Dublin City University
 School of Mathematical Sciences MSc Thesis

a Model Equation for the Optical Tunnelling Problem Using Parabolic Cylinder Functions

```
Neal Brazel Dip Appl Sc, BSc (Appl Sc )
```

Supervisor	Prof A D Wood
	School of Mathematical
	Sciences

This thesis is based on the candidate's own work September , 1989

ACKNOWLEDGEMENT

I would like to express my deepest appreciation and gratitude to my supervisor , Professor A.D Wood , for his invaluable advice , patience and encouragement during the last two years I would also like to thank $\operatorname{Dr} R$ Paris for his enlightening suggestions toward my research I would also lıke to express my gratıtude to Mr J Jordan for introducing me to complex analysis and boundary value problems Finally, I would like to thank my famıly, and in particular my mother, for providing me with the support (both financial and emotional) which enabled me to further my education

```
                                    To my Famıly
For their continuous encouragement and
    support throughout my education
```


Abstract

The fundamental purpose of this thesis is to estimate the exponentially small ımaginary part of the eigenvalue of a second order ordinary differential equation subject to certain stated boundary conditions This problem is modelled on a partial differential equation which arises when examining wave losses in bent fibre optic waveguides

In Chapter 1 we provide an overview of the thesis and introduce the area of mathematics known as exponential asymptotics In Chapter 2 we investigate the physical background to the problem of energy losses due to optical tunnelling in fibre optic waveguides $W e$ then derive the partial differential equation upon which we base our model. In Chapter 3 we commence by manipulating the partial differential equation into a more convenient form we then outline the model problem we shall consider and obtain a prelimınary estimate for the eigenvalue of this problem In Chapter 4 we introduce the special function known as the parabolic cylinder function and derive its asymptotic behaviour We also examıne its connection with Stokes phenomenon and deduce its Stokes and antr-Stokes lines In Chapter 5 , we finally solve the model problem by transforming it into one form of Weber's parabolic cylinder equation We then use the boundary conditions of the problem together with properties of parabolic cylinder functions to obtain a valid estimate for the imaginary part of the eigenvalue In Chapter 6 we conclude the thesis by commenting on this result and indicating future developments in this area

Table of Contents

Chapter 1 Introduction 2
Chapter 2 The physical problem 9
Chapter 3 The model problem 20
Chapter 4 Mathematical prerequisites 33
Chapter 5 Solution of the model problem 47
Chapter 6 Conclusion 57
References 60

Chapter 1

Introduction

This Chapter is partitioned into two sections In the first section, we present a condensed outline of the layout of the thesis and its origins In the second section, we briefly discuss some of the published papers which concern themselves with the world of exponential asymptotics

11 The thesis.
The inspiration for this thesis lies in work carried out by R Paris and A. Wood (See Reference [14]) who concern themselves with the model problem glven below with $g(x)=x$

$$
\begin{equation*}
\iota \phi_{t}=-\phi_{x x}-\varepsilon g(x) \phi \tag{array}
\end{equation*}
$$

with the general linear homogeneous boundary condition

$$
\begin{equation*}
\phi_{x}(0, t)+h \phi(0, t)=0 \tag{array}
\end{equation*}
$$

and for physical reasons, any solution ϕ is constrained to be an outgoing wave beyond the turning point (See Chapter 3) [In the above h is a positive constant which is essentially a matching parameter] . They in turn were motivated by the

I M A lecture entitled " Mathematics in Industry and the prevalence of the free boundary problems " given by Dr J Ockendon at the Differential Equations meeting at the Natıonal Institute of Hıgher Educatıon, Dublin (now Dublin City Unıversity, on $29 t h$ May, 1987 In this lecture, Dr Ockendon queried the validity of methods used by W Kath and G Krıegsmann in a forthcoming paper (See Reference [6]) In this paper, the authors attempt to estimate the energy loss in a fibre optic waveguide due to curvature in the fibre This requires estimating the imaginary part of an eigenvalue which $1 s$ extremely small R Paris and A Wood successfully solved the model equation $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$ with $g(x)=x$ The fundamental purpose of this thesis is to successfully treat the case $g(x)=x^{2}$

In Chapter 2 , we examıne the physical problem of energy loss in fibre optic waveguides we construct a suitable coordinate system which follows the centreline of the wavegulde whilst taking into account the curvature of sald wavegulde. We use this system together with Maxwell's equations to derive the following partial differential equation

$$
\begin{equation*}
2 \imath \mathbf{A}_{\sigma}+\mathbf{A}_{\xi \xi}+\mathbf{A}_{\eta \eta}+\mathrm{f}(\xi, \eta) \mathbf{A}+2 \mathrm{k}^{2} \delta \mathrm{~K}_{1} \alpha \mathbf{A}+0\left(\mathrm{k}^{2} \delta, \delta, 1 / \mathrm{k}^{2}\right)=0 \tag{array}
\end{equation*}
$$

We shall base our mathematıcal model upon this equation.

In Chapter 3 , we manipulate the above equation to a more
surtable form we then proceed to specify our model problem and justıfy its valıdity Carryıng out a separation of varıables on this problem finally leads us to the following model problem

$$
\begin{aligned}
& y^{\prime \prime}(x)+\left(\lambda+\varepsilon x^{2}\right) y=0 \text { on }(0, \infty) \\
& y^{\prime}(0)+h y(0)=0 \\
& y(x) \text { has controllıng behavıour } e^{\text {lp(}(x)}, x \rightarrow+\infty
\end{aligned}
$$

where $p(x)$ is a positive function of x and h is as before We then use a regular perturbation expansion to obtain a preliminary estimate for the eigenvalue λ and indicate why this method cannot produce an estimate for Im λ

In Chapter 4 , we shall assemble the mathematical tools required to solve the model problem In particular, we shall study the asymptotic behaviour of the parabolic cylinder function $U(a, z)$ In the process we shall introduce the concept of Stokes phenomenon and calculate the Stokes and antı-Stokes lines for $U(a, z)$ Finally, we deduce the asymptotic behaviour for $U(a,-z)$ using the connection formulae which exist for the parabolic cylınder functions of dıffering arguments

In Chapter 5, we use the properties of the parabolic cylinder function to solve the model problem [1.1.3] We first
transform the problem into one form of Weber's parabolic cylınder equation, of which a combination of parabolic cylinder functions provides a solution we then modify this solution to take into account the required outgoing wave condition finally, we use the boundary condition at the origin to obtain our final result That is,

$$
\begin{equation*}
\operatorname{Im} \lambda \sim-4 h^{2} \exp \left\{-\frac{h^{2} \pi}{2 \varepsilon^{1 / 2}}\right\}, \quad \varepsilon \rightarrow 0^{+} \tag{array}
\end{equation*}
$$

We conclude the thesis by commenting on this result for Im λ and briefly indicating future developments in this area

12 The world of exponential asymptotics

The difficulties associated with calculating exponentially small values were first indicated in a paper by $V \quad L$ Povrovski and I M Khalatnikov (See Reference [15]) who were interested in calculating the amplitude for above barrier reflection of a particle from a one-dimensional potential barrier They used properties of the potential in the complex plane when dealing with the Schrodinger equation

$$
\frac{d^{2} \psi}{d x^{2}}+\rho^{2} \psi=0
$$

finding that the reflection coefficient R is

$$
R=|F(\lambda)|^{2} \exp \left\{4 \iota \operatorname{Im} \int_{-\infty}^{x_{1}} \rho d x\right\}
$$

Thus the exponentially small behaviour of R is revealed

In his paper on exponential asymptotics, $R E$ Meyer (See Reference [10]) details three examples ıllustrating the need for high precision asymptotics of an unusual kind He examınes the difficulties encountered in dealing with certain situations involving the modulation of an oscillator , wave reflection and wave trapping $H e$ further outlines a method for dealing with such difficulties In a later paper he also encounters the same complexities (See Reference [9]) as does $F B$ Hanson when examining certain mathematical models for population dynamics (See Reference [5]) H Segur and M Kruskal also encounter eigenvalues with exponentially small imaginary part in their paper on the non-existence of small amplitude breather solutions (See Reference [7])

A Wood and R Paris in their paper on eigenvalues with exponentially small imaginary part (See Reference [20]) cite an example given by F W J Olver (See Reference [11] p 76) where neglect of an exponentially small error term in calculating the integral

$$
I(\varepsilon)=\int_{0}^{\pi} \frac{\cos (t / \varepsilon)}{1+t^{2}} d t
$$

results in a large relative error when compared to exact solutions $H e$ indicates that the perturbed differential equations where exponentially small behaviour arıses are of the type known as singular perturbations Singular perturbations are characterised by an abrupt change in the nature of the solutions to the problem as $\varepsilon \rightarrow 0$ Since the
model we shall consider is singular in nature, we are not
suprised by the final result for Im λ given by $\left[\begin{array}{ll}1 & 1\end{array}\right]$
In Chapter 4 , we introduce the concept of Stokes phenomenon
which is intimately linked with the appearance of these
elgenvalues with exponentially small imaginary parts
Associated with Stokes phenomenon are the Stokes multipliers
(or constants) whose property of changing value as one
crosses a Stokes line has resulted in much controversy The
controversy stems from the unknown behaviour of the
multipliers as they cross the Stokes line George Stokes'
opinion was that the change was discontinuous He wrote (See
Reference [19])
" the inferiar term [subdomınant term] enters as it were into a mist, is hidden far a little from vrev, and comes out with its coeffecient changed The range during which the inferiar term remains in a mist decreases indefinitely as the [asymptotic parameter] increases indefintely "

In recent work M V Berry (See Reference [4]) has proposed that this change occurs continuously as one approaches the Stokes line and that the value of the Stokes multiplier on this line is precisely the average of its values on either side of said line FW J. Olver recently has put this supposition on firmer mathematical footing (See Reference [13]) We believe his work finally puts to rest this most perplexing problem
The above discussion indicates the broad area in which
exponential asymptotics appears Although we shall deal with
one particular problem we cannot emphasise enough the scope
of this stimulating area of asymptotics

Chapter 2

The Physical Problem

In this chapter , we shall investigate the physical background to the problem of energy losses due to optical tunnelling in fibre optic waveguides we will first establish a suitable coordinate system and use this system to derive the partial differential equation upon which we base our mathematical model

21 Formulation of the coordinate system

We begin by describing the position of the centre of the fibre as a function of arc length

$$
\begin{equation*}
x=x_{0}(s) \tag{array}
\end{equation*}
$$

This function contains a system of local coordinates which naturally follows the fibre, that is , the unit tangent \hat{t}, normal \hat{n} and binormal \hat{b} vectors defined by the Frenet-Serret Formulae (See Reference [17] p 57) as follows [See figure 2 1].

