
MCMC Simulation for Modelling
Airline Passenger Choice Behaviour

By

Fajer A. Al-Sayer, B.Sc. M.Sc.

A thesis submitted in fulfilment of the requirements for the
Master of Science Degree in Computer Applications

August 2001

School of Computer Applications
Dublin City University

Dublin 9, Ireland

Supervisor: Dr. Alistair Sutherland

Declaration

I hereby certify that this material, which I now submit for assessment on the

programme of study leading to the award of M. Sc. Is entirely my own work

and has not been taken from the work of others save and to the extent that such

work has been cited and acknowledged within the text of my work.

Acknowledgements

Thanks to the supervisor Dr. Alistair Sutherland for his continuous assistance
and support. Thanks to Dr. Martin Crane for his help and valuable
suggestions. A special thanks to Kuwait Airways for giving me the
opportunity to continue my studies.

Many thanks to all the following:

My parents and my brothers and sisters for encouraging me and giving me
moral support.

My lovely nieces Anood, Baidaa and Noor for being so kind and supportive to
their aunt.

My friends back home, Altaf, Huda, Jameelah, Laila, Hana and Mona for
keeping in touch with me all the past few years. A very special thanks has to
go to my friend Selma in Canada.

My colleagues in the Toastmaster club for helping me to practice public
speaking in my spare time.

And last but not least, my friends in Ireland: Vincent Shannon from Malahide,
Kay and Jerry Chester from Swords, Kerry and Pete Bedell from Malahide,
Heidi and Trevor Sargant from Ballbriggan for treating me as one of the
family.

Table of Contents

CH APTER 17...

IN T R O D U C T IO N ..7
1.1 Background.. 8...,
1.2 Goal of Thesis.. 12.
1.3 Organization of Thesis... 14.

CH APTER 2 ...15.

Se a t A l l o c a t io n a n d Y ie ld M a n a g e m e n t Sy st em ... 15
2.1 Introduction.. 15..
2.2 Yield/Revenue management system...IB

2.2.1 History... .18...
2.2.2 YM objectives................................... 19..
2.2.3 YM Components..20..

2.3 Previous approaches: A Literature Review..22

CH APTER 3 ...26.

M a r k o v Ch a in M o n t e Ca r l o M e t h o d ... 26
3.1 Introduction.. 26..
3.2 Bayesian Probability Theory..28.
3.3 Metropolis Algorithm..31.

CH APTER 4 ...3.4.

B o o k in g Pr o c e ss S im u l a t io n M o d el ... 34
4.1 Introduction.. 34..
4.2 Airline passengers as customers... 3.5.
4.3 The Model.. 38..

4.3.1 Model assumptions...38..
4.3.2 Input data..39...
4.3.3 Calculation of the Desirability/Utility value of classes.. .4.1
4.3.4 Calculation of the probability of accepting to book on the desired class 44
4.3.5 Calculation of the probability ol'passenger arrival...47
4.3.6 Booking the passenger on the desired class..50
4.3.7 Model Flowchart..5.1...

4.4 Generating sample data.. 53.
4.5 Summary.. 58.,

CH APTER 5 ...60.

F it tin g the M o d el to th e Da t a ... 60
5.1 Introduction.. 60..
5.2 Pre-computation of Probability Distributions.. 6.0

5.2.1 Creating a table for Probability of Arrival..6.1
5.2.2 Creating a table for Probability of Acceptance..63
5.2.3 Creating a table for Total Probability of Bookings.. 64

5.3 Estimation of Model parameters using Metropolis Algorithm... 68
5.3.1 Start the algorithm with an arbitrary starting point...68
5.3.2 Change one parameter at random.. .6&
5.3.3 Calculate the likelihood..68.
5.3.4 Using the Metropolis Algorithm.. 69..

5.4 Summary... 71..

LIST OF TABLES..5..

Re s u l t A n a l y s is .. 72
6.1 Introduction.. 72..
6.2 One passenger type and one class..7.5.

6.2.1 One passenger type and one class (classl) for one flight... .75
6.2.2 One passenger type and another class (class2) for one flight..77
6.2.3 One passenger type and another class (class3) for one flight..79
6.2.4 Intersection between the planes of the previous classes...&0

6.3 One passenger type and two classes...81
6.4 One passenger type and three classes...84
6.6 Two passenger types and three classes.. 89
6.7 Three passenger types and three classes.. 91.
6.8 Summary.. 93..

CH APTER 7 ...95.

Co n c l u sio n a n d Fu t u r e w o r k 95
7.1 Conclusion... 95..
7.2 Future work.. 97..

R E FER EN C ES.. 99.

A PPEN D IX A .. 103

A. 1 Sa m pl e B o o k in g D a t a ... 103
A .2 Ta b l e fo r Pr o b a b il it y o f A r r iv a l (P a r r iv e)...................................... 106
A. 3 Ta b l e f o r P r o b a b il it y o f A c c epta n c e (P a c c e pt)115
A. 4 Ta b l e f o r Ov e r a l l Pr o b a b il it y o f B o o k in g s 120
A. 5 R e a d in g fr o m th e b in a r y file P a l l b ... 125

APPEN D IX B .. 1 2 8

B . 1 S lM DATA C PROGRAM FOR GENERATING SAMPLE DATA................................. 128
B .2 P ARRIVE C PROGRAM FOR CREATING P ARRIVE TABLE................................... 135
B .3 P A C C E P TC PROGRAM FOR CREATING P ACCEPT TABLE................................ 138
B .4 PRECOMP C PROGRAM FOR CREATING P TOT TABLE.. 140
B .5 M E T ONEPAX C PROGRAM FOR METROPOLIS ALGORITHM............................. 143

CHAPTER 6 ...72.

2

LIST OF FIGURES

Figure 1.1: The difference between flight leg and flight segment..9.
Figure 2.1: Sample Flight inventory record for two-leg flight KU123 (AAABBB and BBBCCC)

with three prime classes F, J, and Y and three subclasses, B, H and T nested within Y clasi6
Figure 2.2: Sample Overbooking Profiles.. 17
Figure 2.3: YM relation with the Reservation System..20
Figure 2.4: YM components...21.
Figure 2.5: Flight network... 23..
Figure 4.1: Logistic Function...45.
Figure 4.2: Probability of Arrival for business passenger.. 49
Figure 4.3: Probability of Arrival for tourist passenger.. 49
Figure 4.4: Probability of Arrival for student passenger.. 49
Figure 4.5a: Booking process simulation model.. 5.1
B ookseat:.. 52...
Figure 4.5b: Booking process simulation model... 52
Figure 4.6: Sample booking curves for all classes.. 55
Figure 4.7: Minimum, maximum and mean booking curves for tourist passengers.......................56
Figure 4.8: Mean booking curves for tourist passengers with different sets of arrival parameter^
Figure 4.9: Mean booking curves for business passengers with different sets of arrival parameters

...57...
Figure 4.10: Mean booking curves for tourist passengers with different sets of accepting

parameters..5.8...
Figure 5.1: Probability Distribution for the business passenger arrivals on day -2 6 62
Figure 5.2: Probability Distribution for the tourist passenger arrivals on day -120........................62
Figure 5.3: Probability Distribution for the student passenger arrivals on day -4 0 62
Figure 5.4: Probability Distribution for all possible number of acceptances when p = 0.9 and

maximum arrivals n = 10... .64.
Figure 5.5: Pre-computation of overall probabilities...6.7
Figure 6.1: A plane viewed from different angles for one passenger type booking on one class

with p _ a c c t c = 0.8. The original parameter combination lies in the plane as it should do76

Figure 6.2: One passenger type booking on another class with p __ & cctc = 0.5005................... 77
Figure 6.3: Two planes representing two different classes for one passenger type with large area

of intersection between them..78.
Figure 6.4: One passenger type booking on another class with p _ a c c t c = 0.5......................... 79
Figure 6.5a: Intersection between the 3 previous planes.. 80
Figure 6.5b: Intersection between the 3 previous planes, different angle.. 80
Figure 6.6: Booking curve for one passenger type and two classes..&2
Figure 6.7: Intersection between the runs from one passenger and two classes separately. The

original combination is shown as a black dot.. .82
Figure 6.8: One passenger type and two classes for one flight...83
Figure 6.9: One passenger type and two classes for 100 flights. Notice how the spread of the

distribution is reduced. The original parameter combination is shown as a black dot......... 83
Figure 6.10: Booking curve for one passenger type and three classes..84
Figure 6.11: One passenger type (typcl) with three classes, blue distribution for one flight and red

one for the 100 flights... 85..
6.5 Another passenger type and three classes... 86.
Figure 6.12: Different passenger type (type 2) with three classes for one flight(thick line) and 100

flights (thin line)... 8.7..
Figure 6.13: Intersection between the runs for a different passenger type (type 2) and three classes

separately..87...

3

Figure 6.14: Different passenger type (type 2) with three classes-different angle..........................88
Figure 6.15: Two passenger types (typel and 2) in separate runs with 3 classes for 100 flights..90
Figure 6.16: Two passenger types with 3 classes from 100 flights. Notice the increase in

uncertainty...................................... 90
Figure 6.17: A third passenger type (type 3) with 3 classes from 100 flights.................. 5.1
Figure 6.18: Three passenger types with 3 classes from 100 flights... 9.2
Figure 6.19: Three passenger types with 3 classes from 1000 flights..93

LIST OF TABLES

Table 4.1 A sample of class parameters... 40
Table 4.2 A sample of passenger parameters....................... 40
Table 4.3: Sample calculated desirability and probability of acceptance for three

passenger types and three classes.. 46
Table 4.4: A sample of model counters... 54
Table: 6 .1 Parameters used for one passenger type and one class (classl)..........75
Table: 6.2 Parameters used for one passenger type and another class (class2) 77
Table: 6.3 Parameters used for one passenger type and another class (class3) 79
Table: 6.4 Parameters used for another passenger type and three classes............86

5

Abstract

As passengers we would prefer to pay the cheapest fare available for our airline
ticket. On the other hand airline companies wish to increase their revenue from
its flown tickets. During the booking process of an airline flight, some passengers
may arrive early to book their seats, others may decide to book just few days
before departure or even on the day of departure. Airlines realise that they have to
offer a variety of fares in order to differentiate between different types of
passengers. Allocating seats to different fare classes for different types of
passengers in such a way that would maximise the airline’s revenue requires
yield/revenue management systems. There are two main steps in any revenue
management system: Forecasting and Optimisation. Accurate prediction of
passenger future demand for different fare classes improves the seat allocation
recommendations resulting from the optimisation step. The work in this thesis
concentrates on studying and analysing the behaviour of different passenger types
towards different fare classes. We first formulate a Monte Carlo simulation
model for the booking process. The model generates sample booking data for a
flight on different fare classes by different types of passengers defined by the
characteristics which affect their behaviour. Passenger behaviour is modelled
using a customer utility function and a multinomial logit (logistic) model of
demand. This sample booking data is then used in a Markov Chain Monte Carlo
model in order to estimate the passenger choice parameters used in generating the
booking data. These estimated parameters could be used then to classify any new
booking data. The MCMC model uses the Metropolis Algorithm for its
estimation process. We also examine briefly the computational feasibility of our
approach using parallel processing.

6

CHAPTER 1

INTRODUCTION

Modelling passenger choice behaviour is becoming more and more important in

the process of future demand forecasting. Airlines like any service and product

provider, realise that it is essential to predict passenger behaviour towards

different fare classes on different flights in order to set the future prices and

product availability. During the days prior to the departure day of the flight,

passengers make their reservations and choose from a set of options of flights and

fare classes. Passengers, like any other consumers choosing between a number of

available products, have different preferences towards the products on offer. In

this research we model the passenger choice behaviour during the flight booking

process using a computer simulation model.

Bratly and Scharge (1987) provide the following definition of modelling:

A model is a description o f some system intended to predict what happens

i f certain action is taken. Virtually any useful model simplifies and

idealizes.....For a model to be useful, it is essential that, given a

reasonably limited set o f descriptors, all its relevant behaviour and

properties can be determined in a practical way: analytically,

numerically or by deriving the model with certain (typically random)

inputs and observing the corresponding outputs. This process is called

simulation.

While Neelamkavil (1986) gave the following definitions:

A model is a simplified representation o f a system (or process or theory)

intended to enhance our ability to understand, predict, and possibly

control the behaviour o f the system... A model adaptedfor simulation on

a computer (i.e. mathematical/logical relations and operational rules

built into the computer program) is known as a computer simulation or

simply simulation model.... Modelling is the process o f establishing

7

interrelationships between important entities o f a system It is almost

impossible to understand and isolate all the interrelationships in a real-

world system, and one is forced to trade off reality, generality and

accuracy for simplicity.... Obviously the ability to build models by

selecting the smallest subset o f variables which adequately describe the

real system is very important and highly desirable quality o f a good

modeller.... Simplicity is an essential criterion o f a good model.

We intend to apply the above ideas to passenger behaviour.

1.1 Background
In order to have a better understanding of the underlying complexity of the airline

booking operation, we will give a brief description of the main elements of the

booking process.

• Capacity: the aircraft type and size determine its capacity, which in its turn

determines the configuration of compartments. For example the 378-seats

Boeing 747 is physically divided for some airlines as follows:

* First Class cabin: 12 seats in upper deck and 20 seats in the front of the
main body of the aircraft
* Business Class cabin: 24 seats located between first class and economy

cabins

* Economy Class cabin: 322 seats located in the rear of the aircraft

The Airbus aircraft A300 type, on the other hand has 235 seats and A310 type

has 170 seats. Most aircraft types can also accommodate special seat requests

such as carrycots, stretchers, wheelchairs and incubators. When a flight is

created in the Reservation System of an airline, an aircraft type is assigned to

it. As the day of the flight departure gets closer, the type of aircraft might be

changed either to a bigger airplane to accommodate more passengers or to a

smaller one if the demand is low.

8

• Flight: There are two types of flights, Single-leg (or Single-sector) flights and

Multi-leg flights; a Single-leg flight is the non-stop flight between an origin

and a destination. For example the flight number KU301 is a non-stop flight

that originates from Kuwait City and ends at its destination in Bombay. A

multi-leg flight is a flight between two cities (origin-destination) with one or

more stops in intermediate cities. For example, the flight number KU101

starts from Kuwait City stops in London then ends in New York. KU101 is a

two-leg flight.

Flights also consist of segments, a segment is any multi-leg or single-leg city-

pair combination on the same flight number. Figure 1.1 illustrates the

difference between legs and segments.

Figure 1.1: The difference between flight leg and flight segment

9

• Pricing policy: in the airline industry different customers are willing to pay

different prices for the same product. A product is a flight seat on a particular

market and in a particular cabin. Many customers are willing to pay a higher

price for additional service features. For example, customers travelling on

company business are less price-sensitive and more service-sensitive, on the

other hand leisure travellers are willing to sacrifice service features for lower

cost. Pilgrims tend to have a lengthy stay at their destination for religious

purposes and are price-sensitive. Students prefer low-priced seats but they

have limited range of days to choose their flights from due to the timing of

the school holidays. There are other types of passengers such as groups, tour

operators and labour groups.

Once a flight is created in the reservation system, it will be assigned

price/fare-class structures. There are many fare levels used in the airline

business. The Main factors used in setting fare levels are cost, load factors,

traffic volume, competitive fare levels, and capacity. Fares are usually

changed twice a year after IATA (The International Air Transport

Association) conferences in April and October. For example, Kuwait Airways

standard IATA based price levels consist of:

* First class full fares booked in F class

* Business class full fares booked in J class

* Economy class full fares booked in Y class

* High priced excursion fares booked in Y class

* Lower priced excursion fares booked in Y class

Other fare classes are used for discounted traffic. These discount fare classes

(sub-classes) are market-specific and may be used to control point of sale.

Discount sub-classes are nested in the reservations system either in parallel or

serial nesting structure.

10

• T h e B o o k in g P rocess: as best described by Lee (1990), consists of three

phases:

1. The reservation phase: when customers request a seat on airline flights

and choose from a number of alternatives (flights, classes) that best meet

their preferences. The airlines then either accept or reject their requests

depending on specific decision policies.

2. The cancellation phase: when passengers who had reserved seats then

return later and cancel their reservations during the time before the

departure of the flight. Another type of cancellation would occur

automatically by the system if the passenger did not comply with the

restrictions imposed on their type of booking. For example, when

passengers do not purchase their tickets by certain time before departure,

the system will automatically cancel their bookings.

3. The boarding phase: which is the actual departure time of the flight when

the final number of passengers boarded and travelled may be determined.

• P a ssen g er T ypes: from the airline perspective, there are many types of

passengers which are identified by different booking codes in the reservation

system. For example,

• The confirmed passengers who hold confirmed bookings and tickets.

• The waitlisted passengers who know that their requested fare classes are

full and agree to be waitlisted on them.

• The cancelled passengers who previously reserved seats then cancelled.

• The go-show passengers who arrived on the day of departure and booked

seats and travelled.

• The no-show passengers who hold confirmed reservations but did not

show up on the departure day for some reason such as illness, difficult

road conditions, or late arrival of a connecting flight.

• The denied-boarding who hold confirmed reservation and tickets but were

not allowed to board the aircraft either because all seats have been taken

by other confirmed passengers due to overbooking, (we will explain

11

overbooking process in the next paragraph), or perhaps for legal or

security reasons.

• Overbooking: it is a common practice in the airline reservation operation to

allocate more seats to certain fare classes than the physical capacity, by

setting overbooking profiles in the reservation system. These profiles allow

the system to accept bookings (spaces) greater than the actual number of seats

available on the aircraft. As we mentioned above, if airlines did not overbook

their flights, and if on the departure day some passengers did not show up

then aircraft would depart with empty seats causing loss in revenue. In order

to minimise this revenue loss, airlines allow their flights to be overbooked,

predicting that these overbooked passengers will be accommodated in the no-

show passengers seats. For example, Kuwait Airways flights to Cairo are

usually overbooked 80% over the capacity because of the high no-show

behavior in the Kuwait/Cairo market. At the same time, airlines must be

careful in setting these profiles to avoid overselling their seats and face

denied-boarding passengers. These then would be entitled to some type of

compensation, such as alternate transportation, a ticket voucher or hotel and

meal vouchers. This situation can also cause revenue loss.

1.2 Goal of Thesis
In the past, most work in the area of passenger demand forecasting was

concentrated on flight level. Analysis was performed on flight, origin and

destination, fare classes and number of booking on each class. One reason for this

is the limited detailed passenger data available in the reservation systems. Only

recently the airlines enhanced their systems to include more information on their

passengers especially with the evolution of the yield management systems which

depend on good forecasting techniques in order to recommend what classes

should be available and how many seats should be allocated to each class. Even

with this information stored and used to predict future passenger behaviour, there

were some activities which can not be detected or logged such as when

12

passengers opt not to book even if their most desired class, according to their

preferences, is still available. Using a computer simulation for the booking

process enables us to analyze and investigate any situation that may occur such

as: what if passengers actually arrive to book on a day before departure but do not

book on their most desired class available. Or: what if passengers booked on the

second desired class because their most desired class is not available. In this

scenario we are actually analyzing the hidden behaviour of the consumers that

cannot be reflected in a time series analysis of flights. Also under this analysis we

might be able to recognize patterns in different passenger types which will enable

us to come up with reasonably identified categories that would define the

different passenger types. This could be achieved by analyzing their reaction to

different fare classes or what restrictions are placed on these classes.

Monte Carlo simulations can model these different reactions and behaviours, as

they depend on a set of conditional probabilities and given parameters. Monte

Carlo simulations have been used in the airline yield management systems for

testing new techniques. In this thesis we use a particular type of Monte Carlo

technique known as the Metropolis algorithm.

The goal of the thesis is to evaluate how well the Metropolis algorithm can be

used to estimate models of passenger behaviour. We describe a generic model of

passenger behaviour, which predicts how passengers will react to different fares

and levels of service on offer. This model involves several variable parameters.

Ideally we would like to be able to estimate values for these parameters from

real-world data using the Metropolis algorithm. However, before that, we wish to

evaluate Metropolis using simulated data.

Our method for evaluating the Metropolis algorithm is as follows:

1) We insert trial values into the model parameters.

2) We generate simulated data from the model using the trial parameters.

3) We then use the Metropolis algorithm to estimate the parameters from the

simulated data

4) We evaluate how well the estimated parameters compare with the trial

parameters, which were used to generate the data.

13

1.3 Organization of Thesis
Chapter 2 is a brief description of the Yield management system and its

relationship with the airline seat allocation process. Chapter 3 will introduce the

basic concept of the Monte Carlo methods and why these methods can be used to

model complex systems. In the same chapter we also explain briefly how the

Metropolis algorithm can be used to construct Markov Chain(s) in a Monte Carlo

simulation model in order to estimate the model parameters. Following these two

introductory chapters, our Monte Carlo model of the passenger booking process

will be presented in Chapter 4, followed by a detailed description of how to

create a Markov Chain using the Metropolis algorithm in Chapter 5. We start

Chapter 5 with the building of the Probability Distribution Tables that are

required in the mathematical calculations of the likelihood values used by the

algorithm. Chapter 6 presents the results of our evaluation of the Metropolis

algorithm. For several different cases we generate simulate data. We then use

Metropolis to estimate the parameters used to generate the data. We compare the

estimated values with the original values. We conclude our work in Chapter 7.

14

CHAPTER 2

Seat Allocation and Yield Management System

2.1 Introduction

Any business organization attempts to improve its profit while selling its

products, whether the products are toothpaste, shoes, cars, hotel rooms or airlines

seats. Improving the profit is achieved by reducing the cost and/or increasing the

revenue. In order to increase the revenue, business organizations realized that it is

essential to use some kind of Yield Management (YM) tools. Airlines were first

in implementing YM techniques to enable them to selectively accept or reject

bookings in such a way that would maximize their overall revenue. Prior to YM

evolution, a group of reservation staff known as the space or inventory controllers

were responsible for all flight inventory controls. When a flight is created in the

reservation system 11 months before the day of departure, the system keeps track

of its inventory which mainly includes the seats allocated in each booking class

assigned for the flight and the number of seats sold on each class. Figure 2.1

shows a sample inventory record display from the reservation system. The

inventory controller group set the overbooking levels on certain days over the life

of the flight, see Figure 2.2. The inventory controllers have to choose from more

than 200 different manually determined overbooking profiles, that are stored in

the reservation system for each flight. They have to take into consideration the

market that the flight serves, the season that the flight operates in and the day of

the week that the flight departs on. There is no fixed set of rules for setting these

profiles and the decisions are made entirely by the controllers depending on their

judgement and experience of the variation in flights’ behaviour.

15

KU 123 6Scp AAA CCC F ACP 10 PRO 0

INH DC BRG NETAU NETSA AU SA PL SNL CNL

AAA 15 2 18 4 4 0

BBB 15 11 18 14 4 10

J ACP 0 PRO 0

INH DC BRG NETAU NETSA AU SA PL SNL CNL

AAA 21 0 24 1 4 0

BBB 21 18 24 21 4 17

Y ACP 15 PRO 22

INH DC BRG NETAU NETSA AU SA PL SNL CNL

AAA 21 0 24 1 4 0

BBB 21 18 24 21 4 17

B ACP 15 PRO 19

INH DC BRG AU SA PL SNL CNL

AAA 80 71 4 58

BBB 80 84 4 70

H ACP 0 PRO 0

INH DC BRG AU SA PL SNL CNL

AAA 90 3 4 0

BBB 90 48 4 39

T ACP 0 PRO 0

INH DC BRG AU SA PL SNL CNL

AAA 140 31 4 23

BBB 140 78 4 66

NETAU: net authorization for the prime classes
NETSA: net seats available in the prime classes
ACP: actual percentage overbooking per class
PRO: Profile Table item number which describes
AU: Total authorization allocated to each class
SA: total seats available on each class

the overbooking percentages

Figure 2.1: Sample Flight inventory record for two-leg flight KU123
(AAABBB and BBBCCC) with three prime classes F, J, and Y and three
subclasses, B, H and T nested within Y class

16

Figure 2.2: Sample Overbooking Profiles

As departure days approach, the controllers have to monitor their flights more

frequently adjusting the overbooking profiles as they see best accounting for the

current number of bookings, the cancellation rates and the no-shows expected on

days of departure from similar past flights. The controllers aim to fill their flights

and avoid denied boardings on departure. While monitoring flights the controllers

also have to give special attention to the discounted classes on each flight and

carefully re-adjust the number of seats allocated to each class in order to

maximise the total number of bookings as well as the revenue that would be

generated from the fare of each class.

