Singularly Perturbed Volterra Integral Equations

Angelına $\mathrm{B}_{1 \mathrm{j} u}$ ura

School of Mathematical Sciences,
Dublin City University

Supervisor Dr D W Reynolds

Ph D Thess by Research
Submitted in fulfilment of the requirements
for the degree of $\mathrm{Ph} \mathbf{D}$ in Apphed Mathematical Sciences
at Dublin City University, February, 1999

I hereby certify that this material, which I now submit for assessment on the programme of study leadıng to the award of Doctor of Philosophy in Applied Mathematical Sciences is entirely my own work and has not been taken from the work of others save and to the extent that such work has been cited and acknowledged within the text of my work

Signed \qquad ID No 94970882

Date 24 February, 1999

Acknowledgements

First of all I wish to express my gratitude to my supervisor Dr David Reynolds, who tirelessly guided me from the first day I started working on this thesis David, I thank you for the strategies you came out with especially when we were putting everything together I will always remember your optimism, courage, patience and above all your accuracy You did an exceptionally fine job for which I am grateful

I am most appreciative of the cooperation and assistance of Prof Alastair Wood that resulted in the comprehensiveness of this thesis Thank you for leaving the door open whenever I needed help Also I am grateful to Richard Paris for making available to me part of the typescript of his book

Many people have assisted me in the preparation of this thesis, I would like to give special thanks to all postgraduate students whom we shared offices, worked together, ate together, and when tired joked together Thank you for making me feel at home in the different weather and culture You did not only teach me but also encouraged me throughout Most of all thanks to Martın, Helen, Tony, Sean, Michael, Neıll, Donal and Glenn A very definite thanks to Sinead (I will miss the enjoyable gym sessions, great academic break to have with a caring friend) John and Kieran deserve a special mention for their efforts, you did an outstanding job of going through most of my work, you are real, young, intelligent mathematicians

From the bottom of my heart, I thank my family who supported and encouraged me always Thank you Dad, Mum, brothers and sisters and especially my brother David who opened the door for higher education in our family, all this is your footsteps I would like to thank my husband Respicius for his fine efforts that was indispensable in the writing of this thesis We went through some difficulties together but never gave up, thank you so much

And finally to all my friends, relatives, and colleagues whom I have not mentioned individually but were hanging in there while I was busy writing, and whom I needed throughout this period of hard work, I sincerely thank you all

To Respıcus

Contents

Chapter 1 Introduction 1
11 Singular Perturbation Problems 1
12 Summary of Thesis 3
Chapter 2 Linear Integral Equations with Contınuous Kernels 6
21 Introduction 6
22 Notation and Assumptions 7
23 Heuristic Analysis 8
24 Derivation of the Formal Solution 12
25 Properties of the Formal solution 15
26 Asymptotic Solution 20
27 Example 21
28 Example of Boundary Layer Stability Condition Failing 25
Chapter 3 Integrodifferential Equations with Continuous Kernels 28
31 Introduction 28
32 Heuristic Analysis and Formal Solution 29
33 Properties of Formal Solution 31
Chapter 4 Volterra Equations with Weakly Singular Kernels 34
41 Introduction 34
42 Mathematical Preliminaries 35
421 Solution of Abel Equations 35
422 The Mittag-Leffler Function and its Asymptotic Expansion 36
423 Solution of a Simple Class of Abel -Volterra Equations 39
43 Heuristic Analysis and Formal Solution 40
44 Properties of the Formal Solution 42
45 Example 43
Chapter 5 Nonlinear Scalar Volterra Integral Equations 47
51 Introduction 47
52 Derivation of the Formal Solution 48
53 Properties of the Formal Solution 53
54 Existence of Asymptotic Solution 59
55 Example 63
56 Example from Population Growth 66

Abstract

This thesis studies singularly perturbed Volterra integral equations of the form

$$
\varepsilon u(t)=f(t, \varepsilon)+\int_{0}^{t} g(t, s, u(s)) d s, \quad 0 \leq t \leq T
$$

where $\varepsilon>0$ is a small parameter The function $f(t, \varepsilon)$ is defined for $0 \leq t \leq T$ and $g(t, s, u)$ for $0 \leq s \leq t \leq T$ There are many existence and uniqueness results known that ensure that a unique continuous solution $u(t, \epsilon)$ exists for all small $\epsilon>0$ The aim is to find asymptotic approximations to these solutions This work is restricted to problems where there is an initial-layer, various hypotheses are placed on $g(t, s, u)$ to exclude other behaviour A major part of this work is that formal solutions of the nonlinear problem are determined and rigorously proved to be asymptotic approximations to the exact solutions Formal approximate solutions

$$
U_{N}(t, \epsilon)=\sum_{n=0}^{N} \varepsilon^{n} u_{n}(t, \varepsilon), \quad u_{n}(t, \varepsilon)=O(1) \text { as } \varepsilon \rightarrow 0
$$

are obtained using the additive decomposition method Algorithms which mprove the method used in Angell and Olmstead (1987), are presented for obtanning these solutions Assuming a stability condition in the boundary layer, it shown that there is a constant c_{N} such, that

$$
\left|u(t, \epsilon)-U_{N}(t, \epsilon)\right| \leq c_{N} \epsilon^{N+1} \quad \text { as } \epsilon \rightarrow 0
$$

uniformly for $t \in[0, T]$, thus establishing that $U_{N}(t, \varepsilon)$ is an asymptotic solution Skinner (1995) has proved sımılar results, but almost all the theorems here were discovered before Skınner's work was found and are largely independent of it Lange and Smith (1988) prove results for the case $g(t, s, u)=k(t, s) u$, where $k(t, s)$ is continuous and satisfies a stability condition in the boundary layer These results are carefully developed here and sımılar results for linear integrodifferential equations The problem of extending these to the class of weakly singular equations with

$$
g(t, s, u)=\frac{k(t, s)}{(t-s)^{\beta}} u, \quad 0 \leq \beta<1
$$

is discussed An interesting aspect of this problem and others for which the boundary layer stability condition fails, is that the solutions decay algebraically rather exponentially within the boundary layer

Chapter 1
 Introduction

1.1 Singular Perturbation Problems

In this work we study singularly perturbed Volterra integral and integrodifferential equations which depend on a small parameter in such a way that the solutions of the problem behave nonumformly as the parameter tends to zero Such singular perturbation problems involving Volterra integral operators arise in applied mechanics, population dynamics and heat conduction The practical aim is to calculate a uniformly valid approximation to the exact solution, which can be used to understand and interpret the unknown exact solution Unlike regular perturbation, in singular perturbation theory there need be no solution to the reduced problem obtained by setting the small parameter to zero If a solution to the reduced problem does exist, its qualitative features can be distinctly different from those of the solution to the full singular perturbation problem

The nature of the nonunformity of the solutions can vary Here we limit attention to problems in which such nonuniformity occurs in a narrow region called an initial or boundary layer in this region, the solution of the problem changes rapidly The width of the initial layer must approach zero as the parameter decreases to zero In problems with layers one approach is to seek (at least) two expansions, called the inner and outer expansions, neither of which is uniformly valid but whose domains of validity overlap and cover the whole domain This is the method of matched asymptotic expansions Its purpose is to replace the problem on the whole doman by a sequence of simpler tractable equations on the inner and outer regions For many problems the addutrve decomposition method (otherwise known as the O'Malley-Hoppensteadt or boundary function method) is simpler In this thesis we apply the method to several integral equations, and describe some standard, general technıques for mathematically justıfying the results Estımates are provided using relatively simple differential inequalities

The additive decomposition method was first appled to singularly perturbated systems of ordı-
nary differential equations of the form

$$
\begin{array}{rr}
\frac{d x}{d t}=f(x, y, t, \varepsilon), & x(0)=\alpha(\varepsilon) \\
\varepsilon \frac{d y}{d t}=g(x, y, t, \varepsilon), & y(0)=\beta(\varepsilon) \tag{11lb}
\end{array}
$$

Here the data $f(x, y, t, \varepsilon), g(x, y, t, \varepsilon), \alpha(\varepsilon)$ and $\beta(\varepsilon)$ are assumed to possess power series expansions in ε with smooth coefficients An asymptotic solution of (111) is sought in the form

$$
\begin{gathered}
x(t, \varepsilon)=X(t, \varepsilon)+\varepsilon \xi(t / \varepsilon, \varepsilon), \\
y(t, \varepsilon)=Y(t, \varepsilon)+\eta(t / \varepsilon, \varepsilon),
\end{gathered}
$$

with an outer expansion

$$
\binom{X(t, \varepsilon)}{Y(t, \varepsilon)} \sim \sum_{\jmath=0}^{\infty} \varepsilon^{\jmath}\binom{X_{\jmath}(t)}{Y_{\jmath}(t)}
$$

and an mitial layer correction

$$
\binom{\xi(\tau, \varepsilon)}{\eta(\tau, \varepsilon)} \sim \sum_{j=0}^{\infty} \varepsilon^{j}\binom{\xi_{j}(t)}{\eta_{j}(t)},
$$

whose terms tend to zero as $\tau \rightarrow \infty$ Related to (111) are two important problems The reduced system is

$$
\begin{align*}
\frac{d x}{d t} & =f(x, y, t, 0), \quad x(0)=\alpha(0) \\
0 & =g(x, y, t, 0) \tag{array}
\end{align*}
$$

and the associated boundary-layer equatoon

$$
\begin{equation*}
\frac{d z}{d \tau}=g(x(0), z, 0,0), \quad z(0)=\beta(0) \tag{array}
\end{equation*}
$$

Hoppensteadt investigated in [13] the behaviour of the solution of (1 111) on the interval $0 \leq t<$ ∞ as $\varepsilon \rightarrow 0$ In order to treat this case of t being allowed to range over the entire positive real axis, [13] requires that both the reduced system (1 12) and the boundary layer equation (113) satisfy severe stability conditions Hoppensteadt's main result is that, under restrictive assumptions, the solutions of the system (111) exist for all $t \geq 0$ and converge as $\varepsilon \rightarrow 0$ to the solutions of the reduced system unformly on closed but not necessarily bounded subsets of ($0, \infty$) In particular,
solutions converge on sets of the form $\left[t_{1}, \infty\right)$ with $t_{1}>0$ This result is significant in the sense that the hypotheses cannot be significantly weakened

Different results for (111) have been obtained on bounded intervals of the form $0 \leq t \leq T$ These include many by O'Malley, full references for which can be found in [20], [21] or Smith [25] In order to obtain these results, less severe stability conditions are imposed on the boundary-layer equation (1113) and the reduced system (112) than in Hoppensteadt's theory Boundary value problems have also been extensively investigated, see for example the books of O'Malley [20] and Smith [25]

In some problems of the form (11) the additive decomposition method gives spurious results in cases for which the method of matched asymptotic expansions works Examples of this have been discussed in Fraenkel [8] and Lange [14]

1.2 Summary of Thesis

Chapter 2 considers the singularly perturbed linear Volterra equation

$$
\begin{equation*}
\varepsilon \mathbf{u}(t)=\mathbf{f}(t)+\int_{0}^{t} \mathbf{A}(t, s) \mathbf{u}(s) d s, \quad 0 \leq t \leq T \tag{array}
\end{equation*}
$$

where $0<\varepsilon \ll 1$ The vector-valued function $\mathbf{f}(\mathbf{t})$ is continuous for $0 \leq t \leq T$ and the matrixvalued kernel $\mathbf{A}(t, s)$ is continuous for $0 \leq s \leq t \leq T$ The aim is to find asymptotic approximations to the contmuous vector-valued solution $t \mapsto \mathbf{u}(t, \varepsilon)$ of (121) as $\varepsilon \rightarrow 0$ We impose the boundary layer stability condition that all elgenvalues of $\mathbf{A}(t, t)$ have negative real parts This not only forces an initial layer, but forces the solution $\mathbf{u}(t, \varepsilon)$ of (121) to decay exponentially in the boundarylayer

Angell and Olmstead in [1] and [2] used the additive decomposition method to find the first few terms in the formal solutions of linear and nonlinear singularly perturbed Volterra integral and differential equations However their approach has the shortcoming that general equations for the coefficients in the formal solution cannot be determined Also Lange and Smith [15] used the additive decomposition method in their study of singularly perturbed linear Fredholm equations They deduced general expansions for the formal solution and rigorous estimates to show its closeness to the exact solution Following the same approach, we derive in Section 24 equations
for the terms in a formal solution

$$
\mathrm{U}_{N}(t, \varepsilon)=\sum_{n=0}^{N+1} \mathbf{u}_{n}(t, \varepsilon) \varepsilon^{n-1}
$$

Then in Section 25 it is shown that

$$
\varepsilon \mathbf{U}_{N}(t, \varepsilon)=\mathbf{f}(t)+\int_{0}^{t} \mathbf{A}(t, s) \mathbf{U}_{N}(s, \varepsilon) d s+O\left(\varepsilon^{N+1}\right)
$$

and in Section 26 we prove that

$$
\begin{equation*}
\left|\mathbf{u}(t, \varepsilon)-\mathbf{U}_{N}(t, \varepsilon)\right|=O\left(\varepsilon^{N+1}\right) \tag{array}
\end{equation*}
$$

unvormly for $0 \leq t \leq T$ as $\varepsilon \rightarrow 0$
Similar results are proved in Chapter 3 for the linear Volterra integrodifferential equation

$$
\varepsilon \mathbf{u}^{\prime}(t)=\mathbf{f}(t)+\mathbf{B}(t) \mathbf{u}(t)+\int_{0}^{t} \mathbf{A}(t, s) \mathbf{u}(s) d s, \quad \mathbf{u}(0)=\mathbf{a}
$$

We construct in Section 32 a formal solution $\mathrm{U}_{N}(t, \varepsilon)$ for this problem using the additive decomposition method and prove the estimate (122) provided the above boundary layer stability condition holds In chapter 4 we consider the weakly singular linear scalar Volterra integral equation

A major part of this thesis is Chapter 5, where formal solutions of the nonlinear problem

$$
\begin{equation*}
\varepsilon u(t)=f(t, \varepsilon)+\int_{0}^{t} g(t, s, u(s)) d s, \quad 0 \leq t \leq T \tag{array}
\end{equation*}
$$

are determined and rigorously proved to be asymptotic approximations to the exact solutions Here we require that $\lim _{\varepsilon \rightarrow 0} f(0, \xi)=0$, and allow f to have the asymptotic expansion

$$
f(t, \varepsilon) \sim \sum_{\jmath=0}^{\infty} \varepsilon^{\jmath} f_{\jmath}(t) \quad \text { as } \varepsilon \rightarrow 0
$$

Again the additive decomposition method is used The boundary layer stability assumption takes the form that there 18 a constant $\alpha>0$ such that

$$
\begin{gathered}
\partial_{3} g\left(t, t, y_{0}(t)\right) \leq-\alpha<0, \quad \text { for all } 0 \leq t \leq T \\
\partial_{3} g(0,0, v) \leq-\alpha<0, \quad \text { for all suitable } v
\end{gathered}
$$

Skinner [24] has proved sımılar results, but almost all the work in Chapter 5 was done before Skinner's work was found and is largely independent of it However for the sake of clarity we
have integrated some of Skinner's improvements into the exposition of Chapter 5 In particular Skinner's method of deriving the equations for the formal solution is adapted there Skinner's work builds on that of Smith [25], Ch 6, O'Malley [20], Ch 4 and O'Malley [21], Ch 2 on singularly perturbed initial value problems for nonlinear ordinary differential equations These were major sources for this thesis

We also investigate linear Volterra equations for which the boundary layer stability condition fails to hold In Section 28 we view the sımple example

$$
\begin{equation*}
\varepsilon u(t)=f(t)-\int_{0}^{t} s u(s) d s \tag{124}
\end{equation*}
$$

from the point of view of the additive decomposition method, looking for an expansion

$$
u(t, \varepsilon)=\sum_{\jmath=0}^{\infty} \varepsilon^{\jmath} y_{\jmath}(t)+\frac{1}{\varepsilon} \sum_{j=0}^{\infty} \varepsilon^{\jmath / 2} z_{\jmath}\left(t / \varepsilon^{1 / 2}\right)
$$

Because not all the boundary layer correction terms $z_{J}(\tau) \rightarrow 0$ exponentially as $\tau \rightarrow \infty$ but only algebraically, greater care is required in applying the O'Malley-Hoppensteadt method Similarly in Chapter 4 the weakly singular scalar Volterra integral equation

$$
\varepsilon u(t)=f(t)+\frac{1}{\Gamma(\beta)} \int_{0}^{t} \frac{k(t, s)}{(t-s)^{1-\beta}} u(s) d s
$$

is considered with $0<\beta<1$ and $k(t, t)=-1$ This problem exhibits an mitial layer at $t=0$ like the equations with continuous kernels considered in Chapter 2 The stability condition falls and there is only algebraic decay of solutions in the initial layer We construct a formal solution $U_{0}(t, \varepsilon)$ and can demonstrate in particular examples that $\left|u(t, \varepsilon)-U_{0}(t, \varepsilon)\right|=O(\varepsilon)$ A proof of this in general is not yet known

Chapter 2

Linear Integral Equations with Continuous Kernels

2.1 Introduction

This chapter considers the singularly perturbed linear Volterra equation

$$
\begin{equation*}
\varepsilon \mathbf{u}(t)=\mathbf{f}(t)+\int_{0}^{t} \mathbf{A}(t, s) \mathbf{u}(s) d s, \quad 0 \leq t \leq T \tag{array}
\end{equation*}
$$

where $0<\varepsilon \ll 1$ The vector-valued function $\mathbf{f}(\mathrm{t})$ is continuous for $0 \leq t \leq T$ and the matrixvalued kernel $\mathbf{A}(t, s)$ is continuous for $0 \leq s \leq t \leq T$ Our interest is in finding asymptotic approximations to the continuous vector-valued solution $t \mapsto \mathbf{u}(t, \varepsilon)$ of (211) as $\varepsilon \rightarrow 0$ The results here are not presented because they are new, but rather to explain in this simple context how the method of additive decomposition can be apphed to integral equations In later chapters it is employed to find asymptotic approximations to the solutions of more complicated equations The results here are easily generalised to the case of \mathbf{f} and \mathbf{A} depending in a regular way on ε, though here it is assumed that they are independent of ε

The singular nature of (211) is easily seen For $\varepsilon>0,(211)$ is a Volterra equation of the second kind which has a continuous solution $\mathbf{u}(t, \varepsilon)$ satisfying $\varepsilon \mathbf{u}(0, \varepsilon)=\mathbf{f}(0)$ For $\varepsilon=0,\left(\begin{array}{ll}2 & 1\end{array}\right)$ reduces to a Volterra equation the first kind

$$
\begin{equation*}
\mathbf{0}=\mathbf{f}(t)+\int_{0}^{t} \mathbf{A}(t, s) \mathbf{v}(s) d s, \quad 0 \leq t \leq T \tag{212}
\end{equation*}
$$

which does not have a continuous solution unless $\mathbf{f}(0)=0$ Even in this case, (212) has a continuous solution only if $\mathbf{f}(t)$ is continuously differentiable So there is a loss of regularity for $\mathbf{v}(\mathbf{t})$ compared to the solution $\mathbf{u}(t, \varepsilon)$ of (211) for $\varepsilon>0$ Indeed, if the solution of (212) is such that $\mathbf{v}(0) \neq \lim _{\varepsilon \rightarrow 0} \mathbf{u}(0, \varepsilon)$, then $\mathbf{v}(\mathbf{t})$ cannot provide a uniformly valid approximation of the solution $\mathbf{u}(t, \varepsilon)$ of (2 111) on $[0, T]$

The behaviour of the kernel plays an important role in determining the asymptotic character of the continuous solution $\mathbf{u}(t, \varepsilon)$ of (211) for small values of ε In this chapter we impose the condition that all of the elgenvalues of $\mathbf{A}(t, t)$ have negative real parts This not only forces an
mitial layer, but forces the solution $\mathbf{u}(t, \varepsilon)$ of (211) to decay exponentially in the initial-layer The solution $\mathbf{u}(t, \varepsilon)$ is slowly varying for $O(\varepsilon) \leq t \leq T$ as $\varepsilon \rightarrow 0$, but changes exponentially on a small interval $0 \leq t \leq O(\varepsilon)$ This small interval of rapid change is called the inner region, intzal layer or layer of rapid transition, and the region of slow variation of $\mathbf{u}(t, \varepsilon)$ as the outer regzon The thickness ε of the intial layer approaches zero as $\varepsilon \rightarrow 0$

The aim of this chapter is to obtain asymptotic approximations to $\mathbf{u}(t, \varepsilon)$ which are uniformly vald for all $0 \leq t \leq T$ as $\varepsilon \rightarrow 0$ Our interest is in problems whose solutions have initial layers, solutions with rapid initial exponential growth will not be discussed here Exponential decay in the boundary layer of the solution $\mathbf{u}(t, \varepsilon)$ suggests the use of the additive decomposition method, as was employed by Lange and Smith [15] in their study of singularly perturbed linear Fredholm equations In Section 22 , we introduce some notation and explain our basic assumptions Section 23 explans the fundamental ideas of the additive decomposition method, and how it regularizes the singular perturbation problem (211) We derive a formal solution $\sum_{n=-1}^{\infty} \mathbf{u}_{n}(t, \varepsilon) \varepsilon^{n}$ in Section 24 In Section 25 it is shown that this is an asymptotic series and that

$$
\varepsilon \mathbf{U}_{N}(t, \varepsilon)=\mathbf{f}(t)+\int_{0}^{t} \mathbf{A}(t, s) \mathrm{U}_{N}(s, \varepsilon) d s+O\left(\varepsilon^{N+1}\right)
$$

where

$$
\mathrm{U}_{N}(t, \varepsilon)=\sum_{n=0}^{N+1} \mathbf{u}_{n}(t, \varepsilon) \varepsilon^{n-1}
$$

In Section 26 we prove that

$$
\begin{equation*}
\left|\mathbf{u}(t, \varepsilon)-\mathrm{U}_{N}(t, \varepsilon)\right|=O\left(\varepsilon^{N+1}\right) \tag{213}
\end{equation*}
$$

uniformly for $0 \leq t \leq T$ as $\varepsilon \rightarrow 0$ This result is important because the method of additive decomposition can lead to spurious solutions (see for example Lange [14]) The method is illustrated in Section 27 by an example from Angell and Olmstead [2]

22 Notation and Assumptions

The \mathbf{n}-dimensional space \mathbb{R}^{n} is given the norm $|\mathbf{x}|=\max _{1 \leq \imath \leq n}\left|x_{\imath}\right|$ for each \mathbf{x} in \mathbb{R}^{n}, and the space $\mathbb{R}^{n \times n}$ of $n \times n$ matrices with real entries is given the norm $|\mathrm{M}|=\max _{1 \leq 1, j \leq n}\left|M_{2 j}\right|$ for all M in $\mathbb{R}^{n \times n}$ The spectrum $\sigma(\mathbf{M})$ of \mathbf{M} is the set of elgenvalues of \mathbf{M} It is well-known (see, for example

Hirsch and Smale [12], Ch 7, Thm 1) that, if $\operatorname{Re} \lambda<\alpha \leq \alpha_{1}<0$ for all $\lambda \in \sigma(\mathbf{M})$, there is a constant $\kappa>0$ such that

$$
\begin{equation*}
\left|\mathrm{e}^{\mathbf{M} t} \mathbf{x}\right| \leq \kappa \mathrm{e}^{-\alpha_{1} t}|\mathbf{x}| \tag{array}
\end{equation*}
$$

The kernel $\mathbf{A} \quad \triangle_{T} \rightarrow \mathbb{R}^{n \times n}$ is defined on

$$
\begin{equation*}
\triangle_{T}=\left\{(t, s) \in \mathbb{R}^{2} \quad 0 \leq s \leq t \leq T\right\} \tag{array}
\end{equation*}
$$

It is convenient to use the notation

$$
\begin{equation*}
\mathbf{B}(t)=\mathbf{A}(t, t) \tag{223}
\end{equation*}
$$

Partial derivatives are usually denoted by $\partial_{1} \mathbf{A}$ and $\partial_{2} \mathbf{A}$ instead of $\partial \mathbf{A} / \partial t$ and $\partial \mathbf{A} / \partial s$ respectively Similarly the derivative of \mathbf{u} is usually denoted by $\mathbf{u}^{\prime}(t)$ rather than $d \mathbf{u} / d t$

The following assumptions are used throughout this chapter The first is a regularity assumption on the data \mathbf{f} and \mathbf{A}, the second is a stablity condition for the solution within the boundary layer
$\left(\mathbf{H}_{1}\right)$ The functions $\mathbf{f}[0, T] \rightarrow \mathbb{R}^{n}$ and $\mathbf{A} \triangle_{T} \rightarrow \mathbb{R}^{n \times n}$ are both C^{∞}
$\left(\mathrm{H}_{2}\right)$ There exists a number $\alpha>0$ such that

$$
\max _{\lambda \in \sigma(\mathbf{B}(t))}\{\operatorname{Re}(\lambda)\} \leq-\alpha
$$

for all $0 \leq t \leq T$

23 Heuristic Analysis

In this section, we describe how the additive decomposition technique can be applied to integral equations of the type (211) The method of additive decomposition, also called the O'Malley and Hoppensteadt method, was intially apphed by O'Malley [20], [21] and Hoppensteadt [13] to investigate the behaviour of solutions of singularly perturbed systems of ordinary differential equations The book Smith [25] contains a clear account of its application to singularly perturbed ordinary differential equations This method was later employed by Angell and Olmstead in [2] and [1] to get formal solutions of singularly perturbed Volterra integral equations, linear and nonlinear Lange and Smith in [15] in a very careful study of smgularly perturbed hnear Fredholm equations
applied the method systematically to get a complete formal solution and proved estimates of the type (2 113) The singularly perturbed Fredholm equations investıgated in [15] have the additional complication of two boundary layers It is also indicated there how internal layers can be analysed The additive decomposition has also been employed by Lange and Smith [16] and Skinner [24] The presentation is sımılar to $\S 3$ and $\S 6$ of Lange and Smith [15]

The analysis in this and the next section is formal The forcing function $\boldsymbol{f}(t)$ and kernel $\mathbf{A}(t, s)$ are assumed to be C^{∞} The solution $\mathbf{u}(t, \varepsilon)$ of (211) can be represented as

$$
\begin{equation*}
\mathbf{u}(t, \varepsilon)=\frac{1}{\varepsilon} \mathbf{f}(t)+\frac{1}{\varepsilon} \int_{0}^{t} \Gamma(t, s, \varepsilon) \mathbf{f}(s) d s, \quad 0 \leq t \leq T \tag{array}
\end{equation*}
$$

where $\Gamma(t, s, \varepsilon)$ is the resolvent kernel of $\mathbf{A}(t, s) / \varepsilon$, which by definition is the solution of

$$
\Gamma(t, s, \varepsilon)=\frac{1}{\varepsilon} \mathbf{A}(t, s)+\frac{1}{\varepsilon} \int_{s}^{t} \mathbf{A}(t, v) \Gamma(v, s, \varepsilon) d v, \quad 0 \leq s \leq t \leq T
$$

$\Gamma\left(\begin{array}{ll}t, s & \varepsilon\end{array}\right)$ is also C^{∞} Detanled accounts of the theory of linear nonconvolution Volterra equations can be found in Miller [19] ch IV and Gripenberg, Londen and Staffans [10] Ch 9

To model an initial layer for $\mathbf{u}(t, \varepsilon)$ we introduce a new scaled time scale $\tau=\frac{t}{\mu(\varepsilon)}$ The idea is that if the initial layer region is described with respect to the new time scale no rapid variation in the solution should be exhibited A solution $\mathbf{u}(t, \varepsilon)$ is sought in the form

$$
\begin{equation*}
\mathbf{u}(t, \varepsilon)=\mathbf{y}(t, \varepsilon)+\varphi(\varepsilon) \mathbf{z}(t / \mu(\varepsilon), \varepsilon) \tag{array}
\end{equation*}
$$

where $\mathbf{y}(t, \varepsilon)$ represents the outer approximation and $\mathbf{z}(\tau, \varepsilon)$ an initial layer correction function The function $\mu(\varepsilon)$ describes the width of the layer and $\varphi(\varepsilon)$ describes the magnitude of $\mathbf{u}(t, \varepsilon)$ in the layer Therefore we require that ${ }^{1}$

$$
\mathbf{y}(t, \varepsilon)=\operatorname{ord}(1), \quad \mathbf{z}(\tau, \varepsilon)=\operatorname{ord}(1) \quad \text { as } \varepsilon \rightarrow 0
$$

At any fixed $t>0$, the outer approximation, $\mathbf{y}(t, \varepsilon)$ should give a good approximation to $\mathbf{u}(t, \varepsilon)$ as $\varepsilon \rightarrow 0$, we impose the condition

$$
\begin{equation*}
\mathrm{z}(\tau, \varepsilon) \rightarrow 0, \quad \text { as } \tau \rightarrow \infty \tag{233}
\end{equation*}
$$

