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ABSTRACT

Electromagnetic pulse propagation 1in optical
fibres 1s described by the non-linear Schrodinger
equation. The solutions, or solitons, remain completely
unchanged as they propagate along the fibre. The
question we are concerned with 1s, given an 1initial
input pulse, does 1t contain solitons, and 1f so, how
many.

Answering this question means solving the
non-linear Schrodinger equation and this 1s done by
using the Inverse Scattering Method. This method
utilises several linear problems which are comparitively
easier to solve - 1n this work we focus on the linear
elgenvalue problem since 1t gives all the information
about solitons

In Chapter 1, we first show that pulse
propagation 1i1n optical fibres 1s described by the
non-linear Schrodinger equation. Chapter 2 deals with
the Inverse Scattering method and, 1in particular, how
it 1s used to solve the non-linear Schrodinger equation.

In Chapters 3, 4 and 5, the eigenvalue
problem 1s exactly solved for three special families of
input pulses. We show for the three cases that the
soliton number depends upon the area of the pulse only,
regardless of the pulse’s shape.

Finally, in Chapter 6, the eigenvalue
problem 1s discussed for the super-Gaussian pulse, the
type of pulse produced by semiconductor lasers. Formal
solutions are obtained 1n terms of an infinite series of
functions. To calculate the exact solutions, numerical
computations are required. We present the working
software code and suggestions for tackling this problemn.
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PREFACE

The non-linear Schrodinger equation (N.L S.)
belongs to a class of equations which are of much

interest 1n applied mathematics. Aside from theair
complexity, these equations are 1interesting because
their solutions are highly stable and remain unchanged
in shape and form through time. The N.L.S 1s of

particular 1interest because 1its solutions have been
shown to represent pulses which propagate along optical
fibres.

The stable solutions of the N.L.S. are called
solitons and are considered to have a potentially
important role to play 1in faibre optical data
transmissaion. Unlike conventional systems, a fibre
optical system that uses solitons requires no repeaters
and the soliton pulses can be made to travel at
different speeds. Already, a rate length product for
distortionless transmission of 11,000 GHz-km has been
achieved, and this represents a significant improvement
on current systens.

In thas work, we focus on a further aspect of this
subject. We ask the question, given an 1input pulse,
are solitons produced, and 1f so, under what conditions
do they arise. From our mathematical viewpoint, we must
solve the N.L.S. for actual pulses as produced by
semiconductor lasers. This work sets out to solve this
problem.

We solve the N.L.S. exactly for three pulses and
have developed software for numerically calculating the
solutions for a fourth, more realistic pulse. In all
three exactly solvable cases, the same simple equation
1s found which gives the soliton number in terms of the
pulse’s area. This result 1is very important: - It says
that despite the shape of any pulse we choose to 1inject
into a fibre, the number of solitons born from it will
depend only on the pulse area.

The fourth pulse we study 1s the super-Gaussian
pulse, which models the kind of pulses generated by
semiconductor lasers. Unlike the other pulses studied,
we can only find the solution 1in the form of infinite
series and so a computer needs to be used to generate
them numerically. We 1include the software to generate
these solutions. 1In order to generate these solutions
to any desired degree of accuracy however, a detailed
numerical analysis has to be added.

It still remains to see whether or not the area
rule for the soliton number holds in this case. For this
question to be answered satisfactorily, an analysis like
that for the three preceeding pulses 1s required.

Kevin Breen.



CHAPTER ONE
NONLINEAR PULSE PROPAGATION IN A

MONOMODE DIELECTRIC WAVEGUIDE

In this section, we present the derivation of a
non-linear wave equation which describes the propagation
of an electromagnetic wave’s envelope function 1n a
monomode dielectric waveguide. Up to now, deraivations
of such a wave equation have been based on very general
arguments and are for this reason non rigorous. We
present one such derivation and then proceed to the
recent derivation of the non-linear Schrodinger equation
[11 . The non-linear Schrodinger equation 1is the
equation which describes the propagation of solitons in
optical faibres. A non rigorous derivation of the
non-linear Schrodinger equation 1s as follows : -

Consider the wave equation

> - -, .
¢ 2 g/(""/é) - O (1.1)
% 2
22 3¢
For solutions y(2,t) of eq(l.l) of the form
V(z,t)=exp[1(kz- wt)], which propagate along the linear

fibre, the linear relation

C (1.2)



can be shown to hold. Here, c is the speed of
the electromagnetic waves,w 1S the frequency and k 1is
the wave number. If we now consider a monomode fibre
which supports a pulse with carrier frequency v, ,
wavenumber k and slowly varying amplitude g(z,t), we can

expand k and obtain to low order

dobim 2| oor g o 2k )’
3
el <‘~’u°) ¢ aw‘ (1,0 (1.3)
« 2k l[e]*
ael? (o o)

where the coefficients are evaluated at w =, andfd
= 0. We now look for an equation for q which reproduces

eq.(1.3) for the special case given by

o) e ¢ [[&-&*Jz -(u-u.)é] (1.4)
{24) =

Such an equation is
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where k = aw’<wu°2 and k = aw,<wpa) and
normalisation 1s such that [E[ = lq[{ If we now consider

the case where k”( 0 (anomalous dispersion), a change of

variables

¥ax |, Tef2 (€-47) u:a/:'“
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leads to the equation

(w.,0)
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YR ¢ 32”' (1.6)
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- which 1s the non-linear Schrodinger equation.
Note: Because these arguments are very general, one
would expect the non-linear Schrodinger equation to be
relevant 1in many different areas which 1s 1ndeed the

case.

We now present the rigorous derivation of the

non-linear Schrodinger equation from the Maxwell

equations -
-» - - ->
vxH— 1 29D VxE __ -1 213
-’ - T 7 .7
foc 2 ¢ ¢ 2¢
where ¢, 1s the dielectric constant. If the

magnetic field g'ls assumed to be equal to the magnetic
induction B for the fibres considered, then equations
(1.7) can be further wratten as
7 x v x E?::: - 3t E;
- - (1.8)
£o ¢t aéz
The D 1in (1.8) is called the dielectric
displacement vector and, for a cubic nonlinear medium,
B 1s given to third order by D =g, ?('*.E—’, where ¢ ?(’*I? 1s
defined by

- ¢ Mo
Co KxE = £ofdt Z( )(é-é.)[(éd

i
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X and X are 1linear and nonlinear dielectric

tensors respectively and are 3x3 matrices. The triple



integral 1in eq.(1.9) describes the nonlinear response of
the fibre 1itself to the propagating electromagnetic
disturbance due to two effects, the Raman effect and the

Kerr effect.

