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ABSTRACT

Interactions o f metal and metalloid ions with fungal biomass

PhD Research Thesis by 

Joseph M. Brady B.Sc.

In theory, the higher the covalent index value of a metal ion, the greater its potential to 

form covalent bonds with biological ligands. Metabolism-independent equilibrium metal 

ion adsorption to freeze dried Rhizopus arrhizus biomass was found to increase in the 

order Sr2+ < Mn2+ < Zn2+ < Cd2+ < Cu2+ < Pb2+ and positively correlated with covalent 

index. Adsorption was rapid and 95% complete within five minutes of metal-microbe 

contact, and equilibrium was independent of solution biomass concentrations.

The potential of a metal to displace other preloaded cations from the biomass 

ligands, and the extent to which a preloaded ion inhibited the adsorption of another both 

increased with increasing covalent index for Mn2+, Zn2+, Cd2+, Cu2+ and Pb2+. An almost 

complete inversion of this order was observed in the case where Sr2+ was the primary 

binding test ion. According to the hard and soft principle of metal ions, Mn2+, Zn2+, 

Cd2+, Cu2+ and Pb2+ are classified as soft-borderline, Sr2+ is classified as hard, and 

theoretically the polar nature of these cations increase in the same order as covalent 

index.
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As a consequence of metal ion adsorption, Ca2+ and Mg2+ displacement from the 

biomass ligands was observed for both hard and soft borderline ions, whereas 

displacement of H+ was observed for soft borderline ions only. Overall, the soft 

borderline ions exhibited a significant degree of both covalent and ionic binding, and 

the hard metal Sr2+ was found to exhibit ionic binding only. Linear reciprocal Langmuir 

and Scatchard transformation plots reflected the predominantly ion exchange mechanism 

of Sr2+ and Cd2+ adsorption, and a curved Scatchard transformation plot reflected the 

more covalent nature of Cu2+ adsorption.

The transformation and accumulation of the oxyanion selenite (1000 |imol I'1) by 

a growing Pénicillium species was investigated over a 2 week period. Selenium in the 

aqueous phase decreased by ca. 49.8%, and selenium accumulated by the fungal biomass 

totalled ca. 36.6%. Transformation into volatile selenium compounds amounted to an 

average value of ca. 8.8%, and the process was determined to be both growth and non

growth associated. Activated charcoal traps were successfully used to retain the volatile 

selenium compounds which were determined to be organic in nature. The reduction of 

selenite to amorphous elemental selenium was observed only during the decline phases 

of growth. Selenite transformation, particularly reduction to amorphous elemental 

selenium, was enhanced by the addition of amino acids and vitamins to the aqueous 

medium, and with such amendments selenite reduction was observed both during the 

rapid and stationary phases of growth.
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Interactions o f metal and metalloid ions with fungal biomass
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FOREWORD

The interaction of metal ions with biological cell surfaces is a prerequisite for 

intracellular accumulation where metals fulfill essential metabolic functions or, in certain 

cases, exhibit toxic effects (Avery & Tobin, 1993). Microbial mechanism for the 

detoxification of metal ions include chemical transformations to more volatile 

compounds (Gadd, 1993a,b\ Morley et al, 1995; Tebo, 1995; Brady, Tobin & Gadd, 

1996) or different valency states (Hassett & Kosman, 1995), physico-chemical 

accumulation of dissolved and particulate ions usually referred to as biosorption (Lin, 

Crawford & Koswan, 1993a; Yazgan & Ozcengiz, 1994; Yoshida & Murooka, 1994; 

Gelmi et al., 1994; Brady & Tobin, 1994; 1995a,b\ Berhe, Fristedt & Persson, 1995; 

Engl & Kunz, 1995; Chen & Ting, 1995; Akthar, Sastry & Mohan, 1995), formation of 

metabolic products that make the contaminant insoluble (Corzo et a l, 1994; Farcasanu 

et al., 1995), and utilisation of efflux systems (Gadd 1990; 1992). After transport into 

viable cells, metals may be compartmentalised in specific organelles, and rendered non

toxic by binding or precipitation (Gadd & White, 1985, 1989a; Gadd, 1990; 1992; Lin, 

Crawford & Koswan, 1993a,b; Klapcinska, 1994; Gelmi et al., 1994; Golab & 

Breitenbach; 1995; Volesky & May-Phillips, 1995; Bode et al., 1995; Appanna et al., 

1995; Donnellan et al., 1995).

This research thesis divides naturally into a number of sections as described 

below. Initially the work seeks to characterise and explain physico-chemical interactions 

of a range of divalent metal cations with nonviable fungal biomass, and is then extended 

to continuous flow immobilised biomass systems. In later sections fungal biosorption and
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volatilisation of the metalloid selenium is investigated and various enhancement 

strategies are studied. The sections may be summarised as follows, and this format is 

followed throughout the thesis.

Biosorption characterisation investigates equilibrium Sr2+, Cd2+ and Cu2+ ion 

adsorption by freeze-dried, oven-dried and live non-metabolising biomasses of Rhizopus 

arrhizus. Ionic and covalent contributions were calculated by monitoring Ca2++Mg2+ and 

H+ ion displacement values respectively. The biosorbent surfaces were characterised by 

application of mathematical adsorption isotherm models and Scatchard transformation 

plots to the adsorption data. In Application o f hard and soft principle. the hard and soft 

principle of metal ions was applied to the study of Sr2+, Mn2+, Zn2+, Cd2+, Cu2+ and Pb2+ 

adsorption by freeze-dried Rhizopus arrhizus biomass, and also to the study of 

displacement and inhibition effects of one ion by another. Time profiles of adsorption, 

displacement and inhibition were also examined for Sr2+, Cd2+ and Cu2+ systems. The 

effect of biomass solution concentration on equilibrium Sr2+, Cd2+ and Cu2+ biosorption 

by freeze-dried Rhizopus arrhizus biomass was examined in Effects o f biomass 

concentration, along with the relevant ionic and covalent contributions. Continuous flow  

systems examined continuous fixed-bed adsorption of Cu2+ ions by polyvinyl formal 

immobilised freeze-dried Rhizopus arrhizus biomass, and the resultant breakthrough 

curves were characterised by mathematical modelling. Ionic and covalent contributions 

were again evaluated. Selenite adsorption studies examined the toxic effects of selenite 

on live non-metabolising biomasses of Rhizopus arrhizus and a Penicillium species by 

monitoring the release of Ca2+, Mg2+, H+ and K+ ions.
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Selenite transformation studies characterises the transformation of selenite in 

aqueous media by the Pénicillium species over a 2 wk period at 25°C under aerobic and 

acidic conditions. The design of the bioreactors, the trapping and recovery of volatile 

selenium compounds, and a suitable selenium assay are all explained in detail. 

Transformation enhancement studies investigates the beneficial effects of Dulbecco's 

Modified Eagle Medium (DMEM) components, particularly a range of amino acids and 

vitamins, on selenite transformation, both volatilisation and reduction to amorphous 

elemental selenium.
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CHAPTER 1

INTRODUCTION

Interactions o f metal and metalloid ions with fungal biomass

PhD Research Thesis by 

Joseph M. Brady B.Sc.



CHAPTER 1: INTRODUCTION

The first part o f this literature review (sections 1.1 to 1.6) examines the potential of 

microbial biomass to adsorb metal ions from aqueous environments and considers the 

mechanisms involved. It examines physical and chemical properties o f metal ions and 

the nature of ligands available for sequestration. Mathematical models used for 

describing adsorbent surfaces, and quantifying receptor sites and binding affinities are 

also examined.

The second part o f this survey (sections 1.7 to 1.11) examines the microbial 

transformation of selenium oxyanions, particularly selenite, into volatile selenium 

compounds and amorphous elemental selenium. It considers the mechanisms involved 

and some experimental techniques designed to monitor and enhance such 

transformations. Accumulation/biosorption aspects o f selenium oxyanion reduction are 

also discussed.

1.1 Metals and Microorganisms

Metals and metalloids considered necessary for biological growth and function are the 

macro-elements sodium, potassium, magnesium and calcium, and the micro-trace 

elements vandium, chromium, manganese, iron, cobalt, nickel, copper, zinc, selenium 

and molybdenum (Hughes & Poole, 1989; 1991; Gadd, 1992). In general terms, they are 

known to be involved in the stabilisation of a range of biological structures, from cell 

walls to protein conformations. Some are considered highly effective catalysts of a range 

of diverse biochemical processes that can initiate, moderate or inhibit reactions (Hughes
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& Poole, 1989). Non-essential metals/metalloids with no known biological functions 

include, aluminium, arsenic, silver, cadmium, mercury, tin, tellerium and lead. At 

relatively high concentrations of both essential and non-essential metals toxic effects can 

be experienced by a range of organisms (Hughes & Poole, 1989; 1991; Gadd, 19936).

Metal ions arise in quantity from a range of domestic and industrial processes 

and waste streams (Azab, Peterson & Young, 1990; Gadd, 1992; Andreoni et al., 1994; 

Mishra, Singh & Tiwari, 1995), and their release into the environment can lead to the 

contamination of the food chain. They occur in a range of physical and chemical forms 

that greatly influence their bioavailability and effect on the aquatic environment. Most 

are in the form of inorganic salts and tend to be predominantly associated with 

suspended solids (Zabel, 1993). Organoderivatives of lead, tin and mercury, where the 

metals are bound to a variety of organo groups through metal-carbon bounds, frequently 

have a higher toxicity than simple inorganic derivatives (Gadd, 1992). This results from 

greater lipid solubility of organoderivatives and resulting enhancement of incorportation 

into viable cells (Gadd, 1993a,b). Microorganisms, including bacteria, algae, yeasts and 

fungi can sequester metal ions from solution with relatively high efficiencies by a 

process commonly referred to as biosorption (Gadd, 1990; Enzminger, 1991; Tebo, 

1995; Volesky & Holan, 1995). Such a process is presently being considered as a novel 

metal decontamination-recovery technique.
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Biosorption can be simply defined as the removal of metal or metalloid species, 

compounds and particulates from solution by biological material (Volesky, 1986; Gadd, 

1990, 1992; Tebo, 1995; Chong & Volesky, 1995; Volesky & Holan, 1995). The term 

biosorption has mainly been applied to microbial biomass, although most biological 

material has biosorptive capacity. The process of biosorption by microbial biomass is 

considered to involve a variety of metabolic-dependent and -independent mechanisms 

that are influenced by environmental factors including pH, temperature and the presence 

of other metal ions (Wainwright, 1990; Wnorowski, 1991; Gadd, 1992; Brady & 

Duncan, 1994a; Blackwell, Singleton & Tobin, 1995; Chen & Ting, 1995). Bisorption 

by viable biomass is considered a biphasic process: an initial metabolism-independent 

rapid binding of metal ions onto the cell surface followed by a slower metabolism- 

dependent intracellular uptake (Trevors, Stratton & Gadd, 1986; de Rome & Gadd, ] 987; 

Duncan & Brady, 1994a; Sloof & Viragh, 1995). In the case of non-viable biomass, 

biosorption proceeds exclusively by metabolically independent passive adsorptive 

processes (de Rome & Gadd, 1987; Wainwright, 1990), which under certain conditions 

has been reported to adsorb metal ions in larger quantities than viable biomass (Kuyucak 

& Volesky, 1988; Wainwright, 1990; Andreoni et al., 1991; Urruita Mera et al., 1992; 

Volesky & May-Phillips, 1995). The three major classes of microbial biopolymers, 

proteins, nucleic acids and polysaccharides, all provide sites at which metal ions will 

bind. The ligand groups available for biosorption include the amine function, and the 

negatively charged groups, carboxylate, thiolate and phosphate (Hughes & Poole, 1989; 

Tobin, Cooper & Neufeld, 1990).

1.2 Biosorption
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Potential industrial applications of this phenomenon include the use of immobilised 

microbial biomass in suitably constructed bioreactors for reclamation or containment of 

metal ions in industrial waste/process streams (Treen-Sears, Yolesky & Neufeld, 1984; 

Volesky, 1986; 1990; Tsezos, Noh & Baird, 1988; Tsezos, McCready & Bell, 1989; 

Gadd, 1990; Wainwright, 1990; Tobin, L'Homme & Roux, 1993; Tobin, White & Gadd, 

1994; Brady & Duncan, 1994a; Volesky & Holan, 1995). Biosorptive processes are 

rapid and would in theory be suitable for the extraction of metal ions from large 

volumes of water (Azab et al., 1990; Melcer, Monteith & Nutt, 1992; Artola & Rigola, 

1992; Blais, Tyagi & Auclair, 1993; Geddie & Sutherland, 1993). For industrial scale 

processes, the cost of producing biomass may be a serious economic disadvantage and 

consequently the use of waste microbial biomass which arises in quantity from several 

industrial fermentations would be desirable (Volesky, 1986; Leuf, Prey & Kubicek, 

1991; Simmons, Tobin & Singleton, 1995).

1.3 Classification o f hard and soft metals and ligands

The hard and soft theory of metal ions originates from a study that examined the relative 

affinities of ligand atoms for acceptor molecules and ions (Ahrland, Chatt & Davies, 

1958). The work examined trends in the magnitude of equilibrium constants that 

describe the formation of acceptor-ligand complexes. Two prominent features of the 

study emerged:

(1) Significant differences exist between the co-ordinating affinities of the first and 

the second element from each of the three groups of ligand atoms V, VI, VII, from the

1.2.1 Potential applications o f biosorption
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Periodic Table, i.e., between N and P, O and S, and F and Cl.

(2) Two classes of acceptors exist:

(a) those that form their most stable complexes with the first ligand atom of 

each group, N, O and F

(b) those that form their most stable complexes with the second or subsequent 

ligand atom.

Some acceptors exhibit both class (a) and class (b) characteristics and are separated into 

a border region. This border region leads to a gradual transition between class (a) and 

(b) within the Periodic Table.

1.3.1 Pearson's Classification of hard and soft acids and bases (1963)

Metal ions act as Lewis acids by accepting electron pairs from ligands. From a study 

conducted by Pearson (1963), the relative stability of complexes formed between various 

Lewis bases (electron pair donors) from group VII of the Periodic Table and various 

Lewis acids were compared. Derived from the work of Ahrland et al. (1958), a number 

of diverse Lewis acids were classified as class (a), class (b), or borderline. Class (a) and 

(b) Lewis acids are referred to as hard and soft respectively. Pearson's classification of 

a range of Lewis acids is outlined in Appendix A.

The majority of all ligands are from groups VII, VI and V of the Periodic Table, 

and the atoms in each group become progressively polar or soft with increasing atomic 

weight. Thus, increasing softness and decreasing hardness of the ligands from each 

group follow the trends:
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Group VI: O < S < Se < Te

Group V: N < P < As < Sb < Bi

Therefore, the atoms F, O and N are the hardest in each group. Hard acids form their

most stable complexes with the first ligand atom of each group and soft acids form their 

most stable complexes with the second or subsequent member of each group.

Common features inherent to class (a) Lewis acids are small ionic sizes and high 

positive oxidation states, and to class (b) acids, are low or zero oxidation states and/or 

large ionic sizes. Features that promote class (a) behaviour are those that lead to low 

polarisability, and those that promote class (b) behaviour are those that lead to high 

polarisability. This makes it convenient to refer to class (a) Lewis acids as hard acids 

and class (b) Lewis acids as soft acids. For hard acids, low polarisability is proportional 

to high ionisation potential and high electronegativity and vice versa for soft acids. Hard 

acids, with high positive charges and small ionic sizes favour strong ionic binding with 

bases of large negative charges and small ionic sizes. Soft acids prefer to bond to soft 

or polarisable soft bases by primarily covalent bonds, and bonding is strong if the 

electron affinity of the acid is large, and the ionisation potential of the base is low. 

Some Lewis acids exhibit both class (a) and class (b) character and are consequently 

refered to as borderline.

1.3.2 Nieboer & Richardson's classification o f metal ions (1980)

In considering a biologically significant classification system, Nieboer & Richardson 

again separated metal ions into the distinctive classes, (a), (b) and borderline. Class (a)

Group VII: F < Cl < Br < I
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ions are characterised by a high affinity for oxygen molecules in ligands, and class (b) 

ions are characterised by a high affinity for nitrogen and sulphur molecules. Similar to 

the studies by Ahrland et al. (1958) and Pearson (1963), the classification of metal ions 

was also based on trends in the magnitude of equilibrium constants that describe the 

formation of metal-ligand complexes. Class (a) metals were determined to have the 

following preference for ligands:

F  > Cl' > Br > T 

and for metal binding donor atoms significant to biological ligands:

O > N > S

In contrast, class (b) metal ions exhibit the opposite preference sequence:

S > N > O

and T > Br' > Cl' > F'

Borderline metal ions form an intermediate group and form stable complexes with all 

classes of ligands. There is a sharp separation between class (a) and borderline metal 

ions, but the distinction between class (b) and borderline metal ions is not well defined 

(Gadd, 1992).

The energy of the empty valence orbital of a metal ion is considered a measure 

of its potential to accept electrons and thus form covalent bonds. Orbital energy may be 

considered representative of the covalent potential of the ion and is related to 

electronegativity (Xm), which is subsequently related to ionic radius (r). The ionic 

potential of a metal ion is its charge to size ratio, and is considered a measure of its 

capacity to form ionic bonds with a ligand. In the formation of a covalent bond, a metal 

ion receives electrons from a ligand. This increases the electron density around the metal
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ion and reduces its formal charge. The bond energy between atoms of unequal 

electronegativity has both covalent and ionic contributions, and there is an unequal 

sharing of the electrons. For a metal ion, the value of the expression, Xj r ,  is considered 

a measure of the importance of covalent interactions relative to ionic interactions. This 

is defined as its potential to form covalent bonds and is referred to as covalent index. 

Thus, the greater the covalent index value of a metal ion, the greater its potential to 

form covalent bonds with a ligand. For a range of metal ions classified as class (a), class

(b) and borderline, Xm2r index values as computed by Nieboer & Richardson, are 

outlined in Appendix B. In contrast to Pearson system, Cd2+ is classified as borderline 

instead of soft, and H+ as borderline instead of hard.

1.3.3 General metal-ligand interactions

Considering the classification systems presented by Pearson and Nieboer & Richardson, 

it appears that the extent to which a metal ion will bind to a ligand largely depends upon 

the chemistry of the metal ion and its preference to form ionic or covalent bonds. Class 

(a) metal ions are described as nonpolarisable Lewis acids which prefer binding to 

nonpolarisable hard bases by bonds which are principally ionic, and class (b) metal ions 

are described as polarisable Lewis acids which prefer binding to polarisable soft bases 

by bonds which are principally covalent (Pearson, 1963; Nieboer & McBryde, 1973; 

Nieboer & Richardson, 1980; Darnall et a i, 1986; Gardae-Torresday et al., 1990; 

Remade, 1990; Gadd, 1992). In biological systems soft metals will bind to an extent 

with hard oxygen donor ligands, and this depends on the degree of polarisation.
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In biological systems, oxygen donor ligands and sulphur and nitrogen donor 

ligands are described as hard and soft respectively. For typical soft metal ions 

encountered in metal-microbial studies, the order of increasing stability of complexes for 

a range of common ligand atoms is:

F < 0 < N < C l < B r < I < S < C  

This trend is the same as that of increasing softness, decreasing hardness, and also of 

decreasing electronegativity. For hard metal ions a strong inversion of this order occurs.

It is apparent that all macro-nutrient metals are class (a) ions, and trace/micro

nutrient and toxic metals are class (b) or borderline ions (see Appendix C). The essential 

s-block elements are the monovalent cations K+ and Na+ and the divalent cations Mg2+ 

and Ca2+. These cations are of noble gas configuration and their chemistry is essential 

ionic in nature. They prefer to bind to oxygen donor ligands and interact weakly with 

most biological ligands. The transition elements have filled or partially filled d orbitals 

and bind biological ligands more strongly than the s-block elements. Common examples 

of toxic elements are the d-block elements Cd2+ and Hg2+, and the p-block elements 

Tl+3+, Sb(III), Pb2+ and As(III). These are readily polarisable and bind strongly to 

biological ligands, particularly soft ligands such as thiols. They exert toxic effects in 

several ways including, displacing native metals from their normal binding sites, binding 

to proteins and nucleic acids thereby altering their conformation, and affecting 

membrane permeability (Hughes & Poole, 1989).

It is possible to qualitatively predict the interaction of metal ions with ligands 

based on knowledge of polarizing potentials. The ability of a metal ion to complex a 

ligand depends on its polarising power, its charge/radius ratio. Polarisation potential
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increases directly with covalent index and general trends indicate that covalent index 

values increase in magnitude from left to right across the Periodic Table, and from top 

to bottom down the table. A cation of high polarising power is described as a strong 

Lewis acid, and if hard and soft metal ions are present in solution, soft ions tend to bind 

preferentially to biological ligands and displace essential-hard metal ions from their sites 

(Hughes & Poole, 1991). This displacement of one cation by another depends on the 

strength of the individual ligand complexes (Remade, 1990). In the first series of 

transition elements, Cu2+ is the strongest Lewis acid and will bind preferentially to 

microbial biomass ligands (Hughes & Poole, 1989; 1991), with a higher affinity for 

amines over carboxylates (Beveridge & Murray, 1980). For this series, increasing 

covalent index, softness and polarisation potential, and subsequent enhanced ability to 

bind to biological ligands increase in the following order:

Mn2+ < Ti2+ < V2+ < Zn2+ < Cr2+ < Ni2+ < Fe2+ < Co2+ < Cu2+

(Hughes & Poole, 1989; 1991). This is similar to the Irving-Williams series (1949), that

describes formation constants for complexes of the divalent transition metal ions with

inorganic nitrogen donor ligands, and increases in the series:

Mn2+ < Fe2+ < Co2+ < Ni2+ < Cu2+ > Zn2+

A relationship between covalent index and toxicity is illustrated in a study of Zn2+, Cd2+

and Hg2+ accumulation by freeze dried fungal cell walls of Trichoderma harzianum

(Rulcker, Frandberg & Schnurer, 1995). Overall uptake at low residual concentrations,

and metal ion inhibition of cell wall enzymatic hydrolysis by the lytic enzyme Novozym

234, increased in the order, Zn2+ < Cd2+ < Hg2+, both reflecting increasing covalent index

and toxicity. It was postulated that additional components besides chitin were involved

in the adsorption of the ions by the fungal cell walls.
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A further consideration for metal-microbial interactions is pH. This is an important 

factor regulating access to binding sites in biological molecules since the proton directly 

competes with metal ions. In biological systems, a metal ion frequently has to displace 

a proton from the binding site. When an amino acid is the ligand, a borderline metal ion 

would be considered to bind to the carboxylate moiety in mildly acidic solution. Binding 

to the amino group would not occur until the pH was raised to depronate this group 

(Nieboer & Richardson, 1980; Hughes & Poole, 1989). Electrophoretically determined 

isoelectric points of bacterial species showed no fundamental differences in the range 

of values for Gram-positive and Gram-negative bacteria, and an increase of the net 

negative charge was detected at pH 10.7, while a positive charge was apparent at pH 2.0 

(Yoshida & Murooka, 1994). These findings are consistent with an ionic surface 

consisting mainly of acidic carboxyl groups, and some basic amino groups. In a similar 

study, metal ions were divided into three classes based upon pH dependence of binding 

to algae biomass (Darnall et al.,  1986). Class I ions bind at pH > 5, and includes 

divalent and trivalent hard and borderline cations. Class II comprises of metallic anions 

that bind at pH < 2 and includes Se042', Cr042‘ and PtCl42'. Class III ions exhibit no 

discernible pH dependence and includes the soft cations, Ag+ and Hg2+, and the metallic 

anion AuC14\  and were found to exhibit the highest affinity for algal ligands. At pH 

values above the isoelectric point of the algal biomass, there is a net negative charge on 

the cell surface. This ionic state of ligands such as, carboxyl, phosphate, imidazole and 

amino acid groups promotes interaction with positively charged class I cations. As the 

pH decreases, H+ ions bind to these class I receptors and the overall surface charge on

1.3.4 pH and metal chemistry
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the cells becomes positive. This inhibits class I cation interaction, and promotes class 

II anion binding. Interaction of class II anions with the biomass was considered to 

consist of primarily electrostatic interactions (Tobin, Cooper & Neufeld, 1984). Metal 

ions from class III were described as soft, and were considered to form covalent 

complexes with soft ligands containing nitrogen and sulphur. During competition studies, 

binding of Ag+ and Al3+ were relatively unaffected by each other. This suggested two 

classes of binding sites, one with specificity for hard ions such as Al3+, and others with 

specificity for soft ions as Ag2+.

1.3.5 Metal-binding groups

A range of hard and soft ligands, as compiled by Nierboer & Richardson (1980) and 

Hughes & Poole (1989; 1991) are presented in Appendix D. Metal-binding groups 

available in proteins are the amino and carboxylate termini, the deprotonated peptide link 

and the side chain substituents. Nitrogen donor ligands include the imidazole side chain 

of the histidine residue, and sulphur donor ligands include the thiol side chain of the 

cysteine residues. Oxygen donor ligands are largely the carboxylate groups of aspartic 

acid and glutamic acid residues, and also hydroxyl groups of serine and threonine. 

Ligand groups associated with nucleotides and nucleic acids include phosphate oxygen 

donor atoms and nitrogen groups of adenine, guanine, cytosine, uracil and thymine. 

Also, ADP and ATP exist as intracellular chelate complexes of Mg2+. Polysaccharides 

and their analogues, as important components of cell walls and membranes, have a range 

of metal-binding compounds. Oxygen donor ligands appear to be the most abundant and 

include carboxylate groups of /V-acetylglucosamine: a component of both fungal chitin
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and bacterial peptidoglycan, and phosphate groups of teichoic acid: a linear polymer of 

glycerol phosphate.

1.4 Mathematical adsorption isotherm models

By considering the cell wall components of microbes as anionic, the cation adsorption 

potential can be described by surface complex formation equilibrium models (Remade,

1990). Adsorption involves the interphase accumulation or concentration of substances 

at a surface or interface. Adsorption on solids, particularly activated carbon, is a widely 

used operation for purification of waters and wastewaters. The material being 

concentrated or adsorbed is referred to as the adsórbate, and the adsorbing phase is 

termed the adsorbent (Weber, 1972).

1.4.1 Adsorption isotherms

Adsorption in liquid-solid systems involves the immobilisation of an adsórbate onto the 

surface of an adsorbent. Adsorption continues until such time as the concentration of 

adsórbate remaining in solution is in dynamic equilibrium with the adsórbate attached 

to the adsorbents surface. Equilibrium positions are usually represented graphically by 

adsorption isotherms. Isotherms express the quantity qe, the amount of adsórbate attached 

to the adsorbent (per unit weight), as a function of Cp the adsórbate concentration in the 

liquid phase in contact with the adsorbent at the liquid-solid interface. Values for qe and 

Cf are given on the ordinate and abscissa respectively. Commonly, the amount of 

adsorbed material per unit weight of adsorbent increases with increasing concentration 

but not in direct proportion, and curves concave to the abscissa represents favourable
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adsorption (Weber, 1972; Belter et al., 1988). Isothermal plots are independent of 

adsórbate solution volume in contact with a known quantity of adsorbent.

