MCMC Simulationfor Modelling
Airline Passenger Choice Behaviour

By
Fajer A. Al-Sayer, B.Sc. M.Sc.

A thesis submitted in fulfilment of the requirements for the
Master of Science Degree in Computer Applications

August 2001

School of Computer Applications
Dublin City University
Dublin 9, Ireland

Supervisor: Dr. Alistair Sutherland

Declaration

I hereby certify that this material, which | now submit for assessment on the
programme of study leading to the award of M. Sc. Is entirely my own work
and has not been taken from the work of others save and to the extent that such

work has been cited and acknowledged within the text of my work.

Acknowledgements

Thanks to the supervisor Dr. Alistair Sutherland for his continuous assistance
and support. Thanks to Dr. Martin Crane for his help and valuable
suggestions. A special thanks to Kuwait Airways for giving me the
opportunity to continue my studies.

Many thanks to all the following:

My parents and my brothers and sisters for encouraging me and giving me
moral support.

My lovely nieces Anood, Baidaa and Noor for being so kind and supportive to
their aunt.

My friends back home, Altaf, Huda, Jameelah, Laila, Hana and Mona for
keeping in touch with me all the past few years. A very special thanks has to
go to my friend Selma in Canada.

My colleagues in the Toastmaster club for helping me to practice public
speaking in my spare time.

And last but not least, my friends in Ireland: Vincent Shannon from Malahide,
Kay and Jerry Chester from Swords, Kerry and Pete Bedell from Malahide,
Heidi and Trevor Sargant from Ballbriggan for treating me as one of the
family.

Table of Contents

LIST OF TABLESottt e a e 5.
CHAPTER L ettt bbb bbb b bbb b ettt b et b b e b o 7.
INTRODUGCT IO N (st tt bbbttt 7
1.1 BACKGIOUNG......ociiiiiiiiiete ettt sttt s et st e s be st s e et snene s benenseneas 8...,
1.2 Goal Of ThESIS. ... 12.
1.3 Organization Of TRESIS....civiiiiiiicisieiseeee e stesrebesbe e sresesseseeses 14.
CHAPTER 2 ettt b bRt b bRt E b b £ bbbt st b bbbt bbb ne e 15.
Seat Allocation and Yield Management System.......iienieiecneeveenns 15
P20 1 oo 11T 4T) o 1RSSR 15..
2.2 Yield/Revenue management SYSTEMcciciiiiiiireineisiesiee st sre e saesesnenens IB
2.2.1 HISEOMY ..ottt ettt ettt bbb b sttt b e bRt nr b b n b ene et s 18..
2.2.2 YM ObJECtiVES.....ccovieriiriiee e 19..
2.2.3 YIM COMIPONENES. ...ttt sttt see st bbbt sbe bbb et ebe et es e st eb e et e nee s b esbeneenbe b eneeneas 20.
2.3 Previous approaches: A Literature REVIEW............ccvveeieiieriiieisesiee st 22
CHAPTER 3 ittt b bbbt b bbbt E bbbt bbb eb b bt e bbb ne e 26.
Markov Chain Monte Carlo Method ... 26
T8 [g1 oo 11T 1 [o] PP STTTRT 26..
3.2 Bayesian Probability TREOIY ... 28.
3.3 Metropolis AIGOTTtRML.. ..o e bbbt ns 31.
CHAPTER 4 ettt bbb bbb bbbt b bt b bbbt s st bbb enes 34.
Booking Process Simulation Model.... e ses e 34
AL INEFOAUCTION. ...ttt bbbt ettt e b 3.
4.2 AIrling PassengErs @S CUSTOMIETS.uuiierueiserisieintesiesestesessesassessssessesessessssessssessessssessssensesens 35.
4.3 TRE MOUEL..oiiiii bbb st e et sr e b e e ntenea 38..
4.3.1 MOel @SSUMPLIONS. ... cueuieiriiieieic ettt ettt ettt s s e e bene e enees 38..
R I 111 U o - - IO SO RS 39...
4.3.3 Calculation of the Desirability/Utility value of Classes..........ccccccvrviriinensieniice e 41
4.3.4 Calculation of the probability of accepting to book on the desired class —ccceeeviienene 44
4.3.5 Calculation of the probability ol passenger arrival.............cccccoveiiiiiiiiincisesee e 47
4.3.6 Booking the passenger on the desired Class..........couvieiiierieieiiieneie e 50
4.3.7 MOEl FIOWCNAIT... ..ottt et bbb s 51.
4.4 Generating SAMPIE QaTa........ooviirieee et 53.
A5 SUIMIMAEY ...ttt ettt sttt sttt b e et b e s b e see e b e ebeeeeeaeebe et e ebe et e ebeebeebeeneeseeseeneereeneenes 58.,
CHAPTER B ettt bttt £ bbb £t e b b £t bk et ee b e b et b b e b st st b e s e e enaee 60.
Fitting the M odel to the Data. ... 60
Lo TR a1 T [Ted i To] o TSP 60..
5.2 Pre-computation of Probability DiStribUtions..........ccc.ccvviriiriciiiiiescse e 6.0
5.2.1 Creating a table for Probability of Arrival............cccoooiiiiieiiiii s 61
5.2.2 Creating a table for Probability of ACCEPLaNnCe.ccooueoiiiicceieecee e 63
5.2.3 Creating a table for Total Probability 0f BOOKINGS...........ccccceiiiiiiiiiniiseseeeses s 64
5.3 Estimation of Model parameters using Metropolis Algorithm...........cccccoieiininicinnnes 68
5.3.1 Start the algorithmwith an arbitrary starting point...........ccccccceeriiiniieien e 68
5.3.2 Change one parameter at FanGOM.............ceeiirieueireniei st s 6%
5.3.3 Calculate the HKEHNOOM.............couiviiiiiieee s 68.
5.3.4 Using the Metropolis AlGOrthm...........cccueiiiiiiiicie s 69..

54 SUMIMIBIY ..ottt bbbt b bbb e 71..

CHAPTER B ... 72.

RESUTT AN A Y SIS ittt e s et et e et e st e st e s e e st e et e saeeste e seestesaeenteens 72
6.1 INtroducCtion.........cccooeueiiirrrinsree e 72..

6.2 One passenger type and ONE ClaSS........ccuieiiuiirienieieieiee et es srenens 75
6.2.1 One passenger type and one class (classl) for one flight............cccccveviieiiiicciciec, 5

6.2.2 One passenger type and another class (class2) for one flight..........c.ccocvviiiniiiiiiiiniiens 7

6.2.3 One passenger type and another class (class3) for one flight............cccceevviiiiiicni s, 79

6.2.4 Intersection between the planes of the previous Classes.........cc.civvviveiiinciesenn e &0

6.3 One passenger type and tWO CIAaSSES....cciiiiiiiiiicice e 81

6.4 One passenger type and three CIaSSES. ..ot e 84

6.6 Two passenger types and three ClaSSES. ..o irrirrreierieee et 89

6.7 Three passenger types and three ClasSeS.......civuiiiiiiieiiniine e 91
5.8 SUIMIMAIY ...ttt e e et b et bbb bbb s b s b sbe b bt s bt e bt e bt s aeebeeneeneareene e 93..
CHAPTER 7 ettt b et b b e bbb bbbt bbbkt b bbbt bbb 95.
Conclusionand FutureworKk....... 95
7.0 CONCIUSTON ..ttt bbbtttk eb e et sttt bbb et 95..
7.2 FULUIE WOT K. .ottt bbbt bbbt b bbb 97..
REFERENGCES ..o ottt bbbt e bttt e st 99.
APPEND IX A ettt ettt Rt R et £ ee bRt e £ R Rt e R Rt s R e R ne s e nene s 103
A.1l Sample Booking Data . e e 103
A.2 Table for Probability of Arrival (P arrive)....., 106
A.3 Table for Probability of Acceptance (P accept)....icienne. 115
A.4 Table for Overall Probability of Bookings.....cceccvviiiiivieiinncnnnn, 120
A.5 Reading from the binary File P allb....e e 125
APPENDIX B oottt a £ R Rt ek R Rt es et ae s e e bt en e et rene e 128
B.1SIM DATA C PROGRAMFOR GENERATING SAMPLE DATA....ccooiireireee e 128

B .2 P ARRIVE C PROGRAM FOR CREATING P ARRIVE TABLE.........ccooniniirirnn. 135
B.3 P ACCEPTC PROGRAMFOR CREATINGP ACCEPT TABLE.......ccccccoiieirirnne. 138

B .4 PRECOMP C PROGRAMFOR CREATINGP TOT TABLE.......cccooiiiinienene 140
B.5MET ONEPAX C PROGRAM FOR METROPOLIS ALGORITHM.........cccooevvvrrenne, 143

LIST OF FIGURES

Figure 1.1: The difference between flight leg and flight segment..........c.ccccvvvvieiviiciii s 9
Figure 2.1: Sample Flight inventory record for two-leg flight KU123 (AAABBB and BBBCCC)
with three prime classes F, J, and Y and three subclasses, B, H and T nested within Y clasi6

Figure 2.2: Sample Overbooking ProfilesS.........cccciiiiriiiiiiisseee e 17
Figure 2.3: YM relation with the Reservation SYStem ... 20
FIgure 2.4: YIM COMPONENTS.....cuitiriiiiaiiiesieestesisie st e s se s e sasbe bt st esassesesbassatesbebesaesessenessasnas 21.
FIgure 2.5: FIIGNT NEIWOTKcooiiiiiiceee ettt s enne 23..
Figure 4.1: LOgiStiC FUNCTION......ccii ittt 45,
Figure 4.2: Probability of Arrival for buSiNesS PASSENGET........ccoviuruiiriririreneriree e 49
Figure 4.3: Probability of Arrival for touriSt PaSSENGEr..........cv e 49
Figure 4.4: Probability of Arrival for student PasSeNger........ccocovrrireeienrrce e 49
Figure 4.5a: Booking process simulation Mmodel.............ccco i 51

B OO K SBAL ettt bbb bbbttt b Rt bbbttt ran 52...
Figure 4.5b: Booking process simulation MOdel..........coevrennieniiiiinneiesesscse e 52

Figure 4.6: Sample booking curves for all CIaSSES........c.cviiviiiieiisescie e 55

Figure 4.7: Minimum, maximum and mean booking curves for tourist passengers............cceu.... 56

Figure 4.8: Mean booking curves for tourist passengers with different sets of arrival parameter”
Figure 4.9: Mean booking curves for business passengers with different sets of arrival parameters

... 57...
Figure 4.10: Mean booking curves for tourist passengers with different sets of accepting

0L L 10 4] (=] TSROSO TSRSTPRRRI 58.
Figure 5.1: Probability Distribution for the business passenger arrivals on day -26............... 62
Figure 5.2: Probability Distribution for the tourist passenger arrivals on day -120............ccceveue.n. 62
Figure 5.3: Probability Distribution for the student passenger arrivals on day -40............cccueueneen. 62
Figure 5.4: Probability Distribution for all possible number of acceptances whenp = 0.9 and

MAaXiIMUM ArTIVAIS N = L0....ciiiieiii ettt be bbb .64.
Figure 5.5: Pre-computation of overall probabilities..........ccocovieniiiiiiiiiissc e 6.7

Figure 6.1: A plane viewed from different angles for one passenger type booking on one class
with p _ acctc=0.8. The original parameter combination lies in the plane as it should do76

Figure 6.2: One passenger type booking on another class withp _ &cctc = 0.5005................... 77
Figure 6.3: Two planes representing two different classes for one passenger type with large area
of iNtersection DEtWEEN theM ... e 78.
Figure 6.4: One passenger type booking on another class withp _ acctc=0.5...ccovrcirnenes 79
Figure 6.5a: Intersection between the 3 previous planes..........ccccoveivieicense e 80
Figure 6.5b: Intersection between the 3 previous planes, differentangle.........ccccccoovvviviiiiniennn, 80
Figure 6.6: Booking curve for one passenger type and two Classes........cccvvvvvvreinrieinnieeeeeeennans &
Figure 6.7: Intersection between the runs from one passenger and two classes separately. The
original combination is shown as ablack dot..............cccce e 82
Figure 6.8: One passenger type and two classes for one flight............cccoooniiiii 83
Figure 6.9: One passenger type and two classes for 100 flights. Notice how the spread of the
distribution is reduced. The original parameter combination is shown as a black dot......... 83
Figure 6.10: Booking curve for one passenger type and three classes........cccocoevirrrennnncnenenn 84
Figure 6.11: One passenger type (typcl) with three classes, blue distribution for one flight and red
0Ne FOr the 100 FlIGNTS.ccioice et 85..
6.5 Another passenger type and three Classes.o 86.
Figure 6.12: Different passenger type (type 2) with three classes for one flight(thick line) and 100
FHGNTS (TNIN TINE) ittt b ebesae et 8.7.
Figure 6.13: Intersection between the runs for a different passenger type (type 2) and three classes
SEPATALEIY ...ttt e ettt E e bRt ettt e ee s 87...

Figure 6.14: Different passenger type (type 2) with three classes-different angle............c.c.c.c....... 88
Figure 6.15: Two passenger types (typel and 2) in separate runs with 3 classes for 100 flights..90
Figure 6.16: Two passenger types with 3 classes from 100 flights. Notice the increase in

UNCErtaiNtY.....cooevieevcere e 90
Figure 6.17: A third passenger type (type 3) with 3 classes from 100 flights.................. 51
Figure 6.18: Three passenger types with 3 classes from 100 flights........cc.ccccoovviiiiininenen 92

Figure 6.19: Three passenger types with 3 classes from 1000 flights.......cccccooevviiieiinneiiiinnnns 93

LIST OF TABLES

Table 4.1 A sample of class parameters........cccveveeiieeiiee s 40
Table 4.2 A sample of passenger parameters............ccoe..... 40
Table 4.3: Sample calculated desirability and probability of acceptance for three
passenger types and three ClasSeS.......ovviiiiieieiieece e 46
Table 4.4: A sample 0f model COUNTETIS.......ociiiiiieiiee e 54
Table: 6.1 Parameters used for one passenger type and one class (classl).......... 75

Table: 6.2 Parameters used for one passenger type and another class (class2) 77
Table: 6.3 Parameters used for one passenger type and another class (class3) 79
Table: 6.4 Parameters used for another passenger type and three classes............ 86

Abstract

As passengers we would prefer to pay the cheapest fare available for our airline
ticket. On the other hand airline companies wish to increase their revenue from
its flown tickets. During the booking process of an airline flight, some passengers
may arrive early to book their seats, others may decide to book just few days
before departure or even on the day of departure. Airlines realise that they have to
offer a variety of fares in order to differentiate between different types of
passengers. Allocating seats to different fare classes for different types of
passengers in such a way that would maximise the airline’s revenue requires
yield/revenue management systems. There are two main steps in any revenue
management system: Forecasting and Optimisation. Accurate prediction of
passenger future demand for different fare classes improves the seat allocation
recommendations resulting from the optimisation step. The work in this thesis
concentrates on studying and analysing the behaviour of different passenger types
towards different fare classes. We first formulate a Monte Carlo simulation
model for the booking process. The model generates sample booking data for a
flight on different fare classes by different types of passengers defined by the
characteristics which affect their behaviour. Passenger behaviour is modelled
using a customer utility function and a multinomial logit (logistic) model of
demand. This sample booking data is then used in a Markov Chain Monte Carlo
model in order to estimate the passenger choice parameters used in generating the
booking data. These estimated parameters could be used then to classify any new
booking data. The MCMC model uses the Metropolis Algorithm for its
estimation process. We also examine briefly the computational feasibility of our
approach using parallel processing.

CHAPTER 1

INTRODUCTION

Modelling passenger choice behaviour is becoming more and more important in
the process of future demand forecasting. Airlines like any service and product
provider, realise that it is essential to predict passenger behaviour towards
different fare classes on different flights in order to set the future prices and
product availability. During the days prior to the departure day of the flight,
passengers make their reservations and choose from a set of options of flights and
fare classes. Passengers, like any other consumers choosing between a number of
available products, have different preferences towards the products on offer. In
this research we model the passenger choice behaviour during the flight booking
process using a computer simulation model.
Bratly and Scharge (1987) provide the following definition of modelling:
A model is a description ofsome system intended to predict what happens
if certain action is taken. Virtually any useful model simplifies and
idealizes.....For a model to be useful, it is essential that, given a
reasonably limited set of descriptors, all its relevant behaviour and
properties can be determined in a practical way: analytically,
numerically or by deriving the model with certain (typically random)
inputs and observing the corresponding outputs. This process is called
simulation.
While Neelamkavil (1986) gave the following definitions:
A model is a simplified representation ofa system (or process or theory)
intended to enhance our ability to understand, predict, and possibly
control the behaviour o fthe system... A model adaptedfor simulation on
a computer (i.e. mathematical/logical relations and operational rules
built into the computer program) is known as a computer simulation or

simply simulation model.... Modelling is the process of establishing

interrelationships between important entities of a system It is almost
impossible to understand and isolate all the interrelationships in a real-
world system, and one is forced to trade off reality, generality and
accuracy for simplicity.... Obviously the ability to build models by
selecting the smallest subset of variables which adequately describe the
real system is very important and highly desirable quality of a good

modeller.... Simplicity is an essential criterion ofa good model.

We intend to apply the above ideas to passenger behaviour.

1.1 Background

In order to have a better understanding of the underlying complexity of the airline

booking operation, we will give a brief description of the main elements of the

booking process.

Capacity: the aircraft type and size determine its capacity, which in its turn
determines the configuration of compartments. For example the 378-seats

Boeing 747 is physically divided for some airlines as follows:

* First Class cabin: 12 seats in upper deck and 20 seats in the front of the
main body ofthe aircraft
* Business Class cabin: 24 seats located between first class and economy

cabins

* Economy Class cabin: 322 seats located in the rear of the aircraft

The Airbus aircraft A300 type, on the other hand has 235 seats and A310 type
has 170 seats. Most aircraft types can also accommodate special seat requests
such as carrycots, stretchers, wheelchairs and incubators. When a flight is
created in the Reservation System of an airline, an aircraft type is assigned to
it. As the day ofthe flight departure gets closer, the type of aircraft might be
changed either to a bigger airplane to accommodate more passengers or to a

smaller one ifthe demand is low.

» Flight: There are two types of flights, Single-leg (or Single-sector) flights and
Multi-leg flights; a Single-leg flight is the non-stop flight between an origin
and a destination. For example the flight number KU301 is a non-stop flight
that originates from Kuwait City and ends at its destination in Bombay. A
multi-leg flight is a flight between two cities (origin-destination) with one or
more stops in intermediate cities. For example, the flight number KU101
starts from Kuwait City stops in London then ends in New York. KU101 is a
two-leg flight.

Flights also consist of segments, a segment is any multi-leg or single-leg city-
pair combination on the same flight number. Figure 1.1 illustrates the
difference between legs and segments.

Figure 1.1: The difference between flight leg and flight segment

Pricing policy: in the airline industry different customers are willing to pay
different prices for the same product. A product is a flight seat on a particular
market and in a particular cabin. Many customers are willing to pay a higher
price for additional service features. For example, customers travelling on
company business are less price-sensitive and more service-sensitive, on the
other hand leisure travellers are willing to sacrifice service features for lower
cost. Pilgrims tend to have a lengthy stay at their destination for religious
purposes and are price-sensitive. Students prefer low-priced seats but they
have limited range of days to choose their flights from due to the timing of
the school holidays. There are other types of passengers such as groups, tour
operators and labour groups.
Once a flight is created in the reservation system, it will be assigned
price/fare-class structures. There are many fare levels used in the airline
business. The Main factors used in setting fare levels are cost, load factors,
traffic volume, competitive fare levels, and capacity. Fares are usually
changed twice a year after IATA (The International Air Transport
Association) conferences in April and October. For example, Kuwait Airways
standard IATA based price levels consist of:

* First class full fares booked in F class

* Business class full fares booked in J class

* Economy class full fares booked in'Y class

*High priced excursion fares booked in Y class

*Lower priced excursion fares booked in Y class

Other fare classes are used for discounted traffic. These discount fare classes

(sub-classes) are market-specific and may be used to control point of sale.

Discount sub-classes are nested in the reservations system either in parallel or

serial nesting structure.

The Booking Process: as best described by Lee (1990), consists of three

phases:

1

The reservation phase: when customers request a seat on airline flights
and choose from a number of alternatives (flights, classes) that best meet
their preferences. The airlines then either accept or reject their requests
depending on specific decision policies.

The cancellation phase: when passengers who had reserved seats then
return later and cancel their reservations during the time before the
departure of the flight. Another type of cancellation would occur
automatically by the system if the passenger did not comply with the
restrictions imposed on their type of booking. For example, when
passengers do not purchase their tickets by certain time before departure,
the system will automatically cancel their bookings.

The boarding phase: which is the actual departure time of the flight when

the final number of passengers boarded and travelled may be determined.

Passenger Types: from the airline perspective, there are many types of

passengers which are identified by different booking codes in the reservation

system. For example,

The confirmed passengers who hold confirmed bookings and tickets.

The waitlisted passengers who know that their requested fare classes are
full and agree to be waitlisted on them.

The cancelled passengers who previously reserved seats then cancelled.
The go-show passengers who arrived on the day of departure and booked
seats and travelled.

The no-show passengers who hold confirmed reservations but did not
show up on the departure day for some reason such as illness, difficult
road conditions, or late arrival of a connecting flight.

The denied-boarding who hold confirmed reservation and tickets but were
not allowed to board the aircraft either because all seats have been taken

by other confirmed passengers due to overbooking, (we will explain

overbooking process in the next paragraph), or perhaps for legal or

security reasons.

» Overbooking: it is a common practice in the airline reservation operation to
allocate more seats to certain fare classes than the physical capacity, by
setting overbooking profiles in the reservation system. These profiles allow
the system to accept bookings (spaces) greater than the actual number of seats
available on the aircraft. As we mentioned above, if airlines did not overbook
their flights, and if on the departure day some passengers did not show up
then aircraft would depart with empty seats causing loss in revenue. In order
to minimise this revenue loss, airlines allow their flights to be overbooked,
predicting that these overbooked passengers will be accommodated in the no-
show passengers seats. For example, Kuwait Airways flights to Cairo are
usually overbooked 80% over the capacity because of the high no-show
behavior in the Kuwait/Cairo market. At the same time, airlines must be
careful in setting these profiles to avoid overselling their seats and face
denied-boarding passengers. These then would be entitled to some type of
compensation, such as alternate transportation, a ticket voucher or hotel and

meal vouchers. This situation can also cause revenue loss.