The Raman effect 1s due to the passing
electromagnetic wave and can be most easily understood
as the emission of radiation by the carrier medium by
the excitation and subsequent dropping back of electrons
to theilr original states. The Kerr effect results from
alignment of the fibres anisotropic molecules due to the
propagating wave. These alignments in turn affect the
propagation. In eq.(1.9), the upper limits of
integration show that 1t 1s the electric field at
previous times only which contributes to the

displacement. This follows from causality.

We now wish to recast eq.(1.8) in matrix form. To

do this, we first use the identity VxVx E= w(v-EF)

-5 t ;
o obtain
=g —
ViE S | i’_‘_ v :V<VE) (1.10)
fcéz Bé"

from eq.(1.8). Secondly, we replace the cartesian
coordinates .x, y and z with the cylindrical coordinates
r, 8 and z and give the components of ﬁ, the electric
field, by E;, = Excosf + E;sinf, Eg = -Exsing§ + E,cosf

and E, 1nstead of E,, E, and E,. From this, we can then

wraite 1_4 Ey i
o E = Dyla|fs| = 0 La 05 E
) (1.11.a)
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where (1.11.b)
ot 2t 2t 2 )

it 2v or  rdr r*ast

and
los & - Sin 8 2
\73 = Sin 8§ Cos$ 8 o
») @) 1
7 -t A %0 o
LO- = ’E"’%a ‘7;'—‘}:" ©
I O o) o+ (1.11.c)

W
If we now define x (1 = 0, 2) as

)

ov( ~> [‘.) - ~
X = 0.7 Dy E (1.12)

then eq.(1.1l1l.a) can be written in the form

(Vl__l E_‘ f*)E = 0 (/-a +[_$) 03”5 (1.13)

with L, defined as

¢t o¢

(1.14)

. o
p| bl o
Ly = (‘Lz“—'—; X) o 19
02 0

- - A =13
Note: E(tl) E(t2) = D E DJE . Finally, we use
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TE=2E | 1 By 1380 26

— (1.15)
dr r F 06 22
to show that v(v E) = D, L D;'E—), where
r a0 ]
2 L dr 2 L9 ’
dr r or or ~ 94 or o2
Le = L3y A 3_?_ (N
‘ e 3rds Y ¥ 3892
N 2 ?*
= 50T; Y =

-f -—"
If, from now on, we denote (Er,Ee,Ez) = DJas E,

the equation

- >

Le: = (Lo.*ﬁé +L<)£- = 0 (1.17)

1s an equation equivalent to eq.(1.10). Equation
(1.17) 1s Maxwell’s equation in cylindrical coordinates.
We now assume that the electric field 1s a nearly
monochromatic wave propagating along the z axis with a
wavenumber k and an angular frequency of w,1.e., the

electric field 1s assumed to be of the form

- ® s ¢ (%lz "'J(é)
Ecro2,8)= Y E (ro 7%, ¢)¢ (1.18)
(1
where
Y=gz , Vegfboz lel € |

) (1.19)

4
are slow variables and E = Eﬂt k,= 1kl and v = lu.
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With this change of variable, E changes slowly in z and

t. To lowest order in¢€ eq.(1.18) 1s of the form

- -
E(r,a)z,é) z &{{ [‘(')(r/ &,1,?’) CX/O 4'[(I¢‘z - W, é)]}(l.zo)

The E.s for 1>2, are generated by the nonlinear
response which 1s due to the Raman and Kerr effects. If

we expand Egt’) as

E) = £+ 38 (t) o2 (0"

Y PRy e
we then obtain, up to third order iné-
- P @ = 5 (O)
A+E =Z g, Ez i €3XTVE ety * Xy
- dwe 3T 2 3w 3?”
) ( (2)[ 2 - Y 4(4(1‘&0([)
5‘ ez -wid) ZZ’ 1k " s [(, (1.22)
[n-t 14(5
where C' w(ér
fa(éi < (é) ¢
and: [) L@ ® (1) é.n(: swrba -«més)

){./-.(; =Ofa{é‘!°/é‘6/-°/(’ 2/ (é' (l. J)f (1 23)

We now use equation(1l1.22) to write out equation
(1.17). If we keep only the terms which contribute to
order € less than three, we can write

{

(Chyz o) Z (a2)- &)E, +1i z/ f’ T,

&
-
Z L E( 4 Tz e» 321
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A
/I_\,, @land//%are 3x3 matrices and are given by
e 3. "Z(_a.j
or r or TR AT or
A
1_( = I I & kel 3
rtard s rt et Y
, 2
et 3 r T Y
roar r 3e
O O N
/Z\ iroz ,{t (O @) O
[ 2" =
¢ O O Fga’a-, Lt =0 O Q
?
L2 L7 TR 0 O
roorda r 2842 3z (1.25)
->
If we now expand E€ 1n terms of ¢ as
- &
(™
[[ (F,G,Y,?,E) = ZE"E{ (r/g’)/} 2’) (1.26)
Azt



and equate 1n (1.24) and (1.26) terms of equal

order 1n €, we obtain

= (1.27)
Lg E( = 0

where

| . oA
L; = La - /‘g + wl X - L( (1.28)
o

Note that L( 1s L = L, + Ly + L. 1n eq. (1.17)
where d/dz, d/dt and X have been replaced with 1k¢, 1w,

o

and X¢ respectively. Furthermore, 1t can be shown that

L( 1s hermitian, 1.e.,
- 5 £ S S\ = - 5
(L L)z [uiLd &= f(Led)V = (Lod,V)
where ds 1s the volume element rdrd®e and all

surface terms vanish. We write the solution of eq.(1.27)

in the form

g (v, ) ulr ) jor (= 2 ]

R
Ee(r, 0¥ 7) =
0 /’ . 1(1.29)

o)
That E¢ 1s zero 1in eq.(1.29) for 1 ¥il 1s due to

the fact that the fibres 1n question support only one
mode. Equation (1.27) 1implies that Llf? = 0 and therefore
implies that ﬁiIvi% = 0, from which we obtain the
following dispersion relation, k = Ky () :

iR é.zfg =t ((Zm"(:z) +<[Z/L,c_2)

4 ¢
(1.30)

"*‘Z/z(/(dz 7 U - Uz V«-'L() As

where

Jo zf/ddrli-r ‘L(ar)d/.r , Y (_’__b_ r);;_B_ ,O)

ror 8



and émhas been replaced with ho.

