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ABSTRACT

Electromagnetic pulse propagation in optical 
fibres is described by the non-linear Schrodinger 
equation. The solutions, or solitons, remain completely 
unchanged as they propagate along the fibre. The 
question we are concerned with is, given an initial
input pulse, does it contain solitons, and if so, how 
many.

Answering this question means solving the 
non-linear Schrodinger equation and this is done by 
using the Inverse Scattering Method. This method 
utilises several linear problems which are compantively 
easier to solve - in this work we focus on the linear 
eigenvalue problem since it gives all the information 
about solitons

In Chapter 1, we first show that pulse 
propagation in optical fibres is described by the
non-linear Schrodinger equation. Chapter 2 deals with 
the Inverse Scattering method and, in particular, how 
it is used to solve the non-linear Schrodinger equation.

In Chapters 3, 4 and 5, the eigenvalue
problem is exactly solved for three special families of 
input pulses. We show for the three cases that the 
soliton number depends upon the area of the pulse only, 
regardless of the pulse's shape.

Finally, m  Chapter 6, the eigenvalue
problem is discussed for the super-Gausslan pulse, the 
type of pulse produced by semiconductor lasers. Formal 
solutions are obtained in terms of an infinite series of 
functions. To calculate the exact solutions, numerical 
computations are required. We present the working 
software code and suggestions for tackling this problem.
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PREFACE

The non-linear Schrodinger equation (N.L S.) 
belongs to a class of equations which are of much 
interest in applied mathematics. Aside from their 
complexity, these equations are interesting because 
their solutions are highly stable and remain unchanged 
in shape and form through time. The N.L.S is of 
particular interest because its solutions have been 
shown to represent pulses which propagate along optical 
fibres.

The stable solutions of the N.L.S. are called
solitons and are considered to have a potentially
important role to play in fibre optical data 
transmission. Unlike conventional systems, a fibre 
optical system that uses solitons requires no repeaters 
and the soliton pulses can be made to travel at
different speeds. Already, a rate length product for 
distortionless transmission of 11,000 GHz-km has been 
achieved, and this represents a significant improvement 
on current systems.

In this work, we focus on a further aspect of this 
subject. We ask the question, given an input pulse, 
are solitons produced, and if so, under what conditions 
do they arise. From our mathematical viewpoint, we must 
solve the N.L.S. for actual pulses as produced by 
semiconductor lasers. This work sets out to solve this 
problem.

We solve the N.L.S. exactly for three pulses and 
have developed software for numerically calculating the 
solutions for a fourth, more realistic pulse. In all 
three exactly solvable cases, the same simple equation 
is found which gives the soliton number in terms of the 
pulse's area. This result is very important: - It says 
that despite the shape of any pulse we choose to inject 
into a fibre, the number of solitons born from it will 
depend only on the pulse area.

The fourth pulse we study is the super-Gaussian
pulse, which models the kind of pulses generated by
semiconductor lasers. Unlike the other pulses studied, 
we can only find the solution m  the form of infinite
series and so a computer needs to be used to generate
them numerically. We include the software to generate 
these solutions. In order to generate these solutions 
to any desired degree of accuracy however, a detailed 
numerical analysis has to be added.

It still remains to see whether or not the area 
rule for the soliton number holds in this case. For this 
question to be answered satisfactorily, an analysis like 
that for the three preceeding pulses is required.

Kevin Breen.



CHAPTER ONE

NONLINEAR PULSE PROPAGATION IN A

MONOMODE DIELECTRIC WAVEGUIDE

In this section, we present the derivation of a 
non-linear wave equation which describes the propagation 
of an electromagnetic wave's envelope function in a 
monomode dielectric waveguide. Up to now, derivations 
of such a wave equation have been based on very general 
arguments and are for this reason non rigorous. We 
present one such derivation and then proceed to the 
recent derivation of the non-1 inear Schrodmger equation 
[ / ] . The non-linear Schrodmger equation is the 
equation which describes the propagation of solitons in 
optical fibres. A non rigorous derivation of the 
non-linear Schrodmger equation is as follows : -