Figure 2.1: The Frenet Serret coordinate system along the centreline of the optical fibre

$$
\begin{aligned}
& \frac{d \mathbf{x}}{d s}=\hat{t} \\
& \frac{d \hat{t}}{d s}=K \hat{n} \\
& \frac{d \hat{n}}{d s}=\tau \hat{\mathbf{b}}-K \hat{\mathbf{t}} \\
& \frac{d \hat{b}}{d s}=-\tau \hat{\mathbf{n}}
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathrm{K} \text { is the curvilinear curvature, } \\
& \tau \text { is the curvilinear torsion, }
\end{aligned}
$$

and

$$
\hat{b}=\hat{t} \times \hat{n}
$$

To change the equations into dimensionless form, we note that [2 21 l $]$ is given in dimensionless form as

$$
x_{0}(s)=\ell X(s / \ell)
$$

Where ℓ is a typical length scale for the bent centreline such as a characteristic size for the radius of curvature

Let $s=a s^{\prime}, x=a x^{\prime}, \quad K=K^{\prime} / a, \tau=\tau^{\prime} / a$ etc
and $\delta=a / \ell \ll 1$ where a is the radius of the fibre core [See Figure 2 2] Typical values of a are $a \approx 2-5 \mu \mathrm{~m}$

Figure 22 : Cross sectional view of the fibre optic waveguide

The dimensionless Frenet-Serret formula along the centreline are

$$
\begin{align*}
& \mathbf{x}^{\prime}=\frac{1}{\delta} x\left(\delta s^{\prime}\right) \\
& \frac{d \mathbf{x}^{\prime}}{d s}=\frac{d}{d s^{\prime}}\left(\frac{1}{\delta} x\left(\delta s^{\prime}\right)\right)=\hat{t}\left(\delta s^{\prime}\right) \\
& \frac{d \hat{t}}{d s}=K^{\prime} \hat{n}\left(\delta s^{\prime}\right) \tag{array}\\
& \frac{d \hat{n}}{d s}=\tau^{\prime} \hat{b}\left(\delta s^{\prime}\right)-K^{\prime} \hat{t}\left(\delta s^{\prime}\right) \\
& \frac{d \hat{b}}{d s}=-\tau^{\prime} \hat{n}\left(\delta s^{\prime}\right)
\end{align*}
$$

The function X is dependent on δs^{\prime} and hence in these scaled coordinates the position of the centreline and all functions resulting from it are slowly varying

For convenience, we shall drop the primes but it is understood that all distances remain in dimensionless form On examınıng equations $\left[\begin{array}{lll}2 & 1 & 4\end{array}\right]$, we see that the left hand sides are $O(\delta)$, thus the dimensionless curvature and torsion must also be of this order

Hence, we can rescale them as follows :

$$
\begin{equation*}
\mathrm{K}=\delta \mathrm{K}_{1}(\delta \mathrm{~s}) \text { and } \tau=\delta \tau_{1}(\delta s) \tag{array}
\end{equation*}
$$

where K_{1} and τ_{1} are both assumed to be of order 1
The Frenet-Serret formulae provide a natural co-ordinate system for following the fibre if distances are measured along the fibre in terms of the dimensionless arc length and
distances perpendicular to the fibre in terms of the dimensionless distances along the unit normal and binormal We denote this new system by (s, α, β) defined by the transformation

$$
\begin{equation*}
\mathbf{x}=\frac{1}{\delta} \mathbf{x}(\delta s)-\alpha \hat{n}(\delta s)-\beta \hat{b}(\delta s) \tag{array}
\end{equation*}
$$

where the negatıve signs are placed for convenıence only However, the Frenet-Serret frame is determined only from the position of the centreline not the entire fibre Hence the twisting or torsion of the fibre is not fully accounted for in this frame Thus a coordinate system which more accurately follows the fibre is one in which the torsion τ is removed by rotating the above system.

The transformation to this new set of coordinates (s, ξ, η) is $x=\frac{1}{\delta} \mathrm{X}(\delta \mathrm{s})+\xi[\hat{n} \cos v+\hat{\mathbf{b}} \sin v]+\eta[\hat{b} \cos v-\hat{n} \sin v]$
where

$$
\begin{equation*}
\frac{\mathrm{d} u}{\mathrm{~d} s}=-\delta \tau_{1}(\delta \mathrm{~s}) \tag{array}
\end{equation*}
$$

Defining the new vectors

$$
\begin{aligned}
& \hat{\mathbf{u}}=\hat{\mathbf{n}} \cos v+\hat{\mathbf{b}} \sin v \\
& \hat{\mathbf{v}}=\hat{\mathbf{b}} \cos v-\hat{\mathbf{n}} \sin v
\end{aligned}
$$

the transformation becomes

$$
\begin{equation*}
\mathbf{x}=\frac{1}{\delta} \mathbf{x}(\delta s)+\xi \hat{u}(\delta s)+\eta \hat{v}(\delta s) \tag{array}
\end{equation*}
$$

This new coordinate system follows more closely the orientation of the fibre

Moreover,

$$
d \mathbf{x} \cdot \mathbf{d x}=h_{1}^{2} d s^{2}+d \xi^{2}+d \eta^{2}
$$

where

$$
\begin{aligned}
\mathrm{h}_{1} & =1-\delta K_{1}(\xi \cos v-\eta \sin v) \\
& =1+\delta K_{1} \alpha
\end{aligned}
$$

Thus (s, ξ, η) define orthogonal curvilinear coordinates, glving the added advantage that it is easier to transform the equations into the new coordinates

22 Formulation of the problem

As stated by D Marcuse (See Reference [8] p 339)for weakly gulding fibres a scalar theory is a reasonable approximation This scalar approximation is obtained as follows The curl version of the time-harmonic wave equation for the electric field (assumed to be in dimensionless form) is

$$
\begin{equation*}
\nabla \times(\nabla \times E)-n^{2} k^{2} E=0 \tag{array}
\end{equation*}
$$

The magnetıc field is easily calculated once the electric field ls known

Here

$$
\begin{aligned}
\mathrm{k} & =\mathrm{k}_{\mathrm{o}} a n_{\mathrm{c}} \text { is a dimensionless wave no } \\
\mathrm{k}_{\mathrm{o}} & =\text { physical wave no } \\
\mathrm{n}_{\mathrm{c}} & =\text { refractive index of the cladding } \\
\mathrm{n} & =\mathrm{n}_{\mathrm{o}} / \mathrm{n}_{\mathrm{c}} \text { is the normalised index of refraction }
\end{aligned}
$$

The weakly gulding approximation is made by assuming that the refractive index of the cladding and the core differ only slightly.
[Typıcal values for a monomode fibre are $k \approx 15-40$ where $\mathrm{k}_{\mathrm{o}} \approx 6 \times 10^{4} \mathrm{~cm}^{-1}, \mathrm{a} \approx 2-5 \mu \mathrm{~m}, \mathrm{n}_{\mathrm{c}} \approx 13 \mathrm{j}$ (See Reference [18])

Typical values of n^{2} suggest that the correct scaling should be

$$
\begin{equation*}
n^{2}=1+\frac{f(\xi, \eta)}{k^{2}} \tag{array}
\end{equation*}
$$

where $f(\xi, \eta)$ is $O(1)$ and is non-zero only in the core region [See Figure 23 below]

Figure 2.3 : Schematic of the behaviour of $f(\xi, \eta)$

We now make the paraxıal approximation (See Reference [8])

$$
\mathbf{E}=\mathbf{A}(\sigma, \xi, \eta) \mathrm{e}^{\imath \mathrm{ks}} \quad, \sigma=\mathrm{s} / \mathrm{k} \quad\left[\begin{array}{lll}
2 & 2 & 3
\end{array}\right]
$$

1 e we say that the main propagation direction of the electromagnetic energy is along the length of the fibre Substituting into Maxwell's equations $\left[\begin{array}{lll}2 & 2 & 1\end{array}\right]$ using the coordinate system (s, ξ, η) where in this system

$$
\mathrm{A}=\mathrm{A}_{1} \hat{\mathrm{t}}+\mathrm{A}_{2} \hat{\mathrm{u}}+\mathrm{A}_{3} \hat{\mathbf{v}} \quad\left[\begin{array}{lll}
2 & 2 & 4
\end{array}\right],
$$

we find

$$
\begin{equation*}
A_{1}=\frac{l}{k}\left(A_{2 \xi}+A_{3 \eta}\right)+O\left(1 / k^{3}, \delta / k\right) \tag{array}
\end{equation*}
$$

Thus the longıtudinal electric field component is smaller than the others by a factor of $1 / k$, so that the field $1 s$ mainly transverse Both components of the transverse field obey the same equation, namely

$$
\begin{equation*}
2 \imath A_{\jmath \sigma}+A_{\xi \xi}+A_{\jmath \eta \eta}+f(\xi, \eta) A_{j}+2 k^{2} \delta K_{1} \alpha A_{j}+O\left(k^{2} \delta, \delta, 1 / k^{2}\right)=0, \tag{array}
\end{equation*}
$$

$J=2,3$
Finally, $1 f$ we assume that the curvature produces an effect comparable with the scaled index of refraction difference $f(\xi, \eta)$ then this means we should take $k^{2} \delta=1$ Combining this with the range of reasonable values of $k, 1 e k \approx 15-40$, gives a dimensional radıus of curvature of the order of a few millımetres, which is too small.

Therefore , assumıng that

$$
\begin{equation*}
\delta=1 / \mathrm{k}^{3} \tag{array}
\end{equation*}
$$

(glving a radius of curvature in the range of a few centimetres to a few tens of centimetres) is a more logical cholce for δ

With this choice of δ and neglecting all of the small terms, $O\left(1 / k^{2}\right)$ and smaller, we then obtain the equation

$$
\begin{equation*}
2 \iota A_{\sigma}+A_{\eta \eta}+A_{\xi \xi}+f(\xi, \eta) A+\frac{1}{k} 2 K_{1} \alpha A=0 \tag{array}
\end{equation*}
$$

where again $\alpha=\xi \cos u-\eta \sin v$ and 1 n these new co-ordinates

$$
\begin{equation*}
\frac{\mathrm{d} v}{\mathrm{~d} \sigma}=\frac{1}{\mathrm{k}^{2}} \tau_{1}\left(\sigma / \mathrm{k}^{2}\right) \tag{array}
\end{equation*}
$$

23 Physical Explanation

From equation [2 2.8] we see that, after the approximations have been made, the only effect of the curvature is to introduce a perturbation into the index of refraction, which is small in the core but not in the cladding where α is large. We can explain this curvature perturbation by viewing the situation in normal cartesian coordinates [See Figure $24]$

Figure 24 . Energy loss out of the core region

In this co-ordinate system, we see that energy for large positive values of α (out in the evanescent tail of the mode) must travel further than energy propagating in the core region. On transforming to the local coordınate system following the fibre the influence of this extra distance is changed to an effective slowing of the wave via an increased index of refraction.

The loss of energy in the mode can be explained as follows As one moves away from the core eventually a point is reached where the energy propagating in the evanescent tall cannot keep up with the main part of the wave propagating in the
core and thereby changes from an evanescent to a propagating wave The energy is then shed as it radiates away into the cladding Of course, because this happens in the evanescent part of the mode the energy loss is not dramatic but over a lengthy run can be significant

This thesis $1 s$ primarily an attempt to understand mathematically how this small but ımportant energy loss occurs We set out to achieve this aim by examıning a model equation which essentially exhibits the same behaviour as equation $\left[\begin{array}{lll}2 & 2 & 8\end{array}\right]$

Chapter 3

The Model Problem

In this chapter , we begin by manipulating the partial differential equation $\left[\begin{array}{lll}2 & 2 & 8\end{array}\right]$ to a more convenient form we then outline the model problem we shall consider and finally obtain a preliminary estimate for the elgenvalue of the model problem

31 Prelımınaries

To obtain an estımate for the small, but $1 m p o r t a n t$, energy loss caused by bending the fibre optic waveguide, we must examine equation $[2.28]$ reproduced below for convenience

$$
\begin{equation*}
2 \ell \mathbf{A}_{\sigma}+\mathbf{A}_{\xi \xi}+\mathbf{A}_{\eta \eta}+\mathrm{f}(\xi, \eta) \mathbf{A}+\frac{1}{\mathrm{k}} \mathrm{~K}_{1} \alpha \mathbf{A}=0 \tag{array}
\end{equation*}
$$

It should be noted that α ls a linear combination of ξ and η (see equation $\left[\begin{array}{lll}2 & 1 & 7\end{array}\right]$).