In metal-microbial interactions, the maximum adsorption capacity of the 

biosorbent, qmax, is considered a measure of the ability of the material to accumulate 

metal ions from concentrated solutions, and the slope of the curve as it leaves the origin 

quantifies the ability of the biosorbent to accumulate metal ions from dilute solutions 

(Brady & Duncan, 1994).

1.4.2 Langmuir adsorption isotherm

The Langmuir adsorption model is valid for single-layer adsorption (de Rome & Gadd, 

19872?; Crist et al., 1988; Guibal, Roulph & Le Cloirec, 1992; Volesky et al., 1993; 

Brady & Tobin, 1994), based on the assumptions: Maximum adsorption corresponds to 

a saturated monolayer of adsórbate molecules on the adsorbent surface, the energy of 

adsorption is constant, and there is no transmigration of adsórbate in the plane of the 

surface (Langmuir, 1918; Weber, 1972). The model is usually presented as

q-0b C f

qe = --------------
1 + bCf

The term b is a constant related to the energy or net enthalpy of adsorption and can 

serve as an indicator of the isotherm rise in the region of the lower residual 

concentrations which reflects the affinity of the sorbent material for the solute (Volesky, 

May & Holan, 1993). The term q0 is the number of moles of adsórbate adsorbed per unit 

weight of adsorbent in forming a complete monolayer on the surface. The common 

linear form of the model is a plot of q'J versus C'f ], where the intercept on the ordinate 

gives q0 and the slope is l/bq0.
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1.4.3 BET adsorption isotherm

The Brunauer, Emmett, Teller (BET) model represents isotherms reflecting apparent 

multilayer adsorption (de Rome & Gadd, 19876; Guibal, Roulph & Le Cloirec, 1992), 

and reduces to the Langmuir model when the limit of adsorption is a monolayer. The 

BET model is formulated on a number of assumptions: a number of layers of adsorbate 

molecules form at the surface and that the Langmuir model assumptions apply to each, 

a given layer need not complete formation prior to initiation of subsequent layers, and 

layers beyond the first have equal energies of adsorption (Weber, 1972). The BET 

equation is given by

BCfQo
g e = -------------------------------------------------------------------

{ Cs -  Cf ) [1 + ( B - 1 ) ( C / C s ) ]
The terms Cs is the the saturation concentration of the adsorbate and B is a constant,

expressive of the energy of interaction with the surface. All other symbols are as

previously described. The common linearised form of this equation is

Cf 1 ( B - 1 ) Ce

( Cs -  Cf ) g e B g 0 (B g 0) Cs
For data conforming to the BET model, a plot of C/(CS - C)qe versus CICS gives a

straight line of slope (B - 1 )/Bq0 and intercept 1 /Bq0.

1.4.4 F r e u n d l i c h  a d s o r p t i o n  m o d e l

The Freundlich equation represents the case of heterogeneous energies of adsorption on 

adsorbent surfaces (de Rome & Gadd, 19876; Guibal, Roulph & Le Cloirec, 1992). In 

the Langmuir equation, the term b varies as a function of surface coverage, qe, due to 

variations in heat of adsorption (Weber, 1972). The Freundlich equation is basically 

empirical and has the general form
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The constants n and Kf  are determined experimentally by means of a log-log plot of qe 

versus Cf

1
log ge = log Kf + - Log Cf

n

The slope of such a plot is 1/n with an intercept of Kf. For favourable adsorption, n >

1. In general, as the affinity of an adsorbent increases for a particular adsorbate, the k 

value increases (Namasivayam & Yamuna, 1992).

The Freundlich equation predicts that the adsorbate on the adsorbent will increase 

as long as there is an increase in the adsorbate concentration in the liquid. The 

Freundlich equation generally agrees well with the Langmuir equation over moderate 

ranges of adsorbate concentration, but unlike the Langmuir equation, it does not reduce 

to a linear adsorption expression at very low concentrations. Furthermore, experimental 

evidence indicates that an isotherm plateau is reached at a limiting value of the solid 

phase concentration (Allen & Brown, 1995), and since n reaches a limit when the 

adsorbent surface is completely covered, this region is not predicted by the Freundlich 

equation.

1.4.5 Scatchard transformation plots

Scatchard transformation plots (Scatchard, 1949) are routinely applied to the study of 

the attractions of ions and small molecules to protein ligands (Chamness & McGuire, 

1975), and has been applied to metal-microbial adsorption data (Tobin et a l, 1990; 

Saucedo et al., 1992; Avery & Tobin, 1993; Brady & Tobin, 1994; Brady & Duncan, 

19946). Scatchard plots of adsorption data are presented as qJCf  on the ordinate, versus



qe on the abscissa. Linear plots result when single distinct types of binding site are 

present, and nonlinear plots are interpreted as reflecting multiple, nonequivalent binding 

sites. The Scatchard plot allows for the determination of the affinity constant between 

the cation and the ligand from the slope of the graph, and the number of binding sites 

from the abscissa intercept (Brady & Duncan, 19946).

1.5 Efflux studies and cation displacement

A number of studies report the efflux/displacement of cellular K+, H+, Ca2+ and Mg2+ 

ions following metal biosorption. Efflux of the ions, particularly K+, can be interpreted 

as a microbial detoxification mechanism in response to harmful external cations, whereas 

the displacement of H+ and Ca2++Mg2+ is considered to represent covalent and ionic 

binding respectively. Both hypotheses are discussed below.

1.5.1 K+ efflux

Efflux of K+ ions has been observed in many cases from viable Saccharomyces 

cerevisiae cells that were exposed to metal ions. For each of the divalent ions Co2+ and 

Cu2+ accumulated, two K+ ions were released, representing stoichiometric exchange 

(Norris & Kelly, 1977; Kessels, Belde & Borst-Pauwels, 1985; Gadd & Mowll, 1985; 

de Rome & Gadd, 1987a). In contrast, studies with Cd2+ displayed no single relationship 

between the rate of K+ efflux and cellular Cd2+ levels (Norris & Kelly, 1977; Gadd & 

Mowll, 1983; Belde et al., 1988), and it was concluded that K+ release detected after 

Cd2+ binding resulted from membrane damage (Gadd & Mowll, 1983).
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The presence of K+ and Na+ ions lowered Cs+ toxicity towards Escherichia coli 

and Bacillus subtilis, and also decreased overall Cs+ accumulation levels (Perkins & 

Gadd, 1995). Similar trends were observed for Cs+ accumulation by the cyanobacterium 

Synechocystis PCC 6803 (Avery, Codd & Gadd, 1991). For Cs+ accumulation studies 

with Chlorella emersonii, it was concluded that, the resulting loss of K+ was responsible 

for growth inhibition, rather than the presence of intracellular Cs+ (Avery, Codd & Gadd, 

1992). Uptake of Cs+ into microalga Chlorella salina vacuoles, was correlated with a 

stoichiometric exchange for K+, however, no loss of K+ from the cell surfaces or 

cytoplasm was evident (Avery, Codd & Gadd, 1993), and accumulation of Li+ in 

Saccharomyces cerevisiae X2180-1B occurred via an apparent stoichiometric relationship 

of 1:1 with K+ (Perkins & Gadd, 1993b).

1.5.2 H+ efflux

A membrane-induced proton motive force was found to influence the metal ion binding 

capacity of Bacillus subtilis cell walls (Urrutia Mera et a l, 1992). During the 

metabolism of living cells, a membrane-induced proton force that continuously pumped 

protons into the cell wall fabric was detected and such an effect was absent in non

metabolising cells. This resulted in competition between H+ ions and free metal ions for 

binding sites on viable cells. Consequently non-living cells were found to adsorb more 

metal ions than actively metabolising cells. After glucose addition to a Saccharomyces 

cerevisiae suspension, progressive glucose-dependent proton efflux was observed, and 

was viewed as an indicator of cell metabolic activity (Karamushka & Gadd, 1994). 

Inhibition of H+ efflux was detected at relatively low Cu2+ additions, but such toxic
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effects were controlled by the introduction of exogenous Ca2+ and Mg2+ ions. It was 

concluded that the protective effects of Ca2+ and Mg2+ were mediated by competitive and 

stabilising interactions at the cell surface.

1.5.3 H+, Ca2+ and Mg2+ displacement

The adsorption of Sr2+ ions by Vaucheria released equivalent amounts of Ca2+ and Mg2+ 

ions, and it was concluded that adsorption of alkaline earth metal ions is an ion- 

exchange phenomenon based on electrostatic interactions (Crist et al., 1990). The 

adsorption of Cu2+ ions caused a release of Ca2+ and Mg2+ ions, but also of H+, 

demonstrating additional covalent bonding. Half the amount of the monovalent H+ ions 

released plus the sum of the divalent Ca2+ and Mg2+ ions released equalled the total 

amount of Cu2+ ions adsorbed, indicating stoichiometric exchange. Similarly, the 

adsorption of Sr2+ to live Saccharomyces cerevisiae cells resulted in a release of Mg2+ 

and Ca2+, but also of H+ (Avery & Tobin, 1992). It was considered that the pH drops 

recorded after Sr2+ addition to the biomass resulted from the covalent bonding of Sr2+ 

ions to surface anionic groups which including carboxylate and phosphate. The 

displacement of Ca2+ and Mg2+ ions resulted from electrostatic ion-exchange interactions 

and represented ionic binding. This suggested a combination of both ionic and covalent 

bonding, but direct stoichiometric exchanges were not apparent.
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Using vacuum dried Rhizopus arrhizus biomass, Tobin, Cooper & Neufield (1984) 

demonstrated metal adsorption to be directly related to ionic radii for a range of divalent 

and trivalent metal ions. It was concluded that all the cation adsorption sites had an 

affinity for all the cations tested, although, certain fractions of the adsorption sites 

preferentially bound particular cations (Tobin, Cooper & Neufield, 1988). Similarly, the 

cations Co2+ and Cd2+ were found to be accumulated by viable Saccharomyces cerevisiae 

via an apparently general ion uptake system with limited specificity related to ionic radii 

(Norris & Kelly, 1977). Competition studies demonstrated that a range of divalent ions 

inhibited Co2+ uptake by viable Saccharomyces cerevisiae, and inhibition potential 

increased in the order, Ca2+ < Cd2+ < Mn2+ < Mg2+ < Ni2+ < Zn2+. This series displays 

decreasing ionic radii as determined by Pauling (1960), demonstrating that the inhibition 

of Co2+ uptake is greatest by cations of similar size. The displacement of the surface- 

bound cationic dyes, Janus Green, Victoria Blue B and Methyl Violet, from the gram- 

negative bacterium Pseudomonas cepacia was achieved using a range of divalent metal 

ions (Savvaidis et al., 1990). In general, the displacement efficiencies increased in the 

order, Co2+ < Ni2+ < Cu2+ < Cd2+ < Pb2+. This series was also found to be applicable to 

gram-positive bacteria and to yeast, and for the transition metal ions was in accordance 

with the Irving-Williams series.

1.6 Physico-chemical correlations
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Selenium (Se) is in Group 16 (VIB) of the Periodic Table, and is classified as a 

metalloid as it exhibits chemical and physical properties that are intermediate between 

those of metals and non-metals (Frankenberger & Karlson, 1994; Haygrath, 1994). It has 

a valency of 2- in combination with hydrogen or metals, and in oxygen compounds 

exists as the 4+ and 6+ oxidation states. Among the elements, selenium is ranked 

seventieth in order of abundance, and in the earths crust is found at concentrations of 

ca. 0.09 mg kg'1 (see Thompson-Eagle & Frankenberger, 1991; Frankenberger & 

Karlson, 1994). Most seleniferous soils in the world are found in arid and semiarid 

regions, and the rate and extent to which selenium is mobilised depends on its chemical 

speciation and sediment partitioning. The most common ions found in natural waters and 

soils are selenate (Se042) and selenite (Se032'), and both are considered to be potentially 

toxic (Frankenberger & Karlson, 1994). It is recognised as an element that is required 

in trace amounts by microorganisms (Atkinson et al., 1990), plants and animals (Axley 

& Stadtman, 1989; Stadtman, 1990; Mayland, 1994; Terry & Zayed, 1994), but can be 

toxic at high concentrations (Olivas & Donard, 1994) and has relatively narrow 

boundaries between toxicity and deficiency (Haygrath, 1994). Safe selenium levels in 

water are reported not to exceed the upper limit of 10 (lg I'1 (see Mayland, 1994). 

Various human intake levels have been reported as:

low intake levels: 11 |xg day"1

adequate intake levels: 110 [lg day'1

high intake levels: 750 |lg day'1

chronic selenosis intake levels: 5 mg day'1

1.7 Selenium and living systems
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(see Stadtman, 1990; Haygrath, 1994). In animal nutrition, selenium has been identified 

as the metal cofactor for the enzyme glutathione peroxidase (Mayland, 1994). In 

microorganisms, selenium-dependent enzymes include glycine reductase of Clostridia, 

and some hydrogenases and formate dehydrogenases (see Axley, 1989; Stadtman, 1990). 

All organisms are considered to contain Se-cysteyl-tRNAs that decode UGA, and also, 

selenocysteine is proposed to function as the 21st proteinaceuous amino acid (see 

Lauchli, 1993). It seems likely that the majority of selenium toxicity is related to its 

interference in sulphur metabolism, especially during the formation of catalytically active 

proteins. Selenium has many chemical properties similar to those of sulphur but slight 

differences can lead to altered tertiary structure and dysfunction of proteins and 

enzymes, if for example, selenocysteine is incorporated into proteins in place of cysteine 

(Lauchli, 1993). Selenium toxicity may also disrupt the methylation function of 

methionine. Methionine serves as a methyl donor through its reaction with ATP to form 

S-adenosylmethionine (SAM). SAM transfers its methyl group to a variety of 

metabolites, and replacement of selenium for sulphur may affect the production of SAM 

and therefore the efficiency of methylation (see Terry & Zayed, 1994).

1.7.1 Industrial uses and sources o f selenium

The greatest source of selenium contamination in the environment comes from mine 

production, primarily as a by-product of copper refining. The main industrial application 

of selenium is in the glass industry, where it is used to give glass a red appearance, and 

prevent iron oxide discolouration. It is used in paint and plastic pigments, and as an 

antioxidant in some inks and lubricant oils. It also has electrical and semiconductor 

properties, and is utilised in the electronics industry.
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Microorganisms play an important role in the cycling of many different elements 

including carbon, nitrogen and sulphur, and they are also considered to be an essential 

component in the recycling of selenium. Various microorganisms are capable of 

mediating a number of transformations of inorganic selenium compounds including 

reduction, volatilization (Lortie et a i, 1992; Gadd 1993a, b\ Morley et al., 1995) and 

oxidation (Frankenberger & Karlson, 1994).

Microbial transformation of selenium oxyanions by reduction to insoluble 

amorphous elemental selenium (Se°) by a range of microbes is well documented in the 

literature (Falcone & Nickerson, 1963; McReady, Campbell & Payne, 1966; Zieve et ai, 

1985; Ramadan et al., 1988; Maiers et al., 1988; Bender et al., 1991; Moore & Kaplan, 

1992; Steinberg & Oremland, 1990; Tomei et a i, 1992; Macy, Lawson & DeMoll- 

Decker, 1993; Frankenberger & Karlson, 1994; Gharieb, Wilkinson & Gadd, 1995) and 

represents an important aspect of the selenium cycle by which the element is sequestered 

into soils and sediments (Oremland et al., 1991, 1994; Gadd 1993a, b). Microscopic 

analysis of selenite-reducing microorganisms has revealed the intracellular biosorption 

of amorphous selenium within the cytoplasm (McReady et al., 1966; Tomei et al., 1992) 

as well as on the exterior of fungal hyphae and spores (Ramadan et al., 1988, Gharieb 

et al., 1995). Such containment of selenium could be exploited to enhance removal of 

selenite from contaminated waters/soils by harvesting selenium-laden biomass and 

appropriate disposal. However, in situ stimulation of selenite reduction may not be a 

suitable long term solution to selenite-contaminated waters since amorphous elemental 

selenium remaining in the aqueous phase may enter the food chain through bottom- 

feeding organisms (Lovley, 1993).

1.8 Microbial transformations of selenium compounds
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Microbial transformation of inorganic selenium compounds into volatile organic 

and inorganic selenium derivatives is an important link in the biogeochemical cycle of 

this element (Tan et a l, 1994), and has been reported to constitute an effective 

decontamination process for polluted soils, sediments and waters (Karlson & 

Frankenberger, 1990; Thompson-Eagle & Frankenberger, 1990a, b\ Thompson-Eagle, 

Frankenberger & Longley, 1991). Volatilisation through methylation, is thought to be 

a protective mechanism used by microorganisms to detoxify their surrounding 

environment (Thompson-Eagle & Frankenberger, 1991). Under aerobic conditions 

selenium is permanently removed from seleniferous environments by this transformation 

and is released into the atmosphere (Atkinson et al., 1990; Frankenberger & Karlson, 

1994). Dimethylselenide ([CH3]2Se) is considered to be the main metabolite produced 

as a result of selenium volatilization by microbes (Zieve et al., 1985; Frankenberger & 

Karlson, 1994). The methylation of inorganic selenium to dimethylselenide is postulated 

to consist of the reduction of Se° to the Se2' species and subsequent methylation to form 

dimethylselenide (Thompson-Eagle & Frankenberger, 1991). This alkylated derivative 

is excreted readily from microbial cells due to high volatility (see Karlson, Spencer & 

Frankenberger, 1994) and high lipid solubility in the cell membranes (see Gadd, 1993a) 

and is approximately 500-700 times less toxic to rats than aqueous selenite and selenate 

ions (Frankenberger & Karlson, 1994). Obligate aerobic fungi are thought to be the 

predominant selenium-methylating organisms among the soil microflora (Frankenberger 

& Karlson, 1989), whereas the principal methylating microorganisms present in pond 

water were determined to be aerobic bacteria (Thompson-Eagle & Frankenberger, 1991). 

Dimethylselenide is also the principal respiratory product of animals ingesting excess 

selenium (Mayland, 1994), and can be detected by a garlic like odour from the breath.



In contrast to reduction and volatilization the microbial oxidation of selenium and 

its compounds is not very well documented although some reduced forms of selenium 

have been reported to be oxidized by laboratory bacterial cultures and fungi (see 

Frankenberger & Karlson, 1994).

1.9 Selenium reduction and accumulation/biosorption

The reduction of selenium oxyanions to the amorphous elemental form precedes 

selenium accumulation/biosorption by microorganisms. Selenite reduction to elemental 

selenium is considered a two-step process, Se4+ reduction to Se2+, and then reduction to 

Se° (McCready et a i, 1966). The accumulation of elemental selenium is identified by 

a characteristic red colour of the biosorbents and a range of mechanisms are discussed 

below.

1.9.1 Mechanisms o f selenium oxyanion reduction

Dialysis studies using yeasts revealed, that cofactors necessary for enzymatic reduction 

of selenite by cell-free preparations include, a quinone, a thiol substance, a pyridine 

nucleotide, and an electron donor (Nickerson & Falcone, 1963). Selenite appears to be 

bound to proteins by thiol groups, and is released as metallic selenium after accepting 

four electrons (Falcone & Nickerson, 1963). The reduction of selenite was shown to be 

directly dependent on the metabolic activity of Salmonella heidelberg, and not on 

spontaneous chemical reductions occurring as a result of media constituents, or pH 

change during microbial growth (McCready et a l, 1966). Selenite reduction was found 

to be primarily associated with the lag phase of growth, presumably as a detoxification 

procedure preceding growth. The intermediate in the conversion of selenite to elemental
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selenium was identified as the divalent selenium ion, which was more toxic than the 

tetravalent precursor. Optimal selenium oxyanion reduction by Pseudomonas stutzeri was 

shown to occur under aerobic conditions between pH 7.0 and 9.0 (Lortie et a l, 1992). 

No selenite or selenate reduction occurred below pH 5.5 and 6.5 respectively, and the 

upper limit for both was pH 9.5.

1.9.2 Dissimilatory reduction o f selenate, selenite, sulphate and nitrate ions 

Selenate reduction to elemental selenium by anaerobic bacteria in sediments and 

cultures, was found to be inhibited by 0 2, NOa' and M n02, but not by S 0 42- or FeOOH 

(Oremland et al., 1989). Similarly, an anaerobic freshwater enrichment grew with both 

nitrate and selenate as the electron acceptor, but when both anions were present, nitrate 

reduction preceded selenate reduction. For one isolate, the presence of nitrate precluded 

the reduction of selenate. The bacterium Thauera selenatis was found to respire selenate 

anaerobically, using acetate as the preferred electron donor (Macy et a l, 1993). Here the 

reduction of selenate to elemental selenium was not inhibited by nitrate, and both 

oxyanions were found to be reduced concomitantly. The biochemical reductions of 

selenate to selenite and nitrate to ammonium, by an obligately anaerobic selenate- 

respiring bacterium, were also shown to be dissimilatory and capable of sustaining 

anaerobic respiration (Oremland, 1994). Overall nitrate has been identified as the 

preferred electron acceptor for growth of freshwater selenate-respiring bacteria, and both 

oxyanions were shown to be capable of supporting respiration (Steinberg et al., 1992).
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1.9.3 In situ and sediment depth profiles of selenium oxyanion reduction 

Measurements of in situ rates of selenate removal by dissimilatory bacterial reduction 

in sediments, revealed that 85% of selenate reduction, and all denitrification activities 

were confined to the upper 4 to 8 cm of the sediment profile, whereas, 89% sulphate 

reduction was greatest below 8 cm (Oremland et al., 1990). Depth profiles indicated that 

the reduction of 75Se042 decreased with increasing sediment depth (Oremland et al., 

1991). These findings suggest, that sulphate-reducing microorganisms are not responsible 

for selenate reduction in sediments (Lovley, 1993). Furthermore molybate, a known 

inhibitor of sulphate reduction, was found not to inhibit selenate reduction (Oremland,

1989). Under laboratory conditions, mixed microbial mats, composed of stratified layers 

of bacteria and cyanobacteria, were successful at transforming selenate in situ, and were 

suggested as low-cost bioremediation system for water decontamination (Bender et al.,

1991).

1.9.4 Intracellular accumulation/biosorption of selenium

Microscopic examination of a Fusarium species grown in the presence of sodium 

selenite revealed the deposition of red elemental selenium within the fungal cells, as well 

as on the surface of hyphae and spores (Ramadan et al., 1988). The presence of 

selenium increased cellular carbohydrate, protein and lipid levels, and induced the 

biosynthesis of several low molecular weight proteins. This was interpreted as a 

tolerance mechanism to high levels of selenium as either an equilibrium process, or a 

compensationary mechanism for the replacement of metabolites damaged by selenium. 

Labelling studies revealed the incorporation of selenite into the amino acids, 

selenocysteine and selenocysteic acid.
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In similar studies, cultures of Wolinella succinogens reduced both selenite and 

selenate to red amorphous elemental selenium, but only after the cultures reached the 

stationary phase of growth (Tomei et al., 1992). Transmission electron microscopy and 

X-ray spectroscopy verified the intracellular deposition of electron-dense selenium 

granules in the vacuoles, and scanning electron microscopy revealed the presence of 

needle-like crystal structures of elemental selenium on the surfaces of hyphae and 

conidia.

1.10 Selenium volatilisation

As discussed above, the formation of volatile selenium compounds generally involves 

the reduction of non-volatile selenium compounds, both organic and inorganic, to the 

Se2' species, and the subsequent addition of free methyl groups to produce volatile 

organic selenium products. Techniques to measure and enhance this process in 

microorganisms are reported below.

1.10.1 Experimental protocols designed to measure volatile selenium compounds and 

transforming microorganisms

Resting cell suspensions of a strain of Corynebacterium, isolated from soil formed 

dimethylselenide from selenite, selenate, elemental selenium and methaneseleninate 

(Doran & Alexander, 1977). Headspace gas over resting cell suspensions was 

periodically injected into a gas chromatography unit for the positive identification and 

quantification of dimethylselenide. The methylated product was formed endogenously 

and the greatest rate of dimethylselenide formation occurred when methaneseleninate
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was the substrate. Dimethylselenide formation from selenite by cell-free extracts was 

achieved by the addition of S-adenosylmethionine which was identified as a cofactor in 

the transfer of methyl groups. A study on selenium volatilization using Mortierella 

stylospora, 75selenite and 75selenate (Zieve et al. 1985), air was periodically flushed 

through 250 ml conical flasks containing the growing cultures in the presence of the 

inorganic selenium species, and effluent gases were passed directly into 10 ml 

concentrated nitric acid traps for retention of volatile selenium compounds. More volatile 

selenium was found to be evolved from cultures supplied with selenite than with 

selenate, and on solid media augmented with selenite, colonies appeared pink/red 

indicating the deposition of elemental selenium.

A protocol for the rapid measurement of 75Se-labelled dimethylselenide evolved

from soil as a result of microbial activity was developed by Karlson & Frankenberger

(1988a). Portions of soil augmented with 75Se labelled Na2Se03 were placed into 

Erlenmeyer flasks, and the headspace air saturated with water was exchanged at constant

flowrates. The effluent gases were passed separately through a single trap containing

1.08 g of activated carbon, and a series of used cartridges changed at regular intervals

were rinsed with a range of polar and non-polar solvents to extract bound volatile

selenium compounds. Quantification of selenium compounds volatilised was achieved

using a gamma counter counting for 75Se, and the main volatile product was determined

to be primarily dimethylselenide by GC-mass spectrometry. It was found that solvents

with low to moderate polarity were the strongest extractants, non-polar solvents were

weak extractants, water was intermediate and the extraction efficiency of alcohols

decreased with increasing chain length. Methanol was the preferred solvent, extracting

ca. 95.2% of the 75Se labelled volatiles.
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It is considered that since pectin and its monomer galacturonic acid have partially 

methylated structures, they may provide a source for direct transfer of free methyl 

groups from the carbohydrate to the microbial méthylation pathway (Karlson & 

Frankenberger, 19886). Fungal growth from the selenite augmented soils was promoted 

by the addition of complex carbon sources such as pectin and plant residues, and the 

predominant fungi isolated were identified as Fusarium and Pénicillium species (Karlson 

& Frankenberger, 19886). Addition of the trace elements nickel, zinc and cobalt was 

also found to stimulate biomethylation in the order: Ni < Zn < Co (Karlson & 

Frankenberger, 19886). Cobalt in the form of methylcobalamin (methyl-B]2), nickel 

containing enzymes such as methyl-coenzyme-M reductase and zinc transferases and 

oxido-reductases are known to promote alkylation reactions in microbes, and most likely 

serve as cofactors in méthylation reactions. The addition of the fungi Acremonium 

falciforme, Pénicillium citrinum and Ulocladium tuberculatum to native and autoclaved 

soils supplemented with both Na2Se03 and Na2Se04 was found to enhance and restore 

volatilisation rates (Karlson & Frankenberger, 1989). Pectin addition was again found 

to accelerate alkylselenide evolution, and a minimum selenium threshold for 

alkylselenide production was not found.