If we use

92 3 Vs 27 (1.31)
) . ) . @
3/.« = LWL AL 4 e 37{( -+ 2 L( WL ¢ \(1.32)
3¢ ¢t C*20(  Jue ¢*

% @ t
and 3 L - g ( \= <24, - Lo (13
LY ¢*

X AN )
where L 1s Ly w1th‘3; replaced by 1, we obtain,

1
at order € —

=) Qs 2o
LeEd = -kt —_1_..}__2_@_ 2 L - wi A¢ -aﬁ(l.:m)
Y Vi e Ak ¢* 7

from which we find

E(m = 0 (1.35)

for 1 # 1. Now, since Ly 1s hermitian and since L#

-
.U = 0, we can write

— —1
)
(LL,L.E.A) = 0O (1.36)
This condition implies

(1.37)
¥

| = 2k
awq

where Vg 1s the group velocity. Here we have used

- -3 t
(UJB_L_L é_ﬁi“):_?_ (,—Z,Lt}_i = O
3L, 3T Iy v 7 (1.38)
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h (bt st 7&)35")# o
and é& C,, 22/ (1 )

For 1 = 1, equation (1.34) becomes
.40)

The corresponding equation to equation (1.34) for

3
order € 1s

By ) 2

2 " L’ T e
.;.(QL_IBIM E__L,) aa(r-u,ne)]a
|
ZI -[:Z% %(l)) (1.41)
where F 1s defined as

(@ A0 (F R

- it [ = '

. th) (—’ —*) e (1.42)

- G}
Equation (1.36), for ordergls (U,L,E') = 0. This

L5l

Y

condition implies

(3 - L_i ¥ "¢ = 0
T T Tar i (e
-
where V) anz ( u) ) (1.44)
~ N, ~ g
& = 4 "_7_-‘_/((12 VJ.‘L—Z - QZV.L'&)A/J (1.45)
So

Equation (1.43) 1s the equation which describes

nonlinear pulse propagation 1n a monomode dielectric

guide.
11



CHAPTER TWO

THE INVERSE SCATTERING METHOD

The non-linear Schrodinger equation 1s one of
the many non-linear wave equations which is solved by
means of the Inverse Scattering method. This method
bypasses the direct solution of a non-linear equation
and instead enables one to solve 1t by means of a series
of 1linear problems which are easier to solve. A
detailled discussion of the Inverse Scattering method can
be found 1in [2] In this chapter, we describe the
Inverse Scattering method for the non-linear Schrodinger
equation and we concentrate 1n particular on the

equation’s assoclated linear eigenvalue problem.

To Dbegin with the Inverse Scattering method,
one must first find a Lax pair of differential operators

L and B which satisfy the linear equations

LV =4 Y (2.1.a)

Y o= gy (2.1.b)

by
where X 1is a time independant eigenvalue and L
and B depend on a function u(x,t). L and B are chosen

so that the consistancy condition of egs.(2.1) -

12



Foal L6 = oo (2.2)
) ¢

leads to an equation

Kik) = 0 (2 3)

for u(x,t) and K a non-linear operator. If a
Lax pair can be found such that eq.(2.3) 1s the
non~linear Schrodinger equation, the Inverse Scattering
method can solve the 1initial value problem for eq. (2.3)

as follows -

) . 3 554:’&:23 data

Ly= Ay i
4
E 2, [ F -8y
1. Seabbermg Aoty
U (&,o) - 4t
LY = AV £=20

FIGURE (2.1)

The Inverse Scattering method 1is subdivided into

three steps

STEP 1: For fixed ¢, the linear eigenvalue
problem LV¥ = AV¥ 1s solved for both bound state and
scattering solutions, and the set S = {N,x r Cq (for

n

n=1,,,,N), R(k), T(k).(O(k(m)} of scattering data 1s

found. Here, the R(k) and T(K) are the reflection and
13



transmission coefficients respectively and are obtained
from the scattering solutions. The number N gives the
number of bound state solutions to each of which there

1s assoclated an eigenvalue X.

v
STEP 2: The linear equation 137’ = BY¥Y 1s used
to calculate the scattering data at any time t 1n the

future.

STEP 3: Using the equation LYV = BY¥ and the
scattering data at time t, the potential u(x,t) 1is

reconstructed. This step 1s called the Inverse Problemn.

For the non-linear Schrodinger equation, a Lax

pair 1s provided by

= (i 4,0)_3_ W
& X = 2
f(l-ﬂ)JL_ ¢ ;-f‘
L X
- J o [d( 1' (2.4)
6= [0 4 lul "
Ix* | +f x
U ul”
-‘__ - a"' - u
i % (QB;"' t-,od (2-2)

and a straight forward calculation shows that

kv [LE] = (o -k
¢ KW o

(2.6)
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where K(u) = 0 1s the non-linear Schrodinger
equation. The ¥ 1n eq.(2.1.a) 1is (?1,WZ)K and 1f we

define

1

Y, = W exp {-Ct-P

x} Vs, (2.7.a)

(2.7.b)

%.1\/(4-(3 cx‘o {-C A u}\)s
I-p"
- the eigenvalue problem (2.1.a) becomes

Vi = « Af = (YW W (2.8 a)
1= 0" ‘/t-f‘

Vioo+ ¢ lﬁ = ={U W
3 N (2.8.b)

or, equivalently

i + (EV] = qu1 (2.9.a)

V’L’ - L‘EVL = -—$*\/4. (2.9 b)

where q and { are such that

=z L E = A
) ’ L (2.10)

Equations (2.9.a) and (2.9.b) are the eigenvalue
problem (2.1.a) in a more convenient form.
( hereafter all eigenvalues will be denoted by )» )

To proceed with the method of Inverse

15



Scatteraing, we must find the scattering solutions to
this elgenvalue problem, 1.e., we must find the
solutions of egs.(2.9) with the following asymptotic

behaviour
S dx —iAx iAx
¢ [ Vi a(4) € l “Ué C\)2.11)

———————- +
O/xo -0 \VU/) x4 v l
Here, the elgenvalues )\ of a(\) can be

analytically continued to the complex upper half plane.

At the zeros X\ of a, the asymptotic behaviour (2.11)

reads
“'X;\X (.'/(Ax
e ' V’ (Ae o
O/ x»-0 \uu/ x> | /(2.12)
and the solutions are square 1integrable. The
Ay Co and b(A) are the scattering data and the

eilgenvalues are time independant. To find out how C,
and 600 evolve 1n time we use edq.(2.1.b) for large x.