Consider the wave equation

For solutions ^(z,t) of eq(l.l) of the form 
>^(z,t)=exp[i(kz- cot)], which propagate along the linear 
fibre, the linear relation



can be shown to hold. Here, c is the speed of 
the electromagnetic waves, u> is the frequency and k is 
the wave number. If we now consider a monomode fibre 
which supports a pulse with carrier frequency a , 
wavenumber kf and slowly varying amplitude q(z,t), we can 
expand k and obtain to low order

where the coefficients are evaluated at w = and ¡if 
= 0. We now look for an equation for q which reproduces 

eq.(1.3) for the special case given by

4  -   ̂ ^  3  i t  ( w  *  to  *)  1

(1.3)

Such an equation is

normalisation is such that |e / = |q|2. If we now consider 
the case where kW< 0 (anomalous dispersion), a change of 
variables

where k andand

leads to the equation



- which is the non-1inear Schrödinger equation. 
Note: Because these arguments are very general, one
would expect the non-linear Schrödinger equation to be 
relevant in many different areas which is indeed the 
case. □

We now present the rigorous derivation of the 
non-linear Schrodinger equation from the Maxwell 
equations -

r  x j _  1 0  7  x ?  =  -  j _  i t
/ (1*7)

U C i  é C l k

where e0 is the dielectric constant. If the 
—>magnetic field H is assumed to be equal to the magnetic 

induction B for the fibres considered, then equations 
(1.7) can be further written as

v  * r  * f  I ^  0
—  — :  ( i . 8 )

£ . < ‘  W ‘

The D in (1.8) is called the dielectric 
displacement vector and, for a cubic nonlinear medium, 
3 is given to third order by D = «0 x*E, where x*i* is 
defined by

í o j U t l  X  { -  éi) £ (¿t

t i
“ A)* i.f  t / i j J h j d h r a . î, t . h) £(i>)(1.9)

~ Co) ~{2)x and x are linear and nonlinear dielectric 
tensors respectively and are 3x3 matrices. The triple

3



integral in eq.(1.9) describes the nonlinear response of 
the fibre itself to the propagating electromagnetic 
disturbance due to two effects, the Raman effect and the 
Kerr effect.

The Raman effect is due to the passing 
electromagnetic wave and can be most easily understood 
as the emission of radiation by the carrier medium by 
the excitation and subsequent dropping back of electrons 
to their original states. The Kerr effect results from 
alignment of the fibres anisotropic molecules due to the 
propagating wave. These alignments in turn affect the 
propagation. In eq.(1.9), the upper limits of 
integration show that it is the electric field at 
previous times only which contributes to the 
displacement. This follows from causality.

We now wish to recast eq.(1.8) in matrix form. To 
do this, we first use the identity V >c 

to obtain

from eq.(1.8). Secondly, we replace the cartesian 
coordinates ,x, y and z with the cylindrical coordinates 
r, 8 and z and give the components of E, the electric 
field, by E r = E*cos 6 + E ^ s m 6, Eq = -E<sin0 + E^cosfl 
and Ez instead of E*, E^ and Ez . From this, we can then

(1 . 10)

write r
Oi Lx i 9 0% L a  0% £

4



l l  +  ±

where (1

e>r

and

L a = X  X
f *  l ( f

+  1 . 1 + ±
r 3r r l  ■

St A 8 o

C e S 6 0

0 1

• *
Xis 0

i 7 t ’ - * 0

0

0 ,  2 ) asU)If we now define x ( 1  = 0, 2) as

/m -*

X  f  -  0» r  ¡ 7 , "  £■

(1

then eg.(1.11.a) can be written in the form

_ l  i ?  + a )

with defined as

a 2' <l i i *

I 0 o

0  I o

0  0  I

. 1 1 . b)

. 1 1 . c)

(1 .12)

(1.13)

( 1 .1 4 )

Note: E(tl)• E(t2) = E D^E . Finally, we use
5



to  show t h a t  e ) = D^L D ‘e *, where

A  1  A  r
e>r f  <)r 

i a1 r

L  y  r
f* 3 pT i

the equation

1i
i ^

I  B X f d 9 ¿a

a z l

we denote (Er,Ee,Ez)

i + £<) r * o

(1.16)

—>

(1.17)

is an equation equivalent to eq.(l.lO). Equation 
(1.17) is Maxwell's equation in cylindrical coordinates. 
We now assume that the electric field is a nearly 
monochromatic wave propagating along the z axis with a 
wavenumber k and an angular frequency of a>,i.e., the 
electric field is assumed to be of the form

-> i (&4 Z - i )
ECr, $, I, I) “ ¿ 2  ^  (r , 6 ^ ^  j )  Z ( i- is )

( u  —»

where

=  e ‘ z  , r  .  i U  - z \  M «  i (1.19)

are slow variables and E = E ,* k = lkl and h  = lw,.