[^0]The substitution of (232) into (211) gives

$$
\begin{equation*}
\varepsilon \mathbf{y}(t, \varepsilon)+\varepsilon \varphi(\varepsilon) \mathbf{z}(t / \mu(\varepsilon), \varepsilon)=\int_{0}^{t} \mathbf{A}(t, s) \mathbf{y}(s, \varepsilon) d s+\varphi(\varepsilon) \mu(\varepsilon) \int_{0}^{t / \mu(\varepsilon)} \mathbf{A}(t, \mu(\varepsilon) \sigma) \mathbf{z}(\sigma, \varepsilon) d \sigma+\mathbf{f}(t) \tag{234}
\end{equation*}
$$

This is equivalent to

$$
\begin{align*}
\varepsilon \mathbf{y}(\mu(\varepsilon) \tau, \varepsilon)+\varepsilon \varphi(\varepsilon) \mathbf{z}(\tau, \varepsilon)=\int_{0}^{\mu(\varepsilon) \tau} & \mathbf{A}(\mu(\varepsilon) \tau, s) \mathbf{y}(s, \varepsilon) d s \\
& +\varphi(\varepsilon) \mu(\varepsilon) \int_{0}^{\tau} \mathbf{A}(\mu(\varepsilon) \tau, \mu(\varepsilon) \sigma) \mathbf{z}(\sigma, \varepsilon) d \sigma+\mathbf{f}(\mu(\varepsilon) \tau) \tag{array}
\end{align*}
$$

The width $\mu(\varepsilon)$ and amplitude $\varphi(\varepsilon)$ in the boundary layer can be found by examining the dominate balance Of course $\mu(\varepsilon)=o(1)$ as $\varepsilon \rightarrow 0$ We shall only consider the leading order terms in $\mathbf{y}(t, \varepsilon)$ and $\mathbf{z}(\tau, \varepsilon)$, and therefore write

$$
\mathbf{y}(t, \varepsilon)=\mathbf{y}_{0}(t)+\boldsymbol{o}(1), \quad \mathbf{z}(\tau, \varepsilon)=\mathbf{z}_{0}(\tau)+o(1) \quad \text { as } \varepsilon \rightarrow \mathbf{0}
$$

Of course $\mathbf{z}_{0}(\tau) \rightarrow 0$ as $\tau \rightarrow \infty$ Also we assume that there is a real number γ and nontrivial kernels $\mathbf{B}(\tau, \sigma)$ and $\mathbf{C}(t, \sigma)$ such that

$$
\begin{aligned}
& \mathbf{A}(\varepsilon \tau, \varepsilon \sigma) \sim \varepsilon^{\gamma} \mathbf{B}(\tau, \sigma) \\
& \mathbf{A}(t, \varepsilon \sigma) \sim \varepsilon^{\gamma} \mathbf{C}(t, \sigma)
\end{aligned}
$$

uniformly as $\varepsilon \rightarrow 0$ For simplicity we suppose that $\mathbf{f}(0) \neq 0$ Equations (234) and (235) imply that as $\varepsilon \rightarrow 0$

$$
\begin{gather*}
\varepsilon \mathbf{y}_{0}(t)+\varepsilon \varphi(\varepsilon) \mathbf{z}_{0}(t / \mu(\varepsilon)) \sim \int_{0}^{t} \mathbf{A}(t, s) \mathbf{y}_{0}(s) d s+\varphi(\varepsilon) \mu(\varepsilon) \int_{0}^{t / \mu(\varepsilon)} \mathbf{A}(t, \mu(\varepsilon) \sigma) \mathbf{z}(\sigma, \varepsilon) d \sigma+\mathbf{f}(t) \tag{236}\\
\varepsilon \mathbf{y}_{0}(\mu(\varepsilon) \tau)+\varepsilon \varphi(\varepsilon) \mathbf{z}_{0}(\tau) \sim \int_{0}^{\mu(\varepsilon) \tau} \mathbf{A}(\mu(\varepsilon) \tau, s) \mathbf{y}_{0}(s) d s+\varphi(\varepsilon) \mu(\varepsilon)^{\gamma+1} \int_{0}^{\tau} \mathbf{B}(\tau, \sigma) \mathbf{z}_{0}(\sigma) d \sigma+\mathbf{f}(0) \tag{237}
\end{gather*}
$$

Examining the dominant balance in the second relation, we see that

$$
\operatorname{ord}(\varepsilon \varphi(\varepsilon))=\operatorname{ord}\left(\mu(\varepsilon)^{\gamma+1} \varphi(\varepsilon)\right)=\operatorname{ord}(1) \quad \text { as } \varepsilon \rightarrow 0
$$

Hence we choose

$$
\mu(\varepsilon)=\varepsilon^{\frac{1}{1+\gamma}}, \quad \varphi(\varepsilon)=\frac{1}{\varepsilon}
$$

It then follows by letting $\varepsilon \rightarrow 0$ with $\tau \geq 0$ fixed in (235), that \mathbf{z}_{0} obeys the equation

$$
\mathbf{z}_{0}(\tau)=\int_{0}^{\tau} \mathbf{B}(\tau, \sigma) \mathbf{z}_{0}(\sigma) d \sigma+\mathbf{f}(0)
$$

To get an equation for y_{0} the order as $\varepsilon \rightarrow 0$ of the term

$$
\begin{equation*}
\varphi(\varepsilon) \mu(\varepsilon) \int_{0}^{t / \mu(\epsilon)} \mathbf{A}(t, \mu(\varepsilon) \sigma) \mathbf{z}(\sigma, \varepsilon) d \sigma \tag{238}
\end{equation*}
$$

in (234) must be calculated In the standard case of exponential decay in the boundary layer, each of the integrals

$$
\begin{gathered}
\int_{0}^{t / \mu(\varepsilon)} \mathbf{A}(t, \mu(\varepsilon) \sigma)\left\{\mathbf{z}(\sigma, \varepsilon)-\mathbf{z}_{0}(\sigma)\right\} d \sigma \\
\int_{0}^{t / \mu(\varepsilon)}\left\{\mathbf{A}(t, \mu(\varepsilon) \sigma)-\mu(\varepsilon)^{\gamma} \mathbf{C}(t, \sigma)\right\} \mathbf{z}_{0}(\sigma) d \sigma \\
\mu(\varepsilon)^{\gamma} \int_{t / \mu(\varepsilon)}^{\infty} \mathbf{C}(t, \sigma)_{\mathbf{z}_{0}}(\sigma) d \sigma
\end{gathered}
$$

can be formally shown to vanish, and hence (2 3 8) has leading order

$$
\begin{equation*}
\int_{0}^{\infty} \mathbf{C}(t, \sigma) \mathbf{z}_{0}(\sigma) d \sigma \tag{239}
\end{equation*}
$$

in this case However finding the order of (238) as $\varepsilon \rightarrow 0 \mathrm{in}$ the case of algebraic decay of the solution in the boundary layer is not so straightforward Indeed in Section 28 an example is discussed for which the evaluation of the layer limit in (238) requires knowledge of the asymptotic behaviour of higher order terms in $\mathbf{z}(\tau, \varepsilon)$ not just the leading order term $\mathbf{z}_{0}(\tau)$ For the standard case of exponentially decaying boundary layers, we find by letting $\varepsilon \rightarrow 0$ with $0<t \leq T$ fixed in (2 34) that y_{0} obeys

$$
0=\int_{0}^{t} \mathbf{A}(t, s) \mathbf{y}_{0}(s) d s+\int_{0}^{\infty} \mathbf{C}(t, \sigma) \mathbf{z}_{0}(\sigma) d \sigma+\mathbf{f}(t)
$$

It is easy to see that if $\left(\mathbf{H}_{\mathbf{2}}\right)$ holds then

$$
\begin{align*}
\mathbf{A}(\varepsilon \tau, \varepsilon \sigma) & \sim \mathbf{A}(0,0) \tag{2310}\\
\mathbf{A}(t, \varepsilon \sigma) & \sim \mathbf{A}(t, 0) \tag{2311}
\end{align*}
$$

ds $\varepsilon \rightarrow 0$, where $\mathbf{A}(0,0)$ and $\mathbf{A}(t, 0)$ are non-zero Then the width and amplitude of the boundary become

$$
\begin{equation*}
\mu(\varepsilon)=\varepsilon, \quad \varphi(\hat{c})=\frac{1}{\varepsilon} \tag{array}
\end{equation*}
$$

In the standard case y_{0} and z_{0} then satisfy

$$
\begin{gather*}
0=\int_{0}^{t} \mathbf{A}(t, s) \mathbf{y}_{0}(s) d s+\mathbf{A}(t, 0) \int_{0}^{\infty} \mathbf{z}_{0}(\sigma) d \sigma+\mathbf{f}(t) \tag{array}\\
\mathbf{z}_{0}(\tau)=\int_{0}^{\tau} \mathbf{A}(0,0) \mathbf{z}_{0}(\sigma) d \sigma+\mathbf{f}(0) \tag{array}
\end{gather*}
$$

A consequence of the magnitude $O\left(\varepsilon^{-1}\right)$ of the boundary layer is that the term $\varepsilon \mathbf{u}(t)$ on the right of (211) contributes to equation (2 314) for the inner correction term It also follows from (2 36) that (239) is the contribution to the integral in (211) from narrow initial layer $0 \leq t \leq O(\varepsilon)$ is $O(1)$ as $\varepsilon \rightarrow 0$ with $t>0$ fixed Also note that the integral equation (2313) is not the reduced equation (212), unless the second integral on the right side is sero In the special case where $\mathbf{f}(0)=\mathbf{0}$, the boundary layer has $O(1)$ magntude and the leading order term \mathbf{z}_{0} obeys a different equation

The solution of (2 3 14) is $\mathbf{z}_{0}(\tau)=e^{A(0,0) \tau} \mathbf{f}(0)$ If $\left(\mathbf{H}_{2}\right)$ holds,

$$
\int_{0}^{\infty} \mathbf{z}_{0}(\tau) d \tau=-\mathbf{A}(0,0)^{-1} \mathbf{f}(0)
$$

and (2 313) becomes

$$
0=\int_{0}^{t} \mathbf{A}(t, s) \mathbf{y}_{0}(s) d s+\mathbf{f}(t)-\mathbf{A}(t, 0) \mathbf{A}(0,0)^{-1} \mathbf{f}(0)
$$

which has a smooth solution

2.4 Derivation of the Formal Solution

In this section we assume that (2 310$),\left(\begin{array}{ll}2 & 311)\end{array}\right)$ and (2 312) hold, so that we seek a formal solution in the form

$$
\begin{equation*}
\mathbf{u}(t, \varepsilon)=\mathbf{y}(t, \varepsilon)+\frac{1}{\varepsilon} \mathbf{z}(t / \varepsilon, \varepsilon) \tag{241}
\end{equation*}
$$

The vector functions $\mathbf{y}(t, \varepsilon)$ and $\mathbf{z}(\tau, \varepsilon)$ are given asymptotically by

$$
\begin{align*}
& \mathbf{y}(t, \varepsilon) \sim \sum_{\jmath=0}^{\infty} \varepsilon^{\prime} \mathbf{y}_{\jmath}(t), \tag{array}\\
& \mathbf{z}(\tau, \varepsilon) \sim \sum_{\jmath=0}^{\infty} \varepsilon^{\jmath} \mathbf{z}_{\jmath}(\tau) \tag{243}
\end{align*}
$$

as $\varepsilon \rightarrow 0$ To ensure that (233) holds we assume that

$$
\lim _{\tau \rightarrow \infty} \mathbf{z}_{3}(\tau)=0, \quad \jmath=0,1,2
$$

Putting $\mathbf{y}_{-1}(t)=\mathbf{0}$, it follows from (2 34) that

$$
\begin{equation*}
\sum_{j=0}^{\infty} \varepsilon^{\jmath} \mathbf{y}_{\jmath-1}(t)+\sum_{\jmath=0}^{\infty} \varepsilon^{\jmath} \mathbf{z}_{\jmath}(t / \varepsilon) \sim \mathbf{f}(t)+\sum_{\jmath=0}^{\infty} \varepsilon^{\jmath} \int_{0}^{t} \mathbf{A}(t, s) \mathbf{y}_{\jmath}(s) d s+\sum_{\jmath=0}^{\infty} \varepsilon^{\jmath} \int_{0}^{t / \varepsilon} \mathbf{A}(t, \varepsilon \sigma)_{\mathbf{z}_{\jmath}}(\sigma) d \sigma \tag{244}
\end{equation*}
$$

The orders of the terms in

$$
\begin{equation*}
\sum_{\jmath=0}^{\infty} \varepsilon^{3} \int_{0}^{t / \varepsilon} \mathbf{A}(t, \varepsilon \sigma) \mathbf{z}_{\jmath}(\sigma) d \sigma \tag{245}
\end{equation*}
$$

in (244) as $\varepsilon \rightarrow 0$ depend on the decay rate of the layer term $z_{j}(\tau)$ We assume that $z_{f}(\tau)$ decays exponentially so that, for each integer $\jmath \geq 0$, there are positive constants β_{j} and c_{j} such that

$$
\begin{equation*}
\left|z_{\jmath}(\tau)\right| \leq c_{\jmath} \mathrm{e}^{-\beta_{3} \tau}, \quad \tau \geq 0 \tag{246}
\end{equation*}
$$

By writing out the Taylor expansion of $\mathbf{A}(t, \varepsilon \sigma)$ we find that

$$
\mathbf{A}(t, \varepsilon \sigma) \sim \sum_{\imath=0}^{\infty} \varepsilon^{\imath} \mathbf{E}_{\imath}(t, \sigma) \quad \text { as } \varepsilon \rightarrow 0
$$

where

$$
\begin{equation*}
\mathbf{E}_{\imath}(t, \sigma)=\frac{1}{\imath \sigma} \sigma^{\imath}\left[\partial_{2}^{\imath} \mathbf{A}\right](t, 0) \tag{247}
\end{equation*}
$$

Hence, notıng that $\mathbf{E}_{\imath}(t, \sigma)$ is defined for all (t, σ) ı $\mathbb{R}^{+} \times \mathbb{R}^{+},(245)$ has the asymptotic expansion

$$
\begin{aligned}
\sum_{j=0}^{\infty} \varepsilon^{\jmath} \sum_{\imath=0}^{\infty} \varepsilon^{\imath} \int_{0}^{t / \varepsilon} \mathbf{E}_{\imath}(t, \sigma) \mathbf{z}_{\jmath}(\sigma) d \sigma= & \sum_{\jmath=0}^{\infty} \varepsilon^{\jmath} \sum_{\imath=0}^{\infty} \varepsilon^{\imath} \int_{0}^{\infty} \mathbf{E}_{\imath}(t, \sigma) \mathbf{z}_{\jmath}(\sigma) d \sigma \\
& -\sum_{\jmath=0}^{\infty} \varepsilon^{\jmath} \sum_{\imath=0}^{\infty} \varepsilon^{\imath} \int_{t / \varepsilon}^{\infty} \mathbf{E}_{\imath}(t, \sigma) \mathbf{z}_{\jmath}(\sigma) d \sigma \\
& \sim \sum_{\jmath=0}^{\infty} \varepsilon^{\jmath} \sum_{\imath=0}^{j} \int_{0}^{\infty} \mathbf{E}_{\imath}(t, \sigma) \mathbf{z}_{\jmath-\imath}(\sigma) d \sigma-\mathbf{J}(t / \varepsilon, \varepsilon)
\end{aligned}
$$

as $\varepsilon \rightarrow 0$, where

$$
\mathbf{J}(\tau, \varepsilon)=\sum_{\jmath=0}^{\infty} \varepsilon^{\jmath} \sum_{i=0}^{\infty} \varepsilon^{\imath} \int_{\tau}^{\infty} \mathbf{E}_{\imath}(\varepsilon \tau, \sigma) \mathbf{z}_{\jmath}(\sigma) d \sigma
$$

We introduce the homogeneous polynomial of degree \imath

$$
\begin{equation*}
\mathbf{F}_{\imath}(\tau, \sigma)=\frac{1}{\imath^{1}}\left[\left(\tau \partial_{1}+\sigma \partial_{2}\right)^{2} \mathbf{A}\right](0,0) \tag{248}
\end{equation*}
$$

which has the property that

$$
\sum_{i=0}^{\infty} \varepsilon^{2} \mathbf{E}(\varepsilon \tau, \sigma) \sim \sum_{i=0}^{\infty} \varepsilon^{\imath} \mathbf{F}(\tau, \sigma), \quad \text { ds } \varepsilon \rightarrow 0
$$

It follows that

$$
\mathbf{J}(\tau, \varepsilon) \sim \sum_{\jmath=0}^{\infty} \varepsilon^{j} \mathbf{J}_{3}(\tau) \quad \text { as } \varepsilon \rightarrow 0
$$

where

$$
\mathbf{J}_{\jmath}(\tau)=\sum_{\imath=0}^{3} \int_{\tau}^{\infty} \mathbf{F}_{\imath}(\tau, \sigma) \mathbf{z}_{\jmath-\imath}(\sigma) d \sigma
$$

However 1 follows from (246) that for any $0 \leq l \leq \imath$

$$
\tau^{\imath}\left|\int_{\tau}^{\infty} \sigma^{\imath-l} \mathrm{z}_{\jmath-\imath}(\sigma) d \sigma\right| \leq \tau^{l} c_{\imath-\jmath} \int_{\tau}^{\infty} \sigma^{\imath-l} e^{-\tau \beta-2} d \sigma \rightarrow 0 \quad \text { as } \tau \rightarrow 0,
$$

and hence from (248) that

$$
\mathbf{J}_{j}(\tau) \rightarrow 0 \quad \text { as } \tau \rightarrow 0
$$

Equation (244) can be decomposed into functions of t and functions of t / ε which decay to zero The following Lemma is used to derive the coefficients $\mathbf{y}_{j}(t)$ and $\mathbf{z}_{j}(\tau)$ of (242) and (243)

Lemma 21 For each integer $\jmath \geq 0$, let $\mathrm{p}_{\jmath}(t)$ be a continuous function on $[0, T]$ and $\mathrm{q}_{\jmath}(\tau)$ a contınuous function on $[0, \infty)$ such that $\mathbf{q}_{9}(\tau) \rightarrow 0$ as $\tau \rightarrow \infty \quad$ Suppose that for every integer $N \geq 1$,

$$
\begin{equation*}
\sum_{j=0}^{N-1}\left\{\mathbf{p}_{\jmath}(t)+\mathbf{q}_{\jmath}(t / \varepsilon)\right\} \varepsilon^{\jmath}=O\left(\varepsilon^{N}\right) \tag{array}
\end{equation*}
$$

unformly as $\varepsilon \rightarrow 0$ Then $\mathbf{p}_{j}=\mathbf{0}$ and $\mathbf{q}_{1}=0$ for every $\jmath \geq 0$

Proof There is a unformly bounded function \mathbf{r}_{0}, defined for all $0 \leq t \leq T, \tau \geq 0$ and $0<\varepsilon \leq \varepsilon_{0}$, such that

$$
\mathbf{p}_{0}(t)+\mathbf{q}_{0}(t / \varepsilon)=\varepsilon \mathbf{r}_{0}(t, t / \varepsilon, \varepsilon)
$$

By letting $\varepsilon \rightarrow 0$ for each fixed $t \in(0, T]$, it follows that $\mathbf{p}_{0}(t)=0$ The continuity of \mathbf{p}_{0} then imples $\mathbf{p}_{0}=\mathbf{0}$ on $[0, T]$ Therefore substituting $t=\varepsilon \tau$, we have

$$
\mathbf{q}_{0}(\tau)=\varepsilon \mathbf{r}_{0}(\varepsilon \tau, \tau, \varepsilon)
$$

Hence, on taking the limit as $\varepsilon \rightarrow 0$ for each fixed $\tau>0$, we deduce that $\mathbf{q}_{0}=0$ An obvious induction argument completes the proof

It has been shown that (244) can be expressed in the form (2 49) with p_{j} and \mathbf{q}_{3} given by

$$
\begin{gathered}
\mathbf{p}_{\jmath}(t)=\mathbf{y}_{\jmath-1}(t)-\delta_{\jmath 0} \mathbf{f}(t)-\int_{0}^{t} \mathbf{A}(t, s) \mathbf{y}_{\jmath}(s) d s-\sum_{i=0}^{\jmath} \int_{0}^{\infty} \mathbf{E}_{\jmath-i}(t, \sigma) \mathbf{z}_{\jmath}(\sigma) d \sigma \\
\mathbf{q}_{\jmath}(\tau)=\mathbf{z}_{\jmath}(\tau)+\mathbf{J}_{\jmath}(\tau)
\end{gathered}
$$

It is convenient to introduce

$$
\begin{align*}
& \boldsymbol{\psi}_{\jmath}(\tau)= \begin{cases}\mathbf{0}, & \jmath=0 \\
\sum_{\imath=0}^{\jmath-1} \int_{\tau}^{\infty} \mathbf{F}_{\jmath-\imath}(\tau, \sigma) \mathbf{z}_{\imath}(\sigma) d \sigma, & \jmath \geq 1\end{cases} \tag{2410}\\
& \phi_{\jmath}(t)= \begin{cases}\mathbf{f}(t)+\int_{0}^{\infty} \mathbf{A}_{0}(t, 0) \mathbf{z}_{0}(\sigma) d \sigma, & \jmath=0 \\
\sum_{\imath=0}^{\jmath} \int_{0}^{\infty} \mathbf{E}_{\jmath-\imath}(t, \sigma) \mathbf{z}_{\imath}(\sigma) d \sigma, & \jmath \geq 1\end{cases} \tag{2411}
\end{align*}
$$

It 18 important to note that ψ_{j} and ϕ_{j-1} are determined by $\mathbf{z}_{0}, \quad, z_{3-1}$ Later we use the identity

$$
\begin{equation*}
\phi_{\jmath}(0)=\psi_{\jmath}(0)+\int_{0}^{\infty} \mathbf{A}(0,0) \mathbf{z}_{\jmath}(\sigma) d \sigma \tag{2412}
\end{equation*}
$$

From (2 4 10) and (2 4 11)

$$
\begin{aligned}
& \mathbf{p}_{\jmath}(t)=\mathbf{y}_{\jmath-1}(t)-\int_{0}^{t} \mathbf{A}(t, s) \mathbf{y}_{\jmath}(s) d s-\phi_{\jmath}(t) \\
& \mathbf{q}_{\jmath}(\tau)=\mathbf{z}_{\jmath}(\tau)+\int_{\tau}^{\infty} \mathbf{A}(0,0) \mathbf{z}_{\jmath}(\sigma) d \sigma+\psi_{\jmath}(t)
\end{aligned}
$$

By applying Lemma 21 we obtain the following equations for $\mathbf{y}_{j}(t)$ and $\mathbf{z}_{j}(\tau)$

$$
\begin{gather*}
\mathbf{y}_{\jmath-1}(t)=\int_{0}^{t} \mathbf{A}(t, s) \mathbf{y}_{j}(s) d s+\phi_{\jmath}(t) \tag{2413}\\
\mathbf{z}_{\jmath}(\tau)=-\int_{\tau}^{\infty} \mathbf{A}(0,0) \mathbf{z}_{\jmath}(\sigma) d \sigma-\psi_{\jmath}(\tau) \tag{2414}
\end{gather*}
$$

The integral equations are augmented by initial conditions Since

$$
\mathbf{u}(0, \varepsilon)=\frac{\mathbf{f}(0)}{\varepsilon} \sim \sum_{j=0}^{\infty} \varepsilon^{\jmath}\left(\mathbf{y}_{\jmath}(0)+\frac{1}{\varepsilon} \mathbf{z}_{\jmath}(0)\right)
$$

we impose the conditions

$$
\mathbf{z}_{\jmath}(0)= \begin{cases}\mathbf{f}(0), & \jmath=0 \tag{2415}\\ -\mathbf{y}_{\jmath-1}(0), & \jmath \geq 1\end{cases}
$$

2.5 Properties of the Formal solution

In this section, we first show in Proposition 22 that there exists solutions y_{j} and z_{j} to equations (2 4 13) and (2 4 14) satisfying the initial condition (2 4 15) Moreover $z_{j}(\tau) \rightarrow \mathbf{0}$ exponentially as $\tau \rightarrow \infty$ Therefore

$$
\mathbf{u}_{n}(t, \varepsilon)=\mathbf{y}_{n-1}(t)+\mathbf{z}_{n}(t / \varepsilon)
$$

can be defined for $n \geq 0$ Then

$$
\begin{equation*}
\mathrm{U}(t, \varepsilon)=\sum_{n=0}^{\infty} \mathbf{u}_{n}(t, \varepsilon) \varepsilon^{n-1} \tag{array}
\end{equation*}
$$

is an asymptotic series as $\varepsilon \rightarrow 0$ If we define the truncated sum

$$
\begin{equation*}
\mathrm{U}_{N}(t, \varepsilon)=\sum_{n=0}^{N+1} \mathbf{u}_{n}(t, \varepsilon) \varepsilon^{n-1} \tag{array}
\end{equation*}
$$

then we can consider the residual $\rho_{N}(t, \varepsilon)$ given by

$$
\begin{equation*}
\varepsilon \mathbf{U}_{N}(t, \varepsilon)=\mathbf{f}(t)+\int_{0}^{t} \mathbf{A}(t, s) \mathbf{U}_{N}(s, \varepsilon) d s-\rho_{N}(t, \varepsilon) \tag{array}
\end{equation*}
$$

Thus $\mathbf{U}_{N}(t, \varepsilon)$ satisfies the original equation (211) approximately with a residual $\boldsymbol{\rho}_{N}(t, \varepsilon)$ We express $\boldsymbol{\rho}_{N}^{\prime}(t, \varepsilon)$ as the sum of a function of t and a function of t / ε In the same manner as in the construction of the formal solution, functions of t / ε contribute only in the initial layer region, away from the layer, functions of t dominate In Proposition 24 various results are given which demonstrate that $\rho_{N}(t, \varepsilon)$ is small for $0 \leq t \leq T$ as $\varepsilon \rightarrow 0$ Similar results are given in Chapter 5 of [25] for a linear overdamped intial-value problems The estimates in Lemma 24 are stronger than those of Section 7 of Smith and Lange [16]

Proposition 22 Suppose that $\left(\mathbf{H}_{\mathbf{1}}\right)$ and $\left(\mathbf{H}_{\mathbf{2}}\right)$ hold, and let $0<\beta<\alpha$ Then for every integer $\jmath \geq 0$ there extst solutions $\mathbf{y}_{j} \in C^{\infty}\left([0, T], \mathbb{R}^{n}\right)$ of (2413) and solutions $z_{j}(\tau) \in C^{\infty}\left([0, \infty), \mathbb{R}^{n}\right)$ of (2414) and (2415) Moreover there are positive constants c_{3} such that

$$
\begin{equation*}
\left|\mathrm{z}_{j}(\tau)\right| \leq c_{j} \mathrm{e}^{-\beta \tau}, \quad \tau \geq 0 \tag{254}
\end{equation*}
$$

Proof We choose α_{1} such that $\beta<\alpha_{1}<\alpha$ Consider the hypothess that for some integer $N \geq 0$ there are solutions $y_{j}(t)$ of (2413) for all $0 \leq \jmath \leq N-1$ and solutions $\mathbf{z}_{3}(\tau)$ (2414) for all $0 \leq \jmath \leq N$ satısfyıng

$$
\begin{equation*}
\left|\mathbf{z}_{j}(\tau)\right| \leq \mathrm{e}^{-\alpha_{1} \tau} p_{j}(\tau), \quad \tau \geq 0 \tag{255}
\end{equation*}
$$

where $p_{\jmath}(\tau)$ is a polynomial of degree \jmath with positive coefficients Once this hypothesis has been established for all $N \geq 0$, Proposition 22 follows immediately

The solution of

$$
\mathbf{z}_{0}(\tau)=-\int_{\tau}^{\infty} \mathbf{A}(0,0) \mathbf{z}_{0}(\sigma) d \sigma, \quad \mathbf{z}_{0}(0)=\mathbf{f}(0)
$$

is $\mathbf{z}_{0}(\tau)=\mathrm{e}^{\mathbf{A}(0,0) \tau} \mathbf{f}(0)$ Hence by (2 21),

$$
\left|\mathbf{z}_{0}(\tau)\right| \leq \kappa e^{-\alpha_{1} \tau}|\mathbf{f}(0)|, \quad \tau \geq 0
$$