With YM system many of the manually performed tasks can be done

automatically such as setting and controlling overbooking profiles for most of the

flights allowing the controllers to concentrate on critical flights that require

special attention and manual intervention. With the availability of historical flight

data that is collected by the YM system more accurate demand forecasts can be

determined which in their turn lead to a better estimates for the overbooking

profiles. Consistency can be achieved by allowing an automated system to review

all flights in the airline network and then set inventory levels for all flights

instead of different decisions by different controller. With the help of YM

systems which use mathematical optimization and forecasting techniques and

algorithms, as well as data management systems, the inventory controllers are

17

able to make the right decision in setting the seat inventory levels for their flights

(Kuwait Airways Yield Management and Pricing, unpublished document 1992).

We will describe in details the YM system in section 2.2. Section 2.3 is a brief

overview of the literature on YM methods.

2.2 Yield/Revenue management system

2.2.1 History

Yield/Revenue Management systems have developed since the early 1980’s in

response to the increasing product range which airlines started to offer their

customers due to deregulation of the airline industry in 1978. The Civil

Aeronautics Board (CAB) was responsible for setting fares for the industry as a

whole before deregulation. Since deregulation a number of low-cost carriers,

such as EasyJet and Ryanair, started up and proved successful in competing with

the major airlines. In order to stay in business, mainstream airlines began to offer

seats that would otherwise be empty to low-fare passengers. These low fares had

to have some restrictions such as, minimum stay, non-refundable tickets, so that

passengers willing to pay higher fares would not be attracted to those offers too.

With the increasing product ranges, most airlines realised that it was essential to

use yield management systems in order to maximise the revenue potential that

could be generated from these products. American Airlines, one of the leading

airlines in developing yield management tools, defined Yield management as the

selling of the right seats to the right customers for the right prices at the right

time. In the airline industry this concept is put into practice via the control and

management of seat inventory controls in the reservations system. Inventory

controls are set in a way as to maximise airline profitability, given the fare

structure and flight schedule. The term Yield Management in this context is a

wrong term because revenue and profit, not yield, are being maximised. The

airline seat after all, is a perishable product because after the flight departs it has

no value unless it was occupied and paid for. As a result, Weatherford and Bodily

18

(1992) proposed to replace the term yield management with Perishable-Asset

Revenue Management (PARM). They defined it to be the optimal revenue

management o f perishable asset through price segmentation. The authors

developed a comprehensive taxonomy for the underlying assumptions for general

PARM models and identified 14 descriptors that can be used to categorise a range

of PARM problems: yield management, overbooking and pricing.

2.2.2 YM objectives

The main objective of the revenue management system is to maximize total

passenger revenues and load factors. This can be achieved by the following:

• Balancing the number of low and high fare bookings by making sure that

there are always seats available for the higher revenue demand when such

demand is expected to avoid selling more seats to low fare customers

leading to lower revenue (revenue dilution).

• Using overbooking profiles in such a way that maintain the balance

between the number of empty seats when the flight departs (spoilage) by

accounting for cancellations and no-shows, and the number of over-sales

that leads to denied boarding.

• Providing recommendations when dealing with group bookings.

Two types of factors influence the decisions made by the system:

1. Known factors such as the capacity, fare structure, current number of

bookings held, the availability of detailed historical data that provides

trends on previous passenger behaviour, and the existence of competitors

in the same market.

2. Unknown factors related to the uncertainty in passenger behaviour.

Passenger characteristics such as the booking characteristics, i.e. how

many and what time would passengers book during the life of the flight,

also their cancellation and no-show behaviour. These characteristics are

affected by factors such as the season, changes in flight schedule, changes

in fares, current events.

19

Effective revenue management increased revenues tremendously and the payoff

from effective seat inventory control also proved to be substantial. For example,

Delta Airlines in 1985 estimated that selling just one seat per flight at a full fare

rather than a discounted fare can add over $50 million to its annual revenue (see

Belobaba 1987b). American Airlines and United Airlines claimed that their

annual increase of profit was more than 100 million dollars from their revenue

management systems (see YM3). Belobaba and Wilson (1997) using a simulation

model showed that the use of a yield management system not only has a positive

impact on the airline using it by increasing its revenue, but a negative one on

other airlines with no yield management tools that operate in the same

competitive market.

2.2.3 YM Components

Figure 2.3 illustrates the relation between the YM system and the Computerized

Reservation System (CRS), where the flight inventory control resides (Yield

Management Workshop 1996).

Figure 2.3: YM relation with the Reservation System

20

The main two modules of any revenue management system are as follows:

1. The forecasting module utilizes passengers and operational information that

are collected from the reservations, inventory and departure control systems

in order to predict passengers behaviour such as demand, no-show rates and

cancellation percentages on future flights.

2. The optimization module uses the output from the forecasting process with

revenue data to determine the effective booking limits and overbooking

profiles. It also identifies and highlights critical flights that require special

attention from the yield analysts.

Figure 2.4 shows the components of the YM system.

Figure 2.4: YM components

As a result of their success in the airline industry, revenue management systems

are currently used in a wide range of businesses such as hotels, car renting,

railways and media broadcasting. For more information on revenue management

and some existing systems see the following Internet references: YM[1], YM[2],

YM[3], YM[4], YM[5], YM[6],

21

2.3 Previous approaches: A Literature Review

Major airlines, either individually or through operation research groups,

developed a variety of yield management methods that best suit their market

environment and work well with their reservation systems. Belobaba (1987a,

1989), one of the pioneering researchers in the area of airlines seat allocation

management for multiple nested classes, developed a probabilistic decision

model based on the Expected Marginal Seat Revenue (EMSR). The EMSR model

(and the modified version EMSRb (1992)) is used to set and revise booking limits

on each fare class on single-leg flights taking into consideration the stochastic

(i.e. random) nature of the future demands. By calculating the booking limits on

each class the model aims to protect seats for the higher fare class from the next

lower fare class. The user decides the points in time (days before departure)

during the booking process that the model should run to update its

recommendations. These EMSR models are widely used in yield management

systems.

Many comparisons were made by researchers and analysts, including Belobaba

(1992), between the EMSR algorithm and other optimisation techniques. For

example, Brumelle and McGill (1993), Curry (1990), Robinson (1995) and

Wollmer (1992), all reported that the EMSR model was only able to calculate the

optimal booking limits for the first two highest fare classes in the nesting

structure, they either modified the original EMSR or developed their own

algorithms to obtain the optimal seat allocation for all nested fare classes.

The seat allocation problem became more complex when airlines started to

increase their scheduled flights to many different destinations. They were not

interested anymore in maximising the revenue for each flight separately but

rather for the whole network, by managing the seat allocation policy on the basis

of origin and destination. Figure 2.5 illustrates a sample of a flight network of

some Kuwait Airways flights. Seats allocated on different fare classes on KU102

flight (for the North America and Europe market) is directly affected by the

KU201 flight to Karachi and KU301 to Bombay (for the Indian Sub-continent

market). In order to maximise the overall revenue for the network a balance

22

between high fare seats and low fare seats has to be analysed carefully to make

sure all flights have a minimum number of empty seats.

Figure 2.5: Flight network

As a result of this, more work has been done by researchers to extend the control

from single-leg techniques to a wider origin-destination optimisation methods.

See for example Belobaba (1989), Curry (1990), Dror et al. (1988), Gallego and

van Ryzin (1997), Glover et al (1982), Smith and Penn (1988), Vinod (1995),

Williamson (1988), and a number of papers appeared in the proceedings of

Airline Group of the International Federation of Operational Research Societies

(AGIFORS 1996/1997).

In the area of forecasting, Lee (1990) studied the airline reservations forecasting

process in detail and developed a probabilistic model that describes the booking

process as a stochastic process with requests, reservations, and cancellations

interspersed in the time before departure of the flight. He modelled the booking

process as an immigration and death process with non-homogeneous requests and

cancellation rates. A request or a reservation is considered as a new immigrant to

the population of the booked passengers, and a cancellation is considered as a

death of an existing member of the population. He introduced a censored Poisson

model for modelling the booking process which captures the dynamic nature of

23

the process and takes into account the censoring of airline booking data from

above at the booking limit.

Neural Networks have been used to forecast the no-show rates, Blackley (1993),

McGrath (1995), by using attributes from the passenger records held in the

reservation system (the historical passenger data stored in databases for statistical

analysis varies between airlines) such as: seat request, sales area, type of

payments. These studies proved that using passenger data rather than flight data

in the forecasting process improves its accuracy. McGrath (1995) reported that

using Radial-basis Functions Networks improves show and no-show predictions.

Only in the last few years researchers realised that they have to put more thought

into modelling the passenger choice behavior in more realistic way. That means if

there is more than one class available at any point in time during the booking

process, passengers might either choose their most desired class (according to

their preferences: price, service, times, booking restrictions....) or not book at all.

When the most desired class is full (closed) then passengers might choose

between booking on the second desired class (vertical recapture or buy up or buy

down) or book on another flight (horizontal recapture) or not to book at all and so

on.

Passenger Origin-Destination Simulator (PODS), which is the passenger purchase

behaviour simulation developed by Hoperstad at Boeing, AGIFORS 1996/1997,

demonstrated the importance of passenger choice behaviour on the revenue

management system recommendations. In a very comprehensive survey of 40

years of research in the area of forecasting, overbooking, seat inventory control

and pricing, provided by McGill and van Ryzin (1999), the authors highlighted

the importance of further research in the area of the behaviour of different

passenger types towards the change in fare products that are on offer.

Anderson (1998) suggested three approaches to improve the Scandinavian

Airlines System (SAS) origin-to-destination seat allocation system in order to

incorporate the buy-up (vertical recapture) demand and the horizontal recapture

(on other SAS flight) demand. He developed a discrete choice model that

calculates the probability of buying up when the most desired class is not

24

available, the probability of selecting another flight on the same class and the

probability of loosing the passenger to another carrier or through cancellations.

The model was based on the choice theory and multinomial logit function (MNL),

which is also the method used in our model as we will explain in Chapter 4.

Bitran et al. (1998) developed a general dynamic pricing stochastic model which

aims to maximise the revenue for retail chain with multiple stores and variety of

perishable products. Although the model had only one choice parameter, price, it

successfully modelled the arrival rate of customers and their willingness to pay

for products.

Talluri and van Ryzin (2000) developed a discrete choice dynamic program (DP)

algorithm that captures the consumer choice behaviour by also using the MNL,

while deriving the optimal policies for the seat allocation problem. The authors in

their paper say: “...while many attempts have been made to understand the

impact of choice behavior on traditional yield management methods and to

develop simple heuristics that partially capture buy-up and buy-down behavior,

to date there is no methodology that directly and completely addresses the

problem. ”

They combined the probability of arrival (or no arrival) with the probability of

choosing a fare class according to its utility value to different passenger types.

Their choice-DP model assumed a fixed arrival rate for all time periods of the

booking process. In order to run the optimization algorithm, estimations for the

arrival rates and the choice parameters were obtained by applying the expectation

maximization (EM) method of Dempster (Dempster et al 1977). There are some

similarities between our work and the work conducted in this paper.

25

CHAPTER 3

Markov Chain Monte Carlo Method

3.1 Introduction

Monte Carlo (MC) methods are stochastic techniques based on the use of random

numbers and probability to investigate problems. Any technique that utilizes

sequences of random numbers to perform statistical simulation could be called a

Monte Carlo method. The name Monte Carlo came from the capital city of

Monaco which is known as a center for gambling. Although the basic techniques

have been used for centuries, only in the 1940’s Metropolis, von Neumann and

Ulam called these methods Monte Carlo methods while working on the

Manhattan project because of the similarity of statistical simulations to the game

of chance, the core basis of gambling.

MC methods have been used in a wide range of fields such as nuclear physics,

molecular computation, traffic control, weather forecasting and others. Some of

the Seat Allocation Forecasting and Optimization techniques, mentioned in the

previous chapter, were tested by MC simulations (Lee 1990). Another application

area is medicine and medical related fields. A discrete MC method was used in

modelling the interaction between the HIV virus and the immune system

(Mannion 2001). This work illustrates that MC algorithms are suitable when the

field of application heavily depends on randomness and the behaviour of this type

of problem can be modelled by probability distributions. Probabilistic parameters

were used for the mutation of the virus and for the mobility of the 4 types of cells

used in the model.

There are many reasons behind the wide application of MC methods especially in

the last several decades:

(1) Its ability to examine complex systems by random sampling from the

probability density functions (pdfs) that describe the behaviour of the

physical (or mathematical) system

26

(2) The availability of high speed supercomputers allows research into problems

that may otherwise be computationally intractable

(3) The availability of efficient pseudo-random number generators which MC

simulation requires

(4) The method can be used in a parallel environment, where the simulation can

run on more than one processor simultaneously with different random number

sequences, then all outputs can be combined to get a final result

The major two components of any MC method are the probability distribution

(see Spiegel et al, 2000) and random number generation. The use of probability

theory in the field of statistics helped statisticians and scientists in many fields to

draw valid conclusions and make reasonable decisions on the basis of analysis of

data. There are many different interpretations of the concept of “probability”. In

this thesis we assume that probability measures the uncertainty as to whether a

particular event will occur or not in any random experiment. It takes a value

between 0 and 1 representing the strength of the belief in the occurrence of an

event. If we are certain that the event will occur, then the probability of this event

is 1. On the other hand, if we are certain that the event will never occur, then its

probability is 0. For airline passengers, this can be applied by assuming that

business travellers have probability 0 of arriving 6 months before departure date

of a specific flight to book seats. Whereas tourist passengers might start arriving

6 months (or even earlier) before the departure in order to book seats in the low

fare classes while available so their probability of arrival has a value greater than

0. We will present the different probability distributions of different types of

passenger arrival in more detail in chapter 4 and 5.

Most MC models are based on Bayesian probabilities, which we will explain in

section 3.2. The Markov Chain Monte Carlo (MCMC) method (see Gilks et al

1996) is a Monte Carlo technique using Markov chains. A Markov chain is the

process of generating a sequence of random states, say {X0,X 1, X 2....} in such a

way that after time t , the next state XM does not depend on the history of the

27

chain {X0, X l ,....,Xt_:} and only depends on the current state X t . The transition

from one state to the next is decided by the conditional probability P(XM | X t)

which determines whether to accept this random variable X M or to generate

another one.

We mentioned above that the MC methods are stochastic, so in order to ensure

this property, we use a random number generator to generate uniformly

distributed random numbers between 0 and 1. We use the built-in function rand()

in MS Visual C++ to generate sequences of random numbers.

3.2 Bayesian Probability Theory

Most Monte Carlo applications are based on Bayesian Theory (see Spiegel et al,

2000). This probability theory is subjective and depends on our state of

knowledge. We mentioned earlier that probability is a measure of uncertainty as

to whether a particular event will or will not occur. If we have no prior

knowledge regarding the event this will affect our measure of probability.

However, if we receive more information or if we actually know something about

this specific event or its properties then this will either increase or decrease our

belief in it taking place. For example, if a passenger wants to book a seat on a

flight and has a choice between two available classes with different fares, you

would assign an equal probability (0.5) to each class. However, if you knew that

this passenger is going on a business trip and the ticket will be paid by his

company, then the probability of booking in the high fare class will increase and

the other probability will decrease. In other words, we can say that the probability

of passengers booking in high fare class (A) given they are business men (B) is

higher than the probability of any passenger booking in high fare class. This is

known as the conditional probability of A given B denoted by P(A\B), and it is

the basic concept of Bayesian Theory.

28

Bayesian Theory has the following two axioms:

1. P(A) + P(A) = 1 where / 4 i s “notv4”

2. P(A a B) = P(A | B)P(B) where A a B means “A and B”

We know that

P(Aa B) = P(Ba A)

Then

P(A | B)P(B) = P(B | A)P(A)

Or

P(B I A)P(A)P(A\B) =
P{B)

which is the Bayes Theorem.

Bayes Theorem can be used to assess the probability of a hypothesis, H, being

true given some data D and can be represented as follows:

P (H =
P(D)

P(H | D) is the probability of the hypothesis after receiving more information

represented by some data and known as the “posterior”

P(D | H) is the probability of the data given the hypothesis and known as the

“likelihoodF

P(H) is the probability of the hypothesis before receiving any information and

known as the “prior”

P(D) is the probability of the observed data

Notice that our belief in the hypothesis increases or decreases as we observe more

data. So if we have more than one hypothesis that could explain the data, we can

use Bayes Theorem to assess which hypothesis is better in explaining the given

data. In other word, we need to find the posteriors for each hypothesis:

29

P(H, \D) =
P jD \H x)P{Hl)

P(D)

P(H2 | D) =
P(D\H 2)P(H2)

P(D)

Each hypothesis represents a “model”. Notice that P(D) is the same in both

equations and can be ignored, as it is a constant of proportionality. If we have

more than two hypotheses and each one is defined by some parameters denoted

by the vector , then the Bayes Theorem can be written as:

This says that the posterior probability of the hypothesis i (defined by its

parameters 0 .) given some data D is proportional to the likelihood multiplied by

the prior.

WhenP(0;)is the same for all hypotheses i.e. uniformly distributed over 6 then

This means that the posterior probabilities are proportional to the likelihood.

Bayesian Theory is the basis of most algorithms used in MC simulations for its

ability to improve the measure of the probability towards the most probable level

when used in many trials. It can be used to classify new data. For example, it is

widely applied in the field of pattern recognition. One of the main areas of pattern

recognition is image analysis and image classification. Ripley and Sutherland

(1990), applied the theory to images of spiral galaxies in order to classify (any)

new galaxy image, and Ripley (1990) also applied the same theory to nematode

recognition. The basic idea of both those applications is to first assign a prior

distribution over a class of possible models P(S), using spatial stochastic

P{0i \ D) ^ P (D \ 0 i)P{6i)

Pie, | D) oc p (d 1o.)

30

processes described by Markov random fields. Then for an observed new image

Z we calculate the probability distribution P(Z|S), the likelihood. Then any

analysis on S can be based on the posterior distribution P(S|Z) over the whole

class of possible models. This posterior is given by P(S|Z) a P(Z|S) P(S). (for

other MCMC applications in image analysis, see Chapter 21 in Gilks et al 1996)

We could use real data to fit our model. The data consists of booking curves for

large number of flights. But initially we will use simulated data. Our technique is

based on the Bayesian approach. We have a model of passenger behaviour, which

involves several parameters. In Chapter 4 we generate sample booking data from

the model, based on certain input parameters that describe the behaviour of

different passenger types. Then we can evaluate the posterior probability of the

model parameters given the sample data, by formulating an algorithm to calculate

the likelihood of the sample data given random combinations of parameter

values, using the appropriate distribution functions that describe the problem. We

will explain how this process can be performed in Chapter 5.

3.3 Metropolis Algorithm

When the model that describes the problem under analysis is represented by a

large number of parameters it becomes difficult to train it to classify new data. It

would be too difficult to build the posterior distribution P { 6 1D) over the

parameters. In order to do that we would need to try all different combinations of

possible parameter values and calculate the probability of each combination, and

this is too complicated and time consuming. The solution is to generate random

samples from the posterior distribution. If the sample is large enough then it can

be used as an approximation to the posterior distribution. The sample consists of

a large number of parameter vectors 6. The frequency with which a particular

value of 6 occurs in the sample is proportional to its posterior probability. Thus,

the most probable values of # will occur most often and the least probable values

will be the most rare.

31

This is basically the Markov Chain Monte Carlo (MCMC) method which

generates samples of the parameters from a distribution that is similar to the

posterior distribution by running Markov chain(s) for a long time. Starting with a

random combination of parameters, the next combination is generated from the

current one. After the algorithm has run for a long time, the complete set of

parameter combinations represents the posterior distribution. The main advantage

of constructing the Markov chain is that the next combination of parameters only

depends on the current combination of parameters and is not affected by the

starting combination, i.e. the history of the chain. One way to construct a Markov

chain is by using the Metropolis Algorithm. If we have D as the data and 6 are

the parameters of the model, from Bayesian theory, the posterior

probability P{6 | D) is proportional to the likelihood P(D \ 6) multiplied by P(6) ,

which can be calculated from the model. We omitted P{6) because we assume the

prior of all the combinations of parameters are equally likely, so P(9) is constant,

(refer to section 3.2.)

The Metropolis algorithm is presented in the following steps:

1. Choose an arbitrary starting combination of parameters dx

2. Calculate ln(P(Z) 16X)

3. Change one parameter at random by adding to it a random number to get a

new combination of parameters 02

4. Calculate h\(P(D \ 02)

5. If ln(P(Z) \02)> ln(P(D 16X) then add 02 to the accepted combinations and

replace 6X with 02

6. If not, then if exp(ln(P(Z} | 02)~ In(P(D \ 0X)) > uniformly distributed random

number in the interval [0-1], then add 02 to the accepted combinations and

replace 6X with 02

7. Repeat from step 3

32

Step 6 allows the algorithm to generate combinations that are less probable than

the current one. If this step were not present the algorithm would simply climb up

to the local maximum nearest to the starting combination and remain there. Step

6 allows the algorithm to move “downhill” and hence explore the whole

parameter space. The length of time that it spends in a particular region of the

parameter space is proportional to the posterior probability of the combinations in

that region.

After a certain number of iterations the Metropolis algorithm should reach an

“equilibrium” state, and after that the accepted list of combinations 0. should

represent the posterior distribution P(0 \ D) .

Our goal in this thesis is to use the Metropolis algorithm to estimate the

parameters of a model describing passenger behaviour in the airline industry.

33

CHAPTER 4

Booking Process Simulation Model

4.1 Introduction

In this chapter we build a model that simulates the passenger choice behaviour in

booking an airline seat. As we mentioned in chapter 1, there are different types of

travellers, for example, there are business travellers who are more interested in

comfortable seats on a flight (especially in a long trip) than how much the seat

costs. On the other hand, there are tourist travellers who are more sensitive

toward the price they are paying for their seats than what restrictions that are

placed on their type of fares.

The airlines are faced with the problem of how to divide the aircraft into different

(physical or logical) sections with a different fare associated with each section in

order to get the best revenue out of their flights. If they assign more seats to the

service-sensitive travellers and fewer seats to the price-sensitive ones, they might

not get enough demand to fill the aircraft (if there are more requests from, say,

tourist or student travellers.) On the other hand if there are more seats assigned to

the cheaper class and the demand is high enough to fill the flight, but there is also

unnoticed demand for the more (slightly) expensive class that would have filled

the flight with a reasonable increase in the overall revenue.

There are many factors that influence traveller choice behaviour such as:

* the price they are paying for the seat

* the services attached with the price

* the time of departure and arrival and also the actual departure date

Another factor affecting the traveller decision during the booking process is

whether this booking is part of an itinerary of other flights that the passenger

needs to connect with. For example, for students studying abroad away from

34

home, there are certain periods that they can travel, such as Christmas or summer

holidays. So the airlines must take into consideration the high demand of students

during these periods. At the same time students are price sensitive passengers

which means that the demand for the low fare class would be high during those

periods. If students have to connect with another flight in order to get to their

destinations on a certain day and time, this would have a great effect on the

decision of which flight to choose.

The booking process is the most essential part of every airline’s reservation

system. It takes place in real-time during the life of every flight. It starts when the

flight becomes available for booking to the airline’s sales staff, travel agents or

any one that can access the reservation system such as over the Internet. In order

to simulate the behaviour of this large and complex operation and in order to

capture the various behaviour of different passenger types (arrival and acceptance

to book), we built a Monte Carlo simulation model.

4.2 Airline passengers as customers
In order to understand and analyse the airline passenger behaviour we need to

refer to the marketing research in the area of consumer behaviour. Consumer

behaviour is the process of choosing a product or a service among a set of

alternatives. Ajzen and Fishbein (1980) in their book “ Understanding Attitudes

and Predicting Social Behavior” wrote:

The mounting interest in consumer behavior can be attributed in part to

the desire of business firms to obtain a competitive advantage by basing

their marketing decisions on information about the factors that determine

the consumers’ preferences among products. At the same time,

consumers have organized to express their dissatisfaction and demand

political action to ensure, among other things, higher standards of quality

and safety, lower prices, and better services.

35

Needs, motives, or desires are assumed to influence the information a

person seeks about a product, as well as her attention to, and perception

of, the product’s attributes....The product attributes or functions are

assumed to be judged in relation to the person’s needs by means of

certain evaluative criteria, and this process presumably results in the

formation of an attitude which ultimately influences intention and

purchase behavior.

