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A B ST R A C T



ABSTRACT

Modelling and Simulation of a PUMA 560 Manipulator 

for Control System Appraisal.

Presented for award of Degree of Master of Engineering 

by George Patrick Anderson.

The PUMA 560 Industrial Manipulator is presently controlled using a 
gain-scheduled PID control strategy. The implementation of adaptive control 
techniques can improve manipulator performance, [20]. One of the principal 
drawbacks with adaptive control is the difficulty in guaranteeing robustness over 
the complete operating range. This is particularly important when the plant is 
expensive and potentially self-damaging. An accurate, tuned, dynamic model, 
which includes the system’s main dynamics is a great asset to the control 
engineer. A complete model for the Puma 560 has not previously been 
developed.

The research presented in this thesis derives a tuned and fully tested third order 
dynamic model for the first three links of the PUMA 560. A mathematical 
method of specifying the manipulator link structures and inter-relationships is 
discussed. By treating the manipulator as a connected chain of rigid bodies the 
Euler-Lagrange method is used to formulate second order dynamic equations and 
the servo-motor actuators and friction dynamics are incorporated into the model. 
The resulting third order model is simulated and tested in open and closed loop 
conditions. The model is then tuned, to provide a better representation of the 
actual manipulator dynamics, by comparing actual and simulated joint movements 
for the same actuator voltage input, PID control was implemented in software on 
each of the model joints independently. Simulated positional joint control resulted 
in sustained oscillations in joint positions indicating that simple constant gain 
PID controllers, without dynamic decoupling, were unable to produce satisfactory 
performance. The PUMA 560 controller board PID parameters were identified for 
twooperating regions of joint 1. These values produced better dynamic 
performance when implemented in the simulated controller.
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C H A P T ER  1

INTRODUCTION

Robot manipulators are becoming increasingly important in the manufacturing 

industry. They present a means of lowering production time and costs, 

improving precision and increasing profits by around the clock operation. There 

are presently about 80,000 robotic units used in production throughout the world 

and the figure increases annually. The production of robot manipulators has

itself become a large industry. In America alone there are more than 10 robot

manufacturers. The manipulator market has become both lucrative and

competitive [1]. Robot manufacturers must take advantage of the more recent

cheaper computer power available to enhance manipulator performance.

Manipulator arm construction has changed little over the decades and is unlikely 

to do so. The mechanical design necessary to achieve dexterity results in a

system with complex dynamic properties. Since the physical structure of 

manipulators cannot be improved upon by any large extent, the main performance 

improvments must be made in robot control systems.

Until recently industrial robot designers used simple PID gain scheduled

controllers. In this type of control different PID gains are automatically 

switched as the manipulator moves into different zones within the robot’s range. 

If the payload changes, however, this will not be sensed by the gain schedule 

controller. This has meant that controllers are often detuned, to cater for 

heaviest load cases, with the result that the manipulator operates below peak 

performance in much of the work space. Sophisticated control algorithms can 

improve the systems preformance but have seldom been used in the past for two 

main reasons [2 ]:

a) because of the economics of supplying sufficient computing power, and

b) because of imprecise dynamic models.

If an accurate dynamic model and sufficient computational power are available, 

the control algorithm can predict how to control the manipulator’s actuators when 

the robot is in motion. Such a controller must compensate for the complicated 

effects of inertial coupling, centripetal, coriolis, gravity and friction forces at each 

of the manipulator joints. This will enable the robot to follow desired
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trajectories through space with smaller tracking errors, or to follow the previous 

paths at increased velocities. These desirable attributes both increase productivity 

and broaden the possible spectrum of applications.

Over the last decade, the literature has abounded with variations of old and new 

control strategies [2] [3] [4]. In order to obtain the optimum performance from 

amanipulator an accurate system dynamic model must be known. An 

alternative method of dealing with poor knowledge of system behaviour is 

through the use of adaptive control techniques. Adaptive control methods have 

been given much attention in recent years and have found applications in the 

power industries, the nuclear industry arid aircraft industries to name but a few. 

As computational power becomes cheaper it becomes feasible to employ adaptive 

control on smaller systems.

Adaptive controllers can be viewed as being composed of two parts.

(i) An identification portion which identifies parameters of

the plant, and

(ii) A control law portion which implements a control law

based on the identified parameters.

The principles and different methods of adaptive control have been dealt with by 

many authors [2], [3], [5], As the complexity of the controlled system increases 

it becomes increasingly difficult to provide guaranteed stability. Discrepancies 

due to unmodelled dynamics or external disturbances may cause the controller to 

become unstable. One of the main problems associated with adaptive control 

techniques is to guarantee robustness for the full operating range.

1.1 Motivation for this research

The EEC, seeing the need for improved controller performances, sponsored a 

three year project, (under the Stimulation program), to develop self-tuning and 

adaptive control techniques for robotic and fermentation systems. The project 

goals were to

a) develope improved controller techniques,

b) fully test these techniques and
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c) implement the techniques on industrial systems.

The NIHE Dublin are equiped with both a Puma 560 industrial manipulator and 

a 40 Litre fermentation plant which are but available for controller 

implementation.

The Puma 560 is an elbow type manipulator with six revolute joints. Three

relatively large links, which have a likeness to a human torso, upper arm and 

forearm, determine end effector position. The positions of these three links are 

changed using revolute joints which are often referred to as the waist, shoulder 

and elbow joints. At the end of the forearm a "wrist" is formed using three

articulated joints. These three joints determine the end effector orientation.

For the control of an elbow type manipulator the dynamics of the first three

joints present the largest problem. Coupling between the joints is considerable 

because the links are large. This results in highly coupled and nonlinear 

dynamics. Developing a correct dynamic model for a multi-degree of freedom 

manipulator is a difficult but necessary task if adaptive control techniques are to 

be implemented sucessfully on the manipulator. The need for an accurate 

dynamic model is twofold:

a) an accurate model provides insight to the control problem and

b) it enables the control engineer to fully test a controller 

before attempts are made to implement them.

Of the two, the latter provides the greater motivation. It is particularly important 

to ensure that the controller is completely tested prior to implementation when 

the plant is expensive and potentially self damaging. Other important advantages 

exist, for example, it is much easier to test a controller on a software model 

than to implement it on an actual system.

Although recent research has presented means of modelling manipulators as 

connected chains of rigid bodies many parameters which appear in the model 

such as effects of friction, gearing backlash, flexibilities and actuator dynamics 

remain unknown. Such models may suffice for prelimary control strategy 

appraisal, however, they do not satisfy the control engineer how wishes to fully 

test a novel control stategy before implementation.
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Although many researchers [6 ], [7], [8] have written extensively on the 

derivation of manipulator dynamic models the presented models ignore many of 

the factors that contribute considerably to the plant dynamics. Programs have 

been written to derive symbolic second order dynamic equations for manipulators. 

These packages typically model the manipulators as a chain of rigid bodies, 

resulting in second order coupled differential equations. The coefficients of these 

equations are trigonometrical functions of the link masses, inertias, centres of 

masses, dimensions and joint positions, velocities and accelerations. Accurate 

values for these parameters are seldom known. If the parameters are known, the 

second order model often ignores actuator dynamics, friction forces and the 

dynamics of the gearing systems. These unmodeled dynamics will effect 

positioning accuracy.

Another problem with presented manipulator models is that they are never fully 

tested or tuned to fit the system dynamics. Testing and tuning would remove 

many system uncertainties. An accurately tuned dynamic model is invaluable to 

the control engineer when testing a control technique for a complex system. If 

the accucacy of the model is guaranteed, the controller can be fully tested before 

being implemented on the actual system.

This thesis develops a fully tested third order dynamic model for the first three

links of the Puma 560 industrial robot. Only the dynamics of the first three

links is studied since they present the most challenging control and modelling

problem. The wrist links are dimensionaly small and are not subjected to the 

large coupling effects, experienced by the positioning links, due to their small

inertias. The dynamic model has taken the effects of:

1) gravity forces,

2 ) coupling and inertial forces,

3) centripetal and coriolis forces,

4) friction forces, and

5) actuator dynamics

into account. The model has been tested in both open and closed loop situations. 

The link parameters which constitute an integral part of the dynamic equation 

coefficientterms have been tuned to give a better representation of the 

manipulator dynamics.
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A complete tuned third order dynamic model for first 3 links of a Puma 560

industrial manipulator has not been presented in the literature before.

1.2 Preview of Thesis

The research presented in this thesis is organised as follows.

Chapter2 details how the geometric structure of a manipulator may be 

mathematically specified. This includes a presentation of kinematic equations and 

analysis for differential joint rotations.

Chapter 3 gives a detailed derivation of second order dynamic equations for a 

general elbow type manipulator. Special attention is given to physical 

interpretation of the dynamic coefficient terms.

Chapter 4 uses the procedure given in chapter 3 to generate second order 

dynamic equations for the Puma 560 industrial manipulator. Arguments for the 

choice of link mechanical parameters are given and nominal values are chosen.

Chapter 5 incorporates actuator dynamics and friction forces into the second 

order equations resulting in third order dynamic equations. These are written in 

matrix form for clarity and ease of simulation.

The simulation main characteristics, numerical integration technique and associated 

considerations are treated in Chapter 6 ,

Chapter 7 concentrates on fully testing the Puma 560 model using open and 

closed loop validation data, recorded, from the industrial manipulator. The 

dynamic model is tuned to remove response discrepancies.

Conclusions are given in Chapter 9.
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C H A P T ER  2

STRUCTURAL DESCRIPTION OF A ROBOT MANIPULATOR

Before any analysis can be undertaken it is necessary to accurately describe 

robot manipulator structure and freedom of movement. Kinematics is described 

as the study and description of possible motions of material bodies. Kinematic 

equations provide us with robot link positions given the various joint angles. 

Indeed the kinematic equations supply the position and orientation of all link’s 

with respect to either the base coordinates or with respect to any of the other 

links. These equations are comprised of a set of homogeneous transformation 

matrices which relate the position of the links to each other and to the base 

coordinates. This is important when formulating the dynamic equations.

As mentioned in the introduction a manipulator may be considered to be a chain 

of rigid bodies, with articulated joints. The link shape is defined (from a 

kinematic view point) as the relationship between the joints at each end of the 

link. When the joint angles are specified, and link dimensions and shapes are 

known it is possible to determine the position of each link. This is the basis 

for deriving the kinematic equations.

This chapter outlines how the mechanical structure of a manipulator may be

mathematically described. Firstly the link dimensions are specified, and a 

coordinate frame is embedded in each link. Then using homogeneous 

transformations, the relationship between these frames is defined, the particulars 

of the Puma 560 are presented and finally the delta operator is presented as a 

means of describing the effects of differential joint movements.

2.1 Link Specifications and Dimensions

Figure 2.1 shows the physical structure of a typical elbow type industrial robot,

in this case the Puma 560. The manipulator has six degrees of freedom. The 

positions of the first three links determine the end effector position, while the

last three links specify tool orientation. For convenience the first three joints 

are referred to as the waist, shoulder and elbow joints and the final three joints 

collectively form the wrist. In order to specify the tool position and orientation

6



knowledge is required of the link sizes and joint angles.

In the geometric sense, a link may be considered to be a rigid structure,

supporting one or two joint axes. When specifying the link dimensions it is 

therefore necessary, to give the relationship between the joint axes. Two groups 

of manipulator joint exist, revolute joints and prismatic joints. Figure 2.2 (a) 

shows a typical revolute joint while a primsatic joint is sketched in Figure 2.2 

(b). The properties of prismatic joints are not examined here since analysis of 

an elbow type manipulator, with only revolute joints, is considered in this thesis.

See Figure 2.3 for a diagram of a typical manipulator link. Any rotation about 

joint axis n, causes link n+1 to rotate relative to link n. All parts in the link 

will scribe out an arc in free space, with the joint axis n as it’s centre. 

Rotation of link n+1 about joint axis n+1 will similarly cause all parts of link

n+1 to scribe a different arc. This time axis n+1 serves as the arc centre.

The shortest distance between the two axes is perpendicular to both and is 

referred to as the common normal between the axes. The length of the

common normal, the Link Length, (2n, is one of the values used to describe the 

link. The other dimension is referred to as the link twist %, and denotes the 

angle between the axes when projected onto a plane perpendicular to the 

common normal. %  refers to the amount the link axes have been twisted out 

of parallel.

Thus any link can be described by two dimensions Cn and o^. It remains to 

specify the relationships between consecutive links. Any link n, except for the 

end links, will have two common normals associated with it. One for the lower 

and one for the higher link. The distance along the axis between the two 

normals is called the distance between the links, dn. The angle between the 

links qn is measured in a plane normal to the axis.

The four parameters explained above are listed below.

i2n = link length

= shortest distance between axes, found on common normal

= link twist

= angle between axis measured in plane perpendicular to 

common normal
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Figure 2.1 Physical Structure of an Elbow Type Manipulator
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Figure 2.3 Typical Manipulator Link



dn = distance between two links,

= distance measured along axis of joint n between common 

normals intersecting this axis.

qn = angle between links

= angles measured between common normal on plane

perpendicular to axis n.

Specification of the four values above for each of the six manipulator links 

allows us to detennine the link and end effector positions. With the current 

information, however, this would be a tedious task. To simplify the procedure it 

is convenient to assign a coordinate frame to each link, and then to form a set 

of homogeneous transformations which describe the relative position and 

orientation of each link to that of the previous one, [6 ], [7].

2.2 Specification of Coordinate Frames and Their Intenelationship

After specifying the structure of the manipulator links, it is necessary to assign a 

coordinate frame to each link. It is important that the coordinate frames are 

chosen so that the movement of the manipulator links can be easily be

described. Therefore we need to use some logical criterion when selecting frame 

origins and axes. Coordinate frames are chosen as suggested by Denivit & 

Hartenburg [10]

The origin of the coordinate frame for each link n is chosen to be the 

intersection of the common normal between the axes of joints n and n+1 , and 

the axis of the n+1 joint. Figure 2.4 shows how common normals can be

constructed for joint axes that are not parallel. This choice of origin ensures that, 

firstly the frame origin will be positioned at a rotating axis, and secondly that 

the position of the common normals is always known.

The axes of the coordinate frames are chosen as follows [6 ], The z axis of

coordinate frame n is taken to be the axis of rotation of joint n, while the x 

axis is chosen as the normal directed from joint n to joint n+1. The y axis 

completes the conventional orthogonal set of right handed axis. A typical frame 

has been assigned in Figure 2.4.

Once the links parameters have been specified, and each link is given a
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Figure 2.4 Construction of Common Normals Between axes 
and a Typical Coordinate Frame

Figure 2.5 u, o, a, & p Vectors
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coordinate frame, the next step is to develop a method of describing the 

interelationship between the coordinate frames. This makes it possible to specify 

the position of each manipulator link at any time. One method of achieving this 

is to create homogeneous transformations which are conveniently performed using 

matrix algebra. In this context, the transformation matrices are known as T 

matrices ( e R 4* 4  ). These are chosen to transform the origin of a reference 

coordinate frame to the origin of the present reference frame, as suggested by 

Denivit & Hartenburg [10],

Each of the T matrices has two frames associated with it. That of the reference 

frame, and that of the frame in question. The reference frame is denoted by a 

preceeding superscript and a preceeding subscript denotes the frame in question. 

For example gT describes the transformation required to superimpose coordinate 

frame "a" on to coordinate frame "b".

The homogeneous transformation required to perform this manoeuver on two 

consecutive revolute joints may be considered as the composite result of four 

simpler movements. Explicity, rotating the coordinate frame an angle % about

the Zjj. ,  axis, next translating the origin of the frame a distance dn along the 

same axis, translating the origin along the common normal a length Cn and 

lastly by rotating the coordinate frame the twist angle, (%, about the common

normal. The two translations may be treated as a single translation. These

movements ensure that both coordinate frames are superimposed and in essence 

describes the position of the present coordinate frame with respect to the

previous. The element values in each of the T matrices depend on link sizes, 

shapes and manipulator joint angles.

The general form of a T matrix is

""¿T = Rot (z,©n) Trans (0,0,dn) Trans (an,0,0) Rot (x,ocn)

where z = previous joint axis

dn = distance between links n and n-1

an = link length

x = common normal between axes n and n-1

a*, = link twist 

©n = joint n angle

12



n-

Cos 0n -Sin0n Cosan
Sin 0n Cos0n Cosan
0
0

Sina,
0

n

Sin0n Sinan aCos0n 
-Cos0n Sinan aSin0n 

Cosan d
0 1

The elements of n_’T are trigometrical functions of the joint angle.

°T describes the position and orientation of the first link with respect to the 

base coordinates. Similarly JT gives the second link position and orientation 

w.r.t. link one’s coordinate frame. The product of consecutive T matrices, allows 

us to describe link positions w.r.t. any coordinate frames. £T = °T ’T 

describes the position and orientation of link two w.r.t. the base origin. In 

general j>T = °T JT.J'JT gives position and orientation of the i^ 1 link w.r.t. 

the base.

