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Abstract

This thesis considers asset price evolution in financial markets, deriving the price dynamics from
micro-economic considerations. In contrast to most models of speculative price evolution in which
the Efficient Market Hypothesis is assumed valid, and thus the price process is Markovian, we
introduce dependence on past prices via the action of speculators endeavouring to profit by extracting

information from the price history.

Such speculators, called chartists, form a large portion of the agents in financial markets. How-
ever, hitherto no satisfactory continuous time model of their impact on market behaviour has been

developed. This thesis attempts to close that gap.

By modelling price evolution by a linear stochastic integro-differential equation and making ex-
ogenous allowances for the fluctuation of agents’ participation levels and the periodicity present in
such markets, we show that several properties of financial markets can be qualitatively mimicked:
the relationship between heterogeneity and fat-tailed returns distributions, the autocorrelation term
structure of the returns, the relationship between volatility and volume and the relative success of
chart speculators. Our model outlines mechanisms by which speculative bubbles or crashes arise,
and demonstrates that certain types of derivative pricing are robust to the violation of the Efficient

Market Hypothesis.

These applied results are based on new findings in the theory of stochastic integro-differential equa-
tions which are developed in this thesis. We establish that such equations have unique, continuous
solutions whose paths have the same local topology as those of Brownian Motion and which can be
expressed in terms of the resolvent of a related deterministic integro-differential equation. By using
the techniques of stochastic analysis (in particular the Ito Calculus) and the theory of deterministic
integro-differential equations, we determine the pathwise asymptotics, a.s. growth of the extrema

and asymptotic distributional character of the evolution.
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Chapter 1

Introduction

If the reader interjects that there must surely be large profits to be gained ... in the long
run by a skilled individual who ... purchasefs] investments on the best genuine long-term
expectation he can frame, he must be answered ... that there are such serious-minded
individuals and that it makes a vast difference to an investment market whether or not
they predominate. ... But we must also add that there are several factors which jeopardise
the predominance of such individuals in modern investment markets. Investment based
on genuine long-term expectation is so difficult ... as to be scarcely predictable. He who
attempts it must surely ... run greater risk than he who tries to guess better than the
crowd how the crowd will behave.

Keynes, 1936 [42], in DeLong et al. [18].

The central purpose of this thesis is to examine the implications of chartist trading in a financial

market; this chapter seeks to outline and summarise that examination.

The justification for our study detailed in Section 1 of this chapter comes from the growing literature
in behavioural financial economics. More specifically, we reprise several aspects of traders activity,
together with some observed features of financial market behaviour, summarising the connections

financial economists have drawn between the two.

In Section 2, | offer an outline of my mathematical synthesis of this review. The substance of this

synthesis is that financial asset prices evolve due to the interaction of feedback traders and well-



informed investors; that the feedback introduces present dependence on past prices; and that this
dependence can be modelled dynamically by hypothesising that prices are governed by a stochastic
integro-differential equation. The inclusion of a secondary hypothesis, which attempts to model the

fluctuations in agents’ participation and the seasonality in financial markets, is also sketched.

Finally, the third section of this introduction comprises a brief summary of the dissertation’s main

findings and contents.

1.1 Heterogeneous Agents in Financial Markets: a Review

In recent times a growing body of financial economists have begun to re-examine the behaviour of
financial markets in the light of bubbles, crashes, and other anomalies of asset prices. Events such
as the sharp decline in stock prices in October 1987 have called into question theories postulating
that market participants form rational expectations based on complete information—such theories
have difficulty explaining what fresh information relating to economic fundamentals could have
precipitated such large revisions in expectations. A further anomaly which attracted great attention
was the appreciation of the dollar between 1981 and 1985, (and its subsequent sharp decline) during
which forecasters issued recommendations to buy the dollar, while simultaneously maintaining that
it was over-priced relative to its fundamental value (see Frankel and Froot [28]). This fact and
its implications are at the heart of the forthcoming discussion: firstly, are expectations rational?
Secondly, how prevalent is the type of feedback trading advocated and practised by the above
forecasters? Thirdly, what other forms might such feedback take, and why might traders seek to
practise them? Fourthly, might the presence of diversity amongst agents, together with feedback

trading, be responsible for many aspects of financial market behaviour?

1.1.1 The Case Against Rational Expectations and in Favour of Hetero-

geneity

The indirect evidence against rational expectations has recently been supported by more direct
survey evidence reported in a recent series of papers: Frankel and Froot [27], [28], [29], Froot and

Ito [32], and Ito [40]. In these papers, not only is the hypothesis of rationality rejected, but agents



in the foreign exchange markets are found to have extrapolating but inelastic expectations over the
short run and mean-reverting expectations over the longer term. Following Frankel and Froot [27],
we say expectations are inelastic when the change in the exchange rate is expected to cause smaller
future change. By extrapolative expectations, we mean that an increase (resp. decrease) in the

exchange rate is expected to induce a further increase (resp. decrease).

The case against rationality is made in Froot and Ito [32] and Ito [40]. Froot and Ito ask whether short
term expectations over-react. They ask whether agents expectations at different forecast horizons
lead to equivalent predictions of the level of the exchange rate far into the future. If agents have
such expectations, the expectations are said to be consistent. Short term expectations are said to be
inconsistent relative to long term expectations, if a positive shock to the exchange rate leads agents
to expect a higher long run future spot rate when iterating forward their short term expectations,
than when thinking directly about the long run. Expectations will be said to be rational if the
expectation over the market’s subjective conditional density function at each time t is equal to the
objective density function conditional on all information available at time t. Therefore, we see that
rationality implies consistency. Consistency is a weaker restriction than rationality, since it does not
require that the expectations process match the stochastic process generating the exchange rate.
Having made these definitions and observations, Froot and Ito test statistically for consistency, and
they find that agents’ expectations do exhibit inconsistencies: relative to longer term expectations,

shorter term expectations invariably over-react to an exchange rate shock.

Ito [40] analyses the twice monthly surveys of the yen-dollar exchange rate expectations of Japanese
banks, securities companies, trading companies and export and import oriented companies. He finds
that the participants’ expectation formation displays significant individual effects which exhibit to
some degree wishful thinking, with exporters expecting yen depreciation and importers yen appreci-
ation (relative to others). This heterogeneity damages the hypothesis of rational expectations: that
hypothesis would require that market participants be homogeneous in their formation of expecta-
tions, since the true stochastic process is unique. Ito rejects the hypothesis that forecast errors are
random; moreover, he shows that forecast errors are correlated to information available at the time
the forecast is made. This is incompatible with the hypothesis of rational expectations, since the
information correlated with the ex post error could have been exploited to make a better forecast.
As in [32], the forecast term structure is shown to be inconsistent—forecasts with long horizons

showed less yen appreciation than those with short horizons.



Having rejected rationality in price formation expectations, Frankel and Froot [28] first analyse the
Money Market Services’ (M.M.S.) survey which, either weekly or bi-weekly, collects the exchange

rate expectations of market participants.

Their testing shows bandwagon hypotheses at horizons of three months or less; for example, a
10% increase in prices over the past week by itself leads to an expectation that prices will rise by
1.35% over the next week—a current appreciation generates a self-sustaining expectation of future
appreciation. Long run expectations seem to be mean-regressing; for example, a 10% appreciation
over the last 12 months by itself generates an expectation of a 2.02% depreciation over the coming
12 months, so longer run expectations are in this sense stabilising. The same findings are reported

for regressive and adaptive expectations.

Frankel and Froot then present a strong case for the prevalence of, and rationale behind, short
term positive feedback and chart trading, particularly during the early 1980s. The 1987 Euromoney

survey notes that most forecasting services were using technical analysis:

“[T]he surveys appeared to have convinced many ... [traders] that forecasts could be used profitably
and that most profitable forex forecasters were technical rather than those who focused on economic

fundamentals.”

This is perhaps not surprising in the light of Schulmeister’s 1987 paper [66]: he looks at various rules
of technical analysis in widespread use and calculates that all the rules would have made money over
the period since the 1973 float, and moreover, that they were profitable in each of the 18-month
sub-periods up to 1986. In fact, he cites a 1985 statistic that 97% of banks and 87% of securities
houses report the belief that “the use of technical models has had an increasingly significant impact
on the market”. This is in agreement with the quote of Goodhart [36] also included in Frankel and

Froot’s paper:

“Traders, so it is claimed, consistently make profits from their position taking (and those who do

not get fired), over and above their return from straight dealing, owing to the bid/ask spread.”

The banks report that their speculation doesn’t take place in the forward market (only 4-5% of
their large customers were prepared to take open positions in the forward market). In [29], Frankel

and Froot note that this may be because bankers recall the Franklin National crisis and other bank



failures caused by open foreign positions that were held too long; this is not a unique situation, as

in the late 1970s banks were also unwilling to hold large net positions in foreign currency.

Instead, banks take very short term open positions in the spot market. Taking long term positions,
based on fundamentals or positions in the forward market, is viewed as being “too speculative”.
They are, however, prepared to trust their spot traders to take large open positions, provided they

close most of them out by the end of the day, because these operations are profitable on aggregate.

This leads Frankel and Froot to comment:

“There seems to be some sort of a breakdown of the economists’ rule of rationality that the long
run is the sum of a series of expected short runs. Even though the market is not taking adequate
account of the fact that the exchange rate must return to equilibrium eventually, there is no easy
way for an investor to make expected profits from this mistake, unless he has sufficient patience,

and sufficiently low risk aversion to wait through the short term volatility.”

Thus, because traders put too much weight on the current rate in forming their expectations, and

insufficient weight on the fundamentals,

“[t]he result is that economic fundamentals do not enter into most traders’ behaviour, even if fun-
damentals must win out in the long run. Indeed, most traders are so young and have been at their
jobs so short a time, that they may not remember the preceeding major upswing or downswing four

years earlier.”

Similar points relating to the memory and/or youth of feedback traders are made in DeLong et
al. [19]. There are, moreover, two good reasons why it may not be irrational for individual banks to
adopt this short term perspective. First, in Froot and Frankel [28], the authors note that allowing
its traders to take a sequence of many short term open positions in the spot market may be the only

way a bank has of learning which traders can make money doing so and which cannot.

Secondly, in [29] it is remarked that a year may be a statistically significant period of time to
determine whether a particular spot trader is good at her job, can be rewarded and given greater
discretion, or let go. In the case of portfolio investment on the other hand, a year may be insufficient
to judge whether a given analyst is good or bad at picking currencies or securities that are incorrectly

valued. Given high short-term volatility, many years of data may be necessary to discern a slowly



disappearing mis-valuation. It may therefore be rational for a bank executive to restrict the size of
the investment portfolio on the grounds of risk aversion, while simultaneously allowing spot traders

to take a sequence of large open positions.

Having provided this evidence, Frankel and Froot, in their 1988 paper, discount what they call “the
one reasonable economic reason” for the dollar appreciation in the 1981-85 period—overshooting.
Having done so, they propose an irrational bubble mechanism as the cause of the dollar appreciation.
In [29], they claim it better explains the dollar’s path than a rational bubble, since for a rational
bubble, all agents must know the correct model, and the cause of such a bubble is not explained.
Their evidence seems to support this contention since in reality participants neither know about nor

agree upon the model.

In this model, there are three classes of actors—fundamentalists, chartists and portfolio managers.
None of these agents act in an utterly irrational manner, but rather perform their tasks in a reason-
able and realistic fashion. The portfolio managers start with complete confidence in the fundamen-
talists’ expectations of price changes. However, if chartists provide better forecasts, the portfolio
managers are prepared to give their views greater weight. As the currency appreciates (which it
does in their model), the portfolio managers give progressively less weight to the fundamentalists’
forecasts of the currency’s depreciation towards fundamental values. The model predicts that the
weight given to the fundamentalist opinion declines to zero, at which time a new “equilibrium” is
reached. They propose a mechanism for bursting this bubble by including the effects of persistent
current account defecits. The decline in the exchange rate is driven by a revival in the fundamen-
talists’ forecasts by the portfolio managers, arising from a greater sensitivity of the exchange rate
to the current account when the fundamentalists’ weight is low. Comparing this with the U.S. cur-

rent account defecits over the early 1980s, the model predicts a decline towards fundamental values

similar to that which occured after the 1985 Plaza Accord.

There is also some evidence that heterogeneity has been increased by recent innovations in financial
markets. For example, in Guillaume et al. [38], some evidence is provided for the FX market.
They state that daily turnover of global foreign exchange markets stood at $832 billion in April
1992, representing a tripling in turnover from 1986. The rapid growth in transaction volume has
increasingly been made up of short term, intra-daily transactions (now more than 75% of volume)

and results from the interaction of traders with different time horizons, risk profiles, and regulatory



constraints. The movement of FX activity of institutional investors (such as pension funds) from
long term investment strategies has been enhanced by the development of real-time information
systems (such as that operated by Reuters) and the reduction of transaction costs arising from
the liberalisation of global capital. These developments have also increased the trading of financial
institutions in the wholesale market, whose reasons for short term trading we have already outlined.
Heterogeneity is also increased in this market by the presence of central banks, who, in contrast to

other institutions, can take relatively large open positions.

1.1.2 Feedback Trading: Evidence and Consequences

As mentioned in DeLong et al [19], a wide variety of trading strategies call for buying stocks when
their prices rise and selling them when their prices fall. Such strategies include the use of stop-loss
orders, which prompt selling in response to price declines, and the liquidation of the positions of
investors unable to meet margin calls. It is also exhibited by buyers of portfolio insurance, whose
willingness to bear risk increases rapidly with wealth. A common form of negative feedback trading
is so called “profit-taking”. The results of DeLong et al [18] indicate that in the presence of noise
traders, the contrarian investment strategy of buying after prices fall or selling after they have risen
is recommended. Negative feedback trading is also seen in the actions of central banks when they

“lean against the wind” in defense of their exchange rate objectives.

Very strong experimental evidence for both trend chasing and negative feedback trading arising from
charting is supplied by the papers of Smith, Suchanek and Williams [71] (in which, in an experimental
asset market, a price bubble endogeneously inflates and then bursts), those of Andreassen [3] and

Andreassen and Kraus [4], [5]. We summarise the results of the latter group of papers here.

In [3], subjects with some training in economics were divided into two groups. Half the subjects
received news stories about a real stock, together with its price, while the other group received only
the price signal. He shows that when causal attributions are supplied to explain recent changes,
the group given the news tends to make less regressive predictions. Andreassen remarks that by
explaining prices changes the media should cause prices to stay high after they have risen, and
low after they fall— “it is difficult to imagine that investors would long be satisfied with a news
service that ascribed down changes to good news or up changes to bad news”. The author draws

some other interesting conclusions—first, it transpires that large changes in prices require greater



numbers or stronger explanations than small changes do. Thus with large price changes, more
potent explanations are offered by the media and more vigorously sought out; alternatively, there
may be a limit as to what news can explain. If this is the case, we should expect to find that the
autocorrelations of price changes will be more negative during volatile periods than quiescent ones.
Two empirical findings seem to support these views. First, the autocorrelation of changes in the
Dow was more negative in the 1920s than in the 1950s when prices were less volatile, even though
prices rose in both periods. The negative autocorrelation at the trade to trade level observed in
Niederhoffer and Osborne [58] and Guillaume et al. [38] happen at a level at which transactions
occur too quickly for the media (or any financial agency) to explain, and at which the effects of

tracking should predominate.

In [4] and [5] experimental evidence is furthered for trend chasing. The subjects in the experiment,
who have some training in economics, are shown real stock price patterns and asked to trade as
price takers. If, over some period, the price level does not change much relative to the period-to-
period variability, the subjects track the average price level, selling when prices rise and buying
when they fall. If prices exhibit a trend relative to the variability, subjects begin to chart the trend,
buying when prices rise and selling when they fall. Instead of extrapolating price levels to arrive
at forecasts, they extrapolate price changes. This switch occurred in practically all subjects in the
experiment. The switch seems to happen in response to significant changes in the price level over

many observations, and not merely the most recent price change.

A further reason to view positive feedback strategies as being rational, but also leading to price
bubbles, is offered by George Soros [72], His success over the past decades has apparently been

based on betting not on the fundamentals, but on future crowd behaviour.

In his view, the 1960s saw a number of poorly informed investors become excited about rises in
conglomerate earnings. Soros believes that the truly informed investment strategy in this case was
not to sell short, in anticipation of the eventual collapse of prices, but to buy in anticipation of
future price rises caused by uninformed investors. |Initial rises in conglomerate stocks, driven in
part by buying by speculators such as Soros, created a trend of increasing prices. This signal was
observed by uninformed investors causing them to buy, thereby amplifying the price increase. In
1970, the price increases stopped, uninformed investors’ expectations of conglomerate earnings went

unrealised, and prices plummeted. Although shorting by fundamentalists helped in bringing prices



down to fundamentals, the initial buying by smart money, by raising the expectations of uninformed
investors about future returns, may have exacerbated the deviation from fundamentals. Similar
trends can be seen in recent times, for instance, in the rise and fall of emerging market stocks, or

those of some biotechnology companies.

This view of self-feeding bubbles is not new: for example see the Bagehot quote dating from 1872
in DeLong et al. [19], and also the essays of Mackay [56] (1852) in which is given a detailed account
of the South Sea Bubble of 1720 and the Tulipomania of 1636. A more modern account of financial

panics may be found in Kindleberger [43].

A further reason for extrapolative expectations and charting may be given by its profitability: as is
shown in DeLong et al. [18], if traders’ mistakes cause them to take riskier positions than rational
investors, they can earn higher returns, which may be a deterrent to learning the full structure of
the model needed to make a rational forecast. A similar point is made in Day and Huang [16]: in
their model, prices increase as trend chasing speculators buy into a rising market and decrease as
they sell into a falling market. In bull markets, price increases generally exceed price decreases in
number, while the opposite is true in a bear market. In this sense, the trend chasing investors are
right more often than they are wrong: when they buy in, the market usually goes up; when they
sell, the market usually goes down. Buying near the peak and selling near the trough can convince
an investor that the only mistake made was one of timing. Thus the market tends to re-inforce the

behaviour of the trend chasing investors most of the time.

Grounds for considering crowd- or trend-following imitative behaviour has been proffered by Shiller
and Pound [69], who asked investors for their motivation for buying specific assets. In the same
vein, Lux [55] references the book of Shiller [67] in which Shiller quotes a survey taken after the
1987 crash where most of the investors reported experiencing a “contagion of fear” and reacted on
the price drop itself rather than on new information. Shiller’s is led to claim that herd behaviour

need not be foolish, but may be perfectly sensible in the absence of private information.

Lastly, DeLong et al. [19], make a good case that positive feedback can occur at horizons of differing

length:

“Investment pools whose organizers buy stock, spread rumors, and then sell the stock slowly as

positive feedback demand picks up rely on extrapolative expectations over a few days. Frankel and



Froot’s forcasters have a horizon of several months, which also appears relevant for bubbles like
those that may have occured in 1929 and 1987. The conglomerate boom by contrast lasted several
years...As long as people expect a price rise over the particular horizon on which they focus to

continue, they form expectations that may support positive feedback trading patterns.”

The most important type of feedback trading, namely charting, or technical analysis, is discussed

separately in the next subsection.

1.1.3 Technical Analysis

As already mentioned in section 1.1.1, Schulmeister [66] claims that, as mentioned in Isard [39] that
“various types of trading strategies based on technical analysis generate statistically significant prof-
its”. For details of this evidence see Dooley and Shafer [20], Sweeney [75], Cumby and Modest [13],
Dunis and Feeney [21], Neftci [57], Surajaras and Sweeney [74] and Levich and Thomas [52]. We
therefore enquire more closely into the nature of charting, the spread of its use and its possible
effects on price. Some answers to these questions are furnished by the survey conducted by Allen

and Taylor [1], which we sumarise below.

The essential difference between chartists and fundamentalists according to Allen and Taylor, is
that “at least in principle chartists study only the price action of a market whereas fundamentalists
attempt to look at the reasons behind the action”. Basic chart analysis involves identifying recurring
patterns in time series price data: for example, chartists will identify levels within which prices are
supposed to trade, the upper and lower limits called “resistance” and “support” levels respectively.
Chartists will also generally employ one or more ‘mechanical indicators’ when forming a view of
prices. These might be trend following (e.g.,'buy when a shorter moving average cuts a longer
moving average from below’) or of negative feedback type (e.g., ‘oscillators’ which calculate the rate
of change of prices, assuming that the market’s tendency to over-react leaves assets “overbought”

or “oversold”).

The survey attempts to determine the influence ofchart trading in the London FX market by sending
a questionnaire to chief foreign exchange dealers in that market. They found that a majority of
those dealers use some chart input into their trading decisions, particularly at short time horizons.

Moreover, at the intra-day to one week level, 90% used some chart input, and fully 60% viewed
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charts to be at least as important as fundamentals, with importance dropping off at longer horizons:
at the one year horizon, for instance, 85% thought fundamentals more important than charts, while

30% used fundamentals alone at this horizon.

The respondents were also given an opportunity to add their own testimonies in this survey; Allen
and Taylor report that the remark that charts might obscure the fundamentals over the short run

was often made. For instance, one dealer commented:

“As atrading tool, they are useful because they are widely used and therefore can be self-fulfilling”,

a view to which 40% of respondents concurred with explicitly. Such a view was held even by
dealers believing fundamentals to be more important, and amounts to saying that chartists generate
temporary excursions from fundamentals—fads. This remark supports the model of DelLong et

al. [19], in that rational speculators may adapt their strategies in the presence of feedback traders.

A further indirect manner in which technical analysis can be self-fulfilling is remarked upon in
DeLong et al. [18]. If the noise traders in their model take the pseudo-signals of volume, price
pattern, indices of market sentiment and pronouncements of investment gurus seriously, the price
pattern charted may become self-fulfilling not singly through the actions of chartists, but at one

remove through the actions of uninformed investors.

Allen and Taylor also discovered that chart and fundamental analysis were viewed as complementary
and not conflicting methods of forecasting. We observe that this fact will be less compatible with the
analysis presented in this thesis than with, for example, the models of Fankel and Froot [28], Day
and Huang [16] and De Grauwe et al. [17]. However, our model of chart speculators, using moving
averages for price decisions, is supported by the fact that 65% of respondents use trend following
systems such as moving averages. Allen and Taylor also find evidence for the inelastic extrapolative
expectations reported in the various papers of Frankel, Froot and Ito [27], [28], [32], [29] and [4Q].

However as Allen and Taylor note:

“Logically separate from this issue, however, is the question of whether chartist advice may be
destabilising in the sense of leading the market away from the underlying fundamentals. The most
that can be said, given the present evidence, is that chart advice may at the most cause mean-

reverting, or stationary deviations from the fundamentals ... i.e., fads,”
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upon which they refer the reader to a preprint of the paper of Poterba and Summers [62], in which
some further motivation for the effectiveness of trading using past market behaviour as a guide, is
presented. We will presently review this paper focussing on the autocorrelation of stock price returns

over horizons of varying length.

In this paper, some interesting comments are made about the implications for financial practice,
relating to the authors’ findings of significant transitory price components. In particular, it may be
desirable to use investment strategies involving the purchase of securities which have recently declined
in value, which is clearly a chart strategy. It may also justify the practice of some institutions of
spending on the basis of a weighted average of past endowment values rather than current market

value.

In Cutler, Poterba and Summers [15], it is mentioned that if asset returns are positively correlated
at short horizons and negatively correlated at longer horizons (a pattern they find in a very wide
variety of speculative assets), then procedures which involve the crossing of two moving averages as

a trading signal are optimal.

1.1.4 Implications of Heterogeneous Agents for Speculative Market Be-

haviour

In section 1.1.2 we explored the manner in which feedback trading and trend chasing can provide
a plausible mechanism for irrational speculative bubbles, and from the analysis of Andreassen and
Kraus [3], [4], [5], saw that regressive and extrapolative expectations might be responsible for par-
ticular types of autocorrelation in the returns of financial asset prices. In this subsection, we will, as
promised, expand upon the claim of Cutler, Poterba and Summers in [62], [15], [14] that the reversal
of sign in the autocorrelation of asset returns can be generated by a market comprising of diverse
agents. Furthermore, we will expand upon the relationships between trade volume, volatility of asset
prices and a proxy for agent heterogeneity, degree of dispersion of forecasts. For the time being, we
merely note the comments of Frankel and Froot [28] that “[w]hen a new piece of information be-
comes available, if all investors process the information in the same way and are otherwise identical
no trading need take place... To explain the volume of trading some heterogeneity is required”. A

similar opinion is expressed in [15].
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In the course of this dissertation, we will establish links between agent heterogeneity and each of the
phenomena listed above, in conjunction with a qualitative relationship between heavy tails in asset

price returns and heterogeneous agents.

In Poterba and Summers [62] and in Cutler, Poterba and Summers [15], [14], evidence relating to
the auto-correlation of asset returns and their possible connection with agent diversity is presented.
They claim that if market and fundamental values diverge, but beyond some range the differences
are eliminated by speculative forces, then stock prices will revert to their mean. Returns must be
negatively serially correlated at some frequency if erroneous market moves are eventually corrected.
The authors confirm the findings of Fama and French [24]— real and excess returns at long horizons
are negatively serially correlated, while the null hypothesis of serial independence of returns is
rejected. It is found for stock price returns for a wide variety of countries that there exists positive
return autocorrelation at horizons of up to one year (see also Lo and MacKinlay [53]) and negative
serial correlation at horizons of 13 to 24 months. This data is robust to the inclusion or exclusion
of the Depression era. This study concludes that variation in ex ante returns are best explained as
by-products of price deviations caused by noise traders, rather than by changes in interest rates or

volatility.

In [14], the alternating autocorrelation structure noted in [62] is also observed for bonds, metals
and exchange rates. This fact is consistent with the findings of Frankel and Froot [27]. Thus it
is rational for investors to have extrapolative expectations over the short run and mean-regressing
expectations over the long run if short run autocorrelation is positive and long run autocorrelation
is negative; this pattern is also the premise of technical strategies which seek to catch trends in

short-term investing.

In [15] a model of asset market equilibrium is sketched, in which there is interaction between rational
investors (fundamentalists) who base demand on expected future returns and feedback traders who
base demand on past returns. In this framework, positive short run serial correlation results if the
fundamentalists learn news with a lag, or if feedback traders “lean into the wind”. Feedback traders
who respond to such positive autocorrelation and who base their demand on past returns can gen-
erate the observed autocorrelation pattern. Furthermore, by prolonging the impact of fundamental
news, positive feedback traders can lengthen the horizon over which returns are positively serially

correlated, causing prices to overshoot, and thereby inducing a negative correlation at some horizon.
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The heavy level of trading volume and its relationship with agents’ diversity and volatility has been
noted by many authors. We will concentrate on the papers of Frankel and Froot [29] and Tauchen
and Pitts [76]. Frankel and Froot pose the following alternatives: does higher volume of trading
increase the efficiency with which news regarding economic fundamentals is processed and reduce the
unnecessary volatility in price, or might it be that trading volume is irrelevant to price movements,

or even that much trading is based on “noise” rather than “news”, and leads to excessive volatility?

Frankel and Froot forward evidence that trading volume, exchange rate volatility, and the dispersion
of expectations among forecasters are all positively related. They define trading volume by the weekly
number of futures contracts (nearest to maturity) traded on the I.M.M. of the Chicago Mercantile
Exchange; volatility is measured by the squared percentage change each 15 minutes in the futures
price averaged over the week; dispersion is defined by the percentage standard deviation of the

forecasts across respondents in the weekly survey of market participants conducted by M.M.S..

Given these definitions, they find that dispersion Granger-causes volume at the 90% significance
level in three out of four currencies they examine: it also Granger-causes volatility in all currencies
at the one week horizon and three of four at the one month horizon. Moreover, the contemporaneous
correlation between volume and volatility is high: 0.417 for the dollar-yen is representative. Frankel

and Froot then say the following:

“The existence of conflicting forecasts leads to noise trading— the causation runs from dispersion

to the volume of trading, and then from trading to volatility.”

It may also be remarked that higher volatility should cause higher dispersion of expectations because
forecasters use different models of price information. It is interesting and instructive to keep this

information in mind in the light of our results in Chapter 2.

In the Tauchen-Pitts paper a positive relationship between price variability (as measured by the
squared price change) and the trading volume is empirically observed and some theoretical expla-

nations proposed.

In the paper of Clark [12], the author assumes that the number of intra-day transactions is random,
so the daily price change is the sum of a random number of within-day price changes. The variance

of the daily price change is thus a random variable with a mean proportional to the number of
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transactions. Clark argues that the trading volume is related positively to the number of within-day

transactions, and hence to the variability of the price change.

Another explanation Tauchen and Pitts supply is due to Epps and Epps [23], who hypothesise that
change in the market price on each within-day transaction or market clearing is the average of the
changes in all the traders’ reservation prices. They then assume there is a positive relationship
between the extent to which traders disagree when they revise their reservation prices, and the
absolute value ofthe change in market price. The price variability-volume relationship arises because
the volume of trading is positively related to the extent to which traders disagree about their

reservation prices.

Tauchen and Pitts develop a model having characteristics of both the above models but closer to
Clark in spirit. They construct an intra-day equilibrium model where the number of equilibria is
random. By assuming first that the number of traders is constant and that the intra-equilibria
changes in price are identically and normally distributed, they prove that the daily changes in price
and volume are positively correlated. They find the data from the T-Bills futures market to be
consistent with their theoretical prediction. Their theory also indicates that the extent to which
traders disagree, the number of active traders and the flow of information, all increase the volume

of trade.

1.2 Synthesis: Memory, Integro-differential Equations and

Periodicity

We see from the above review that there is ample evidence from studies and surveys ofthe prevalence
of feedback trading, and in particular technical analysis, in financial markets. However, very little
work has been devoted to studying the effects of feedback trading using the techniques of the Itd
Calculus (see for example Schweizer and Follmer [26], Platen and Schweizer [61] and Frey and
Stremme [31] ). The work that does exist tends to concentrate on the effects that such heterogeneity
has on the pricing of options. This topic, though of central importance in Mathematical Finance,
will not dominate the subject matter in this thesis, although we will demonstrate that the pricing,
replication and hedging of options is possible in the model economy we propose to study. Instead,

we will develop from microeconomic foundations, a model of price evolution which will allow us to

15



study the feedback effects of charting. As in the literature mentioned in Section 1, we will include a
second class of investors with mean-reverting price expectations, which we will call fundamentalists.
These speculators base their estimates of fair value for a financial asset on factors they believe to
underly its long term value. Whenever prices rise above that value, they sell the asset; whenever
they fall below, the fundamentalists buy. In our formulation, the chartists will study the deviation
of the price from a moving average of past prices as a signal to trade. Most usually, in this thesis,
we will assume that the chartists are positive feedback traders, in the sense outlined in Section 1
above. That is to say, prices above the moving average are signals to buy, whereas prices below the
moving average provide the chartists with sell signals. However, taking note of the experimental
evidence of Andreassen [3] and Andreassen and Kraus [4], [5], we will sometimes allow these signals
to be reversed, so that chartists can change from being positive to negative feedback traders, and

vice versa. For reasons of tractability, we make this switch occur exogenously.

1.2.1 Stochastic Integro—Differential Equations

The plan sketched above affords us an opportunity to study the strategy of chartists and their effect
on price behaviour, but carries with it some added technical problems. The assumption that by
virtue of their trading, chartists effect the price, signifies that the price process cannot be a Markov
process, since some portion of the price history before the present is necessary to determine the
evolution thereafter, not merely the current value. Consequently, the price process cannot be the
solution of a stochastic differential equation. In Chapter 4, we distill the economic hypotheses into

the following rule which governs log-price (Xt) evolution:
Xt=X0+ f A(s) (XS— f w(u, s)Xudii\ ds - f 13(s) (Xs - k(s)) ds + | (r(s)dBs,
Jo \ Jo J Jo Jo

where (Bt)t>o0 is a standard Brownian motion. Adopting the usual notional formalism for stochastic

differential equations, we may write:
dXt = A(t) —J w(s,t)Xsds'j dt —/3(t)(Xt —k(t)) dt + a(t) dBt (1.2)

where X g is known. Stochastic processes evolving according to equations such as (1.1) are called
stochastic integro-differential equations by Berger and Mizel [7], which we will frequently abbreviate
to S.I.D.E. The existence and uniqueness of a.s. continuous solutions to S.I.D.Es was proved by
Berger and Mizel [7] using similar ideas to those used to prove existence and uniqueness of strong

solutions of stochastic differential equations. ldentical results for linear S.I.D.Es were independently



established by Vespri [77]. For example, equation (1.1) above has a unique a.s. continuous solution
on the interval [0,T] forany T > 0 ifw £ LAM* x M+) and A(-), /?(¢), <I(-), &(*) and w(-, *) are
continuous functions. We will study the behaviour of solutions of (1.1) above under quite similar
circumstances, giving suitable economic interpretations of each term in the S.1.D.E. Berger and Mizel
also established rules for manipulating iterated stochastic integrals with non-adapted integrands [6].
Results relating to the existence and uniqueness of stochastic integral equations with non-adapted
integrands have been proved by Protter [63] and Kleptsyna and Veretennikov [46]. More recent
existence, uniqueness and regularity results of anticipating stochastic Volterra equations may be

found in Pardoux and Protter [60] and Alos and Nualart [2].

Despite these theoretical foundations and some results giving conditions for mean-square stability of
zero solutions of S.I1.D.Es (see Pachpatte [59] and Zan Kan and Zhang [80]), the theory of S.I.D.Es
is substantially underdeveloped. This thesis attempts to rectify this defiency somewhat, at least
for the linear theory. In order to be able to consider important applied problems in the context
of our model, | have established some new results relating to the representation, local regularity,
pathwise asymptotics and the pathwise growth rate of the extrema of this system. We will also
consider the asymptotic distributional character of this equation. To prove these results, we exploit
the fact that the solution of such equations can be shown to be normally distributed, arising from
their “stochastic variation of parameters” representation, and use a combination of the techniques of
stochastic analysis and the theory of deterministic integro-differential equations, and in particular,

the theory of Liapunov functionals for deterministic integro-differential equations.

