 . 3 0 0
8 5 6 2 0 0 0 . 0 0 . 5 0 0 0 . 0 0 0 1 6 7 0 . 7 9 3 1 8 . 9 0 0
9 1 7 1 2 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 2 . 8 6 3 3 0 . 5 0 0

10 7 8 2 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 2 . 0 3 2 2 6 . 5 0 0
11 5 8 2 0 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 1 . 3 7 4 1 2 . 7 0 0
12 8 9 1 2 0 0 . 0 0 . 6 6 7 0 . 0 0 0 1 6 7 0 . 0 0 0 0 . 0 0 0
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13 9 6 1 2 0 0 . 0  0 . 6 6 7  0 . 0 0 0 1 6 7  1 . 2 3 1
14  0 9 1 5 0 0 . 0  0 . 6 6 7  0 . 0 0 0 1 6 7  1 . 2 8 5

N o d e  D a t a :

N o d e  De mand  E l e v a t i o n  H e a d  P r e s s u r e  H G L - e l e v .

1 - 6 . 9 8 1 2 4 1 0 . 0 0 0 1 3 8 . 6 0 0 6 0 . 0 6 0 2 5 4 8 . 6 0 0
2 1 . 1 9 7 2 4 0 5 . 0 0 0 1 1 7 . 8 0 0 5 1 . 0 4 7 2 5 2 2 . 8 0 0
3 1 . 0 1 5 2 4 0 0 . 0 0 0 1 0 4 . 1 0 0 4 5 . 1 1 0 2 5 0 4 . 1 0 0
4 1 . 3 9 9 2 3 4 0 . 0 0 0 1 4 1 . 1 0 0 6 1 . 1 4 3 2 4 8 1 . 1 0 0
5 0 . 2 9 1 2 4 0 5 . 0 0 0 99 . 3 0 0 4 3 . 0 3 0 2 5 0 4 . 3 0 0
6 1 . 5 0 5 2 3 5 0 . 0 0 0 1 3 5 . 4 0 0 5 8 . 6 7 3 2 4 8 5 . 4 0 0
7 0 . 8 3 1 2 4 0 5 . 0 0 0 1 1 3 . 1 0 0 4 9 . 0 1 0 2 5 1 8 . 1 0 0
8 3 . 4 0 6 2 4 0 0 . 0 0 0 9 1 . 6 0 0 3 9 . 6 9 3 2 4 9 1 . 6 0 0
9 0 . 0 5 5 2 3 7 0 . 0 0 0 1 2 1 . 6 0 0 5 2 . 6 9 3 2 4 9 1 . 6 0 0

6 .200 
8 . 4 7 8
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Chapter five

Conclusions

The goal of this thesis was to develop a computer programme for analysing steady 

sate flow problem in pipe networks. The programme has been developed perform the 

following task.

1. Read the input data that defines the networks

2. Develop from this information the system of equations and the junction 

continuity equations and the energy equations of the networks. This task defies 

the equations and also forms each element of the matrix.

3. Solve the system of equations. Using standard linear algebra solver. However 

program for large network problems should have a special linear algebra 

solver that takes advantage of the special properties of a sparse Jacobian 

matrix.

4. Obtain the head at each node after the pipe discharges have been found.

5. Write the solution results in tables that can be readily understood. (Pipe data 

and node data).

The use of programs for network analysis can also allow designers to obtain answer 

for many questions that naturally occur during the design process. For example, what 

head and capacity should a pump produce to maintain a prescribed pressure and or 

discharge at the far end of the network? What will be the discharge from the junction 

if the pressure is known from measurement there. The program developed has been



successfully tested by solving a number of examples on network analysis for steady 

flow liquid

Suggestions fo r F u r th e r  W o rk

The program developed for solving steady state problem can be used as initial 

condition for the unsteady state analysis problem. Steady state analysis for a network 

must be available before a transient (water hammer) analysis of the networks can be 

conducted. Herein steady sate solution can be obtained form this work, since it can be 

produce a file with information that is needed by the transient network analysis. 

Extended time simulation is important to the design of looped networks. The systems 

do not operate under steady state condition, extended time simulation is needed to 

simulate the performance as they respond to demands which vary with time, and 

which have pumps switched on or off, depending in those demands. The tank 

characteristics must be specified. These include the tank diameter, maximum surface 

elevation and minimum surface. If the tank if full no additional flow from the pipe 

system can enter the tank, and if it is empty no additional flow can leave the tank. For 

further study a message from a program can be written to indicate the limit of the 

thank surface. Extended time simulation consists a series of steady-state solution 

based on changing demands and reservoir water level, the number of operating pumps 

etc. This type of time dependent solution is obtained by solving a system of 

simultaneous non-linear algebraic equations. Taken full advantage of the Jacobean 

matrix in computing, the networks can be solved in efficient manner. The size of the 

matrix can be reduced by taking out all the zero elements of the matrix so saving 

computer time and reducing the amount of memory to solve system of equations on a 

personal computer.
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APPENDIX A



Table A .l Physical properties o f ordinary water and common liquids (SI units)

Liquid Temperature

T(°C)

Density

p ( H )m

Specific
gravity

S

Absolute
viscosity

,N.s
2 )m

Kinematics
viscosity

m 2
K — )s

Water 0 1000 1 . 0 0 0 1.97E-6 1.79E-6
10 1000 1 . 0 0 0 1.31E-3 1.31E-6
20 998 0.998 1.00E-3 1.00E-6
30 996 0.996 7.98E-4 8.01E-7
40 992 0.992 6.53E-4 6.58E-7
50 988 0.988 5.47E-4 5.48E-7
60 983 0.983 4.67E-4 4.75E-7
70 978 0.978 4.04E-4 4.13E-7
80 972 0.972 3.55E-4 3.65E-7
90 965 0.965 3.15E-4 3.26E-7
100 958 0.958 2.82E-4 2.94E-7

Mercury 0 13600 13.60 1.68E-3 1.24E-7
4 13590 13.59

20 13550 13.55 1.55E-3 1.14E-7
40 13500 13.50 1.45E-3 1.07E-3
60 13450 13.45 1.37E-3 1.02E-7
80 13400 13.40 1.30E-3 9.70E-8
100 13350 13.35 1.24E-3 9.29E-8

F t l i v l p n p 0 5.70E-2j _ # u i y  i c i i c

Glycol 20 1110 1.11 1.99E-2 1.79E-5
40 1110 1.10 9.13E-3 8.30E-6
60 1090 1.09 4.95E-3 4.54E-6
80 1070 1.07 3.02E-3 2.82E-6
100 1060 1.06 1.99E-3 1.88E-6

Methyl 0 810 0.810 8.17E-4 1.01E-6
A 1 r n h n l 10 801 0 801
(methanol) 20 792

v . O u  1

0.792 5.84E-4 7.37E-7
30 783 0.783 5.10E-4 6.51E-7
40 774 0.774 4.51E-4 5.81E-7
50 765 0.765 3.96E-4 5.18E-7

Ethyl 0 806 0.806 1.77E-3 2.20E-6
alcohol 20 789 0.789 1.20E-3 1.52E-6
(ethanol) 40 772 0.772 8.34E-4 1.08E-6

60 754 0.754 5.92E-4 7.85E-7
Normal 0 718 0.718 7.06E-4 9.83E-7
octane s 74F-4

20 702 0.702 5.42E-4 7.72E-7

40 686 0.686 4.33E-4 6.31E-7
Benzene 0 900 0.900 9.12E-4 1.01E-6

20 879 0.879 6.52E-4 7.42E-7
40 858 0.857 5.03E-4 5.86E-7
60 836 0.836 3.92E-4 4.69E-7
80 815 0.815 3.29E-4 4.04E-6

Kerosene -18 841 0.841 7.06E-3 8.40E-6
20 814 0.814 1.90E-3 2.37E-6

Lubricating 20 871 0.871 1.31E-2 1.50E-5
oil 40 858 0.858 6.81E-3 7.94E-6

60 845 0.845 4.18E-3 4.95E-6
80 832 0.832 2.83E-3 3.40E-6
100 820 0.820 2.00E-3 2.44E-6
120 809 0.809 1.54E-3 1.90E-6

1



Table A.2 Physical properties o f ordinary water and common liquids (EE & BG Units)

Liquid Temp

T(°F)
Density Density Specific

gravity
S

Absolute
viscosity
,1b -sec

*  f i

Kinematics
viscosity

* £ )sec

Water 32 62.4 1.940 1.00 3.75E-5 1.93E-5
40 62.4 1.940 1.00 3.23E-5 1.66E-5
60 62.4 1.938 0.999 2.36E-5 1.22E-5
80 62.2 1.934 0.997 1.80E-5 9.30E-6
100 62.0 1.927 0.993 1.42E-5 7.39E-6
120 61.7 1.918 0.988 1.17E-5 6.09E-6
140 61.4 1.908 0.983 9.81E-6 5.14E-6
160 61.0 1.896 0.977 8.38E-6 4.42E-6
180 60.6 1.883 0.970 7.26E-6 3.85E-6
200 60.1 1.868 0.963 6.37E-6 3.41E-6
212 59.8 1.860 0.958 5.93E-6 3.19E-6

Mercury 50 847 26.3 13.6 3.2E-5 1.2E-6
200 834 25.9 13.4 2.6E-5 1.0E-6
300 826 25.7 13.2 2.3E-5 9.0E-7
400 817 25.4 13.1 2.0E-5 8.0E-7
600 802 24.9 12.8 1.7E-5 7.0E-7

Ethylene 68 69.3 2.15 1.11 4.16E-4 1.93E-4
glycol 104 68.7 2.14 1.10 1.91E-4 8.93E-5

140 68.0 2.11 1.09 1.03E-4 4.89E-5
176 66.8 2.08 1.07 6.31E-5 3.04E-5
212 66.2 2.06 1.06 4.12E-5 2.02E-5

Ethyl 32 50.6 1.57 0.810 1.71E-5 1.09E-5
alcohol(metha 68 50.0 1.55 0.801

nol) 104 49.4 1.54 0.792 1.22E-5 7.93E-6
140 48.9 1.52 0.783 1.07E-5 7.01E-6
176 48.3 1.50 0.774 9.40E-6 6.25E-6
212 47.8 1.49 0.765 8.27E-6 5.58E-6

Ethyl 32 50.3 1.56 0.806 3.70E-5 2.37E-5
alcohol(ethan 68 49.8 1.55 0.798 3.03E-5 1.96E-5

ol) 104 49.3 1.53 0.789 2.51E-5 1.64E-5
140 48.2 1.50 0.772 1.74E-5 1.16E-5
176 47.7 1.48 0.754 1.24E-5 8.45E-6
212 47.1 1.46 0.745 -------

Normal 32 44.8 1.39 0.718 1.47E-5 1.06E-5
octane 68 43.8 1.36 0.702 1.13E-5 8.31E-6

104 42.8 1.33 0.686 9.04E-6 6.79E-6
Benzene 32 56.2 1.75 0.900 1.90E-5 1.09E-5

68 54.9 1.71 0.879 1.36E-5 7.99E-6
104 53.6 1.67 0.858 1.05E-5 6.31E-6
140 52.2 1.62 0.836 8.19E-6 5.05E-6
176 50.9 1.58 0.815 6.87E-6 4.35E-6

Kerosene 0 52.5 1.63 0.841 1.48E-4 9.05E-5
77 50.8 1.58 0.814 3.97E-5 2.55E-5

Lubricating 68 54.4 1.69 0.871 2.74E-4 1.61E-4
oil 104 53.6 1.67 0.858 1.42E-4 8.55E-4

140 62.6 1.63 0.845 8.73E-5 5.33E-5
176 51.9 1.61 0.832 5.91E-5 3.66E-5
212 51.2 1.59 0.820 4.18E-5 2.63E-5
248 50.5 1.57 0.809 3.22E-5 2.05E-5
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Appendix A 

Linear Algebra Routines

Before describing the C (or CPP) linear algebra solver(s) it should be noted that arrays in C 

commonly begin with element 0, i.e., for a one-dimensional array b of length n the elements are

stored in b[0], b[l],.....b[n-l], and two dimensional arrays are stored starting with [0][0], etc. In

other words, in C (or C++) array dimensioned to N have a range of 0...N-1; i.e., somewhat of a 

inconvenience when thinking of strings of values that are N long. Thus, the first row of a matrix 

goes into the 0th subscript of the first subscript, and the first column uses a 0 for the second 

subscript, etc. C programmers should be accustomed to handling arrays of pointers for two 

dimensional arrays. CPP-programs will be more familiar with the use of arrays starting with 0 

instead of 1. C was originally designed more for systems programmer, who rarely deals with two- 

dimensional arrays whose size is variable and known only at execution time, as is common in 

engineering computing. Thus, a function in C does not allow sizes of a two dimensional array to be 

passed as arguments, i.e. void linearsol(a,m,n) { float a[n][m];is not permissible. (CPP does allow a 

variation of this.). In C, two-dimensional arrays are handled as pointers to pointer, i.e.,**a. Thus 

for example with the declaration float **a; then the memory addressed by a[3][4], for example is 

to: (1) add 3 to the address of a and (2) take the memory thus addressed as a new address and add 4 

to it, (3) return the value thus addressed.. If **a is the declaration then memory must be allocated 

with the library calloc, malloc, or (new in cpp). It is necessary that the correct prototypes be 

included in the code before the solver function(s) is called, either by including these as separate 

declarations, or by including a header file containing these declarations.

File solveq2.c, uses C pointers, i.e., the matrix is a pointer to a pointer **a, and the vector is a 

pointer *b. The second in file solveq.cpp utilizes the CPP capabilities of passing arrays as

C function solveq:
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arguments to functions. This version requires that a global constant const N=.. .be declared that 

determines the dimensions of the matrix a and the known vector b in both the main (calling 

function) and the solver, i.e., the arrays are declared by a[N][N] and b[N], Both of these solvers 

require that the beginning of the arrays be at 0; that is the first element of the matrix is at a[0][0] 

and the first element of the known vector is at b[0].

These functions of the linear algebra solver are described below.

Solveq2.c

The prototype for the function solveq is:

void solveq(int n,float **a,float *b,int itype,float *dd,mt *indx);

in which n must contain the size of the arrays, i.e., n = the number of equations that are being 

solved a must contain the elements of the coefficient matrix. The first subscript of a corresponds to 

the rows minus 1 of the matrix, and the second subscript corresponds its columns minus 1, i.e., both 

the beginning row and column start with 0, and both end their range at n-1 b must contain the 

elements of the known vector, unless only the inverse of the coefficient matrix is asked for by the 

value given to itype. The first element is b[0] and its last value is in b[n-l]. 

itype must equal one of the following depending upon what is to be accomplished by solveq:

□ =1 solves linear system of equations

□ =2 produces inverse matrix (in a)

□ =3 evaluate determinant, and gives value in dd

□ =4 solve eqs. & Produces inverse matrix

□ =5 evaluate determinant & produces inverse matrix

□ =6 evaluate determinant, produce inverse matrix and solve eqs.

dd is a pointer that returns the determinant, if ask for by itype, and in the calling function must be

declared by float *dd.

indx is pointer to work space for solveq that must have at least n allocated integer positions.
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The calling function should contain declarations such as: 

float **a,*b; int *indx;

and statements such as the following to allocate the needed memory. 

indx=(int*)calloc(nj,sizeof(int));

a=(float**)malloc(np*sizeof(float*)); //allocates pointers to rows

for(i=0;i<np;i++) a[i]=(float*)malloc(np*sizeof(float));// allocates rows & pointers to them 

function solveq calls to functions: void dcompos(float **a,int n,int *indx,float d) and

void finsol(float **a,int n,int *indx,float *b).