Also $\mathbf{y}_{-1}(t)=\mathbf{0}$ Hence the induction hypothesis is true for $M=0$
Suppose now that it holds for some $M \geq 0$ Then $\phi_{M}(t)$ is well-defined and smooth The equation

$$
\begin{equation*}
\mathbf{A}(t, t)^{-1}\left[\mathbf{y}_{M-1}^{\prime}(t)-\phi_{M}^{\prime}(t)\right]=\mathbf{y}_{M}(t)+\int_{0}^{t} \mathbf{A}(t, t)^{-1} \partial_{1} \mathbf{A}(t, s) \mathbf{y}_{M}(s) d s \tag{256}
\end{equation*}
$$

which is obtained by differentiating (2413), is a Volterra equation of the second kind Since the kernel and forcing function are C^{∞}, so is the unique solution $\mathbf{y}_{M}(t)$ It follows that

$$
\mathbf{y}_{M-1}(t)=\int_{0}^{t} \mathbf{A}(t, s) \mathbf{y}_{M}(s) d s+\phi_{M}(t)+\text { constant }
$$

However the constant is zero because (2 4 12) and (2 4 14) give $-\mathbf{z}_{M}(0)=\phi_{M}(0)$, and the induction hypothesis implies that the initial condition $\mathbf{z}_{M}(0)=-\mathbf{y}_{M-1}(0)$ holds

The induction hypothesis also imples that $\psi_{M+1}(\tau)$ is well-defined Moreover a tedious calculation using (2 21) and (254) establishes that

$$
\left|\psi_{M+1}(\tau)\right| \leq e^{-\alpha_{1} \tau} P_{M+1}(\tau)
$$

where $P_{M+1}(\tau)$ is a polynomial of degree $M \mathbf{z}_{M+1}$ satisfies the ordinary differential equation

$$
\mathbf{z}_{M+1}^{\prime}(\tau)=\mathbf{A}(0,0) \mathbf{z}_{M+1}(\tau)-\psi_{M+1}^{\prime}(\tau), \quad \mathbf{z}_{M+1}(0)=\mathbf{y}_{M}(0)
$$

The solution of this can be found using variation of parameters and written as

$$
\begin{equation*}
\mathbf{z}_{M+1}(\tau)=e^{\mathbf{A}(0,0) \tau}\left[\mathbf{y}_{M}(0)-\psi_{M+1}(0)\right]+\psi_{M+1}(\tau)+\mathbf{A}(0,0) \int_{0}^{\tau} e^{\mathbf{A}(\tau-\sigma)} \psi_{M+1}(\sigma) d \sigma \tag{257}
\end{equation*}
$$

The norm of the last integral is easily bounded by

$$
\begin{aligned}
\left|\mathbf{A}(0,0) \int_{0}^{\tau} e^{\mathbf{A}(\tau-\sigma)} \psi_{M+1}(\sigma) d \sigma\right| & \leq|\mathbf{A}(0,0)| \int_{0}^{\tau}\left|e^{\mathbf{A}(\tau-\sigma)} \psi_{M+1}(\sigma)\right| d \sigma \\
& \leq \kappa|\mathbf{A}(0,0)| \int_{0}^{\tau} e^{-\alpha_{1} \tau} P_{M+1}(\sigma) d \sigma
\end{aligned}
$$

and it can be shown from (257) that $\mathbf{z}_{M+1}(\tau)$ satisfies an estimate of the form

$$
\left|\mathbf{z}_{M+1}(\tau)\right| \leq e^{-\alpha_{1} \tau} p_{M+1}(\tau), \quad \tau \geq 0
$$

where $p_{M+1}(\tau)$ is a polynomial of degree $M+1$ This proves the induction hypothesis

Remark 23 The formal series (251) is a uniform asymptotic series, because

$$
\frac{\left|\mathbf{u}_{n+1}(t, \varepsilon)\right|}{\left|\mathbf{u}_{n}(t, \varepsilon)\right|} \rightarrow \frac{\left|\mathbf{y}_{n+1}(t)\right|}{\left|\mathbf{y}_{n}(t)\right|} \quad \text { as } \varepsilon \rightarrow 0
$$

implying that $\mathbf{u}_{n+1}(t, \varepsilon) \varepsilon^{n+1}=o\left(\mathbf{u}_{n}(t, \varepsilon) \varepsilon^{n}\right)$ unıformly for $0 \leq t \leq T$ as $\varepsilon \rightarrow 0$

Proposition 24 Suppose that $\left(\mathbf{H}_{\mathbf{1}}\right)$ and $\left(\mathbf{H}_{\mathbf{2}}\right)$ hold Then for each $N \geq 0$,

$$
\left|\rho_{N}(t, \varepsilon)\right|=O\left(\varepsilon^{N+1}\right)
$$

uniformly for $0 \leq t \leq T$ as $\varepsilon \rightarrow 0$, and there are positive constants d_{N} and e_{N} such that

$$
\begin{equation*}
\left|\rho_{N}^{\prime}(t, \varepsilon)\right| \leq e_{N} \epsilon^{N+1}, \quad \int_{0}^{t}\left|\rho_{N}^{\prime}(s, \varepsilon)\right| d s \leq d_{N} \varepsilon^{N+1} \tag{258}
\end{equation*}
$$

for all $0<\varepsilon \leq \varepsilon_{0}$ and for all t in $[0, T]$, for some $\varepsilon_{0}>0$

Proof Later we shall use the estimates in (258), and therefore only prove these in detall To demonstrate the other result an almost identical argument is used

Since $\rho_{N}(0, \varepsilon)=\mathbf{0}$, differentiation of (253) gives

$$
\begin{equation*}
\rho_{N}^{\prime}(t, \varepsilon)=-\varepsilon \mathbf{U}_{N}^{\prime}(t, \varepsilon)+\mathbf{f}^{\prime}(t)+\mathbf{A}(t, t) \mathbf{U}_{N}(t, \varepsilon)+\int_{0}^{t} \partial_{1} \mathbf{A}(t, s) \mathbf{U}_{N}(s, \varepsilon) d s \tag{array}
\end{equation*}
$$

The substitution of (252) and the differentiated version of (2413) into this yields

$$
\begin{align*}
& \rho_{N}^{\prime}(t, \varepsilon)=-\varepsilon^{N+1} \mathbf{y}_{N}^{\prime}(t)-\sum_{\imath=0}^{N+1} \varepsilon^{\imath-1} \mathbf{z}_{\imath}^{\prime}(t / \varepsilon)+\sum_{\imath=0}^{N+1} \varepsilon^{\imath-1} \mathbf{A}(t, t) \mathbf{z}_{\imath}(t / \varepsilon) \\
& \quad-\sum_{\imath=0}^{N} \varepsilon^{\imath} \sum_{k=0}^{\imath} \int_{0}^{\infty} \partial_{1} \mathbf{E}_{\imath-k}(t, \sigma) \mathbf{z}_{k}(\sigma) d \sigma+\sum_{\imath=0}^{N} \varepsilon^{\imath} \int_{0}^{t / \varepsilon} \partial_{1} \mathbf{A}(t, \varepsilon \sigma) \mathbf{z}_{\imath}(\sigma) d \sigma \tag{array}
\end{align*}
$$

Using the Taylor expansion of $\mathbf{A}(t, \varepsilon \sigma)$ we can derive

$$
\begin{aligned}
& \sum_{\imath=0}^{N} \varepsilon^{\imath} \sum_{k=0}^{\infty} \varepsilon^{k} \int_{0}^{t / \varepsilon} \partial_{1} \mathbf{E}_{k}(t, \sigma) \mathbf{z}_{\imath}(\sigma) d \sigma=\sum_{\imath=0}^{N} \varepsilon^{2} \sum_{k=0}^{\infty} \varepsilon^{k} \int_{0}^{\infty} \partial_{1} \mathbf{E}_{k}(t, \sigma) \mathbf{z}_{\imath}(\sigma) d \sigma \\
&-\sum_{\imath=0}^{N} \varepsilon^{2} \sum_{k=0}^{\infty} \varepsilon^{k} \int_{t / \varepsilon}^{\infty} \partial_{1} \mathbf{E}_{k}(t, \sigma) \mathbf{z}_{\imath}(\sigma) d \sigma
\end{aligned}
$$

By substituting this into (2 5 10), we get

$$
\begin{align*}
\boldsymbol{\rho}_{N}^{\prime}(t, \varepsilon) & =-\varepsilon^{N+1} \mathbf{y}_{N}^{\prime}(t)+\sum_{\imath=0}^{N+1} \varepsilon^{\imath-1} \mathbf{z}_{\imath}^{\prime}(t / \varepsilon)+\sum_{\imath=0}^{N+1} \varepsilon^{\imath-1} \sum_{k=0}^{\infty} \varepsilon^{k} \mathbf{F}_{k}(t / \varepsilon, t / \varepsilon) \mathbf{z}_{\imath}(t / \varepsilon) \\
& +\sum_{\imath=N+1}^{\infty} \varepsilon^{\imath} \sum_{k=0}^{2} \int_{0}^{\infty} \partial_{1} \mathbf{E}_{\imath-k}(t, \sigma) \mathbf{z}_{k}(\sigma) d \sigma-\sum_{\imath=0}^{\infty} \varepsilon^{\imath} \sum_{k=0}^{\imath} \int_{t / \epsilon}^{\infty} \mathbf{F}_{\imath-k}^{\prime}(t / \varepsilon, \sigma) \mathbf{z}_{k}(\sigma) d \sigma \tag{array}
\end{align*}
$$

where

$$
\mathbf{F}_{\imath}^{\prime}(\tau, \sigma)=\frac{1}{\imath^{!}}\left[\left(\tau \partial_{1}+\sigma \partial_{2}\right)^{\imath} \partial_{1} \mathbf{A}\right](0,0)
$$

By putting the differentiated version of (2 414) into (2511), we obtain

$$
\begin{aligned}
& \rho_{N}^{\prime}(t, \varepsilon)=-\varepsilon^{N+1} \mathbf{y}_{N}^{\prime}(t)+\sum_{\imath=N+1}^{\infty} \varepsilon^{\imath} \sum_{k=0}^{\imath} \int_{0}^{\infty} \partial_{1} \mathbf{E}_{\imath-k}(t, \sigma) \mathbf{z}_{k}(\sigma) d \sigma \\
&+\sum_{\imath=N+1}^{\infty} \varepsilon^{\imath} \sum_{k=0}^{i} \mathbf{F}_{\imath-k+1}(t / \varepsilon, t / \varepsilon) \mathbf{z}_{k}(t / \varepsilon)+\sum_{\imath=N+1}^{\infty} \varepsilon^{\imath} \sum_{k=0}^{i} \int_{t / \varepsilon}^{\infty} \mathbf{F}_{\imath-k}^{\prime}(t / \varepsilon, \sigma) \mathbf{z}_{k}(\sigma) d \sigma
\end{aligned}
$$

where the following relation has been used

$$
\partial_{1} \mathbf{F}_{\imath}(\tau, \sigma)=\mathbf{F}_{\imath-1}^{\prime}(\tau, \sigma)
$$

To summarise it has been shown that

$$
\boldsymbol{\rho}_{N}^{1}(t, \varepsilon)=\boldsymbol{\rho}_{N}^{1}(t, \varepsilon)+\boldsymbol{\rho}_{N}^{2}(t / \varepsilon, \varepsilon)+O\left(\varepsilon^{N+2}\right)
$$

where

$$
\begin{array}{r}
\boldsymbol{\rho}_{N}^{1}(t, \varepsilon)=\varepsilon^{N+1}\left\{-\mathbf{y}_{N}(t)+\sum_{k=0}^{N+1} \int_{0}^{\infty} \partial_{1} \mathbf{E}_{N+1-k}(t, \sigma) \mathbf{z}_{k}(\sigma) d \sigma\right\}, \\
\boldsymbol{\rho}_{N}^{2}(\tau, \varepsilon)=\sum_{\imath=N+1}^{\infty} \varepsilon^{\imath} \sum_{k=0}^{\imath}\left\{\mathbf{F}_{\imath-k+1}(\tau, \tau) \mathbf{z}_{k}(\tau)-\int_{\tau}^{\infty} \mathbf{F}_{\imath-k}^{\prime}(\tau, \sigma) \mathbf{z}_{k}(\sigma) d \sigma\right\} \tag{2513}
\end{array}
$$

By (2 5 12)

$$
\begin{equation*}
\left|\rho_{N}^{1}(t, \varepsilon)\right| \leq \gamma_{N}^{1} \varepsilon^{N+1}, \quad \int_{0}^{t}\left|\rho_{N}^{1}(s, \varepsilon)\right| d s \leq \gamma_{N}^{2} \varepsilon^{N+1} \tag{2514}
\end{equation*}
$$

uniformly for all $0 \leq t \leq T$, where γ_{N}^{1} and γ_{N}^{2} are positive constants Using (255) the function $\rho_{N}^{2}(\tau, \varepsilon)$ satısfies

$$
\left|\boldsymbol{\rho}_{N}^{2}(\tau, \varepsilon)\right| \leq \varepsilon^{N+1} Q_{N}(\tau) \mathrm{e}^{-\alpha_{1} \tau} \leq \varepsilon^{N+1} \gamma_{N}^{3} e^{-\beta \tau}
$$

where Q_{N} is a polynomial with positive coefficients, and $\beta<\alpha_{1}<\alpha$ Hence there is a positive γ_{N}^{4} such that

$$
\frac{1}{\varepsilon} \int_{0}^{t}\left|\rho_{N^{2}}(s / \varepsilon, \varepsilon)\right| d s \leq \gamma_{N}^{4} \varepsilon^{N+1}
$$

uniformly for $0 \leq t \leq T$ as $\varepsilon \rightarrow 0$ The conclusions of the proposition now follow

2.6 Asymptotic Solution

In this section we state and prove our main result It says that for $N \geq 0$,

$$
\left|\mathbf{u}(t, \varepsilon)-\mathrm{U}_{N}(t, \varepsilon)\right|=O\left(\varepsilon^{N+1}\right) \quad \text { as } \varepsilon \rightarrow 0
$$

and hence that $\mathbf{U}(t, \varepsilon)$ given by (251) is an asymptotic solution

Theorem 25 Suppose $\left(\mathbf{H}_{1}\right)$ and $\left(\mathbf{H}_{2}\right)$ in Section 22 are satisfied Let $\mathbf{u}(t, \varepsilon)$ be the solutron of (211) and $\mathbf{U}_{N}(t, \varepsilon)$ the partial sum given in (2 5 2) Then for each integer $N \geq 0$, there are posttive constants C_{N+1} and ε_{0}, independent of ε, such that

$$
\begin{equation*}
\left|\mathbf{u}(t, \varepsilon)-\mathbf{U}_{N}(t, \varepsilon)\right| \leq C_{N+1} \varepsilon^{N+1} \tag{261}
\end{equation*}
$$

unvformly for $0 \leq t \leq T$ and $0<\varepsilon \leq \varepsilon_{0}$

Proof It is conventent to fix $N \geq 0$ and define

$$
\mathbf{r}_{N}(t, \varepsilon)=\mathbf{u}(t, \varepsilon)-\mathbf{U}_{N}(t, \varepsilon)
$$

By subtractıng (253) from (211) we get

$$
\varepsilon \mathbf{r}_{N}(t, \varepsilon)=\rho_{N}(t, \varepsilon)+\int_{0}^{t} \mathbf{A}(t, s) \mathbf{r}_{N}(s, \varepsilon) d s
$$

Differentiation yıelds

$$
\begin{equation*}
\mathbf{r}_{N}^{\prime}(t, \varepsilon)=\frac{1}{\varepsilon} \mathbf{B}(t) \mathbf{r}_{N}(t, \varepsilon)+\frac{1}{\varepsilon} \boldsymbol{\rho}_{N}^{\prime}(t, \varepsilon)+\frac{1}{\varepsilon} \int_{0}^{t} \partial_{1} \mathbf{A}(t, s) \mathbf{r}_{N}(s, \varepsilon) d s, \quad \mathbf{r}_{N}(0, \varepsilon)=\mathbf{0} \tag{array}
\end{equation*}
$$

where $B(t)$ is given by (2 23)
The solution of the ordinary differential equation

$$
\mathbf{r}_{N}^{\prime}(t, \varepsilon)=\frac{1}{\varepsilon} \mathbf{B}(t) \mathbf{r}_{N}(t, \varepsilon)+\mathbf{g}(t)
$$

can be represented using variation of parameters as

$$
\begin{equation*}
\mathbf{r}_{N}(t, \varepsilon)=\boldsymbol{\Phi}(t, 0, \varepsilon) \mathbf{r}_{N}(0, \varepsilon)+\int_{0}^{t} \boldsymbol{\Phi}(t, s, \varepsilon) \mathbf{g}(s) d s \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\Phi(t, s, \varepsilon)=\mathbf{R}(t, \varepsilon) \mathbf{R}(s, \varepsilon)^{-1} \tag{264}
\end{equation*}
$$

and $\mathbf{R}(t, \varepsilon)$ is the fundamental matrix solution satisfying

$$
\mathbf{R}^{\prime}(t, \varepsilon)=\frac{1}{\varepsilon} \mathbf{B}(t) \mathbf{R}(t, \varepsilon)
$$

It is a result of Flatto and Levinson [7] that there are constants $\kappa_{1}>0$ and $0<\alpha_{2}<\alpha$ such that

$$
\begin{equation*}
|\Phi(t, s, \varepsilon)| \leq \kappa_{1} e^{-\alpha_{2}(t-s) / \varepsilon} \tag{265}
\end{equation*}
$$

since $\left(\mathbf{H}_{\mathbf{2}}\right)$ holds
Application of the representation (263) to (262) yields

$$
\begin{equation*}
\mathbf{r}_{N}(t, \varepsilon)=\frac{1}{\varepsilon} \int_{0}^{t} \boldsymbol{\Phi}(t, s, \varepsilon) \boldsymbol{\rho}_{N}^{\prime}(s, \varepsilon) d s+\frac{1}{\varepsilon} \int_{0}^{t}\left(\int_{v}^{t} \boldsymbol{\Phi}(t, s, \varepsilon) \partial_{1} \mathbf{A}(s, v) d s\right) \mathbf{r}_{N}(v, \varepsilon) d v \tag{266}
\end{equation*}
$$

However it follows from (265) that

$$
\begin{aligned}
\frac{1}{\varepsilon}\left|\int_{v}^{t} \boldsymbol{\Phi}(t, s, \varepsilon) \partial_{1} \mathbf{A}(s, v) d s\right| & \leq \frac{\kappa_{1}}{\varepsilon} \int_{v}^{t} \mathrm{e}^{-\alpha_{2}(t-s) / \epsilon}\left|\partial_{1} \mathbf{A}(s, v)\right| d s \\
& \leq \frac{\kappa_{1}}{\alpha_{2}} \max _{(t, s) \in \Delta_{T}}\left|\partial_{1} \mathbf{A}(t, s)\right|=\kappa_{2}
\end{aligned}
$$

Simularly we see from (258) and (265) that

$$
\frac{1}{\varepsilon}\left|\int_{0}^{t} \Phi(t, s, \varepsilon) \rho_{N}^{\prime}(s, \varepsilon) d s\right| \leq e_{N} \varepsilon^{N} \int_{s}^{t} \mathrm{e}^{-\alpha_{2}(t-s) / \varepsilon} d s \leq \frac{e_{N}}{\alpha_{2}} \varepsilon^{N+1}
$$

Hence (266) mplies that

$$
\left|\mathbf{r}_{N}(t, \varepsilon)\right| \leq \frac{e_{N}}{\alpha_{2}} \varepsilon^{N+1}+\kappa_{2} \int_{0}^{t}\left|\mathbf{r}_{N}(v, \varepsilon)\right| d v
$$

By Gronwall's inequality,

$$
\left|\mathbf{r}_{N}(t, \varepsilon)\right| \leq \frac{e_{N}}{\alpha_{2}} \varepsilon^{N+1} e^{\kappa_{2} t}
$$

and the theorem is proved

2.7 Example

To illustrate the method, let us consider the following example from [1] and [2]

$$
\begin{equation*}
\varepsilon u(t)=f(t)-\int_{0}^{t}\{(t-s) \omega(s)+\theta(s)\} u(s) d s, \quad t \geq 0 \tag{array}
\end{equation*}
$$

where $\theta(t)>0$ Equation (271) is equivalent to "over-damped" initial value second-order ordinary differential equation

$$
\begin{equation*}
\varepsilon u^{\prime \prime}(t)+\theta(t) u^{\prime}(t)+\left\{\omega(t)+\theta^{\prime}(t)\right\} u(t)=f^{\prime \prime}(t), t>0 \tag{2}
\end{equation*}
$$

with initial conditions

$$
u(0)=\frac{1}{\varepsilon} f(0), \quad u^{\prime}(0)=-\frac{1}{\varepsilon^{2}} \theta(0) f(0)+\frac{1}{\varepsilon} f^{\prime}(0)
$$

For simplicity we take

$$
\omega(t)=1, \quad \theta(t)=1, f(t)=t+t^{2}+\frac{1}{6} t^{3}
$$

because the exact solution of (271) can be obtained using Laplace transforms as

$$
\begin{equation*}
u(t, \varepsilon)=t+1+\frac{1}{\gamma_{1}-\gamma_{2}}\left[\left(\gamma_{2}-1+\frac{1}{\varepsilon}\right) \mathrm{e}^{\gamma_{1} t}-\left(\gamma_{1}-1+\frac{1}{\varepsilon}\right) \mathrm{e}^{\gamma_{2} t}\right] \tag{273}
\end{equation*}
$$

where

$$
\gamma_{1}, \gamma_{2}=\frac{1}{2 \varepsilon}(-1 \pm \sqrt{1-4 \varepsilon})
$$

In this example $f(0)=0$ and we should use an asymptotic representation other than (241) However we find that $z_{0}(\tau)=0$ and our representation agrees with the correct one Note that in this example $a(t, s)=-t+s-1$ and the boundary layer stablity condition holds For $\jmath \geq 0$, the inner correction solution $z_{j}(\tau)$ is given by

$$
\begin{equation*}
z_{j}(\tau)=\mathrm{e}^{-\tau} z_{j}(0)-\int_{0}^{\tau} \mathrm{e}^{-(\tau-\sigma)} \psi_{\jmath}^{\prime}(\sigma) d \sigma \tag{274}
\end{equation*}
$$

where

$$
\psi_{\jmath}(\tau)=\sum_{\imath=0}^{\jmath-1} \int_{\tau}^{\infty} F_{\jmath-\imath}(\tau, \sigma) z_{\imath}(\sigma) d \sigma
$$

Since in this example

$$
F_{\imath}(\tau, \sigma)= \begin{cases}-1, & \imath=0 \\ -(\tau-\sigma), & \imath=1 \\ 0, & \imath \geq 2\end{cases}
$$

it follows that

$$
\psi_{\jmath}(\tau)=-\int_{\tau}^{\infty}(\tau-\sigma) z_{\jmath-1}(\sigma) d \sigma
$$

Therefore we get

$$
z_{\jmath}(\tau)=\mathrm{e}^{-\tau} z_{\jmath}(0)-\int_{0}^{\tau} \mathrm{e}^{-(\tau-\sigma)} \int_{\sigma}^{\infty} z_{\jmath-1}(v) d v d \sigma
$$

where

$$
z_{0}(0)=f(0), \quad z_{\jmath}(0)=y_{\jmath-1}(0), \quad \jmath \geq 1
$$

By (2 4 13) the outer solution $y_{j}(t)$ satisfies

$$
y_{j-1}(t)=-\int_{0}^{t}(t-s+1) y_{j}(s) d s+\phi_{j}(t)
$$

or

$$
y_{j-1}^{\prime \prime}(t)-\phi_{j}^{\prime \prime}(t)=-y_{j}^{\prime}(t)-y_{j}(t),
$$

Since

$$
E_{\imath}(t, \sigma)= \begin{cases}-(1+t), & \imath=0 \\ \sigma, & \imath=1 \\ 0, & \imath \geq 2\end{cases}
$$

we find that

$$
\phi_{y}(t)=\sum_{\imath=\jmath-1}^{\jmath} \int_{0}^{\infty} E_{\jmath-1}(t, \sigma) z_{\imath}(\sigma) d \sigma
$$

Therefore

$$
\phi_{\jmath}^{\prime \prime}(t)= \begin{cases}2+t, & \jmath=0 \\ 0, & \jmath \geq 1\end{cases}
$$

and

$$
y_{3}(t)=-z_{3+1}(0) \mathrm{e}^{-t}-\int_{0}^{t} \mathrm{e}^{-(t-s)}\left(y_{j-1}^{\prime \prime}(s)-\phi_{j}^{\prime \prime}(s)\right) d s
$$

From the above equations we see that

$$
\begin{gathered}
z_{0}(\tau)=0, \quad z_{1}(\tau)=-\mathrm{e}^{-\tau}, \quad z_{2}(\tau)=-\tau \mathrm{e}^{-\tau}, \\
y_{0}(t)=1+t, \quad y_{1}(t)=0
\end{gathered}
$$

from which we calculate the first two partial sums of the asymptotic solution to be

$$
U_{0}(t, \varepsilon)=1+t-\mathrm{e}^{-t / \varepsilon}, \quad U_{1}(t, \varepsilon)=1+t-\mathrm{e}^{-t / \varepsilon}-t \mathrm{e}^{-t / \varepsilon}
$$

To verify that $U_{0}(t, \varepsilon)$ is a uniformly valid asymptotic approximation, note that

$$
u(t, \varepsilon)-U_{0}(t, \varepsilon)=\mathrm{e}^{-t / \varepsilon}-\mathrm{e}^{(1-1 / \varepsilon) t}+O\left(\varepsilon^{2}\right)=-t \mathrm{e}^{-t / \varepsilon}+O\left(\varepsilon^{2}\right)
$$

mplying that $\left|u(t, \varepsilon)-U_{0}(t, \varepsilon)\right| \leq C_{0} \varepsilon$ Sımilarly

$$
u(t, \varepsilon)-U_{1}(t, \varepsilon)=-\frac{t^{2}}{2} \mathrm{e}^{-t / \varepsilon}+\varepsilon^{2}\left(\mathrm{e}^{-t}-\mathrm{e}^{-t / \varepsilon}\right)+O\left(\varepsilon^{3}\right)
$$

so that $\left|u(t, \varepsilon)-U_{1}(t, \varepsilon)\right| \leq C_{1} \varepsilon^{2}$ Therefore the terms $U_{0}(t, \varepsilon)$ and $U_{1}(t, \varepsilon)$ found by additive decomposition method are uniformly valid asymptotic approximations to $u(t, \varepsilon)$ for all $0 \leq t \leq T$ as $\varepsilon \rightarrow 0$

Having established a uniformly valid asymptotic expansion using the method of additive decomposition we developed, we now form a composite expansion from the exact solution (273) The outer expansion is found by fixing $t>0$ and letting $\varepsilon \rightarrow 0$ in (273), obtainng

$$
V(t, \varepsilon) \sim \sum_{j=0}^{\infty} \varepsilon^{j} v_{j}(t),
$$

where

$$
v_{0}(t)=1+t, \quad v_{1}(t)=0, \quad v_{2}(t)=\mathrm{e}^{-t},
$$

Smilarly expressing (273) in terms of the inner variable, τ and then taking the inner limit by fixing $\tau>0$ and letting $\varepsilon \rightarrow 0$, the inner expansion takes the form

$$
u(\varepsilon \tau, \varepsilon)=W(\tau, \varepsilon) \sim \sum_{j=0}^{\infty} \varepsilon^{\jmath} w_{\jmath}(\tau),
$$

where

$$
w_{0}(\tau)=1-\mathrm{e}^{-\tau}, \quad w_{1}(\tau)=\tau\left(1-\mathrm{e}^{-\tau}\right), \quad w_{2}(\tau)=1-\left(1+\tau^{2} / 2\right) \mathrm{e}^{-\tau}
$$

To obtan these expansion we have used

$$
\begin{gathered}
\gamma_{1}=-1+O(\varepsilon), \quad \gamma_{2}=-\frac{1}{\varepsilon}+1+O(\varepsilon), \quad \varepsilon \rightarrow 0, \\
\frac{1}{\gamma_{1}-\gamma_{2}}\left(\gamma_{2}-1+\frac{1}{\varepsilon}\right)=\varepsilon^{2}+4 \varepsilon^{3}+O\left(\varepsilon^{4}\right), \\
\frac{1}{\gamma_{1}-\gamma_{2}}\left(\gamma_{1}-1+\frac{1}{\varepsilon}\right)=1+\varepsilon^{2}+4 \varepsilon^{3}+O\left(\varepsilon^{4}\right),
\end{gathered}
$$

all as $\varepsilon \rightarrow 0$ Using a standard procedure we can obtain a uniform approximation to $u(t, \varepsilon)$ by forming a composite expansions from the inner and outer expansions In fact, we find that $U_{0}(t, \varepsilon)$ and $U_{1}(t, \varepsilon)$ are first two composite expansions

28 Example of Boundary Layer Stability Condıtion Failing

Both Lange and Smith [15] and Angell and Olmstead [3] study the integral equation

$$
\begin{equation*}
\varepsilon^{2} u(t)=f(t)-\int_{0}^{t} s u(s) d s \tag{array}
\end{equation*}
$$