For a six degree of freedom manipulator, the position and orientation of the end 

effector w.r.t. the base coordinate frame, is contained in the product of the first 

six T matrices, and has the form:-

°T = °T 12T 5T =6

UX °x ax Px
Uy Oy ay Py
uz °Z az Pz
0 0 0 1

Column vectors u, o, a, and p, are sketched in Figure 2.5. Vector p gives the 

end effector position w.r.t. the base, while vectors o, a, and u give tool 

orientation.

2.3 Puma 560 Link dimensions and T transformtions

Figure 2.6 shows how the coordinate frames have been chosen for the Puma 

560. The link specifications are given in Table 2.1. Figure 2.7 shows a line 

sketch of the link structure when the manipulator is in the same pose as Figure

2.5 ( in bold ), and when it has moved upwards ( in a dotted line ). It is 

seen how the robot shape is accurately specified by these simple distances and 

angles. Using this information, and the procedure given above, a set of T
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matrices for the Puma 560 can be determined. Various authors have chosen 

subtley different coordinate frames. This does not, however, cause difficulties 

once the homogeneous transformations are correctly chosen. A typical set of T 

matrices for the Puma 560 is given as:

r c 5 0 -S, 0 '
0T - S, 0 C, 0

0 -1 0 0
0 0 0 1

■ c 2 -S2 0 3 2̂  2
’T =2 S 2 C2 0 a 2S 2

0 0 1 d2
0 0 0 1

' C 3 0 S 3 a3^3
2T = 3 S 3 0 -C3 a 3C3

0 1 0 0
0 0 0 1

■ c 4 0 -S4 0 '

11HTOT S 4 0 C. 0
0 -1 0
0 0 0 1

■ c 5 0 S 5 0 ■

s1 S 5 0 -c s 0
0 1 0 0
0 0 0 1
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Figure 2.7 Line sketch of the Puma 560
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C6 "S6 0 0

S 6 C6 0 0

0 0 1 0

0 0 0 1

where Cj = c o s ( q j )

Si = s i n ( q i )

2.4 Validation of Kinematic Equations

The set of T matrices for the Puma 560 listed above, were programmed on a 

MicroVax minicomputer. The program outputs the positions of each of the 

links, in terms of the base reference frame, for a set of manipulator angles. 

Test data was obtained by commanding the Puma Industrial robot to move to a 

precision reference point (with specified joint angles) and reading the positions of 

the end effector in cartesian coordinates. These operations were achieved using 

VAL, the Puma programming language at the monitor level.

\

The kinematic equations derived were found to be an accurate representation of 

the relationship between the joint angles and the position of the end effector, 

such accuracy is important for two reasons, (a) it is necessary for the robot 

supervisory system to know where each of the links are at any time , and (b) 

setpoints for the controllers are derived from the kinematic equations (an open 

loop calculation ). Furthermore, the accuracy of a robot simulation depends 

heavily on the kinematic equations, since they form the the basis (and influence 

the structure of ) the dynamic equations. '

2.5 Describing link mass positions

The six Puma 560 transformation matrices given in Section 2.3 allow us to 

calculate the position and orientation of the robot links relative to any coordinate 

frame. This is achieved by multiplying together the appropriate homogeneous 

transformation matrices. When formulating the dynamic equations for the 

manipulator it is necessary to determine the effect that differential changes in 

any of the robot joints will have on the position of the coordinate frames. The 

remainder of this chapter examines how point masses in a link may be described
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w.r.t. different coordinate frames, and how the effects of differential positional 

changes can be mathematically described in an effective manner.

Figure 2.8 shows how the position of a point mass in a link j, can be specified 

with respect to different coordinate frames. In this diagram coordinate frame i 

and j positions are sketched relative to the base frame. These two frames are 

not necessarily consecutive frames. The following passage explains how the 

position of a point mass p, located in link j is given with respect to different 

coordinate frames. Point p is located at '!• w.r.t. coordinate frame i.

ifj = Oxj 'yj *Zj 1 )

The proceeding superscript shows that this vector r is taken w.r.t. coordinate 

frame i. The subscript shows that the point mass is in link j. The final 

element in ^ = (*Xj 'z- 1) is a scaling factor. All vectors have this fourth 

element in order to be compatible with the Denivit-Hartenberg [10] four

parameter representation. When referring to vectors taken w.r.t. the base, the

preceeding superscript of 0 is often omitted. Thus ij is the vector from the

origin of base coordinate frame to the point mass in link i.

The same point is located at Jij w.r.t. coordinate frame j. The vector from the

base frame to the point mass is r and is a function of the joint angles. Not

surprisingly rj, Jrj and ‘i- can be expressed in terms of each other as shown

below

r. = pt 'r- = PT iT k- = 5T Jr-j i1 *j i j j j j

It is important to be able to express link point mass positions w.r.t. any

coordinate frame. This is necessary when calculating the various forces exerted

at a joint due to the position velocity and acceleration of all the manipulator

links.

2.5.1 Coordinate frame differential movements

This section considers how the position and orientation of the link coordinate 

frames are effected by differential movements of a joint. Any change in 

position of a joint i will only affect the positions of the outer links j (j  ̂ i). 

A change in the position and orientation of the outer coordinate frames is
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equivalent to a translation followed by a rotation. The task is to accurately 

specify the correct translation and rotation for each coordinate frame. Details of 

the procedure to achieve this is outlined below.

2.5.2 The delta operator

Any differential movement of joint i, will cause the coordinate frames,

represented by the transformation matrix JT ( j  ̂ i ) to change. We can

consider the changes in any of these coordinate frames as being the result of a 

differential translation, followed by a differential rotation. The delta operator is 

a 4 x 4 matrix, derived in this section as a means of describing the effects that 

differential joint angle changes have on other links.

Figure 2.9 represents two coordinate frames, that of the base, and that of an 

arbitrary link j. Although the base reference frame is oblivious to changes in 

any of the robot joint angles, movement of joint i (i < j) has caused the origin 

of the coordinate frame j to move from position Pj to P ’j. The orientation of

frame j has also changed. These changes in position and orientation can be

precisely described by the translation (dx dy dz) and the rotation (k,d0), where:

Translation(dx,dy,dz) is the transformation representing a translation of 

(dx.dy.d^ in base coordinates.

Rotation (k,d©) is a transformation representing a differential rotation d© 

about a vector k, where k is described in base coordinates.

Given a coordinate frame °T, we can express °T + d°T as:-

°T + d°T = Translation(dx,dy,dz) Rotation(,fc,d0) °T

It follows that

d°T = ( Translation(dx ,dy,dz) Rotation^,d©) - I ) °T

where I is the identity matrix.

It is not necessary to express the translation vector, (d^dy,«^), in base 

coordinates. We could have described it with respect to coordinate frame JT.
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Similarly the vector k  could be written in terms of coordinate frame j>T. If this 

is the case, then different translation and rotation transformation matrices are 

obtained.

A new product for °T + d°T results:-

°T + d°T = ( Translation(dx,dy,dz) Rotation(ifc,d0) °T

and

d°T = ( Translation(dx,dy,dz) Rotation(ifc,d0) - I) °T

where the two transformation matrices, Translation^,dy^) and Rotation(Jk,d0),

are chosen w.r.t. frame $>T.

p°T + dp°T is the new (position and orientation) of coordinate frame p.

The bold print signifies that the translation and rotation are described wrt ?T. 

In both the above expressions for d°T we find one common subexpression ie.

(translation(dx,dy,dz) Rotation^,d©) - I)

The elements in this matrix transformation are dependant upon both the 

translation and rotation being performed, and the reference coordinate frame. We 

denote this transformation by the delta symbol, A, and henceforth refer to it as 

the delta operator. It is necessary to specify what reference frame the delta

operator is described with respect to, and what variable is causing the change. 

To accomodate this, the following notation is used. A preceding superscript is 

used to denote the reference frame, and a following subscript gives the 

differential variable causing the change. Thus JAj describes the transformation 

for a differential change, described in the j>T reference frame, due to a change 

in joint i.

Because the T transformations were chosen so that the joint variable q  rotates

about the zi_i axis we find that *'1Aj accomodates the differential change in the 

position of link i when q moves. The transformation for a differential 

translation along the vector (dx dy dz)
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Trans(dx dy dz) =

1 0 0 dx

0 1 0 dy

0 0 1 dz

0 0 0 1

The transformation for a differential rotation of angle dq about an axis k = (kx 

ky kz) equals

Rot(k,  dq) =

1
kz dq

■ k y d q

0

-kz dq

1
-kxdq

0

k y d q

-kxdq

1
0

0
0
0
0

Thus

0 -kzdq kydq dx
i-iAj = kzdq 0 -kxd<i dy 

-kydq -kxdq 0 dz
Q 0 0 0

2.5.3 Calculating differential changes in coordinate frames

For any manipulator, differential changes in the position and orientation of the 

end effector are due to differential changes in the joint coordinates dq̂  For a 

manipulatorwith six degrees of freedom, °T describes the position and 

orientation of the end effector w.r.t. the robot base coordinates for a manipulator 

with 6  DOF. In order to keep this section as general as possible analysis is 

done for any transformation frame p°T of the manipulator. For a manipulator with 

p degrees of freedom (DOF), the differential change in °T, due to a differential 

change in joint i, may be represented by the matrix product

d°T = °T ... j;2T i-1Ai MT ...p-’T

ie. a differential change in joint angle i (which can be described by a change in 

•-]T) causes a differential change, d°T, in the end effector position and 

orientation Aj causes all coordinate frames JT for j^i to change. i' 1Ai is 

easier to determine than PA; so ' ' 1 A; is used when calculating differential
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movements throughout the analysis.

The values in the delta operator matrices may be calculated in general foim,

however, since Puma 560 has revolute joints the delta operator may be

simplified. The z axes of the coordinate frames were chosen to coincide with

the joint axes. This means that the delta operators Aj will have no

translational components, ie. (dx dy dz) = (0 0 0 ) and that the differential rotation 

can only have a z component, ie. (kx ky k )̂ = (0 0 1 )

Therefore

0 -dq 0 0

dq 0 0 0

0 0 0 0

0 0 0 0

0 - 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

= Q dq

where

0 -1 0 0 '

1 0 0 0
0 0 0 0
0 0 0 0 ( 2.2 )

Now d°T = 0T ... [:*T *‘ 1 A,- ¡-JT ...p-̂ T 

= oT ... j;?T Q dqj i_]T ...P-’T 

=  ?T ... tfT  q  *-]T ...P-’T d q i

dfiT
—  = ?T . . .  1 ; ?T Q 1 - JT . . . P - ^T  ( 2 . 3  )

dqi
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This in essence provides us with a means of finding the rate of change of a

coordinate frame w.r.t. a joint angle. Naturally this is invaluable for calculating

the velocities and accelerations of the links due to joint movements. Second 

derivatives may also be calculated using the Q matrix. For example

82 AT
 —  = °T ...j:?T Q !']T ... j;2T Q J-1T ... PIT ( 2.4 )
8 qi 5qj

In all the derivative expressions the Q matrix premultiplies the coordinate frame 

transformation which is primarily causing the movement.

2.6 Summary

This chapter has shown how the kinematic equations for any manipulator can be 

formed using carefully chosen coordinate frames and a set of homogeneous

transformations. The procedure was as follows :

i) Specify the shape and size of each link

ii) Embed a coordinate frame in each link

iii) Formulate a homogeneous transformation to superimpose

coordinate frame n-1 onto frame n,

The relative position and orientation oh the links are related by the product of 

the transformation matrices. The manipulator links were specified in terms of 

their link length and twist angle. The link dimensions of the Puma 560 were 

given as an example. The criteria for forming the homogeneous transformations 

relating the various link coordinate frames was detailed and used to generate 

transformation matrices for the Puma 560. The remainder of the chapter 

examined how differential manipulator movements could be mathematically 

described using the delta operator matrix. This matrix provided a means of 

determining the effect that rotating joint angle n has on the outer link positions. 

This in turn provided expressions for link velocities caused by moving links.
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C H A P T ER  3

D ERIV A TION O F SECOND O RD ER DY N A M IC EQUATIONS FO R 

A N  ELB O W  TY PE M ANIPULATOR

This chapter concerns itself with the derivation of dynamic equations for an 

elbow type manipulator. The dynamic equations relate forces and torques to the 

positions, velocities and accelerations of the robot links. The physical structure 

of any manipulator influences the forces that exist at the manipulator joints. 

Although two main types of manipulator joints exist, revolute and prismatic, only 

the revolute type is examined here since the Puma 560 has no prismatic joints. 

The actuator dynamics are not considered at this stage, resulting in force inputs 

to the joints.

The robot represents a highly nonlinear, multivariable system. A mathematical 

model describing the nonlinearities and crosscoupling is necessary, firstly to 

provide insight into the control problem, and secondly for simulation purposes. 

The dynamic equations have been developed in general form using the systematic 

approach suggested by Paul [5], by firstly forming the Lagrangian for the 

complete manipulator, and then substituting this into the Lagrange-Euler equation.

For clarity, the different coefficient elements in the general dynamic equation are 

grouped together and renamed. The significance of each of these groups is 

discussed in detail, to give a greater understanding of the dynamic equations’ 

behaviour. It becomes apparent how link shape and construction influence the 

dynamic equation complexity.

Control system design for high-performance manipulators require thorough 

understanding of robot dynamics. We often find, however, that control 

engineering applications ignore the physical interpretations of manipulator

dynamics. A global understanding of a plant dynamics is important when 

choosing a control strategy. A special effort is made in this chapter to qualify 

the effects that different mechanical parameters have on a manipulator’s dynamic 

equations.
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3.1 The Generalised Formulation of Dynamics

Research into the motion of material bodies, has been carried out over many 

centuries. The work has developed into a large area known as analytical 

mechanics, or dynamics. Goldstein [13] gives a good introduction to the 

mechanics of moving particles, and explains how the theories may be extended 

to the encompass systems of many particles. He gives details of how 

infinitesimal rotations of a body, may be represented using matrix 

transformations, Goldstein [pp.164-183], and analyses the forces experienced as a 

result of these movements.

When deriving a model for a complex system, such as a manipulator it is 

necessary to follow a very systematic formulation procedure in order to avoid 

unnecessary errors. For a structured system, like a manipulator, it is convenient 

to make use of two well established fields of classical mechanics.

Kinematics : The study and description of possible

motions of material bodies.

and

Dynamics : The study of the laws which determine among all

possible motions which motion will actually take place in 

any given case.

Treating a system, such as a manipulator, as an assembly of point masses in a 

structued set of coordinate frames, makes it possible to generate the plant 

dynamic equations. The derivation given in this chapter uses this type of 

approach.

Several approaches for modelling arm dynamics have been taken by various 

researchers. The Euler-Lagrangian [5], recursive Lagrangian [11], and 

Newton-Euler [6 ] are popular methods. The closed form dynamic models, based 

on the first two Lagrange derivations, yield equations suitable for both direct and

inverse dynamic problems. This compact method produces equations-of-motion that

are appropriate for modelling and control applications. The Newton-Euler

formulationconsists of a set of backwards and forwards equations that 

recursively calculate the complete dynamics. These are significantly more efficient 

than Euler-Lagrange, and more suitable for real-time control [5], However they 

require explicit representations of the internal forces in the system, and the
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equation coefficients are difficult to interpret.

The basic distinction between the Euler-Lagrange and Newton Euler methods is 

that while the Euler-Lagrangian formulation produces equations that are easily 

understood (ie the equation parameters are distinctly separate) but 

computationally inefficient, the Newton-Euler approach gives more compact 

equations with parameters that are less separable.

The Euler-Lagrangian formulation was chosen in preference to the other methods 

because a) it generates dynamic equations in a systematic manner, reducing the 

probability of errors and b) a non-recursive formulation was considered more 

suitable for simulation and analysis because of the explicit nature of the equation 

solutions.

3.1.1 The Lagrangian and Euler-Lagrange Equation

The dynamics of any manipulator can be described by a set of 2nd order 

differential equations. These equations relate the torque experienced on each 

joint to the positions, velocities, and accelerations of the robot links. To

simplify many of the expressions we will make use of the summation convention 

first used by Einstein: Whenever an index occurs two or more times in a term,it 

is implied, without any further symbols, that the terms will be summed over all 

possible values of the index. Throughout this thesis, the summation convention 

will be used in equations, unless otherwise stated. Where convenient, or to 

remove ambiguity, the summation sign E may be occationally displayed explicitly, 

eg when certain values are excluded from the summation.

The Lagrangian is defined to be the difference of the kinetic and potential 

energies of the system :-

L = K - P

where L = Lagrangian

K = Kinetic energy 

P = Potential energy

The dynamic equations are formulated from the Euler - Lagrangian equation :-
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p. _ d 8 L 8 L 
i eft " 5qi

where ^ are the system variables, (joint angles in the Puma robot case) and 

where Fj is the force experienced on the system variables, ( torques in the case 

of the Puma), as detailed in Goldstein [13]. Once the the potential and kinetic 

energies have been expressed in an appropiate coordinate frames we are assured 

that the forces Fj for each joint can be calculated.