The main program that calls on solveq can "include" the header file solveq2.h (which is listed 

below), or needs to contain similar declarations. 

solveq2 .h

void dcompos(float **a,int n,int *indx, float *d); 

void finsol(float **a,int n,int *indx, float *b); 

void solveq(int n, float **a, float *b, int itype, float *dd, int *indx); 

solveq.cpp

The function solveq.cpp assumes that the standard is used of starting 

example 4 x 4  coefficient matrix is to be solved that it is defined with float 

the calling program will have given values to

a[0][0] a[0][l]...................a[0][N-l]

a[l][0] a[l][l]....................a[l][N-l]

a[N-1 ] [0]......................... a[N-l][N-l]

For example the beginning lines in the .cpp program might consist of the following:

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

all arrays at 0, i.e., for 

a[4][4] declared and that

5



void main(void){ int indx[N]; float b[N],a[N][N];

If solveq.cpp is compiled separately, and then linked to the main program the const int N= must 

have the same value in all elements. The prototype for this linear algebra solver is: 

void solveq(int n, float a[N][N], float b[N], int itype, float &dd, int indx[N]);

The statement that executes the function solveq (which in turn executes the functions dcompos and

finsol) could consist of the following:

solveq(N,a,b,itype,*dd,indx);

in which the arguments have the following meanings:

N is an int (which denotes integer in C) that equals the number of equations that are to be solved, or 

the size of the matrix that is to be solve. In other words, the main program will have defined the 

square matrix a with N rows and N columns and the known vector b with N rows. Both a and b 

begin with subscript 0 and end with subscript N-l. 

a is the coefficient matrix, and must be a square matrix. It consists of the following elements that

must be given values in the calling program. 

a[0][0] a[0][l] .. . a[0][N-l]

a[l][0] a[l][l] . . . a[l][N-l]

a[N-l][0] . . . a[N-l][N-l]

b[0] b[l] . . . b[N-l]

The other arguments are as defined previously with the exception that dd that can receive the 

determinant, if asked for, uses the indirection & capability of CPP, rather than a pointer.

Notice that the first uses the function solveq (that requires that arrays begin with 0, the second uses 

the function solveq.cpp (these arrays also begin with 0), and the third uses solveone that has arrays

begins with 1 and it allocates the memory with arrays beginning with 1 by calling on the allocation

const int N=4;
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function that are included in the first of the listing, and that are prototyped in solveone.h. Notice

that all of these programs open the file MAINSOL.DA1 that must contain the input data for this 

problem.

mainsol.c (Calls on solveq that uses pointers, and requires that all arrays begin with 0)

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include "solveq2 .h"

void main(void){ intn, *indx,i,j,itype; float **a,*b,*dd; FILE *fil; 

printf("Give N & ITYPE"); scanf("%d %d",&n,&itype); 

b=(float*)calloc(n,sizeof(float));indx=(int*)calloc(n,sizeof(int)); 

a=(float**)malloc(n*sizeof(float*)); //allocates pointers to rows

for(i=0;i<n;i++) a[i]=(float*)malloc(n*sizeof(float));// allocates rows & pointers to them 

fil=fopen("mainsol. da 1", "r");

for(i=0;i<n;i++) {for(j=0;j<n;j++) fscanf(fil,"%f',&a[i][j]); fscanf(fil,"%f',&b[i]);}

solveq(n,a,b,itype,dd,indx);

if((itype==l) || (itype==3)) goto LI;

for(i=0;i<n;i++){for(j=0;j<n;j++) printf("%f ",a[i][j]); printf("%f\n",b[i]);}

LI: if((itype>2) && (itype!=4)) printf("Det = %f',*dd);

if((itype==l) || (itype==6)){printf("\nSolution:\n"); for(i=0;i<n;i++)printf("%f ",b[i]);} 

printf("\n"); free(b);free(indx);for(i=n-l;i>=0;i—) free(a[i]); free(a);

}

mainsol.cpp (using array declarations rather than pointers, and &; some C++ features)

#include <stdio.h>

#include <stdlib.h>

#include <math.h> 

const N=4;

void solveq(int n,float a[N][N],float b[N],int itype,float &dd,int indx[N]); 

void main(void){ int n,indx[N],i,j,itype; float a[N][N],b[N],dd; FILE *fil; 

printf("Give N & ITYPE"); scanf("%d %d",&n,&itype); 

fil=fopen("mainsol.dal ","r");
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for(i=0;i<n;i++){for(j=0;j<n;j++) fscanf(fil,"%f',&a[i][j]); fscanf(fil,"%f',&b[i]);}

solveq(n,a,b,itype,dd,indx);

if((itype==l) || (itype==3)) goto LI;

for(i=0;i<n;i++){for(j=0;j<n;j++) printf("%f ",a[i][j]); printf("%f\n",b[i]);}

L I: if((itype>2) && (itype!=4)) printf("Det = %f",dd);

if((itype==l) || (itype==6)){printf("\nSolution:\n"); for(i=0;i<n;i++)printf("%f ",b[i]);} 

printf("\n");

}

Below there are two listing of Gaussian Elimination functions in C to solve a linear system of 

equations). The first, GAUSEL.C, uses the standard C arrays that begin with 0 and terminate with

Gausel.c (Arrays start with 0 & main must supply coef. matrix starting with

a[0][0], etc.

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#define eps l.e-6 

#defme one 1.

#defme onn -1.

int gausel(int n,float **a,float *b,float *det,float *ermor){

int nl,i,j,k,il,*l; 

float **ao,*bo,**xo,fac;

*det=one; nl=n-l;

l=(int *)malloc((unsigned)n*sizeof(int)); 

bo-(float *)malloc((unsigned)n*sizeof( float)); 

ao=(float **)malloc((unsigned)n*sizeof(float *));

for(i=0;i<n;i++) ao[i]=(float *)malloc((unsigned)n*sizeof(float)); 

xo=(float **)malloc((unsigned)n!,!sizeof(float*));



for(i=0;i<n;i++) xo[i]=(float *)malloc((unsigned)n*sizeof(float));

/* Copies original a & b into ao & bo for later use in determining error. */ 

for(i=0;i<n;i++){bo[i]=b[i];for(j=0;j<n;j++) ao[i][j]=a[i][j];}

/* pivots on largest row & keeps track of row no in l[k]; */ 

for(k=0;k<nl ;k++) {fac=fabs(a[k][k]); l[k]=k; 

for(i=k+l ;i<n;i++) if(fabs(a[i][k])>fac) {fac=fabs(a[i][k]);l[k]=i;} 

if(fac<eps) {printf("Matrix is singular"); return 1;

}
if(l[k] != k){

*det *= onn;for(j=k;j<n;j++){

fac=a[k][j];a[k][j]=a[l[k]][j];

a[l[k]]D>fac;

}

/* Gaussian elimination (only a because b must be done also for iterative cor.) */ 

for(i=k+ 1 ;i<n;i++) { 

fac=a[i] [k]/a[k] [k]; a[i] [k]=fac; 

for(j=k+l ;j<n;j++)a[i] □]-=fac*a[k]^];

}

}
/* Computes determinant det */

for(i=0;i<n;i++) *det *- a[i][i];

for(il=0;il<2;il++){ /* now adjust b for orig. elim & iter, correction */ 

for(k=0;k<nl;k++){if(l[k] != k){fac=b[k];b[k]=b[l[k]];b[l[k]]=fac;} 

for(i=k+ 1 ;i<n;i++) b[i]-=a[i] [k] *b[k];}

/* Back substitution */

xo[nl][il]=b[nl]/a[nl][nl]; 

for(i=nl-l;i>=0;i—){ fac=b[i];

for(j=i+ 1 ;j <n;j++) fac-=a[i] [j ] *xo [j ] [i 1 ]; xo [i] [i 1 ]=fac/a[i] [i];}

/* Computes residual vector {r}={b}-[a]{x} */ 

for(i=0;i<n;i++){ fac=bo[i];

for(j=0;j<n;j++)fac-=ao[i][j]*xo[j][il]; b[i]=fac;bo[i]=fac; } } 

for (i=0;i<n;i++){b[i]=xo[i][0]+xo[i][l];
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errnor[i]=fabs(xo[i][l])/(fabs(b[i])+eps); } 

free(l);free(bo);for(i=n-l ;i>=0;i—) free(xo[i]);free(xo); 

for(i=n-l;i>=0;i-)free(ao[i]);free(ao);retum 0;

}

To solve linear system equations the following C main programs could be used. The first C

program calls on gausel and using arrays beginning with 0, and the second calls on gausell, and

uses arrays beginning with 1.

MAINGAU.C

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#define eps l.e-6 

#define one 1.

#define onn -1.

int gausel(int n,float **a,float *b, float *dd,float *error); 

void main(void){ int n,i,j; float **a,*b,*dd,*error; FILE *fil; 

printf("Give N "); scanf("%d",&n); 

b=(float*)calloc(n,sizeof( float)); 

crror=(float*)calloc(n,sizeof(float));

a=(float**)malloc(n*sizeof(float*)); //allocates pointers to rows

for(i=0;i<n;i++) a[i]=(float*)malloc(n*sizeof(float));// allocates rows & pointers to them 

fil=fopen("mainsol.dal","r");

for(i=0;i<n;i++){for(j=0;j<n;j++) fscanf(fil,"%f',&a[i]|j]); fscanf(fil,"%f',&b[i]);} 

j =gausel(n, a,b ,dd, error);

printf("\nSolution:\n"); for(i=0;i<n;i++)printf("%f ",b[i]); 

printf( "\nD eterminant=%f\n ", * dd);

/ / free(b);free(error);for(i=n-l;i>=0; i- ) free(a[i]); free(a);

}
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/ *  A N A L Y S I S  OF FLOW AND PRESSURE I N  P I P E  NETWORKS * /
/* */
/ * f u n c t i o n  o n e :  * /
/* */
/ *  R e a d  a n  o p t i o n  d a t a  * /
/ *  R e a d  p i p e  d a t a  * /
/ *  R e a d  PRV  d a t a  * /
/ *  R e a d  p u m p  d a t a  * /
/ *  F i l e  n a m e :  * /
/ *  a : t e s e t i n , a : t e s e t o u t  * /
/ * = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = * /

/ * ============================================================================V

# i n c l u d e < s t d i o . h>
# i n c l u d e < m a t h . h>
# i n c l u d e < s t d l i b . h>
# i n c l u d e < c o n i o . h >
/ / # d e f i n e  M A X _ S I Z  1 0  
/ / # d e f i n e  M A X _ P I P  4 0
/ / # d e f i n e  MAX_PUM 4 0
/ / # d e f i n e  M A X _ F I X  40  
/ / # d e f i n e  MAX_PRV 4 0 
# d e f i n e  P I  3 . 1 4 1 5 9 2 6 5 4

/ / v o i d  m a i n ( v o i d ) ;
FILE * f i l i , * f i l o , * f i l l ;  
c o n s t  k l = 1 0 ;
v o i d  p i p _ d a t a ( i n t  n p , i n t  J C [ ] , i n t  J A [ ] , i n t  J B [ ] ,  d o u b l e  1 [] , d o u b l e  D [ ] ,  d o u b l e  C [ ] ,  

d o u b l e  ml  [ ] ,  d o u b l e  £ g n [ ] , i n t  AAA [] ) ; 
v o i d  p r v _ i n p u t  ( i n t  n p r v , i n t  L Y [ ] , i n t  L Z [ ] ,  d o u b l e  E M I N [ ] , i n t  M P L [ ] ) ;
v o i d  p u m p d a t a ( i n t  AAA [ ] ,  d o u b l e  A A [ ] ,  d o u b l e  B B [ ] ,  d o u b l e  C C [ ] ,  d o u b l e  EE [ ] ,  d o u b l e  F F[ ]
t

d o u b l e  D D [ ] , d o u b l e  G G [ ] , d o u b l e  A 3 , d o u b l e  C Q , i n t  N P U M P , i n t  N I P E ) ;

v o i d  m a i n ( v o i d )
{

i n t  n d , n j , n p , f u , n p r v , u u , c k ;
d o u b l e  s w } / / D D Q
i n t  L Y [ k l ] , L Z [ k l ] , J C [ k l ] , K C L O [ k l ] ;
d o u b l e  E M I N [ k l ] ;
i n t  J D [ k l ] ;
i n t  M P L [ k l ] , K C [ k l ]  ;
i n t  K I P [ k l ] , K P I [ k l ] , J X [ k l ] ;
i n t  j  ;
/ / i n t  K 9 9 = 2 0 ; i n t  J 9 9 = 2 0 ;  
d o u b l e  Q [ k l ] , S [ k l ] , V [ k l ] ;

i n t  N I P E , J l , J 2 , J P I N , N X X , a , g ; i n t  NPUMP=0;  
i n t  J A [ k l ] , J B [ k l ] ; 
i n t  J J U N [ k l ]  ;
d o u b l e  A A [ k l ] , B B [ k l ] , C C [ k l ] , E E [ k l ] , F F [ k l ] ; 
d o u b l e  A 3 , A 4 , A l , A 2 , CQ, P;  
i n t  J P I P [ k l ] , A A A [ k l ] ;
d o u b l e  1 [ k l ]  , D [ k l ]  , C [ k l ]  , m l  [ k l ]  , f g n  [ k l ]  ; 
d o u b l e  D D [ k l ] , G G [ k l ]  ; 
i n t  NT E P= 0 ; / / i n t  NPUMP=0 ;
NXX=0; c k = 0 ;
c h a r  £ n a m 2 [2 0 ] , f n a m l [ 2 0 ]  ;

/*
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p r i n t f ( " G i v e : i n p u t  f i l e  n a m e \ r \ n " ) ;
s c a n f ( "%s" , f n a m l ) ; 

i f ( ( f i l i = f o p e n ( f n a m l , "w+")) = = N U L L ) {
p r i n t f ( " F i l e  %s d o e s  n o t  e x i s t " , f n a m l ) ; 
e x i  t ( 0 ) ;

}

p r i n t f ( " G i v e  f i l e  name  f o r  o u t p u t \ r \ n " ) ;
s c a n f ( "%s" , f n a m 2 ) ; 

i f ( ( f i l o = f o p e n ( f n a m 2 , "w+") ) = = N U L L )  {
p r i n t f ( " C a n n o t  o p e n  o u t p u t  f .  % s " , f n a m 2 ) ;  
e x i t ( 0 ) ;

}

/ * = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = * /

/ * v a r i a b l e  o p t i o n :  * /
/* */
/ *  c k : C h e c k  p i p e  c o n n e c t i o n  j u n c t i o n  * /
/ *  f u :  f l o w  u n i t e  (0 = C F S ; 1 = G P M ; 2 = M G D ; 3 = S I ( L I T E R / S e c )  * /
/ *  n p  . - n u m b e r  o f  p i p e s  * /
/ *  n j : n u m b e r  o f  j u n c t i o n  * /
/ *  n p r v :  n u m b e r  o f  PR V  * /
/ *  s w :  s p e c f i c  G r a v i t y  (0 )  w a t e r  w i t h  3 G = 1 . 0  * /
/ *  u u : k i n e m a t i c  v i s c o s i t y ( ! = 0  D a r c y - W e i s b a c h  * /
/* */
/ * = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = * /

f s c a n f ( f i l i , " % d  %d %d %d %d %d %l f  %d", & c k , & f u , & n p , & n j , & n p r v , f i n d , & s w , t u u ) ;

f o r ( j = l ; j < = 2 0 ; + + j ) {
KPI[j]= 0;
K C [ j ] = 0 ;
KCLO [ j ] = 0 ;
J D [ j ]  = 0 ;
}

f o r ( j = l ; j < = 2 0 ; + + j )  {
MPL[ j ] = 0 ;
J X [ j ]  = 0 ;
KIP [ j ] = 0 ;

}

/ * g e t  p r e s s u r e  g r u l a t o r  v a l v e * /  

i f ( n p r v ! = 0 ) {
p r v _ i n p u t ( n p r v , L Y , L Z , E M I N , M P L ) ;
}

/ * g e t  p i p e  d a t a * /

p i p _ d a t a ( n p , J C , J A , J B , 1 , D , C , m l , f g n , A A A ) ;

i f ( s w = = 0 ) { 
s w = l . 0 ;

}
i f  ( f u =  = 0)  { / / ------------------------------------------------------------------------------------------------------------------1
fprintf(filo,"\nFlow Rate Is Expressed In CfS And Pressure In Psig"); 
Al=4.73;A2=0.02 517;A3=8.18/sw;A4=12.0;CQ=1.0;
} e l s e  i f ( f u = = l ) {
f p r i n t f ( f i l o , " \ n F l o w  R a t e  I s  E x p e s s e d  I n  gpm And P r e s s u r e  I n  p s i g " ) ;  
A l = 4 . 7 3 ; A 2 = 0 . 0 2 5 1 7 ; A 3 = 8 . 1 8 / s w ; A 4 = 1 2 . 0 ; C Q = 4 4 8 . 8 6 ;
} e l s e  i f ( f u = = 2 ) {
f p r i n t f ( f i l o , " \ n F l o w  R a t e  I s  E x p r e s s e d  I n  mgd And P r e s s u r e  I n  p s i g " ) ;
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A l = 4 . 7 3 ; A 2 = 0 . 0 2 5 1 7 ; A 3 = 8 . 1 8 / s w ; C Q = 0 . 6 4 6 3  5 8 ;
} e l s e {
f p r i n t f ( f i l o , " \ n F l o w  R a t e  I s  E x p r e s s e d  I n  L i t e r / S e c  And P r s s u r e  I N (KN/M*M)U) ;  
A l = 1 0 . 6 9 ; A 2 = 0 . 0 8 2 6 5 ; A 3 = 0 . 1 0 1 9 7 / s w ; A 4 = 1 0 0 . 0 ; C Q = 1 0 0 0 . 0 ;
}
i f ( u u = = 0 ) { P = l . 8 5 2 ;

