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Abstract

The fundamental purpose of this thesis is to estimate the 
exponentially small imaginary part of the eigenvalue of a 
second order ordinary differential equation subject to 
certain stated boundary conditions This problem is
modelled on a partial differential equation which arises 
when examining wave losses m  bent fibre optic waveguides

In Chapter 1 we provide an overview of the thesis and 
introduce the area of mathematics known as exponential 
asymptotics In Chapter 2 we investigate the physical 
background to the problem of energy losses due to optical 
tunnelling in fibre optic waveguides We then derive the 
partial differential equation upon which we base our model. 
In Chapter 3 we commence by manipulating the partial 
differential equation into a more convenient form We then 
outline the model problem we shall consider and obtain a 
preliminary estimate for the eigenvalue of this problem 
In Chapter 4 we introduce the special function known as the 
parabolic cylinder function and derive its asymptotic 
behaviour We also examine its connection with Stokes
phenomenon and deduce its Stokes and anti-Stokes lines In 
Chapter 5 , we finally solve the *model problem by
transforming it into one form of Weber's parabolic cylinder 
equation We then use the boundary conditions of the 
problem together with properties of parabolic cylinder 
functions to obtain a valid estimate for the imaginary part 
of the eigenvalue In Chapter 6 we conclude the thesis by 
commenting on this result and indicating future
developments in this area
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Chapter  1

Introduction

This Chapter is partitioned into two sections In the first 

section , we present a condensed outline of the layout of the 

thesis and its origins In the second section , we briefly

discuss some of the published papers which concern themselves 

with the world of exponential asymptotics

1 1 The thesis.

The inspiration for this thesis lies in work carried out by 

R Paris and A. Wood (See Reference [14 ] ) who concern 

themselves with the model problem given below with g(x) = x

= -<pxx -  e g ( x ) < p  [ 1 1 1 ]

with the general linear homogeneous boundary condition

* (0,t) + h#(0,t ) = 0  [11 la]

and for physical reasons , any solution <j> is constrained to 

be an outgoing wave beyond the turning point (See Chapter 3) 

[ In the above h is a positive constant which is essentially 

a matching parameter ] . They m  turn were motivated by the
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- Chapter 1 -

I M A  lecture entitled " Mathematics m  Industry and the

prevalence of the free boundary problems " given by Dr J 

Ockendon at the Differential Equations meeting at the

National Institute of Higher Education , Dublin (now Dublin 

City University ) on 29th May , 1987 In this lecture , Dr

Ockendon queried the validity of methods used by W Kath and 

G Kriegsmann in a forthcoming paper ( See Reference [6]) In 

this paper, the authors attempt to estimate the energy loss 

in a fibre optic waveguide due to curvature m  the fibre 

This requires estimating the imaginary part of an eigenvalue 

which is extremely small R Paris and A Wood successfully 

solved the model equation [1 1 1] with g(x) = x The 

fundamental purpose of this thesis is to successfully treat 

the case g(x) = x2

In Chapter 2 , we examine the physical problem of energy loss 

in fibre optic waveguides We construct a suitable coordinate 

system which follows the centreline of the waveguide whilst 

taking into account the curvature of said waveguide. We use 

this system together with Maxwell's equations to derive the 

following partial differential equation

2cA(j+ A?? + A ^  + f(£,7))A +2k2SKi«A + 0( k2S , 5 , 1/k2) = 0
[1 1 2]

We shall base our mathematical model upon this equation.

In Chapter 3 , we manipulate the above equation to a more
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- Chapter 1 -

suitable form We then proceed to specify our model problem 

and justify its validity Carrying out a separation of 

variables on this problem finally leads us to the following 

model problem

y"(x) + (A + ex2 )y = 0 on (0,co)
[1 1 3]

y' (0) + hy(0) = 0

y(x) has controlling behaviour e ^ x ,̂ x — > +«

where p(x) is a positive function of x and h is as before

We then use a regular perturbation expansion to obtain a 

preliminary estimate for the eigenvalue X and indicate why 

this method cannot produce an estimate for Im X

In Chapter 4 , we shall assemble the mathematical tools

required to solve the model problem In particular , we 

shall study the asymptotic behaviour of the parabolic 

cylinder function U(a,z) In the process we shall introduce 

the concept of Stokes phenomenon and calculate the Stokes and 

anti-Stokes lines for U(a,z) Finally , we deduce the 

asymptotic behaviour for U(a,-z) using the connection 

formulae which exist for the parabolic cylinder functions of 

differing arguments

In Chapter 5, we use the properties of the parabolic cylinder 

function to solve the model problem [1.1.3] We first
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transform the problem into one form of Weber's parabolic 
cylinder equation , of which a combination of parabolic 

cylinder functions provides a solution We then modify this 
solution to take into account the required outgoing wave
condition Finally , we use the boundary condition at the 

origin to obtain our final result That is ,

Im X ~ -4h2expj , e -» 0* [ 1 1 4 ]

We conclude the thesis by commenting on this result for Im A 

and briefly indicating future developments m  this area

1 2 The world of exponential asymptotics

The difficulties associated with calculating exponentially 

small values were first indicated m  a paper by V L 

Povrovski and I M Khalatnikov ( See Reference [15] ) who

were interested in calculating the amplitude for above 

barrier reflection of a particle from a one-dimensional 

potential barrier They used properties of the potential m  

the complex plane when dealing with the S c h r o d m g e r  equation

finding that the reflection coefficient R is

r  xR = |F(A)|2exp{ 4tlm 1 p dx }
J -03

Thus the exponentially small behaviour of R is revealed

5
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In his paper on exponential asymptotics , R E Meyer

( See Reference [10]) details three examples illustrating the 

need for high precision asymptotics of an unusual kind He 

examines the difficulties encountered m  dealing with certain 

situations involving the modulation of an oscillator , wave 

reflection and wave trapping He further outlines a method 

for dealing with such difficulties In a later paper he also 

encounters the same complexities ( See Reference [9] ) as

does F B Hanson when examining certain mathematical models 

for population dynamics ( See Reference [5] ) H Segur and

M Kruskal also encounter eigenvalues with exponentially 

small imaginary part in their paper on the non-existence of

small amplitude breather solutions ( See Reference [7] )

A Wood and R Paris in their paper on eigenvalues with 

exponentially small imaginary part ( See Reference [20]) cite 

an example given by F W J Olver ( See Reference [11] p 76 ) 

where neglect of an exponentially small error term in 

calculating the integral

I ( e )  .  f" £ 2 » < t /£ l  dt
J o 1 + t

results in a large relative error when compared to exact 

solutions He indicates that the perturbed differential 

equations where exponentially small behaviour arises are of 

the type known as singular perturbations Singular

perturbations are characterised by an abrupt change m  the 

nature of the solutions to the problem as c — > 0 Since the
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model we shall consider is singular m  nature , we are not 

suprised by the final result for Im X given by [1 1 4]

In Chapter 4 , we introduce the concept of Stokes phenomenon 

which is intimately linked with the appearance of these 

eigenvalues with exponentially small imaginary parts 

Associated with Stokes phenomenon are the Stokes multipliers 

( or constants ) whose property of changing value as one 

crosses a Stokes line has resulted in much controversy The 

controversy stems from the unknown behaviour of the

multipliers as they cross the Stokes line George Stokes'

opinion was that the change was discontinuous He wrote ( See

Reference [19] )

