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A bstract

This work develops a new paradigm for op tim a l robust controller synthesis in  the 

frequency domain. A  detailed exam ination is made of the engineering m otiva tion  

and engineering efficacy underlying the various strands of robust control theory. The 

m odelling of (a) signal uncerta in ty and (b) control system objectives in  both Tioo and 

C\ contro l theories is considered in  particu la r detail. Based on th is exam ination, a 

theory which can fa ir ly  be described as ‘a m odified 7ioo control theory ’ or ‘a frequency 

domain C\ control theory ’ is proposed. New signal sets for the m odelling of uncertain 

signals are introduced. I t  is argued tha t these models more fa ith fu lly  capture the 

way in  which uncertain signals act on real physical systems. I t  is shown tha t by 

adopting these new models for uncertain signals, control theory can be used to 

non-conservatively m inim ise m axim um  tracking errors in  the tim e domain, in  the 

SISO case. In  the M IM O  case, the problem of op tim a lly  synthesising a controller 

to  non-conservatively m inim ise tracking errors in  the tim e  domain leads to  a modest 

varia tion  on existing control theory, requiring the usual norm  to  be m odified 

slightly. I t  is argued tha t the proposed paradigm in  general achieves a better qua lity  of 

contro l and more fa ith fu lly  expresses the true objectives of feedback control systems. 

The proposed development is seen to  also extend na tu ra lly  to  Ti.2 control theory, and 

indeed provides a new determ in istic jus tifica tion  for the 7^2 control problem  in  the 

M IM O  case.

The question of design transparency in  the synthesis of op tim a l robust controllers 

for m u ltiva riab le  systems is considered in  detail. The im plications of the proposed 

paradigm  for transparency of design and weighting function selection are detailed. 

A  decoupling design procedure for robust controller synthesis is proposed which, 

under certa in restric tive  conditions, allows the calculation of super-optim al robust 

controllers on a loop by loop basis. The usefulness of a classical decoupling approach 

to  M IM O  control system design in  the context of m u ltivariab le  robust control theory 

is demonstrated.

A  number of design examples are presented which show how the ideas and methods 

developed in  th is  work can be applied to realistic control problems.
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C hapter 1 

Introduction  to  R obust C ontrol

This chapter introduces in a general way the scope and aims o f th is work. The 

research philosophy adopted is outlined and a brie f guide to the lay-out o f the thesis 

is given. The remainder of the chapter serves as a brie f in troduction  to some of the 

most fundam ental concepts in robust control theory, w ith  emphasis on those aspects 

which are most relevent to this thesis.
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1.1 P h ilo so p h y  o f th e  T h esis

In  th is  section we make some pre lim inary remarks on the scope, philosophy and aims 

of th is thesis. The control philosophy espoused throughout is th a t of O ptim a l Ro

bust C ontro ller Synthesis -  in  particu la r, the and C\ theories are discussed in 

detail, while the 7-¿2 theory is also considered. The m athem atical techniques required 

to  solve the various optim isation problems which arise in  these theories are not the 

subject o f th is  thesis, and these ‘too ls’ are therefore not considered in  detail. Rather 

the m ain subject of the thesis is a consideration of the engineering m otiva tion  and 

engineering efficacy which underlies the various strands of robust contro l theory. As a 

consequence, certa in rather abstract concepts perta in ing to  robust control theory are 

examined in  detail. Current techniques for the m odelling of uncerta in ty are evaluated, 

and in  the case of signal uncertainty, new uncerta inty sets are proposed. The ques

tio n  of how to  express the ‘real’ objectives of feedback control systems as rigourous 

specifications, which can be met autom atica lly v ia  m athem atical optim isa tion is also 

considered. Since the particu la r way in  which both uncerta in ty and control objec

tives are modelled is essentially at the discretion of the designer, another im portan t 

issue addressed in  the thesis is the effect th is ‘choice’ has on the transparency of the 

design process and the app licab ility  of the theory. Based on the exam ination of issues 

such as those outlined above, a new paradigm for op tim a l robust contro ller synthesis 

is proposed which, i t  is argued, captures the most a ttractive  features o f the various 

approaches presently in  use. The emphasis throughout is on m ultivariab le  systems. 

Indeed another aim  of the thesis is to  examine the relationship between classical m ul

tivariab le  controller design methods and modern m ultivariab le  robust control theory. 

A  canonical fo rm  for linear controller synthesis is adopted righ t at the begining of 

the thesis in  order to emphasise the sim ilarities and differences between the various 

strands o f robust control theory.

1.2 O rgan isation  o f  th e  T h esis

The lay-out of the thesis is as follows. This chapter contains some pre lim ina ry  remarks 

on the general nature of the thesis. I t  also contains a brie f in troduction  to  some of the 

most fundam ental concepts in  robust control theory, w ith  emphasis on those aspects 

which perta in  to  th is thesis. Chapter 2 contains a detailed exam ination of the Tico 

and C\ contro l theories. A  critique of both theories is given which seeks not only to
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iden tify  the ir various strengths and lim ita tions  but to  uncover the root causes of these 

lim ita tions . Three lim ita tions  of Tioo control theory in  particu la r are identified -  i t  is 

argued however tha t these difficulties are not w ith  Tioo control theory per se, bu t w ith  

the conventional paradigm which is attached to it .  Based on th is analysis, Chapter 

3 presents a new paradigm for op tim a l robust controller synthesis. I t  is argued that 

the new approach captures the most a ttrac tive  features of both  'H^o and C\ control 

theories. The development in  Chapters 2 and 3 follows closely tha t of [1, 2]. Chapter 4 

proposes a decoupling design method which under certain conditions allows the design 

o f super-optim al robust controllers. In  Chapter 5 a number of design examples are 

presented which show how the ideas and methods developed in  the previous chapters 

can be applied to realistic control problems. The decoupling design m ethod discussed 

in  Chapter 4 is detailed in  [3, 4], while the section in  Chapter 5 dealing w ith  Sendzimir 

m ills  is an extension of the treatm ent in  [5]. Chapter 6 is a discussion of the most 

significant observations and results contained in  the thesis. Some conclusions are 

drawn and directions for fu rther research are identified.

1.3 F u n d am en ta l C on cep ts  in  R ob u st C ontrol

U nderly ing a ll of robust control theory are three fundam ental tenets. The firs t is 

tha t uncerta inty, both  in  terms of systems and signals, is inevitable and omnipresent, 

and thus needs to  be exp lic itly  considered from  the start of the design process. The 

second is tha t the m ain purpose of feedback is to (a) reta in closed loop s ta b ility  in  the 

face o f th is uncertainty, and (b) counteract the effect of th is uncerta in ty on system 

performance. The th ird  is tha t design methods based on m athem atica l optim isa tion 

are required in  order to  reveal the lim its  of performance for systems and thus provide 

controllers which can be considered op tim a l in  some suitable sense.

The im portance given to  these concepts in  robust control theory has necessitated 

the development of new models, measures and configurations for contro l system de

sign. This section w ill serve as a brie f in troduction  to these basic tools. The de

velopm ent is intended to  h igh light the fundam ental s im ilarities between the various 

strands of robust contro l theory.
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1.3.1 N orm s o f Signals

M any of the objectives of controller design are exp lic itly  form ulated in  terms of the 

size of certa in signals. I t  is clear however tha t the notion of the size of a signal, 

whether i t  be a ‘small tracking error’ or a ‘large inpu t disturbance’ , is entire ly  depen

dent on the way in  which i t  is measured. Among the many ways in  which a signal can 

be measured, those tha t satisfy certain geometric properties in  a vector space have 

proved most useful. In  m athem atical term inology these measures of size are functions 

called norms. M any different signal norms are in  common use. For a comprehensive 

trea tm ent see [6]. In  th is  section we describe only those which are used in  7 i ^  , C\ 

and (in  a determ in istic  setting) 7Y2 control theories. Note tha t a signal norm  can be 

defined in  the tim e  domain, and/or the frequency domain.

The C 2 n o r m  fo r scalar signals is

2 da; (1.1)

The C 2 n o r m  fo r vector signals is 

/  z i ( j u j )  ^

\  Zn( ju )  J

This norm  is also known as the E u c l id e a n  n o r m  or the q u a d r a t ic  n o rm , and i t  is

the signal norm  used in  Hoo control theory. I t  is also defined in  the tim e  domain but

in  the context of T i^  contro l theory i t  is usually considered from  a frequency domain 

perspective. Note tha t the £ 2 norm  cannot be used to  measure persistent signals, 

i.e. signals which do not decay to  zero w ith  tim e. The C2 norm  corresponds to  the 

to ta l energy in  a signal.

The £oo n o r m  fo r real-valued scalar signals is

II z { t )  | |o o =  sup \z(t)\  (1.3)
—  0 0  < ¿ < + 0 0

This norm  describes the size of a signal by its m axim um  am plitude in  the tim e  domain. 

The size of vector signals can be quantified by combining th is  norm  for scalar signals

\
1 / * + o o  nr*L = i (1.2)

i = 1

z { ju )  ||2 =
+ 0 0

*(jw )
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w ith  the in fin ity  vector norm.

Thus the n o r m  for vector signals is

(  z i{t)

\  Zn{t) J

—  m ax Zi{t) (1.4)

This is the signal norm  used in  C\ control theory, and is also called the m a x im u m  

a m p l i t u d e  n o r m  or the in f in ity  n o rm . I t  is also defined in  the frequency domain, 

bu t from  the perspective of C\ control theory i t  is usually considered in  the tim e 

domain. Note tha t th is norm  can be used to  measure persistent signals.

The C\ n o r m  for scalar signals is

/ +oo
I z( ju )

-oo

dw (1.5)

The £ 1  n o r m  for vector signals is

V )

/ _|_oo n n

1 z i ( ju )\d u  =
■°° ¿ = 1  i= 1

i ( j v ) (1.6)

The £ 1  signal norm  can also be defined in  the tim e  domain where i t  can be shown 

to  measure to ta l resource consumption, e.g. the to ta l amount of fuel burned by a 

rocket over the course of its  tra jectory. In  the modified 7Yoo control theory presented 

in  Chapter 3 however, i t  is considered from  a frequency domain po in t of view.

This thesis w ill have occasion to  discuss m any different norms, some of which are 

defined in  the tim e  domain and others in  the frequency domain, and th is  presents 

no ta tiona l issues which require com m ent,. Throughout th is thesis, systems w ill be 

denoted by upper case letters, signals by lower case letters, and sets o f systems or 

signals by upper case script letters. The (¿,_7') th  element of a transfer function  m a trix  

G (s ) w ill be denoted by (G (s ) ) j j, and s im ila rly  for impulse response matrices. Suppose 

th a t G(s ) is the transfer function  of a stable m  x n L T I system, and tha t y ( t ) is the 

ou tpu t which results from  the inpu t u(t). The Fourier transform  of a signal u(t)  w ill 

be denoted by u( ju>), and s im ila rly  for other signals, so tha t

y ( ju j)  =  G { ju ) u { ju )
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Then, G(t)  denotes the (integrable, causal) impulse response of 6r(s). Hence,

y(t)  =  G(t) * u ( t )

where the asterisk denotes convolution. On occasion, the argument t  or jto  w ill be 

suppressed in  our no ta tion  when the specific choice of norm  is open and may require 

e ither t  or j u .  For instance || u ||s may mean either || u(t)  ||s or || u ( ju )  ||s. A fte r 

th is  caution, th is  slight abuse of notation should not cause confusion later.

1.3.2 U ncertainty in Signals

I t  is now w idely accepted tha t uncerta inty issues constitute a fundam ental and un

avoidable aspect of the controller design problem. The te rm  u n c e r t a in ty  is a loose 

um brella  te rm  for any sort of lim ita tio n  in  our knowledge of a control system, in  

whatever fo rm  tha t m ight take. In  physically m otivated engineering problems, uncer

ta in ty  usually arises in  two forms. Perhaps i t  is true r to  say tha t uncerta in ty issues 

are generally modelled by control engineers in  one of two ways. There is uncerta inty 

in  systems and uncerta in ty in  signals. I t  is in teresting tha t these two different types 

of uncerta in ty have very different effects on the closed loop system. For example, 

system uncerta in ty can cause a nom ina lly stable system to  become unstable, which 

signal uncerta in ty cannot do. W hile  the m odelling of system uncerta in ty has received 

an enormous amount of attention, perhaps i t  is true  to  say tha t the issue of signal 

uncerta in ty  has been generally under-emphasised in  the lite ra ture . I t  is hoped tha t 

one of the contributions of th is thesis w ill be to  focus in  more detail on the different 

ways in  which uncertain signals can be modelled under existing theoretical frame

works. In  th is  subsection we discuss the current methods for describing uncertain 

signals in  robust control theory.

Uncertain signals are in pu t signals to the system which are uncertain, incom pletely 

known, or unpredictable. The physical sources of these signals include disturbances 

at the in pu t or the ou tpu t of the p lant, measurement noise on feedback signals, com

mand inputs, and a host of other largely unknown inputs due to various environm ental 

factors. I t  is clear then tha t in  fact all of the inpu t signals to  a control system are 

essentially unknown. How then can these signals be described in  a form al manner? 

The firs t attem pts at m odelling uncertain signals adopted a probabilis tic  approach. 

Signals were viewed as being stochastic in  nature bu t w ith  known spectral densities. 

This viewpoint led to  the so called L Q G /L T R  control theory [7], which gained signif
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icant popu la rity  in  the 1970’s. As pointed out in  [8] however, a fundam ental problem 

w ith  th is theory was the absence of any obvious extension of th is approach to  deal 

w ith  m odelling of uncerta in ty in  systems. In  order to  construct a harmonious frame

work for the m odelling of both  signal and system uncertainty, the follow ing approach 

was proposed by Zames in  [8].

Consider each inpu t signal as being unknown, bu t belonging to  some set or range 

of possibilities, denoted by T>w. This set may be defined in  many different ways, 

depending on the amount of structure required. The simplest and perhaps the most 

useful way of describing T>w is to impose a norm  bound on the ‘size’ of the elements 

of the set. Thus we can w rite

V w = { w ( t )| || w[t)  ||s<  1}

V w =  {w ( j io )| || w(jio )  ||s<  1}

for some signal norm  || . ||s. These correspond to  signal sets which are described 

by the single constraint tha t w have norm  less than or equal to  u n ity  in  either the 

tim e  domain or the frequency domain. Such sets can reasonably be described as 

u n s t r u c t u r e d  s ig n a l s e ts .  They correspond to  the un it ba ll in  the appropriate 

vector space of signals. Note tha t even in  the SISO case, w ( t ) and w ( ju )  above 

w ill in  general be vector quantities, since a ll the possible uncertain signals acting at 

various points in  the system are ‘lum ped’ together in to  one vector w. We w ill have 

more to  say about the im plications of this design ‘choice’ in  la ter chapters.

Describing a class of uncertain signals by the single constraint of a norm  bound 

is insu ffic ien tly  flexible and too crude for most purposes, and more refined models 

of uncerta in signals are needed. W eighting transfer functions provide much needed 

f le x ib ility  here. Uncerta in  signals entering the physical system are viewed as the 

outputs of transfer functions which are driven by inputs having norm  less than or 

equal to  one in  some signal norm. This is the approach adopted to m odelling uncertain 

signals in  and C\ control theories. These transfer functions are term ed weighting 

transfer functions, or sim ply weights. So uncertain signals can be said to  be described 

by w e ig h te d ,  f i l te r e d  or c o lo u re d  versions of the u n it ba ll in  some vector space of 

signals. The selection of appropriate weighting functions fo r uncertain in pu t signals 

is one of the most crucial and d ifficu lt steps in  robust controller design.

F ina lly , we rem ark tha t the ideal model tha t captures a ll the tim e and frequency 

dom ain features of uncerta in signals has not yet been developed. Models such as the
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ones detailed  above based on an en tire  w eighted u n it ball m ay allow for signals which 

do not exist in  practice. As noted  in  [9], it can be  ju s t as lim iting to  have m odels 

which allow signals or p ertu rba tions which have no physical m otivation  bu t severely 

degrade perform ance (of th e  m odel), as it is to  have m odels which ignore uncerta in ty  

altogether. T he problem  of finding th e  optim al trade-off betw een these two extrem es 

is th e  sub ject of ongoing research.

1.3.3 N orm s o f System s

In  th is  section we consider ways of m easuring th e  ‘size’ of an LTI system  w ith  inpu t 

w,  o u tp u t 0  and transfer function m a trix  Tzw, as shown in F igure 1.1

w

Figure 1.1: LTI System

M any general m ethods exist for m easuring th e  size of a system  in te rm s of its  inpu t 

and  o u tp u t signals. Ju s t as w ith  signals, we will use functions called norm s to  do 

th is in  a  rigorous and  consistent way. It will be shown th a t a n a tu ra l approach is 

to  m easure th e  size of th e  system  based on th e  way in which th e  inpu t and ou tp u t 

signals of th e  system  are m easured. For a given LTI system

z ( j ^ )  = Tzw(jco)w(ju>)

w hen th e  signal norm  is a  frequency dom ain norm , and

z{t) =  Tzw(t) *  w ( t )

w hen th e  signal norm  is a tim e  dom ain norm . In th e  previous subsection we adopted 

th e  approach of regarding each inpu t signal w  as unknow n b u t belonging to  th e  norm  

bounded  set V w. For a given LTI system , this th en  gives rise to  a  corresponding 

well-defined set of possible z ’s. Thus in order to  define a  m easure of th e  system  Tzw

8



which takes in to  account its  response to  the whole set of possible inpu t signals D w, 

we use the so-called worst case response norm

ii m t ■ \ n II T*w{jw)w(ju)  ||s ,II Tzw{joj) ||Is=  s u p     (1.7)
w^O || ||5

or
II rj-i u \  I I    II T z w { t )  *  w { t )  11,s / 1|| Tzw[t)  ||jg sup ,, . . u (1.8)

w^O || ||s

System norms of the above fo rm  depend completely on the particu la r signal norm  

| . ||s, and w ill therefore be referred to  as in d u c e d  n o rm s .  Note tha t they arise 

very na tu ra lly  in  the present control context. The norm  || . ||/s is said to  be induced 

by || . ||s. W hether or not the term  induced norm requires the num erator (or output 

side) norm  and the denom inator (or inpu t side) norm to  be the same is jus t a m atter 

of defin ition. In  th is thesis, the requirement tha t they are identical is taken to  be a 

part of the defin ition. Induced norms quantify the m axim um  possible “gain” of the 

system from  w to z, in  terms of a certain signal norm. Expressions of the form

II m (- ■ II II Tzw( j u ) w { j u )  ||r n  ^
|| Tzwyjto) ||jrs— sup . / • \ ii (^ ‘^)

u i ^ O  | |  11s

or
||  rj-i f j . \  || _____II 117- f - i  n \|
|| Tzw(t) | | / r s S U p  ( 1 . 1 0 )

w^O || 10\tj | |5
also define norms. Note however tha t different signal norms appear on the numerator 

and the denominator. System norms of th is type can reasonably be referred to  as 

s e m i- in d u c e d  n o rm s ,  and th is term inology w ill be used later. The system norms 

induced by the various signal norms detailed earlier w ill be discussed in  deta il as they 

arise, in  Chapter 2.

1.3.4 U ncertainty in System s

I t  is en tire ly  obvious tha t real-life physical systems cannot be modelled perfectly. 

The behaviour predicted by a model of the system and the actual behaviour of the 

physical system w ill always differ. In most engineering problems, such differences 

are so substantia l tha t they cannot be ignored. L im ita tions in  our a b ility  to model 

systems can be thought o f as uncertainty in  the system, since the actual behaviour 

of the physical system is then p a rtly  unknown, p a rtly  uncertain.

In  classical feedback design the problem of system uncerta in ty was tackled by 

prescribing s ta b ility  margins in  terms of the gain, phase or peak M  values of the

9



closed loop system. The use of such margins revealed an im p lic it assumption about 

the nature of system uncertainty, i.e. tha t i t  is unstructured. This means tha t no 

a ttem pt is made to  trace the origins of the uncerta in ty to  specific points in  the 

system; a ll tha t is assumed is some knowledge of a bound on its ‘size’ . In  this section 

we deta il the various models available in  robust control theory to  explicitly describe 

unstructured system uncertainty. In  cases where a significant amount of in form ation 

is available regarding the source of the uncertainty, a more strucutured model may be 

appropriate, and th is can be handled under the framework of [i analysis and synthesis. 

This theory however is beyond the scope of th is  thesis.

The three most commonly used models of unstructured system uncerta in ty in  

robust contro l theory are as follows. Let Pq(s) be the transfer function  m a tr ix  cor

responding to  the nom inal p lant, i.e. a best estimate in  some sense of the true  plant 

behaviour. Let P (s ) be the transfer function  m a tr ix  corresponding to  the true plant. 

Then

P{s) =  P0 (s) +  A a{s) (1.11)

P{s) =  PQ{s) ( /  +  A,-(3)) (1.12)

P {s) = (J  +  A 0(s)) P0 {s) (1.13)

where A a represents an a d d i t iv e  u n c e r t a in ty ,  A ,■ an i n p u t  m u l t ip l ic a t iv e  u n 

c e r t a in t y  and A 0 an o u tp u t  m u l t ip l ic a t iv e  u n c e r ta in ty .  O f course A ; and A 0 

are equivalent in  the SISO case. Now jus t like w ith  the m odelling of uncerta in signals, 

the three A ’s above are viewed as being unknown but belonging to  some well defined 

set.

This scenario raises the question of what sort of uncerta in ty sets to  use, i.e. of 

how to  describe system uncerta in ty sets. Again as w ith  signal sets, we restric t our 

a tten tion  to  sets which are described by a single norm  bound. Also, we consider only 

induced norms. These lim ita tions  (in  op tim a l synthesis problems) are necessitated by 

the m athem atica l tools available at present. Some term inology is needed. A  system 

Tyx w ith  in pu t x and output y is said to  be b o u n d e d  in p u t  b o u n d e d  o u tp u t  

(BIBO ) s ta b le  in  the || ||s-sense (or s-stable for short) i f  there is a fin ite  constant M  

such tha t

II y ||s<  M  || x  ||s

fo r a ll inputs x. In  th is thesis the te rm  s tab ility  always means B IB O  stable in  some 

signal norm  || |[s, and the norm  in  use should be clear from  the context. Then for

1 0



each of the three models above the particu la r uncerta inty A a, A i or A 0 is considered 

to  belong to  a set of the form

=  {A | A  is s-stable, LT I, and || A  ||js<  r }

where r  is some scalar and || A  ||/s means

, a / -  x ii II A O 'w W ju ;) |L .. . , . M II A ( t )  * a it)
|| A ( j u )  ||/s=  sup -—    or || A ( t )  \\is=  sup

« M i l ,  " W " a*0 | | a ( i )

and where || . ||a is some signal norm. This sort of p lant uncerta in ty is called u n 

s t r u c t u r e d  s y s te m  u n c e r t a in ty ,  because A  is constrained only by a single induced 

norm  bound. This set can be viewed as a set of possible perturbations to  the plant 

model. So the p lant to be controlled is viewed as a set of possible systems, rather 

than  as a single system which is com pletely and perfectly known. As was the case 

w ith  signal uncertainty, our unstructured models of system uncerta in ty can be made 

more flexib le  and refined by includ ing weighting transfer functions to  reflect the like ly 

spectral content of the uncerta in ty in  the given plant. This is done by setting

A  =  W A  (1.14)

where W  is a stable m in im um  phase transfer function or transfer function m atrix . 

Thus || A  ||is can always be normalised to  be <  1. Both inpu t and output m u ltip lica 

tive  uncerta in ty  models are needed since m u ltip lica tion  of transfer function matrices 

is non-com m utative. In  effect the form er assumes tha t a ll the uncerta in ty occurs at 

the p lant inpu t while the la tte r assumes tha t i t  a ll occurs at the output.

1.3.5 A  Canonical Form

The previous four subsections have detailed the ways in  which robust control theory 

measures and models signals, systems and uncertainty. A  standard configuration 

for feedback controller design which includes these various sources of uncerta in ty is 

shown in  Figure 1.2. Uncertain in pu t signals are represented by disturbances at the 

ou tpu t o f the p lant and measurement noise on the feedback signal. P lant uncerta inty 

is unstructured and m u ltip lica tive , acting at the inpu t of the plant.
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Figure 1.2: A  Standard Configuration for Linear Contro ller Synthesis

This configuration has the advantage of being in tu itiv e ly  appealing from  a physical 

po in t of view; disturbances at the ou tput of the p lant are drawn at the p lant output 

etc. In  order to  cast the design problem  in  the framework of m athem atical o p tim i

sation however, i t  is useful to  have a single canonical fo rm  which includes as special 

cases a ll the different systems resulting from  variations in  the fo rm  and location of 

uncerta inty. This subsection describes such a canonical fo rm  for linear tim e-invariant 

(L T I) contro ller synthesis problems. This canonical fo rm  is well known, and is w idely 

used in  the robust control lite ra tu re  [6, 44], Consider the feedback configuration 

shown in  Figure 1.3.

Figure 1.3: A  Canonical Form  for Linear Controller Synthesis w ith  bo th  Signal and

System Uncertainty.
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As is well known from  the ¡x analysis lite ra tu re  [9], any feedback system of the form  

shown in  Figure 1.2 can be transformed in to  th is configuration v ia  block diagram ma

nipulations. Referring to  the figure, the block P i is called the n o m in a l  a u g m e n te d  

p la n t ,  and A  is an uncerta in ty block which is unstructured bu t norm  bounded. In 

th is form ula tion , P i includes the nom inal p lant together w ith  dynamics associated 

w ith  the weighting transfer functions used to  model signal and system uncertainty. 

P i then, together w ith  A  is the actual system to  be controlled. The block —K  is the 

c o n t ro l le r ,  and i t  consists of all the subsystems which the control system designer 

is free to  choose. The vector signal w is called the vector of e x o g e n o u s  in p u ts .  I t  

consists of a ll external signals entering the system, and typ ica lly  includes external 

disturbances, measurement noise signals and command inputs. This configuration 

allows us therefore to ‘lu m p ’ all sources of signal uncerta in ty in to  a single vector w. 

The signal z is called the r e g u la te d  o u tp u t s ,  and is not sim ply the physical outputs 

of the system. I t  is in  fact a ll the signals in  the system which are needed to w rite  

down the contro l problem ’s specifications. Thus, it  generally includes tracking errors, 

and may also include the plant inpu t, system state variables, and so on. The signal 

u is called the a c t u a to r  in p u ts ,  and is the vector of a ll inpu t signals to P\ which 

the contro ller can m anipulate. F ina lly, the vector y is called the s e n s o r  o u tp u ts .  

I t  contains a ll the signals which the controller has access to. This canonical fo rm  is, 

in  terms of abstraction, fu rthe r removed from  the ‘real’ physical system than tha t 

given in  F igure 1.2. Its  advantage however is tha t i t  easily allows controller design 

to  be form ula ted in  terms of m athem atical optim isation problems. Note also tha t 

under th is fram ework the purpose of feedback is clearly to  attenuate the effects of 

both  signal and system uncerta in ty on the system. Even the problem  of command 

tracking is form ulated in  terms of the attenuation of the effect of an uncertain signal 

(the command inpu t) on the appropriate regulated variables (tracking errors).

For the above configuration, any specification is said to  be obeyed n o m in a lly  

i f  the nom inal system, the system w ith  A  =  0, obeys it .  I t  is said to  be obeyed 

r o b u s t ly  i f  i t  is satisfied for every A  in  the uncerta inty set T>a- In  robust control 

theory, specifications are given in  terms of the s tab ility  or the performance of the 

closed loop system. In  the fo llow ing subsections we show how nom inal performance, 

robust s ta b ility  and robust performance specifications can be cast as m athem atical 

op tim isa tion  problems under the above canonical framework. We note however tha t 

in  fu ll generality, the only type of specifications which and C\ op tim a l synthesis 

can handle robustly  are s tab ility  specifications.
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1.3.6 N om inal Perform ance

Performance Specifications in  robust control theory are generally given in  terms of 

the attenuation of the effect of uncertain inpu t signals on the regulated variables of 

the system, subject to  in te rna l closed loop stab ility . Nom inal performance specifica

tions can be cast as m athem atical optim isa tion problems under the above canonical 

fram ework as follows. Consider Figure 1.4.

F igure 1.4: A  Canonical Form for Linear Controller Synthesis w ith  Signal

Uncertainty.

Note th a t in  the above configuration A p is zero, and P2 is the nom inal p lant aug

mented w ith  dynamics associated w ith  the weighting transfer functions used to  model 

signal uncertainty. I t  is natura l to  p a rtit io n  P2 conformally w ith  its inputs w and u 

and w ith  its  outputs 0  and y. Thus,

The closed loop transfer function from  w to  2: in  Figure 1.4 w ill be denoted by Tzw, 

and is

Tzw =  P n  -  P12I < ( I  +  P22K ) ~ 'P 21 (1.15)

Then the O p t im a l  N o m in a l  P e r f o r m a n c e  P r o b le m  is given by

in f  sup || z ||s 
K  w £ V w 

%
where the in fim um  is over a ll L T I controllers which stabilise the closed loop system. 

This problem  can also be w ritte n  in  the form



where the in fim um  is over a ll stabilising controllers, and the system norms in  question 

are induced by the appropriate signal norms. The optim a l nom inal performance 

problem  can clearly be regarded as a set of optim isa tion problems (depending on 

which signal norms are chosen), and i t  has received a great deal of a tten tion  in  the 

robust contro l lite ra ture . In  standard 7Yoo control theory reliable software packages 

are available which can be used to  solve th is problem in  both the SISO and M IM O  

cases. I t  w il l be argued in  the sequel however tha t the particu la r paradigm  on which 

these solutions are based is flawed from  an engineering po in t of view. In  L \  control 

theory complete theoretical solutions to  the op tim a l nom inal performance problem  do 

exist for most cases. However, no reliable software for the design of op tim a l controllers 

is com m ercially available.

1.3.7 R obust Stability

As mentioned earlier, only system uncerta in ty can destabilise a nom ina lly  stable 

p lant. Therefore, the firs t issue to  be addressed in  terms of system uncerta in ty is 

robust s tab ility . Consider the configuration of Figure 1.5.

Figure 1.5: A  Canonical Form for Linear Controller Synthesis w ith  P lant

Uncertainty.
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Denote by T„- the transfer function from  inpu t i  to output r , w ith  A p  removed. 