3.2 Forming the Lagrangian for a Manipulator

Section 3.1 presented the Euler-Lagrange equation. This will now be used to 

generate dynamic equations for a mechanical system. The first step in producing 

the Lagrangian is to derive expressions for the kinetic and potential energies for 

the manipulator. The kinetic and potential energies are formed in general terms, 

using the structural information held in, the T transformation matrices presented 

in Chapter 2, and by treating each of the robot links as a collection of 

distributed point masses. This method caters for the nonuniform density of the

link by defining separate inertias, radii of gyration and masses for each link. The 

significance of these parameters is detailed later in this chapter. When 

expressions for the kinetic and potential energies are found the Lagrangian is 

formed as their difference. By substituting the Lagrangian into the 

Euler-Lagrangian equation, a system of dynamic equations is produced.

3.2.1 Kinetic energy

In order to calculate the kinetic energy of a manipulator system, it is necessary 

to calculate the velocity of all point masses in each link, at any point in time. 

The link velocities can be determined once the structure of the manipulator and 

the angular velocities of the manipulator joints are known. The manipulator 

structural information is partially held in the T matrices. Section 2.6 details 

were given of how point masses in a link may be specified w.r.t. any coordinate 

frame, while Section 2.7 explained how link velocities are obtained. Once the 

velocity of the links are known, values of link masses, radii of gyration, and 

inertias are used to calculate the manipulator kinetic energy .
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Kinetic energy 

where

k = V 2 mv2 

v = velocity 

m = mass

The velocity w.r.t. the base frame of a point mass situated at position r is,

where t  equals the rate of change of position r w.r.t. time.

We need to extend this equation to incoiporate all masses in the various 

manipulator links, The velocity of a point volume in a link is found by 

summing the velocity contributions of all the robot joints ( j^n ). For example, 

the velocity of a point mass in link 4 may be found by

t

dr 6  ( °T <r4 )

dt St

4

SOT 8 q 5 o t 8 q 2 Sot 8 q 3 S ot 8 q 4 -,
4

Sq, 8 t 8 q 2 St Sq3 St Sq4 8 t -I
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In general terms velocity of a point mass at described w.r.t. the base is

The mass position vector, 'q = ( ixi ‘y  % 1 ), is the vector from the origin of 

link i, to the point mass in the link. Velocity squared equals the dot product

dr;
dt ii.ti

In matrix form t h i s  may be represented as

dr;
dt (3.2)

r[ represents the transpose of the mass position vector. By substitution

drj
dt

Rearranging

2= t r a c e f  Ì  * J  4j ^  | i , k i ri ?  ]

r ¿li 
L dt

= t race

(3.3)

i r i  i r T  ( 3 ' 4 )

The kinetic energy of this differential mass is simply:-

dKj = -  t race

= -  t race  
2

ì  l i t
j=,  k=,  «5J

dm

r 1
E E ( i

LJ = 1 k=i
dm iri) qjQk_

(3.5)

(3.6)

In order to calculate the kinetic energy of a link, it is necessary to sum the 

kinetic energy of all link particles, over the volume of the link. We have 

already derived an expression for the square of the velocity of any point mass 

in a link. The total kinetic energy of the link i equals the integral of the 

differential kinetic energies over the complete volume of the link.
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Ki = d Kj 
1 ink i

= -  trace  
2

i  «li
:=i

but 1 rj = ( i x ^ y ^ z i l  ) thus

X I v-1 
Lj= i k=i

5Ti
l i n k ( ! ri l r i  )dm 5qi  qi qkJ

Ji = ( i  r j ) ( 1r j)dm 

1 ink i

( 3 . 7 )

rôHX

*

i x i i y i * x i 1 z j %

r^dm  =
* 1x i 1y i hi i y j i z i h i

O n '
. l i n k l i nk 1 x i 1 z i 1 y i 1 z i i z f i z i

. ^ i i yi i z i 1

Kj = d K, 
l i nk  i

= -  trace  
2

r I

Lj = '

1 *t T
2  S 'k=, «5j

T 8TIJ i SqkqJqk

dm

( 3 . 8 )

The matrix Jf given in equation (3.8) is often referred to as the pseudo inertial 

matrix for link i. It has a similar format to the intertial tensor matrix, which is

well documented in literature, Goldstein [13]. Appendix A gives details of 

generation and physical interpretation of J,.

Ji =

- mpkj3xx+mpkj3yy+mpk]3zz
---------- 5----------

mpk$XX '  mpk^yy+mpkj§z z

rai x i

i11! y i

mpk$xx+mpkj$yy-mpk$zz

mi x i mi z i

miZi

m;

(3 .9)
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The elements of the pseudo inertial matrix, Jj, are functions of the radius of 

gyration of the i. The radius of gyration is related to the link inertias and the 

mass by the following equalities:

. Iixx represents the moment of inertia about the x axis of the link i coordinate 

frame,

. Ij represents the moment of inertia about the y axis of the link i coordinate 

frame,

. Ii2z represents the moment of inertia about the z axis of the link i coordinate 

frame,

• Jixy Ijxz, lixy, represent the cross products of inertia for link i, about the

various coordinate frame axes,

. mj equals  the mass o f  l i nk  i ,

. x j , y j , are the x,  y,  & z components o f  the l i n k  centres

o f  masses w . r . t .  l i nk  i coordinate  frame,

. m j x j , mjyj ,  mjzj ,  are the f i r s t  moments o f  l i nk  i .

It is reasonable to assume that the cross products of inertia, are approximately 

zero, Goldstein [13]. This accounts for the zero elements in the Jj matrix.

The radius of gyration gives a clear indication of the link mass distribution.

The radius of gyration is the radius such that if all the mass of the link were

situated a distance kj2 from the axis, its moment of inertia would be Ij.

The total kinetic energy of the manipulator links, equals the sum of the kinetic 

energies of the individual links. Therefore

Where

mp ^ x x  “ !pxx 
mpkjSyy = Ipyy 
mpk$ZZ = Ipzz 

mp ^ x y  = Ipxy 
mpk£yz = Jpyz 
mpk$XZ = Ipxz

( 3 . 10)

T
6 6

K = E Kj 
i = 1

£ trace (3.11)
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Actuator kinetic energy must also be taken into account when calculating the 

total kinetic energy of the manipulator. Because of the gearing ratios at each 

link joint we find that the actuator kinetic energy is multiplied by a factor of 

the square of the gear ratio.

Kactj — — 1aj qj (3 .12)

<5; = velocity of rotation of joint i.

Iaj = inertia of motor i

The kinetic energy of the complete manipulator can now be written as the sum 

of the kinetic energies of all six links.

K = -  I  E E trace  
2 i=i  j= l  k=i

pT n

2 i = 1

3.2.2 Potential energy

The potential energy of a mass, m, a distance h above the reference plane, in a

gravity field g is given by:-

Potential energy P = mgh (3.14)

The potential energy of each link i will firstly be calculated w.r.t. coordinate 

frame i. Figure 3.1 shows a typical link and its associated reference frame. 

Two vectors have been drawn on this diagram. 'r; which describes the position 

of the link centre of mass w.r.t. frame i, and g which gives the direction in 

which gravity acts upon the link. As the link moves remains fixed but g 

changes

gT = (gx gy gz !)
Igl = 9.81 m/s2

Potential energy of any point mass equals the vector dot product of the gravity 

vector and the position vector, scaled by the mass.
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Figure 3.1 Gravity vector and centre of Mass Vector

~ z .

f * I

Figure 3.2(a) Manipulator in vertical poise Figure 3.2(b) manipulator in horizontal poise
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The negative sign is caused by the choice of the gravity vector. In order to 

express the potential energy of link i w.r.t. other coordinate frames we must 

transform it with a suitable transformation matrix. To achieve this we use the

T matrices given in section 2.3. Thus the potential energy of link i w.r.t. the

base is

Pi = -mi (gT). (i'JT %)

The potential energy ( w.r.t. link i coordinate frame ) whose centre 

of mass is at 'f; is

Pi = -mi( gT) .  ( Tj i ? i  ) ( 3 . 16 )

Total potential energy of the manipulator is :-

N T
P = - E m ig1 Ti i f i  ( 3 . 17)

i = i

Where N equals the number of degrees of freedom of the manipulator.

3.2.3 The General Manipulator Lagrangian

Using the expressions given above for kinetic and potential energies the 

Lagrangian is formed as the difference between kinetic and potential energy.

L = K - P

P = -m g.r (3.15)

N i i
L = -  E E E trace  

2 i=i  j=i  k=i

XtT "1 N 2

j g j  Ji + i  . S / a i

N
+ E nijg Tj 1 ri 

i = i
( 3 . 18 )

We can now generate dynamic equations in general terms for any N degree of 

freedom manipulator by substituting the Lagrangian into the Euler-Lagrange 

equation:-

„ _ d_ SL 5L
i dt Sqj 8 qi (3.19)
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giving

N j 
Fj = E E trace  

j=i  k=i

N j j
+ I  I  I  t race  

j=i  k=i m=i

where the summation convention is used throughout the analysis.

3 . 3 General Manipulator Dynamic Equation

The dynamic equations given in equation (3.17) relate the forces experienced at 

each to the manipulator joints to the present positions, velocities and 

accelerations of the links. In the present form it is difficult to extract physical 

meaning from the coefficients. The equations may be rewritten, grouping and 

renaming similar terms for clarity as:

qiP qj, ¿Ji = system variables, joint i position, velocity, and accceleration,

Fj = torque acting on joint i,

Dü , Djj = effective and coupling inertias for joint i,

Iaj = actuator inertia of joint i,

Cjjj , Cjjk = centripetal and coriolis forces for joint i,

Gj = gravity loading for joint i,

The coefficient terms D ,̂ Ij, Cijk and Gj are highly nonlinear functions of the 

robot states (position velocity and accelerations). Terms which multiply similar 

states have been grouped together.

N N N
Fi = I  Djj qj + Ia j qj + I  I  C i j k qjqk + Gj

j=i  j=i  k=ij=i  k=i
( 3 . 21)
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3.3.1 Analysis of Self Inertial Terms

The inertial coefficients reflect the accelerational coupling between the robot 
links.

Du is called the self-inertia or effective inertia at joint i. Acceleration at joint i 

will cause a torque equal to Du q at the joint. As with all the dynamic 

equation coefficients Du terms depend upon all the states of the manipulator. 

For example Figure 3.2 shows two possible configurations for the Puma 560 

robot. In Figure 3.2(a) the robot arm is vertical. The waist joint will find it 

easy to accelerate when in this position ie. the effective inertia at joint 1 (D n 1) 

is relatively small. In Figure 3.2(b) however acceleration is more difficult to 

achieve due to the extra work required to rotate links 2 and 3 over a larger 

distance. In this case D , , is at its maximum value. Obviously Du is highly

nonlinear due to its dependency on the system state.

3.3.2 Analysis of Coupling Inertia Terms

Dy is known as the coupling inertia between joints i and j, since it quantifies

the effect that acceleration at joint i (or j) will have on the torque experienced

at joint j (or i). The torque equals Dy q, (or Dy cjj). Figure 3.3 shows how

acceleration of link 3 causes a torque at joint 2. Again we find that the 

coefficient term Dy is nonlinear because of its dependance on manipulator

positions.

Dy = Djj because of the Newtons second law of dynamics, ie. for each action 

there is an equal and opposite reaction.

N
X trace

p=i
(3 . 22)

N
= I  trace  
p=(raax i , j )

( 3 . 23 )
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3.3.3 Analysis of Centripetal and Coriolis Terms

The centripetal and coriolis terms indicate the velocity coupling of the links. 

Both centripetal and coriolis forces are related to the inertial teims as is 

apparent by comparing equations (3.22) and (3.24). Both are essentially

derivates of inertial terms. As such, many of the simplifying properties of the 

inertial terms may be extended to include coriolis and centripetal forces.

Centripetal force Qu qj characterises the effect that the velocity of joint j has a 

link i. For example if an elbow type manipulator was in the position shown in 

Fig 3.4 and if joint 1 was rotating at a velocity q, then link 3 would 

experience an outward force equal to C311 q, <5,. No joint will experience a 

centripetal force due to its own rotation thus CiU = 0. Centripetal forces are 

unique to rotational joints.

Coriolis coefficient C1jk gives the effect that coupling of velocities of links j and 

k have a link i. Thus C 1 2 s refers to the effect that the velocities of links 2 

and 3 have a joint 1.

Coriolis forces are not exerted on joint i, by velocities at joints j and k, if 

either j or k are less than i. Two other simplications of the terms are possible

Equation (3.26) is the non-interacting property and states that there is no coriolis 

force on a link due to coupling of its velocity with the velocity of an inner

link. The reflective coupling given in equation (3.27) says that the coriolis

coefficient for link i, due to the coupling of the velocities of links j and k (j k

k, i) is equal and opposite to the coriolis coefficient for link m due to the

coupled velocities of links j and i.

N
Cijk- ^

P=m ax ( i , j fk )

(a) Cjjj = 0  for all i * j

(b) cijk = -c kji for U  i j

(3.26)

(3.27)
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The coriolis forces account for the difference between forces measured in rotating 

and non rotating coordinate frames. The difference results from the fact that the 

energies of a particle moving in the two frames are different [14], The rotation 

of the first frame adds to the total energy a component which depends upon the 

coordinates of the particle, and is proportional to the angular velocity of the 

rotating frame. Coriolis force is the result of coupling between the velocities of 

an inner rotational link and an outer link.

3.3.4 Analysis of Gravity Loading Terms

r  !  T 5Ti J-
° i  = .E mJg j r j (3 .28)

J=i 41

In the case of an elbow type manipulator, like the Puma robots, joint 2 and 3 

always experience a torque due to gravitational forces. Joint 1, however, rotates 

around an axis that is parallel to the gravity field. Thus

g • ( zM x % ) = 0  

G, = 0

The gravitational term of a joint specifies the work required to overcome the 

gravity field. Conterbalances are often employed on the main links to reduce 

the effects of gravity. By altering the link’s mass distribution (and by bringing 

the links centre of mass closer to the rotational axis) the gravitational coefficient 

can be reduced.

3.3.5 Significance of Coefficient Terms in Control Environment

Gravity loading provides a control problem at all positions and, along with 

inertial terms influences the manipulator servo and positioning accuracy. The 

inertial terms have their greatest effect when the joints are accelerating quickly 

but, even at low accelerations, their effect is relatively large. Actuator inertias 

are often large especially when magnified through the gearing systems. In the 

smaller links the actuator inertias often overshadow effective and coupling 

inertias. Centripetal and coriolis forces are significant at high speeds however 

their effect is often minimal. It is difficult to ascertain whether some of the
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dynamic contributions may be ignored before model simulations have been carried 

out. For some manipulator structures such as cartesian robot arms, coriolis and 

centripetal terms are nonexistent. In elbow type manipulators, however, all

dymamic coefficients exist

3.4 Summary

This chapter has used the Euler-Lagrangian method for formulating dynamic 

equations for a N degree of freedom manipulator. The procedure took the

following steps:

i) Kinetic energy for general masses in a link are found.

ii) The pseudo inertial matrix which specifies the mass distribution of a link was

discussed.

iii) The total kinetic energy of the manipulator was obtianed

iv) The total potential energy for the manipulator are found.

v) The Lagrangian for the manipulator are formed.

vi) The terms in the resultant dynamic equation are reqrouped.

The transformation matrices provided the framework upon which the 

manipulator’s Lagrangian was formed. The dynamic equation coefficients were 

collected into groups describing classical mechanical properties of manipulator. A 

thorough explanation of the physical significance of each of these groups is 

given, to aid the model validation and tuning.
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C H A P T ER  4

SECOND ORDER DYNAMIC EQUATIONS FOR THE 
PUMA 560 MANIPULATOR

The coefficient terms of the dynamic equations, which are highly coupled and 

nonlinear functions of the robot joint angles, link dimensions, masses, inertias 

etc. need to be evaluated. Only the dynamics of the first three links of the 

Puma 560 are examined in this thesis. Control of the Puma gripper can be 

treated as a separate problem. Knowledge of the angular position of the first 3 

links gives end effector position, while tool orientation is determined by the 

wrist joints. The positioning and path tracking problem is dominated by the 

dynamics of the first three links. Normally, when tracking a given path, the 

gripper and payload are treated as a lumped mass on link three. This does not 

introduce significant errors since the last three links are dimensionally small and 

the payload travels with the third link.

This chapter presents a set of second order differential equations which describe 

the dynamics of the first three links. Actuator dynamics have not been 

considered at this stage. Since the robot dynamic equations require accurate 

estimates of the parameters this chapter also examines how values for link 

dimensions, masses, inertia, and radii of gyration for the first three links can be 

accurately estimated.

4.1 General Second Order Dynamic Equations for a Manipulator

The Lagrangian formulation of the second order differential equations for a 

manipulator with n degrees of freedom is given from eqn 3.21 as

N N N
Pi = E Djjijj +1 aj4 i  + X E Qj¿Ik + Dj i = l . . . n  ( 4 . 1 )

j=i  j=i  k=i

where

% Qi' <3i = system variables, joint i position, velocity, and accceleration, 

Fj = torque acting on joint i,
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Djj , Djj = effective and coupling inertias for joint i, 

Iaj = actuator inertia of joint i,

Cyj , Cjjk = centripetal and coriolis forces for joint i, 

Gj = gravity loading for joint i,

4.2 Matrix representation of dynamic equations

For the puipose of simulation and control it is convenient to describe the robot 

dynamic equations in matrix form. Although the equations are highly nonlinear 

and cross-coupled they can be written in a state space type of format, once the 

following matrices and vectors are defined. The three state vectors are chosen 

so that the first element in each vector refers to joint angle one, the second to 

joint angle two, and the third to joint angle three, thus

q = ( q 1 q2 q3 )T e R3 contains joint angles,

4  = ( Qi q2 )T G R 3 contains joint velocities, and

4 = ¿12 )T e R3 contains joint accelerations.