1.2.2 Periodicity

Our concern with investigating the effects of memory on asset prices will be matched with a parallel

concern with the effects of seasonality or periodicity.

The motivation for introducing periodicity into our analysis is twofold: most simply, it permits us
to develop a tractable theory of price evolution when the agents’ confidence or liquidity is varying.
This question will be considered thoroughly in Chapter 2, in the absence of memory effects. We will
show that the greater this variation becomes, the more unstable the behaviour of prices, and the
heavier the tails of the returns distribution will be. Moreover, the tails are always guaranteed to be

heavier than those of a normal distribution with the same variance. In Chapter 7, we prove weaker
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results of a similar character when the feedback effects of chartists are included. This mechanism
corresponds closely to that mooted in Guillaume et al. [38]. Periodicity with higher amplitude can
also be interpreted as arising from increased feedback trading, or greater heterogeneity generally.
In this context, it is interesting to be able to report that volume of trade increases with increasing
amplitude: this result is consistent with the findings of Froot and Frankel [29], Tauchen and Pitts [76]
etc. It can also be consistent with the alternating sign of the autocorrelation of the returns discussed

in Cutler, Poterba and Summers [14], [15] and Poterba and Summers [62].

A second reason for studying the effects of periodicity is given by Guillaume et al. [38], who de-
tected significant seasonality in the global foreign exchange market. They find a strong seasonality
corresponding to the hour of the day or day of the week in the volatility and volume of trade (as
measured by the tick frequency). For example, trade picks up after midnight G.M.T. as the Tokyo
and Sydney exchanges open, and subsequently with the opening of the Hong Kong and Singapore
markets, with a sharp fall in business coinciding with lunch in these markets at 4.00 G.M.T. The
intensity of trading continues at a high level throughout the afternoon in the Far East and continues
as Hong Kong and Singapore close and London and Frankfurt open. Trade in Europe falls back prior
to the opening of the New York market, but increases again as both European and North American
markets are simultaneously open. Trade then declines steadily after New York closes until the Far
East markets re-open. Furthermore, different currencies are traded at differing intensities according
to geographical location; in general, currencies are traded more heavily when their home exchange
is open. Periodic structure is also imposed, for example, by traders having to close their positions
each day (recall the remarks above of Froot and Frankel [28]). Over longer horizons, the appraisal
of investment analysts’ performance at fixed time increments should also introduce periodicity, as
should the regular announcement of currency-, industry- or stock-specific news. For example, eco-
nomic data which might effect a currency - for instance inflation, money supply growth, levels of

public borrowing - are published in most countries on the same day each month.

1.3 Outline of the Thesis

In this section we will briefly summarise the contents of each chapter of the thesis.

In Chapter 2, as noted above, the effects of fluctuating agents confidence and periodicity are able



to mimic qualitatively several properties of real asset prices. This periodicity has recently been
remarked upon by financial economists, but has not been treated theoretically. The analysis we
consider here is a tentative step towards such a treatment. In Chapter 2, we model log-prices as
evolving according to a stochastic differential equation, which we arrive at by applying an invariance
principle to a discrete time price process which results from a market equilibrium. This equation is

given by
dXt = —a(t)Xtdt + a dBt, (1-2)
where a(-) is a T-periodic function and

1 71
Al—— a(s) ds > 0.
J Jo

We prove that (1.2) has more unstable dynamics when a(-) » A than when a(-) = A, and that while
the diffusion with a(-) non-constant does not have an asymptotic invariant density, the limiting
empirical distribution converges almost surely to a distribution function whose density function is
a continuous superposition of Gaussian densities, a result which appears absent from the literature.
This result has implications for the returns distribution, autocorrelation of returns, volume of trade,

and the agents’ behaviour and confidence.

In Chapter 3, we prove that there is a unique a.s. continuous solution to (1.1), even in the presence
of an integrable singularity in w{-t® and that the solution possesses a variation of parameters
representation given in terms of the resolvent of a related deterministic integro-differential equation.
Finally, we notice that the solution has the same regularity as a Brownian motion—it is locally

Holder continuous of all orders less than 1/2, but not of any order 1/2 or greater.

In Chapter 4, we interpret the function uj(-,-) in (1.1) as the weight chartists give to previously
observed asset prices. This interpretation leads to choosing some very natural and general properties
for w(-, ¢), which yields a very rich form of chartist behaviour: for example, they either chase the
trend or take profits at the top of the market, do not trade if the price is flat, and accurately track
periodically oscillating and growing prices. We give an incomplete construction of the program
which, in Chapter 2, builds a continuous price process in continuous time from a discrete time
market equilibrium. However, it is demonstrated informally how the log-price evolution (1.1) results.
Following this, we prove that European options can be priced, replicated and hedged under the
same conditions as imposed on the standard Black-Scholes case with deterministic time dependent

volatility. In these circumstances, the hedging strategy of a small investor is the same as for Black-
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Scholes dynamics with the same volatility and time dependent interest rates. This result shows that
the Efficient Market Hypothesis is inessential for the correct pricing of certain classes of derivative
securities. Results are presented relating volatility positively with the volume of trade and indicating

the stabilising effect of fundamentalist speculators.

In Chapter 5, we prove under some particular assumptions on the structure of the chartists’ memory,
that prices follow the consensus reservation price of the fundamentalists asymptotically, if the fun-
damentalists are the dominant class of investor. If the chartists are dominant and they are positive
feedback speculators, the prices can either form a bubble, or crash, and both events have a positive
probability of occuring. The possibility of a bubble is greater if the price starts at a higher level or
if the fundamentalists are more optimistic about future fundamentals. This result will be seen to
tally very well both with the picture of bubble formation as outlined in De Long et al. [18] and real
speculative bubbles (and crashes). However, in our case, true feedback is being introduced for the

first time via the explicit dependence of past prices.

In Chapter 6, we show that the results of the previous chapter are subject to considerable generali-
sation. If we suppose once more that price evolves according to (1.1) with w(-, m satisfying only the
properties endowed upon it in Chapter 4, the log-price is then asymptotic to the fundamentals almost
surely whenever the fundamentalists are dominant. This pathwise convergence is the strongest con-
vergence result yet proved for stochastic integro-differential equations, albeit the equation is linear.
Moreover, pathwise convergence is assured if the chartists are negative feedback traders, or if the
fundamentals are determined by a stochastic process independent of the standard Brownian motion
(Bt)t>0 which drives (1.1), and are subject to the same asymptotic growth condition as before. For
example, if fundamentals grow linearly with time, the price has a well defined growth rate, just as
in the Black-Scholes case. We remark that these asymptotic convergence results imply that both
chartists and fundamentalists are relatively successful at estimating the price level, so that the price

dynamics do not tend to undermine the continued existence of both groups of speculators.

In the penultimate chapter, we prove analogous results for the price and returns distributions as
were established in Chapter 2: that is to say, if one assumes that the fundamentalists are dominant,
that some of the functions A(-), /?(m) and cr(-) are periodic and k(-) = K*, a constant, then the price
and returns distributions do not converge, but that their empirical distribution functions converge

in some manner to continuous superpositions of Gaussian densities, causing the tails of the returns
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distribution to be heavier than a normal density with the same variance.

The concluding chapter of the thesis considers the almost sure asymptotics ofthe extremes of (Xt)t>o
when the same conditions as the previous chapter apply. In the process, we supply an extension to
the theory of Klass and Barndorff-Nielsen in establishing the almost sure asymptotic growth rate
of the extrema of a dependent sequence of random variables. We can use this result to observe
that faster asymptotic growth of the extrema of X can be associated with a market in which the
fundamentalists are weaker or less confident in the equilibrium price level, but that the asymptotic
growth rate of the extreme deviations from the fundamentals is smaller than is experienced for

Black-Scholes price dynamics, even though the returns distribution may have heavier tails.
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Chapter 2

Heterogeneous Markets, Time

Horizons and Heavy Tails

2.1 Introduction

A recent trend in models of financial markets has been the relaxation of the assumption of ho-
mogeneous agents. Surveys have pointed to a diversity of agents with differing price expectations
hypotheses and differing investment time horizons, with particular reference to the foreign exchange

market e.g., Allen and Taylor [1], Itd [40], and Froot and Frankel [29].

Specifically, classes of traders with extrapolative expectations or positive feedback strategies have
been identified—trend chasing, the use of stop-loss orders, certain aspects of charting or technical
analysis and dynamic trading strategies such as portfolio insurance. These aspects of speculative
behaviour are discussed at length in De Long et al. [18], Day and Huang [16] and De Grauwe et

al. [17],

The work of Guillaume et al. [38] indicates that seasonal and short term deterministic periodic
strucures exist in foreign exchange markets. This chapter attempts to show that heterogeneity
amongst the agents, together with a speculative strategy which is periodic in character, leads to

return and log-price processes which have heavier tails than normal distributions, even when the
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log-price dynamics obey an Ornstein-Uhlenbeck equation with time varying coefficients. This also
has consequences for the autocorrelation of the return process which agrees with the empirical
findings of [38] and Porteba and Summers [62]. We can think of the periodic behaviour as arising
from a sequence of investments each of which has finite time horizon T, positing that the investors

face similar situations at similar stages during the lifetime of the investment.

This chapter consists of several sections. Section 2 develops a microeconomic model of prices in
discrete time and, using the notion of weak convergence outlined in Schweizer and Follmer [26],
produces a diffusion model in continuous time. This leads to a stochastic differential equation of the

form

dXt = —a(t)Xt dt + a dBt (2.1)

where B is a standard Brownian motion, Xt = logEV and St is the price of the asset at time t.

In Section 3, we see that the diffusion does not have a stationary invariant distribution, although
there is stationarity in a periodic sense. The large deviations of this process are considered, and
shown to be greater than those experienced by the diffusion resulting when the classes of agents
considered have time-independent strategies. In Section 4, we show that both greater heterogeneity
among the agents and greater prevalence of agents with extrapolative expectations increase the
sample moments of the log-price. This is shown to lead to heavier tails by the results of Sections
5 and 6. In Section 5, we prove that the sample moments of Xt converge almost surely, and then
in Section 6 use this result to show that the empirical distribution of Xt converges almost surely.
Section 7 addresses properties of the density of the limit distribution and of the returns process.
Section 8 produces a rough heuristic argument relating agent heterogeneity, the volume of trade and
level of price variability. An Appendix, containing the proof of the key supporting lemma on which

the a.s. convergence of the empirical distribution function relies, concludes the chapter.

This chapter aims to demonstrate that heterogeneity among agents’ perceptions (even under recur-
rent Ornstein-Uhlenbeck log-price dynamics) leads to heavier tails in the returns and the limiting
empirical distribution function. This indicates that heavy tails should be a consequence of hetero-

geneity.

Moreover, we show that by endowing a recurrent time scale on investors’ actions, it is possible to

replicate the negative autocorrelation in returns reported by several authors, as well as to mimic
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the seasonal/intra-day fluctuations experienced in the global foreign exchange market. However, the
tails of the returns process limiting empirical distribution function have infinite tail index, whereas

the tail index is finite and positive for observed asset returns.

2.2 Building the Diffusion

To derive the form of the price dynamics and returns processes, we employ the methodology in-
troduced by Schweizer and Follmer [26]. We follow their notation closely here in the derivation of
the equilibrium price and our analysis differs little. For convenience we paraphrase their argument.
Let A be a finite set of agents active in the market. Each agent a G A forms an excess demand
ca(p) given an asset price p. The equilibrium asset price Sk is determined at a sequence of times
tk,k — 0,1,.... Other factors influencing the agents decisions are summarised by the variable uj,
which may be viewed as an outcome in the underlying probability triple IP). The equilib-
rium process thus becomes a discrete time stochastic process defined implicitly by zero total excess

demand. Assume that the excess demand functions are given by
ea,k(p,v) = aaik + Sailt(w). (2.2)

where aak > 0, Sak is liquidity demand and Sak denotes an individual reference level of agent a for
period k. As in Schweizer and Follmer, we note that log-linear excess demand functions arise quite
frequently in monetary models, see for example Cagan [11], Gourieroux, Laffont and Monfort [37]

and Laidler [48]. The implicit zero total demand condition now reads

logSfe(w) = 22 0GiklogSaik{u) +Sk((j) (2.3)
a€Ak
with
= | | "Opfci &= 1" &kl ~' &km (2.4)
VaeA* / \a€idk / afAk

Schweizer and Follmer remark that static expectations lead to the price process behaving as a

geometric Brownian motion, under suitable rescaling and passage from discrete to continuous time.

For afundamentalistorinformation trader, the individual reference levelis determined according
to his perceptionof the fundamental value of the asset and by his belief that the priceshould be

attracted to that value. Take the fundamental value to be 1 and specify

log Saik = logSfc-i +/?0,felogS*;_i (2.5)

24



where (Jaik < 0.

The technical analyst or chartist will have reference level given by

log Sa,k = log Sfc-1 + 7afc(log Sk-1 - logSfc) (2.6)

where 7aik < 0. Let Xk = logSk and set

k= N *afcrafc (2.7)
OEAE
= (1+ 7fc)_ 1 22 £k = (I + 7fe)_1<fe (2.8)
aSAk

Then with mi chartists and m2 fundamentalists, the process X k satisfies
Xk —Xk-i —flkXk-i + £*e (2-9)

As is stated in [26], it is now possible to obtain a continuous asset price process S bya passage from
the discrete-time equilibrium price process X. We use weak convergence onthe Skorohod space U®

of all M-valued RCLL functions on [0,00) endowed with the Skorohod topology.

For each n consider the process {X£}fc=o0,i,... given by

with Xfi = xo fixed. Notice the RCLL version of {Z%}k=0,1,... is given by Z™™ = Z*nty Define

2] 1i

- 2= 2-10
ft=I k=1 (2-10)

Then notice that (2.10) gives us
dX? = XP_dzP + dZp, (2.11)

Now let us describe the additional properties that we require of the process 5, and the deterministic
sequences a,/?,7. If every 1jn time units, speculators update their reference levels and the market
clears, it is necessary to determine reasonable orders of magnitude for the sequences a",0n,7”
and process 6n where, as with X above, processes and sequences superscripted with n satisfy the

corresponding equations.
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It is reasonable to assume that in finite time intervals that reference level changes will be 0(1). From

(2.5) we thus have
Kj. = 0(1),
and from (2.6) we have
78 = 0 (1).
In finite time intervals, we assume that each agent a has 0(1) excess demand. From (2.2), we have

<*=<)e

By considering (2.5), (2.6), we see that

< k= o(b), elm] =o(l).

Additionally, suppose that for each a, Ja/s are iid with mean 0. To make these assumptions concrete,

we assume for a = 1,2,... ,mi + m2 that there exist aa,Sa £ C([0,00)); and in addition for a =
1,2,... ,m2,there exist j3a E C([0,00)) and fora= m2+ 1,... ,mi + m2 there exist 7a £ C([0, 00))
such that
aak = <sa{k/n),
= 1 Pa(k/n),
7a,k = Ta(k/n),
Sak = ~\7jﬁ"a{k/n)Cn-

where are a sequence of iid random variables with 0 mean, unit variance.

Further assume for each a = 1,2,... ,mi + m2, there exists Ta > 0 such that ota( ) is Ta-periodic,
while fora = 1,2,... ,rn2,/?,(*) is Ta-periodic, and fora= m2+ 1,... ,mi+ m2, 7a(-) is Ta-periodic.
This endows a periodic structure on the demand of the agents. Suppose, moreover, that there exists

a minimal T > 0 such that foralla= 1,2,... ,mi + m2,

Tfre .

This assumption is satisfied if e.g., the agents’investment schedules are denominated in a given time
unit. Since these horizons are all likely to be denominated in hours or days for all but the most

myopic speculators, this assumption, although stylised, is not completely unreasonable.

We will require the following variation of the Donsker Invariance Principle.
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Lemma 2.2.1 Lete : [0,00) —>M and define

[nt]

= J2E<(*/»)E
V" k=i
where Cjj are iid with zero mean, unit variance. Then
Z( ICte(s) dB,, as n —¥ o0
Jo

where {Bt :t > 0} is a standard one-dimensional Brownian motion.

Proof: Rework the argument in Chapter 2.4.D of [41]. o

From (2.10) and Lemma 2.2.1 we notice that there exist continuous T —periodic functions a('),cr( )

such that
Zf — —Jfo a(s) ds as n -> oo (2-12)
pt
z | a(s) dBs asn->00. (2.13)
Jo

Then from (2.11), (2.12), (2.13) we can use the analysis of Kurtz and Protter referenced in [26] to

prove

Theorem 2.2.1 Under the above assumptions the process X n converges in distribution to the strong

solution X of the stochastic differential equation
dXt = -a(t)Xtdi+ <r(i) dBt (2.14)

where <*(+), <r(-) > 0 are T-periodic functions, and B is a standard Brownian motion. Moreover, the

price processes Snin = 1,2,...) converge in distribution to the process

St = exp Xt.

Proof of Theorem 2.2.1: See Theorem 3.1 in [26]. 0

Remark 2.2.1

As observed in Schweizer and Follmer [26], price dynamics of Ornstein-Uhlenbeck type are common
in mathematical finance; see for example Froot and Obstfeld [33], Shiller [68], Summers [73] and
West [78]. In this case, however, the equation is specified on the basis of microeconomic considera-

tions.
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Remark 2.2.2

We observe that a(-) is on average positive (resp. negative) when the fundamentalists (resp.
chartists) are dominant (in the sense of large contributions (resp. Ja,k))- Furthermore, a(-)
is a constant function when the agents have time independent excess demand functions, and time

independent reference levels.
Remark 2.2.3

This model, taken on a suitable time scale satisfies Fact 8 in [38] viz., seasonality in intra day
statistics, which is found in, for example, the volatility and the tick frequency. We may think of
the fluctuations in the reference levels and excess demands as coming from different speculators in
the different geographical markets participating in the market according as to whether their local

exchange is open or closed.
Remark 2.2.4

In the analysis that follows we take <r(-) = <, a constant, with little loss of generality.

Since our interest is centered on price processes which exhibit stationary or “stationary-on-average”

properties we need only study the case where X is recurrent. Towards this end define
LT \
A=Tob a \d 79'15)
Then one immediately has

Proposition 2.2.1 X is recurrent or transient according as A > 0 or A < 0 in (2.15). Indeed, if

A < 0 one has

H_%jtlog \Xt\ = —A, a.s.. (2.16)

Proof: Proposition 2.3.2 shows that X is recurrent when A > 0. Transience for A < 0 obviously

follows from (2.16), which follows from a direct calculation of the solution to (2.14). o



2.3 Distribution and Maximal Deviations

We fix our model thus. Suppose a(-) is a T-periodic function, continuous on [0,T], and satisfying

(2.15) with A > 0 and let X evolve according to
dXt = —a{i)Xtdt + a dBt (2.17)
where B is a standard Brownian motion, and Xq = xq . Let 0(0) = 0 and define
vi(t) = —=2a(l)v(t) + 1 (2.18)
also let m(0) = xq,and define m'(t) = —a(i)m(<), so that
Xt~ az2v(t)). (2.19)

Let v(') satisfy (2.18) but with initial condition

so that u(-) is the periodic solution to (2.18).
Proposition 2.3.1 Let (Xt)t>o0 be given by (2.17). Then:

(i) Xt does not converge in distribution as | —oo0.

(it) For all t G [0,T] there exists Xt ~ AN, crv(i)) such that Xixnr converges in distribution to

Xt as n —o00.

Proof: Note that (i) follows directly from (ii). We prove (ii). Writing w = v —v, one uses Floquet

theory to show limt-t.oo w(f) = 0. Similarly, limi_>oom (t) = 0. Thus for all t G [0,T], we have

Iigw vit+nT) = lim (v(t + nT) —v(t + nT)) + lim v(t + nT)
N-¥oo n-t-oo B n-foo
= D-

Part (ii) of the proposition follows directly from (2.19). o

The non-existence of an invariant distribution indicates that a more delicate analysis is required to

determine the asymptotic character of the diffusion. To motivate the investigation of heavy-tailed
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properties, we compare the extreme deviations and moments of (Xt)t>o and the diffusion (Xf)t>o

defined by
dXt=-AXtdt+ adBt (2.20)

and Xo = f£'o. This recurrent Ornstein-Uhlenbeck process has the same average attraction towards
0 as X, but with a normal invariant distribution with mean 0, variance sz. It follows from the
martingale time change theorem (see Karatzas and Shreve [41], p.174) and the law of the iterated

logarithm that the asymptotic maximal deviations of X are given by

. X [Y

limsup ., = ¢\ a.s.,
Moo V "gi V 2A

L. Foxt

liminf . . . = —W-—a.s..
t-too y?2logi V 2A

To prove an analogous result for X we introduce the function u(-)
u®= Jg e2” < urduds 2
and
to{t)=t-T (2.22)

where [&] is the floor of the number x, namely the largest integer less than or equal to x. One then

easily obtains

lim*6MT1 =1 (Vi)

t-foo u(e)

Proposition 2.3.2 (i) X is recurrent.

(if) The following hold almost surely:

X e
lim su . = a I max v(s), 2.24
e_»odp y/TT3gt y o<s<T \gv) \(/ )'
liminf & - m = —a | max v(s). (2.25)
«p0 y/2logt \Jo<’<t

Proof'. Note that (i) is a direct consequence of (ii). We prove part (ii) in the limsup case from which
the liminf case follows by symmetry. Using (2.17), (2.21) and the martingale time change theorem

(Karatzas and Shreve [41], p.174) one has

Xt 1 30 +
V~ioM) log logu(t) / u(ta()u(T) y/2u(t) loglogu(i)
\ u(t)
1 <s®

(2.26)

V2u® ki
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Applying (2.23), the law of the iterated logarithm and loglog u(t) ~ logf we obtain

limsup —, = a. (2.27)
t—»00 Y~2v(io(<))logi

Define t 6 [0, T] so that v(i) = maxo<«<T «(«)* The proposition is now proven provided we can show

lim sup>—— " “+n7 _aJdv{i).
000 \J2log({+ nT)

Expanding this expression in a similar way to that used in (2.26), one requires that

limsup . . ~U(t+nT) _
n"+00 Y 2u(t+ nT) loglogu(i+ nT)

i
This can be established by letting an = u(i+ nT) and bn = [a,J. Therefore, by the law of the
iterated logarithm

limsu A = 1.

ri—foop Vv 20n log logOn

Writing Ban = ~J9au —Bbnj + Bbn, and using the relationship between on and bn proves (2.3). o

Remark 2.3.1

1
2.28
0B VE) >, (2.28)
. 1
0r<n»|2_|_ t>\$s) < A (2.29)
f [t) dt ! (2.30)
v > - .

unless a(t) = A.

Proof of Remark: Let f(x) = log«. Integrating by parts gives

YT

0= f(v(T))-f(v(0)) =-2AT +Jo ?({)dt

demonstrating (2.29), (2.28). Using the Cauchy-Schwarz inequality and the above gives (2.30). o

Remark 2.3.1, and Propositions 2.3.1, 2.3.2 show that the process X will undergo larger deviations
than X, but will be less variable on some time intervals (see Figures 2.1 and 2.2 over). This makes
us suspect that X will manifest some type of heavy tailed behaviour, and that the greater variability
of X than X has its source in increased variation in a(-). We address the latter suspicion in the next

section.
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Figure 2.1: Sample path of dXt = —AXt dt + &dBt.

Figure 2.2: Sample path of dXt = —a[t)Xtdt+ odBt.
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Remark 2.3.2

We can also classify the behaviour of X when A — 0. Using the technique of Proposition 2.3.2 we

have
limsup- . X e2/0’ “(u)duds mmax_e~2" a(u)du
t-+oo -\2iloglogi = 0<s<T
liminf e e2tta(u)duds, max e-2/0a(Udti
t-ro0 y/2Cloglogt — _ H 0<3<T
while
lim sup i *= = a
t-+o0 \/2<loglogi
liminf . Xt. ) -
t>00 vy 2iloglogi
S0 since

e2 a(u)duds mmax_e 2™ a(u)du > 1
0<s<T —

(with equality if and only if a(-) = A = 0) it follows that the asymptotic maximal deviations of X

are greater than those of X , and that X is recurrent but has no stationarity, even on average.

2.4 Variation of a(-) and Variance

We now seek to elucidate the connection between variation in a(-) and higher variance, and ex-
plain the behaviour of the function v(-) in terms of the mixture of agents with mean-reverting and

extrapolative price expectations present in the market at any instant.

It is possible to interpret greater variation in a(-) as representing the agents’ uncertainty as to the
permanence of the equilibrium level 0. At some time t\, they may be confident that O represents
a correct equilibrium: we interpret this mathematically as a(ti) > A, At another time (2 they are
less sure that 0 is a good equilibrium value, so afo) < A. This condition is not arbitrary: rather,
from (2.15) it reflects that their confidence is either above or below its average level, or indeed
the constant level of confidence in O if prices evolved according to (2.20). Moreover, observe from
(2.18), (2.29), (2.28) that minimum variance occurs for some time satisfying a( ) > A and maximum
variance for some time satisfying 0 < a(-) < A. Thus, lowest variability occurs when confidence in

the equilibrium is above average; greatest variability when confidence is below average.
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The effect on price dynamics of agents using extrapolative expectations has been studied by several
authors. In the case of this model, such agents would contribute to negative values of a(-), with
greater negative values of a(-) corresponding to greater certainty amongst such agents that deviations
above 0 are a signal of higher future prices, deviations below 0 a signal of lower future prices. If
a(t) > A, then these agents have below average influence at time t: if a(t) < A, they have above
average influence. Note from the above paragraph that minimum variance occurs at a time of
below average influence, where a(-) is decreasing, while maximum variance occurs at a time of above
average influence where a(-) is increasing. Returning to the issue of variability, since a(-) must be

positive on average, the larger these negative contributions, the greater will be the variability in

We will now formalise the proposed positive link between variation of a(-) and variance. To do this,
we construct parameterised families of maps. Let /(¢) be a continuous T-periodic function, which is

not identically 0, and satisfies f(t) dt — 0. Now let

a(f;a,t) - A{l1 - af{t)) (2.31)

so that for any / that satisfies the above properties a(/; a, t) plays the role of a( ) in the foregoing

analysis. Now define the sets of functions Aj ,AJ:

A'j = {&:3a > 0s.t. g(t) = a(f; c*i)Vi > 0}, (2.32)

AJ — {g:3a< 0s.t. g(t) —a(/; > 0}. (2.33)

Let Aj = Aj UAJ. We call v(a(-)]t) the periodic solution to (2.18), and define for p £ N the

functionals
M C[Q,T] + M P(a)d= 1/rT(()t) dt (2.34)
: ,T]"m+:an” a - v(a(-)-, :
p 3% p
and
Moo :C[0,T] —aM+ :a  Alooia) =f Qnaxii;(a(-);i). (2.35)

We introduce the following as our chacterisation of variation
rT
V:C[0,T]->R+-.a”Via)™ ijf aft)- ~J a(s)ds dt

where r > 1.
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Proposition 2.4.1 (a) Let ai, a2GAj (or ai, a2 GAj).

(i) Forp GN, V(ai) > V(a2) ifand only ifM p(ai) > M p(a2).

(H) V(ai) > V(a2) implies Mco(ai) >Moo{a2).
(b) Forp = 1,2, ...

lim M v(a) = 00.
V(0)—£00 -

Proof: (a) (i) We can consider ai, a2 GA j. The proof for Aj is identical. For a G A~ such that
a(t) = a(f;a,t) define

V() = V(a(/;a, m),

v{a\t) = v(a(f]la-t)),

M p(a) M p(a(f] a] m),

Moo(a) M @ (a(f;a; ).

The hypothesis that a G A* means that the function v(-]t) G C2[0,00) for each t G [0,T]. More

particularly let

U@ - T eeradfawu)dids,
Jo
) = e-28 *t,(@;0)
so that v(a]t) = gi(a\t) + Differentiating under the integral sign twice and using the fact
that / ~ 0, leads to 9" 2™ > 0, 9 > 0. Thus 9 > 0. Now recall (2.30) and use
Jensen’s inequality to show
(¢) -eL 790 (2D

where equality is achieved if and only if ?(m) is constant, so that necessarily one has a(t) = A.
Naturally, this argument does not depend on o G A/- The critical observation is this: M p{a) has
a global minimum at a = 0. The same conclusion can be drawn for M og. Furthermore, since
v{-',t) G C2(—00,00), we can differentiate under the integral sign successively to derive the following

expressions forp = 1and p > 2



Plainly, this means that M p{a) > 0 for all p. Since 0) = 0, it follows that M'p{ot) > 0 for all
a > 0. A straightforward calculation shows that V'(o) > 0 for all a > 0. This establishes part (a)

(i) ofthe proposition.

(a) (ii) To prove part (ii), we note the following: If fp(a) converges pointwise to /(a) as p —moo0
for every a, and each of the fp(-) are increasing, then /() is non-decreasing. Now, since M.p{) is
increasing on M+, so is M p{-)*. Therefore, one can put fp(a) = M p(a)p, and /(a) = Moo(a) in

the above to conclude that Moo{-) is non-decreasing. This proves (ii).

(b) For p < oo, this comes from the fact that .Mp(-) is convex. For p = oo, it follows from

M qg(a) < A'ico(a) for all g < 0o. o

Remark 2.4.1

If / is C*OjT], we may take V to be the total variation, with no change in conclusion.

Remark 2.4.2

The convexity of M p(-) shows that the average and maximum variance are quite sensitive to changes
in a. As a consequence, small changes in the heterogeneity or psychology of the market could
reasonably lead to greater instability than might be expected. We will shortly see that (a) (i) shows
that all moment time averages of X are increased by increases in the variation of a(-). This will allow
us to conclude that a heavier tailed asymptotic structure is generated by more uncertain market, or
one in which, at least temporarily, a majority of agents take prices above a certain level as a signal

of future rises.

We have shown that increases in variation of a(-) increases variance and that the maximum and
minimum variance occur at times of low and high reversion to 0 respectively. Specialising the choice
of a(-) and relaxing the continuity assumptions on a(-) somewhat allow a more precise result in this
direction. To this end, suppose a(-) admits a jump discontinuity at T. We now may consider non-
increasing functions on [0, T] as candidates for interpreting this as an increase in the influence of
chart traders as time advances across the period. It can then be shown that the maximum variance

occurs at the times at which the chartists are most influential (viz. times nT, n 6 N). To show this
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define

_ Jo e2& a(u)duds
ga/Jaw*.1 e

Then 1—2a(i)h(t) > 0so h'{t) > 0. Thus h{t) < h(T) = t>(0). Rearranging this inequality yields

v(t) < v(0). Thus
max_ Vv(t) = v(T).

0<t<T

Similarly, if a(-) is increasing, the minimum variance occurs when the chartists are least influential.

To conclude this section, we make the following observations which exemplify the close inverse

dependence of ?(¢) on a( ).
Remark 2.4.3

(a) Ifa() isnon-increasing, one notices that the first derivative conditions on the internal extrema
of v(-) implies that there exists tm £ [0,T] such that v(-) is decreasing on [0,im\ and non-
decreasing on [tm,T], Analogous statements are true when a(-) is non-decreasing, increasing

or decreasing.

(b) One can use basic calculus techniques to show that if a(-) is increasing on (0, Ti) and decreasing
on (Ti,T) then there exist tM < Ti, tm > T\ so that v(-) is non-decreasing on [0,ijvi), non-

increasing on (tM,tm) and non-decreasing on (tm,T].

2.5 An Ergodic Theorem

To establish an almost sure description of the asymptotic distributional character of the logarithm of
the asset price we show that its pth-moment time averages converge almost surely as time increases

to infinity.

Theorem 2.5.1 If X is the solution to (2.17), and w() is the periodic solution to (2.18), then the

following holds for p £ N almost surely:

-M", @30

tl_i_&rb-t J[0 X*p+lds = 0. (2.38)
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The proof of Theorem 2.5.1 follows later in this section.

Remark 2.5.1

We remark that departure from strict periodicity is possible with no loss of generality. Let dynamics

of Xf be governed by
dXb= -b(t)Xbdt + adBt, (2.39)
with Xo deterministic, where 6() satisfies
lim (6(i) -a(i)) = 0, (2.40)

and a(-) satisfies all the usual properties. If v(-) is the periodic solution to (2.18), and vb() satisfies

A (0)=0,and
vb'{t) = -2b{t)vh{t) + 1, (2.41)
(so that then X b~ Ai "X0e~ ""b(s)<slcr2vb(t)J ) then one can prove
It'ﬂ(]n vh(t) —ti(i) = 0,

Then we have

Theorem 2.5.2 If X b is the solution to (2.39), and ti(-) is the periodic solution to (2.18), then the

following holds for p £ N almost surely:

digpg - f Xb2pds = M I v{s)p ds, 2.42
ik p 2Ppl T J[o {s)p (2.42)
tl-l{&)_t de fp+lds = Q (2.43)

Proof: Analogous to Theorem 2.5.1. o

Remark 2.5.2

The even power time averages increase as the disturbance increases, from Proposition 2.4.1, con-
firming the claim in Remark 2.4.2. Moreover, for each p £ N the asymptotic 2pth order sample

moments of X are greater than the corresponding asymptotic sample moments of X. This shows
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that the pathwise behaviour of the price will be increasingly unstable under conditions of increasing
market heterogeneity and increasing uncertainty of agents. It is not implausible that this tendency

will reinforce the agents’ behaviour.

We notice that this result shows that more unstable price dynamics (and as we will presently show,
heavier tails in the returns distribution), has its roots in increased agent heterogeneity. It therefore
adds some theoretical substance to the mechanism that Guillaume et al. [38] propose to be responsible

for heavy tails in exchange rate returns.

They state that extreme events rely on the presence or absence of certain market participants such
as medium term investors or pure speculators due to changing market conditions. They claim that
fat tails result from the activity of relatively long term speculators reacting after some news, (corre-
sponding to a(-) positive) upon which short term traders become even more active (corresponding

roughly to a(-) changing from positive to negative), thereby reinforcing the initial fluctuations.