} e l s e { P = 2 . 0 ;
/ / p r i n t £ ( " \ n  THE DA RC Y- W EI SH  HEAD L O S S  EQUATION I S  USED U U = " ) ;

}

f o r ( j  = 1 ; j < = n p ; + + j ) {
N I P E = j ;

f p r i n t f ( f i l o , " \ n  NIPE=%d", j ) ;
K I P [ N I P E ] = j ;
f p r i n t f ( f i l o , " \ n K I P [ % d ] = % d " , N I P E , j ) ;
K P I [ j ] = N I P E ;
f p r i n t f ( f i l o , " \ n K P I [%d]=%d", j , N I P E ) ;
J l = J A [ j ]  ;
f p r i n t f ( f i l o , " \ n J l = % d " , J l ) ;
J 2 = J B  [ j ]  ;
f p r i n t f  ( f i l o ,  l,\ n J2=%d" , J l )  ; 

i f ( M P L [ N I P E ]  = = 1 0 1 )  { 
g o t o  N t e p ;

}
i f ( ( J 1 + J 2 ) <= a b s (J l - J 2 ) ) {

N t e p :
7
NTEP=NTEP + 1 ;
f p r i n t f ( f i l o , "\ n  NTEP=%d", N T E P ) ;
J D [ j ]  =2 ;  

i f ( N T E P = = 1 ) {
J P I N = j ;
}

i f ( M P L [ N T E P ] = = 1 0 1 ) {
JJUN [NTEP] = JB [ j ]  ;
} e l s e {

J JUN [NTEP] = J A [ j ]  + JB [ j ]  ;

}
J P I P [ N T E P ] = j ;

}

i f ( A A A [ j ] ! = 0 ) {
NPUMP=NPUMP+1;
p u m p d a t a (AAA, AA, B B , CC, EE, F F , DD, GG, A 3 , CQ, NPUMP, N I P E ) ;

}/* --------------------------------------------------------------------------------------------------------------------*/
f p r i n t f ( f i l o , " \ n  n u m b e r  o f  pump i n  t h e  s y s t e m  NPUMP=%d " , NPUMP) ; 

i f  ( J A [ j ]  ! =0)  { 
a = J A [ j ]  ;
J X [ a ]  = JA [ j  ] ;

}
i f  ( J B [ j ]  ! =0)  { 

q=JB [ j ] ;
J X [ q ] =JB [ j ] ;

}
/* --------------------------------------------------------------------------------------------------------------------*/

i f  ( J C [ j ] =  = l ) {
i f ( n d = = 0  && K C [ j ] = = 0 ) {
f p r i n t f ( f i l o , " \ n T h e r e  I s  a  Ch e k  V a l v e  i n  L i n e  Numbe r  ( % d ) " , N I P E ) ;

}
>
i f (J C [ j ] ==2 ) {
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KCLO[ j ] = 1 ;  
i f ( n d = = 0 ) {
p r i n t f  ( " \ n T h e  l i n e  Number( %d)  I s  C l o s e d  " , N I P E ) ;

}
}

D [ j ] = D [ j ] / A 4 ;
Q [ j  ] = P I  * p o w ( D [ j ]  , 2 . 0 )  ;
S [ j ] = A l  * 1 [ j  3 /  p o w  (C [ j  ] , P) * p o w ( D [ j ]  , 4 . 8 7  ) ; / * P = 1 . 8 5 2 * /
V [ j ] =A2 * m l  [ j ]  /  ( p o w( D [ j ]  , 4 . 0)  ) ;
f p r i n t f  ( f i l o ,  " \ n  %d %d %l f  %l f  %l f  % l f 11, NXX, J P I N ,  D [ j  ] , Q [ j  ] , S [ j  ] , V [ j  ] ) ;

} / * ---------------------------------------- <<<<<<<<<land o f  t h e  j  l o o p * /

}

/ * = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = * /
/ *  P R V  DATA  * /

/* */
/ * f u n c t i o n  d a t a  * /

/* */
/ *  r e a d  L Y [] , L Z  [] , E M I N [] * /
/ *  L Y [ ]  : JUN CT IO N NODE REPRESENT F I R S T  PRV,  * /
/ *  L Z [ ]  : P I P E  NUMBER DOWNSTREAM FROM F I R S T  PRV,  * /
/ *  L Y [] : GRADE WHICH THE PRV  S E T  TO M A I N T A I N ,  * /
/ *  M P L [ ] = 1 0 1  i d i c a t e d  t h a t  t h i s  p i p e  c o n t a i n e  PRV  * /
/* */
/* */
/* ============================================================================*/

v o i d  p r v _ i n p u t  ( i n t  n p r v , i n t  L Y [ ] , i n t  LZ [] , d o u b l e  E M I N [ ] , i n t  MPL [] ) 

i n t  j , J l ;

f o r ( j - 1 ; j < = n p r v ; + + j ) {

p r i n t f  ( 11 \ nJUNCTI ON NODE REPRESNET FIRST PRV LY [%d] =%d" , j  , LY [ j ] ) ; 
s c a n f ( "%d", &LY[ j ] ) ;
f p r i n t f ( f i l i , " \ n P I P E  NUMBER DOWENSTREAM FROM FI RST PRV LZ[ %d] = " , j ) ; 
s c a n f ( " % d " , &LZ[ j ] ) ;
p r i n t f ("\nGRADE WHICH THE ( PRV)SET TO MAINTAIN EMIN[%d] = " , j ) ; 
s c a n f ( " % l f " , £ E M I N [ j ] ) ;
J 1=LZ [ j ]  ;
MPL [ J l ]  = 1 0 1 ;  / / M P L  [] =101  t h e r e  i s  PRV  I N  t h e  p i p e  

}
}

/* =====--------- ======================================------ ================== */
/ *  P i p e  d a t a  * /
/ * f u n c t i o n  d a t a :  * /
/ *  n p :  n u m b e r  o f  p i p e s  * /
/ *  J A - J B : C o d e  n u m b e r  c o n n e c t i n g  t h e  p i p e  * /
/ *  1 : l e n g t h  * /
/ *  D : d i a m e t e r  * /
/ *  C- . HAZEN-WILLIAMS r o u g h h n e s s  * /
/ *  m l : m i n o r e  l o s s e s  * /
/ *  f g n :  f i x e d  g r a d e  n o d e  * /
/ *  AAA:PUMP C h a r  * /

/ * = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = * /
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v o i d  p i p _ d a t a ( i n t  n p , i n t  J C [ ] , i n t  JA [] , i n t  J B [ ] ,  d o u b l e  1 [] , d o u b l e  D [ ] ,  d o u b l e  C [ ] ,  
d o u b l e  ml  [ ] ,  d o u b l e  f g n [ ] , i n t  AAA[ ] )

{

i n t  j  ;
/ / p r i n t f ( " \ n  n u m b e r  o f  p i p e  KK=",KK);
/ / s c a n f ( " % d " , &KK ); 
f o r ( j  = 1 ; j < = n p ; +  + j )  { 

s c a n f  ( ' ^ d "  , &JC [ j  ] ) ;
f p r i n t f ( f i l i , " \ n c o d e  2 : i n d i c a t e  t h i s  p i p e  i s  c l o s e d  c o d e  1 : c h e c k  v a l v e  J C [ j ] = % d  

",  j ,  J C [ j ]  ) ;
s c a n f ( "%d", & J A [ j ] ) ;  /*N1*/
f p r i n t f ( f i l i , " \ n  c o d e  n u m b e r  c o n n c t i n g  t h i s  p i p e  J A[ %d] =%d", j , J A [ j ] ) ; 
s c a n f ( " % d " , & J B [ j ]  ) ; /*N2*/
f p r i n t f ( f i l i , " \ n c o d e  n u m b e r  c o n n c t i n g  t h i s  p i p e  J B[ %d ] =%d ", j , J B [ j ] ) ; 
s c a n f ( " % l f " , &1 [ j ] ) ;
f p r i n t f ( f i l i , " \ n  l i n e  l e n g t h  i n  f e e t  R [ % d ] = % l f " , j , 1 [ j ] ) ;  
s c a n f ( " % l f " , &D[ j ] ) ;
f p r i n t f  ( f i l i ,  " \ n  i n s i d e  d i a m e t e r  D [%d] = % l f 11, j , D [ j  ] ) ; 
s c a n f ( " % l f " , &C[ j ] ) ;
f p r i n t f ( f i l i , " \ n  HAZEN-WILLIAMES r o u g h n e s s  C [ % d ] = % l f " , j , C [ j ] ) ;  
s c a n f ( " % l f " , & m l [ j ] ) ;
f p r i n t f  ( f i l i ,  " \ n  sum o f  t h e  m a i n o r  l o s s  f o r  t h i s  p i p e  W W  [%d] =%l f  " , j  , m l  [ j ] ) ; 
s c a n f ( "%d", &AAA[ j ] ) ;
f p r i n t f ( f i l i , " \ n  pump c h a r ( + , - )  ( u e s f u l e  p o w e r , o p e r t a i n g  da t a) AAA[ %d] =%d" , j  , AAA [

j ] )  ;
s c a n f ( " % l f " , & f g n [ j ] ) ;
f p r i n t f ( f i l i , " \ n  f i x e d  g r a d e  n o d e  ENGY[ %d] =%l f " , j , f g n [ j ] ) ;

/ * = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = * /
/ *  PUMP DATA * /
/* */
/ * A A A :  i n p u t  f o r  e v e r y  p i p e  i n  t h e  n e t w o r k s  * /
/ *  (0 )  t h e r e  i s  n o  p m u p  i n  t h e  p i p e  * /
/ *  ( n u m b e r ( - , + ) t h e r e  i s  a p m u p  i n  t h e  p i p e  * /
/ *  n p u m p = n p u m p + l ; * /
/ *  i f ( j c [ j ]  !=2)  j c [ j ] = 0  * /
/ *  k c [ j ] = n p u m p  i s t o  i n d i a c t e  i f  t h e r e  i s  p u m p  i n  t h e  l i n e  o r  n o t  =0Nopmup  * /
/ *  AA(NPUMP)=AAA UESFUL POWER * /
/ *  B B (N P U M P ) =0 * /
/ *  I=NPUMP * /
/* --------------------------------------------------------------------------------------------------------------------*/
/ *  ( + ) UESFULE POWER * /
/ *  ( - ) OPERATING DATA ( - 1 ,  - 2 )  * /
/ *  ( - 1 ) P A I R S  OF HEAD-DISCHARGE DATA  * /
/ *  ( - 2 ) USEFUL POWER BE  COMPUTED FROM THE OPERTAING DATA * /
/ *  AA  [I=NPMUP] =X1 * Y 1 + X 2 * Y 2 + X 3 * Y 3 / A 3  *3 *CQ * /
/ *  x , y :  ( h e a d , f l o w  r a t e )  * /
/* ============================================================================*/

v o i d  p u m p d a t a ( i n t  AAA [ ] ,  d o u b l e  A A [ ] ,  d o u b l e  B B [ ] ,  d o u b l e  C C [ ] ,  d o u b l e  EE [ ] ,  d o u b l e  FF[ ]
I

d o u b l e  D D [ ] , d o u b l e  G G [ ] , d o u b l e  A 3 , d o u b l e  C Q , i n t  N P U M P , i n t  NIPE)

{

d o u b l e  X I , Y 1 , X 2 , Y 2 , X 3 , Y 3 , S , □ , T 1 ; 
i n t  j , I ; 
i n t  NXX=0; 
i n t  K C [ k l ] ;



NC1.C October 9, 2000 Page 6

f o r  ( j  = 1 ; j < 2 ; + + j ) {
KC[ j ] =NPUMP;
A A [ N P U M P ] = d o u b l e ( A A A [ j ] ) ;
BB[ NPUMP] =0;
I=NPUMP;

i f  ( A A A [ j ] < 0 ) { / / ------------
p r i n t f ( " \ n  x l = " ) ; / /  h 
s c a n f ( " % l f " , &X1) ; 
p r i n t f  ( " \ n  y l  = " ) ; / / £ >  
s c a n f  ( " % l f 11, &Y1) ; 
p r i n t f ( " \ n x 2 = " ) ; 
s c a n f ( " % l f " , & X 2 ) ; 
p r i n t f ( " \ n y 2 = " ) ;  
s c a n f ( " % l f " , & Y 2 ) ; 
p r i n t f ( " \ n X 3 = " ) ; 
s c a n f ( " % l f " , &X3) ;  
p r i n t f ( " \ n y 3 = " ) ;  
s c a n f ( " % l f " , & Y 3 ) ;

i f ( X 1 < X 2  | |  X 2 < X 3 ) {

p r i n t f ( " \ n  PUMP DATA FOR LINE ( %d) I S  NOT SIUTABLE " , N I P E ) ;
NXX=1?

}
A A [ I ] = ( XI  * Y l  + X2 * Y2 + X3 * Y 3 ) / ( A 3  * 3 . 0  * C Q ) ;

i f ( A A A [ j ] > - 2 ) {

A A [ I ] = Y 1 / C Q ;
S = l o g ( X 1 - X 3 ) / ( X 1 - X 2 ) ;
D = l o g ( Y 3 / Y 2 ) ;
B B [ I ] = S / D ;
T l = p o w ( ( Y 2 / C Q ) , B B [ I ] ) ;
C C [ I ] = ( X 1 - X 2 ) / T l ;
EE [ I ] = - B B  [ I ] * C C [ I ] *  p o w ( ( Y 3 / C Q )  , ( B B [ I ] - 1 . ) )  ;
F F [ I ] = X 3 - E E [ I ] * Y3/ CQ;
D D [ I ] = X 1 ;
G G [ I ] = Y 3 / C Q ;

f p r i n t f ( f i l o , " \ n % l f  %l f  %l f  %l f  %l f  %l f  % l f " , A A [ I ]  , BB [ I ]  , C C[ I ]  , E E [ I ]  , FF [ I ]  , D D [ I ] , GG
[ I ]  ) ;

}
} / /  AAA

}
p r i n t f ( " \ n  NXX=%d", NXX) ;

}
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/ * = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = * /

/ *  c o m p u t e r  a n a l y s i s  o f  f l o w  a n d  p r e s s u r e  i n  p i p e  n e t w o r k s  * /

/* */
/ * f u n c t i o n  t w o :  * /

/* */
/ *NTEP -NUMBER OF F IX E D  GRADE NODE I N  TE S YS TE M  * /
/ * J J -  COUNTER TO CHECK THE NUMBER OF JUN CT IO N * /
/ *KN: N  OF J u n c t i o n  I n  T h e  S y s t e m  * /
/ * J A - J B : J U N C T I O N  CONNECTED THE P I P e  * /
/ * I P [ ]  [] - M A T R I X  FOR EACH JUN CT ION  I N  THE SYSTEM,  * /
/  *EMIN [] -  GRADE WHICH THE PR V S E T  * /
/ * L Z  [ ] -  P I P E  NUMBER DOWEN STREAM FROM TEH F I R S T  P R V  * /
/ *  NOP-NUMBER OF P I P E  AROUND EACH JUN CT ION  * /
/ * N E L -  NUMBER OF P I P E  AROUND A L L  THE JUN CT IO N I N  THE S Y ST E M  * /
/ * K J -  K N - 1 . . N U M B E R  OF JUN CT ION  - 1  * /
/ * K P -  K K - K N . . .NUMBER OF P I P E  -  NUMBER OF JUN CT ION  * /
/* L NU M - NUMBER OF JUN CT IO N  * /
/ * K K -  N  n u m b e r  o f  p i p e s  * /

/* */
/ *  f i l e  Nm a e  m o n a i n . m o n a o  * /
/ *  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = * /

# i n c l u d e < s t d i o . h>  
# i n c l u d e < m a t h . h >  
# i n c l u d e < s t d l i b . h>  
# d e f i n e  MAX_SIZ 50
t t d e f i n e  MAX P I P  4 0
# d e f i n e  MAX_PUM 40
# d e f i n e  MAX_FIX 40
t t d e f i n e  MAX_PRV 40
t t d e f i n e  MAX_CPIP 3

FILE * f i l i , * f i l o , * f i l l ;

v o i d  m a i n ( v o i d )