With this change of variable, E changes slowly in z and 
t. To lowest order in £ eg.(1.18) is of the form

E Cl’ ,9t l,k) s  if* | i  E  ̂  ( r / z -  W, O ] ^ 1 - 2 0 )

The Ej, for 1>2, are generated by the nonlinear 
response which is due to the Raman and Kerr effects. If 
we expand E(t; ) as

c  ¿(é')  ** £ ( ( é )  +  I  £  4- \ b S'  ( j \  - ¿ j ^  , t
a *  2 3 ^

21)

we then obtain, up to third order inf-

+ i c i t t i c t  .I '-cxfrTi
#<■>< J ?  ^  J t "

* I > t l  Â )
|V  7

r ,

where
/t>) /- > (©)

^  i =  J d é i  ( (é\) £

t c k i i * u j f é . )  
€ (1.22)

t o cP <r> <t> (l)r  r  r  /'*" -¿¿o J ¿0
^  ( 1  2 3 )

C o o

We now use equation(l.22) to write out equation 
(1.17). If we keep only the terms which contribute to 
order € less than three, we can write



- f  r i

*

t ' i t e  *  m J T i t  - f £ L ”  € ¿ f

t u *  * r  z d u <y a ? '
fa) ->  - i n  -(c) t

K  i t i  .  ¡ e i t ?  t £

« t  Ì D i  ì  é x
X Y  t u

à C

~ L f <  - lJ  - U t <
‘ (4<>Z - ¡¿¿è)

* * i " Z  K i  M > )  <?

l ( k ( %  ~ M / é )

=  o
(1.24)

L L and L are 3x3 matrices and are given by
i  ¿ ¿

%

i .  _L A  r 3_¡_ à ¿ é ( d
¿r r Jr 5r r 3r

/ — i a1, r / 3*1 t B
rl ¿rá¿ r* r  9 4

ik( 3 r t'4/ 3 - 4 z ì
r 3r r 2 9

-

" 0  O  i  '
ardi

O  O^  w  p Udì
*

o 
o

0 
O

1

O-

0

-i a ! r J. 
f* ¿p¿i r 3*¿l 02

oo_ 
i 32'-

(1.25)

If we now expand in terms of £ as

Í t <  r , » , * , r , t )  =  Tl t ‘ £l<a(r/ t , r , r ) (1.26)



and equate in (1.24) and (1.26) terms of equal 
order in € , we obtain

I ,  £ 7 - o
W (1.27)

where

Li cz L x  -  + ¡¿( ~  L j  (1.28)
" 7 *

Note that Ly is L = + hj + Lc in eq.(1.17)
where d/dz, d/dt and X have been replaced with ik^, io^ 
and x¿^respectively. Furthermore, it can be shown that 

i s  hermitian, i.e.,

where ds is the volume element rdrd0 and all 
surface terms vanish. We write the solution of eq.(1.27) 
in the form

r- W v
Z( (rt t ,Y , r )  =

^  ( r , t )  U  Crt $) it r  I  *  i  1

0  f r  I * ±  i (1‘29)

Ci) ,That E{ is zero in eq.(1.29) for 1 4±1 is due to
the fact that the fibres in question support only one
mode. Equation (1.27) implies that L,X? = 0 and therefore
implies that (UjlyU) = 0, from which we obtain the
following dispersion relation, k = k^ (̂t) :

i .  1  s  ¿»3 *

+ iitif(lUzVT-a*-a*%Vr-u£) M
( 1 .3 0 )

where ?
J o  y f t f r T *  \ d V j L  J ? J ± * _  >



and xj^has been replaced with ho\

If we use

( 1 .3 1 )

* L  =■ l i o c
te)

C  3 ^ /  I c*
32)

and ^
H i

“ ; -  LJv1

w  V
~  / s~  / \

f 1 - 33 )

where is L< with ̂  replaced by 1 , we obtain,
at order £ —

a)
- i U  - / I „ l i x A  ^ / L (  .  u ‘  2 ? \ (  3 ^

I hk , 7 ?
(1.34)

from which we find

r  W £< -  0 (1.35)

for 1 ^ 1 .  Now, since L, is hermitian and since L,
U = 0, we can write

(1.36)

