Information Technology

as and ald to

Teaching Algebra

by Michael Brady B.Sc., H.Dip.Ed., M.Phll.

Thesis submitted for the degree of Doctor of Philosophy

Faculty of Education Studies
 Dublin Clty University

Supervisor: Dr. Peter McKenna

Declaration

I hereby declare that the contents of thls thesis are based entirely on my own work whlch was carrled out at Dublin City University.

Bridin, Alan and Eavan

Table of Contents

Page
Chapter 1 Introduction 1
1.1 Background to the study 1
1.2 Outline of the study 16
Chapter 2 Review of the Literature 21
2.1 Difflculty of teaching algebra word problems 21
2.2 Effect of varying problem contexts 35
2.3 Effectiveness of computer-based instruction 45
2.4 Modes of computer use in education 50
2.4.1 Instructional mode 51
2.4.2 Revelatory mode 55
2.4.3 Exploratory mode 57
2.4.3.1 Programming Languages 58
2.4.3.2 Spreadsheets 63
2.4.4 Recent developments in CAI 66
2.5 Current usage of computers in schools 68
Chapter 3 The Hypotheses 71
3.1 Theoretlcal background 71
3.2 Rationale for hypothesis 1 82
3.3 Rationale for hypothesis 2 88
3.4 Rationale for hypotheses 3,4 and 5 95
3.5 Operational definition of the varlables 96
3.6 Operational restatement of the hypotheses 98
3.7 Signiflcance of the study 99
Chapter 4 Methods 103
4.1 Subjects 103
4.2 Deslgn 104
4.3 Pilot testing 105
4.3.1 Pretest and posttest 105
4.3.2 Attitude questionnaire 109
4.4 Preparation of the instruction 111
4.5 Actlvities 119
Chapter 5 Results 127
5.1 Pretest and posttest results 128
5.2 The effect of numerical abllity 130
5.3 The effect of attitude to mathematics 131
5.4 The effect of attitude to computers 132
5.5 Some further results 133
Chapter 6 Conclusions 156
6.1 Dlscussion of results 156
6.2 Extensions and applications 174
References 184
Appendlces
Appendix A Appendix B Appendix C Appendix D

Appendlx E

Appendix F

Appendix G

Appendix H

Appendix I

 Pretest

 Posttest

 Attltude measuring instrument

 Debrieflng questionnalre

 Handout on spreadsheet concepts

 Abstract exercise problems

 Concrete exerclse problems

 Letter to school principals

 Information sheet and appllcation form

Abstract

This project was concerned with teaching algebra novices, all girls aged 13 or 14 years, to solve algebra word problems using an electronic spreadsheet. It was based on the realisation that a spreadsheet cell provides a sultable cognitlve model for an algebralc variable and that the manipulation of a spreadsheet is essentially based on the construction of algebraic expressions. The maln objectives were to test the effectiveness of spreadsheet use on the abllity to construct algebraic expressions and to examine the effect of manipulating problem contexts (abstract vs. concrete) on this abillty. Other objectives were to determine the relationship between general numerlcal ability, attitude to mathematics, attitude to computers and the experimental treatments.

The particular skill taught was the construction of algebraic expressions to represent relational propositions from verbally stated problems. Problems from current textbooks and examlnation papers (Intermediate Certificate Syllabus B) were used in the instruction. A pretest - posttest control group design was used. Seventy three volunteers were recruited and received approximately elght hours of instruction in a reasonably natural school setting. There were two treatment groups. One group worked on abstract (numerical) problems and the other group worked on mathematically identical problems set in concrete contexts which were familiar and relevant.

Both treatment groups made considerable gains between pretest and posttest. The abstract group performed signiflcantly better than the concrete group on the total posttest ($p<.01$), on its abstract subsection (p < .01) and on its concrete subsection ($p<.05$). Attltude to mathematics was also found to have a significant Interaction with the treatment (p <. 05). Those wlth a positive attltude to mathematics learned more from abstract problems, but the dlfference was much less for those with a negative attitude. Nelther numerical ability or attitude to computers had any significant effect.

Abstract

I would like to express my gratltude to Dr. Peter McKenna for his unfalling support and encouragement for this research. Thanks also to Dr. David Owens for his help during the initial stages.

I wish to thank the library staff at DCU, especially Anne Rafter for Inter-library loans, and Susan Cuffe for online searches and moral support.

I acknowledge gratefully the cooperation of the students, staffs and prlncipals of the flve schools involved. I am especially grateful to Sr. Rosaleen Cunniffe and Sr. Anne Marie Clancey who provided access to computer hardware.

I also wlsh to thank my own students; Geraldine, Lorraine, Jennlfer and Audrey who acted as tutors. Special thanks to my colleague Marita McGrath who also acted as a tutor and who helped prepare the instructional materials.

I would also like to acknowledge my debt to both of my parents who understood the value of education and who made real sacrifices to educate thelr children.

Finally, I would like to thank my wife Bridin for her constant encouragement and support.

1. 1 Background to the Study

In our rapidly developing technological society, there is an increasing need for mathematical skills as more professions move towards quantlflcatlon, e.g. economics, management sclence, mediclne and the biologlcal sciences (Cockroft 1982). Apart from professional and career considerations, knowledge of quantlty and space has a pervasive effect on how well we function in soclety. For example, 93% of articles on the front page of The New York Tlmes cannot be comprehended wlthout fundamental mathematlcal competence (Czeplel and Esty, 1980). There 1s, however, widespread concern at the level of mathematlcal attainment of school leavers (e.g. Cockeroft, 1982; Howe, 1986; Sllver et al., 1988; Brown et al., 1988). For example, the Natlonal Assessment of Educatlonal Progress shows a signlflcant decline ln mathematlcal competence of eleven to slxteen-year-olds over the perlod 1963 to 1983 (Gagne, 1985). In the area of school algebra, Sllver et al. (1988) reported that over 50% of seventeen-year-olds had not enrolled in second year algebra. Brown et al. (1988) reported that only 40% of students complete second-yeai algebra.

There is also concern about the abllitles of those students who do complete school algebra successfully. A
series of studles, the 'dlsaster studles', (Rosnick and Clement, 1980; Rosnick, 1981; Clement, 1982) have shown that many students, who seem to be successful when judged by conventional tests, are seriously confused about baslc algebralc concepts. These studles revealed that many students develop speclal-purpose translation algorlthms whlch work for many textbook problems, but which do not involve a semantic understanding of algebra. Many students have profound misunderstandings of algebraic notation (Sleeman 1984; Booth 1984a, 1984b) and very few can use algebra as an "autonomous mode of expression" (Burkhardt 1986). Students who were thought to have successfully learned elaborate formal structures have been found to have serlous mlsconceptions at the most fundamental levels. Rosnlck and Clement (1980) found

```
"dlsturblng difflcultles In students'
conceptuallzation of the basic ldeas of equation and
varlable" (Rosnlck and Clement, 1980, p.5).
```

among students who had successfully completed flve or more years of algebra in high school and college. This is alarming, as these same students had passed tests which involved linear equations, quadratle equations, cublc equations, graphs of conlc sections etc. This indlcates that many successful mathematlcs students work by imitation without any real understanding of what they
are doing. In the llght of these studles, and the increasing requirement for mathematical competence, there is a need to investlgate how mathematlcs curricula can be developed and improved.

Any discussion of mathematical education must take account of the spread of Information technology:

Abstract

"It is important that the rapld changes in our society in technology, in methods of communication and in knowledge, are reflected in changes in mathematics education, both in what is taught and in the methods by whlch chlldren learn" (Ball et al. 1987, p.7)

The recent arrlval of mlcrocomputers in schools presents new opportunlties in mathematlcs educatlon. There are many ways in which computers can be used in mathematics teaching, ranging from drlll on basic facts to simulations and modelllng. Computers can facilltate a more experimental, Investigatlve approach. They can relleve the burden of calculatlon, provide graphical representations and allow learners to explore more reallstic problems. They are also very motivating for many children and can facilltate non-traditional problem-solving techniques, such as guess-and-check.

Computers are also changing the ways in which people do mathematlcs. The recent avallablllty of mlcrocomputer
programs which can carry out symbollc algebraic manlpulations (Maurer 1984; Kunkle \& Burch 1984; Hlggo 1985; Howe 1986; Freese et al. 1986) poses serious questions concerning the approprlateness of present algebra syllabi and the content of future syllabi.

```
"Students in mathematlcs classes wlll sooñ have
access to computer programs that perform all the
routine numerical and algebralc manipulations that
have traditlonally required months to learn. It is
only a matter of time untll mathematics instruction
starts shlftlng away from the memorlzation of
standard algorlthms towards a more conceptual
emphasls" (Kllpatrlck 1987, p. 123).
"Much of the arlthmetic syllabus, many algebraic
techniques and, at a more advanced level, many
technlques connected wlth the calculus are now, or
soon will be, no longer required" (Ball 1987, p.
156).
"It ls scary to thlnk that most of what we have been
teachlng - manipulation drlll - may soon be
Irrelevant" (Maurer 1984, p.423).
```

Simllar questions arose when calculators flrst became widely avallable. It would be difflcult to sustain the argument that students should be taught pencil-and-paper
algorithms for calculating square roots when these can be found at the touch of a button on a calculator.

```
"What is important is not that 'I know' In any
pencll-and-paper algorithm sense, how to compute a
square root. Knowing how to do somethlng is always
relative to a technology, and pencll-and-paper
technology ls sufflclently lll-suited to findlng
square roots that specialised 'know-how' ls required
on the part of the person .... The educational Issue
Is not to know how to compute a square root, but
when to compute one."(Balzano 1987, p.87)
```

Similarly, it must be asked whether students should spend the bulk of their mathematics instruction time learning to carry out algebraic manipulatlons which can be performed with readlly avallable software on computers? Could such an expendlture of time and effort be justifled If and when thls software becomes avallable on hand-held calculators?

Ernest (1987) suggests that current school mathematics ls essentially the study of algebralc manipulations. Ernest (1987) further suggests that:

[^0]initial state of a mathematical task which will be transformed in the performance of the task" (Ernest 1987, p.350).

Thls may be more a reflectlon of currlcular hlstory than of current need. Balzano (1987) argues that we have been sidetracked into thinking that mathematics is more concerned with the 'how' than the 'when'. This is never the case. The 'how' is always relatlve to a technology, but the 'when' 1 s much more endurlng. There $1 s$ now a need to re-examlne what we teach and to re-evaluate it In the light of new technology. In many cases we may find that what we thought was basic knowledge 1 s merely an artifact of a technology that is now out of date.

This does not mean that merely substituting computer methods for pencll-and-paper manlpulation wlll necessarlly lmprove matters:

> "Belng able to run an application program whose result he does not understand $1 s$ no more useful to a child than executing a pencil-and-paper algorlthm whose result he does not understand" (Howe 1986 , p. 24)

The reduction in the need for manipulative sillis in mathematlcs wlll not diminlsh the need for mathematlcal abllity but should alter the focus of curriculum development. If the emphasis in algebra courses is to
be shifted from routine manipulation, what should take Its place? The abllltles that wlll always be required concern inslght and understanding of underlylng mathematlcal princlples and, In partlcular, the ablllty to apply mathematics to a broad range of problems (Higgo 1985). A recent set of standards developed by the National Councll of Teachers of Mathematics (Thompson \& Rathmell 1988) stresses conceptual understanding, reasoning and problem-solving while de-emphasising computational and manipulative proflclency. According to the National Councll of Teachers of Mathematics:
> "The study of algebra wlll shlft from a focus on manlpulatlve facllity to include an Increased emphasis on conceptual understanding and using algebra as a means of representlng mathematlcal sltuations and relationshlps" (Thompson \& Rathmell 1988, p.350).

Gagne (1983) has stressed that one of the areas in need of attention $1 s$ teaching to translate concretely stated problems into mathematical form. Maurer (1984) lists

```
"the ablllty to express ldeas preclsely and to translate Ideas into symbols" (Maurer 1984, p.425).
```

[^1]statements. This ls a vitally important abllity lf mathematics is to be applled to real problems. Lack of skill In translating problems Into symbolic mathematical expressions and equations $1 s$ the cause of some concern:
> "Many of the problems which arise in mathematics classrooms can be traced to a dlslocatlon.ln the pupil's thlnking between the symbollc expressions being manipulated and the orlginal sltuations from which they represent an abstraction. This dislocation $1 s$ partlcularly common in the case of algebra" (Greer 1984, p.109).
> "These difflculties seem not to be rooted in thelr quantlative understanding of events or relationships in the natural world, but rather in the translation between those content-based representatlons and the formal systems of mathematlcs" 〈SIms-Knlght \& Kaput 1983, p.561).

The concept of a varlable $1 s$ central to the construction of expressions and equations from verbally stated problems. According to the Natlonal Councll of Teachers of Mathematics, it is central to mathematics learning in second level schools and $1 s$ one of the key ideas to be emphaslzed as students begin algebra (Thompson \&

Rathmell, 1988). It provides the basls for the transition from arlthmetlc to algebra, and ls necessary
for the meaningful use of all advanced mathematics (Schoenfeld \& Arcavl, 1988). It allows generallsation of mathematical knowledge into expressions and equations, thus permitlng more comprehenslve statements than $1 s$ possible with speclfic numbers. For example, wlthout varlables it can be sald that the area of a particular rectangle $1 s 6 \mathrm{~cm} \times 4 \mathrm{~cm}$. Using varlables, it can be sald that the area of any rectangle $1 s \mathrm{~L} X \mathrm{~B}$, where L is the length and B ls the breadth.

Most contemporary curricula treat varlables as primltive terms that wlll be understood relatively easlly and used In a stralghtforward way by most students <Schoenfeld \& Arcavl 1988). There is a lot of evidence that thls ls not so. Qullter and Harper (1988), carrled out a study to Identlfy the reasons offered by adults call of whom were graduates) for thelr difficulties, anxletles, fears and inabllity to cope with mathematics at more than a rudimentary level. Of the 15 Intervlewees, 11 had
"clearly encountered a sharp discontlnulty in thelr abillty to understand and learn mathematlics when faced with algebra for the first time. This appeared to be assoclated with the conceptual difflculty assoclated with symbollc varlablus" (Quilter \& Harper 1988, p.125).

Many "successful" students do not have a proper understanding of varlables, even though they may be able to carry out symbolic mandpulatlons (Rosnlck \& Clement 1980; Rosnlck 1981; Clement 1982; Flsher 1988; Brown et al. 1988).

It $1 s$ standard practlce $1 n$ second level textbooks ee.g. Morris 1987) to slmply Introduce the ldea of a variable as "something which stands for a number". This is typlcally followed by showing how to substltute values into an expression, solve equatlons, find factors etc. There $1 s$ usually only a short final section on creating equatlons for story (word) problems. The emphasis, therefore, ls flrmly placed on manlpulatlve routlnes and there ls usually no reference to earller work in arlthmetic. Most introductory exercises are totally abstract and there $1 s$ rarely any attempt to set problems In areas that may be of interest to the student. It could be sald that thls ls algebra for 1 ts own sake! It is not surprlsing that many students acquire only a verbal understanding of variables (l.e. "somethlng whlch stands for a number") without developing a flrmer conceptual framework.

This emphasls on symbolic manlpulation may be traced to the $\operatorname{lnfluence}$ of phllosophles of mathematlcs on education. The two domlnant philosophles that have shaped mathematlcs education today are Platonlsm and

Formallsm. Platonlsm is the vlew that the objects (trlangles, clrcles etc.) of mathematlcs exlst $1 n$ some real realm and that their existence $1 s$ an objectlve fact, independent of our knowledge of them. These objects are outside of space and time and are never-changing. It is the job of mathematiclans to discern the nature of this realm. This was the dominant view of mathematlcs up to the 19 th Century. For example, Euclidean geometry was considered to be the flrmest, most reliable branch of knowledge. It was thought to be exact, final and knowable with certalnty. The subsequent inventlon of non-Euclidean geometrles and the development of analysis exposed the vulnerability of thls solld foundatlon upon whlch mathematles had been based. The Influence of Platonlsm on education can be seen in the idea of mathematlcs as a flxed body of knowledge, dlvorced from lts appllcations. Thls results in a subject-centred approach to teaching, in whlch toplcs are bullt up in a strict, IInear step-by-step manner.

In direct opposition, the Formallst view ls that the relationshlps between mathematlcal objects are important, rather than the objects themselves. Mathematics consists solely of axioms, deflnitions and theorems (l.e. Formulas). It ls the sclence of rlgorous proof. Experlence and Intultion are Irrelevant. Proof
is everything. Theorems are not correct in any absolute sense because they are derived from axioms whlch are purely arbltrary. All we can say is that the theorem follows logically from the axloms. Theorems have no content at all; they are not about anything. Davis \& Hersh (1981) have remarked that the typlcal mathematiclan is a "Platonist on weekdays but a Formallst on Sundays", i.e. acts as If dealing with an objective reality when dolng mathematlcs, but pretends not to believe in this reallty when asked for a philosophlcal account.

Formalism abandons meaning in favour of formal rules and thls gives rlse to a cyclical form of teachlng bullt around axloms, definltions, theorems, corollarles, lemmas and more axloms. This is the predominant model of mathematics teachlng in third level education and was at the heart of the "New Mathematics" curriculum at second level. It $1 s$ an approach which requires an appreclation of the overall structure of the toplc (e.g. geometry) and thls is racely achleved by second-level students. The Formallst approach is also reflected in current introductory algebra courses whlch concentrate almost exclusively on manipulative techniques at the expense of meaning.

Teachlng practlces influenced by Formallsm present topics \ln the opposlte order to the historlcal
development of the toplcs. Historically, the development of toplcs in mathematics follows from the relatlvely concrete to the more abstract:

1. Exploration of the toplc.
2. Proofs of results.
3. Isolation of prlnciples.
4. Reduction of principles to a minimal set of axloms.

This is a sequence which may be close to the development of an individual's understanding. It $1 s$, however, the exact opposite of the standard classroom development of many toplcs, for whlch the general pattern 1s:

1. Teacher explanation of axioms and principles,
2. Demonstration of proof.
3. Imltative exercises.

This can lead to rapid apparant progress In the sense of 'coverlng toplcs' but the skllls acquired of ten evaporate when non-routine problems are encountered.

There is a more recent development in the phllosophy of mathematics, Falllbllsm, which mirrors more closely an indlvidual's understanding and which ls beginning to Influence educational thought. Fallibllsm ls the view that mathematlcs $1 s$ what mathematlclans do, and have done, with all the imperfections inherent in any human
activity or creatlon (Ernest 1985). Mathematlcs 'in the maklng, ls a tangle of guesswork, analogy, approxlmatlon and frustration. Proof $1 s$ very far from being at the core of discovery but $1 s$ rather a way of ensurlng that our minds are not playlng trlcks on us. Mathematics, like sclence $1 s$ fallible. It grows by the critlcism and correction of theories which are never entlrely free of ambiguity or the possibllity of error. Statements of proof lead to searches for counterexamples. New, refined, proofs explaln old counterexamples; new counterexamples undermine old proofs, and so on. Thls is akin to the cognitive view of learning, in which Internal schemata are constantly revised to take account of new evidence. Learners are actlve bullders of thelr own conceptions and competencies, and mathematics instruction is a context for stimulating and gulding these bullders in thelr own constructive processes.

Fallibllsm argues that the formal-loglcal account of mathematics is a fiction, dlvorced from the way mathematlcs $1 s$ created and understood. Mathematlcs $1 s$ a human actlvity and mathematics ltself is to be found in the practice of mathematlcs. The traditional presentation of mathematlcs \ln textbooks and elsewhere ls difficult to follow because the presentation is usually backward, with the discovery process ellminated from the description. After the theorem and the proof
have been dlscovered, the whole verbal and symbollc presentation 1 se-arranged, pollshed and reorganlsed by teachers and authors to flt lnto a logical-deductlve structure. Thls approach was flrst crltlclsed by George Polya (Polya 1945) who proposed an investlgatlve, Intuitive method in its place.

Falllbllsm does not provlde a basls for mathematlcal objectivity and truth. However, this may be a bonus in terms of mathematlcal education. The denial of objectlvity places the emphasis on indlvidual experlence. There ls less stress on rlgour, with a correspondlng emphasls on approxlmation and common sense. If lt $1 s$ accepted that proof ls relatlve, then it follows that, at different stages of the educatlonal process, dlfferent modes of Justification are required. These can range from the very intultlve to the very rigorous. A further impllcatlon of thls view ls that mathematlcs derives lts importance from lts usefulness rather than from the facllity $1 t$ provldes for conducting arguments at the hlghest posslble level of abstraction. Mathematlcs should therefore be taught through lts application to relevant and sultable problems.

The vlew that the strlctly 'loglcal' approach to mathematlcs $1 s$ an educatlonal lmpediment has galned lncreasing support in recent years. There have been many suggestlons for a more Investlgative, exploratory
approach focussing on applications, problem-solving and modellling (e.g. Papert, 1980; Cockcroft, 1982; Hlggo, 1985). The reduced emphasis on formal geometry in the new Junlor Cycle Mathematlcs syllabl (Department of Education, 1987) is an example of this trend. Computer use may be a very Important factor in promoting such an open, experiential approach to teaching mathematics.

1.2 Outline of the study

The purpose of this study was to develop an alternative approach to Introductory algebra for chlldren aged 13 or 14. The approach was based on the premlse that algebra is not simply a set of techniques for manlpulating symbols; it ls a set of technlques for solving problems. The abllity to construct equations to represent problem sltuations $1 s$ one of these techniques. The present study concentrated on story problems, as these are generally the only opportunlty that students of thls age have to apply algebra to real sltuations. Mayer (1982) malntalns that nearly all story problems conslst of combinations of assignment propositlons, relational propositions, question proposltions and relevant facts. Mayer (1982) found that students had partlcular dlfficulty in understanding relational propositione and in formulating expressions to represent such propositions. The present study dealt excluslvely with
the formulation of algebralc expresslons to represent relatlonal proposltions In word problems.

In teaching algebra through word problems, consideration must be glven to the type of problems to be used. It $1 s$ possible to vary the context of word problems while maintalning mathematlcal content. Context varlables are Important as they Indlcate the development of the abllity to extract essentlal mathematlcal Information from non-mathematlcal Informatlon. Contexts may be varied across a number of dimensions Including abstract/concrete, factual/hypothetlcal, fantasy/reality etc. Whlle the purpose of using word problems ls to develop the abllity to apply algebra to concrete problems, current textbooks use more abstract (numerlcal) problems than concrete ones. In addltion, the concrete contexts used are often quite technical and not of immediate interest to students in this age group, e.g. distance/rate/time. A review of all current textbooks for Intermedlate Certlflcate Syllabus B (an Irlsh publlc examination taken at age 15/16) revealed that 50% of algebra word problems are set In abstract contexts. For example, "flnd two consecutlve numbers whose sum $1 \mathrm{~s} 27^{\prime \prime}$. A further 40% are set in the contexts of age, money, area, volume and speed. For example "Mary 1 s one year older than Sue. The sum of their ages $1 s$ 27. How old $1 s$ each?" The present study examlned
the effect of manlpulating the abstract/concrete varlable of word problems. The concrete contexts were deslgned to be of interest to the students Involved: glrls aged 13 or 14 years.

Algebra ls directly related to arlthmetlc. Algebralc expresslons and procedures are a generallsation and symbollsation of famlllar arlthmetlcal Ideas and operations. However, many students, whlle proficlent with arlthmetlc technlques and concepts, have great difflculty \ln thinking about number in general terms (l.e. thinking algebralcally). The present study attempted to bulld on the students' arlthmetlc abllity by relating algebralc expressions to thelr exlsting knowledge of arlthmetlc. Thls was achleved by using an electronic spreadsheet. This allowed problems to be represented arlthmetically, but required the construction of algebralc expresslons for thelr solution.

Computer use can be very motivating for students in thls age group and there are many software packages whlch provide Interesting mathematical environments. These include graphics packages, statlstlcs packages, programming languages, spreadsheets, algebralc symbel manlpulating packages etc. At present, the use of computers $1 n$ mathematlcs teachlng ls limlted and consists malnly of drill in baslc skllls. In algebra

Abstract

learning, computers can provide an environment which 1 s rlch in varlables, interactlve, and engaglng for chlldren. However, there 1 s no readlly avallable software written speciflcally for the purpose of teaching students to generate algebraic expresslons for verbally stated problems. The present study shows how computer aided lnstruction for thls purpose can be developed around a readlly avallable plece of software, a spreadsheet.

All of the subjects inltially recelved the same brlef instruction on spreadsheet concepts and use. They were then spllt into two groups. The treatment for each group was dentical in every way except for the contexts In which the exercises were set. The experlmental environment was kept as close as posslble to a natural school setting. For one experimental group, problems were set in concrete contexts wlth whlch students of thls age and background could ldentlfy. These lncluded sport, clothes etc. The other experlmental group studled problems of ldentlcal mathematical structure, set in abstract (l.e. purely numerlcal) contexts. The dependent varlable was a test whlch regulred students to translate problem statements into algebralc expresslons. The problems used in each treatment were all taken directly from, or adapted from, textbooks and previous
examination papers at Intermediate Certlflcate (Syllabus B) level.

The princlpal objectives were a) to determine the effectlveness of spreadsheet use on the abllity to construct formal algebralc expresslons for relatlonal propositions \ln word problems and b) to examine the effect of manlpulating problem contexts on the achlevement of thls abllity. Further objectives were to determlne the relatlonshlp, if any, between the experlmental treatments and a) attltude to mathematlcs. b) attltude to computers and c) general numerlcal ablllty. The investlgation of these questions wlll contribute towards the effectlve use of computers in whole-class Instruction and towards the development of a mathematics curriculum whlch is relevant to current and future technologlcal environments.

Chapter 2: Revlew of the Ifterature

2.1. The Dlfficulty of Teachlna Algebra Word Problems

Algebra word problems are regarded by many authors as an extremely difficult area of the mathematics curriculum (e.g. Ewing, 1984; Feurzelg, 1986; Thaeler, 1986;

Thomas, 1987).

> "Algebra word problems have been a source of consternation to generations of students" (Berger \& Wilde 1987 , p. 123).
"The solution of word problems is one of the most difflcult subjects in school algebra" (Feurzeig 1986, p. 245).

Brown et al. (1988), reporting on the results of the fourth Natlonal Assessment of Educatlonal Progress administered \ln 1986, noted that 1 tems requiring eleventh grade students to translate sltuations into algebralc expresslons or equations were very badly answered. Only half of the students with two years of algebra chose the correct equation to describe the following situation;

```
"The number of chalrs (C) is twice the number of
students (S)"
```

They also had serious difflcultles when required to construct expressions for problems of the following type:
"Jlm has 5 fewer marbles than Karen. If Jlm has M marbles, how many has Karen?"

The general flndlng of thls report was that, although students were often able to use routlne procedures in school mathematlcs, they appeared not to have galned an understandling of those procedures. Students were generally not able to apply knowledge in problem-solving sltuations and did not appear to understand many of the structures underlylng baslc mathematlcal concepts and sk111s.

Booth (1984a), In a major study of 13 to 15 year-old children's difflculties with elementary algebra, focussed on algebra as 'generallsed arlthmetlc'. Thls ls the abllity to use letters for numbers and to wrlte general statements representing arlthmetlcal rules and operatlons. Booth's (1984a) study did not concern Itself with solving equations, factorlsing or other 'manipulative' skllls normally emphasised in introductory algebra courses.

Booth's research (1984a, 1984b) revealed that very many chlldren had difflculty $1 n$ graspling the notlon of a letter as a generallsed number, In the formallsation and

Abstract

symbollsation of method and $1 n$ their understandlng of convention and notation. Some partlcular dlfflcultles In the understanding of letters were a) assigning a numerlcal value to each letter from the outset, b) lgnoring letters, c) interpretlng letters as shorthand for objects or as objects in their own right and d) regarding letters as speclflc but unknown numbers, i.e. fallure to reallse that a letter can represent a range of unspeclfled values. Booth (1984a) also found that children often see no need for brackets in expressions and consequently do not use them. This is because they conslder the context of the problem to deflne the order of operations. It was also noted that chlldren were unwilllng to accept an algebralc expression as an 'answer'.

Booth (1984a) considered that Introductory algebra Instruction required two main problems to be addressed, namely its conceptual difflculty and the justlflcation of lts use. It was consldered that lf lts use were not Justlfled, chlldren would make llttle effort to try to come to terms with lts conceptual difflculty. Wlth these conslderations in mind, Instruction was deslgned around a notional mathematics machine. The 'machine' performed all calculations, but had to be 'programmed' by the chlldren. The use of thls model allowed attentlon to be focussed on the need to make

problem-solving procedures expliclt. It also Justlfled the introduction of letters as 'number locations' In the 'machlne'. The teachlng programme was designed to address the problem of Indeterminate answers by specifically considering the kind of answer which the mathematlcs machlne would require. Thls provided a ratlonale for algebralc expresslons as 'answers'. The students performed the actual calculations themselves with calculators. Thls approach, whlch was very simllar to using a paper spreadsheet (as opposed to an electronic one):
> "was effective In Improving chlldrens' general level of understanding in elementary algebra, as measured by a sustalned improvement in performance on test 1tems" (Booth 1984a, p. 84).

In partlcular, a galn was noted in the Interpretation of letters in expressions (particularly with second-year groups). This suggests that the use of a real mathematlcs machlne, l.e. an electronlc spreadsheet, may help novice algebra students to deal with varlables and to formulate algebralc expressions.

Rosnlck and Clement (1980) examlned the Interface wetween mathematical symbols and verbal descriptions of real world problems. They asked groups of englneering
and soclal sclence majors to translate the following Engllsh sentence Into an equation:
"There are slx times as many students as professors at a university. Use S for the number of students and P for the number of Professors". (Rosnlck and Clement 1980, p.4)

They found that 37% of engineering students and 57\% of soclal sclence students were unable to answer thls problem correctly. Two thirds of the errors in each case took the form of a reversed equation (1.e. $6 S=P$ rather than 6P=S). For sllghtly harder problems the results were even worse. On the basis of subsequent Intervlews, they concluded that these errors were not due to careless mislnterpretatlons of the problems but revealed:

```
"dlsturblng dlfflcultles In the students"
conceptuallzation of the baslc ldeas of equation and
varlable" (Rosnick and Clement 1980, p.5).
```

Follow-up tutoring and taped intervlews demonstrated that these mlsconceptions were very resllient. The concluslon reached was that:

```
"Fundamental concepts of varlable and equation
should not be treated llghtly In hlgh schools and
colleges, nor should we assume that our students
```

wlll develop the approprlate concepts by osmosls" (Rosnlck \& Clement 1980, p. 23).

Rosnlck and Clement (1980) conclude that the concept of a letter standing for a number is a falrly abstract one and, for that reason, a very difflcult one to teach. They noted the need for the development of speciflc teaching strategles to address thls problem. They stress the need for conceptual development rather than the development of manlpulative skllls.

Rosnlck and Clement (1980) noted that students who make the "reversed equation" error descrlbe the sltuation in terms of "students", while those who write the correct equatlon usually say "number of students". Flsher (1988), In an experiment with college students, attempted to explolt thls finding by uslng a more expliclt notatlonal system. The notational system Involved the use of subscripts, l.e. N_{s} rather than S for 'number of students'. Thls was Intended to Indicate that the varlables represented 'numbers of objects' rather than the objects themselves. Although the number of students involved $1 n$ thls study was small (58), the results were very dlscouraglng. Far more errors were made by the group using the expllcit notation than by the control group.

In a subsequent study, Clement (1982), conducted cllnlcal interviews in whlch subjects were asked to thlnk aloud as they worked on the 'Students \& Professors' and slmllar problems. Semantlc content was also manipulated to glve less guidance (everybody knows that colleges have more students than professors). Analysls of the thlnking-aloud protocols revealed two maln errors. In the first of these, the subjects assumed that the order of key words in the problem simply mapped directly on to the order of symbols as they appeared in the equatlon. In the second, the subjects appeared to use the letter S as a label for the word 'student', rather than as a varlable representing an unspecifled quantlty.

