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A bstract

This thesis studies singularly perturbed Volterra integral equations of the form

eu(t) =  / ( t ,  e) +  f g(t, s, 11(5)) ds, 0 < i
Jo _  <r,

0

where e > 0 is a small parameter The function f(t,e) is defined for 0 < t < T  anil g(t, s, u) for 
0 < s < t < T  There are many existence and uniqueness results known that ensure ¡that a unique
continuous solution u(t, e) exists for all small e > 0 The aim is to find asymptotic approximationslto these solutions This work is restricted to problems where there is an imtial-layer, various 
hypotheses are placed on g(tts,u) to exclude other behaviour A major part of this work is that 
formal solutions of the nonlinear problem are determined and rigorously proved to be asymptotic 
approximations to the exact solutions Formal approximate solutions 1

N

£M i,e) =  un(t,e) =  0 (1) as e -> 0,
7 1 = 0

are obtained using the additive decomposition method Algorithms which improve the method 
used m Angell and Olmstead (1987), are presented for obtaining these solutions Assuming a 
stability condition in the boundary layer, it shown that there is a constant Cjv such ,that

\u(t,e)-Ujsf{t,e)\ <cNeN+1 as e 0,

uniformly for t € [0,T], thus establishing that £/jv(i,£) is an asymptotic solution Skinner (1995)I
has proved similar results, but almost all the theorems here were discovered before Skinner’s work 
was found and are largely independent of it Lange and Smith (1988) prove results for the case 
g(t, syu) = k(tys)u, where k(t, s) is continuous and satisfies a stability condition in the boundary 
layer These results are carefully developed here and similar results for linear integrodifferential 
equations The problem of extending these to the class of weakly singular equations with

g(t ,s ,u)  -  0 <  /3 <  1,

is discussed An interesting aspect of this problem and others for which the boundary 1 layer stability 
condition fails, is that the solutions decay algebraically rather exponentially within ¡the boundary 
layer 1



Chapter 1
Introduction

1.1 Singular Perturbation P r o b l e m s

In this work we study singularly perturbed Volterra integral and mtegrodifferential equations which 
depend on a small parameter in such a way that the solutions of the problem behave nonumformly 
as the parameter tends to zero Such singular perturbation problems involving Volterra integral 
operators arise m applied mechanics, population dynamics and heat conduction The practical 
aim is to calculate a uniformly valid approximation to the exact solution, which can be used to 
understand and interpret the unknown exact solution Unlike regular perturbation, in singular 
perturbation theory there need be no solution to the reduced problem obtained by setting the 
small parameter to zero If a solution to the reduced problem does exist, its qualitative features 
can be distinctly different from those of the solution to the full singular perturbation problem 

The nature of the nonuniformity of the solutions can vary Here we limit attention to problems 
in which such nonuniformity occurs m a narrow region called an initial or boundary layer In 
this region, the solution of the problem changes rapidly The width of the initial layer must 
approach zero as the parameter decreases to zero In problems with layers one approach is to seek 
(at least) two expansions, called the inner and outer expansions, neither of which is uniformly 
valid but whose domains of validity overlap and cover the whole domain This is the method of 
matched asymptotic expansions Its purpose is to replace the problem on the whole domain by 
a sequence of simpler tractable equations on the inner and outer regions For many problems 
the additive decomposition method (otherwise known as the O’Malley-Hoppensteadt or boundary 
function method) is simpler In this thesis we apply the method to several integral equations, and 
describe some standard, general techniques for mathematically justifying the results Estimates 
are provided using relatively simple differential inequalities 

The additive decomposition method was first applied to singularly perturbated systems of ordi-
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nary differential equations of the form

dor =  f(x,y,t,e), x(0) =  a(e) (111a)

=  g(x, y, t, e), y{ 0) =  /3(e) (11 lb)
at

Here the data f(x,yyt,e),g(xi y, t, e), a(e) and ¡3(e) are assumed to possess power series expansions 
m e with smooth coefficients An asymptotic solution of (11 1) is sought in the form

C hap ter 1, Section 1___________________________________________________________________ Singular P ertu rbation  Problem s

with an outer expansion

x(t, e) =  X(t, e) + e£(t/e, s), 

y(t,e) = Y{t,e)+ri(t/e,e),

U  W t ) J
and an initial layer correction

U(r,£)J ¿ 5

oo 3
U w /  ’T-

whose terms tend to zero as r —► oo Related to (1 1 1) are two important problems The reduced 
system is

/7T
=  /(*. y, t, 0), *(0) = a(0)

0 =  g ( x , y , t , 0 ) (112)

and the associated boundary-layer equation

=̂ff(»(0),*,0,0)I *(0)=/9(0) (113)

Hoppensteadt investigated in [13] the behaviour of the solution of (1 1 1) on the interval 0 < t < 
oo as e —► 0 In order to treat this case of t being allowed to range over the entire positive real axis, 
[13] requires that both the reduced system (11 2) and the boundary layer equation (1 1 3 ) satisfy 
severe stability conditions Hoppensteadt’s mam result is that, under restrictive assumptions, the 
solutions of the system (1 1 1) exist for all t > 0 and converge as e ->• 0 to the solutions of the 
reduced system uniformly on closed but not necessarily bounded subsets of (0, oo) In particular,
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solutions converge on sets of the form [ti, co) with t\ > 0 This result is significant m the sense 
tha t the hypotheses cannot be significantly weakened

Different results for (111) have been obtained on bounded intervals of the form 0 < t < T 
These include many by O’Malley, full references for which can be found in [20], [21] or Smith [25] 
In order to obtain these results, less severe stability conditions are imposed on the boundary-layer 
equation (1 1 3 ) and the reduced system (112) than m Hoppensteadt’s theory Boundary value 
problems have also been extensively investigated, see for example the books of O’Malley [20] and 
Smith [25]

In some problems of the form (11) the additive decomposition method gives spurious results in 
cases for which the method of matched asymptotic expansions works Examples of this have been 
discussed in Fraenkel [8] and Lange [14]

1.2 S u m m a r y  of Thesis

Chapter 2 considers the singularly perturbed linear Volterra equation

eu(i) =  f(i) +  [ A(t,$)u(s)ds, 0 < t < T, (12 1)
Jo

C hap ter 1, Section 2_______________________________________________________________________________ Sum m ary of Thesis

where 0 <  e «  1 The vector-valued function f(t) is continuous for 0 < t  < T  and the matrix- 
valued kernel A(£, s) is continuous for 0 < s < t  < T  The aim is to find asymptotic approximations 
to the continuous vector-valued solution 1 u(i, e) of (1 2 1) as e ->• 0 We impose the boundary 
layer stability condition that all eigenvalues of A(t, t) have negative real parts This not only forces 
an initial layer, but forces the solution u(t, e) of (1 2 1) to decay exponentially m the boundary- 
layer

Angell and Olmstead in [1] and [2] used the additive decomposition method to find the first 
few terms in the formal solutions of linear and nonlinear singularly perturbed Volterra integral 
and differential equations However their approach has the shortcoming that general equations 
for the coefficients in the formal solution cannot be determined Also Lange and Smith [15] 
used the additive decomposition method in their study of singularly perturbed linear Fredholm 
equations They deduced general expansions for the formal solution and rigorous estimates to show 
its closeness to the exact solution Following the same approach, we derive in Section 2 4 equations

3



for the terms m a formal solution
JV+l

U jv (t ,e )  =  5 3  u n ( i ,e )e " _1
n=0

Then in Section 2 5 it is shown that

eU jv (t ,e )  = f ( t ) +  [ A(t,s)UN (s,e)ds +  0(eN+1),
J o

and in Section 2 6 we prove that
t

|u ( i ,£ ) - U w(i,£)| =  0 (£'v+1) (12 2)

uniformly for 0 <t < T  as e —► 0
Similar results are proved m Chapter 3 for the linear Volterra mtegrodifferential equation

C hap ter 1, Section 2_______________________________________________________________________________ Sum m ary of Ihesis

eu'(£) =  f(i) +  B(t)u(t) +  f  A(i, s)u(s) d s ,  u(0) =  a
Jo

We construct in Section 3 2 a  formal solution Ujv(i, e) for this problem using the additive decompo
sition method and prove the estimate (12 2) provided the above boundary layer stability condition 
holds In chapter 4 we consider the weakly singular linear scalar Volterra integral equation 

A major part of this thesis is Chapter 5, where formal solutions of the nonlinear problem

eu(t) = f(t, e) + [ g(t, s, u(s)) ds, 0 < t < T, (12 3)
Jo

are determined and rigorously proved to be asymptotic approximations to the exact solutions 
Here we require that lim ^ o  /(0 ,e ) =  0, and allow /  to have the asymptotic expansion

oo

/(*.«) ase->0j=0
Again the additive decomposition method is used The boundary layer stability assumption takes 
the form that there is a constant a > 0 such that

i, 2/0 (¿)) < —a  < 0, for all 0 < t < T, 

d3p(0,0,f )  < —a < 0, for all suitable v

Skinner [24] has proved similar results, but almost all the work m Chapter 5 was done before 
Skinner’s work was found and is largely independent of it However for the sake of clarity we



have integrated some of Skinner’s improvements into the exposition of Chapter 5 In particular 
Skinner’s method of deriving the equations for the formal solution is adapted there Skinner’s work 
builds on that of Smith [25], Ch 6, O’Malley [20], Ch 4 and O’Malley [21], Ch 2 on singularly 
perturbed initial value problems for nonlinear ordinary differential equations These were major 
sources for this thesis

We also investigate linear Volterra equations for which the boundary layer stability condition 
fails to hold In Section 2 8 we view the simple example

eu(t) = }{t) - f  su(s)d$, (12 4)
Jo

from the point of view of the additive decomposition method, looking for an expansion
OO oo

“(i.e) = 'Yj S’Vi H) + - ][V/2̂ (i/e1/2)
3— 0 J=0

Because not all the boundary layer correction terms z3 (r) 0 exponentially as r  -► oo but only
algebraically, greater care is required in applying the O’Malley-Hoppensteadt method Similarly 
m Chapter 4 the weakly singular scalar Volterra integral equation

eu(i)= m + m L  j r ^ h u(s)ds’
is considered with 0 < ¡3 < 1 and fc(i,i) =  -1 This problem exhibits an initial layer at t =  0 
like the equations with continuous kernels considered in Chapter 2 The stability condition fails 
and there is only algebraic decay of solutions m the initial layer We construct a formal solution 
Uo(t,£) and can demonstrate in particular examples that \u(t,£) — U0(t,E)\ =  0(e) A proof of 
this in general is not yet known

C hapter 1, Section 2 ________________________________________________________________ _ _________ Sum m ary of Thesis
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C h a p t e r  2

Linear Integral Equations with Continuous 
Kernels

2.1 Introduction

This chapter considers the singularly perturbed linear Volterra equation

eu(i) =  f(i) +  f  A(t,s)u(s)ds, 0 < i < X1, (2 11)
Jo

where 0 < e «  1 The vector-valued function f(t) is continuous for 0 < t < T  and the matrix- 
valued kernel A (i,s) is continuous for 0 < s < t < T  Our interest is in finding asymptotic 
approximations to the continuous vector-valued solution t »->■ u(£, e) of (2 11) as e -* 0 The 
results here are not presented because they are new, but rather to explain m this simple context 
how the method of additive decomposition can be applied to integral equations In later chapters 
it is employed to find asymptotic approximations to the solutions of more complicated equations 
The results here are easily generalised to the case of f  and A depending in a regular way on e, 
though here it is assumed that they are independent of e 

The singular nature of (2 1 1) is easily seen For e >  0, (2 11) is a Volterra equation of the 
second kind which has a continuous solution u(£,e) satisfying eu(0,e) =  f(0) For e =  0, (2 11) 
reduces to a Volterra equation the first kind

0 — f(i) +  [  A(i, s)v(s) cfs, 0 <  t < T, 
J o

(2 1 2)

which does not have a continuous solution unless f(0) =  0 Even in this case, (2 1 2) has a 
continuous solution only if f(t) is continuously differentiable So there is a loss of regularity for 
v (t) compared to the solution u(i, e) of (2 1 1) for e > 0 Indeed, if the solution of (2 12) is 
such that v(0) ^  limÊ o u (0}£)j then v(t) cannot provide a uniformly valid approximation of the 
solution u (t, e) of (2 11) on [0, T\

The behaviour of the kernel plays an important role in determining the asymptotic character 
of the continuous solution \i(t,e) of (2 11) for small values of e In this chapter we impose the 
condition that all of the eigenvalues of A (¿,i) have negative real parts This not only forces an



C hapter 2, Section 2 N otation and Assum ptions

initial layer, but forces the solution u(t, e) of (2 1 1) to decay exponentially m the mitial-layer 
The solution u  (i,e) is slowly varying for 0(e) < t < T  as e ->• 0, but changes exponentially on a 
small interval 0 < t < 0(e) This small interval of rapid change is called the inner region, initial 
layer or layer of rapid transition, and the region of slow variation of u(¿, e) as the outer region 
The thickness e of the initial layer approaches zero as e -¥ 0

The aim of this chapter is to obtain asymptotic approximations to u (i,e) which are uniformly 
valid for all 0 < t < T  as e -¥ 0 Our interest is m problems whose solutions have initial layers, 
solutions with rapid initial exponential growth will not be discussed here Exponential decay m 
the boundary layer of the solution u(i, e) suggests the use of the additive decomposition method, 
as was employed by Lange and Smith [15] in their study of singularly perturbed linear Fredholm 
equations In Section 2 2, we introduce some notation and explain our basic assumptions Section 
2 3 explains the fundamental ideas of the additive decomposition method, and how it regularizes 
the singular perturbation problem (2 11) We derive a formal solution X ^L -i u n (i, e)en in Section 
2 4 In Section 2 5 it is shown that this is an asymptotic series and that

eUjvfte) = f(t)+  f  A ( t , s ) \ J N ( s , e ) d s  +  0 ( e N + 1 ),
Jo

where
JV+l

Ujv(£,e) = un(i,e)en_1
n=0

In Section 2 6 we prove that

|ti(i,e) -  Ujv(t,e)| = 0(e'v+1) (2 13)

uniformly for 0 < i < T a s e - ^ 0  This result is important because the method of additive 
decomposition can lead to spurious solutions (see for example Lange [14]) The method is illustrated 
in Section 2 7 by an example from Angell and Olmstead [2]

2 2 Notation a n d  A s s u m p t i o n s

The n-dimensional space Mn is given the norm |x| =  maxi<t<„ |rct | for each x m R n , and the space 
t nXn of n x n matrices with real entries is given the norm |M | =  maxi<t>J<n \Mt3 \ for all M  in 
MnXn The spectrum <r(M) of M  is the set of eigenvalues of M  It is well-known (see, for example



C hap ter 2, Section 3 H euristic Analysis

Hirsch and Smale [12], Ch 7, Thm 1) that, if Re A < a < cti < 0 for all A € a(M ), there is a 
constant k > 0 such that

|eM*x| < «e_ait|x| (2 2 1)

The kernel A A t  ->• MnXn is defined on

AT = {(i,s)eK2 0 < s < i < T} (2 2 2)