{

i n t KN, KK, NR, NTEP;
i n t J 9 9 = 3 0 ;
i n t L Z [ M A X P R V ] , NUMJ[ 1 0 ] ;
i n t I P [ M A X _ P I P ] [ 1 3 ] , M[ MAX_ PI P] , JA[MAX_PIP] , J B [ M A X _ P I P ] ;
i n t MPL[ MAX_SI Z] , J X [ M A X _ S I Z ] , J I J [ M A X _ S I Z ] , K I P [ M A X _ P I P ] , K P I [ M A X P I P ] , J J I [ M A X _ P I P ] ;
i n t J J , NEL, NOP, J 1 , J 2 , MMM, JMAX;
i n t KTEP ;
i n t ERR=0;
i n t j , m , h , v , t , g , k , i ;
d o u b l e  ENGY[ MAX_PIP] , E M I N [ M A X S I Z ] ; 
c h a r  f n a m l [ 2 0 ] , f n a m 2 [ 2 0 ] ;

/*============================================================================*/
printf("\Give file name for input\r\n"); 

scanf("%s",fnaml);
if ( (fili=fopen(fnaml,"r+")) ==NULL) { 
printf("Cannot open input f.%s",fnaml); 
exit(0);

}
printf("Give file name for output\r\n"); 

scanf("%s",fnam2);
if ( (filo=fopen (fnam2,11 a+")) ==NULL) {
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printf("Cannot open output f. %s",fnam2); 
exit(0);

/ * = = = = = = = = = = = = = = = =  = = = = = =  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

fscanf(fili,"%d %d %d %d",KN,KK,NR,NTEP); 

for(j=l;j<=KK;++j){
fscanf(fili,"%d %d %d %d %d",J A [j],J B [j],KPI[j],KIP[j],MP L [j]); 
}
for(i=l;i<=KN;++i){

fscanf(fili,"%d %d",NUMJ[i], JX [i]);
}

for(j =1;j <=50 ;++j){
M[j] =0;
}

KTEP=NTEP-1;
JJ=0;
NEL=0;

}

f o r  (j = l ;  j < = J 9 9  ; ++j ) {//--------------------------- >>j
i f ( J X [ j ]  ! =0)  { // i f  J X [ j ] = 0  m e a n s  f i e x d  g r a d e  n o d e  

J M A X = j ;
J J = J J + 1 ;
f p r i n t f ( f i l o , " \ n  J J = % d " , J J ) ;
J J I [JJJ = j ;
f p r i n t f ( f i l o , " \ n J J X [%d]=%d", J J , j ) ;
J I J [ j ] = J J ;
f p r i n t f ( f i l o , " \ n J I J [%d]=%d", j , J J ) ;
p r i n t f  ( " \ n ----------- m a r i x ------------------- =")  ;
s c a n f ( " %d", & E R R ) ;

}
} / / -----------------------------------------------« j

i f (J J ! = K N ) { / / J J  i s  COUNTER t o  CHECK t h e  n u m b e r  o f  j u n c t i o n  
KN= J J ;

}

for(j = 1;j <=KK;++j){
J J = K P I [ j ]  ;
f p r i n t f ( f i l o , " \ n J J = % d " , K P I [ j ] ) ;
J 1  = 0;
J2 = 0; 

if(JA[j]!= 0 ) { 
t=JA [ j] ;
J l = J l + J X J [ t ] ;
f p r i n t f ( f i l o , " \ n J l = % d " , J I J [ t ] ) ;

}
i f ( J B [ j ] 1 = 0 ) {  

g = J B [ j ]  ;
J 2 = J 2 + J I J [ g ]i
f p r i n t f ( f i l o , " \ n J 2 = % d " , J l J [ g ] ) ;

}
i f ( J l !=  0 ) {

M[Jl]=M[J l ] +1;
f p r i n t f ( f i l o , " \ n M [ % d ] = % d " , J 1 , M [ J l ] ) ;
MMM=M[J1] ;
f p r i n t f ( f i l o , " \ n M M M = % d " , M M M ) ;
I P [Jl][MMM]=j;
f p r i n t f  ( f i l o , 11 \ n l P  [%d] [%d] =%d- , J1,MMM, j ) ;
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printf ( "\n-------MATRIX []---------- =%d" , ERR) ;
scanf("%d",&ERR);

if(J2!=0){
M[J2]=M[J2]+1;
fprintf(filo,"\nM[%d]=%d",J2,M[J2]);
MMM=M[J2];
fprintf (filo, ,l\nMMM=%d" ,MMM) ;
IP[J2][MMM]= -j ;
fprintf(filo,"\nIP[%d][%d]= -%d",J2,MMM,j);
printf ("\n---------MATRIX [ ] ----------= ",ERR);
scanf("%d",&ERR);

}
if(MPL[JJ]==101){

JA[j]=0;
}

/ *        * /

if(NR!=0){
for(j =1;j <=NR;++j){

v=LZ[j] ; / / L Z [ j ] =  p i p e  n u m b e r  d o w e n s t r e a m  f r o m  f i r s t  p r v  
JJ=KIP[v];
ENGY[JJ]=EMIN[j] ; / / t h e  e n r g y  f o r  t h i s  p i p e  i s  e q u a l  t o  g r a d e  w h i c h  p r v  s e t

}

for (j =1; j<=KN; + +j ) { //--------------------- >>>>>>>>>>>>M
NOP=M[j]; / / s u m  o f  t h e  p i p e  a r o u n d  e a c h  j u n c t i o n  
fprintf(filo,"\n NOP=%d",NOP); 

if(NOP !=0){ 
for(k=l;k<=NOP;++k){
NEL=NEL+1; / / t h e  s u m  o f  a l l  t h e  p i p e  i n  a l l  j u n c t i o n  i n  t h e  s y s t e m  
fprintf(filo,"\n NEL=%d",NEL);
MPL[NEL]=IP[j] [k]; / / s e t t i n g  t h e  m a t r i x
fprintf(filo,"\n  MPL[%d]=IP[%d][%d]",NEL,j,k);

}
M [j]=NEL-N0P+1;
fprintf(filo,"\n M[%d]=%d-%d+l",j,NEL,NOP);
printf ("\n---------matrix---------- =%d",ERR);
scanf("%d",&ERR);

}
}

/ *  */

}

/ / K J = K N + 1 ; 
/ / K P = K K - K N ;
/ / LNUM=KN ;
/ /N Z X =  0 ;
M[KN+1]=NEL+1; 
for(j =1;j<=KK;+ +j){ 

if (JA[j] ! =0) { 
m=JA[j];
JA [ j ] = JIJ [m] ;
}

if(JB[j]1=0){ 
h=JB [j] ;
JB[j]=JIJ[h];

}
}



October 9, 2000

fprintf(filo,"\n KTEP=%d JMAX=%d ",KTEP,JMAX)
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/ * = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = * /
/* c o m p u t e r  a n a l y s i s  o f  f l o w  a n d  p r e s s u r e  i n  p i p e  n e t w o r k s  */
/* FUNCTION T h r e e :  * /
/* GGGG[ ] -DEMAND OF THE JUN CT IO N * /
/ *  E E E E [ ] - E L E V A T I O N  OF THE JUC NT ION  * /
/* NU M J[ ] -  NUMBER OF JUN CT ION */
/* J I J  [] - A R R A Y  CONTAINE THE NUMBER OF JUN CT IO N * /
/* M P L [ ] - A R R A Y  CONTINE THE NUMBER OF P I E P  CONNECTED TO THE J U N C T I* /
/* NCK-NONZERO I N T R Y  WILL IND IC ATE D  TO CHECKED P I P E  CONNECTED J  * /
/* NSD NONZERO I N T R Y  WOULDN'T SHOW DATA OF THE JUNCTION * /
/*  */
/* f i l e  n a m e ;  m o h a m e d i n - m o h a m e d o u t  * /
/*  */
/* ============================================================================*/

#include<stdio.h> 
#include<math.h> 
#include<stdlib.h>
#define MAXSIZ 50
#define MAX_PIP 40
#define MAX_PUM 4 0
#define MAX_FIX 4 0
#define MAXPRV 4 0
#define MAX CPIP 3

FILE *fili,*filo,*fill; 
void main()
{

int NCK,NSD,KN,KK,NTEP; 
int NPOIIO],NUMJ[10];
int JG[MAX_PIP],M[MAX_PIP],JA[MAX_PIP],JB[MAX_PIP];
int MPL[MAX_SIZ] ,JX[MAX_SIZ] ,JIJ[MAX_SIZ] ,KIP[MAX_PIP] ,KPI[MAX PIP] ,JJI[MAX_PIP] ; 
int NEL,NOP,L ,J1,J2,MAXJ;
int MBEG,KJ,LNUM,KP,NAB,NZX,NXX,NUJ,KTEP; 
int j,i,wl,1,k,tem,II;
double E[MAX_PIP],BI[MAX_PIP],B[MAX_PIP]; 
double GGGG[10] ,EEEE [10] ; 
double CQ;
char fnaml[20],fnam2 [20];

/ * = = = =  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = ^ ---------

printf("Give file name for input\r\n"); 
scanf ("%s11, fnaml) ;
if((fili=fopen(fnaml,"r+"))==NULL){ 
printf("Cannot open input f. %s",fnaml); 
exit(0);
>

printf("Give file name for output\r\n");
scanf("%s",fnam2); 

if((filo=fopen(fnam2,"a+"))==NULL) {
printf("Cannot open output f. %s",fnam2); 
exit(0);

}

/* ============================================

fscanf(fili,"%d %d %d %d %d %d %lf",NCK,NSD,KN,KK,NTEP,NEL,CQ);

for(j =1;j <=KK;+ +j){
fscanf(fili,"%d %d %d %d",JA[j],JB[j],KPI[j],KIP[j]);
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for(j =1;j <=KN+1;+ +j){
fscanf(fili,"%d",M[j]);
}
for(i=l;i<=KN;++i){

fscanf(fili,"%d %d %d",NUMJ[i],JG[i],JX[i]);
}

for(j =1;j <=NEL;+ +j){ 
fscanf(fili,"%dH,MPL[j]);
>

KTEP=NTEP-1;
NEL=0;
KJ=KN+1;
KP=KK-KN;
LNUM=KN;
NZX=0;
/ / M  [KN+1 ] =NEL + 1 ;

for (k=l; k<KJ; ++k){//-------------------------------- >>S

printf ("\nDemand of the junction GGGG [%d] =11,k) ; 
scanf("%lf",&GGGG[k]);
printf("\nElevation of the junction EEEE[%d]=",k); 
scanf("%lf",&EEEE[k]);
printf (11 \nNumber of the junction NUMJ [%d] =" , k) ; 
scanf("%d",&NUMJ[k]);

for(j=l;j<=MAX_CPIP;++j){ // p r i n t f ( " \ n J G [ % d ]=",j ) ;
scanf("%d",tJG[j]);
}

if(k==KJ){break;} 

tem=NUMJ[k];
L=JIJ[tem] ¡ / / N U M B E R  OF JUNCTION  

if(L==0){ / / M E A N  THERE I S  NO JUN CTION NUMBER WRONG DATA HAS BEEN GIVEN  
fprintf(filo,"\nData is input for Jun nod NUMJ(%d)WHICHISNOT used INTHE PIPEDATA" 

,NUMJ,k);
NXX=1;

}
B[L]=-GGGG[k]/CQ;
BI[L]=B[L] ;
E[L]=EEEE[k];

if(NCKI=0) { / / n o t  e q u a l e t o  z e r o  t h e  m e a n  t h e  d a t a  f o r  t e h  s y s t e m  m u s t  b e  c h e k c d  
NUJ=M[L+l]-M[L] ; / / N U J  THE NUMBER OF P I P E  AROUND EACH JUN CTION  
fprintf(filo,"\n+++++++NUJ=%d",NUJ);

for (i = l; i<=MAX_CPIP;++i) {//------->>i
if(i<=NUJ){

wl=M[L] ; / / L  NUMBER OF JUN CTION
NAB=MPL[wl+i-1] ; / / M P L  A R R A Y  CONTAINE THE NUMBER OF P I P E  CONN TH JUN CT I  
NAB=abs(NAB);
NAB=KPI[NAB];
fprintf(filo,"\n+++++++NAB=%d",NAB);
}else{
NAB=0;
}

if(abs(NAB)!=JG[i]){//
fprintf(filo,"\nDATA IN PUT FOR PIPE CONNECTION JUNC(%d)DOES NOT CHECK",NUMJ

}

) ;
NZX=1;
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} / / ----------------------<<<<<i
} / /  <<<<<<

}//----.-------------------------- -----<<jc l o o p  —  S

if(NCK !=0 && NZX==0){ / / P I P E  CONEECTED JUN CT ION  HAS BEEN CHECKED

fprintf(filo,"\nSuccessfuly Geometric Verification Hase Been Compiteci"); 
}

if(NZX==1){ / / E R R O R  I N  THE IN P U T  DATA  
NXX=1;
fprintf(filo,"\n Error in the input data"); 
exit(0);
}

if(NSD==0){ / / W R I T E  THE DATA FOR THE JUN CT ION  NODE
fprintf(filo,"\n Junction No# Demand Elevation Conccection Pipe#");
}

for (1 = 1 ; 1<=KN;+ + 1 ) {//----------------------------- >>>>>>p
NUMJ[1]=JJI[1];
MAXJ=M[1+1]-1;
MBEG=M[1];
NOP=M[1 + 1]-M[1] ; 
fprintf(filo,"\n NOP=%d",NOP); 

for(Jl=l;J1<=N0P;++J1){
J2=MPL[MBEG+J1-1];
NPO[Jl]=abs(J2);
}

GGGG [1] =-B [1] * C Q j / / l F  B  [L] = = 0 » » » G G G G = 0 ; 

if (NSD< = 0) {//------------------------- >>
/ / p r i n t  f  ( " \ n  NUM[%d]=%d GGGG [%d] = % l f  " ,  1 ,  NUMJ [1]  , GGGG [1]  ) ; / / E [ l ] ;
for ( j=l; j<=NOP; + + j ){//----------- >>

J2=MPL[MBEG+j-1];
NPO[j]=abs(J2);
II=NPO [j] ;
fprintf (filo, "\nJ2---------->>=%d" , J2) ;
printf("\r\n");
printf("\nKPI[%d]=%d",II,KPI[II]);

}//------------------------- > » j
} //----------------------------------> » i f

}
fprintf (filo, "\nJ2=%d KTEP=%d NTEP=%d NEL=%d KJ=%d 11, J2 , KTEP, NTEP, NEL, K J ) ; 
fprintf(filo,"\nKP=%d LNUM=%d MAXJ=%d ",KP,LNUM,MAXJ); 
fprintf(filo,"\n NXX=%d",NXX);

}

}
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/* ============================================================================*/
/* c o m p u t e r  a n a l y s i s  o f  f l o w  a n d  p r e s s u r e  i n  p i p e  n e t w o k s  */
/* f u n c t i o n  F o u r : */
/*  */
/* J A ,  J B :  NODE CONNECTED P I P E  j a [ ]  o r  j b [ ] =  = 0 i f  i t  i s  FGN * /
/ *  I P :  FOR EACH JUN CT ION  I N  THE NET AND A  P I P E  CONECCTED THE JUNCTION * /
/ *  M-.NUMBER OF P I P E  CONEECTED EACH JUN CT ION  * /
/ *  JD : = = 2  FOR EACH F IX E D  GRADE NODE I N  THE NET OTEHR ==0 * /
/* P I N : N  OF P I P E  c o n e c t  t o  THE F I R S T  F IX E D  GRADE NODE I N  THE NET>>>NTEP==1 * /
/* KN: NUMBER OF JUN CT ION  I N  THE NET */
/* KK: NUMBER OF P I P  I N  THE N E T */
/* KJ:=K N+1 * /
/* K P : = K K - K N  * /
/ *  M PL : FOR EACH JUN CTION HOW MANY P I P E  CONNEDTED EACH JUN CTION */
/*  */
/* t h e  f u n c t i o n  d o  s p e f i e d  t h e  p a t h  a n d  t h e  l o o p s  e q u a t i o n  f o r  t h e  s y s t e m  * /
/ * ============================================================================*/

#include<stdio.h>
#include <math.h>
#include<stdlib.h>

#define MAX_SIZ 8 0

// v o i d  c o m b i n e  ( i n t  J F [] , i n t  NZ)  ;
/ /  v o i d  c o m b i n e 2 ( i n t  KN,  i n t  N P , i n t  I P  [2 0 ]  [1 3]  , i n t  J A [ ] , i n t  J B [ ] , i n t  JD [] , i n t  M/7,

/ / i n t  M 6 , i n t  M 7 , i n t  M 8 , i n t  M 9 ) ;
/ / v o i d  c o m b i n e 3  ( i n t  KN, i n t  I X [ ] , i n  t  J E [ ] ) ;
FILE *fili,*filo,*fill;
void combine4 (int MPL[],int M[],int NA[],int NB [] ) ; 
void main(void)