" the mfenton tenm [ subdommant term ] enters aa U uzene

uxto. a rm&t , ax hidden $on a ttttle pvom wtew , and carnet 

aul uuth cae{pjztent ohanqed Jhe nxmqe du/nnq, us-hcch the

mferwan tenm nemauno, an a rruxit decaeooea tndepjuteiq aa tne 

[asymptotic parameter ] mcaeaaea uxdel+sbcteiy "

In recent work M V Berry ( See Reference [4] ) has proposed 

that this change occurs continuously as one approaches the 

Stokes line and that the value of the Stokes multiplier on 

this line is precisely the average of its values on either 

side of said line F W J. Olver recently has put this 

supposition on firmer mathematical footing ( See Reference 

[13] ) We believe his work finally puts to rest this most

perplexing problem
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The above discussion indicates the broad area m  which 

exponential asymptotics appears Although we shall deal with 

one particular problem we cannot emphasise enough the scope 

of this stimulating area of asymptotics
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Chapter 2

In this chapter , we shall investigate the physical 

background to the problem of energy losses due to optical 

tunnelling in fibre optic waveguides We will first

establish a suitable coordinate system and use this system to 

derive the partial differential equation upon which we base 

our mathematical model

2 1 Formulation of the coordinate system

We begin by describing the position of the centre of the 

fibre as a function of arc length

x = XQ(S) [2 11]

This function contains a system of local coordinates which 

naturally follows the fibre, that is , the unit tangent 

t,normal n and binormal b vectors defined by the 

Frenet-Serret Formulae (See Reference [17] p 57) as follows 

[See figure 2 1],

The Physical Problem
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Figure 2.1: The Frenet Serret coordinate system along 
the centreline of the optical fibre

where

dx _ £ 
ds° z

d t  _  K £  
d¥ “ K n

dn
ds

db
ds

= Tb - Kt

in

K is the curvilinear curvature, 

z is the curvilinear torsion,
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To change the equations into dimensionless form , we note 
that [2 1 1] is given in dimensionless form as

xQ(s) = £X(s/ i )

Where £ is a typical length scale for the bent centreline 
such as a characteristic size for the radius of curvature

Let s = as' , x = ax' , K = K'/a , t = r'/a etc
and 5 = a / i « 1 where a is the radius of the fibre core
[See Figure 2 2] Typical values of a are a * 2 - 5 ^m

and b = t x n

Figure 2 2 : Cross sectional view of the fibre optic
waveguide
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The dimensionless Frenet-Serret formula along the centreline 

are

x' = ^ X(5s')

a f '  = X{5S' )} = i ( 5 s , )

= K'n(Ss') [2 1 4]

£§ = T'b(Ss') - K't (68')

g  = - T ' n ( S s ' )

The function X is dependent on 5s' and hence in these scaled 

coordinates the position of the centreline and all functions 

resulting from it are slowly varying

For convenience, we shall drop the primes but it is

understood that all distances remain in dimensionless form

On examining equations [2 14], we see that the left hand 

sides are 0(5), thus the dimensionless curvature and torsion

must also be of this order 

Hence, we can rescale them as follows :

K = SK^Ss) and t = ar^Ss) [2 1 5]

where K and x are both assumed to be of order 1i i

The Frenet-Serret formulae provide a natural co-ordinate

system for following the fibre if distances are measured 

along the fibre in terms of the dimensionless arc length and

12



- Chapter 2 -

distances perpendicular to the fibre m  terms of the 

dimensionless distances along the unit normal and binormal 

We denote this new system by (s,a,/3) defined by the 

transformation

x = ^ X(5s) - cm(Ss) - ̂ b(Ss) [2 1 6]

where the negative signs are placed for convenience only

However, the Frenet-Serret frame is determined only from the 

position of the centreline not the entire fibre Hence the 

twisting or torsion of the fibre is not fully accounted for 

in this frame Thus a coordinate system which more accurately 

follows the fibre is one in which the torsion t is removed by 

rotating the above system.

The transformation to this new set of coordinates (s,£,7j) is

x = i X(5s) + £[n cos v + b sin u] + 7}[b cos u - n sin u]
[2 1 7a]

where ^  = ~Sx^(6s)

Defining the new vectors
A A A

u = n cos v + b sin u

v = b cos u - n sin v

the transformation becomes

x = ^ X(Ss) + £u(<5s) + t|v (5s ) . [2 1 7b]

This new coordinate system follows more closely the 

orientation of the fibre

13
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Moreover,
dx.dx = h2ds2 + d£2 + d7]2

where h = 1 - SK^^cos u - iQSin u)
= 1 + 6K ai

Thus ( s , £ , tj ) define orthogonal curvilinear coordinates , 
giving the added advantage that it is easier to transform the 
equations into the new coordinates

2 2 Formulation of the problem

As stated by D Marcuse (See Reference [8] p 339)for weakly 
guiding fibres a scalar theory is a reasonable approximation 
This scalar approximation is obtained as follows 
The curl version of the time-harmonic wave equation for the 
electric field (assumed to be in dimensionless form) is

V x (V x E) - n2k2E = 0 [2 2 1]

The magnetic field is easily calculated once the electric 
field is known
Here k = k an is a dimensionless wave no

0 c

kQ = physical wave no

n = refractive index of the claddingc

n = n /n is the normalised index of refraction
0 c

The weakly guiding approximation is made by assuming that the 
refractive index of the cladding and the core differ only 
slightly.

14
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[Typical values for a monomode fibre are k ~ 15-40 where 

k » 6 x 104cnf1, a ~ 2-5 nm , n ~ 1 3 ] (See Reference
o  c

[18])
Typical values of n2 suggest that the correct scaling

should be
j

n2 = l  + -Jf& 'JU. [2 2 2 ]
k2

where f (^, "0) is 0(1) and is non-zero only in the core region 

[ See Figure 2 3 below ]

Figure 2.3 : Schematic of the behaviour of f(£,T])
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We now make the paraxial approximation (See Reference [8])

E = A (cr,Z,Ti) etkS , <t =s/k [2 2 3]

i e we say that the main propagation direction of the

electromagnetic energy is along the length of the fibre 

Substituting into Maxwell's equations [2 2 1] using the

coordinate system (s ,£,ti) where m  this system

A = A t  + A u  + A v  [ 2 2 4 ] ,
1 2  3 L

we find

A 1 =  £  ( V  +  A 3T) } + 0(l/k3,5/k) [2 2 51

Thus the longitudinal electric field component is smaller

than the others by a factor of 1/k, so that the field is

mainly transverse Both components of the transverse field 

obey the same equation, namely

2 i A  +  A . .  + A + f ( f ,T ) ) A  + 2k26K a A + 0 ( k 2S ,5,  1/k2) = 0 ,j o' SS jVV ^ J i J
[2 2 6 ]

J = 2,3
Finally, if we assume that the curvature produces an effect 

comparable with the scaled index of refraction difference 

fCC/7?) then this means we should take k2S = 1 Combining

this with the range of reasonable values of k, 1 e k ~ 15-40,

gives a dimensional radius of curvature of the order of a few 

millimetres, which is too small.