Kath and Krıegsmann (See Reference [6]) use a varıation of the following procedure

Set

$$
\mathbf{A}(\sigma, \xi, \eta)=Y(\xi, \eta) e^{-\ell \Lambda \sigma}
$$

which gives

$$
\begin{equation*}
\nabla^{2} y+f(\xi, \eta) y-2 \Lambda y+\frac{2 K_{1} \alpha}{k} y=0 \tag{array}
\end{equation*}
$$

Note that Λ is basically the difference between the propagation constant of the mode and k The decay rate 15 Im Λ which must be positive

We can simplify the form of equation $\left[\begin{array}{lll}3 & 1 & 2\end{array}\right]$ slightly by making the substitutions

$$
\begin{array}{ll}
\varepsilon & =\frac{2 \mathrm{~K}_{1}}{\mathrm{k}} \\
\lambda & =-2 \Lambda
\end{array}\left[\begin{array}{ccc}
3 & 1 & 3 \mathrm{a}
\end{array}\right]
$$

Observe that since $\operatorname{Im} \Lambda$ must be positive then $\operatorname{Im} \lambda$ must be negative Equation [$\left.\begin{array}{lll}3 & 1 & 2\end{array}\right]$ thus becomes

$$
\begin{equation*}
\nabla^{2} y+f(\xi, \eta) y+\lambda y+\varepsilon \alpha y=0 \tag{array}
\end{equation*}
$$

A regular perturbation expansion of the form
$y=y_{0}+\varepsilon y_{1}+\varepsilon^{2} y_{2}+\varepsilon^{3} y_{3}+$.
$\lambda=\lambda_{0}+\varepsilon \lambda_{1}+\varepsilon^{2} \lambda_{2}+\varepsilon^{3} \lambda_{3}+$.
fails to yield any information on Im λ (See section 3)

Indeed Kath and Kriegsmann show that using this method, $\operatorname{Im} \lambda_{\mathrm{n}}=0 \quad \forall \mathrm{n}=0,1,2, \ldots$

However by assuming y and λ are of the form [3 1 5] we are stating that the changes caused by the perturbation are all small which is true in the core, but in the cladding region, the perturbation $\varepsilon \alpha$ is not small Thus we must use alternative methods for finding Im λ

32 Derivation of the model problem

In order to gain more information on the problem of estimating the small, but crucial, imaginary part of the eigenvalue in equation [3 1 4] above, the following one dimensional problem will be examıned

In the original problem, for small ε, we are in the cladding region where the perturbation $f(\xi, \eta)$ in the refractive index is zero We are interested in the neighbourhood of a turning point which is situated well into the cladding region Therefore, we feel justified in considering the following model problem •

$$
\begin{equation*}
\imath \phi_{t}=-\phi_{x x}-\varepsilon g(x) \phi \tag{array}
\end{equation*}
$$

with the general linear homogenous boundary condition

$$
\phi_{\mathrm{x}}(0, \mathrm{t})+\phi(0, \mathrm{t})=0 \quad\left[\begin{array}{lll}
3 & 2 & 1 \mathrm{a}
\end{array}\right]
$$

where the positive constant h is essentially a matching parameter

The case $g(x)=x$ has been successfully dealt with by Parıs and Wood (See Reference [14]) We examıne here the case when
the perturbation in the refractive index can be described by $g(x)=x^{2}$.

Equation $\left[\begin{array}{lll}3 & 2 & 1\end{array}\right]$ has the same structure as equation $\left[\begin{array}{lll}3 & 1 & 1\end{array}\right]$ yet has an exact solution in terms of parabolic cylinder functions which permits a rigorous mathematical analysis

Making the same separation of variables

$$
\phi(x, t)=e^{-\imath \lambda t} y(x) \text { wath } \operatorname{Im} \lambda<0,
$$

then Equation [3 2 1] becomes

$$
e^{-\imath \lambda t} \lambda y(x)=-e^{-\iota \lambda t} y^{\prime \prime}(x)-\varepsilon x^{2} e^{-\iota \lambda t} y(x)
$$

Hence,

$$
y^{\prime \prime}(x)+\left(\lambda+\varepsilon x^{2}\right) y(x)=0
$$

with the boundary condition becoming

$$
e^{-\imath \lambda t} y^{\prime}(0)+e^{-\imath \lambda t} h y(0)=0
$$

that 15 ,

$$
y^{\prime}(0)+h y(0)=0
$$

The physical discussion in Chapter 2 indicates that the solution must be an outgoing wave beyond the turning point at $x=\sqrt{-\frac{\lambda}{\varepsilon}}$

We express this condition by constraining any solution y to have controlling behaviour of the form $e^{\ell p(x)}$, where $p(x)$ is a positive function in x as $x \rightarrow+\infty$.

Thus our model problem is of the form

$$
\begin{align*}
y^{\prime \prime}(x)+\left(\lambda+\varepsilon x^{2}\right) y(x) & =0 \tag{array}\\
y^{\prime}(0)+h y(0) & =0 \tag{array}
\end{align*}
$$

$Y(x)$ has controlling behavıour $e^{\iota p(x)}, x \rightarrow+\infty \quad\left[\begin{array}{lll}3 & 2 & 2 b\end{array}\right]$
where $p(x)$ is a positive function in x, h is a positive constant and $\varepsilon>0$

33 A "trial" solution using regular perturbation methods We first attempt a trial solution of the form

$$
\begin{aligned}
y(x) & =\sum_{n=0}^{\infty} Y_{n}(x) \varepsilon^{n} \\
\lambda & =\sum_{n=0}^{\infty} \lambda_{n} \varepsilon^{n}
\end{aligned}
$$

Substituting into equation $\left[\begin{array}{lll}3 & 2 & 2\end{array}\right]$ we find

$$
\begin{array}{r}
\sum_{n=0}^{\infty} Y_{n}^{\prime \prime}(x) \varepsilon^{n}+\sum_{n=0}^{\infty}\left(\lambda_{n} Y_{0}+\lambda_{n-1} Y_{1}+\quad+\lambda_{0} y_{n}\right) \varepsilon^{n}+ \\
x^{2} \sum_{n=0}^{\infty} Y_{n}(x) \varepsilon^{n+1}=0 \tag{array}
\end{array}
$$

Comparing powers of ε we see

\square

$$
\begin{array}{r}
y_{0}^{\prime \prime}+\lambda_{0} y_{0}=0 \\
\text { Choosing } y_{0}(x)=e^{\ell \sqrt{\lambda_{0}}} x
\end{array}
$$

then from equation [3 2 2a] we have

$$
\begin{aligned}
& & \sqrt[l]{\lambda_{0}}+h & =0 \\
\Rightarrow & & \lambda_{0} & =-h^{2} \\
\Rightarrow & & y_{0}(x) & =e^{-h x}
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{y}_{1}^{\prime \prime}+\lambda_{0} y_{1}+\lambda_{1} y_{0}+\mathrm{x}^{2} \mathrm{y}_{0}=0 \\
\mathrm{y}_{1}^{\prime \prime}+\lambda_{0} \mathrm{y}_{1}+\left(\lambda_{1}+\mathrm{x}^{2}\right) \mathrm{y}_{0}=0 \\
\mathrm{y}_{0} \mathrm{y}_{1}^{\prime \prime}+\lambda_{0} y_{1} \mathrm{y}_{0}+\left(\lambda_{1}+\mathrm{x}^{2}\right) \mathrm{y}_{0}^{2}=0
\end{gathered}
$$

But $Y_{0}^{\prime \prime}+\lambda_{0} Y_{0}=0$
hence,

$$
\begin{equation*}
y_{0} y_{1}^{\prime \prime}-y_{1} y_{0}^{\prime \prime}+\left(\lambda_{1}+x^{2}\right) y_{0}^{2}=0 \tag{array}
\end{equation*}
$$

thus,

$$
\int_{0}^{\infty} y_{0} y_{1}^{\prime \prime} d x-\int_{0}^{\infty} y_{1} y_{0}^{\prime \prime} d x+\int_{0}^{\infty}\left(\lambda_{1}+x^{2}\right) y_{0}^{2} d x=0
$$

But $\quad \int_{0}^{\infty} y_{0} y_{1}^{\prime \prime} d x=\int_{0}^{\infty} e^{-h x_{1}^{\prime \prime}} y_{1}^{\prime} d x$
On integrating by parts twice and using the boundary condition at the origin for the zeroth order equation, we find

$$
\int_{0}^{\infty} y_{0} Y_{1}^{\prime \prime} d x=h^{2} \int_{0}^{\infty} e^{-h x_{y_{1}}} d x
$$

Equation $\left[\begin{array}{lll}3 & 3 & 4\end{array}\right]$ then becomes

$$
h^{2} \int_{0}^{\infty} y_{1} e^{-h x_{d x}}-h^{2} \int_{0}^{\infty} y_{1} e^{-h x} d x+\int_{0}^{\infty}\left(\lambda_{1}+x^{2}\right) e^{-2 h x} d x=0
$$

Thus,

$$
\int_{0}^{\infty}\left(\lambda_{1}+x^{2}\right) e^{-2 h x} d x=0
$$

That 1 s ,

$$
\lambda_{1}=\frac{\int_{0}^{\infty} x^{2} e^{-2 h x} d x}{\int_{0}^{\infty} e^{-2 h x} d x}
$$

Straightforward integration provides

$$
\lambda_{1}=\frac{-1}{2 h^{2}}
$$

Substituting this result into equation [$\left.\begin{array}{lll}3 & 3 & 3\end{array}\right]$ we find

$$
\begin{aligned}
& y_{1}^{\prime \prime}=\lambda_{0} y_{1}-\left[\frac{1}{2 h^{2}}-x^{2}\right] y_{0}=0 \\
& \Rightarrow y_{1}^{\prime \prime}-h^{2} y_{1}=\left[\frac{1}{2 h^{2}}-x^{2}\right] e^{-h x}
\end{aligned}
$$