Laboratory analysis of selenium contaminated agricultural drainage water 

revealed that selenium biomethylation is protein-peptide limited rather than nitrogen-, 

amino acid-, or carbon limited (Thompson-Eagle & Frankenberger, 19906). It was 

concluded that the methylating active ingredient is an organic nitrogenous compound, 

with a level of organisation greater than that of a collection of purified amino acids.

1.10.2 Selenium biomethylation enhancement
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Dialysis studies indicated that the active ingredient is likely to be a mixture of simple 

peptides with molecular weight less than 6000 to 8000 daltons. In selenium 

contaminated evaporation pond water, biomethylation was optimal when the systems 

were well-mixed under aerobic conditions and amended with a casein protein source 

(Thompson-Eagle & Frankenberger, 1990). Biomethylation rates were also found to be 

directly related to microbial numbers. In a study on selenium méthylation by plants, the 

rate of volatilisation was found to depend on the chemical form of selenium available 

(Terry & Zayed, 1994). It was apparent that as selenate was reduced to selenite or 

selenomethionine, it became more readily available for volatilisation by plant metabolic 

processes.

1.10.3 Temperature, pH and salinity effects on selenium volatilisation 

The optimum pH and temperature values for selenium méthylation by the fungus 

Alternaría alternata were determined to be 6.5 and 30°C respectively (Thompson-Eagle 

et al., 1989). In selenium augmented pond water, increasing the temperature to 35°C and 

the addition of 1% glucose with a fungal innoculum Alternaría alternata together 

doubled dimethylselenide production (Thompson-Eagle & Frankenberger, 1990a). In a 

saline seleniferous soil, optimum dimthylselenide production was observed at pH 8.0 and 

a temperature of 35°C, and for every 10°C rise in temperature from 5 to 35°C, the rate 

of selenium biomethylation increased 2.6-fold (Frankenberger & Karlson, 1989).

In seleniferous soil sediments, temperature studies revealed that selenium leached 

and volatilised increased with increasing temperatures (Calderone et al., 1990). 

Increasing temperature was considered to promote selenium mineralisation and increase

60



the soluble selenium fraction available for biomethylation. Similarly in selenium 

contaminated evaporation pond water, biomethylation increased with increasing pH as 

a result of the greater solubility of selenium oxyanion compounds at higher pH values, 

and hence their bioavailability for méthylation (Thompson-Eagle & Frankenberger,

1990).

In general increased salinisation was found to reduce selenium volatilisation from 

soils (Karlson & Frankenberger, 1990), and the microbial volatilisation of selenium from 

soils was found to decrease with decreasing particle size, resulting from reductions in 

oxygen transfer and good ventilation conditions (Tan et a i, 1994).

1.11 Fate of dimethylselenide in the atmosphere

The majority of organic compounds present in the troposphere undergo photolysis and 

chemical reactions with hydroxyl and nitrate radicals, and ozone. Under laboratory 

conditions, gaseous dimethylselenide was found to be transformed chemically into more 

oxidised and less volatile species, but did not undergo photolysis (Atkinson et al., 1990). 

In the atmosphere, these resultant selenium-containing products which can be either 

particle-associated or distributed between the gas and particle phases, are relatively 

unstable and may be sorbed onto submicrometer particulates such as aerosols that have 

relatively long residence times. By these methods dimethylselenide is dispersed and 

diluted by air currents directly away from contaminated areas with possible deposition 

occurring in selenium-deficient areas.
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CHAPTER 2

MATERIALS AND METHODS

Interactions of metal and metalloid ions with fungal biomass

PhD Research Thesis by 

Joseph M. Brady B.Sc.
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C H A P T E R  2: M A T E R I A L S  A N D  M E T H O D S

2.0 Organism, culture conditions and metal analysis

2.0.1 Rhiz.omis arrhints biomass

In 1 1 Erlenmeyer flasks, Rhizopus arrhizus, strain CMI83711, was cultured in 500 ml 

of liquid medium comprising (g I*1): bacteriological peptone (cat. no. L37, OXOID, 

Hampshire, England), 10; sucrose, 20; KH2P 0 4, 1; NaN03, 1; and M gS04.7H20, 0.5. 

Cultures were grown at 25°C on an orbital shaker at 150 rev min'1 for 5 days. The 

microorganism was maintained on solid medium obtained by adding 1.5% agar (cat. no. 

L ll ,  OXOID, Hampshire, England) to the above medium.

The biomass was separated from the broth by filtration and washed with distilled, 

deionised water. For metal ion adsorption experiments, quantities of the harvested 

biomass were freeze dried (Edwards Freeze Dryer, Chamber 3/Super Modulyo, Sussex, 

England) and oven dried (55°C for 8 h). Live non-metabolising biomass was prepared 

by suspending the harvested biomass in 500 ml of distilled, deionised water for 24 h in 

1 1 Erlenmeyer flasks, at 25°C on an orbital shaker at 150 rev min'1. The resultant 

mycelium pellets were press-dried between sheets of filter paper (cat. no. 1001 090, 

Whatmann, Kent, England), and appropriate dry weight values were calculated.

All the biomass forms (freeze-dried, oven-dried and live non-metabolising) were 

considered to be non-metabolically active, and each type was homogenised using a 

SORVALL OMNI-MIXER (cat. no. 17106, DU POINT Instruments, Connecticut, USA), 

and sieved (Laboratory Test Sieves, ENDECOTTS LTD, London, England) to particle 

sizes not greater than 0.5 mm in diameter.
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2.0.2 Metal analysis

Sr2+, Mn2+, Zn2+, Cd2+, Cu2+, Pb2+, Ca2+, Mg2+ and K+, were analysed using a Perkin- 

Elmer 3100 atomic absorption spectrophotometer. Standard metal stock solutions (1000 

ppm) were prepared by dissolving known quantities of Mn2+, Zn2+, Cd2+, Cu2+, Ca2+, 

Mg2+ and K+ sulphates salts, and Sr2+ and Pb2+ nitrate salts, in distilled, deionised water.

2.0.3 pH analysis

pH values were measured using a Corning 220 pH meter fitted with a W.T.W. E56 

precision glass electrode.

2.1 Section one: Biosorption characterisation

For each of the ions Sr2+, Cd2+ and Cu2+, over the concentration range 0-166.67 ppm, 

adsorption isotherms were determined using freeze-dried, live non-metabolising and 

oven-dried biomass types. Initial solution pH values were 4 and 6 for Sr2+ and Cd~+ 

systems, and 4 and 5 for Cu2+ systems. Final solution Ca2+, Mg2+ and H+ levels were 

also measured.

2.1.1 Isotherm protocol

For each isotherm study a series of acid-washed 250ml Erlenmeyer flasks were prepared 

with 100 ml of distilled, deionised water. Aliquots of a Sr2+, Cd2+ or Cu2+ 1000 ppm 

stock solution (1, 2, 5, 10 and 20 ml), prepared from sulphate salts dissolved in distilled, 

deionised water, were introduced into individual flasks and resulted in series of metal 

solutions in the 0-166.67 ppm concentration range. The pH values were adjusted to 4 

and 6 for Sr2+ and Cd2+ systems, and to 4 and 5 for Cu2+ systems using dilute solutions 

of HN 03 and NaOH, and 0.1 g portions (dry weight) of freeze-dried, live non

metabolising or oven-dried biomass were added to each flask. The metal-biomass 

systems were incubated at 25°C on an orbital shaker at 150 rev min'1 for a period of 24 

h (equilibrium conditions were observed after 3 h, see sections 3.2.2 and 4.2.2). Final 

pH values were then determined, samples were removed from the flasks and centrifuged 

(17,000 g, 15 s), and the biomass free supernatants were analysed for final metal 

concentrations as described above in section 2.0.2.

64



Two differing protocols were used to investigate the uptake of metal ions by freeze dried 

Rhizopus arrhiz.us biomass, and the subsequent displacement and competition effects 

when a second metal was introduced into the system. For the ions Sr'+, M n +, Z n +, 

Cd2+, Cu2+ and Pb2+, equilibrium studies determined overall adsorption, displacement 

and inhibition levels for two metal combinations, and in addition final solution Ca2+, 

Mg2+ and H+ levels were measured. Time-course studies using the ions Sr2+, Cd2+ and 

Cu2+, examined adsorption, displacement and inhibition trends over a 6 h time period 

for two metal combinations.

2.2.1 Equilibrium studies

A series of acid washed 250 ml Erlenmeyer flasks was prepared, each containing 100 

ml of the relevant 300 flmol I'1 metal stock solution (t0 metals). Stocks were prepared 

by dissolving appropriate metal salts in distilled deionized water, with pH adjusted to

4.0 using dilute H N 03. At t0, 1 g I-1 of biomass was added to each flask, and the systems 

agitated at 25°C on an orbital shaker at 150 rev min'1. At t,80, 1 ml of a second metal 

stock solution was added to relevant flasks, resulting in tl80 metal concentrations again 

of 300 (imol I'1, and the systems were agitated as before. After a further period of 3 h, 

the biomass was separated from the metal solutions by centrifugation (17,000 g, 15 s), 

and the supernatants were tested for final metal concentrations and pH values.

2.2 Section two: Application o f  the hard and soft principle
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To a 2 1 pyrex vessel, 1 1 of distilled, deionised water was delivered, and the pH 

adjusted to 4.0 using dilute HN03. A 1 g I'1 quantity of freeze dried biomass was added 

to the reaction vessel, and the system was stirred continuously using a magnetic stirrer 

for 3 h at 25°C to promote equilibrium conditions. A 5 ml sample was removed, 

centrifuged (17,000 g, 15 s) to separate the biomass, and the supernatant was retained 

for metal analysis. At t0 1 ml of the relevant metal stock solution was added to the 

stirred reaction vessel to give an overall metal concentration of 300 |lmol I'1 (r0 metal). 

At intervals over a period of 3 h, 5 ml samples were removed, and centrifuged 

immediately (17,000 g, 15 s). All sample supernatants were retained for metal analysis. 

After 3 h, at tl80, 1 ml of a second metal stock solution was added to the reaction vessel 

to give an overall second metal concentration also of 300 jimol I'1 (tIH0 metal). Samples 

were removed for metal analysis as described above for a further 3 h period.

2.3 Section three: Effects of biomass concentration

For each of the ions Sr2+, Cd2+ and Cu2+, three adsorption isotherms were determined 

using biomass concentrations of I, 0.5 and 0.25 g I'1 over a set metal concentration 

range 0-50 ppm. As before final solution Ca2+, Mg2+ and H+ levels were determined.

2.3.1 Isotherm preparation

Individual 100 ml aliquots of 10, 20, 30, 40 and 50 ppm stock solutions of Sr2+, Cd2+ 

and Cu2+ were dispensed into a series of acid-washed 250ml Erlenmeyer flasks, and the 

pH values were adjusted to 4 using dilute solutions of HN03 and NaOH. Biomass

2.2.2 Time-course studies
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portions of 0.1, 0.05 and 0.025 g were contacted with all of the above metal ion 

concentrations, and biomass-free and metal-free flasks were prepared as controls. All 

flasks were agitated at 25°C on an orbital shaker at 150 rev min'1 for a period of 24 h 

and final pH and metal levels were determined as previously outlined.

2.4 Section four: Continuous flow systems

150 [lmol V‘ Cu2+ solutions were pumped upflow into columns packed with 0.8 g of 

freeze-dried biomass immobilised in 40% (w/w) poly-vinyl formal (PVF), at influent 

flowrates ranging from 3.40-11.63 ml min-1, and breakthrough curves were evaluated. 

Effluent levels o f Ca2+, Mg2+ and H+ ions were also determined. The effect o f the 

immobilisation procedure on the biomass biosorption characteristics was also 

investigated by isotherm type analysis. Resultant Cu2+ breakthrough curves were 

modelled using a two parameter fixed-bed adsorption model.

2.4.1 Biomass immobilisation and column preparation

Freeze-dried Rhizopus arrhizus biomass was homogenised to particle sizes not greater 

than 0.5 mm in diameter and 1 g quantities were mixed with 0.67 g of PVF powder in 

open pyrex petri dishes. PVF was polymerised by single 15 ml aliquot additions of 

dichloromethane (DCM) and the mixtures were allowed to evaporate to dryness. The 

resultant immobilised biomass discs were reduced to particle sizes of 0.5-1.0 mm in 

diameter and added into 1 1 of distilled, deionised water. The mixture was continuously 

stirred and equilibrated to pH 4 by dropwise additions of concentrated H N 03 over a 3 

h period. Quantities of the H+ ion equilibrated immobilised biomass corresponding to 0.8
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g of the freeze-dried fungus (dry wt) were collected and packed into polypropylene 

columns of 70 mm in length with an internal diameter of 14 mm. Influent 150 (imol I'1 

Cu2+ solutions, pH balanced to 4 using H N 03, were pumped in an upflow direction 

through the columns by peristaltic pumps, at flowrates ranging from 3.40 to 11.63 ml 

min'1. Effluent volumes were collected at regular 30 min intervals in 250 ml conical 

flasks, solution Cu2+, Ca2+, Mg2+ and H+ ion levels were determined, and Cu2+ 

breakthrough curves were plotted.

2.4.2 Isotherm procedure

A range of test biosorbents with biomass loadings of 40, 50, 60, 70 and 80% (w/w) in 

PVF were prepared as outlined above. In addition a control biosorbent was prepared by 

treating 1 g of native freeze-dried biomass with 15 ml of DCM, and the mixture was 

allowed to dry by evaporation. Using quantities of the biosorbents corresponding to 0.1 

g of native freeze-dried biomass, a series of Cu2+ adsorption isotherms were prepared as 

in section 2.1.1, at initial solution pH values of 4. At equilibrium, Cu2+, Ca2+, Mg2+ and 

H+ ion levels were determined.

2.4.3 Two parameter fixed-bed adsorption model (Belter et al. 1988)

The two parameter fixed-bed adsorption model as described by Belter et al. (1988) was 

applied to the column breakthrough data. The model relates change in solution 

concentration to column residence time and is given by equation 2.4.1. The breakthrough 

curves are modelled by two parameters: a characteristic time and a standard deviation.

68



where

C( = Influent Cu2+ concentration

C -  Effluent Cu2+ concentration at time t

t50 = Time when C = ViC.

c tso represents the standard deviation, a measure of the slope of the curve. The quantity 

erf(;t) is the error function of x, values of which are given in Appendix E, and 

when t < t50

e r f [ - x ]  = - e r f [ x ]  ( 2 . 4 . 2 )

The mathematical procedure involves calculating a representative value of o  for each

breakthrough curve.

2.5 Section five: Selenite adsorption studies

Selenite adsorption isotherms were prepared with live non-metabolising fungal 

biomasses o f Rhizopus arrhizus and a Penicillium species. Here, K+ equilibrium levels 

were monitored in conjunction with Ca2+, Mg2+ and H+.

Isotherm protocol

Live non-metabolising biomass of a Penicillium species was cultured and processed 

under identical conditions as described above for Rhizopus arrhizus in section 2.0.1. A 

sodium selenite stock of 1000 ppm was prepared by dissolving the appropriate weight 

of Na2Se03.5H20  salt (Cat. No. 6607, MERCK, Darmstadt, Germany) in distilled, 

deionised water. Using live non-metabolising biomasses of both fungi, at an initial

C/CL = V2 (1 + erf[t - t50 / OtS0i/2] ) (2.4.1)
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solution pH values of 4, selenite isotherms were prepared as described in section 2.1.1, 

and final Ca2+, Mg2+, H+ and K+ levels were determined. A suitable assay for the 

measurement of final selenium levels in the supernatant is described below in section

2.6.2 following.

2.6 Section six: Selenite transformation studies

Because of the novelty o f the work in this section, a brief description of the method 

development is included here.

2.6.1 The development o f a protocol for monitoring the transformation of selenite into 

volatile selenium compounds

In studies on selenium volatilization using Mortierella stylospora, 75selenite and 

75selenate (Zieve et al. 1985), and soil microflora and 75selenite (Tan et al., 1994), 

bioreactor effluent gases were flushed directly into concentrated nitric acid in order to 

trap volatile selenium species. It was therefore decided to apply similar trapping 

techniques to the initial studies in this work.

Under aseptic conditions, 50 ml glass vessels were prepared with 15 ml of malt 

extract agar augmented with 200-1000 nmol I'1 of selenite. The vessels were sealed with 

rubber bungs, and using syringe needles and peristaltic tubing, were attached to two acid 

traps in series containing 2 ml aliquots of 6M H N 03 in polypropylene test tubes. 

Circular layers of sterile dialysis tubing were spread over the top of the solidified media, 

and were inoculated with 5 mm agar plugs of a Fusarium species. The dialysis tubing 

was used to facilitate the isolation of biomass from the media. Vacuum pumps were
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attached to the second acid trap in each series, and sterile filter ports, attached to syringe 

needles were opened on the bioreactors. Air was flushed through the systems, and 

exhaust gases were flushed directly into the acid traps. This procedure was repeated on 

a daily basis over 2 wk periods. Using atomic adsorption spectrophotometery, a selenium 

assay with a linear range up to 400 |imol I'1 was developed. A 1000 ppm selenium stock 

was prepared by dissolving the approriate weight of Na2Se03.5H20  in 5 ml of 

concentrated H N 03, and diluting to 1 1 in a volumetric flask with distilled, deionised 

water. Standard curves were prepared by dilution with distilled, deionised water, and 

acid trap samples were analysed for selenium compounds. With this experimental design 

no selenium compounds were detected in the acid traps. This was attributed to the low 

quantities of selenium initially present in the systems and the relatively large linear 

range of the selenium assay.

In order to increase selenium levels for atomic adsorption spectrophotometery 

optimisation, bioreactors with 5 1 quantities of growth media (media components as 

described for section 2.6.2) supplemented with 1000 |lmol I"1 of selenite were prepared. 

The solutions were inoculated with the Fusarium species, and constantly aerated at a 

temperature of 25°C for 4 wk. Exhaust gases were flushed into two acid traps in series 

each containing 10 ml aliquots of 6M HN03 in glass test tubes. Condensers were 

installed on the bioreactors and acid traps to minimise solution evaporation and 

contamination of the trap contents by evaporated selenite enriched media. However, 

growth of the Fusarium species in the presence of selenite was slow, reaching only a 

maximum value of ca. 1 g 1"', and no selenium compounds were detected in the acid 

traps after 4 wk. The work was repeated with a Penicilium species isolated as described
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in section 2.6.2, but although biomass levels reached ca. 6.0 g I"1, no appreciable levels 

of selenium compounds were detected in the acid aliquots after 2-4 wk periods. A more 

sensitive method of selenium detection in the form of inverse polaragraphy that can 

detect selenium at 1 |4,mol I"1 levels using a 2M CH3COOH:2M CH3COONH4 buffer 

solution was then adopted. Nevertheless, analysis of acid from traps exposed to exhaust 

gases of the Pénicillium species cultured in selenite still did not reveal the presence of 

selenium compounds. Consequently an alternative form of a trapping agent had to be 

considered.

In an earlier study, charcoal was successfully used to retain volatile 75Se- 

radiolabelled dimethylselenide (Karlson & Frankenberger, 1988a), and it was decided 

to use a series of two activated charcoal traps, each containing 2 g of charcoal in a 

polypropylene cartridges, in place of the acid traps. After a 4 wk period, known 

quantities of charcoal from the traps were rinsed in the 2M  CH3COOH:2M CH3COONH4 

buffer, and introduced into the polaragraph reaction chamber. The presence of selenium 

compounds evolved from the actively metabolising Pénicillium species was detected. It 

was concluded that the Pénicillium species was capable of volatilising inorganic sodium 

selenite into volatile selenium compounds, and decided that the next step was to quantify 

the transformations.

Inverse polarography was considered to be ion species specific, so atomic 

adsorption spectrophotometery was chosen as the best method for selenium analysis. A 

suitable protocol for the extraction of volatile selenium compounds retained by activated 

charcoal (extraction protocol as described for section 2.6.2) was devised based on the 

technique devised by Karlson & Frankenberger (1988a) for the extraction of 75Se-
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labelled dimethylselenide from activated charcoal. From a range of organic and inorganic 

solutions, methanol was identified as the optimum solvent, extracting ca. 95.2% of the 

75Se labelled volatiles. In order to optimise the selenium assay by atomic absorption 

spectrophotometery it was found necessary to transform organic selenium species 

extracted in the methanol into inorganic species. This was achieved by dissolving these 

volatiles in hot concentrated acid solutions and diluting appropriately (sampling 

processing as in section 2.6.2).

2.6.2 Protocol for the measurement of selenite volatilisation

Bioreactors with working volumes o f 5 I and sodium selenite concentrations o f 1000 

\lmol I'1 were inoculated with a Penicillium species and continuously aerated over two 

week periods. Selenium in the aqueous phase and associated with the biomass as well 

as volatile selenium compounds were determined. In addition pH and biomass 

concentrations were monitored. Biomass-free and selenite-free control bioreactors were 

also set up and monitored for two week periods to assess any physico-chemical changes 

which may have occurred. The design and operation o f these bioreactors are described 

below and all processes were performed in triplicate.

2.6.2.1 Organism and media preparation

For experimental purposes, the Penicillum species was grown in liquid medium 

comprising (g I 1): glucose, 20; (NH4)2S04, 5.0; KH2P 0 4, 0.5; M gS04.7H20 , 0.2; 

CaCl2.6H20, 0.05; NaCl, 0.1; FeCl3.6H20 , 0.0025; ZnS04.7H20 , 0.004; M nS04.4H20, 

0.004; and CuS04.5H20, 0.004. Stock solutions of glucose and the above salts were
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prepared in distilled, deionised water and sterilised separately by autoclaving (121°C, 1.5 

bar, 20 min). Stock solutions (0.5 mol I'1) of Na2Se03.5H20  (Cat. No. 6607, MERCK, 

Darmstadt, Germany) were prepared in distilled, deionised water and sterilized by 

membrane filtration (cellulose nitrate, pore size 0.45 |_im, Cat. No. 7184-002, Whatman, 

Kent, England).

2.6.2.2 Microorganism isolation and identification

The fungus used in this study was originally isolated from the atmosphere in open 

Erlenmeyer shake flasks (25°C, 150 rev m in1) containing the above liquid culture 

medium augmented with 1000 fimol I"1 of sodium selenite and exposed to the laboratory 

air for 7 days. The organism was purified by successive screening on sodium selenite 

enriched (1000 [imol I 1) malt extract agar plates (Cat. No. CM59, Oxoid, Hampshire, 

England) and in preliminary work was found to transform selenite in solution. Fungal 

inocula were prepared by loop inoculation of spores from these plates into 0.5 1 of liquid 

culture medium in shake flasks, and incubation at 25°C for 5 days at 150 rev m in1. In 

the broth media the fungus grew as finely suspended pale-white mycelium pellets, 

thereby facilitating the removal of representative biomass samples.

Under a light microscope, spore-bearing structures characteristic to Penicillium 

species from the class Deuteromycotina (fungi imperfecti), i.e. conidia formed from 

flask-shaped cells (phialides) on branched ("penicillates") conidiophores (Deacon, 1980; 

Stanier et al., 1988) were observed, and thus the fungi was classified as a Penicillium.
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The fermentations were performed in 7 1 cylindrical pyrex culture vessels (140 mm i.d. 

x 450 mm) as part of a New Brunswick Scientific (New Jersey, U.S.A.) Fermentor Drive 

Assembly (Model no. FS-607). The temperature of the bioreactors were maintained at 

25°C for the duration of the experiments. Initially bioreactors contained 4.5 1 of sterile 

liquid culture medium, 1 ml of sterile silicone antifoaming agent (Cat. No. 33151 2K, 

BDH, Poole, England) and 10 ml aliquot of sterile 0.5 mol I'1 NaSe03.5H20  stock 

solution. At t0 (day 1) 0.5 1 of inocula were added to each bioreactor culture vessel 

resulting in final media volumes of 5 1, initial biomass concentrations of approximately 

0.6 g I'1 (dry weight) and initial sodium selenite concentrations of 1000 |lmol I'1. For 

biomass-free controls, 0.5 1 of sterile distilled, deionized water was added to the reactors 

instead of the Penicillium inocula.

Bioreactor contents were stirred at impeller speeds of 250 rev min"1 and aerated 

using air pumps (cat. no. XP-990, Penn-Plax, New Tork, U.S.A.) fitted with sterile filters 

(HEPA-VENT, cat. no. 6723-5000, Whatman, Kent, England) delivering air at rates of 

approximately 4 1 m in1. The exhaust gases were passed through water-cooled condensers 

in order to minimise medium evaporation and into a series of three activated charcoal 

traps each consisting of 2 g of activated charcoal (14-60 mesh, cat. no. C-3014, SIGMA, 

St. Louis, MO, U.S.A.) contained in polypropylene tubes (i.d. 14mm X 76mm). Each 

series of charcoal traps were replaced every 7 days and the final weights of used 

charcoal were recorded.

At the start of each process, the culture vessels, liquid culture media, air filters, 

air inlet and exhaust lines (silicone tubing i.d. 4.8mm) and water cooled condensers were 

all sterilized by autoclaving (121°C, 1.5 bar, 20 min). A diagram of the working 

apparatus is exhibited in Figure 2.6.1.

2.6.2.3 Bioreactor configuration
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2.6.2.4 Sample processing

At 1-2 day intervals, four 10 ml sample aliquots were aseptically removed from each 

culture vessel. Two aliquots were centrifuged (17,000 g, 15 s) to separate fungal biomass 

from solution and the supernatants were retained. The biomass pellets were washed 

twice with 5 ml of distilled, deionized water, acid digested in 2 ml of 6M HC1:3M 

HNOj solution (90°C, 1 h) and diluted to 10 ml with distilled, deionized water. To 4 ml 

of the resultant biomass-free supernatants, 1 ml aliquots of 6M HC1:3M HN03 solution 

were added. For further dilutions of these biomass and supernatant preparations a 12M  

HC1:0.6M H N 03 diluent was used. The remaining samples were filtered through pre

weighed filters (Cat. no. 1001 090, Whatman, Kent, England) and the filtrates were 

discarded. The filter papers plus retentâtes were oven-dried at 55°C for 24 h and 

biomass dry weights were calculated after weighing. Total selenium in solution was 

determined using a Perkin-Elmer 3100 atomic absorption spectrophotometer with 

reference to appropriate standards of Na2Se03.5H20  prepared in 1.2M HC1:0.6M HN03 

solution.