Rosnick (1982) dlscovered that, for many students, an 'algebralc' letter is ldentlfled wlth an entlre, complex, overly-generallsed referent rather that with a partlcular quantitatlve attrlbute of that referent. For example, $1 n$ a problem whlch calls for the creatlon of a varlable, X, to represent the number of books bought, many students wlll thlnk of X as standing for 'bookness'. Thus, at dlfferent stages of worklng on the riroblem they may regard X as the name of a book, a physlcal book, and other qualltatlve aspects of books. Rosnlck (1982) concluded that 1 t was at the interface between the semantlc content of a problem and 1 ts
algebralc representation that students' skllls were most lacking.

Slms-Knlght \& Kaput (1983) examined how students' vulnerable understandlng of algebralc syntax can be overrldden by natural language syntax and rules of reference. They hypotheslsed that students have difficulty with algebralc word problems because they map their language-based and image-based representations of quantltatlve relationships inappropriately onto the algebralc symbol system. It was expected that famlllar quantitatlve relatlonshlps (e.g. 5 finger pleces to every palm plece \ln a glove) would produce more errors. This was tested by manlpulating the degree to whlch varlous quantitative relationships could be embedded in a natural representatlon system. Students were more successful when confllct between natural representatlon and the rules and syntax of algebra were minlmlsed, as In the case of unfamlllar quantltatlve relatlonshlps. Students' difflcultles arose from the appllcatlon of natural language to the formallsms of algebra, based on the fact that they share several symbols $<=$, numerals etc.) but do not share underlylng rules of reference or sיntax. They concluded that sklll in translatlng from a natural representatlon system to an abstract symbol system is differentlable from quantltatlve understanding of numerical concepts and understanding of algebralc
symbols. The current practlce of simply telling students that letters stand for numbers, and then providlng them with plenty of context-free manipulative exercises followed by some word problems, does not adequately develop this translation capability.

Davls (1984) has applled a speclal klnd of knowledge representation system called a frame coriginally developed in studles of reading comprehension) to the problem of equation reversal errors. There are several steps involved in using frames:

1. Input: Input generally offers many cues, only some of whlch need to be attended to. A major dlfference between novices and experts is thelr cholce of cues to attend to, versus cues to Ignore.
2. Retrleval: The input cues trigger the retrieval of a seemingly approprlate frame from the nuge number stored in long term memory. A student can fall at thls stage $1 f$ a) he/she does not possess the required frame, b) the relevant frame in memory is incomplete or c) the retrieval mechanlsm does not locate the correct frame. If a frame $1 s$ not retrleved the search may be termlnated.
3. Mapplng Input data Into frame varlables: The speciflc data from the lnput must be used to instantlate the frame variables. If there ls no approprlate Input for some of the frame varlables, a frame will typically make a default evaluatlon by drawling on past typlcal sltuations.
4. Once an instantlated frame has been judged acceptable, nearly all subsequent processlng uses thls Instantlated frame as a data base. The orlginal 'prlmitlve' data $1 s$ thereafter lgnored.
5. Frame modlflcation: When modiflcations are made, the new (modlfled) frame is added to memory but the previous version $1 s$ not deleted.

The "reversal" errors descrlbed by Clement and colleagues are explained in terms of retrieval of a "Labels" frame rather than the approprlate numerlcal-varlables frame. The labels frame ls used for deallng with sltuations such as statlng the relatlonshlp between feet and Inches:

$$
121=F \quad(12 \text { Inches }=1 \text { Foot })
$$

but thls ls Inappropriate $1 f$ ' l^{\prime} ls the number of Inches and 'f' is the number of feet. In thls case the correct equation is:

```
1 = 12f (No, of lnches = No. of feet X 12)
```

Both frames have legltlmate uses but they are often confused and used Inapproprlately. Davls (1984) concludes that, In addltion to the formal level of algorlthms, deflnitions, notations etc., instructional programmes are needed at the experiential level. Such programmes should connect with the students' exlsting representatlon structures and help to bulld, revise and extend these structures by the process of 'assembly'.

There have been a number of studles whlch hlghlight the fact that many students err on mathematical problems because of difflcultles In the comprehension stage of problem-solving rather than the solution phase (e.g. Lewls \& Mayer, 1987; De Corte, Verschaffel \& De WIn, 1985). It has been found that students have particular difflculty understanding and representing statements whlch specify a relatlonship between two varlables, e.g. "a man $1 s$ three times as old as hls son" (Mayer 1982; Reed, Dempster \& Ettinger 1985). This is not simply due to readlng difflculties. It has been found that varlations in readabllity of a few grades have no slgnlflcant effect (Paul, Nlbbellnk \& Hoover, 1986). Mayer (1981) developed a system for classlfylng algebra story problems by complling and categorising 1097 such problems from 10 algebra textbooks used in publlc schools In Callfornla. Mayer (1981) found elght major famllles of formulas, e.g. dlstance/rate/tlme, cost/unlt
cost etc. Within each famlly there were several categorles of problems. Some of these categorles were "simple" as they directly Involved a well known source formula. Others whlch required the source formula to be used in a larger equation, were "complex". Most of the story problems in the textbooks were complex (82\%). The flnal part of the analysls explored a more detalled level of classlfication withln each category classiflcation by template. A template refers to the specific propositional structure and story line of a problem. There were three major types of propositions:

1. Assignment of a value to a varlable (e.g. Length=2)
2. Relation between two varlables (e.g. Length=2xBreadth)
3. Asslgnment of a varlable to an unknown value (e.g. Length=X)

Problems belong to the same template If they share the same story line and the same llst of propositions, regardless of the values asslgned to each varlable, the actual relatlon assigned to a palr of varlables, or whlen varlable is the unknown. Approxlmately 90 templates were identlfled in the sample, with about half of these occurring at least 10 times. In a follow-up study, Mayer (1982) found that recall was poorer for
relational propositions than for asslgnments. When the subjects (college freshmen) were asked to construct their own word problems, they rarely made use of relational propositions. This suggests that students have difflculty in Interpreting relational propositions. Mayer (1982) found that relational statements were often changed to assignments. For example, "has 3 marbles more than" might become "has 3 marbles". A dynamic computer representation may provlde a better model for such a relationshlp than a statlc format such as an algebralc equation or expression.

In a later study, Lewls and Mayer (1987) examined college students' difficulties in comprehending relational statements in arlthmetic word problems. They found that errors were more likely when the required operation was Inconsistent with the statement's relatlonal term, e.g. having to subtract when the relatlonal term was "more than". They suggest that many errors are due to difflcultles In the comprehension stage of problem-solving rather than the solutlon phase. They recommend that students need more tralning in skllls of problem representation, particularly representation of relational statements.

Reed, Dempster and Ettlnger (1985), uslng Mayer's (1981) classlflcation, also found that students had most
difflculty in speclfying the relatlons between variables. They suggested that:
> "practice in constructing tables mlght increase the llkellhood that students would express the correct relations among the variables before they attempt to formulate an equatlon" (Reed, Dempster \& EttInger 1985, p. 123).

The purpose of these tables $1 s$ to asslst the students to represent the problem and to focus on the algebraic expresslons whlch form the equation. The kind of tables suggested are exactly the same as the tables constructed In a spreadsheet. A sample problem and table are shown below (Reed, Dempster \& EttInger 1985, p. 124):

Problem

"A car travelling at a speed of 30 mph left a certain place at 10.00 a.m. At 11.30 a.m. another car departed from the same place at 40 mph and travelled the same route. In how many hours wlll the second car overtake the flrst car?"

Table

rar	Dlstance (miles)	Rate (mph)	Time (hr)
Flrst	$30(\mathrm{t}+1.5)$	30	$\mathrm{t}+1.5$
Secona	$40 \times \mathrm{t}$	40	t

This table is exactly equivalent to a spreadsheet representation of the problem. The "cells" for the dlstance travelled by each car are connected by formulas to the "cell" for the tlme (t) of the second car. In a spreadsheet, a value would be substituted for the "cell" contalning t, and the distance "cells" would then be automatically calculated. The value of t could be varled untll the two distances were equal. Thls is precisely how spreadsheets were used in the present study.

2.2 The Effect of Varying Problem Contexts

A great deal of research has been done on the effect of varying the contexts of mathematical word problems. However, a lot of studles examlne elther student preferences for different contexts, or the relative difflculty of problems $\ln d f^{\prime} f e r e n t$ contextual settings. Comparatlvely few studles examine the sultablllty of abstract and concrete contexts for promoting learning. With verbal problems, contexts are only "concrete" in the sense that they refer to real objects and real sltuatlons. This is not quite the same as the meaning usually assoclated with the term "concrete problem" (l.e. a manlpulative task).

Performance $1 s$ usually better for verbal problems set in concrete contexts and In contexts for which the
partlclpants express a preference. Dlfferences have been found on several measures including learning, recall, recognltion and comprehenslon (Schwanenflugel \& Shoben, 1983). However, this is not always the case. There are some studies \ln whlch no great difference was found ce.g. Travers, 1967; Cohen and Carry, 1978; Ross and Bush, 1980) and others in which abstract contexts have been found to be more favourable. For example, Ewing (1984) found that numeric problems were easier than coin and distance problems.

Holtan (1964) prepared materlal on mathematlcal word problems for ninth grade students in four different contexts. Students who used material which was related to their expressed lnterests did slgnlflcantly better on posttest and on a retention test three weeks later. Travers (1967), in a slmllar study with ninth grade students, found no signiflcant difference in problem-solving success between preferred and non-preferred problem contexts. Higher achlevers, however, had fewer preferences overall than lower achlevers. Slmllarly, Cohen and Carry (1978) dld not find any relationship between problem-solving success and the interest preference of the elghth grade students In thelr study.

Ross and Bush (1980) studled the effects of problem context in a self-instructional probabllity module for

Abstract

preservice teachers, In one treatment, examples and explanatlons were abstract, whlle In the other they were related dlrectly to teaching. It was expected that students would perform better on problems that were similar to those used during Instruction. Students taught with abstract examples were expected to be superlor on abstract test ltems. Those taught with education examples were expected to be superlor on educatlon-related ltems. It was found that students in the education treatment obtalned hlgher scores on the education ltems than they did on the other types (medlcal and abstract contexts). Those in the abstract treatment did not demonstrate a comparable superlorlty on abstract Items. However, those in the education treatment did not perform better on the overall posttest. In addltion, the educatlon treatment did not produce a more posltive reaction from students. Ross and Bush (1980) have suggested that these sllghty dlsappolnting results may be due to the very short treatments and the IImlted number of practlce 1 tems presented. The study involved only 38 subjects and there was pressure on the participants to work rapldly In order to complete the materlal in one session.

In a follow-up study (Ross 1983) examined the effect of context on flve different types of learning, ranging from memory of formulas to far transfer. The subjects

were preservice teachers and nursing students, with both groups studying statlstlcal probabllity. It was hypotheslsed that contexts adapted to the interests of each group would facllltate asslmilation and Integration of the rules In memory and that, as a result, subjects would excel on far transfer tasks. Non-adaptlve contexts were expected to produce more rlgld, speciflc encoding. This was expected to lead to relatively better performance in rememberlng speclflc formulas and procedures than in solving transfer problems. It was found that preservice teachers benefltted from education-related materlal but not from medlcal-related materlal. The nursing students showed the opposlte tendency. These effects could not slmply be accounted for by Increased motivation, as an attltude survey falled to flnd dlfferences favourlng the adaptlve contexts. It was found that adaptation effects were relatlvely strong on transfer items. This was explained by Ross (1983) In terms of meanlngful contexts actlvatling relevant past experlences as conceptual anchorling for information.

A further study was conducted by Ross, McCormlck and Krlsak (1986) with groups of nursing majors and education majors, agaln studylng statistics. In this case Individuals opted for problems In one of four alfferent contexts; education, medicine, sport or
abstract. Some subjects were given problems In the context of their first cholce whlle others were given thelr last cholce. It was found that achlevement was better for first-cholce contexts. Those recelving problems in their least favoured context did particularly poorly. It was further noted that the context varlation did not have quite as much effect with the nursing group who were older and more advanced academlcally. This might Indlcate that context is partlcularly lmportant for younger, less mature, students such as those in the present study.

The interaction of problem context with subjects' age was studled by Caldwell and Goldin (1987). They examlned the effect of the context of algebralc word problems with both Junior and senlor high school students. Concrete problems were slgniflcantly less dlfflcult than abstract problems at both junlor and senlor levels but the differences became smaller with increasing grade level. This suggests that there may be a developmental component lnvolved and supports the use of concrete contexts In Introductory courses for Junlor puplls.

A sllghtly different approach was used by Ross and Anand (1987). They tallored the context of the problems to the interests of Individual students. They used a computer-based strategy to personallse verbal problems
for $f 1 f t h$ and slxth grade students. Thls was done by askIng students to provide blographlcal information about themselves and using this information to formulate problems using both print media and computer alded Instruction. In two control treatments, concrete (non adaptive) and abstract contexts were used. Results indicated that the personalised contexts were advantageous for solving both conventlonal problems and transfer problems, for recognlsing rule procedures and for developlng favourable attitudes.

Ross, Anand and Morrison (1988) extended thls personallsed approach to students of nursing and education. They agaln found that personallsed materlals were beneflclal across a varlety of learning outcomes, as well as for attitudes. They found that Indlviduallsed contexts had partlcular beneflts for weaker students. Hlgh achlevers performed relatively well wlth elther personallsed or concrete contexts. The lower and middle groups beneflted most from personallsed contexts.

Other studles have examined the effect of varylng word problem contexts along assumed dimenslons of lnterest. Graf \& R'Jdell (1972) and McCarthy (1976) varled problem contexts $1 n$ terms of male/female actlvitles. For traditional context problems, boys performed better than glrls. When the contexts were made relevant to both
sexes, however, thls advantage was not nearly as great. Chrlstensen (1980) explored the fantasy/reallty dimension of context with grade nine students. Students were slightly more successful on fantasy problems. Thls study also found that weaker students had stronger preferences.

There is some disagreement concerning the relative importance of reading abllity in the solution of mathematical word problems. Some studles report that reading ablilty is a major factor in solving arlthmetlc word problems (e.g. Alken, 1972; Ballew \& Cunnlngham, 1982). Thls may be due to poor language skllls lmpeding understanding of the problem rather than interferlng with the solution process. Others contend that Increased readlng ablllty does not result in a slgniflcant Improvement (e.g. Paul, Nibbellnk \& Hoover, 1986). Belng able to explain what one reads will not necessarlly help to determine a course of action leading to a solution. In addltion, fluent reading does not guarantee awareness of the precise meanlng of the question to be addressed. Muth (1984) found that the syntactlc complexlty of arlthmetic word problems had no effect but that the presence of extraneous information In the problem statement had a negatlve effect. Moyer and colleagues (Moyer, Moyer et al., 1984; Moyer, Sowder et al., 1984) compared the effect of both telegraphlc
and drawn formats wlth conventlonal verbal formats for simple arlthmetlc problems. No dlfference was found between the verbal and telegraphlc formats. The drawn format dld produce a slgnlflcant effect, partlcularly for those with lower readlng abllitles. Thls may have been because the drawn format facllitated semantic processing and reduced the burden on working memory for poorer readers. It seems that factors other than reading far outwelgh the importance of reading ability.

Developmental theory and modern Informatlon theorles would Indlcate that concrete problems should be more easily asslmllated and solved by children such as those In the present study. Developmental theory suggests that competence wIth abstract problems, theorles and hypotheses $1 s$ limlted to those who have reached the stage of formal operations. A developmental model would therefore suggest that abstract problems would be more dlfflcult for young chlldren (Goldin 8 Caldwell 1979).

Information processlng theorles suggest that a cruclal flrst stage in problem-solving $1 s$ the construction of an Internal representation of the problem (Brlars \& Larkin, 1984). The difflculty of a problem may be directly related to t'e complexity of constructing such an Internal representation. Better performance on concrete problems in famillar contexts can be explalned in terms of a dual representation model; a verbal system and an

Imaginal system. Dlfferences occur because of the greater avallabllity of the lmaglnal system for concrete problems. The generation of Internal representations should be less difflcult for concrete problems in famillar contexts than for abstract problems (Caldwell \& Goldin 1987).

An alternatlve model for solving word problems is to use a 'direct translation' strategy. Darch et al. (1984) used such an approach with arithmetic word problems on skill-deflclent fourth graders. They used an expllcit word-matchlng strategy to translate concrete problems Into mathematlcal forms with students from grade 4 through grade 6. The strategy conslsted of a number of rules: If you use the same number agaln and agaln, you multiply; if you are glven the blg number you divide; if you do not know the blg number you multiply etc. It was found that thls method was effective compared to a method compounded from four basal texts adopted by the state of Oregon. They remarked that the basal texts seemed to view mathematlcal word problems as a vehlcle to teach the more generallsed ablllty of problem-solving, encouraging the students to offer their own solutions and to discuss each others' proposed solutions. On the other hand, the subjects in the expllcit treatment were taught clearly artlculated strategles for translatlng word problems and, in the

Inltlal stages, the teacher modelled each step of the process. They concluded that
"a program constructed to teach prerequisite skills In a sequential manner and, more importantly, expllcitly model each step in the translation process ls slgnlflcantly more effective than approaches advocated In teachers' guldes to currently used basal texts"
(Darch et al. 1984, p.358).

A 'dlrect translation' approach, embodled in a computer program, was also used by Palge and Simon (1966). They used the computer program as a model of human behaviour In solving algebra word problems. The program, STUDENT, was capable of solving algebra word problems by directly translating the problem text into a serles of equations. Direct translation models suggest that concrete problems are more difflcult than abstract ones. Thls $1 s$ because concrete problems must undergo extra substitutions to reference the number of objects described in the question, rather than the objects themselves (Goldin \& Caldwell 1979).

However, re'ylng on direct translation processes is not recommended by modern information processing models of learning. Human subjects differ in the extent to which they depend on direct processes, and generally only
use this approach for non-standard or unfamlliar problems. Human subjects usually make extensive use of auxilliary cues, physical representations etc.

2.3 The Effectiveness of Computer-Based Instruction

There has been an enormous amount of dlscussion of the role of computers in the educational system. In 1986 there were over 7000 titles contalning the word computer In the ERIC educatlonal database (Dlem 1986). By 1985 there were over 7700 educatlonal software packages avallable In the USA and Canada, with up to 2000 packages belng added per year (Dudley-Marling \& Owston, 1987). Becker (1987) estimated that there were more than one mllllon computers in $K-12$ schools in the USA and that the typical high school had twenty computers. Many clalms have been made that computers wlll radlcally change both the currlculum and methods of instruction but thls has not happened yet. Such clalms have been made in the past for other educatlonal technologles, but computers do have certaln attrlbutes which are unique, notably thelr Interactlve nature and their flexibllity.

There have been many studles which have attempted to evaluate the effectlveness of CAI (computer alded Instruction) compared to tradltional forms of instruction. Burns and Bozeman (1981) carrled out a meta-analysls of mathematlcs teachlng uslng CAI in
secondary and elementary schools and found a
"signiflcant enhancement of learning". Kulik, Kulik and Cohen (1980), in a meta-analysls of 59 CAI studles, found an overall positlve effect in both achlevement and attitude. They also found a slgnificant reduction in instruction time, compared to traditional teaching methods. In a later meta-analysis of 51 CAI studies at second level (Kullk, Bangert and Wllllams 1983) slmllar results were reported. Hasselbring (1986), In a review of research on the effectlveness of CAI conducted over the past twenty years, concludes that students receiving CAI achleve more in less time and have Improved attitudes, regardless of the type of CAI used.

These reports seem to Indicate that clalms for the effectiveness of CAI are Justlfled. Clark (1983) has, however, cast some doubt on the valldlty of the analyses described above and clalms to have found evidence that

> "there are no learning beneflts to be gained from employing any speclfic medlum to dellver Instruction" (Clark $1983, p .445$).

Clark (1983) suggests that the effects found In these meta-analyses are due to instructional method differences between treatments and or the novelty effect of newer media. These hypotheses are supported by evidence that the positlve effect $1 s$ reduced when the

Abstract

same Instructor produces all treatments and that the galns tend to diminlsh as students become famillar with the new medlum. Clark further suggests that the reduction \ln learning time may be due to the extra effort that students (partlcularly younger students) are prepared to invest in newer medla programmes.

In a later study, Clark (1985) examined a 30\% random sample of the studles utilized by Kulik and his colleagues. He found that 75% of these contalned serlous design flaws. These flaws Included fallure to control content, amount of Instruction and Instructional method. Clark then carrled out a re-analysls of sub-groups of these studies and found that "when adequate method and content controls were applled, slgnlflcantly fewer outcomes favoured CAI". (Clark 1985, p. 257)

There have also been reports of positlve effects on attltude and motivation and of reductions in instruction time for computer based methods (Kulik, Kullk \& Cohen 1980; Burns \& Bozeman 1981; Swenson \& Anderson 1982; Kullk, Bangert \& Wllllams 1983; Roblyer 1985; Hasselbrlng 1986; Lev1n et al., 1986; Seymour et al. 1987). Seymour et al. (1987) had two groups of children complete ldentlcal tasks using elther a computer or pencll-and-paper. The computer group

expressed an extremely strong preference for further practice and they rated the learning as more interestlng. They also thought that they had achleved more, although thls lmpression was not substantlated by performance. They concluded that

```
"factors related to a feellng of self-control over
the medlum, such as operating the machlne ltself,
automatlc self pacing......and Immediate
responslveness..... contrlbuted greatly to the
computer's appeal. There may have been some novelty
effect but thls should have been mlnimlzed by the
subjects' conslderable past experlence wlth
computers." (Seymour et al. 1987, p.22)
```

Such reports give grounds for assuming that computer use may be a factor in motivating students to Invest more Interest and effort in mathematlcal work.

Th bulk of the evidence suggests that computer use, per se, wlll not lead to Increased learnlng but that it ls extremely motivating for many students. Clark (1985) suggests that CAI may also be more efficient and cost effective than tradltional methods. One such study of cost-effectlveness (Levin et al., 1986) analysed elght, adequately deslgned, CAI Interventlons. These were all drlll-and-practlce programs in the areas of mathematlcs and reading. They found that CAI was

> "superior In cost-effectlveness \ln lmparting mathematics and reading achlevement to extending the school day or reducing class slze" (Levin et al. $1986, p .31)$

The bulk of the evidence In the evaluation studies descrlbed above comes from drlll-and-practlce and tutorial programs. These are generally used by the learner in lsolation, with little or no teacher intervention. Hasselbring (1986) has noted that CAI with no teacher Interaction is much less effective than CAI In which teacher lnteraction $1 s$ an lntegral part of the instruction.

There ls a case for deslgnlng computer-based instruction In which the learners use computers under the direction of a teacher. The cholce of software will depend on what type of skllls are to be taught but, from the polnt of vlew of learner control and flexibilty of use, it can be argued that software with the least embedded content offers the best prospect. A group of leadlng Bratish mathematlcs educators (Ball et al., 1987) has recently ldentlfled the followlng list of characterlstlcs of good software:

> 1. It $1 s$ powerful: learners encounter Important Ideas and are encouraged to use these ldeas to solve problems.
2. It is accesslble: Even beglnners can make it work and find aspects of $1 t$ they wish to develop
3. It is controlled by the learner: Pupils can declde what problems to undertake and what constltutes a solution to these problems. (Ball et al. 1987, p.25)

Software whlch meets these requirements Includes programmlng languages, data-handling packages, graph plotters and spreadsheets. Of these, spreadsheets are the most promising in mathematics education. They embody a mathematical mlcroworld and are flexible, easy to use and readlly avallable.

2. 4 Modes of Computer Use In Education

There have been numerous suggestions for classlfylng modes of classroom computer use (Manlon 1985, Whiting 1985, Howe 1986, Mills 1987, Adams 1988). M111s (1987) used a categorlsation based roughly on the amount of control exerclsed by the learner. Increasing learner control corresponds to decreasing software content. Demonstratlon and drlll-and-practlce programs are very content-speciflc whlle, at the other end of the scale, word-processors, informatlon handling packages and spreadsheets are content-free. The following classlficatlon $1 s$ based on that of Mills (1987):
A. Instructional Mode

1. Demonstration/Textbook mode
2. Drill and Practice
3. Programmed learnlng - linear Mode
4. Programmed learning - branchlng Mode
B. Revelatory Mode
5. Appllcatlon programs
6. Case studles and SImulations
7. EducatIonal games
C. Exploratory Mode
8. Problem-solving
9. Mathematical Environments (e.g. LOGO)
10. Content-Free Packages (e.g. Spreadsheets)

These are not rigld categories, and some packages may employ more than one mode of interaction (l.e. a tutorlal followed by a simulation). Others (e.g. spreadsheets) may be adapted for use In more than one mode (e.g. revelatory and exploratory).

2.4.1 Instructional Mode

Using a compute, to dellver a demonstration program in which the user's only interaction is to start, branch or stop the program mlght be Justlfied if it demonstrates something that cannot be done in a textbook. These
> programs require no overt interaction and the user's role is as a passlve observer.

The majorlty of mathematlcs drlll-and-practlce programs are concerned with baslc skllls at primary school level (Howe 1986). These are based on a relnforcement model of learning and require more user interaction than demonstration programs. They are generally used to teach verbal knowledge and thelr usual purpose $1 s$ to supplement previous lnstruction. They do this by allowing students to rehearse and automatize baslc skills. They assume that the user has the relevant procedural knowledge for the partlcular task and simply provide an opportunity for self-paced practlce. Thls ls by far the most common mode of CAI in mathematlcs teachlng (Dlckey \& Kherloplan, 1987).

Drlll-and-practlce programs are often quite sophlstlcated in their use of graphics, colour and sound. They often employ a game format and thls can be motivating. They usually have no diagnostlc capablllty and only tell the learner that he/she $1 s$ wrong when an Incorrect response is glven, without attempting to explaln why, or providing any remedlation. Thls $1 s$ of no beneflt to a learner who has a 'bug' in hls or her procedural knowledge.

In programmed learning (tutorial) mode, the computer acts as teacher by presentling new Information and
providing opportunltles for the learner to practlce. Linear programming is based on the princlples of operant conditioning. It $1 s$ characterlsed by systematlc presentation of very small 'frames' of materlal whlch ellcit a student reponse, followed by lmmedlate reinforcement. The sequence of 'frames' is predetermined by the program author and it is assumed that the learner's response will be correct. In branching programs, the learner's reponse $1 s$ used to decide on the subsequent cholce of materlal. They may also provlde more sophlstlcated forms of feedback than the typlcal "correct/lncorrect" of drlll-and-practice programs. Conventlonal tutorlal programs contaln a range of hints and suggestions for the more predictable learner responses. Newer, 'intelllgent', tutors malntain a representation of the learner's current state of knowledge and use this to influence the nature of the learner's interaction with the materlals. They contaln

```
"an expllcit representation of the knowledge that
the student should acquire, an extenslve catalogue
of error types and thelr orlgin, with related hlnts
and explanations, and a teachlng model whlch decldes
when to interrupt, what kInd of help to glve, what
type of problem to glve next and when to move on"
(Howe 1986, p.27).
```

Intelligent tutors have been used successfully in knowledge domalns whlch are formally organlsed and dependent on logical analysis, such as mathematlcs and the physlcal sclences (Alllnson \& Hammond, 1990). Intelllgent mathematlos tutors are a very recent development and exlsted only in prototype form as recently as 1986 (Howe, 1986). It may be some tlme before they become avallable to schools.

The principal advantages of the instructional modes of CAI descrlbed above are that the learnlng ls self-paced and that feedback, however rudimentary, $1 s$ provided. WIth the exception of 'Intelllgent' tutors, they are quite easy to program and a number of authoring systems are avallable to asslst non-specialist programmers. This relatlve ease of production may account for thelr predominance \ln the educatlonal software market.

Kozma (1987), however, argues that tutorlal instruction performs certaln cognitlve functions for the learner. These lnclude speclfylng objectives, giving rules, providing examples, asking questions etc. He suggests that thls short-clrcults the learning process by replacling cognltive strategies such as determining goals, posing and testing hypotheses and inferring rules. The categorles of software dlscussed below place more control in the hands of the learner and are less susceptible to such criticisms.

2.4.2 Revelatory Mode

A mathematlcal appllcatlons program carrles out some operation for the user, such as Integrating, plotting a graph etc. It embodles an algorlthm or algorlthms that solve partlcular types of problems. MuMath, whlch contalns a range of symbollc mathematlcal functions ls an example. The purpose $1 s$ not to teach the user how to carry out the embodled algorlthm but to relleve the burden of calculation and symbollc manlpulation.

Held (1988) tested the effect of uslng graphlcal and symbol-manlpulating software to perform routlne manlpulations in a fifteen week introductory calculus course. Thls reversed the normal pattern of lnstruction In algebra, which beglns with the development of algorlthmic skllls (Berger \& Wllde, 1987). The experimental group used a computer to perform the necessary algorlthms and spent only the last three weeks on sklll development. Thls group showed better understandling of course concepts and performed almost as well on a test of routlne skllls as dld the comparlson group who had practised skills for the full fifteen weeks. Whlle thls experlment was IImIted in its scope, It shows how an appllcatlons program can be used to facllitate a "concepts first" teachlng strategy. Thls challenges the traditlonal bellef that concepts cannot
be adequately understood without prlor mastery of baslc skI\|ls.

In a simulatlon, the computer is used to model some real sltuation and the learner Interacts with the model. This ls generally done by varylng some specifled factors and observing the consequent changes $1 n$ other factors. Thls implles more actlvity by the user than any of the modes discussed above, glving the learner a large measure of control over the actlvity. Simulations concentrate on certaln key elements of the real sltuation, thus allowlng the whole package to be programmed on the computer. Case studles typlcally Involve addltlonal non-computer materlal. The assumption $1 s$ that $1 n t e r a c t i n g$ with the slmulation will give the learner some insight into the underlying rules encoded In the model. Slmulations are generally deslgned for use after skllls, concepts and rules have been learned. Thelr usual purpose $1 s$ to 1 ntegrate these newly learned Ideas Into a meanlngful context.

Educatlonal games are often slmulations and thelr distingulshing feature $1 s$ thelr hlghly motlvating format. Thls type of software has been most common in the physical and $t, o l o g l c a l$ sclences in hlgher educatlon and has had IIttle impact so far at second level < Howe 1986).

2.4.3 Exploratory mode

Content-free general-purpose software does not overtly engage in instruction. This type of software is designed to assist the learner in tasks such as writing (word processors), analysling data (information handling packages), calculatIng (spreadsheets) and problem-solving (e.g. programming languages). For example, Information handling packages allow learners to compile thelr own databases or to interrogate other databases in a flexible way. The important learning taking place may be the process of the interrogation rather than the product. A learner interrogating a database may dlscover useful factual Informatlon but wlll also learn to form and test hypotheses, make generallsatlons etc. Underwood (1986) InvestIgated the use of computers in developing children's classlflcatory abillties using an information handling package. The results showed galns in both the computer group and the control group, but with much larger galns in the computer group. The galns were explained by increased motlvation for the computer group.

Thls type of software has not been deslgned for education but lts lizk of speclfic content allows lt to be adapted and used in a number of ways.

> "It ls not finlshed, complete and targeted to a partlcular niche in the school curriculum, but instead it is open to curriculum developers, teachers and students to find their own ways of using it according to their own goals and local needs" (Disessa $1987, p .359)$.

2.4.3.1 Programming Lanouages

The exploratory approach, using computer programming languages (e.g. LOGO) has been advocated by numerous authorities in mathematics education (Wlechers, 1974; Papert, 1980; Higgo, 1985; Howe, 1986; Natlonal Mathematics and Statistics CBL Review Panel, 1986; Ball et al., 1987). Papert (1980) has argued that learning computer programming can increase mathematical problem-solving skills. Papert (1980) advocates natural discovery with a minimum of teacher guldance and provides anecdotes of children spontaneously discovering mathematical princlples. Papert (1980) clalms that children using LOGO will learn mathematlcs as easlly and as naturally as they learn thelr natlve language.

Howe (1986) argues that Papert's case is based on a rational analysis and is not supported by empirical evidence. He suggests that whlle students in higher education should be capable of exploring a system in an organlsed way, younger students are unlikely to be able
to do thls unalded. An alternatlve (Howe et al. 1982)
$1 s$ to provide worksheets to help the learner interact with the system in a structured way. Thls however, reduces somewhat the degree of learner control. O'Shea and Self (1983) suggest that while Papert's approach is superlor when the teacher pupil ratlo is very favourable, economlc constraints will normally dictate some sort of systematic support such as worksheets.

