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NOTATION

c

d : Nominal diameter of thread (mm) .
S : r.p.m of work.
N : r.p.m of cutter,
n : Number of teeth in cutter.
f : reed per revolution.

*

M, : Measured value.
Tw : True value.
M, : Maximum scale value.
Sen : Sensitivity.
C.O.S: Change of output signal.
C.I.S: Change of input signal, 
y : Function,
x : Variable.
C, m : Constants.
m1 : Motor number one.
m2 : Motor number two.
A : The lowest limit of accuracy.
K : Relative linearity error.
1C» : True value of quantity.
Kb : Observed value.
X : Statistical mean.
0- : Standard deviation.
Ta : Developed torque



I. : Current.
wB : Shaft velocity.
V : Linear velocity,
w : Angular velocity.
4  : Flux.
Tb : The torque developed on the motor shaft,
k* : Developed torque.
T : Torque produced by motor.
E : Voltage accrose the motor.
J : Inertia.
CL : Centre line.
LL : lower limit.
UL : Upper limit.
BS : British Standard.
SQC : Statistical quality control.
LVDT : Linear Variable Differential Transformer.



ABSTRACT

f

Manual inspection and testing of threaded 
components, specially in high volume manufacturing 
processes are time consuming and costly.

There are three different types of error which may 
occur within the tolerance zone specified by the metric 
thread ISO system, which are as follows:
(i) Error of the flank angle.
(ii) Error of pitch over the length of fitting.
(iii) Error of effective diameter.

Additionally, material build-up which blocks the 
threaded zone may also render the component to be 
rejected. These error may occur due to the manufacturing 
process itself, either by cutting or rolling, such as 
tool and die wear, materials defects , etc.

This thesis describe the design and development 
of an automatic inspection system for threaded 
components.

The system consists of a mechanical sensor, which is 
interfaced to a PC and the operational tracing cycle of 
the system is controlled to carry out the following 
operations.

(1)- Belix path inspection.
(2)- thread form inspection.

The results of the helix path and the thread 
form tracing are presented for the ISO metric 
thread: (M6), <M8), and (M16), together with the 
operational cycle.
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CHAPTER ONE

1 - INTRODUCTION

In the recent years there has been a significant 
growth in the use of tactile probes as on-line inspection 
system for machine tool applications.
These probes are mounted in holders, inserted into the 

machine tool spindle, stored in the tool drum, and 
handled by the automatic tool changer in the same way 
that cutting tool are exchanged. When mounted in the 
spindle, the machine tool is controlled very much like a 
CMM.

Sensors in the probe determine when contact has 
been established with the part surface. Signals from the 
sensor are transmitted by any of several different means 
to a controller, which performs the required data 
processing to interpret and utilize the signal.
Touch sensitive probes are sometimes referred to as in- 
process inspection devices. These probes are sometimes 
used between machining steps in the same setup.
Some of the other calculation features of machine mounted 
inspection probes are similar to the capability of

j
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computer-assisted CMMs.
The features include determining the centre-line of 

a cylindrical part or hole, part and determining the 
coordinates of an inside or outside corner.
One of the controversial aspect of machine-mounted 
inspection probes is the fact that the same machine tool 
which makes the part is also performing the inspection .

In practice, however, the use of these devices has 
proved to be effective in improving quality and saving 
time in expensive off-line inspection operations . [8]

This thesis is mainly concerned with the 
application of quality control to threaded components.
An automatic measuring system have been developed in 
order to inspect the external screw threads.

In chapter two we define the measurement and 
standards, describe the different basic metrological 
concepts and the classification of the measuring methods 
and means, provide the automatic inspection principle and 
methods, in addition to the reasons of using it.

And because of the strong relationship between the 
automatic inspection and the sensor technologies, an 
explanation of sensor technologies as applied to 
automated inspection is given.
Also in this chapter the literature survey for screw 
threads, which represent the different techniques, 
methods, attempts to develop the methods, of inspecting 
the screw thread.
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While chapter three gives the definitions of the 
screw thread for the use in mechanical engineering 
applications then, there are a description of the 
different types of the screw and the various methods of 
manufacturing them.

Also the different errors of the screw thread, of 
these effective diameter, pitch, error in pitch in 
relation to effective diameter, error in angle in 
relation to effective diameter and error at crest and 
root ofjthe thread.

In addition the control of accuracy of the ISO 
metric screw thread which includes the basic dimension, 
tolerance zone and class of fit, application of the class 
of fit, and the designation of the screw thread are 
presented. The last section of this chapter explains the 
two general methods of inspecting screw threads (gauging, 
measuring).

\

In chapter four special definition for
instrumentation then describes the various principles of 
the design which include, the kinematic basic
characteristic of measuring devices and intelligent 
instrumentation.
Also a full explanation is given about the design and
development of our automatic measuring system which
consists of two main elements (mechanical and
electronic).

These are interfaced to a personal computer for
controlling and processing the different input/output
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signals. Therefore two signals conversion are described 
with their calibration and that of the linear variable 
differential transformer (L.V.D.T) .
At the end of this chapter there is an explanation of the 
software development.

The measuring principle of the system is 
illustrated at the beginning of chapter five, also the 
operational cycles explain the consequence of the 
measuring process due to the profile form and helix path 
inspections.

While the experimental procedure describes the 
importance of calibration and its effects on the results. 
The three ISO metric screw thread M6, M8 and M16 are 
used. The different results are presented at this 
chapter, beside that, the different linear and angular 
velocities used for inspecting these bolts are 
illustrated.

Chapter six, is mainly concerned with discussing, 
comparing and analyzing the different results which 

were obtained due to the various experiments.
Finally, chapter seven represents the conclusion of this 

work, and the recommendation for further work.
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CHAPTER TWO

2 -  LITERATURE SURVEY

2-1 Measurement and standards.

Measurement is the most fundamental method of 
science. It is the process of empirical, objective, 
assignment of numbers to properties or events of the 
real world in such a way as to describe them [1] . All 
measurements are actually relative in sense that they are 
comparisons with some standard units of measurement [2]. 
The progress of measurement has played a large part in 
man's scientific advancement.
Early attempts at standardization of length measurements 
were based on the human body. The width of finger was 
termed a digit, and the cubit was the length of the 
forearm from the end of the elbow to the tip of the 
longest finger. These measurements were in use at the 
time of the construction of the Khufu pyramid [3], [4],
[5], [6], [7].
Accurate measurements are important to physics, business 
and finance, agriculture, medicine and health and to many 
everyday activities such as and travel, sports and
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recreation cooking and baking, and communications and 
entertainment-[2].
Engineering dimensional measurement involves the 
euclidean concepts of the straight line and plane. Linear 
measurements are ratios expressed in terms of some 
arbitrary length standard, e.g. the Imperial Standard 
Yard or the International Prototype Metre.
Other forms of length standards are possible, but present 
primary length standards are defined in terms of 
the wavelength of monochromatic light. The establishment 
of the of an absolute length standard belongs to the 
realm of physics rather than engineering ,[8], [9].

2-2 Basic Metrological Concepts.

Metrology is mainly concerned with:
<U- Establishing the units of measurement, 

reproducing these units in the form of 
standards, and ensuring the uniformity of 
measurement.

(2)- Development methods^of measurement.
(3)- Analyzing the accuracy of methods of measurement 

researching into the cause of measuring errors, 
and eliminating these.

The principle of measurement is the physical phenomenon 
utilized in the measurement, while the method of 
measurement is the way the measuring principles and 
measuring means are used [3].
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2-3 Classification of Measuring Methods And Means.

A measuring instrument is any device that may be 
used to obtain a dimensional or angular measurement [10] . 
Measurements can be generally classified as direct and 
indirect ones. Direct measurement are mostly used in 
engineering because they are simpler to perform and give 
immediate results.
The methods of measurement are also classed as the 
composite ( or cumulative ) method and the element 
method. The composite method is the most reliable method 
for ensuring interchangeability and is usually effected 
through the use of composite " GO " gauges.
The composite method is mainly used for checking product 
parts [3], mass production for instance [2]. The element 
method for checking tools and for detecting the cause of 
reject in product.
Contact measurement involves the direct engagement of the 
instrument measuring faces with the surface of the part 
being measured.
Non-Contact measurement features the absence of any 
physical contact of the instrument with measured part. 
The means of measurement used in the metalworking 
industries can be divided into three main groups, namely:

(1)- STANDARDS.

(2)- FIXED GAUGES.
(3)- UNIVERSAL MEASURING TOOLS and INSTRUMENTS.

Here are a number of the common measuring instruments 
listed according to [10], use:

7



(a) - Linear measurement.
1- Measuring machine

a- Mechanical. 
b- Optical.

(b) - Angular measurement.
(c) - Plane surface measurement.
<d) - All-Purpose special measurement.

1. Pneumatic.
2. Electric.
3. Electronic.
4. Laser.

2-4 Automated Inspection Principles and Methods.

Automation is a technology concerned with the 
application of mechanical/ electronic, and computer based 
systems to operate and control production.
Inspection and testing activities represent one of the 
five basic functions in manufacturing ( Processing, 
Assembly, Material handling and Storage, Inspection and 
Test, Control ) as shown in figure (2-1).
When SQC (statistical quality control) inspection and 
testing are carried out manually, the sample size is 
often small compared to the size of the population. The 
sample size may only represent 1% or fewer of the number 
of parts made in a high-production run. In principle, the 
only way to achieve 100% good quality is to use 100% 
inspection.
By this approach, theoretically, only good-quality parts

8



Factory operations

Raw materials
1. processing.
2. Assembly.
3. Material handing.

4• Inspection and test•

Receiving

5. Control.

Finished Product

Figure (2-1)
Model of the factory showing five 

function of manufacturing.



will be allowed to pass through the inspection procedure.
100% inspection using manual methods is no guarantee of 
100% good quality product. Automation of the inspection 
process offers an opportunity to overcome the problems 
associated with 100% manual inspection. Automated 
inspection is defined as the automation of one or more of 
the steps involved in the inspection procedure [8] .

2-5 Sensor Technologies For Automated Inspection.

The sensing element is the first element in the 
measurement system; it is in contact with, and draws 
energy from, the process or system being measured [11] . 
The new approaches to the quality control function are 
based on advanced sensor technology often combined with 
computer based systems to interpret the sensor signal, in 
addition, new software tools are being developed to 
automate the operation of complex sensor system and to 
statistically analyze the sensor measurement.
Modern automated inspection procedures are typically 
carried out by sensor [8]. Sensors can obtain range data, 
at high speed are an increasingly important part of 
development in the field of robotics, automated 
inspection and assembly [2].
A transducer is defined as a device that receive energy 
from one system and retransmits it, often in a different 
from, to another system.
On the other hand, a sensor is defined as a device that 
is sensitive to light, temperature, electrical impedance,



or radiation level and transmits a signal to a measuring
/ior control device [13].

There are a variety of technologies available for 
automated inspection [8] . A detailed survey of the types 
of sensors developed for this purpose is given in [14]. 
Contact inspection methods involves the use of a 
mechanical probe or other device that makes contact with 
the object being inspected.
The purpose of the probe is to measure or gauge the 
object in some way. By its nature, contact methods are 
usually concerned with some physical dimension of the 
part.
Accordingly, contact inspection methods are used 
predominantly in the mechanical manufacturing industries 
(e.g., Machining and other Metal working, Plastic 
moulding, etc,).

Three methods of automated contact inspection that 
present the high end of the technology spectrum are:

(1)- Coordinate measuring machines.
(2)- Flexible inspection system.
(3)- Inspection probes.

Non-contact inspection methods do not involve direct 
contact with the product, instead, a sensor is located at 
a certain distance from the object to measure or gage the 
desired features [8].
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2-6 Sensor In The Production And Quality Control.

There are two basic types of sensors. One that 
produces an output proportional to a change in a 
parameters is described as an analog device; one that 
produces an on/off type of output is described as a 
digital device [15] . Measurement in all its form is an 
essential part in achieving quality [10].
Sensors are currently used in a large variety of phases 

of production process in order to realize more systematic 
process control a campaigned by tighter quality control 
[16] .
Considerable progresses have been achieved in sensor 
technique [17], [18], these techniques have demonstrated
productivity enhancing quality control inspection 
automation for many type of parts [19], [20], [21].
A number of measuring and controlling tasks must be 
carried out automatically with appropriate sensor [22] . 
Non-contact distance sensors are divided into three 
categories depending on their mode of operation; 
mechanical, electromechanical, and electromagnetic [33].
Sensors for inspection or quality control must have the 
following features: processing speed and flexibility on 
one hand, and easiness of operation and reasonable price 
on the other hand [24].

2-7 Literature Survey For The Screw Threads Inspection.

A screw thread is a ridge of uniform section in the

12



form of a helix on the external or internal surface of a 
cylinder, on in the form of a conical spiral on the 
external or internal surface of a frustum of a cone. They 
probably are the most important of all the machine 
elements [7].

—i

The inspection of screw threads may be by gauging or 
measuring [25]. Normally they are inspected using limit 
gauges, but certain threads must be held to much closer 
tolerances, and this is particulary true of the limit 
gauges used for screw thread inspection. These threads 
must be measured, not gauged, so that they are of degree 
of accuracy to separate successfully the good threads 
from the bad when used as tools of inspection [26].
BS 919: " Screw Gauge Limits And Tolerances " , part 3 
" Gauges For ISO Metic Screw Threads ", contains the 
recommended gauging system for checking threads of 
nominal diameters 1mm and larger which have been made in 
accordance with BS 3643 " ISO metric screw threads 
Measurement of a screw thread can be very complex, there 
being a number of elements to be measured, some of which 
are interrelated [25], [9].
A screw-thread comparator-a microscope for measuring 
elements of an external thread appeared in 1925, it was 
a predecessor of the universal microscope produced in 
1926. Optical dividing heads also appeared in 1925. 
Electrified measuring instruments of different types, 
such as electric switch gauge heads, indicative, 
capacitance and photoelectric transducers, etc have been 
developed since 1930s.
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The introduction of these devices gave an impetus to 
the development of automatic gauging, thus automatic 
gauging machines with electric switch heads have been 
produced since 1937.
The main trends in further development of measuring means 
are: higher accuracy through better construction and the 
application of new physical principles; higher inspection 
productivity through the use of special-purpose, 
mechanized and automatic gauges: and the introduction of 
automatic gauging control over machining operations to 
avoid scrap [3] .
In a flexible production system, the duties of quality 
assurance can not be limited to a GO/NO-GO inspection of 
the workpiece [27],[28],

Dimensional measurement was and always will be a vital 
need [10],[29], automated equipment able to perform the 
functions of guidance, quality assurance, measurement and 
process control, [29], [30].
The rising cost of quality control functions in the 

manufacturing sector and the increasing demands for 100% 
[31], [32], product inspection have stimulated the
development of low cost yet powerful automatic inspection 
devices to augment the functions of human inspectors 
[31] .
Sensors, together with powerful computers, form a basis 
for flexible automation in the fields of dimensional 
measurement techniques and inspection [33].
A method for measuring the surface profile [34], using 
different techniques can be implemented to operate under

14



Several systems have been developed for inspecting screw 
threads, using different techniques. A device which 
consisted of the non-contact type optical feeler and the 
automatic screw lead measuring machine with a laser 
interferometer, had produced [35] .
Batchelor [36], introduces the screw inspection problem 
in term of pattern recognition. Techniques are discussed 
for inspection male screw threads an automatic image 
analysis applied to their profile for measuring:

(a)- Pitch.
(b)- Depth of thread.
(c)- Flank angle.
(d) - Radius of curvature of the crest and roots.

The ideas are all based upon well-known of visual pattern 
recognition techniques, the Freeman (chain) code of the 
profile edge is first derived and is then converted to 
a sequence of vectors from which a polygonal are touching 
the crests of the thread may be derived. Similarly an arc 
touching the roots can be obtained. From the crest and 
root arcs, another polygonal arc approximating the pitch 
line can be calculated.
The intersections of this arc with the profile are quite 
accurate indicators of the flank centres. The flank angle 
may then be derived by measuring the edge orientations at 
these intersection.
The distance between alternate intersections is an

computer control [20].
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estimator of pitch. The separation of the crest and root 
and arc is a measure of the depth of thread. A simple 
optical system, resembling a shadow graph may be used to 
obtain a silhouette of the bolt to be inspected. The bolt 
can be aligned roughly using a comb-like jig and a twin- 
strip camera seems to offer the best resolution. Using 
the longest photodiode array currently available (1728 
diodes) and mechanical scanning, a resolution of 2000 x 
1728 might be achieved.
Batchelor has not yet had the opportunity to incorporate 
these ideas into an one-line inspection system, also 
another idea Batchelor has not yet had the chance to 
investigate is that of rotating the bolt during 
inspection.
The vision system developed by horaud [37], and charras 
for the screw thread inspection is constituted of figure 
(2-2), a vidicon camera, amplification, clamp and 
sampling electronic circuits, grey level and gradient 
detectors, direct memory access devices and a PDP-11 
minicomputer system with its software facilities. The 
acquisition time of a 200 x 512 high resolution picture 
( black and white pixels or white edges on black 
background ) is only 1/25 seconds.
The techniques developed can be used to classify the 
items into good or detective ones. Batchelor, also, 
introduces a proposals for the automatic visual 
inspection of female screw threads, a method relies upon 
a conical mirror which transforms a helix into a spiral 
image, the imaging system is mathematically analyzed.

16



Figur« (2-2 )

17



Techniques are used for verifying that a thread exists, 
checking that the thread has a given pitch, measuring the 
pitch, and checking for surface defects [38].
Another techniques have been developed, [39] to include 
the measurement of internal threads in the automatic 
measurement.
A programm has been developed for the CNC measuring 
centre, which permits the automatic testing of internal 
threads using a special feeler.
The measuring cycle for the measurement of threads are 
limited to measurement taken at the thread start and 
thread end , this being fully adequate for functional 
testing.
The feeler's starting position in this sequence of thread 
measurement is defined by the bore centre and the thread 
surface. It can be fixed by presetting the demanded value 
or by manual selection .
In manual positioning, the thread surface is contacted 
with the feeler point and the feeler point is then 
positioned above the bore centre.
Deviations from the bore centre are permissible, since 
the movement a long the coordinate axes will go on until 
the feeler touches the workpiece, figure (2-3).
For measurement, it is essential that the measuring 
points for determining the pitch diameter should be 
recorded in the first fully cut thread. This is done by 
moving from the starting position to the thread start by 
an amount that depends on the thread countersink and the 
height of the open thread flank. The first measuring

18
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point will then be recorded in a self-centring manner.
A flank contact test helps to make sure that the sensing 
ball is in contact with the thread flank and in this 
test, a movement is made parallel to the thread axis by 
an amount that is greater than the flank height in the 
core hole area and, in this position, a second measuring 
point is recorded in a self-centring manner.
The comparison of the two measuring points permits a 
statement to be made as to which one of the two has been 
determined as flank contact. After recording a third 
measuring point, the pitch of the thread will be 
obtained.
The position of the thread and the pitch diameter will be 
determined with the aid of further measuring points on 
the periphery of the first thread and through a circle 
calculation, followed by a correction of the sensing-ball 
radius.
The test of the thread depth is carried out by performing 
a full-flank test after movement into the given specified 
depth of the thread.
For this purpose, a flank contact test as the thread 
start will be carried out at first. The average pitch 
diameter and the axial location of the thread can be 
computed from the measuring points at the start and end 
by means of a cylinder calculation.
Fully- automated inspection on flexible thread inspection 
centre : this method of inspection is a multi-point
inductive probing.
A wide variety of measured values is recorded and single
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parameters such as profile, taper, pitch, thread height 
and radius, are determined by means of the inspection 
electronics and the calculator. Due to a special 
arithmetical operation ,the total result ,the standoff , 
can be derived from these individual values.
Depending on the thread length, the threaded pipe section 
is axially divided into 2 to 4 measuring planes to 
spacings of 1”.
Probing is carried out in radial direction. There are 6 
measuring stations arranged around the thread 6° degree 
apart, see figure (2-4). The measuring head, moves along 
the thread. Control feature provides for switching from 
rapid to slow feed. Position is reached as soon as the 
"searcher" has found the correct thread groove, the 
floating overhead measuring head measuring head is 
orientated relative to the thread axis by 3 jaws clamping 
on the thread outer diameter. Once the back-off cylinder 
is de-energized, the measuring elements will unlock.
They are' pushed forward and approach the thread by the 
action of spring-parallelograms ensuring constant 
measuring forces and, hence, preventing the measuring 
elements from wear.
The fact that the measuring head retracts by approx. 1 mm 
takes sure that the probe tips do not only probe the 
bottom but also the flank orientated towards the 
measuring head.
Upon approaching the measuring positionJ, the inductive 
probes start taking measurements in 2 coordinates, i.e. 
radially and axially. The values measured are processed
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Figure (2-4)
Arrngement of measuring station
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by inspection electronics, the result are made up in the 
calculator, displayed on a VDU and printed out indicating 
the pipe NO. Upon completion of the measuring cycle, a 
pneumatic cylinder will pull back the measuring elements 
to come within the collision guard.
The measuring head then returns to its initial position. 
The thread inspection machine, is made up of the 
following modules:

(1) - Basic machine with slide unit driven by
servomotor.

( 2 ) - Rotary table with holding fixture for 
measuring head and counterbalance.

( 3 ) - Measuring head
( 4 ) - Measuring head calibration station.
( 5 ) - Electrical control with calculator and 

printer [40].
There exist a variety of instruments using different 
measurement techniques that attempt to characterize 
surface topography.
The majority of these techniques may be classified 
according to the following criteria:

- Contact or non-contact.
c- 2 Dimensional (2D) or 3 dimensional (3D).

- Analogue or digital.

The contact criteria is based upon whether the measuring 
probe is in physical contact with the test surface during
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measurement.
The most popular contact probe is the use of a diamond 
stylus ( either pyramidal or conical in shape ) with a 
radial tip of approximately 2 micrometre.
An inherent limitation of contacting probes in the 
possibility of surface damage as the probe is drawn a 
cross the specimen. The degree to which this damage takes 
place is dependedt upon the geometry and loading of the 
stylus as well as the mechanical properties of the 
measurement surface [41].
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CHAPTER THREE

3 - SCREW & SCREW MEASUREMENT

3-1 Definitions for use in mechanical engineering.

3.1.1 General.

(1)- Screw thread :

The ridge produced by forming, on the surface of a 
cylinder, a continuous helical or spiral groove of 
uniform section such that the distance measured parallel 
to the axis between two corresponding points on its 
contour is proportional to their relative angular 
displacement about the axis.

(2)- External (male) screw thread:

A thread formed on the external of a cylinder. See 
figure (3-1). The thread on a bolt is a typical example 
of an external screw thread.

(3)- Internal (female) screw thread:

A thread formed on the internal surface of a hollow 
cylinder. See figure (3-2) . The thread in nut, tapped
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Figure (3-1) 
External Screw Thread
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Internal screw thread
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holes or screw sockets are typical examples of internal
screw threads.

(4)- RIGHT-HAND SCREW THREAD:

A thread which, if assembled with a stationary 
mating thread, recedes from the observer when 
rotated in clockwise direction, see figure (3-3) .

(5)- LEFT-HAND SCREW THREAD:

A thread which,if assembled with a stationary 
mating thread, recedes from the observer when 
rotated in an anti-clockwise direction see figure 
(3-4) .

(6) -  PARALLEL SCREW THREAD:

A thread formed on the surface of a cylinder. See
i

figure (3-1) and (3-2).

(7) - SINGLE-START SCREW THREAD:

A thread formed by a single continuous helical
groove. See figures (3-3) and (3-4) .

(8) -  MULTI -  START SCREW THREAD:

A thread formed by a combination of two or more
helical grooves equally spaced along the axis. See 
figure (3-5).

3 - 1-2 Geometry of Screw Thread.
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Figur« (3-3) 
Single-start screw thread 

(Right hand)

Pitch
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Figur« (3-4) Single-start screw thread 
(left hand)
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Figure (3-5) 
Multi-start screw thread 
(Triple-start right hand)
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(1)- FORM:

The shape o f  one com p lete  p r o f i l e  o f  th e  th r e a d  

between co rresp o n d in g  p o i n t s ,  a t  th e  bottom  o f  

a d ja c e n t  g r o o v e s ,  a s  shown in  a x i a l  p la n e  s e c t i o n .

(2)- BASIC FORM:

The t h e o r e t i c a l  form on which th e  d e s ig n  forms fo r  r 

both  th e  e x te r n a l  and i n t e r n a l  th rea d s  a r e  b a s e d .

See f i g u r e s  ( 3 - 6 ) ,  (3 -7 )  and ( 3 - 8 ) .

(3)- DESIGN FORM:

The forms o f  th e  e x te r n a l  and i n t e r n a l  th r e a d s  in  

r e l a t i o n  to  which th e  l i m i t s  o f  t o l e r a n c e s  a r e  

a s s ig n e d .  See f i g u r e  (3 -6 )  .

(4)- FLANK:

Those p a r t s  o f  th e  s u r f a c e  on e i t h e r  s i d e  o f  th e  

th read  th e  i n t e r - s e c t i o n  o f  which w ith  an a x i a l  

p la n e  are  t h e o r e t i c a l l y  s t r a i g h t  l i n e s ,  s e e  f i g u r e  

( 3 - 7 ) .

(5)- CREST:

That p a r t  o f  th e  s u r fa c e  o f  a th rea d  which c o n n e c ts  

a d ja c en t  f la n k s  a t  th e  to p  o f  th e  r id g e .  See  

f i g u r e s  (3 -1 )  and (3 -2 )  .

(6)- ROOT:
That p a r t  o f  th e  s u r fa c e  o f  a th rea d  which c o n n e c ts  

a d ja c e n t  f la n k s  a t  th e  bottom  o f  th e  g r o o v e .  See  

f i g u r e s  (3 -1 )  and ( 3 - 2 ) .
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Oesign form Oesign form 
Base form (internal) (external)

Uhfied thread

Oesign form Design form 
Basic form (internal) (external)

Whitworth thread

Figure (3-6)
Basic and design font of threads



Apex

Parrallel screw thread.

Figure (3-8) 
Basic form
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(7)- INCLUDED ANGLE ( Angle Of Thread ) .

The a n g le  betw een  th e  f la n k s  and th e  p e r p e n d ic u la r  

t o  th e  a x i s  o f  th e  thread  measured in  an a x i a l  

p la n e  s e c t i o n .  See f ig u r e  (3-7) .