Therefore , assuming that

5 = 1/k3 [2 2 7]

16
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(giving a radius of curvature in the range of a few 

centimetres to a few tens of centimetres) is a more logical 

choice for 5

With this choice of S and neglecting all of the small terms, 

0(l/k2) and smaller, we then obtain the equation

2iA a  + Av7) + A c c  +  f ( C , T j ) A  + £  2 Kt <*A = 0  [ 2  2 8 ]

where again a = £cosu - Tjsinu and in these new co-ordinates

du 1 , 2X-T- = - x (cr/k ) dcr ^2 l ; [2 2 9 ]

2 3 Physical Explanation

From equation [2 2.8] we see that, after the approximations 

have been made , the only effect of the curvature is to 

introduce a perturbation into the index of refraction, which 

is small in the core but not in the cladding where a is 

large. We can explain this curvature perturbation by viewing 

the situation in normal cartesian coordinates [ See Figure

2 4]

17
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Figure 2 4 . Energy loss out of the core region

In this co-ordinate system , we see that energy for large 
positive values of a (out in the evanescent tail of the mode) 
must travel further than energy propagating in the core 
region. On transforming to the local coordinate system 
following the fibre the influence of this extra distance is 
changed to an effective slowing of the wave via an increased 
index of refraction.
The loss of energy in the mode can be explained as follows 
As one moves away from the core eventually a point is reached 
where the energy propagating in the evanescent tail cannot 
keep up with the main part of the wave propagating in the

18
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core and thereby changes from an evanescent to a propagating 

wave The energy is then shed as it radiates away into the

cladding Of course, because this happens in the evanescent

part of the mode the energy loss is not dramatic but over a 

lengthy run can be significant

This thesis is primarily an attempt to understand

mathematically how this small but important energy loss 

occurs We set out to achieve this aim by examining a model 

equation which essentially exhibits the same behaviour as 

equation [2 2 8]

19



Chapter  3

In this chapter , we begin by manipulating the partial 

differential equation [2 2 8] to a more convenient form We 

then outline the model problem we shall consider and finally 

obtain a preliminary estimate for the eigenvalue of the model 

problem

3 1 Preliminaries

To obtain an estimate for the small, but important , energy 

loss caused by bending the fibre optic waveguide, we must 

examine equation [2.2 8] reproduced below for convenience

2<- + A?? + Avv  + f ( ? , n ) A  + I K a  A = 0 [3 1 1 ]

It should be noted that a is a linear combination of £ and v 

(see equation [2 1 7]).

Kath and Knegsmann (See Reference [6]) use a variation of 

the following procedure

Set A ( <T, £, v ) = y(£,n) e~ iA<T

The Model Problem

20
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V2y + f(C/7?)y “ 2Ay + y = 0 [ 3 1 2 ]

Note that A is basically the difference between the 

propagation constant of the mode and k The decay rate is 

Im A which must be positive

w h ich  g iv e s

2K a

We can simplify the form of equation [3 12] slightly by 

making the substitutions

c = [3 1 3a]

A = -2A [3 1 3b]

Observe that since Im A must be positive then Im A must be 

negative Equation [3 12] thus becomes

V2y + f(£,7i)Y + Ay + cay = 0  [3 14]

A regular perturbation expansion of the form

y = yn + cy + e2y + e 3y + .° 1 2  3  [3 1 5 ]

X = X + c X  +  £2X + e 3X +  .
0  1 2  3

fails to yield any information on Im A (See section 3 3)

Indeed Kath and Kriegsmann show that using this method , 

Im A = 0  V n =0,1,2,...n

21



- Chapter 3 -

However by assuming y and A are of the form [3 1 5] we are 

stating that the changes caused by the perturbation are all 

small which is true m  the core , but in the cladding region , 

the perturbation ea is not small Thus we must use 

alternative methods for finding Im A

3 2 Derivation of the model problem

In order to g a m  more information on the problem of
/

estimating the small, but crucial, imaginary part of the 

eigenvalue in equation [3 14] above ,the following one 

dimensional problem will be examined

In the original problem , for small e, we are in the cladding 

region where the perturbation f ( £ , 7j )  in the refractive index 

is zero We are interested in the neighbourhood of a turning 

point which is situated well into the cladding region 

Therefore , we feel justified in considering the following 

model problem •

= " ^xx ‘  e 9(x)<#> t 3 2 1 1
with the general linear homogenous boundary condition

0x(O,t) + 0(0,t) = 0  [3 2 la]

where the positive constant h is essentially a matching 

parameter

The case g(x) = x has been successfully dealt with by Paris 

and Wood (See Reference [14]) We examine here the case when

22
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the perturbation m  the refractive index can be described by 
g(x) = x2

Equation [3 2 1] has the same structure as equation [3 11] 

yet has an exact solution m  terms of parabolic cylinder 

functions which permits a rigorous mathematical analysis

Making the same separation of variables

<p(x, t) = e_tXty(x) with Im A < 0 ,

then Equation [3 2 1] becomes

¿Xt, I v "tXt / / / \ 2 iXt / \e Ay(x) = -e Y (x) - cx e y(x)

Hence,

y"(x) + (X + cx2)y(x) = 0 

with the boundary condition becoming

e_<Aty'(0) + e-,athy(0) = 0
that is,

y'(0) + hy(0) = 0

The physical discussion in Chapter 2 indicates that the 

solution must be an outgoing wave beyond the turning point at

X  = e

We express this condition by constraining any solution y to 

have controlling behaviour of the form e ^ x ,̂ where p(x) is 

a positive function in x as x — » +00 .

23
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f

y"(x) + {\ + cx2)y(x) = 0  [3 2 2]

y' (0) + hy(0) = 0 [3 2 2a]

y(x) has controlling behaviour — » +« [3 2 2b]

where p(x) is a positive function in x, h is a positive 

constant and e > 0

- Chapter 3 -

Thus our model problem is of the form

3 3 A MtrialM solution using regular perturbation methods 

We first attempt a trial solution of the form

y( x )  = I yjx) sn
n = 0 [3 3 1]

uu

1  \  en
n  = 0

Substituting into equation [3 2 2] we find

. .  o K ' < X> + I  + *»-1*1 +n = 0
+A y )G +cr n

I  y n ( * )
n+1 = 0

n  = 0 [3 3 1]

Comparing powers of c we see

24
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y" + A y = 02 o cr o

_ , /X w A xChoosing yQ(x) = e o

then from equation [3 2 2a] we have

0

Ao = ~ h2

y0(*) = e_hx

y" + A y  + A y  + x y = 0 2 1 0J 1 1J 0 J o [3 3 3]

y" + A y +( a + x W  = 0o l v l o

2 v 2y y" + A y y +(A + x)y = 02 Q2 \ 0 1 0  ' 1 20

But y" + A y = 02 0 0J 0

hence,

y y" - y y" + (A + x2)y2 = 0JoJi jrijro v i ' Jo
thus,

J°° y y"dx - J00 y y' 'dx + S* {A + x2)y2dx o JoJi Jo JiJo ov 1 / 2 o

[ 3 3 4 ]