The dynamic equation, eqn 4.1, may be written as:-

D(q)q + la q + P(q,q) = F

(4.2)
i f  the f o l l owi ng  matr ices  are def ined

Di -i D, 2 D, 3 

D(q) = D21 D22 D23 e R3* 3 (4 . 3 )

which contians all the effective and coupling inertial terms.

r l a ,  0  O n

la 0  I a 2 0

0 0 I a 3-

6  R 3X3 ( 4 . 4 )

la contains the reflected motor inertia terms.

r qT C1 q + G, 1

p (4  . q) = <5T C1 q + G2 6 R1X3

- qT C3 q + g 3 -

( 4 .5 )
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contains the effect of centripetal, coriolis and gravity forces, 

where

r C '“ 111 c'-I 1 2 C -i113
Cl = c'“ 121 c 12  2 c12 3 € R3*3 ( 4 . 6 )

. c 13 1 c 13 2 r 13 3

contains the centripetal and coriolis forces experienced by joint one.

r C2 11 c2 12 c2 13
C2 = c 2 2 1 c' -'2 2 2 c2 2 3 e R3X3 ( 4 . 7 )

. r 2 3 1 c2 3 2 c2 3 3

contains the centripetal and coriolis forces experienced by joint two.

Cs =
r C311 c3 12 r 3 13c c c3 2 1 3 2 2 3 2 3. c c c3 3 1 3 3 2 3 3 3

R3X3

contains the centripetal and coriolis forces experienced by joint three.

( 4 . 8 )

The matrices defined above allow us to present the second order dynamic 

equations in a state space type of format. This proved very convenient when 

simulating. The elements of these matrices are givenfrom equations (3.28),

(3.23) and (3.24) as:

Gj = E - mp gT 5lp PRr
p=i y

S t
8qi

Dij ~PSi trace[lij jp i

Ci j k =  V  . t l t r a c e [ &  Jp 5 5 ? ]p=max( i , j , k )

52Tr 8Ti

The element values in the pseudo inertial matrix, Jp (see eqn (3.9)), are central 

to the correct evaluation of both the inertial, centripetal and coriolis parameters.
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4.3 Calculation of the Coefficient terms

Equations 3.28, 3.29 and 3.24 give expressions for each of the second order

dynamicterms. In this section these terms are expanded and symbolic

expressions for these terms are generated. Section 3.5.3 discussed the physical

significance of each of the terms and also explained how several of the terms

are equivalent. These relationships are as listed below

Dij = Dji
^ijk = Cikj
C ij k  = -Ck j i for a l l  i , k   ̂ j , 
Ci j i = 0  for i  ̂ j

(3 .25)

(3 . 26)

(3 . 27)  

(3 .29)

4.3.1 Calculation of Effective and Coupling Inertial Terms

All the terms will now be calculated. The elements of the inertial matrix, D(q), 

are calculated using eqn (3.23) as detailed below

D1n = I  trace
p=i

ÔTp
-  JP “8q,

8Tg

5q,

Using eqn (2.1) to relate the A and Q operators and eqn (2.3) to obtian the 

derivatives of the homogeneous transformations expanding gives

D 1t = trace ( A JT J, ^  AT )

+ trace ( A “T JT J 2 oT1, '7T* AT )

+ trace ( A fT ’T §T J 3 ^  §TT At  )

Substituting for the Puma 560 homogeneous transformation matrices, given in 

Section 2.3, and pseudo inertial matrices as presented in eqn 3.9, the expression 

for the D , , term is:

D u  = mik ?zz
+ m2 ( k | xxS |  + k | yyC|  + a 2C2 + 2 a 2x 2C2 )

+ m3[ k|xxS 23 + k§zzq 3 + d 3 + a^C| + a | C 23 + 2 a 2a 3C2C23 

+ 2 x 3 ( a 2C2C23 + a 3C | 3) + 2 y 3d 3 + 2 z 3 ( a 3C2 3 S 23  + a 2C2S 23)]

...(4.9)
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where Sj = sin (qj)

Q = cos (qi)
Sy = sin (qi + qj) 

q j  = cos (qi + qj)

All other terms were calculated in a similar manner using equations (2.3) and 

(2.4) to obtian derivitives of the T transformation matrices.

D, 2 = m2 a 2z 2S 2

+ m3[ (dgX3 + a 3y 3 + a 3d 3 ) S 23

Ca2 ^ 3  ^2d s ) S 2 ■ dgZgC23  ] ( 4 . 10 )

3 = m3 [ ( x 3d 3 + + &3d 3 ) ^ 2 3  “ z 3dgC23  ] ( 4 , 11 )

D2 1 = D 12  ( 4 .12)

D2 2  = m2 (k2zz + a 2 + 2 a 2x 2)

+ m3 [ ( 2 a 2a 3 + 2 a 2x 3 )C3 + 2 a 2z 3S 3 + k | zz + a |  + a 3 + 2 a 3x 3]

. . . ( 4 . 1 3 )

D 2 3 = m3 [ ( a 2x 3 + a 2a 3 )C3 + a 2z gS 3 + 2 a 3x 3 + a 3 + k | Zjr]

. . . ( 4 . 1 4 )

D3 1 = D 31 ( 4 .15)

D3 2 = D23  ( 4 . 16 )

D33  = m3 ( k 2zz + a |  + 2 a 3x 3) ( 4 . 17 )

4.3.2 Calculation of the Coriolis and Centripedal Terms for

joint one

The elements in the centripetal and coriolis force matrix, C1* affecting link one, 
are calculated using eqn 4.5 as detailed below.

Ci n  = 0  (4.18)
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C1 1 2 — m2 [ ( k | xx - k | yy  a  ̂ 2 a 2x 2 )C2S 2 - a 2y 2C22 ]

+ m 3[^lxx(C2S2 + S2C 3 - 2S2S3S23 + 2S2S3S 23 - C 2S 2 - C 3S3)

+ x 3(-  2 a 2C2S 23 + 4 a 3S 2S 3S 23  + a 2S 3 - 2 a 3C2S 2 -  2 a 3C3S 3)

+ z 3 ( a 2C2C2  3 "  ® 2 ^  2 ^  2 3 + 2 a 3C| 3 - a 3) + a 2a 3S 23

- 2 a 2a 3C2S 23  -  a 2C2S 2 + 2 a 2S 2S 3S 23

- a 2 (C2S 2 + C2S 3) ] ( 4 .19)

13  = m3 t k sxx(C2S 2 + CgS 3 - 2 S 2S 3S 23)

+ k§yy(2S2S 3S23 - C 2S 2 - S 3C 3)

+ x 3 ( 4 a 3S 2S 3S 23 - 2 a 3C2S 2 - 2 a 3C3S 3 - a 2C2S 23)

+ ^ 3 (2a 3C 2 3 + a 2C2C2  3 "  a  3
) + 2 a 2S 2S 3S 23  - a 2a 3C2S 23

- a§C2S 2 - a | C 3S 3 ] ( 4 .20)

C 121  = C 1 1 2  ( 4 .21)

C1 1 2  = m2a 2z 2C2 + m3 [d 3z 3S 23  + ( d 3x 3 + a 3y 3 + a 3d 3 )C23  ]

. . . ( 4 . 2 2 )

C1 23  = m3 [ d 3z 3S 23 + ( d 3x 3 + a 3y 3 + a 3d 3 )C23  ] (4.23)

Cl 31 = c i13 (4.24)

C i 32  = Ct 23 ( 4 .25)

C1 33  — m3 [ d 3z 3S 23  + ( d 3x 3 + a 3y 3 + a 3d 3 )C23  ] (4 .26)

4.3.3 Calculation of Centripetal and Coriolis Forces for Joints Two
and Three

The elements in the centripetal and coriolis force matrix, C2, for link two, are 
calculated using eqn 4.5, and are detailed below.

C2 11 = - C112 (4.27)
C 2 1 2 = 0  (4.28)
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c 2 13 = ( 4 . 29)

c 2 11 - C - ' - 2 1 2 ( 4 . 30 )

c 2 2 2 = (4 . 31)

r 2 2 3 = m3 [ (  - a 2x 3 - a 2a 3 ) S 2 + a 2z gCg] (4 . 32)

c 2 31 = C213 = 0 (4 . 33)

c 2 3 2 = c 2 2 3 (4 . 34)
c 2 3 3 a ^ 3[ C ■ a 2Xg - a 2a g) S 3 + a 2z 3C3 ] ( 4 . 35)

The elements in the centripetal and coriolis force matrix, C 3* for link three, are 
calculated using eqn (4.5) and are detailed below.

c 3 l 1 = .  r13 3 (4 . 36)

C312 = .  r*-21 3 (4 . 37)

C31 3 = 0 ( 4 . 38 )

c 3 2 1 = c 312 (4 . 39)

c 3 2 2 = .  r 22  3 ( 4 . 40)

cv'323 = 0 (4 . 41)

c 3 31 = c3 1 3 (4 . 42)

c 3 3 2 = c 3 2 3 (4 . 43)

c 3 3 3 = 0 (4 . 44)

4.3.4 Calculation o f Gravity Loading Terms

The gravity loading terms for the first ihree links, calculated using eqn.(3.3) are 
detailed below.

0 , = 0 (4 . 45)

G2 = - m2g [ ( x 2 + a 2 )C2 - y 3S 2] 

niggiXgCjg + z gS 2 3 + a gC j 3 + a 2C 2) ( 4 .46)

Gg =- lllgg(XgC2g + ZgSjg + 3 gC J g ) ( 4 . 47)
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It is apparent that the dynamic terms listed above are highly dependant upon 

measurements of the manipulator link parameters an variables eg angles. For 

example the self inertial term for joint one depends on joint angles q2, q3, the 

moments of inertia about the various axes of links 2 and 3, the dimensions of 

links 2 and 3 and the positions of the centres of masses of links links 2 and 3. 

It is therefore important to have accurate data on the robot’s geometrical and 

mechanical parameter values. Since the manufacturers were unable to provide this 

information, the data is obtained by analytical and experimental means. The next 

section discusses these methods.

4.4 Link Parameter Estimations

Disassembly of the Puma 560 robot arm into it’s individual links makes it 

possible to measure the link parameters needed to calculate the elements of the 

dynamic equations,namely link masses, centres of masses, and rotational inertias.

The effect of the motor armature inertias in the manipulator is relatively

straightforward to calculate. The motor and drive mechanism at each joint 

contributes to the inertia about that joint an amount equal to the inertia of the 

rotating pieces magnified by the gear ratio squared. The reflected motor inertias 

for each of the joints were thus calculated as follows:- firstly the motor armature 

inertia was obtained from Unimation (the manufacturers of the Puma robots), the 

inertia of the gearing connected directly to the armature calculated, and finally 

this total inertia was scaled up by the square of the gearing ratio of the

particular link. This modified motor inertia is referred to as the reflected motor 

inertia because of the manner in which it is increased by the gearing.

Link masses are easily found be weighing the separate links, however link 

mechanical parameters need to be estimated. Several approaches have been taken 

to estimate these parameters, both analytical and experimental. Paul [15] takes a 

rather simplistic approach by assuming that the link masses are evenly distributed 

over the surface of the link. We know that this is not actually the case, and so 

this represents one of the simplest approximations possible, and results in a very

dubious set of estimates. Bejczy [16], obtains more accurate estimates by firstly

taking detailed measurements of all the link internal components, calculating their 

individual moments of inertia, and later getting the culmative effect using the 

parallel axis theorem, Goldstein [13].
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Armstrong [17] obtains his estimates from a set of experimental results. The tests 

involve the suspension of the individual links from two wires as shown in Fig 

4.1. A rotational inertia pendulum was created and a knowledge of

1) the link masses

2 ) the location of centre of gravity

3) the distance from wire attachment to axis of rotation

4) the length of wires and

5) the period of rotational oscillation

provides the data necessary to calculate the moments of inertia about the various 

axes, once some conditions are fulfilled. The link must be carefuly made to 

swing about each axis so that a fundamental mode of oscillation is achieved, 

and all measurements are in SI units. The formula

M g r 2
I = - ,----------

w 2 1
is used, where

I = inertia about the axis of rotation 

M = link mass 

g = force of gravity

r = distance from each suspension wire to the axis of rotation 

w = oscillation frequency rad/sec 

1 = length of supporting wire

Tables 4.1, 4.2, and 4.3 show the values for link parameters by Paul [15], 

Bejczy [16], and Armstrong [17], Since the authors have used different 

reference frames the inertial terms were evaluated about different axes. The 

parallel axis theorem is used to transform the inertias so that they are related to 

the coordinate frame axes chosen in Chapter 3. There is a large difference 

between the estimates given by Paul and either of the other approaches. The 

two latter estimates differ by no more than 12%. This is quite a good 

agreement considering that the values were measured using two completely 

different approaches. Armstrong has included tolerances in his estimations. 

These vary from ±1% for link mass measurements to ±50% for some of the 

inertia terms. This emphasizes the need to validate parameter estimates.
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A
Figure 4,1 Rotational pendulum
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TABLE 4.1
Puma 500 link Machanical Parameters according to Paul

1 ink mass centre of mass radius of gyration
reflected 

motor inertia

mi(kg) Xi (m) yi (rn) zi (m) kixx(ra2) kiyy(m2) kizz(m2) Iai (kg-m2)

1 12.89 0.00 0.3278 0.0400 0.1886 0.3660 0.0242 0.7646

2 22.74 -0.3219 0.0059 0.2100 0.2436 0.3900 0.5074 2.4396

3 5.019 0.0234 0.0214 0.0132 0.4581 0.0435 0.0661 0.5836

3* 6.988 0.0187 0.0272 0.1502 0.2083 0.0936 0.0541 0.5663

4 1.27 0.000 0.0803 -0.0048 0.4049 0.0457 0.0092 0.1342

5 0.67 0.000 -0.0202 0.0025 0.0008 0.0377 0.0349 0.0693

6+ 0.18 0.000 0.000 0.0042 0.0008 0.0126 0.0004 0.10439

* Considering the last three links as a load added to link three.
+ Without end effector mechanism.



TABLE 4.2
Puma 500 link Machanical Parameters according to Bejczy

1 ink mass centre of mass radius of gyration
reflected 

motor inertia

mi(kg) Xj (m) yi On) z i  (m) k i x x ( m 2 ) k i yy(m 2) ■—“r
o

N N 3 ro V laj (kg-m2)

1 12.96 0.00 0.3088 0.0389 0.1816 0.0152 0.1811 0.7766

2 22.37 -0.3289 0.005 0.2038 0.0596 0.1930 0.1514 2.3616

3 5.01 0.0204 0.0137 0.0037 0.0151 0.0155 0.0021 0.5827

3* 6.97 0.0136 0.0092 0.1522 0.0783 0.0786 0.0021 0.5827

4 1.18 0.000 0.0863 -0.0029 0.0119 0.0029 0.0118 0.1060

5 0.62 0.000 -0.0102 0.0013 0.0009 0.0009 0.0009 0.0949

6+ 0.16 0.000 0.000 0.0029 0.0008 0.0008 0.0004 0.1078

* Considering the last three links as a load added to link three.
+ Without end effector mechanism.



TABLE 4.3
Puma 500 link Machanical Parameters according to Armstrong

1 ink mass centre of mass radius of gyration
reflected 

motor inertia
mi(kg) xi (m) yi (m) Zi (m) kixx(m2) k| yy (ill2) kizz(m2) Iai (kg-m2)

1 12.89 0.00 0.3138 0.0390 0.1936 0.0160 0.1771 0.7856

2 22.74 -0.3389 0.0049 0.2148 0.0636 0.1870 0.1654 2.3726

3 5.019 0.0224 0.0144 0.0127 0.0221 0.0175 0.0021 0.5837

3* 6.988 0.0147 0.0172 0.1462 0.0883 0.0786 0.0021 0.5977
4 1.27 0.000 0.0793 -0.0028 0.0129 0.0119 0.0180 0.1190

5 0.67 0.000 -0.0172 0.0029 0.0008 0.0008 0.0009 0.0957 i

6+ 0.18 0.000 0.000 0.0032 0.0008 0.0007 0.0004 0.1055 I j

* Considering the last three links as a load added to link three.
+ Without end effector mechanism.



Theoretically both of the latter methods could provide exact results if 

experimental errors are eliminated. It is difficult to establish how critical these 

values are to the model responses before simulation tests have been run. In 

order to obtain initial link parameter estimates for substitution into the above 

parameter formulae the average of Armstrongs and Bejczy estimates were used. 

Table 4.4 presents these values. Numerical estimates of the dynamic coefficient 

terms using these values are listed below.