{

int KN,KP, NEL,KJ,KK,NTEP,LNUM;
int M[MAX_SIZ],JD[MAXSIZ],JG[MAXSIZ],IX[2 0],MPL[MAX_SIZ],JE[MAX_SIZ]; 
int NA [20] ,N B [20] ,JA[20] ,JB[20] ,IP [20] [13] ,JF[MAX_SIZ] ; 
int KL,J8,M1,NP,L8,L9,NZ,N8,j,k, I,jj ; 
int JPIN,NZX,NXX;
int M6=0;int M7=0;int M8=0;int M9=0;
int J7=l;int J6=0;
int JXNIN,JXNJJN,JEM;
int i,ii,JJJJ,JJJ1,jjj;
int ERR=0;
char fnaml [20] , fnam2 [20] ;

/* =================================================================3==========*/

printf("Give file name for input\r\n"); 
scanf("%s",fnaml);
if((fili=fopen(fnaml,"r+"))==NULL){ 
printf("Cannot open input f. %s",fnaml); 
exit(0);
}
printf("Give file name for output\r\n");

scanf("%s",fnam2); 
if((filo=fopen(fnam2,"at"))==NULL) {

printf("Cannot open output f. %s",fnam2); 
exit(0);

}

/* */
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fscanf{fili,"%d %d %d %d %d %d %d",KN,KP,NEL,KJ,KK,NTEP,LNUM); 
fscanf(fili,"%d %d %d",JPIN,NZX,NXX);

for(j =1;j <=KK;++j){
fscanf(fili,"%d %d %d",JA[j],JB[j],JD [j]);

}
for(j=l;j<=KN+l;++j){

fscanf(fili,"%d",M[j]);
>

for(j=l;j<=KN;++j){ 
for(i=l;i<=3;++i){

fscanf(fili,"%d",IP[j][i]);
}

}

KL=KP-NTEP+1;

/ *  c a l l  f u n c t i o n  * /  
combine4(MPL,M,NA,NB);

JD[JPIN]=1;
M1=KN;
J8=JA [JPIN] + JB [JPIN] ; 
if(JA[JPIN]>JB[JPIN]){

JG[J8] =-JPIN;
}else{
JG[J8]=JPIN;

>
Age:

i
JE [J8] =1;
1.9 = 1 ;
IX [1]=J8;

/ *      */
for(k=l;k<=KN;++k){

NZ = 0 ;
L8=IX[k]; 

if(J7!=2 && L8==0){
fprintf(filo,"\n this system is disconnected");
NXX=1;

}
if(J7o=2 && L8==0){ 

break;
}

NP=M[L8+1]-M[L8]; 
for(j=l;j<=NP;++j){

N8=IP[L8] [j] ;
N8=abs(N8);
if(JA[N8]1=L8 && JB[N8]I=L8){ 

continue;
}else{
J8=JA[N8]+JB[N8]-L8;
}

if (JD[N8]= = 1) { 
continue;
}

if(abs(J8-J6)>0){goto Rod;}
NZ=NZ+1;
M1=M1+1; 

if((Ml-KN)<=NTEP){
NB[Ml-KN]=N8;
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}
JF [NZ] =N8; 

if(J7I=2){
JD[N8]=1;

}
if(JA[N8]!=L8){

JF[NZ]=-N8;
}
Fog:
7

J8=JA [N8] + JB [N8] -J8; 
if(J8I=J6){ 
goto Gof;
}

if((Ml-KN)<=NTEP){
NA[Ml-KN]=N8;
fprintf(filo,"\n NA[%d-%d]=%d",M1,KN,N8);

}

for (ii = 2 ; ii<=NZ ; + + ii){//-------------------------------------i i
JJJJ=ii-l7 

for(jj=l;jj<=JJJJ;++jj){
JXNIN=JF[ii];
JXNJJN=JF[j j]; 

if(abs(JXNIN)>=abs(JXNJJN)){ 
continue;
}else{
JJJl=jj+1;
JEM=JF[ii]; 

for(jjj=JJJl;jjj<=ii;++jjj){
JF[ii+JJJl-jjj]=JF[ii+JJJl-jjj-1] ;

}
JF[jj]=JEM;

}
break;
> / / -------------- j j

} / / ---------------------------------H
LNUM=LNUM+1 ;
M[LNUM]=NEL + 1 ;
fprintf(filo,"\n M[%d]=%d",LNUM,NEL+1) ; 

for(jj=l;jj<=NZ;+ + jj) {
NEL=NEL+1;
fprintf(filo,"\n NEL=%dn,NEL) ;
MPL[NEL]=JF [ j j] ;
fprintf(filo,"\nMPL[%d]=%d",NEL,MPL[NEL]);
printf ("\n--------f l a g ----------- =%d",ERR);
scanf("%d",&ERR);

} / / --------------------------------------» j j
NZ=0;
if(J7==2){goto Again;} 

if(J7==l){ 
continue;
}
Gof:
7

N8=abs(JG[J8] ) ;
NZ=NZ+1;
JF [NZ]=JG[J8]; 
goto Fog;
Rod:
7

if(JE[J8] l=l){
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L9=L9+1;
IX[L9]=J8;
JE[J8]=1;
JG[J8]=N8 ; 

if(abs(J8-JB[N8])J =0){ 
JG[J8]=-N8;

}
}

} / / ------------- J

} / /  » *
Again :

M9 = 0 ;
for(j =1;j<=KN;+ +j){ //------------------------------- > J

M7 = 0 ;
NP=M[j +1]-M [ j] ; 
printf("\n NP=%d",NP);
for (k=l; k<=NP; ++k) {//--------------------------- >K

M8 = IP[j] [k] ;
M8=abs(M8);
if ( JA [M8] ! = j Sc Sc JB [M8] ! = j ) { 

continue;
}
if (JD[M8] <1) {
M7=M7+1;
M6=M8;

}
}  / /  > K

if(M7==l){
M9=l;
JD[M6]=1;

}
} / /  2
if(M9==l){goto Again;} 

if(M7==2){goto Num;}
1= 1 ;
Sum:
?
if(JD[I]<0){
f or (k=l ; k<=KN;++k) {//--------------- >d

IX[k]=0;
JE[k]=0;

} / /  >d
J6=JA [I] ;
J8=JB[I];
J7=2 ;
JG[J8]=1;
JD [I]=1; 

goto Age;
}
Num:

1=1+1; 
if(I<=KK){goto Sum;}

M[KK+1]=NEL+1;
KL=LNUM-KN-NTEP+1;
M[KK+1]=NEL+1;
printf ("\n---------s t o p ----------- =%d",ERR);
scanf(M%d",&ERR);
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fprintf(filo,"\n KKs=%d KN=%d KL=%d NTEP=%d KJ=%d",KK,KN,KL,NTEP,KJ) f 
fprintf(filo,"\n NXX=%d NZX=%d",NXX,NZX){

M[KK+1]=NEL+1; 
if(LNUM I=KK){

fprintf(filo,"\nXXXXXXXXX[The Relation[P=J+L+T-1]IS NOT SATESFIED]XXXXXXXXX") ; 
NXX=1;
}
if(NXX!=0){

fprintf(filo,"\nXXXXXXXX[Error in the data]XXXXXXXXXXXXXX");
}

}/* ============================================================================*/
/*  */ 
/*===============================================================-============*/
void combine4 (int MPL[],int M[],int NA[],int NB [] )

{

int j,i; 
for(j=l;j<80;++j) {

MPL[j]=0 ?
}
for(j =1;j<70;++j){
M[j+5] =0;
}

for(i=l;i<20;++i){
NA[i]=0;
NB[i]=0 ;
}

}
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/*============================================================================*/
/* c o m p u t e r  a n a l y s i s  o f  f l o w  a n d  p e r e s s u r e  i n  p i p e  n e t w o r k s  * /
/* f u n c t i o n  F i v e :  * /
/ *  KTEP= THE NUMBER OF FGN -1 */
/* KN- NUMBER OF JUN CT ION  I N  THE SY ST E M  * /
/* B [ ] -  THE DEFFERENT OF ENERGY BETWEEN EACH THE FGN (J+KN) */
/* MAXT- MAXMUM NUMBER OF I T E R A T I O N */
/* KCLO-FLAGE TO I N D I A C T E  THE P I P E  I S  CLOSED OR NOT * /
/* I F  THE P I P E  I S  CLOSED SO WE TAKE q  f r o m  t h e  e q u a t i o n  * /
/*  */

/ * = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = * /

#include< s tdio.h>
#include<math.h>
#include<stdlib.h> 
ttdefine MAXT 20 
#define MAX_SIZ 8 0 
/ / v o i d  m a i n  ( v o i d ) ;

FILE *fili,*filo;

int gauss (double a[][MAX_SIZ],double b[],int N,double *ptr_det); 

void main, (void)

double AA[MAX_SIZ],BB[MAX_SIZ],CC[MAX_SIZ],EE[MAX_SIZ],FF[MAX_SIZ]; 
double DD[MAXSIZ],GG[MAX_SIZ]; 
int NCODE=l;/ / i n t  N R S T = 0 ;  
int JC[MAX_SIZ],MPL[MAX_SIZ];
int i,j,k,NP,MBEG,j j,s,d,1,J8,J9,L,NXX,n,moh;
double C[MAX_SIZ] ,R[MAX SIZ] ;
int LN, NN, NNS, II, N1, N2 , MJJ, J, NJTJNC, NEXT;
int JP[MAX_SIZ] ,NEX[MAX_SIZ] ,NIX[MAX_SIZ] ,KC[MAX_SIZ] ,JX[MAX_SIZ] ,IX[MAX SIZ] ; 
int IP[MAX_SIZ] [13] ,JF[MAX_SIZ] ,JIJ[MAX SIZ] ,JA[MAX_SIZ] ,JB[MAX_SIZ] ; 
int JPIP [MAX_SIZ] , JJTJN[MAX_SIZ] ,M[MAX_SIZ] , KCLO [MAXSIZ] ,NA[10] ,NB[10] ; 
double Q[MAX_SIZ],D[MAX_SIZ],S[MAX_SIZ],V[MAX_SIZ];
double W9[MAX_SIZ] ,AM[MAX_SIZ] ,BM[MAX_SIZ] ,B[MAX_SIZ] ,YY[MAX_SIZ] ,ENGY[MAX_SIZ] ;
double HI,G1,EP,T1,T2,QI,P03,P04,P05,P06,P07;
double a[MAX_SIZ][MAX_SIZ],b[MAX_SIZ],det;
int return_val,N;
int KTEP,KN,NTEP,KK,KJ,NEL;
double A3,P;/ / d o u b l e  U U = 0 ; d o u b l e  A 2 = . 0 2 5 1 7 ;
/ / d o u b l e  HD IF F ,  R E Y ,  FFAC,  PW; 
char fnaml[2 0],fnam2[2 0];

/*============================================================================*/

printf("Give: input file name\r\n"); 
scanf("%s",fnaml);i f ((f i l i= fopen(fnaml,"r+"))==NULL){ 
p r in t f ("Cannot open input f .%s",fnaml); 
exit (0);
}
printf("Give output fule name\r\n"); 
scanf("%s",fnam2);
if ( (filo=fopen(fnam2,"w+"))==NULL){

printf("Cannot open output f,%s",fnam2); 
exit(0);
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/*============================================================================*/

fscanf(fili,"%d %d %d %d %d %d %lf %lf",KN,KK,KTEP,NTEP,KJ,NEL,A3,P); 
for(j =1;j <=KK;+ +j ) {

fscanf(fili,"%d %d %lf %lf %lf %lf %lf %lf",JA[j],JB[j],Q[j],D[j],S[j] ,V[j] ,R[ 
j] ,C[j] , ENGY [ j ] ) ;

}
for(j =1;j <=KTEP;+ +j){

fscanf(fili,"%d %d",NA[j],NB[j]);
}

for(j =1;j <=KN;++j){
fscanf(fili,"%d %d %d",IX[j],JIJ[j],B [j]);

}
for(i=l;i<=KK+l;++i){

fscanf(fili,M%d",M[i] );
}

for(j=l;j<=NEL;+ + j ) {
fscanf(fili,"%d",MPL[j]);

}
for(i=l;i<=NTEP;++i) {

fscanf(fili,"%d %d",JPIP[i],JJUN[i] ) ;
>
N=KK;

for(i=l;i<=20;++i){
KC [i]=0?
KCLO[i]=0;
}

for(j = l;j <=KTEP;+ +j){
S=NA[j]; 
d=NB [ j] ;
B [ j +KN] =ENGY [s] -ENGY [d] ;

}

/*       */

for(i=l;i<=MAXT;++i){
NNS=0; 

for(k=l;k<=KN;++k){
W9[k]= 0;
JP[k]=NNS +1 ;
NP=M[k+1]-1;
MBEG=M[k];

for (j j=MBEG; j j<=NP;+ + j j) {//--------------> > j j
LN=MPL [j j] ;
NN=abs(LN); 
if(KCLO[NN]!=1){
NNS=NNS+1;
JX[NNS]=NN;
AM[NNS]=1; 
if(LN < 0){

AM [NNS] =-AM [NNS] ;
}

}
a [k] [NN] =AM [NNS] ;
} / / ----------------------------« 3 J

}

if(KN==KK){ 
goto Carne;

/*  */

}
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for (k=KJ; k<=KK; ++k) { / / --------------------------k
W9[k]=0;
L=k-KJ+l;
JP[k]=NNS+1;
NP=M[k+1]-1;
M BEG =M[k];

for ( j j =MBEG; j j <=NP; + +j j ) {//----------- E
LN=M PL [j j] ;
NN=abs(LN);
NNS=NNS+1;
JX[NNS]=NN; 

if(KCLO[NN]==1){ 
goto Ali;

}
if(Q[NN]<0 && KC[NN]>0){

Q[NN]=3.14 * D[NN] * D[NN];
}
QI=fabs(Q[NN]);
T1=0 ;
T2 = 0 ; 

if(QI==0){ 
goto Ali;

}
if(KC [NN] = = 0) { 

goto Rama;
}
II=KC[NN]; 

if(BB [II]= = 0) { 
goto Omar;

}
JC[NN]=1; 

if(QI < GG[II]){ 
goto Rajb;

}
T1 = FF[II]+EE [II] * QI;
T2=EE[II]; 
goto Rama;
Rajb :
7
P03 =pow(QI,BB[II] ) ;
T1=DD[II] - CC[II] * P03;
P04=pow(QI, (BB [II] -1. )) ;
T2=BB[II] * CC[II] * P04; 
goto Rama;
Omar:
7
T1=AA[II] * A3 / QI;
T2=AA[II] * A3/(QI * QI);
Rama:
7
P05=pow(QI,P);
P06=pow(QI,(2.0-T1));
Hl=(S [NN] * P05) + (V[NN] * P06);
P07 =pow(QI, (P-1.0));
G l = ( P * S [ N N ] *  P 0 7 ) + (  2 *  V [ N N ] *  Q I ) + T 2 ;
AM[NNS]=G1*LN/NN;
EP=((G1 * QI) - HI)* Q[NN]* LN/(QI * NN); 
Ali:
7

if(KCLO[NN] !=0 && QI = = 0){
AM[NNS]=1 * LN/NN;
EP = 0 ;
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}
a [k] [NN] =AM[NNS] ; 
W9[k]=W9[k]+EP;

}
}

/* */
Came:
;
JP[KK+1]=NNS+1; 

if(NCODE==0){ 
goto Salam;

}
for(j=l;j<=NNS;++j){

IX[j]=J X [j];
//printf ("\nIX[%d] =%d",j, IX[j]) ;
BM [ j ] = AM  t j  ] ;
printf("\nBM[%d]=%2.51f",j,BM[j]); 
printf(n\n moha= "); 
scanf("%d",&moh) ;

}
for(j=l;j<=KK;+ + j) {

if (JP[j+l]==JP[j]){
printf("\nXXX[all pipe connection the junctionJJI[%d]=%d are closed]XXXX" ,j)

;
}

lP[j] [l]=JP[j] ;
printf("\n IP[%d] [1]=%d",j,JP[j]);

>
IP[KK+1][1]=NNS+1j

for(j=l;j<=KJ;++j){
JF[j]=0;
}

NJUNC=0; 
NEXT=NTEP;
/ * ------------ */

for(1=1;1<=NTEP;++1){ 
J9=JPIP [1] ; 
if(KCLOIJ9]1=0){ 
NEXT=NEXT-1; 
goto Oalid;