Programming is often assumed to promote exploration, to encourage students to reflect upon thelr own thought processes, and to foster general problem-solving skllls which will be transferred across problem domalns. These skllls Include plannlng, problem decomposition, hypothesis generation, hypothesis testing and debugglng. However, much of the evidence presented In favour of such benefits is in the form of rational analysis and anecdotal accounts.

Attempts to show that learning programming affects general, domaln-independent, problem-solving skllls have not been successful. Pea and Kurland (1987) caution agalnst the 'technormantlc' notlon that experlence with a powerful symbollc system wlll automatlcally beneflt higher order cognltlve skills. They are sceptlcal about the possibllity of spontaneous transfer, glven that even adult thlnkers often do not recognlse connections
between isomorphic problems. In a substantial review of the literature on programming they conclude that:

```
"there are no substantlal studles to support the
clalm that programmlng promotes mathematlcal rlgour
.... and there are no substantlal reports that it
alds chlldren's mathematlcal exploration" (Pea and
Kurland 1987, p.172).
```

Pea \& Kurland (1983, 1984a, 1984b) found no measurable Influence on the planning abllity of students who had studled LOGO for one year.
> "Learnlng thlnklng skills and how to plan is not Intrinsically guaranteed by the LOGO programming environment: 1 t must be supported by teachers who, tacitly or explicitly, know how to foster such skills through a Judiclous use of examples, student projects and direct Instruction" <Pea, Kurland \& Hawkins, 1985, p.212)

Further studies by Howe et al. (1979) and Clements (1985) falled to find slgnlflcant differences ln elther loglcal thinking or cognltlve development among children who learned LOGO.

There has been some success, however, In uslng programming as a vehicle for learning more modest, domain-specific, skllls. Noss (1986) examlned the
extent to which experience with LOGO assisted children to understand elementary algebraic concepts. The study involved 118 children, aged from 8 to 11 years, who learned LOGO for 18 months (approx. 50 hours). It was designed to test whether this experience would asslst children to construct formalised algebraic rules and meaningful symbolisations for the concept of a variable. No overt attempt was made to link LOGO with algebra. Nevertheless, the results suggested that extensive exposure to LOGO programming did enable some of the subjects to perceive variables as generallsed numbers. Butler and Close (1989) have also identified mathematical skills which benefit directly from LOGO programming. In a project designed to provide enrichment for mathematically more-able children, aged 6 to 12 years, they found that LOGO was partlcularly beneficial in the areas of geometry and measurement.

Soloway, Lochhead and Clement (1982) examined the effect of learning programming on solving algebra word problems with third level students. An identical word problem was given to two groups of subjects. One group was required to write an equation to represent the problem. The other group was asked to write a BASIC program to do the same. Significantly more students were able to write a program. Another experiment required students to explain an equation embedded in a computer program
and a similar equation standing alone. Again, it was found that significantly more students could explain the equation embedded in the program. It was suggested that these effects are due to the procedural, dynamlc, nature of equations in programs, which is not obvious in ordinary algebraic equations. Soloway, Lochhead and Clement (1982) have gone as far as to suggest that it would be worthwhile to:
"redefine much of the early mathematics currlcula to be programming-based. That $1 s$, teach algebra as an integral part of programming" (Soloway, Lochhead \& Clement 1982, p.182).

In summary, there is some justiflcation for thinking that programming may be of benefit in developing understanding in certain restricted mathematical areas. However, learning programming will not automatically develop powerful domain-independent problem-solving skills. Most previous work in this area has concentrated on such broad skills. It may be more fruitful to lower expectations and replace the ideal of attaining mastery of wide-ranging skills with attempts to help children acquire a set of domain specific skills. The ability to construct algebraic expressions is one such domain.

2.4.3.2 Spreadsheets

An important issue that arises in relation to computer use in exploratory mode, is the amount of effort that needs to be invested in learning how to handle the system ltself. For example, learning the syntax and semantics of a programming language may require very considerable effort. Boulay (1978) reported that, whlle LOGO programming promoted understanding of mathematics in trainee teachers, the difflculty of the programming activity often distracted attention from mathematical issues. It has been suggested (Hslao 1985) that this problem can be alleviated by using more 'friendly' software, such as spreadsheets. These require considerably less effort to learn and use.

Spreadsheet programs are of particular interest to mathematics educators and many have advocated the Ir use (Goodyear 1984, Waddington \& Wlgley 1985, Howe 1986, Brown 1987, Arad 1987, Luehrmann 1986, Ball et al. 1987; Keeling and Whiteman, 1990). There has, however, been very little work publlshed in this area. Spreadsheets constitute a very rich mathematical environment and have great potential for teaching algebra in second-level schools. In particular, spreadsheets may provide better support for the acquisition of the concept of a variable than is provided by programming languages. Variables have many connotations and uses in computer programming,
not all of which are relevant to school mathematics. There are situations in programming in which a variable is like a variable in mathematics:
e.g
$x:=3$
$x:=3+5$
$X:=З * Y \quad X:=Y$
etc.

There are also situations in which they are unlike variables in mathematics:
e.g $X:=X+Y \quad X:=X * Y$

These "non-mathematlcal" uses of variables and the equality sign could be confuslng for algebra novices. Variables in programming may also be parameters, a use which is not relevant to elementary algebra and which could also cause confusion. In contrast, the use of spreadsheet cells as varlables ls so close to traditional algebraic usage that there is little danger of confusion.

In addition a spreadsheet continuously displays the values of variables and expressions whereas a program only displays these at run time. Even then, a program will only display those variables for which output statements have been written. Thus a spreadsheet provides better support for an operative view of variables by highlighting the dynamic nature of their values. There is also the problem, noted by DuBoulay (1980) that using a programming language can tend to shift the initial mathematical problem to a programming problem. This ls less likely to occur with spreadsheets as they do not contain input/output or control
statements (loops and branches), which are not relevant to elementary algebra and which are difficult to teach to young children. Spreadsheets also constitute a less complex computer environment than programming languages. They have fewer syntax regulations and less non-relevant structures and should require less lnitial learning. It is expected that favourable results from learning programming would therefore be replicated, and possibly improved, in a spreadsheet-based learning environment.

Dubitsky (1986) explored the use of spreadsheets to enable children with no previous knowledge of algebra to solve algebra word problems. Subjects were academically able slxth graders (aged 11 to 13 years). The purpose of the study was to investigate, through the use of spreadsheets, if students could gain skills in solving algebra word problems without first learning to manlpulate algebralc formulas. The children used pre-prepared spreadsheets and were not required to construct their own formulas. They used a guess and check' technlque and were required to guess the value of all variables. It was found that some children put formulas into the spreadsheets so that they would only have to guess one variable! This was surprising, as it was not expected that the children would be capable of understanding the underlying structure of the spreadsheets. The children were able to manipulate the spreadsheets much better than was expected and were
highly motivated by it. However, the population was quite llmited and the children were selected from a class of the brightest and most stable population in the school. There was also a very favourable pupll teacher ratio of $2: 1$.

In another study of spreadsheet use, with third level economics students, Orzech and Shelton (1986) reported that students were able to see how procedures work more clearly when they were freed from manual arithmetlc computations.

2.4.4 Recent Developments in CAI

Hypertext and hypermedia are recent innovations In exploratory computer environments. In these environments, windows on a screen are associated with records in a knowledge base and links are provided to these records. Thls permits exploration In a non-linear and highly interactive manner. Links may be to text, graphical displays, sounds, video etc. These are extremely flexible computer environments but one problem that has been noted $1 s$ that users can become disorientated because of this very flexibillty (Allinson \& Hammond, 1990). These developments present interesting new possibllities for education but are not widely avallable at present.

The recent availability of powerful computer systems has also prompted the development of sophisticated, special purpose, mathematics learning environments. Feurzeig (1986) has described work-in-progress on a computer system which attempts to separate the difficultles in performing the manlpulative aspects of algebra from the conceptual and strategic content. The system consists of a) LOGO projects in algebralcally rlch contexts whose content is compelling for students, b) use of algebra microworlds (bags of marbles) with concrete iconic representations of formal objects and operations, and c) an expert instructlonal system to aid in performing algebraic operations.

Kaput (1986) has proposed a similar computer system containlng simultaneous and interconnected lconlc, tabular and graphical representations of word problems. The system is designed to help students overcome "a most pervasive difflculty" of fallure to appreciate the ldea of a ratio. It is suggested that such fallure may be tled to

> "a lack of cognitive models for the critically Important ldea of variable" (Kaput 1986, p.197).

The current project is primarily concerned with providing a cognitive model (a spreadsheet cell) for the idea of a variable in a much less costly computer
environment which is currently available to the majority of second-level students in Ireland.

2.5 Current Usage of Computers In Schools

While there is little dispute concerning the potential of computers to influence education, they have not yet had a major impact in schools (e.g. Alty, 1987). Dickey and Kherlopian (1987), in a survey of computer use in grade 5-9 classrooms, questloned 558 mathematics teachers. They found that 45% had access to computers and used them, 30% had access but did not use them and the rest did not have access. Usage was weighted towards drill-and-practice (83%), games (58%), and tutorials (50\%). Content-free software was very poorly represented, with programming being used by a mere 13% and simulations by Just 4%. A survey of 52 British secondary schools (Green \& Jones, 1986) on computer use in mathematics, revealed that computers were used "very rarely" by 39% and "never" by a further 33%. Drill-and-practice and demonstrations were the most popular modes of use. Spreadsheets were practically never used.

The large-scale use of computers in schools is hampered by, among other things, a shortage of good quality software. The avallablllty of good software had not emerged as an lssue in the inltial drive to provide
computers for schools. Early enthusiasm for computer use in education was largely based on the idea of computers as an object of study in their own right. In the early stages, debate centered on the lssues of hardware choice and the approprlateness of varlous programming languages. More recently, educators have become aware of the potential for using computers to enhance learning in every area of the curriculum. It has also been reallsed that it is extremely difficult and expenslve to produce good quallty educatlonal software. Unlike other software, the enormous devlopment costs of educational software are not likely to be offset by a large consumer market. Educational software also has a very short "shelf life", in most cases about 18 months (Walker, 1987). For these reasons, production of educational software is not a very attractive commercial proposition. Most of the lmportant inltiatives in this area have come from government funded projects. These have provided a number of models for the production of educational software <e.g. Schoenmaker et al., 1987; Watson, 1987; Walker, 1987). Most models Involve the cooperation of various groups of experts including teachers, curriculum developers, educatlonal psychologists, professional programmers, graphic artists etc. These models are very complex and encompass

> "national policy, curriculum development, teacher tralning, distribution and dissemination, staff development, technical and educational operations, research and development, financlal management and the raising of capital" (Walker 1987, p.317)

Other lssues that must be addressed include support services, evaluation, documentation, specification formats, field testing and report mechanisms.

To date, no such models have been implemented in second level education in Ireland. There have been some initiatives by individual teachers, but with very mixed results. This is not surprising as teachers, no matter how enthusiastlc, do not have the resources or the training to produce professional quality software. It is also questionable whether teachers should be the producers of their own software. Other professional groups do not write their own software, although they may be Involved in its design. There is a similar place for teacher involvement in the production of educational software, particularly in the areas of specification and evaluation.

An alternative model is the adaptation, by teachers, of general-purpose software to meet specific needs. This approach to computer aided learning is within the resources and expertise of many teachers.

Chapter 3: The Hypotheses

This study will examine the following hypotheses:

1. All students who complete a spreadsheet mathematics course wlll be better able to formulate algebralc expressions for relatlonal propositions in word problems.
2. Those who study problems In concrete contexts wlll perform better than those who study problems in abstract contexts.
3. The context effect will be greater for those with lower general numerlcal ablllty.
4. The context effect wlll be greater for those with less positlve attltudes to mathematlcs.
5. The context effect will be greater for those with less positlve attltudes to computers.

These hypotheses can be justlfied by reference to theories of cognitive psychology and the empirical
research llterature.

3.1 Theoretlcal Backoround

Cognitlve psychology is the sclence of human information processing (Wessels, 1982) and is currently one of the most rapldly growing areas of psychology. Information processing describes mental endeavour in terms of conversions from lnputs to outputs. Cognltive models of
learning assume that instruction $1 s$ mediated by students' use of previously acquired knowledge (Clark \& Voogel 1985). It concelves of learning as an actlve process in which the learner is responslble for attending to, organising, elaborating and encoding materlal Into long term memory. The baslc assumption underlying the information processing theorles ls that human memory is an actlve organlser and processor of Information.

In the area of children's mathematlcs learning, informatlon processing theory has largely replaced the Plagetian framework as a broad explanatory model <Groen \& Kleran 1983). Wlthln the cognltive approach, the teacher's role is to organise activitles that facilitate the learner's active construction of hls or her own knowledge (W1ttrock, 1981). New Information ls learned by relating it to existing knowledge, so teachers can enhance learning by stimulating learners to connect new information to previously learned material. Hence, it is important to base Inltial Instruction In algebra on a foundation of previous arlthmetlc knowledge.

While there are many models of learning within the Information processing approach, that of Robert Gagne is typical and well accepted (Aronson \& Brlggs 1983; Sachs 1984; Case \& Berelter 1984). Accordlng to Gagne, learnlng takes place when

Abstract

"a stlmulus situatlon together with the contents of memory affect the learner in such a way that his performance changes from a time before belng in that situation to a time after belng in it. The change In performance $1 s$ what leads to the conclusion that learning has occurred" (Gagne 1977, p.5).

Gagne's model postulates a number of internal mental structures through whlch the flow of Information is purposeful and organlsed. Stlmull from the envlronment are received by receptors that are sensitlve to different forms of energy (llght, sound etc.). These receptors send nerve impulses to a sensory register in the central nervous system. From thls complete representation of sensory information, a small fraction is kept for use in short term memory and the remalnder is lost from the system. Information in short term memory may be coded and stored in long term memory. Once information $1 s$ in long term memory it may be retrieved to short term memory and thence to the response generator. Alternatively, it may be sent directly to the response generator. The response generator organlses the response sequence and guldes the effectors. The effectors include all muscles and glands.

Each of these Internal structures carrles out certaln processes durlng learning. Each process can also be

Influenced by external events (Gagne 1977). The processes are:

1. Attending

This $1 s$ a process whereby the learner concentrates on certaln features of a stlmulus recorded in the sensory reglster and ignores others. Thls process transforms lnput from the envlronment and sends the transformed informatlon to short term memory. External events that influence attending include sudden changes in the intenslty of stlmulation. Selective perception can be actlvated by verbal Instructions, underilning in text, arrows in diagrams etc.
2. Storage in Short-Term Memory

Informatlon \ln short-term memory can persist for a limlted perlod only, generally thought to be up to twenty seconds. The amount of information that can be held $1 n$ short term memory $1 s$ very limited and is thought to vary from flve to nlne individual ltems. While the number of 1 tems is very limited, the capacity of short term memory can be enhanced by "chunklng". This is where a number of related ltems are jolned together to form one "chunk" of Information. For example, the single item "A Minor" would represent a wealth of information about a plece of music to a musician. Storage can be affected
externally by assisting the learner to "chunk" information.
3. Encoding

Encoding $1 s$ the transfer of Information from short term memory to long term memory. In this process the Information $1 s$ transformed from a perceptual mode to a conceptual or meanlingful mode. The principal feature of encoded materlal is that it is semantlcally organised, that is, it is inherently meaningful. Schemes for encoding may be provided by teachers. These might include the organisation of data Into tables, provislon of visual lmages etc.
4. Storage in Long-Term Memory

There $1 s$ evidence that material stored in long term memory $1 s$ permanent and that fallure to recall is due to Ineffectlve search and retrleval mechanlsms. The storage of learned items in long term memory can be influenced by external events, especially the learning of other ltems. There is some evidence that Interference occurs when specific items directly contradlct each other. However, retention of ald learning can be enhanced by new learning which is of a complementary nature.
5. Retrleval

This process requires that cues be provlded, elther by the external conditions or from other memory sources. What is retrleved may be relayed to short term memory or dlrectly to the response generator. If relayed to short term memory it is readily accessible to the learner and may be comblned with new inputs to form new entitles which may, in turn, be encoded in long term memory. Alternatively it may be transformed to actlvate the response generator. Externally, the provision of cues ls the principal event whlch affects retrleval.
6. Response generation

This process determines both the form of the reponse (speech, movement etc.) and lts sequence and timing. Its overall function is to ensure that an organised performance wlll occur. Externally, thls ls usually establlshed by informing the learner of the objective of the learning.
7. Performance

This process results in patterns of external behaviour that can be observed. These may be movements, statements etc.
8. Feedback

Thls is provided by the learner's observation of the effect of his or her performance. Its maln effect ls internal, serving to flx the learning, making it permanently avallable.

The ways in whlch a learner engages in an act of learning may vary conslderably from one Individual to another. Such differences are accounted for by two further processes in Gagne's theory; executlve control and expectancies. Executive control affects each step In the process of learnlng by influenclng attention, selectlve perception, cholce of encoding scheme etc. Thls may be Influenced externally by Instructions and questions. Expectancles represent the speciflc motlvation of learners. What a learner Intends to accomplish will influence what ls attended to, how it is encoded etc. Verbal communlcations that inform the learner of the objectives Influence the learner's expectancles, as well as all the other Internal processes of learning.

Learning and remembering, therefore, are brought about by internal processes that are affected by the external organisation of stimuli, by executive control processes brought to bear by the learner, and by the contents of the learner's memory.

To make sense of the enormous number of outcomes produced by learning, Gagne has classlfled all kinds of learning into five distlnct categorles (Gagne 1977). While the processes of learning are the same for all categorles, different Internal and external condltions are requlred for dlfferent categorles. The categorles are

1. Verbal information: This ls the capabillty of belng able to state or tell information. It may be accomplished orally, in writing, in a drawing etc. Examples lnclude the names and locations of citles and the names of the days of the week. Learning verbal information depends on the recall of Internally stored complexes of ldeas whlch constltute "meaningfully organised" structures. Externally, condltions should relate the new information to these exlsting structures.
2. Intellectual skllls: These are learned capabllitles through whlch the Indlvidual Interacts with the envlronment by using symbols. Intellectual skills include reading, writing, using numbers, combining, tabulating, classifylng, analysing and quantifylng. The most important Internal condition ls the recall of prerequisite skllls. External conditions should gulde the combling of these simpler skllis.
3. Cognitive strategles: These are learned capabllitles through which the indlvidual manages his or her own learning, remembering and thinking. They include ways of analysing problems and approaches to the solving of problems. For example, mnemonics are a well known example of a cognltive strategy for remembering and retrleving information from long term memory. Cognltive strategles require, as Internal condltions, the recall of Intellectual skills and Information relevant to the speciflc learning tasks being undertaken. Externally, frequent practlce ls required.
4. Attltudes: These are learned capabllltles whlch Influence the Individual's choice of personal actlons. The most rellable way of learning attitudes is by "human modelling". Internally, previously learned respect for a real or lmagined person is required. Externally, a dlsplay of the required behaviour by the model, followed by the observation of a successful outcome, is required.
5. Motor skllls: These are learned capabllitles of executing movements in organised motor acts such as throwing a ball, pouring a llquid etc. Usually these Indlvidual acts form a part of a more comprehensive actlvity such as playing basketball, mixlng cement etc. Internally, the recall of part-skills and an
> executlve subroutlne to provide the correct sequence are required. External conditions are provided by practlce.

Within the category of intellectual skllls, Gagne has described a hierarchy of five types of sklll which vary In complexity. At the top of this hlerarchy are higher-order rules, followed in level of complexity by rules, defined concepts, concrete concepts and discriminations. To acquire a skill in any of these subcategories requires skills in the lower levels of the hlerarchy as prerequisltes.

The most typlcal form of lntellectual sklll is the rule. The learning of rules $1 s$ of great educational Importance, making up the bulk of what is learned in school. A rule is an inferred capabillty that enables the individual to respond to a class of stimuli with a class of performances. The use of rules allows human beings to respond to an enormous variety of sltuations and to function effectively, desplte the almost infinite varlety of stimulatlon recelved. Rules are the major factor in intellectual functionlng and have largely replaced the stimulus/response connection $1 n$ the theoretical formulations of many psychologists (Gagne 1977). The learner is not necessarlly able to state the rule but, if the learner's behavlour ls rule-governed, It $1 s$ possible to $1 n f e r$ that the rule has been learned. To learn a rule it is necessary that the component
skills are already avallable \ln the learner's memory. A complex rule may be composed of slmpler rules, whlch may in turn be analysed Into even slmpler components. As this process $1 s$ contlnued, the nature of the components changes from rules to concepts. For example, the rule "swallows fly south" requires the concepts of swallow, flight and south.

Concrete concepts are those whlch can be denoted by pointing out, for example, "red", "clrcular" and "chalr". Deflned concepts are abstract and may be thought of as rules that classlfy objects or events, for example, "square root", "sport" and "jungle". Concepts require discriminations, which are even simpler sklles. Thus, In order to acquire the concept "swallow" it is necessary to be able to discriminate the features of swallows from those of other types of blrds.

Learning Intellectual skills is malnly a matter of "snapping into place" a combination of simpler skills that have been previously learned. The role of the teacher in intellectual sklll acqulsition $1 s$ to help the learner to retrleve the slmpler skills to working memory and to provide cues for the sequencing of these simpler skills. Problem-solving can be viewed as a process by whlch the learner discovers a combination of previously learned rules which can be applled to achleve a solution for a novel problem. In thls case the learner has not
only solved the problem, but has learned something new. One newly learned entlty is a higher-order rule whlch can be used in the solution of similar problems. Another aspect of the new learning may be a cognitive strategy for dealing with problems in general.

Regardless of the category involved, learning and retention are positively influenced when material is presented In a way that has meaning for the learner and when opportunitles are provided for using new learning In varlous different contexts. The job of Instruction Is to organise learning experlences so that, in the course of learning, students are confronted with new Ideas and have opportunitles to bulld them into their own understandling.

3.2 Ratlonale for Hypothesls 1

In the context of introductory algebra, spreadsheets may be used to mediate between the famillar ldea of a constant and the new concept of a varlable. This is possible because a cell in a spreadsheet is very similar to a mathematlcal varlable. The abllity of a spreadsheet to display a set of numerlcal values whlle suggesting underlylng relatlonships is also a major advantage. Thls can help puplls to vlew a problem in general (algebralcally), as well as In speclflc terms (arlthmetically). Speclflc numerlcal examples can
provide a vehicle for thlnking about more general relationshlps. This may provide a llnk between the learner's knowledge of arlthmetlc and his or her abllity to form algebralc abstractlons.

The skill of using a spreadsheet is essentlally the sklll of constructing algebraic expressions. The user deals with variables and their inter-relatlonships, but It is the values of the variables that are displayed rather than thelr mathematlcal names. Explanatory labels are usually displayed alongside the values as in Figure 3.1.

Spreadsheet	Algebralc Equation	
Labels Values Variable Names		
Length	5	$B 1$
Width	6	$B 2$
Area	30	$B 3(=B 1 * B 2)$

Flgure 3.1

Students who are starting algebra should have little difficulty in manlpulating constants but often have severe problems both in manipulating letters and in understanding what the letters mean. To a novice, the spreadsheet (on the left in Flgure 3.1) may be related to previous work in arlthmetlc, whereas the algebralc equation (on the right) provides no such link. The
notion of multiplying the values of Length (cell B1) and W1dth (cell B2) to find the value of Area is embodied just as well in the spreadsheet as in the equation. The student must use the varlables B1 and B2 to generate the Area formula, but $1 s$ able to thlak \ln terms of the numbers 5 and 6. In this way the new information (the algebralc expression $B 1 * B 2$) 1 s connected to the old knowledge (multiplication of integers, knowledge of how to flnd the area of a rectangle).

The spreadsheet explicitly embodies the concept of a name (e.g. B1) standing for a number, whereas thls ls not obvlous with the equation. In the solution of algebra word problems Arad (1987) has remarked that the varlable "X" is difflcult for students to relate to, is not dynamic, does not encourage experimentation and is unlikely to be motivating. When a word problem is translated Into a dynamic table In a spreadsheet, rather than into an algebralc equation, it should become easler to experiment with and relate to. Using the spreadsheet allows the student to see the relationship at work by varying the values of Length and Width and examining thelr effect on Area. This is equivalent to seelng the equation as an "operation", as recommended by Clement (1982).

Gagne has ldentlfled essential events that occur in every act of learning (Gagne, 1975). Spreadsheets can
provide external support for these events as outlined below:

1. Attending

Computer use can be a motlvating factor for many students. The novelty and Interactive nature of computers should promote alertness on the part of the learners. Access to more relevant and Interesting problems may also be a factor in promoting attention. This may be contrasted with textbooks and chalk-and-talk with which students are very famlllar.
2. Expectancy

Many students are very keen to acqulre computer-using skllls. This should orlent the learners towards the learning goal which ls the construction of algebralc expressions, albelt dlsguised as computer problem-solving. It is very unlikely that such an expectancy would exist for learning algebra in the traditional manner.
3. Retrieval

The relevant information and skills that need to be recalled to workIng memory are those previously learned $1 n$ mathematics, notably number facts and formulas. Cues for their retrleval can be provided by supplying spreadsheet templates whlch students are required to complete.
4. Selective Perception

The neat layout of the rows and columns in a spreadsheet should ald perception and facllitate retention $1 n$ short term memory so that semantic encoding may take place.
5. Semantic Encoding

What appears on the screen (usually a table of some sort) can be easily related to previous knowledge of arlthmetic. The underlying manipulation of algebralc symbols can be related to the manipulation of numbers. This should influence coding of the algebralc ldeas. In conventional algebra classes at thls level, the manlpulation of algebralc symbols is very difflcult to relate to any previous learning. The use of a spreadsheet also facllltates the setting of exerclses in a varlety of famllar contexts. This may help the spread of activation in long term memory and enhance retention.
6. Respondlng

In thls event, the learner retrieves the newly stored Information from long term memory and executes a reponse. Thls phase is supported by external cues, usually glven when informing the learner of the objectlves. The absence of a numerlc answer to the glven problem in a spreadsheet will act as a further cue. "Pure" algebralc problems at thls level
generally do not have any numerlc answers and novices find this very dlfflcult to accept (Booth 1984a). It should be noted that, in a spreadsheet, the numerlc answer will be provided by responding with the correct algebralc expression.
7. Reinforcement

Thls conflrms the acquisition of the new capabllity by informing the learner about the achlevement of the learning objective. In spreadsheet use $1 t$ ls provided automatically by the computer. The student has immediate information concerning the values of mathematical relationships that have been established. This is much more difficult to arrange in traditional algebra learning and usually requires that the students check an answer book or consult the teacher. Neatly formatted hard copy can also provide material for further reflection.
8. Cueing Retrleval for Transfer

Recall is improved by the use of spaced reviews and practice. Students may be more prepared to practise with a computer than with routine pencil-and-paper problems. Students will also be practising the skills to be learned (i.e. constructing expressions) without the distraction of having to carry out their own calculatlons or perform symbolic algebralc manipulations.

Abstract

9. Generallsation

Problems can easlly be set in many different contexts If spreadsheets are used. This contrasts with the predominantly abstract contexts of traditional approaches and may help students to generalise their knowledge. Specific Instruction may be designed to encourage transfer of spreadsheet skills to more formal algebra.

Therefore, it is expected that experlence with a spreadsheet wlll have a positive effect on students' ablllty to use varlables and expressions.

3.3 Rationale for Hypothesis 2

To solve a problem in any domain, one needs knowledge of the partlcular domaln, but also general perceptual, lingulstic and semantic knowledge. A popular view of the problem-solving process holds that solvers construct an initial mental representation whlle reading the problem, or shortly afterwards. The inltial representation Changes as it Interacts with further information from the task environment or with knowledge retrleved from long term memory. Thls results in the construction of a more elaborated representation of the problem.

Long term memory contalns mathematlcal knowledge such as baslc facts, generallsed problem types, heurlstics and algorlthms. It also contalns bellefs and oplnlons about
mathematics, metacognltive knowledge and knowledge about the real world that may be related to the problem setting. Translating a problem Into an Internal representation requires the possession of lingulstic, factual and schematic knowledge about the objects or events in the problem: for example, knowing that "tile" and "floor tlle" mean the same thing (linguistic), that there are 100 cm in 1 m (factual) and that area $=$ length X width (schematic).

Informatlon from long term memory may be accessed and used in working memory. Information in long term memory ls organised, l.e. it is not a 'written tablet' of what has been learned. The importance of this organisation Is that it reflects functions for long term memory other than simply serving as a store. These functions are 1) providing a format into which new data must fit, 2) serving as a gulde for directing attention and 3) fllling gaps in information recelved from the outslde world. Access and recall depend to a large extent on the form in which information is stored.

```
"Students do not absorb knowledge onto a blank
slate, but Instead interpret what they read and what
is sald to them In terms of an already functloning
knowledge system" (DISessa 1987, p.346).
```

"Differences in mathematical understanding are caused partly by the differences in the way people organise knowledge. The organisation influences what people attend to in problems, what they recall about problems, and therefore how they solve problems" (Gagne 1985, p. 230).

Transformation of the Inltial representation may be accompllshed in a number of possible ways. It may be a) modified so that it relates to information already stored, b) replaced by another symbol or c) supplemented by additional Information to ald in recall (1.e. mnemonics etc.). The resulting representation is the problem-solver's Internallsed version of the problem task. The nature of these representations is crucial to one's success in creating a solution. It is known that different people can represent the same task In dlfferent ways. Hinsley, Hayes and Slmon (1977) showed that subjects can very often categorlse problems without even reading the full text of the problem. Further Investlgations (e.g. Relf 1987; Sweller 1988) have distingulshed between the ways in whlch experts and novices differ in thelr approach to problems. Experts generally categorlse problems by thelr 'deep' structure and Invoke an approprlate schema for solution. Novices, on the other hand, categorlse problems by their surface features and tend to proceed by means-ends analysls.

Ausubel (1968, 1977) suggests that exlsting knowledge is used as an assimilative context, or schema, for new Information. The actlvatlon of thls prior knowledge, as new materlal $1 s$ presented, $1 s$ therefore an important aspect of instruction. The less specific the knowledge at the disposal of the problem-solver, the more he or she wlll have to rely on heuristic, generally applicable strategles. To solve problems in unfamillar or abstract contexts, puplls may have to translate unfamlliar words and determlne the meanling of problem sltuations that have little relation to their life experlences. Thls suggests that performance should be Improved by adapting contexts to the students' own Interests and concerns.

Greeno and colleagues (Greeno 1980, KIntsch \& Greeno 1985) have developed a model of arlthmetic problem-solving which has been tested by De Corte, Verschaffel and Verschueren (1982). According to this model, good problem-solvers are distingulshed by their ability to construct a semantlc representation of the problem sltuation. In constructing a problem representation, the problem-solver infers information that is needed but is not included in the problem statement. It may also be necessary to exclude Information that is given but not required. The provision of rich contextual cues related to the puplls'
interests should ald in the construction of such representations.

Schwanenflugel \& Shoben (1983) maintaln that, during comprehension, concrete materials provide easy access to both lmaglnal and verbal representatlons. Abstract materials are restrlcted to verbal representation alone. Comprehenslon processes are alded by the addition of contextual Informatlon to the materials that are to be understood. This contextual Information may come from elther the stimulus environment or from the problem-solver's exlsting knowledge. Thls again indlcates that concrete, famlllar contexts should be more favourable than abstract contexts.

Gagne \& White (1978) have also predicted that:
> "when knowledge $1 s$ stored as a proposition or as an intellectual sklll, 1 ts outcome effect in retention and transfer wlll be greater the more extensive are Its associatlons with interlinked sets of propositions, Intellectual skllls, Images and eplsodes" (Gagne \& Whlte 1978, p. 209).

These considerations suggest that concrete contexts should prove a better learning vehlcle than abstract ones. However, there is an alternatlve argument which suggests that the limltatlons of short term memory mlght
restrict the capacity of young children to learn from problems set $1 n$ concrete contexts.

