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Abstract

This thesis studies singularly perturbed Volterra integral equations of the form

eu(t) = f(t,e) + /tg(t, s,u(s))ds, 0<t<T,
0

where € > 0 15 a small parameter The function f(¢,¢) 1s defined for 0 < ¢t < T anﬁ g(t, s, u) for
0 < s <t<T There are many existence and uniqueness results known that ensure }that A unique
continuous solution u(t, €) exists for all small € > 0 The aim 1s to find asymptotic approximations
to these solutions This work 1s restricted to problems where there 1s an 1mt1al—:layer, various
hypotheses are placed on g(t, s, u) to exclude other behaviour A major part of this work 15 that

formal solutions of the nonlinear problem are determined and rigorously proved to Pe asymptotic

approximations to the exact solutions Formal approximate solutions

N
Un(t,e) = Ze”un(t,e), un(t,e) = 0O(1) as e - 0,

n=0
are obtained using the additive decomposition method Algorithms which improve the method
used in Angell and Olmstead (1987), are presented for obtaiming these solutions  Assuming a

stability condition 1n the boundary layer, 1t shown that there 1s a constant ¢y such that
lu(t,€) — Un(t,€)| < enveN Tt ase— 0,

umformly for ¢ € [0, T, thus establishing that Un(¢,€) 1s an asymptotic solution Skinner (1995)
has proved similar results, but almost all the theorems here were discovered before éklnner’s work
was found and are largely mdependent of it Lange and Smith (1988) prove resultjs for the case
g(t, s,u) = k(t, 8)u, where k(¢t, s) 1s continuous and satisfies a stability condition in the boundary
layer These results are carefully developed here and similar results for linear mntegrodifferential

equations The problem of extending these to the class of weakly singular equations with

g9(t,s,u) = (Tk(_t’%))ﬂu, 0<8<1,
|

1s discussed An interesting aspect of this problem and others for which the boundary layer stability
condition fails, 1s that the solutions decay algebraically rather exponentially within the boundary

layer |



Chapter 1
Introduction

1.1 Singular Perturbation Problems

In this work we study singularly perturbed Volterra integral and integrodifferential equations which
depend on a small parameter 1n such a way that the solutions of the problem behave nonuniformly
as the parameter tends to zero Such singular perturbation problems mvolving Volterra integral
operators arise in applied mechanics, population dynamics and heat conduction The practical
aim 18 to calculate a uniformly valid approximation to the exact solution, which can be used to
understand and interpret the unknown exact solution Unlike regular perturbation, in singular
perturbation theory there need be no solution to the reduced problem obtained by setting the
small parameter to zero If a solution to the reduced problem does exist, 1ts qualitative features
can be distinctly different from those of the solution to the full singular perturbation problem
The nature of the nonuniformity of the solutions can vary Here we imit attention to problems
in which such nonumformty occurs 1n a narrow region called an initial or boundary layer In
this region, the solution of the problem changes rapidly The width of the mmtial layer must
approach zero as the parameter decreases to zero In problems with layers one approach 1s to seek
(at least) two expansions, called the inner and outer expansions, neither of which s umiformly
valid but whose domains of validity overlap and cover the whole domain This 1s the method of
matched asymptolic expansions Its purpose 1s to replace the problem on the whole doman by
a sequence of siumpler tractable equations on the inner and outer regions For many problems
the additive decomposition method (otherwise known as the O’Malley-Hoppensteadt or boundary
function method) 1s simpler In this thesis we apply the method to several integral equations, and
describe some standard, general techmques for mathematically justifying the results Estimates

are provided using relatively simple differential inequalities

The additive decomposition method was first applied to singularly perturbated systems of ordi-
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nary differential equations of the form

Y fmute), 2(0) = ale) (111a)
Y~ gwu60), yl0) = B() (111b)

Here the data f(z,y,t,¢), g(x,y,t,€), a(e) and B(¢) are assumed to possess power series expansions

in £ with smooth coefficients An asymptotic solution of (11 1) 1s sought in the form

z(t,e) = X (t,¢) + e€(t/e,€),

y(t’ E) = Y(t: g) + ﬂ(t/EaE),

with an outer expansion

and an 1mitial layer correction

(fma) ~ 2= (58).

whose terms tend to zero as T — o0 Related to (11 1) are two important problems The reduced

system 18
dz
E = f(x’ ¥t 0)1 93(0) = (1(0)
0=g(z,y,t,0) (112)

and the associated boundary-layer equation

dz

E —g(fL‘(O),Z,0,0), Z(O) =ﬁ(0) (1 13)

Hoppensteadt investigated 1n [13] the behaviour of the solution of (1 1 1) on the interval 0 < t <
oo ase — 0 In order to treat this case of ¢ being allowed to range over the entire posifive real axis,
[13] requires that both the reduced system (1 1 2) and the boundary layer equation (1 1 3) satisfy
severe stability conditions Hoppensteadt’s main result 18 that, under restrictive assumptions, the
solutions of the system (11 1) exist for all £ > 0 and converge as ¢ — 0 to the solutions of the

reduced system umiformly on closed but not necessarily bounded subsets of (0,00) In particular,
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solutions converge on sets of the form {t1,00) with ¢; > 0 This result 1s sigmficant i the sense
that the hypotheses cannot be sigmficantly weakened

Different results for (11 1) have been obtamned on bounded intervals of the form 0 < ¢t < T
These include many by O’Malley, full references for which can be found 1n [20], [21] or Smuth [25]
In order to obtain these results, less severe stability conditions are imposed on the boundary-layer
equation (11 3) and the reduced system (1 1 2) than in Hoppensteadt’s theory Boundary value
problems have also been extensively investigated, see for example the books of O’Malley [20] and
Smuth [25]

In some problems of the form (1 1) the additive decomposition method gives spurious results in
cases for which the method of matched asymptotic expansions works Examples of this have been

discussed 1n Fraenkel [8] and Lange [14]
1.2 Summary of Thesis
Chapter 2 considers the singularly perturbed hinear Volterra equation
t
eu(t) = £(z) +/ A(t,s)u(s)ds, 0<t<T, (121)
0

where 0 < € << 1 The vector-valued function f(t) 1s continucus for ¢ < ¢ < T and the matnx-
valued kernel A(t, s) 1s continuous for 0 < 8 < ¢ < T The aum 1s to find asymptotic approximations
to the continuous vector-valued solution t — u(t,e) of (121) ase - 0 We impose the boundary
layer stabilsty condition that all eigenvalues of A(t,t) have negative real parts This not only forces
an 1mtial layer, but forces the solution u(t, &) of (1 2 1) to decay exponentially in the boundary-
layer

Angell and Olmstead 1n [1] and [2] used the additive decomposition method to find the first
few terms in the formal solutions of linear and nonhnear singularly perturbed Volterra integral
and differential equations However their approach has the shortcoming that general equations
for the coefficients in the formal solution cannot be determined Also Lange and Smith [15]
used the additive decomposition method n their study of singularly perturbed linear Fredholm
equations They deduced general expansions for the formal solution and rigorous estimates to show

1ts closeness to the exact solution Following the same approach, we derive 1n Section 2 4 equations
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for the terms 1n a formal solution

Un(t,e) = Z u,(2,)e™ !

n=0

Then 1n Section 2 5 it 18 shown that
t
cUn(te) = £(t) + / Alt,s)Un (s,6) ds + O(N+1),
0

and 1n Section 2 6 we prove that

lu(t,e) - Un(t,e)l = O™ (122)

uniformly for 0 <t <T ase — 0

Similar results are proved in Chapter 3 for the linear Volterra integrodifferential equation
t
eu'(t) = f(¢) + B(t)u(t) +/ A(t,s)u(s)ds, u(0)=a
0

We construct 1n Section 3 2 a formal solution Up (¢, ) for this problem using the additive decompo-
sition method and prove the estimate (1 2 2) provided the above boundary layer stability condition
holds In chapter 4 we consider the weakly singular inear scalar Volterra integral equation

A mayor part of this thesis 13 Chapter 5, where formal solutions of the nonlinear problem

eu(t) = f(t,e) + /t gt,s,u(s))ds, 0<t<T, (123)
0

are determined and nigorously proved to be asymptotic approximations to the exact solutions

Here we require that hm,_,q f(0,¢) = 0, and allow f to have the asymptotic expansion

flt,e) ~ ia«’fj(t) ase— 0
7=0

Again the additive decomposition method 1s used The boundary layer stability assumption takes

the form that there 18 a constant o > 0 such that

Dag(t,t,yo(t)) < —a <0, forall0<t<T,

33g9(0,0,v) < —a < 0, for all suitable v

Skinner [24] has proved similar results, but almost all the work in Chapter 5 was done before

Skinner’s work was found and 18 largely independent of 1t However for the sake of clarity we
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have integrated some of Skinner’s improvements into the exposition of Chapter 5 In particular
Skinner’s method of deriving the equations for the formal solution 1s adapted there Skinner’s work
builds on that of Smuth [25], Ch 6, O’Malley [20], Ch 4 and O’Malley [21], Ch 2 on singularly
perturbed 1itial value problems for nonlinear ordinary differential equations These were major
sources for this thesis

We also investigate linear Volterra equations for which the boundary layer stability condition

fails to hold In Section 2 8 we view the simple example

t
eu(t) = f(t) - / su(s) ds, (124)

from the point of view of the additive decomposition method, looking for an expansion

oo 1 oo
u(t,g) = Ze’yj(t) +- Ze’/2z, (t/e'/?)
2=0

=0

Because not all the boundary layer correction terms z,(7) — 0 exponentially as 7 — oo but only
algebraically, greater care 15 required in applying the O’Malley-Hoppensteadt method Similarly

i Chapter 4 the weakly singular scalar Volterra integral equation

¢ 8
ult) = 10+ 5z | G u(s) ds,

1s considered with 0 < 8 < 1 and k(t,£) = —1 This problem exhibits an mmtial layer at t = 0
like the equations with continuous kernels considered in Chapter 2 The stability condition fails
and there 1s only algebraic decay of solutions i the mmtial layer We construct a formal solution
Us(t,e) and can demonstrate in particular examples that |u(t,e) — Up(t,e)| = O(e) A proof of

this i general 18 not yet known



Chapter 2
Linear Integral Equations with Continuous
Kernels

2.1 Introduction

This chapter considers the singularly perturbed linear Volterra equation
¢
cu(t) = £(2) + / Alt,s)u(s)ds, 0<t<T, 211)
0

where 0 < € << 1 The vector-valued function f(t) 1s continuous for 0 < ¢t < T and the matrix-
valued kernel A(t,s) 18 continuous for 0 < 8 < ¢t < T Our interest 18 1n finding asymptotic
approximations to the continuous vector-valued solution ¢t — u(t,e) of (211) ase — 0 The
results here are not presented because they are new, but rather to explamn 1n this simple context
how the method of additive decomposition can be applied to integral equations In later chapters
1t 15 employed to find asymptotic approximations to the solutions of more complicated equations
The results here are easily generalised to the case of f and A depending 1n a regular way on &,
though here 1t 15 assumed that they are imndependent of £

The singular nature of (21 1) 1s easily seen For & > 0, {21 1) 1s a Volterra equation of the
second kind which has a continuous solution u(t, &) satisfying eu(0,¢) = f(0) Fore =0, (211)

reduces to a Volterra equation the first kind
t
0 = f(2) +/ A(t,s)v(s)ds, 0<t<T, (212
0

which does not have a continuous solution unless £(0) = 0 Even in this case, (212) has a
continuous solution only 1if £f(¢) 18 continuously differentiable So there 1s a loss of regularity for
v(t) compared to the solution u(t,&) of (211) for e > 0 Indeed, if the solution of (21 2) 18
such that v(0) # hme.,o (0, €), then v(t) cannot provide a uniformly valid approximation of the
solution u(t,€) of (21 1) on [0, 7]

The behaviour of the kernel plays an important role in determiming the asymptotic character
of the continuous solution u(t,e) of (211) for small values of ¢ In this chapter we impose the

condition that all of the eigenvalues of A(t,t) have negative real parts This not only forces an
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mnitial layer, but forces the solution u(t,€) of (211) to decay exponentially in the initial-layer
The solution u(t,£) 1s slowly varymg for O(e) <t < T as ¢ = 0, but changes exponentially on a
small interval 0 < ¢ < O(e) This small interval of rapid change 1s called the inner region, nitial
layer or layer of rapid transition, and the region of slow variation of u(t,e) as the outer region
The thickness ¢ of the mitial layer approaches zero ase = 0

The aim of this chapter 1s to obtain agsymptotic approximations to u(t,e) which are umformly
valid for all 0 <t < T as e = 0 Our terest 1s 1n problems whose solutions have imtial layers,
solutions with rapid initial exponential growth will not be discussed here Exponential decay 1in
the boundary layer of the solution u(t, &) suggests the use of the additive decomposition method,
as was employed by Lange and Smith [15) in their study of singularly perturbed linear Fredholm
equations In Section 2 2, we introduce some notation and explain our basic assumptions Section
2 3 explains the fundamental 1deas of the additive decomposition method, and how 1t regularizes
the singular perturbation problem (2 11) We derive a formal solution Y oo | un(t,£)e™ m Section

24 In Section 2 5 1t 1s shown that this 13 an asymptotic series and that

eUn(t,e) =f(t) + /t A(t,8)Un(s,€)ds + O(e™V 1),
0

where
N41
Un(t,e) = Z u,(t,e)e™ !
n=0
In Section 2 6 we prove that
lu(t,e) — Un(t,e)| = OE¥*) (213)

uniformly for 0 < t < T as € —» 0 This result 138 important because the method of additive
decomposition can lead to spurious solutions (see for example Lange [14]) The method 1s 1llustrated

in Section 2 7 by an example from Angell and Olmstead [2]

2 2 Notation and Assumptions

The n-dimensional space R” 1s given the norm |x| = max;<,<y |2,| for each x 1n K", and the space
R™*™ of n X n matrices with real entries 1s given the norm |M| = maxi<,,;<n |My;| for all M m

