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Abstract

This work develops a new paradigm for optimal robust controller synthesis in the
frequency domain. A detailed examination is made of the engineering motivation
and engineering efficacy underlying the various strands of robust control theory. The
modelling of (a) signal uncertainty and (b) control system objectives in both Tioo and
C\ control theories is considered in particular detail. Based on this examination, a
theory which can fairly be described as ‘a modified 7ioo control theory’ or ‘afrequency
domain C\ control theory’is proposed. New signal sets for the modelling of uncertain
signals are introduced. It is argued that these models more faithfully capture the
way in which uncertain signals act on real physical systems. It is shown that by
adopting these new models for uncertain signals, control theory can be used to
non-conservatively minimise maximum tracking errors in the time domain, in the
SISO case. In the MIMO case, the problem of optimally synthesising a controller
to non-conservatively minimise tracking errors in the time domain leads to a modest
variation on existing control theory, requiring the usual norm to be modified
slightly. It is argued that the proposed paradigm in general achieves a better quality of
control and more faithfully expresses the true objectives of feedback control systems.
The proposed development is seen to also extend naturally to Ti2 control theory, and
indeed provides a new deterministic justification for the 722 control problem in the
MIMO case.

The question of design transparency in the synthesis of optimal robust controllers
for multivariable systems is considered in detail. The implications of the proposed
paradigm for transparency of design and weighting function selection are detailed.
A decoupling design procedure for robust controller synthesis is proposed which,
under certain restrictive conditions, allows the calculation of super-optimal robust
controllers on a loop by loop basis. The usefulness of a classical decoupling approach
to MIMO control system design in the context of multivariable robust control theory
is demonstrated.

A number of design examples are presented which show how the ideas and methods

developed in this work can be applied to realistic control problems.
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Chapter 1

Introduction to Robust Control

This chapter introduces in a general way the scope and aims of this work. The
research philosophy adopted is outlined and a brief guide to the lay-out of the thesis
is given. The remainder of the chapter serves as a brief introduction to some of the
most fundamental concepts in robust control theory, with emphasis on those aspects

which are most relevent to this thesis.



1.1 Philosophy of the Thesis

In this section we make some preliminary remarks on the scope, philosophy and aims
of this thesis. The control philosophy espoused throughout is that of Optimal Ro-
bust Controller Synthesis - in particular, the and C\ theories are discussed in
detail, while the 7-;2 theory is also considered. The mathematical techniques required
to solve the various optimisation problems which arise in these theories are not the
subject of this thesis, and these ‘tools’ are therefore not considered in detail. Rather
the main subject of the thesis is a consideration of the engineering motivation and
engineering efficacy which underlies the various strands of robust control theory. As a
consequence, certain rather abstract concepts pertaining to robust control theory are
examined in detail. Current techniques for the modelling of uncertainty are evaluated,
and in the case of signal uncertainty, new uncertainty sets are proposed. The ques-
tion of how to express the ‘real’ objectives of feedback control systems as rigourous
specifications, which can be met automatically via mathematical optimisation is also
considered. Since the particular way in which both uncertainty and control objec-
tives are modelled is essentially at the discretion of the designer, another important
issue addressed in the thesis is the effect this ‘choice’ has on the transparency of the
design process and the applicability of the theory. Based on the examination of issues
such as those outlined above, a new paradigm for optimal robust controller synthesis
is proposed which, it is argued, captures the most attractive features of the various
approaches presently in use. The emphasis throughout is on multivariable systems.
Indeed another aim of the thesis is to examine the relationship between classical mul-
tivariable controller design methods and modern multivariable robust control theory.
A canonical form for linear controller synthesis is adopted right at the begining of
the thesis in order to emphasise the similarities and differences between the various

strands of robust control theory.

1.2 Organisation of the Thesis

The lay-out of the thesis is as follows. This chapter contains some preliminary remarks
on the general nature of the thesis. It also contains a briefintroduction to some of the
most fundamental concepts in robust control theory, with emphasis on those aspects
which pertain to this thesis. Chapter 2 contains a detailed examination of the Tico

and C\ control theories. A critique of both theories is given which seeks not only to



identify their various strengths and limitations but to uncover the root causes of these
limitations. Three limitations of Tioo control theory in particular are identified - it is
argued however that these difficulties are not with Tioo control theory per se, but with
the conventional paradigm which is attached to it. Based on this analysis, Chapter
3 presents a new paradigm for optimal robust controller synthesis. It is argued that
the new approach captures the most attractive features of both 'H*o and C\ control
theories. The developmentin Chapters 2 and 3 follows closely that of [1, 2]. Chapter 4
proposes a decoupling design method which under certain conditions allows the design
of super-optimal robust controllers. In Chapter 5 a number of design examples are
presented which show how the ideas and methods developed in the previous chapters
can be applied to realistic control problems. The decoupling design method discussed
in Chapter 4 is detailed in [3, 4], while the section in Chapter 5 dealing with Sendzimir
mills is an extension of the treatment in [5]. Chapter 6 is a discussion of the most
significant observations and results contained in the thesis. Some conclusions are

drawn and directions for further research are identified.

1.3 Fundamental Concepts in Robust Control

Underlying all of robust control theory are three fundamental tenets. The first is
that uncertainty, both in terms of systems and signals, is inevitable and omnipresent,
and thus needs to be explicitly considered from the start of the design process. The
second is that the main purpose of feedback is to (a) retain closed loop stability in the
face of this uncertainty, and (b) counteract the effect of this uncertainty on system
performance. The third is that design methods based on mathematical optimisation
are required in order to reveal the limits of performance for systems and thus provide
controllers which can be considered optimal in some suitable sense.

The importance given to these concepts in robust control theory has necessitated
the development of new models, measures and configurations for control system de-
sign. This section will serve as a brief introduction to these basic tools. The de-
velopment is intended to highlight the fundamental similarities between the various

strands of robust control theory.



1.3.1 Norms of Signals

Many of the objectives of controller design are explicitly formulated in terms of the
size of certain signals. It is clear however that the notion of the size of a signal,
whether it be a ‘small tracking error’ or a ‘large input disturbance’, is entirely depen-
dent on the way in which it is measured. Among the many ways in which a signal can
be measured, those that satisfy certain geometric properties in a vector space have
proved most useful. In mathematical terminology these measures of size are functions
called norms. Many different signal norms are in common use. For a comprehensive
treatment see [6]. In this section we describe only those which are used in 7i® , C\
and (in a deterministic setting) 7Y2 control theories. Note that a signal norm can be

defined in the time domain, and/or the frequency domain.

The C2 norm for scalar signals is

+00
z{ju) ||z= *(jw) 2da; (1.1)

The C2 norm for vector signals is

I zi(juj) »
_: (1.2)
I i=1

\ Zn(ju) J

This norm is alsoknown as the Euclidean norm or the quadratic norm, and it is
the signal normused in Hoo control theory.It is also defined in thetime domain but

in the context of Ti® control theory it is usually considered from a frequency domain
perspective. Note that the £2 norm cannot be used to measure persistent signals,
i.e. signals which do not decay to zero with time. The C2 norm corresponds to the

total energy in a signal.

The £oo norm for real-valued scalar signals is

I z{t) [jo0= sup  \z(t)\ (1.3)

—00<¢i<+00

This norm describes the size of a signal by its maximum amplitude in the time domain.

The size of vector signals can be quantified by combining this norm for scalar signals



with the infinity vector norm.

Thus the norm for vector signals is

( zi{t)
— max zi{t) (1.4)

\' Zn{t) J
This is the signal norm used in C\ control theory, and is also called the maximum
amplitude norm or the infinity norm. It is also defined in the frequency domain,

but from the perspective of C\ control theory it is usually considered in the time

domain. Note that this norm can be used to measure persistent signals.

The C\ norm for scalar signals is

/ +00
lz(ju) dw (1.5)
-0
The £1 norm for vector signals is
/ ] n n
zi(ju)\du = i(jv) (1.6)
V ) it (=1 i:1

The £1 signal norm can also be defined in the time domain where it can be shown
to measure total resource consumption, e.g. the total amount of fuel burned by a
rocket over the course of its trajectory. In the modified 7Yoo control theory presented
in Chapter 3 however, it is considered from a frequency domain point of view.

This thesis will have occasion to discuss many different norms, some of which are
defined in the time domain and others in the frequency domain, and this presents
notational issues which require comment,, Throughout this thesis, systems will be
denoted by upper case letters, signals by lower case letters, and sets of systems or
signals by upper case script letters. The (¢,_7)th element of a transfer function matrix
G(s) will be denoted by (G (s))jj, and similarly for impulse response matrices. Suppose
that G(s) is the transfer function of a stable m x n LTI system, and that y(t) is the
output which results from the input u(t). The Fourier transform of a signal u(t) will

be denoted by u(jud, and similarly for other signals, so that

y(juj) = G{ju)ufju)



Then, G(t) denotes the (integrable, causal) impulse response of 6r(s). Hence,

y(t) = G(t) * u(t)

where the asterisk denotes convolution. On occasion, the argument t or jto will be
suppressed in our notation when the specific choice of norm is open and may require
either t or ju. For instance | u ||[s may mean either || u(t) |lsor || u(ju) ||s. After

this caution, this slight abuse of notation should not cause confusion later.

1.3.2 Uncertainty in Signals

It is now widely accepted that uncertainty issues constitute a fundamental and un-
avoidable aspect of the controller design problem. The term uncertainty is a loose
umbrella term for any sort of limitation in our knowledge of a control system, in
whatever form that might take. In physically motivated engineering problems, uncer-
tainty usually arises in two forms. Perhaps it is truer to say that uncertainty issues
are generally modelled by control engineers in one of two ways. There is uncertainty
in systems and uncertainty in signals. It is interesting that these two different types
of uncertainty have very different effects on the closed loop system. For example,
system uncertainty can cause a nominally stable system to become unstable, which
sighal uncertainty cannot do. While the modelling of system uncertainty has received
an enormous amount of attention, perhaps it is true to say that the issue of signal
uncertainty has been generally under-emphasised in the literature. It is hoped that
one of the contributions of this thesis will be to focus in more detail on the different
ways in which uncertain signals can be modelled under existing theoretical frame-
works. In this subsection we discuss the current methods for describing uncertain
signals in robust control theory.

Uncertain signals are input signals to the system which are uncertain, incompletely
known, or unpredictable. The physical sources of these signals include disturbances
at the input or the output of the plant, measurement noise on feedback signals, com-
mand inputs, and a host of other largely unknown inputs due to various environmental
factors. It is clear then that in fact all of the input signals to a control system are
essentially unknown. How then can these signals be described in a formal manner?
The first attempts at modelling uncertain signals adopted a probabilistic approach.
Signals were viewed as being stochastic in nature but with known spectral densities.

This viewpoint led to the so called LQG/LTR control theory [7], which gained signif-



icant popularity in the 1970’s. As pointed out in [8] however, a fundamental problem
with this theory was the absence of any obvious extension of this approach to deal
with modelling of uncertainty in systems. In order to construct a harmonious frame-
work for the modelling of both signal and system uncertainty, the following approach
was proposed by Zames in [8].

Consider each input signal as being unknown, but belonging to some set or range
of possibilities, denoted by Tw. This set may be defined in many different ways,
depending on the amount of structure required. The simplest and perhaps the most
useful way of describing T™w is to impose a norm bound on the ‘size’ of the elements

of the set. Thus we can write

Vw = {w(t) [ wlt) lls< 1}

Vw = {w(jio)| [ w(jio) [ls< 1}

for some signal norm || . ||s. These correspond to signal sets which are described
by the single constraint that w have norm less than or equal to unity in either the
time domain or the frequency domain. Such sets can reasonably be described as
unstructured signal sets. They correspond to the unit ball in the appropriate
vector space of signals. Note that even in the SISO case, w(t) and w(ju) above
will in general be vector quantities, since all the possible uncertain signals acting at
various points in the system are ‘lumped’ together into one vector w. We will have
more to say about the implications of this design ‘choice’ in later chapters.

Describing a class of uncertain signals by the single constraint of a norm bound
is insufficiently flexible and too crude for most purposes, and more refined models
of uncertain signals are needed. Weighting transfer functions provide much needed
flexibility here. Uncertain signals entering the physical system are viewed as the
outputs of transfer functions which are driven by inputs having norm less than or
equal to one in some signal norm. This is the approach adopted to modelling uncertain
signals in and C\ control theories. These transfer functions are termed weighting
transfer functions, or simply weights. So uncertain signals can be said to be described
by weighted, filtered or coloured versions of the unit ball in some vector space of
signals. The selection of appropriate weighting functions for uncertain input signals
is one of the most crucial and difficult steps in robust controller design.

Finally, we remark that the ideal model that captures all the time and frequency

domain features of uncertain signals has not yet been developed. Models such as the



ones detailed above based on an entire weighted unit ball may allow for signals which
do not exist in practice. As noted in [9], it can be just as limiting to have models
which allow signals or perturbations which have no physical motivation but severely
degrade performance (of the model), as it is to have models which ignore uncertainty
altogether. The problem of finding the optimal trade-off between these two extremes
is the subject of ongoing research.

1.3.3 Norms of Systems

In this section we consider ways of measuring the ‘size’ of an LTI system with input
w, output o and transfer function matrix Tzw, as shown in Figure 1.1

Figure 1.1: LTI System

Many general methods exist for measuring the size of a system in terms of its input
and output signals. Just as with signals, we will use functions called norms to do
this in a rigorous and consistent way. It will be shown that a natural approach is
to measure the size of the system based on the way in which the input and output

signals of the system are measured. For a given LTI system
z(j™) = Tzw(jco)w(ju>)
when the signal norm is a frequency domain norm, and
z{t) = Tzw(t) * w(t)

when the signal norm is a time domain norm. In the previous subsection we adopted
the approach of regarding each input signal w as unknown but belonging to the norm
bounded set Vw. For a given LTI system, this then gives rise to a corresponding

well-defined set of possible z’s. Thus in order to define a measure of the system Tzw



which takes into account its response to the whole set of possible input signals Dw,

we use the so-called worst case response norm

TP I D oy T T W{iw)w(ju) Is .
Wh Y HIS 3}«‘6’ I II5 (1.7)
or
| Fzwtt) Ylig V\%)” T”IVI“) .*.Wl{g) s s

System norms of the above form depend completely on the particular signal norm
| . |ls, and will therefore be referred to as induced norms. Note that they arise
very naturally in the present control context. The norm || . ||/sis said to be induced
by || . |Is. Whether or not the term induced norm requires the numerator (or output
side) norm and the denominator (or input side) norm to be the same is just a matter
of definition. In this thesis, the requirement that they are identical is taken to be a
part of the definition. Induced norms quantify the maximum possible “gain” of the

system from w to z, in terms of a certain sighal norm. Expressions of the form

m (-m I Tzw(ju)w{ju r n A
I TZW)(/jto) Yjrs—sup . (ywiiu (A1)
4ir0 i s
or
i il Il 11z fi n \
| Tzwlt) [)/rs—sup (1.1}
wro | 1ovg |5

also define norms. Note however that different signal norms appear on the numerator
and the denominator. System norms of this type can reasonably be referred to as
semi-induced norms, and this terminology will be used later. The system norms
induced by the various signal norms detailed earlier will be discussed in detail as they

arise, in Chapter 2.

1.3.4 Uncertainty in Systems

It is entirely obvious that real-life physical systems cannot be modelled perfectly.
The behaviour predicted by a model of the system and the actual behaviour of the
physical system will always differ. In most engineering problems, such differences
are so substantial that they cannot be ignored. Limitations in our ability to model
systems can be thought of as uncertainty in the system, since the actual behaviour
of the physical system is then partly unknown, partly uncertain.

In classical feedback design the problem of system uncertainty was tackled by

prescribing stability margins in terms of the gain, phase or peak M values of the



closed loop system. The use of such margins revealed an implicit assumption about
the nature of system uncertainty, i.e. that it is unstructured. This means that no
attempt is made to trace the origins of the uncertainty to specific points in the
system; all that is assumed is some knowledge of a bound on its ‘size’. In this section
we detail the various models available in robust control theory to explicitly describe
unstructured system uncertainty. In cases where a significant amount of information
is available regarding the source of the uncertainty, a more strucutured model may be
appropriate, and this can be handled under the framework of [i analysis and synthesis.
This theory however is beyond the scope of this thesis.

The three most commonly used models of unstructured system uncertainty in
robust control theory are as follows. Let Pqg(s) be the transfer function matrix cor-
responding to the nominal plant, i.e. a best estimate in some sense of the true plant
behaviour. Let P(s) be the transfer function matrix corresponding to the true plant.
Then

P{s) = Po(s) + Aa{s) (1.12)
P{s) = Pds) (/ + A-(3)) (1.12)
P{s) = (J+ AO0(s)) Po{s) (1.13)

where A arepresents an additive uncertainty, Aman input multiplicative un-
certainty and AOan output multiplicative uncertainty. Of course A; and AO
are equivalent in the SISO case. Now just like with the modelling of uncertain signals,
the three A 's above are viewed as being unknown but belonging to some well defined
set.

This scenario raises the question of what sort of uncertainty sets to use, i.e. of
how to describe system uncertainty sets. Again as with signal sets, we restrict our
attention to sets which are described by a single norm bound. Also, we consider only
induced norms. These limitations (in optimal synthesis problems) are necessitated by
the mathematical tools available at present. Some terminology is needed. A system
Tyx with input x and output y is said to be bounded input bounded output
(BIBO) stable in the || ||s-sense (or s-stable for short) if there is a finite constant M
such that

Iy fls< M x [Is

for all inputs x. In this thesis the term stability always means BIBO stable in some

signhal norm | |[[s, and the norm in use should be clear from the context. Then for

10



each of the three models above the particular uncertainty Aa, Ai or AOis considered

to belong to a set of the form

= {A]| A is s-stable, LTI, and || A |[|js< r}

where r is some scalar and || A ||/s means

a/- Xxii I AO'wWju;) |L o, o M I A(t) * ait)
I A(ju) ||/s= sup -— _ I A\(At) \lis= sup _
«Mil, " a*0 [la(i)
and where || . |Jais some signal norm. This sort of plant uncertainty is called un-

structured system uncertainty, because A is constrained only by a single induced
norm bound. This set can be viewed as a set of possible perturbations to the plant
model. So the plant to be controlled is viewed as a set of possible systems, rather
than as a single system which is completely and perfectly known. As was the case
with signal uncertainty, our unstructured models of system uncertainty can be made
more flexible and refined by including weighting transfer functions to reflect the likely

spectral content of the uncertainty in the given plant. This is done by setting
A= WA (1.14)

where W is a stable minimum phase transfer function or transfer function matrix.
Thus || A |lis can always be normalised to be < 1. Both input and output multiplica-
tive uncertainty models are needed since multiplication of transfer function matrices
is non-commutative. In effect the former assumes that all the uncertainty occurs at

the plant input while the latter assumes that it all occurs at the output.

1.3.5 A Canonical Form

The previous four subsections have detailed the ways in which robust control theory
measures and models signals, systems and uncertainty. A standard configuration
for feedback controller design which includes these various sources of uncertainty is
shown in Figure 1.2. Uncertain input signals are represented by disturbances at the
output of the plant and measurement noise on the feedback signal. Plant uncertainty

is unstructured and multiplicative, acting at the input of the plant.

11



Figure 1.2: A Standard Configuration for Linear Controller Synthesis

This configuration has the advantage of being intuitively appealing from a physical
point of view; disturbances at the output of the plant are drawn at the plant output
etc. In order to cast the design problem in the framework of mathematical optimi-
sation however, it is useful to have a single canonical form which includes as special
cases all the different systems resulting from variations in the form and location of
uncertainty. This subsection describes such a canonical form for linear time-invariant
(LTI) controller synthesis problems. This canonical form is well known, and is widely
used in the robust control literature [6, 44], Consider the feedback configuration

shown in Figure 1.3.

Figure 1.3: A Canonical Form for Linear Controller Synthesis with both Signal and

System Uncertainty.

12



As is well known from the jx analysis literature [9], any feedback system of the form
shown in Figure 1.2 can be transformed into this configuration via block diagram ma-
nipulations. Referring to the figure, the block Pi is called the nominal augmented
plant, and A is an uncertainty block which is unstructured but norm bounded. In
this formulation, Pi includes the nominal plant together with dynamics associated
with the weighting transfer functions used to model signal and system uncertainty.
Pi then, together with A is the actual system to be controlled. The block —K is the
controller, and it consists of all the subsystems which the control system designer
is free to choose. The vector signal w is called the vector of exogenous inputs. It
consists of all external signals entering the system, and typically includes external
disturbances, measurement noise signals and command inputs. This configuration
allows us therefore to ‘lump’ all sources of signal uncertainty into a single vector w.
The signal z is called the regulated outputs, and is not simply the physical outputs
of the system. It is in fact all the signals in the system which are needed to write
down the control problem’s specifications. Thus, it generally includes tracking errors,
and may also include the plant input, system state variables, and so on. The signal
u is called the actuator inputs, and is the vector of all input signals to P\ which
the controller can manipulate. Finally, the vector y is called the sensor outputs.
It contains all the signals which the controller has access to. This canonical form is,
in terms of abstraction, further removed from the ‘real’ physical system than that
given in Figure 1.2. Its advantage however is that it easily allows controller design
to be formulated in terms of mathematical optimisation problems. Note also that
under this framework the purpose of feedback is clearly to attenuate the effects of
both signal and system uncertainty on the system. Even the problem of command
tracking is formulated in terms of the attenuation of the effect of an uncertain signal
(the command input) on the appropriate regulated variables (tracking errors).

For the above configuration, any specification is said to be obeyed nominally
if the nominal system, the system with A = 0, obeys it. It is said to be obeyed
robustly if it is satisfied for every A in the uncertainty set Ta- In robust control
theory, specifications are given in terms of the stability or the performance of the
closed loop system. In the following subsections we show how nominal performance,
robust stability and robust performance specifications can be cast as mathematical
optimisation problems under the above canonical framework. We note however that
in full generality, the only type of specifications which and C\ optimal synthesis

can handle robustly are stability specifications.
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1.3.6 Nominal Performance

Performance Specifications in robust control theory are generally given in terms of
the attenuation of the effect of uncertain input signals on the regulated variables of
the system, subject to internal closed loop stability. Nominal performance specifica-
tions can be cast as mathematical optimisation problems under the above canonical

framework as follows. Consider Figure 1.4.

Figure 1.4: A Canonical Form for Linear Controller Synthesis with Signal

Uncertainty.

Note that in the above configuration Ap is zero, and P2 is the nominal plant aug-
mented with dynamics associated with the weighting transfer functions used to model
signal uncertainty. It is natural to partition P2 conformally with its inputs w and u

and with its outputs o and y. Thus,

The closed loop transfer function from w to 2 in Figure 1.4 will be denoted by Tzw,

and is
Tzw = Pn - Pu2l<(l + P22K)~'P21 (1.15)

Then the Optimal Nominal Performance Problem is given by

inf sup || z |Is
K wiVw
%

where the infimum is over all LTI controllers which stabilise the closed loop system.

This problem can also be written in the form



where the infimum is over all stabilising controllers, and the system norms in question
are induced by the appropriate signal norms. The optimal nominal performance
problem can clearly be regarded as a set of optimisation problems (depending on
which signal norms are chosen), and it has received a great deal of attention in the
robust control literature. In standard 7Yoo control theory reliable software packages
are available which can be used to solve this problem in both the SISO and MIMO
cases. It will be argued in the sequel however that the particular paradigm on which
these solutions are based is flawed from an engineering point of view. In L\ control
theory complete theoretical solutions to the optimal nominal performance problem do
exist for most cases. However, no reliable software for the design of optimal controllers

is commercially available.