2.6.2.5 Recovery o f volatilised selenium compounds

Recovery of volatilised selenium compounds from the activated charcoal traps was 

achieved by solvent extraction using 100% methanol. For each trap, a 2 ml aliquot of 

6M HCL:3M H N 03 solution was heated to boiling in a polypropylene test tube 

immersed in a vessel of boiling water. A representative 0.5 g quantity of trap charcoal 

was introduced into a 250 ml conical flask followed by a 5 ml aliquot of 100% 

methanol and the flask was appropriately sealed. The methanol/charcoal mixture was
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stirred and heated to dryness on a hot plate magnetic stirrer and the vapourised 

compounds evolved were passed through a glass tube directly into the boiling acid 

solution contained in the polypropylene test tube. This technique is illustrated in Figure

2.6.2. A second and third 5 ml aliquot of 100% methanol were added into the 250 ml 

conical flask and again evaporated to dryness as before. As the boiling point of the acid 

solution was above that of methanol, the volumes in the polypropylene test tubes 

remained at 2 ml after the extraction processes with no detectable changes and final 

volumes were made up to 10 ml with distilled, deionized water. Where necessary 

dilutions were prepared using a 1.2M HC1:0.6M HN03 diluent and total selenium in 

solution was determined as before.

2.7 Section seven: Transformation enhancement studies

Using the same bioreactor design as outlined above, enhancement o f selenium 

accumulation/biosorption and biomethylation was investigated by adding Dulbecco's 

Modified Eagle Medium (DMEM) to the reactor media.

Operating procedure

Three bioreactors (a), (b) and (c), were augmented with 1000 |imol l'1 of selenite,

inoculated with the Penicillium species, and continuously stirred under aerobic

conditions for 2 wk periods at 25°C as previously described in section 2.6.2. Each

system was augmented with a total of 50 ml of Dulbecco's Modified Eagle Medium 10X

(cat. no. 042-02501, GibcoBrl), with aliquots introduced at different time interals. For

reactor (a), 50 ml was added at t0, for reactor (b), 25 ml was added both at t0 and on day 

7, and for reactor (c), 50 ml was added on day 7. DMEM additions made available a

range of components to the actively metabolising fungus including amino acids, vitamins
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and inorganic salts, and final concentrations after addition are outlined in Table 2.7.1. 

When DMEM additions are taken into account, glucose was supplied to the media at 

overall concentrations of 20 g I'1. Activated charcoal traps, four in series, were changed 

at weekly intervals, and as before, selenium in the aqueous phase, selenium associated 

with the biomass, volatile selenium compounds, pH and biomass concentrations were all 

monitored over time.

Table 2.7.1: F i n a l  c o n c e n t r a t i o n  o f  c o m p o n e n t s  s u p p l i e d  t o  
f u n g a l  m e d i a  b y  D u l b e c c o 1 s  M o d i f i e d  E a g l e  M e d i u m  1 0 X  a f t e r  
a d d i t i o n .

I N O R G A N IC  S A L T S m g  I -1 AMINO A C I D S n g  1 1
C a C l 2 . 2 H 20 2 6 . 4 0 L - A r g i n i n e . H C l 8 . 4 0
F e  ( N O )  3 . 9 H 20 0  . 0 1 L - C y s t i n e 4  . 8 0
K C L 4 0  . 0 0 G l y c l - L - G l u t a m i n e 8 0 . 6 0
M g S 0 4 . 7 H , 0 2 0  . 0 0 G l y c i n e 3 . 0 0
N a C l 6 4 0 . 0 0 L - H i s t i d i n e  H C 1 . H 2 0 4 . 2 0
N a H C 0 3 3 7 0 . 0 0 L - I s o l e u c i n e 1 0 . 5 0
N a H 2P 0 4 . 2 H zO 1 4  . 1 0 L - L e u c i n e 1 0 . 5 0

L - L y s i n e . H C l 1 4 . 6 0
L - M e t h i o n i n e 3 . 0 0
L - P h e n y l a l a n i n e 6 .  6 0
L - S e r i n e 4 . 2 0
L - T h r e o n i n e 9  . 5 0
L - T r y p t o p h a n 1 . 6 0
L - T y r o s i n e 7 . 2 0
L - V a l i n e 9  . 4 0

V I T A M I N S m g  1  1 OTHER COMPONENTS n g  I ' 1
D - C a  p a n t o t h e n a t e 0  . 4 0 D - G l u c o s e 450.00
C h o l i n e  C h l o r i d e 0  . 4 0 P h e n o l  R e d 1 .  5 0
F o l i c  A c i d 0 . 4 0
i - I n o s i t o l 0  . 7 2
N i c o t i n a m i d e 0  . 4 0
P y r i d o x a l  H C l 0  . 4 0
R i b o f l a v i n 0  . 4 0
T h i a m i n e  H C l 0  . 4 0
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RESULTS

Interactions o f metal and metalloid ions with fungal biomass

PhD Research Thesis by 

Joseph M. Brady B.Sc.

81



C H A P T E R  3: R E S U L T S

3.1 Biosorption characterisation: results

3.1.1 Adsorption isotherm analysis

At the pH values investigated, each of the biomass types (freeze-dried, oven-dried and 

live non-metabolising) exhibited uptake of Sr2+, Cd2+ and Cu2+ ions. In each case, the 

amount of metal adsorbed increased with increasing solution concentration until 

adsorbent saturation. The uptake data, q, when plotted against final solution 

concentrations, Cp yield adsorption isotherms concave towards the abscissa in all cases 

reflecting favourable adsorption (Weber, 1972). Isotherms for Sr2+, Cd2+ and Cu2+ uptake 

by freeze-dried, live non-metabolising and oven-dried biomass at pH 4 are shown in 

Figure 3.1.1. The maximum equilibrium uptake values observed for each system over 

the pH range are tabulated in Table 3.1.1. Of the three ions, Cu2+ was adsorbed to the 

highest levels with freeze dried biomass displaying a maximum loading of 441 (imol g'1. 

Cd2+ was adsorbed to intermediate levels ranging from 220 to 286 |imol g '1, and Sr2+ 

exhibited both the lowest uptake of 165 (imol g'1 for live non-metabolising biomass, and 

the least variation between the biomass types (165-200 (imol g'1). The pH values 

selected for each system were chosen to preclude hydroysis of the metal ions and to 

conform to reported optimum values for metal binding. The data obtained at the 

differing pH values agree to within limits of 5%.
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Figure 3.1.1: Equilibrium adsorption isotherms for freeze- 
dried, oven-dried and live non-metabolising Rhizopus arrhizus 
biomass at initial solution pH values of 4.
Sr2+ ( o  ), cd2+ ( □ ) and Cu2+ ( A  ).
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The effects of biomass pretreatment were found to vary for each metal ion. For Sr2+ 

freeze dried and oven dried biomass adsorbed generally equivalent levels (ca. 190 [imol 

g'1), whereas the uptake level for live non-metabolising biomass, was marginally lower 

at ca. 170 |lmol g'1. In contrast, Cu2+ was bound to the highest level by freeze dried 

biomass (ca. 440 (imol g'1), followed in order by live non-metabolising and oven dried 

biomasses, with uptake values of ca. 70% and 60% of the freeze dried value 

respectively. For Cd2+, the same trend is apparent: freeze dried biomass demonstrating 

a maximum uptake value of ca. 270 |imol g'1, followed by live non-metabolising and 

oven dried biomasses, with values of 90% and 70% of the freeze dried value, 

respectively.

3.1.2 Biomass pretreatment effects

Table 3.1.1: M a x i m u m  m e t a l  u p t a k e  
s y s t e m s  i n  i n i t i a l  s o l u t i o n s  o f  p H

v a l u e s  
4  a n d

f o r  m e t a l  
6  .

- b i o m a s s

M e t a l  i o n  B i o m a s s  t y p e p H M e t a l u p t a k e
( u m o l  g _1) ( m g  g ' 1 )

S r 2+ F r e e z e - d r i e d 4 1 9 1 1 6 . 7 4
6 2 0 0 1 7 . 5 2

L i v e 4 1 6 5 1 4 . 4 6
6 1 7 4 1 5 . 2 5

O v e n - d r i e d 4 1 9 0 1 6 . 6 5
6 1 9 1 1 6 . 7 4

C d 2+ F r e e z e - d r i e d 4 2 6 2 2 9 . 4 5
6 2 8 6 3 2 . 1 5

L i v e 4 2 4 3 2 7 . 3 2
6 2 4 6 2 7 . 6 5

O v e n - d r i e d 4 2 2 0 2 4 . 7 3
6 2 2 8 2 5 . 6 3

C u 2+ F r e e z e - d r i e d 4 4 2 4 2 6 . 9 4
5 4 4 1 2 8 . 0 2

L i v e 4 3 4 2 2 1 . 7 3
5 3 5 7 2 2 . 6 9

O v e n - d r i e d 4 2 7 1 1 7 . 2 2
5 2 7 8 1 7 . 6 7
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3.1.3 Ca2+ and Mg2+ ion displacement

Displacement of both Ca2+ and Mg2+ ions occurred as a result of test ion adsorption to 

biomass. As illustrated in Figure 3.1.2 for the pH 4 systems, displacement was found 

to increase with increasing test ion adsorption until saturation levels were reached. Using 

standard regression analysis, the ratios of Ca2+ and Mg2+ displaced to test ions adsorbed 

were calculated, and are presented in Table 3.1.2. Maximum Ca2+ and Mg2+ ions 

displacement by Sr2+, Cd2+ and Cu2+ were constant at ca. 20 and 110 (irnol g"1 

respectively, and did not vary either with biomass type or pH.

3.1.4 H+ ion displacement/competition

For each metal-microbial system, the pH of the metal-free controls increased to 

neutrality on addition of the biomass. The relationship between final solution pH and test 

ion adsorption levels are illustrated in Figure 3.1.3 for pH 4 systems. For the Sr2+ 

systems, the final solution pH was independent of the degree of uptake, and at maximum 

uptake levels remained at neutrality. For the Cd2+ and Cu2+ systems final solution pH 

values decreased linearly with increasing metal uptake to minimum values of ca. 5.5 and 

4.0 respectively. Overall, for Sr2+ uptake, no H+ displacement was detected. At maximum 

uptake of Cd2+ and Cu2+, H+ displacement was ca. 2.2 and 120 (imol g'1 respectively. 

These trends were identical for each biomass type to within limits of 5%. When H+ ion 

displacement was plotted against metal uptake (q) for Cd2+ and Cu2+ systems at pH 4, 

curved relationships were evident as illustrated in Figure 3.1.4 and 3.1.5 respectively.
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Figure 3.1.2: Equilibrium Ca2+ and Mg2+ ion displacement from 
Rhizopus arrhizus biosorbents as a consequence of Sr2+, Cd + 
and Cu2+ adsorption, versus metal uptake (g) at initial 
solution pH values of 4.
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Figure 3.1.3: Final pH values at equilibrium versus metal
uptake (q) for freeze-dried, oven-dried and live non
metabolising Rhizopus arrhizus biomass at initial solution pH 
values of 4.
Sr2+ ( O ) , Cd2+ ( □  ) and Cu2+ ( A  ) •
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Figure 3.1.4: Equilibrium H+ ion displacement from freeze- 
dried, oven-dried and live non-metabolising Rhizopus arrhizus 
biomass as a consequence of Cd2+ adsorption, versus metal 
uptake (g) at initial solution pH values of 4.
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Figure 3.1.5: Equilibrium H+ ion displacement from freeze- 
dried, oven-dried and live non-metabolising Rhizopus arrhizus 
biomass as a consequence of Cu2+ adsorption, versus metal 
uptake (q) at initial solution pH values of 4.
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Table 3.1.2: M o l a r  r a t i o s  o f  
t e s t  i o n s  a d s o r b e d  a t  i n i t i a l

C a 2+ a n d  M g 2+ 
s o l u t i o n  p H

i o n s  d i s p l a c e d  t o  
v a l u e s  o f  4 .

Freeze-dried biomass systems
S r 2+ C d 2+ C u 2+

C a 2+ 0 . 1 7 0  . 0 9 0  . 0 6
M g 2+ 0 . 5 3 0  . 5 0 0 . 2 8
C a 2+ +  M g 2+ 0 . 7  0 0  . 5 9 0 . 3 4

Live biomass systems
S r 2+ C d 2+ C u 2+

C a 2+ 0 . 1 9 0  . 1 0 0  . 0 7
M g 2+ 0 . 5  8 0  . 5 8 0  . 3 4
C a 2+ +  M g 2+ 0 . 7  7 0 . 6 8 0 . 4 1

Oven-dried biomass systems
S r 2+ C d 2+ C u 2+

C a 2+ 0 . 1 8 0  . 1 1 0  . 0 9
M g 2+ 0 . 5  5 0 . 6 0 0 . 4 2
C a 2+ +  M g 2+ 0 . 7  3 0  . 7 1 0 . 5 1

3.1.5 Modelling o f adsorption data

The Langmuir, BET and Freundlich models were applied to the adsorption data, and

plotted in the following forms:

v e r s u s  C f 1 ( L a n g m u i r  m o d e l )

Cf  /  ( Cs -  C) q e v e r s u s  Cf / C s ( B E T  m o d e l )

l o g  Qe v e r s u s  l o g  Cf  ( F r e u n d l i c h  m o d e l )

The term Cs is the the saturation concentration of the adsórbate. Conformity to each

model was confirmed if linear plots were returned, curved plots suggested non

conformity. The Scatchard transformation model was further fitted to the adsorption data 

and represented as plots of qJCf  versus qe.

The type of plots observed for each metal-biomass system, whether curved or 

linear, and corresponding correlation coefficient r values, are all presented in Table

3.1.3.
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Table 3.1.3: T y p e  o f  p l o t s  o b t a i n e d  f r o m  t h e  a p p l i c a t i o n  o f
S c a t c h a r d  t r a n s f o r m a t i o n  a n a l y s i s  a n d  t h e  L a n g m u i r ,  B E T  a n d  
F r e u n d l i c h  m o d e l s  t o  t h e  a d s o r p t i o n  d a t a .

L a n g m u i r B E T F r e u n d l i c h S c a t c h a r d

S r 2+ ( p H  4 )
F r e e z e + - - +

- d r i e d r = 0 . 9 9 r =  0 . 9 3 r = 0 . 9 5 r = 0 . 9 8
L i v e - - + &

r = 0 . 9 2 r =  0 . 9 8 r = 0  . 9 9 r = 0 . 8 2
O v e n + - - +

- d r i e d r = 1 .  0 0 r =  0 . 9 3 r = 0  . 9 7 r = 0  . 9 8

S r 2+ ( p H  6 )
F r e e z e + - - +

- d r i e d r = 0 . 9 9 r =  0 . 9 3 r = 0  . 9 5 r = 0 . 9 8
L i v e - - + &

r = 0 . 9 7 r =  0 . 9 4 r = 0 . 9 9 r = 0  . 9 1
O v e n + - - +

- d r i e d r = 1 . 0 0 r =  0 . 9 3 r = 0  . 9 5 r = 1 . 0 0

C d 2+ ( p H  4 )
F r e e z e + - - +

- d r i e d r- 1 . 0 0 r =  0 . 9  6 r = 0 . 9 5 r = 0  . 9 8
L i v e + - + @

r = 0  . 9 9 r =  0 . 9 6 r = 0  . 9 9 r = 0  . 9 6
O v e n + - + &

- d r i e d r = 0 . 9 9 r =  0 . 9 6 r = 0 . 9 9 r = 0 . 9 2

C d 2+ ( p H  6 )
F r e e z e + - - +

- d r i e d r = 1 . 0 0 r =  0 . 9 5 r = 0  . 9 5 r = 1 . 0 0
L i v e + - - +

r = 1 .  0 0 r =  0 . 9  5 r = 0 . 9 5 r = 1 .  0 0
O v e n - - + &

- d r i e d r = 0 . 9 8 r =  0 . 9 4 r = 0 . 9 9 r = 0 . 9 6

C u 2+ ( p H  4 )
F r e e z e + - - *

- d r i e d r = 0  . 9 8 r =  0 . 9 4 r = 0  . 9 2 r= 0 . 9 5
L i v e + - - *

r = 0 . 9 9 r =  0 . 9 1 r = 0 . 9 3 r= 0  . 9 6
O v e n + - - ★

- d r i e d r = 1 .  0 0 r =  0 . 9 1 r = 0  . 9 3 r = 0  . 9 4

C u 2*  ( p H  5 )
F r e e z e + - - *

- d r i e d r = 0  . 9 9 r =  0 . 9 4 r = 0 . 9 2 r = 0 . 9 5
L i v e + - - *

r = 0  . 9 9 Hi II O r = 0 . 9 4 r = 0  . 9 6
O v e n + - - *

- d r i e d r = 0 . 9 9 r =  0 . 9 1 r = 0 . 9 1 r = 0  . 9 3

+  L i n e a r  p l o t  @ C u r v e d  p l o t  c o n v e x  t o  t h e  o r i g i n
-  N o n - l i n e a r  p l o t  * C u r v e d  p l o t  c o n c a v e  t o  t h e  o r i g i n
r  = c o r r é l a t i o n  c o e f f i c i e n t
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Representative curved and linear plots for each model type are presented in Figures

3.1.6, 3.1.7, 3.1.8 and 3.1.9. General trends and observations include:

(a) For all Cu2+ systems, Langmuir plots were linear, BET and Freundlich plots were 

curved, and Scatchard plots were curved concave to the origin.

(b) When both Langmuir and Scatchard plots were linear, Freundlich and BET plots 

were curved.

(c) When Freundlich plots were linear, BET and Scatchard plots were curved. 

Scatchard plots in this case were convex to the origin.

3.1.6 Error analysis

Duplicate experiments were performed in all cases, and the results were all found to 

agree to within limits of 1%. Six replicate Cu2+ ion uptake experiments using oven dried 

biomass at an initial solution pH of 4, were performed for the purpose of statistical 

analysis. The standard deviation was found to be less than 4%, and these trends are 

consistent with previously reported error analyses (Tobin et a l, 1990).

92



1 /C f

1/C ,
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Figure 3.1.6: Representative Langmuir plots for Rhizopus
arrhizus biosorbents at initial solution pH values of 4. 
Curved plot for Sr2+ and live non-metabolising biomass (a) , 
and linear plots for Cd2+ and Cu2+ freeze-dried biomass 
systems (b) and (C).

93



c / c s

c / c s

c / c 5

Figure 3.1.7: Representative curved BET plots for freeze- 
dried Rhizopus arrhizus biosorbent systems at initial 
solution pH values of 4.
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Figure 3.1.8: Representative Freundlich plots for Rhizopus 
arrhizus biosorbents at initial solution pH values of 4. 
Linear plot for Sr2+ and live non-metabolising biomass (a), 
and curved plots for Cd2+ and Cu2+ freeze-dried biomass 
systems (b) and (C).
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Figure 3.1.9: Representative Scatchard transformation plots 
for Rhizopus arrhizus biosorbents at initial solution pH 
values of 4.
Curved plot convex to the origin for Sr2+ and live non
metabolising biomass (a), linear plot for Cd2+ and freeze- 
dried biomass (b), and curved plot concave to the origin for 
Cu2+ and freeze-dried biomass (C).
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3.2 Application of hard and soft principle: results

3.2.1 Equilibrium studies

Maximum equilibrium uptake levels varied considerably for different ions, as reported 

in Table 3.2.1. Sr2+ exhibited the lowest uptake at 75.31 (imol g"1 while Pb2+ was taken 

up to levels of 250.98 |imol g'1. Ca2+, Mg2+ and H+ ions were found to be displaced from 

the biomass ligands as a consequence of test ion adsorption. Ca2+ displacement was 

constant for Sr2+, Mn2+ and Zn2+ at 3.35 |imol g'1, but increased in order for Cd2+, Cu2+ 

and Pb2+. H+ ion displacement from the biomass varied from 0 |lmol g"1 for Sr2+ to 9.84 

(imol g'1 for Cu2+, and increased in the order: Sr2+ < Mn2+ < Zn2+ < Cd2+ < Pb2+ < Cu2+. 

Mg2+ displacement from the biomass was constant for all the test ions at ca. 72 (imol

Table 3.2.1: M e t a l u p t a k e  v a l u e s ( qr) a n d  C a 2+ , M g 2+ a n d  H+
d i s p l a c e m e n t  v a l u e s f o r  t 0 m e t a l s a t  e q u i l i b r i u m .

M e t a l q C a 2+ M g 2+ H +
( u m o l  g “1 ) ( u m o l  g “1 ) ( u m o l  g ' 1 ) ( u m o l  g _1 )

S r 2+ 7 5  . 3 1 3  . 3 5 7 2  . 0 0 0
M n 2+ 1 2 1 . 7 7 3 . 3 5 7 2  . 0 0 0  . 8 7
Z n 2+ 1 4 2 . 1 4 3 . 3 5 7 2  . 0 0 1 . 3 9
C d 2+ 1 9 0  . 3 0 4  . 0 1 7 2  . 0 0 1 . 9 0
C u 2+ 2 2 4 . 0 9 5  . 5 2 7 2  . 0 0 9  . 8 4
P b 2+ 2 5 0 . 9 8 7  . 8 7 7 2  . 0 0 3 . 9 8

In the majority of cases and on a molar basis, addition of tlS0 metals caused displacement 

of t0 metals as illustrated in Table 3.2.2. The most marked displacement was caused by

Pb2+ which completely displaced preloaded Sr2+. Conversely, addition of Sr2+, Mn2+ and

Zn2+ had no effect on the levels of preloaded Cu2+ or Pb2+. With the exception of Sr2+

preloaded systems, the displacement potential of the ions increased in the order: Sr2+ <

Mn2+ < Zn2+ < Cd2+ < Cu2+ < Pb2+. For Sr2+ preloaded biomass, the displacement

potential order was Cu2+ < Cd2+ < Zn2+ < Mn2+ < Pb2+.
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T a b l e  3.2.2: Percentage of t0 metals displaced by the addition
of t180 metals for equilibrium studies.

t 180 d i s p l a c i n g m e t a l s

S r 2+
* ( 1 . 0 2 0 )

M n 2+
( 1 . 9 9 0 )

Z n 2+
( 2 . 1 2 8 )

C d 2+ 
( 2 . 7 1 3

C u 2+
) ( 2 . 9 7 9 )

P b 2+ 
( 3  . 2 8 7 )

t 0 m e t a l  
S r 2+ - - 5 2 4 2 3 6 2 8 1 0 0
M n 2+ 1 4 — 3 1 4 3 4 5 4 5
Z n 2t  8 2 8 — 4 4 5 8 6 0
C d 2+ 8 2 0 2 4 — 5 8 5 9
C u 2+ 0 0 0 5 - - 1 6
P b 2+ 0 0 0 1 2 3 3 —

C o v a l e n t  I n d e x  v a l u e s  ( s e e  A p p e n d i x  B ) .

Preloading the biomass with tg metal ions generally resulted in uptake inhibition of t l80 

metals. For Pb2+ systems however, preloaded Sr2+, Mn2+ and Zn2+ ions exerted no 

inhibitory effects. Inhibition uptake levels of t ,80 metals are presented in Table 3.2.3.

Table 3.2.3: P e r c e n t a g e  u p t a k e  i n h i b i t i o n  o f t 180 m e t a l s c a u s e d
b y  p r e l o a d e d t 0 m e t a l s f o r  e q u i l i b r i u m  s t u d i e s .

P r e l o a d e d  t 0 m e t a l s

S r 2+ M n 2+ Z n 2+ C d 2+ C u 2+ P b 2+
( 1 . 0 2 0 ) ( 1 . 9 9 0 ) ( 2  . 1 2 8 ) ( 2  . 7 1 3 ) ( 2 . 9 7 9 )  1[ 3 . 2 8 7 )

t 180 m e t a l
S r 2+ — 7 2 4 9 4 4 3 9 100
M n 2+ 1 9 — 3 6 5 0 5 1 5 7
Z n 2+ 1 7 2 5 — 5 1 5 3 6 3
C d 2+ 5 2 0 4 4 — 5 8 6 5
C u 2+ 3 5 7 8 — 2 3
P b 2+ 0 0 0 1 2 3 8 —

C o v a l e n t  I n d e x  v a l u e s  ( s e e  A p p e n d i x  B ) .

The most marked effect was again exhibited by Pb2+, which completely inhibited Sr2+ 

uptake. Similar to above, the inhibition potential of the metal ions followed the order: 

Sr2+ < Mn2+ < Zn2+ < Cd2+ < Cu2+ < Pb2+, except for Sr2+ t180 systems. Where Sr2+ was 

the tI80 ion, the order was Cu2+ < Cd2+ < Zn2+ < Mn2+ < Pb2+.
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Equilibrium conditions were reached within 3 h of metal-biomass contact, with 95% 

saturation occurring within the first 5 min. As illustrated in Figure 3.2.1, maximum 

equilibrium adsorption levels for Sr2+, Cd2+ and Cu2+ were 80, 180 and 210 |lmol g'1 

respectively. On the introduction of t,ao metals, displacement of preloaded t0 metals was 

observed for Cd2+ and Cu2+ additions only. Cu2+ displaced Sr2+ and Cd2+ preloaded levels 

by 15 and 53% respectively, Cd2+ reduced Sr2+ and Cu2+ levels by 45 and 6%, and Sr2+ 

had no displacing effect on either Cu2+ or Cd2+. These results are summarised in Table

3.2.4.

Table 3.2.4: P e r c e n t a g e  o f  t 0 m e t a l s  d i s p l a c e d  b y  t h e  a d d i t i o n  
o f  t 180 m e t a l s  f o r  t i m e - c o u r s e  s t u d i e s .

3.2.2 Time-course studies

t 180 d i s p l a c i n g  m e t a l s

S r 2+ C d 2+ C u 2+
( 1 . 0 2 0 ) ( 2  . 7 1 3 ) ( 2 . 9 7 9 )

t 0 m e t a l s
S r 2+ — 4 5 1 5
C d 2+ 0 - - 5 4
C u 2+ 0 6 ----

C o v a l e n t  I n d e x  v a l u e s  ( s e e  A p p e n d i x  B ) .

As a consequence of preloading the biomass with t0 metals, uptake inhibition of t180 

metals was detected for all dual metal systems. Cu2+ inhibited Sr2+ and Cd2+ uptake 

values by 50 and 60% respectively, Cd2+ inhibited Sr2+ and Cu2+ levels by 50 and 10%, 

and Sr2+ inhibited Cd2+ and Cu2+ by 15% and 4%. These results are summarised in Table

3.2.5.
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Table 3.2.5: Percentage uptake inhibition of t180 metals caused
by preloaded t0 metals for time-course studies.

P r e l o a d e d  t 0 m e t a l s

*
S r 2*

( 1 . 0 2 0 )
C d 2*

( 2  . 7 1 3 )
C u 2+

{ 2 . 9 7 9 )

t-iea
S r 2*

m e t a l s
5 0 5 0

C d 2+ 1 5 __ 6 0
C u 2* 4 1 0 ----

C o v a l e n t  I n d e x  v a l u e s  ( s e e  A p p e n d i x  B ) .

Similar to adsorption, displacement and inhibition equilibrium conditions occurred within 

3 h of metal-biomass contact, with 95% of the reactions occuring within 5 min.