It is convenient to use the notation

B(i) =  A (i,f) (2 2 3)

Partial derivatives are usually denoted by d\ A  and 82A instead of dA/dt and dA/ds respectively 
Similarly the derivative of u is usually denoted by u'(i) rather than du/dt

The following assumptions are used throughout this chapter The first is a regularity assumption 
on the data f  and A, the second is a stability condition for the solution within the boundary layer

(H i) The functions f  [0, T] Rn and A A T —» RnXn are both C°°

(H2) There exists a number a > 0 such that

max {Re(A)| < —a,Ae(7(B(i))L

for all 0 < t < T

2 3 Heuristic Analysis

In this section, we describe how the additive decomposition technique can be applied to integral 
equations of the type (2 11) The method of additive decomposition, also called the O’Malley 
and Hoppensteadt method, was initially applied by O’Malley [20], [21] and Hoppensteadt [13] 
to investigate the behaviour of solutions of singularly perturbed systems of ordinary differential
equations The book Smith [25] contains a clear account of its application to singularly perturbed
ordinary differential equations This method was later employed by Angell and Olmstead m [2] and 
[1] to get formal solutions of singularly perturbed Volterra integral equations, linear and nonlinear 
Lange and Smith in [15] in a very careful study of singularly perturbed linear Fredholm equations

8



C hap ter 2, Section 3 H euristic Analysis

applied the method systematically to get a complete formal solution and proved estimates of the 
type (2 1 3) The singularly perturbed Fredholm equations investigated in [15] have the additional 
complication of two boundary layers It is also indicated there how internal layers can be analysed 
The additive decomposition has also been employed by Lange and Smith [16] and Skinner [24] 
The presentation is similar to §3 and §6 of Lange and Smith [15]

The analysis m this and the next section is formal The forcing function f(i) and kernel A(i, s) 
are assumed to be C°° The solution u (t, e) of (2 1 1) can be represented as

u(t, e) =  - f ( t )  +  - f T(t, 8, e)f(s) ds, 0 < t < T, (2 3 1)
8 £ Jq

where T(i, s, e) is the resolvent kernel of A(i, s)/e, which by definition is the solution of

1 I f 1T(i, s, e) —  -  A(i, s) +  -  / A(i, v)T(v, s, e) dv, 0 < s < t < T ̂ £ J 8
T(i, s e) is also C°° Detailed accounts of the theory of linear nonconvolution Volterra equations 
can be found in Miller [19] ch IV and Gnpenberg, Londen and Staffans [10] Ch 9 

To model an initial layer for u(t, e) we introduce a new scaled time scale r  =  The idea is 
that if the initial layer region is described with respect to the new time scale no rapid variation in 
the solution should be exhibited A solution u(i, s) is sought in the form

u(£, e) = y(t, e) + < p ( e ) z ( t / n ( e ) , e ) ,  (2 3 2)

where y(i, e) represents the outer approximation and z(t, e ) an initial layer correction function 
The function h(e) describes the width of the layer and ip(e) describes the magnitude of u(£, e) m 
the layer Therefore we require th a t1

y(i, e) =  ord(l), z (r,e ) =  ord(l) as e ->■ 0

At any fixed t > 0, the outer approximation, y(i,£) should give a good approximation to u(i,e) 
as e —► 0, we impose the condition

z ( r ,e ) -> 0 ,  as r o o  (2 3 3)
^ w o  functions ̂ (e) and ip{e) defined in a neighbourhood (0,eo) satisfy 9{e) — ord(̂ (̂ )) if 0(e) = but

8(e) ̂  ©(̂ (e)) as e —► 0

9



The substitution of (2 3 2) into (2 11) gives
rt rt/v{e)

ey{t,e) +  ey>(e)z(f//x(e),e) =  /  A(t, s)y(s, e) ds +  ip{e)ii{e) /  A(i,/ct(e)o-)z(<7,£:) da +  f(i)Vo Vo (2 3 4)
This is equivalent to

ey (M(e)r, e) +  e</?(£)z(r, e) =  /  A(/i(e)r, s)y (s, e) dsVo
+  V?(e)/x(e) /  A(/z(e)r, /z(e)cr)z(i7, e) do- +  f(/i(e)r) (2 3 5)

Jo

The width ^(e) and amplitude <p(e) in the boundary layer can be found by examining the 
dominate balance Of course ii{e) —  o(l) as e -¥ 0 We shall only consider the leading order terms 
m y(i,e) and z (r, e), and therefore write

y(*>e) =  yo(i) + 0(1), z(r,e) =  z0(r) +  o(l) as e 0

Of course z0(t)  -> 0 as r  -> 00 Also we assume that there is a real number 7 and nontrivial 
kernels B(r,er) and C (£,cr) such that

A(er,£(7) ~ £ 7B (t, ct)

A(t,ea) ~  £7C(i, a)

uniformly as e ->• 0 For simplicity we suppose that f(0) ^  0 Equations (2 3 4) and (2 3 5) imply 
tha t as e 0

/** ft/tie)
ey0{t) +  e^(e)z0(i/M(e)) ~  /  A(i, s)yo(s) ds +  tp(e)ti(e) /  A(i, ¿¿(e)<7)z(<7, e) do + f (t)

Jo  Jo (2 3 6)
fti^y fT

eyo(fjt(e)T) + e(p(e)z0(t) ~  / A (/i(e)r,s)y0(s)ds +  v?(£)Me)7+1 /  B(t,<t)z0(<7)dcr +  f(0)Vo Vo
(2 3 7)

Examining the dominant balance in the second relation, we see that

ord(e<^(e)) =  ord(/i(e)7+V (e)) — ord(l) as e -» 0

Hence we choose

H(e)=e’c&, ¥>(e) = ̂

It then follows by letting e -» 0 with r > 0 fixed m (2 3 5), that zo obeys the equation

z0(r) =  [ B(r,a)z0(a)d(7 +  f(0)Vo

C hapter 2, Section 3________________________________________________________________________________ Heuristic Analysis
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To get an equation for y0 the order as e -» 0 of the term
rt/n{e)

<p(e)/u(e) / A(t,ij(e)a)z(a,E) da (2 3 8)
Jo

in (2 3 4) must be calculated In the standard case of exponential decay in the boundary layer, 
each of the integrals

rt/v{tr)
/  A(t,fi(e)a){z(cr1e)-Zo(a)}dcr,
Jo

rtf tie)
/  {A(t, fi{e)<r) - /x(£)7C(i, a)}z0{a) da,
Jo

li(ey f C(t,a)z0{a)da1
Jt/tie)

can be formally shown to vanish, and hence (2 3 8) has leading order
ro o

/ C(t,a)z0(a)da (2 3 9)
Jo

m this case However finding the order of (2 3 8) as e —> 0 m the case of algebraic decay of 
the solution in the boundary layer is not so straightforward Indeed m Section 2 8 an example is 
discussed for which the evaluation of the layer limit in (2 3 8) requires knowledge of the asymptotic 
behaviour of higher order terms m z(r,e ) not just the leading order term z0(r) For the standard 
case of exponentially decaying boundary layers, we find by letting e 0 with 0 <  t < T  fixed m 
(2 3 4) that yo obeys

ft poo
0 =  / A(t, s)yo(s) ds +  /  C(t,a)zQ(a) da +  f(i)

Jo  J o

It is easy to see that if (H 2) holds then

A(ET,£a) ~  A (0 ,0) (2 3 10)

A(t,ecr) -  A (i,0) (2 3 11)

as e —► 0, where A(0,0) and A(i, 0) are non-zero Then the width and amplitude of the boundary 
become

fi(e) - e, <p(e) =  -  (2 3 12)
£

In the standard case y0 and z0 then satisfy
rt poo

0 = /  A (i,s)yo(s)ds +  A (i,0) /  z0(cr)da +  f(i) (2 3 13)
Jo  Jo

zo(r ) =  [ A(0,O)zq(o’) da +  f (0) (2 3 14)
Jo

C hap ter 2, Section 3________________________________________________________________________________ Heuristic Analysis

11



C hap ter 2, Section 4 Derivation of the  Formal Solution

A consequence of the magnitude 0 (£ _1) of the boundary layer is that the term eu(i) on the right 
of (2 1 1) contributes to equation (2 3 14) for the inner correction term It also follows from (2 3 6) 
that (2 3 9) is the contribution to the integral in (2 1 1) from narrow initial layer 0 < t < 0(e) is 
0(1) as e —► 0 with t > 0 fixed Also note that the integral equation (2 3 13) is not the reduced 
equation (2 12), unless the second integral on the right side is ¿ero In the special case where 
f(0) =  0, the boundary layer has 0 (1) magnitude and the leading order term z0 obeys a different 
equation

The solution of (2 3 14) is z0(t) = e ^ 0,0)7' ^ )  If (Ha) holds,
rOO
/ z0(t ) dr =  — A(0,0)-1f(0),

Jo

and (2 3 13) becomes

0 =  f* A  (i, a ) y 0 (a )  d s  +  f(i) -  A(i, 0)A(0,0)“ xf(0),
Jo

which has a smooth solution

2.4 Derivation of the F o r m a l  Solution

In this section we assume that (2 3 10), (2 3 11) and (2 3 12) hold, so that we seek a formal solution 
m the form

u(i. e) = y (t, S) + iz  (i/e, e) (2 4 1)

The vector functions y(i, e) and z(r, e) are given asymptotically by
oo

y(i.e) (242)
3 = 0
oo

z(t.e) (243)
J = 0

as £ —> 0 To ensure that (2 3 3) holds we assume that

lim zj ( t ) =0, j  =  0,1,2,
r —>oo

Putting y_i (t) ~ 0, it follows from (2 3 4) that



C hap ter 2, Section 4 Derivation of the Formal Solution

The orders of the terms m
oo ft/e

/ A(t,ea)zj(a) dcr (2 4 5)
3=0

in (2 4 4) as e —► 0 depend on the decay rate of the layer term z3 (r) We assume that z3 (r) decays 
exponentially so that, for each integer j > 0, there are positive constants and c3 such that

1x̂ (7“)! < r > 0  (2 4 6)

By writing out the Taylor expansion of A (t,ecr) we find that
oo

A(i,£cr) as e -> 0,
i=0

where

E,(t,<7) =  i<r*[31A](t,0) (2 4 7)

Hence, noting that E* (i, a) is defined for all (t, a) m M+ x R+ , (2 4 5) has the asymptotic expansion
oo oo „tje oo oo' r1/ c /•oo

' H e3'%2e i E*(*>°’)zjm ^  = Il el5Ze' I  Eî(*>a)zJ daj=0 t=0 j=0 t=0
oo co -oo

~^L<£3^ 2 e I ^t{t^)z3(o)da3-0 t=0 l!e
oo 3 roo

5 2 ^ 5 3 /  Ei(t,a)Zj-,(cr)d(T -  J(t/e,n n Vo3=0 t=0
as e —► 0, where

00 00 -00W  /*OQ
J  ( r ’ e )  =  5 Z  ^  5 1 £ i 1 E * ( £ r ’  ° O z j  ( ° o d ci— ft .—ft VrJ=0 1=0

We introduce the homogeneous polynomial of degree t

F ,( r ,a )  =  i  [(rÔi +  <t32)'A] (0,0), (2 4 8)

which has the property that
OO CO

^ £ * E (£ t,o -)  ~  ^ e lF (r,(j), as e ->■ 0 
1=0 1=0

It follows that
oo

J (r ,e )  ~  ^ e JJ j ( r )  as e -4 0, 
j=o

13



C hapter 2, Section 4 Derivation of the Formal Solution

where
3 /*ooJ  p O O

3,(t) = Y I  Ft(T,a)z3-t(a)da
1 = 0

However it follows from (2 4 6) that for any 0 < / < i

/OO p o o

al~lz3^t(a) da < rlcl -.3 j al~le~r 13 ~3 da 0 as r 0,

and hence from (2 4 8) that

J j ( r ) “  ̂0 as t  —>■ 0

Equation (2 4 4) can be decomposed into functions of t and functions of t/e which decay to zero 
The following Lemma is used to derive the coefficients y3 (t) and z3 (r) of (2 4 2) and (2 4 3)

L em m a 2 1 For each integer j > 0, let p3 (i) be a continuous function on [0, T] and q^ (t) a 
continuous function on [0, oo) such that q j(r) —► 0 as r -¥ oo Suppose that for every integer 

N  > 1 ,
N - 1

£  {P3W + q 3(i/e)}eJ =  0(en ), (2 4 9)
J—o

uniformly as e -+ 0 Then pj =  0 and q^ =  0 for every j  > 0

Proof There is a uniformly bounded function r 0, defined for all 0 < t < T, r > 0 and 0 < e < £o, 
such that

PoW +  qo (t/e) =  er0(M /e,£)

By letting e -¥ 0 for each fixed t € (0, T], it follows that po(i) =  0 The continuity of p0 then 
implies po =  0 on [0, T] Therefore substituting t = er, we have

q 0(r) =erQ(£T,T,£)

Hence, on taking the limit as e -> 0 for each fixed r  > 0, we deduce that qo =  0 An obvious 
induction argument completes the proof □

It has been shown that (2 4 4) can be expressed in the form (2 4 9) with p3 and q^ given by
ft rooPjW = yj-i(*) “ W W  “ /  A(t,s)yJ (s)ds -  V  /Jo ,=oJ°

q3(r) = z ,( r )  +  J , ( r )  

14



C hapter 2, Section 5 Properties of the Formal solution

It is convenient to introduce
f 0, 3 = 0,

\  , oo (241°)
l E £ £ J > 1 ,

4>(t) = |f(i) + / : A °(1’0,ZoW('" 7=0> (2 4 11)

It is important to note that ip3 and 4>3~\ are determined by zo, ,Z j-i Later we use the identity
rOO

4>,{0) =  tp,{0)+ A{0,0)Zj(a)da (2 4 12)
Jo  

From (2 4 10) and (2 4 11)

PjM =  y3- i  (i) -  [  A(t, s)y3 (s) ds -  (£),Vo
Oj (t) = zAt ) + J a (°> °)zj (ct) dv + t] W

By applying Lemma 2 1 we obtain the following equations for (t) and z3 (r)

Vj-i (<)=/ A(i, s)y j (s) ds +  <j>j(t), (2 4 13)Vo
Zj {t ) =  - J  A(0,0)Zj((t) da-ipjir), (2 4 14)

The integral equations are augmented by initial conditions Since

u(°’£) = ~ £ e3 (yj (°) + l zi (°)) >
3 = 0  ^ '

we impose the conditions

M 0 ) = { f(0)’ . . J =  0, (2 415)[-yj-i(O), j > 1

2.5 Properties of the F o r m a l  solution

In this section, we first show in Proposition 2 2 that there exists solutions y3 and z7 to equations 
(2 4 13) and (2 4 14) satisfying the initial condition (2 4 15) Moreover z3 (r) -> 0 exponentially as 
t  —̂ oo Therefore

u„(i,£) = yn_i(i) + z„(i/e),

can be defined for n > 0 Then
oo

U(i, e) = £ u n(t,e)en_1 (2 5 1)
n=0

15
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is an asymptotic series as e —► 0 If we define the truncated sum
N + l