1.3.7 Robust Stability

As mentioned earlier, only system uncertainty can destabilise a nominally stable
plant. Therefore, the first issue to be addressed in terms of system uncertainty is

robust stability. Consider the configuration of Figure 1.5.

Figure 1.5: A Canonical Form for Linear Controller Synthesis with Plant

Uncertainty.
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Denote by T,- the transfer function from input i to output r, with Ap removed.
So Tri is the transfer function ‘seen’ by Ap. Robust stability specifications can be
cast as mathematical optimisation problems under the above canonical framework
by using the Small Gain Theorem [11, 44], which is a fundamental result in robust
control theory. Applying the SGT to the set-up of Figure 1.5 yields the following
[11, 12],

Theorem 1.1 Suppose that the system of Figure 1.5 is nominally stable, and that a
is a positive real number. If
| Tri |[/s<C a

then the system of Figure 1.5 is BIBO stable in the | . \s-norm sense for every Ap
which obeys

I'Ap llis< a-1

This theorem gives a sufficient condition for robust stability for the uncertainty set
Z>A defined above. The great utility of the SGT comes from two facts. Firstly, it
holds equally well for any induced norm. Note however that it does not apply to
semi-induced norms, and this observation will be seen to be fundamentally important
in the sequel. The second great advantage of the SGT is that it applies also to systems
which are non-linear (NL) and/or time-varying (TV). On the robust stability question,
this translates into the following. The theorem also guarantees stability for all Ap’s
in the set
T>a = {Ap| Ap is s-stable, and || Ap ||/s< 1}

So the condition || Tri ||js< 1 ensures robust stability in the face of a class of NL
and/or TV Ap’'stoo, and the requirementin T>athat Ap mustbe LTI can be dropped.
However, considerable mathematical subtleties arise when Ap is NL and/or TV, and
care is needed when extending the notion of induced norm to NLTV operators, as in
“I Ap ||/s” in the above definition of T>a- In the interests of brevity, robust stability
results will be given only for LTI Ap’s, and the more general case of NLTV Ap'’s
will not be discussed in detail. Rather, it suffices to inform the reader that the SGT
and the concept of induced norm can be extended to the NLTV case, but some extra
mathematical machinery is needed [11]. In any case, our use of the SGT is standard
and routine, and all the robust stability results stated in this thesis may be extended

to cover Ap’s which are NL and/or TV.
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Motivated by the SGT, we have the Optimal Robust Stability Problem
mf I Tri ||/5
K "

where the infimnm is over all stabilising controllers, and the system norms in question
are induced by the appropriate signal norms. It can fairly be argued that the Robust
Stability Problem is substantially solved in both the Tioo and C\ control theories.
The condition in the SGT is sometimes but not always necessary as well as sufficient
for robust stability with the relevent uncertainty sets. The problem of settling the

necessity question depends on the norms in use.

1.3.8 Robust Performance

In the previous subsection the effect of system uncertainty on the stability of the
closed loop system was considered. Once the question of robust stability has been
settled, the next most important consideration is obviously to minimise the impact
of system uncertainty on the performance of the system. Indeed it can reasonably be
argued that robust performance is the ultimate goal of robust control theory. Robust
performance specifications can be cast as mathematical optimisation problems under
the above canonical framework as follows. W ith reference to Figure 1.3, consider the
problem of robustly minimizing the induced norm of the transfer function from the
uncertain input signal w to the system output z when the plant uncertainty 'Da is
unstructured. This is called the Optimal Robust Performance Problem and can
be stated as

inf sup || Tzw(s,K,A) [|Js
K &evA

where the infimnm is over all LTI controllers which are robustly stable for V&. This
problem is a hard problem and is the subject of ongoing research in the robust control
community. In full generality it is unsolved in both the C\ and 'Hrx, control theories,
the major difficulty obviously being the requirement of dealing with both signal and

system uncertainty simultaneously.
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Chapter 2

Robust Controller Synthesis: HD
and Control theory

As outlined in Chapter 1, many desirable feedback system properties and correspond-
ing specifications amount to requiring certain closed loop transfer functions to have
small induced norm. This suggests that it would be highly desirable to minimize the
induced norm of the closed loop system over all LTI stabilizing controllers. What con-
troller optimization problems of this general type have already been solved? To date,
only two major problems of this type have been fully and comprehensively solved at
an analytical level, corresponding to the 7i.f and C\ control theories. This chapter
gives a brief outline of these theories. The development is intended to highlight the
similarities as well as the differences between them. Some detailed comments are
made on certain aspects of both "Hoc and C\ control theory. These observations pro-
vide the motivation for the development of the modified [ 7i2 control theories

presented in Chapter 3.
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2.1 700 Theory: Nominal Performance

In this section we discuss the issue of nominal performance under the framework of
Tioo control theory. This thesis will have occasion to discuss many system norms.
One such norm is the Tioo norm or the infinity norm in the frequency domain,
which is given by

Ii"WiIL = sup I Tzw{j")

—00<WwW<+00

in the SISO case, and by

AN(»lloo = SUP v(Tzw(ju}))

—oo<u/<+o00

in the MIMO case, where a(Tzw(juj)) denotes the maximum singular value of Tzw(ju).
W ith reference to Figure 1.4, the Tioo Nominal Performance Problem is given by

inf 117(6)11"

where the infimum is over all LTI stabilizing controllers. The engineering motivation
for this problem rests on the following theorem, which is fundamental in Ti® control
theory [13].

Theorem 2.1 Suppose that z(ju) = T2AXjuj)w(ju)), and that Tzw(s) is the transfer

function matrix of a stable LTI system. Then

I . I I zuU) Ih
219 Yo 38 i 1

This theorem says that the Tioo system norm is induced by the £ 2 signal norm. To
see the engineering relevance of this, define

? = MiM) w(ju) ||2< 1} = (2.1)

(with “e” for energy), where BC”jto) denotes the unit ball in The set
= 13C:. (ju) consists of all n-vector signals having energy less than or equal to
one. As w(jco) ranges through T>w\ it gives rise to a well defined set of possible

system outputs. Specifically, the signal z{jui) then ranges through
= {z{jo\ z(ju) = Taw{jLo)w(ju), [l w(ju) [2< 1} (2.2)
which may be written succinctly as
= Tzw(ju)B£R&{jLo)

19



Hence, the maximum possible size of the undesirable signal z, as measured by the £2

sighal norm, and as w ranges throughout the set T>w\ is

sup [ z(ju) 2= sup || Tzw(juj)w (ju) |2
™wecle wet3C” (jw)

The above expression is easily recognized from Theorem 2.1, so that

sup | z(jco) [|2 = I Tzw(s) lloo
w(jcj)ev
Hence, minimizing || Tzw(s) corresponds to minimizing the worst case | z(jto) R
as w ranges through = B C This observation motivates the optimal controller

synthesis problem of minimizing the system norm | Tzw(s) |loo, and this is a solved
problem. Indeed, software for solving this problem is commercially available [71].
Previous work in the area of Tioo control theory has been based on the use of the
£2 norm on both the input and the output side, since the £2 norm appears on both
the denominator and numerator in Theorem 2.1 above. On the input side, exogenous
inputs are taken to be square integrable signals which have energy less than or equal
to unity. On the output side, this approach minimizes the worst case £2 norm of the
output. This viewpoint can reasonably be referred to as the energy paradigm for

7Yoo, and this terminology will be used below.

2.2 Hoo Theory: Robust Stability

Let us turn now to the issue of system uncertainty, and the problem of ensuring closed
loop stability in the presence of this uncertainty under the framework of Tioo control
theory. We restrict our attention to so-called unstructured uncertainty, wherein Ap

is constrained only by a single induced norm bound. Thus, define
T>"p = {Ap(jcj)| Ap(jw) is 2-stable, LTI, and | Ap(jto) |joo < 1}
The following result is well known [13].

Theorem 2.2 Suppose that the system of Figure 1.5 is nominally stable, and that a
is a positive real number. Then the system of Figure 1.5 is BIBO stable in the £2

norm sense for every LTI Ap(ju) which obeys

ra o\ I AP(joo)a(ju) |12 j
Ap{jto) oo= Sa% ------- nEﬁLb e S o
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ifand only if
| Tri(s') Hoo™ ®

Hence, the condition || Tri(s) |loo< 1 guarantees robust stability for the uncertainty
set T>"P above. It is necessary as well as sufficient for robust stability with this
uncertainty set. Applying the SGT to the set-up of Figure 1.5, and specializing
to the £2 signal norm, immediately establishes sufficiency. Necessity is proved by
exhibiting a destabilizing Ap when || Tr{(s) |loo> 1. Such a Ap which is LTI can

always be found [14, 15]. It is also necessary and sufficient for the uncertainty set
> = {Ap| Ap is 2-stable, and || Ap < 1}

where the requirement that Ap be LTI has been dropped. This robust stability result

motivates the 7Yep Robust Stability Problem given by

I Tho

where the infimumis over all LTI stabilizing controllers. This problem can be thought
of as maximizing stability robustness. It can be cast in the canonical form of Fig-
ure 1.4, by allowing the input i (respectively, the output r) in Figure 1.5 to play the

role of w (resp. z) in Figure 1.4. So this is a solved problem.

2.3 The Mixed Sensitivity jiao Control Problem

The previous two sections have detailed the Nominal Performance Problem and the
Robust Stability Problem in Hoo control theory. We have noted that both problems
are ‘solved’ from a mathematical point of view, and in the next section references to
the various methods of solving Tioo optimisation problems are given. In this section
however, we concentrate on the issue of controller design. It is entirely obvious that
in any realistic design problem, the controller must effectively counteract both signal
and system uncertainty. Therefore, in this section we consider a problem formulation
which combines both nominal performance and robust stability - The Mixed Sensi-
tivity Tioo Control Problem. We first of all define the following terms, which will be
seen to be instrumental in the design process.

For a given nominal plant Go with stabilising controller if, denote by So the
Nominal Sensitivity Function, where

5 = 1

0 1+ GOK
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and
SO0={l + GoK)-1 (MIMO)

Denote by TOthe Nominal Complementary Sensitivity Function, where

GOK

(SISO)
1+ GOK

and
TO= GOK{l + GOK)-1 = [I+GOK)-IGOK (MIMO)

We also define the function RO, where

K
Rn= (S1SO)
1+ GOK

and
RO=K(lI + GoK)-1 (MIMO)

ROhas no common name in the literature, and will be referred to here as the Nominal

Control Sensitivity Function. Note carefully that
So + TO = | (2.3)

Now in Section 2.1, and with reference to Figure 1.4, the Nominal Performance

Problem was shown to be given by
inf 117(5)117

where the infimumis over all LTI stabilizing controllers. W hat exactly is the transfer
function matrix Tzw(s)l The answer to this question obviously depends on the type
and location of the various uncertain signals entering the system. Consider the vector

of exogenous inputs w given by

w \
o

c
\m )

where da and do denote disturbances acting at the input and output of the nominal
plant respectively, ¢ is an uncertain command signal, and m is measurement noise

acting on the feedback signal. This vector includes all the possible sources of uncertain
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signals likely to be considered in most typical controller design problems. Recall that
the vector of regulated variables is defined as including all signals which are necessary
to write down the specifications for the design. Since design specifications are usually
given in terms of the output and control signals, let the vector of regulated variables
z be given by

where y is the ouput of the nominal plant and u is the control signal. Then it is easy
to show that for

Z Tzwzv

the transfer function matrix Tzw is given by

T = WlaSaGo0 WIbSO TO W2Tqg\
"V -WIlaRoGO -WIbRo Ro ~WZ2RO0)

Note that each term of the matrix Tzw involves one of the sensitivity functions Sa, Ta
or R0O. Note also that the weighting functions present in the matrix arise from the
modelling of the various uncertain signals, and that these have been absorbed into
the augmented plant.

Now recall that in Section 3.2, and with reference to Figure 1.5, the Tioo Robust
Stability Problem was shown to be given by

Mf 1 Tri(s) Ha

where the infimum is over all LTI stabilizing controllers. Again the transfer function
or transfer function matrix Tri will depend on the way in which the uncertainty in
the plant is modelled. Table 2.1 below gives T,- for each of the three possible types of
uncertainty. Note that the plant uncertainty weighting function W3 has again been

absorbed into the augmented plant.

A Tri (SISO) Tri (MIMO)

Aa ~w* Kk -w3g-'t0
A- - w3t0 -W :iG0xToGo
A0 - w3t0 - w3t0

Table 2.1. T,- for different types of Plant Uncertainty

23



The full extent of the complexity of the design process now becomes clear, since
satisfaction of nominal performance and robust stability specifications must inevitably
involve the minimisation of interdependent sensitivity functions. Indeed, inspection
of the matrix Tzw reveals that the nominal performance problem alone places con-
flicting demands on the values of SO, To and RO. In typical controller design problems
however a detailed study of the physics of the system in question together with some
engineering insight on the part of the designer usually allows some simplification of

the problem. We briefly detail the most significant issues.

1. In most designs it is not realistic to consider all possible types and sources of
uncertainty. In general system uncertainty can be modelled as either additive or in-
put or output multiplicative. Significant disturbances are usually present at the input

or the output of the system and so on.

2. Design specifications often only place conflicting demands on certain sensitiv-
ity functions over different frequency ranges. For example, the attenuation of output
disturbances and measurement noise in the nominal performance problem requires
both So and To respectively to be made small. From (2.3), this is obviously not
possible. However since output disturbances usually occur at low frequencies and
measurement noise generally becomes significant at high frequencies, careful selection
of the weighting functions W\ and W3 will allow both specifications to be satisfied
over disjoint frequency bands. Similarly, command signals are usually confined to the
lower end of the frequency spectrum, and thus command tracking and disturbance

attenuation are actually complementary specifications.

3. The requirement that the control signal be kept small is dependent on the value
of RO, and since all real plants are strictly proper, this means that the controller K
should roll off at high frequencies. Clearly, this is compatible with the above require-

ments on So and Ta

4. Finally, it is almost always the case that our knowledge of the dynamic behaviour
of the plant deteriorates significantly at high frequencies. This means that the plant
uncertainty weighting function W3 is generally small at low frequencies and increases
with increasing frequency. Choosing for example a multiplicative output uncertainty

as our model then requires the complementary sensitivity function To to roll off at
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high frequencies. Again, this is compatible with the requirements arising from the

specifications above.

The above discussion highlights the nature of the design process in 0 controller
synthesis. Clearly, modelling of uncertainty is crucial, in terms of choosing which
sensitivity functions should be minimised over which frequency bands. Thus the
selection of the uncertainty weighting functions W\a, Wn, W2 and W3 is an important
step in the actual controller design process.

We turn now to the problem of simultaneously achieving nominal performance and
robust stability specifications. The discussion above along with our characterisation of
the matrices Tzw and T,- naturally leads to the following popular approach. Once the
various uncertainty weighting functions have been selected for the particular system,
they can be used together with any relevent design specifications to choose design
weighting functions Ws, Wt and Wr for each of the three sensitivity functions SO,
TO, and RO. For example, Ws would be chosen based on W\a and/or Wib together with
any command following specifications for the closed loop system. Wt would be chosen
to satisfy robust stability specifications given by W3 as well as including measurement
noise attenuation properties. In this way the weighting functions change from being
simply models of uncertainty to actual dynamic design parameters. Once the design
weighting functions have been chosen, commercially available software packages such
as [71] can be used to solve the so-called M ixed Sensitivity Tioo Control Problem
given by

Inf 1l 3(s) Il
where the infimum is over all LTI stabilizing controllers, and J is a matrix cost

function given by
J = ( Ws(@)S0(S) W ~inr)y Wt (s)T0{s) )

In many designs the control signal u can actually be constrained by shaping the
complementary sensitivity function TO0, so that with a suitably chosen Wt, the cost

function J becomes simply
J= (WAs)") Wt{s)T0s) )
Then it can be shown that

v, ' 3{s) lloo < max ( || Ws(5)S'o(s) H", || Wr(s)To(s) [s&) < [ J(s) lloo (2.4)
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and thus it is easy to see that the cost function J effectively captures both nominal
performance and robust stability specifications. The construction of the mixed sen-
sitivity cost function given above also clearly reveals the inherent trade-off between
performance and robustness which is present in every design.

A number of detailed comments are made in the sequel concerning aspects of
controller design. In addition the design examples presented in Chapter 5 should
serve to illustrate the various issues which arise in practical design problems. For the

moment we confine ourselves to the following observations.

1. No systematic methods of choosing either the uncertainty or the design weighting
functions exist. Choosing the uncertainty weighting functions can be difficult and
time consuming and in general requires a good understanding of the physical charac-
teristics of the particular plant and its operating environment, as well as a fair degree
of engineering intuition. Subsequently constructing the design weighting functions is
also non-trivial, and depends to a large extent on the relative importance given by

the designer to often conflicting specifications in the final design.

2. The mixed sensitivity control problem does not have a solution for all possi-
ble combinations of weighting functions. The selection of weighting functions which
correspond to specifications which are too ambitious, or which violate certain rank
conditions required by state space solutions to the mathematical optimisation prob-
lem, will result in the failure of the software to compute a controller. The size of the
‘crossover gap’, i.e. the frequency interval between the 0 db crossover frequency of

the weighting functions Ws and Wt is particularly crucial.

3. The approximations required by the selection of a single design weighting function
for each sensitivity function, together with the necessity of including different speci-
fications in a single matrix cost function J, generally means that the final controller
will be the result of an iterative process. Weighting functions will usually have to
be adjusted and closed loop behaviour validated by simulation before a satisfactory

design is achieved.

4. The mixed sensitivity problem formulation guarantees nominal performance only

- the effect of plant uncertainty on the performance of the system is not considered.
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5. All design is done in the frequency domain.

6. The order of the optimal controller is not explicitly constrained in the de-
sign process. In general the controller will have higher order than is necessary and
thus model reduction techniques can usually be used to reduce the complexity of the
control law without degrading closed loop performance.

7. Woo controller synthesis has become a widely accepted design technique among
the control community, and has proved particularly sucessful in problems involving
multivariable plants operating in a hostile environment.

2.4 Solutions to the Mixed Sensitivity Con-
trol Problem

After more than 15 years of intensive research there are now several distinct theories
which may be used to solve Tt" optimisation problems. The mathematical theory
required in each case can fairly be described as difficult and involved, and the re-
sulting software algorithms tend to be computationally demanding. This thesis is
not concerned with the mathematical solutions of optimisation problems per se,
but with the control engineering motivation underlying the different robust control
methodologies, and so below we simply list the various theories together with the
relevent references.

1. Nevanlinna-Pick Interpolation Theory [16, 17, 18]

2. Vector Space Duality Theory [19, 20, 21, 22]

3. Kwakernaak’s Theory [25, 26]

4. Sarason’s Theory [27, 28]

5. Convex Optimisation [6]

6. Optimal Hankel Norm Model Reduction Theory [23, 24]
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Currently available commercial software packages such as [71, 78] use Optimal Hankel
Norm Model Reduction Theory to compute 'H®, optimal controllers. The advantages
of this method include the fact that explicit state space formulas for the controller
are available, as well as the fact that all computations can be done in state space,
making the resulting algorithms more numerically robust. The more recent numerical
approach of convex optimisation has also provided some promising results, especially

in terms of revealing the limits of performance for a given system.

2.5 A Critique of tico Control Theory

This section contains certain comments on Ti.@M control theory. Our purpose is to
detail what we regard as limitations of the theory, and to explore the root causes of
these limitations. Later in the chapter, an analagous examination of C\ control theory
is made. These contrasting observations motivate the development of a modified H.00

control theory, detailed in Chapter 3.

2.5.1 (i) The Output Norm and ‘Spikes’

Consider now applying standard control theory to the problem of minimizing a
system’soutput due to an uncertain input signal, as described earlier. Previous work
in the area of 7Yoo control theory has been based on the use of the C2 sighal norm
on both the input and the output sides. Applying this conventional or standard TGoo
approach then leads to the problem of finding the LTI stabilizing controller which

minimizes || Tzw(s) H”. Now, it follows immediately from Theorem 2.1 that
| z(ju) ||]2< o VioG < || Tzw(s) Ho < a (2.5)
Hence, if the £2 norm of z must be kept smaller than a, the condition needed is
| Tzw(s') Loo* O

Note that this condition is necessary and sufficient for ensuring that the effect of
a class of exogenous inputs on the system’s output is bounded, in a certain precise
sense. Present day Hoo software [71], will effectively deliver the controller which
yields the smallest possible value of a in eqn. (2.5), thereby yielding the best possible

upper bound on the energy of the output signal for all possible inputs in the set
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T>w* = BC”ju). So standard Hoo control theory effectively minimizes the impact of
uncertain input signals on the system’s outputs in a certain precise sense.

W hile this may appear impressive, it will now be shown that it does not prohibit
the possibility of “spikes” in the system’s output z(t) with arbitrarily large amplitude
in the time domain. Obviously, even moderately large ‘spikes’ in the amplitude of
z(t) would be completely intolerable in many applications. A pedagogy for controller
design which permits large ‘spike-like’ excursions in z(t) runs in the face of the very
objectives and function of a control system.

Lemma 2.1 Suppose that the LTI controller K minimizes
Ao =|| Tzw{s) 1100= sup I Tzw(ju=>)w(ju) ||2
over all LTI stabilizing controllers. Then there exists a sequence of exogenous inputs
Wk(jui) € T>$ such that
Zk(t) t=0 — 00 as k 00

where Zk(t) denotes the system’ output due to the exogenous input Wk(jio), and where
Vw” is defined in egn. (2.1).

Proof

We may suppose that Tzw{s) is SISO. The proof will be seen to extend to the gen-
eral MIMO Hoo-problem without difficulty. Define the sequence of exogenous inputs
wk, k = 1,2,.. . by

N | f TzwUu)V feo for —k <u <k
Wk(|u>51: < Vv )
N0 otherwise

where a0 is a positive real scalar. Let us suppose that the controller K is the 'Hao

optimal controller, so it is the solution of

Aoo -- illf I Tzw(s") |joo
As is well known, the optimal Tzw(s) is all-pass, meaning that
| Tzw(ju) |= A00 (= constant) Vto

Take «o0 to be A”. To see that Wk GT>$, note that

wjfeow) W=~ J A\ 2

™3
gn
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Using the all-pass property gives
[l[I= A~ X j2kM\@O 1

so that Wk G T>w\ Let zk be the response of the system to the input wk. Then,

y/"Xoo for —k <<k

ZkUu) = 0 otherwise

Inverse Fourier transforming gives

zZke - 2vl|A°°/‘k elw tdu

k sin kt
okt
so that

lim zk(t) = AooW-
t—0 \Y

which is unbounded as k — 00, as claimed.

Although this lemma may seem a little startling at first, its practical significance
must not be over-emphasized. Obviously, the above lemma only proves that an in-
finite amplitude ‘spike’in z(l) is hypothetically possible, and only in the sense of a
limit. Also, optimal Tioo controllers satisfy the all-pass property only over a finite
bandwidth, and the sequence of inputs used in the above proof are themselves ‘spike-
like’. Moreover, there are bounds which relate the A norm (the system norm used in
C\ control theory to give a hard bound on the norm of the output signal) to the

Tioo system norm. In [9] for example it is shown that
I G(s) Mo < || G(t) |La < d || G(s) [loo (2-6)

where d is the Smith-McMillan degree of G(s), while in Section 3.5 below bounds are
given which may be used to argue that very large ‘spikes’ will not occur in practice.
However, it is clear that the above bounds are not very attractive for high order
systems.