To avoid fractional powers, ε^{2} replaces ε The exact solution of equation is found, after differentıating, to be

$$
\begin{equation*}
u(t, \varepsilon)=\frac{\mathrm{e}^{-t^{2} /\left(2 \epsilon^{2}\right)}}{\varepsilon^{2}}\left\{f(0)+\int_{0}^{t} \mathrm{e}^{s^{2} /\left(2 \epsilon^{2}\right)} f^{\prime}(s) d s\right\} \tag{28}
\end{equation*}
$$

For this example $a(t, s)=-s$ and $a(t, t)<0$ only for $t>0$ Hence the analysis in Sections 25 and 26 is no longer applicable

Smith and Lange [15] observe that (2 81) has a number of interesting features Firstly expansions for the inner and outer solutions can be calculated from (282) We see that

$$
\begin{equation*}
u(t, \varepsilon) \sim V(t, \varepsilon)=\sum_{\jmath=0}^{\infty} \varepsilon^{2 \jmath} v_{\jmath}(t) \tag{283}
\end{equation*}
$$

where

$$
\begin{equation*}
v_{0}(t)=-\frac{f^{\prime}(t)}{t}, \quad v_{1}(t)=\frac{1}{t}\left(\frac{f^{\prime}(t)}{t}\right)^{\prime} \tag{284}
\end{equation*}
$$

Notice that the integrals

$$
\int_{0}^{t} s v_{j}(s) d s
$$

do not exist for $\jmath \geq 1$ Similarly

$$
\begin{equation*}
u(\varepsilon \tau, \varepsilon) \sim W(\tau, \varepsilon)=\frac{1}{c^{2}} \sum_{\jmath=0}^{\infty} \varepsilon^{\jmath} w_{\jmath}(\tau) \tag{285}
\end{equation*}
$$

where

$$
\begin{equation*}
w_{0}(t)=f(0) e^{-\tau^{2} / 2}, \quad w_{1}(\tau)=f^{\prime}(0) \int_{0}^{\tau} e^{-\left(\tau^{2}-\sigma^{2}\right) / 2} d \sigma, \quad w_{2}(\tau)=f^{\prime \prime}(0)\left(1-e^{-\tau^{2} / 2}\right) \tag{286}
\end{equation*}
$$

From (283), (284), (285) and (286) the composite expansion can be computed such that

$$
\begin{align*}
& u(t, \varepsilon)=\frac{f(0)}{\varepsilon^{2}} e^{-t^{2} /\left(2 \varepsilon^{2}\right)}+\frac{f^{\prime}(0)}{\varepsilon} \int_{0}^{t / \varepsilon} e^{-\left(t^{2} / \epsilon^{2}-\sigma^{2}\right) / 2} d \sigma \\
&-f^{\prime \prime}(0) e^{-t^{2} /\left(2 \varepsilon^{2}\right)}+\frac{f^{\prime}(t)-f^{\prime}(0)}{t}+O(\varepsilon) \tag{287}
\end{align*}
$$

as $\varepsilon \rightarrow 0$ uniformly for $0 \leq t \leq T$
The analysis of Section 23 holds for (281) even though (\mathbf{H}_{2}) does not In fact it shows that the initial layer should have magnitude $O\left(\varepsilon^{-2}\right)$ and width $O(\varepsilon)$ However Smith and Lange pont out that the ansatz

$$
u(t, \varepsilon)=y_{0}(t)+\frac{1}{\varepsilon^{2}} z_{0}(t / \varepsilon)+o(1)
$$

and exponential decay for all the inner correction terms produces a false leading order approximate solution

$$
\begin{equation*}
-\frac{f(0)}{\varepsilon^{2}} \mathrm{e}^{-t^{2} /\left(2 \varepsilon^{2}\right)}+\frac{f^{\prime}(t)}{t}, \tag{288}
\end{equation*}
$$

which is not uniformly valid for all $0 \leq t \leq T$
We look for an asymptotic solution of the form

$$
\begin{equation*}
u(t, \varepsilon)=\sum_{j=0}^{\infty} \varepsilon^{23} y_{\jmath}(t)+\frac{1}{\varepsilon^{2}} \sum_{j=0}^{\infty} \varepsilon^{j} z_{J}(t / \varepsilon) \tag{289}
\end{equation*}
$$

Since $\varepsilon^{2} u(0, \varepsilon)=f(0), y_{j}(t)$ and $z_{j}(\tau)$ satisfy the initial conditions

$$
z_{0}(0)=f(0), \quad z_{1}(0)=0, \quad z_{2_{3}}(0)=-y_{2-1}(0), \quad z_{2 \jmath^{2}+1}(0)=0
$$

for $\jmath \geq 1$ Substituting (289) into (281) gives

$$
\begin{align*}
& \varepsilon^{2} y_{0}(t)+z_{0}(t / \varepsilon)+\varepsilon z_{1}(t / \varepsilon)+\varepsilon^{2} z_{2}(t / \varepsilon)=f(t)-\int_{0}^{t} s y_{0}(s) d s \\
&-\frac{1}{\varepsilon^{2}} \int_{0}^{t} s z_{0}(s / \varepsilon) d s-\frac{1}{\varepsilon^{1}} \int_{0}^{t} s z_{1}(s / \varepsilon) d s-\int_{0}^{t} s z_{2}(s / \varepsilon) d s+O\left(\varepsilon^{2}\right) \tag{2810}
\end{align*}
$$

This is equivalent to

$$
\begin{aligned}
\varepsilon^{2} y_{0}(\varepsilon \tau)+z_{0}(\tau)+\varepsilon z_{1}(\tau)+\varepsilon^{2} z_{2}(\tau) & =f(\varepsilon \tau)-\int_{0}^{\varepsilon \tau} s y_{0}(s) d s \\
& -\int_{0}^{\tau} \sigma z_{0}(\sigma) d \sigma-\varepsilon \int_{0}^{\tau} \sigma z_{1}(\sigma) d \sigma-\varepsilon^{2} \int_{0}^{\tau} \sigma z_{2}(\sigma) d \sigma+O\left(\varepsilon^{2}\right)
\end{aligned}
$$

It follows that

$$
\begin{equation*}
z_{3}(\tau)=\psi_{\jmath}(\tau)-\int_{0}^{\tau} \sigma z_{3}(\sigma) d \sigma \tag{2811}
\end{equation*}
$$

where

$$
\psi_{0}(\tau)=f(0), \quad \psi_{1}(\tau)=f^{\prime}(0) \tau, \quad \psi_{2}(\tau)=\frac{1}{2}\left(f^{\prime \prime}(0)-y_{0}(0)\right) \tau^{2}-y_{0}(0)
$$

Therefore,

$$
\begin{gathered}
z_{0}(\tau)=f_{0}(0) \mathrm{e}^{-\tau^{2} / 2}, \quad z_{1}(\tau)=f^{\prime}(0) \int_{0}^{\tau} \mathrm{e}^{-\left(\tau^{2}-\sigma^{2}\right) / 2} d \sigma, \\
z_{2}(\tau)=f^{\prime \prime}(0)\left(1-\mathrm{e}^{-\tau^{2} / 2}\right)-y_{0}(0)
\end{gathered}
$$

In order to calculate the outer solution, we express all terms in (2811) in terms of the outer variable t and substitute them into (2 810), giving

$$
\varepsilon^{2} y_{0}(t)=f(t)-f(0)-f^{\prime}(0) t-\frac{1}{2}\left(f^{\prime \prime}(0)-y_{0}(0)\right) t^{2}-\int_{0}^{t} s y_{0}(s) d s+O\left(\varepsilon^{2}\right)
$$

By letting $\varepsilon \rightarrow 0$ an equation for $y_{0}(t)$ is obtaned with solution

$$
y_{0}(t)=\frac{f^{\prime}(t)-f^{\prime}(0)}{t}-f^{\prime \prime}(0)+y_{0}(0)
$$

Snce $\lim _{t \rightarrow 0} y_{0}(t)=y_{0}(0), z_{2}(\tau) \rightarrow f^{\prime \prime}(0)-y_{0}(0)$ as $\tau \rightarrow \infty$ and we choose $y_{0}(0)=f^{\prime \prime}(0)$ so that $z_{2}(\tau) \rightarrow 0$ as $\tau \rightarrow \infty$ as required Also by integrating by parts it can be shown that

$$
z_{\mathfrak{l}}(\tau)=\frac{f^{\prime}(0)}{\tau}\left[1+\sum_{n=0}^{\infty} \frac{(1)(3)(5) \quad(2 n-1)}{\tau^{2 n}}\right] \quad \text { as } \tau \rightarrow \infty
$$

so there is only algebrac decay
The candidate leading order solution is given by

$$
u_{0}(t, \varepsilon)=y_{0}(t)+\frac{1}{\varepsilon^{2}} z_{0}(t / \varepsilon)+\frac{1}{\varepsilon} z_{1}(t / \varepsilon)+z_{2}(t / \varepsilon)
$$

which agrees with (287) It is not hard to directly show this is a uniformly valid asymptotic solution Also there is nontrivial contribution to the outer solution from $\lim _{\varepsilon \rightarrow 0} \varepsilon^{-1} z_{1}(t / \varepsilon)=$ $f^{\prime}(0) t^{-1}$ with $t>0$ fixed, which would not be the case if $z_{1}(\tau)$ decayed exponentially

Our calculations suggest that the method of additive decomposition can also be appied to problems where there is no exponential decay in the boundary layer

Chapter 3
 Integrodifferential Equations with Continuous Kernels

3.1 Introduction

This chapter considers the singularly perturbed linear Volterra integrodifferential equation

$$
\begin{gather*}
\varepsilon \mathbf{u}^{\prime}(t)=\mathbf{f}(t)+\mathbf{B}(t) \mathbf{u}(t)+\int_{0}^{t} \mathbf{A}(t, s) \mathbf{u}(s) d s, \quad 0<t \leq T \tag{311}\\
\mathbf{u}(0)=\mathbf{a} \tag{array}
\end{gather*}
$$

where $0<\varepsilon \ll 1$ The vector-valued function $\mathbf{f}(t)$ is continuous for $0 \leq t \leq T$, the matrix-valued function $\mathbf{B}(t)$ is continuous for $0 \leq t \leq T$ and the matrix-valued kernel $\mathbf{A}(t, s)$ is continuous for $0 \leq s \leq t \leq T$

For $\varepsilon>0$, problem (311) is a Volterra integrodifferential equation which has a unique solution $\mathbf{u}(t, \varepsilon) \in C^{1}[0, T]$ It is given by

$$
\begin{equation*}
\mathbf{u}(t, \varepsilon)=\boldsymbol{\Gamma}(t, 0, \varepsilon) \mathbf{a}+\int_{0}^{t} \mathbf{\Gamma}(t, s, \varepsilon) \mathbf{f}(s) d s, \quad 0 \leq t \leq T \tag{array}
\end{equation*}
$$

where $\Gamma(t, s, \varepsilon)$, defined for $0 \leq s \leq t \leq T$, is the resolvent matrix given by

$$
\begin{equation*}
\partial_{2} \Gamma(t, s, \varepsilon)=-\Gamma(t, s, \varepsilon) \mathbf{B}(s)-\int_{s}^{t} \Gamma(t, v, \varepsilon) \mathbf{A}(v, s) d v \tag{array}
\end{equation*}
$$

and $\Gamma(t, t, \varepsilon)=I$ For $\varepsilon=0$, problem (311) reduces to

$$
\begin{equation*}
\mathbf{0}=\mathbf{B}(t) \mathbf{v}(t)+\mathbf{f}(t)+\int_{0}^{t} \mathbf{A}(t, s) \mathbf{v}(s) d s, \quad 0 \leq t \leq T \tag{array}
\end{equation*}
$$

Problem (315) is a Volterra integral equation of the second kind which does have a continuous solution $\mathbf{v}[0, T] \rightarrow \mathbb{R}^{n}$ if either $\mathbf{B}(t)$ or $\mathbf{A}(t, t)$ is invertible and the data is \mathbb{C}^{1} If (315) has a continuous solution $\mathbf{v}(t)$ such that $\mathbf{v}(0) \neq \mathbf{a}$, then $\mathbf{v}(t)$ cannot approximate $\mathbf{u}(t, \varepsilon)$ uniformly on $[0, T]$ Thus, problem (311) is singularly perturbed We are interested in obtaining asymptotic approximations which are uniformly valid in $[0, T]$ as $\varepsilon \rightarrow 0$ of (3 11)

We construct in Section 32 a formal solution $\mathrm{U}(t, \varepsilon)$ using the additive decomposition method introduced m Chapter 2 The man result of this chapter is presented in Section 33 where it is
proved that $\mathrm{U}_{N}(t, \varepsilon)$ is an asymptotic solution of (311) in the sense that

$$
\left|\mathbf{u}(t, \varepsilon)-\mathbf{U}_{N}(t, \varepsilon)\right|=O\left(\varepsilon^{N+1}\right) \quad \text { as } \varepsilon \rightarrow 0
$$

It is not surprising that results for ($\mathbf{3} 11$) can be found using the techniques of Chapter 2, because there we had to first differentiate integral equations in Sections 24 and 25 to prove our results Formal expansions for the asymptotic solution of this problem have been obtaned Angell and Olmstead [1] for the Volterra equations However their approach has a shortcoming in that general equations for the coefficients in the formal solution could not be determined Smith and Lange [15] deduced a general expansion and rıgorous estımates for Fredholm integrodifferential equations from their theory of Fredholm integral equations The expansion procedure developed here modffies that of Smith and Lange [15] Both the papers cited use the additive decomposition method Lomov [18] gets rigorous results by employing a different multiple tıme scale method He introduces n new time scales, not just the one $\tau=t / \varepsilon$

3.2 Heuristic Analysis and Formal Solution

We seek a formal solution $\mathbf{u}(t, \varepsilon)$ of the form

$$
\begin{equation*}
\mathbf{u}(t, \varepsilon)=\mathbf{y}(t, \varepsilon)+\mathbf{z}(t / \varepsilon, \varepsilon) \tag{321}
\end{equation*}
$$

where $\mathbf{y}(t, \varepsilon)$ and $\mathbf{z}(t / \varepsilon, \varepsilon)$ are represented by the asymptotic series (242) and (243) with

$$
\begin{equation*}
\left|\mathbf{z}_{j}(\tau)\right|=O\left(\mathrm{e}^{-\beta_{3} \tau}\right), \quad \tau \rightarrow \infty, \quad \jmath=0,1, \tag{322}
\end{equation*}
$$

for some $\beta_{3}>0$
We form the partial sum

$$
\begin{equation*}
\mathbf{U}_{N}(t, \varepsilon)=\sum_{n=0}^{N} \mathbf{u}_{n}(t, \varepsilon) \varepsilon^{n}, \tag{323}
\end{equation*}
$$

and the formal sum

$$
\mathrm{U}(t, \varepsilon)=\sum_{n=0}^{\infty} \mathbf{u}_{n}(t, \varepsilon) \varepsilon^{n}
$$

where

$$
\begin{equation*}
\mathbf{u}_{j}(t, \varepsilon)=\mathbf{y}_{3}(t)+\mathbf{z}_{j}(t / \varepsilon) \tag{array}
\end{equation*}
$$

In this section we assume that $\mathbf{f}(t)$ and $\mathbf{A}(t, s)$ are C^{∞} Clearly

$$
\int_{0}^{t} \mathbf{A}(t, s) \mathbf{u}_{3}(s, \varepsilon) d s=\int_{0}^{t} \mathbf{A}(t, s) \mathbf{y}_{j}(s) d s+\int_{0}^{t} \mathbf{A}(t, s) \mathbf{z}_{\jmath}(s / \varepsilon) d s
$$

Decomposing this equation into functions of t and functions of t / ε as in Section 24 , we get for all $m \geq 0$

$$
\begin{align*}
\int_{0}^{t} \mathbf{A}(t, s) \mathbf{u}_{\jmath}(s, \varepsilon) d s= & \int_{0}^{t} \mathbf{A}(t, s) \mathbf{y}_{\jmath}(s) d s+\sum_{\imath=1}^{m} \varepsilon^{\imath} \int_{0}^{\infty} \mathbf{E}_{\imath-1}(t, \sigma) \mathbf{z}_{\jmath}(\sigma) d \sigma \\
& -\sum_{\imath=1}^{m} \varepsilon^{2} \int_{t / \varepsilon}^{\infty} \mathbf{F}_{\imath-1}(t / \varepsilon, \sigma) \mathbf{z}_{\jmath}(\sigma) d \sigma+O\left(\varepsilon^{m+1}\right) \tag{325}
\end{align*}
$$

where $\mathrm{E}_{\imath}(t, \sigma)$ and $\mathrm{F}_{\imath}(\tau, \sigma)$ are defined by (247) and (248) respectively The last integral above represents a boundary layer function

The residual $\rho_{N}(t, \varepsilon)$ is defined by the relation

$$
\begin{equation*}
\varepsilon \mathbf{U}_{N}^{\prime}(t, \varepsilon)=\mathbf{f}(t)+\mathbf{B}(t) \mathbf{U}_{N}(t, \varepsilon)+\int_{0}^{t} \mathbf{A}(t, s) \mathbf{U}_{N}(s, \varepsilon) d s-\rho_{N}(t, \varepsilon) \tag{326}
\end{equation*}
$$

By substituting (323) into this equation and using (325) to replace the integrals, we obtain

$$
\begin{align*}
\rho_{N}(t, \varepsilon)= & \mathbf{f}(t)+\sum_{\jmath=0}^{N} \varepsilon^{\jmath}\left(\mathbf{B}(t) \mathbf{y}_{\jmath}(t)+\int_{0}^{t} \mathbf{A}(t, s) \mathbf{y}_{\jmath}(s) d s+\sum_{\imath=0}^{\jmath-1} \int_{0}^{\infty} \mathbf{E}_{\jmath-\imath-1}(t, \sigma) \mathbf{z}_{\imath}(\sigma) d \sigma\right) \\
& +\sum_{\jmath=0}^{N} \varepsilon^{\jmath}\left(\sum_{\imath=0}^{\jmath} \mathbf{G}_{\jmath-\imath}(\tau) \mathbf{z}_{\imath}(\tau)+\sum_{\imath=0}^{\jmath-1} \int_{t / \varepsilon}^{\infty} \mathbf{F}_{\jmath-\imath-1}(t / \varepsilon, \sigma) \mathbf{z}_{\imath}(\sigma) d \sigma\right) \\
& -\sum_{\jmath=0}^{N-1} \varepsilon^{\jmath+1} \mathbf{y}_{\jmath}^{\prime}(t)-\sum_{\jmath=0}^{N} \varepsilon^{\jmath} \mathbf{z}_{\jmath}^{\prime}(t / \varepsilon)+O\left(\varepsilon^{N+1}\right) \tag{327}
\end{align*}
$$

uniformly for $0 \leq t \leq T$ where

$$
\mathbf{G}_{\imath}(\tau)=\frac{1}{\imath!} \tau^{d^{2} \mathbf{B}} \frac{d t^{2}}{}(0)
$$

Equation (327) is equivalent to

$$
\begin{equation*}
\rho_{N}(t, \varepsilon)=\sum_{\jmath=0}^{N} \varepsilon^{\jmath}\left(\mathbf{p}_{\jmath}(t)+\mathbf{q}_{\jmath}(t / \varepsilon)\right)+O\left(\varepsilon^{N+1}\right) \tag{328}
\end{equation*}
$$

uniformly for $0 \leq t \leq T$, where

$$
\begin{gathered}
\mathbf{p}_{\jmath}(t)=\mathbf{B}(t) \mathbf{y}_{\jmath}(t)+\int_{0}^{t} \mathbf{A}(t, s) \mathbf{y}_{\jmath}(s)+\phi_{\jmath}(t)-\mathbf{y}_{3-1}^{\prime}(t) \\
\mathbf{q}_{\jmath}(\tau)=\mathbf{B}(0) \mathbf{z}_{\jmath}(\tau)+\boldsymbol{\psi}_{\jmath}(\tau)-\mathbf{z}_{\jmath}^{\prime}(\tau)
\end{gathered}
$$

with

$$
\begin{gather*}
\phi_{j}(t)= \begin{cases}\mathbf{f}(t), & \jmath=0, \\
\sum_{\imath=0}^{j-1} \int_{0}^{\infty} \mathbf{E}_{\jmath-\imath-1}(t, \sigma) \mathbf{z}_{\imath}(\sigma) d \sigma, & \jmath \geq 1,\end{cases} \tag{329}\\
\psi_{\jmath}(\tau)= \begin{cases}\mathbf{0}, & \jmath=0, \\
\sum_{\imath=0}^{\jmath-1} \mathbf{G}_{\jmath-\imath}(\tau) \mathbf{z}_{2}(\tau)-\sum_{\imath=0}^{\jmath-1} \int_{\tau}^{\infty} \mathbf{F}_{\jmath-\imath-1}(\tau, \sigma) \mathbf{z}_{\imath}(\tau) d \sigma, & \jmath \geq 1\end{cases} \tag{3210}
\end{gather*}
$$

We observe that (3 29) and (3 210) imply that $\phi_{\jmath}(t)$ and $\psi_{\jmath}(\tau)$ are determined by $z_{\imath}(\tau)$ for $\imath=0,1, \quad, \jmath-1$

A calculation similar to that in Section 24 shows that $\mathbf{q}_{7}(\tau) \rightarrow 0$ as $\tau \rightarrow \infty$ if (322) holds If $\mathrm{U}(t, \varepsilon)$ is a formal solution, $\rho_{N}(t, \varepsilon)=O\left(\varepsilon^{N+1}\right)$ for all $N \geq 0$, in which case Lemma 21 in Chapter 2 implies that, for each $\jmath \geq 0, y_{\jmath}(t)$ satisfies

$$
\begin{equation*}
\mathbf{y}_{\jmath-1}^{\prime}(t)=\mathbf{B}(t) \mathbf{y}_{\jmath}(t)+\int_{0}^{t} \mathbf{A}(t, s) \mathbf{y}_{\jmath}(s) d s+\phi_{3}(t), \quad 0 \leq t \leq T \tag{3211}
\end{equation*}
$$

and $\mathbf{z}_{3}(\tau)$ satisfies

$$
\begin{equation*}
\mathbf{z}_{\jmath}^{\prime}(\tau)=\mathbf{B}(0) \mathbf{z}_{\jmath}(\tau)+\psi_{3}(\tau), \quad \tau>0 \tag{array}
\end{equation*}
$$

Also each $z_{j}(\tau)$ obeys the initial condition

$$
\mathbf{z}_{\jmath}(0)= \begin{cases}\mathbf{a}-\mathrm{y}_{0}(0), & \jmath=0 \tag{array}\\ -\mathbf{y}_{\jmath}(0), & \jmath \geq 1\end{cases}
$$

Remark 31 It follows from (328) that of each $\mathbf{y}_{7}(t)$ satısfies (3211) and each $\mathbf{z}_{3}(\tau)$ satisfies (3 2 12), then $\left|\rho_{N}(t, \varepsilon)\right|=O\left(\varepsilon^{N+1}\right)$ as $\varepsilon \rightarrow 0$ uniformly for $0 \leq t \leq T$

3.3 Properties of Formal Solution

In this section, we show that the equations for $y_{j}(t)$ and $z_{j}(\tau)$ derived in Section 32 have the properties required in their derivation, and then prove that

$$
\left|\mathbf{u}(t, \varepsilon)-\mathbf{U}_{N}(t, \varepsilon)\right|=O\left(\varepsilon^{N+1}\right)
$$

uniformly for $0 \leq t \leq T$ as $\varepsilon \rightarrow 0$
The following assumption will be used
$\left(\mathbf{H}_{1}^{\prime}\right)$ The functions $\mathbf{f} \quad[0, T] \rightarrow \mathbb{R}^{n}, \mathbf{B} \quad[0, T] \rightarrow \mathbb{R}^{n \times n}$ and $\mathbf{A} \Delta_{T} \rightarrow \mathbb{R}^{n \times n}$ are all \mathbb{C}^{∞}, where Δ_{T} is defined as in (2 2 2)

Proposition 32 Suppose that $\left(\mathbf{H}_{1}^{\prime}\right)$ and $\left(\mathbf{H}_{2}\right)$ hold Then for each $3 \geq 0$ there as a C^{∞} solution $\mathrm{y}_{3}(t)$ on $[0, T]$ of (32 11) and a C^{∞} solution $\mathrm{z}_{3}(\tau)$ on $[0, \infty)$ of (3212) and (3213), moreover there are postitve constants $\beta<\alpha$ and c_{J}

$$
\begin{equation*}
\left|z_{\jmath}(\tau)\right| \leq c_{\jmath} \mathrm{e}^{-\beta \tau}, \quad \tau \geq 0 \tag{3311}
\end{equation*}
$$

The proof is similar to that of Proposition 22 in Chapter 2 and therefore is omitted
Lemma 33 Suppose that $\left(\mathrm{H}_{1}^{\prime}\right)$ and $\left(\mathrm{H}_{2}\right)$ hold Then for each $\jmath \geq 0$ the residual $\rho_{J}(t, \varepsilon)$ defined in (3 26) satısfies

$$
\begin{equation*}
\left|\rho_{J}(t, \varepsilon)\right| \leq e_{j} \varepsilon^{\jmath+1} \tag{33}
\end{equation*}
$$

as $\varepsilon \rightarrow 0$ uniformly for all $0 \leq t \leq T$, for some fixed positzve constant $e_{\text {, }}$ independent of ε
As pointed out in Remark 31 the result follows from what has already been done in Section 32 It can also be proved that there are positive constants d_{j} such that

$$
\int_{0}^{t}\left|\rho_{j}(s, \varepsilon)\right| d s \leq d_{j} \varepsilon^{\rho+1}
$$

unformly for all $0 \leq t \leq T$

Theorem 34 Suppose that $\left(\mathbf{H}_{1}^{\prime}\right)$ and $\left(\mathbf{H}_{2}\right)$ hold Then there are constants $C_{N}>0$ such that

$$
\begin{equation*}
\left|\mathbf{u}(t, \varepsilon)-\mathbf{U}_{N}(t, \varepsilon)\right| \leq C_{N} \varepsilon^{N+1} \tag{333}
\end{equation*}
$$

uniformly on $[0, T]$ as $\varepsilon \rightarrow 0$ where C_{N} is independent of ε
Proof We introduce the the remander term

$$
\mathbf{r}_{N}(t, \varepsilon)=\mathbf{u}(t, \varepsilon)-\mathbf{U}_{N}(t, \varepsilon),
$$

as m Chapter 2 It satisfies the following problem

$$
\varepsilon \mathbf{r}_{N}^{\prime}(t, \varepsilon)=\rho_{N}(t, \varepsilon)+\mathbf{B}(t) \mathbf{r}_{N}(t, \varepsilon)+\int_{0}^{t} \mathbf{A}(t, s) \mathbf{r}_{N}(s, \varepsilon) d s, t>0
$$

with $\mathbf{r}_{N}(0, \varepsilon)=\mathbf{0}$ The variation of parameters formula enables us to see that its solution $\mathbf{r}_{N}(t, \varepsilon)$ satısfies

$$
\begin{equation*}
\mathbf{r}_{N}(t, \varepsilon)=\frac{1}{\varepsilon} \int_{0}^{t} \Phi(t, s, \varepsilon) \rho_{N}(s, \varepsilon) d s+\frac{1}{\varepsilon} \int_{0}^{t}\left(\int_{v}^{t} \Phi(t, s, \varepsilon) \mathbf{A}(s, v) d s\right) \mathbf{r}_{N}(v, \varepsilon) d v, \tag{334}
\end{equation*}
$$

where $\boldsymbol{\Phi}(t, s, \varepsilon)$ is defined as in equation (264) The bound (3 33) follows from (3 3 4) using $\left(\mathrm{H}_{2}\right)$ and the estımates given in (3 32) The detanls are almost identical to those in the proof of Theorem 2 5, and are omıtted

Remark 35 The initial condition for $\mathbf{u}(0, \varepsilon)$ can depend on ε More precisely (312) can be replaced by

$$
\mathbf{u}(0, \varepsilon)=\frac{1}{\varepsilon} \sum_{j=0}^{\infty} \varepsilon^{\jmath} \mathbf{a}_{j},
$$

where each \mathbf{a}_{3} is constant The case $\mathbf{a}_{0} \neq 0$, leads to an analysis similar to that in Chapter 2 The analysis in this Chapter corresponds to the case where $\mathbf{a}_{0}=0$ The differences between the two cases are twofold Not only is the form of the asymptotic expansion different, but the outer solution can be constructed first in the case $\mathbf{a}_{0}=0$ whereas the initial layer correction solution must be found first in the case $a_{0} \neq 0$