1.2 Goal of Thesis

In the past, most work in the area of passenger demand forecasting was
concentrated on flight level. Analysis was performed on flight, origin and
destination, fare classes and number of booking on each class. One reason for this
is the limited detailed passenger data available in the reservation systems. Only
recently the airlines enhanced their systems to include more information on their
passengers especially with the evolution of the yield management systems which
depend on good forecasting techniques in order to recommend what classes
should be available and how many seats should be allocated to each class. Even
with this information stored and used to predict future passenger behaviour, there

were some activities which can not be detected or logged such as when

12

passengers opt not to book even if their most desired class, according to their
preferences, is still available. Using a computer simulation for the booking
process enables us to analyze and investigate any situation that may occur such
as: what if passengers actually arrive to book on a day before departure but do not
book on their most desired class available. Or: what if passengers booked on the
second desired class because their most desired class is not available. In this
scenario we are actually analyzing the hidden behaviour of the consumers that
cannot be reflected in a time series analysis of flights. Also under this analysis we
might be able to recognize patterns in different passenger types which will enable
us to come up with reasonably identified categories that would define the
different passenger types. This could be achieved by analyzing their reaction to
different fare classes or what restrictions are placed on these classes.
Monte Carlo simulations can model these different reactions and behaviours, as
they depend on a set of conditional probabilities and given parameters. Monte
Carlo simulations have been used in the airline yield management systems for
testing new techniques. In this thesis we use a particular type of Monte Carlo
technique known as the Metropolis algorithm.
The goal of the thesis is to evaluate how well the Metropolis algorithm can be
used to estimate models of passenger behaviour. We describe a generic model of
passenger behaviour, which predicts how passengers will react to different fares
and levels of service on offer. This model involves several variable parameters.
Ideally we would like to be able to estimate values for these parameters from
real-world data using the Metropolis algorithm. However, before that, we wish to
evaluate Metropolis using simulated data.
Our method for evaluating the Metropolis algorithm is as follows:
1) We inserttrial values into the model parameters.
2) We generate simulated data from the model using the trial parameters.
3) We then use the Metropolis algorithm to estimate the parameters from the
simulated data
4) We evaluate how well the estimated parameters compare with the trial

parameters, which were used to generate the data.

13

1.3 Organization of Thesis

Chapter 2 is a brief description of the Yield management system and its
relationship with the airline seat allocation process. Chapter 3 will introduce the
basic concept of the Monte Carlo methods and why these methods can be used to
model complex systems. In the same chapter we also explain briefly how the
Metropolis algorithm can be used to construct Markov Chain(s) in a Monte Carlo
simulation model in order to estimate the model parameters. Following these two
introductory chapters, our Monte Carlo model of the passenger booking process
will be presented in Chapter 4, followed by a detailed description of how to
create a Markov Chain using the Metropolis algorithm in Chapter 5. We start
Chapter 5 with the building of the Probability Distribution Tables that are
required in the mathematical calculations of the likelihood values used by the
algorithm. Chapter 6 presents the results of our evaluation of the Metropolis
algorithm. For several different cases we generate simulate data. We then use
Metropolis to estimate the parameters used to generate the data. We compare the
estimated values with the original values. We conclude our work in Chapter 7.

14

CHAPTER 2

Seat Allocation and Yield Management System

2.1 Introduction

Any business organization attempts to improve its profit while selling its
products, whether the products are toothpaste, shoes, cars, hotel rooms or airlines
seats. Improving the profit is achieved by reducing the cost and/or increasing the
revenue. In order to increase the revenue, business organizations realized that it is
essential to use some kind of Yield Management (YM) tools. Airlines were first
in implementing YM techniques to enable them to selectively accept or reject
bookings in such a way that would maximize their overall revenue. Prior to YM
evolution, a group of reservation staff known as the space or inventory controllers
were responsible for all flight inventory controls. When a flight is created in the
reservation system 11 months before the day of departure, the system keeps track
of its inventory which mainly includes the seats allocated in each booking class
assigned for the flight and the number of seats sold on each class. Figure 2.1
shows a sample inventory record display from the reservation system. The
inventory controller group set the overbooking levels on certain days over the life
of the flight, see Figure 2.2. The inventory controllers have to choose from more
than 200 different manually determined overbooking profiles, that are stored in
the reservation system for each flight. They have to take into consideration the
market that the flight serves, the season that the flight operates in and the day of
the week that the flight departs on. There is no fixed set of rules for setting these
profiles and the decisions are made entirely by the controllers depending on their

judgement and experience of the variation in flights’ behaviour.

15

KU 123 6Scp AAA CCCF
INH DC BRG NETAU NETSA

AAA 15 2
BBB 15 1
J
INH DC BRG NETAU NETSA
AAA 21 0
BBB 21 18
Y
INH DC BRG NETAU NETSA
AAA 21 0
BBB 21 18
B
INH DC BRG
AAA
BBB
H
INH DC BRG
AAA
BBB
T
INH DC BRG
AAA
BBB

AU
18
18

AU
24
24

AU
24
24

AU
80
80

AU
90
90

AU
140
140

ACP
SA

14
ACP
SA

21
ACP
SA

21
ACP
SA
71
84
ACP
SA

48
ACP
SA
31
78

NETAU: net authorization for the prime classes
NETSA: net seats available in the prime classes
ACP: actual percentage overbooking per class

PRO: Profile Table item number which describes the overbooking percentages
AU: Total authorization allocated to each class
SA: total seats available on each class

Figure 2.1: Sample Flight inventory record for two-leg flight KU123
(AAABBB and BBBCCC) with three prime classes F, J, and Y and three

subclasses, B, H and T nested within Y class

16

PRO
SNL

10
PRO
SNL

17
PRO
SNL

17
PRO
SNL
58
70
PRO
SNL

39
PRO
SNL
23
66

CNL

CNL

22
CNL

19

CNL

CNL

CNL

Figure 2.2: Sample Overbooking Profiles

As departure days approach, the controllers have to monitor their flights more
frequently adjusting the overbooking profiles as they see best accounting for the
current number of bookings, the cancellation rates and the no-shows expected on
days of departure from similar past flights. The controllers aim to fill their flights
and avoid denied boardings on departure. While monitoring flights the controllers
also have to give special attention to the discounted classes on each flight and
carefully re-adjust the number of seats allocated to each class in order to
maximise the total number of bookings as well as the revenue that would be
generated from the fare of each class.

With YM system many of the manually performed tasks can be done
automatically such as setting and controlling overbooking profiles for most of the
flights allowing the controllers to concentrate on critical flights that require
special attention and manual intervention. With the availability of historical flight
data that is collected by the YM system more accurate demand forecasts can be
determined which in their turn lead to a better estimates for the overbooking
profiles. Consistency can be achieved by allowing an automated system to review
all flights in the airline network and then set inventory levels for all flights
instead of different decisions by different controller. With the help of YM
systems which use mathematical optimization and forecasting techniques and

algorithms, as well as data management systems, the inventory controllers are

17

able to make the right decision in setting the seat inventory levels for their flights
(Kuwait Airways Yield Management and Pricing, unpublished document 1992).
We will describe in details the YM system in section 2.2. Section 2.3 is a brief

overview ofthe literature on YM methods.

2.2 Yield/Revenue management system

2.2.1 History

Yield/Revenue Management systems have developed since the early 1980’s in
response to the increasing product range which airlines started to offer their
customers due to deregulation of the airline industry in 1978. The Civil
Aeronautics Board (CAB) was responsible for setting fares for the industry as a
whole before deregulation. Since deregulation a number of low-cost carriers,
such as EasyJet and Ryanair, started up and proved successful in competing with
the major airlines. In order to stay in business, mainstream airlines began to offer
seats that would otherwise be empty to low-fare passengers. These low fares had
to have some restrictions such as, minimum stay, non-refundable tickets, so that
passengers willing to pay higher fares would not be attracted to those offers too.
With the increasing product ranges, most airlines realised that it was essential to
use yield management systems in order to maximise the revenue potential that
could be generated from these products. American Airlines, one of the leading
airlines in developing yield management tools, defined Yield management as the
selling of the right seats to the right customers for the right prices at the right
time. In the airline industry this concept is put into practice via the control and
management of seat inventory controls in the reservations system. Inventory
controls are set in a way as to maximise airline profitability, given the fare
structure and flight schedule. The term Yield Management in this context is a
wrong term because revenue and profit, not yield, are being maximised. The
airline seat after all, is a perishable product because after the flight departs it has

no value unless it was occupied and paid for. As a result, Weatherford and Bodily

18

(1992) proposed to replace the term yield management with Perishable-Asset
Revenue Management (PARM). They defined it to be the optimal revenue
management of perishable asset through price segmentation. The authors
developed a comprehensive taxonomy for the underlying assumptions for general
PARM models and identified 14 descriptors that can be used to categorise a range
of PARM problems: yield management, overbooking and pricing.

2.2.2 YM objectives

The main objective of the revenue management system is to maximize total

passenger revenues and load factors. This can be achieved by the following:

. Balancing the number of low and high fare bookings by making sure that
there are always seats available for the higher revenue demand when such
demand is expected to avoid selling more seats to low fare customers
leading to lower revenue (revenue dilution).

. Using overbooking profiles in such a way that maintain the balance
between the number of empty seats when the flight departs (spoilage) by
accounting for cancellations and no-shows, and the number of over-sales
that leads to denied boarding.

. Providing recommendations when dealing with group bookings.

Two types of factors influence the decisions made by the system:

1 Known factors such as the capacity, fare structure, current number of
bookings held, the availability of detailed historical data that provides
trends on previous passenger behaviour, and the existence of competitors
in the same market.

2. Unknown factors related to the uncertainty in passenger behaviour.
Passenger characteristics such as the booking characteristics, i.e. how
many and what time would passengers book during the life of the flight,
also their cancellation and no-show behaviour. These characteristics are
affected by factors such as the season, changes in flight schedule, changes

in fares, current events.

19

Effective revenue management increased revenues tremendously and the payoff
from effective seat inventory control also proved to be substantial. For example,
Delta Airlines in 1985 estimated that selling just one seat per flight at a full fare
rather than a discounted fare can add over $50 million to its annual revenue (see
Belobaba 1987b). American Airlines and United Airlines claimed that their
annual increase of profit was more than 100 million dollars from their revenue
management systems (see YM3). Belobaba and Wilson (1997) using a simulation
model showed that the use of a yield management system not only has a positive
impact on the airline using it by increasing its revenue, but a negative one on
other airlines with no yield management tools that operate in the same

competitive market.

2.2.3YM Components

Figure 2.3 illustrates the relation between the YM system and the Computerized
Reservation System (CRS), where the flight inventory control resides (Yield
Management Workshop 1996).

Figure 2.3: YM relation with the Reservation System

20

The main two modules of any revenue management system are as follows:

1 The forecasting module utilizes passengers and operational information that
are collected from the reservations, inventory and departure control systems
in order to predict passengers behaviour such as demand, no-show rates and
cancellation percentages on future flights.

2. The optimization module uses the output from the forecasting process with
revenue data to determine the effective booking limits and overbooking
profiles. It also identifies and highlights critical flights that require special
attention from the yield analysts.

Figure 2.4 shows the components ofthe YM system.

Figure 2.4: YM components

As a result of their success in the airline industry, revenue management systems
are currently used in a wide range of businesses such as hotels, car renting,
railways and media broadcasting. For more information on revenue management
and some existing systems see the following Internet references: YM[1], YM[2],
YM[3], YM[4], YM[5], YM[],

21

2.3 Previous approaches: A Literature Review

Major airlines, either individually or through operation research groups,
developed a variety of yield management methods that best suit their market
environment and work well with their reservation systems. Belobaba (1987a,
1989), one of the pioneering researchers in the area of airlines seat allocation
management for multiple nested classes, developed a probabilistic decision
model based on the Expected Marginal Seat Revenue (EMSR). The EMSR model
(and the modified version EMSRb (1992)) is used to set and revise booking limits
on each fare class on single-leg flights taking into consideration the stochastic
(i.e. random) nature of the future demands. By calculating the booking limits on
each class the model aims to protect seats for the higher fare class from the next
lower fare class. The user decides the points in time (days before departure)
during the booking process that the model should run to update its
recommendations. These EMSR models are widely used in yield management
systems.

Many comparisons were made by researchers and analysts, including Belobaba
(1992), between the EMSR algorithm and other optimisation techniques. For
example, Brumelle and McGill (1993), Curry (1990), Robinson (1995) and
Wollmer (1992), all reported that the EMSR model was only able to calculate the
optimal booking limits for the first two highest fare classes in the nesting
structure, they either modified the original EMSR or developed their own
algorithms to obtain the optimal seat allocation for all nested fare classes.

The seat allocation problem became more complex when airlines started to
increase their scheduled flights to many different destinations. They were not
interested anymore in maximising the revenue for each flight separately but
rather for the whole network, by managing the seat allocation policy on the basis
of origin and destination. Figure 2.5 illustrates a sample of a flight network of
some Kuwait Airways flights. Seats allocated on different fare classes on KU102
flight (for the North America and Europe market) is directly affected by the
KU201 flight to Karachi and KU301 to Bombay (for the Indian Sub-continent

market). In order to maximise the overall revenue for the network a balance

22

between high fare seats and low fare seats has to be analysed carefully to make

sure all flights have a minimum number of empty seats.

Figure 2.5: Flight network

As a result ofthis, more work has been done by researchers to extend the control
from single-leg techniques to a wider origin-destination optimisation methods.
See for example Belobaba (1989), Curry (1990), Dror et al. (1988), Gallego and
van Ryzin (1997), Glover et al (1982), Smith and Penn (1988), Vinod (1995),
Williamson (1988), and a number of papers appeared in the proceedings of
Airline Group of the International Federation of Operational Research Societies
(AGIFORS 1996/1997).

In the area of forecasting, Lee (1990) studied the airline reservations forecasting
process in detail and developed a probabilistic model that describes the booking
process as a stochastic process with requests, reservations, and cancellations
interspersed in the time before departure of the flight. He modelled the booking
process as an immigration and death process with non-homogeneous requests and
cancellation rates. A request or a reservation is considered as a new immigrant to
the population of the booked passengers, and a cancellation is considered as a
death of an existing member of the population. He introduced a censored Poisson

model for modelling the booking process which captures the dynamic nature of

23

the process and takes into account the censoring of airline booking data from
above at the booking limit.

Neural Networks have been used to forecast the no-show rates, Blackley (1993),
McGrath (1995), by using attributes from the passenger records held in the
reservation system (the historical passenger data stored in databases for statistical
analysis varies between airlines) such as: seat request, sales area, type of
payments. These studies proved that using passenger data rather than flight data
in the forecasting process improves its accuracy. McGrath (1995) reported that
using Radial-basis Functions Networks improves show and no-show predictions.
Only in the last few years researchers realised that they have to put more thought
into modelling the passenger choice behavior in more realistic way. That means if
there is more than one class available at any point in time during the booking
process, passengers might either choose their most desired class (according to
their preferences: price, service, times, booking restrictions....) or not book at all.
When the most desired class is full (closed) then passengers might choose
between booking on the second desired class (vertical recapture or buy up or buy
down) or book on another flight (horizontal recapture) or not to book at all and so
on.

Passenger Origin-Destination Simulator (PODS), which is the passenger purchase
behaviour simulation developed by Hoperstad at Boeing, AGIFORS 1996/1997,
demonstrated the importance of passenger choice behaviour on the revenue
management system recommendations. In a very comprehensive survey of 40
years of research in the area of forecasting, overbooking, seat inventory control
and pricing, provided by McGill and van Ryzin (1999), the authors highlighted
the importance of further research in the area of the behaviour of different
passenger types towards the change in fare products that are on offer.

Anderson (1998) suggested three approaches to improve the Scandinavian
Airlines System (SAS) origin-to-destination seat allocation system in order to
incorporate the buy-up (vertical recapture) demand and the horizontal recapture
(on other SAS flight) demand. He developed a discrete choice model that

calculates the probability of buying up when the most desired class is not

24

available, the probability of selecting another flight on the same class and the
probability of loosing the passenger to another carrier or through cancellations.
The model was based on the choice theory and multinomial logitfunction (MNL),
which is also the method used in our model as we will explain in Chapter 4.
Bitran et al. (1998) developed a general dynamic pricing stochastic model which
aims to maximise the revenue for retail chain with multiple stores and variety of
perishable products. Although the model had only one choice parameter, price, it
successfully modelled the arrival rate of customers and their willingness to pay
for products.

Talluri and van Ryzin (2000) developed a discrete choice dynamicprogram (DP)
algorithm that captures the consumer choice behaviour by also using the MNL,
while deriving the optimal policies for the seat allocation problem. The authors in
their paper say: “...while many attempts have been made to understand the
impact of choice behavior on traditional yield management methods and to
develop simple heuristics that partially capture buy-up and buy-down behavior,
to date there is no methodology that directly and completely addresses the
problem. ”

They combined the probability of arrival (or no arrival) with the probability of
choosing a fare class according to its utility value to different passenger types.
Their choice-DP model assumed a fixed arrival rate for all time periods of the
booking process. In order to run the optimization algorithm, estimations for the
arrival rates and the choice parameters were obtained by applying the expectation
maximization (EM) method of Dempster (Dempster et al 1977). There are some

similarities between our work and the work conducted in this paper.

25

CHAPTER 3

Markov Chain Monte Carlo Method

3.1 Introduction

Monte Carlo (MC) methods are stochastic techniques based on the use of random
numbers and probability to investigate problems. Any technique that utilizes
sequences of random numbers to perform statistical simulation could be called a
Monte Carlo method. The name Monte Carlo came from the capital city of
Monaco which is known as a center for gambling. Although the basic techniques
have been used for centuries, only in the 1940’s Metropolis, von Neumann and
Ulam called these methods Monte Carlo methods while working on the
Manhattan project because of the similarity of statistical simulations to the game
of chance, the core basis of gambling.

MC methods have been used in a wide range of fields such as nuclear physics,
molecular computation, traffic control, weather forecasting and others. Some of
the Seat Allocation Forecasting and Optimization techniques, mentioned in the
previous chapter, were tested by MC simulations (Lee 1990). Another application
area is medicine and medical related fields. A discrete MC method was used in
modelling the interaction between the HIV virus and the immune system
(Mannion 2001). This work illustrates that MC algorithms are suitable when the
field of application heavily depends on randomness and the behaviour of this type
of problem can be modelled by probability distributions. Probabilistic parameters
were used for the mutation of the virus and for the mobility of the 4 types of cells

used in the model.

There are many reasons behind the wide application of MC methods especially in

the last several decades:

(1) Its ability to examine complex systems by random sampling from the
probability density functions (pdfs) that describe the behaviour of the

physical (or mathematical) system

(2) The availability of high speed supercomputers allows research into problems
that may otherwise be computationally intractable

(3) The availability of efficient pseudo-random number generators which MC
simulation requires

(4) The method can be used in a parallel environment, where the simulation can
run on more than one processor simultaneously with different random number

sequences, then all outputs can be combined to get a final result

The major two components of any MC method are the probability distribution
(see Spiegel et al, 2000) and random number generation. The use of probability
theory in the field of statistics helped statisticians and scientists in many fields to
draw valid conclusions and make reasonable decisions on the basis of analysis of
data. There are many different interpretations of the concept of “probability”. In
this thesis we assume that probability measures the uncertainty as to whether a
particular event will occur or not in any random experiment. It takes a value
between 0 and 1 representing the strength of the belief in the occurrence of an
event. Ifwe are certain that the event will occur, then the probability of this event
is L On the other hand, if we are certain that the event will never occur, then its
probability is 0. For airline passengers, this can be applied by assuming that
business travellers have probability 0 of arriving 6 months before departure date
of a specific flight to book seats. Whereas tourist passengers might start arriving
6 months (or even earlier) before the departure in order to book seats in the low
fare classes while available so their probability of arrival has a value greater than
0. We will present the different probability distributions of different types of
passenger arrival in more detail in chapter 4 and 5.

Most MC models are based on Bayesian probabilities, which we will explain in
section 3.2. The Markov Chain Monte Carlo (MCMC) method (see Gilks et al
1996) is a Monte Carlo technique using Markov chains. A Markov chain is the

process of generating a sequence of random states, say {X0,X1, X2....} in such a

way that after time t, the next state XM does not depend on the history of the

27

chain {X0,Xl,....,Xt :} and only depends on the current state Xt. The transition
from one state to the next is decided by the conditional probability P(XM | Xt)

which determines whether to accept this random variable XM or to generate

another one.

We mentioned above that the MC methods are stochastic, so in order to ensure
this property, we use a random number generator to generate uniformly
distributed random numbers between 0 and 1. We use the built-in function rand()

in MS Visual C++ to generate sequences of random numbers.

3.2 Bayesian Probability Theory

Most Monte Carlo applications are based on Bayesian Theory (see Spiegel et al,
2000). This probability theory is subjective and depends on our state of
knowledge. We mentioned earlier that probability is a measure of uncertainty as
to whether a particular event will or will not occur. If we have no prior
knowledge regarding the event this will affect our measure of probability.
However, ifwe receive more information or if we actually know something about
this specific event or its properties then this will either increase or decrease our
belief in it taking place. For example, if a passenger wants to book a seat on a
flight and has a choice between two available classes with different fares, you
would assign an equal probability (0.5) to each class. However, if you knew that
this passenger is going on a business trip and the ticket will be paid by his
company, then the probability of booking in the high fare class will increase and
the other probability will decrease. In other words, we can say that the probability
of passengers booking in high fare class (A) given they are business men (B) is
higher than the probability of any passenger booking in high fare class. This is
known as the conditional probability of A given B denoted by P(A\B), and it is

the basic concept of Bayesian Theory.

Bayesian Theory has the following two axioms:

1. P(A) +P(A) =1 where /4is“notv4”
2. P(AaB)=P(A|B)P(B) where AaB naas‘AauB’

We know that
P(AaB) =P(Ba A)

Then
P(A [B)P(B) =P(B |A)P(A)
Or
P(A\B) = P(B IA)P(A)
P{B)

which is the Bayes Theorem.
Bayes Theorem can be used to assess the probability of a hypothesis, H, being

true given some data D and can be represented as follows:

P(D)

P(H |D) is the probability of the hypothesis after receiving more information
represented by some data and known as the “posterior”

P(D |H) is the probability of the data given the hypothesis and known as the
“likelihoodF

P(H) is the probability of the hypothesis before receiving any information and
known as the “prior”

P(D) is the probability ofthe observed data

Notice that our belief in the hypothesis increases or decreases as we observe more
data. So if we have more than one hypothesis that could explain the data, we can
use Bayes Theorem to assess which hypothesis is better in explaining the given

data. In other word, we need to find the posteriors for each hypothesis:

29

PjD\HXP{HI)

P(HAR) =1 D
P(H2|D) = P(D\'F:'(E))P(HZ)

Each hypothesis represents a “model”. Notice thatP(D) is the same in both
equations and can be ignored, as it is a constant of proportionality. If we have

more than two hypotheses and each one is defined by some parameters denoted

by the vector , then the Bayes Theorem can be written as:

P{0i \D)~P (D\0i)P{6i)

This says that the posterior probability of the hypothesis i (defined by its
parameters 0.) given some data D is proportional to the likelihood multiplied by
the prior.