4.5 Numerical Evaluation of the Coefficient terms

Substitution of the numerical values for the parameters into the above equations 

and simplifying gives the dynamic equation coefficient terms in the following 

numerical form. Note that the reflected motor inertias have been incorporated into 

the effective inertial terms.

4.5.1 Numerical evaluation of effective and coupling inertia
terms

D ,, = 0.7766

+ 1.7209 + 2.1007C2 + 0 . 5 3 2 3 S | 3 - 0 . 0330C2C23 

- 0 .0405C23S 23 + 0.9161C2S 23

D22  = 2 .3616

+ 3 . 0574 + 0 . 9161S3 - 0 .0331C3

D33  = 0 . 5827 + 0.5468

Where the first term of Djj is the reflected motor inertia of the i^ 1 joint.

D12  = 2 . 4 4 9 2 S 2 - 0 . 0 0 7 S 23 - 0 ,1596C23

D1 3 = - 0 . 007S23 - 0 . 1596C23

D23 = 0.5468 + 0 . 45 8 1 S3 - 0.0165C3

4.5.2 Numerical Evaluation of Centripedal & Coriolis Terms for Link One 

C1 23 = 0 . 0203 - 1 . 5685C2S 2 + 0 .5322C3S 3 - 1 , 0643S2S 3S 23
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+ 0.0331C2S 23 + 0.04581C2C23 - 0 . 45 8 1 S2S 23 - 0 .0483C22

- 0 . 0 4 0 5 C | 3 - 0 . 0 16 6 S 3

C1 1 3  = 0.0203 + 0.5322C2S 2 + 0.5322C3S 3
- 1 , 0643S2SgS23 + 0 .0166C2S 23 + 0 .4581C2C23 - 0 . 0 4 0 5 C| 3

- 0 . 0166S3

C1 2 2  = 1.9686C,  + 0 . 1596S23 - 0 .007C23 

C1 2 3  = 0 . 1596S23 - 0 . 007C23 

C1 33  = 0 . 1596S23 - 0 . 007C23

4.5.3 Numerical Evaluation of Centripedal & Coriolis Tenns for
Link Two

C213 = 0

C2 2 3  = 0 .4581Cg + 0 . 0 1 6 5 S 3

c = c
2  3  3 ' " ' 2 2 3

4.5.4 Numerical Evaluation of Gravity Terms for the First
Three Links

G, = 0

G2 = - 52.1060C2 + 1.0972S2 + 0.3761C23 - 10.4068S23

G3 = 0 .3761C23 - 10. 4068S23

where the unit of Djj Dy is kg- m 1 and the unit of D{ is kg-m’ -s1

The set of coefficients given above represent the nominal values used in the 

simulations.
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4.6 Summary

This chapter has outlined how each of the second order dynamic equations 

coefficient terni are symbolically calculated using equations (3.28), (3.23), and

(3,24). The derivatives in these equations were obtained using the Q matrix 

derived in Section 2.5.2. The complete symbolic expressions for all coefficient

terms were presented. For ease of simulation the dynamic equations were 

written in matrix form. It is convenient to store similar groups of terms in

arrays when simulating the equations. Since the parameters comprising these 

expressions were unavailable from the manipulator manufacturers, their estimated 

values (presented by Paul, Armstrong and Bejczy) are examined and nominal

values are selected. Numerical expressions for the coefficient terms were 

presented for use in a nominal second order dynamic model.

The formulation of dynamics described above has assumed, (1) that the links are 

completely rigid, (2 ) that the servomotors do not provide any gyroscopic effects,

(3) that there is no backlash in any of the gearing, and that friction is not 

present, but most importantly (4) that thè actuator dynamics have been omitted. 

The first assumption is accurate as a direct result of the manipulator 

construction. The motor armatures rotate at relatively low speeds and have low 

masses, thus gyroscopic effects are negligable. Backlash can be removed by 

careful adjustment of the joint gearing. Friction is a significant force and as

such it is incorporated into the model in the next chapter. Actuator dynamics 

are particularly important in any manipulator. The dynamics of the permanent 

magnet d.c. servomotors cannot be ignored and are incorporated in the next 

chapter. It is therefore apparent that the dynamic model presented so far is not 

complete.
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C H A P T ER  5

THIRD ORDER DYNAMIC EQUATIONS FOR THE PUMA 560

This chapter extends the second order dynamic model, presented in Chapter 4, to 

incorporate the actuator dynamics and friction forces. Often the friction forces 

present in manipulators are quite large. For large manipulators friction forces 

can comprise up to 23% of torque required, Craig [7]. Friction in the Puma 

560 is modelled as Coulomb friction. Permanent magnet d.c. servomotors are

used to actuate the Puma 560 joints.

The motor dynamics, for the first three links, are incorporated into the 

manipulator system equations, using knowledge of the gearing ratios at each 

joint, and the equivalent circuit model of the motors. Modelling the motors as 

first order systems results in a third order set of differential equations describing 

the complete Puma 560 dynamics.

The resulting third order equations have voltage, rather than torque, inputs. 

Ideally the equations represent the exact model of the manipulator dynamics. In 

reality, no set of equations can ever exactly specify the dynamics of a plant, 

however the third order set of equations represents the main dynamics of the 

manipulator. In the case of the Puma 560 manipulator the consequences of 

unmodelled link elasticity, for example, are negligible compared with effect of 

possible inaccuracies introduced by nonexact measurement of link mechanical 

parameters. We assume the influence of the unmodelled dynamics is small, and 

that in the control situation, their effects can be modeled as noise disturbances, 

and adequately handled by the controller.

Once the third order model has been derived it is written in a matrix format for 

clarity and ease of simulation. The matrix and vector elements in the resulting 

"state" equations, change throughout time.

5.1 Servomotor Equations

The Puma 560 robot arm is driven by electric permanent magnet direct current 

servomotors. There are two sizes of motor employed in the robot, 100 Watt 

motors for the first three links, and 50 Watt motors to drive the three wrist
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links. Since we are concerned with the dynamics of the first three joints, which 

affect the end effector path tracking problem, only the larger motors will be 

considered here. Figure 5.1 shows a simple equivalent circuit model for a 

permanent magnet D.C. motor.

L j

dwj

dt

where

wi = motor position

Rj = armature resistance

^  = armature inductance

it = armature current

kf = voltage constant

kt = torque constant

Vi = armature voltage

the i subscript denoting the motor nunber.

The voltage equation around the armature loop is given by

Vi = R j i i  + Lj d i j  + k f dwi 
3 t dt

Torque produced by the motor is proportional to armature current 

Fi = kf ij

( 5 .1 )

(5.2)

where F( is the torque experienced at joint i.

Specifications of the 100 Watt servomotors were obtained directly from the 

manufacturers and are know to be.
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R = 1.6 Ohms 

L = 0.0048 Henries 

kf= 0.26 volt/rad/sec 

k}= 0.2611 kg.m/amp

Each link is driven by a motor through a set of gears. Figure 5.2 shows the 

gearing systems for the first three robot joints. If we let q  denote the î 1 link 

position, then the joint position is given by where

Wj = Nfli (5.3)

where N; is the gear ratio of the i**1 link. For the Puma 560 the gear ratios 

have been calculated as 

N , = 62.55 

N 2 = 107.81 

N 3 = 53.63

5.2 Third Order Dynamic Equations

From Equation (4.1) the dynamic behaviour of the first three links of the Puma 

560 robot are governed by a set of second order differential equations as:

q, q;, ijj = system variables, joint i position, velocity, and accceleration

F; = torque acting on joint i.

Di;, Djj = effective and coupling inertias for joint i 

la, = actuator inertia of joint i 

Cÿj > Qjk = centripetal and coriolis forces for joint i 

Gj = gravity loading for joint i

The friction experienced at each of the joints is a function of the link position 

and velocity. In this model the friction is modelled as coulomb friction, and is

easily introduced into the second order model. The friction experienced at joint

i will be denoted by
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friction at joint i = H: ^

The second order equation is now written as

3 3
i ” j i ,  Dijilj + I a iqi  Djjk qj + Hj Qj + Dj ( 5 . 4 )

Eqn (5.4) describes torques at various links in terms of joint positions, velocities 

and accelerations. In reality, torque is not applied directly to the joints, but 

rather voltage is applied to the actuator motors. For the purposes of simulation 

and control we require system equations with voltage rather that torque inputs. 

This is achieved by combining equations (5.1) and (5.4).

Firstly differentiate eqn (5.4), giving

3

Fi = S ( Dij qj + Djj qj) +13^ 
j = i

3 3
+E E ( Di jk QjQk +D ijk <ij*iik +DijkQj4k) +^i^i  +Di ( 5 . 5 )  
j=i  k=i

S u b s t i t u t i n g  eqn ( 5 . 5 )  and eqn ( 5 . 4 )  into  eqn ( 5 . 1 )  g i ve s

3 3 3
T  T 1  Dij^ij + I a i q i +Z Z Dijkqjqk +Di + Hidi '
q  L j = i j = i k=i -I

Ri

V i =  Ï T I
r x  d ( 
L j = i

+ - 1

3

[ ï (  L j - i

L‘ 
+ k j

r 3 3
r e e
Lj = i k=i

+ kfNjCii

T r e  e  (Di jk4jqk +Di jkQj'qk +i>ijkqj% ) +i)i h -h ^  '
i Lj = 1 k=i J

( 5 . 6 )

Rearranging the terms g ives

Vi = T [ ^ ^ijqj +*aiqi +2 X E Djjk’qjqk Ë Djjkqj'qkl
i Lj = i j = i k=i j= l  k=l J

, cont
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T  I" ^ ^ ijqJ +^aiqi + mi] + “t  ^ Djj'qj 
q  Lj = i J kj j = i

L j g 3 •
+ “T ^ ^ Dj jk qjqk

kj j=i  k=i

1 3 3

+ “f ^ ^ Djjk qjqjf
ki j=i  k=i

+ kjNjqj

Ri
+ —rp  Hj qj

ki

Ri
+ t D; ( 5 . 7 )

ki

Equation (5.7) gives explicit third order differential equations for the first three 

robot links. The expression contains derivatives of the coefficient terms of 

equation (5.4). Although the third order expressions are more complex than the 

second, it is still possible to write them in a state space type of format.

5.3 Matrix Representation of Third Order Dynamic Equations

When simulating the third order equations it is convenient to store similar 

coefficient terms and states in arrays. The procedure taken is similar to that 

employed when writing the second order equations in matrix form. New states 

are introduced to cater for the third order derivatives. In order to write 

equation (5.6) in matrix form, the following plant states, matrices and vectors are 

defined:

X 1 =  q , X  2 =  q 2 X 3 =  q

X 4 = X  5 =  < * 2 X 6 =  q

X  7 =  q , X 8 =  q 2 X 9 =  q
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* = f  (x) + g(x)u

where x  =(x1 x 2 x 3 x„ x 5 x6 x 7 xe x 9) e R9

f(x) is a vector whose elements are dependant on the vector x  

manipulator parameters, f(x) e R9

and g(x) is a matrix whose elements are dependant upon the vector 
manipulator parameters, g(x) e R3x9. Eqn (5.8) may be written in 

form as

Equation (5.7) may be written in matrix form as:

w h e r e

D =

■ * 1  - X 4 r  0 0 0

* 2 X 5
0 0 0

X 3 X 6
0 0 0

*4 = X  7 +
0 0 0

* 5 x e
0 0 0

* 6 X  9 0 0 0

* 7

* 8 D " 1 P  (  x  ) D ‘ 1

.  * 9  .

V,

V 2

V,

L'
1 r -

k!
0 0 r la , 0 0 n

L2
00

k 2
0

L3

D + 0 Ia 2

0 0
K 3 .

0 0 Ia 3
■

(5.8)

and die

x  and the 
elemental

(5.9)

(5.10)
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The matrices in the representation given above contain elements that are 

trigometrical functions of the manipulator joint angles and velocities. In order to 

assess the validity of the above model, it is necessary to simulate it in software.

5.4 Summary

This chapter has shown how actuator dynamics for the Puma 560 manipulator 

are incorporated into the basic second order model of a robot. This was 

achieved as follows:

i) A first order approximation of the DC servomotors was presented,

ii) the gearing ratios which couple the motor torque to the joint torque

were given,

iii) the relationship between motor current and torque was presented,

iv) the derivative of the second order manipulator dynamic equation was

found,

V) the second order dynamic euation and it’s derivative were substituted

into the motor equation, and

vi) similar terms were grouped together for clarity

In the case of the Puma 560 a first order approximation of the permanent

magnet D.C. motor drive dynamics was chosen, resulting in a set of third order

differential equations for the manipulator. The third order set of equations have

voltage inputs and joint angle outputs. Since the Puma 560 control signals drive

the joint motors (via the power amplifiers) the third order model is more 

suitable for controller appraisal.

The third order equations were written in matrix form, similar to that used in 

the second order case, with vector and matrix elements as functions of the plant 

states. Backlash in the gearing, and elasticity have been ignored, assuming their 

contribution to be negligible. Many of the link mechanical parameters in the 

model are not exactly determinable, (eg. link inertias), emphasising the need for 

model validation.
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C H A PT ER  6

PUMA 560 ROBOT ARM SIMULATOR

In order to assess the model’s accuracy and to facilitate controller appraisal, the 

model was simulated in software. The simulation uses a classical fourth order 

Runge-Kutta technique for numerical integration. Justification for this choice is

given in Section 6.3. The main objective of this chapter is to show that the

simulation is designed for both accuracy and flexibility. Accuracy with regard to

round off and truncation errors, and flexibility for controller appraisal.

In this chapter the simulation facilities are listed, program structure is outlined 

with the help of a flowchart, the criterion for choice of numerical integration is 

discussed. The matrix inversion routine used when evaluating the dynamic 

equations is also studied studied.

6.1 Simulator Facilities

Care was taken in the design of the simulator to ensure that sufficient facilities 

are provided to allow full model testing and ease of interfacing to controller 

programs. To this end the simulator allows detailed examination of the effect 

that varying particular parameters have on the model dynamics. This proves

valuable when tuning the simulation to fit the. actual robot dynamics. The 

model simulation provides facilities that make it suitable for easy interfacing to 

controller procedures. Simulator inputs are

(1) Joint constraints,

(2) Initial positions velocities and accelerations,

(3) Motor voltages as a function of time, and the output is

(4) Joint positions, velocities and accelerations sampled synchronously.

The motor inputs are treated as piecewise constant voltages over the sampling 

periods. A data file containing voltage versus time is read by the simulator at 

each sample interval. The simulation program was designed so that movement 

in each of the joints can be determined by one of the following:

i
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(a) joint i is free to move subject to the manipulator dynamics 

and a user specified input voltage to joint i,

(b) joint i maintains constant angular position,

(c) joint i maintains constant angular velocity,

(d) joint i maintains constant angular acceleration.

The significance of (a) is that the joint movements are unconstrained and

determined completly by the dynamic model, while (b), (c) and (d) correspond to 

holding selected states constant in the dynamic model. Although the

implementation of these facilities increases the complexity of the simulator

considerably, they allow the user to focus on specific dynamic properties of the 

manipulator model. For example, coriolis torques generated at joint 1 due to the 

relative velocities at joints 1 and 2  may be examined by setting velocities x, 

and x 2 to be constant. By changing the combinations, and relative magnitudes 

of the joint velocities and accelerations, all dynamics can be analysed. For a 

three degree of freedom manipulator with four constraints per joint there are 4 3 

or 64 possible constraint combinations. Limits are set on the reachable positions

of each of the three lower joints as shown in Fig 6.1. Maximum velocities and

accelerations are also set. The values of the joint states are specified at run 

time.

6.2 Numerical Integration Methods

Any numerical integration technique involves perdicting the system states at the 

iteration step k, given the states at step k-1 and the present inputs to the 

system. This section discusses why the Runge-Kutta integration was chosen in

preference to the other available methods.

From the eqn (5.8) third order equationsare given in state space format as:

x = f(x) + g(x)v

This equation may be equivalently rewritten as

x = F (x,v,t) (6.1)
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J2 J2

Figure 6.1 Ranges of joints 1, 2 & 3
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indicating that the state derivatives are functions of the (i) present states, (ii) 

the input voltage and (iii) time. Given the initial state values and the input

voltage profile, it is possible to compute numerical values of the solution.

Numerical solutions are necessary when closed form formulae for the states are 

unavailable. Closed form formulae would be difficult if not impossible to derive 

for the Puma 560 third order dynamic equations. A numerical integration method 

provides a suitable means of obtaining a solution to the equations.

The principle of all numerical integration methods is to estimate the system 

states at time (t+h) given the states at time (t), and the system equations, where

t = present time

t+h = present time plus time increment

In each step, computations are done by some formula normally based upon the 

Taylor series:

x( t+h)  = x ( t )  + h x ( t )  + - j y  X ( t )  + ...........  ( 6 . 2 )

If h is chosen to be sufficiently small and if sufficient derivative powers of x

are taken then the value of x(t+h) can be perfectly found. The simplest method, 

called the Euler method, only takes the first power of h into account assuming 

hn (n > 1) are zero. This is valid only if h 4 1. The Euler formula has the 

form

x(t+h) = x(t) + h F (x,v,t) (6.3)

The Euler method is of limited practical use due to it's large truncation error, 

per step, of order h2. This is exaggerated when a large step length h it used. 