Chapter 4

Volterra Equations with Weakly Singular Kernels

4.1 Introduction

This chapter considers the weakly singular scalar Volterra integral equation of the second kind

$$
\begin{equation*}
\varepsilon u(t)=f(t)+\frac{1}{\Gamma(\beta)} \int_{0}^{t} \frac{k(t, s)}{(t-s)^{1-\beta}} u(s) d s, \quad 0 \leq t \leq T \tag{array}
\end{equation*}
$$

where $0<\varepsilon \ll 1$ and $0<\beta<1$ The functions $f(t)$ and $k(t, s)$ are continuous and $k(t, t)=-1$ This problem (4 1.1) exhibits an initial layer at $t=0$ like the equations with continuous kernels considered in Chapter 2, but with a narrower initial layer width of order $O\left(\varepsilon^{1 / \beta}\right)$ as $\varepsilon \rightarrow 0$

The weakly singular equation (411) has a solution $u(t, \varepsilon)$ in $\mathrm{C}[0, T]$ for all $\varepsilon>0$ For $\varepsilon=0$
(411) reduces to the Abel integral equation

$$
\begin{equation*}
0=f(t)+\frac{1}{\Gamma(\beta)} \int_{0}^{t} \frac{k(t, s)}{(t-s)^{1-\beta}} v(s) d s, \quad 0 \leq t \leq T \tag{array}
\end{equation*}
$$

It certanly does not have a continuous solution if $f(0) \neq 0$ The forcing function $f(t)$ must be smoother than the desired solution Even if (412) has a solution $v(t)$ in $\mathrm{C}^{0}[0, T]$ it may not approximate $u(t, \varepsilon)$ uniformly for t in $[0, T]$ as $\varepsilon \rightarrow 0$

The kernel $a(t, s)$ in (411) given by

$$
a(t, s)=\frac{k(t, s)}{\Gamma(\beta)(t-s)^{1-\beta}}
$$

obviously does not satisfy the boundary layer stability condition $\left(\mathbf{H}_{2}\right)$ of section 22 , though $\lim _{s \uparrow t} a(t, s)=-\infty$ because $k(t, t)=-1$ If an equation like (411) is encountered with $k(0,0)<0$, a simple rescaling of ε leads to $k(0,0)=-1$ If $k(t, t)<0$ the equation for $t \mapsto k(t, t) u(t)$ has the form of (411)

Our aim is to find asymptotic approximations $U_{N}(t, \varepsilon)$ which are unformly close on $[0, T]$ to $u(t, \varepsilon)$ as $\varepsilon \rightarrow 0$ Problems of the type (411) do not exhibit an exponential decay in the initial layer and therefore the methodology developed in Chapter 2 must be modified To emphasise the fundamental ideas and illustrate the technical difficulties, we only attempt here to find the leading order term $U_{0}(t, \varepsilon)$ of the asymptotic solution It is proved that the residual $\left|\rho_{0}(t, \varepsilon)\right|=O(\varepsilon)$
uniformly as $\varepsilon \rightarrow 0$ It is not demonstrated that $\left|u(t, \varepsilon)-U_{0}(t, \varepsilon)\right|=O(\varepsilon)$ For an example with a known exact solution though, we do establish this estimate

42 Mathematical Prelımmarıes

In this section we review some of the results which are applied later in the chapter Firstly though we state some hypotheses which are used
$\left(\mathbf{H}_{6}\right) \quad 0<\beta<1$
$\left(\mathrm{H}_{7}\right) k(t, s)$ is a C^{2} function on \triangle_{T} with $k(t, t)=-1$, where

$$
\triangle_{T}=\{(t, s), 0 \leq t \leq T\}
$$

$\left(\mathrm{H}_{8}\right)$ The function $f(t)$ is C^{2} on $[0, T]$ with $f(0) \neq 0$

421 Solution of Abel Equations

It is a classical result of Abel's that for $0<\beta<1$ the equation

$$
\begin{equation*}
\frac{1}{\Gamma(\beta)} \int_{0}^{t} \frac{1}{(t-s)^{\mathbf{1}-\beta}} y(s) d s=\phi(t) \tag{421}
\end{equation*}
$$

has the solution

$$
y(t)=\left(\mathrm{D}^{\beta} \phi\right)(t)=\frac{1}{\Gamma(1-\beta)} \frac{d}{d t} \int_{0}^{t} \frac{1}{(t-s)^{\beta}} \phi(s) d s
$$

This relies on the useful formula

$$
\int_{0}^{t} \frac{1}{(t-s)^{1-\beta} s^{\beta}} d s=\Gamma(\beta) \Gamma(1-\beta)
$$

Tonell proved that (421) has a solution in $L^{1}[0, T]$ if ϕ is absolutely continuous on $[0, T]$ In this section we consider the more general Abel equation

$$
\begin{equation*}
\frac{1}{\Gamma(\beta)} \int_{0}^{t} \frac{k(t, s)}{(t-s)^{1-\beta}} y(s) d s=\phi(t) \tag{array}
\end{equation*}
$$

Gorenflo and Vessella [9] give several existence and unıqueness for (4 22) We state here a special case of Theorem 514 of [9]

Theorem 41 Suppose that $\left(\mathrm{H}_{6}\right)$ and $\left(\mathrm{H}_{7}\right)$ hold Let $\mathrm{D}^{\beta} \phi$ be contrnuous on $[0, T]$ Then (422) has a unqque solutron y in $\mathrm{C}[0, T]$ and

$$
\|y\|_{\mathrm{C}^{2}} \leq C\left\|\mathrm{D}^{\beta} \phi\right\|
$$

for some constant $C>0$ depending on T and $\|k\|_{C^{2}\left(\Delta_{T}\right)}$

Later in this chapter we requre knowledge of the asymptotic behaviour of solutions $y(t)$ of (422) The following result is Theorem 515 of [9] and comes from Atkinson [4]

Theorem 42 Suppose that $\left(\mathrm{H}_{6}\right)$ and $\left(\mathrm{H}_{7}\right)$ hold Suppose that there is a functoon $\tilde{\phi}(t)$ in C^{1} such that $\phi(t)=t^{\mu} \tilde{\phi}(t)$, with $1-\beta+\mu>0$ Then (422) has a unaque solution $y(t)$, and thes solution can be expressed as

$$
y(t)=t^{\mu-\beta} \tilde{y}(t)
$$

where $\tilde{y}(t)=\nu+t y^{*}(t)$ with ν constant and y^{*} contunuous Moreover $\nu=0$ of and only of $\tilde{\phi}(0)=0$, and there is a constant $c>0$ such that

$\|\tilde{y}\|_{\mathrm{C}} \leq c\|\tilde{\phi}\|_{\mathrm{C}^{1}}$

422 The Mittag-Leffler Function and its Asymptotic Expansion

In this section we present some of the properties of the Mittag-Leffler function, $\mathbf{E}_{\mu} \mathbb{C} \rightarrow \mathbb{C}$ In particular we state formulae for $\mathrm{E}_{\mu}(z)$ for large $z \in \mathbb{C}$ For each $\mu>0$ the Mittag-Leffer function 15 defined by

$$
\begin{equation*}
\mathrm{E}_{\mu}(z)=\sum_{n=0}^{\infty} \frac{1}{\Gamma(\mu n+1)} z^{n} \tag{423}
\end{equation*}
$$

E_{μ} is entıre, and

$$
\begin{equation*}
\mathrm{E}_{1}(z)=\mathrm{e}^{z}, \quad \mathrm{E}_{2}(z)=\cosh z, \quad \mathrm{E}_{1 / 2}\left(z^{1 / 2}\right)=2 \pi^{-1 / 2} \mathrm{e}^{-z} \operatorname{erfc}\left(-z^{1 / 2}\right) \tag{424}
\end{equation*}
$$

An interesting property proved by Pollard [23] is $t \mapsto \mathrm{E}_{\mu}(-t)$ is completely monotonc on $[0, \infty)$ if $0 \leq \mu \leq 1$ Thus for μ in this parameter range $(-1)^{n} \mathrm{E}_{\mu}^{(n)}(-t) \geq 0$ for $t \geq 0$, where

$$
\mathrm{E}_{\mu}^{n}(z)=\frac{d^{n} \mathrm{E}_{\mu}}{d z^{n}}(z)
$$

Figure 41 The contour of integration for the Mittag-Leffler function $E_{\mu}(z)$

A detalled discussion on the properties of the Mittag-Leffler function can be found in Chapter 18 of Erdelyı, Magnus, Oberhettınger and Trıcomı [6] or Chapter 5 of Parıs and Kamınskı [22]

We are interested in the asymptotic expansion of $\mathrm{E}_{\mu}(z)$ only in case where $0<\mu<1$ However the asymptotıc expansions formulae below are for all $0<\mu<2$ These expansions are derived from the representation

$$
\begin{equation*}
\mathrm{E}_{\mu}(z)=\frac{1}{2 \pi \imath} \int_{c-\imath \infty}^{c+\imath \infty} e(s) z^{-s} d s \tag{425}
\end{equation*}
$$

for some $0<c<1$ where

$$
\begin{equation*}
e(s)=\frac{\pi \cos \pi s}{\Gamma(1-\mu s) \sin \pi s} \tag{426}
\end{equation*}
$$

(425) comes from the formula for inverting a Mellin transform We decompose the path in (425) into a contour C^{\prime} which is closed to the left It is shown in Figure 41 Now $e(s) z^{-s}$ has simple poles at $s=0,-1,-2, \quad$ Let a_{n} be the residue of $s \mapsto e(s) z^{-s}$ at $-n$ Then

$$
a_{n}=\frac{z^{n}}{\Gamma(1+\mu n)}
$$

To check that $e(s)$ above is the proper choice in (4 25)

$$
\frac{1}{2 \pi \imath} \int_{C^{\prime}} e(s) z^{-s} d s=\sum_{n=0}^{\infty} a_{n}=\sum_{n=0}^{\infty} \frac{z^{n}}{\Gamma(\mu n+1)}=\mathrm{E}_{\mu}(z)
$$

Using the integral representation in (4 2 5), it is shown in Erdelyı et al [6] and Paris and Kaminskı [22] that for $0<\mu<2$, the controlling factor of the leading behaviour of $\mathrm{E}_{\mu}(z)$ is $\mathrm{e}^{z^{1 / \mu}}$ as $z \rightarrow \infty$ Stokes lines occur at $\operatorname{Re} z^{1 / \mu}=0$ or $\arg z= \pm \pi \mu$ and antı-Stokes lines occur at $\operatorname{Im} z^{1 / \mu}=0$ or $\arg z= \pm \frac{\pi}{2} \mu$

Figure 42 The Stokes lines are shown for the exponential term in (428a) corresponding to $\mu=1 / 3$ Also shown is the sector E where the exponential term in (428a) dominates and the sector A where the algebraic term in (428a) and (428b) dominates

Figure 43 The Stokes lines are shown for the exponential term in (428 d) corresponding to $\mu=1 / 4$ Also shown is the sector E where the exponential term in (428a) dominates and the sector A where the algebraic term in (428a) and (428b) dominates

It is shown in Erdelyı et al [6] and Parıs and Kaminskı [22] that the expansion of $\mathbf{E}_{\mu}(z)$ when $\mu<2$ is given by

$$
\begin{align*}
& \mathrm{E}_{\mu}(z) \sim \frac{1}{\mu} \mathrm{e}^{z^{1 / \mu}}-\sum_{k=1}^{\infty} \frac{z^{-k}}{\Gamma(1-\mu k)}, \quad|\arg z|<\frac{3 \pi \mu}{2}, \tag{427a}\\
& \mathrm{E}_{\mu}(z) \sim-\sum_{k=1}^{\infty} \frac{z^{-k}}{\Gamma(1-\mu k)}, \quad|\arg (-z)|<\frac{\pi}{2}(2-\mu) \tag{427b}
\end{align*}
$$

It should be noted that (427) is a valid asymptotic expansion in the Poncare sense The discussion in §51 of [22] elucıdates what is happening for $0<\mu<1$ The expansions have a common sectors $\pi \mu / 2<|\arg z|<3 \pi \mu / 2$ In the sector $|\arg z|<\pi \mu$, expansion (427a) is valid However the exponential term is decaying for $\pi \mu / 2<|\arg z|<\pi \mu$ since the antı-Stokes lines at $\arg z= \pm \pi \mu / 2$ have been crossed $\mathrm{E}_{\mu}(z)$ is exponentially large as $|z| \rightarrow \infty$ for $|\arg z|<\pi \mu / 2$ As $\arg z$ crosses the Stokes lines arg $z= \pm \pi \mu$, the exponential term disappears from the leading order term and becomes subdominant It remerges as $\arg z$ crosses $\pm 2 \pi \mu$, but it is exponentially decaying At $\arg z=3 \pi \mu / 2$, expansion (427a) is no longer valid Expansion (427b) holds for $|\arg (-z)|<$ $\pi \mu / 2$ Since we are interested in the asymptotic expansion on the negative real axis, this sector particularly concerns us The conclusion is that we obtain the composite expansion

$$
\begin{align*}
& \mathrm{E}_{\mu}(z) \sim \frac{1}{\mu} \mathrm{e}^{z^{1 / \mu}}-\sum_{k=1}^{\infty} \frac{z^{-k}}{\Gamma(1-\mu k)}, \quad|\arg z|<\pi \mu \tag{428a}\\
& \mathrm{E}_{\mu}(z) \sim-\sum_{k=1}^{\infty} \frac{z^{-k}}{\Gamma(1-\mu k)}, \quad|\arg (-z)|<\pi(1-\mu) \tag{428b}
\end{align*}
$$

We illustrate this in the Figures 42 and 43

423 Solution of a Simple Class of Abel-Volterra Equations

The Abel -Volterra equation

$$
\begin{equation*}
z(\tau)=\psi(\tau)-\frac{1}{\Gamma(\beta)} \int_{0}^{\tau} \frac{1}{(\tau-\sigma)^{1-\beta}} z(\sigma) d \sigma, \quad \tau \geq 0 \tag{429}
\end{equation*}
$$

has an explicit solution in terms of the Mittag - Leffler function \mathbf{E}_{β}
The following existence and uniqueness result, which is attributed to Hille and Tamarkın [11], is given in Geronflo and Vessella [9]

Theorern 43 Let $0<\beta<1$ and $\psi(\tau)$ be continuous on $[0, \infty)$ Then equation (429) has the
contrnuous solution $z(\tau)$ given by

$$
\begin{equation*}
z(\tau)=\frac{d}{d \tau} \int_{0}^{\tau} \mathrm{E}_{\beta}\left(-(\tau-\sigma)^{\beta}\right) \psi(\sigma) d \sigma, \quad \tau \geq 0 \tag{4210}
\end{equation*}
$$

z is unsque in the class $\mathrm{L}_{\text {loc }}^{\infty}\left(\mathbb{R}^{+}\right)$

4.3 Heurıstic Analysis and Formal Solution

The analysis of Section 23 shows that we should introduce the new time scale $\tau=t / \varepsilon^{\gamma}$ where $\gamma=\beta^{-1}$ We call this the inner variable It is easily found that of $f(0) \neq 0$ then the magnitude of the boundary layer is ε^{-1} and the width ε^{γ} We seek an asymptotic solution $u(t, \varepsilon)$ in the form

$$
\begin{equation*}
u(t, \varepsilon)=y(t, \varepsilon)+\frac{1}{\varepsilon} z\left(t / \varepsilon^{\gamma}, \varepsilon\right) \tag{array}
\end{equation*}
$$

and require that

$$
\lim _{\tau \rightarrow \infty} z(\tau, \varepsilon)=0
$$

$z\left(t / \varepsilon^{\gamma}, \varepsilon\right)$ corrects the nonuniformity in the initial layer Substituting (431) into (411) gives

$$
\begin{equation*}
\varepsilon y(t, \varepsilon)+z\left(t / \varepsilon^{\gamma}, \varepsilon\right)=f(t)+\frac{1}{\Gamma(\beta)} \int_{0}^{t} \frac{k(t, s)}{(t-s)^{1-\beta}} y(s, \varepsilon) d s+\frac{1}{\Gamma(\beta) \varepsilon} \int_{0}^{t} \frac{k(t, s)}{(t-s)^{1-\beta}} z\left(s / \varepsilon^{\gamma}, \varepsilon\right) d s \tag{432}
\end{equation*}
$$

It is assumed that $y(t, \varepsilon)$ and $z(\tau, \varepsilon)$ have asymptotic expansions of the form

$$
y(t, \varepsilon) \sim \sum_{n=0}^{\infty} \varepsilon^{n} y_{n}(t), \quad z(\tau, \varepsilon) \sim \sum_{n=0}^{\infty} \varepsilon^{n \gamma} z_{n}(\tau)
$$

as $\varepsilon \rightarrow 0$, so that

$$
\begin{equation*}
u(t, \varepsilon) \sim \sum_{n=0}^{\infty} \varepsilon^{n} y_{n}(t)+\sum_{n=0}^{\infty} \varepsilon^{n \gamma-1} z_{n}\left(t / \varepsilon^{\gamma}\right) \tag{433}
\end{equation*}
$$

Moreover we require that for all $n \geq 0$,

$$
\begin{equation*}
\lim _{\tau \rightarrow \infty} z_{n}(\tau)=0 \tag{434}
\end{equation*}
$$

Firstly we restrict attention to

$$
U_{0}(t, \varepsilon)=y_{0}(t)+\frac{1}{\varepsilon} z_{0}\left(t / \varepsilon^{\gamma}\right)
$$

assuming that

$$
\begin{equation*}
z_{0}(\tau) \rightarrow \frac{f(0)}{\Gamma(1-\beta) \tau^{\beta}} \quad \text { as } \tau \rightarrow \infty \tag{435}
\end{equation*}
$$

Defining the residual $\rho_{0}(t, \varepsilon)$ in the usual way, we see

$$
\begin{align*}
\rho_{0}(t, \varepsilon)+\varepsilon y_{0}(t)+z_{0}\left(t / \varepsilon^{\gamma}\right)= & f(t)+\frac{1}{\Gamma(\beta)} \int_{0}^{t} \frac{k(t, s)}{(t-s)^{1-\beta}} y_{0}(s) d s \\
& +\frac{1}{\varepsilon \Gamma(\beta)} \int_{0}^{t} \frac{k(t, s)}{(t-s)^{1-\beta}} z_{0}\left(s / \varepsilon^{\gamma}\right) d s \tag{436}
\end{align*}
$$

By expressing this in terms of $\tau=t / \varepsilon^{\gamma}$,

$$
\begin{aligned}
\rho_{0}\left(\varepsilon^{\gamma} \tau, \varepsilon\right)+z_{0}(\tau)+\varepsilon y_{0}\left(\varepsilon^{\gamma} \tau\right)= & f\left(\varepsilon^{\gamma} \tau\right)+\frac{1}{\Gamma(\beta)} \int_{0}^{\tau} \frac{k\left(\varepsilon^{\gamma} \tau, \varepsilon^{\gamma} \sigma\right)}{(\tau-\sigma)^{1-\beta}} z_{0}(\sigma) d \sigma \\
& +\varepsilon \int_{0}^{\tau} \frac{k\left(\varepsilon^{\gamma} \tau, \varepsilon^{\gamma} \sigma\right)}{(\tau-\sigma)^{1-\beta}} y_{0}\left(\varepsilon^{\gamma} \sigma\right) d \sigma
\end{aligned}
$$

This can be rearranged as

$$
\begin{aligned}
\rho_{0}\left(\varepsilon^{\gamma} \tau, \varepsilon\right)+\varepsilon y_{0}\left(\varepsilon^{\gamma} \tau\right)= & \left(f(0)+\frac{1}{\Gamma(\beta)} \int_{0}^{\tau} \frac{k(0,0)}{(\tau-\sigma)^{1-\beta}} z_{0}(\sigma) d \sigma-z_{0}(\tau)\right)+f\left(\varepsilon^{\gamma} \tau\right)-f(0) \\
& +\frac{1}{\Gamma(\beta)} \int_{0}^{\tau} \frac{k\left(\varepsilon^{\gamma} \tau, \varepsilon^{\gamma} \sigma\right)-k(0,0)}{(\tau-\sigma)^{1-\beta}} z_{0}(\sigma) d \sigma \\
& +\frac{\varepsilon}{\Gamma(\beta)} \int_{0}^{\tau} \frac{k\left(\varepsilon^{\gamma} \tau, \varepsilon^{\gamma} \sigma\right)}{(\tau-\sigma)^{1-\beta}} y_{0}\left(\varepsilon^{\gamma} \sigma\right) d \sigma
\end{aligned}
$$

and hence

$$
\rho_{0}\left(\varepsilon^{\gamma} \tau, \varepsilon\right)=\left(f(0)+\frac{1}{\Gamma(\beta)} \int_{0}^{\tau} \frac{k(0,0)}{(\tau-\sigma)^{1-\beta}} z_{0}(\sigma) d \sigma-z_{0}(\tau)\right)+O(\varepsilon)+O\left(\varepsilon^{\gamma}\right)
$$

We see that if $\rho_{0}\left(\varepsilon^{\gamma} \tau, \varepsilon\right)=o(1)$ as $\varepsilon \rightarrow 0$ for fixed $\tau>0$, then

$$
\begin{equation*}
z_{0}(\tau)=f(0)-\frac{1}{\Gamma(\beta)} \int_{0}^{\tau} \frac{1}{(\tau-\sigma)^{1-\beta}} z_{0}(\sigma) d \sigma, \quad \tau \geq 0 \tag{437}
\end{equation*}
$$

To derive the leading order outer solution, we express (437) in terms of $t=\varepsilon^{\gamma} \tau$ and substitute into (436), giving

$$
\begin{align*}
\rho_{0}(t, \varepsilon)+\varepsilon y_{0}(t) & =f(t)-f(0)+\frac{1}{\Gamma(\beta)} \int_{0}^{t} \frac{k(t, s)}{(t-s)^{1-\beta}} y_{0}(s) d s \\
+ & \frac{1}{\varepsilon \Gamma(\beta)} \int_{0}^{t} \frac{k(t, s)-k(0,0)}{(t-s)^{1-\beta}} z_{0}\left(s / \varepsilon^{\gamma}\right) d s \tag{438}
\end{align*}
$$

It follows from (435) and the Dominated Convergence Theorem that

$$
\frac{1}{\varepsilon} \int_{0}^{t} \frac{\{k(t, s)-k(0,0)\}}{(t-s)^{1-\beta}} z_{0}\left(s / \varepsilon^{\gamma}\right) d s \rightarrow \frac{f(0)}{\Gamma(1-\beta)} \int_{0}^{t} \frac{\{k(t, s)-k(0,0)\}}{(t-s)^{I-\beta} s^{\beta}} d s
$$

as $\varepsilon \rightarrow 0$ If $\rho(t, \varepsilon)=o(1)$ as $\varepsilon \rightarrow 0$, we deduce from (436) that the leading order outer solution $y_{0}(t)$ satasfies

$$
\begin{equation*}
0=f(t)-f(0\rangle+\frac{f(0)}{\Gamma(\beta) \Gamma(1-\beta)} \int_{0}^{t} \frac{k(t, s)-k(0,0)}{(t-s)^{1-\beta} s^{\beta}} d s+\frac{1}{\Gamma(\beta)} \int_{0}^{t} \frac{k(t, s)}{(t-s)^{1-\beta}} y_{0}(s) d s \tag{439}
\end{equation*}
$$

If $y_{0}(t)$ satisfies (4 39) and $z_{0}(\tau)$ obeys (437), it follows from (438) that

$$
\begin{equation*}
\rho_{0}(t, \varepsilon)=-\varepsilon y_{0}(t)+\frac{1}{\varepsilon \Gamma(\beta)} \int_{0}^{t} \frac{k(t, s)-k(0,0)}{(t-s)^{1-\beta}}\left(z_{0}\left(s / \varepsilon^{\gamma}\right)-\frac{f(0) \varepsilon}{\Gamma(1-\beta) s^{\beta}}\right) d s \tag{4310}
\end{equation*}
$$

44 Properties of the Formal Solution

In this section, we show that the solutions of the equations for $y_{0}(t)$ and $z_{0}(\tau)$ exist and elucidate some of their properties

Equation (439) for the outer solution can be rewritten as

$$
\begin{equation*}
0=\phi(t)+\int_{0}^{t} \frac{k(t, s)}{(t-s)^{1-\beta}} y_{0}(s) d s, \quad 0 \leq t \leq T \tag{441}
\end{equation*}
$$

where

$$
\phi(t)=f(t)-f(0)+\frac{f(0)}{\Gamma(\beta) \Gamma(1-\beta)} \int_{0}^{t} \frac{k(t, s)-k(0,0)}{(t-s)^{1-\beta} s^{\beta}} d s
$$

Note that

$$
\left|\frac{f(0)}{\Gamma(\beta) \Gamma(1-\beta)} \int_{0}^{t} \frac{\{k(t, s)-k(0,0)\}}{(t-s)^{1-\beta} s^{\beta}} d s\right| \leq f(0) \sup _{0 \leq s \leq t}|k(t, s)-k(0,0)| \rightarrow 0
$$

as $t \rightarrow 0$ This and $\left(\mathrm{H}_{8}\right)$ mply that $\phi(0)=0$ Also

$$
\begin{aligned}
\frac{1}{t} \int_{0}^{t} \frac{k(t, s)-k(0,0)}{(t-s)^{1-\beta} s^{\beta}} d s & =\frac{1}{t} \int_{0}^{1} \frac{\{k(t, t \theta)-k(0,0)\}}{(1-\theta)^{1-\beta} \theta^{\beta}} d \theta \\
& \rightarrow \partial_{1} k(0,0) \int_{0}^{1} \frac{1}{(1-\theta)^{1-\beta} \theta^{\beta}} d \theta+\partial_{2} k(0,0) \int_{0}^{1} \frac{\theta^{(1-\beta)}}{(1-\theta)^{1-\beta}} d \theta
\end{aligned}
$$

as $t \rightarrow 0$ Hence we can write

$$
\begin{equation*}
\phi(t)=t \tilde{\phi}(t) \tag{442}
\end{equation*}
$$

and show that $\tilde{\phi}(t)$ is C^{1} Using Theorem 42 we can establish from (441) and (442) the following
Proposition 44 Suppose that $\left(\mathbf{H}_{6}\right),\left(\mathbf{H}_{7}\right)$ and $\left(\mathbf{H}_{8}\right)$ hold Then (4 3 g) has a unique contrnuous solution $y_{0}(t)$ whtch satusfies

$$
\begin{equation*}
y_{0}(t)=t^{1-\beta} \tilde{y}_{0}(t) \tag{443}
\end{equation*}
$$

where \tilde{y}_{0} is continuous on $[0, T]$

It is a simple corollary of Theorem 43 and (428b) that the following result is true

Proposition 45 Suppose that $\left(\mathbf{H}_{6}\right),\left(\mathbf{H}_{7}\right)$ and $\left(\mathbf{H}_{8}\right)$ hold Then (437) has the continuous solution

$$
\begin{equation*}
z_{0}(\tau)=f(0) \mathrm{E}_{\beta}\left(-\tau^{\beta}\right) \tag{44}
\end{equation*}
$$

for $\tau \geq 0$, whuch satzsfies

$$
\begin{equation*}
z_{0}(\tau) \sim f(0) \sum_{\jmath=1}^{\infty}(-1)^{\jmath+1} \frac{\tau^{-\beta \jmath}}{\Gamma(1-\beta \jmath)} \quad \text { as } \tau \rightarrow \infty \tag{445}
\end{equation*}
$$

Remark 46 This results vindicates assumption (435) made in the derivation of (439) and (437) or $y_{0}(t)$ and $z_{0}(\tau)$

It is important to establish the asymptotic behaviour of $y_{0}(t)$ as $t \downarrow 0$ and $z_{0}(\tau)$ as $\tau \rightarrow \infty$ If we define $w(\tau, \varepsilon)=\varepsilon u\left(\varepsilon^{\gamma} \tau, \varepsilon\right)$, then

$$
w(\tau, \varepsilon)=f\left(\varepsilon^{\gamma} \tau\right)+\int_{0}^{\tau} \frac{k\left(\varepsilon^{\gamma} \tau, \varepsilon^{\gamma} \sigma\right)}{(\tau-\sigma)^{1-\beta}} w(\sigma, \varepsilon) d \sigma
$$

Therefore we expect the inner expansion to be

$$
w(t, \varepsilon) \sim \sum_{j=0}^{\infty} \varepsilon^{j \gamma} w_{j}(\tau) \quad \text { as } \varepsilon \rightarrow 0
$$

Comparing this to (433) we see that

$$
w_{0}(\tau)+\varepsilon^{\gamma} w_{1}(\tau)+\quad \sim z_{0}(\tau)+\varepsilon y_{0}\left(\varepsilon^{\gamma} \tau\right)+
$$

Since (443) imphes that $\varepsilon y_{0}\left(\varepsilon^{\gamma} \tau\right)=\varepsilon^{\gamma} \tilde{y_{0}}\left(\varepsilon^{\gamma} \tau\right)$, the apparent anomaly of a $O(\varepsilon)$ term balancing with a $O\left(\varepsilon^{\gamma}\right)$ term does not arise