WhenP(0;)is the same for all hypotheses i.e. uniformly distributed over 6 then

Pie, ID) cp(d 10.)

This means that the posterior probabilities are proportional to the likelihood.

Bayesian Theory is the basis of most algorithms used in MC simulations for its
ability to improve the measure of the probability towards the most probable level
when used in many trials. It can be used to classify new data. For example, it is
widely applied in the field of pattern recognition. One ofthe main areas of pattern
recognition is image analysis and image classification. Ripley and Sutherland
(1990), applied the theory to images of spiral galaxies in order to classify (any)
new galaxy image, and Ripley (1990) also applied the same theory to nematode
recognition. The basic idea of both those applications is to first assign a prior
distribution over a class of possible models P(S), using spatial stochastic

30

processes described by Markov random fields. Then for an observed new image
Z we calculate the probability distribution P(Z|S), the likelihood. Then any
analysis on S can be based on the posterior distribution P(S|Z) over the whole
class of possible models. This posterior is given by P(S|Z) a P(Z|S) P(S). (for
other MCMC applications in image analysis, see Chapter 21 in Gilks et al 1996)

We could use real data to fit our model. The data consists of booking curves for
large number of flights. But initially we will use simulated data. Our technique is
based on the Bayesian approach. We have a model of passenger behaviour, which
involves several parameters. In Chapter 4 we generate sample booking data from
the model, based on certain input parameters that describe the behaviour of
different passenger types. Then we can evaluate the posterior probability of the
model parameters given the sample data, by formulating an algorithm to calculate
the likelihood of the sample data given random combinations of parameter
values, using the appropriate distribution functions that describe the problem. We

will explain how this process can be performed in Chapter 5.

3.3 Metropolis Algorithm

When the model that describes the problem under analysis is represented by a
large number of parameters it becomes difficult to train it to classify new data. It
would be too difficult to build the posterior distribution P{61D) over the
parameters. In order to do that we would need to try all different combinations of
possible parameter values and calculate the probability of each combination, and
this is too complicated and time consuming. The solution is to generate random
samples from the posterior distribution. If the sample is large enough then it can
be used as an approximation to the posterior distribution. The sample consists of
a large number of parameter vectors 6 The frequency with which a particular
value of 6 occurs in the sample is proportional to its posterior probability. Thus,
the most probable values of # will occur most often and the least probable values

will be the most rare.

31

This is basically the Markov Chain Monte Carlo (MCMC) method which

generates samples of the parameters from a distribution that is similar to the

posterior distribution by running Markov chain(s) for a long time. Starting with a

random combination of parameters, the next combination is generated from the

current one. After the algorithm has run for a long time, the complete set of

parameter combinations represents the posterior distribution. The main advantage

of constructing the Markov chain is that the next combination of parameters only

depends on the current combination of parameters and is not affected by the

starting combination, i.e. the history of the chain. One way to construct a Markov

chain is by using the Metropolis Algorithm. 1f we have D as the data and 6 are

the parameters of the model, from Bayesian theory, the posterior

probability P{6 | D) is proportional to the likelihood P(D \6) multiplied by P(6),

which can be calculated from the model. We omitted P{6) because we assume the

prior of all the combinations of parameters are equally likely, so P(9) is constant,

(refer to section 3.2.)

The Metropolis algorithm is presented in the following steps:

1 Choose an arbitrary starting combination of parameters dx

2. Calculate In(P(Z) 16

3. Change one parameter at random by adding to it a random number to get a
new combination of parameters 02

4. Calculate h\(P(D \02)

5. If In(P(Z2)\02)> In(P(D 16Xthen add 02to the accepted combinations and
replace 6Xwith 02

6. Ifnot, then if exp(In(P(Z} |02)~ In(P(D \0X) >uniformly distributed random

number in the interval [0-1], then add 02 to the accepted combinations and

replace 6Xwith 02
7. Repeat from step 3

32

Step 6 allows the algorithm to generate combinations that are less probable than
the current one. Ifthis step were not present the algorithm would simply climb up
to the local maximum nearest to the starting combination and remain there. Step
6 allows the algorithm to move “downhill” and hence explore the whole
parameter space. The length of time that it spends in a particular region of the
parameter space is proportional to the posterior probability of the combinations in
that region.

After a certain number of iterations the Metropolis algorithm should reach an

“equilibrium” state, and after that the accepted list of combinations 0. should

represent the posterior distributionP(0\D).

Our goal in this thesis is to use the Metropolis algorithm to estimate the
parameters of a model describing passenger behaviour in the airline industry.

33

CHAPTER 4

Booking Process Simulation Model

4.1 Introduction

In this chapter we build a model that simulates the passenger choice behaviour in
booking an airline seat. As we mentioned in chapter 1, there are different types of
travellers, for example, there are business travellers who are more interested in
comfortable seats on a flight (especially in a long trip) than how much the seat
costs. On the other hand, there are tourist travellers who are more sensitive
toward the price they are paying for their seats than what restrictions that are
placed on their type of fares.
The airlines are faced with the problem of how to divide the aircraft into different
(physical or logical) sections with a different fare associated with each section in
order to get the best revenue out of their flights. If they assign more seats to the
service-sensitive travellers and fewer seats to the price-sensitive ones, they might
not get enough demand to fill the aircraft (if there are more requests from, say,
tourist or student travellers.) On the other hand if there are more seats assigned to
the cheaper class and the demand is high enough to fill the flight, but there is also
unnoticed demand for the more (slightly) expensive class that would have filled
the flight with a reasonable increase in the overall revenue.
There are many factors that influence traveller choice behaviour such as:

* the price they are paying for the seat

* the services attached with the price

*the time of departure and arrival and also the actual departure date
Another factor affecting the traveller decision during the booking process is
whether this booking is part of an itinerary of other flights that the passenger

needs to connect with. For example, for students studying abroad away from

34

home, there are certain periods that they can travel, such as Christmas or summer
holidays. So the airlines must take into consideration the high demand of students
during these periods. At the same time students are price sensitive passengers
which means that the demand for the low fare class would be high during those
periods. If students have to connect with another flight in order to get to their
destinations on a certain day and time, this would have a great effect on the

decision of which flight to choose.

The booking process is the most essential part of every airline’s reservation
system. It takes place in real-time during the life of every flight. It starts when the
flight becomes available for booking to the airline’s sales staff, travel agents or
any one that can access the reservation system such as over the Internet. In order
to simulate the behaviour of this large and complex operation and in order to
capture the various behaviour of different passenger types (arrival and acceptance

to book), we built a Monte Carlo simulation model.

4.2 Airline passengers as customers

In order to understand and analyse the airline passenger behaviour we need to
refer to the marketing research in the area of consumer behaviour. Consumer
behaviour is the process of choosing a product or a service among a set of
alternatives. Ajzen and Fishbein (1980) in their book “Understanding Attitudes
and Predicting Social Behavior” wrote:
The mounting interest in consumer behavior can be attributed inpart to
the desire of businessfirms to obtain a competitive advantage by basing
their marketing decisions on information about thefactors that determine
the consumers’ preferences among products. At the same time,
consumers have organized to express their dissatisfaction and demand
political action to ensure, among other things, higher standards of quality

and safety, lower prices, and better services.

35

Needs, motives, or desires are assumed to influence the information a
person seeks about a product, as well as her attention to, and perception
of, the product’ attributes....The product attributes or functions are
assumed to be judged in relation to the person% needs by means of
certain evaluative criteria, and this process presumably results in the
formation of an attitude which ultimately influences intention and

purchase behavior.

In the airline business, it is known that the most important criteria that influence
the decision of atraveller while purchasing an airline ticket on a specific class on
a specific flight are the price/fare and the services/comfort associated with this
price. There are other factors that affect the decision-making process such as the
time ofthe flight (departure and arrival time), and the day of departure (weekday
or weekend). For example, business passengers tend to prefer an early flight
departure on Monday morning, say at 7 a.m. to attend a meeting, say at 10 a.m.,
instead of arriving late the night before, and weekend days might have more
demand from leisure passengers.
Consumer choice analysis is a well studied area in the field of marketing, see for
example Wright (1975; Ajzen and Fishbein (1980); Grether and Wilde (1984);
and Engel et al (1986). According to Engel et al (1986) the Fishbein Model is the
most well known multi-attribute model used by marketers in consumer choice
analysis. The Fishbein Model is based on the following statement as mentioned in
Ajzen and Fishbein (1980):
.. apersons attitude toward an object is afunction of his salient beliefs
that the object has certain attributes and his evaluations of these
attributes. In the context ofconsumer behaviour the object is typically a
product or a brand within aproduct class. An estimate ofattitude toward
a product or brand is obtained by multiplying, for each attribute, belief
strength and attribute evaluation and then summing these products across

all salient attributes.

36

Symbolically the attitude can be related to the consequence and belief through the

following expression, as shown in Engel et al (1986):

H
where:

Aa = attitude toward the object

; = strength of the beliefthat the object has attribute i

e' = the evaluation of attribute i

n = the number of salient attributes.

And as defined in Engel et al (1986):
The model therefore proposes that attitude toward a given object (e.g.
brand) is based on the summed set of beliefs about the object’ attributes

weighted by the evaluation ofthese attributes.

In order to calculate the attitude or the desirability of a passenger toward a fare
class using the above equation, we need first to define each fare class by its
attributes. These attributes will only consist ofthe cost and the comfort associated
with each fare class. We will also have a set of attributes defining the
characteristics of the decision-maker, i.e. the passenger. We will explain in more
detail how we apply the above equation to obtain the desirability value of each

fare class by different passengers later in this chapter.

In the rest of this thesis we always use the word “class” to mean a “fare class”.

37

4.3 The Model

4.3.1 Model assumptions

In order to build a simplified basic model, we assume the following (at the

moment these assumptions are not realistic, they are merely to test the technique):

)

(2)

©)

(4)

The model represents the booking process on a single flight, but later we
use 100 flights

The booking process on this flight starts 6 months (day180) before the
departure day (day 0) i.e. booking period is 181 days. Each day of the
booking process is divided into 10 intervals. In each interval we assume
either no arrival of any passenger type or at most one arrival of each type,
i.e. we would have maximum of 10 possible arrivals of each passenger
type in each day. The value of maximum 10 passenger was chosen
arbitrarily for this experiment. An actual average number of arrival could
be determined by conducting some sort of a survey.

The flight consists of three classes, a high fare class, a medium fare class
and a low fare class. The three classes are defined by the following
attributes: number of seats assigned to each class; the cost (fare) of each
class; and the comfort value associated with the cost on each class. See
Table 4.1

There are three types of travellers, a business, a tourist and a student. The
characteristics of each type are defined by a set of parameters. There are
two sets of parameters for each passenger type used in this model, the first
one represents the arrival parameters of the passenger which are used to
calculate the probability of arrival of a passenger at any given day during
the booking process. The other set of parameters is used to calculate the
desirability (utility) of each class for each type of passengers. These
desirability values will be used to calculate the probability of accepting a
booking by the passenger. At the moment we assume all members of a

given type are identical. All business travellers will have the same value

38

of parameters, the same applies to the other types of passengers. See table
4.2

(5) For each type of passengers, the following applies:
* If the most desired class is full and the passenger is willing to accept a
booking on the next desired class, this is known as “Vertical recapture” of
the passenger on the same flight.
* If the most desired class is available and the passengers are not willing
to book on this class, (for example, even with the best combination of
price and comfort, the passengers might not think this is good enough for
them in order to accept the booking) then either (a) the passengers are
willing to book on another flight on the same desired class in which case
they are considered as “Horizontal recaptures”, or (b) they are not willing
to book on this airline and are considered as “lost” passengers. (At the
moment we treat these two situations together as we are dealing with one
flight only)
* If all classes are full and there are still passengers arriving then these
passengers are either lost or willing to book on another flight. We also

treat them together as Horizontal recapture or lost due to full flight.

4.3.2 Inputdata
There are two categories of input data:
1 Fare class information:
Number of seats
Price or fare ofthe class
Comfort value associated with the price
2. Passenger information:
Arrival parameter
Beliefor desirability parameters
Table 4.1, 4.2 provide sample values for all the parameters used in this model
with business passenger denoted by (bus) tourist by (tour) and student by (std)

explanation and detail will be provided shortly.

39

Hohfaedes Mdumfaedss Lonvfaredas

seatsc=m. of s 20 100 150
cod/c=dass fae 1200 800 500
comfE= dass service 800 600 300

Table 4.1 A sample of class parameters

bus tour std

Arrival parameters:
at=first dayof amivel 3 18 Ky
E)t: |astowoé);;ari\a 0 0 0

part betvweenaadb - 3 U

I%emstreﬁrsto@/
amd utl

st srzilrg\due b D D
Belief parameters:
ptl = confortimportacerating Q9 01 07}
p 2= oost inportane rairg Q1 Q9 Q3
pi3= neanvalle 4D 4D 4D

Table 4.2 A sample of passenger parameters

40

4.3.3 Calculation of the Desirability/Utility value of classes

Tre pessaer keaviour nocH is a disorete doice noce were we hawe a
dsorete finite st of doicss or atarrdives to doose fram for eane if we
hawe are flight trenthe set of aterretives will ke tre different dasses availade
o ths figt If we hae nore tren ae fligt with tre sane arigin ad
Cestiretion on the sare cay; then the set of doices will induck tre diasses of
each fligt & well &s tre tine atributes of esch fligt. Each dterretive inthe
dhoice st is daradenissd by a st of attributes, which are likely to affet the
doice of tre indvid e, ie tre tradler, such & te fare of a dass ad the
aofort or the servicss assodated with esch dass: Smilardy;, the cbdisions
ndeastradies hae ther atribues thet defire their drarederistics ad these
differ franare pessager tye to tre dier: These attriloutes will e ussd ©
caladate tre cesirdality arthe utility of eech dass intre doice &t

W\é dhooee the fare of the dass costc anda confort velue assooiated with eech

dass comfc to e the dass atriluies. For the confart atriloute we assunre ahigh

level of services asscoated with the high fare dass, ie. as te rice inoreesss tre

level of confort inoressss, (referto Tade 4.).

Tre atrilutes defining tre travdler type t (for t = business, tounst, stuchn)

aorsist of the folloning paraneters (referto Tade 42):
Tre first paransterp n, cefines tre inportance raing (elief) of tre
Enics (confort) assodated with the fare dass. As we exqdaired earlier
this varies lbetween different types of pessaoer adwe cediced anascale
letvween [Q 1], where O indicaties tret canfort is aosdlutely ot inportart
for this indvid L8l wrere &s 1 indicates thet confart is avery inportart
fedor.
Theseoond paranetap 22 cifires tre inportance radirg of the price of tre
dass adwe doe asce etvween [-1, 0], Trevalle -1 indicates tret the
eSS IS \ery sersitive to the price, Which caLsss anecgtive effect an
the deiraality, were & the valle O indicates thet the pessaoer is
asolutely ot worried aoout the price of the dass

41

The third parameter of the passenger belief parameters, pt3is required to

calculate the probability of the passenger accepting to book on the desired
class. We will explain how this parameter is used shortly.
Applying the Fishbein equation (refer to section 4.2) we get an overall value of
desirability on each class for each type of passenger as follows:
Denote the desirability by desr, then for each class ¢ and passenger type t with

parameters p n(comfort evaluation) and p t2(fare evaluation),

desrtc = comfc*pa + costc*pt2 4.2)

However, Bierlaire (1997), wrote:
The concept of utility associated with the alternatives plays an important
role in the context of discrete choice model....the complexity of human
behavior suggests that the choice model should explicitly capture some
level ofuncertainty.

Also, Ben-Akiva and Lerman (1985) stated:
The development ofProbabilistic Choice Theories arosefrom the need to
explain experimental observations of inconsistent and non-transitive
preferences. In choice experiments individuals have been observed not to
select the same alternative in repetitions of the same choice situations.
Moreover, by changing choice sets, violations of the transitive
preferences assumption are also observed. A probabilistic choice
mechanism was introduced to explain these behavioral
inconsistencies....it can be used to capture the effects of unobserved
variations among decision makers and unobserved attributes of the

alternatives.

42

Both references suggested the use of Random Utility Model to capture the
uncertainty, where the utility is modelled as a random variable and has the

following formula:

Ug =Fg +&f
where:
Ua is the utility that individual i is associated with alternative a

Va is the deterministic component of the utility

A is the stochastic or random component
and, the choice probability of any alternative a being selected by person i from
the choice set Cf is equal to the probability that the utility of alternative a, U4,

is greater than or equal to the utilities of all other alternatives in the choice set.
This can be written as follows:

/>@|C,)=Pr(t/'>C/;,V*eC,)

At the moment we have not yet implemented the above equation into our system.
Currently classes are sorted in descending order of desirability and we assume
that there is no variation between members of the same type, e.g. all business
passengers have identical parameters. We further assume that any passenger will
either opt for the most desired class available or accept no class at all. As Ben-
Akiva and Lerman (1985) make clear in the above quotation, these assumptions
are not realistic because human beings are inconsistent in their behaviour. We
would try to resolve these issues in future work (refer to Chapter 7.)

After sorting the desirability in descending order, then if there are seats available
in the most desired class we calculate the probability of this passenger accepting
to book on this class. If there are no seats available in the most desired class, we

check if there are seats in the next desired class and so on. So passengers never

43

book other classes if the most desired class is available. This is a consequence of

assuming no variation in passengers.

4.3.4 Calculation of the probability of accepting to book on the desired class
We choose the Logistic or Logit (distribution) function to calculate the
probability of accepting the desired class. The Logistic function has an S-shape
curve (see Figure 4.1) centred at zero, and is continuous of the range O to 1 It
has the following formula:

F) = LT

\ + e~x

When X is large and negative the function is close to zero. As X approaches
zero, the function is at 0.5. As X tends to infinity, the function gets close to 1

As we mentioned above, the function is centred at X=0, so in order to shift it
along the x axis we can subtract a value representing the mean from X. And we
can also stretch the function to give it different S-shape curves (shallow or steep),

by dividing X by avalue, as follows:

1N -

Figure 4.1 shows different curves all with m (mean) = 400 to shift from zero and
different z (stretch) values to illustrate how the shape of the function changes

with different values ofz.

44

W\é gdy this fudionto calauate the praatality of aoogataep ace, where X
is the caloulated toid desiraallity for eech dass franithe previos st desict,
the neenm isthethirdparanater pt3:

W axmarbz into pXpt2 ad pt3 sinee itis alirear scding parangte.

Logistic function with Mean = 400 and
with different values of z

1
0.8
0.6

0.4
0.2

0
921 -232 57 346 635 924

Figure 4.1: Logistic Function

Sande values of calaulated cesiratallity and praetallity of aoogtance framare
run of tre nodd ae donn in Tade 43 W cbaded to Lee this fudion to
calouate tre pracetality of acogating tre cksired diass becalse it gives ardtud
eqardionof theeffect of eech dass atriluie \WWenaost is eq dl 100 i.e afree
tidet, ths woud ke \ery desirdde (\ery doe o 1) As oost inoreesss
desiratality would at first revainhigh lut evertualy will get close to Owren acst
istoohigh 1.e oost hes aregative effect andesirdallity. The furdionwould heve

45

an gqyoite effect on aonfart Wen aonfart is conpletely asart, the dass
would e vary ucksirade (close to 0. As cofort inoressss, tre desirdality
would inoreeseuntl itgets doseto 1

W\é then compare the result fram this fudiion with a uniforry distritouied
ranchm ruoer between O ad 1 11 the resudt is gredter trenar eq Al to the
ranchminunicerthenwe assune thet the ppesseroeris willing to aoogat tre cksired

dass trenasset will be booked for the pessaer-

type 1

class: 0 classlabel: 0 desr: 1.8 pacc: 0.858149
class: 1 classlabel: 1 desr: 0.00199997 pacc: 0.5005
class: 2 classlabel: 2 desr: 2.98023e-008 p acc: 0.5

type 2:

class: 0 classlabel: 2 desr: 2.35 p_acc: 0.912934
class: 1 classlabel: 1 desr: 1.172 p acc: 0.763506
class: 2 classlabel: 0 desr: -0.2 p acc: 0.450166
type 3:

class: 0 classlabel: 0 desr: 3.6 p acc: 0.973403
class: 1 classlabel: 1 desr: 1.23 p acc: 0.773819
class: 2 classlabel: 2 desr: 0.55 p acc: 0.634136

Table 4.3: Sample calculated desirability and probability of acceptance for
three passenger types and three classes

46

4.3.5 Calculation of the probability of passenger arrival

The function we used to model the probability of arrival of a passenger in each
interval ofthe 10 time intervals in the day for each passenger type, p _arrt, is a
simple triangular function of time (see Figure 4.2, 4.3, 4.4). This is not realistic,

and just for the sake of the experiment only:

P_arrt(d ~cit) =0

2(d-a,)

p arrt{at<d <ct)= (4.3)

P/arrXci <d<bt) =1

where

d is the current time

at is first day on which passenger type t starts to arrive
bt is the end of the booking process (i.e. departure day).btis always 0
ct is apoint between at, bt on which the rate of arrival levels out

We assume that between time ct and time of departure, bt, a passengerwill
certainly arrive to book a seat every day as we get closer to the day of departure
for any type of passengers. Notice thatp arr is assumed to be the same for all the
10 time intervals of the same day d.

When at <d <ctand in order to get a number between 0 and 1we multiply the

result of this function by a scaling value, st. These variables have different

values for each type of passenger t, as shown in Table 4.1. We will demonstrate
the application of the function using atourist passenger. We assume that a tourist
passenger tends to arrive early during the booking process (6 months prior to
departure day) in order to get a seat in the low fare class before it becomes full.

So the value of parameter a for the tourist is -180 (180 days before departure).

47

¢1so assume that the probability of a tourist arriving to book a seat gradually
increases as we get closer to the departure day. After day ¢ =-30 we assume that
a tourist will definitely arrive everyday up to the day of departure b = 0, ie.
after ¢ = -30 the probability of an arrival of a tourist passenger is equal to 1 So
on day = -150 (i.e. 5 months before departure) the probability of a tourist
passenger arriving on this day is 0.0022 (equation 4.2). Multiply the result by
st =90 is P_arrtou(-150) = 0.2. Figures 4.2, 4.3 and 4.4 shows the values of

the function with respect to the time for business, tourist and student passengers
respectively.

48

49

4.3.6 Booking the passenger on the desired class

We assume that the cost and comfort values and the number of seats in each fare

class are known and fixed at the beginning of the booking process.