The price distribution always has kurtosis greater than 3. More generally, if

(13 *
ot — to (W Tra X 6/\)dJ)_Pd§_p_ (2.0
Go&* -tf on du) &)

ELY2]
kp ~ E [y2]P -

where Y ~ ~(0,1), then one uses Jensen’s inequality to prove
1-';'4% K.,.(0j:t) > lle a.s.
with equality iff a(t) = A.

To prove Theorem 2.5.1, we first introduce some notation and results that will be used frequently

in the proof. For brevity, we write “yrax — maXo<s<T ()~

1) Recall the definition of u(-) in (2.21), and that u is invertible. If u(t) = T*, then one can
(1)

show that there exists oo > Mi > 0 such that

_MI+ 4logT* <m1(T*) < M1+ s logr. (2.45)
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To prove (2.45), write down an e —6 version of (2.23) and use the fact that

logu'(t) ~ 2AT
(2) Recall (2.22) and define
a W - (249
and recursively for k = 0,1,..., | —1 (*p- for p odd)
Gk+1{m) = - Jf\‘;v" Gk{r)dr. (2.47)
Notice for future use that
Gfc+iH = Gk{vj). (2.48)

One also has the bound
|GoH| < Vmai— . ,£m

Induction on (2.47) yields

|G~ (1-j) wi+ $-k- 249

(3) Using (2.45), (2.49) and the law of the iterated logarithm, we have for any standard Brownian

motion D

T%0  U~I(T9) v o

(4) Define for some as yet to be specified uwo > 0 the integrals

F
Ik(p,T*) =~ ~ J » BRv 2kGk (w)dw. (2.51)
For p even we have

rlimoU (p,r )= (-1)* £ v(s)8ds. (2.52)

To show (2.52), define forj = 0,1........ 8§

>
P{T)~1I f VPGz-j(w)dw. (2.53)
3-Jwo
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Thus /°( ) = /|{p, wm Using the periodicity of (2.23) and the change of variable w = «(s),

for sufficiently large sq > 0, one can calculate

1 1T,
(T J{ "0
F 1 1 ¢ v ,
=/~ w M~ w il (o W))— »—
= TIyi_n}w(XiiU‘r).

Integrating (2.53) by parts and observing from (2.45), (2.49) that

TG ()
lim —————- » IV =Q
T*»00  U-AT*)

gives on taking limits and using a reverse induction argument that
lim /7*(2")s(-1)* _lim J°(™*
T*-*00 S ) (x )1 T*—»00 ™.

Equation (2.52) is now immediate.

(5) Define for A= 0,1, —1-
JK(T*) = £ BP-~G k+l(w)dBw. (2.54)
If Yfc(i) = Jh(u(t)), then almost surely, forig N
Jim Y fe(0 = 0. (2.55)

To show (2.55), let g = p - 2k and observe by the Burkholder-Davis-Gundy inequalities that
there exists a constant 0 < K+ < 00 such that
o TE ( f Bréb: dsw)
iy B (ol BT CBPEH ooy
rr

K4 o
0

BAP-iA+AGk+iiw)2dw

™ 320D \2
r <} (2.56)

i
ST = L W
where we used (2.49) in (2.56) and 0 < Cq < 00. It is possible to show, using an induction

argument similar to that used in the proof of the theorem, that the expectation term in (2.56)
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is bounded by a constant 0 < C* < 00: thus

IUCqC\
t2

A standard Borel-Cantelli argument now establishes (2.55).

Proof of Theorem 2.5.1: Without loss of generality, we may assume X g= 0, and <= 1. Using the
Martingale Time Change Theorem, the same type of argument as used in part (4) of the preamble

gives us

A . .
P ALEE LIS o

provided the limit on the right-hand side of (2.57) exists. To calculate it we have using (2.48), (2.51),

(2.54) the following by stochastic integration by parts for k = 0,1,... ,§ —1 (“y*- for p odd)
B: 2kGk+1(T*) Bwv~2kG k+1(w0) _
u-1(™) i)
h(p,n + (P- 2k)Jk(T*) + i(p - 2k)(p - (2k + I))4+i(p, T*). (2.58)
Write T* = u(i),let t £ N and take the limit as t goes to infinity both sides of (2.58).By(2.45),

(2.50), (2.55) one has
Ik(p,T*) + £(p-2k)(p-(2k + I))h+1(p,T*)-> 0. (2.59)
When p is even, an induction argument on (2.59) together with (2.52) gives, when substituted into

(2.57)

AN [ x-ds=~ k [ ~ )Us- {2m)
When p is odd, put k = into (2.58), remembering that (2.55) suffices to show I Ri (p. T*) —0.

Induction on (2.59) proves lo(p,T*) — 0, and hence

tI_Ln(;lD It J[O Xpds = 0. (2.61)
The proofis not quite complete, since (2.60), (2.61) only give a.s. convergence for Fort N,

let n = [tJ, and write (for any p £ N)
il!'x/d“-E[ U “x/is}=
J Q £ X/ ds- E £ X/ds'j+j Xsp- E[X.P]ds. (2.62)

The first term on the right-hand side of (2.62) goes to 0 by (2.60), (2.61), the second by Proposition

2.3.2, part (ii). 0
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2.6 Convergence of the Empirical Distribution Function

We construct a family of empirical distribution functions {T7(a:)}t>o0 as follows:
F :(M+,M,fi) -> [0,1] : <mFt(x)(w) =y [ I{X,(w)<x} ds.
13s=0

We now prove the following

Theorem 2.6.1

tI_it[)n0 } J[S_Ql{x.(w)<x] ds = F(x), (2.63)

almost surely, where F(-) is a distribution function with continuous density

1T 1 > 2.6
f = A » ds. .
(x) 1 .Jlo a\/v(s)V2ne =8 ds

Remark 2.6.1

We remark that a result of a similar spirit is presented in Cabrales and Hoshi [10]. In their paper,
asset price dynamics arise from an equilibrium model in which there are two types of investors:
optimists and pessimists, who share different opinions as to the stochastic evolution of prices. By
solving an optimal consumption problem for each class of investors, the authors show that the
wealth of the investors fluctuates according to the success of their strategies, with each class gaining
temporary dominance over the other. This dominance is to an extent self-feeding, as the dominant
speculators’ beliefs are translated to prices more consistent with their beliefs than with those of the
weaker group. However, random shocks can disturb this process and the weaker group of speculators
in turn become dominant. Therefore, there is an endogeneous mechanism for price dynamics shifting
between one regime and the other: the proportion of wealth fluctuates according to the relative
success of each investor. This in turn influences the asset price dynamics, which influences the
success of each strategy and therefore the distribution of wealth, and so on. The authors thus show
that for certain parameter values, the proportion of wealth held by each class of investor converges
to an ergodic distribution. This model is also responsible for stochastic volatility in the asset price

dynamics.

The similarity with our model, and the ones we later describe in which memory has a role, can be

seen as follows. Cabrales and Hoshi see their asset price process as belonging to a Smooth Transition
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Autoregressive (STAR) class of models, which has apparently been applied to aggregate variables in
macroeconomics. A STAR process is a mixture of two autoregressive processes where the relative
weight of the processes changes over time. The log-price evolution we have considered is clearly
closely related to such processes, since it is in a sense a mixture of infinitely many A.R. processes. It
also has the character of a STAR process in that it smoothly changes between the distinct regimes
where a(-) > 0, when the price process is mean-reverting, and where a(-) < 0, in which case the
log-price can temporarily deviate from the fundamental value 0. The model of Cabrales and Hoshi
is clearly preferrable in terms of realism by virtue of the endogeneous mechanism by which the
switches in dynamics occur, in contrast to the exogeneous mechanism we use here. We can exploit

the tractability our model possesses, however, to prove more precise qualitative results than in [10].

Remark 2.6.2

If /it is the ordinary Lebesgue measure on [0, i], then

&G :-pX-<t»=r°
Ho MM) Ja

almost surely. Thus, although X does not have an invariant distribution, it has an invariant occu-
pation distribution. We remark that in surveys empirical distribution functions are constructed, not

invariant distributions.

In the sequel we denote

/,(p)h = -nJcr).x?(u)ds
ap Ti0 V®1lds 1fr Bam
0 if p is odd

To prove Theorem 2.6.1 we require the following Lemma
Lemma 2.6.1 There exists a non-negative summable sequence Cp (1 such that for all |a] < oo and
wEil*

Kmsup 11 " = g=n(fn{p){U) - 1(p))llalp < Cp{u)

n—*0 P‘ Vloglo

where P[f2*] = 1.
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We relegate the proof of this result to the Appendix of this chapter. The following continuous

modification of a well known result is also used.

Lemma 2.6.2 For each s £ [0,n] let F(-; s) be a distribution function with characteristic function
<f>(a;s). Then the distribution function F

F(x) = -I r F(x)s)ds
n Jo

has characteristic function $given by

] 1 fn q
('>(a)_ﬁJo (. s) ds

Sketch proof of Lemma 2.6.2: Develop a Stieltjes sum for $(m® over [N, N]. Using Fubini’s theorem
this can be written as an integral over s of Stieltjes sums for <X s) over [N, TV]. Letting the mesh
of the partition decrease to 0 one can use a dominated convergence argument and let N go to infinity

to establish the result, o

Proof of Theorem 2.6.1: For each n £ N consider Fn{-)(ui). Using Lemma 2.6.2 we conclude that

iv, (m) (w) has characteristic function
1 pf 1
M«)M =-/ eix'Mds ="'£ - ifn(p)(u)(ic*)P.

n Jo p=o p-
Further define
1T 2 @® 4
Ha)=7-f e -~ 1" ds=J2 -]f{p)(ia)P-
1 Jo P=op-

We make the following observation: if bn —o00, and

limsupbnign(p)(w) - 5(p)(w)| < Cp{w),

n—too

where Cp(w) is non-negative and summable and v=£ ft* where P[ft*] = 1, then

lim =£i(p) as-

p=0 p=o0

Using this observation and Lemma 2.6.1 we conclude that for each |a| < oo

JHm<M*)(W) = <Na)
for all &£ CI*, where P[ft*] = 1. Notice that <f>0 is continuous at 0 so the Levy continuity theorem

(see e.g., Feller p.508 [25] ), allows us to deduce for each u>£ Q* that
i N Ny =
Jim A, ()%) = F(x)
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where gX-) is the characteristic function of the distribution function F(-). Since Q* has full measure
the convergence is almost sure. Moreover, one can verify (2.63) by using an interpolation argument
as in (2.62). It is easy to check that €6 L1, so one can immediately use the Levy inversion theorem

(see e.g., Feller p. 509 [25]) to conclude that F(-) has bounded density /(m) given by
fX) = M 1 eia@® da-
Standard contour integration and Fubini arguments show that /(m) is given by (2.64). o

Corollary 2.6.1 Suppose f™ g(x)f(x) dx exists. Then

lim j JIO g(Xs)ds = Jf g dx

t-vO O

almost surely.

Proof: This is an immediate consequence of Theorem 2.6.1. o

2.7 Properties of the Density Function and Returns Process

2.7.1 Properties of the Density Function of the Asymptotic EDF of X

We seek to emphasise several salient properties of the density function /(m): first, its symmetry and
unimodality about 0; second, that the probability of the process being close to 0 is higher than for
a normal density with the same variance; third, that the tail of the distribution is heavier than a
normal distribution with the same variance. From this we notice that the process has the desirable
property of being relatively quiescent when close to the mean but capable of experiencing larger

extreme deviations.
Proposition 2.7.1 Suppose F(-),f(-) are as defined in Theorem 2.6.1. Then

(a) F(-) is a symmetric, unimodal distribution with mode at 0.

(b) 1f
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with distribution function F () then

(i) there exists a > 0 such that for all |x| < a

L-5>
(ii) there exists a > a such that for all x > a
10, % (O-"7gF ,-* > >1-*()m @ 56)
©
e ) = S aiimaxQd<r Wiy)" (2.67)

Proof: Part (a) js obvious. For (b)(i), we show a2 > (3 - \/6)<t2rnino<,<y v(s). Let /(¢) = F'(-).
Fix x so that |x]2< (3- \/6)<r2mino<3<T v(s), and define h(y) = e~"x /y/y. Then h is convex on

the interval [a2mino<s<T v{s)>" maxo<s<T v(s)] so Jensen’s inequality gives
h (J a2v(sT) ds'j <\] h(a2v(sT)) ds

so f(x) < f{x). Theorem 2.6.1 concludes the proof of (2.65). Part (b)(ii) follows identically with

a2 < (3+x/6)<r2maxo<j<rv(s). To show part (c) recall the spectral property of the sup norm

lim [/ (e ds) = sup e .0
y-**\30 V J

°<’<T

Remark 2.7.1

Other characterisations of heavier tails than a normal with the same variance can be developed:

(i)
1- FOGO

------- -/ — 00.
=p00 1 —F[x)

(if) For all v < a2max0<.,<t v(s), let /,,(¢) be the density of a normal with variance v. Then

XL-JKmX> /_,,Fa:') = 00.
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Log-price (x)

Figure 2.3: Empirical Density function (/t(-)(u>)) in periodic case and normal density with same

variance (/«(¢))e

The result of Proposition 2.7.1 can be observed from the Figure above, where we define

u=cr2”rJ”™ v(s)ds,

and fv to be the density of a normal with zero mean and variance v, and /t(-)(w) to be the “empirical

density function” whose distribution function is Ft(")(u).

Remark 2.7.2

Notice from (2.67) that the tail of the distribution behaves in a similar manner to a normal distri-
bution with variance a2maxo<s<T v{s)- This result is not too surprising in the light of Proposition
2.3.2, part (ii). From our previous analysis, larger maximum variance results from increasing uncer-
tainty of or changes of opinion among the agents. Numerical evidence suggests that the maximum
variance increases faster than the average variance when the variation of a(-) increases. Thus the
tails can be very much heavier than a normal with the same average variance. Similar numerical

evidence is available for the kurtosis.
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Remark 2.7.3

Using the method of proof of part (b) of Proposition 2.7.1, it can be shown that if

then for

3—\/6VY 2 Anax+v(s) < x2< (3+ \/6)<r2 min v(s

@ V' 2 qpaxyv(s) < _( ) (s)
we have f(x) > f(x).
2.7.2 Returns Process
We now turn our attention to properties of the return process. In particular, we wish to study the
convergence of the empirical distribution function of the A-return, andalso theautocorrelation of
the f-returnsviz., the autocorrelation of the returns across an investmentperiod. We clarify our

terminology with the following definition.

Definition 2.7.1 The A-return of the price process S at timet + A, r(A;i) is given by

r(A-,t) = Xt+* - X tl (2.68)
where Xt = logSe-
Proposition 2.7.2
n rt
.ﬂ\OE \7 I = Fa {X) (2.69)

where F&( ) is a distribution function with density /a (w) given by

f*{x) = h

5 —m_L,- ds (2.70)
4+ Jo cry3a(s)v2tt

and € (© satisfies

9a(<) = v(t + A) + v(i) - 2u(<)e_"+A“(")*. (2.71)
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Proof of Proposition 2.7.2: Let ngN and set
/7,8 (x) =

and since by Definition 2.7.1 and (2.17), r(A ;i) ~ A/l'(*a(<)*5a(0)> Fn,a() has characteristic func-
tion given by
on,A(a) = = ds
@)= 21)%0
where we can use the properties of the diffusion X to calculate
[IA(I)) = xoe~1O di (e /. +ae(*)di- 1),
5a(0 = i(<+ A)+ S(<)-25(i)e-f +Aa(s)ds.

We see that /;a(<) — 0 as t -> 00, so that by defining

inA(tt) = - F
n Ji=0
we notice that
lim [0,,a (<% - ¢nA(<¥)] = 0. (2.72)

Now let
ca@= 1JFT e-Kw(*)«ads
It is easy to use the fact that Ja (<) —<a (0 0 as <—>00 to show

lim -

r..e-"~3sUs=Il=z fTe-"""d s,
n-yco n JS=Q T JO

from which it follows that
n'JSF.‘G |*A (tt)-in.A(«)] = 0. (2.73)

The result is now immediate from (2.72), (2.73) and the line of analysis in Theorem 2.6.1. o

We have been unable thus far to apply the method of proof of Theorem2.6.1 to prove the analagous

result for the A-return process. Motivated by Proposition 2.7.2, weclaim

Conjecture 2.7.1
lim |le5 7{r(A;,)(W<x} ds = "a(*) d.s. (2.74)
where F&(-) is a distribution function with continuous density sa(-) given by (2.70).
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Simulations indicate that Conjecture 2.7.1 is correct

Remark 2.7.4

Some empirical studies have tested for asset returns being distributed as a mixture of normal distri-
butions, and have not rejected this hypothesis. It is possible to view Proposition 2.7.2 and Conjecture
2.7.1 in this light, since the limiting empirical distribution function of returns is a mixture of in-
finitely many normal distributions. In the paper of Boothe and Glassman [9], for example, Student
distributions, Stable Paretian distributions, and mixtures of two normal distributions were fitted to
exchange rate returns. The authors found that the mixture of normals and Student distributions

gave the best fit, with evidence the distribution parameters were time varying.

Remark 2.7.5

We remark that the A-returns process will have heavier tails than a normal distribution unless q(-)

is constant, which is equivalent to
¢ (a(t + A) + a(t)) = a(t + A)2- a(t)2. (2.75)
a

Notice that a(t) = A is a solution of (2.75) and that if a(-) is determined on [0, A], the solution of
(2.75) is uniquely determined on [0, 00). Particularly note that the T-returns process is normal iff
a(t) = A; otherwise the T-returns process has heavier tails than a normal distribution in the way
specified in Proposition 2.7.1. Thus a diversity of opinion among the agents leads to heavier-than-
normal tails in the returns process. Crucially, we note that it is unnecessary for chartists to be

present for this effect to be manifest, merely heterogeneity.

The negative autocorrelation of asset returns has been noted in several empirical surveys e.g., Fama
and French [24], Porteba and Summers [62] and Guillaume et al. [38]. Using Conjecture 2.7.1, we
show that the T-returns are negatively autocorrelated. Given that this happens in the presence of
heterogeneous agents and on a time-scale (T) in which speculators have as a whole mean-reverting
price expectations, it may be seen as a theoretical reinforcement of the mechanism proposed as Fact

5 in [38], and also in [62], Let us fix a continuous time definition

Definition 2.7.2 For allt > 0,w£ ft, the autocorrelation of the A-return process (r(A;i))t>o0 is
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given by (suppressing w dependence):

P(AlY) = (2.76)
Tfor(AiSM A;S+ A)ds~ (j £ r(A;u)du) (xJjr(A;u+ A)du)

y (i 50 (F9)- 70 (AWA) &) (tio (MASHA) 20 ra u+Aif) &)

We first show that the sample correlation of the A-returns converges almost surely.

Proposition 2.7.3 Lei

ff(A;t) = (t/(*+ A) - v(l)e~" ‘W ET2% o(»>ds - 1) . (2.77)
Then
\imp(A]t) = fiTe{A";s)dS a.s. (2.78)
t +0° Jo 9A(s)ds

where <J&m) is given by (2.71).

Proof: Conjecture 2.7.1 allows us to calculate limits of the form

1 F
t%ij -Xi+Ai-"s+A2ds.

Thus
li 1/f* A; A;s+ A)ds = <t’21 f/T A;s)d
t|m i I r(A;s)r(A;s )ds = _?Jo g(A;s)ds,
1
lim - / r(Ai;s)ds = 0,
1F 1
lim - / r(A;s)2ds = <2— f\q&(s)ds
t-¥00 ¢ Jo 1J0

almost surely. These results together with (2.76) give (2.78). o

Corollary 2.7.1 Ifp(-,-) is defined by (2.76), then

Jgpp(TI0 <0

while if
rT

J[ a{t)2v{t) dt > AT (2.79)
0

there exists 0 < A < T such that

Alim p(A\t) > 0. (2.80)
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Proof: From Proposition 2.7.3, we see that the sign of the correlation is the same as the sign of the

numerator on the r.h.s. of (2.78). However,

e{T-1) = (w(t+ T) —v[t)e~ A'+r (e" <s)ds - 1)

-v{t)(l-e~AT)2 <0,

so the numerator is negative. To show the autocorrelation of the A-returns is positive for some

A £ (0, T), we notice that the left hand side of (2.78) has the following expansion for small A > 0:

A D -2a@Xl- a®v®)dt+0@2)

so if (2.79) is true, then so is (2.80). o

Remark 2.7.6

We see that (2.79) will be true whenever the disturbance in a(-) is sufficiently great, as this will in-
crease the level of v(-). Thus whenever the agents are sufficiently heterogeneous, the returns will have
positive autocorrelation at short horizons, when fads may occur, and have negative autocorrelation

at horizons over which fundamentals dominate.

Remark 2.7.7

The sample autocorrelation of the squared A-returns converge a.s. since

1 T
lim 1 Ilr;'(A]s)st = % f g&(s)ds a.s.
t-+oot JO T Jo
T . _ n
tl-'yr(T:]ot Jer(A,s)4ds 3 1 JQ g&(s)2ds a.s.
1n T
lim -/ r(A;s)2r(A;s+ A)2ds = — | ?a(«)9%(s + A) + 2£5(A;s)2ds  a.s.
t-*00 t Jo T Jo

Taking A = T in the above, the numerator of the autocorrelation of the squared T-returns converges

almost surely to

4(1-e w G—.pr ds) j +2(-e N\ﬁ:o ds.

Therefore the autocorrelation of the squared T-returns is strictly positive, almost surely. The positive

autocorrelation of empirical squared asset returns has been remarked upon by Frey [30], for example.
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Remark 2.7.8

If X bis the solution to (2.39),
r»(A;t) = X?4A - XD,

is the A-return of the price process Sb = exp(Xb), and pb(A; ®is the autocorrelation of the A-return

process {r6(A; i))t>0 we then have

Proposition 2.7.4
= Fa

where F&(m) is a distribution function with density fa (W given by (2.70).

Furthermore, the corresponding analogues to Conjecture 2.7.1, Proposition 2.7.3 and Corollary 2.7.1
are true. The statements of these results differ only in that rfoA;-) replaces r(A; ¢), and pb(A;

replaces p(A;*).

2.8 Volume, Volatility and Heterogeneity

In this short section, we will give a very rough heuristic result relating the level of trade to the

volatility of the price and degree of heterogeneity in the market.

Let us discard the limiting argument we used to derive the continuous price process. Suppose that

the log-price responds to excess demand in a Walrasian linear fashion so that
Xt+At ~ Xt = aD(t,t + Ai)

where D(t,t + Ai) is excess demand over (t,t + At) and a > 0. Comparing this to (2.17), we see

D(t, t + At) = —J —a(s)Xsds+ —1J <rdBs.
Thus the instantaneous planned excess demand at time t, K is given by
= Ja@xw)l.
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Cabrales and Hoshi [10] take instantaneous excess demand as representing volume, from which they
prove a volume-volatility relationship, and we proceed similarly. Our proxy for volume will be the

asymptotic average of squared instantaneous planned excess demand. Let this be V (a(-)), so
F(a(-))(w) = Um i V 2(10) ds.

Let our proxy for heterogeneity be the variation in a(-), V(a(-)).

We let the proxy for volatility be the asymptotic variance for log-price, K(a('));

K(a(pw) = lim | ,{o (s Jfo Xu(u>)diiy  ds.

Then we have
Proposition 2.8.1 Let V(a(-)), V™@a(-)) and V(a(-)) be defined as above.

(i) V(a(-)) and I~(a(-)) are almost surely constant.

(it) V(a(-)), V™a(-)) and V(a(-)) are all minimised for a(-) = A.

Proof: We know from (2.5.1) that V («(m)) is almost surely constant and is indeed minimised for

a(-) = A, asis V(a(-)). Next observe that

T
JIO a(s)2v(s) ds
is minimised for a(-) = A. To do this notice that by the Cauchy-Schwarz inequality we have
7 /T \" ~ I

(AT)2 = fO a(s)ds <\IJ6 |a(s)|rfsj <J(/)\-I\r65d5~{0 a(s)2v(s)ds,

JE) a(s)2v(s) ds > \Z'AT,

with equality if and only if |a(i)|u(t) is constant, and a(t) > 0. These conditions lead to ii(-) being
constant, and so a(-) must be constant. However by Theorem 2.6.1, V («(m)) converges almost surely

to its asymptotic expected value:
~NKY) = o L afs)/(s)ds  as.
a 1
This ensures that the Proposition is true, o
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Remark 2.8.1

The proposition hints in a very crude fashion that there is a positive relationship market hetero-
geneity, activity and volatility, in the sense that all three are simultaneously minimised. Moreover,
the chain of causation seems to run from heterogeneity to volatility and volume, consistent with the
observation of Froot and Frankel [29] cited in the Chapter 1. We will prove later in the thesis that

increases in the volatility coefficient in (1.1) increases the volume of trade.

2.9 Appendix

Proof of Lemma 2.6.1 : Writing My. = u~1(T*)Jk(T*) we note that My. is a martingale with

limj*-voo (M)t*= oo so that if we write

NTY =5 L P ph)Ee @2

then

limsup =1
Trtoo A2« - 1(T*)MRK(T*)\log log(M 1(T*)RK(T*))

Using (2.49) we show that

lim sup Rk(T*) < 2Av*aXCPlk

T*-*oo0

where
cop- L 2(p-(2* + D)
" (j_oi_"a@-(2"+ DP-ebi)-
Thus
lim sup < 2\/2Aum~I\JCPtk- (2.81)

T+-+00 V*0gloglogT*
As similar arguments are used below, we omit the proof that there exists a non-negative summable

sequence Cp(w) < oo such that for all |a] < oo.

lim sup —=\n(fn(p) -7 0(p,u(n)))| < C2(w), (2.82)

n—>00 P
where u € Qi with P[i2i] = 1. Define for p odd I Pi (p) = O, for p even
T

2>
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and Tk(p) - \(p- 2k)(p- (2k + I))ik+i(p) = 0. Notice f(p) —10(p). Let

Dk(P) = limsupm Mk (p, T*)-Tk(p)\.
T—00 1~/TAv+a VlogloglogT*

Then for all |a] < oo, we can use (2.82) to show

limsup m =& ———=\fn(p) ~ /(p)IM P < \ D 0(p)\a\p2VAvHat 2.83
n-*oop P- Vloglog n n(p) ~ /(p) (p)\a\p vinat m (2.83)

To establish the lemma, we need only show the r.h.s. of (2.83) is summable over p. Using (2.58) we

can achieve the following iterative inequality:

Dk(p) < (p-2k)y/Cpk+ i(p-2A)(p- (2k + 1))Dk+1(p)
with boundary condition for p odd

D E=1(p) <

and as we prove below for p even, De = 0. An induction argument yields for p odd

1 =z 1 o, X eV 1 1 1 (41!
Do (p) < NECE () N A il T

+ 2 ] @@=

p\y (p—1)!2p-1 (2.84)

with a similar inequality for p even. Let ap = 2\fAurnax |a|p times the summation on the r.h.s of
(2.84). One can then use Stirling’s formula together with the ratio test to show that

y , ap < oo.
pGodd

The same argument works when p is even. Let bp = 2y/Avi*ai \a\p times the last term on the r.h.s
of (2.84). Again,

Ezik < oo.

pEodd p
We proceed analogously for p even. This proves the summability of the right hand side of (2.83). o

To prove that Dz(p) = 0 for p even, we partition integrals to obtain the following bound

IS(r) - ifw [V vii)ids wo "ido)vL'AM w iC zZ AN )d+
1 i i pT
-UT </ v(tO(s))*ds-- v(t0(s))>ds
o W ) Ju-Hwo) 1 Jo
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and in a similar vein we have

/ v(t0(s))% ds - - v{t0{s))*ds
M ) Ju~-1(wo) Jo

- u~1(T*) V'lax (2T + U .

Integrating (2.53) by parts successively we obtain the bound

i/f(p.,n-/8(p)i< +
i «1

i
e AT
VU + 1) U+ 1

Applying (2.49) and recalling the definition of Dk, we see from the above that Dr (p) = 0.



Chapter 3

The Existence, Unigueness,
Regularity and Representation of
Solutions of Linear Stochastic

Integro-differential Equations

3.1 Introduction

In this chapter we determine some of the fundamental properties of a linear stochastic integro-

differential equation of the form
dXt = "M\(t) "Xt —\] w(s,t)Xads"j - i3{t) (Xt —k(t))"j dt + a(t) dBt, (3.1)

where we assume A(e),/?(m), er(-),&(*) are continuous. Additionally, we impose some continuity and
integrability conditions on w(-, m); most importantly, we require that w has an integrable singularity

at (0,0), in the sense that fort > 0,

I w(s,t) ds - 1.
Jo
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By using Picard iteration, and mimicking the proof used to show uniqueness and existence for
stochastic differentia] equations, we show that there exists a unique, continuous solution to (3.1).
Some additional analysis is merited to handle the complications arising from the necessity of adjoin-

ing memory, and also dispatching the difficulties arising from the singular behaviour of the kernel

Furthermore, the continuous solution has a stochastic variation of parameters representation, which

can be expressed in terms of the resolvent of the deterministic integro-differential equation given by
]

x'(t) = X(t) (x{t) - Slw(s,t)x(s) ds'j —fI(t)x(t).

Using the Kolmogorov-Centsov theorem, one can show that the continuous solution has a modifica-
tion which is locally Holder continuous of order 7 g (0, 5), but is not locally Holder continuous of

any order j or greater.

We will later use this equation to model the evolution of log-prices of an asset in which some agents

have memory and others believe prices revert to levels determined by economic fundamentals.

3.2 Preliminaries

For the present, we assume
Jt6C[0,00), (3.2)
and impose the following properties on w(-, m): let

D m={(s,t) : 0<s<t}

Then
w £ C(D, (0,00)). (3.3)
Forallt>0
f w(s,t)ds = I. (3.4)
Jo
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Let A /3, < G C(ffi+ U {0}). Define

Mi = max]|A(i)], (3.5)
M2 = max |/3(0l, (3.6)
M3 = mayI<r()l (3.7)

We further assume there exists <> 0 such that

inf |<r(f)] = a. (3.8)

3.3 Representation of the Solution

We assume that we have an underlying filtered probability space (ft, T ,(*t)t>0,IP)- Let [Xt)t>0
model the log-price of the asset at time i, and be a continuous time stochastic process adapted to
the filtration. We assume that it follows a stochastic integro-differential equation (specified below)
driven by a standard Brownian motion (Bt)t>0. We will need to manipulate stochastic integrals
with ;-dependent integrands. To do this, recall the semi-martingale decomposition of Berger and

Mizel.

Lemma 3.3.1 Let h be a deterministic function which satisfies
h:D —yM:(s,0 £2h(s:i),

Suppose that A exists and is uniformly bounded and h(-,-) is uniformly bounded on all D Then for

every 0 < t < 00
[ /A
J h(s,t)dB, = \] h(s, s)st+J ( J A-(u,s) dB”j ds. (3.9)
Proof: Use the stochastic Fubini theorem. See Protter [64] and Protter (1985) [63]. 0
We will later use this to prove that the S.I-D.E (3.1) has a unique variation of parameters solution.

Define g(s, ™ to be the (unique) solution of the following system:

N(s,i) A®) (g(s,t)-J w(u,t)g(s,u)du” -P(t)g(s,t) t>s (3.10)

g{s.;s) = 1, g(s,it) =0 t<s (3.11)
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The fact thatthere is a unique solution to (3.10), (3.11) can be readily inferred, forexample, from
Theorem 1.7.1onp.24-26 of Lakshinikantham and Rao [49]. By this theorem, thereis also a unique

solution (e(-)) to the equation

A(<) "e(f) —J w(u,t)e(u) duj - 12(<) (e(t) —k(i)), (312)

e'(t)

e(0)

X0. (3.13)
It is not difficult to prove, using a deterministic variant of a proof we later use, that
[j(s,f)] < cW+WaX»-") (G.1%9
and using (3.10) we can prove
2?—(,\,,) (3.15)
Therefore, if T < ooand 0< s<t< T, then
/DI < e(W=AIDT (3.16)
and
[(M) (3.17)

Therefore, both g and -£ are uniformly bounded on compacts. Then we will prove

Theorem 3.3.1 Under the above hypotheses, (3.1) has a unique, continuous, variation of parame-

ters solution on every interval [0, T] given by
Xt=-e(t)+ [ cr(s)g(st) dB,, 3-18)
Jo
where g(-, ® is given by (3.10) and (3.11), and e(-) is given by (3.12) and (3.13). Moreover,

E sup X( < oo. (3.19)

o<t<T

Remark 3.3.1

The existence and uniqueness of solutions to linear stochastic integro-differential equations is covered
in Vespri [77]. However, a separate proof of existence and uniqueness is necessary in this case owing

to the singular behaviour of w(-, ®as 11 0 (cf. equation (3.4)).
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Proof of Theorem 3.3.1: We will temporarily assume existence and uniqueness have been demon-
strated, together with (3.19). These facts will be established in Proposition 3.4.1. To prove the

representation in (3.18), define
Yt = a(s)g{s,t)dBSl (3.20)
Jo
and notice by Lemma 3.3.1 and the definition and properties of g that

Yt = jO <r(s) dBs + jS—o fu_o(r(u)"-(uts)dBu ds.