So Tri is the transfer function ‘seen’ by A  p.  Robust s tab ility  specifications can be 

cast as m athem atica l optim isation problems under the above canonical framework 

by using the Small Gain Theorem [11, 44], which is a fundam ental result in  robust 

control theory. A pp ly ing  the SGT to  the set-up of Figure 1.5 yields the follow ing 

[1 1 , 12],

T h e o re m  1.1 Suppose that the system of Figure 1.5 is nominally stable, and that a  

is a positive real number. I f

|| Tri ||/s<C a

then the system of Figure 1.5 is B IB O  stable in  the || . \\s-norm sense fo r  every A p 

which obeys

|| A p ||js <  a -1

This theorem  gives a sufficient condition for robust s tab ility  for the uncerta in ty set 

Z>A defined above. The great u t i l i ty  of the SGT comes from  two facts. F irs tly , i t  

holds equally well for any induced norm. Note however tha t i t  does not apply to 

semi-induced norms, and th is  observation w ill be seen to be fundam enta lly im portan t 

in  the sequel. The second great advantage of the SGT is tha t i t  applies also to  systems 

which are non-linear (N L) and /or tim e-varying (T V ). On the robust s ta b ility  question, 

th is  translates in to  the following. The theorem also guarantees s tab ility  for a ll A p ’s 

in  the set

T>a =  {A p | A p is s-stable, and || A p ||/s <  1}

So the condition || Tri | | js<  1 ensures robust s tab ility  in  the face of a class of NL 

and /o r T V  A p ’s too, and the requirement in  T>a tha t A p  must be L T I can be dropped. 

However, considerable m athem atical subtleties arise when A p  is N L  and /or T V , and 

care is needed when extending the notion of induced norm  to N L T V  operators, as in  

“ || A p  ||/s” in  the above defin ition of T>a- In  the interests of brevity, robust s tab ility  

results w ill be given only for L T I A p ’s, and the more general case of N L T V  A p ’s 

w ill not be discussed in  detail. Rather, i t  suffices to  in form  the reader tha t the SGT 

and the concept of induced norm can be extended to  the N L T V  case, bu t some extra 

m athem atica l m achinery is needed [11]. In  any case, our use of the SGT is standard 

and routine, and a ll the robust s tab ility  results stated in  this thesis may be extended 

to  cover A p ’s which are N L and/or T V .
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M otiva ted  by the SGT, we have the O p tim a l  R o b u s t  S ta b i l i ty  P r o b le m

m f II Tri ||/5
K  "  "

where the in fim nm  is over a ll stabilising controllers, and the system norms in  question 

are induced by the appropriate signal norms. I t  can fa ir ly  be argued tha t the Robust 

S tab ility  Problem  is substantia lly solved in  both the Tioo and C\ control theories. 

The condition in  the SGT is sometimes bu t not always necessary as well as sufficient 

for robust s ta b ility  w ith  the relevent uncerta in ty sets. The problem  of settling the 

necessity question depends on the norms in  use.

1.3.8 R obust Perform ance

In  the previous subsection the effect o f system uncerta in ty on the s tab ility  of the 

closed loop system was considered. Once the question of robust s tab ility  has been 

settled, the next most im portan t consideration is obviously to  m inim ise the im pact 

of system uncerta in ty on the performance of the system. Indeed i t  can reasonably be 

argued th a t robust performance is the u ltim a te  goal of robust control theory. Robust 

performance specifications can be cast as m athem atical optim isa tion problems under 

the above canonical fram ework as follows. W ith  reference to  Figure 1.3, consider the 

problem  of robustly  m in im iz ing  the induced norm  of the transfer function from  the 

uncerta in  in p u t signal w to  the system output z when the p lant uncerta in ty 'Da is 

unstructured. This is called the O p tim a l  R o b u s t  P e r f o r m a n c e  P r o b le m  and can 

be stated as

in f sup || Tzw( s , K , A ) ||Js 
K &evA

where the in fim nm is over a ll L T I controllers which are robustly stable for V&. This 

problem  is a hard problem  and is the subject of ongoing research in  the robust control 

com m unity. In  fu ll generality i t  is unsolved in  both the C\ and 'Hrx, control theories, 

the m a jo r d ifficu lty  obviously being the requirement of dealing w ith  bo th  signal and 

system uncerta in ty  simultaneously.
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C hapter 2 

R obust Controller Synthesis: Hoo 
and C ontrol theory

As outlined in  Chapter 1, many desirable feedback system properties and correspond

ing specifications amount to  requiring certain closed loop transfer functions to  have 

sm all induced norm. This suggests tha t i t  would be h igh ly desirable to  m in im ize the 

induced norm  of the closed loop system over a ll L T I stab iliz ing controllers. W hat con

tro lle r op tim iza tion  problems of th is general type have already been solved? To date, 

on ly  two m a jo r problems of th is type have been fu lly  and comprehensively solved at 

an ana lytica l level, corresponding to  the 7i.CX) and C\ contro l theories. This chapter 

gives a b rie f outline o f these theories. The development is intended to  h igh light the 

s im ila rities as well as the differences between them. Some detailed comments are 

made on certain aspects of bo th  "Hoc and C\ control theory. These observations pro

vide the m otiva tion  for the development of the m odified /  7 i2 control theories 

presented in  Chapter 3.
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2.1 7̂ oo T heory: N o m in a l P erform an ce

In  th is section we discuss th e  issue of nom inal perform ance under th e  fram ew ork of 

Tioo control theory. This thesis will have occasion to  discuss m any system  norm s. 

O ne such norm  is th e  Tioo n o r m  or th e  in f in ity  n o r m  in  t h e  f r e q u e n c y  d o m a in , 

which is given by

l l i ^ W I L  =  sup I Tzw{j^)
—o o < w < + o o

in  th e  SISO case, and by

^ ( » l l o o  =  SUP v (T zw(ju}))
—  o o < u /< + o o

in  th e  M IM O  case, where a (T zw(juj)) denotes th e  m axim um  singular value of Tzw( ju ) .  

W ith  reference to  F igure 1.4, th e  Tioo N o m in a l  P e r f o r m a n c e  P r o b le m  is given by

inf 11^(6)11^

w here th e  infim um  is over all LTI stabilizing controllers. T he engineering m otivation 

for th is problem  rests on th e  following theorem , which is fundam ental in T i ^  control 

theo ry  [13].

T h e o r e m  2 .1  Suppose that z ( j u )  = TZVJ(juj)w(ju)), and that Tzw(s) is the transfer  

funct ion matrix o f  a stable L T I  system. Then

II rr II  II ZU U) IhTZvj\S) 00 sup .. ,. \ 11
wj tQ || W ( ] L O )  | | 2

T his theorem  says th a t  th e  Tioo system  norm  is induced by  th e  £ 2 signal norm . To 

see th e  engineering relevance of th is, define

?  =  M i ^ ) l  II w ( j u )  ||2<  1} =  (2.1)

(w ith  “e” for energy), w here B C ^ j t o )  denotes th e  u n it ball in  T he set

= 13C 2  ( j u ) consists of all n-vector signals having energy less th a n  or equal to  

one. As w(jco) ranges th rough  T>w\ it gives rise to  a well defined set of possible 

system  o u tpu ts. Specifically, th e  signal z{jui) th en  ranges th rough

=  { z { jL0)\ z ( j u )  = Tzw{jLo)w(ju), || w ( j u )  ||2 <  1} (2.2)

w hich m ay be w ritten  succinctly  as

=  Tzw( j u ) B £ n2{jLo)
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Hence, the m axim um  possible size of the undesirable signal z, as measured by the £ 2  

signal norm , and as w ranges throughout the set T>w\ is

sup || z ( ju )  ||2 =  sup || Tzw( ju j )w ( ju ) ||2 
™(jw)ex>Le) wet3C” (jw)

The above expression is easily recognized from  Theorem 2.1, so tha t

sup || z(jco) ||2 =  II Tzw(s) lloo
w(jcj)ev

Hence, m in im iz ing  || Tzw(s) corresponds to  m in im iz ing the worst case || z(jto) H2 

as w  ranges through =  B C This observation motivates the op tim a l controller 

synthesis problem  of m in im iz ing  the system norm  || Tzw(s) ||oo, and th is is a solved 

problem. Indeed, software for solving th is problem is com mercially available [71].

Previous work in  the area of Tioo control theory has been based on the use of the 

£ 2  norm  on bo th  the inpu t and the ou tput side, since the £ 2  norm  appears on both 

the denom inator and num erator in  Theorem 2.1 above. On the inpu t side, exogenous 

inputs are taken to  be square integrable signals which have energy less than or equal 

to  unity. On the ou tpu t side, th is  approach minimizes the worst case £ 2  norm  of the 

ou tput. This viewpoint can reasonably be referred to as the e n e rg y  p a r a d ig m  for 

7Yoo, and th is term inology w ill be used below.

2.2 H o o  T heory: R o b u st S tab ility

Let us tu rn  now to  the issue of system uncertainty, and the problem  of ensuring closed 

loop s ta b ility  in  the presence of th is  uncerta inty under the fram ework of Tioo control 

theory. We res tric t our a tten tion  to so-called unstructured uncertainty, wherein A p 

is constrained only by a single induced norm  bound. Thus, define

T>^p =  {A p ( jc j) |  A p ( jw )  is 2-stable, LT I, and || A p(jto )  ||oo <  1}

The fo llow ing result is well known [13].

T h e o r e m  2 .2  Suppose that the system of Figure 1.5 is nominally stable, and that a  

is a positive real number. Then the system of Figure 1.5 is B IB O  stable in the £ 2  

norm sense fo r  every L T I  A p ( j u )  which obeys

11 a ( '  \ 11 II A P(joo)a(ju)  ||2 j
A p { j t o )  0 0 =  SUP -------n— / ■ x 11--------  S  ola-i0 a{jLO) 2
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|| Tri(s') Hoo^ ®

Hence, the condition || Tri(s ) ||oo< 1 guarantees robust s tab ility  for the uncerta inty 

set T>^P above. I t  is necessary as well as sufficient fo r robust s tab ility  w ith  this 

uncerta in ty set. App ly ing  the SGT to  the set-up of Figure 1.5, and specializing 

to  the £ 2  signal norm , im m ediate ly establishes sufficiency. Necessity is proved by 

exh ib iting  a destabilizing A p  when || Tr{(s) ||oo> 1. Such a A p which is L T I can 

always be found [14, 15]. I t  is also necessary and sufficient for the uncerta in ty set

T>^p =  {A p | A p is 2-stable, and || A p <  1}

where the requirement tha t A p  be L T I has been dropped. This robust s ta b ility  result 

m otivates the 7Yqo R o b u s t  S ta b i l i ty  P r o b le m  given by

II 110 0

where the in fim um is  over a ll L T I stab iliz ing controllers. This problem  can be thought 

of as m axim iz ing s tab ility  robustness. I t  can be cast in  the canonical form  of F ig

ure 1.4, by allow ing the inpu t i  (respectively, the output r )  in  Figure 1.5 to play the 

role of w (resp. z) in  Figure 1.4. So th is  is a solved problem.

2.3 T h e  M ix ed  S en s it iv ity  J i a o  C on tro l P ro b lem

The previous two sections have detailed the Nom inal Performance Problem and the 

Robust S ta b ility  Problem in  Hoo control theory. We have noted tha t both  problems 

are ‘solved’ from  a m athem atical po in t of view, and in  the next section references to 

the various methods of solving Tioo optim isa tion problems are given. In  this section 

however, we concentrate on the issue of controller design. I t  is entire ly obvious tha t 

in  any rea lis tic  design problem, the controller must effectively counteract both signal 

and system uncertainty. Therefore, in  th is section we consider a problem form ula tion 

which combines both nom inal performance and robust s tab ility  - The M ixed Sensi

t iv i t y  Tioo C ontro l Problem. We firs t of a ll define the follow ing terms, which w ill be 

seen to  be instrum enta l in  the design process.

For a given nom inal p lant G 0 w ith  stabilising controller i f ,  denote by S0 the 

N o m in a l  S e n s i t iv i ty  F u n c tio n ,  where

5  =  1  _

0 1 +  G0K

i f  a n d  o n l y  i f
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and

S 0 = {I  + G o K ) - 1 (M IM O)

D enote by T0 th e  N o m in a l  C o m p le m e n ta r y  S e n s i t iv i ty  F u n c tio n ,  where

G0K
1 + G 0K

(SISO)

and

T 0 = G 0K { I  +  G0 K ) - 1 =  [ I + G 0K ) - l G0K  (M IM O) 

W e also define th e  function  R 0, where

K
R n =

1 +  G 0K
(SISO)

and

R 0 = K ( I  +  G o K ) - 1 (M IM O)

R 0 has no com m on nam e in th e  lite ra tu re , and will be referred to  here as th e  N o m in a l  

C o n tr o l  S e n s i t iv i ty  F u n c tio n .  N ote carefully th a t

So +  T0 = I (2.3)

Now in  Section 2.1, and  w ith  reference to  Figure 1.4, th e  N om inal Perform ance 

P rob lem  was shown to  be given by

inf 11^(5)11^

w here th e  in fim um is over all LTI stabilizing controllers. W hat exactly  is th e  transfer 

function  m a trix  Tzw(s ) l  T he answer to  th is question obviously depends on th e  type 

and  location  of th e  various u ncerta in  signals entering th e  system . Consider th e  vector 

of exogenous inpu ts  w  given by

td \
df)

w =
c

\ m  )

w here d a and db denote d isturbances acting a t th e  inpu t and ou tp u t of th e  nom inal 

p lan t respectively, c is an u ncerta in  com m and signal, and m  is m easurem ent noise 

acting  on th e  feedback signal. This vector includes all th e  possible sources of uncerta in
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signals likely to  be considered in m ost typ ical controller design problem s. Recall th a t 

th e  vector of regu la ted  variables is defined as including all signals which are necessary 

to  w rite  down th e  specifications for th e  design. Since design specifications are usually 

given in te rm s of th e  o u tp u t and control signals, let th e  vector of regulated variables 

z  be  given by

w here y is th e  ouput of th e  nom inal p lan t and  u is th e  control signal. T hen  it is easy 

to  show th a t for

z, Tzw zv

th e  transfer function m a trix  Tzw is given by

T  = (  W laS aG0 W lbS 0 T 0 W 2T q \

" V - W laRoG0 - W lbRo Ro ~ W 2R 0 )

N ote th a t  each te rm  of th e  m a trix  Tzw involves one of th e  sensitiv ity  functions S a, T a 

or R 0. N ote also th a t th e  w eighting functions present in  th e  m a trix  arise from  th e  

m odelling of th e  various uncerta in  signals, and th a t these have been absorbed into 

th e  augm ented  plan t.

Now recall th a t in  Section 3.2, and w ith  reference to  F igure 1.5, th e  Tioo R obust 

S tab ility  P rob lem  was shown to  be given by

m f || Tri(s) Hoq
K

w here th e  infim um  is over all LTI stabilizing controllers. A gain th e  transfer function 

or transfer function  m a trix  Tri will depend on th e  way in which th e  uncerta in ty  in 

th e  p lan t is m odelled. Table 2.1 below gives T„- for each of th e  th ree  possible types of 

uncertain ty . N ote th a t th e  p lan t uncerta in ty  w eighting function W 3 has again been 

absorbed  in to  th e  augm ented  plan t.

A Tri (SISO) Tri (M IM O)

A a

A,-

A 0

~ w * k
- w 3t 0

- w 3t 0

- w 3g - ' t 0

- W :iG-0xT oG o

- w 3t 0

Table 2.1. T„- for different types of P lan t U ncerta in ty
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The fu ll extent of the com plexity of the design process now becomes clear, since 

satisfaction of nom inal performance and robust s tab ility  specifications must inev itab ly  

involve the m in im isation of interdependent sensitiv ity functions. Indeed, inspection 

of the m a tr ix  Tzw reveals tha t the nom inal performance problem  alone places con

flic tin g  demands on the values of S0, T0 and R 0. In  typ ica l controller design problems 

however a detailed study of the physics of the system in  question together w ith  some 

engineering insight on the part o f the designer usually allows some s im plification of 

the problem. We brie fly  deta il the most significant issues.

1. In  most designs i t  is not realistic to consider all possible types and sources of 

uncertainty. In  general system uncerta in ty can be modelled as either additive or in 

pu t or ou tpu t m u ltip lica tive . Significant disturbances are usually present at the inpu t 

or  the ou tpu t of the system and so on.

2. Design specifications often only place conflicting demands on certain sensitiv

ity  functions over different frequency ranges. For example, the attenuation of output 

disturbances and measurement noise in  the nom inal performance problem requires 

bo th  S0 and T0 respectively to  be made small. From (2.3), th is is obviously not 

possible. However since output disturbances usually occur at low frequencies and 

measurement noise generally becomes significant at high frequencies, careful selection 

of the weighting functions W\ and W 3 w ill allow both  specifications to  be satisfied 

over d is jo in t frequency bands. S im ilarly, command signals are usually confined to the 

lower end of the frequency spectrum, and thus command tracking and disturbance 

attenuation are actually complementary specifications.

3. The requirement tha t the control signal be kept small is dependent on the value 

of R 0, and since a ll real plants are s tr ic tly  proper, th is means tha t the contro ller K  

should ro ll off at high frequencies. Clearly, this is com patible w ith  the above require

ments on So and Ta.

4. F ina lly , i t  is almost always the case tha t our knowledge of the dynam ic behaviour 

of the p lant deteriorates sign ificantly at high frequencies. This means tha t the p lant 

uncerta in ty  weighting function  W 3 is generally small at low frequencies and increases 

w ith  increasing frequency. Choosing for example a m u ltip lica tive  output uncerta inty 

as our model then requires the complementary sensitiv ity function  T0 to  ro ll off at
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high frequencies. Again, th is is com patible w ith  the requirements arising from  the 

specifications above.

The above discussion highlights the nature of the design process in  0 controller 

synthesis. Clearly, m odelling of uncerta in ty is crucial, in  terms of choosing which 

sensitiv ity  functions should be m inim ised over which frequency bands. Thus the 

selection o f the uncerta in ty weighting functions W \ a, W n ,  W2 and W3 is an im portan t 

step in  the actual controller design process.

We tu rn  now to the problem o f simultaneously achieving nom inal performance and 

robust s ta b ility  specifications. The discussion above along w ith  our characterisation of 

the m atrices Tzw and T„- na tu ra lly  leads to  the follow ing popular approach. Once the 

various uncertainty  weighting functions have been selected for the particu la r system, 

they can be used together w ith  any relevent design specifications to  choose design 

weighting functions Ws, W t and Wr for each of the three sensitiv ity functions S0, 

T0, and R 0. For example, Ws would be chosen based on W \a and /or Wib together w ith  

any command follow ing specifications for the closed loop system. W t would be chosen 

to  satisfy robust s tab ility  specifications given by W3 as well as includ ing measurement 

noise attenuation properties. In  th is way the weighting functions change from  being 

s im ply models of uncerta in ty to actual dynamic design parameters. Once the design 

weighting functions have been chosen, commercially available software packages such 

as [71] can be used to  solve the so-called M ix e d  S e n s i t iv i ty  Tioo C o n tro l  P r o b le m  

given by

in f  || J(s)  ||oo 
K

where the in fim um  is over all L T I stabilizing controllers, and J  is a m a tr ix  cost 

function  given by

J  =  (  W s(a)S0(S) W ^ i ^ )  W t ( s ) T 0{s) )
In  m any designs the contro l signal u can actually be constrained by shaping the 

com plementary sensitiv ity  function T 0, so tha t w ith  a su itab ly chosen W t , the cost 

function  J  becomes sim ply

J  =  ( W ^ s ) ^ )  W t { s ) T 0{s) )

Then i t  can be shown tha t

- 7 = || J{s )  ||oo <  m ax ( || W/5 (5 )S'0 (s) H^, || W r(s )T 0 (s) ||<x> ) <  || J(s)  ||oo (2.4) 
V 2
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and thus i t  is easy to  see tha t the cost function  J  effectively captures both nom inal 

performance and robust s tab ility  specifications. The construction of the m ixed sen

s it iv ity  cost function given above also clearly reveals the inherent trade-off between 

performance and robustness which is present in  every design.

A  num ber of detailed comments are made in  the sequel concerning aspects of 

contro ller design. In  add ition the design examples presented in  Chapter 5 should 

serve to  illu s tra te  the various issues which arise in  practical design problems. For the 

moment we confine ourselves to the fo llow ing observations.

1. No systematic methods of choosing either the uncerta in ty or the design weighting 

functions exist. Choosing the uncerta in ty weighting functions can be d ifficu lt and 

tim e  consuming and in  general requires a good understanding of the physical charac

teristics of the particu la r p lant and its operating environment, as well as a fa ir degree 

o f engineering in tu itio n . Subsequently constructing the design weighting functions is 

also non -triv ia l, and depends to a large extent on the re lative im portance given by 

the designer to  often conflicting specifications in  the fina l design.

2. The m ixed sensitiv ity  control problem does not have a solution for a ll possi

ble combinations of weighting functions. The selection of weighting functions which 

correspond to  specifications which are too ambitious, or which vio late certain rank 

conditions required by state space solutions to  the m athem atical optim isation prob

lem, w ill result in  the fa ilu re  of the software to compute a controller. The size of the 

‘crossover gap’ , i.e. the frequency in terva l between the 0 db crossover frequency of 

the weighting functions Ws and W t is pa rticu la rly  crucial.

3. The approxim ations required by the selection of a single design weighting function 

for each sensitiv ity  function, together w ith  the necessity of includ ing different speci

fications in  a single m a tr ix  cost function J , generally means tha t the fina l controller 

w ill be the result of an ite ra tive  process. W eighting functions w ill usually have to 

be adjusted and closed loop behaviour validated by sim ulation before a satisfactory 

design is achieved.

4. The m ixed sensitiv ity  problem  form ula tion  guarantees nom inal performance only 

- the effect of p lant uncerta in ty on the performance of the system is not considered.
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5. All design is done in th e  frequency dom ain.

6. T he order of th e  optim al controller is no t explicitly  constrained  in  th e  de

sign process. In  general th e  controller will have higher order th a n  is necessary and 

thus m odel reduction  techniques can usually  be used to  reduce th e  com plexity of the 

control law w ithou t degrading closed loop perform ance.

7. Woo controller synthesis has becom e a w idely accepted design technique among 

th e  control com m unity, and  has proved particu larly  sucessful in  problem s involving 

m ultivariab le  p lan ts operating  in a hostile environm ent.

2.4  S o lu tion s to  th e  M ix ed  S e n s it iv ity  C on

tro l P rob lem

A fter m ore th a n  15 years of intensive research there are now several d istinct theories 

which m ay  be used to  solve T t ^  op tim isation  problem s. T he m a them atica l theory  

requ ired  in each case can fairly be  described as difficult and  involved, and th e  re

sulting  softw are algorithm s tend  to  be  com putationally  dem anding. This thesis is 

not concerned w ith  th e  m a them atica l solutions of op tim isation  problem s per se, 

bu t w ith  th e  control engineering m otivation  underlying th e  different robust control 

m ethodologies, and  so below we sim ply list th e  various theories toge ther w ith  th e  

relevent references.

1. N evanlinna-P ick In terpo lation  T heory [16, 17, 18]

2. V ector Space D uality  T heory [19, 20, 21, 22]

3. K w akernaak’s T heory [25, 26]

4. Sarason’s T heory  [27, 28]

5. Convex O ptim isation  [6]

6. O p tim al H ankel N orm  M odel R eduction T heory [23, 24]
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C urren tly  available commercial software packages such as [71, 78] use O ptim a l Hankel 

N orm  M odel Reduction Theory to compute 'H^, op tim a l controllers. The advantages 

of th is m ethod include the fact tha t exp lic it state space formulas for the controller 

are available, as well as the fact tha t a ll computations can be done in  state space, 

m aking the resulting algorithms more num erica lly robust. The more recent numerical 

approach o f convex optim isa tion has also provided some prom ising results, especially 

in  terms of revealing the lim its  of performance for a given system.

2.5 A  C ritiq u e o f  T io o  C ontro l T h eory

This section contains certain comments on Ti.CM control theory. Our purpose is to 

deta il what we regard as lim ita tions  of the theory, and to  explore the root causes of 

these lim ita tions . Later in  the chapter, an analagous exam ination o f C \ control theory 

is made. These contrasting observations m otivate the development of a m odified rH.00 

contro l theory, detailed in  Chapter 3.

2.5.1 (i) T he O utput N orm  and ‘Spikes’

Consider now applying standard control theory to  the problem  of m in im iz ing a 

system ’s ou tpu t due to  an uncertain inpu t signal, as described earlier. Previous work 

in  the area of 7Yoo control theory has been based on the use of the C 2 signal norm 

on both  the in pu t and the ou tput sides. App ly ing  th is conventional or standard TCoo 

approach then leads to the problem of finding the L T I stabiliz ing controller which 

m inim izes || Tzw(s) H^. Now, i t  follows im m ediate ly from  Theorem 2.1 tha t

|| z ( j u )  ||2 <  ol V i o G  <£> || Tzw(s) Hoo <  a  (2.5)

Hence, i f  the £ 2 norm  of z must be kept smaller than a, the condition needed is

|| T z w ( s ' )  11 00^  O!

Note tha t th is condition is necessary and sufficient for ensuring tha t the effect of 

a class of exogenous inputs on the system’s output is bounded, in  a certain precise 

sense. Present day H 00 software [71], w ill effectively deliver the controller which 

yields the smallest possible value of a  in  eqn. (2.5), thereby yie ld ing the best possible 

upper bound on the energy of the ou tput signal for all possible inputs in  the set
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T>ŵ  =  B C ^ j u ) .  So s tandard  Hoo control theory  effectively m inim izes th e  im pact of 

u ncerta in  in p u t signals on th e  system ’s ou tp u ts  in  a certain  precise sense.

W hile th is m ay appear im pressive, it will now be shown th a t  it does not prohibit 

th e  possib ility  of “spikes” in th e  system ’s o u tp u t z ( t ) w ith  arb itra rily  large am plitude 

in  th e  tim e  dom ain. Obviously, even m odera te ly  large ‘spikes’ in th e  am plitude of 

z ( t )  would be  com pletely intolerable in m any  applications. A pedagogy for controller 

design which perm its  large ‘spike-like’ excursions in  z ( t ) runs in  th e  face of th e  very 

objectives and  function of a control system .

L e m m a  2 .1  Suppose that the L T I  controller K  minimizes

Aoo = || Tzw{s) 1100= sup II Tzw(ju>)w(ju) ||2

over all L T I  stabilizing controllers. Then there exists a sequence of  exogenous inputs 

Wk(jui) €  T>$ such that

Zk(t) |t=o —> oo as k oo

where Zk(t) denotes the sy s t e m ’s output due to the exogenous input Wk(jio), and where 

Vw^ is defined in eqn. (2.1).

P r o o f

W e m ay suppose th a t Tzw{s) is SISO. T he  proof will be seen to  ex tend  to  th e  gen

eral M IM O Hoo-problem  w ithout difficulty. Define th e  sequence of exogenous inputs 

w k, k =  1 , 2 , . .  . by

, ■ n f  Tz w U u ) V f« o  for — k < u  < k 
w k(iu>) =  < v

 ̂ 0 otherw ise

w here a 0 is a positive real scalar. Let us suppose th a t th e  controller K  is th e  'Hao- 

op tim al controller, so it is th e  solution of

Aoo - -  i l l f  II Tzw(s') ||oo

As is well know n, th e  op tim al Tzw(s ) is all-pass, m eaning th a t

| Tzw( j u ) |=  Aoo (=  constant) V to

Take «o to  be A ^ . To see th a t Wk G T> $ , note th a t

wjfeO'w) \\l= ^  J  ^ \ I2 -̂ A 2
k 00
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Using th e  all-pass p roperty  gives

| | |=  ^ X j 2 k ^ \ 200 1

so th a t  Wk G T>w\ Let z k be th e  response of th e  system  to  the  inpu t w k. Then,

ZkUu ) =
y/^Xoo for — k < u> < k 

0 otherw ise

Inverse Fourier transform ing gives

Z k ® ~ 2 v  / l A ° ° / ;  e Ì W t d U

=  Ac

so th a t

k

k sin kt
7T kt

lim  z k(t) =  AooW-
t —>o V 7r

w hich is unbounded  as k —>• oo, as claimed.

A lthough th is  lem m a m ay seem a little  s ta rtling  a t first, its p ractical significance 

m ust no t be over-em phasized. Obviously, th e  above lem m a only proves th a t an  in

finite am p litude  ‘spike’ in  z (l)  is hypo thetically  possible, and  only in  th e  sense of a 

lim it. Also, o p tim al Tioo controllers satisfy th e  all-pass p roperty  only over a finite 

b andw id th , and  th e  sequence of inpu ts used in  th e  above proof are them selves ‘spike

like’. M oreover, th e re  are bounds which re la te  th e  A norm  (the system  norm  used in 

C\  control theo ry  to  give a  hard  bound on th e  norm  of th e  o u tp u t signal) to  the  

Tioo system  norm . In  [9] for exam ple it is shown th a t

|| G(s)  11co <  || G (t ) ||_a <  d || G (s ) ||oo (2-6)

w here d is th e  Sm ith-M cM illan degree of G(s),  while in Section 3.5 below bounds are 

given w hich m ay be used to  argue th a t very large ‘spikes’ will no t occur in  practice. 

However, it is clear th a t th e  above bounds are not very a ttrac tiv e  for high order 

system s.

A nother way of looking a t th e  difficulty is as follows. T here are no bounds relating 

th e  £ 2 no rm  and  th e  norm  of signals. Specifically, we have th e  following.
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L e m m a  2 .2  There exists no finite constant M  such that

|| z(t)  ||2<  M  || z(t)  Hoo V z( t)  G c2(t) fl C ^ { t )  

and similarly there exists no finite constant N  such that

II z (t)  !!«,< n  II z( t)  ||2 v z( t)  e  cn2{t) n^ ( t )

P r o o f

For th e  proof, it suffices to  consider scalar signals which are very wide or very narrow  

rectangu lar pulses. Consider th e  sequence of signals defined by

w k{t) =
l / \ / 2 ~k for — k < t  <  -\-k 

0 otherw ise

T hen  || Wk(t) ||2 =  1 and  || Wk(t) | | o o =  l / v /2~k which is unbounded as k —> 0. For the  

o ther p a r t, define
i  1 for — k < t  <  -\-k 

m ( t )  =  \  0 otherw ise

T hen  || Wk(t) ||oo= 1 an-d || Wk{t) \\2=  V 2k which is unbounded as k —* oo. □

So a bound  on th e  C 2 norm  of a signal (on its  own) does not p roh ib it th e  signal 

from  having ‘spikes’ of a rb itra rily  large tim e dom ain am plitude, and m ore generally 

does not allow any  bound  on its C norm  to  be inferred.