}
n=JJUN[1];
J8=JIJ[n]; 
if(JF[J8]==1){ 

N E X T = N E X T - 1 ; 
goto Oalid; 
}else{
JF[J8]=1;
}
NJUNC=NJUNC+1 ; 
NEX [NJÜNC] = J8 ;

//NEXT L

//NEXT L

Oalid:
;

}
/ * ---------------
Salim:

*/

NXX=0;
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if(NEXT==0){ 
goto Ahmed;

}
for(1=1;1<=NEXT;++1){

J = N E X [ 1 ] ;
MBEG=M[J] ;
MJJ=M[J+l]-1;

for(k=MBEG;k<=MJJ;++k) { / / ---------------K
N1=MPL [k] ;
Nl=abs(Nl);
if (KCL0[N1] l=l){// FULL OUT PUT FOR THE JUNCTION NODE 

N2=JA[N1]+JB[Nl]-J; 
if(JA[N1]!=0){ 

if (JB[N1] ! =0) { 
if (JF[N2] ! =1) {
JF[N2]-1;
NiTONC=NJUNC+l;
NXX=NXX+1;
NIX[NXX]=N2;
>

}
}

>
} / / ----------------------- K

} / / ------------------------------- L

NEXT=NXX; 
if(NEXT 1=0){

for(1=1;1<=NEXT;++1){
NEX[1]=NIX[1];
}

goto Salim;
}
Ahmed:
/
if(NJUNCI=KN){

printf("\nXXXXXXX[no open connection to the system]XXXXXXXXX");
}

Salam:

for(j =1;j <=KK;++j){

YY[j]=B[j]+W9[j] ; 
b [ j ] =»YY [ j ] ;
printf("\nYY[%d]=%lf",j,YY[j]) ;

}
printf(n\n L=%d",L);

/ *  call gaussl function*/ 

return_val=gauss(a,b,KK,&det);

/*pritn rreslut*/ 

if (return_val == 0){

printf("\n\n \t the sluatio of the smulation of linear equation is"); 
printf("\n the sluation is ") ; 
for(i=l;i<=N;++i){ 
printf("\n \t x(%d)=%lf",i,b[i]);



■ÏC5.C October 9 , 2 000 Page 6

printf("\n determinat=%lfn,&det);
}else

printf(w\n\n \t the matrix is singular " );

for(j=l;j<=N;++j){
Q[j]=b[j] ;
printf("\nQ[%d]=%lf",j,Q [j])j

----------------------------- j

}
} /*m ain* /

}

/*============================================================================*/
/* f u n c t i o n  t o  s l o v e  l i n e a r  e q u a t i o n  */
/*  */ 

/*============================================================================*/

int gauss (double a[][MAX SIZ],double b[],int N,double *ptr_det)

double temp,inult, trt, toi; 
int npivot,i,j,k,l,error_flag;

*ptr_det=l.0 ; 
tol = le-3 0 ; 
npivot=l;

for(k=l;k<=N-l;++k){ 
for(i=k;i<=N;++i){

printf("aik[%d][%d]=%lf",i,k,a[i][k] ); 
printf("akk[%d][%d]=%lf",k,k,a[k][k] );

if(fabs(a [i] [k])>fabs (a [k] [k])){
++npivot;

for(1=1;1<=N;++1){ 
temp=a[i] [1] ; 
a [i] [1] =a [k] [1] ; 
a[k][1]=temp;

}
temp=b[i]; 
b[i] =b [k] ; 
b[k]=temp;

}
printf("\n\t b[%d]=%lf",i,b[i]);

>

trt=*ptr_det;
printf("\n\t atrt=%lf",trt );

printf("akk[%d][%d]=%lf",k,k,a[k][k] ); 
trt =*ptr_det*a[k] [k] ; 

if (fabs(trt)<tol){ 
error_flag=l; 
return(error flag) ;

}

for(i=2;i<=N; ++i){ 
if(il=k){
mult—a[i][k]/a[k][k]>

/* i f  */

/*  i  */
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b[i]=b[i]-b[k]*mult; 
printf("\n\t mult=%lf11 ,mult ); 

for(j=l;j<=N;++j )
{a [i] [ j ]=a [i] [ j ] -a [k] [j]*multj 

p r in t f ("aii[%d] [%d]=%lf" , i , j , a [i] [j ]  ) ;
}

}
}

} /*  k */

for(i=l;i<=N;++i) fo r (j=l;j<=N;++j ) 
p r in t f (" \n \t a f[%d][%d]=%lf" , i , j , a [ i ] [ j ] ) ;  
for(i=l;i<=N;++i)
{
printf(“\n\t b[%d]=%lf",i,b[i]);
>
if (npivot %2==1)
*ptr_det=*ptr_det*(-1.0);

b [N] =b [N] /a [N] [N] ; 
printf("\n\t b [%d]=%lf",N,b[N]); 
printf("\n\t af[%d][%d]=%lf",N,N,a [N][N]); 
for(i=N-l;i >=1;i--){ 
for(jai+ljj<=N;++j)

b[i]=b[i]-a[i] [ j ] *b [ j ] ; 
b [i] =b [i] /a [i] [i] ;

}
error_flag=0 ; 

return(error_flag);
>
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/*============================================================================*/
/* c o m p u t e r  a n a l y s i s  o f  f l o w  a n d  p r e s s u r e  i n  p i p e  n e t w o r k s  */
/* f u n c t i o n  : */
/* G a u s s i n  E l i m i n t a t i o n  */
/*  *//*============================================================================*/

#include <stdio.h> 
#include <stdlib.h> 
ttinclude <math.h> 
#define eps l.e-6 
ttdefine one 1. 
#define onn -1.

FILE *fili,*filo;

int gausel(int n,float **a,float *b,float *dd,float *error); 

void main(void){ 

int n,i,j;
float **a,*b,*dd,*error; 
char fnaml[20] ,fnam2[20] ;

printf ( "Give N 11) f scanf( "%d",&n);

b=(float*)calloc(n,sizeof (float)); 
dd=(float*)calloc(n,sizeof(float)); 
error=(float*)calloc(n,sizeof(float));

a=(float**)malloc(n*sizeof(float*)); / / a l l o c a t e s  p o i n t e r s  t o  r o w s

for(i=0;i<n;i++) a[i]= (float*)malloc(n*sizeof(float));// a l l o c a t e s  r o w s  & p o i n t e r s  
t o  t h e m

/*

printf("Give input file name\r\n"); 
scanf("%s",fnaml);
if((fili=fopen(fnaml,"r"))==NULL){ 
printf("File %s does not exist",fnaml); 
exit(0);
}
printf("Give output file name\r\n"); 
scanf("%s",fnam2);
if((fili=fopen(fnam2,"w"))==NULL){ 
printf("File %s does not exist",fnam2); 
exit(0);
}

for(i=0;i<n;i++){
f o r (j = 0 ; j <n;j + + )

fscanf(fili,"%f",&a[i][j]); 
fscanf(fili,"%f",&b[i]);
}

j =gausel(n,a,b,dd,error);

printf("\nSolution;\n");for(i = 0;i<n;i + + )printf("%f ",b [i]);
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printf (11 \nDeterminant=%f\n" , *dd) ;

// f r e e  (b )  ; f r e e  ( e r r o r )  ; f o r  ( i = n - l  ; i > = 0  ; i  - - )  f r e e ( a [ i ] ) ;  f r e e  (a )  ;

/ *  */

int gausel(int n,float **a,float *b,float *det,float *errnor){ 

int nl,i,j,k,il,*1; 

float **ao,*bo,**xo,fac;

*det=one; nl=n-l;

1=(int *)malloc((unsigned)n*sizeof(int));

bo=(float *)malloc((unsigned)n*sizeof(float));

ao=(float **)malloc((unsigned)n*sizeof(float *));

for(i=0;i<n;i++) ao[i]= (float *)malloc((unsigned)n*sizeof(float));

xo=(float **)malloc((unsigned)n*sizeof(float*));

for(i=0;i<n;i++) xo[i]= (float *)malloc((unsigned)n*sizeof(float));

/* C o p i e s  o r i g i n a l  a  & b  i n t o  a o  & b o  f o r  l a t e r  u s e  i n  d e t e r m i n i n g  e r r o r .  * /

for(i=0;i<n;i++){ 
bo[i]=b [i] ; 
for(j=0;j<n;j++) 

ao [i] [j] =a [i] [j] ;
}

/* p i v o t s  o n  l a r g e s t  r o w  & k e e p s  t r a c k  o f  r o w  n o  i n  1 [ k ] ; * /

for(k=0;k<nl;k++){
fac=fabs(a[k][k]);
1 [k]=k;

for(i=k+l;i<n;i++)
if (fabs(a [i] [k])>fac){ 

fac=fabs(a[i][k]);
1 [k]=i;

}

if(fac<eps){printf("Matrix is singular"); return 1;}

if(1[k] != k) {
*det *= onn; 
for(j =k;j <n;j + + ) { 
fac = a[k] [j] ; 
a [k] [j] =a [1 [k] ] [j] ; 
a [1[k]] [j] =fac;
}

}

/* G a u s s i a n  e l i m i n a t i o n  ( o n l y  a b e c a u s e  b  m u s t  b e  d o n e  a l s o  f o r  i t e r a t i v e  c o r . )  */

for(i=k+l;i<n;i++){
f ac=a [i] [k]/a[k] [k] ;
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a[i][k]=fac;
for(j=k+l;jcnj j+ + )
a [i] [j] - = fac*a[k] [j] ;
>

>

/ *  Computes determinant det */ 

for(i=0;i<n;i++) *det *= a[i][i]j

for(il=0; il<2; il++){ / *  now adjust b for orig. elim & iter, correction * /

for(k=0;k<nl;k++){ 
if (l[k] ! = k) {

fac=b[k]; 
b [k] -b [1 [k] ] ; 
b [1 [k] ] =f ac ;

}
for(i=k+l;i<n;i++)

bti] -=a[i] [k] *b[k] ;
}

/ *  Back substitution * /

x o [ni] [il]=b[nl]/a[nl] [nl];

for(i=nl-l;i>=0;i--){ 
fac=b [i] ; 

for(j=i+l;j<n;j++) 
fac-=a [i] [j]*xo[j] [il]; 
xo [i] [il]=fac/a [i] [i] ;
}

/ *  Computes residual vector {r}={b}-[a](x) */

for (i=0 ; i<nj i++) {//----- ii
fac=bo[i]; 

for(j=0;j<n;j++)
f ac-=ao[ i ] [j ] *xo[j ] [ i l ] ; 
b [i]=fac; 
bo[i]=fac;

} / / ---------- ü
}

for (i=0;i<n;i++){b[i]=xo[i][0]+xo[i][1];

errnor[i]=fabs(xo[i] [1])/(fabs(b[i])+eps); }

free(1); free(bo);for(i=n-l>i>=0;i--) free(xo[i])jfree(xo)j

for(i=n-l;i>=0;i--)free(ao[i] ) ;  free(ao)j 
return 0;

}
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y7'* — _ — _ — — — — _= — — — = _- — — — _ — — — = — — — — — — — — — — — _ — — — — — — — — — — — — = — — — — — — — — /
/* COMPUTER A N A L Y S I S  OF FLOW AND PRESSURE I N  P I P E  NETWORKS * /
/ *  FUNCTION 6: */
/*  * /
/ *  FLOW: FLOW RA TE I N  EACH P I P E  * /
/ *  HL:  HEAD L O S S E S  I N  THE P I P E  * /
/* PUMP: PUMP HEAD */
/* ZIN O R :  MINOR L O S S E S  I N  THE P I P E */
/* VEL:  V E LO CI T Y */
/*  */
/* ============================================================================*/

#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#define PE 1.852 
ttdefine MAX_SIZ 20

FILE *fili,*filo;

void main(void)
{

double AA[MAX_SIZ] ,BB[MAX_SIZ] ,CC[MAX_SIZ] ,EE[MAX_SIZ] ,FF [MAX_SIZ] ; 
double DD[MAX_SIZ],GG[MAX_SIZ];
int KPI[MAX_SIZ] ,JA[MAX_SIZ] ,JB[MAX_SIZ] ,JJI[MAX SIZ] ,KCL0[MAX_SIZ] ,KC[MAX_SIZ] ; 
int j,NN,II,LL,IPRINT,JAAAA,JBBBB,M;
int NPO[MAX_SIZ],JC[MAX_SIZ];
double Q[MAX_SIZ] ,V[MAX_SIZ] ,D[MAX_SIZ] ,R[MAX_SIZ] ,S[MAX_SIZ] ,YY[MAX_SIZ] ; 
doub1e FLOW,HL,PUMP,ZINOR,VEL,XHL,A3,CQ,P,QI; 
int IOUT,NPOUT,KK,KN; 
char fnaml[2 0],fnam2[2 0];

/* ============================================================================*/
printf("Give file name for input\r\n"); 

scanf("%s",fnaml); 
if ( (fili = fopen(fnaml,"r+"))==NULL){

printf("Cannot open input f. %s",fnaml); 
exit(0);

}
printf("Give file name for output\r\n"); 

scanf("%s",fnam2); 
if((filo=fopen(fnam2,"a+"))==NULL) {

printf("Cannot open output f. %s",fnam2); 
exit(0);

}

/* ============================================================================*/

/ * ------------------------------------------------------------------------------------------------------------------------ */
/* IO U T == l  THAT I S  MEAN NOT FULL OUT PUT THERE A R E  SOME P I P E  SLEECTED * /
/ *  NPOUT =2 HOW MANY P I P E  HASE BEEN SLEECTED * /
/* I F  IOUT=0 FULL OUT PUT * /
/ * ------------------------------------------------------------------------------------------------------------------------ */

fscanf(fili,"%d %d %d %lf %lf %lf",KK,KN,IOUT,NPOUT,A3,CQ,P); 
for(j = 1; j <=KK;+ +j){

fscanf(fili,"%d %d %d %d %d %d",JA[j],JB[j],KC[j],KCLO[j],KPI[j],JC[j]); 
}
f o r (j =1 ; j <=KK;+ +j ){

fscanf (fili, "%lf %lf %lf %lf %lf",Q[j] ,S[j] ,V[j] ,R[j] ,D[j] ) ;
}
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for(j = l;j <=KN;+ +j){
fscanf(fili,"%d %d",JJI[j],NPO[j]);
}

for(NN=1;NN<=KK;++NN){
LL=KPI[NN];
IPRINT=1;

if (IOUT! =0) {//-------------- » 9 5 2 0
IPRINT=0; 

if (NPOUT! =0) { / / > > » > » » > !  
for(j=l;j<=NPOUT;++j){ 

if(NPO[j]==LL){
IPRINT=1;

}
}

} / / < < < < < < < < < < < < < < < < < < 1
}//-----------------------« « 9 5 2 0
if (JA[NN] ! =0) {

M= JA [NN] ;
JAAAA=JJI [M] ;
}else{
JAAAA=0;

}
if(JB[NN]!=0){
M=JB[NN];
JBBBB=JJI[M];
}else{
JBBBB=0;

}
QI=fabs(Q[NN]);
HL=(S[NN] * pow(QI,P-1.0)) * Q[NN];
ZINOR=V[NN] * Q [NN] * fabs(Q[NN]);
PUMP=0;
if(KCLO[NN]==l) { / / - - » .  2 0  

goto MO;
}

if (KC [NN] = = 0) {//---» 2 0
goto MO;
}

IPRINT=1;
II=KC[NN]; 

if(BB[II]!=0) { / / - - > > 2 1  
goto SA;
}

if(Q[NN]==0) { / / - - > > 2 0  
goto MO;
}

PUMP=AA[II] * A3/Q[NN]; 
goto MO;
/ / p r i n t f ( " \ n  t h e  n u m b e r  o f  t h e  p i p  L L = % d ",L L ) ; / / - - > > 2 0  
SA:
r

if (Q [NN] >= GG[II] ) { / / / 2 1 < < ---» 2 3
PUMP=FF[II]+EE[II] * Q[NN];
printf(" \n the number of the pipe LL=%d" , LL) ; / / - - » 2 0  
goto MO;
}
PUMP=DD[II]-CC[II] * pow(Q[NN],BB[II]);//--- 23

if (Q [NN] <= AA [II] ) {//------ » > 2 0
printf("\n the number of the pipe LL=%d",LL);
}
MO:
7
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YY[NN]=HL - PUMP +ZINOR; / / - - - « 2 0  
if(KCLO[NN]==1){
YY[NN]=HL;
}
PLOW=Q[NN]*CQj
VEL= (Q[NN]* 4)/(3.14159 * pow(D[NN],2.0));
XHL=HL * 1000 /R[NN]; 
if(KCLO[NN] ==1 &£ JC[NN]I=1){ 
printf("\n line (%d) is closed ",LL);
}
if(KCLO[NN]==1 && J C [NN]==1){

print£("\n the check valve in line %d is closed",LL);
}

if(KCLO[NN]==1){
Q [NN]= 0; 
continue;
}

if (IPRINT ==s0 ) {continue;}
printf ("\n LL=%d JAAAA=%d JBBBB=%d " ,LL, JAAAA, JBBBB) ; 
printf("\n FLOW=%lf HL=%lf PUMP=%lf", FLOW,HL,PUMP)j 
printf("\nZINOR=%lf VEL=%lf XHL=%lf»rZINOR,VEL,XHL);