For large x we can write

8 = " P v T (2.13)

X"
and obtain
' \ %, ., . ¢ * '
(Y = 'f’w..’ s WA 4 1A Vi e
VE 0 % Y x f
If we insert into eq.(2.14) the asymptotic form
for x ? + _‘:}‘*
o (AE) e o
AR or CARK
6“,0 4‘ Cut * (2.15)
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b(x,\) = (ulm)> ¢ dx

we find

(26 =P(,a+2 *-#)A
? (2.16.a)

‘..__.4_ = PZ/ -2 4 "#)( (2.16.b)
PN

(3ln = A7 (,0 -2+ Jﬁ)‘ (2.16.¢)
> ¢

Without loss of generality, we can replace B
with B+CoI with Co = —X?p+2+1/p). Then the equations

a (i) = alk,o)

(2.17.a)

4iAE
é(},é) = é{/{Jo)f (2.17.b)

g
widE (2.17.¢)
{A<é] = (A ¢
follow. Equations (2.17.a,b,c) give the time

development of the scattering data.

Having found the evolution of the scattering
data, the last and most difficult step 1s to reconstruct
u(x,t) from the scattering data. We sketch this

procedure below:

Defining ¢ (x,t) as

(A
3l b e all) Wl >o

fmAéo

(2.18)

“U



where i) and V¥ are the solutions with

asymptotic behaviour

L Y
e (1 V¢

o
(2.19)
0 |

W = = W = D

- 1t can be shown that ¢ (x,)) has a
discontinuity given by
CAx
cl,l) = 80, ) vio) = $l k-i0) = {U) Vi e .20
a(h)
and poles at the zeros X, of a(y),

¢ (x,)\) 1s

otherwise analytic and approaches ($) at infinity. One

now uses Cauchy’s formula

Yo k) = 0 VLK) 4L

1o A=A (2.21)
s

where Im2 # 0 and v

1s a contour containing a

small neighbourhood of If vy 1s daistorted to a

circle of infinite radius, we pick up the residues and

the contribution of the discontinuity:

N (14 X
45(:4,»:(1)4,2@ Lf//g,(k)
o/ L h-dy @)
+ el k) JA
vei | f - (2.22)

Equation (2.22) can be evaluated for » = x - 10,

x €R and at the poles 1 =X . This yields

18



O'f/x,l)-f-é*(x),o [T & = C*(K)U

F A
. (*(‘/D% edlns b v [x,«“t) (2.23)
o 4

- A a' lUh)
o - Al x PRV
o - <. 7‘ o1 = 2 (X,A4%) .

LT 7 ; — (a'“/')) (2.24)

where

ziXx
((z,l) = d{) ¢ s (2.25)
a(A)

P U .
Yix ke +Ze *(a, V¥ &, o)

"Uh) )
= c'z, (,‘ l)aﬂ/( 2 (2.26)
Zm -]tu
+ {»{:I (,»{A.K
and @&ZQXA)C - é (4 ¢{(x,145
e A =Adn a'lhg)
=1+ [l Nd (2:27)
y XT X *

These equations determlne ¥ (X, A) and o (A).

Finally, to recover q(x,t) from the scattering

data, we evaluate eq.(2,26) for large A:

*

RO ke oy e Vi de)
(_w,,u) e =(,)" *[;(ff(—“)f Ak

J—i]ocr*iﬂ ANJ + O(/Z(T) (2.28)

-cD

The eigenvalue problem (2.9), yields
19



-ilx
Un [x) ,O < = | ?z(X) (2.29)

2. A
Therefore

N *

-U(Zx ¥
= -7 (h ¢ % (e )
T Z;(axz) ) ACHRY
~J_[o'{‘°6() Yy
W—oﬂ

(2 30)

from which, using eq.(2.10), we can easily find

u(x,t).

The solution of the 1initial value problem for
the non-linear Schrodinger equation which we have Jjust
sketched 1s very complicated. However, the method
involves 1linear calculations only and this allows us to
derive some interesting conclusions. In particular, it
can be shown that the L’ integrable solutions of the
elgenvalue problem (2.l1.a) correspond to pulses which
are stable. We call these stable pulses optical

solitons.

As an example, we solve egs.(2.9.a,b) for

b(A,t)=0,1.e., ¢ =c=0. If we define

(4 4/‘ (x,/(j) (2.31)
a'ly)

then equation{2{,11) read

S~
i

¢ (2.32)
iRy
N W, = X
—'Z—Uﬁ'{‘ LR R 2 33)



and equation (2.30) reduces to
N, « *
i(x‘) = -—Zizla » ly (2.34)
é-:l

For N = 1, the solution 1is

' -4(11-9‘)4-17::4 + 4
u(x,é)'-'-VZX n é"[ ]
4054 [Zgéx-xc)-# gg%é] (2.35)

In physical space time coordinates, equation
(2.35) describes a stable pulse whose amplitude 1is
determined by ImA =5 and whose velocity 1s determined

by ReA = XK.,

Due to theair stable nature, such pulses have a
potentially important role in data communication. It 1is
therefore interesting to discover which initial pulse
contains solitons. Using the Inverse Scattering method,
this amounts to solving eq.(2.1.a) for 1initial pulses

u(x,0).
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CHAPTER THREE

PULSES OF HYPERBOLIC SECANT FORM

In order to make this study of the non-linear
Schrodinger equation’s eigenvalue problem complete, we
include the results of Satsuma and Yajima (3] in which

was studied the 1initial value problem for the pulse

U(r.v) = ﬂsui(x) (3.1)

The eigenvalue problem for the non-linear

Schrodinger equation 1s, from chapter 3,

*+

~ul vl e s LA LT U =0

Y U

(3.2)

If we change the i1ndependant variable, x, 1into
s, where s 1s defined as s: = [1 - tanh(x)]/2, then we

find

e du = dy di = - wdw du
d x As dx 2 ds %

v'e ' = L4 oA .(.(/5)14/1'&/!
A «* A5 ]x"i Ax /!‘

secd Weando dv 4 sed *w 4 v Y
ds b ds*

With these derivatives, equation (3.2) then becomes
22
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secf ‘;x) A{br 564/(;‘) éAuZ/x) /V + (./( !o.u[&) .4.,( 4 4}“/6‘) Vi

b A8 i ds (3.5)
= O
Since s --{1 - tanh(x)], we have tanh(x) = (1 -

2s) and also sech (x) = 4s(1 - s). Hence ‘

() ju. /A-SMU L s sl )| Vizo

(3.6)
Gsli-g)
If we further transform the dependant variable,
¢4 -ud
vl, into s*(1 - s) *wl, then dvi/ds and dvl/ds then
dy -l bl - dy -
become o= ds b)  Lwes () d,
L ol s
3.7
1 4 -%'L % ‘1 ( )
Ay = 5b-s)d + A 578 a/;.;.
a3t ds*  gli.g) o5 (3.8)
+ ___Ll_( Jd o~ 42)5? -5) & w:
Z(IJG-S)

Substituting these expressions 1nto eq.(3.6)

yields

5[5-:)2{;)_; < (s -¢f) _o/ﬁ: _Aw =0
ds* o s

(3.9)

Comparing to the Hypergeometric Differential

Equation -

Gl [(4 +0 48 - -r] Ao 4 agn =

0(.‘ d! (3.10)

1t 1s clear that i1f we let v = 1X_+ 1/2, a = =A

and B = A, then eq. (3 9) 1s the Hypergeometric equation
(3.10).