For each day in the booking process (181 days), for each time interval of the 10

time intervals a day and for each passenger type we check if there is an airival of

this passenger type, (refer to the model flowchart Figure 4.5a in section 4.3.7).

We perform the following steps:

1

For each ofthe ten hours we generate a uniformly distributed random number
between 0 and 1, if the calculated probability of arrival p arr from the
previous section is greater than the random number then we assume an arrival
and continue with step 2. Ifthere is no arrival of any type of passenger on this
day then we repeat this process for the next day in the booking period.

We then check if there are still seats available on at least one class then
continue with step 3. If the flight is full and all seats in all classes have been
booked we increment the counter for horizontal or lost passenger due to full
flight.

If any class is available (refer to Figure 4.5b) and the passenger is willing to
accept it then we check if this class is the most desired class, if yes then we
increment the counter of total passengers booked on this class and the counter

of seats booked by this type of passenger on this class.

Ifthis class is not the most desired class and the passenger is willing to accept
it then, as well as incrementing the previous counters, we also increment the

counter of vertical recapture of passenger.

If the passenger is not willing to accept the class we increment the counter of
horizontal recapture or lost passenger. At the end of the simulation model we
would get the total number of incremental bookings on each class for each

day.

50

4.3.7 Model Flowchart

A flowchart of the proposed model is shown in Figure 4.5a and 4.5b.

Figure 4.5a: Booking process simulation model

51

Bookseat:

Figure 4.5b: Booking process simulation model

52

4.4 Generating sample data

For illustration purposes, as shown in Table 4.4, we ran the simulation with the
following number of seats assigned to different classes in order to show the
contents of the various counters used in the simulation: 20 seats are assigned to
the high fare class; 100 seats assigned to the medium fare class; 150 seats
assigned to the low fare class. No cancellation allowed on any class. All seats
were booked on all classes. The number of business passengers booked on the
high fare class is 13 and no business passenger booked on any of the lower
classes. There is no vertical recapture of a business passenger either from the
high fare class to the low fare class or from the low fare class to the high fare
class. There is 1 business passenger who did not accept a booking on the most
desired class i.e. horizontal recapture or lost. There are 178 horizontal recapture
or lost business passenger due to a full flight. The same explanation can be
inferred for the tourist and student passenger counters.

53

Seats on class: 0: 20

Seats on class: 1: 100

Seats on class: 2: 150
Cancelled bookings on class: 0: 0
Cancelled bookings on class: 1: 0
Cancelled bookings on class: 2: 0
Total seats booked on class: 0: 20
Total scats booked on class: 1 100
Total seats booked on class: 2: 150
BUS:

BU S booked on class 0:

vertical recapture on class 0:
horizontal recapture or lost on class 0:
BUS booked on class 1

vertical recapture on class 1:
horizontal recapture or lost on class 1:
BUS booked on class 2:

vertical recapture on class 2:
horizontal recapture or lost on class 2:

horizontal recapture or lost due to full flight:

TOUR:

TOUR booked on class 0:

vertical recapture on class 0:
horizontal recapture or lost on class 0:
TOUR booked on class 1:

vertical recapture on class 1:
horizontal recapture or lost on class 1:
TOUR booked on class 2:

vertical recapture on class 2:
horizontal recapture or lost on class 2:

horizontal recapture or lost due to full flight:

STD:

STD booked on class 0:

vertical recapture on class 0:
horizontal recapture or lost on class 0:
STD booked on class 1:

vertical recapture on class 1:
horizontal recapture or lost on class 1:
STD booked on class 2:

vertical recapture on class 2:
horizontal recapture or lost on class 2:

horizontal recapture or lost due to full flight:

Table 4.4: A sample of model counters

54

=
w

B O O0OO0OO0O0O R, O

78

O PR OO0 O ~NOOo

[y
D
©

219

Figure 4.6 shows the sample booking curves for all the fare classes. The low fare
class tends to be booked earlier in the booking process, then the medium fare
class, and then the high fare class. A sample data booking table is provided in

section A. 1of Appendix A.

Sample booking curves for each fore class

1 20 39 58 77 96 115 134 153 172

Days before departure

Figure 4.6: Sample booking curves for all classes

The simulation is repeated 1000 times in order to produce minimum and
maximum booking values for each class for each passenger type in each day
during the booking process (181 days) as well as the mean booking values of the
same. Figure 4.7 shows the minimum, maximum and mean booking curves for

tourist passengers.

55

Minimum, maximum, and mean booking curves
for tourist passengers in low fare class

1 21 41 61 81 101 121 141 161 181

Days before departure

Figure 4.7: Minimum, maximum and mean booking curves for tourist
passengers

Now let us illustrate the effect of using different sets of parameters on the
booking curves. First we changed the parameters used for the probability of
arrival for both types of passenger (refer to Table 4.2 and section 4.3.5).

From the different sets of parameters we changed the first parameter, which is
used to represent the first day tourist passengers would likely start arriving, and
the third parameter which represents the starting day of definite arrival until the

day of departure.

56

The same was done for the business passengers, Figure 4.8 shows two different
mean booking curves for tourist passengers on the low fare class for the first two
arrival parameter sets. By decreasing the first parameter, a, which is the first day
of arrival from -180 to -145 the number of bookings of tourist passengers
decreased. Figure 4.9 shows two different mean booking curves for business
passengers on the high fare class for the first two parameter sets, we also reduced
the first day of arrival from 30 to 20 and that caused the booking curve to go

down.

Mean booking curves for tourist passengers on the low fare class

[-180, 0, -30, 90]
[-146, 0, -30, 90]

Days before departure

Figure 4.8: Mean booking curves for tourist passengers with different sets of
arrival parameters

Mean booking curves for business passengers on the high fare dass

— [-30,0, -7,15]

—*[-20, 0, -7,15]

1 13 25 37 49 61 73 85 97 100 121 133 145 157 169 181

Days before departure

Figure 4.9: Mean booking curves for business passengers with different sets
of arrival parameters

57

For calculating the desirability and the probability of accepting the desired class
we changed the parameters of passenger belief for each type of passengers (refer
to Table 4.2 and sections 4.3.3, 4.3.4). For tourist passengers we calculate the
desirability for the high and low fare class by substituting in equation 4.1 and 4.2.
The probability of accepting the high fare class has increased for the tourist
passenger from 0.269 to 0.73 by changing the comfort and cost parameters, but
also the probability of accepting the low fare class has increased from 0.73 to 0.9
which affected the mean booking curve to go higher from 77 passengers to 95

passengers on the day of departure as shown in Figure 4.10.

Mean booking curves for tourist passengers on low fare
class
150
135
120
105

wp -[0, -1,-400, 100]
75 [0 2, 0.8, -400, 100]
60
45
30
15
0

1 21 41 61 81 101 121 141 161
Days before departure

Figure 4.10: Mean booking curves for tourist passengers with different sets
of accepting parameters

4.5 Summary

This chapter has developed a probabilistic model for the airline booking process
based on Monte Carlo simulation method. The model was able to recognise the
different behaviour of different passenger types towards a verity of classes that
are available on the flight. We generated sample booking data for the 181 days of
the booking process for each class based on simplifying assumptions. We were
able to produce a variety of booking curves for the booking period by changing

the passenger parameters (characteristics) used in the model. We were also able

58

to capture some hidden events that are not available in the real-world data. For
example, in the reservation systems, there is no record of a passenger non-arrival
event or the decision by an arrived customer not to accept the most desired class
available and opt for no purchase at all. We showed that the random utility model
with discrete choice set works well for passenger choice behaviour and modelled
the number of bookings on each class. Vertical recapture was also considered
when the most desired class is full and the passenger decides to book on the
second or third desired class that is available.

We modelled the arrival behaviour for different passenger as a piecewise linear
function. The passenger arrival parameters for each type were assumed to be
known. We modelled the probability of accepting to book on a class using the
Logistic (Logit) function. The Logistic function performs well in modelling the
passenger choice behaviour because its value increases as the desirability of a
passenger towards a class increases. We also produced minimum, maximum and
mean booking curves from 1000 similar simulated flights. In order to make these
booking curves more realistic we really need to take into consideration other

realistic factors such as the cancellation and the no-show events.

59

CHAPTER 5

Fitting the Model to the Data

5.1 Introduction

In Chapter 3 we provided a general description of how to construct a Markov
Chain using the Metropolis algorithm in order to draw samples from the posterior
distribution of the model, P{01D). Sample booking data D was created in
Chapter 4, using three different passenger types defined by their parameters
(arrival and acceptance parameters). In this chapter we will generate random
combinations of the passenger parameters 6 (only the accepting parameters) in
order to fit the model to the given data D from Chapter 4. This process will be
done using the Metropolis algorithm. As we intend to run the Metropolis
algorithm for 100,000 iterations in order to get a reasonable collection of
parameter combinations that would represent the posterior distribution P(6 \D),
we decided to pre-compute all the necessary probabilities needed for our

mathematical operations and store them in files to speed up the process.

5.2 Pre-computation of Probability Distributions

In this section we show how to calculate the probability of any given number of
bookings on any given class on any given day. This depends on the values of
pacc for each of the three passenger types for that class. It also depends on the
values of p arr for each of the three passenger types for that day. We have a
three-stage procedure. In the first stage we calculate the probabilities of each of
the eleven possible numbers of arrivals (from 0 to 10) for each of the three
passenger types. We then calculate the probablities of each of the possible
number of acceptances from each of the possible number of arrivals for each of
the three passenger types for each of eleven different values of p acc (from 0 to

1.0). We then sum the probabilities of all the possible combinations, which could

60

give rise to a given number of bookings. There are thirty-one possible numbers of

bookings on any given day (from 0 to 30).

5.2.1 Creating a table for Probability of Arrival

In chapter 4 we used a triangular function to represent the probability of arrival
p arr during one of the ten time intervals of a passenger type in any given day of
the booking process (181 days), see section 4.3.5. We also assumed that there are
maximum of 10 arrivals of any passenger type in any given day, see section 4.3.1
for model assumptions. In order to calculate the probability of any number of
arrivals x from the maximum number of possible arrivals n=10, we used the
Binomial distribution, with the probability of occurrence p arr taken from the
triangular function. We assume we know in advance what the passenger arrival

parameters are: the same parameters are used to generate the booking data, and

are the input to the triangular function to give p _arrt(d) for each type of

passenger on each day. Then p arr will be used in the Binomial distribution to
produce the probability distribution of arrival of x [0-10] passengers of type t on

each day d.

All possible probabilities of arrivals for each type of passengers on each day were

stored in a table called P arrive. Figures 5.1, 5.2 and 5.3 show the probability

distribution for the business passenger arrival on day -26 with p _arrhm=
0.173913, tourist passenger arrival on day -120 with p arrtar= 0.4 and student

passenger arrival on day -40 with p_arrdd= 0.434783 respectively. A sample of
the table is provided in section A.2 of Appendix A

61

Binomial Distribution of Business Passenger Arrival
on Day = -26

- -laSs

iKj- \
ilgirfivir
v 'fs
1 2 3 4 5 6 7 8 9 10 11

X=Number of Arrivals

Figure 5.1: Probability Distribution for the business passenger arrivals on
day -26

Figure 5.2: Probability Distribution for the tourist passenger arrivals on day
-120

Figure 5.3: Probability Distribution for the student passenger arrivals on
day -40

62

5.2.2 Creating a table for Probability of Acceptance

The Binomial distribution can also be used to model the behaviour of the
passenger’s willingness to accept. In section 4.3.4 of the previous chapter we
used the logistic function to calculate the probability of accepting a booking
according to desirability value, and we generated a number between 0 and 1
representing the probability of acceptance for each type of passenger in each
class. When we have one arrival then we need to calculate the probability of
either the passenger accepting a booking or not. When we have two arrivals then
we have three possible outcomes: either no acceptance of a booking or one
acceptance or two acceptances. This can be repeated up to 10 maximum arrivals.
In order to create a table the probability of acceptance p acc is discretised into 11
values starting fromp acc=0top_acc=\ with intervals of 0.1. For each value of
p acc and for each value of possible arrivals x we will calculate the probability of

accepting bookings fromj passengers.

All possible probabilities of acceptance from all possible arrivals for each value
ofp acc were stored in a table called P accept. Notice that this table can be used
for any type of passengers, it only depends on the value of p acc which is
derived from the passenger belief parameters (refer to section 4.3.6 and equation
4.2). Figure 5.4 shows the probability distribution for accepting to book when
p acc = 0.8 and number of maximum arrivals n = 10. A sample of the table is
provided in section A.3 of Appendix A.

63

Binorrial Distribution of the Probability of Acceptance with p=0.8
and Nurrt>er of arrivals n= 10

08 U - eenees

X=Nurrtjer of Acceptance

Figure 5.4: Probability Distribution for all possible number of acceptances
whenp = 0.9 and maximum arrivals n = 10

5.2.3 Creating a table for Total Probability of Bookings
The sample booking data that the simulation model generates consists of the total
number of bookings on each fare class on each day of the booking process (refer
to section 4.4 and section A.l of Appendix A). On any day, the only data
available is the total number of booking in each fare class. We actually do not
know who booked this seat, was it a tourist or student passenger or perhaps a
business passenger. We also do not know how many people arrived and did not
book at all. For example, if we have 12 bookings on any given day, then these
bookings might have come from one ofthe following combinations:

10 business, 2 tourist, 0 student
or 10 business, 1 tourist, 1 student
or 10 business, 0 tourist, 2 student
or 9 business, 3 tourist, 0 student
or 9 business, 2 tourist, 1student

or 9 business, 1tourist, 2 student

and so on.

64

Notice that for each of the above cases, the number of bookings does not mean
the total number of arrivals, because the data only presents the total number of
acceptances on that day on each class. The number of arrivals might be at least
the number of bookings or any number lying between the number of bookings
and the maximum number of arrivals (30). On each day, for each number of
possible bookings in the range [0-30] we want to calculate the overall probability
of all the possible passenger combinations that might have produced this number
of bookings.

In order to calculate the probability of any number of bookings b on any given
day d for each passenger type t we must multiply the probability of at least x
arrivals (taken from the table of probabilities of arrival) by the probability of b
acceptances out of x arrivals (taken from the table of probabilities of acceptance).

Then we sum over all possible arrivals x, b<x< 10

p _booktd(p acc,b)="p _arrtd(x)*p _acc(x,b) (5.1)

X=b

Remember that the probability of x acceptances depends onpacc in the interval
[0-1] (refer to section 5.2.2). In order to build a table that covers all possible
situations we need to calculate the overall probabilities for all possible

combinations ofpacc associated with each type t for each day d.

Ifwe have 3 passenger types then we have p accx p _acc2, p _accs.

On any given day d we have the total number of bookings (on each class) bd in
the range [0-30],
If the number of booking of each passenger type is xI3 x2, x3, then

bd =xi +x2+x3

We calculate and sum the probabilities of each of the combinations of xI3 x2, x3

which sum to bd.

65

For each day, for the three types of passenger with p acc combinations starting
from [0, 0, O] to [1,1, 1], and for each number of total bookings [0-30], P tot will
be calculated and stored in Table Pallb. Figure 5.5 illustrates the steps taken to
create the table. A sample of the table is shown in section A.4 of Appendix A
This table will be used in every Metropolis iteration (100000 iterations) to
calculate the likelihood of all the booking data (181 days in all classes) given the
random combination of passenger belief parameters generated for this iteration.
The reason we decided to pre-compute all possible cases and store them in a table
is to reduce the run time of the algorithm. We actually reduced the run time up to
20% from the original version of the MCMC model. A layout of the binary file
that contains the table and the equations involved in calculating the correct read-

location from the file is provided in section A.5 of Appendix A.

66

Figure 5.5: Pre-computation of overall probabilities

67

5.3 Estimation of Model parameters using Metropolis Algorithm

In Chapter 4 we built an MC simulation model to generate a sample data for one
flight for each day of the booking process (181 days) on each fare class. This
simulated data will be used to estimate the model parameters (only the passenger
belief parameters) using the Metropolis algorithm (refer to section 3.3 in Chapter
3). By running the algorithm for a large number of iterations (100,000), i.e.
constructing a Markov chain, we would expect the algorithm to converge and
reach an equilibrium state after a number of iterations m<100,000. When the

algorithm terminates, the random sample of parameters combinations that were

accepted should represents the posterior distribution P(0 \D).

5.3.1 Start the algorithm with an arbitrary starting point

Recall that there are three passenger belief parameters, p n inthe range [0-1]; pt2

in the range [-1 - O]; pa in the range [-500 - -300] (refer to Table 4.2). The
algorithm will be started with any values for the three parameters within the
range shown above for all passenger types t. The choice of the starting values
should not affect the result of the Metropolis algorithm in the MCMC maodel

since it “forgets’ its initial state after it runs long enough.

5.3.2 Change one parameter at random

Generating a random number [1-3] determines which passenger type (3 types) to
change its parameter. Another random number [1-3] will be generated to
determine the parameter that has to be changed for this passenger type. Finally a
random number will be generated and added to the chosen parameter value,

keeping it within its valid range (refer to section 5.3.1).

5.3.3 Calculate the likelihood

In each iteration i we will calculate the likelihood of the sample data given the

current parameter combination 0.. For each day of the booking process d and for

68

each class c, first we find how many bookings occurred hdc. we have already
calculated the probability of acceptance of each passenger type { to each class c,

p_acctc, (referto section 5.3.1 and 5.3.2).

For each class ¢ we must obtain a set of p_acctc for each passenger type as
follows:
Ifwe have 3 passenger types then for each class we should have the set or index

Indexc = [p_acctp_acct2e,p_acct3). If this class is the most desired

available class to the passenger type {, then accept p acc for this type, otherwise

p_acc for this type on this class is 0. Given the day d and the total bookings on

class ¢ and the set ofpacc values for all passenger types on class ¢, we obtain

the overall likelihood ofthis event P _tot(bdc |0;) from the Table Pallb.

For example if Indexcé= [0.8, 0, O] means that only passenger type /, has class cx

at its most desired class.

Recall that the p acc values that were used to create the Table P accept were in
the range [0-1] with intervals of 0.1 (refer to section 5.2.2 and section A.3 of
Appendix A). However, the p acc that was calculated for each parameter
combination can be any value in the interval [0-1] (refer to section 4.3.3 and
4.3.4) i.e. notjust one decimal point. So we used linear interpolation (see Van
Loan 1999)

5.3.4 Using the Metropolis Algorithm

In the previous section we were able to calculate the likelihood of the total
bookings on each class given a random combination of parameters 0.. In order to
calculate the likelihood of all the bookings on all classes and all days, we need to
multiply all the P_tot(bdc |0,) values obtained from Table P allb in section
5.2.3, L(D |0;) =UP_tot(bdc|0j) . Instead of doing that we calculate the

natural logarithm of each P _tot(bdc \0t)and sum over all classes and all days of

the booking process to obtain the log likelihood as follows:

69

If we have 3 classes calculate

3
Log liked =T .h p _tot(bdic \0j)) (5.3)

Then for all days of the booking process (181) and for this iteration i of the

Metropolis algorithm calculate:

B
Log_like=£ In(P_tot(bd |0.)) (5.4)
0

In order to compare the likelihood between the current iteration /and the

previous iteration i-1 we calculate:

Max(Log like,,Log likej ¥ =TRUE (5.5)

If the parameter combination 6. satisfies the condition in equation (5.5), then
repeat the next iteration of the Metropolis algorithm with the parameter
combination GM = 0t, i.e. the chain moves to the next state.

If not then perform the following test:

If (exp(Log _ like.- Log _ like”) >random no. from U[0-1]) (5.6)

If the parameter combination 9. satisfies the condition in inequality (5.6), then
repeat the next iteration of the Metropolis algorithm with the parameter
combination OM = 6-, i.e. the chain moves to the next state. This test protects the
algorithm from getting trapped in local minima. Otherwise repeat the algorithm

with Q_j. After a certain number of iterations, say «, the Markov chain

{0,.,.#n } will converge and parameter combinations accepted after iteration

70

n will be, approximately, samples from the posterior distribution of the model
P(0\D).

5.4 Summary

Before creating the tables for the pre computed probabilities we faced difficulties
with the time taken by the Metropolis algorithm to run (100,000 iterations). So
we saved time by first creating a table that contains the probabilities of all
possible number of arrivals for each type of passenger. Secondly we created a
table for the probabilities of all possible acceptances from all possible arrivals.
Then we used these two tables to calculate the total probability for each possible
passenger parameter combination and stored in a table. This table is used in each
iteration of the algorithm and the algorithm simply reads the required total
probabilities in order to calculate the likelihood. We developed a model that
creates a Markov Chain that contains samples of the parameter combinations that
represent the probability distribution of the model parameters given the data. We

used the Metropolis algorithm to construct the chain.

71

CHAPTER 6

Result Analysis

6.1 Introduction

In Chapter 4 we saw how to generate synthetic data from known parameters. In
this chapter we use our MCMC method to estimate the parameters from the data.
Our purpose is to test our MCMC algorithm. We wish to see how accurately we
can determine the parameters used to generate the data. We conduct a series of
tests starting with the simplest possible situation- one passenger type booking on
one fare class - and then increase the complexity by introducing more passenger
types and more classes.

We construct a Markov chain using the Metropolis algorithm and the simulated

booking data D. The chain contains a sequence of random parameter
combinations for the passenger belief parameters \00,01,02,...}. After a

sufficiently long number of iterations the chain converges reaching an
equilibrium state. We run the algorithm for 100,000 iterations and output to a file
the accepted combination after every 10,000 iterations. This random sample of
parameter combinations that were accepted represents the posterior
distribution/A# |D) . A point in 3D space can represent the three parameters in
each combination. Plotting all combinations of the chain using MATLAB 5.2 we
get their distribution in relation to the correct combination used to generate the
data.

In section 6.2 we first test the algorithm with simulated data produced from one
passenger type booking in one class. In other words we assume that only one
passenger type arrives and there is only one class available. We make the number
of seats in this class artificially large so that it does not fill up. Then we repeat the

same experiment twice more with the same passenger type booking on a different

72

class each time. Each of the three previous experiments will produce a different
plane in parameter space. Then we plot the three planes and examine the area of
intersection. This area should include the original parameter combination, which
was used to generate the data - so this provides a test of our algorithm.

In section 6.3 we test the algorithm for the case of one passenger type having the
choice of booking on two classes. Section 6.4 will give the results of a run for the
same passenger type having the choice of booking on three classes together. In
section 6.5 we introduce a different passenger type and examine the results of the
algorithm for this passenger type and the previous three classes. We then run the
algorithm for the previous two passenger types and the same three classes in
section 6.6. Finally we add a third passenger type in section 6.7 and examine the
results of the algorithm on three passenger types and three classes.