Another way of looking at the difficulty is as follows. There are no bounds relating

the £2norm and the norm of signals. Specifically, we have the following.
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Lemma 2.2 There exists no finite constant M such that

I z(t) fl2< M | z(t) Ho V z(t) G CAL) flcafy
and similarly there exists no finite constant N such that

z(ty n«<n Bzty 12 Vz(t) e CBY) N~ (1)

Proof
For the proof, it suffices to consider scalar signals which are very wide or very narrow

rectangular pulses. Consider the sequence of signals defined by

I/\/2 %« for —k <t < -\-k

wk{t) =
v 0 otherwise

Then || Wk(t) |= 1 and || Wk(t) jjoo= I/v /2« which is unbounded as k —0. For the
other part, define
i 1 for —k <t < -\-k
m(t) = \ 0 otherwise

Then || Wk(t) |loo= 1 an-d || Wk{t) \2= V 2k which is unbounded as k —* oo. O

So a bound on the C2 norm of a signal (on its own) does not prohibit the signal
from having ‘spikes’ of arbitrarily large time domain amplitude, and more generally
does not allow any bound on its C norm to be inferred.

There are several arguments for talking one’s way around the ‘spike’ problem,
including those outlined above. These can be used to argue that in practical applica-
tions the ‘spike’ difficulty will not be as severe as Lemma 2.1 superficially suggests.
Although it is fair to say that practitioners are aware that extremely large spikes
will not occur in practice, nonetheless the formal theory permits such behaviour at a
hypothetical level and does not rule it out. Further, the arguments needed to do so
are not a part of standard Ttoo control theory, and are informal and/or conservative.
For instance, optimizing sub-optimal bounds as in eqn. (2.6) is not completely satis-
factory, and cannot be accepted as the final word. This suggests that the underlying
problem formulation is flawed, and that the arguments needed should be fully inte-
grated into the formal theory in a manner which is non-conservative and exact. Doing
so is one aim of this thesis. The crucial point is that standard Tioo control theory

cannot guarantee a good upper bound on the amplitude of the output signal z(t) in
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the time domain with w(ju>) GV $. This lemma raises the question of whether the
problem stems from "Hoo-control theory per se, or whether it stems from the control
theoretic paradigm which is conventionally attached to it. We will have more to say

on this important issue later.

2.5.2 (ii) Signal Set and Specification Lumping

Recall that in standard Tica theory, the vector of exogenous inputs belongs to the

unit ball in When Tzw is m x n, the signal w(ju) is an n-vector, say
w(jio) = (wi(juj),..., wn(ju))T

Suppose now that each vector element Wi(ju> is individually modelled in the usual
Hoo way, i.e. as the unit ball in C2(ju))- In this situation, the signal w(jio) ranges

through Viu , where
2) = {w(u)\ w{jup)T = (wi(ju),... wn(jio)), |l Wi(jio) ||2< 1}

= BC2(ju) x ... x BC2(ju)

If the C2 norm is used also on the output side, the resulting synthesis problem for this
signal set, i.e. that of choosing the controller that minimizes the largest || z(ju) |2
as w varies through T>w\ is not a standard Hoo problem. To obtain a standard Tioo
problem, the collection of n individual unit balls T>$ must be replaced by a single

unit ball in C2{jw). In other words, must be covered by T>w\ meaning that

c V«CI1

This step is conservative and highly undesirable. This disadvantage can reasonably
be called signal set lumping. To obtain a standard Hoo problem all exogenous
inputs must, so to speak, be lumped in together.

Consider, for instance, a plant with several outputs. Each plant output has a
sensor or transducer to produce an on-line measurement of the value of that output.
Imperfections in sensors are generally modelled as additive noise. Such sensor noise
signals arising from independent sensors are necessarily independent of each other,
as in Vw\ When using T>w\ the Wi s are not independent. In most applications, the
elements of w are independent of each other, and the C2 norm i.e. the signhal norm on
which standard Tioo theory is based, cannot effectively capture this situation. Sim-

ilarly, each plant output and/or plant input may have significant unknown external

32



disturbances acting on it, and these disturbances may be physically independent of
each other. Again, the corresponding elements of w are then independent of each
other, and standard Ttoo control theory cannot effectively capture this situation.
Similar remarks apply to the output side. With reference to Figure 1.4, different
elements of z generally need to be controlled to different levels of precision. Applying
a weighting function to z to differentially emphasize distinct elements of z is only a
partial solution. Minimizing | z(juj) ||2 still involves averaging over distinct plant
outputs, as well as over frequency or time. This obscures which elements are or are
not being effectively controlled. Independent constraints on the worst case C2 norm of
each Zi cannot be imposed. This limitation can reasonably be termed specification

lumping.

2.5.3 (iii) Robust Performance

The presence of substantial plant uncertainty impacts on many facets of controller
design, not merely on closed loop stability. Recall that the canonical form for linear
controller synthesis given in Figure 1.3 allows both signal and system uncertainty to
be included in the problem formulation. The motivation for minimizing the Tioo norm
however was given in terms of two theorems, one dealing with nominal performance
and the other with robust stability. These problem formulations can be thought of
as corresponding to two ‘special cases’ of the general canonical form, and are given
in Figures 1.4 and 1.5. It is obvious that the fact that each theorem deals separately
and disjointly with signal and system uncertainty is unfortunate, and represents a
serious shortcoming.

It would therefore be highly desirable to be able to handle performance specifi-
cations in the presence of both signal and system uncertainty simultaneously and in
a rigorous way. In this regard, the simplest and most obvious robust perfor-
mance problem is as follows. W ith reference to Figure 1.3, consider the problem of
robustly minimizing the worst case 7Yoo norm of the transfer function matrix from
the uncertain input signal w to the system output z when the plant uncertainty T)"p
is unstructured. This is called the Hoo Optimal Robust Performance Problem
and can be stated as

inf sup | Tzw(s,K, Ap) Ho
A apev’p

where the infimum is over all LTI controllers which are robustly stable for V~p. This
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problem is unsolved.

If the transfer function to be minimized is the sensitivity function, then this prob-
lem is called the optimal Robust Disturbance Attenuation Problem (RDAP or
ORDAP), and there is a literature on it [21, 22, 34, 35]. Previous renditions of the
RDAP problem for the MIMO case [22, 35], are not especially attractive formulations
of the problem, because they suffer from (i) and (ii) above, but try to avoid (iii).
Analytical solutions to this problem are not available.

In fact, the only robust specification which can be optimized by standard 7Yoo
control theory is robust stability. No robust performance problem is solved non-
conservatively by standard 7ioo-control theory. Heuristic approaches to avoiding this
limitation of 7Yoo have been suggested. Perhaps the best known procedure of this
variety is so-called /¢ -synthesis [36, 37]. Unfortunately, convergence is not guaranteed
by this procedure [38].

Alternatively, one can settle for suboptimal approaches to the problem. In [39],
formal bounds are given which limit the deterioration of the performance of the
closed loop system due to plant uncertainty, in the SISO case. This result together
with loopshaping techniques is used in [75] to improve robust performance in SISO
systems. In the case of MIMO systems the situation is more complicated, and in [70]
the authors show that very small levels of plant uncertainty can result in a totally
unacceptable deterioration in system performance. On the other hand a result in [40]
for MIMO systems can be used to show that as long as performance specifications are
only given over afinite frequency interval called an operating band, the degradation in
terms of robust performance over this band is small, provided that (a) the associated
nominal performance is sufficiently good, and (b) the level of plant uncertainty is
sufficiently small. In [30], a controller design algorithm is presented which generates
a sequence of controllers which solve the so-called Robust 7Yoo Almost Disturbance
Decoupling Problem, under certain assumptions. In the most general case however
the design algorithms become complicated optimisation based procedures.

The issue of robust performance in MIMO systems will be considered again in
Chapter 5. For the moment however it is sufficient to note that since from an appli-
cations point of view, the vast majority of control problems require both signal and
system uncertainty to be considered when designing for performance specifications,
it seems clear from the above discussion that all in all standard 'HCf control theory

at present does quite poorly with robust performance problems.
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2.5.4 (iv) Weighting Function Selection

As noted in [29], the effectiveness of any given design procedure depends to a large
extent on how well the relationship between design parameters and design specifica-
tions is understood. In Tioo control theory the design parameters are the weighting
functions, and the selection of these functions can fairly be regarded as the most
important and difficult step in the design process.

In the Tioo literature, there are two viewpoints regarding the weighting functions
which lead to two distinct approaches to the design problem. In the first, weights are
regarded as fixed quantities obtained from physical reasoning, in effect models of the
possible signal and/or system uncertainty, and are therefore not subject to iterative
manipulation by the designer. In the second, the weights are chosen to attempt to
satisfy frequency dependent specifications on the magnitude of the system’s closed
loop transfer functions directly, generally the system’s nominal sensitivity function
So and complementary sensitivity function TO. The weights can thus be manipulated
iteratively to emphasise or shape the robustness or performance qualities of the design
at various frequencies.

The first approach is undoubtedly more straightforward, especially if a reason-
able amount of information can be obtained as to the nature of the uncertainty in
the system. See [31] for an example of this approach. Since each weighting function
represents the best possible model of each individual source of signal or system uncer-
tainty, there is no iterative manipulation of the weights. However, note that (i) the
approach does not prohibit ‘spikes’ at the output, even at optimum, (ii) the approach
suffers from signal set and specification lumping, and (iii) closed loop transfer func-
tions must be replaced by their nominal values, so that performance specifications
are met nominally, not robustly. The consequence is that if standard software is
used, the resulting design may very well be entirely unacceptable.

Thus as noted in Section 2.3 on the mixed sensitivity control problem, the
original uncertainty weighting functions will usually have to be manipulated into
design weighting functions, which can be used by the designer to satisfy various spec-
ifications on the closed loop system. This leads to the second viewpoint in which the
weighting functions are regarded as ‘tuning knobs’ to be used in trading off between
feedback properties over different frequency ranges and different vector directions.
The weights then represent direct specifications on the modulus (or the maximum

singular value in the MIMO case) of So{jio) and To(ju>) (typically), at various fre-
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guencies and in various vector directions, rather than information about signal or
system uncertainty. However, this does not mean that their selection is automatic.
On the contrary, and as noted in [32], there still do not exist systematic and analytic
ways of choosing 'HO weighting functions to satisfy design specifications. It is true
that for SISO minimum phase systems, weighting function manipulation is relatively
straightforward. However for unstable and/or non-minimum phase systems, and es-
pecially in the MIMO case, the situation becomes significantly more complicated.
Firstly, the relationship between the weighting function matrices and the resulting
‘optimal’ design is far from transparent from the designer’s point of view. Various
design features and limitations, such as those due to right half plane poles and zeros,
impose some fairly complicated design tradeoffs [33]. Secondly, the prospect of choos-
ing, let alone iteratively manipulating, a 7 x 7 matrix of weighting transfer functions
for example, is certainly a daunting one. In practice, the selection tends to be based
on past experience and trial and error methods.

In summary then we make the following points. The current situation regarding
weighting function selection in standard control theory is obviously far from per-
fect. It can reasonably be argued that the observations (i) to (iii) above go some way
towards identifying the source of the difficufty. Firstly, the model on the output side
(i.e. the model of or statement of the objectives of control systems) is flawed. The
essential content of Lemma 2.1 is that the C2 signal norm gives a poor mathematical
model of the objectives of a control system. Secondly, accurate models on the input
side (i.e. models of signal uncertainty based on physical reasoning) must be aban-
doned because of (ii) above. Accurate models of signal uncertainty would have to be
covered by a single unit ball anyway, thereby significantly reducing their descriptive
value. Thirdly robust performance specifications cannot be handled well. It can be
argued that it is precisely because of the above limitations that a Tioo design based
on uncertainty weighting functions may well produce an unacceptable finaf design.
Consequently, the weighting functions generally need to be iteratively modified before
a suitable design is obtained. One of the motivations for the modified Tioo theory pre-
sented in Chapter 3 is therefore to ease the difficulty of weighting function selection

by attempting to avoid the various limitations detailed above.
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2.6 c\ Theory: Nominal Performance

The discussion of Tioo control theory given above adopted the perspective of contin-
uous time systems only, as the entire development carries over without difficulty to
the discrete time case. In C\ control theory however, considerable differences emerge
between problems formulated in continuous and discrete time. Therefore in our treat-
ment we will give details for both where appropriate. In the literature, discrete time
problems are usually denoted by the symbol \. In our treatment however, the sym-
bol C\ is used throughout - the discrete or continuous nature of the problem will be
stated explicitly as appropriate.

In this section we discuss the issue of nominal performance under the framework

of C\ control theory. The system norm used in C\ control theory is given by

!/ +Q0
\Tzw(t)\dt
2€))
in the SISO case, and by
n  p-\-00 !
WTzw(t)\A = max £/ {Tzw(ty)ijjdt —max | (Tzw(){j |li

J:i * J:|

in the MIMO case, where (Tzw(t))ij denotes the inverse Laplace transform of the
(¢,j)th element of Tzw(s). So Tzw(t) is the impulse response or impulse response
matrix from w to z. The system norm | . ||[% will be referred to as the A norm, and
is seen to be the L\ norm over time t combined with the max-row-sum matrix norm.
Note that for continuous time systems, the equivalent norm in the Laplace transform

domain is A, which is defined as
I Tzw(s) 11~ = || Tzw(t) |la

where Tzw(s) is the Laplace transform of Tzw(t) [42]. Similarly for discrete time

systems, the equivalent norm in the Z transform domain is A, defined as
[ Tzw [|* = || Tzw(k) |la

where Tzw is the Z transform of Tzw(k) [43].
Therefore with reference to Figure 1.4, the Nominal Performance Problem
is given by

inf
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for continuous time systems, and
inf || Tzw(z) |L

for discrete time systems, where the infimum is over all LTI stabilizing controllers.
The engineering motivation for this problem relies on the following theorem, which is

fundamental in C\ control theory [44].

Theorem 2.3 Suppose that z(t) = Tzwft) * w(t), and that Tzw(t) is the impulse

response matrix of a stable LTI system. Then

n LPZW(t) U\a = sup _Ig([) |loo

wro | wit) Ibo
This theorem says that the C< norm on signals induces the A norm on systems. In
order to see the engineering relevance of this theorem, let us restate it as follows.
Identical reasoning to that used previously shows that

| Tzw(t) WA= sup || z(t) |loo
w(t)evh
where
-Dirl=m *M2\»w iu<i} =b oo

(with “m” for max-amplitude). In the C\ approach, w belongs to the signal set

= BC2o(t), which consists of all signals having amplitude less than or equal to

one at all times. The above theorem can be stated equivalently as
| Tzw{t) |la< a <& | z(t) |[oo< a Vw(t) GV an)

This observation motivates the optimal controller synthesis problem of choosing K
to minimize the worst case output z, as quantified by the Cro norm, and as w ranges
through BC ~t). This corresponds to the C\ Nominal Performance Problem and

it is essentially a solved problem.

2.7 c\ Theory: Robust Stability

Because the A norm is an induced norm, there is a SGT result analagous to that in
Tioo theory for this system norm, and it is an important result in C\ control theory.
Applying the SGT to the set-up of Figure 1.5, and specializing to the C* norm, yields
the following [44].
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Theorem 2.4 Suppose that the system of Figure 1.5 is nominally stable, and that a
is a positive real number. Then the system of Figure 1.5 is BIBO stable in the Coo

norm sense for every LTIAp(t) whichobeys

i 2 s <o JARED) *a(t) o A
“&p&) ” 2/%) ri(t) < a
I7ri(t) VA < a

This robust stability theorem is non-conservative only if Ap is allowed to be TV

and/or NL, as in
T>"p = {Ap| Ap is oo-stable, and | Ap % < 1}

When Ap is constrained to being LTI, this condition is conservative [45, 44]. In
contrast, this does not hold for the analogous TGoo result. This theorem motivates the

Ci Robust Stability Problem given by

ir‘zf | TTi(s) |4
for continuous time systems, and

inf || Tri(z) VA

for discrete time systems, where the infimum is over all LTI stabilising controllers.
This problem corresponds to maximizing stability robustness, and it is a solved prob-

lem.

2.8 The Mixed Sensitivity cy Control Problem

The Mixed Sensitivity C\ Control Problem for continuous time systems is given

by
inf || 3(s) |U

where the infimum is over all LTI stabilizing controllers, and J(s) is a matrix cost

function given by

J = (WsXs)”™) WnWRois) Wt{s)T0(s))
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The equivalent problem for discrete time systems is

inf 1J(0 U

where the infimum is over all LTI stabilizing controllers, and J is a matrix cost

function given by

J=(WsSo WrRoe WtT,)

The motivation for, and the development of, the above cost function is exactly the
same as that given for the equivalent problem and so will not be repeated here.
In the sequel, detailed comments are made on certain aspects of C\ control theory.

For the moment, we confine ourselves to the following observations.

1. Ci control theory can rightly be considered a time domain theory, as specifi-

cations on both the input and output signals are given in the time domain.

2. C\ optimisation procedures for discrete time systems differ significantly from those
used with continuous time systems. In particular, C\ optimal controllers for continu-
ous time systems are irrational, even when the problem data are rational and even in
the SISO case. Approaches for calculating rational sub-optimal C\ controllers have
been suggested [46, 47], but in general the most significant application of the contin-
uous time theory seems to be in furnishing bounds for the achievable performance of
discrete time controllers. C\ controller design is therefore generally applied directly

to discrete time systems.

3. C\ control theory is a very recent theory, and many results are still very new.
Many important open questions still remain to be answered in connection with C\
optimisation. As pointed out in [48], from a theoretical point of view, stronger re-
sults regarding the support structure ofthe optimal solution to the general multi-block
problem are needed. The existence in general of optimal rational solutions is another
open question. In practice, it has been noted that even one-block problems may have
high order optimal controllers, and thus the absence of a formal model reduction

theory in the context of C\ optimisation is a significant drawback.

4. Commercial software packages which can be used to design C\ optimal controllers

are not yet widely available in the control community.
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2.9 Solutions to the Mixed Sensitivity c\ Control
Problem

As with our treatment of 7Yoo control theory, we pass over the details of the math-
ematical techniques involved in C\ optimisation in favour of concentrating on the
underlying engineering motivation for the problem. A common feature of all L\ opti-
misation is the use of vector space duality theory together with linear programming
based techniques for which standard references are [20, 49]. A comprehensive overview
of the field is given in [44]. To date the optimisation problems which have been

solved are as follows.

1. L\ optimal controllers for SISO discrete time systems [50]

2. C\ optimal controllers for MIMO discrete time systems [51]

3. The general multi-block C\ optimisation problem for discrete time systems [48]
4. C\ optimal controllers for SISO continuous time systems [42]

5. Rational suboptimal controllers for SISO continuous time systems [46, 47]

2.10 A Critique of c\ Control Theory

Having previously described some basic limitations of standard 'Hoo control theory, we
now outline briefly some of the main strengths and weaknesses of C\ control theory. A
comprehensive treatment is not intended, and we deal only with those aspects which

have a bearing on this thesis.
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2.10.1 (a) The Output Norm: Non Conservative Minimi-
sation of Maximum Tracking Errors in The Time

Domain

Perhaps the most important attraction of C\ control theory is that it optimally and
non-conservatively minimizes maximum tracking errors in the time domain.

“The | . |la norm is very interesing since the assumptions which lead to it, that
both w and are in BC"{t), are very appealling. It is often the case in practice
that the critical issue is the magnitude of signals and not their power or energy.
Superficially, it could be argued that this would be the obvious norm of choice for
most engineering problems, were it not for the mathematical difficulties associated
with | . Ha-"1 - [Doyle,9].

It can be argued that the essential purpose of a control system is to ensure that the
actual value of the plant’soutput vector, call it y(t), remains close to given desired or
target values which are described by the reference input, say r(t), so that the tracking
error e(t) = y(t) —r(t) remains consistently small over time. In most applications it is
essential or desirable that the tracking error e(t) never exceeds a certain level at any
time. Only by using the norm to measure the size of signals can this objective
be rigorously captured. Standard 7ioo control theory is centered on the C2 norm for
signals. This norm involves averaging over time and over vector elements. So a small
value of || e[t) B does not mean that e(i) will be reasonably small at every time t.
Indeed, e(t) can be extremely large at some t and still have a very small C2 norm, as
in Lemma 2.1. The crucial implication of Lemmas 2.1 and 2.2 is that the C2 norm
is a very poor mathematical model of the purpose of a control system, while the
norm gives a far better and more meaningful measure of the quality of control. This
is, perhaps, the most attractive feature of C\ control theory.

By way of example, consider the problem of controlling the trajectory of a flexible
robot arm in an enclosed environment. Ideally, the tracking error e(t) should be
zero at all times t. In reality, perfect controf is not possible and one must settle
for minimising the deviation from the desired trajectory. But in what sense should
this deviation be minimized? Clearly, the “real” objective and purpose of the control
system is to ensure that this deviation is as small as possible in the time domain and

at each and every point in time. Indeed, depending on the proximity of other devices

1The mathematical symbols have been changed to the notation in use in this thesis
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in the robot’s operating environment it may be absolutly essential that this deviation
never exceeds a certain limit at any time. This means therefore that achieving the
condition

le(i)] < 1Iem Vit

constitutes much better control than, for instance,

Ie(0 Ih< 1

In fact, the latter condition allows no firm conclusion to be made about the quality
of control in any ‘real’ or meaningful way. This consideration makes the Coo norm
very attractive indeed.

Using the £<> norm on the output side has other important advantages too. It
is useful if any device in the control loop has a maximum input rating which should
not be exceeded, such as a plant with a saturation at its input. It is useful too if it
is necessary to keep the system’s state close to an equilibrium point for a linearized
plant model, or if the system’s state must be confined to a specified region of state
space. The only way to handle precisely hard constraints on the time amplitude of
signals in the system is by using the C* norm on the output side. In particular, the
C\ approach then avoids the ‘spike’ problem, because it minimizes the worst case C*
norm of the output z(t) in the time domain. Indeed, this approach optimally avoids

large ‘spikes’ in the time domain.

2.10.2 (b) Signal Set and Specification Lumping

C\ control theory does not suffer from signal set or specification lumping.
The difficulty with signal set lumping in the C. norm comes ultimately from the
inequality in
BCan(ju) £ BC:{jlo) x ... x BC:(jlo)

In contrast, when the signal norm employs the C* vector norm, signal set lumping

is avoided. Indeed, C\ control theory uses the signal set v[™\ where
v = {tu(®)] weryt = (ibi(i),...wn(t)), || wict) [joo< 1, i=1,...,n}

= {tw®) w(t)T = (Wi(t), ...wn(t)), [l w(t) [loo< 1}

= cho(t) = BCoo(t)X...XB C oo(t)
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Chapter 3

A New Paradigm for Optimal
Robust Controller Synthesis In
the Frequency Domain

In the previous chapter a detailed description of some of the relative strengths and
limitations of and C\ control theories was given. Based on this analysis, this
chapter presents a new paradigm for optimal robust controller synthesis in the fre-
quency domain. It is shown that by introducing new models of uncertainty, slight
modifications to standard and Tf. control theories result in an approach to con-
troller design which overcomes some of the limitations of Tioo control theory and
captures some of the most attractive features of C\ control. In particular we explore
the potential of using frequency domain design techniques to optimally satisfy time

domain specifications.
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3.1 SISO Nominal Performance in tico * Non Con-
servative Minimisation of Maximum Tracking

Errors in the Time Domain

Two commonly held perceptions with regard to 7iCf control theory are that (a) H {o
deals with finite energy signals only [60], and (b) cannot be used to design con-
trollers which meet time domain specifications exactly [63]. While passing reference
has been made in the literature to the fact that TLoo control theory can be used to
deal with sinusoidal signals, no attempt has been made to explore the potential for
surmounting (a) and (b) above which arises from this fact. This may be in part due
to the fact that a signal set consisting of sinusoidal signals only would seem to be
too small for the purpose of modelling uncertain input signals in a realistic system.
In this section, it is shown that uncertain signal sets based on sinusoidal signals can
be constructed which seem ‘rich’ enough for most practical purposes. It is effectively
demonstrated that with these new signal sets (a) and (b) above do not apply to Tico

control theory in the SISO case.