We shall solve this inhomogeneous second order differential equation as follows The associated homogeneous equation is

$$
y_{1 p}^{\prime \prime}-h^{2} y_{1 p}=0
$$

We choose $y_{1 p}=e^{-h x}$ as a solution
Assume $y_{1 c}=\left[A x^{3}+B x^{2}+C x\right] e^{-h x}$
then $\quad y_{1 c}^{\prime}=\left[3 A x^{2}+2 B x+C-h A x^{3}-h B x^{2}-h C x\right] e^{-h x}$

$$
\begin{aligned}
\Rightarrow \quad Y_{1 c}^{\prime}= & {\left[-h A x^{3}+(3 A-h B) x^{2}(2 B-h C) X\right] e^{-h x} } \\
\Rightarrow \quad Y_{1 c}^{\prime \prime}= & \left\{h^{2} A x^{3}+\left(-3 A h+h^{2} B\right) x^{2}+\left(h^{2} C-2 h B\right) x-h C\right. \\
& \left.-3 A h x^{2}+(6 A-2 h B) x+2 B-2 C\right\} e^{-h x} \\
= & \left\{h^{2} A x^{3}+\left(h^{2} B-6 A h\right) x^{2}+\left(h^{2} C+6 A-4 h B\right) x+\right. \\
& (2 B-2 h C)\} e^{-h x} \\
\text { Now } \quad-h^{2} y_{1 c}= & {\left[-h^{2} A x^{3}-h^{2} B x^{2}-h^{2} C x\right] e^{-h x} }
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& y_{1 c}^{\prime \prime}-h^{2} y_{1 c}=\left[-6 A h^{2}+(6 A-4 h B) x+(2 b-2 h C)\right] e^{-h x} \\
&=\left[\frac{1}{2 h^{2}}-x^{2}\right] e^{-h x} \\
& \Rightarrow \quad\left[-6 A h^{2}+(6 A-4 h B) x+(2 b-2 h C)\right]=\left[\frac{1}{2 h^{2}}-x^{2}\right] e^{-h x}
\end{aligned}
$$

Equating powers of x gives

$$
\begin{aligned}
& -6 A h=-1 \quad \Rightarrow \quad A=\frac{1}{6 h} \\
& 6 A-4 h B=0 \quad \Rightarrow B=\frac{1}{4 h^{2}} \\
& 2 B-2 h C=0 \quad \Rightarrow C=0
\end{aligned}
$$

Thus

$$
y_{1 c}=\frac{\left(2 h x^{3}+3 x^{2}\right)}{12 h^{2}} e^{-h x}
$$

and

$$
y_{1}=e^{-h x}+\frac{\left(2 h x^{3}+3 x^{2}\right)}{12 h^{2}} e^{-h x}
$$

\square

$$
y_{2}^{\prime \prime}+\lambda_{2} y_{0}+\lambda_{1} y_{1}+\lambda_{0} y_{2}+x^{2} y_{1}=0
$$

$$
\begin{array}{lr}
\Rightarrow & y_{2}^{\prime \prime}+\lambda_{2} y_{0}+\left(\lambda_{1}+x^{2}\right) y_{1}+\lambda_{0} y_{2}=0 \\
\Rightarrow & y_{0} Y_{2}^{\prime \prime}+\lambda_{2} y_{0}^{2}+\left(\lambda_{1}+x^{2}\right) y_{1} y_{0}+\lambda_{0} y_{0} y_{2}=0
\end{array}
$$

$$
\text { But } \mathrm{y}_{0}^{\prime \prime}+\lambda_{0} \mathrm{y}_{0}=0
$$

$$
\Rightarrow \quad y_{0} y_{2}^{\prime \prime}+\lambda_{2} y_{0}^{2}+\left(\lambda_{1}+x^{2}\right) y_{1} y_{0}-y_{0}^{\prime \prime} y_{2}=0 \quad\left[\begin{array}{lll}
3 & 3 & 5
\end{array}\right]
$$

$\Rightarrow \int_{0}^{\infty} y_{0} y_{2}^{\prime \prime} d x-\int_{0}^{\infty} y_{0}^{\prime \prime} y_{2} d x+\int_{0}^{\infty} \lambda_{2} y_{0}^{2} d x+\int_{0}^{\infty}\left(\lambda_{1}+x^{2}\right) y_{1} y_{0} d x=0$

Now $\int_{0}^{\infty} y_{0} y_{2}^{\prime \prime} d x=\int_{0}^{\infty} e^{-h x_{y}^{\prime}} y_{2}^{\prime d x}$
On integrating by parts twice and using the boundary condition at the origin for the zeroth order equation this becomes

$$
\int_{0}^{\infty} y_{0} y_{2}^{\prime \prime} \mathrm{dx}=\mathrm{h}^{2} \int_{0}^{\infty} y_{0} y_{2} \mathrm{dx}
$$

Also

$$
\int_{0}^{\infty} y_{2} y_{0}^{\prime \prime} d x=h^{2} \int_{0}^{\infty} y_{0} y_{2} d x
$$

Substituting these results into equation [3 3 5] we find

$$
\begin{array}{ll}
& \int_{0}^{\infty} \lambda_{2} y_{0}^{2} d x+\int_{0}^{\infty}\left(\lambda_{1}+x^{2}\right) y_{1} y_{0} d x=0 \\
\Rightarrow \quad & \lambda_{2}=\frac{\int_{0}^{\infty}\left(\lambda_{1}+x^{2}\right) y_{1} y_{0} d x}{\int_{0}^{\infty} y_{0}^{2} d x} \tag{array}
\end{array}
$$

But,

$$
\int_{0}^{\infty}\left(\lambda_{1}+x^{2}\right) Y_{1} Y_{0} d x
$$

$$
\begin{aligned}
= & \int_{0}^{\infty}\left(\frac{-1}{2 h^{2}}+x^{2}\right) e^{-h x}\left[e^{-h x}+e^{-h x}\left(\frac{2 h x^{3}+3 x^{2}}{12 h^{2}}\right) d x\right. \\
= & \frac{-1}{2 h^{2}} \int_{0}^{\infty} e^{-2 h x_{0}} d x-\frac{1}{2 h^{2}} \int_{0}^{\infty} e^{-2 h x}\left(\frac{2 h x^{3}+3 x^{2}}{12 h^{2}}\right) d x \\
& +\int_{0}^{\infty} e^{-2 h x_{x^{2}} d x}+\int_{0}^{\infty} e^{-2 h x}\left(\frac{2 h x^{5}+3 x^{4}}{12 h^{2}}\right) d x \\
= & \frac{-1}{2 h^{2}} \int_{0}^{\infty} e^{-2 h x_{d}} d x-\frac{1}{12 h^{3}} \int_{0}^{\infty} e^{-2 h x_{x}^{3} d x-\frac{1}{8 h^{4}} \int_{0}^{\infty} e^{-2 h x} x^{2} d x} \\
& +\int_{0}^{\infty} e^{-2 h x^{2} d x}+\frac{1}{6 h} \int_{0}^{\infty} e^{-2 h x_{x}^{5} d x}+\frac{1}{4 h^{2}} \int_{0}^{\infty} e^{-2 h x_{x^{4}} d x} \\
= & \frac{-1}{2 h^{2}}\left(\frac{1}{2 h}\right)-\frac{1}{12 h^{3}}\left(\frac{3}{8 h^{4}}\right)-\frac{1}{8 h^{4}}\left(\frac{1}{4 h^{3}}\right) \\
& +\frac{1}{4 h^{3}}+\frac{1}{6 h}\left(\frac{15}{8 h^{6}}\right) \\
& =\frac{7}{16 h^{7}}
\end{aligned}
$$

And $\quad \int_{0}^{\infty} y_{0}^{2} d x=\int_{0}^{\infty} e^{-2 h x} d x$

$$
=\frac{1}{2 \mathrm{~h}}
$$

Thus

$$
\lambda_{2}=-\frac{7}{8 h^{6}}
$$

Equation [$\left.\begin{array}{lll}3 & 3 & 5\end{array}\right]$ then becomes

$$
y_{2}^{\prime \prime}-\frac{7}{8 h^{6}} e^{-h x}-\frac{1}{2 h^{2}}\left(1+\frac{2 h x^{3}+3 x^{2}}{12 h^{2}}\right) e^{-h x}-h^{2} y_{2}
$$

$$
+x^{2}\left(1+\frac{2 h x^{3}+3 x^{2}}{12 h^{2}}\right) e^{-h x}=0
$$

$$
\begin{aligned}
\Rightarrow Y_{2}^{\prime \prime} & -h^{2} Y_{2}+\left\{\left(1+\frac{2 h x^{3}+3 x^{2}}{12 h^{2}}\right)\left(x^{2}-\frac{1}{2 h^{2}}\right)-\frac{7}{8 h^{6}}\right\} e^{-h x} \\
& =0
\end{aligned}
$$

Using the MACSYMA ${ }^{(0)}$ computer package, the solution Y_{2} is found to be

$$
\begin{gathered}
y_{2}=\frac{1}{1440 h^{6}}\left[20 h^{4} x^{6}+96 h^{3} x^{5}+2-25 h^{4} x^{4}+\left(240 h^{5}+420 h\right) x^{3}\right. \\
\left.+\left(360 h^{4}+630\right) x^{2}\right] e^{-h x}+e^{-h x}
\end{gathered}
$$

$$
\varepsilon^{3} \quad y_{3}^{\prime \prime}+\lambda_{3} y_{3}+\lambda_{2} y_{1}+\lambda_{1} y_{2}+\lambda_{0} y_{3}+x^{2} y_{2}=0
$$

$$
\Rightarrow \quad Y_{0} Y_{3}^{\prime \prime}+\lambda_{3} Y_{0}^{2}+\lambda_{2} y_{1} Y_{0}+\lambda_{1} Y_{2} Y_{0}+\lambda_{0} Y_{3} Y_{0}+x^{2} y_{2} Y_{0}=0
$$

Again $\quad \lambda_{0} y_{0}=-y_{0}^{\prime \prime}$

$$
\begin{aligned}
& \Rightarrow \quad y_{0} y_{3}^{\prime \prime}-y_{0}^{\prime \prime} y_{3}+\lambda_{3} y_{0}^{2}+\lambda_{2} y_{1} y_{0}+\lambda_{1} y_{2} y_{0}+x^{2} y_{2} y_{0}=0 \\
& \Rightarrow \int_{0}^{\infty} y_{0} y_{3}^{\prime \prime} d x-\int_{0}^{\infty} y_{0}^{\prime \prime} y_{3} d x+\int_{0}^{\infty} \lambda_{3} y_{0}^{2} d x \int_{0}^{\infty} \lambda_{2} y_{1} y_{0} d x+\int_{0}^{\infty} \lambda_{1} y_{2} y_{0} d x \\
& +\int_{0}^{\infty} x^{2} y_{2} y_{0} d x=0
\end{aligned}
$$

And as before

$$
\lambda_{3}=-\frac{\int_{0}^{\infty} \lambda_{2} Y_{1} Y_{0} d x+\int_{0}^{\infty} \lambda_{1} y_{2} y_{0} d x+\int_{0}^{\infty} x^{2} y_{2} Y_{0} d x}{\int_{0}^{\infty} Y_{0}^{2} d x}
$$

Using MACSYMA, this turned out to be

$$
\lambda_{3}=\frac{-1}{128 h^{10}}\left\{-112 h^{4}+28-64 h^{8}-16 h^{4}-69+64 h^{8}+128 h^{4}+1065\right\}
$$

that 15 ,

$$
\lambda_{3}=-\frac{121}{16 h^{10}}
$$

Thus a regular perturbation expansion yields

$$
\begin{equation*}
\lambda=-h^{2}-\frac{\varepsilon}{2 h^{2}}-\frac{7 \varepsilon^{2}}{8 h^{6}}-\frac{121 \varepsilon^{3}}{16 h^{10}}+O\left(\varepsilon^{4}\right) \tag{array}
\end{equation*}
$$