T here are several argum ents for ta lk ing one’s way around the  ‘spike’ problem , 

including those outlined  above. These can be used to  argue th a t in  p rac tica l applica

tions th e  ‘spike’ difficulty will not be as severe as Lem m a 2.1 superficially suggests. 

A lthough it is fair to  say th a t practitioners are aware th a t ex trem ely  large spikes 

will no t occur in  practice , nonetheless th e  form al theory  perm its such behaviour a t a 

hypo the tica l level and  does not rule it out. F u rther, th e  argum ents needed to  do so 

are not a  p a rt of s tan d ard  Ttoo control theory, and are inform al a n d /o r conservative. 

For instance, op tim izing sub-optim al bounds as in eqn. (2.6) is not com pletely satis

factory, and  cannot be accepted as th e  final word. This suggests th a t th e  underlying 

problem  form ulation  is flawed, and th a t th e  argum ents needed should be  fully in te

g ra ted  in to  th e  form al theo ry  in a m anner which is non-conservative and exact. Doing 

so is one aim  of th is thesis. T he crucial poin t is th a t s tandard  Tioo control theory  

cannot guaran tee a good upper bound on th e  am plitude of th e  ou tp u t signal z( t)  in
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the tim e  domain w ith  w(ju>) G V $ .  This lemma raises the question of whether the 

problem  stems from  "Hoo-control theory per se, or whether i t  stems from  the control 

theoretic paradigm which is conventionally attached to  it. We w ill have more to  say 

on th is im portan t issue later.

2.5.2 (ii) Signal Set and Specification Lum ping

Recall th a t in  standard Tica theory, the vector of exogenous inputs belongs to  the 

u n it ball in  When Tzw is m x n, the signal w ( ju )  is an n-vector, say

w(jio) =  (w i( ju j) , . . . ,  wn( ju ) ) T

Suppose now tha t each vector element Wi(ju>) is individually  modelled in  the usual 

Hoo way, i.e. as the u n it ba ll in  C2 (ju))- In  th is situation, the signal w (jio )  ranges 

through Viu , where

L2) =  { w ( ju ) \  w{juj)T = ( w i ( j u ) , . . .  wn(jio)),  || Wi(jio) ||2<  1}

=  B C 2 ( ju )  x . . .  x BC 2 ( ju )

I f  the C 2 norm  is used also on the output side, the resulting synthesis problem  for this 

signal set, i.e. tha t o f choosing the controller tha t m inimizes the largest || z ( ju )  ||2 

as w varies through T>w\ is not a standard Hoo problem. To obtain a standard Tioo 

problem, the collection of n ind iv idua l u n it balls T>$ must be replaced by a single 

un it ball in  C 2 { jw ).  In  other words, must be covered by T>w\ meaning tha t

c  V «  C l'1

This step is conservative and h ighly undesirable. This disadvantage can reasonably 

be called s ig n a l s e t  lu m p in g .  To obtain a standard Hoo problem  all exogenous 

inputs m ust, so to  speak, be lumped in  together.

Consider, for instance, a p lant w ith  several outputs. Each p lant ou tpu t has a 

sensor or transducer to produce an on-line measurement of the value of tha t output. 

Imperfections in  sensors are generally modelled as additive noise. Such sensor noise 

signals arising from  independent sensors are necessarily independent o f each other, 

as in  V w \  W hen using T>w\ the Wi s are not independent. In  most applications, the 

elements o f w are independent of each other, and the C 2 norm  i.e. the signal norm  on 

which standard Tioo theory is based, cannot effectively capture th is s ituation. Sim

ila rly , each plant ou tpu t and /or p lant inpu t may have significant unknown external
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disturbances acting on it ,  and these disturbances may be physically independent of 

each other. Again, the corresponding elements of w  are then independent of each 

other, and standard Ttoo control theory cannot effectively capture th is  situation.

S im ilar remarks apply to the output side. W ith  reference to  Figure 1.4, different 

elements of z generally need to  be controlled to  different levels of precision. Apply ing 

a weighting function  to  z to d iffe rentia lly  emphasize d is tinct elements o f z is only a 

p a rtia l solution. M in im iz ing  || z(ju j)  ||2 s t ill involves averaging over d is tinct plant 

outputs, as well as over frequency or tim e. This obscures which elements are or are 

not being effectively controlled. Independent constraints on the worst case C 2 norm  of 

each Zi cannot be imposed. This lim ita tio n  can reasonably be term ed s p e c if ic a t io n  

lu m p in g .

2.5.3 (iii) R obust Perform ance

The presence of substantia l p lant uncerta in ty impacts on many facets of controller 

design, not merely on closed loop stability . Recall tha t the canonical fo rm  for linear 

contro ller synthesis given in  Figure 1.3 allows both signal and system uncerta in ty to 

be included in  the problem  form ulation. The m otiva tion  for m in im iz ing  the Tioo norm  

however was given in  terms of two theorems, one dealing w ith  nom inal performance 

and the other w ith  robust stab ility . These problem form ulations can be thought of 

as corresponding to  two ‘special cases’ of the general canonical form , and are given 

in  Figures 1.4 and 1.5. I t  is obvious tha t the fact tha t each theorem deals separately 

and d is jo in tly  w ith  signal and system uncerta in ty is unfortunate, and represents a 

serious shortcoming.

I t  would therefore be h igh ly desirable to be able to handle performance specifi

cations in  the presence of both  signal and system uncerta inty simultaneously and in  

a rigorous way. In  th is regard, the simplest and most obvious robust perfor

mance problem  is as follows. W ith  reference to  Figure 1.3, consider the problem  of 

robustly  m in im iz ing  the worst case 7Yoo norm  of the transfer function  m a tr ix  from  

the uncertain in pu t signal w  to  the system output z when the p lant uncerta in ty T)^p 

is unstructured. This is called the Hoo O p t im a l  R o b u s t  P e r f o r m a n c e  P r o b le m  

and can be stated as

in f sup || Tzw( s , K ,  A p) Hoo
A a pev^p

where the in fim um  is over a ll L T I controllers which are robustly stable for V ^ p . This
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problem  is unsolved.

I f  the transfer function  to be m inim ized is the sensitiv ity function, then th is prob

lem is called the op tim a l R o b u s t  D is tu r b a n c e  A t te n u a t io n  P r o b le m  (RDAP or 

O R D A P ), and there is a lite ra tu re  on i t  [21, 22, 34, 35]. Previous renditions of the 

R D AP problem  for the M IM O  case [22, 35], are not especially a ttrac tive  form ulations 

of the problem , because they suffer from  (i) and ( ii)  above, bu t t ry  to  avoid ( iii) . 

A n a ly tica l solutions to  th is problem are not available.

In  fact, the only robust specification which can be optim ized by standard 7Yoo 

contro l theory is robust s tab ility . No robust performance problem is solved non- 

conservatively by standard 7ioo-control theory. Heuristic approaches to  avoiding this 

lim ita tio n  of 7Yoo have been suggested. Perhaps the best known procedure of this 

varie ty is so-called /¿-synthesis [36, 37]. Unfortunately, convergence is not guaranteed 

by th is  procedure [38].

A lte rna tive ly , one can settle for suboptim al approaches to  the problem. In  [39], 

fo rm al bounds are given which lim it  the deterioration of the performance of the 

closed loop system due to  p lant uncertainty, in  the SISO case. This result together 

w ith  loopshaping techniques is used in  [75] to  improve robust performance in  SISO 

systems. In  the case of M IM O  systems the situation is more complicated, and in  [70] 

the authors show tha t very small levels of p lant uncerta inty can result in  a to ta lly  

unacceptable deterioration in  system performance. On the other hand a result in  [40] 

for M IM O  systems can be used to  show tha t as long as performance specifications are 

only given over a f in ite  frequency in terval called an operating band, the degradation in  

terms of robust performance over this band is small, provided tha t (a) the associated 

nom inal performance is sufficiently good, and (b) the level of p lant uncerta in ty is 

suffic iently small. In  [30], a controller design a lgorithm  is presented which generates 

a sequence of controllers which solve the so-called Robust 7Yoo A lm ost Disturbance 

Decoupling Problem , under certain assumptions. In  the most general case however 

the design algorithm s become complicated optim isa tion based procedures.

The issue o f robust performance in  M IM O  systems w ill be considered again in  

Chapter 5. For the moment however i t  is sufficient to  note tha t since from  an app li

cations po in t of view, the vast m a jo rity  of control problems require bo th  signal and 

system uncerta in ty to  be considered when designing for performance specifications, 

i t  seems clear from  the above discussion tha t a ll in  a ll standard 'HCX) control theory 

at present does quite  poorly w ith  robust performance problems.
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2.5.4 (iv) W eighting Function Selection

As noted in  [29], the effectiveness of any given design procedure depends to a large 

extent on how well the relationship between design parameters and design specifica

tions is understood. In  Tioo control theory the design parameters are the weighting 

functions, and the selection of these functions can fa ir ly  be regarded as the most 

im po rtan t and d ifficu lt step in  the design process.

In  the Tioo lite ra ture , there are two viewpoints regarding the weighting functions 

which lead to  two d is tinct approaches to the design problem. In  the firs t, weights are 

regarded as fixed quantities obtained from  physical reasoning, in  effect models of the 

possible signal and /or system uncertainty, and are therefore not subject to ite ra tive  

m anipu la tion by the designer. In  the second, the weights are chosen to  a ttem pt to 

satisfy frequency dependent specifications on the magnitude of the system’s closed 

loop transfer functions directly, generally the system’s nom inal sensitiv ity  function 

S0 and complementary sensitiv ity function T0. The weights can thus be m anipulated 

ite ra tive ly  to  emphasise or shape the robustness or performance qualities of the design 

at various frequencies.

The firs t approach is undoubtedly more straightforward, especially i f  a reason

able amount of in fo rm ation  can be obtained as to the nature of the uncerta in ty in 

the system. See [31] for an example of th is approach. Since each weighting function 

represents the best possible model of each ind iv idua l source of signal or system uncer

ta in ty , there is no ite ra tive  m anipula tion of the weights. However, note tha t (i) the 

approach does not p roh ib it ‘spikes’ at the ou tput, even at optim um , ( ii)  the approach 

suffers from  signal set and specification lum ping, and ( iii)  closed loop transfer func

tions must be replaced by the ir nom inal values, so tha t performance specifications 

are m et nom inally, not robustly. The consequence is tha t i f  standard software is 

used, the resulting design may very well be entire ly unacceptable.

Thus as noted in  Section 2.3 on the m ixed sensitiv ity control problem, the 

orig inal uncertainty  weighting functions w ill usually have to  be m anipulated in to  

design weighting functions, which can be used by the designer to satisfy various spec

ifications on the closed loop system. This leads to  the second viewpoint in  which the 

weighting functions are regarded as ‘tun ing knobs’ to  be used in  trad ing off between 

feedback properties over different frequency ranges and different vector directions. 

The weights then represent direct specifications on the modulus (or the m axim um  

singular value in  the M IM O  case) of S0{ j io ) and T0 (ju>) (typ ica lly ), at various fre
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quencies and in  various vector directions, rather than in fo rm ation  about signal or 

system uncertainty. However, this does not mean tha t the ir selection is autom atic. 

On the contrary, and as noted in  [32], there s till do not exist systematic and analytic 

ways of choosing 'Hc0 weighting functions to satisfy design specifications. I t  is true 

tha t for SISO m in im um  phase systems, weighting function m anipula tion is re la tive ly 

straightforward. However for unstable and/or non-m in im um  phase systems, and es

pecia lly in  the M IM O  case, the s ituation becomes significantly more complicated. 

F irs tly , the relationship between the weighting function matrices and the resulting 

‘o p tim a l’ design is fa r from  transparent from  the designer’s po in t of view. Various 

design features and lim ita tions , such as those due to  righ t ha lf plane poles and zeros, 

impose some fa ir ly  com plicated design tradeoffs [33]. Secondly, the prospect of choos

ing, le t alone ite ra tive ly  m anipula ting, a 7 x 7 m a tr ix  of weighting transfer functions 

for example, is certa in ly a daunting one. In  practice, the selection tends to  be based 

on past experience and tr ia l and error methods.

In  summary then we make the follow ing points. The current s ituation regarding 

weighting function  selection in  standard control theory is obviously far from  per

fect. I t  can reasonably be argued tha t the observations (i) to  ( iii)  above go some way 

towards iden tify ing  the source of the d ifficufty. F irs tly , the model on the ou tput side 

(i.e. the model of or statement of the objectives of control systems) is flawed. The 

essential content of Lem m a 2.1 is tha t the C2 signal norm  gives a poor m athem atical 

model of the objectives of a control system. Secondly, accurate models on the input 

side (i.e. models of signal uncerta in ty based on physical reasoning) must be aban

doned because of ( ii)  above. Accurate models of signal uncerta in ty would have to  be 

covered by a single u n it ba ll anyway, thereby significantly reducing the ir descriptive 

value. T h ird ly  robust performance specifications cannot be handled well. I t  can be 

argued tha t i t  is precisely because of the above lim ita tions  tha t a Tioo design based 

on uncerta in ty weighting functions may well produce an unacceptable finaf design. 

Consequently, the weighting functions generally need to be ite ra tive ly  m odified before 

a suitable design is obtained. One of the m otivations for the m odified Tioo theory pre

sented in  Chapter 3 is therefore to  ease the d ifficu lty  of weighting function  selection 

by a ttem pting  to  avoid the various lim ita tions detailed above.
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2.6  C \  T heory: N o m in a l P erform an ce

The discussion of Tioo contro l theory given above adopted the perspective of contin

uous tim e  systems only, as the entire development carries over w ithou t d ifficu lty  to 

the discrete tim e  case. In  C\ control theory however, considerable differences emerge 

between problems form ulated in  continuous and discrete tim e. Therefore in  our trea t

m ent we w ill give details for both where appropriate. In  the lite ra ture , discrete tim e 

problems are usually denoted by the symbol l\ . In  our treatm ent however, the sym

bo l C\ is used throughout - the discrete or continuous nature of the problem  w ill be 

stated e xp lic itly  as appropriate.

In  th is  section we discuss the issue of nom inal performance under the framework 

o f C\ contro l theory. The system norm  used in  C\  control theory is given by

/ +CO
\Tzw( t ) \d t

-OO

in  the SISO case, and by

n  p-\-oo  71
\\Tzw(t)\\A =  m ax £  /  |{Tzw( ty ) i j | dt  — max | (Tzw(t)){ j ||i

j= i * j = i

in  the M IM O  case, where (Tzw( t) ) i j  denotes the inverse Laplace transform  of the 

(¿ , j) th  element of Tzw(s). So Tzw(t)  is the impulse response or impulse response 

m a tr ix  from  w to z. The system norm  || . || 4̂ w ill be referred to  as the A  n o rm , and 

is seen to  be the L \  norm  over tim e  t  combined w ith  the max-row-sum m a tr ix  norm. 

Note th a t for continuous tim e  systems, the equivalent norm  in  the Laplace transform  

dom ain is A,  which is defined as

|| Tzw(s) 11^ =  || Tzw(t) | | a

where Tzw(s) is the Laplace transform  of Tzw( t ) [42]. S im ila rly  for discrete tim e 

systems, the equivalent norm  in  the Z transform  domain is A, defined as

|| Tzw ||^ =  || Tzw(k) ||a

where Tzw is the Z transform  of Tzw(k) [43].

Therefore w ith  reference to  Figure 1.4, the N o m in a l  P e r f o r m a n c e  P r o b le m  

is given by

in f
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for continuous tim e systems, and

in f || Tzw(z) |L

fo r discrete tim e  systems, where the in fim um  is over a ll L T I stabiliz ing controllers. 

The engineering m otiva tion  for th is problem relies on the fo llow ing theorem, which is 

fundam ental in  C\ contro l theory [44].

T h e o r e m  2 .3  Suppose that z ( t ) =  Tzw{t) * w (t) ,  and that Tzw(t) is the impulse 

response m atr ix  o f  a stable L T I  system. Then

II rp  || II Z ( t )  ||oo|| Tzw(t) \\a =  sup -—
W ^O  || W [ t )  11 oo

This theorem says tha t the C<*, norm  on signals induces the A  norm  on systems. In  

order to  see the engineering relevance of th is  theorem, le t us restate i t  as follows. 

Identica l reasoning to  tha t used previously shows tha t

|| Tzw(t) \\A=  sup || z(t)  ||oo
w(t )ev^

where

-Dir'1 =  m *)\ \\ » w  i u < i }  =  b o o

(w ith  “ m ” for m ax-am plitude). In  the C\ approach, w belongs to the signal set 

=  B C 2o(t), which consists of a ll signals having am plitude less than or equal to 

one at a ll times. The above theorem can be stated equivalently as

|| Tzw{t) ||a<  a  <£> || z(t)  ||oo< a  Vw(t)  G V £m)

This observation motivates the op tim a l controller synthesis problem  of choosing K  

to  m in im ize the worst case output z, as quantified by the C rj0 norm , and as w ranges 

through B C ^ t ) .  Th is corresponds to the C\ N o m in a l  P e r f o r m a n c e  P r o b le m  and 

i t  is essentially a solved problem.

2 .7  C \  T heory: R ob u st S ta b ility

Because the A  norm  is an induced norm , there is a SGT result analagous to  tha t in  

Tioo theory for th is system norm, and i t  is an im portan t result in  C\ contro l theory. 

A pp ly ing  the SGT to  the set-up of Figure 1.5, and specializing to  the C^  norm , yields 

the fo llow ing [44].
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T h e o r e m  2 .4  Suppose that the system o f  Figure 1.5 is nominally stable, and that a  

is a positive real number. Then the system o f  Figure 1.5 is B IB O  stable in the Coo 

norm  sense fo r  every L T I A p(t)  which obeys

ii a tj.\ ii II A p{t)  * a(t)  ||oo ^II A p( t)  ||^ =  sup - — r it  <  a
a^O a(t)

i f
|| T r i (t) \\A <  a

This robust s ta b ility  theorem is non-conservative only i f  A p is allowed to  be T V  

and /o r N L, as in

T>^p =  {A p | A p  is oo-stable, and || A p  | | 4̂ <  1}

W hen A p  is constrained to  being LT I, th is condition is conservative [45, 44]. In  

contrast, th is does not hold for the analogous TCoo result. Th is theorem motivates the 

Ci  R o b u s t  S ta b i l i ty  P r o b le m  given by

in f || TTi(s)
K \ A

fo r continuous tim e  systems, and

in f || Tri(z) \\Â

for discrete tim e  systems, where the in fim um  is over a ll L T I stabilising controllers. 

This problem  corresponds to  m axim izing s tab ility  robustness, and i t  is a solved prob

lem.

2.8  T h e  M ix ed  S en sitiv ity  C \  C ontrol P ro b lem

The M ix e d  S e n s i t iv i ty  C\  C o n tro l  P r o b le m  for continuous tim e systems is given

by
in f || J ( s )  |U

where the in fim um is over a ll L T I stabilizing controllers, and J (s ) is a m a tr ix  cost 

function  given by

J  =  ( W s X s ) ^ )  W n W R o i s )  W t { s ) T 0( s) )
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The equivalent problem for discrete tim e systems is

inf II J (z0 lU

where the in fim um  is over all L T I stabiliz ing controllers, and J  is a m a tr ix  cost 

function  given by

J  =  (  W s So W r R 0  W t T 0  )

The m otiva tion  for, and the development of, the above cost function is exactly the 

same as th a t given for the equivalent problem and so w ill not be repeated here. 

In  the sequel, detailed comments are made on certain aspects of C\  control theory. 

For the m om ent, we con fine ourselves to  the follow ing observations.

1 . C i control theory can r ig h tly  be considered a tim e  domain theory, as specifi

cations on both  the in pu t and output signals are given in  the tim e  domain.

2 . C\  optim isa tion procedures for discrete tim e  systems differ s ignificantly from  those 

used w ith  continuous tim e  systems. In  particu lar, C\  op tim a l controllers for continu

ous tim e  systems are irra tiona l, even when the problem data are ra tiona l and even in  

the SISO case. Approaches for calculating rationa l sub-optim al C\  controllers have 

been suggested [46, 47], bu t in  general the most significant application of the contin

uous tim e  theory seems to  be in  furn ishing bounds for the achievable performance of 

discrete tim e  controllers. C\  controller design is therefore generally applied d irectly  

to  discrete tim e  systems.

3. C\  contro l theory is a very recent theory, and many results are s t ill very new. 

M any im portan t open questions s t ill remain to  be answered in  connection w ith  C\  

optim isa tion. As pointed out in  [48], from  a theoretical po in t of view, stronger re

sults regarding the support structure of the op tim a l solution to  the general m u lti-b lock  

problem  are needed. The existence in  general of op tim a l ra tiona l solutions is another 

open question. In  practice, i t  has been noted tha t even one-block problems may have 

high order op tim a l controllers, and thus the absence of a form al model reduction 

theory in  the context of C\  optim isation is a significant drawback.

4. Comm ercial software packages which can be used to  design C\  op tim a l controllers 

are not yet w idely available in  the control community.
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2.9  S o lu tion s to  th e  M ix ed  S en s it iv ity  C \  C ontrol 

P ro b lem

As w ith  our treatm ent of 7Yoo control theory, we pass over the details of the m ath 

em atical techniques involved in  C\ optim isa tion in  favour of concentrating on the 

underly ing engineering m otiva tion  for the problem. A  common feature o f a ll L \  o p ti

m isation is the use of vector space dua lity  theory together w ith  linear programming 

based techniques for which standard references are [20, 49]. A  comprehensive overview 

of the fie ld  is given in  [44]. To date the optim isa tion problems which have been 

solved are as follows.

1. L \  op tim a l controllers for SISO discrete tim e  systems [50]

2. C\ op tim a l controllers for M IM O  discrete tim e systems [51]

3. The general m u lti-b lock  C\ optim isa tion problem for discrete tim e systems [48]

4. C\ op tim a l controllers fo r SISO continuous tim e systems [42]

5. R ational suboptim al controllers for SISO continuous tim e  systems [46, 47]

2.10  A  C ritiqu e o f  C \  C ontrol T h eory

Having previously described some basic lim ita tions of standard 'H00 control theory, we 

now ou tline  b rie fly  some of the m ain strengths and weaknesses of C\ control theory. A  

comprehensive treatm ent is not intended, and we deal only w ith  those aspects which 

have a bearing on th is  thesis.
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2 .1 0 .1  (a) T h e  O u tp u t N orm : N o n  C o n serv a tiv e  M in im i

sa tio n  o f  M a x im u m  T rack ing E rrors in  T h e  T im e  

D o m a in

Perhaps the most important attraction o f C\ control theory is that it  optimally and 

non-conservatively minimizes maximum tracking errors in the time domain.

“ The || . ||a norm  is very interesing since the assumptions which lead to it ,  tha t 

both  w  and are in  B C ^ { t ) ,  are very appealling. I t  is often the case in  practice 

tha t the c ritica l issue is the magnitude of signals and not the ir power or energy. 

Superficially, i t  could be argued tha t th is would be the obvious norm  of choice for 

most engineering problems, were i t  not for the m athem atical d ifficu lties associated 

w ith  || . Ha-” 1 - [Doyle,9].

I t  can be argued tha t the essential purpose of a control system is to  ensure tha t the 

actual value o f the p la n t’s ou tpu t vector, call i t  y(t) ,  remains close to  given desired or 

target values which are described by the reference inpu t, say r ( t ) ,  so tha t the tracking 

error e(t) =  y( t)  — r ( t )  remains consistently small over tim e. In  most applications i t  is 

essential or desirable tha t the tracking error e(t) never exceeds a certain level at any 

tim e. O n ly by using the norm  to measure the size of signals can th is objective 

be rigorously captured. Standard 7ioo control theory is centered on the C 2 norm  for 

signals. This norm  involves averaging over tim e and over vector elements. So a small 

value of || e [t ) H2 does not mean tha t e (i) w ill be reasonably small at every tim e  t. 

Indeed, e(t) can be extrem ely large at some t  and s till have a very small C 2 norm , as 

in  Lem m a 2.1. The crucial im p lica tion  o f Lem m as 2.1 and 2.2 is tha t the C 2 norm 

is a very poor m athem atical model of the purpose of a control system, while the 

norm  gives a far better and more meaningful measure of the qua lity  of control. This 

is, perhaps, the most a ttractive  feature of C\ control theory.

B y  way of example, consider the problem of contro lling the tra jec to ry  of a flexible 

robot arm  in  an enclosed environment. Ideally, the tracking error e(t) should be 

zero at a ll tim es t. In  rea lity, perfect controf is not possible and one must settle 

for m in im is ing  the deviation from  the desired tra jectory. B u t in  what sense should 

th is deviation be m inim ized? Clearly, the “ real”  objective and purpose o f the control 

system is to  ensure tha t th is deviation is as small as possible in  the time domain and 

at each and every point in time. Indeed, depending on the p rox im ity  of other devices

1T he m ath em atica l sym bols have been changed to  the no tation  in  use in this thesis
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in  the robo t’s operating environment i t  may be absolutly essential tha t th is deviation 

never exceeds a certain l im it  at any tim e. This means therefore tha t achieving the 

condition

|e (i) | <  1cm V t

constitutes much better control than, for instance,

II e(0  lh <  1

In  fact, the la tte r condition allows no firm  conclusion to be made about the qua lity  

of contro l in  any ‘rea l’ or meaningful way. This consideration makes the Coo norm  

very a ttrac tive  indeed.

Using the £<*> norm  on the output side has other im portan t advantages too. I t  

is useful i f  any device in  the control loop has a m axim um  inpu t ra ting which should 

not be exceeded, such as a plant w ith  a saturation at its  input. I t  is useful too i f  i t  

is necessary to  keep the system’s state close to  an equ ilib rium  point for a linearized 

p lan t model, or i f  the system’s state must be confined to  a specified region of state 

space. The only way to  handle precisely hard constraints on the tim e  am plitude of 

signals in  the system is by using the C ^  norm  on the ou tpu t side. In  particu la r, the 

C\  approach then avoids the ‘spike’ problem, because i t  m inim izes the worst case C ^  

norm  of the ou tpu t z(t)  in  the tim e  domain. Indeed, th is approach optimally  avoids 

large ‘spikes’ in  the tim e  domain.

2 .1 0 .2  (b ) S ig n a l S et and S p ec ifica tio n  L u m pin g

C\ control theory does not suffer f rom  signal set or specification lumping.

The d ifficu lty  w ith  signal set lum ping in  the C 2  norm  comes u ltim a te ly  from  the 

inequa lity  in

B C n2 ( j u )  ±  B C 2 {jlo) x  . . .  x  B C 2 (jlo)

In  contrast, when the signal norm employs the C ^  vector norm, signal set lum ping 

is avoided. Indeed, C\  contro l theory uses the signal set v[™ \  where

V = {tu(t)| w ( t ) T  = (ib i(i),...w n(t)), || W i ( t )  ||oo< 1, i =  l , . . . , n }

=  {tw(t)| w ( t )T =  (Wi(t), . . . w n(t)),  || w(t)  ||oo< 1}

= B C n0 0 (t) = B C 0 0 ( t ) x . . . x B C 0 0 (t)
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C hapter 3

A  N ew  Paradigm  for O ptim al 
R obust Controller Synthesis in 
th e  Frequency D om ain

In  th e  previous chap ter a detailed description of some of th e  rela tive streng ths and 

lim ita tions of and  C\  control theories was given. Based on th is analysis, th is 

chap ter presents a new paradigm  for op tim al robust controller synthesis in th e  fre

quency dom ain. I t is shown th a t by in troducing  new m odels of uncertain ty , slight 

m odifications to  s tan d ard  and Tf.2  control theories resu lt in  an approach to  con

tro lle r design which overcomes some of th e  lim itations of Tioo control theory  and 

cap tures some of th e  m ost a ttrac tiv e  features of C\  control. In  particu la r we explore 

th e  po ten tia l of using frequency dom ain design techniques to  optim ally  satisfy tim e 

dom ain  specifications.
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3.1 SISO  N o m in a l P erform an ce in  T i o o  • N o n  C on

serva tive  M in im isa tion  o f  M ax im u m  Tracking  

Errors in  th e  T im e D om ain

Two com m only held  perceptions w ith  regard  to  7iCXj control theory  are th a t  (a) H (yo 

deals w ith  finite energy signals only [60], and (b) cannot be used to  design con

tro llers which m eet tim e  dom ain specifications exactly  [63]. W hile passing reference 

has been m ade in  th e  lite ra tu re  to  th e  fact th a t TLoo control theory  can be used to 

deal w ith  sinusoidal signals, no a ttem p t has been m ade to  explore th e  po ten tia l for 

surm ounting  (a) and  (b) above which arises from  th is fact. This m ay be in p a rt due 

to  th e  fact th a t  a  signal set consisting of sinusoidal signals only would seem to  be 

too  sm all for th e  purpose of m odelling uncerta in  inpu t signals in a realistic  system . 

In  th is section, it is shown th a t uncertain  signal sets based on sinusoidal signals can 

be constructed  which seem ‘rich ’ enough for m ost p ractical purposes. I t is effectively 

dem onstra ted  th a t w ith  these new signal sets (a) and (b) above do not apply  to  Tioo 

control theo ry  in th e  SISO case.

3 .1 .1  A  S in u so id a l S ign al S et

C onsider th e  following signal set. Define to  be th e  following set of scalar exoge

nous inpu ts

=  { ^ W l w (t) — A e x p ( j u t ) ,  u  a rb itra ry , |A| <  1} (3-1)

(w ith  “s” for sinusoidal). This signal set consists of all sinusoidal signals w ith  am 

p litude  less th a n  or equal to  one. To see th e  m ain  advantage of using th is m odel, it 

will now be shown th a t  for any w in  th is signal set, th e  s tan d ard  'H.O 0 system  norm  

provides a  non-conservative upper bound on th e  am plitude of th e  o u tp u t z{t)  in the  

tim e  dom ain. This resu lt should be contrasted  w ith  Lem m a 2.1.