4.5 Example

Angell and Olmstead in [2] consider the following weakly singular linear singularly perturbed Volterra equation

$$
\begin{equation*}
\varepsilon u(t)=f(t)-\frac{1}{\pi^{1 / 2}} \int_{0}^{t} \frac{u(s)}{(t-s)^{1 / 2}} d s \tag{array}
\end{equation*}
$$

where

$$
f(t)=\frac{1}{\pi^{1 / 2}} \int_{0}^{t} \frac{h(s)}{(t-s)^{1 / 2}} d s
$$

and $h(t)$ is C^{2} with $h(0) \neq 0$ Since $\Gamma(1 / 2)=\pi^{1 / 2}$, this corresponds to (411) with $k(t, s)=-1$ and $\beta=1 / 2$ Therefore $\gamma=2$ The exact solution of (451) can be obtaned by Laplace transforms or read directly from (424) and (4210) It is given by

$$
\begin{equation*}
u(t, \varepsilon)=\frac{f(t)}{\varepsilon}-\frac{1}{\varepsilon^{2}} \int_{0}^{t} \mathrm{e}^{(t-s) / \varepsilon^{2}} \operatorname{erfc}\left(\frac{(t-s)^{1 / 2}}{\varepsilon}\right) h(s) d s \tag{452}
\end{equation*}
$$

Since $f\left(\varepsilon^{2} \tau\right)=2 \varepsilon h(0) \tau^{1 / 2} / \pi^{1 / 2}+O\left(\varepsilon^{2}\right)$, we look for an asymptotic solution of the form

$$
u(t, \varepsilon)=\sum_{j=0}^{\infty}\left(\varepsilon^{\jmath} y_{\jmath}(t)+\varepsilon^{2 J} z_{\jmath}\left(t / \varepsilon^{2}\right)\right)
$$

Following the formal method of Section 43 , it is found that the leading order outer solution $y_{0}(t)$ obeys

$$
0=\int_{0}^{t} \frac{h(s)-y_{0}(s)}{(t-s)^{1 / 2}} d s, \quad t \geq 0
$$

and hence $y_{0}(t)=h(t)$
The inner correction term $z_{0}(\tau)$ is a solution of

$$
\begin{aligned}
z_{0}(\tau) & =-y_{0}(0)+\frac{2 \tau^{1 / 2}}{\pi^{1 / 2}}\left(h(0)-y_{0}(0)\right)-\frac{1}{\pi^{1 / 2}} \int_{0}^{\tau} \frac{1}{(\tau-\sigma)^{1 / 2}} z_{0}(\sigma) d \sigma \\
& =-h(0)-\frac{1}{\pi^{1 / 2}} \int_{0}^{\tau} \frac{1}{(\tau-\sigma)^{1 / 2}} z_{0}(\sigma) d \sigma
\end{aligned}
$$

By (4 24) and (4 2 10)

$$
\begin{equation*}
z_{0}(\tau)=-h(0) \mathrm{e}^{\tau} \operatorname{erfc}\left(\tau^{1 / 2}\right), \quad \tau \geq 0 \tag{453}
\end{equation*}
$$

The asymptotic expansion of the integral

$$
\begin{equation*}
\operatorname{erfc} \sqrt{\tau}=\frac{2}{\sqrt{\pi}} \int_{\sqrt{\tau}}^{\infty} \mathrm{e}^{-t^{2}} d t \sim \frac{\mathrm{e}^{-\tau}}{\sqrt{\pi \tau}}\left\{1-\frac{1}{2 \tau}+\frac{3}{4 \tau^{2}}+\quad\right\} \quad \text { as } \tau \rightarrow \infty \tag{454}
\end{equation*}
$$

implies that

$$
z_{0}(\tau) \sim-\frac{h(0)}{\sqrt{\pi \tau}}\left\{1-\frac{1}{2 \tau}+\frac{3}{4 \tau^{2}}+\right\}
$$

so that $z_{0}(\tau) \rightarrow 0$ as $\tau \rightarrow \infty$, but only algebraically
Therefore up to the leading order, the formal solution of (451) is given by

$$
\begin{equation*}
U_{0}(t, \varepsilon)=h(t)-h(0) \mathrm{e}^{t / \varepsilon^{2}} \operatorname{erfc}\left(t / \varepsilon^{2}\right) \tag{455}
\end{equation*}
$$

To show directly that $U_{0}(t, \varepsilon)$ approximates the solution of (452) to within $O(\varepsilon)$ consider the difference

$$
\begin{align*}
u(t, \varepsilon)-U_{0}(t, \varepsilon)= & \frac{1}{\varepsilon} \int_{0}^{t} \frac{h(s)}{\pi^{1 / 2}(t-s)^{1 / 2}} d s-\frac{1}{\varepsilon^{2}} \int_{0}^{t} \mathrm{e}^{(t-s) / \varepsilon^{2}} \operatorname{erfc}\left(\frac{(t-s)^{1 / 2}}{\varepsilon}\right) h(s) d s \\
& -h(t)+h(0) \mathrm{e}^{t / \varepsilon^{2}} \operatorname{erfc}\left(\frac{t^{1 / 2}}{\varepsilon}\right) \tag{456}
\end{align*}
$$

Integrating by parts

$$
\begin{align*}
\frac{1}{\varepsilon^{2}} \int_{0}^{t} \mathrm{e}^{(t-s) / \epsilon^{2}} \operatorname{erfc}\left(\frac{\sqrt{t-s}}{\varepsilon}\right) h(s) d s & =h(0) \mathrm{e}^{t / \varepsilon^{2}} \operatorname{erfc} \frac{\sqrt{t}}{\varepsilon}-h(t)+\frac{1}{\varepsilon} \int_{0}^{t} \frac{h(s)}{\sqrt{\pi(t-s)}} d s \\
& +\varepsilon^{2} h^{\prime}(0) \mathrm{e}^{t / \epsilon^{2}} \operatorname{erfc} \frac{\sqrt{t}}{\varepsilon}-\varepsilon^{2} h^{\prime}(t)-\varepsilon \int_{0}^{t}[\pi(t-s)]^{-1 / 2} h^{\prime}(s) d s \\
& -\varepsilon^{2} \int_{0}^{t}\left\{\mathrm{e}^{(t-s) / \epsilon^{2}} \operatorname{erfc} \frac{\sqrt{t-s}}{\varepsilon}-\frac{2 \varepsilon \sqrt{t-s}}{\sqrt{\pi}}\right\} h^{\prime \prime}(s) d s \tag{457}
\end{align*}
$$

Substituting this into (456), we get

$$
\begin{aligned}
u(t, \varepsilon)-U_{0}(t, \varepsilon)= & -\varepsilon \int_{0}^{t}[\pi(t-s)]^{-1 / 2} h^{\prime}(s) d s-\varepsilon^{2} h^{\prime}(t)+\varepsilon^{2} \mathrm{e}^{t / \varepsilon^{2}} \operatorname{erfc} \frac{\sqrt{t}}{\varepsilon} h^{\prime}(0) \\
& -\varepsilon^{2} \int_{0}^{t}\left\{\mathrm{e}^{(t-s) / \varepsilon^{2}} \operatorname{erfc} \frac{\sqrt{(t-s)}}{\varepsilon}-\frac{2 \varepsilon \sqrt{(t-s)}}{\sqrt{\pi}}\right\} h^{\prime \prime}(s) d s
\end{aligned}
$$

This imples that

$$
\left|u(t, \varepsilon)-U_{0}(t, \varepsilon)\right|=O(\varepsilon)
$$

as $\varepsilon \rightarrow 0$ uniformly on $0 \leq t \leq T$
We now examine the exact solution (452) with the view of directly determining a valid asymptotic solution for $u(t, \varepsilon)$ Suppose now that $h(t)$ is C^{∞} For the outer expansion, we fix $t>0$ in (452) and let $\varepsilon \rightarrow 0$ Then

$$
u(t, \varepsilon) \sim \sum_{n=0}^{\infty} \varepsilon^{n} v_{n}(t) \quad \text { as } \varepsilon \rightarrow 0
$$

The integration by parts in (457) gives

$$
\begin{equation*}
v_{0}(t)=h(t), \quad v_{1}(t)=\frac{h(0)}{(\pi t)^{1 / 2}}-\int_{0}^{t} \frac{1}{\pi^{1 / 2}(t-s)^{1 / 2}} h^{\prime}(s) d s, \quad \text { etc } \tag{458}
\end{equation*}
$$

where the first term in v_{1} follows from the first term in (457) and the asymptotic expansion (454) To get the inner expansion, we express (452) in terms of the inner variable $\tau=t / \varepsilon^{2}$ to get

$$
u\left(\varepsilon^{2} \tau, \varepsilon\right)=w(\tau, \varepsilon)=\int_{0}^{\tau}\left\{\frac{1}{\pi^{1 / 2}(\tau-\sigma)^{1 / 2}}-\mathrm{e}^{\tau-\sigma} \operatorname{erfc}(\tau-\sigma)^{1^{1 / 2}}\right\} h\left(\varepsilon^{2} \sigma\right) d \sigma
$$

This suggests that the inner expansion has the form

$$
w(\tau, \varepsilon)=\sum_{n=0}^{\infty} \varepsilon^{2 n} w_{n}(\tau) \quad \text { as } \varepsilon \rightarrow 0
$$

Equating the coefficients of like powers of ε, we get

$$
w_{n}(\tau)=\frac{h^{(n)}(0)}{n^{\prime}} \int_{0}^{\tau}\left\{\frac{1}{\pi^{1 / 2}(\tau-\sigma)^{1 / 2}}-\mathrm{e}^{\tau-\sigma} \operatorname{erfc}(\tau-\sigma)^{1 / 2}\right\} \sigma^{n} d \sigma
$$

The leading order term in (45) is given by

$$
w_{0}(\tau)=h(0) \int_{0}^{\tau}\left\{\frac{1}{\pi^{1 / 2}(\tau-\sigma)^{1 / 2}}-\mathrm{e}^{\tau-\sigma} \operatorname{erfc}(\tau-\sigma)^{1 / 2}\right\} d \sigma
$$

equivalently

$$
\begin{equation*}
w_{0}(\tau)=h(0)-h(0) \mathrm{e}^{\tau} \operatorname{erfc} \sqrt{\tau} \tag{459}
\end{equation*}
$$

The first order term $w_{1}(\tau)$ is given by

$$
w_{1}(\tau)=h^{\prime}(0) \int_{0}^{\tau}\left\{\frac{1}{\pi^{1 / 2}(\tau-\sigma)^{1 / 2}}-\mathrm{e}^{\tau-\sigma} \operatorname{erfc}(\tau-\sigma)^{1 / 2}\right\} \sigma d \sigma
$$

which on integration by parts is

$$
w_{1}(\tau)=h^{\prime}(0) \tau-h^{\prime}(0) \int_{0}^{\tau} \mathrm{e}^{\sigma} \operatorname{erfc} \sqrt{\sigma} d \sigma
$$

We then see that the leading order term in the outer expansion and the leading order term in the inner expansion form a composite expansion which is the uniformly valid asymptotic solution $U_{0}(t, \varepsilon)$ obtaned by the methodology developed

Chapter 5

Nonlinear Scalar Volterra Integral Equations

5.1 Introduction

This chapter considers the nonlinear singularly perturbed Volterra integral equation,

$$
\begin{equation*}
\varepsilon u(t)=f(t, \varepsilon)+\int_{0}^{t} g(t, s, u(s)) d s, \quad 0 \leq t \leq T \tag{array}
\end{equation*}
$$

where $0<\varepsilon \ll 1$ The function $f(t, \varepsilon)$ is C^{∞} and defined for $0 \leq t \leq T$ and $0 \leq \varepsilon \leq 1, g(t, s, u)$ is also C^{∞} and defined for $0 \leq s \leq t \leq T$ and $-\infty<u<\infty$ Also we require that $\lim _{\varepsilon \rightarrow 0} f(0, \varepsilon)=0$ f has an asymptotic power series expansion,

$$
f(t, \varepsilon) \sim \sum_{j=0}^{\infty} \varepsilon^{\jmath} f_{j}(t) \quad \text { as } \varepsilon \rightarrow 0
$$

where each $f_{y}(t)$ is C^{∞} Furthermore, we require that $f_{0}(0)=0$ and $f_{1}(0)$ is nontrivial
Problem (511) depends on the parameter ε in such a way that the reduced equation

$$
0=f_{0}(t)+\int_{0}^{t} g(t, s, v(s)) d s, \quad 0 \leq t \leq T
$$

is a Volterra equation of the first kind For this to have a continuous solution, $f_{0}(t)$ cannot be merely continuous Assuming that a stability condition for the boundary layer holds, we show that $u(t, \varepsilon)$ converges uniformly to $v(t)$ as $\varepsilon \rightarrow 0$

Angell and Olmsteadt [2] used the additive decomposition method to obtain the first few terms in a formal solution of (511) However Skinner [24] developed a method of generating all the terms of the formal solution and showed that the formal solution is an asymptotic solution His work builds on that of Smith [25], Ch 6, O'Malley [20], Ch 4 and O'Malley [21], Ch 2 on singularly perturbed mitial value problems for nonlmear ordinary differential equations The study of the nonlinear integral equation (5 1 1) in this chapter was mostly done before the work of Skinner [24] was found, and therefore most of it is independent work However, an adaptation of Skinner's method of deriving the equations for the formal solution is included here

In Section 5 2, we construct a formal solution for (511) of the form

$$
\begin{equation*}
U_{N}(t, \varepsilon)=\sum_{j=0}^{N} \varepsilon^{J}\left[y_{\jmath}(t)+z_{\jmath}(t / \varepsilon)\right], \tag{array}
\end{equation*}
$$

using the O'Malley/Hoppensteadt method The analysis in this section is more complicated than that of Section 23 In Section 53 we prove that $y_{j}(t)$ and $z_{j}(\tau)$ have the properties assumed in their derivation Then in Section 5 3, we prove using the Banach fixed point theorem that

$$
\left|u(t, \varepsilon)-U_{N}(t, \varepsilon)\right|=O\left(\varepsilon^{N+1}\right) \quad \text { ds } \varepsilon \rightarrow 0
$$

uniformly for $0 \leq t \leq T$ An example from Angell and Olmstead [2] is discussed in Section 55 and one from Skinner [24] in Section 56

52 Derıvation of the Formal Solution

We derive in this section a formal solution for the integral equation (5 111) using the additive decomposition method We suppose that the solution of (5ll) can be represented in the form

$$
\begin{equation*}
u(t, \varepsilon)=y(t, \varepsilon)+\phi(\varepsilon) z(t / \mu(\varepsilon), \varepsilon) \tag{521}
\end{equation*}
$$

where

$$
y(t, \varepsilon)=y_{0}(t)+o(1), \quad z(\tau, \varepsilon)=z_{0}(\tau)+o(1) \quad \text { as } \varepsilon \rightarrow 0
$$

Firstly, we determine formally the width $\mu(\varepsilon)$ and the magnitude $\phi(\varepsilon)$ of the initial boundary layer, supposing that $\mu(\varepsilon) \rightarrow 0$ For this argument we assume that $g(0,0, u)$ is nontrivial We follow the analysis in Section 23 Substıtuting (5 2 1) into (5 11) gives

$$
\begin{equation*}
\varepsilon y(t, \varepsilon)+\varepsilon \phi(\varepsilon) z(t / \mu(\varepsilon), \varepsilon)=f(t, \varepsilon)+\int_{0}^{t} g(t, s, y(s, \varepsilon)+\phi(\varepsilon) z(s / \mu(\varepsilon), \varepsilon)) d s \tag{522}
\end{equation*}
$$

which, letting $\tau=t / \mu(\varepsilon)$, is equivalent to

$$
\varepsilon y(\mu(\varepsilon) \tau, \varepsilon)+\varepsilon \phi(\varepsilon) z(\tau, \varepsilon)=f(\mu(\varepsilon) \tau, \varepsilon)+\mu(\varepsilon) \int_{0}^{\tau} g(\mu(\varepsilon) \tau, \mu(\varepsilon) \sigma, y(\mu(\varepsilon) \sigma, \varepsilon)+\phi(\varepsilon) z(\sigma, \varepsilon)) d \sigma
$$

Hence, fixing $\tau>0$ and letting $\varepsilon \rightarrow 0$,

$$
\varepsilon y_{0}(0)+\varepsilon \phi(\varepsilon) z_{0}(\tau)=\varepsilon f_{1}(0)+\mu(\varepsilon) \int_{0}^{\tau} g\left(0,0, y_{0}(0)+\phi(\varepsilon) z_{0}(\sigma)\right) d \sigma+o(\varepsilon)+o(\mu(\varepsilon))
$$

Dominant terms can be balanced if we take

$$
\mu(\varepsilon)=\varepsilon, \quad \phi(\varepsilon)=1
$$

To obtain a formal solution we now suppose that $y(t, \varepsilon)$ and $z(\tau, \varepsilon)$ have the asymptotic expanslons

$$
y(t, \varepsilon) \sim \sum_{\jmath=0}^{\infty} \varepsilon^{\jmath} y_{\jmath}(t), \quad z(\tau, \varepsilon) \sim \sum_{\jmath=0}^{\infty} \varepsilon^{\jmath} z_{\jmath}(\tau)
$$

as $\varepsilon \rightarrow 0 \quad y(t, \varepsilon)$ represents the outer solution, which approximates the solution outside the mitial layer, while $z(t / \varepsilon, \varepsilon)$ represents the inner correction term which is required for uniform approximation of the solution of (5 1 1) mside the initial layer but is negligible outside the initial layer We require for each $\jmath \geq 0$ that

$$
\begin{equation*}
z_{\jmath}(\tau)=o\left(\tau^{-r}\right) \quad \text { as } \tau \rightarrow \infty \tag{523}
\end{equation*}
$$

for all $r \geq 0$ The rapid decay in the initial layer is crucial for the application of the method of additive decomposition because then transcendentally small terms can be omitted from the asymptotic expansions

Since Theorem 21 from Skinner [24] is used later in this section, it is stated here

Lemma 51 Suppose that $\eta(t, \tau, \varepsilon)$ is a C^{∞} functzon on $[0, T] \times[0, \infty) \times[0,1]$ and $\eta(t, \tau, \varepsilon)=$ $o\left(\tau^{-r}\right)$ as $\tau \rightarrow \infty$ for all $r \geq 0$ Then

$$
\eta(t, t / \varepsilon, \varepsilon)=\sum_{\jmath=0}^{N} \varepsilon^{\jmath} \eta_{\jmath}(t / \varepsilon)+O\left(\varepsilon^{N+1}\right)
$$

where $\eta_{j}(\tau)$ is a C^{∞} function on $[0, \infty)$ and is the coefficuent of ε^{3} in the Taylor expansion of $\varepsilon \mapsto \eta(\varepsilon \tau, \tau, \varepsilon)$ Also $\eta_{J}(\tau)=o\left(\tau^{-r}\right)$ as $\tau \rightarrow \infty$ for all $r \geq 0$

We shall substitute (5 12) into (5 1 1) Therefore for a fixed integer $N \geq 0$ we first consider the term

$$
\int_{0}^{t} g\left(t, s, U_{N}(s, \varepsilon)\right) d s
$$

We introduce

$$
\begin{gathered}
H(t, s, \varepsilon)=g\left(t, s, \sum_{\jmath=0}^{N} \varepsilon^{\jmath} y_{\jmath}(s)\right) \\
K(t, s, \sigma, \varepsilon)=g\left(t, s, \sum_{\jmath=0}^{N} \varepsilon^{\jmath}\left(y_{\jmath}(s)+z_{\jmath}(\sigma)\right)\right)-g\left(t, s, \sum_{\jmath=0}^{N} \varepsilon^{\jmath} y_{\jmath}(s)\right),
\end{gathered}
$$

so that

$$
\begin{equation*}
\int_{0}^{t} g\left(t, s, U_{N}(s, \varepsilon)\right) d s=\int_{0}^{t} H(t, s, \varepsilon) d s+\varepsilon \int_{0}^{t / \varepsilon} K(t, \varepsilon \sigma, \sigma, \varepsilon) d \sigma \tag{524}
\end{equation*}
$$

By (5 2 3) and the Mean Value Theorem, $K(t, s, \sigma, \varepsilon)=o\left(\sigma^{-r}\right)$ as $\sigma \rightarrow \infty$ for all $r \geq 0$ By applyıng Lemma 51 to $(s, \sigma, \varepsilon) \mapsto K(t, s, \sigma, \varepsilon)$, we deduce that

$$
\begin{equation*}
K(t, \varepsilon \sigma, \sigma, \varepsilon)=\sum_{\jmath=0}^{N} \varepsilon^{\jmath} k_{\jmath}(t, \sigma)+O\left(\varepsilon^{N+1}\right), \tag{525}
\end{equation*}
$$

with $k_{3}(t, \sigma)=o\left(\sigma^{-r}\right)$ for all $r \geq 0$ Also, straightforward Taylor expansions yields

$$
\begin{gather*}
H(t, s, \varepsilon)=\sum_{\jmath=0}^{N} \varepsilon^{\jmath} h_{\jmath}(t, s)+O\left(\varepsilon^{N+1}\right), \tag{526}\\
K(\varepsilon \tau, \varepsilon \sigma, \sigma, \varepsilon)=\sum_{\jmath=0}^{N} \varepsilon^{\jmath} l_{\jmath}(\tau, \sigma)+O\left(\varepsilon^{N+1}\right) \tag{527}
\end{gather*}
$$

The coefficients $h_{j}(t, s)$ in (5 26) are given by

$$
h_{0}(t, s)=g\left(t, s, y_{0}(s)\right), \quad h_{1}(t, s)=\partial_{3} g\left(t, s, y_{0}(s)\right) y_{1}(s)
$$

and in general for $3 \geq 1$,

$$
h_{\jmath}(t, s)=\partial_{3} g\left(t, s, y_{0}(s)\right) y_{j}(s)+\Phi_{\jmath}(t, s)
$$

where $\Phi_{\jmath}(t, s)$ is determined by $y_{\imath}(s)$, for $0 \leq \imath \leq \jmath-1$ The first two terms of Φ_{\jmath} are given by

$$
\Phi_{1}(t, s)=0, \quad \Phi_{2}(t, s)=\frac{1}{2} \partial_{3}^{2} g\left(t, s, y_{0}(s)\right) y_{1}^{2}(s)
$$

The coefficients $k_{j}(t, \sigma)$ in (5 25) are given by

$$
\begin{gathered}
k_{0}(t, \sigma)=g\left(t, 0, y_{0}(0)+z_{0}(\sigma)\right)-g\left(t, 0, y_{0}(0)\right), \\
k_{1}(t, \sigma)=\partial_{3} g\left(t, 0, y_{0}(0)+z_{0}(\sigma)\right) z_{1}(\sigma)+\Psi_{1}(t, \sigma),
\end{gathered}
$$

and in general for $\jmath \geq 1$,

$$
k_{3}(t, \sigma)=\partial_{3} g\left(t, 0, y_{0}(0)+z_{0}(\sigma)\right) z_{3}(\sigma)+\Psi_{\jmath}(t, \sigma)
$$

Here the function $\Psi_{\jmath}(t, \sigma)$ is determined by $y_{\imath}(s)$ for $0 \leq \imath \leq \jmath$ and $z_{\imath}(\sigma)$ for $0 \leq \imath \leq \jmath-1$ The
first two Ψ_{J} are given by

$$
\begin{aligned}
\Psi_{1}(t, \sigma) & =\left\{\partial_{2} g\left(t, 0, y_{0}(0)+z_{0}(\sigma)-\partial_{2} g\left(t, 0, y_{0}(0)\right)\right\} \sigma\right. \\
& +\left\{\partial_{3} g\left(t, 0, y_{0}(0)+z_{0}(\sigma)\right)-\partial_{3} g\left(t, 0, y_{0}(0)\right)\right\}\left(y_{0}^{\prime}(0) \sigma+y_{1}(0)\right), \\
\Psi_{2}(t, \sigma)= & \left\{\partial_{3} g\left(t, 0, y_{0}(0)+z_{0}(\sigma)\right)-\partial_{3} g\left(t, 0, y_{0}(0)\right)\right\}\left(y_{2}(0)+y_{1}(0) \sigma+\frac{1}{2} y_{0}^{\prime \prime}(0) \sigma^{2}\right) \\
+ & \left\{\partial_{2} \partial_{3} g\left(t, 0, y_{0}(0)+z_{0}(\sigma)\right)-\partial_{2} \partial_{3} g\left(t, 0, y_{0}(0)\right)\right\}\left(y_{0}^{\prime}(0) \sigma^{2}+y_{1}(0) \sigma\right) \\
+ & \partial_{2} \partial_{3} g\left(t, 0, y_{0}(0)+z_{0}(\sigma)\right) z_{1}(\sigma) \sigma+\partial_{3}^{2} g\left(t, 0, y_{0}(0)+z_{0}(\sigma)\right) z_{1}(\sigma) y_{1}(0) \\
+ & \frac{1}{2}\left\{\partial_{3}^{2} g\left(t, 0, y_{0}(0)+z_{0}(\sigma)\right)-\partial_{3}^{2} g\left(t, 0, y_{0}(0)\right)\right\}\left(y_{0}^{\prime}(0)^{2} \sigma^{2}+y_{1}^{2}(0)\right. \\
+ & \left.2 y_{0}^{\prime}(0) y_{1}(0) \sigma\right)+\frac{1}{2} \partial_{3}^{2} g\left(t, 0, y_{0}(0)+z_{0}(\sigma)\right)\left\{z_{1}^{2}(\sigma)+z_{1}(\sigma) y_{0}^{\prime}(0) \sigma\right\} \\
+ & \frac{1}{2}\left\{\partial_{2}^{2} g\left(t, 0, y_{0}(0)+z_{0}(\sigma)\right)-\partial_{2}^{2} g\left(t, 0, y_{0}(0)\right)\right\} \sigma^{2}
\end{aligned}
$$

The coefficients $l_{3}(\tau, \sigma)$ in (5 27) are given by

$$
\begin{gathered}
l_{0}(\tau, \sigma)=g\left(0,0, y_{0}(0)+z_{0}(\sigma)\right)-g\left(0,0, y_{0}(0)\right), \\
l_{1}(\tau, \sigma)=\partial_{3} g\left(0,0, y_{0}(0)+z_{0}(\sigma)\right) z_{1}(\sigma)+\Xi_{1}(\tau, \sigma)
\end{gathered}
$$

and in general for $\jmath \geq 1$,

$$
l_{y}(\tau, \sigma)=\partial_{3} g\left(0,0, y_{0}(0)+z_{0}(\sigma)\right) z_{\jmath}(\sigma)+\Xi_{\jmath}(\tau, \sigma)
$$

where $\Xi_{j}(\tau, \sigma)$ is determined by y_{\imath} for $\imath \leq \jmath$ and z_{\imath} for $\imath \leq \jmath-1$ In particular,

$$
\begin{aligned}
\Xi_{1}(\tau, \sigma)= & \left\{\partial_{1} g\left(0,0, y_{0}(0)+z_{0}(\sigma)\right)-\partial_{1} g\left(0,0, y_{0}(0)\right)\right\} \tau \\
& +\left\{\partial_{2} g\left(0,0, y_{0}(0)+z_{0}(\sigma)\right)-\partial_{2} g\left(0,0, y_{0}(0)\right)\right\} \sigma \\
& +\left\{\partial_{3} g\left(0,0, y_{0}(0)+z_{0}(\sigma)\right)-\partial_{3} g\left(0,0, y_{0}(0)\right)\right\}\left(y_{0}^{\prime}(0) \sigma+y_{1}(0)\right)
\end{aligned}
$$

It follows from (524) that

$$
\begin{align*}
\int_{0}^{t} g\left(t, s, U_{N}(s, \varepsilon)\right) d s= & \sum_{j=0}^{N} \varepsilon^{\jmath}\left(\int_{0}^{t} h_{\jmath}(t, s) d s+\varepsilon \int_{0}^{\infty} k_{\jmath}(t, \sigma) d \sigma\right) \\
& -\sum_{j=0}^{N} \varepsilon^{\jmath+1} \int_{t / \varepsilon}^{\infty} k_{\jmath}(t, \sigma) d \sigma+O\left(\varepsilon^{N+1}\right) \tag{528}
\end{align*}
$$