It is apparent that this method yields no information on Im λ This is not suprising since it can be seen that the components of $Y(x)$ above fall to satisfy the outgoing wave condition [3 2 2b]

In fact, it is this condition that makes the problem singular in nature and hence regular perturbative methods are destined to fall It should be noted however that [3.3 8] above is a valid estimate for $\operatorname{Re} \lambda$ However, since it

[^0]
Chapter 4

Mathematıcal Prerequisites

In this chapter we shall derive the asymptotic expansion for the parabolic cylinder function $U(a, z)$ and discuss its varıous properties We shall also examine its connection with Stokes phenomenon and derive the Stokes and antı-Stokes lines for $U(a, z)$
4.1 The asymptotic behaviour of $U(a, z)$

We first consider the following second order ordinary differential equation which is one form of Weber's equation

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}=\left(\frac{1}{4} x^{2}+a\right) y \tag{array}
\end{equation*}
$$

Using the Liouville Green approximation (Reference
Chapter 3) we first assume

$$
\begin{equation*}
y=e^{S(x)} \tag{array}
\end{equation*}
$$

Substituting this into [4.1 1] we obtain

$$
\begin{equation*}
S^{\prime \prime}(x)+\left(S^{\prime}(x)\right)^{2}=\frac{1}{4} x^{2}+a \tag{array}
\end{equation*}
$$

Making the approximations

$$
S^{\prime \prime}(x) \ll\left(S^{\prime}(x)\right)^{2}, a \ll \frac{1}{4} x^{2} \quad, x \rightarrow+\infty \quad\left[\begin{array}{lll}
4 & 1 & 4
\end{array}\right]
$$

glves the asymptotic differential equation

$$
\begin{equation*}
\left(S^{\prime}\right)^{2} \sim \frac{1}{4} x^{2} \quad, x \rightarrow+\infty \tag{array}
\end{equation*}
$$

whose solutions are

$$
S(x) \sim \pm \frac{1}{4} x^{2}, x \rightarrow+\infty
$$

We have now determıned that the possible controlling factors of the leading behaviour of $y(x)$ are

$$
\begin{align*}
e^{S_{1}(x)} & =e^{x^{2} / 4} \tag{array}\\
e^{S_{2}(x)} & =e^{-x^{2} / 4}
\end{align*}
$$

and
To derıve the leading behaviour of $y(x)$ for large x, we re-examıne equation [$\left.\begin{array}{lll}4 & 1 & 5\end{array}\right]$

$$
\text { If } \quad\left(S^{\prime}\right)^{2} \sim \frac{1}{4} x^{2} \quad, x \rightarrow+\infty
$$

then

$$
S(x) \sim \pm \frac{1}{4} x^{2}+C(x), x \rightarrow+\infty
$$

where

$$
C(x) \ll \frac{1}{4} x^{2} \text { as } x \rightarrow+\infty
$$

Substituting $S_{1}(x)=\frac{1}{4} x^{2}+C(x), x \rightarrow+\infty$ into equation [4 1 3] we find

$$
\begin{aligned}
& \frac{1}{2}+C^{\prime \prime}(x)+\left[\left(\frac{1}{2} x+C^{\prime}(x)\right]^{2}=\frac{1}{4} x^{2}+a\right. \\
\Rightarrow \quad & \frac{1}{2}+C^{\prime \prime}(x)+\left[C^{\prime}(x)\right]^{2}+\frac{1}{4} x^{2}+x C^{\prime}(x)=\frac{1}{4} x^{2}+a \\
\Rightarrow \quad & \frac{1}{2}+C^{\prime \prime}(x)+\left[C^{\prime}(x)\right]^{2}+x C^{\prime}(x)=a \quad\left[\begin{array}{lll}
4 & 1 & 7
\end{array}\right]
\end{aligned}
$$

Making the approximations $C^{\prime \prime}(x) 《 \frac{1}{2}, x \rightarrow+\infty \quad$ and $\left(C^{\prime}(x)\right)^{2} \ll x C^{\prime}(x), x \rightarrow+\infty \quad\{$ we note that these approximations follow from $\left.C(x) 《 \frac{1}{4} x^{2}, x \rightarrow+\infty\right\}$ we find that equation [4.17] becomes

Thus

$$
C^{\prime}(x) \sim \frac{a-1 / 2}{x}, x \rightarrow+\infty
$$

and

$$
C(x) \sim(a-1 / 2) \ln x, x \rightarrow+\infty
$$

Therefore, we find that

$$
\begin{equation*}
y_{1}(x) \sim c_{1} x^{a-1 / 2} e^{x^{2} / 4}, x \rightarrow+\infty \tag{array}
\end{equation*}
$$

On substituting $S_{2}(x)=-\frac{1}{4} x^{2}+C(x), x \rightarrow+\infty$ into equation $\left[\begin{array}{lll}4 & 1 & 3\end{array}\right]$ we find

$$
\begin{aligned}
& -\frac{1}{2}+C^{\prime \prime}(x)+\left[\left(-\frac{1}{2} x+C^{\prime}(x)\right]^{2}=\frac{1}{4} x^{2}+a\right. \\
\Rightarrow & -\frac{1}{2}+C^{\prime}(x)+\left[C^{\prime}(x)\right]^{2}-x C^{\prime}(x)=a
\end{aligned}
$$

Making the same approximations as before, we find

$$
\begin{aligned}
& -x C^{\prime}(x) \\
\Rightarrow & \quad C^{\prime}(x) \sim \frac{(-a-1 / 2)}{x}, x \rightarrow+\infty \\
\Rightarrow & \quad C^{\prime}(x) \sim(-a-1 / 2) \ln x, x \rightarrow+\infty
\end{aligned}
$$

Therefore, we see that

$$
y_{2}(x) \sim c_{2} x^{-a-1 / 2} e^{-x^{2} / 4} \quad, x \rightarrow+\infty \quad\left[\begin{array}{lll}
4 & 1 & 9
\end{array}\right]
$$

It is conventional to define the parabolic cylinder function $U(a, x)$ to be that solution of equation $\left[\begin{array}{lll}4 & 1 & 1\end{array}\right]$ whose asymptotic behaviour is given by [41.9$]$ with $c_{2}=1$ This means that $c_{1}=0$ because we observe that $U(a, x)$ is subdominant on the positive x-axis and for it to be a
solution we must eliminate the dominant behaviour given by $\left[\begin{array}{ll}4 & 1.6\end{array}\right]$

In general, the principal solution $U(a, z)$ to the equation

$$
\begin{equation*}
\frac{d^{2} w}{d z^{2}}=\left(\frac{1}{4} z^{2}+a\right) w \tag{array}
\end{equation*}
$$

15 determined by

$$
U(a, z)=z^{-a-1 / 2} e^{-z^{2} / 4} \text { as } z \rightarrow \infty \quad\left[\begin{array}{lll}
4 & 1 & 11
\end{array}\right]
$$

Other solutions to $\left[\begin{array}{lll}4 & 1 & 10\end{array}\right]$ are $U(-a, \pm \iota z)$ and $U(a,-z)$ We shall refrain from discussing these solutions and their connection formulae untıl we have introduced Stokes phenomenon

Figure 41 overleaf illustrates typical level curves of $U(a, x)$ where x and a are both real

Figure 4.1 : Level curves of the parabolic cylinder function $U(a, x)$.

We have seen in $[41.11]$ that the solution $U(a, z)$ of the differential equation $\left[\begin{array}{lll}4 & 1 & 10\end{array}\right]$ satisfies

$$
U(a, z)=z^{-a-1 / 2} e^{-z^{2} / 4} \text { as } z \rightarrow+\infty
$$

as z tends to infinity along the positive real axis We now consider what happens when z is allowed to approach infinity along any path in the complex plane There are two difficulties with this The first is that $U(a, z)$ is an analytıc function of z, defined by a convergent series for $|z|<\infty$, while the right-hand-side of the asymptotic equivalence $1 s$ a multi-valued function of the complex variable z, with branch points at $z=0, \infty$ we cannot sensibly define an analytic function to be asymptotic to a non-analytıc function The second difficulty arıses from the fact that the leading asymptotic behaviour of $U(a, z)$ as $z \rightarrow \infty$ along the negative real axis can be shown to be different from that along the positive real axis A simpler example of the same behaviour arıses in the function

$$
g(z)=\sinh \left(\frac{1}{z}\right)=\frac{1}{2}\left(e^{1 / z}-e^{-1 / z}\right)
$$

which has leading behavıours

$$
\begin{aligned}
& g(z) \sim \frac{1}{2} e^{1 / z} \quad \text { as } z \rightarrow 0 \text { in }|\arg z|<\frac{\pi}{2} \\
& g(z) \sim \frac{1}{2} e^{-1 / z} \text { as } z \rightarrow 0 \text { in } \frac{\pi}{2}<|\arg z|<\frac{3 \pi}{2}
\end{aligned}
$$

It is clear from these examples that asymptotic behaviour in the complex plane depends on the path along which the irregular singular point z_{0} is approached We cannot say $f(z) \sim g(z)$ as $z \rightarrow z_{0}$ because, since a function can take infinitely many values in the neighbourhood of an essential singularity, the limit of $f(z) / g(z)$ as $z \rightarrow z_{0}$ need not exist This discussion suggests that asymptotic relations in the complex plane must involve the concept of a sector of validity with vertex at the singular point

For example, given $f(z)$ and $g(z)$ as before such that

$$
f(z) \sim g(z) \text { as } z \rightarrow z_{0}
$$

in some sector D of the complex plane Then if we write

$$
f(z)=g(z)+[f(z)-g(z)]
$$

then what we are saying by writing $f(z) \sim g(z)$ as $z \rightarrow z_{0}{ }^{`}$ in D is that $f(z)-g(z)$ is small (or subdomınant) in D as compared with $g(z)$ (which is domınant)

On the boundary of D, both $f(z)-g(z)$ and $g(z)$ are of equal magnitude and as we cross this line, the characteristics of $f(z)-g(z)$ and $g(z)$ change while $f(z)-g(z)$ becomes domınant, $g(z)$ becomes subdomınant This occurrence is known as Stokes phenomenon

We define Stokes lines to be those asymptotes in the complex plane upon which the difference between the dominant and
subdominant terms is greatest in magnitude
Simılarly, we define anti-Stokes lines to be those asymptotes in the complex plane upon which the "dominant" and "subdomınant" terms are of equal magnıtude *

If the controlling behaviour of solutions to a second order differential equation are given by $e^{S_{1}(x)}$ and $e^{S_{2}(x)}$ as $z \rightarrow z_{0}$, then the Stokes lines are the asymptotes as $z \rightarrow z_{0}$ of the curves

$$
\begin{equation*}
\operatorname{Im}\left[S_{1}(x)-S_{2}(x)\right]=0 \tag{array}
\end{equation*}
$$

while the antı-Stokes lines are the asymptotes as $z \rightarrow z_{o}$ of the curves

$$
\begin{equation*}
\operatorname{Re}\left[S_{1}(x)-S_{2}(x)\right]=0 \tag{array}
\end{equation*}
$$