L e m m a  3 .1  Suppose that z(jui)  =  Tzw(ju>)w(ju>), th a t T zw(s ) is the transfer function  

o f  a stable L T I  sys tem which is SISO, and that Tzw( j u ) is a continuous funct ion of

u .  Then

SUp || Z( t ) Hog —1| Tzw{s) ||oo
We'D
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where T>$ is defined in eqn. (3.1). Equivalently,

II z( t)  ||oo <  a  V r a £  <£> || Tzw(s) ||oo <  a  

where a. is any non-negative real scalar.

P roof
Consider an  a rb itra ry  exogenous inpu t in  T>w\ say

w i t ) =  A ex p ( jo j 0 t)

T he o u tp u t due to  th is inpu t is then

z( t)  = T 2 W( j u 0 ) A e x p ( ju o t )  (3.2)

=>■ |z (i) | =  \ATzw( j u 0 )exp(ju} 0 t)\

=4> sup \z(t)\ = \ATzw( j u 0)\
t

“ H I  Z f t )  l | o o =  | A H 'z w [ j< jJ o )  I

Now since Tzw(jto) is continuous, the re  is an lo0  G 71 U {oo} which achieves equality

|| Tzw(juj) lloo^ m ax \ Tzw(ju ) \  = \Tzw{ ju 0)\
UJ

and  thus it follows from  th e  definition of th a t

SUp || z ( t )  |loo — || T z w (^JOj) ||oo 
wEV^

w hich com pletes th e  proof.

Two poin ts abou t th is proof m ay be w orth  com m enting on. A transfer function 

represents a  certa in  differential equation. In  th e  above, differential equations are 

solved in  th e  sense of th e  Fourier transform , ra th e r th a n  in  th e  sense of th e  Laplace 

transfo rm , which is w hy th e  sy stem ’s transien t response doesn’t  appear in eq. (3.2). 

T he  m a th em a tica l techniques being used in th e  proof as well as in  th e  rem ainder of this 

p ap e r are best described as a m ix tu re  of Fourier and Laplace transfo rm  techniques.

N ote th a t  th is proof involves evaluating th e  transfer function  Tzw(s) a t th e  isolated 

po in t s =  jojq . S o  th is  proof seems to  require th a t Tzw(ju>) be  a continuous function 

of lo. T he case of discontinuous Tzw’s would not seem to  be of p ractical im portance. 

However, for certa in  theore tical purposes, Tzw(s) is viewed as being a m em ber of
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th e  H ardy space ‘H <xn and this space contains discontinuous elem ents (R udin 1987). 

W hen discussing discontinuous T ^ ’s, one m ust work w ith  th e  definition

|| T z w { s )  ||oo=  e s s - s u p _ 0o < w< +<X)| T * u ( j w ) |

W hen Tzw(juj) is continuous in to, th e  concepts of suprem um  (sup) and essential 

suprem um  (ess-sup) coincide, and th e  proof as s ta ted  above does th e  job. This tech

nical difficulty will be circum vented shortly. □

T he above resu lt is well known (see for instance Section 5.2.6 of [6], Section 3.4.1 

of [44], Table 1 in [9], and Table 2.1 in  [74], However, its consequences, as described 

in  th e  rem ainder of th is section, are believed to  be new. The proof has been included 

to  draw  a tten tio n  to  th e  necessity of using Fourier ra th e r th a n  Laplace transform s 

and  to  th e  difficulty w ith  discontinuous Tzw(ju>ys. Of course, one can ju s t as easily 

work w ith  th e  signal set

Re =  M i ) |  w(t)  = A  sin(u;i +  </>), u),<f> a rb itra ry , —1 <  A  <  1}

N ote carefully th a t th is  lem m a involves th e  £<*, norm  of z( t) ,  and a set of signals 

which is clearly very close to  classical frequency response th inking. However, as 

no ted  above th e  set of signals involved m ay seem to  be an unreasonably  sm all set. 

For p rac tica l purposes, a m uch richer set is needed.

3 .1 .2  T h e  C o n v ex  H u ll is Free

We now show th a t  th e  above observation holds not ju s t for any signal in th e  set T>ff 

bu t for any signal in  th e  closure of its convex hull, to  be denoted by Co . Consider 

th e  convex hull of which consists of all (finite) convex linear com binations of 

elem ents of T>w\ viz.

k k

Co X>£s) =  M i )  I W(L) = £  Ai exp ( ju i t ) ,  u>i a rb itra ry ,
¿=1 i=i

T he closure of th e  convex hull is given by

oo oo

c s  2>w =  m o  | w(t)  =  £  Ai  exp(jo;ti) , u>i a rb itra ry , E w s D
¿=1 i=1

and  we have th e  following lem m a.
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II z { i) ||oo< a  V  w € Dls) || z(0 !!«,< a  V id£ Co D,(0s)

P roof
Consider any a rb itra ry  signal in the  closure of the  convex hull of "Dw

oo oo

«>(0 =  X ] y4i exP lM 0 >  ( J ]  l^ .l <  i)
«=1 t=i

T lie o u tp u t due to  th is inpu t is then

OO

z ( i)  =  ^   ̂T w i j ^ A i e x p i M t )
i=1 

oo

=> K O I ^  T .  \Tzw{ju,) A, exp(]u>jt)\ 
i=l

oo

=> K O I <  IT z w ( M ) \  \Ai\  I exp(ja>t'0 |
i=i

OO

=> K O I ^  s u p |r ^ 0 'c j ) | V | a , |  lexpO'wi/)! 
w  1=1

oo

=> sup K O I <  || lloo | A,-1

=> £ u p  II z ( t )  lloo =  II Tzw{ju>) ||oo 
weCo

w here equality  is achieved in the  above expression by su itably  choosing w(t) .  □

T he above observation is tru e  much m ore generally. Indeed, for any  class of signals, 

T>1U say, i t  is clear th a t

|| z ( 0  | |o o <  «  V w e V w «=>■ || z( i ) | |o o <  a  V tv e  Co V w

In o ther words, th e  convex hull is free. This is significant because it substan tially  

increases the  range of exogenous signals for which Lem m a 3.1 applies.

L em m a 3.2

50



3 .1 .3  A  F req u en cy  D o m a in  C \ N o rm  S ign a l S et

T he above resu lt can be fu rther exploited as follows. T he convex hull of th e  set T> }̂ 

m ay be w ritten  ju s t as easily in th e  frequency dom ain,

k k
Co = { w ( j u )  I w { ju )  =  27T ^ 2  A iS (u  -  w,-), ^  a rb itra ry , ^  \Ai\ <  1}

¿ = 1 4 = 1

w hich is m ore convenient for our purposes. (T he Fourier transform  of elem ents of 

T>$ are im pulse functions tim es 2n.) T he closure of th e  convex hull is th en

OO CO

=  { w ( j u )  | w(ju>) =  2 tv A i 6 (to — u}{), tOi a rb itra ry , E w < i )
i=1 t=l

T his set consists of (finite or countably infinite) sequences of im pulse functions in th e  

frequency dom ain. This process can be taken  a step  fu rther. Im pulses are so-called 

generalized functions, and  ‘o rd inary ’ functions can be viewed as a weighted sum  of 

(uncountably  infinitely  m any) im pulses v ia th e  well known sifting property,

/+oo
v { j u ) 8 {uj — ¿D)dw

•OO

Exploiting  th is observation, define

CO

-  {W( j U) I w ( ju )  = olI-k ^  A i 6 (u) -  LOi) +  (1 -  a)2Trv(jio) ,. . ,

OO

a  G [—1,+ 1 ], tOi a rb itra ry , £  \Ai\ < G B C ^ j u ) }  (3.3)
¿=1

A nother possible m odel for uncerta in  signals is th e n  th e  signal set V^ , where

=  M i w) I II w ( j u )  ||i <  1} =  B £ i( jw ) (3.4)

This is th e  signal set which we will work w ith  subsequently. It consists of all signals 

whose C\  norm  is less th a n  or equal to  unity  in the frequency domain.  It is essentially 

T*ŵ  tim es a constan t, b u t w ith  th e  use of generalized functions avoided. N ote th a t

V .«  C ©£> and 27T 2>£> C V ®

It will now be shown th a t for any w  in  th e  s tandard  TLra norm  provides a

non-conservative up p er bound on th e  am plitude of th e  system ’s o u tp u t z { t ) in  the 

t ime domain , for th e  SISO case.
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L e m m a  3 .3  Suppose that z(ju>) =  Tzw{ju>)w(ju>), and that Tzw(s ) is the transfer 

func tion  o f  a stable L T I  system which is SISO. Then

 ̂ II II ____   II ^ (0  IIco9 II I z w { $ )  | | c o —  S U p
Z7T tO5£0  II U) yJOJ)  | | i

=  sup II z(t)
we'D,(1)

where T>\1  ̂ is defined in eqn. (3-4). Equivalently,

II *(<) ||oo <  «  V w  G ^  || Tzw(s) |U  <  ‘I n a

where a  is any non-negative real scalar.

P i 'o o f

C onsider an a rb itra ry  w  €  T>u,\ Using the  inverse Fourier transform ,

i I r +o° 
k ( 0 l  =  2 ^  | J  z ( ju )e*uld u

1 I f +°°
=  2 ~ \ J  Tzw(juj)w(ju))e3Wid u

I I'+OO
< —  j  \TZVJ(juj)tv(ju)\du 

H older’s inequality  then  shows th a t

1 f + ° °
KOI <  5 T SUP lr «*(iw)l /  k ( jo ; ) |d a ;

^  u/ J —CO
=> \Z{

= ^  II Tzw( j u I  llooll w(joj)  111

Since w  6  T> \̂  and  t were arb itrary ,

1
sup || z( t)  |U <  —  || Tzw{ju )

( , )  ¿ITW(zV

To show th a t equality  holds in the above inequality, suppose th a t

|| Tzw{s) ||o o >  Ai

T hen there  is a  subset f l C  K  such th a t

( 3 . 5 )

\Tzw(ju>)\ >  Ai when u> 6  ii
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where

/ da; =  ¡i\
J q

is s tric tly  positive. Define

H i 1 e x p ( ~ j ¿ ( T zw(juj)) for u  e  SI
w C H 0 otherw ise

T hen, le tting  'z be th e  o u tp u t resulting from  th e  inpu t w,
f  +  O O

f —DO 

1

1 /‘+0°
= —  J  T z w (j l o ) w (j l o ) exp(jcu/,)do

2 tvh
~ f  \Tzw(ju;)\d i  
i J  n

>  A _  [  dw =  ^
2TTfix J q  2?r

Since || w(ju>) | | 1, th is  shows th a t

II 7 1  / „ ' 1 11 ^  \ II z W) ll°° ^  A l
J - z w \ S ) 00^  '»I ^  11 ■ \ 11 ^  o|| W(jLO)  ||i ¿TV

so th a t
|| r p  (  n \  | |      ^  II Z{t) lloo ^

J - z w \ S )  00-'> Ai =̂" SUp .. . . .. .
w-t0 || w(jw) 11! 27T

and
ll nr1 ( \ ll ^   ̂ H ^ (0  II0 0J-zw\S) 110 0  ̂  Slip 7 : — r r.27T w^ 0 || W{JU>) 111

com pleting th e  proof.

Loosely speaking, th e  essential idea behind  th is  proof is th a t w(jto)  approxim ates 

th e  im pulse function  8 {u> — ojq) where u Q approaches or a tta in s  th e  suprem um  in

sup 1?^^(jcu)| —1| Tzw(s) Hoo
U>

R eaders unfam iliar w ith  th e  m athem atica l form alism  of Lebesgue in tegration  [53] 

should view Tzw( j u )  as a  continuous function of ui. In  th is case, f I m ay be tak en  to  

be an  in terval of s tric tly  positive length. The m ore general case of possibly d iscontin

uous Tzw{ j u y S requires th e  use of m easure theory. Here, 0  is a set of s tric tly  positive 

m easure. In either case, an  fi w ith  th e  required  properties always exists. So th is proof 

does no t require Tzw( j u )  to  be continuous in  to and it applies to  any Tzw(s) G Tioo-
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3.2  SISO  R o b u st S ta b ility  in  7̂ oo

In  th is section we re tu rn  to  the issue of system uncertainty. As discussed in  Chapter 1 , 

the p rinc ipa l too l used for investigating the effects of system uncerta in ty on closed loop 

s ta b ility  is the Small Gain Theorem. Recall however tha t the SGT applies equally 

well to  any induced norm , bu t not d irec tly  to  semi-induced norms. The lemma given 

above for the new uncertain signal set U $  says tha t the 'H(X1 norm  can be viewed as 

a certa in semi-induced norm , since different norms appear on the num erator and the 

denom inator of eqn. (3.5). In  this section we show th a t for the new signal set T>\^ the 

Tioo norm  can also be in terpreted as a certain induced norm  -  thus the SGT applies 

and the issue of designing for robust s ta b ility  can be addressed.

L e m m a  3 .4  Suppose that z(ju>) =  Tzw{ju))w(joj), and that Tzw[s) is the transfer  

function of  a stable L T I  system which is SISO. Then

II v  f \ ll H HiJ-zw\s) oo=  SUp j   - .
■wjiO || W ( J U > )  | | i

Equivalently,

|| z ( j u )  ||i <  a  V w(juj)  6  B £ i ( j u )  || Tzw(s) <  a  

where a  is any non-negative real scalar.

P r o o f

The proof is an easy application of Holder’s inequality, which im m ediate ly yields

f '+ O O/ l oo
\z(ju)\du

•oo

/+oo

I Tzw{juj)w(ju))\Au

•oo r*+00
<  sup \Tzw(joj)\ / |u;(ju;)|da;

w J — OO

— || Tzw{s^ 11oo11 1

and when w ( j u )  G BCi(j io ) ,  so tha t || w{jui) | | i<  1, we have tha t

II l | l —  || Tzw(s) | | oo
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To show th a t  th is inequality  is in  fact an equality, suppose again th a t

|| T z w ( s )  | | o o ' >  A i

As before, th e re  is th en  a subset fi C 7Z such th a t

\Tzw(ju>)\ > Ai when on G O

w here

I duj = fii
J n

is s tric tly  positive. Define

1/f ii  for uj G
w ( j u )  =

T hen

0 otherw ise

+ 0 0

/
 +  OO

\Tzw( j u ) w ( j  co)\d<

•OO

f  \Tzw(ju>)\dto 
f1 1 Jn

> —  [  do; =  Ai
V i  J n

Since || w ( jw )  111 =  1, th is  shows th a t

11 t * / 11 ^ \ II * 0 ’w) Hi ^ ATzwy&j 0 0 ^  ^1 ^  || ^ v /  • \ 11 ^
II w { j u )  IK

so th a t

II Tzw(s) ||oo> Ai =>• sup |  = =  =  >  Ai
w^O || 'WyJLOj 111

and
rr II ^  II ZU U) 111J-zw\S) 00^  S l i p  .. . . * | |

|| W{]U) ||i

com pleting th e  proof.

A gain, th is  proof does no t require Tzw(jw)  to  be  continuous. □

T he above lem m a says th a t th e  usual norm  m ay be viewed as an induced norm , 

being induced by th e  C\  norm  in th e  frequency dom ain in  th e  SISO case. This p e r

m its  th e  application  of th e  SG T to  ob ta in  sufficient conditions for robust stability. It 

is no tew orthy  th a t th e  Tioo norm  is also an induced norm  in  ano ther d istinct sense, 

as in  T heorem  2.1 above. However, th e  above lem m a is m ore su ited  to  th e  needs of 

our m odified theory, as will becom e clear shortly.
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3.3 In terp reta tio n s o f  th e  T i o o  N o rm

Our results so far in  th is  chapter may be summarised as follows.

T h e o r e m  3 .1  Suppose that z(juj) = Tzw(ju)w(ju)) ,  that Tzw(s ) is the transfer func 

tion o f  a stable L T I  system which is SISO, and that Tzw(jio) is continuous in lo. 

Then

(1) || Tzw(s) ||oo

(2 ) =  sup || z(juj)  ||2
wevffl

(3) =  sup || z(t)  Hco
wev

(4) =  27t sup || z(t)  ||oo
wevffl

(5) =  sup || z ( j u )  ||i
w e v $

where T>w\ and are given by equations (2.1), (3.1) and (3-4) respectively.

This theorem says th a t the op tim a l and sub-optim al solutions of several SISO 

problems coincide. So SISO Ti-oo controllers are op tim a l in  several senses. Each 

of item s (2) to  (5) above points to  a d is tinct m otiva tion  for the op tim a l controller 

synthesis problem  of m in im iz ing  the quantity  in  item  (1). Item  (2) is the basis of 

the energy paradigm  for control. I t  has been argued above tha t th is approach is 

seriously flawed from  a contro l engineering point of view. On the other hand, items (3) 

and (4) show th a t m inim izes the worst case £ <yo norm  of the ou tput for certain 

in p u t signal sets. So in  the SISO case, standard Tioo control theory already op tim a lly  

and non-conservatively m inim izes m axim um  tracking errors in  the tim e domain. In  

pa rticu la r, tim e  domain ‘spikes’ are avoided, indeed o p tim a lly  avoided. Items (2) 

and (5) are useful because they show tha t the system norm  in  item  (1) is an induced 

norm . F ina lly, in  [54] i t  is shown tha t the "Hr» norm  also has an in te rpre ta tion  in 

terms of the ou tput power of a system subject to  in pu t signals of bounded power. 

In  th is  approach however the functions used to measure the power of the in pu t and
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o u tp u t signals are not stric tly  speaking norm s, and  thus we have not included th is 

in te rp re ta io n  in  th e  above theorem .

I t seems rem arkable th a t  several different perspectives regarding th e  underlying 

engineering m otivation  for controller design lead to  th e  Tioo norm , and  correspond to  

th e  sam e op tim al controller, in th e  SISO case. Things are only a little  different in 

th e  M IM O  case, as will be shown next.

3 .4  M IM O  N o m in a l P erform an ce in  T i o o  • N on - 

C on servative  M in im isa tion  o f  M ax im u m  Track

ing  Errors in  th e  T im e D om ain

In  th is section we ex tend  our results to  deal w ith m ultivariab le system s. It is shown 

th a t  th e  m odified theory  leads to  a new Tioo op tim isation  problem  in th e  M IM O case. 

O ur first ta sk  is to  ex tend  our new signal sets to  deal w ith  vectors of uncerta in  inpu t 

signals.

3 .4 .1  V ec to r  E x te n s io n s  o f  th e  S ign a l S e ts  T> $  and

T he proposed signal sets are generalised to  th e  M IMO case as follows. Specifically, 

consider th e  problem  of choosing a controller K  to  m inim ize th e  effect of th e  inpu t 

w  on th e  o u tp u t z  w hen there  are several unrelated, independent  exogenous inputs, 

and  in th e  absence of system  uncertain ty . N ote th a t Tzw(s) is now a  transfer function 

m a trix , say of dim ension m  x n.

We define th e  following two classes of vector signals. Let

=  { ^ ( 0  =  I Wi(i ) =  ^ * exP(.M O r a rb-, |A | <  1, * =  1,
(3.6)

'Dff  = i w U u ) =  K ( i w) c  • ■,w n ( j u ) ) T | II Wi(ju)  | | i<  1, l =  l , . . . , 7 l }  (3.7)

E ach  vector elem ent Wi(t) of w(t)  G is a sinusoid whose phase and frequency 

is arb itra ry , and  whose am plitude  is less th a n  or equal to  one. Each vector elem ent 

Wi(jbj) of w{jio)  £  belongs to  th e  un it ball in in th e  frequency dom ain.
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I t will be  convenient to  define th e  signal norm

II w ( ju )  | | i=  m ax || Wi(juj) ||i (3.8)I

C learly is th e  un it ball in th is norm , and

v W  =  t f A C H  X ... x

3 .4 .2  A  N e w  Tioo O p tim isa tio n  P ro b lem

W e show now th a t for b o th  of th e  uncerta in  vector signal sets and  *Dw\ the 

p rob lem  of m inim ising th e  £<*, norm  in  th e  tim e dom ain of th e  o u tp u t due to  the  

w orst case in p u t signal leads to  a new optim isation  problem . Define first of all 

th e  following system  norm

n

|| | | s — m ax V  || (Tzw(jio))ij ||oo (3.9)
i  4

3 = i

T his system  norm  is obta ined  by tak ing  th e  usual norm  of each element  of the  

transfer function  m a trix  Tzw(s), and  then  applying th e  m ax-row -sum  m a trix  norm . It 

will b e  referred  to  as th e  B norm. T he m ain  theorem  for handling uncerta in  signals 

in  th e  proposed approach m ay now be stated .

Theorem 3.2 Suppose that  z ( j u )  = Tzw( j u ) w ( j u ) ,  that Tzw(s) is the transfer func 

tion matrix o f  a stable m x n  L T I  sys tem, and that Tzw( ju )  is continuous in u>. Then

(1) || Tzw(s) ||_b

(2) =  sup || z (t)  ||oo
w(t )ev

1 II z(t) llo o  1  II /  X M(3) =  —  sup —  =  —  sup II z(t)  Hoo
271" w(ju)ji0 II w ( j u j )  | |x 27r

(4) =  sup =  sup || z ( j u )  Hi
w(ju)¥= 0 II WU W) 111 m(jcj)ev

where T>w\ T>w\ || . Hi and  || . | |s ,  are defined in eqns. (3.6), (3.7), (3.8) and (3. 

respectively.
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P roof
Consider an a rb itra ry  w(t)  in T>w \  say

f  u>i(0 \  (  expO 'wji) ^

w(t)  =  ;

\  ™n(0

T he o u tp u t which results from  th is inpu t is

y  A n exp(ju}nt) j

z i(t) = y ( T z w ( j u j ) ) i j A j  exp (jw /i), * =
i=i

Clearly,

expijuj j t )
j =i

<  £  n v  ll°°
j=i

and since i, t and w(t)  £  T>[^ are arb itrary ,

n
sup II z( t)  Hoc <  m a x j ^  || (T«„(a))y ||oo =  II Tzw(s)  ||B 

v>£T>tf j = l

and equality  can be a tta in ed  by su itab ly  choosing the u>j's and the / I j ’s, establishing 

p a r t (2). T he  crucial point is th a t th e  frequencies ojj and th e  (com plex valued) 

am plitudes A j ,  j  =  l , . . . , n  are independent of each other. So to a tta in  equality, 

sinusoids w ith  d is tinc t frequencies need to  be applied to  d is tin c t inpu ts  wj,  j  = 

1

Consider nex t a  w(t)  in 'D{lu\  T he resulting o u tp u t is

z ( j u )  =  Tzw(ju>)xu(ju>)

Inverse Fourier transform ing gives



Clearly,
r-f-oo

H older’s inequality  gives

< ¿ ¿ 1 1  ( T ~ W ) «  IWII w t Q u )  ||,
j= l

Since th is holds for all L and all i ,

=HI *(«) I U <  ^  II T . .C M  M  < •(/" ) II'.

and when || | | i <  1,

<  ^  II T*w(ju>) ||B

so th a t

II z( t)  ||oo< ~  II T zw{ ju )  11« V w €  e g )

=> sup II z(t)  |U <  II Tzw(ju>) IIB 

To show th a t  equality  holds in the  above inequality, suppose th a t

II (Tzw( s ) h  l|oo> A a

which clearly im plies th a t

n

II Tzw(s) ||fl>  r n a x ^ A . j  
j= i

T hen  th e re  are subsets f l tj C TZ such th a t

|(T ^ ( ju ;) )0 | >  Aij when w £  fly

where

/  dcj =  m j  
JVij

are s tric tly  positive. Fix i for the  m om ent. Define

~  (■ \ I exP (“ i ^ ( ^ ( i w))tj) for u> £ Clij
W j ( j u )  = <  3 .

0 otherw ise
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T hen , le ttin g  ‘z  be th e  o u tp u t resulting  from  th e  inpu t w,

2 n /*+oo

m ) U = o  =  ^  y  J  (TzvU u f i i jW j i jw )  exp(jL0 t)dL0

3=

Since i was arb itrary , whenever

Tzw (.s ) ||B>  m a x J ^ A
3= 1

one has

sup
1  H

z(i) ||oo> II z{t)  ||oo> m a x |z ( i ) |i=o >  —  m a x V  A ¿j
t Z7T * ~ — /

i = l

This shows th a t

=4” SUp || ^(i) ||oo^ 7) II Tzw{s)
wEV^ 2tr

com pleting th e  proof.

Loosely speaking, th e  essential idea beh ind  th is proof is th a t by  allowing each 

Wj(joj) to  approach  an im pulse function in  th e  frequency dom ain, equality  can be 

approached  a rb itra rily  closely, establishing p a rt (3). Again, th e  crucial po in t is th a t 

different frequencies m ay be required  for each j  in Wj(juj) —> 8 {u — oJoj)-

To verify p a rt (4), consider again a w ( t ) in  D $  • This inpu t gives rise to  the  

o u tp u t
n

z iU u ) = i =  1, ■ • •, m
3= 1

so th a t

/

+oo

3= 1

/»+ oo
<  m ax E  \{Tzw(ju}))ijWj(ju) \duj

■ _ .  J  — OO

du;

j =I
n

<  m ax  V '  || (Tziy( j^ ) ) i j  ||oo|| Wj(jw)I ‘ ^
3= 1
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<  m ax V  || (Tzw(juj))ij H«, m ax || W j( ju )  ||, 
i 33=1

(I

and when w(jui)  €  T>\1 \

z { j " )  ||i <  II TiW{ ju )  Hall w { j u )  ||i

<  || Tzw{ ju )  ||B V w ( j u )  6  

=> sup || z(juj)  Hi <  II Tzw( j u )  || B 

To show th a t this inequality  is in fact an equality, suppose again th a t

|| {r«(i))y ||oo> Kj 

As before, the re  are then  subsets fly  C TZ such th a t

|(Tw (7 w)),^| >  Xij when u  €  f2tJ

w here

/  dw =  fiij
Jn,}

are s tric tly  positive. Fix i for th e  m om ent. Define

j  exp{ - j l ( T xw( ju ) ) i j) /pij  for w €  Qti
W j l l U )  =  <

0 otherw ise

and let z  be the  o u tp u t resulting from this inpu t. T hen

r-foo

111 V'-oo (Ttw ( j  uj )) ijWj (ju>)
i=i

du;

Since i was arb itra ry ,

/  + OO ™

00 i= 1

=  £  —  /  I C ^ C H M d u ,  
J=1

J L  \  . f  J L
> £  f - .  d^  =  E A'«

,= i /i,J ^  i= i

n

I! *(¿<*0 lli> mf x J ]  a,j
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Hence, whenever
n

|| Tzw(s ) ||B>  m a x ^ A j- j  
j -1

we have
n

sup || z(ju>) | | i> || | |j>  m ax > A;j
' 7=i

so th a t

sup || z(jto)  | |i> || Tzw(s ) -B
wEVw-1

which com pletes th e  proof.

N ote th a t  as before only item  (2) requires Tzw(juj) to  be continuous in  u>. □

Item  (3) in th is theo rem  shows th a t th e  B norm  m ay be viewed as a sem i-induced 

norm . As such, it uses th e  m ax-am plitude norm  on th e  o u tp u t side, so th a t tim e 

dom ain ‘spikes’ are avoided, and th e  B norm  non-conservatively trea ts  m axim um  

track ing  errors in th e  tim e dom ain. B oth  signal set lum ping and specification lum p

ing are avoided by th e  use of th e  £<*, vector norm . Item  (4) shows th a t th e  B norm  

can ju s t as well be viewed as an induced norm , thus perm ittin g  th e  application  of the  

SG T to  system  uncerta in ty  issues. N ote th a t th e  q uan tity  to  be m inim ized is exactly  

th e  usual norm  of Tzw(s ) in th e  SISO case, b u t is different in  th e  M IM O case. So 

th e  expression of eqn. (3.9) defines a new type  m inim ization  problem  for M IMO 

system s.

T he observations in th is theorem  m otivate  th e  op tim al controller synthesis p rob

lem  of choosing K  to  m inim ize th e  closed loop system ’s B norm . To th e  a u th o r’s 

knowledge, th is synthesis problem  has not been tackled a t an analy tical level -  vari

ous m ethods are available for obtaining sub-optim al solutions however. In C hap ter 4 

a decoupling design procedure is presented which is used w ith  loopshaping tech 

niques in  C hap ter 5 to  m inim ise th e  B norm  for a realistic  design exam ple. A lte rna

tively  th e  convex op tim ization  approach of Boyd et al. [55, 56, 6] would seem to be 

an a ttrac tiv e  op tion  for obtain ing  (nearly) op tim al solutions num erically. Since the  

problem  is a  convex problem  (after appealing to  th e  Youla param eteriza tion  [68]), 

it can be tack led  num erically. Indeed, com binations of specifications draw n from  all 

th e  approaches discussed in  th is paper can be effectively tackled in such a num erical 

paradigm . N onetheless, th e  op tim al synthesis problem  of m inim izing th e  B norm  

is an  im p o rtan t open problem . Some po ten tia lly  useful progress has been m ade in
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th is d irection  a t an analy tical level in  th e  case of SISO p lan ts [57], while num erical 

approaches to  th e  problem  are being pursued in [58].

3.5 M IM O  R o b u st S ta b ility  in

Item  (4) of th e  above theorem  says th a t th e  proposed norm  m ay be viewed as an 

induced norm , w ith  th e  sam e norm  in th e  num era to r and  denom inator. It follows 

th a t th e  SG T m ay be used to  ob ta in  sufficient conditions for robust stability . As 

usual, we res tric t our a tten tio n  to  unstru c tu red  uncertain ty . Thus, define

=  {A p(io ;)| Ap( ju j)  is B -stable, LTI, and || A p ( j u )  ||p <  1}

In th is u n certa in ty  set, A p  is constrained only by a single induced norm  bound. 

A pplying th e  SGT to  th e  set-up of F igure 1.5, and  specializing to  th e  signal norm  

|| . ||x, establishes th e  following.

Theorem 3.3 Suppose that the system of  Figure 1.5 is nominally stable. I f  

then the system o f  Figure 1.5 is B IB O  stable fo r  every L T I  A p ( j u )  which obeys

- lII A p ( j u )  ||B=  s u p   ,   <  c*
o || a ( j u )  Hi

This theorem  guarantees robust stab ility  for uncerta in ty  sets of th e  form  T> P̂ above. 