3.1.1 A Sinusoidal Signal Set

Consider the following signal set. Define to be the following set of scalar exoge-

nous inputs
= {"WI w(t) — Aexp(jut), u arbitrary, |A|] < 1} (3-1)

(with “s” for sinusoidal). This signal set consists of all sinusoidal signals with am-
plitude less than or equal to one. To see the main advantage of using this model, it
will now be shown that for any w in this signal set, the standard 'Hoo system norm
provides a non-conservative upper bound on the amplitude of the output z{t) in the
time domain. This result should be contrasted with Lemma 2.1.

Lemma 3.1 Suppose that z(jui) = Tzw(ju>)w(ju>), thatTzw(s) is the transfer function
of a stable LTI system which is SISO, and that Tzw(ju) is a continuous function of
u. Then

S || () Hy—1 Tzw{s) oo
We'D
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where T>$ is defined in egn. (3.1). Equivalently,
lz(t) oo < a Vrat <& || Tzw(s) Jloo < a

where a is any non-negative real scalar.

Proof

Consider an arbitrary exogenous input in T>w\ say
wit) = Aexp(jojot)
The output due to this input is then
z(t) = T-W(juo.)Aexp(juot) (3.2)

=>m|z(i)] = \ATzw(juo)exp(ju}st)\

zbst{p \z(H)\ = \ATzw(ju O\

“H1 Zft) 1joo= |AH'zZW[<jJ0)1

Now since Tzw(jto) is continuous, there is an loo G 71 U {00} which achieves equality

| Tzw(juj) loo” max \Tzw(ju)\ = \Tzw{juO)\

and thus it follows from the definition of that

S | z(t) [loo —|| Tzw(0j) [loo
wEVA
which completes the proof.

Two points about this proof may be worth commenting on. A transfer function
represents a certain differential equation. In the above, differential equations are
solved in the sense of the Fourier transform, rather than in the sense of the Laplace
transform, which is why the system’s transient response doesnt appear in eq. (3.2).
The mathematical techniques being used in the proof as well as in the remainder of this
paper are best described as a mixture of Fourier and Laplace transform techniques.

Note that this proofinvolves evaluating the transfer function Tzw(s) at the isolated
point s = jojq. So this proof seems to require that Tzw(ju>) be a continuous function
of lo. The case of discontinuous Tzw’s would not seem to be of practical importance.

However, for certain theoretical purposes, Tzw(s) is viewed as being a member of
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the Hardy space H<n and this space contains discontinuous elements (Rudin 1987).

W hen discussing discontinuous T ~’s, one must work with the definition
| Tzw{s) |joo= ess-sup_Ob<w<+<X)|T*u(jw )]

When Tzw(juj) is continuous in to, the concepts of supremum (sup) and essential
supremum (ess-sup) coincide, and the proof as stated above does the job. This tech-

nical difficulty will be circumvented shortly. O

The above result is well known (see for instance Section 5.2.6 of [6], Section 3.4.1
of [44], Table 1 in [9], and Table 2.1 in [74], However, its consequences, as described
in the remainder of this section, are believed to be new. The proof has been included
to draw attention to the necessity of using Fourier rather than Laplace transforms
and to the difficulty with discontinuous Tzw(ju>ys. Of course, one can just as easily

work with the signal set
Re = M i)| w(t) = Asin(u;i + 9, y<F>arbitrary, —1L < A < 1}

Note carefully that this lemma involves the £<% norm of z(t), and a set of signals
which is clearly very close to classical frequency response thinking. However, as
noted above the set of signals involved may seem to be an unreasonably small set.

For practical purposes, a much richer set is needed.

3.1.2 The Convex Hull is Free

We now show that the above observation holds not just for any signal in the set T>ff
but for any signal in the closure of its convex hull, to be denoted by Co . Consider
the convex hull of which consists of all (finite) convex linear combinations of
elements of T>w\ viz.

k k

CoXt)=Mi) | WD =£ Aiexp(juit), wH arbitrary,
=L

The closure of the convex hull is given by

oo 00
cs 2>w =m o | w(t) =£ Aiexp(jo;ti), W arbitrary,E w s D
=1 i=1

and we have the following lemma.
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Lemma 3.2
Bz{i) |Jooca v w € DIy 1z(0 "«<a Vv idE Co D,®

Proof
Consider any arbitrary signal in the closure of the convex hull of "Dw

00 0o
«>0 = X JydiexPIMO0O> (J] I < i)
«=1 t=i

Tlie output due to this input is then

z(i) = N "TwijrAiexpiMt)

i=1

00
= KOOI » T . \Tzw{ju,) A, exp(Ju=jt)\

i=l

00

=> KOI < IMzw (M)\ VAi\ lexp(ja>tO0|
i=i

=> KOI ~ sup|rr0'cj)|V |a,| lexpO'wil)!

w 1=1
00
= sup KOI < | lloo |A-1
= £up  Iz(t) noo = Il Tzw{ju>) [l
weCo
where equality is achieved in the above expression by suitably choosing w(t). O

The above observation is true much more generally. Indeed, for any class of signals,

T=Usay, it is clear that
Il z(0 Jjoo< « V We VW «a| z(i) |oo<a v tve CoVw

In other words, the convex hull is free. This is significant because it substantially

increases the range of exogenous signals for which Lemma 3.1 applies.

50



3.1.3 A Frequency Domain c\ Norm Signal Set

The above result can be further exploited as follows. The convex hull of the set T>"}
may be written just as easily in the frequency domain,
k k
Co = {w(u) I w{ju) = ZIT~2 AiS(u - w,-),  arbitrary, # \Ai\ < 1}
=1 &1
which is more convenient for our purposes. (The Fourier transform of elements of
T>$ are impulse functions times 2n.) The closure of the convex hull is then

= {w(ju) | w(ju>) = - tv Ais (to —ul), tQ arbitrary, E w < i)
i=1 t=I
This set consists of (finite or countably infinite) sequences of impulse functions in the
frequency domain. This process can be taken a step further. Impulses are so-called
generalized functions, and ‘ordinary’ functions can be viewed as a weighted sum of

(uncountably infinitely many) impulses via the well known sifting property,

+00
/ v{ju)s {uj —¢D)dw

Exploiting this observation, define

co

- {W@GUW) I w(ju) = oll-k™  Ais (u) - LG)+ (1 - a)2Trv(jio),..,

a G [1,+1], tG arbitrary, £ M\A\ < GBC"ju)} (3.3)
&=l

Another possible model for uncertain signals is then the signal set VA , where
=M iw) lllw(ju) |li < 1} = BEi(jw) (3.4)

This is the signal set which we will work with subsequently. It consists of all signals
whose C\ norm is less than or equal to unity in the frequency domain. It is essentially

T*W" times a constant, but with the use of generalized functions avoided. Note that
V« COE> and ZIT2>£> C V®

It will now be shown that for any w in the standard TLra norm provides a
non-conservative upper bound on the amplitude of the system’s output z{t) in the
time domain, for the SISO case.
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Lemma 3.3 Suppose that z(ju>) = Tzw{ju>)w(ju>), and that Tzw(s) is the transfer

function of a stable LTI system which is SISO. Then

9/\ IIII lzw {$) |I\Ico—_§U “A(O llco = sup “Z(t) (35)

p
z7T tO5£0 NIU)yJOJ) ||i MBWDCD
where TS\~ is defined in eqgn. (3-4). Equivalently,
I *(<) oo < « Vw G A Tzw(s) |lU < Ina

where a is any non-negative real scalar.

Pi'oof

Consider an arbitrary w € T>u\ Using the inverse Fourier transform,

I r+o°
|

i
kol = 2~ |J z(ju)e*uldu

11540
= 2~\J Tzw(juj)w(ju))e3wdu

| 40
< —j  \TAQjuj)tv(ju)\du

Holder’s inequality then shows that

1 f+o°
=> \KOI < §TSle Ir «* (iw)l J/_Co k(jo;)|da;

= A o Tzw(jul liooll w(joj) m

Since w 6 T>Y\* and t were arbitrary,

1 )
sup || z(t) [U< — || Tzw{ju)
V\(ZV(’) T

To show that equality holds in the above inequality, suppose that

| TzZwW{S) [joo> Ai
Then there is a subset fl C K such that

\Tzw(ju>)\ > Ai when u>6 ii
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where

is strictly positive. Define

Hi. exp(~j¢ (Tzw(juj)) for u e S

w
CH 0 otherwise

Then, letting 'z be the output resulting from the input w,

1 /+0° .
= — ] Tzw(jlo)w (jl1o) exp(jcu/,)do
f—BD

1
~ f \Tzw(ju;)\di

ch|
>A _ [dw= "
2TTfix J q 27
Since || w(ju>) | | 1, this shows that

) 0o
3 WSy ooh MiA 111" z\g I ||i1

W(jLO)
so that
|| no e IZ{t)lloo -
uls) oo A W fwiwym 2T
and

A, (o Il A HA(O JI
HrJZW(S) 1100 27TSI"”()) ". WOU>) ?m-

completing the proof.
Loosely speaking, the essential idea behind this proof is that w(jto) approximates

the impulse function . {"—o0jq) where uQapproaches or attains the supremum in
SLll£ 12" (jeu)] —1 Tzw(s) Ho

Readers unfamiliar with the mathematical formalism of Lebesgue integration [53]
should view Tzw(ju) as a continuous function of ui. In this case, fl may be taken to
be an interval of strictly positive length. The more general case of possibly discontin-
uous Tzw{juySrequires the use of measure theory. Here, 0 is a set of strictly positive
measure. In either case, an fi with the required properties always exists. So this proof

does not require Tzw(ju) to be continuous in to and it applies to any Tzw(s) G Tioo-
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3.2 SISO Robust Stability in 70

In this section we return to the issue of system uncertainty. As discussed in Chapter 1,
the principal tool used for investigating the effects of system uncertainty on closed loop
stability is the Small Gain Theorem. Recall however that the SGT applies equally
well to any induced norm, but not directly to semi-induced norms. The lemma given
above for the new uncertain signal set U $ says that the 'Hxt norm can be viewed as
a certain semi-induced norm, since different norms appear on the numerator and the
denominator of egn. (3.5). In this section we show that for the new signal set T>\* the
Tioo norm can also be interpreted as a certain induced norm - thus the SGT applies

and the issue of designing for robust stability can be addressed.

Lemma 3.4 Suppose that z(ju>) = Tzw{ju))w(joj), and that Tzw[s) is the transfer
function of a stable LTI system which is SISO. Then

II&ZWR& “ooz SUij - Hi

mi0 | W(IU>) i
Equivalently,
I'z(GGu) Il < a Vw(uj) 6 BEi(ju) I Tzw(s) <a
where a is any non-negative real scalar.

Proof

The proof is an easy application of Holder's inequality, which immediately yields

/ f‘+lcm
\z(ju)\du

*00

/ Mzw{juj)w(ju))\Au

00 (§100)
< sup \Tzw(joj)\ / lu;(ju;)|da;
w J —o0
— || Tzw{s" ol 1

and when w(ju) GBCi(jio), so that | w{jui) |li< 1, we have that

I I[I—= | Tzw(s) |[oo
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To show that this inequality is in fact an equality, suppose again that

Il Tzw(s) |loo'> Ai

As before, there is then a subset fi C 7Z such that

\Tzw(ju>)\ > Ai when nGO

where
I duj = fii
Jn
is strictly positive. Define
. 1/fii for 4y G
w(ju) = .
0 otherwise
Then
+ 00D
/ \Tzw(ju)w (j co)\d<
f \Tzw(ju>)\dto
fiz Jn

> — [ do; = Ai

Since || w(jw) %= 1, this shows that ' "

CHafag A IO A

Ilw{jiu) IK
so that
I Tzw(s) [joo> Ai == sug | = > Al
[ VWJLQ ﬂl
and
sy Moor siip NZUU),
I W{]U) li

completing the proof.
Adgain, this proof does not require Tzw(jw) to be continuous.

The above lemma says that the usual norm may be viewed as an induced norm,

being induced by the C\ norm in the frequency domain in the SISO case. This per-

mits the application of the SGT to obtain sufficient conditions for robust stability.

is noteworthy that the Tioo norm is also an induced norm in another distinct sense,

as in Theorem 2.1 above. However, the above lemma is more suited to the needs of

our modified theory, as will become clear shortly.
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3.3 Interpretations of the tioo Norm

Our results so far in this chapter may be summarised as follows.

Theorem 3.1 Suppose that z(juj) = Tzw(ju)w(ju)), that Tzw(s) is the transfer func-
tion of a stable LTI system which is SISO, and that Tzw(jio) is continuous in lo.
Then

(1) I Tzw(s) Jloo

(2) = sup | z(juj) 2
weVvffl
(3 = sup | z(t) Ho
wev
(4) = 2 sup | z(t) oo
wevffl
(5) = sup [[z(ju) [li
wev$
where T>w\ and are given by equations (2.1), (3.1) and (3-4) respectively.

This theorem says that the optimal and sub-optimal solutions of several SISO
problems coincide. So SISO Ti-00 controllers are optimal in several senses. Each
of items (2) to (5) above points to a distinct motivation for the optimal controller
synthesis problem of minimizing the quantity in item (1). Item (2) is the basis of
the energy paradigm for control. It has been argued above that this approach is
seriously flawed from a control engineering point of view. On the other hand, items (3)
and (4) show that minimizes the worst case £ sonorm of the output for certain
input signal sets. So in the SISO case, standard Tioo control theory already optimally
and non-conservatively minimizes maximum tracking errors in the time domain. In
particular, time domain ‘spikes’ are avoided, indeed optimally avoided. Items (2)
and (5) are useful because they show that the system norm in item (1) is an induced
norm. Finally, in [54] it is shown that the "Hr» norm also has an interpretation in
terms of the output power of a system subject to input signals of bounded power.

In this approach however the functions used to measure the power of the input and
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output signals are not strictly speaking norms, and thus we have not included this
interpretaion in the above theorem.

It seems remarkable that several different perspectives regarding the underlying
engineering motivation for controller design lead to the Tioo norm, and correspond to
the same optimal controller, in the SISO case. Things are only a little different in
the MIMO case, as will be shown next.

3.4 MIMO Nominal Performance in tioo - NoON-
Conservative Minimisation of Maximum Track-

ing Errors in the Time Domain

In this section we extend our results to deal with multivariable systems. It is shown
that the modified theory leads to a new Tioo optimisation problem in the MIMO case.
Our first task is to extend our new signal sets to deal with vectors of uncertain input

signals.

3.4.1 Vector Extensions of the Signal Sets T>$ and

The proposed signal sets are generalised to the MIMO case as follows. Specifically,
consider the problem of choosing a controller K to minimize the effect of the input
w on the output z when there are several unrelated, independent exogenous inputs,
and in the absence of system uncertainty. Note that Tzw(s) is now a transfer function
matrix, say of dimension m x n.

We define the following two classes of vector signals. Let

= {~(0 = IWi(i) = **exP(.MOr arb-, |JA| < 1, *= 1,
(3.6)
'Dff = iwUu) = K (iw)c smwn(ju))T | BTWi(u) |li< 1, I =1,...,71} (3.7)
Each vector element Wi(t) of w(t) G is a sinusoid whose phase and frequency

is arbitrary, and whose amplitude is less than or equal to one. Each vector element
Wi(jbj) of w{jio) £ belongs to the unit ball in in the frequency domain.
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It will be convenient to define the signal norm
hw (ju) [fi= max [ WiGuj) | (3.8)
Clearly is the unit ball in this norm, and

vW = tfACH X ... X

3.4.2 A New Tioo Optimisation Problem

We show now that for both of the uncertain vector signal sets and *Dw\ the
problem of minimising the £<* norm in the time domain of the output due to the
worst case input signal leads to a new optimisation problem. Define first of all
the following system norm
n
I lls—max V|| (Tzw(jio))ij [loo (3.9)
3=i
This system norm is obtained by taking the usual norm of each element of the
transfer function matrix Tzw(s), and then applying the max-row-sum matrix norm. It
will be referred to as the B norm. The main theorem for handling uncertain signals

in the proposed approach may now be stated.

Theorem 3.2 Suppose that z(ju) = Tzw(ju)w(ju), that Tzw(s) is the transfer func-
tion matrix of a stable m xn LTI system, and that Tzw(ju) is continuous in U= Then

(1) I Taw(s) [Lb

(2) = sup [l z(t) [oo
w(t)ev
3) = 1 sup 1z o _ 1 sup B z(t) Bo

2" w(ju)jio M w(juj) |Ix 27r

(4) = sup = sup [ z(ju) H
w(ju)¥=0 I WU W) 1m m(jcj)ev

where T>w\ T>w\ || . Hi and | . ||s, are defined in eqgns. (3.6), (3.7), (3.8) and (3.

respectively.
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Proof

Consider an arbitrary w(t) in T>w\ say

f u>i(0 \ ( expO'wji) A
w(t) = :

\ ™n(o y Anexp(juint) ]

The output which results from this input is

zi(t) = y(Tzw(juj))ijAjexp(jwli), *=
i=i

Clearly,
expijujjt)
j=i
<£ n v lI*°

j=i

and since i, t and w(t) £ T>[" are arbitrary,
n
sup lz(t) Hc < maxj® || (T«,(a))y |loo = 1l Tzw(s) ||B

v>E£T>tf ji=1

and equality can be attained by suitably choosing the u>j's and the /lj’s, establishing
part (2). The crucial point is that the frequencies ojj and the (complex valued)
amplitudes Aj, j = I,...,n are independent of each other. So to attain equality,
sinusoids with distinct frequencies need to be applied to distinct inputs wj, j =
1

Consider next a w(t) in 'D{U\ The resulting output is

z(ju) = Tzw(ju=)xu(ju>)

Inverse Fourier transforming gives



Clearly,

r-f-oo

Holder’s inequality gives

<¢¢11 (T~-W )« IWIHwtQu) |,
j=l

Since this holds for all Land all i,

=HI *(«) IU< A IT.CM M <e(/") I

and when || |li< 1,
<~ N T*w(ju>) ||B
so that
IIz(t) |J]oo< ~ N Tzw{ju) U« VwE€ eg)
= sup Hz(t) |U< I Tzw(ju>) 1IB

To show that equality holds in the above inequality, suppose that
I (Tzw(s)h ljoo> Aa

which clearly implies that

n

I Tzw(s) ||fl> rnax™A .j
j=i
Then there are subsets fltf C TZ such that
[(T~(ju;))0| > Aij when w £ fly

where

[ dcj = mj

JVij
are strictly positive. Fix i for the moment. Define

~ (m \ exP(“ i (™ (iw))tj) for w=£ dij
3

Wij(ju) = . .
0 otherwise
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Then, letting Z be the output resulting from the input w,

2 n /*+00

m)U=o0 = N y J (TzvUufiijWjijw) exp(jLo t)dL,

3=

Since i was arbitrary, whenever

Tzw(s) ||IB> maxJ™A

3=1
one has
1 H
sup z(i) |loo> Il z{t) |joo> max]z(i)]i=0> — m axV Aj
t zZiT * ~—/
i=1
This shows that

= Sp | (i) |joor Il Tzw{s)
WEVA b

completing the proof.

Loosely speaking, the essential idea behind this proof is that by allowing each
Wj(joj) to approach an impulse function in the frequency domain, equality can be
approached arbitrarily closely, establishing part (3). Again, the crucial point is that
different frequencies may be required for each j in Wj(juj) —s {u — 0Joj)-

To verify part (4), consider again a w(t) in D$ « This input gives rise to the

output
utpu 0
ziUu) = i= 1 mem
3=1
so that
+00
du;
/
3=1
[»+00
< max E \{Tzw(ju})ijWj(ju)\duj
JIZI J—OO
n
< maxV 1 [l (Tziy(j"))ij [loof| Wj(jw)
3=1
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a
< maxV || (Tzw(juj))ij He, max I Wi(ju) 1I,
|
3=1

z{j") |li < NTiW{ju) Hall w{ju) |i
and when w(jui) € T\
< | Taw{ju) [IB V w(ju) 6

=> sup | z(juj) H < NI Tzw(ju) |IB

To show that this inequality is in fact an equality, suppose again that

Kr<«®))y lle>K

As before, there are then subsets fly C TZ such that
I(Tw (- w)),A| > Xij when u € f2tJ

where

[ dw = fiij
Jn,}
are strictly positive. Fix i for the moment. Define

joexp{-jI(Txw(ju))ij)/pij for w € Qti
0 otherwise

wijllu) =

and let z be the output resulting from this input. Then

=1
. (Ttw (jui)) jWj (ju> du;
®

111 3

/ +G ™
0 i=1
=f — /| ICACHMUdu,
J=1
JL \ . f JL
> £ f-. dr = E . A«
=i i A i=i

Since i was arbitrary,
n

I*e<0 Hli> mfxJ] aj
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Hence, whenever

n
| Tzw(s) |IB> max™Aj-j
j-1
we have o
sup | z(ju=) [li>]] li> max > Aj]
"oT=i
so that

sup | z(jto) [[i>]| Tzw(s) B
WEVW:

which completes the proof.

Note that as before only item (2) requires Tzw(juj) to be continuous in u= O

Item (3) in this theorem shows that the B norm may be viewed as a semi-induced
norm. As such, it uses the max-amplitude norm on the output side, so that time
domain ‘spikes’ are avoided, and the B norm non-conservatively treats maximum
tracking errors in the time domain. Both signal set lumping and specification lump-
ing are avoided by the use of the £<* vector norm. Item (4) shows that the B norm
can just as well be viewed as an induced norm, thus permitting the application of the

SGT to system uncertainty issues. Note that the quantity to be minimized is exactly

the usual norm of Tzw(s) in the SISO case, but is different in the MIMO case. So
the expression of eqn. (3.9) defines a new type minimization problem for MIMO
systems.

The observations in this theorem motivate the optimal controller synthesis prob-
lem of choosing K to minimize the closed loop system’s B norm. To the author’s
knowledge, this synthesis problem has not been tackled at an analytical level - vari-
ous methods are available for obtaining sub-optimal solutions however. In Chapter 4
a decoupling design procedure is presented which is used with loopshaping tech-
niques in Chapter 5 to minimise the B norm for a realistic design example. Alterna-
tively the convex optimization approach of Boyd et al. [55, 56, 6] would seem to be
an attractive option for obtaining (nearly) optimal solutions numerically. Since the
problem is a convex problem (after appealing to the Youla parameterization [68]),
it can be tackled numerically. Indeed, combinations of specifications drawn from all
the approaches discussed in this paper can be effectively tackled in such a numerical
paradigm. Nonetheless, the optimal synthesis problem of minimizing the B norm

is an important open problem. Some potentially useful progress has been made in
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this direction at an analytical level in the case of SISO plants [57], while numerical

approaches to the problem are being pursued in [58].