43 Stokes phenomenon and $U(a, z)$
We have seen [Section 4 1] that for the parabolic cylınder function $U(a, z)$ we have

$$
\begin{aligned}
& S_{1}(z)=\frac{1}{4} z^{2} \\
& S_{2}(z)=-\frac{1}{4} z^{2}
\end{aligned}
$$

Thus, the Stokes lines for $U(a, z)$ are the lines

$$
\begin{aligned}
\operatorname{Im}\left[\frac{1}{4} z^{2}+\frac{1}{4} z^{2}\right] & =0 \\
\Rightarrow \quad \operatorname{Im}\left(e^{2 \iota \theta}\right) & =0
\end{aligned}
$$

where we have written $z=R e^{\iota \theta}$.
Thus

$$
\begin{aligned}
\sin 2 \theta & =0 \\
\theta & =0, \frac{\pi}{2}, \pi, \frac{3 \pi}{2}
\end{aligned}
$$

1 e Stokes lines occur when $\arg \mathrm{z}=\theta=\frac{\pi}{2}, \pi, \frac{3 \pi}{2}+$
Antı-Stokes lines occur when

$$
\begin{array}{rlrl}
\operatorname{Re}[& \left.\frac{1}{4} z^{2}+\frac{1}{4} z^{2}\right] & =0 \\
\Rightarrow & \operatorname{Re}\left(e^{2 \imath \theta}\right) & =0 \\
\Rightarrow & & \cos 2 \theta & =0 \\
\Rightarrow & & \theta & = \pm \frac{\pi}{4}, \frac{3 \pi}{4}
\end{array}
$$

1 e anti-Stokes lınes occur when arg $z= \pm \frac{\pi}{4}, \pm \frac{3 \pi}{4}$

The Stokes and antı-Stokes lines for $U(a, z)$ are illustrated in figure 42 overleaf.

Figure 4.2 : Stokes and anti-Stokes lines for $U(a, z)$

We have seen that $U(a, z)$ is defined as the subdominant solution to equation [4.1.1] along the positive x-axis. As a rule, that solution which decays most rapidly along the positive real axis grows as z is rotated through the anti-Stokes line nearest the positive real axis. For this kind of solution, it is correct to continue analytically the leading asymptotic behaviour up to the anti-Stokes lines
beyond the ones nearest the real axis
Thus the leading asymptotic behaviour of $U(a, z)$ given by $z^{-a-1 / 2} e^{-z^{2} / 4}$ is valid up to the anti-Stokes lines at $\arg z= \pm \frac{3 \pi}{4}$

In fact, it can be shown by carrying out repeated corrections to the leading behaviour of $U(a, z)$ that
for fixed a and large $|z|$,

$$
U(a, z)=z^{-a-1 / 2} e^{-z^{2} / 4}\left\{1+O\left(|z|^{-2}\right)\right\},|\arg z|<\frac{3 \pi}{4}
$$

$\left[\begin{array}{lll}4 & 3 & 1\end{array}\right]$
where the 0 is uniform with respect to arg z. (See Reference [12])

For any solution of a second order differential equation, we must have

$$
y(z)=c_{1} y_{1}(z)+c_{2} y_{2}(z)
$$

We have seen that for Weber's parabolic cylinder equation $\left[\begin{array}{lll}4 & 1 & 10\end{array}\right]$

$$
\begin{aligned}
& y_{1}(z) \sim c_{1} z^{a-1 / 2} e^{z^{2} / 4}, z \rightarrow \infty, \\
& y_{2}(z) \sim c_{2} z^{-a-1 / 2} e^{-z^{2} / 4}, z \longrightarrow \infty,
\end{aligned}
$$

and hence

$$
y(z) \sim c_{1} z^{a-1 / 2} e^{z^{2} / 4}+c_{2} z^{-a-1 / 2} e^{-z^{2} / 4} \quad, z \rightarrow \infty
$$

c_{1} and c_{2} are called Stokes multipliers and have the remarkable property that they fluctuate as one travels from
sector to sector through the Stokes lines
By the very definition of $U(a, z)$ we have

$$
\left.\begin{array}{l}
c_{1}=0 \\
c_{2}=1
\end{array}\right\} \text { when }|\arg z|<\frac{\pi}{4} .
$$

The Stokes constants c_{1} and c_{2} can be calculated in other sectors by using connection formulae (See Reference [3] Chapter 3)

We are partıcularıly interested in the asymptotic behaviour of $U(a,-z)$ as $z \rightarrow \infty$ with $0<a r g z<\frac{\pi}{2}$ In the next section we shall derive this behaviour and in the process, ascertain its Stokes multipliers in this sector

44 The asymptotic behaviour of $U(a,-z)$

We have seen that $U(a, \pm z), U(-a, \pm \iota z)$ are solutions to Weber's parabolic cylinder equation $\left[\begin{array}{lll}4 & 1 & 10\end{array}\right]$ The connection formula between them are [See Reference [12] p 133]
$\mathrm{U}(-\mathrm{a}, \pm \iota z)=(2 \pi)^{-1 / 2} \Gamma\left(\frac{1}{2}+\mathrm{a}\right)\left[\exp \left\{-\iota \pi\left(\frac{1}{2} \mathrm{a}-\frac{1}{4}\right)\right\} \mathrm{U}(\mathrm{a}, \pm \mathbf{z})+\right.$ $\left.\left\{\iota \pi\left(\frac{1}{2} a-\frac{1}{4}\right)\right\} U(a, \mp z)\right]$

$$
\begin{align*}
U(a, \pm z)= & (2 \pi)^{-1 / 2} \Gamma\left(\frac{1}{2}-a\right)\left[\exp \left\{-\iota \pi\left(\frac{1}{2} a+\frac{1}{4}\right)\right\} U(-a, \pm \iota z)+\right. \\
& \left.\left\{\iota \pi\left(\frac{1}{2} a+\frac{1}{4}\right)\right\} U(a, \mp \iota z)\right] \quad[44.2] \tag{array}
\end{align*}
$$

From [4 4 4 l],

$$
\begin{aligned}
U(-a,-\imath z) & =(2 \pi)^{-1 / 2} \Gamma\left(\frac{1}{2}+a\right)\left[\exp \left\{-\imath \pi\left(\frac{1}{2} a-\frac{1}{4}\right)\right\} U(a,-z)+\right. \\
& \left.\exp \left\{\imath \pi\left(\frac{1}{2} a-\frac{1}{4}\right)\right\} U(a,+z)\right]
\end{aligned}
$$

and therefore

$$
\begin{align*}
U(a,-z)=\frac{(2 \pi)^{1 / 2}}{\Gamma\left(\frac{1}{2}+a\right)} & \exp \left\{\imath \pi\left(\frac{1}{2} a-\frac{1}{4}\right)\right\} U(-a,-\imath z)- \\
& \exp \left\{2 \iota \pi\left(\frac{1}{2} a-\frac{1}{4}\right)\right\} U(a, z) \tag{array}
\end{align*}
$$

Now when $0<\arg z<\frac{\pi}{2}$ then $-\frac{\pi}{2}<\arg (-\iota z)<0$ and we can use the asymptotic representation $\left[\begin{array}{lll}4 & 3 & 1\end{array}\right]$ for $U(a, z)$ and $U(-a,-\ell z)$

Accordingly, $U(a,-z)=$

$$
\begin{aligned}
& \frac{(2 \pi)^{1 / 2}}{\Gamma\left(\frac{1}{2}+a\right)} \exp \left\{\iota \pi\left(\frac{1}{2} a-\frac{1}{4}\right)\right\}\left[(-\imath z)^{a-1 / 2}\left\{1+0\left(|z|^{-2}\right)\right\}\right] e^{z^{2} / 4} \\
& -\exp \left\{2 \iota \pi\left(\frac{1}{2} a-\frac{1}{4}\right)\right\}\left[z^{-a-1 / 2}\left\{1+0\left(|z|^{-2}\right)\right\}\right] e^{-z^{2} / 4}
\end{aligned}
$$

but

$$
(-\imath)^{a-1 / 2}=\exp (a-1 / 2) \ln (-\imath)=\exp \left(-\pi\left\{\frac{1}{2} a-\frac{1}{4}\right\} \ell\right)
$$

and

$$
-\exp \left\{2 \iota \pi\left(\frac{1}{2} a-\frac{1}{4}\right)\right\}=\exp \left\{\iota \pi\left(a+\frac{1}{2}\right)\right\}
$$

Consequently,

$$
\begin{aligned}
U(a,-z) & =\frac{(2 \pi)^{1 / 2}}{\Gamma\left(\frac{1}{2}+a\right)} z^{a-1 / 2} e^{z^{2} / 4}\left\{1+O\left(|z|^{-2}\right)\right\} \\
& +e^{\ell \pi(a+1 / 2)} z^{-a-1 / 2} e^{-z^{2} / 4}\left\{1+O\left(|z|^{-2}\right)\right\} \quad\left[\begin{array}{lll}
4 & 4 & 4
\end{array}\right]
\end{aligned}
$$

as $z \longrightarrow \infty \ln 0<\arg z<\frac{\pi}{2}$

In the next chapter we shall use the above relations to derive a solution to the model problem outlined in Chapter 3

Chapter 5

The Solutıon of the Model Problem

In this chapter we shall derive a solution to the model problem by first transforming it into the parabolic cylinder equation and then using the associated parabolic cylinder function solutions to obtain a valıd estımate for Im λ We shall first find a combination of parabolic cylinder functions to satisfy the boundary condition at infinity we then substitute this combination into the boundary condition at the origin to yield the eigenvalue relation

51 Transforming the Model Problem

We shall restate the problem here for clarıty

$$
y^{\prime \prime}(x)+\left(\lambda+\varepsilon x^{2}\right) y(x)=0 \quad \text { on }(0, \infty) \quad\left[\begin{array}{cc}
5.1 & 1
\end{array}\right]
$$

with,

$$
\begin{equation*}
y^{\prime}(0)+h y(0)=0 \tag{array}
\end{equation*}
$$

and

$$
Y(x) \text { has controllıng behaviour } e^{\ell p(x)} \text { as } x \rightarrow+\infty
$$ $\left[\begin{array}{ll}5 & 1.3\end{array}\right]$

h is a positive constant and $p(x)$ is a positive function ln x.