It is unclear a t present if th e  condition || Tri(s) | |# <  1 is necessary as well as sufficient 

for robust s tab ility  w ith  th is uncerta in ty  set. So th e  converse is an open problem . To 

prove necessity, one would need to  exhibit a destabilizing A p  w hen || Tri(s) |p >  1. It 

seems likely th a t  th e  converse is true , bu t only if NL a n d /o r T V  A p ’s are considered, 

as in

=  {A p | A p is stable, and  || A p ||p  <  1}

T he observation in  th is  theorem  also m otivates th e  op tim al controller synthesis 

problem  of m inim izing th e  system  norm  || Tzw(s ) ||p.
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3.6  A  N ew  A p p roach  to  7 1 ^  W eigh tin g  F u n ction  

S electio n

T he issue of w eighting function selection in  s tandard  Hoo control theory  was discussed 

a t leng th  in  C hap ter 2. In  this section we exam ine th e  im plications of th e  m odified 

TCco control theo ry  presented  above for weighting function  selection. In  particu la r we 

focus on th e  d istinct roles played by weighting functions on th e  ‘in p u t’ and ‘o u tp u t’ 

sides of th e  system .

O ne of th e  m ost fundam ental ideas in  robust control theory  is to  form ulate  th e  

controller design problem  as a m a them atica l op tim ization  problem . In order to  ob ta in  

op tim iza tion  problem s for controller design, i.e. problem s which are sufficiently precise 

to  iead to  well-defined m a them atica l op tim ization  problem s, two basic issues need to  

be se ttled . F irstly , th e  in tu itive  notion of th e  ‘size’ of th e  signal to  be m inim ized m ust 

be form alized, and secondly th e  set of possible u ncerta in  inputs m ust be form ally 

s ta ted . T he com bination of a signal norm  plus a weighting transfer function  can 

be used for bo th  of these purposes, and these two roles for norm s and  weights are 

th e n  qu ite  d istinct. This d istinction  becom es m ore explicit, if we consider F igure 3.1 

below.

F igure 3.1: T he Canonical Form  w ith  ex trac ted  weights

T h e  figure shows th e  canonical form  for linear controller design given in  F igure 1.3 of 

C h ap te r 1 -  in  th is rep resen ta tion  however, weighting functions are ex trac ted  from  th e  

augm ented  p lan t. I t is im p o rtan t to  distinguish betw een th e  physical in te rp re ta tio n
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of the signals w and a in  the above representation. In  applications, uncertain inpu t 

signals generally correspond to sensor or measurement noise and to external d is tu r

bances acting on the plant. I t  is the signal a in  Figure 3.1 which represents such 

signals. So i t  is the set T>a, and not D w, which represents the engineer’s judgement 

on what the sensor noise, external disturbance and command inputs are like ly  to  be, 

or which class o f them  s/he wants the system to  be optim ized for. These inputs then 

give rise to non-zero tracking errors, non-zero actuator inputs, etc., and the objective 

of the contro ller is to  keep the size of th is ou tpu t signal as small as possible. Again, 

i t  is im portan t to distinguish between the physical in te rp re ta tion  of the signals z and 

b. I t  is the signal b which represents such output signals, i.e. the signals in  the system 

which the controller seeks to  m inim ize. The weighting transfer function V  allows for 

extra  f le x ib ility  in  quantify ing the size of b. As is well known, keeping the size of d if

ferent signals small are often conflicting requirements, and V  allows different signals 

to be d iffe ren tia lly  emphasized. Also, keeping the low and high frequency components 

of a signal small necessarily involves tradeoffs, and V  may be used to  place a different 

degree of emphasis on d is tinct frequency ranges. The transfer function from  a to  b 

w ill be denoted by T&a. Then clearly,

TZw =  V T baW

The d is tinc tion  between the roles of norms and weighting functions on the inpu t and 

ou tpu t sides now becomes more apparent. The output side norm  together w ith  the 

weight V  is used to quantify  the size of b, and so to  form alize the precise sense in 

which the signal b is to  be m inim ized. This raises the questions o f which norm  is best 

applied to  the signal z and how to  choose the weight V. The issue here is tha t of 

m odelling the objectives and purpose of the control system.

On the other hand, the com bination of the inpu t side norm  and inpu t side weight 

W  is used to  fo rm a lly  specify the signal set T>a. Again, th is raises the question of how 

to  choose th is  norm  and weight. The issue here is th a t of m odelling the uncertain 

in p u t signals to  the system w. In  the presence of unstructured system uncertainty, 

norms and weights play a th ird  role, tha t of m odelling the uncerta in ty present in  the 

p lan t model, or of quantify ing the level of va lid ity  of the p lant model.

Tw o im portan t issues are now apparent. The firs t is how to  choose which norms 

to use, and i t  is here tha t the fundam ental differences between the TCoo and the C\ 

theories arise, and between other alternatives. This issue has been discussed in  deta il 

in  the prequel. Indeed the results presented already in  this chapter demonstrate tha t

66



th e  use of different norm s can give theories w ith  rem arkably  different properties. The 

second is th e  problem  of weight selection. This issue will be discussed in th e  following 

paragraphs.

N ote th a t,  in particu la r, th e  weights W  and V  p lay very different roles, a point 

which perhaps deserves to  be m ore widely appreciated. As com pared w ith  F igure 1.3, 

F igure 3.1 m akes th is d istinction  m uch clearer. A particu la rly  im p o rtan t difference 

betw een in p u t and  o u tp u t side weights is th a t for M IM O system s w ith  diagonal 

w eighting function  m atrices each elem ent of th e  o u tp u t weight Vu affects only the  

corresponding elem ent of th e  ou tp u t signal. In con trast, each elem ent of th e  inpu t 

weight Wu  affects every elem ent in th e  ou tpu t signal. A fundam ental im plication  of 

th e  above discussion is th a t th e  curren t practice in 7i°° design of placing a single 

w eighting function on th e  o u tp u t side only is flawed, since it unnecessarily gives up 

design freedom . If th e  weights are to  be regarded as m odels of exogenous inpu ts, only 

weights on th e  inpu t side can cap ture th is physical reality.

C onsider therefore th e  following approach. Let th e  weighting function W  be 

viewed as a fixed m odel of possible d isturbance and noise inputs. T he o u tp u t w eight

ing function  V  m ay th en  be used to  exam ine and tu n e  th e  rela tive quality  of control 

of each individual elem ent of th e  o u tp u t, and to  m anage th e  tradeoffs betw een them . 

So V  enables each o u tp u t signal Z{ to  be weighted separately, allowing th e  relative 

im portance of each to  be trad ed  off by tun ing  th e  appropria te  diagonal elem ent of V .  

N ote th a t  th is  approach is m uch m ore practical under th e  m odified 'H00 control th e 

ory presented  in th is chapter, since th e  proposed m anipu la tion  of V  is m ade sim pler 

by th e  absence of specification lum ping. T he relationship  betw een the  elem ents of a 

diagonal V  and  each elem ent of z  is m ore transparen t, and  thus th e  ‘gap’ betweeen 

th e  design param eters  and specifications is narrowed.

Sim ilarly, th e  use of b o th  inpu t and ou tpu t w eighting functions W \  and W 2  in 

our m odel of p lan t uncerta in ty  allows ex tra  design flexibility, especially in  th e  M IMO 

case. This approach to  w eighting function selection in th e  m odified control theory  

w ould th e n  n a tu ra lly  lead to  m ixed sensitivity  op tim isation  problem s of th e  form

inf || J (s )  ||s
I< 11 v "

w here th e  infim um  is over all LTI stabilizing controllers, and  J  is a m a trix  cost 

function  given by

J  =  (  V s ( s )S 0 {s )W s (s) Vt ( s ) T 0( s ) W t ( s ) )
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The proposed approach provides a physical basis for the se lection/m anipula tion of 

weighting functions. I t  has been shown tha t th is cannot be sensibly done w ith  the 

energy paradigm  for standard 7Y°° control theory. I t  is fe lt tha t fu tu re  progress in  

th is  area should allow the accomodation of (a) a more accurate statement of the ‘rea l’ 

objectives of the control system, (b) more refined models of p lant uncerta in ty (i.e. 

structured system uncerta in ty), and, (c) more accurate models of classes of input 

disturbance/noise signals (i.e. more structured signal uncerta in ty). In  other words, 

an im proved theory should cope w ith  improved models on bo th  the inpu t side and 

the ou tpu t side.

3 .7  R o b u st P erform an ce and R ela tio n s  w ith  S tan 

dard T i o o  T h eory

I t  is too early to  comment on the issue of robust performance in  the m odified 7Yoo 

theory proposed. Even the most obvious questions concerning robust performance in  

the presence of system uncertainty, whether structured or unstructured, are entire ly 

open, in  bo th  analysis and synthesis.

I t  is however interesting to  note tha t the standard 7Yoo norm  and the B norm  are 

closely related, and cannot be very far apart. This fact m ay be fo rm a lly  stated as 

follows.

T h e o r e m  3 .4  Suppose that z(ju>) = Tzw(juo)w(juo), and that Tzw(s ) is the transfer  

function matrix o f  a stable m  x n L T I  system. Then

— || Tzw(s) 11oo <  || Tzw{s) ||B <  n || Tzw{s) (3.10)
m

P r o o f

I t  is well known [71], tha t

m ax m axsup | (Tzw)ij(ju>) | <  sup a(T zw(jto)) <  n  X m ax m axsup | (Tzw)ij(juj) |
i  3 u> W i j  LU

m ax ^   ̂ || (i i i i i ) t j ( jw ) | | o o  ^  || Tzw(jlo) [ [ q o  n x m ax ^   ̂ ]| (Tzw) i j ( j  

1

u)
m i j= l J= 1

m
Tzw( j t o )  ||b ^  || T z w ( j l o )  Hoo ^  n  || Tzw( j l o ) \B
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□

T he above bounds are th e  best possible for an a rb itra ry  Tzw(s) in 7i°°. W hen 

these bounds are used to  show th a t s tandard  Tioo op tim al controllers do not suffer 

from  ‘spikes’, eqn. (3.10) does m uch b e tte r  th a n  eqn. (2.6).

3.8  N o m in a l P erform an ce in 7̂ 2 : N o n -C o n serv a tiv e  
M in im isa tio n  o f  M axim u m  T racking Errors in  

th e  T im e D om ain

In previous sections, it was shown th a t by choosing novel signal sets to  m odel un 

certa in  in p u t signals, a slightly m odified Tioo control theory  can be used to  non- 

conservatively m inim ize m axim um  tracking errors in th e  tim e dom ain. In  was seen 

th a t  th e  resu lting  op tim ization  problem  is th e  s tan d ard  control problem  in the  

SISO case, and  a slight variation  on th e  s tandard  problem  in  th e  M IM O case. In  th is 

section, it is shown th a t analogous observations apply to  signal u n certa in ty  in  7^2 con

tro l theory. However, th e  s itua tion  w ith  system  uncerta in ty  in  7^2 is fundam entally  

different.

3 .8 .1  T h e  SISO  C ase: A  S o lved  P ro b lem

T he system  norm  used in  s tan d ard  Ti -2 control theory  is

JTFV 2* J-oo

r+ o o

Tzw(s) ||2=  x} ~  I | Tzw(juj) |2 dcu (SISO) (3.11)

Tzw{s) \ \ T r a c e  (7 (joj)Tzw ( ju ) )  doj (M IM O) (3.12)

\
1

2 tt
/ + o o  n  71

E E l ( r ™ 0 '" ) ) « ) l Jdw (M IM O) 
00 ¿=1 .?=!i=l J-

W ith  reference to  F igure 1.4, th e  problem  trea ted  by stan d ard  7Y2-control theory  is 

th e n

inf HT^OOHa
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w here th e  infim um  is over all LTI stabilizing controllers, and  th is  is a solved problem  

[13, 44]. T he engineering m otivation  for th is problem  is generally given in  term s of a 

signal in p u t class which is viewed as a stochastic process [59]. A lthough determ inistic  

justifications can be provided, they  are unconvincing in  th e  M IM O case.

C onsider th e  following lem m a [60, 74], which is valid for th e  SISO case only.

L e m m a  3 .5  Suppose that z(jco) =  Tzw{juj)w{ju>), and that Tzw(s) is the transfer  

funct ion o f  a stable L T I  system which is SISO. Then

|| Tzw(s) ||2=  sup f  Z^f)  =  sup || z( t)  IU
w ? 0  II W { J U )  ||2 w e BC 2(jw)

This lem m a says th a t th e  7Y2 system  norm  is a sem i-induced norm , w ith  th e  

signal no rm  on th e  num era to r or o u tp u t side. Thus, in th e  SISO case 7Y2 control 

theo ry  already non-conservatively m inim izes m axim um  errors in th e  tim e dom ain, 

provided th e  exogenous in p u t w(jto)  is viewed as ranging th rough  th e  signal set 

T>$ =  This lem m a is described in  [60, 74] for th e  SISO case only, and  it

does no t seem  to  have a n a tu ra l extension to  th e  M IMO case which corresponds to  

th e  s tan d ard  7^2 norm  of eqn. (3.12).

3 .8 .2  A n  E x te n s io n  to  th e  M IM O  C ase

In  keeping w ith  th e  philosophy of th is thesis, we now show th a t  an a lternative  class

of signal sets overcomes th e  above difficulty w ith  7 i2 control theory. Specifically, we

ex tend  th e  above lem m a to  th e  M IM O case in  a m anner which avoids specification and

signal set lum ping, and which non-conservatively handles m axim um  tracking  errors
(3\

in th e  tim e  dom ain, as follows. Define T>w to  be th e  signal set

=  M i ^ )  =  (w i{.jw), w n( j u ) ) T | || Wi(ju)  ||2<  1, i =  1 , . . . ,  n}  (3.13)

It is convenient to  define th e  following norm  for vector signals

II w ( j u )  ||a=  m ax || Wi(jco) ||2 (3-14)I

This no rm  is ob ta ined  by tak ing  th e  £ 2 norm  of each elem ent of th e  vector signal,

and  th e n  th e  £<*> norm  w ith  respect to  vector elem ents. T he signal set is th e

un it ball w ith  respect to  th is  norm . Define th e  following system  norm

n

|| Tzw(ju>) | |c = m a x Y ^  || (Tzw( ju ) ) i j  ||2 (3.15)%  '
3= 1
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w hich will be referred to  as th e  C  n o rm . This norm  involves tak ing  th e  £ 2 norm  of 

each elem ent of Tzw(s) before applying th e  m ax-row -sum  m a trix  norm . T he appro

p ria te  M IM O  extension of th e  above lem m a is th en  as follows.

T h e o r e m  3 .5  Suppose that z{jui) =  T zw(ju:)w(jco), and that Tzw(s ) is the transfer  

function matrix o f  a stable m  x n L T I  system. Then

|| Tzw(s) \\c =  sup =  sup || z( t)  IU|| w(ju>) ||'2 wevi3)

where T>w\ || ■ || 2  and  || . ||c  are defined in eqns. (3.13), (3.14) and (3.15) respectively. 

P r o o f

T he o u tp u t vector 2  is given by

n

z iU u ) = i =
3 = 1

Inverse Fourier transform ing gives

=* N O ) I =  ^

and using well know n inequalities,

1 71 /“+oo
\(T™ ( ju ) ) i j W j ( jL o y wt\du;

n

< y  II ||2|| Wj( ju)  ||2
3=1

Since th is  holds for all i and  all ¿,

n
=HI z(t) !!«,< m a x V  || {Tzw{juf))ij ||2 m ax || Wj(jio) ||2

% f ?
3=1

W hen  w ( j u )  £  T>w\

n

5̂  m ax N   ̂ || (Tzw(jco))ij ||2= || Tzw(s) He1t z /
j=i

so th a t

II z( t)  II«, <  II Tzw( ju )  \\c V w  <E

n /*+oo
/ ( T ^ j u j ^ i j W j i j ^ e ^ d i o

j =l
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sup II z{t)  ||oo <  II Tzw(ju>) ||c
WGV&

To show th a t  equality  in th e  above expression can be a tta ined , fix i for th e  m om ent 

and  define w(jco) by

W j( ju )  =  II (Tzw(ju))ij  ||2, j  =  1, • • • , n

which is clearly in  • T hen, le tting  z'(t) be th e  ou tp u t resu lting  from  th is inpu t,

n «_|_oo
Zi(t) =  —  y  J  (T™ (ju ) ) i jW j( ju )  e x p ( j u t ) d u

1 f +°° (rp ( ■ (Tzw(ju>))*j .
=  \ T *u>\Ju ) ) i j  II ( T  ^  11 exp(j^)do;

2n  ■'-<*> II )•* II2

=* iS ( i j |« = o  =  £  II ( T ^ M h  h
3 = 1

Since i was arb itrary ,

sup II z(t)  ||oo >  II z (t)  1100= m a x V  || (Tzw( ju ) ) i j  ||2
fn \  ?, ^ '

=  || Tzw(s) ||c

•wEVffl j = 1

com pleting th e  proof. □

As w ith  th e  earlier m odified form ulation  of th e  M IMO Tioo problem , one is led to  

an  op tim iza tion  problem  which is a slight variation on th e  s tan d ard  or classical Ti-2  

control p roblem  in  th e  M IM O case, and  which is identical to  th e  stan d ard  problem  

in  th e  SISO case.

This theorem  shows th a t a slight m odification to  th e  s tan d ard  7Y2 norm  leads to  

a qu ite  a ttrac tiv e  approach to  controller design. M inim izing th e  C norm  corresponds 

to  op tim ally  and  non-conservatively m inim izing m axim um  track ing  errors in  th e  tim e 

dom ain. Specification and  signal set lum ping are avoided. T he approach can be 

viewed as a frequency dom ain theory. I t can reasonably be called ‘m ax-row -sum  7Y2 

control th e o ry ’.
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3.9  R o b u st S p ecifica tion s in  7 i 2

A significant lim ita tion  of th e  system  norm , w hether th e  s tandard  one or the  above 

m odified one, is th a t it is no t an induced norm . T he C norm  is m erely a sem i-induced 

norm , and  th e  stan d ard  norm  is not even a sem i-induced norm  in  th e  M IM O case. 

This m eans th a t  th e  SG T does not apply. T he im p o rtan t consequence of th is is th a t 

robust s tab ility  and  robust perform ance issues cannot be tre a te d  in  th is norm .

Consequently, to  handle robust s tab ility  and  robust perform ance specifications, it 

is necessary to  use m ixed norm s. In o ther words, using norm s which are a m ix tu re  of 

th e  l i . 2  norm  and  some o ther d istinct norm  or norm s becom es unavoidable. This is 

a large p a r t of th e  m otivation  behind  th e  s tudy  of m ixed /H.2 l 'H 0 0  op tim al synthesis 

problem s, and  the re  is a lite ra tu re  on such problem s. W ith  reference to  F igure 1.3, 

one approach  is to  a tte m p t to  m inim ize th e  nom inal 7Y2 norm  of Tzw(s) sub ject to 

a constra in t on th e  infinity  norm  of Trj(s). This approach is stud ied  in [61]. In  [62], 

th is  approach is ex tended  to  robust perform ance. In  b o th  references, th e  results are 

sub-optim al. T he op tim al synthesis of m ixed ^ 2 / ^ 0 0  problem s which avoid signal 

set lum ping, i.e. involving th e  above C norm , is a fam ily of open problem s.

O ne can consider m ixed norm  problem s m uch m ore generally. M ixed 'H0 0 / L \  

problem s are considered in [63], b u t th e  Tioo norm  used is th e  s tan d ard  one. The 

observations of th is  paper suggest th a t it m ay be w orthw hile to  ex tend  th is line of 

developm ent ([61, 62, 63], and references there in) by considering com binations of A 

norm  a n d /o r  B norm  a n d /o r C norm  specifications. Of course, finding analy tical 

solutions to  such problem s is likely to  be extrem ely difficult.
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C hapter 4

A  D ecoupling D esign  M ethod  for 
Super-O ptim al R obust Control

This chap ter presents a decoupling design m ethod  for op tim al robust m ultivariable 

controller synthesis. I t is shown th a t for square, stab le p lants which are m inim um - 

phase, th e  solutions of n independent SISO problem s yield one of m any optim al 

solutions to  th e  n  X n  M IM O controller synthesis problem . T he proposed approach 

to  th e  m ultivariab le  design problem  fully decouples th e  system , significantly im proves 

design transparency , and  results in  controllers which can rightly  be considered super- 

optim al. T he above resu lt holds for th e  s tan d ard  l-i00 and C\  control problem s, as 

well as for th e  m odified 'Hex, problem  presented  in C hap ter 3. For square, stab le  plants 

which are non-m inim um -phase, th e  solutions of n  independent M ISO problem s yield 

one of m any op tim al solutions to  th e  n x n  M IM O problem , under th e  C\ and  modified 

7Yoo problem  form ulations. The resu lting  controller half decouples th e  system  and is 

super-optim al. I t is shown th a t for th e  s tandard  Tioo control problem  th e  resulting 

controller is sub-optim al.
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4.1 M o tiv a tio n  for D eco u p lin g  th e  D esig n  Pro-

cess

Ever since th e  m ultivariable control problem  has been studied, designers have sought 

ways of avoiding its inherent com plexities by seeking to  decouple or diagonalise the  

system , thus allowing th e  calculation of SISO controllers on a loop by loop basis. This 

goal has led to  th e  developm ent and w idespread use of form alised design procedures 

such as th e  Inverse N yquist A rray and C haracteristic  Loci [72]. As is well known 

however, lim itations of these techniques include the ir som ew hat heuristic  natu re , 

and  th e  underlying assum ption th a t th e  p lant in  question has an inherent degree of 

diagonal dom inance. T he advent of robust control theory  in  th e  early 1980’s revealed 

an  even m ore serious problem , nam ely th e  absence of an explicit and satisfactorey 

acknow ledgem ent of th e  im portance of p lan t uncerta in ty  and  o ther robustness issues. 

R ecognition of th e  fundam ental im portance of these issues led to  th e  developm ent 

of robust controller design techniques such as control theo ry  and L \  control 

theory. O ne of th e  greatest benefits of these design procedures is th a t they  are tru ly  

m ultivariab le  in natu re . Thus, in  th e  context of robust control theory  it is certain ly  

no longer necessary to  decouple th e  system  in order to  achieve satisfactory  designs. 

In th is  section it is argued however, th a t com pelling reasons still exist for decoupling 

m ultivariab le  robust control problem s (when and if th is is possible), so th a t design 

can be undertaken  on a SISO loop by loop basis.

F irstly , consider th e  problem  of weighting function selection. C urrent m ultivari

able design techniques require th e  selection and subsequent m anipu lation  of transfer 

function  w eighting m atrices. As argued in C hapter 2 however, th e  rela tion  between 

these  m atrices and  th e  resu lting  ‘o p tim al’ design is far from  transparen t. Various 

design issues, such as those due to  right half plane poles and  zeros, inpose some fairly 

com plicated  tradeoff lim itations. From  th e  viewpoint of th e  engineer th e  prospect of 

choosing, let alone itera tively  m anipu lating  a 7 x 7 m a trix  of in terdependent transfer 

functions for exam ple, is certain ly  a daunting  one. Thus an obvious advantage of de

coupling th e  design process is th a t it simplifies th is task , since independent w eighting 

transfer functions can be chosen one a t a tim e for each loop of th e  system .

Secondly there  is th e  problem  of signal set and specification lum ping. As observed 

in  C h ap te r 2, th is  problem  occurs in m ultivariable Tioo control theory  due to  th e  

fact th a t  specifications rela ting  to  b o th  th e  exogenous inpu ts to  th e  system  w,  and
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th e  regu la ted  variables z,  are given in term s of th e  vector C 2  norm . Consider for 

instance a  p lan t w ith  several ou tpu ts. Inform ation on th e  value of each ou tp u t is 

p roduced  via m easurem ents from  independent sensors or transducers - im perfections 

in  these m easurem ents are th en  generally m odelled as additive noise and included 

in  th e  vector of exogenous inpu ts w. O ther elem ents of th e  vector w m ay be due 

to  unknow n ex ternal d isturbances acting on each p lan t inpu t or o u tp u t, and again 

these disturbances m ay be to ta lly  independent of each other. Lum ping each of these 

signals in to  a single vector w w ith || w ( j u )  H2  <  1 creates an artificial in terdependence 

betw een each elem ent of w  which is conservative and highly undesirable. Sim ilar 

rem arks apply  to  th e  o u tp u t side. In  practice, different regu la ted  variables m ay 

need to  be controlled to  different levels of precision. M inim ising || z(juj)  H2 involves 

averaging over d istinct p lan t ouputs, over frequency and over vector directions, and 

thus obscures which loops of th e  system  are or are not being effectively controlled. 

O ne way of avoiding signal set and specification lum ping is to  form ulate  th e  new Tioo 

control problem  presented  in  C hap ter 3. A lternatively, in certa in  lim ited  cases th e  

design process can be decoupled and solved one loop a t a tim e.

A th ird  advantage of decoupling th e  design process is th a t th e  focus of a tten tio n  

is no t fixed exclusively on th e  ‘w orst’ loop of th e  system . In s tandard  Tioo control 

for exam ple, th e  objective is to  m inim ise th e  m axim um  singular value of some m a

tr ix  cost function  J . In  general however this objective m ay be achieved by a set of 

controllers, and  thus a certain  am ount of design freedom  is w asted if we sim ply select 

one of these  controllers a t random . This ‘ex tra ’ design freedom  has been studied in 

th e  lite ra tu re  on super-optim al Tioo control [64, 65, 66, 67] in  order to  calculate a 

controller which m inim ises all of th e  singular values of J . Since th is chapter con

siders th ree  different robust control problem  form ulations, we will use th e  following 

definition of super-op tim ality  in term s of th e  ou tp u t vector of regula ted  variables 

th is  being appropria te  in th e  present context. A super-optimal robust controller 

must minimise (according to the appropriate norm) em not jus t the largest Zi but also 

the second largest, the th ird largest, etc. This chapter will show th a t under certain  

assum ptions robust control theory  natu ra lly  allows th e  developm ent of decoupling 

design techniques which resu lt in super-optim al controllers.

Finally, th e  ability  to  design for robustness on a loop by loop basis m eans th a t the  

designer can subsequently  apply classical frequency or tim e dom ain design techniques 

to  fu rth e r shape any individual loop of th e  system.
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4.2  T h ree  R o b u st C on tro l P rob lem  F orm ulations

In  th is section we define th e  th ree  problem  form ulations addressed in th is chapter. 

We first of all define th e  m ixed sensitiv ity  m a trix  cost function J ,  given by

J ( s ) =  (  Ws(*)S0(a) W t ( s ) T 0(s ) )

w here So and  To are th e  sensitiv ity  and com plem entary sensitiv ity  function m atrices 

respectively. W ith  respect to  th is cost function th e  th ree  op tim al controller synthesis 

problem s considered in th is chapter are as follows.

1. T h e  M ix e d  S e n s i t iv i ty  C o n tr o l  P r o b le m  given by

inf |[ J ( s )  Hoo

w here th e  infim um  is over all LTI stabilizing controllers.

2. T h e  M ix e d  S e n s i t iv i ty  M o d if ie d  C o n tro l  P r o b le m  given by

inf || J { s )  ||B

w here th e  infim um  is over all LTI stabilizing controllers, and th e  B norm  is as defined 

in  C hap ter 3.

3. T h e  M ix e d  S e n s i t iv i ty  C\  C o n tr o l  P r o b le m  given by

w here th e  infim um  is over all LTI stabilizing controllers.

4 .3  Full D eco u p lin g  and S u p er-O p tim ality : th e  

M in im u m -P h a se  C ase

In  th is  section th e  fram ew ork of th e  Youla param eterisa tion  of all stabilising con

tro llers [68] is used to  show th a t for a  square stab le p lan t P  which is also m inim um - 

phase, th e  th ree  m ultivariab le controller design problem s defined above decouple com 

p le tely  in to  n  independent SISO op tim isation  problem s. T he solutions to  these n 

op tim isation  problem s yield super-optim al controllers for each of th e  th ree  problem  

form ulations. We will need th e  following lem m a.
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L e m m a  4 .1  Let =  (a^1* . . . aM ) be a block partitioned matrix, and let 

A 2  =  (diag(aO ) . . . d i a g ( a ^ ) )  be its block diagonal equivalent. Thxis

and

Then

At =

(  a (1) a (1)a n  .. a ln

a (1) a (1)21 "  2 n

A i  —

\  «IV  •• Ann

(  aSV 0 .. 0

0  4 V  .. 0

(p) (p)  \
“ 11 •• 171

a (p) a (p)“ 21 •• 2n

..(p)nl
,.(p)Wnn y

a<? 0 .. 0 

0 .. 0

0 0 . .  Gnn y

AiO'a;) ||oo >  || A20 'w) 11«

Proof:

For any m a trix  A ,

T hus

so th a t

max

cr(/ii) =  m ax
x£C"

° { M )  >

x*A

w here x, is any particu lar x.  Let

x e c » i^o [I a:* ||2

11 t M ,  ||a 
s€C"~i/0 || CC* ||2

a.M i II2 

I *? II2

T

T hen

cr(v4x) >

i =  ( 1 0 0 0  Y

r a (1) a (1) a (p) a (p) ^^ a n  .. a ln ... a u  .. u ln j

1

\

P n

EE I»,-
¿ = 1  j = 1

(0  12

>  v i  “ iV I2 +  •• I <*ff l!
(p)
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Now let

Then

II (  <*aV •• 4 n ••• a21 •• 4 n )

fj*
x{ =  (  0 1 0 0 ....... )

and so on 

T hus

Now since

T hus

&(Ai)  > \ E E  K
t = l  j = 1

(*) 12

>  \ f \  OJ2 P  +  -  I 4 ?  P

yj | ajV |2 + .. 1 a $  \2

\ ! I  «22 I2 +  "  I «22 I2

cr(A2 ) =  \ /m a x  eigenvalue of A-iA

cr(/l2 ) =  m ax <

( 1 )  1 2  +  . .  |  « i P )  1 2

22 I +  ” I «22

«11 r  +  •• | a n
(p)  12

<r(Ai) >  o-(/l2) 

sup a(Ai(juj) )  >  sup a ( A 2 ( jw))
W (4/

= H I A \ ( j u )  lloo >  II A 2( ju )  ||oo

□

We can now s ta te  th e  m ain  resu lt of th is section.
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T h e o r e m  4 .1  For a square, stable and minimum-phase  multivariable plant P ,  the 

solutions o f  n independent SISO optimisation problems yield an optimal solution to 

the corresponding n x  n M IM O  problem, fo r  each of  the mixed sensitivity control 

problems defined above. In  each case the resulting controller is super-optimal.