R™"*™  The spectrum o (M) of M 18 the set of exgenvalues of M It 1s well-known (see, for example
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Hirsch and Smale [12], Ch 7, Thm 1) that, if ReA < a < a; < 0 for all A € (M), there 1s a

constant & > 0 such that
[eMix| < ke~ x| (221)
The kernel A A7 — R**" 15 defined on
Ar={(ts)eR 0<s<t<T) (222)
It 13 convenient to use the notation
B(t) = A1) (223)

Partial derivatives are usually denoted by 81 A and J;A nstead of A /8t and A /8s respectively
Similarly the derivative of u 18 usually denoted by u’(¢) rather than du/dt
The following assumptions are used throughout this chapter The first 1s a regularity assumption

on the data f and A, the second 1s a stability condition for the solution within the boundary layer

(H;) The functions f [0,7] = R® and A Az — R*™*" are both C*®

(H2) There exists a number a > 0 such that

Re(A\)} < —
,\egl(aBJEt)){ e(M)} < —a,

forall0<t<T
23 Heuristic Analysis

In this section, we describe how the additive decomposrtion technique can be applied to integral
equations of the type (211) The method of additive decomposition, also called the O’Malley
and Hoppensteadt method, was mitially applied by O’Malley [20], [21] and Hoppensteadt [13]
to 1nvestigate the behaviour of solutions of singularly perturbed systems of ordinary differential
equations The book Smith [25] contains a clear account of its application to singularly perturbed
ordinary differential equations This method was later employed by Angell and Olmstead 1n [2] and
[1] to get formal solutions of singularly perturbed Volterra integral equations, linear and nonlinear

Lange and Smuth mn [15] in a very careful study of singularly perturbed hinear Fredholm equations




Chapter 2, Section 3 Heunstic Analysis

applied the method systematically to get a complete formal solution and proved estimates of the
type (21 3) The singularly perturbed Fredholm equations investigated 1n [15] have the additional
complication of two boundary layers It 1s also indicated there how internal layers can be analysed
The additive decomposition has also been employed by Lange and Smuth [16] and Skinner [24]
The presentation 1s similar to §3 and §6 of Lange and Smuith [15)

The analysis 1n this and the next section 1s formal The forcing function f(2) and kernel A(t, s)

are assumed to be C® The solution u{t,e) of (21 1) can be represented as
1 1t
u(t,e) = Ef(t) + - T(t,s,e)f(s)ds, 0<t<T, (231)
0
where (2, s,€) 18 the resolvent kernel of A(Z,s)/e, which by definition 1s the solution of
1 1t
I'(t,s,e) = EA(t,s) + - A(t,v)I'(v,8,€)dv, 0<s<t<LT
8

I'(t,s €)1s also C*° Detailed accounts of the theory of linear nonconvolution Volterra equations
can be found in Miller [19] ch IV and Gripenberg, Londen and Staffans [10] Ch 9
To model an 1mtial layer for u(¢,¢) we introduce o new scaled time scale 7 = ﬁ The 1dea 15

that if the initial layer region 1s described with respect to the new time scale no rapid variation in

the solution should be exhibited A solution u(t, &) 1s sought in the form

u(t,e) = y(t,e) + p(e)z(t/ple), €), (232)

where y(t,€) represents the outer approximation and z(7,£) an wntial layer correction function
The function p(e) describes the width of the layer and (e) describes the magnitude of u(t,e)

the layer Therefore we require that!
vy, e) =ord(l), z(r,e)=ord(l) ase—0

At any fixed t > 0, the outer approximation, y(t,&) should give a good approximation to u(t,e)

as € = 0, we 1impose the condition

z(t,e) 0, asT— 00 (23 3)

I'Two functions @(e) and ¥(e) defined 1n a neighbourhood (0,€e0) satisfy 0(e) = ord(1(e)) if 8(¢) = O(()) but
6(c) # o(p(e)) ase = 0
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The substitution of (2 3 2) into (21 1) gives

t t/u(e)
ey (t,€) + ep()al(t/p(e) ) = /0 Alt,5)y(s,€) ds + p(e)u(e) /0 At ule)o)a(o,€) do +£(2)
(234)

This 15 equivalent to

u(e)r
ey (u(e)r €) + eple)a(r,e) = /0 Alu(e)r, )y (s,¢) ds

T oe)ule) / " A(u(e), u(e)o)a(o,e) do + E(ule)r)  (235)

The width u(e) and ampltude @(¢) in the boundary layer can be found by examining the
dominate balance Of course u(e) = o{1) as € = 0 We shall only consider the leading order terms

i y(t,¢) and z(r,€), and therefore write
v(t,e) =yo(t) + o(1), =z(r,e) =2o(r) +0(1) ase—0

Of course zo(r) — 0 as 7 — o0 Also we assume that there 1s a real number 4 and nontrivial

kernels B(r,0) and C(t,0) such that
A(er,e0) ~e"B(T, 0)
A(t,eo) ~7C(t,0)

uniformly as € = 0 For simplicity we suppose that £(0) # 0 Equations (2 3 4) and (2 3 5) imply

that as£ > 0

¢ t/u(e)
eyo(t) + ep(e)zo(t/p(e)) ~ /0 A{t, s)yo(s) ds + p(e)u(e) /0 A(t, u(e)o)z(o, €) do + £(2)
(236)

(e)r T
eyo(u(e)T) + ep(e)zo(r) ~ /Uu A(u(e)T, 8)yo(s) ds + W(E)M(5)7+l/() B(r,0)z(0) do + £(0)
(237

Examining the dominant balance 1n the second relation, we see that
ord(ep(e)) = ord(u(e)" () = ord(1) ase -0
Hence we choose
1

we)=emh, ple)=1

It then follows by letting € =& 0 with 7 > 0 fixed n (2 3 5), that zy obeys the equation
T
zo(r) = / B(r,0)z0(0) do + £(0)
0

10
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To get an equation for yg the order as £ — 0 of the term

t/ule)
P(E)ule) /0 Alt, p(e)0)2(0,€) do (238)

in (23 4) must be calculated In the standard case of expeonential decay in the boundary layer,
each of the integrals
t/ule)
| At a0.0) - mo) do,
0
t/ule)
[ a0 - et (o) do,
0
wey [ ctt,a)mlo)do,
t

/u(e)

can be formally shown to vanish, and hence (2 3 8) has leading order

/ ” Ct,0)20(0) do (239)
0

in this case However finding the order of (23 8) as € — 0 1n the case of algebraic decay of
the solution 1n the boundary layer 1s not so straightforward Indeed in Section 2 8 an example 1s
discussed for which the evaluation of the layer hmit in (2 3 8) requires knowledge of the asymptotic
behaviour of higher order terms in z(7,&) not just the leading order term zy(7) For the standard
case of exponentially decaying boundary layers, we find by letting £ - 0 with 0 < ¢ < T fixed 1n

(2 3 4) that yo obeys

x>

0= /Ot A(t,8)yo(s)ds + /0 C(t,0)zo(0) do + £(t)
It 1s easy to see that if (F3) holds then
Aler,eq) ~ A(0,0) (2310)
A(t,eo) ~ A(t,0) (2311)

as € = 0, where A(0,0) and A(¢,0) are non-zero Then the width and amphtude of the boundary

become
1
ule) =€, )= - (2312)
In the standard case yy and zy then satisfy

i oo
0= / At 8)yo(s)ds + A(t, 0) / 20(0) do + £(2) (2313)
] 0

zo(T) = /OT A(0,0)20(0) do + £(0) (2314)

11
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A consequence of the magnitude O(e~!) of the boundary layer 1s that the term eu(¢) on the nght
of (2 11) contributes to equation (2 3 14} for the inner correction term It also follows from (2 3 6)
that (2 39) 18 the contribution to the integral in (2 1 1) from narrow mmtial layer 0 < ¢t < O(e) 18
O(1) as € = 0 with ¢ > 0 fixed Also note that the integral equation (2 3 13) 1s not the reduced
equation (21 2}, unless the second integral on the right side 1s sero In the special case where
f(0) = 0, the boundary layer has O(1) magnmtude and the leading order term zy obeys a different
equation

The solution of (2 3 14) 1s zo(7) = eA®07£(Q) If (H3) holds,
s 9)
| matnydr = -40,07'100),
0
and (2 3 13) becomes
¢
0= / At 8)yo(s) ds + £(£) — A(4,0)A (0, 0)~'£(0),
0
which has a smooth solution

2.4 Derivation of the Formal Solution

In this section we assume that (2 3 10), (2 3 11) and (2 3 12) hold, so that we seek a formal solution

m the form
1
u(t,e) = y(t,e) + EZ(t/E,E) (241)

The vector functions y(t,e) and z(7, ) are given asymptotically by

y(te) ~ 3 ey, (8), (242)
=0

z(T,€) ~ ie]zj (1), (243)
=0

as £ = 0 To ensure that (2 3 3) holds we assume that

lm z,(r)=0, 7=0,1,2,

T—00

Putting y_1 (£) = 0, 1t follows from (2 3 4) that

ot t/e
ZEJ /0 A(t,e0)z,;(0)do

=0

Zs’yj_l(t) + Zejz] (t/e) ~ () + ZEJ / A(t,s)y,(s)ds +
3=0 1=0 3=0 ¢

(244)

12




Chapter 2, Section 4 Derivation of the Formal Solution

The orders of the terms mn

od t/e
' e / A(t,e0)z,(0) do (245)
= 0

in (24 4) as ¢ = 0 depend on the decay rate of the layer term z,(v) We assume that z,(r) decays

exponentially so that, for each integer 3 > 0, there are positive constants 3, and ¢, such that
|z, (1) < ce™®7, 720 (246)
By writing out the Taylor expansion of A(t,e0) we find that

A(t,eq) ~ ZE‘E t,oc) ase —0,

where

E.(t,0) = la [83A] (t,0) (247)

Hence, noting that E, (¢, ) 1s defined for all ({,0) in RT x Rt (2 4 5) has the asymptotic expansion

oo (e o]

ZSJZE / (t, o)z, (0)do = ZE’ZE’/ (t,0)z,(c) do
7=0 =0

—Ze’Ze / W(t,0)2,(0) do
~3 e Z / T Eult,0)2, () do — I(t/e,e)
1=0 =0 ¢

as € = 0, where

o0 oo o0
£) = 25’ Ze'/ E,(er,0)z,(0) do
3=0 =0 T
We 1ntroduce the homogeneous polynomial of degree 1
1
Fy(r0) =5 [(181 + 002)*A] (0,0), (248)

which has the property that

x o0
Ze’E(er,a) ~ ZE‘F(T, o), ase—0
=0 =0

It follows that

J(r,€) ~ ZSJJ as e — 0,

13




Chapter 2, Section 4 Dernivation of the Formal Solution

where

J S}
5,0=% / F\(r,0)2,.(0) do
=077
However 1t follows from (2 4 6) that for any 0 <1<

T!

o0
/ 0 'z,_,(c) do

oo
< TIC-,_y/ o' le ™ -1do -0 asT o0,
and hence from (2 4 8) that
J,(r) 20 asT =0

Equation (2 4 4) can be decomposed nto functions of ¢ and functions of ¢/e which decay to zero

The following Lemma 1s used to derive the coefficients y,(¢) and z,(r) of (24 2) and (2 4 3)

Lemma 21 For each wnteger 3 > 0, let p,(t) be a continuous function on [0,T] and q,(7) @
continuous function on [0,00) such that q,(7) — 0 as 7 — co Suppose that for every integer

N>1,

N-1
3 {py(0) + q,(t/e)} & = OE™), (249)
2=0

untformly ase —+ 0 Then p, =0 and q, =0 for every 3 >0

Proof There 1s a umformly bounded function ro, defined for all 0 < ¢t <T,7 >0 and 0 < ¢ < &g,

such that

Po(t) + qo(t/e) = exg(t, t/e,¢€)

By letting ¢ — 0 for each fixed ¢ € (0,7, 1t follows that po(¢) = 0 The continuity of py then

implies po = 0 on [0,7] Therefore substituting t = &1, we have
ao(1) = ergler, 7,¢)

Hence, on taking the limit as £ — 0 for each fixed T > 0, we deduce that g = 0 An obvious

induction argument completes the proof O
It has been shown that (2 4 4) can be expressed 1n the form (2 4 9) with p, and q, given by
t J o]
p;(t) =y,—-1(t) — 6,0f () — / A(t,s)y,(s)ds — Z/O E,_,(t,0)z,(0) do,
0 =0
q, (1) =25(7) + J,(7)

14



Chapter 2, Section 5 Properties of the Formal solution

It 1s convenient to introduce

=1 7=5 (2 410)
! " -17:—(: ffoo F]—,(T,U)Z,(U) dO, 7 Z 1a

¢,(t)={ (t) + J3° Ao(t,0)20(0)do, 3 =0, 2 411)

Ofo y—1(t,0)2,(0)da, 3 >1

It 18 1mportant to note that 1, and ¢,_, are determined by zo,  ,z,1 Later we use the 1dentity

¢,(0) =,0) + /000 A(0,0)z,(0) do (2412)
From (2 4 10) and (2 4 11)
t
P, () =y, (£) - / Alt, 9)y, (s)ds — &, (2),
0
ay(7) = 7,(r) + / A(0,0)2, (o) do + %, (1)

By applying Lemma 2 1 we obtain the following equations for y,(¢) and z,(r)

V-1 (t) = /0 A(t,s)y,(s)ds + ¢,(t), (2413)

_ / " A0,0)z,(e) do — b, (7), (24 14)

The integral equations are augmented by imitial conditions Since

f0) «— 1
w0,9= "2~ 3o (5,0 + 150),
J=0 ¢
we 1mpose the conditions
f(0), =0,
z,(0) = (0) J (24 15)
—-¥;-1 (0)7 1721

2.5 Properties of the Formal solution

In this section, we first show 1n Proposition 2 2 that there exists solutions y, and z, to equations
(24 13) and (2 4 14) satisfying the imtial condition (2 4 15) Moreover z,(7) — 0 exponentially as

7 — 00 Therefore

Un(t,8) = ¥n-1(t) + zn(t/e),

can be defined for n > 0 Then

Ult,e) = Zun(te -1 (251)

n=0

15
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1s an asymptotic series as € — 0 If we define the truncated sum