3.2.3 Error analysis

Duplicate experiments were performed in all cases, and the results were all found to 

agree to within limits of 3%.
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3.3.1 Isotherm analysis

The shape of adsorption isotherm curves appear to be independent of solution biomass 

concentration for Sr2+, Cd2+ and Cu2+. Isotherms determined at biosorbent levels of 0.25, 

0.5 and 1 g I'1 are combined for each test ion as illustrated in Figure 3.3.1, and it is 

clear that such curves are superimposed. The adsorption data was linearised using the 

Langmuir adsorption model as illustrated in Figure 3.3.2. For each test ion system, the 

transformed isotherm data determined at the three biomass levels show good fit to a 

single regression line.

Biosorbent saturation is apparent especially at the lowest biomass concentrations, 

with Cu2+ bound to the highest degree displaying a maximum loading of ca. 400 |lmol 

g"1 (Figure 3.3.1), followed in order by Cd2+ and Sr2+' with maximum loadings of ca. 280 

and 130 [rniol g"' respectively.

3.3.2 Ca2+ and Mg2* release

For each test ion (Sr2+, Cd2+ and Cu2+) adsorption resulted in the release of Ca2+ and 

Mg2+ ions from the fungal biomass, and displacement increased with increasing test ion 

uptake as illustrated in Figure 3.3.3 and Figure 3.3.4 respectively. These two figures 

show that at all three biosorbent levels, Ca2+ and Mg2+ displacement plots compiled 

separately for each test ion appear to be identical. Maximum Ca2+ release was constant 

for each of the test ions at a level of ca. 20 (imol g'1, whereas maximum Mg2+ release 

was ca. 70, 90 and 110 |imol g'1 for Sr2+, Cd2+ and Cu2+ respectively.

3.3 Effects o f  biomass concentration: results

1 0 2
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Figure 3.3.1: Equilibrium adsorption isotherms for Sr2+, Cd2+ 
and Cu2+ ions with freeze-dried Rhizopus arrhizus biomass. 
Biomass concentration: 1 gl-1 ( O  ) ,  0.5 g 1 ( A ) and
0.25 gl"1 ( □ ) .
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Figure 3.3.2: Reciprocal Langmuir plots of Sr2+, Cd + and Cu 
equilibrium adsorption isotherms with freeze-dried Rhizopus 
arrhizus biomass.
Biomass concentration: 1 gl"1 ( O )r °*5 9 1 ( &  ) and
0.25 gl"1 ( □ ) .
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Figure 3.3.3: Equilibrium Ca2+ ion displacement from freeze- 
dried Rhizopus arrhizus biomass as a consequence of Sr2+, Cd2+ 
and Cu2-1 adsorption, versus metal uptake (g) .
Biomass concentration: 1 gl-1 ( O  ) / g l-1 ( A  ) and
0.25 gl'1 ( □ ).
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Figure 3.3.4: Equilibrium Mg2+ ion displacement from freeze- 
dried Rhizopus arrhizus biomass as a consequence of Sr2+, Cd2+ 
and Cu2+ adsorption, versus metal uptake (g).
Biomass concentration: 1 gl-1 ( O ), 0.5 g l-1 ( A  ) and 
0.25 gl"1 ( □ ).
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3.3.3 pH and H+ release

For Cd2+ and Cu2+ systems final solution pH values decreased with increasing metal 

uptake (quptake) as exhibited in Figure 3.3.5. Initially all metal solutions were pH 

balanced to 4, but on introduction of biomass to the metal-free controls, final 

equilibrium pH values increased to 6.3, 5.9 and 5.4, for 1, 0.5 and 0.25 g I'1 additions 

respectively. At equilibrium these values decreased with qupmke, and the lowest values of

5.1 and 4.2 were observed at the lowest biomass concentration of 0.25 g l"1 for Cd2+ and 

Cu2+ respectively. The pH data was transformed into corresponding H+ ion concentration 

values, and by subtracting the metal-free control figures, plots of H+ release versus q„plake 

for Cd2+ and Cu2+ were made as shown in Figure 3.3.6. Generally the graphs exhibit 

linear increases of H+ displacement with increasing uptake, with maximum H+ release 

observed at the lowest biomass levels. With decreasing biosorbent levels, maximum 

displacement values for Cd2+ and Cu2+ systems were, 2.19, 7.73 and 33.09 lamolg1, and 

49.59, 125.01 and 280.40 (imolg1, respectively.

Such pH trends were not observed for the Sr2+ systems. As before, introduction 

of biomass to the metal-free controls resulted in final equilibrium pH values of 6.3, 5.9 

and 5.4, for 1, 0.5 and 0.25 g I'1 additions respectively. This values were found to 

remain constant with increasing quptake and did not appear to vary. Hence, no plots of H+ 

displacement versus quptake were made since no H+ ions were found to be released.

3.3.4 Error analysis

Triplicate experiments were performed in all cases, and the results were all found to 

agree to within limits of 4%.
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Figure 3.3.5: Final pH values at equilibrium versus metal
uptake (g) for Cd2+ and Cu2+ freeze-dried Rhizopus arrhizus 
biomass systems.
Biomass concentration: 1 gl-1 ( O  ) * 0.5 g 1 ( A ) and
0.25 gl-1 ( □ ).
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3.4.1 Effect o f DCM on the biosorbent

The solvent DCM was found to have no effect on the biosorptive capacity of native 

freeze-dried Rhizopus arrhizus biomass for Cu2+ ions, and the Ca2+, Mg2+ and H+ ion 

displacement potential of Cu2+ was also unaffected. For native and DCM treated freeze- 

dried Rhizopus arrhizus biomass, Cu2+ uptake, and corresponding Ca2+, Mg2+ and H+ 

release data are tabulated with respect to initial Cu2+ concentrations in solution in Table

3.4.1 and Table 3.4.2 respectively.

3.4 Continuous flow  systems: results

Table 3.4.1: C u 2+ i o n  u p t a k e  v a l u e s  (g) a n d  c o n s e q u e n t  C a 2 + ,
M g 2* a n d  H* i o n  d i s p l a c e m e n t  a t  e q u i l i b r i u m  u s i n g  u n t r e a t e d  
f r e e z e - d r i e d  b i o m a s s .

C ± ( p m o l  I ' 1 ) 1 5 6 3 0 9 7 4 9 1 0 9 8 1 4 3 1 2 6 2 3

q  ( p m o l  g ' 1 ) 1 2 4 2 3 3 3 2 9 3 7 0 4 1 9 4 3 0
C a 2* ( p m o l  g ' 1 ) 1 4 1 9 2 4 2 5 2 7 2 8
M g 2* ( p m o l  g _ 1 ) 5 1 6 3 9 9 1 0 0 1 1 6 1 2 3
H* ( p m o l  g ' 1 ) 3 1 8 7 9 9 8 1 1 2 1 3 8

Table 3.4.2: C u 2+ i o n  u p t a k e  v a l u e s  (qr) a n d  c o n s e q u e n t  C a 2* ,  
M g 2* a n d  H* i o n  d i s p l a c e m e n t  a t  e q u i l i b r i u m  u s i n g  f r e e z e - d r i e d  
b i o m a s s  t r e a t e d  w i t h  DCM.

C ± ( p m o l  1  a ) 1 5 6 3 0 9 7 4 9 1 0 9 8 1 4 3 1  2 6 2 3

q  ( p m o l  g ' 1 ) 1 2  6 2 3 4 3 2 9 3 5 3 4 0 0 4 1 9
C a 2* ( p m o l  g “1 ) 1 3 1 6 2 1 2 3 2 5 2 7
M g 2* ( p m o l  g ' 1 ) 5 3 6 2 9 4 1 0 0 1 1 6 1 2 4
H* ( p m o l  g “1 ) 3 2 3 9 1 1 1 0 1 2 6 1 4 0

1 1 0



Similar results are observed in all cases, with both quptake and ion release values 

increasing over the Cu2+ range. Overall for both systems, maximum qupmke was the order 

of ca. 425 (imol g ', and maximum Ca2+, Mg2+ and H+ displacement was ca. 28, 124 and 

139 (imol g'1 respectively.

3.4.2 Effect of PVF immobilisation on the biosorbent

As with DCM, PVF immobilisation was also observed to have no effect on the 

biosorptive capacity of native freeze-dried Rhizopus arrhizus biomass for Cu2+ ions, and 

the Ca2+, Mg2+ and H+ ion displacement potential of Cu2+ again was unaffected. Table

3.4.3 shows Cu2+ uptake for PVF immobilised freeze-dried Rhizopus arrhizus biomass 

of biosorbent loadings, 40, 50, 60, 70 and 80%, against initial Cu2+ ion levels in 

solution.

Table 3.4.3: C u 2+ i o n  u p t a k e  v a l u e s  ( q )  a t  e q u i l i b r i u m  u s i n g  
f r e e z e - d r i e d  b i o m a s s  i m m o b i l i s e d  i n  P V F ,  w i t h  b i o m a s s  l o a d i n g  
v a l u e s  o f  4 0 ,  5 0 ,  6 0 ,  7 0  a n d  8 0 % .

C i  ( p m o l  1  x ) 1 5 6 3 0 9 7 4 9 1 0 9 8 1 4 3 1 2 6 2 3

q 40% ( p m o l  g " 1 ) 5 8 1 8 3 2 3 1 3 1 4 3 2 8 4 1 3
q 5o% ( p m o l  g ' 1 ) 1 1 2 2 0 1 2 5 1 3 1 4 3 3 8 4 2 7
q 60% ( p m o l  g ”1 ) 1 2 4 2 1 8 3 3 0 3 5 2 3 7 2 4 4 1
q 70% ( p m o l  g “1 ) 1 2 3 2 3 1 3 2 0 3 7 2 3 7 6 4 4 1
q so% ( p m o l  g “1 ) 1 2 7 2 3 6 3 2 0 3 7 1 3 7 6 4 4 1

Similarly, corresponding Ca2+, Mg2+ and H+ release data are tabulated in Tables 3.4.4,

3.4.5 and 3.4.6 respectively. Over the initial Cu2+ concentration range almost identical 

trends are observed for each loading, quptake increases to a maximum adsorption levels 

of ca. 440 |lmol g'1, and Ca2+, Mg2+ and H+ displacement values increased to maximum 

values of ca. 20, 124 and 109 (imol g'1 respectively.
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Table 3.4.4: E q u i l i b r i u m  C a 2+ i o n  d i s p l a c e m e n t  f r o m  f r e e z e -
d r i e d  R h i z o p u s  a r r h i z u s  b i o m a s s  i m m o b i l i s e d  i n  P V F ,  w i t h  
b i o s o r b e n t  l o a d i n g s  o f  4 0 ,  5 0 ,  6 0 ,  7  0  a n d  8 0 % .

( p m o l  1  1 ) 1 5 6 3 0 9 7 4 9 1 0 9 8 1 4 3 1 2 6 2 3

P - 2  +
40% ( p m o l g '1) 0 4 1 0 1 4 1 6 2 0

50% ( p m o l g“1) 0 3 9 1 3 1 3 2 0
p  p, 2 +

60% ( u r a o l g-1) 0 3 1 2 1 5 1 6 1 8

C a  70% ( p m o l g"1) 0 7 1 4 1 4 1 6 2 2
m 2+80% ( t i m o l g"1) 0 4 1 0 1 4 1 6 2 1

Table 3.4.5: E q u i l i b r i u m  M g 2+ i o n  d i s p l a c e m e n t  f r o m  f r e e z e -  
d r i e d  R h i z o p u s  a r r h i u s  b i o m a s s  i m m o b i l i s e d  i n  P V F ,  w i t h  
b i o m s o r b e n t  l o a d i n g s  o f  4 0 ,  5 0 ,  6 0 ,  7  0  a n d  8 0 % .

C i  ( p m o l  1  1 ) 1 5 6 3 0 9 7 4 9 1 0 9 8 1 4 3 1 2 6 2 3

Mg2+40% ( p m o l g '1) 3 5 4 9 6 7 1 0 9 1 0 3 1 1 6

50% ( p m o l g '1) 2 4 5 9 6 0 1 1 2 1 3 3 1 1 1

Mg2+60% ( p m o l g"1) 4 5 7 0 6 6 1 1 9 1 3 0 1 2 4

M g  70% ( p m o l g_i) 3 8 8 4 1 2 4 1 2 4 1 3 5 1 2 5
Mg2+ao% ( p m o l g '1) 3 3 8 2 1 0 5 1 1 8 1 3 0 1 4 0

Table 3.4.6: E q u i l i b r i u m  H+ i o n  d i s p l a c e m e n t  f r o m  f r e e z e -  
d r i e d  R h i z o p u s  a r r h i z u s  b i o m a s s  i m m o b i l i s e d  i n  P V F ,  w i t h  
b i o s o r b e n t  l o a d i n g s  o f  4 0 ,  5 0 ,  6 0 ,  7 0  a n d  8 0 % .

C ± ( p m o l  1  1 ) 1 5 6 3 0 9 7 4 9 1 0 9 8 1 4 3 1  2 6 2 3

H +40% ( p m o l  g “1 ) 6 1 8 4 0 5 6 7 0  9 7
H +so% ( p m o l  g “1 ) 2 1 3 4 3 6 0 7 2  1 0 6
H +60% ( p m o l  g ' 1 ) 1 1 3 4 3 6 1 7 4  1 0 9
H*70% ( p m o l  g ’ 1 ) 2 1 0 4 6 6 6 7 5  1 0 6
H +eo% ( p m o l  g - 1 } 1 1 3 5 1 6 4 7 9  1 1 4
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3.4.3 Continuous elution o f Cu2+ ions by PVF immobilised biosorbents 

Effluent Cu2+ levels were plotted in the form of breakthrough curves for influent 

flowrates in the range 3.40-11.63 ml min'1. As expected, Figure 3.4.1a. (breakthrough 

curves on a time basis) demonstrate that the time required for effluent Cu2+ 

concentrations to equal influent levels (complete breakthrough), increases with 

decreasing flowrate. Curves plotted with respect to effluent volume as illustrated in 

Figure 3.4.1 b are generally similar, and in all cases influent volume required for 

complete breakthrough was ca. 1.4 1. For all columns, displacement of both Ca2+ and 

Mg2+ ions was observed to begin immediately upon Cu2+ flow, but as cumulative influent 

volumes increased, ion release values decreased completely to zero. Representative plots 

of effluent Ca2+ and Mg2+ levels with respect to volume at 5.88 ml min'1 flowrate are 

illustrated in Figure 3.4.2.

By integration of areas under the curves, maximum biosorbent levels of Cu2+ 

uptake and Ca2+ and Mg2+ displacement were calculated and values tabulated in Table

3.4.7.

Table 3.4.7: O v e r a l l  c o l u m n  C u 2+ u p t a k e  v a l u e s  ( q) a n d
c o n s e q u e n t  C a 2+ a n d  M g 2+ i o n  d i s p l a c e m e n t  o v e r  t h e  i n f l u e n t  
f l o w r a t e  r a n g e  3 . 4 0 - 1 1 . 6 3  m l  m i n “1 .

Q
m l  m i n  1 p m o l

q
g - 1

C a 2+
l i m o l  g “1

M g 2+
u m o l  g ' 1

C a 2++ M g 2+/ q

3 . 4 0 2 0 0 6 3 4 0 . 2 0
5  . 8 8 2 0 1 7 3 5 0 . 2 1
6 . 8 0 2 0 4 1 0 3 8 0 . 2 4
7  . 2 5 2 0 4 8 4 6 0 . 2 6
1 0  . 0 0 2 1 1 9 3 5 0 . 2 1
1 1 .  6 3 2 1 1 1 0 4 5 0 . 2 6
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Time ( m in )

E f f luen t  v o lu m e  (I)

Figure 3 . 4 . 1 :  Experimental column breakthrough curves for PVF 
immobilised Rhizopus arrhizus biomass. Effluent Cu2+
concentration versus time (a), and effluent Cu +
concentration versus effluent volume (b).
Flowrates (ml min-1): 3.40 ( O ) ,  5.88 ( •  ) ,  6.80
( □ ), 7.25 ( ■ ), 10.00 ( a  ) and I1-63 ( A  )•
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Figure 3.4.2: Representative Ca2+ and Mg + ion displacement 
plots versus effluent volume for PVF immobilised Rhizo^pus 
arrhizus biomass at an influent flowrate of 5.88 ml min
Ca2 + ( O ) and Mg2+ ( □ ) •
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Uptake and displacement data were similar for each of the six columns, and average 

values were ca. 204, 9 and 39 (Imol g'1 for Cu2+ adsorption, and Ca2+ and Mg2+ release 

respectively. In all cases, the effluent pH was constant at the influent value of 4. Since 

no differences in pH were detected, no H+ ion displacement as a result of Cu2+ 

adsorption was evident from any of the column biosorbents.

3.4.4 Application of mathematical model to breakthrough curves 

Using the model described in section 2.4.3, values of a  were calculated for each 

breakthrough curve. The quantity a2 was found to be proportional to Q / L, where Q is 

the flowrate, and L is the column length. Since L remained constant for each of the 

columns, a direct relationship between a 2 and Q was observed as illustrated in Figure 

3.4.3a, and is represented mathematically by equation 3.4.1.

C# = k,Q ( 3 . 4 . 1 )

where kj is a constant.

According to Belter et al. (1988), this demonstrates that both dispersion and the kinetics 

of adsorption are the rate controlling steps.

A direct relationship between t50 and Q'1 was also found, as shown in Figure

3.4.3b, and is represented mathematically by equation 3.4.2.

t 50 = k 2 /  Q ( 3 . 4 . 2 )

where k2 is a constant value.

Using the constants k, and k2 calculated from equation 3.4.1 and equation 3.4.2, 

theoretical values of a  and t50 were calculated for each experimental plot. Effluent Cu2+ 

concentration values (C) were then determined and theoretical curves were plotted as
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Figure 3.4.3: (a) Plots of o2 versus Q (influent flowrate),
and (b) t50 versus Q_1, for PVF immobilised R hizo pus  arrhizus 
biomass over the column influent flowrate range 3.40-11.63 ml 
min-1.
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illustrated in Figure 3.4.4. The theoretical curves (closed circles) predicted by this two 

parameter fixed-bed adsorption model are in close agreement with the corresponding 

experimental plots (open circles).

As with the experimentally determined breakthrough curves (Figure 3.4.1 a), 

theoretical plots on a time basis demonstrate that complete breakthrough times (when 

C = C) decrease with increasing flowrate as shown in Figure 3.4.5a. Theoretical curves 

plotted with respect to volume appear to be superimposed as illustrated Figure 3.4.5b, 

and similar to Figure 3.4.1 b, influent volumes required for complete breakthrough was 

ca. 1.4 1 in all cases.

3.4.5 Error analysis

Duplicate experiments were performed in all cases, and the results were all found to 

agree to within limits of 6%.
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Figure 3.4.4: Mathematically predicted (two parameter fixed- 
bed adsorption model) and experimental column breakthrough 
curves (Cu2+ effluent concentrations versus effluent 
volumes).
Mathematically predicted ( # ) and experimental ( O  ) •
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Figure 3.4.5: Mathematically predicted (two parameter fixed- 
Jbed adsorption model) column breakthrough curves for 
immobilised Rhizopus arrhizus biomass. Effluent Cu2+
concentration versus time (a), and effluent Cu
concentration versus effluent volume (b).
Flowrates (ml min-1) : 3.40 ( O ) r 5. 8 8  ( •  ) , 6 .8  0
( □  ) ,  7 . 2 5  ( ■  ) ,  1 0 . 0 0  ( A  ) and H * 63 ( A  ) .

° 1  2 3 4 5
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3.5.1 Isotherm type analysis

Selenite was not adsorbed to any detectable levels by live non-metabolising biomasses 

of Rhizopus arrhizus and a Penicillium species, but appreciable quantities of Ca2+, Mg2+, 

H+ and K+ ions were released into the aqueous environments. Isothermal type data, in 

the form of quptake and Ca2+, Mg2+, H+ and K+ displacement (flmol g'1), are tabulated with 

respect to an increasing external selenite concentration range 125-2111 (imol I'1 for both 

fungi in Table 3.5.1 and Table 3.5.2.

3.5 Selenite adsorption studies: results

Table 3.5.1: Ca2+, Mg2+, H+ and K+ ion release at equilibrium
following selenite-microbe contact with live non-metabolising 
Rhizopus arrhizus biomass.

(umol 1 1) 125 248 603 1151 2111

q (umol g'1) 0 0 0 0 0
Ca2+ (umol g'1) 1 2 4 6 10
Mg2+ (umol g"1) 24 36 72 72 77
H+ (umol g'1 ) 3 7 12 19 27
K+ (umol g“1) 22 40 52 63 73

Table 3.5.2: Ca2+, Mg2+, H+ and K+ ion release at equilibrium 
following selenite-microbe contact with live non-metabolising 
biomass of a Penicillium species.

Ct (umol 1 1) 125 248 603 1151 2111

q (umol g“1) 0 0 0 0 0
Ca2+ (umol g_1) 8 11 35 47 45
Mg2+ (umol g"1) 1 4 44 53 60
H+ (umol g“1) 1 1 27 45 66
K+ (umol g^1) 86 155 297 302 364
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Selenite uptake was not detected over the metalloid oxyanion concentration range with 

q values remaining at zero, but Ca2+, Mg2+, H+ and K+ ion release increased with 

increasing selenite levels. Maximum release values for Ca2+, Mg2+, H+ and K+ were ca. 

10, 77 27 and 73 |Hmol g'1 respectively for Rhizopus arrhizus, and ca. 45, 60, 66 and 

364 (Xmol g’1 for the Penicillium species.

3.5.2 Error analysis

Duplicate experiments were performed in all cases, and the results were all found to 

agree to within limits of 3%.
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3.6.1 G rowth o f  the Penicillium spec ies  in the absence o f  selenite

For the Penicillium  species grown in the absence of selenite, no background selenium 

was detected either in the aqueous phase or associated with the biomass, and no volatile 

selenium compounds were isolated from the activated charcoal traps. The pattern of 

growth is illustrated in Figure 3.6.1. After inoculum addition growth immediately 

entered an approximately linear growth phase which continued to day 10 resulting in a 

maximum biomass dry weight of ca. 5.9 g 1"'. A stationary growth phase was observed 

from days 10-12 and thereafter growth appeared to enter a decline phase. After day 14 

maximum biomass dry weight was of the order ca. 5.4 g I'1 (Figure 3.6.1a). The initial 

pH of the medium was 4.20 and decreased to 3.09 on addition of the inoculum. The pH 

decreased steadily with time to a value of 1.89 during the growth phase and remained 

constant during the stationary phase. After day 12 the pH slowly increased to a final 

value of 1.94 on day 14 (Figure 3.6.1  b). Results are from one of three experiments, all 

of which were in agreement to within limits of 4%.

3.6.2 Growth o f  the Penicillium species in the presence o f  selenite

A total of ca. 440 (Xmol of volatile selenium compounds were isolated from activated 

charcoal traps exposed to exhaust gases of the Penicillium  species grown in the presence 

of selenite by the methanol extraction technique described in section 2.6 .2 .4 . Total 

selenium extracted from each trap is tabulated in Table 3.6.1. Average values of 184 and 

256 (imol of selenium were isolated from the first and second series of activated 

charcoal traps extracted after weeks 1 and 2 respectively.

3.6 Selenite transformation studies: results
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Figure 3.6.1: Growth of the Pénicillium species in the
absence of selenite. Biomass growth is shown in (a) and the 
pH change in the culture medium is shown in (b) . Typical 
results from one of three experiments are shown all of which 
gave similar results: experimental points are averages of two 
determinations. Vertical error bars representing standard 
error of the mean (SEM) are smaller than the dimensions of 
the symbols and are subsequently not shown.

124



Table 3.6.1: Volatile selenium compounds recovered from
activated charcoal traps during growth of the P e n i c i l l i u m  
species in a bioreactor containing 5000 pmol of sodium 
selenite. The first and second series of traps were harvested 
for analysis after weeks 1 and 2 respectively, and three 
traps in series were used for each week. Typical results from 
one of three experiments are shown all of which gave similar 
results. Quoted values are averages of two determinations
that agreed to within limits of 5% .

Series Trap Selenium Total
Recovered ( y.mo 1 )
(pmo1)

First 1 73
2 61
3 50 184

Second 1 119
2 96
3 41 256

Overall total 440

Fungal growth in the presence of 1000 (imol I'1 of selenite is illustrated in Figure 3.6.2. 

A slight lag phase was noticeable from days 0-1 with growth commencing on day 2. 

Again a linear growth phase was observed and this continued until day 10. Growth 

began to level off at this point and entered a stationary phase resulting in an overall 

maximum biomass concentration of ca. 6.0 g I'1. On day 11 a decline phase commenced 

and a final biomass concentration of ca. 5.5 g I'1 was recorded on day 14 (Figure 

3.6.2a). It is noteworthy that the colour of the bioreactor contents were identical to the 

selenite-free reactors up until day 11, but from days 11-14 a red colour prevailed.

The initial pH of the selenite rich medium was 6.10, but this rapidly decreased 

to pH 3.00 on addition of the inoculum. The pH decreased steadily during the linear 

growth phase to a minimum value of 2.02 on day 11 and increased slightly to a final 

value of 2.09 on day 14 (Figure 3.6.2b).
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Figure 3.6.2: Growth of the Pénicillium species in the
presence of 10 0 0 /mol 1 sodium selenite (complete legend on the following page).
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Figure 3.6.2: Growth of the Pénicillium species in the
presence of 1000 /¿mol l“1 sodium selenite. Biomass growth is 
shown in (a) and the changes in the p H  of culture medium is 
shown in (b). Total selenium remaining in the aqueous phase 
is shown in (c). in (d) total selenium associated with the 
biomass (open circles) and selenium per unit biomass dry 
weight (open squares) are profiled. The total selenium mass 
balance is plotted in (e) . The continuous line represents the 
total selenium theoretically present in the bioreactor 
allowing for selenium loss in sample volumes. The open 
circles represent total selenium experimentally determined in 
the aqueous phase together with that associated with the 
biomass regressed with a best fit line (dash line) . The 
differences between these two lines represent loss of 
selenium from the system by volatilisation. Typical results 
from one of three experiments are shown all of which gave 
similar results: experimental points are averages of two
determinations. Vertical error bars represent standard error 
of the mean (SEM) shown when these exceed dimensions of the 
symbols.
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From an initial value of ca. 5000 |lmol of selenium present in each bioreactor 

total selenium in solution decreased to ca. 2540 |J.mol during the rapid growth phase and 

further declined steadily to a final value of ca. 2510 |imol on day 14 (Figure 3.6.2c).  

Total selenium associated with the fungal biomass increased with increasing biomass 

concentrations to ca. 1530 (imol during the rapid growth phase. During the decline phase 

total selenium associated with the biomass continued to increase to a final value of ca. 

1830 fimol on day 14. On a dry weight basis, selenium accumulation by the Penicillium  

species was most rapid during the phase of fastest growth and increased to a level of ca. 

60 fimol (g dry weight)'1 after 4 days (Figure 3.6-2d).