Since $k_{j}(t, \sigma)=o\left(\sigma^{-r}\right)$ for all $r \geq 0$,

$$
\int_{\tau}^{\infty} k_{3}(t, \sigma) d \sigma=o\left(\tau^{-r}\right)
$$

for all $r \geq 0$, and Lemma 51 mplies that

$$
\int_{t / \varepsilon}^{\infty} k_{j}(t, \sigma) d \sigma=\int_{t / \varepsilon}^{\infty} \sum_{\imath=0}^{J} \varepsilon^{\imath} \tilde{k}_{\jmath, 2}(t / \varepsilon, \sigma) d \sigma+O\left(\varepsilon^{N+1}\right)
$$

where $\tilde{k}_{y, 2}(\tau, \sigma)$ is the coefficient of ε^{\imath} in the Taylor expansion of $\varepsilon \mapsto k_{\jmath}(\varepsilon \tau, \sigma)$ Of course Lemma 51 also assures us that

$$
\int_{\tau}^{\infty} \tilde{k}_{3,2}(\tau, \sigma) d \sigma=o\left(\tau^{-r}\right) \quad \text { as } \tau \rightarrow \infty
$$

for all $r \geq 0$ Note also that if

$$
K(\varepsilon \tau, \varepsilon \sigma, \sigma, \varepsilon)=\sum_{\jmath=0}^{\infty} \varepsilon^{\jmath} l_{\jmath}(\tau, \sigma)
$$

then

$$
\begin{equation*}
\sum_{i=0}^{3} \tilde{k}_{y-t, 2}(\tau, \sigma)=l_{3}(\tau, \sigma) \tag{529}
\end{equation*}
$$

It follows that (5 2 8) becomes

$$
\begin{aligned}
\int_{0}^{t} g\left(t, s, U_{N}(s, \varepsilon)\right) d s= & \sum_{\jmath=0}^{N} \varepsilon^{\jmath}\left(\int_{0}^{t} h_{\jmath}(t, s) d s+\varepsilon \int_{0}^{\infty} k_{\jmath}(t, \sigma) d \sigma\right) \\
& -\sum_{\jmath=0}^{N-1} \varepsilon^{\jmath+1} \int_{\tau}^{\infty} l_{\jmath}(t / \varepsilon, \sigma) d \sigma+O\left(\varepsilon^{N+1}\right)
\end{aligned}
$$

Next we define the residual $\rho_{N}(t, \varepsilon)$ by

$$
\begin{equation*}
\varepsilon U_{N}(t, \varepsilon)=f(t, \varepsilon)+\int_{0}^{t} g\left(t, s, U_{N}(s, \varepsilon)\right) d s-\rho_{N}(t, \varepsilon) \tag{5210}
\end{equation*}
$$

Then, putting $y_{-1}(t)=0$ and $k_{-1}(t, \sigma)=0$, we see that

$$
\begin{align*}
\rho_{N}(t, \varepsilon)= & \sum_{\jmath=0}^{N} \varepsilon^{\jmath}\left(\int_{0}^{t} h_{\jmath}(t, s) d s+\int_{0}^{\infty} k_{\jmath-1}(t, \sigma) d \sigma+f_{\jmath}(t)-y_{\jmath-1}(t)\right) \\
& -\sum_{\jmath=0}^{N-1} \varepsilon^{\jmath+1}\left(z_{\jmath}(t / \varepsilon)+\int_{t / \varepsilon}^{\infty} l_{\jmath}(t / \varepsilon, \sigma)\right)+O\left(\varepsilon^{N+1}\right) \tag{array}
\end{align*}
$$

If $U_{N}(t, \varepsilon)$ is a formal solution for all $N \geq 0$, then $\rho_{N}(t, \varepsilon)=O\left(\varepsilon^{N+1}\right)$ as $\varepsilon \rightarrow 0$ for all $N \geq 0$, in which case the argument of Lemma 21 shows that for every $\jmath \geq 0, y_{\jmath}(t)$ and $z_{\jmath}(\tau)$ satisfy

$$
\begin{gather*}
y_{j-1}(t)=f_{\jmath}(t)+\int_{0}^{t} h_{\jmath}(t, s) d s+\int_{0}^{\infty} k_{\jmath-1}(t, \sigma) d \sigma \tag{5212}\\
z_{\jmath}(\tau)=-\int_{\tau}^{\infty} l_{\jmath}(\tau, \sigma) d \sigma \tag{5213}
\end{gather*}
$$

There is also an initial condition for solutions of (5213), obtained from $\varepsilon u(0, \varepsilon)=f(0, \varepsilon)$, namely that for all $J \geq 0$

$$
\begin{equation*}
z_{j}(0)=f_{\jmath+1}(0)-y_{j}(0) \tag{5214}
\end{equation*}
$$

Remark 52 There is considerable simplication in the case $g(t, s, u)=a(t, s) u$ for which (511) is a linear equation $I t$ is found that

$$
h_{\jmath}(t, s)=a(t, s) y_{\jmath}(s), \quad k_{\jmath}(t, \sigma)=\sum_{\imath=0}^{\jmath} e_{\imath}(t, \sigma) z_{\jmath-\imath}(\sigma)
$$

where

$$
e_{\imath}(t, \sigma)=\frac{1}{\imath^{1}} \partial_{2}^{\imath} a(t, 0) \sigma^{\imath}
$$

Remark 53 Equation (5211) for the residual has been derived only assuming that (523) is true It follows that if (523) holds and (5212) and (5213) hold for $0 \leq \jmath \leq N$, then $\left|\rho_{N}(t, \varepsilon)\right|=$ $O\left(\varepsilon^{N+1}\right)$ as $\varepsilon \rightarrow 0$

5.3 Properties of the Formal Solution

In this section it is shown that there are unique solutions $y_{3}(t)$ and $z_{j}(\tau)$ of (5212) and (5213), and that they have the important properties assumed in their derivation It is convenient to rewrite these equations as

$$
\begin{gather*}
0=f_{0}(t)+\int_{0}^{t} g\left(t, s, y_{0}(s)\right) d s \tag{5}\\
z_{0}(\tau)=-\int_{\tau}^{\infty}\left(g\left(0,0, y_{0}(0)+z_{0}(\sigma)\right)-g\left(0,0, y_{0}(0)\right)\right) d \sigma \tag{5}
\end{gather*}
$$

and $\jmath \geq 1$,

$$
\begin{gather*}
0=\phi_{3}(t)+\int_{0}^{t} \partial_{3} g\left(t, s, y_{0}(s)\right) y_{j}(s) d s \tag{array}\\
z_{3}(\tau)=-\int_{\tau}^{\infty} \partial_{3} g\left(0,0, y_{0}(0)+z_{0}(\sigma)\right) z_{j}(\sigma) d \sigma+\psi_{3}(\tau) \tag{534}
\end{gather*}
$$

Here we used the definitions

$$
\begin{gather*}
\phi_{3}(t)=f_{3}(t)+\int_{0}^{t} \Phi_{3}(t, s) d s+\int_{0}^{\infty} k_{\jmath-1}(t, \sigma) d \sigma-y_{j-1}(t) \tag{535}\\
\psi_{3}(\tau)=-\int_{\tau}^{\infty} \Xi_{\jmath}(\tau, \sigma) d \sigma \tag{536}
\end{gather*}
$$

We see that the leading order solutions (outer and inner correction) are given by nonlinear equations while the higher order terms are given by linear equations

We use the following hypotheses on the functions $f(t, \varepsilon)$ and the kernel $g(t, s, u)$ They are based on the assumptions used in O'Malley [21], Ch 4
$\left(\mathrm{H}_{3}\right)$ The function $f[0, T] \times[0,1] \rightarrow \mathbb{R}$ is C^{∞} and $f(0,0)=0 \quad$ Also $g \quad \Delta_{T} \times \mathbb{R} \rightarrow \mathbb{R}$ is a C^{∞} function where

$$
\Delta_{T}=\{(t, s), 0 \leq s \leq t \leq T\}
$$

$\left(\mathbf{H}_{4}\right)$ There exists a C^{∞} solution $y_{0} \quad[0, T] \rightarrow \mathbb{R}$ to (531) which is unique in the class of continuous functions on $[0, T]$
$\left(\mathrm{H}_{5}\right)$ There is a positive constant α such that

$$
\begin{gathered}
\partial_{3} g\left(t, t, y_{0}(t)\right) \leq-\alpha<0, \quad \text { for all } 0 \leq t \leq T \\
\partial_{3} g(0,0, v) \leq-\alpha<0
\end{gathered}
$$

for all v between $y_{0}(0)$ and $y_{0}(0)+f_{1}(0)$

Remark 54 If $\left(\mathbf{H}_{3}\right)$ holds, $f(t, \varepsilon)$ has the asymptotic expansion

$$
f(t, \varepsilon) \sim \sum_{j=0}^{\infty} \varepsilon^{\jmath} f_{\jmath}(t), \quad \text { as } \varepsilon \rightarrow 0
$$

where each $f_{J}(t)$ is C^{∞} on $[0, T]$

Remark 55 (531) is a Volterra integral equation of the first kind for $y_{0}(t)$ An existence and uniqueness theorem for this equation is given in $\operatorname{Linz}[17], \mathrm{Ch} 5, \operatorname{Th} 52$ It is obtained by applying the method of successive approximations to the differentiated version of (5 3 1)

Remark 56 Skinner [24] proves sımilar results to those presented in this chapter, except that he replaces $g(t, s, u)$ by $g(t, s, u \quad \varepsilon)$, where

$$
g(t, s, u, \varepsilon) \sim \sum_{j=0}^{\infty} \varepsilon^{\jmath} g_{J}(t, s, u) \quad \text { as } \varepsilon \rightarrow 0
$$

Here each $g_{J}(t, s, u)$ should satısfy $\left(\mathbf{H}_{\mathbf{3}}\right)$ and $g_{0}(t, s, u)$ satısfies both $\left(\mathbf{H}_{\mathbf{4}}\right)$ and $\left(\mathbf{H}_{5}\right)$

Proposition 57 Suppose that $\left(\mathrm{H}_{3}\right),\left(\mathrm{H}_{4}\right)$ and $\left(\mathrm{H}_{5}\right)$ hold Then (532) and (5 2 14) have a C^{∞} solution z_{0} satzsfynng

$$
\begin{equation*}
\left|z_{0}(\tau)\right| \leq c_{0} \mathrm{e}^{-\alpha \tau}, \quad \tau \geq 0, \tag{537}
\end{equation*}
$$

for some postive constant c_{0}

Proof The problem of solving (5 3 2) subject to (5214) is equivalent to the initial-value problem

$$
\begin{equation*}
z_{0}^{\prime}(\tau)=g\left(0,0, y_{0}(0)+z_{0}(\tau)\right)-g\left(0,0, y_{0}(0)\right), \quad z_{0}(0)=f_{1}(0)-y_{0}(0) \tag{538}
\end{equation*}
$$

By standard theory of ordnary differential equations (see, for example, Hirsch and Smale [12], Ch 8), (538) has a unique contnuous solution defined on a maximal interval $[0, S)$ such that $\lim _{\tau \uparrow S}\left|z_{0}(\tau)\right|=\infty$ if $S<\infty$ By the Mean Value Theorem there is a function $\omega(\tau)$ such that

$$
z_{0}^{\prime}(\tau)=\partial_{3} g\left(0,0,(1-\omega(\tau)) y_{0}(0)+\omega(\tau) z_{0}(\tau)\right) z_{0}(\tau)
$$

Assumption (H_{5}) implies that $z_{0}(\tau)$ decreases if $z_{0}(0)>0$ and increases of $z_{0}(0)<0$ and that $z_{0}(\tau)+y_{0}(0)$ les between $y_{0}(0)$ and $y_{0}(0)+f_{1}(0)$ Therefore

$$
z_{0}^{\prime}(\tau) z_{0}(\tau) \leq-\alpha z_{0}(\tau)^{2},
$$

and hence $\left|z_{0}(\tau)\right| \leq\left|z_{0}(0)\right| e^{-\alpha \tau}$ for all $0 \leq \tau<S$ Hence $S=\infty$ and (537) holds

Proposition 58 Suppose that $\left(\mathrm{H}_{\mathbf{3}}\right),\left(\mathrm{H}_{4}\right)$ and $\left(\mathrm{H}_{\mathbf{5}}\right)$ hold Then for every integer $\mathcal{J} \geq 1,\left(\begin{array}{ll}5 & 3\end{array}\right)$ has a C^{∞} solution $y_{y}(t)$ on $[0, T]$, and equations (534) and (5214) have a C^{∞} solution z_{y} on $[0, \infty)$ satusfying

$$
\begin{equation*}
\left|z_{3}(\tau)\right| \leq c_{3} \mathrm{e}^{-\beta \tau}, \quad \tau \geq 0 \tag{539}
\end{equation*}
$$

for some postive constants c_{y} and $\beta<\alpha$

Proof Consider the hypothesis that there is an integer $N \geq 0$ such that there are C^{∞} solutions $y_{\jmath}(t)$ of (533) for $0 \leq \jmath \leq N$ and C^{∞} solutions $z_{\jmath}(\tau)$ for $0 \leq \jmath \leq N$ of (534) and (5214) such that

$$
\begin{equation*}
\left|z_{\jmath}(\tau)\right| \leq c_{\jmath} e^{-\beta \tau}, \quad \tau \geq 0 \tag{array}
\end{equation*}
$$

Due to Proposition 57 and $\left(\mathbf{H}_{4}\right)$, this hypothesis is true for $N=0$
Suppose now this hypothesis is true for $M>0$ Then $\Phi_{M+1}(t, s)$ and $k_{M}(t, \sigma)$ are determned and, by (535), $\phi_{M+1}(t)$ is a well-defined C^{∞} function on $[0, T]$ Assumption $\left(\mathbf{H}_{4}\right)$ imples that $\partial_{3} g\left(t, t, y_{0}(t)\right) \neq 0$ for all $0 \leq t \leq T$ Then it makes sense to consider the differentiated version of (53 3), namely

$$
\begin{equation*}
y_{M+1}(t)=-\frac{\phi_{M+1}^{\prime}(t)}{\partial_{3} g\left(t, t, y_{0}(t)\right)}-\frac{1}{\partial_{3} g\left(t, t, y_{0}(t)\right)} \int_{0}^{t} \partial_{3} \partial_{1} g\left(t, s, y_{0}(s)\right) y_{M+1}(s) d s \tag{5311}
\end{equation*}
$$

This is a linear Volterra integral equation of the second kind in y_{M+1} and has a C^{∞} solution on $[0, T]$, which can be written in terms of the resolvent kernel The theory can be found for example in Ch 2 of Grıpenberg, Londen and Staffan [10] or Ch IV of Miller [19] It follows from (5 3 11) that

$$
\begin{equation*}
\text { constant }=\phi_{M+1}(t)+\int_{0}^{t} \partial_{3} g\left(t, s, y_{0}(s)\right) y_{M+1}(s) d s \tag{array}
\end{equation*}
$$

But since $z_{M}(0)=f_{M+1}(0)-y_{M}(0)$ and $l_{M}(0, \sigma)=k_{M}(0, \sigma),\left(\begin{array}{ll}5 & 4\end{array}\right)$ mplies that

$$
\begin{aligned}
\phi_{M+1}(0) & =f_{M+1}(0)-y_{M}(0)+\int_{0}^{\infty} k_{M}(0, \sigma) d \sigma \\
& =z_{M}(0)+\int_{0}^{\infty} k_{M}(0, \sigma) d \sigma=0
\end{aligned}
$$

Thus the constant in (5312) vanishes and (533) holds in the case $\jmath=M+1$
Now that $y_{M+1}(t)$ has been found, it follows from (536) that $\psi_{M+1}(\tau)$ is a well-defined C^{∞} function An argument like that of O'Mailey [20] pp 84-85 shows that

$$
\begin{equation*}
\left|\psi_{j}(\tau)\right| \leq \gamma_{j} \mathrm{e}^{-\beta \tau}, \quad \tau \geq 0 \tag{array}
\end{equation*}
$$

can be deduced from (5310) for $0 \leq \jmath \leq M$ The details are omitted Equation (534) is equivalent to the hnear scalar equation

$$
\begin{gathered}
z_{M+1}^{\prime}(\tau)=\partial_{3} g\left(0,0, y_{0}(0)+z_{0}(\tau)\right) z_{M+1}(\tau)+\psi_{M+1}^{\prime}(\tau) \\
z_{M+1}(0)=f_{M+1}(0)-y_{M}(0)
\end{gathered}
$$

It easily follows from the exact solution, $\left(\mathbf{H}_{5}\right)$ and (5313) that (5310) holds for $\jmath=M+1$ This completes our proof that the induction hypothesis holds for $M+1$ The proposition then follows

Lemma 59 Suppose that $\left(\mathbf{H}_{\mathbf{3}}\right),\left(\mathbf{H}_{4}\right)$ and $\left(\mathbf{H}_{5}\right)$ hold Then the restdual ρ_{N} given by (5 2 10) satzsfies

$$
\begin{equation*}
\left|\rho_{N}(t, \varepsilon)\right|=O\left(\varepsilon^{N+1}\right) \quad \text { as } \varepsilon \rightarrow 0, \tag{5314}
\end{equation*}
$$

uneformly for all $0 \leq t \leq T$ Moreover

$$
\begin{equation*}
\left|\rho_{N}^{\prime}(t, \varepsilon)\right|=O\left(\varepsilon^{N+1}\right) \quad \text { as } \varepsilon \rightarrow 0 \tag{5315}
\end{equation*}
$$

unformly for all $0 \leq t \leq T$, and

$$
\begin{equation*}
\left|\rho_{N}(0, \varepsilon)\right|=O\left(\varepsilon^{N+2}\right) \tag{5316}
\end{equation*}
$$

Proof Since Propositions 57 and 58 have established (523), the proof of (5314) follows from Remark 53 To prove (5 3 16)

$$
\rho_{N}(0, \varepsilon)=f(0, \varepsilon)-\varepsilon U_{N}(0, \varepsilon)=\sum_{\jmath=0}^{\infty} \varepsilon^{3} f_{\jmath}(0)-\sum_{\jmath=0}^{N} \varepsilon^{\jmath+1}\left(y_{\jmath}(0)+z_{\jmath}(0)\right)
$$

Using the mitial conditions in (5214) and the fact that $f_{0}(0)=0$, we have

$$
\rho_{N}(0, \varepsilon)=\sum_{\jmath=N+1}^{\infty} f_{3+1}(0) \varepsilon^{3+1}=O\left(\varepsilon^{N+2}\right)
$$

Differentiation of (5 2 10) gives

$$
\begin{aligned}
\rho_{N}^{\prime}(t, \varepsilon)= & f^{\prime}(t, \varepsilon)-\sum_{\jmath=0}^{N} \varepsilon^{\jmath+1} y_{\jmath}^{\prime}(t)-\sum_{\jmath=0}^{N} \varepsilon^{\jmath} z_{\jmath}^{\prime}(t / \varepsilon) \\
& +g\left(t, t, \sum_{\jmath=0}^{N} \varepsilon^{\jmath}\left(y_{\jmath}(t)+z_{\jmath}(t / \varepsilon)\right)\right)+\int_{0}^{t} \partial_{1} g\left(t, s, \sum_{\jmath=0}^{N} \varepsilon^{\jmath}\left(y_{\jmath}(s)+z_{\jmath}(s / \varepsilon)\right)\right) d s
\end{aligned}
$$

Introducing the new notations

$$
\begin{gathered}
H^{\star}(t, s, \varepsilon)=\partial_{1} g\left(t, s, \sum_{\jmath=0}^{N} \varepsilon^{\jmath} y_{\jmath}(s)\right) \\
K^{\star}(t, s, \sigma, \varepsilon)=\partial_{1} g\left(t, s, \sum_{\jmath=0}^{N} \varepsilon^{\jmath}\left(y_{\jmath}(s)+z_{\jmath}(\sigma)\right)\right)-\partial_{1} g\left(t, s, \sum_{\jmath=0}^{N} \varepsilon^{\jmath} y_{\jmath}(s)\right),
\end{gathered}
$$

we have

$$
\begin{align*}
\rho_{N}^{\prime}(t, \varepsilon)= & \sum_{\jmath=0}^{N} \varepsilon^{\jmath} f_{\jmath}^{\prime}(t)-\sum_{\jmath=0}^{N} \varepsilon^{\jmath+1} y_{\jmath}^{\prime}(t)-\sum_{\jmath=0}^{N} \varepsilon^{\jmath} z_{\jmath}^{\prime}(t / \varepsilon)+H(t, t, \varepsilon)+K(t, t, t / \varepsilon, \varepsilon) \\
& +\int_{0}^{t} H^{\star}(t, s, \varepsilon) d s+\varepsilon \int_{0}^{t / \varepsilon} K^{\star}(t, \varepsilon \sigma, \sigma, \varepsilon) d \sigma+O\left(\varepsilon^{N+1}\right) \tag{5317}
\end{align*}
$$

Two useful Taylor expansions are

$$
\begin{aligned}
H^{\star}(t, s, \varepsilon) & =\sum_{j=0}^{N} \varepsilon^{\jmath} h_{\jmath}^{\star}(t, s)+O\left(\varepsilon^{N+1}\right) \\
K^{\star}(t, \varepsilon \sigma, \sigma, \varepsilon) & =\sum_{j=0}^{N} \varepsilon^{\jmath} k_{\jmath}^{\star}(t, \sigma)+O\left(\varepsilon^{N+1}\right),
\end{aligned}
$$

where the coefficients satisfy

$$
k_{j}^{\star}(t, \sigma)=\partial_{1} k_{j}(t, \sigma), \quad h_{3}^{\star}(t, s)=\partial_{1} h_{\jmath}(t, s)
$$

Therefore (5317) is equivalent to

$$
\begin{aligned}
\rho_{N}^{\prime}(t, \varepsilon)= & \sum_{\jmath=0}^{N} \varepsilon^{\jmath} f_{\jmath}^{\prime}(t)-\sum_{\jmath=0}^{N} \varepsilon^{\jmath+1} y_{\jmath}^{\prime}(t)-\sum_{\jmath=0}^{N} \varepsilon^{\jmath} z_{\jmath}^{\prime}(t / \varepsilon) \\
& +\sum_{\jmath=0}^{N} \varepsilon^{\jmath} h_{\jmath}(t, t)+\sum_{\jmath=0}^{N} \varepsilon^{\jmath} k_{\jmath}(t, t / \varepsilon)+\sum_{\jmath=0}^{N} \varepsilon^{\jmath} \int_{0}^{t} h_{\jmath}^{\star}(t, s) d s \\
& +\sum_{\jmath=0}^{N} \varepsilon^{\jmath+1} \int_{0}^{\infty} k_{\jmath}^{\star}(t, \sigma) d \sigma-\sum_{\jmath=0}^{N} \varepsilon^{\jmath+1} \int_{t / \varepsilon}^{\infty} k_{\jmath}^{\star}(t, \sigma) d \sigma+O\left(\varepsilon^{N+1}\right)
\end{aligned}
$$

Then substituting the differentiated version of (5 2 12) we get

$$
\begin{align*}
\rho_{N}^{\prime}(t, \varepsilon)= & \varepsilon^{N+1}\left(\int_{0}^{\infty} k_{N}^{\star}(t, \sigma) d \sigma-y_{N}^{\prime}(t)\right)-\sum_{\jmath=0}^{N} \varepsilon^{\jmath} z_{\jmath}^{\prime}(t / \varepsilon) \\
& +\sum_{\jmath=0}^{N} \varepsilon^{\jmath} k_{\jmath}(t, t / \varepsilon)-\sum_{\jmath=0}^{N} \varepsilon^{\jmath+1} \int_{t / \varepsilon}^{\infty} k_{\jmath}^{\star}(t, \sigma) d \sigma+O\left(\varepsilon^{N+1}\right) \tag{5318}
\end{align*}
$$

By substituting the differentiated version of (5 213) one gets

$$
\begin{aligned}
\rho_{N}^{\prime}(t, \varepsilon)= & \varepsilon^{N+1}\left(\int_{0}^{\infty} k_{N}^{\star}(t, \sigma) d \sigma-y_{N}^{\prime}(t)\right)+\sum_{\jmath=0}^{N} \varepsilon^{\jmath} k_{\jmath}(t, t / \varepsilon)-\sum_{\jmath=0}^{N} \varepsilon^{\jmath} l_{\jmath}(t / \varepsilon, t / \varepsilon) \\
& +\sum_{\jmath=0}^{N} \varepsilon^{\jmath} \int_{t / \varepsilon}^{\infty} \partial_{1} l_{\jmath}(t / \varepsilon, \sigma) d \sigma-\sum_{\jmath=0}^{N} \varepsilon^{\jmath+1} \int_{t / \varepsilon}^{\infty} k_{\jmath}^{\star}(t, \sigma) d \sigma+O\left(\varepsilon^{N+1}\right)
\end{aligned}
$$

Using Lemma 51 ,

$$
\begin{aligned}
\rho_{N}^{\prime}(t, \varepsilon)= & \varepsilon^{N+1}\left(\int_{0}^{\infty} k_{N}^{\star}(t, \sigma) d \sigma-y_{N}^{\prime}(t)\right)+\sum_{j=0}^{N} \varepsilon^{\jmath} \sum_{\imath=0}^{\jmath} \varepsilon^{2} \tilde{k}_{j, \imath}(t / \varepsilon, t / \varepsilon)-\sum_{\jmath=0}^{N} \varepsilon^{\jmath} l_{\jmath}(t / \varepsilon, t / \varepsilon) \\
& +\sum_{\jmath=0}^{N} \varepsilon^{\jmath} \int_{t / \varepsilon}^{\infty} \partial_{1} l_{\jmath}(t / \varepsilon, \sigma) d \sigma-\sum_{\jmath=0}^{N} \varepsilon^{\jmath+1} \int_{t / \varepsilon}^{\infty} \sum_{\imath=0}^{\jmath} \varepsilon^{\imath} \tilde{k}_{\jmath, \imath}^{\star}(t / \varepsilon, \sigma) d \sigma+O\left(\varepsilon^{N+1}\right)
\end{aligned}
$$

Collecting terms together using (5 29) gives

$$
\begin{aligned}
\rho_{N}^{\prime}(t, \varepsilon)= & \varepsilon^{N+1}\left(\int_{0}^{\infty} k_{N}^{\star}(t, \sigma) d \sigma-y_{N}^{\prime}(t)\right)+\sum_{\jmath=1}^{N} \varepsilon^{\jmath} \int_{t / \varepsilon}^{\infty} \partial_{1} l_{\jmath}(t / \varepsilon, \sigma) d \sigma \\
& -\sum_{\jmath=1}^{N+1} \varepsilon^{\jmath} \int_{t / \varepsilon}^{\infty} \sum_{\imath=0}^{\jmath-1} \tilde{k}_{\jmath-\imath-1 \imath}^{\star}(t / \varepsilon, \sigma) d \sigma+O\left(\varepsilon^{N+1}\right)
\end{aligned}
$$

We also see that if

$$
K^{\star}(\varepsilon \tau, \varepsilon \sigma, \sigma, \varepsilon)=\sum_{\jmath=0}^{\infty} \varepsilon^{\jmath} l_{j}^{\star}(\tau, \sigma)
$$

then

$$
\sum_{\imath=0}^{3} \tilde{k}_{3-t, 2}^{\star}(\tau, \sigma)=l_{j}^{\star}(\tau, \sigma),
$$

where the coefficients obey

$$
l_{\jmath-1}^{\star}(\tau, \sigma)=\partial_{1} l_{\jmath}(\tau, \sigma), \quad \jmath \geq 1
$$

Therefore

$$
\begin{equation*}
\left|\rho_{N}^{\prime}(t, \varepsilon)\right|=O\left(\varepsilon^{N+1}\right) \tag{array}
\end{equation*}
$$

uniformly for all $0 \leq t \leq T$

5.4 Existence of Asymptotic Solution

In this section we establish that $U_{N}(t, \varepsilon)$ defined in Section 51 is an asymptotic solution Our method is to adapt the theory in $\S 63$ of Smith [25] for systems of singularly perturbed ordinary differential equations Skinner [24] employed a sımılar method The analysis here has also benefited from the general discussion in $\S 61$ of Eckhaus [5] on developing a rigorous theory of singular perturbation The main result in this chapter is the following

Theorem 510 Suppose that $\left(\mathbf{H}_{3}\right),\left(\mathbf{H}_{4}\right)$ and $\left(\mathbf{H}_{5}\right)$ hold Then (5 11) has a continuous solution $u(t, \varepsilon)$ with the property that there are constants C_{N} and ε_{N}^{*} such that

$$
\left|u(t, \varepsilon)-U_{N}(t, \varepsilon)\right| \leq C_{N} \varepsilon^{N+1}
$$

for all $0 \leq t \leq T$ and $0<\varepsilon \leq \varepsilon_{N}^{*}$

It is natural to introduce $r_{N}(t, \varepsilon)=u(t, \varepsilon)-U_{N}(t, \varepsilon)$ which satisfies the equation

$$
\begin{equation*}
\varepsilon r_{N}(t, \varepsilon)=\rho_{N}(t, \varepsilon)+\int_{0}^{t}\left[g\left(t, s, U_{N}(s, \varepsilon)+r_{N}(s, \varepsilon)\right)-g\left(t, s, U_{N}(s, \varepsilon)\right)\right] d s \tag{541}
\end{equation*}
$$