N1
Un(te) = Z up (¢,6)e™ Y, (252)

n=0

then we can consider the residual py (¢, €) given by
¢
eUn(t,e) =f(t) + / A(t,s)Un(s,e)ds — pn(t,€) (253)
0

Thus Uy (t,€) satisfies the original equation (21 1) approximately with a residual py (¢t,£) We
express ply(t,€) as the sum of a function of ¢ and a function of £/e In the same manner as i
the construction of the formal solution, functions of ¢/¢ contribute only in the initial layer region,
away from the layer, functions of ¢{ dominate In Proposition 2 4 various results are given which
demonstrate that py(t,€) 1s small for 0 <t < T as & - 0 Simular results are given in Chapter 5
of [25] for a linear overdamped 1mtial-value problems The estimates in Lemma 2 4 are stronger

than those of Section 7 of Smith and Lange [16]

Proposition 2 2 Suppose that (H;) and (Hz) hold, and let 0 < 8 < a Then for every integer
7 > 0 there exist solutions y, € C°([0,T],R*) of (24 13) and solutions z,(r) € C*(]0, 00), R*)

of (2414) and (2415) Moreover there are posstwe constants ¢, such that
|2y (1) S 6”7, 720 (254)

Proof We choose a; such that § < o1 < @ Consider the hypothesis that for some 1nteger N > 0
there are solutions y,(t) of (2413) for all 0 < 3 < N — 1 and solutions z,(7) (24 14) for all

0 < 7 < N satisfying
|z, (T < e™7py(r), 720, (255)

where p,(7) 18 a polynomal of degree 3 with positive coefficients Once this hypothesis has been
established for all N > 0, Proposition 2 2 follows immediately

The solution of

¢

win) =- | " AQ,0z0(0) do,  20(0) = £(0),
18 Zo(7) = eAO07£(0) Hence by (22 1),
[20(r)] < Re==TIEQ)], 720

16
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Also y_1(t) = 0 Hence the induction hypothesis 1s true for M =0
Suppose now that 1t holds for some M > 0 Then ¢,,(t) 18 well-defined and smooth The

equation

t
A(t’ t)—_l [yllll—l (t) - qb’)\»l (t)] = yM(t) + /0 A(tat)_lalA(t$ S)YM (S) dS, (2 5 6)

which 18 obtaned by differentiating (2 4 13), 1s a Volterra equation of the second kind Since the

kernel and forcing function are C*, so 1s the unique solution yar(t) It follows that
¢
ym—_1(t) = / A(t,s)ym(8)ds + ¢p(t) + constant
0

However the constant 18 zero because (2 4 12) and (2 4 14) give —z,(0) = ¢, (0), and the induction
hypothesis 1mplies that the initial condition zpr(0) = —ypr-1(0) holds
The 1nduction hypothesis also implies that ., (7) 18 well-defined Moreover a tedious calcu-

lation using (22 1) and (2 5 4) establishes that

[P prpr (7)) < €77 Py (1),

where Pys1;(7) 1s a polynomial of degree M zpr4; satisfies the ordinary differential equation

Zp11(7) = A(0,0)20141(T) = Phrpa (1), Zar1(0) = ym (0)

The solution of this can be found using variation of parameters and written as

Zar41 (1) = 2007 [y (0) = 2411 (0)] + Y prq (7) + A(0,0) /0 ' A=y (0)de  (257)

The norm of the last mtegral 1s easily bounded by

40,0 [" Ay @) do] < WO [ AT (o)l o
<KAQO)] [ e Puyri(o) do,
0
and 1t can be shown from (2 5 7) that zp4 (7) satisfies an estimate of the form

o

|Zp41 (7)) € €7 Py (), 720,

where py41(7) 15 a polynomial of degree M + 1 Thus proves the induction hypothesis B

17



Chapter 2, Section § Properties of the Formal solution

Remark 2 8 The formal series (2 5 1) 18 a uniform asymptotic series, because

Iun+l (t,5)| - lyn+1 (t)l

ase =0,
lun (2, €)| |lyn ()

implying that w,41(t,€)e™t! = o(un, (¢, €)e™) uniformly for 0 <t < T ase — 0
Proposition 2 4 Suppose that (Hy) and (Hz) hold Then for each N > 0,
lon (8 )] = OE"*)
ungformly for 0 <t < T ase — 0, and there are positive constants dy and ey such that
t
ot el s ene™, [ lp(s,e)lds < e, (258)

0

for all 0 < e < go and for all t wn [0,T), for some g9 > 0

Proof Later we shall use the estimates 1n (2 5 8), and therefore only prove these in detail To
demonstrate the other result an almost 1dentical argument 1s used

Since pn(0,&) = 0, differentiation of (2 5 3) gives
t
Pyt e) = —eUpn(t,e) + (&) + A(t, ) Un(t, €) + / A A, 5)Un(s,e)ds (259)
0

The substitution of (25 2) and the differentiated version of (2 4 13) into this yields

N+1 N+1

Pt e) = —eN Ty () = Y e t/e) + Y AL Bz (t/e)
=0 =0
—Ze Zf OE,_;(t, o)z a)da+Z / A(t,eo)z,(c)de (25 10)
=0 k=0 7=0

Using the Taylor expansion of A(t,£0) we can dertve

N [e5) N o )
ZE’ZE / BlEk t (T Z Z f 81Ek(t,a)z,(a)da
1=0 0

1=0 k=0

- Ze Zs 61Ek (t,0)z,(c)do

=0 k=0
By substituting this mnto (2 5 10), we get
N41 N+1
pin(te) = —eN Ty () + Z etz (t/e) + Z et~ lze’”Fk (t/e,t/e)z.(t/e)
=0 1=0 k=0
P Y Z/ B\F s (t,0)m(a)da = 3 e E/ F_(t/e,0)m(0) do, (25 11)
1=N+1 k=0 =0

18
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where
¥, (r,0) = %[(T@l + 00;)*8: A](0,0)

By putting the differentiated version of (2 4 14) nto (2 5 11), we obtain

=0 55 05 [Catamicrs

=N+1

-+ Z ZF, ki1 (t/e, t/e)zi(t/e) + E Z/ F!_.(t/e,0)zx(0) do,

1=N+1 k=0 1=N+1

where the following relation has been used
81Ft (Ta 0’) = F;-l (Ta U)
To summarise 1t has been shown that

pi(tie) = pn(t.e) + pi(t/e,€) + ON?),

where
N+1
p}v(t, E) = 6N+1 {—yN( / 61EN+1 k(t O')Zk (0’) d(f} (2 5 12)
p?V(Tae) = Z g’ Z {Ft—k+1 (Ta T)zk (T) —/ F’z—k(T: O')Zk(d) dO’} (2 o 13)
=N+1 k=0 T
By (2512)
¢
ot el < ke, [ ok (s, ds S ke, (2514)
9

uniformly for all 0 < ¢ < T, where v and 7% are positive constants Using (2 5 5) the function

P (1,€) satisfies
ok (7,6)] <eMHQN(r)e™ ™ < eNTake T,

where Qn 15 a polynomial with positive coefficients, and 8 < a1 < a Hence there 1s a positive v

such that

/ |on2(s/€,€)|ds < yAeN T,

uniformly for 0 <t < T as ¢ = 0 The conclusions of the proposition now follow 0
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2.6 Asymptotic Solution

In this section we state and prove our main result It says that for N > 0,
lu(t,e) — Un(t,e)| = OEN) ase o0,

and hence that U(%,£) given by (25 1) 18 an asymptotic solution

Theorem 2 5 Suppose (H;) and (Hy) in Section 2 2 are satisfied Let u(t,e) be the solution of
(211) and Un(t,€) the partral sum gwen in (252) Then for each wnteger N > 0, there are

positwe constants Cn 1 and g9, mndependent of €, such that
lu(t,€) = Un(t, )| < Cni1e™tH, (261)
untformly for 0 <t <T and 0 <e < &g
Proof Tt s convenient to fix N > 0 and define
rn(t, €) = u(t,e) — Un(t, )
By subtracting (2 5 3) from (21 1) we get
¢
ern(t,e) = py(t,e) + / A(t,s)rn(s,e)ds
0
Dafferentiation yields
, 1 1, 1 [
ry(t,e) = EB(t)rN(t, €)+ gpN(t, e) + - S AL, 8)rn(s,e)ds, rn(0,6) =0, (262)
0

where B(¢) 1s given by (22 3)

The solution of the ordinary differential equation
, 1
rN(t:E) = EB(t)rN(t) 5) + g(t),
can be represented using variation of parameters as
¢
e (te) = B(t,0,6)en (0,€) + / B(t,s,)g(s) ds (263)
0
where
®(t,s,e) = R(t, e)R(s,e) ", (26 4)
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Chapter 2, Section 7 Example

and R(¢, €) 18 the fundamental matrix solution satisfying
R'(t,¢) = -B(t)R(t,¢)
It 15 a result of Flatto and Levinson [7] that there are constants k; > 0 and 0 < a2 < a such that
|B(¢, 5,€)| < ke 2 t-o)/e, (265)

since (Hz) holds

Application of the representation (2 6 3} to (2 6 2) yields
ry(t,e) = /‘btsz)pN(s g)ds + - / (/@tsa)al (s, v)ds)rN(v ) dv (266)
However 1t follows from (2 6 5) that

t t
é / B(t,s,€)0 A(s,v) ds| < 22 / e2(t=2)/¢ |9 A(s,v)| ds
v v

<—— max |G1A(t )] =«
oy (¢, a)eArl ! )l 2

Similarly we see from (2 5 8) and (2 6 5) that

t
S ENeN/ e—az(t—ﬂ)/E ds S e_NEN+l
8 Qa2

¢
é ’/ B(t,3,¢)pN(s,€)ds
0

Hence (2 6 6) imphes that

EN _N+1 i

w6 < Ze s ks [ o (v,e)ldo

(55) 0

By Gronwall’s inequality,
e ()] < SeMtient,
23}
and the theorem 1s proved O
2.7 Example
To 1illustrate the method, let us consider the following example from [1] and [2]
eult) = t)—/{t—sw(s +0(s)}u(s)ds, t>0 (271)

where §(t) > 0 Equation (2 7 1) 1s equivalent to “over-damped” mmitial value second-order ordinary

differential equation
eu”(t) + 8(t)u'(t) + {w(t) + 0" () }u(t) = f (1), t > 0, (272)
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Chapter 2, Section 7 Lxample
with 1nitial conditions
1 , 1 1.,
u(0) = Z£(0), ¥(0) = = 58(0)f(0) + - '(0)
For simplicity we take
wt)=1, 6t)=1, f(t)=t+t*+ =¢°
because the exact solution of (2 7 1) can be obtained using Laplace transforms as
u(t,e) =t+1+ 1 ’)’2—1+}‘ ent — fyl—1+l e (273)
’ M= € € ’

where

1
T1,Y2 = 5—6:(—1:1:\/1 el 4&‘)

In this example f(0) = 0 and we should use an asymptotic representation other than (24 1)

However we find that z9(7) = 0 and our representation agrees with the correct one Note that in

thus example a(t, s) = —t + s — 1 and the boundary layer stability condition holds For j > 0, the

wnner correction solution z,(7) 1s given by

(1) =75, 0) - [ "o o)y () do,

o

where

11 00
¢J(T) ZZ/ Fj_,('r,a)z,(o)da
=0YT

Since 1n this example

-1, 1 =0,
F,(T,O')— _(T—U)’ 1=1,
0, 1> 2

1t follows that

W =-[ " (r = 0)2y1 (o) do

Therefore we get

z,(r):e_TzJ(O)—/ e‘("“’)/ 2,1 (v) dv do,
0 4

22
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where
2(0) = f(0), 2z(0)=1vy;—1(0), 521
By (2 4 13) the outer solution y,(t) satisfies

t
vyi () = — / (t = 5 + L)y, () ds + b, (2),

or
Y1 (t) = 8 (t) = -y, () =y, (2),
Since
~(1+1¢), +:=0,
El(t’ U) =5\, t=1,
0, 12> 2,
we find that
2 %)
0= [ Bt
=7—1 0
Therefore
2+t 3=0
H t — b )
%@ {0, 721,
and

t
4y() = =211 (0)e™ — /0 eIy (5) ~ ¢"(s)) ds

From the above equations we see that

Yo(t) =1+¢t, 1) =0,
from which we calculate the first two partial sums of the asymptotic solution to be
Up(te) =1+t —e ¥, Ui(t,e)=1+t—e e —tet/e
To venify that Uy(t,€) 18 a umformly valid asymptotic approximation, note that

u(t,e) — Up(t, &) = e7/¢ — (1-1/6)t L O(e?) = —te~t/¢ 4+ O(e?),
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nplying that ju(t,e) — Up(¢, €)| < Coe Simularly

2
u(t,e) — Ui (t,e) = —%e't/s +e2(e7t —e7H%) + O(e%),

so that (u(t,e) — Ui(t,e)| < Cye? Therefore the terms Uy(t,e) and Uy (¢, e) found by additive
decomposition method are uniformly valid asymptotic approximations to u(t,e) forall 0 < ¢ < T
ase =0

Having established a uniformly vahid asymptotic expansion using the method of additive decom-
position we developed, we now form a composite expansion from the exact solution (27 3) The

outer expansion 1s found by fixing ¢ > 0 and letting ¢ — 0 1 (2 7 3), obtaining
o0
Vite) ~ Zejv](t),

=0

where
UO(t) =1+ , n (t) = 0$ V2 (t) = e_ta

Similarly expressing (2 7 3) 1n terms of the mnner variable, 7 and then taking the nner limit by
fixing 7 > 0 and letting £ — 0, the inner expansion takes the form
o0
uler,e) = W(r,e) ~ ) elwy(7),
7=0

where
wo(r)=1-¢e"", w(r)=1(l—e"), wolr)=1-(1+171%/2)e",

To obtain these expansion we have used

1
Nn=-1+0(), r=--+1+0(), =0,

1
M- 72

1
(72 -1+ E) =¢® + 483 + 0(e"),

1
~14+>)=14e2+4 +0(*
—— (n-1+3) (),

all as € =+ 0 Using a standard procedure we can obtain a uniform approximation to u(t,e) by

forming a composite expansions from the inner and outer expansions In fact, we find that Uy(t,€)

and U;(t,€) are first two composite expansions
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2 8 Example of Boundary Layer Stability Condition Failing
Both Lange and Smith [15] and Angell and Olmstead [3] study the integral equation

efu(t) = f(t) - /O su(s) ds (281)