UN(t,e) = £  un(t,e)en (2 5 2)

then we can consider the residual pN (i, e) given by

eU7v(i,e) =  f(t) 4- f  A(i, s)U;v(s,£) ds — pN (t,e) (2 5 3)o
Thus Uyv(i, e) satisfies the original equation (2 1 1) approximately with a residual pN (i, e) We 
express pfN (t,e) as the sum of a function of t and a function of t/e In the same manner as m 
the construction of the formal solution, functions of t/e contribute only in the initial layer region, 
away from the layer, functions of t dominate In Proposition 2 4 various results are given which 
demonstrate that pN(t,e) is small f o r 0 < i < X a s £ - » 0  Similar results are given m Chapter 5 
of [25] for a linear overdamped mitial-value problems The estimates in Lemma 2 4 are stronger 
than those of Section 7 of Smith and Lange [16]

P ro p o s itio n  2 2 Suppose that (H i) and (H 2) hold, and let 0 < ¡3 < a Then for every integer 

j > 0 there exist solutions y3 € C ^ fO ,7], Mn) of (2 4 13) and solutions z3(t) e O00([0, oo), Mn) 
of (2 4 14) and (2 4 15) Moreover there are positive constants c3 such that

there are solutions y3 (t) of (2 4 13) for all 0 < 3 < N  — 1 and solutions z3 (r) (2 4 14) for all 
0 < 3 < N  satisfying

M t )\ <c3e <3r, t > 0 (2 5 4)

Proof We choose a i such that (3 < ai < a Consider the hypothesis that for some integer TV > 0

(2 5 5)

where p3{r) is a polynomial of degree 3 with positive coefficients Once this hypothesis has been
established for all N  > 0, Proposition 2 2 follows immediately

The solution of

is z0(t)  =  eA(o,o)r f(0) Hence by (2 2 1),

|z0(r)| < Ke aiT|f(0)|, r  > 0

16



Also y_i (i) =  0 Hence the induction hypothesis is true for M  =  0 
Suppose now that it holds for some M  > 0 Then <pM {t) is well-defined and smooth The

equation

A (i .i )_1[y'M-i(i) -  <&*(*)] =  yAfW +  [ A (i,i)_ l5iA (t,s)yM (s)d«, (2 5 6)
JO

which is obtained by differentiating (2 4 13), is a Volterra equation of the second kind Since the 
kernel and forcing function are C°°, so is the unique solution yar M It follows that

yjif-i (t) =  /  A(i, s)yAf(s) ds +  +  constantJo

However the constant is zero because (2 4 12) and (2 4 14) give - z M(0) =  0 M(O), and the induction
hypothesis implies that the initial condition zm(0) =  — yM-i(O) holds

The induction hypothesis also implies that i?M+i(T) 1S well-defined Moreover a tedious calcu
lation using (2 2 1) and (2 5 4) establishes that

IVW^)I < e”aiT*Wr), 

where Pm +i(t) is a polynomial of degree M  z ^ + i satisfies the ordinary differential equation

z'm+ i W  =  A (0,0)zM+ i(r) -  4 + i W .  zm+ i (0) =  yw(0)

The solution of this can be found using variation of parameters and written as

zjw+i (r) = eA<°’°>T[yM (0) -  t p M + l  (0)] + rpM + l  (r) + A(0,0) f  e A ( r  ' a ) i p M+1 ( a )  d a  (2 5 7)Jo

The norm of the last integral is easily bounded by

A(0,0) f  e M r ~^-4>M + 1 ( a )  d a  < |A(0,0)| f  |eA(r- 'V « + i  M l d aJo Jo
< k;|A(0 , 0)1 f  Jo

and it can be shown from (2 5 7) that z ^ +i (r) satisfies an estimate of the form

|zm +i(t)| < e"aiTp M+ iW , r > 0, 

where P m + i  (r) is a polynomial of degree M  +  1 This proves the induction hypothesis □

C hapter 2, Section 5__________________________________________________________________P roperties of the Formal solution
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Remark 2 3 The formal series (2 5 1) is a uniform asymptotic series, because

|Un+l(£?g)| |yn+l(*)| n
K (i,e ) | |y»(*)|

implying that u n+i (i, e)en+1 = o(un(t, e)en) uniformly f o r O < i < T a s e —>0 

Proposition  2 4 Suppose that (H i) and (H 2) hold Then for each N  > 0,

|pN(i,e)| = 0(eiv+1)

uniformly for 0 <t < T  as e —̂ 0, and there are positive constants djv and ejv such that

IPfNit̂ £)\^eN£N+1, [ |pjv(s,e)|ds < dNeN+1, (2 5 8)
Jo

for all 0 < e < eo and for all t %n [0, T], for some eo > 0

Proof Later we shall use the estimates in (2 5 8), and therefore only prove these in detail To 
demonstrate the other result an almost identical argument is used 

Since pN(0,£) =  0, differentiation of (2 5 3) gives

Pjv(t,e) =  “ £UJv(i, e) + f'(i) +  A (i,t)U jv(i,e) +  [ c*iA(i, s)Uat(s,£) ds (2 5 9)
Jo

The substitution of (2 5 2) and the differentiated version of (2 4 13) into this yields
N + 1 JV+1

Pjvfte) = - e N+1yW(i) -  £  + £  £, - 1A (i,i)zt(i/e)
1=0 1=0

N  1 roo N  rt/e
9l’El_k(t,cr)zk((T)da +  V V 1 dx A{t,ea)zt(a) dcr (2 5 10)

r=0 k=0 J° z=o J°
Using the Taylor expansion of A (i, ea) we can derive

N  oo -t/e JV oo -ooXX /  ^Efc(i,cr)z,(ir)iiiT =
i= o  k = o  1/0 1=0 fc=o 0

N  00

0 k = 0

By substituting this into (2 5 10), we get

C hap ter 2, Section 5__________________________________________________________________Properties o f the  Formal solution

N  00 /*oo

t z ,  Jt/e

N + 1 7V+1 00

e)= — £‘jv+iyArw+ x izt(i/£)+ 5Ze*-1 y: /̂g> */g)z* (Vg)
1=0 1=0 fc= 0

00 1 roo 00 1 rco
+ £  £’ / C  /  ~ cr)zfe (cr) rfcr, (2 5 11)

i= jV + l fe=0 0 1=0 fc=0 •* */*

18



where

Ftfr.cr) = + a92)'£>1A](0 , 0)I’
By putting the differentiated version of (2 4 14) into (2 5 11), we obtain

OO I »00

p'N (t,e) = ~ e N+1y'N (t) + £  s’ £  /  9iB.-»(*,*)■»(") ^
t=JV+l fc=0,'0 

oo î oo I i-OO
+ £  e’£ F t - k + i ( t / e , t / e ) z k {t/e) + £  e’£  /  F;_*(i/e,<r)z*(a)da,
1=7V + 1 fc—0 t=N + l fc=0

where the following relation has been used

9iF,(t,ct) = Fi__1(r,<r)

To summarise it has been shown that

PN&e) = P w (* > e ) + p2N(t/e,e) + 0(eN+2),
where

( JV+l ,oo )
pxN (t,e) = eN+1 | - y jv ( i )  +  X  J diEN+1-k(t,a)zk(cr)d<T> , (2 5 12)

° °  1 f  p O O  'j

Pw ( t ,  e) =  £  e’ £  < F,_*+i (r, t)z* (r) -  / F '_*.(■?-, <r)z*. (<r) da I (2 5 13)
t=/v+i *=o ̂ Jt ’

By (2 5 12)

IPn(î,£)I <7a/£JV+1- [  |PÎv(s,e)|ds <'y2N£N+1, (2 5 14)Jo

uniformly for all 0 <t<T,  where 7^  and 7^  are positive constants Using (2 5 5) the function 
pjv(r,e) satisfies

|p ~ ( i - , e ) |  <  £ N + l Q » ( r ) e - “ ' '  <  e " + 17 ^ T,

where Q n  is a polynomial with positive coefficients, and fi < ol\ < a Hence there is a positive 7^  
such that

7  f \Pn* ( s / £ . <01 ds< 7 %eN+1, e Vo
uniformly for 0 < £ < T as e ->• 0 The conclusions of the proposition now follow □

C hap ter 2, Section 6    Asym ptotic Solution
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2.6 A s y m p t o t i c  Solution

In this section we state and prove our mam result It says that for N  > 0,

\u(t,e)-UN {t,e)\ = 0 {eN+1) as e 0, 

and hence that U(i, e) given by (2 5 1) is an asymptotic solution

Theorem  2 5 Suppose (Hi) and (H2) m  Section 2 2 are satisfied Let u(t,e) be the solution of 
(211) and U7v(i,e) the partial sum given in (2 5 2) Then for each integer N  > 0, there are 
positive constants CV+i and eo, independent of e, such that

|u(t, e) - Ujv(t, e)| < CN+1eN+1, (2 6 1)

uniformly for 0 < t < T and 0 < e < £o

Proof It is convenient to  fix N  > 0 and define

rN (t, e) =  u(i, e) -  Ujv(i, e)

By subtracting (2 5 3) from (2 1 1) we get

erN (t,£) = pN {t,e) + f A(t,s)rN (s,e) ds 
Jo

Differentiation yields

r'jvfoe) =  -B(t)rN (t,e) +  -pJv(t,e) + -  [ d1A(t,s)rN {s,e)ds, r 7v(0,e) =  0, (2 6 2)
£ £ £ J 0

where B (i) is given by (2 2 3)
The solution of the ordinary differential equation

r'N (t,e) =  iB(t)rjv(t,e) +g(i),

can be represented using variation of parameters as

rjv(i,e) =  $ ( i ,0 Je)rjv(0 ,e)+  [ $ ( t,s ,e )g (s )d s  (2 6 3)
Jo

where

$ (i,s ,£ )  =  R(i, £ )R (s,e)-1 , (2 6 4)

20



and R(i, e) is the fundamental matrix solution satisfying

R '(t, e) =  iB (i)R (t,e )

It is a result of Flatto and Levinson [7] that there are constants k\ > 0 and 0 < «2 < ot such that

(2 6 5)

since (H2) holds 
Application of the representation (2 6 3) to (2 6 2) yields

— # ( i ,s,e)p,N (s,e)ds -I- ^ J  ^(t,s,e)diA(s,v)ds^TN (v,e)dv (2 6 6)

However it follows from (2 6 5) that

C hapter 2, Section 7__________________________________________________________________________________________Exam ple

- I  f $(t,s,e)diA(s,v)ds < —  [ £ |Jv £ Jv
•t

-a2(t-s)/e |5iA (5,u)| ds

< — max l̂ i A(i, s)| = “ a 2 ( M j e A r 1 n

Similarly we see from (2 5 8) and (2 6 5) that

i |  J  3>(t, s, e)p'N(s,e) ds < 6n£N J  e~a^ l~8̂ £ ds < 

Hence (2 6 6) implies that

|rjv(i,e)| < —  eN+1 +  k2 f  |rjv(u,e)|du « 2 Jo

^ i £N+1 
«2

By Gronwall’s inequality,

|rjv(i,e)| < — eJV+1e'tjt,
O L 2

and the theorem is proved □

2.7 E x a m p l e

To illustrate the method, let us consider the following example from [1] and [2]

>(t) =  f(t) -  [ {(t — s)u(s) + 0($)}u(s)ds, t> 0 (2 7 1)
Jo

£U[

where 0(t) > 0  Equation (2 7 1) is equivalent to “over-damped” initial value second-order ordinary 
differential equation

eu"(t) + 0(i)u'(t) + {u(t) + 0'(*)Mi) = f " { t ), t > 0, (2 7 2)
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with initial conditions

«(0) = 7/(0), «'(o) = ~ m m  + h'(o)

For simplicity we take

u(t) — 1, 0(t) — 1, f(t) — t +  t2 +  ~t3o

because the exact solution of (2 7 1) can be obtained using Laplace transforms as

1
7i “ 72

.721 (2 7 3)

where

71,72 = ¿(_1± v'1_4e)

In this example /(0 ) =  0 and we should use an asymptotic representation other than (2 41) 
However we find that zo(r) =  0 and our representation agrees with the correct one Note that in 
this example a(i, s) =  — t +  s — 1 and the boundary layer stability condition holds For j  > 0, the 
inner correction solution z3 (r) is given by

where

( r ) = e  t 2, (0) -  [ e (r da,
JO

3_  ̂ rOG
^j(r) =  23 / F j - , { T , a ) z , { a ) d a  

t=o Jt

(2 7 4)

Since in this example
-X, » = 0,
-(t - ct), 1 = 1,
0, i > 2

it follows that

/
oo
(r -  ct)zj_i (a) da

Therefore we get
/•r roo

z3(r) = e~Tzj(0)“ / / ;̂i(u)ifoi/a,Jo

2 2
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where

*b(0) =  /(0), *,(0) =  v,-i(0), ; > i

By (2 4 13) the outer solution y} (t) satisfies

% -i(i) =  -  /  ( i - s  +  1 )y3{s)da + <l>3{t), 
Jo

or

Since

we find that

Therefore

and

y ‘j - iM  -  = - y '3(t)  -

- ( 1  +  t), * =  0 ,
CT, 1 =  1,
.0, t > 2,

(0 = £  /  E]-I{t,<j)zt(<j)dlj
 1 V ol=J—1

m
_ j  2 + 1, j — 0,
“  \0, J > 1,

%(i) =  -̂ +i(0)e * -  f  e (* 8) (y''_a (s) -$(s) )ds  
J 0

From the above equations we see that

2o(t) =  0, 2i ( t )  =  - e  r , z2(r) =  - r e  r ,

y0(t) =  1 +  *, 2/1 (t) = 0,

from which we calculate the first two partial sums of the asymptotic solution to be

U0(t,e) =  1 + 1 - e - ‘/£, Ui(t,e) =  1 + 1 -  -  te~*̂

To verify that Uq (i, e) is a uniformly valid asymptotic approximation, note that

u(t,e) - U0(t, e) =  e~*/e -  e*1- 1̂ '  + 0 (e 2) =  - t e “ ^  +  0(e2),
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implying that |u(i,e) -  Uo(t,e)\ < Cq£ Similarly

u(t,e) -  t / ,( i ,£) =  - Ç e - ‘/£ +  e2(e-‘ -  «“ */') +  0 (e3),

so tha t |u(i, e) — U\(t, e)| <  C \£2 Therefore the terms Uo(t, e) and Ui(t, e) found by additive 
decomposition method are uniformly valid asymptotic approximations to u(t, e) for all 0 < t < T 
as e -¥ 0

Having established a uniformly valid asymptotic expansion using the method of additive decom
position we developed, we now form a composite expansion from the exact solution (2 7 3) The 
outer expansion is found by fixing t > 0 and letting e -» 0 m (2 7 3), obtaining

V(t,e) ~ £ e 3u,(t),
3=0

where

v0{t) = l+ti u i ( i ) = 0, V2(t) = e~t,

Similarly expressing (2 7 3) m terms of the inner variable, r  and then taking the inner limit by 
fixing t  > 0 and letting e 0, the inner expansion takes the form

oo

u(er,e) = W(t,e) ~
3=0

where

w0(r) =  1 -  e_ r , Wi(t) =  r ( l  -  e_T), w2{r) =  1 -  (1 +  r 2/ 2)e- r ,

To obtain these expansion we have used

7i = -1 + 0(e), 72 = —- + 1 + O(e), e ->■ 0,£
— -—  Î72 - 1 + -1 = e2 + 4e3 + 0(s4),7i - 72 V £)