(8)- FUNDAMENTAL TRIANGLE:

A triangle o f  which two s i d e s  r e p r e s e n t  th e  form o f  

a t h e o r e t i c a l  th read  w ith  sharp c r e s t  and r o o t s ,  

h av in g  th e  same p i t c h  and f la n k  a n g le s  a s  th e  b a s i c  

th rea d  form and whose t h ir d  s id e ,  or  b a se  i s  

p a r a l l e l  t o  a g e n e r a to r  o f  th e  c y l i n d e r  on which the 
th rea d  i s  formed. See f ig u r e  (3 -7 )  .

(9)- APEX:

The sharp c o rn er  o f  th e  fundamental t r i a n g l e  

o p p o s i t e  to  i t s  b a se .  See f ig u r e  (3 -7 )  .

(10)- HEIGHT (OR DEPTH) OF THE FUNDAMENTAL TRIANGLE:

The d i s t a n c e ,  measured p e r p e n d ic u la r  t o  th e  a x i s  

from i t s  apex t o  i t s  b a s e .  See f i g u r e  ( 3 - 7 ) .

(11)-BASIC TRUNCATIONs
The d i s t a n c e ,  measured p e r p e n d ic u la r  t o  th e  a x i s ,  

betw een th e  b a s i c  major or  minor c y l i n d e r  and th e  

a d ja c e n t  apex o f  th e  fundamental t r i a n g l e .  See  

f i g u r e  ( 3 - 7 ) .

3-1-3 Pitch Of Screw Threads.



(1)- AXIS:

The a x i s  o f  the  p i t c h  c y l in d e r  o f  a screw th r e a d .  

See f i g u r e s  ( 3 - 1 ) ,  (3 -2 ) and ( 3 - 9 ) .

(2)- PITCH:

The d i s t a n c e ,  measured p a r a l l e l  to  th e  a x i s ,  betw een  

c o rr esp o n d in g  p o in t s  on a d ja c e n t  th read  forms in  th e  

same a x i a l  p lan e  s e c t i o n  and on th e  same s i d e  o f  th e  

a x i s .  See f ig u r e  ( 3 - 3 ) ,  ( 3 - 4 ) ,  (3 -  5 ) ,  (3 -10) and

( 3 - 1 1 ) .

( 3 ) -  LKADs

The d i s t a n c e ,  measured p a r a l l e l  to  th e  a x i s ,  betw een  

co rr esp o n d in g  p o in t s  on c o n s e c u t iv e  o f  th e  same 

th r ea d  h e l i x  in  th e  same a x i a l  p la n e  s e c t i o n  and on 

th e  same s i d e  o f  th e  a x i s .  See f ig u r e  ( 3 - 5 ) .

(4)- CUMULATIVE PITCH:

The d i s t a n c e ,  measured p a r a l l e l  to  th e  a x i s  o f  th e  

th r e a d  between co rresp o n d in g  p o in t s  on any two 

th r e a d  forms whether in  th e  same a x i a l  p la n e  or n o t .

(5)- PITCH CYLINDER:
An im aginary c y l in d e r ,  c o - a x i a l  w ith  th e  th read ,  

w hich i n t e r s e c t s  th e  s u r fa c e  o f  p a r a l l e l  th read  in  

such  a manner th a t  th e  i n t e r c e p t  on a g e n e r a to r  o f  

th e  c y l i n d e r  between th e  p o in t s  where i t  m eets th e  

o p p o s i t e  f la n k s  o f  the  th r ea d  groove  i s  equal t o  

h a l f  th e  b a s i c  o f  the  th r e a d .  See f i g u r e s  (3 -1) and
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Length of engagement

Figure (3-9)

36



Depth of thread

^Major crest trunction 

T  , Pitch line

of thread 
Pitch

Addendum

Figure (3-10)
Design form (external thread)

Figure (3-11) 
Design form 

(internal thread)
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( 3 - 2 )  .

(6)- PITCH LINE:

The g e n e ra to r  o f  th e  p i t c h  c y l i n d e r .  See f i g u r e s  

( 3 - 1 ) ,  ( 3 - 2 ) ,  (3 -10) and ( 3 - 1 ) .

(7)- PITCH POINT:

The p o in t  where th e  p i t c h  l i n e  i n t e r s e c t s  th e  f la n k  

o f  th e  th r ea d . See f i g u r e s  ( 3 - 1 ) ,  ( 3 - 2 ) .

(8)- LEAD ANGLE:

On a p a r a l l e l  th read  th e  a n g le  made by th e  h e l i x  o f  

th e  thread  a t  th e  p i t c h  w ith  a p la n e  p e r p e n d ic u la r  

t o  th e  a x i s .

3-1-4 Diameter Of Screw Threads.

(D- MAJOR CYLINDER:

An im aginary c y l i n d r i c a l  s u r fa c e  which j u s t  to u c h e s  

th e  c r e s t s  o f  an e x te r n a l  th read  or  the  r o o t s  o f  an 

in t e r n a l  th r ea d . See f i g u r e s  (3 -1 )  and (3 -2 )  .
/

(2) - MINOR CYLINDER s
An im aginary c y l i n d r i c a l  s u r fa c e  which j u s t  to u c h e s  

th e  r o o ts  o f  an e x te r n a l  th rea d  or  th e  c r e s t s  o f  an 

i n t e r n a l  th r ea d . See f i g u r e s  (3 -1 )  and (3 -2 )  .

(3)- MAJOR DIAMETER s
The diam eter  o f  th e  major c y l in d e r  o f  a p a r a l l e l
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th read , in  a s p e c i f i e d  p la n e  normal to  th e  a x i s .  

See f i g u r e s  (3 -1 )  and (3 -2 )  .

(4)- EFFECTIVE (OR PITCH) DIAMETER:

The d iam eter  o f  th e  p i t c h  c y l in d e r  o f  a p a r a l l e l  

thread  in  a s p e c i f i e d  p la n e  normal t o  th e  a x i s .  See  

f i g u r e s  (3 -1 )  and (3-2) .

(5)- VIRTUAL EFFECTIVE DIAMETER:

The e f f e c t i v e  d iam eter  o f  an im aginary th r e a d  o f  

p e r f e c t  p i t c h  and f la n k  a n g le ,  h a v in g  th e  f u l l  depth  

o f  f la n k s ,  but c l e a r  a t  th e  c r e s t s  and r o o t s ,  which  

would j u s t  a ssem b le  w ith  th e  a c tu a l  th rea d  ov er  th e  

p r e s c r ib e d  le n g th  o f  engagem ent.

3-1-5 Assembly of Screw Threads.
Definitions o f  terms r e l a t i n g  to  assem b ly  o f  screw  

th r e a d s  are  g iv e n  m  BS: 2517, [25] .

3-2 Type of Screw Threads

E leven  t y p e s ,  or  s e r i e s ,  o f  th r ea d s  a re  o f  commercial 

im portance, s e v e r a l  h av in g  e q u iv a le n t  s e r i e s  m  th e  

m e tr ic  system  and u n i f i e d  sy s tem s:

( 1 ) -  C o a r se -th r ea d  s e r i e s  (UNC and NC). For g e n e r a l  

u se  where not s u b je c te d  t o  v i b r a t i o n .

(2)- F in e - th r e a d s  s e r i e s  (UNF and N F ). For most 

au to m o tive  and a i r c r a f t  work.

(3)- E x t r a - f in e  s e r i e s  (UNEF and NEF) . For u se  w ith
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t h in - w a l l e d  m a te r ia l  or  a maximum number o f  

th r ea d s  a re  req u ire d  in  a g iv e n  l e n g t h .

( 4 ) -  E ig h t - th r e a d  s e r i e s  (8 UN and 8 N) . E igh t  th rea d s  

per  in c h  fo r  a l l  d ia m eters  from 1 through  6 in .  

I t  i s  u sed  p r im a r i ly  fo r  b o l t s  on p ip e  f la n g e s  

and c y l in d e r - h e a d  s tu d s  where an i n i t i a l  t e n s io n  

must be s e t  up to  r e s i s t  steam  o r  a i r  p r e s s u r e s .

( 5 ) -  T w e lv e -th r ea d  s e r i e s  (12 UN and 12 N) . Twelve  

th r e a d s  p er  in c h  fo r  d ia m eter  fo r  1/2 through 6 

i n .  I t  i s  not used  e x t e n s i v e l y .

(6 ) -  S ix t e e n - t h r e a d  s e r i e s  (16 UN and 16 N) . S ix t e e n  

th r e a d s  p er  in ch  for  d ia m e ter s  from 3 /4  through  

6 i n .  I t  i s  used fo r  a wide v a r i e t y  o f  

a p p l i c a t i o n s  th a t  r e q u ir e  a f i n e  th r e a d .

( 7 ) -  American Acme th rea d . See f i g u r e  ( 3 - 1 2 ) .

(8 ) -  B u t t r e s s  th rea d .

( 9 ) -  Square th r e a d .

(10)- 29° Worm th r ea d . These l a s t  fou r  o f  th e  th rea d s  

a re  u sed  p r im a r i ly  in  t r a n s m i t t in g  power and 

m otio n .

(11)- American standard  p ip e  th r e a d .  T h is  th r ea d ,  

shown in  f ig u r e  (3 -1 2 ) ,  i s  th e  s ta n d a rd  tap p ered  

th rea d  u sed  on p ip e  j o i n t s  in  t h i s  c o u n tr y .

The ta p e r  on a l l  p ip e  th read s i s  3 /4  i n .  per  f o o t .

The u n i f i e d  th r e a d s  are  a v a i la b l e  in  a c o a r s e  (UNC and 

NC) , f i n e  (UNF and NF) , e x t r a - f i n e  ( UNEF and NEF) , and 

th r e e -"  p i t c h  ■ (8 , 12 and 16) s e r i e s ,  th e  number o f  

th r ea d s  p er  in c h  b e in g  a c co r d in g  t o  an a r b i t r a r y  

d e te r m in a t io n  b a sed  on th e  major d ia m e te r .
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American Acme Thread Square Thread

American standard pipr thread Butress Thread
r —  -------------- i ^ p i  p i 45*

T(a a a / v v w ^a ^ ^

3D/4
29 Degree Worm Thread

Figure (3-12) 
Special thread forms.
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Many n a t io n s  have now ad op ted  ISO th rea d s  i n t o  t h e i r  

n a t io n a l  s ta n d a r d s .  B e s id e s  m e t r ic  ISO th r e a d s ,  t h e r e  are  

a l s o  in c h -b a sed  ISO th r e a d s ,  namely th e  UN s e r i e s  w ith  

which p e o p le  in  th e  U n ite d  S t a t e s ,  Canada, and Great  

B r i t a in  are  f a m i l i a r .

ISO o f f e r s  a wide range o f  m e tr ic  s i z e s .  I n d iv id u a l  

c o u n tr ie s  have th e  c h o ic e  o f  a c c e p t in g  a l l  or a s e l e c t i o n  

o f  th e  ISO o f f e r i n g s .  For a com parison o f  u n i f i e d  and ISO 
th r ea d s  s i z e s  s e e  t a b l e  ( 3 - 1 ) ,  [ 7 ] .

The b ig g e s t  d i f f e r e n c e  betw een  th e  UN and ISO s e r i e s  i s  

th e  number o f  th rea d s  p er  u n i t  l e n g t h .  The d e s ig n  

p r o f i l e s  fo r  th e  UN and ISO a r e  shown in  f i g u r e  (3 -1 3 )  . 

W hile many f e a t u r e s  a re  th e  same, p r in c ip a l  d i f f e r e n c e  

a re  r e la t e d  to  b a s i c  s i z e , t h e  m agnitude and a p p l i c a t i o n  

o f  a l low an ce  and t o l e r a n c e s ,  and thread  d e s i g n a t i o n s .  For 

th e  UN th read , a f l a t  r o o t  i s  s p e c i f i e d  fo r  e x t e r n a l  

th r e a d s;  however in  p r a c t i c e ,  product th rea d s  a re  

produced w ith  p a r t i a l  or c o m p le te ly  rounded c r e s t s .

In  th e  i n t e r n a l  UN th r e a d s ,  i t  i s  n e c e ssa r y  t o  p r o v id e  

fo r  some th r ea d in g  t o o l  c r e s t  wear. The ISO forms, in  

f i g u r e  (3 -1 3 ) ,  are  shown w ith  and w ith o u t an a l lo w a n c e  on 

th e  e x te r n a l  th rea d , and t o o l  wear, a s  in d ic a t e d  by a 

form c le a r a n c e ,  i s  p e r m i s s i b l e  [ 4 2 ] .

3-3 Methods Of Manufacturing Threads.

External th r ea d s  may be produced by th e  f o l lo w in g  

m anu factu ring  p r o c e s s e s :
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Comparison between selection Unified and ISO Threads 
Unified ISO

TABLE ( 3 - 1 )

D Thread per in. Thread per in.
Number in. mm UNC UNF Coarse Fnie
#2 2.18 56 64 M2X.4
#4 2.84 40 48 M2X.45
#8 4.17 32 36 M4X.7
#10 4.82 24 28 M5X.8

1/4 in. 6.35 20 28 M6xl
1/2 in. 12.7 13 20 M12X1.75 M12X1.25
3/4 in. 10.05 10 16 M20X2•5 M20X1.5
1 in. 25.4 8 14 M2 4X3 M2 0X2
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( 1 ) -  C u tt in g  to  shape on e n g in e  l a t h e .

( 2 ) -  Using d ie  and stocK  (m anual).

( 3 ) -  Automatic d ie  head ( t u r r e t  l a t h e ) .

( 4 ) -  M i l l in g  machine.

( 5 ) -  Threading machine ( p la in  or  a u to m a t ic ) .

(6 )- R o l l in g  between d i e s  ( f l a t  or  c i r c u l a r ) .

( 7 ) -  D ie  c a s t i n g .

(8 )- G rind ing.

I n te r n a l  th read s may be produced by:

( 1 ) -  C u tt in g  to  shape on an e n g in e  l a t h e .

( 2 ) -  U sing tap and h o ld e r .

( 3 ) -  Automatic c o l l a p s i b l e  t a p .

( 4 ) -  M il l in g  machine.

( 5 ) -  Screw broach.

3-3-1 Cutting screw tlbireadLs on & lathe«

The l a t h e  i s  u s u a l l y  s e l e c t e d  when o n ly  a few  

th rea d s  are  to  be cut or when s p e c i a l  forms are  d e s i r e d  

[42]  .

C u tt in g  screw threads on a l a t h e  i s  a s low , r e p e t i t i o n s  

p r o c e s s  th a t  r e q u ir e s  c o n s id e r a b le  o p e r a to r  s k i l l .  The 

c u t t i n g  speeds u s u a l ly  employed a re  from one t h i r d  t o  on 

h a l f  o f  r e g u la r  speeds to  e n a b le  th e  o p e r a to r  to  have  

t im e to  m anipulate  th e  c o n t r o l s  and to  en su re  b e t t e r  

c u t t i n g .  The c o s t  per p a r t  can be h ig h ,  which e x p la in s  

why o th e r  methods are used  when e v e r  p o s s i b l e  [7] .
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3-3-2 Taps and Dies.

Taps are  used  p r i n c i p a l l y  fo r  th e  manual p r o d u c t io n  

o f  i n t e r n a l  th r e a d s .  The t o o l  i t s e l f  i s  a hardened p i e c e  

o f  carbon or  a l l o y  s t e e l  resem b lin g  a b o l t ,  w ith  f l u t e s  

cu t a lo n g  th e  s i d e  to  p ro v id e  th e  c u t t i n g  ed g e .

For hand ta p p in g , t h e s e  are  fu r n ish e d  in  s e t s  o f  th r e e  

fo r  each s i z e s .  In s t a r t i n g  th e  th r ea d , th e  ta p e r  tap  

sh o u ld  be used , s i n c e  i t  in s u r e s  s t r a i g h t e r  s t a r t i n g  and 

more gradual c u t t i n g  a c t io n  on th e  th r e a d s .  I f  i t  i s  a 

through h o le ,  no o th e r  tap  i s  n eed ed . For c l o s e d  o r  b l i n d  

h o le s  w ith  th rea d s  to  th e  very  bottom , th e  ta p e r ,  and 

bottom ing  ta p s  sh ou ld  a l l  be used  in  th e  ord er  named. 

Other ta p s  are  a v a i la b l e  and are  named a c c o r d in g  to  th e  

k in d  o f  th read  th ey  are  to  c u t .

To cu t  e x te r n a l  th read , th e  most common method i s  by th e  

a d ju s t a b le  d i e .  I t  can be made to  cu t  e i t h e r  s l i g h t l y  

u n d e r s iz e  or  o v e r s i z e .  When used  fo r  hand c u t t i n g ,  th e  

d ie  i s  h e ld  in  a d ie  s to c k  which p r o v id e s  th e  n e c e s s a r y  

le v e r a g e  to  turn  th e  d ie  in  making th e  c u t .

For s u c c e s s f u l  o p e r a t io n  o f  e i t h e r  ta p s  or  d i e s ,  

c o n s id e r a t io n  must be g iv en  to  th e  n a tu re  o f  th e  m a te r ia l  

to  be th read ed . No t o o l  can be made t o  work s u c c e s s f u l l y  

fo r  a l l  m a t e r ia l s .

The shape and a n g le  o f  th e  c u t t i n g  fa c e  a l s o  in f l u e n c e  

th e  perform ance. Another im portant f a c t o r  i s  proper  

l u b r i c a t i o n  o f  th e  t o o l  during  th e  c u t t i n g  o p e r a t io n ;

t h i s  in s u r e s  lo n g e r  l i f e  o f  th e  ed g es  and r e s u l t s  in
;

sm oother t h r e a d s .
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Taps and d ie s  can a l s o  be used in  the  m achine c u t t i n g  o f  

th r e a d s .  Because o f  th e  n a tu re  o f  th e  c u t t i n g  o p e r a t io n ,  

th e y  must be h e ld  in  s p e c i a l  h o ld e r ,  so  d e s ig n e d  th a t  th e  

tap  or d ie  can be withdrawn from th e  work w ith o u t  in j u r y  

t o  th e  t h r e a d s . T h is  i s  f r e q u e n t ly  a c co m p lish ed  by 

r e v e r s in g  th e  r o t a t i n g  o f  th e  t o o l  or work a f t e r  th e  cu t  

has been made.

In small-production  work on a t u r r e t  l a t h e ,  th e  ta p  i s  

h e ld  by a s p e c i a l  h o ld e r ,  which p r e v e n ts  th e  tap  from  

tu r n in g  as th e  th r ea d  a re  c u t .  Near th e  end o f  th e  cu t  

th e  t u r r e t  h o ld in g  th e  t o o l  i s  s to p p ed , and th e  tap  

h o ld e r  c o n t in u e s  to  advance u n t i l  i t  p u l l s  away from a 

s to p  p m  a s u f f i c i e n t  amount to  a l lo w  th e  ta p  h o ld e r  to  

r o t a t e  w ith  th e  work. The r o t a t i o n  work o f  t h e  work i s  

then  r e v e r se d  and, when the  tap h o ld e r  i s  w ithdraw n, i t  

i s  a ga in  engaged w ith  th e  s to p  and h e ld  u n t i l  th e  work i s  

r o t a t e d  from th e  tap  .

E x tern a l th r ea d s  can be cu t w ith  a d ie  u t i l i z i n g  t h i s  

same procedure a lth o u g h  in  most c a s e s  such  th r e a d s  a re  

cu t w ith  s e l f - o p e n i n g  d i e s .

3-3-3 Thread Chasing

In p r o d u c t io n  work s e l f - o p e n i n g  d i e s  and 

c o l l a p s i b l e  ta p s  are  u sed  to  e l im in a t e  back t r a c k in g  o f  

th e  t o o l  and t o  sa v e  t im e . The t o o l s  have i n d iv id u a l  

c u t t e r  d i e s ,  known as  c h a s e r s ,  mounted m  a p p r o p r ia te  

h o ld e r ,  which a r e  c a p a b le  o f  adjustm ent or  r e p la c e m e n t .  

With c h a se r s  more a c c u r a te  work r e s u l t s ,  th e  c u t t e r s  can
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be kept in  proper  a d ju stm en t , and th e r e  i s  no danger o f  

damaging th e  cu t  th rea d  as  th e  t o o l  i s  w ithdrawn.

In some c a s e s  th e  t o o l  i s  h e ld  s t a t i o n a r y  and th e  work 

r e v o lv e s  in  o th e r s  th e  r e v e r s e  p roced u re  may be u se d .  A l l  

p r e c i s i o n  screw s r e q u ir e  a l e a d  screw  fe e d  to  o b ta in  

a c c u r a c y .

Two ty p e s  o f  a u tom atic  d i e  heads a re  u sed . In one c u t t e r s  

or c h a se r s  are  mounted t a n g e n t i a l l y .  In th e  o th e r  th e y  

are  in  a r a d ia l  p o s i t i o n .  R a d ia l  c u t t e r s  can be changed  

qu ick ly ?  c o n se q u e n t ly ,  th e y  a r e  used fo r  th r e a d in g  

m a t e r ia l s  th a t  a r e  hard to  c u t .  The d i e  head commonly 

used  on most t u r r e t  l a t h e s  i s  o f  s t a t io n a r y  ty p e .  The 

work r o t a t e s  and th e  c h a se r s  open a u t o m a t ic a l ly  a t  th e  

end o f  th e  cu t so  th a t  th e y  can withdraw from th e  work 

w ith o u t  damage.

In th r e a d in g  m ach ines, th e  d i e s  r o t a t e  and th e  work i s  

fed  to  them, but o th e r w is e  th e  o p e r a t io n  i s  th e  same.

3 - 3-4 Tapping Machine

Although much ta p p in g  i s  done on d r i l l  p r e s s e s  

equipped w ith  some form o f  ta p p in g  a ttach m en t, most  

p r o d u ct io n  ta p p in g  i s  done on s p e c i a l l y  c o n s t r u c t e d  

a u to m a tic  m ach ines. Nuts t o  be th rea d ed  are  fe d  from an 

o s c i l l a t i n g  hopper to  th e  w orking p o s i t i o n ;  th e  s p i n d le s  

are  r e v e r s e d  a t  d ou b le  th e  ta p p in g  speed; and th e  n u ts  

are d is c h a r g e d  to  in d iv id u a l  c o n t a i n e r s .

A common typ e  o f  ta p p in g  m achine has m u l t i - s p i n d l e  

arrangem ent p r o v id ed  w ith  ta p s  h a v in g  e x tr a  lo n g  sh a n k s .
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The ta p  i s  advanced through th e  nut by th e  l e a d  screw  

and, upon co m p le t io n  o f  th e  th r e a d in g ,  c o n t in u e s  downward 

u n t i l  th e  nut i s  r e l e a s e d .

The s p i n d le  then  r e tu r n s  to  i t s  upper p o s i t i o n  w ith  th e

tapp ed  nut on i t s  shank. When th e  shank has been f i l l e d
/

w ith  n u t s ,  th e  tap  i s  removed and th e  n u ts  a r e  em ptied  

i n t o  a c o n t a in e r .

3-3-5 Thread M i l l i n g .

Accurate th r ea d s  o f  la r g e  s i z e ,  b o th  e x t e r n a l  and 

i n t e r n a l ,  can be cu t  w ith  stan dard  or  h o b -ty p e  c u t t e r s .  

For lo n g  e x te r n a l  th r e a d s ,  a th r e a d in g  machine s i m i l a r  in  

ap p earan ces  to  a l a t h e  i s  u sed . Work i s  mounted e i t h e r  in  

a chuck or  betw een c e n tr e s ,  th e  m i l l i n g  a ttach m en t b e in g  

a t  th e  r e a r  o f  th e  m achine.

In  c u t t i n g  a long  screw , a s i n g l e  c u t t e r  i s  mounted in  

th e  p la n e  o f  th e  th read  a n g le  and fe d  p a r a l l e l  to  the  

a x i s  o f  th e  thread ed  p a r t .  The fe e d  ( f )  in  th rea d  m i l l i n g  

i s  e x p r e s s e d  as th e  c u t t e r  advance per  t o o t h ,  or  

m i l l i m e t r e  per  c u t t e r  to o th  by th e  f o l lo w in g  form ula:

f = 3.14 d.s/n.N (3 - 1)

From t h i s  e x p r e s s io n  i t  i s  e v id e n t  th a t  th e  c u t t e r  loa d  

p e r  t o o t h ,  which v a r i e s  d i r e c t l y  w ith  th e  f e e d ,  can be 

changed by v a r y in g  th e  c u t t e r  sp eed , work sp eed , or  

number o f  t e e t h  in  th e  c u t t e r .

T h is  p e r m its  red u c in g  th e  load  on th e  c u t t e r  t e e t h  so
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th a t  deep th r e a d s  can be cu t in  one p a s s .  For s h o r t  

e x te r n a l  th r e a d s ,  a s e r i e s  o f  s i n g l e - t h r e a d  c u t t e r  are  

p la c e d  s i d e - b y - s i d e  and are  made as one c u t t e r ,  h a v in g  a 

w idth  s l i g h t l y  more than th a t  o f  th e  th read  t o  be c u t .  

The c u t t e r  i s  fe d  r a d i a l l y  i n t o  th e  work to  th e  proper  

depth and, w h i le  r o t a t i n g  a l i t t l e  o ver  one r e v o l u t i o n ,  

com p letes  th e  m i l l i n g  o f  th e  th r ea d . Proper le a d  i s  

o b ta in ed  by a fe e d  mechanism which moves th e  c u t t e r  

a x i a l l y  w h i le  i t  i s  c u t t i n g .

M i l l in g  m achines o f  th e  p la n e ta r y - ty p e  a re  a l s o  used  fo r  

mass p r o d u c t io n  o f  sh o r t  i n t e r n a l  or  e x t e r n a l  th r e a d s .  

The m i l l i n g  head c a r r y in g  the  hob i s  r e v o lv e d  

e c c e n t r i c a l l y  about the  r i g i d l y  h e ld  work, which i s  

r o ta t e d  s im u lta n e o u s ly  on i t s  own a x i s .  I t  i s  advanced by 

means o f  a l e a d  screw  fo r  a s u f f i c i e n t  d i s t a n c e  to  

produce th e  th r ea d  [4 2 ] .