But J°° y y;' dx = J00 e ^xy"dx 0 10J 1 0 1 1

On integrating by parts twice and using the boundary

condition at the origin for the zeroth order equation ,

we find

25
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—00 . . , , 2 Pco -hx ,J0 y0y'/dx = h Jo e y d x

Equation [3 3 4] then becomes

, 2roo _hx, , 2 Pco -hx , , pCo . ̂ , 2. — 2hx , Ah / y e  d x - h j y e  dx + J (A + x )e dx = 0
o 1 1 o J i o v i

Thus,

That is ,
pOQ/» . 2 » 2 hx J nSQ + x )e dx = 0

r 00 2 -2 hx ,$ x e dx
Ai =  -̂--------------------

J” i2hx dx

Straightforward integration provides

A = —
1 2h2

Substituting this result into equation [3 3 3] we find

y "  = A y - [ —  - X 2 ly = 01 0J 1 L 2 J 2 0
2h

/ / u 2 r 1 2 -1 “ hX=* y - h y = [ —  - x ] e2 1 J 1 L 2 J
2h

We shall solve this inhomogeneous second order differential 

equation as follows The associated homogeneous equation is

y "  - h2y = 0*ip -Mp

—hxWe choose y = e as a solutionJ iP
3 2  - h xAssume y = [Ax + Bx + Cx lelc

then y' = [3Ax2 + 2Bx + C -hAx3 - hBx2 -hCx]e_hx

26
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y'' = { h2Ax3 + (-3Ah + h2B)x2 + (h2C-2hB)x -hC 

-3Ahx2 + (6A-2hB)x + 2B-2C } e_hx 

= { h2Ax3 + (h2B-6Ah)x2 + (h2C+6A-4hB) x +
-hv(2B-2hC)}e

y' = [ -hAx3 + (3A-hB)x2 (2B-hC)X]e_hx

Now -h2y = [ -h2Ax3 -h2Bx2 -h2Cx le hx1 lc 1 J

Thus,
y'' "h2yic = [ -6Ah2 + (6A-4hB)x + (2b-2hC) ]e_hx 

r — —  2 , -hx
= [ 2h2 - x Je

* [ -6Ah2 + (6A-4hB)x + (2b-2hC) ] = [ ^ 2  - x2 ]e“hx

Equating powers of x gives

-6Ah = -1 => A = —
6h

6A - 4hB = 0 =» B = —
4h2

2B - 2hC = 0 => C = 0

Thus

(2hx3 + 3x2) -hx 
Yl‘ " 12h2

and
v = e~hx + (2hx3 + 3x2) -hx
1 12h2

A y  + A y  + A y + x2y = 02 0 1^1 0 2

27
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=> y " + A y + ( A + x ) y  + X y = 02 2 0 v 1  ̂1 0 2

=* y y" + A y2 + (A + x2)yy + A y v = 01 cr 2 2 o i /iro oJ 2

But y'' + A y  = 0
0 0 0

=* y y" + A y2 + (A + x2)y y - Y''Y = 0 [ 3 3 5 ]0 2 2 0 V 1 ' J 1J 0 O 2 L J

=> J°°y y''dx -J00 y''y dx+ f00 A y2 dx + X°° (A +xa)y y dx = 0 0 0 2 0 1 0 2 j0 2jr0 0 V 1 Jro

Now J°°y y'' dx = T* e ^Xy''dx 
0 J 0J 2 0 2

On integrating by parts twice and using the boundary

condition at the origin for the zeroth order equation this

becomes

J°°y y'' dx = h2 y y dx 0 0 2 0J 0J 2

Also

y y" dx = h2 / V  y dx0 2 0 0 0 2

Substituting these results into equation [3 3 5] we find

V o dx + dx = 0

S” ( \  + x2)Yiyo dx
A2 = ----- ¡3— F T   • t 3 3 6 ]S y dx o 1 o

But,

( v
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2h‘
+ x2)e_hx[e_hx + e"hx( 2hx' + ^  )dx

12ha
- 1 roo - 2 hx ,S e dx
2h"2 0

J _  ^  e-2hx( 2hx + 3 x )dx 
2h2 0 12h2

roo ~2hx 2 ,+ S e x dxo
pCo -2hx, 2hx5 + 3x4s0 e (  i—
0 12h

) dx

Z±- /°e'2hxdx - 
2h2 0 12h3 0

1 r  e"2hxx3dx 1  pOO -2hx 2J e x
8h4 o

t roo -2hx 2 ,+ S e x dx +o
1 pOO -2hx 5 , , ,—  S e x dx + 1 roo -2hxS „ e

6h 4h2 o

-1 r i i 1 r 3 i 1 1 1
2h2 L 2h J 12h3 .cCO 8h4 4h3 J

1 + 1 f 15 1 + —  i A  1. . 34h 6h  ̂ 8lV5 J 4h2 ^ 4h >

16h

And rc° 2 , pOO - 2 hx ,J y dx S e dxo  ̂o o

2h

Thus

8h

Equation [3 3 5] then becomes

hx 1 +
8h 2 h ‘

2hx3 + 3x2 
12h2

e'hx -h2y.

dx

x4dx
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* 1
1 + 2hx3 + 3x2

12h2
-hx = 0

* y ''  -  h2y2 + { ( l  + 2hX" 3 3x2 ) ( x2 -  - L  1 -  -2— I e
2 2 I I l 2 h  H  2h ' 8h )

= 0

Using the MACSYMA® computer package , the solution
Y2 is found to be

y = —  ---- I” 2 0 h V  + 96h3xs + 2 -2 5 h 4x4 + (240hs + 420h)x3
2 1 44f)h6 L

hx

+ ( 360h4 + 630) x2 j e  hx + e hx

3e y" + A y + A y , A y + A y + x2y = 03 3J 3 2T 1 + 1 2 0 3 J 2

=» y y "  + A y 2 + \ y y  + A y y  + A y y  + x y y = 0
J 0J 3 3J 0 2 1 0 1 2 0 0 3 0 x 2J 0

/ /Again A y  = -y  ̂ oJ o J o

=> y y" -y' ' y + A y2 + A y y + A y y + x2y y = 0
0 3 J 0 1 3 3 0 2 1 0 1 2 0 ^ 2 ^ 0

* r o y 0y ; ' dx + - C v ?  dx x o W o dx + O i W 1*

+ J 0X2Y2Y0dX = 0 
And as before

© Computations reported In this paper ( when indicated )
were achieved with the aid of MACSYMA, a large symbolic
manipulation program developed at the MIT Laboratory for
Computer Science and supported from 1975 to 1983 by the
national Aeronautics and Space Administration under grant
N00014-77-C-0641, by the U S Department of Energy under
grant F49620-79-C-020, and since 1982 by Symbolics Inc of
Cambridge Mass Macsyma is a Trademark of Symbolics, Inc
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X°°X y y dx + J^A y y dx + j>00x2y y dx  ̂ _ o 2 1 0  0 1 2 o o J z-*oA — —  —-------------------------- —-------------------
3 r co 2  ,S y dx 0 10