Working memory's growing capacity to process information is a fundamental characteristic of cognitive development in a number of theorles (Bruner, 1966; Case, 1978a; Flavell, 1971). Young chlldren are quite limited in thelr abllity to deal with all the information demands of complex tasks. Their limited capacity seems to be a critical developmental factor which can constraln learning (Case 1975, 1978a, 1978b). As problem representation takes place in short term memory, there may be a trade-off between the capacity of short term memory and the other resource demands on the system. It is here that information obtained from the task environment interacts with knowledge retrleved from long term memory. It $1 s$ also here that the processes of planning, monitoring and evaluating take place. If the task to be performed is difflcult, there is a danger that short term memory will be overloaded and important aspects of the problem may not be properly represented.

Sweller (1988), found that conventional problem-solving was not effectlve in schema acquisition. Conventional problem-solving, such as means-ends analysis, was found to require a large amount of cognitive processing capacity. In problem-solving, the solver must consider the current problem state, the goal state and the
relation between these two. If subgoals have been used, a goal stack must also be maintalned. Novices, who lack domain specific knowledge, and whose knowledge is not sufflciently 'chunked', may find the cognitive load too great. Sweller (1988) found that, even in cases where the problem was solved, subjects failed to acquire the appropriate schema.

Task factors (abstract/concrete) are known to affect the complexity of the procedure for representlng problems. Additional substitutions are necessary for concrete problems so that the varlables will refer to the numbers of objects rather than to the objects themselves. Thls ls not the case with abstract (numerical) problems where the objects of the problem are themselves numbers. For example, Meljer \& Rlemersma (1986) studled 13 year-old chlldrens' interpretations of the following problem:
"A father and his son together are 50 years old; the
father is 36 years older than the son; how old is
each of them?"

Most subjects had considerable difflculty with this problem. A common mistake was to subtract 36 from 50 and conclude that the son was 14. Subjects generally only reallsed that this was inadequate when asked to check on the 'difference in ages' restriction. Some subjects did not recognlse the correct answer even when
they provided it themselves. Thls suggests that the two restrictlons mentioned in the problem (the sum of the ages $1 s 50$, the difference \ln ages $1 s$ 36) were not properly integrated in the representation of the problem. Subjects found it hard to concentrate on both restrictions at the same time, possibly because of the limltations of short term memory.

However, the bulk of the research evldence on the effect of concrete and abstract contexts (Holtan, 1964; Ross \& Bush, 1980; Ross, 1983; Schwanenflugel \& Shoben, 1983;

Ross, McCormick \& Krisak, 1986; Caldwell \& Goldln, 1987; Ross \& Anand, 1987; Ross, Anand \& Morrison, 1988) supports the hypothesis that concrete contexts and famlliar contexts are better vehlcles for learnlng than abstract ones.

3.4 Ratlonale for Hypotheses 3. 4 and 5

Hypotheses 3 , that concrete contexts will especially favour those with lower general numerical ability is suggested by the consideration that such students wlll be more engaged by problems whlch are relevant to their own concerns. It is also lmplled by other research studies. Travers (1967) and Chrlstensen (1980) found that lower achievers had stronger preferences for particular problem contexts. Ross, Anand and Morrison (1988) found that individualised contexts were of
special beneflt to weaker students. High achlevers performed well, regardless of context. The lower and mlddle groups benefltted most from personallsed contexts. Caldwell and Goldin (1987) found that the effect of context was particularly significant for Junior hlgh school students when compared to older subjects. Ross, McCormick and Krisak (1986) also noted that context variation had more effect with younger and less academlcally advanced subjects. Thls suggests that there is a developmental aspect Involved and that the context effect might be greater for less able, less mature subjects, such as those in the present study.

Hypotheses 4 an 5, that concrete contexts wlll favour those with poorer attltudes to mathematics and computers, are based on the conslderation that subjects with poor attltudes are more likely to be motivated by contexts whlch are of some relevance to themselves.

3.5 Operational definition of the variables

Independent Varlables

1. Concrete Group

Experlmental group who pursued an 8 hour course on spreadsheet mathematlcs with exerclse problems set in concrete contexts. The contexts were designed to be relevant and interesting to the particlpants.
2. Abstract Group
Experimental group who pursued an Identlcalcourse of instruction wlth exactly equivalentproblems in abstract (numerlcal) contexts.
Dependent Varlable
Achlevement
Achievement was measured by a 21-1tem test basedon algebra word problems at the level ofIntermediate Certificate Mathematlcs (SyllabusB). Each item required the construction of analgebralc expression to represent a relationalproposition in a word problem.
Moderator Variables

1. Numerlcal ablllty
The measure of numerlcal ablllty was the raw
score attained on the numerical section of AH2(Helm, Watts \& Slmmonds 1975). This is anorm-referenced test contalning 40 numerlcalquestions deslgned for a cross-section of theadult population and for chlldren aged $10+$.These scores were then converted to nominalcategories uslng a medlan spllt. The categorieswere labelled "Hlgh Numerlcal Abllity" and "LowNumerical Ablllty".
2. Attltude to mathematlcs

A mathematics attltude questionnaire, consisting of 10 Items, was constructed. The scores were converted to nomlnal categorles using a median spllt. The categorles were labelled "Positive Mathematlcs Attltude" and "Negatlve Mathematlcs Attitude".
3. Attitude to computers

A computer attltude questlonnalre, consisting of 6 items, was constructed. The scores were converted to nominal categorles uslng a medlan spllt. The categorles were labelled "Posltlve Computer Attltude" and "Negative Computer Attltude".

3.6 Operational restatement of the hypotheses

The hypotheses Investigated were as follows:

1. There wlll be a signiflcant difference In the ability to construct algebralc expressions representing relational propositions between pretest and posttest for all students who undertake an 8 hour course in spreadsheet mathematics.
2. The concrete group wlll perform better on the dependent measure than the abstract group.
3. The gains of the concrete group over the abstract group on the dependent measure will be greater for subjects with lower numerlcal abillty than for subjects with higher numerical abllity.
4. The galns of the concrete group over the abstract group on the dependent measure will be greater for subjects with negative attitudes to mathematics than for subjects with positive attitudes.
5. The gains of the concrete group over the abstract group on the dependent measure wlll be greater for subjects with negative attitudes to computers than for subjects with positive attltudes.

3.7 Slandficance of the study

With the recent availabllity of microcomputer software for symbolic algebralc manipulations, there is a need to reexamine the content of second-level algebra syllabi. At present, such syllabl are welghted very much towards learning manipulative procedures, with relatively little emphasis on problems and applications (e.g. Department of Education 1987). As symbol-manipulating algebraic software is now becoming widely avallable, it is unlikely that this emphasis can be justifled and malntalned. Therefore, it is Inevitable that there wlll

```
be greater emphasis on problems and applications in the future.
```

The first step in the application of algebra to real problems 1 s the solution of word (story) problems. Despite their importance, it is widely accepted that many students in second-level schools have severe difficulty with word problems (e.g. Brown et al., 1988). The concept of a variable, and the construction of expressions to represent relational propositions, have been identifled as major stumbling blocks in previous investigations in this area. This study develops a new approach, applicable in a natural classroom setting, to this problem area. Thus it makes a contribution to classroom practice in an important area of mathematical education.

There $1 s$ evidence to show that the use of relevant and interesting contexts is of benefit to students in mathematical problem-solving. However, most of this empirical evidence comes from the study of alder subjects, mostly in third level education. Some of this evidence suggests that there is a developmental component and that the benefits may be more marked for younger, less mature students (Caldwell \& Goldin, 1987). There is a shortage of empirical evidence concerning the importance of problem contexts for students as young as those in the present study. It may be that familiar
contexts provide more Internal connections which facilltate learning or, alternatlvely, that the added complexlty of examples set \ln a varlety of contexts will have the opposite effect. This research examlnes the effect of problem contexts on learning algebra and presents evidence which wlll be of beneflt to developers of Instructlonal materlals and to teachers.

Computer avallabllity $1 s$ an important new factor in both mathematlcs and In mathematlcal education. This study develops a model for the use of computers in mathematics education in second-level schools. It is based on the adaptation and use of general-purpose software rather than the production of speclally written courseware. There are many readlly avallable software packages which might be adapted for use in mathematics Instruction. These Include spreadsheets, graphlcs packages, Information handling packages, programmlng languages etc. A major advantage of this approach is that these packages are generally cheap and widely avallable, often 'bundled' with hardware. Producers of educational material based around such packages are freed from all of the technical, non-educational, lssues which must be tackled in the production of specially written courseware. A further advantage is that general-purpose packages are usually not hardware-speciflc. For example, there are spreadsheets for every type of
computer and they all work in essentially the same way. Thus, using a spreadsheet in mathematics education would not involve any software development costs, nor would it Involve the purchase of any further hardware or software. The production, by teachers, of computer aided instruction in this manner is therefore a realistlc optlon.

It is widely accepted that new knowledge is not absorbed onto a 'blank slate', but must be related to and Integrated with exlsting knowledge. In practlce, mastery of procedures, which have very little meaning for most students, is generally taught before an understanding of concepts is achleved. This research attempts to show that if instruction is lnitially concentrated on concepts, then stable cognitive structures can be formed as a basls for subsequent skill development. In particular, it shows that computer environments can be used to refocus the curriculum on concepts by allowing the computer to process laborious, but necessary, calculations in the lnitial stages of Instruction.

Chapter 4: Methods

4.1 Subjects

A total of 73 second-year students, all girls aged 13 or 14, from five schools volunteered as subjects. The subjects were recrulted by sending a letter to the principals of each school requesting their cooperation (Appendix H). The experlmenter then visited each school to speak to the second-year classes. Durling these visits an explanatory letter and application form were distributed to Interested students (Appendlx I).

The experiment took place during a week-long mid-term break for whlch all five schools were closed. Three of the schools were in inner-city areas and the other two drew most of their students from large, working-class housing estates. A large proportion of students in this population come from deprlved backgrounds, with a high Incidence of family and soclal problems. These problems often result in poor attendance at school and poor academic achlevement.

The subjects were assigned to the two treatments at random, 37 to the concrete group and 36 to the abstract group. To make the best use of the avallable hardware and personnel, each treatment group was then split into a morning group and an afternoon group. One concrete
and one abstract group attended in the mornings and the other two groups attended in the afternoons. Each group shared 10 networked Apple IIe computers. To save time, and to guard agalnst system fallure, all flles were loaded by the tutors before each session began. Two teams of tutors were involved, each conslsting of one experlenced teacher and two senior students. Each team instructed one abstract group and one concrete group. The teachlng teams were asslgned to these groups at random. The experlmenter was one of the teachers Involved.

4. 2 Deslan

A pretest-posttest control group design (Tuckman 1978) was used. This design controls for all the sources of Internal invalidity with the exception of a testing effect. However, as the degree of change in both treatments was of major interest, it was necessary to Include a pretest. Such testing is a regular part of school life, and as the testlng procedure was not in any way unusual, it is unlikely that the subjects would have been sensltised by the pretest.

The proposed level of signiflcance was $p=0.05$. The analysls was intended to Indlcate:

1. The effect of the Independent varlable on the dependent variable.
2. The effect of the moderator varlables on the dependent variable.
3. The interaction between the moderator varlables and the Independent variable.

4,3 Pilot testing

Pilot testing of the pretest, the posttest and the attitude questionnalre was carried out prlor to the experiment. None of the subjects involved took part \ln the final study.

4.3.1 Pretest and Posttest

An examination of Intermedlate Certlflcate textbooks and examination papers revealed that eleven distinct types of algebraic expressions were required. These were:

$x+a$	$x-a$	$a-x$	$x+y+z$
$a x$	$a x+b$	$a x-b$	$a x+b y+c z$
$a(x+b)$	$a(x-b)$	$a(b-x)$	

where x, y, z are variables and a, b, c are constants.

The initlal verslons of the pretest and posttest contained eleven questions, each of which required the construction of one of these types of expression. They also contalned three further questions which required the construction of equations rather than expresslons. Construction of equations was not part of the target
capability but it was thought that this would correlate closely with the construction of algebralc expressions. None of the questions were abstract and an attempt was made to make the contexts relevant to the target population. All questions were multiple-choice. The two tests were designed to be equivalent, consisting of isomorphic items. Problems are isomorphic if they are essentially the same problem presented in different contexts. The tests were Inltially piloted with 126 subjects from two different schools. Each subject took both tests in one forty-minute period.

The results for both tests were almost identical and the results for equivalent questions were essentially the same in most cases. However, the mean score in each test was 63% and thls seemed to be remarkably hlgh. It was suspected that the multiple-cholce format may have been a factor in producing such hlgh scores. As the target capability was the construction, rather than the recognition, of algebralc expressions, it was decided to change the format. One of the tests was given again to 54 of the original subjects, without the multiple-choice format. None of the questlons were changed $1 n$ any way, except for the removal of the multiple-cholce element. This produced a mean score of only 39%. The number of correct answers for every questlon was substantlally reduced and the number of correct answers for the three
questions which required the construction of equations was negligible. It was decided to discard the multiple-choice format.

Questions which had been particularly badly answered were then refined by changing their contexts or by adjusting the wording. Both tests were then given to a different group of 59 subjects. The results for these two tests were almost identical. Their means were 33% and 32.5% respectively and the standard devlation was 22% in each case. However, it was notlced that six pairs of mathematically identical questions produced remarkably different results from the same subjects. For example, the following two questions were answered correctly by 58% and 25% of subjects respectively:

1. Jane had $£ \mathrm{X}$. She got a present of another $£ \mathrm{X}$. She then spent $£ 3$. The number of pounds she had left was:
2. Sharon worked for two months during the holidays and earned $£ X$ each month. She spent a total of f100 during that tlme. The number of pounds she had left was:

Such large differences between almost Identical questions were unexpected. This illustrates how important context can be in determining the difficulty of a problem. The six pairs of questions which had

[^2]dlfflcult. A coln was tossed to declde which would be the pretest and whlch would be the posttest. The final verslons are In Appendices A and B.

During pllot testing it was noticed that, apart from the initial multiple-choice format, a substantial minority of subjects (15% to 20% approximately) scored zero in every test. In most cases this was because the subjects consistently wrote numerlcal answers rather than algebralc expresslons. For example.

Question: Mary is 6 years older than Kate. Kate $1 s$ X years. How old $1 s$ Mary?

Answer : 12 years

Thls type of answer would suggest that these subjects had never learned algebra. This was not the case as their classmates were able to answer correctly. It was more llkely that thelr need for a 'real' answer prompted them to substitute a number for the variable in the question. In many cases the number substituted was one of the numbers appearing in the problem statement.

4.3.2 Attitude Ouestlonnalre

An instrument was designed to measure the subjects' attitudes to mathematics and computers. The target
attltudes were consldered to consist of the following elght components:

1. DIfficulty of mathematles
2. Usefulness of mathematlcs
3. Suitabillty of girls for mathematics
4. Enjoyability of mathematics
5. Confldence in dolng mathematics
6. Difflculty of computer use
7. Sultabllity of girls for computers
8. Enjoyabllity of using computer

A pool of slxty items was assembled, conslsting of both positlvely and negatlvely worded statements under each of the above headings. These items were plloted with a group of 78 students from the sample population. Using a Likert scale, Items expressing favourable attltudes were scored from 4 for "strongly agree", down to 0 for "strongly disagree". Items expressing negative attltudes were scored from 0 for "strongly agree", up to 4 for "strongly disagree". The range of posslble scores was from 0 to 240 inclusive. The preliminary results were analysed by correlating the score for each item with the total score. Items whlch correlated highly and which gave a good spread of scores were refined and tested agaln with a dlfferent group of 58 students. Thls test consisted of 16 Items, with each of the eight components of the target attltudes represented twlce,
once in a positively worded statement and once in a negatively worded statement. The possible range of scores varled from 0 to 64. The actual scores ranged from 25 to 53 with a mean of 37 and a standard deviation of 7.5. This was considered satisfactory and so thls test was used without further reflnement ssee Appendix C).

4.4 Preparation of the Instruction

Before word problems can be attempted with a spreadsheet, it $1 s$ essentlal to be able to edit a spreadsheet. The hlerarchy of tasks Involved in baslc spreadsheet editing is shown in Figure 4.1 (P .124)

Based on Figure 4.1, performance objectives for spreadsheet use were drawn up:

1. The student can state the following definitions in relation to spreadsheet use:

Cell : Any 'box' in a spreadsheet
Column: A vertical line of cells (A,B,C...)
Row: A horlzontal line of cells (1,2,3...)
Cell Name: Each cell is named by its column and its row, e.g. A1, D12 etc.

Label cell: A cell containing a word or words
Value cell: A cell contalning only a number

Formula cell: A cell contalning a formula. The current value of the formula wlll be displayed on the screen.
2. Given a completed electronlc spreadsheet, the student can execute cursor movements to positlon the cursor on any named row, column or cell.
3. Given a completed electronic spreadsheet, the student can classify named cells as elther Labels, Values or Formulas.
4. Glven a blank electronic spreadsheet, the student can enter a) Labels b) Values c) Formulas Into named cells.
5. Glven a completed electronlc spreadsheet, the student can change a) Labels b) Values c) Formulas in named cells.
6. Given a completed electronic spreadsheet, the student can discriminate between the current value and the formula contalned \ln a glven cell.
7. Given a paper spreadsheet on a famlliar theme se.g. shopping list) contalning labels, values and formulas (only the values of formulas are shown), the student can classlfy each cell as elther a label, a value or a formula.

To achleve these objectives, a 15 minute lecture on spreadsheet concepts and operations was prepared. In addition, a two-page handout summarlsing the main points (Appendix E) was glven to each participant on the first day of instruction. These, combined with exerclses on spreadsheet manipulation, Concrete 1 and Abstract 1 , (see Appendices $F \& G$), were sufficient to achieve objectives 1 to 7 above.

The target objective was the construction of algebralc expressions to represent relational propositions in word problems. Thls is a vital step in the solution of word problems and one that has been Identlfled (Mayer 1982) as presenting major difficultles for many students. Figure $4.2(f, 15)$ is aninformation processing analysis which detalls the varlous steps in solving a word problem. This shows how the target capabllity ("Express other unknowns in terms of $X "$) flts into the overall process.

A similar flow chart, detalling the varlous steps in using a spreadsheet to solve a word problem, is shown in Figure 4.3 (prab) The top part of this flow chart is essentlally the same as the top part of Figure 4.2. The target skill ("Write expressions for other unknowns") is In the top part and occuples roughly the same position in both diagrams. This indlcates that the processes involved $1 n$ producing the target expression are roughly the same in both conventional algebra and in spreadsheet
algebra. The bottom parts of the diagrams differ conslderably. The spreadsheet answer $1 s$ found by substltutlng trial values rather than solving an equation, but this is not relevant to the present study. The key tasks ldentifled In Figure 4.2 and Figure 4.3 may be classifled as follows:

1. Identlfy unknowns:

Intellectual sklll (Deflned concept)

The key prerequisite for thls skill ls the cognltive strategy of dividing a verbally described sltuation Into parts. A further prerequlsite is the abllity to ldentify a question proposition (What ls...?, How much...?, In how many years...?, Flnd.... etc.)
2. Identlfy statements of relationshlps between unknowns:

Intellectual skill (Defined concept)

The key prerequisite for this skill is also the cognitlve strategy of dividing a verbally described sltuation Into parts. A further prerequlsite ls the abllity to identify a relational propositlon. (Is twice as old as...., Is 3 more than...., Costs $£ 3$ less than... etc.)
3. Let $X=$ (any) unknown Flgure 4.2
Write label/choose trlal value for
unknown Figure 4.3Step 1 above $1 s$ an essential prerequisite.
4. Express other unknowns in terms of X Figure 4.2
Write labels/expressions for other
unknowns Figure 4.3
Intellectual sklll (Hlgher order rule)
Steps 1, 2, and 3 above are essentlal prerequisitesfor this skill. It lnvolves the abllity to generatean expression which precisely describes therelationship between X and each of the otherunknowns. A further prerequasite ls knowledge ofalgebralc terminology, i.e. 3 X means "З times X" etc.
5. Identify equallty statement:
Intellectual skill (Defined concept)
The key prerequisite for this sklll is also thecognitlve strategy of dividing a verbally describedsltuation lnto parts. Further prerequlsites are theconcept of equality and the recognition of statementsof equality (The answer ls..., Result is the sameas..., Total amount is..., Adds up to.. etc.)6. Write L.H.S. and R.H.S. expressionsFigure 4.2
Write label/expression for answer Flgure 4.3
Intellectual sklll (Hlgher order rule)Steps 1, 2, 3, 4, and 5 above are essentialprerequisites for thls sklll. It involves theability to combine the expressions generated in 4 inaccordance with the equallty statement.
7. Solve Equation Figure 4.2
Intellectual sklll (HIgher order rule)
8. Check result Flgure 4.2Answer correct?/Choose different trlalvalue .. Figure 4.3Intellectual sklll (Rule)
9. Other essentlal prerequisites:
Concept of a varlable 'standlng for' a number.
Numerlcal skllls (arlthmetle)
Performance objectives were then drawn up for solvingword problems using a spreadsheet:

1. Glven a word problem, the student can ldentify the unknowns (lncluding the 'answer') by writing labels for them.
2. Glven a word problem, the student can generate a trlal value for one of the unknowns.
3. Given a word problem and a spreadsheet template whlch contalns labels for all unknowns and a value for one unknown, the student can generate an expression for each of the remainlng unknowns.

An examination of word problems from current Irish Intermedlate Certificate textbooks and from recent examination papers showed that over 90% of the algebralc expression generated in solving these problems fall 1 nto the following categorles:

$x+a$	$x-a$	$a-x$	$x+y+z$
$a x$	$a x+b$	$a x-b$	$a x+b y+c z$
$a(x+b)$	$a(x-b)$	$a(b-x)$	

(x, y and z are varlables. a, b and c are constants.)

A learning task analysis of these expressions revealed the following hlerarchical structure:

The tasks on the bottom 11 ne are essentlal
prerequisites for learning those on the top line. The practlce problems (Appendlces F \& G) were sequenced to take account of this hierarchy.
4. Given a word problem, the student can identify the equality statement.
5. Glven slmple algebralc word problems, the student can generate complete spreadsheet solutions.

As objectlve 3 was the target objectlve, asslstance was glven with objectives 1 and 2 by providlng templates containing labels for each problem. It was expected that thls would help in the construction of an internal representation for each problem by breaking down the problem statement into its constituent parts. In addltion, thls devlce was used to force the subjects into creating complex algebralc expressions in the later exercises, e.g. Concrete 5 and Abstract 5 (Appendices F \& G). In some of these later problems, it is possible to generate a correct spreadsheet solution by breaking the problem down into very slmple steps, thus avoiding the necessity to write more complex expressions such as $a(b-x)$ etc. The use of the templates ensured that the subjects constructed the expressions $1 n$ the desired manner. Providing the templates had the added advantage of saving time, as typing skllls were very poor. The
use of the same problem layout by each subject also made It easler for the tutors to check solutions.

4.5Actlvitles

At their first session, each group completed the pretest (15 minutes), the attitude questionnaire (5 minutes) and the test of numerical abllity (15 minutes). The subjects in each group then recelved the same initial introductory lecture on spreadsheet use, which lasted for 15 minutes. This consisted of definitions and examples of the following key concepts; cursor, cell, row, column, label, value, formula. Brief lnstructions were glven concernlng baslc edlting technlques and then sample spreadsheets were shown on an overhead projector. These sample spreadsheets were used to help discriminate between labels, values and formulas. A two-page summary of this introductory presentation was glven to each subject (Appendlx E). Thls was the only formal. whole-class Instruction $1 n$ the course. For the remalnder of the tlme, the students worked at the computers at their own pace in a very relaxed atmosphere. They were allowed to talk, eat sweets, take short breaks etc. as they pleased. No external pressure was put on them to complete all of the tasks.

Each group worked on spreadsheet word problems for approxlmately 8 hours, spread over 4 days. Subjects in
both treatment condltions worked in pairs and were allowed to choose their own partners. There were, however, a few subjects in each group who chose to work alone. Each group, or single student, had access to one computer. The spreadsheet used was Appleworks (Apple Computer Inc., 1983). Subjects were glven spreadsheet templates and printed worksheets for all of the problems. The spreadsheet templates were organised in flles (Abstract 1 , Abstract 2 etc.) and the tutors loaded these onto the computers before each session. Each of these flles had a printed worksheet assoclated with lt. For each problem, the worksheet contained the problem statement and a copy of the spreadsheet template. Each spreadsheet template contalned all the necessary labels for each problem.

The initial exercises (see Abstract 1 in Appendix F and Concrete 1 in Appendix G) were concerned with editing and with spreadsheet concepts. These required approximately two hours to complete. The remalnder of the problems were sequenced in accordance with the hlerarchy Identlfied in section 4.4 and each group adhered to this sequence. Each group worked at its own pace and the teaching teams were avallable to check solutions and to provide hints and guldance as required. A few groups completed all of the problems in the four days. These were then shown more advanced edlting
techniques and were allowed to experiment freely with the spreadsheet. Most of the groups did not complete all of the exerclses, but all groups completed at least flve sets of exerclses.

The concrete group were given problems which were designed to appeal to thelr own interests e.g. pocketmoney, sports, clothes etc (Appendlx G). The abstract group were glven lsomorphlc problems, in the same sequence, all of which concerned only numbers (Appendlx F). All of the problems used were adapted from Intermedlate Certlflcate examlnation papers or from current textbooks. For each concrete problem, an isomorphic abstract one was created and vice-versa.

For each problem, subjects were told to enter a guess for the value of one particular varlable (ldentifled on the worksheet by an X) and to construct expresslons for all the other varjables. When this was done, the orlginal guess was to be adjusted untll the expressions produced the correct answer. For example:

Three suomo wrestlers were welghed at the same time. The second was 143 kg heavler than the flrst. The thlrd was twice as heavy as the flrst. Thelr total welght was 935 kg . How heavy was each?

Supplled Worksheet/Template

A

1 First
2 Second
3 Third

4 Total

Computer Solution

A

1 First
2 Second
3 Third

4 Total
$\mathrm{B} 1+\mathrm{B} 2+\mathrm{B} 3$
(Guess)
(Expression)
(Expression)

The computer template provided only the labels "Flrst", "Second" etc. The subjects were required to enter a guess for the weight of the flrst wrestler into cell B1 (e.g. 100). Then expressions for the welghts of the others, and the total welght of all three, were constructed and typed into the approprlate cells. If the inltial guess was not correct, the value produced for the total weight would not be 935. The Initial guess then had to be refined untll the correct total was
achleved. Subjects were then required to go back to their printed worksheet and write the correct (numerlcal) answers. In addltion, they were required to write the expressions that they had used to produce the correct answers, but using X rather than specific cell numbers. This was motlvated by polnting out that the solution did not depend on the use of a particular set of cells. This requirement was Intended to ald transfer to 'ordlnary' algebra as there was a danger that the students might become absorbed in the process of computing and skip over the mathematlical lmplications of what they were dolng. Thus, for the above problem the following written answer was required on the worksheet:

First	198	X
Second	341	$x+143$
Third	396	2 x
Total	935	$143+2 x$

At the fourth session, the final half hour was used to adminlster the posttest (15 minutes) and a debrlefing questlonnalre (10 minutes).

Editlng a spreadsheet: Hlerarchy of tasks

Flgure 4.1

Flow chart: Solving a Word Problem Using a Spreadsheet

Chapter 5: Results

The following measurements were made on each of the 73 subjects:

1. An algebra pretest consisting of 21 questlons (Appendix A). The first 7 questions were abstract. The next 7 were 1 somorphic with the first 7 problems, but were set in concrete contexts. The remaining 7 questions were more difficult and were also set in concrete contexts. There was no time limit on this test. All subjects finished within 15 minutes.

Each answer was scored as elther right or wrong,
giving a posslble range of scores from 0 to 21. An answer was consldered to be correct if it was mathematlcally valld, regardless of notatlon. For example "£X times 3 ", "X multlplled by 3 " or " $3 X=Y "$ would be acceptable for " $3 \times$ ".
2. An algebra posttest (Appendix B) which was equivalent to the pretest. Each questlon was isomorphic with one In the pretest. No time limit was set, but all subjects flnlshed withln 15 mlnutes. This was scored in exactly the same way as the pretest.
3. A norm-referenced measure of numerical abllity, AH2 (Heim, Watts \& Simmonds 1975). This consisted of 40
multiple-cholce items. The time allowed for this was 15 minutes exactly.
4. A questionnalre to determine attltude towards mathematlcs and computers (Appendix C). This conslsted of 16 statements with 5 levels of agreement for each (strongly agree, agree, undecided, disagree, strongly disagree). Ten of these questlons concerned attltude to mathematlcs and the other slx concerned attltude to computers. This gave a mathematics attltude scale from 0 to 40 and a computer attltude scale from 0 to 24.

5.1 Pretest and Posttest Results

The pretest scores were remarkably poor in comparlson with those recorded in pllot work. It was expected that the mean score on the pretest would be about 6 out of 21. In fact, the mean was only 2.47. 64\% of the subjects scored zero. Thls was much worse than the 20% of zero scores observed \ln pllot testing. The posttest scores were substantially better, with a mean of 12.96 . Flve subjects achleved full marks on the posttest. A galn score was calculated for each subject by subtracting her pretest score from her posttest score.
The detalls are shown in Flgure $5.1_{A_{0}}^{p \cdot 136}$ Ttests (Figure p. 137
$5.2)_{M}$ showed that there was a very slgnlficant difference
between pretest and posttest for the total group, the abstract group and the concrete group.

To test $1 f$ abllity at pretest was a slgnlflcant factor in determinlng the amount of improvement, the gain scores were partitloned Into those who scored zero on the pretest $(\mathbb{N}=47)$ and those who scored more than zero on the pretest ($N=26$). Analysis of varlance (Figure $p .138$
(5.3) $)_{\Lambda}$ revealed no signiflcant difference. This indicates that galn scores were not dependent on pretest scores. p. 139

Flgure 5.4 shows the difference \ln galn scores between the two treatment groups. In addition to the total galn scores, galns on subsectlons of the tests were examined. These were a) gains on abstract questions (7 1tems), b) galns on concrete questions whlch were equlvalent to these abstract questlons (7 1tems) and c) galns on concrete questlons which were more dlfflcult 《5 questions only, as 2 of the remalning questlons were, in retrospect, Judged to be not difflcult). The mean scores for the subjects in the abstract treatment were higher in every case. Analysis of varlance (Flgure 5.5)(p.140.) indlcated that the abstract treatment group scored slgnificantly better on the overall test, on problems of an abstract nature and on the equlvalent concrete problems. The greatest difference was on the abstract questions. The higher score of the abstract group on
the more difficult concrete problems was not found to be statistically slgniflcant.

5.2 The effect of numerlcal ablllty

The test of numerlcal ability contained 40 multiple-cholce items. The range of possible scores was from 0 to 40. The actual scores ranged from 3 to 34. The mean score was 17.37 and the standard deviation was 6.07. The median was 17.

The galn scores (posttest-pretest) are shown in Flgure $5.6 \frac{p .141}{\text { for }}$ those with lower numerlcal ablllty (numerical ablllty score of 17 or less) and those with hlgher numerical ablllty (numerical abllity score of more than 17). Analysis of varlance (Flgure 5.7$)_{n}^{p .14^{2}}$ indlcated that numerlcal ability did not affect the gain scores within the total group, the abstract group or the concrete group.

The galn scores were then partltioned into four groups (Figure 5.8$)_{n}^{p .143}$ These were

1. Abstract group with high numerical ability.
2. Abstract group with low numerical abllity.
3. Concrete group with high numerlcal abllity.
4. Concrete group with low numerlcal abllity.

The graph in Figure 5.8 shows a moderate interaction between numerlcal abllity and treatment, but with the abstract treatment favouring those with low numerlcal ablllty. Thls is the opposite of what was hypotheslsed (Hypothesis 3). A two-way analysis of varlance (2 X 2) was then carrled out on these scores (Figure 5.9$)_{\pi}^{\text {p.144 }}$ This Indicates that the dlfference in scores between the groups was due to the treatments rather than to numerical abllity. The interaction between treatment and numerical abllity was not statistically signiflcant.