To avoid fractional powers, £2 replaces € The exact solution of equation 1s found, after differenti-

ating, to be

o—t/(2%)

ult,€) = ——5— {f(O) + /ot e”’/(2€2)f'(s)ds} (282)

For this example a(t,s) = —s and a(¢,t) < G only for ¢ > 0 Hence the analysis in Sections 2 5 and
2 6 18 no longer applicable
Smith and Lange [15) observe that (2 8 1) has a number of interesting features Firstly expansions

for the mner and outer solutions can be calculated from (2 8 2) We see that

o
ult,e) ~ Vit e) = > e, (1), (283)
=0
where
"t INSHOAN
w®) ==L, wo=; (L) (284)
i t t
Notice that the integrals
¢
/ sv,(s) ds
0
do not exist for 3 > 1 Sumlarly
1 x
uler, ) ~ W(r,€) = = Ze’wj (1), (285)
7=0

where
wo(t) = £(0)e™ 7, wi(r) = ['(0) / e g, wy(r) = f1(O)1-€eT/%)  (286)
0
From (2 8 3), (28 4), (28 5) and (2 8 6) the composite expansion can be computed such that
u(t,e) = @e—*zl(%?) + A /t/e e (16°=0%)/2 4.
g? £ 0
14\ _ !
— fll(O)e—tQ/(ZSQ) + f (t) ; f (0> + O(e) (2 8 7)
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as e - Qumiformly for 0< ¢t <T
The analysis of Section 2 3 holds for (2 8 1) even though (Hz) does not In fact 1t shows that
the 1nitaal layer should have magmitude O(e~2) and width O(¢) However Smith and Lange pomnt

out that the ansatz

u(t,) = () + Z7o(s/e) + o(1)

and exponential decay for all the mner correction terms produces a false leading order approximate

solution

f(O)e_t2/(252) n f(t)

Tz e (288)
which 18 not uniformly vald for all 0 <t < T'
We look for an asymptotic solution of the form
(o) 1 o0
t,€) = 2. () + = Tz,(t 289
u(t, €) goa yJ()‘*'agjz::OE z(t/e) ( )

Since e?u(0,€) = F(0), y,(¢) and z,(7) satisfy the immtial conditions
20(0) = f(0), 21(0)=0, 29(0)=-y;-1(0), 2241(0)=0
for 3 > 1 Substituting (2 8 9) into (2 8 1) gives
¢
e20(t) + 20(t[e) + em(b/e) + 2zaltfe) = £(t) / syo(s) ds
0

- 215/: szo(s/e)ds — 611/; sz1(sfe)ds — /Ot sza(s/e)ds + O(e?) (28 10)

This 18 equivalent to

e2yol(eT) + zo(T) + €21 (T) + &%22(T) = fleT) — /ET syo(s) ds
0
- /OT ozg(o)do — ¢ /OT oz (c)do — €* /OT 0z2(0) do + O(e?)

It follows that

o) =) - [ on(0)ds (2811)

where
Yo(r) = F(0), $1(r) = F O, $a(r) = 3 (7(0) ~ 5o(0))r* - 50(0)
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Therefore,

2(r) = fo(0e ™2, u(r) = f’(O)/ e~ (T =%)/2 45
0

z2(1) = f(0)(1—e™" /) — yo(0)

In order to calculate the outer solution, we express all terms in (28 11} in terms of the outer
variable ¢ and substitute them into (2 8 10), giving

1 t
e’yo(t) = f(t) = £(0) = £/(0)t = 5(f"(0) — wo(0))¢* - / syo(s) ds + O(e”)

0

By letting £ — 0 an equation for yo(t) 18 obtained with solution

J_FO-F0)

L 0+ 1 (0)

Yot

Since limy,0 yo(t) = %0(0), 2z2(7) = f"(0) — yo(0) as 7 = oo and we choose yo(0) = f(0) so that

2z2(r) = 0 as T = 00 as required Also by integrating by parts 1t can be shown that

as T — 0o,

alr) = @ 143 (1)(3)(5)T2n (2n—1)

n=0
so there 1s only algebraic decay

The candidate leading order solution 1s given by

uolt,€) = yo(t) + Eizzo(t/e) + %zl(t/e) + 25(t/2),

which agrees with (28 7) It 18 not hard to directly show this 1s a uniformly valid asymptotic
solution Also there 18 nontrivial contribution to the outer solution from lim._,ge7'2(t/g) =
f'(0)t~! with ¢t > 0 fixed, which would not be the case if z; () decayed exponentially

Our calculations suggest that the method of additive decomposttion can also be applied to

problems where there 18 no exponential decay 1n the boundary layer
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Chapter 8
Integrodifferential Equations with Continuous
Kernels

3.1 Introduction
Thig chapter considers the singularly perturbed linear Volterra integrodifferential equation

eu'(t) = £(¢) + B(t)u(t) + /:A(t,s)u(s) ds, 0<t<T, 311)

u(0) =a, (312)

where 0 < € << 1 The vector-valued function f(¢) 1s continuous for 0 < ¢t < T, the matrix-valued
function B(t) 1s continuous for 0 < ¢t < T and the matrix-valued kernel A(t, s) 18 continuous for
0<s<tLT

For ¢ > 0, problem (3 1 1) 1s a Volterra integrodifferential equation which has a unique solution

u(t,e) € C*[0,T) It 18 given by
¢
u(t,e) = I"(t,O,s)a+/ IL(t,s,e)f(s)ds, 0<¢<T, (313)
0
where I'(t, 8, £), defined for 0 < s < ¢t < T, 1s the resolvent matrix given by
¢
8.T'(t, 5,€) = =T'(¢,s,€)B(s) - / T'(t,v,e)A(v, s) dv, (314)
8
and I'(¢,t,€) = I For £ =0, problem (3 1 1) reduces to
¢
0=B(t)v(t) +f(t) +/ A(t,s)v(s)ds, 0<t<T (315)
0

Problem (3 1 5) 1s a Volterra integral equation of the second kind which does have a continuous
solution v [0,7] — K™ 1if either B(£) or A(t,¢) 1s invertible and the data 1s C! If (3 15) has a
contiuous solution v(¢) such that v(0) # a, then v(t) cannot approximate u(t, &) uniformly on
[0,7] Thus, problem (3 1 1) 1s singularly perturbed We are interested in obtaining asymptotic
approximations which are umformly vahd in [0,T] ase - 0 of (31 1)

We construct in Section 3 2 a formal solution U(¢, £) using the additive decomposition method

introduced m Chapter 2 The main result of this chapter 1s presented in Section 3 3 where 1t 18
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proved that Up(t,€) 18 an asymptotric solution of (31 1) in the sense that
lu(t,e) — Un(t, )| = OENH!) ase >0

It 1s not surprising that results for (3 11) can be found using the techmques of Chapter 2,
because there we had to first dufferentiate integral equations mn Sections 2 4 and 2 5 to prove our
results Formal expansions for the asymptotic solution of this problem have been obtained Angell
and Olmstead [1] for the Volterra equations However their approach has a shortcoming in that
general equations for the coefficients 1n the formal solution could not be determined Smith and
Lange [15] deduced a general expansion and nigorous estimates for Fredholm integrodifferential
equations from their theory of Fredholm integral equations The expansion procedure developed
here modifies that of Smith and Lange [15] Both the papers cited use the additive decomposition
method Lomov [18] gets rigorous results by employing a different multiple time scale method He

introduces » new time scales, not just the one 7 = /e
3.2 Heuristic Analysis and Formal Solution
We seek a formal solution u(t,e) of the form
u(t, ) = y(t,e) + z(t/e,2), (321)

where y(2,€) and z(t/e,€) are represented by the asymptotic series (2 4 2) and (24 3) with

|z,(7)| = O(e™”7), 700, 73=0,1, , (322)
for some 3, > 0
We form the partial sum
N
Un(te) = Z un(t, )e™, (323)
n=0

and the formal sum

oo
Ult,e) = Y un(t,e)e™,
n=0

where

u,(t,e) = y,(t) +z,(t/e) (324)
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In this section we assume that £(¢) and A(t,s) are C*° Clearly

t ¢ t
/ A(t,s)u,(s,e)ds = / Alt,8)y,(s)ds + / A(t,s)z,(s/e)ds
0 0 0

Decomposing this equation into functions of ¢ and functions of ¢/e as in Section 2 4, we get for all

m >0
: ; m e
/0 A(t, 5)u, (s, ) ds = /0 A(t,s)y,(s)ds+zzzlel /0 E._1(t,0)z,(0) do
- éa /ﬂ :o Fo_1(t/e, 0)z,(c) o + O(™) (325)

where E,(t,0) and F,(7,0) are defined by (24 7) and (2 4 8) respectively The last integral above
represents a boundary layer function

The restdual py (¢, ) 1s defined by the relation
¢
EUL(t,) = £0) + BOUN(6.e) + | Al o)Un(s,0)ds = p (5,9, (326)
0
By substituting (3 2 3) 1nto this equation and using (3 2 5) to replace the integrals, we obtain
N t -1 oo
pn(te) = £(t) + 251 (B(t)YJ (t) + / A(t, s)y,(s) ds + Z/ E;_i-1(t,0)z.(0) da)
- 0 =0 J0
N
+Ze—7 <ZG —(7)z, (7 +E/ F,_i_1(t/e,0)z.(c )
=0
_ Z E.H‘ly; (t) ~ Zejz:; (t/c) + O(&‘N+l), (327)

7=0 7=0

uniformly for 0 < ¢t < T where

1 ,d'B
G.(r) = dt’ -—(0)
Equation (3 2 7) 1s equivalent to
Zsf p;(t) +q,(t/e)) + O™, (328)

untformly for 0 < ¢ < T, where

t
p,(&) = B()y, (1) + / A5y, (s) + &, () — ¥ (8),

4, (1) = B(0)z,(r) + 4,(1) — 2 (1),
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with

¢,(t) = { 1, =9 (329)
! B 1—0 fO j—1—1 t (T)Z,( )dU, J 2 1,

1=0,
¥, = { Y20 Gyea(T)zalr) = X155 [P Fyaca(r,0)zu(r) doy, 321

We observe that (329) and (3 2 10) mmply that ¢,(t) and %,(7) are determined by z,(r) for

(32 10)

1=0,1, ,5-1
A calculation simular to that in Section 2 4 shows that q,(7) = 0 as 7 = 0o 1f (32 2) holds If
U(t, €) 1s a formal solution, py (t,€) = O(e¥+!) for all N > 0, in which case Lemma 2 1 in Chapter

2 1mplies that, for each 3 >0, v, (¢) satisfies

¥'_1 () = By, () + /0 At 8y, (5) ds + 6,(t), 0<t<T, (3211)

and z,(7) satisfies

z, (1) = B(0)z; () + ¢¥,(7), 7>0 (3212)
Also each z,(7) obeys the imitial condition

_ a—YO(O): .7207
23(0)—{_”(0)’ 1> 1 (3213)

Remark 31 It follows from (3 2 8) that 1if each y,(¢) satisfies (32 11) and each z,(7) satisfies

(3212), then |py(t,&)] = O(eN+!) as € = 0 uniformly for 0 < ¢t < T

3.3 Properties of Formal Solution

In this section, we show that the equations for y,(¢) and z,() derived in Section 3 2 have the

properties required 1n their derivation, and then prove that
lu(t,e) - Un(t,e)] = OE"T)

uniformly for 0 <t <T ase =0

The following assumption will be used

(H}) The functions f [0,7] = R*, B [0,T] - R**” and A Ag — R™*™ are all C®, where

Aq 1s defined as 1n (2 2 2)
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Proposition 3 2 Suppose that (H}) and (H;) hold Then for each 3 > 0 there 13 a C*® solution
y;(t) on [0,T) of (32 11) and a C* solution z,(7) on [0,00) of (8 2 12) and (3 2 13), moreover

there are positive constants 8 < a and c;,
7, (1) < e, 720 (331)
The proof 1s sumilar to that of Proposition 2 2 1n Chapter 2 and therefore 18 omitted

Lemma 3 3 Suppose that (H}) and (Hz) hold Then for each 3 > 0 the residual p,(t,€) defined

m (3 2 6) satisfies
lp, (t,€)] < ;67 (332
as € = 0 umformly for all 0 <t < T, for some fized positwe constant e, independent of €

As pomnted out 1n Remark 3 1 the result follows from what has already been done 1n Section 3 2

It can also be proved that there are positive constants d, such that
t
/ lp, (s,€)}ds < dye™?
0
uniformly forall0 < ¢t < T
Theorem 3 4 Suppose that (H)) and (H:) hold Then there are constants Cy > 0 such that
lut,e) — Un(t,e)| < Cwe+ (333)
unsformly on [0,T) as € & 0 where Cn 13 independent of €
Proof We introduce the the remainder term
rn(t€) = u(t,e) ~ Un(t, ),
as m Chapter 2 It satisfies the following problem
t
ery(t,e) = pn(t,€) + B(t)rn(t, €) +/ A(t,8)rn(s,e)ds, t >0,
0

with ry(0,€) =0 The variation of parameters formula enables us to see that 1ts solution rn(t, &)

satisfies
1 t 1 t ¢t
rN(t,e)zg/ @(t,s,e)pN(s,E)ds+g/ (/ @(t,s,a)A(s,v)ds) rn(,e)du,  (334)
0 0 v
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where ®(t,s,¢) 15 defined as in equation (264) The bound (3 3 3) follows from (3 3 4) using
(H2) and the estimates given in (33 2) The details are almost 1dentical to those in the proof of