}



/ * = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = * /
/ * c o m p u t e r  a n a l y s i s  o f  f l o w  a n d  p r e s s u r e  i n  p i p e  n e t w o r k s  * /
/*  * /
/ * f u n c t i o n  : */
/* N e t o w n  m e t h o d  t o  s o l v e  DARCY E q u a t i o n  */
/ * = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = * /

ttinclude <math.h>
#include <conio.h>
#include <stdio.h>
#include <stdlib.h> 
ttdefine sqr(x) x*x

.C October 9, 2000 Page 1

void main(void){

float x[6] ,cu[2]={.15865 99,.2 874489},cv[2]= {l.1651147,2.110871},vise,g,g2; 
float ucl,uc2,uc3,dx,hdl,adl,f,fl,dif, xx; 
int ii,i,iv,i6,iu,m;
char *v[]={"hf","D","e","L",“Q","V"};

LI:
printf("Give 1=ES or 2=SI (or 0 0=STOP) & Vise ")> 
scanf("%d %f",&ii,&visc); 
if(ii<l) exit(0);
if(ii==l) g=32.2; else g=9.81; g2=2.*g; 
printf (11 \r\nGive No. of Unknown\r\n") ; 
for(i=0;i<6;i++) 
printf("%d %s\r\n",i,v[i]); 
scanf ( "skd" , &iu) ; 

if(iu<4) {
printf (11 \r\nGive 1 if Q will be given or 2 if V is known ") ; 
scanf("%d",&iv);
} else iv=iu-3; ii--; 

ucl=cu[ii]; uc2=cv[ii]*visc; uc3=.78539816*ucl; 
printf (11 \r\nGive value to knowns\r\n") ; 
i = 0;
if(iu>3)i6=4; 
else i6=5; 

do {if(i==iu)i++; 
if(i==6-iv)i++; 
printf ("%s = 11, v [ i ] ) ; 
scanf("%f",ix[i]); 
i++;
} while (i<i6);

// I n i t i a l i z e s  u n k n o w n  
switch(iu){
case 0: if(iv==l) x [5]=x[4]/(.7853982*sqr(x[1]));

x [0]=.02*x[3]*sqr(x[5])/g2; break; 
case 1: if(iv==l) x [1]=pow(.02*x[3]*sqr(x[4])/(.6185*g2*x[0]),.2);

else x [1]=.02*x[3]*sqr(x[5])/(g2*x[0]); break; 
case 2: x[2]=.0006; break;
case 3: if(iv==l) x [3]=.6185*g2*x[0]*pow(x[1],5.)/(.02*sqr(x[4]));

else x [3]=g2*x[0]*x[1]/(.02*sqr(x[5])); break; 
case 4: x [4]=sqrt(.6185*g2*x[0]*pow(x[1],5.)/(.02*x[3])); break; 
case 5: x [5]=sqrt(g2*x[0]*x[1]/(.02*x[3])); }

// N e w t o n  M e t h o d  
m=0; 
do {

xx=x[iu]; 
x[iu]*=1.005; 
dx=x[iu]-xx;
L2 :

hdl = sqr t (x[3]/x[0]);
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adl=2.*logl0(x[2]/x[l]+uc2*hdl/pow(x[1],1.5))-1.14; 
if(iv==l) f=ucl*hdl*x[4]/pow(x[1],2.5)+adl; 

else f=uc3*hdl*x[5]/sqrt(x[1])+adl;
m++; 

if(m %2 1=0){ 
x[iu]=xx;fl=f; 
goto L2;
}dif=dx*f/ ( f l - f ) ; 

i f ( fabs (d if)> .8*x[iu ]) d i f *=.5 ; 
x[iu ]=xx-d if;

} while ( (fabs(dif)>.00005) && (m<30));
if(m>29) printf("Failed to converge %f\r\n",dif); 
if(iv==l) x [5]= x [4]/(.78539816*sqr(x[l]));
else x [4]=.7 8539 816*sqr(x[1])*x[5]; 

for(i=0;i<6;i++)printf("%s = %f\r\n",v[i],x[i]);

printf("f = %f\r\n",x[0]*x[1]*g2/(x[3]*sqr(x[5])) ); 
goto LI;

}
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/ * = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = * /

/ *  COMPUTER ANALYSIS OF FLOW IN PIPE NETWORKS * /
/ *  FUNCTION 7 :  * /
/*  */
/ *  NQ=1 FLOW UNIT IN GPM */
/*NSD=0 SUPPRESS IN PUT DATA SUMMARY, IF IT NOT EQUAL TO ZERO */
/*  */
/* ============================================================================*/

#include<stdio.h>
#include<math.h>
#include<stdlib.h>

#define MAXSIZ 20

FILE * fili,* filo;

void main(void)
{

int JA[MAX_SIZ] ,JB[MAX_SIZ] , JIJ [MAX_SIZ] , JJTJN [MAXJ3IZ] ,MPL[30] , JD[MAX_SIZ] ;
int M[MAX_SIZ] ,NEX[MAX_SIZ] ,NIX[MAX SIZ] ,JPIP[MAX SIZ] ,JJI[MAX SIZ] ,NJO[MAX SIZ] ;
int KCLO[MAX_SIZ],KPI[MAXSIZ];
double E[MAX_SIZ] ,B[MAX_SIZ] ,W9 [MAX SIZ] ,Y[MAX_SIZ] ,YY[MAX_SIZ] ,ENGY[MAX SIZ] ; 
double Q[MAX_SIZ];
int KK,KN,KJ,NEL,IPRINT,NXX,NEXT,NTEP,NI,N2,N3,MBEG,MJJ,m ,JMAX,JMIN,11; 
double CQ,QEXTT,QEXT,PRES,SW,PMAX,PMIN,QEX,QIN,QOUT; 
int i, j , k, 1, J8,J9,J,I,IOUT,NJOUT,NQ,NMOM,JDIFF,L,TT1;

char fnaml[21],fnam2[21];

/ * = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = * /
printf("Give file name for input\r\n"); 
scanf("%s",fnaml);
if((fili=fopen(fnaml,Mr+"))==NULL){ 
printf("Cannot open input f. %s",fnaml); 
exit(0);
}
printf("Give file name for output\r\n");

scanf("%s",fnam2); 
if((filo=fopen(fnam2,"a+"))==NULL){

printf("Cannot open output f. %s",fnam2); 
exit(0);

}

/*============================================================================*/
fscanf(fili,"%d %d %d %d %d %d %d %d %d",KK,KN,KJ,NEL,NTEP,IOUT,NJOUT,NQ,NMOM) ; 
fscanf(fili, "%lf %lf",CQ,SW);

for(j =1;j <=KK+1;++j ) {
fscanf(fili,"%d",M [j]);
>
for(j =1;j <=NEL;+ +j ) {

fscanf(fili,"%dM,MPL[j] ) ;
}

for(j = l;j<=KK;+ + j ) {
fscanf(fili, "%lf %lf %1f",Q [j] ,ENGY[j],YY [j]);
}

for(j=l;j<=KK;++j){
fscanf(fili,"%d %d %d %d",JA[j],JB[j],KPI[j ] ,KCLO[j]) ;
}
for(i=l;i<=NTEP;++i){



NTC7 .C October 9, 2000 Page 2

fscanf( f i l i , "%d %d",JJUN[j],JPIP[j] ) ;
}fo r (j =1;j<=KN;++j ){fscanf( f i l i , "%d %d %d %d",J IJ [j ] , J J I [j ] , E[j ] , B[j ] ) ;  
}

/*============================================================================*/
/* IOUT== ZERO FOR FULL OUT PUT */
/* I O U T !=0 FOR SECLEECTED JUN CTION FOR THE R E SLU T * /
/ *  N J O U T I=0 THERE AR E JUN CT ION  SLECTEED TO SHOW A S  R E SLU T * /
/ *  N J O [ ] ==1 HER THE JUNCTION ONE I S  SLECTEED I N  THE R E SL U T  * /
/ * Y Y [ ] =  THE HEAD L O S S  I N  THE P I P E  =HL-PUMP HEAD+MIONR L O S S E S  * /
/* T H I S  PROGRAMMS TO COMPTE THE QRADE L I N E  AND THE PRESSURE A T  EACH JUNCTION * /
/ *  AND TO SHOW THE MAXMMUMPRESSURE AND THE MINMMUM PRESSURE I N  WHERE * /
/ *  I N  THE N E T  WORKS. * /
/  * SUMMARY OF INFLOW AND OUT FLOW FROM F IX E D  GRADE NODE. * /
/ *  THE NET  FLOW I N T O  THE SY ST E M  AND THE N E T  OUT OF THE SY STE M */
/* ============================================================================*/

for(i=l;i<=KJ;++i){
Y [ i ] =0.0;
}NEXT=NTEP; 

fo r (j =1;j <=NEXT;+ +j ){ 
m=JJUN[j ] ;J8=JIJ[m];
NEX[j]=J8;
J9=JPIPtj];Y[J8]=ENGY[J9]+YY[J9]; 

i f  (JA[J9]= = 0){Y[J8]=ENGY[J9]-YY[J9]; 
}

} MO:
/NXX=0; for(i=l;i<=NEXT;++i){ 
J=NEX [ i ] ;
MBEG=M[J ] ;
MJJ=M[J+ l]-1; 

for(k=MBEG;k<=MJJ;++k){ 
N1=MPL[k];
Nl=abs(Nl);
N2=JA[Nl];N3=JB[Nl]; 

if(N2==J){ 
if(N3==0){ 
continue;

}if(Y[N3]1=0){ 
continue;

}Y[N3] =Y[N2] -YY[Nl]; 
NXX=NXX+1;NIX[NXX]=N3;

}if(N2==0){ 
continue;
}if(Y[N2]!=0){ 
continue;
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Y[N2] =Y[N3] +YY [Nl] ;
NXX=NXX+1;
NIX[NXX]=N2;

}
}
NEXT=NXX; 
if(NEXT!=0){

for(i=l;i<=NEXT;++i){
NEX[i] =NIX[i] ;
}

goto MO;
} '

for(j =1;j <=KN;+ +j){
I=JJI[j];
IPRINT=1; 
if(IOUT!=0){

IPRINT=0; 
if(NJOUT!=0){
for(1=1;1<=NJ0UT;++1){// L

if(NJO[1]==I){
IPRINT=1;

}
} / / --------------- L

}
}
PRES = (Y[j] - E [j]) * SW * 62.4/144.0; 
if(NQ==3){
PRES=(Y[j] - E[j]) * SW * 9.807;
}
W9[j]=PRES; 
if (E[j]= = 0){
W9 [ j]=0;
>
QEXT=- B [j] * CQ; 

if (B[j]«0){
QEXT=0;
}

QEXT=QEXTT+QEXT; / / t h e  n e t  s y s t e m  d e m a n d
if (IPRINT= = 0) {//------ > n e x t  j

continue;
}

if (E[j]= = 0){
printf("\n I=%d QEXT=%lf %lf %lf",I,QEXT,Y[j],W9[j]);
}

if(E [ j] !=0){
printf (11 \n I=%d QEXT=%lf %lf PRES=%lf",I,QEXT,Y[j],PRES); 
}

}
if(NMOM!=0){
printf("\n Maxmmum pressure at the junction"); 
for(i=l;i<=NMOM;++i){

PMAX=-100000.0;
PMIN=1000.0;

for (j=l; j<=KN; + +j ) {//--------KN
if(W9[j]!=0){ 
if (W9[j]>PMAX){

J M A X = j ;
PMAX=W9[j];
>

if (W9[j]<PMIN){
JMIN= j ;

}
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PMIN=W9 [j] ;
}

}
}//<<<<<<<<<<<<<<< KN 

11=JJI[JMAX];
JD[i]=JMIN;
W9[KN+i]=PMIN;
QEXT=-B[JMAX] * CQ;
printf("\n %d %lf %lf %lf %lf", II,QEXT,Y[JMAX] ,E [JMAX] ,PMAX);
W9[JMAX]= 0.0;
W9[JMIN]= 0.0;
}
printf("\n Minummum pressure for the junction"); 
for(i=l;i<=NMOM;++i){
JMIN=JD [i] ;
PMIN=W9[KN+i];
QEXT=-B[JMIN] * CQ;
II=JJI[JMIN];
printf("\n %d %lf %lf %lf %lf", II,QEXT,Y[JMIN],E[JMIN],PMIN); 
printf("\n The net system demand QEXTT=%lf",QEXTT);
}

}
printf("\n Summary of the inflow(+)and out flow(-)from fixed grad node"); 
printf("\n pipe number flow rate");

/ * - - -     -  -  -* /

for (j =1; j <=KK; ++j) {//-------------------->>>>>KK
JDIFF=JA[j] -JB[j]; 
if((JA[j]+JB[j])<=abs(JDIFF)){ 

if(KCLO[j]!=1){
if(W9[j] !=9999 . 0){

TT1=(JA[j]+JB[j])/(JA[j]-JB[j]);
QEX=-Q[j] * TT1 * CQ;
if(QEX>0.0){

QIN=QIN+QEX;
}
if(QEX<0.0){

QOUT=QOUT+QEX;
}

}
}

}
L=KPI[j];
printf("\n L=%d QEX=%lf ",L,QEX);

}//-------------------------------------- > » » K K
printf("\n The net flow into the system from fixed grad node QIN=%lf",QIN); 
printf("\n The net flow out of the system into fixed grad node QOUT=%lf",QOUT) ;
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/ * = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = * /
/* c o m p u t e r  a n a l y s i s  o f  f l o w  a n d  p r e s s u r e  i n  p i e p  n e t w o r k s  */
/*  */
/* f i l e - n a m e  (o a l i d i n - o a l i d o ) */
/*============================================================================*/
#include <stdlib.h> 
ttinclude <stdio.h>
#include <math.h> 
ttinclude <conio.h>

FILE *fili,*filo,*fill; 
const kl=40,k2=100,k3=5,k4=8;
int nunk,np,nj,npump,nres,nj2,njp2,njp,nvar,jn[k2],nn[kl+1],ires[k4],ipump[k3] , 11 [k 
1],12[kl];
float 1 [kl] ,x [k2] , hi [kl] , ap [k3] ,bp [k3] , cp [k3] , d [k2] [k2] , sf 1 = 8 . , vis7, rg2 , hwc;

void solveq(int n, float a[] [k2], float b[],int itype, float &dd,int indx[]);
/ * = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = * /
int rline(int *list,int in55){

int i,jj,ij,j,ii,nl,nobl; 
n l = 0 ; / / i n p u t  f r o m  t h e  u s e r  
char line[80],rln[3],ch; 
if(in55) gets(line);

else fgets(line,80,fill); 
for(i=0,ii = 0,jj=0,ij =0,nobl = 0;i<80;i++){ 

ch=line[i]; 
switch(ch) {

case',1: case' 's case '/'¡case NULL:{ 
if(nobl && ((ch==1 ')||(ch==NULL))){

nobl++;
if((nobl>10)||(ch==NULL)) return ii; 
ij =i+l;

}
else {

for(j=0;j<(i-ij);j++)rln[j]=line[ij+j];
if(jj){

for(j=nl;j<=atoi(rln);j++) list[ii++]=j; jj=0;
} else list[ii++]=atoi(rln); 

if((ch=='/1) ||(ch==NULL)) return ii;ij=i+l; 
if(ch==' 1) nobl=l;

}
break;

}
case 1 -';{

for(j=0;j<(i-ij);j ++) rln[j]=line[ij+j]; 
nl=atoi(rln);
j j=i; 
ij =i + l;

break;
}

default:nobl=0;
}

}
return ii;
} // E n d  o f  f u n c t i o n  r l i n e

/*============================================================================*/

void fun(float *f) {

int i,j,ii,id,iq;
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float qa,re,fr,sf; 
sf=1;

for(i=0;icnj;i + + ){ 
f[i] =x[i+nj];

for (j=nn[i] ; j<nn[i + l] ; j++) { 
ii=abs(jn[j]);
f [i]+=(float) (jn [ j]/ii)*x[ii-l+nj2] ;
}