— 1 —  f7l-1 + - ) = 1 + e2 + 4e3 + 0(e4),7i - 7 2  V e /

all as £ —V 0 Using a standard procedure we can obtain a uniform approximation to u(t, e) by 
forming a composite expansions from the inner and outer expansions In fact, we find that U0(t, £) 

and U\ (£, e) are first two composite expansions
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2 8 E x a m p l e  of B o u n d a r y  Layer Stability Condition Failing

Both Lange and Smith [15] and Angell and Olmstead [3] study the integral equation

e2u(t) =  f(t) — f  su(s)ds (2 8 1)
J o

To avoid fractional powers, e2 replaces e The exact solution of equation is found, after differenti
ating, to be

u(i,e) = S l _ | / ( 0 )  + jr e'Ve'VW *} (2 8 2)
For this example a(i, s) =  -s and o(i, t) < 0 only for t > 0 Hence the analysis in Sections 2 5 and 
2 6 is no longer applicable

Smith and Lange [15] observe that (2 8 1) has a number of interesting features Firstly expansions 
for the inner and outer solutions can be calculated from (2 8 2) We see that

00
«(i,£)~V(f,£) = £ £2̂(i), (2 8 3)

3 = 0

where

«*(*) = Vi(t) = \ ' (2 8 4)

Notice tha t the integrals

/  sv3(s) ds 
Jo

do not exist for j > 1 Similarly
1 00

«(er,e) ~  W(t,e) =  ^  £ £lw3(T)< (2 8 5)
j=o

where

w0lt) =  f ( 0 ) e - T’ t \  w1( T ) = f ( 0 ) f T e - ^ - ^ ' 2 da, w2(r) =  /"(0)(1 -  e~r ^ 2) (2 8 6)
Jo

From (2 8 3), (2 8 4), (2 8 5) and (2 8 6) the composite expansion can be computed such that

u ( t , e )  = M e-?/w + m  f t ,ee- ( t ' i ^ ) / 2 da
£ £ J o

-  /" (0 )e-t;/(2e') + ~ +  0 (e) (2 8 7)
t
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as e —> 0 uniformly for 0 < t < T 
The analysis of Section 2 3 holds for (2 8 1) even though (H2) does not In fact it shows that 

the initial layer should have magnitude 0(e~2) and width 0(e) However Smith and Lange point 
out tha t the ansatz

u{t, e) =  y0{t) +  ^ z0(t/e) +  o ( l )

and exponential decay for all the inner correction terms produces a false leading order approximate 
solution

- ̂ e _t2/(2E2) + , (2 8 8)
£ t

which is not uniformly valid for all 0 < t < T 
We look for an asymptotic solution of the form

OO CO

u(t,e) =  £ e 2j 2/3(i) +  -2 (2 8 9)
3=0 3=0

Since £2u(0,e) = f(0), y3(t) and z3(r) satisfy the initial conditions

2O(0) = / ( 0), * i(0) = 0, *2j (0) =  - & - i (0), z2j+1(0) =  0

for j > 1 Substituting (2 8 9) into (2 8 1) gives

e2yo(t) +  Z0(t/e) +  eZiit/e) +  e2z2(t/e:) =  f(t) - f sy0{s) ds
Jo

 2 f sz°(s/£)ds---- =- [ szi(s/e)ds- [ szzisje) ds +  0 (e2) (2 8 10)
6 Jo  e  J 0 J o

This is equivalent to
per

£2y0{£T) +  z0{t) +  ez\(t) + e2z2(r) =  fier) -  / sj/oM ds
Jo

— /  azo(a) da - £ I az\ (cr) da — e 2 / az<i(a) da +  0 ( e 2 )
Jo  Jo Jo

It follows that

Zj (T) = W  - f  <*Z] (e) da (2 8 11)
Jo

where

V>o(r) = /(0), ^i(r) = /'(0)r, M r )  =  l { f " ( O ) - y o ( 0 ) ) r 2 - y o (0)
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M r )  = /o(0)e-Tl/2, *i(t) = f ' (0) i
Jo

z^t) =  / " (0)(1 -  e“ r2/2) -  yo(0)

da

In order to calculate the outer solution, we express all terms in (2 8 11) in terms of the outer 
variable t and substitute them into (2 8 10), giving

Vo( 0  =  m  -  / ( 0 )  -  / ' ( 0 ) t  - \ ( f " ( 0) -  yo(0))i2 -  £  s y o «  ds +  0 ( e2)

By lettmg £ —> 0 an equation for yo{t) is obtained with solution

y°w = —  - r w + y o m

Since limi_).o Vo{t) =  2/o(0), z2(r) /"(0) — yo(0) as r  oo and we choose yo(0) =  / /;(0) s>o that
z 2 ( t )  —  ̂0 as t  —y oo as required Also by integrating by parts it can be shown that

i , V“' (1) (3) (5) (2ra — 1)
t Zw T2nn=0

as r -¥ oo,

so there is only algebraic decay
The candidate leading order solution is given by

uo{t,e) = Vo{t) +  ^z 0{t/e) +  (i/e) -f z2(t/e),

which agrees with (2 8 7) It is not hard to directly show this is a uniformly valid asymptotic 
solution Also there is nontrivial contribution to the outer solution from lime_).oe~xz\(t/e) =  
/'(O )i“1 with t > 0 fixed, which would not be the case if z\(r) decayed exponentially

Our calculations suggest that the method of additive decomposition can also be applied to 
problems where there is no exponential decay m the boundary layer
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Chapter 3
Integrodifferential Equations with Continuous 

Kernels

3.1 Introduction

This chapter considers the singularly perturbed linear Volterra integrodifferential equation

eu'(t) = f  (t) +  B(i)u(£) + f A (£, s)u(s) da, 0 < i < T, (3 1 1)
Jo

u(0) =  a, (3 1 2)

where 0 < e «  1 The vector-valued function f(i) is continuous for 0 <t<T,  the matrix-valued 
function B(i) is continuous for 0 < t < T  and the matrix-valued kernel A(i, s) is continuous for 
0 < s < i < T

For e > 0, problem (3 1 1) is a Volterra integrodifferential equation which has a unique solution 
u(i, e )  E  ^[O jT ] It is given by

u(i, e) =  T(t, 0,e)a  + f  r(i, s,e)f(s) dst 0 < i < T, (313)
Jo

where T(i, s, e), defined for 0 < s < t < T, is the resolvent matrix given by

d2V(t,s,e) =  - r ( i ,s ,e )B (s )  -  f  T(t,v1e)A(v,s) dv, (3 14)
J 8

and r ( t ,  t,e) = I For e =  0, problem (3 1 1) reduces to

0 =  B (i)v(i) +  f(i) +  /  A ( i ,s)v(s)dsy Q <t < T  (3 15)
Jo

Problem (3 1 5) is a Volterra integral equation of the second kind which does have a continuous 
solution v [0,X] ->• Rn if either B(i) or A(£, t) is invertible and the data is C1 If (3 1 5) has a 
continuous solution v(i) such that v(0) /  a, then v(t) cannot approximate u(i, e) uniformly on 
[0,71] Thus, problem (3 1 1) is singularly perturbed We are interested in obtaining asymptotic 
approximations which are uniformly valid in [0,T] as e 0 of (3 1 1)

We construct m Section 3 2 a  formal solution U(i, e) using the additive decomposition method 
introduced m Chapter 2 The main result of this chapter is presented in Section 3 3 where it is
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proved that TJjv(t,e) is an asymptotic solution of (3 1 1) m the sense that

|u(i,e) -  Ujv(£,£)| =  0 (eN+1) as e ->■ 0

It is not surprising that results for (3 11) can be found using the techniques of Chapter 2, 
because there we had to first differentiate integral equations in Sections 2 4 and 2 5 to prove our 
results Formal expansions for the asymptotic solution of this problem have been obtained Angell 
and Olmstead [1] for the Volterra equations However their approach has a shortcoming in that 
general equations for the coefficients m the formal solution could not be determined Smith and 
Lange [15] deduced a general expansion and rigorous estimates for Fredholm integrodifferential 
equations from their theory of Fredholm integral equations The expansion procedure developed 
here modifies that of Smith and Lange [15] Both the papers cited use the additive decomposition 
method Lomov [18] gets rigorous results by employing a different multiple time scale method He 
introduces n new time scales, not just the one r — tje

3.2 Heuristic Analysis a n d  F o r m a l  Solution

We seek a formal solution u(i, e) of the form

u [t,e) = y(t,e) + z(i/e ,e), (3 2 1)

where y(t, e) and z(i/e ,e) are represented by the asymptotic series (2 4 2) and (2 4 3) with

M r )l =  0 (e _ftT), r - f  oo, .? =  0,1, , (3 2 2)

for some (33 > 0
We form the partial sum

N

Ujy (i, e) =  £  un(t, e)en, (3 2 3)
n=0

and the formal sum
oo

U (t,e) =  £ u n (i,e)en,
7 1 = 0

where

UJ (*. e) =  y? (t) +1} (i/e) (3 2 4)

2 9
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In this section we assume that f(i) and A (t}s) are C°° Clearly

/ A(tJs)uJ(s,e)ds =  / A(t,s)y3{s)ds +  / A(t,s)z3($/e)ds 
Jo  Jo Jo

Decomposing this equation into functions of t and functions of t/e as in Section 2 4, we get for all
m > 0

rt rt m  roo
/ A(i, s)Uj(s,e) c/5 =  / A(t,s)yj(s) d$+ 'y'el Et-l(t,a)z3(a)da

J  o Vo <=1 Vo
m  /»OO

-  Y V  /  F l_1(i/e,c7)zJ (i7)rfi7 +  0 (e m+1) (3 2 5)

where E ,( i,a )  and F l (r,cr) are defined by (2 4 7) and (2 4 8) respectively The last integral above 
represents a boundary layer function

The residual pN (£, e) is defined by the relation

eTJ'N {t,e) =  f(t) + B(i)Ujv(i,e) +  f  A(i, s)U jfV(s, e) ds - pN {t,e), (3 2 6)Jo

By substituting (3 2 3) into this equation and using (3 2 5) to replace the integrals, we obtain
J* /  rt roo \

pN {t,e) = f(t) + y'e3 B (t)y ,(t) +  /  A(i, s)y,(s) ds +  £  /  ’E 1-t-1{t,o)zl{o)da)
3=0 V Jo ,=0 Jo J

N / 3 rOO \
+ £ eJ [ £ G J-t(T)z«(r) + £  / F]-i-i{tle,a)zt{c)da\j=0 \i=0 1=0 Jt/e )
JV-1 JV

- £  e,+V i W  - £^(*/e) + OCe^1), (3 2 7)J=0 J=0
uniformly for 0 < t < T  where

Equation (3 2 7) is equivalent to
N

P n (*> e) =  E  £Î W +  (*/e)) +  0  (£iV+1 ). (3 2 8)j=o
uniformly for 0 <  t < T, where

pj(t) =  B(i)yj(i) +  [ A {t,s)y3(s) +  <̂ (t) -  y^i), Vo
q,(r) = B(0)zj(r) + ip^r)  -  z' (r),

3 0
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= / fW*
I E d  Io°

j = o,
*,(*)=< ^-1 roo«  w  ^  (3 2 9)Ej-,-i (t, a)z,(a) da, j > 1,

f 0, j= 0 ,
V’j(T) =  S / \ / \ — _1 r«>_, , w w  (3 2 10)i E,=o g j-iW*.W - E,=o Jr FJ_t_1(r,a)zI(r)dcr, j  > 1

We observe that (3 2 9) and (3 2 10) imply that <t>3 (t) and t/> (r) are determined by zz (r) for
* =  0, 1, , j - l

A calculation similar to that in Section 2 4 shows that (r) -> 0 as r  ->■ oo if (3 2 2) holds If 
U (i, e) is a formal solution, pN (t7e) = 0(eN+1) for all N  > 0, in which case Lemma 2 1 in Chapter
2 implies that, for each j > 0, y3 (t) satisfies

Yj-i W =  B (i)y j (i) +  [ A(t,s)y3(s)ds +  0  (i), 0 < i < T, (3 2 11)Vo
and Zj (r) satisfies

zUr) =B(0)zj(t) + iPj{t), t > 0 (3 2 12)

Also each z3 (t)  obeys the initial condition

zi(0)=  i a " ^ (0)’ '  =  0, (3 2 13)\-yj(o), 3 > i
Remark 31 It follows from (3 2 8) that if each y3{t) satisfies (3 2 11) and each z3(r) satisfies
(3 2 12), then ^ ^ ( i ,  e)| =  O ^^"1"1) as e —► 0 uniformly for 0 < t < T

3.3 Properties of F o r m a l  Solution

In this section, we show that the equations for y3 (i) and z3 (t) derived in Section 3 2 have the
properties required in their derivation, and then prove that

\u(t,e)-VN (t,e)\ = 0 (EN+1)

uniformly for 0 < t < T  as e 0 
The following assumption will be used

(H i) The functions f  [0,T] -> Rn , B [0,T] MnXn and A A T -+ Mnxn are all C°°, where
Ax  is defined as in (2 2 2)
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P ro p o s itio n  3 2 Suppose that (HJ) and (H2) hold Then for each j > 0 there is a C°° solution 
yj{t) on [0,31 of (3 2 11) and a C°° solution z3(r) on [0,oo) of (3 2 12) and (3 2 13), moreover 
there are positive constants ¡5 < a and c3

jzj (r) | < c3 e_/3r, r > 0 (3 3 1)

The proof is similar to that of Proposition 2 2 in Chapter 2 and therefore is omitted

L em m a 3 3 Suppose that (HJ) and (H2) hold Then for each j >0 the residual p3{t,e) defined 

in (3 2 6) satisfies

\p3(t,e)\ < e3e1+1, (3 3 2)

as e 0 uniformly for all 0 < t < T, for some fixed positive constant e3 independent of e

As pointed out in Remark 3 1 the result follows from what has already been done in Section 3 2
It can also be proved that there are positive constants d3 such that

[ |P ,(s ,e )|d s < d JeJ+1 
Jo

uniformly for all 0 < t < T

T h eo rem  3 4 Suppose that (HJ) and (H 2) hold Then there are constants Cn > 0 such that

Wt,e)-VN(t,e)\<CNef,+1 (3 3 3)

uniformly on [0,T] as e -¥ 0 where C n is independent of e 

Proof We introduce the the remainder term

rN {t, e) =  u(i, e) -  U N (t, e), 

as m Chapter 2 It satisfies the following problem

er'jsffae) =  pN (t,e) + B(t)rN (t,e) +  f A(t,s)rN (s,e) ds, t> 0,
Jo

with rjv(0, e) =  0 The variation of parameters formula enables us to see that its solution r^ ( i ,  e)