In the airline business, it is known that the most important criteria that influence

the decision of a traveller while purchasing an airline ticket on a specific class on

a specific flight are the price/fare and the services/comfort associated with this

price. There are other factors that affect the decision-making process such as the

time of the flight (departure and arrival time), and the day of departure (weekday

or weekend). For example, business passengers tend to prefer an early flight

departure on Monday morning, say at 7 a.m. to attend a meeting, say at 10 a.m.,

instead of arriving late the night before, and weekend days might have more

demand from leisure passengers.

Consumer choice analysis is a well studied area in the field of marketing, see for

example Wright (1975; Ajzen and Fishbein (1980); Grether and Wilde (1984);

and Engel et al (1986). According to Engel et al (1986) the Fishbein Model is the

most well known multi-attribute model used by marketers in consumer choice

analysis. The Fishbein Model is based on the following statement as mentioned in

Ajzen and Fishbein (1980):

... a person’s attitude toward an object is a function of his salient beliefs

that the object has certain attributes and his evaluations of these

attributes. In the context of consumer behaviour the object is typically a

product or a brand within a product class. An estimate of attitude toward

a product or brand is obtained by multiplying, for each attribute, belief

strength and attribute evaluation and then summing these products across

all salient attributes.

36

Symbolically the attitude can be related to the consequence and belief through the

following expression, as shown in Engel et al (1986):

j=1
where:

Aa = attitude toward the object

; = strength of the belief that the object has attribute i

e' = the evaluation of attribute i

n = the number of salient attributes.

And as defined in Engel et al (1986):

The model therefore proposes that attitude toward a given object (e.g.

brand) is based on the summed set of beliefs about the object’s attributes

weighted by the evaluation of these attributes.

In order to calculate the attitude or the desirability of a passenger toward a fare

class using the above equation, we need first to define each fare class by its

attributes. These attributes will only consist of the cost and the comfort associated

with each fare class. We will also have a set of attributes defining the

characteristics of the decision-maker, i.e. the passenger. We will explain in more

detail how we apply the above equation to obtain the desirability value of each

fare class by different passengers later in this chapter.

In the rest of this thesis we always use the word “class” to mean a “fare class”.

37

4.3 The Model

4.3.1 Model assumptions

In order to build a simplified basic model, we assume the following (at the

moment these assumptions are not realistic, they are merely to test the technique):

(1) The model represents the booking process on a single flight, but later we

use 100 flights

(2) The booking process on this flight starts 6 months (day 180) before the

departure day (day 0) i.e. booking period is 181 days. Each day of the

booking process is divided into 10 intervals. In each interval we assume

either no arrival of any passenger type or at most one arrival of each type,

i.e. we would have maximum of 10 possible arrivals of each passenger

type in each day. The value of maximum 10 passenger was chosen

arbitrarily for this experiment. An actual average number of arrival could

be determined by conducting some sort of a survey.

(3) The flight consists of three classes, a high fare class, a medium fare class

and a low fare class. The three classes are defined by the following

attributes: number of seats assigned to each class; the cost (fare) of each

class; and the comfort value associated with the cost on each class. See

Table 4.1

(4) There are three types of travellers, a business, a tourist and a student. The

characteristics of each type are defined by a set of parameters. There are

two sets of parameters for each passenger type used in this model, the first

one represents the arrival parameters of the passenger which are used to

calculate the probability of arrival of a passenger at any given day during

the booking process. The other set of parameters is used to calculate the

desirability (utility) of each class for each type of passengers. These

desirability values will be used to calculate the probability of accepting a

booking by the passenger. At the moment we assume all members of a

given type are identical. All business travellers will have the same value

38

of parameters, the same applies to the other types of passengers. See table

4.2

(5) For each type of passengers, the following applies:

* If the most desired class is full and the passenger is willing to accept a

booking on the next desired class, this is known as “Vertical recapture” of

the passenger on the same flight.

* If the most desired class is available and the passengers are not willing

to book on this class, (for example, even with the best combination of

price and comfort, the passengers might not think this is good enough for

them in order to accept the booking) then either (a) the passengers are

willing to book on another flight on the same desired class in which case

they are considered as “Horizontal recaptures”, or (b) they are not willing

to book on this airline and are considered as “lost” passengers. (At the

moment we treat these two situations together as we are dealing with one

flight only)

* If all classes are full and there are still passengers arriving then these

passengers are either lost or willing to book on another flight. We also

treat them together as Horizontal recapture or lost due to full flight.

4.3.2 Input data

There are two categories of input data:

1. Fare class information:

Number of seats

Price or fare of the class

Comfort value associated with the price

2. Passenger information:

Arrival parameter

Belief or desirability parameters

Table 4.1, 4.2 provide sample values for all the parameters used in this model

with business passenger denoted by (bus) tourist by (tour) and student by (std)

explanation and detail will be provided shortly.

39

High fare class Medium fare class Low fare class
seatsc = no. of seats 20 100 150

cos/c= class fare 1200 800 500
comfE= class service 800 600 300

Table 4.1 A sample of class parameters

bus tour std
Arrival parameters:
at = first day of arrival -30 -180 -60
bt = last day of arrival 0 0 0
(departure day)
c = a point between a and b -7 -30 -14
which represents the first day
of definite arrival until
the day of departure
st = scaling value 15 90 30
Belief parameters:
p tl = comfort importance rating 0.9 0.1 0.4
p t2 = cost importance rating -0.1 -0.9 -0.3
p t3 = mean value -400 -400 -400
Table 4.2 A sample of passenger parameters

40

4.3.3 Calculation of the Desirability/Utility value of classes

The passenger behaviour model is a discrete choice model where we have a
discrete finite set of choices or alternatives to choose from, for example, if we
have one flight then the set of alternatives will be the different classes available
on this flight. If we have more than one flight with the same origin and
destination on the same day, then the set of choices will include the classes of
each flight as well as the time attributes of each flight. Each alternative in the
choice set is characterised by a set of attributes, which are likely to affect the
choice of the individual, i.e. the traveller, such as the fare of a class and the
comfort or the services associated with each class. Similarly, the decision­
makers/travellers have their attributes that define their characteristics and these
differ from one passenger type to the other. These attributes will be used to
calculate the desirability or the utility of each class in the choice set.
We choose the fare of the class cost c and a comfort value associated with each
class comfc to be the class attributes. For the comfort attribute we assume a high
level of services associated with the high fare class, i.e. as the price increases the
level of comfort increases, (refer to Table 4.1).
The attributes defining the traveller type t (for t = business, tourist, student)
consist of the following parameters (refer to Table 4.2):

The first parameter pn, defines the importance rating (belief) of the
services (comfort) associated with the fare class. As we explained earlier
this varies between different types of passenger and we decided on a scale
between [0, 1], where 0 indicates that comfort is absolutely not important
for this individual where as 1 indicates that comfort is a very important
factor.
The second parameter p t2 defines the importance rating of the price of the
class and we chose a scale between [-1, 0], The value -1 indicates that the
passenger is very sensitive to the price, which causes a negative effect on
the desirability, where as the value 0 indicates that the passenger is
absolutely not worried about the price of the class.

41

The third parameter of the passenger belief parameters, p t3 is required to

calculate the probability of the passenger accepting to book on the desired

class. We will explain how this parameter is used shortly.

Applying the Fishbein equation (refer to section 4.2) we get an overall value of

desirability on each class for each type of passenger as follows:

Denote the desirability by desr, then for each class c and passenger type t with

parameters p n (comfort evaluation) and p t2 (fare evaluation),

desrtc = comf c * p a + costc * p t2 (4.1)

However, Bierlaire (1997), wrote:

The concept of utility associated with the alternatives plays an important

role in the context of discrete choice model....the complexity of human

behavior suggests that the choice model should explicitly capture some

level of uncertainty.

Also, Ben-Akiva and Lerman (1985) stated:

The development of Probabilistic Choice Theories arose from the need to

explain experimental observations of inconsistent and non-transitive

preferences. In choice experiments individuals have been observed not to

select the same alternative in repetitions of the same choice situations.

Moreover, by changing choice sets, violations of the transitive

preferences assumption are also observed. A probabilistic choice

mechanism was introduced to explain these behavioral

inconsistencies....it can be used to capture the effects of unobserved

variations among decision makers and unobserved attributes of the

alternatives.

42

Both references suggested the use of Random Utility Model to capture the

uncertainty, where the utility is modelled as a random variable and has the

following formula:

U‘ = F ; + £ fa a ^a

where:

U'a is the utility that individual i is associated with alternative a

V'a is the deterministic component of the utility

^ is the stochastic or random component

and, the choice probability of any alternative a being selected by person i from

the choice set Cf is equal to the probability that the utility of alternative a, U’a,

is greater than or equal to the utilities of all other alternatives in the choice set.

This can be written as follows:

/>(a |C ,)= P r (t / '> C /; ,V * e C ,)

At the moment we have not yet implemented the above equation into our system.

Currently classes are sorted in descending order of desirability and we assume

that there is no variation between members of the same type, e.g. all business

passengers have identical parameters. We further assume that any passenger will

either opt for the most desired class available or accept no class at all. As Ben-

Akiva and Lerman (1985) make clear in the above quotation, these assumptions

are not realistic because human beings are inconsistent in their behaviour. We

would try to resolve these issues in future work (refer to Chapter 7.)

After sorting the desirability in descending order, then if there are seats available

in the most desired class we calculate the probability of this passenger accepting

to book on this class. If there are no seats available in the most desired class, we

check if there are seats in the next desired class and so on. So passengers never

43

book other classes if the most desired class is available. This is a consequence of

assuming no variation in passengers.

4.3.4 Calculation of the probability of accepting to book on the desired class

We choose the Logistic or Logit (distribution) function to calculate the

probability of accepting the desired class. The Logistic function has an S-shape

curve (see Figure 4.1) centred at zero, and is continuous of the range 0 to 1. It

has the following formula:

f (x) = — l—T
v ' \ + e~x

When X is large and negative the function is close to zero. As X approaches

zero, the function is at 0.5. As X tends to infinity, the function gets close to 1.

As we mentioned above, the function is centred at X=0, so in order to shift it

along the x axis we can subtract a value representing the mean from X. And we

can also stretch the function to give it different S-shape curves (shallow or steep),

by dividing X by a value, as follows:

I'\X) - ! +

Figure 4.1 shows different curves all with m (mean) = 400 to shift from zero and

different z (stretch) values to illustrate how the shape of the function changes

with different values of z.

44

We apply this function to calculate the probability of acceptance p acc, where X
is the calculated total desirability for each class from the previous step, desrc t,
the mean m is the third parameter pt3:

We absorb z into p tX p t2 and p t3 since it is a linear scaling parameter.

Logistic function with Mean = 400 and
with different values of z

1

0.8

0.6
0.4
0.2

0

-521 -232 57 346 635 924

Figure 4.1: Logistic Function

Sample values of calculated desirability and probability of acceptance from one
run of the model are shown in Table 4.3. We decided to use this function to
calculate the probability of accepting the desired class because it gives a natural
explanation of the effect of each class attribute. When cost is equal to 0, i.e. a free
ticket, this would be very desirable (very close to 1). As cost increases,
desirability would at first remain high but eventually will get close to 0 when cost
is too high, i.e. cost has a negative effect on desirability. The function would have

45

an opposite effect on comfort. When comfort is completely absent, the class
would be very undesirable (close to 0). As comfort increases, the desirability
would increase until it gets close to 1.
We then compare the result from this function with a uniformly distributed
random number between 0 and 1. If the result is greater than or equal to the
random number then we assume that the passenger is willing to accept the desired
class then a seat will be booked for the passenger.

type 1:

class: 0 classlabel: 0 desr: 1.8 pacc: 0.858149

class: 1 classlabel: 1 desr: 0.00199997 pacc: 0.5005

class: 2 classlabel: 2 desr: 2.98023e-008 p acc: 0.5

type 2:

class: 0 classlabel: 2 desr: 2.35 p_acc: 0.912934

class: 1 classlabel: 1 desr: 1.172 p acc: 0.763506

class: 2 classlabel: 0 desr: -0.2 p acc: 0.450166

type 3:

class: 0 classlabel: 0 desr: 3.6 p acc: 0.973403

class: 1 classlabel: 1 desr: 1.23 p acc: 0.773819

class: 2 classlabel: 2 desr: 0.55 p acc: 0.634136

Table 4.3: Sample calculated desirability and probability of acceptance for
three passenger types and three classes

46

4.3.5 Calculation of the probability of passenger arrival

The function we used to model the probability of arrival of a passenger in each

interval of the 10 time intervals in the day for each passenger type, p _arrt , is a

simple triangular function of time (see Figure 4.2, 4.3, 4.4). This is not realistic,

and just for the sake of the experiment only:

P _ arr t (d ^ cit) = 0

p arrt{at < d <c t) =
2 (d - a ,)

(4.3)

P ^ arrXci < d < b t) = l

where

d is the current time

at is first day on which passenger type t starts to arrive

bt is the end of the booking process (i.e. departure day). bt is always 0

ct is a point between at , bt on which the rate of arrival levels out

We assume that between time ct and time of departure, bt , a passenger will

certainly arrive to book a seat every day as we get closer to the day of departure

for any type of passengers. Notice that p arr is assumed to be the same for all the

10 time intervals of the same day d.

When at < d < c t and in order to get a number between 0 and 1 we multiply the

result of this function by a scaling value, st . These variables have different

values for each type of passenger t, as shown in Table 4.1. We will demonstrate

the application of the function using a tourist passenger. We assume that a tourist

passenger tends to arrive early during the booking process (6 months prior to

departure day) in order to get a seat in the low fare class before it becomes full.

So the value of parameter a for the tourist is -180 (180 days before departure).

47

¿Iso assume that the probability of a tourist arriving to book a seat gradually

increases as we get closer to the departure day. After day c = -30 we assume that

a tourist will definitely arrive everyday up to the day of departure b = 0, i.e.

after c = -30 the probability of an arrival of a tourist passenger is equal to 1. So

on day = -150 (i.e. 5 months before departure) the probability of a tourist

passenger arriving on this day is 0.0022 (equation 4.2). Multiply the result by

st = 90 is P_arrtour(- 150) = 0.2. Figures 4.2, 4.3 and 4.4 shows the values of

the function with respect to the time for business, tourist and student passengers

respectively.

48

49

4.3.6 Booking the passenger on the desired class

We assume that the cost and comfort values and the number of seats in each fare

class are known and fixed at the beginning of the booking process.

For each day in the booking process (181 days), for each time interval of the 10

time intervals a day and for each passenger type we check if there is an airival of

this passenger type, (refer to the model flowchart Figure 4.5a in section 4.3.7).

We perform the following steps:

1. For each of the ten hours we generate a uniformly distributed random number

between 0 and 1, if the calculated probability of arrival p arr from the

previous section is greater than the random number then we assume an arrival

and continue with step 2. If there is no arrival of any type of passenger on this

day then we repeat this process for the next day in the booking period.

2. We then check if there are still seats available on at least one class then

continue with step 3. If the flight is full and all seats in all classes have been

booked we increment the counter for horizontal or lost passenger due to full

flight.

3. If any class is available (refer to Figure 4.5b) and the passenger is willing to

accept it then we check if this class is the most desired class, if yes then we

increment the counter of total passengers booked on this class and the counter

of seats booked by this type of passenger on this class.

4. If this class is not the most desired class and the passenger is willing to accept

it then, as well as incrementing the previous counters, we also increment the

counter of vertical recapture of passenger.

5. If the passenger is not willing to accept the class we increment the counter of

horizontal recapture or lost passenger. At the end of the simulation model we

would get the total number of incremental bookings on each class for each

day.

5 0

A flowchart of the proposed model is shown in Figure 4.5a and 4.5b.

4.3.7 Model Flowchart

Figure 4.5a: Booking process simulation model

5 1

Bookseat:

Figure 4.5b: Booking process simulation model

5 2

4.4 Generating sample data
For illustration purposes, as shown in Table 4.4, we ran the simulation with the

following number of seats assigned to different classes in order to show the

contents of the various counters used in the simulation: 20 seats are assigned to

the high fare class; 100 seats assigned to the medium fare class; 150 seats

assigned to the low fare class. No cancellation allowed on any class. All seats

were booked on all classes. The number of business passengers booked on the

high fare class is 13 and no business passenger booked on any of the lower

classes. There is no vertical recapture of a business passenger either from the

high fare class to the low fare class or from the low fare class to the high fare

class. There is 1 business passenger who did not accept a booking on the most

desired class i.e. horizontal recapture or lost. There are 178 horizontal recapture

or lost business passenger due to a full flight. The same explanation can be

inferred for the tourist and student passenger counters.

5 3

Seats on class: 0: 20
Seats on class: 1: 100
Seats on class: 2: 150
Cancelled bookings on class: 0: 0
Cancelled bookings on class: 1: 0
Cancelled bookings on class: 2: 0
Total seats booked on class: 0: 20
Total scats booked on class: 1: 100
Total seats booked on class: 2: 150

BUS:
BU S booked on class 0: 13
vertical recapture on class 0: 0
horizontal recapture or lost on class 0 : 1
BUS booked on class 1: 0
vertical recapture on class 1: 0
horizontal recapture or lost on class 1: 0
BUS booked on class 2: 0
vertical recapture on class 2 : 0
horizontal recapture or lost on class 2: 0
horizontal recapture or lost due to full flight: 178

TOUR:
TOUR booked on class 0: 0
vertical recapture on class 0: 0
horizontal recapture or lost on class 0 : 7
TOUR booked on class 1: 0
vertical recapture on class 1: 0
horizontal recapture or lost on class 1: 0
TOUR booked on class 2: 117
vertical recapture on class 2 : 0
horizontal recapture or lost on class 2 : 149
horizontal recapture or lost due to full flight: 219

STD:
STD booked on class 0: 7
vertical recapture on class 0: 7
horizontal recapture or lost on class 0: 0
STD booked on class 1: 100
vertical recapture on class 1: 0
horizontal recapture or lost on class 1: 0
STD booked on class 2: 33
vertical recapture on class 2: 33
horizontal recapture or lost on class 2 : 0
horizontal recapture or lost due to full flight: 215

Table 4.4: A sample of model counters

5 4

Figure 4.6 shows the sample booking curves for all the fare classes. The low fare

class tends to be booked earlier in the booking process, then the medium fare

class, and then the high fare class. A sample data booking table is provided in

section A. 1 of Appendix A.

Sam ple booking curves fo r each fore class

1 20 39 58 77 96 115 134 153 172

Days before departure

Figure 4.6: Sample booking curves for all classes

The simulation is repeated 1000 times in order to produce minimum and

maximum booking values for each class for each passenger type in each day

during the booking process (181 days) as well as the mean booking values of the

same. Figure 4.7 shows the minimum, maximum and mean booking curves for

tourist passengers.

5 5

Minim um , m axim um , and mean booking curves
fo r tourist passengers in low fare class

1 21 41 61 81 101 121 141 161 181
Days before departure

Figure 4.7: Minimum, maximum and mean booking curves for tourist
passengers

Now let us illustrate the effect of using different sets of parameters on the

booking curves. First we changed the parameters used for the probability of

arrival for both types of passenger (refer to Table 4.2 and section 4.3.5).

From the different sets of parameters we changed the first parameter, which is

used to represent the first day tourist passengers would likely start arriving, and

the third parameter which represents the starting day of definite arrival until the

day of departure.

5 6

The same was done for the business passengers, Figure 4.8 shows two different

mean booking curves for tourist passengers on the low fare class for the first two

arrival parameter sets. By decreasing the first parameter, a, which is the first day

of arrival from -180 to -145 the number of bookings of tourist passengers

decreased. Figure 4.9 shows two different mean booking curves for business

passengers on the high fare class for the first two parameter sets, we also reduced

the first day of arrival from 30 to 20 and that caused the booking curve to go

down.

Mean booking curves for tourist passengers on the low fare class

[-180, 0, -30, 90]
[-146, 0, -30, 90]

Days before departure

Figure 4.8: Mean booking curves for tourist passengers with different sets of
arrival parameters

— [-30, 0, -7 ,15]

—*—[-20, 0, -7 ,15]

Mean booking curves for business passengers on the high fare dass

1 13 25 37 49 61 73 85 97 100 121 133 145 157 169 181

Days before departure

Figure 4.9: Mean booking curves for business passengers with different sets
of arrival parameters

5 7

For calculating the desirability and the probability of accepting the desired class

we changed the parameters of passenger belief for each type of passengers (refer

to Table 4.2 and sections 4.3.3, 4.3.4). For tourist passengers we calculate the

desirability for the high and low fare class by substituting in equation 4.1 and 4.2.

The probability of accepting the high fare class has increased for the tourist

passenger from 0.269 to 0.73 by changing the comfort and cost parameters, but

also the probability of accepting the low fare class has increased from 0.73 to 0.9

which affected the mean booking curve to go higher from 77 passengers to 95

passengers on the day of departure as shown in Figure 4.10.

</>tac
oo■Q

Mean booking curves for tourist passengers on low fare
class

150
135
120
105

90
75
60
45
30
15
0

-[0, -1,-400, 100]
[0 2, -0.8, -400, 100]

1 21 41 61 81 101 121 141 161
Days before departure

Figure 4.10: Mean booking curves for tourist passengers with different sets
of accepting parameters

4.5 Summary
This chapter has developed a probabilistic model for the airline booking process

based on Monte Carlo simulation method. The model was able to recognise the

different behaviour of different passenger types towards a verity of classes that

are available on the flight. We generated sample booking data for the 181 days of

the booking process for each class based on simplifying assumptions. We were

able to produce a variety of booking curves for the booking period by changing

the passenger parameters (characteristics) used in the model. We were also able

5 8

to capture some hidden events that are not available in the real-world data. For

example, in the reservation systems, there is no record of a passenger non-arrival

event or the decision by an arrived customer not to accept the most desired class

available and opt for no purchase at all. We showed that the random utility model

with discrete choice set works well for passenger choice behaviour and modelled

the number of bookings on each class. Vertical recapture was also considered

when the most desired class is full and the passenger decides to book on the

second or third desired class that is available.

We modelled the arrival behaviour for different passenger as a piecewise linear

function. The passenger arrival parameters for each type were assumed to be

known. We modelled the probability of accepting to book on a class using the

Logistic (Logit) function. The Logistic function performs well in modelling the

passenger choice behaviour because its value increases as the desirability of a

passenger towards a class increases. We also produced minimum, maximum and

mean booking curves from 1000 similar simulated flights. In order to make these

booking curves more realistic we really need to take into consideration other

realistic factors such as the cancellation and the no-show events.

5 9

CHAPTER 5

Fitting the Model to the Data

5.1 Introduction
In Chapter 3 we provided a general description of how to construct a Markov

Chain using the Metropolis algorithm in order to draw samples from the posterior

distribution of the model, P {0 1D). Sample booking data D was created in

Chapter 4, using three different passenger types defined by their parameters

(arrival and acceptance parameters). In this chapter we will generate random

combinations of the passenger parameters 6 (only the accepting parameters) in

order to fit the model to the given data D from Chapter 4. This process will be

done using the Metropolis algorithm. As we intend to run the Metropolis

algorithm for 100,000 iterations in order to get a reasonable collection of

parameter combinations that would represent the posterior distribution P(6 \ D),

we decided to pre-compute all the necessary probabilities needed for our

mathematical operations and store them in files to speed up the process.

5.2 Pre-computation of Probability Distributions

In this section we show how to calculate the probability of any given number of

bookings on any given class on any given day. This depends on the values of

p a c c for each of the three passenger types for that class. It also depends on the

values of p arr for each of the three passenger types for that day. We have a

three-stage procedure. In the first stage we calculate the probabilities of each of

the eleven possible numbers of arrivals (from 0 to 10) for each of the three

passenger types. We then calculate the probablities of each of the possible

number of acceptances from each of the possible number of arrivals for each of

the three passenger types for each of eleven different values of p acc (from 0 to

1.0). We then sum the probabilities of all the possible combinations, which could

6 0

give rise to a given number of bookings. There are thirty-one possible numbers of

bookings on any given day (from 0 to 30).

5.2.1 Creating a table for Probability of Arrival

In chapter 4 we used a triangular function to represent the probability of arrival

p arr during one of the ten time intervals of a passenger type in any given day of

the booking process (181 days), see section 4.3.5. We also assumed that there are

maximum of 10 arrivals of any passenger type in any given day, see section 4.3.1

for model assumptions. In order to calculate the probability of any number of

arrivals x from the maximum number of possible arrivals n=10, we used the

Binomial distribution, with the probability of occurrence p arr taken from the

triangular function. We assume we know in advance what the passenger arrival

parameters are: the same parameters are used to generate the booking data, and

are the input to the triangular function to give p _ arrt (d) for each type of

passenger on each day. Then p arr will be used in the Binomial distribution to

produce the probability distribution of arrival of x [0-10] passengers of type t on

each day d.