Theorem 2 5, and are omitted a

Remark 35 The mitial condition for u(0,e) can depend on ¢ More precisely (312) can be

replaced by

1 oo
u(0,e) = EZejaJ,
J=0

where each a, 18 constant The case ag # 0, leads to an analysis similar to that in Chapter 2
The analysis in this Chapter corresponds to the case where ag = 0 The differences between the
two cases are twofold Not only 15 the form of the asymptotic expansion different, but the outer
solution can be constructed first in the case ag = 0 whereas the mtial layer correction solution

must be found first 1n the case ag # 0
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Chapter 4
Volterra Equations with Weakly Singular Kernels

4.1 Introduction

This chapter considers the weakly singular scalar Volterra integral equation of the second kind

cult) = f(&) + ﬂ)/ (tk_(t;ﬂ u(s)ds, 0<t<T, 411)

where 0 < e << 1and 0 < 8 <1 The functions f(t) and k(¢, s) are continuous and k(¢,t) = —1
This problem (41 1) exhibits an imutial layer at ¢ = 0 like the equations with continuous kernels
considered 1n Chapter 2, but with a narrower imtial layer width of order O(¢!/8) as e — 0

The weakly singular equation (41 1) has a solution u(t,e) in C[0,T] foralle >0 Fore =0

(41 1) reduces to the Abel integral equation

f@) + 5 /(t_ —5v(s)ds, 0<t<T, (412)

It certainly does not have a continuous solution if f(0) # 0 The forcing function f(¢) must be
smoother than the desired solution Even if (412) has a solution v(t) in C°[0,T] 1t may not
approximate u(t,e) uniformly for ¢ 1n (0,Tjase = 0

The kernel a(t,s) in (41 1) given by

k(t,s)

a(t,s) =
obviously does not satisfy the boundary layer stabiity condition (Hz) of section 2 2, though
limg4¢ a(t, 8) = —00 because k(t,t) = —1 If an equation like (4 1 1) 18 encountered with k(0,0) < 0,
a simple rescaling of € leads to k(0,0) = —1 If k(¢,t) < 0 the equation for ¢ — k(¢, t)u(t) has the
form of (41 1)

Our aim 15 to find asymptotic approximations Un(¢,€) which are umformly close on [0,7] to
u(t,e) as € - 0 Problems of the type (41 1) do not exhibit an exponential decay 1n the initial
layer and therefore the methodology developed in Chapter 2 must be modified To emphasise the

fundamental 1deas and 1llustrate the technical difficulties, we only attempt here to find the leading

order term Uy(t,e) of the asymptotic solution It 1s proved that the residual |po(t,e)] = O(e)
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uniformly as € = 0 It 15 not demonstrated that |u(t,e) — Ug(t, )| = O(e) For an example with a

known exact solution though, we do establish this estunate

4 2 Mathematical Prelimmaries

In this section we review some of the results which are applied later 1n the chapter Firstly though

we state some hypotheses which are used

(Heg) 0< B8 <1

(H7) k(t,s) 1s a C? function on Ay with k(¢,t) = —1, where

Dy ={(8),0<t<T)}

(Hg) The function f(t) 1s C% on [0,T] with f(0) #0

421 Solution of Abel Equations

It 15 a classical result of Abel’s that for 0 < 8 < 1 the egquation

1 t 1
L'(6) /0 (t —5)1-P y(s) ds = ¢(2), (421)
has the solution
¢

This relies on the useful formula

17
/0 (T—ﬁﬁ ds =T(A)I(1-f)

Tonell: proved that (4 2 1) has a solution 1n L'[0, T'] of ¢ 18 absolutely continuous on {0,T]} In this

section we consider the more general Abel equation

t
B ) e ds = 400 (422)

Gorenflo and Vessella [9] give several existence and umqueness for (4 2 2) We state here a special

case of Theorem 5 1 4 of [9]
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Theorem 4 1 Suppose that (Hg) and (Hy) hold Let DP¢ be continuous on [0,T] Then (42 2)

has a wnigue solution y 1n C[0,T] and
lyllc: < CIID?gl]
for some constant C > 0 depending on T and ||k|lc:(ay)

Later in this chapter we require knowledge of the asymptotic behaviour of solutions y(t) of

(422) The following result 1s Theorem 5 1 5 of [9] and comes from Atkinson [4]

Theorem 4 2 Suppose that (Hg) and (H7) hold Suppose that there 1s a function ¢(t) m C* such
that ¢(t) = t*P(t), with 1 — B+ >0 Then (422) has a unique solution y(t), and this solution

can be expressed as
y(t) = t“7P5(2),

where §i(t) = v +ty* (t) wsth v constant and y* continuous Moreover v = 0 +f and only of $(0) = 0,

and there 1s a constant ¢ > 0 such that
lgllc < cligllca
422 The Mittag-Leffler Function and 1ts Asymptotic Expansion

In this section we present some of the properties of the Mittag-Leffler function, E, C —- C In
particular we state formulae for E,(2) for large 2 € C For each u > 0 the Mittag-Leffler function

18 defined by

[e 0]
— 1 n
Eu(z)—nz:%F(un_’_l)z (42 3)
E, 1s entire, and
Ei(2) =€, Ea(z) =coshz, E1/2(21/2) = 2n~ V%™ erfe(—2'/?) (424)

An interesting property proved by Pollard (23] 1s ¢ = E,(—t) 1s completely monotonic on [0, 0o) if

0 <1 <1 Thus for g 1n this parameter range (—1)7 EL”)(—t) >0 for ¢t > 0, where

d"B,

Ej() = S22 (2)
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Re axis

2 1 O// i 2 Im axis

Cl

—

Figure 41 The contour of integration for the Mittag-Leffler function E,(z)

A detailed discussion on the properties of the Mittag-Lefller function can be found in Chapter 18
of Erdely:, Magnus, Oberhettinger and Tricom: (6] or Chapter 5 of Paris and Kaminsk: {22]

We are interested 1n the asymptotic expansion of E,(2) only 1n case where 0 < ¢ < 1 However
the asymptotic expansions formulae below are for all 0 < u < 2 These expansions are derived

from the representation

1 c+100
E = — —8 425
D) =5 [ el (425)
for some 0 < ¢ < 1 where
6(3)— wCOo8S TS (426)

- T(1 - ps)sinmws’
(4 2 5) comes from the formula for inverting a Mellin transform We decompose the path in (4 2 5)

into a contour C' which 18 closed to the left It 1s shown in Figure 41 Now e(s)2~% has simple

poles at s =0, —1, -2, Let a,, be the residue of s = e(s)z~% at —n Then
Zn
= T+ )

To check that e(s) above 1s the proper choice 1n (4 2 5)

1 — = z"
_— 8 dsg = = —— _=FE
2m /C. els)2™" ds r;)an ; T'(pn +1) u(2)

Using the integral representation in (4 2 5), 1t 18 shown 1n Erdely1 et al [6] and Paris and Kaminski
[22] that for 0 < p < 2, the controlling factor of the leading behaviour of E,(z) 1s e”’" as 2 00

Stokes Lines occur at Rez'/# = 0 or argz = +ru and ant1-Stokes hines occur at Im z!/# = 0 or

argz = Jp
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= == =Ant1-Stokes lines

Figure 42 The Stokes lines are shown for the exponential term in (4 2 8a) corresponding to
1 = 1/3 Also shown 1s the sector E where the exponential term 1n (4 2 8a) dominates and the
sector A where the algebraic term 1n (4 2 8a) and (4 2 8b) dominates

Stokes lines
= = = =Ant1-Stokes lines

Figure 43 The Stokes lines are shown for the exponential term in {4 2 8a) corresponding to

@ = 1/4 Also shown 1s the sector E where the exponential term 1n (4 2 8a) dominates and the
sector A where the algebraic term 1n (4 2 8a) and (4 2 8b) domunates
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It 15 shown 1n Erdely: et al [6] and Paris and Kaminski [22] that the expansion of E, (z) when

i < 218 given by

o 9]

1 /m 7k 3rp
E,,(z)rv‘—te —kz::lf‘(T——;_Lk)-, |drgz| < T, (427&)
Bu(s) ~ =30 e, Jarg(-a)| < 52— ) @2 7)

ul\Z) ~ 2 m, argl—=< 5 -l

It should be noted that (4 2 7) 1s a valid asymptotic expansion in the Poincare sense The discussion
n § 5 1 of [22] elucidates what 1s happening for 0 < ¢+ < 1 The expansions have a common sectors
mp/2 < |argz] < 3mpu/2 In the sector |argz| < wu, expansion (4 2 7a) 1s valid However the
exponential term 1s decaying for mu/2 < |arg z| < mu since the anti-Stokes lines at argz = Ltmwu/2
have been crossed E,(z) 1s exponentially large as [z| = oo for |argz| < mu/2 As argz crosses
the Stokes hines argz = *mpu, the exponential term disappears from the leading order term and
becomes subdominant It remerges as argz crosses £2wu, but 1t 15 exponentially decaying At
argz = 3mwu/2, expansion (4 2 7a) 13 no longer valid Expansion (4 2 7b) holds for |arg(-2)| <
7mi/2 Since we are interested n the asymptotic expansion on the negative real axis, this sector

particularly concerns us The conclusion 18 that we obtain the composite expansion

1 o 2%
E (2} ~ =& — Z ——, |argz| < my, (42 8a)
" = T(1 - pk)
s —k
Z
Eu(2) ~ = T =)’ |arg(-2)| < w(1 - p) (42 8b)

k=1

We illustrate this in the Figures 4 2 and 4 3

423 Solution of a Simple Class of Abel -Volterra Equations

The Abel -Volterra equation

o) =) - 15 | oope)de 720, (429)

has an explicit solution 1n terms of the Mittag - LefHler function Eg
The following existence and uniqueness result, which 1s attributed to Hille and Tamarkin [11],

15 given 1n Geronflo and Vessella (9]

Theorem 4 3 Let 0 < 8 < 1 and (7) be continuous on [0,00) Then equation (4 2 9) has the
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continuous solution 2(7) gwen by
z(t) = o Eg(—(r - o)’ Y(o)do, 72>0 (4210)
0
2z 18 untque 1n the class LS (RY)

4.3 Heuristic Analysis and Formal Solution

The analysis of Section 2 3 shows that we should introduce the new time scale 7 = ¢/&” where

v ="' We call this the inner variable It 1s easily found that if f(0) # O then the magnitude of

the boundary layer 1s ¢}

and the width e” We seek an asymptotic solution (¢, €) 1n the form
1
u(t,) =y(t, ) + z2(t/e™, ), (431)
and requre that

Tlgr;o z(r,e) =0

z(t/e?, €) corrects the nonumformity in the imtial layer Substituting (4 3 1) into (4 1 1) gives

t
ey(t,e)+z(t/e“’,e)=f(t)+r(1ﬂ)/0 7 _(ts)sl) 59(s, e)ds-i-r(a) / )1 ﬁz(s/ew,e)ds

(432)
It 1s assumed that y(¢,£) and z(r, £) have asymptotic expansions of the form
o0
E) ~ Z E"yn(t), 2z(r,€)~ Z €™ zn(7),
n=0 n=0
as £ — 0, so that
u(t, ) ~ Ze Yn(t) + Ze"" Ln(t/e7) (433)
n=0
Moreover we require that for all n > 0,
TlLrlgo zp(1) =0 (434)
Firstly we restrict attention to
1
Uo(t,e) = yo(t) + Ezo(t/e"),
assuming that
f(0)
- 4
2(T) (1= g)7 a8 7 — 00 (435)
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Defining the residual py(¢,€) 1n the usual way, we see

po(t.&)+ swn(t) + 20(t/e7) = 10+ s [ ool ds
Lok
+ eF(ﬂ)/U (t—s)l-ﬂzO(s/e )ds (4386)

By expressing this in terms of 7 = t/e7,

po(e"T,€) + 20(7) + eyo(e77) = f(e7T) + T(B) / (TEYT;;S: Uﬁ o) do

+5/(; IET(EL’;?Q o(e70) do

This can be rearranged as

po(e"T,e) + eyole™r) = ( f(0) + ) / i _00_;)1)*}3 (o) do — zo(r )) + f(e7T) — f(0)
T k(g?T, g7 0,0
il e i)

ﬂ)/ 5"1',5”’0 o(e70) o,

and hence

pole™r, ) = ( 1O+ 15 || 7ggolo) da - 2a(r)) + 0(e) + 0"

We see that 1f pg(e77,€) = 0(1) as £ = 0 for fixed T > 0, then

a0 = 10~ 555 | mggrante)dn 720 (437)

To derive the leading order outer solution, we express (4 3 7) 1n terms of ¢ = 77 and substitute

mto (4 3 6), giving

pote) = unlt) = 10~ FO + g5 [ ool d

k(t, s) — k(0,0) o
+ sF(;B)/ =87 20(s/e") ds (43 8)

It follows from (4 3 5) and the Dominated Convergence Theorem that

" {k(t,9) — k0.0 s . / {k(t, L. S)Ik(o 0 4.

efy  (G-s)-P A 3B

ase = 0 If p(t,e) = o(1) as € = 0, we deduce from (4 3 6) that the leading order outer solution

yo(¢) satisfies

_ 1(0) k(t,s) - k(0, 0
0=76)-1 (O”r(ﬂ)r(l—ﬂ)fo (tis)l—ﬁ ; ﬂ)/ o Lytole)ds (439
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If yo(t) satisfies (4 39) and zy(7) obeys (4 3 7), 1t follows from (4 3 8) that

¢ L—
uitee) = e+ o [ LG Gt - (LD s

4 4 Properties of the Formal Solution

In this section, we show that the solutions of the equations for yo(t) and 2o(7) exist and elucidate
some of their properties

Equation (4 3 9) for the outer solution can be rewritten as

t)+/ G ? vo(s)ds, 0<t<T, (441)
where
_ f(O) t k(t) ) - k(ov O)
o0 = 50~ 10+ rG g |, s
Note that

k(0,0)}

{k(t,
‘r(mr 1—/3)/ (t—s)1~ﬁsﬁ &

wahgzwwﬂ—kmﬁNﬁO

ast - 0 This and (Hg) mmply that ¢(0) =0 Also

1/k( - K0,0) 1 [ {k(t, 1) - K(O,0}
t

(t —s)i-Bsh (1-6)- ﬁBB

G L wrak0,0) [ 20
—*1(,)/0‘m +2(»)/0m

ast = 0 Hence we can write

o(t) = te(t) (442)
and show that ¢(£) 15 C' Usmng Theorem 4 2 we can establish from (4 4 1) and (4 4 2) the following