}
for(i=0;i<np;i++){ / / / n p  
id=i+njp; 
iq=i+nj 2; 
qa=fabs(x[ig]);
if(x[i+njp2]>20.) hi[i]=hwc*l[i]*x[iq]*pow(qa,.85185185)/(pow(x[i+njp2],1.8518581 

5)*pow(x[id],4.87037)); 
else {

re=qa/(vis7*x[id]); 
if(re<21.8) fr=.4;

else {if(re<286.)fr=8.715223/re; 
else do{ 
sfl=sf;
sf=l.14-2.*logl0(x[i+njp2]/x[id]+sf1/re);

} while(fabs(sf-sf1)>5.e-6);
}

fr=l./sf/sf; 
hi[i]=rg2*fr*l[i]*x[iq]*qa/pow(x[id],5.);
}///else

if(ll[i]<0.) f [i+nj ] =x [abs (11 [i] ) -1+nvar] -hl[i] -x[12 [i] -1] ; 
else f [i+nj]=x[ll[i] -1] -hl[i] -x[12 [i] -1] ;

} / / / / / n p  
for(i=0;icnpump;i++){
ii=ipump[i]-1;f[ii+nj]+=(ap[i]*x[ii+nj2]+bp[i])*x[ii+nj2]+cp[i];
}

} // E n d  o f  f u n c t i o n  f u n

/ * ============================================================================*/

void main(void) {

int njpp,m,min, ii,nct, in2 , in5, in4, i, j ,nnj , nnj l,muk [6] ,list[kl] , indx [k2] , ipuk [k2] ; 
char *cuk[]={"HGLs at nodes ","Nodal demands ","Pipe flowrates","Pipe diameters", 

"Pipe roughnesses","Reser. ws-elev"}; 
char fnaml[2 0],fnam2[2 0],fnam3[2 0]; 
float g=32.2,visc=1.317e-5,conv=.43333333;
float ql,q2,q3,hl,h2,h3,xx,sum,dd,dx,elev[kl],f[k2],f1 [k2]; 
printf("Give accel. of gravity & viscosity\r\n"); 
scanf("%f %f",&g,&visc); 
vis7=7.343472 83*visc;
printf("If network input from kybd give(l)(file=0);unknw input kybd 1;& output to m 
onitor 1 (file=0)\r\n"); 
scanf("%d %d %d",&in2,&in5,&in4);

if(!in2) {
printf("Give: input file name\r\n"); 
scanf ("%s11, fnaml) ; 

if((fili=fopen(fnaml,"r"))==NULL){
printf("File %s does not exist",fnaml); 
exit(0);

}
}
if(!in5) {
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printf("Give input of unkn file\r\n"); 
scanf("%s",fnam3); 

if((fill=fopen(fnam3,"w"))==NULL) {
printf("Cannot open output f. %s",fnam3); 
exit(0);

}
}
if(!in4) {

printf("Give file name for output\r\n"); 
scanf("%s",fnam2); 

if((filo=fopen(fnam2,"a+"))==NULL) {
printf("Cannot open output f. %s",fnam2); 
exit(0);

}
}
if(g>20.) hwc=4.727328; 

else {
conv=9.806;hwc=10.67417;

}

/ * = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = * /

/* Reads: */
/* No-pipe-junction-reservoir-pump */
/*  */ 
/*============================================================================*/

if( in2) scanf("%d %d %d %d",&np,&nj,Snres, fcnpump);
else fscanf(fili,"%d %d %d %d",&np,&nj,tnres,&npump); 

nj2=2*nj; 
njp=nj2+np; 
njp2=njp+np; 
nvar=nj p2 +np; 
njpp=nj +1; 
rg2=.81056947/g; 
sf 1=8 . ;

/ * = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = * /

/* Reads reservoir data: */
/* No-line-elevation */
/*  */ 
/*============================================================================*/

for(i=0;i<nres;i++){
i f  (in2) scanf ( "%d %f11, Sires [i] , &x [nvar+i] ) ; 
else fs c a n f ( f i l i ,"%d %f",fc ires[i],&x [nvar+i]);
/ * = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = * /
/* Reads pump data: */
/* No-line-(heaf-flow) data */
/*  */ 
/* ============================================================================*/

for(i=0; icnpump;i++){
if( in2) scanf("%d %f %f %f %f %f %f" , fcipump[i],&ql,&hl,&q2,&h2,&q3,&h3) ; 
else fscanf( f i l i , "%d %f %f %f %f %f %f" , fiipump[i],&ql,&hl,&q2, fih2,&q3,&h3); 
h l/= ( (ql-q2)* (ql-q3)); h2 / = ( ( q2 - ql ) * ( q2 - q3 ) ) ; 
h3/=( (q3-ql)* (q3-q2)); ap[i]=hl+h2+h3;
bp [ i ] = -(q2+q3) *hl-(ql+q3)*h2- (ql+q2)*h3 ; cp[i]=q2*q3*hl+ql*q3*h2+ql*q2*h3;
}
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for(i=0;icnjpp;i++) nn[i]=0;

/*============================================================================*/
/* f u n c t i o n  t o  r e a d  p i p e  d a t a :  * /
/ *  READS:  N o d e l , N o d e 2 , L e n g t h , D i a m e t e r , r o u g h n e s s , & g u e s s  f l o w r a t e  * /
/*  */
/ * = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = * /

printf ("---------------- ") ;
for(i=0;i<np;i++){
if(in2) scanf("%d %d %f %f %f %f" , all[i] , &12[i] , &1[i],& x [njp+i],&x[njp2 + i],&x[nj2 + i 
]) ;
else fscanf(fili,"%d %d %f %f %f %f",&11[i],&12[i],&1[i],& x [njp+i],& x[njp2+i] ,&x [nj 
2+i]) ;
if(12[i]==0){

printf(" 0 for reservoir must be 1st given node"); 
exi t(0) ;

}
}
nnj = 0;
for(i=0;i<np;i++){ 

if(11 [i]){ 
nnjl=nn[11[i]]+1; 

for(j=nnj-1;j>=(nnj1-1);j--) jn[j+1]=jn[j]; 
jn[nnj1-1]=i+l; 

for(j=11[i];jcnjpp;j + + ) nn [j]+=1; 
nnj=nn[njpp-1];
} '

nnjl=nn[12[i] ] +1; 
for (j=nnj -1; j>= (nnj 1-1) ;j--) jn[j+l]=jn[j];

jn[nnj1-1]=-(i + 1) ; 
for(j =12[i];j cnjpp;j ++) nn[j]+=1; 
nnj=nn[njpp-1];

}

/*============================================================================*/
/ * R e a d s  j u n c t i o n  d a t a :  * /
/* D e m a n d s ,  H G L - E L E V - E l e v */
/*  * / 
/ * = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = * /

fo r( i=0 ;icn j; i++) if( in2) scanf("%f %f %f" ,&x[nj+i],& x [ i] , f ie lev[i]);
else fscanf(f il i,"% f %f %f" ,&x[nj+i],& x [ i] ,&elev[i]);fo r ( i = 0;i<nres;i + + ) 11[ires [ i ] -1]=-(i + 1); nunk=nj+np; m=0;
do{if( in5) p r in t f ( ”%4d Unknowns must be given.Give no. of each of following\r\n",nunk) 
7for(i=0;i<6;i++){ 

i f ( in 5 ) {p r in t fp 1 %ld . %s 11, i  + 1, cuk [i] ) ; 
scanf("%d",&muk[i] ) ;

}else fscanf(fili,*%d",&muk[i]);
}}while ( (muk[0]+muk[1]+muk[2]+muk[3]+muk[4]+muk[5 ]!=nunk)&&(m++<5)); 
if(m>=5){
printf("Incorrect no. of unknowns\r\n"); 
e x it (0) ;
}

m=0; mm= 0;

for(i=0;i<6;i++){
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if(muk[i]){ 
do {

if (in5) printf ("\r\n %2d %s Numbers= 11 ,muk [i] , cuk [i] ) ;
} while (rline(list,in5)!=muk[i]);
for(j =0;j<muk[i];j ++) ipuk[m+ + ]=nun+list[j];
}
if(i<2) iran+=nj; 
else mm+=np;

}
for(i=0;icnp;i++){
for(j=0;j<nunk;j++) if(ipuk[j]==i+l+nj2) goto L28;
for (j=0;j<nj;j+ + ) if((ipuk[j]= = 11[i]) || (ipuk[j]==12 [i])) goto L28;

if(11 [i]<0){xx=x[abs(11[i])-1+nvar] ; 
ii = 0;
} else {xx=x[11[i]-1];ii = ll[i] ;
}

if((xx-x[12[i]-1])*x[i-l+nj2]> -l.e-5) goto L28;

printf("Specified flowrate not consistent with H's in pipe %3d %3d %3d\r\n",i+1, ii, 
12[i] ) ;
printf("Hl= %8.2f H2= %8.2f Q= %8.2f must have HI > H2\r\n",xx,x[12[i]],x[i+nj2]); 
printf("Should I reverse direction of this flow? (l=yes, 0=no\r\n)"); 
scanf("%d",&ii);

if(ii) x[i+nj2]=-x[i+nj2]; 
else exit(0);

L2 8: continue;
}
nct=0; 

do { 
sum=0 . ; 
fun(f1);
for(j = 0;j <nunk;j ++){ 
ii=ipuk [j]-1;
if(fabs(x[ii])<1.e-3) dx=.001; 
else dx=.005*x[ii] ; 

x[ii]+=dx; 
fun(f);
for(i=0;i<nunk;i + + ) d[i] [j] = (f[i]-fl[i])/dx; 
x[ii]-=dx;
}

solveq(nunk,d,f1,1,dd,indx);

for(i=0;icnunk;i++){ 
sum+=fabs(fl[i]); 
x[ipuk[i]-1]- = fl[i] ;
}
nct++;
printf("NCT= %d SUM= %f\r\n",nct,sum) ;

}while((nct<20) && (sum>.001)); 
if(npump){
if(in4)printf("Devices caused the following changes in heads\r\n"); 
else fprintf(filo,"Devices caused the following changes in heads\n"); 
for(i=0;icnpump;i++){ 
ii=ipump[i]; 
dx=x[ii-l+nj2] ;
if(in4)printf("Device %3d in pipe %4d Change in head = %8.3f\r\n",i+1,ii,(ap[i]*dx 

+bp[i])*dx+cp[i]);
else fprintf(filo,"Device %3d in pipe %4d Change in head = %8.3f\n",i+1,ii,(ap[i]* 

dx+bp[i])*dx+cp[i]);}}
if(in4) {
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printf("Pipe Data:\r\n"); 
for(i=0;i<65;i++)printf; 
printf("\r\n");

printf("Pipe Node Node Length Diameter Roughness Flowrate Headloss\r\n") ;
printf(" No. #1 #2 Coef.\r\n");
for(i=0;i<65; i+ + ) printf("-");printf("\r\n");
} else {
fprintf(filo,"Pipe Data:\n");for(i = 0;i<65;i+ + )fprintf(filo,"-");fprintf(filo,"\n"

) ;
fprintf(filo,"Pipe Node Node Length Diameter Roughness Flowrate Headloss\n"

) ;
fprintf(filo," No. #1 #2 Coef.\n");
for(i=0;i<65;i++) f p r i n t f ( f i l o , ; fprintf(filo,"\n");
}

for(i=0;icnp;i++){ 
ii=ll[i] ;if (ii<0) ii=0;
if(in4)printf("%4d %4d %4d %9.1f %9.3f %9.6f %9.3f %9.3f\r\n",i+1,ii,12[i],1[i] ,x 

[njp+i], x[njp2+i],x[nj2+i],hi [i]) ; else
fprintf(filo,"%4d %4d %4d %9.1f %9.3f %9.6f %9.3f %9.3f\n",i + 1,ii,12[i] , 1 [i] ,x [njp 

+i] ,x[njp2+i],x[nj 2+i] ,hi[i]);} 
if(in4){
printf("Node Data:\r\n"); 
for(i=0;i<54;i++)printf("-"); 
printf("\r\n");
printf(" Node Demand Elevation Head Pressure HGL-elev.\r\n") ;
for(i = 0;i<54;i + + )printf("-") ; 
printf("\r\n");
} else {

fprintf(filo,"Node Data:\n");for(i = 0;i<54;i++)fprintf(filo,"-") ; fprintf (filo, "\n")
7

fprintf(filo," Node Demand Elevation Head Pressure HGL-elev.\n");
for(i=0;i<54;i++)fprintf(filo,"-"); 
fprintf(filo,"\r\n") ;
}

for(i=0;icnj ? i+ + ){ 
xx=x[i] -elev[i] ;
if(in4)printf("%5d %9.3f %9.3f %9.3f %9.3f %9.3f\r\n",i+1,x[nj+i],elev[i] ,xx, conv 

*xx, x [i] ) ;
else fprintf(filo,"%5d %9.3f %9.3f %9.3f %9.3f %9.3f\n",i + 1,x[nj+i],elev[i] ,xx,co 

nv*xx,x[i]);
}

}
ttdefine TINY 1.0e-20;
void dcompos (float a[] [k2],int n,int indx[], float d) {
int i,imax,j,k;
float aamax, drnn, sum, temp;
float *w;
w =  (float*) calloc (n,sizeof (float)) ; d=l. 0; 
for(i=0;i<n;i++) { 
aamax=0.0;
for(j = 0;j<n;j++) if ((temp=fabs(a[i] [j])) > aamax) aamax=temp;
if (aamax == 0.0) printf("Singular matrix in routine DCOMPOS\n");w [ i ] =1.0/aamax; 
}

for(j =0;j<n;j+ + ) { 
for(i=0;i<j;i++) { 
sum=a[i][j]; 
for(k=0;k<i;k++) sum -= a[i][k]*a[k][j]; 
a[i] [j] =sum;
}

aamax=0.0;
for(i=j;i<n;i++) {
sum=a[i][j];
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for(k=0;k<j;k++)sum -= a[i] [k]*a[k] [j]; 
a[i] [j] =sum;
if ( (dum=w [i] *fabs (sum)) >= aamax) { 
aamax=dum;imax=i;
}
}
if (j != imax) {for(k=0;ken;k++) { 

dum=a[imax] tk] ;a [imax] [k]=a[j] [k] ; 
a [j] [k]=dum;
}

d = - (d) ; w  [imax] = w  [ j ] ;
}
indx[j]=imax; 
if (a[j] [j] == 0.0) a [j] [j]=TINY;

if (j != n) { 
dum=l.0/(a[j] [j]) ;
for(i=j+l;i<n;i++) a[i][j] *= dum;
>

}
free (w )  ;

>

ttundef TINY
void finsol(float a[][k2],int n,int indx[],float b[])
{int i,ii,ip,j; float sum; ii=-l; 

for(i=0;i<n;i++) { 
ip=indx[i]; 
sum=b[ip]; 
b [ip] =b [i] ; 
if (ii != -1){
for(j=ii;j<i;j++) sum -= a [i] [ j ] *b [ j ] ;
} else if (sum!=0.) ii=i; 
b[i]=sum; } 
for(i=n-1;i>=0;i--) { 
sum=b[i]; 
if(i < (n-1)){
for(j =i+l;j<n;j ++) sum -= a[i] [j]*b[j] ;

}
b[i] =sum/a[i] [i];

}
}
void solveq(int n, float a[] [k2] , float b[],int itype,float &dd,int indx[]){
int detrm=0,eqsol=0,invsol=0,i,j; FILE *fil;
if((itype==3)||(itype>4)) detrm=l;
if((itype==l)||(itype==4)||(itype==6)) eqsol=l;
if((itype==2)||(itype>3)) invsol=l;

dcompos(a,n,indx,dd);

if(detrm) for(i=0;i<n;i++) dd*=a[i][i]; 
if(eqsol) finsol(a,n,indx,b); 
if(invsol){ 
if(eqsol){
printf("\nSolution Vector\n"); 
for(i=0;i<n;i++){ 
printf("%10,3f",b [i]); 
if (!(i%8)) printf("\n");
}
}

if((fil=fopen("OMARIN","wt"))==NULL)
printf("Data file OMARIN cannot be opened\n"); 

for(j = 0;j <n;j + + ){
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for(i=0;i<n;i++) b[i]=0; 
b [j] =1; 
finsol(a,n,indx,b); 

for(i=0;i<n;i++) fprintf(fil,"%15.7f",b[i]);
}
rewind(fil);

for(j=0;j<n;j++) for(i=0;icn;i++) fscanf(fil,"%15.7f",a[i][j]); 
fclose(fil); remove("TEMP.DAT");
>

return;
}