Using the solutions F to the hypergeometric

equation, we find the two following solutions
23



(0 ko -
vi'® = SU-)FCAA ey ) (3.11.a)

hod - (3.11.b)
= S0 ki hihed %o )

The equation for v2 differs from eq.(3.2) only
in the sign of A. The solution v2 (s) and 1it’s

linearly independant companion v2 (s) are therefore

44
wly= § 30 - EC A, -ik 3% 15) (3.11.0

th+1h % (3.11.4)
0 = U8 aih 4 e sih A, Vi sidy 5)

We must now 1look at the behaviour of these

functions as x approaches minus infinity.

Using the definition of s, we find

2x
A oD = !ﬂl-é /’\.«V‘z (3.12)

For s = 1, the hypergeometric function can be
written as

Elad,c; 1) = Il -a -d)
F{c-a) M {¢c-¢)

(3.13)

This result, together with the asymptotic

behaviour of s as given 1n eq.(3.12) allows us to write

Vtm % £ r&(c‘i 4 VJ-) (3 14.a)
Plek o4 480 4% -A)
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,‘ix

V\m VIl FZ% -L'Uf‘[él + '/1.)

r"(l.t-ﬂ) r‘(i-ﬂ) (3.14 b)
A \
o 2 ¢ r(-h+ ) 3.10.0)
M-k ehea)rtloihon-4)
A
Wae” bl ) (3.14.4)

(i) +a)

As X - +9 , the asymptotic behaviour of s 1s

given by

S A
N D , $ = o (3.19

and the hypergeometric function satisfies

. — 3.16
Eladc 0) =1 (3-16)
This allows us to wrate

X dx =X

u,m ~No¢ u.m zi‘“ (3.17.a,b)
)
A% .

(f) ¢ (1) J‘A"’x

uz o~ 6 Va ze (3.17.¢,d)

/

Using the properties of the hypergeometric

function, one can then show that

“L u](‘l.) _ u'(-n.) = —y /(4,'/2 U1_(')
dx A

(3.18.a)
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A RV “
d 4

This i1mplies that

i
<
B N
.
..l
I
"
RN
A

()
lv‘ ou"b ‘j»\l
A+h ¢ (0)
) L > D { (3 19.a)
Vi
Vl(’) -L'j)‘
Y
% VA X -3 & o (3.19.Db)
-‘1

are solutions with the given asymptotic
behaviour at infinity. The solutlon'¢'can therefore be

written as

VI(‘) A X \/;(“)

- W)
——g— Va \/q.m (3.20)

A=4

From the asymptotic behaviour (3.14) and the

asymptotic condition at minus infinity, we obtain

/ Sodx

N, 6-‘“\ [ A r&-drliey) .
ol eddpld ok -a) [ 1ot Ple) Plod)

n ; za)(

i CAs
A plgadnly i) ¢ Pk o) e‘

by r oyl il Aot 4)

= | _idy
(3.21)
(5)¢

Rewriting this equation as
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P%(L‘ 4 '/1.) A r‘(3/z 'il)F('A‘l/l) 40) |
' (il e -ﬂ) 44 r(, *d) rli.4)

P(J %*ﬂ)r\t A 1 i (3.22)

-4 f/?’f«nnf‘('&-ol) [‘"(«l s %) ‘d)/ O

-4 rlagdr(i-a) Plecd oty shd P L= ih o4 -4)

rli+2) = 2

and using the (3.23)
relationships ¢ r‘(‘/‘l- —‘U = {lh + t“

the system (3 22) reduces to

1
I’“(([J_'/;l "J{'(Vz H,()]
rld oKk A P(id o) r4) ni-a) o\ ||
zlr(vx-d)lz rroch s n) 4 O
rla)eli-n) rlih o a0 (cd ol -g)
(3.24)
which 1s readily solved for a(A) and b(A). We
find
ol = | Pl s
0 Pleif sty +pdr(=cf 44 -4) (3.25)
) 1
4(1) = | { ,F(‘/u M)l (3.26)
D rln(i-4)

where D 1s given by

4 . 2 2
D= Ir\(a al)l [r (i-d)r) -’F(me)} /r'(W-ﬂ)} ]
TR O

It remains to find the number of zeros of a(\).

The eigenvalues occur at the zeros of a(lA) 7o find
27



the zeros of a(4), after analytic chtlnuatlon in the
upper half plane, we note that a(l) = 0 only at the
poles of F(-iA -A + 1/2) in 1ts denominator. The poles
of the gamma function occur when the argument z =

0,1,2.. [4] or for values of r satisfying
Fo= Z+1 = [2,3,.... (3.27)

Thlis means

-if,, B - o= Lp (3.28)
Im A > 0 1mplies

f,_ = ZM-PV; -r-)> o) (3.29)

]

which can only be satisfied for a finite number

of r values, r = 1,2,..,N. If we define F to be

Y
F = fb(lx,o) Ax (3.30)

then

F = _/206454(&-6«) zj\s = A

(3.31)

Hence the formula

F 1
< o ) (3.32)

gives N, the number of solitons contained in

the 1nitial pulse where{ .. > denotes the greatest
28



integer less than the argument.

We have found a simple relation between the
number of solitons N, contained in the 1initial pulse

and the area of the pulse 1itself.

—— e ——— WP ——— T ———
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CHAPTER FOUR

PULSES OF RECTANGULAR FORM

In this chapter, we solve the elgenvalue problem
} 1]
Vi +cl Vi = ?’Vz
(4.1)
I |l *
Vil = WAy = -4, Vi
for the special family of input pulses given by
O j‘r /K/ > éé
1(:) = (4.2)
g /w' ki & *4
and 1look for solutions vl and v2 which exhibit the
asymptotic behaviour given by eq.(2.11) In chapter
two, we saw that solving a(A) = 0 means finding the
eigenvalues of the eigenvalue problem (2.1.a).It 1s
clear from eq.(2.11) that the asymptotic behaviour whose
coefficient 1s a()\) prevents the solutions from being
square 1ntegrable. If this term can be eliminated,
then only the right kind of asymptotic behaviour will

remain - We do this by finding the zeros of a(A).