Plainly, the process Y is a.s. continuous on (0,T] for any T > 0. Using the definition of g and the

stochastic Fubini theorem we obtain for all s > 0

/'S cr{u)*-{u,s)dBu =\{s)(\Ys-
t

S w(v,s)Yvdv) - /3{s)Ya. (3.21)
Ju=0 u = /

[
Jv=0
(For s>Q and any v such that 0 < v < s, w(vys) is finite, so

ps psS ps pv
| | a(u)w(v,s u,v) dvdBu= / | o-(u)w(v,s)g(u,v) dBu dv,
) =0d=u (wW)w(v,s)g(u,v) MN0IU-O (uyw(v,s)g(u,v)

since the boundedness of the integrand and the stochastic Fubini Theorem allow us to reverse the
order of integration. However, since lims|o info<,<s w(v, s)= +o00, we cannot conclude (3.21) for

s = 0.) We can prove, using an argument similar to that of Proposition 6.3.1 that
limYj —0 a.s.
s\,0

SO

lim [ a(u)™-(u, s)ydBu—IlimA(s) (Ys- [ w(v,s)Yvdv j- /3(s)Y, =0 a.s,
Ju=0 at «J.0 N Jv=0 /
Therefore, Yt satisfies
Yt = \] c(s) dBs + \] X(s) - \] w(v, s)Y,, dvj - /3(s)Ys ds.
From the definition of e we must have

rc
Xt = *(0) +f a dBs + \] X(s) "X's —\] w(v, s)Xvdv'j —/3(s)(X,, —k(s)) ds, (3.22)

proving the assertion, o

3.4 ProofofProposition 3.4.1

The proof of existence and uniqueness is relatively standard, and follows via Picard-Lindelof iter-

ation. However, since we must also include the influence of the past in our proof, the argument is
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more cumbersome than is the case in the comparable proof for stochastic differential equations. We

proceed using a troika of lemmata.

Lemma 3.4.1 Let T < oo and suppose

£ = {(Xt)0<t<T : known, X is cns., 'Rt measurable and E sup Xf < o00.}.
Lo<t<T .

Then (3.1) has a unique solution in £.

Proof: Let [a;] denote the smallest integer greater than or equal to x. Define
N=[TywWIl +8Mi] + 1
Thus N 6 N and N > 2. Now define T\ = T/N. Thus
a=TIXIMI + %Ml < 1- | < 1. (3.23)

This constant a will be used in Lemma 3.4.2 to show that a certain functionalis a contraction

mapping. Now we prove existence and uniqueness in a succession of Banach spaces.Let

£= {(M)o<t<(I+)T1lm known, X is cns., Tt measurable and E sup < GD.},

0 <t< (it )T

and

Cil= {("t)o<t<(i+i)Ti "’ known, X is cns., Ft measurable,

E sup Xf < o0, and Xt — X\ for all t £ [0, iT{\},
O+ )T

where X' is the as yet to be proved solution on Cl. Notice that C’ C £*. We can proceed exactly as
in the case of stochastic differential equations to prove that there is a unique solution on £°. Call

this solution X °. Make the induction hypothesis
H{ : There is a unique solution to (3.1), X' G£'

for i > 0. Obviously, HO is true, and iijv-i is the statement of lemma. It is the subject of
Lemma 3.4.2 to show that under i there is a unique solution to (3.1) in C'. We defer this proof
temporarily. By reference to Lemma 3.4.2, we readily see that all solutions of (3.1) in £' are in C".
Now let the unique solution to (3.1) in C' be YI. Since C* C £', we have Y’ G £’mThus there is a
solution to (3.1) in £'. Let ZIl be another solution in £1. But then Z1 G C% so by Lemma 3.4.2,
Y' —Z*. Therefore Y | is the unique solution in £\ Call it X '. So given Hi-1, we have established

H{, and the lemma is proven, o
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Lemma 3.4.2 Under Hi-1 there is a unique solution to (3.1) in C%

Proof: Define a mapping $ with domain in C'. Let
*(Z)t= 20+ w(u, s)Zuduj —P(s)(Z, —k(s)) ds + \] <r(s)dBa
fori > 0 and <fc(2)t = Zqgfor t — 0. We will want to show
$ e —>c\

and $ is a contraction mapping on the Banach space (C*, | »||,) where

WXW = E sup X %
0<i<(«+)Ti

Obviously, if z is continuous, Tt measurable and zo known, the same can be said for $(-£)m |If
X € C\ then Xt = X\~ forallt6 [0,iTJ, so $(X)t =" (X "t =X "r1forallt 6 [0,iTi]. Ifwe
have X £ Clthen we will require

E sup < 00. (3.24)

0<t<(i+N)Ti

Thus if $ is a contraction on ClI, it follows that there exists a unique X %6 C‘ such that
®RMAX=X; vt6[o,(i+i)r.

Therefore, X'solves (3.1)on [0,¢¢ + I)Ti] uniquely in C'. Take X, Y EC*. First, forall t 6 [0,iT\]
$(X){- $(Y)t=0= Xt- Yt. (3.25)

Let t G [iTi, (i + 1)T\]. Then

$(X)t- *(Y)t= f  A@GS) (Xt =Y, —[° w(u,s) {Xu- Yu)du)ds + f ~13{s) (X, -Y,,) ds.
JiTi \ JiTi J iTi

iT JiTi
(3.26)
Standard bounding arguments give for U, = X, - Ys
sup I[ —i3(s)Usds < M\T{ sup \Ut\ (3.27)
<Ti<t<(rf+1)Ti \I\Ti ¢Ti<t<(i+1)T1
sup I A(s) (Us— I w(u,s)Uudu) ds < AM?T? sup |?7t]2, (3.28)
iTi<ik@DTE \JiTi \ JiTi )

where we use

/[ w(u,s)Uudu < _sup \UU
JiT! iTlli<J
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Taking the triangle inequality across (3.26), then using (a + b)2 < 2(a2 + b2) gives, on taking

supremums across the resulting inequality

p $pOt-$(Y)t|2<az2 \Xt-Y t\2

su sup
<Ti<t<(i+)ri tTI<i<(*+1)T1
where we use (3.27), (3.28). By virtue of (3.25), we have

H*CO"W I l<ap™YII,

so by (3.23), $ is a contraction. We will now show (3.24). By the definition of $, by using

(a+ b+ C+ d)2< 4(a2 + b2+ C2+ d2) we have

< 4/\S(Q2+ X(s) ~X, —J  w(u,s)Xxudu”ds

+4 -(Gi(s)(X, - K(S)ds)y + ("N a(s)dB
and
s ${X)2 < 4ra:(0)2+ _sup._f T A@) (/x —f w(u, s)xudw) dsy N (3.29)
X)) RO2* i \Jo o 1))
A
+ 4] sup (f /3(s)(Xs - k(s))ds\ + sup (f a(s)dBs
\o<t<(+ 1)Ti - 0<t<(t+1)Ti \Jo
To bound the third term in (3.29), we use Cauchy-Schwarz and (a + 6)2 < 2(a2+ b2) to obtain
sup 1/ f3(s)(Xs —k(s)) ds < 2M2 sup </" X 2+ k(s)2ds
o<t<(.+i)T, \Jo O<t<(ii+1)Tj JO
< 2M'g((i + D)TiY | sup X2+ sup k(t)2.1,
\O<t<{i+I)T1 o<t<(t+ )Ti J

so the expected value of the third term is bounded. It is trivial to use Doob’s maximal inequality

to bound the expected value of the fourth term in (3.29). To wit:

Pfx v 1 [ Je(<+D)Ti \

E sup it cr(s) dBs'l = < 4E / a(s)dBs < 4(i+ DTi sup c{t)2*
0<t<(i+NTi \Jo / 0 J 0<i<(i+D)Ti

(3.30)

We bound the second term in the same manner as the third, viz,

sup \ﬂo A(S)\[XS_JO w(u,s)Xuduj ds < M2 sup

2 sup |Aulds
O<t< (i H)Ti 3|

I/
O<t<(i+1)T! \JO O<u<a
< m\ ((i+1)TO02 sup X2, (3.31)

and this term also has finite expectation. Therefore, by (3.30) and (3.31), all the terms on the right
hand side of (3.29) have finite expectation, so (3.24) is true. This is now sufficient to prove the

lemma, o



Lemma 3.4.3 If (Xt)o<t<T is a solution to (3.1) and is a.s. continuous and T% measurable, then

E sup Xf < oo.
o<t<T

Proof: Let X be as in the statement of the lemma. Define

Tn = inf{s > 0 :|XS| > n}.

Since X is a solution of (3.1), it satisfies (3.22). Using the same argument as in (3.29), we have

E sup X2
0<u<tATn

< 4 x(0)2+E 0<us<utpATn \fo A(s) \Xs — jO w(r, s)XTdr)I ds

+ 4 E sup ff (3{s)(X, —k(s))ds\ 1 +E sup f f a(s)dB,
0<«<<AT, \JO J 0<u<tAT, \JO

N

a1a024-E A A@) *xs—J W s)xrd™ &)

f ptATn \ 21 '/ rtATn \
+ 4 E J P(s)(Xs - k(s)) dsj +E I v(s)dBs \

(3.32)

The fourth term on the right hand side of (3.32) can be bounded using Doob’s maximal inequality,

so we have, sincet 6 [0,T]
/ JtATn \ 21 T
E 13 cr(s) dBsJ < 4] a(s) :ds.

The third term can be bounded in the same way as (3.30) to give

E f /3(s)(Xs —k(s)) ds ] < M| (2T2 sup k(s)2+ 2T e[ sup \XU
JO J & dS<T Lo<u<sAT,

and the second term on the r.h.s. of (3.32) bounded in the same way as (3.31), yielding
/ ft >

\Y
E 1 AB) (Xs— 1 w(rts)Xrdr | ds < ATM2 E su \ XU
J‘O ©) K Jo ( ) J| [Lo<u<spAT,,

Define

fnt) =E sup X2
.0<Uu<tAT,

Then /" is finite, continuous and non-negative. Using (3.32), we then have

ds

r(i)<4nr(0)2+ 2T2M 2 sup k{s)2+ AT sup o0'(s)2) + (I6M2T -f8M |T) [ fn{s)ds,
\% °<S<T / JO

0<s<T

67



so applying Gronwall’s inequality, we have

InW <4 (W + 2T2Mf sup k{s)2 + 4T sup <r(s)2) e(™M?T+&M’T)t
\ O<a<T J

0<s<T
Let
K(T) = 4 fx(0)2+ 2T2M$ sup k{s)2+ 4T sup ~(s)2) e(i6M?T+8AI’T>T. (3 33)
\Y 0<«<T o<a<T )

Thus fn(T) < K(T) < 00. Now, using Fatou’s lemma, we have

E sup |[XUZ2 =E Ilim su \XU\2 < limsupE sup  |XU]2 = limsup/" (T) < 00,
o<u<T n-t-00 O<U<TAT,, n-foo ,0<u <T/VT, 71->00

which completes the proof, o

Proposition 3.4.1 If T < 00 there exists a unique continuous solution to (3.1). Moreover, it

satisfies

E sup Xi < OO
O<t<T

Proof: Follows directly from Lemma 3.4.2 and Lemma 3.4.3. o

3.5 Regularity of the Solution

In common with linear stochastic differential equations, we can show that the solution to (3.1) has

a modification which is Holder continuous of order 7 for all 7 G (0, |), but not of order \ or greater.

Proposition 3.5.1 If X is the continuous solution of (3.1), it has a modification which is locally
Holder continuous of order 7 G (0, |). Furthermore, X is not locally Holder continuous of order
7 > |. In fact we have, for eacht G [0,T] and 7 > 5

L. Xt-X,
liminf = 00 a.s. (3.34)
5ft [t- 8)1

Proof: If X is the continuous solution of (3.1), then, for each s,t such that 0 < s <t < T and for

each m GN, we have, using (3.22) and (a + b+ ¢)2m < 32m(a2m + b2m + c3m)
2m
(Xt- Xs)2m < 32mQP X(u) - J w(r,u)XTdrY du (3.35)
2m\
+ 3m [3{u){Xu -k{u))du) + Aj\(u)dB ur



The first term on the right hand side can be bounded using the same ideas as in the proof above,

together with Jensen’s inequality.
w(r,u)Xrdr) du (3.36)
< MiIm\t—s\2m-~1] Ju—\] w(r,u)Xfdr du

< MIm\t- s|2m-1J* 22m (\Xu\2m+ [jT w(r, u)Xrdr du

< 2.22mM?m\t~s\2m-1 f sup \Xr\2mdu.
Ja O<r<u

The same strategy for the second term gives

-t \ 2m

(J p(u) (Xu - k(u)) du) (3.37)
< 22mMIm\I-s\Im~1 Q(\t=s\ sup /Meu)2m+ [* sup |Xr|2mdu\ .
\ o<u<T Ja O0<r<u /
Next, notice that since
\] <t(u) dBu ~ Af "0,\] cr(u)2du)

we have

E d*y < (3.38)

An argument analagous to that of Lemma 3.4.3 shows that for each m £fi and T G (0, oo) there
exists Km(T) < oo such that for all u G [0, T]
E sup [Xr|2m (3.39)
.0<r<u

Taking expectations across (3.35), and using (3.36), (3.37), (3.38) and (3.39), we have

E[(Xt-X ,)2m] < +52m(* M 2m\i- 8m

+  32m (22mM$m sup k(u)2m+ (2.22mM Im + 22mM 2m) Km(T)] \t- 1zm
\% o<u<T J
and since |[i —s|m < Tm, if we define
Cm(T) = 32m (rm (22mM im Qsup”k{u)2m + (2.22mM Im + 22mM2m) Km(T)) +
then forall0 < s <t < T we have

E[(Zi-Z J)2m] <Cm(T)\t-s\m.
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If7 £ ©)])i letm = f + 1,50 (m —I)/2m > 7. Thus by the Kolmogorov-Centsov theorem, a

modification of X is locally Holder continuous of order 7 (see Karatzas and Shreve p.53-55 [41]).
To show (3.34), define
Zu = A(tt) (xu - w(r,u)Xrdr) - O(u)(Xu - k(u)),

so Z is a.s. continuous. Thus for every t G [0, T], it follows that

li It Zudu Zt as
liT< l—s o
Let 7 6 [i, !]m Then
. Il Zu du
lim sup =0 a.s. (3.40)

01- ap

Then using (3.22), (3.40), the martingale time change theorem (see Karatzas and Shreve [41]) in

conjunction with (3.8) and the law of the iterated logarithm, we have

Lo Xt-X, .. . fazZudu j"l<r(uydBu
lim inf liminf J
«ft t — sy (t_s)y
> liminf il af{u) dBu fs'Zudu)
imin
(t-sp (t-Sp J
L ITIREy P L f1zudou
> | f + 1 f—
MR . 97 T (- s)r
lim inf frau) du
Sft (t-s)y
= I H f fl trauYl
Imlén a -7
= 00.

where B is another standard Brownian motion. This completes the proof of (3.34). 0
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Chapter 4

The Efficacy of Technical Analysis
and the Possibility of Pricing
Options when the Efficient Market

Hypothesis is Violated

4.1 Introduction and Motivation

In this chapter we will motivate the study of the linear stochastic integro-differential equation (3.1)

dXt= A(t) "Xt - J w(s,)Xjdsj - i3(0) (Xt- k(1)) dt + a(t) dBt,

by showing how it arises naturally as a model for price evolution in a market in which some agents
believe that past prices have an indicative value in the formation of investment strategies, and other
agents believe that prices should revert to levels determined by economic fundamentals. Moreover,
by postulating that such classes of agents have the ability to influence price, we construct a model
of prices which does not satisfy the Efficient Market Hypothesis: past prices do have an influence

on the present price. The price process is therefore not Markovian, and much of our effort in this
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thesis will centre on overcoming some of the technical difficulties that this creates.

In this chapter, we expand upon the properties we imposed on «;(-, ) in Chapter 3; by endowing on
w(-, ©) monotonicity and asymptotic invariance properties, we note that w(s,t) can be ascribed the
properties of the weight attached at time i to a price observed at time s, where s < t. The chartists
then construct a moving average of past prices using this weight, and by comparing the value of this
index with the current price, decide whether to buy or sell. Some consequences of this formulation
are then outlined: the chartists’ behaviour when the market reaches a record high or record low,

and the manner in which chartists wait and see.

We then turn our attention to the chartists’ ability to elicit information from a time series: essentially,
we want to ask how closely their index function (moving average) mimics the time series. It transpires
that if the price was to settle down to a constant value, the index function would also settle down to
that constant value; if the price was bounded by a certain number, then the index function would be
bounded by that number; if the price exhibited a periodic oscillation, the index function would settle
down to a periodic function with the same period as the price. Finally, if the price was growing at a
trend of less than iterated exponential growth, then the index function identifies this rate of growth
precisely. In Chapter 6, by studying the pathwise asymptotics of (3.1), we show that the chartists’
ability to track prices accurately leads to the market exhibiting time consistency: its dynamics do
not seem to undermine the beliefs of the agents acting in the market, and therefore it is not unlikely

that those agents will continue to hold their beliefs.

In the third section of the chapter, we sketch the method we need to mimic the micro-economic
argument in Chapter 2: that is to say, the manner in which we convert a discrete time temporal
equilibrium model to a continuous time stochastic process, which is the solution of a stochastic
differential equation driven by a Brownian motion. In the modified model, in which the past also
has a role, we indicate how the weak convergence proof of Kurtz and Protter might be altered
to show how a discrete time equilibrium model could give rise to a stochastic integro-differential
equation driven by a standard Brownian motion. As this program of research remains temporarily
incomplete, we also provide a heuristic develpoment of this integro-differential equation by positing
instananeous demands that are consistent with the choices made for demand functions in the discrete
time model used in Chapter 2. Some of the model’s similarités with the Black-Scholes model are

made, as well as noting its suitability for modelling exchange rates.
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The fourth section of the chapter shows that it is possible to price and hedge European options in this
model, and that small investors doing so need only know the volatility in the market: the existence
or behaviour of the chartists and fundamentalists are not revealed to these small investors—in fact,
the small investor’s portfolio comprises the same number of risky and riskless assets at any instant
as would be the case if the price evolved according to Black-Scholes dynamics with the same time
dependent volatility as in (3.1), and the same level of time dependent interest rates. This result
shows that the Efficient Market Hypothesis does not have to be satisfied for derivatives to be priced;

moreover, that investors pricing these derivative products need not know that it is being violated.

The last section of the chapter mentions that in this model there is a positive relationship between
the volume of trade in the market and the volatility. We also show that increased fundamentalist
confidence reduces the variability of the price process. This is of some interest in the context of

credible exchange rate bands.

Throughout the initial sections of the chapter, we assume the price is a continuous time stochastic

process, which is almost surely continuous.

4.2 Chartist Behaviour

4.2.1 Chartists’ Weighting and Index Functions

Let D {(s,i) : 0<s<t}

Definition 4.2.1 The function w is a chartist weighting function if it satisfies the following:

(i) weC(£>\{(0,0)},(0,00)).
(i) Jgw(s,t) ds = 1for allt > 0.
(Hi) w(-,t) is non-decreasing.
(iv) There exists afunction a :ffi+ U {0} —M such that

(a) a(0) < oo,
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(b) limt-f@suPo<«<t g((?_[?) -1 =0

We call such a function a(-) an invariant weight for u;(-, *).
One immediately obtains
Lemma 4.2.1 Ifa(-) is an invariant weight for a chartist weighting function, then:

(i) aEC(M+U{0}]
(if) o(-) is non-increasing,

(in) limt»oofo a(s)ds — 1.

Proof: Suppose a(ii) < O for some 11 > 0. Then by Definition 4.2.1 (iv) (b), for every e E (0,1)
there exists T(e) > 0 such that fort > T(e)

w(t —ti,t)
a(ti)

Thus > 1—£ > 0 Ifa(<i) < 0, then w(t —t\,t) < 0, which contradicts Definition 4.2.1 part

1< £

(i). On the other hand, if a(t\) — 0, from the above we have

wit—tin 5
a(ti) €

which is also incompatible with Definition 4.2.1 part (i). Therefore a(t) > 0 for all t > 0. To show

a(-) is non-increasing, set t\ < t2) and use Definition 4.2.1 part (iii) to obtain

7\ o« wpe — " \’V(g_ugi"-)

a(ti) a(ta) w(t-t2,t) ~ ma(*?)_'

Taking limits both sides of the inequality, together with Definition 4.2.1 part (iv) (b) and the
positivity of a(-) gives a(ti) > <¢2) as required. To show that a(-) is continuous, observethat for

any i2 > 0, we have by (ii) and Definition 4.2.1 part (iv) (a)
0 < a(t2) < a(0) < oo.
Now write

a(ii) - a(t2)

= o,m)w(t “tzn gj“)_ s + a(ii)_ (w(t - tx,t) —w(t —t21t))
a(t2) \w (t —ti,t) w(t —t2,t)J w(t —ti,t)
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Let 0 < £ < 4a(0). From Definition 4.2.1 part (iv) (b), there exists T(e) £ M+ such that for all

t > T(e)

w(t —ti,i) .
1< fori=1,2.
a(u) 80(0)

Now fix t = T(e) + 1. It is then easy to show

wi{t—t2,t) (  a(ii) .
a(t2)  \w (t—ti,t)  w(t~t2,t)] <2-

Moreover, by the continuity of w(-, ® there exists i(e) > 0 such that 0 < |<i —12\ < S(e) implies
- w(t-t2,0\< |
whence
a(in) :
w(t —ti,t) - w(t-t2,t
Wit —tigy WETTD - wE-t20)

Therefore, for every e G (0,4a(0)), there exists i(e) > 0 such that 0 < |ii —t2\ < i(e) implies

la(¢i) - a(i2)] < £

establishing the continuity of a(-). Thus (i) is secured. To establish part (iii), we have by (iv) (b) of

the definition that for every £ > 0 there exists T(e) > 0 such that for all t > T{e)

w(s,t

sup (5.1 1<

0<s<i a(t_s) 1+£
Then by Definition 4.2.1 part (ii), we have

a(s) ds —I| = Rfy ( 1w, ds < sup 27 g
—If = — — ; - - < g
\tb | \bV o<3<t JG.D

proving part (iii). o
We further define a chartist index function
Definition 4.2.2 Suppose the logarithm of price at time t is given by Xt: if is a chartist
weighting function then

ac(t,X.)= f w(s,t)X,ds (4.1)

Jo

is achartist index function. If chartists are positive feedback traders at timet they buy if

ac(t, X.) < Xt
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and sell if
ac(i,X.) > Xt.

If, on the other hand, chartists are negative feedback traders at time t they buy if
ao(/X) > xt

and sell if

ac(t,X.)<Xt.
Remark 4.2.1

We now provide the economic and behavioural motivation behind Definitions 4.2.1 and 4.2.2. Since

w(-,t) is non-decreasing for each t (cf., Definition 4.2.1 (iii)), we see that more recent prices make

greater contributions to the chartist index function, and hence have greater influence on the chartists

decisions.

Suppose the price does not fluctuate over a period of time. Chartists believe that past patterns in
prices are perpetuated; from their standpoint, it would be rational to neither buy nor sell, as they
expect the price to remain constant. This perspective is matched by Definitions 4.2.1 and 4.2.2. Let

the price be flat on [0,T], so Xt = Xqgfor allt € [0,T]. Then by Definition 4.2.1 (ii) we have
ac{t, X.) - Xt=J3 w(s,t)X,ds-Xt- X0{J w(s,t)ds- I) =0,
so chartists neither buy nor sell.

Remark 4.2.2 If the price is amplified by a factor, the chartists come to the same decision to buy

or sell.

Proof: Let the old price be (5t)(>0, and the new price be (eySt)t>0 for some 7 > 0. Let X? —log7St.
Then
ac(t,X')-X 1 = log7 (I - \] w(s,t) ds) +ac(t, X.) - Xt= ae(t,X.) -Xt,

proving the result, by Definitions 4.2.1 and 4.2.2. o
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Remark 4.2.3 |f the chartists buy (resp. sell) an exchange rate with price (St)t>a, they sell (resp.

buy) an exchange rate with price (1/st)t>o-

Proof: Letting St = 1/St, and Xt = log St, we see that

ac(t, X.) —Xt = —ac(t, X.) —Xt),

so that a buy signal for one exchange rate represents a sell signal for the other, o

In other words, if chartists are tracking $-DM, and believe they should sell dollars, they also believe

they should buy Deutschmarks.

Since chartists tend to chase trends, they might be expected to buy at the top and sell at the bottom
of the market. The specification we have provided mimics this behaviour. To see this, we make a

further definition.

Definition 4.2.3 (Record High,Record Low) If
Xt= sup (4.2)
s£[0,t]
we say the price reaches arecord high at time t, while if

inf (4.3)

we say the price reaches arecord low at time t.

Remark 4.2.4 If chartists are positive feedback traders, they buy at a record high and sell at a

record low; if they are negative feedback traders, they sell at a record high and buy at a record low.

Proof: Suppose that the chartists are positive feedback traders: the proof inthe negative feedback
case is identical. Now suppose that Xt is a record high. ThenXt> Xsfor all s < t, and using

Definition 4.2.1 part (ii) we have

pt pt
ac(t,X.)—Xt =/ w(s,t)Xsds —Xt= / w(s,t)(Xi —Xt)ds < 0,
Jo Jo

so the chartists buy, by Definition 4.2.2. The proof for the record low in the positive feedback case

is identical, o
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Over the long run, chartists give weight to past prices purely on the basis of the ‘age’ of the price
data. Thus a price observed at time s <t should have a weight at time t dependent asymptotically
oni-s alone, t —s being the length of time since the observation. This aspect of chartist behaviour

is reflected in Definition 4.2.2 (iv).

The assumption that w(-, ® is continuous, together with Definition 4.2.2, signifies that chartists
believe all past prices should be taken into account, and that prices taken at times that are close

together should be given similar weight.

A consequence of our model is that chartists are conservative speculators, at least initially. Until a
trend has established itself, they will tend to be relatively inactive. Let us make this remark more

precise.
Remark 4.2.5 In the limit as time tends to 0, a chartist has zero net demand.

Proof: From Definition 4.2.2, we see that the statement of the remark is equivalent to

Wt —/ w(s,t)Xsds = 0.
Jo

Let Xt — Xt —X g. Since t X t(w) is continuous for almost all u € fi, X is also a.s. continuous.

Moreover, lim”~o-Xt = 0, so by Definition 4.2.1 (ii)

Xt- [ w(s,t)Xsds < \Xt\+ fiu(s,i)|Xs|ds
Jo Jo

< \Xt\ + max |XS

— 0<s<t

Taking limits gives the result, o
Remark 4.2.6

The “wait and see” attitude that the chartists in this model possess and their lack of reaction to
flat prices can also be seen in the behaviour of positive feedback traders in DeLong et al. [19], and

of the chartist speculators in the models of DeGrauwe et al. [17].

We also mention that the chartist index function seems to follow trends in the price. In fact, we can

show the following:
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Remark 4.2.7 Let w(s, ¢ be non-increasing, and T < oo. If X. is monotone non-decreasing (resp.
monotone non-increasing) on [0,T] then &}(—,X.) is monotone non-decreasing (resp. monotone non-

increasing) on [0,T].
Proof: Suppose X. is monotone non-decreasing. For all t £ [0,T], define Xt = Xt —info<u<T-Xu,
so Xt> Oforallte [0,T], Let¢l> <2 then w(s,t2) > w(s,t1) and therefore
0< Jf (w(s,t2) - w(s,ti)Xsds < JfO (w(s,t2) - w(s,ti)Xt2ds. (4.4)
(0]

Using Definition 4.2.2 and Definition 4.2.1 part (ii), together with (4.4), we obtain

o>cftiiX.) ac(2:X.) - acf{ti,”.) ac(t2,X.)
ftl N pt2 N
= ftZW(S'ti)XSdS- O - (w(s,ti) —w(s,t2)) Xsds
pti pta

> thf w(s,ti) ds—X_th -w (s,ti) + w(s,t2)ds
0

.0,

where the monotonicity of X bounds the first integral. The proof in the case where X. is non-

increasing is identical, o

4.2.2 Chartists’ Tracking Abilities

It is possible to prove that the stylised chartists are able to recognise certain trends and patterns
that develop in a time series. If prices settle down to a constant value almost surely, then the chartist
index function tends asymptotically to that value. If the price oscillates periodically, the chartist
index function tends asymptotically to a periodic function with the same period as the price. Finally,
if the price has trend growth of less than iterated exponential rate, the chartist index function then

tends asymptotically to the trend growth of the log-price.

Proposition 4.2.1 Suppose the price settles down over time to a constant value, i.e.,

{iﬁDXt —Xoo o.s. (4.5)
Then

lim ac(t,X.) = Xoo a.s.
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Proof-. Let ft* be the measure 1 set for which (4.5) holds. Let g £ ft*. Then for every e > 0 there
exists Ti(e,uj) > 0 such that for allt > Ti(e, w)

IX-( (4.6)
It is not difficult to show

li = for all fi 4.7
¢_|»rlnwwgs,t)_ 0 for all fixed s > 0, 4.7)

so we observe there also exists T?(e, ™ > Ti (e, ui) which satisfies

iflri(ew),i) < Tow  © (4.8)
2fo IX.(v)-*ool ds

for all t > T2(e,uj). Now lett > T2(e,u>), and using (4.6), (4.8) and the various properties of w(-, ®

we obtain
! w(s,t)Xs(ui) ds —xO0 ! w(s, (W) - xoo0) ds
Uo Jo
[+Tj 1 rt

J/ w(sit)(X,(ui) - Xoo) ds +\ w(s,t)(Xs - Xoo) ds
0 [T

< w(Ti,i) [ \Xs(ui) - xOQds+ f w(s,t)*-ds

Jo Jti

which establishes the result, o

Returning to the proof of (4.7), we find, using Definition 4.2.1 (i), (iii), that

pt ps pt pt
1=/ w(u,t)du= / w(u,t)du+ / w(u,t)du>0-f / w(s,t) du—(t—s)w(s,t).
Jo Jo Ja Js
Therefore, 0 < w(s,t) < so (4.7) is true.

The chartists can identify a bounded time series.

Remark 4.2.8 If (]Xt])o<t<T »*bounded by M > 0, then (ac(t,X.))o<t<T is bounded by M.

Proof: Omitted, o

We now prove the asymptotic periodicity of the chartist index function when the price varies peri-

odically.
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Proposition 4.2.2 LetT > 0. Let Xt be T -periodic and continuous. Then there exists a Lipschitz
continuous T- periodic function p(-) such that for each t G [0,T]

e+l
lim / w(s,t + nT)Xsds —p(t) —O0. (4.9)

>00 J g

Proof: Lett > 0. We first show for n GN that

re+nT

i + ists. .
r>|>!5rno°JIO w(s,t + nT)Xsds exists (4.10)

We then define p : M+ U {0} —=M:t  p(t) by
it
p(t) = nl_lggo fg w(s,t + nT)Xsds (4.11)
from which we establish that p is Lipschitz and T-periodic. Evidently (4.10) and (4.11) satisfy (4.9)

and the hypotheses on p, thus proving the proposition.

To show (4.10), let n,m GN, and w.l.o.g. assume n > m. Thus, if we can show for each t > 0 that
atdail pt+mT

lim 1 w(s,t+nT)Xsds — | w(s,t+ mT)Xsds = 0, (4.12)
n,m—00Jq Jo

then (4.10) will follow. Let Mx = maxs>o |X,|. Then

nt\-Tflmr

/ w(s,t + nT)Xsds — / w(s,t + mT)X, ds
«/(n—m)T JO
Jo Vv at+mT-s) J \ a(t+ mT - s)JJ
w(s+ (n—m)T,t+ nT
su (s + ( ) ) 1+ sup ~ 1) Mx
< o<s<t+mT a(t+ mT —s) 0<»<l+mT a(t+ mT —s) J

where we use Lemma 4.2.1 at the last step and the T-periodicity of X throughout. By writing

t*(n) =t + nT, we have

sup w(s+ (n—m)T,t +nT) < w(s,t*(n))
0<s<i+mT a(t+ mT —s) 0<3<t*(n) a(t*(n) —s)
and
w(s, t+ mT) w(s, t*(m))
sup - 1= sup N B
o<i<t+mT a(t+ mT —s) O<s<t*(m) a(t*(m) —s)

From these last two expressions and the previous bound, it follows from Definition 4.2.1 (iv) that
pt+nT pt+mT

lim / w(s,t + nT)Xsds — | w(s,t+ mT)Xsds = 0,
».m-+°0 'n>m F(@-m)T Jo
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so by obtaining the bound

If(n_m)T w(s,t + nT)Xsds < Mx + . su wis.t=(m) l|\l Irt+nT a(s) ds

lo ' V 0SSN at* (M —) g stemT
and taking limits as n — oo, we prove (4.12). Defining p as in (4.11) we automatically have
p(t + T) = p(t). To show Lipschitz continuity, we let, without loss of generality, t2 > t\ so we can

use (4.11) to write

p(t2) —p{ti)= Ilim | (w(s,t2 nT) —w(s,ti + nT))Xsds + / w(s,t2+ nT)Xsds.
n-)-00 JO Jti+nT

It is not difficult to prove
[*ta+nT

r
limsup / w(s,t2+ nT)Xsds <M X
N—>0 Jti+nT Jo

It is also true that
legi+nT pA2~li
limsup | (w(s,t2+ nT) —w(s,ti + nT))Xsds < Mx | a(s)ds. (4.13)
n<fo0 JO Jo

To prove (4.13), we make the following partition:

w(s,t2+ nT) —w(s,ti + nT) = (a(t2+ nT —s) —a(fi + nT —s))

/1 +nr) A ~\ f¢_»[mmltmo nI_A

Wa{t2+nT-s) ) 7 \AY a(tl+nT-s)J W1 ")
and notice that

[e14nT rt2~ii N2+NT

fO a2+ nT —s) —a(ti + nT —s)| ds = JIO a(s)ds—JIti_l_nT a(s)ds.