3-3-6 Thread Rolling

Thread r o l l i n g  i s  used to  produce th r ea d s  in  

s u b s t a n t i a l  q u a n t i t i e s . This i s  a c o ld - fo r m in g  p r o c e s s  

o p e r a t io n  ,in which th e  th read s are  formed by r o l l i n g  a 

th rea d  b lan k  betw een hardened d ie s  th a t  ca u se  th e  m eta l  

to  f lo w  r a d i a l l y  i n t o  the  d e s ir e d  sh ap e . B ecause no m eta l  

i s  removed in  th e  form o f  c h ip s ,  l e s s  m a t e r ia l  i s  

r e q u ir e d ,  r e s u l t i n g  in  s u b s t a n t ia l  s a v in g s .

In a d d i t io n ,  b eca u se  o f  th e  c o ld  w orking, th e  th rea d s  

have g r e a t e r  s t r e n g t h  than cu t  th r e a d s ,  and a sm oother, 

h ard er , and more w e a r - r e s i s t a n t  s u r fa c e  i s  o b ta in e d .  In
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a d d i t io n ,  th e  p r o c e s s  i s  f a s t ,  w ith  p ro d u ct io n  r a te  o f  

one per secon d  b e in g  common.

The q u a l i t y  o f  c o l d - r o l l e d  (or f l u t e l e s s - t a p p e d )  

p ro d u cts  i s  c o n s i s t e n t l y  good and tap  l i f e  i s  g r e a t e r  

than th a t  o f  HSS machine t a p s .

C h ip le s s  o p e r a t io n s  are  c le a n e r  and th e r e  i s  a s a v in g s  in  

m a te r ia l  (15% to  20% sa v in g  in  b lank s to c k  w e igh t i s  

t y p i c a l ) ,  [ 7 ] .

F ig u re  (3 -14 )  i l l u s t r a t i n g  s to c k  m a te r ia l  sa v in g  o f  

r o l l e d  th r ea d s  ov er  cu t th r e a d s .  A lso  f i g u r e  ( 3 - 1 5 ) ,  th e  

blan k  d ia m e ter s  fo r  both  r o l l e d  and cu t  th r ea d s  a r e  

in d ic a t e d  fo r  s e v e r a l  th rea d s  [ 4 2 ] .  Thread r o l l i n g  i s  

done by fou r  b a s i c  m ethods.

The s im p le s t  o f  t h e s e  employs one f ix e d  and one movable  

f l a t  r o l l i n g  d i e ,  as i l l u s t r a t e d  in  f ig u r e  (3-16) . A f te r  

th e  b lank i s  p la c e d  in  p o s i t i o n  on th e  s t a t io n a r y  d i e ,  

movement o f  th e  moving d ie  ca u ses  th e  b lank to  be r o l l e d  

betw een th e  two d i e s  and th e  m eta l in  th e  b lank  i s  

d is p la c e d  t o  form th e  th r e a d s .  As th e  b lank r o l l s ,  i t  

moves a c r o s s  th e  d ie  p a r a l l e l  w ith  i t s  l o n g i t u d in a l  a x i s .  

P r io r  to  th e  end o f  th e  s to k e  o f  th e  moving d i e ,  th e  

blank  r o l l s  o f f  th e  end o f  th e  s t a t io n a r y  d ie ,  i t s  th rea d  

b e in g  com p leted .

One ob v iou s  c h a r a c t e r i s t i c  o f  a r o l l e d  th rea d  i s  th a t  i t s  

major d iam eter  alw ays i s  g r e a te r  than th e  d iam eter  o f  th e  

b la n k . When an a c c u r a te  c l a s s  o f  f i t  i s  d e s i r e d ,  th e  

d iam eter  o f  th e  b lank  i s  made about 0.002 in .  la r g e r  than  

th e  t h r e a d - p i t c h  d ia m eter .

I f  i t  i s  d e s i r e d  to  have th e  body o f  a b o l t  la r g e r  than
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th e  o u t s id e  d ia m eter  o f  th e  r o l l e d  th r ea d , th e  b lank  or  

th e  th read  i s  made sm a l le r  than  th e  body.

Thread r o l l i n g  can be done w ith  c y l i n d r i c a l  d i e s .  There  

are  t h r e e - r o l l  methods commonly employed on t u r r e t  l a t h e s  

and screw  m ach ines. Two v a r i a t i o n  a re  u sed . In one, th e  

r o l l s  are  r e t r a c t e d  and th e  b lan k  i s  p la c e d  in  p o s i t i o n .  

They then  move inward r a d i a l l y ,  w h i le  r o t a t i n g ,  to  form  

th e  th rea d .

More commonly th e  th r e e  r o l l s  a r e  c o n ta in e d  in  a s e l f -  

opening  d ie  head s im i la r  t o  th e  c o n v e n t io n a l  ty p e  u sed  

fo r  c u t t i n g  e x te r n a l  t h r e a d s . The d i e  head i s  fe d  o n to  

th e  b lank l o n g i t u d i n a l l y  and forms th e  th r e a d  

p r o g r e s s i v e l y  as th e  b lank r o t a t e s .  With t h i s  p ro ced u re ,  

as in  th e  c a s e  o f  cu t th r e a d s ,  th e  innerm ost 1 .5  t o  2 

th rea d s  are  not formed to  f u l l  depth  b ecau se  o f  th e  

p r o g r e s s iv e  a c t io n  o f  th e  r o l l e r s .

The t w o - r o l l  method i s  commonly employed f o r  

a u t o m a t ic a l ly  producing  la r g e  q u a n t i t i e s  o f  e x t e r n a l l y  

thread ed  p a r t s  up to  6 i n .  d iam eter  and 20 i n .  in  l e n g t h .  

The p la n e ta r y  typ e  machine i s  fo r  mass p r o d u c t io n  o f  

r o l l e d  th read  on d iam eter  up to  1 i n .

Not o n ly  i s  th read  r o l l i n g  v e ry  e co n o m ic a l,  but th e  

th r ea d s  are  e x c e l l e n t  a s  to  form and s t r e n g t h .  [7] . 

F o llo w in g  a re  some o f  th e  a d v a n ta g es  o f  th e  th r ea d  

r o l l i n g  p r o c e s s :
(

( 1 ) -  Improve t e n s i l e ,  sh ea r ,  and f a t i g u e  s t r e n g t h .

( 2 ) -  Smooth s u r fa c e  f i n i s h  o f  0 .1  to  0 .8  um.

( 3 ) -  C lo se  a ccu racy  m a in ta in e d .

( 4 ) -  L ess m a te r ia l  r e q u ir e d .
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( 5 ) -  Cheaper m a t e r ia l s  may o f t e n  be used  owing to  

improvement o f  p h y s i c a l  p r o p e r t i e s .

(6 )- High p r o d u ct io n  r a t e .

( 7 ) -  A wide v a r i e t y  o f  th rea d  forms p o s s i b l e .  

L im ita t io n s  o f  th e  th rea d  r o l l i n g  p r o c e s s  in c lu d e :

( 1 ) -  Blank t o l e r a n c e  must be c l o s e ,  s i n c e  no m eta l i s  

removed.

( 2 ) -  Not econ om ica l fo r  sh o r t  run j o b s .

( 3 ) -  Only e x te r n a l  th r e a d s  can be r o l l e d .

( 4 ) -  M a ter ia l  h av in g  a h ard n ess  e x c e e d in g  R ockw ell C 37 

cannot be r o l l e d  [ 4 2 ] .

3-3-7 Thread Grin di ng .

Grinding can produce v ery  a c c u r a te  th r e a d s ,  and i t  

a l s o  p erm its  th r ea d s  to  be made on hard m a t e r i a l s .  Three  

b a s i c  methods a re  u sed . C e n tr e - ty p e  g r in d in g  w ith  a x i a l  

f e e d  i s  th e  most common method, b e in g  s i m i la r  to  c u t t i n g  

a th read  on a l a t h e .

A shaped g r in d in g  w heel r e p la c e s  th e  s i n g l e - p o i n t  t o o l .  

U s u a l ly ,  a s i n g l e - r i b b e d  g r in d in g  w heel i s  employed, but  

m u lt ip le - r ib b e d  w h ee ls  a re  used  o c c a s i o n a l l y .

The g r in d in g  w h ee ls  a re  shaped by s p e c i a l  diamond 

d r e s s e r s  or  by cru sh  d r e s s in g  and must be i n c l i n e d  t o  th e  

h e l i x  a n g le  o f  th e  th r e a d .  Wheel sp eed s  a re  in  th e  h ig h  

ran g e . S e v e ra l  p a s s e s  a re  u s u a l ly  r e q u ir e d  t o  co m p lete  

th e  th rea d . C e n tr e - ty p e  in  fe e d  th r ea d  g r in d in g  i s  

s i m i la r  t o  m u lt ip le - fo r m  m i l l i n g  m  th a t  a m u l t i p l e -  

r ib b e d  w h e e l , a s  w ide a s  th e  le n g t h  o f  th e  d e s i r e d
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th read , i s  u sed .

The w heel i s  fe d  inward r a d i a l l y  to  f u l l  th r e a d  d ep th ,  

and th e  th read  b lank  i s  then  turned  through  about 1 .5  

tu rn s  as th e  g r in d in g  w heel i s  fe d  a x i a l l y  a l i t t l e  more 

than th e  w id th  o f  one th r ea d .

c e n t r e - l e s s  th rea d  g r in d in g ,  i s  used  fo r  making h e a d le s s  

s e t  screw . A p r o d u c t io n  r a te  o f  60 to  70 screw s o f  1 .5  

in ch  le n g th  p er  m inute  i s  p o s s i b l e  [ 7 ] ,  [ 4 2 ] .

The c r e s t  forms r e s u l t i n g  from d i f f e r e n t  p r o d u c t io n  

methods are  i l l u s t r a t e d  m  f ig u r e  ( 3 - 1 7 ) ,  [ 4 3 ] .

3 -4  E rrors o f  screw  th r ea d s

A screw  th rea d  has se v en  e le m e n ts ,  e r r o r  on any one  

o f  which may be s u f f i c i e n t  to  r e j e c t  work w hich ought to  

p a s s .  These e le m en ts  are:

(1)- Major d ia m eter .

(2)- Minor diameter.

(3)- Effective (or pitch) diameter.

(4)- P i t c h .

(5)- Flank angles.

(6)- Radius at crest.

(7)- Radius at root.

Of t h e s e ,  e f f e c t i v e  d ia m eter , p i t c h  and f la n k  a n g le  a r e ,  

perhaps , th e  most c r i t i c a l ,  and are  th o s e  w hich e r r o r s  

most f r e q u e n t ly  o c c u r .

3-4-1 Effective Diameter
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I

(C)- Typical crest on cut thread bolt 

Figure (3-17)

Crest forms resulting from different 
prodution methods
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The im portance o f  accu racy  in  th e  e f f e c t i v e  

diam eter  o f  a screw  thread  becomes e v id e n t  when i t  i s  

r e a l i z e d  th a t  e r r o r  in  t h i s  d iam eter  d e term in e  to  a la r g e  

e x te n t  th e  amount o f  " play" betw een m ating screw  

t h r e a d s .

3-4-2 Pitch

The e f f e c t  o f  error  in  p i t c h  upon th e  f i t t i n g  

to g e th e r  o f  screw  thread s depends not so  much on th e  

in d iv id u a l  e r r o r s  in  th e  sp a c in g  o f  th e  a d ja c e n t  tu rn s  o f  

th read  as on th e  a d d i t iv e  e f f e c t  o f  t h e s e  e r r o r s ,  which  

i s  known as th e  cu m u la tive  e r r o r .

The cu m u la tive  p i t c h  erro r  o f  a screw  th read  i s  th e  e rr o r  

o f  i t s  e f f e c t i v e  d iam eter  h e l i x ,  measured p a r a l l e l  t o  th e  

a x i s  o f  th e  screw  th read , from i t s  c o r r e c t  p o s i t i o n  in  

r e l a t i o n  to  a f i x e d  datum p la n e  normal to  th e  a x i s  o f  

th r ea d . F igu re  (3-18) i s  a c h a r t  showing th e  c u m u la t iv e  

e rr o r  a lon g  th e  whole le n g th  o f  th e  h e l i x  o f  a th r e a d .  A 

ch a rt  o f  th e  cu m u la tive  p i t c h  e r r o r  may e x h i b i t  c e r t a i n  

c h a r a c t e r i s t i c s  depending on th e  n a tu re  o f  th e  e r r o r  and 

i t s  c a u se s .

The e r r o r  may be o f  a r e p e t i t i v e  or p e r io d ic  n a tu r e ,  i . e .  

i t  may vary in  m agnitude a lon g  th e  le n g t h  o f  th rea d  and 

recur  a t  r e g u la r  i n t e r v a l s .  I f  th e  e r r o r  r e c u r s  a t  

i n t e r v a l s  o f  one turn  then th e  screw  i s  s a id  to  be  

" drunken ".

P itc h  e r r o r s  o f  a p e r io d ic  n a tu re  are  u s u a l l y  due to  some 

f l o a t  or  f a u l t s  m  th e  r o t a t in g  members o f  th e  machine on
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Max. cumulative error

Figure (3-18)
Chart of cumulative pitch error 

of periodic c h a r a c ter

Max. cumulative error

Figure (3-19)
Chart of cumulative pitch error measured 

at interavel of one pitch
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which th e  screw  th read  i s  produced. Common so u r c e s  o f  

such e r r o r s  a re  la c k  o f  t r u th  in  th e  t h r u s t - c o l l a r  o f  th e  

le a d  screw and i t s  a butment fa c e ,  or e c c e n t r i c  mounting  

o f  th e  g ea rs  m  th e  t r a i n  c o n n e c t in g  th e  le a d  screw  and 

h ead stock  s p i n d le .

D e fe c t s  o f  b o th  t h e s e  ty p e s  produce s in u s o i d a l  p i t c h  

e rr o r  c u r v e s .  I f  more than one gear  i s  e c c e n t r i c  th e  

p i t c h  e rr o r  curve w i l l  be th e  r e s u l t a n t  o f  a number o f  

s in u s o id a l  cu rv es  and may be complex in  c h a r a c te r  as  

shown in f i g u r e  ( 3 - 1 8 ) .

The ch art  o f  th e  cu m u la tiv e  p i t c h  e rr o r  o f  a screw  th read  

may i n d ic a t e  th a t  th e  p i t c h  e rr o r  v a r i e s  i r r e g u l a r l y  

a lon g  th e  le n g th  o f  th e  th r ea d . Such e r r o r s  may be due to  

o th e r  f a u l t s  in  th e  machine on which th e  screw  th read  was 

produced, or p o s s i b l y  to  an i r r e g u la r  c u t t i n g  a c t i o n  due 

to  n o n -u n ifo r m ity  o f  th e  m a te r ia l  o f  th e  screw  th r e a d .  

Errors o f  a p e r io d ic  or i r r e g u la r  ty p e  such as  th o s e  

d e sc r ib e d  above may be superim posed on a cu m u la t iv e  p i t c h  

erro r  o f  a more or l e s s  uniform  n a tu re  cau sed , fo r  

example, by an a x i a l  e x te n s io n  or c o n t r a c t io n  o f  th e  

screw due to  hard en in g , e r r o r s  m  th e  p i t c h  o f  th e  le a d  

screw or la c k  o f  s t r a i g h t n e s s  o f  th e  ways o f  th e  s a d d le .  

To o b ta in  a com p lete  knowledge o f  th e  cu m u la tiv e  p i t c h

e rr o r  o f  a screw  th read  n e c e s s i t a t e s  m easuring th e  e rr o r
/

o f  th e  e f f e c t i v e  d iam eter  h e l i x  o f  th e  th rea d  from one 

end o f  th e  th rea d  to  th e  o th e r .  I t  i s  r a r e ly  c o n v e n ie n t  

or p r a c t i c a b l e  to  do t h i s ,  however and i t  i s  u su a l  to  

measure th e  e r r o r s  a t  i n t e r v a l s  o f  w hole  p i t c h e s  a lo n g  a 

l i n e  p a r a l l e l  to  th e  a x i s  o f  th e  th r e a d .
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Where a p p r e c ia b le  p i t c h  e r r o r s  o f  a p e r io d ic  or  e r r a t i c  

n atu re  are  p r e se n t  in  a th rea d  t h i s  method o f  measurement 

does not p ro v id e  a tru e  gu id e  to  th e  f u l l  m agnitude o f  

th e  p i t c h  e r r o r .  Thus, i f  measurements were made a t  

i n t e r v a l s  o f  s i n g l e  tu rn s  o f  th e  th rea d  o f  th e  screw  to  

which f ig u r e  (3-18) r e f e r s ,  th e  r e s u l t  would be a ch a r t  

as in  f ig u r e  (3-19) , where th e  tr u e  c h a r a c te r  o f  th e

e r r o r  i s  no lo n g e r  seen  and th e  maximum cu m u la tive  e r r o r .

3-4-3 Error in pitch in relation to effective di am et er .

It i s  im portant to  r e a l i z e  th a t  any e r r o r  m

p i t c h  needs to  be compensated by a co rresp o n d in g , but  

ind ep en dent, e r r o r  m  e f f e c t i v e  d ia m e ter .  Thus, i f  an 

o th e r w is e  p e r f e c t  e x te r n a l  screw  has p i t c h  e r r o r ,  i t  w i l l  

not screw i n t o  a p e r f e c t  i n t e r n a l  screw  o f  th e  same 

nominal s i z e .

I t  can be made to  do so  by red u c in g  i t s  e f f e c t i v e

d iam eter  and so  making th e  th r ea d s  s l i g h t l y  t h i n .  Thus, 

i f  any e r r o r  in  p i t c h  i s  p r e s e n t ,  th e  " v i r t u a l  "

e f f e c t i v e  d iam eter  o f  an i n t e r n a l  screw  w i l l  be g r e a t e r ,  

and o f  an e x te r n a l  screw l e s s ,  than i t s  a c tu a l  (s im p le)  

e f f e c t i v e  d ia m eter . The e q u iv a le n t  d i f f e r e n c e  in  

e f f e c t i v e  d iam eter  n e c e s s a r y  to  com pensate fo r  any g iv e n  

p i t c h  e r r o r  may be determ ined as  f o l lo w s :

Suppose th e  f u l l  and th e  d o t te d  o u t l i n e s  in  f i g u r e  (3 -20)  

r e p r e s e n t  r e s p e c t i v e l y  an o th e r w is e  p e r f e c t  e x t e r n a l  

screw  h av in g  a p i t c h  erro r  (dp) and a p e r f e c t  i n t e r n a l  

screw  which w i l l  j u s t  assem b le  w ith  th e  e x te r n a l  screw
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over  i t s  e n t i r e  le n g th  o f  th r ea d .

The e x te r n a l  and i n t e r n a l  screw  th rea d s  w i l l  be c o n ta c t  

w ith  each o th e r  o n ly  on th e  two f la n k s  a t  th e  extrem e  

ends o f  th e  th r ea d . The r a d ia l  d isp la ce m en t  betw een  th e  

m ating screw th rea d s  w i l l  be ( dp/2 Cot <x ) , where ( oc ) 

i s  th e  f la n k  a n g le  o f  th e  th r ea d . In o th e r  words th e  

e q u iv a le n t  d i f f e r e n c e  in  e f f e c t i v e  d iam eter  n e c e s s a r y  to  

compensate fo r  a r e l a t i v e  p i t c h  e rr o r  (dp) betw een m ating  

th read s  i s  equal to  ( dp Cot oc ) .

The num erical v a lu e s  o f  th e  f a c t o r  ( Cot oc ) f o r  th e  

stan dard  forms o f  th rea d s  in  common u se  a re  as  f o l lo w s :

2 oc Value of Cot oc
Whitworth thread 55 0 1.921
British Association thread 47.5 0 2.273
Unified thread 60 0 1.732
Metric system international 60 0 1.732
British standard cycle thread oOVO 1.732
Acme thread 90 0 3.867

The t a b l e s  in  appendix  (A3-1) # g iv e  fo r  screw s o f  

v a r io u s  thread  form th e  v i r t u a l  d i f f e r e n c e s  in  e f f e c t i v e  

diam eter  co rresp on d in g  to  e r r o r s  m  p i t c h  r i s i n g  m  s t e p s  

o f  or 0 .000  05 m .  up to  0 .0 01  in .

3-4-4 Error in angle in relation to effective diameter.

Figure ( 3 - 2 1 ) ,  i l l u s t r a t e s  how th e  p r e s e n c e  o f  

e r r o r s  m  th e  a n g le s  o f  th e  f la n k s  o f  an e x te r n a l  screw  

th rea d s  must be accompanied by a co rresp o n d in g  r e d u c t io n
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np

Perfect internal screw thread

Screw ring pitch line

External
screw thread having pitch error dp 

np +dp

Screw plug pitch line

Figure (3-20)
Effective diameter equivalent 

of pitch error
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P/2
Perfect screw ring Screw plug pitch line

Screw ring pitch line

d cx2 screw plug having flank angle 
d ocl and d <X2

error

figure (3-21)
Effective diameter equivalent 

flank angle error
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in  th e  e f f e c t i v e  d iam eter , i f  th e  screw  i s  to  " f i t  " a 

p r e f e c t  i n t e r n a l  screw  thread  o f  th e  same nominal s i z e .  

I f  (d oti) and(d cx2) r e p r e se n t  th e  e r r o r s  p r e s e n t  in  th e  

two f la n k  a n g le s  o f  a screw th rea d , th e  co rresp o n d in g  

v i r t u a l  in c r e a s e  (d ecrea se )  in  th e  e f f e c t i v e  d iam eter  o f  

th e  th read  in  th e  c a s e  o f  an e x te r n a l  ( in t e r n a l )  screw  

th rea d  i s  g iv e n  by th e  fo l lo w in g  approxim ate e x p r e s s io n s

Virtual change in effective 
Diameter

Unified threads...........  0.0109 xpx (d o^+d cxa)
Whitworth thread.........  0.0105 xpx (dcx1+doc2)
British association thread. .0.0091 xpx (dcx1+dcx2)
British standard metric thread.. 0.0015 xpx (d cxx+d oca)
British standard cycle thread.. .0.0074 xpx (d cxj+d oca)
Acme thread................  .0.0180 xpx (d exi+d cx2)

The measured s im p le  e f f e c t i v e  d iam eter  o f  a screw  th r ea d s  

sh o u ld  l i e  betw een th e  l i m i t s  s p e c i f i e d  fo r  th e  e f f e c t i v e  

diam eter  and:

( a ) -  For e x te r n a l  th r e a d s .  The computed v i r t u a l  e f f e c t i v e  

diam eter  sh ou ld  not be g r e a te r  than th e  maximum l i m i t  

o f  e f f e c t i v e  d ia m eter .

(b) - For i n t e r n a l  th r e a d s .  The computed v i r t u a l  e f f e c t i v e

d iam eter  sh o u ld  not be l e s s  than th e  minimum l i m i t  

o f  e f f e c t i v e  d ia m eter .

3 - 4 - 5 -  Radii at crest and r o o t .

i
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Errors in  th e  r a d i i  a t  th e  c r e s t s  and r o o t  o f  

screw  th r e a d s ,  p a r t i c u l a r l y  o f  ga u ges , a re  f r e q u e n t ly  o f  

g r e a t  con sequ en ce , as th ey  may le a d  t o  th e  p r e se n c e  o f  

su p e r f lu o u s  m eta l or  v i c e  v e r s a .  Such d e f e c t s  may p rev en t  

a gauge from f u n c t io n in g  s a t i s f a c t o r i l y ,  even though th e  

measured v a lu e s  o f  th e  major, e f f e c t i v e ,  and minor  

diam eter  are  c o r r e c t .

3-5 Control of accuracy of pitch.

When h ig h  accu racy  o f  p i t c h  i s  r e q u ir e d ,  and th e  

work i s  thread ed  by ta p s ,  th read  c u t t i n g  d i e s ,  c h a s e r s ,  

m i l l i n g  hobs or th read  r o l l i n g  d i e s ,  then  th e  th r ea d s  on 

t h e s e  form ing t o o l s  sh ou ld  be ground.

Accuracy o f  p i t c h  i s  a l s o  o b ta in e d  i f  th e  screw  th r ea d s  

on th e  work a re  produced by g r in d in g .  I f  screw  th r ea d s  

are  cu t on a l a t h e ,  then  p a r t i c u la r  a t t e n t i o n  sh o u ld  be  

g iv e n  to  th e  a ccu racy  o f  p i t c h  o f  th e  l a t h e  u sed .

Trends in  la t h e  d e s ig n  have been towards e a s e  and 

q u ick n e ss  o f  g ear  changing and modern l a t h e s  can be s e t  

to  cu t a lm ost any stan dard  p i t c h  by moving a few l e v e r s ,  

th u s in c r e a s in g  th e  so u rc es  o f  p o s s i b l e  e r r o r .

In accu racy  m  th e  p i t c h  o f  screw  gauges i s  g e n e r a l ly  due 

to  one or more o f  th e  f o l lo w in g  :

(a)- E rrors in tr o d u ce d  during  th e  p r o c e s s  o f  

th r e a d in g .

<b)- D i s t o r t io n  o f  th e  s t e e l  during  h a rd en in g .

(c)- Errors in tr o d u ce d  m  th e  p r o c e s s  o f  f i n a l  

la p p in g  to  s i z e .
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(d)- S e c u la r  changes in  th e  hardened s t e e l .

With modern l a t h e s  e r r o r s  o f  a p e r io d ic  or  e r r a t i c  

c h a r a c te r  are  most commonly a t t r i b u t a b l e  to  e r r o r s  in  th e  

gear  t r a in ,  th e  f i n a l  e rr o r  found may not appear to  be o f  

a r e g u la r  p e r io d ic  n a tu r e .

Other p o s s i b l e  so u r c e s  o f  p e r io d ic  e r r o r  are  (a) an 

i n t r i n s i c  e r r o r  in  th e  le a d  screw  i t s e l f ;  (b) th e  l e a d  

screw  not r e v o lv in g  t r u l y  about i t s  a x i s ;  (c) e r r o r s  in  

th e  abutment f a c e s  o f  th e  le a d  screw, and (d) a x i a l  f l o a t  

in  th e  h e a d sto ck  s p in d le  o f  th e  la t h e  [4 4 ] .

3-6 Nomenclature and specification.

BS 2517: D e f i n i t i o n s  fo r  use  m  m echan ica l e n g in e e r in g  

g i v e s  th e  stan dard  d e f i n i t i o n s  a p p l ic a b le  to  th r ea d s  [ 9 ] .  

D e t a i l s  o f  th e  p r i n c i p l e  thread  forms are  c o n ta in e d  in  : 

BS 3643 : ISO M etr ic  Threads [4 5 ] .