The reason why we expect to have a plane in 3D from each run is because we are
dealing with three parameters pn,pt2 andp t3 for passenger belief. The first two

parameters come from equation (4.1) ofthe desirability (refer to section 4.3.4):

desrtc = comfc* pn+ costc*Pt2

The result of this equation is then used to calculate the probability of acceptance

using equation (4.2) (refer to section 4.3.5):

p_accu (de*ru)=

Notice that we subtract the third parameter p I3 from the desirability desrtc, (z is
kept constant through all the experiments). We can rewrite equation (4.1) as

follows:

desrtc = comfc *pn + costc*pt2 (6.2)

73

If the Metropolis algorithm is working correctly it should generate parameter

combinations that produce the same probability of acceptance p_accto, i.e. that

have similar desirability desrtc. With cos/c and comfe remaining constant

during the execution ofthe experiment and keeping only the points or parameters

that generate the same desrtc, then equation (6.1) represents the equation of a

plane in a 3D space whose dimensions are ptl,p®2 andpt3. This plane should

include the original parameter combination, which was used to generate the data.

74

6.2 One passenger type and one class

6.2.1 One passenger type and one class (classl) for one flight

First we test the algorithm with one passenger type booking on one class for one
flight. Figure 6.1 shows the output from the Metropolis algorithm: a plane in 3D
representing the posterir distribution over the passenger parameters for this type.
The plane does include the original parameter combination, as it should do. The
parameters used for this run are shown in Table 6.1. The probability of

acceptance for this test is p_acctc= 0.8. Remember all points on the plane

generate the same p_acctc. The thickness of the plane is determined by the

amount of data available to the algorithm. We will see later that when we run the
algorithm with data from 100 flights instead of data from one flight the degree of

uncertainty reduces resulting in thinner planes.

Correct parameters (data parameters): pn=0.7 =08 pt3=-400
The arbitrary starting point: Pn= 0-5 Pt2=-02 Pt3='450

Classl parameters: seatsc= 500 cost= 600 comfc= 800

Table: 6.1 Parameters used for one passenger type and one class (classl)

75

onrel panmste-comlun“on

parameier|

ﬂ'iM parameter! parameleC

paramerer2

Figure 6.1: A plane viewed from different angles for one passenger type
booking on one class with p_accto= 0.8. The original parameter
combination lies in the plane as it should do

76

6.2.2 One passenger type and another class (class2) for one flight
Then we test the algorithm for another class with the same type of passenger for

one flight. Table 6.2 contains the parameters used for this run. The probability of
acceptance for this test is p_acctc= 0.5005. Figure 6.2 shows another
distribution of this type for another class with a different p _acclc. The costc

and comfc values used in this run are not realistic. They have been contrived to

produce a plane that is orthogonal to the previous plane in order that the area of

intersection between the two planes is as small as possible.

Correct parameters (data parameters): pn= 0.7 pt2=-0.8 Pa=-400
The arbitrary starting point: Pn=05 Pt2=-02 Pt3= '450
Class2 parameters:: seatsc=500 costc=-400 comf = 150

Table: 6.2 Parameters used for one passenger type and another class (class2)

Figure 6.2: One passenger type booking on another class with p _acctc=
0.5005

77

3CcC onginal parameter combination

parameter
parameterl

Figure 6.3: Two planes representing two different classes for one passenger
type with large area of intersection between them

For comparison Fig. 6.3 shows the result when we run the algorithm with
different costc and comfc values which produce planes which are nearly parallel.
We notice that the two planes representing the two different classes intersect in a

large area indicating a high degree of uncertainty in our estimate of the original

parameter combination.

78

6.2.3 One passenger type and another class (class3) for one flight
Then we test the algorithm for a third class keeping the passenger type the same

and also for one flight only. Table 6.3 contains the parameters used for this run.
The probability of acceptance for this test is p_acctc= 0.5. Again costc and
comfc have been contrived to produce a plane that is orthogonal to the previous

two. See Figure 6.4.

Correct parameters (data parameters): pn= 0.7 n =08 pt3=-400
The arbitrary starting point: p(=05 Par-°2 NG O
Class3 parameters : seatsc=500 costc=-114 comfc=400

Table: 6.3 Parameters used for one passenger type and another class (class3)

original parameter combination

parameter -1 0 parameiert

Figure 6.4: One passenger type booking on another class with p_acctc= 0.5

79

6.2.4 Intersection between the planes of the previous classes

Then we plot all the three previous planes as illustrated in Figure 6.5a and 6.5b;
they intersect in a region which also includes the correct point that was used to
generate the data (0.7, -0.8, -400)

parameter2 parameter”!

Figure 6.5a: Intersection between the 3 previous planes

Figure 6.5b: Intersection between the 3 previous planes, different angle

6.3 One passenger type and two classes

In the previous section the passenger only had the choice ofbooking on one class.
We now introduce two classes simultaneously (class1 and class2 from section
6.2.1 and 6.2.2 are used) and allow the same type of passenger used in the
previous tests to have the choice of booking in two classes. After the most desired
class for this passenger type becomes full then the passenger has the choice either
of booking in his second desired class or not. In this case the simulated data
includes the effect (influence) of the choice behaviour between two products (or
classes). Figure 6.6 shows the booking curve in this case. The booking activity on
these two classes should provide us with more information about this passenger
type. So running the Metropolis algorithm using this new booking data, the
resulting Markov chain should provide more accurate (specific) parameter
combinations that better describe this passenger type. Figure 6.7 shows the two
planes of the two classes running separately, then Figure 6.8 shows the output of
the two classes together in the same run. Notice the location of the output is
where the two previous planes from Figure 6.7 intersect. The plot in Figure 6.9
shows the result of the same two classes but run for 100 flights. Using 100 flights
reduces the uncertainty, so the distribution is more concentrated but it still
contains the original parameter combination. Notice, two classes do not give
enough information to pinpoint the original parameter combination exactly.

One passengertype booking on 2 classes

Classl
Class?

1 15 29 43 57 71 85 99 113177141155109
C&ys before departure

Figure 6.6: Booking curve for one passenger type and two classes

-300 -

-35U =

Ob

W parameter!

Figure 6.7: Intersection between the runs from one passenger and two
classes separately. The original combination is shown as a black dot.

Figure 6.9: One passenger type and two classes for 100 flights. Notice how
the spread of the distribution is reduced. The original parameter

combination is shown as a black dot

83

6.4 One passenger type and three classes

We introduce athird class to give the same passenger type from previous tests the
choice between 3 different fare classes (class3 from section 6.2.3 was used).
When the most desired class becomes full the passenger has the choice of
booking on the second desired class or not to book, and so on, see Figure 6.10.
Figure 6.11 shows the posterior distribution for this case. For comparison we
repeat Figure 6.5a which shows the planes generated by each class individually.
The large blue distribution in Figure 6.11 corresponds to the region of
intersection of the three planes in Figure 6.5a.

The red distribution in Figure 6.11 is for 100 flights and the blue distribution is
for one flight. Notice that for the 100 flights the distribution is more concentrated.
Also notice that the correct parameter combination does not lie in the 100-flight
distribution. We think the reason for this is that the correct parameter
combination lies on the edge of the region of intersection in Figure 6.5a. The
algorithm appears to be biased towards the centre of this region. This problem

needs to be addressed in future work.

One passenger type booking on 3 classes

_"Qassl1
_* Qass2
_* Qass3

1 16 31 46 61 76 91 106 121 136151 166181

Days before departure

Figure 6.10: Booking curve for one passenger type and three classes

84

onapax arid thraa classes, cyan: ons flight, red' 10D fligfits(T=1)

original parameter combination

-300

-350

-460

o

- N
-4 -(p €s EY ° paramstsrl

Figure 6.11: One passenger type (typel) with three classes, blue distribution
for one flight and red one for the 100 flights

Figure 6.5a (repeated). This shows the planes generated individually by the
three classes used to create Figure 6.11 (above).

85

6.5 Another passenger type and three classes

We change the passenger belief parameters to introduce another passenger type
(type 2) and generate new booking data for this passenger type. Then we run the
Metropolis Algorithm to produce a different Markov chain representing the
distribution of the new passenger type. Table 6.4 contains the parameters used for
this run and Figure 6.12 shows the result of the run on data of one flight and 100
flights. Figure 6.13 shows the intersection between the three planes (each for a
different class) for this type of passenger. Notice that the area of intersection is
the same area covered in Figure 6.12. Figure 6.14 is the same as Figure 6.12 but

from different angle.

Correct parameters (data parameters): pn= 0.2 Par-o-7 A 3=-420
The arbitrary starting point: Ai=02 A 2= -°.7 As = -420
Class 1 parameters: seatsc=20 cos7,=600 comfc= 800
Class2 parameters: seatsc=30 costc=-114 comfc= 400
Class3 parameters: seatsc= 100 cost= -400 comfr 150

Table: 6.4 Parameters used for another passenger type and three classes

86

different pax with thrBe classes lhick line for ore flight and thin line for 10D (lights

original parametercombinalion

-3D0-,
-350 —
1-400 -

-450-

1 paramoterl

Earameter2

Figure 6.12: Different passenger type (type 2) with three classes for one
flight(thick line) and 100 flights (thin line)

-300 -,

-460

parameter!

naram fttot?

Figure 6.13: Intersection between the runs for a different passenger type
(type 2) and three classes separately

87

Figure 6.14: Different passenger type (type 2) with three classes-different
angle

88

6.6 Two passenger types and three classes

We create booking data for two passenger types and three classes for 100 flights
using the previous two passenger parameters (type 1 and 2) and the previous class
attributes, (refer to Tables 6.3 and 6.4). After running the algorithm on this data,
the result was very similar to the separate run for each passenger type and the
three classes. This indicates that the algorithm is actually recognising different
passenger types and keeping only the parameter combinations for each type that
have a high likelihood of generating that data. In this run the Algorithm is dealing
with six different parameters, three parameters for each type. If the most desired
class for each passenger type is different then there is not much of an effect on
the different algorithm decisions. However, if the most desired class is the same
for both types then the two passenger types are competing for the same class.
This will have an effect on the algorithm decision as it has to weigh between the
probability of the booking (in case of one booking on this day) being made by the
first type or the second type. This effect should not create a major diversion from
the correct parameter combination because as the data size increases (100 flights),
the pattern of the behaviour of each passenger type can be recognised more
accurately. Figure 6.15 shows the previous separate results for each passenger
type (same as Figures 6.11 and 6.14), and Figure 6.16 shows the distribution of
the passenger parameter combinations for each passenger type from the combined
run. Please note Figure 6.16 actually displays six-dimensional data in a three-
dimensional space. The output of the Metropolis algorithm consists of
combinations of six parameter values: three for each of the two passenger types.
The two triplets are actually displayed in the same space, using colour to
distinguish the two sets. This implies that each point in the blue distribution

actually has a partner in the yellow distribution.

89

Figure 6.15: Two passenger types (typel and 2) in separate runs with 3
classes for 100 flights

Figure 6.16: Two passenger types with 3 classes from 100 flights. Notice the
increase in uncertainty

90

6.7 Three passenger types and three classes

This time we introduce a third passenger type (type 3) with different belief
parameters, as shown in Table 6.5. We first run the algorithm for this passenger
type separately and plot the result in Figure 6.17. Then we run the algorithm for
the three passenger types and the three classes together and the results are shown

in Figure 6.18.

Correct parameters (data parameters): pa= 0.5 g =05 Pt3=-300
The arbitrary starting point: Pt\=0.5 Pt2=-°-3 Pa=-30°
Class 1 parameters: seatsc=20 cost =600 comf = 800
Class2 parameters: seatsc=30 o =, Fp2 comf =400
Class3 parameters: seatsc= 100 costc=-400 comfc= 150

Table: 6.5 Parameters used for a third passenger type and three classes

Figure 6.17: A third passenger type (type 3) with 3 classes from 100 flights

91

Figure 6.18: Three passenger types with 3 classes from 100 flights

From Figure 6.18 we can see that as we add more passenger types (type 3), the
uncertainty increases and the algorithm faces difficulties homing in on the correct
set of parameters. This is why the area covered for the third passenger type is still
large. We then increased the number of flights to 1000 for the three passenger
types, to give the algorithm more data to work with. This decreased the
uncertainty in type 2 but typel and type 3 got trapped in local minima. The result
is shown in Figure 6.19. Perhaps the solution to this problem is to use simulated

annealing.

92

Figure 6.19: Three passenger types with 3 classes from 1000 flights

6.8 Summary

In Chapter 5 we developed a Markov Chain Monte Carlo (MCMC) model using
the Metropolis algorithm to fit the model parameters to sample booking data
generated by the model developed in Chapter 4. Starting with booking data for
one passenger type and one class we were able to construct a Markov Chain that
represents the probability distribution of the parameters given this sample data.
We then introduced another class to test whether the model can recognise the
different behaviour of the passenger towards different classes. The same was
repeated with one passenger type and three classes and the algorithm was able to
use the additional information given to it to get better results regarding this
passenger type. Then we did another experiment with a different passenger type
and the previous three classes. We then ran the algorithm on data generated from

two passenger types booking on three classes. The last experiment was done on

93

three passenger types and three classes. In all the previous tests we noticed that
although the algorithm was able to distinguish between the different passenger
types, as we increased the number of passenger types the level of uncertainty
increased resulting in the algorithm facing difficulties homing in on the correct
set of parameters. We also tested the benefit of having more data available for the
algorithm by generating booking data for 100 flights instead of only one flight,
and the resulting distributions from these tests were more concentrated around the

correct set of parameters.

94

CHAPTER 7

Conclusion and Future work

7.1 Conclusion

In this work, we built a Monte Carlo simulation model for the airline booking
process based on one flight with different fare classes and different passenger
types. We generated sample booking data for the 181 days of the booking process
for each class. We were able to produce a variety of booking curves for the
booking period by changing the passenger parameters (characteristics) used in the
model. We were also able to capture some hidden events that are not available in
the real-world data. For example, in the reservation systems, there is no record of
a passenger non-arrival event or the decision by an arrived customer not to accept
the most desired class available and opt for no purchase at all. We showed that
the random utility model with discrete choice set works well for passenger choice
behaviour and modelled the number of bookings on each class. Vertical recapture
was also considered when the most desired class is full and the passenger decides

to book on the second or third desired class that is available.

We modelled the arrival behaviour for different passenger types and represented
it with a probability distribution. The passenger arrival parameters for each type
were assumed to be known. We modelled the probability of accepting a booking
on a class using the Logistic (Logit) function which is one of the random utility
models. The Logistic function has an S-shape curve. It performs well in
modelling the passenger choice behaviour because its value increases as the
desirability of a passenger towards a class increases, i.e. if the desirability
towards a class is high then the probability of accepting a booking on this class is
also high. We decided to build a simple model of the booking process (one flight,
up to three passenger types, and up to three classes). As is always recommended,

we began with a simplified version when modelling a complex system. However,

95

it is also preferable to simulate all the important processes that have a direct and

important effect on the decision ofthe real system.

This sample booking data was then used in a Markov Chain Monte Carlo model
in order to estimate the passenger choice parameters used in generating the data.
We used the Metropolis algorithm to construct the Markov Chain. In order to
compute the log-likelihood required by the algorithm for each iteration and to
speed up the execution time, we pre-computed all the necessary probabilities and
stored them in tables. When the algorithm reached an equilibrium state after a
certain number of iterations, the chain converged and the parameter combinations
or the random samples that were chosen did represent the distribution of the
parameter combinations given the generated data. These estimated parameters for
each passenger type could be used then to classify any new booking data. When
we increased the amount of data (100 flights) available to the model we were able
to get closer to the most probable set of parameters. However, care had to be

taken to avoid getting trapped in local minima.

As we increased the number of passenger types (i.e. increased the number of
estimated parameters) and the number of classes, the complexity of the model
increased and the algorithm faced difficulties in converging on the right

parameter combinations.

We also tested the MCMC model in a parallel processing environment with a
cluster of one server and 10 nodes. The 100,000 iterations of the Metropolis
algorithm were divided into 10,000 iterations running on each machine (node)
creating multiple parallel chains. The results from all machines were combined
and produced the same result as the result from all iterations on one PC. The run

time was reduced from approximately 216 hours to 30 hours.

96

7.2 Futurework

Further work and research can be conducted in the following areas:

The MC simulation model can be extended to introduce more classes and
other types of passenger, as well as other flights with differing fares and
comfort values. We could also add more attributes to the alternative
criteria to increase the choice set, such as time of departure, day of the
week etc. Also the probability of cancellation can be introduced and
incorporated with the overall probability for each day of the booking
process in selected classes. This will give more accurate predictions of the
actual total number of bookings on departure day. Also the no-show
probability can be added in to give an estimate to the number of no-shows
that might occur on departure day.

The parameters used to model the probability of arrival of each passenger
type were assumed to be known in our model. We could assume these
were unknown and try to estimate them using the MCMC model.

For each passenger type the belief parameters used in the model were the
same for all members of the type. We can introduce variation in these
parameters for each type to get more realistic choice behaviour.

When we introduced a third passenger type we found difficulties in
getting a good estimate for the three passenger parameters. The
Metropolis Algorithm was not able to distinguish between the most
desired class for each passenger without the indirect effect of the other
classes. One way to overcome this hurdle is by running the algorithm in a
separate time frame for each type. While we know the parameters of
arrival for each passenger type indicating the most probable time-frame
that this type will arrive to book. So we can run the algorithm for this
period which will give us an idea of what the parameter combinations we
should keep for this passenger type. For example, tourist passengers
arrive and book early during the booking process period, so there is a
time-frame when bookings are entirely due to tourist passengers. We

could then continue running the algorithm from the day the next type is

97

expected to arrive until the day the third passenger type start arriving, and
keep the accepted parameters and so on.

For a further test on the algorithm, we could run it using a real booking
data and examine whether the estimated parameters of different passenger

type can tell us who actually booked this real data.

98

References

AGIFORS, Airline Group of the International Federation of Operational Research
Societies, Reservations & Yield Management Study Group Proceeding, Zurich, 1996 and
Montreal, 1997

Anderson, S. E., “Passenger Choice Analysis for Seat Capacity Control: A Pilot Project
in Scandinavian Airlines,” Intl. Trans Opl. Res., Vol. 5, pp. 47-486, 1998

Ajzen, I. and Fishbein, M., Understanding Attitudes and Prediction Social Behavior,
Prentice-Hall, Inc., 1980

Belobaba, P., “Air Travel Demand and Airline Seat Inventory Management”’ Ph.D.
Dissertation, MIT, Cambridge, Mass, 1987a

Belobaba, P., “Airline Yield Management: An Overview of Seat Inventory Control”,
Transportation Science, Vol. 21, pp. 63-73, 1987b

Belobaba, P., "Application of a Probabilistic Decision Model to Airline Seat Inventory
Control”, Operations Research, Vol. 37, No. 2, pp. 183-197, March-April 1989

Belobaba, P., Williamson, E. and Martin, B., “Comparison of Yield Management
Methods for Flight Leg and O-D Control” AGIFORS, Reservation and Yield
Management Study Group Meeting, Chicago, IL, April 1989

Belobaba, P., “Optimal vs. Heuristic Methods for Nested Seat Allocation” AGIFORS
Reservations & Yield Management Study Group, Brussels, May 1992

Belobaba, P. and Wilson, J. L., “Impacts of Yield Management in Competitive Airline
Markets”, Journal ofAir Transport Management, vol. 3, No. 1, pp. 3-9, 1997

Ben Akiva, M. and Lerman, S. (1985) Discrete Choice Analysis: Theory and
Application to Travel Demand, (MIT Press, Cambridge, Ma.)