Applying the same arguments as above gives us (4.13). Since a(-) is non-increasing, we conclude

that
p{t2) -p (fi)| < 2M *a(0)]i2-"i]|,

proving the proposition, o

The above remark amounts to the pointwise convergence of the chartist index function to a periodic

function. One can move towards uniform convergence by noting the following:

Remark 4.2.9 IfXt is a continuous T-periodic function, then

tﬂy% ac(t+ T, X.) —ac(t, X.) = 0.
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Sketch of Proof: Notice as above we can bound \Xt\< Mx- Write

w(s+ T,t+ T) _Iw(s+T,t+T) \ a(t —s) fa(t —s)
w(s,t) VvV  a(t —s) ) w(s,t) \ w(s,t)

which is vanishingly small as t —moo0, as is w(T,t + T). The following decomposition, in conjunction

with the above observations is sufficient to prove the assertion:

ac(t+ T, X.) —ac(t,X.) = [ (w(s
0

Ao t)X,ds+ [ w(s,t+ T)XSds. o
J JO

+
\Y w(s,t) j

Let ki £ C1[0,00) be a non-decreasing, strictly positive function which satisfies

limmMm = o (4.14)
fimpki - oo (4.15)

To show that the chartists can track prices under some assumptions on the growth rate, we first

prove

Lemma 4.2.2 Letw(-, *) be a chartist weighting function, and ki(-) satisfy (4-H) ond (4-15). Then

jo w{s,t)kl(s) ds _

lim L 4.16
<400 (i) ( )
Proof: Let a() be an invariant weight for u>(-, ¢). Then
fg u>(s, t)ki(s) ds _
ki{t)
KTIT) i ($5 -0 oa- Htn 0 oag- ,)w 1
I w(s,t) x . .
< sup |, Ar- a(t - s)fci(s)ds + 7-777 [ a(t- s)ki(s)ds- 1
P la(t —s) kl% JE ikilt) Jo
From Definition 4.2.1 (iv) the lemma is established if
. 1 * .
lim . [ a(t —s)ki(s) ds = 1, (4.17)

To show this, notice from Lemma 4.2.1 that for every e > 0, there exists T(e) 6 (0,00) such that

e
I o« (s)rn (4.18)
Jtu) 2
Next, note by (4.14), (4.15) that
lim  sup MA&~9 1-q (4.19)
t-yoo 0<s<T(e)  *i(0
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Now let t > T(e), so

< i omoa-s) (M - 1) *1+ (M fi-1) *|+ £ «()*-1

5 o ¥iPre) MY T Mo TCC- )+ TOE) ATJLTT - Lods+ | ds*

ft i (_s) 1, ft
< 2/ a(s)lds + sup —mHr----- u+1 a(s)ds—
JT (e) 0<§<T(e) I M ) | Mo

where we used Lemma 4.2.1 (ii) to obtain the second inequality, and the monotonicity of ki (w) and
Lemma 4.2.1 (i), (iii) to obtain the third. Taking the limsup both sides of the inequality, and using

(4.18), (4.19) and Lemma 4.2.1 (iii), we get

limsup —1r Ioa(t—s)ki(s) ds —1 < ..

t-voo KI(<)

Since e can be chosen arbitrarily small, we have proved (4.17). o

We now may proceed with the proof of

Proposition 4.2.3 Let fci(-) satisfy (4-14) and (4-15). Further suppose Xt)t>o is the log-price

and (ac(t, X )0 the associated chartist index function. If

Xt

im —vy-r =1 .S.
90 Kift) as
then
ac{t,X.
im —{_l ) =1 as.
t-yoo Ki(t)

Proof: Let w(-, ® be the chartist weighting function associated with the chartist index function; let

o( ) be an invariant weight for w(-, ¢). For each ui in the sample space, define

X t(u) )

() (4.20)

and
= {w Mim e(@@) = C}.
Then IP[fti]] = 1. For each w£ Qi, let

C2(w) = sup |e(i)(w)| < oo,
T> O
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as we recall e(-)(w) is continuous. Let

Ci = igop ki) JIo a(t - s)ki(s) < oo,
and also Ci > 1. Define
Ti(e)(w) = sup{< > 0:c(i)(w) = — }, (4.21)
so that for all t > Ti(e)(cj), one has e(t) < Since k\ —moo as t —» 00 there exists 72(e) (w) > 0
such that for all t > T2(e) (w)
hit) > 2g2(@>— M W H ). (4.22)

Now let i > T(e){u>) := I\(e)(w) VT2(e)(w) and bound as follows:

JITWL a@_s)EI@EM s)w)ds (4.23)
1 1t i(eX) 1 o
< -7-7 1 a(i-s)fci(s)e(s)(w)ds+T-T-r / a(t - s)fci(s)e(s)(w) ds
IFJ 0 =W IT,OC)
1 - 1©0CH
A ki) o a(Ti(e)(w)-B)*i(«)d«.supl(s)(w)]

e 1 . .
+ 2Ci K\(1) fO a(i —s)fei(s) ds,

where we recall ;1(¢) > 0 and a(-) is strictly positive and non-increasing. Combining (4.21), (4.22)

and (4.23) yields:

W)l at—s)&iseEW) dsl o o CI<7jM+28:"CI=£"

Thus for all u G fti and for every e > 0 there exists T(e)(w) > 0 such that for all t > T(s)(1o) we

have
1o 4.24
hit) Jo a” ~ s)M sMs)(w)ds < & (4.24)
In consequence,
lim 7-777 [ a(t —s)kiis)e(s) ds = 0 jP—a.s. (4.25)
)

t-foo Aji(<

Now we have for u>G fti

AlW/0™ <" -1=57)/ S0 W * 4/ “E1(0Q-ds-
and
W )L wi{s-1{ I M -1 h{s)ds
Mo B |0(<- g} -1 ds+hJt)J “{t- s)his)eis)(u) ds

< (1+ sup m | “<-*)*lWeWH*-+0 as< @,

s<t
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where we used (4.25) at the last stage. Finally,

lim .
t-ioo  Ki{t)
< dimsup \NI] > iy (tw w1 “1s)H + =~ W ) 1 »(c,<)*1(s)%-1= 0,

on using Lemma 4.2.2. Thus

N=1 P —a.s.,

&

which completes the proof, o

4.3 Development of Price Evolution

In this section we present a heuristic argument for a continuous time evolution of prices in a market
which includes chartist traders together with traders with mean-reverting price expectations, and an
incomplete, though well-developed, weak convergence argument, shadowing the development of the
price equation in Chapter 2. We nonetheless present the outline of this incomplete argument, starting
from a discrete time equilibrium model, and passing to continuous time via weak convergence. We
aim to show this does not represent a defiency in our theory, as it seems we can modify the arguments
of Kurtz and Protter [47] to cover the case of weak convergence in distribution to stochastic integro-

differential equations with non-convolution kernels.

4.3.1 Towards Weak Convergence: from a Discrete to a Continuous Time

Equilibrium Model

We reprise verbatim (and specialise according to our requirements) the background and results

proved by Kurtz and Protter.

Forn = 1,2,... let Fn ®mAs[0, 00) —» £>e[0, 00) and let Un and Yn be processes with sample paths
in £5®[0, oo) adapted to a filtration {T?}. Suppose Y,, is a semi-martingale, and that Fn(x,t) =
Fnfo ,t) where £5(¢) = x(- At), for all x £ D®[0,00) and t > 0. Let Xn be adapted to {T7'} and

satisfy

Xn(t) = Un(t)+ t Fn(X,,,s-) dYn(s). (4.26)
Jo
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Conditions are thus required under which the solutions of this sequence of equations converges

weakly to the solution of the limiting equation
X(t) = U(t) + JfO F{X,s-)dY{s). (4.27)

In other words, we need (Un,Yn,Xn) = (U,Y,X). Kurtz and Protter show that to be able to
effect the desired convergence, conditions are required under which (X n,Yn) => (X,Y) implies

{Yn,Fn(Xn)) => (Y,FpO). This follows if [xn,yn) -> (X,y) in .Dkx®[0, 0o) implies
(xn,yn,Fn{xn)) -» (x,y,F(x)) in D®xxie[0, 00).

It is possible to prove this under some natural assumptions on Fn and F . Let A denote the collection
of continuous, strictly increasing functions mapping [0, 00) onto itself. Let Al be the subset of

absolutely continuous functions in A for which 7 (A) = | logAJjoo is finite.
Lemma 4.3.1 Suppose that {ik} ar*d F satisfy the following conditions

(i) For each compact subset H G Ak[0,00) andt > 0, sup”-» supJ<{ |Fn(x,s) —.F(&,s)| —=0.
(ii) For {&en} and x in Djk[0,00) and each t > 0, sups<t |&,(s) —e&(s)| —y 0 implies

sup |f(a;n,s) - F(x, s)| >=0.
s<t

(in) For each compact subset % C .Dm[0,00) and t > 0, there exists a continuous function
&> [0,00) —.[0,00)

with u>(0) = 0 such that for all AG A1, supj.g?i supJ<t |[F(x 0 A, s) —F(x, A(s))| < w(7 (A)).

Then (xn,yn) —a(x,y) in the Skorohod topology implies (xn,yn,Fn(xn)) -)* (x,y,F(x)) in the Sko-

rohod topology.

Proof: See Kurtz and Protter [47] p.1057. o

We then have

Proposition 4.3.1 Suppose that (UniYn,Xn) satisfies (4-26), that {(Un,Yn,Xn)} is relatively com-
pact in A kx®xkK[0, °°)> i4at (Un,Yn) = (U,Y), and Yn is deterministic. If F and F,, satisfy the

conditions in Lemma 4-3.1, then any limit point of the sequence {X,,} satisfies (4-27).
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Proof: Combine Proposition 5.1. on p. 1056 of [47] with Lemma 4.3.1. o
Remark 4.3.1

Kurtz and Protter note (but do not prove) the following: ifg :ffix [0, 00) —=K and h : [0, 00) — [0, 00)

are continuous, then

F{x.t) =g(x{t),1)

F(x,t) = f h(t —s)g(x(s), s) ds
Jo
satisfy conditions (i) and (ii) of Lemma 4.3.1. Therefore, under the assumption of convolution

kernels, the only outstanding difficulty would be the relative compactness of the sequence ofsolutions.

Kurtz and Protter obviate this difficulty by localising the result. To this end they let Ti[0, 00) denote
the collection of non-decreasing mappings A of [0, 00) onto [0, 00) such that A(t + h) —A(t) < h for

all t, h > 0. We assume there exist mappings
Gn,G : D®I[0, 00) x Ti[0,00) -» Dk[0,00)

such that Fn(x)o\ = Gn(x 0 A A) and F(x)oA= G(xo A A) for (x, A) 6 UK[0, 0o) x Ti[0, 00). They

require the following strengthening of conditions (i), (ii) in Lemma 4.3.1 above.

(a) For each compact subset % 6 -Djr[0, 00) x Ti[0, 00) and t > 0, sup/x sup5<(\Gn(x, A's) —

G(x, A 's)| —0.

(b) For {(jb,,, A,,)} 6 DufO.00) x Ti[0, 00), sup,<t |a;,,(s) - a;(s)| -»-0 and sup3<t |A,(s) - A(s)| =m0

for each t > 0 implies

sup |G(al,,, A,.,8) - G(x, A 's)| —=0.
3<t

Kurtz and Protter observe that each of the examples in Remark 4.3.1 has a representation in terms

of a G satisfying (b) above and that (a) and (b) imply (i)-(iii) in Lemma 4.3.1.

The authors then prove a result more general than the following theorem; however, we specialise

their assertion to suit our purposes



Theorem 4.3.1 Suppose (Un,Yn,Xn) satisfies (4-26), (Un,Yn) => (U,Y) in the Skorohod topology,
and thatYn is deterministic. Assume that {i%} and F have representations in termsof {Gn} and
G satisfying (a), (b) above. If there exists a global solution X of (4-27)and weak localuniqueness

holds, then (Un,Yn,Xn) =» (U,Y, X).

Proof: See p.1058-1059 in [47]. o

We will obviously want the limiting form of the equation to be given by (3.1), and we observe that

this equation has a strong unique solution on all compacts [0, T\.

As in Chapter 2, we will have a : [0, 00) —» M and

[nt]

th@) = -7=£ fi*/"Kn
Vnfc

where Cn are iid with zero mean, unit variance, and

I a(s)dBs,
o]

where {Bt :t > 0} is a standard one-dimensional Brownian motion. Then

Un (t) U(t) as n —y oo.

If we have Y (t) = t and Yn(t) —Y(t), since Yn is deterministic, the condition (Un,Yn) = (U,Y)

will be satisfied by a result of Slominski [70] together with Slutsky’s theorem. If
F(x.t) = A9 ("x(t) —J w{s,t)x(s) ds) —/3(t)(x(t) —k(t)),

then F satisfies condition (ii) of Lemma 4.3.1. A discrete time equilibrium argument such as given
in Chapter 2 gives rise to a sequence {Fn} which together with F satisfies part (i) of Lemma 4.3.1. |
feel that a little further analysis is required to prove condition (iii), and from that point, to establish
(a) and (b). The proof of this final result would enable us to apply the result of Theorem 4.3.1, and

so mimic the presentation of Chapter 2.

Instead of the above outline of a rigorous development of a continuous time equilibrium model, we

will present a heuristic argument to motivate our study of (3.1).
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4.3.2 Economic Foundations of the Stochastic Integro-differential Equa-

tion as a Model for Price Evolution

Suppose the market comprises m\ chartists and m2 fundamentalists. As in Chapter 2, assume

that both classes of agents have log-linear (instantaneous) demands. Over a small time interval dt,

chartist i = 1,... ,mi has infinitesimal demand over (t, t + dt) given by
wdt -y rs \
Aj(s) 1 Xs— I Wi(u, s)Xudu ) ds
where A-(-) G C([0,00), (0,00)) and ) is a chartist weighting function for each i. A high value

of A}(i) indicates that chartist i is very active at time t: he is confident in his prediction, and is able

to back it. If
mi

iD= £A, (i),
E1

= @28)
-

then A G C([0, 00), (0, 00)) and the aggregate chartist infinitesimal demand over [t,t + dt) is given

by
» / s \
/ X(s) st—J w(u,s)Xuduj ds. (4.29)

Obviously, w(-, ¢) in (4.28) satisfies properties (i),(ii),(iii) of Definition 4.2.1. It follows from Propo-

sition 4.2.3 that if k\( ) satisfies (4.14) and (4.15), and (Xt)t>0 satisfies

then
I ft, w{s,t)Xsds_ 1 as
£10 N "
Moreover,since the space of chartist weighting functions is convex, if Ai(t) = A-foralli= 1,... ,mi,

then w(-, *) is a chartist weighting function. Furthermore, if all chartistweighting functions share a
common invariant weight a, then w(-, ®is a chartist weighting function. To simplify the mathemati-
cal analysis in the rest of the thesis we will assume that w(-, ® given by (4.28) is a chartist weighting

function.
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Over a small time interval dt, fundamentalistj — 1,... ,m2 has infinitesimal demand over (i, t + dt)
given by

de vt

|
where 0j € C{[0,00), (0,00)) and kj 6 C((0,00),IR) for each j = 1,... ,7712 As with the chartists
above, a high value of 0j(t) signifies a high degree of market participation of fundamentalist j at

time t. If

mo = Ig’quzl

then 0 6 C([0, 00), (0,00)), k € C([0,00), M) and the aggregate fundamentalist infinitesimal demand
over (t,t -f dt) is given by

t+dt

-p{s) (*, - k{s)) ds. (4.30)

We further assume that there is random demand arising from either group of speculator or other
unmodelled speculators; as in Chapter 2, we assume that over the time interval (t,t + dt) it has

magnitude

"9 dr{s)dBs (4.31)
for < £ C(([0,00),K).

Let D(t,t + dt) be total excess demand over the time interval (t,t + dt). Then by (4.29), (4.30) and

(4.31), we have

rt+gdt ’ ps \
A(s) (X, — 1 w(u,s)Xuduj ds (4.32)

t+dt A~ pt+dt
/ -i3{s) (Xa- k(s)) ds+ J 5-(s)dBs.

If we further suppose that price does not change when there is zero total excess demand, and that
the log-price of the asset adjusts in a Walrasian manner reacting to excess demand, and linearly

related to it, then
Xt+dt —Xt = aD(t,t + dt),
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for some a > 0. We remark that this sluggish Walrasian price adjustment yields a reasonable
approximation to the price formation observed in the experimental asset market paper of Smith,

Suchanek and Williams [71]. We then have
Xt=X0+Jo X(3) - £ wclii,s)Xudu) —(3(s)(Xs —k(s)) ds + \] &(s)dBa, (4.33)

where A() = aX(-),j3(-) —«/?(¢), <r(® = aa(-), and have the same properties as their tilded coun-
terparts. Re-writing (4.33) adopting the usual convention for stochastic differential equations, we

obtain (3.1), viz:
dXt = \(t) "Xt —J w(s,t)Xsds) —/3(t)(Xt —k(t)) dt + a(t) dBt. (4.34)

Finally notice that high values of A(m),/?(m) can be interpreted as arising from high degrees of market

participation of the chartists and fundamentalists, respectively.
Remark 4.3.2

Notice once again that the excess demand functions are “log-linear” in the sense that
D(t, (aX]j)o<Ki) = aD(t, (Xs)o<a<t),

so that they correspond basically to those chosen in Chapter 2. Recall that this type of excess
demand function is common in monetary economics. Also, we remark that the price process can be
thought of as “Ornstein-Uhlenbeck plus memory”, so that it may be thought of as related to the

literature referenced in Remark 2.2.1.
Remark 4.3.3

Our micro-economic specifications, together with the analysis of Chapter 3, indicate that there is
a unique solution to the price evolution which has the same local regularity as Brownian motion.
We will show during the next few chapters that the price process shares several properties with
that arising from the Black-Scholes price evolution. The following remark, however, can be made

immediately.

We will presently show, in Lemma 4.4.3, that X is an Ito process. Therefore, using Ito’s rule and

the identity St = eXt, we see that



where « is a process which depends on s. In consequence, the price process has the same volatility

term as a Black-Scholes price evolution with time dependent volatility cr(-).

Remark 4.3.4

The rate at which the chartists discount the past has an important effect on the long run asymptotics
of the price. In Chapter 5 we prove a precise result which captures this effect for a particular type of
memory structure. However, by a brief study of an extreme case, we gain insight as to the general

importance of myopia in stabilising prices.

Suppose WS, § = S(ES) where S(-) is the Dirac function. Notice that WS,) > 0, lim inf,.A u>(s, § >
w(s,t) for all s < tand W, )ds = 1 for all £> 0, so that W behaves similarly to a chartist

weighting function.

For this choice of proxy chartist weighting function, the chartist index function at time t is identically
equal to X tl so chartist demand is zero for all time. In these circumstances, with only fundamentalists
trading, X behaves like an Ornstein-Uhlenbeck process centered on k(t), and its asymptotics follow

those of &(m), so the price dynamics are quite mild.

If chartists have extrapolative expectations, then the less myopic they are, the more stable the
price will be. In the above caricature, the chartists make no (destabilising) contribution when their

memory has zero length.

Remark 4.3.5

In reality, the assumption that the chartists use the whole price history is very unrealistic, but since
the weight of distant prices declines to zero, this means that, effectively, only the most recent data
is necessary. However, | believe that an analysis to the same level of completeness could be given
under the assumption that chartists censor the price data i.e., all prices that occur a certain time
before the present, T\ say, could be ignored. To see how one might change the hypotheses, define

a(-) so that a G C(M+,ffi+), is non-increasing and



so that a reasonable choice for the chartist index function is

The price evolution in this case will be a stochastic integro-differential equation with delay. Clearly,
we may remove the delay by defining a(t) — 0 for allt > Ti, but at the cost of the continuity of a(").
However, we may still find the resolvent of the related deterministic equation, so a representation of
the solution may be written down. From this step, | feel that most of the previous (and forthcoming)

analysis can be re-captured.

In a similar manner, it should be possible to develop an analysis of price dynamics if the chartists
were to trade on the basis of two moving averages. To see how one might formulate this, let Ti,T2

be two distinct positive numbers and for i = 1,2, let a- € C(M+,M+), be non-increasing and satisfy
™" ai(s) ds = 1.
Jo
Thus a chartist buy or sell signal could be determined by the sign of
D,= f a, (t—s)Xsds — I a2(t —s)Xsds,

Jt-Ti jt—ae

and so by again supposing that the excess demand is log-linear, net chartist demand over the time

interval [¢1,72] will be given by ft*A(s)Ds ds.
Remark 4.3.6

The linearity present in (3.1) is crucial as it affords us a tractable model: however, a good case can
be made for its adoption above mere tractability, particularly in the case of exchange rates. Suppose

that St = eXi gives the value of an exchange rate at time t, so
Xt = logSt.

The process (S*)t>0 given by S* = 1/St is also an exchange rate. We willprovein Lemma 4.4.3

that (Xt)t>o is an Ito process. Then the process (X*)(>0 given by
X; = -X1t=logSt

is also an Ito process. Since Xt and X* are both logarithms of exchange rates, the structure of the

evolution for both X and X* should be identical. From Ito’ rule, we have

dX(t = A®) (x* - £ wis, )X*s ds'j - G[O{X* - k*(i)) dt - a(t) dBt, (4.35)
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where k*(t) = —k(t).

Comparing (4.34) and (4.35), we notice that the chartists contributions have identical structures:
this chimes with the notion that they treat different time series with the same analysis; whether the

exchange rate is $-DM or DM-$ they search for trends using the same methodology.

The fundamentalists contributions in (4.34) and (4.35) have the same structure—reversion towards
a mean value which is exogenously determined. In each case, the exogeneous mean (k,k*) is the
logarithm of the fundamental, (F,F*). If the fundamentalists think fair value for the exchange rate
St at time t is Ft = ek™\ by implication, they think that the fair value for the exchange rate S* is

F* = 1/Ft=e-foW = e"W .

The noise terms in (4.34) and (4.35) are of the same order of magnitude—this reflects the fact that

both exchange rates should have the same volatility.

Remark 4.3.7

We observe that, although linearity in log-price in the chartists’demand functions can be justified by

the remarks in the last two sections, we might equally have chosen linearity in price in the chartists

demand functions.

Suppose that the demand at time t given the price history (Su)o<u<t is denoted by D(t, (Su)o<u<t)e

Let the number of shares bought at time t be Nt (with negative values of Nt denoting sales), so that

D(t, {Su)o<u<t) = NtSt-

Suppose that the price was denominated in a different monetary unit (say centimes instead of francs,
or pence instead of pounds). This has the effect of multiplying the price by a scalar, say A > 0.
However, since there has been no change in the underlying economics, the number of shares bought

at time t should still be Nt. Therefore,

D(t, (A5,)o<u<t) = Nt.XSt,

D(t, (ASu)o<u<t) = AD(t, (Su)o<u<t)e (4.36)
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The demand equation given by (4.36) is compatible with demand schedules of the form
D(t, {Su)o<u<t) = X(t)St + J[ a(s,t)S3ds,
0

but incompatible with the log-linear demand schedules given by (4.32). The outcome of adopting this
plausible argument has not been followed through in this thesis, though it merits serious analysis.
Instead, we adopt the log-linear specification, due to its suitability in exchange rate modelling:
suppose that two currencies are traded at exchange rates (St)t>o and (S*)t>o, where S* = 1/St- If
these two currencies are traded, purchases in one currency must be matched by sales in the other.

Using the notation introduced above, this reads:
D(t, (Su)o<u<t) = ~D(t, [1/Su)o<u<t),

which conforms with the log-linear demand schedule outlined in (4.32), while not in agreement with

(4.36).

4.4 The Pricing, Hedging and Replication of Options

In this section, we consider the investment strategy of a small investor (that is to say, an investor
whose actions do not have any effect on the price). We assume that such an investor holds a portfolio
consisting of shares in a risky asset (with log-price dynamics given by (3.1)) and riskless bonds. Bond

values will be assumed to vary according to
dS° = p(t)S° dt, (4.37)

where S§ = 1, and p G C([0,00),M) and is bounded.

We prove that a small investor can construct a self-financing strategy which does not depend in any
way on his knowledge of the behaviour (or even the existence) of chartists and fundamentalists. In
fact, for a Black-Scholes model with bond dynamics as in (4.37), and instananeous volatility cr(-),

the small investor would hedge in an identical manner.

4.4.1 A Martingale Measure for Discounted Prices

To solve the pricing problems, we firstly must construct a new probability measure under which the

discounted price of the risky asset is a martingale.
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We first will prove a lemma which allows us to use the Girsanov Theorem to construct the martingale

measure.

Lemma 4.4.1 Let

7t= N (e'(*) - p(t) + Jo <r(s)*{s,t)dBa+ ~(*)2) > (4-38)

where <r(-), A(), /?(*), e(-) and g(-, ¢) are defined in Chapter 2, Section 1, and p(-) ¢s defined in (4-37).

Then for any finite T > 0

(i) (jt)o<t<T is adapted,

(H) fo Ii dt< oo a.s.

(iii) E  f6 Hidt < oo.

Remark 4.4.1

The proof of part (iii) above is needed to satisfy the Novikov condition under which we can conclude

that the process (Mt)o<t<T defined by
Mt=-exp (J 7, (4-39)

is a martingale.

Proof of Lemma 4-4-1'. Part (i) is obvious. Define the following:

@40>
«@ = «@Q-.u + . @-41)
Yt = i:a : h(s,t)dBs dt. (4.42)
K(T) = ~(2M 1 + M2)2e22MI+MaT (4.43)
then by (3.7), (3.8), (3.17) we have
sup /' h{s,)2ds<I<(T). (4.44)

<k t Jo
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Using Fubini’s theorem, (4.42), (4.43) and (4.44), we have

E[vt]- jo i) h(s,t)2dsdt < TK(T) < oo.

Since
f dt <2 g{t)2dt + 2YT, (4.45)
Jo fo

it follows that IE dt < oo, and so (ii) is true.

Furthermore, by (4.45) we have

E exp™ N 7tdt] <exp” g{t)2dtj E[eyT],

so part (iii) follows if E[er;r] < o0o. Using Jensen’s inequality, Fubini’s theorem and Proposition

6.1.1, we have for each n 6 N
E[Y?] <T”-1£ M | Q f h(u,s)2du?j ds,
whereupon using (4.44) yields
Crionoy o

Therefore 0 ] < oo, and so E[eyT] < oo, proving part (iii). o

Lemma 4.4.2 There exists a probability measure equivalent to IPfor which the discounted price of

the risky asset, St = St/S°, is a martingale.

Proof- By Lemma 4.4.1, the process (Mt)o<t<T given by (4.39) is a martingale, so the Girsanov
Theorem tells us there exists a probability measure P* with

dF=

- ST 4.46
P (4.46)

under which the process (Wt)o<t<T defined by
Wt = Bt - ~sds (4.47)

Jo
is a standard Brownian motion. Assume temporarily that (X t)o<t<T is an Ito process. We will

prove this in Lemma4.4.3. One can use the stochastic Fubini theorem, in concert with (3.10), (3.12)

and (3.18) to show

A) (xt-J*w{s,t)X,ds® -m (Xt - k() =e'(t) +£ a(s)"(s,t) dBs. (4.48)
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We remark that the function f(t,x) = exe joP(s)ds is of class C12, and f(t,Xt) = St- Since X is

an Ito process, we have
§t= S0+ f St.- p{s)ds-Y f SsdXs+ I f Ssd(X, X),,
Jo Jo 4 Jo

on using Ito’s Lemma. Since d(X, X )t = cr(t)2 dt, we can use (4.38), (4.47), (4.48) and the invariance

of the stochastic integral by change of equivalent probability measure to obtain

pt
St = So + } <r(s)Ss dW,. (4.49)
0

Thus St is an exponential martingale under IP* o
Lemma 4.4.3 (Xt)o<t<T given by (3.1) is an Itd process.

Proof: Let I<t = e*(t) + /®o(s)”(s,t) dBs, so using Lemma 3.3.1 and (3.18) we have

pt pt
Xt = Xq - / «x sds+ ) dBs,
Jo Jo
and since the integrand in the stochastic integral in the expression for Kt is deterministic, (Kt)o<t<T

is adapted. We also have
e\J I/7jidsj < 3 ne'(s)2+ 3 a(u)2(~-(u,s)r du'j ds < oo,

so f? \ks\ds < oo a.s.. Since cr(-) is continuous, (Xt)o<t<T is an Ito process, 0

4.4.2 Pricing, Replication and Hedging of European Options

In this subsection, we follow Sections 4.3.2 and 4.3.3 in Lamberton and Lapeyre [50]. A European
option will be defined by a non-negative .T~*-measurable, random variable h. We will later specialise
and let h = /(5t), soin the case of a call f(x) = (@ — K)+ and f(x) = (K —x)+ in the case of a

put.

Let H° be the quantity of bonds (with dynamics given by (4.37)) held at time t, and Ht be the
quantity of risky asset (with log-price dynamics given by (3.1)) held at time t. We take our definition

of a self-financing strategy from Section 4.1 of [50].

We define the admissible strategies:
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Definition 4.4.1 A strategy &= (H®, Ht)o<t<T is admissible if it is self-financing and if the dis-
counted value Vt( = H° + HtSt of the corresponding portfolio is, for all t, non-negative and such

that supO0<t<T Vt is square integrable under P*.

An option is replicable if its payoff at maturity is equal to the final value of an admissible strategy.

We require that h is square integrable under P* (where P* is defined by (4.46)).

The following Proposition mirrors Theorem 4.3.2 in [50]

Proposition 4.4.1 Suppose log-price dynamics are given by (3.1), and bond dynamics by (4-37),
and p(-) is defined by (4-37). Then any option defined by a non-negative, T t-measurable random

variable h with E* [h2] < oo, is replicable, and the value at time t of any replicating portfolio is given

Vt =E* e-J7 p(s)dshi~j _

Proof: In view of Lemma 4.4.2, we may follow the line of analysis in [50] with time dependent

interest rates, o

When h = /(St), it is possible to express the option value Vt at time t as a function oft and St-

This is Remark 4.3.3. in [50] with time dependent in place of constant interest rates.

Proposition 4.4.2 Let St = eXl where Xt is given by (3.1). Ifh = /(St), / :®+ — K+ and

E*[/(St)2] < oo then

vt = F(t,St)
where
F(t,x) = e~ p(s)ds H f (xefTp(i)-i/2"(.)adtev\ --------- == exp m j dy.
j-® Vv 1 okioTTy | I8 6 ()2 tle \A i A(s)2ds
(4.50)
Proof: Under P*, we have from (4.49)
=—CT rT

St = Stexp I p(s) ds + tr(s) dWs - A\] a(s)2ds
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so by letting
F(t,x) =E* e ' "™ f fxexp a. p(s) ds +j a(s) dW3——i: < (s)2ds
and noting that St is .Ft-measurable, and that J(T cr(s) dWs is independent of Tt, we have
Vt = F(t,St).
Moreover, remarking that

a(s) dWs ~ M "o, <r(s) 2 ,

we see that F(t, x) is given by (4.50). o
Remark 4.4.2

The value of the portfolio at every time is the same as that for a market where the price dynamics
are Black-Scholes with time dependent volatility cr(-). Thus, the small investor’s replicating portfolio
seems to be composed as if the prices in the primary market followed Black-Scholes dynamics. In
fact, we will now see that when h = /(5t), that the small investor has a hedging strategy which is
identical to that used when the market is Black-Scholes. In other words, the small investor neither
knows, nor needs to know, the microstructure of the market, and will be unable to discern that he
is hedging in a non-Black-Scholes (indeed a non-E.M.H.) environment. This adds to evidence that

the Black-Scholes option pricing formula is robust to deviations from its hypotheses.

Again following [50] verbatim, we prove

Proposition 4.4.3 Suppose F(-, ® is given by (4-50), and f G C2. Let St — eXt where Xt is given

by (3.1). Suppose/: ffi+ =M+ and E*[/(51)2] < oo. If

= e"n pWisF(t, St) - Hte~ K~ dsSt

Then the strategy €= (He, Ht)o<t<T is admissible.

Proof: See p.71-72 in [50]. o
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Remark 4.4.3

For the European call with strike price K, we have, just as in the standard case

F{t,x) = *$(£:,0 - Ke~ ds$(d2)
where
d’i(lt,x)x- log(x/K) + j f/p{lg) ds + +/{T <t(s)2 ds
and

d2{t,x) = di(t,x) - ~J a(s)2ds,

in which case Ht - <S{dx(t,St)) and H? - t~ R p* d,F{t,St) - Hte~R rra>sc.

4.5 Volatility, Volume and Confidence

4.5.1 Volatility and Volume

In this section, we show that there is a positive relationship between the volatility in the market
and the volume of trade. As mentioned in the introduction, some reseachers have examined the
relationship between trading volume and volatility and found it to be positive (see Gallant, Rossi

and Tauchen [34], Tauchen and Pitts [76] and Frankel and Froot [29]).

Definition 4.5.1 For X given by (3.1), the instantaneous volume of chartist trade at time t
is given by
rt
MC=m (xt- 1 w(slt)x3ds' (4.51)
and the instantaneous volume of fundamentalist trade at time t is given by
VI =m){Xt-k(t))\, (4-52)

and the total instantaneous volume of trade is given by

VIT = Vic + V/. (4.53)
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Remark 4.5.1

Although in this setting we cannot calculate the number of shares changing hands directly, we follow
Cabrales and Hoshi [10] by allowing the value of outstanding instantaneous demand to be a measure

of trading volume, and hence used to prove a volume-volatility relationship.

We define the following order like relation on volatilities:

Definition 4.5.2 LetV = {a :a E C([0, 00), (0, 00)), inft>0a(t) > 0}. Then for any crx,a2 EV we

say (ji y c2 if and only ifai(t) > a2(t) for allt > 0.

We may now prove the proposition linking volatility and volume; more specifically, we show that
the expected volume of trade is always greater whenever there is an upward shift in the volatility
coefficient. Thus higher volatility seems to cause more active trading. Moreover, this increase in

activity is endemic—all traders have greater expected volumes of trade.

Proposition 4.5.1 Suppose X' satisfies
dx'l = A(l) (Xt- JL w(s,t)Xl ds) - 0{t){XI - k(1)) dt + *{{t) dBt,
and Xq = x0fori=1,2. If

(T\ >- (22

Then EfVA'] > E[Vtc'2}, M[V/A] > E[V/'2] and E[FtT>]] > E[V f'2].