If it was possible to use a very small step h and if round off errors did not 

occur in the calculations then the Euler method would satisfy most 

requirements.

The Euler method was initially used to provide numerical solutions for the Puma

560 third order model. It was found however that the solutions produced were

highly dependant on the value of step increment. Even when small values of h 

were used, the solutions remained dependant upon the sample period. This was
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due to both truncation and round off errors.

Truncation errors in Runge-Kutta numerical methods are of the order of hn+1 

giving a closer approximation of the system functions. Thus numerical methods 

which include higher order derivatives of F have improved accuracy. One of 

the most widely used numerical integration methods in engineering applications is 

the fourth order Runge Kutta method.

Since fourth order numerical integration methods incorporate the first four 

derivatives of the Taylor series the truncation error is of the order of h5, which 

provides increased accuracy and makes larger incremental steps possible. The 

fourth order classical Runge-Kutta method was selected mainly because of the 

accuracy and ease of implementation. Runge Kutta algorithms have the following 

desirable properties

(1) the integration is self starting,

(2 ) the step size can be easily changed between iterations,

(3) they do not require derivative evaluation,

(4) they has good stability characteristics,

(5) they are applicable to nonlinear systems.

6.2.1 Implementation of 4th Order Runge-Kutta Integration

Popular derivations of the Runge Kutta method do not explicitly include an input

to the system. Analysis, however, shows that if the input remains constant 

between iterations, the Runge-Kutta integration caters for a system described by 

equation (6.1). Appendix B examines this area.

(6.4)

(6.5)

(6 .6) 

(6.7)

For an n^ 1 order set of equations (with inputs) written as:

*, = f, (xn, x 2 ... x„, VJ, t) U k n

the formula for advancing the solution one step is

Xj,r+i = xi>r + 1/ 6  (Kj  ̂ + 2 K;i2 + 2 Kjj3 + K ^ ) l^i^n

where
Xi,r+1 “ xi (̂ r+1 ) — xi (t0+(r+1)h)

Ki! = x2,r - V ’ V  tr)
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Kj2 hfj(x, J+0.5K,,, ... Xj^+O.SK^,, vi(r+0<5, t,.+ 0<g)

^ 1 3  = ^ i(x i^+0.5K, 2, ... xnr+0.5Kn)2, Vjjr+0 5, ^+0 , 5)

. . . . ( 6 . 9 )

Kj4 = hfi(x lir+0.5K13> ... xn>r+0 .5 K„f3 , vi>r+1, t,+ 1)

 ( 6 . 10)

When performing the computation the quantities K; 1 (l^i^n) must first be found 

then Ki2, Kj3 and lastly Kj4. The scheme requires the evaluation of the 

function fj(x,v,t) four times for each state per integration step. In cases where 

the functions fj are complicated the fourth order Runge-Kutta method involves a 

considerable amount of computation. When simulating the Puma 560 model on 

the microVax minicomputer using single percision arithmetic with h=0.05, a ten 

second simulation takes approximately 9 minutes cpu time. Since the simulator 

accuracy, rather than speed was the main objective, the computational burden was 

deemed acceptable. Values of h between 50mS and 40mS did not improve the

simulation solution but increased the execution time. When h was chosen to be

any larger than 0.035 mS the simulation output became inaccurate when the joint 

angle velocities were high.

In the case of the Puma 560 simulation the mode of joint movement, selected 

as (a), (b), (c) or (d) in Section 6.1, influence the integration procedure. In 

each iteration step the Runge-Kutta algorithm firstly integrates the state variable

differential equations subject to no joint constraints. Once calculated, the 

procedure checks whether the joint is constrained, and if so, the contraint 

consequences override the Runge Kutta values. Joint constraints restrict the 

values of the elements of the derivative of the state space vector. At present, 

the simulation does not take advantage of the model simplifications that exist 

due to joint constraints. Each joint constraint reduces equation (6.3) by one 

order. The present simulation program integrates the full unconstrained dynamic 

response at each step and then corrects the state values. Thus simulation speed 

remains unchanged regardless of joint constraints.

 (6 .8)
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6.3 Matrix Inversion Routine

Solving equation (5.9) involves inversion of the D matrix. Two areas of 

concern exist: (a) the possibility of D becoming singular and (b) the routine 

must be designed so that round off errors are minimised. An expression for D 

may be written from (5.10) as:

D =

0 0

D

la ,

0

0

la .

0

0

0  la ,

R 3 X 3

Using the mnemonics used in the simulation program the expression for D may 

be written as

D = LKMAT [D  + IMAT ]

LKMAT is a diagonal matrix, e R 3* 3, whose elements are quotients of the

motor equivalent circuit parameters ie. the armature inductance divided by the 

torque constant for the motor. The first three joints in the Puma 560 are driven 

by identical motors, having identical equivalent circuit parameters. Thus, in the 

case of the Puma 560, LKMAT is a scaled version of the identity matrix. 

IMAT, e R 3* 3, is simply added to D. IMAT contains the reflected motor 

inertias. These values are positive and comparatively large. The main source of 

any problems will stem from the behaviour of the D matrix containing the link

inertial terms. Certain properties of the matrix are known [18].

D(q) = [dy] 

is symmetric: dy = djj for all i end j

Positive definite: djj > 0  for all i

dH2 < djj djj for all i, j

Since D is positive definite, D+IMAT is also positive definite. LKMAT scales
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the sum of D and IMAT by a positive number thus D is positive definite. D 

is therefore always nonsingular.

The other consideration was to ensure that round off errors are kept as small as 

possible. In Gauss Jordan Elimination round off errors occur when there are 

large magnitude differences in the elements of matrix columns. Partial pivoting 

reduces roundoff errors by taking the largest element in the matrix column as 

the pivotal coefficient. Gauss Jordon elimination with partial pivoting was found 

to give sufficiently accurate matrix inverses when tested on matrices with 

element magnitude differences of 1 0 ,0 0 0  when using double percision arithmatic

on a microVax minicomputer. Using single precision reduced accuracy by about 

15%. Double percision has been used in the inversion routine in the simulator.

6.4 Simulation Program Structure

Figure 6.2 shows the flowchart for this program. A brief summary of the

simulation programs operation is now presented.

Equations (5.8) and (5.9) give the third order dynamics in a matrix foim. The 

matrices and state vectors in equation (5.9) have been partitioned. States x, to 

x 6 are linearly related to states x 4 to x 9. However the high order states, 

representing the third derivates of joint positions are highly nonlinear and coupled 

as indicated in equations (5.10) and (5.11). The derivative of the state vector 

(e R 9 ) in eqn (5.9) is redefined as three subvectors (e R 3) for use in the 

simulation. This is more convenient when evaluating the dynamic equation using 

arrays. The matrix D was calculated in software simply as the product and sum 

of three readily available matrices- namely the inertial matrix D and two

constant diagonal matrices. The expression for D is given in eqn (5.10).

Calculation of the P(x) vector is more involved and was achieved in the 

simulation program by rewritting equation (5.11) as shown in equation (6.2).

P(x)  = - (FMAT + BMAT + GMAT + HMAT) x

- (JKMAT + KMAT) X
+ LMAT (6.2)

These mnemonics are consistant whith those used in the simulation program
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Figure 6.2 Flowchart of simulation program



x = ( *1 *2 *3 ) = ( x7 x8 x9 ) 
ft = ( XI n  x3 ) = ( x4 x5 x6 )

where

By comparing equations (5.9) and (6.1), the matrices have values:



HMAT =

r R,la.

0

+ H,

R2 I a 2

0

0

0
R-3 ̂ a 3

T- + H3

-±T (x4 x5 x6)(L,D1+R,D1)
k?

JKMAT = -i-- (x„ xs X » )  (L3Dj+RzD2)
k 2

(x4 xs x6) (L3D3+R3D3)
k 3

KMAT =

k, Ni+ H, o

K  n 2+ h 3 0

0 k^ Na+ H3

LJ?, + 
kf

RjD,
, .t

LMAT = L?D. 
, t i

R?D.
,.t"

R,D, 
• t '

These matrices are evaluated at each integration step and the vector P(x) is 

found. When the inverse of D has been calculated no variables in equation 

(5.9) are unknown.
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6 .S Summary

This chapter outlined the main considerations taken when designing the 

simulation program for the Puma 560 third order dynamic model. Section 6.1 

detailed how conditions can be put on the model joints to facilitate examination 

of different coupling effects between the links. The conditions override the 

Runge-Kutta integrated outputs at the end of each iteration. It also enables the 

control engineer to examine how a controller will respond to different operating 

conditions.

The fourth order Runge-Kutta numerical integration method was selected for the 

integration for the following reasons:

i) small truncation errors, of the order of h 5

ii) small round off errors since h may be chosen as a relatively large number

( h = 50mS produced accurate results )

iii) ease of implementation, and

iv) it was found to be suitable for a system with a peicewise constant input.

The matrix inversion routine was designed for error minimisation. Gauss Jordon 

elimination was employed with partial pivoting with accurate results. The matrix 

D was found to be always nonsingular.
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C H A P T ER  7

OPEN & CLOSED LOOP MODEL PERFORMANCE

This chapter firstly examines the behaviour of the third order dynamic model for 

the Puma 560 industrial robot which was presented in Chapter 5, and tunes it to 

ensure that it duplicates the industrial manipulator dynamics. Secondly, a

classicalPID controller has been implemented on the model joints and 

performance is evaluated.

The nominal robot link parameters given in Chapter 4 were initially used in the 

model coefficient terms. Tests on the model performance are chosen to record 

dynamic effects which relate to different manipulator dynamics. Analysis of

these tests allow accurate estimates for link parameters to be made. Selected 

link parameters are varied to tune the model. Numerical values for some of the 

link parameters are well known:- namely the position of the centre of mass for 

each of the links, link masses and motor dynamics. These will remain fixed 

during all model tuning. Test data is obtained from measurements of the 

industrial manipulator.

Tests on the dynamic model can be divided into two main groups, open loop

and closed loop tests. Simple open loop tests on general model performance

may be completed, without reference data from the Puma, when the engineer has 

an intuitive knowledge of how the manipulator should act. These preliminary 

tests examine basic model properties and are documented in Sections 7.3 - 7.9. 

The majority of open loop tests, however, require test data from the actual robot

because the manipulator dynamics are highly coupled and difficult to decipher.

The dynamic model is tuned by comparing the simulator and actual manipulator 

responses for similar voltage inputs. Once tuned, the closed loop dynamic model 

performance is accessed.

Proportional Integral Differential (PID) control is employed on each of the model

joints. Each controller is tuned using Ziegler Nichols ultimate sensitivity method.

Both single joint and multi-joint control of the dynamic model are examined.

The results obtained from the closed loop tests provide insight regarding the

complexity of the control problem. It is found that multi-joint control of the 

dynamic model using single loop positional PID controllers ( without gain 

scheduling ) produces poor results.
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7.1 Puma 56Q Hardware Configuration

Figure 7.1 shows a simplified diagram of the Puma hardware. The Puma range 

of manipulators are controlled by VAL. VAL provides an operating system

which controls the manipulator and allows the user to program various tasks 

[19]. Tasks are entered in the form of end effector position and orientation 

coordinates (x,y,z,o,a,u). These coordinates are transformed to supply the 

controller boards with six joint space coordinates. Desired paths are followed by

the continual updating of desired joint positions.

VAL has been designed as a selfcontained environment which makes interfacing

with external equipment difficult. The user has no access to any hardware 

information via the keyboard, its software is stored in EPROMS which does not

allow the user to examine or modify its routines. It is therefore impossible in

the commercial system to access controller board outputs or even joint positions 

while the arm is tracking some desired path. In order to obtain suitable data 

for model testing purposes, it was necessary to record data using external 

equipment.

In the Puma series of manipulator heirarchial controller system the VAL handles 

path tracking, inverse kinematics, program execution etc. Joint control represents 

the lowest level. Each joint is controlled by its own digital controller board

based around the Rockwell 6503 processor. Each controller board is provided 

with a set point every 28 mS by VAL, implemented on the DEC LSI-11/02

microcomputer. Potentiometer and incremental encoders are housed on the rotor 

of each servo motor. Approximately 30 times during each 28 mS window of 

the digital servo system, the signals from the encoders are compared to the 

setpoint and any necessary correction signals are generated. The control signals 

from the controller boards are amplified by the power amplifier units for each of 

the servomotors.

The Puma 560 mechanical manipulator - is represented by the dotted box in

Figure 7.1. This section of the manipulator has been modelled in the previous

chapters. Although the model output positions are given in radians compared 

with the incremental encoder output provided in the actual manipulator, both 

outputs can easily be related to one another.
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7.1.1 Aquiline Manipulator Inout/Outout Data

Many of the tests in this chapter require recorded input/output data for the 

manipulator. In the schematic diagram of the Puma 560 controller hardware 

configuration, Figure 7.1, the points at which the test data was obtained are 

shown. For open loop model tests, the input voltages to the three primary joint 

motors (waist, shoulder, and elbow) and output positions from the calibration 

potentiometers were recorded on different channels of a DASH- 8  card mounted 

on an Erricsson personal computer.

The absolute joint positions were determinable from the calibration pots on the

Puma 560 encoder-potentiometers units connected to each motor armature. The 

pot signals were tapped from the J-Bus connector on the back plane of the

robot control module. Motor input voltages were tapped from the outputs of the 

three major power amplifier units in the power amp module [14]. Both signals

were conditioned and filtered before being converted.

7.1.2 Acquiring Controller board Input/Output Data

Input/output data from the controller board is required in order to identify the

controller parameters. Figure 7.2 shows a schematic diagram of the Puma 

controller board with it’s input and output signals.

All of the Puma digitial controller boards have identical hardware and are 

interchangeable in the Puma system. During the initialisation procedure and 

execution of the path motions, controller parameters are downloaded from the 

main computer board to the seperate controller boards. In order to obtain data 

suitable for identification from the controller board the following procedure was 

taken.

The Tektronix 9100 Series Digital Analysis System (DAS) was used to acquire

data at the board inputs and outputs. The controller output is a 12 bit digital 

signal and is converted to an analog signal before the power amplifier. The 

incremental encoder input to the controller is in the form of a square wave 

signal. This signal is converted to an 8 bit code and is available on the

controller board data bus. Setpoints are received by the controller board via the

Q-bus.
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Figure 7.2 Schematic of Controller board

Figure 7.3 Redefinition of joint ranges
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The data on the data bus was recorded. The source and destinations of the data 

was determined by monitoring the control lines on the Q-bus. This made it 

possible to separate encoder positions and setpoints from other data that appeared 

on the data bus while the controller software was executing. The controller 

output was recorded on a separate data acquisition input channel. The DAS has 

a memory capacity of about 4 kbytes. A sequence of data 4k long could hence 

be collected and later examined.

7.2 Motor Output Torque Tests

To avoid discontinuities from n  to -tc in the specifications of the joint 2 and 3 

simulated angles, the joint angles of Fig 6.1 have been redefined as shown in 

Fig 7.3 This provides a clearer simulation output.

Several preliminary tests were made on the simulator.

Each of the joints was driven with constant voltages varying from -40 volts to 

40 volts in steps of 5 volts to check that the motors produced sufficient torque 

to drive the links at the full range of velocities specified for the Unimation 

Puma.

Test 1 It was found that in order to drive joint 2 through its full range of

positions, when the arm was fully extended, a minimum constant voltage of 7.5

volts was required. Viewing the actual Puma motor voltages for a similar

motion showed that the minimum voltage required was 8.5 volts.

Test 2 When link 3 was folded back completely, presenting its minimum 

gravity loading, simulation results showed that joint 2  could be driven by a 

minimum voltage of 4 volts. In this configuration, when the mass centre of 

link three was closest to joint 2, the same motion required 5 volts in the 

industrial robot.

Test 3 The minimum voltage required to drive joint 3 through it’s complete

range was measured on the industrial robot to be 5.5 volts. In the model,

however, a smaller voltage of approximately 3.5 volts was needed.

The differences between simulated and actual voltage requirements can be 

accounted for by friction forces or incorrect link inertias
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Plot 7.1 Simulated motion of joint 2  with constant i/p voltages
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Plot 7.2 Simulated motion of joint 3 with constant i/p voltages



Test 4 Individual joints on the Puma 560 were commanded to rotate at

different constant velocities in both directions. Plot 7.1 shows the simulated 

motion of link 2 for a range of constant voltage inputs. The first and third 

joints were locked in an extended arm configuration for these tests. The graphs 

are all nonlinear due to the gravity loading which depends upon position.

Test 5 Plot 7.2 shows the simulated motion for link 3 for constant input 

voltages ranging from 0 to 40 volts. Again the motion is nonlinear due to

gravity loading.

Tests 4 and 5 were repeated for negative voltages starting from the other link 

extremes. The link movements were found to be symmetrically identical.

7.3 Estimating Friction Coefficients using Gravity Tests

Gravity tests are used to provided initial estimates of friction forces for each of 

the three joints. Friction is modelled as coulomb friction.