C hap ter 3, Section 3_____________________________________________________________________ Properties of Formal Solution

satisfies

r j = $(tys,E)pN (s}£) ds +  -  J  ( /  $ (i,5 ,e )A (s,t;)d3^  rN (v,E)dv, (3 3 4)
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where <&(£, s,e) is defined as m equation (2 6 4) The bound (3 3 3) follows from (3 3 4) using

Remark 3 5 The initial condition for u(0, e) can depend on e More precisely (3 1 2) can be 
replaced by

where each is constant The case ao ^  0, leads to an analysis similar to that m Chapter 2 
The analysis in this Chapter corresponds to the case where ao =  0 The differences between the 
two cases are twofold Not only is the form of the asymptotic expansion different, but the outer 
solution can be constructed first m the case ao =  0 whereas the initial layer correction solution 
must be found first in the case ao ^  0

(H2) and the estimates given in (3 3 2) The details are almost identical to those in the proof of
Theorem 2 5, and axe omitted □

j=o
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Chapter 4
Volterra Equations with Weakly Singular Kernels

4.1 Introduction

This chapter considers the weakly singular scalar Volterra integral equation of the second kind

suit) = /(<) + — ^  (t rV)l-gU(8) dS’ 0 - * - T’ 1 ̂

where 0 < e «  1 and 0 < ¡3 <1  The functions f{t) and k(t, s) are continuous and k(t,t) = —I 
This problem (4 1 1) exhibits an initial layer at t —  0 like the equations with continuous kernels 
considered in Chapter 2, but with a narrower initial layer width of order 0 ( e as e -> 0

The weakly singular equation (4 1 1) has a solution u(i,e) in C[0,T] for all e > 0 For e —  0 
(4 1 1 ) reduces to the Abel integral equation

0 = m  + W ) f ‘ (t k- l y -0v{s)ds’ ° ^ r’ (412)

It certainly does not have a continuous solution if /(0 ) ^  0 The forcing function /(¿) must be 
smoother than the desired solution Even if (4 1 2) has a solution v(t) in C°[0,T] it may not 
approximate u(t,e) uniformly for t m [0,T] as € -y 0 

The kernel a(i, 5) in (4 1 1) given by

„/j. ^  _  k(t,s)
(1 ̂  _ r (0 ) ( t - s y -0 ’

obviously does not satisfy the boundary layer stability condition (H2) of section 2 2, though 
limgft o(i, s) =  —00 because fc(i, t) =  —1 If an equation like (4 1 1) is encountered with fc(0,0) < 0, 
a simple rescaling of e leads to &(0,0) =  —1 If k(t, t) < 0 the equation for t fc(i, t)u(t) has the 
form of (4 11)

Our aim is to find asymptotic approximations £/yv(i, e) which are uniformly close on [0,T] to 
u(t, e) as e -+ 0 Problems of the type (4 1 1) do not exhibit an exponential decay in the initial 
layer and therefore the methodology developed in Chapter 2 must be modified To emphasise the 
fundamental ideas and illustrate the technical difficulties, we only attem pt here to find the leading 
order term Uo(t,e) of the asymptotic solution It is proved that the residual |po(i,e)| — 0(e)
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uniformly as e —> 0 It is not demonstrated that \u(t, e) — s)| =  0{e) For an example with a
known exact solution though, we do establish this estimate

4 2 M a t h e m a t i c a l  Preliminaries

In this section we review some of the results which are applied later in the chapter Firstly though 
we state some hypotheses which are used

(H 6) 0 < 0 < 1

(H7) k(t,s) is a C2 function on A t  with h(t,t) =  —1, where

A T =  {(*, s)10<t<T}

(Hg) The function f(t) is C2 on [0,X] with / ( 0) ^  0 

4 2 1 Solution of Abel Equations
It is a classical result of Abel’s that for 0 < /3 < 1 the equation

W ) L ¥ z ^ via}ds =  m  ( 4 2 1 )

has the solution

*(*) = (D^)(t)

This relies on the useful formula

f » ( T W = v d’- m T i l - m

Tonelh proved that (4 2 1) has a solution m I^fO, T] if <j> is absolutely continuous on [0, T] In this 
section we consider the more general Abel equation

Gorenflo and Vessella [9] give several existence and uniqueness for (4 2 2) We state here a special 
case of Theorem 5 1 4 of [9]
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T h eo rem  4 1 Suppose that (H^) and (H7) hold Let be continuous on [0,T] Then (4 2 2) 
has a unique solution y m  C[0,T] and

IMIc1 < C||D̂ ||

for some constant C  >  0 depending on T and ||fc||ci(AT)

Later in this chapter we require knowledge of the asymptotic behaviour of solutions y(t) of 
(4 2 2) The following result is Theorem 5 1 5 of [9] and comes from Atkinson [4]

T h eo rem  4 2 Suppose that (H6) and (H7) hold Suppose that there is a function <f>(t) m  Cl such 
that (f>(t) = tß<j>(t), with 1 -  ß +  ß > 0 Then (4 2 2) has a unique solution y(t), and this solution 
can be expressed as

y(t) = tß~py(t),

where y(t) = v + ty*(t) with v constant and y* continuous Moreover v =  0 if and only if 0(0) =  0, 
and there is a constant c > 0 such that

llfillc <c||4>||ci

4 2 2 The M ittag-Leffler Function and its A sym ptotic Expansion
In this section we present some of the properties of the Mittag-LefRer function, E^ C -> C In 
particular we state formulae for E^(^) for large z € C  For each ß > 0 the Mittag-LefRer function 
is defined by

00 1
' • « - E f a i r p i T '  (42J)n=0 v '

Em is entire, and

E1(z) =  e2, E2(*) =  cosh*, E1/2(z^2) =  27r-1'V *  e r f c ( - ^ /2) (4 2 4)

An interesting property proved by Pollard [23] is t »-»■ Eß(—t) is completely monotonic on [0, oo) if 
0 < ß < l  Thus for ß in this parameter range ( - l ) n E^(—t) > 0 for t > 0, where

pn/ \ _ \

C hapter 4, Section 2_______________________________________________________________________ M athem atical Prelim inaries
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Figure 4 1 The contour of integration for the Mittag-LefRer function Ê (z)

A detailed discussion on the properties of the Mittag-LefRer function can be found in Chapter 18 
of Erdelyi, Magnus, Oberhettinger and Tncomi [6] or Chapter 5 of Paris and Kaminski [22]

We are interested in the asymptotic expansion of EM(z) only in case where 0 < ¡x < 1 However 
the asymptotic expansions formulae below are for all 0 < fi < 2 These expansions are derived 
from the representation

•c+too1 rc+t oo
E"(*) = 2 (4 2 5)

for some 0 < c < 1 where

e{s) = 7T COS TVS (4 2 6)T(1 -  fjts) s in k s’
(4 2 5) comes from the formula for inverting a Mellin transform We decompose the path in (4 2 5) 
into a contour C 1 which is closed to the left It is shown in Figure 41  Now e(s)^_s has simple 
poles at s =  0, —1, —2, Let an be the residue of s 4  e(s)z~8 at -n Then

an =n r ( l  + (in) 
To check that e(s) above is the proper choice in (4 2 5)

1 » oo oo
-  e ( s ) z - ‘ ds =  ' £ * n  =  Y ,

J ° n=0 n=0
=  E „(*)

2 m J c r - - ' -  -  £-r(/m + l)
Using the integral representation in (4 2 5), it is shown in Erdelyi et al [6] and Paris and Kaminski 

[22] tha t for 0 < fi < 2, the controlling factor of the leading behaviour of EM(z) is e*1̂  as 2 -► 00 
Stokes lines occur at Rez1̂  =  0 or a rg2 =  ±7174 and anti-Stokes lines occur at Imz1̂  —  0 or 
arg* =  i f  fi
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Stokes lines
 Anti-Stokes lines

Figure 4 2 The Stokes lines are shown for the exponential term m (4 2 8a) corresponding to 
— 1/3 Also shown is the sector E where the exponential term m (4 2 8a) dominates and the 

sector A where the algebraic term in (4 2 8a) and (4 2 8b) dominates

Stokes lines
 Anti-Stokes lines

Figure 4 3 The Stokes lines are shown for the exponential term in (4 2 8a) corresponding to 
jjl =  1/4 Also shown is the sector E where the exponential term in (4 2 8a) dominates and the 
sector A where the algebraic term m (4 2 8a) and (4 2 8b) dominates

3 8
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It lb shown m Erdelyi et al [6] and Paris and Kaminski [22] that the expansion of Ê (z) when 
H < 2 is given by

H OO „

^ y ,  ]Aigz\ < ^ ,  (4 2 7a)
00 — k

E | . W ~ - E r  (l-tik)' l “ S ( - * ) l < | ( 2 - /* )  (4 2 7b)
k =  1

It should be noted that (4 2 7) is a valid asymptotic expansion in the Poincare sense The discussion 
in § 5 1 of [22] elucidates what is happening for 0 < ¡i < 1 The expansions have a common sectors
7r/i/2 < |a rg z | < 37T/U/2 In the sector |a rg z | < 7171, expansion (4 2 7a) is valid However the
exponential term is decaying for 7r/x/2 < | argz| < 7rfi since the anti-Stokes lines at argz =  ±nfi/2  

have been crossed E ^ z )  is exponentially large as \z\ —> 00 for [ arg^| <  7t/x/2 As argz crosses 
the Stokes lines argz =  ± 7r/u, the exponential term disappears from the leading order term and 
becomes subdominant It remerges as argz crosses ±27r^, but it is exponentially decaying At 
a rgz = Znpi/2, expansion (4 2 7a) is no longer valid Expansion (4 2 7b) holds for | arg(—z)\ < 
7rfi/2  Since we are interested m the asymptotic expansion on the negative real axis, this sector 
particularly concerns us The conclusion is that we obtain the composite expansion

1 OO __J*

E„(z) ~  —e*1/lJ -  £  r ^ _  ^ , | argz| <  n/j, (4 2 8a)
00 ~ k

~  ~ 2 Z r ( lZ-iikY l“ 8( - * ) l < ’r( l - / ‘) (4 2 8b)

We illustrate this in the Figures 4 2 and 4 3

4 2 3 Solution of a Simple Class of Abel -Volterra Equations
The Abel -Volterra equation

z{t) =  t/i(r) - — ^  J  (r-a)i -0* ^  da’ T - °’ [42 9)

has an explicit solution in terms of the Mittag - Leffler function E^
The following existence and uniqueness result, which is attributed to Hille and Tamarkin [11], 

is given m Geronflo and Vessel la [9]

Theorem  4 3 Let 0 < ¡3 < 1 and ip(r) be continuous on [0,oo) Then equation (4 2 9) has the
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continuous solution z(r) given by

z(r) = -j- [ E /? (-(t -  a)0)'tp(a) da, r  > 0 (4 2 10)
dr Jq

z is unique tn the class Lj5>c(M+ )

4.3 Heuristic Analysis a n d  F o r m a l  Solution

The analysis of Section 2 3 shows that we should introduce the new time scale r  =  t/e7 where 
7 =  We call this the inner variable It is easily found that if / ( 0 ) ^ 0  then the magnitude of 
the boundary layer is e ~1 and the width e7 We seek an asymptotic solution u(£, e )  in the form

u(t,e) =y{t,e) + ̂ z(t/eJ,e), (4 3 1)

and require that

lim z(r,e) =  0
T—> 0 0

z(£/e7, e) corrects the nonuniformity in the initial layer Substituting (4 3 1) into (4 1 1) gives

eV(t,e) + zWe\e)  = m  + ^ f o J ^ ^ y{s,s)ds + _ L - ^
(4 3 2)

It is assumed that y(t,e) and z(rye) have asymptotic expansions of the form
00 00

e) ~  £  enyn{t), z{r,e) ~  £  en'l'zn(r),
n = 0  71=0

as e -► 0, so that
OO OO

u(t, s) ~  £  enyn(t) +  £  en~'-1zn(t/e~') (4 3 3)
n = 0  n = 0

Moreover we require th a t for all n  > 0 ,

lim zn(r) = 0  (4 3 4)
T - f O O

Firstly we restrict attention to

Uofae) = y0(t) +  - z 0(i/e7), £

assuming that



Defining the residual p o{ t , £ )  m the usual way, we see

po { t , e )  +  eyo( t )  +  z ^ t / e 1 ) =  /(£) +  j ~ ~ ~ ~ y o ( s ) d $

( 4 3 6 )

By expressing this in terms of r  =  i /e 7,

P o ( s y T , e )  +  z 0( t )  +  eyoie'r) = f{eyr) + j z o ( a ) ^
[ T  k ( e y T , E ' y a )  .

+  S L  Tr - a y - P y°(e a)da

This can be rearranged as

p0{e~,T,e) + ey0{£1T) = (/(0) + — - «o(r)j + /(e’V) - /(0)
1 f T fc(e7r,eT£r) -  fc(0,0) , .

£ /’T &(e7T,e7cr)
+  f M 7 o  (r  -

and hence

p 0 ( e y T , e ) =  (/(°) +  f ^ ( T - g ) » dfr ~ z° ^ )  + 0 (e) +  0 (eT)

We see that if po^r,e) =  o(l) as e -¥ 0 for fixed r  > 0, then

zo(t) =  / ( 0) - f ^ J Q (g)«^, T > 0  (4 3 7)

To derive the leading order outer solution, we express (4 3 7) in terms of t =  e7r  and substitute 
into (4 3 6), giving

M*.e) + m i t) = /(i)- /(0) + f  ,

It follows from (4 3 5) and the Dominated Convergence Theorem that

1 /*{fe(t,«)-fc(0,0)} /(0) /■*{*(*,«)-k(0,0)}
i / o  ( t - l p i  Zo[3l£)dŝ W^W)Ja T-*Y-W * ’

as e ->■ 0 If p(i, e) =  o(l) as e -»• 0, we deduce from (4 3 6) that the leading order outer solution 
yo(t) satisfies

n _  , / ( ° )  /* S) -  fc(0,0) J I f 1 k ( t , 5) , w
/ (  ) m  T (I3 )T (1-0 )JO (t -  Sy - e SP +  T(d) /o ( i - a ) i - i 1,oW<is (439)

C hapter 4, Section 3____________________________________________________________Heuristic Analysis and Formal Solution
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If 2/0M satisfies (4 3 9) and z0(t) obeys (4 3 7), it follows from (4 3 8) that

1  f 1p0(i,e) = -eyo(i) + k ( t , s ) - k ( 0,0} f(0)e
(t -  sy-e v r(i - 0)*13

4 4 Properties of the F o r m a l  Solution

ds (4 3 10)

In this section, we show that the solutions of the equations for yo(t) and ẑ (r) exist and elucidate 
some of their properties 

Equation (4 3 9) for the outer solution can be rewritten as

0 = <f>(t) + Ĵ  ĵ ^ y ^ Vois) ds, 0 <t<T, (4 41)

where

m  = m  - /( o) + /(0) /"* k{t, s) — k{0,0)
Jor(/?)r(i -  /?) J0 (*-«)>

Note that

/(0) f* {fc(«,«)-fc(0,0)}r(/?)r(i -  /?) y0 { t - s y - P s ?