On day 14 total selenium in the aqueous phase and associated with the biomass 

was calculated at ca. 4340 fimol. Since ca. 5000 fimol of selenium were present initially 

in the reactor, ca. 660 fimol were lost over the 2 wk period. A total of ca. 440 fimol of 

selenium in the form of volatiles were isolated from the activated charcoal traps leaving 

ca. 220 fimol unaccounted for. The sum of selenium associated with the biomass and 

in the aqueous phase decreased with respect to time reflecting the selenium loss from 

the system, and this loss was gradual over the 2 wk period as illustrated in Figure  

3.6 .2e.  As above, results are from one of three experiments, all of which were in 

agreement to within limits of 6%.

3.6.3 Biom ass-free controls

No volatile selenium compounds were isolated from activated charcoal traps exposed to 

biomass-free reactor exhaust gases, and reactor contents remained clear with no 

formation of a red colour. Total selenium in the aqueous phase was constant at 1000 

fimol I'1, and the pH after introduction of selenite remained at 6.60.
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3.7.1 Selenite volatilisation enhancement

The transformation of selenite to volatile selenium compounds was not enhanced by 

single 50 ml DMEM additions, either at t0 or on day 7. However two 25 ml DMEM 

additions, one at t0 and the other on day 7, appeared to stimulate volatilisation 

significantly. Quantities of volatile selenium compounds extracted from activated 

charcoal traps are displayed in Table 3.7.1. For the case of a single DMEM addition at 

t0, a total of 421 fimol of selenium were isolated, 202 fimol between t0 and day 7, and 

219 fimol betweens days 7-14. During the same time period for the bioreactor amended 

with two DMEM aliquots, 303 and 313 fimol were extracted respectively, totalling 616 

fimol. For a single DMEM amendment at day 7, a total of 442 fimol were detected, 202 

and 240 before and after addition respectively.

3.7.2 Effects o f DMEM on biomass growth and pH

A single 50 ml DMEM addition at t0 appeared to have an inhibitory effect on the growth 

of the Penicillium species for the first 7 days, but from day 8 to day 14, biomass levels 

increased rapidly. For two 25 ml DMEM additions, one at t0 and the other on day 7, 

biomass growth was linear over the 2 wk period. For the case of a single 50 ml DMEM 

addition on day 7, biomass growth was linear from t0 to day 7, but from day 7 to day 

14, growth appeared to enter into a decline phase. Maximum biomass levels were 

observed for systems amended with a single 50 ml DMEM addition at t0.

3.7 Transformation enhancement studies: results
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Table 3.7.1: Volatile selenium compounds recovered from
activated charcoal traps during growth of a Penicillium 
species in 5 1 of media amended with 5 0 ml of DMEM and 5 000 
pmol of sodium selenite. The first and second series of traps 
were harvested for analysis after weeks 1 and 2 respectively, 
and four traps in series were used for each week. Quoted 
values are averages of two determinations that agreed to 
within limits of 5%.

Series Trap Selenium Recovered
(yrnol)

Total 
(pmol)

50 ml DMEM addition at: *"0
First 1 62

2 48
3 46
4 46 202

Second 1 61
2 58
3 52
4 48 219

Overall total 421

25 ml DMEM additions at t 0 and day 7
First 1 115

2 68
3 68
4 52 303

Second 1 92
2 85
3 75
4 61 313

Overall total 616

50 ml DMEM addition at day 7
First 1 53

2 50
3 50
4 49 202

Second 1 69
2 65
3 53
4 53 240

Overall total 442
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For a 50 ml DMEM addition at t0, biomass growth was slow from days 0-7, 

increasing from ca. 0.6 g I'1 to 2.0 g I'1 (Figure 3.7.1a). From days 7-10, growth 

increased rapidly to ca. 6.8 g I'1, and advanced to 7.5 g I'1 on day 14. The pH of the 

inoculated media decreased steadily from 3.30 to 1.90 over the 14 day period (Figure 

3.7.2a). For two 25 ml DMEM additions, the first at t0 and the second on day 7, biomass 

increased almost in a straight line, from ca. 0.6 g I'1 at t0, to ca. 3.0 g I'1 on day 7, and 

to ca. 6.0 g I"1 on day 14 (Figure 3.7.1b). The pH decreased from 3.30 to 1.95 over the 

test period (Figure 3.7.2b), and the second 25 ml aliquot addition of DMEM on day 7 

did not noticeably affect the pH profile. For a 50 ml addition on day 7, biomass growth 

was linear from ca. 0.6 g I"1 at t0, to a maximum value of ca. 5.8 g I'1 on day 7 (Figure 

3.7.1c). From days 7-14, a decline phase was observed, and the biomass level decreased 

to a minimum value of ca. 4.9 g I'1. The pH decresed slowly from 3.80 at t0 to a final 

value of 1.98 on day 14.

3.7.3 Selenium in the aqueous phase and associated with the biomass: DMEM effects 

Selenite remaining in the aquous phase and associated with the biomass were constant 

after the 2 wk periods in all cases of DMEM additions. Upon fungal inoculation at t0, 

selenite in the aqueous phase immediately decreased from a total of ca. 5000 to ca. 3750 

|Xmol for both cases where DMEM was present (Figure 3.7.3a,b). In contrast in the 

absence of DMEM an immediate decrease to ca. 4300 |imol was observed (Figure

3.7.3c). Corresponding selenium accumulation levels by the fungal cells at t0 were ca. 

1250 and 700 (imol respectively (Figure 3.7.4). Selenite in the aqueous phase further 

decreased in all cases to final levels of ca. 1250 (¿mol on day 14 in a linear manner.
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Day 7

Time (d a ys )

Figure 3.7.1: Growth of the Pénicillium species in the
presence of 1000 /¿mol l- 1  sodium selenite and 50 ml additions 
of DMEM in 5 1 of media, (a) 50 ml DMEM addition at t0, (b)
two 25 ml DMEM additions at t0 and on day 7, (c) 50 ml DMEM
addition on day 7. Experimental points are averages of two 
determinations that agreed to within limits of 6%.
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Day 7

Figure 3.7.2: Media pH profiles of Pénicillium species growth 
in the presence of 1000 /xmol l- 1  sodium selenite and 50 ml 
additions of DMEM in 5 1 of media, (a) 50 ml DMEM addition at 
t0, (b) two 25 ml DMEM additions at t0 and on day 7, (c) 50
ml DMEM addition on day 7. Experimental points are averages 
of two determinations that agreed to within limits of 6%.
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Figure 3.7.3: Selenium remaining in the aqueous phase as a 
resultof Pénicillium species growth in the presence of 1000 
/xmol I- 1  sodium selenite and 50 ml additions of DMEM in 5 1 
of media, (a) 50 ml DMEM addition at t0, (b) two 25 ml DMEM
additions at t0 and on day 7 ,  (c) 50 ml DMEM addition on day 
7. Experimental points are averages of two determinations 
that agreed to within limits of 6%.
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Figure 3.7.4: Selenium associated with the Pénicillium
species biomass grown in the presence of 1 0 0 0 /mol I- 1  sodium 
selenite and 50 ml additions of DMEM in 5 1 of media, (a) 50 
ml DMEM addition at t0, (b) two 25 ml DMEM additions at t0
and on day 7, (c) 50 ml DMEM addition on day 7. Experimental
points are averages of two determinations that agreed to 
within limits of 6%.
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In the case of a single 50 ml aliquot addition at t0, selenium associated with the 

biomass increased slowly from the initial accumulated level to ca. 3000 and 3600 (imol 

on day 7 and 12 respectively, and remained constant thereafter (Figure 3.7.4a.). Biomass 

selenium loadings at t0, and on days 7 and 14 were ca. 417, 215 and 96 |lmol g'1 (dry 

wt) respectively (Figure 3.7.5a). The bioreactor contents changed from a pale white 

colour to red on day 2, and well defined large red spherical mycelium particles 

developed as distinct from the finely suspended nature of the inocula.

In the systems involving two 25 ml DMEM additions, selenite accumulation was 

linear over the 2 wk period (Figure 3.7.4b). From t0 to day 7 and days 7-14, selenium 

associated with the biomass increased to ca. 2160 and 3500 |imol respectively. Biomass 

selenium loadings decreased from ca. 417 (imol g‘‘ at t0, to ca. 213 and 113 (imol g'1 

on days 7 and 14 respectively (Figure 3.7.5b). The bioreactor contents changed again 

from the pale white consistency of the inocula, to the distinctive red colour of the well 

defined mycelium particles on day 2.

In the systems involving one 50 ml DMEM addition on day 7, selenite 

accumulation increased rapidly to ca. 2500 (imol on day 2, and from day 2 to day 14 

steadily increased to ca. 3375 (imol on day 14 (Figure 3.7.4c). Overall selenite loadings 

were 233, 94 and 148 |imol g'1 (dry wt), at t0 and on days 7 and 14 respectively (Figure 

3.7.5c). Biomass growth had the same pale white turbid consistency of the inocula for 

the first 7 days, but after the addition of DMEM the formation of spherical red 

mycelium pellets was observed after day 8.
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CHAPTER 4: DISCUSSION

4.0 Fungal structure

Fungi are predominately multicellular and filamentous in nature and are important 

ecologically as decomposers. The filamentous structures are known as hyphae and are 

commonly divided into cells by cross-walls called septa. Cytoplasm flows freely 

throughout the hyphae passing through pores in the septa. Ultrastructural studies of 

filamenteous fungi demonstrate a typical eukaryotic cellular organisation with individual 

hyphal compartments consisting of one or more nuclei (Carlile & Watkinson, 1994). 

These cellular compartments are enclosed by a plasma membrane and a rigid cell wall 

structure. Polysaccharides make up to 90% of the main constituents of the cell wall 

structure and are usually complexed with proteins, lipids, polyphosphates, inorganic ions 

and pigments such as melanins (Farkas, 1990). The main polysaccharide present in 

fungal cell walls is chitin, a linear polymer of the acetylated amino sugar N- 

acetylglucosamine. Vegetative growth of filamentous fungi usually takes the from of a 

multi-branched system of hyphae known as mycelium. Fungal growth is 

characteristically confined to the tips of the hyphae and as the mycelium extends the 

cytoplasm tends to disappear from the older central regions leaving behind the cell wall 

structure, and it is the cell wall components that are considered responsible for the 

passive adsorption affinities of fungal biomass for metal ions (Remade, 1990; Gadd, 

1993b)- Filamentous fungi have been found to exhibit low rates of intracellular metal 

ion uptake, and binding to cell walls appears to be the most significant mechanism (de 

Rome & Gadd, 1987b).
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4.1 Biosorption characterisation: discussion

Although the data reported in Table 3.1.1 show a slight trend of increasing uptake with 

pH, the variation between uptake values is typically less than 4%, indicating that at 

solution pH values of 4 and 6, the initial hydrogen ion concentration has no appreciable 

effect on the amount of metal adsorbed. This is in keeping with previous studies that 

report ranges of pH optima from 4-7 (Tsezos & Volesky, 1984; Tobin et al., 1984; 

Treen-Sears et al., 1984).

4.1.1 Biosorbent pretreatment effects

In this work, considerable variation in the effects of biomass pretreatment on the uptake 

of the test ions is evident, with maximum and minimum adsorption levels observed for 

freeze-dried and live non-metabolising biomass systems respectively. In the case of non- 

viable biomass, adsorption is considered to proceed exclusively by metabolically 

independent passive adsorptive processes (de Rome & Gadd, 1987b; Wainwright, 1990), 

and has been reported to adsorb metal ions in larger quantities than viable biomass 

(Kuyucak & Volesky, 1988; Wainwright, 1990; Urruita Mera et al., 1992; Brady & 

Tobin, 1994). Increase in adsorption capacity of non-viable biomass has been attributed 

to increased surface area and exposure of intracellular binding sites caused by 

pretreatment (Avery & Tobin, 1992) and the absence of competing H+ ions produced by 

viable biomass (Urrutia Mera et al., 1992).

In contrast, while freeze drying enhanced uptake for each of the test ions, oven 

drying diminished uptake values for both Cd2+ and Cu2+ to the extent that maximum 

uptake of Cu2+ by oven dried biomass was only 60% of the freeze dried value. Uptake 

levels for Sr2+ by both freeze-dried and oven-dried biomass were almost identical.
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Release of Ca2+ and Mg2+ ions accounted for between 70-77% of the Sr2+ uptake on a 

molar basis, and a complete absence of H+ ions indicated that ion exchange is the 

predominant binding mechanism involved. This is consistent with earlier work using the 

freshwater algae Vau.ch.eria (Crist et al., 1990), and overall it was concluded that 

adsorption of alkaline earth metal ions is an ion-exchange phenomenon based on 

electrostatic interactions. In contrast, with the yeast Saccharomyces cerevisiae, additional 

covalent binding of Sr2+ was reported (Avery & Tobin, 1992; 1993). It was considered 

that the pH decrease recorded after metal ion addition to live yeast biomass resulted 

from the covalent bonding of the ion to surface anionic groups which including 

carboxylate and phosphate (Avery & Tobin, 1992). These sites were presumed to have 

been occupied previously by H+ ions, and as a result of metal binding, displacement of 

H+ ions was detected.

During Cd2+ binding, appreciable release of H+ ions at ca. 2.2 [imol g '\ indicated 

that covalent binding is involved. As for Sr2+, ion exchange appears to be the principal 

mechanism of adsorption, with Ca2+ and Mg2+ release accounting for between 59-71% 

of the Cd2+ adsorbed. In the Cu2+ studies, combined Ca2+ and Mg2+ release represents 

only between 34-51% of the total Cu2+ adsorbed, whereas H+ displacement was a 

maximum of ca. 120 (imol g 1, implying that ion exchange and covalent binding both 

contribute significantly to uptake. The non-stoichiometry of the exchanges is in keeping 

with previous work with yeast biomass and suggests that some uptake occurs to sites not 

previously occupied by Ca2+, Mg2+ or H+ ions (Avery & Tobin, 1992).

4.1.2 Ionic and covalent binding
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4.1.3.1 Langmuir applications

The linearity of the reciprocal Langmuir plots for all freeze dried biomass systems 

suggests the predominance of a single binding mechanism, ion exchange. This agrees 

well with Sr2+ and Cd2+ systems, where Ca2+ and Mg2+ were the main displaceable 

cations. Similarly, adsorption of Cd2+ ions by non-viable brown marine algal biomass 

and stationary cells of Saccharomyces cerevisiae were found to accumulate Cd2+ ions 

exclusively by passive surface adsorption, and a good fit of the Langmuir adsorption 

model to the adsorption data supported a single layer binding mechanism (Holan, 

Volesky & Prasetyo, 1993; Volesky et al., 1993).

The linearity of the reciprocal Langmuir plots was unexpected in the case of 

Cu2+, in view of the more complex cation displacement data involving H+. In a previous 

study, adsorption of Cu2+ by Rhizopus arrhizus followed the BET isotherm for multi

layer adsorption, reflecting more than one type of binding mechanism (de Rome & 

Gadd, 1987b). Furthermore in a study of metal uptake by Bacillus subtilis cell walls, it 

was suggested that carboxyl groups are the major source of metal ion deposition, 

although Cu2+ ions preferentially bind to amines rather than carboxylates (Beveridge & 

Murray, 1980).

4.1.3.2 Scatchard transformation and BET applications

Scatchard transformations of the uptake data demonstrate differences between the test 

ions. Linear plots, as are evident in all cases for Sr2+ and Cd2+ freeze-dried biomass 

systems (see Table 3.1.3), represent uptake to a single distinct type of binding site, and

4.1.3 Characterisation o f metal binding sites
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are consistent with the proposed ion exchange binding mechanism. Curved Scatchard 

plots convex to the origin (see example Figure 3.1.9a), have been previously reported 

for metal binding by microbial biomass and are interpreted as indicating multiple non

equivalent binding sites (Volesky, 1990; Tobin et al., 1990; Avery & Tobin, 1993; 

Brady & Tobin, 1994; Brady & Duncan; 1994). In the present study, curves concave to 

the origin (see example Figure 3.1.9c) for all the Cu2+ adsorption systems (Table 3.1.3) 

may reflect cooperative binding by multiple sites (Chamness & McGuire, 1975). In 

earlier Scatchard plot studies (Tobin et al., 1990), the primary interactions of metal ions 

with Rhizopus arrhizus biomass were considered to be due a complexation mechanism 

involving carboxylate and phosphate groups on the surface or within the biomass. A 

secondary adsorption mechanism involving the electrostatic interactions of positively 

charged metal ions with negatively charged functional groups was also proposed. 

However the Brunauer, Emmett, Teller (BET) model, which reflects apparent multilayer 

adsorption phenomena (Weber, 1972), did not provide good fit to adsorption data from 

any of the metal-biomass systems in this work. Consequently, it would appear that, 

although multiple binding sites may be involved, adsorption is a monolayer rather than 

a multilayer process.

4.1.3.3 Freundlich applications

Oven-dried Sr2+ biomass systems displayed similar uptake, displacement and adsorption 

characteristics as freeze-dried systems. However, live non-metabolising systems exhibited 

lower uptake and conformity to the Freundlich adsorption model only. The Freundlich 

equation is basically empirical, and represents the case of heterogeneous energies of
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adsorption on adsorbent surfaces. This more complex binding may be a result of proton 

motive forces producing H+ ions that compete or displace surface bound Sr2+ ions. A 

similar result with the same biomass for Cd2+ pH 4 systems was also observed.

Overall, with equivalent Ca2+ and Mg2+ displacement levels (Table 3.1.2), it 

appears that all the biomass types share the same ionic binding characteristics. As with 

covalent binding (as represented by H+ release), no pretreatment variation effects were 

observed. For the softer ions Cd2+ and Cu2+, oven-drying adversely affects binding sites 

on the biomass not previously occupied by Ca2+, Mg2+ and H+ ions, reducing overall 

adsorption capacity. For the hard ion Sr2+, these sites do not appear to be involved in 

uptake, and consequently little variation is observed between biomass types.

In contrast, Sr2+ uptake by live Saccharomyces cerevisiae cells was previously 

reported to result in non-linear reciprocal Langmuir plots, reflecting multi-binding site 

adsorbents, and the displacement of Ca2+, Mg2+ and H+ ions suggested a combination of 

both ionic and covalent bonding (Avery & Tobin, 1992). For oven-dried Saccharomyces 

cerevisiae biomass however, Mg2+ was the predominant exchangeable cation, indicating 

primarily electrostatic interaction, and reciprocal Langmuir plots were linear suggesting 

the existence of a single type of binding site. In another study, chemical modifications 

of carboxyl groups by esterification, and amino and hydroxyl groups by acetate addition, 

reduced the quantity of Cu2+ ions accumulated by isolated cell walls of Saccharomyces 

cerevisiae. This indicated that both functional groups play a role in Cu2+ ion adsorption, 

and curved Scatchard plots convex to the origin reflected this multiphasic binding 

(Brady & Duncan, 1994). In general biosorption of metal ions by fungal biomass has 

been viewed as a relatively non-specific process, with each cation adsorption site being 

capable of binding a number of different metal species (Tobin et al., 1988; de Rome & 

Gadd, 1991).

144



In summary, for Sr2+ up to 70% of the uptake may be accounted for by ion exchange 

with negligible covalent binding as evidenced by the absence of H+ release. Covalent 

bonding contributes to Cd2+ uptake but ion exchange is the principal mechanism 

accounting for up to 60% of the uptake. For Cu2+ ion exchange remains important but 

covalent binding is significant and contributes to the greater uptake levels.

4.2 Application of hard and soft principle: discussion

Sr2+ is a class (a) hard metal ion, and Mn2+, Zn2+, Cd2+, Cu2+ and Pb2+ are classified as 

borderline soft (Appendix B). Covalent index and softness of the test ions increase in the 

order: Sr2+ < Mn2+ < Zn2+ < Cd2+ < Cu2+ < Pb2+. In general the greater the covalent index 

value of a metal ion, the greater its degree of class (b) character, and consequently its 

potential to form covalent bonds with biological ligands (Brady & Tobin, 1994).

4.2.1 Equilibrium cation uptake, displacement and inhibition studies 

The results reported in Table 3.2.1 demonstrate significant differences in affinity by the 

same biomass for different metal ions. Equilibrium uptake levels of t0 metals were found 

to correlate directly with covalent index values as illustrated in Figure 4.2.1. This 

correlation is a further indication that greater binding results from an increased covalent 

contribution. In a previous study, metal ion adsorption by vacuum dried Rhizopus 

arrhizus was found to be directly related to ionic radii for a range of divalent and 

trivalent metal ions (Tobin, Cooper & Neufeld, 1984), and it is interesting to note that 

ionic radius is a factor in the computation of covalent index values. From the Periodic

4.1.4 Biosorption characterisation: summary
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Table, the ions Mn2+, Zn2+ and Cu2+ are in the first series of transition elements, and 

according to Hughes & Poole (1989; 1991), Cu2+ is the strongest Lewis acid in this 

group and will bind preferentially to microbial biomass ligands. This is demonstrated in 

this study with binding increasing with covalent index in the order, Mn2+ < Zn2+ < Cu2+.

In earlier studies, metal ion uptake capacities for native cell walls of 

Saccharomyces cerevisiae and fungal cell walls of Trichoderma harzianum increased in 

the order Co2+ < Cd2+ < Cu2+, and Zn2+ < Cd2+ < Hg2+ respectively (Brady & Duncan, 

1994; Rulcker, Frandberg & Schnurer, 1995). Both trends also demonstrate increasing 

metal adsorption with increasing covalent index.

4.2.1.1 Exchange of Ca2+, Mg2+ and H+ ions

The displacement of H+ ions has been interpreted to indicate covalent bonding, and 

release of Ca2+ and Mg2+ ions denotes ionic interactions (Crist et al., 1990; Avery & 

Tobin, 1992, 1993; Brady & Tobin, 1994). Release of H+ ions in this study increased 

in the order: Mn2+ < Zn2+ < Cd2+ < Cu2+ < Pb2+, as exhibited in Table 3.2.3, which 

supports the view that increased uptake levels result from an increased covalent binding 

component. Completely stoichiometric exchanges were not observed for the borderline 

ions, indicating that a significant part of the uptake results from binding processes that 

do not cause H+, Ca2+ or Mg2+ release. Since Sr2+ is a class (a) metal, it is expected to 

exhibit ionic binding only. This was confirmed, with 100% of uptake fully accounted 

for by Ca2+ and Mg2+ release, and a complete absence of H+ ion displacement. These 

findings are consistent with work in which Sr2+ binding to the freshwater algae 

Vaucheria was attributed solely to ion exchange processes, also detected from equivalent 

Ca2+ and Mg2+ release (Crist et al., 1990).
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For borderline preloaded systems, and similar to the time-course studies, the potential 

of one ion to displace another increased with increasing covalent index (Table 3.2.2) in 

the following orders:

Mn2+ systems: Sr2+ < Zn2+ < Cd2+ < Cu2+ < Pb2+

Zn2+ systems: Sr2+ < Mn2+ < Cd2+ < Cu2+ < Pb2+

Cd2+ systems: Sr2+ < Mn2+ < Zn2+ < Cu2+ < Pb2+

Cu2+ systems: Sr2+ < Mn2+ < Zn2+ < Cd2+ < Pb2+

Pb2+ systems: Sr2+ < Mn2+ < Zn2+ < Cd2+ < Cu2+

Inhibition potentials increased in an identical manner (Table 3.2.3). This suggests that 

the more covalent the nature of the binding, the stronger the bond.

In the case of preloaded and inhibitory Sr2+ systems, almost an opposite trend 

was apparent.

Sr2+ systems: Cu2+ < Cd2+ < Zn2+ < Mn2+ < Pb2+

Displacement and inhibition capacities decrease with increasing covalent index for all 

test ions except Pb2+. The effects exhibited by Pb2+ on Sr2+ systems are anomalous, and 

cannot be accounted for on the basis of covalent index. However, according to Shannon 

and Prewitt (1969; 1970), ionic radii for both Pb2+ and Sr2+ are almost identical, and it 

may be this close similarity in ionic size that introduces additional competition effects. 

Similarly, inhibition of Co2+ and Cd2+ uptake by viable Saccharomyces cerevisiae cells 

also was found to be greatest by cations of similar size (Norris & Kelly, 1977). 

Furthermore, Hughes & Poole (1991) reported that if hard and soft metal ions are 

present in solution, soft ions tend to bind preferentially to biological ligands and displace 

essential-hard metal ions from their sites (Hughes & Poole, 1991).

4.2.1.2 Test ion displacement and inhibition potentials
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The results of the time-course studies shown in Figure 3.2.1 demonstrate that the 

biosorption process is both rapid, and rapidly reversible by the addition of metal co-ions. 

Equilibrium adsorption is 95% complete within the first 5 min of metal-microbe contact, 

and the slower adsorptive process may represent diffusion into the biosorbent particles. 

These findings are similar to other time-course ion adsorption studies, where cation 

uptake by algal biomass also displayed rapid accumulation, followed by a slower uptake 

phase (Crist et al., 1988; Sloof & Viragh, 1995). Adsorption equilibrium conditions for 

Sr2+ by non-metabolising Saccharomyces cerevisiae systems were reached within 5 

minutes of metal-biomass contact (Avery & Tobin, 1992, 1993), and the uptake of 

uranium by Saccharomyces cerevisiae was relatively fast, with 60% of the equilibrium 

values attained within the first 15 minutes of contact (Kuyucak & Volesky, 1988; 

Volesky & May-Phillips, 1995).

Overall ion uptake values increase in the order: Sr2+ < Cd2+ < Cu2+, which is 

consistent with the findings reported in section 4.1 (Brady & Tobin, 1994). For the dual 

ion Cd2+-Cu2+ borderline systems, ion inhibition and displacement potentials increased 

with covalent index. This trend was reversed for dual ion systems involing Sr2+ ions. 

Biosorption of the borderline ions, Cd2+, Cu2+ and Zn2+, in two-metal systems using 

formaldehyde-cross-linked Ascophyllum nodosum seaweed biomass, also demonstrated 

that each metal ion can inhibit the adsorption of the others (de Carvalho, Chong & 

Volesky, 1995). For single metal systems overall uptake increased in the order, Cd2+ < 

Cu2+ < Zn2+, which is also consistent with increasing covalent index. For Cu2+-Zn2+ 

systems, the effect of Cu2+ on Zn2+ sorption was more pronounced than the effect of Zn2+

4.2.2 Time-course cation adsorption studies
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on Cu2+ sorption. Similarly, and identical to observations in this study for Cd2+-Cu2+ 

systems, sorption of Cd2+ was more sensitive to the presence of Cu2+ ions than vice 

versa. For Zn2+-Cd2+ systems, Cd2+ and Zn2+ ions interfered with each other's sorption 

by almost equal proportions. Again it appears that the higher the covalent index value 

of borderline ions, the greater their inhibitory potential. Similar results were observed 

too for the uptake of Zn2+ and Cd2+ by Saccharomyces cerevisiae, in equimolar dual

metal systems (Ting & Teo, 1994). Overall Zn2+ uptake was impeded by the presence 

of Cd2+ ions, but Zn2+ had no effect on the overall long term uptake of Cd2+.