This condition implies

=  2 A l
3 ¿0i (1.37)

where Vg is the group velocity. Here we have used

Ü,lk -L  (U,Ll ll?\n 0 
. iu, %r / »(,, \  } r  /  <i-

10

38)



and - u ?  0  ( 1 39)

For 1 = 1 ,  equation (1.34) becomes

'(t)
L \ £ ]  ~ - i  ' i L i ? £ ,  * ~ i \ L j_ Ut ^  4 0 j

3 u i  3 ?  3  a ,

The corresponding equation to equation (1.34) for
order £ * is

(3) M i )  . .  _ .  *5 />)
L i £ " ( «  ‘ U i  4- i ^ Xf '

* u , J t  t

3 /  Li -  «I^AO1,4  / ¿ h  -  i b h . \  
V a t  r 3 ^ 7 l  T r 7 Ti,V

I AO \

r
-4where F is defined as

(1.41)

42)

3  (3 )Equation (1.36), for order£is (U,L E ) = 0. This1 1
condition implies 

2 9 t

where V = l M i ! (  U , f  )

(1.43)

(1.44)

.45)

Equation (1.43) is the equation which describes 
nonlinear pulse propagation m  a monomode dielectric 
guide.

11



CHAPTER TWO

THE INVERSE SCATTERING METHOD

The non-linear Schrodinger equation is one of 
the many non-linear wave equations which is solved by 
means of the Inverse Scattering method. This method 
bypasses the direct solution of a non-linear equation 
and instead enables one to solve it by means of a series 
of linear problems which are easier to solve. A 
detailed discussion of the Inverse Scattering method can 
be found m  [2 ] In this chapter, we describe the 
Inverse Scattering method for the non-linear Schrodinger 
equation and we concentrate in particular on the 
equation's associated linear eigenvalue problem.

To begin with the Inverse Scattering method, 
one must first find a Lax pair of differential operators 
L and B which satisfy the linear equations

L V  ' I V

¿ l i  *  e v

i t

( 2 . 1 . a)

(2 .1 . b)

where X is a time independant eigenvalue and L
and B depend on a function u(x,t). L and B are chosen
so that the consistancy condition of eqs.(2 .1 ) -

12



leads to an equation

K h )  = 0  <2 3)

for u(x,t) and K a non-linear operator. If a 
Lax pair can be found such that eq.(2.3) is the 
non-linear Schrodmger equation, the Inverse Scattering 
method can solve the initial value problem for eq.(2.3) 
as follows -

l L U t k)

3. Sfaéétri'Aj dftèô.
A i

â
L'l' =  A*

♦i11
1

a ,

m u  A
1.

4 . P
i * o _L * =  A*

FIGURE (2.1)

The Inverse Scattering method is subdivided into 
three steps

STEP 1: For fixed t # the linear eigenvalue
problem L ^  = A'I' is solved for both bound state and
scattering solutions, and the set S = <N, * , c (for

I n n

n=l,,,,N), R(k) , T(k) . (0<k <°°)j of scattering data is 
found. Here, the R(k) and T(k) are the reflection and



transmission coefficients respectively and are obtained 
from the scattering solutions. The number N gives the 
number of bound state solutions to each of which there 
is associated an eigenvalue X .

d't'STEP 2: The linear equation r̂ ~J~ - B ̂  1S used
to calculate the scattering data at any time t in the 
future.

STEP 3: Using the equation L* = B'f' and the
scattering data at time t, the potential u(x,t) is 
reconstructed. This step is called the Inverse Problem.

For the non-linear Schrodinger equation, a Lax 
pair is provided by

UL
> ' I ° X 

o  I  f  I  t ,
( 2 . 4 )

f —  +  
a , 1

- ¿ H e  

3 K

( u l
i
L dU>

-  l u l ( 2 . 5 )

and a straight forward calculation shows that

+ [M l *
u

0  -  U U )

¿ U )  0
(2 .6 )

14



where K(u) = 0  is the non-linear Schrödinger 

equation. The y in eq.(2.1.a) is (^l f̂ 2)T. and lf we 

define

Vl a  V) -  jö i ■ i /  * )  'A  ( 2 . 7 . a )

Mj, s yi +p «KjO _ A _  * J \)\
(2.7.b)

- the eigenvalue problem (2.1.a) becomes

f0

(2.8 a)

f  y r 7 " ^  (2 .8 .b>

or, equivalently

Vi + I £ V| B ( 2 . 9 . a)

Vi1 - £ £ Vi c  - 4 * ^ 1  (2.9 b)

where q and £ are such that

4 ä  c U  , £ r  k
f-

Vi  - 1 ° '  < - ^t  ( 2 . 1 0 )

Equations (2.9.a) and (2«9.b) are the eigenvalue 

problem (2.1.a) in a more convenient form.