Solving eq.(4.1) 1n the regions defined by the

boundaries of q(x), we obtain the following solutions
-idx
£ < 44 : v = € , Va=o
(4.3.a)

LA
X >'“7£ : Vie D , Vv = e
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e __,[(-zu-e\/aw‘)m\/p‘d‘x #o iAo F )confs™ o7 x

g

(4.3.b)

Vi e Asinggt+d¥ 2k 8"”/"”% X <oy
If we match these solutions at the boundaries of
d(x), the input pulse, then for the asymptotic behaviour
given by eq.(2.1l.a) we obtain, at x = -a/2, the

following equations

VR (4—4'»(4 #G‘\/ﬂ‘#ﬂ)ﬂk\//}"d‘% -\‘-(-i/(G#W)u "4,4‘%

f _cAX
_ “ (4.4 a)
: -4:(W-’f b GL»!W% =0 t.a.n)
For x = +a/2 we find ' o
' Ax
4;(W%‘:— + Gco:‘s/ﬁ" % = 5/[,()6 (4.5.a)

_¢1¥

-_'[("“'Nﬂ‘w)m\/p‘w% +<—zw*w)umg‘i]we
ﬂ

(4.5.b)
These four equations, linear in A, B, a(A) and

b(i) can then be solved and we obtain, for a({) and b{{)

-idx ’
all) = é il i ‘/ LY S 1/ﬂ"-h<~cci ‘/ Y A
f!"‘ ¥ ( /1 f )(4.6.a)
éu)=_ﬁ__..thﬂ”*£‘£
\/p‘-.;,(" (4.6.b)
The zeros of a(A), which give the eigenvalues,

are then found to occur when

-zﬂp = (ofaqn Vs 4% (4.7)
Y p*+
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Having found the eigenvalues, we can further show

that they are purely 1imaginary. We do this as follows :

From eq.(4.7), we obtain

g hk«ﬂt*X‘ ')
and ﬂ“”W" = 7

If we now define f)as
p = g'\/p"q-i"nt = 0 +(p (4.9)

" then we can write, using eq. (4.8.a)

‘: ‘/F'ﬁ + A% (4.8.a)

4'/( (4 8 b)

fi

_&L"_fl = F i \‘/Jm AT o (4.10.a)
Y

. (4.10.Db)
= T i d(p) Cos(pw + L osh(pitin (p0)
and hence we flndJDI and P2 to be
L1 = T df ““M(ﬁg Cob (fq') (4.11.a)
(4.11.b)

pro= F A Losth () $ia (P2

Using eq.(4.8.b), we can also write

it ~p = % Les‘/ﬂ‘*u‘,a
p (4.12 a)

T eosh PV tospv) + 4'-"'*4(13') A (P (4.12.b)

—
——
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and these equations allow us to write

n = =+ ﬁ(,osé(fn) Losgoﬂ (4.13.a)

\ . 4.13.b
X = ;:fS Sva g@() Sin sz) ( )
Now, 1fpl # 0, we have
¢os (p1) = — !
f° + N é o (4.14.a)

oL 3 Sk (fn)

(os(fz) = 4 9 EO (4.14.Db)
lﬁ&”l/ﬁ')

which are contradictory for « > 0 and 7 > O.

We conclude that there are no zeros of a(A) with

non-zero real part, 1.e., the eigenvalues are purely

1maginary

A'—"'ig X =0 (4 15)

It now remains to solve eq.(4 7). For purely

imaginary elgenvalues 5, this equation looks like

‘//3‘ = 0" (otan (‘/ﬂ‘-g" A ) (4.16)

If we deflne/o as

p = ‘/ﬂ1‘~91 ol (4.17)

then eq.(4.17) can be expressed as two equations given

O
1

by
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(4.18 a)

9= - p Coém(/o)
«

and " (4 18 b)

- R § 1,3
- the solutions of which are given by the points of
intersection of the family of ellipses given by (4.18.b)

and the cotan function given by (4.18.a). A computer

plot of these functions 1s given below 1n figure (4.1).

R4

/

To
P
p
-
4
2

FIGURE (4.1) F

As can be seen 1n the diagram, increasing values of
the pulse parameterseaandfresult i1n larger ellipses and
thus give rise to more and more 1intersections. Hence,
it can be seen that the size of the pulse determines the
number of eigenvalues, thus determining the number of

-~

solitons.

The eigenvalues were obtained from the numerical

solution of the equation

_{-’_ Lotan (/0) - (ﬂiwé)ﬁ-': O (4.19)
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and these eigenvalues are given 1in table (4.1) for
three different sets of pulse parameters. Figures (4.2)
- (4.4) are computer plots of the eigenfunctions

obtained from the eigenvalues 1i1n table (4.1).

d=2, =1 a=3, g=2 a=4, §=2
7=0,391022 1=0.982587 1=0.206312
17=1.789603 17=1.447273
1 =1.874812
TABLE (4.1) )
Figure (4.1) shows that the number of

intersections, N, which 1s the number of eigenvalues,

1S given by the equation
N <—i" T+ _é'{ > (4.20)
/! /d

- whered..) denotes the greatest integer less than

the argument.

That eq.(4.20) holds can be easily seen 1f one
considers the ellipse which 1intersects the x-axis at the
point P = /2. For this value of p, n = 0 and so we

have ff ufﬁlfrom which we deduce a8/r = 1/2. The

parameters a« and 8 are Just 1large enough for this
ellipse to cross the cotan function once Equation

(4.20) gives N =<1/2 + af3/7m> = 1 which 1s the same
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Pulse parameters: a = 2, g3
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The pulse parameters a=2 and =1 define an ellipse
which 1s just large enough to 1intersect with the cotan
function once only and hence a pulse of this size
results 1n only one eigenvalue, the eigenfunction for

which 1s given 1in figure (4.2) above.

SCHRODINGER LOUATICM  -- SCUARE WtolL FOTENT AL

i

g e, o,

T Ta' Fﬂt‘ﬁ}IT T“‘C‘ {'r Lol oo T YT T Ty T

HOLE WIDTH = 3 HOLE DEFTH - 2

FIGURE (4.3) : pulse parameters: a = 3, 8 = 2.