Using MACSYMA , this turned out to be

X = — —  (  - 1 12h4+28-64h8-  16h4-69+64h8+128h4+1065 ,
3 128h10

that is ,
121

3 16h10

Thus a regular perturbation expansion yields

X = - h 2-  —  -  — - - -  121e + 0 ( e 4) [3 3 8]
2h2 8h6 16h10

It is apparent that this method yields no information on 

Im A This is not suprising since it can be seen that the 

components of y(x) above fail to satisfy the outgoing wave 

condition [3 2 2b]

In fact , it is this condition that makes the problem 

singular in nature and hence regular perturbative methods are 

destined to fail It should be noted however that [3.3 8] 

above is a valid estimate for Re A However, since it
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conveys no information on Im A we must resort to more subtle 

methods in order to calculate this small but crucial 

component of the eigenvalue.
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Chapter  4

Mathematical Prerequisites

In this chapter we shall derive the asymptotic expansion for

the parabolic cylinder function U(a,z) and discuss its

various properties We shall also examine its connection with 

Stokes phenomenon and derive the Stokes and anti-Stokes lines 

for U(a,z)

4.1 The asymptotic behaviour of U(a/Z)

We first consider the following second order ordinary

differential equation which is one form of Weber's equation

[4 1 1]

Using the Liouville Green approximation (Reference [3]

Chapter 3) we first assume

[4 1 2]

Substituting this into [4.1 1] we obtain

S"(x) + (S' ( x) )2 [4 1 3]4

Making the approximations

S" (x) « (S' (x) ) 2 , a «
4 / X  — » +oo [4 1 4]

gives the asymptotic differential equation
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(S' ) 2 ~ ^x2 , x —> + 0 0  [4 15]

whose solutions are

S ( X ) ~ ± -X2 , X — > +00V ' 4

We have now determined that the possible controlling factors 

of the leading behaviour of y(x) are

S (X) _ X 2/4
e 1 “ e [4 16]

and S (x) -x2/*e 2V = e

To derive the leading behaviour of y(x) for large x, we 

re-examine equation [4 15]

I f  ( S '  )2 ~  - X 2 t  X   ̂ "HcoV ' 4

then S (x) ~ ± ix2 + C(x) ,x — > +«>

where C(x) « -x2 as x —> +ooV ' 4

Substituting S^x) = “x2+ c (x ) /x — * +0° into equation

[4 1 3] we find

\ + C"(x) + [( ix + C'(x)]2 = V  + a

=> i + C' ' (x) + [C' (x) ]2 + ^x2 + xC'(x) = jX2 + a

=» i + C"(x) + [C'(x)]2 + xC'(x) = a [4 17]

Making the approximations C"(x) « - ,x — » +oo and

( C ' ( x ) )  « xC' ( x )  / x —> +co { we note that these

approximations follow from C(x)  « i x 2 , x —> +» } we find 

that equation [4.1 7] becomes
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- + xC'(x) ~ a , x — >+oo
2

Thus C'(x) ~ a~lx/2 , x — > +®

and C(x) ~ (a-i/2)lnx ,x —> +«

Therefore , we find that

y i ( x) ~ Cixa - 1/2e x2/4 , x - >  + .  [4 1 8]

On substituting S2(x) = ~^x2 + C(x) , x — » +00 into equation

[4 1 3] we find

-  i  + C " ( x )  + [ ( -  | x  + C ' ( x ) ] 2 = i x 2 + a

=» -  i  + C " ( x )  + [ C ' ( x ) ] 2 -  xC ' ( x )  = a

Making the same approximations as before, we find

- xC' (x) ~ a + 1/2 , x — > +00

* C ' ( x )  ~ (~a T 1/2), f x _> +m
X

=* C'(x) ~ (-a-i/2)lnx , x — » +00

Therefore, we see that
2

/ V ~  - a - 1 / 2  - X  /4 , r A 1 n ny2(x) 2X 0 , x ^  +00 [4 1 9 ]

It is conventional to define the parabolic cylinder function 

U(a,x) to be that solution of equation [4 1 1] whose

asymptotic behaviour is given by [4 1.9] with = 1 This 

means that ci = 0 because we observe that U(a,x) is

subdominant on the positive x-axis and for it to be a

35



- Chapter 4 -

solution we must eliminate the dominant behaviour given by

In general, the principal solution U(a,z) to the equation

Other solutions to [4 1 10] are U(-a,±^z) and U(a,-z) We 

shall refrain from discussing these solutions and their 

connection formulae until we have introduced Stokes 

phenomenon

Figure 4 1 overleaf illustrates typical level curves of 

U(a,x) where x and a are both real

[4 1*6]

d 2w 1 2 ,- z + a w [4 1 10]

is determined by

[4 1 11]
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-  n

Figure 4.1 : Level curves of the parabolic cylinder function 
U(a,x). 3 7
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We have seen m  [4 1.11] that the solution U(a,z) of the 

differential equation [4 1 10] satisfies

2 /TT, v -a-l/2 - Z / 4 ,U(a,z) = z e a s z  — > +»

as z tends to infinity along the positive real axis We now 

consider what happens when z is allowed to approach infinity 

along any path in the complex plane There are two 

difficulties with this The first is that U(a/Z) is an 

analytic function of z, defined by a convergent series for 

| z | < co , while the right-hand-side of the asymptotic

equivalence is a multi-valued function of the complex

variable z , with branch points at z = 0,» We cannot

sensibly define an analytic function to be asymptotic to a 

non-analytic function The second difficulty arises from the 

fact that the leading asymptotic behaviour of U(a,z) as 

z — > co along the negative real axis can be shown to be

different from that along the positive real axis A simpler 

example of the same behaviour arises in the function

g(z) = sinh( i ) = i ( el/z - e"l/z)

which has leading behaviours

g(z) ~ i e1̂ 2 as z — » 0 m  | arg z| < j 

g(z) ~  ̂e_1/̂ z as z — » 0 m  2 < | arg z | < 2E

4 2 Stokes Phenomenon
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It is clear from these examples that asymptotic behaviour in 

the complex plane depends on the path along which the 

irregular singular point zq is approached We cannot say 

f(z) ~ g(z) as z —> zq because , since a function can take 

infinitely many values m  the neighbourhood of an essential 

singularity , the limit of f(z)/g(z) as z — * z0 neecl not 
exist This discussion suggests that asymptotic relations in 

the complex plane must involve the concept of a sector of 

validity with vertex at the singular point

For example, given f(z) and g(z) as before such that

f(z) ~ g(z) as z — > zq 

in some sector D of the complex plane Then if we write

f(z) = g(z) + [f(z) - g(z)] 

then what we are saying by writing f(z) ~ q(z) as z — > z0 

D is that f(z) - g(z) is small (or subdominant) m  D as 

compared with g(z) ( which is dominant)

On the boundary of D , both f(z) _ 9(z) and g(z) are of 

equal magnitude and as we cross this line , the 

characteristics of f(z) - g(z) and g(z) change while 

f(z) - g(z) becomes dominant, g(z) becomes subdominant This 

occurrence is known as Stokes phenomenon

We define Stokes lines to be those asymptotes in the complex 

plane upon which the difference between the dominant and
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subdominant terms is greatest m  magnitude