5.3 The effect of attltude to mathematlcs

The possible range of scores on the mathematics attitude scale ranged from 0 to 40 . The actual scores ranged from 14 to 38. The mean was 27.81 and the standard deviation was 5.70. The medlan was 28. Gain scores (posttest-pretest) are shown in Figure 5.10 p. 145 for the negatlve attitude group (mathematics attltude score less than 28) and the positive attltude group (mathematics attltude score 28 or more). A one-way analysis of varlance (Flgure 5.11$)_{1}^{\rho / 46}$ Indicated that the attitude of the subjects did not slgniflcantly affect gain scores withln the total group, the abstract group or the concrete group.

The galn scores were then partitioned Into four groups (Figure 5.12$)_{i=}^{p .147}$ These were

1. Abstract group with positlve mathematics attItude.
2. Abstract group with negative mathematics attitude.
3. Concrete group with positive mathematics attltude.
4. Concrete group with negative mathematlcs attItude.

The ${ }^{\text {p. } 147}$
The graph in Flgure 5.12 indicates qulte a substantlal interaction between attltude and treatment. It Indicates that abstract contexts favour those with a positlve attltude to mathematics more than those with a negative attltude. Thls is the direction predlcted in hypothesis 4. A two-way analysls of varlance (2 X 2) was then carrled out (Figure 5.13$)_{1^{\circ}}^{p_{1} / 18}$ This confirmed that the Interaction between mathematics attltude and treatment was statistically signlficant at the . 05 level.

5.4 The effect of attltude to computers

The possible range of scores on the computer attltude scale ranged from 0 to 24. The actual scores ranged from 14 to 24. The mean was 18.49 and the standard deviation was 2.57. The median was 18. Galn scores p. 149 (posttest-pretest) are shown $1 n$ Figure 5.14 for the negative attitude group (computer attitude score 18 or
less) and the posltlve attltude group (computer attltude score more than 18). A one-way analysls of varlance (Figure 5.15$)_{A}^{\text {p.15o }}$ indicated that the attltude of the subjects did not slgnlficantly affect galn scores within the total group, the abstract group or the concrete group.

The galn scores were then partltioned Into four groups

1. Abstract group with positlve computer attltude.
2. Abstract group with negative computer attltude.
3. Concrete group with positlve computer attltude.
4. Concrete group with negative computer attltude.

The graph $1 n$ Flgure 5.16 shows the interactlon between attitude and treatment. It Indicates that abstract contexts favour those with a positive attltude to computers more than those wlth a negatlve attltude. This $1 s$ the direction predicted in hypothesis 5. A two-way analysis of varlance (2×2) was then carrled p. 152 out (Flgure 5.17$)_{n^{\prime}}^{\text {. }}$ This Indicated that the Interaction between computer attltude and treatment was not statlstlcally slgnlflcant.

5.5 Some further results

p. 153

Figure 5.18_{n} shows the galn scores of each separate school group in the experiment. Of the five schools Involved, three were located in Inner-city areas and
accounted for 21 of the subjects (Schools A, B and C). The fourth and flfth schools were sltuated in worklng-class areas a little further from the clty centre. One of these (School D) supplied 28 subjects and the other (School E), which had a more upmarket lmage, supplled the remalning 24. It was noticed that gain scores for school E were lower than for the other schools. Even though the numbers in these groups were quite small, thls was $1 n t e r e s t l n g$ and some further analysis was undertaken. Analysis of varlance eFlgure $5.18) \stackrel{\text { p.1s3 }}{\Lambda}$ showed that the school E students were not signlficantly lower than the other groups. However, when the other four schools were pooled together, school E appeared to perform significantlymare poonlythan this comblned group (Flgure 5.19$\rangle_{n^{\circ}}^{p^{.154}}$ Thls cannot be explalned by a celling effect caused by the sllghtly higher pretest scores of school E. All pretest scores were p. 138
very low and Figure 5.3_{n} Indicates that performance on the pretest did not affect gain scores.

A debrieflng questionnalre (Appendix D) was adminlstered after the experiment. Thls showed that the subjects found the course Interesting and enJoyable. There was very little difference between the two treatment groups In their opinlons of the course. The only area in which their views dlverged was in their perception of the difficulty of the practice problems (Flgure 5.20). The
concrete group considered the problems to be more difficult than the abstract group.

PRETEST AND POSTTEST SCORES

```
(Posslble range of scores: 0 to 21)
```

$\frac{\text { All Subjects }}{(N=73)} \frac{\text { Abstract Group }}{(N=36)}$

Concrete Group ($\mathrm{N}=73$)

	Mean	SD	Mean	SD	Mean	SD
Pretest	2.47	4.42	2.00	4.06	2.92	4.76
Posttest	12.96	5.95	14.31	4.76	11.65	6.73
Galn	10.49	5.12	12.31	4.48	8.73	5.15
(Galn Score $=$ Posttest - Pretest)						
		Flgure 5.1				

THESTS OF GAIN SCORES

All
Subjects
$(N=73)$

Abstract Group ($\mathrm{N}=36$)
Concrete Group ($\mathrm{N}=37$)

Sta.Error of Mean	.60	.75	.85
95% CI for Mean	$9.30,11.69$	$10.80,13.82$	$7.01,10.45$
T-Stat for Zero Mean	17.50	16.49	10.30
Df	72	35	36
P value	$.000^{* *}$	$.000 * *$	$.000 * *$
$* * p<.01$			

Figure 5.2

GAIN SCORES

Zero Pretest Sublects vs. Non-Zero Pretest Sublects

		Mean Galn	SD
Zero Pretest	$(\mathrm{N}=47)$	10.91	5.79
Non-Zero Pretest	$(\mathrm{N}=26)$	9.73	3.62

Analysls of Varlance

Source	df	SS	MS	F	$\begin{aligned} & \text { Prob. } \\ & \text { of } F \end{aligned}$
Groups	1	23.47	23.47	. 89	. 348
Resid	71	1866.77	26.29		
Total	72	1890.25			

GAIN SCORES FOR ABSTRACT VS, CONCRETE TREATMENTS

	Abstract Treatment ($\mathrm{N}=36$)		Concrete Treatment ($\mathrm{N}=37$)	
Galns on:	Mean	SD	Mean	SD
Overall test (21 questions)	12.31	4.48	8.73	5.15
Abstract Items (7 questions)	4.72	1.78	3.19	2.05
Equivalent Concrete items (7 questions)	4.56	1.99	3.32	2.54
More dlfficult concrete items (5 questlons)	1.81	1.56	1.43	1.64

Flgure 5.4

Abstract vs. Concrete Treatments					
Source	$d f$	SS	MS	F	Prob. of F
Total Gains					
Groups	1	233.31	233.31	10.00	.002**
Resid	71	1656.94	23.34		
Total	72	1890.25			
Galns on Abstract Questions					
Groups	1	42.88	42.88	11.58	.001**
Resid	71	262.90	3.70		
Total	72	305.78			
Gains on Equivalent Concrete Questions					
Groups	1	27.66	27.66	5.29	.024*
Resid	71	371.00	5.23		
Total	72	398.66			
Galns on more difficult Concrete Questions					
Groups	1	2.54	2.54	0.99	. 324
Resid	71	182.72	2.57		
Total	72	185.26			
*p < . 05					
**p < . 01					
Figure 5.5					

GAIN SCORES

Low Numerical Ablllty vs Hiah Numerlcal Ablllty

	$\frac{\text { All Subjects }}{(\mathrm{N}=73)}$	$\frac{\text { Abstract Group }}{(\mathrm{N}=36)}$	$\frac{\text { Concrete Group }}{\langle\mathrm{N}=37\rangle}$
	Mean SD	Mean SD	Mean SD
Low Num. Ablllty	${ }_{(\mathrm{N}=39)^{2}} 5.18$	$\begin{gathered} 12.504 .26 \\ (N=18) \end{gathered}$	${ }^{7.74}(N=19)^{5.24}$
High Num. Abllity	$11.00{ }_{(\mathrm{N}=34)} 5.09$	$\begin{gathered} 12.11 \underset{(N=18)}{ } 4.80 \\ (18) \end{gathered}$	$9.78(N=18)^{4.99}$
		Flgure 5.6	

ANALYSIS OF VARIANCE_IN GAIN SCORES

Low Numerlcal Abllity vs Hlah Numerlal_Ablllty

Source df SS MS F | Prob. |
| :--- |
| of F |

All Subjects

Groups	1	16.35	16.35	.62	.434
Resid	71	1873.90	26.39		
Total	72	1890.25			

Abstract group
($\mathrm{N}=36$)

Groups	1	1.36	1.36	.07	.799
Resid	34	700.28	20.60		
Total	35	701.64			

Concrete group
($\mathrm{N}=37$)

Groups	1	38.50	38.50	1.47	.233
Resld	35	916.80	26.19		
Total	36	955.30			

Figure 5.7

GAIN SCORES: COMPARISON OF NUMERICAL ABILITY GROUPINGS		
	AbStract	Concrete
H1gh Numerlcal	Mean $=12.11$	Mean $=9.78$
AbIlity		
	S.D. $=4.80$	S.D. $=4.99$
Low Numerlcal		
Abllity	Mean $=12.50$	Mean $=7.74$
	S.D. $=4.26$	S.D. $=5.24$

Figure 5.8

TWO-WAY ANALYSIS OF VARIANCE OF GAIN SCORES

Source	$d f$	SS	MS	F	Prob. of F
Numerical Ablllty	1	12.5	12.5	. 53	. 471
Treatment	1	227.56	227.56	9.57	. 003 **
Interaction	1	26.89	25.89	1.13	. 291
Resid	68	1617	23.78		
Total	71	1883.94	5.52		

Flgure 5.9

GAIN SCORES

Negative Attitude to Mathematics vs Positlve Attlude

All Subjects	Abstract Group	Concrete Group
($\mathrm{N}=73$)	($\mathrm{N}=36$)	($\mathrm{N}=37$)
Mean SD	Mean SD	Mean SD
$\begin{gathered} 10.454 .29 \\ (\mathrm{~N}=33) \end{gathered}$	$11.244_{(N=17)^{2}} 4.97$	$9.63{ }_{(N=16)^{3.40}}$
$10.53 \quad 5.77$		$8.05{ }_{(N=21)^{2}} 6.16$

Figure 5.10

ANALYSIS OF VARIANCE OF GAIN SCORES

Neqatlve Attitude to Mathematles vs Posltlve Attltude

| Source | Sf | MS | Prob
 of F |
| :---: | :---: | :---: | :---: | :---: |

All Subjects

Groups	1	.09	.09	.003	.954
Resld	71	1890.16	26.62		
Total	72	1890.25			

Abstract Group

Groups	1	36.90
Resld	34	664.74
Total	35	701.64

Concrete Group

Groups	1	22.59	22.59	.85	.363
Resid	35	932.70	26.65		
Total	36	955.30			
		Figure 5.11			

Abstract Concrete

Positive	Mean $=13.26$	Mean $=8.05$
Attitude	S.D. $=3.87$	S.D. $=6.16$
Negative	Mean $=11.24$	Mean $=9.63$
Attlude	S.D. $=4.97$	S.D. $=3.40$

Figure 5.12

TWO-WAY ANALYSIS OF VARIANCE OF GAIN SCORES

Attitude to Mathematles vs. Treatment

Source	df	SS	MS	F	Prob of F
Attitude to					
Mathematlcs	1	8.68	8.68	. 38	. 538
Treatment	1	224.01	224.01	9.89	.002**
Interaction	1	105.13	105.13	4.64	.035*
Resid	68	1540.06	22.65		
Total	71	1877.88	3.75		
**p<.01					
*p < . 05					

Flgure 5.13

GAIN SCORES

Negatlve Attlude to Computers vs. Posltive Attlude

All Subjects	Abstract Group	Concrete Group
($\mathrm{N}=73$)	($\mathrm{N}=36$)	($\mathrm{N}=37$)
Mean SD	Mean SD	Mean SD
$10.10 \quad 5.26$	$11.404 .85$	$\text { 8. } 7 \mathrm{~T}_{(\mathrm{N}=19)^{2}} 5.46$
$\begin{gathered} 10.945 .00 \\ (\mathrm{~N}=34) \end{gathered}$	$\begin{gathered} 13.443 .81 \\ (N=18)^{2} \end{gathered}$	$8.722_{(N=18)} 4.97$

Flgure 5.14

ANALYSIS QF YARIANCE OF GAIN SCORES

Negative Attitude to Computers vs Positive Attlude

| Source | df |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

All Sublects					
Groups	1	12.77	12.77	.48	.489
Resld	71	1877.47	26.44		
Total	72	1890.25			

Abstract Group

Groups	1	36.90	36.90	1.89	.178
Resld	34	664.74	19.55		
Total	35	701.64			

Concrete Group

Groups	1	.002	.002	.000	.993
Resld	35	955.30	27.29		
Total	36	955.30			
		Flgure 5.15			

GAIN SCORES: COMPARISON OF COMPUTER ATTITUDE GROUPINGS

Positlve	Mean $=13.44$	Mean $=8.72$
Attitude	S.D. $=3.81$	S.D. $=4.97$
Negatlve	Mean $=11.40$	Mean $=8.74$
Attlude	S.D. $=4.85$	S.D. $=5.46$

Abstract
Concrete

Figure 5.15

TWO-WAY ANALYSIS OF YARIANCE OF GAIN SCORES

Attitude to Computers vs. Treatment

Source	df	SS	MS	F	Prob of F
Attitude to					.633
Computers	1	5.56	5.56	.23	$.633 *$
Treatment	1	227.56	227.56	9.41	$.003 * *$
Interaction	1	6.72	6.72	.28	.600
Resid	68	1644.11	24.18		
Total	71	1883.94			
**p $<.01$					

Figure 5.17

Analysls of Galn Scores by School Groups

Analysis of Galn Scores: School E compared wlth others

			Mean	Std. Dev	
Other Schools ($\mathrm{N}=49$)			11.42	4.64	
School E ($\mathrm{N}=24$)			8.72	5.62	
Analysis of Varlance					
Source	df	SS.	MS	F	Prob of F
Groups	,	119.54	119.54	4.79	.032*
Resld	71	1770.71	24.94		
Total	72	1890.25			
* $\mathrm{p}<.05$					

[^3]```
 Student Debrleflng Questlonnaire
 Abstract Group
 Concrete Group
Length of course
 Too long 2
 2 1
 Too short 16
 1 7
 Just rlght 18
 1 9
Length of lessons
 Too long 6
 Too short 30
 9
 28
Dlffcult to concentrate?
 Yes 21
 1 7
 No }1
 20
Enough Instruction
on problems?
 Yes 33
 30
 No 3
 7
Some problems too easy?
 Yes
 No
```

16 (44\%)
20 (56\%)
6 ( $16 \%$ )
No
Some problems too hard?
Yes 10 ( $28 \%$ ) 15 ( $41 \%$ )

No
Could be done more easlly without computer?

Yes 1111
No
25
26
Improved mathematical abllity?

Yes 33
No

15 (41\%)
26 (72\%)
21 (57\%)

## Chapter 6: Conclusions

### 6.1 Discussion of results

There are many studies in the mathematics education literature whlch Indicate that Introductory algebra, and algebra word-problems In particular, are dlfflcult areas for many students (e.g. Rosnick, 1982; Thomas, 1987; Sllver et al., 1988). The extremely poor results, including substantlal numbers of zero scores, found in both pllot testing and pretesting confirm that the construction of algebralc expresslons is a partlcular area of difficulty. It was noted in pllot testing that scores were much higher when a multiple-cholce format was used. Why is it that students can identify the correct answer but cannot construct it for themselves? One possibllity is that they 'work back' from the glven answers to declde which one is correct. This is unllkely as students of thls age would lack the sophistlcatlon for thls approach, and lt was not possible to conflrm any of the answers by slmple numerical substitutions. An alternative explanation is that the prompting provided by the multiple-cholce answers triggered retrleval of previously learned knowledge from long term memory. The subjects were able to discriminate the fine detall between the correct answers and the carefully constructed 'distractors'.

Thls suggests that they had substantlal experlence of algebralc expressions including the use of brackets, order of operations, conjoining etc. However, wlthout the prompts provided by the multiple-cholce format, many were totally unable to retrleve thls knowledge.

The results of this study support the princlpal hypothesis that use of a spreadsheet can enhance the ability of algebra novlces to construct algebralc expressions to represent relational propositions. The mean score on the 21-item pretest was 2.47 (12\%) and the mean score on the equivalent posttest was 12.96 ( $62 \%$ ). Thus, the mean galn for all subjects was $50 \%$. On the pretest, the most common error was to write a numerical answer, based on whatever numbers appeared In the problem, rather than an algebraic expression. Thls unwillingness to write an algebralc expression as an answer was also noted by Booth (1984a). In the Inltial stages of the course, there was further evidence of this reluctance. A large number of subjects conslstently worked out the correct numerlcal answers themselves and then typed these numbers Into the approprlate cells of the spreadsheet. A slmilar problem was noted by Dubitsky (1986), whose subjects were unwilling to test any value in a spreadsheet before they were sure it was correct. Thls need for numerlcal answers has been explalned by Booth (1984b) In terms of frameworks of
knowledge. Prlor to learning algebra, most children's mathematical work $1 s$ conducted within an arithmetic framework. In thls framework, numerical answers are always required and the mathematical structure of problems is generally subordinated to obtaining the correct answer. Algebralc answers conflict with thls establlshed framework as they do not supply a 'closed' solution. Furthermore, an algebraic expresssion is a formallsation and symbolisation of arlthmetic method and many children are not aware of the preclse methods by which they solve problems in arlthmetic.

Accordlng to information processing theorles, students are not empty vessels, but bulld up knowledge representation structures for themselves. When starting algebra, they already possess conceptuallsations that confllct with the new ldeas to be learned. These include conjoining and the use of letters. In arlthmetlc, conjolning lndicates addltion (25 means "two tens plus 5 unlts" ). In algebra, conjolning indicates multiplication ( 2 X means "two times X "). In arlthmetlc, letters are labels (2p means "2 pence") but in algebra, letters are varlables $\langle 2 \mathrm{p}$ means "two times the number represented by $p^{\prime \prime}$. When new ldeas are learned in algebra, older, confllcting ldeas are not replaced but retalned along with the new knowledge. When confronted with a problem, elther conceptuallsation may be
retrieved. It appears that many students were working within an arithmetic framework during pllot testing, pretesting and the early parts of the Instruction. This was possibly because $1 t$ was better establlshed and more stable than thelr recently acquired algebralc framework. The greatly $1 m p r o v e d$ performances on the posttest may be explalned in terms of the consolldation of the algebralc framework. This was achleved by building on their arlthmetic knowledge. A spreadsheet cell which can accept any value, and whlch in turn affects the value of connected cells, provides a cognitlve model for the effect of a variable in an expression. Typing varlous trlal values into a cell supports the conceptualisation of a range of numbers, while only requiring the consideration of one value at a tlme. Students could see the value of an expression changlng as they changed the value of any of its constituent varlables. The problems could be thought about, and answers could be checked, in purely arlthmetlc terms. However, to achleve the correct answer, it was also necessary to symbollse the method of the arlthmetic solution in the form of algebralc expressions.

The use of a computer also allowed attention to be focussed on the need for precision when constructing expresslons. Booth (1984a) found that chlldren often assign 'Intent' to algebralc expressions. That is,
they assume that the particular context in which the expression appears defines the required order of its operations. Using the computer, chlldren were able to see the need for accuracy as their expressions needed to be 'understood' correctly by the computer.

Booth's (1984a) teaching approach was similar to that of the present study. A "mathematics machlne" was used to motlvate the need for precision $1 n$ the construction of algebralc expressions. Booth (1984a) found that children readily accepted non-numerical answers, and the need for precision $1 n$ the use of brackets, whlle working In the "machine" context. However, a delayed posttest showed that this acceptance did not transfer readlly to "mathematlcs", or "algebra", in general. In the present study it was feared that learning to construct algebraic expressions in a spreadsheet context would not guarantee that thls skIll would be transferred automatically to normal algebra. To aid transfer, subjects were required to generallse all answers to refer to some unspecifled cell (i.e. X) rather than to the partlcular cell they had used in the spreadsheet. That $1 s$, subjects were required to rewrite thelr expresslons in conventional algebralc form after they had solved each problem. While some subjects were reluctant to do this, it appears to have been successful as transfer from the
speclfic spreadsheet context to "algebra" was quite smooth.

IThe method of instruction and the practice problems were obviously motivating as the students were prepared to work for long sessions during their own free time. The post-instruction debriefing questionnaire (Appendix $D$ ) indlcated that the participants found the course very Interesting and enjoyable. Only one student out of 74 falled to complete all four sessions. All of thls confirms hypothesis 1 , that spreadsheet use can make a valuable contrlbution to teaching word problems, a difficult but fundamentally important area of school mathematics.

The other princlpal outcome was that learning through abstract problems was more effective than learning through problems set in concrete contexts. Thls was so, even though the contexts used were deslgned to be relevant to the Interests of the partlcipants. This was the opposlte of what was hypothesised (hypothesis 2). The abstract treatment group performed better, not only on the overall posttest, but also on lts abstract subsectlon and on 1 ts concrete subsection. Thls was unexpected, as previously reported research suggested that performance should be consistently better for problems set in concrete contexts <e.g. Schwanenflugel and Shoben, 1983; Anand and Ross. 1987). It was also
unexpected in the light of well-accepted theory, e.g. Gagne and Whlte, 1978; Glaser, 1984; Ausubel, 1986) which suggests that learning will be enhanced when new materlal is connected to as many existing reference polnts as possible. However, there are factors whlch may explain this anomaly.

Students at thls level are more accustomed to abstract mathematics exerclses than to 'real' problems. The vast majorlty of arlthmetlc exercises in Primary school textbooks are abstract and there is evidence se.g. Muth 1984) that concrete arlthmetlc story problems are an area of major difflculty for younger students. So, even before beginning algebra, students wlll be more famlllar wlth abstract problems and many students wlll have experlenced difflculties in dealing with slmple concrete arlthmetic story problems. It $1 s$ well known that these dlfflcultles do not arlse from a lack of computational abllity. Students do know how to carry out arithmetlc procedures, but they do not know when to apply them in solving story problems (e.g. Mayer, 1982; Muth, 1984). The dlfference in outcome between the two treatments may be explalned in terms of the limitations of short term memory. The limlted capaclty of short term memory is an important aspect of cognltive development in a number of theorles (Bruner, 1966; Flavell, 1971; Case, 1978a). Young chlldren are very limlted $1 n$ their capacity to


#### Abstract

process all the information in difflcult tasks. For example, Muth (1984) studied the effect of extraneous Information in arlthmetic word problems with slxth graders. It was found that the superfluous informatlon imposed extra demands which reduced the accuracy of solutlons. Sweller (1988) found that conventlonal means-ends problem-solving lnterfered with schema acquisition due to the excesslve demands it placed on cognltive processing capacity. Thus, the limlted processing capaclty of novices can constrain learning in Instructional situations if the demands on the system are too great.

In short term memory, the information obtalned from the external problem environment interacts with knowledge retrleved from long term memory. It ls here also that the meta-level processes of planning, monitoring and evaluating take place. Relevant knowledge retrleved from long term memory 1 ncludes 1 Ingulstic and factual knowledge, processes, schemata, information about problem types, heurlstics and algorlthms, knowledge about the quantities Involved in the problem and other knowledge that may be related to the problem setting. It $1 s$ from a comblnation of all thls knowledge that the problem-solver's mental representation of the problem is constructed in short term memory (Sllver 1987). The construction of this internal representation of the


problem is a cruclal stage in problem-solving. The difficulty of a problem may depend on the complexity of generatling such a representation. Some chlldren may be poor problem-solvers because most of thelr short term memory $1 s$ devoted to interpreting and representing the problem. This may leave Insufficlent capaclty avallable to solve the problem. An abstract word problem may be easler to interpret than a simllar one set in a concrete context, thus placing less demands on the information processing system.

The concrete problems $\ln$ this study generally contalned more information than 1 somorphic abstract problems. Additional 'substltutions' are necessary for concrete problems so that the varlables wlll refer to the numbers of objects rather than to the objects themselves. In abstract numerlcal problems, no such 'substltutions' are necessary.

For example, consider the following problem which was used during the experiment:

Abstract Version: One number is 3 blgger than another. When the smaller one is multiplied by 5 and the blgger one by 10 , the answers add up to 135 . Find the numbers.

Concrete Verslon: Judy had $£ 135$ made up of a mixture of f5 and $f 10$ notes. She had 3 more $£ 10$ notes than $£ 5$ notes. How many of each had she got?

With thls problem, the abstract version presented no partlcular difflculty but nobody solved the concrete verslon without asslstance. With the concrete version, there was no dlfflculty in setting up the expression for the number of $£ 5$ notes ( $X$ ) and the number of $£ 10$ notes $(X+3)$. The difficulty arose in constructling the expression for the total value. Everybody in the concrete group wrote this lncorrectly as $X+X+3$ rather than $5 X+10(X+3)$. Thls incorrect expression glves the total number of notes rather than the total value of the notes. Every subject then adjusted the value of $X$ to achleve a 'total' of 135. None of the subjects in the concrete group were aware that thelr answer was Incorrect untll it was polnted out to them by the tutors.

An Important dlfference between the two verslons is that the abstract version expllcitly states what must be done (multiply by 5, multiply by 10 ) whereas, In the concrete version, lt $1 s$ necessary to keep the meanlng of the problem in short term memory along with the newly learned, and posslbly unstable, capablllty of constructing an algebralc expression. It $1 s$ extremely
unllkely that the chlldren did not possess the correct factual information in long term memory (1.e. that the value of $f 5$ and $£ 10$ notes $i s$ got by multiplying the number of notes by 5 and 10 respectlvely). This information was not integrated into the problem representation by any of the subjects. Thls suggests that short term memory had reached its capaclty in dealing with all the other aspects of the problem.

The contents of a novice's short term memory, when attempting to represent this problem, may be divided into those items which relate to spreadsheet manipulation and those which relate to the mathematical problem. Items relating to manlpulating the spreadsheet Include recalllng that a formula requlres a leading + sign, the symbol for multiplication $1 s$ *, that it is necessary to use 'shlft' for certaln keys and that the cursor must be correctly posltloned before typlng the expression. In addition it $1 s$ necessary to recall keyboarding skills including the technique for using a 'polnter'. Items relating to the mathematics of the problem include recalling which cell contalns the smaller number, which cell contains the larger number, which cell should be multiplied by 5 , which cell should be multiplied by 10 , the total $1 s$ got by adding, the order in which the computer evaluates expressions, whether brackets are required etc.

In addition to all of this, the concrete version requires the recall of factual information concerning the computation of the value of sums of money. It is generally agreed that short term memory can contaln no more than about 7 Items at any one time ce.g. Wessels, 1982) and that this limit does not change from person to person or between experts and novices. The difference between experts and novices in any domaln can be related to the way $1 n$ which experts possess domain-speciflc knowledge (schemata) and can therefore 'chunk' Information. As the learners in this case were all novices, it is reasonable to suppose that many of the Items listed above exlsted as discreet entltles, thus occupying a large amount of the avallable memory. The addltlonal Information necessary to solve the concrete version, though certalnly avallable in long term memory, was not retrleved. It is likely that thls was due to the lnabllity of short term memory to accomodate any further information.

Addltional evidence for this explanation may be found from the students' debrleflng questlonnalre (Figure 5.20). $41 \%$ of those $\ln$ the concrete group thought that some of the problems were 'too hard', compared to 28\% in the abstract group. Also, only $16 \%$ of the concrete group thought that some of the problems were 'too easy', compared to $44 \%$ of the abstract group. The problems in


#### Abstract

both treatments were mathematically Identical, lndlating that the contextual settings were the cause of the percelved extra difflculty. However, none of the contexts were unfamlliar to the subjects. Thls suggests that the difflculty arose from the extra processing required to represent the problems internally, even though all the knowledge required was avallable in long term memory.


It $1 s$ suggested that the subjects dealing with abstract problems had less burden placed on their processing capacity in a number of the exercise problems. This would have left them in a better position to concentrate on the target skill, i.e. the construction of algebralc expressions. The results indlcate that they were more successful than those in the concrete group, not just on abstract problems but also on concrete problems. Bassok and Holyoak (1989) have suggested that if problem-solving knowledge is encoded along with its applicability condltions, then access to that knowledge may depend on contextual cues relating to the situation In which the inltial information was encoded. On the other hand, if knowledge is encoded In a context-free setting then it may be applled more readlly to novel settings.

Bassok and Holyoak (1989) examlned transfer between two isomorphic subdomains of algebra and physics. Students
who had learned arlthmetic progressions were very likely to Recognise spontaneousiy; that physics problems Involving veloclty and dlstance could be addressed using the same equatlons. In contrast, the students who had learned the physlcs toplc almost never transferred thelr knowledge to lsomorphic algebra problems. Transfer from mathematics to physics occured even when all the example problems were set in a single context (e.g. money). This confirms that the provision of disparate examples Is not cruclal to transfer. Bassok and Holyoak (1989) did not compare slngle context mathematlcs lnstruction with multiple context. However, they concluded that the degree of transfer observed for the single context Instruction was sufficiently high that celling effects would make $1 t$ difflcult to observe any added beneflt from multiple context instruction.

As the whole purpose of instruction in the domaln of word problems is to enable students to solve real problems, some experlence wlth concrete problems ls necessary. Perhaps the best teaching strategy would be to use abstract problems inltlally and then, when some sklll has been galned and students are thoroughly famillar with the computer environment, gradually Introduce concrete problems. However, as was observed In pretesting, the specific context of a problem can be a major factor $\ln$ determining its difflculty for
subjects in this population. Current textbooks frequently favour technlcally-oriented contexts such as velocity, currency transactions, welghts \& measures etc. (Mayer, 1981). When concrete problems are introduced, care should be taken to ensure that they are relevant and understandable to those for whom they are intended.

The third hypothesis, that concrete contexts would favour those with lower numerical abllity, was not upheld. Numerlcal abllity had no slgnlflcant effect on achleving the target capabillty. While the target capablllty was not dlrectly related to numerlcal abllity, It was expected that numerlcal sklll, as an Index of overall mathematlcal abllity, mlght have had some effect. The lack of any effect may be explalned by the fact that all of the participants were volunteers. Those who volunteer to undertake school work during vacation time may be dlfferent from the general population, $1 n$ terms of both abllity and motivation. The distribution of participants in the numerlcal abllity test, compared to the populatlon norm, ls shown below:

Population Norm

Percentile

| $90 \%-100 \%$ | 12 | $(16 \%)$ |  |
| ---: | ---: | ---: | ---: |
| $70 \%-89 \%$ | 22 | $(30 \%)$ |  |
| $30 \%-69 \%$ | 34 | $(47 \%)$ |  |
| $10 \%-29 \%$ | 4 | $(5 \%)$ |  |
| $0 \%-9 \%$ | 1 | $(1 \%)$ |  |
|  |  |  |  |

This shows that the particlpants were above the population average on this measure. In particular, there were very few partlclpants from the weakest sectlon of the population, l.e. only 6\% of the particlpants were from the lowest $30 \%$ of the population. It may be that there just were not enough very weak students involved to show an effect. However, In the light of the other results of thls research, very weak students would probably benefit more from working on abstract problems.

In relation to the fourth hypothesis, it was found that attitude to mathematics interacted significantly with the treatments (Figures 5.12 and 5.13). Hypothesis 4 predicted that the galns of the concrete group over the abstract group would be greater for those wlth negative attltudes to mathematlcs. The concrete group dld not,
of course, make any galns over the abstract group at all. However, the 'losses' to the abstract treatment were not nearly as pronounced for the negative attltude group. Therefore, the direction of the effect was as predicted in hypothesis 4. This Indicates that students with negative attitudes to mathematlcs are more motlvated by concrete contexts, even though they are llkely to learn more from abstract ones.

Hypothesis 5 was not upheld. Attitude to computers had no signiflcant effect. As with hypothesis 3, this lack of effect may be explalned by the fact that all partlcipants were volunteers. Computer attltude scores for volunteers in a computer course during hollday time, would be expected to be very hlgh. Thls was the case. It may be that those with very negatlve attludes to computers were under-represented in the sample.

It was noted that overall attitude scores, to both mathematlcs and computers, In the sample were much higher than those observed durlng pllot testing. The table below compares the combined attitude scores (mathematics attitude + computer attitude) of those who participated in the study and those observed In pilot testIng:

|  | Rilot Test <br> $(\mathrm{N}=58)$ | Participants <br> $(N=73)$ |
| :--- | :--- | :--- |
| Mean | $37.34 \quad(58 \%)$ | $46.30(72 \%)$ |
| Standard Deviation | $7.55(12 \%)$ | $7.11(11 \%)$ |

The partlclpants in the study scored $14 \%$ hlgher (on average) than those observed in pilot testing. Despite thls, there was a statistically signlflcant interaction between treatment and attltude to mathematics. While the interaction between treatment and attltude to computers was not significant, it was in the predicted direction. If students with more negative attltudes had participated in the study, this interaction might have been more pronounced.

Finally, It was interesting to note that one partlcular school group did not galn as much from the course as the other four. Thls was unexpected and it ls only possible to speculate as to why thls was so. The school involved was more 'middle class' than the others, and this may have been a factor. It may be that these students were more accustomed to using computers at home, and were therefore less motivated by the novelty of computer use. There could also have been some factor in their school envlronment which left them less able to benefit from the comparatlvely relaxed teaching style used. There
might even have been some factor in the way they were taught algebra previously which confounded thelr learning in thls situation.

### 6.2 Extensions and Applications

The sample $\ln$ thls study consisted of 73 volunteers. The number of very weak students, and students with very negatlve attltudes, was Ilmited by the fact that all were volunteers. However, to replicate the study with non-volunteers would require substantial resources. Working with non-volunteers would necessarlly imply working withln school hours. Thls would require that Intact groups be split up to allow for random assignment to treatments. In addltion, to achleve external validity $1 t$ would be necessary to lnvolve a number of schools. All of this would require re-arranged timetables, the co-operation of many teachers and principals, the provision of substantial amounts of hardware and the coaching of teachers to lmplement the course. In the present Irlsh second-level education system, this would not be feaslble because of the inflexibllity of school timetables, the predominance of streaming and the lack of hardware standardlsatlon between schools. To compare the use of a spreadsheet with other instructional strategies, such as traditional instruction, would have simllar resource implications.

There are, however, a number of questions that could be addressed which would not require such resources. It would be Interesting to examine the effect of limlting the context of examples to just one domain (e.g. money problems). Would thls be Just as effective as uslng all abstract questions? Would a mixture of abstract and concrete problems produce better results than all abstract examples? How could a spreadsheet method be best Integrated Into an overall approach to word problems? Does learning how to constuct expressions and equatlons have any effect on the ability to solve equations?

As the experiment took place in a reasonably natural school setting, its results are directly relevant to the mathematics curriculum. The amount of Instruction tlme Involved ( 8 hours approx.) would represent approximately two weeks' normal mathematlcs classes. Therefore lt could easily be Incorporated into present curricula, provided sufflcient hardware was avallable. For whole-class instruction, one computer between two pupils would be sufficlent, e.g. ten computers for a class of twenty pupils. Many schools have sufflcient hardware at present to implement this.

Because spreadsheets provide a general context for experimenting with mathematlcal relations, they may be applled to many areas of school mathematics. For