For larger pulse parameters, a« =3 and =2, the
resulting ellipse intersects with the cotan function
twice admitting two eigenvalues. The two eigenfunctions

are given in figure (4.3). Figure (4.4) contains the
37




ergenfunctions of the three allowable eigenstates for

the pulse parameters a =4 and g =2.

- SCHRCHINCER EQUATION ~-- SOUARE WELL FOTENTIAL
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In every case, the number of solitons contained 1in
a given pulse g(x) 1s the same as the number of
eigenvalues of the underlying wave equations eigenvalue

problem.

We conclude that the number of solitons contained
in any rectangular pulse 1s given by the simple
equation, edq.(4.20), which gives the soliton number 1in
terms of the pulse area. This is the result obtained in
chapter 3 where pulses of sech(x) form were studied.
This chapter completes the analysis [5)] of rectangular
pulses where only purely imaglnary elgenvalues had been

-

considered.

39



CHAPTER FIVE

EXPONENTIAL PEAK PULSES

In this chapter, we solve the eigenvalue problem

Vn' + Jv; = ?«VI (5.1.a)

\/1' - t'f(w. = —-%*Vr (5.1.b)

where q 1s a family of input pulses given by
)0 = pecpl-nl) (5.2)

Equations (5.1.a,b) imply

" ' ’
Vit - “’ Vil I:Am - LJ_&I -+ (u/ Vi = 0 (5.3.a)
2 « -

n ) ) 2
vi -({) wva +[A‘ s W) 4 {a(]\/;_ = (5.3.0)
.*C
u U
where g(x) = 1u(x). If, for x > 0, we make the

following change of variables:

X 20 &= exp (- .
_é X a(X) )(/ Vi, (5.4)
R s

then eq.(5.3.b) can be transformed to Bessel’s

equation as outlined below:
40




f

Equation (5.4) 1implies

4( Vy = - iS5 dus (5.5.a)
d x ds

A - .L"i‘_{_\/l v VAV (5 5.b)
d x* A 5 A s

Substituting these deraivatives 1into eq.(5.3.b)

gives

ATLEY A + [A" - (L4 u‘x‘] Vo = O

‘¢ (5.6)
If we now use y = vzﬁJE, we find
d’V = | v s v
ds $* ds I (5.7.a)
= -1 1 dva p 1l L3 --‘__f_’f‘/_“
2z [ . . vy (5.7.b)
1 S ds St ds N 28744

\)"(—Ql__\_ 5.8
2 ) (5.8)

allows us to wraite eq.(5.6) as Bessel’s equation of

order v

AV ) oV v\ V=
- U R

(5.9)

For x { 0, the change of variables

Ko, §=p “(a(,,(x)) ("/"_‘/L
& \[Z_ (5 10)

enables us to obtain the following

/U' = d!_@

Jx /} (5 11 a)
41



4_?_0_[__ - !‘msﬂ -+ t \"{\'ﬂ,— (5 11 b)
A ¢ oA s o s~

Substituting eqgs(5.11) into eq.(5.3.a), we find

"15‘»& + [XV—M/& + né"'/"] Vi = 0o

(5.12)
ds
Now, using ¢ = v1/A/s, we find
4/0} = _1 A/VQ - U
15 A J.S 7 ?71 (5.13.a)
af”'(\‘/ = _i__o/.'v; - }a/\/u + 3 L L/(513.b)
ds™ s™d s 5% ds b 5%
again defining v as
v = -_{_X -
o ‘i‘ (5.14)

1t 1s easlly seen that the Bessel equation of order

1s the same equation as egquation (5 12).

- For x ( 0, Bessel’s equation, (5.9), has the

solution

Viz = ayi L+ avd Lun s

where ¢l and c2 are constants to be determined and

J, (9215 the Bessel function of order v given by

CT - I N} V2
o [ i Co IR

v+ \ 2 (5-16)

Using this vl, we can find v2 by using eq.(5.1.a).

We find:
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Va = 6[ Vi + (l / (5.17)

For the first component of vl1, clv&J, (s), V2 1s

t/|=\/'.5_j_—\,(s7ivz = | Tu(s) -Hf:_ﬁ 7:»(5) —f-i U:(n
WS As Vs
- ﬁ[i_ Jols) '_\LTJ(”:' = - ‘EJ\:-‘H(’) o
ds $

For the secona component, c2\/§J_u(s) , we find

v,_—.\/.?Iv(s) VR \/?[Zf/i I\;(s) -‘_l’_Io(f)

S
(5.19)
. V_‘ 'V-l(f>
- giving the complete solution for x < 0 as
U= eNs Jot + 67.*/?.7:,(;)
(5.20)

Vo = ""Cn/?j—:hbl(5> -+ <z\l?j ,‘(,5)

-V
These solutions must have the asymptotic behaviour
as given by eq.(2.11) for x =->— o Expressing vl and v2

in terms of x we obtaln

"‘i -Zix
Tgm)x—yw v-rl ( )(.71_)
_j;-a-l(!) >0

a |

SO0 ‘4 \"H-tii-ﬁ"-
r*(\m.)éﬂ'( ) 5.21)

_\, I+ LR

(+
Tt Tl d) )
%

YA (ﬂ&) ( )5

In order to make the coefficients or exp(—ikx) one

and zero for vl and v2 respectively, we first make use

/
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of the fact that for vl1, the J_ (s) function becomes
infinite as x - - & ., (That this is so is obvious from
eq.(5.16) ). This implies that c2 must be zero. That
vl must approach exp(-1 A X) as x-> = X then 1implies

A
that cl1 = 2" (Yg)¥r(v+1).