Proposition 4 4 Suppose that (He), (H7) ond (Hg) hold Then ({ 8 9) has a unique continuous

solution yo(t) which satisfies
yo(t) = t'~75o(0), (443)
where fo 13 continuous on (0,T)

It 1s a siumple corollary of Theorem 4 3 and (4 2 8b) that the following result 1s true
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Proposition 4 5 Suppose that (Hg), (H;) and (Hg) hold Then (4 3 7) has the continuous

solution

20(r) = £(0) Eg(—77), (444)
for T > 0, which satisfies
ol —B3
20(r) ~ fO) 3 (<1 e as T (445)
0 ng =5 as T = 0o

Remark 4 6 This results vindicates assumption (4 3 5) made in the derivation of (4 3 9) and (4 3 7)

or yo(t) and 2z¢(7)

It 1s 1mportant to establish the asymptotic behaviour of yo(t) as t | 0 and 2zo(7) as 7 = o0 If

we define w(7,€) = eu(e?r,€), then

T k(e7T,e%0)

w(r,e) = fle"T) + , TooiF

w(o,e) do
Therefore we expect the inner expansion to be
o
w(t, €) ~ Ze”wJ(T) ase—0
=0
Comparing this to (4 3 3) we see that

wo(T) +ewi(r)+  ~ z(7) +eyo(e”T) +

Since (4 4 3) mmplies that eyo(e”7) = €79o(e77), the apparent anomaly of a O(£) term balancing

with a O(¢7) term does not arise
4.5 Example

Angell and Olmstead 1n [2] consider the following weakly singular linear singularly perturbed

Volterra equation

i
cult) = f(t) - Wllﬂ /0 - f(:))l - ds, 451)

where

1 [* h
f(t)= Trl/Q/; (t _(:))1/2 ds,
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and h(t) 1s C? with h(0) # 0 Since I'(1/2) = #'/2, this corresponds to (4 1 1) with k(t,s) = —1
and 8 = 1/2 Thereforey = 2 The exact solution of (4 5 1) can be obtained by Laplace transforms

or read directly from (4 2 4) and (4 210) It 1s given by

u(t,e) = f(t) 1/ (=92 g ((t 6)1/2)h(3)ds (452)
0

52

Since f(e°1) = 2eh(0)7'/2/71/2 + O(e?), we look for an asymptotic solution of the form

u(t,g) = z (e7y,(t) + ¥z, (/%))
7=0

Following the formal method of Section 4 3, 1t 1s found that the leading order outer solution yo(2)

obeys

3) Yo(s)
0= / (t—s)1/2 ds, t>0,

and hence yp(t) = h(?)

The mner correction term 2zy(7) 18 a solution of

T1/2 T
20(r) = =10(0) + Z7 (00) = 00 = 577 [ (o) do

= ~h(0) - 71.11/2 /OT (r _2)1/2 #(0) do

By (4 2 4) and (4 2 10)

20(7) = —h(0)e" erfe(r'/?), 7>0 (453)

The asymptotic expansion of the integral

erfc\/v_':i/‘me_‘zdt~i 1—i+i+ as 7 — 00 (454)
LN VT 2r 472

unplies that

SEPURLIUY B B

so that 2p(7) = 0 a8 7 = oo, but only algebraically

Therefore up to the leading order, the formal solution of (4 5 1) 1s given by

Uo(t,€) = h(t) — h(0)e!/" erfe(t/c?) (455)

44



Chapter 4, Section 5 kxample

To show directly that Uy(t, ) approximates the solution of (4 5 2) to within O(g) consider the

difference
1t h(s) 1t (t—5)/e? (t —s)1/2
U(t,E) - Uo(t,€) = g/; mds - Eg[) e erfc (T) h(S) ds
- $1/2
— h(t) + h(0)e*/¢ erfc(T) (456)

Integrating by parts

2

1 /0 e e (@) h(s)ds = h(0)e!/*" erfc£ —h(t / m

+ 621 (0)e/e” erfc { —e’K(t) - / [x(t —s)] /2K (s) ds
0

¢ = i s
~&* / {e(t_“’)/52 erfc Y4~ ¢ _x } h'(s)ds
0 € VT

(457)
Substituting this into (4 5 6), we get

u(t,e) — Up(t,e) = —¢ /t[‘ir(t —8)]7Y/2H (s) ds — R (t) + %t erfe -{—th’(o)
0
— g2 /Ot {e("_“)/s2 erfc (te_ ) _ 2% '\s;“ ) } h"(s)ds

This implies that

|u(t, £) — Us(t,€)| = Ofe)

as e =&+ Qumformlyon 0 <t < T
We now examine the exact solution (4 5 2) with the view of directly determining a valid asymp-
totic solution for u(t,e) Suppose now that h(t) is C*° For the outer expansion, we fix £ > 0 1n

(452)and let ¢ > 0 Then

o]
u(t, €) ~ Ze"vn(t) ase =0

The integration by parts in (4 5 7) gives

i
vo(t) = h(t), wi(t) = (:t()(:)/z - /0 - (tl_s)l SH(s)ds, etc (458)

where the first term 1 v, follows from the first term n (4 57) and the asymptotic expansion
(454) To get the nner expansion, we express (4 5 2) in terms of the mner variable 7 = t/€? to

get

u(e""r,e) = w(r,€) = /T {__1— —e" %erfe(r - 0)1/2} h(e*o) do
0

nl2(r — o)1/
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This suggests that the inner expansion has the form

o0
w(r,e) = & wn(r) ase =0

n=0

Equating the coeflicients of like powers of €, we get

h‘(n) (0) i 1 T—0 1/2 n
wn(T) = — /(; {7r1/2(r-—a)1/2“e erfc(‘r—a)/}a do
The leading order term 1n (4 5) 1s given by

’U)()(T) = h,(())‘/0 {m —e Terfc (T - 0’)1/2} dO’,

equivalently
wo () = h(0) — h(0)e" erfc /T (459)

The first order term w1 () 15 given by

’ T 1 T—0
WI(T)Zh(O)A {m/—z—e erfc('r—a)l/g}oda

which on integration by parts 1s
"
wi(7) = K (0)r — h'(O)/ e’ erfo /o do
0

We then see that the leading order term in the outer expansion and the leading order term 1n
the mnner expansion form a composite expansion which 18 the umiformly valid asymptotic solution

Uo(t,€) obtained by the methodology developed
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Chapter 5
Nonlinear Scalar Volterra Integral Equations

5.1 Introduction

This chapter considers the nonlinear singularly perturbed Volterra integral equation,

eu(t) = f(t,e) + /tg(t, s,u(s))ds, 0<t<T, (511)
0

where 0 < ¢ << 1 The function f(¢,£) 1s C* and defined for 0 <t < T'and 0 < e < 1, g(¢, 8,u) 18
also C™ and defined for 0 < s <t < T and —00 < u < 00 Also we require that lim,_,o f(0,€) =0

f has an asymptotic power series expansion,

fte)~ S ) ase 0,
7=0

where each f,(¢) 18 C*° Furthermore, we require that fo(0) =0 and f;(0) 1s nontrivial

Problem (51 1) depends on the parameter € n such a way that the reduced equation
t
0=1o®)+ [ glt,s,v(e)ds, 0St<T,
0

1s & Volterra equation of the first kind For this to have a contmnuous solution, fo(t) cannot be
merely continuous Assumung that a stability condition for the boundary layer holds, we show that
u(t, &) converges uniformly to v(t) as &€ — 0

Angell and Olmsteadt [2] used the additive decomposition method to obtain the first few terms
in a formal solution of (51 1) However Skinner [24] developed a method of generating all the terms
of the formal solution and showed that the formal solution 1s an asymptotic solution His work
builds on that of Smith [25], Ch 6, O’Malley [20], Ch 4 and O’Malley [21], Ch 2 on singularly
perturbed mitial value problems for nonlinear ordinary differential equations The study of the
nonlinear integral equation (5 1 1) in this chapter was mostly done before the work of Skinner [24]
was found, and therefore most of 1t 1s independent work However, an adaptation of Skinner’s
method of deriving the equations for the formal solution 1s included here

In Section 5 2, we construct a formal solution for (5 1 1) of the form

N
Un(tie) = e'ly; () +2(t/e)), (612)

=0
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Chapter 5, Section 2 Derivation of the Formal Solution

using the O’Malley/Hoppensteadt method The analysis in this section 15 more complicated than
that of Section 23 In Section 5 3 we prove that y,(¢t) and z,(7) have the properties assumed 1n

their derivation Then 1n Section 5 3, we prove using the Banach fixed point theorem that
lu(t,e) — Un(t,e)| = O(eNt!)  ase =0,

uniformly for 0 < ¢ < T An example from Angell and Olmstead [2] 1s discussed 1n Section 5 5 and

one from Skinner [24] 1 Section 5 6

5 2 Derivation of the Formal Solution

We derive 1 this section a formal solution for the integral equation (51 1) using the additive

decomposition method We suppose that the solution of (5 1 1) can be represented 1n the form
u(t,e) = y(t,€) + d(e)z(t/ ule), €), (521)
where
y(t,€) =yo(t) +o(1), 2(r,e) = 2(7)+0(1) ase—0

Firstly, we determine formally the width p(e) and the magmtude ¢(g) of the imtial boundary layer,
supposing that px(e) = 0 For this argument we assume that g(0,0, %) 1s nontrivial We follow the

analysis 1 Section 2 3 Substituting (5 2 1) mnto (51 1) gives

t
ey(t,e) +edle)a(t/nle) ) = f(t,€) + /0 9(t,5,y(s,€) + p()2(s/ ule), €)) ds, (522)

which, letting 7 = t/u(e), 18 equivalent to
ey(u(e)T,e) + edle)z(r, &) = f(u(e)T,e) + ule) /; g(u(e)T, u(ea, y(u(e)o,€) + ¢(e)z(o, €)) do
Hence, fixing 7 > 0 and letting ¢ = 0,

€y0(0) + edle)z0(r) = €£1(0) + () /OT 9(0,0,%0(0) + #(e)z0(0)) do + o(e) + o(p(e))

Dominant terms can be balanced if we take

ue)=¢, dle)=1
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Chapter 5, Section 2 Derivation of the Formal Solution

To obtain a formal solution we now suppose that y(£,¢) and z(7, ) have the asymptotic expan-

s10ns8

y(t,e) ~ Y ey, (t), 2(r,e) ~ Y & z(7)
7=0 3=0

as € — 0 y(te) represents the outer solution, which approximates the solution outside the
mitial layer, while z(t/e,e) represents the nner correction term which 1s required for umform
approximation of the solution of (51 1) inside the initaal layer but is neghgible outside the 1nitial

layer We require for each j > 0 that
Z(T)=0o(r7") asT 3 (623)

for all » > 0 The rapid decay in the mitial layer 18 crucial for the application of the method
of additive decomposition because then transcendentally small terms can be omitted from the
asymptotic expansions

Since Theorem 2 1 from Skinner [24] 1s used later 1n this section, 1t 18 stated here

Lemma 5 1 Suppose that n(t,7,€) 15 a C® function on [0,T} x [0,00) x [0,1] and n(t, 7,€) =

o(t™") as T = 0o for allT >0 Then

N
n(t,t/e,€) = e, (tfe) + O(eN™),

3=0
where n,(1) 18 a C*° function on [0,00) and s the coefficrent of €9 wn the Taylor expansion of

e nler,7,e) Alson,(r)=o0(r"") as T = 0o for allr >0

We shall substitute (5 1 2) mto (51 1) Therefore for a fixed mteger N > 0 we first consider the

term

/tg(t,S,UN(s,e))ds
0

We introduce
N
H(tv 8, 5) = g(t7 8, Z Ejyj (s)),
7=0

N N
K(t,5,0,8) = g(t,5,Y_ € (4 (5) + 2,(0))) — g(t,5, Y ey, (s)),
1=0 1=0
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so that

t/e

t ¢
/ 9(t,8,Un(s,€))ds = / H(t,s,e)ds + ¢ K(t,e0,0,¢)do (524)
0 0 0

By (52 3) and the Mean Value Theorem, K(t,s,0,e) = o(c™") as ¢ = oo for all r+ > 0 By

applying Lemma, 5 1 to (s,o,¢) = K(t,8,0,¢), we deduce that

N
K(t,e0,0,6) = » &'k, (t,0) + O(eV), (525)

7=0

with k,(¢,0) = o{o™") for all » > 0 Also, straightforward Taylor expansions yields

N
H(t,s,e) =Y _&'hy(t,s) + O(e" ), (52 6)
=0
N
K(er,eq,0,€) = Zsjl]('r, o)+ 0@EN ) (527
=0

The coefficients h,(t,s) in (5 2 6) are given by
ho(t, s) = g(t: 8,50(8)),  ha(t,s) = Dsg(t, s,y0(5))y1(s),
and 1n general for 3 > 1,
h,(t,8) = 33g(t, 8, y0(8))y, (8) + @, (¢, s),
where ®,(t, s) 18 determmed by ¥.(s), for 0 <2 <7 —1 The first two terms of &, are given by
Bi(ts) =0, Balt,s) = 3080(t,8,U0(s)E(6)
The coefficients k, (¢,0) 1n (5 2 5) are given by

kO(ta U) = g(t! Oa yD(O) + ZO(J)) - g(t: O)yO(O))a

kl (t: U) = 639(t> Oa yO(O) + ZO(U))ZI (0) + \I,l(ta O’),

and 1n general for 3 > 1,
k] (tr 0) = 83g(t7 0: Z/O(O) + 20(0))2] (0) + \Il] (t’ 0)

Here the function ¥,(¢, ) 1s determined by y,(s) for 0 <2 < 7 and 2,(6) for 0 <+ < j3—-1 The
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Chapter 5, Section 2
first two ¥, are given by
‘I’l (ta U) = {62g(t) 07 yO(O) + 20 (U) - 3zg(t, 07 yO(O))}U

+ {939(t,0,50(0) + 20()) — F39(¢,0,%0(0)) }(yp(0)o + 11 (0))
y(t,0) = {Ba9(¢,0,50(0) + 20(a)) — Bag(t, 0, 40(0)) }(y2(0) +y1(0)o + y 1 (0)5?)