3.5 MIMO Robust Stability in

Item (4) of the above theorem says that the proposed norm may be viewed as an
induced norm, with the same norm in the numerator and denominator. It follows
that the SGT may be used to obtain sufficient conditions for robust stability. As

usual, we restrict our attention to unstructured uncertainty. Thus, define
= {Ap(io;)| Ap(juj) is B-stable, LTI, and || Ap(ju) ||p < 1}

In this uncertainty set, Ap is constrained only by a single induced norm bound.
Applying the SGT to the set-up of Figure 1.5, and specializing to the signal norm

| - IIx, establishes the following.

Theorem 3.3 Suppose that the system of Figure 1.5 is nominally stable. If

then the system of Figure 1.5 is BIBO stable for every LTI Ap(ju) which obeys

LAPGY) [1B= sup <t
This theorem guarantees robust stability for uncertainty sets of the form T>"P above.
It is unclear at present if the condition | Tri(s) ||#< 1is necessary as well as sufficient
for robust stability with this uncertainty set. So the converse is an open problem. To
prove necessity, one would need to exhibit a destabilizing Ap when || Tri(s) |p> 1. It
seems likely that the converse is true, but only if NL and/or TV Ap’s are considered,
as in
= {Ap| Ap is stable, and || Ap |lp < 1}

The observation in this theorem also motivates the optimal controller synthesis

problem of minimizing the system norm || Tzw(s) [|p.
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3.6 A New Approach to 71~ Weighting Function

Selection

The issue of weighting function selection in standard Hoo control theory was discussed
at length in Chapter 2. In this section we examine the implications of the modified
TCco control theory presented above for weighting function selection. In particular we
focus on the distinct roles played by weighting functions on the ‘input’ and ‘output’
sides of the system.

One of the most fundamental ideas in robust control theory is to formulate the
controller design problem as a mathematical optimization problem. In order to obtain
optimization problems for controller design, i.e. problems which are sufficiently precise
to iead to well-defined mathematical optimization problems, two basic issues need to
be settled. Firstly, the intuitive notion of the ‘size’ of the signal to be minimized must
be formalized, and secondly the set of possible uncertain inputs must be formally
stated. The combination of a signal norm plus a weighting transfer function can
be used for both of these purposes, and these two roles for norms and weights are
then quite distinct. This distinction becomes more explicit, if we consider Figure 3.1

below.

Figure 3.1: The Canonical Form with extracted weights

The figure shows the canonical form for linear controller design given in Figure 1.3 of
Chapter 1- in this representation however, weighting functions are extracted from the

augmented plant. It is important to distinguish between the physical interpretation
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of the signals w and a in the above representation. In applications, uncertain input
signals generally correspond to sensor or measurement noise and to external distur-
bances acting on the plant. It is the sighal a in Figure 3.1 which represents such
signals. So it is the set T=, and not Dw, which represents the engineer’'s judgement
on what the sensor noise, external disturbance and command inputs are likely to be,
or which class of them s/he wants the system to be optimized for. These inputs then
give rise to non-zero tracking errors, non-zero actuator inputs, etc., and the objective
of the controller is to keep the size of this output signal as small as possible. Again,
it is important to distinguish between the physical interpretation of the signals z and
b. It is the signal bwhich represents such output signals, i.e. the signals in the system
which the controller seeks to minimize. The weighting transfer function V allows for
extra flexibility in quantifying the size of b. As is well known, keeping the size of dif-
ferent signals small are often conflicting requirements, and V allows different signals
to be differentially emphasized. Also, keeping the low and high frequency components
of a signal small necessarily involves tradeoffs, and V may be used to place a different
degree of emphasis on distinct frequency ranges. The transfer function from ato b

will be denoted by T&. Then clearly,

TZ4v = VThbaW

The distinction between the roles of norms and weighting functions on the input and
output sides now becomes more apparent. The output side norm together with the
weight V is used to quantify the size of b, and so to formalize the precise sense in
which the signal bis to be minimized. This raises the questions of which norm is best
applied to the signal z and how to choose the weight V. The issue here is that of
modelling the objectives and purpose of the control system.

On the other hand, the combination of the input side norm and input side weight
W is used to formally specify the signal set T>a. Again, this raises the question of how
to choose this norm and weight. The issue here is that of modelling the uncertain
input signals to the system w. In the presence of unstructured system uncertainty,
norms and weights play a third role, that of modelling the uncertainty present in the
plant model, or of quantifying the level of validity of the plant model.

Two important issues are now apparent. The first is how to choose which norms
to use, and it is here that the fundamental differences between the TCoo and the C\
theories arise, and between other alternatives. This issue has been discussed in detail

in the prequel. Indeed the results presented already in this chapter demonstrate that
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the use of different norms can give theories with remarkably different properties. The
second is the problem of weight selection. This issue will be discussed in the following
paragraphs.

Note that, in particular, the weights W and V play very different roles, a point
which perhaps deserves to be more widely appreciated. As compared with Figure 1.3,
Figure 3.1 makes this distinction much clearer. A particularly important difference
between input and output side weights is that for MIMO systems with diagonal
weighting function matrices each element of the output weight Vu affects only the
corresponding element of the output signal. In contrast, each element of the input
weight Wu affects every element in the output signal. A fundamental implication of
the above discussion is that the current practice in 7i°® design of placing a single
weighting function on the output side only is flawed, since it unnecessarily gives up
design freedom. If the weights are to be regarded as models of exogenous inputs, only
weights on the input side can capture this physical reality.

Consider therefore the following approach. Let the weighting function W be
viewed as a fixed model of possible disturbance and noise inputs. The output weight-
ing function V may then be used to examine and tune the relative quality of control
of each individual element of the output, and to manage the tradeoffs between them.
So V enables each output signal Z to be weighted separately, allowing the relative
importance of each to be traded off by tuning the appropriate diagonal element of V.
Note that this approach is much more practical under the modified '"HO control the-
ory presented in this chapter, since the proposed manipulation of V is made simpler
by the absence of specification lumping. The relationship between the elements of a
diagonal V and each element of z is more transparent, and thus the ‘gap’ betweeen
the design parameters and specifications is narrowed.

Similarly, the use of both input and output weighting functions W\ and W-: in
our model of plant uncertainty allows extra design flexibility, especially in the MIMO
case. This approach to weighting function selection in the modified control theory

would then naturally lead to mixed sensitivity optimisation problems of the form

HESON
where the infimum is over all LTI stabilizing controllers, and J is a matrix cost

function given by

J = ( Vs(s)Se{s)Ws(s) Vt(s)TO(s)Wt(s) )
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The proposed approach provides a physical basis for the selection/manipulation of
weighting functions. It has been shown that this cannot be sensibly done with the
energy paradigm for standard 7Y°° control theory. It is felt that future progress in
this area should allow the accomodation of (a) a more accurate statement of the ‘real’
objectives of the control system, (b) more refined models of plant uncertainty (i.e.
structured system uncertainty), and, (c) more accurate models of classes of input
disturbance/noise signals (i.e. more structured signal uncertainty). In other words,
an improved theory should cope with improved models on both the input side and

the output side.

3.7 Robust Performance and Relations with Stan-

dard tico Theory

It is too early to comment on the issue of robust performance in the modified 7Yoo
theory proposed. Even the most obvious questions concerning robust performance in
the presence of system uncertainty, whether structured or unstructured, are entirely
open, in both analysis and synthesis.

It is however interesting to note that the standard 7Yoo norm and the B norm are
closely related, and cannot be very far apart. This fact may be formally stated as

follows.

Theorem 3.4 Suppose that z(ju>) = Tzw(juo)w(juo), and that Tzw(s) is the transfer

function matrix of a stable m x n LTI system. Then
- | Tzw(s) Too < || Tzw{s) |IB < n | Tzw{s) (3.10)

Proof

It is well known [71], that

max maxsup | (Tzw)ij(ju>) | < sup a(Tzw(jto)) < n X max maxsup | (Tzw)ij(juj) |
i 3w w i j w

max N M i) Gw ) e N || Tzw(j10) 11a0 nx max N A (Tzw)ij(ju)
1 .
J=| J-1

Tzw(jto) ||b ™ || Tzw(re) HO N n || TzWGi0) \B
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The above bounds are the best possible for an arbitrary Tzw(s) in 7i°°. When
these bounds are used to show that standard Tioo optimal controllers do not suffer

from ‘spikes’, eqn. (3.10) does much better than eqn. (2.6).

3.8 Nominal Performance in 772 : Non-Conservative
Minimisation of Maximum Tracking Errors in

the Time Domain

In previous sections, it was shown that by choosing novel signal sets to model un-
certain input signals, a slightly modified Tioco control theory can be used to non-
conservatively minimize maximum tracking errors in the time domain. In was seen
that the resulting optimization problem is the standard control problem in the
SISO case, and a slight variation on the standard problem in the MIMO case. In this
section, it is shown that analogous observations apply to signal uncertainty in 72 con-
trol theory. However, the situation with system uncertainty in 7°2 is fundamentally

different.

3.8.1 The SISO Case: A Solved Problem

The system norm used in standard Ti. control theory is

Tzw(s) [|2= %[I! | Tzw(juj) |2 deu (S1SO) (3.11)

Taw{s) \ \ T r a ¢ e (7 (oj)Taw(ju))doj (MIMO) (3.12)

l/ +00 n n
EEI(r™ 0'™))«)lJdw  (MIMO)

\ Y 0o
W ith reference to Figure 1.4, the problem treated by standard 7Y2-control theory is
then
inf HTA"OOHa
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where the infimum is over all LTI stabilizing controllers, and this is a solved problem
[13, 44]. The engineering motivation for this problem is generally given in terms of a
signal input class which is viewed as a stochastic process [59]. Although deterministic
justifications can be provided, they are unconvincing in the MIMO case.

Consider the following lemma [60, 74], which is valid for the SISO case only.

Lemma 3.5 Suppose that z(jco) = Tzw{juj)w{ju>), and that Tzw(s) is the transfer
function of a stable LTI system which is SISO. Then

| Tzw(s) ||2= sup f Z*f) = sup | z(t) IU
w20 lw{iu) |2 weBC2(jw)

This lemma says that the 7Y2 system norm is a semi-induced norm, with the
signal norm on the numerator or output side. Thus, in the SISO case 7Y2 control
theory already non-conservatively minimizes maximum errors in the time domain,
provided the exogenous input w(jto) is viewed as ranging through the signal set
T>% = This lemma is described in [60, 74] for the SISO case only, and it
does not seem to have a natural extension to the MIMO case which corresponds to
the standard 72 norm of eqn. (3.12).

3.8.2 An Extension to the MIMO Case

In keeping with the philosophy of this thesis, we now show that an alternative class
of signal sets overcomes the above difficulty with 7i2 control theory. Specifically, we
extend the above lemmato the MIMO case in a manner which avoids specification and
signal set lumping, and which non-conservatively handles maximum tracking errors

in the time domain, as follows. Define T>w to be the signal set
=M in) = (wif{.jw), wn(ju)T | || Wi(ju) ||2< 1, i=1,...,n} (3.13)

It is convenient to define the following norm for vector signals
w(ju) |la= max | Wi(jco) |2 (3-14)

This norm is obtained by taking the £2 norm of each element of thevector signal,
and then the £<> norm with respect to vector elements. The signal set is the
unit ball with respect to this norm. Define the following system norm

I Tzw(u=) fle=mgxy 7 || (Tzw(ju))ij |12 (3.15)

3=1
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which will be referred to as the C norm. This norm involves taking the £2 norm of
each element of Tawm(s) before applying the max-row-sum matrix norm. The appro-

priate MIMO extension of the above lemma is then as follows.

Theorem 3.5 Suppose that z{jui) = Tzw(ju:)w(jco), and that Tzw(s) is the transfer

function matrix of a stable m x n LTI system. Then

| Tzw(s) \ sup | z(t) 1U
13)

c=sup || w(ju>) |2 - wev

where T>w\ || m||. and || . ||c are defined in eqgns. (3.13), (3.14) and (3.15) respectively.

Proof
The output vector 2 is given by

n

ziUu) = i=
3=1

Inverse Fourier transforming gives

= NO) = A [ (Trjujrijwiijrendio
i=l

and using well known inequalities,

1 7 /o0
\(T™(ju))ijWj(jLoywt\du;

n

<y | 12 Wj(ju) 12

3=1
Since this holds for all i and all ¢,

n
=HI z(t) M«,< m(%va | {Tz2w{juf))ij |2 max | Wij(jio) ||2
3=1 .
When w(ju) £ T>w\

n
5 mtaxlél /" | (Tzw(jco))ij ||2= || Tzw(s) Hel
j=
so that
Iz(t) llg, < B Tzw(ju) \¢ Vw €
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sup I z{t) |oo < NI Tzw(ju>) ||c
WGV&

To show that equality in the above expression can be attained, fix i for the moment

and define w(jco) by

Wj(ju) = I (Tzw(ju))ij 112, j = 1, ¢*<,n
which is clearly in e Then, letting z'(t) be the output resulting from this input,
n «lm
Zi(t) = —y J (T™(ju))ijWj(ju) exp(jut)du
1 f+°(rp(m Tzw(ju=))*j ,
= \'I(*I?J>(\Ju ))ij Il ((T (u] 1 exp(j™)do;

on  m<s I ) 112
=* is(ijlxk=o = £ 0 (T~M h h
3=1

Since i was arbitrary,

sup Iz(t) oo > 0l z(t) 1100= mvaxAV. | (Tzw(ju))ij ||2
WEVATI )

=1 Tzw(s) lc

completing the proof. O

As with the earlier modified formulation of the MIMO Tioo problem, one is led to
an optimization problem which is a slight variation on the standard or classical Ti-
control problem in the MIMO case, and which is identical to the standard problem
in the SISO case.

This theorem shows that a slight modification to the standard 7Y2 norm leads to
a quite attractive approach to controller design. Minimizing the C norm corresponds
to optimally and non-conservatively minimizing maximum tracking errors in the time
domain. Specification and signal set lumping are avoided. The approach can be
viewed as a frequency domain theory. It can reasonably be called ‘max-row-sum 7Y2

control theory’.
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3.9 Robust Specifications in 7i2

A significant limitation of the system norm, whether the standard one or the above
modified one, is that it is not an induced norm. The C norm is merely a semi-induced
norm, and the standard norm is not even a semi-induced norm in the MIMO case.
This means that the SGT does not apply. The important consequence of this is that
robust stability and robust performance issues cannot be treated in this norm.

Consequently, to handle robust stability and robust performance specifications, it
is necessary to use mixed norms. In other words, using norms which are a mixture of
the li. norm and some other distinct norm or norms becomes unavoidable. This is
a large part of the motivation behind the study of mixed H.l'"H.. optimal synthesis
problems, and there is a literature on such problems. W ith reference to Figure 1.3,
one approach is to attempt to minimize the nominal 7Y2 norm of Tzw(s) subject to
a constraint on the infinity norm of Trj(s). This approach is studied in [61]. In [62],
this approach is extended to robust performance. In both references, the results are
sub-optimal. The optimal synthesis of mixed » 2,~00 problems which avoid signal
set lumping, i.e. involving the above C norm, is a family of open problems.

One can consider mixed norm problems much more generally. Mixed "Hoo/L\
problems are considered in [63], but the Tioo norm used is the standard one. The
observations of this paper suggest that it may be worthwhile to extend this line of
development ([61, 62, 63], and references therein) by considering combinations of A
norm and/or B norm and/or C norm specifications. Of course, finding analytical
solutions to such problems is likely to be extremely difficult.
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Chapter 4

A Decoupling Design Method for
Super-Optimal Robust Control

This chapter presents a decoupling design method for optimal robust multivariable
controller synthesis. It is shown that for square, stable plants which are minimum-
phase, the solutions of n independent SISO problems yield one of many optimal
solutions to the n X n MIMO controller synthesis problem. The proposed approach
to the multivariable design problem fully decouples the system, significantly improves
design transparency, and results in controllers which can rightly be considered super-
optimal. The above result holds for the standard 1-i00 and C\ control problems, as
well as for the modified 'Hex, problem presented in Chapter 3. For square, stable plants
which are non-minimum-phase, the solutions of n independent MISO problems yield
one of many optimal solutions to the nxn MIMO problem, under the C\ and modified
7Yoo problem formulations. The resulting controller half decouples the system and is
super-optimal. It is shown that for the standard Tioo control problem the resulting

controller is sub-optimal.
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4.1 Motivation for Decoupling the Design Pro-

cess

Ever since the multivariable control problem has been studied, designers have sought
ways of avoiding its inherent complexities by seeking to decouple or diagonalise the
system, thus allowing the calculation of SISO controllers on a loop by loop basis. This
goal has led to the development and widespread use of formalised design procedures
such as the Inverse Nyquist Array and Characteristic Loci [72]. As is well known
however, limitations of these techniques include their somewhat heuristic nature,
and the underlying assumption that the plant in question has an inherent degree of
diagonal dominance. The advent of robust control theory in the early 1980’s revealed
an even more serious problem, namely the absence of an explicit and satisfactorey
acknowledgement of the importance of plant uncertainty and other robustness issues.
Recognition of the fundamental importance of these issues led to the development
of robust controller design techniques such as control theory and L\ control
theory. One of the greatest benefits of these design procedures is that they are truly
multivariable in nature. Thus, in the context of robust control theory it is certainly
no longer necessary to decouple the system in order to achieve satisfactory designs.
In this section it is argued however, that compelling reasons still exist for decoupling
multivariable robust control problems (when and if this is possible), so that design
can be undertaken on a SISO loop by loop basis.

Firstly, consider the problem of weighting function selection. Current multivari-
able design techniques require the selection and subsequent manipulation of transfer
function weighting matrices. As argued in Chapter 2 however, the relation between
these matrices and the resulting ‘optimal’ design is far from transparent. Various
design issues, such as those due to right half plane poles and zeros, inpose some fairly
complicated tradeoff limitations. From the viewpoint of the engineer the prospect of
choosing, let alone iteratively manipulating a 7 x 7 matrix of interdependent transfer
functions for example, is certainly a daunting one. Thus an obvious advantage of de-
coupling the design process is that it simplifies this task, since independent weighting
transfer functions can be chosen one at a time for each loop of the system.

Secondly there is the problem of signal set and specification lumping. As observed
in Chapter 2, this problem occurs in multivariable Tioo control theory due to the

fact that specifications relating to both the exogenous inputs to the system w, and
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the regulated variables z, are given in terms of the vector C. norm. Consider for
instance a plant with several outputs. Information on the value of each output is
produced via measurements from independent sensors or transducers - imperfections
in these measurements are then generally modelled as additive noise and included
in the vector of exogenous inputs w. Other elements of the vector w may be due
to unknown external disturbances acting on each plant input or output, and again
these disturbances may be totally independent of each other. Lumping each of these
signals into a single vector w with | w(ju) H < 1creates an artificial interdependence
between each element of w which is conservative and highly undesirable. Similar
remarks apply to the output side. In practice, different regulated variables may
need to be controlled to different levels of precision. Minimising || z(juj) H involves
averaging over distinct plant ouputs, over frequency and over vector directions, and
thus obscures which loops of the system are or are not being effectively controlled.
One way of avoiding signal set and specification lumping is to formulate the new Tioo
control problem presented in Chapter 3. Alternatively, in certain limited cases the
design process can be decoupled and solved one loop at a time.

A third advantage of decoupling the design process is that the focus of attention
is not fixed exclusively on the ‘worst’ loop of the system. In standard Tioo control
for example, the objective is to minimise the maximum singular value of some ma-
trix cost function J. In general however this objective may be achieved by a set of
controllers, and thus a certain amount of design freedom is wasted if we simply select
one of these controllers at random. This ‘extra’ design freedom has been studied in
the literature on super-optimal Tioo control [64, 65, 66, 67] in order to calculate a
controller which minimises all of the singular values of J. Since this chapter con-
siders three different robust control problem formulations, we will use the following
definition of super-optimality in terms of the output vector of regulated variables

this being appropriate in the present context. A super-optimal robust controller
must minimise (according to the appropriate norm) em not just the largest Zi but also
the second largest, the third largest, etc. This chapter will show that under certain
assumptions robust control theory naturally allows the development of decoupling
design techniques which result in super-optimal controllers.

Finally, the ability to design for robustness on a loop by loop basis means that the
designer can subsequently apply classical frequency or time domain design techniques
to further shape any individual loop of the system.
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4.2 Three Robust Control Problem Formulations

In this section we define the three problem formulations addressed in this chapter.

We first of all define the mixed sensitivity matrix cost function J, given by
J(s)= ( Ws(*)S0@ Wt (s)TO(s) )

where So and To are the sensitivity and complementary sensitivity function matrices
respectively. W ith respect to this cost function the three optimal controller synthesis
problems considered in this chapter are as follows.

1. The Mixed Sensitivity Control Problem given by
inf [J(s) Ho

where the infimum is over all LTI stabilizing controllers.
2. The Mixed Sensitivity Modified Control Problem given by

inf || 3{s) 1B

where the infimum is over all LTI stabilizing controllers, and the B norm is as defined
in Chapter 3.
3. The Mixed Sensitivity C\ Control Problem given by

where the infimum is over all LTI stabilizing controllers.

4.3 Full Decoupling and Super-Optimality: the
Minimum-Phase Case

In this section the framework of the Youla parameterisation of all stabilising con-
trollers [68] is used to show that for a square stable plant P which is also minimum-
phase, the three multivariable controller design problems defined above decouple com-
pletely into n independent SISO optimisation problems. The solutions to these n
optimisation problems yield super-optimal controllers for each of the three problem

formulations. We will need the following lemma.
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Lemma 4.1 Let = (a”l*. .. aM) be a block partitioned matrix, and let

A. = (diag(aO) ... diag(a”)) be its block diagonal equivalent. Thxis
(aft) .. a(@d) B oW B
agh) . agd a) .af)
At =
\ «lIV e Ann m) V\H‘? y
and
(asvo .o a<? 0..0
. o 4V .. 0 0 . 0
Al _
00.. Gnny
Then
AiO'a;) |loo > || A20'w) Ik
Proof:
For any matrix A,
X*A
ma
xec» i(’\O [| a* ||2
Thus
.. ALtM , |la
cr(/ = ma
)= B0 | @
so that
" (M) a.Mi 12
1*?2 112
where X, is any particular x. Let
T
I = (10 0 0 Y
Then
¥a@ . al) ... a@ ..alp N
cr(vax) >
1
P n
EE bg®
\ o=t J=1

> vi iV 2+« 1%
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Now let

Then

and so on

Thus

Now since

Thus

I ( <aVeedn e a2l »4n )

&(Ai) > \ EE KOZ

t=1 j=1

> \f\0J2 P+ - 147 P

i [aVR+ . Ls v

I «22 R+ " 1«22 12

cr(Az) = \/max eigenvalue of A-iA

«1l 12 4 e \l an) 12

” 12
cr(/l:) = max < 201+ 7 1<

<r(Ai) > o-(/12)
SW a(Ai(juj)) > SL(T a(A:(jw))

=HI A\(ju) oo > Il A2(ju) [joo

We can now state the main result of this section.
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Theorem 4.1 For a square, stable and minimum-phase multivariable plant P, the
solutions of n independent SISO optimisation problems yield an optimal solution to
the corresponding n x n MIMO problem, for each of the mixed sensitivity control

problems defined above. In each case the resulting controller is super-optimal.