Similarly , we define anti-Stokes lines to be those

asymptotes in the complex plane upon which the "dominant" and
t"subdominant" terms are of equal magnitude

If the controlling behaviour of solutions to a second order
Six) S ( x )differential equation are given by e ' and e 2V as

z — > z0 ' then the Stokes lines are the asymptotes as z —> zq

of the curves

Im [ S^x) - S2(x) ] = 0 [4 2 1]

while the anti-Stokes lines are the asymptotes as z — > zq of

the curves

Re [ St(x) - S2(x) ] = 0 [4 2.2]

4 3 Stokes phenomenon and U(a,z)

We have seen [ Section 4 1] that for the parabolic cylinder 

function U(a,z) we have

Thus, the Stokes lines for U(a,z) are the lines

t It should be noted that many text books define
lines" to be what we would term “anti-Stokes lines"
versa We prefer to abide by the terminology used
Stokes in his original work

Stoke s 
and vice 

by George
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t  r i 2 . 1 2 _  nI m [  -  z + - z ] = 04 4

_  ,  2^0 x n => Im ( e ) = 0

tQwhere we have written z = Re

Thus s m 2 0  = 0
n TT 3TT

' ~z ' ' ~2

i e Stokes lines occur when arg z = 0 = j /  7 r , ^  f

Anti-Stokes lines occur when

Re [ - z2 + - z2 ] = 0L 4 4 J

Re ( e 2l°) = 0

cos20 = 0
TT 3TT
4 4

i e anti-Stokes lines occur when arq z = ± — , ±—4 4

The Stokes and anti-Stokes lines for U(a,z) are illustrated

in figure 4 2 overleaf.

t The reason why arg z = 0 is not a Stokes line for U(a,z) is
apparent from its definition In defining U(a,z) we set its
stokes multipliers to be 0 and 1 respectively in the sector
| arg z| < 7T/4 Thus the fluctuation of the multipliers as we
cross the positive real axis is not deemed possible (See
dicussion at end of this section)
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Figure 4.2 : Stokes and anti-Stokes lines for U(a,z)

We have seen that U(a,z) is defined as the subdominant

solution to equation [4.1.1] along the positive x-axis. As a

rule, that solution which decays most rapidly along the

positive real axis grows as z is rotated through the

anti-Stokes line nearest the positive real axis. For this 

kind of solution , it is correct to continue analytically the 

leading asymptotic behaviour up to the anti-Stokes lines
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beyond the ones nearest the real axis
Thus the leading asymptotic behaviour of U(a,z) given by 

- 2 /z a 1/2e z /4 is valid up to the anti-Stokes lines at 

arg z = ± 2E

In fact, it can be shown by carrying out repeated corrections 

to the leading behaviour of U(a,z) that 

for fixed a and large |z| ,

U(a,z) = z_a_l/2e_z U { 1 + 0(|z|'2) } , | arg z | < ^

[4 3 1]
where the 0 is uniform with respect to arg z.
( See Reference [12])

For any solution of a second order differential equation, we 

must have
y(z) = c ^ f z )  + c2y2(z)

We have seen that for Weber's parabolic cylinder equation 

[4 1 10]

, > _ a-1/2 z 2/4yi (z) c^z e , z — > oo ,

2 /, v ~ -a-1/2 -z /4y2(z) C2Z e , z > co ,

and hence

2 / 2 ,, v ~ a-1/2 z /4 . -a-1/2 -z /4y(z) ~ c z e + c z e , z  —> «J \ / i 2 f

ci and c2 are called Stokes multipliers and have the 

remarkable property that they fluctuate as one travels from
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sector to sector through the Stokes lines
By the very definition of U(a,z) we have

c = 0
► when I arg z| < ^l

c 1
2

The Stokes constants c and c can be calculated m  other1 2
sectors by using connection formulae ( See Reference [3] 
Chapter 3)

We are particularily interested in the asymptotic behaviour

section we shall derive this behaviour and m  the process,

ascertain its Stokes multipliers m  this sector

4 4 The asymptotic behaviour of U(a,-z)

We have seen that U(a,±z) , U(-a,±tz) are solutions to

Weber's parabolic cylinder equation [4 1 10] The connection 

formula between them are [See Reference [12] p 133]

U ( - a ,  ± tz) = ( 2 t t ) 1/2r (  J  + a)  U (a ,± z )  +

of U(a,-z) as z —> » with 0 < arg z < ^ In the next

[4 4 1]

[4 4.2]

From [4 4 1],
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U(-a, -tz) = ( 2tt ) 1/2 T( ~ + a) |̂ expj-uT( â - ^)| U(a,-z) +

expjt7T( ia  -  i - ) |  U ( a , + z ) j  

and therefore

U ( a , - z ) _ ( 2 n )
1/2

r ( 7  + a )
e x p | t 7 r (  ^ a

- H
U ( - a , - ¿ z ) -

exp|2<.7i( ia - i)| U ( a , z ) [4 4 3]

Now when 0 < arg z < — then - — < arg(-tz) < 0

and we can use the asymptotic representation [4 3 1] for 

U(a,z) and U(-a,-tz)

Accordingly, U(a,-z) =

r ^ n)+— " -  l ) } [ ( - i Z ) a_ 1  ̂2 i 1 + 0 ( | z | ' 2 ) } j e z /4

-  exp|2c7i(  l a  -  i ) } [  z " a _ 1 / 2 {l  +0( | z | ‘ 2 ) } ] e ' z /4

but
(_t)a-i/2 = exp(a_1/2)ln(_t) = exp(-7r||a - jj- <- )

and
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exp|2ur( 1» -  ;> } exp j u r  ( a  + i ) |

Consequently,

U ( a , - z )  = Simili za_1/2 a 2 ' 74 { 1 + 0( | z | "2) 
+ a)

2
+ e^ ( a + i / 2 ) z - a - i / a  0 - z  A  j  1 + 0 ( | z | ~2 )} [4 4 4 ]

as z — > co m  0 < arg z < ^

In the next chapter we shall use the above relations to 

derive a solution to the model problem outlined m  Chapter 3
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In this chapter we shall derive a solution to the model
problem by first transforming it into the parabolic cylinder
equation and then using the associated parabolic cylinder 
function solutions to obtain a valid estimate for Im A We 
shall first find a combination of parabolic cylinder 

functions to satisfy the boundary condition at infinity We 

then substitute this combination into the boundary condition 

at the origin to yield the eigenvalue relation

5 1 Transforming the Model Problem

We shall restate the problem here for clarity
y"(x) + (A + ex2)y(x) = 0  on (0,oo) [5.1 1]

with,
y ' (0) + hy(0 ) = 0  [5.1 2]

and .
y(x) has controlling behaviour as x — > +<»

[5 1.3]

h is a positive constant and p(x) is a positive function 
in x.