The arm simulator was run in different statring positions with zero voltage inputs 

and links given freedom of motion. The joints were allowed to collapse under 

the force of gravity. The test when the simulator initial angles were all equal 

to zero, as shown in Figure 3.4 is described here as a typical example. For

this test the friction forces were initially set to zero. Friction forces are later

introduced on improve the model response. Plot 7.3 shows the simulated 

response. In order to compare the simulation response with the actual

manipulator responses for a similar motion, the robot aim was supported and the

brake release button was pressed. Plot 7.4 shows the measured response from

each of the three joints of the Puma.

The simulated motion of link 2 compares well with the actual motion for this 

test. The simulated link 3 response has a larger overshoot than was recorded 

for the real system. Joint 1 is not affected by gravity however the movement

of joints 2 and 3 have caused it to rotate fractionally. The extent of this

rotation was more marked in the simulation than on the Puma. Introducing a 

carefuly choosen friction coefficient for joint 3 produced the response shown in 

Plot 7.5. After a series of gravity tests it became apparent that friction forces
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existed at all joints. Estimates of the friction forces present at joints 1 and 3 

were made and introduced permanently into the model. It proved more difficult 

to estimate the friction forces at joint 2 due to lack of test data. It was not 

possible for this link to oscillate as in the case of link 3. Allowing it to 

collapse from greater heights ran the risk of damaging gearing and stop supports. 

The friction experienced at joint 2 was estimated to be twice that of joint 3 

since the gearing ratio of joint 2 is twice that of joint 3.

The estimated values for friction coefficients are given in Table 7.1.

7.4 Estimating Radii of Gyration using Self Inertial Tests

The self inertia experienced at any joint is due to the acceleration at that joint. 

The self inertia experienced at link i depends on the inertias of links j (j  ̂ i) 

and on the manipulator configuration. The self inertia terms provide a means of 

measuring some of the link parameters. In the following tests the wrist joints 

are treated as a lumped mass on link 3. The radii of gyration of the 

manipulator links are related to the link moments of inertia as given in the set 

of equations 3.10. Section 4.3.1 gave the formulae for the manipulator dynamic 

equation coefficient terms. By measuring the input output responses of the 

manipulator joints in different configurations the values of link parameters can be 

estimated. The tests are designed so that the effect of different terms may be 

isolated.

In the following tests the various joints were manually controlled using the Puma 

manual control pendant. The manual * control was set at its maximum speed 

position in order to achieve maximum acceleration and deceleration. Although 

the manual control does not allow the manipulator to attain its maximum 

velocity the acceleration to reach this speed is sufficient for inertial tests.

7.4.1 Estimation of k 2̂

Because of the manner in which each of the inertial terms are coupled, 

parameters in link 3 were examined first. Symbolic formuli for all inertial 

coefficients Djj for the Puma 560 are given from eqn (4.18) as:

D 33 = ma(k 3zz + a |  + 2 a 3x 3) 

specifies the self inertia for link 3. Only the z component of the radius of
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Plot 7.7 Position profiles for constant joint 3 velocity demand, 
measured and simulated

X - A X I S  *  E -01  / - A X I S  *  E  02

Plot 7.8 Position profiles for constant joint 2 velocity demand, 
measured and simulated
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gyration is present because link 3 rotates about the z axis of the reference 

frame. Locking joints one and two allows us to study the movement of the 

third link in isolation.

Link 3 was allowed to hang vertically. The link was then commanded to move

at the maximum velocity possible using the puma manual control unit, to its 

horizontal position. This command involved an initial acceleration then a 

constant velocity followed by a deceleration period. The acceleration and 

deceleration periods are of particular interest when analysing the link inertial 

terms.

Link three was commanded to rotate about the joint 3 axis with the waist and 

shoulder links in locked positions. In this configuration link 3 is only affected 

by inertial and gravity terms. The input voltage to motor 3 was recorded and 

is plotted in Plot 7.6. Plot 7.7 shows three plots, a) measured joint 3 angle 

movement, and the simulated open loop movement of joint angle 3, b) nominal 

value of k 2zz and c) tuned value of k*zz. Reducing kjzz improved the 

likeness between measured and simulated responses. Repeating the above test at 

different points over the full range of possible positions allowed for joint 3 gave 

an accurate estimation of k |zz. This value is given in Table 7.1

7.4.2 Estimation of

The same procedure may be carried out in order to estimate k |zz using test 

data for link 2. From eqn (4.13) the self inertia of link 2 is given as :

D22 = m2 (k 2zz + a 2 + 2a 2x 2)

+ m3 [ ( 2 a 2a 3 + 2 a 2x 3 )C3 + 2 a 2z 3S 3 + k 3ZZ + a 2 + a 3 + 2 a 3x 3]

All elements except k 2zz on the R.H.S. of the equation are known. In order to 

obtain test data for joint 2, joint 3 was locked at -52° to ensure it presented

it’s minimum inertia to joint 2. Figure 7.4 shows this configuration. Joint 2

was then commanded to accelerate to the full velocity possible with the manual 

control. Plot 7.8 shows mearured joint movement and Plot 7.9 shows the 

corresponding input voltage profile. Again the simulator response was examined 

for the voltage shown in Plot 7.9 and the resonses for nominal and tuned values 

of k\zz are both plotted in Plot 7.9. k2zz was increased to improve the
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Figure 7.4 Position of link 3 to present minimum Inertia ot joint 2

Figure 7.5 Manipulator position for final gyration Test
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response. After several similar tests at various evenly distributed initial positions 

within the range of joint two the value of k \ z z  was accurately determined and 

is entered in Table 7.1.

7.4.3 Estimation of k |yy & k ^

When determining k |xx and ksyy the self inertial term for joint 1 was used. An 

expression for D , , was given in equation (4.9) as.

Dii = m ik ?zz
+ m2 (k 2xxs l + k iyyC 2 + a 2C 2 + 2 a 2x 2C* )

+ m3[ k | xxS 2 3 + k§zzC2 3 + d 3 + a 2Ĉ  + a 3C| 3 + 2 a 2a 3C2C23 

+ 2 x 3 ( a 2C2C23 + a 3C | 3) + 2 y 3d 3 + 2 z 3 ( a 3C2 3 S 23  + a 2C2S 23)]

During the following test we assume that the link parameters for links 1, 2 and 

3 are in the correct proportion. Responses are recorded for different tests and 

the parameters then scaled to give the best fit to the measured data.

The first test had the robot arm in it’s extended upright position, This position 

corresponded to the three joint angles being set as follows : q, was set to 0 °, 

q 2 = 90° and q3 = -90° as shown in Figure 7.4. Substituting these joint

angles into equation (4.9) shows that the term containing k2yy equals zero and 

k 2xx has its maximum effect. Joint 1 was commanded to rotate at its 

maximum velocity. Plot 7.10 shows its movement and Plot 7.11 shows the

driving voltage. The simulation response for the same input is plotted with the 

actual response in Plot 7.10. The simulator has a slower response because the 

k|yy, k | xx, k^zz are fractionally too large. It was difficult to identify which 

contributed most, so all were scaled down proportionally. This resulted in the 

improved response also plotted in Plot 7.10. Table 7.1 contains the corrected 

values.

7.4.4 Estimating the Remaining Radii of Gyration

In order to estimate the value of k 2yy the arm was placed in the configuration 

shown in Figure 7.5. Substituting the three joint angles into equation 7.3 causes 

some of the terms to disappear. When in this configuration k2xx has no effect

while k 2yy has its maximum effect. Plot 7.12 shows the recorded movement of

joint one when commanded to rotate at Constant velocity in a negative direction.
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Plot 7.9 Voltage i/p to joint 3 for constant velocity demand
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Plot 7.10 Position profiles for constant joint 1 velocity demand, 

measured and simulated
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Plot 7.13 shows the corresponding recorded input voltage. Plot 7.12 also shows 

the tuned and untuned simulated joint responses to the same voltage input.

The radius of gyration elements for each of the links was found (in a similar 

manner) by setting the arm in different configurations, causing different joints to

accelerate recording the joint input and output response and tuning the simulator

response by varying the causal parameter.

Table 7.1 gives the full list of tuned link parameters.

7.5 Open Loop Path Tracking Tests

This section examines how close the simulator can follow the Puma motion for 

a recorded set of motions when operating in open loop. In these tests the 

Puma 560 tool was commanded to travel in a straight vertical line between two 

points. Figure 7.6 shows a lined diagram of the manipulator initial and final 

positions. The command was given via the manual control module. The path 

tracking tests were run at a relatively slow speed.

The input voltages to the three joints were recorded while the manipulator 

moved through this path. These voltages were input to the simulator. Plots 

7.14, 7.15 and 7.16 show the measured and simulated joint angle profiles for 

joint 1, 2 & 3. The simulated joint angle movements compare well with the

measured angles. Both joint 2 and joint 3 experience a drop due to gravity at

first. After the initial slip joint movements are satifactorily similar. Simulated 

joint 3 movement is slower than the recorded response.

7.6 Considerations for Closed Loop Tests on the simulator

In order to emulate the Puma controller system, in software, on the dynamic 

model the following steps are taken:

(1) Setpoints are supplied to the software controller program every 28 mS.

(2) The controller program samples the model output variables every 28/30 mS.

(3) Control signals will remain constant over each sampling interval.

(4) The power amplifiers are modelled as constant gains.

The controller discussed in the following section deal with the closed loop
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TABLE 7.1
Tuned Puma 560 link parameters

1 ink mass radius o f  gyrat ion f r i c t i on r e f l e c t e d  
motor in e r t ia

mj(kg) kixxO»2) kiyy(m2) k i z z ( raZ) Hj(Nra/m/s) Iaj (kg-m2)

1 12.96 0.1802 0 .1800 0.0141 0.0107 0.1816

2 22.37 -0 .0516 0.1900 0.0031 0.0341 0.2361

3* 5.01 0.0510 0.0691 0.0027 0.0150 0.0590

* Considering the l a s t  three l in k s  as a load added to l i n k  three.



Plot 7.11 Voltage i/p to joint 1 for constant velocity demand

Plot 7.12 Simulated position profile for joint 1, 
negative velocity demand

93



V  A, X | s 5« E - 01 Y A XIS * E  01
Plot 7.13 Recorded i/p voltage for constant velocity at joint 1

X - A X I S  *  E - 0 1  Y - A X I S  * E •— 0 "I

Plot 7,14 Motion of joint 1 during simultaneous open loop response of
all three joints.
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Plot 7.15 Motion of joint 2 during simultaneous open loop response of
all three joints.

X - A X I ' S  *  E - 0 1  Y - A X I S  t E - O " '

Plot 7.16 Motion of joint 3 during simultaneous open loop response of
all three joints.
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system sketched in Fig 7.1. The hardware to the left of the digital controller 

boards shown in Fig 7.1 is replaced by a data file which contains the setpoints.

Separate discrete Proportional Integral Differential (PID) controllers are used to 

control each of the three primary joints individually. The PID controllers are 

tuned using Zielgler-Nichols ultimative-sensitivity method [21]. Once PID values 

were chosen the closed loop system response was examined for different joint 

path commands. The setpoints are chosen to be ramp and step functions in 

time. The step function command provides an indication of overshoot and rise 

times.

The open loop tests have provided sufficient information to tune the model so 

that it more accurately represents the true manipulator dynamics. The tuned 

model is suitable for controller evaluation. The remainder of this chapter 

examines the closed loop model performance.

Astrom [21] covers both discrete and analog PID control in detail. PID

controllers have very robust characteristics. The preformance of seperate PID

controllers on each of the model joints provides an indication of problems that

arise in the multi-joint control problem. A brief summary of PID control is 

outlined below. Fig 7.7 shows a simple closed loop system. The controller is 

driven by the error signal between actual output and desired output. The

structure and parameters of a controller greatly influences the closed loop system 

performance.

In the continuous time domain the equation for a PID controller is

7.6.1 A Review of PID Control

1 ft d e ( t )
u ( t ) = Kg ( e ( t )  + e ( t ) d t + T(j ) (7 .1 )

dt

where

Td

gain factor 

integral coefficient 

differential coefficient
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Figure 7.6 Vertical path recorded for openloop test

Figure 7.7 Closed loop System 
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In the complex frequency domain eqn (7.1) can be written

1
G(s) = Ke ( 1 + Td s + ------- )

TiS

A discrete algorithm can be used by discretising eqn (7.1) making a simple

backward difference approximation of the derivative part and an Euler

approximation of the integral part. This provides accurate results when the

sampling rate is short compared with the shortest time constant of the control

system, The discretized equation is:

k-1 Td
u(k) = Kg ( e (k )  + Z e ( i - l )  + -----  (e (k )  - e ( k - l ) )  ) ( 7 .2 )

i = o h

h = sample period

In order to save on-line calculation time the recursive version of eqn (7.2) is 

used as

U(k) = U(k-1) + qQ e(k) + q, e(k-l) + q 2 e(k-2) (7.3)

This discrete equation corresponds to the transfer function in the z domain

U(z) q 0 + q, z - i  + q 2 z ’ 2
G(z) = ------- =   ( 7 .4 )

e ( z )  1 - z ' 1

In this cases the relationship between the discrete and analog coefficients are

q 0 = Kg ( 1 + — —  ) (7 .5 )

Td h
q, = K„ ( 1 + 2 --------------- ) ( 7 .6 )

h Tj

Td
q 2 = Kg ------  ( 7 .7 )

* h
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7.6.2 Ziegler Nichols Tuning of Controller Parameters

The Ziegler Nichols ultimate-sensitivity method of determining the Td, Ti and K 

coefficients is now outlined. Firstly a proportional controller is used to control 

the system. The minimum proportional gain that causes the closed loop system 

to oscillate is recorded. This gain is referred to as Kmax. The period of 

oscillation, Tp, is recorded. A suitable (averaged) set of P, I, and D parameters 
is then given from the Ziegler Nichols settings [21] as shown in Table 7.2.

Control  method Parameter choice

Kg • Tj Td

P 0 .5  Kraax

PI 0 .45  Kmax Tp/1 .2

PID 0 . 6  Kmax Tp/2 Tp/ 8

Table 7 .2  Z ie g l e r  N ichols  C ontro l ler  S e t t i n g s

7.7 PID Control of the Robot Dynamic Model

This section examines the closed loop performance of the Puma dynamic model. 

Single loop positional control is applied to the seperate joints while the other 

joints are locked in position. It is found that small oscillations with decreasing 

magnitudes occur in the single joint control cases. One case of multi-joint 

control is presented in the final subsection.

7.7.1 PID control of Joint 1

The inertial load experienced by joint one depends upon the position of links 

two and three. Joint 1 is independent of gravity forces. Since the controller is 

required to control the manipulator through all reachable points, it must be 

designed to cater for the worst possible cases. Two load extremes exist for 

joint one: a) when link two and three are fully extended and the manipulator is
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in its vertical poise (see Figure 3.2(a) ), and b) when link two and three are 

fully extended and the manipulator is in it’s horizontal position, (see Figure

3.2(b) ).

Although the controller needs to cater for demands when joints two and/or three 

are accelerating or travelling at constant velocities, the controller in this section 

is designed when joints two and three are in locked positions. Values for the

PID controller are found for the two extremes described above using

Ziegler-Nichols values. This gives an indication of how dependent the PID

parameters are on robot position if controller performance is to remain

constant.

The Puma simulation was configured in its vertical position with joints two and 

three locked. The error signal to the controller was measured in radians and the 

output of the controller in volts. Values of = 150 and Tp = 0.45 were

found.

Using Table 7.2 values of Td, Ti and K were calculated. Plot 7.17 shows the

closed loop system response for these values.

The Puma simulation was configured in it’s horizontal extended arm position. In 

this position Kmax = 220 and Tp = 0.6. Plot 7.18 shows the simulated

response with these PID parameters.

A certain amount of overshoot is present in both plots. This is removed by

employing a smoother path of setpoints thus avoiding sudden changes in joint

velocity.

7.7.2 PID control of Joint 2

A similar procedure was employed to find controller parameters for joint 2.

Links 2 and 3 are aligned thus presenting their maximum load to joint 2.

Values of Kmax and Tp were evaluated at setpoints over the complete range of

joint 2 positions. The minimum value of K ^ x  and the maximum value of Tp

were chosen to ensure that the controller would remain stable over the full range

of positions for joint 2. These values was found, I^nax = 475, Tp = 0.4

which occured close to the arm vercical position. Plot 7.19 shows the closed 

loop response to the PID controller chosen according to Table 7.2.



setpoint profile

Plot 7.17 Simulated closed loop contol of joint 1 using parameters
chosen when Kmax = 150, Tp = 0,45

X -  AXIS  *  E -01  Y - A,>:'|5 * E — 01

Plot 7.18 Simulated closed loop contol of joint 1 using parameters
chosen when Kmax = 220, Tp = 0.6
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The procedure was repeated with joint three set at an angle of -0.9075 rad (ie 

folded back against link two thus bringing its centre of mass as close as 

possible to joint 2). Kmax and Tp were found to be equal to Kmax = 385 

and Tp = 0.2. This occurred when joint two was 0.17 radians away from its 

vertical position. This position corresponded to when the centre of mass of the 

combined links was directly above the joint axis. PID parameters were chosen 

according to Table 7.2 and the path shown in Plot 7.20 was followed.