BS 4827 : ISO M in ia tu re  Threads [4 6 ] .

BS 4846 : ISO T rap ezo id a l Threads [4 7 ] .

BS 21 : P ipe Threads fo r  Tubes and F i t t i n g s  [4 8 ] .

BS 84 : Whitworth Form Threads [4 9 ] .

BS 93 : B r i t i s h  A s s o c ia t io n  (BA) Threads [50] .

There are  two main c l a s s e s  o f  thread  form, v e e  th rea d s  

and square th r e a d s ,  [51] c e r t a i n  id e a s  about  

s p e c i f i c a t i o n ,  and t o le r a n c in g  o f  screw  th r ea d s  o f  v e e  

form (w ith  a few minor e x c e p t io n  ) a re  common to  a l l  

above th rea d s  s y s te m s , th e s e  w i l l  be e x p la in e d  w ith  

s p e c i a l  r e f e r e n c e  to  ISO M etric  th rea d s  [ 4 5 ] .

F igu re  (3 -2 2 ) ,  shows e lem en ts  o f  p a r a l l e l  screw  th rea d s
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o f  v e e  form, w h i le  f i g u r e  (3 -2 3 ) ,  shows e le m en ts  o f  form 

[44] .

3-6-1 ISO metric acrew threads .

The ISO b a s i c  p r o f i l e  fo r  t r ia n g u la r  screw  th r ea d s  

i s  shown in  f i g u r e  (3-24) . The d e s ig n  p r o f i l e  fo r  ISO 

m e tr ic  in t e r n a l  and e x te r n a l  th read s are  shown in  f i g u r e  

( 3 - 2 5 ) .  These r e p r e se n t  th e  p r o f i l e s  o f  th e  th r e a d s  in  

t h e i r  maximum m eta l c o n d i t io n .  I t  w i l l  be n oted  th a t  th e  

ro o t  o f  each th read  i s  deeper so  as to  c l e a r  th e  b a s i c  

f l a t  c r e s t  o f  th e  o th e r  th rea d .

The c o n ta c t  between th e  th read s  i s  thus c o n f in e d  to  t h e i r  

s to p p in g  f la n k s .  B a s ic  num erical data  fo r  th e  v a r io u s  

standard  p i t c h e s  o f  ISO m etr ic  th read s i s  g iv e n  m  [52] .

3-6-2 Basic Dimensions .

The b a s ic  d im en sion s o f  ISO m e tr ic  screw  th r ea d s  

r e f e r  to  the  b a s i c  p r o f i l e ,  f ig u r e  (3-26) shown t h e s e  

d im e n s io n s .

d = basic major of external thread (nominal diameter). 
D3 = basic pitch diameter of internal thread.
d2 = basic pitch diameter of external thread.
Dx = basic minor diameter of internal thread.
dx = basic minor diameter of external thread.
H = height of fundamental triangle.
P = pitch.

The v a lu e s  o f  D2, d 2 , Dl and d l have been c a l c u l a t e d  from
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H= 0.86603 P H/8 = 0.10825 P 3H/8 = 0.3247 P 
H/4 = 0.21651 P 5H/8 = 0.54127 P 

Figure (3-24)
Basic form of ISO metric thread

70



NUT (INTERNAL THREAD) In practice the root

BOLT (EXTERNAL THREAD)

Axis Of BOLT

Pitch line

Figure (3-25)
Design form internal and external threads 

(maximum metal condition)
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Figur« (3-26)
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th e  f o l lo w in g  formula and ro u n d ed ,in  th e  t a b l e s ,  t o  th e  

t h i r d  dec im al p la c e :

D, = D - 2 X 3 H/8 ■ D - 0.6495 P
da = d - 2 x 3 H/8 « d - 0.6495 p
DA = D - 2 X 5 H/8 * D - 1.0825 P
dx = d - 2 x 5 H/8 = d - 1.0825 p

D im ensions o f  th read  form e lem en ts  [5 3 ] ,  are  :

H = x/TTi P = 0.866 025 404 p
5 H/8 = 0.541 265 877 p
3 H/8 = 0.324 759 526 p
H/4 = 0.216 506 351 p
H/8 = 0.108 253 175 p

3-6-3- Tolerance zone and class of f i t .

A to le r a n c e  zone must be s p e c i f i e d  b o th  in  

m agnitude and p o s i t i o n  in  r e l a t i o n  t o  th e  b a s i c  s i z e  o f  

th e  f i t  o f  which i t  i s  a p a r t .  The n atu re  o f  a f i t  i s  

dependent on both  th e  m agnitudes o f  th e  t o l e r a n c e s  and 

th e  p o s i t i o n s  o f  th e  t o le r a n c e  zone fo r  th e  two member. 

The p o s i t i o n  o f  a t o le r a n c e  zone i s  d e f in e d  by th e  

d i s t a n c e  between th e  b a s ic  s i z e  and th e  n e a r e s t  end o f  

th e  t o le r a n c e  z o n e .

T h is  d i s t a n c e  i s  known as th e  " fundamental d e v ia t io n  ". 

In the  ISO m etr ic  screw th rea d  system  fundamental 

d e v i a t io n s  are  d e s ig n a te d  by l e t t e r s .  C a p it a l s  fo r  

i n t e r n a l  th read s and sm all  l e t t e r s  fo r  e x te r n a l  th r e a d s .  

The m agnitudes o f  t o le r a n c e  zones are  d e s ig n a te d  by 

t o l e r a n c e  grades ( f i g u r e s ) .
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A com bination o f  a t o le r a n c e  grade  ( f ig u r e )  and a 

fundamental d e v ia t io n  ( l e t t e r )  forms a t o l e r a n c e  c l a s s  

d e s ig n a t io n ,  e . g  6g:

In BS 3643 " c l a s s  o f  f i t  " i n d i c a t e s  th e  d eg ree  o f  f i t  

between e x te r n a l  (b o l t )  th r e a d s  and i n t e r n a l  (nu t)  

t h r e a d s .

ISO d e f i n i t i o n s  d e s ig n a te  t h i s  c o n d i t io n  as  t o l e r a n c e  

q u a l i t y ,  but to  m a in ta in  co n fo rm ity  w ith  B r i t i s h  p r a c t i c e  

th e  d e s ig n a t io n  ■ c l a s s  o f  f i t  • i s  p r e fe r r e d .  Thus, * 

f i n e  to le r a n c e  q u a l i t y  " conforms t o  th e  " c l o s e  " c l a s s  

o f  f i t  and "coarse  t o le r a n c e  q u a l i t y "  conforms to  th e  ■ 

f r e e  " c l a s s  o f  f i t .  The " medium ■ d e s ig n a t io n  i s  common 

to  both m ethods.

The com plete  ISO m e tr ic  screw  th r e a d  t o l e r a n c in g  sy s tem  

p r o v id e s  many com b inations o f  t o l e r a n c e  grade  and

fundamental d e v ia t io n s  to  c a t e r  f o r  most a p p l i c a t i o n  ; 

t a b le  (3-2) g i v e s ,  c l a s s e s  o f  f i t  f o r  ISO m e tr ic  screw  

th rea d s  [52] .

A lso  f ig u r e  (3 -27 ) i l l u s t r a t e s  t o l e r a n c e  zones fo r  t h e  

c l o s e  f i t  (5H/4h) . From th e  t o l e r a n c e  zones shown in  

f ig u r e  (3-27) i t  f o l lo w s  th a t  t h r e e  d i f f e r e n t  ty p e s  o f  

erro r  are  a llo w ed :

( a ) -  E r r o r  o f  t h e  f l a n k  a n g l e .

(b) - E r r o r  o f  p i t c h  o v e r  t h e  l e n g t h  o f  f i t t i n g .

( c ) -  E rr o r  o f  e f f e c t i v e  d i a m e t e r  [ 9 ] .

3 - 6 - 4 -  A p p l i c a t i o n  o f  f i t .

* Medium f i t  ", (6H /6g) . The " medium ■ c l a s s  o f
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f i t  i s  a p p ro p r ia te  fo r  most g e n e r a l  e n g in e e r in g  p u r p o s e s .  

The minimum c le a r a n c e  a s s o c i a t e d  w ith  th e  f i t  a s s o c i a t e d  

in  f r e e  assem b ly , and t h i s  m in im izes  g a l l i n g  and s i z i n g  

in  h igh  speed  a ssem b ly .

■ c l o s e  f i t  ", (5 H /4 h ) . The ■ c l o s e  " c l a s s  o f  i s  a p p l i e d  

t o  threads r e q u ir in g  a c l o s e r  f i t  than th a t  n o r m a lly  

o b ta in ed  w ith  th e  " medium " c l a s s  o f  f i t  and f i t  and 

sh ou ld  o n ly  be when c l o s e  a ccu racy  o f  th rea d  form and  

p i t c h  i s  p a r t i c u l a r l y  r e q u ir e d .

C o n s is te n t  p r o d u ct io n  o f  th r ea d s  o f  t h i s  f i t  demands th e  

u se  o f  h igh  q u a l i t y  p ro d u ct io n  equipment and p a r t i c u l a r l y  

through in s p e c t io n .

■ f r e e  f i t  ", (7H/8g) , th e  * f r e e  " c l o s e  o f  f i t  i s  

p r im a r i ly  in ten d ed  fo r  a p p l i c a t io n s  in  which q u ick  and 

e a sy  assem bly i s  needed even when th e  th rea d s  have become  

d i r t y  and /or  s l i g h t l y  damaged.

F ig u re  (3-28) shows th e  r e l a t i o n s h i p  between t o l e r a n c e  

zones and c l a s s e s  o f  f i t  [5 2 ] .

3-6-5-  D e s ig n a t io n .

The com plete  d e s ig n a t io n  fo r  a screw  th r e a d  

com p rises  a d e s ig n a t io n  fo r  th e  th rea d  system  and s i z e ,  

and a d e s ig n a t io n  fo r  th e  th read  t o l e r a n c e  c l a s s .

A screw  thread  d e s ig n a t e s  by th e  l e t t e r  M f o l lo w e d  by th e  

v a lu e s  o f  nominal d iam eter  and o f  th e  p i t c h ,  e x p r e s s e d  in  

m il l im e t r e s  and se p a r a ted  by th e  s ig n  x .  For exam ple:

M6 x 0 .7 5

The ab sen ce  o f  th e  i n d ic a t io n  o f  p i t c h  means t h a t  a
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Tabi« (3-2)

CU ss of ftl
ToUrux* d u i

■ Internai thrrsdj (ovrti) LitenuJ tiLreaò (bolts)

* C!o*e ’ 5H 4b

• Medium ’ 6H 6«

* F r « ’ 7H H

76

«



VPPER LIMIT NVT

Figur« (3-27) 
Tolerance sones for close 
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c o a r se  p i t c h  i s  s p e c i f i e d .  For example M6 th e  t o l e r a n c e  

c l a s s  d e s ig n a t io n  com p rises  c l a s s  d e s ig n a t io n  fo r  th e  

p i t c h  d iam eter  t o le r a n c e  fo l lo w e d  by a c l a s s  d e s i g n a t i o n  

fo r  th e  c r e s t  d iam eter  t o l e r a n c e .  Each c l a s s  d e s i g n a t i o n  

c o n s i s t s  o f :

{ ! ) -  A f i g u r e  i n d i c a t i n g  th e  to le r a n c e  g r a d e .

( 2 ) -  A l e t t e r  i n d i c a t i n g  th e  t o l e r a n c e  p o s i t i o n ,  

C a p ita l  fo r  n u ts ,  sm a ll  fo r  b o l t s .

I f  th e  two c l a s s  d e s ig n a t io n s  fo r  a th read  a r e  th e  same 

i t  i s  not n e c e s s a r y  t o  r e p e a t  th e  symbols , [ 5 3 ] .

3-7 Inspection of screw thread.
The in s p e c t io n  o f  screw  th read s  may be by g a u g in g  

or m easuring .

3 - 7 - 1  Inspection b y  gauging.

BS 919 " screw  gauge l i m i t s  and t o l e r a n c e s  ",

p a r t  th r e e  "Gauges fo r  ISO m etr ic  screw  th r e a d s  ■

c o n ta in s  th e  recommended gau g in g  sy stem  f o r  c h e c k in g

th r ea d s  o f  nominal d iam eter  1mm and la r g e r  w h ich  have

been accordan ce  w ith  BS 3 643 " ISO m e tr ic  screw  th r e a d s  
■

p r o v i s io n  i s  made fo r  th e  f o l lo w in g  ty p e s  o f  g a u g es:

(a)- Screw ga u g es .

(b)- p l a i n  gauges ( fo r  th e  c r e s t  d ia m e t e r s ) .

(c)- S e t t in g  p lu g s ,  in  bo th  s i n g l e  and d ou b le  l e n g t h .

(d)- Check p lu g s .

(e)- Wear check p lu g s .

In fo rm a tio n  i s  g iv e n  about th e  fu n c t io n  and m ethods o f
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u se  o f  the  v a r io u s  ty p e s  o f  gauges and a recommended 

procedure i s  g iv e n  fo r  th e  s e t t le m e n t  o f  d i s p u t e s  w h ich  

may a r i s e  when b o a r d l in e  p r o d u cts  are  in s p e c t e d .

3 - 7 - 2  Inspection b y  m e a s u r e m e n t .

Measurement o f  a screw  th r ea d s  can be v e ry  com plex;  

t h e r e  b e in g  a number o f  e le m en ts  to  be measured, some o f  

which are  i n t e r r e l a t e d .  Of th e  e le m e n ts ,  th e  f o l lo w in g  

w i l l  norm ally  be measured:

( a ) -  Major D iam eter .

(b ) -  Minor D ia m eter .

(C) -  Form, p a r t i c u l a r l y  f l a n k  a n g l e s .

( d ) -  P i t c h .

( e ) -  P i t c h  d i a m e t e r .

th e  measurement o f  th e  f la n k  a n g le s  i s  th e  most im p ortan t  

measurement o f  th read  form w hich, on v ery  la r g e  screw  

th r e a d s ,  may be made by c o n t a c t  methods [ 5 4 ] .

F u l l  in fo r m a tio n  on th e  m easuring o f  screw  th rea d s  w i l l  

be found in  th e  NPL b o o k le t .  N otes  on A p p lied  s c i e n c e ,  

N 0.1: Gauging and m easuring screw  th read s  [4 4 ] .

A lso ,  In form ation  concern  autom ated th read  m easurem ent, 

u s in g  d i f f e r e n t  methods and te c h n iq u e s ,  fo r  th e  l a s t  

decad e , can be found in  c h a p te r  two.
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CHAPTER FOUR

4-DEVELOPMENT OF THE MEASURING 

R IG .

The o ld e s t  o f  th e  p h y s i c a l  s c i e n c e s  i s  th e  s tu d y  o f  t h e  

motion o f  th e  o b j e c t s .

K inem atics: I s  th a t  p a r t  o f  mechanics [5 5 ] ,  which d e a l  

w ith  m otions o f  b o d ie s  w ith ou t regard t o  t h e  f o r c e  

r e s p o n s ib le  o f  th e  m otions .

D isp lacem ent: I s  th e  v e c t o r  q u a n t ity  a r i s e s  in  t h e  s tu d y  

o f  k in em a tic s ,  [5 6 ] ,  which may be d e f in e d  as a change o f  

p o s i t i o n  o f  a p a r t i c l e  [ 5 5 ] .

4-1 Definitions.

2 -  ACCURACY OR CORRECTNESS :

This may be d e f in e d  as  th e  amount o f  c o r r e c t io n  which  

must be made to  th e  in stru m en t rea d in gs  in  r e s p e c t  o f  th e  

v a lu e s  o f  th e  q u a n t i t i e s  b e in g  measured, [5 4 ] ,  a l s o  i t  

may be d e f in e d  as co n fo rm ity  w ith  or n ea rn ess  t o  th e  t r u e  

v a lu e  o f  th e  q u a n t i ty  b e in g  measured [5 7 ] .

2- POINT OF ACCURACY :

Here the  accuracy o f  an instrum ent i s  s t a t e d  fo r  o n ly
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one or more points in its range [57] .

3 -  PERCENTAGE OF TRUE VALUE :

If th e  accuracy o f  an instrum ent i s  e x p r e sse d  in  t h i s  

way, th en  th e  error  i s  c a lc u la t e d  th u s:

Error ={ ( M, - Tt ) / T„ } x %100 (4-1) .

The p e r ce n ta g e  erro r  s t a t e d  i s  th e  maximum fo r  any 

p o in t  in  range o f  the  in stru m en t, [ 5 7 ] .

4 -  PERCENTAGE OF FULL-SCALE DEFLECTION PERCENTAGE (f.s.d)

Here th e  erro r  i s  c a lc u la t e d  on th e  b a s i s  o f  th e  

maximum v a lu e  o f  th e  s c a l e ,  th u s  [ 5 7 ]  :

Error« { ( M* - Tv ) / M. > x 100% (4-2) .

5 -  PERCISION OR REPEATABILITY :

T his i s  th e  r e p e a t a b i l i t y  o f  th e  rea d in g  taken o f  th e  

same v a lu e  by th e  same in stru m en t [ 5 7 ] .

6- SENSITIVITY AND RANGE :

T his may be d e f in e d  as th e  r a te  o f  d isp la cem en t  o f  th e  

i n d ic a t in g  d e v ic e  o f  an in s tru m en t, w ith  r e s p e c t  t o  th e  

measured q u a n t i t y .  See f ig u r e  ( 4 - 1 ) ,  [ 5 4 ] .



The s e n s i t i v i t y  i s  taken t o  mean th e  r e l a t i o n  betw een th e  

input s ig n a l  t o  an instrum ent or a part o f  an instru m en t  

system  and th e  outp ut, i . e .

Sen * (C.O.S )/ (C.I.S ) (4-3).
The s e n s i t i v i t y  w i l l  t h e r e f o r e  be a c o n s ta n t  in  a l i n e a r  

instrum ent or e lem en t.

7 - ENVIRONMENT  ;

The p a r t i c a l  c o n d it io n  in  which an instrum ent has t o  

o p erate  may a f f e c t ,  i t s  accu racy , p r e c i s i o n ,  and 

r e l i a b i l i t y .

S - LINEARITY :

Is d e f in e d  as th e  a b i l i t y  to  

c h a r a c t e r i s t i c a l l y ,  and t h i s  

e q u a t io n :

Y = m x + c

9~ RELIABILITY :

The r e l i a b i l i t y  o f  a system  i s  as d e f in e d  as th e  

p r o b a b i l i t y  th a t  i t  w i l l  perform  i t  a s s ig n e d  f u n c t io n s  

fo r  a s p e c i f i c  p e r io d  o f  tim e under g iv en  c o n d i t io n .

reproduce th e  in p u t  

can be e x p r e sse d  by th e

( 4 - 4 ) .
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F ig u re  ( « - ! )

84



10- MAINTAINABILITY

The m a in t a in a b i l i t y  o f  a system  i s  th e  p r o b a b i l i t y  

t h a t  in  th e  ev en t o f  f a i l u r e  o f  th e  system , m aintenance  

a c t io n  under g iv en  c o n d it io n s  w i l l  r e s t o r e  th e  system  

w ith in  a s p e c i f i e d  t im e .

*

1 1 -  CALIBRATION :

I t  i s  an e s s e n t i a l  part o f  i n d u s t r i a l  measurement and 

c o n t r o l .  I t  can be d e f in e d  as th e  com parison o f  s p e c i f i c  

v a lu e s  o f  th e  input and output o f  an instrum ent w ith  a 

c o rresp o n d in g  r e fe r e n c e  standard  [5 4 ] .

1 2 -  STYLUS :

The s t y l u s  i s  th a t  part o f  th e  m easuring system  which  

makes c o n ta c t  w ith  th e  component c a u s in g  th e  probe t o  

produce a t r i g g e r  s i g n a l .  The ty p e  and s i z e  o f  s t y l u s  

u sed  i s  d i c t a t e d  by th e  f e a tu r e  t o  be in s p e c t e d .  In a l l  

c a s e s ,  maximum r i g i d i t y  and s p h e r i c i t y  o f  th e  s t y l u s  are  

v i t a l  [ 5 8 ] .

4 -2  P r i n c i p l e s  o f  d e s ig n

4-2-1 Kinematics principles

M easuring instrum ents and m ach ines, in c o r p o r a te ,  in  

t h e i r  im portant f e a t u r e s ,  p r i n c i p l e s ,  which are b ased  on 

k in e m a t ic s .  I t  w i l l  be seen t h a t ,  in  g e n e r a l  th e  m otions
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, which must be c o n s id e r e d  in  th e  d e s ig n  o f  a m easuring  

im achines are th o s e  o f  s t r a i g h t  l i n e  and r o ta r y  m otion ,  

iD e s ig n  e x p e r ie n c e  over many years  has shown t h a t
ii
: k in em a tic  p r i n c i p l e s  must be c l o s e l y  fo l lo w e d , in  order  

| t h a t  machines and in stru m en ts  should  p o s s e s s  th e  

f o l lo w in g  c h a r a c t e r i s t i c s :
I

( a ) -  A h i g h \ l e g r e e  o f  s e n s i t i v i t y .
i (b)- A h igh  degree  o f  accu racy .
i

■ ( c ) -  Freedom from v a r ia n c e .

; <d)- minimum i n e r t i a  in  th e  moving p a r ts  o f  th e

| in d ic a t in g  mechanism.

i ^
| A l l  in stru m en ts  which depend w h olly  or in  p a r t  on a 

' l in k a g e  or o th er  m echanical system  or on th e  d isp la cem en t
i
' o f  a f l u i d ,  fo r  t h e i r  o p e r a tio n  are su b je c t  t o  th e
i

d isa d v a n ta g e  o f  i n e r t i a .
I
, I n e r t i a  produces a c o n d it io n  r e fe r r e d  to  as p a s s i v i t y  or
I
S l u g g i s h n e s s .  I t  may be determ ined fo r  any g iv e n  

instrum ent by n o t in g  th e  s m a l le s t  range in  th e  measured
i

!q u a n t i ty  which produces any change in  th e  instrum ent
iI
r e a d in g .  P a s s i v i t y  i s  c l o s e l y  a s s o c ia t e d  w ith  

s e n s i t i v i t y :  p a s s i v i t y  may o n ly  show i t s e l f  as a change 

| in  th e  s e n s i t i v i t y  o f  an instrum ent a t  a p a r t i c u la r  p o in t  

i in  i t s  s c a l e  read in g  th e  m easuring machine in  a d d it io n  t o
I
i in s tr u m e n ts ,  a l s o  p o s s e s s  th e  fo r e g o in g  c h a r a c t e r i s t i c s ,
i

and th a t  in  each c a se  th e y  may be reduced t o  a c c e p ta b le
r
i l i m i t s  by th e  a p p l ic a t io n  o f  k in em atic  p r i n c i p l e s .  In 

| f a c t  on ly  by s t r i c t  observance  o f  them can th e  f u n c t io n a l

I
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requirem ents o f  a d e s ig n  be s a t i s f i e d .

Commonly, in  m easuring in s tru m en ts  and m achines, i t  i s  

n e c e ssa r y  t o  a l lo w  one d egree  o f  freedom o f  a member, 

which req u ire  f i v e  c o n s t r a i n t s ,  or t o  co m p le te ly  c o n s ta n t  

a member, th u s c o n s t i t u t i n g  a f i x t u r e .

Only by th e  a p p l i c a t io n  o f  k in em a tic  p r i n c i p l e s  can th e  

d e s ig n  o f  an instrum ent or machine be such th a t  i t s  

accuracy in  o p e r a t io n  does r e s t  e n t i r e l y  on i t s  accuracy  

o f  m anufacture.

Not on ly  do k in em atic  p r i n c i p l e s  a l lo w s  s i m p l i c i t y  o f  

m anufacture, but th ey  p ro v id e  fo r  adjustm ent a t
i

instrum ent assem bly  and t e s t i n g  s t a g e ,  so th a t  c o m p le te ly  

, s a t i s f a c t o r y  o p e r a t in g  c h a r a c t e r i s t i c s  may be a c h iev e d  .

4-2-2 Basic characteristic of measuring devices .

i

The fu n c t io n  o f  a m easuring d e v ic e  i s  t o  se n se  or 

d e t e c t  a param eter en countered  in  an i n d u s t r i a l  p r o c e ss
i
'or in  s c i e n t i f i c  r e se a r c h ,  such as a p r e s s u r e ,  

tem p erature , f lo w , m otion, r e s i s t a n c e ,  v o l t a g e ,  cu rren t  

’and power.

; The m easuring d e v ic e  must be ca p a b le  o f  f a i t h f u l l y  and 

a c c u r a te ly  d e t e c t i n g  any changes t h a t  occur in  th e  

measured param eter. For c o n tr o l  p u rp ose , th e  measuring

instrum ent e i t h e r  g e n e r a te s  a warning s ig n a l  to  in d ic a t e
j
th e  need fo r  a manual change or a c t i v a t e s  a c o n tr o l  

d e v ic e  a u t o m a t ic a l ly .  For o b ta in in g  optimum perform ance,  

a number o f  b a s ic  c h a r a c t e r i s t i c s  are  to  be c o n s id e r e d .  

These c h a r a c t e r i s t i c s  are as f o l lo w s :  Accuracy,
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1 precision, error, linearity, hysteresis, resolution and 
; scale readability, threshold, reliability and
iI maintainability, span, and dynamic accuracy.
] The accu racy  o f  a com plete  system  i s  dependent upon th e  

i in d iv id u a l  a c c u r a c ie s  o f  th e  primary s e n s in g  e le m en t ,

, secondary  e le m en t ,  and th e  m a n ip u la t in g  d e v i c e s .  Each 

j u n i t  c o n t r ib u t e s  t o  th e  accuracy w ith  s e p a r a te  l i m i t s
i
| s p e c i f i e d .  I f  ( + / -  a ^ , ( + / -a 2) and ( + / - a 3) are  th e|
i accu racy  l i m i t s  o f  a t y p i c a l  system , and A i s  th e  o v e r a l l  

j accu ra cy , th e  lo w e s t  l i m i t  o f  accu racy  can be e x p r e s s e d  

1 a s :

A= +/- (ax + a2 + a3) (4-5) .
i

i
>and th e  ro o t  mean square i s  o f t e n  s p e c i f i e d ,  s i n c e  i t  i s  

jnot p robab le  t h a t  a l l  th e  u n i t s  o f  th e  system  w i l l  have

¡the  g r e a t e s t  s t a t i c  e r r o r  a t  th e  same p o in t  and a t  th e
I
;same t im e .i

I In a c tu a l  measurement th e  e f f e c t  o f  th e  d i f f e r e n t  e r r o r s
j
on th e  tr a n sd u c e r  b eh av iou r  sh ou ld  be c l e a r l y  known. 

jThe knowledge o f  t h e s e  in d iv id u a l  e r r o r s ,  can be o f t e n  

used  to  c o r r e c t  th e  f i n a l  data and th e re b y  in c r e a s e  th e
i
o v e r a l l  accu racy  o f  th e  measurement.
i
The e r r o r  o b served  when th e  in stru m en t i s  under th e  

r e fe r e n c e  c o n d i t io n  i s  termed as th e  i n t r i n s i c  e r r o r .  The 

jabsolute  e r r o r  i s  th e  d i f f e r e n c e  o b ta in e d  by s u b t r a c t in g  

th e  t r u e  v a lu e  o f  a q u a n t i ty  from t h e  ob served  v a lu e .  The 

r e l a t i v e  e r r o r  i s  th e  r a t i o  o f  th e  a b s o lu t e  e r r o r  to  th e  

t r u e  v a lu e .