All possible probabilities of arrivals for each type of passengers on each day were

stored in a table called P arrive. Figures 5.1, 5.2 and 5.3 show the probability

distribution for the business passenger arrival on day -26 with p _ arrhm =

0.173913, tourist passenger arrival on day -120 with p arrtour = 0.4 and student

passenger arrival on day -40 with p_arrstd = 0.434783 respectively. A sample of

the table is provided in section A.2 of Appendix A.

6 1

B inom ial D istribution o f B u sin ess P assen g er Arrival
on D ay = -26

- - !aSs
................... ■

* iK j- ; , \

i ! 1 ir Îl Vt r

:v ' f S

1 2 3 4 5 6 7 8 9 10 11

X =N u m b e r of A rrivals

Figure 5.1: Probability Distribution for the business passenger arrivals on
day -26

Figure 5.2: Probability Distribution for the tourist passenger arrivals on day
-120

Figure 5.3: Probability Distribution for the student passenger arrivals on
day -40

6 2

5.2.2 Creating a table for Probability of Acceptance

The Binomial distribution can also be used to model the behaviour of the

passenger’s willingness to accept. In section 4.3.4 of the previous chapter we

used the logistic function to calculate the probability of accepting a booking

according to desirability value, and we generated a number between 0 and 1

representing the probability of acceptance for each type of passenger in each

class. When we have one arrival then we need to calculate the probability of

either the passenger accepting a booking or not. When we have two arrivals then

we have three possible outcomes: either no acceptance of a booking or one

acceptance or two acceptances. This can be repeated up to 10 maximum arrivals.

In order to create a table the probability of acceptance p acc is discretised into 11

values starting from p acc=0 to p_acc=\ with intervals of 0.1. For each value of

p acc and for each value of possible arrivals x we will calculate the probability of

accepting bookings from j passengers.

All possible probabilities of acceptance from all possible arrivals for each value

of p acc were stored in a table called P accept. Notice that this table can be used

for any type of passengers, it only depends on the value of p acc which is

derived from the passenger belief parameters (refer to section 4.3.6 and equation

4.2). Figure 5.4 shows the probability distribution for accepting to book when

p acc = 0.8 and number of maximum arrivals n = 10. A sample of the table is

provided in section A. 3 of Appendix A.

6 3

Binorrial Distribution of the Probability of Acceptance with p=0.8
and Nurrt>er of arrivals n = 10

1 . , ,,w

0.8 U~~.................... -......

X=Nurrtjer of Acceptance

Figure 5.4: Probability Distribution for all possible number of acceptances
when p = 0.9 and maximum arrivals n = 10

5.2.3 Creating a table for Total Probability of Bookings

The sample booking data that the simulation model generates consists of the total

number of bookings on each fare class on each day of the booking process (refer

to section 4.4 and section A.l of Appendix A). On any day, the only data

available is the total number of booking in each fare class. We actually do not

know who booked this seat, was it a tourist or student passenger or perhaps a

business passenger. We also do not know how many people arrived and did not

book at all. For example, if we have 12 bookings on any given day, then these

bookings might have come from one of the following combinations:

10 business, 2 tourist, 0 student

or 10 business, 1 tourist, 1 student

or 10 business, 0 tourist, 2 student

or 9 business, 3 tourist, 0 student

or 9 business, 2 tourist, 1 student

or 9 business, 1 tourist, 2 student

and so on.

6 4

Notice that for each of the above cases, the number of bookings does not mean

the total number of arrivals, because the data only presents the total number of

acceptances on that day on each class. The number of arrivals might be at least

the number of bookings or any number lying between the number of bookings

and the maximum number of arrivals (30). On each day, for each number of

possible bookings in the range [0-30] we want to calculate the overall probability

of all the possible passenger combinations that might have produced this number

of bookings.

In order to calculate the probability of any number of bookings b on any given

day d for each passenger type t we must multiply the probability of at least x

arrivals (taken from the table of probabilities of arrival) by the probability of b

acceptances out of x arrivals (taken from the table of probabilities of acceptance).

Then we sum over all possible arrivals x, b < x < 10

10

p _ booktd (p acc,b) = ^ p _arrtd (x) * p _acc(x,b) (5.1)
X = b

Remember that the probability of x acceptances depends on p a c c in the interval

[0-1] (refer to section 5.2.2). In order to build a table that covers all possible

situations we need to calculate the overall probabilities for all possible

combinations of p a c c associated with each type t for each day d.

If we have 3 passenger types then we have p accx, p _ acc2, p _ acc3.

On any given day d we have the total number of bookings (on each class) bd in

the range [0-30],

If the number of booking of each passenger type is xl3 x2, x3, then

bd = x i + x2 + x3

We calculate and sum the probabilities of each of the combinations of xl3 x2, x3

which sum to bd .

6 5

For each day, for the three types of passenger with p acc combinations starting

from [0, 0, 0] to [1,1, 1], and for each number of total bookings [0-30], P tot will

be calculated and stored in Table Pallb . Figure 5.5 illustrates the steps taken to

create the table. A sample of the table is shown in section A.4 of Appendix A.

This table will be used in every Metropolis iteration (100000 iterations) to

calculate the likelihood of all the booking data (181 days in all classes) given the

random combination of passenger belief parameters generated for this iteration.

The reason we decided to pre-compute all possible cases and store them in a table

is to reduce the run time of the algorithm. We actually reduced the run time up to

20% from the original version of the MCMC model. A layout of the binary file

that contains the table and the equations involved in calculating the correct read-

location from the file is provided in section A. 5 of Appendix A.

6 6

Figure 5.5: Pre-computation of overall probabilities

6 7

5.3 Estimation of Model parameters using Metropolis Algorithm

In Chapter 4 we built an MC simulation model to generate a sample data for one

flight for each day of the booking process (181 days) on each fare class. This

simulated data will be used to estimate the model parameters (only the passenger

belief parameters) using the Metropolis algorithm (refer to section 3 .3 in Chapter

3). By running the algorithm for a large number of iterations (100,000), i.e.

constructing a Markov chain, we would expect the algorithm to converge and

reach an equilibrium state after a number of iterations m<100,000. When the

algorithm terminates, the random sample of parameters combinations that were

accepted should represents the posterior distribution P(0 \ D).

5.3.1 Start the algorithm with an arbitrary starting point

Recall that there are three passenger belief parameters, p n in the range [0-1]; p t2

in the range [-1 - 0]; p a in the range [-500 - -300] (refer to Table 4.2). The

algorithm will be started with any values for the three parameters within the

range shown above for all passenger types t. The choice of the starting values

should not affect the result of the Metropolis algorithm in the MCMC model

since it ‘forgets’ its initial state after it runs long enough.

5.3.2 Change one parameter at random

Generating a random number [1-3] determines which passenger type (3 types) to

change its parameter. Another random number [1-3] will be generated to

determine the parameter that has to be changed for this passenger type. Finally a

random number will be generated and added to the chosen parameter value,

keeping it within its valid range (refer to section 5.3.1).

5.3.3 Calculate the likelihood

In each iteration i we will calculate the likelihood of the sample data given the

current parameter combination 0 .. For each day of the booking process d and for

6 8

each class c, first we find how many bookings occurred bdc. We have already

calculated the probability of acceptance of each passenger type t to each class c,

p_acctc, (referto section 5.3.1 and 5.3.2).

For each class c we must obtain a set of p_acctc for each passenger type as

follows:

If we have 3 passenger types then for each class we should have the set or index

Indexc = [p_acctXc,p _ a cc t2c,p _ a cc t3 J . If this class is the most desired

available class to the passenger type t, then accept p acc for this type, otherwise

p_acc for this type on this class is 0 . Given the day d and the total bookings on

class c and the set of p a c c values for all passenger types on class c, we obtain

the overall likelihood of this event P _tot(bdc | 0;) from the Table Pallb .

For example if IndexcX = [0.8, 0, 0] means that only passenger type /, has class cx

at its most desired class.

Recall that the p acc values that were used to create the Table P accept were in

the range [0-1] with intervals of 0.1 (refer to section 5.2.2 and section A.3 of

Appendix A). However, the p acc that was calculated for each parameter

combination can be any value in the interval [0-1] (refer to section 4.3.3 and

4.3.4) i.e. not just one decimal point. So we used linear interpolation (see Van

Loan 1999)

5.3.4 Using the Metropolis Algorithm

In the previous section we were able to calculate the likelihood of the total

bookings on each class given a random combination of parameters 0.. In order to

calculate the likelihood of all the bookings on all classes and all days, we need to

multiply all the P_tot(bdc | 0,) values obtained from Table P allb in section

5.2.3, L(D | 0;) = U P _to t(bd c | 0j) . Instead of doing that we calculate the

natural logarithm of each P _tot(bd c \ 0t) and sum over all classes and all days of

the booking process to obtain the log likelihood as follows:

6 9

If we have 3 classes calculate

Log like dl = T . h p _tot(bdlc \0j)) (5.3)
C = 1

Then for all days of the booking process (181) and for this iteration i of the

Metropolis algorithm calculate:

180
Log _ l ik e = £ ln(P _ tot(bd | 0 .)) (5.4)

d=0

In order to compare the likelihood between the current iteration /and the

previous iteration i -1 we calculate:

Max(Log like,,Log like¡_x) =TRUE (5.5)

If the parameter combination 6. satisfies the condition in equation (5.5), then

repeat the next iteration of the Metropolis algorithm with the parameter

combination GM = 0t , i.e. the chain moves to the next state.

If not then perform the following test:

If (exp (Log _ like. - Log _ like ̂) > random no. from U[0-1]) (5.6)

If the parameter combination 9. satisfies the condition in inequality (5.6), then

repeat the next iteration of the Metropolis algorithm with the parameter

combination 0M = 6 -, i.e. the chain moves to the next state. This test protects the

algorithm from getting trapped in local minima. Otherwise repeat the algorithm

with Q._j . After a certain number of iterations, say «, the Markov chain

{#0,.,.#n } will converge and parameter combinations accepted after iteration

3

7 0

n will be, approximately, samples from the posterior distribution of the model

P(0\D) .

5.4 Summary
Before creating the tables for the pre computed probabilities we faced difficulties

with the time taken by the Metropolis algorithm to run (100,000 iterations). So

we saved time by first creating a table that contains the probabilities of all

possible number of arrivals for each type of passenger. Secondly we created a

table for the probabilities of all possible acceptances from all possible arrivals.

Then we used these two tables to calculate the total probability for each possible

passenger parameter combination and stored in a table. This table is used in each

iteration of the algorithm and the algorithm simply reads the required total

probabilities in order to calculate the likelihood. We developed a model that

creates a Markov Chain that contains samples of the parameter combinations that

represent the probability distribution of the model parameters given the data. We

used the Metropolis algorithm to construct the chain.

7 1

CHAPTER 6

Result Analysis

6.1 Introduction

In Chapter 4 we saw how to generate synthetic data from known parameters. In

this chapter we use our MCMC method to estimate the parameters from the data.

Our purpose is to test our MCMC algorithm. We wish to see how accurately we

can determine the parameters used to generate the data. We conduct a series of

tests starting with the simplest possible situation- one passenger type booking on

one fare class - and then increase the complexity by introducing more passenger

types and more classes.

We construct a Markov chain using the Metropolis algorithm and the simulated

booking data D. The chain contains a sequence of random parameter

combinations for the passenger belief parameters \Oo,Ol,02,....}. After a

sufficiently long number of iterations the chain converges reaching an

equilibrium state. We run the algorithm for 100,000 iterations and output to a file

the accepted combination after every 10,000 iterations. This random sample of

parameter combinations that were accepted represents the posterior

distribution/^# | D) . A point in 3D space can represent the three parameters in

each combination. Plotting all combinations of the chain using MATLAB 5.2 we

get their distribution in relation to the correct combination used to generate the

data.

In section 6.2 we first test the algorithm with simulated data produced from one

passenger type booking in one class. In other words we assume that only one

passenger type arrives and there is only one class available. We make the number

of seats in this class artificially large so that it does not fill up. Then we repeat the

same experiment twice more with the same passenger type booking on a different

7 2

class each time. Each of the three previous experiments will produce a different

plane in parameter space. Then we plot the three planes and examine the area of

intersection. This area should include the original parameter combination, which

was used to generate the data - so this provides a test of our algorithm.

In section 6.3 we test the algorithm for the case of one passenger type having the

choice of booking on two classes. Section 6.4 will give the results of a run for the

same passenger type having the choice of booking on three classes together. In

section 6.5 we introduce a different passenger type and examine the results of the

algorithm for this passenger type and the previous three classes. We then run the

algorithm for the previous two passenger types and the same three classes in

section 6 .6 . Finally we add a third passenger type in section 6.7 and examine the

results of the algorithm on three passenger types and three classes.

The reason why we expect to have a plane in 3D from each run is because we are

dealing with three parameters p n , p t2 and p t3 for passenger belief. The first two

parameters come from equation (4.1) of the desirability (refer to section 4.3.4):

desrt c = comfc * p n + costc *Pt2

The result of this equation is then used to calculate the probability of acceptance

using equation (4.2) (refer to section 4.3.5):

p _ a c c u (de*ru) =

Notice that we subtract the third parameter p l3 from the desirability desrt c, (z is

kept constant through all the experiments). We can rewrite equation (4.1) as

follows:

desrtc = com fc * p n + costc * p t2 (6 .1)

7 3

If the Metropolis algorithm is working correctly it should generate parameter

combinations that produce the same probability of acceptance p_acct o, i.e. that

have similar desirability desrtc . With cos/c and comfe remaining constant

during the execution of the experiment and keeping only the points or parameters

that generate the same desrt c, then equation (6.1) represents the equation of a

plane in a 3D space whose dimensions are p tl, p t2 and p t3. This plane should

include the original parameter combination, which was used to generate the data.

7 4

6.2.1 One passenger type and one class (classl) for one flight

First we test the algorithm with one passenger type booking on one class for one

flight. Figure 6.1 shows the output from the Metropolis algorithm: a plane in 3D

representing the posterir distribution over the passenger parameters for this type.

The plane does include the original parameter combination, as it should do. The

parameters used for this run are shown in Table 6.1. The probability of

acceptance for this test is p_acctc= 0.8. Remember all points on the plane

generate the same p_acctc. The thickness of the plane is determined by the

amount of data available to the algorithm. We will see later that when we run the

algorithm with data from 100 flights instead of data from one flight the degree of

uncertainty reduces resulting in thinner planes.

6.2 One passenger type and one class

Correct parameters (data parameters): p n = 0.7 3̂ to II 1 O 00 p t 3 =-400

The arbitrary starting point: Pn= 0-5 Pt2=-0-2 Pt3= '450

Classl parameters: seats c = 500 cos t = 600 comfc= 800

Table: 6.1 Parameters used for one passenger type and one class (classl)

7 5

on^rel pan m ste-co m lun^on

parameierl

1 '
pjHinftWtt_____ parameter

parameter!
p aram eleC

paramerer2

Figure 6.1: A plane viewed from different angles for one passenger type
booking on one class with p_accto= 0.8. The original parameter
combination lies in the plane as it should do

7 6

6.2.2 One passenger type and another class (class2) for one flight

Then we test the algorithm for another class with the same type of passenger for

one flight. Table 6.2 contains the parameters used for this run. The probability of

acceptance for this test is p_acctc= 0.5005. Figure 6.2 shows another

distribution of this type for another class with a different p _ acclc . The cos tc

and comfc values used in this run are not realistic. They have been contrived to

produce a plane that is orthogonal to the previous plane in order that the area of

intersection between the two planes is as small as possible.

Correct parameters (data parameters): p n = 0.7 p t2= - 0.8 P a= - 400

The arbitrary starting point: Pn = 0.5 Pt2=-0-2 Pt3= '450

Class2 parameters : seatsc = 500 cos tc= -400 comf = 150

Table: 6.2 Parameters used for one passenger type and another class (class2)

Figure 6.2: One passenger type booking on another class with p _ acctc =
0.5005

7 7

3CC onginal parameter combination

p a ra m e te rl
p a r a m e te r

Figure 6.3: Two planes representing two different classes for one passenger
type with large area of intersection between them

For comparison Fig. 6.3 shows the result when we run the algorithm with

different cos tc and comfc values which produce planes which are nearly parallel.

We notice that the two planes representing the two different classes intersect in a

large area indicating a high degree of uncertainty in our estimate of the original

parameter combination.

7 8

6.2.3 One passenger type and another class (class3) for one flight

Then we test the algorithm for a third class keeping the passenger type the same

and also for one flight only. Table 6.3 contains the parameters used for this run.

The probability of acceptance for this test is p_acctc= 0.5. Again costc and

comfc have been contrived to produce a plane that is orthogonal to the previous

two. See Figure 6.4.

Correct parameters (data parameters): p n = 0.7

OOÖ1II< p t 3 =-400

The arbitrary starting point: p (= 0.5 P a r -°2

O1IICO<

Class3 parameters : seats c =500 cos tc= -114 comfc = 400

Table: 6.3 Parameters used for one passenger type and another class (class3)

original parameter combination

parameter -1 0 parameiert

Figure 6.4: One passenger type booking on another class with p_acctc = 0.5

7 9

6.2.4 Intersection between the planes of the previous classes

Then we plot all the three previous planes as illustrated in Figure 6.5a and 6.5b;

they intersect in a region which also includes the correct point that was used to

generate the data (0.7, -0.8, -400)

parameter2 parameter"!

Figure 6.5a: Intersection between the 3 previous planes

Figure 6.5b: Intersection between the 3 previous planes, different angle

80

In the previous section the passenger only had the choice of booking on one class.

We now introduce two classes simultaneously (class 1 and class2 from section

6 .2.1 and 6 .2.2 are used) and allow the same type of passenger used in the

previous tests to have the choice of booking in two classes. After the most desired

class for this passenger type becomes full then the passenger has the choice either

of booking in his second desired class or not. In this case the simulated data

includes the effect (influence) of the choice behaviour between two products (or

classes). Figure 6.6 shows the booking curve in this case. The booking activity on

these two classes should provide us with more information about this passenger

type. So running the Metropolis algorithm using this new booking data, the

resulting Markov chain should provide more accurate (specific) parameter

combinations that better describe this passenger type. Figure 6.7 shows the two

planes of the two classes running separately, then Figure 6.8 shows the output of

the two classes together in the same run. Notice the location of the output is

where the two previous planes from Figure 6.7 intersect. The plot in Figure 6.9

shows the result of the same two classes but run for 100 flights. Using 100 flights

reduces the uncertainty, so the distribution is more concentrated but it still

contains the original parameter combination. Notice, two classes do not give

enough information to pinpoint the original parameter combination exactly.

6.3 One passenger type and two classes

81

1 15 29 43 57 71 85 99 1131Z7141155109

C&ys before departure

One passenger type booking on 2 classes

. Classl

. Class?

Figure 6.6: Booking curve for one passenger type and two classes

-35U ■

-300 -

1
R

O b

7

param eter!parameter

Figure 6.7: Intersection between the runs from one passenger and two
classes separately. The original combination is shown as a black dot.

82

Figure 6.9: One passenger type and two classes for 100 flights. Notice how

the spread of the distribution is reduced. The original parameter

combination is shown as a black dot

8 3

We introduce a third class to give the same passenger type from previous tests the

choice between 3 different fare classes (class3 from section 6.2.3 was used).

When the most desired class becomes full the passenger has the choice of

booking on the second desired class or not to book, and so on, see Figure 6.10.

Figure 6.11 shows the posterior distribution for this case. For comparison we

repeat Figure 6.5a which shows the planes generated by each class individually.

The large blue distribution in Figure 6.11 corresponds to the region of

intersection of the three planes in Figure 6.5a.

The red distribution in Figure 6.11 is for 100 flights and the blue distribution is

for one flight. Notice that for the 100 flights the distribution is more concentrated.

Also notice that the correct parameter combination does not lie in the 100-flight

distribution. We think the reason for this is that the correct parameter

combination lies on the edge of the region of intersection in Figure 6.5a. The

algorithm appears to be biased towards the centre of this region. This problem

needs to be addressed in future work.

6.4 One passenger type and three classes

_ ^ Q a s s 1
_*_Qass2
_*_Qass3

One passenger type booking on 3 classes

1 16 31 46 61 76 91 106 121 136151 166181
Days before departure

F ig u re 6 .10: B o o k in g cu rv e fo r on e p a ssen g er ty p e an d th ree classes

8 4

onapax arid thraa classes, cyan: ons flight, red' 10D fligfits(T=1)

original parameter combination

-300

-350

a
! -400

-460

-500

-°-4 -Q.G -c s
parameter

T 7̂ o
1 param stsrl

Figure 6.11: One passenger type (typel) with three classes, blue distribution
for one flight and red one for the 100 flights

p a r a m e 1 e r 2 p a r a m e t e r l

Figure 6.5a (repeated). This shows the planes generated individually by the
three classes used to create Figure 6.11 (above).

8 5

6.5 Another passenger type and three classes

We change the passenger belief parameters to introduce another passenger type

(type 2) and generate new booking data for this passenger type. Then we run the

Metropolis Algorithm to produce a different Markov chain representing the

distribution of the new passenger type. Table 6.4 contains the parameters used for

this run and Figure 6.12 shows the result of the run on data of one flight and 100

flights. Figure 6.13 shows the intersection between the three planes (each for a

different class) for this type of passenger. Notice that the area of intersection is

the same area covered in Figure 6.12. Figure 6.14 is the same as Figure 6.12 but

from different angle.

Correct parameters (data parameters): p n = 0.2 P a r - 0-7 A 3 = - 4 2 0

The arbitrary starting point: A i = 0 .2 A 2= -°-7 A s = -420

Class 1 parameters: seats c = 20 cos 7,= 600 comfc = 800

Class2 parameters: seats c =30 cos tc= -114 comfc = 400

Class3 parameters: seatsc= 100 cos t = -4 0 0 com fr 150

Table: 6.4 Parameters used for another passenger type and three classes

8 6

different pax with thrBe c la ss e s 1 hick line for ore flight and thin line for 10D (lights

-3 D 0 -,

-350 —

original parametercombinalion

! -4 0 0 -

- 4 5 0 -

Earam eter2

1 p a ra m o te r l

Figure 6.12: Different passenger type (type 2) with three classes for one
flight(thick line) and 100 flights (thin line)

-300 -,

-460

n a r a m ft t o t ?

parameter!

Figure 6.13: Intersection between the runs for a different passenger type
(type 2) and three classes separately

8 7

Figure 6.14: Different passenger type (type 2) with three classes-different
angle

8 8

We create booking data for two passenger types and three classes for 100 flights

using the previous two passenger parameters (type 1 and 2) and the previous class

attributes, (refer to Tables 6.3 and 6.4). After running the algorithm on this data,

the result was very similar to the separate run for each passenger type and the

three classes. This indicates that the algorithm is actually recognising different

passenger types and keeping only the parameter combinations for each type that

have a high likelihood of generating that data. In this run the Algorithm is dealing

with six different parameters, three parameters for each type. If the most desired

class for each passenger type is different then there is not much of an effect on

the different algorithm decisions. However, if the most desired class is the same

for both types then the two passenger types are competing for the same class.

This will have an effect on the algorithm decision as it has to weigh between the

probability of the booking (in case of one booking on this day) being made by the

first type or the second type. This effect should not create a major diversion from

the correct parameter combination because as the data size increases (100 flights),

the pattern of the behaviour of each passenger type can be recognised more

accurately. Figure 6.15 shows the previous separate results for each passenger

type (same as Figures 6.11 and 6.14), and Figure 6.16 shows the distribution of

the passenger parameter combinations for each passenger type from the combined

run. Please note Figure 6.16 actually displays six-dimensional data in a three-

dimensional space. The output of the Metropolis algorithm consists of

combinations of six parameter values: three for each of the two passenger types.

The two triplets are actually displayed in the same space, using colour to

distinguish the two sets. This implies that each point in the blue distribution

actually has a partner in the yellow distribution.

6.6 Two passenger types and three classes

8 9

Figure 6.15: Two passenger types (typel and 2) in separate runs with 3
classes for 100 flights

Figure 6.16: Two passenger types with 3 classes from 100 flights. Notice the
increase in uncertainty

9 0

This time we introduce a third passenger type (type 3) with different belief

parameters, as shown in Table 6.5. We first run the algorithm for this passenger

type separately and plot the result in Figure 6.17. Then we run the algorithm for

the three passenger types and the three classes together and the results are shown

in Figure 6.18.