Proof

Since the plant P is stable, the Youla parameter is given by
g = (i+Kpy'K Qenn°°

where
K = (I+QPy'Q

is any stabilising controller. Thus in terms of the Youla parameter, the mixed sensi-

tivity matrix cost function J is given by
i = (WS(l+QP) - WtQP)

Now since the plant P is stable and minimum-phase, without loss of generality we
can take P to be the identity matrix I, so that

J = (ws(I+Q) -W tQ) =

A (W) + Gl (We)22<li2  (Ws)nn(lin - ~ (W1)i1211 — (WiOnnCln A
(175)11921 (175)22(1 + C22) wm (WS)nnQ.2n —(Wr)I1221 —(WT)m<n

y (y*SMICnl  (10is)229n2 (I"S)rm(l "HQnn) (1~ t)lcnl (I'"rimCnn j

Now each qij is a free stable parameter. Thus observe that thestructure of J above,
allows us to choose a diagonal Youla parameter matrix Q, i.e. we can make the
off diagonal elements gqs i » j equal to zero, leaving us with n independent SISO
optimisation problems. The solutions to these n problems then form the diagonal of
the Youla parameter matrix Q. We now show that this choice of Q yields an optimal
controller for each of the three problems defined above.

In the case of the mixed sensitivity Hoo control problem the n independent opti-
misation problems become:

giiijujieniam 1 CCH )M+ 9n (7)) (WTHu(ju)an(ju) )
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o, N ICWS)220W)(1 + @2(w)) - {WT)-: (ju)ae= (ju) ) foo

inf ) I (Ws)NnO'W)(1 + <Inn{ju)) ~ (WT)nn{jio )gnn{jio) ) |joo

qnnU"eTZnO

Now by Lemma4.1, we have that the controller K corresponding to the above diagonal
Youlaparameter Q is an optimal solution of the mixed sensitivity Tioo control problem.
It is also clear that this controller is super-optimal, according to our definition.

In the case of the mixed sensitivity modified TLoo control problem the n indepen-

dent optimisation problems are:

odnt W S)RGE)( + qu(iu)) He + I (WTn(w)aii(w) oo
inf 1VTS)o2 (GW) (1 + i22(jw)) floo + || (Wr)22C7'w)?220'W) |joo
(jw)e'HH®°*

9nn(iw)e7IH°° Il nil(.7720(1 " 9nn(j™)) |loo I (I*r)ynn(j*)?nn(j™) |loo

It follows directly from the definition of the B norm that the corresponding controller
K is an optimal solution of the mixed sensitivity modified 7Yoo control problem control

problem, and that it is super-optimal, according to our definition.
In the case of the mixed sensitivity C\ Control Problem the optimisation problems

are:
inf, | (W s)n(l+ 9n) [i + || (W t)ii2ii |[i
qiiEA

inf_ || (:"s)22n + $22) |[i + || (WIT) 22022 |]i

92264

inf | (ws)nn(l+ Onn) |1 + || (W t)nn2?nn ||I
Qnnt-A

Again optimality and super-optimality of the corresponding controller K follows di-

rectly from the definition of the A norm. O
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4.4 Half Decoupling: the Non-Minimum-Phase Case

In this section the Youla parameter and a version of a design method proposed in
[69] are used to show that for square stable plants which are non-minimum-phase,
the multivariable design problem decouples into n independent MISO optimisation
problems. Optimal solutions to the n x n MIMO C\ and modified 7Yoo mixed sensi-
tivity problems can be constructed from the solutions to these n MISO optimisation
problems. It is shown that these optimal solutions are in fact super-optimal.

For the mixed sensitivity Tioo control problem however, the proposed decoupling

design method yields a sub-optimal controller.

4.4.1 Super-Optimal Solutions to the C\ and Modified
Mixed Sensitivity Problems

We first of all address the C\ and modified mixed sensitivity problems. Consider

the following theorem.

Theorem 4.2 Let P be a square, stable and non-minimum-phase plant. Then the
solutions ofn MISO optimisation problems yield one of many optimal solutions to the
n x n mixed sensitivity problem, under both the C\ and modified Tioo formulations.
For both problem formulations the resulting controller is super-optimal.

Proof

Let the plant P be column partitioned as

P = (P. P. mmmPn)
and let the n x n Youla parameter matrix Q be row partitioned as

[ qi \
Q « m

\ 9n /

In terms of the Youla parameter, the mixed sensitivity matrix cost function is given

by
J = (1 +QG)W: - QGW3)
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which can be row partitioned as:

( Ji\ ( (Ws)n(l + qiPi) {Ws).2qiP. ¢« (Ws)nngiPn ~{WT)IiqiPlI (WATAnngiPn ~
J. Ws)II<Z2Pl (W5)22( + 92P2) {Ws)nng2Pn  —(WT)liq2PI (H/r)nn92Pn
\n v (Ws)lignPl (WS)..qnP. mm (WS)nn(l + gnpn) -(W T)lignpl - (WT)nv,gnPn j

From the above equation it is clear that each row of the transfer function matrix Ji
depends only on the corresponding row gi of the Youla parameter matrix. Therefore
since the g”s are free stable parameters, an internally stabilising controller K can be
constucted one row or ‘loop’ at a time by choosing the g”s to be the solutions to n
independent MISO optimisation problems.

In the case of the mixed sensitivity C\ Control Problem these are:

infqg\ || Ji{z) WA
inf Q- ” Jz(Z) WA

infgn | IJn(z) WA

It follows directly from the definition of the A norm that the corresponding controller
K is an optimal solution of the mixed sensitivity C\ control problem, and that it is
super-optimal, according to our definition.

In the case of the mixed sensitivity modified control problem the n indepen-
dent MISO optimisation problems are:

inf,\Gu)EllH, ~ JitH s

infg {juenH® M ju) lib

inf, B

Again optimality and super-optimality of the corresponding controller K follows di-
rectly from the definition of the B norm.
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4.4.2 A Sub-Optimal Solution to the Mixed Sensitivity

Control Problem

We now turn to the mixed sensitivity Hoo control problem. We will need the following

lemma.

Lemma 4.2 Let Tzw(jLo) be any n x m transfer function matrix with input io(ju>)
and output z(ju>). Define the system norm

TPAqitif b = sup sup Az<OWw) h
i w#o || w(ito) ||2

Then toe have the following relation
I Tz2v>(juj) WD < || Tsw(ju) Joo < \2v. x | Tzw(jui) ||D

Proof

First of all note that

I Tzw{ju) 2 = SL/J\B 4 Z(.J». \\%

u I w(juj
— sup

/o N1TWUU) m
< ap E21 12

(w Xstipt || zjgju) ||a)?

-3 i»0")111

/ n x sup,- || zt(JLo) ||2y 2
- m | Ih >
< {n X sup sup —“—*&.«) h X

\ « I «»(G«) I/

= Il Tzw(juj) Ho < \/n x N Tzw(ju) ||D
Now we also have that
I Tzw(ju) W = sup sup jZ \ jr
(ju) (sup Ip“ th)/
0.1<F<) 3UIT[— ||/Z.I(ku1ﬂz \\I

w'to il 112

e? ii*&») N
S AL ST
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Therefore

ITzw[jui) HY A BITzw(ito) Ho ~ \fri x || Tzw(jto) [If)

We can now prove the following theorem, which says that for a non-minimum
phase plant, a controller constructed according to the proposed decoupling design

method is sub-optimal.

Theorem 4.3 Let P be a square, stable and non-minimum-phase plant. Then the
solutions of n MISO optimisation problems yield an internally stabilising controller
for the n x n mixed sensitivity Tioo control problem. The resulting controller is sub-

optimal.

Proof
Proceeding according to the method of Theorem 4.2 above, it is clear that an inter-
nally stabilising controller can be constructed from the solutions to the following n

independent optimisation problems:

inig jA"ETIHO 1l JI(ju) lloo

infgjijrgTi-roo || Y2(i~) 100

I In{jk-0 |loo

Now from the definition of the D norm, it follows that a controller constructed as

described above optimally solves the problem
inf || J{s) \D

where the infimum is over all LTI stabilizing controllers. However from Lemma 4.2

above we have that



proving that this controller is merely a sub-optimal solution of the mixed sensitivity

7Yoo control problem. O

The above result is again due to the fact that the system norm is defined in
terms of the £ 2 signal norm, whereas the A, B and D norms are defined in terms of

the Coo signal norm.

4.5 Discussion

In the next chapter the proposed decoupling design method is applied to a realistic
design example. We end this chapter however with a brief note on the issue of
properness. All real world plants are strictly proper, i.e. at infinite frequency their
gain is zero. As will be clear at this stage, the design procedure and example above
are based on the assumption that the plant is proper. Although this might suggest
some applications difficulties, we point out that it is not an uncommon approach to
formulate the theory under slightly relaxed conditions, and then to make the necessary
practical adjustments. See for example the approach adopted by Zames and Francis
in [18], in order to solve the SISO Jioo control problem.

In this particular case consider the following. Suppose we have a strictly proper
plant G(s) = C(sl —A)~.:B. This plant can be made proper by adding a eD so that
G(s) = C(sl —A)~1B + eD. Thus G(oo0) = eD. If we let D = | then in the limit
as e —> 0, G(s) becomes strictly proper. Therefore if we take a small enough e we
can implement the design procedure while still having a strictly proper plant for all
practical purposes. In frequency domain terms this is simply the same as adding very
high frequency zeroes to a strictly proper plant in order to make it proper, without
changing the behaviour of the plant over the frequency range of interest. The fact
that these types of procedures are necessary seems to be due in large part to the
lack of a complete understanding of the implications of joo-axis zeros in Ttoo theory,
especially in the multivariable case. See [29] for details.

We have shown in this chapter that given a stable plant, three important multi-
variable robust control problems can be solved one loop at a time by calculating the
solutions to n MISO (non-minimum-phase plants) or n SISO (minimum-pha.se plants)
optimisation problems and then re-assembling these solutions into a multivariable

controller, according to the proposed design procedure. This design procedure has
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the following advantages:

1. All available design freedom is utilised resulting in controllers which can rightly
be termed super-optimal.

2. The conservative and distortive step of signal set and specification lumping is
avoided, allowing the designer to control and ‘shape’ each loop of the system individ-
ually.

3. The multivariable design problem is given greater transparency and the weight-
ing functions a clearer physical interpretation, thus making their selection less of an
‘art than a science’ [55].

4. The adoption of a decoupling approach to multivariable robust controller design
allows the subsequent application of classical SISO design techniques, such as that
proposed in [75] for instance, to the problem.

The proposed design procedure clearly has some limitations. Unstable plants can
only be dealt with by selecting at least one output for stabilisation purposes only, as
proposed in [69], - the effect this would have on super-optimality is unclear. Even
in the case of stable but non-minimum-phase plants, the proposed procedure yields
only sub-optimal controllers for the standard 1-loo control problem. As shown above
however, Tioo control problems formulated under the paradigm proposed in Chapter
3 do not suffer from this problem. Finally it seems clear that controllers designed
according to the proposed method will in general have higher order than standard

multivariable optimal controllers.
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Chapter 5

Multivariable HDSynthesis via
Decoupling and Loopshaping:
Some Design Examples

This chapter presents some design examples which illustrate how many of the ideas
developed in previous chapters can be applied to realistic controller synthesis prob-
lems. The decoupling design method proposed in Chapter 4 is applied to the problem
of pitch axis control in a highly manoeuvrable experimental aircraft. Loopshaping
techniques are used to improve robust performance and optimise B-norm reduction
for the same example. Finally, the problem of shape control in a Sendzimir steel
mill is considered from a Tioo perspective. The advantages of a classical decoupling

approach to the multivariable design problem are again clearly demonstrated.
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5.1 Super-Optimal Pitch Axis Control ofa Highly

Manoeuvrable Experimental Aircraft

In this section the decoupling design procedure proposed in Chapter 4 is applied to
the problem of pitch axis control in a highly manoeuvrable experimental aircraft.
The proposed procedure completely decouples the closed loop system and allows the
design to be undertaken on a loop by loop basis. This result simplifies the selection
of Tioo weighting functions and also makes possible the subsequent application of
classical controller design techniques. The decoupling Tioo optimal controller is shown
to be super-optimal, i.e the controller is optimal for each loop of the system, and not
simply for the worst loop. The main advantage of the proposed method is that super-

optimality is acheived with very little extra design effort.

5.1.1 Plant Description

The model of the aircraft used in the design is taken from [70], and consists of data
from the HIMAT highly manoeuvrable experimental aircraft. The simplified nominal
model of the aircraft Po has four states: forward speed (v), angle of attack (a), pitch
rate (q) and pitch angle (0); two inputs: elevon command (Se), and canard command
(«); and two measured outputs: angle of attack (a), and pitch angle (U). Denoting
the state vector x, input vector u and output vector y by

I« \

\o }

we have

X = AXx + Bu

y — Cx + Du

where
f _o3e—02 —3.7e- 01 —319e+01 —3.2e+ 01\

0.0e + 00 —.9e+ 00 9.8e- 01 0.0e + 00
12e- 02 —d.2e+ 01 2.6e + 00 0.0e + 00
\ 0.0e+ 00 0.0e + 00 1.0e + 00 0.0e + 00
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I 0.0e+ 00 0.0e+ 00~
—4.1e —01 0.0e + 00
—.8e+ 01 2.2+ 01

y 0.0e+ 00 0.0e+ 00)

B =

c _ /"0.0e+ 00 5.7e+ 01 0.0e+00 0.0e+ 00
y 0.0e+ 00 0.0e+ 00 0.0e+ 00 5.7e+ 01

0.0e+ 00 0.Ce+ 00
0.0e + 00 0.Ce+ 00

D

The nominal model is stable and minimum phase, and can also be realised as a
multivariable transfer function matrix Pq.

Significant uncertainty regarding the dynamic behaviour of the aircraft arises from
four principal sources [70] :

1. Uncertainty in the canard and elevon actuators. Conversion of electrical control
signals into actual mechanical deflections will always be subject to errors due to
imperfections in the electronics and hydraulics of the actuators.

2. Uncertainty in the forces and moments generated on the aircraft due to specific
deflections of the canard elevon. These effects are mainly a result of aerodynamic
coefficients varying with flight conditions, as well as imperfect knowledge of the exact
geometry of the airplane.

3. Uncertainty in the linear and angular accelerations produced by the aerody-
namically generated forces and moments. This is due to inaccuracies in modelling
various inertial parameters as well as neglecting certain dynamics such as fuel slosh
and airframe flexibility.

4. Other unknown forms of uncertainty.

In this design we ignore the above knowledge of the structure of the uncertainty,
and instead lump all these effects into an unstructured uncertainty block Ap, together

with a weighting function w3. Ap is assumed stable with

IAp |loo< 1

but otherwise unknown. w3 is chosen to reflect variations in the level of plant uncer-

tainty as a function of frequency, and for this example is given by

W3IS) = — el X72
yJ s + 10000
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This choice of weighting function allows a potential percentage modelling errror of 50
percent at low frequencies, increasing up to a factor of 50 at high frequencies. Ap and
W are included as a muliplicative plant input uncertainty in the closed loop system,

so that our actual system consists of a parameterised set of plants V where
V = {PO(l + ApW3) : AP stable, || AP |loo< 1}
Then the closed loop system achieves robust stability iff
| WsPgK(l + PgK) 1 oo = || WsT Joc < 1

where T is the complementary sensitivity function.

5.1.2 Closed Loop Design Objectives

The robustness and performance of the closed loop system will be measured in terms

of the singular values of the (nominal) transfer function matrix
Tzw = ( WIS W3T )

where S is the output sensitivity function (I + PgK)_1 and

T, , , 0.5(5 + 3) r

WI(s) = TTooF xh
The weighting function W\ is chosen to ensure good disturbance rejection and com-
mand following at low frequencies - at high frequencies robustness to plant uncertainty
becomes the dominant objective. Note that Tzw is the transfer function between the
vector of all exogenous inputs to the system, w, and the output -. In [70] the frame-
work of fj, analysis and synthesis is used to design for robust performance, i.e. a certain
level of disturbance rejection is guaranteed for every plant in the set V. In this section
however, we adopt the standard Ti( approach and design for nominal performance
with robust stability. Our purpose is to show that with very little extra design effort

a decoupling Tioo optimal controller can be found which is super-optimal.

5.1.3 A Standard Design

For comparative purposes, we present results for this plant with a standard Tica design
using the MATLAB Robust Control Toolbox [71]. Figure 5.1 shows the weighting
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Figure 5.1: Tt"o Weighting Functions

functions W\ and W used in the design. After some iterations, a Tioo optimal 9th
order controller was found which satisfied the design specifications. The singular val-
ues of Tzw are shown in Figure 5.2 and the sensitivity and complementary sensitivity
functions are plotted in Figure 5.3.

5.1.4 A Decoupling Controller

In this section we show that by using the design method proposed in Chapter 4, we
can synthesise an MIMO controller which is also Tloo optimal, but which in addition
completely decouples the closed loop system. The design proceeds according to the
following steps:

1. Calculate the SISO controller K\ where

Kt =infsup« f
K w '

[

1. Calculate the SISO controller K. where

K: :infsup a( (Wl)zz(jU)Szz(jLO) (WZ)zz(jU))Tzz(jU) J
K i ' '
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SINGULAR VALUES (dB)

SINGULAR VALUES (dB)

FREQUENCY (rads/sec)

Figure 5.2: Tzw for Standard 7Ye Controller

Figure 5.3: S and T for Standard 'Hoo Controller
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3. Calculate the decoupling MIMO controller Kd where

Note that since Po in this case is strictly proper, it is necessary to augment it with
some high frequency zeros prior to inversion. This practice is quite normal in "Hoo
design, see for example pp. 309 of [72].

4. Use model reduction techniques to reduce the order of the controller. In this
case the state space description of Kd was converted to the Jordan form and the
uncontrollable and unobservable states were then discarded. The MATLAB function
Schmr based on the Schur decomposition method of [73] was then used to calculate
a lower order approximation of Kd- This process reduced the order of the controller
from 23 to 12, with no loss of performance.

The state space controller matrices are given below in Jordan form. Note that the
very high frequency RHP pole in the controller is due to the fact that the original
minimum-phase plant was augmented with some high frequency zeros in order to
make it invertible. Since this pole is well outside our frequency range of interest it

has a negligable effect on the overall design.
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/I 2.34c+00
-9.19c + 01 1.12c + 04i
9.19c -f 01 1.12c + 04«
1.09c + 03 2.63c -051
-3.07c + 02
2.86¢c + 02
1.60e - 03 4.50« » 02»
-1.60c - 03 4.50c m 021
-3.00c - 02
—3.00e - 02
—1.99¢ -03

\ -2.00c-03

9.33¢c - 02 1.41c - 04 + 7.08c - 05»
7.98¢c -04 + 4.50c - 041 -1.18c - 03 - 3.70c - 03*
-4.50c - 04 - 7.98c - 04» 3.70c -0 3 -f 1.18c - 03»
0 1.27a + 04 - 2.23c00i
0 1.94c + 04 - 4.29¢c + 02»
1.79¢c + 04 - 6.53c + 01« -3.09¢c + 01 - 1.58c + 01»
-3.99¢c + 02 - 1.08c + 02» 4.07c + 01 - 2.56¢c + 01»
2.39¢c + 02 + 3.38¢ + 02« 4.43c + 01 - 1.87¢c + 01»
1.36¢c + 04 + 1.72c -f 04« -8.40c + 06 - 3.78¢c + 07»
-8.62¢c + 02 + 2.10c + 01i 3.88c + 07 - 4.20c + 05»
0 1.28¢c + 02 + 2.78c + 0li
-8.67c -05 —7.48e - 03
/ 1.78e + 05 - 2.03c + 00« 1.45c + 01 — 1.65c - 04«
9.67¢c + 02 + 2.00c + 02» 4.53e + 04 - 2.05c + 05»
2.01c + 02 9.67c -f 02« -2.05c -f 05 + 4.54c + 04«
-8.57¢c -03 + 3.00c - 07« 1.49c - 01 + 3.25¢c - 05«
5.64c -03 + 1.21c -04» -1.33c -02 — 3.07c —04«
—4.05¢c - 03 — 1.48c —05* -1.43c —02 - 5.23¢c — 05«
3.40c - 09 - 1.04c —08» 1.17c - 08 - 3.56¢c - 08«
-1.09c - 08 - 3.90c - 10» -3.74c - 08 — 1.30c - 09«
-1.46e -05 1.79c - 05« -5.02¢ -05 + 6.14c - 05«
-2.06c - 05 - 1.06c —05« -7.05c - 05 - 3.64c - 05«
6.73c - 08 + 1.83c -08» 3.65c - 07 — 2.55c - 07«
\ -7.50c - 09 + 2.99c - 16» -8.94c + 00 + 3.42c¢ - 07*

0 )

Results for this design are given in the figures below. Note that the reduced order
controller does not make the closed loop system pc.rfec.tly diagonal - see Figure 5.4.
The level of decoupling is however more than adequate for the purposes of the design,
as verified in Figures 5.5 and 5.6. It is seen that Kj. decouples the system while
performing just a« well as the standard optimal controller.
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Amplitude

Amplitude

SINGULAR VALUES (dB)

Figure 5.4: Step Response of Loop Gain L —K”Pq

FREQUENCY (rads/sec)

Figure 5.5: Tzw for Decoupling 1-loo Controller Kj,
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FREQUENCY (rads./sec)

Figure 5.6: S and T for decoupling 'HG controller K

5.1.5 Super-Optimal Control

In the above example the two singular values of the closed loop system coincide almost
exactly at all frequencies. To see that a 'H(X optimal controller designed according
to the above method is in fact super-optimal, consider the following situation. We
assume that the level of uncertainty in the second loop of the system is reduced to
10 percent of that present in the first loop. In addition we assume that the level
of disturbances acting on the second loop is decreased by the same amount. Our
weighting functions therefore become
, 50(s+100 1 0\ 0.5(5 + 3
Wa\'?? - 5(+ 10000) X y o 01 ] WiGs) = si o.03)
A plot of the singular values of the matrix Tzw for a standard MIMO MHC{ design
using these new weighting functions is given in Figure 5.7. It seems clear from the
plot that while the software has effectively minimised the maximum singular value
of the matrix, less attention has been paid to the smaller singular value. By using
the proposed decoupling design method however, a Ti§o optimal controller can be
found which minimises both singular values, resulting in a super-optimal design - see

Figure 5.8



SINGULAR VALUES (dB)

SINGULAR VALUES (dB)

FREQUENCY (rads/sec)

Figure 5.7: Tzw for Standard Tioo Controller

Figure 5.8: Tzw for Super-Optimal Tioo Controller
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After controller order reduction techniques were applied, the super-optimal con-
troller was found to be of order 12, two degrees higher than the standard Tioo con-
troller. The state space controller matrices are in fact identical to those given in the

previous section.