In c e r t a i n  c a s e s ,  i t  may be n e c e s s a r y  t o  e x p r e s s  t h i s  as
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relative linearity error k which can be written as:

k -  ( k,  -  k» ) /  k. (4-6)

The s t a t i s t i c a l  e r r o r s  in  a measurement can be

c o n s id e r e d  in  term s o f  th e  s t a t i s t i c a l  mean and th e  

stan dard  d e v i a t io n .  I f  x2, x2, . . . . x 2 r e p r e se n t  a s e t  o f  

measured v a lu e s  o f  a q u a n t i ty ,  th e  s t a t i s t i c a l  mean ~x o f  

t h e s e  r ea d in g s  i s  g iv en  by:

The stan dard  d e v ia t io n ,  i n d i c a t i n g  th e  d egree  o f  

d i s p e r s io n  o f  read in g s  about a mean v a lu e ,  can be 

e x p r e sse d  a s :

I f  th e  measurement system  i s  s u b je c te d  to  r a p id ly  v a r y in g

' in p u ts ,  th e  r e l a t i o n  between th e  in p u t and output becomes

d i f f e r e n t  from t h a t  o f  th e  s t a t i c  or q u a s i s t a t i c  c a s e .

The dynamic resp on se  o f  th e  system  can be e x p r e s s e d  by

means o f  a d i f f e r e n t i a l  e q u a t io n .  I f  t h i s  i s  a l in e a r

d i f f e r e n t i a l  e q u a t io n ,  th e  system  i s  d y n a m ica lly  l i n e a r .

The b a s i c  dynamic c h a r a c t e r i s t i c s  depend on th e  order  o f

d i f f e r e n t i a l  e q u a t io n  o f  th e  system  [5 9 ] .

i
Ii
4-2-3 Intelligent instrumentation:

n

(4-7).
i = l

i = l

89



 ̂ Intelligent instrument is a term, which has come to
, mean: the use of measurement system to evaluate a
1 physical variable employing usually a digital computer to 
perform all (or nearly all ) the signal/ information

i
■ processing.
i It is one where after a measurement has been made of a 
1 variable some further processing (analogue or digital) is
i
carried out to refine the data, for presentation to an 
I observer or other computers.
Intelligent instrumentation involves the development of 
systems to process information and signals. Thus the 
.concepts of systems engineering can be applied. The 
signal is connected to a processing system which would 
'probably include some or all of the following elements: 
sampler, analogue to digital converter, interface to 
^digital computer, software routine and software output 
driver.
i

, To achieve the good design of system in intelligent 
instrumentation a style of engineering is adopted which 
utilities computer systems, control systems and digital 
electronics in various mixes, [60].

4-3 Design and development of an automatic inspection 
system.

| In general, kinematics principles, basic
characteristics of measuring device, and the concepts of 
an intelligent instrumentation are adopted with other 
considerations to design and arrange the different
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elements of our automatic measuring system.
Lever, clamping and rotating, and sliding mechanisms, 
which are driven and controlled by a personal computer,
are refered to as the mechanical design.

%
W hile, motors and t h e  l in e a r  v a r ia b le  d i f f e r e n t i a l  

transform er (LVDT), where t h e i r  s i g n a l s  are  i n t e r f a c e d  

and p ro cessed  u s in g  a s p e c i a l  arrangem ents, are  r e f e r e d  

t o  as the  e l e c t r i c  d e s ig n .

F igure (4 -2 ) ,  shows th e  main e lem en ts  o f  th e  adop ted  

d e s ig n ,  which are in c lu d e d  under th e  fo l lo w in g :

(1)- Mechanical design.
(2)- Electronic design.

Also special software was prepared to drive, control and 
process the different Input/Output signals.

4-3-1 Mechanical design.

A certain information and data, relating designing 
factors and other considerations, such as frictional 
force and moment of inertia were considered and 
calculated to find out the different characteristic 
specification of our mechanical elements.
Frictional force opposes movement regardless of 
direction, where, moment of inertia is an indication of 
resistance to change in speed. Thus, shapes and weights 
of the different moving elements were carefully 
calculated, because, moment of inertia depends on shape



LVDT

PROTECTION BOX

MICRO-8WITCHM
MOTOR (1) Mechanical Design

figure (4-2)



as well as weight, also low frictional forces have been 
achieved by using linear ball bushings and ball screw 
The following mechanisms represent our mechanical design:

(1)- Lever mechanism

(2)- Clamping and rotating mechanism

(3)- Sliding mechanism.

4-3-1-1 Lever mechanism»

The lever, is one of two simple mechanical 
magnifying elements Figure (4-3), shows, that the 
mechanism consists of a stylus which represent the first 
sensing element m  our measuring system Different types 
of stylus may be fixed on the specified hole on one side 
of the stylus arm, while, an electrical sensing element 
makes the required contact at a specified point on the 
other side of the stylus arm
Pivot holds the stylus arm to the lever body which may be 
adjusted to any height on the shaft using a special bolt 
The shaft is fixed tightly to the lever base The stylus 
arm has one degree of freedom (pivot on point)
Pivot and stylus tip control the sensitivity of this 

mechanism, therefore a suitable tolerances were adopted 
to fit the required accuracy
If a stylus is dragged along the surface, its motion 
traces out the profile of the surface thus, required 
rotating on pivot point is generated by the object under 
test causing a certain displacement to the stylus The
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LITO MECHANISM.
x>......... STYLOS

n u l o s  HOLT

..........................u m  ARM
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......... LIVE* BoOY

.........<ITD*) BOLT

......... ADJUSTING BOLT

......... HAFT

......... BASI



difference between two heights is amplified by the lever 
which converted on the other side into electrical signal 
The stylus arm and the lever body are made of aluminum 
H30, pivot material is phosphor bronze The stylus used 
for the simulation tests was made of silver steel 
The stylus arm, lever body, pivot and the previous stylus 
were manufactured at the workshop of the school of 
mechanical and manufacturing engineering 
While the stylus, SP75, SP36R and SP20R, were purchased 
from (Inspection Equipment Co.Ltd unit 37, Western 
Parkway Business Centre, Ballymount Road, Dublin 12)
The shaft, bolts and lever base were ready at the 
workshop

4-3-1-2 Clamping and rotating mechanism

The Clamping and rotating mechanism provides the 
object under test the required support, and the desired 
form of motion It consists of four separate sets, which 
are fixed to a solid base
F igu re  ( 4 - 4 ) ,  i l l u s t r a t e s  t h e s e  s e t s ,  which are as  

fo l lo w s

(1)- Support jaw

(2)- Vee block

(3)- Movable jaw

(4)- Motor set and base

(1)- Support jaw
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Figure (4-4)

  t---------



/

This set provides the object under test, the 
required side supporting during various steps of the 
operational cycle
It consists of a base made of Aluminum H30, and has one 
degree of freedom which may be used for calibration task 
before starting the cycle Thrust bearings , shaft , and 
changeable jaw with special bolt.
The jaw has one degree of freedom and its martial is 
silver steel, like the shaft which also has one degree of 
freedom Figure (4-5)
The base, jaw and shaft were manufactured at the workshop 
of the school, while the thrust bearings were purchased 
from, (FAG Ireland limited, Greenhill industrial Eastate, 
Walkinstown, Dublin 12)

(2)- Vee block

In order to increase the flexbility of the system , 
vee block were designed to fit different sizes of the 
cylindrical objects
Figure (4-6), illustrates the different parts, which are, 
the vee block body, cylindrical guidance, holding bolt, 
and adjusting element
The fine thread which represents the adjusting element in 
our design, controls the vertical position of the object 
under test to the correct height, it has a very small 
increment, which generates as soon as rotating it.
iTherefore, micrometer can be replaced instead of it , to
i
achieve further degree of accuracy, and to make the
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c a l i b r a t io n  ta s k ,  more e a sy ,  qu ick , and p e r f e c t  

S tr o n g ly ,  we recommend, th a t  c a l i b r a t io n  sh ou ld  be 

performed once fo r  each type o f  in s p e c t io n ,  a l s o ,  h o ld in g  

b o l t  shou ld  not be a llo w ed  t o  move a f t e r  c a l i b r a t i o n ,  

th u s e r r o r s  due to  t h i s  c a l i b r a t io n  w i l l  not tak e  p la c e  

The f i n e  thread  and c y l i n d r i c a l  gu idance are made o f  

s i l v e r  s t e e l ,  and The vee  b lock  and h o ld in g  b o l t  are  made 

o f  Aluminum H30. A l l  p a r ts  were manufactured in  th e  

workshop o f  th e  sc h o o l

(3)- Movable jaw

The s e t  p r o v id e s  th e  o b je c t  under t e s t  w ith  th e  

th r e e  fo l lo w in g  m otions

(a)- Clamping- the object

(b)- Provide the object the rotating motion to 
accomplish the helix inspection step

(c)- Releasing the object at the end of the test

A s p e c i a l  d e s ig n ,  has a sim ple  f e a tu r e  adopted in  order  

to  a c h iev e  the  p r e v io u s  m otions

The d e s ig n  c o n s i s t s  o f ,  a clam ping jaw which has two 

d e g r ee s  o f  freedom, f ix e d  c y l in d e r  has an in t e r n a l  

gu id an ce , cover , th r u s t  b e a r in g s ,  c l i p - n n g s ,  le a d  screw ,  

sp r in g  and housing  body se e  f ig u r e  (4-7)

The Clamping jaw, and th e  lea d  screw are made o f  s i l v e r  

s t e e l ,  Cover, f i x e d  c y l in d e r ,  and h ou sin g  body are  made 

o f  Aluminum H30
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(10) (12) (13) (14)

SUPPORT JAW
(10 )........ JAW

\ (11 )........ SHAFT
(12 )......... BOLT

Figure (4-5) (13).........BEARING
(14)........ BODY
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F ig u r e  (4 -6 )



VEE BLOCK

(15 )....... VEE BODY
(16 )....... FINE THREAD
(17 )....... GUIDANCE
(18 )....... ADJUSTING BOLT



MOVABLE JAW
(19 )........ MOVABLE JAW
(20 ).........CYLINDER
(21 ).........COVER
(22 ).........SPRING
(23 )....... LEAD SCREW
(24 )....... CLAP RING

V
(25 )........BEARINGS
(2 6)...... HOUSING BODY



The sp r in g  m a te r ia l  i s  s t a i n l e s s  s t e e l  A l l  p r e v io u s  

p a r ts  were manufactured a t  th e  workshop o f  th e  s c h o o l ,  

ex cep t  th e  sp r in g ,  and th e  c l i p - r i n g  th e  th r u s t  b e a r in g s  

were purchased from FAG Ir e la n d  .

(4)- motor set and base

F igu re  ( 4 -8 ) ,  shows th a t ,  t h i s  s e t  c o n s i s t s  o f  a mass 

made o f  Aluminum H30 And th e  g e n e r a l  b ase  which i s  made 

o f  th e  same m a r t ia l  

These two p a r t s ,  a l s o  were m anufactured a t  th e  workshop 

o f  th e  sch o o l

4 - 3 -2 - 3  S l id in g  mechanism

A l i n e a r  movement, w ith  a c o n s ta n t  v e l o c i t y  

sh ou ld  be p ro v id ed  to  th e  o b je c t  under t e s t  in  order to  

perform th e  form in s p e c t io n

The s l i d i n g  mechanism was d e s ig n e d  t o  p ro v id e  t h i s  

movement I t  c o n s i s t s  o f  a c a r r ia g e  w ith  a r o l l e d  th read  

b a l l  screw and a s i n g l e  nut w ith  f la n k  " r e fe r e n c e  No 

15 32-4 -6003 , le a d  d e v ia t io n  dP300 = 50 micron " , four  

b a l l  bu sh ings w ith  se l f -A lig n m e n t  f e a t u r e ,  c lo s e d  ty p e  " 

r e fe r e n c e  No 06 70 -210-40 , h 7 / j s 7 ,  w e igh t 0 .017  Kg, and 

c a r r y in g  part

The support m asses are f i x e d  t o  th e  main b a se  Two 

guidance s h a f t s  are f ix e d  t i g h t l y  to  th e  support m asses  

F in a l l y  a s e t  o f  th r u s t  b e a r in g s  f i x e d  i n s id e  th e  support  

m asses
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MOTOR SE T

(27 ).......COUPLING
(28 )...... MASS
(29 )..... MOTOR



(28)

Figure (4-8)





The r o l l e d  th read  b a l l  screw i s  jo in e d  to  th e  d r iv in g  

motor through c o u p lin g  F igure (4-9) , i l l u s t r a t e s  t h e s e  

p a r ts

The d e s ig n  has one d egree  o f  freedom fo r  th e  movable  

p a r t s ,  s l i d i n g  fo r  th e  c a r r ia g e  , and r o t a t in g  fo r  th e  

r o l l e d  th read  b a l l  screw and th e  th r u s t  b e a r in g s  

The c a r r ia g e ,  c a r r y in g  p a r t ,  support masses and th e  main 

base  are made o f  Aluminum H30 While c o u p lin g  i s  made o f  

s i l v e r  s t e e l  These p a r t s  were manufactured a t  th e  

workshop o f  th e  sc h o o l

th r u s t  b e a r in g s  were purchased  from FAG Ir e la n d  

The r o l l e d  th read  b a l l  screw , s i n g l e  nut w ith  f la n k ,  

guidance s h a f t s  and th e  b a l l  b u sh in g s  were purchased from 

RHP b e a r in g s

I t  can be n o t ic e d  th a t  most o f  th e  p a r t s  were made o f  a 

l i g h t  w eight m a te r ia l  in  order to  reduce th e  moment o f  

i n e r t i a

F in a l l y ,  th e  f r i c t i o n a l  f o r c e s  were ig n o red , b ecau se  o f  

u s in g  th e  b a l l  b u sh ing , the, r o l l e d  th read  b a l l  screw  and 

s i n g l e  nut system

4 -3 -2  E le c t r o n ic  d e s ig n

Two im portant t a s k s  are req u ire d  o f  our e l e c t r o n i c  

e le m e n ts ,  th o se  are-

(1)- Driving the mechanical parts
(2)- Translate the stylus movements into a usable 

output
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(30)

Figure (4-9) SLIDING MECHANISM
\

(30 ).....U MASS
(31 )....CARRIAGE
(3 2  ) ..........MASS

(33 )....GUIDANCE SHAFT
(34 )....LEAD SCREW

 ̂ (35).... BEARINGS
(3 6)....LEAD SCREW
(37 ).... COUPLING
(38 ).... MOTOR SHAFT
(39) .....GENERAL BASE
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4-3-2-1 Motors

<1>- The basic DC motor operation

Direct-current m otors (DC) are  one o f  th e  most 

w id e ly  used in  c o n tr o l  sy s tem s  and th e y  have many 

a p p l i c a t io n s  in  computer p e r ip h e r a l  equipm ent.

The DC motor i s  b a s i c a l l y  a torq u e  tra n sd u c er  t h a t  

c o n v e r ts  e l e c t r i c a l  energy i n t o  m echan ica l energy  The 

to rq u e  develop ed  on th e  motor s h a f t  i s  d i r e c t l y  

p r o p o r t io n a l  to  th e  f i e l d  f l u x  and th e  armature cu rren t  

The r e la t io n s h ip  between th e  d e v e lo p e d  to rq u e , f l u x ,  and 

cu r re n t  i s .

a l s o ,  th e  r e l a t io n s h ip  between t h e  back (emf) and s h a f t  

v e l o c i t y  i s

E quation (4-9) and (4-10) from th e  b a s i c  o f  DC motor 

o p e r a t io n ,  fo r  fu r th e r  d e t a i l  s e e  r e f  , [58]

(2)- Factors of selecting- motor

Two se p a r a te  f ig u r e s  are  needed when s e l e c t i n g  a 

DC motor

(a)- A peak to rq u e , b e in g  th e  sum o f  a c c e le r a t i o n

T. = K  - 4> I. (4-9)

(4-10)

J

107



<b)- A co n tin u o u s  torque which i s  th e  f r i c t i o n  

component on ly  

th e  torque produced by th e  motor i s  g iv e n  by :

T * k*. I (4 -1 1 )

The ch o ice  o f  motor and d r iv e  must s a t i s f y  t h e  f o l lo w in g  

c o n d i t io n s .

1 -  The product o f  kt and con tin u ou s d r iv e  c u r r e n t  must 

g iv e  the  r e q u ire d  peak torque

2- The product o f  k t and con tin u ou s d r iv e  c u r r e n t  must 

produce s u f f i c i e n t  con tin u ou s to r q u e .

3 -  The maximum a l lo w a b le  motor cu rren t must be g r e a t e r  

than the  peak d r iv e  cu rren t

4- At maximum speed  and peak c u r r e n t ,  th e  v o l t a g e  

developed a c r o s s  th e  motor must be l e s s  than  80% o f  

th e  d e v ic e  su pp ly  v o l t a g e .

The v o lta g e  a c r o s s  th e  motor i s  g iv en  by [59]

E - k* v + RI (4-12)

( 3 ) -  Torque and inertia calculation

The moment o f  i n e r t i a  o f  s tan d a rd  m ech an ica l  

components can u s u a l ly  be c a lc u la t e d  q u i t e  e a s i l y  u s in g  

a few sim ple  form ula  These formula r e l a t e  t o  i n d iv id u a l  

components or p a r t s  o f  a system , and g e n e r a l ly  e a s i e r  t o  

u se  than com p osite  e x p r e s s io n s  fo r  an e n t i r e  system  which  

can be ra th er  d ou b tin g

The i n e r t i a  o f  any m echan ica l arrangement can be found by 

c o n s id e r in g  i t  as a s e r i e s  o f  in d iv id u a l  e le m e n ts ,

and frictional toques.
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s t a r t i n g  a t  th e  f i n a l  load  to  be moved and working back  

to  th e  motor Once a motor has been chosen We add i t s  

own i n e r t i a  to  th e  r e s t  o f  th e  system

Most c y l i n d r i c a l  components ( s h a f t ,  d i s c s ,  p u l le y s  e t c  ) 

w i l l  be made o f  s t e e l  or aluminium, in  which c a se  th e  

i n e r t i a  can be c a lc u la t e d  very  q u ic k ly  Use th e  g e n e r a l  

form ula fo r  o th er  m a te r ia ls  For h o llo w  c y l in d e r s ,  

c a l c u l a t e  th e  i n e r t i a  as th e  d i f f e r e n c e  o f  two s o l i d  

c y l i n d e r s .

For " m etr ic  system"

For steel j = D4 L/1300 (4-13)

For aluminium j = D*L/3800 (4-14)

Appendix (A 4-1), g iv e s  th e  form ula which are used fo r  

t h i s  c a l c u l a t io n s

(4)- Technical specification of selected motors

A steel geared  11 medium duty 11 motor i s  s e l e c t e d  

t o  d r iv e  th e  clam ping and r o t a t in g  mechanism 

This motor has th e  t e c h n ic a l  s p e c i f i c a t i o n  g iv e n  in  

Appendix (A 4-2 ) , and bought from R a d io n ics ,  Herberton  

road D ublin 12

While a heavy duty motor i s  s e l e c t e d  to  d r iv e  th e  s l i d i n g  

mechanism and i t  bought from th e  same company t h i s  motor 

has th e  t e c h n i c a l  s p e c i f i c a t i o n  g iv en  in  th e  Appendix 

(A4-3)
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4 - 3 - 2 - 2  L i n e a r  V a r i a b l e  D i f f e r e n t i a l  Transformer(LVDT)

A b a s i c  e l e c t r o n i c  m easuring system  i s  shown in  

f ig u r e  (4-10) I t  c o n s i s t s  o f

( D -  The tra n sd u cer  (or s e n s o r ) , which c o n v e r ts  th e  

measurand in t o  a u sa b le  e l e c t r i c a l  output

(2 ) “ The s ig n a l  c o n d i t io n e r ,  which c o n v e r ts  th e  

tran sd u cer  output in t o  an e l e c t r i c a l  q u a n t i ty  

s u i t a b l e  fo r  proper o p e r a tio n  th e  d i s p la y  d e v ic e

( 3 ) -  The power su p p ly , which fe e d s  th e  req u ired  

e l e c t r i c a l  power t o  th e  s ig n a l  c o n d i t io n e r ,  

p ro v id es  e x c i t a t i o n  fo r  a l l  ex cep t  " s e l f  

g e n e r a t in g  " ty p e s  o f  tr a n sd u c e r s ,  and may a l s o  

fu r n ish  e l e c t r i c  power to  c e r t a in  ty p e s  o f  d i s p la y  

d e v ic e s

( 4 ) -  The d is p la y  d e v ic e  (or read o u t ) , which d i s p la y s  

th e  req u ired  in fo rm a tio n  about th e  measurand [15]

An im portant d isp la cem en t tra n sd u cer  e x t e n s i v e l y  used  

fo r  many i n d u s t r i a l  and m edica l a p p l i c a t io n s ,  th e  l in e a rX

v a r ia b le  d i f f e r e n t i a l  tran sform er  [1 3 ] ,  [15] U su a l ly

r e f e r r e d  to  LVDT or sometimes a d i f f e r e n t i a l  tra n sfo rm er

(a)- The basic operation of the LVDT

This sen so r  i s  a tran sform er w ith  a s i n g l e  

primary w indings and two i d e n t i c a l  secondary w indings  

wound on a tu b u la r  fe r r o -m a g n e t ic  former The primary  

w inding i s  e n e r g is e d  by an a c v o l ta g e  o f  am plitude Vs, 

frequ en cy  f s  Hz, th e  two se c o n d a r ie s  are con n ec ted  in
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s e r i e s  o p p o s i t io n ,  so th a t  th e  output v o l ta g e  

Vout X Sm  (2 x 3 14 x f s  t  + 0) 

i s  th e  d i f f e r e n c e  ( Vx-V2 ) o f  th e  v o l t a g e  induced m  th e  

s e c o n d a r ie s  A ferrom agn etic  core  or p lu nger  moves i n s id e  

th e  former, t h i s  a l t e r s  th e  mutual in d u ctan ce  between th e  

primary and s e c o n d a r ie s .

' With th e  core  movement th e  secondary v o l t a g e s  are  

i d e a l l y  equal so th a t  Vout + 0 . With th e  core  in  th e  

former, V 1 and V2 change w ith  core  p o s i t i o n  x, c a u s in g  

am plitude Vout and phase 0 t o  change, th e  r e l a t i o n s h i p s  

between Vout, 0 and x are shown in  f ig u r e  (4-11) We se e  

t h a t  th e r e  i s  a n u l l  p o in t  c a t  th e  c e n tr e  o f  th e  se n so r  

(x =1/2  L ) where Vout = 0 ( i d e a l l y ) ,  here th e r e  i s  equal  

c o u p lin g  between th e  primary and se c o n d a r ie s ,  so t h a t  Vx 

= V2 At th e  p o in t s  A and B equal spaced e i t h e r  s id e  o f  

th e  n u l l  p o in t ,  Vout has th e  same v a lu e  VQ However, a t  A 

th e  output v o l t a g e  i s  180 out o f  phase w ith  th e  primary  

v o l t a g e  i  e 0 = 0°, (Vt > V2) N o n - l in e a r  e f f e c t s  occur a t  

e i t h e r  end (D and E) as th e  core  moves to  th e  edge o f  th e  

former [11]

(b) -  Characteristics of the LVDT

C h a r a c t e r i s t ic s  o f  th e  LVDT in c lu d e  th e  f o l lo w in g

(1 ) -  R e so lu t io n  i s  e x c e l l e n t

( 2 ) -  H y s te r e s i s  i s  very  sm all

( 3 ) -  Response and dynamic c h a r a c t e r i s t i c s  are e x c e l l e n t

(4)- Temperature c h a r a c t e r i s t i c s  are e x c e l l e n t
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(5)- V ib ra t io n  and env iron m en ta l s e n s i t i v i t y  are  good.

(6)- L in e a r i ty ,  m echanical o v e r lo a d  c a p a b i l i t i e s ,  and 

l i f e  are e x c e l l e n t  [1 3 ] .

(O- The major advantages of the LVDT.

The major advantages o f  th e  l in e a r  v a r ia b le  

d i f f e r e n t i a l  tran sform er  are  as f o l lo w

(1)- There is no frictional contact between the core and 
the coil and therefore the LVDT has a longer life
than a potentiometer

(2)- Infinite resolutionJ[62]

(d)- Technical specification of selected LVDT

Selected  LVDT was o f  ty p e  o f  GT x 2500, i t  has th e  

t e c h n i c a l  s p e c i f i c a t i o n  shown in  th e  Appendix (A4-4)

T his sen sor  was purchased from R D P e l e c t r o n i c  Ltd 

Wolverhampton, England.

The com plete in fo rm a tio n  are  g iv e n  by i t s  c a ta lo g u e  

This sen so r  has an adequate range , r e s o l u t io n ,  and 

a c c u r a te  enough fo r  th e  measurement

4-4 Computer interfacing and signal processing

In our world v a r ia b le s  are tem p era tu re , p r e s s u r e ,  

e t c  , but our computer can o n ly  cope w ith  encoded b in a ry  

( d i g i t a l )  numbers which r e p r e se n t  th e  v a r ia b le s  The
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f i r s t  s te p  m  th e  ch a in  from any r e a l  world v a r ia b le  t o  

a number in  th e  computer i s  c a l l e d  tr a n sd u c e r ,  or  

o c c a s io n a l ly  a s e n s o r .