+ {82039(£,0,50(0) + 20(0)) — B839(, 0,50(0)) }o (0)0” + 11 (0)or)
+03059(5,0,0(0) + 20(0))21 ()0 + 3R9(2,0,360(0) + ()1 (013 0)
+ 5 {039(0,0,10(0) + 70(0)) ~ %395, 0,0 (N} 35 ()0 +3(0)

+ 24031 0)0) + 508(4,0,50(0) + 20(0) {23 ) + 21 () 0)o}

+ 5{080(4,0,30(0) + 20(0))  29(5,0,0(0))}o?

The coefficients I,(7,0) mn (5 2 7) are given by
lo(,0) = g(0,0,30(0) + 20(0)) ~ 9(0,0,30(0)),
h(r,0) = 059(0,0,30(0) + z0(0))21 (0) + E1 (7, 0),
and 1n general for 3 > 1,
L (1,0) = 839(0,0,40(0) + 20(0))2,(0) + E,(7,0),
where E, (7, o) 18 determined by y, for 1 < j and 2, for: <7 —1 In particular,

=
bt
—

1(1,0) ={619(0,0,40(0) + 20(0)) — 619(0,0,0(0)) } 7
+{629(0,0,¥0(0) + z0(0)) — 329(0,0,%0(0)) }o

+{039(0,0,y0(0) + z0(0)) — 839(0,0,40(0))} (3o (0)e +1(0))

It follows from (5 2 4) that

/g(tsUNsa ds—Ze’(/h ts)ds-f-e/ k,(t, o) )

_1"0

—Zs"“ /t/ k,(t,0)do + O@E™*) (52 8)

Since k,(¢,0) = o(e~") for all r > 0,

/, "k, (t,0) do = o(r"),
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for all r > 0, and Lemma 5 1 unplies that

/oo L (¢, 0)do = / Zek,tlea)da-i-O(N“)
t/e 5

=0
where k, ,(7,0) 1s the coefficient of €' in the Taylor expansion of € = k,(e7,0) Of course Lemma,

51 also assures us that
/ k,.(r,0)do =o(r™") asT o o0
r
for all » > 0 Note also that if

K(eT,e0,0,¢) ZE L (7, 0),

=0
then
J ~
> k(o) =1(r,0) (529)
=0
It follows that (5 2 8) becomes
t N oo
/ g(t,8,Un(s,€))ds —‘ZEJ (/ hy(t, s ds+6/ k](t,a)da)
0 e

- Z gt /oo (t/e,0)do + O(eNT!)

7=0

Next we define the residual pn(t,€) by
¢
Un(t,e) = £t)+ [ o(t,5,Un(s,e))ds = pw(t) (5210)
0

Then, putting y_1(¢) = 0 and k_1(f,0) =0, we see that

ie’ (/ h,(t, s)ds+/ k;—1(t, a)dcr+fj(t)—y],1(t))

2=0

N-1 0o

Z A ( (t/€) +/ l](t/e,o')) + 0N (5211)
t/e

7=

If Un(t,€) 15 a formal solution for all N > 0, then pn(t,e) = O(eN ') ase - 0forall N >0, n

which case the argument of Lemma 2 1 shows that for every 3 > 0, y,(t) and 2, (7) satisfy

Yy—1( /h (t,8) ds+/ k,_1(t,0)do, (5212)

(1) = / t(r,0)do (52 13)
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There 1s also an 1mtial condition for solutions of (52 13), obtained from u(0,e) = f(0,¢),

namely that for all 3 > 0

2;(0) = £;41(0) — y,(0) (5214)

Remark 5 2 There 1s considerable simplication 1n the case g(¢, s, 2) = a(¢, s)u for whch (51 1) 1s

a linear equation It 15 found that
J
hy(t,8) = alt, )y, (s), ky(t,0) =) elt,a)z,(0),
1=0
where
1
e(t, o) = z—'aga(t,O)a’

Remark 5 8 Equation (5 2 11} for the residual has been derived only assuming that (5 2 3) 1s true
It follows that if (52 3) holds and (52 12) and (5213) hold for 0 < 3 < N, then |pn(t,€)| =

O@EN*)ase =0
5.3 Properties of the Formal Solution

In this section 1t 15 shown that there are unique solutions y,(¢) and z,() of (5 212) and (5 2 13),
and that they have the important properties assumed 1n their derivation It 1s convenient to rewrite

these equations as

t
0= folt) + / 9(t,5,0(s)) ds, (531)
) == [ (60,0,300) + 20(6) - 9(0,0,1(0)) do, 632
and 3 > 1,
t

0=g,(t) + / Bag(t, 5,40(s))ys (5) ds, (533)
5= [ ™ 839(0,0,40(0) + 20(0))2, (o) do + 1, () (534)

Here we used the definitions
8,0 =0+ [ 8,6dsr [ " by (t,0)do — gy (6), (535)
b == [ 5o (536)
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We see that the leading order solutions (outer and 1nner correction) are given by nonlinear equations
while the higher order terms are given by linear equations
We use the following hypotheses on the functions f(,€) and the kernel g(t,s,u) They are based

on the assumptions used in O’Malley [21], Ch 4

(H3) The function f [0,7]x [0,1] = R1s C®and f(0,0) =0 Alsog Ar xR =3 RisaC®

function where

Ar ={(t,s),0<s <t<T)

(H4) There exists a C* solution yo [0,T] — R to (5 3 1) which 1s unique 1n the class of continuous

functions on [0,7
(Hs) There 1s a positive constant « such that

O3g(t,t,y0(t)) € —a <0, forall0<t<T,

339(0,0,v) € —a <0,
for all v between y(0) and o(0) + £1(0)
Remark 5 4 If (H3) holds, f(%,¢) has the asymptotic expansion
flt,e) ~ ie’f,(t), ase =0,
2=0

where each f,(t) 18 C*° on [0,T]

Remark 55 (531) 1s a Volterra integral equation of the first kind for yo(t) An existence and
umqueness theorem for this equation 1s given in Linz [17}, Ch 5, Th 52 It s obtained by applying

the method of successive approximations to the differentiated version of (5 3 1)

Remark 5 6 Skinner [24] proves stmilar results to those presented 1n this chapter, except that he

replaces g(t, s,u) by g(t,s,u &), where

(o 0]
9t,8,u,6) ~ D Eg,(t,5,u) ase 0
3=0

Here each g,(t, s, u) should satisfy (Hg) and go(t, 3, %) satisfies both (Hy) and (Hs)
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Proposition 5 7 Suppose that (Hs), (Ha) end (Hy) hold Then (53 2) and (5 2 14) have a C®

solution zy satisfyang
{20(7)| < coe™", T2>0, (537)
for some positwe constant ¢y
Proof The problem of solving (5 3 2) subject to (5 2 14) 1s equivalent to the mnitial-value problem
zp(7) = 9(0,0,70(0) + 20(7)) — 9(0,0,30(0)), 20(0) = f1(0) — yo(0) (538)

By standard theory of ordinary differential equations {(see, for example, Hirsch and Smale [12],
Ch 8), (53 8) has a unique continuous solution defined on a maximal mnterval [0,S) such that

lim, 15 |20(7)| = 00 1f § < 0o By the Mean Value Theorem there 1s a function w(7) such that
zg(7) = 859(0,0, (1 = w(r))y0 (0) + w(7)20(7))20(r)

Assumption (Hg) implies that zo(7) decreases if zp(0) > 0 and increases if 20(0) < 0 and that

20(T) + ¥0(0) lies between yo(0) and yo(0) + f1(0) Therefore
2(m)20(7) < —azo(T)?,
and hence |zo(T)| < |20(0)je™*" for all0 < 7 < S Hence S = 0o and (53 7) holds d

Proposition 5 8 Suppose that (Hg), (Ha) and (Hgs) hold Then for every wnteger 3 > 1, (53 3)
has a C= solutson y,(t) on [0,T), and equations (53 4) and (52 14) have a C*® solution z, on

[0,00) satsfying
|2, (1)) € ,e™7, 720, (53 9)
for some positive constants ¢, and f < a

Proof Constder the hypothesis that there 18 an integer N > 0 such that there are C* solutions
y;(t) of (533) for 0 < 3 < N and C*™ solutions z,(r) for 0 < 3 < N of (53 4) and (52 14) such

that

|z ()| < e, 720 (53 10)
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Due to Proposition 5 7 and (Hy), this hypothesis 1s true for N =0

Suppose now this hypothesis 1s true for M > 0 Then ®r41(t,8) and ks (t,0) are determined
and, by (53 5), ¢apy1(t) 18 a well-defined C*> function on [0,7] Assumption (H,) imples that
O3g(t,t,y0(t)) 0 for all 0 < ¢ <T Then 1t makes sense to consider the differentiated version of

(5 3 3), namely

a1
639(tv t yO(t)) aSQ(t’ L, Z/o(t)

t
yaren (t) = ; /0 8501 9(t, 5, y0(5))ym 11 (5) ds (53 11)

This 1s a linear Volterra integral equation of the second kind 1n yar.; and has a C* solution on
[0, T], which can be written i1n terms of the resolvent kernel The theory can be found for example
in Ch 2 of Gripenberg, Londen and Staffan [10] or Ch IV of Miller [19] It follows from (5 3 11)

that

t
constant = gars(6)+ | Oag(t,,30(6)war+1(5)ds (5312)
Q0
But since 2 (0) = far+1(0) — yar(0) and Ip(0,0) = kps(0,0), (53 4) implies that
O11:2(0) = fre42(0) = yw @) + [ bn(0,0) do
— 2m(0) +/°° krg (0,0) do = 0
0

Thus the constant n (5 3 12) vanishes and (5 3 3) holds 1n the case j = M + 1
Now that yas41(t) has been found, 1t follows from (53 6) that a1 (7) 15 a well-defined C®

function An argument like that of O’Malley [20] pp 84-85 shows that
[, ()] < 1,777, >0, (53 13)

can be deduced from (53 10) for 0 < 3 < M The details are omitted FEquation (53 4) 1s

equivalent to the linear scalar equation
2141 (7) = 339(0,0,90(0) + 2o(T))Zrr41 (1) + s 41 (1),
2m+1(0) = far41(0) — ymr(0)

It easily follows from the exact solution, (Hs) and (5 3 13) that (53 10) holds for 3 = M +1
This completes our proof that the induction hypothesis holds for M + 1 The proposition then

follows O

56




Chapter 5, Section 3 Properties of the Formal Solution

Lemma 5 9 Suppose that (Hg), (Ha) and (Hys) hold Then the residual pn gwen by (5 2 10)

satisfies
lon(t, &)l = O0ENTY) ase =0, (53 14)
unsformly for all0 <t <T Moreover
oy (€)= 0ENT) ase— 0, (5 3 15)
vnformly for all0 <t < T, and
lon(0,€)| = O(e™+?) (5 3 16)

Proof Since Propositions 5 7 and 5 8 have established (5 2 3), the proof of (5 3 14) follows from
Remark 53 To prove (5 3 16)

o0 N
pn(0,¢) = £(0,6) — eUn(0,6) = Y &’ £,(0) = Y_ "+ (3, (0) + 2,(0))
1=0

J=0

Using the mitial conditions 1n (5 2 14) and the fact that fo(0) = 0, we have

on(0.€)= Y fr1a(0)ert! = 0(eN+?)

J=N+1

Differentiation of (5 2 10) gives
N N
Pi(te) =F/(t,e) = S ety (§) = 3275 (t/e)
=0 =0
IJV + N
+ g(¢, t,Ze’ (y, (8) + 2, (t/e))) + /0 Oig(t, s, ZE’ (y,(s) + 2,(s/€))) ds
2=0 9=0

Introducing the new notations

N
H*(t> 8,€) = 619(ta3)297y1(3))a

1=0
N N
K*(t,5,0,€) = Brglt,s, 3 &y s) + (@) — Buglts 5,37y, (s)),
=0 7=0

we have

N N N
Pn(te) =) e fi(t) = D ey (t) = Y &2} (t/e) + H(t, t,e) + K (1,8, t/e,¢)
3=0 =0 =0
t t/e
+/ H*(t,8,€)ds +¢ K*(t,e0,0,€) do + O(e™N ™) (56317)
0 0
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Two useful Taylor expansions are

N
H*(t,s,¢) :Zejh;(t, s) + O(eNtY)

7=0

N
K*(t,e0,0,€) = Z ek} (t,a) + O(eN ),

J=0

where the coeflicients satisfy
k;(t,a) =8lkj(t,0'), h;(t,s) =6lh1(t, 8)
Therefore (53 17) 18 equivalent to

N N
Inte) =Y e fw) - ey () - ZE’ (¢/€)
=0 =0
7 N J t
+ D etk (t,t) + Zeﬂk, (t,t/e) + Ze’ / R*(t,5) ds
32=0 3=0 1=0 0

N oo N
+Ze]+1/0 kr(t, o) da—Zef“/ k}(t,0) do + OV )
3=0

=0 €

Then substituting the differentiated version of (5 2 12) we get

00 N
Py (t,€) =Nt (/0 k@, 0)do — yy (t)) - Ze’z; (t/e)

+Zs k) (¢ t/e) — Zsﬁl/ K (t,0) do + O(eN+) (5318)

7=0
By substituting the differentiated version of (5 2 13) one gets

on () (/ kn(t,0) da—yN(t) +Ze k,(t, t/e) — Ze’l (t/e,t/e)

1=0
+ Ze’ / 8,l, (t)e, o) do — ZE]'H / KA (t,0) do + O™ H)
72=0 t/E 1=0 t/E

Using Lemma, 5 1,

N 7 . N
piv(t, &) =Vt ( /0 kx (t,0) do — ' ( t)) +Y 8y ek a(t/e,t/e) = > el (t/e, t/e)