P r o o f

Since th e  p lan t P  is stable, th e  Youla p aram eter is given by

q  = ( i  + K p y ' K  Q e n n ° °

where

K  = ( I + Q P y ' Q

is any stabilising controller. Thus in  term s of th e  Youla p aram eter, th e  m ixed sensi

tiv ity  m a tr ix  cost function  J  is given by

j  =  (W S ( I  + Q P )  - W t Q P )

Now since th e  p lan t P  is stable and m inim um -phase, w ithou t loss of generality  we 

can take  P  to  be th e  id en tity  m a trix  I, so th a t

J  = ( w s ( I + Q )  - W t Q) =

 ̂ (W s ) l l( l  +  Çll) (Ws)22<li2 (Ws)nn(lln ~  (Wt)i1?11 — (WïOnnÇln ^

(1^5)11921 (1^5)22(1 +  Ç22) ■■■ (Ws)nnQ.2n — (W r)ll?21 — (W'T)nn<?2n

y (y^S^llÇnl (l^is)229n2 (I^S )rm(l "H Qnn) ( I ^ t ) llÇnl (l'^r)imÇnn j

Now each qij is a  free stab le  param eter. Thus observe th a t th e  s tru c tu re  of J  above,

allows us to  choose a diagonal Youla p aram eter m a trix  Q,  i.e. we can m ake the  

off diagonal elem ents ql 3  i ^  j  equal to  zero, leaving us w ith  n  independent SISO 

op tim isation  problem s. T he solutions to  these n  problem s th en  form  th e  diagonal of 

th e  Youla p aram ete r m a tr ix  Q. We now show th a t th is  choice of Q yields an optim al 

controller for each of th e  th ree  problem s defined above.

In  th e  case of th e  m ixed sensitiv ity  FLoo control problem  th e  n  independen t op ti

m isation  problem s becom e:

^  II ( ( ^ ) n M ( l  +  9 n ( j^ ) )  “  (W T) u ( j u ) q n ( j u )  )qiiijujETIH™
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in f || ( (W S)220'w)(l +  922 (jw )) -  {WT) 2 2 ( ju )q 2 2 ( j u )  ) ||oo
922 ( j ^ ) e H H ° °

in f || ( (W s)nnO'W)( 1 +  <lnn{ju)) ~  ('WT)nn{ji0 )qnn{ji0 ) ) ||oo
q n n U ^ e T Z n 00

Now by L em m a4.1 , we have th a t th e  controller K  corresponding to  th e  above diagonal 

Y oula p aram ete r Q is an  op tim al solution of th e  m ixed sensitiv ity  Tioo control problem . 

It is also clear th a t  th is  controller is super-optim al, according to  our definition.

In  th e  case of th e  m ixed sensitiv ity  m odified TLoo control problem  th e  n  indepen

den t op tim isation  problem s are:

inf || (W s)h ( ;l;) (1  +  q u ( j u ) )  H«, +  || ( W T)n ( jw ) q i i ( jw )  ||oo
q i i ( j w ) E ' 7 l H 00

in f || (VTs)2 2 ( jw )( l +  i 2 2 (jw )) ||oo +  || (Wr)22C7'w)?220'w) ||oo
322 ( j w ) e ' H H ° °

II n i l ( . 7 ^ 0 ( 1  ”1” 9 n n ( j ^ ) )  | |o o  || ( I ^ r ) n n ( j ^ ,) ? n n ( j ^ )  | |oo9nn(iw)e7lH°°

It follows d irectly  from  th e  definition of th e  B norm  th a t th e  corresponding controller 

K  is an op tim al solution of th e  m ixed sensitiv ity  m odified 7Yoo control problem  control 

problem , and  th a t  it  is super-optim al, according to  our definition.

In  th e  case of th e  m ixed sensitiv ity  C\  C ontrol P roblem  th e  op tim isation  problem s

are:

i n f ,  || ( W s ) n ( l  +  9n )  | | i  +  || ( W t ) i i ? i i  | | i
q i i E A

inf_ || (1^ 5 ) 2 2 ( 1  +  $2 2 ) ||i +  || (W/r ) 2 2 ? 2 2  ||i
9 2 2 6 ^ 4

in f || ( W s ) n n (  1 +  9n n )  | | l  +  || ( W t )  n n ? n n  | | l
Qnnt -A

A gain op tim ality  and  super-op tim ality  of th e  corresponding controller K  follows di

rec tly  from  th e  definition of th e  A norm . □
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4 .4  H a lf D ecou p lin g: th e  N o n -M in im u m -P h a se  C ase

In  th is section th e  Youla p aram eter and  a version of a design m ethod  proposed in 

[69] are used to  show th a t for square stab le p lan ts which are non-m inim um -phase, 

th e  m ultivariab le  design problem  decouples in to  n  independent MISO optim isation  

problem s. O ptim al solutions to  th e  n  x n  M IM O C\  and  m odified 7Yoo m ixed sensi

tiv ity  problem s can be constructed  from  th e  solutions to  these n  M ISO op tim isation  

problem s. I t is shown th a t these op tim al solutions are in  fact super-optim al.

For th e  m ixed sensitiv ity  Tioo control problem  however, th e  proposed decoupling 

design m ethod  yields a sub-optim al controller.

4 .4 .1  S u p er -O p tim a l S o lu tio n s  to  th e  C\ and M o d ified  

M ix ed  S e n s it iv ity  P ro b lem s

We first of all address th e  C\  and m odified m ixed sensitiv ity  problem s. Consider 

th e  following theorem .

T h e o r e m  4 .2  Let P  be a square, stable and non-minimum-phase plant. Then the 

solutions o f n  M ISO  optimisation problems yield one o f  many  optimal solutions to the 

n  x n  mixed sensitivity problem, under both the C\ and modified Tioo formulations.  

For both problem formulations the resulting controller is super-optimal.

P r o o f

Let th e  p lan t P  be colum n partitioned  as

P  = (P1 P2  ■ ■ ■ Pn) 

and le t th e  n  x n  Youla p aram eter m a trix  Q be row partitioned  as

Q «

/  qi \

m

\  9n /

In  te rm s of th e  Youla p aram eter, th e  m ixed sensitiv ity  m a trix  cost function  is given

by
J  =  ((I  + Q G ) W 1  - Q G W 3)
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which can be  row partitio n ed  as:

(  Ji  \  (  ( W s ) n ( l  + qiPi) {Ws ) 2 2 qiP2  •

J 2

• (W s ) nnqiPn ~ { W T)liqiPl 

(Ws)ll<Z2Pl (W5)22(1 + 92P2) { W s ) nnq2Pn —(W T )liq 2 P l

(W^T^nnqiPn ^ 

(H/r)nn92Pn

\  J n  /  \  (Ws)l iqnPl (W S) 2 2 qnP2  ■■■ (W S)nn( l  +  qnpn) - ( W T)liqnpl  -  (W T)nv,qnPn j

From  th e  above equation  it is clear th a t each row of th e  transfer function  m a trix  Ji 

depends only on th e  corresponding row qi of th e  Youla p aram eter m atrix . Therefore 

since th e  q^s are free stab le  param eters, an in ternally  stabilising controller K  can be 

constucted  one row or ‘loop’ a t a tim e by choosing th e  q^s to  be th e  solutions to  n 

independen t M ISO optim isation  problem s.

In th e  case of th e  m ixed sensitivity  C\  Control P rob lem  these are:

inf q\ || Ji{z)  \\A 

inf q2  || J 2 (z) \\A

inf qn || J n(z) \\A

It follows d irectly  from  th e  definition of th e  A norm  th a t  th e  corresponding controller 

K  is an  op tim al solution of th e  m ixed sensitiv ity  C\  control problem , and  th a t  it is 

super-optim al, according to  our definition.

In  th e  case of th e  m ixed  sensitivity  m odified control problem  th e  n  indepen

dent MISO op tim isation  problem s are:

inf,

inf

q\(3 u)£llH0

q2 {ju)enH°

J i t H  ||s

M j u ) IIb

inf,
.B

A gain o p tim ality  and  super-op tim ality  of th e  corresponding controller K  follows di

rec tly  from  th e  definition of th e  B norm .
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4 .4 .2  A  S u b -O p tim a l S o lu tio n  to  th e  M ix ed  S e n s it iv ity  

C o n tro l P ro b lem

We now tu rn  to  th e  m ixed sensitiv ity  Hoo control problem . We will need th e  following 

lem m a.

L e m m a  4 .2  Let Tzw(jLo) be any n x  m  transfer funct ion matrix with input io(ju>) 

and output z(ju>). Define the system norm

,l m , • x II II z«0’w) hTZVJ(juj) \\D = sup sup -— . r
i w#o || w ( j l o ) ||2

Then toe have the following relation

II Tzv>(juj) \\D <  || T 3 w( j u )  ||oo <  \Zv. x  || Tzw(jui) ||D

P r o o f

F irs t of all note th a t

II Tzw{ ju )  =  sup
II z ( j » ' "2 

u^O II w(juj
2   II \\2

2

—• sup
l / o  II WU U) 111 

(E? II l|2)2< sup -

2(w X S l ip t || Z j { j u )  ||a)
-  3  ii » 0 ^ )1 1 1

/  n x sup,- || z t(]Lo) ||2y 2

-  m  II Ih > 

^  (  II * & « )  h X<  I n x  sup sup -—  . -
\  « II «»(;«) II2 /

=> II Tzw(juj) Hoo <  \ / n  x  II Tzw( j u )  ||D 

Now we also have th a t

II Tzw( j u )  \ \ l  = ( s u p  sup jj Ẑ \  j r )
I II I h /

0 .1« 3UP,- II Zi(juj) \\l
P || / ■ \ 112

ŵ to ii 112

e? ii * & » )  in
w? 0

-  SUP ~ n — a  \ 112 I w tv » )  II2
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Therefore

|| T zw[ju i) Ĥ) ^ || T zw(jlo) Hoo ^ \ f r i x || T zw(jlo) ||£)

□

We can  now prove th e  following theorem , which says th a t for a non-m inim um  

phase p lan t, a controller constructed  according to  th e  proposed decoupling design 

m e thod  is sub-optim al.

T h e o r e m  4 .3  Let P  be a square, stable and non-minimum-phase plant. Then the 

solutions o f  n M IS O  optimisation problems yield an internally stabilising controller 

f o r  the n  x n mixed sensitivity Tioo control problem. The resulting controller is sub- 

optimal.

P r o o f

Proceeding according to  th e  m ethod  of Theorem  4.2 above, it is clear th a t  an  in te r

nally  stabilising controller can be constructed  from  th e  solutions to  th e  following n 

independen t op tim isation  problem s:

i n i q ^ j ^ E T l H 00 II J l ( j U )  lloo

i n f g j i j ^ g T j - ^ o o  || 1/2 ( j ^ )  | | o o  

| | J n { j k - 0  | | o o

Now from  th e  definition of th e  D norm , it follows th a t a controller constructed  as 

described above op tim ally  solves th e  problem

inf || J { s ) \\D

w here th e  infim um  is over all LTI stabilizing controllers. However from  Lem m a 4.2 

above we have th a t



proving th a t this controller is m erely a sub-optim al solution of th e  m ixed sensitivity  

7Yoo control problem . □

T he above resu lt is again due to  the  fact th a t th e  system  norm  is defined in 

te rm s of th e  £ 2 signal norm , whereas th e  A, B and D norm s are defined in te rm s of 

th e  Coo signal norm .

4.5  D iscu ssio n

In  th e  nex t chap ter th e  proposed decoupling design m ethod  is applied to  a realistic 

design exam ple. We end th is chapter however w ith  a brief no te  on th e  issue of 

properness. All real world p lan ts are s tric tly  proper, i.e. a t infinite frequency the ir 

gain is zero. As will be clear at th is stage, the  design procedure and exam ple above 

are based  on th e  assum ption th a t th e  p lan t is proper. A lthough th is m ight suggest 

some applications difficulties, we point out th a t it is not an uncom m on approach to  

fo rm ulate  th e  theory  under slightly relaxed conditions, and th en  to  m ake th e  necessary 

p rac tica l ad justm ents. See for exam ple th e  approach adopted  by Zames and  Francis 

in  [18], in  order to  solve th e  SISO Jioo control problem .

In  th is particu la r case consider th e  following. Suppose we have a s tric tly  proper 

p lan t G(s)  =  C ( s l  — A ) ~ 1 B .  This p lan t can be m ade proper by adding a eD so th a t 

G (s ) =  C ( s l  — A ) ~ 1B  +  eD. Thus G (oo) =  eD. If we let D =  I then  in th e  lim it 

as e —> 0, G(s) becom es stric tly  proper. Therefore if we take  a sm all enough e we 

can im plem ent th e  design procedure while still having a s tric tly  proper p lan t for all 

p rac tica l purposes. In frequency dom ain term s th is is sim ply th e  sam e as adding very 

high frequency zeroes to  a  s tric tly  proper p lan t in order to  m ake it proper, w ithout 

changing th e  behaviour of th e  p lan t over th e  frequency range of in terest. T he fact 

th a t  these types of procedures are necessary seems to  be due in large p a rt to  the  

lack of a  com plete understand ing  of th e  im plications of joo-axis zeros in Ttoo theory, 

especially in  th e  m ultivariab le  case. See [29] for details.

W e have shown in th is chap ter th a t given a stable p lan t, th ree  im p o rtan t m ulti- 

variable robust control problem s can be solved one loop a t a tim e by calculating th e  

solutions to  n  M ISO (non-m inim um -phase plants) or n  SISO (minimum-pha.se plants) 

o p tim isa tion  problem s and then  re-assem bling these solutions into a m ultivariab le 

controller, according to  th e  proposed design procedure. This design procedure has
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th e  following advantages:

1. All available design freedom  is u tilised  resulting in  controllers which can rightly  

be te rm ed  super-optim al.

2. T he conservative and  d istortive step of signal set and  specification lum ping is 

avoided, allowing th e  designer to  control and  ‘shape’ each loop of th e  system  individ

ually.

3. T he m ultivariab le design problem  is given greater transparency  and th e  weight

ing functions a  clearer physical in terp re ta tio n , thus m aking th e ir  selection less of an 

‘a r t th a n  a science’ [55].

4. T he adoption  of a decoupling approach to  m ultivariab le robust controller design 

allows th e  subsequent application  of classical SISO design techniques, such as th a t 

p roposed in  [75] for instance, to  th e  problem .

T he proposed design procedure clearly has some lim itations. U nstable p lan ts can 

only be dealt w ith  by selecting a t least one ou tp u t for stab ilisation  purposes only, as 

proposed in  [69], -  th e  effect th is  would have on super-op tim ality  is unclear. Even 

in  th e  case of stab le bu t non-m inim um -phase p lants, th e  proposed procedure yields 

only sub-op tim al controllers for th e  s tan d ard  1-Loo control problem . As shown above 

however, Tioo control problem s form ulated  under th e  parad igm  proposed in  C hap ter 

3 do no t suffer from  th is problem . F inally  it seems clear th a t controllers designed 

according to  th e  proposed m ethod  will in  general have higher order th a n  s tandard  

m ultivariab le  op tim al controllers.
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C hapter 5

M ultivariable Hoo Synthesis via  
D ecoupling and Loopshaping:
Som e D esign  Exam ples

This chap ter presents some design exam ples which illu s tra te  how m any of th e  ideas 

developed in  previous chapters can be applied to  realistic controller synthesis p rob

lems. T he decoupling design m ethod  proposed in C hapter 4 is applied to  th e  problem  

of p itch  axis control in a highly m anoeuvrable experim ental a ircraft. Loopshaping 

techniques are used to  im prove robust perform ance and optim ise B -norm  reduction  

for th e  sam e exam ple. Finally, th e  problem  of shape control in  a Sendzim ir steel 

mill is considered from  a Tioo perspective. T he advantages of a classical decoupling 

approach  to  th e  m ultivariab le design problem  are again clearly dem onstrated .
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5.1 S u p er-O p tim al P itc h  A x is  C ontro l o f  a  H igh ly  

M an oeu vrab le  E xp er im en ta l A ircraft

In th is section th e  decoupling design procedure proposed in C hap ter 4 is applied to  

th e  problem  of p itch  axis control in a highly m anoeuvrable experim ental aircraft. 

T he  proposed procedure com pletely decouples th e  closed loop system  and allows the  

design to  be undertaken  on a loop by loop basis. This resu lt simplifies th e  selection 

of Tioo w eighting functions and also m akes possible th e  subsequent application of 

classical controller design techniques. T he decoupling Tioo op tim al controller is shown 

to  be  super-optim al, i.e th e  controller is op tim al for each loop of th e  system , and not 

sim ply for th e  worst  loop. T he m ain  advantage of th e  proposed m ethod  is th a t super

op tim ality  is acheived w ith  very little  ex tra  design effort.

5 .1 .1  P la n t  D e sc r ip tio n

T he m odel of th e  aircraft used in  th e  design is taken  from  [70], and consists of d a ta  

from  th e  H IM A T highly m anoeuvrable experim ental aircraft. T he simplified nom inal 

m odel of th e  aircraft Po has four states: forw ard speed (v), angle of a tta ck  (a ) , p itch  

ra te  (q) and  p itch  angle (0); two inputs: elevon com m and (Se), and  canard  com m and 

(<$c); and  two m easured ou tpu ts: angle of a ttack  (a ) , and p itch  angle (Û). D enoting 

th e  s ta te  vector x,  in p u t vector u and  o u tp u t vector y by

I  « \

\ o }

we have

x  =  A x  +  B u  

y — C x  +  Du

where
f —2 .3e — 02 —3 .7e -  01 —1 .9e +  01 —3 .2e +  01 \

0.0e +  00 —1 .9e +  00 9 .8e -  01 0.0e +  00

1.2e -  02 — 1.2e +  01 2.6e +  00 0.0e +  00

\ 0.0e +  00 0.0e +  00 1.0e +  00 0.0e +  00 /
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/

B  =

O.Oe +  OO O.Oe +  O O ^

—4.1e — 01 0.0e +  00

—7.8e +  01 2.2e +  01

y O.Oe +  OO 0.0e +  00 )

c _  /"O.Oe +  OO 5.7e +  01 O.Oe+OO O.Oe +  OO 

y O.Oe +  00 O.Oe +  OO O.Oe +  OO 5.7e +  01

D
O.Oe +  OO O.Oe +  OO

O.Oe +  OO O.Oe +  OO

T he nom inal m odel is stab le and m in im um  phase, and  can also be realised as a 

m ultivariab le  transfer function m a trix  Pq.

Significant uncerta in ty  regarding th e  dynam ic behaviour of th e  aircraft arises from  

four p rincipal sources [70] :

1. U n certa in ty  in  th e  canard  and elevon actuators. Conversion of electrical control 

signals in to  actual m echanical deflections will always be sub ject to  errors due to  

im perfections in  th e  electronics and hydraulics of th e  actuators.

2. U ncerta in ty  in  th e  forces and m om ents generated  on th e  aircraft due to  specific 

deflections of th e  canard  elevon. These effects are m ainly  a resu lt of aerodynam ic 

coefficients varying w ith  flight conditions, as well as im perfect knowledge of th e  exact 

geom etry  of th e  airplane.

3. U ncerta in ty  in  th e  linear and angular accelerations produced by th e  aerody- 

nam ically  genera ted  forces and  m om ents. This is due to  inaccuracies in  m odelling 

various in e rtia l param eters  as well as neglecting certain  dynam ics such as fuel slosh 

and  airfram e flexibility.

4. O th er unknow n form s of uncertainty.

In th is  design we ignore th e  above knowledge of th e  s tru c tu re  of th e  uncertainty , 

and  in stead  lum p all these effects in to  an  u n stru c tu red  uncerta in ty  block A p, together 

w ith  a w eighting function W 3 .  A p is assum ed stab le w ith

II A p  ||o o <  1

b u t o therw ise unknown. W 3  is chosen to  reflect variations in th e  level of p lan t uncer

ta in ty  as a  function  of frequency, and for th is exam ple is given by

, 50(5 +  100)
W 3 IS) =  —  -------------  x  72

y J s + 10000
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This choice of w eighting function allows a p o ten tia l percentage m odelling errror of 50 

percen t a t low frequencies, increasing up to  a factor of 50 a t high frequencies. A p and 

W 3  are included as a m uliplicative p lan t in p u t uncerta in ty  in  th e  closed loop system , 

so th a t  our ac tua l system  consists of a param eterised  set of p lan ts V  where

V  = {P0( I  +  A p W 3) : A P stable, || A P ||oo< 1}

T hen  th e  closed loop system  achieves robust stab ility  iff

|| W 3 P q K ( I  +  P q K ) 1 ||oo =  || W 3 T  ||oc <  1 

w here T  is th e  com plem entary  sensitiv ity  function.

5 .1 .2  C lo sed  L oop  D es ig n  O b je c tiv e s

T he robustness and perform ance of th e  closed loop system  will be m easured  in  term s 

of th e  singular values of th e  (nom inal) transfer function m a trix

Tzw = (  W iS  W 3T  )

w here S  is th e  o u tp u t sensitiv ity  function  ( I  +  PqK )_1 and

T„  ,  ,  0 .5 (5  +  3) r

W l ( s )  =  T T o o F  x  h

T he w eighting function  W \  is chosen to  ensure good d isturbance rejection and  com

m an d  following a t low frequencies - a t high frequencies robustness to  p lan t uncerta in ty  

becom es th e  dom inant objective. N ote th a t Tzw is th e  transfer function  betw een the 

vector of all exogenous inputs to  th e  system , w,  and th e  o u tp u t 2 . In [70] th e  fram e

work of fj, analysis and  synthesis is used to  design for robust perform ance, i.e. a certain  

level of d is tu rbance rejection is guaranteed  for every p lan t in  th e  set V .  In  th is section 

however, we adop t th e  s tan d ard  Ti(x> approach and design for nom inal perform ance 

w ith  robust stability . O ur purpose is to  show th a t w ith  very little  ex tra  design effort 

a decoupling Tioo op tim al controller can be found which is super-optim al.

5 .1 .3  A  S ta n d a rd  D es ig n

For com parative purposes, we present results for th is p lan t w ith  a s tan d ard  Tica design 

using th e  M ATLAB R obust C ontrol Toolbox [71]. F igure 5.1 shows th e  weighting
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Figure 5.1: Tt^o W eighting Functions

functions W \  and  W 3  used in th e  design. A fter some itera tions, a Tioo op tim al 9th 

order controller was found which satisfied th e  design specifications. T he singular val

ues of Tzw are shown in F igure 5.2 and th e  sensitiv ity  and com plem entary  sensitivity  

functions are p lo tted  in F igure 5.3.

5 .1 .4  A  D e c o u p lin g  C o n tro ller

In th is  section we show th a t  by using th e  design m ethod  proposed in  C hap ter 4, we 

can synthesise an  M IMO controller which is also Tloo op tim al, b u t which in  addition 

com pletely decouples th e  closed loop system . T he design proceeds according to  th e  

following steps:

1. C alculate th e  SISO controller K \  where

K t =  inf sup <7 f  )
K  w '  J

1. C alcu late  th e  SISO controller K 2  where

K 2  =  inf sup a  ( ( W 1 ) 2 2 ( j u ) S 2 2 (jLo) (W z)2 2 (ju))T2 2 ( j u ) J
■K tii '  '
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Figure 5.2: Tzw for S tandard  7Yœ Controller

F igure 5.3: S  and T  for S tandard  'Hoo Controller
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3. C alculate th e  decoupling M IM O controller Kd  where

N ote th a t  since Po in  th is case is s tric tly  proper, it is necessary to  augm ent it w ith

some high frequency zeros prior to  inversion. This p ractice is qu ite  norm al in  'H0 0

design, see for exam ple pp. 309 of [72].

4. Use m odel reduction  techniques to  reduce th e  order of th e  controller. In  th is

case th e  s ta te  space description of Kd  was converted to  th e  Jo rdan  form  and  the  

uncontro llab le and  unobservable sta tes were th en  discarded. T he M ATLAB function 

Schm r based on th e  Schur decom position m ethod  of [73] was th e n  used to  calculate 

a lower order approxim ation  of Kd- This process reduced th e  order of th e  controller 

from  23 to  12, w ith  no loss of perform ance.

T he s ta te  space controller m atrices are given below in  Jo rdan  form . N ote th a t th e  

very high frequency R H P pole in  th e  controller is due to  th e  fact th a t th e  original 

m inim um -phase p lan t was augm ented w ith  some high frequency zeros in  order to  

m ake it invertib le. Since th is pole is well outside our frequency range of in terest it 

has a negligable effect on th e  overall design.
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- 9 .1 9 c  +  01 
- 9 .1 9 c  -f 01 
- 1 .0 9 c  +  03 
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- 1 .6 0 e  -  03 
- 1 .6 0 c  -  03 
- 3 .0 0 c  -  02 
—3.0 0 e  -  02 
— 1.99e - 0 3  

\  - 2 . 0 0 c - 0 3
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1 .12c +  04« 
2 .63c  - 0 5 1
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0 2 » 
021

9 .3 3 c  -  02 1 .41c -  04 + 7 .08c -  05»
7 .98c  - 0 4 + 4.50c -  0 4 1 - 1 .1 8 c  -  03 - 3 .7 0 c  -  03*

- 4 .5 0 c  -  04 - 7 .98c -  04» 3 .7 0 c  - 0 3 -f 1 .18c -  03»
0 1.27a +  04 - 2 .23c00 i
0 1.94 c +  04 - 4 .29c +  02»

1.79c +  04 - 6 .53c +  01 « - 3 .0 9 c  +  01 - 1.58c +  01»
- 3 .9 9 c  +  02 - 1.08c +  02» 4 .07c  +  01 - 2 .56c  +  01»
2 .3 9 c  +  02 + 3.38c +  02« 4 .43c  +  01 - 1 .87c  +  01»
1.36c +  04 + 1.72c -f 04« - 8 .4 0 c  +  06 - 3 .78c  +  07»

- 8 .6 2 c  +  02 + 2.10c +  01i 3 .8 8 c  +  07 - 4 .20c  +  05»
0 1.28c +  02 + 2 .7 8 c  +  01 i

- 8 .6 7 c  - 0 5 —7.48e -  03

/  1 .78e +  05 - 2 .0 3 c  +  00« 1.45c +  01 — 1 .65c - 04«
9 .6 7 c  +  02 + 2 .0 0 c  +  02» 4 .5 3 e  +  04 - 2 .0 5 c  +  05»
2 .0 1 c  +  02 9 .6 7 c  -f 02« - 2 .0 5 c  -f 05 + 4 .54c +  04«

- 8 .5 7 c  - 0 3 + 3.00c -  07« 1.49c -  01 + 3 .2 5 c - 05«
5 .6 4 c  - 0 3 + 1.21c - 0 4 » - 1 .3 3 c  - 0 2 — 3.07c — 04«

—4 .0 5 c  -  03 — 1 .4.8c — 05* - 1 .4 3 c  — 02 - 5 .2 3 c — 05«
3 .4 0 c  -  09 - 1.04c — 08» 1.17c -  08 - 3 .5 6 c - 08«

- 1 .0 9 c  -  08 - 3.90c  -  10» - 3 .7 4 c  -  08 — 1.30c - 09«
- 1 .4 6 e  - 0 5 1.79c -  05« - 5 .0 2 c  - 0 5 + 6.14c - 05«
- 2 .0 6 c  -  05 - 1.06c —• 05« - 7 .0 5 c  -  05 - 3 .64c - 05«
6 .7 3 c  -  08 + 1.83c - 0 8 » 3 .6 5 c  -  07 — 2.55c - 07«

\  - 7 .5 0 c  -  09 + 2 .99c -  16» - 8 .9 4 c  +  00 + 3 .4 2 c - 07*

0  :)

R esults for th is design are given in th e  figures below. N ote th a t th e  reduced order 

controller does not m ake the  closed loop system  pc.rfec.tly diagonal -  see F igure 5.4. 

T h e  level of decoupling is however m ore than  adequate  for th e  purposes of th e  design, 

as verified in  Figures 5.5 and 5.6. It is seen th a t Kj. decouples the  system  while 

perform ing ju s t a« well as the  standard  optim al controller.
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Figure 5.5: Tzw for Decoupling 1-Loo Controller Kj,
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Figure 5.6: S  and  T  for decoupling 'HQa controller K ri

5 .1 .5  S u p er -O p tim a l C on tro l

In  th e  above exam ple th e  two singular values of th e  closed loop system  coincide alm ost 

exactly  a t all frequencies. To see th a t a 'H(X, op tim al controller designed according 

to  th e  above m ethod  is in  fact super-optim al, consider th e  following situation . We 

assum e th a t  th e  level of u ncerta in ty  in  th e  second loop of th e  system  is reduced to  

10 percen t of th a t  p resent in  th e  first loop. In addition  we assum e th a t  th e  level 

of d istu rbances acting on th e  second loop is decreased by th e  sam e am ount. O ur 

w eighting functions therefore becom e

Tt r , , 50(s + 1 0 0 )  f 1 0 \  0.5(5 +  3)
Wais) =  ---    X Wl(s) =      X

V 1 5 +  10000 y  o 0.1 j  s +  0.03

A p lo t of th e  singular values of th e  m a trix  Tzw for a s tan d ard  M IMO /HCXj design 

using these  new w eighting functions is given in F igure 5.7. I t seems clear from  th e  

p lo t th a t  while th e  softw are has effectively m inim ised th e  m axim um  singular value 

of th e  m a trix , less a tten tio n  has been paid  to  th e  sm aller singular value. By using 

th e  proposed decoupling design m ethod  however, a Ti(yo op tim al controller can be 

fou n d w hich m inim ises b o th  singular values, resulting in  a  super-optim al design - see 

F igure 5.8
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F igure 5.8: T zw for Super-O ptim al Tioo C ontroller
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A fter controller order reduction  techniques were applied, th e  super-optim al con

tro ller was found to  be of order 12, two degrees higher th a n  th e  s tandard  Tioo con

tro ller. T he s ta te  space controller m atrices are in fact identical to  those given in the  

previous section.