4 -4 -1  Computer interfacing

With a l l  th e  s i g n a l s  in  d i g i t a l  form i t  rem ains t o  

connect to  th e  computer and have them read i n .  The 

con n ection  p o in t  i s  what i s  t r a d i t i o n a l l y  regarded  as an 

in t e r f a c e

D e f in i t io n s  o f  an i n t e r f a c e  are d i f f i c u l t  as th e  term  

co v ers  so much An i n t e r f a c e  i s  a boundary betw een a 

c o n tr o l  d ev ice  and a con n ected  d e v ic e  or d e v ic e s  which  

may not in c lu d e  c o n t r o l l i n g  l o g i c ,  such as a t r a n sd u c e r ,  

a p e r ip h e ra l  or an oth er  p r o c e sso r

An in t e r f a c e  i s  th e  d e f i n i t i o n  o f  th e  l o g i c a l ,  

e l e c t r i c a l  and p h y s i c a l  p r o p e r t i e s  o f  th e  boundary, but 

th e  d e f i n i t i o n  has t o  be extend ed  fu r th e r  to  p r o t o c o l s  as  

any in t e r f a c e  t h e s e  days i s  com bination o f  both  hardware 

and softw are

The ba lan ce  o f  hardware and so ftw a re  can u s u a l ly  be 

v a r ie d ,  one way g i v in g  g r e a t e r  speed o f  o p e r a t io n  and th e  

o th er  way red u c in g  th e  c o s t  o f  th e  c o n n e c t io n  The 

i n t e r f a c e  does not have t o  be a s i n g l e  boundary as th e  

d e f i n i t i o n  can be o f  th e  v i s i b l e  bou nd aries  su rroun d in g  

some l o g i c  p r iv a t e  t o ,  and in c lu d e  in ,  a s o - c a l l e d  t h i c k  

i n t e r f a c e .

The o r g a n iz a t io n  o f  th e  i n t e r f a c e s  and th e  in p u t /o u tp u t  

system  in  g e n e ra l  has a b ea r in g  on th e  a r c h i t e c t u r e  o f
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th e  o v e r a l l  system  The use  o f  i n t e r f a c e s  and standard  

i n t e r f a c e s  in  p a r t i c u la r ,  a l s o  im pacts on h i g h - l e v e l  

lan gu a ges  which u n t i l  very  r e c e n t ly  have been n o ta b le  fo r  

t h e i r  in ad eq u ate  h an d lin g  o f  Input/O utput th e  use  o f  

n g o u s l y  d eve lo p ed  i n t e r f a c e  standards cou ld  be m irrored  

by th e  developm ent o f  standard  language c o n s tr u c t s  to  

perm it th e  so ftw a re  p a r ts  t o  be h ig h  l e v e l  ra th er  than  

th e  assem bly language a d d it io n  needed fo r  f u l l  BASIC, 

FORTRAN or PASCAL in p u t /o u t p u t .

4-4-2 Signal conversion DIGITAL TO A NALOG (D/A)

Computers on ly  op erate  on d i g i t a l  v a lu e s  and so  

any a n a log  s i g n a l s ,  l i k e  most s i g n a l s  from th e  r e a l  

w orld, must be con verted  to  th e  n e a r e s t  d i g i t a l  

r e p r e s e n ta t io n  to  th e  d e s ir e d  accuracy ( p lu s  or minus 

one h a l f  o f  th e  l e a s t  s i g n i f i c a n t  b i t  ) th e  bounded 

i n f i n i t e  s e t  o f  analog  v a lu e s  i s  q u a n t iz ed  to  a d e s e c r a te  

s e t  o f  d i g i t a l  v a lu e s  by comparing th e  unknown input w ith  

known d i g i t a l  e q u iv a le n t  v a lu e s  to  f in d  th e  n e a r e s t  

match

Thus b e f o r e ,  c o n s id e r in g  ana log  to  d i g i t a l  co n v ers io n  we 

sh ou ld  look  a t  d i g i t a l  to  analog  c o n v e r te r s  which cou ld  

p ro v id e  th e  known d i g i t a l  e q u iv a le n t  v a lu e s  as ou tp u t.  

D/A c o n v e r te r s  e i t h e r  p ro v id e  v o l ta g e  or cu rren t ou tp uts  

but fo r  g r e a t e s t  speed th ey  sw itc h  c u r r e n ts  i n t e r n a l l y .  

Current s t e e r i n g  i s  f a s t e r  because  th e  r e fe r e n c e  current  

i s  not sw itc h e d  on or o f f  and th e  on ly  s i g n i f i c a n t  

v o l t a g e  changes are th e  req u ired  ones
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The b a s ic  tech n iq u e  i s  t o  apply th e  d i g i t a l  p a t t e r n  v ia  

a s e t  o f  sw itc h e s  on to  a p r e c i s i o n  r e s i s t e r  network to  

which an a ccu ra te  r e fe r e n c e  v o l t a g e  sou rce  i s  co n n ected  

The output then  i s  th e  sum o f  th e  s e l e c t e d  cu rren t and i s  

output e i t h e r  as th e  cu rren t or con verted  by an 

o p e r a t io n a l  a m p l i f ie r  to  v o l ta g e

4 - 4 - 3  Signal conversion Analog to Digital (A/D)

Most o p e r a t io n s  in v o lv in g  computers have two 

extrem es fo r  th e  performance o f  t h e i r  a lg o r ith m s They 

can be f u l l y  p a r a l l e l  or f u l l y  s e r i a l  There are a l s o  

many in te rm e d ia te  forms, in  many c a s e s ,  combining s e r i a l  

and p a r a l l e l  com putation

Analog to  d i g i t a l  (A/D) c o n v e rs io n  i s  no e x c e p t io n ,  th e  

f a s t e s t  c o n v e r te r s  are f u l l y  p a r a l l e l ,  th e  ch ea p est  f u l l y  

s e r i a l

The An A/D c o n v e r ter  u s in g  a s e r i a l  a lgo r ith m  needs th e  

a b i l i t y  to  g e n e ra te  th e  com plete  s e t  o f  d i s c r e t e  an a log  

v a lu e s  one at a tim e The unknown in p u t i s  then  compared 

w ith  t h e s e ,  in  some order, to  determ ine  which i s  n e a r e s t  

approxim ation Hence, a D/A c o n v e r te r  and a comparator  

are th e  on ly  n e c e ssa r y  hardware e lem en ts  [63]

4 -4 -4  Interfacing the motors and the LVDT

A s p e c i a l  arrangements were d e s ig n ed  in  order  to  

c o n tr o l  motors and p r o c e s s in g  th e  d i f f e r e n t  s i g n a l s ,
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an a log  and d i g i t a l ,  c o n s id e r in g  th e  v a r io u s  p r e v io u s  

p r i n c ip l e s  and requirem ents

F igu re  (4—1 2 ) ,  i l l u s t r a t e s  t h e s e  arrangement as two 

s e c t i o n s ,  th e  f i r s t  one concern motors and c o n s i s t s  o f  

two m otors, a m p l i f ie r ,  p r o t e c t io n  box and d i g i t a l  to  

analog  co n v erter  i s  co n n ected  to  p e r so n a l  computer 

While the  second s e c t i o n  c o n s i s t s  o f  th e  LVDT, 

tra n sd u cer  a m p l i f ie r ,  p r o t e c t io n  box Analog t o  d i g i t a l  

c o n v e r te r  and th e  same p e r so n a l  computer which i s  

connected  to  d i g i t a l  p r in t e r  

A lso , two m eters were used  t o  m onitor th e  change m  th e  

output and input The d e s c r ip t io n s  o f  t h e s e  e lem en ts  are  

as fo l lo w s

4-4-4-1 Signal conversion Digital to Analog (D/A)

- DAC-02 Description

The co n v e r ter  used t o  change th e  d i g i t a l  s ig n a l  

coming from th e  computer to  c o n tr o l  th e  movement and 

v e l o c i t y  o f  th e  motors was o f  ty p e  DAC-02 

This card c o n s i s t s  o f  two se p a r a te  double b u f fe r e d  12 b i t  

m u lt ip ly in g  D/A ch an n els  p lu s  i n t e r f a c e  c i r c u i t y  The D/A 

c o n v e r te r s  may be used  w ith  a f i x e d  D C r e f e r e n c e s  as 

c o n v e n t io n a l  D/A's on board r e fe r e n c e s  o f  -5  V and -10  

V prov id e  output ranges o f  0-5  V, 0-10 V, + / -5  V and + / -  

10 V , and 4-20 mA fo r  p r o c e s s  c o n tr o l  cu rren t  lo o p s  

A l t e r n a t i v e ly ,  th e  D /A 's , may be op erated  w ith  a v a r ia b le  

or A C r e fe r e n c e  s ig n a l  as m u lt ip ly in g  D /A 's , th e  output
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i s  th e  product o f  r e fe r e n c e  and d i g i t a l  in p u t s .  With an 

A C r e fe r e n c e ,  th e  u n ip o la r  o u tp u ts  p ro v id e  2 quadrant  

m u l t i p l i c a t i o n  and th e  b ip o la r  o u tp u ts  p r o v id e  4 

quadrant, o p e r a t io n  12 b i t  accu racy  i s  m ain ta ined  up t o  

1kHz. S in ce  da ta  i s  12 b i t s ,  da ta  i s  w r i t t e n  t o  each  D/A 

in  2 c o n s e c u t iv e  b y te s  The f i r s t  b y te  i s  th e  l e a s t  

s i g n i f i c a n t  and c o n ta in s  th e  4 l e a s t  s i g n i f i c a n t  b i t s  o f  

data The second b y te  i s  th e  most

s i g n i f i c a n t  and c o n ta in s  th e  most s i g n i f i c a n t  8 b i t s  o f  

data  The l e a s t  s i g n i f i c a n t  b y te  i s  u s u a l ly  w r i t t e n ,  

f i r s t  and i s  s to r e d  in  an in te r m e d ia te  r e g i s t e r  in  th e  

A/D, having no e f f e c t  on th e  output When th e  most 

s i g n i f i c a n t  data  and p r e se n te d  " b ro a d s id e  " t o  th e  D/A 

c o n v e r te r  thus a s s u r in g  a s i g n a l  s t e p  update T h is  

p r o c e s s  i s  known as double  b u f f e r in g

The DAC-02 i s  packaged on a 5" lon g  { h a l f - s l o t  } board  

s u i t a b l e  fo r  u se  in  a l l  models o f  IBM P C S  i t  i s  

ad d ressed  as an I/O d e v ic e  u s in g  8 I/O l o c a t i o n s ,  and may 

have i t s  I/O add ress s e t  by means o f  an on-board DIP 

sw itc h  t o  any 8 b i t  boundary in  th e  255-1023 (decim al)  

I/O address sp ace  The board u s e s  th e  i n t e r n a l  +5V, + 12V 

and 12V computer s u p p l ie s  and consumes 850 m i l l i - w a t t s  o f  

power [64] F igu re  (4 -1 3 ) ,  i l l u s t r a t e  t h i s  card W hile,  

Appendix (A 4-5 ), g iv e s  i t s  th e  s p e c i f i c a t i o n

4-4-4-2 Signal conversion ANALOG TO DIGITAL (A/D)

Without t h i s  board s i g n a l s  from th e  l i n e a r  

v a r ia b le  d i f f e r e n t i a l  tra n sfo rm er  (L V D T) , w i l l  have no
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meaning, t h e r e f o r e  a c o n v e r te r  o f  ty p e  DASH-8 c o n v e r t s  

th e  analog s i g n a l s  in to  d i g i t a l  one was s e l e c t e d .

-  Description of the DASH-8

The dash-8 i s  an 8 channel 12 b i t  h ig h  sp eed  

c o n v e r ter  and t im e r /c o u n te r  board IBM.PC The DASH-8 board  

i s  5 ” long and can be f i t t e d  m  a " h a l f  " s l o t  . A l l  

c o n n ection  are made through a s tan d ard  37 p in  D male  

con n ector  th a t  p r o j e c t s  through th e  rea r  o f  th e  com puter. 

The fo l lo w in g  fu n c t io n s  are implemented on th e  DASH-8

( 1 ) -  An 8 ch an n el, 12 b i t  s u c c e s s i v e  app rox im ation  A/D 

co n v erter  w ith  sample /  h o ld  The f u l l  s c a l e  in p u t  

o f  each channel i s  ended w ith  a common ground and 

can w ith stan d  a co n tin u o u s  over  lo a d  o f  + / -  30 v o l t s  

and b r i e f  t r a n s i e n t s  o f  s e v e r a l  hundred v o l t s

A l l  input are f a i l  s a f e  i  e open c i r c u i t  when th e  

computer power i s  o f f .  A/D c o n v e r s io n  t im e i s  

t y p i c a l l y  25 m icrosecond  (35 m icrosecon d  max. ) and 

depending on th e  speed o f  th e  so f tw a r e  d r iv e ,  

through p u ts  o f  up to  3 0 .000  c h a n n e ls  / s e c  are  

a t t a in a b le

( 2 ) -  An 8253 programmable co u n ter  t im er  p r o v id e  p e r io d ic  

in te r r u p ts  fo r  th e  A/D c o n v e r te r  and can  

a d d i t io n a l l y  be used  fo r  ev en t c o u n t in g ,  p lu s  and 

wave form g e n e r a t io n ,  freq u en cy  and p e r io d  

measurement e t c  There are th r e e  s e p a r a te  16 b i t  

down co u n te rs  in  th e  8253 One o f  t h e s e  i s  co n n ec ted

122



t o  a su b m u lt ip le  o f  th e  system  c lo c k ,  and a l l  I/O  

fu n c t io n s  o f  th e  rem aining two are a c c e s s i b l e  to  th e  

u ser

( 3 ) -  7 b i t  o f  TTL d i g i t a l  I/O are  p rov id ed  composed o f  

one output part o f  a b i t s  and one inp ut p o r t  o f  3 

b i t s

( 4 ) -  P r e c i s io n  +10 00 V o lt s  ( t / - 0 / v )  r e fe r e n c e  v o l ta g e  

output i s  d e r iv e d  from th e  A/D c o n v e r te r  r e fe r e n c e

( 5 ) -  An e x te r n a l  in te r r u p t  inp ut p rov id ed  th e  s e l e c t  any 

o f  IBM P C in te r r u p t  l e v e l s  2-7  and a l lo w s  u ser

programmed in te r r u p t  r o u t in e s  t o  p ro v id e  background  

data  a c q u i s i t i o n  or in te r r u p t  d r iv en  c o n t r o l  The 

DASH-8 in c lu d e s  s t a t u s  and c o n tr o l  r e g i s t e r s  th a t  

make in te r r u p t  handshaking a s im ple  procedure The 

in te r r u p t  input may be e x t e r n a l ly  co n n ected  to  th e  

t im e r /  counter  or any o th e r  t r i g g e r  so u r c e .

(6) -  IBM P C buss power (+5 ,+12 , 8-12v) i s  p rov id ed  

along  w ith  a l l  o th er  1/0 c o n n e c t io n  on th e  rear  

con n ector  This makes fo r  s im p le  a d d it io n  o f  u ser  

d es ig n ed  i n t e r f a c e s ,  inp ut s i g n a l  c o n d it io n in g  

c i r c u i t s ,  e x p r e s s io n  m u lt ip le x e r  e t c  F igu re  (4 -1 4 ) ,  

i l l u s t r a t e s  t h i s  card, [65] While Appendix (A 4-6 ) , 

g iv e s  i t s  s p e c i f i c a t i o n s

4 - 4 - 5  Specification of transducer amplifier type S7 M

The S7M i s  an o s c i l la t o r /d e m o d u la to r  (synchronous)

p r o v id in g  e x c i t a t i o n  and s ig n a l  c o n d i t io n in g  fo r  a wide

range o f  in d u c t iv e  tr a n sd u c e r s ,  or when f i t t e d  w ith  an
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input o p t io n  card , fo r  r e s i s t i v e  s t r a i n  gauges A + /-1 0  

output i s  o b ta in a b le  w ith  s ig n a l  in p u ts  in  th e  range 50 

mV t o  20V (lower w ith  o p t io n  z) High c u rren t  output  

o p t io n s  p ro v id e  + /-1 0  V a t  100 mA or 4-20 mA

In te r n a l  c o n t r o l s  s e t  g a in  and zero output (w ith  up t o  

100% su p p ress ion ) A lso  in c lu d e d  are z er o /r u n  sw itc h ,  

ov er-ra n ge  in d ic a t o r  (LED) and mounting p in s  fo r  e a s i l y  

changing b r id g e  inp ut o p t io n  r e s i s t o r s  and frequ en cy  

s e l e c t i o n  c a p a c ito r  The input o p t io n  in c lu d e s  a ( s h u n t ) ,  

c a l ib r a t io n  sw itc h  c o n n e c t in g  an in t e r n a l  p r e c i s i o n  (59K) 

r e s i s t o r ,  w ith  an on-board r e la y  a llow ed  remote CAL 

o p e r a tio n  S e le c t o r  l in k s  a l lo w  o p e r a tio n  from 120 or 240 

a c s u p p l ie s

The u n it  i s  s u i t a b l e  fo r  use  w ith  s t r a i n  gauges and th e  

com plete  range o f  R D P p r e ssu r e  and AC-LVDT Transducers  

[66] The t e c h n i c a l  s p e c i f i c a t i o n  o f  t h i s  a m p l i f i e r  i s  

g iv en  m  Appendix (A4-7)

4 -5  C a l ib r a t io n

There are two k in ds o f  c a l i b r a t io n  The f i r s t  one i s  

performed by th e  m anufacturer, and th e  second i s  

performed by th e  u s e r s  Motors, a m p l i f i e r s ,  c o n v e r te r s ,  

and tra n sd u cers  r e q u ir e  a s p e c i a l  c a l i b r a t io n  

The tra n sd u cer , o n ly  w i l l  be c o n s id er ed  as an example 

Transducer m anufacturer c a l i b r a t io n  c e r t i f i c a t e  in c lu d e s  

l in e a r  range, c a l  tem, c a l  loa d , s e n s i t i v i t y  and 

l i n e a r i t y  The u se r  c a l i b r a t i o n  aims to  f in d  out a 

c e r t a in  formula to  be used fo r  a s p e c i f i e d  purpose
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* The l in e a r  v a r ia b le  d e f e r e n t i a l  tran sform er  (LVDT) 

produces an e l e c t r i c a l  output p r o p o r t io n a l  to  th e  

disp lacem en t o f  a se p a r a te  movable core  

The output v o l t a g e  o f  an (LVDT) i s  a p r e c i s e l y  l in e a r  

fu n c t io n  o f  core  d isp lacem en t over a s p e c i f i e d  range o f  

motion C onsequently , a p lo t  o f  output v e rsu s  core  

d isp lacem en t i s  e s s e n t i a l l y  a s t r a i g h t  l i n e  w ith in  th e  

s p e c i f i e d  range o f  motion Beyond th e  nominal l in e a r  

range, th e  output b e g in s  to  d e v ia t e  from a s t r a i g h t  l i n e  

in  a g e n t l e  curve User c a l i b r a t io n  i s  accom plish ed  to  

i n d ic a t e s  th e  l in e a r  range Then u s in g  an a c cu ra te  

m easuring in stru m en t, th e  r e l a t io n s h ip  among th e  output  

and d isp lacem en t i s  found [13]

T h e o r e t ic a l ,  r e l a t io n s h ip  between output and 

d isp lacem en t i s  in  th e  form o f  l in e a r  e q u a t io n , in  

g e n e ra l  i t  has th e  fo l lo w in g  form:

Y = F(x) (4 -15)

C a l ib r a t io n  o f  GT X 2500, was r ep ea ted  f i v e  t im e , F igure  

(4-15) shows th a t  th e  c a l i b r a t io n  r e s u l t  i s  o f  a l in e a r  

form as th e  t h e o r e t i c a l  one

4 -6  Softw are  d e s ig n

Two se p a r a te  programs were d e s ig n ed  to  f i t  th e  

purpose o f  autom atic  in s p e c t io n ,  th e  f i r s t  one i s  to  

c o n tr o l  th e  motor movements a t  a c e r t a in  t im e to  a
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c e r t a i n  p o s i t i o n s . W hile, th e  secon d  has d i f f e r e n t  

t a s k s ,  l i k e  p r o c e s s in g  computing, comparing, d i s p la y in g ,  

p r i n t i n g  and p l o t t i n g  th e  r e s u l t s  t h e s e  programs were 

w r i t t e n  m  th e  BASIC language and th e y  may be a l s o  

co n v e r te d  t o  any o th e r  la n g u a g e s .
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CHAPTER FIVE

5-EXPERIMENTAL RESULTS

5 -1  The m easuring p r i n c i p l e .

The m easuring p r i n c i p l e  o f  th e  au tom atic  

m easuring system , i s  based  on moving a s t y l u s  a t  c o n s ta n t  

v e l o c i t y  a cro ss  th e  th r ea d  p r o f i l e  or th e  h e l i x  path  The 

r i s e  and f u l l  o f  t h e  s t y l u s  i s  d e t e c t e d  e l e c t r o n i c a l l y  

u s in g  an e le c tr o m e c h a n ic a l  s e n so r ,  th e  s ig n a l  i s  then  

a m p l i f ie d  and i n t e r f a c e d  t o  a p e r so n a l  computer  

F igu re  (5 -1 ) ,  shows th e  r e l a t i o n s h i p  between th e  b o l t  

movement and th e  s t y l u s  d isp la c e m e n t ,  fo r  th e  c a se  o f  

form in s p e c t io n ,  m  which th e  b o l t  moves a t  a c o n s ta n t  

v e l o c i t y  V2, w h ile  t h e  s t y l u s  which i s  f r e e  t o  move 

v e r t i c a l l y ,  f o l lo w s  th e  th read  form, th u s  th e  r i s e  and 

f a l l s  o f  the  s t y l u s  p r o v id e  th e  t r a c e  o f  th e  th rea d  form 

A lso ,  f ig u r e  ( 5 - 2 ) ,  shows th e  r e l a t i o n s h i p  between th e  

b o l t  movement and t h e  s t y l u s  d isp la ce m en t  fo r  th e  c a s e  o f  

h e l i x  in s p e c t io n  In t h i s  c a se  th e  b o l t  r o t a t e s  w ith  a 

c o n s ta n t  angular v e l o c i t y ,  a t  th e  same t im e ,  i t  i s  moving 

w ith  a co n sta n t  l i n e a r  v e l o c i t y  Vl; w h i le  th e  s t y l u s  i s  

f r e e  to  move on ly  in  th e  v e r t i c a l  d i r e c t i o n
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5 -2  The o p e r a t io n a l  c y c l e s

The in s p e c t io n  p r o c e s s  s t a r t s  from th e  i n i t i a l  

p o s i t i o n  and th e  r e s u l t s  are  d is p la y e d ,  im m ediately  a t  

th e  end o f  each o p e r a t io n a l  c y c l e .

The o p e r a t io n a l  c y c l e s  o f  th e  th read  m easuring system  

c o n s i s t s  o f  two b a s ic  c y c l e s .  These are*

( 1 ) -  T h e  h e l i x  p a t h  i n s p e c t i o n  c y c l e .

( 2 ) -  T h e  t h r e a d  f o r m  i n s p e c t i o n  c y c l e .

And each one o f  them, c o n s i s t s  o f  th e  fo l lo w in g  s t e p s

1 -  Clamping  th e  object

2- Stylus contact

3- Generating  th e  linear and the angular motions

4 -  Generating the linear motion

5- Releasing  th e  object and displaying the results

5-2-1 Clamping the object

The f i r s t  s t e p  o f  th e  o p e r a t io n a l  c y c l e s ,  i s  

clam ping th e  b o l t  between th e  f i x e d  and movable jaws 

F ig u re  ( 5 - 3 a ) , shows t h a t ,  th e  movable jaw should  be moved 

from a s p e c i f i e d  p o in t  ax to  anoth er  p o in t  a2 m  order to  

perform  th e  clam ping s t e p  a cco rd in g  to  th e  s p e c i f i e d  

d e s ig n  p r e ssu r e  The d i f f e r e n c e  between ax and a2 i s

a lw ays c o n sta n t  and equal to  Xx fo r  th e  same ty p e  o f
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b o l t  The p r e v io u s  movement i s  p rov id ed  by motor number 

one (mx) as a s p e c i f i e d  key i s  p r e sse d

The motor s t a r t s  r o t a t in g  c a u s in g  advance movement o f  th e  

movable jaw which moves l i n e a r l y  by th e  e f f e c t  o f  th e  

i n t e r n a l  guidance i n s id e  th e  f i x e d  c y l in d e r ,  U n t i l  i t  

g e t s  t o  th e  second p o in t  a 2 

D if f e r e n t  v e l o c i t i e s  can be a p p l ie d  t o  th e  movable jaw, 

one o f  t h e s e  v e l o c i t i e s  i s  V 2 which eq u a ls  25 mm/sec and 

r e p r e s e n t s  th e  maximum l in e a r  v e l o c i t y  

A lso ,  th e  d i s ta n c e  X x between th e  p o in t  a x and th e  p o in t

a 2 can be in c r e a se d  or d ecreased  and i t  depends on th e  

b o l t  s i z e

5-2-2 Stylus contact

The s t y l u s  c o n ta c t ,  r e p r e se n ts  th e  second s t e p  o f  

th e  o p e r a t io n a l  c y c l e s ,  see  f ig u r e  ( 5 - 3 b ) .

As soon as th e  clam ping jaw advances w ith  a c o n sta n t  

v e l o c i t y  Vx to  clamp th e  b o l t ,  th e  s t y l u s  advances w ith  a

c o n s ta n t  v e l o c i t y  V2 from p o in t  (b x) t o  p o in t  (b2) which  

i s  th e  r e fe r e n c e  p o in t  o f  th e  m easuring system  

A lso , th e  d i f f e r e n c e  between p o in t  b x and p o in t  (b2) ,

always e q u a ls  to  th e  c o n sta n t  d i s ta n c e  Yx.

5-2-3 Generating the linear and the angular m o t i o n s .

T h is  s t e p  aims to  perform th e  h e l i x  path
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in s p e c t io n  Once th e  s t y l u s  approaches th e  r e f e r e n c e  

p o in t  a t  the  root o f  th e  th r ea d , i t  t r i g g e r s  a micro  

sw itc h  fo r  s t a r t in g  motor number two (m2) , as shown m

f ig u r e  ( 5 - 3 c ) , which p r o v id e s  th e  l in e a r  m otion t o  th e  

b o l t  t a b l e  thereby moving i t  w ith  a c o n sta n t  v e l o c i t y .  