as t 0 This and (Hg) imply that (¡>(0) — 0 Also

ds

ds < / ( 0) sup |fe(i,s) -  fc(0,0)| ->• 0
0 < s < i

1 fl k{t, s) -  fc(0,0) 1 f1 {k i t , te) -fc(0,0)}
Lt Jo { t - s y - P s P  ds t Jo (i - o y - “ "“ ^

(i J y - m d0+^ ' o)f o
0(i-p)

(i - e y - e

as t —► 0 Hence we can write

(4 4 2)

and show that 4>(t) is C1 Using Theorem 4 2 we can establish from (4 4 1) and (4 4 2) the following

P ro p o sitio n  4 4 Suppose that (H6), (H7) and (H8) hold Then (4 3 9) has a unique continuous 
solution yo (t) which satisfies

y o t y ^ t 1 py0{t) (4 4 3)

where y0 is continuous on [0, T\

It is a simple corollary of Theorem 4 3 and (4 2 8b) that the following result is true
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Proposition  4 5 Suppose that (H6), (H7) and (H8) hold Then (4 3 7) has the continuous 
solution

z0(r) = /(0)E^(-r'?), (4 4 4)

for r > 0, which satisfies

DO - 03
M t ) ~ /(o) £ ( - l ) ,+1 a s r  oo (4 4 5)

Remark 4 6 This results vindicates assumption (4 3 5) made m the derivation of (4 3 9) and (4 3 7)
or i/o (t) and z0 (r)

It is important to establish the asymptotic behaviour of y o ( t ) as i X 0 and z q ( t )  as t —> oo If 
we define w(r,e) =  ef/(£7r,£ ), then

tu(r,e) =  /(eV)+ ^y_0w(a,e)da

Therefore we expect the inner expansion to be
CO

w { t ye ) £  £3yw3(r) as e 03=0
Comparing this to (4 3 3) we see that

W q ( t ) +  £7Wi (r) +  ~  z 0 { t )  +  £ y Q(£y T ) +

Since (4 4 3) implies that e y o ^ r )  ~ Ê Voî r), the apparent anomaly of a 0(e) term balancing 
with a 0 (e7) term does not arise

4.5 E x a m p l e

Angell and Olmstead in [2] consider the following weakly singular linear singularly perturbed 
Volterra equation

»«»/«I- ¿5

where

C hap ter 4, Section 5__________________________________________________________________________________________Example
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and h(t) is C2 with h(0) ^  0 Since T ( l /2) =  7T1/2, this corresponds to (4 11) with fc(i, s) =  — 1 
and (3 =  1/2 Therefore 7 =  2 The exact solution of (4 5 1) can be obtained by Laplace transforms 
or read directly from (4 2 4) and (4 2 10) It is given by

h(s) ds (4 5 2)

Since f(e2r) = 2eh(0)r1/2/n1/ 2 +  0(e2), we look for an asymptotic solution of the form
oo

«(*> <0 = £  (eJ*/3 W  + s2jZj (i/e2))
J=0

Following the formal method of Section 4 3, it is found that the leading order outer solution yo(t) 
obeys

n _ I* Hs) -  yo(s) , . ^ n
J o  ( t - s y n  d s ' * * 0 '

and hence yo(t) — h(t)
The inner correction term Zq (t) is a solution of

M r )  = — 3/o(0) +  ^ - ( * ( 0 )  -  2/o(0)) " (y _^ .)1/3 ^

By (4 2 4) and (4 2 10)

z0(r) =  -/i(0)eTerfc(r1/2), r >0  (4 5 3)

The asymptotic expansion of the integral

erfc \fr — f  e e dt ~  - ^ =  j  1 -  +  )  as r  -> ooxA7 0rr I 2r 4r2 J
implies that

’ y/¥F X 2t 4 t2 J

(4 5 4)

zo{t)

so that ZoM ->• 0 as r  ->■ oo, but only algebraically 
Therefore up to the leading order, the formal solution of (4 5 1) is given by

U0(t, e) =  h(t) - h(0)e*/'2 erfc(t/e2) (4 5 5)
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To show directly that Uo(t,e) approximates the solution of (4 5 2) to withm 0(e) consider the 
difference

u(t, E)  -  V0(t, E)  =  \  f 0 Kl^ a)1/t ds -  1  f o erfc h(s) ds

— h(t) +  h(0)et̂e erfc(-— ) (4 5 6)
£

Integrating by parts

JL [* e(t-»)A2 erfc ( h(s) ds =  h(0)et/e2 erfc —  -  h(t) + -  f  . k(s) . dse2 Jo \  e j  e £ Jo v M i - « )
fl ft

+  £2/i'(0)ei/,£ erfc e2h!(t) — £ / [ir(t — s)]~'1 2̂hf(s)ds
£ Jo

- e2 jf* erfc V'(«) ds
(4 5 7)

Substituting this into (4 5 6), we get

w(i, e) -  Uo(t,E) — -£ f [tt(t - s)]~1 2̂h>(s)ds — e2/i'(i) +  £2ei/f<r2 erfc —  /i'(0)7o e
-  e2 f* ( e“- ) ^  erfc V T *H 5 _  W E  ~  s) \  h"(s) ds

Jo { £ A  J
This implies that

\ u { t , E )  - U 0 ( t , E ) \  =  0 ( e )

as £ —► 0 uniformly on 0 < t < T 
We now examine the exact solution (4 5 2) with the view of directly determining a valid asymp

totic solution for tt(i, e) Suppose now that h(t) is C°° For the outer expansion, we fix t > 0 in 
(4 5 2) and let e -¥ 0 Then

oo
ti(t,e) n(i) as £ —y 0

n=0

The integration by parts in (4 5 7) gives

vo(t) = h(t), Wl(i) =  ^ L _ ^  etc (4 5 8)

where the first term in Vi follows from the first term m (4 5 7) and the asymptotic expansion 
(4 5 4) To get the inner expansion, we express (4 5 2) in terms of the inner variable r =  i /e2 to 
get

u ( e 2T , e )  =  w ( t , s ) =  { - 1/a(T L  g)i/a - eT~g erfc fr - g)1/2} fe(£^ )  t o

C hapter 4, Section 5__________________________________________________________________________________________Example
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This suggests that the inner expansion has the form
C hap ter 4, Section 5__________________________________________________________________________________________Example

oo
w(r,e) =  ^ 2 £2nwn(r) as c -> 0

71=0
Equating the coefficients of like powers of e, we get

The leading order term m (4 5) is given by

M r ) = MO) jT { -  eT-' erfc (r - a)1/*}

equivalently

Wq(t) = h(0) — h(0)ererfc\fr (4 5 9)

The first order term w\ (t) is given by

w,(r) =  h'(0) ^  |  ~ eT-ff erfc (r -  a )1/2} <r da

which on integration by parts is

wi(r) = hl(0)r - h1 (0) f  ea erfc \/a da
Jo

We then see that the leading order term in the outer expansion and the leading order term in 
the inner expansion form a composite expansion which is the uniformly valid asymptotic solution 
Uq (t, e) obtained by the methodology developed
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Chapter 5
Nonlinear Scalar Volterra Integral Equations

5.1 Introduction

This chapter considers the nonlinear singularly perturbed Volterra integral equation,

eu(t) —  /(£, e) +  f g{t, s, u(s)) ds, 0 < £ < T, (5 1 1)
Jo

where 0 < e < <  1 The function /( i ,  e) is C°° and defined for 0 < t < T  and 0 < e < 1, g(t, s, u) is 
also C°° and defined for 0 < s < t < T  and — oo < u < oo Also we require that lim.e_>.o /(0 , e) =  0 
/  has an asymptotic power series expansion,

oo

f(t,e) ~ £ e 3/ ,( i)  ase->0,
3=0

where each f3 (t) is C°° Furthermore, we require that /o (0) =  0 and / i  (0) is nontrivial
Problem (5 1 1) depends on the parameter e in such a way that the reduced equation

0 = fo(t) + f  g(t,s,v(s))ds, 0 < t < T,
Jo

is a Volterra equation of the first kind For this to have a continuous solution, f0(t) cannot be 
merely continuous Assuming that a stability condition for the boundary layer holds, we show that 
u(t,e) converges uniformly to v(t) as e -¥ 0

Angell and Olmsteadt [2] used the additive decomposition method to obtain the first few terms 
m a formal solution of (5 11) However Skinner [24] developed a method of generating all the terms 
of the formal solution and showed that the formal solution is an asymptotic solution His work 
builds on that of Smith [25], Ch 6, O’Malley [20], Ch 4 and O’Malley [21], Ch 2 on singularly 
perturbed initial value problems for nonlinear ordinary differential equations The study of the 
nonlinear integral equation (5 1 1) in this chapter was mostly done before the work of Skinner [24] 
was found, and therefore most of it is independent work However, an adaptation of Skinner’s 
method of deriving the equations for the formal solution is included here 

In Section 5 2, we construct a formal solution for (5 1 1) of the form
N

UN (i, e) =  ^  [y3 (i) +  z3 (t/e)], (5 1 2)
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using the O’Malley/Hoppensteadt method The analysis in this section is more complicated than 
that of Section 2 3 In Section 5 3 we prove that y3 (¿) and z3 (r) have the properties assumed in 
their derivation Then m Section 5 3, we prove using the Banach fixed point theorem that

\u(t, e) -  t/jv(i,e)| =  0 (eN+l) as e -► 0,

uniformly for 0 < t < T  An example from Angell and Olmstead [2] is discussed m Section 5 5 and
one from Skinner [24] m Section 5 6

5 2 Derivation of the F o r m a l  Solution

We derive in this section a formal solution for the integral equation (5 11) using the additive 
decomposition method We suppose that the solution of (5 1 1) can be represented in the form

tt(i, e) = y(t, e) + <l>(.e)z(t/n(e), e), (5 2 1)

where

y(t, e) =  2/o(i) +  o(l), z(r , e) =  z0(r) +  o(l) as e 0

Firstly, we determine formally the width (i(e) and the magnitude (j>(e) of the initial boundary layer, 
supposing that fi(e) -4 0 For this argument we assume that 5(0,0, u) is nontrivial We follow the 
analysis in Section 2 3 Substituting (5 2 1) into (5 11) gives

ey(t,e)+ê (s)z(t/fi(e)is) = f(t,E)+ f g(t, s,y{s,e) +  4>(e)z(s/n(£),£)) da, (5 2 2)
Jo

which, letting r  =  i/ju(e), is equivalent to

eyfa&r, e) + e(f>{e)z{T, e) = /(/i(e)r, e) + p(e) [  g(K£)Ti l/(/*00<r> £) + <t>(£)z{cr> e)) da
Jo

Hence, fixing r > 0 and letting e -4 0,

eyo{0) + £<j>(e)zo(T) = e / i (0 )  +  /i(e) f  g{Q,0,yo(Q) + <j>(£)zQ{a))da + o(e) + o(ti{£))
Jo

Dominant terms can be balanced if we take

<t>ie) =  1

C hap ter 5 ,  Section 2_________________________________________________________________ Derivation of the Formal Solution
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To obtam a formal solution we now suppose that y(t,e) and z (t, e) have the asymptotic expan
sions

oo oo
y ( i.e )  ~  z (j,e)  ~  X ) e ^ ( r )

3=0 3=0

as e -4 0 y(t,e) represents the outer solution, which approximates the solution outside the 
initial layer, while z(t/e,e) represents the inner correction term which is required for uniform 
approximation of the solution of (5 11) inside the initial layer but is negligible outside the initial 
layer We require for each j > 0 that

zj(T) — °(r _ r ) as r o o  (5 2 3)

for all r  > 0 The rapid decay in the initial layer is crucial for the application of the method 
of additive decomposition because then transcendentally small terms can be omitted from the 
asymptotic expansions 

Since Theorem 2 1 from Skinner [24] is used later in this section, it is stated here

L em m a 5 1 Suppose that ry ( i,r ,e ) is a C°° function on [0,T] x [0,oo) x [0,1] and r)(t, r ,e)  =  

o ( t—r ) as r  -4 oo for all r >  0 Then
N

r){t,t/e,£) =52eJïjj(i/e)+ 0(£JV+1),
j=o

where r\3 ( t )  is a C ° °  function on [0 , o o )  and is the coefficient of e3 %n the Taylor expansion of 
e i-4  r ? ( e r , r , 6 :) Also r f c ( r )  =  o ( r _ r ) as r  - 4  o o  for allr >  0

We shall substitute (5 1 2) into (5 1 1) Therefore for a fixed integer TV > 0 we first consider the 
term

C hapter 5, Section 2_________________________________________________________________ Derivation of the Formal Solution

/  g(t,s ,UN {s,e))ds 
Jo

We introduce
N

3=0
N  N

K ( t ,s ,a ,s )  = +  z3(cr))) -
3=0 3=0
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so that
rt rt rt/e
I g(t, s, £/jv(s,e)) ds =  / H(t,s,e)ds + e K(t,£a,a,e) da (5 2 4)

J o  Jo  Jo

By (5 2 3) and the Mean Value Theorem, K(t, s,a,e) =  o(a~r) as a -¥ oo for all r  > 0 By
applying Lemma 5 1 to (s, a, e) »->■ K(t, s, a,e)y we deduce that

N

K(t,ea,a,e) = a) +  0 (e N+1), (5 2 5)
3=0

with kj(t, a) = o(a~r) for all r  >  0 Also, straightforward Taylor expansions yields
N

H(t,s,e) =  + 0 (e iv+l), (5 2 6)
3=0

N

K(eT,ea,a,e) =  '^eHjfaa) +  0 (e JV+1) (5 2 7)
j=o

The coefficients h3(t, s) in (5 2 6) are given by

M M )  =9^, 8, y0(5)), fti(£,s) = ̂3ff(i,s,i/o(s))yiW» 

and in general for j > 1, 

M M  ^ W M . Î / o W f c W + ^ t M ) ,

where $;(£, s) is determined by #f(s), for 0 < i < j — 1 The first two terms of $ 3 are given by

$ i( i ,s )  =  0, $ 2(M ) =  ^dlg{t ,s,yo(s))yl (s)

The coefficients k3 (i, cr) m (5 2 5) are given by

ko(t,a) =  ff(i,0,j/o(0) + ^oW ) -  g(t,o,yo(0)), 

fci(i,a) =  33ff(i,0,?/o(0) + ^ o W )« iW  +  ^i(*,cr),

and m general for j  > 1,

k,(i,<r) = ̂ (¿?0,2/o(0) + z0(a))̂ (a) + ̂ j(t,a)

Here the function (¿, cr) is determined by yt (s) for 0 < % < j and zt (a) for 0 < % < j — 1 The
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first two are given by
=  {Ô2fl(t,0,ÿo(0) +  A>(o-) - ^g(t,0,j/o(0))}<T

+ {33ff(i,0,ÿo(0) +  zo(<t)) -33ff(i,0 ,ÿo(0))}(ÿi(0)a +  y1(0)),
$ 2(t,o-) =  {d3g{t ,Q,y0{0) + z0{<j )) -  % p (t,0 ,yo(0))}(y2(0) +  ÿi(0)cr +  ^2/o(0)(72)

+  {didzg{t ,Q,y0{Q) +  Za{u)) -  32Ô3ff(i,0,ÿo(0))}(ÿi(0)cr2 +  ÿi(O)cr)