Bierlaire, M., Discrete Choice Models, 1997
http://its.mit.edu/michel/discretChoice/paper.html

Bitran, G. Caldentey, R abd Mondschein, S. “Coordinating Clearance Markdown Sales
of Seasonal Products in Retail Chains”, Operations Research, vol. 46, pp. 609-624,
1998

Blackley R, “Comparison Study of Forecasting No-Show Rates”, Internal British
Airways memo, 1.0, 19 January 1993

Bratly, P, Fox, B. L., Scharge, L. E’M Guide to Simulation, Second Edition, Springer-

Verlag, 1987

99

http://its.mit.edu/michel/discretChoice/paper.html

Buwde S L adMdll J 1, AriweSHAllcrrﬂmthm Nested Fae

Qasses' Operations Research, V. 41, No 1 127413, hwyl%gfay]%
Alaationwith Fare (lasses Nstied nad

%}/rﬂldf qunsportanon Scﬁe 24 No 3 o 1824 %}g

EP\/llﬂg’llf\lIM %ﬁ?of[ﬁe Roya Stat Sol?:lllé?ylhB \,(Fﬁug‘i %nlj:%e

DarM TiuokeuP, ad Lackny S, * Ntvark MicHs for Seet Allacation anHi
Trans%lrta fion Research-8, VAI'28 No. 4, 29°4), 198 JE

Btd JF Badandl, R D adMiad P W,Consumer Behaviour, sthed, (BS
RAdidirg JenLid, 1986

Alks WR, Rdadm S ad Jagdrdter; DJ, “Mirkor Gan Mirte Grdo in
Padics’, Ggnan&HHl, 1956

AEI%C% (? M@W'P%égat%r{saﬁr arch, r%d 43 \III)aJI,jn%S

F, GoarR, LaawJ adMiMlan C, “Tre Pessagr MxRddemintre
JedAmre Interfaces \ol. 12 No 3 37, 192

Gdie;, D ad Wik L, 2n Adyss of Grjudive Goe Treay ad
Eqerinarts, Journal of Consumer Research, V. 10(Mardh), [37335, 184
Kear, N A, SystemModelling and Computer Simulation, Mircd D, I, 1983

Kinat Anvays Yidd @t avFiarg Qeraiod Revewad Adion Han
AnericanArlires, Dsasion Tedrdoges, Unadidised coounant, My 192

Lee AQ, “Airigs Reenlicrs Frecesig Prekptligic i Setisical Mk ofre
GRS P LR E MG M 10

Mimim R, “CAad Mre Grio Michs of HV Infediat’, M Tresis DUdin
Gty Unveraty, Feaity of Crmpoutirg ardVétrenvaticl Soenoss, Jnuary 201

Mall, J L erd\m\%n%GJ mw@mmmm

I\,deahFaJ “Foracdting A ShwRaEBUJ Rdd-BHs
RrcicnNwarks” I\/En‘l’rr%s Im%ﬂ Y

Nedakaull, F, Computer Simulation andModelling, Jdn\Wiey &SsLid, 1986
Riat C P ad GelaG, “Mirte Grlo Satisicdl Mithock”, Sirge-\érlag New
Yok Irc, 198 g

]

Rey. B D ad tredard A 1, “Frdig Jard Srudures in Inages of Gllaxes”,
l HBRSELGU%JQH)) ks s

A R R (A B A 29
Rﬁ%L VV,- %f’rg Fggé%rmemﬂd Rdiaes for Adlire Boddarg vith
NarchAil 195

,Operations Research, V. 43 No 2, gd &~
Jith B, C ad Fam C W, “Aelyss of Aterde Qign{stiretion Grird

Sratenes’, AGHIRS SNEsUTATEING 28 [1231447198
PR M § A SIS Pty
Tdlun, Kﬁrﬁl\m Ran G, ‘Oxde Gue M of Yidd Mregpat’,

i CE, “Inrad oicn t Saertific Irg A Marne\dor Aqaceth
T o e g

“Qrignad Dstirgtion Yidd Mrecanant”, SAERE Deasion Tedrdages,
A Eoonomics, Sydaner

\Y/
I—ﬁr’lt%nmfAmre

WatrefadL R, BdlySE, ‘AT ad *?*moer\,iaNofénis”EUe
ot rALe Yidd M%E X %ad Prarg ’Operations
Research, Wil 40 No 5 p 831-:843 Qi

Williansn E, ° isn of Qutinization TedigLes for Qignetiretion Set
I%‘) Grndmgmrqcm H]?J]-IQBZ Higt Tr gLamauy, MT,

(ERR A b R

V\ﬁgt P, ‘Groner Guie s, ndifving \s Qtirmiarg?, Journal of
Marketing Reset, Vel XI m%a%e; mn%%lrg Quimarg
VYield Miregpnart VWirks o Stre Deaision Tedholagy; 1986

101

Yield Management References from the Internet:

[YM1] liltp:/Amyv sl)-c.coiiiAvinitsncv/0201()0.html

[YMZ2] hitp:/Awwv.denverposl.conifbiisiness/biy.l 115.him
[YM3] lulp:/Arwdfi.coirIxt/pb005. 1Unt

[YMA4] Inip/AAN (iaiues.coiii.au/companvifacirilcslyield hiinl
[YMS5] li(lp:/AAwvsiainorfi/siainncsvs/ine/inlcg4. IHM
[YMB6] Imp:/AAwvhorand-voKcl.ac/menibers/moreymasp

APPENDIX A

A.1l Sample Booking Data

DayclassO classl dnss2

-180 0
-179
-178
-177
-176
-175
-174
-173
-172
-171
-170
-169
-168
-167
-166
-165
-164
-163
-162
-161
-160
-159
-158
-157
-156
-155
-154
-153
-152
-151
-150

':\0)00\I\I\I\I\IOCDLHOOI\)HI—‘HI—‘OOOOOOOO

ecNeololololololololololNeololololeololololleolNollololelNeNollolollololiol
cNeololololNeolololololoNelololeolololololleolNelelNoelNelolNollololNo o]

-82
81
-80
-79
78
77
-76
75

149
150
150
150
1 150
1 150
2 150
2 150

O O oo

OO0 O OO0 OoOOoO

103

By R R BR R DBV HRY REEe Rl B ERNS RGeS cpa -

SR i R R g R S SR A B U R 0000 0000000000000 0
59 18 5'@ 5'4'8-'545'*8*8 §»Ei%_*i8_>8 t8_*8 0 §|48 gHévgﬁ.B%; £9= 00 00 00 00 00 o5 O\ 05 05 0) ” _»u> o
SRR AR AR AR A e R PR

11

-10
-9
8
-7

-5

20 100 150
20 100 150

20
20
20
20
20
20
20
20
20
20

100
100
100
100
100
100
100
100
100
100

150
150
150
150
150
150
150
150
150
150

105

A.2 Table for Probability of Arrival (P arrive

day: -180
BUS

TOUR

STD

day: -179
BUS

TOUR

STD

day: -178
BUS

TOUR

STD

day: -177
BUS

TOUR
STD

day: -176

1 0 0
1 0 0
1 0 0
1 0 0

0.935298 0.062772 0.001896

0.874389 0.118161 0.007185

0.817073 0.16675 0.015314

0 0 0
0 0 0
0 0 0
0 0 0

3.39E-05 3.98E-07 3.21E-09

0.000259 6.12E-06 9.93E-08

0.000833 2.98E-05 7.29E-07

0 0
0 0
0 0
0 0

1.79E-11 6.88E-14

1.12E-09 8.64E-12

1.24E-08 1.45E-10

0 0
0 0
0 0
0 0
1.73E-16 2.58E-19
0 0
0 0
4.38E-14 1.31E-16
0 0
0 0

1.11E-12 5.02E-15

1.73E-22

1.78E-19

1.02E-17

BUS

TOUR

STD

day: -175
BUS

TOUR

STD

day: -174
BUS

TOUR

STD

day: -173
BUS

TOUR

STD

day:-172
BUS

TOUR

1 0
0.763161 0.209085
1 0
1 0
0.712471 0.24568
1 0
1 0

0.664833 0.277014

1 0
1 0
0.62008 0.303536
1 0
1 0

0.578057 0.325666

0.025778

0.038123

0.05194

0.066863

0.082563

0.001883

0.003506

0.005771

0.008728

0.012404

9.03E-05

0.000212

0.000421

0.000748

0.001223

2.97E-06

8.75E-06

2.10E-05

4.39E-05

8.27E-05

107

6.78E-08

2.52E-07

7.31 E-07

1.79E-06

3.88E-06

1.06E-09

4.96E-09

1.74E-08

5.01 E-08

1.25E-07

1.09E-11

6.41 E-11

2.72E-10

9.20E-10

2.64E-09

6.64E-14

491E-13

2.52E-12

1.00E-11

3.31E-11

1.82E-16

1.69E-15

1.05E-14

4.90E-14

1-86E-13

STD

day: -171
BUS

TOUR

STD

day: -45
BUS

TOUR

STD

day: -44
BUS

TOUR

STD

day: -43
BUS

TOUR

STD

0.538615

1.00E-10

0.019321

5.02E-11

0.01392

2.39E-11

0.009917

0.343797

9.00E-09

0.093491

4.87E-09

0.074239

2.52E-09

0.058137

0.09875

3.65E-07

0.203568

2.13E-07

0.178174

1.19E-07

0.153361

0.016809

8.75E-06

0.262669

5.52E-06

0.253403

3.36E-06

0.239737

0.001878

0.000138

0.222421

9.38E-05

0.236509

6.19E-05

0.245937

0.000144

0.001488

0.129148

0.001094

0.151366

0.000783

0.173004

108

7.65E-06

0.01116

0.052076

0.008852

0.067274

0.006877

0.084514

2.79E-07

0.057396

0.014399

0.049139

0.020503

0.041414

0.02831

6.68E-09

0.19371

0.002613

0.179006

0.004101

0.163663

0.006223

9.47E-11 6.05E-13

0.38742

0.000281

0.386425

0.000486

0.38328

0.000811

0.348678

1.36E-05

0.375385

2.59E-05

0.403918

4.75E-05

day: -42
BUS

TOUR

STD

day: -41
BUS

TOUR

STD

day: -40
BUS

TOUR

STD

day: -39
BUS

TOUR

STD

day: -38
BUS

1.07E-11

0.006982

4.50E-12

0.004854

1.73E-12

0.003328

6.05E-13

0.002248

1.23E-09

0.044887

5.68E-10

0.034155

2.43E-10

0.025598

9.47E-11

0.018884

6.39E-08

0.12985

3.23E-08

0.108156

1.53E-08

0.08861

6.68E-09

0.071383

1.96E-06

0.222601

1.09E-06

0.20296

5.71E-07

0.181763

2.79E-07

0.159897

3.94E-05

0.250426

241 E-05

0.249941

1.40E-05

0.244681

7.65E-06

0.235049

0.000544

0.193186

0.000365

0.211062

0.000235

0.22586

0.000144

0.236929

0.005216

0.103492

0.003846

0.123771

0.002742

0.144782

0.001878

0.165851

0.034274

0.038018

0.027768

0.04977

0.021936

0.06364

0.016809

0.079608

0.147807

0.009165

0.131584

0.013134

0.115166

0.018358

0.09875

0.025077

0.377729

0.001309

0.369499

0.002054

0.358294

0.003138

0.343797

0.004681

0.434388

8.42E-05

0.466912

0.000145

0.501612

0.000241

0.538615

0.000393

TOUR

STD

day: -37
BUS

TOUR

STD

day: -36
BUS

TOUR

STD

day: -35
BUS

TOUR

STD

day: -34
BUS

TOUR

STD

1.86E-13

0.001495

4.90E-14

0.000977

1.05E-14

0.000626

1.69E-15

0.000393

1.82E-16

0.000241

3.31E-11

0.013701

1.00E-11

0.009766

2.52E-12

0.00683

4.91E-13

0.004681

6.64E-14

0.003138

2.64E-09

0.056516

9.20E-10

0.043945

2.72E-10

0.03353

6.41 E-11

0.025077

1.09E-11

0.018358

1.25E-07

0.13815

5.01 E-08

0.117188

1.74E-08

0.097543

4.96E-09

0.079608

1.06E-09

0.06364

3.88E-06

0.221615

1.79E-06

0.205078

7.31 E-O07

0.186218

2.52E-07

0.165851

6.78E-08

0.144782

8.27E-05

0.243777

4.39E-05

0.246094

2.10E-05

0.243777

8.75E-06

0.236929

2.97E-06

0.22586

110

0.001223

0.186218

0.000748

0.205078

0.000421

0.221615

0.000212

0.235049

9.03E-05

0.244681

0.012404

0.097543

0.008728

0.117188

0.005771

0.13815

0.003506

0.159897

0.001883

0.181763

0.082563

0.03353

0.066863

0.043945

0.05194

0.056516

0.038123

0.071383

0.025778

0.08861

0.325666

0.00683

0.303536

0.009766

0.277014

0.013701

0.24568

0.018884

0.209085

0.025598

0.578057

0.000626

0.62008

0.000977

0.664832

0.001495

0.712471

0.002248

0.76316

0.003328

day: -33
BUS

TOUR

STD

day: -32
BUS

TOUR

STD

1.02E-17 5.02E-15 1.11E-12

0.000145 0.002054 0.013134

1.78E-19 1.31E-16 4.38E-14

8.42E-05 0.001309 0.009165

1.45E-10

0.04977

8.64E-12

0.038018

1.24E-08

0.123771

1.12E-09

0.103492

7.29E-07

0.211061

9.93E-08

0.193186

2.98E-05

0.249941

6.12E-06

0.250426

0.000833 0.015314 0.16675 0.817072

0.20296 0.108156 0.034155 0.004854

0.000259 0.007185 0.118161 0.874388

0.222601

0.12985 0.044887 0.006982

day: -10

BUS 1.43E-09 9.50E-08 2.85E-06 5.07E-05 0.000591 0.00473 0.026279 0.10011 0.250274 0.370777 0.247185
TOUR 0 0 0 0 0 0 0 0 0 0 1
STD 0 0 0 0 0 0 0 0 0 0 1
day: -9

BUS 2.47E-11 2.60E-09 1.23E-07 3.43E-06 6.31E-05 0.000795 0.006956 0.041738 0.164342 0.383465 0.402638
TOUR 0 0 0 0 0 0 0 0 0 0 1
STD 0 0 0 0 0 0 0 0 0 0 1
day: -8

BUS 2.41E-14 5.31E-12 5.26E-10 3.08E-08 1.19E-06 3.13E-05 0.000575 0.007225 0.05961 0.291424 0.641134
TOUR 0 0 0 0 0 0 0 0 0 0 1
STD 0 0 0 0 0 0 0 0 0 0 1
day: -7

BUS 0 0 0 0 0 0 0 0 0 0 1
TOUR 0 0 0 0 0 0 0 0 0 0 1
STD 0 0 0 0 0 0 0 0 0 0 1
day: -6

BUS 0 0 0 0 0 0 0 0 0 0 1

112

TOUR

STD

day: -5
BUS

TOUR

STD

day: -4
BUS

TOUR

STD

day: -3
BUS

TOUR

STD

day: -2
BUS

TOUR

STD

day: -1
BUS

TOUR

STD

day: 0
BUS

TOUR

STD

114

A.3 Table for Probability of Acceptance (Paccept)

p_acc=0

p_acc=0.1

p_acc=0.2

O OO OO O O O OO0 p

O O OO O O O O O O

O O O O

O OO OO O O O O O

o
©

0.1

o

O O O OO0 oo o

0.8
0.2
0

O OO OO O OO0 OO0

0.81
0.18
0.01

O O O OO oo o

0.64
0.32
0.04

O OO OO O O O O O .

0.729
0.243
0.027
0.001

O O OO o o o

0.512
0.384
0.096
0.008

O OO OO O O O O O

0.6561
0.2916
0.0486
0.0036
0.0001

0
0
0
0
0
0

0.4096
0.4096
0.1536
0.0256
0.0016

115

O O O OO O O O O O

0.59049
0.32805
0.0729
0.0081
0.00045
1.00E-05
0

O O o o

0.32768
0.4096
0.2048
0.0512
0.0064

O OO OO O OO O O

0.531441
0.354294
0.098415
0.01458
0.001215
5.40E-05
1.00E-06
0

0
0
0

0.262144
0.393216
0.24576
0.08192
0.01536

O OO OO O OO OO B

0.478297
0.372009
0.124003
0.022964
0.002552
0.00017
6.30E-06
1.00E-07
0

0

0

0.209715
0.367002
0.275251
0.114688
0.028672

O OO OO O O O O O

0.430467
0.382638
0.148803
0.033067
0.004593
0.000408
2.27E-05
7.20E-07
1.00E-08

0

0

0.167772
0.335544
0.293601
0.146801
0.045875

O OO OO OO O O O p

0.38742
0.38742
0.172187
0.044641
0.00744
0.000827
6.12E-05
2.92E-06
8.10E-08
1.00E-09
0

0.134218
0.30199
0.30199

0.176161
0.06606

O OO O OO O O O O p

0.348678
0.38742
0.19371

0.057396
0.01116

0.001488

0.000138

8.75E-06

3.65E-07
9.00E-09
1.00E-10

0.107374
0.268435
0.30199
0.201327
0.08808

p_acc=0.3

p_acc=0.4

O O O O o o

O O OO O O O O O O

O O O OO0 OO O O O

O O O O o o

o
\l

0.3

O O OO oo oo o

o
o

0.4

o

O O O oo o o o

O O O O o o

o
I
(o]

0.42

©
o
OO0 o0ooooo©®

o
w
o

0.48

o
[EY
»

O O o O oo oo

O O O O O o

0.343
0.441
0.189
0.027

O O O O o o o

0.216
0.432
0.288
0.064

O O O O o o o

O O ©O O o o

0.2401
0.4116
0.2646
0.0756
0.0081

O O O O o o

0.1296
0.3456
0.3456
0.1536
0.0256

O O o O o o

116

0.00032
0

o O O O

0.16807
0.36015
0.3087
0.1323
0.02835
0.00243
0

o O O o

0.07776
0.2592
0.3456
0.2304
0.0768

0.01024

O O o o

0.001536
6.40E-05
0

0
0
0

0.117649
0.302526
0.324135
0.18522
0.059535
0.010206
0.000729
0

0
0
0

0.046656
0.186624
0.31104
0.27648
0.13824
0.036864
0.004096
0

0
0
0

0.004301
0.000358
1.28E-05
0
0
0

0.082354
0.247063
0.317652
0.226895
0.097241
0.025005
0.003572
0.000219

0

0

0

0.027994
0.130637
0.261274
0.290304
0.193536
0.077414
0.017203
0.001638

0

0

0

0.009175
0.001147
8.19E-05
2.56E-06
0
0

0.057648
0.19765
0.296475
0.254122
0.136137
0.046675
0.010002
0.001225
6.56E-05
0

0

0.016796
0.08958
0.209019
0.278692
0.232243
0.123863
0.041288
0.007864
0.000655
0

0

0.016515 0.026424
0.002753 0.005505
0.000295 0.000786
1.84E-05 7.37E-05
5.12E-07 4.10E-06

0 1.02E-07

0.040354 0.028248
0.15565 0.121061

0.266828 0.233474
0.266828 0.266828
0.171532 0.200121
0.073514 0.102919
0.021004 0.036757
0.003858 0.009002
0.000413 0.001447
1.97E-05 0.000138
0 5.90E-06

0.010078 0.006047
0.060466 0.040311
0.161243 0.120932
0.250823 0.214991
0.250823 0.250823
0.167215 0.200658
0.074318 0.111477
0.021234 0.042467
0.003539 0.010617
0.000262 0.001573

0 0.000105

p_acc=0.5

p_acc=0.6

p_acc=0.7

O O O OO O OO O O

O OO O O O O O O O

O O O O O

0.5
0.5

o

O O o 0Ooo oo o

0.4
0.6

o

O O OO0 oo oo

© o
N ow

o

o O O

0.25

=]
o
a o

O O o O o o o o

0.16
0.48

o©
w
o

O O OO0 o o oo

0.09
0.42
0.49

0.064
0.288
0.432
0.216

O O O O o o o

0.027
0.189
0.441
0.343

0.0625
0.25
0.375
0.25
0.0625

O O o o o o

0.0256
0.1536
0.3456
0.3456
0.1296

o O O O O O

0.0081
0.0756
0.2646
0.4116
0.2401

0.03125
0.15625
0.3125
0.3125
0.15625
0.03125
0

O O O O

0.01024
0.0768
0.2304
0.3456
0.2592

0.07776

0

O O O o

0.00243
0.02835
0.1323
0.3087
0.36015
0.16807

0.015625
0.09375
0.234375
0.3125
0.234375
0.09375
0.015625
0

0
0
0

0.004096
0.036864
0.13824
0.27648
0.31104
0.186624
0.046656
0

0
0
0

0.000729
0.010206
0.059535

0.18522
0.324135
0.302526

0.007813
0.054688
0.164063
0.273438
0.273438
0.164063
0.054688
0.007813

0

0

0

0.001638
0.017203
0.077414
0.193536
0.290304
0.261274
0.130637
0.027994

0

0

0

0.000219
0.003572
0.025005
0.097241
0.226895
0.317652

0.003906
0.03125
0.109375
0.21875
0.273438
0.21875
0.109375
0.03125
0.003906
0

0

0.000655
0.007864
0.041288
0.123863
0.232243
0.278692
0.209019
0.08958
0.016796
0

0

6.56E-05
0.001225
0.010002
0.046675
0.136137
0.254122

0.001953
0.017578
0.070313
0.164063
0.246094
0.246094
0.164063
0.070313
0.017578
0.001953

0

0.000262
0.003539
0.021234
0.074318
0.167215
0.250823
0.250823
0.161243
0.060466
0.010078

0

1.97E-05
0.000413
0.003858
0.021004
0.073514
0.171532

0.000977
0.009766
0.043945
0.117188
0.205078
0.246094
0.205078
0.117188
0.043945
0.009766
0.000977

0.000105
0.001573
0.010617
0.042467
0.111477
0.200658
0.250823
0.214991
0.120932
0.040311
0.006047

5.90E-06
0.000138
0.001447
0.009002
0.036757
0.102919

p_acc=0.8

p_acc=0.9

O O O o o

O O OO0 OO0 O O O O

O O OO OO O O o O

O O ©O o o

o
(V)

0.8

o

O O OO o O o o

0.1

o
o ©

O O O O o o o o

O O O O o

o
o
K

0.32

o
o
IS

O O O O o o o o

0.01
0.18
0.81

O O OO O o o o

o O O o o

0.008
0.096
0.384
0.512

O O O o o o o

0.001
0.027
0.243
0.729

O O O O O o o

o O O O o

118

O O ©O o o

0.00032
0.0064
0.0512
0.2048
0.4096

0.32768

0

O O O o

1.00E-05
0.00045
0.0081
0.0729
0.32805
0.59049
0

O O O o

0.117649
0

o O o

6.40E-05
0.001536
0.01536
0.08192
0.24576
0.393216
0.262144
0

0
0
0

1.00E-06
5.40E-05
0.001215
0.01458
0.098415
0.354294
0.531441
0

0
0
0

0.247063
0.082354
0
0
0

1.28E-05
0.000358
0.004301
0.028672
0.114688
0.275251
0.367002
0.209715

0

0

0

1.00E-07
6.30E-06
0.00017
0.002552
0.022964
0.124003
0.372009
0.478297
0

0

0

0.296475
0.19765
0.057648
0

0

2.56E-06
8.19E-05
0.001147
0.009175
0.045875
0.146801
0.293601
0.335544
0.167772

0

0

1.00E-08
7.20E-07
2.27E-05
0.000408
0.004593
0.033067
0.148803
0.382638
0.430467

0

0

0.266828 0.200121
0.266828 0.266828
0.15565 0.233474
0.040354 0.121061
0 0.028248

5.12E-07 1.02E-07
1.84E-05 4.10E-06
0.000295 7.37E-05
0.002753 0.000786
0.016515 0.005505
0.06606 0.026424
0.176161 0.08808
0.30199 0.201327
0.30199 0.30199
0.134218 0.268435
0 0.107374

1.00E-09 1.00E-10
8.10E-08 9.00E-09
2.92E-06 3.65E-07
6.12E-05 8.75E-06
0.000827 0.000138
0.00744 0.001488
0.044641 0.01116
0.172187 0.057396
0.38742 0.19371
0.38742 0.38742
0 0.348678

p_acc=1

0O o0 O

o Oo o o o0 o0 o0 o0 O

0O 0o 00O 0 O O

0O 0 OO OO O O o

0O 0 OO 0 0 O o o

0O O o 0O o o 60 0 o

0 0 0 0 O 0 00 0 O

O O O o 0O 0 00 0 O

*X-0 0 0 0 0 0 O

0 0 000 0 OO0 O

0 000 0 O0OO0 O

00000 O0OO OO0 O

A.4 Table for Over all Probability of Bookings
day: -179

[0,0,0] 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0

[0,0,0.1] 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0

[0,0,0.2] 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0

[0,0,0.3] 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0

[0,0,0.4] 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0

[0,0,0.5] 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0

[0,0.0.6] 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0

[0,0,0.7] 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0

[0,0,0.8] 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0

[0,0,0.9] 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0

[0,0,1] 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0

120

e M R R T e

o

o
»

&

o}

©
°

"

o>

o

(o]

00
en 6N

en «n

0s o0s

en
tH 'd]

Wl -
O'w o

2

o
»

°

8@S=s ©

® ®
S S

r-H

0550 &

00 [e]e} 00
en en en
00 00 00
Ot § Ot
1 o
en en en
en en en
r— »H i-H
*] »H H
o o, O O, O O.
(o] o1 o] <(12 o]
00 00 0
>0 *n >n
I-H r-H I-H
en
A
™
Oo ©o0 ©99o
00 00 00
o (0] o
S B
]
cJ <u
os 0s 85
0s s
&3 Oo %
en ° en o 8.
»0 >n Ti
en en en
“Ti >n
o [¢] (¢]
o O o A~ O o0 ~ ~°
°© %% F° § @
S0 Vo S0
en en en
0s Os [05S]
00 00 00
0s Os 0s
rH L1
CN
en ?21 0 S o
Oi [e] r- O r-
b S 5 .2 5
o N ° N
si- so A SO VO
on SO SD SO
[0) [¢)
o P m 0B
(0] (0]
C():?\‘ 00
en "
] «> 0 OI «0
Fal fj en
<n «0 en
0s Os 0 Os
Os 0os Os Os Os
0 o » n o]
CN CN
Th
CN o gN o] a o]
9 i
RY) SO o <+ 00
Os <o 05 os
a H a H @ TH
« T)
W f- et - .
H O Id'rH (o] P

r-

00
e
00

en

«n

en

xs)

[¢]

ga>

S0

en

0s

00

Os

rH
CN
en
5

<D

*n
«H
en
r-

n V
en U
en «o
0Ss 0S

CN

CN

0s
Hen

vl -

Oeroer

o

en
en

o
o

38R 4-00

=3

e, AU GRIER Moy gD e

ScosR

e e

bo2p.]