6.7 Three passenger types and three classes

Correct parameters (data parameters): p a = 0.5 U3 [[1 O u> Pt3=- 300

The arbitrary starting point: Pt\ = 0.5 Pt2=-°-3 Pa = -30°

Class 1 parameters: seats c = 20 cos t = 600 comf = 800

Class2 parameters: seats c = 30 r̂1-Hr-H1IIoo comf = 400

Class3 parameters: seats c= 100 cos tc = -400 comfc= 150

Table: 6.5 Parameters used for a third passenger type and three classes

Figure 6.17: A third passenger type (type 3) with 3 classes from 100 flights

9 1

Figure 6.18: Three passenger types with 3 classes from 100 flights

From Figure 6.18 we can see that as we add more passenger types (type 3), the

uncertainty increases and the algorithm faces difficulties homing in on the correct

set of parameters. This is why the area covered for the third passenger type is still

large. We then increased the number of flights to 1000 for the three passenger

types, to give the algorithm more data to work with. This decreased the

uncertainty in type 2 but typel and type 3 got trapped in local minima. The result

is shown in Figure 6.19. Perhaps the solution to this problem is to use simulated

annealing.

9 2

Figure 6.19: Three passenger types with 3 classes from 1000 flights

6.8 Summary
In Chapter 5 we developed a Markov Chain Monte Carlo (MCMC) model using

the Metropolis algorithm to fit the model parameters to sample booking data

generated by the model developed in Chapter 4. Starting with booking data for

one passenger type and one class we were able to construct a Markov Chain that

represents the probability distribution of the parameters given this sample data.

We then introduced another class to test whether the model can recognise the

different behaviour of the passenger towards different classes. The same was

repeated with one passenger type and three classes and the algorithm was able to

use the additional information given to it to get better results regarding this

passenger type. Then we did another experiment with a different passenger type

and the previous three classes. We then ran the algorithm on data generated from

two passenger types booking on three classes. The last experiment was done on

9 3

three passenger types and three classes. In all the previous tests we noticed that

although the algorithm was able to distinguish between the different passenger

types, as we increased the number of passenger types the level of uncertainty

increased resulting in the algorithm facing difficulties homing in on the correct

set of parameters. We also tested the benefit of having more data available for the

algorithm by generating booking data for 100 flights instead of only one flight,

and the resulting distributions from these tests were more concentrated around the

correct set of parameters.

9 4

CHAPTER 7

Conclusion and Future work

7.1 Conclusion
In this work, we built a Monte Carlo simulation model for the airline booking

process based on one flight with different fare classes and different passenger

types. We generated sample booking data for the 181 days of the booking process

for each class. We were able to produce a variety of booking curves for the

booking period by changing the passenger parameters (characteristics) used in the

model. We were also able to capture some hidden events that are not available in

the real-world data. For example, in the reservation systems, there is no record of

a passenger non-arrival event or the decision by an arrived customer not to accept

the most desired class available and opt for no purchase at all. We showed that

the random utility model with discrete choice set works well for passenger choice

behaviour and modelled the number of bookings on each class. Vertical recapture

was also considered when the most desired class is full and the passenger decides

to book on the second or third desired class that is available.

We modelled the arrival behaviour for different passenger types and represented

it with a probability distribution. The passenger arrival parameters for each type

were assumed to be known. We modelled the probability of accepting a booking

on a class using the Logistic (Logit) function which is one of the random utility

models. The Logistic function has an S-shape curve. It performs well in

modelling the passenger choice behaviour because its value increases as the

desirability of a passenger towards a class increases, i.e. if the desirability

towards a class is high then the probability of accepting a booking on this class is

also high. We decided to build a simple model of the booking process (one flight,

up to three passenger types, and up to three classes). As is always recommended,

we began with a simplified version when modelling a complex system. However,

9 5

it is also preferable to simulate all the important processes that have a direct and

important effect on the decision of the real system.

This sample booking data was then used in a Markov Chain Monte Carlo model

in order to estimate the passenger choice parameters used in generating the data.

We used the Metropolis algorithm to construct the Markov Chain. In order to

compute the log-likelihood required by the algorithm for each iteration and to

speed up the execution time, we pre-computed all the necessary probabilities and

stored them in tables. When the algorithm reached an equilibrium state after a

certain number of iterations, the chain converged and the parameter combinations

or the random samples that were chosen did represent the distribution of the

parameter combinations given the generated data. These estimated parameters for

each passenger type could be used then to classify any new booking data. When

we increased the amount of data (100 flights) available to the model we were able

to get closer to the most probable set of parameters. However, care had to be

taken to avoid getting trapped in local minima.

As we increased the number of passenger types (i.e. increased the number of

estimated parameters) and the number of classes, the complexity of the model

increased and the algorithm faced difficulties in converging on the right

parameter combinations.

We also tested the MCMC model in a parallel processing environment with a

cluster of one server and 10 nodes. The 100,000 iterations of the Metropolis

algorithm were divided into 10,000 iterations running on each machine (node)

creating multiple parallel chains. The results from all machines were combined

and produced the same result as the result from all iterations on one PC. The run

time was reduced from approximately 216 hours to 30 hours.

9 6

7.2 Future work
Further work and research can be conducted in the following areas:

• The MC simulation model can be extended to introduce more classes and

other types of passenger, as well as other flights with differing fares and

comfort values. We could also add more attributes to the alternative

criteria to increase the choice set, such as time of departure, day of the

week etc. Also the probability of cancellation can be introduced and

incorporated with the overall probability for each day of the booking

process in selected classes. This will give more accurate predictions of the

actual total number of bookings on departure day. Also the no-show

probability can be added in to give an estimate to the number of no-shows

that might occur on departure day.

• The parameters used to model the probability of arrival of each passenger

type were assumed to be known in our model. We could assume these

were unknown and try to estimate them using the MCMC model.

• For each passenger type the belief parameters used in the model were the

same for all members of the type. We can introduce variation in these

parameters for each type to get more realistic choice behaviour.

• When we introduced a third passenger type we found difficulties in

getting a good estimate for the three passenger parameters. The

Metropolis Algorithm was not able to distinguish between the most

desired class for each passenger without the indirect effect of the other

classes. One way to overcome this hurdle is by running the algorithm in a

separate time frame for each type. While we know the parameters of

arrival for each passenger type indicating the most probable time-frame

that this type will arrive to book. So we can run the algorithm for this

period which will give us an idea of what the parameter combinations we

should keep for this passenger type. For example, tourist passengers

arrive and book early during the booking process period, so there is a

time-frame when bookings are entirely due to tourist passengers. We

could then continue running the algorithm from the day the next type is

9 7

expected to arrive until the day the third passenger type start arriving, and

keep the accepted parameters and so on.

For a further test on the algorithm, we could run it using a real booking

data and examine whether the estimated parameters of different passenger

type can tell us who actually booked this real data.

9 8

References

A G IF O R S , A irlin e G roup o f the International Federation o f O perational R esearch
S o c ie ties , R eserva tion s & Y ie ld M an agem ent S tu dy G roup P roceed in g , Z urich, 1996 and
M ontreal, 1997

A nderson , S. E ., “P assen ger C h oice A n a ly s is for S ea t C apacity Control: A P ilo t Project
in S can din avian A ir lin e s ,” Intl. Trans Opl. Res., V o l. 5 , pp. 4 7 -4 8 6 , 1998

A jzen , I. and F ish b ein , M ., Understanding Attitudes and Prediction Social Behavior,
P rentice-H all, In c., 1980

B elob aba, P ., “A ir T ravel D em and and A irlin e S eat In ven tory M an agem en t” ’ Ph.D .
D isserta tion , M IT , C am bridge, M ass, 1987a

B elob aba, P ., “A ir lin e Y ie ld M anagem ent: A n O v erv iew o f S eat Inventory C ontrol”,
Transportation Science, V o l. 2 1 , pp. 6 3 -7 3 , 1987b

B elob aba, P ., "A p plication o f a P robabilistic D ec is io n M od el to A irlin e S eat Inventory
C o n tro l”, Operations Research, V o l. 3 7 , N o . 2 , pp. 1 8 3 -1 9 7 , M arch-A pril 1989

B elob aba, P ., W illia m so n , E. and M artin, B ., “C om parison o f Y ie ld M an agem ent
M ethod s for F ligh t L eg and O -D C ontrol” A G IF O R S , R eservation and Y ie ld
M an agem ent Study G roup M eetin g , C h icago , IL , A pril 1989

B elob aba, P ., “O p tim al v s . H eu ristic M eth od s fo r N e ste d S ea t A llo c a tio n ” A G IF O R S
R eservation s & Y ie ld M an agem en t Study G roup, B ru sse ls , M ay 1992

B elob aba, P . and W ilso n , J. L ., “Im pacts o f Y ie ld M an agem en t in C om p etitive A irline
M arkets”, Journal of Air Transport Management, V o l. 3 , N o . 1, pp. 3 -9 , 1997

B en A k iv a , M . and L erm an, S. (1 9 8 5) Discrete Choice Analysis: Theory and
Application to Travel Demand, (M IT P ress, C am bridge, M a.)

B ierla ire, M ., D iscre te C h o ice M od els , 1997

http ://its.m it.ed u /m ich el/d iscretC h oice/p ap er.h tm l

Bitran, G. C ald en tey , R abd M on d sch ein , S . “C oord inating C learance M arkdow n S ales
o f S eason a l Products in R etail C hains”, Operations Research, V o l. 4 6 , pp. 6 0 9 -6 2 4 ,
1998

B la ck ley R , “C om p arison Study o f F orecastin g N o -S h o w R ates”, Internal B ritish
A irw ays m em o, 1 .0 , 19 January 1993

B ratly, P , F o x , B . L ., Sch arge, L. E.̂ 4 Guide to Simulation, S econ d E dition , Springer-

V erlag , 1987

9 9

http://its.mit.edu/michel/discretChoice/paper.html

Brumelle S. L. and McGill J. I., "Airline Seat Allocation with Multiple Nested Fare
Classes", Operations Research, Vol. 41, No. 1, pp. 127-137, January-February 1993
Curry R. E., “Optimal Airline Seat Allocation with Fare Classes Nested by Origin and
Destination”, Transportation Science, Vol. 24, No. 3, pp. 193-204, August 1990
Dempster, A. P., Laird, N.M. and Rubin, D.B., “Maximum Likelihood From Incomplete
Data via the EM Algorithm”, Journal of the Royal Stat. Society, B, Vol 39, pp. 1-38,
1977
Dror M., Trudeau P. and Ladany S., ‘"Network Models for Seat Allocation on Flights”,
Transportation Research-B, Vol. 22B, No. 4, pp. 239-250, 1988

Engel J. F. Blackwell, R. D. and Miniard, P. W.,Consumer Behaviour, 6th ed., CBS
Publishing Japan Ltd., 1986

Gilks, W.R., Richardson, S. and Spiegelhalter, D.J., “Markov Chain Monte Carlo in
Practice”, Chapman & Hall, 1996

Gallego G. and van Ryzin G., “A Multiproduct Dynamic Pricing Problem and its
Applications to Network Yield Management”,Operations Research, Vol. 45, No. 1, pp.
24-41, 1997
Glover F., Glover R., Lorenzo J. and McMillan C., “The Passenger Mix Problem in the
Scheduled Airline ”, Interfaces Vol. 12, No. 3, pp. 73-79, 1982

Grether, D. and Wilde, L., ‘An Analysis of Conjunctive Choice: Theory and
Experiments ’ , Journal o f Consumer Research, Vol. 10 (March), pp. 373-385, 1984

Kheir, N. A., System Modelling and Computer Simulation, Marcel Dekker, Inc., 1988
Kuwait Airways Yield Management and Pricing: Operational Review and Action Plan,
American Airlines, Decision Technologies, Unpublished document, May 1992
Lee A.O., “Airlines Reservations Forecasting: Probabilistic and Statistical Models of the
Booking Process”, Ph.D. Dissertation, MIT, Cambridge, Mass, 1990
Mannion, R, “CA and Monte Carlo Models of HIV Infection”, M.Sc. Thesis, Dublin
City University, Faculty of Computing and Mathematical Sciences, January 2001
McGill, J. I. and van Ryzin, G. J., “Revenue Management Research Overview and
Prospects”, Trans. Sci., Vol. 33, pp. 233-256, 1999
McGrath, Paul A., “Forecasting Airline Passenger No Show Rates Using Radial-Basis
Function Networks”, M.Sc. Thesis, University of Brunei, August 1995

100

Neelamkavil, F., Computer Simulation and Modelling, John Wiley & Sons Ltd., 1986
Robert C. P. and Casella G., “Monte Carlo Statistical Methods”, Springer-Verlag New
York, Inc., 1999
Ripley, B. D. and Sutherland, A. I., “Finding Spiral Structures in Images of Galaxies”,
Phil. Trans. R. Soc. Lond., A(1990)
Ripley, B. D., “Recognizing Organisms from their Shapes - A case Study in Image
Analysis”, XVth International Biometrics Conference, Budapest, 1990
Robinson L. W., “Optimal and Approximate Control Policies for Airline Booking with
Sequential Nonmonotonic Fare Classes”, Operations Research, Vol. 43, No. 2, pp. 252-
263, March-April 1995
Smith B. C. and Penn C. W., “Analysis of Alternate Origin-Dcstination Control
Strategies”, AGIFORS Symposium Proceedings 28, pp. 123-144, 1988
Spiegel, M. R, Schiller J. and Srinivasan, R. A., “SCHAUM’S OUTLINES: Probability
and Statistics”, Second Edition, McGraw-Hill, 2000
Talluri, K. and van Ryzin, G., “Discrete Choice Model of Yield Management”,
September 2000
Van Loan, C.F., “Introduction to Scientific Computing, A Matrix-Vcctor Approach
Using MATLAB”, Second Edition, Prentice-Hall, 1999
Vinod, B. “Origin and Destination Yield Management”, SABRE Decision Technologies,
Handbook of Airline Economics, September 1995
Weatherford L. R., Bodily S. E., “A Taxonomy and Research overview of perishable-
asset revenue management: Yield Management, Overbooking, and Pricing”,Operations
Research, Vol. 40, No. 5, pp. 831-843, September-October 1992
Williamson E., “Comparison of Optimization Techniques for Origin-Destination Seat
Inventory Control”, report FTL-R88-2, Flight Transportation Laboratory, MIT,
Cambridge, MA 1988
Wollmer R. D., “An Airline Seat Management Model for a Single Leg Route when
Lower Fare Classes Book First”, Operations Research, Vol. 40, No. 1, pp. 26-37,
January-February7 1992
Wright, P., “Consumer Choice Strategies: Simplifying vs. Optimizing2, Journal of
Marketing Reset, Vol. XII (February), pp. 60-67, 1975

Yield Management Workshop, Sabre Decision Technology, 1996

101

Yield Management References from the Internet:

[YM1] liltp:/Any\v sl)-c.coiiiAvlnitsnc\v/0201()0.html
[YM2] hltp://\vww.dcnvcrposl.coni/biisincss/biy.l 115.him
[YM3] lulp:/Av\vw.dfi.coin/lxt/pb005.1Unt
[YM4] lnip:/AvAv\\ .(iaiuas.coiii.au/companv/facirilcs/yield hiinl
[YM5] li(lp:/Av\vw.siain.orfí/siainncsvs/imc/inlc694.IHm
[YM6] lmp:/Av\vw.horand-voKcl.dc/menibcrs/moreym.asp

102

APPENDIX A

A.1 Sample Booking Data
Day classO classl dnss2
-180 0 0 0
-179 0 0 0
-178 0 0 0
-177 0 0 0
-176 0 0 0
-175 0 0 0
-174 0 0 0
-173 0 0 0
-172 0 0 1
-171 0 0 1
-170 0 0 1
-169 0 0 1
-168 0 0 2
-167 0 0 3
-166 0 0 5
-165 0 0 6
-164 0 0 6
-163 0 0 7
-162 0 0 7
-161 0 0 7
-160 0 0 7
-159 0 0 7
-158 0 0 8
-157 0 0 8
-156 0 0 11
-155 0 0 12
-154 0 0 14
-153 0 0 14
-152 0 0 15
-151 0 0 16
-150 0 0 17

-82 0 0 149
-81 0 0 150
-80 0 0 150
-79 0 0 150
-78 0 1 150
-77 0 1 150
-76 0 2 150
-75 0 2 150

1 0 3

1—4 ►—» H-‘ y_k ►—l H-4 t—» H-4 t o to t o to t o to t o t o t o to U) u> Uí u> UJ U) u> w Ol U> o í o s os os 0 \ o s Os ON os os o s -o -o -o -ot o U) 0\ 00 VO o H-» l o UJ 4^ Ol o s -»i 00 o to U) Ol Os - o ■o 00 SO o to w 4^ Oí o s ' J 00 SO o 1—‘ (O u>

20 20 20 20 20 20 20 20 20 20 20 t oo

20 20 20 20 20 20 20 H-» H-4t o L/i o o o o o o O o o o o O o o o o o o o o o o
MO O 1—1 O o H-iO h-*o H-4o l—lo H-4O H-*O ►—*

o o >—> o i—*o i—>o o t—*o o O H-4o o
H-4
or**s vo- o so1—• 00Os

78 t—»o

10 00 00 00 00 00 os o\ OS OS O) 4^ u> to
o 's—-'

t—à I—* H 1—* t—‘ 1—* >—1 _ _ 1—1 H-» t—> 1—*
H-»Ul)—4Ut H-4L/i 1—‘ (Vi ►—* Oí H-4V\ H-4L/l t—*o í H-*Ui Oí t—1Ol I—»Ol I—*Ol h-‘ Oí i—*Ol h—»Ol Ol 1—1Ol 1—»Ul 1—4Lh H-4Ul L/1f—s Oío

[50 o ío
H^OlO

150
150 O lo Olo Olo OíO OlO Olo Oío Oío Oío Oío Oío Oío Oío o>o Oío Oío

o o O o o o o o o o o o o o O O o o o O o

-11 20 100 150
-10 20 100 150
-9 20 100 150
-8 20 100 150
-7 20 100 150
-6 20 100 150
-5 20 100 150
-4 20 100 150
-3 20 100 150
-2 20 100 150
-1 20 100 150
0 20 100 150

1 0 5

A.2 Table for Probability of Arrival (P arrive
day: -180
BUS 1 0 0 0 0 0 0 0 0 0 0

TOUR 1 0 0 0 0 0 0 0 0 0 0

STD 1 0 0 0 0 0 0 0 0 0 0

day: -179
BUS 1 0 0 0 0 0 0 0 0 0 0

TOUR 0.935298 0.062772 0.001896 3.39E-05 3.98E-07 3.21 E-09 1.79E-11 6.88E-14 1.73E-16 2.58E-19 1.73E-22

STD 1 0 0 0 0 0 0 0 0 0 0

day: -178
BUS 1 0 0 0 0 0 0 0 0 0 0

TOUR 0.874389 0.118161 0.007185 0.000259 6.12E-06 9.93E-08 1.12E-09 8.64E-12 4.38E-14 1.31E-16 1.78E-19

STD 1 0 0 0 0 0 0 0 0 0 0

day: -177
BUS 1 0 0 0 0 0 0 0 0 0 0

TOUR 0.817073 0.16675 0.015314 0.000833 2.98E-05 7.29E-07 1.24E-08 1.45E-10 1.11E-12 5.02E-15 1.02E-17

STD 1 0 0 0 0 0 0 0 0 0 0

day: -176

BUS 1 0 0 0 0 0 0 0 0 0 0

TOUR 0.763161 0.209085 0.025778 0.001883 9.03E-05 2.97E-06 6.78E-08 1.06E-09 1.09E-11 6.64E-14 1.82E-16

STD 1 0 0 0 0 0 0 0 0 0 0

day: -175
BUS 1 0 0 0 0 0 0 0 0 0 0

TOUR 0.712471 0.24568 0.038123 0.003506 0.000212 8.75E-06 2.52E-07 4.96E-09 6.41 E-11 4.91 E-13 1.69E-15

STD 1 0 0 0 0 0 0 0 0 0 0

day: -174
BUS 1 0 0 0 0 0 0 0 0 0 0

TOUR 0.664833 0.277014 0.05194 0.005771 0.000421 2.10E-05 7.31 E-07 1.74E-08 2.72E-10 2.52E-12 1.05E-14

STD 1 0 0 0 0 0 0 0 0 0 0

day: -173
BUS 1 0 0 0 0 0 0 0 0 0 0

TOUR 0.62008 0.303536 0.066863 0.008728 0.000748 4.39E-05 1.79E-06 5.01 E-08 9.20E-10 1.00E-11 4.90E-14

STD 1 0 0 0 0 0 0 0 0 0 0

day:-172
BUS 1 0 0 0 0 0 0 0 0 0 0

TOUR 0.578057 0.325666 0.082563 0.012404 0.001223 8.27E-05 3.88E-06 1.25E-07 2.64E-09 3.31 E-11 1-86E-13

1 0 7

STD 1 0 0 0 0 0 0 0 0 0 0

day: -171
BUS 1 0 0 0 0 0 0 0 0 0 0

TOUR 0.538615 0.343797 0.09875 0.016809 0.001878 0.000144 7.65E-06 2.79E-07 6.68E-09 9.47E-11 6.05E-13

STD 1 0 0 0 0 0 0 0 0 0 0

day: -45
BUS 1 0 0 0 0 0 0 0 0 0 0

TOUR 1.00E-10 9.00E-09 3.65E-07 8.75E-06 0.000138 0.001488 0.01116 0.057396 0.19371 0.38742 0.348678

STD 0.019321 0.093491 0.203568 0.262669 0.222421 0.129148 0.052076 0.014399 0.002613 0.000281 1.36E-05

day: -44
BUS 1 0 0 0 0 0 0 0 0 0 0

TOUR 5.02E-11 4.87E-09 2.13E-07 5.52E-06 9.38E-05 0.001094 0.008852 0.049139 0.179006 0.386425 0.375385

STD 0.01392 0.074239 0.178174 0.253403 0.236509 0.151366 0.067274 0.020503 0.004101 0.000486 2.59E-05

day: -43
BUS 1 0 0 0 0 0 0 0 0 0 0

TOUR 2.39E-11 2.52E-09 1.19E-07 3.36E-06 6.19E-05 0.000783 0.006877 0.041414 0.163663 0.38328 0.403918

STD 0.009917 0.058137 0.153361 0.239737 0.245937 0.173004 0.084514 0.02831 0.006223 0.000811 4.75E-05

1 0 8

day: -42
BUS 1 0 0 0 0 0 0 0 0 0 0

TOUR 1.07E-11 1.23E-09 6.39E-08 1.96E-06 3.94E-05 0.000544 0.005216 0.034274 0.147807 0.377729 0.434388

STD 0.006982 0.044887 0.12985 0.222601 0.250426 0.193186 0.103492 0.038018 0.009165 0.001309 8.42E-05

day: -41
BUS 1 0 0 0 0 0 0 0 0 0 0

TOUR 4.50E-12 5.68E-10 3.23E-08 1.09E-06 2.41 E-05 0.000365 0.003846 0.027768 0.131584 0.369499 0.466912

STD 0.004854 0.034155 0.108156 0.20296 0.249941 0.211062 0.123771 0.04977 0.013134 0.002054 0.000145

day: -40
BUS 1 0 0 0 0 0 0 0 0 0 0

TOUR 1.73E-12 2.43E-10 1.53E-08 5.71 E-07 1.40E-05 0.000235 0.002742 0.021936 0.115166 0.358294 0.501612

STD 0.003328 0.025598 0.08861 0.181763 0.244681 0.22586 0.144782 0.06364 0.018358 0.003138 0.000241

day: -39
BUS 1 0 0 0 0 0 0 0 0 0 0

TOUR 6.05E-13 9.47E-11 6.68E-09 2.79E-07 7.65E-06 0.000144 0.001878 0.016809 0.09875 0.343797 0.538615

STD 0.002248 0.018884 0.071383 0.159897 0.235049 0.236929 0.165851 0.079608 0.025077 0.004681 0.000393

day: -38
BUS 1 0 0 0 0 0 0 0 0 0 0

1 0 9

TOUR 1.86E-13 3.31 E-11 2.64E-09 1.25E-07 3.88E-06 8.27E-05 0.001223 0.012404 0.082563 0.325666 0.578057

STD 0.001495 0.013701 0.056516 0.13815 0.221615 0.243777 0.186218 0.097543 0.03353 0.00683 0.000626

day: -37
BUS 1 0 0 0 0 0 0 0 0 0 0

TOUR 4.90E-14 1.00E-11 9.20E-10 5.01 E-08 1.79E-06 4.39E-05 0.000748 0.008728 0.066863 0.303536 0.62008

STD 0.000977 0.009766 0.043945 0.117188 0.205078 0.246094 0.205078 0.117188 0.043945 0.009766 0.000977

day: -36
BUS 1 0 0 0 0 0 0 0 0 0 0

TOUR 1.05E-14 2.52E-12 2.72E-10 1.74E-08 7.31 E-07 2.10E-05 0.000421 0.005771 0.05194 0.277014 0.664832

STD 0.000626 0.00683 0.03353 0.097543 0.186218 0.243777 0.221615 0.13815 0.056516 0.013701 0.001495

day: -35
BUS 1 0 0 0 0 0 0 0 0 0 0

TOUR 1.69E-15 4.91E-13 6.41 E-11 4.96E-09 2.52E-07 8.75E-06 0.000212 0.003506 0.038123 0.24568 0.712471

STD 0.000393 0.004681 0.025077 0.079608 0.165851 0.236929 0.235049 0.159897 0.071383 0.018884 0.002248

day: -34
BUS 1 0 0 0 0 0 0 0 0 0 0

TOUR 1.82E-16 6.64E-14 1.09E-11 1.06E-09 6.78E-08 2.97E-06 9.03E-05 0.001883 0.025778 0.209085 0.76316

STD 0.000241 0.003138 0.018358 0.06364 0.144782 0.22586 0.244681 0.181763 0.08861 0.025598 0.003328

110

day: -33
BUS 1 0 0 0 0 0 0 0 0 0 0

TOUR 1.02E-17 5.02E-15 1.11E-12 1.45E-10 1.24E-08 7.29E-07 2.98E-05 0.000833 0.015314 0.16675 0.817072

STD 0.000145 0.002054 0.013134 0.04977 0.123771 0.211061 0.249941 0.20296 0.108156 0.034155 0.004854

day: -32
BUS 1 0 0 0 0 0 0 0 0 0 0

TOUR 1.78E-19 1.31E-16 4.38E-14 8.64E-12 1.12E-09 9.93E-08 6.12E-06 0.000259 0.007185 0.118161 0.874388

STD 8.42E-05 0.001309 0.009165 0.038018 0.103492 0.193186 0.250426 0.222601 0.12985 0.044887 0.006982

Ill

day: -10
BUS 1.43E-09 9.50E-08 2.85E-06 5.07E-05 0.000591 0.00473 0.026279 0.10011 0.250274 0.370777 0.247185