+  d2 d3g{t, 0, J/0(0) +  z0(<t))zi  (cr)o- +  3f <?(t, 0, ÿo(0) +  z0{cr))Zl (a)y1 (0)

+  +  zo(<r)) - 3j0(i,O,yo(O))}(2/i,(O)V +  ÿ?(0)

+  2ÿi(0)ÿi(0)<r) +  OlJ/0(0) +  z0(<7)){zl(a) + z,(o)y'ti(0)o}

+  ^ { d î g ( t , 0 , y o { 0 )  +  zo (cr)) -  $s(i,0 ,2A >(0))}a2
The coefficients l3 (r, a) in (5 2 7) are given by

k ( , r , a )  =  3(0,0, j/o(0) +  Zo(c r ) ) - 5(0,0,y o ( 0 ) ) ,  

h ( r , a )  =  03̂ (0 ,0 ,y0(0) +  z0(er))zi(cr) +  S i( t,c t) ,

and m general for j > 1,

h  ( t , a )  =  33fl(0,0, j/0(0) +  Zo(<t))̂ j (a) +  Sj(t, <7),

where E3 (r, cr) is determined by yl for % < j and zt for % < 3 — 1 In particular,

3i(r,<r) ={fliff(0,0,j/0(0) +  «o(ff)) - 0 15(0,0,¡/o(0))}r

+  {023(0,0 ,y0(0) +  z0(ct)) -  d2g(0 ,0, y0(0))}a 

+  {c*3fl(0,0,i/o(0) +  zo{a)) -  033(0,0,ÿo(0))}(»/ô(0)<T +  ÿi(0))

It follows from (5 2 4) that

J  g(t,s1UN(s,£))ds-^e3 (̂ J h3(t,s)ds+£ j  k3(t,a)dâ j

N roc
- V ' e J+1 I k3 (t, <j) da + 0 (eN+l ) (5 2 8)

Since k3(t,a) = o(a~r) for all r  > 0,
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/DO kJ(t,o)da = o(T~r),
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for all r  > 0, and Lemma 5 1 implies that
■oo 3

't/e Jt/s T=0

where kJtt(Tt a) is the coefficient of e1 m the Taylor expansion of e k3 ( e t ,  a) Of course Lemma 
5 1 also assures us that

/*°° r°° 3 -/  k 3 ( t ya ) d a  =  /  \ \ e l k 3^ ( t l e , o ) d a  - \ -0 ( e N^ 1),
J t / e  J t l e

/
oo

fej,i(T-.o-)do- = o(r_r) as T —> oo

for all r  > 0 Note also that if

then

K{er,e<j,o,e) =  <0,

¿  ^  (r, a) = l3 ( r , a) (5 2 9)
i = 0

It follows that (5 2 8) becomes
Nf _ / t

I g(t,syUN{s,£)) ds = 'S2 e3 I / h3( í ,s)ds +  e I k3(t,a)da
Jo y—o \J o  Jo

J V - 1  /'OO

~ ^ 2 £3+1 l 3 ( t / e , a ) d < j  +  0 ( e N + 1 )

Next we define the residual pjv(£,e) by

ei7jv(i,e) = /( i ,e )  + f  g(t, 8, UN ( s ,e ) )  ds - pjv(£,e) (5 2 10)
Jo

Then, putting y_i(£) =  0 and fc_i(£, cr) =  0, we see that
jv

p N {t,e)  =  ^  f t j ( i ,5 )ds  +  k3- i ( t t<T)da +  f 3 (t) -  y3- i ( t ) ÿ

X ) eJ+1 {^3^ e  ̂+  J t/ lAt/£>ff)j + 0 (en + 1) (5 2 11)
3=0

If £7jv(£,e) is a formal solution for all A?- > 0, then pn(£, e) =  0(eN+1) as e -4 0 for all N  > 0, in 
which case the argument of Lemma 2 1 shows that for every j > 0, y3(t) and z3 (r) satisfy

y3 rt rOO
- 1  M  = /jM+ / /ij(£,s)ds +  / _̂i(£,cr)d(7, (5212)

JO

/
oo

^ (r, cr) tier (5 2 13)
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There is also an initial condition for solutions of (5 213), obtained from eu(Q,e) = f(0,e), 
namely that for all j > 0

Remark 5 2 There is considerable simplication in the case g(t, s, u) =  a(i, s)u for which (5 1 1) is 
a linear equation It is found that

It follows that if (5 2 3) holds and (5 2 12) and (5 2 13) hold for 0 < j < N, then |/9yv(i,e)| =  
0 (en+1) as e 0

5.3 Properties of the F o r m a l  Solution

In this section it is shown that there are unique solutions y3(t) and z3(r) of (5 2 12) and (5 2 13), 
and that they have the important properties assumed m their derivation It is convenient to rewrite 
these equations as

(5 2 14)

3

where

Remark 5 3 Equation (5 2 11) for the residual has been derived only assuming that (5 2 3) is true

(5 3 1)
•OO

(ff(0,0,2/o(0) + 2oM ) — s(0,0, j/o(0))) da, (5 3 2)

and j > 1,

r

(5 3 3)

(5 3 4)

Here we used the definitions

(5 3 5)

(5 3 6)
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We see that the leading order solutions (outer and inner correction) are given by nonlinear equations 
while the higher order terms are given by linear equations

We use the following hypotheses on the functions f(t, e) and the kernel g(t, s, u) They are based
on the assumptions used in O’Malley [21], Ch 4

(H 3) The function /  [0,T] x [0,1] -» R is C°°and /(0 ,0 ) =  0 Also g A t  x I  4  I  is a C°°
function where

r'

A t  =  {(i,s),0 < s < t <T}

(H4) There exists a  C°° solution yo [0, T] -> M to (5 3 1) which is unique in the class of continuous 
functions on [0,T]

(H 5) There is a positive constant a such that

d3<7(M>2/o(i)) < ~ot < 0, for all 0 < t < T,

^30(0,0,?;) < - & <  0,

for all v between yo(0) and t/o(0) +  / i (0)

Remark 5 4 If (H3) holds, f(t, e) has the asymptotic expansion
00

/(*.£) aSE~^0’ 
j=o

where each f3(t) is C°° on [0,T]

Remark 5 5 (5 3 1) is a Volterra integral equation of the first kind for y0(i) An existence and 
uniqueness theorem for this equation is given m Linz [17], Ch 5, Th 5 2 It is obtained by applying 
the method of successive approximations to the differentiated version of (5 3 1)

Remark 5 6 Skinner [24] proves similar results to those presented m this chapter, except that he 
replaces g(t, s ,u ) by g(t, s, u e), where

CXD

g(t, s,w,e) ~  g3(t,s,u) as e ->■ 0
0

Here each gJ(t,s1u) should satisfy (H3) and g$(t, s,u) satisfies both (H4) and (H 5)

C hapter 5, Section 3__________________________________________________________________P roperties of the Formal Solution
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Proposition 5 7 Suppose that (H3), (H4) and (HB) hold Then (5 3 2) and (5 2 14) have a C°° 
solution Zo satisfying

|*o(r)| < c 0e_ a r, r > 0, (5 3 7)

for some positive constant cq

Proof The problem of solving (5 3 2) subject to (5 2 14) is equivalent to the initial-value problem

=  0(O,O,yo(O) +  z0(r)) - g(0,0,yQ[0)h *>(0) =  /i(0) -  y0(0) (5 3 8)

By standard theory of ordinary differential equations (see, for example, Hirsch and Smale [12], 
Ch 8), (5 3 8) has a unique continuous solution defined on a maximal interval [0, S) such that 
limr ts  l^oMI =  oo if S < oo By the Mean Value Theorem there is a function oj(t) such that

Zo(r) = d3g{0, 0 ,  (1 -  w ( r ) ) j /o ( 0 )  +  u ( r ) z 0 ( r ) ) z 0 ( r )

Assumption (H 5) implies that Zq(t) decreases if zo(0) > 0 and increases if zo(0) < 0 and that 
z0(t) +  2/o(0) hes between y0(0) and yo(0) +  /i(0) Therefore

*oM*o(r) < - az0{r)2,

and hence |z0(r)| < |zo(0)|e~ar for all 0 < r < S Hence 5  =  oo and (5 3 7) holds □

P roposition  5 8 Suppose that (H3), (H4) and (H5) hold Then for every integer j > I, (5 3 3) 
has a C°° solution y3(t) on [0,T], and equations (5 3 4) and (5 2 14) have a C°° solution z3 on 

[0,oo) satisfying

\z3{r)\ <c3e~0T, r  > 0, (5 3 9)

for some positive constants c3 and j3 < a

Proof Consider the hypothesis that there is an integer TV > 0 such that there are C°° solutions 
y3{t) of (5 3 3) for 0 < 3 < TV and C°° solutions z3(r) for 0 < j < N  of (5 3 4) and (5 2 14) such 
tha t

Mr)| <c3t~0T, t >  0 (5 3 10)
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Due to Proposition 5 7 and (H4), this hypothesis is true for N  =  0
Suppose now this hypothesis is true for M  > 0 Then s) and kM(t,a) are determined

and, by (5 3 5), 0m+i(£) is  a well-defined C°° function on [0, T] Assumption (H4) implies that 
^  0 for all 0 < t < T  Then it makes sense to consider the differentiated version of 

(5 3 3), namely

VM+l(t) =  ~ d3g(t,ly0(t)) I  93dig(t,s,y0(s))yM+As)ds (5 3 11)

This is a linear Volterra integral equation of the second kind in pM+i and has a C°° solution on 
[0, T], which can be written in terms of the resolvent kernel The theory can be found for example 
in Ch 2 of Gnpenberg, Londen and StafFan [10] or Ch IV of Miller [19] It follows from (5 3 11) 
that

constant =  (i) +  f  d3p(t, s, yo{s))VM+i (s) ds (5 3 12)
Jo

But since z m (0) =  Jm +i (0) — 2/m(0) and Im (0,cr) =  A:M(0,cr), (5 3 4) implies that
rOG

<Pm + i (0) =  / m + i ( 0 )  ~ V m (0) +  /  k M ( 0, v) dcr
Jo

fOO~ZM{o) + / kM{0,v) do — 0  
Jo

Thus the constant in (5 3 12) vanishes and (5 3 3) holds m the case j = M  +  1 
Now that yM+i(t) has been found, it follows from (5 3 6) that is  a well-defined C°°

function An argument like that of O’Malley [20] pp 84-85 shows that

l ^ ( T ) |< 73e"/3T, r  > 0, (5 3 13)

can be deduced from (5 3 10) for 0 < J < M  The details are omitted Equation (5 3 4) is 
equivalent to the linear scalar equation

ZM+l (r) = 030(0,0, ?/o(0) + zq(t ))zm +i (t ) + V;M+l(r)j
zm+i (0) = /m+i (0) - yM (0)

It easily follows from the exact solution, (H 5) and (5 3 13) that (5 3 10) holds for j — M  +  1 
This completes our proof that the induction hypothesis holds for M  +  1 The proposition then 
follows □
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L em m a 5 9 Suppose that (H 3), (H4) and, (H5) hold Then the residual pN given by (5 2 10) 

satisfies

|pjv(t, e)| =  O ^ * 1) as e —► 0, (5314)

uniformly for all 0 <t < T  Moreover

\p'N{t,e)\ =0{eN+l) as 0, (5 3 15)

uniformly for all 0 < t < T, and

\pN (0,e)\ = O(eN+2) (5 3 16)

Proof Since Propositions 5 7 and 5 8 have established (5 2 3), the proof of (5 3 14) follows from 
Remark 5 3 To prove (5 3 16)

00 N

Pn (0,s ) =  f { 0 , e ) - e U N (0,s)  =  -  £ V +1fe (0 )  +  *j(0))
3=0 3— 0

Using the initial conditions in (5 2 14) and the fact that /o(0) =  0} we have

Pjv(0,e) =  £  / j+ 1(0)eJ+1 = 0 ( e JV+2)
3= N + 1

Differentiation of (5 2 10) gives

/>5v(*.e) =/'(*>£) “ 53^4^/®)J= 0 3= 0
N  r t N

+  ff(t.* ,]£ V  (&(*) +*7 (i/e))) +  /  £*(&(«) +z3(s/e)))ds
3 = 0  J °  3 = 0

Introducing the new notations
N

H*{t, s, e) = digit, (s))>
3 = 0

N  N

K*(t,s,it,£) = digit, s,^2eJ(y3(s) + z3(a))) ~ dlgit,s,^2e3y3is)),
3 —0 3 = 0

we have
N  N  N

p’n (*, e) = Y 1 elft w  - X]£j+1 y3 w  - 1 l  £l z3 + >t ’e) +K (* ’ */e>e)
3 = 0 J= 0 J= 0

/•t /.t/e
+ H*(t,s,e)ds + e K*(t,e<j,<j,E)da + 0{cN N ) (5 3 17)Jo
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Two useful Taylor expansions are
N

H*{t, s, e) =  £ V f t* ( i ,s )  +  0 (e iv+1)
3 = 0

N

lf*(i,e:Gr,a,e) =^2 e3k*(t,a) +  O ^ " 1"1),
3=0

where the coefficients satisfy

k* (i, a) — di kj (i, a) , h* (£, s) =  d\ h3 (i, s) 

Therefore (5 3 17) is equivalent to

p 'n  o. ■e) = Y £l f j w ~ £j+1 y'j w - 52£lz 'j (*/£)J=0 j= 0 J=0
JV TV N  r t

+ ^  (£, f) +  ^  k3 (i, i/e ) +  eJ /  /i* (£, s) ds
j= o  3=0 3=0
N ,0 0  N" ' /*QO _ />oo

+  ^ e J+1 I k*(t, a) da — ^ e J+1 /  &*(£, <r) da +  C^e^"1"1)
j=o j=o

Then substituting the differentiated version of (5 2 12) we get

p'N (t,e) = eJV+1 ( y  k*N {t,o)dff -y'N {t)j - ¿ e ^ ' ( i / e )
N  N  .  o o

+ k3(t,tfe) — ^ £ J+1 /  fc* (i, cr) dcr +  0 (e N+1) (5 3 18) r,  n J t/e3=0 3=0 " tie

By substituting the differentiated version of (5 2 13) one gets
O roo \ N N

k*N (t,a)da-y'N {t)\ +  Y £Jk3^t/e) -

0 ' 3=0 3=0

N  roo -N /*oo

+ ^ e J / dilj(t/£,a) da — y ^ g ^ 1 / fc*(£,cr) d<r +  C^e^"*-1)
j= 0 j=0 •'i/e

Using Lemma 5 1,
N  3  N

a oo \ J
k*N { t ,a ) < kr -  j/Jv(i) ) + Y ^  Y s '~kJ.>( t /e , t /e)  -  Y ^ h (*/e,*/e) 

' 3=o 1=0 3=0
^  r oo JV /*oo J

+ ]T V  / d1l J { t / s , a ) d a  ~ Y £3+1 /  Y £' ^ A t / £ ’ (7') da + ° (eJV+1)
/.—n •'i/e — n «/¿/e „_ nJ = 0 *'i/e j= 0 ,/*/e t=0