If we let

$$
\begin{equation*}
z=e^{\ell \pi / 4} 2^{1 / 2} \varepsilon^{1 / 4} x \tag{array}
\end{equation*}
$$

then

$$
\frac{d y}{d x}=e^{l \pi / 4} 2^{1 / 2} \varepsilon^{1 / 4} \frac{d y}{d z}
$$

and

$$
\frac{d^{2} y}{d z^{2}}=2 \iota \varepsilon^{1 / 2} \frac{d^{2} y}{d z^{2}}
$$

Substituting these into equations [$\left.\begin{array}{lll}5 & 1 & 1\end{array}\right]$ and $\left[\begin{array}{lll}5 & 1 & 2\end{array}\right]$ we find

$$
\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dz}^{2}}=\left(\frac{1}{2} \varepsilon^{-1 / 2} \iota \lambda+\frac{1}{4} z^{2}\right) \mathrm{y}
$$

If we let

$$
\begin{equation*}
a=\frac{1}{2} \varepsilon^{-1 / 2} \iota \lambda \tag{array}
\end{equation*}
$$

then we have

$$
\frac{d^{2} y}{d z^{2}}=\left(a+\frac{1}{4} z^{2}\right) y
$$

The boundary condition at the origin (equation $\left[\begin{array}{lll}5 & 1 & 2\end{array}\right]$) becomes

$$
\left(e^{l \pi / 4} 2^{1 / 2} \varepsilon^{1 / 4}\right) \frac{d y}{d z}(0)+h y(0)=0
$$

Thus the transformed problem [where the dash now denotes differentiation with respect to z] becomes

$$
\begin{align*}
& y^{\prime \prime}(z)=\left(\frac{1}{4} z^{2}+a\right) y(z) \quad \text { on }(0, \infty) \tag{array}\\
& e^{\pi \iota / 4} 2^{1 / 2} \varepsilon^{1 / 4} y^{\prime}(0)+h y(0)=0 \tag{array}\\
& y(z) \text { is an outgoing wave as } z \rightarrow \infty
\end{align*}\left[\begin{array}{lll}
5 & 1 & 7
\end{array}\right]
$$

5.2 Solution of the Transformed Problem

We have seen (See Chapter 4) that equation [5 1 6] above is one form of Weber's parabolic cylinder equation This equation has general solution (See Reference [12])

$$
\begin{equation*}
y(z)=C_{1} U(a, z)+C_{2} V(a, z) \tag{array}
\end{equation*}
$$

It is worth noting that $\arg \mathbf{z}=\pi / 4$ for future reference
$U(a, z)$ is the parabolic cylinder function defined as the solution to $\left[\begin{array}{lll}5 & 1 & 6\end{array}\right]$ determıned by [See Chapter 4]

$$
U(a, z) \sim z^{-a-1 / 2} e^{-z^{2} / 4} \quad \text { as } z \rightarrow \infty
$$

$V(a, z)$ is defined as

$$
V(a, z)=\frac{1}{\pi} \Gamma\left(\frac{1}{2}+a\right)\{\sin \pi a U(a, z)+U(a,-z)\} \quad\left[\begin{array}{lll}
5 & 2 & 2
\end{array}\right]
$$

For fixed a and large $|z|$,

$$
\begin{equation*}
U(a, z)=z^{-a-1 / 2} e^{-z^{2} / 4}\left\{1+O\left(|z|^{-2}\right)\right\},|\arg z|<3 \pi / 4 \tag{array}
\end{equation*}
$$

$$
\begin{aligned}
U(a,-z)= & e^{i \pi(a+1 / 2)} z^{-a-1 / 2} e^{-z^{2} / 4} \quad\left\{1+O\left(|z|^{-2}\right)\right\}+ \\
& \frac{(2 \pi)^{1 / 2}}{\Gamma\left(\frac{1}{2}+a\right)}\left\{z^{a-1 / 2} e^{z^{2} / 4}\left\{1+O\left(|z|^{-2}\right)\right\}\right.
\end{aligned}
$$

where

$$
\begin{equation*}
0<(\arg z)<\pi / 2 \tag{array}
\end{equation*}
$$

Thus

$$
\begin{gathered}
V(a, z)=\left(\frac{1}{\pi}\right) \Gamma\left(\frac{1}{2}+a\right)\left\{\sin \pi a z^{-a-1 / 2} e^{-z^{2} / 4}\left\{1+O\left(|z|^{-2}\right)\right\}\right. \\
+e^{\ell \pi(a+1 / 2)} z^{-a-1 / 2} e^{-z^{2} / 4}\left\{1+O\left(|z|^{2}\right)\right\}+ \\
\frac{(2 \pi)^{1 / 2}}{\Gamma\left(\frac{1}{2}+a\right)} z^{a-1 / 2} e^{z^{2} / 4}\left\{1+O\left(|z|^{-2}\right)\right\} \\
\text { in } 0<(\arg z)<\frac{\pi}{2}
\end{gathered}
$$

The outgoing wave condition requires the exclusion of the incoming wave associated with the term involving $e^{-z^{2} / 4}$ We resolve this condition by choosing $C_{2}=1$ and $C_{1}=-\left(\frac{1}{\pi}\right) \Gamma\left(\frac{1}{2}+a\right)\left\{\sin \pi a+e^{\ell \pi(a+1 / 2)}\right\}$

Now

$$
\begin{aligned}
C_{1} & =-\left(\frac{1}{\pi}\right) \Gamma\left(\frac{1}{2}+a\right)\left\{\sin \pi a+\iota e^{\iota a \pi}\right\} \\
& =-\left(\frac{1}{\pi}\right) \Gamma\left(\frac{1}{2}+a\right)\{\sin \pi a+\iota \cos \pi a-\sin \pi a\} \\
& =-\left(\frac{1}{\pi}\right) \Gamma\left(\frac{1}{2}+a\right)\{\iota \cos \pi a\}
\end{aligned}
$$

Accordingly, our solution satisfying the outgoing wave condition is

$$
\begin{equation*}
Y(z)=V(a, z)-\left(\frac{\ell}{\pi}\right) \Gamma\left(\frac{1}{2}+a\right) \cos \pi a U(a, z) \tag{array}
\end{equation*}
$$

Using equation [5 2.2] this becomes

$$
y(z)=\frac{\Gamma(a+1 / 2)}{\pi}\left\{U(a,-z)-\imath e^{\imath a \pi} U(a, z)\right\} \quad\left[\begin{array}{lll}
5 & 2 & 7
\end{array}\right]
$$

Although this solution ensures that the leading terms associated with $e^{-z^{2} / 4}$ cancel, we cannot be confident that lower order terms also cancel We resolve these doubts by manipulating equation $\left[\begin{array}{lll}4 & 4 & 3\end{array}\right]$ in Chapter 4 into the following form
$-\iota e^{\iota a \pi} U(a, z)=-U(a,-z)+\frac{(2 \pi)^{1 / 2}}{\Gamma(a+1 / 2)} e^{\ell \pi(a-1 / 2) / 2} U(-a,-\iota z)$
If we substitute this into our solution, we obtain

$$
Y(z)=(2 / \pi)^{1 / 2} e^{\ell \pi(a-1 / 2) / 2} U(-a,-\ell z)
$$

As illustrated in Chapter 4 , the asymptotics of $U(-a,-\imath z)$ contains terms involving only $e^{z^{2} / 4}$ as $|z| \rightarrow \infty$

- Chapter 5 -

53 Calculation of $\operatorname{Im} \lambda$

Equation [5 2 7] defines the solution satisfying the outgoing wave condition We must now use this solution to estimate $\operatorname{Im} \lambda$

Substituting equation [$\left.\begin{array}{ll}5 & 2\end{array}\right]$ into the boundary condition at the origin (equation [5 1 7]) we find

$$
\begin{aligned}
e^{\ell \pi / 4} 2^{1 / 2} \varepsilon^{1 / 4}[& \left.-U^{\prime}(a, 0)-\iota e^{\iota a \pi} U^{\prime}(a, 0)\right]+ \\
& h\left[U(a, 0)-\iota e^{\ell a \pi} U(a, 0)\right]=0
\end{aligned}
$$

Therefore,
$-\varepsilon^{1 / 4} e^{\iota \pi / 4} 2^{1 / 2}\left[1+\imath e^{\ell a \pi}\right] U^{\prime}(a, 0)+h\left[1-\imath e^{\ell a \pi}\right] U(a, 0)=0$ Thus,

$$
\begin{equation*}
\frac{U(a, 0)}{U^{\prime}(a, 0)}=\frac{e^{\iota \pi / 4} 2^{1 / 2} \varepsilon^{1 / 4}\left[1+\iota e^{\iota a \pi}\right]}{h}\left[1-\iota e^{\iota a \pi}\right] \tag{array}
\end{equation*}
$$

But (See Reference [1] p 687),

$$
U(a, 0)=\frac{(\pi)^{1 / 2}}{2^{(1 / 2) a+1 / 4} \Gamma\left(\frac{3}{4}+\frac{1}{2} a\right)}
$$

and

$$
U^{\prime}(a, 0)=\frac{-(\pi)^{1 / 2}}{2^{(1 / 2) a-1 / 4} \Gamma\left(\frac{1}{4}+\frac{1}{2} a\right)}
$$

Therefore

$$
\frac{U(a, 0)}{U^{\prime}(a, 0)}=-\frac{2^{(1 / 2) a-1 / 4} \Gamma\left(\frac{1}{4}+\frac{1}{2} a\right)}{2^{(1 / 2) a+1 / 4} \Gamma\left(\frac{3}{4}+\frac{1}{2} a\right)}
$$

Therefore, equation [$\left.\begin{array}{lll}5 & 3 & 1\end{array}\right]$ becomes

$$
\frac{\mathrm{U}(a, 0)}{\mathrm{U}^{\prime}(a, 0)}=\frac{-2^{-1 / 2} \Gamma\left(\frac{1}{4}+\frac{1}{2} a\right)}{\Gamma\left(\frac{3}{4}+\frac{1}{2} a\right)}
$$

which ımplies,

$$
\begin{equation*}
\frac{\Gamma\left(\frac{1}{4}+\frac{1}{2} a\right)}{\Gamma\left(\frac{3}{4}+\frac{1}{2} a\right)}=\frac{-2 e^{\ell \pi / 4} \varepsilon^{1 / 4}\left[1+\imath e^{\iota a \pi}\right]}{h}\left[1-\imath e^{\iota a \pi}\right] \tag{array}
\end{equation*}
$$

But we know (See Reference [11] p 118)

$$
\begin{equation*}
\frac{\Gamma(w+p)}{\Gamma(w+q)}=\left\{1+\frac{(p-q)(p+q-1)}{w}+o\left(w^{-2}\right)\right\} \tag{array}
\end{equation*}
$$

as $|w| \rightarrow \infty$ in $|\arg w|<\pi$
Bearing in mind that $a=\frac{1}{2} \varepsilon^{-1 / 2} \ell \lambda$ and Im $\lambda<0$ (see Chapter 4)

then

$$
\text { as } \varepsilon \rightarrow 0^{+},|a| \rightarrow \infty
$$

Hence the criteria for the relation [5 3 3] are satisfied and

$$
\frac{\Gamma\left(\frac{1}{4}+\frac{1}{2} a\right)}{\Gamma\left(\frac{3}{4}+\frac{1}{2} a\right)} \quad \sim\left(\frac{1}{2} a\right)^{-1 / 2} \quad, \varepsilon \rightarrow 0^{+}
$$