4.2.3 Application o f hard and soft principle: summary

In the present study, both the magnitude of adsorption levels and the 

displacement/inhibition potential of the ions correlated with covalent index, confirming 

that the classification of metal ions according to the hard and soft principle is of value 

in the study of metal-microbial interactions.

4.3 Effects of biomass concentration

For Cu2+ adsorption by yeast and fungi, including Rhizopus arrhizus, the amount of 

metal adsorbed per unit weight was found to be maximal at lower biomass levels, 

decreasing with increasing amounts of the biosorbent (Gadd & White, 1989b; Junghans 

& Straube, 1991). Similar trends were observed for thorium uptake by a range of fungi 

(Gadd & White, 1989b). These studies proposed that increasing the distance between 

cells enhanced metal uptake as a result of diminished cell-cell electrostatic interference. 

An increased biomass density also leads to interference between ion binding sites and
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reduced mixing during incubation. Disruption of mycelium biomass for a range of fungal 

species increased the surface area available for Cd2+ adsorption and slightly increased 

sorption capacities (Azab et al., 1990). In this study it was proposed to examine this 

relationship between solution biomass levels and metal ion equilibrium adsorption. The 

ions Sr2+, Cd2+ and Cu2+ were used in conjunction with freeze-dried Rhizopus arrhizus 

biomass to this end.

4.3.1 Equilibrium isotherm curves

The shapes of the Sr2+, Cd2+ and Cu2+ isotherms were independent of solution biomass 

levels as shown separately for each test ion in Figure 3.3.1. Conformity of the 

adsorption data to single reciprocal Langmuir plots further suggests that biosorption is 

an equilibrium type reaction independent of solution solute or biosorbent levels (Figure 

3.3.2). As in the previous two sections, metal uptake levels increased in the order Sr2+ 

< Cd2+ < Cu2+, yielding maximum values of ca. 130, 280 and 400 |imol g '1. The 

equilibrium interphase accumulation of metal ions at the surface of microbial biomass 

can be described by adsorption isotherms, and as illustrated in this study, such plots are 

independent of the volume of metal salt solution in contact with the biosorbent, and vice 

versa (Remade, 1990; Brady and Duncan, 1994).

These results are generally consistent with previous studies, where metal ion 

adsorption by lignite (Allen & Brown, 1995) and thorium and Zn2+ uptake by Rhizopus 

arrhizus (Gadd & White, 1989b; Fourest et al., 1991) were found to be independent of 

both biosorbent solution levels and particle sizes. It was also found that any increase in 

surface area between sonicated and non-sonicated freeze-dried biomass particles of 

Saccharomyces cerevisiae and a Candida species, did not significantly enhance Cu2+ and 

Ag+ uptake (Simmons et al., 1995).
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Similar to section 4.1, Ca2+ and Mg2+ ion displacement increased with increasing metal 

uptake until saturation levels were reached (Figures 3.3.3 and 3.3.4). As before, 

maximum displacement values were constant for each test ion, at ca. 20 and 95 (imol 

g'1 for Ca2+ and Mg2+ respectively. Since isotherm plots were constant over a range of 

solution biomass levels, it was expected that the Ca2+ and Mg2+ ion displacement data 

should display similar equilibrium trends. This was indeed the case, with plots of ion 

levels displaced versus equilibrium quplake all fitting the same straight lines for each of 

the test ion systems.

In comparison, H+ ion displacement results displayed more complicated 

equilibrium trends for Cd2+ and Cu2+ systems. Levels of H+ ions displaced per unit dry 

weight of biosorbent increased with decreasing solution biomass concentration for both 

Cd2+ and Cu2+ systems. This is an unexpected phenomenon, with H+ release being at a 

maximum at the lowest biomass concentration, and is in contrast with the trends 

observed for qupmke and Ca2+ and Mg2+ ion displacement. It may be possible in this case 

that cell-cell interactions and electrostatic interferences influence H+ ion 

adsorption/displacement. The chemistry of Cd2+ and Cu2+ ions may also change with 

decreasing pH and perhaps exert an effect on cation equilibrium adsorption.

For Sr2+ systems, no pH changes were detected with respect to qliptake over the 

solution biomass concentration range, confirming the absence of H+ ion displacement as 

previously observed in sections 4.1 and 4.2.

4.3.2 Cation displacement trends
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4.3.3 Ca2++Mg2+/H+ ratios

For the Cd2+ and Cu2+ systems, Ca2++Mg27H+ ratio values (ionic/covalent) were 

calculated for the different biomass concentrations, and are presented versus qmake in 

Figure 4.3.1. In all cases, the ratio appears to decrease linearly with metal uptake, and 

since the levels of H+ displacement increased with decreasing biosorbent concentrations, 

the smallest ratio values for both systems were calculated for the lowest solution 

biomass levels. This indicates ionic binding to be the primary mechanism of cation 

adsorption followed by covalent interactions, and such trends are more pronounced at 

the lower solution metal concentrations. As metal levels increased, H+ displacement 

increased, suggesting covalent binding to be a secondary adsorption mechanism.

4.3.4 Effects o f biomass concentration: summary

In summary, metabolism-independent metal ion adsorption to freeze-dried Rhizopus 

arrhizus biomass is an equilibrium type reaction, and equilibrium positions are 

independent of the suspended biosorbent levels in the aqueous phase. Primary 

mechanisms of cation adsorption have been found to involve ionic binding resulting in 

the displacement of Ca2+ and Mg2+ ions from the biomass ligands, and a secondary 

adsorption mechanism includes covalent interactions as evidenced by H+ ion 

displacement. Future work is merited on the mechanism of H+ ion 

adsorption/displacement at low biomass concentrations.
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4.4.1 Batch screening studies

The organic solvent DCM, was found to have no significant effect on the biosorptive 

capacity of freeze-dried Rhizopus arrhizus biomass for Cu2+ ions. Over the initial 

solution Cu2+ concentration range, Cu2+ uptake and Ca2+, Mg2+ and H+ displacement 

trends were in close agreement for both DCM-treated and -untreated biomass (tables

3.4.1 and 3.4.2). As in earlier sections, maximum Cu2+ adsorption was ca. 425 |xmol g ', 

and overall Ca2+, Mg2+ and H+ displacement levels, were ca. 27, 116 and 139 fimol g'1 

respectively. Similar to section 4.1.2 for freeze-dried biomass, Ca2+ and Mg2+ release 

accounted for ca. 34% of Cu2+ adsorption, representing ionic binding.

The absence of effects of DCM on the biosorbent was unexpected. It was 

originally thought that DCM, as a relatively strong organic solvent might remove cell 

wall material containing metal binding groups such as carboxylates and phosphates, and 

therefore reduce the overall surface net negative charge and limit biosorption. 

Alternatively binding sites might also have been exposed thereby increasing biosorption 

capacities. In previous studies the treatment of fungal biomass with NaOH (Leuf et al., 

1991) and detergent (Gadd & White, 1989b) was found to enhance metal ion 

accumulation by exposing intracellular binding sites for metal deposition.

PVF immobilised biosorbents, with biomass loadings of 40, 50, 60, 70 and 80% 

(w/w), all adsorbed Cu2+ ions to almost identical levels over the initial solution Cu2+ 

concentration range, displaying maximum values of ca. 435 |lmol g'1 (Table 3.4.3). 

Similar ion displacement trends were observed in each case, and maximum levels of ca. 

20, 125 and 110 fimol g '1 were recorded for Ca2+, Mg2+ and H+ release respectively

4.4 Continuous flow  systems
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CTables 3.4.4, 3.4.5 and 3.4.6). The biosorbent prepared with a biomass loading of 60% 

was considered to be more mechanically stable under constant flow conditions and was 

subsequently used to pack the biosorption columns.

4.4.2 Continuous Cu2+ elution studies

The continuous elution of Cu2+ ions from aqueous pH 4 solutions was achieved using 

the biosorbent columns prepared as in section 2.4.1. As flowrate increased, the time 

required for complete column breakthrough (where Cf = Q) decreased as illustrated in 

Figure 3.4.1a. However, experimental breakthrough curves plotted with respect to 

volume all appear to be similar over the flowrate range 3.40-11.63 ml min'1 (Figure 

3.4.1b). Overall, the Cu2+ biosorption capacities of the columns were determined to be 

relatively constant at ca. 208 |j.mol g 1. These maximum values were ca. 50% lower then 

the batch biosorption levels recorded earlier. For the isotherms systems, the biosorbents 

were not pH equilibrated, and their introduction into pH 4 metal solutions resulted in 

instantaneous pH increases, decreasing the overall solution H+ ion concentrations. The 

column immobilised biosorbents, like the influent metal solutions were equilibrated to 

pH 4 before metal-microbial contact, and the relatively high levels of H+ ions are likely 

to have interfered competitively with Cu2+ ion binding, causing a reduction in adsorption 

levels relative to non-pH equilibrated biosorbents.

The Ca2+ and Mg2+ ion displacement potentials were also decreased by pH 

equilibration of the column biosorbents. Maximum Ca2+ and Mg2+ displacement values 

were ca. 9 and 39 |lmol g'1 respectively, collectively representing about 24% of total 

Cu2+ binding by ionic interactions. In contrast to the batch isotherm studies, Cu2+ 

biosorption did not cause any H+ ion displacement from the biosorbents.
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4.4.3 Mathematical modelling of breakthrough curves

The two parameter fixed bed adsorption model was successful in modelling the 

experimental breakthrough curves, and can be used to predict metal ion biosorption 

breakthrough curves over a range of flowrates. By determining a  for two experimental 

curves, it is possible to calculate o  from equation 3.4.1 for a theoretical flowrate. A 

value for t50 can be determined from equation 3.4.2, and by selecting a number of values 

for t and substituting into equation 2.4.1, corresponding C values can be calculated 

(Figure 3.4.4).

By introducing the column length, L, into equation 3.4.1, the model has scale up

potential and the equation becomes

d  = k j Q /  L  ( 4 . 4 . 1 )
By calculating a  for two experimental breakthrough curves at various column lengths,

curves at theoretical lengths and constant flowrates can be determined using a similar

procedure to that described above.

4.4.4 Continuous flow systems: summary

Continuous fixed bed adsorption of Cu2+ ions was achieved using the PVF immobilised 

biomass systems. Overall, 0.8 g of column immobilised biomass was capable of the 

complete sequestration of Cu2+ ions from ca. 1.4 1 of influent solution (150 fimol I'1), 

at the highest tested flowrate of 11.63 ml min-1. The immobilisation procedure was found 

to have no effect on the biosorption potential of the native freeze-dried Rhizopus 

arrhizus biomass, but equilibration to pH 4 after immobilisation reduced uptake 

capacities by ca. 50%. The two parameter fixed-bed adsorption model was also 

successful in predicting the Cu2+ ion adsorption breakthrough curves over the flowrate 

range at constant column lengths.
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In batch equilibrium isotherm type studies, no changes in selenite solution concentration 

was observed following the addition of either Rhizopus arrhizus or the Penicillium 

species as described in section 3.5. Clearly no selenite adsorption and/or active 

accumulation by both live non-metabolising fungi occurred. This absence of affinity of 

negatively charged fungal cell envelopes for adsorption of the selenium oxyanion Se032' 

is likely a result of anion-anion repulsion effects. In contrast the uptake of anion 

complexes was observed by Rhizopus arrhizus biomass in a previous study (Tobin et al., 

1984) and was found to be strongly pH dependent, and the adsorption of selenium also 

in the form of the oxyanion selenite was reported for metal oxides and clay minerals 

(Tan et al., 1994).

4.5.1 Release of Ca2+, Mg2+, H+ and K+ ions

Although no selenite was accumulated by the fungi, Ca2+, Mg2+, H+ and K+ ions release 

into the aqueous environment was evident, and levels generally increased with increasing 

selenite concentrations (Tables 3.5.1 and 3.5.2). Maximum ion release levels recorded 

are presented below in table 4.5.1 for both fungal species.

4.5 Selenite adsorption studies: discussion

Table 4.5.1: Maximum equilibrium Ca2+, Mg2+, H+ and K+ ion
release levels for Rhizopus arrhizus and the Penicillium 
species following selenite-microbe contact.

±0X1 Rhlzopus arrhizus Pénicillium species

Ca2+ 10 (umol g_1) 45 (umol g“1)
Mg2+ 77 (umol g“1) 60 (pmol g“1)
H+ 27 (ymol g"1) 66 (umol g"1)
K+ 73 (umol g'1) 3 64 (umol g"1)
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The plasma and vacuolar membranes are the main transport membranes of fungi, and 

membrane permeability resulting in K+, H+, Ca2+ and Mg2+ release has been shown to 

be associated with cation accumulation and toxicity (Gadd, 1993b; Karamushka & Gadd, 

1994). The most abundant cation in most cells is K+ and is believed to play an essential 

role in the maintenance of an ionic or osmotic environment in the cytoplasm (Ohsumi, 

Kitamoto & Anraku, 1988). For the Penicillium species, K+ was the most abundantly 

released cellular cation, and for Rhizopus arrhizus, Mg2+ and K+ were released to the 

greatest extent in almost equimolar concentrations.

In similar type studies described in section 3.1, Sr2+, Cd2+ and Cu2+ ion adsorption 

by freeze-dried Rhizopus arrhizus biomass resulted in maximum Ca2+ and Mg2+ 

displacement levels of ca. 20 and 110 (imol g'1 respectively. However for the non-viable 

biomass it is likely that some of the Ca2+ and Mg2+ ions were directly displaced from 

surface ligands by the adsorbing cations during the formation of ionic bonds (Crist et 

al., 1988; 1990; 1992; Avery & Tobin, 1992; 1993; Brady & Tobin, 1994; 1995). In the 

present study for live non-metabolising biomass, Ca2+ and Mg2+ release values are ca. 

50% lower than freeze-dried levels, and since selenite sequestration was not evident, all 

Ca2+, Mg2+, H+ and K+ ion release appears to have resulted from passive cellular efflux. 

However studies on microbial interactions with toxic metals have also reported 

membrane damage that caused internal cellular cation losses (Gadd & Mowll, 1983; 

Simmons et al., 1995), although this usually occurred in conjunction with 

uptake/sorption of the toxic metal in question.
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Overall it appears that electrostatic repulsion prevented selenite adsorption by the fungal 

cell wall surfaces although external selenite in the aqueous environment stimulated 

cellular Ca2+, Mg2+, H+ and K+ loss. Whether this cation release was in response to a 

detoxification mechanism or resulted from membrane damage cannot be established at 

this point. Overall, K+ and Mg2+ were the main cations released, followed in order by 

H+ and Ca2+.

4.6 Selenite transformation studies: discussion

4.6.1 Effect of selenite on biomass growth

It appears that the selenite at 1000 |j.mol I'1 concentration exerted no discernable toxic 

effect on fungal growth. Almost identical growth curves were observed in the presence 

and absence of sodium selenite, with maximum biomass concentrations of ca. 6.0 g I"1 

(Figure 3.6.1 a and Figure 3.6.2a). Close agreement of the pH profiles of each system 

further support the similarities in growth patterns (Figure 3.6.1 b and Figure 3.6.2b). 

Slight pH increases detected during the decline growth phases were consistent for 

replicate experiments and may be due to the release of H+ complexing moieties by 

disintegrating biomass. Similar trends were also observed for the growth of Salmonella 

heidelberg in the presence and absence of selenite (McCready et al., 1966).

4.5.2 Selenite adsorption studies: summary

160



After 14 d, the sum of selenium in the aqueous phase and selenium associated with the 

biomass equalled ca. 4340 |imol (Figure 3.6.2e). A total of 440 fimol of selenium were 

isolated from the activated charcoal traps representing ca. 8.8% volatilisation from the 

original 5000 (imol concentration. Combining the figures ca. 4780 |Llmol of selenium 

were accounted for representing ca. 95.6% of the total selenium present in the reactor 

at the start of the experiments. During the lag and rapid growth phases (days 0-7), ca. 

3.7% volatilisation was determined compared with ca. 5.1% during the stationary phase 

and the decline phase (days 8-14). Clearly volatilisation is both growth-associated and 

non-growth associated. In earlier studies Thompson-Eagle & Frankenberger (1991) 

reported that total microbial numbers were directly related to selenium volatilisation 

rates, and a minimum selenium threshold for alkylselenide production was not found 

(Karlson & Frankenberger, 1989; Thompson-Eagle & Frankenberger, 1990a, 1991).

Overall, ca. 220 |lmol of selenium remained unaccounted for, representing less 

than 5% of the initial selenium inventory. It is likely that incomplete trapping may have 

contributed to this discrepancy since a fourth activated charcoal trap in series also 

retained volatile selenium compounds as observed in section 3.7. Incomplete extraction 

of the volatile selenium products as well as general experimental error may also have 

contributed.

4.6.2 Volatilisation trends
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The extraction of volatile selenium compounds from the activated charcoal traps by 

methanol indicated that these volátiles were organic in nature. Using the extraction 

procedure, volatile selenium compounds were isolated only from activated charcoal traps 

exposed to exhaust gases from bioreactors containing the growing Penicillium species 

in the presence of selenite. As expected, no volatile selenium compounds were detected 

in the exhaust gases from selenite-free and biomass-free bioreactors. Under laboratory 

and field conditions, dimethylselenide is reported to be the predominant volatile 

selenium species evolved by microorganisms under aerobic conditions (Doran & 

Alexander, 1977; Zieve et al., 1985; Karlson & Frankenberger, 1990; Thompson-Eagle 

& Frankenberger, 1990a, b\ Thompson-Eagle, Frankenberger & Longley, 1991), and it 

is likely that the selenium compounds volatilised in this study were dimethylselenide. 

The water cooled condensers used to minimise media evaporation may have condensed 

some of this volatile selenium product, since the temperature of the cooling water was 

ca. 16°C, and the boilng point of dimethylselenide is 58°C (TCI, 1996). This may have 

contributed to the ca. 220 (imol of selenium unaccounted for, as observed in sections

3.6.2 and 4.6.2.

In other previous studies, effluent gases were flushed directly into concentrated 

nitric acid in order to trap the volatile selenium species (Zieve et al. 1985; Tan et al., 

1994). This technique was applied to our earlier studies instead of using activated 

charcoal but was found not to trap selenium volátiles. It may be that this was due to the 

inefficiency of room temperature nitric acid at converting organic selenium compounds 

into inorganic selenium species and the effluent gases being flushed through the acid at 

relatively high flowrates. Alternatively, traps containing solutions of Na2C 0 3 and 

Na2H P04 could also be considered for alkylselenides. This system was used to trap 

alkylmercury produced by fungal transformations of inorganic mercury (Kimura & 

Miller, 1960; Yannai, Berdicevsky & Duek, 1991).

4.6.3 Nature o f volatile selenium compounds
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The volatilisation of selenium is temperature-dependent, and the bioreactor temperatures 

were maintained at 25°C in order to favour the biomethylation processes. Biomethylation 

of selenium in the environment occurs at optimal levels in the daytime during the warm 

spring and summer months at temperatures ranging between 20°C - 35°C (Thompson- 

Eagle, Frankenberger & Karlson, 1989; Atkinson et al., 1990, Calderone et al., 1990; 

Frankenberger & Karlson, 1994). Temperature studies conducted by Calderone et al. 

(1990) postulated that increasing temperature increases the solubility of inorganic 

selenium and subsequently selenium availabilty for méthylation. Frankenberger & 

Karlson (1989) calculated for every 10°C rise, the rate of selenium biomethylation 

increased 2.6-fold.

In aqueous environments, neutral to alkaline conditions increase the solubility and 

availability of selenium for microbial transformations, and chemically the reduction of 

selenite to dimethylselenide should be favoured at a low pH (see Frankenberger & 

Karlson, 1989). The media pH values decreased from 3.00 to a low of 2.02 during the 

growth processes (Figure 3.6.2b) thereby enhancing conditions considered favourable 

for dimethylselenide production. In contrast optimum pH values for selenium 

biomethylation as reported by Frankenberger & Karlson (1989, 1994) were between 7.7 - 

8.0. However in these studies the soil microflora investigated apparently had highest 

biomethylation activity when exposed to pH conditions similar to their native habitat and 

bacteria were likely to be responsible for most of the biomethylation activity.

In the present study glucose was used as the carbon source. Previous work using 

the fungus Alternarla alternata in pond water indicated glucose to be a poor promoter 

of the biomethylation process (Thompson Eagle & Frankenberger, 1990¿>; 1991). 

However in studies with saline seleniferous soil, among carbon sources tested glucose 

was most effective in enhancing dimethylselenide production and polysaccharides were 

least effective (Frankenberger & Karlson, 1989).

4.6.4 Temperature, pH and carbon source effects
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Reduction of selenite to amorphous elemental selenium by the Penicillium species was 

observed in the reactors as evidenced by the characteristic red colour of both the 

aqueous phase and the fungal biomass (Nickerson & Falcone, 1963; McReady et al., 

1966; Ramadan et a l, 1988; Tomei et a l, 1992; Gharieb et a l, 1995), and occurred only 

during the decline phase of growth (days 11-14). The disintegration of the biomass may 

expose certain intracellular metabolites either bound to the biomass or released into the 

aqueous environment that in turn may catalyse this reduction. As biomass growth 

became stationary, selenium associated with the biomass (dry weight) decreased (see 

Figure 3.6.2d). However, during the decline phase of gowth where selenite reduction to 

amorphous elemntal selenium was obvious, selenium accumulated by the biomass 

increased to a maximum level of ca. 60 [xmol g'1.

Complete reduction of similar concentrations of selenite has been reported for 

bacterial cells with maximum reduction also occurring during the stationary growth 

phase for Wolinella succinogens (Tomei et al., 1992) but also concurrently with the 

rapid growth phase for Pseudomonas stutzeri (Lortie et a l, 1992). Selenite reduction by 

Salmonella heidelberg was found to be associated primarily with the lag phase of growth 

presumably as a detoxification procedure preceding growth, and reduction was shown 

to be directly dependent on the metabolic activity of the microorganism and not on 

spontaneous chemical reductions occurring as a result of media constituents or pH 

change during microbial growth (McCready et a l, 1966).

4.6.5 Accumulation and reduction trends
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This work has demonstrated that the Penicillium species is capable of selenite 

transformation in aqueous medium by biomass-associated processes as well as the 

formation of volatile organic derivatives. Measurement of volatile selenium compounds, 

selenium in solution and selenium associated with the biomass has enabled the 

calculation of mass balances and the relative significance of biomethylation and 

assimilatory/reductive processes. Using a novel methanol/acid extraction method, this 

work has found that biomethylation accounted for ca. 8.8% of the total selenium present 

in the original culture medium. While it is not possible to separate the processes of 

selenite reduction, transport and incorporation into selenoproteins within the biomass 

(which accounted for ca. 36.6% of the total selenium originally present), it is clear that 

these processes are of greater significance than biomethylation in the overall 

biotransformation of selenite in solution.

4.7 Selenite transformation enhancement studies: discussion

Acceleration of the biomethylation process has previously been achieved by the addition 

of complex carbon sources such as pectin and plant residues (Karlson & Frankenberger, 

1988b; 1989; Calderone et a l, 1990; Thompson-Eagle & Frankenberger, 1990a). These 

compounds usually have partially methylated structures which may provide a source for 

direct transfer of free methyl groups from the carbohydrate to the microbial méthylation 

pathway. Dulbecco's Modified Eagle Medium is a synthetic culture medium composed 

of a range of amino acids, vitamins, inorganic salts, glucose and phenol red indicator, 

and is usually used in studies associated with animal cell tissue culture. These

4.6.6 Selenite transformation studies: summary
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components were made available to the Penicillium species at levels outlined in Table

2.7.1 by additions of 50 ml DMEM 7OX to 5 1 of broth media. The amino acid L- 

methionine, a cofactor in the transfer of methyl groups, is a component of DMEM and 

in previous studies has been shown to promote méthylation reactions, both in native and 

derivative forms. Dimethylselenide formation from selenite by cell-free extracts of a 

Corynebacterium species was achieved by the addition of S-adenosylmethionine (SAM) 

(Doran & Alexander, 1977). Dimethylselenide production from selenate by the fungus 

Alternaría alternata was stimulated by methyl cobalamine and L-methionine (Thompson- 

Eagle et al., 1989), and in a saline seleniferous soil, optimum conditions for indigenous 

microbes dimethylselenide production included the provisions of L-methionine and 

galacturonic acid (Frankenberger & Karlson, 1989). Other amino acids present in 

DMEM include L-cysine, L-serine, and L-glycine, and all have been shown to promote 

dimethylselenide production with the fungus Alternaría alternata (Thompson-Eagle & 

Frankenberger, 1990a).

4.7.1 Effect o f DMEM on fungal growth

A prolonged period of negligable biomass growth over 6 days occurred following a 50 

ml DMEM amendment at t0. This growth inhibition may represent fungal adjustment to 

the DMEM constituents on a genetic level for the manufacture of selective cellular 

metabolites. After day 6 biomass levels increased to a maximum of ca. 7.5 g I"1. For the 

two other DMEM addition systems, 25 ml at t0 and on day 7, and 50 ml on day 7, and 

also for no DMEM additions (section 4.6.1), maximum biomass levels were of the order 

of ca. 6.0 g I'1. It appears therefore that in the 50 ml t0 addition system, the DMEM 

constituents were utilised for further biomass growth. A 50 ml DMEM addition on day 

7 appeared to inhibit fungal growth and induced a decline phase of growth.
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4.7.2.1 Single 50 ml DMEM additions

For systems unamended with DMEM (section 4.6.2), volatilisation levels represented 

8.8% of the total selenium inventories, ca. 440 (imol overall. Out of a total of ca. 5000 

(imol, ca. 184 and 256 (imol were volatilised from t0 to day 7, and from days 7-14 

respectively. During the same time periods, for the 50 ml DMEM addition at t0, 

selenium volatilised was ca. 202 and 219 [imol, 421 |imol overall and representing 8.4% 

volatilisation from the system. Again, during the same time periods, ca. 202 and 240 

(imol were volatilised for the 50 ml DMEM day 7 addition. This represented 8.8% 

volatilisation, a total of 442 (imol. Clearly from these results it is evident that single 50 

ml aliquot DMEM additions failed to enhance further the volatilisation process.

4.7.2.2 Two 25 ml DMEM additions

Methylation enhancement was detected for two 25 ml DMEM additions. Between days 

t0-7 and 7-14, 303 and 313 (imol were isolated respectively, reflecting 12.3% 

volatilisation and 616 (imol of selenium. From the biomass growth curves profiled and 

described above, it seems likely that 50 ml DMEM aliquots were toxic to the growing 

fungus, as evidenced by the prolonged lag and instant decline phases observed 

immediately after addition. Two 25 ml additions may exert reduced toxic effects, and 

rather than increase active resistance and tolerance mechanism, the fungus can engage 

in methylation transformations.