5.1.6 Discussion and Implications

The design method proposed in Chapter 4, is seen to be readily applicable to a real-
istic design example. The resulting controller completely decouples the system and is
super-optimal. The decoupling result means that classical multivariable design meth-
ods such as the Inverse Nyquist Array and Characteristic Loci can easily be applied
to the system after the initial Ti* design. This allows the designer extra freedom to
meet other specifications, relating to response time, pole locations etc., presumably
at the cost of some loss of robustness. The benefits of a super-optimal controller were
revealed in this example by varying the levels of uncertainty and required performance
in the second loop of the system. Indeed it seems clear that the assumption that every
loop of a MIMO system is subject to uncertainty and disturbances of the same mag-
nitude and spectral content will rarely be true in practice. As sensors become more
accurate and our ability to model uncertainty and disturbances improves it clearly
makes sense to try and achieve the best possible performance from each loop of the
system. Quite apart from the issues of disturbances and uncertainty, many plants are
themselves strongly directional, so that standard H.. design will, as demonstrated
above, fail to optimise performance in all except the ‘worst’ loop of the system.
Algorithms and techniques for the design of super-optimal Ti® controllers already
exist [64, 67]. The main advantage of the method outlined above however is its
simplicity and transparency in terms of engineering design. Super-optimal control
is achieved with only a slight increase in the order of the controller, subject only to
the requirement that the nominal model be stable and minimum phase. Finally it is
noted that in [70], robust performance objectives are satisfied for the above example
using n synthesis. This technique involves repeatedly solving scaled optimisation
problems, via so called ‘D-K iteration’. It seems likely therefore that applying the
decoupling design approach detailed above to each of these Ti” optimisation problems
could usefully improve the final /x synthesis design. This may be a fruitful avenue for

future research.
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5.2 Loopshaping for Robust Performance and B-

Norm Reduction

In this section a loopshaping design procedure for SISO systems, detailed in [75], is
extended to the multivariable case. The strategy proposed is to use the decoupling
design method of Chapter 4 to diagonalise the closed loop system, and subsequently
to shape each loop of the system individually. Loopshaping is used to improve the
robust performance of the system (under the assumption that plant uncertainty is
diagonal in structure) and also to minimise the B-norm (as described in Chapter 3)
of the nominal system. The design procedure is applied to the HIMAT pitch axis

controller problem outlined in the previous section.

5.2.1 Loopshaping for SISO systems

We begin by giving Tioo optimisation of SISO stable minimum phase systems an
interpretation in terms of classical loopshaping ideas. For a comprehensive treatment
see [74, 75]. Recall that the so-called mixed sensitivity problem in TGo optimisation
is given by

inf WiS W3T = inf  sup J(jio
K(s)eKH?® I K(s)ennaa Wp (Jio)

where
J(jw) = /| Wx(ju)S(ju) |2+ ITWs{jw)T(ju) |2

This optimisation problem basically involves finding the optimum trade-off between
performance (command following and disturbance rejection) and robustness (insen-
sitivity to plant uncertainty and measurement noise), over frequency. In terms of
classical loopshaping, the above problem will be shown to be consistent with the fol-
lowing three requirements on the (open) loop gain of the system, L, with crossover

frequency u;c.

1. |L@uj) | >> 1, for b« uc
2. | L(u) | << 1, for fu» uic
3. L(ju) e im™

We now show that requirement 3 above translates into a limit on the rate of roll

off of | L(jui) | at frequencies close to uic.
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Since ¢(0) > 0 and | L(jiv) | is a monotonically decreasing function, the phase
angle of L starts out at zero and decreases, i.e the Nyquist plot of L starts on the
positive real axis and begins to move clockwise. By the Nyquist stability criterion,
nominal internal stability holds if the angle of L at gain crossover has not yet gone
down to -180 degrees, i.e crossover occurs in the third or fourth quadrants. Now
by the phase formula for stable minimum phase systems [76], we have that for any

frequency Il

dinlIL v
1 . In coth mou
where the intgration variable v is
v=1In(—)
In the above formula, the function
O+ Uqg
In coth - qn
2 W s Wo

is strictly positive and peaks at »0. Thus since

din IL I
di>

will always be negative, the steeper the slope of L (strictly Iri | L |) near the fre-
quency cjo5the more negative the value of LL. This means that internal instability is
unavoidable if | L | rolls off too rapidly near crossover, since the phase of L will reach
-180 degrees before its gain is reduced to below unity. A standard rule of thumb is
that the slope of |L | should not be more than 20 dB per decade. Classical designers
therefore aim to maximise the stability margin of the system by ‘flattening’ | L | as
much as possible in the frequencies near crossover.

To see that the above requirements are compatible with the mixed sensitivity Hoo

optimisation problem described above, observe that

i/L\ for w << ujc
| WL | for 1O» Uc
\ Wx |2+ |Ws |2/ 2 for u » ac

Now since the optimal TLoo cost function J(ju>) is all pass, it is quite clear from
the above expressions that the three requirements from classical loopshaping all serve

to push J(ju) down towards its optimal value.
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It is useful to note that the problematic design conflict is not between the required
values of S and T per se. It is between the objective of making S small and T large
at low and high frequencies respectively, and the necessity of keeping the roll off
rate of L sufficiently small. In classical Loopshaping the designer directly chooses
L to satisfy this trade-off. In design it is the respective shapes and crossover
frequencies of the weighting functions W\ and W: that must be chosen. Since TQM
optimisation is performed over the set of all stabilising controllers (via the Youla
parameterisation [68]), closed loop stability is guaranteed - if too ambitious a set of
weighting functions are chosen, the software will simply report that it cannot compute
a stabilising controller. This is often because the crossover gap, i.e. the difference
between the crossover frequencies of W\ and Wj is too narrow, resulting in a required
roll off rate which is too steep. If this gap is increased a stabilising controller may
be found but the resulting J may still have a sharp peak near uc. This is due to the
third term in the above expression for J being too large. Thus in 1-Co optimisation,

difficulty of design is closely related to the width of the crossover gap.

5.2.2 Loopshaping MIMO systems for Improved Robust
Performance

W ith reference to Figure 1.3, the Robust Performance Problem or Robust Disturbance
Attenuation Problem (RDAP), is

inf sup || Tzw Ho

K(s)6TIH°> Ap
In the MIMO case, no useful closed form expression is available for controller syn-
thesis. The best that can be done at present seems to be to recast the problem in
the framework of the structured singular value [78], and compute a controller using //
synthesis techniques. This process is however computationally demanding and the re-
sulting controller may not be globally optimal. However, in the SISO case the RDAP
problem is exactly equivalent to

NN
K{s“':lf wo || Jrdapi®d?) |loo

nn
where

Jrdap{ju) = | Wi{ju)S{Ju) [+ [W2(ju)T(ju) \
This problem is solved to within a factor of \/2 by the mixed sensitivity opti-

misation problem discussed in the last section. In [75], a design method is presented
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which uses this fact together with classical loopshaping ideas, to design for robust
performance without resorting to /i synthesis. In this section we propose a modest
extension of this method to the multivariable case. We first of all give a brief descrip-
tion of the design method for SISO systems. The method relies on the following two
lemmas [39, 75].

Lemma 5.1
Jrdap(jbj) ~ V.2J{ji.)
Lemma 5.2 If there exists an u> such that

L(Gu=0) I- 1 1
G ) IWzHI1Qg) |
then for a controller which optimally solves the Tioo mixed sensitivity problem,

max Jrdap(jw) = Jrdap(jUo) = v 21(ju®)

Proof

. _ O T(M 1
IL(ju) | = SUU)|
) _ Wi(julo) | | T(juo)
LOUO I = wyooy | [s(juo)
W.S(juo) | = | WsT{ju>o) |
J(juo)2
. ‘J(jwo0)2
wis ‘(juio) 1+ | WATAjujo) | — 2
Jep(i")) —  (j0)

The significance of Lemma 5.2 above is that for any ‘sensible’ design, there will

be some frequency oj0 at which
| WiSO'wo) |=| WsT{jujo) I

and therefore the upper bound in Lemma 5.1 will (almost) always be achieved. Solving

the Tioo mixed sensitivity problem makes J(ju>) an all-pass function with magnitude
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70- The corresponding JTdgp is typically a bell shaped curve which is always greater
than J, with a peak value of < \/270 at the frequency wO0. In [77], a theorem is
given which suggests that the optimal JTdap is also all-pass. The proposed approach
is therefore to use standard Tioo optimisation to bring Jrdap down to within of its
optimal value, and then to use loopshaping techniques to ‘flatten’ JrdapmThe reason
for the peak in the value of Jrdar is that since Jrdap(<r0 > Ji10) the crossover gap of
Jrdap is always narrower than that of J. Thus JTdap is ffattened by using a cascade
compensator to further reduce the slope of L near crossover. The easiest way to
do this is of course simply to decrease L slightly at frequencies below crossover and
increase it slightly at frequencies above crossover. The resulting increase in the value
of J is of no consequence since robust and not nominal performance is the ‘real’ design
objective.

The key to extending the above design method to the multivariable case is the fact
that a completely decoupled n x n MIMO system can be treated as n independent
SISO systems for the purposes of design. Let us return to the HIMAT pitch axis
controller design example of the last section. Recall that the TL&I optimal controller
Kd calculated according to the design method of Chapter 4, completely decouples
the closed loop system. This means that the nominal open loop gain L, the nominal
sensitivity function S, and the nominal complementary sensitivity function T, are all
diagonal. Thus we are free to insert a diagonal cascade compensator which we can
use to minimize the peak value of Jrdgp for each loop of the system. A limitation of
this approach is that MIMO robust performance will only be guaranteed for diagonal
Ap’s. This is due to the fact that

s=[1 + KPo{l + AD]-1

i.e. the actual (as opposed to nominal) sensitivity function S is only completely diag-
onal for diagonal Ap’s. The assumption that Ap is diagonal in structure is however
often well motivated from physical considerations. In [79] for example the modelling
of an uncertainty matrix for a distillation column is considered. The authors note that
non-zero off-diagonal terms in a multiplicative input uncertainty matrix imply that
a change in one input may result in an undesired change in another one. Although
conceding that this may be the case for some plants, for example if the actuators are
located very close together, the authors conclude that for most plants, including the
distillation column, it is more reasonable to assume that the actuators are indepen-

dent, that is, Ai is diagonal. Obviously, similar arguments apply in many situations
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FREQUENCY (rads./sec)

Frequency (Rads./sec)

Figure 5.9: S, T, J, and JTdap for loop 1, with K~

for output multiplicative uncertainty. Figure 5.9 shows Bode plots of S, T, J, and
Jrdap for loop 1 of the HIM AT design with decoupling controller K,i. As expected, J
is essentially all-pass while JTdap has a peak near the crossover frequency. We choose
the (1,1) element of our cascade compensator to be

(1.95s + 1.9) 0.8(25 + 1.9)(0.055 + 0.8)
1 (25 +1) X (0.65 + 1)(0.045 + 1)
Figure 5.10 shows the effect of K\ on the loop gain L. The second term has the
effect offlatteningthe loop gain at frequencies near loc by increasing L more athigh
frequencies than at low frequencies. The first term increases the loop gain slightly
at low frequencies to compensate for the non-bell-like shape of Jrdapm As shown in
Figure 5.11, this slight adjustment in the loop gain has a significant effect on the
shape of JT1dap and || JTdap Jjoo is reduced from -2.36 dB (0.762) to -3.56 dB (0.663),
an improvement of almost 10 percent. For the second loop of the system, the (2,2)
element of our cascade compensator
_ (195 + 1.9) 0.7(25 + 1.9)(0.055 + 0.8)
2« (25+ 1) X (0.65 + 1)(0.045 + 1)
reduces | Jrdap o= from -2.35 dB (0.763) to -3.46 dB (0.671), again an improvement
of just under 10 percent - see Figures 5.12, 5.13, and 5.14. The full MIMO closed
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Figure 5.10: (a.) L without K£, (b.) L with K\

FREQUENCY (rads./sec)

Frequency (Rads./scc)

Figure 5.11: S, T, J, and Jrdap for loop 1, with Kd and K\
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Figure 5.12: S, T, J, and JrdaP for loop 2, with Kii

loop compensator is thus given by

K T 0 g
0 K. (s)
where Ki(s) and K:(s) are given above. State space Jordan form matrices for Kd(s)
are given in Section 5.14.

The above results assume that Ap is diagonal, however it can reasonably be argued
that as long as the uncertainty in the plant is at least diagonally dominant, the above
approach will still produce useful designs. Indeed as noted above, for many plants this
is a well motivated assumption. Improvement in robust performance for completely
unstructured Ap’s is not guaranteed but can always be checked a posteriori by [i
analysis.
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Figure 5.13: (a.) L without K?,, (b.) L with A2
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Figure 5.14: S, T, J, and Jrdap for loop 2, with Kd and A2
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5.2.3 Loopshaping MIMO systems for Time Domain Ob-
jectives

In this section we use the loopshaping procedure outlined above to reduce the B-norm
of the closed loop system for the same HIMAT pitch axis controller example. Recall
that in Chapter 3 we defined the B-norm for an n x n multivariable system as

n

I Tzw(ju>) |[B = ma XZV' | {Tzw(jio))ij H,

3=1
We have already seen that for the HIMAT example with decoupling controller Kd, S
and T are diagonal, and thus Tzw is block diagonal. Thus the B-norm for this system
can be rewritten as

I Tzw(jto) [IB = mgx || (W uiM Su”ju) + | (Ws)iiGjio)Tii(ju)

Thus minimizing the B-norm for this system is equivalent to solving 2 SISO optimi-
sation problems of the form

Kiinf o llJbUu) Ik where JB = || WAjAS”jto) H«, + || Ws(ju)T(jLo) Wk,

A 1511 w/X

It is interesting to consider the relationship between the cost functions, J, Jrdap, and

Jb mWe already have that
J(ju) N Jrdapi®?) V.J(M
Futhermore, it is easy to show that
Jrdaphdn) 5 JbAJN) A 2Jrdapi.dn)

This gives
J{ju) < M M < 2xV2J(ju)

Thus since an analytical solution to the B-norm minimisation problem is not available,
we propose the following two-step procedure for sub-optimal synthesis:

1. Minimize J for each loop of the system by calculating the Tty,, optimal decoupling
controller K,i-

2. Use classical loopshaping techniques to design a cascade compensator to minimize
JB for each loop of the system.

Loopshaping in this case is done with the aim of ‘flattening” W\S and W 3T since it
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Figure 5.15: Weighting Functions W\ and W

can be shown that the optimal value of Jb is also all-pass. Due to the relatively flat
shape of the original weighting functions W\ and W3 in our HIMAT example, W\S
and W3T for each loop of the system are already almost all-pass for our Ti-. optimal

controller. Thus in order to demonstrate our approach we change the weights to

W.(s)= +\  W3(s) = (°-6e+ 3)s+ 1
(0.45e + 3)5+ 1 NV (0.6e —1)s + 105
As can be seen from Figure 5.15, these weights simply have the effect of penalising
S and T more at very low and very high frequencies respectively. A Tt({d optimal
decoupling controller for these new weights was then calculated according to the
proposed design procedure. The resulting W\S and W3T for loop 1 of the system are
shown in Figure 5.16. The value of Jb for loop 1 of this design is -2.0194 dB. In order
to reduce this figure, we introduce a cascade compensator

(1.4e-4),, + 1.2
U (2.3e —4)s + 1

The effect this compensator has on the loop gain of the system is shown in Figure 5.17.
Note that the approach taken is simply to increase the loop gain slightly at those
frequencies over which we want to reduce W\'S and to decrease it slightly at frequencies



Frequency (Rads./sec)
Figure 5.16: W\S and W-T for Kd (Loop 1)

where we want to reduce W3T. With the compensator K\ in the loop, W\S and W3T
are as shown in Figure 5.18. Note that the value of Jg has been reduced to -3.5292
dB. Equivalent plots for loop 2 of the system are shown in Figures 5.19, 5.20, and 5.21.
W ith the cascade compensator k 2 equal to k\, Jb for the second loop of the system
is reduced from -1.2501 dB to -2.3865 dB. The full MIMO closed loop compensator
is then given by
" Ki(s) 0
0 K 2(s)

Kd(s)

where K-y(s) and K 2(s) are given above and kd(s) is given below in state space Jordan
form. Thus for this design, the implementation of classical loopshaping techniques
has reduced the value of | Tzw(ju>) ||p from 0.866 to 0.759, an improvement of about
11 per cent. An interesting observation is that B-norm optimisation conflicts with the
RDAP problem of minimising ardap for each loop of the system. This is shown clearly
in Figure 5.22 where JTdap before and after the addition of the compensator k\ is
plotted for loop 1 of the system. This trade off should come as no surprise however,
since the B-norm is a nominal performance specification, and thus automatically

conflicts with the robust performance specification of J Tdap-
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Figure 5.17: L with and without K\ (Loop 1)
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Figure 5.18: W\S and W3T for Kd and
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Figure 5.19: W\S and WsT for Kd (loop 2)
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Figure 5.20: L with and without K 2 (Loop 2)
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Figure 5.21: WtS and W:iT for Kd and K-
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Figure 5.22: (a) JTdap without ufi,(b) JTdap with K\
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5.3 Robust Shape Control in a Sendzimir Cold-
Rolling Steel Mill - A Decoupling Approach

In this section the shape control problem for a Sendzimir 20-roll cold rolling steel mill
is considered. The operation of the mill over a wide range of conditions arising from
roll changes, changes in rolling schedules and changes in material gauge, width and
hardness, poses significant design challenges. In addition, the linearised model of the
multivariable plant is ill-conditioned. Previous approaches to the problem have been
based on nominal designs with little a priori consideration of robustness issues. This
resulted in the need for a large number of precompensator matrices to cater for the
full range of operating conditions. In this section a single decoupling 7Yoo controller is
designed, via the singular value decomposition, for one complete schedule. Robustness
in the face of changing operating conditions is explicitly characterised a priori and
validated a posteroiri by nonlinear simulation. Design results suggest a systematic
approach to controller scheduling via Tioo optimisation. Our treatment follows closely
that of [5].

5.3.1 The Control Problem

The shape of a steel strip in the current context refers to the stress distribution in the
strip. Perfect shape implies a uniform internal stress distribution, so that if cut into
narrow strips, the steel will lie flat on a flat surface. Bad shape can cause the strip
to buckle or even tear. The shape of the steel is measured by taking a differential
tension profile across the strip at 8 (modelled) equally spaced points. The output of
the system is thus a profile represented in vector form. Strip shape is controlled by
bending the rolls of the mill, causing elongation of the strip at points where the rolls
are closest. ‘Long’ or loose sections of the strip have associated compressive stress,
while ‘short’ or tight sections suffer from tensile stress.

Accurate control of the shape of the steel strip in cold rolling is a difficult problem,
due to the multi-pass, multi-schedule nature of the process. The approximately 2500
different passes and schedules required to achieve a required final gauge for different
grades and widths of rolled strip involve variations in mill setup, such as roll diameters
and strip speed as well as variations in material characteristics, such as input/ouput
gauges for each pass, strip width, and material hardness. These factors can cause

variations of up to 300 percent in the parameters of the mill model, thus the current
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requirement for a large number of controllers comes as no surprise.

The sendzimir mill is a so-called reversing mill, and a seperate schedule containing
a number of passes is specified for each different material rolled. A schedule can
contain from 4 to 15 passes through the rolling cluster. Each pass involves different
entry and exit gauges, with minor changes in the material hardness from pass to pass.

To date, the approach has been to design controllers using traditional multivariable
techniques for a set of nominal cases, i.e. every schedule, and then to check closed
loop stability for schedules and passes outside this nominal set [80, 81]. Significant
limitations of this approach are (a) no attempt is made to explicitly model plant
uncertainty due to varying operating conditions, (b) no attempt is made to actively
design for robustness to this uncertainty, resulting in wide variations in controller
performance across operating conditions (although stability may be retained), and
(c) no systematic method for scheduling different controllers across different passes
and schedules is obvious.

In this section these limitations are overcome by formulating the problem in the

framework of o control theory.

5.3.2 The Sendzimir Mill: Nominal Model

The Sendzimir mill model used in the design is taken from [80, 81, 82]. The mill has
an ASEA ‘Stressometer’for measuring the differential tension (or stress) profile across
the strip. This device is mounted 2.91m downstream of the roll gap and produces 8
(modelled) output measurements. Four pressure measurements per revolution of this
device are provided, causing a four-period-per-revolution sinusoid to be superimposed
on the output signal (40Hz at a speed of 10 m/sec.). Further noise on the output signal
is introduced due to the 2kHz magnetising currents used with the pressure sensors.
Shape actuation is effected via the ‘As-U-Rolls’, which provide the equivalent of 8
independent (but equally spaced) point loads. This generates roll bending, causing
differential elongation of the strip, thus influencing the shape profile.

The mill model therefore has 8 inputs and 8 outputs. The rolling cluster is the
most complex part of the system and accounts for all of the interaction between the 8
(unmodelled) paths in the system. A linearised gain matrix Garelates changes in the
roll-gap shape profile to changes in the positions of the AUR’s [82]. Diagonal dynamic

blocks account for the actuators, strip dynamics (between roll-gap and shapemeter)
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and the shapemeter filters. The mill model is therefore of the form
y(s) = p(s)Gafa(ua) GaG V:®*®

where p(s) models dynamics due to the strip and shapemeter, and the nonlinear
function /0(.) represents the AUR actuators. An actuator linearisation technique [83]
can be applied to the nonlinear actuators, resulting in an approximately first order
linear response for each actuator with a time constant of 2 seconds. The resulting
overall mill dynamics are therefore modelled as

P{s)=p{s)Ga, Gae7r8x8

with p(s) given by

-0.582s

PA (1.064s + 1)(0.74s+ 1)(2s + 1)

for a medium strip speed of approximately IOm/s. For each of the six passes of the
schedule we have a different gain matrix (ca)i, therefore the nominal gain matrix
{Ga)n for the selected schedule is given by

4.3907 4.9866  -0.0720  -2.1837 -2.3299 -2.0186 -1.7916  -1.7943
0.6112 2.5487 2.5138 0.2207 -1.5248  -1.9372 -1.7115  -1.7027
—0.7673 0.4553 2.7242 1.7667 -0.5024  -1.7515 -1.7883  -1.7682
(ra)n — -1.0494  -1.0781 1-1593 2.6865 15551  -0.6776  -1.7538  -1.7282
-0.9135 -1.6900 -0.7009 1.4843 2.7079 12133 -1.1479  —1.1449
-0.7882  -1.7710 -1.6810  -0.3389 1.9747 2.7206 0.4609 0.4541
-0.7666  -1.7308  -1.9495  -1.5653 0.0505 2.3465 2.6623 2.6831
V -0.8345 -1.8083 —1.9580 -2.2416 -1.9845  -0.1392 4.9882 49173 [
where
T,LI(Ga)i
(Ga)r

5.3.3 Nominal Model Reduction and Decoupling

Examination of the gain matrices of the mill reveals that they are remarkably ill-
conditioned - the difference between the smallest and largest singular values typically
being approximately four orders of magnitude. In addition, an order of magnitude
difference exists between the 4 largest and 4 smallest singular values. As an example,

the singular value spectrum of the nominal mill gain matrix c a is
{12.3568 9.1120 4.9125 1.5625 0.3306 0.2101 0.0259 0.0051}

Ill-conditioned plants can be said to be characterised by ‘strong directionality’because

inputs in vector directions corresponding to high plant gains (large singular values)
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are strongly amplified by the plant, while inputs corresponding to low plant gains
(small singular values) are not. It is well known that ill-conditioned plants can cause
serious problems for control system design [79]. The main reason for these problems is
plant uncertainty. For accurate control of ill-conditioned plants the controller should
attempt to counteract the strong directionality by applying large input signals where
the plant gain is low; i.e. the controller should try to approximately invert the plant.
However, because of uncertainty, the direction of the large input may not correspond
exactly with that of the low plant gain, and the resulting output may as a result
be much larger than expected! Since the phenomenon of directionality clearly only
exists in multivariable systems, classical designh methods based on extensions of SISO
techniques are likely to be unreliable for ill-conditioned plants. This is not surprising
since techniques such as LQG/LTR, Inverse Nyquist Array, and Characteristic Loci
do not explicitly characterise plant uncertainty.