5 .1 .6  D isc u ss io n  and  Im p lica tio n s

T he design m ethod  proposed in C hap ter 4, is seen to  be readily  applicable to  a real

istic  design exam ple. T he resulting  controller com pletely decouples th e  system  and is 

super-optim al. T he decoupling resu lt m eans th a t classical m ultivariab le  design m e th 

ods such as th e  Inverse N yquist A rray and C haracteristic  Loci can easily be applied 

to  th e  system  after th e  in itia l T i ^  design. This allows th e  designer ex tra  freedom  to 

m eet o ther specifications, re lating to  response tim e, pole locations etc., presum ably 

a t th e  cost of some loss of robustness. T he benefits of a super-optim al controller were 

revealed in  th is exam ple by varying th e  levels of uncerta in ty  and  required  perform ance 

in th e  second loop of th e  system . Indeed it seems clear th a t th e  assum ption th a t every 

loop of a  M IM O system  is subject to  uncerta in ty  and disturbances of th e  sam e m ag

n itu d e  and  spectra l content will rarely  be true  in practice. As sensors becom e m ore 

accurate  and  our ability  to  m odel uncerta in ty  and disturbances im proves it clearly 

m akes sense to  try  and  achieve th e  best possible perform ance from  each loop of the  

system . Q uite  apart from  th e  issues of d isturbances and uncertain ty , m any p lants are 

them selves strongly directional, so th a t s tandard  /H 0 0  design will, as dem onstrated  

above, fail to  optim ise perform ance in all except th e  ‘w orst’ loop of th e  system .

A lgorithm s and techniques for th e  design of super-optim al T i ^  controllers already 

exist [64, 67]. T he m ain  advantage of th e  m ethod  outlined  above however is its 

sim plicity  and transparency  in term s of engineering design. Super-optim al control 

is achieved w ith  only a slight increase in th e  order of th e  controller, subject only to  

th e  requ irem ent th a t th e  nom inal m odel be stable and m in im um  phase. F inally  it is 

no ted  th a t  in  [70], robust perform ance objectives are satisfied for th e  above exam ple 

using n  synthesis. This technique involves repeatedly  solving scaled optim isation  

problem s, v ia  so called ‘D-K ite ra tio n ’. It seems likely therefore th a t applying the  

decoupling design approach detailed  above to  each of these T i ^  op tim isation  problem s 

could usefully im prove th e  final /x synthesis design. This m ay be a fru itfu l avenue for 

fu tu re  research.

99



5.2 L oop sh ap in g  for R ob u st P erform an ce and B- 

N o rm  R ed u ctio n

In  th is section a loopshaping design procedure for SISO system s, detailed  in [75], is 

ex tended  to  th e  m ultivariable case. T he stra tegy  proposed is to  use th e  decoupling 

design m e th o d  of C hapter 4 to  diagonalise th e  closed loop system , and  subsequently 

to  shape each loop of th e  system  individually. Loopshaping is used to  im prove the  

robust perform ance of th e  system  (under th e  assum ption th a t p lan t uncerta in ty  is 

diagonal in  s truc tu re ) and also to  m inim ise th e  B -norm  (as described in C hapter 3) 

of th e  nom inal system . T he design procedure is applied to  th e  HIM AT p itch  axis 

controller problem  outlined in  th e  previous section.

5 .2 .1  L o o p sh a p in g  for SISO  sy s te m s

We begin by  giving Tioo op tim isation  of SISO stab le m in im um  phase system s an 

in te rp re ta tio n  in  te rm s of classical loopshaping ideas. For a  com prehensive trea tm en t 

see [74, 75]. Recall th a t th e  so-called m ixed sensitiv ity  problem  in  T-Coo optim isation  

is given by

inf
K(s)eKH°

W i S  W 3T =  inf sup J(jio)  
K ( s) e n n oa w

where

J ( j w ) =  \ / |  W x ( j u ) S ( j u )  |2 +  I W 3 { j w ) T ( j u )  |2

This op tim isa tion  problem  basically involves finding th e  op tim um  trade-off betw een 

perform ance (com m and following and  d isturbance rejection) and  robustness (insen

sitiv ity  to  p lan t u n certa in ty  and m easurem ent noise), over frequency. In te rm s of 

classical loopshaping, th e  above problem  will be shown to  be consistent w ith  th e  fol

lowing th ree  requirem ents on th e  (open) loop gain of th e  system , L,  w ith  crossover 

frequency u;c.

1. | L(juj)  | > >  1, for u> «  u;c

2. | L ( j u )  | < <  1, for <jü »  uic

3. L ( j u )  e  i m ™

W e now show th a t requirem ent 3 above transla tes  into a lim it on th e  ra te  of roll 

off of | L(jui)  | a t frequencies close to  uic.
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Since ¿ (0 )  >  0 and  | L(jiv )  | is a m onotonically  decreasing function, th e  phase 

angle of L  s ta rts  ou t a t zero and decreases, i.e th e  N yquist p lo t of L  s ta rts  on th e  

positive real axis and  begins to  move clockwise. By th e  N yquist stab ility  criterion, 

nom inal in te rn a l stab ility  holds if th e  angle of L  at gain crossover has not yet gone 

down to  -180 degrees, i.e crossover occurs in th e  th ird  or fou rth  quadrants. Now 

by th e  phase form ula for stab le m inim um  phase system s [76], we have th a t for any 

frequency loq

w here th e  in tg ra tion  variable v is

In th e  above form ula, the  function

In coth

is s tr ic tly  positive and  peaks a t u>0. Thus since

d In I L  I

d In I L
1 1 In coth

v  =  In (— )
Wo

=  1"
LO +  Uq

2 0313

v
■du

di>

will always be negative, th e  steeper th e  slope of L  (stric tly  Iri | L |) near th e  fre

quency cjo5 th e  m ore negative th e  value of LL. This m eans th a t in terna l in stab ility  is 

unavoidable if | L  | rolls off too rap id ly  near crossover, since th e  phase of L  will reach 

-180 degrees before its gain is reduced to  below unity. A stan d ard  rule of thum b  is 

th a t  th e  slope of | L  | should not be m ore th a n  20 dB per decade. Classical designers 

therefore aim  to  m axim ise th e  stab ility  m argin  of th e  system  by ‘fla tten ing ’ | L  | as 

m uch as possible in th e  frequencies near crossover.

To see th a t  th e  above requirem ents are com patible w ith  th e  m ixed sensitiv ity  Hoo 

op tim isa tion  problem  described above, observe th a t

{\ W i / L \  for w < <  ujc

| W 3 L  | for LO »  U!c

y/\ W x |2 +  | W 3  |2 /  2 for u  »  cuc

Now since th e  op tim al TLoo cost function  J(ju>) is all pass, it is qu ite  clear from  

th e  above expressions th a t th e  th ree  requirem ents from  classical loopshaping all serve 

to  push  J ( j u )  down tow ards its  op tim al value.
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It is useful to  note  th a t th e  p roblem atic design conflict is no t betw een th e  required 

values of S  and  T  per se. It is betw een th e  objective of m aking S  sm all and T  large 

a t low and high frequencies respectively, and th e  necessity of keeping th e  roll off 

ra te  of L  sufficiently sm all. In classical Loopshaping th e  designer d irectly  chooses 

L  to  satisfy th is trade-off. In design it is th e  respective shapes and crossover 

frequencies of th e  w eighting functions W \  and W 3  th a t m ust be chosen. Since TC00 

op tim isation  is perform ed over th e  set of all stabilising controllers (via th e  Youla 

p aram eterisa tion  [68]), closed loop s tab ility  is guaranteed - if too am bitious a set of 

w eighting functions are chosen, th e  software will sim ply report th a t it cannot com pute 

a stabilising controller. This is often because th e  crossover gap, i.e. th e  difference 

betw een th e  crossover frequencies of W \  and W j  is too narrow , resu lting  in  a required 

roll off ra te  which is too  steep. If th is gap is increased a stabilising controller m ay 

be found b u t th e  resu lting  J  m ay still have a sharp peak near u c. This is due to  th e  

th ird  te rm  in th e  above expression for J  being too  large. Thus in 1-Coo op tim isation, 

difficulty of design is closely re la ted  to  th e  w id th  of th e  crossover gap.

5.2.2 Loopshaping MIM O system s for Im proved Robust 
Perform ance

W ith  reference to  F igure 1.3, th e  R obust Perform ance Problem  or R obust D isturbance 

A tten u a tio n  P rob lem  (R D A P), is

inf sup || Tzw Hoo
K ( s ) 6 T I H ° °  A p

In th e  M IM O case, no useful closed form  expression is available for controller syn

thesis. T he best th a t can be done a t present seems to  be to  recast th e  problem  in 

th e  fram ew ork of th e  s truc tu red  singular value [78], and com pute a controller using // 

synthesis techniques. This process is however com putationally  dem anding and  th e  re

sulting controller m ay not be globally optim al. However, in th e  SISO case th e  RD A P 

problem  is exactly  equivalent to

lllf || Jrdapi^J^) ||oo 
K{s)Enn°°

w here

Jrdap{ju) = | W i{ ju )S { J u )  | +  | W 3 ( j u ) T ( j u )  \

This problem  is solved to  w ith in  a factor of \ /2  by th e  m ixed sensitiv ity  op ti

m isation  problem  discussed in the  last section. In [75], a design m ethod  is presented
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which uses th is fact together w ith  classical loopshaping ideas, to  design for robust 

perform ance w ithou t resorting to  /i synthesis. In  th is section we propose a  m odest 

extension of th is m ethod  to  th e  m ultivariab le case. We first of all give a brief descrip

tion  of th e  design m ethod  for SISO system s. T he m ethod  relies on th e  following two 

lem m as [39, 75].

L e m m a  5.1

Jrdap(jbj) ^  V 2 J  {ji0 )

L e m m a  5 .2  I f  there exists an u>o such that

L(ju>0) I -  1 1
I W z H lOq) |

then fo r  a controller which optimally solves the Tioo mixed sensitivity problem, 

m ax  Jrdap(jw) = Jrdap(jUo) = V 2J( ju>0)Ll>

P r o o f

I L ( j u )  | =  

L { j u o) | =

T ( M  I
SUU) |
Wi(juJo) | | T ( j u o)
Wz(jLO0) | | S ( j u 0)

W 1 S ( j u 0) | =  | W 3 T{ju>o) | 

J ( j u  o)2

' J ( jw  o)2
W i S ' ( j ü ; o )  I +  | W ^ T ^ ju jo )  | —  2 i

J'rdap (j ̂ o) — (j^o)

T he significance of L em m a 5.2 above is th a t for any ‘sensible’ design, the re  will 

be some frequency oj0 a t which

| WiSO'wo) | =  | W 3 T{juj0) I

and  therefore th e  upper bound  in  Lem m a 5.1 will (alm ost) always be achieved. Solving 

th e  Tioo m ixed  sensitiv ity  problem  m akes J(ju>) an  all-pass function w ith  m agnitude
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7o- T he corresponding JTdap is typically  a bell shaped curve which is always greater 

th a n  J ,  w ith  a peak value of <  \/27o a t th e  frequency w0. In [77], a theorem  is 

given which suggests th a t th e  optim al JTdap is also all-pass. T he proposed approach 

is therefore to  use s tandard  T ioo  optim isation  to  bring J r dap down to  w ith in  of its 

op tim al value, and  th en  to  use loopshaping techniques to  ‘fla tten ’ Jrdap■ T he reason 

for th e  peak  in  th e  value of J r daP is th a t since J r da p ( <^0 >  J i 10)  th e  crossover gap of 

J r d a p  is always narrow er th a n  th a t of J .  Thus J Tdap is ffattened by using a cascade 

com pensator to  fu rth er reduce th e  slope of L  near crossover. T he easiest way to 

do th is is of course sim ply to  decrease L  slightly a t frequencies below crossover and 

increase it slightly a t frequencies above crossover. T he resulting  increase in th e  value 

of J  is of no consequence since robust and not nom inal perform ance is th e  ‘rea l’ design 

objective.

T he key to  ex tending  th e  above design m ethod  to  th e  m ultivariab le case is th e  fact 

th a t  a com pletely decoupled n x  n M IM O system  can be trea ted  as n  independent 

SISO system s for th e  purposes of design. Let us re tu rn  to  th e  HIM AT p itch  axis 

controller design exam ple of th e  last section. Recall th a t th e  TLCXJ op tim al controller 

Kd calcu la ted  according to  th e  design m e thod  of C hap ter 4, com pletely decouples 

th e  closed loop system . This m eans th a t th e  nom inal open loop gain L , th e  nom inal 

sensitiv ity  function  S ,  and th e  nom inal com plem entary  sensitiv ity  fu n ction T , are all 

diagonal. T hus we are free to  insert a diagonal cascade com pensator which we can 

use to  m inim ize th e  peak value of Jrdap for each loop of th e  system . A lim ita tion  of 

th is  approach is th a t M IM O robust perform ance will only be guaran teed  for diagonal 

A p ’s. This is due to  th e  fact th a t

S = [ I  + K P 0{I + Ap) ] - 1

i.e. th e  ac tua l (as opposed to  nom inal) sensitiv ity  function S  is only com pletely diag

onal for diagonal A p ’s. T he assum ption th a t A p  is diagonal in  s tru c tu re  is however 

often well m otivated  from  physical considerations. In [79] for exam ple th e  m odelling 

of an  uncerta in ty  m a trix  for a d istilla tion colum n is considered. T he au thors no te  th a t 

non-zero off-diagonal te rm s in a m ultip licative inpu t uncerta in ty  m a trix  im ply  th a t 

a change in  one in p u t m ay result in an undesired  change in another one. A lthough 

conceding th a t  th is  m ay be th e  case for some plants, for exam ple if th e  ac tuato rs  are 

located  very close together, the  authors conclude th a t for m ost p lan ts, including the 

d istilla tion  colum n, it is m ore reasonable to  assum e th a t th e  actuato rs are indepen

dent, th a t  is, A i  is diagonal. Obviously, sim ilar argum ents apply in m any  situations

104



20

FREQUENCY (rads./sec)
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Figure 5.9: S , T , J , and J Tdap for loop 1, w ith  K^

for o u tp u t m ultip licative uncertainty. F igure 5.9 shows Bode plots of S ,  T ,  J ,  and 

Jrdap for loop 1 of th e  HIM  AT design w ith  decoupling controller K,i. As expected, J  

is essentially  all-pass while J Tdap has a peak near th e  crossover frequency. We choose 

th e  (1,1) elem ent of our cascade com pensator to  be

(1.9s +  1.9) 0.8(25 +  1.9)(0.055 +  0.8)
1 “  (25 +  1) X (0.65 +  1)(0 .045 +  1)

Figure 5.10 shows th e  effect of K \  on th e  loop gain L.  T he second te rm  has the

effect of fla tten ing  th e  loop gain at frequencies near loc by increasing L  m ore a t high

frequencies th a n  a t low frequencies. T he first te rm  increases th e  loop gain slightly 

a t low frequencies to  com pensate for th e  non-bell-like shape of J r d a p ■ As shown in 

F igure 5.11, th is  slight ad justm en t in  th e  loop gain has a significant effect on the  

shape of J Tdap and || J Tdap  ||oo  is reduced from  -2.36 dB (0.762) to  -3.56 dB (0.663), 

an  im provem ent of alm ost 10 percent. For th e  second loop of th e  system , th e  (2,2) 

elem ent of our cascade com pensator

_  (1.95 +  1.9) 0.7(25 +  1.9)(0.055 +  0.8)
2 “  (25 +  1) X (0.65 +  1)(0.045 +  1)

reduces || J r dap  ||<x> from  -2.35 dB (0.763) to  -3.46 dB (0.671), again an  im provem ent 

of ju s t under 10 percen t -  see Figures 5.12, 5.13, and  5.14. T he full M IM O closed
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Figure 5.10: (a.) L  w ithout K±, (b.) L  w ith  K \

FREQUENCY (rads./sec)

Frequency (Rads./scc)

Figure 5.11: S ,  T , J ,  and Jrdap for loop 1, w ith Kd  and K \
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Figure 5.12: S , T ,  J ,  and JrdaP for loop 2, w ith  K,i 

loop com pensator is thus given by

K ( s )
I<i(s) 0 

0 K 2 (s)
K d(s )

w here K i( s )  and  K 2 (s) are given above. S ta te  space Jo rdan  form  m atrices for Kd(s)  

are given in  Section 5.14.

T he above resu lts assum e th a t A p  is diagonal, however it can reasonably be argued 

th a t  as long as th e  u n certa in ty  in  th e  p lan t is a t least diagonally dom inant, th e  above 

approach  will still p roduce useful designs. Indeed as no ted  above, for m any p lan ts th is 

is a well m otivated  assum ption. Im provem ent in  robust perform ance for com pletely 

u n stru c tu re d  A p ’s is no t guaran teed  bu t can always be checked a posteriori by [i 
analysis.
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Figure 5.14: S', T , J , and Jrdap for loop 2, with Kd  and A'2
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5.2.3 Loopshaping M IM O system s for T im e D om ain Ob
jectives

In  th is section we use th e  loopshaping procedure outlined  above to  reduce th e  B-norm  

of th e  closed loop system  for th e  sam e HIM AT p itch  axis controller exam ple. Recall 

th a t  in  C hap ter 3 we defined th e  B -norm  for an  n x n  m ultivariab le  system  as

71

II T zw(ju>) |[B =  m a x V  || {Tzw(jio))ij H«,I Z '
3 = 1

We have already seen th a t for th e  HIM AT exam ple w ith  decoupling controller Kd, S  

and T  are diagonal, and  thus Tzw is block diagonal. Thus th e  B-norm  for this system  

can be rew ritten  as

II Tzw(jto) ||B =  m ax  || ( W ^ u i M S u ^ j u )  +  || (W 3 )ii(jio)Tii(ju)
%

Thus m inim izing th e  B -norm  for th is system  is equivalent to  solving 2 SISO op tim i

sation  problem s of th e  form

K-i i nf oo II J b U u ) I k  where J B =  || W ^ j ^ S ^ j t o )  H«, +  || W 3 (ju)T(jLo)  U«,
A  15  1 1  < v / X

It is in teresting  to  consider th e  relationship  between th e  cost functions, J ,  J rdap, and 

J b  ■ We already  have th a t

J ( j u )  ^  Jrdapi^J^) V 2 J ( M  

F u therm ore , it is easy to  show th a t

Jrdap^J^') 5: Jb ^J^') ^  2 Jrdapi.J^')

This gives

J { j u )  < M M  <  2 X V2 J ( j u )

T hus since an  analy tical solution to  th e  B-norm  m inim isation  problem  is not available, 

we propose th e  following tw o-step procedure for sub-optim al synthesis:

1. M inim ize J  for each loop of th e  system  by calculating th e  Tt ry 0  op tim al decoupling 

controller K,i-

2. Use classical loopshaping techniques to  design a cascade com pensator to  m inim ize 

J B for each loop of th e  system .

Loopshaping in  th is case is done w ith  th e  aim  of ‘fla tten ing ’ W \ S  and W 3T  since it
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FREQUENCY (rads/sec)

Figure 5.15: W eighting Functions W \  and  W 3

can be  shown th a t th e  op tim al value of Jb  is also all-pass. D ue to  th e  relatively  flat 

shape of th e  original w eighting functions W \  and  W3 in  our HIM  AT exam ple, W\ S  

and  W 3T  for each loop of th e  system  are already alm ost all-pass for our Ti c>0 op tim al 

controller. Thus in  order to  dem onstra te  our approach we change th e  weights to

W 1 ( s ) =  +  \  W3(s) =  (°-6e +  3)s + 1
(0.45e + 3)5 +  1 JV '  (0.6e — 1 ) 5  +  105

As can be  seen from  F igure 5.15, these weights sim ply have th e  effect of penalising 

S  and  T  m ore a t very low and very high frequencies respectively. A Tt(XJ op tim al 

decoupling controller for these new weights was th en  calcu la ted  according to  the  

proposed design procedure. T he resu lting  W \S  and W 3T  for loop 1 of th e  system  are 

shown in  F igure 5.16. T he value of J b  for loop 1 of th is design is -2.0194 dB. In  order 

to  reduce th is figure, we in troduce a  cascade com pensator

( 1 .4 e - 4 ) „  +  1.2 
l U  (2.3e — 4)s +  1

T he effect th is  com pensator has on th e  loop gain of th e  system  is shown in F igure 5.17. 

N ote th a t  th e  approach taken  is sim ply to  increase th e  loop gain slightly a t those 

frequencies over w hich we w ant to  reduce W \ S  and to  decrease it slightly a t frequencies



F requency  (R ads./sec)

Figure 5.16: W \ S  and W 3 T  for Kd  (Loop 1)

K d(s)

w here we w ant to  reduce W3T. W ith  th e  com pensator K\ in  th e  loop, W \ S  and  W3T 
are as shown in  Figure 5.18. N ote th a t  th e  value of Jg  has been reduced to  -3.5292 

dB. E quivalent plots for loop 2 of th e  system  are shown in  Figures 5.19, 5.20, and 5.21. 

W ith  th e  cascade com pensator K 2 equal to  K \ ,  J b  for th e  second loop of th e  system  

is reduced  from  -1.2501 dB to  -2.3865 dB. T he full M IMO closed loop com pensator 

is th en  given by
'  K i( s )  0 

0 K 2( s )

w here K - y ( s )  and K 2 ( s ) are given above and K d ( s )  is given below in  s ta te  space Jordan  

form . T hus for th is design, th e  im plem entation  of classical loopshaping techniques 

has reduced  th e  value of || Tzw(ju>) ||p  from  0.866 to  0.759, an im provem ent of about 

11 per cent. A n in teresting  observation is th a t B -norm  op tim isation  conflicts w ith  th e  

R D A P problem  of m inim ising J r dap  for each loop of th e  system . This is shown clearly 

in  F igure 5.22 where J Tdap  before and  after the  add ition  of th e  com pensator K \  is 

p lo tted  for loop 1 of th e  system . This trad e  off should come as no surprise however, 

since th e  B -norm  is a nom inal  perform ance specification, and  thus au tom atically  

conflicts w ith  th e  robust perform ance specification of J Tdap-
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5.3 R o b u st Shape C on trol in  a S en dzim ir Cold- 

R o llin g  S tee l M ill - A  D eco u p lin g  A pproach

In  th is section th e  shape control problem  for a Sendzim ir 20-roll cold rolling steel m ill 

is considered. T he operation  of th e  m ill over a wide range of conditions arising from 

roll changes, changes in rolling schedules and changes in m a teria l gauge, w id th  and 

hardness, poses significant design challenges. In addition, th e  linearised m odel of the  

m ultivariab le  p lan t is ill-conditioned. Previous approaches to  th e  problem  have been 

based on nom inal designs w ith  little  a priori consideration of robustness issues. This 

resu lted  in  th e  need for a large num ber of precom pensator m atrices to  cater for the  

full range of operating  conditions. In th is section a single decoupling 7Yoo controller is 

designed, v ia  th e  singular value decom position, for one com plete schedule. R obustness 

in  th e  face of changing operating conditions is explicitly  characterised  a priori and 

validated  a postero iri by nonlinear sim ulation. Design results suggest a system atic 

approach  to  controller scheduling via Tioo op tim isation . O ur trea tm e n t follows closely 

th a t  of [5].

5.3.1 T he Control Problem

T he shape of a  steel strip  in th e  curren t context refers to  th e  stress d is tribu tion  in  the  

s trip . Perfect shape im plies a uniform  in ternal stress d istribu tion , so th a t  if cu t into 

narrow  strips, th e  steel will lie flat on a flat surface. B ad shape can cause th e  strip  

to  buckle or even tear. T he shape of th e  steel is m easured by tak ing  a differential 

tension  profile across th e  strip  at 8 (m odelled) equally spaced points. T he o u tp u t of 

th e  system  is thus a profile represented in  vector form . S trip  shape is controlled by 

bending th e  rolls of th e  m ill, causing elongation of th e  strip  a t points where th e  rolls 

are closest. ‘Long’ or loose sections of th e  strip  have associated com pressive stress, 

w hile ‘sh o rt’ or tig h t sections suffer from  tensile stress.

A ccurate  control of th e  shape of th e  steel strip  in cold rolling is a difficult problem , 

due to  th e  m ulti-pass, m ulti-schedule na tu re  of th e  process. T he approxim ately  2500 

different passes and  schedules required to  achieve a required final gauge for different 

grades and  w idths of rolled strip  involve variations in m ill setup, such as roll d iam eters 

and  s trip  speed as well as variations in  m ateria l characteristics, such as in p u t/o u p u t 

gauges for each pass, strip  w idth , and m a teria l hardness. These factors can cause 

variations of up to  300 percent in th e  param eters of th e  m ill m odel, thus th e  current
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requ irem ent for a  large num ber of controllers comes as no surprise.

T he sendzim ir m ill is a so-called reversing m ill, and a seperate schedule containing 

a  num ber of passes is specified for each different m a te ria l rolled. A schedule can 

contain  from  4 to  15 passes through th e  rolling cluster. Each pass involves different 

en try  and exit gauges, w ith  m inor changes in th e  m a teria l hardness from  pass to  pass.

To date, th e  approach has been to  design controllers using trad itional m ultivariable 

techniques for a set of nom inal cases, i.e. every schedule, and then  to  check closed 

loop s tab ility  for schedules and passes outside th is nom inal set [80, 81]. Significant 

lim ita tions of th is approach are (a) no a tte m p t is m ade to  explicitly  m odel p lant 

uncerta in ty  due to  varying operating conditions, (b) no a tte m p t is m ade to  actively 

design for robustness to  th is uncertain ty , resulting in wide variations in  controller 

perform ance across operating  conditions (although s tab ility  m ay be re ta ined), and 

(c) no system atic  m ethod  for scheduling different controllers across different passes 

and  schedules is obvious.

In  th is section these lim itations are overcome by form ulating th e  problem  in  the  

fram ew ork of 0  control theory.

5.3.2 T he Sendzim ir Mill: N om inal M odel

T he Sendzim ir m ill m odel used in th e  design is taken  from  [80, 81, 82]. T he m ill has 

an ASEA ‘S tressom eter’ for m easuring th e  differential tension (or stress) profile across 

th e  strip . This device is m ounted  2.91m dow nstream  of th e  roll gap and  produces 8 

(m odelled) o u tp u t m easurem ents. Four pressure m easurem ents per revolution of this 

device are provided, causing a four-period-per-revolution sinusoid to  be superim posed 

on th e  o u tp u t signal (40Hz a t a speed of 10 m /sec .). F u rther noise on th e  o u tp u t signal 

is in troduced  due to  th e  2kHz m agnetising currents used w ith  th e  pressure sensors. 

Shape ac tua tion  is effected via th e  ‘As-U-Rolls’, which provide th e  equivalent of 8 

independent (bu t equally  spaced) point loads. This generates roll bending, causing 

differential elongation of th e  strip , thus influencing th e  shape profile.

T he m ill m odel therefore has 8 inputs and 8 ou tpu ts. T he rolling cluster is the  

m ost com plex p a rt of th e  system  and accounts for all of th e  in teraction  betw een th e  8 

(unm odelled) pa th s in  th e  system . A linearised gain m a trix  G a relates changes in the  

roll-gap shape profile to  changes in th e  positions of th e  A U R ’s [82]. D iagonal dynam ic 

blocks account for th e  actuato rs, strip  dynam ics (betw een roll-gap and shapem eter)
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and  th e  shapem eter filters. T he m ill m odel is therefore of th e  form

y(s)  = p (s )G af a(ua) G a G V:8X8

w here p(s)  m odels dynam ics due to  th e  strip  and  shapem eter, and th e  nonlinear 

function  / 0(.) represents th e  A UR actuators. An ac tua to r linearisation technique [83] 

can be applied to  th e  nonlinear actuators, resu lting  in  an approxim ately  first order 

linear response for each ac tu a to r w ith  a tim e constant of 2 seconds. T he resulting  

overall m ill dynam ics are therefore m odelled as

P { s ) = p { s ) G a, G,a e 7 ^ :8x8

w ith  p(s)  given by
-0.582s

P^  (1.064s +  l ) (0 .7 4 s +  l) (2 s  + 1)

for a m edium  strip  speed of approxim ately  lO m /s. For each of th e  six passes of the  
schedule we have a different gain m a trix  ( G a ) i ,  therefore th e  nom inal gain m a trix  
{ G a ) n for th e  selected schedule is given by

(^a)n —

/ 4.3907 4 .9866 -0 .0 7 2 0 -2 .1 8 3 7 -2 .3 2 9 9 -2 .0 1 8 6 -1 .7 9 1 6 -1 .7 9 4 3 \
0.6112 2.5487 2.5138 0 .2207 -1 .5 2 4 8 -1 .9 3 7 2 -1 .7 1 1 5 -1 .7 0 2 7

—0.7673 0.4553 2.7242 1.7667 -0 .5 0 2 4 -1 .7 5 1 5 -1 .7 8 8 3 - 1 .7 6 8 2
-1 .0 4 9 4 -1 .0 7 8 1 1-1593 2.6865 1.5551 -0 .6 7 7 6 -1 .7 5 3 8 - 1 .7 2 8 2
-0 .9 1 3 5 -1 .6 9 0 0 -0 .7 0 0 9 1.4843 2.7079 1.2133 -1 .1 4 7 9 —1.1449
-0 .7 8 8 2 -1 .7 7 1 0 -1 .6 8 1 0 -0 .3 3 8 9 1.9747 2.7206 0.4609 0.4541

V
-0 .7 6 6 6 -1 .7 3 0 8 -1 .9 4 9 5 -1 .5 6 5 3 0.0505 2.3465 2.6623 2.6831
-0 .8 3 4 5 -1 .8 0 8 3 —1.9580 -2 .2 4 1 6 -1 .9 8 4 5 -0 .1 3 9 2 4.9882 4.9173 /

w here

( G a ) r
T ,L l(G a ) i

5.3.3 N om inal M odel R eduction  and D ecoupling

E xam ination  of th e  gain m atrices of th e  m ill reveals th a t they  are rem arkably  ill- 

conditioned - th e  difference betw een th e  sm allest and  largest singular values typically  

being approxim ately  four orders of m agnitude. In addition, an  order of m agnitude 

difference exists betw een th e  4 largest and 4 sm allest singular values. As an exam ple, 

th e  singular value sp ec trum  of th e  nom inal m ill gain m a trix  G a is

{12.3568 9.1120 4.9125 1.5625 0.3306 0.2101 0.0259 0.0051}

Ill-conditioned p lan ts can be said to  be characterised by ‘strong d irec tionality ’ because 

inpu ts  in  vector d irections corresponding to  high p lan t gains (large singular values)
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are strongly am plified by th e  p lan t, while inpu ts corresponding to  low plan t gains 

(sm all singular values) are not. It is well known th a t ill-conditioned p lan ts can cause 

serious problem s for control system  design [79]. T he m ain  reason for these problem s is 

p lan t uncertain ty . For accurate  control of ill-conditioned p lan ts th e  controller should 

a tte m p t to  counteract th e  strong directionality  by applying large inpu t signals where 

th e  p lan t gain is low; i.e. th e  controller should try  to  approxim ately  invert th e  p lan t. 