```
example, they could be used to advantage in the
following Junior Cycle topics:
 Number Theory
 Relations and Functions
 Mass and Measurement
 Ratio and Proportion
 Percentages, Profit and Loss
 Rates, Taxes etc.
 Squares, Square Roots and Indlces
 Simple Interest
 Areas and Volumes
 Statistics
 Binary Operations (Investigating commutativity etc.)
 Transformations of the Plane
In addition, spreadsheets could be applied in the
following Senior Cycle topics:
 Sequences and Serles
 Graphlng FunctIons
 Roots of Quadratic EquatIons
 Co-ordinate Geometry of the Line, Circle, Parabola
 Complex Numbers
 Vectors
 Slmultaneous LInear Equations
 Compound Interest
Matrices
```

Roots of Cubic Equations
Linear Programming
Limits
Introductory Calculus
Maxima and Minima

To take just one example from the above lists, maximum and minlmum problems are an area of major difficulty for many students. Even those who can successfully solve such problems algebralcally, often do so by applying a supplled algorlthm, and have no real understanding of what they are doing. Maximum and minimum problems can also be solved by numerical methods using successive approximations. Early pilot work for this research showed that maxlmum and minlmum problems from Leaving Certlflcate Hlgher Course papers could be solved by second-year puplls usling a spreadsheet. The following problem is a typlcal example:

```
"A poster is to contain 50 cm sq of printed text with margins of 4 cm at the top and bottom and 2 cm at each side. Find the overall dimensions, if the total area of the poster is to be as small as possible"
```

Spreadsheet Solution:
Area of text $=50$

| Text | Text <br> Wength | Total <br> Wength | Total <br> Width | Total <br> Area |
| :--- | :---: | :---: | :---: | :---: |
| 1 | 50 | 9 | 54 | 486 |
| 2 | 25 | 10 | 29 | 290 |

To solve this problem, the value of text length is varied and the effect of thls on the total area is observed. The area decreases as text length increases untll text length has a value of 10 . When text length is further lncreased, $1 t$ ls found that the area begins to increase again. It is then necessary to investigate values of text length between 9 and 11 . In this way it is possible to 'zoom in' on the correct answer and to calculate $1 t$ to any requlred level of accuracy.

Problems such as this are normally dealt with in an 'algebralc' way, 1.e. equatlons are set up, differentlated etc. The difflculty of executing the algebraic procedures often obscures the meaning of the solution for students. However, if the problem is solved numerlcally and if the flgures are tabulated neatly, as they always are on a spreadsheet, then it is quite easy to observe the effect that changing text length has on thê total area. This should permit a better understanding of how the total area has a lower limit. As the spreadsheet does all of the arithmetic,
the burden on the students' processing capacity is reduced. This allows the students to concentrate on the underlying relationships.

The formulas in the poster example are as follows:

| $A$ | $B$ | $C$ | $D$ | $E$ |
| :---: | :---: | :---: | :---: | :---: |
| Area of text | 50 |  |  |  |
| Text | Text | Total | Total | Total |
| Length | Wldth | Length | Width | Area |
|  |  |  |  |  |
| 1 | $+B 1 / A 6$ | $+A 6+8$ | $+B 6+4$ | $+C 6 * D 6$ |
| +A6+1 | $+B 1 / A 7$ | $+A 7+8$ | $+B 7+4$ | $+C 7 * D 7$ |

None of these formulas are partlcularly difficult. If this problem were solved with conventional algebraic notation, the formula for the total area would be:

$$
(x+8)(50 / x+4)
$$

The use of the spreadsheet allows this difflcult expression to be broken down into 1 ts component parts. Only one relationship needs to be considered at a time, for example, the relationship beween length, wldth and area. To construct the formula for the text width, it is only necessary to divide the text area by the text length. The fact that the value of the text width is instantly displayed gives valuable conflrmation that the formula $1 s$ correct. There $1 s$ no need to think in terms of a large $\operatorname{lnt} \mathrm{lm}$ dating algebraic expression but rather in terms of the simpler relatlonships between the
components of the problem. Using such a numerical method with a spreadsheet is a meanlngful way to introduce students to the concepts of maxima and minima. This could provide the basis for later algebralc methods by allowing students to develop a deeper understanding of the limiting process involved.

Similar spreadsheet-based approaches to the other toples llsted above could be developed in the same way. In addition to its use in mathematics, the spin-off effects of being able to use a spreadsheet would be substantial in other subject areas. Spreadsheets are applicable in any area where calculations are required. These include business studies, physics, chemistry, home economics etc.

This experiment demonstrated that children in early secondary school are capable of using sophlsticated software with ease. It is likely that they could also learn to use other general-purpose software packages such as word processors, databases, graphlcs packages etc. Such packages could be similarly adapted for teaching purposes in areas right across the curriculum. This approach has many advantages over the development of specific courseware packages, including speed and cost of production. Ideally, secondary schools should standardise on a few general-purpose packages which could be taught in first and second year. These could
then be used for various applications throughout secondary schooling. The most effective strategy would be to standardise on an Integrated package contalning a word processor, database, spreadsheet etc. If this were done, students would be dealling with a consistent user interface throughout all of the applications. This research has indlcated that young students can deal with a 'serlous' software package even though they may not use all of its facilitles. Thus, there $1 s$ no need to design simplified packages for students in this age group. There 1 s no reason why 'Industry standard' packages should not be chosen if they are available and reasonably priced.

The deslgn of learning materials based on general-purpose software could be undertaken by Individual teachers, or by groups of teachers working in the same subject area. It would be vital to keep in mind that the software package ls a vehicle for instruction and not the object of instruction in itself. The development of materials would proceed from the Identlflcation of a problem through the speciflcation of objectives, the design of instruction, evaluation and testing and the production of materials. In addltion to computer-based materlals, print materials would also be required for most applicatlons. Work of this nature by teachers would necessarlly require support in terms of


#### Abstract

hardware, software, secretarlal help and, posslbly, release from teachlng dutles for llmited periods. Distribution of materials could be accomplished electronlcally through exlsting communlcations systems such as NITEC (National Information Technology in Education Centre).


Support would also be required for teachers who would use such materlals. This would be best accomplished by school-based inservice. If a school standardised on a few general-purpose software packages, then it would be in the Interest of the whole staff to learn to use the software. In addltion, support would be required by subject teachers for each instructional package produced. This would be easily managed if teachers were already familiar with the software. Print materlals alone mlght sufflce for this purpose.

If such an Inltlatlve were to be taken, its success or fallure would be very much dependent on the reaction of teachers. Many teachers who were initlally enthuslastic and who undertook inservice computer courses have become disillusioned with computers. This ls partly due to the nature of many of the early inservice courses, in which the emphasis was firmly placed on learnlng programming. One of the maln outcomes of such courses was the reallsation by many teachers that programming was very dlfflcult. They also reallsed that programming was not
easy to teach. The scarclty of sultable software and the lack of in-school support have also contributed to this disillusion. In order to regaln the interest and enthusiasm of teachers, it would be necessary to produce complete ready-to-use instructlonal packages whlch were immediately relevant to present syllabl. Anything less would be unlikely to have any lmpact. It is not suggested that such packages should replace normal classroom teachlng. They should complement it. This research shows that such instructional packages can be produced reasonably easily and are effectlve in normal classroom situatlons.

## References

Adams T. (1988), Computers in Learning: A Coat of Many Colours, Computer Education, 12, 1, 1-6.

Alken L.R. (1972), Language factors in learning mathematics, Review of Educational Research, 42, 359-385.

Allinson L., Hammond N. (1990), Learnlng Support Environments: Rationale and Evaluation, in Kibby M. (Ed.), Computer Assisted Learning: Selected Proceedlngs from the CAL ' 89 Symposium, Oxford, Pergamon Press.

Alty J.L. (1987), Keynote Address: Working Within Limltations: Computer Alded Instruction and Expert Systems, in Moonen J., Plomp T. (Eds.), EURIT 86: Educational Software and Courseware, 3-12, Oxford, Pergamon Press.

Anand P.G., Ross S.M. (1987), Using Computer-Assisted Instruction to Personalize Arithmetic Materials for Elementary School Children, Journal of Educational Psychology, 79, 1, 72-78.

Apple Computer Inc. (1983), Appleworks, Cupertino, Apple Computer Inc.

Arad O.S. (1987), The Spreadsheet: Solving Word Problems, The Computing Teacher, 14, 4, 13-15.

Aronson D.T., Brlggs L.J. (1983), Contributions of Gagne and $\operatorname{Briggs}$ to a Prescriptive Model of Instruction, in Reigeluth C.M. (Ed.), Instructional Design: Theories and Models, Hillsdale NJ., Lawrence Erlbaum Assoclates.

Ausubel D.P. (1968), Educational Psychology: A Cognitlve Approach, New York, Holt, Rlnehart and Winston.

Ausubel D.P. (1977), The facilltation of meaningful learning in the classroom, Educational Psychologist, 12, 162-178.

Ausubel D.P.(1986), Educational Psychology. A Cognltive Approach, New York, Holt, Rinehart and Winston.

Ball D. (1987), PROLOG and Mathematlcs Teaching, Educatlonal Revlew, 39, 2, 155-161.

Ball D., Hlggo J., Oldknow A., Straker A., Wood J. (1987), Will Mathematlcs Count? Computers in Mathematics Educatlon, Hatfleld, Advisory Unit for Computer Based Education.

Ballew H., Cunningham J.W. (1982), Dlagnosing strengths and weaknesses of sixth-grade students in solving word problems, Journal for Research in Mathematlcs Education, 13, 202-210.

Balzano G.J. (1987), Reconstructlng the Curriculum for Design, Machine-Medlated Learning, 2, 1, 83-109.

Bassok M., Holyoak K.J. (1989), Interdomain Transfer Between Isomorphic Toplcs in Algebra and Physics, Journal of Experimental Psychology: Learning, Memory and Cognltion, 15, 1, 153-166.

Becker H.J.(1987), Using Computers for Instruction, Byte, 12, 2, 149-162.

Berger D.E., Wilde J.M. (1987), A Task Analysis of Algebra Word Problems, In Berger D.E., Pezdek K., Banks W.P., Applications of Cognitive Psychology: Problem Solving, Education, and Computlng, Hillsdale NJ., Lawrence Erlbaum Associates.

Booth L. (1984a), Algebra: Chlldren's Strategles and Errors, Windsor, NFER-Nelson.

Booth L. (1984b), Misconceptlons Leading to Error in Elementary Algebra, Journal of Structural Learning, 8, 125-138.

Boulay J.B.H. (1978), Learning Primary Mathematics Through Computer Programmlng, Unpublished Doctoral Dissertation, University of Edinburgh.

Briars D., Larkln J. (1984), An Integrated model of skIll In solving elementary word problems, Cognltion and Instruction, 1, 245-296.

Brown C.A., Carpenter T.P., Kouba V.L., Lindquist M.M., Silver E.A., Swafford J.O. (1988), Secondary School Results for the Fourth NAEP Mathematics Assessment, Mathematics Teacher, 81, 337-347.

Brown J.M., (1987), Spreadsheets in the Classroom, The Computing Teacher, 14, 4, 8-12.

Bruner J.S. (1966), Toward a theory of Instruction, New York, Norton.

Burkhardt H. (1986), Computer Aware Curricula: Ideas and Realisation, in Howson A.G., Kahane J.P. (Eds.), The Influence of Computers and Informatics on Mathematics and its Teaching, Cambridge, Cambridge University Press.

Burns P., Bozeman W. (1981), Computer Assisted Instruction and Mathematics Achievement: Is There a Relatlonship?, Educatlonal Technology, 10, 2, 32-39.

Butler D., Close S. (1989), Assesslng the Benefits of a LOGO Problem-Solving Course, Irlsh Educational Studies, 8, 2, 168-190.

Caldwell J.H., Goldin G.A. (1987), Variables Affecting Word Problem Difficulty In Secondary School Mathematlcs, Journal for Research in Mathematics Education, 18, 3, 187-196.

Case R. (1975), Gearlng the demands of instruction to the developmental capacltles of the learner, Review of Educational Research, 45, 59-97.

Case R. (1978a), A developmentally based theory and technology for the design of effectlve instruction, Revlew of Educatlonal Research, 48, 439-463.

Case R. (1978b), Implicatlons of developmental psychology for the design of effective instruction, in Lesgold A.M., Pellegrino J.W., Fokkema S.D., Glaser R. (Eds.), Cognitive Psychology and Instructlon, New York, Plenum.

Case R., Bereiter C. (1984), From Behaviourism to Cognitive Behaviourism to Cognltive Development: Steps In the Evolutlon of Instructional Design, Instructional Science, 13, 141-158.

Christenen E.B. (1980), Reallty Versus Fantasy In Algebra Word Problems: An Investigation of the Context Preferences of Students, Unpubllshed Doctoral Dissertation, University of Kentucky.

Clark R.E. (1983), Reconsidering Research on Learning from Media, Review of Educational Research, 53, 4, 445-459.

Clark R.E. (1985), Evidence for Confoundlng in Computer-Based Instruction Studles: Analysing the

Meta-Analyses, Educational Communications and Technology Journal, 33, 4, 249-262.

Clark R.E., Voogel A. (1985), Transfer of Tralning Principles for Instructional Design, Educational Technology and Communlcation Journal, 33, 2, 113-123.

Clement J. (1982), Algebra Word Problem Solutions: Thought Processes Underlying A Common Misconception, Journal for Research in Mathematics Education, 13, 1, 16-30.

Clements D.H. (1985), Logo programming: Can it change how children think?, Electronic Learning, 28, 74-75.

Cockeroft W.H. (1982), Mathematics Counts, London, HMSO.

Cohen M., Carry L.R. (1978), Interest and its relationship to verbal problem solving, International Journal of Mathematical Education in Science and Technology, 9, 207-212.

Czeplel J., Esty E. (1980), Mathematics in the Newspaper, Mathematics Teacher, 73, 582-586.

Darch C., Carnine D., Gersten R. (1984), Expllcit Instruction in Mathematics Problem Solving, Journal of Educational Research, 77, 6, 351-359.

Davis P.J., Hersh R. (1981), The Mathematical
Experience, Boston, Blrkhauser.

Davis R.B. (1984), Learning Mathematics: The Cognitlve Sclence Approach to Mathematlcs Education, London, Croom Helm.

De Corte E., Verschaffel L., De Win L. (1985), Influence of Rewording Verbal Problems on Childrens' Problem Representations and Solutlons, Journal of Educational Psychology, 77, 4, 460-470.

De Corte E., Verschaffel L., Verschueren J. (1982), First graders' solution processes in elementary word problems, in Vermandel (Ed.). Proceedings of the Sixth International Conference for the Psychology of Mathematical Education, Antwerp, Universitaire Instelling Antwerpen.

Department of Educatlon (1987), Rules and Programme for Secondary Schools 1987/88, Dublln, Stationery Office.

DiSessa A.A. (1987), The Third Revolution In Computers and Education, Journal of Research in Science Teaching, $24,4,343-367$.

Dlakey E., Kherloplan R. (1987), A Survey of Teachers of Mathematlcs, Sclence and Computers on the Uses of Computers in Grades 5-9 Classrooms, Educational

Technology, 27, 6, 10-14

Dlem R. (1986), Microcomputer Technology in Educational Environments: Three Case Studles, Journal of Educatlonal Research, 80, 2, 93-98.

Dubitsky B. (1986), Algebraic Problem Solving in Grade Six: An Application of the Computer Spreadsheet, Unpublished Doctoral Dissertation, Columbla Unlversity. DuBoulay J.B.H. (1980), Teaching Mathematics Through Programming, International Journal of Mathematical Education $1 n$ Sclence and Technology, 11, 3, 347-360. Dudley-Marling C., Owston R.D. (1987), The State of Educatlonal Software: A Criterion-Based Evaluatlon, Educatlonal Technology, 27, 3, 25-29.

Ernest P. (1985), The phllosophy of mathematlcs and mathematics education, International Journal of Mathematlcal Education In Sclence and Technology, 16, 5, 603-612.

Ernest P. (1987), A Model of the Cognitlve Meaning of Mathematical Expressions, Br. J. Educ. Psychol., 57, 343-370.

Ewlng D.E. (1984), A Study Of Cognltive Processes With Respect To Selected Algebra 1 Word Problems By Means Of A Constructed Reading Test, Unpubllshed Doctoral Dissertation, Kansas State Unlversity.

Feurzeig W. (1986), Algebra Slaves and Agents in a Logo-Based Mathematics Curriculum, Instructional Science, 14, 229-254.

Flsher K.M. (1988), The Students-and-Professors Problem Revisited, Journal for Research in Mathematics Education, 19, 3, 260-262.

Flavell J.H. (1971), What 1 s memory development the development of?, Human Development, 14, 272-278.

Freese R., Lounesto P., Stegenga D.A. (1986), The Use of MuMath In the Calculus Classroom, Journal of Computers In Mathematics and Science Teaching, 6, 1, 52-55.

Gagne E.D. (1985), The Cognitlve Psychology of School Learning, Boston, Llttle, Brown and Company.

Gagne R.M. (1983), Some Issues in the Psychology of Mathematlcs Instruction, Journal for Research In Mathematics Education, 14, 1, 7-18.

Gagne R.M. (1977), The Conditlons of Learning, New York, Holt Rinehart and Winston.

Gagne R.M. (1975), Essentials of Learning for Instruction, New York, Holt, RInehart and WInston.

Gagne R.M., White R.T. (1978), Memory Structures and Learning Outcomes, Revlew of Educational Research, 48, 2, 187-222.

Glaser R. (1984), Education and Thinking: The Role of Knowledge, American Psychologlst, 39, 93-104.

Golden G.A., Caldwell J.H. (1979), Syntax, Content and Context Variables in a Research Study, in Goldin G.A., McClintock C.E. (Eds.), Mathematics Education Reports: Task Variables in Mathematical Problem Solving, Columbus, ERIC.

Goodyear P. (1984), LOGO: A gulde to learning through programming, Chichester, Ellls Horwood.

Graf R.G., Rlddell J.C. (1972), Sex differences In problem-solving as a function of problem context, Journal of Educatlonal Research, 65, 451-452.

Green D., Jones B. (1986), Using the Computer, Mathematics in Schools, 15, 5, 36-37.

Greeno J.G. (1980), Some examples of cognitive task analysls with Instructional Impllcations, in Snow R.E., Federlco P.A. and Montague W.E. (Eds.), Aptitude Learning and Instruction: Vol. 2. Cognitive process analysis of learning and problem solving, Hillsdale NJ., Lawrence Erlbaum Assoclates.

Greer B. (1984), Introduction: Cognitive Psychology and Mathematics Educatlon, Journal of Structured Learning, 8, 103-112.

Groen G., Kieran C. (1983), The Many Facets of Piaget, in Glnsburg H.P. (Ed.), The Development of Mathematical Thinklng, New York, Academic Press.

Hasselbring T.S. (1986), Research on the Effectlveness of Computer-Based Instruction: A Review, International Revlew of Education, 32, 3, 313-324.

Held M.K. (1988), Resequencing skllls and concepts in applied calculus using the computer as a tool, Journal for Research In Mathematlcs Education, 19, 1, 3-25.

Helm A.W., Watts K.P., SImmonds V. (1975), AH2/AH3 Manual, WIndsor, NFER Publishing Co. Ltd.

Higgo J. (Ed.) (1985), Proceedings of the A-Level Conference held at Ware, London, The Mathematical Association.

Hinsley D.A., Hayes J.R., Simon H.A. (1977), From Words to Equations. Meanlng and Representation In Algebra Word Problems, In Just M.A., Carpenter P.A. (Eds.), CognItlve Processes in Comprehension, Hillsdale NJ., John Wiley \& Sons.

Holtan B. (1964), Motlvatlon and general mathematlcs students, Mathematics Teacher, 57, 20-25.

Howe J. (1986), Arithmetical and Mathematical Concepts: Report of International Conference on Information

Technology and Basic Learning, Parls, Centre for Educatlonal Research and Innovation (OECD).

Howe J., O'Shea T., Plane F. (1979), Teachlng mathematlcs through LOGO programming: An evaluation study, $1 n$ Lewls R., Tagg E.D. (Eds.), Computer-asslsted Learning: Scope, progress and limits, Amsterdam, North Holland.

Howe J.A.M., Ross P.M., Johnson K.R., Plane F., Inglis R. (1982), Teaching Mathematics Through Programming in the Classroom, Computers and Education, 6, 85-91.

Hsiao F.S.T. (1985), Micros In mathematics education Uses of spreadsheets in CAL, International Journal of Mathematical Education 1 n Sclence and Technology, 16, 6 , 705-713.

Kaput J.J. (1986), Information Technology and Mathematics: Opening New Representational Windows, Journal of Mathematical Behaviour, 5, 187-207.

Keelling R., Whlteman S. (1990), Slmply Spreadsheets, Sutton Coldfleld, KW Publications.

Kilpatrick J. (1987), Problem Formulating: Where Do Good Problems Come From?, In Schoenfeld A.H. (Ed.) Cognitive Sclence and Mathematics Education, Hillsdale NJ., Lawrence Erlbaum Assoclates.

Klntsch W., Greeno J.G. (1985), Understanding and Solving Word Arlthmetlc Problems, Psychological Review, 92, 1, 109-129.

Kozma R.B. (1987), The ImplIcatlons of Cognltive Psychology for Computer-Based Teachlng on Secondary School Students, Educatlonal Technology, 27, 11, 20-25.

Kullk J., Bangert R., Wllllams G. (1983), Effects of Computer-Based Teaching on Secondary School Students, Journal of Educatlonal Psychology, 75, 1, 19-26.

Kulik J., Kulik C., Cohen P. (1980), Effectiveness of Computer-Based College Teaching: A Meta-Analysis of Findings, Revlew of Educatlonal Research, 50, 1, 525-544.

Kunkle D., Burch C.I. (1984), Symbolic Computer Algebra: The Classroom Computer Takes a Quantum Jump, Mathematlcs Teacher, 77, 3, 209-214.

Levin H.M., Leltner D., Melster G.R. (1986), Cost-Effectiveness of Alternatlve Approaches to Computer-Assisted Instruction, Instlute for Research on Educatlonal Flnance and Governance, Stanford University.

Lewis A.B., Mayer R.E. (1987), Students'
Miscomprehension of Relatlonal Statements In Arithmetic Word Problems, Journal of Educational Psychology, 79, 4, 363-371.

Luehrmann A. (1986), Spreadsheet: More Than Just Finance, The Computing Teacher, 13, 7, 24-28. Manion M.H. (1985), CAI Modes of Dellvery and Interaction: New Perspectlves for Expanding Applications, Educational Technology, 25, 1, 25-28.

Maurer S.B. (1984), College Entrance MathematIcs In the Year 2000, Mathematlcs Teacher, 77, 6, 422-428.

Mayer R.E.(1981), Frequency norms and structural analysls of algebra story problems into familles, categorles and templates, Instructional Sclence, 10 , 135-175.

Mayer R.E. (1982), Memory for Algebra Story Problems, Journal of Educatlonal Psychology, 74, 2, 199-216.

McCarthy K.A. (1976), Sex blas In tests of mathematlcal aptitude, Dissertation Abstracts International, 36, 7301A.

Meijer J., Rlemersma F. (1986), Analysls of Solving Problems, Instructional Science, 15, 3-19.

Mllls G.M. (1987), Categorles of Educatlonal
Microcomputer Programs: Theorles of Learning and
Impllcations for Future Research, In Rushby N. (Ed.), Technology Based Learning: Selected Readings, London, Kogan Page.

Morris O.D. (1987), Text \& Tests 1, Dublin, Celtic Press.

Moyer J.C., Moyer M.B., Sowder L., Threadglll-Sowder J. (1984), Story Problem Formats: Verbal versus Telegraphlc, Journal for Research in Mathematlcs Education, 15, 64-68.

Moyer J.C., Sowder L., Threadglll-Sowder J., Moyer M.B. (1984), Story Problem Formats: Drawn versus Verbal versus Telegraphic, Journal for Research in Mathematics Education, 15, 5, 342-351.

Muth K.D. (1984), Solving Arlthmetlc Word Problems: Role of Reading and Computational Skills, Journal of Educatlonal Psychology, 76, 2, 205-210.

National Mathematics and Statlstics CBL Review Panel (1986), W1ll Mathematics Count?, Hatfleld, Advisory Unit for Computer Based EducatIon.

Noss R. (1986), Constructing a Conceptual Framework for Elementary Algebra through Logo Programming, Educational Studies In Mathematlcs, 17, 335-357.

O'Shea T., Self J. (1983), Learning and Teaching with Computers, Brighton, Harvester Press.

Orzech 2., Shelton F.A. (1986), The Electronic Spreadsheet as a Dldactic Learning Enhancement, Computer Education, 10, 4, 429-437.

Palge J.M, Simon H.A. (1966), Cognitlve Processes in Solving Algebra Word Problems, In Klelnmuntz B. (Ed.), Problem Solving: Research, Method and Theory, New York, John Wiley and Sons.

Papert S. (1980), Mindstorms, Brighton, Harvester Press.

Paul D.J., Nibbellnk W.H., Hoover H.D. (1986), The Effects of Adjustling Readablllty on the Dlfflculty of Mathematlcs Story Problems, Journal for Research In Mathematics Education, 17, 3, 163-171.

Pea R.D., Kurland D.M. (1983), On the cognitlve prerequisites of learning computer programming, (Technlcal Report No.18), New York: Center for Chlldren and Technology, Bank Street College.

Pea R.D., Kurland D.M. (1984a), On the cognltive effects of learnlng computer programming, (Technlcal Report No.9), New York: Center for Children and Technology, Bank Street College.

Pea R.D., Kurland D.M. (1984b), Logo programming and the development of planning skllls, (Technlcal Report No.16), New York: Center for Children and Technology, Bank Street College.

Pea R.D., Kurland D.M. (1987), On The Cognitive Effects of Learning Computer Programming, in Pea R.D., Shelngold K. (Eds.), Mirrors of MInds, New Jersey, Ablex Publishing Corporation.

Pea R.D., Kurland D.M., Hawkins J. (1985), LOGO and the Development of Thlnking Skills, In Chen M., Palsley W. (Eds.), Chlldren and Mlcrocomputers, Beverly Hills, Sage Publications Ltd.

Polya G. (1945), How To Solve It, Prlnceton New Jersey, Princeton Unlversity Press.

Quilter D., Harper E. (1988), 'Why we didn't like mathematics, and why we can't do $1 t^{\prime}$, Educational Research, 30, 2, 121-129.

Reed S.K., Dempster A., Ettinger M. (1985), Usefulness of Analogous Solutlons for Solving Algebra Word Problems, Journal of Experimental Psychology: Learning, Memory and Cognltion, 11, 1, 106-125.

Reif F. (1987), Interpretation of Sclentiflc or Mathematlcal Concepts: Cognitive Issues and Instructional Implications. Cognitive Science, 11 , 395-416.

Roblyer M.D. (1985), The Greening of Educatlonal
Computing: A Proposal for a more Research-Based approach