Proof: The result for Vf follows from the other two. The proofs are identical in the cases of Vic

and V/ ,so we only prove the result for Vtc. For i = 1,2 let

where E (t) = A« "e(i) —f* w(s, t)e(s) ds'j and G(s,t) = AK) (*g(s,t) —f* w(u, t)g(s, u)duj. Then

by (3.18) and the stochastic Fubini theorem we have

o= M

for i = 1,2. Let £<(i) = a,(s)2G (s,i)2ds for *= 1,2 so that £i(i) > £j2(0 and
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If Z ~ J\f(p,a2), define :=E[|Z|]. A straightforward calculation shows

EM O] = VST(i)) > f(E(t), v/S~) = E[Vic'2),

which completes the proof, o

4.5.2 Confidence in Fundamentals Reduces Variability

We can show when the chartists have mean-reverting price expectations, that if the fundamentalists
are more confident in their predictions, then the variance of the log-price is smaller. This obviously
reduces the probability of a deviation of any given size from the expected value, so reducing the
system’s variability. We will later see that this has the effect of reducing the asymptotic large
deviations of the log price. Thus, increased fundamentalist confidence makes the system more

stable.

We remark that this provides a partial explanation for the success of managed exchange rate systems:
if the investors are confident in the central target, there will be an decreased probability of the bands
being tested. This, in turn, maintains the investors’ confidence in the system, and the bands have a
low probability of being tested and so on. Notice again, however, the importance of investors (of both
classes) being confident in the central parity. There is empirical evidence that chartists can change

from mean-reverting to extrapolative behaviour if prices become volatile (see Andreassen [3]).

In the next chapter, we will see that if chartists have extrapolative expectations and are the dominant
players in the market, prices can rapidly form bubbles or crash. Our modelling thus indicates
that monetary authorities must convince speculators (and in particular, fundamentalists) of the
sustainability of the central target: if they are unable to do so, it is likely the band will be breached,

and the target zone lose its credibility.

Proposition 4.5.2 Suppose X 1 satisfies

dx\ = AQ) (XK w(s,t)X1l dshj - pi{t){Xi - l(l) dt + cr(t) dBt,
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and XD = xq fori= 1,2. If A(-) < 0 and
2i(t) > /?72(t) for allt> 0,
then
Var[XI] < Var[Xg] for all t > 0, (4.54)
and moreover for allp £ N

E [(X1- E[Xt])2p] < E [(X2- E[X2])2p] . (4.55)

Proof: For i = 1,2, define #,(m, ® by
N-(M) = A(g(s,t) - j' w(u,t)gi{s,u)du” - 0i(t)gi(s,t),

where gi(s,s) = 1 and gi(s,t) = 0 for all s > t. Then

Var[X't]= [ a(s)2gi(s,t)2ds. (4.56)

Since by Proposition 6.1.1, Xt ~ (4.55) follows directly from (4.54). If one could show for all
0 < s <tthat

0 < gi(s,t) < g2{s,t), (4.57)

then (4.54) would follow. Notice by the proof of Remark 8.4.1 that gi(s,t) > Oand g2(s,t)> 0. Let
A5(t) = gi{s,t) —g2(s,t). Then A,(s) = 0. If we let ' denote differentiation with respectto t we

have

A'(<)

AG) (a5@d) —  w(u,t)A, (u)dvp - /3i(t)As(t) + (A(t) - /3i[t))g2{s.t)

A

X(t) "As(t) - w(u,t)Aa(u)dud - (3i{t)As(t).

Since for s <t the equation

*(t) = A®M) (*(*)-i: w(u,t)z(u) durj —/3i(t)z(t)

where z(s) = 0 has solution z(t) = 0 for all t > s, by the comparison principle (see e.g., p.13

Lakshmikantham and Rao [49]), we have

A4 < z(t) = O,

for allt > s. Thus we have proved (4.57), and so the proposition is true, o
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Chapter 5

Asymptotics of Linear Stochastic
Integro-differential Equations with
Separable Kernels: Dominance,

Bubbles and Crashes

5.1 Introduction

In this chapter, we will completely characterise the asymptotic behaviour of the price evolution
under some simplifying assumptions on the structure of the chartist weighting function. In doing
so, we hope to motivate the analysis for general chartist weighting functions (see Chapter 5), and
extend the analysis in directions which we cannot yet cover for arbitrary weighting functions. To do
this we assume that the role of the chartist weighting function w(-, ® will be taken by an invariant

weight for w (e, m).

Suppose first that the chartists have extrapolative expectations: we prove that if they have short

memories and are confident in their predictions, then the price explodes or crashes, with both
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outcomes having positive probability. On the other hand, if the chartists have longer memories, and
the fundamentalists are very active in the market, then the asymptotic growth rate of the price is
equal to the consensus asymptotic growth rate of the fundamentalists— which also characterises the
asymptotic growth rate when chartists have mean-reverting expectations. In the second section of

this chapter we prove these facts using the theory of linear stochastic differential equations.

In Section 2, we show, under the conditions in which a bubble or crash is possible, that a crash is
more likely when the fundamentalists revise their estimates of fair value downwards, or when the
initial price is lower; and a bubble is more probable when the fundamentalist revisions are up, and
the initial price higher. When the volatility is constant, we link the strength of investors and degree

of feedback to the variability in the price.

In the last section, we demonstrate that the rate of increase or decay of the solution of (3.1) can
be no greater than exponential, indicating that the bubble/crash mechanism is also present in the

general model, under suitable circumstances.

5.1.1 The Simplified Model

We specify a very particular form for the invariant weight which will take the place of the weighting
function. The substitution may be justified on the basis that, for large times, the chartists in this
modified model behave in the same manner as those in the full model, and in asymptotic analysis,

we are concerned in the structure of the solution for large times. Let j, > 0 and define
a(t) — : (5.1)

so that a:[0, oo) —m(0, 0o0) is an invariantweight for a chartistweighting function. Further suppose

A= A < = 1, (5.2)

for some positive constants A andO.

From (5.1), (5.2), the evolution for the log-price thus reads:

dXt= A(xt- a(t- s)X, - 0{Xt- k{t))dt+ a{t) dBt. (5.3)
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The reason for the choice of invariant weight is now transparent: if we let
Yt= f a(t—s)X, ds, (5.4)
Jo
then the 1-dimensional stochastic integro-differential equation can be transformed to a linear stochas-

tic differential equation in two space dimensions (X, Y ). To this end, define

A = , (5.5)
6(1) = " 1. (5.6)
m - A ) e (5-7)

Notice by (5.3), (5.4), (5.5), (5.6), (5.7) that if Zt = (Xt,Yt)T, then
dZt = (AZt + b(t)) dt + E (*) dBt. (5.8)

The analysis of the asymptotics of (5.3) thus reduces to the study of the asymptotics of the linear

equation (5.8). This study, and its economic interpretation, is the primary focus of this chapter.

5.1.2 Dominance

We recall from the last chapter that the magnitude of the functions A(-), /?(*) can be interpreted
as the degree of participation in the market of the chartists and fundamentalists respectively, and
that large values of these functions represent confident and liquid groups of agents. We therefore
associate the case of large values of Arelative to j3with a market in which chartists are more active

than fundamentalists: the case of large values of j3relative to Ais given a contrary association.

As indicated in Remark 4.3.4, the more heavily chartists weigh the near past, the smaller their
demand is. Referring to (5.1), we see that large values of j1 can be identified with “short” chartist
memories or heavy weighting of the recent past, and that this myopia reduces feedback in the model.

Thus large values of fi reduces the activity of chartists in the market.

The above comments motivate a definition:
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Definition 5.1.1 We say chartists (reap, fundamentalists) are dominant whenever

A- i3- n> 0 (resp. < 0). (5.9)

We now show that the asymptotics of (5.8) are determined by the dominance of one or other group

of speculators.

5.2 Asymptotics

5.2.1 Preliminaries

Let 12 be the 2x 2 identity matrix. If we define
$'(0 = AS${t), $(0) = h, (5.10)
then the solution of (5.8) is given by
= Q{t)zo+ *(i) Sé * -1(s)b[s)ds + 9(t) fJo A>~1(s)i:{s)dBs, (5.11)
where Zo = (Xo0,0)r .
We immediately see that the fundamental matrix $ has components which decay exponentially

whenever all the eigenvalues of A have negative real parts; and that some of its components grow

exponentially whenever at least one of the eigenvalues of A has a positive real part.

Let (*1,»2 be the eigenvalues of A; then <1+ a2= A—ft- n and «ia2= so the eigenvalues of

A have positive or negative real parts according as the chartists or fundamentalists are dominant.
For simplicity, we will assume in the sequel that a\, g2 G K.

Define the matrix B by

B=P~IAP = (01 ° V (5.12)

(
V O a3)

and let {P)i,j = Pij and (P~1)i,j = Pij fori,j = 1,2. Let the matrixbe determined according to:

9'(t) = BV(i), tf(0) = /2. (5.13)
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Let Zt = Z\ + Z2, where Z1,Z2 are the deterministic and stochastic components of Z, respectively:

further define
Zt=P~1Zt> (5.14)

and denote by Z1,Z2 the deterministic and stochastic components of Z, respectively.

5.2.2 Asymptotics under Fundamentalist and Chartist Dominance

We assume that k £ C[0, oo) and
tI_|f£)nO k(t) = oo. (5.15)
Let k\ be a non-decreasing, strictly positive G1 function that satisfies (4.14) and
lim = 1 (5.16)
e k(t)

Moreover, we assume that <Xm) satisfies (3.7). We now have

Proposition 5.2.1 Suppose that (Xt)t>o is the solution of (5.3). Let k(-) satisfy (5.15) and (5.16),

and cr(-) satisfy (3.7). Iffundamentalists are dominant and

liminf-~Lr = oo, (5-17)
* y/fcgt Vv "
then
li =1 . 5.18
etk ~ o 2° (5.18)

Proof: Fundamentalist dominance prescribes «1,0:22 < 0. Using (5.12), (5.13), (5.14), we have

-0 ( PneCllt fnais)e~aiS dBs \
Z} = Pn Je U
V P2lea’tf@<r(s)e-°"*dBt )

(5.19)

Using the martingale time change theorem in concert with (5.17), and using the proof of Proposition

2.3.2 as a model, we obtain

1
lim —-rz? = |
*-»00 k(t) \

© O
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Analogously, we find

pn icoe°lt ( PnPeaitJoHs)e “S=ds \ NN

+
Piivocat | \ paipeastio AS)E'QEE /

From (4.14), (5.15), (5.16) and L’Hopital’s Rule we have for ( =1,2

Zi=

and noticing that we may write P as

P—I ‘£’+ LA C>!+ll I_ (5_2_)
AN K
we obtain
Un,% 1>=1.
(-too -~ ¢(D)
Since = (Zj + Zf,ex) we have proved (5.18). o

Therefore, when fundamentalists dominate, the asymptotic growth rate of the price is the consensus
growth rate of the fundamentalists. The case of exponential growth in the fundamentals is now

easily handled, and we see that the pathwise asymptotics are the same as in the Black-Scholes case.

Corollary 5.2.1 Suppose (St)t>0 25 the price process, and ¢r(-) satisfies (3.7). Let k(-) be a contin-

uous function such that, for some rj > 0,

If fundamentalists are dominant then
lim -71 t = S.
(o7 least = 4 as
Proof: Just choose ki(t) = rjt + 1 and apply Proposition 5.2.1. o

W hen the chartists dominate, the price dynamics are altogether more explosive. A similar result to

the following has been proven in [26].



Proposition 5.2.2 Suppose that (Xt)t>o0 is the solution of (5.3). Let k(-) be of exponential order

strictly less than s for every e > 0, and let cr(-) satisfy (3.7). If chartists are dominant, then

where

Moreover

ML = g oo

ai Vi
. . s - o+
aivaj 2aiAaj V" b

(SL121+JL-Y r ,(sf20—=2aivad (
VaiVa2- «1 Aa2)J Jo

/3k(s)e “IV*3S dsJ and

lim - logl 1= ai Va2 .S.
Jim, 4 og ai Va2 as

Proof: Notice if chartists dominate then ai,«2 > 0- W ithout loss of generality, we

c*i > a2. From (5.20), we have

(5.22)

(5.23)

(5.24)

(5.25)

will assume

7 - =PlP11 /\()+ \] Pk[s)e~aii ds® +pne~&i~at (f.21x0+ p2l\] /3k(s)e-c*>ds'j ,

and using (5.19) we have

=PnMIl+pne”r-~M f,

cl
where
M} = \f plla(s)e~a'i dB,
[0]
M? = ‘f pn a(s)e~a3>dB,.
[0]
Since for i = 1,2, M} is a right continuous martingale, = 0 a.s. and

E [(Mt*)2) < 00 forallt >0,

(5.26)

(5.27)

(5.28)

(5.29)

then M" £M 2and{MU;Tt\0 < t < 00} is uniformly integrable. Therefore the Martingale Conver-

gence Theorem allows us toconclude that there exists M~ such that

where

lim M\ — a.s.,
t-yoo

~ Nf(0,Jg p{l2(r(s)2e 2aiSds'j .
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Combining (5.26), (5.27), (5.30) and (5.31) gives the desired result.

To prove (5.25), let

=(Z1+Zlc)

* eart

Then
ylog|Xt|- Ql = ylogl|iZt|,

and since Rt -» Roo a.s. ast —»o0 and P[iloo = 0] = 0, we have
lim -log|iit]= 0 as.. o
digy; o aliit]

Remark 5.2.1

As in the paper of Schweizer and Follmer, we remark that not only is the rate of decay or growth
very extreme, but growth or decay are both possible with positive probability. By (5.22), (5.23) and

(5.24) we see that

lim St = = IP[lim Xt = = >0=1- 5.32
t:-lfragm 00] &Lrgo oo] ! $ >(/ CT, J ( )
and
P[lim St = (] - 5.33
(58St =% L ks (5.33)
where <J>(t) = f*~ e~iyJdu. Naturally, no asset price has ever behaved in this manner over

long periods of time, but this analysis provides some insights on the psychology of markets “close

to” a crisis or bubble. We can easily prove

Proposition 5.2.3 Let X * be a solution of (5.3) fori= 1,2, and 5J -- exppQ). Then we have:

(i) (Monotonicitxj in fundamentals) Suppose
dXl = ACxf- J a(t—s)X ds - /3{Xt - fc'(t)) dt + a{s) dBt
and Xq = Xofor ¢= 1,2. /1 kI(< > k2(t) then

P jrim sj = OJ > 1P jnim 5B=0QJ .
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(ii) (Monotonicity in initial prices) If X 1 and X 2 have the same dynamics, and

then

\lim S} = oo > P [lim S? = oo
Lt—too .= Lt —too ¢

Proof: Use the monotonicity of $ together with (5.23), (5.24) and (5.32). o

Remark 5.2.2

Proposition 5.2.3 tells us the following: ifthe fundamentalists are less optimistic about the underlying
value of the asset, there is a greater probability of a crash, even if all other factors remain unchanged.
Therefore, even though fundamentalists are dominated by chartists, they can precipitate a crisis.
This seems to be quite plausible in explaining actual financial crises. A group of speculators lose
confidence in their estimates of the fundamentals, (/? goes down, so chartists are dominant) and
believe they should revise their estimates of the fundamentals downwards (knew(m < kold(-j). The
chartists, using their ability to track prices, discern this downward revision, and extrapolate prices
downwards. More and more speculators make this extrapolation, and the co-incidence of chartist

dominance with the effects of feedback cause the price to drop precipitiously (Propostion 5.2.3).

In the same manner, lower starting values of the price make a crash more likely. In this case,
the chartists interpret a lower starting value as a sign that future prices will also be low. Their

dominance, in conjunction with feedback, produces the crash.

In respect of the preceeding comments, the following remark of Kindleberger [43] quoted in Lux [54]
is quite intersting; Lux writes that “in Kindleberger’s theory the period of distress preceeds the

ultimate crash. For this period” (he now quotes from [43], p.109)

‘... a change in expectations from a state of confidence to one lacking confidence in the future is

central’.
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Remark 5.2.3

In the case where the fundamentalists are dominant, and a(-) = a, we have
Voo{\,13,ii) :=)imVar[Xt]= (T2 ANton
{ ) 2—t—00 [xt \Z( P(P + fx— A)’

It is easy to show that Voo(e, <) is increasing in A and decreasing in j3and jx We therefore see that
increasing fundamentalist activity or confidence reduces volatility, while increasing chartist activity
increases volatility, when chartists have trend chasing expectations. Moreover, if the chartists are less
myopic, and introduce more feedback from past prices into the present, they increase the instability

in the market.

5.3 Limits on the Growth of the Solution of the S.I.D.E.

We show in this section when the kernel has no particular structure that the fastest possible growth
or decay rate for the price is iterated exponential. This indicates that Proposition 5.2.2 should have

an analogue in the general case.

Proposition 5.3.1 Suppose for every e > 0 that k(-) is of exponential order strictly less than e.

hen
lim | f a 4
imsup-log |Xt]| < 2Mi -f M2 .S., 5.3
pt g |Xt| ( )

where M\ and M2 are given by (3.5) and (3.6).

Proof: 1f g(e, *) is given by (3.10) and (3.11), by Theorem 3.3.1, we have
Xt=e(i)+ [ cr(s)g(s,t)dB,,
Jo
and by (3.12), (3.13)
e = x(9(0.) + T i3k ds.
Jo
By (3.14) there exists K\ € (0,00) such that

-JIML <WO)|+Mm, j* ds <Ki ,
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where we used (3.6) to obtain the first bound. Now define

SRy 639
Then, since log(l + a) < x for all x > 0, we have

ilog \Xt\-{2M1+ M2 < j (logXi +log (I + H(s,t)dB, »
< ilogiTi+ijy ii(s,i)dss],

so if we let

Yt = AJ*H [s,t) dB,, (5.36)
the proposition is true provided

lim Ye= 0 a.s. (5.37)
t-voo

We now prove (5.37).

From (3.7), (3.14) and (5.35), if we let t>(i) = /0 H{s,i)2ds, then

3 1
= e 22Mi ME) "

By Proposition 6.1.1, vt ~ AI(O,V(t)/tD), so for every e > 0 and n € N, we have
Pliynl>el< I MS romL mo) nb:
S0
nl—ié%an =0 as. (5.38)
By Lemma 3.3.1, (5.35) and (5.36) we have
y, =\ J ‘“H{s,s)dB, + | £ J *f(u, s)dBuds,

and obviously limt-*«, }/,, Il1[s,s) dB, = 0 a.s. Let

1 fl fsdll

5.39
Zt=1J0 Jo 1 L giliiy (5-39)

so (5.37) is true if and only if lim~oo0 Zt = 0. However, by (5.38), lim~o00 Zn = 0 a.s., sO if we show

lim sup \Zt—2Z,\=0,

n-»00 n<t<n+1

116



we will have proved (5.37). Next, since
. . J*
Zt- Zn= (j - 1) Zn+ i £ ~{u, s)dBuds,
we are done provided

lim sup " 01 °"‘(u}s)dBuds = 0 a*s. (5.40)
n—Yocn<t<n+l I*in JO ®

To prove (5.40), notice that (3.15) gives

We prove (5.40) using a Borel-Cantelli argument; bound as follows:

L<~A+,(U ‘C -iMdB"ds)}
1 \ f*  fdH
5 (i WE][»<S+l(=n)/Jo &

I STTTpE[r 7 " (™ (™9dS™),
i md f’ d,\_l .2

En+ 1)2 7,, .J'O 7172"3 aurfs

1 A3 @MI + M 2)
- (+1)2 2if?

Using Chebyshev’s inequality along with the Borel-Cantelli Lemma allows us to conclude that (5.40)

is true, proving the Proposition. 0

This proof motivates another question: is there an analogue of Proposition 5.2.1 for general chartist
weighting functions? The answer, fortunately, is yes, when /?(¢) is a bit bigger than 2A(-). The proof

of this assertion is the subject of the next chapter.
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Chapter 6

Pathwise and P mean

Asymptotics of Linear S.I-D.Es

6.1 Introduction

6.1.1 Ouline of the Chapter

Since the seminal papers of Berger and Mizel [6], [7], [8] the properties of stochastic integral and
integro-differential equations have attracted the attention of several authors e.g., [63]. In particular,
conditions under which such equations have stable solutions, have been studied by Pachpatte [59],
in which stability in mean-square and probability have been established. Stability has also been
considered by Zan Kan and Zhang [80]. However, since both papers approach very general problems

in abstract settings, no stronger convergence results have been achieved.

In this chapter, we study the class of linear stochastic integro-differential equations introduced in
Chapter 3 whose structure is intended to reflect the price dynamics in a single asset financial market
in which the underlying determinant ofthe asset’s price increases in an exponential-like manner, and
in which a portion of the agents trading at any given time use the historical trend of the price as a

guide to its future path. In this chapter, we assume that the chartists either have mean-reverting



price formations expectations hypotheses, or that they are less dominant than the fundamentalists.

Here, we show that if the chartists use the weighting function endowed upon them in Chapter 4,
and the underlying determinant of price increases, for example, exponentially, the price follows the
underlying determinants asymptotically, In this, the price mirrors the pathwise asymptotics of the
celebrated Black-Scholes equation. Moreover, this result extends present knowledge on pathwise
behaviour of stochastic integro-differential equations, as the asymptotic convergence is almost sure.

Furthermore, asymptotic convergence is also assured in pth mean, for any p G [1, 00).

The variation of parameters solution to the S.1.D.E., allows us to analyse the asymptotic behaviour
of Xt by partitioning it into two parts, one of which is completely deterministic, and governed
by a deterministic integro-differential equation. Its asymptotics are studied in Section 3, using
the converse theory of Liapunov functions. Since it can be shown, for fixed t, that the random
component of Xt is normally distributed and can be written as a stochastic integral with adapted,
but t— dependent, deterministic integrand, we can employ the theory of stochastic integration for
integrals with non-adapted integrands and use the properties of their semimartingale decompositions
to show that the random component of Xt is asymptotically negligible relative to its deterministic
component. This proofis the subject of Section 6.3, together with the proof of the main theorem.
Some generalisations of the main result and remarks as to the time consistency properties that this

result indicates, completes the chapter.

6.1.2 Mathematical Preliminaries

We assume k G C[0, oo) satisfies (5.15), and that ki is a non-decreasing, strictly positive C1 function
that satisfies (4.14) and (5.16). Moreover, suppose that A(-), /2(m) and <r(-) are in C(M+ U {0}), and

satisfy (3.5), (3.6), (3.7) and (3.8).

We assume uj(-, ¢) is a chartist weighting function, and that a(') is an invariant weight for w(’te).

Remark 6.1.1

Here k(-) isthe logarithm of the fundamental economic process tracked by the fundamentalist traders.

Notice that exponential growth in this fundamental process is equivalent to letting k(t) = rjt+ v for
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some g > 0 and u £ ®, and so the hypotheses on k(-), ki(-) are satisfied.

As before, we assume that we have an underlying filtered probability space (0,n, [Ft)t>0,IP). Let
(Xt)t>0 model the log-price of the asset at time t, and be acontinuoustimestochastic process

adapted tothe filtration. We assume that it follows (3.1), viz.,

axt At) (Xt- J w(s,t)X,,dsj - j3(t) (Xf - k(t))dt+ a(t) dBt, (6.1)

X0 = x0. (6.2)
The following result will also be used in the proof of the asymptotic behaviour of (Xt)t>0.

Proposition 6.1.1 Let h be a locally bounded deterministic function which satisfies
h:D —=M:(s,t) b>h(s,t).
Lett £ [0,T], If
/ h[s,t)2ds < oo
Jo

and Xt = /q h(s,t) dB,, then

Xt~Af(o,J h{st)2ds" . (6.3)

Proof: Fixt £ M+, and recall that Itd integrals with deterministic integrands are normal, o

Further suppose that e(-) is determined by (3.12) and (3.13), and that </(m ® is given by (3.10) and

(3.11). Referring now to Theorem 3.3.1, and in particular to (3.18), we will prove that

I =1 P-as.
100 k(t) a:s

(under some as yet unspecified conditions on /?(m) and A(-)) by proving

li =1 6.4
100 k() _ &4
and then that
fm t a(s)g(s,t) dBs=0 P-a.s.. 6,5
2 Ky 30 (s)g(st) (6,5)

The purpose of Section 6.2 is to prove (6.4), while that of Section 6.3 is to prove (6.5), and then

present the theorem.
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6.2 Asymptotics of Linear Integro-Differential Equations

6.2.1 Notation

Assume for allt > 0 that

inf (1) —Ay —sup |AS)| =ai > o, (6.6)

from which it follows

inf/?() :=a2> 0. ®.7
Remark 6.2.1

In terms of the economic model, condition (6.7) is equivalent to saying that the fundamentalist spec-
ulators do not believe prices should deviate from /;(-), while (6.6) indicates that the fundamentalist
speculators are dominant in the market. We interpret /?(¢) and A(") as measures of the strength or
confidence of the agents. Large absolute values of these functions are consistent with agents who
are confident in their predictions of price, and have the ability to trade heavily on the basis on these

predictions.

Recall that Kki(-) is a positive non-decreasing C 1 function which has the same asymptotic behaviour

as the fundamentals k(-) in the sense that
Jg kg = oo

¢ -
irtoo ki(t)

Moreover, remember that the growth restrictions on &(e) stipulate that
A iy = O {6-8)
Therefore, if ari, a2 are as defined in (6.6), (6.7), then by virtue of (6.8)

— .. m
T\ = sup{f >0 : Ki(t) ®9
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is finite. One can then define

Kg — max ki(t),
0<t<Ti w
K\ = min
0<i<Ti vn
Lemma 6.2.1 Let
H)=iTW T (6U)

where K2 is defined by (6.10). Then for allt >0

(i) supt>0{A(i)+sups>0|A(s)] - (3(t) -Pi(t)} <O,

(i) supt>0{-/2(i) < 0.

Proof: (ii) has identical proofto (i). By (6.6), if |pi(i)| < <*i/2, then (i) is true. We prove this on

each of the intervals [Ti, 00) and [0, T\] in turn, where T\ is defined by (6.9).
Fort > Ti, since K2 > 1, non-decreasing and positive, it follows from (6.9) and (6.11) that

m
ki(t) <-Y-
For t e [0,Ti], the definitions of K0 and K\ and (6.11) yield

. minO<t<Ti Mi(OL _ KA < al
1- maxo™T, h{t) + K2 Ko+ K2- 27

where (6.10) is used to obtain the last bound, proving the desired result, o

Let
(fu2)
and fort > 0
p2(i) = A(f) (I - jf a{s,t) ds"j - pift) - /3(t) (I - . (6-13)
where pi(-) is defined by (6.11). Since

lim I a(s,t)ds = 1,
uoJo0 K °
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if we define

MO = -»(»)»-««(1l-5" ) |,

then P2(-) is continuous on [0,00).

Define
2T av
Q9 + /A’
where K2 is given by (6.10). Then z(-) defined in (6.14) above satisfies
2'ft) = Aft) (*ft) - \] a(s,t)z(s) ds'j + zft) (-/3ft) -pift)) +P?(i)-
From Lemma 4.2.2 and (6.12) we have
lim | a(s,t)ds= 1.
*>{070
Using (4.14), (5.16), (3.5), (3.6) and (6.16) we see that
tI_i/r\?)opi(t) =0, ¢=1,2.
Define z\ (¢) by
z[ ft) = Aft) (zift) - \] a(s,t)zl(s) dshj + zift) (-/?ft) - pift)) e
We finally observe from (6.12) that
a GC(D,K+),
and
0< \]5 a(s,t) ds < 1.

In this section we will prove

Proposition 6.2.1 Suppose (6.6), (6.7) hold. Ife() is the solution to (3.12) lhen

l -1
et00 k(t)

By (5.16), (6.21) is true if

lim zft) —o0.
t-fQO v

To prove this result, we have recourse to the theory of linear integrodifferential equations.
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6.2.2 Some Elements of Integro-Differential Equation Theory

In the following we adopt the notation of Lakshmikantham and Rao (1995) [49] p. 145-157. We
specialise and generalise their results liberally. For any € C(R+,M), define \9t = maxo<5<t |</>(s)-

Consider the deterministic scalar Volterra equation
x'(t) = F(t, x()) (6.23)

where F : K+ x C(M+,M) — M is continuous and x(-) represents the function x on [0,<] with the
values of t always determined by the first co-ordinate of F in (6.23). The solution of (6.23) with
initial values (fo,<*) will be denoted by x(t,to,<f>), by which we mean x{t,t0,G> - <t@® for all t< to,

where to > 0 and 0 : [0,i0] — M is a continuous function.

If we define Fi for i = 1,2 by

and

F2{t,x(-)) = A(t) (x(t) - a{s,t)x{s)dsp + x(t) (-B(t) - PI(t)) + p2(t), (6.25)

then Fi for i — 1,2 satisfy the hypothesis on F after (6.23), where a(-, ¢),pi(*),P2() are as defined

by (6.12), (6.11) and (6.13) above.

Let W{t,<j)) :1 +xC (K +,ffi) ->1bea continuous functional satisfying the property oflocal Lipschitz

continuity in $

Definition 6.2.1 The derivative ofW[t,<j>) with respect to (6.23) is defined by
A 623) A = limsup (6.26)
h-yo+

where

For future reference, we define the homogeneous evolution
x'(t) = Fx(t,x(-)). (6.27)
We also clarify the notion of exponential asymptotic stability:
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Definition 6.2.2 The zero solution of (6.27) is exponentially asymptotically stable (ExAS) if there

exist positive constants k,K such that

[a2(<, ¢0,0)| < Ke~Kr~toN\MO, for allto> 0 andt > to-

Let t > 0, $E C([0,<],ffi) and p{t<>) = supt_r<s<t |*(s)|, where r > 0 and <>f) = <) fors < 0.

We then have the following theorem (see Lakshmikantham and Rao [49] p.148).

Theorem 6.2.1 Suppose the zero solution of (6.27) isexponentially asymptotically stable. Then
there exists a continuous functional Wit, ) defined fort>0 and G C([0,i],M),x > 0, andK > 0

such that

(i) p{tA) < < K\avt-,

(i) \W(t,<t>) - V\(Up)\< K<>- >\t for E C([0,t]1,M);

(in) [i7(6.24)(*>N)] < -*W[t,4>);

Proof: By setting
W(t,<j>) = sup pit + to, x (",t, <i>)eKto,
t0>o0

we see that W{-, ¢) satisfies (i)-(iii) in the statement ofthe proofabove. The line ofproofis analagous

to that given in Yoshizawa (1966) [79]. o

Moreover, the following is true

Proposition 6.2.2 The zero solution of a linear deterministic integro-differential equation is expo-

nentially asymptotically stable if and only if it is uniformly asymptotically stable.

Proof: Combine the analysis of Theorem 2.2.2 on p.54-55 in [49] with that contained in the mono-

graph of Yoshizawa [79] p.29. o
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6.2.3 Asymptotic Equivalence of e( ) and k(-)

The aim of this subsection is to prove, under (6.6) and (6.7) that Proposition 6.2.1 is true. A first

step towards achieving this goal is to prove

Lemma 6.2.2 The zero solution of (6.18) is exponentially asymptotically stable.

To do this we prove a sequence of subsidiary results. Consider the homogeneous equation
x'(t) = A (k(<) - I w(s,t)x(s) dsj - (i3(t) + pi(i));c(<)’ (6.28)

Then

Lemma 6.2.3 The solutions of (6.18), (6.28) are uniformly bounded.

Proof: The proofs are identical: we prove the lemma for (6.18). Let M(t) = maxo<j<i |zi(s)|.

Suppose z\(t\) = M(t\). If A(ii) > 0 then
Z[(t0 < (2A(<j) - /3(h) - PI(<i))JIf(ii) < O, (6.29)
by Lemma 6.2.1, (6.19) and (6.20). Conversely, if A(fi) < 0, then
A(tl)<(-B(ii)-Pi(ii))M(iD)<0,

so z[(t\) <0 whenever z\(ti) = maxo<,<t, |2i(s)|. In the same manner, one can show that z[(ti) > 0
whenever zi(ti) = —maxo<j<t, |2i(«)|. In other, words, when 2i(-) achieves its running maximum,

it decreases: and when z\ (*) achieves its running minimum, it increases. Thus for all i > 0,

PMOL< FEL

or, if zi(0 = gxt) for all t < to, we have

|z100,9] < Nb-

so the Lemma is proven, o

Next we have

126



Lemma 6.2.4 The zero solution of
x'{t) = \{t) *x(t) —\] a(t —s)x(s) dshj - (/3{t) + pi(t))x(t) (6.30)

is exponentially asymptotically stable.

Proof: The following definition is standard: for m £ C(P.+, M) we have

D-m (t\): tirg inf ™ Gu™ 19 —M®
A-fO- h

If x(-) is the solution to (6.30), then
D-\X(D)\ < (X(t) - /3{t) - pi(t))\x(D)\+\X(t)\ Jf0 a(i - s)rc(s)|ds
< P(t)-pi(t))\x(t)\ + Mi J[0 a(t - s)lar(s)lifs,
where we use (3.5). Let z(-) be the maximal solution of
Z'(t) = (X(t) —/3(t) —pi(t))z(t) + Mi JfO a(t —s)z(s)ds (6.31)

with z(t) = |<M@)I for all t £ [0,¢0]- If x{t,to,<f>) denotes the solution of (6.30) with x(t) = d>() for

t £ [0,i0], then
\x (t,t0,<3\ < z(t,t0, || (6.32)

by the comparison principle (see e.g., p.13 Lakshmikantham and Rao [49]). We notice from Theorem
2.2.2 on p.154 of [49] that if the solution to (6.31) is L1(IR+), then the zero solution of (6.31) is EXAS.
Taking this deduction in conjunction with (6.32) proves the Lemma. A trivial modification to the

analysis on p.127 of [49] and (6.6) show that (6.31) is L1(M+). o

Now we show

Lemma 6.2.5 The zero solution of (6.28) is exponentially asymptotically stable.