Collecting terms together using (5 2 9) gives
N

a
oo \ JV /-OO

fcjr(£, a) da - y'N (t)j + Y 1 £ J^ (*/£» ^  ^
1 r  OO 3 ~  1

~ H £l E^-*-n (i / £ >‘7 ) di7 + C)(£N+1)
- _ 1  J i / ^  t = 0
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We also see that if
oo

iĈ(ET,£C7,a,e) =
j=o

then

=l*(T’a)>*=o
where the coefficients obey

= di l j ( r , a) ,  ] > 1

Therefore

|p ^ (i,e ) | =  0 (e Af+1), (5 3 19)

uniformly for all 0 < t < T  □

5.4 Existence of A s y m p t o t i c  Solution

In this section we establish that C/jv(i,e) defined in Section 5 1 is an asymptotic solution Our 
method is to adapt the theory in §6 3 of Smith [25] for systems of singularly perturbed ordinary 
differential equations Skinner [24] employed a similar method The analysis here has also benefited 
from the general discussion in §6 1 of Eckhaus [5] on developing a rigorous theory of singular 
perturbation The mam result in this chapter is the following

T h eo rem  5 10 Suppose that (Ha), (H4) and (H5) hold Then (511) has a continuous solution 
u(t, e) with the property that there are constants Cn and e*n such that

|u(t,e) - U N {t,e)| < Cnen+1

for allO < t  < T  and 0 < £ < e*n

It is natural to introduce rjv(t,e) =  u{t, e) -  [/jv(t,£) which satisfies the equation

erN (t,£) =  PN(t,e) +  /  {g(t, s,Un {s,e) + rN(s,e)) - g(t, s, UN (s,e))\ ds (5 4 1)Jo
However, if the functions rjv and pN are scaled, a mapping considered later becomes a uniform 
contraction rather than just a contraction For this reason let

0(t,e) =  e^+^pN^e), x(t,e) =  £~(iV+1Vjv(t,e),
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where, for simplicity, the dependence on the fixed integer N  is omitted from the notation Then 
for e > 0, (5 4 1) is equivalent to

ex(t̂ e) =  0(t,e) + / d3g(t, s, Un{s^s))x(s: e) ds +  / /i(i,s,x(s, e), e) ds, (5 4 2)
jo jo

where

ft(i,s,a;,e) =  e_(7V+1̂ ( i ,5,i/Ar(5,£) +  a:) -  e~̂ N+1)g(t,s, UN(s, e)) - d3g(t,s,UN {s,e))x

By Taylor’s theorem h(t, s,x̂ e) =  ê N+l ĥi(t,s,x,e), where

hi (i, 5, x, e) = x2 f (1 -  v)d$g(t, s, Un{s,£) +  vê n+1 x̂) dv 
Jo

Hence, because |0(i, e)| =  0(1) as e —> 0 uniformly by Lemma 5 9, we expect the nonlinear term

/ h(t,s,x(s,e)}E)ds 
Jo

to be of higher order than other terms in (5 4 2) Therefore we first consider the approximate 
equation

ew(tJe)=Z(tie)+ [ dzg{t, <s,Un (s,e))w(s,e) ds, (5 4 3)Jo
where £{t,e) =  0(1) uniformly as e -t 0 and f(0,e) =  0(e)

L em m a 5 11 Suppose that (H 3), (H4) and (Hg) hold for each 0 < e < £o Also suppose that 

f( , e) [0,T] -4 M is a continuously differentiable function with |[£'( ,e)|| =  0 (1) and |£(0,e)| =  
0(e) Then (5 4 3) has a unique continuous solution w( ,e) satisfying ||w( ,e)|| — 0(1) for all e 
m  some interval (Q,ei] c  (0,eo]

Proof The standard theory of linear Volterra equations of the second kind ensures that for each 
0 < e < 6q (5 4 3) has a continuous solution t w(t,e) on [0,T] and that w( ,e) is continuously 
differentiable because f( ,e) is Let 0 < ¡3 < a  If follows from (H e) that there is a number 
0 < Ei <eo  such that

p{t,s) = d3g{t,t,UN{t,e)) < -/3

for all 0 < t < T  and 0 < e < e\ Equation (5 4 3) can be differentiated to get an equation of the 
form

Ew'(t,£)-p(t,e)w(t,£) =  ii( i ,e ) , (5 4 4)

C hapter 5, Section 4_________________________________________________________________ Existence of A sym ptotic Solution
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where w(0,e) =  £(0,e)/e: and

fi(i,e) = $'(t,e)+ f  d1d3g(t,s,UN(s,e))w(s,e)ds Jo
Since the solution of (5 4 4) satisfies

w(t,e) = w(0,e)e« Sif(v̂ dv + - (  e< f>^'>iv̂ 1{s,e)dsG Jo
and

el- /o p(u>£) ê  £ dv < e_/3ii_ŝ e,

we see that

\w{t ,e)\<Ci + j f  + ~ j f 0 l«w(a,e)| rf»,

where

Cl =  sup |C(0,e)|/e, C2= sup ||C'(,e)ll, M =  sup |9i93ff(i,8 ,t/^(s,e))|
0<E<eo 0<e<eo (i,»)sAT

0<e<eo
By Gronwall’s inequality

|u>(i, e)| < (ci + y e ^ ) ,

and the lemma is proved □

Equation (5 4 2) can be written as

C(x,£) — 0{,£)+M{x,e), (5 4 5)

where OfO,?1] x [0,£ij -> C[0}!T] are defined by

C(x,e){t) =ex(t)- /  d3g{t1siUN (s,£))x(s)ds,J o
J\f(x,e)(t) — ŝN+1) f  hi{t, syx(s),£) ds Jo

It is convenient to introduce the space X  of functions (i, £)■-►{(£, £) on [0, T] x [0, ei] with 1 £(t, e) 
continuously differentiable and ||£'( ,e)|| and {(0,e )/e  are uniformly bounded on [0,£o] dnd (0,eo] 
respectively X  is given the norm

M\\x= sup |£(0,e)/e | +  sup ||£ '(,e )||
0<e<ei 0<e<ei
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Then (t,e) »-► L(x,e)(t), (i,e) i-> Af(x,e)(t) and (t,e) >-> 0(t,e) are m X 
Lemma 5 11 can be reinterpreted as asserting that for f  € X  the equation C(w,£) =  £( , e) is 

equivalent to w( , e) = M(  ,&)£( ,e) for some linear operator M( ,e) X  C[0, T] and there is a 
constant \i such that ||.M( ,£)f( ,e)|| < /*||C||;r uniformly for 0 < e < E\ Hence there is a number 
<5 > 0 such that

||A4(,e)0(,e)||<i
Also (5 4 5) is equivalent to

x = M{ ,e) [0{ ,e) + A/’(a;,e)]

Thus the problem of finding solutions of (5 4 5) is equivalent to finding fixed points of a mapping 
Let

B = {x €C[Q,T] ||*|| <25}

A simple calculation shows that if ar is in B then

IM*. )l\x<eN+lTMu

where

Mi =  max \hi(t, s,a:,e)|
(t,s)e a t 

\x\<26, 0 < e < e i

Therefore for each x m B

| |X (  ,e) [9{ ,e) + N{x,e)} || < 6 + /j,TM1eN+1 < 28, 

if e is m some interval (0, £2] It has been shown that the mapping %  B -¥ B given by

%(x) = M( ,£)[$(,£) +Af(x,£)]

is well-defined
Next it is shown that %  is a contraction on B Note that J\f(x̂ £)(0) =  0 Let £ i,$2 be m B 

Then

(,Af(xi,£)'(t) - Ai(x2,£)'(t)) = £N+1 [hiit.t.xi (t),£) - hi{t,t,x2(t),e)

+ f  {5i/h(£,s,xi(s),£)0:2(5),£)}d5]7 
Jo
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and, using the Mean Value Theorem,

\J\f{xu ey{t) -Af(x2,e)'(t)\ < sN+1 j M 2 | s i ( f )  -  ar2 ( i ) |  +  M 3 j  |xi(s) -  z2(s)|ds j

C hap ter 5, Section 5__________________________________________________________________________________________Example

where

M 2 = max |d3/ii(t,i,z,e)|, M3 = max |935ihi(i, s,a:}e)|
0 <t<T (i,s)e a t

\x\<28, 0<e<e0 M<2<5, 0 < e < e 0

It follows that

\\J\f(xu e) - N { x 2 ,e ) \\x  < £N+1 {M2 + Af3T)||si -  x 2\\

and hence that Te B -¥ B is a uniform contraction for e in some interval (0, e3] with 0 < £ 3  < £ 2  

The Banach fixed point theorem implies the following result

L e m m a  5 12 Suppose that ( H j ) ,  ( H 4 ) and ( H 5 ) hold Then there is a number £3 > 0 such that 

(5 4 2) has a unique solution x(e) m  B fo r all 0 < e < £ 3

It is easy to show that since a;(e)(i) = x ( t,e )  satisfies (5 4 2)

u(i,e) = t/jv(£,e) + £N+1£(t,£)

is a solution of (5 11) Moreover

|«(i,e) - | = eJV+1|a:(iie)| < 26eN+l

for all 0 < t  < T  This complete the proof of Theorem 5 10

5.5 E x a m p l e

Let us consider the following example from Angell and Olmstead [2],

;(t) = f* e(t- ’)(u2( s ) - l ) d s  (5 5 1)
Jo

£U[

The exact solution of this determined by converting the integral equation to a nonlinear first order 
differential equation subject to the initial condition it(0) = 0 is
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where

7 = -  \ /4  +  e2 (5 5 3)£

Example (5 5 1) corresponds to

/( i ,e )  =  1 —e \  g(t,s,u) =  e(i_sV ,

which implies i,u ) =  2u It follows from (5 3 1) that the leading order outer solution satisfies

0 =  [ e(i_s)(j/§(s) -  l)d s  
Jo

which has solutions yo(t) =  ±1 But only one of these can be appropriate since (5 5 1) has a unique 
solution (H 5) cannot be satisfied with yQ(t) =  1, but with y0(t) =  - 1  it holds with a =  2, since 
d3<?(f,i>2/o) =  -2 Therefore

y0(i) = - l ,  ¿ > 0

The leading order inner correction solution is given by the nonlinear ordinary differential equation

4(r) = zl(T) “ 2jso(t), ô(O) = 1,

which has a solution

zQ(r) — 1 -  ta n h r, r  > 0 

We see from this solution that zq(t) satisfies the requirement that

lim Zq{t) =  0

To the leading order, the asymptotic solution Uo(t, e) of (5 5 1) is given by

UQ (i, £) =  — tanh -£
In general, for j > 1, the outer solution satisfies

ft ft nOO

y3-1{t) = ~2  / et~8y3(s)ds + / $ j ( i ,s )d s +  /  k3-i(t,(r)d<T,
Jo Jo Jo

where k3-i{tya) and $3(ty s) are determined by yt(t) and zt(r) for i < j — 1 Since

$ i( i, s) =  0, ko(t,a) =  -e^sech2 a,
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it follows that the first order outer solution satisfies the equation
C hapter 5, Section 5__________________________________________________________________________________________Example

2 [ e* Syi(s)ds ~ 1 - 
J o

Solving this by differentiating once gives

From (5 3 4), the inner correction solution, in general satisfies

= —2tanh t 2 j(t) +V'j(t )>

where

V'j('r) = -  J  =■] (t, a)

is determined by yt (t) and zx (t) for % < j respectively t < j — I Then, since

Ei (t, <t) =  (a — r)  sech2 a +  tanh er — 1, 

the first order inner correction solution zi (r) satisfies

z'i (t) =  - 2ta n h r ^ ( r ) ,  ^i(O) =  ^

Solving this gives

1  -.2zi (t) =  -  sech r, r > 0 

Then to the first order, the asymptotic solution Ui (t, e) is given by

i/i (i, e) =  — ta n h    tanh2 -E 2 £

To verify that Z70(i,£) is a uniformly valid asymptotic solution, we consider the difference

/x x rr /, \ 2 / e ( l - e jrt) e2t/£ — 1«((,£)-1/0(<,£) = ( 7 _ 1 ) e 7 t + 7  + 1 + pi7;TI
2 /e(l -  e^)(e2t/g +  1) +  (e2tA -  1){(7 -  l )e *  +  7 +  1} ,

(7 -l)e7i + 7 + l(e2*A + l) 1 '

Simplifying (5 5 4) gives
gt * 4. 02i /& _  e7̂ e2i/^ _  1-  Ua(t,e) =

7 e7i +  7 e2£/e +  (7 - lje^e2*/5 +  7  + 1 
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We have from (5 5 3) that

27 ~  — -  +  0 (e), e -¥ 0

Therefore
2£e2t/e _ £̂ t/e _ £

C hapter 5, Section 6_________________________________________________________________ Example from Population Growth

u(t,e) - U0(t,e) =
2ee2 t +  (2 — e)e4iA +  2 +  e 

and

2ee-2i/e — ee_4i/ e — e|u(t,e) - U0(t,e)| < 2ee_2i/e +  2 -  e +  (2 +  e)e~4i/«

It therefore follows that for 0 < e < £o> we have

|tt(i,e) -  Uo(t,e)\ <

for all 0 < t < T  Similar calculations show that there exists a positive constant c\ > 0 such that

|u(t,e) -  Ui(t,e)\ < ci £2,

uniformly for all 0 < t < T

5.6 E x a m p l e  f r o m  Population G r o w t h

Consider the following example

eu(t) = eS(t) +  f S(t — s)u(s)(l — u(s)/c) ds, (5 6 1)
Jo

where c > 0 is a constant Problem (5 6 1) is a model for the population growth The function u(t) 
is the population size at time t The survival function S(t) is the fraction of the initial population 
which is still alive at time i, so 5(0) =  1 u(l - u/c) is the rate of reproduction Since e is small, 
(5 6 1) describes a rapid growing population 

Problem (5 6 1) corresponds to

/ ( i ,  e) = eS(t), g(t, s, u) — S(t - s)u( 1 -  u/c)

The leading order outer solution, yQ(t) is given by

0 = f S(t- s)u(s)( 1 -  u(s)/c) ds (5 6 2)
Jo
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To satisfy (H 5), the correct leading order outer solution is

2/o W  =c,

since then dzg(t, t,yo{i)) =  - 1  By (5 3 1) the leading order inner correction solution zo{r) is given 
by

4(r) =  -^o(t)(1  -  ^ o ( r ) ) ,  *o(0) =  l - c ,  (5 6 4)

which has solution

= r?(c~-ie)F- (5 6 5)

This implies that l i m ^ ^  20(r) =  0 and thus to the leading order, the asymptotic solution, t/o(i, e)
of (5 6 1) is given by

=«■>*>- i+(e- V „ ,  ,566)
Thus on a time scale of order e, the population increases rapidly Since (5 6 1) and yo(t) satisfy 
the hypotheses of this chapter, the unknown exact solution satisfies

K * ' e ) - i  +  ( c - Ci ) e - t/ J  =  ° ( £ ) (5 6 ? )

uniformly for 0 < t < T

which implies

jto W = 0  or y0( t ) = c  (5 6 3)
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