4.48295e-022

(0]
To,o.z,o.z]
4.48295e-022
(0]
0203
4.48295e-022
(0] (6]

[1,0.8,0.3]
2.91446e-017
0 0
[1,0.8,0.4]
2.91446e-017
0 0
[1,0.8,0.5]
2.91446e-017
0 0
[1,0.8,0.6]
2.91446e-017
0 0
[1,0.8,0.7]
2.91446e-017
0 0
[1,0.8,0.8]
2.91446e-017
0 0
[1,0.8,0.9]
2.91446e-017
0 0

0.986746
1.33005e-025
0]
0.986746
1.33005e-025
(0]
0.986746
1.33005e-025
0]

0.947928
3.4727e-020
0
0.947928
3.4727e-020
0
0.947928
3.4727e-020
0
0.947928
3.4727e-020
0
0.947928
3.4727e-020
0
0.947928
3.4727e-020
0
0.947928
3.4727e-020
0

0,0131742 7.91507e-005

1.77577e-029
0 0

0.0131742 7.91507e-005

1.77577e-029
0 0

0.0131742 7.91507e-005

1.77577e-029
o o

0.0508273
1.86203e-023
0 0
0.0508273
1.86203e-023
0 0
0.0508273
1.86203e-023
0 0
0.0508273
1.86203e-023
0 0
0.0508273
1.86203e-023
0 0
0.0508273
1.86203e-023
0 0
0.0508273
1.86203e-023
0 0

0
0

0
0

0
o

0.0012264
0
0
0.0012264
0
0
0.0012264
0
0
0.0012264
0
0
0.0012264
0
0
0.0012264
0
0
0.0012264
0
0

2.818e-007
0
(0]
2.818e-007
0
0]
2.818e-007
0
0]

1.75356e-005
(0]

0]
1.75356e-005
0]

0
1.75356e-005
0]

0]
1.75356e-005
0

0
1.75356e-005
0

0
1.75356e-005
0
0
1.75356e-005
0
0

122

6.58411e-010
0 0
0 0
6.58411e-010
0 0
0 0
6.58411e-010
0 0
0 0

1.64543e-007

0 0
0 0
1.64543e-007

0 0
0 0
1.64543e-007

0 0
0 0
1.64543e-007

0 0
0 0
1.64543e-007

0 0
0 0
1.64543e-007

0 0
0 0
1.64543e-007

0 0

0 0

1.05487e-012
0
0
1.05487e-012
0
0
1.05487e-012
0
0

1.05872e-009
0
0
1.05872e-009
0
0
1.05872e-009
0
0
1.05872e-009
0
0
1.05872e-009
0
0
1.05872e-009
0
0
1.05872e-009
0
0

1.17364e-015

0 0
0
1.17364e-015

0 0
0
1.17364e-015

0 0
0

4.73067e-012

0 0
0
4.73067e-012

0 0
0
4.73067e-012

0 0
0
4.73067e-012

0 0
0
4.73067e-012

0 0
0
4.73067e-012

0 0
0
4.73067e-012

0 0
0

8.95394e-019
0

8.95394e-019
0

8.95394e-019
0

1.44946e-014
0

1.44946e-014
0

1.44946e-014
0

1.44946e-014
0

1.44946e-014
0

1.44946e-014
0

1.44946e-014
0

¥10-9€T66C°€

=g%555

r-H
o
0
m,
ON
ON
Cs
cn

“H
o

en
ON
ON
Cs
cn

0

¢10-9€.¥95°6

¥s Q9=

on

o
BIo 92.:125 B

o

IsV8ESS §

o)
o) o)
o G5:¥9E3

)
) o)
Bfoo5 958

o)
o) 0
&00s5.: 9c3

o)
) o)
ffoo5: 9£ 5

o)
o))

Bfo 8L 9§73

95 g%
0%, 2.5

0 0

600-9.¥T06°T

6

Boo 7¢ B

Booof oS I
o}
o]
3000, 061
o]

o)
800 °% .H,om_w
o}

o
oo~ IosE
(@]
o)
800 ~h TO6 X
(@]
o)
o & Fosd

o AT ©
000 @rlpoo

o

m00|®%,_|mm0

0

£00-8806¢9°¢

2o 9.0% O.mﬁm 4]

o o

NPt O.mmm 3

o o
L 078,862

Cs

©
Qo Bo=B2

©

e
008082

©

© S0 o O

o) o
L00BosB2
o o)

o) o)
oo Bo=82Y

0

G00-8.0G81°¢

.mOOI/U.\._no*nm
Soa?io=8 B
mool@ ©hnw ﬁ
©
c00° o8 B
©
©
c008.08 B
©

«n
0
?
r-
0
in
0
<N

0

G8EYST00'0

<o

o
& =7

Zy oo o
<o
&)
@m £ oo
<.
&)
mw
A £ o000
A o
co®©

Bs 500 o
©
©
Bs .00
o
0
85 T0.
B3:F oo
<o
o
£33 mMOO

€¢0-999%0'9

o
50788 o 8
A2 80=,

Q
S50 b4

00 VO

Iin o

2

o9 5
198296 .

v
Se

C-

Yo}

«g@mmA o @
1228325,
] ;
E8¢-229%0 2
9820 5

(e} o]
85922 o2

2483950 o

© (e}
585922+ 2

w&m.no fe)

(o] o
Booa-o02

28%=. 6

28098 .9

98-

855922 8

£9€8950°0

610-9¢/T00°'T

¥651160

(o]

2 R Ho

o} 9.mw.©
€D

mOpSO
=100

B 9B Foo
6k 6
&L
B=F

m o SSO
nC,
gtoeBhiTooT
¢BEE B o
o

/T0-968/9%°/
[T'60'T]

g/\ oN a
o

On on -
9~ '

&P

N

5 o

1
1
on

i—ir-

0o

6.88379e-014

o
z

3.98496e-007 3.20937e-009 1.79495e-011

3.39291e-005

0.00189579

1.73415e-022

0.0627717

0.935298
2.58389e-019

[1,1,0]
1.7325e-016

?3(D ;
On on S ON

> P o)
co co co co co co co
00 00 00 00 00 00 00 T
00 00 00 00 00 00 00 @
vo VO VO \D

éq in >n in
[ﬁ ON oN ON oN OoN .
oN oN OoN oN oN oN @U\
OOr-o ©oh © © I> 00 oo » © 0 r-o o t [e}Ne]
r-
o) o) o) Q Q o o)
3 8 8
o) o o o PN
D ' D D ' '
D <0 e
O o r--oo O o OO0Or-oo oo ..0Oo0 8 O o
co co co co co co co <
0s ON ON ON ON ON OoN co
o o o O o On
cn CN CN CN CN CN CN o
cs
= 0 0 = OO0 OO0 OO0 0 o o0 00 ..
o) 3 Q o)
8 ¢ ¢ 3 38 :
<+ < a> u <u ©
VO Vo vo Vo vo Q
ON ON on oN oN
bt Vo
ON
00 00 00 00 on
© © °“ 0 0 °N 0O O oo~00 00 00 eo0 oo
cor co co co co co ON
5 in in in in in ©
© © © © .
OI © © © @ © © S
<u 6 0 . . 4
® © OO ™M e © He @ iHe © ™M o © iHeoe © ~ ©
ON oN ON oN oN oN on 1
cN cN cN cN cN cN cN on
ON ON ON ON ON ON ON cN
co co co co co co co oN
co co* co* co* co co co
co
O O £ 0 ON © © On © © ON © © ON © © On © 0 N 0 © © ©
r- r- r- r- on
in <n in in “n on in
ON on on on ON On On r
00 00 00 00 00 00 00 "
rH i-H H i-H 2-H ON
[o] © © © © © © °oe
o © © © ©) 0 ©
cN @ cNo © ecne © cNne © cNoe © cne © ove @ cn © o
cN cN cN cN cN cN cN cN cN
) o © © © © 9 o ©
i
¢ <D r- [r- (¢} r- a t- 1A a> t" 0 <u
in *n I-H in i-H m i-H in i in r-H jp «h in in
r-H foiH > i-H .. iH i-H P 0H - —i '
A i> cn r- r r- 1> wd —1-=
co cn CO cN co cN co cn CO cN co cN co
vo © VO © Vor- o SO r- @ VO r- (@] (M (@]
© in © i © i © _i © in VO ¢H
© © © © © ©
On On On ON ON ON ON On
V V »-H i-H r-H i-H 9 AiH
a 00 ©a 00 ©1 00 ©1 00 ©1 00 ©1 @
<D Oon <> oN <D ON a> ON <D ON ON <> ON <D -
ON CN ON CN ON @ CN ON @ CN On® CN On @ CN ON © CN ON 1
00 in oo in 00 m 00 in 00 in 00 >n 0 in oo
co co co co co co co co co co co co co co co
9\ on 00 ON o0 ON o0 oN 00 ON o0 on 00 ON 00
© o " e " o " o+ '" o '" © s n
CN CN CN CN CN* CN CN CN N N
VO vo vo vo VO © Vo ©
ve ° ¥Q o N e h© e i

irH © i if-H © —ii—t © i ilH © 1li-H © i 1—i © i .i-H © i 1H © i 1r— ©

A5 Reading from the binary file P_allb

Pacc for each passenger type in the range [0-1]

Max index = maximum ofP_acc = 11

If NOTYPES =3 Index = [Max_index, Max_index, Max_index]
Index will be in the range [0,0, O] to [10, 10, 10]
Number of bookings in the range of [0 - Max_arr*NOTYPES]

If maximum arrival for each type = 10~ Max_arr =30

Number oftotal booking in the range [0-30]

Max_booking= Maxarr *NOTYPES+1 31

* Each PJot value is stored in 4 bytes
* Index = [indi, ind2, ind3]

(1) To pointto the start of any day d
Pointe® =d* Max _ indexNOTTHES*Max _ booking * 4
For three types of passenger, number of bytes for each day is: Max_ indexNOITHEES*Max _ booking *4 =1331 *31
*4=165044
e.g. ford= 0,
Pointer =0 * 165044 =0

125

(2 To move to the starting location of any day (i.e. bookings = 0), given Index = [indl, ind2, ind3]
Pointer, = Pointer + (indlI*Max_index*Max_mdex + ind2*Max_index+ind3)*(Ma_booking*4)
e.g. ford= 0and Index =9, 0, 0]
X j= 0+(9* 11 *11+0 * 11 + 0)* (31 *4)
=135036
3) To move to any location within a day and Index, given the number of booking, bookings
+ (bookings * 4)
e.g. ford= 0 and Index = [9, 0, O] and bookings =3
X = 135036+ (3 *4)
= 135048

126

Day 2

P allb file
Dayl

(1) Pointer payo
Index[000] o o o o o o o o O O O O O O O 0
Index [0,0,1]

plotfooofdngssO) piotfbookings~1) plotfboaltngs™29) ptatfooodngs™)
(2) Pointer
Index [10,10,9]
Idex[101010] 5 5 o O O o o o O o o o

(3) Pointer

127

APPENDIX B

B.l Sim data C program for generating sample data

/*sim_data.cpp creates a sample booking data for 181 days of the
booking process with 3 types of passenger and 3 classes*/

#include <iostream.h>
#include <iomanip.h>
#include <fstream.h>
#include <stdlib.h>

#define NOCLASSES 3//number of classes on this flight

#define NOTYPES 3 //number of passenger types

#define Max_arr 10 //Max no. of arrival each type in 10 intervals
#define FLIGHT 100 //number of flights

/*functions prototype*/

void run_simulation(int);

void intialise_variables(int);

float get_desr_class(float [NOTYPES][4], int);
void sort_classes (int [NOTYPES] [NOCLASSES], int)
void book_seat(int);

int willing_to_accept(int, int);

float get_random number(float, float);

float p_arrive(float [NOTYPES][4], int, int);
double prob_of_accept(float);

void sell_seat(int, int);

void vertical_r(int, int);

void openFiles(void);

void closeFiles(void);

/* Output files for analysis */

ofstream outdataFileCthreepax3clslOON_data.dat', 1ios::out);
ifstream inpaxFileCpax_belief_parm.txt", 1i0s::in);

//pax belief parm

ifstream inarrFileCpax_arrival_parm_txt", 1ios::in) ;

//pax arrival parm

ifstream inclsFileCpax_3class3_parm.txt", 1ios::in) ;//class parm

char names[NOTYPES] [15] = {"BUS", "TOUR"™, '"STD"};//pax types*/
int class_seats[NOCLASSES], /* number of seats */
class_comf[NOCLASSES],
class fare[NOCLASSES];

int pax_seats_b00ked[NOTYPES][NOCLASSES],
tot_booked[NOCLASSES] ,
seats_cancel led[[NOCLASSES],
pax_ver_rec[NOTYPES][NOCLASSES],
pax_hor_rec[NOTYPES][NOCLASSES],
pax_hor_rec_full [NOTYPES];

/*passenger a, b, c parameters for probability of arrival*/
float pax_arrival_parm[NOTYPES] [4] ;

/ “passenger attributes for comfort and cost to calculate
desirability*/

float paxjbelief_parm[NOTYPES][4];

float desr[NOTYPES] [NOCLASSES] ;

int class_label [NOTYPES][NOCLASSES]

/*array required for calculating data bookings*/

int data_bookings[FLIGHT] [NOCLASSES] [181];

double p_acc[NOTYPES] [NOCLASSES];

int main()

srand{time{0));
openFiles(Q;

/ecalculate the desiarability of each passenger type to each
class*/
for(int 1=0; i<NOTYPES; i++)
get_desr_class(pax_belief_parm, 1i);

for(int j=0; j<NOCLASSES; j++)

class_label[i]1[i]1 = i;:

sort_classes<class_label, i);

}

/*run simulation to get the 100 different data bookings*/
for (int fit = 0; fit < FLIGHT; fIt++)

run_simulation(flt);

return O;

129

void run_simulation(int fit)
intialise_variables(fit);
for (int day = -180; day <= 0; day++)

/*for every hour in 10 hours day*/
for (int tl = 1; tl <= 10; tl++)

for (int type_pax = 0; type_jpax <= NOTYPES-1; type_pax++)
{ /ecalculate the probability of a pass, arriving in time tlI*/
if (p_arrive(pax_arrival_parm,

day, type_pax) >get__random_number (1,0))

/echeck if all classes are full*/

J =0

while (class_seats[class_label[type_pax][j1] ==
tot_booked[class_label[type_pax][j]] & Jj <= NOCLASSES-
),

i F(§>=NOCLASSES)
++pax_hor_rec_fTull[type_pax];

else
book_seat(typejpax)?

/ecalculate total bookings for all types on each class for
each day*/

for (§=0; J<NOCLASSES; j++)
data_bookings[fl1t][J] [180+day] += tot_bookedtj];

for(day = -180; day <= 0; day++)
for (int j=0; J<NOCLASSES; j++)
outdataFile << data_bookings [fit] [J] [180+day] << 1 ';

130

void book_seat(int type_pax)

/*check if seats available in desired class*/

int j = 0;
while (class_seats[class_label[type_pax]@1] =
tot_booked[class_label[type_pax][j]1] && J < NOCLASSES -1)

J++;

/*is passenger willing to accept the desired class?*/
if (willing_to_accept(type_pax, Jj))

{

/* is this class the most desired? */

if g == 0
sell_seat(class_label[type_pax][j]1., type_pax);
else

sell_seat(class_label[type_pax][j]l., type_pax);
vertical_r(class_label[type_pax][j]l., type_pax);

else

/*seats available in the desired class but not willing to
accept*/
++pax_hor_rec[type_pax] [class_label[type_pax] [j11:;

void sort_classes(int class_label [NOTYPES][NOCLASSES], int type_pax)
{;* sort classes according to desirability */

float hold;

int holdl;

for (int pass = 1; pass < NOCLASSES; pass++)

for (int i = 0; 1 < NOCLASSES-1 ; i++)
if (desr[type_pax][i] < desr[type_pax][i+l])

hold = desr[type_pax][i];

holdl = class_label [type j>ax] [i] ;

desr[type_pax] [i] = desr[type_pax] [i+l1];
class_label[type_pax][i] = class_label[type_pax][i+l];
desr[type_pax][i+1] = hold;

class_label[type_pax][i+1] = holdl;

131

void intialise®variables(int fit)

for (nt i = 0; § < NOCLASSES; i++){
seats_cancelled[i] = 0.0;
tot_booked[i] = 0.0;}

for (int j = 0; j < NOTYPES; j++)

pax_hor_rec_full[j] = 0.0;
for (int i = 0; 1 < NOCLASSES; i++)

pax_seats_booked[j][i] = 0.0;
pax_ver_rec[j][i] = O.
pax_hor_rec[j][i] = O.

}

for(int day=0; day<=180; day++)
for(int j=0; jJ<NOCLASSES; j++)
data_bookings[fit][j][day]=0.0;

0;
0;

}

/ecalculate desirability for each class for this type of pax*/
float get_desr_class(float b[NOTYPES][4], int type_ pax)

float bO=b[type_pax][O0];

float bl=b[type_pax][1];

float b2=b[type_pax][2];

float b3=1/b[type_pax][3];

for (int i = 0; 1 < NOCLASSES; i++)

desr[type_pax][i]=((class_comf[i]*b0)+ (class_fare[i]*bl)-
b2)*b3;

return O;
/eadd 1 to total seats booked on desired class*/
void sell_seat(int els, int typejpax)

++tot_booked[els];
++pax_seats_booked[type_pax][els];

}

/evertical recapture*/
void vertical_r(int els, int type_pax)

++pax_ver_rec[type_pax][els];

132

133

/ewilling to accept class*/

int willing_to_accept(int type_pax(int els)

if (p_acc[type pax] [els] >= get_random_number(, 0))

return 1;
else
return O;

/ecalculate the probability of a passenger will arrive
float p_arrive(float parm[NOTYPES][4],

float p;
float p0O = parm[type_pax][O];
float pi = parm[type_pax][I1];
float p2 = parm[type_pax]I[2]:
float p3 = parm[type_pax][3] ;
float div = (pl-pO)e¢ (p2-p0);
div = 1/div;
if (tl < po)

p = 0;
else if (tl <= p2)

p =2 e (tl - p0) ¢ div ¢

else
return p;

int

p3;

tl,

in time tl*/
int typejpax)

/ecalculate the probability of a passenger willing to accept using

logistic function™/
double prob_of _accept(float desr)

double p;
p=1/ @ + exp(- desr));
return p;

/egenerate random number”™/
float get_random_number(float n,

float random =
return random;

float m)

134

((n-m) o ((Float)rand()/RAND_MAX)) + m;

/*open output Ffiles*/
void openFilesO

if (jinpaxFile) {
cerr << "inpaxFile file could not be opened"” << endl;
exit (U;}

for (int i=0; i<NOTYPES; i++)
for (int j=0; j<=3; j+H)
inpaxFile >> pax_belief_parm[i][}j];

if (jinarrFile) {
cerr << "inarrFile file could not be opened" << endl;
exit();}

for (1=0; i<NOTYPES; i++)
for (int j=0; j<=3; j++)
inarrFile >> pax_arrival_parm[i]l[i]l;

if (linclsFile) {
cerr << "inclsFile file could not be opened" << endl;
exit();}
for (1=0; i<NOCLASSES; i++)
inclsFile >> class_seats[i] >> class_comf[i] >> class_fare[i];

if (joutdataFile) {
cerr << "file could not be opened"” << endl;

exit();}

/*close output Ffiles*/
void closeFilesO

inarrFile.closeO ;
inpaxFile.close(;
inclsFile .closeO ;
outdataFile.close(;

135

B.2p_arrive C program for creating p_arrive table

/*P_arrive.cpp to calculate all combinations of probability of
arrival for each passenger type on each day and save all probability
of arrivals in file=p_arrive._dat*/

#include <iostream.h>
#include <iomanip.h>
#include <fstream.h>
#include <stdlib.h>
#include <math.h>

#define NOTYPES 3 //number of passenger types
#define Max_arr 10 //Max no. of arrival for each type in 10
intervals

/eTunctions prototype*/

float prob_of_arrive (float [] [4], int, int) *
double binom(int, int, double);

double fact (double) ;>

void openFiles(void);

void closeFiles(void);

/¢ Output files for analysis */
ofstream outarrFileCp_arriveBST.dat", ios::out);
ifstream inarrFileCthreepax_arrival_parm.txt", i0s::in);

/*passenger a, b, c parameters for probability of arrival*/
float pax_arrival_parm[NOTYPES][4];

/eprobability of cancellation is fixed for each type of pax*/
double p_arr[NOTYPES] [181] [Max_arr+1] ;
int mainQ)
openFiles(Q;
/Qfalculate probability of arrivai for each type of pax for each
for (int day = 0; day <= 180; day++)
for (int i=0; i<NOTYPES; i+
for (int Arrive = 0; Arrive <= Max_arr; Arrive++)
p_arr[i][day][Arrive]=binom(Max_arr, Arrive,

prob_of_arrive(pax_arrival_parm, -180+day, 1));
outarrFile « p_arr[i][day]l[Arrive] << " ';

136

}

}

CloseFiles Q;
return O;

137

double binom(int xI, int x2, double x3)

{
double pi

double p2

pi = fact(x)/ (fact(ie) fact (<);

plll= pow((1-x3), (xl - X2));
p2 = pi * pll * pill
return p2;

}

double fact(double X)

O, pl1=0.0,pll11=0.0;
0.0;

if (x<=0) return 1;

return x*fact(x-1);