TOUR 0 0 0 0 0 0 0 0 0 0 1

STD 0 0 0 0 0 0 0 0 0 0 1

day: -9
BUS 2.47E-11 2.60E-09 1.23E-07 3.43E-06 6.31 E-05 0.000795 0.006956 0.041738 0.164342 0.383465 0.402638

TOUR 0 0 0 0 0 0 0 0 0 0 1

STD 0 0 0 0 0 0 0 0 0 0 1

day: -8
BUS 2.41E-14 5.31E-12 5.26E-10 3.08E-08 1.19E-06 3.13E-05 0.000575 0.007225 0.05961 0.291424 0.641134

TOUR 0 0 0 0 0 0 0 0 0 0 1

STD 0 0 0 0 0 0 0 0 0 0 1

day: -7
BUS 0 0 0 0 0 0 0 0 0 0 1

TOUR 0 0 0 0 0 0 0 0 0 0 1

STD 0 0 0 0 0 0 0 0 0 0 1

day: -6
BUS 0 0 0 0 0 0 0 0 0 0 1

112

TOUR 0 0 0 0 0 0 0 0 0 0 1

STD 0 0 0 0 0 0 0 0 0 0 1

day: -5
BUS 0 0 0 0 0 0 0 0 0 0 1

TOUR 0 0 0 0 0 0 0 0 0 0 1

STD 0 0 0 0 0 0 0 0 0 0 1

day: -4
BUS 0 0 0 0 0 0 0 0 0 0 1

TOUR 0 0 0 0 0 0 0 0 0 0 1

STD 0 0 0 0 0 0 0 0 0 0 1

day: -3
BUS 0 0 0 0 0 0 0 0 0 0 1

TOUR 0 0 0 0 0 0 0 0 0 0 1

STD 0 0 0 0 0 0 0 0 0 0 1

day: -2
BUS 0 0 0 0 0 0 0 0 0 0 1

TOUR 0 0 0 0 0 0 0 0 0 0 1

1 1 3

STD 0 0 0 0 0 0 0 0 0 0 1

day: -1
BUS 0 0 0 0 0 0 0 0 0 0 1

TOUR 0 0 0 0 0 0 0 0 0 0 1

STD 0 0 0 0 0 0 0 0 0 0 1

day: 0
BUS 0 0 0 0 0 0 0 0 0 0 1

TOUR 0 0 0 0 0 0 0 0 0 0 1

STD 0 0 0 0 0 0 0 0 0 0 1

1 1 4

A.3 Table for Probability of Acceptance (Paccept)

p_acc=0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

p_acc=0.1 1 0.9 0.81 0.729 0.6561 0.59049 0.531441 0.478297 0.430467 0.38742 0.348678
0 0.1 0.18 0.243 0.2916 0.32805 0.354294 0.372009 0.382638 0.38742 0.38742
0 0 0.01 0.027 0.0486 0.0729 0.098415 0.124003 0.148803 0.172187 0.19371
0 0 0 0.001 0.0036 0.0081 0.01458 0.022964 0.033067 0.044641 0.057396
0 0 0 0 0.0001 0.00045 0.001215 0.002552 0.004593 0.00744 0.01116
0 0 0 0 0 1.00E-05 5.40E-05 0.00017 0.000408 0.000827 0.001488
0 0 0 0 0 0 1.00E-06 6.30E-06 2.27E-05 6.12E-05 0.000138
0 0 0 0 0 0 0 1.00E-07 7.20E-07 2.92E-06 8.75E-06
0 0 0 0 0 0 0 0 1 .OOE-O8 8.10E-08 3.65E-07
0 0 0 0 0 0 0 0 0 1.00E-09 9.00E-09
0 0 0 0 0 0 0 0 0 0 1.00E-10

p_acc=0.2 1 0.8 0.64 0.512 0.4096 0.32768 0.262144 0.209715 0.167772 0.134218 0.107374
0 0.2 0.32 0.384 0.4096 0.4096 0.393216 0.367002 0.335544 0.30199 0.268435
0 0 0.04 0.096 0.1536 0.2048 0.24576 0.275251 0.293601 0.30199 0.30199
0 0 0 0.008 0.0256 0.0512 0.08192 0.114688 0.146801 0.176161 0.201327
0 0 0 0 0.0016 0.0064 0.01536 0.028672 0.045875 0.06606 0.08808

1 1 5

0 0 0 0 0 0.00032 0.001536 0.004301 0.009175 0.016515 0.026424
0 0 0 0 0 0 6.40E-05 0.000358 0.001147 0.002753 0.005505
0 0 0 0 0 0 0 1.28E-05 8.19E-05 0.000295 0.000786
0 0 0 0 0 0 0 0 2.56E-06 1.84E-05 7.37E-05
0 0 0 0 0 0 0 0 0 5.12E-07 4.10E-06
0 0 0 0 0 0 0 0 0 0 1.02E-07

p_acc=0.3 1 0.7 0.49 0.343 0.2401 0.16807 0.117649 0.082354 0.057648 0.040354 0.028248
0 0.3 0.42 0.441 0.4116 0.36015 0.302526 0.247063 0.19765 0.15565 0.121061
0 0 0.09 0.189 0.2646 0.3087 0.324135 0.317652 0.296475 0.266828 0.233474
0 0 0 0.027 0.0756 0.1323 0.18522 0.226895 0.254122 0.266828 0.266828
0 0 0 0 0.0081 0.02835 0.059535 0.097241 0.136137 0.171532 0.200121
0 0 0 0 0 0.00243 0.010206 0.025005 0.046675 0.073514 0.102919
0 0 0 0 0 0 0.000729 0.003572 0.010002 0.021004 0.036757
0 0 0 0 0 0 0 0.000219 0.001225 0.003858 0.009002
0 0 0 0 0 0 0 0 6.56E-05 0.000413 0.001447
0 0 0 0 0 0 0 0 0 1.97E-05 0.000138
0 0 0 0 0 0 0 0 0 0 5.90E-06

p_acc=0.4 1 0.6 0.36 0.216 0.1296 0.07776 0.046656 0.027994 0.016796 0.010078 0.006047
0 0.4 0.48 0.432 0.3456 0.2592 0.186624 0.130637 0.08958 0.060466 0.040311
0 0 0.16 0.288 0.3456 0.3456 0.31104 0.261274 0.209019 0.161243 0.120932
0 0 0 0.064 0.1536 0.2304 0.27648 0.290304 0.278692 0.250823 0.214991
0 0 0 0 0.0256 0.0768 0.13824 0.193536 0.232243 0.250823 0.250823
0 0 0 0 0 0.01024 0.036864 0.077414 0.123863 0.167215 0.200658
0 0 0 0 0 0 0.004096 0.017203 0.041288 0.074318 0.111477
0 0 0 0 0 0 0 0.001638 0.007864 0.021234 0.042467
0 0 0 0 0 0 0 0 0.000655 0.003539 0.010617
0 0 0 0 0 0 0 0 0 0.000262 0.001573
0 0 0 0 0 0 0 0 0 0 0.000105

1 1 6

p_acc=0.5 1 0.5 0.25 0.125 0.0625 0.03125 0.015625 0.007813 0.003906 0.001953 0.000977
0 0.5 0.5 0.375 0.25 0.15625 0.09375 0.054688 0.03125 0.017578 0.009766
0 0 0.25 0.375 0.375 0.3125 0.234375 0.164063 0.109375 0.070313 0.043945
0 0 0 0.125 0.25 0.3125 0.3125 0.273438 0.21875 0.164063 0.117188
0 0 0 0 0.0625 0.15625 0.234375 0.273438 0.273438 0.246094 0.205078
0 0 0 0 0 0.03125 0.09375 0.164063 0.21875 0.246094 0.246094
0 0 0 0 0 0 0.015625 0.054688 0.109375 0.164063 0.205078
0 0 0 0 0 0 0 0.007813 0.03125 0.070313 0.117188
0 0 0 0 0 0 0 0 0.003906 0.017578 0.043945
0 0 0 0 0 0 0 0 0 0.001953 0.009766
0 0 0 0 0 0 0 0 0 0 0.000977

p_acc=0.6 1 0.4 0.16 0.064 0.0256 0.01024 0.004096 0.001638 0.000655 0.000262 0.000105
0 0.6 0.48 0.288 0.1536 0.0768 0.036864 0.017203 0.007864 0.003539 0.001573
0 0 0.36 0.432 0.3456 0.2304 0.13824 0.077414 0.041288 0.021234 0.010617
0 0 0 0.216 0.3456 0.3456 0.27648 0.193536 0.123863 0.074318 0.042467
0 0 0 0 0.1296 0.2592 0.31104 0.290304 0.232243 0.167215 0.111477
0 0 0 0 0 0.07776 0.186624 0.261274 0.278692 0.250823 0.200658
0 0 0 0 0 0 0.046656 0.130637 0.209019 0.250823 0.250823
0 0 0 0 0 0 0 0.027994 0.08958 0.161243 0.214991
0 0 0 0 0 0 0 0 0.016796 0.060466 0.120932
öl 0 0 0 0 0 0 0 0 0.010078 0.040311
0 0 0 0 0 0 0 0 0 0 0.006047

p_acc=0.7 1 0.3 0.09 0.027 0.0081 0.00243 0.000729 0.000219 6.56E-05 1.97E-05 5.90E-06
0 0.7 0.42 0.189 0.0756 0.02835 0.010206 0.003572 0.001225 0.000413 0.000138
0 0 0.49 0.441 0.2646 0.1323 0.059535 0.025005 0.010002 0.003858 0.001447
0 0 0 0.343 0.4116 0.3087 0.18522 0.097241 0.046675 0.021004 0.009002
0 0 0 0 0.2401 0.36015 0.324135 0.226895 0.136137 0.073514 0.036757
0 0 0 0 0 0.16807 0.302526 0.317652 0.254122 0.171532 0.102919

1 1 7

0 0 0 0 0 0 0.117649 0.247063 0.296475 0.266828 0.200121
0 0 0 0 0 0 0 0.082354 0.19765 0.266828 0.266828
0 0 0 0 0 0 0 0 0.057648 0.15565 0.233474
0 0 0 0 0 0 0 0 0 0.040354 0.121061
0 0 0 0 0 0 0 0 0 0 0.028248

p_acc=0.8 1 0.2 0.04 0.008 0.0016 0.00032 6.40E-05 1.28E-05 2.56E-06 5.12E-07 1.02E-07
0 0.8 0.32 0.096 0.0256 0.0064 0.001536 0.000358 8.19E-05 1.84E-05 4.10E-06
0 0 0.64 0.384 0.1536 0.0512 0.01536 0.004301 0.001147 0.000295 7.37E-05
0 0 0 0.512 0.4096 0.2048 0.08192 0.028672 0.009175 0.002753 0.000786
0 0 0 0 0.4096 0.4096 0.24576 0.114688 0.045875 0.016515 0.005505
0 0 0 0 0 0.32768 0.393216 0.275251 0.146801 0.06606 0.026424
0 0 0 0 0 0 0.262144 0.367002 0.293601 0.176161 0.08808
0 0 0 0 0 0 0 0.209715 0.335544 0.30199 0.201327
0 0 0 0 0 0 0 0 0.167772 0.30199 0.30199
0 0 0 0 0 0 0 0 0 0.134218 0.268435
0 0 0 0 0 0 0 0 0 0 0.107374

p_acc=0.9 1 0.1 0.01 0.001 0.0001 1.00E-05 1.00E-06 1 .OOE-07 1.0OE-O8 1.00E-09 1.00E-10
0 0.9 0.18 0.027 0.0036 0.00045 5.40E-05 6.30E-06 7.20E-07 8.10E-08 9.00E-09
0 0 0.81 0.243 0.0486 0.0081 0.001215 0.00017 2.27E-05 2.92E-06 3.65E-07
0 0 0 0.729 0.2916 0.0729 0.01458 0.002552 0.000408 6.12E-05 8.75E-06
0 0 0 0 0.6561 0.32805 0.098415 0.022964 0.004593 0.000827 0.000138
0 0 0 0 0 0.59049 0.354294 0.124003 0.033067 0.00744 0.001488
0 0 0 0 0 0 0.531441 0.372009 0.148803 0.044641 0.01116
0 0 0 0 0 0 0 0.478297 0.382638 0.172187 0.057396
0 0 0 0 0 0 0 0 0.430467 0.38742 0.19371
0 0 0 0 0 0 0 0 0 0.38742 0.38742
0 0 0 0 0 0 0 0 0 0 0.348678

1 1 8

o O o o o o o o o o

o o o o o o o o o o

o o o o o o o o o o

o o o o o o o o o o

o o o o o o o o o o

o o o o o o o o o o

o o o o o o o o o o

o o o *— o o o o o o o

o o o o o o o o o o

o o o o o o o o o o

o o o o o o o o o o

p_
ac

c=
1

A.4 Table for Over all Probability of Bookings
day: -179
[0,0,0] 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0
[0,0,0.1] 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0
[0,0,0.2] 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0
[0,0,0.3] 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0
[0,0,0.4] 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0
[0,0,0.5] 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0
[0,0.0.6] 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0
[0,0,0.7] 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0
[0,0,0.8] 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0
[0,0,0.9] 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0
[0,0,1] 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0

120

[0,0
.1,0

1
0.99

335
3

0.0
066

267
7

1.9
893

6e-
005

3.5

389
9e-

008

4.1
315

8e-
011

3.3

074
8e-

014

1.83
871

e-0
17

7.0
092

9e-
021

1.75

349
e-0

24
2.5

995
e-0

28
1.73

415
e-0

32
0

0
0

0
0

0
0

0

CNO
■

CL>
OSes
Osoo

CNOI<u
o s
CNOSOo

CSoI<D
OS
CN
OsOO

CNOi<D
o s
CN
O SOo

CNOI<L»0\
CNosOo

CNOI
cu

o s
CNOsOo

CNOI<D
o s
CN
O sOO

CNOi<L>o\
CN
O sOO

CNO CNO

oiO
rHt*-
00
en
00

oI<u
r“Hr-
00en
00

o oI<Dr-
oo
en
00

o o o o

r-
00en
00

r**
00en
00

oI<D
rHr-
00en
00

o o

r-
00
en
00

oioí-Hr-
oo
en
00

oIo
rH

00
en
00

r-
00m
oo

oI<L>00
o g °en

en

cu00

00ooId>os
O s00
en

C"SO
CN
SO'Oooo

(D
00r-oen
en

<L>00 ̂ _
o £ °

en
en

o oI1)00Ti

00ooI<D
o s
O s
oo
en•n

o
■Qj00c-o

o o 1<L>00»o

00ooI
o

o
o \00
enir>

(L>00
r -o

o■
<u00

1 O £
CJ00

■*3-
r -o

oI
<L>00

O t o
<D

OO
r f
r -o

en en en en en en
en en en en en en

rH t-H r—i »-H i-H i-H
«-H *—1 »-H í-H i-H

O1 O o O1 O o O1 O o O1 O o O1 O o O1
o QJ o <L> QJ <u

00 00 oo 00 00 00
*n m >o * n >n »Tí
i-H i-H r-H i-H
en en en en en en
i-H f-H i - * i—* i-H i—H

'Ñt-o o o o o o o o o o
00ooI
<D

o s
O s
oo
en
• n

ooooI
<D

O s
Os
00
en
•n

oo o oI
Q>

O S
O s
00 o 0
e n °
»O

00oo■
C J

os
o s
oo
en
>n

oooo■
<ü

O s
O s

o 8
T i

en en en en en en en en en

V) «n •n ir> "Ti >n </~)
O O o o O O o o O

¿ ° o 9 ° <u
^ ° oO i<L>

o 9 o
ID

o 9 o
(L>

_ O oO i ^ O o o <o
^ ° o o 1W CJ o 9 a>

SO SO SO SO SO s o vo so so
en en en en en en en en en
OS o s OS Os Os o s Os OS o s
00 00 00 00 00 00 00 00 00
o s o s OS o s o s o s O s o s Os

i-H 1—♦ rH T—1 rH
S o
o1
CJ

en
r -

oo
CN
Oi
<L>

i n
o s Os

en
t- o

§ £ e s — i
s o 5

o ^

oo
^ CN e n 0
• n i
en o
en «n
Os o s
O S O S

o
CN

CN
en
O■
OJ

•O
t-H

en

c -
o
SO
CN
SO
SOooo

CNen
Oi
<l>

»n
f H

en

CN
en
Oi
<D

t - H
'si­
en

? ! o
O

S 5
SO ^
SO
O

r -
r - so
CN
SO
SD
O

O P
O

S o
o r-
CD

*o

00
__ CN e n 0
»n i
e n ü
en «n

Q o s o s
o s o s
o ^

CN

OO
CN en 0

i
en <u
en
o s o s
Os OS
o

CN

OO
_ _ CNen o
«o ien <uoSSoOs Os
o *0

CN

00
CN
Oen

«r>
en <□
en <n
O s o s
o s Os
O ^

CN

r - so
CN
VO
SO

■ o B
O

00

o "I «o
f j en

«o en
Os 0 O s
Os Os
^ O
CN

oo
CN
Oi
O

m
o s
O s
«n

oo
o

o
en
en

<ü
00

00oo
■

<L>OS
OS00 O
en
«n

ooooI
4>

os
O s00en
<n

CN
en
Oi
<D

*n
«-H

en
r -

>nO O O
I

<L>
SO
en
Os
00
o s_j es
^ en

9
U V)I>so

CN
SO
'Ooo

00
ÍN <n 0

• n V
e n ü
en «o
o s o s
Os o s O ̂

CN

enirjenen
o s
OS
o

oo
CN
OI
<D

«n
o s
o s
«n

"^h ”̂1- Th
O CN

O O CN
O O CN

O O eso■
o CN

9
O CN

Oi
O CNOi

O CN
9

O CN
OI»-H 0> rT <D en <L» v-T <U SO 0> <L> 00 <D os d>

OS OS Os
•"í-

OS Os <o os OS OS o s
t-H en r-H en t-H en r-H en i-H en i-H en rH en T-H en i-H en

»o
r -

»or- r -
»n «O

r -
T)
t - r -

• o
r -

o p" o o O" rH o O" o cTrH o p". rH o p" o p" r H o p" rH [0,0
.2,0

]
0.98

674
6

0.01
317

42
7.9

150
7e-

005

2.81
8e-

007

6.5
841

1e-
010

1.05

487
e-0

12
1.1

736
4e-

015

8.9
539

4e-
019

4.4

829
5e-

022

1.3
300

5e-
025

1.7

757
7e-

029

0
0

0
0

0
0

0
0

[0,0.2,0.1]
4.48295e-022
0 0
[0,0.2,0.2]
4.48295e-022
0 0
[0,0.2,0.3]
4.48295e-022
0 0

0.986746
1.33005e-025

0
0.986746

1.33005e-025
0

0.986746
1.33005e-025

0

0,0131742 7.91507e-005
1.77577e-029 0
0 0 0

0.0131742 7.91507e-005
1.77577e-029 0
0 0 0

0.0131742 7.91507e-005
1.77577e-029 0
0 0 0

[1,0.8,0.3] 0.947928 0.0508273 0.0012264
2.91446e-017 3.4727e-020 1.86203 e-023 0
0 0 0 0 0 0
[1,0.8,0.4] 0.947928 0.0508273 0.0012264
2.91446e-017 3.4727e-020 1.86203e-023 0
0 0 0 0 0 0
[1,0.8,0.5] 0.947928 0.0508273 0.0012264
2.91446e-017 3.4727e-020 1.86203e-023 0
0 0 0 0 0 0
[1,0.8,0.6] 0.947928 0.0508273 0.0012264
2.91446e-017 3.4727e-020 1.86203 e-023 0
0 0 0 0 0 0
[1,0.8,0.7] 0.947928 0.0508273 0.0012264
2.91446e-017 3.4727e-020 1.86203e-023 0
0 0 0 0 0 0
[1,0.8,0 .8] 0.947928 0.0508273 0.0012264
2.91446e-017 3.4727e-020 1.86203e-023 0
0 0 0 0 0 0
[1,0.8,0.9] 0.947928 0.0508273 0.0012264
2.91446e-017 3.4727e-020 1.86203e-023 0
0 0 0 0 0 0

0
2.818e-007

0
0

2.818e-007
0

0

2 . 8 1 8 e - 0 0 7

0

1.75356e-005
0

0
1.75356e-005

0
0

1.75356e-005
0

0
1.75356e-005

0
0

1.75356e-005
0

0
1.75356e-005

0
0

1.75356e-005
0

0

122

6.5841 le-010 1.05487e-012 1.17364e-015 8.95394e-019
0 0 0 0 0 0 0

0 0 0 0
6.5841 le-010 1.05487e-012 1.17364e-015 8.95394e-019

0 0 0 0 0 0 0
0 0 0 0
6.5841 le-010 1.05487e-012 1.17364e-015 8.95394e-019

0 0 0 0 0 0 0
0 0 0 0

1.64543 e-007 1.05872e-009 4.73067e-012 1.44946e-014
0 0 0 0 0 0 0

0 0 0 0
1.64543 e-007 1.05872e-009 4.73067e-012 1.44946e-014
0 0 0 0 0 0 0

0 0 0 0
1.64543e-007 1.05872e-009 4.73067e-012 1.44946e-014
0 0 0 0 0 0 0

0 0 0 0
1.64543 e-007 1.05872e-009 4.73067e-012 1.44946e-014
0 0 0 0 0 0 0

0 0 0 0
1.64543 e-007 1.05872e-009 4.73067e-012 1.44946e-014
0 0 0 0 0 0 0

0 0 0 0
1.64543e-007 1.05872e-009 4.73067e-012 1.44946e-014
0 0 0 0 0 0 0

0 0 0 0
1.64543e-007 1.05872e-009 4.73067e-012 1.44946e-014
0 0 0 0 0 0 0

0 0 0 0

<L>
no
"1-
ON

9
<L>

r -
no
o
cn

ON
O
o I
<U

CS
r -
oo
«n
o

<u
cn
i-H
ON
ON
CS

<L>
cn

so
>n

o s
o
o I
o>

o r -
■'+
r-H
o
On

r f
*-H t̂ H r-H i-H t-H
o o o o o o
Ò Ò ¿> Òcn

*-H o en
r-H o cnr^ o m

i-H o cn
t-H o cn

t-H
ON OS ON ON ON ONON Os ON ON ON ON
CS CS cs CS cs CS
m cn cn cn cn cn

CS cs cs cs cs cs
r-H o r-H o I-H o r-H o i-H o *-H
o o o o o o

Ò Ò Ò <L)
CO cn cn cn cn cnr- r - r - r - r-

’•3- -^h
NO NO SO NO VO NO•n in in *n in >n
ON o o ON o o ON O o ON o o ON o o ON