3=0 =0 7=0

+Ze’ e 61 (t/e,o)do — Zs’“/ ’k* (t/e,0)do + O(eMH)

7=0

Collecting terms together using (5 2 9) gives

00 N oo
d(t, ) =N ( / kfv(t,oma—y;v(t)) iy /t/ Oul, (t/e,0) do
1=1 €

N+1

ooJ L
-Ze]/ 1 t/e,0) do + O(EN )

1=0
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We also see that 1f

K*(er,e0,0,¢€) = Ze’l T, O

then

2
Z ;—1,1(7—’ 0') = l;(T‘I o),

=0

where the coeflicients obey
_1(r,0) =bil,(7,0), 322>1
Therefore
o (8,€)] = O(eNT), (5 3 19)
uniformly for all 0 <t < T d

5.4 Existence of Asymptotic Solution

In this section we establish that Uy (t,£) defined 1n Section 51 1s an asymptotic solution Our
method 18 to adapt the theory in §6 3 of Smith [25] for systems of singularly perturbed ordinary
differential equations Skinner [24] employed a similar method The analysis here has also benefited
from the general discussion in §6 1 of Eckhaus [5] on developing a rigorous theory of singular

perturbation The main result in this chapter 1s the following

Theorem 5 10 Suppose that (Hg), (H4) and (Hg) hold Then (51 1) has a continuous solution

u(t,€) with the property that there are constants Cn and e}, such that
|u(t,€) - UN(t,E)I < CNEN+1
forall0 <t<T and0<e<ey
It 1s natural to mtroduce rn(t, &) = u(t, &) — Un(t,e) which satisfies the equation
¢
ern(te) = pnlt,e) + / [9(t, 8, Un(5,€) +7n(5,€)) — g(t, 8, Un (5, ))] ds (541)
0

However, if the functions rn and py are scaled, a mapping considered later becomes a uniform

contraction rather than just a contraction For this reason let
a(tv 5) = 5_(N+1)PN(t, 6)) I(tv 6) = E—(N+1)TN (ti E)v
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where, for sumplicity, the dependence on the fixed integer N 1s omitted from the notation Then

for € > 0, (54 1) 1s equrvalent to
¢ ¢
ez(t,e) = 6(t,e) + / Osg(t,8,Un(s,e))x(s, ) ds +/ h(t,s,z(s,€),€) ds, (542)
0 0
where
h’(tv s, %, 6) = 6_(N+l)g(tv 8, UN (S, 5) + ﬂ?) - E"(N‘H)g(t’ 8, UN(S: 5)) - 339(t7 5, UN (35 5))1:
By Taylor’s theorem h(t, s,x,e) = eVt hy (¢, 5, z,€), where
1
hi(t,s,z,e) = 2? / (1-v)82g(t,5,Un(s,€) + ve™+tz) duv
0
Hence, because |8(t,¢)| = O(1) as € = 0 umformly by Lemma 5 9, we expect the nonlinear term
¢
/ h(t,s,z(s,€),€) ds
0

to be of higher order than other terms in (542) Therefore we first consider the approximate

equation

¢
ew(t,e) = &(t,€) +/ Osg(t, s, Un(s,e})w(s, €)ds, (54 3)
0
where £(t,¢) = O(1) uniformly as € — 0 and £(0,¢) = O(¢)

Lemma 5 11 Suppose that (Hg), (Ha) and (Hg) hold for each 0 < ¢ < gy Also suppose that
£(,e) [0,T] = R s a continuously differentiable function wath ||'( ,€)|| = O(1) and |(0,¢)| =
O(e) Then (54 8) has a untque continuous solution w( ,&) satssfyrng ||w( ,&)| = O(1) for all €

m some nterval (0,61] C (0, o)

Proof The standard theory of hinear Volterra equations of the second kind ensures that for each
0 <& < go (54 3) has a continuous solution t — w(¢,e) on [0,T] and that w( ,&) 1s continuously
differentiable because £(,e) 15 Let 0 < 8 < o I follows from (Hg) that there 1s a number

0 < g1 < gg such that
p(t’ 6) = Bsg(t,t, UN(ta E)) S —IB

forall 0 <t < T and 0 <e<e; Equation (54 3) can be differentiated to get an equation of the

form
ew'(t,€) — p(t, E)wlt, ) = & (4,€), (544)
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where w(0,€) = £(0,¢)/e and
t
& (t,e) =E(te) + / 01039(t, 5, Un(s,€))w(s,€) ds
0
Since the solution of (5 4 4) satisfies

t
w(te) = w(0,eJet BP0y 2 [ ek fotwivg (5. c)ds
€ Jo

and
ee L J3 p(ve) dv < e—ﬁt/s e:—f: p(u,.e) dv < e—,@(t—s)/s’
we see that
|w(t, E)|<Cl+—+—/ lw(s, €)| ds,
where
Cl = Ssup |§(0)5)|/€v CZ = 8sup Hé( 5)”1 M= sup |8163g(t,S,UN(S,E))|
0<e<ep 0<e<eq (t,9)€Ar
0<e<egp
By Gronwall’s inequality
Cy
lw(t, &) < (01 + 2eF ) :
g
and the lemma 1s proved d
Equation (5 4 2) can be written as
L(z,e) =6( ,e) + N(z,¢e), (545)

where £,/ C[0,T] x [0,e:} = C[0,T) are defined by

t
L) = ()~ | dglt,s,Un(s,)a(s)ds,
0
t
N(x,e)(t) = N+ / hi(t, s,2(s),€) ds
0
It 15 convenient to introduce the space X of functions (¢,€) + £(¢,€) on [0, T]x [0, €1] with ¢ — (¢, €)

continuously differentiable and ||&'( ,€)|| and £(0,¢)/e are umformly bounded on [0,&¢] and (0, &)

respectively A’ 18 given the norm

€]l = sup |£(0,e)/el + sup |I€'(,€)l

0<e<er 0<e<ey
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Then (t,€) = L(z,€)(t), (t,€) = N(z,€)(t) and (t, &) = 8(t,&) are m X

Lemma 5 11 can be remnterpreted as asserting that for £ € X the equation L(w,e) = £(,&) 18
equivalent to w(,e) = M(,€)§(,€) for some linear operator M( ,e) X — C[0,T] and there 1s a
constant u such that ||M(,€)é(,¢)|| < pl|é||x umformly for 0 < € <&, Hence there 1s a number

d > 0 such that
IMC,e)8(,e)ll < 6
Also (5 4 5) 18 equivalent to
z=M(,e)[0(,€) + N(z,¢)]

Thus the problem of finding solutions of (5 4 5) 1s equivalent to finding fixed points of a mapping

Let
B={zeC0,T) || <26}
A simple calculation shows that if z 18 1n B then
N (2, llx <eNTITM,,
where

M, = max |k (2, 8, z,€)]
(t,S)EAT
2] <28, 0<e<e,

Therefore for each z 1n B
IM(,e) [0 €) + Nz, e)] || < 6 + uT MM < 26,
if £ 18 1n some 1nterval (0,&2] It has been shown that the mapping 7, B — B given by
Te(z) = M(,€) [6(, &) + N (z,€)]

18 well-defined
Next 1t 1s shown that 7 18 a contraction on B Note that N(z,£}(0) = 0 Let x;,29 be in B

Then
(N(ﬂ?l,E)’(t) - N(x256)l(t)) = EN+1 [h‘l (t7 i,z (t),E) - h'l (t’ t, :cg(t),e)

t
+ / {Brhi (¢, 5,21(s),) = Duha (2, 5, 2a(s), £)} ],
0
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and, using the Mean Value Theorem,

t
Wi1,e)/(t) = Mza, )/ ()] < V41 {M2|931 (t) — 22 (8)] + Ms /0 21 (5) = 22(8)] ds}

where
M, = max |33h1(t,t,23,5)|1 M; = max |6361h1(t, s, %,€)|
0<t<T (t.5)eAr
|z|<25, 0<e<e0 |z <28, 0<e<eg

It follows that
IV (z1,€) = N(@2,€)||lx < V(Mo + MT)||z1 — 22|

and hence that 7. B — B 1s a umform contraction for & in some interval (0,e3] with 0 < &3 < &

The Banach fixed point theorem 1mplies the following result

Lemma 5 12 Suppose that (H;3), (Hy) and (Hg) hold Then there s & number £5 > 0 such that

(6 4 2) has a unique solution z(e) n B for all 0 < e < g3
It 15 easy to show that since z(e)(t) = z(t,€) satisfies (54 2)
u(t,e) =Un(t,e) +eNtiz(t,e)
15 a solution of (511) Moreover
|u(t,e) — Un(t,e)| = eV |z(t,e)| < 26e™+!
for all 0 < ¢t < T Ths complete the proof of Theorem 5 10
5.5 Example
Let us consider the following example from Angell and Olmstead (2],
cu(t) = /0 o9 (a2 (s) — 1) ds (551)

The exact solution of this determined by converting the integral equation to a nonlinear first order

differential equation subject to the imitial condition u{0) =018

2 1-¢
whe) = L Der vy 71 (552)
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where
1

v=sVi+e (553)

Example (5 5 1) corresponds to
flt,e)=1—-¢t, glt,s,u) =elt=2y2

which implies 3sg(¢,1,u) = 2u It follows from (5 3 1) that the leading order outer solution satisfies

t

0= [ e=I3(0) - 1)ds
0

which has solutions yo(¢) = +1 But only one of these can be approprnate since (5 5 1) has a unique
solution (H;) cannot be satisfied with yo(t) = 1, but with yo(t) = —1 1t holds with o = 2, since

339(t,t,¥0) = —2 Therefore

The leading order inner correction solution is given by the nonhnear ordinary differential equation
25(1) = 2o(1) — 220(1), 2(0Q) =1,
which has a solution
2p(t) =1—tanh7, 7>0
We see from this solution that 2(7) satisfies the requirement that
rl-l—)nc}o z(1) =0
To the leading order, the asymptotic solution Uy(t,£) of (55 1) 18 given by
t
Us(t,e) = — tanhg
In general, for 3 > 1, the outer solution satisfies
t t 00
Yy () = —2 / et=vy. (s) ds + / B, (t, ) ds + / k1 (t,0) do,
0 0 0
where k,_1(t,0) and ®,(t,s) are determmed by y,(t) and z,(7) for2 <7 —1 Since
®1(t,8) =0, ko(t,0) = —etsech®o,
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it follows that the first order outer solution satisfies the equation

t
2/ e y1(s)ds =1—¢
0

Solving this by differentiating once gives

From (5 3 4), the inner correction solution, 1n general satisfies
zy(1) = —2tanh 1z, () + ¢;(7),
where

o
==/ 5
18 determined by y,(¢) and z,(7) for + < 7 respectively ¢ < 3 — 1 Then, since
E1(7,0) = (o — 7)sech® ¢ + tanh o — 1,
the first order inner correction solution z; (1) satisfies

1
z(t) = —2tanhrzi(r), 2(0)= 3

Solving this gives

1
z(r) = 5 sech’r, >0

Then to the first order, the asymptotic solution U, (t, ) 1s given by
Ui(t,e) = —tanh & — £ tann?
e 2 £

To venfy that Up(t,€) 1s a uniformly valid asymptotic solution, we consider the difference

2/e(1 —et) e2t/e 1
(y—Der+y+1 e/c+1
2/e(1 —e"t)(e®/¢ +1) + (e?/¢ — 1){(y — 1)e"* + v+ 1}
(v = L)e7t + v + 1(e?/e + 1)

u(t,€) — Uo(t, &)

(55 4)

Simphifying (5 5 4) gives

eTt 4 2t/ _ artelt/e _q

t,e) — Uty e) =
u( s €) U( ,E) yert 4+ ,Yezt/e +(y- 1)e’7‘e2t/5 +v+1
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We have from (5 5 3) that
2
7~_E+O(€)’ e—=0

Therefore

2t/e At /e

2ee —ce —€

u(t,e) — Up(t,e) = eettle 1 (2 —€)ettle +2 1 ¢

and

Qee—2t/s _ o~/ _ ¢
ge 2/ £ 2 — e+ (2+g)e /e

I'U:(t,E) - Uo(t, 5)‘ S 2
It therefore follows that for 0 < £ < gy, we have

|u(,€) — Uo(t, )] <

N m

for all 0 € ¢t < T Sumilar calculations show that there exists a positive constant ¢; > 0 such that
|‘ll:(t, E) - Ul (tl E)I S G 521
umformly for all0 <t <T
5.6 Example from Population Growth
Consider the following example
¢
eu(t) =eS(#) + / St — s)u(s)(1 — u(s)/c) ds, (56 1)
0

where ¢ > 018 a constant Problem (5 6 1) 18 a model for the population growth The function u(t)
15 the population size at time ¢ The survival function S(t) 1s the fraction of the imtial population
which 18 still alive at time ¢, so S(0) =1 u(l —u/c) 15 the rate of reproduction Since € 1s small,
(5 6 1) describes a rapid growing population

Problem (5 6 1) corresponds to
f(ts 5) = ES(t), g(ta S,U) = S(t - s)u(l - U/C)
The leading order outer solution, yo (%) 18 given by

¢
0= / St - s)u(s)(1 —u(s)/c)ds (562)
0
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which 1mplies

yo(t) =0 or yo(t) =c (563)

To satisfy (Hjs), the correct leading order outer solution 1s

¥o(t) = c,

since then 839(t,t,40(t)} = —1 By (5 3 1) the leading order inner correction solution 2(7) 1s given

by
(1) = 2N = zar)), (0)=1-¢ (564
which has solution
zo(T) = % (56 5)

This imphes that lim, o 20(7) = 0 and thus to the leading order, the asymptotic solution, Uy(t, €)

of (56 1) 1s given by

Un(t,€) = T (566)

+{c—1)e"t/e
Thus on a time scale of order ¢, the population increases rapidly Since (56 1) and yo(¢) satisfy

the hypotheses of this chapter, the unknown exact solution satisfies

c

fut, &) - 1+ (c—1)e~t/e

| = O(e) (567)

umformly for 0 <t < T
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