/ecalculate the probability of a passenger will arrive in time t*/
float prob_of _arrive(float parm[][4], int tl, int type_pax)

oat p; _
oat
oat pi
ot
oat iy, -PO*(p2-P0),
v =

<

if (tl < p0)
P = O;
else if (tl <= p2)
p =2 (l -p0) *div * p3;
else
p =1

return p;

/*open output files*/
void openFilesO

if (loutarrFile) {
cerr << "file could not be opened” « endl;
exit();

if (jinarrFile) {
cerr << "inarrFile file could not be opened" << endl;
exit();

for (int i=0; iI<NOTYPES; i++)
for (int j=0; j<=3; j++t)
narrFile >> pax_arrival_parm[i]l[j];

;;close output files*/
void closeFilesO

outarrFile.close(;
inarrFile.close<);

139

B.3paccept C program for creating paccept table

/*P_acceptl.cpp to Calculate from 0 to 10 arrival the prob. of 0 to
10 acceptance for each prob. of an acceptance [0-1] and save in file
p_acceptl.dat */

#include <iostream.h>

#include <iomanip.h>

#include <fstream.h>

#include <stdlib_h>

#include <math.h>

#define Max_arr 10 //Max number of arrival for each type in 10
intervals

/efunctions prototype*/

void calc_prob(void);

double binom(int, int, double);
double fact(double);

void openFiles(void);

void closeFiles(void);

/* Output files for analysis */
ofstream outaccFile("p_accept.dat'™, ios::out);

double p_acc[ll1][Max_arr+1][Max_arr+1];
int mainQ)

openFiles(G;
for (double p=0; p<1.01; p+=0.1)

double p_acc =0;
for (int Accept=0; Accept <= Max_arr; Accept++)

for (int Arrive=0; Arrive <= Max_arr; Arrive++)
if (Arrive >= Accept)

p_acc = binom(Arrive, Accept, p);
if (p_acc <= 1.0e-14) p_acc=0;

else
p_acc = O;

outaccFile << p_acc <<

140

closeFiles 0
return 0O;

141

double binom(int xI, int x2(double x3)

{

double pi = 0, pll1=0.0,pl11=0.0;
double p2 = 0.0;
pi = fact(xl)/ (fact(x2)*fact(xl-x2));

pll = pow(x3, x2);

plll= pow((1-x3), I - x2));
p2 = pi * pll * pill ;
return p2;

}

double fact(double Xx)
if (x==0) return 1;

return x*fact(x-1);

/*open output Files*/
void openFilesO

if (loutaccFile) {

cerr << "file could not be opened"
exit();

/*close output files*/
void closeFilesO

outaccFile.close();

142

<< endl;

B.4 precomp C program for creating p_tot table

/*precomp2.cpp computes the probabilities of all the 31 (0 bookings

to max 30 bookings) possible events that could occur in every day of
the booking process for different combinations of prob_of_acceptance
for all types of passengers(p_acc=0 to p_acc=l) ie (181x11x11x11x31)
for three types of passengers and stores in p_allb.dat file (41.6MB)
to be read in metropolis program */

#include <iostream.h>
#include <iomanip.h>
#include <fstream.h>
#include <stdlib.h>
#include <math.h>

#define NOTYPES 3 //number of passenger types

#define Max_arr 10 //Max number of arrival for each type in 10
intervals

#define All_arr Max_arr*NOTYPES //Arrival of all types

/efunctions prototype*/

void calc_probl(void);

double calc_prob2(int, int, int) ;
void openFiles(void)s;

void closeFiles(void)s

/* Input and Output Ffiles */

ifstream inarrFile("p_arriveBST.dat") s

ifstream inaccFileCp_accept.dat") ;

ofstream outpallFile("p_allbBST.dat",ios::out|ios::binary);

double p_arr[NOTYPES] [181] [Max_arr+1];
double p_acc[ll][Max_arr+1][Max_arr+1]s
double pbook [NOTYPES] [Max_arr+1] 5

float ptot[All_arr+1];

int mainQ)
openFiles(Q;
calc_problQ;

closeFiles(Q;
return O;

143

void calc_probl(void)
for (int day = 0; day <= 180; day++)

for (int paccb=0; paccb<=10; paccb++)
for (int paccs=0; paccs<=10; paccs++)
for (int pacct=0; pacct<=10; pacct++)

calc_prob2(, paccb,day)
calc_prob2(, paces,day)
calc_prob2(@, pacct,day)
for(int tot=0; tot<All_arr+l; tot++)ptot[tot]=0 ;

for(int b=0; b <= Max_arr; b++)
for(int s=0; s <= Max_arr; s++)
for(int t=0; t <= Max_arr; t++){

ptot[t+s+b] += pbook[0][b]*pbook[1][s]*pbook[2][t]:}
outpallFile.write((char *) (&ptot), sizeof(ptot));

return;

double calc_prob2(int type,int pacc, int day)
for (int book=0; book <= Max_arr; book++)

pbook[type][book]=0;
for (int narr = book; narr <= Max_arr; narr++)

pbook[type] [book] += p_arr[type] [day] [narr] *
p_acc[pacc][book][narr];

}

return O;

144

/*open output Files*/
void openFilesO

int i,day, arr, acc,a ;

if (loutpallFile) {
cerr << "file could not be opened" << endl;
exit();

if (linarrFile) {
cerr << "file could not be opened" << endl;
exit();

for (day=0; day<=180; day++)
for (i=0; i< NOTYPES; i++)
for (a = 0; a <= Max_arr; at+)

inarrFile >> p_arr[i][day][a]l;

if (jinaccFile) {
cerr << "file could not be opened"” << endl;
exit();

for (i=0; i<=10; i++)
for (arr = 0; arr <= Max_arr; arr++)
for (acc = 0; acc <= Max_arr; acc++)

inaccFile >> p_acc[i] [arr] [acc];

}

/*close output files*/
void closeFilesO

outpallFile.close(Q;

inarrFile.close(;
inaccFile.close(;

145

B.5 met_onepax C program for Metropolis algorithm

/*met_onepax.cpp Metropolis Algorithm for one passenger booking data
and 3 classes*/

#include <iostream.h>
#include <iomanip.h>
#include <fstream.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>

#define NOCLASSES 3 //number of classes on this flight

#define NOTYPES 1 //number of passenger types

#define Max_arr 10 //Max number of arrival for each type in 10
intervals

#define All_arr Max_arr*NOTYPES //Arrival of all types

#define FLIGHT 100 //number of flights

#define ITR 100000 //metropolis iteartions

/efunctions prototype*/

void create_hash_table (void)

void get_desr_and_pacc(float [NOTYPES][4D);

int good_or_bad_parm(void);

double get_Likelihood(void);

float change_one_parm(float [NOTYPES][4]);

void find_ratio(float [NOTYPES] [4] , float [NOTYPES] [4D);

float get_random_number(float, float);

float one_interp(int, int, double[NOTYPES] ,int[NOTYPES], int);
float two_interp(int, int, double[NOTYPES] ,int[NOTYPES], int);
float three_interp(int, int, double[NOTYPES], int[NOTYPES], int) ;
float interpolate(float, float, float);

float get_ptot(int, int, double [NOTYPES][NOCLASSES], int) ;
void openFiles(void);

void closeFiles(void);

/* Output files for analysis */

ifstream indataFile ("'difflpax3clsIOON__data.dat™, ios ::in) 5
ifstream inpallFile(C'p_allbMdiffl._dat”,ios::in]ios::binary);
ofstream outpaccFile('difflpax3cls_pacc.dat",ios::out);
ifstream inclsFile('diffpax_3class3_parm.txt', 10s ::in) 5

int data_bookings[FLIGHT] [NOCLASSES] [181];
int class_seats[NOCLASSES], /* number of seats */
class_comf[NOCLASSES],
class_fTare[[NOCLASSES];
int flt_hash_table[181][NOCLASSES][AlIIl _arr+1];
double grid_pointl[NOTYPES][NOCLASSES];

double grid_point2[NOTYPES][NOCLASSES];
double index[NOTYPES][NOCLASSES];
double p_acc[NOTYPES][NOCLASSES];
double p_acc_old[NOTYPES][NOCLASSES];
int cls_label [NOTYPES][NOCLASSES];
double loglik_I=0;

double loglik_2=0;

int mainQ

ifstream inpaxFile('difflpax_belief _parm_txt", 1i0s::in);
ofstream outparmFileCMetdifflpax3clslOON.dat"™, 1ios::out);
char start[128], finish[128];

float pax_belief_parm[NOTYPES][4];

float parm_I[NOTYPES][4], parm_2[NOTYPES][4];

srand(time(0));

openFiles();

if (jinpaxFile) {
cerr << "inpaxFile file could not be opened" << endl;
exit();

for (int i=0; i<=NOTYPES; i++)

for (int j=0; j<=3; j++)

} inpaxFile >> pax_belief_parm[i]l[}]:
if (joutparmFile) {

cerr << "file could not be opened” << endl;
exit();

if (ioutpaccFile) {
cerr << "file could not be opened" << endl;
exit();

_strtime(start);
outparmFile << "program started at: " << start << endl << endl;

/»Metropolis algorithm*/
for (@ = 0; i <= NOTYPES-1; i+H)
for (int j =0; j <=3; j++){
parm_I[i][i] 0.0;
parm_2[i]1L[j] 0.0}

//give any arbitrary starting values to the parameters
parm_I1[0][0] (float)0.5;

parm_I1[0][1] (float)-0.3;

parm_I1[0][2] (float)-300;

parm_1[0][3] (float)100;

//output the starting combination of parameters
outparmFile << "-10 ';

148

for (1 = 0; i1 <= NOTYPES-1; i++){

for (int j = 0; j <=2; j++)
outparmFile << setw(8) << setprecision(®)
<< parm_I[i][0J] << " ";}

/ecalculate the desiarability and pacc for each passenger type to
each class*/

get_desr_and_pacc(parm_I);

int this_parm=0;

this_parm=good_or_bad_parmQ;

if (this_parm == 0)

//calculate the liklehood associated with the starting
parameters

loglik I = get_Likelihood();

outparmFile << " " << setw(10)« setprecision(®)<< loglik_I;

//Netropolis loop
for (int k = 0; k < ITR; k++)

for (i = 0; i <= NOTYPES-1; i++)
for (int j = 0; jJ <= 3; j++)
parm_2[i]101 = parm_I[i10];

//select a parameter at random and add a random number to it
change_one_parm(parm_2);

/*calculate desiarability and pacc for each type on each class
with new set of parm.*/

get_desr_and_pacc(parm_2);

int this_parm=0;

this_parm=good_or_bad_parm();

if (this_parm == 0)

//calculate the liklehood associated with the new parameters
loglik 2 = get_Likelihood(Q;

//find_ratio
find_ratio(parm_I1, parm_2);

//output the accepted 12 parameters and log_Likelihood
if(k % 10 == 0)

outparmFile « Kk <<

cout << k << " '

for (int 1 = 0; 1 <= NOTYPES-1; i++)
for (int j=0; j <= 2; j+H)

149

outparmFile << setw(8) << setprecision@) <<
parm_I[i] O << " *;

outparmFile << " " << setw(10)<<
} setprecision(6)<< loglik_I;

“strtime(finish);

outparmFile << endl << "program finished at: " << finish << endl;
inpaxFile._.close(Q;

outparmFile.close(Q;

outpaccFile.close();

closeFiles

return O;

150

int good_or_bad_parm(void)

int this_parml=0;
for (int day = 0; day <= 180; day++)

int j = O;
int NOClasslessI=NOCLASSES-1;

//is there a booking on any class apart from the most desired
class

while

fclass_seats[cls_label[0][j]]=:data_bookings[O][cls_labelBﬂ [111[day
J++;

for(int i=j+1; i<NOClasslessl+l; i+t+)

//bad combination of parm
if(data_bookings[0][cls_label[O][i]][day] !'= O)this_parml = 1;}

return this_parml;

void create_hash_table(void)

int today_bookings; /»today*"s booking*/

//if all classes are full keep the last number of days
int fullday = -1000;

int notfull = O;

int d=0;

while (fullday<0)

notful1=0;
for (int C = 0; c < NOCLASSES; C++)
if (class_seats[c] != data_bookings[0][c]l[d])
notfull=1;

1T (notfull==0)
fullday=d;
d++;

kw (int day = 0; day <= d; day++)

for (int els

= 0; els < NOCLASSES; cls++)
for (int t b =

0; t_.b < All_arr+l; t b++)
flt_hash_table[day][els][t_b] = O;

togéy_bookings=0;
for (int fl1t=0; fit < FLIGHT; Tflt++)

int j = O;

int NOClasslessI=NOCLASSES-1;

whille (class__seats [cls_label [0] [J11 ==
data_bookings[fit][cls_label[0][J]][day-1] && j <
NOClasslessl)j++;

it (class_seats[cls_label[O]L]1] !=
datajoookings[fit][cls_label[0][i1] [dayl)

int mycls=cls_label[0][j];
double mypacc=p_acc[0][il;
/*if Ffirst day of booking process then today_ _bookings equal

to todays"s booking*/
if (day>0)

today_bookings = data_bookings[fit] [mycls] [day] -

data_bookings[fIt][mycls][day-1];
flt_hash_table[day] [mycls] [today bookings]++;

else

today_bookings = data_bookings[fit][mycls][O];

152

flt_hash_table[day] [mycls] [today_bookings]++;

}

}

} //close fit loop
}//close day loop

153

double get_Likelihood(void)

double log_cls[NOCLASSES]={0,0};
float ptot=0;

double log_all_data;

double log_per_cls;

double dx[NOTYPES]={0};
log_all_data=0;
create_hash_table(;

for (int day = 0; day <= 180; day++)

log_per_cls=0;
for (int tl = 0; tl < NOTYPES; tl++)

for (int cl = 0; cl < NOCLASSES; cl++)
grid_pointi[tl][cl]

grid_point2[tl][cl]
index[tl][cl]=0;

0;
0;

}

for (int els = 0; els < NOCLASSES; cls++)
for (int t b = 0; t b <AIll_arr+l; t b++)
if (flt_hash_table[day][els][t_b] = 0
for (int t = 0; t < NOTYPES; t++)

double mypacc=p_acc[t][cls_label[t][els]];
grid_pointl[t][els]=(int(mypacc*10))*0.1;
double mydiff=mypacc-grid_pointl[t][els];
if (mydiff >0)

dx[t]=mydiff;
grid_point2[t][els]=grid_pointl[t][els]+0.1;

se

grid_point2[t] [els]=grid_pointl[t] [els];

et Ay DAmd

int label [NOTYPES]={0};

int a=0, b=0;
for (t = 0; t < NOTYPES; t++)
{

//if pace lies between two pace®s eg. [0, 0.37, 0.8]
if (fabs(grid_point2[t] [els] - gridjpointl[t] [els])>0)

154

a = ah,
label[b]
b=b+1;

//for this class move the first set of grid_points

//to index eg. class 0 with only type 0 (bus) passenger
//pacc [0.9, 0, O]

for (t « 0; t < NOTYPES; t++J]

index[t][els]=grid_pointl[t][els];

0og_per_cls=0;
if (a==I)

ptot=one_interp(day, els, dx, label, t_b);
else if (a==2)

ptot=two_interp(day, els, dx, label, t_b);
else if (a==3)

ptot=three_interp(day, els, dx, label, t_b);
else
{ //no interpolation required

ptot = get _ptot(day, els, index, t_b);

if (ptot>0)
log_per_cls=log(ptot) ¥
else log_per_cls= -1.0e99;

log_all_data +=
log_per_els*(double)flt_hash_table[day][els][t_b];

Y} //close Tlt_table loop
} //close class loop
} //close day loop
return log_all_data;

156

float one_interp(int day, int els, double dx[NOTYPES], int
1 [NOTYPES], int t_bookings)

index[1[0]] [els] = grid_pointl[1[0]] [els];
float ptot_I = get_ptot (day, els, index, t_bookings) 5

index[1[0]] [els] = grid_point2[1[0]] [els];
float ptot_2 = getjptot(day, els, index, t_bookings);

float lamda = (Float)dx[1[0]]1/((Float)grid_point2[1[0]] [els]-
(float)grid_pointl[1[0]] [els]D);

float Iptot=interpolate(ptot_I, ptot_2, lamda);

return Iptot;

float two_interp(int day, int els, double dxX[NOTYPES], int
1 [NOTYPES], int t_bookings)

index[1[1]1] [els] = grid_pointl[1[1]] [els];
float zl = one_interp(day, cls,dx, 1, t_bookings);

index[I1[1]1] [els] = grid_point2[1[1]] [els];
float z2 = one_interp(day, els,dx, 1 , tjbookings);

float mue = (Float)dx[1[1]]/((float)grid_point2[1[1]] [els]-
(float)grid_pointl[1[1]] [els]D);

float Iptot=interpolate(zl, z2, mue);

return lptot;

float three_interp(int day,int els, double dx[NOTYPES], int
1 [NOTYPES], int t_bookings)

index[1 [2]] [els] =grid_pointl [1[Z]] [els] 5
float zl = two_interp(day, els, dx, 1, t_bookings);

index[1[2]] [els]=grid_point2[1[2]] [els];
float z2 = two_interp (day, els, dx, 1, t_bookings) s

float fin = (float) dx[1[2]]1/((Float)grid_point2[1[2]] [els]-
(Float)grid_pointl[1[2]]1[els]D);

float Iptot=interpolate (zl, z2, fin) 5

return Iptot;

float interpolate(float ptot_I, float ptot 2, float dy)

157

float lIptot = ((1-dy)*ptot_ 1) + (dy*ptot_2);
return Iptot;

158

//find the value of total prob. (ptot) from the binary Tfile
float get_ptot(int day, int els, double index[NOTYPES][NOCLASSES],
int t_bookings)

double Ind[NOTYPES]={0};

float Iptot=0;

long pointer=0;

long bookings = (long)t_bookings;
double 10=0;

int 1i=0,i11=0,i12=0;

for (int tl = 0; tl < NOTYPES;tl++)

; ind[tl] = (index[tl] [els])*10;
i0 = ind[0] ;
ii=ceil (i0);

/*to point to any location: multiply day number by 11 values for
each pace (11*11*11=1331) by 31 vaulues for all passenger
arrivals (0-30) by 4 bytes for each value */

pointer (long)pow(All_arr+1, NOTYPES);
pointer = pointer*(long)day*(long)(All_arr+1)*4;
pointer = pointer + 10*(long)(All_arr+1)*4;

//add to pointer the value of today_bookings (bookings) * 4 bytes
pointer = pointer + bookings*4;

inpallFile.seekg(0);

inpallFile.seekg(pointer);

inpallFile.read((char *) (fclptot), sizeof(lptot));
inpallFile.seekg(0);

return lIptot;

159

void get_desr_and_pacc(float parms[NOTYPES][4D
float desr[NOTYPES][NOCLASSES];

//calculate desirability for each passenger type on each class
with

//new set of parm

for (int i=0; i<NOTYPES; i++)

float bO=parms[i][0];

float bl=parms[i] [1]:

float b2=parms[i][2];

float b3=1/parms[i][3];

for (int j = 0; j < NOCLASSES; j++)

desr[i1[J] =((class_comf[j]*b0)+ (class_fare[j]*bl)-b2)*b3;

for (=0; J<NOCLASSES; j++)

cls_label[i1[J] = j:

//sort classes according to desirability
float hold;
int holdl;
for (int pass

1; pass < NOCLASSES; pass++)

for (int j 0; Jj < NOCLASSES-1 ; j+b)

if (desr[i][j]1 < desr[i] O+I11)

hold = desr [i] O1;

holdl = cls_label[i][i] ;

desr [i] [I1 = desr[i] [j+1] ;
cls_label[i] O] = cls_label[i] [j+1];
desr[i] [g+11] = hold;

cls_label[i] [+11 = holdl;

}}

for(i=0; iI<NOTYPES; i++)
for(int j=0; j<NOCLASSES; j++)

//Calculate p_acc for each passenger type for each class

pacc[il 1 =17 @ + exp(-desr[i] [ID):;

160

161

/eselect a parameter at random and add a random number to
float change_one_parm(float parm_2[NOTYPES][4])

int random_0O, random_1I;

random™O = NOTYPES-1; /*only onepax*/
//selcet one parameter at random|[O,lor2]
random_I = rand()%s3 ;

float test = 0.0;

float random_2 = 0.0;

switch (random_I)

//parm_2[0][0] must have a value between 0, 1

case O:
test = parm_2 [random_0] [O] 5
random_2 = get_random_number(0.1, -0.1);
test += random_2;
while (test > 1 || test < 0)

random_2 = get_random_number (0.1, -0.1);
test += random_2 ;

parm_2[random_0][0] = test;
break;

//parm_2[0][1] must have a value between -1, 0
case 1:
test = parm_2[random_O0][1];
random_2 = get_random_number(0.1, -0.1);
test += random_2;
while (test > 0 || test < -1)

random_2 = get_random_number(0.1, -0.1);
test += random_2;

parm_2[random_O][1] = test;

break;
//parm_2[0][2] must have a value between -300, -500

case 2:
test = parm_2[random_0][2];
random_2 = get_random_number (20, -20);
test += random_2;
while (test > -300 || test < -500)

random_2 = get_random_number(20, -20);
test += random_2;

parm_2[random_O][Z] = test;
break;

return parm_2 [random_O] [random_I] 5>

it*/

/¢generate random number*/
float get_random__number (float n, float m)

float random = ((h-m) * ((Float)rand()/RAND_MAX)) + m~-
return random;

/*Find_ratio*/
void find_ratio(float parm_I[NOTYPES] [4], float parm_2[NOTYPES] [4]D
{ if (loglik 2 > loglik)

loglik_1 = loglik 2;
for (int i = 0; 1 <= NOTYPES-1; i++)
for (int j = 0; J <= 3; j+t)
parm_I[i10d1 = parm_2[i]1Li1;
else
if ((exp((loglik 2 - loglik_1))) >= get_random_jiumber(d, 0))
loglik_1 = loglik 2;
for (int i = O; 1 <= NOTYPES-1; i++)
for (int j = 0; J <= 3; j+t)
parm_I[i] O1 = parm_2 [i] b1:
/*open output Ffiles*/
void openFilesO
if (lindataFile) {
cerr << "indataFile file could not be opened" << endl;
exit();

for (int flt=0; fit < FLIGHT; TFfIt++)
for (int day=0; day<=180; day++)
for (int i=0; i< NOCLASSES; i++)

indataFile >> data_bookings[flIt][i][day];
it (linclsFile) {

cerr << "inclsFile file could not be opened"” << endl;
exit();

or (int i=0; i<NOCLASSES; i++)

inclsFile » class_seats[i] »

class_comf[i] >>
class_fare[i];

/*close output files*/
void closeFilesO

indataFile.close(;

inpallFile.close();
inclsFile.close();

164

outpaccFile.close(