The b o l t  r o ta t e s  w ith  a c o n s ta n t  angular v e l o c i t y ,  a t  th e  

same tim e the  s t y l u s  moves a lo n g  th e  h e l i x  p a th , from 

p o in t  b 2 w ith  a c o n s ta n t  l in e a r  v e l o c i t y  V4 u n t i l  i t  g e t s

to  p o in t  b 3, which r e p r e s e n t s  th e  end o f  t h i s  s t e p

The in s p e c t io n  tim e and th e  t r a v e l l i n g  d i s t a n c e  are  

c o n t r o l l e d  through th e  so ftw a re  which are d e s ig n e d  w ith  

th e  c a p a b i l i t y  o f  p r o v id in g  a number o f  d i f f e r e n t  angu lar  

and l in e a r  v e l o c i t i e s  which are  req u ired  to  s e l e c t  th e  

optimum c o n d it io n s  fo r  o p e r a t in g  t h i s  system

5-2-4 Generating the linear motion

When the  s t y l u s  t r a v e l s  t o  p o in t  b 3, i t  t r i g g e r s  

aga in  another micro s w it c h e s .  The f i r s t  micro sw itc h  

s to p s  motor number one (ir^), w h ile  th e  second micro  

sw itc h  r e v e r se s  th e  r o t a t in g  d i r e c t io n  o f  motor number 

two (m2) . The s t y l u s  t r a c e s  t h e  form o f  th e  th r e a d  w ith

a c o n s ta n t  v e l o c i t y  V6 when i t  moves from p o in t  b 4 t o  b 1 

as shown m  f ig u r e s  (5-4a) and ( 5 - 4 b ) .

5-2-5 Releasing the object and displaying the re su lt s .

As soon a s ,  motor number two (m2), s to p s  a t  p o in t
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b l ,  an order  i s  g iv e n  to  motor number one (Hi!) to  s t a r t

r o t a t in g  m  order t o  withdraw th e  movable jaw t o  i t s

i n i t i a l  p o s i t i o n .  The same o p e r a t in  i s  perform ed on th e

s t y l u s ,  and th e  r e s u l t s  o f  i n s p e c t in g  e i t h e r  th e  h e l i x  

path or th e  form are d is p la y e d  on th e  sc r e e n  and then

p l o t t e d  or p r in t e d  as r eq u ire d . See f i g u r e  (5 -4c)

5-3 E xp erim enta l procedure.

The ex p er im en ta l  procedure in c lu d e s ,  c a l i b r a t i o n s  

and recom m endations.

5 -3 -1  Calibrations

Two d i f f e r e n t  k inds o f  c a l i b r a t i o n  p roced u res  are  

req u ire d  fo r  th e  autom atic  m easuring sy stem . The f i r s t  

c a l i b r a t i o n  procedure i s  fo r  th e  e l e c t r o n i c  e lem en ts  

which i s  n e c e s s a r y  fo r  d e v e lo p in g  th e  so f tw a r e  And th e  

second c a l i b r a t i o n  procedure i s  fo r  th e  m echan ica l  

mechanisms. This i s  n e c e ss a r y  b e fo r e  s t a r t i n g  th e  

o p e r a t io n a l  c y c l e s  fo r  each b o l t  s i z e .

(1)- Calibration of the electronic elements

One of the electronic elements which requires. 
Calibration is the linear variable differential 
transformer (LVDT). The calibration of this element is 
the most important, because it affects the software and 
signal processing. The (LVDT) calibration is required to
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f in d  out th e  r e l a t io n s h ip  between th e  output o f  th e  

(LVDT) so an e l e c t r i c a l  s i g n a l s  ( v o l t s )  and th e  

e q u iv a le n t  d i s ta n c e  q u a n t ity  as d isp la ce m en t ,  g iv e s  as  

m etr ic  u n i t s  This r e l a t io n  has been used  fo r  d e v e lo p in g  

th e  v a r io u s  so ftw a re

The tra n sd u cer  a m p l i f ie r  S7M has been c a l ib r a t e d  t o  g iv e  

an output m  one d ir e c t io n  o n ly ,  and th e  c a l i b r a t i o n  

procedure i s  o u t l in e d  in  the  m anufacturer c a ta lo g u e  

F in a l ly ,  th e  two c o n v e r te r s  ( DASH-8 and DAC-02 ) ,  have 

been c a l ib r a t e d  accord ing  t o  th e  m anufacturer  

s p e c i f i c a t i o n

(2)- Calibration of the mechanical elements

The l e v e r  and th e  clam ping mechanisms sh ou ld  be 

c a l ib r a t e d  once b e fo r e  o p e r a tin g  th e  system  

These c a l i b r a t io n  are req u ired  in  order to  a d ju s t  th e  

d is ta n c e  x lf between th e  movable jaw and th e  s id e  o f  th e

b o l t  A lso  th e  same, i s  r eq u ired  fo r  th e  d i s ta n c e  Ylf

between th e  s t y l u s  t i p  and th e  r e fe r e n c e  p o in t  b 2

The mam d i f f e r e n c e  between c a l i b r a t i n g  an e l e c t r o n i c  

elem ent and a m echanical one i s  t h a t  e l e c t r o n i c  e lem en ts  

are c a l ib r a t e d  on ly  once b e fo re  d e v e lo p in g  th e  d i f f e r e n t  

so ftw a re  and no need to  c a l i b r a t e  them aga in  u n le s s  

o th e rw ise  a d e f e c t  or f a i lu r e  i s  d e t e c t e d  when th e y  are  

working

While th e  m echanical c a l i b r a t io n  sh ou ld  be r ep ea ted  

when another  s i z e  o f  b o l t  i s  r e q u ire d  to  be in s p e c te d
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The recommendation and n o te s  in c lu d e  th e  d i f f e r e n t  

ch eck in g  s t e p s  which must be accom plish ed  b e fo r e  

o p e r a t in g  th e  m easuring system  These s t e p s  form th e  

s a f e t y  f a c t o r  o f  u s in g  t h i s  sy stem , a t  th e  same t im e ,  

in c r e a s e  th e  accuracy  o f  th e  sy s tem . T h erefore  , th e  

f o l lo w in g  e lem en ts  must be check ed , m  order t o  en su re  

th a t  th e y  are  f i x e d  w ith in  th e  hand t ig h t e n e d  f o r c e s :

( 1 ) -  The g e n e r a l  b a s e .

( 2 ) -  The s t y l u s  .

( 3 ) -  The l in e a r  v a r ia b le  d i f f e r e n t i a l  tra n sfo r m er .

( 4 ) -  A l l  a d j u s t in g  b o l t s .

A lso ,  i t  i s  n e c e s s a r y  to  en su re  t h a t  a l l  e l e c t r i c a l

c o n n e c t io n  are  f i x e d  in  th e  r ig h t  p o s i t i o n  o f  t h e s e  are*

1 -  Motor c o n n e c t io n s

2 -  LVDT c o n n e c t io n s

A fte r  t h a t ,  i t  i s  p r e f e r a b le  t o  t r y  o n ly  one  

o p e r a t io n a l  c y c l e ,  and compare th e  r e s u l t s  w ith  th e  

t h e o r e t i c a l  one to  en su re  th a t  th e  m easuring system  i s  

working w ith in  th e  d e s ig n  s p e c i f i c a t i o n s .

5 -4  I n s p e c te d  o b j e c t s .

The in s p e c t e d  o b j e c t s  used  fo r  th e  e x p e r im e n ta l ,

5-3-2 Recommendations
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were a s e t  o f  an ISO m etr ic  male screw th rea d  (b o l t )  

These b o l t s  were o f  6g c l a s s ,  and t h e i r  l i m i t s  and 

to le r a n c e s  are g iv en  by th e  t a b l e  (5 ) ,  o f  s e c t i o n  f o u r -  

screw th r ea d s  (BS 3643 ) . Some o f  t h e s e  b o l t s  were

m anufactured by tu r n in g  The o th e r  were m anufactured by 

r o l l i n g

D i f f e r e n t  s i z e s  o f  t h e s e  b o l t s  were in s p e c te d  u s in g  t h i s  

autom atic  m easuring sy stem . The minimum s i z e  was M3. 

While th e  maximum s i z e  was M36 The s p e c i f i c a t i o n s  o f  

t h e s e  b o l t s  are g iv e n  in  th e  BS 3643

5-5 Linear and angular velocities.

Two ty p e s  o f  v e l o c i t i e s  are  req u ired  to  perform  th e  

form and h e l i x  path  i n s p e c t i o n s .

The minimum l in e a r  v e l o c i t y  u sed  fo r  form in s p e c t io n  was 

o f  range 0 5 mm/sec and th e  minimum angular v e l o c i t y  used  

fo r  h e l i x  in s p e c t io n  was o f  range o f  1 .4 8  r a d /s e c  W hile  

th e  maximum l in e a r  v e l o c i t y  used  fo r  form in s p e c t io n  was 

o f  range o f  2 mm/sec, and th e  maximum angular v e l o c i t y  

used fo r  h e l i x  path  in s p e c t io n  was o f  range 6 25 r a d / s e c  

o th er  v e l o c i t i e s  w i l l  be i l l u s t r a t e d  through th e  f i g u r e s

which are r e p r e se n te d  our ex p er im en ta l r e s u l t s .

Form and h e l i x  pa th  i n s p e c t io n s  were performed fo r  th r e e  

d i f f e r e n t  s i z e s  o f  an ISO m e tr ic  screw th read s ( B o l t s ) ,  

t h e s e  are c o n se q u en t ly :  M6, M8 and M16.

5-6 Experimental results.
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5-6-1 Experimental results of M6

Three d i f f e r e n t  v e l o c i t i e s  were used  to  perform  

th e  in s p e c t io n s  t h e s e  were 0 .5 ,  0 83 and 1 .2 5  mm/sec 

W hile on ly  two angular v e l o c i t i e s  were used  fo r  h e l i x  

in s p e c t io n  t h e s e  were. 3 13 and 8 .3 3  r a d / s e c

i
5-6-1-1 Form inspection

F igu re  ( 5 -5 ) ,  shows th e  r e s u l t  o f  in s p e c t in g  

th e  form o f  M6 u s in g  th e  lo w e s t  v e l o c i t y  0.5 mm/sec. 

A lso ,  f ig u r e  ( 5 - 6 ) ,  i l l u s t r a t e s  th e  r e s u l t s  o f  in s p e c t in g  

th e  same b o l t  u s in g  another v e l o c i t y  0 .8 3  mm/sec While 

f i g u r e  (5-7) r e p r e se n t  th e  r e s u l t s  o f  th e  same thread  

u s in g  v e l o c i t y  eq u a l to  1 25 mm/sec.

5-6-1-2 Helix path inspection

F igu re  ( 5 - 8 ) ,  i l l u s t r a t e s  r e s u l t  o f  in s p e c t in g  

th e  h e l ix  path  o f  M6 u s in g  angu lar  v e l o c i t y  equal to  

3 125 r a d /s e c  fo r  one thread  o n ly .  W hile f i g u r e  (5 -9 ) ,  

shows the  v a r ia t i o n  o f  th e  same b o l t  fo r  f i v e  th read s  

u s in g  an angu lar  v e l o c i t y  equal to  3 125 r a d / s e c .

5-6-2 Experimental results o f  MQ

Five d i f f e r e n t  l in e a r  v e l o c i t i e s  were used to  

perform  th e  t a s k  o f  form i n s p e c t i o n s . These are  

c o n se q u en t ly  ( 0 .5 ,  0 83, 1 25, 1 66 and 2 ) mm/sec.
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H (mm)

17H/24 = 0.606 mm 
H = 0.865 mm 
P = 0.989 mm

Figure (5-5)
FORM inspection of 

M6, velocity 0.5 mm/sec.
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H = 0.853 mm 
P = 0.985 mm

17H/24 = 0.604 mm

Figure (5-6)
FORM inspection of 

M6/ velocity 0.83 mm/sec
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H (mm)

17H/24 = 0.601 mm 
H = 0.848 mm 
P = 0.980 mm 

= 29.989

Figure (5-7)
FORM inspection of 

M6, velocity 1.25 mm/sec
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3 * 18.60 no 
MAX.d«v.- 0.052 w

Y

Figure (5-8)
HELIX inspection of 

M6# one revolution, w=3.125 rad/sec
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s -
MAX.dev.«

94*246
0.051

25 50 75 100
Figure (5-9)

HELIX inspection of 
M6, five revolution, v=3.i25 rad/sec



A lso  two d i f f e r e n t  angu lar  v e l o c i t i e s  were fo r  in s p e c t in g  

th e  h e l i x  path  o f  th e  same th rea d , t h e s e  are

5-6-2-1 Form inspections

F igu re  (5 -1 0 ) ,  i l l u s t r a t e s  th e  r e s u l t  o f  

in s p e c t in g  th e  form o f  th e  b o l t  M8 u s in g  a very  slow  

v e l o c i t y  0 .5  mm/sec. The o th e r  r e s u l t  which i s  shown in  

f ig u r e  (5-11) r e p r e s e n t s  th e  s low  v e l o c i t y  which equal to  

0 .8 3  mm/sec The r e s u l t  o f  u s in g  a medium v e l o c i t y  equal  

t o  1 25 mm/sec can be seen  in  f ig u r e  (5-12) . The high  

speed 1 66 mm/sec g i v e s  th e  r e s u l t s  shown m  f ig u r e  

(5-13)

5-5-2-2 Helix path inspection

F igu re  (5 -1 4 ) ,  shows th e  v a r ia t io n  o f  th e  h e l i x  

path  due t o  an angu lar  v e l o c i t y  o f  2 84 r a d /s e c ,  fo r  f i v e  

th r e a d s ,  a l s o  f ig u r e  (5 -1 5 ) ,  shows th e  v a r ia t io n  fo r  one 

t o o t h  on ly  o f  th e  same s i z e  and due to  th e  angular  

v e l o c i t y  wl The r e s u l t s  o f  u s in g  an angular  equal to  W2 

= 6 25 r a d /s e c  , fo r  f i v e  th r ea d s  are shown on f ig u r e  

( 5 - 1 6 ) ,  a l s o  f ig u r e  (5-17) shows th e  r e s u l t  o f  th e  same 

b o l t  and th e  same v e l o c i t y  but o n ly  fo r  one th r e a d .

5-6-3 Experimental results o f  M  16

Five d i f f e r e n t  l in e a r  v e l o c i t i e s  used t o  in s p e c t  

th e  form o f  t h i s  s i z e ,  th e  same v e l o c i t i e s  were used to
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H(mm)

1 ■

0.5 ■

0.0 0.5 1

17H/24 = 0.769 mm
H = 1.0855 mm
P = 1.2535 mm

29.989
I = 0.0501 mm

d(I) = 0.0001 mm

^  P(mm)

Figure (5-10)
FORM inspection of 

M8,velocity 0.5 mm/sec
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H(mm)

0.

H -  1 .0884  nun

17H/24 -  0 . 7 7 1  nun

Figur« (5-11)
FORM inspection of 

M8, v«locity 0.83 nun/sec
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H(mm) H • 1.0771 mm

17H/24  ■ 0 . 7 6 3  mm

P(mm)

0.0 0.5

Figure (5-12)
FORM inspection of 

M8, velocity 1.25 mm/sec
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H • 1.0942mm

17 H/24  •  0.776mm
H(mra)

Figur« (5-13)
FORM inspection of 

M8, velooity 1.(6 nun/sec
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S- 125.66 
MAX.dev.« 0.062
MIN.dev.« 0.050

Figxire (5-14)
HE1IX inspection of 

MB, five reolution, v=2. 8 4 rad/sec
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s  -

MAX.dav.-

HIH.dav.-
0.047
0.0SS

2 5 .1 3 2

25
Figure (S-iS)

HILEX inspection of 
M8, one revolution, w=2.84 r&6/sec
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Figure (5-16)
HELIX inspection of 

M8, five revolution, v=6.25 rad/sec



S - 25.132 
MAX.dev.- 0.0725 
MIN. dev.- 0.080

X

25

Figure (5-17)
HELIX inspection of 

M8, one revolution, v=6.25 rad/sec



inspect the form of M8 these are* ( 0 5, 0 83, 1,25, 1 66 
and 2) mm/sec In order to perform the helix path 
inspection of this size, we used three different an 
angular velocities these are consequently• ( 142, 2 5
and 6.25 ) rad/sec.

5-6-3-1 Form inspections

Figure (5-18), illustrates the result form of 
using a linear velocity to slow equal to 0.5 mm/sec., 
where the result of using the slow velocity equal to 0 83 
mm/sec is shown on figure (5-19).
The medium velocity equal to 1 25 mm/sec , gives the form 
shown on figure (5-20) . High and the very high velocity 
give the results which are represented on figures (5-21) 
and (5-22) respectively

S-6-3-2 Helix path inspections

Figure (5-23), shows the result of using an 
angular velocity equal to W x= 1 42 rad/sec , and for five 

threads, the same velocity was used just for one thread 
and it gave the result shown on figure (5-24).
Another angular velocity used for the same bolt equal to 

2 84 rad/sec., and it gave the form which is given on 
figure (5-25) for five thread and the result shown on 
figure (5-26) for one thread. The maximum angular 
velocity used to inspect the helix path of this size of 
thread was equal to W 3 =6 25 rad/sec The result is shown
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H (mm)

4,.._ .. ■ - -— ■*..

1. 2.

Figure (5-18)
FORM inspection of 

Ml«, velocity 0.5 na/sec
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H(mm)
4

H-------------------1------------------- 1-

1 2

Figure (5-19)
FORM inspection of 

M16, velocity 0.83 mm/sec
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H(mm)

, 4.. --  4--------------«... *

1 2

Figur« (5-20)FORM inspection of 
MIC, velocity 1.25 nun/sec
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H (mm )

Figure (5-21)
FORM inspection of 

M16, velocity 1.66 nun/pec
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H (mm)

Figura (5-22)
FORM inspection of 

M16, velocity 2 mm/sec
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S - 251.32 on
MAX.dav." 0.092 mm

F i g u r e  ( S - 2 3 )
H E L IX  i n s p e c t x n  o f  H 1 6

f i v e  r e v o l u t i o n ,  w = i . 4 2  r a d / s e c
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5 ® 50*042 cm
MAX.dev.» 0.125 an

50

F i g u r e  ( 5 - 2 4 )
H E L IX  i n s p e c t i o n  o f  M l<

o n e  r e v o l u t i o n ,  v = l . 4 2  r a d / s e c
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150

00

\

U L

S * 250 on
MAX* dev.» 0*125 mm
MIN.dev. ■ 0.060 mm 

T ■ 12 sec

T T J T J Y T ~

: L k ' 1

v . .

CL

-15C?-

100

LL

250
X mm

F i g u r e  ( 5 - 2 5 )
H E L IX  i n s p e c t i o n  o f  M 16

f i v e  r e v o l u t i o n ,  v = 2 . 8 4  r a d / s e c



>c

0

D

50
Figure (5-26)

HELIX inspection of K16 
one revolution, v=2.84 rad/sec



on figure (5-27) for five threads.

5-6-3-3 Artificial defect on the crest of Ml6

An artificial defect was made on the crest of 
the thread Using three different velocities this defect 
detected, figure (5-28), shows the form obtained at 0 83 
mm/sec linear velocity

S-6-3-4 Artificial defect on the helix path of M16

Also another type of defect was done at the 
root, using two different angular velocities this defect 
detected
Figure (5-29), shows the variation of the two velocities
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F i g u r e  ( 5 - 2 7 )
H E L IX  i n s p e c t i o n  o f  M 16

f i v e  r e v o l u t i o n ,  v = 6 „ 2 5  r a d / s e c



H WTO

00
mm

figure (5-28)
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figure (5-29)



CHAPTER S IX

6  -  RESULTS & DISCUSSION

6-1 Discussion of the experimental results
The experimental results shown in chapter five will 

be discussed and analyzed m  this chapter, in order to 
find out the following.

(a)- The factors which effect the accuracy of the 
system

<b)- The behaviour of the stylus movement due to the 
different velocities 

(c)- To select the optimum velocity required for each 
bolt size

<d)~ To find the relationship between the degree of
accuracy and the different parameters of the bolt 
(pitch, depth of the thread, etc )

Therefore, the discussion will be divided under the 
following sections

(1)- The form inspection results.
(2)- The helix path inspection results
(3)- The artificial defects (form, helix path)

The previous test was repeated three times for the
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profile form cases While the helix path test was 
repeated five times

6-2 The form inspection results

A  very slow, slow, medium, high, and a very high 
velocities were provided in order to perform the profile 
form of the bolts M6, M8 and M16 Therefore each bolt 
size test will be discussed separately

6-2-1 The result of the bolt M6

This bolt was manufactured by rolling Its 
theoretical profile form is shown in figure (6-1), This 
is based on the BS 3643, part one and two of the ISO 
metric screw threads 
The very slow, velocity 0 5 mm/sec firstly was provided 

m  order to perform the profile form of this bolt size 
The result of this, were compared with the BS 3643, and 
they were within the specified tolerance zones 
While the actual profile form was developed depending on
the previous mentioned results Then, the actual profile

(
form was superimposed on the theoretical one for 
comparison The comparison, shows that the actual profile 
form is m  a good agreement with the theoretical one 
This may be due the high accuracy provided due to the 
very slow motion

iThe difference between the theoretical and the actual 
pitch is 0 0114 mm And the difference between the
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H(mm)

P (mm)

Figure (6-1) 
Theoretical profile form of M6
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theoretical and the actual depths is 0.007 nun. Therefore 
these differences can not be distinguished on the actual 
profile form as shown in figure (6-2)
Also, the difference between the theoretical and actual 
increments is 0 0006 mm, and this is a very small value. 
This difference explains the good agreement between the 
theoretical and actual profile form Finally, the stable 
running of the stylus is another reason which explains 
the good accuracy
In order to reduce the inspection time of the operational 
cycle, a slow velocity 0 83 mm/sec was provided The 
result of this test were compared with the BS 3643 and 
they were within the specified tolerance zones 
Also the differences between the results of this test and 
the previous one is very small, if they are compared to 
each other
However, the actual profile form was developed according 
to these results After that it was superimposed on the 
theoretical one for comparison The difference between 
the theoretical and actual pitch has been increased by 
0 003 mm, compared with the previous one 
Also, the difference between the theoretical and actual 

depth has been increased to 0 005 mm, compared with the 
previous one
The difference between the theoretical and actual 
increment, still very small and 'is equal to 0 0013 mm 
Also, the stylus has a stable running due to this 
velocity Therefore the actual profile form has, also a 
good agreement with the theoretical one as shown in
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H(mra)

0 0 0 5

Figure (6-2)
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In order to reduce further the time of the operational 
cycle, the previous velocity ( 0 83 mm/sec ) was
increased to 1 25 mm/sec The results of this test were 
compared with the standard one in the BS 3643, and they 
were within the specified tolerance zones 
Figure (6-4), illustrates the actual profile form which 
is superimposed on the theoretical one The comparison 
shows the noticeable deformation of the actual profile 
form at the crest and the root of the tooth This is due 
to the increase in the velocity by 0 42 mm/sec, compared 
with the slow one And by 0 75 mm/sec, compared with the 
very slow velocity ( 0.5 mm/sec ) This also affects the 
response time of the linear variable differential 
transformer ( LVDT )
Also the stylus due to this velocity does not have the 
same stable running as in the two previous tests While 
the difference between the theoretical and the actual 
increment was increased from 0 0006 mm due to the very 
slow velocity to 0 003 mm 
However the results are good and the actual form is in 

good agreement with the theoretical one
Two different velocities, (1 66 and 2 mm/sec) , also were 
used m  order to reduce more and more the inspection time 
of the operational cycle Unfortunately the results due 
to these velocities were very changeable and they were 
out of range to be discussed or analyzed Therefore these 
velocities will not be used for this bolt size 
Table (6-1), gives a summary for the different tests of

figure (6-3)
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H(nun)

Figure (6-3)
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H(nun)

Figure (6-4)
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T a b l e  ( 6 - 1 )

ACTUAL
V 17H/24 H p .5 <$ I
.5 .606 .865 .989 29.9 .0494
.83 .604 .853 . 985 29.9 .0820

1.25 .601 .848 .980 29.9 . 122
1.66 X X X X X
2 X X X X X
d (17H/2 4) d (H) d(P) d<«>) d(I)

1 .00744 .01 .011 39. 6" . 0006
2 .00944 .013 .015 39.6" .0013
3 .01244 .018 .02 39.6" .003
4 X X X X X
5 X X X X X



00 X 
X

I

Theoretical
t 17H/24 H P • 5 <$ I
2 .05
1.2 .083.613 .866 1 30 .125

X 
X 18
0



this bolt size
In which a comparison was made between the theoretical 
parameters and the actual one However the following 
points can be obtained from this table

(1)- When the velocity mcreasesf the accuracy of 

the results decreases

(2)- The good agreement between the theoretical and 

actual profile form can be achieved due to the 

very slow and slow velocities for this bolt 

size

(3)- The medium velocity 1 25 mm/secf can be provided 

where the time is very important and less 

accuracy is required

6-2-2 The results of the bolt size H8

In order to discuss the different tests of this 
bolt, the previous procedure was adopted, also the same 
steps were be repeated subsequently
The theoretical profile form of this bolt size is shown 
in figure (6-5) While the actual profile forms, which 
were superimposed on the theoretical one for comparison, 
are given consecutively m  figures (6-6), (6-7) and
(6-8) Their results were within the specified tolerance 

zones Also, each one of the actual profile form has a 
good agreement with the theoretical one The reasons are 
the same as they are mentioned previously, in order to 
explain cases, one and two of the bolt size M 6 Also, a
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Figure (6-5)
The theoretical form of M8
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Figure (6-6)
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Figure (6-7)
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Figure (6-8)

185



high velocity of 1.66 mm/sec was used in a new attempt to 
reduce the inspection time of the operational cycle. The 
results were compared with the reference one and they 
were within the specified tolerance zones Figure (6-9), 
illustrates the actual profile form of this test The 
comparison shows that the actual profile form has a 
specified deviations at the crest and root areas Also 
the profile form (actual) consists of three areas, on 
each side The affect of the increment explain some of 
these deviations While the bounce of the stylus due to 
this velocity is another reason of this deviation 
However, table (6-2), gives a summary of for previous 
tests