For x > 0, the solution of Bessel’s equation 1is

given 1n terms of v2 as

Vi = Gy T+ Cuys T (5 23)

for constants ¢3 and c4. Using (5.1.b), the
corresponding solution, vl, can then be found 1in a
similar way to finding v2 from vl for x ( 0. The

complete solution for x > 0 is then

VIR -43‘/—-7-.;*\(5) + 44\/_ w1 (8)
Vn = C3V-5_j_o(5) + C‘lﬁ J.o(})

Expressing these solutions in terms of x, for x)g

(5.24)

, We can wraite (- N4,
"'l ﬂ _1_ ll‘ w o X
Tt T (£ (e
Vﬁ; j, ::::i c !
) s=0 X
) G

(5.295)

-yt

T ) (ff) (e

e
oo R
J:v(‘) Ft Xe) ' (_ﬂ_)‘ d(__zl__) C- 1()4 2% X (5.26)

F(-v-O &
If we compare these equations with the asymptotic

behaviour of V>as given 1n eq (2 11), we find ¢3 and c4d
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= ) 1"(14_)"%‘ ~lon)

A

co= all) 2 w

The complete solutlonf3 for x > 0 1s therefore

(5.27)
Y] r,(.vs

given by

= ""OOZ' (i) p(v)({jg «) /4)7.((.,)“ /u.;:)‘/_( 7; )(5 .28)

\>-

\ T
It now remains to calculate the coefficients a(A)
and b(\). To do so, we note that the two solutions
obtained above, 1i.e., for positive and negative x, must

be the same at x = 0. ThlS matching condition then

gives, for s = (8/«) (04‘ ) 9 -
(ﬂ) V(jﬁ%) =ral

) o ()

1f, for convenience, we define a(\) as

Z(/O = —4[,()2-19 " 7 (5 30)
f‘(v-ﬂ)

then eq(5 29) can be written in the following form

T (% » :r.\,m o “Tou )
~Toul) T\, (PL) T, %)

(5.31)
Hence

Tl TN\ [EN [T
ot 7o )\ew )\ Tt )es

Solving for g(x) and b(A), we obtain
45

Ve



A= T - Tew )
T ) T, () + Toolth) Ty (P

W= -7 DT O - Tl To (B
T COT O + T COTon Bl Y

(5.33)

We have found a(A) for real values of A. Real
values of A imply that # N v jo} Analytically
continuing 1into the complex upper half plane, in which

ImA > 0, then allows that v to belong to the set N V

fo} .

Note: a(A) and b(l) which are given 1n terms of
the linearly independant pair J, and J_, can also be
expressed (5] in terms of J, and ¥, 1In any case, the

condition on the number of zeros 1s the sane.

The zeros of E(A) are the elgenvalues of eq. (5.1)

and are the solutions of

:Tu-H (%) = 27, C%) (5.35)

It can be further shown that there are no solutions
of eq.(5.35) for non-real v with Re v > -1/2 The
proof runs as follows(6)* We assume that J, + J,,., has
a real 2zero s for non-real , . Then, usaing the
Mittag-Leffler expansion [ 7,p497]

‘if:j!“ = O
‘4 gt

et don (5.36)

o

and therefore z egiw. /MJ‘W\ - O (5.37)

A=l (J.v’l:\ = 5‘/1
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follows, where 3, are the =zeros of §*Uu(s).
This equation cannot hold because Re ]M./Im Jon % 0 for
x%O for all n with Im 3 # 0 [8)], and because there
are j, with Re j #oand Im J,, # 0 This leaves with
the problem of finding and studying the points of
intersection of J  and JU+1. We w1ll denote these
intersection points as sa(v) for real order » = 7/x-1/2
> -1/2. Showing that labelling these points Makes stk s
easy because, 1f Vv changes, the number of points of
intersection stays the same, and S, changes
continuously with ., Furthermore, s, —= «© for n — @
and for v 5 ¢ , and s, increases monotonically with
V[§; consequences of Lemmas 2.3 and 2.5 1n ref. 9 ]J.
This 1implies that s,(-1/2) = (2n-1)r/2 determines the

number of solitons.

Solutions of eqg(5.35) were obtained numerically
using Newton’s method Using the values of the
intersection points obtained, a graph of (f/«) against
v was plotted, (figure(5.1) ). As can be seen from the
diagram, increasing values of (g/«) give rise to more
and more 1intersection points and hence more eigenvalues.
As 1n the case of rectangular pulses, see chapter {4,
an i1ncreasing pulse sl1ze means an 1ncreasing capacity

for eilgenstates and hence solitons.
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FIGURE (5.1) v

Table (5.2) contains several of the eigenvalue
solutions to equation (5.35) for their corresponding
pulse parameters £ and [ The associated eigenfunctions
are given in figures (5.3) and (5.4). The initial pulse
for the parameters given in figure (5.3) 1s just large
enough to support one elgenstate. The pulse for the
parameters 1in figure (5.4) 1s large enough for two

eilgenvalues and the two associated eigenfunctions are

shown.
L =1.0 B = 2.043 £ =1.0 B = 2.514
7 = 1.0 7 = 1.4
n = 0.1
3

TABLE (5.2)
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FIGURE (5.3) . Pulse parameters: L = 1,p = 2.043.
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FIGURE (5.4) Pulse parameters: o{ = 1, § = 2.514
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If we define F as follows

F =fdéx,o> p/x (5.38)

then the number of solitons contained in a given

pulse with parameters o{ and 8 1s N where

N =<.21: + .5> (5.39)

and< .. > denotes the 1integer 1less than the

argument.

That this 1s so can most readily be seen 1f one
considers the points of intersection of J,, (f/«x) and*Jq
(B /4{) when v=-1/2. For this particular value of Y ,

Trpa (P) =\[2/rr \(Foc/ﬁ ).sin(f /) and J,(f/«) -—\lZ/ vyfv‘/ﬁ-)

.cos(f/.). The sine and +cosine functions intersect at

intervals of 2t with the first intersection occurring
at (BR/s) = /4, while the sine and -cosine functions
first intersect at the value (P /X) = 3W/4. For any
value of (f/«) that we take, the number of
intersections of J,, (B/4) with J,(f/«x) up to this value

of (B/+) 1s A, where n 1s the greatest integer such that

ol AN (.40

For thas value of (4/«), then, it 1s clear that

L+ 20 S A
2 LY (5.41)
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Equation (5.39) then gives the number of
intersections as N. This equation 1s the equation for
the number of solitons contained in the initial pulse.
It relates the soliton number to the area of the pulse
and 1s the same result we obtained when we studied

rectangular pulses and pulses of sech(x) form.

- ———————— ——— —————————
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CHAPTER SIX

THE SUPER~GAUSSIAN PULSE

We want to solve the linear eigenvalue problem

(2.1.a) for the special case

Ax,0 = Ao €x ¢ [ 1 -Ll)(x/d’)zM]

(6.1)

The pulse 1n eq.(6.1) represents a typical laser
pulse and 1s for this reason a very important one. From

eq. (6.1), we obtain

v =

!
W = -M(I-u X WU (6.2)
0‘1“4
Substituting (6.2) i1nto the eigenvalue equation
| I . v
ui' - & +[,L"- Al ]UL: o 6.3)
U U
we obtain
vl
\/ 4M{(.M) " VI'
o,um
amcl L)
[A pidwli-id S L Aty “e) ]M:o (6.4)
1w
¥

First, we try to find a solution 1in terms of a

series for x < 0, 1.e.,

S2



















