Proof: Let x{-) be a solution of (6.28),

g{t,x{-)) = X{t) (jr""r-1raf{t-s)x(s)ds. (6.33)
and
: w(s,t)
h — - 6.34
‘M os<u|p<t a(t —s) ! ( )
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Then we have
x'(t) = \(i) ~x(t) - \] a(t —s)x(s) ds'j - (/3(t) + pi(t))x(i) + g(t, x(-)). (6.35)
We also have from Lemma 6.2.3 that

I*(Mo,¢)| < Mto ©6-36)

By Lemma 6.2.4 the zero solution to (6.30) is ExAS. Therefore, Theorem 6.2.1 allows us to conclude
that there exists a continuous functional W (t, iI5 defined fort > 0 and %£ C([0,i],M), and constants

K > 0, k > 0 such that

(i) MWI < < K\$\t]
(i) \W(t,i>i) - 21 < -KIVi - fo\t for ~1.42 £ C([0,.i],M);

(i) <-KW (t,7).

Using (i), (ii), (iii) above, along with Lemma4.2.1, (6.34), (6.36), (6.33) we can show
NE-DCEFE) < W(VI)IMO) +
< -KW(t, *(*)) + KM!hx

Integrating across this last inequality over [io>i] gives

W (t,x(*) < W(h,<i>y-K{t- ta) + KMI\<t>\t0<TKt f eKh1(s)ds,

jto

and using (i) above yields

|*(i,*0, B\ < + KMN<f\toe -Kt f eKsfn(s) ds.

Jto

Since from (6.36) the zero solution to (6.35) is uniformly stable, the last inequality allows us to
conclude that the the zero solution to (6.35) is uniformly asymptotically stable, and hence, by

Proposition 6.2.2, it must be EXAS. o

Proof of Lemma 6.2.2: Define
h2(t) = 1— f a(s,t)ds. (6.37)
Jo
Let zi(-) be a solution of (6.18), and define

= J w(s,t) (I - *i(s)ds- (6-38)
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We can reformulate (6.18) as
z[{t) = A(t) (zi(*)-Jq w{s,t)z1(s)ds"j - (i3{t) + PI(t))zi(t) + g2(t, Zii")). (6.39)
Suppose Zi(t) = =) on [0,t0]- From Lemma 6.2.3, (3.5), (3.4), (6.12), (6.37), (6.38), we have
MM i(-))] < Mi\<f\toh2[t). (6.40)

Since, by Lemma 6.2.5 the zero solution of (6.28) is exponentially asymptotically stable, we know by
Theorem 6.2.1 that there exists a continuous functional W (t, ip) defined fori > 0and ip € C([O0, i],M),

and constants K > 0, k > 0 such that

(i) (< witip) < I<iip\t
(i) 1AM i) - W(t,ip2\ < K\iPi-iP2\t for xpi,%2 € C([0, ¢].E);

(iii) ~(6.28)2-A) < ~KW {t,1).

Using (i), (ii), (iii) above, along with (6.37), (6.38), (6.40) we can show

NEIPNH() < WEBY<H() + (= ()!

< KW (t, *x(-)) + KM I h2{t)\a>\to.
Integrating across this inequality from io up to and using (i)-(iii) above, we obtain
[*i(i,t01*)] < K\4t0e -~ -~ + [ e*’h2{s)ds.
Jto

By (6.16), limj-"o0 h2(t) = 0, so the zero solution of (6.18) is uniformly asymptotically stable, and

by virtue of Proposition 6.2.2, exponentially asymptotically stable, o
We finally prove
Lemma 6.2.6 Ifx2 is the solution to
X2[t) = F2{t,x2(-)), (6.41)

then

lim W i) = 0.
t—»00
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This result obviously proves Proposition 6.2.1.

Proof of Lemma 6.2.6 : Here we modify the proof of Theorem 3.3.6. in [4)], First, by Lemma 6.2.3

the solution to (6-27) ISEXAS. Thus we may write

Moreover, by Theorem 6.2.1,there exists a continuous functional W (i, < satisfying @-@ii) in the

statement of Theorem6.2.1 above. Ifweput r = O, then p(t, & = K@®I- Therefore
W{t,<j>) = sup [ai/ +ioii,</>)|eKto.
t0>0

Let be the solution of (6.41), we can use Definition 6.2.1 to calculate

. W(t+ h,x2")-W (t.,x2)
W76.4i)(<»*i0) = I»msup = eemeeeeeeeeeeeen

h->0+ h

where we let

22() on0<s<i,
&) =
206+ +P2M®G -t) ont<s<t+h
and we used F2{t, *2(0) — Fi{t, ®2[-)) = Define
&2 ono0<sc<t,

®2@) + @,220)@s—i) ont< s<t+ h

Now, the principle of superposition for linear integro-differential equations yields
x1(t+ h+ t0,t + h,xl) = xi(t+ t0O+ h,t+ h,x2- i2)+ @IC*+ *0+ h,t + h, x2),

and fwe define &— x2* — £2 then

0 on0<s< Tt
4>(s) =
p2@)(@—-t) ont<s< t+ h

This leads to the bounding argument:

NBADN *F20) < WE&W™* "*20)+ Il’ii-[i]ﬁll-pjf‘%g)l)(i(<+ h+ <0,t+ h, ge

< -KW{t, *>()) + limsup +h, V)

h-vo+ h

< -KWJt,x2(0) + Iihnl%:i'p'l('(A'|"|[+/,
= —KW(t, *2(0) linisup t K sup [p2(i)(s —¢)|

< KW {t,x2{)) + K\p2{t)\.
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Integrating across the last inequality on we have
W(t, *,() < W(t0, + I<e~Kt f e«® |R2@)|ds,
Jto
and using Theorem 6.2.1, we obtain fort > to

\x2(t,t0,4)]< m  toe-K~ + Ke~Kt fbe*°\p2(s)\ds.
J

The Lemma follows on applying (6.17). o

6.3 Proofof Convergence

In order to proceed with the proof of (6-5), we first require some subsidiary results.

Lemma 6.3.1 //</(=,*) 5 given by the solution of (3.10) with initial condition given by (3.11), and

(6.6) and (6.7) are true, then for allt>0 we have

V (s,t) 6 D,

00 |82(M)|<2M1+M 2,
where Mi, M2 are defined in (3.5) and (3.6).

Proof: The proof of part (@) isanalagous to the proofofLemma 6.2.3. For (i), note from Definition

4.2.1 @), (3.10), that

de <  JA®D] (\g{s,t)\ +I" w(u,t)\g{s,u)\du” + J/2OCHs" D]
< JAMIN+ IF w(u,t)du'j + YADI
< 2max p@) |+ max VAD\

2M\ + M2,

where part (@) of the Lemma yields the second inequality, Definition 4.2.1 () and (@) the third and

(@3-5 and (3-6) fimal equality, o

For notational sinplicity, define

h[t) = VI. 62
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We prove (6.5) under the following constraint: there exists 7 > 0 such that

Bim %0 <76) _ds _ ¢ o)
*ont bréti)

From (.16), (6-42) and (6-43) we immediately have

lim i»— ) i 0, 6.
i h(f?(t))Z G4
i), x2. .
t7|fl§(l;nil+*(/i(f+ 1)-M0) “ —— +—:D)2~ = 0. (6-45)

Proposition 6.3.1 Suppose that there exists 7 > 0 such that (6.73) holds. Let g(-t <) be the solution

of (3.10) with initial condition given by (3.11), where (6.6) and (6.7) hold. Then

i ﬁt-;—j iq a-(s)g(s,t) dBs = 0 P-a.s.. (6.46)

Proof : Let

Then (6.46) follows if

limYt=0 P—as..
t~y00

To prove this, we first show that converges, where /O is defined in (6.42). Then, by
using the semi-martingale decomposition fumished by the Berger-Mizel Transformation, we show

convergence between the grid points h(n). Let m = 2[*]. Now for every e > 0O, we have

WI>E] < (K[ytn]
1 @V A @M

e2m rn\2m \ k~t)2 )

1 @m! (X o0©2ds\
- e2mmi2m N k~t)2 )

where we used Proposition (6.1.1) to obtain the second equality, and Lemma 6.3.1 () to achieve the

last bound. We then obviously have

y>ri\d)'lr\1ﬂ(!1)l >1TI < e2m mi12m y Fym ,(nl ((;Zn))qS\)

< CO.
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where the choice of m, together with (6-44), ensure that the sum is finite. Thus forn £ N the

Borel-Cantelli Lemma allows us to conclude that

nl_\i&)Y uns —0 IP- as.. &40

To achieve convergence in general, we will need to interpolate between the gridpoints. To do this,
notice that a(-) is uniformly bounded as are g(-, ) and §?(=,®) by Lemma 6.3.1.Thus we may

decompose Yt using Theorem 3.3.1, towit

Yl gBm(lgr = 69

where we used substituted (3.11) in the Ito integral. Next we need to show

tlin(])dR’\'Jé a(s)dB5=0 IP- a.s.. (6.49)

| a(s)zds < 0o,
Jo

then by the Martingale Convergence theorem there exists a random variable Moo with finite square
variation such that
t
lim JY a@®)dB. —M @D IP— as..
0

so (6.49) istne. On the other hand, iIf

POO

I o0-(s)2ds = oo,
Jo

we observe that the Ito integral is a time-changed Brownian motion: (See Karatzas and Shreve p.174

[41D indeed there exists another Brownian motion B such that

m )S1°{s)iB-=m k) (6-50)
where u = a(92ds and since by (6-43) it follons that
*00  kx(t)

we have, on applying the law of the iterated logarithm to the r.h.s. of (6.50) that (6-49) is tne.

From (6.47), (6.48), (6.49), ifwe define

Z=m 1 (1 °CY L@s)dB*) *m 63
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then
nl_!_% Zftin) = 0 IP- as.,
and (6.46) is true (and hence the proposition) ifand only if

limzt=0 " as. (6.52)

| —foo0

We prove (6.52) as follows: foreacht G M + there existsn 6 N such that h(n) < t< h(n + D). Using

(6.5, we have

S ZW = (nSFir" 0 Zhn)+W) Shi) (1 <u”  usAdB-) ds>

so (6-52) is equivalent to

lim sup =0 '—as.. 653
h(n)<t<h(n+I)

We now prove (6.53) by another Borei-Cantelli argument.

E sup
h(n)<t<h(n+l)

1
) >E sup / aiu)~ {u,s)dBu) ds
kith(n + 1))" h(n)<t<ft(n+1) \Jh(n) \Jo

< 1 E sup  (t—hm) f(f <r)r.(u,s)dBu) ds
ki(h(n + I))2 n)<t</i(n+l) Jh(n) 0 J

h(n + - h(n)E sup . cr(u)y— (u,s)dBu ) ds
Ki(h(n (1))2  h(n)<t<h(n+l) Shi@) \Jo

h(n+l)-h(n)E [
kith(n + 12 [A(n)

h{n + 1)-h[n) +1i)
ki(h(n + 1)) ) E s a@~(us)dBr

L 7, D0 AN K 9P - d,

Ki(h( + 1))  Jh{n)

a(u)”™-(u,s)dBlt ) ds

ki(h(n +11)) Jo
= QM ~2r+pl [ 1+3(h(n+l)-h(n)f [e*<"«, H | ]
ni+2 y &i(li(n+l)) Jo J
@i +M2R .
ni+a for n sufficiently large.

where we use the monotonicity of ki(-) to get the first inequality, Cauchy Schwarz to obtain the

second, Fubini to get the first equality, Proposition 6.1.1 to obtain the second equality, Lemma 6.3.1
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@) to achieve the fifth bound, and (6.45) to obtain the final bound. Thus

sup - M/ < 0o,
E e sphieny TV s 1 d°]
and so by Chebyshevs inequality, we have for every e > 0
ft
D sup > £ < oo.
=I h(n)<t<h(n+l) fh(n
Therefore, by the Borel-Cantelli Lemma we have
lim sup ~7-r [ (f tr(u)~(u,s)dBu) ds =0 — a.s.
n~*°° h(n)<t<h(n+l) kI(t) Jh{n) \Jo “t J

which is precisely (6.53), so the proposition is proven. 0

Wc are now in a position to prove the main result.

Theorem 6.3.1 Let A, /A=), ¥ be continuous and uniformly bounded and satisfy
infF/J® — A(t) — sup JA)] > 0.
x> o s>0

Let k(-) be continuous, 1imt-4.00 k(t) = 00. Suppose there exists a positive, non-decreasing C 1function,

k i1(5), which satisfies

; - limM = 1.
g -0 £-100 Ki(t)

Suppose there exists 7 > 0 such that

Lim fna&s)Tds
oo g k(t)

Let X be the solution to (6.1). Then

t&ﬁ)ﬁrz -L

IP-a.s. and in pth mean for any p G [1,00)-

Proof : We first prove almost sure convergence. One can write, from Theorem 3.3.1, (3.12)

i rl=im -+ W T (654)
By Proposition 6.2.1 the first term on the r.hs. of (6.54) goes to 0 ast — 00 and by Proposition

6.3.1 the second term on the r.hs. of (6.54) goes toOprP —a.s. ast —m00. To prove convergence inpth
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mean, ifp > 1, we proceed as folloxs. Let r = fE'], so r Isa positive integer and 2r > p. Therefore

one has

2r

(« 1)

02r—1 ( (ew tv ', i E frw o ». i)pdSN
)+ rtar\ k(tf

aGRrds
MO2
Thus from Proposition 6.2.1 and (6-43), we have

2r

dige (Lo = o,
so since 2r > p > 1, it folloas that

&iaF - o

Since p was chosen arbitrarily, pth mean convergence has been demonstrated for allp G [1,00). o

The same ideas used in the proof of the above theorem may be used to prove

Theorem 6.3.2 Let A(-),/X®),cr( ) be continuous and uniformly bounded. Moreover, suppose A(-) <

0, and

JaEP (1) — X(t) + 1ImEAS) > O.
5 X5

Let k(-) be continuous, BIim™oo k(t) = 00. Suppose there exists a positive, non-decreasing C 1function,

@), which satisfies

A = O Mlosiay = T

Suppose there exists 7 > 0 such that

A ()2

Let X be the solution to (6.1). Then

hm _Xt_: 1,
t=+00Q k(1)

r-a.s. and in pth mean for any p G [1,00)-
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Proof: As in Theorem 6.3.1. «

Remark 6.3.1

The conditions of Theorem 6.3.2 are in particular satisfied if

whenever A(-) = A < 0. Thus we see that Ifdartists have mean-reverting expectations, they cause

the price to follow the consensus growth rate of the fundamentals almost surely.

There is a further useful extension to Theorem 6.3.1.

Theorem 6.3.3 Suppose (Kt)t>0is a Tt—adapted stochastic process independent of (Bt)t>0- Sup-

pose there exists a continuous function k(-) which satisfies

lim~-~r=1 P—as.
e K(t] as
along with properties in Theorem 6.3.1. If
dXt = MA(Y) - JFw{s,t)X. ds"j - O(t)(Xt - Kt)j dt+ <r(t)dBt (6-5)

then
ket P

Proof: We apply the argument to the previously deterministic solution to (3.12) on a pathwise besis,

1i -1 P-as.
90 Kt as

The argument used in Proposition 6.3.1 is unaltered by the new hypothesis, as the process (Kt)t>o

is independent of (Bt)t>o0, proving the theorem, o
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Corollary 6.3.1 Let Kt satisfy
dKt —K[(t) dt + (T\(@® dWt

where (Wt)t>0 a Tt—adapted standard Brownian motion independent of (Bt)t>o0- Let

;i 10<9(S)2cslslee o N()2Y)
f-»l(rJnO ___________Ei_(_t;: _____________

If Xt is a solution of (6.55), then

v
lip 7-=1 IP— a.s..
bkt
Proof: Follows directly from Theorem 6.3.3. o

Remark 6.3.2

Theorem 6.3.3 means that ifthe fundamentalists believe that the price should revert to values given
by a stochastic process, provided that the process is independent of the price, then the price will
follow that process asymptotically. The benefit of this result is that the fundamentalists merely need
to observe a time series (or several time series, and then take their weighted average) rather than

fTabricate some value for the fundamentals.
Remark 6.3.3

We may think ofk(-) as representing a fundamentalist index function. To keep consistency with the

notation for chartist index functions, let
a,f(t,X.) = k(t).

Then ifthe conditions in the above theorems are satisfied, we have

i 210X 20X ).

im = =1 as..
t—too X-t t—toc JO-

This indicates that both groups of speculators correctly gauge the growth rate of the market,
asymptotically. It also shows that chartists do not necessarily underperform fundamentalists as
inestors. The equivalent efficacy (or inefficacy) of technical and security analysts is remarked upon

in Malkiel [3], and this result seems to agree with his observation. Recalling from Remark 4.2_4 that
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Figure 6.1: A sample path for the Black-Scholes model .

chartists buy at record highs, and that the long run trend in security markets has been upwards, we
see that the chartists in our model very often correctly interpret the buy signal their index functions

provide. Thus we would expect the chartists to be effective under such conditions.

An interesting consequence of this result is that it suggests an underlying time consistency in the
model . Since both groups of speculators have indices which track the market relatively vell, itseems
plausible that neither group of speculator will be bankrupted by treir trading. Thus, since both
groups of speculators should survive, the price dynamics do not seem to bring about circumstances
which will cause the model to become invalid. However, market conditions in which the model

produces crashes or bubbles are not included in this analysis.

Another possible reason for charting Is provided by the above theorems: suppose an influential
insider trader existed in the market for a particular financial assst. This trader may be assumed
to know the fundamental value of the asset at any time, and so will behave like a fundamentalist.
We assume that the chartists suspect that such an agent is present in the market; therefore, in the
absence of the privileged information which the insider trader has access 1o, the chartists observe
the behaviour of the price path in order to detect that investor’s trading pattem. We see in the
instance of steadily growing fundamentals that the chartists are able to gain access 1o the insider
trader’s information via their index functions. Therefore, in this setting, charting can be seen as a

sensible response to limited information. See De Long et. al. [18].
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Figure 6.2: Sample path of St —eXt for the model with memory.

The following is a special case of the general result.

Corollary 6.3.2 Suppose A("),/X®),cr() are continuous and uniformly bounded, and

jg(f)/'?(i) - A B A1 > 0.

If k(-) is a continuous function such that

=
E]
1

P

%—.

where i] > 0,then
I - &
tllm_! logS( = §,

in pth mean and P-a.s..
Proof: Choose ki(t) = i+ 1, and the conditions of the Theorem 6.3.1 are satisfied, o
Remark 6.3.4

The pathwise price asymptotics have the same form for the modified and the Black-Scholes models:

ifprices evolved according to dSt = a St dt + aSt dBtt then

1 1
lim - logSt = a —2—<|2 P-a.s.,

t-too |
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while with St —ex<,Corollary 6.3.2 reads

lim - logSt = 7 P-as..
t—too

Therefore the pathwise price asymptotics for the Black-Scholes model have the same form as those

described by Corollary 6.3.2.
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Chapter 7

Convergence of the E.D.F. of

Periodic Linear S.I-D.Es

7.1 Introduction and Motivation

In this chapter, we show that ifwe assume that the fundamentalists do not believe the fundamentals
change over time (@e., k(t) = I<*), then though neither the price nor the retums converge in
distribution, one can prove when the fundamentalists dominate, that the empirical distribution

functions of both price and retums converge iIn a Cesaro sense.

Let the logprice Xt now be governed by
dXt = A - JF w(s,t)X, ds®j - p{t) Xt - K*) dt + a(t) dBt,

with deterministic initial condition given by Xq — x0, and suppose A(-), ft(-), and a(® are either
T-periodic or constant and satisfy (6 6). The introduction of periodicity has the same motivation

as in Chapter 2

In the next section, we note how to calculate the covariance of stochastic integrals with ¢-dependent
integrands. We also show that the resolvent of the deteministic integro-differential equation

exponentially bounded, again using the converse theory of Liapunov functions.
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In the third section of the chapter, we show that the price does not converge indistribution: however,
it is possible to show that the expected value of the empirical distribution function converges to a
distribution function with density function given by a continuous superposition of normal densities.
This proof is achieved via a mixture of Cauchy sequence and Liapunov function techniques. One

can prove a similar reault, using the same idess, for the A — retums for any A > 0.

In the fimal section of the chapter, we show (under the proviso that a certain function isnot identically
constant) that the limiting retums distribution issymmetric, unimodal and has a greater probability
of being close to 0 than a normal distribution with the same variance. Furthermore, the limiting
retumns distribution has heavier tails than a normal distribution with the same variance. More
spcifically, in the case of the A-retums, r(A; <), we show that there exists a T-periodic, Lipschitz

continuous, strictly positive function va © such that

where -ra (-) I5a distribution function with density /. (-) given by

7.2 Preliminaries

In this section we introduce the model that we are to study, note some of Its properties, and recll

some results in the theory of integro-differential equations which we will use later.

Let e(-) solwve

e(t) =g{0,t)(xo-K=*) + K*. D

One has Theorem 3.3.1 with a different ().

Proposition 7.2.1 Under the above hypotheses, (6.1) has a unique continuous, variation of param-

eters solution given by
‘.2
where g(-, ® is given by (3.10) and (3.11), and e() is given by (7.1).
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Proof: As Theorem 3.3.1. o

Proposition 7.2.2 Let h\ be a deterministic function which satisfies
hi :D -+M.: (s,t) >+hi(s,t),
and for D' = {(«,«) ; 0< s < up> N2 satisfies

hi : D' —> IR 1 (5, ) >» li2{st u)-

If
/ hi(s,t)2ds < oo,
Jo
and
/ fi2(s,u)2ds < oo,
Jo
then
. pt-AU
E (/ hi(s,1)dB,"]j hi(s,u) :j hi(s, t)h2{s, u) ds.

Proof : Use Riemann sums, o

We will also need a modification of a previous result.

Proposition 7.2.3 Let

x'[t) = ACH "a;(t)—J w(s,t)x(s) ds'j —FfI(t)x(t).

@3

(&)

Then the zero solution of (7.4) is exponentially asymptotically stable if and only if it is uniformly

asymptotically stable.

Proof: Take the analysis of Theorem 2.2.2 on p.54-55 in [49] in conjunction with that contained in

Yoshizawa [@] p-29. o

Finally, we note that the resolvent decays exponentially.

Proposition 7.2.4 Suppose that (6.6) holds. There exist constants K > 0, k > 0 such that the

solution of (3.10) with initial conditions (3.11) satisfies

\g(s,t)\ < Ke-~-"1 0<s<t
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To do this, recall

Lemma 7.2.1f (6.6) holds, the zero solution of (7-4) is exponentially asymptotically stable.

Proof: Thiscan beproved inthe same manner as Lemma 6.2.5. o

By Lemma 7.2.1 there exist 10— independent constants K > 0, k > 0 such that
| *(Mo»M < Vi>iO- (9]

Now we are in a position to supply the

Proof of Proposition 7.2.4'- Let

0 for0 < s<t,
M*) =
) 1 fors = t.

Then g(s,t) = x(t,5,<j>3) where x(-, -, ® is the solution to (74). Therefore

K7@Dl = |*(W.)1 < = Ke-*-)

forallt > s. o

7.3 Non-Convergence ofthe Transition Density and Conver-

gence of the Empirical Distribution Function

In this section we prove the main results of the chapter: namely, that although neither the price
nor the retums converges In distribution, their empirical distribution functions converge. However,
more work is required to show the pathwise convergence of the EDFs, the result achieved in Chapter

2. Simulations indicate that pathwise convergence does indeed appear to take place.

We prove that the expected value of the empirical distribution functions converge to distribution
functions whose densities are continuous superpositions of Gaussian dasities. In view of this, we
will ultimately be able to prove that, except in a set of exceptional circumstances, the retums
distribution has heavier tails than a normal distribution. In the the following subsection, we will
prove the result for the price distribution, while Section 7.3.2 contains the result for the retums

distribution.
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7.3.1 Price Distribution

Let us make the assumption of the periodicity of the functions A(-)i /X®) and a(-) eplicit: suppose

that there exists T > 0 such that for allt > 0O

Xt+T) = AQ® ()
0{t+T) = P(1) @8
<r(t+T) = af(t). 79

This assumption means that all of the functions A(-),/A=y> fi) must be periodic, and must share

acommon period. Further note that this definition does not preclude two or fewer of the functions

from being constant.

We assume, moreover, that A("), /@), &m) are continuous and satisfy either

tiggo{t) - A(D> P A®I ‘710
or, iIfA()< O,
g/?(i) - A > -i{g(;ﬁ(i)- -1

Finally, we assume that (3.8) holds, viz,

inf @] = £> 0. .12

For the purposes of Chapters 7 and 8 of this thesis, we call (7.7),(7-8),(7,9, (-10), (7-11) and

(7-12) the usual conditions (UC). We now proceed to prove

Theorem 7.3.1 Let Xt be the solution of (6.1), and suppose that theusualconditions (UC) hold.

Then

(i) Xt does not converge in distribution as t 0.

(ii) There exists a Lipschitz continuous, T-periodic, strictly positive function v(-) such that for all



Ur2>E [ ? /| kx.<x}ds =F(x) .13
where F (W) is a distribution function with density /(} given by

I(«) = +

+ i 1 e-*tel-K"™ads. -
1 Jo Vv27Tylv(s) @19

Proof : We first prove (i), ofwhich (@) is a trivial consequence. First, notice from Propositions 7.2.1

and 6 1.1 that
-, Are(D) , «(1)) .15
where v(-) satisfies
v{t) _Jfo 0-(s)2g (s, t)2ds, .18)

e() isgiven by (B.12) and g(-, 9 by (3.10) and (3.11). To prove the desired convergence, first note

from (7,0 and (7.5) that
lime(t) = K*. .17
t-n» w \Y
We now employ a Cauchy sequence argument as in Proposition 4.2.2 to show, forevery t > 0 that
lim 0G + rad exists 7.13
n-foo
and define
v M+ -—>M 1 14v(t) ~ r]I_Eﬁ:)v(t + nT). 7-19)

It then remains to show that v(-) in (7.19) satisfies the conditions in part (i) of the proposition.

We will first show, for alii > 0

lim v(t+nT) —v(t+mT) =0 720
n.m-foo

which proves (7.18) Without loss of gererality, we will assume n > m. The following reformulation

is immediate

pO-MT
v(ii+ nT) —v(t+ mT) = / a(s)2g(s,t + nT)2ds (G24))
J
pt+mT °
+ / cr(s)2 (g{s+[n-m)T,t + nT)2- g(s,i + mT)2) ds.
Jo
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Using Proposition 7.2.4, together with (3.7) we have the following bound for the first term on the

right hand side of (7.21)

f(n ~ a(s)2g{s,t + nT)2ds < (e-2«mT _ €1,
Jo

r(nm)T
| a(s)2g(s,t + nT)2ds = 0. 7.2

lim
n,m-4o00, ri>m Jq

To tackle the convergence of the second term on the right hand side of (7.21), define fort > s
A, (n,m;t) -g(s+ (n- m)T,t+ (n- m)T) -g(s,t), 723

so A*(«,m;s) = 0, and A s(h, m;¥) = 0 for i < s. Using the T-periodicity of A(W), /A5, a(®,we have

from (7.23) that

A" (n, m\t) = A ™A, (n, m\i) —j  w(u,t)A,(n, m\u)duj - P(t)A,(n, m\t) + f(n, m;s,t),
.29

where 1 denotes differentiation with respect tot and

f{n,m\s,t) = A/ g+ (—m)T,u+ (n—m)T) W{u,(n —m)T t+ (h—m)T) —w(u,t)) du.

.2
Ifone defines
. ( wu+ (n—m)T,t+ (n—m)T) , w(u,i)
rgomio = i oy VTR TR T g e S -1
then 3.5), Definition4.2.1 (iv) and Lemma 6.3.1 (@) enable us to show that
\f(n,m-,s,0)\ < f*(n,m;t), 7.0
limf*(n,m:t) = 0. .27

t—too \Y

Observing that the homogeneous part of (7.24) is the differential equation for g(s, <), we can use

(7-26) and Proposition 7.2.4 along with a similar lire argument to that of Lemma 7.2.1 to show

rc
\Aa(n,m]\ < Ke KJ e (n,m\u) du. @.28)
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We then have the following bounding argument:

-
/ aG)2(g(s+ (n- rA)T,*+ (- m)T)2- tF(M+ mT)2) ds
Jo
nt+mT
< Mg / b+ (- mMT,i + nD]+ S+ mD]) + mT)| ds
Jo
mT ( rt+mT \
/ 2iie-K(t+mT-s) h f e-«(t+mT) / e/, m; W) <fu ds
=0 y Ju=:s J
9 e ( rt+mT rt+mT \
< 2™ 3 fe- 2«(t+mT) j e2KUf*(n,rn-,u)du + e-2< t+mT ] eKUf* {n,m;u) duj.

where we used (3.7) and (7-23) to obtain the first inequality, Proposition 7.2.4 and (7-28) to obtain
the second and Fubinis theorem to obtain the lasst. By (7.26) and the above we therefore have, on
taking limits:
re+mT
lim / cr(s)2 (g(s + (n —m)T,t + (n —m)T)2 —g(s,t + mT)2) ds = O. 7.9
n,m->00, n>m Jq

Equations (7.2D), (7-2) and (7.2) now imply (7-20), legitimising the statement of (7.19). We
relegate the proof that u(-) defined by (7.19) is positive to the Appendix of this chapter. Evidently,
w(-) is T-periodic, so we merely have to prove Lipschitz continuity. To this end, we mimic the lire

of proof in Proposition 4.2.2. Without Iosr(i&?]lgality, lett2 > ti- Then
1

v{t\)-v{t2)= lim - / <r(s)2g(s, t2+ nT)2ds 7-30)
nhee Jti+nT
pti+nT
+ lim / <r(s)2 (g(s,ti + nT)2- g(s,t2+ nT)2) ds.
Jo

We bound the second term on the right hand side of (7.30) as follois:

rti+nT

/ a(s) @(s,il+ nT)2- g(sit2+ nT)2) ds
Jo

pti+nT -
< Mi AKe~KN +nT-M+ K e-KN +nT-~j\g{s,t1+nT)-g{s,t2+ nT)\ds
, - fti+nT a
< M2 + e-«(*i+nT-.) sup N-{s*,t*) |<2- ill ds
' 1Jo O<s*<t™<oo0

< 2(2Mx + M2)M jK

where we used (3.7) and Proposition 7.2.4 to obtain the first bound, and Lemma 6.3.1 (i) to obtain

the third. Using Lemma 6.3.1 (@) also gives us

rGinnll
/ a(s)2g(s,t2+ nT)2ds < M3\t2 —iil.
Jt\+FiT
Thus, (7-30) and the last two bounds give

Hti) - «(ia)] < M2 (1 + 2(2M1 + 12 - il
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so v(-) satisfies the desired properties.

Finally, for each t e [0O,T\, since Xt+nT ~ Af(e(t + nT),v(t + nT)), by (717, (719 ifXt ~
AF(K* , (D) then

Xt+nT —>Xt asn-—->00

proving part ().

Since by @), V(-) is continuous, T-periodic and strictly positive, the proof of part @ii) follows from

the analysis of Theorem 2.6.1 and Proposition 2.7.2. o

7.3.2 Returns Distribution

We recall the standard Definition 2.7.1 and prove

Theorem 7.3.2 Let {r(A;i)}t>0 be defined by (2.68), vihere X, satisfies (6.1). Then

(i) r(A;t) does not converge in distribution as t —co.

(ii) There exists a Lipschitz continuous, T-periodic, strictly positive function Ua(™) such that for

all te [0,71, if

(A1) ~ VO, @)

then

r(A;i+ nT) A asn -4 oo.

(iii)

@-3D)

where /'a (-) *s a distribution function with density /a ( ) given by

()
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Proof: (@ is a direct consequence of (i), and If @) is true, @ii) folloxs in the same manner as in

Theorem 7.3.1. We therefore need only prove Q@i).

One can use Proposition 7.2.2 to show that

r(A;i) ~ N{c(t + A) - e(9,1A(9)
where
(
®a(0 = J <r(sf(g{s,t + A) - g{s,t))2ds + j | ff(s)2g9(s, t + A )2ds. 7.8

As before we show for any t > 0 that

l_ﬂ v&(i + nT) exists, "3
and define

va(0 = nIjm «a(t+ nT) 7-3)

and show that v&(-) satisfiesthe desired properties. Equation (7.34) istrue if

lim #a(*+ nT) —v&(t+ mT) = O. (7-36)
n,m-Kx>, n>m
Partition thus:
i>(n-m)T

va(t+ nT) —va(t+ mT) = / <r{s)2(g(s,t + nT + A) —g(s,t + nT))2ds .30

Jo
rt+mT
+ / 0-(s)2(g(s+ (Nn-m)T,t+ nT+A)-g(s+ (n-m)Tit+ nT)-g(s,t + mT)
Jo

+ 9s,t+ mT + A) (As(n,m;t+ mT + A) — As(n,m-,t+ mT)) ds

The second term on the right hand side of (7.37) can be bounded above using (7-28) and Proposition

7.2.4 by

2KTME{l + e kA) f2e-2K(t+mT) f nmT e~ f ( n,m-u)du+ Ae"A sup /*(n,m;u)]
K \ Jo HMT<Ut-|-mT-fr-A J

which tends to 0 as n,m —00. To bound the first term on the right hand side of (7.37), write

r(n-m)T
/ a(s)2(g(s,i + nT + A) - g(s,t + nT))2ds
Jo
r{n-m)T
< 2A3 / g(s,t+ nT + A)2+ g(s,t + nT)2ds,
Jo

so employing Proposition 7.2.4 yields

/ 26 Gt + nT+ A) - g(s,t + nT))2ds
Jo
< M$K?2 + e-2KAj L-2s(t+mT) _ e-2«(t+nT)\ 7
K " *

151



which tends to O as n, m -+ 0o. These limits establish (7.36). The T-periodicity of ua(-) defined in

(7-35) above isclear. To show that it isLipschitz, letti < t2 < ti+ A, and decompose it according

«a @2) - va Qi) 738
SN BT+ A T 4ok

= lim / <r{s)2g[s,t2-\-n T A )2ds — / <r(s)2g(s,ti =FnT + A)2¢°7.39)
N~ Jt3+nT Jt,+nT

+ / <r(s)2(g(s,t2+ nT+A)-g(s,t2+nT))2ds
Jo
pO-A-TKT

-/ <r(s)2(g(s,ti +nT + A) —g{s,ti + nT))2ds.
Jo

To bound the first term on the right hand side of (7.33), we rearrange it thus

rt?+TiT-\-A,
| cr(s)2g(s,t2+nT + A)2ds - a(®0 (,ii+ nT + A)2ds
tJth+nT ti-J4iT
= / <r(s)29(s,t2+ nT + A) ds — / a(s)g(s,AM+nT+ A)2ds
Jti~\-n>T+ A 7 e N
/»>ti-fnT+A
+ / 0 Q0G,2+ ral+ A) -0@,ii+ nT + A)) ds.
«te i
The first two integrals in this rearrangement have absolute values < (¢2 — ¢1). The absolute value

integrand in the third term is bounded by
M _su -1
' <o 2- iy
so the absolute value of the first term on the right hand side of (7.38) isbounded above by
Ml (- iD@+ 2@Mi + M2A).