The Solution of the Model Problem
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If we let
z = et7I/V ' V /4x [5 1 4

then

and

dy _ UT/4 ^ 1 /2  1 /4  dye » c 
dx dz

,2 12
±JL = 2iei/2 d_y
dz2 dz2

Substituting these into equations [5 1 1] and [5 1 2] we find

d y  ,i -i/2 . , i 2 x— - = (- e tX + - z ) y
, 2 V 2 4 '  1dz

If we let a = - e " 1/2 t X [5 15]
2

then we have

^ = ( a + - z2 ) y
dz2 4

The boundary condition at the origin (equation [5 1 2]) 

becomes

( e m / i 21/2 c1/4 ) g  (0) + h y (0) = 0

Thus the transformed problem [ where the dash now denotes 

differentiation with respect to z ] becomes
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y"(z) = ( i z2 + a )y(z) on (0,») [5 1 6]

e TTL/i 2 i /2 £i/4 y'(0) + hy(0) = 0 [5 17]

y(z) is an outgoing wave as z —>00 [5 18]

5.2 Solution of the Transformed Problem

We have seen ( See Chapter 4 ) that equation [5 16] above is 
one form of Weber's parabolic cylinder equation This 
equation has general solution (See Reference [12])

y ( z ) = C i U(a,z)+C2 V(a,z) [ 5 2 1 ]

It is worth noting that arg z  = t t / 4  for future reference

U(a,z) is the parabolic cylinder function defined as the

solution to [5 1 6] determined by [ See Chapter 4]
2

T T /  v -a-1/2 -z / 4U(a,z) z e as z — > co
V(a,z) is defined as

V(a,z) = i r(i * a) { sin rra U(a,z) + U(a,-z)} [5 2 2]

For fixed a and large |zj ,

U(a,z) = z“a_1/2 e z { 1 + 0(|z|~2) } , | argz | < 3 tt/ 4

[5 2.3]
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U(a,-z) = et7T<a+1/2> z'a'1/2 e , x {1 + 0(|z|'2) } +

1 / 2 2  (270_ { za-i/2 ez /4 {1 + 0(|z|-2) }
T( i  ♦ a)

where 0 < (arg z) < t t / 2  [5 2 4]
Thus

v r -a-1/2 -z2, _ * + a ) I sin Tra z en ' 2
V(a,z )  = ( 1  ) r(i ♦ a) { s i n  n a  z ' a ' 1/2e  z  U  { 1  + 0 ( | z | ' 2)}

+  e<. i r ( a + i / 2) z - a - l / 2 e - z 2 / 4  { 1  +  0 ( | z J 2 ) >  +

1 / 2  2

—  za'1/2 ez /4 {1 + 0(|z|'2)}
T(- + a)V 2 '

m  0 < (arg z) < —

The outgoing wave condition requires the exclusion of the
- z 2 / 4incoming wave associated with the term involving e 

We resolve this condition by choosing

C = 1 and C = -( -  ) T(i + a ) { s m  7ia + et7T(a+1/2)}2 1 TT 2 J

Now C1 = -( i ) r(| ♦ a) { s i n  n a  + i e ta n  }

( — ) T(i + a ) { s m  na + ¿cos na - sin n a }y n  2

( ^ ) r(i + a ){ ccos na }
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Accordingly, our solution satisfying the outgoing wave 
condition is

y (z) = V(a,z) - ( £ ) r(i ♦ a) cos na U(a,z) [5 2 6]

Using equation [5 2.2] this becomes
y(z) = Llf^ 2) {U(a,-z) - teLan U(a,z) > [5 2 7]

Although this solution ensures that the leading terms
2 ,

associated with e z 4 cancel , we cannot be confident that 
lower order terms also cancel We resolve these doubts by 
manipulating equation [4 4 3] in Chapter 4 into the following 
form •

-teiaTIU(a,z) = - U(a,-z) + — — eur(a-i/2 ) / 2 u(_a#_tz)
T(a+i /2)

If we substitute this into our solution , we obtain

y(z) = (2/7T)1/V 7l(a“1/2)/2 U(-a,-<.z)

As illustrated in Chapter 4 , the asymptotics of U(-a,-tz)
2/

contains terms involving only ez 4 as I z I — > oo
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Equation [5 2 7] defines the solution satisfying the outgoing 
wave condition We must now use this solution to estimate 
Im A

Substituting equation [5 2 7] into the boundary condition at 
the origin (equation [5 1 7]) we find

5 3 Calculation of Im A

¿ J T / 4  « 1 / 2  1 / 4e 2 C [ -U'(a,o) - cecan U'(a,0) ] +
h [ U(a,0) - i e ian  U(a,0) ] 0

Therefore,

c U 4 e C n / 4  2 1/2 [1 + cetan ] U' ( a , 0 )  + h[ 1 - teta7T ] U(a,0) = 0
Thus

U(a,0) 
U'(a,0)

[ 1 + ietan
tan [5 3 1]

h [1 - te

But (See Reference [1] p 687),
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,  vl/2
U' (a , 0) = --- }d/2) a<-i /4 —,/ i , i _ v

r ( 5 5 '

Therefore
9d /2)a - i/4 i i .

U(a,0) = _ 2_________ ( 4 2 }
U' (a,0) _a/2)a+i/4 3 i .2 r( _ + _ a)

Therefore ,equation [5 3 1] becomes

U(a,0) , - 2'1/2 r < M  a )
U' (a ,0) T( j + | a)

which implies,

T( -  + -  a )  o^ 71/4 1/4 r i _1_ ~ ta7T 1' 4 2 ' _ -2e g [ 1 + te ]_

n 3 . i v . r t tair -1 [5 3 21- + - a) h [ 1 - te ] 1 J
4 2 L J

But we know ( See Reference [11] p 118 )

r ^ i E i  » { 1 + (■»-<■) ( p - D  + 0(w's) } (5 3.3,

as |w| — » oo m  | arg w| < n
Bearing m  mind that a =  ̂e~1/2 l A and Im A < 0 (see
Chapter 4)

then
as c — > 0+ , | a | — >co
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Hence the criteria for the relation [ 5 3 3] are satisfied
and

r (  i + - a)4 2 „  ,1 = ,-l/2

n  - + - a)v 4 2

<1 a > ,e — > 0

Examining [ 1 + teLan ]
[1 - cetan ]

we see [1 + teta7T ] = _ fl - ie ian ]
[1 - tetan ] [1 + <.e~Lan ]

we observe that since Im X < 0 and Re A < 0 then we can say 
X = - H2 where | arg Hi < tt/2
and

, 1 x -l/2TJ2-tan = -( - )e H' 2 '
which implies that e ta7T << 1 as e — » 0+

Accordingly, we can expand [1 + te ta7T ]_1 m  a Binomial 
series
r i _ - ^arr , -i r . -tair , ̂ , -2ta7T x ^  ^ n +[ 1 + ¿e ] = [ 1 - ¿e + 0 ( e  ) ] as e — » 0
Thus,

. ,  ~taTT i

~ •[1 ~ te 1—  = - [1 - <.e_ta7r] [ 1 - te“ta71 + 0(e~2iaTT) ]
[1 + <.e tan }

as e — > 0+
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[1 + ^  J = - [1 - 2tetan + 0 (e2<-a7T)] , c -» 0*
[ 1 - te 71 ]