Thus the conditioning of the plant is yet another argument in favour of treating
the design problem in the framework of robust control theory. From the point of view
of 7Yoo optimisation however, there is a further complication. For a typical mixed
sensitivity design, Tioo software will attempt to minimise the maximum singular value
of S at low frequencies. The problem here is that the smallest singular value of {Ga)n
is so small (0.0051), that the maximum singular value of S will be approximately
equal to unity at all frequencies, unless the controller has a huge gain in this direction
(something which is clearly undesirable from the above argument). The meaning of
any singular value of S being equal to unity at all frequencies is that the corresponding
loop of the system is essentially open - no feedback is being applied. Note however
that since the problem at hand is basically a regulator problem, i.e. the desired shape
(stress) profile is uniform i.e. zero at all points, leaving those loops of the system with
very small gain open does not represent a serious problem. The real difficulty stems
from the fact that, as noted in Section 5.1, 7Yoo optimisation concentrates exclusively
on minimising the largest singular value of S, and in general does not effectively
minimise the remaining singular values. Thus for this problem the singular values of
S corresponding to the loops with significant gain will not be effectively minimised.
This analysis was borne out in practice when a Hoo design for the full 8 x 8 system
was attempted. One solution to this problem might seem to be to try to decouple
the system and design on a loop-by-loop basis, but since this would involve inverting
a matrix which is close to singular it is not a realistic option.

Instead, we adopt the following approach based on a reparameterisation of the
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plant in terms of its four most significant singular values, via the singular value

decomposition. Partition the plant as:
P(S) = P(s)(Gan = p(s)(Ut U2

where
ult u2 .., v2 en84d, e1 e2 €nsxs

Note that Sj and E2 are diagonal matrices, containing the singular values of the gain
matrix. A parameterisation U* is now applied to the mill output shape profile, while
the control input is parameterised by V\. The design is now concentrated on the

reduced dimension 4 x 4 system
PTed(s)=p(s)U?(Ga)nV:

It is interesting to note that such a parameterisation is consistent with previous
approaches to the design problem, and is also motivated by rolling practice consider-
ations. Notice also that the parameterised system is completely decoupled, and thus

this strategy is in keeping with our general approach to design.

5.3.4 Uncertainty Modelling

In addition to the nominal model of the mill, an attempt is made to explicitly charac-
terise the various sources of uncertainty in the system. Changes in strip shape profile

are modelled as disturbances at the plant output of the form
d(s) = Wi(5)d(a), d(s) e BCAa

where

"«*>=10i £ + t 1)j*
This choice of W\ ensures that the sensitivity function S is penalised heavily at low
frequencies to ensure good d.c. attenuation of disturbances in the form of step changes
in incoming strip shape profile due to welds. The major source of uncertainty in the
system comes from the variation in the elements of the (real) gain matrix Ga over the
six passes in the schedule. This uncertainty can be modelled using a multiplicative

output uncertainty description of the form
Ga= (Ga)n (/ + Ag)

120



where
AG = W3('5)A, | A |loo< 1

and _
m_axt<J((Ga)i ~ ﬁ; a)n)

11mS»=

Since the elements of the matrix 6 a are real the above analysis would suggest choosing
a constant diagonal matrix for W3. However, in order to attenuate the effect of the
shapemeter measurement noise present in the system we require the complementary

sensitivity function T to roll off at high frequencies and thus choose W3 to be

Note that the above level of plant uncertainty at low frequencies (due to variations
in the gain matrices), is quite unusual in design. It is generally assumed that
our knowledge of the plant dynamics is quite good at d.c. and at low frequencies,
and deteriorates with increasing frequency. The large value of Ws at low frequencies
in this design makes the task of securing adequate performance characteristics quite
difficult, and necessitates careful selection of the corresponding weighting function
W\. Note that this choice of W3 is also made with the aim of rolling off the closed
loop transfer function before the phase effects of the time delay in the system become
significant. This is necessary since this time delay must be omitted from the nominal
plant for the purposes of 7Yoo design. The process of selecting the weighting functions
W\ and W3 for this design illustrates clearly the two viewpoints regarding their role.
On the one hand they may be viewed as models of the frequency content of likely
disturbances, plant uncertainty and measurement noise. On the other they may also

be regarded simply as ‘knobs’ with which to shape S and T.

5.3.5 oo Controller Synthesis and Performance Analysis

The software used to calculate the controller was based on the Tioo optimisation
function hinf.m in the MATLAB Robust Control Toolbox [71]. The initial controller
was of order 20, so controller order reduction techniques were used to compute the
16th order controller, given at the end of this subsection in Jordan form. Figure
5.23 shows the sensitivity and complementary sensitivity functions for this controller.
Note that S drops to -30dB at low frequency, ensuring good d.c. disturbance rejection,
while T rolls off at high frequency giving a closed loop bandwidth of approx. 0.1
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Figure 5.23: Sensitivity and Complementary Sensitivity Functions

rads/sec. and providing good attenuation of high frequency measurement noise. Note
also that the closed loop transfer function rolls off before the effects of the time delay
in the plant become significant.

To demonstrate the disturbance rejection properties of the design, the parame-
terised output response to a step disturbance in loop 2 of the idealised (i.e. linear,
delay free) system is shown in Figure 5.24. Robustness to variations in the gain ma-
trix Gais clearly demonstrated by observing that disturbance attenuation is preserved
for different GJs corresponding to different passes of the schedule. Also of note is
the fact that disturbances are decoupled, i.e. the disturbance in loop 2 of the system
produces a negligible effect on the outputs of the other loops of the system. These
results indicate that a high level of robust performance is achieved by the design - this
may appear a little surprising since Tioo design guarantees nominal performance only.
A theoretical explanation for the above results can however be provided by referring
to a result in [40], which we give below in the form of a lemma.

Lemma 5.3 Define the Operating Band of a MIMO control system to be a finite
frequency region [—u;i,a>i] over which performance specifications are prescribed. Then

define e to be the norm of the nominal sensitivity matrix on this operating band,
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e= _Mmax,,, ClsoGu;]

Finally define s to be the norm of the multiplicative plant uncertainty matrix on
this operating band, i.e.

© = _B e CTIAE
Then for every plant Pg(s) in the set of plants P(s), the £co norm of the sensitivity
matrix on the operating band is bounded above by

(1-5)(l-¢e)-e * Q" ¢(X1-8¢€) > e

The essential meaning of this lemma is that if both the nominal sensitivity and the
plant uncertainty are sufficiently small over the operating band, then the degradation
in terms of robust performance over this band will not be very significant. We can
apply this result to justify the level of robust performance obtained in our design as
follows. Choose the frequency range [—10“3,10“3], as our operating band. Then from

the design we have that » = 0.2774 and e = 0.031. Then the above lemma gives that

. max _ _cffSYng)] < 0.0447
-i0-3<w<io-3

since
11—l —e) = 07 > e

This result means that when the nominal sensitivity function has been ‘pushed down’
to approx. -30 dB over the operating band, the sensitivity function will stay below
approx. -27 dB for every plant in the set P(s). This explains the robustness of the
performance characteristics seen in Figure 5.24.

The controller developed above was then simulated with a more detailed model of
the mill, containing the transport delay (which was ignored in the design), nonlinear
actuators together with their linearising precompensators, and a realistic incoming
strip shape disturbance. The shape profile variations are shown in Figure 5.25 for
the (nominal) controller used with (Ga)i. Parameterised shape profile variations are
shown in Figure 5.26 for pass 3. These results confirm the robustness and performance
characteristics of the design. Finally, further attempts at controller order reduction
based on the Schur decomposition method of [73], produced a 14th order controller

with no significant deterioration in quality of control.
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5.3.6 Discussion and Implications

The benefits of formulating the design problem under the framework of Tioo control
theory have been clearly demonstrated. Controller synthesis is straightforward and
automatic, with most of the design effort being expended, appropriately, on the mod-
elling of uncertainty in the system. The ill-conditioned nature of the plant was dealt
with by means of a SVD parameterisation, a procedure which also has the effect
of decoupling the closed loop system. In contrast with previous approaches to the
problem, robust stability of the design is guaranteed a priori, while analysis of the
closed loop system confirms excellent robust performance. Some further benefits of
the robustness characteristics of the design are also of note. In particular, it is known
that the mill matrices, produced by a static model developed in [82], contain mod-
elling inaccuracies as well as linearisation approximations. Further nonlinear effects
are present in the real system due to the operation of the actuators. Tioo designs
naturally provide a degree of immunity to such errors, as noted in [84]. Finally, the
success of this design for a single plant schedule points to an automated design phi-
losophy, which could provide a sytematic means of developing a set of controllers for

use across the full range of plant operating conditions.
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Chapter 6
Conclusions

This chapter contains a discussion of the various observations made throughout the
thesis. The main contributions of the thesis are the answers provided to the questions
at the start of each section below. In particular some conclusions are drawn regarding
the ways in which uncertainty and control specifications are modelled in robust control
theory. We also consider the usefulness of a classical decoupling approach to MIMO
design problems in the context of robust control.
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6.1 T1ico Control Theory and Time Domain ‘Spikes’

I. Do Tioo optimal controllers suffer from time domain ‘spikes’?

One purpose of this thesis is to show that existing Tioo theory does not suffer
from the ‘spike’ problem discussed in Chapter 2, provided that appropriate models
are adopted for uncertain signal sets.

Previous work in the area of Ti00 control theory has been based on the use of the
¢2 signal norm on both the input and the output sides. A consequence of using this
conventional or energy paradigm for Tia0 is that, as shown in Lemma 2.1, the output
of the system can be subject to ‘spikes’ with arbitrarily large amplitude in the time
domain. This is true even when the output signal has been effectively minimized in
the usual Tioo sense. This result is a theoretical one, and heuristic arguments can
be made that extremely large output spikes will not occur in practice. Certainly
however, convincing and useful bounds on the time amplitude of z(t) cannot always
be guaranteed under the standard Tioo control framework. The problem therefore
seems to be the ‘gap’ between what is theoretically possible, and what is seen to
occur in real life applications. This gap is narrowed by the results presented in
Chapter 3, where it is shown that in addition to minimizing the worst case output
in the :2 norm sense, optimal Tioo controllers are also optimal or nearly optimal in
other senses. The standard Tioo norm guarantees an upper bound on the time domain
amplitude of the output signal at all times for the proposed signal sets V "\ and
T>w It is demonstrated that these proposed signal sets are rich enough for many
practical purposes. In the SISO case, optimal non-conservative bounds on | z(t) |loo
are obtained for these signal sets. In the MIMO case, there are still good bounds on
| z(t) oo for these signal sets because the B norm and the standard Tioo norm can
be related to each other by tight bounds, as in Theorem 3.4. However, the usual Tioo
objective function must be modified a little if such bounds are to be non-conservative
in the MIMO case.

The conclusion drawn is that the ‘spike’ difficulty is not with existing Tioo theory
per se, it is with the control theoretic pedagogy (i.e. the energy paradigm) which is

conventionally attached to it.
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6.2 Specification Modelling in Robust Control The-
ory

Il.  Which signal norm provides the best model of the objectives of feedback control
systems?

The £1 literature in general and Lemmas 2.1 and 2.2 in particular show that the
use of the C2norm to measure the size of output signals is inherently flawed and should
be abandoned. The essential significance of Lemma 2.1 is that the C2 norm gives a
very poor mathematical model of or statement of the ‘real’ objectives and purpose
of control systems. It is argued in Chapter 3 that for the majority of applications,
the Coo norm provides a much better model of the control specifications than the C2
norm, mainly because it non-conservatively treats maximum tracking errors in the
time domain. As is clear from the C\ literature, doing so requires the C* norm to be
used on the output side. Thus it is significant that as shown in Chapter 3, with the
right signal sets, a slightly modified Tioo control theory can produce non-conservative
results with the most attractive features of the C\ approach.

The conclusion drawn is that the £<* signal norm generally provides the best
model of the objectives of feedback control systems.

6.3 Uncertain Signal Modelling in Robust Con-
trol Theory

I11. Which signal norm provides the best model of uncertain input signals in feedback
control systems?

As discussed in Chapter 2, the presence of signal set lumping in standard Tico con-
trol theory means that reasonably accurate models of disturbance/noise/command
inputs is impossible a priori. The lumping of all uncertain input signals to the sys-
tem into a single vector which is then measured using the C2 norm grossly distorts
the true physical situation, since it creates an artificial interdependence between what
are essentially independent signals. Carefully choosing weighting functions to obtain
accurate models of several independent external disturbance, sensor noise and com-
mand inputs is futile because such accurate models would have to be covered by a
single unit ball anyway, thereby largely eliminating their descriptive value. In con-
trast, both the standard C\ and the proposed approaches are based on the infinity
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vector norm. So they automatically avoid the problem of signal set lumping on the
system’s inputs.

The conclusion drawn is that the infinity vector norm provides the best model of
uncertain input signals in feedback control systems.

6.4 Time Domain Specifications and Frequency

Domain Design

IV. Can time domain specifications be satisfied exactly using frequency domain design
methods?

The signals in the signal set T>$ introduced in Chapter 3 are sinusoids. The signal
sets 'Dw'l and U $ are described in the frequency domain. The resulting induced
system norm to be minimized is most naturally expressed in the frequency domain.
Thus, like standard TC” control theory, the pedagogy presented in Chapter 3 is very
much a frequency domain approach. This is an important feature of the proposed
approach, because the engineer can effectively bring his frequency domain experience
and intuition to bear on a practical problem. A frequency domain setting for controller
design paradigms is favoured intuitively by many engineers familiar with classical
design methods. In contrast with standard 'Hog control theory however, the control
specifications in the new pedagogy are expressed and satisfied exactly in the time
domain. While this is also the case in the standard C\ approach, C\ control theory is
not a frequency domain but a time domain theory, and therefore it seems to suffer at
present from a serious lack of design transparency. Finally it is shown in Chapter 3
that the ideas outlined above have a natural extension to 72 control theory. Indeed
they provide a new deterministic interpretation of Ti* control theory in the MIMO
case.

The conclusion drawn is that slightly modified frequency domain Ttoo and 7Y2
control theories can be used to exactly satisfy time domain specifications.
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6.5 Weighting Function Selection and Manipula-

tion in Tico Control theory

V. How can procedures for the selection and manipulation of weighting functions be
made more systematic, transparent and scientific?

A major problem with robust control theory in general is its reliance on weighting
transfer functions. Where are these weights supposed to come from? It is argued
in Chapter 3 that the results presented have significant implications for the weight
selection problem.

In standard Tioo design, the combined impact of the limitations (i) to (iii) described
in Chapter 2 is that the designer is obliged to fall back on design thinking which is
sub-optimal and/or heuristic. Itis argued that the need for viewing weights as ‘tuning
knobs’ in present day Tioo design and the need for frustrating and time consuming
iterations in the design process comes at least partly from these limitations. In short,
the impact of (i) to (iii) is to sever the connection between realistic design on the
one hand, and the formal mathematical optimization problems described above on
the other hand. The results presented in Chapter 3 represent an attempt to narrow
this ‘gap’, i.e. that between the engineering aspects and the mathematical aspects
of Tioo control theory. The mathematical optimization problems of Chapter 3 more
faithfully capture the ‘real’ control engineering problem by improving the model on
both the input side (Il above) and the output side (Il above). This new paradigm
clarifies the fundamentally different roles played by weighting functions on the input
and the output side, and makes possible the approach to weighting function selection
and manipulation proposed in Chapter 3.

The conclusion drawn is that the weighting function on the input side W should
be viewed as a fixed model of possible uncertain input signals, under the modified
Tioo paradigm proposed. In this paradigm the output weighting function V may then
be used to examine and tune the relative quality of control of each individual element
of the output, and to manage the tradeoffs between them. So V enables each output
signal Z{ to be weighted separately, allowing the relative importance of each to be
traded off by tuning the appropriate diagonal element of V. The use of weighting
functions on both the input and the output sides is also appropriate when modelling
system uncertainty as this allows extra design flexibility in the MIMO case. It is ar-
gued that the two viewpoints regarding the roles of the weighting functions (as models
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of uncertainty and also as models of control system objectives and tradeoff priorities)
are complementary rather than contradictory, but that this distinction needs to be
formally recognised. The proposed approach fulfills this objective, resulting hopefully
in a more transparent and systematic approach to Tioo design.

6.6 Connections between Tioo and c\ Control The-

ories

VI. How far apart’are the L\ and Tioo control theories?
The signal sets and described in Chapter 3 are defined as having bounded
C\ norm in the frequency domain. This may seem a little unnatural at first, and one
is left wondering what this set of signals ‘looks like’. Now, since every element of U $
has time domain amplitude less than or equal to unity, it follows immediately that
every element of the closure of its convex hull must also have time domain amplitude
less than or equal to unity. Alternatively, letting denote the inverse Fourier
transform, arguments similar to those used in the proofs of Chapter 3 can be used to
show directly that
CZ><" > (6.1)

by which we mean that
w(jui) € W

= = w(t) € BE“ (1)
= ICI()] <1 Vt,i

Hence, signals in are also in BC"it), and so the proposed signal sets have an
obvious time domain bound, just like BC~{t). However, the set BC"{t) is larger.
A counterexample to equality in egn. (6.1) is the unit step function. Being infinite
dimensional, the set V~ s still a huge vector space, and it can be argued that it
should be rich enough for most practical purposes. So it seems that can be
viewed loosely as being similar to BC"it), but a little smaller.

The conclusion drawn from this analysis is that the and Li theories are not as
far apart as they might seem to be at first glance. Indeed, the analysis in this thesis
shows they are quite close in certain senses. The proposed approach uses the same
norm as the Ci theory on the output side, and the only difference is in the choice of
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the (unstructured) signal uncertainty set,

sup | z(t) Joo Versus sup | z(t)
Y (t)eBEE> (1) w(jw)eBC™(jcL>)

On the input side, simply replacing BjC~(t) with its ‘subset’ BjC™(ju>) means that the
resulting C\ type problem (i.e. that of minimizing the worst case || z(t) |joo) leads to
a problem which is very close to stan_dard

It seems remarkable that J- {‘F;\//\I/\} looks so like B C ~t), (as in eqn. (6.1)), but
that the corresponding optimal controllers are so different. The distinction between
these two sets is therefore an important question for future research, because it is
fundamental to understanding the difference between C\ control theory and 7irx like
control theories.

6.7 A Comparison of the Different Paradigms

VIl. How do the different robust control paradigms compare?
A brief description of some of the strengths and weaknesses of the different control
paradigms is given below in Table 6.1.

Paradigm: TCo A New
“Spikes” are No Yes Yes
prohibited
Signal set lumping No Yes Yes
is avoided
Specification lumping No Yes Yes
is avoided

It is a genuinely frequency Yes No  Yes
domain approach

Optimal continuous time Yes No  Yes
controllers are rational

Table 6.1: Brief Comparison of Alternative Approaches.

The conclusion drawn from the above table is that a theory which is very close to
standard control theory can optimally and non-conservatively minimize maximum
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tracking errors in the time domain. The C\ theory is one route to achieving this, but it
is very much a time domain theory, and seems to suffer from applications difficulties.
In contrast, the proposed approach provides a frequency domain theory for achieving
the above time domain control objectives, which is therefore closer to the ‘classical’
approaches familiar to every control engineer. In this way, the modified 'HC theory
proposed seems to capture the most attractive features of the standard 7Yoo and L\
approaches.

6.8 Decoupling MIMO Systems for Super-Optimal
Robust Controller Design

VIIl. Can super-optimal robust controllers be directly designed by decoupling closed
loop MIMO systems?

In Chapter 4 a design method is presented which may be used to construct Tioo , C\
and modified Ti<optimal controllers which completely decouple the closed loop sys-
tem, provided the plant is square, stable and minimum-phase. It is shown that these
controllers are super-optimal, i.e. optimal (in the appropriate sense) for each loop of
the system. Note that in this context the term ‘decoupling’ means that the closed
loop transfer function matrix is diagonal (or almost diagonal) - thus each loop of the
MIMO system is decoupled from every other loop. In effect the proposed method
allows the designer to select the super-optimal controller which decouples the sys-
tem, from the set of optimal MIMO controllers for the problem. The design problem
is transformed from one multivariable problem into a number of independent SISO
problems, thus allowing greater transparency and flexibility in the design process. In
Chapter 5 the proposed decoupling design method is applied to the HIMAT pitch
axis controller design problem. For multivariable plants which are stable but non-
minimum-phase, half-decoupling can be achieved by transforming the multivariable
design problem into a number of independent MISO problems.

The conclusion drawn is that under certain restrictive conditions, super-optimal
robust controllers which decouple the closed loop system can easily be constructed.
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6.9 Loopshaping Decoupled MIMO Systems for

Improved Performance

VIII. Is a classical decoupling approach to MIMO control system design useful in the
context of modern multivariable robust control theory?

Classical multivariable design procedures such as Inverse Nyquist Arrays and
Characteristic Loci were based on the idea of decoupling the design problem as much
as possible, and then applying SISO techniques to achieve satisfactory performance.
W ith the advent of truly multivariable design methods such as Hoc, control, the idea of
decoupling the MIMO problem into a number of SISO problems may have appeared
obsolete. In Chapter 5 however, it is shown that decoupling the design problem allows
SISO loopshaping techniques to be used to improve MIMO robust controller designs
in a number of different ways. Once the initial optimal decoupling controller has
been calculated cascade controllers can be used to improve robust performance and
meet time domain objectives. SISO loopshaping is a well established technique in
robust control - it allows the designer a great deal of flexibility and provides much
needed insight into the nature of the difficulties inherent in the particular problem.
Multivariable loopshaping on the other hand is a decidedly more complex proposi-
tion. Decoupling the problem allows the application of SISO loopshaping techniques
to MIMO systems. Finally the Sendzimir mill shape control problem discussed in
Chapter 5 illustrates the advantages of using the singular value decomposition to
decouple ill-conditioned plants prior to fioo design.

The conclusion drawn is that attempting to decouple the closed loop system as
part of the design process makes sense from a classical and a robust control point of

View.

6.10 Directions for Future Research

The work completed in this thesis naturally suggests some fruitful avenues for further
research. The paradigm for optimal robust controller synthesis presented in Chapter 3
proposes some new optimisation problems, which at present are unsolved analytically.
However since these problems are convex, sub-optimal solutions can be generated
using numerical methods, for example by using the convex optimisation approach
detailed in [6]. Thus one obvious direction for future research is in the development
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of analytical and/or customised numerical solutions to these optimisation problems.

Another open problem is the issue of robust performance in the proposed paradigm,
since the optimisation problems involving the B and C norms introduced in Chap-
ter 3 guarantee certain levels of nominal performance only. Many important questions
concerning the effect of system uncertainty (whether structured or unstructured) on
control performance in the time domain are open, in both analysis and synthesis.

Finally it has been argued above that the quality of control achieved by a feedback
system depends to a large extent on the way in which uncertainty is modelled in the
design process. In the case of signal uncertainty, new signal sets have been proposed
in this thesis with the aim of more faithfully capturing the physical realities in which
control systems operate. Ultimately however, the type and level of uncertain signals
acting on a system will depend on the particular environment in which it is operat-
ing. Wind gusts on the wings of an aircraft for example will certainly have different
physical characteristics than wave motion acting on the hull of a ship. Therefore the
development of formalised identification procedures, which would produce applica-
tions specific models of uncertain signals for use in robust controller design would be
highly desirable.
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