```
to computers in lnstruction, Educational Technology, 25,
1, 40-44.
```

Rosnlck P. (1981), Some Mlsconceptions Concerning the Concept of Variable, Mathematics Teacher, 74, 418-420.

Rosnlck P. (1982), Student Conceptlons of Semantically Laden Letters in Algebra, National Science Foundation, Washington D.C.

Rosnlck P., Clement J. (1980), Learning without Understanding: The Effect of Tutoring Strategles on Algebra Misconceptlons, Journal of Mathematical Behavlour, 3, 1, 3-27.

Ross S.M. (1983), Increasing the Meanlngfulness of Quantltatlve Material by Adapting Context to Student Background, Journal of Educational Psychology, 75, 4, 519-529.

Ross S.M., Anand P.G.(1987), A Computer-Based Strategy for Personalising Verbal Problems in Teaching Mathematics, Educatlonal Communlcatlons and Technology Journal, 35, 3, 151-162.

Ross S.M., Anand P.G., Morrison G.R. (1988), Putting the Student Into the Word Problem: Mlcrocomputer-based Strategles that Personallze Math Instruction, Focus on Learning Problems In Mathematics, 10, 2, 29-42.

Ross S.M., Bush A.J. (1980), Effects of Abstract and Educatlonally Oriented Learnlng Contexts on Achlevements and Attltudes of Preservice Teachers, Journal of Educatlonal Research, 74, 1, 19-22.

Ross S.M., McCormick D., Krlsak N. (1986), Adapting the Thematlc Context of Mathematlcal Problems to Student Interests: Indlvldualised versus Group-Based Strategles, Journal of Educational Research, 79, 4, 245-252.

Sachs S.G. (1984), Citation Patterns in Instructional Development LIterature, Journal of Instructional Development, 7, 2, 8-13.

Schoenfeld A.H., Arcavl A. (1988), On the meaning of Varlable, Mathematics Teacher, 81, 6, 420-427.

Schoenmaker J., van der Mast C., Moonen J. (1987), A Methodology for the development of Educational Software, In Moonen J., Plomp T. (Eds.), EURIT 86; Developments ln Educatlonal Software and Courseware, 235-242, Oxford, Pergamon Press.

Schwanenflugel P.J., Shoben E.J. (1983), Differentlal
Context Effects in the Comprehension of Abstract and Concrete Verbal Materlals, Journal of Experimental Psychology: Learning, Memory and Cognition, 9, 1, 82-102.

Seymour S.L., Sulllvan H.J., Story N., Mosley M.L. (1987), MIcrocomputers and ContInulng Motlvation, Educational Computing and Technology Journal, 35, 1, 18-23.

Sllver E.A. (1987), Foundatlons of Cognltive Theory and Research for Mathematlcs Problem-Solving Instruction, in Schoenfeld A.H. (Ed.), Cognltive Sclence and Mathematics Educatlon, Hillsdale NJ, Lawrence Erlbaum Assoclates. Sllver E.A., LIndquist M.M., Carpenter T.P., Brown C.A., Kouba V.L., Swafford J.O. (1988), The Fourth NAEP Mathematlcs Assessment: Performance Trends and Results and Trends for Instructional Indicators, Mathematics Teacher, 81, 9, 720-727.

Sims-Knight J.E., Kaput J.J. (1983), Exploring Difflcultles In Transforming between Natural Language and Image Based Representations and Abstract Symbol Systems of Mathematlcs, In Rogers D., Sloboda J.A., The Acquisltion of Symbollc Skllls, London, Plenum Press. Sleeman D. (1984), An Attempt to Understand Students' Understanding of Baslc Algebra, Cognltive Sclence, 8, 387-412.

Soloway E., Lochhead J., Clement J. (1982), Does Computer Programming Enhance Problem-Solving Ability? Some Positive Evidence on Algebra Word Problems, in

Seidel R.J., Anderson R.E., Hunter B. (Eds.), Computer Literacy, New York, Academic Press.

Sweller J. (1988), Cognltive Load During Problem Solving: Effects on Learning, Cognitive Sclence, 12, 257-285.

Swenson R.P., Anderson C. (1982). The Role of Motlvation In Computer-Assisted Instruction, CreatIve Computing, 8, 10, 134-139.

Thaeler J.S. (1986), A New Solution to an Old Problem Solving Word Problems In Algebra, Mathematics Teacher, 79, 9, 682-689.

Thomas M.O.J. (1987), Algebra wlth the Ald of a Computer, Mathematics In School, 16, 1, 36-38.

Thompson C.S., Rathmell E.C. (1988), NCTM's Standards for School Mathematics; K-12, Mathematics Teacher, 81, 348-352.

Travers K.J. (1967), A test of pupll preference for problem-solving sltuations in Junlor high school mathematics, Journal of Experlmental Education, 35, 9-18.

Tuckman B.W. (1978), Conducting Educatlonal Research, New York, Harcourt, Brace, Jovanovich.

Underwood J. (1986), The role of the computer in developlng chlldrens' classlflcation abllltles, Computers and Education, 10, 175-180.

Waddington J., Wlgley A. (Eds.) (1985), Secondary Maths with Micros, Hatfleld, Advisory Unlt for Computer Based Education.

Walker D.D. (1987), Keynote Address: Organisation for Educational Software Production In Scotland, in Moonen J., Plomp T. (Eds.), EURIT 86: Educational Software and Courseware, 317-326, Oxford, Pergamon Press.

Watson D.M. (1987), Developlng CAL - The Computers In the Currlculum (CIC) Model, in Moonen J., Plomp T. (Eds.), EURIT 86: Developments In Educational Software and Courseware, 225-233, Oxford, Pergamon Press.

Wessels M.G. (1982), Cognitive Psychology, New York, Harper and Row.

Whiting J. (1985), New Directions In Educational
Computing: Coming Changes in Software and Teaching Strategies to Optlmize Learning, Educational Technology, 25, 9, 18-21.

Wlechers G. (1974), Programming as an Educational Tool, International Journal of Mathematical Education in Sclence and Technology, 5, 699-703.

Wittrock M.C. (1981), Learnlng and Memory, in Farley F.H., Gordon N.J. (Eds.), Psychology and Educatlon: The State of the Union, pps. 242-264, Berkely, McCutchan Publlshlng Co.

## APPENDIXA

Pretest

## Rretest

1. One number is 6 blgger than another. If the smaller one is $X$, what is the bigger one?
2. One number is 12 smaller than another. If the bigger one is $X$, what is the smaller one?
3. One number ls flve times as blg as another. If the smaller one is $X$, what is the blgger one?
4. Two numbers add up to 33. If one $1 s \mathrm{X}$, what is the other one?
5. Two numbers add up to $X$. If one $1 s 10$, what $1 s$ the other one?
6. One number $1 s$ got by doubling another and then adding 3. If the smaller number is $X$, what is the blgger?
7. One number $1 s$ got by adding 5 to another and then multiplylng the answer by 3. If $X$ ls the smaller number, what is the blgger?
8. Barbara has $£ 5$ more than Jane. If Jane has $£ \mathrm{X}$ then Barbara has:
9. Helen earned three times as much as Loulse. If Loulse earned $£ X$ then the number of pounds that Helen earned was:
10. Lorralne had $X$ pence. She spent 12 pence. The number of pence that she had left was:
11. Paula had $£ 19$. She spent $£ X$. The number of pounds she had left was:
12. Sharon earned $£ X$ on Saturday and another $£ X$ on Sunday. She spent $£ 13$. The number of pounds she had left was:
13. During a footbal season, Llverpool won $X$ matches, drew $Y$ matches and lost $Z$ matches. The total number of matches that they played was:
14. Delrdre earns $£ \mathrm{X}$ per hour for babysltting. She also gets $£ 3$ per week pocket money. In a week when she babysat for 4 hours, her total Income, in pounds, was:
15. Large lce creams cost A pence, medlum ones cost B pence and small ones cost $C$ pence. How much would it cost to buy 12 of each?
16. Five girls went to the plctures. It cost $£ X$ each to get in. They also spent $£ 2$ each on sweets. How much was spent altogether by the whole flve?
17. There were $X$ puplls In a class. 3 of them were absent on the day of the school outing. Each of the rest paid $f 5$ for the outing. The total amount collected was:
18. A shopkeeper bought a box contalning 72 apples but $X$ of them were bad and could not be sold. She sold all the rest for 18 pence each. The amount she made was:
19. One slde of a rectangle $1 s 6$ metres longer than the other. If the shorter slde ls $X$, find the length of the perlmeter. (The perlmeter is the lengths of all the sldes added together).
20. A sweatshirt costs $f 4$ more than a T-shirt. If a T-shirt costs $£ \mathrm{X}$, how much would flve T -shlrts and two sweatshirts cost?
21. A jeweller sold 12 chalns, some silver at $£ 15$ each and some gold at $£ 24$ each. If $X$ of the chalns were sllver, how much was the whole lot sold for:

## APPENDIXB

Posttest

## Rosttest

1. One number $1 s 8$ blgger than another. If the smaller one is $X$, what is the bigger one?
2. One number is 7 smaller than another. If the blgger one is $X$, what is the smaller one?
3. One number is three times as blg as another. If the smaller one is $X$, what $1 s$ the bigger one?
4. Two numbers add up to 27. If one $1 s \mathrm{X}$, what ls the other one?
5. Two numbers add up to $X$. If one $1 s 12$, what $1 s$ the other one?
6. One number is got by doubling another and then adding 7. If the smaller number $1 s \mathrm{X}$, what 1 s the bigger?
7. One number is got by adding 4 to another and then multiplylng the answer by 5 . If $X$ is the smaller number, what is the blgger?
8. Kate $1 s 12$ years older than Mary. If Mary $1 s$ X years old then Kate ls:
9. Mary has twlce as much money as Sue. If Sue has $£ \mathrm{X}$ then the number of pounds that Mary has 1s:
10. A lady welghed $X \mathrm{~kg}$. She went on a dlet and lost 4 kg. Her new welght, in kg, was:
11. There were 25 students $\ln$ a class. $X$ students left. The number of students remalning was:
12. Jane had $£ \mathrm{X}$. She got a present of another $£ \mathrm{XX}$. She then spent $£ 3$. The number of pounds she had left was:
13. $A$ glrl bought a meal for $f A$ and spent $£ B$ on clothes. She also lost $£ \mathrm{C}$ on slot machlnes. The total amount that she spent was:
14. Susan worked for 3 days and earned $£ \mathrm{X}$ each day. Her boss also gave her a present of 55 . How much dld she get altogether?
15. A burger costs A pence, a bag of chlps costs B pence and a coke costs $C$ pence. How much would it cost to buy 5 of each:
16. A mother sent her 3 children to summer camp for a week. It cost $£ \mathrm{X}$ each for the week. She also gave each one $£ 5$ pocket money. The total cost for the mother was:
17. A shop was selling jeans for $£ X$ each. In a sale they were reduced by $£ 2$ each. The cost of 3 palrs of jeans in the sale was:
18. A glrl was earnling $£ 105$ per week. It cost her $£ \mathrm{X}$ per week to live. She saved the rest of her money. In 4 weeks she saved:
19. Adults pay $£ 3$ more than children for an excursion. If a chlld's fare is $£ \mathrm{X}$ then the total cost for a family of two adults and two chlidren is:
20. A bar of chocolate costs 6 pence more than an orange. If an orange costs $X$ pence, how much would four oranges and 3 bars of chocolate cost?
21. A shop sold 40 jumpers, some made of wool at $£ 15$ each and some made of cotton at 12 each. If $X$ of the jumpers were made of wool, how much was pald for the whole 40 jumpers?

## APRENDIX $C$

Attitude Measuring Instrument

| $\begin{aligned} S A & =\text { Strongly Agree } \\ A & =\text { Agree } \\ U & =\text { Undecided } \\ D & =\text { Dlsagree } \\ S D & =\text { Strongly Disagree } \end{aligned}$ |  |  |  |  | e: |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Strongly Agree |  |  |  | Strongly <br> Disagree |  |
| SA | A | U | D | SD | I have less confldence in myself with maths than with other subjects. |
| SA | A | U | D | SD | I would like to get a Job that Involved a lot of computer use. |
| SA | A | U | D | SD | Doing Honours Maths 1 s more Important for boys than for girls. |
| SA | A | U | D | SD | Working with a computer is always very interesting and enjoyable. |
| SA | A | U | D | SD | Maths $1 s$ one of the hardest subjects in school. |
| SA | A | U | D | SD | What we learn in maths is useful in other school subjects |
| SA | A | U | D | SD | Using a computer $1 s$ no harder than using most other machlnes. |
| SA | A | U | D | SD | I often find maths classes very boring. |


| SA | A | U | D | SD | The girls I pal around with are just as good at maths as the boys I know. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SA | A | U | D | SD | I usually expect to get good marks In maths tests. |
| SA | A | U | D | SD | Most people could never learn to use a computer properly. |
| SA | A | U | D | SD | Less time should be spent on maths and more time spent on useful subjects. |
| SA | A | U | D | SD | I thlnk that maths is one of my best subjects. |
| SA | A | U | D | SD | Girls' schools don't need computers as much as boys' schools. |
| SA | A | U | D | SD | Sometlmes I worry that I mlght make a mlstake which would damage the computer |
| SA | A | U | D | SD | I enjoy mathematical puzzles and problems. |

## APPENDIX D

Debrieting Questlonnalre

## Debrdeflng Questionnalre

```
Was the course a) too long b) too short c) just rlght
Did you find that the sessions were too long?
Did you find it hard to concentrate for the full session?
Was the coure like anything elae you have done either In school or elsewhere? (If 'yes' then give brief detalls)
```

Were you glven enough Instruction on how to use the computer?

Did you find it difflcult to use the computer?
Do you now feel more confldent in your abllity to use a computer?

Were you glven enough instruction on the problems?
Were some of the problems too easy? (If 'yes' then say which types)

Were some of the problems too difflcult? (If 'yes' then say which types)

Which problems did you find most interesting?
Whlch problems did you flnd borling?
Did you think that the problems could have been done more easlly without a computer?

What did you like best about the course?
What ald you like least?
Do you thlnk that the course helped to lmprove your mathematlcal ablllty?

Can you suggest any way in which the course could be Improved?

Any further comments?

## APPENDIXE

Handout on Spreadsheet Concepts

## SRREADSHEETS

Spreadsheets contaln ROWS and COLUMNS.
Rows go across the screen and Columns go down the screen.

A CELL $1 s$ where a row meets a column.
Each COLUMN has a name ........ A,B,C etc.
Each ROW has a name .......... 1,2,3 etc.

Every CELL is named by 1 ts Column and its Row ...A1,C12,E36


The CURSOR is the bright bar on the screen. It shows you what cell you are at in the spreadsheet. Whenever you type something, it goes lnto the cell where the cursor is positioned. To move the cursor around the spreadsheet, use the four arrow keys (on the bottom right of the computer).


Each cell may contaln elther a LABEL, a VALUE, or a FORMULA.

LABEL CELLS
These contain words or letters ... Cost, Area, $X, Y$, etc.

## VALUE CELLS

These contaln numbers .....23, 5, 26.7 etc.

## FORNULA CELLS

These contaln a formula. Formulas always lnvolve the names of other cells. For example, $f f$ cell D23 contalns the formula $+D 20+C 20$, then $1 t$ wlll show a value equal to the sum of the values In cells D20 and C20. The formula will not appear on the screen. To discover the formula, you have to place the cursor on cell D23. The formula will then be shown at the bottom of the screen.

A formula cell contalns a formula linking it to other cells but shows the value of the formula rather than the formula ltself.

TYPING IN LABELS, VALUES AND FORMULAS
Place the cursor on the chosen cell. Then type in the label, value or formula as required. Formulas always begin with + or -. If you make a mistake, use the DELETE key. If you get stuck, press ESC and start agaln.

CHANGING LABELS. VALUES AND FORMULAS
Place the cursor on the cell that is to be changed. Then type in the new label, value or formula and press RETURN. You don't have to "rub out" the old one.

## $* * * * * * * * * * * * * * * * * * * * *$

SPREADSHEETS: HOW THEY WORK
The key idea in a spreadsheet is the formula. A cell which contalns a formula wlll show the value of the formula on the screen:

THIS IS WHAT YOU SEE
A

| 1 | Length | 6 |
| :--- | :--- | :--- |
| 2 | Wldth | 8 |

THIS IS WHAT YOU TYPE
A B
$\begin{array}{llc}1 & \text { Length } & 5 \\ 2 & \text { Width } & 8 \\ 3 & \text { Area } & +\mathrm{B} 1 * \mathrm{~B} 2\end{array}$

Cell B3 contalns the formula $+B 1 * B 2$. This means that it will show the value got by multiplylng cells B1 and B2. In this case the value $1 s 48$ ( $6 * 8$ ). If the values of B1 and B2 are changed, then the value of B3 will change automatically. So If the length (B1) was changed to 10 , then the area (B3) would automatically change to 80.

## APRENDIX F

Abstract Exerclse Problems

## Abstract Problems

## Abstract 1

1a. Using the spreadsheet called Example 1, move the cursor to the cells named below. Fill in the contents of each cell on the chart below.

Cell Contents
A5
E7
A3
H6
E5
1b. Using the same example, make llsts of all the cells that contain: alLabels b) Values c) Formulas

Label Cells Value Cells Formula Cells
2. Use the spreadsheet below to type the Labels into the spreadsheet called Example 2 on your computer.

Slde 1
Slde 2

| $A=$ | 3.25 | $F=$ | 4.50 |
| :--- | :--- | :--- | :--- |
| $B=$ | 3.00 | $G=$ | 5.50 |
| $C=$ | 3.50 | $H=$ | 8.75 |

D =
1.55
$\mathrm{E}=$
3.00

TOTAL 1
14.30

TOTAL 2
18.75

SUBTRACT
4.45
3. Look at the spreadsheet below. Use it to correct the Labels In the spreadsheet called Example 3 on your computer.

| Type | Value | Number | Total |
| ---: | :---: | :---: | :---: |
| $X$ |  |  |  |
| $Y$ | 4.95 | 8 | 39.60 |
| $Y$ | 5.53 | 3 | 16.59 |
| $Z$ | 4.99 | 5 | 24.95 |

4. Look at the spreadsheet below. Use it to enter the numbers in the column called Number in Example 4 on your computer. Then take a note of the results that appear in the \% column and the overall average.

| Type | Number | Total | \% |
| ---: | :---: | :---: | :---: |
| A | 100 | 200 |  |
| B | 120 | 300 |  |
| C | 200 | 250 |  |
| D | 180 | 300 |  |
| F | 67 | 100. |  |
| G | 88 | 200 |  |
| H | 165 | 300 |  |
|  | 90 | 150 |  |

## Overall Average

5. Enter the values below Into the column called Normal Price In Example 5 on your computer. Watch what happens and then take a note of the new Grand Total.

Type Normal
Prlce

| A | 415.00 |
| :--- | ---: |
| B | 375.00 |
| C | 585.00 |
| D | 342.00 |
| E | 94.00 |
| F | 59.00 |
| G | 1075.00 |

New Grand Total =
6. Look at Example 6 on your spreadsheet. Name the cell that contalns a formula. Say what the formula ls and give its value.

Cell with Formula Formula Value of Formula
7. Look at Example 7 In your spreadsheet. The formula for the answer $1 s \mathrm{mlssing}$. The answer 1 s got by multiplylng the value of Num1 by the value of Num2. The correct formula for the answer then $1 s+$ C94*C95. (C94 contalns the value of Num1 and C95 contalns the
value of Num2. All formulas begln with + . . Type this formula Into cell C97. What $1 s$ the answer?

Answer $=$
Use the spreadsheet to flnd the answer for these values of Num1 and Num2:

Num1 Num2 Answer
22
31
152
9
398
456

## Abstract 2

1. Use the spreadsheet called Exercise 1 to fill In the mlssing numbers In the chart below. The column "Add" is got by writing formulas to add the numbers in the first two columns, "Subt" $1 s$ got by writing formulas to subtract etc.
Num1 Num2 Add Subt Mult Divide

| 24 | 6 |
| ---: | ---: |
| 60 | 20 |
| 33 | 11 |

2. Use the spreadsheet called Exerclse 2 to flll in the missing numbers in the chart below. The first column is got by writing formulas to multiply Num by 12 , the next by writing formulas to multiply Num by 24 etc.
Num By 12 By 24 By 36

10
16
8
12
3. Use the spreadsheet called Exerclse 3 to calculate the missing numbers in the chart below. The flrst column is got by writing formulas to find $12 \%$ of the numbers in the column called Num. (DIvide by 100 and multiply by 12). The next column is got by flnding 26\% etc.
Num 12\% 26\%

225
259
413
4. Use the spreadsheet called Exerclse 4 to calculate the mlssing numbers $1 n$ the chart below. Write formulas In the column called Mult whlch multiply Num1 by Num2. The formulas in the column called Answer should add up a number in column Mult and the number beside it in column Num3.
Num1 Num2 Mult Num3 Answer
20530
35480
5. Use the spreadsheet called Exercise 5 to fill in the mlssing numbers in the chart below. To get column Mult, multiply Num1 by Num2 by Num3. To get the Answers, divide a number in column Mult by the one beside it in column Num4.

| Num1 | Num2 | Num3 | Mult | Num4 | Answer |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 100 | 2 | 3 |  | 12 |  |
| 250 | 6 | 3 |  | 24 |  |

## Abstract 3

1. One number is 17 blgger than another. They both add up to 85. Flnd the two numbers.

Smaller number

```
\(X\)
```

Blgger number
Total
2. One number $1 s 6$ smaller than another. They both add up to 36. Find the two numbers.

Blgger number $X$
Smaller number
Total
3. One number $1 s 28$ blgger than another. They both add up to 54. Find the two numbers.

Smaller number X
Blgger number
Total
4. The sum of two consecutive numbers is 53 . Find the numbers. (Consecutive numbers come immediately after each other, like 6, 7, 8, 9 etc.)

```
Smaller number
\(x\)
Bigger number
```

Total
5. Three consecutlve numbers add up to 45 . Find the numbers.

Smallest number
$x$
Next number
Blggest number
Total
6. One number is twice as big as another. They both add up to 642. Find the two numbers.

## Smaller number <br> Bigger number

$X$

Total
7. A, B and C are numbers. A ls twlce as big as B, and B is twice as blg as C. They all add up to 42. Find the numbers.
$\AA=$ X
$B=$
$\mathrm{C}=$

Total
B. A, B and C are three numbers that add up to 2475. B is 143 blgger than $A$ and $C$ is 256 bigger than $A$. Find the three numbers.
$\AA=$
$x$
$B=$
$\mathrm{C}=$

Total
9. $M, N$ and $P$ are three numbers that add up to 37. N is 6 bigger than M. P ls elght smaller than M. Find the three numbers.
$M=$
$N=$
$\mathrm{N}=$
Total
10. One number $1 s$ 16 blgger than another. They both add up to 352. Find the two numbers.

Smaller number X
Bligger number
Total
11. Three numbers add up to 212. The second ls 4 bigger than the flrst and the thlrd ls three times as blg as the second. Find the numbers.

Flrst X
Second
Thlrd
Total
12. $A, B, C$ and $D$ are 4 numbers. $A$ is the smallest. $B$ $1 s 2$ blgger than $A, C 1 s 5$ blgger than $A$ and $D 1 s 6$ blgger than $A$. Thay all add up to 41. Find the numbers.
$A=\quad X$
B $=$
$\mathrm{C}=$
D =
Total
13. Three numbers add up to 58 . The second ls twlce as blg as the flrst. The thlrd is 2 less than the second. Find the numbers.
Flrst $\quad X$
Second
Third

Total

## Abstract 4

1, D, E and F are three numbers. E 1 s twice as blg as D. F is three times as blg as D. They all add up to 126. Flnd the three numbers.

| $D=$ | $X$ |
| :--- | :--- |
| $E=$ |  |
| $F$ |  |

Total
2. One number is 48 blgger than another. They both add up to 902. Flnd the two numbers.

Smaller number
X
Blager number

## Total

3. One number $1 s$ twlce as blg as another. They add up to 969. Find the numbers.

Smaller number X
Blgger number
Total
4. $A, B$ and $C$ are three numbers. $B$ is 14 bigger than $A$. C $1 s 6$ times as big as $A$. The three numbers add up to 46. Find the numbers.
$A=X$
$B=$
$\mathrm{C}=$
Total
5. R, S and T are three numbers. S is four times as blg as R. T is 7 less than $S$. They all add up to 704. Find the three numbers.

```
\(R=\) X
S =
\(\mathrm{T}=\)
```

Total
6. H, I and J are three numbers. I is twlce as big as H. J ls 20 blgger than $H$. They all add up to 216. Find the three numbers.
$H=X$
I =
J =
Total
-7 . Three numbers add up to 708. The second is 30 blgger than the first and the third is 4 times as big as the second. Find the three numbers.

First $X$
Second
Third
Total
8. A, B and C are three numbers. B 15 half of $A$ and $C$ is twice as big as A. They add up to 273. Find the three numbers.
$A=\quad X$
B $=$
$\mathrm{C}=$
Total
9. Three numbers add up to 406 . The second is twice as blg as the flrst and the third ls twlce as blg as the second. Find the numbers.

First $x$
Second
Thlrd
Total
10. Two numbers add up to 273. One $1 s$ twlce as blg as the other. Find the two numbers.

Smaller number $X$
Blager number
Total
11. Two numbers add up to 185. One is four times as blg as the other. Find the two numbers.

Smaller number X
Blager number
Total
12. Find three consecutive numbers whose sum is 222.

Smallest number X
Next number
Blggest number
Total
13. A, B and C are three numbers. B ls three times as blg as A and C is four times as big as A. They all add up to 16 . Find the three numbers.
$A=\quad X$
$\mathrm{B}=$
$\mathrm{C}=$
Total

## Abstract 5

1. One number is 4 blgger than another. If both numbers are doubled they add up to 40 . Find the numbers.

Smaller number $X$
Blager number
Total
2. One number $1 s 5$ blgger than another. When they are both doubled the answers add up to 54. Find the two numbers.

Smaller number $X$
Blager number
Total
3. One number is 3 less thian another. If both are doubled they add up to 22 . What are the numbers?

Blgger number
$x$
Smaller number
Total
4. One number $1 s$ twlce as blg as another. If both are doubled they add up to 270. What are the numbers?
Sinaller number
Blgger number
Total
5. $A$ and $B$ are two numbers. $B$ ls four times as big as A. Twice A added to four times B 1 s 594 . Find A and B.

$$
\begin{aligned}
& A=X \\
& B=
\end{aligned}
$$

Twice $A+$ Four times $B=$
6. A, B and C are three numbers. B ls three times as blg as $A$ and $C$ is 2 less than $A$. They all add up to 63. Find the three numbers.
$\mathrm{A}=$
$X$
$B=$
$\mathrm{C}=$
Total
7. One number is 3 blgger than another. When the smaller one $1 s$ multiplied by 10 and the bigger one by 5 , the answers add up to 330 . Flnd the numbers.

Smaller number X
Blager number
Total
8. A certaln number is multiplled by 5 . It 1 s also multiplled by 10. The two answers add up to 495. Find the number.

Number $=X$
Total
9. One number is three blgger than another. Six times the maller one added to flve times the bigger one ls 202. Find the numbers.
Smaller number $X$
Bligger number
Total
10. One number is six smaller than another. Three times the bigger one minus twice the smaller one is 29. Find the numbers.
Bigger number $X$
Smaller number
Total
11. One number $1 s 12$ smaller than another. Five times the blgger one plus three times the smaller one is 137. Find the numbers.
Smaller number $=X$
Blgger number =
Total
12. One number $1 s 8$ blgger than another. If the smaller is multiplled by 2 and the bigger by 4 , the answers add up to 134. Find the two numbers.
Smaller number $X$
Blgger number
Total
13. One number is 9 bigger than another. Three times the smaller one plus four times the bigger one is 505. Find the numbers.
Smaller number $X$
Blgger number
Total
14. One number is twlce as blg as another. If the smaller one $1 s$ multlplled by 120 and the bigger one by 320 , the answers add up to 9880 . Flnd the numbers.
Smaller
Blgger

Total
15. Two numbers add up to 200. If the first one ls multiplled by 25 and the other one by 15 , the answers add up to 3600 . Find the numbers.

Flrst number $X$
Second number
Total
16. Two numbers add up to 32. If the flrst one is multlplled by 3 and the other by 4, the answers add up to 108. Flind the two numbers.

First number $X$
Second number
Total
17. Two numbers add up to 100. If the flrst one is multiplled by 15 and the other by 2 , the answers add up to 655. Flnd the two numbers.

Flrst number X
Second number
Total
18. Two numbers add up to 7. If the first one ds multlplied by 6 and the other by 4 , the answers add up to 32. Flnd the two numbers.

Flest number
$X$
Second number
Total
19. Two numbers add up to 12. If the first one ls multiplled by 5 and the other by four, the answers add up to 52. Find the two numbers.

Flrst number X
Second number
Total
20. Two numbers add up to 15. If the flrst one ls multlplled by 6 and the other by 4 , the answers add up to 70 . Find the two numbers.

Flrst number $X$
Second number
Total
21. Two numbers add up to 20 . If the first one ls multiplled by 15 and the other by 25 the answers add up to 380 . Find the numbers.

First number $X$
Second number
Total
22. The difference between two numbers 1 s 12. One third of the smaller added to half the larger number is 21. Find the numbers.

Smaller number $X$
Blager number
Total

## Abstract 6

1. What number should be subtracted from both 36 and from 78 so that one answer will be four times as blg as the other?

Number that 19 subtracted $X$
Answer when taken from 36
Answer when taken from 78
2. When 5 times a certaln number 1 s reduced by 8 , the result ls the same as four times the number increased by 14. Find the number.

Guess for what the number $1 s$ $X$

5 times number minus 8
4 times number plus 14
3. A $1 s$ flve bigger than $B$. If 2 were subtracted from each then $A$ would be twice as big as $B$. Flnd $A$ and B.