( hereafter all eigenvalues will be denoted by \ )
To proceed with the method of Inverse

15



Scattering, we must find the scattering solutions to 
this eigenvalue problem, i.e., we must find the 
solutions of egs.(2.9) with the following asymptotic 
behaviour

-4 /( X i I  X.

V A

« . U K (2 . 11)

Here, the eigenvalues X of a(x) can be 
analytically continued to the complex upper half plane. 
At the zeros Xp of a, the asymptotic behaviour (2.11) 
reads

and the solutions are square integrable. The 
Xn, cn and b( X ) are the scattering data and the 
eigenvalues are time independant. To find out how CA
and evolve m  time we use eq.(2.1.b) for large x. 
For large x we can write

6  = - e £ _ l  
r  a * '

(2.13)

and obtain

If we insert into eq.(2.14) the asymptotic form

*.Llk) t 0

i ■ N- /V

*
I

or

16
Ca C (2.15)



we find

j t x  s  f  * y )  A.
i t (2.16.a)

L 1 I = - Z + (2.16 .b)
n

( »  J. t(> ~l + f )  l (2.16.C)
\  t

Without loss of generality, we can replace B 
with B+Col with Co = - A(p+2+l/p) . Then the equations

4.(^1:) = & ^ , o )  (2.17.a)

k i M

¿ ( l j )  = ¿ ( ^ o ) * .  <2 - 17-b>

'+<■1  ̂ (2.17.C)
U l )  =  C a t

follow. Equations (2.17.a,b,c) give the time 
development of the scattering data.

Having found the evolution of the scattering 
data, the last and most difficult step is to reconstruct 
u(x,t) from the scattering data. We sketch this 
procedure below:

Defining 4> (x,t) as

L J i  > 0

, 1 ,
1 !* I i*\ J 4  IM A ^  0
v r  u j j / ^  ( 2 . 1 8 )

17



where <f> and ^ are the solutions with 
asymptotic behaviour

4  M , v — . i

*1 \  0  /

- it can be shown that <t> (x,x) has a
discontinuity given by

a .

$ • ^ 1 )  - “ $(*, l - i 0) — (IQ V(„M (2.20)

¿ 6 0

and poles at the zeros x of a(x), 4>(x,\) isn
otherwise analytic and approaches at infinity. One
now uses Cauchy's formula

V u , l )  = / I W * , ; ' )  J k

(2.21)

where Im x 4 0 and 7 is a contour containing a 
small neighbourhood of x If 7 is distorted to a
circle of infinite radius, we pick up the residues and 
the contribution of the discontinuity:

4 > L t \ )  =■ /  u  4  y  A ___  W  I *. Ù

' °  '  j T i  ^ ^  ¿ ' ( H )

+  _ !_  f  f t * .  ^ ') d  I
K r i j i ' - i  <2-22>

Equation (2.22) can be evaluated for x - x - iO, 
h and at the poles x = *n. This yields

18



*
I k J )  4  C h j k )  I -  7  r ,  * /O

C U U L L k )  (2*23)
V

^ - i i ,  a 1 f t 4 )

N w ' / i l *
cTi -  ¿ .  I + T  Q~ 1 ~  “  V  £ (  ¿4 -  

^  - /<*
(2.24)

¿LA,

where

A 60

2«^
(2.25)

-  ¿ i x  N  * i l $ (  H  #

4y   ̂ / iA_
4 , 1  \  d ' /

¿ J

(2.26)

b AK X c L k  x
C i

i ' l k  4 )
00

+ I r r i ¿ « J V i
l - n i j  I - A f

(2.27)

These equations determine <j< (x,Â  and <r(̂ )

Finally, to recover q(x,t) from the scattering 
data, we evaluate eq.(2,26) for large A :

^  -¿X

*

N ¿ A ’

v L a &

u -J-<*>

CX\ A L + O / iw - 28)

The eigenvalue problem (2.9), yields
19



Therefore

i y j
(2 30)

from which, using eg.(2.10), we can easily find
u(x,t).