ON ON ON ON ON ON
O o o o o o
o o o o o o

¿ ¿ Ò ó Ò
r- t-* x> t - f>
?-H

o o r-H
o o i-H

o o t-H
o o t-H

o o i-H
o o o o o o
O s ON On ON ON On
Ĥ i-H r-H T—i i-H i-H

a
cn
T—<
ON
On
C N

•“H O
o I
<L)

co
r -
Tt*
NO
•n

o on

O N
o
o I
<u

r -

o
cn
on
ON
C N

cn

CN
r-H O
O
<£>

co
r -
T f
NO
*n

» ON °

ON
o
o I
<L>

r -

u
co
i-H
ON
on
CN

<L>
co

NO
i n

o on

ON
o
o
<L>

l>n i __o 2 ¡ ° o 2 ¡ O o ^ o
o
ON

o
ON

o
ON

o
o I
co

NO

in
o
o I
<u

NO
in
co
i n
r -

s o
c s
C S
i—t
o
o

r -
o
o I
<D

00
o
<n
r s
NO

*n
o
o ■
<L>

O
i n
oo
'=3-

<=> co
CS
O

P s
oo °g VO

O -H

r -
o

?
00
o
•n
<N
NO
c s

«n
o

?
r -
o o
i n
00

<N

m
00
c o

in
i-H
o
o

ino ^ oo
O co

r r
<n

co
c s
o I
<D

NO
NO

o
VO o

o
o

co
CS
9

NO <L>
c o no oo vo
NO
i n o
~ NO

o o

00

OCS
9Q> 1̂-

ON
t-H
o1(li

CS ON cs
ON CS o in r-
r - T-H i-H1 o
ON ON o
Ö cn Ö r-H

ON

o

» S sas
o o

r-o o o o © © © ©o o o © 9 © ©
Ò (Ù (U Ò00 00 00 00o o © ©

i n • n i n i n
CS cs cs cs
NO NO NO NO
cs' o o cs' o © CS © © CS* ©

i n i n i n i n
o o © ©
o o © ©
<L> Ò GJ Ò

I T r -
O
•n

o o o
■n

o © ©
•n

© © ©
in

©
00 00 00 00
CN cs cs cs

• n in •n *n00
cn o o 00

cn © ©
00
cn © ©

00
cn ©
r h

i n i n i n • n
t-H t-H t-H t-H
o o © ©o o © ©
o © o © '

cncs o cn
CS © cncs © cncs

r - o1 ©1 ©i ©i
NO <D VO <D NO <D VO (Li
cn NO cn NO cn NO cn NO00 NO 00 NO 00 NO 00 VO
NO T t NO ”+ VO NO ■*fr
i n o •n © • n © •n ©
p NO o O NO o © NO o © VO
Ö

ON
i-H

Ö

ON
i-H

o

ON
t-H

© ’

ON

r -

8 °i
<u

00
o
■n
CN
NO
CS O

i n
o
o I
<D

©
*n
oo

CS

r -
o o
o I
<u

00
o
in
CN
NO
c s o

■n
o
o I
<u

l>
o
in
00
Th
c s

r->
o
9
<L>

00
o
in
CS
NO
CS

»n
o
o ■
<L>

r -
o
in
oo

cs*

i n inoo o ̂oo o ̂oo
c o O co o m"Tih
i n m

o
o
©

■ «
r- 9
NO QJ
co no
00 NO
NO ^
•n o

, ° SO­

ON

o
o
Ö

S ®
or - .

NO <U
CO NO
00 NO
NO
<n o , °. so
o

o n

i n
*—i

° T f
O N

Ö

CS
r -
t-H
o
o

ON
i n
^H

ON

"'fr
ON
i n
i-H

ON

<D
CN
r -r-H
o
o

T)- O

Sp
s . s
o o

?’"I"
o \
£ fN

^ ° O'. So © o o

e-*
o o
9
(D

00
o
i n
c s
NO
CS o

i n
o
o I
(U

r -
o
*n
oo

in i n
00 o ^ 00 o ^ m o m o

i n

o
o

in
*-H
o
o
o

m
c s

t> 9
NO <U
m vo 00 vo
VO
i n o
o

cn
c s

c- 9
VO <U
m no
oo vo
VO -n-
i n o
° - NO
O

O s

T f o

 ̂t ° <*■ ̂S °\
o o o

O N
in

SO o

<D
CS
r - o
i-H©©

9, <u

00 Tt© so^r-H 1 1 C S

I <D

OS Oo vp
O i h

f-H Wo 10S*?s
o ^ S

CS (Ú

ON |>

4 5 ?o m l>

° p- , 9 ° m ò
° 1SON
o VO

' O !_! O t_, O<jj *n ¿ no <i><u
i n '-V 00

on

, o •n ¿
ON

9 ^
9 S
ON |>
o VO

, , oh* ò
On

9 ^

oo ¿o' ̂zr- oo
on r -
o ' VO

■> “

w
ON CJ

o i— i r - [1
,0

.9
,1

]
0.

94
15

94

0.
05

68
36

7
0.

00
15

43
85

2.

48
50

7e
-0

05

2.
62

50
8e

-0
07

1.

90
14

7e
-0

09

9.
56

47
3e

-0
12

3.

29
91

3e
-0

14

7.
46

78
5e

-0
17

1.

00
17

2e
-0

19

6.
04

66
e-

02
3

0
0

0
0

0
0

0
0

[1
,1

,0
]

0.
93

52
98

0.

06
27

71
7

0.
00

18
95

79

3.
39

29
1e

-0
05

3.

98
49

6e
-0

07

3.
20

93
7e

-0
09

1.

79
49

5e
-0

11

6.
88

37
9e

-0
14

1.

73
25

e-
01

6
2.

58
38

9e
-0

19

1.
73

41
5e

-0
22

0

0
0

0
0

0
0

0

<L>
O Nr-
c o
00
00
V O

<D
ONr-*
c o
o o
00

V O

O n

c o
00
00

V O

oo\r*
C O
oo
o o

<L>
o n

C O
0 0
0 0

<D
O nt"*
C O
0 0
0 0
VO

<D
O s

C O
0 0
0 0

ONr-
C O
0 0
0 0
VO

O nr*
C O
0 0
0 0
VO

CD
ON
r -
C O0000

I<L><n
O N

ONo i>
<n
ONTj-
O Nr-

<L>«Ti
O N■"t
O N

o o r-

i
a j V>

O N

O N
© © h

u
i n
O N

O N
© © l> o o

oI
>n
O N

O N
O O »

9
a j>n

O N

O N© © r-

9<u
i n
O N

O N© © t"
i n
O n© O
r̂-

o o

O N
oo

I<D
C O
O s©
C N

o o

O N
oo

I
<L>r-

C O
O No
C N

o o

O NooI<u
C O
O s©
c n

O Noo
I<Dr-

C O
O No
C N

o o

O Noo
I<D

C O
ONo
C N

o o

O Noo
I<D

C O
O No
C N

o o

O Noo
I<Dr-

C O
O N
o
C N

o o

O noo
I

<D

C O
O N
o
C N

o o

O Noo
I

CD
r* *
C O
ONo
C N

o o

O N
oo

I
<D

C O
O n

O
c s

o o

t - *oo
I

<D
s o
O N

0 0
O N

CO*

o o
I

<D
VO
ON
’3 -
00

© © °^ © ©

t >oo
I

<L>
VO
O N

0 0
O N

CO*

o o

o o

r* *o©
I

<L>
VO
O N

0 0
O N

* noo
< noo

© i- h © © i- h © ©
O N
C N
O N
C O

i noo
I

<u
O o

O N
C N
O N
C O

C O

o oO N
r -
in
O N
0 0
i—H
oo

O tN O
< No

I
r - (j
»-h i n
r - » -h r- 'it
C N C O

O g ». o

O N
I— I

00 9
O N Q J
C N O N
in oo
C O C O
O N 0 0
© ^

C N

O s
r -
< n
O n

0 0
r-H
oo

o o £ o
i n
O N
0 0

oo
w C N ©

C N
©

r - * ¿
i n

r - r-H
r - ^
C N C O

o
O n

C N O
C N
O

i
<D

* n

O o » o o o o
I

a >
v o
o n

o o

r -oo
I

u
VO
ON

0 0
O N

o o

0 0 ^ . 0 0

r -oo
I

<U
VO
O N
" 5t
0 0
O n

O O

o o

o o

o o

O n

00 V
O n <D
C N O N
*n oo
c o C O
O N 0 0o

Ĉ N

00 V
O n <L>
C N O N
in oo
C O C O
O n 0 0
©

C N

V O o V O o V Or H i-H i-H

C O C O C O C O C O

i n i n i n i n i n
© © © © ©
© © © © ©

ó Ò ¿ ¿ <L>
r H © © i-H © © i-H © © r H © © i-H ©
ON O N ON O N ON
C N C N C N C N C N
ON O N O N O N O N
C O C O C O C O C O

CO* CO* CO* C O CO*

O N
r -

© © O n © © O N
r -

© ©
O N
r -

© © O n
r -

©

< n i n i n • n • n
O n O n O n O N O n

0 0 0 0 0 0 0 0 0 0
r H i-H i—H i-H
© © © © ©
© © © © ©

© C N ©
© C N ©

© C N ©
© C N ©

© C N
C N C N C N C N C N
© © © © 9

r - (Ú r - Ò r - CL> t - ¿ a >
r—H i n i-H m i-H i n i—H i n r-H i n
r - i-H l > i-H r - i-H i-H r - i-H

i > C ^ r - r - r -
C N co C N C O C N C O C N co C N C O
VO © V O © V O r - © S O r - © V O r -
© i-H © i-H © i—H © __i © i-H
© © © © ©

O n O N O N O N O N
»-H i-H r-H i-H

0 0 ©
■ 0 0 © 1 0 0 © 1 0 0 © 1 0 0 © 1

O N <D O N a > O N <D O N O N <L>
C N O N © C N O N © C N O n © C N O n © C N O N
i n O O m O O i n 0 0 i n 0 0 > n 0 0
C O C O C O C O C O C O C O C O C O C O
O N o o O N o o O N 0 0 O N o o O N 0 0
©

i n
©

m
©

• n
© *

i n
©

i n

C N CN CN* CN C N

V O © V O
i-H © V O

r-H © V O
i-H © V O

i ^

o o o o

I—I 1
. m

© C N

- . p

C N üSs
- . p

C O <1>• m
© C N _ T co* r-

_ 9

O < N

- I P

i n a >
m

© C N

- i p

, 9
^ £ O fS
H. p

pr <u
1 . m
© ^ C N

- . P

0 0
, 9

» Ä
© C N

n p

© ©

o
©

i
<u

VO
ON
"Ti-
CO
O N

i n©
©

© ^ ©
O n
C N
O N
C O

0 ^ 0
i n
O n
0 0
?-H
©
o

© ® C N
C N
O

t " ò
«-h i n
r - — i
l > ■'d-
C N C O

© ©

C N

* n©
©© <£> o ©
1- H
ON
C N
O N
C O

C O

© © ©
O N
r -
• n
O N
o o

©
© C N

C N©
<Ú

in

O n
i-H

00 9
O N <D

© C N O N
in oo
C O C O
O N O O

©
CN

'—1 -+■
O (M O

VO <“H ©

i H
©

IÛO W i S ON ©

§8
s ^

o ^

V O © V O ©

O N
9
CDm

- . P

i «nL ̂̂
p

O i— i r H © i i r-H © i i f-H © i— i i—t © i i 1-H © i 1 i-H © i 1 t— í © i . i-H © i 1 H © i 1 r—(©

A.5 Reading from the binary file P_allb

* P a c c for each passenger type in the range [0-1]

Max index = maximum of P_acc = 11

If NOTYPES =3 Index = [Max_index, Max_index, Max_index]

Index will be in the range [0,0, 0] to [10, 10, 10]

* Number of bookings in the range of [0 - Max_arr*NOTYPES]

If maximum arrival for each type = 10 ^ Max_arr = 30

Number of total booking in the range [0-30]

Max_booking = M axarr * NOTYPES+1 ^ 3 1

* Each P J o t value is stored in 4 bytes

* Index = [indi, ind2, ind3]

(1) To point to the start of any day d

Pointe^ = d* Max _ indexN0TTFES * Max _ booking * 4

For three types of passenger, number of bytes for each day is : Max _ indexNOTTPES * Max _ booking *4 =1331 *31

*4=165044

e.g. for d= 0,

Pointer =0 * 1 65044 = 0

125

(2) To move to the starting location of any day (i.e. bookings = 0), given Index = [indl, ind2, ind3]

Pointer, = Pointer + (indl*Max_index*Max_mdex + ind2*Max_index+ind3)*(Ma_booking*4)

e.g. for d= 0 and Index = [9, 0, 0]

X j= 0 + (9* 11 * 11 +0 * 11 + 0)* (31 *4)

=135036

(3) To move to any location within a day and Index, given the number of booking, bookings

+ (bookings * 4)

e.g. for d= 0 and Index = [9, 0, 0] and bookings = 3

X = 135036+ (3 *4)

= 135048

126

Day 2

P allb file
D a y 1

(1) Pointer DayO

Index [0,0,0]

Index [0 ,0 ,1]

□ □ □ □ □ □ □ □

ptotfboofdngssO) ptot(bookfngs~1)

□ □ □ □ □ □ □ □

ptot(boo/dngŝ 29) ptot(boo/dngŝ 30)

(2) Pointer
□ □ □ □

Index [10,10,9]

Index [10,10,10] □ □ □ □ □ □ □ □ □ □ □ □

t
(3) Pointer

127

APPENDIX B

B.l Sim data C program for generating sample data

/*sim_data.cpp creates a sample booking data for 181 days of the
booking process with 3 types of passenger and 3 classes*/

#include <iostream.h>
#include <iomanip.h>
#include <fstream.h>
#include <stdlib.h>

#define NOCLASSES 3//number of classes on this flight
#define NOTYPES 3 //number of passenger types
#define Max_arr 10 //Max no. of arrival each type in 10 intervals
#define FLIGHT 100 //number of flights

/*functions prototype*/
void run_simulation(int);
void intialise_variables(int);
float get_desr_class(float [NOTYPES][4], int);
void sort_classes (int [NOTYPES] [NOCLASSES], int)
void book_seat(int);
int willing_to_accept(int, int);
float get_random number(float, float);
float p_arrive(float [NOTYPES][4], int, int);
double prob_of_accept(float);
void sell_seat(int, int);
void vertical_r(int, int);
void openFiles(void);
void closeFiles(void);

/* Output files for analysis */
ofstream outdataFileCthreepax3clsl00N_data.dat", ios::out);
ifstream inpaxFileCpax_belief_parm.txt", ios::in);
//pax belief parm
ifstream inarrFileCpax_arrival_parm.txt", ios : : in) ;
//pax arrival parm
ifstream inclsFileCpax_3class3_parm.txt", ios:: in) ;//class parm

char names[NOTYPES] [15] = {"BUS", "TOUR", "STD"};//pax types*/
int class_seats[NOCLASSES], /* number of seats */

class_comf[NOCLASSES],
class fare[NOCLASSES];

int pax_seats_b00ked[NOTYPES][NOCLASSES],
tot_booked[NOCLASSES] ,
seats_cancelled[NOCLASSES],
pax_ver_rec[NOTYPES][NOCLASSES],
pax_hor_rec[NOTYPES][NOCLASSES],
pax_hor_rec_ful1 [NOTYPES];

/*passenger a, b, c parameters for probability of arrival*/
float pax_arrival_parm[NOTYPES] [4] ;
/‘passenger attributes for comfort and cost to calculate
desirability*/
float paxjbelief_parm[NOTYPES][4];
float desr[NOTYPES] [NOCLASSES] ;
int class_label[NOTYPES][NOCLASSES]
/*array required for calculating data bookings*/
int data_bookings[FLIGHT] [NOCLASSES] [181];
double p_acc[NOTYPES] [NOCLASSES];

int main()
{
srand{time{0));
openFiles();

/♦calculate the desiarability of each passenger type to each
class*/

for(int i=0; i<NOTYPES; i++)
{

get_desr_class(pax_belief_parm, i);

for(int j =0; j <NOCLASSES; j++)
{

class_label[i][j] = j;
}
sort_classes<class_label, i);

}
/*run simulation to get the 100 different data bookings*/
for (int fit = 0; fit < FLIGHT; flt++)
{

run_simulation(flt);
}
return 0;

}

1 2 9

void run_simulation(int fit)
{
intialise_variables(fit);

for (int day = -180; day <= 0; day++)
{
/*for every hour in 10 hours day*/
for (int tl = 1; tl <= 10; tl++)
{
for (int type_pax = 0; type_jpax <= NOTYPES-1; type_pax++)
{
/♦calculate the probability of a pass, arriving in time tl*/
if (p_arrive(pax_arrival_parm,
day, type_pax) >get__random_number (1,0))
{
/♦check if all classes are full*/
j = 0;
while (class_seats[class_label[type_pax][j]] ==
tot_booked[class_label[type_pax][j]] && j <= NOCLASSES-
1)j++;
if(j>=NOCLASSES)
{
++pax_hor_rec_full[type_pax];

}
else

book_seat(typejpax)?
}

}
}

/♦calculate total bookings for all types on each class for
each day*/

for (j =0; j <NOCLASSES; j++)
data_bookings[fIt][j] [180+day] += tot_bookedtj];

for(day = -180; day <= 0; day++)
for (int j =0; j<NOCLASSES; j++)

outdataFile << data_bookings [fit] [j] [180+day] << 11 ";
}

130

void book_seat(int type_pax)
{
/*check if seats available in desired class*/
int j = 0 ;

while (class_seats[class_label[type_pax][j]] ==
tot_booked[class_label[type_pax][j]] && j < NOCLASSES -1)
j++;

/*is passenger willing to accept the desired class?*/
if (willing_to_accept(type_pax, j))
{
/* is this class the most desired? */
if (j == 0)

sell_seat(class_label[type_pax][j], type_pax);
else
{

sell_seat(class_label[type_pax][j], type_pax);
vertical_r(class_label[type_pax][j], type_pax);

}
}
else
{
/*seats available in the desired class but not willing to

accept*/
+ +pax_hor_rec[type_pax] [class_label[type_pax] [j]];

}

void sort_classes(int class_label[NOTYPES][NOCLASSES], int type_pax)
{
/* sort classes according to desirability */
float hold;
int holdl;
for (int pass = 1; pass < NOCLASSES; pass++)
{
for (int i = 0; i < NOCLASSES-1 ; i++)
{
if (desr[type_pax][i] < desr[type_pax][i+l])
{
hold = desr[type_pax][i];
holdl = class_label [type_j>ax] [i] ;
desr[type_pax] [i] = desr[type_pax] [i+l];
class_label[type_pax][i] = class_label[type_pax][i+l];
desr[type_pax][i+l] = hold;
class_label[type_pax][i+l] = holdl;

}
}

}
}

1 3 1

void intialise^variables(int fit)
{
for (int i = 0; i < NOCLASSES; i++){

seats_cancelled[i] = 0.0;
tot_booked[i] = 0.0;}

for (int j = 0; j < NOTYPES; j++)
{
pax_hor_rec_fu11[j] = 0.0;
for (int i = 0; i < NOCLASSES; i++)
{
pax_seats_booked[j][i] = 0.0;
pax_ver_rec[j][i] = 0.0;
pax_hor_rec[j][i] = 0.0;

}
}
for(int day=0; day<=180; day++)
for(int j =0; j<NOCLASSES; j++)

data_bookings[fit][j][day]=0.0;
}
/♦calculate desirability for each class for this type of pax*/
float get_desr_class(float b[NOTYPES][4], int type_pax)
{

float b0=b[type_pax][0];
float bl=b[type_pax][1];
float b2=b[type_pax][2];
float b3=l/b[type_pax][3];

for (int i = 0; i < NOCLASSES; i++)
{

desr[type_pax][i]=((class_comf[i]*b0)+ (class_fare[i]*bl)-
b2)*b3;

}
return 0;

}
/♦add 1 to total seats booked on desired class*/
void sell_seat(int els, int typejpax)
{
++tot_booked[els];
++pax_seats_booked[type_pax][els];

}
/♦vertical recapture*/
void vertical_r(int els, int type_pax)
{
++pax_ver_rec[type_pax][els];

}

132

133

/♦willing to accept class*/
int willing_to_accept(int type_pax(int els)
{
if (p_acc[type_pax] [els] >= get_random_number(1, 0))

return 1;
else

return 0;
}

/♦calculate the probability of a passenger will arrive in time tl*/
float p_arrive(float parm[NOTYPES][4], int tl, int typejpax)
{
float p;
float pO = parm[type_pax][0];
float pi = parm[type_pax][l];
float p2 = parm[type_pax][2];
float p3 = parm[type_pax][3] ;
float div = (pl-pO)♦ (p2-p0);
div = 1/div;

if (tl < pO)
p = 0;

else if (tl <= p2)
p = 2 ♦ (tl - pO) ♦ div ♦ p3;

else
P = 1;

return p;
}
/♦calculate the probability of a passenger willing to accept using
logistic function^/
double prob_of_accept(float desr)
{
double p;
p = 1 / (1 + exp(- desr));
return p;

}
/♦generate random number^/
float get_random_number(float n, float m)
{

float random = ((n-m) ♦ ((float)rand()/RAND_MAX)) + m;
return random;

}

134

/*open output files*/
void openFilesO
{
if (¡inpaxFile) {

cerr << "inpaxFile file could not be opened" << endl;
exit (1);}

for (int i=0; i<NOTYPES; i++)
for (int j = 0; j<=3; j++)

inpaxFile >> pax_belief_parm[i][j];

if (¡inarrFile) {
cerr << "inarrFile file could not be opened" << endl;

exit(1);}

for (i=0; i<NOTYPES; i++)
for (int j = 0; j<=3; j+ +)

inarrFile >> pax_arrival_parm[i][j];

if (!inclsFile) {
cerr << "inclsFile file could not be opened" << endl;

exit(1);}
for (i=0; i<NOCLASSES; i++)
inclsFile >> class_seats[i] >> class_comf[i] >> class_fare[i];

if (¡outdataFile) {
cerr << "file could not be opened" << endl;
exit(1);}

}
/*close output files*/
void closeFilesO
{

inarrFile.closeO ;
inpaxFile.close();
inclsFile .closeO ;
outdataFile.close();

}

135

/*P_arrive.cpp to calculate all combinations of probability of
arrival for each passenger type on each day and save all probability
of arrivals in file=p_arrive.dat*/

#include <iostream.h>
#include <iomanip.h>
#include <fstream.h>
#include <stdlib.h>
#include <math.h>

#define NOTYPES 3 //number of passenger types
#define Max_arr 10 //Max no. of arrival for each type in 10
intervals

/♦functions prototype*/
float prob_of_arrive (float [] [4], int, int) *
double binom(int, int, double);
double fact (double) ,-
void openFiles(void);
void closeFiles(void);

/♦ Output files for analysis */
ofstream outarrFileCp_arriveBST.dat", ios::out);
ifstream inarrFileCthreepax_arrival_parm.txt", ios::in);

/*passenger a, b, c parameters for probability of arrival*/
float pax_arrival_parm[NOTYPES][4];

/♦probability of cancellation is fixed for each type of pax*/
double p_arr[NOTYPES] [181] [Max_arr+1] ;

B.2 p_arrive C program for creating p_arrive table

int main()
{
openFiles();
/♦calculate probability of arrivai for each type of pax for each

A&y* /
for (int day = 0; day <= 18 0; day++)
{
for (int i = 0; i<NOTYPES; i++)
{

for (int Arrive = 0; Arrive <= Max_arr; Arrive++)
{

p_arr[i][day][Arrive]=binom(Max_arr, Arrive,
prob_of_arrive(pax_arrival_parm, -180+day, i)) ;
outarrFile « p_arr[i][day][Arrive] << " ";