```
Value of \(B\)
\(X\)
Value of \(A\)
```

$B$ minus 2
A minus 2
4. If 8 is added to a certaln number, the result is twlce as blg as subtracting 2 from the number. What ls the number.

Guess for what the number is $X$
8 added to the number
2 subtracted from the number
5. The same number 1 s added on to both 19 and 47. One answer is twlce as blg as the other. What number is added?

Guess for what the number is X

Number added to 19
Number added to 47
6. A certaln number is subtracted from both 45 and 49. One answer is twlce as big as the other. Find the numbers.

Guess for what the number $1 s$
Number subtracted from 45
Number subtracted from 49
7. A $1 s$ three tlmes blgger than $B$. If both were increased by 30 then $A$ would be twlce as blg as B. Flind $A$ and $B$.
$\begin{array}{ll}B= & X \\ A= & X\end{array}$
$A=$
B plus 30
A plus 30
8. A is a number. If 16 is added to it the result is three times as blg as subtracting 40 from 1 t. Find A.

Guess for what $A$ is $X$
16 added to $A$
40 taken from $A$
9. One number $1 s 5$ tlmes another. If $I$ add 7 to each number, then one $1 s$ equal to 3 tlmes the other. What are the two numbers?

Smaller number $X$
Blgger number
7 added to smaller
7 added to bigger
10. What number should be subtracted from 120 and subtracted from 240 so that one answer $1 s$ three times as blg as the other?

Guess for what number should be subtracted $X$
When subtracted from 120
When subtracted from 240
11. A and $B$ are two numbers. $A$ ls three times as blg as B. If $51 s$ subtracted from each then $A$ is 4 times as blg as B. Flnd $A$ and $B$.
B =
X
$A=$
B minus 5
A minus 5
12. If $I$ subtract a certaln number from 21 , I get $A$. If I add the same number to 43 I get an answer which $1 s$ three times as blg as A. What ls the certaln number?

Guess for what number is $X$
21 mlnus the number
43 plus the number
13. Find three consecutlve numbers such that 5 times the smallest number is equal to twlce the sum of the other two numbers.

Smallest number X
Next number
Blggest number
5 times the smallest
Twice sum of others
14. When 24 is taken from 5 times a certaln number, the result $1 s$ the same as when $201 s$ added to 3 tlmes the same number. Find the number.

Guess for what the number is $X$
24 from 5 times the number
20 added to 3 times the number
15. Two numbers add up to 315. If one is doubled and the other $1 s$ multiplled by three, the total $1 s 748$. What are the numbers?

One number X
Other number
Total
16. If I subtract 5 from a number, multiply this result by 7 and then add 11 , the answer $1 s 67$. What $1 s$ the original number?

Guess for what the number is $X$
Answer
17. If 11 is added to a certain number and the result is divided by 11 , the answer is 9 . What is the number?

Guess for what the number ls $X$
Answer
18. Two numbers add up to 50 . If one of the numbers is halved then they add up to 35 . Flnd the numbers.

One number X
Other number
Answer

## Abstract 7

1. The blll for a truckload of goods was lost. All that was known was the total prlce for each type of Item. The VAT on all the ltems was 25\%. Enter a guess for the cost of Item 1. Then flll in formulas to calculate the VAT and the total cost for Item 1. If your first guess was wrong then try again untll you get the correct total.

Item Item 1 Item 2 Item 3 Item 4
Cost
VAT a $25 \%$
$\begin{array}{lllll}\text { Number } & 15 & 20 & 12 & 8\end{array}$
Totals 67501050051004600
2. The table below shows part of the wage blll for four workers. Guess the rate per hour for each worker. Then enter formulas to calculate the $5 \%$ bonus for each worker, and formulas to calculate the total wage for each worker. Then adjust your guesses untll you get the correct totals.

Worker1 Worker 2 Worker 3 Worker 4
Rate per hour
Bonus - 5\%
$\begin{array}{lllll}\text { Number of hours } 40 & 38 & 46 & 37\end{array}$
$\begin{array}{lllll}\text { Totals } & 126 & 135.66 & 135.24 & 139.86\end{array}$
3. A shopkeeper bought boxes of goods as shown below. She could not sell them all because there were some damaged in each box. Complete the spreadsheet by guessing the number in each box and then entering formulas to calculate the total amount for each box. Adjust your guesses untll you get the correct totals.

Box 1 Box 2 Box 3 Box 4

| Number in Box |  |  |  |  |
| :--- | ---: | :---: | :---: | :---: |
| Number faulty | 7 | 9 | 12 | 2 |
| Prlce of each | 1.25 | 2.34 | 1.79 | 3.56 |
| Totals | 27.90 | 27.75 | 58.28 | 13.44 |

4. A school bought a number of schoolbooks as shown below. A dlscount of 8\% was allowed because so many were bought. Complete the spreadsheet by guessing the cost of each book and by enterlng formulas to find the discount allowed on each book and to find the total cost for each book. Adjust your guesses untll you get the correct totals.

Book 1 Book 2 Book 3 Book 4
Cost
Discount a 8\%

| Number of books | 32 | 56 | 43 | 28 |
| :--- | ---: | :---: | :---: | :---: |
| Totals | 191.36 | 437.92 | 217.58 | 218.96 |

5. A band played glgs in four different venues. The prlces for each venue were dlfferent. They had to pay 40\% of each ticket sold to their manager. Complete the spreadsheet by guessing the admission prlce at each venue and enterling formulas to calculate 40\% of each ticket and to find the total they made at each venue. Adjust your guesses untll you get the correct totals.

Venue 1 Venue 2 Venue 3 Venue 4
Tlcket Prlce
Less 40\%

| Number at concert | 527 | 240 | 280 | 345 |
| :--- | ---: | ---: | :---: | :---: |
| Totals | 1581 | 576 | 756 | 724.50 |

6. Three classes were golng on different school trips, all of which cost different amounts. A discount of 8\% was allowed for each pupil. Complete the table below by guessiny the cost per pupll for each class and writing formulas for the discount and the totals. Adjust your guesses untll you have the correct totals.

|  | $2 A$ | $2 B$ | $2 C$ |
| :--- | :---: | :---: | :---: |
| Cost per pupll <br> Dlscount 28\% <br> Number In class | 23 | 26 | 19 |
| Total | 84.64 | 71.76 | 104.88 |

7. A travel firm sold holidays to Spaln for three years. The cost of the holldays went up each year. $30 \%$ tax was pald on each hollday. Complete the spreadsheet by guessing the cost per hollday each year and enterling formulas for the tax $-30 \%$ and the totals. Then adjust your guesses untll you get the correct totals.

|  | 1986 | 1987 | 1988 |
| :--- | :---: | :---: | :---: |
| Cost per hollday |  |  |  |
| Plus tax at 30\% | 66 | 85 | 74 |
| Number sold | 30030 | 43095 | 40404 |

8. A shop bought $\ln$ boxes of three different items, $A, B$ and C. Complete the spreadsheet by guessing the cost of one Item A, one ltem B etc. Then enter formulas to find the tax at $30 \%$ and the totals. Adjust your guesses until the totals are correct.

Item A Item B Item C
Cost for one
Tax at 30\%

| Number per box | 50 | 70 | 120 |
| :--- | :--- | :--- | :--- |

Total
845
728
1716

## APPENDIX G

Concrete Exerclse Problems

## Concrete Questlons

## Concrete 1

1A. Using the spreadsheet called Example 1, move the cursor to the cells named below. Flll in the contents of each cell on the chart below:
Cell Contents

A9
E8
A11
H10
H6
E9
1B. Uslng the same example, make llsts of all the cells that contain a) Labels b) Values c) Formulas Label Cells Value Cells Formula Cells
2. Use the spreadsheet below to type the correct Labels into the spreadsheet called Example 2 on your computer.

EXPENSES

| BUS FARES | 3.25 | POCKET MONEY | 4.50 |
| :--- | :---: | :--- | ---: |
| SNACKS | 3.00 | BABYSITTING | 5.50 |
| DISCO | 3.50 | SATURDAY JOB | 8.75 |
| MAGAZINES | 1.55 |  |  |
| SCHOOL TRIP | 3.00 |  |  |
|  | 14.30 |  | 18.75 |

SAVINGS...... 4.45
SAVINGS...... 4.45

INCOME
------
18.75
3. Look at the spreadsheet below. Use It to correct the spelllings In the spreadsheet called Example 3.

| Item | Cost per <br> undt | No.UnIts | Total |
| :--- | :---: | :---: | :---: |
| WALLPAPER | 4.95 |  |  |
| GLOSS PAINT | 5.53 | 8 | 39.60 |
| MATT PAINT | 4.99 | 3 | 16.59 |
|  |  | 5 | 24.95 |

4. Look at the spreadsheet below. Use it to enter the correct marks in the spreadsheet called Example 4. Then check the \% mark for each subject and the overall average and write them in below.

|  | SUBJECT | MARK | MAXIMUM <br> MARK | \% MARK |
| :--- | ---: | ---: | :--- | :--- |
|  |  |  |  |  |
| 1 | IRISH | 100 | 200 |  |
| 2 | ENGLISH | 120 | 300 |  |
| 3 | MATHS | 200 | 250 |  |
| 4 | HISTORY | 180 | 300 |  |
| 5 | GEOGRAPHY | 67 | 100 |  |
| 6 | COMMERCE | 88 | 200 |  |
| 7 | SCIENCE | 165 | 300 |  |
| 8 | FRENCH | 90 | 150 |  |

## Overall Average

5. A muslc shop ordered a large amount of equipment as shown in the spreadsheet in Example 5. Because they bought so much, a dlscount of $10 \%$ was glven as shown In the spreadsheet. Before the equlpment was dellvered the prlces of all the items increased as shown below. Type in the new prices under the heading "Regular Price" and then take a note of the new Grand Total.

| Item | Regular <br> Prlce |
| :--- | ---: |
| Electrlc Gultars | 415.00 |
| Ampliflers | 375.00 |
| Drumklts | 585.00 |
| Keyboards | 342.00 |
| Mlcrophones | 94.00 |
| Mlke Stands | 59.00 |
| P.A. Systems | 1075.00 |

New Grand Total =
6. Look at Example 6 ln your spreadsheet. Name the cell that contalns a formula. Say what the formula is and glve its value.

Cell with Formula Formula Value of Formula
7. Look at Example 7 in your spreadsheet. The formula for the area is misslng. The area of a rectangle is got by multiplylng the value of the length by the value of the wldth. The correct formula for the area then $1 s+C 104 * C 105$. (C104 contalns the value of the Length and C105 contalns the value of the Width. All formulas begin with + ). Type thls formula lnto cell C107. What $1 s$ the area?

Area $=$
Use the spreadsheet to find the area of these rectangles:

| Length | W1dth | Area |
| :--- | :---: | :---: |
| 22 | 31 |  |
| 152 | 9 |  |
| 398 | 456 |  |

## Concrete 2

1. Use the spreadsheet called Exerclse 1 to flll In the missing numbers in the chart below. The column "Add" is got by writing formulas to add the numbers in the first two columns, "Subt." $1 s$ got by writing formulas to subtract them etc.

Number 1 Number 2 Add Subt. Mult. Dlvide

| 24 | 6 |
| :--- | ---: |
| 60 | 20 |
| 33 | 11 |

2. Use the spreadsheet called Exercise 2 to calculate the amounts of each lngredlent needed to make 12 scones, 24 scones etc. The first column is got by writlng formulas to multlply each of the Amounts by 12, the second 1 s got by writing formulas to multiply them by 24 etc.

Amounts By $12 \quad$ By $24 \quad$ By 36
(grams)

| Ralsins | 10 |
| :--- | ---: |
| Flour | 16 |
| Margarine | 8 |
| Sugar | 12 |

3. The rates of VAT are different in different countrles. Use the table In Exercise 3 to find the amount of VAT due on each type of 1 tem at $12 \%$, then at 15\% etc. In the flrst column write formulas to calculate 12\% of the prlce of each ltem etc. (To get 12\%, dlvide by 100 and multlply by 12) etc.

$$
\text { Price } \quad 12 \% \quad 15 \%
$$

| Stereo | 225.00 |
| :--- | :--- |
| $14 " 1$ | TV |
| $20^{\prime \prime}$ | TV |
|  | 413.00 |

4. A company has offlces in Ireland and England. In each country there is a different price for a unlt of electricity. There is also a dlfferent fixed charge for electriclty to be pald. Use the spreadsheet in Exercise 4 to calculate the cost of the unlts used in each country (use a formula that multiplles the number of unlts by the price of one unit). Then find the total bllls by usling formulas to add the cost of the unlts on to the flxed charge.

| Number of <br> units | Prlce of <br> unlt | Cost of <br> unlts | Flxed <br> charge | Total <br> Blll |
| :---: | :---: | :---: | :---: | :---: |
|  |  | .08 |  | 30.50 |
| nd 450 | .06 |  | 80.75 |  |

5. Use the spreadsheet In Exercise 5 to calculate the Slmple Interest for each example. Wrlte formulas to calculate PrlnclpalxRatexTlme $1 n$ each case. The

Interest is got by formulas to divide PxRxT by 100 in each case.

| Princlpal | Rate | Time | P×RxT | Interest |
| ---: | ---: | ---: | ---: | ---: |
| 300 | 6 | 3 |  |  |
| 250 | 5 | 8 |  |  |

## Concrete 3

1. Mlchelle bought a cup of coffee and a cake. The coffee cost $9 p$ more than the cake. If the total blll was 95p, how much dld each cost?

Cost of cake X
Cost of coffee
Total
2. Sandra bought a framed plcture. The plcture cost $f 16$ more than the frame. If the total cost was $£ 54$, how much did each part cost?

Cost of frame $X$
Cost of plcture
Total
3. Patrlcla watched two TV programmes. One was 28 minutes longer than the other. She watched for 54 mlnutes altogether. How long was each programme?

Short Programme X
Longer Programme
Total TIme
4. Class 2A has one pupll more than class 2B. Between them there are 53 puplls. How many are $1 n$ each class?

Class 2B X
Class 2A
Total
5. Class 5A has one pupll more than class 5B. Class 5C has four puplls less than class 5B. Between them there are 60 puplls. How many in each class?

Class 5B
Class 5A
Class 5C
Total
6. Sandra spent twlee as much as Jenny. They spent $£ 57$ altogether. How much did each spend?

Jenny $X$
Sandra
Total
7. The number of glris In a club ls 14 less than the number of boys. There are 120 members. Find the number of glrls.

Number of boys $X$
Number of girls
Total
8. Sandra bought shoes, Jeans and a shlrt. The jeans cost twlce as much as the shlrt and the shoes cost twlce as much as the jeans. She spent a total of £42. How much dld each cost?

Shirt
X
Jeans
Shoes

## Total

9. Three suomo wrestlers were welghed at the same time. The second was 143 kg heavler than the flrst. The thlrd was twlce as heavy as the first. Thelr total weight was 935 kg . How heavy was each?

Flrst
$x$
Second
Thlrd
Total
10. Caroline, Chrlstine and Lorralne had a meal. Christlne's cost $£ 2$ more than Caroline's and Loralne's cost $£ 1$ less than Chrlstine's. The total blll was $£ 18$. How much did each spend?

Carollne $x$
Christine
Lorralne
Total
11. LInda welghs 6 kg less than Karen. Between them they welgh 64 kg . How much does each welgh?

Karen's welght $X$ Linda's welght

Total
12. Geraldine, Vicky and Delrare were the top three students in a test. Geraldine got 4 marks more than Vlcky. Delrdre got 14 marks less than VIcky. The marks for the three glrls added up to 197. How many marks dld each get?

VIcky $x$

Geraldine
Delrare

## Total

13. A famlly conslsts of 4 girls. Tracy is two years older than Michelle. Loulse is three years younger than Michelle and Audrey is twice as old as Michelle. All thelr ages add up to 39. How old is each girl?

Michelle
Tracy
Loulse
Audrey
Total
14. Karen has twlce as much as Debble and Linda has $£ 2$ less than Debble. They have a total of $£ 58$ between them. How much has each glrl?

Debble
$X$
Karen
LInda
Total

## Concrete 4

1. Susan bought two tlckets for her Debs. Catherlne bought three and Jane bought four. The total cost was $£ 189$. How much dld each tlcket cost?

Prlce of one tlaket $X$ Susan's tlckets Catherlne's tlckets Jane's tlckets

Total
2. A shop sold 960 bags of crisps. The number of cheese \& onlon was 48 more than the number of salt \& vinegar. How many of each type were sold?

Salt \& Vinegar
$x$
Cheese \& Onlon
Total
3. A bowl has 24 pleces of frult. Some are oranges and some are grapefrult. There are twlce as many oranges as grapefrult. How many are oranges?

No. Grapefruit X
No. Oranges
Total
4. A bag contalns a mixture of red cubes, whlte cubes and black cubes. There are 14 more red than white. There are 6 fewer black than white. If there are 44 cubes altogether, how many are there of each colour?

No. White
$X$
No. Red
No. Black
Total
5. Julle, Jean and Andrea formed a team for a marathon. Julle took twice as long as Jean. Andrea took one hour less than Julle. The total tlme for the team was 14 hours. How long dld each take?

Jean $x$
Julle
Andrea
Total
6. I spent 180 mln nutes on homework over a perlod of three days. On the second day I spent twlce as long as the flrst day and on the thlrd day I spent 20 minutes less than the flrst day. How long did I spend each day?

First Day X
Second Day
Third Day
Total
7. Liz dld a test In Irlsh, English and Maths. Her mark for Maths was 30 hlgher than for Irlsh. Her mark for English was 3 lower than for Irish. She got a total of 219 marks. How much did she get for each subject?

Irlsh X
Maths
Engllsh
Total
8. I have some money to spend. My sister has $£ 5$ less than me but my brother has twice as much as me. Altogether we have $£ 27$. How much has each of us got? My Money $x$
Sister's Money
Brother's money
Total
9. There are 370 pupils in a school. There are twice as many dolng English as French and there are 10 less dolng German than French. How many are studying each subject?

French $x$
English
German
Total
10. Each girl in a class attended a meeting with both of her parents. The total attendance was 87. How many glris were in the class?

Number of glrls $X$
Number of parents
Total
11. In a school there are four tlmes as many slxth years dolng Pass Irlsh as there are dolng Honours Irlsh. If there are 165 slxth years, how many are dolng Honours?

Hons. Irlsh X
Pass Irlsh
Total
12. In a relay race each team conslsted of 3 runners. On the winning team runner 2 took one second more than runner 1 and runner 3 took two seconds less than runner 1. The winning time was 71 seconds. How long dld each runner take?

Runner 1
X
Runner 2 Runner

Total
13. Three slsters have 16 Barble dolls between them. Nlamh has three tlmes as many as Emer and Delrdre has four tlmes as many as Ener. How many has each?

Emer
$x$
Nlamh
Deirdre
Total
14. Joe had 6 records more than hls slster Susan. Susan doubled the number of records she had and Joe bought 10 new records. They then had 46 records between them. How many did each have at the start?

Number that Susan had X Number that Joe had

Total number that they have now

## Concrete 5

1. One set of twlns ls 4 yeurs older than another set. The ages of all four chlldren add up to 40 . How old is each chlld?

Age of each of younger set $X$
Age of each of older set
Total of ages
2. A famlly has two sets of twlns. The older ones each get $£ 1$ more pocket money than the younger ones. The total amount of money that all four get is £14. How much does each child get?

Amount for each of younger $X$
Amount for each of older
Total
3. In a sale, some tapes were reduced by £3. Llsa bought two full priced tapes and two tapes at the reduced price. She spent a total of $£ 22$. How much were the full priced tapes?

Cost of one full priced tape X
Cost of one cheap tape
Total cost
4. An adult's traln fare ls twice a chlld's fare, A famlly of two adults and two chlldren pald $£ 24$ for a trlp. How much was the adult fare?

Chlld Fare
Adult Fare
Total cost
5. A pear costs 3 p more than an apple. 2 Apples and 4 pears cost 96p. How much does each cost?

Prlce of one apple $X$
Price of one pear
2 Apples \& 4 Pears
6. Books cost $£ 1$ more than tapes. Mary bought 2 tapes and 3 books. The total blll was $£ 28$. How much was it for a book?

Cost of one tape X
Cost of one book
3 books \& 2 tapes
7. Judy has $£ 135$ made up of a mlxture of $£ 5$ and $£ 10$ notes. She has 3 more $£ 10$ notes than 55 notes. How many of each has she got?

```
No, of &5 notes
No. of &10 notes
Total Value
```

8. You have three tlmes as many $£ 20$ notes as $f 5$ notes in your pocket. If you have a total of $£ 520$, how many of each have you got?

No. of $f 5$ notes $X$
No. of $£ 20$ notes
Total Value
9. I have twlce as many $£ 20$ notes as $£ 10$ notes. If I have a total of $£ 300$, how many of each have I got?

No. of $£ 10$ notes $x$
No. of $£ 20$ notes
Total Value
10. A famlly has three tlmes as many slsters as brothers. Each brother got flve books and each slster got two books. They got 22 books $\ln$ all. How many brothers are there?

No. of brothers X
No. of slsters
Number of books
11. Adrlenne bought twlce as many pots as pans. Each pan cost $£ 13$ and each pot cost $£ 15$. She spent $£ 129$. How many of each dld she buy?

Number of pans $X$
Number of pots
Total Cost
12. On a farm there are elgri more hens than cows. All together the anlmals have 118 legs. How many cows are there.

Number of cows
Number of hens
Number of legs
13. Angela bought twice as many plants as flowerpots. Flowerpots cost $£ 5$ and plants cost $£ 3$. She spent £44 in all. How many plants did she buy?

No. of flowerpots
No. of plants
Total cost
14. Farmer Murphy bought cows for $£ 320$ each and sheep for $£ 120$ each. She bought twice as many sheep as cows. If the total cost was $£ 1120$, how many sheep were bought?

```
Number of cows X
Number of sheep
```

Total Cost
15. A shop sells chocolate cakes for $£ 3$ and sponge cakes for $£ 2$. They sold a total of 200 cakes and took in £485. How many of each type were sold?

Number of chocolate cakes X Number of sponge cakes

Amount taken in
16. 32 chlldern shared out a sum of $£ 77$. The glris got £ 3 each, and the boys got $£ 2$ each. How many glris were there?

Number of Girls X
Number of Boys
Amount of money
17. A shopkeeper bought some scarves for $£ 3$ and others for $£ 4$. In all she bought 100 scarves for a total of £336. How many $£ 3$ scarves did she buy?

Number at $£ 3$ each X
Number at $£ 4$ each
Total Cost
18. A shopkeeper bought 7 packs of tights contalning a total of 32 palrs. Some packs had 6 palrs and others had 4 palrs. How many packs had 6 palrs?
Number of 4 -packs
Number of 6 -packs

Number of palrs
19. A shop sold 120 Easter eggs. Some were fllled wlth sweets and cost $£ 5$ each. Others were not filled and cost $£ 4$ each. The total amount taken in was $£ 520$. How many of each type were sold?

Number filled $x$
Number not fllled
Total Cost
20. Sharon bought a mixture of 6-packs and 4-packs of Coke for a party. She bought 70 cans altogether. If she bought a total of 15 packs, how many of these were 6-packs?

Number of 4-packs X
Number of 6-packs
Number of cans
21. A bakery makes two kinds of cakes. One type costs $£ 2$ and the other type costs $£ 3$. A total of 20 cakes were sold for $£ 47$. How many of each type were sold?

Number at $£ 2$
$x$
Number at $£ 3$
Total Cost
22. One class in a school had 10 puplls more than another. One third of those in the smaller class and half of those in the larger class got honours maths. The total number that got honours maths was 20 . How many were in each class?
Smaller Class
Larger Class

Hon. Maths

## Concrete 6

1. Nelly had $£ 40$ and Katle had $£ 60$. They both spent the same amount. Write formulas to find out how much
each had left. Katle had twice as much left as Nelly. How much did each spend?

Amount that each spent $X$
Amount Nelly has left
Amount Katle has left
2. In a school there were 5 flrst year groups and 4 second year groups, all with the same number of pupils. Elght flrst year puplls left, but fourteen new pupils came into second year. The total number of flrst years was then the same as the total number of second years. How many were $1 n$ each group at the start?

Number in each group at start $x$

Number of first years at end Number of second years at end
3. In Home Economlcs, Sharon made 5 cakes more than Jane. They ate two cakes each and Sharon then had twice as many as Jane. How many dld each make.

Number that Jane made
Number that Sharon made
Number Jane had left
Number Sharon had left
4. Slobhan and Denise were playing poker. At the start Slobhan had $£ 8$ less than Denlse. Slobhan lost $£ 2$ and Denlse won $f B$. Denlse then had ten times as much as Slobhan. How much did each start with?

Amount Denlse had at start $X$ Amount Slobhan had at start

Amount Denlse had at end Amount Slobhan had at end
5. Mary's bag of sweets had 19 sweets and Susan's had 47. The same number of sweets was added to each bag. Susan then had twlce as many sweets as Mary. How many sweets were added to each bag?

Number added to each bag $x$

Number in Mary's bag at end Number in Susan's bag at end
6. One bus had 15 passengers and another had 19. The same number of people got off each bus. One then had twice as many passengers as the other. How many got off each bus?
Number that got off each bus
Number left on first bus
Number left on second bus
7. For a wedding, the bride lnvited three times as many guests as the groom. They then declded to Invite 30 more guests each. When they did this the bride had twice as many guests as the groom. How many did each lavite?
Groom's guests at start
Brlde's guests at start
Groom's guests at end
Bride's guests at end
8. 10 more boys than girls were present at the start of a disco. Before the end, 40 girls had left and 16 more boys had arrlved. There were then twlce as many boys as girls. How many of each were present at the start?

```
Number of glrls at the start X
Number of boys at the start
Number of glrls at the end
Number of boys at the end
```

9. One bus contalns four tlmes as many passengers as another. If slx passengers get off each bus, then it will have seven times as many. How many passengers were on each bus at the start?
Number on flrst bus at the start
Number on second bus at the start
Number on flrst bus at the end
Number on second bus at the end
10. Samantha had 120 records and Petulla had 240. Petulla was a bully and swlped some of Samantha's records. She then had three tlmes as many as Samantha. How many records dld she swlpe?

Number swlped X
Number that Samantha then had
Number that Petulla then had
11. A box contalns three times as many red buttons as blue. If 5 of each colour were removed then there would be four times as many red ones as blue ones. How many of each colour are there?
Number of blue at start
Number of red at start
Number of blue at end
Number of red at end
12. Susan had $£ 21$ and John had $£ 43$. Susan lost some money and John found 1t. John then had 3 times as much as Susan. How much did Susan lose?

Amount that Susan lost X
Amount Susan had at end
Amount John had at end
13. Jane has 9 animals, some of whlch are dogs and some of whlch are cats. If she had four tlmes as many cats and twice as many dogs, she would have 30 pets in all. How many dogs and cats does she have?

```
Number of cats that Jane has now X
Number of dogs that Jane has now
What she would have
14. Karen has \(£ 1\) more than Jenny, and Angela has \(£ 1\) less than Jenny. 10 Tlmes Angela's money is the same as
```

four tlmes Jenny's and Karen's put together. How much has each?

```
Amount that Jenny has X
Amount that Karen has
Amount that Angela has
Ten tlmes Angela's
Four tlmes Jenny's & Karen's
```

15. Joan bought 5 sheets of stamps and used 50 stamps to post letters. Clalre bought 3 sheets of stamps and 10 extra 'loose' stamps. They then had the same number of stamps. How many stamps were on each sheet.

Number on each sheet X

Number Joan had left
Number Claire had left
16. A vocational school and a secondary school both have boys and glrls as puplls. The vocational school has 315 puplls altogether. The secondary school has three times as many boys and twice as many girls. It has total of 748 puplls. How many boys are there in the vocational school?
Number of boys In Vocational school
Number of glrls in Vocational school

Total number in Secondary school
17. Half of the passengers on a bus got off at a stop and another 23 people got on. There were then 41 people on the bus. How many passengers were there at the start?

Number at the start $X$
Number at end
18. A job was expected to take 5 days, working the same number of hours each day. To get it finlshed, it was necessary to work one extra day for 14 hours. The average time worked for the whole project was 9 hours per day. How mary hours were worked on each of the first 5 days?

Number of hours worked per day
Total number of hours worked
Average hours per day
19. A barrel of honey welghs 50 kg . Honey ls twice as heavy as water. The same barrel with water in it welghs 35 kg . How much does the empty barrel welgh?

```
Welght of barrel alone X
Welght of honey alone
Welght of water alone
Welght of barrel plus water
```


## Concrete 7

1. The blll for a truckload of goods was lost. All that was known was the total prlce for the TVs, VIdeos etc. The VAT on all the Items was 25\%. Enter a guess for the cost of one T.V. Then flll in the formulas to calculate the VAT for a TV and the total cost for all the TVs. If your flrst guess was wrong then try agaln untll you get the correct total.

Item T.V.s Videos Washing Machines Cookers
Cost
VAT - 25\%
$\begin{array}{lllll}\text { Number } & 15 & 20 & 12 & 8\end{array}$
$\begin{array}{llll}\text { Totals } 6750 & 10500 & 5100 & 4600\end{array}$
2. The table below shows part of the wage blll for four workers. Guess the rate per hour for each glrl, then enter formulas to calculate the 5\% bonus for each glrl and the total wage for each glrl. Then adjust your guesses to get the correct totals.

Delrdre Sharon Mary Sarah
Rate per hour
Bonus 0 5\%
$\begin{array}{lllll}\text { Number of hours } & 40 & 38 & 46 & 37\end{array}$
$\begin{array}{lllll}\text { Totals } & 126.00 & 135.66 & 135.24 & 139.86\end{array}$
3. A shopkeeper bought boxes of chocolate bars as shown below. She could not sell them all because there were some damaged in each box. Complete the spreadsheet by guessing the number in each box and then by entering formulas to calculate the total amount for each box. Adjust your guesses untll you get the correct totals.

Mars Toplc Bounty Marathon

| Number in Box |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: |
| Number damaged | 7 | 9 | 12 | 2 |
| Prlce of each | .30 | .25 | .31 | .28 |
| Totals | 27.90 | 27.75 | 58.28 | 13.44 |

4. A school bought a number of schoolbooks as shown below. A dlscount of 8\% was allowed because so many were bought. Complete the spreadsheet by guessing the cost of each type of book and enterlng formulas to find the dlscount allowed and the total cost of each type of book. Adjust your guesses untll you get the correct totals.

Maths English Irlsh History
Cost
Discount a 8\%
Number
32
56
43
28
$\begin{array}{lllll}\text { Totals } & 191.36 & 437.92 & 217.58 & 218.96\end{array}$
5. A band played gigs in four different venues. The prlces for each venue were different. They had to pay $40 \%$ of each tlcket sold to thelr manager. Complete the spreadsheet by guessing the tlcket prlce for each venue and enterling formulas to calculate $40 \%$ of each ticket and to find the total for each venue.

Dublln Cork Galway Limerlck
Tlaket Price
Less 40\%
Number at concert $527 \quad 240 \quad 280$
$\begin{array}{lllll}\text { Totals } & 1581.00 & 576.00 & 756.00 & 724.50\end{array}$
6. Three classes were golng on different school trips, all of whlch cost different amounts. A discount of 8\% was allowed for each pupll. Complete the table below by guessing the cost per pupll for each class and writing formulas for the discount and the totals. Adjust your guesses untll you have the correct totals.

| Cost per pupll | $2 A$ | $2 B$ | $2 C$ |
| :--- | ---: | ---: | ---: |
| Dlscount D8\% <br> Number In Class | 23 | 26 | 19 |
| Total | 84.64 | 71.76 | 104.88 |

7. A travel firm sold holldays to Spaln for three years. The cost of the holldays went up each year. $30 \%$ tax was pald on each holiday. Complete the spreadsheet by guessing the cost per hollday each year and enterlng formulas for the tax a 30\% and the totals. Then adjust your guesses untll you get the correct totals.

| Cost per hollday | 1986 | 1987 | 1988 |
| :--- | ---: | ---: | ---: |
| Plus tax at 30\% |  |  |  |
| Number sold | 66 | 85 | 74 |
| Total | 30030 | 43095 | 40404 |

8. A shop bought in boxes of bracelets, rings and chalns. Complete the spreadsheet by guessing the cost of one bracelet, one ring etc. Then enter formulas to find the tax at $30 \%$ and the totals. Adjust your guesses until the totals are correct.

> Bracelets Rings Chains

Cost for one Tax at 30\% $\begin{array}{llll}\text { Number per box } & 50 & 70 & 120\end{array}$
$\begin{array}{llll}\text { Total } & 845 & 728 & 1716\end{array}$

## APPENDIX H

Letter sent to School Principals

Dear Prlncipal,
I am a full-time teacher of mathematlos at the Holy Falth Secondary School, The Coombe. I am also studylng, part-time, for a Ph.D. degree at Dublin Clty Unlverslty (formerly NIHE). My research project Involves the use of computer technology in Introductory Algebra courses for girls in second level schools.

For the experimental part of my project I need some second year students to undertake a short programme of study during the October mid-term break and I would like some glrls from your school to partlcipate. The programme will be spread over four days from Tuesday 31 October to Friday 3 November and wlll last for about two and a half hours per day. The course content is from the Inter Cert Maths Syllabus and wlll be of direct relevance to the participants. The approach, using computers, wlll be interesting and enjoyable. I wlll be employing a number of assistants to ensure that there wlll be one tutor for every seven students. I would llke to include puplls from all abillty levels and no previous computer experlence is required.

I would be very grateful if you would consider this request favourably and I wlll contact you by phone $\ln$ a few days. I would also appreclate if, in the interests of experimental validity, you did not mention thls course to any potential appllcants before I contact you. If you have any querles I can be contacted at The Coombe (542100).

## APPENDIX I

Information Sheet/Appllcation form

Holy Falth Secondary School
The Coombe
Dublin 8
5 October 1989
I am carrylng out a research project for Dublin Clty Universlty which lnvolves glving young glrls the opportunity to use computer technology. As part of the project I will be running a short course in computer problem-solving during the October midterm break. The course will be spread over four days from Tuesday 31 October to Friday 3 November and wlll last for two and a half hours per session. Students wlll be offered a cholce of attending in the mornings ( 10 to 12.30 ) or in the afternoons ( 2 to 4.30) and every effort wlll be made to sult all those applying. It ls very important for the success of this experlment that all partlclpants attend each of thelr four sesslons. Please do not apply unless you are able to attend all of the four sessions.

The course will be both interesting and enjoyable. There will be one tutor for every seven students to ensure that everybody will get sufficient individual attention. No computer experlence is required. Puplls from a few girls' secondary schools in your area are being asked to attend and the course wlll be held at the Holy Falth Secondary School, The Coombe. If you would like to take part please fill out the application form below, tear it off and return it as soon as possible. There is a strict limlt on the numbers taking part and students wlll be accepted on a 'flrst come first served' basis. Thls is a non profit-making course but to cover the substantlal costs involved, it is necessary to charge a fee of $£ 8$ per pupll.

## Name:

School:
Home Phone (lf any):



[^0]:    "mathematlcal expressions are commonly presented not for purposes of comprehension in the psycholingulstic sense of contrlbuting to the construction of a larger meaning context, but as the

[^1]:    among the skllls that remaln essentlal. Emphasls should therefore be glven to developing the ablllty to construct mathematical representations from problem

[^2]:    produced unexpected results were then reflned for the flnal pllot test. In addltion, seven abstract questlons (i.e. purely relating to numbers), which were mathematically equivalent to the flrst seven concrete questions, were added. There was no need to test two verslons of the abstract questions. There was no possible confounding effect of context, and equivalent questions could be produced by simply changing the numbers involved. The questions requiring the creation of equatlons were removed. These were rarely answered correctly and were not part of the target capabillty but rather an attempt to test for transfer. The final pllot test contalned only seven abstract questions and revised versions of the slx pairs of questlons whlch had produced unexpected results prevlously. Thls was tested with a different group of 26 puplls. It was found that the refined palrs of questions were answered equally well and that the new abstract questions produced similar scores to thelr concrete isomorphs. Thus, sufficient pairs of equivalent questions were available to construct the pretest and posttest.

    The final tests contalned twenty one questions each (see Appendlces $A$ and $B$ ). There were seven abstract questions followed by seven equivalent questlons set in concrete contexts. The remalning seven questions were also set in concrete contexts and were slightly more

[^3]:    Figure 5.19