The maximum difference between the actual and 
theoretical pitch is 0 0134 mm And the minimum 
difference is 0 0035 mm Thus the difference between the 
maximum and minimum one is 0 0099 mm Also the maximum 
difference between the actual and theoretical one is 0 01 
mm and the minimum difference between the maximum and 
minimum is 0 007 mm. The difference between the increment 
is 0 0001 mm due to the very slow velocity and 0 0004 due 
slow one, 0 00062 mm due to the medium And it was 0 0018 
mm due to the high velocity
The minimum inspection time was achieved due to the 
maximum velocity while the maximum time was due to the 
very slow velocity As shown in case number (1) , and 
number (4)

6-2-3 The results of the bolt size M16
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Table (6-2)

V 17H/2 4 H p .5 <$ I T
.5 .769 1.085 1.253 29.9 .0501 2
.83 .771 1.088 1.256 29.9 .0833 1.5

1.25 .763 1.077 1.243 29.9 .124 1
1. 66 .776 1. 094 1.264 29.9 .158 .753
2 X X X X X  X

d(17H/24) a<H) d(P) d«<>) d(I)
1 .0022 .003 .0035 39.6" .0t>01
2 .0042 .0059 .0068 39.6° .0004
3 .0038 .0054 .0062 39.6° .00062
4 .0092 .0117 .0143 39.6” .007
5 X X X X X



T h e o r e t i c a l

17H/24 H P .5(J> I
.05 
• 0833

.766 1.082 1.25 30 .125
.156
X



This bolt was manufactured by turning Its 
theoretical profile form is given in figure (6-10) The 
first test for this bolt size was carried out at the very 
slow velocity 0 5 mm/sec. Then the results were compared 
with the standard one, and they were within the specified 
tolerance zones 
Also, the actual profile form which was developed 
according to these results, has superimposed on the 
theoretical form for comparison. The comparison as shown 
m  figure (6-11), shows good agreement between the 
theoretical and actual profile form In the second test, 
the slow velocity 0 83 mm/sec, was used Also the results 
were compared with the reference one and they were within 
the specified tolerance zones
The actual profile form of this test is shown in figure 
(6-12) This figure shows the actual profile form 
superimposes on the theoretical one The comparison 
illustrates that there is a good agreement between these 
profile forms The main reasons were mentioned 
previously The third test was carried out at medium 
velocity 1 25 mm/sec. The results were compared with the 
same standard and they were within the specified 
tolerance zones
In figure (6-13), the comparison shows that the actual 
profile form, also has a good agreement with the 
theoretical one After that the test was performed at the 
high velocity 1 66 mm/sec in order to reduce further the 
inspection time of the operational cycle The results of 
this test were compared with the BS 3643 and they were
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Figure (6-10)
The theoretical form of M16
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Figure (6-13)
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within the specified tolerance zones Also, the actual 
profile form was superimposed on the theoretical one for 
the comparison, as shown in figure (6-14)
The comparison shows that the actual profile form still 
has a good agreement with the theoretical one m  spite of 
the noticeable deformation at the crest and the root of 
the tooth In fact the first deformation was started from 
the third test. But it was not out of range and can not 
be discussed or analyzed However, one of the most 
important reasons is the bounce, which forced the stylus 
to miss some points especially at crest and root areas of 
the tooth profile In order to reduce the inspection time 
further more
The very high velocity 2 mm/sec was provided to perform 

the fifth form inspection Similarly, the results were 
compared with the reference one, and they were within the 
specified tolerance zones And also these results are the 
same of the previous one due to the slow velocity Thus, 
the same discussion can be seen adopted for this test. 
But the profile form was not the same More deformation 
can be seen at two different areas Also these, because 
of the bounce acts and the response time of (LVDT) These 
were explained previously Figure (6-15)
Table (6-3), gives a summary of the different results 

due to the various velocities The maximum difference 
between the actual and theoretical pitch was 0 068 mm, 
and the minimum one 0 0279 mm So, the actual difference 
between the maximum and the minimum was 0 0401 mm 
While the difference between the actual and theoretical
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Table (6-3)
Actual

V 17H/24 H P .5 <p I
. 5 1.207 1.703 1.976 29.9 .0491
.83 1.244 1.756 2.027 29.9 .08111.25 1.269 1.790 2.068 29.9 .1291.66 1.257 1.774 2.049 29.9 .1702 1.244 1.756 2.027 29.9 .202 1

d(17H/24) d(H> d(P) <*(<*>>1 .0199 .0291 .033 39.6”
2 .0171 .0239 .0279 39.6”3 . 0421 .0579 .068 39.6”4 .0301 .0419 .049 39.6”5 .0171 .0239 .0279 39.6”



/

Theoretical 
T 17H/24 H P .5 4) I
4 .052.4 1.226 1.732 2 30 .08
1.6 .1251-2 .166

.2

d(I). 0009 
. 0011 
.004 
.004 
.0027

19
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depths the maximum one was 0 042 mm and as a minimum one 
was 0.0171 mm, thus the actual difference between these 
is 0.0249 mm.
Table (6-4), gives a summary of the form test for the 
three inspected bolts due to the different velocities. 
The table shows the different theoretical parameters and 
the actual one, also, it gives the results for each bolt 
size due a specified velocity.
Thus, from table (6-4), table (6-5), was derived This 
table gives the maximum velocity which can be provided 
for each bolt size, also table (6-6), gives the actual 
differences between the theoretical increment and the 
actual one, due to the three previous velocities 
mentioned in table (6-5)

6-3 The discussion of the helix path results

This discussion includes all results mentioned in 
chapter five
These results are compared with the standard one Then 
they are compared with each other Also, each figure 
consists of .

- Centre line (CL)
- Upper limits (UL)

- Lower limits (LL)
- Deviation axis 00
- Number of turns (X)

6-3-1 The results of bolt size M6
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T a b l e  ( 6 - 4 )

Bolt
S i z e

M6

M8

V 1 7 H / 2 4 K

. 5 . 606 . 8 5 6

. 8 3 . 604 . 8 5 3
1*25 . 601 . 8 4 8
1 , 6 6 X X

2 X X
. 5 . 7 6 9 1 . 0 8 5
. 8 3 . 7 7 1 1 . 0 8 8

1 . 2 5 . 7 6 3 1 . 0 7 7 1
1 . 6 6 . 776 1 . 0 9 4 2

2 X X
. 5 1 . 2 0 7 1 . 7 0 3
. 8 3 1 . 2 4 4 1 . 7 0 3

1 . 2 5 1 . 2 2 6 9 1 . 7 9 0
1 . 6 6 1.  257 1 . 7 7 4

2 1 . 2 4 4 1 . 7 5 6

P • 5 <$> 1

. 9 8 9 2 9 . 9 . 0 4 9 4

. 9 8 5 2 9 . 9 • 082

. 9 8 0 2 9 . 9 . 122
X X X
X X X

1 . 2 5 3 2 9 . 9 . 0 5 0 1
1 . 2 5 6 29 . 9 . 0 8 3 7
1 . 2 4 3 2 9 . 9 • 124
1 . 2 6 4 2 9 . 9 . 158

X X X
1 . 9 6 7 29 . 9 . 049  1
2 . 2 7 9 2 9 . 9 . 0 8 1 1
2 . 068 29 . 9 . 129
2 . 0 4 9 29 . 9 . 1 7 0
2 . 2 7 9 2 9 . 9 . 2 0 2 7
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T a b l e  ( 6 - 5 )

B o l t
S i z e

V (mm/sec)
« 5 . 8 3 1*25 1 . 6 6 2

M6
x j

Mg
x l

M16 X
(6-6 )

B.S T A D

M 6 • 12 5 . 122 . 0 0 3

M8 . 158 » 156 . 007

M16 . 2 . 202 7 . 0 0 2 7



Figure (6-16), shows the result due to the angular 
velocity 3 13 rad/sec , for five revolutions 
The travelling distance used was 94 24 mm, hence giving 

a total inspection time of 10.02 sec. The figure 
illustrates that the helix path points varies between the 
positive and negative directions It can be noticed that 
the maximum deviation is 0.051 mm in the positive 
direction and 0 058 mm in the negative direction. Also, 
the minimum deviation in the positive direction is 0 002 
mm and 0 004 mm in the negative direction Therefore, 
the actual difference is 0 0109 mm
As a result of comparing the actual deviation with 
admissible one this difference will be 0 075 mm The same 
velocity was used to test this bolt size, but only for 
one revolution
The result as shown m  figure (6-17), is very close to 
the previous one The maximum deviation increases by 0 01 
mm in the positive direction Where it decreases by 0 006 
mm in the negative direction The comparison of the 
actual difference between the previous test and this one, 
shows a difference equal to +0 003 mm And the comparison 
with the standard gives a difference equal to 0 072 mm 
This means that the accuracy due to this velocity varies 
within _+ 0 003 mm

6-3-2 The results of the bolt size MQ

The angular velocity 3 125 rad/sec, was used 
firstly, in order to perform the helix path inspection of
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Figure (6-16)
HELIX inspection of 

M6, five revolution, v=3.125 rad/sec
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Figure (6-17)
HELIX inspection of 

M6, one revolution, v=3.125 rad/sec



this bolt size.
Figure (6-18), shows the result due to this velocity. 
Five revolution were accomplished/ the travelling 
distance is 125 66 mm, while the total time is 10 sec 
The maximum deviation due to positive direction is 0 062 
mm And it is 0 050 mm m  the negative direction 
It can be seen that after one revolution these maximum 
deviations are reduced to become 0 040 mm due to the 
positive direction and 0 045 mm due to the negative 
direction The actual deviation of this test is 0.112 mm 
But the comparison with the standard one shows that 
these deviation is 0 096 mm, which is 0 048 mm for each 
direction
the result of one revolution due to the same velocity is 
given in figure (6-19) The maximum deviation in the 
positive direction is less by 0 008 mm and more by 0 005 
mm m  the negative direction
Thus the difference between the maximum values of this 
test is 0 097 mm, so the comparison with the standard one 
shows that the actual result is 0.055 mm far from each 
limit Hence, the accuracy of this result is within 
+__0 0075 mm
In order to reduce the inspection time, a higher angular 
velocity 6 25 rad/sec, was used The total time for 
inspecting five turns is 5 0264 sec, that means one 
second for each turn The effect of this high velocity 
can be seen m  figure (6-20)
The maximum deviation due to the positive direction 

0 065 mm, and 0 080 mm, due to the negative direction,
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Figure (6-19)
HILEX inspection of 

M8, one revolution, w=2.84 rad/sec
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Figure (6-20)
HELIX inspection of 

M8, five revolution, w=6.25 rad/sec



the difference is 0.145 mm, the comparison with the 
standard one shows that this difference is 0 0315 mm 
The same velocity was used only for one revolution Also, 
the maximum deviation increases by 0.005 mm, while the 
other one stays as it was 0.080 mm However, it can be 
noticed that a few points were m  a bad position, these 
are due to this high velocity, which is forced the stylus 
to bounce at some points. The bounce value can be found 
since a comparison is made between these cases and the 
two previous one This value is 0 048 mm. Also this test 
is illustrated m  figure (6-21)

6-3-3 The result of the bolt sxze M16

Figure (6-22), shows the result due to the slowest 
angular velocity 1 42 rad/sec The travelling distance 
251 32 mm represents the five revolutions which take 22 
sec , to be traced by the stylus
The maximum deviation - 0 080 mm can be seen due to the 
negative direction. While the maximum one due to the 
positive direction can be seen is 0 092 mm 
The actual difference between these deviations is 0172 
mm. While these deviations are within the theoretical one 
by 0 06 mm for the positive direction, and 0 072 mm for 
the negative direction Then the difference between the 
theoretical and the actual one is 0 132 mm The same 
velocity was used only for one turn The results shown m  

figure (6-23), illustrates that the deviation increases 
by 0 033 mm due to the positive direction While it
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decreases by 0 014 mm in the negative direction.
The comparison between the actual difference of this 

test and the previous one was increased by 0.019 mm But 
the difference between the deviation and the limits of 
the standard one has been affected by a very small value 
equal to 0 0035 mm. The second velocity was used 2.84 
rad/sec Figure (6-24), shows the result of the five 
revolutions The stylus starts from the maximum points 
which gives a deviation equal to 0.125 mm due to the 
positive direction.
It can be seen that all the deviation through the first 
revolution were due to the positive direction However 
the maximum deviation due to the negative direction is 
0 060 mm Thus the total deviation is 0 185 mm, and the 
actual difference is 0.119 mm The same velocity was used 
for one revolution only. The results can be seen in 
figure (6-25) The maximum deviation due to the positive 
direction is 0 100 mm, and 0 100 mm due to the negative 
direction The difference between these results and the 
previous one iŝ  0.015 mm. While the actual difference 
compared with the theoretical one is 0 052 mm 
The two previous results were within +_ 0 01 mm

accuracy The total time for five revolution was 12 sec. 
In order to reduce further more the inspection time, a 
very high angular velocity of 6 25 rad/sec was used. The 
total inspection time 5 023 sec for five revolution 
The result as shown in figure (6-26), has a very small 
difference compared with the previous one 
The maximum deviation due to the positive direction is
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Figur« (6-25)
HELIX inspection of M16 
revolution, v=2 . 8 4 rad/sec



Figur« (6-26)
HELIX inspection of M16 

five revolution, v=6.25 rad/



0 112 mm and - 0.110 mm due to the negative direction So 
the difference between the previous one is equal to 0 022 
mm It can be seen here, the effects of the high motion 
which causes the bounce of the stylus at a specified 
points Also, it can be noticed the strong relation ship 
among the deviations and the velocities.
The last velocity can be adopted for this size of bolt 
and a correction factor must be added m  order to achieve 
a higher degree of accuracy.

6-3-4 Artificial defects

Two types of defects were made artificially , in 
order to detect them, using one or more of the previous 
velocities
The first defect was made at the crest of the tooth of 

thread, in order to deform its profile form While the 
second defect was made at the root of the tooth of the 
thread, m  order to deform its helix path

(I)- Form inspection

The artificial defects were made for the bolt size 
M16, which was manufactured by turning A small part of 
its crest was removed by milling The slow<velocity 0 83 
mm/sec was used in order to detect this defect The 
actual profile form as shown in figure (6-27), was 
developed and superimposed on the theoretical one for 
comparison The comparison shows the disconformity
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between the actual and the theoretical crests.
Also, these results were compared with the standard one.
The actual difference between the actual and theoretical 
depth is 0 3269 mm
This difference includes the equivalent size which was 
removed by milling. In addition, the figure shows two 
different points at the cutting surface. The first one is 
0 86 mm and represents the minimum output at that surface 
while the second one which represents the maximum is 0 91 
mm Thus the test, also, gives some information about
the texture of the cutting surface

(2)- Helix path inspection

Another artificial defect was made on the helix 
path of the same bolt size
Figure (6-28), illustrates the two results, which were 
extracted due to two different angular velocities The 
first test was for the angular velocity 1 42 rad/sec 
The maximum deviation is out of the upper limit by 0 040 
mm The second test was for the angular velocity 2 84 
rad/sec The maximum deviation can be seen to be out of 
the upper limit by 0 045 mm Hence, the actual difference 
between the result due to the first and second velocities 
is 0 006 mm This difference refers to the experimental 
error and the affect of the higher velocity
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CHAPTER SEVEN

7 -  CO NCLUSION.

7-1 Conclusion

The automatic measuring system, described previously 
can be used for inspecting external screw threads of size 
M4 up to M36
The operational cycles time is based on the bolt size 
The measuring principle is based on moving a stylus over 
the profile form of the thread or along its helix path 
The operational cycle has a specified consequence for 
each type of test 
The displacement, which is converted into an electrical 
signal interfaced and processed by a personal computer 
special software was developed, in order to

(a)- Process the signals

(b)- Control the motors

(c)“ Sorting
(d)- Computing

(e) - Comparing
(f)~ Displaying

(g)~ Plotting

The experiments performed on three different bolt
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sizes, consequently they were M6, M8 and M16.
In order to achieve the minimum inspection time for the 
form and helix path inspection different ranges of the 
linear and angular velocities were used The maximum 
linear velocity of 2 mm/sec was used, m  order to 
perform the profile form inspection for the bolt size 
Ml6 And the minimum linear velocity was used, also, 
to perform the profile form inspection 0 5 mm/sec, for 
the three bolt sizes
While the minimum angular velocity was used to perform 
the helix path 1 42 rad/ sec, for the bolt size M16.
The minimum range of velocity was located according to 
special considerations, with regard to the minimum power 
rate required to drive the motors While the maximum one 
was controlled considering the bounce affects 
From the experimental results discussed, it can be 
concluded that

(1)- The maximum linear velocity which can be used m  
order to inspect the profile form of the bolt 
size M6, is 1 25 mm/sec, and the maximum angular 
velocity which can be used in order to inspect 
the helix path of the same bolt size is 3 13 
rad/sec

(2)- The znaxxmuffl linear velocity which can be used, m  
order to inspect the bolt size M8, is 1 66 mm/sec 
and the maximum angular velocity which can be 
used in order to inspect the helix path of the 
same bolt size, is 6 25 rad/sec
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(3)- The maximum linear velocity which can be used, in 
order to perform the form inspection is 2mm/sec, 
and the maximum angular velocity in order to 
perform the helix path inspection of the same 
bolt size is 6.25 rad/sec.

(4)- The experiment shows that short and very high 
velocity mean less accuracy vice versa.

(5)- One of the effects of the bounce decreases the 
point of accuracy

(6)- The stylus move smoothly due to the very slow 
velocity

(7)- A high degree of accuracy of 0 009 mm was 
achieved

(8)- The resolution of the system is 0 000002 mm
(9)~ The movement of the stylus follows the 

increase/decrease due to the rate of change of 
the stylus speed at the root and crest area of 
the tooth And this explains, why the stylus 
bounce at the root or crests due to the very 
high velocity

(10)“ The xainimum increment which was achieved is
0 0491 mm and the minimum difference was 0 0001 
mm While the maximum increment is 0.2027 mm 
and the maximum difference is 0 004 mm 

This system, with some modification can be used for 
inspecting other types of objects Also it can be used 
for testing the surface texture

7-2 Recommendation for further work
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In order to improve the operational cycles of this 
automatic inspection system, an automatic feeding process 
can be added to one side
While, another automatic removing process can be added to 
the other side, thus, the feeding, inspecting, removing 
are accomplished consequently.
Also, this system with a suitable modifying, can be built 
with the machine which produces the external screw 
threads, and screw components.
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APPENDIX (A3-1)

TABLES SHOWING VIRTUAL DIFFERENCE IN DIAMETER CORRESPONDING 
TO ERRORS IN PITCH AND ANGLE

TABLE 15
VIRTUAL DIFFERENCE IN EFFECTIVE DIAMETER CORRESPONDING 

TO MEASURED ERRORS IN PITCH

Corresponding Virtual Difference in Effective Diameter

Error i n -------------------------------------------------------------------------------------
Pitch

Unified, Metric 
and

B S C  Threads

Whitworth
Threads B A Thread* Acme Threads

in in in in in
0*00005 000009 000010 000011 000019

00001 000017 0 00019 0 000 23 0 000 39

000015 0 000 26 0 00029 0 000 34 0 000 58

00002 0 000 35 0 000 38 000045 0 000 77

0 000 25 000043 0 00048 0000 57 0 000 97

00003 000052 0000 58 0 00068 0001 16

0000 35 0 00061 000067 0000 79 000135

0 0004 0 000 69 0000 77 0 000 91 0001 55

000045 0 000 78 000086 000102 0001 74

00005 0 000 86 0 00096 0 001 14 0 001 93

0 000 55 0 00095 0 00106 0 001 25 0 00213

00006 000104 0 001 15 0001 36 0 002 32

000065 0001 12 0001 25 0-00147 0 002 51

00007 000121 0 001 34 0 001 59 0 002 71

0 000 75 j 0 001 30 0 00! 44 0 001 70 0 002 90

00008 ! 0001 38 0 001 54 0001 81 0 003 09

000085 0 001 47 0 001 63 0 00193 0 003 29

0 0009 0 001 56 0 00173 | 0-002 05 0 003 48

0 000 95 0001 64 OOOI82 0 002 16 0 003 67

0 0010 0 001 73 ' aoo i92 0 002 27 0 003 87

Wwt —The Difference is to be lakvn as +  for external threads and — for internal threads



APPENDIX A(4-l)

I-METRIC

-General:
J = D4L/8

-Acceleration torque (speed o to w ):
Ta =3w/t(JL+ Js+ Jm)/e x 10 

-Equivalent inertia of load:
JL = Wl p2 / 4000

- Friction torque:
Tf = Fp/ 644e 

-For a sliding system, frictional force*
F —US• WL i

- Total motor torque*
T =Ta + T f

- Acc. torque (speed o to W):
Ta ss 3.J.W/t x 10 -6

Where:
J=moment of inertia , Kg-cm2. 
D=diameter cm
L=length (or thickness),cm.
W=weight ,Kg.
Ta=acceleration torque, Nm. 
w= max. speed, full steps/sec 
t=time to reach w,secs



s=move distance, full,steps. 
=total move time,secs.

II- IMPERIAL

-General:
J=WD4/8 ( 8 )

-Acc. torque :
Ta=Jw/7641 (9)

-Acc.torque (trapezoid).

-Max. speed(trapezoid).

J=Moment of inertia,lb-ins2 
D=diameter,in
L=length (or thickness), in. 
Ta=acceleration torque, oz-in. 
w=max speed, full step/sec. 
t=time to each speed w,sec. 
s=move distance, full steps 
=total move time,secs

Tü=Js/170t (10)

= 3s/2t ( 11 )

Where:

F



APPENDIX (A4-2)

Technical specification The " medium duty M motor

Type 5
r.pm at 12 vd.c, 8
Max. power (w) 4
Max . torque (m N m)

continuous 600
peak 1800

Gear box reduction 500:1
Norn. voltage (v d. c. ) 12
Starting voltage m,n

no load (v.d.c) 0.15
Nom no load current

(in A) 15
Max cot operating

current (m A) 493
Terminal resistance (52) 10
Max rotor
temperature (c) 85
W e i g h t  ( g )  2 6 2



APPENDIX (A4-3)

- Technicals pecification of the ,f heavy duty 11 motor.

Type 2
rpm at 12 v d.c 20
Max. power (W mech ) 16
Max.torque (m N m)

continuous 1200
peak 4000

Gearbox reduction  ̂ 130:1
Nom. voltage (v d.c) 12
starting voltage, min no load 3v
Norn, no load current (m A) 590
Max. continuous operating current (m A) 2800 
Terminal resistance (o2) 2
Max. rotor temperature 130 c
W e i g h t  ( g )  6 7 0



APPENDIX (A4-4)

Technical specification of the LVDT 

type of (GT x 2500),

- Linear stork . . .  . . .
-O/P voltage .............  ....
-Current LVDT ......................
-Linearity .........................
-Operation temperature ............
-Weight (less cable).................
-Spring force .......................
Figure (4-13), illustrates this sensor

160 m v/v.
160 m A (6 m A).

0 25% of fullstorke. 
-40 c to+ to 100 c. 

18 g m 
118 g m



APPENDIX (A4-5)

The technical specification of the Digital to Analog D/A 

converter type DAC-02

Power suppliers:
+5V supply 75 m A type,100 m A Max.
-5V supply* not used
+12V supply: 15 m A typ. 1 25 m A max.
“12V supply: 25 m A type,35 m A max.

Total power dissipation typical.
Output ranges 
Channels:2
I/o address :DIP switch selected on any 8 bit boundary.
Resolution: 12 bits (1 part in 4095)
Relative accuracy: 1/2 LSB (0.01%) max.
Differential linearity: 1/2 LSB max.
Fixed reference ranges. 0 to + 5V (unipolar)

0 to + 10V (unipolar)
+/-5 V (bipolar)
+/-10 V (bipolar)
4-20 m A current loap.



variable reference ingest: +/- 10 V (2 or 4 quadrant) reference 
input resistance : 7 known mm, 11 kohm type, 20 kohm max.
Voltage output impedance:<0.1 ohm max. Voltage output drive 
current: +/~5 m A min.
4-20 m A compliance : 8- 36 V (for current loop) 
Environmental
Temperature coefficient: +/- 25 ppM / deg.c. (with reference)

of gain: +/- 5 ppM / deg.c. (external ref.)
Zero drift: 0-70 deg c.
Storage temperature :- 55 to + 125 deg.c.
Humidity :0- 95% non- condensing 
Weight- 4 02 (120 g).



APPENDIX (A4-6)

The technical specification of the ANALOG TO DIGITAL (A/D) 

converter type DASH-8

-Resolution 
-Full scale 
-Input current
-Sample and hold acquisition time 
-Reference voltage 
-Reference current 
-Digital output sink current 
-Digital output source current 
digital input high voltage 
-Digital input low voltage

12 bits. (2.44 m v/ bit) 
+/-5 volts.
100 n A max at 25 degree.c 

15 us for 0.01% error 
+10.0 v + /-0.1 v 
+/-2m A
8 . 0 m A  (Lo =.5 v)
- 0 4 m A  (hi= 2 7 v)
2.0 v min.
0 . 8  v max.



APPENDIX (A4-7)

The technical Specification of transducer amplifier 

type S7M.

-Supply: 120 or a c. +/- 15% 50/60H2 at 2 5 v A 
-Fuse: 200 mA A-5
-Excitation(note 1) • 5 v rim.5. 5 KHz sinusoidal ( lKHz-lOKHz to 
order ).100m A max
Excitation Tempo *+/-0 003%c. typical
Amplifier outputl: +1/- 10 v 5 m A max (short-circuit proof) 
output2*see options B and C specification below 
Amplifier gain: x 03 to x 200 m  8 ranges 
Linearity : +/- 0.1% of full scale max.
Demodulator : synchronous.
-zero tempo: +/- 0.002% f.5/c. typical.
-Gam tempo. +/-0.002% f.5/.c, typical.
-Bandwidth, flat to 500 h2.
-Output noise : 5 m v p.p typical(pK-pK)
-Input option z : 10 ohm differential 
-Zero adjustment range . +/- 10 v minimum 
Temperature range .10 to + 50c
Dimensions (excluding cable glands). 8 7 x 4 75 x 3.25 in (220
x 120 x 81 mm)
Weight : 3 3/4 Lb, 1 7 kg



-Physical protection .1 p 65 specification
-Gland cable diameter (notes2): 0.08 to 0.2 m  (2 to 5 mm) [63]