1 3 6

}
}
closeFiles ();
return 0 ;

}

1 3 7

double pi = 0, pll=0.0,plll=0.0;
double p2 = 0.0;

pi = fact(xl)/ (fact(x2)*fact (xl-x2)) ;
pll = pow(x3, x2);
plll= pow((l-x3), (xl - x2));
p2 = pi * pll * pill ;
return p2;

}

double binom(int xl, int x2, double x3)
{

double fact(double x)
{

if (x<=0) return 1;

return x*fact(x-l);
}

/♦calculate the probability of a passenger will arrive in time t*/
float prob_of_arrive(float parm[][4], int tl, int type_pax)
{
float p;
float pO = parm[type_pax][0];
float pi = parm[type_pax][1];
float p2 = parm[type_pax][2];
float p3 = parm[typejpax][3];
float div = (pl-pO)*(p2-p0);
div = l/div;
if (tl < pO)

P = 0;
else if (tl <= p2)

p = 2 * (tl - pO) * div * p3;
else

p = l;

return p;
}

1 3 8

/*open output files*/
void openFilesO
{
if (loutarrFile) {

cerr << "file could not be opened" « endl;
exit(1);

}
if (¡inarrFile) {

cerr << "inarrFile file could not be opened" << endl;
exit(1);

}
for (int i=0; i<NOTYPES; i++)

for (int j =0; j<=3; j++)
narrFile >> pax_arrival_parm[i][j];

}
/♦close output files*/
void closeFilesO
{
outarrFile.close();
inarrFile.close<);

}

139

/*P_acceptl.cpp to Calculate from 0 to 10 arrival the prob. of 0 to
10 acceptance for each prob. of an acceptance [0-1] and save in file
p_acceptl.dat */

#include <iostream.h>
#include <iomanip.h>
#include <fstream.h>
#include <stdlib.h>
#include <math.h>

#define Max_arr 10 //Max number of arrival for each type in 10
intervals

/♦functions prototype*/
void calc_prob(void);
double binom(int, int, double);
double fact(double);
void openFiles(void);
void closeFiles(void);

/* Output files for analysis */
ofstream outaccFile("p_accept.dat", ios::out);

double p_acc[ll][Max_arr+1][Max_arr+1];

int main()
{
openFiles(};
for (double p=0; p<1.01; p+=0.1)
{
double p_acc =0;
for (int Accept=0; Accept <= Max_arr; Accept++)
{
for (int Arrive=0; Arrive <= Max_arr; Arrive++)
{

if (Arrive >= Accept)
{
p_acc = binom(Arrive, Accept, p);
if (p_acc <= 1.0e-14) p_acc=0;

}
else
{
p_acc = 0;

}
outaccFile << p_acc << "

}

B.3 paccept C program for creating paccept table

}

140

closeFiles 0 ;
return 0 ;

}

}

1 4 1

double pi = 0, pll=0.0,plll=0.0;
double p2 = 0.0;

p i = f a c t (x l) / (f a c t (x 2) * f a c t (x l - x 2)) ;
pll = pow(x3, x2);
plll= pow((l-x3), (xl - x2));
p2 = pi * pll * pill ;
return p2;

}
double fact(double x)
{

if (x==0) return 1;

return x*fact(x-l);
}

double binom(int xl, int x 2 (double x3)
{

/*open output files*/
void openFilesO
{
if (loutaccFile) {

cerr << "file could not be opened" << endl;
exit(1);

}

/*close output files*/
void closeFilesO
{
outaccFile.close();

}

142

/*precomp2.cpp computes the probabilities of all the 31 (0 bookings
to max 30 bookings) possible events that could occur in every day of
the booking process for different combinations of prob_of_acceptance
for all types of passengers(p_acc=0 to p_acc=l) ie (181x11x11x11x31)
for three types of passengers and stores in p_allb.dat file (41.6MB)
to be read in metropolis program */

#include <iostream.h>
#include <iomanip.h>
#include <fstream.h>
#include <stdlib.h>
#include <math.h>

#define NOTYPES 3 //number of passenger types
#define Max_arr 10 //Max number of arrival for each type in 10
intervals
#define All_arr Max_arr*NOTYPES //Arrival of all types

/♦functions prototype*/
void calc_probl(void);
double calc_prob2(int, int, int) ;
void openFiles(void),-
void closeFiles(void),-

/* Input and Output files */
if stream inarrFile("p_arriveBST.dat") ,-
if stream inaccFileCp_accept.dat") ;
o fs tr e a m o u t p a l l F i l e (" p _ a l l b B S T . d a t " , i o s : : o u t | i o s : : b i n a r y) ;

double p_arr[NOTYPES] [181] [Max_arr+1];
double p_acc[ll][Max_arr+1][Max_arr+1],-
double pbook [NOTYPES] [Max_arr+1] ,-
float ptot[All_arr+1];

int main()
{
openFiles();
calc_probl();
closeFiles();
return 0;

}

B.4 precomp C program for creating p_tot table

1 4 3

void calc_probl(void)
{
for (int day = 0; day <= 180; day++)
{
for (int paccb=0; paccb<=10; paccb++)

for (int paccs=0; paccs<=10; paccs++)
for (int pacct=0; pacct<=10; pacct++)
{
calc_prob2(0, paccb,day)
calc_prob2(1, paces,day)
calc_prob2(2, pacct,day)
for(int tot=0; tot<All_arr+l; tot++)ptot[tot]=0 ;

for(int b=0; b <= Max_arr; b++)
for(int s=0; s <= Max_arr; s++)
for(int t=0; t <= Max_arr; t++){
ptot[t+s+b] += pbook[0][b]*pbook[l][s]*pbook[2][t];}
outpallFile.write((char *)(&ptot), sizeof(ptot));

}
}
return;

}
double calc_prob2(int type,int pacc, int day)
{
for (int book=0; book <= Max_arr; book++)
{

pbook[type][book]=0;
for (int narr = book; narr <= Max_arr; narr++)
{

pbook[type] [book] += p_arr[type] [day] [narr] *
p_acc[pacc][book][narr];

}
}
return 0;

}

144

/*open output files*/
void openFilesO
{
int i,day, arr, acc,a ;
if (loutpallFile) {

cerr << "file could not be opened" << endl;
exit(1);

}
if (!inarrFile) {

cerr << "file could not be opened" << endl;
exit(1);

}
for (day=0; day<=180; day++)

for (i=0; i< NOTYPES; i++)
for (a = 0; a <= Max_arr; a++)

inarrFile >> p_arr[i][day][a];

if (¡inaccFile) {
cerr << "file could not be opened" << endl;
exit(1);

}
for (i=0; i<=10; i++)

for (arr = 0; arr <= Max_arr; arr++)
for (acc = 0; acc <= Max_arr; acc++)

inaccFile >> p_acc[i] [arr] [acc];
}
/*close output files*/
void closeFilesO
{
outpallFile.close();
inarrFile.close();
inaccFile.close();

}

145

B.5 met_onepax C program for Metropolis algorithm

/*met_onepax.cpp Metropolis Algorithm for one passenger booking data
and 3 classes*/

#include <iostream.h>
#include <iomanip.h>
#include <fstream.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>

#define NOCLASSES 3 //number of classes on this flight
#define NOTYPES 1 //number of passenger types
#define Max_arr 10 //Max number of arrival for each type in 10
intervals
#define All_arr Max_arr*NOTYPES //Arrival of all types
#define FLIGHT 100 //number of flights
#define ITR 100000 //metropolis iteartions

/♦functions prototype*/
void create_hash_table (void)
void get_desr_and_pacc(float [NOTYPES][4]);
int good_or_bad_parm(void);
double get_Likelihood(void);
float change_one_parm(float [NOTYPES][4]);
void find_ratio(float [NOTYPES] [4] , float [NOTYPES] [4]);
float get_random_number(float, float);
float one_interp(int, int, double[NOTYPES] , int[NOTYPES], int);
float two_interp(int, int, double[NOTYPES] , int[NOTYPES], int);
float three_interp(int, int, double[NOTYPES], int[NOTYPES], int) ;
float interpolate(float, float, float);
float get_ptot(int, int, double [NOTYPES][NOCLASSES], int) ;
void openFiles(void);
void closeFiles(void);

/* Output files for analysis */
ifstream indataFile ("difflpax3clsl00N__data.dat", ios : : in) ,-
ifstream inpallFile("p_allbMdiffl.dat",ios::in|ios::binary);
ofstream outpaccFile("difflpax3cls_pacc.dat",ios::out);
ifstream inclsFile("diffpax_3class3_parm.txt", ios : : in) ,-

int data_bookings[FLIGHT] [NOCLASSES] [181];
int class_seats[NOCLASSES], /* number of seats */

class_comf[NOCLASSES],
class_fare[NOCLASSES];

int flt_hash_table[181][NOCLASSES][All_arr+1];
double grid_pointl[NOTYPES][NOCLASSES];

1 4 6

double grid_point2[NOTYPES][NOCLASSES];
double index[NOTYPES][NOCLASSES];
double p_acc[NOTYPES][NOCLASSES];
double p_acc_old[NOTYPES][NOCLASSES];
int cls_label[NOTYPES][NOCLASSES];
double loglik_l=0;
double loglik_2=0;

1 4 7

int main()
{
ifstream inpaxFile("difflpax_belief_parm.txt", ios::in);
ofstream outparmFileCMetdifflpax3clslOON.dat", ios::out);
char start[128], finish[128];
float pax_belief_parm[NOTYPES][4];
float parm_l[NOTYPES][4], parm_2[NOTYPES][4];

srand(time(0));
openFiles();
if (¡inpaxFile) {

cerr << "inpaxFile file could not be opened" << endl;
exit(1);

}
for (int i=0; i<=NOTYPES; i++)
{
for (int j =0; j<=3; j++)
{

inpaxFile >> pax_belief_parm[i][j];
}

}
if (¡outparmFile) {

cerr << "file could not be opened" << endl;
exit(1);

}
if (ioutpaccFile) {

cerr << "file could not be opened" << endl;
exit(1);

}
_strtime(start);
outparmFile << "program started at: " << start << endl << endl;

/»Metropolis algorithm*/
for (i = 0; i <= NOTYPES-1; i++)
for (int j =0; j <=3; j++){

parm_l[i][j] = 0.0;
parm_2[i][j] = 0.0;}

//give any arbitrary starting values to the parameters
parm_l[0][0] = (float)0.5;
parm_l[0][1] = (float)-0.3;
parm_l[0][2] = (float)-300;
parm_l[0][3] = (float)100;

//output the starting combination of parameters
outparmFile << "-10 ";

148

for (i = 0; i <= NOTYPES-1; i++){
for (int j = 0; j <=2; j++)

outparmFile << setw(8) << setprecision(3)
<< parm_l[i][j] << " ";}

/♦calculate the desiarability and pacc for each passenger type to
each class*/
get_desr_and_pacc(parm_l);
int this_parm=0;
this_parm=good_or_bad_parm();
if (this_parm == 0)
{
//calculate the liklehood associated with the starting

parameters
loglik_l = get_Likelihood();
outparmFile << " " << setw(lO)« setprecision(6) << loglik_l;

}

//Metropolis loop
for (int k = 0; k < ITR; k++)
{
for (i = 0; i <= NOTYPES-1; i++)
for (int j = 0; j <= 3; j++)
parm_2[i][j] = parm_l[i][j];

//select a parameter at random and add a random number to it
change_one_parm(parm_2);

/*calculate desiarability and pacc for each type on each class
with new set of parm.*/
get_desr_and_pacc(parm_2);
int this_parm=0;
this_parm=good_or_bad_parm();
if (this_parm == 0)
{
//calculate the liklehood associated with the new parameters
loglik_2 = get_Likelihood();

//find_ratio
find_ratio(parm_l, parm_2);

//output the accepted 12 parameters and log_Likelihood
if(k % 10 == 0)
{
outparmFile « k << "
cout << k << " ";
for (int i = 0; i <= NOTYPES-1; i++)
for (int j=0; j <= 2; j++)
{

149

outparmFile << setw(8) << setprecision(3) <<
parm_l[i] [j] << " " ;

outparmFile << " " << setw(10)<<
setprecision(6)<< loglik_l;

}
}

}
_strtime(finish);
outparmFile << endl << "program finished at: " << finish << endl;
inpaxFile.close();
outparmFile.close();
outpaccFile.close();
closeFiles ()
return 0;

}

}

1 5 0

int good_or_bad_parm(void)
{
int this_parml=0;
for (int day = 0; day <= 180; day++)
{
int j = 0;
int NOClasslessl=NOCLASSES-l;
//is there a booking on any class apart from the most desired

class
while

(class_seats[cls_label[0][j]]==data_bookings[0][cls_label[0] [j]][day
])

j++;

for(int i=j +1; i<NOClasslessl+l; i++)
{
//bad combination of parm
i f (d a t a _ b o o k i n g s [0] [c l s _ l a b e l [0] [i]] [d a y] != 0) t h i s _ p a r m l = 1 ; }

}
return this_parml;

}

1 5 1

void create_hash_table(void)
{
int today_bookings; /»today's booking*/
//if all classes are full keep the last number of days
int fullday = -1000;
int notfull = 0;
int d=0;
while (fullday<0)
{

notfull=0;
for (int C = 0; c < NOCLASSES; C++)
{
if (class_seats[c] != data_bookings[0][c][d])

notfull=l;
}
if (notfull==0)

fullday=d;
d++;

}
for (int day = 0; day <= d; day++)
{
for (int els = 0; els < NOCLASSES; cls++)

for (int t_b = 0; t_b < All_arr+1; t_b++)
{

flt_hash_table[day][els][t_b] = 0;
}

today_bookings=0;
for (int flt=0; fit < FLIGHT; flt++)
{

int j = 0;
int NOClasslessl=NOCLASSES-l;
while (class__seats [cls_label [0] [j]] ==
data_bookings[fit][cls_label[0][j]][day-1] && j <
NOClasslessl)j++;
if (class_seats[cls_label[0][j]] !=
datajoookings[fit][cls_label[0][j]] [day])
{
int mycls=cls_label[0][j];
double mypacc=p_acc[0][j];
/*if first day of booking process then today__bookings equal
to todays's booking*/
if (day>0)
{

today_bookings = data_bookings[fit] [mycls] [day] -
data_bookings[fIt][mycls][day-1];
flt_hash_table[day] [mycls] [today_bookings]++;

}
else

today_bookings = data_bookings[fit][mycls][0];
{

1 5 2

}
} / / c l o s e f i t l o o p

} / / c l o s e d a y l o o p

}

f l t _ h a s h _ t a b l e [d a y] [m y c l s] [t o d a y _ b o o k i n g s] + + ;

}

153

double get_Likelihood(void)
{
double log_cls[NOCLASSES]={0,0};
float ptot=0;
double log_all_data;
double log_per_cls;
double dx[NOTYPES]= {0};
1og_a1l_data=0;
create_hash_table();

for (int day = 0; day <= 180; day++)
{
log_per_cls=0;
for (int tl = 0; tl < NOTYPES; tl++)
{
for (int cl = 0; cl < NOCLASSES; cl++)
{
grid_pointl[tl][cl] = 0;
grid_point2[tl][cl] = 0;
index[tl][cl]=0;

}
}
for (int els = 0; els < NOCLASSES; cls++)
{
for (int t_b = 0; t_b < All_arr+1; t_b++)
{
if (flt_hash_table[day][els][t_b] != 0)
{
for (int t = 0; t < NOTYPES; t++)
{

double mypacc=p_acc[t][cls_label[t][els]];
grid_pointl[t][els]= (int(mypacc*10))*0.1;
double mydiff=mypacc-grid_pointl[t][els];
if (mydiff >0)
{
dx[t]=mydiff;
grid_point2[t][els]=grid_pointl[t][els]+0.1;

}
else
{
grid_point2[t] [els]=grid_pointl[t] [els];

}
}
int label[NOTYPES]= {0};
int a=0, b=0;
for (t = 0; t < NOTYPES; t++)

//if pace lies between two pace's eg. [0, 0.37, 0.8]
if (fabs(grid_point2[t] [els] - gridjpointl[t] [els])>0)

{

154

a = a+1 ;
label[b]
b=b+l;

//for this class move the first set of grid_points
//to index eg. class 0 with only type 0 (bus) passenger
//pacc [0.9, 0, 0]
for (t « 0; t < NOTYPES; t++J
{

index[t][els]=grid_pointl[t][els];
}
1og_per_c1s=0;
if (a==l)

ptot=one_interp(day, els, dx, label, t_b);
else if (a==2)

ptot=two_interp(day, els, dx, label, t_b);
else if (a==3)

ptot=three_interp(day, els, dx, label, t_b);
else
{

//no interpolation required
ptot = get_ptot(day, els, index, t_b);

}
if (ptot>0)

log_per_cls=log(ptot) ,*

else log_per_cls= -1.0e99;

log_all_data +=
log_per_els*(double)flt_hash_table[day][els][t_b];

}
} //close flt_table loop

} //close class loop
} //close day loop
return log_all_data;

}

156

float one_interp(int day, int els, double dx[NOTYPES], int
1 [NOTYPES], int t_bookings)
{
index[l[0]] [els] = grid_pointl[1[0]] [els];
float ptot_l = get_ptot (day, els, index, t_bookings) ,-

index[l[0]] [els] = grid_point2[1[0]] [els];
float ptot_2 = getjptot(day, els, index, t_bookings);

float lamda = (float)dx[1[0]]/((float)grid_point2[1[0]] [els]-
(float)grid_pointl[1[0]] [els]);

float lptot=interpolate(ptot_l, ptot_2, lamda);
return lptot;

}
float two_interp(int day, int els, double dx[NOTYPES], int
1 [NOTYPES], int t_bookings)
{
index[l[l]] [els] = grid_pointl[1[1]] [els];
float zl = one_interp(day, cls,dx, 1, t_bookings);

index[l[l]] [els] = grid_point2[1[1]] [els];
float z2 = one_interp(day, els,dx, 1 , tjbookings);

float mue = (float)dx[1[1]]/((float)grid_point2[1[1]] [els]-
(float)grid_pointl[1[1]] [els]);

float lptot=interpolate(zl, z2, mue);
return lptot;

}
float three_interp(int day,int els, double dx[NOTYPES], int
1 [NOTYPES], int t_bookings)
{
index[1 [2]] [els] =grid_pointl [1 [2]] [els] ,-
float zl = two_interp(day, els, dx, 1, t_bookings);

index[1[2]] [els]=grid_point2[1[2]] [els];
float z2 = two_interp (day, els, dx, 1, t_bookings) ,-

float fin = (float) dx[1[2]]/((float)grid_point2[1[2]] [els]-
(float)grid_pointl[1[2]][els]);

float lptot=interpolate (zl, z2, fin) ,-
return lptot;

}
float interpolate(float ptot_l, float ptot_2, float dy)
{

1 5 7

float lptot = ((1-dy)*ptot_l) + (dy*ptot_2);
return lptot;

}

1 5 8

//find the value of total prob. (ptot) from the binary file
float get_ptot(int day, int els, double index[NOTYPES][NOCLASSES],
int t_bookings)
{
double ind[NOTYPES]={0};
float lptot=0;
long pointer=0;
long bookings = (long)t_bookings;
double i0=0;
int ii=0,il=0,i2=0;

for (int tl = 0; tl < NOTYPES;tl++)
{

ind[tl] = (index[tl] [els]) *10;
}
iO = ind[0] ;
ii=ceil(i 0);

/*to point to any location: multiply day number by 11 values for
each pace (11*11*11=1331) by 31 vaulues for all passenger
arrivals (0-30) by 4 bytes for each value */

pointer = (long)pow(All_arr+l, NOTYPES);
pointer = pointer*(long)day*(long)(All_arr+1)*4;
pointer = pointer + iO*(long)(All_arr+1)*4;

//add to pointer the value of today_bookings (bookings) * 4 bytes
pointer = pointer + bookings*4;

inpallFile.seekg(O);
inpallFile.seekg(pointer);
inpallFile.read((char *)(fclptot), sizeof(lptot));
inpallFile.seekg(0);
return lptot;

}

1 5 9

void get_desr_and_pacc(float parms[NOTYPES][4])
{
float desr[NOTYPES][NOCLASSES];

//calculate desirability for each passenger type on each class
with

//new set of parm
for (int i=0; i<NOTYPES; i++)
{
float bO=parms[i][0];
float bl=parms[i] [1];
float b2=parms[i][2];
float b3=l/parms[i][3];

for (int j = 0; j < NOCLASSES; j++)
{
desr[i][j] =((class_comf[j]*b0)+ (class_fare[j]*bl)-b2)*b3;

}
for (j =0; j <NOCLASSES; j+ +)
{

cls_label[i][j] = j;
}
//sort classes according to desirability
float hold;
int holdl;
for (int pass = 1; pass < NOCLASSES; pass++)
{

for (int j = 0; j < NOCLASSES-1 ; j++)
{

if (desr[i][j] < desr [i] [j+l])
{

hold = desr [i] [j];
holdl = cls_label[i][j] ;
desr [i] [j] = desr[i] [j+l] ;
cls_label[i] [j] = cls_label[i] [j+l];
desr[i] [j+l] = hold;
cls_label[i] [j+l] = holdl;

}
}

}
}
for(i=0; i<NOTYPES; i++)
{
for(int j =0; j<NOCLASSES; j++)

//Calculate p_acc for each passenger type for each class
p_acc[i] [j] = 1 / (1 + exp (-desr [i] [j]));

{

160

1 6 1

/♦select a parameter at random and add a random number to it*/
float change_one_parm(float parm_2[NOTYPES][4])
{
int random_0, random_l;
random^O = NOTYPES-1; /*only onepax*/
//selcet one parameter at random[0,lor2]
random_l = rand() %3 ;
float test = 0.0;
float random_2 = 0.0;
switch (random_l)
{
//parm_2[0][0] must have a value between 0, 1
case 0:

test = parm_2 [random_0] [0] ,-
random_2 = get_random_number(0.1, -0.1);
test += random_2;
while (test > 1 || test < 0)
{

random_2 = get_random_number(0.1, -0.1);
test += random_2 ,-

}
parm_2[random_0][0] = test;
break;

//parm_2[0][1] must have a value between -1, 0
case 1:

test = parm_2[random_0][1];
random_2 = get_random_number(0.1, -0.1);
test += random_2;
while (test > 0 || test < -1)
{

random_2 = get_random_number(0.1, -0.1);
test += random_2;

}
parm_2[random_0][1] = test;
break;

//parm_2[0][2] must have a value between -300, -500
case 2:

test = parm_2[random_0][2];
random_2 = get_random_number(20, -20);
test += random_2;
while (test > -300 || test < -500)
{

random_2 = get_random_number(20, -20);
test += random_2;

}
parm_2[random_0][2] = test;
break;

}
return parm_2 [random_0] [random_l] ,-

1 6 2

/♦generate random number*/
float get_random__number (float n, float m)
{
float random = ((n-m) * ((float)rand()/RAND_MAX)) + m,-
return random;

}

}

1 6 3

/*find_ratio*/
void find_ratio(float parm_l[NOTYPES] [4], float parm_2[NOTYPES] [4])
{

if (loglik_2 > loglik_l)
{
loglik_l = loglik_2;
for (int i = 0; i <= NOTYPES-1; i++)

for (int j = 0; j <= 3; j++)
parm_l[i][j] = parm_2[i][j];

}
else
if ((exp((loglik_2 - loglik_l))) >= get_random_jiumber(l, 0))
{
loglik_l = loglik_2;
for (int i = 0; i <= NOTYPES-1; i++)

for (int j = 0; j <= 3; j++)
parm_l[i] [j] = parm_2 [i] [j] ;

}
}
/*open output files*/
void openFilesO
{

if (!indataFile) {
cerr << "indataFile file could not be opened" << endl;

exit(1);
}
for (int flt=0; fit < FLIGHT; flt++)

for (int day=0; day<=180; day++)
for (int i=0; i< NOCLASSES; i++)

indataFile >> data_bookings[fIt][i][day];
if (!inclsFile) {

cerr << "inclsFile file could not be opened" << endl;
exit(1);

}
for (int i=0; i<NOCLASSES; i++)

inclsFile » class_seats[i] » class_comf[i] >>
class_fare[i];

/*close output files*/
void closeFilesO
{
indataFile.close();
inpallFile.close();
inclsFile.close();

1 6 4

outpaccFile.close()