To bound the second term on the right hand side of (7.38), we rearrange it thus

fhil
/ cr(s)2(g(s,t2+ nT + A) - g(s,t2+ nT))2ds (7-40)
Jo
pti+nT
/ a(s) (g{s,ii+nT+A)-g(s,ti + nT)) ds
Jo
e TH
=/ cr(s)2(g(s,t2+nT + A) - g(s,t2+nT))2ds
rti+nT . %
+j tr(s)2 \ {g(s,t2+ nT + A) - g{s,t2+ nT))2- {g{s,t1+ nT + A) - fi,fi+ nT))2) ds.
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The first term on the right hand side of (7.40) isbounded by 4M | (t2—ti). Reformulating the second

term on the right hand side of (7.40) leads to

+nT . v
/ <(s)2 (AGPF2+ nT + A) - g{s,t2+ nT))2- (g[s,ti + nT + A) - g(s,ti+ nT))2ZJ ds

i+nT
v{s)2{(9{s, 2+ nT + A) — g(s, ti + nT + A)) + @(s,ti + nT) - g{s,t2+ nT)))

X (@#h + nT + A) - g(s,t2+ nT) + g(s, ti + nT + A) - g(s, ti + nT)) ds.
Using Proposition 7.2.4 and the Mean Value Theorem as in (7-38) bounds this quantity by:
2KMK2M, + Mg) (L+ e_sA) ~ + e_K(t2_tl)j {h _ (i)j
so therefore
IME2)— Nari)! < M3 26 + 2(2M1 <EM2)A H — - —Q+ e red) (12— ¢1),

establishing Lipschitz cotinuity. We relegate the proof that v& @) isstrictly positive to the Appendix
of this chapter, o

7.4 Properties of the Density Function of the Asymptotic

EDF of the A-returns

As in Chapter 2, we emphasise several properties of the density functions Za( ); first, its symmetry
and unimodal ity about 0 ; second, that the probability of the retums being close 1o 0 is higher than
for a normal density with the same variance; third, that the tail of the distribution is heavier than
a normal distribution with the same variance. From this we notice that the price process has the
desirable property of being relatively quiescent for periods of time, but also capable of experiencing

larger extreme deviations.

Proposition 7.4.1 Suppose that va(®) given by (7.35) is non-constant. Let F&(-), /a(-) be as de-

fined in Theorem 7.3.2 Then

(a) /ma(?) is a symmetric, unimodal distribution with mode at O.

(b) IfY M 70,y Jg v&(s)ds”, with distribution function F&(-) then
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(i) there exists a > O such thatfor all ] < a

> Fa (x)- Fa (-x). (7.41)
(it) there exists a > a such that for all x > a
1 -Fa () 42
EVE[Uo W ~ & «© e
(©)
lim NjlogfA(x) = - T-————mm o I .43
®—>00 X imaXo<,<T ~ («)

Proof: Mimic the proof of Proposition 2.7.1. o

7.5 Appendix
We now prove the results outstanding in Theorems 7.3.1, and 7,3.2.
Lemma 7.5.1 & defined by (7.19) is strictly positive.

Proof : Lett > O. Let u be the positive solution of
v2(2a(O)Mi) + i"%lg [3{t) —AMDI- 1= 0, .49

and define C — ¢ - By virtue of Definition 4.2.1 (iv) there exists N\ () 6 N such that foralln > Ni (t)

w(s, u)
Ssup -
O<»<u,u>t+nT—V a(U—S)

1<1 (7.45)
From (7.19), there exists N2(t) e N such that for all n > N 2(t)

v(t) — / a@©(s,t + nT)2ds <1*1 (7-46)
Jo -23C

where « isdefined in 3.8). Let N (t) = max(iVi(E), N2(t)), and let n > N(t). We can then produce
the following bound:
rt+nT /

sup / w(s,u)du < j/a@© (1+ sup -
tHnT—iz/<s<t+nTJs g >t+nT-v a(u —s)

w(s, u)

1y @4
< 2i/a0)
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where the second inequality folloas from (7.45). From [49] p-24-25, the resolvent g(-, <) given by

(3-10), (3.11) has the following altemative description:
N(s,t) = (f3(s) - \(s))a(s.t) + A(u)w(s,u)g(u,t)du, 7.48)

Using Lemma 6.3.1 (7.44), (7-47) and (7-48), one can show, for sE[i + nT —i/,t + nT] that

so from the Mean Value Theorem, one has, for alls € [i+ nT —i/,i+ nT]
g(s,t + nT) >1—-C(t+ nT —s) > O. (749

Finally, from (3.8), (7-46) and (7-49), we obtain

. 192
> 23C”

which proves the lemma, o
Lemma 7.5.2 i;a() defined by (7.35) is strictly positive.
Proof: Lett > 0, C = sups>0 AS) — A + 2MiAa(0). There exists Ni(t) £ N such that for all

n> Ni

WS, W)
0<s<1iS,Lqut+nT a(U—S) 1<1

We consider two cases
Case :cA< 1

There exists M2@) £ N such that for all n > AR

/ pt+nT pt+nT+A >
va(i) - 7/ a(s)2(g(s,t+ nT+ A) - g(s,t + nT))2ds+ 7/ 0-(s)29(s,t + nT + A)2ds
\jJo >/E -friT y
> A2 50
T~ (7.50)

Let N (t) = max(iVi(i), N2(t)), and letn> N(t). We then have

sup 9 w(s, u)du < 2Aa(0).
tenT<p<t+nT+A J
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Thus for sg[i + nT,t + nT + A],

&-_.0 < c.
and sog(s,t + nT + A) > 1-— t+nT + A —s). The same argument as in Lemma 7.5.1 above
yields
A<r2
B @> "

Case 22 cA > 1

2
This time we define N-2{t) by replacing the constant on the right hand side of (7.50) by f*. Once

again, g{s,t+ nT+ A) > 1—- ;(2+nT+ A —5) fors €E+ nT,t + nT + A], Set T* = Thus
pt+nT+A 02
wafo > | g(s,t+ nT+ A)2ds- ="

Jtt+NnT+A-r*

2
so i>a(0 > qq, concluding the proof of the lemma, o
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Chapter 8

Pathwise Asymptotics of the

Extrema of Linear S.1-D.Es

8.1 Introduction and Motivation

In this chapter we consider the almost sure growth rate of the extremes of a linear stochastic integro-

differential equation of the form
dXt= A® (xt- " w(s,t)Xsds'j - 0(t) (Xt- K*) dt+ a(t) dBt @B.D

with deterministic inidal condition X q, periodically oscillating (or constant) functions A(-), /A=) and

a(®, and asymptotically shift invariant w(-, <.

Exploiting the fact that Xt Is Gaussian for all t, one can use the theory of Liapunov functions
for deterministic integro-differential equations to show that the resolvent of a related deterministic
equation has bounded exponential decay, and hence so does the correlation of X t. By applying the
result of Klass on almost sure fluctuations of maxima of iid random variables, we show that discrete
stationary normal sequences with exactly geometric decay in their correlation have the same almost
sure fluctuations. It then follows by the normal comparison lemma and its direct consequences
that all normal sequences with correlations bounded by geometric decay have large deviations of

0(\/2 logn) almost surely.
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We can extend this result to continuous time to achieve a liminfbound:

. . .Mmaxo<,<i Xs )
limint - ® > ,/max u(s) as.,
t-H>o0 -y/JTogi -\jo<s<T w

where u() Is a T-periodic function which is the uniform limit of the variance of Xt, v(i). The almost
sure asymptotic boundedness on the whole real lire of

maxo<s<t X a
V 2 logi

has not yet been secured: however, the following “modulo-continuity” result has been attained; for

every h > 0

max0<K jij X ih r “
hmsup-—~ m—— < ,2 max vis) as,
<> 13 V o N T

while ifthere exists I\ > 0 such that Cov(Xs,Xt) > Ofor allt,s > T\, we have
max0<<<”xj Xih | —
hm —— ~7 = ,/max v[s) as.
«+00 vTlogl Ve-aT
While there exists a comprehensive literature relating to the classical and weak limit theory of
extremes and sojoumns, very few results seem to be available to form a strong limit theory of extremes.
In fact, | have only been able to identify a handful of papers, all of which relate to discrete time

stochastic processes which are iid. Since we are studying a nonstationary dependent continuous time

process, some additional analysis is plainly necessary.

The almost sure asymptotic behaviour of the extremes of discrete time 1id processes has been essen-
tially settled by the results ofKlass [44], [45], building on the theory pioneered by Barndorff-Nielsen.
Both authors concentrated on the normalised liminf of maxima: the treatment of the normalised
limsup of the maxima of iid processes follows directly from the following observation: X \,... ,Xn
are a sequence of iid random variables and Mn = maxi<j<nXj, then if{un} Isa non-decreasing

sequence
P[Mn > un i0]= P[X,, > un i.0] 8 2)

and so P[Mn > un i0] = 0 or 1 according as > un] < or = 00.

A readable sketch of the proof of the normalised liminfofmaxima isgiven in Embrechts et al. [2],

The proof is quite technical and its outcome, though not its argument, will be used here.

To prove the desired result, we proceed in three steps, each comprising a section hereafter. First, we

observe that we can directly apply the results of Klass to a linear (Gram-Schmidt) transformation
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of a sequence of stationary normal random variables with exponentially decreasing correlation. By
partitioning this sequence ino k sequences we can show that the a.s. growth of the partial maxima
is identical to that in the Tid case. To my knowledge, this is the first as. characterisation of the

growth rate of maxima of a dependent process.

Next, by using a result which compares the probabilities of maxima of two normal processes when
their correlations are ordered in a particular manner, we use the ideas of the first section to show that
sequences of jointly normal random variables have maxima of0(y/logn). In fact, ifthe correlations
are always non-negative, the as. growth of the partial maxima is again identical to that in the iid

case.

In the final section, we show that the correlation of the solution of the integro-differential equation
conforms with that outlined in the previous section. Starting from a sufficiently large though finite
time (in order to discard very low variances), we sample the process at equal intenvals that are a
certain multiple of T. Aggregrating these sequences, and choosing an aggregate sequence along a
set of T-separated times, we can prove the liminfFbound. The limsup bound isobtained by sampling
the process at multiples of the arbitrary positive number h, and by aggregating these sequences and

using the discrete time theory.

We see from the fimal result that the maxima has order of magnitude \Jmaxo<s<T v(s)yj2 logt
multiplied by a pure number, or, ifthe correlation ispositive after some finite time, Isalmost surely
asymptotic to >/maxo<s<T v(s)”~/2 logi. Thus, larger values of maxo<s<T v(s) lead to larger partial
maxima (and by symmetry, smaller partial minima) . The analysis in the memory-independent case
indicates that higher maximum variance occurs when the market is more uncertain or more likely

to engage in trend chasing.

8.2 Fluctuations of Stationary Gaussian Sequences

As usual, $(X) = e-“2/2du. The following two results are fundamental to our discussion.

First, the Normal Comparison Lemma.

Lemma 8.2.1 If Xj is a stationary sequence of standard normal variables with Corr{X{, Xj) =
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r|H| and

Mn= max Xj,

<3< 3

then

n / 2\
FIMn< u,] - unn|< Zin™|rjlexp J .,

where K depends on S= maxj>i\rj|< L

Proof'. See Leadbetter et al. p-81-85. [5I]. o

Particularising the arguments of Klass [#4], we have the folloving in Embrechts et al. [2]-

@3

Lemma 8.2.2 Suppose that Xj is a sequence of independent standard normal variables, and let

= max Xj-

Then

(G2

Proof: This folloas from Corollary 3.5.3 in Embrechts et al. [2], and is outlined in Example 3.5.4.

over pages 174-176. o

Lemma 8.2.3 Let Xj be a stationary sequence of standard normal random variables. Moreover, if

Cov(Xi,Xj) = for some A G (0,1, then
IimsupmaXI<I J y<ssy2 as,
n

=00 v 2 log

and similarly for mini<j<,,Xj .

Proof-. Let a > 4 and define u,, = \/a logn, From Mill% estimate we therefore obtain

1- H(Uu,,) < =0

v27ravl°8an "

and so
1-<U)'< 1- - )" < niHn)
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foralln > Ni —min{Yi £ N :ip(n) < 1}. Definerj = A7 and Bn = K nJ2'j=i \ri\exP

From Lemma 8.2.1 we have
P[M,, > &< 1- $K) i+ Bn. @7

With the choice of u,, we easily dbtain, for some 0 < I<2 < 0

Bn < na 1fﬁ < 1% Tl- (8-8)
Taking @ 6), (8.7) and @ 8) together we see that for all n > Ni

P[M,, > \Ja logn] < a— — — + 1<

V27raviogn na 1 m

whence

. ’2 <
| A a/[t; .S ..
RARAVA T ERS

Taking limits as a J 4 proves the assertion (8.5). By symmetry, the minimum behaves similarly, o

We now prove the principal result in this section.

Proposition 8.2.1 Lei Xj,j = 1,... ,n be a sequence of standard normal random variables with

Cov(Xi,Xj)= for some A £ (0,D). Then
1i XD-j- =1 as.. 9
Al naxpilgyy 7 T as €9

Proof: Letk £ N and foreachj = 1,... ,k define

r/j _ Xj+nh — AfeXj-j-(n_ifc

Without loss of gererality, letn ~ m and notice that Cov(U1,U”) = 0, while Var{U”) = 1for alln
andj. Thus foreachj = 1,... ,k, {Ul}*=i isan iid sequence of standard normal random variables.

Therefore, using Lemma 8.2.2 we have

v moax i< o< (X |+ 1k - 1 1

A VT Vi
forj = 1,... ,k. Next, define

maxXi<r<n Qg-i-rfe™) — \ kXj+(r-i")k(u>)) 1 L

g — {w - L, y2 fogn VI
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and fi = n$=1Qj, so P[Q] = 1. Then for allu 6 fi

maXi<rkn +Hk® 1 n
n-K» y2 logn VI -\ 2k
forallj = 1,... ,k so
| maxi<j<j; maxi<r<n AEY (r_D@)) 1 N G 10)
m™+oo i/2 logn Vi — A2*
Therefore
maxi<j<fcmaxi<r<n (Xj+ron) A"Xj+(r_Dfc@)) 1 n
00 ,/210g(n -F1)A y/l — A2*
It maxicj<femaxi<r<,+i (X]+rkw) A ogAr Jijiw) 1 A
n-¥o0o i/21ognfc VT — A%

Now taking nfc < iV< (n+ 1)k, we also have

maxi<j<fc maxi<r<n (Xj+rk — AKXj+"r7iK)
y/21og{nT Tjk
N omaxi<p<”® (-Yptfc  A'Xp) N maxi<j</: maxi<r<nN (-Xj+flc A
— vAToglVv ~ /2 log

maxi<p<iv AKX p) 1
~ Jt-1= - - . = =
N—¥co 1/2 TogN y/1 —A2k

For every e > O there exists k(e) € N such that for all k > k(e) we have L— VI - A%k |]< 8§ and

AE< Now fix A= ¢(e) + 1. Then
maxi<p<jy Xp+k _ N maxi<p<jv (Xp+k - AkXp) 1 n n 1™ N maxi<p<jy™p
\J2 log v 7 a’2 loglVv VI - A2* V2log7V

(8.11)

so using Lemma 8.2.3 we have

hm sup rTHXiﬁEjV—%pA }< £.

\/2 logAT

Using a decomposition similar to that in (8.11) and Lemma 8.2.3 for the partial minimum, we have

maxi< A§p+k
hm inf p—< X -- 1> e.
N-¥co V 2 logN
Thus foralle> 0 and A= A(e) + 1we have
limsup P 1o e ((SH)

N-y 00 V2logiv
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Define

n maxi<pAr X pHk
wik .
V/2 logN
max IKp<A7X
YN X p p
i/2 logN
and the events
vine = {w : pn W - 4> &, (8.13)
Cm = {w : M@w)-1]>2e}. (8.14)
Observe for any p > N that the stationarity of the sequence X implies
-N p N p
8.15)
n.u n.uc» ¢
JHNMEN JHN
We will presently prove
P[A/Nv* i.0] = 0. (8.16)

Assume for the moment that this is trtue. The following argument is valid for both Amik and Cm.
We focus on Am~ . Fixn £N and define forp > N

N p

Bo= N Amik

n=1 m=n

so Bp C Bp+l forallp > N. Itisalso true that

00 o0 N p N o]
Uesp=UNDN UAmk=pi U "m¥
p=JVv p=Nn=Im=n n=lm=n

so since Bp Isan increasing sequence of events, we have

limP[Bp] = P[|J Bp]

p=N
S0)
N p N o0
”‘Itigl’ i ,pzl mléln _nn=| mu—n Amk €10
In an identical manner we obtain
N p N 00
oo Ry, Cm i ]ingn& €
Using (8-15), (8.17), (8-18) shows that
N oo N (o¢]
,r?=l mLin ,Ir?:I mL=Jn mk



and taking limits as N -» 00 in conjunction with (8.16) gives
P[Cjv 10] = P[Ajv,fc io]= 0.

Thus for all e > O, IF[[YA/— 1] > 2e i.0] = 0. By the definition of Yjv it follons that

We now retum to the proof of Pp;v,fc i.0] = 0. Rewrite equation (8.12) in pointwise form: for every

ui G Q where P[iZ] = 1 we have

lim sup \vm k—1] < e.
N—toom>Rl k 1I

Thus foreachui G  there exists 0 < Df. (W) < e such that

Iim sup \Ym h- 1] = D k{u)-
N-tca m>jv

Returning to definitions, we see that for alle > O and u G  there exists N(e,uj) G N such that for

allN > N(e,u)
sup [Ymj* H - 1] - Dk{u) < e
m>N
0< Yiv,fo@) - 1< sup Iym fo@ - 1]< sup IYn fo@ - 1 - Dk{u)
m>N m>N

Since Ark = {w : [Vv.fe@ — 1] > 26}, itfolloss that PRjv.fc i.0] = 0. o

8.3 Normal Sequences with Exponentially Bounded Corre-

lations

In order to determine the almost sure fluctuations of the max i ma of the stochastic integro-differential
equation, we will need to relax the assumption of precise exponential decay in the correlation over
time. In the next section, we prove that the correlation is bounded by an exponentially decaying
function. In this section, we will therefore wish to characterise the almost sure fluctuations of normal

sequences with exponentially bounded correlation.

Towards this end, we require two further results related to the normal comparison lemma. Firstly,

monotonicity in correlation leads to monotonicity in stochastic boundedness in the folloving sense.
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Lemma 8.3.1 Let Xj,Yj forj = 1,... ,n be sequences of standard normal random variables which

satisfy
Cov(Xi,Xj) < Cov(Yi,Yj)
foralli,j=1,...1 If Xj andM,, = maxi<j<n Yj,then
IP[M,f < ] < < ul
for allu £ K

Proof: See Leadbetter et al. p.84. o

We will also need a more general version of the normal comparison lemma.

Lemma 8.3.2 Let X \,...,Xnbe jointly normalstandardised random variables and define —

Cov(Xi,Xj). If5 —max”™j Jr.4l< 1then

where K is a finite constant, depending on S.

Proof: See Leadbetter et al. p.84. [Gl]. o

Using this one can prove an analogue of Lemma 8.2.3

Lemma 8.3.3 Let Xj be a sequence of jointly normal standard random variables satisfying
\CoAXi XD\ < al"jl
for some A€ (0,1). Then

limsup max>* Ny2  as. 8.19
n—fooIO V2Iga d @19

and similarly for Xj.

Proof: Using Lemma 8.3.2, the proof proceeds in the same manner as that of Lemma 8.2.3. o

We are now in a position to prove the main result of this section.
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Proposition 8.3.1 Suppose Xi,... ,X,, is a sequence ofjointly normal standard random variables

satisfying
Cov{Xi,Xj)\ <
for some A€ (0,1). Then
1< liminfmaxl N o< i N N o< ;
L) a3<2l n - n#n%p,\ VZlog% w2 (8.20)

Moreover, if Cov(Xi,Xj) > O then

lim TS X 9 .

8.21
n-too y2 logn ( )

Proof: The limsup part of (8.20) folloas from Lemma 8.3.3 on lettinga | 4. To prove the liminf

lover bound, et ,Yn be a sequence of jointly normal standard random variables satisfying

Cov(Yi,Yj) = AL-J. Let M >, have the same meaning as in Lemma 8.3.1. Thus foralle > 0,

we have by Lemma 8.3.1:
P[AF* < @ - e)\f2 log7]< IP[M < @ - e)VV2 lagn].-

The proof is thus complete (after taking e 1 0) by the Borel-Cantelli lemma ifwe can show

£>[M~™ < (1-e)\/2\ogn] < 00. @ 22)
n=1

The proof of (8.22) is the subject of Lemma 8.3.5. To prove (8.21), first note the following fact: if

« n
oo .
L3 P
. J=i
and P [UFf.1 Aj-i.oj = O, then
Biio- =Q (ke
i=i
To prove this simply notice that
0.0) oo m 00 00 [0 0]
nu iM=nu*;=u”"-
n=Im=nj=1 n=1lj=1 j—
SO
n 00 ft
P @ejio. =P 3 = MNPy 5
3=1 3=1 J=1



and analogously for Aj. However, since

. n
<P U M
1= J=1
we have (8.23). Let U\, ... ,Un be a sequence of iid normal standard random variables. Let
MI! = max Uj.
1<j<n
Then forevery e > Owe have, by Lemma 8.3.1

PIU?=1{Xy > @+ e\V/2log7Z}] < P[ui=1{uUj > @+ eJv™logn}]

Since > A+ e)\VV2lognj < 00, by using the independence of {Uj > (A + e)\VV2 logn}, the

Borel-Gantelli lemma, and (8.2), we have
P[MN > @+ e)VR21logn ioj= P[fin> @A+ e)\/2logn io]= 0.
Putting Aj = {Uj > @+ e)V2logn} and Bj = {Xj > @+ e)\V2logrt}, we can use (8.23) to prove
P M=*> @+ e)\V2logn i.oJ= 0,

so taking this in conjunction with @ 22) gives @B 21). o

The proofofLemma 8.3.5 requires a simple preliminary observation.
Lemma 8.3.4 Suppose X, Y are random variables andx,y 6 IKThen

(i) PIX+ Y > x] < TP[X> yl+ PLV > x - yl;

fii) If X >Y a.s. then P[X < x] < PJY < @]

ProofDForany i.yGl, P[X+Y < x]>P[{X< y}H{Y< x —y}]- Thus
PIX+Y > &)= 1-P[X+Y <x]< 1-P[{X<y}0{Y <x- v}
PL{X > y}U {Y > x —y}] < P[X > y]+ PLY >x —y\.

@) Follows from {X < x} C {Y < a}-

Lemma 8.3.5 For the sequence of random variables Yj, j = 1,... ,n defined in Proposition 8.3.1

we have, for all e G (0,1

<(i-e)\/2logn] < oo.
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Proof:For alle G (0,1) there exists ki(e) G N such that for all k > ki(e)
Ak < ~ (\/9 + Be - 4s2- 3(1- e)) = a(e) > 0.

Fix k = k\{e) + 1 Note that a(e) s the unique positive root of f£(x) = —2e+ e2+ 3x(I—¢) + "X 2,

so we have

(A) 1- e+ 8A* ]i_ @29
< — .
A-a <

Since

maxi<j-<nYj+k N maxi<j<nyj+k A Yj A’\maxi<j<n Yj
\JI logn ~ 42 logn - \/2 logn

we use Lemma 8.3.4 part (i) and then part (@) to bound as folloss:

maxi<j<nYj+k 1
- £

s/2 log j
< maxi<j<nYj+u AKkYj _ yk maxi<j<n Yj ~ ~ A~
V 2 logn yj2 logn ~
< 'fcmaxi<j<n:Yj 3 & +1 maxi<j<n Yj+k - AkY]j
v2IisMte -2 ) a2 logn
maxi<j<,, vj 3 ££
y2 logn 2 VI - A%k

where we also exploit the symmetry of the joint distribution, and the independence of the jV(0,1)
random variables

Yj+k = AKYj
VI - A2k

To secure the result, we note that the argument of Lemma 8.2.3 immediately yields

i .
maxa<j<nYj 3 < o0, 6.5)
i va2ign -2

Furthermore, by (8.24), Mills estimate and some amalysis, we have

oo

l1-s+iA* \
A VFP <0
Using the above bound together with (8.25) and (8.26) gives

maxi<j<, Yik _
V2 logn

1-e <@

n=1

The stationarity of the sequence now proves the assertion, o

168



8.4 Maxima of the Integro-differential Equation

We first need to establish the exponential bound on the correlation. To do this we must first show

that 1(-) isbounded away from zero.

Lemma 8.4.1 There exists T\, Li > O such that for allt > s > T\

\Corr{Xa,Xt)\ < Lie~Kr~*\ (C4p)

Proof:We first prove the following: there exists Ti > 0 such that for allt > T\

Suv 12
8.28
&> 43cCT @2

where C is defined in Lemma 7.5.2, and a is given by @.8). Define /n(<0) = v(to + nT) and

f(to) = v(to). We will show there exists L E (0, 00) such that for all to,ti 6 [0,T] and alln £ N

\fn(to) - fn  )I< L\tO— il | B.29)
First of all, we have
rti+nT
\fn{to) - fn{ti)\< 7/ a5 (s,ti + nT)2ds
»to+nT
[Fro-\rr
+ / a(s)2(gis~"x+nT)2- g(s,t0+ nT)2) ds

Jo

By using the exponential boundedness in the resolvent (Proposition 7.2.4) and the bound on the

¢-derivative ofg (Lemma 6.3.1) one obtains
\g(s,ti +nT)2- g{s,t0+ nT)2\ < K2e-"tl+nT- s">e-<totnT- s"(2ML+ M2)\h - t o\

Since [{lisuniformly bounded by 1 (Lemma 6.3.1), we may choose

in (8.2). Letting Q = {/,, :n 6 N} we see that Q is equicontinuous on [0,T], Moreover, since
fn converges pointwise to f on P,T], itfolloas that f,, converges uniformly to /7 on P,T] (s¢e eg-

Rudin Q.18 p.156 [&)) ie,

lim sup \v(to + nT) —(0)|= O,

n_*oc'ioe[0lT]
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so therefore by the T-periodicity of u(-) we have

tLE&])Vt - VW =0
Thus
S o o 1
|%I(I) > WV(I)— v(t) + %ﬁ/(l) > 18/(\5’

proving (8-28). Using the exponential bound on the resolvent (Proposition 7.2.4), Proposition 7.2.2

and (8-28) leads to choosing

proving the assertion, o

The proof of this lemma, along with Proposition 8.3.1, provides the material to prove the principal

result.

Theorem 8.4.1 If [Xt)t>0 is the solution of (8.1), and the usual conditions apply, then

- pfiaXQ< X j i
Limm C‘f— -9 s f/ max u(sS a.s., i@%ﬁs
t-+°° viTogl ~\Jo<s<T v )

while for any h > 0, we have

limsup— **«-7"— — i2 max © a.s. 8.31
t-+00 P VT~Ngt ~ \JI 0<s<T bvg) \g )

We deferthe proof of Theorem 8.4.1 for a moment and note thefollowing refinement.

Theorem 8.4.2Let (X t)t>o0 be the solution of (8.1), and assumethe usual conditions. Furthermore,

suppose that there exists T\ > O such that for all t,s> T\, we have
Cov{X,,Xt) > O.

Then for every h > 0

max0<f<i Xih / —
lim -——7.r ~—-———— ,/max _u(s) a.s. ()
t-KX> s/2\ogt jJo<s<T

Proof : Mimic the proof of Theorem 8.4.1 below, using (8-21) in Proposition 8.3.1 instead of Lemma

833. 0
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Remark 8.4.1 I1f A-) < Othen Cov[X,,Xt)> Ofor allt,s > O.

Proof: Define gs(t) := g(s,t), SO

O F M- - M F ) f D@l

Ifwe let G,(t) = F*@L[ then G,(s) = 1~ g,(s). Therefore, by the comparison theorem, we have
Gs(t) < g,(t) for allt > s. But this is nothing more than F@,1)| < g(s,t) for allt > s. Thus

g(s,t) > 0 and the covariance Is non-negative, o
Remark 8.4.2

From Theorem 8.4.2, it would obviously be possible to prove (8.32) for exponentially bounded

correlation, under the following improvement in Proposition 8.3.1.

Conjecture 8.4.1 Suppose that Y1, ... ,Yn are jointly normal and standardised and satisfy
Cov{Yi,Yj) | <Ali"J1

for some A £ (0,D). Then

. maxi<j<,,Vj
lFimsup ~ <
=00 v 2 logn

We now retum to the

Proof of Theorem 8-4.1: Let a € (0,1). Define N = 1#fLi < 1,and N = [I5"-KBQ] ifLi > 1

Let ni = [y*“]- Further define

Yj _ XtOr(nN+j)T+mT ~ efto+ (nN + j)T + niT) N
y/lv{to + (NN +j)T + niT)

so Yj  Af(0, 1) and moreover we have without loss of generality for n > m
\Cov(Yj,YI)\ < Lle-s<"-PYINT < an~m

on using Lemma 8.4.1 and the definitionon N. Thus by Proposition 8.3.1, foreachj = 0,... ,N —1

Mntirwijr+n, r-e(to+ CrW +j)T+ntT)
maxXo<r<n~I Wo+irN+ir/"+n.T) ~N,

\V2logn

liminf >1la.s.,
=00
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) NeotrTHnr-e(to+1T+njT)
maxo<r<n-i -
Fim 1F m——— AL D) 1 @B

Now choose t* G [0,T] so that v(t*) = maxo<a<I™(s), so using (8.33) we have

LimingraXesr=n-1 XU+rT+mT ~ ,)dgax vls) as. ©.30)
N—+00 y/2 logn y O<s<T
Therefore
v . .Maxo<3<tXs rmaxo<_< + X,
I|_mgnf e = hmmf—Ar
=0 /2 1og i nN->00 /2 Iog(n+ n\)T
max,, T<,<(,+,,0r Xs
= hminF--2-~- 2 Gror Xs
n- yj2 logn
- lim inF sup —O<r<"TIX’\ —T_l_mT
n-f° ©eo,T] y 2 logn

maxo<r<n i Xf+ rT+mT

S W Ve
> y’ﬂlﬁ’érvﬂ?) as.,

proving the liminfbound in (8.30). To tackle (8.31) we adopt a different strategy. Define M =

rumps®] IfLi < 1: otherwise let M = Further, letn2= ~"1- Forj = O,... \d-1

vi  Xndw(ikph o + DY

\/v(n2h + (ntF+ j)h)

Then YE ~ WV'©,1) and w.l.o.g- for n > m we have

\Cov(YM YN\ < i ie-<n-m)ith < an~m,

so Proposition 8.3.1givesus forj = 0,... ,M —1

IlmsupmaXo<r<n Yn L /K2 as.,

-0 \/2 logn
so as in the liminfproof above we readily prove

’]:l. up — 1 Xi hmﬁ{ii)

ms max <V fr as. @.3»)
n-too V21og7l n2<i<n+na-I V(lh)
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To conclude the argument for the limsup we have

maxo<j<(ra+n2)Xih

limsup =———— = kmsup—_
=t y™ogi ntoo  i/2log(n + n2)h
gup - 1) th
n—too \/2 logTl
V(®).
. — yv{ih)
< limsup— ——————————m
W2 log?
- Xih
=  \Jv(t*) -limsup max '
too \/2 logm r2<i<n+n3-1
< I iI_imsup—= 1 max XA il
n-too \/2 logn n2<i<n+n2-1
/- = ih
+ Vv(r)rlimsup max e/(—I:)

n-too n3<»<n+n2-1 yjv\lh)

< V2,/max_u(s)
- y 0<s<T v

where we use (8.3) at the last step, o

Remark 8.4.3

It would appear that the model for prices which we have considered might be more suitable for
model ling processes which do not grow secularly. For example, suppose that prices evolve according

to the standard Black-Scholes equation
dSt = pSt dt + <rSt dBt,
and let Xt — logSt mThe asymptotic deviations from
Xt-{n- lo2)t

are then of order a~/2t log logt.

Ifon the other hand, Xt is the log—price satisfying the stochastic integro-differential equation, and
k(t) = nt+ v for some 7 > 0, it should be possible to prove there exists K\ > 0 such that
le® — rit\ < K 1for allt > 0. However, from the last theorem, we see that the asymptotic maximal

deviations from
Xt- nt

are of order \/2logt times some bounded function. Hence we see that the large deviations are
significantly smaller than in the Black-Scholes case. This indicates that we should consider this as

a more suitable model for exchange rates, for example, rather than for stocks.
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