However, if the functions r_{N} and ρ_{N} are scaled, a mapping considered later becomes a untform contraction rather than just a contraction For this reason let

$$
\theta(t, \varepsilon)=\varepsilon^{-(N+1)} \rho_{N}(t, \varepsilon), \quad x(t, \varepsilon)=\varepsilon^{-(N+1)} r_{N}(t, \varepsilon)
$$

where, for simplicity, the dependence on the fixed integer N is omitted from the notation Then for $\varepsilon>0,(541)$ is equivalent to

$$
\begin{equation*}
\varepsilon x(t, \varepsilon)=\theta(t, \varepsilon)+\int_{0}^{t} \partial_{3} g\left(t, s, U_{N}(s, \varepsilon)\right) x(s, \varepsilon) d s+\int_{0}^{t} h(t, s, x(s, \varepsilon), \varepsilon) d s \tag{542}
\end{equation*}
$$

where

$$
h(t, s, x, \varepsilon)=\varepsilon^{-(N+1)} g\left(t, s, U_{N}(s, \varepsilon)+x\right)-\varepsilon^{-(N+1)} g\left(t, s, U_{N}(s, \varepsilon)\right)-\partial_{3} g\left(t, s, U_{N}(s, \varepsilon)\right) x
$$

By Taylor's theorem $h(t, s, x, \varepsilon)=\varepsilon^{(N+1)} h_{1}(t, s, x, \varepsilon)$, where

$$
h_{1}(t, s, x, \varepsilon)=x^{2} \int_{0}^{1}(1-v) \partial_{3}^{2} g\left(t, \varsigma, U_{N}(s, \varepsilon)+v \varepsilon^{(N+1)} x\right) d v
$$

Hence, because $|\theta(t, \varepsilon)|=O(1)$ as $\varepsilon \rightarrow 0$ unformly by Lemma 59 , we expect the nonlinear term

$$
\int_{0}^{t} h(t, s, x(s, \varepsilon), \varepsilon) d s
$$

to be of higher order than other terms in (542) Therefore we first consider the approximate equation

$$
\begin{equation*}
\varepsilon w(t, \varepsilon)=\xi(t, \varepsilon)+\int_{0}^{t} \partial_{3} g\left(t, \varsigma, U_{N}(s, \varepsilon)\right) w(s, \varepsilon) d s \tag{543}
\end{equation*}
$$

where $\xi(t, \varepsilon)=O(1)$ uniformly as $\varepsilon \rightarrow 0$ and $\xi(0, \varepsilon)=O(\varepsilon)$
Lemma 511 Suppose that $\left(\mathbf{H}_{\mathbf{3}}\right),\left(\mathbf{H}_{\mathbf{4}}\right)$ and $\left(\mathbf{H}_{\mathbf{5}}\right)$ hold for each $0<\varepsilon \leq \varepsilon_{0}$ Also suppose that $\xi(, \varepsilon) \quad[0, T] \rightarrow \mathbb{R}$ is a contrnuously differentiable function with $\left\|\xi^{\prime}(, \varepsilon)\right\|=O(1)$ and $|\xi(0, \varepsilon)|=$ $O(\varepsilon)$ Then (543) has a unique continuous solution $w(, \varepsilon)$ satısfynng $\|w(, \varepsilon)\|=O(1)$ for all ε in some interval $\left(0, \varepsilon_{1}\right] \subset\left(0, \varepsilon_{0}\right]$

Proof The standard theory of linear Volterra equations of the second kind ensures that for each $0<\varepsilon<\varepsilon_{0}(543)$ has a continuous solution $t \mapsto w(t, \varepsilon)$ on $[0, T]$ and that $w(, \varepsilon)$ is continuously differentiable because $\xi(, \varepsilon)$ is Let $0<\beta<\alpha$ If follows from (\mathbf{H}_{5}) that there is a number $0<\varepsilon_{1} \leq \varepsilon_{0}$ such that

$$
p(t, \varepsilon)=\partial_{3} g\left(t, t, U_{N}(t, \varepsilon)\right) \leq-\beta
$$

for all $0 \leq t \leq T$ and $0 \leq \varepsilon \leq \varepsilon_{1}$ Equation (543) can be differentiated to get an equation of the form

$$
\begin{equation*}
\varepsilon w^{\prime}(t, \varepsilon)-p(t, \varepsilon) w(t, \varepsilon)=\xi_{1}(t, \varepsilon), \tag{544}
\end{equation*}
$$

where $w(0, \varepsilon)=\xi(0, \varepsilon) / \varepsilon$ and

$$
\xi_{1}(t, \varepsilon)=\xi^{\prime}(t, \varepsilon)+\int_{0}^{t} \partial_{1} \partial_{3} g\left(t, s, U_{N}(s, \varepsilon)\right) w(s, \varepsilon) d s
$$

Since the solution of (544) satisfies

$$
w(t, \varepsilon)=w(0, \varepsilon) \mathrm{e}^{\frac{1}{\varepsilon} \int_{0}^{t} p(v, \varepsilon) d v}+\frac{1}{\varepsilon} \int_{0}^{t} \mathrm{e}^{\frac{1}{\varepsilon} \int_{0}^{t} p(u, \varepsilon) d v} \xi_{1}(s, \varepsilon) d s
$$

and

$$
\mathrm{e}^{\frac{1}{e} \int_{0}^{t} p(v, \varepsilon) d v} \leq \mathrm{e}^{-\beta t / \epsilon}, \quad \mathrm{e}^{\frac{1}{e} \int_{\Delta}^{L} p(v, \varepsilon) d v} \leq \mathrm{e}^{-\beta(t-s) / \epsilon},
$$

we see that

$$
|w(t, \varepsilon)| \leq C_{1}+\frac{C_{2}}{\beta}+\frac{M}{\beta} \int_{0}^{t}|w(s, \varepsilon)| d s
$$

where

$$
C_{1}=\sup _{0<\varepsilon \leq \epsilon_{0}}|\xi(0, \varepsilon)| / \varepsilon, \quad C_{2}=\sup _{0<\varepsilon \leq \varepsilon_{0}}\left\|\xi^{\prime}(, \varepsilon)\right\|, \quad M=\sup _{\substack{(t, s) \in \Delta_{T} \\ 0 \leq \varepsilon \leq \varepsilon_{0}}}\left|\partial_{1} \partial_{3} g\left(t, s, U_{N}(s, \varepsilon)\right)\right|
$$

By Gronwall's inequality

$$
|w(t, \varepsilon)| \leq\left(C_{1}+\frac{C_{2}}{\beta} \mathrm{e}^{\frac{M u}{\beta}}\right)
$$

and the lemma is proved

Equation (542) can be written as

$$
\begin{equation*}
\mathcal{L}(x, \varepsilon)=\theta(, \varepsilon)+\mathcal{N}(x, \varepsilon), \tag{545}
\end{equation*}
$$

where $\mathcal{L}, \mathcal{N} \quad C[0, T] \times\left[0, \varepsilon_{1}\right] \rightarrow C[0, T]$ are defined by

$$
\begin{gathered}
\mathcal{L}(x, \varepsilon)(t)=\varepsilon x(t)-\int_{0}^{t} \partial_{3} g\left(t, s, U_{N}(s, \varepsilon)\right) x(s) d s \\
\mathcal{N}(x, \varepsilon)(t)=\varepsilon^{(N+1)} \int_{0}^{t} h_{1}(t, s, x(s), \varepsilon) d s
\end{gathered}
$$

It 1 s convenient to introduce the space \mathcal{X} of functions $(t, \varepsilon) \mapsto \xi(t, \varepsilon)$ on $[0, T] \times\left[0, \varepsilon_{1}\right]$ with $t \mapsto \xi(t, \varepsilon)$ continuously differentiable and $\left\|\xi^{\prime}(, \varepsilon)\right\|$ and $\xi(0, \varepsilon) / \varepsilon$ are uniformly bounded on $\left[0, \varepsilon_{0}\right]$ and $\left(0, \varepsilon_{0}\right]$ respectively \mathcal{X} is given the norm

$$
\|\xi\|_{\mathcal{X}}=\sup _{0<\varepsilon \leq \varepsilon_{1}}|\xi(0, \varepsilon) / \varepsilon|+\sup _{0<\varepsilon \leq \varepsilon_{1}}\left\|\xi^{\prime}(, \varepsilon)\right\|
$$

Then $(t, \varepsilon) \mapsto \mathcal{L}(x, \varepsilon)(t),(t, \varepsilon) \mapsto \mathcal{N}(x, \varepsilon)(t)$ and $(t, \varepsilon) \mapsto \theta(t, \varepsilon)$ are in \mathcal{X}
Lemma 511 can be reinterpreted as asserting that for $\xi \in \mathcal{X}$ the equation $\mathcal{L}(w, \varepsilon)=\xi(, \varepsilon)$ is equivalent to $w(, \varepsilon)=\mathcal{M}(, \varepsilon) \xi(, \varepsilon)$ for some linear operator $\mathcal{M}(, \varepsilon) \quad \mathcal{X} \rightarrow \mathrm{C}[0, T]$ and there is a constant μ such that $\|\mathcal{M}(, \varepsilon) \xi(, \varepsilon)\| \leq \mu\|\xi\| \mathcal{X}$ umformly for $0<\varepsilon \leq \varepsilon_{1}$ Hence there is a number $\delta>0$ such that

$$
\|\mathcal{M}(, \varepsilon) \theta(, \varepsilon)\| \leq \delta
$$

Also (545) is equivalent to

$$
x=\mathcal{M}(, \varepsilon)[\theta(, \varepsilon)+\mathcal{N}(x, \varepsilon)]
$$

Thus the problem of finding solutions of (545) is equivalent to finding fixed points of a mapping
Let

$$
\mathcal{B}=\{x \in C[0, T] \quad\|x\| \leq 2 \delta\}
$$

A simple calculation shows that if x is in \mathcal{B} then

$$
\|\mathcal{N}(x,)\|_{\mathcal{X}} \leq \varepsilon^{N+1} T M_{1},
$$

where

$$
M_{1}=\max _{\substack{(t, s) \in \Delta_{r} \\|x| \leq 2 \delta, 0 \leq \varepsilon \leq \varepsilon_{1}}}\left|h_{1}(t, s, x, \varepsilon)\right|
$$

Therefore for each x in \mathcal{B}

$$
\|\mathcal{M}(, \varepsilon)[\theta(, \varepsilon)+\mathcal{N}(x, \varepsilon)]\| \leq \delta+\mu T M_{1} \varepsilon^{N+1} \leq 2 \delta,
$$

If ε is in some interval $\left(0, \varepsilon_{2}\right]$ It has been shown that the mapping $\mathcal{T}_{\varepsilon} \quad \mathcal{B} \rightarrow \mathcal{B}$ given by

$$
\mathcal{T}_{\varepsilon}(x)=\mathcal{M}(, \varepsilon)[\theta(, \varepsilon)+\mathcal{N}(x, \varepsilon)]
$$

is well-defined
Next it is shown that $\mathcal{T}_{\varepsilon}$ is a contraction on \mathcal{B} Note that $\mathcal{N}(x, \varepsilon)(0)=0$ Let x_{1}, x_{2} be in \mathcal{B} Then

$$
\begin{aligned}
\left(\mathcal{N}\left(x_{1}, \varepsilon\right)^{\prime}(t)-\mathcal{N}\left(x_{2}, \varepsilon\right)^{\prime}(t)\right)= & \varepsilon^{N+1}\left[h_{1}\left(t, t, x_{1}(t), \varepsilon\right)-h_{1}\left(t, t, x_{2}(t), \varepsilon\right)\right. \\
& \left.+\int_{0}^{t}\left\{\partial_{1} h_{1}\left(t, s, x_{1}(s), \varepsilon\right)-\partial_{1} h_{1}\left(t, s, x_{2}(s), \varepsilon\right)\right\} d s\right]
\end{aligned}
$$

and, using the Mean Value Theorem,

$$
\left|\mathcal{N}\left(x_{1}, \varepsilon\right)^{\prime}(t)-\mathcal{N}\left(x_{2}, \varepsilon\right)^{\prime}(t)\right| \leq \varepsilon^{N+1}\left\{M_{2}\left|x_{1}(t)-x_{2}(t)\right|+M_{3} \int_{0}^{t}\left|x_{1}(s)-x_{2}(s)\right| d s\right\}
$$

where

$$
M_{2}=\max _{\substack{0 \leq t \leq T \\|x| \leq 2 \delta, 0 \leq \varepsilon \leq \varepsilon_{0}}}\left|\partial_{3} h_{1}(t, t, x, \varepsilon)\right|, \quad M_{3}=\max _{\substack{(t, s) \in \Delta_{T} \\|x| \leq 2 \delta, 0 \leq \varepsilon \leq \varepsilon_{0}}}\left|\partial_{3} \partial_{1} h_{1}(t, s, x, \varepsilon)\right|
$$

It follows that

$$
\left\|\mathcal{N}\left(x_{1}, \varepsilon\right)-\mathcal{N}\left(x_{2}, \varepsilon\right)\right\| \mathcal{X} \leq \varepsilon^{N+1}\left(M_{2}+M_{3} T\right)\left\|x_{1}-x_{2}\right\|
$$

and hence that $\mathcal{T}_{\varepsilon} \mathcal{B} \rightarrow \mathcal{B}$ is a uniform contraction for ε in some interval $\left(0, \varepsilon_{3}\right]$ with $0 \leq \varepsilon_{3} \leq \varepsilon_{2}$ The Banach fixed point theorem implies the following result

Lemma 512 Suppose that $\left(\mathbf{H}_{3}\right),\left(\mathbf{H}_{4}\right)$ and $\left(\mathbf{H}_{5}\right)$ hold Then there $2 s$ a number $\varepsilon_{3}>0$ such that (542) has a unique solution $x(\varepsilon)$ in \mathcal{B} for all $0<\varepsilon \leq \varepsilon_{3}$

It is easy to show that since $x(\varepsilon)(t)=x(t, \varepsilon)$ satisfies (542)

$$
u(t, \varepsilon)=U_{N}(t, \varepsilon)+\varepsilon^{N+1} x(t, \varepsilon)
$$

is a solution of (5 11) Moreover

$$
\left|u(t, \varepsilon)-U_{N}(t, \varepsilon)\right|=\varepsilon^{N+1}|x(t, \varepsilon)| \leq 2 \delta \varepsilon^{N+1}
$$

for all $0 \leq t \leq T$ This complete the proof of Theorem 510

5.5 Example

Let us consider the following example from Angell and Olmstead [2],

$$
\begin{equation*}
\varepsilon u(t)=\int_{0}^{t} \mathrm{e}^{(t-s)}\left(u^{2}(s)-1\right) d s \tag{array}
\end{equation*}
$$

The exact solution of this determined by converting the integral equation to a nonlinear first order differential equation subject to the initial condition $u(0)=0$ is

$$
\begin{equation*}
u(t, \varepsilon)=\frac{2}{\varepsilon} \frac{1-\mathrm{e}^{\gamma t}}{(\gamma-1) \mathrm{e}^{\gamma t}+\gamma+1} \tag{552}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma=\frac{1}{\varepsilon} \sqrt{4+\varepsilon^{2}} \tag{553}
\end{equation*}
$$

Example (5 5 1) corresponds to

$$
f(t, \varepsilon)=1-\mathrm{e}^{t}, \quad g(t, s, u)=\mathrm{e}^{(t-s)} u^{2}
$$

which implies $\partial_{3} g(t, t, u)=2 u$ It follows from (531) that the leading order outer solution satisfies

$$
0=\int_{0}^{t} \mathrm{e}^{(t-s)}\left(y_{0}^{2}(s)-1\right) d s
$$

which has solutions $y_{0}(t)= \pm 1$ But only one of these can be appropriate since (551) has a unıque solution $\left(\mathbf{H}_{5}\right)$ cannot be satisfied with $y_{0}(t)=1$, but with $y_{0}(t)=-1$ it holds with $\alpha=2$, since $\partial_{3} g\left(t, t, y_{0}\right)=-2$ Therefore

$$
y_{0}(t)=-1, \quad t \geq 0
$$

The leading order inner correction solution is given by the nonlinear ordinary differential equation

$$
z_{0}^{\prime}(\tau)=z_{0}^{2}(\tau)-2 z_{0}(\tau), \quad z_{0}(0)=1
$$

which has a solution

$$
z_{0}(\tau)=1-\tanh \tau, \quad \tau \geq 0
$$

We see from this solution that $z_{0}(\tau)$ satisfies the requirement that

$$
\lim _{\tau \rightarrow \infty} z_{0}(\tau)=0
$$

To the leading order, the asymptotic solution $U_{0}(t, \varepsilon)$ of (5 5 1) is given by

$$
U_{0}(t, \varepsilon)=-\tanh \frac{t}{\varepsilon}
$$

In general, for $\jmath \geq 1$, the outer solution satisfies

$$
y_{J-1}(t)=-2 \int_{0}^{t} \mathrm{e}^{t-s} y_{j}(s) d s+\int_{0}^{t} \Phi_{\jmath}(t, s) d s+\int_{0}^{\infty} k_{\jmath-1}(t, \sigma) d \sigma
$$

where $k_{\jmath-1}(t, \sigma)$ and $\Phi_{\jmath}(t, s)$ are determined by $y_{\imath}(t)$ and $z_{\imath}(\tau)$ for $\imath \leq \jmath-1$ Since

$$
\Phi_{1}(t, s)=0, \quad k_{0}(t, \sigma)=-\mathrm{e}^{t} \operatorname{sech}^{2} \sigma
$$

1t follows that the first order outer solution satisfies the equation

$$
2 \int_{0}^{t} \mathrm{e}^{t-s} y_{1}(s) d s=1-\mathrm{e}^{t}
$$

Solving this by differentiating once gives

$$
y_{1}(t)=-\frac{1}{2}, \quad t \geq 0
$$

From (53 4), the inner correction solution, in general satisfies

$$
z_{\jmath}^{\prime}(\tau)=-2 \tanh \tau z_{\jmath}(\tau)+\psi_{\jmath}^{\prime}(\tau)
$$

where

$$
\psi_{\jmath}(\tau)=-\int_{\tau}^{\infty} \Xi_{\jmath}(\tau, \sigma)
$$

1s determined by $y_{\imath}(t)$ and $z_{2}(\tau)$ for $\imath \leq \jmath$ respectively $\imath \leq \jmath-1$ Then, since

$$
\Xi_{1}(\tau, \sigma)=(\sigma-\tau) \operatorname{sech}^{2} \sigma+\tanh \sigma-1
$$

the first order inner correction solution $z_{1}(\tau)$ satisfies

$$
z_{1}^{\prime}(\tau)=-2 \tanh \tau z_{1}(\tau), \quad z_{1}(0)=\frac{1}{2}
$$

Solving this gives

$$
z_{1}(\tau)=\frac{1}{2} \operatorname{sech}^{2} \tau, \quad \tau \geq 0
$$

Then to the first order, the asymptotic solution $U_{1}(t, \varepsilon)$ is given by

$$
U_{1}(t, \varepsilon)=-\tanh \frac{t}{\varepsilon}-\frac{\varepsilon}{2} \tanh ^{2} \frac{t}{\varepsilon}
$$

To verify that $U_{0}(t, \varepsilon)$ is a uniformly valid asymptotic solution, we consider the difference

$$
\begin{align*}
u(t, \varepsilon)-U_{0}(t, \varepsilon) & =\frac{2 / \varepsilon\left(1-\mathrm{e}^{\gamma t}\right)}{(\gamma-1) \mathrm{e}^{\gamma t}+\gamma+1}+\frac{\mathrm{e}^{2 t / \varepsilon}-1}{\mathrm{e}^{2 t / \varepsilon}+1} \\
& =\frac{2 / \varepsilon\left(1-\mathrm{e}^{\gamma t}\right)\left(\mathrm{e}^{2 t / \varepsilon}+1\right)+\left(\mathrm{e}^{2 t / \varepsilon}-1\right)\left\{(\gamma-1) \mathrm{e}^{\gamma t}+\gamma+1\right\}}{(\gamma-1) \mathrm{e}^{\gamma t}+\gamma+1\left(\mathbf{e}^{2 t / \varepsilon}+1\right)} \tag{554}
\end{align*}
$$

Simplifying (5 5 4) gives

$$
u(t, \varepsilon)-U_{0}(t, \varepsilon)=\frac{\mathrm{e}^{\gamma t}+\mathrm{e}^{2 t / \varepsilon}-\mathrm{e}^{\gamma t} \mathrm{e}^{2 t / \epsilon}-1}{\gamma \mathrm{e}^{\gamma t}+\gamma \mathrm{e}^{2 t / \varepsilon}+(\gamma-1) \mathrm{e}^{\gamma t} \mathrm{e}^{2 t / \epsilon}+\gamma+1}
$$

We have from (553) that

$$
\gamma \sim-\frac{2}{\varepsilon}+O(\varepsilon), \varepsilon \rightarrow 0
$$

Therefore

$$
u(t, \varepsilon)-U_{0}(t, \varepsilon)=\frac{2 \varepsilon \mathrm{e}^{2 t / \varepsilon}-\varepsilon \mathrm{e}^{4 t / \varepsilon}-\varepsilon}{2 \varepsilon \mathrm{e}^{2 t / \varepsilon}+(2-\varepsilon) \mathrm{e}^{4 t / \varepsilon}+2+\varepsilon}
$$

and

$$
\left|u(t, \varepsilon)-U_{0}(t, \varepsilon)\right| \leq\left|\frac{2 \varepsilon \mathrm{e}^{-2 t / \varepsilon}-\varepsilon \mathrm{e}^{-4 t / \varepsilon}-\varepsilon}{2 \varepsilon \mathrm{e}^{-2 t / \varepsilon}+2-\varepsilon+(2+\varepsilon) \mathrm{e}^{-4 t / \epsilon}}\right|
$$

It therefore follows that for $0<\varepsilon \leq \varepsilon_{0}$, we have

$$
\left|u(t, \varepsilon)-U_{0}(t, \varepsilon)\right| \leq \frac{\varepsilon}{2}
$$

for all $0 \leq t \leq T$ Simılar calculations show that there exists a positive constant $c_{1}>0$ such that

$$
\left|u(t, \varepsilon)-U_{1}(t, \varepsilon)\right| \leq c_{1} \varepsilon^{2},
$$

uniformly for all $0 \leq t \leq T$

5.6 Example from Population Growth

Consider the following example

$$
\begin{equation*}
\varepsilon u(t)=\varepsilon S(t)+\int_{0}^{t} S(t-s) u(s)(1-u(s) / c) d s \tag{561}
\end{equation*}
$$

where $c>0$ is a constant Problem (561) is a model for the population growth The function $u(t)$ is the population size at time t The survival function $S(t)$ is the fraction of the initial population which is still alive at time t, so $S(0)=1 u(1-u / c)$ is the rate of reproduction Since ε is small, (561) describes a rapid growing population

Problem (5 6 1) corresponds to

$$
f(t, \varepsilon)=\varepsilon S(t), \quad g(t, s, u)=S(t-s) u(1-u / c)
$$

The leading order outer solution, $y_{0}(t)$ is given by

$$
\begin{equation*}
0=\int_{0}^{t} S(t-s) u(s)(1-u(s) / c) d s \tag{562}
\end{equation*}
$$

which implies

$$
\begin{equation*}
y_{0}(t)=0 \quad \text { or } \quad y_{0}(t)=c \tag{563}
\end{equation*}
$$

To satısfy $\left(\mathbf{H}_{5}\right)$, the correct leading order outer solution is

$$
y_{0}(t)=c,
$$

since then $\partial_{3} g\left(t, t, y_{0}(t)\right\rangle=-1$ By (531) the leading order inner correction solution $z_{0}(\tau)$ is given by

$$
\begin{equation*}
z_{0}^{\prime}(\tau)=-z_{0}(\tau)\left(1-\frac{1}{c} z_{0}(\tau)\right), \quad z_{0}(0)=1-c \tag{564}
\end{equation*}
$$

which has solution

$$
\begin{equation*}
z_{0}(\tau)=\frac{c(1-c) \mathrm{e}^{-\tau}}{1+(c-1) \mathrm{e}^{-\tau}} \tag{565}
\end{equation*}
$$

This implies that $\lim _{\tau \rightarrow \infty} z_{0}(\tau)=0$ and thus to the leading order, the asymptotic solution, $U_{0}(t, \varepsilon)$ of (561) is given by

$$
\begin{equation*}
U_{0}(t, \varepsilon)=\frac{c}{1+(c-1) \mathrm{e}^{-t / \varepsilon}} \tag{566}
\end{equation*}
$$

Thus on a time scale of order ε, the population increases rapidly Since (561) and $y_{0}(t)$ satisfy the hypotheses of this chapter, the unknown exact solution satisfies

$$
\begin{equation*}
\left|u(t, \varepsilon)-\frac{c}{1+(c-1) \mathrm{e}^{-t / \varepsilon}}\right|=O(\varepsilon) \tag{567}
\end{equation*}
$$

unformly for $0 \leq t \leq T$

Bibliography

[1] J S Angell and W E Olmstead, Singularly perturbed volterra integral equatıons, SIAM J Appl Math 47 (1987), 1150-1162
[2] , Singularly perturbed Volterra integral equatıons, SIAM J Appl Math 47 (1987), no $1,1-14$
[3] , Singularly perturbed integral equations with end point boundary layers, SIAM J Appl Math 49 (1989), 1567-1584
[4] K E Atkınson, An existence theorm for Abel integral equations, SIAM J Appl Math Anal 5 (1974), 729-756
[5] W Eckhaus, Asymptotic analysis of singular perturbations, Studies on Mathematics and its Applications, North - Holland, Amsterdam, New York, Oxford, 1979
[6] A Erdelyı, W Magnus, F Oberhettinger, and F G Tricomı, Higher transcendental functions, Bateman Manuscript project, vol III, Krıeger, Florida, U S A, 1955
[7] L Flatto and N Levinson, Perıodıc solutions of singularly perturbed systems, J Rational Mech Anal 4 (1955), 943 - 950
[8] L E Fraenkel, On the method of matched asymptotic expansions, Proc Cambridge Phil Soc 65 (1969), 209-284
[9] R Gorenflo and S Vessella, Abel integral equations Analysıs and applıcatıon, Lecture Notes in Mathematics, vol 1461, Springer-Verlag, Berlın, Heldelberg, New York, 1991
[10] S-O Gripenberg, G Londen and O Staffans, Volterra integral and functional equations, Encyclopedia of Mathematics and Its Application, Cambrıdge Unıversity Press, Cambridge, New York, 1990
[11] E Hılle and J D Tamarkin, On the theory of linear integral equations, Ann Math 31 (1930), 479-528
[12] W M Hirsch and S Smale, Differential equatıons, dynamical systems, and linear algebra, Academic Press, United States, 1974
[13] F C Hoppensteadt, Singular perturbations on the infinite interval, Trans Amer Math Soc 123 (1966), 521-535
[14] C G Lange, On spurious solutions of singular perturbation problems, Studies in Applied Mathematics 68 (1983), 227-257
[15] C G Lange and D R Smith, Singular perturbation analysis of integral equations, Studies in Applıed Mathematıcs 79 (1988), 1-63
[16] _, Singular perturbation analysis of integral equations, Studies in Applied Mathematics 90 (1993), 1-74
[17] P Linz, Analytical and numerical methods for volterra equations, SIAM, Philadelphid, 1985
[18] S A Lomov, Introduction to the general theory of singular perturbations, Translations of Mathematical Monographs, American Mathematical Society, United States, 1992
[19] R K Mıller, Nonlinear volterra integral equatıons, W A Benjamın, Californıa, 1971
[20] R E O'Malley, Introduction to singular perturbation, Academic Press, New York and London, 1974
[21] _ Singular perturbation methods for ordinary differential equations, Springer-Verlag, New York, 1991
[22] R B Parıs and D Kamınskı, Asymptotıcs and Mellın - Barnes integrals, In preparation, 1999
[23] H Pollard, The completely monotonic character of the Mittag-Leffler function $E_{\delta}(-x)$, Bull Amer Math Soc 54 (1948), 1115-1116
[24] L A Skinner, Asymptotic solutzon to a class of singularly perturbed Volterra integral equations, Methods and Applicatios of Analysis 2 (1995), no 2, 212-221
[25] D R Smith, Singular perturbatzon theory, an antroduction with applications, Cambridge Unıversity Press, Cambrıdge, New York, 1985

[^0]: ${ }^{1}$ Two functions $\theta(\varepsilon)$ and $\psi(\varepsilon)$ defined in a neighbourhood $\left(0, \varepsilon_{0}\right)$ satısfy $\theta(\varepsilon)=\operatorname{ord}(\psi(\varepsilon))$ if $\theta(\varepsilon)=O(\psi(\varepsilon))$ but $\theta(\varepsilon) \neq o(\psi(\varepsilon))$ as $\varepsilon \rightarrow 0$