Examining

$$
\frac{\left[1+\iota e^{\iota a \pi}\right]}{\left[1-\iota e^{\iota a \pi}\right]}
$$

we see

$$
\frac{\left[1+\imath e^{\iota a \pi}\right]}{\left[1-\iota e^{\iota a \pi}\right]}=-\frac{\left[1-\iota e^{-\iota a \pi}\right]}{\left[1+\iota e^{-\iota a \pi}\right]}
$$

we observe that since $\operatorname{Im} \lambda<0$ and $\operatorname{Re} \lambda<0$ then we can say $\lambda=-\mathrm{H}^{2}$ where $|\arg \mathrm{H}|<\pi / 2$
and

$$
-\iota a \pi=-\left(\frac{1}{2}\right) \varepsilon^{-1 / 2} H^{2}
$$

which implies that $e^{-\iota a \pi} \ll 1$ as $\varepsilon \rightarrow 0^{+}$
Accordingly, we can expand $\left[1+i e^{-\iota a \pi}\right]^{-1}$ in a Binomıal series
$\left[1+\iota e^{-\iota a \pi}\right]^{-1}=\left[1-\iota e^{-\iota a \pi}+O\left(e^{-2 \iota a \pi}\right)\right]$ as $\varepsilon \rightarrow 0^{+}$ Thus,

$$
-\frac{\left[1-\imath e^{-\iota a \pi}\right]}{\left[1+\imath \mathrm{e}^{\iota a \pi}\right]}=-\left[1-\imath \mathrm{e}^{-\iota a \pi}\right]\left[1-\imath \mathrm{e}^{-\iota a \pi}+O\left(\mathrm{e}^{-\imath \iota a \pi}\right)\right]
$$

$$
\text { as } \varepsilon \rightarrow 0^{+}
$$

and therefore

$$
\begin{equation*}
\frac{\left[1+\imath e^{\imath a \pi}\right]}{\left[1-\iota e^{\iota a \pi}\right]}=-\left[1-2 \iota e^{\iota a \pi}+O\left(e^{\imath \iota a \pi)}\right], \varepsilon \rightarrow 0^{+}\right. \tag{array}
\end{equation*}
$$

Inserting Equations $\left[\begin{array}{ll}5 & 3.4\end{array}\right]$ and $\left[\begin{array}{lll}5 & 3 & 5\end{array}\right]$ into $\left[\begin{array}{lll}5 & 3 & 2\end{array}\right]$ we observe that

$$
\begin{aligned}
(a / 2)^{-1 / 2} & \sim \frac{-\left[1-2 \iota e^{\iota a \pi}+0\left(e^{2 \iota a \pi}\right)\right]\left[2 e^{\ell \pi / 4} \varepsilon^{1 / 4}\right]}{h} \quad, \varepsilon \rightarrow 0^{+} \\
2 / a & \sim \frac{\left[1-4 \iota e^{\iota a \pi}\right] 4 \iota \varepsilon^{1 / 2}}{h^{2}} \quad, \varepsilon \rightarrow 0^{+} \\
a & \sim-\frac{\left[1+4 \iota e^{\ell a \pi}\right] \imath h^{2}}{2 \varepsilon^{1 / 2}} \quad, \varepsilon \rightarrow 0^{+}
\end{aligned}
$$

But from equation [5.1 5] $a=\left(\frac{1}{2}\right) \varepsilon^{-1 / 2} \iota \lambda$ So ,

$$
\begin{aligned}
\frac{1}{2} \varepsilon^{-1 / 2} \iota \lambda & \frac{-\left[1+4 \iota e^{\iota a \pi}\right] \iota h^{2}}{2 \varepsilon^{1 / 2}}
\end{aligned} \quad, \varepsilon \rightarrow 0^{+}
$$

From our perturbative analysis we know that a good approximation to λ is (See equation [3.3.8])

$$
\lambda=-\mathrm{h}^{2}-\frac{\varepsilon}{2 \mathrm{~h}^{2}}+
$$

and as $\varepsilon \rightarrow 0^{+}, \operatorname{Re} \lambda \approx-h^{2}$
Therefore ,

$$
\operatorname{Im} \lambda \sim-4 h^{2} \exp \left\{\frac{\pi}{\varepsilon^{1 / 2}}\right\}\left\{-h^{2}-\varepsilon / 2 h^{2}-\quad \cdots\right\}, \varepsilon \rightarrow 0^{+}
$$

Hence,

$$
\operatorname{Im} \lambda \sim-4 h^{2} e^{-h^{2} \pi / 2 \varepsilon^{1 / 2}} \quad, \varepsilon \rightarrow 0^{+} \quad\left[\begin{array}{ccc}
5 & 3 & 6
\end{array}\right]
$$

Thus it is not suprising that we were unable to pick up any information on $I m \quad \lambda$ with our perturbative expansion due to Its small saze since it can be seen that $\operatorname{Im} \lambda$ is $o\left(\varepsilon^{n}\right)$ for $n \in \mathbb{N}$ (provided $n \neq 0$)

Chapter 6

Conclusion

Chapter 5 provided us with our final result for Im λ That 15

$$
\operatorname{Im} \lambda \sim-4 h^{2} \exp \left(-h^{2} \pi / 2 \varepsilon^{1 / 2}\right), \varepsilon \rightarrow 0^{+} .
$$

We observe that we have entered the area now known as exponential asymptotics as discussed in Chapter 1. The problem , being singular in nature, was destined to produce such a result Regular perturbation methods provided us with our first estımate for $\operatorname{Im} \lambda$, (See Chapter 3)

$$
\begin{equation*}
\lambda \sim-h^{2}-\frac{\varepsilon}{2 h^{2}}-\frac{7 \varepsilon^{2}}{8 h^{6}}-\frac{121 \varepsilon^{3}}{10 h^{10}}+O\left(\varepsilon^{4}\right) \tag{array}
\end{equation*}
$$

As $\varepsilon \rightarrow 0^{+}$, we find $\lambda \sim-h^{2}$ from equation $\left[\begin{array}{ll}6 & 2\end{array}\right]$ above and Im λ tends to zero since $\exp \left[-h^{2} \pi / 2 \varepsilon^{1 / 2}\right]$ tends to zero (See equation [6.1]) . Equation [6 1] above indicates why the regular perturbation expansion fails to convey any information on $\operatorname{Im} \lambda$ as it is " swamped " by the comparatively large size of $\operatorname{Re} \lambda$ As we indicated in Chapter 1 , the exponential nature of $\operatorname{Im} \lambda$ is not suprising since the problem is singular in nature.

In their paper examining the case $g(x)=x, R$. Paris and A

Wood find that

$$
\begin{equation*}
\operatorname{Im} \lambda \sim-\frac{2 h^{2}}{e} \exp \left\{-\frac{4 h^{3}}{3 \varepsilon}\right\}, \varepsilon \rightarrow 0^{+} \tag{array}
\end{equation*}
$$

Comparison of the relations [6 1] and [6.3] leads us to speculate that for $g(x)=x^{n}$ in the model problem,

$$
\operatorname{Im} \lambda \sim-A \exp \left[-B \varepsilon^{-1 / n}\right] \quad, \mathrm{n}=1,2,3,
$$

where A and B are positive real constants Indeed it is to the task of finding the behaviour of $\operatorname{Im} \lambda$ for $g(x)=x^{n}$ that Mr Liu Jing Song, under the supervision of Prof. A Wood, has applied himself

The minute size of $\operatorname{Im} \lambda$ in [6 1] can be seen clearly if we set the matching parameter h equal to 1 and evaluate Im λ for small values of ε. This $1 s$ accomplished 1 n table 61 below

ε	$\operatorname{Im} \lambda$
0.1	-696×10^{-5}
001	-1.51×10^{-7}
0001	-267×10^{-22}
00001	-604×10^{-69}

Table 6.1 : Values of $\operatorname{Im} \lambda$ for several values of ε.

We observe that for $\varepsilon=0.0001$, Im $\lambda \approx 6.04 \times 10^{-69}$ The vast majorıty of computers (and therr assocıated operating systems) would not have sufficient precision to accurately
represent a number of this size It results in underflow 1 e the computer treats the number as zero Thus, in this area "analytıcs" trıumph over "numerıcs" Finally we wish to emphasise again the existence of an intımate relationship between exponential asymptotics and Stokes phenomenon In treating this problem with $g(x)=x$, R Paris and A Wood are confronted with Stokes phenomenon directly because their solution was situated on a Stokes line for the Hankel function Thus , they were obliged to consider the problem of averaging across a Stokes line and the validity of said averaging This task was successfully accomplished In our case, ($1 e$ the model with $g(x)=x^{2}$) the solution requires asymptotics only along the anti-Stokes lines for $U(a, z)$ In conclusion we state that without a basic awareness of the pitfalls associated with neglecting sub-dominant terms in asymptotic relations, one cannot be assured that consequent results are entirely valid

References

[1] M Abramowitz and I Stegun (ed.) (1970) Handiook of Mathematical Functions Dover, New York
[2] C M Bender and T T Wu (1973) "Anharmonic Oscillator II" Physucal Revrew D , 7,6 pp. 1620-1636
[3] C M. Bender and S A Orszag Adwanced Mathematical Methods for Ycientists and Engineers , (1978) ,McGraw -Hıll , London
[4] M V Berry (1989) "Uniform asymptotic smoothing of Stokes discontınuities" Prac Ray Yoc. Landan
[5] F B Hanson " Singular point and exponential asymptotics " (to be published in proceedings of The International Symposium on Asymptotics and Computatıonal Analysis, 1989)
[6] W L Kath and GA Krıegsmann (1989) " optical Tunnelling. Radiation losses in bent fibre optic wavegurdes" IMA Gournal of Applied Math 41, pp 85 103
[7] M D Kruskal and H Segur (1987) " Nonexistence of Small-Amplitude Breather Solutions in ϕ^{4} Theory " Physical Revrews Letters, (1987), vol 58, no 8
[8] D. Marcuse (1982) Light Gransmission Optics, 2nd edition, Van Nostrand Reinhold, New York.
[9] R E Meyer (1986) " Quasiresonance of long lıfe " g Math Phy. 27 , (1) pp 238-248.
[10] R.E Meyer (1980) "Exponential Asymptotics", SIAM Revema 22,2 , pp $213-224$
[11 FW.J Olver (1974) Asymptatics and special Functions Academıc Press, New York
[12] F W J Olver (1959) " Unıform Asymptotıc Expansions for Weber Parabolic Cylinder Functions of Large Order " Lourn. Res of Nat Bureau of φ tandards - B. Math. and Math. Phy. Vol 63B, No 2
[13] FW J Olver (1989) "On Stokes phenomenon and converging factors " (to be published in proceedings of The International Symposium on Asymptotıcs and Computational Analysis , 1989)
[14] R B Paris and $A D$ Wood (1989) " A model equation for optical tunnelling " , IMA Gournal of stpplied Math (to appear).
[15] V.L Povrovskıı and I.M. Khalatnıkov (1961) " On the problem of above barrier reflection of high-energy particles " 甲oviet Physics JETP 13 , 6 , pp 1207 1210
[16] J Spanier and K B. Oldham (ed.) (1987) An attlas of Functions Hemısphere, New York.
[17] S Solımeno , B. Crosignanı and P Di Porto (1986) " Guiding ,Diffraction and Confinement of optical radiation " Academic Press , New York
[18] A W Snyder and J.D. Love (1983) Optical Wavegude Theary, Chapman and Hall, London.
[19] G G Stokes reprinted in " Mathematical and Physical Papers by the late Sir George Gabriel Stokes " (1905) Cambridge University Press , vol V , pp. 283-287
[20] A Wood and R. Paris " On eigenvalues with exponentıally small ımagınary part " (to be publıshed in proceedings of The International Symposium on Asymptotics and Computational Analysis, Winnipeg 1989) .

[^0]: conveys no information on Im λ we must resort to more subtle methods in order to calculate this small but crucial component of the eigenvalue.