4.7.2 DMEM induced volatilisation trends
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Overall DMEM enhanced selenite accumulation by the Penicillium species. It appears 

that the DMEM components assisted the intracellular accumulation of selenite, probably 

in the manufacture of essential protective metabolites. The presence of selenite has been 

reported to increase cellular carbohydrate, protein and lipid levels in a Fusarium species, 

and to induce the biosynthesis of several low molecular weight proteins. This was 

interpreted as a tolerance mechanism to high levels of selenium as either an equilibrium 

process, or a compensationary mechanism for the replacement of metabolites damaged 

by selenium (Ramadan et al., 1988).

In all cases following DMEM addition the nature of the mycelia changed from 

the finely suspended turbid nature of the fungal inocula to well defined large red pellets, 

demonstrating selenite reduction to elemental selenium during all phases of growth. In 

contrast for non-DMEM systems, the bioreactor contents only went red in the decline 

phases of growth (section 3.6.2), and there was an absence of the large well defined 

mycelium particles. However it is possible that the DMEM components may have 

adsorbed and precipitated or reduced the selenite within the large mycelium pellets 

independently of the biomass, accounting for the high accumulation levels described 

above.

Other observed microbial selenite detoxification procedures include, the formation 

of needle-like crystal structures of elemental selenium on the surfaces of fungal hyphae, 

spores and conidia (Ramadan et al., 1988; Gharieb et al., 1995), and intracellular 

deposition of electron-dense selenium granules in yeast and bacteria (Falcone & 

Nickerson, 1963; Tomei et al., 1992).

4.7.3 DMEM induced accumulation/biosorption trends
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For all DMEM addition systems, pH decreased to final levels of ca. 1.95, from 

initial values of between 3.3-3.8, after inocula additions. This is similar to non-DMEM 

systems, where pH values decreased from 3.00 to a low of 2.02 (Section 3.6.2), and as 

discussed above, decreasing pH has been reported to enhance selenium volatilisation 

(Frankenberger & Karlson, 1989).

4.7.4 Selenite transformation enhancement studies: summary

Overall DMEM enhanced the fungal transformation of selenite to amorphous elemental 

selenium in all cases, possibly as a result of increases in the manufacture and/or 

replacement of protective metabolites. Reduction to elemental selenium and subsequent 

accumulatory/biosorptive processes appear to be the favoured mechanisms of 

detoxification over volatilisation. Enhancement of the volatilisation processes may be 

achieved by small incremental additions of DMEM over the 2 wk time periods. 

Volatilisation enhancement techniques may potentially be applied so that selenium in the 

form of volatile compounds may be dispersed and diluted by air currents directly away 

from contaminated areas with possible deposition occurring in selenium-deficient 

regions.
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CHAPTER 5

CONCLUSION

Interactions of metal and metalloid ions with fungal biomass
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CHAPTER 5: CONCLUSION

Metal ion accumulation by non-metabolising Rhizopus arrhizus biomass occurs 

exclusively by passive equilibrium adsorption processes as a result of anion-cation 

interactions, and equilibrium positions are independent of the suspended biomass levels 

in the aqueous phases. Freeze-drying maintains the integrity of the fungal biomass, thus 

preserving native metal-binding functional groups. Oven-drying at 55°C reduces the 

adsorption capacity of the native biological ligands, possibly by damage to the structural 

integrity of the biomass and protein denaturation.

Both ionic and covalent bonds contribute significantly to the adsorption of Mn2+, 

Zn2+, Cd2+, Cu2+ and Pb2+ ions, while only ionic binding was observed for Sr2+. The level 

of ionic binding is constant for each divalent cation, and such interactions are the 

primary mechanisms of metal ion adsorption. A secondary adsorption mechanism 

involves covalent type interactions, and levels of covalent binding increase in the order: 

Mn2+ < Zn2+ < Cd2+ < Cu2+ < Pb2+. Increasing softness and decreasing hardness of the 

ions increase in the order Sr2+ < Mn2+ < Zn2+ < Cd2+ < Cu2+ < Pb2+, where Sr2+ is 

considered a true hard ion according to the hard and soft principle of metal ions, and 

Mn2+, Zn2+, Cd2+, Cu2+ and Pb2+ ions are borderline-soft. Overall adsorption levels 

increase in the same order and positively correlate with corresponding ion covalent index 

values. These index values are a measure of the extent metal ions react covalently with 

biological ligands, and the higher the value the greater the covalent contributions.
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As a result of anion-anion repulsion effects, non-metabolising biomass of both 

Rhizopus arrhizus and the Penicillium species exhibit no biosorptive affinity for the 

oxyanion selenite in solution. The actively metabolising Penicillium species however, 

is capable of transforming selenite in solution to volatile selenium compounds and red 

amorphous elemental selenium. In minimal media with glucose as the sole carbon 

source, volatilisation is both growth and non-growth associated, whereas reduction to 

elemental selenium occurs only during the decline phase of growth. However, collective 

additions of both amino acids and vitamins can enhance the reduction of the selenium 

oxyanion to the elemental form throughout the growth cycle.
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appendix A: P e a r s o n ' s  c l a s s i f i c a t i o n  o f  h a r d  a n d  s o f t  a c i d s  
a n d  b a s e s  ( 1 9 6 3 )  . T h e  v e r t i c a l  d i s t r i b u t i o n  o f  i o n s  d o w n  e a c h  
g r o u p  r e f l e c t  i n c r e a s i n g  c l a s s  ( b )  c h a r a c t e r .

C l a s s  ( a )  o r  " h a r d " C l a s s  ( b )  o r  " s o f t " B o r d e r l i n e

H* C u *
L i + A g +
N a + A u *
K+ T l +

H g *
C s *

B e 2* P d 2* F e 2*
M g 2* C d 2* C o 2*
C a 2* P t 2* N i 2*
S r 2* H g 2* C u 2*
S n 2* Z n 2*

P b 2*

A l 3* T l 3*
S c 3*
G a 3*
I n 3*
L a 3*
C r 3*
C o 3*
F e 3*
A s 3*
I r 3*

S i 4*
T i 4*
Z r 4*
T h 4*
P u 4*

u o 22*

( i )



APPENDIX B: C l a s s i f i c a t i o n  o f  m e t a l  i o n s  a n d  c o m p u t a t i o n  o f
c o v a l e n t  i n d e x  v a l u e s  ( x j r ) . C o m p i l e d  f r o m  N i e b o e r  & 
R i c h a r d s o n  ( 1 9 8 0 ) .

I o n E l e c t r o n e g a t i v i t y

a ( ^ n )

I o n i c  r a d i u s  
c ( r )

Xm2r

Class (a)

L i * 0  . 9 8 0  . 7 4 0 0 . 7 1 1
K a * 0  . 9 3 1 .  0 2  0 0 . 8 8 2
K* 0  . 8 2 1 . 3 8 0 0 . 9 2 8
C s * 0 . 7 9 1 . 7 0 0 1 . 0 6 1

B e 2* 1 .  5 7 0  . 3 5 0 0 . 8 6 3
C a 2* 1 .  0 0 1 .  0 0 0 1 . 0 0 0
S r 2* 0 . 9 5 dl . 1 3  0 1 . 0 2 0
B a 2* 0  . 8 9 1 . 3 6 0 1 . 0 7 7
M g 2* 1 . 3 1 0  . 7 2 0 1 . 2 3 6

L a 3* 1 . 1 0 dl .  0 4 5 1 . 2 6 4
Y 3* 1  . 2 2 d0  . 9 0 0 1 . 3 4 0
A l 3* 1 .  6 1 0  . 5 3 0 1 . 3 7 4
S c 3* 1 . 3 6 d0  . 7 4 5 1 . 3 7 8

B o r d e r l i n e

M n 2+ 1 . 5 5 d0  . 8 3  0 1 . 9 9 0
T i 2* 1 .  5 4 0  . 8 6 0 2 . 0 4 0
V 2* 1 .  6 3 0 . 7 9 0 2 . 1 0 0
Z n 2+ bl . 6 9 d0 . 7 5 0 2 . 1 2 8
C r 2* 1 . 6 6 0  . 8 2 0 2 . 2 6 0
N i 2* 1 . 9 1 d0  . 6 9 0 2 . 5 1 7
F e 2+ 1 . 8 3 d0  . 7 8 0 2 . 6 1 2
C o 2* 1 .  8 8 d0  . 7 4 5 2 . 6 3 3
C d 2* 1  . 6 9 0  . 9 5 0 2 . 7 1 3
C u 2+ b2  . 0 2 0 . 7 3 0 2 . 9 7 9
S n 2* 1 .  8 0 0 . 9 3 0 3 . 0 1 3
P b 2* 1 . 8 7 b ' c 0 . 9 4 0 3 . 2 8 7

G a 3* 1 . 8 1 0  . 6 2 0 2 . 0 3 1
F e 3* 1 .  9 6 0  . 6 4 5 2 . 4 7 8
I n 3* 1 . 7 8 d0  . 8 0 0 2 . 5 3 5

Class (b)

C u * 1 .  9 0 0  . 9 6 0 3 . 4 6 6
T l * 1 .  6 2 1 . 5 0 0 3 . 9 3 7
A g * 1 .  9 3 1 . 1 5 0 4 . 2 8 4
A u * 2  . 5 4 1 . 3 7 0 7 . 3 3 5

(i)



Cl a s s  (b) c o n t i n u e d

H g 2+ 2 . 0 0  1 . 0 2 0  4 . 0 8 0
P t 2+ 2 . 2  8  0 . 8 0  0  4 . 1 5 9
P d 2+ 2 . 2 0  0 . 8 6 0  4 . 1 6 2

T l 3+ 2 . 0 4  d 0  . 8 8 5  3 . 6 8 3
B i 3+ 2 . 0 2  1 . 0 2 0  4 . 1 6 0

a ( A l l r e d ,  1 9 6 1 )
' ( S h a n n o n  & P r e w i t t ,  1 9  6 9 )

b ( N i e b o e r  & M c B r y d e ,  1 9 7 3 )  
d ( S h a n n o n  & P r e w i t t ,  1 9 7  0 )



appendix C: A  s u r v e y  o f  m e t a l  i o n  o x i d a t i o n  s t a t e s .  M e t a l  i o n  
c l a s s i f i c a t i o n  b y  N i e b o e r  & R i c h a r d s o n  ( 1 9 8 0 )  .

Class (a)

L i  I s 2 2 s 1 
L i + I s 2
N a I s 2 2 s 2 2 p 6 3 s 1
N a + I s 2 2 s 2 2 p 6
K I s 2 2 s 2 2 p 6 3 s 2 3 p 6 4 s 1
K + I s 2 2 s 2 2 p 6 3 s 2 3 p 6
C s I s 2 2 s 2 2 p 6 3 s 2 3 p 6 3 d 10 4 s 2 4 p 6 4 d 10 5 s 2 5 p 6 6 s 1
C s  + I s 2 2 s 2 2 p 6 3 s 2 3 p 6 3 d 10 4 s 2 4 p 6 4 d 10 5 s 2 5 p 6

B e I s 2 2 s 2
B e 2+ I s 2
C a I s 2 2 s 2 2 p 5 3 s 2 3 p 6 4 s 2
C a 2+ I s 2 2  s 2 2 p 5 3 s 2 3 p 6
S r I s 2 2 s 2 2 p 6 3 s 2 3 p 6 3 d 10 4 s 2 4 p 6 5 s 2
S r 2+ I s 2 2 s 2 2 p 6 3 s 2 3 p 5 3 d 10 4 s 2 4 p 6
B a I s 2 2 s 2 2 p 6 3 s 2 3 p 6 3 d 10 4 s 2 4 p 6 4 d 10 5 s 2 5 p 6 6 s 2
B a 2+ I s 2 2 s 2 2 p 6 3 s 2 3 p 6 3 d 10 4 s 2 4 p 6 4 d 10 5 s 2 5 p 6
M g I s 2 2 s 2 2 p 6 3 s 2
M g 2+ I s 2 2 s 2 2 p 5

L a I s 2 2 s 2 2 p 6 3 s 2 3 p 6 3 d 10 4 s 2 4 p 6 4 d 10 5 s 2 5 p 5 5 d x 6 s 2
L a 3+ I s 2 2 s 2 2 p 6 3 s 2 3 p 6 3 d 10 4 s 2 4 p 6 4 d 10 5 s 2 5 p s
Y I s 2 2 s 2 2 p s 3 s 2 3 p 6 3 d 10 4 s 2 4 p 6 4 d 1 5 s 2
y 3+ I s 2 2 s 2 2 p 6 3 s 2 3 p 5 3 d 10 4 s 2 4 p 6
G d I s 2 2 s 2 2 p 6 3 s 2 3 p 6 3 d 10 4 s 2 4 p 6 4 d 10 4 f  7 5 s 2 5 p 6 5 a 1 6 s 2
G d 3+ I s 2 2 s 2 2 p 6 3 s 2 3 p 6 3 d 10 4 s 2 4 p 6 4 d 10 4  f  7 5 s 2 5 p 6
L u I s 2 2 s 2 2 p 6 3 s 2 3 p 6 3 d 10 4 s 2 4 p 6 4 d 10 4 f 14 5 s 2 5 p s 5 d x 6 s 2
L u 3 + I s 2 2 s 2 2 p 6 3 s 2 3 p 6 3 d 10 4 s 2 4 p 6 4 d 10 4  f 14 5 s 2 5 p 6
A l I s 2 2 s 2 2 p 6 3 s 2 3 p x
A l 3+ I s 2 2 s 2 2 p 5
S c I s 2 2 s 2 2 p 6 3 s 2 3 p 6 3 d 1 4 s 2
S c 3 + I s 2 2 s 2 2 p 6 3 s 2 3 p 6

Borderline

M n  I s 2 2 s 2 2 p 6 3 s 2 3 p 6 3 d 5 4 s 2
M n 2+ I s 2 2 s 2 2 p 6 3 s 2 3 p 6 3 d 5
T i I s 2 2 s 2 2 p 6 3 s 2 3 p 6 3 d 2 4 s 2
T i 2+ I s 2 2 s 2 2 p 6 3 s 2 3 p 6 3 d 2
V I s 2 2 s 2 2 p s 3 s 2 3 p 6 3 d 3 4 s 2
v 2+ I s 2 2 s 2 2 p 5 3 s 2 3 p 6 3 d 3
Z n I s 2 2 s 2 2 p 6 3 s 2 3 p 6 3 d 10 4 s 2
Z n 2+ I s 2 2 s 2 2 p 6 3 s 2 3 p 6 3 d 10
C r I s 2 2 s 2 2 p 5 3 s 2 3 p 6 3 d 4 4 s 2
C r 2+ I s 2 2  s 2 2 p 6 3  s 2 3 p 6 3 d 4

( i )



B o r d e r l i n e  (continued)

N i I s 2 2 s 2 2 p 6 3 s 2 3 p 6 3 d 8 4 s 2
N i 2+ I s 2 2 s 2 2 p 6 3 s 2 3 p 6 3 d 8
F e I s 2 2 s 2 2 p 6 3 s 2 3 p 6 3 d 6 4 s 2
F e 2+ I s 2 2 s 2 2 p 6 3 s 2 3 p 6 3 d 6
C o I s 2 2 s 2 2 p 6 3 s 2 3 p 6 3 d 7 4 s 2
C o 2+ I s 2 2 s 2 2 p 6 3 s 2 3 p 6 3 d 7
C d I s 2 2 s 2 2 p s 3 s 2 3 p 6 3 d 10 4 s 2 4 p 6 4 d 10 5 s 2
C d 2+ I s 2 2 s 2 2 p 6 3 s 2 3 p 6 3 d 10 4 s 2 4 p s 4 d 10
C u I s 2 2 s 2 2 p 6 3 s 2 3 p 6 3 d 9 4 s 2
C u 2+ I s 2 2 s 2 2 p 6 3 s 2 3 p 6 3 d 9
S n I s 2 2  s 2 2 p 6 3 s 2 3 p 6 3 d 10 4 s 2 4 p 6 4 d 10 5 s 2 5 p 2
S n 2+ I s 2 2 s 2 2 p 6 3 s 2 3 p 6 3 d 10 4 s 2 4 p 6 4 d 10 5 s 2
P b I s 2 2 s 2 2 p 6 3 s 2 3 p 6 3 d 10 4 s 2 4 p 6 4 d 10 4  f 14 5 s 2 5 p 6 5 d 10 6 s 2 6 p 2
P b 2"“ I s 2 2 s 2 2 p 5 3 s 2 3 p 6 3 d 10 4 s 2 4 p 6 4 d 10 4 f 14 5 s 2 5 p 6 5 d 10 6 s 2

Go. I s 2 2 s 2 2 p 6 3 s 2 3 p 5 3 d 10 4 s 2 4 p x
G a 3 + I s 2 2 s 2 2 p 5 3 s 2 3 p 6 3 d 10
F e I s 2 2 s 2 2 p 6 3 s 2 3 p 5 3 d 6 4 s 2
F e 3+ I s 2 2 s 2 2 p 6 3 s 2 3 p 6 3 d 5
I n I s 2 2 s 2 2 p 6 3 s 2 3 p 6 3 d 10 4 s 2 4 p 6 4 d 10 5 s 2 5 p x
I n 3+ I s 2 2 s 2 2 p 6 3 s 2 3 p G 3 d 10 4 s 2 4 p 6 4 d 10

Class (b)

C u I s 2 2 s 2 2 p 5 3 s 2 3 p 6 3 d 10 4 s 1
C u + I s 2 2 s 2 2 p 6 3 s 2 3 p 6 3 d 10
T 1 I s 2 2 s 2 2 p 6 3 s 2 3 p 6 3 d 10 4 s 2 4 p 5 4 d 10 4  f 14 5 s 2 5 p 6 !5 d 10 (5 s 2 6 P 1
T i + I s 2 2 s 2 2 p 6 3 s 2 3 p 6 3 d 10 4 s 2 4 p 6 4 d 10 4 f 14 5 s 2 5 p 6 5 d 10 6 s 2

A g I s 2 2 s 2 2 p 6 3 s 2 3 p 6 3 d 10 4 s 2 4 p 6 4 d 10 5 s 1
A g + I s 2 2 s 2 2 p 6 3 s 2 3 p 6 3 d 10 4 s 2 4 p 5 4 d 10
A u I s 2 2 s 2 2 p 6 3 s 2 3 p 6 3 d 10 4 s 2 4 p 6 4 d 10 4 f 14 5 s 2 5 p 6 5 d 10 6 s 1

A u + I s 2 2 s 2 2 p 6 3 s 2 3 p 5 3 d 10 4 s 2 4 p 6 4 d 10 4  f 14 5 s 2 5 p 6 5 d 10

H g I s 2 2 s 2 2 p 5 3 s 2 3 p 6 3 d 10 4 s 2 4 p 6 4 d 10 4 f 14 5 s 2 5 p 6 5 d 10 6 s 2

H g 2+ I s 2 2 s 2 2 p 6 3 s 2 3 p 6 3 d 10 4 s 2 4 p 6 4 d 10 4  f 14 5 s 2 5 p 6 5 d 10
P t I s 2 2 s 2 2 p 5 3 s 2 3 p 6 3 d 10 4 s 2 4 p 6 4 d 10 4 f 14 5 s 2 5 p 6 5 d 8 6 s 2
P t 2+ I s 2 2 s 2 2 p 6 3 s 2 3 p 6 3 d 10 4 s 2 4 p 6 4 d 10 4 f 14 5 s 2 5 p 6 5 d 8
P d I s 2 2 s 2 2 p 6 3 s 2 3 p 5 3 d 10 4 s 2 4 p 6 4 d 8 5 s 2
P d 2+ I s 2 2 s 2 2 p 6 3 s 2 3 p 6 3 d 10 4 s 2 4 p 6 4 d 8

T l I s 2 2 s 2 2 p 6 3 s 2 3 p 6 3 d 10 4 s 2 4 p 6 4 d 10 4 f 14 5 s 2 5 p 6 5 d 10 i6 s 2 6 P 1
T l 3+ I s 2 2 s 2 2 p 6 3 s 2 3 p 6 3 d 10 4 s 2 4 p 6 4 d 10 4  f 14 5 s 2 5 p s 5 d 10
B i I s 2 2 s 2 2 p 6 3 s 2 3 p 6 3 d 10 4 s 2 4 p 6 4 d 10 4 f 14 5 s 2 5 p 6 !5 d 10 i5 s 2 6 p 3
B i 3+ I s 2 2 s 2 2 p 6 3 s 2 3 p 5 3 d 10 4 s 2 4 p 6 4 d 10 4 f 14 5 s 2 5 p 6 5 d 10 6 s 2

(ii)



appendix D: Hard and soft ligands.

Hard Borderline Soft:

aF" aC l “ aH ‘

a°2~ aB r ' aI ’
aOH" aN3- aR"
a ,bH zO aNOz- a ,bC N ’
a ,bR O H aso 32- aR S '
b- c o 2- aN H 3 bR S H
ac o 32- aN2 a ' bR 2 S
hNHj aR N H 2 bs 2o 32
bR N H 2 aR 2NH
b P o r p h y r i n aR 3N
bC l ~ » I O 0 1 i
bP 0 43“ ao2
bs o 42' ao2-
aR 0 S 0 3~ ao22-
aN03~
aH P 0 42”
aR C O O ”
aR O R

bP y r i d i n e

T h e  s y m b o l  R  r e p r e s e n t s  a l k y l  r a d i c a l s  a n d  m a y  a l s o  b e  a n  
a r o m a t i c  m o i e t y .  H a r d  m e t a l  i o n s  h a v e  a n  a b s o l u t e  p r e f e r e n c e  
i n  a q u e o u s  s o l u t i o n  f o r  h a r d  l i g a n d s  o u t l i n e d  i n  t h e  f i r s t  
c o l u m n ,  a l l  o f  w h i c h  b i n d  t h r o u g h  o x y g e n .  S o f t  m e t a l  i o n s  
e x h i b i t  a  p r e f e r e n c e  f o r  t h e  l i g a n d s  i n  c o l u m n  t h r e e  b u t  a r e  
a l s o  a b l e  t o  r e a c t  i n  a q u e o u s  s o l u t i o n  w i t h  t h e  b o r d e r l i n e  
l i g a n d s  ( s e c o n d  c o l u m n ) . B o r d e r l i n e  m e t a l  i o n s  c a n  r e a c t  i n  
s o l u t i o n  w i t h  a l l  t h e  l i g a n d s  b u t  t h e y  m a y  e x h i b i t  
p r e f e r e n c e s . T h e  d a t a  a n d  e x p l a n a t i o n s  h a v e  b e e n  c o m p i l e d  
f r o m  aN i e b o e r  Sc R i c h a r d s o n  ( 1 9 8 0 )  a n d  bH u g h e s  & P o o l e  ( 1 9 8 9 ;  
1 9 9 1 )  .



appendix E: Values of erf(x) . Compiled from Belter et al .
( 1 9 8 8 ) .

X 0 1 2 3

0 . 0 . 0 0 0 . 0 1 1 . 0 2 3 . 0 3 4  .

0 . 1 . 1 1 2 . 1 2 4 . 1 3 5 . 1 4 6  .

0 . 2 . 2 2 3 . 2 3 4 . 2 4 4 . 2 5 5  .

0 . 3 . 3 2 9 . 3 4 0 . 3 4 9 . 3 5 9  .

o • . 4 2 8 . 4 3 8 . 4 4 7 . 4 5 7  .

0 . 5 . 5 2 1 . 5 2 9 . 5 3 8 . 5 4 6  .

0 . 6 . 6 0 4 . 6 1 1 . 6 1 9 . 6 2 7  .
0.7 . 6 7 8 . 6 8 5 . 6 9 1 . 6 9 8  .
0 . 8 . 7 4 2 . 7 4 8 . 7 5 4 . 7 5 9  .
0 . 9 . 7 9 7 . 8 0 2 . 8 0 7 . 8 1 2  .
1.0 . 8 4 3 . 8 4 7 . 8 5 1 . 8 5 5  .
1.1 . 8 8 0 . 8 8 4 . 8 8 7 . 8 9 0  .

1.2 . 9 1 0 . 9 1 3 . 9 1 6 . 9 1 8  .
1.3 . 9 3 4 . 9 3 6 . 9 3 8 . 9 4 0  .
1.4 . 9 5 2 . 9 5 4 . 9 5 5 . 9 5 7  .
1.5 . 9 6 6 . 9 6 7 . 9 6 8 . 9 7 0  .
1.6 . 9 7 6 . 9 7 7 . 9 7 8 . 9 7 9  .
1.7 . 9 8 4 . 9 8 4 . 9 8 5 . 9 8 6  .

00•H . 9 8 9 . 9 9 0 . 9 9 0 . 9 9 0  .
1.9 . 9 9 3 . 9 9 3 . 9 9 3 . 9 9 4  .

K) • o . 9 9 5 . 9 9 7 . 9 9 8 . 9 9 9  .

5 6 7 8 9

. 0 5 6 . 0 6 8 . 0 7 9 . 0 9 0 . 1 0 1

. 1 6 8 . 1 7 9 . 1 9 0 . 2 0 1 . 2 1 2

. 2 7 6 . 2 8 7 . 2 9 7 . 3 0 8 . 3 1 8

. 3 7 9 . 3 8 9 . 3 9 9 . 4 0 9 . 4 1 9

. 4 7 5 . 4 8 5 . 4 9 4 . 5 0 3 . 5 1 2

. 5 6 3 . 5 7 2 . 5 8 0 . 5 8 8 . 5 9 6

. 6 4 2 . 6 4 9 . 6 5 7 . 6 6 4 . 6 7 1

. 7 1 1 . 7 1 7 . 7 2 4 . 7 3 0 . 7 3 6

. 7 7 1 . 7 7 6 . 7 8 1 . 7 8 7 . 7 9 2

. 8 2 1 . 8 2 5 . 8 3 0 . 8 3 4 . 8 3 9

. 8 6 2 . 8 6 6 . 8 7 0 . 8 7 3 . 8 7 7

. 8 9 6 . 8 9 9 . 9 0 2 . 9 0 5 . 9 0 8

. 9 2 3 . 9 2 5 . 9 2 8 . 9 3 0 . 9 3 2

. 9 4 4 . 9 4 6 . 9 4 7 . 9 4 9 . 9 5 1

. 9 6 0 . 9 6 1 . 9 6 2 . 9 6 4 . 9 6 5

. 9 7 2 . 9 7 3 . 9 7 4 . 9 7 5 . 9 7 5

. 9 8 0 . 9 8 1 . 9 8 2 . 9 8 2 . 9 8 3

. 9 8 7 . 9 8 7 . 9 8 8 . 9 8 8 . 9 8 9

. 9 9 1 . 9 9 1 . 9 9 2 . 9 9 2 . 9 9 2

. 9 9 4 . 9 9 4 . 9 9 5 . 9 9 5 . 9 9 5

1 1 1 1 1

4

0 4 5

1 5 7

2 6 6

3 6 9

4 4 6

5 5 5

6 3 4

7 0 5

7 6 5

8 1 6

8 5 9

8 9 3

9 2 1

9 4 2

9 5 8

9 7 1

9 8 0

9 8 6

9 9 1

9 9 4

9 9 9

(i)