The solution of the initial value problem for
the non-linear Schrodmger equation which we have just 
sketched is very complicated. However, the method
involves linear calculations only and this allows us to 
derive some interesting conclusions. In particular, it

eigenvalue problem (2.1.a) correspond to pulses which 
are stable. We call these stable pulses optical 
solitons.

As an example, we solve eqs.(2.9.a,b) for 
b(A,t)=0,i.e., a =c=0. If we define

can be shown that the L integrable solutions of the

(2.31)

then equation^Z^n) read
N , i * ,



N *  ) *

^Od ^   ̂ it (2.34)
(

For N = 1, the solution is

* 4 }
U U ,t)  =  V T x  ? ______________________

¿<?5̂  m* o ) 4  (2.35)

In physical space time coordinates, equation
(2.35) describes a stable pulse whose amplitude is 
determined by Im X = rj and whose velocity is determined 
by R e  A = x,.

Due to their stable nature, such pulses have a
potentially important role in data communication. It is
therefore interesting to discover which initial pulse 
contains solitons. Using the Inverse Scattering method, 
this amounts to solving eq.(2.1.a) for initial pulses 
u(x,0).

and equation (2.30) reduces to

21



CHAPTER THREE

PULSES OF HYPERBOLIC SECANT FORM

In order to make this study of the non-linear 
Schrodinger equation's eigenvalue problem complete, we 
include the results of Satsuma and Yajima [5 ] in which 
was studied the initial value problem for the pulse

U ¿ x t e )  -  f i ( 3 . 1 )

The eigenvalue problem for the non-1inear 
Schrodinger equation is, from chapter 3,

\j\ -  u !  vV  ♦ ¿ V  + f  4  ( u l % 
u

( 3 . 2 )

If we change the independant variable, x, into 
s, where s is defined as s: = [1 - tanh(x)]/2, then we
find

\j\ =   /  s

d s  àTx

í t í C b0  d\J¡

d t s  ( 3 - 3)

d i  â f  * d x i  J ?

* Ja  jf s&d *u) (3’4)
d s  4

With these derivatives, equation (3.2) then becomes
22



Sid %) d\h + Utfjù é*HÂùÛ du +
4

¿À lx* lU ) + l \  A t * d (<)

o

1/
( 3 . 5 )

Since s =--[1 - tanh(x)], we have tanh(x) = (1 -
2s) and also sech (x) = 4s(l - s). Hence

j h \  +

dis di U i Ci - 0

V i ü O (3.6)

If we further transform the dependant variable, 
— ¿Avl, into s*(l - s) ^wl, then dvl/ds and dvl/ds then

, ¿I/, ml -¿/(/l * / l/Lbecome / / 1 / \ , /  \ /
dUt S ¿1 *i) t CJi + S ( i  m$) t a\^ \

t h  i  c f s

(3.7)
£ *  + d _  A t J Î
J i '  ( L - i )  J S

• i i  /  J  
K ' / i W l  i  /
Substituting these expressions into eq.(3.6)

(3.8)

yields

¿¿s.i) d  (Jj ^ (s - '/t - ¿1 ) Jui, ^ 4 \ t  — O
¿ 1

(3.9)

Comparing to the Hypergeometric Differential
Equation -

s ( i * ) d j j  ± \ ( <+ / 3 +i ) j  -  r ]  dm ±  c i n ^ s o
cli' 1 J  T Ï  ( 3 -

10)

it is clear that if we let 7 = i/( + 1/2, a = -A 
and 0 = A, then eq. (3 9) is the Hypergeometric equation 
(3.10).

Using the solutions F to the hypergeometric
equation, we find the two following solutions

2 3



( A )  =  iÀ  , > J  ■ , )  ( 3 . 1 1 . . )

(3.11.b)
u r

The equation for v2 differs from eq.(3.2) only 
m  the sign of k . The solution v2 (s) and it's 
linearly independant companion v2 (s) are therefore

S t /  * % j s )  o . i i . c )

- S /x*\ ( -i) V/ Jfc -KÎ, '4 i i'i -4, Vl W ;  J  ( 3 ‘11 ‘d)

We must now look at the behaviour of these 
functions as x approaches minus infinity.