7.7.3 PID Control of Joint 3

Link 2 was locked in its vertical position and joint 3 was commanded to move 

to different positions over its full range. Kmax = 270, Tp = 0.18 were chosen 

for most stable control. Plot 7.21 shows the closed loop response when PID 

values were chosen according to these measurements and Table 7.2.

7.7.4 Multi Joint Control of The Dynamic Model

It has been shown that each joint can be adequately controlled by its PID 

controller if only one joint moves at a time. Essentially this control problem is 

that of positional control of a motor with a varying load. Simultaneous 

positional control of the three joints presents a larger problem and is now 

examined. The PID parameters were chosen as detailed in the previous section. 

The desired paths for each joint and closed loop joint responses are shown in 

Plot 7.22.

Joints two and three experience sustained oscillations when attempting to remain 

in a fixed position. Different setpoints were examined and similar oscillations 

were present in all cases. The oscillations are the result of coupling between 

the joints.

7.8 Puma 560 Controller Parameter Identification

Test data suitable for the identification of the joint 1 controller board was 

obtained while the manipulator was executing the repeated motion sketched in 

Fig 7.8. This motion corresponded to a repeated 10 mm end effector movement
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in the x direction w.r.t. world coordinates while the robot arm was horizontal

and extended fully. Three sets of data were obtained:

(a) the controller setpoints, in radians

(b) The joint position, in radians

(c) Output control signal, in volts

It was necessary to convert the encoder and setpoint inputs to radians and the 

controller output to volts, so that both the simulation and actual manipulator 

controllers were operating in the same scales.

One estimate of joint one’s controller tranfer function was identified using a

Recursive Least Squares (RLS) [22] algorithm on the first batch of test data as:

6739 + 1430 z ' 1 + 5743 z ' 2
G(z) = ------------------------------------------------------------------ ( 7 .9 )

1 + 0 .96  z ’ 1 + 0 .106  z ' 2

The PID controller z domain transfer function given in eqn (7.4) has no z-2 

term in it’s denominator. The RLS identification routine however has identified 

a z' 2 denominator term- The coefficient of this term is approximately 9 times 

smaller than the z' 1 coefficient and is ignored when calculating the PID

parameters.

Several sets of data were recorded in the same operating region. Given the 

sampling period, h = 0.93 mS, equations (7.2) to (7.4) are used to solve 

simultaneuosly for the controller PID values. Using the identified transfer 

function coefficient values from different sets of data about the operating region, 

PID values were found to be:

Kg = 137 ± 13%

Tj = 0.315 ± 15%

Td = 0.032 ± 40%

In order to provide a set of test data at a different position in the manipulator 

operating range, end effector paths were chosen about points close to the
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CU)

Figure 7.8 Motion for Controller board Parameter Identification

104



X — AXIS * E -01 Y-AXIS * E — 01
Plot 7.19 Simulated closed loop contol of joint 2 using parameters

chosen when Kmax = 475, Tp = 0.2

X-AXIS * E •■•01 Y-AXIS ■* E —-01
Plot 7.20 Simulated closed loop contol of joint 2 using parameters

chosen when Kmax = 385, Tp = 0.18
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X - A X I S  *  E  - 0 1  Y - A X I S  * E  — 01

Plot 7.21 Simulated closed loop contol of joint 3 using parameters
chosen when Kmax = 150, Tp = 0.45

>int Angle 
(rad)

X - A X I S  *  E - 0 1  Y - A X I S  * E — 01

Plot 7.22 Simultaneous control of joints 1, 2 & 3
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manipulator’s highest reachable point. Using VAL, the end effector was 

commanded to move in repeated paths in the horizontal plane. Plot 7.24 shows 

one of the joint movement profiles. Eqn (7.10) gives a typical controller 

transfer function as estimated using the RLS algorithm on one set of data.

8618 + 15106 z ' 1 + 8913 z ' 2
G(z) =     ( 7 .10 )

1 + 1.13 z ' 1 + 0 .0972  z - 2

Using similar arguments as discussed above values of K, Tj and Td were found 

to be

Kg = 176 ±45%

Tj = 0.42 ±27%

Td = 0.04 ±50%

These values are different from those of the previous set of tests, indicating that 

a form of gain scheduling is employed in the Puma 560 manipulator controllers.

7.9 Simulation Results of Model Conrtol Using Measured PIP Parameters

The closed loop simulation tests on joint one in Section 7.4 used constant PID 

controller values for the full joint ranges. This section examines whether the 

performance of the first joint is much improved using the measured controller 

parameters.

With the arm fully extended joint one was commanded to follow a specified

path as shown in Plot 7.25. This plot shows the closed loop responses using

both the measured PID parameters and those estimated in Section 7.8. The

simulator follows the desired path more accurately when controlled by the 

measured PID controller.

With the arm in its vertical position joint one was commanded to track the path 

shown in Plot 7.26. Again both measured and estimated values for the PID

controllers were used. Both responses are plotted in Plot 7.26. It is difficult to

determine which set of parameters produces the better results. Both controllers

are slightly detuned.
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7.10 Summary

A complete set of tuned link mechanical parameters was derived by driving the 

third order dynamic model in open loop. The tuned model joint angles 

accurately followed measured angle profiles when driven by recorded input 

voltages.

Using Ziegler Nichols ultimate-sensitivity method PID controllers were designed 

for each of the simulator primary joints. Controller performances were tested 

while tracking paths specified by setpoints stored in a data files. The controllers 

adequately provided positional control for each joint while the other joints were 

locked. In this case dynamic coupling between the joints was ignored.

It was found that oscillations occured during simultaneous joint control. Joints 

two and three both oscillated while attempting to remain at a fixed setpoint. 

Since oscillations in the single joint control situations where present but decaying 

while dynamic coupling was not present, sustained oscillations must be due to 

dynamic coupling between the joints. In order to remove the oscillations several 

steps can be taken. Firstly the controllers could be tuned better, gain scheduling 

could be used, as in the case of the Puma 560 and further, the control loops 

could be designed to provide velocity and torque control. This emphasises the 

need for more sophisticated controllers.

For the robot aim model PID values were estimated, using Ziegler Nichols 

values, for two load extremes, when the robot arm was fully extended in the

vertical and horizontal positions. The controller parameters resident in the Puma

joint one controller board were identified at these load extremes. It was found 

that the measured and estimated values for the parameters differed by 35% when 

in the horizontal position and 17% when vertical.

The experimentally measured values for the PID controller parameters were

implemented on the software. The closed loop responses for the measured and 

estimated controllers were compared. It was found that the measured values

provided better control. Since the measured PID parameters used on the Puma 

560 were dependent upon manipulator configuration, it was deduced that gain 

scheduling was employed.
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CHAPTER 8

CONCLUSIONS

The complete procedure for modelling the dynamics of the first three links of a 

Puma 560 industrial manipulator has been presented. Firstly a second order 

model was derived using a Euler-Lagrange formulation outlined by Paul. The 

general form of the second order model has been derived previously, however, it 

fails to present the full manipulator dynamics, and is therefore of limited value 

when designing a controller. Even the second order model is never completely 

specified. The coefficient terms of the second order equations are trigonometrical 

functions of joint angles, link sizes and mechanical parameters. Mechanical

specification of a manipulator links is often limited to the sketches provided in

manufacturers service manuals. Measurement of the link mechanical parameters 

have been made using experimental and analytical techniques. However proof of 

their accuracy has not been presented. If the accuracy of these parameters could 

be guaranteed, the second order model still ignores many of the manipulator 

main dynamics. Actuator dynamics and friction forces must be incorporated to 

approach some level of realism. The ‘contents of this thesis have satisfied some 

of the difficulties with robotic modelling. The inclusion of actuator dynamics 

and friction forces in the second order model, resulted in a third order set of 

dynamic equations. Nominal values of the link mechanical parameters were

estimated based on published values. Simulation of these equations made it

possible to reesiimate the link parameters using a series of carefully chosen tests.

The open loop response of the third order model was fully tested for voltage

inputs recorded from the industrial manipulator when performing different tasks. 

When tuning was completed the model open loop responses represented the Puma 

response very accurately. Several conclusions can be drawn from this result.

(1) That the main dynamics of the Puma 560 industrial manipulator can be

described by a third order dynamic model.

(2) That the first order model used for the d.c. servomotors was adequate.

(3) That the simulation technique was accurate, and

(4) That link mechanical parameters were estimated correctly

Once the model had been fully tested in the open loop state, the remainder of 

the thesis concentrated on closed loop model performance. The obvious first
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choice for controlling the manipulator was to use a PID loop for each joint. 

Ziegler Nichols ultimative-sensitivity method was employed to obtain initial

estimates for the PID parameters for each link. The minimum proportional gain 

which drove each joint unstable (Kmax) depended highly upon the position of 

the manipulator links. For each link the safest PID values were chosen to 

ensure stability over its full range of movements. This meant that the controller

was highly untuned for much of the joint motion.

In the closed loop tests, the setpoint profiles were stored in data files. Each

joint was commanded to follow a ramp motion, where the slope of the ramp 

represented the maximum velocity demanded by the manual controller. 

Overshoot was present at the abrupt velocity changes in the setpoint profile, but 

could be avoided if slow transitions in velocity were specified.

The controllers for each of the three joints were separately capable of path 

tracking at the maximum speed required by the actual Puma manipulator. 

Controlling each joint separately, however does not guarantee good overall 

manipulator control. Even though the single loop controllers would control 

individual joints in isolation (when the other links were locked in any position) 

it was found that simultaneous control of the three joints produced sustained 

oscillations in both path tracking and fixed point control. This was accounted 

for by the dynamic coupling between joints since these sustained oscillations 

were not present in the single joint control using the same PID parameters. To 

remove the oscillations, better tuned controllers for each operating area in the 

robot work space are required and the use of joint decoupling would also be 

advantageous.

In order to establish what controller parameters are used in the actual industrial 

manipulator, the Puma was put through a series of path tracking tests. While

the Puma executed these tasks the input/output controller board data was

recorded. The data was passed through a recursive least squares identification 

algorithm and the controller board PID parameters were obtained. It was 

discovered that the joint controllers were tuned differently for different 

manipulator joint positions and link configurations, indicating that gain scheduling 

is employed on the industrial manipulator. The measured PID parameters were 

used in the simulator controllers and the previous set of path tracking tests were 

repeated. Improved responses were obtained using the measured PID parameters. 

Several conclusions may be made from these results.
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(1) Ziegler Nichols can provide an adequate first approximation for manipulator 

PID control.

(2) Overshoot may be avoided by using smooth velocity changes.

(3) Single joint control is relatively simple when dynamic coupling is not 

present eg. when the other joints are locked.

(4) Dynamic coupling between links produces stability problems for servo and 

positional control.

(5) Decoupling may be required to improve performance.

(6) The Puma 560 industrial manipulator employs gain scheduling.

(7) The closed loop simulated model performs well when a tuned PID 

controller is used.

The project has been successful in its objective to obtain an accurate dynamic 

model of the Puma 560 industrial manipulator. The model has proved its 

accuracy in both the open and closed loop situations. Simple PID controllers 

succeeded to control each joint separately but failed in simultaneous path tracking 

due to detuned controllers and lack of decoupling between links. The success of 

this modelling exercise paves the way for the design of more efficient controllers.
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A P P E N D IX  A

ANALYSIS OF THE PSEUDO INERTIAL MATRIX

The matrix Jj is known as the pseudo inertial matrix for link i. It has a

similar format to the intenial tensor matrix which is well documented in

literature Goldstein [6 ]. In brief however Jf provides information about the

distribution of mass of the link relative to the links coordinate frame. Figure

A.l presents a link and its associated coordinate frame. A point volume dv is

sketched, and the vector, r, from the frame origin to this volume is shown.

When rotating this point volume about the x axes it will have a differential

moment of inertia equal to

d Ixx = (y2 + z 2) p dv

p = material density and dm = p dv.

Similarly the moments of inertia about the y and z axes are given as

d Iyy = (x 2 + y 2) dm

d Izz = (x2 + y 2) dm

The total mass moments of inertia about the various axes for the complete link 

volume may be calculated as

Ixx

yy

zz

1 ink i
( y 2 + z 2) dm

( x 2 + z 2) dm
1 ink i

1 ink i
( x 2 + y 2) dm

The cross products of inertia for the link are similarly formulated to be

xy 1 ink
xy
i

dm



xz xz dm
link i

yz yz dm 
l in k  i

All link rotations will be described relative to the frame shown, cross products 

of inertia are thus assumed to be zero, Goldstein [6]. In order to form Jj for 

each of the links it is necessary to measure the moments of inertia about each 

of the principal axes. A further step in relating the pseudo inertial matrix to 

the inertial values is to notice that

and

x 2 dm 
l in k  i

( y 2 - z 2 ) d m +  -
l i n k  i

( x 2 + z 2 )dm 
1 ink i

( y 2 + x 2 ) dm 
1 ink i

Likewise

*ixx + * iyy + * iz z

y 2 dm 
1 ink i

ixx ' * iyy+ * iz z

z 2 dm 
I ink i

Mxx + * iyy  ‘ * izz

I f  rj i s  the cen tre  o f  mass for l i n k  i and rj = ( xj yj zj 1 ) then

1x dm 
l i n k  i

xj mj



iy dm
link i

*z dm = Zj mj
. 1 i nk i

These last three components are the first moments of the link. Using the above 

information the pseudo inertial matrix J; is rewritten in terms of the links 

inertias as

' l i x x  + *iyy  + * iz z  _
l i x y  ^ixz rai x i

2

^ixx ' I iyy+ * iz z  
*ixy ~ Myz mi y i

' *ixx + 1 i yy ‘ Mzz
*ixz  Myz mi z i

2

mixj mjyj mjZj mj

where

Iixx represents the moment of inertia about the x axis of the link i

coordinate frame,

Iiyy represents the moment of inertia about the y axis of the link i

coordinate frame,

Iizz represents the moment of inertia about the z axis of the link i

coordinate frame i,

Iixy, IixZi Iixy> represent the cross products of inertia for link i, about the

various coordinate frame axes,

miXj, miyj,  nijZi, are the f i r s t  moments o f  l i n k  i .

and X j , y j , z \  = the x ,  y ,  & z components o f  the l i n k  centre  o f  

mass w.r.t. link i coordinate frame and where mj equals the mass of link i.



The introduction of a new quantity referred to as the radius of gyration gives a 

clear indication of the link mass distribution. The radius of gyration is the 

radius such that if all the mass of the link were situated a distance kj2 from 

the axis, its moment of inertia would be Ij. The radius of gyration is related to 

the link inertia and the mass by the following equalities:

mpk$xx = *pxx

mpk^yy = Jpyy
mpk$zz = IpZZ

mpk^xy = ! pxy
mpk^yz = ipyz
mpk$xz = *pxz

It is normal to assume that the cross products of inertia, ie. the final three 

terms, are approximately zero, Goldstein [4], J( may thus be rewritten as

"mpk$xx+mpk$yy+mpk]3zz _---------- 2 ----------  0 0 injxi

mpk$xx *mpk3yy+mPk^z z
2

 ̂* mpk$xx+mpk]3yy ■ mpkizz
0 o — -----— —

2

m i x j mjyi mjZj mj

mi y i

®i M
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A P P E N D IX  B

INVESTIGATION OF 4t h  ORDER RUNGE-KUTTA NUMERICAL 

INTEGRATION ON A SYSTEM WITH A  DRIVING INPUT

Fig B .l shows the simplest numerical integration method. The Euler method 

approximates the curve x = f(t) by a polygon whose slope, at each time tj-, is 

given by the tangent to the curve x = f(t) at tj-. It is a first order method 

with a truncation error per step of order h2. Errors occur because the slope of 

f(t) changes over the interval h. A better approximation of the slope, over the 

interval, will result in a closer estimate of the function.

The fourth order Runge Kutta integration method provides a closer approximation 

of the functions slope over each interval by taking a weighted sum of the slopes 

about each point t.

For an n^ 1 order equation written as

x = f(x,t) B.l

Xj = fj(xi,x2 ... xn, t) B.2

the formula for advancing the solution one step is

xi,r+i = xi,r + 1/6 (kil + 2kiz + 2kis + kÌ4) l â m . B.3

where xi>r+1 = Xj (tr+1) = Xi(t0 + (r+l)h) l d g i

ki,i = hf,(xlir, x 2)F ... x„ir, g



for an n^ order system with an external input

x = f(x,u,t) B.8

xj = f  (x, .... xn, Uj, t) l é £ i B.9

This appendix examines whether the Runge Kutta algorithm needs to be modified

when applied to a system with a piecewise continuous input.

In the derivation of the Runge Kutta algorithm the partial derivates of f  w.r.t. 

the state variables and time, are evaluated at points in the integration interval. 

If the system has an external input then the function must also be differentiated 

with respect to the input. When the input is held constant over the interval the 

partial derivatives wrt the input will be zero giving no cause for adapting the 

standard formula. The input will be treated like any other system state and 

equations B.3 to B.7 may be rewritten as

*i = fj (x,,  x 2 ... Xj,, u  ̂ t) 1441  

the formula for advancing the solution one step is
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