[5 3

Inserting Equations [5 3.4] and [ 5 3 5 ]  into [5 2
observe that

r 4 a ¿a7T , / 2tan» -i p(a/2 ) ”1/2 ^ ~ [ 1  - 2ie + 0 (e ) ] [2e e ] ^

and therefore

n  - 4v,etaTT 1 4^e1/2 2 /a ~ -Li —  ,c — > 0

So ,

h2
/ <-

- [1 + 4ceian ,  , 2  ]ih
2c1/2

i [5.1 5] a = , 1 , -1/2 % ( -  ) C  t X  ' 2 7

-[1 + 4<.etan ]th2
2e1/2

,e — » 0

_ / 1/2
X ~ -h2[l + 4te ] , c  —> 0

From our perturbative analysis we know that c 
approximation to A is ( See equation [3.3.8] )

5]

2 ] we

0+

good
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X = -h2 - -  c
2h2

and as e — > 0+ , Re X ~ -h2
Therefore ,

TT
Im A ~ -4h2exp { 1/2 }{-h 2- e/2h2- . .} ,e — > 0 +

Hence,
, 2 1/2

Im A ~ -4hze n/ ,c — »■ 0+ [5 3 6 ]

Thus it is not suprismg that we were unable to pick up any
information on Im X with our perturbative expansion due to
its small size since it can be seen that Im X is o(en) for
n g IN (provided n * 0)
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Conclusion

Chapter 5 provided us with our final result for Im A That 
is

Im X ~ -4h2exp(-h27r/2e1/2) , e — > 0*. [6 1]

We observe that we have entered the area now known as 
exponential asymptotics as discussed m  Chapter 1. The 
problem , being singular in nature , was destined to produce 
such a result Regular perturbation methods provided us with 
our first estimate for Im X , ( See Chapter 3 )

X ~ -h2 - - —  - iii£3 + 0(£4) [6 2]
2h2 8h6 10h10

As e — 0+, we find X ~ -h2 from equation [6 2] above and
2 1 /2Im A tends to zero since exp[-h tt/2c ] tends to zero ( See

equation [6.1] ) . Equation [6 1] above indicates why the
regular perturbation expansion fails to convey any 
information on Im A as it is " swamped " by the comparatively
large size of Re A As we indicated m  Chapter 1 , the
exponential nature of Im A is not supnsing since the problem 
is singular m  nature.

In their paper examining the case g(x)=x , R. Paris and A
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I»  » ~ -  2 ÿ . x p { -  < §’ } , c - >  0- (6 31

Comparison of the relations [6 1] and [6.3] leads us to 
speculate that for g(x) = xn m  the model problem ,

Im X ~ -Aexp[-Be”1/n] , n = 1 , 2 , 3 ,

where A and B are positive real constants Indeed it is to 
the task of finding the behaviour of Im A for g(x) = xn that 
Mr Liu Jing Song , under the supervision of Prof. A Wood , 
has applied himself

The minute size of Im X in [6 1] can be seen clearly if we 
set the matching parameter h equal to 1 and evaluate Im X for 
small values of e. This is accomplished m  table 6 1 below

Wood find that

c ImX

0.1 
0 01 
0 001 
0 0001

-6 96x10'5 
-1.51xl0'7 
-2 67xl0‘22 
-6 04xl0~69

Table 6.1 : Values of ImA. for several values of c.

We observe that for e = 0.0001 , Im X ~ 6.04xl0"69 The vast 
majority of computers ( and their associated operating 
systems ) would not have sufficient precision to accurately
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represent a number of this size It results m  underflow 
1 e the computer treats the number as zero Thus , in this 
area "analytics" triumph over "numerics"
Finally we wish to emphasise again the existence of an 
intimate relationship between exponential asymptotics and 
Stokes phenomenon In treating this problem with g(x) = x , 
R Paris and A Wood are confronted with Stokes phenomenon 
directly because their solution was situated on a Stokes line 
for the Hankel function Thus , they were obliged to 
consider the problem of averaging across a Stokes line and 
the validity of said averaging This task was successfully 
accomplished In our case , ( 1 e the model with g(x) = x2 ) 
the solution requires asymptotics only along the anti-Stokes 
lines for U(a,z) In conclusion we state that without a 
basic awareness of the pitfalls associated with neglecting 
sub-dominant terms in asymptotic relations , one cannot be 
assured that consequent results are entirely valid
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Methods, fan ôcentuJA. and &nqASieena , ( 1978) ,McGraw
-Hill , London

M V Berry (1989) "Uniform asymptotic smoothing of 
Stokes discontinuities" *Pnac Ray ?ac. London

F B Hanson " Singular point and exponential 
asymptotics M (to be published in proceedings of 
The International Symposium on Asymptotics and 
Computational Analysis, 1989 )

W L Kath and G A Kriegsmann ( 1989) " Optical
Tunnelling. Radiation losses in bent fibre optic 
waveguides" IMA gaunnal a$ sopited Math 41, pp 85 -
103

M D Kruskal and H Segur ( 1987 ) " Nonexistence 
of Small-Amplitude Breather Solutions m  <pA Theory " 
Thy&tcal £etten& , ( 1987) , vol 58 , no 8

D. Marcuse ( 198 2 ) tiqhJt 1 naruinu,Optcoa , 2nd
edition , Van Nostrand Reinhold, New York.

R E Meyer (1986) " Quasiresonance of long life " £ 
Math Thy. 27 , (1) pp 238 - 248 .



[10] R ,E Meyer (1980) " Exponential Asymptotics" , SIAM
22 t 2 , pp 213 - 224

[11 F W.J Olver (1974) Asymptotics and Special Junctions
Academic Press, New York

[12] F W J Olver (19 59) " Uniform Asymptotic Expansions
for Weber Parabolic Cylinder Functions of Large Order 
" £aunn. ftea of. Nat 'Bwxeau o( Ptandandci - B . Math. 
And Math. Phy. Vol 63B , No 2

[13] F W J O l v e r  ( 1989) "On Stokes phenomenon and 
converging factors " (to be published in 
proceedings of The International Symposium on 
Asymptotics and Computational Analysis , 1989 )

[14] R B Paris and A D Wood (1989) M A model equation
for optical tunnelling " , IMA $cumnal 01 Applied
Math (to appear).

[15] V.L Povrovskn and I.M. Khalatnikov (1961) " On the
problem of above barrier reflection of high-energy 
particles " <̂miet Physics JETP 13 , 6 , pp 1207 -
1210

[ 16 ] J Spanier and K B. Oldham (ed. ) ( 1987) An Alias ag.
functions Hemisphere , New York.

[17] S Solimeno , B. Crosignani and P Di Porto ( 1986)
" Raiding, , Tiitfoactum and Wangmement ag optical
aadtatcon " Academic Press , New York

[18] A W  Snyder and J.D. Love (1983) Optical WaAsequide 
Iheony , Chapman and Hall , London.

61



[19] G G Stokes reprinted in " Mathematical and Physical 
Papers by the late Sir George Gabriel Stokes " (1905) 
Cambridge University Press , vol V , pp. 283-287

[20] A Wood and R. Paris " On eigenvalues with 
exponentially small imaginary part 11 (to be published 
in proceedings of The International Symposium on 
Asymptotics and Computational Analysis , Winnipeg 
1989 ) .

62