However, because of uncertain ty , th e  d irection of th e  large inpu t m ay not correspond 

exactly  w ith  th a t of th e  low p lan t gain, and th e  resu lting  o u tp u t m ay as a resu lt 

be m uch larger th a n  expected! Since th e  phenom enon of d irectionality  clearly only 

exists in  m ultivariab le  system s, classical design m ethods based on extensions of SISO 

techniques are likely to  be unreliable for ill-conditioned plants. This is no t surprising 

since techniques such as L Q G /L T R , Inverse N yquist Array, and C haracteristic  Loci 

do no t explicitly  characterise p lan t uncertainty.

Thus th e  conditioning of th e  p lan t is yet another argum ent in favour of trea tin g  

th e  design problem  in th e  fram ework of robust control theory. From  th e  point of view 

of 7Yoo op tim isation  however, the re  is a fu rther com plication. For a typ ical m ixed 

sensitiv ity  design, Tioo software will a ttem p t to  m inim ise th e  m axim um  singular value 

of S  a t low frequencies. T he problem  here is th a t th e  sm allest singular value of {Ga)n 

is so sm all (0.0051), th a t th e  m axim um  singular value of S  will be approxim ately  

equal to  un ity  at all frequencies, unless th e  controller has a huge gain in th is direction 

(som ething which is clearly undesirable from  th e  above argum ent). T he m eaning of 

any singular value of S  being equal to  un ity  a t all frequencies is th a t th e  corresponding 

loop of th e  system  is essentially  open - no feedback is being applied. N ote however 

th a t  since th e  problem  at hand is basically a regula tor problem , i.e. th e  desired shape 

(stress) profile is uniform  i.e. zero a t all points, leaving those loops of th e  system  w ith  

very  sm all gain open does not represent a serious problem . The real difficulty stem s 

from  th e  fact th a t,  as no ted  in Section 5.1, 7Yoo op tim isation  concentrates exclusively 

on m inim ising th e  largest singular value of S , and in  general does not effectively 

m inim ise th e  rem aining singular values. Thus for th is problem  th e  singular values of 

S  corresponding to  th e  loops w ith  significant gain will no t be effectively m inim ised. 

This analysis was borne out in practice when a Hoo design for th e  full 8 x 8  system  

was a ttem p ted . O ne solution to  this problem  m ight seem to  be to  try  to  decouple 

th e  system  and design on a loop-by-loop basis, b u t since th is would involve inverting 

a m a tr ix  which is close to  singular it is not a realistic option.

Instead , we adopt th e  following approach based on a reparam eterisa tion  of th e
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p lan t in  te rm s of its four m ost significant singular values, v ia th e  singular value 

decom position. P a rtitio n  th e  p lan t as:

P(S) = P(s)(Ga)n = p(s)(Ut U2)

w here

ult u2, 1 4 , v2 e n 8x4, e 1; e 2 en 4*4

N ote th a t  S j and E 2 are diagonal m atrices, containing th e  singular values of th e  gain 

m a trix . A param eterisa tion  U^ is now applied to  th e  m ill o u tp u t shape profile, while 

th e  control inpu t is param eterised  by V\. T he design is now concentrated  on the  

reduced dim ension 4 x 4  system

PTed( s ) = p ( s ) U ? ( G a)nV1

I t is in teresting  to  note  th a t such a param eterisa tion  is consistent w ith  previous 

approaches to  th e  design problem , and is also m otivated  by rolling practice consider

ations. N otice also th a t  th e  param eterised  system  is com pletely decoupled, and thus 

th is s tra tegy  is in  keeping w ith  our general approach to  design.

5.3.4 U ncertainty M odelling

In  add ition  to  th e  nom inal m odel of the  mill, an a tte m p t is m ade to  explicitly  charac

terise  th e  various sources of uncerta in ty  in th e  system . Changes in strip  shape profile 

are m odelled  as d isturbances a t the  p lan t ou tp u t of th e  form

d(s) =  W i(5)d(a), d(s) e  B C 2n

w here

"«*>=10i £ + t 1)j‘
T his choice of W \  ensures th a t th e  sensitiv ity  function  S  is penalised heavily a t low 

frequencies to  ensure good d.c. a tten u a tio n  of d isturbances in th e  form  of step  changes 

in  incom ing strip  shape profile due to  welds. T he m ajo r source of uncerta in ty  in  the  

system  comes from  th e  varia tion  in th e  elem ents of th e  (real) gain m a trix  Ga over the  

six passes in  th e  schedule. This uncerta in ty  can be m odelled using a m ultip licative 

o u tp u t uncerta in ty  descrip tion  of th e  form

G a = (Ga)n ( /  +  A g )
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A G = W/3('5)A, || A  ||oo< 1

and _
m a x t <J( ( G a ) i  ~  { G a ) n )„ m s »  =  — _ _ —

Since th e  elem ents of th e  m a trix  G a are real th e  above analysis would suggest choosing 

a constan t diagonal m a trix  for W3. However, in order to  a tten u a te  the  effect of the  

shapem eter m easurem ent noise present in the  system  we require th e  com plem entary 

sensitiv ity  function T  to  roll off a t high frequencies and thus choose W3 to  be

N ote th a t  th e  above level of p lan t uncerta in ty  a t low frequencies (due to  variations 

in  th e  gain m atrices), is qu ite  unusual in design. I t is generally assum ed th a t 

our knowledge of th e  p lan t dynam ics is quite good a t d.c. and a t low frequencies, 

and deterio rates w ith  increasing frequency. T he large value of W 3  a t low frequencies 

in  th is  design m akes th e  ta sk  of securing adequate perform ance characteristics quite 

difficult, and  necessitates careful selection of th e  corresponding weighting function 

W \.  N ote th a t th is  choice of W3 is also m ade w ith  th e  aim  of rolling off th e  closed 

loop transfer function  before th e  phase effects of th e  tim e delay in  th e  system  becom e 

significant. This is necessary since th is tim e delay m ust be o m itted  from  th e  nom inal 

p lan t for th e  purposes of 7Yoo design. T he process of selecting th e  w eighting functions 

W \  and W3 for th is design illu stra tes clearly th e  two view points regarding th e ir role. 

On th e  one hand  they  m ay  be viewed as m odels of th e  frequency content of likely 

d istu rbances, p lan t u n certa in ty  and m easurem ent noise. O n th e  o ther they  m ay also 

be regarded  sim ply as ‘knobs’ w ith  which to  shape S  and  T .

5.3.5 7Yoo Controller Synthesis and Perform ance A nalysis

T he software used to  calcu la te  th e  controller was based on th e  Tioo op tim isation  

function  h inf.m  in  th e  M ATLAB R obust Control Toolbox [71]. T he in itia l controller 

was of order 20, so controller order reduction techniques were used to  com pute th e  

16th order controller, given a t th e  end of th is subsection in Jo rdan  form . F igure 

5.23 shows th e  sensitiv ity  and  com plem entary sensitiv ity  functions for th is controller. 

N ote th a t  S  drops to  -30dB a t low frequency, ensuring good d.c. d isturbance rejection, 

w hile T  rolls off a t high frequency giving a closed loop bandw id th  of approx. 0.1

where
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Figure 5.23: Sensitiv ity  and C om plem entary  Sensitivity  Functions

rads/sec . and  providing good a tten u a tio n  of high frequency m easurem ent noise. N ote 

also th a t  th e  closed loop transfer function  rolls off before th e  effects of th e  tim e delay 

in  th e  p lan t becom e significant.

To dem onstra te  th e  d istu rbance rejection properties of th e  design, th e  param e- 

te rised  o u tp u t response to  a  step d isturbance in  loop 2 of th e  idealised (i.e. linear, 

delay free) system  is shown in  F igure 5.24. R obustness to  variations in  th e  gain m a

tr ix  G a is clearly dem onstra ted  by observing th a t d istu rbance a tten u a tio n  is preserved 

for different G J s  corresponding to  different passes of th e  schedule. Also of no te  is 

th e  fact th a t d isturbances are decoupled, i.e. th e  d isturbance in  loop 2 of th e  system  

produces a negligible effect on th e  ou tpu ts  of th e  o ther loops of th e  system . These 

resu lts ind ica te  th a t a high level of robust perform ance is achieved by th e  design -  th is 

m ay appear a little  surprising since Tioo design guarantees nom inal perform ance only. 

A theo re tica l exp lanation  for th e  above results can however be provided by referring 

to  a  resu lt in  [40], which we give below in th e  form  of a lem m a.

L e m m a  5 .3  Define the Operating B and  o f a M IM O  control system  to be a finite  

frequency region [—u;i,a>i] over which performance specifications are prescribed. Then  

define e to be the norm  o f  the nominal sensitivity matrix on this operating band,
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e =  m ax CT[1S'0(ju;)]
—u>l <U»<U>1

Finally define 8  to be the norm  o f the multiplicative plant uncertainty m atrix on 

this operating band, i.e.

8  =  m ax  CT[A(ja;)]
—iO\ <W<Wl

Then fo r  every plant Pq(s ) in the set o f  plants P (s ) ,  the £co norm  o f  the sensitivity  

m atrix  on the operating band is bounded above by

*/ C1 “  ¿X 1 -  e) >  e( l - 5 ) ( l - e ) - e

T he essential m eaning of th is lem m a is th a t if b o th  th e  nom inal sensitiv ity  and th e  

p lan t uncerta in ty  are sufficiently sm all over th e  operating band, th en  th e  degradation 

in  te rm s of robust perform ance over th is band will not be very significant. We can 

apply  th is  resu lt to  ju stify  th e  level of robust perform ance ob ta ined  in  our design as 

follows. Choose th e  frequency range [—10“ 3, 10“ 3], as our operating  band. T hen from  

th e  design we have th a t 8  =  0.2774 and e =  0.031. T hen  th e  above lem m a gives th a t

m ax  cffSYn«;)] <  0.0447 
-io-3<w<io-3

since

(1 — <$)(1 — e) =  0.7 >  e

This resu lt m eans th a t w hen th e  nom inal sensitiv ity  function  has been ‘pushed dow n’ 

to  approx. -30 dB over th e  operating  band , th e  sensitiv ity  function will stay  below 

approx. -27 dB for every p lan t in  th e  set P (s) .  This explains th e  robustness of the  

perform ance characteristics seen in F igure 5.24.

T he  controller developed above was th en  sim ulated w ith  a m ore detailed  m odel of 

th e  m ill, containing th e  tran sp o rt delay (which was ignored in th e  design), nonlinear 

ac tu a to rs  together w ith  th e ir linearising precom pensators, and  a realistic  incom ing 

s trip  shape disturbance. T he shape profile variations are shown in F igure 5.25 for 

th e  (nom inal) controller used w ith  (Ga) i . Param eterised  shape profile variations are 

shown in  F igure 5.26 for pass 3. These results confirm th e  robustness and perform ance 

characteristics of th e  design. Finally, fu rther a ttem p ts  a t controller order reduction  

based  on th e  Schur decom position m ethod  of [73], produced a 14th order controller 

w ith  no significant deterio ration  in  quality  of control.
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Figure 5.24: D isturbance Rejection properties of the  system
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5.3.6 D iscussion  and Im plications

T he benefits of form ulating  th e  design problem  under th e  fram ew ork of Tioo control 

theo ry  have been clearly dem onstrated . C ontroller synthesis is straightforw ard  and 

au to m atic , w ith  m ost of th e  design effort being expended, appropriately , on th e  m od

elling of uncerta in ty  in  th e  system . T he ill-conditioned n a tu re  of th e  p lan t was dealt 

w ith  by m eans of a SVD param eterisa tion , a procedure which also has th e  effect 

of decoupling th e  closed loop system . In contrast w ith  previous approaches to  the  

problem , robust s tab ility  of th e  design is guaranteed  a priori, while analysis of the  

closed loop system  confirms excellent robust perform ance. Some fu rth er benefits of 

th e  robustness characteristics of th e  design are also of note. In  p articu la r, it is known 

th a t  th e  mill m atrices, produced by a s ta tic  m odel developed in  [82], contain  m od

elling inaccuracies as well as linearisation approxim ations. F u rther nonlinear effects 

are p resen t in  th e  real system  due to  th e  operation of th e  actuato rs. Tioo designs 

n a tu ra lly  provide a degree of im m unity  to  such errors, as no ted in  [84]. Finally, th e  

success of th is design for a  single p lan t schedule points to  an au to m ated  design ph i

losophy, w hich could provide a sy tem atic  m eans of developing a set of controllers for 

use across th e  full range of p lan t operating  conditions.
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C hapter 6 

C onclusions

T his chap ter contains a  discussion of the  various observations m ade th roughou t the 

thesis. T he  m ain contributions of the  thesis are th e  answers provided to  the  questions 

a t th e  s ta r t  of each section below. In particu la r some conclusions are draw n regarding 

th e  ways in which uncertain ty  and control specifications are m odelled in robust control 

theory. We also consider th e  usefulness of a  classical decoupling approach to  MI MO 

design problem s in th e  context of robust control.
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6.1 T io o  C on tro l T h eory  and T im e D o m ain  ‘S p ik es’

I. Do Tioo optimal controllers suffer from  time domain ‘sp ikes’?

O ne purpose of this thesis is to  show th a t existing Tioo theory  does not suffer 

from  th e  ‘spike’ problem  discussed in C hap ter 2, provided th a t appropria te  m odels 

are adopted  for uncerta in  signal sets.

P revious work in  th e  area of Ti00 control theory  has been based on th e  use of the  

£ 2  signal norm  on b o th  th e  inpu t and th e  o u tp u t sides. A consequence of using this 

conventional or energy paradigm  for Tia0 is th a t,  as shown in  Lem m a 2.1, th e  ou tp u t 

of th e  system  can be subject to  ‘spikes’ w ith  a rb itra rily  large am plitude in th e  tim e 

dom ain. This is tru e  even when th e  o u tp u t signal has been effectively m inim ized in 

th e  usual Tioo sense. This result is a theore tical one, and heuristic  argum ents can 

be m ade th a t ex trem ely  large o u tp u t spikes will no t occur in p ractice. C ertain ly  

however, convincing and useful bounds on th e  tim e am plitude of z(t)  cannot always 

be guaran teed  under th e  s tandard  Tioo control fram ework. T he problem  therefore 

seems to  be  th e  ‘g ap ’ betw een w hat is theoretically  possible, and w hat is seen to 

occur in  real life applications. This gap is narrow ed by th e  results presented  in 

C hap ter 3, w here it is shown th a t in addition  to  m inim izing th e  w orst case ou tpu t 

in  th e  £ 2  no rm  sense, op tim al Tioo controllers are also op tim al or nearly  op tim al in 

o ther senses. T he s tandard  Tioo norm  guarantees an upper bound on th e  tim e dom ain 

am p litude  of th e  o u tp u t signal a t all tim es for th e  proposed signal sets V ^ \  and 

T>ŵ - It is dem onstra ted  th a t these proposed signal sets are rich enough for m any 

p rac tica l purposes. In th e  SISO case, op tim al non-conservative bounds on || z ( t)  ||oo 

are ob ta ined  for these signal sets. In th e  M IM O case, there  are still good bounds on 

|| z ( t)  11 oo for these  signal sets because th e  B norm  and th e  s tandard  Tioo norm  can 

be  re la ted  to  each o ther by tigh t bounds, as in T heorem  3.4. However, th e  usual Tioo 

ob jective function  m ust be modified a little  if such bounds are to  be non-conservative 

in th e  M IM O case.

T he conclusion draw n is th a t th e  ‘spike’ difficulty is not w ith  existing Tioo theory 

per se, it  is w ith  th e  control theore tic  pedagogy (i.e. th e  energy paradigm ) which is 

conventionally a ttach ed  to  it.
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6.2 S p ecifica tion  M o d ellin g  in R o b u st C on tro l T h e

ory

II. Which signal norm  provides the best model o f  the objectives o f  feedback control 

sys tem s?

The £ 1  literature in general and Lemmas 2.1 and 2.2 in particular show th a t the 
use of the C 2 norm  to measure the size of output signals is inherently flawed and should 
be abandoned. The essential significance of Lemma 2.1 is th a t the C 2 norm  gives a 
very poor m athem atical model of or statem ent of the  ‘real’ objectives and purpose 

of control systems. It is argued in Chapter 3 th a t for the m ajority of applications, 
the Coo norm provides a much better model of the control specifications than  the C2 

norm, m ainly because it non-conservatively treats maxim um  tracking errors in the 
tim e domain. As is clear from the C\ literature, doing so requires the C ^  norm to be 
used on the output side. Thus it is significant th a t as shown in Chapter 3, with the 

right signal sets, a slightly modified Tioo control theory can produce non-conservative 
results w ith the most attractive features of the C\ approach.

The conclusion drawn is tha t the £<*, signal norm generally provides the best 

model of the objectives of feedback control systems.

6.3  U n cer ta in  S ignal M od ellin g  in R o b u st C on

tro l T h eory

III. Which signal norm  provides the best model o f  uncertain input signals in feedback 

control systems?

As discussed in Chapter 2, the presence of signal set lumping in standard Tico con
trol theory means th a t reasonably accurate models of disturbance/noise/com m and 

inputs is impossible a priori. The lumping of all uncertain input signals to the sys
tem  into a single vector which is then measured using the  C2 norm grossly distorts 
the true  physical situation, since it creates an artificial interdependence between what 
are essentially independent signals. Carefully choosing weighting functions to obtain 
accurate models of several independent external disturbance, sensor noise and com
m and inputs is futile because such accurate models would have to be covered by a 

single unit ball anyway, thereby largely eliminating their descriptive value. In con
trast, both  the standard C\  and the proposed approaches are based on the infinity
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vector norm. So they autom atically avoid the problem of signal set lumping on the 
system ’s inputs.

The conclusion drawn is tha t the infinity vector norm provides the best model of 
uncertain input signals in feedback control systems.

6 .4  T im e D om ain  S p ecifica tion s and  F requency  

D o m a in  D esig n

IV. Can tim e dom ain specifications be satisfied exactly using frequency dom ain design 

m ethods?

The signals in the signal set T>$ introduced in Chapter 3 are sinusoids. The signal 

sets 'Dw'1 and U $  are described in the frequency domain. The resulting induced 
system  norm  to be minimized is most naturally expressed in the frequency domain. 
Thus, like standard TC^ control theory, the pedagogy presented in Chapter 3 is very 
much a frequency domain approach. This is an im portant feature of the proposed 
approach, because the engineer can effectively bring his frequency domain experience 

and intuition to bear on a practical problem. A frequency domain setting for controller 
design paradigm s is favoured intuitively by m any engineers familiar w ith classical 

design methods. In contrast with standard 'Hoc, control theory however, the control 
specifications in the new pedagogy are expressed and satisfied exactly in the tim e 
domain. W hile this is also the case in the standard C\ approach, C\ control theory is 
not a frequency domain but a tim e domain theory, and therefore it seems to suffer at 
present from a serious lack of design transparency. Finally it is shown in Chapter 3 
th a t the ideas outlined above have a natural extension to 7̂ 2 control theory. Indeed 
they provide a new determ inistic interpretation of Ti^ control theory in the MIMO 
case.

The conclusion drawn is th a t slightly modified frequency domain Ttoo and 7Y2 
control theories can be used to exactly satisfy tim e domain specifications.

130



6.5  W eigh tin g  F u n ction  S e lectio n  and M an ip u la 

tio n  in T io o  C ontrol th eo ry

V. How can procedures fo r  the selection and manipulation o f weighting functions be 

made more systematic, transparent and scientific?

A m ajor problem with robust control theory in general is its reliance on weighting 
transfer functions. W here are these weights supposed to  come from? It is argued 
in C hapter 3 th a t the results presented have significant implications for the weight 
selection problem.

In standard  Tioo design, the combined im pact of the lim itations (i) to (iii) described 
in C hapter 2 is tha t the designer is obliged to fall back on design thinking which is 

sub-optim al and /or heuristic. It is argued th a t the need for viewing weights as ‘tuning 
knobs’ in present day Tioo design and the need for frustrating and tim e consuming 
iterations in the design process comes at least partly  from these lim itations. In short, 
the  im pact of (i) to (iii) is to sever the connection between realistic design on the 
one hand, and the formal m athem atical optim ization problems described above on 
the  other hand. The results presented in Chapter 3 represent an a ttem pt to narrow 

this ‘gap’, i.e. th a t between the engineering aspects and the m athem atical aspects 
of Tioo control theory. The m athem atical optim ization problems of Chapter 3 more 
faithfully capture the  ‘real’ control engineering problem by improving the model on 

both  the input side (III above) and the output side (II above). This new paradigm  
clarifies the fundam entally different roles played by weighting functions on the  input 
and the  output side, and makes possible the approach to weighting function selection 
and m anipulation proposed in Chapter 3.

The conclusion drawn is th a t the weighting function on the input side W  should 
be viewed as a fixed model of possible uncertain input signals, under the modified 
Tioo paradigm  proposed. In this paradigm the output weighting function V  may then 
be used to examine and tune the relative quality of control of each individual element 
of the output, and to  m anage the tradeoffs between them . So V  enables each output 
signal Z{ to  be weighted separately, allowing the relative im portance of each to be 

traded  off by tuning the appropriate diagonal element of V . The use of weighting 
functions on both the input and the output sides is also appropriate when modelling 
system  uncertainty as this allows extra  design flexibility in the MIMO case. It is ar
gued th a t the two viewpoints regarding the roles of the weighting functions (as models
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of uncertainty and also as models of control system objectives and tradeoff priorities) 
are complementary ra ther than  contradictory, but th a t this distinction needs to  be 
formally recognised. The proposed approach fulfills this objective, resulting hopefully 
in a more transparent and system atic approach to Tioo design.

6 .6  C on n ection s b e tw een  T io o  and  C \  C on tro l T h e
ories

VI. How ‘fa r  apart’ are the L \ and Tioo control theories?

The signal sets and described in Chapter 3 are defined as having bounded 
C \ norm in the frequency domain. This may seem a little  unnatural at first, and one 
is left wondering what this set of signals ‘looks like’. Now, since every element of U $  

has tim e domain am plitude less than  or equal to unity, it follows immediately th a t 
every element of the closure of its convex hull m ust also have tim e domain am plitude 
less than  or equal to unity. Alternatively, letting denote the inverse Fourier 
transform , argum ents similar to those used in the proofs of Chapter 3 can be used to 
show directly th a t

CZ><” > (6.1)

by which we m ean th a t

w(jui) € Z>W 

=* = w (t)  € B £ “ (t)

=> |lOi(£)| < 1  V t , i

Hence, signals in are also in B C ^ i t ) ,  and so the proposed signal sets have an 
obvious tim e domain bound, just like B C ^ { t) .  However, the set B C ^ { t)  is larger. 

A counterexample to  equality in eqn. (6.1) is the unit step function. Being infinite 
dimensional, the set V ^  is still a huge vector space, and it can be argued th a t it 
should be rich enough for most practical purposes. So it seems th a t can be 
viewed loosely as being similar to B C ^ i t ) ,  but a little  smaller.

The conclusion drawn from this analysis is th a t the and L i  theories are not as 
far apart as they might seem to  be at first glance. Indeed, the analysis in this thesis 

shows they are quite close in certain senses. The proposed approach uses the same 
norm  as the Ci theory on the output side, and the only difference is in the choice of
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the  (unstructured) signal uncertainty set,

sup || z ( t)  ||oo Versus sup || z ( t )
1y (t)eB £ £ > (t)  w(jw)eBC™(jcL>)

On the input side, simply replacing BjC^(t)  with its ‘subset’ BjC™(ju>) means th a t the 
resulting C\  type problem (i.e. tha t of minimizing the worst case || z ( t)  ||oo) leads to 
a problem which is very close to  standard

/N / i  \
It seems remarkable th a t J- {T>w } looks so like B C ^ t ) ,  ( as in eqn. (6.1)), but 

th a t the corresponding optim al controllers are so different. The distinction between 
these two sets is therefore an im portant question for future research, because it is 
fundam ental to understanding the difference between C\ control theory and 7 irx, like 
control theories.

6 .7  A  C om p arison  o f  th e  D ifferent P arad igm s

VII. How do the different robust control paradigms compare?

A brief description of some of the strengths and weaknesses of the different control 
paradigm s is given below in Table 6.1.

Paradigm: TCoo A New

“Spikes” are 

prohibited
No Yes Yes

Signal set lumping 

is avoided
No Yes Yes

Specification lumping 
is avoided

No Yes Yes

It is a genuinely frequency 
domain approach

Yes No Yes

O ptim al continuous tim e 
controllers are rational

Yes No Yes

Table 6.1: Brief Comparison of Alternative Approaches.

The conclusion drawn from the above table is th a t a theory which is very close to 

standard  control theory can optimally and non-conservatively minimize maxim um
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tracking errors in the tim e domain. The C\ theory is one route to  achieving this, but it 

is very much a tim e domain theory, and seems to suffer from applications difficulties. 
In contrast, the proposed approach provides a frequency domain theory for achieving 
the above tim e domain control objectives, which is therefore closer to the ‘classical’ 
approaches familiar to every control engineer. In this way, the  modified 'HCXl theory 
proposed seems to capture the most attractive features of the standard 7Yco and L \  

approaches.

6.8  D eco u p lin g  M IM O  S ystem s for S u p er-O p tim al 

R o b u st C ontro ller D esign

V III. Can super-optimal robust controllers be directly designed by decoupling closed 

loop M IM O  systems?

In C hapter 4 a design m ethod is presented which may be used to construct Tioo , C\ 

and modified Ti<*> optim al controllers which completely decouple the closed loop sys
tem , provided the plant is square, stable and minimum-phase. It is shown tha t these 
controllers are super-optim al, i.e. optim al (in the appropriate sense) for each loop of 
the  system. Note th a t in this context the term  ‘decoupling’ means th a t the closed 
loop transfer function m atrix  is diagonal (or almost diagonal) -  thus each loop of the 
MIMO system is decoupled from every other loop. In effect the proposed m ethod 
allows the designer to select the super-optimal controller which decouples the sys
tem , from the set of optim al MIMO controllers for the problem. The design problem 
is transform ed from one multivariable problem into a num ber of independent SISO 
problems, thus allowing greater transparency and flexibility in the design process. In 
C hapter 5 the  proposed decoupling design m ethod is applied to the HIM AT pitch 
axis controller design problem. For multivariable plants which are stable but non- 
minimum -phase, half-decoupling can be achieved by transform ing the multivariable 
design problem into a num ber of independent MISO problems.

The conclusion drawn is th a t under certain restrictive conditions, super-optimal 
robust controllers which decouple the closed loop system can easily be constructed.
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6.9  L oop sh ap in g  D eco u p led  M IM O  S y stem s for 

Im p roved  P erform an ce

VIII. Is a classical decoupling approach to M IM O  control system  design useful in the 

context o f  modern multivariable robust control theory?

Classical multivariable design procedures such as Inverse Nyquist Arrays and 
C haracteristic Loci were based on the idea of decoupling the design problem as much 
as possible, and then applying SISO techniques to achieve satisfactory performance. 
W ith the advent of truly multivariable design methods such as Hoc, control, the idea of 
decoupling the MIMO problem into a number of SISO problems may have appeared 
obsolete. In Chapter 5 however, it is shown th a t decoupling the design problem allows 

SISO loopshaping techniques to be used to  improve MIMO robust controller designs 
in a num ber of different ways. Once the initial optim al decoupling controller has 
been calculated cascade controllers can be used to improve robust performance and 
m eet tim e domain objectives. SISO loopshaping is a well established technique in 
robust control -  it allows the designer a great deal of flexibility and provides much 

needed insight into the nature of the difficulties inherent in the particular problem. 
M ultivariable loopshaping on the other hand is a decidedly more complex proposi
tion. Decoupling the problem allows the application of SISO loopshaping techniques 

to  MIMO systems. Finally the Sendzimir mill shape control problem discussed in 
C hapter 5 illustrates the advantages of using the singular value decomposition to 
decouple ill-conditioned plants prior to  îioo design.

The conclusion drawn is th a t attem pting to decouple the closed loop system as 
part of the design process makes sense from a classical and  a robust control point of 
view.

6 .10  D irectio n s  for F uture R esearch

The work completed in this thesis naturally suggests some fruitful avenues for further 
research. The paradigm  for optim al robust controller synthesis presented in Chapter 3 
proposes some new optim isation problems, which at present are unsolved analytically. 
However since these problems are convex, sub-optimal solutions can be generated 

using num erical methods, for example by using the convex optim isation approach 
detailed in [6]. Thus one obvious direction for future research is in the development
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of analytical and/or customised numerical solutions to these optim isation problems.
Another open problem is the issue of robust performance in the proposed paradigm, 

since the optim isation problems involving the B and C norms introduced in Chap
ter 3 guarantee certain levels of nominal performance only. Many im portant questions 
concerning the effect of system uncertainty (whether structured or unstructured) on 
control perform ance in the tim e domain are open, in both  analysis and synthesis.

Finally it has been argued above th a t the quality of control achieved by a feedback 
system  depends to a large extent on the way in which uncertainty is modelled in the 
design process. In the case of signal uncertainty, new signal sets have been proposed 
in th is thesis w ith the aim of more faithfully capturing the physical realities in which 
control systems operate. U ltim ately however, the type and level of uncertain signals 
acting on a system will depend on the particular environment in which it is operat
ing. W ind gusts on the wings of an aircraft for example will certainly have different 
physical characteristics than  wave m otion acting on the hull of a ship. Therefore the 
development of formalised identification procedures, which would produce applica

tions specific models of uncertain signals for use in robust controller design would be 
highly desirable.
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