Using the definition of s, we find

2-x
X - * - . » ,  / &  1 - i  & I (3.12)

For s = 1, the hypergeometric function can be 
written as

■= r ( ^ r ( j  . ( )  

ru-*.) r l i - i )  <3 ’
This result, together with the asymptotic 

behaviour of s as given in eq.(3.12) allows us to write

x ^  - «o , (s -» 1) :

v/' & ^ P ( il i t/%)________  ( 3 14. a)
r c t l F ( M  +H. *4)
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v #  t  r l v i  >0

r ( i * n )  n ( i - t )  , 3 ' l l b l

r Y - j + O
— 7-------------------------- ;— ;— ;--------------- 7  ( 3 . 1 4 . C )

^ 4. ^ )  + ! i - A )

^  « t M  r l ' i > d ) r ( k - u )

r l i  - a ) p ( \  +4)

As x —> + ̂  , the asymptotic behaviour of s is
given by

and the hypergeometric function satisfies

e U j , c } o )  -  i  < 3 - l 6 )

This allows us to write 

l//0 #  <  ̂ Ot * (3.17. a,b)

V l "  #   ̂ ( 3 .17. c, d)

Using the properties of the hypergeometric 
function, one can then show that

i j _  ^  -  /t t / w  =  - u l ± 1  t / * t0 

J *  u
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t

and
i i /  -  I  \ j J >] U _______

k - \

I/
(\>

(3.18.b)

This implies that

X  .

\Ji
6)

¡J  k 

e  (?)I / (3 19.a)

*  -*» *

.  i J t i  

e  (¿) (3.19 . b)

behaviour at infinity. The solution v can therefore be 
written as

From the asymptotic behaviour (3.14) and the 
asymptotic condition at minus infinity, we obtain

¡ u
u t i

V - j
J ,

i i - i/j r  ^  *a ) c ( \ ~ a )

(3.21)

Rewriting this equation as
26



[  A *"Ü a rfrh . u ) r h * K )

r ' l - i l  * * 0  

? ( - d * V x ± < i \ r ( - i l  *K~A)

r l \ * z )  s 2  r / z )and using the

relationships i V i % -¿l) = P O h + <
the system (3 22) reduces to

z L .
\  i +4 ^ 1-4Í

Mi)

, U ) t

(3.22)

(3.23)

- i i r ( k u L )

w»)rto ♦ * - * )  r ( a ) r ( ■ - * )

r V - t l  *  it)
1
I r ( ^ - a ) p

r(fi) r i -A) r f . / M  * * W - t J + < 4 - ¿ )

(3.24)

f in d

which is readily solved for a(X) and b(A). We

ftj) = j _  r ' t - d  * l )

U )  « r / i 4  * . , i ) (3.26)

t? = lr(n+ii) l

0 rU)r'(i-A)
where D is given by

r'(i-t)r'U) -  |r<V, > d  *a) \ ‘'(hiU-6)\

I p ( i i * ; / td)l Y u + i i - t ) rVi .*) r ' M

It remains to find the number of zeros of a(X) • 
The eigenvalues occur at the zeros of a(A) To find



the zeros of a(A), after analytic continuation m  the 
upper half plane, we note that a (A) = 0  only at the 
poles of F(-i A -a + 1/2) in its denominator. The poles 
of the gamma function occur when the argument z = 
0,1,2.. [4] or for values of r satisfying

f =* Z  + t *  lj . , . . (3.27)

This means

- i  yp -A - ’4  = - r  <3-28>

Im A > 0 implies

^  a L U  + \  -r )  > 0 (3.29)
*

which can only be satisfied for a finite number
of r values, r = 1,2,..,N. If we define F to be

0p

P  =  / U U , o )  A

^  CO

then

P -  f  A H i l l * )  d *  = !  ft ff ( 3 . 3 1 )
—  ot>

Hence the formula

(3.32)

gives N, the number of solitons contained in
the initial pulse where< .. > denotes the greatest

28



integer less than the argument.

number 
and the

We have found a simple relation between the 
of solitons N, contained in the initial pulse 
area of the pulse itself.
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CHAPTER FOUR

PULSES OF RECTANGULAR FORM

In this chapter, we solve the eigenvalue problem

tv V  +  ¿ I  =  « \j i

(4.1)
W 1 -  U  i A  =  -  y *  \/i

for the special family of input pulses given by

i b  =

0 j„ ln-l > % 

» k  i  V i
(4.2)

and look for solutions vl and v2 which exhibit the 
asymptotic behaviour given by eq.(2.11) In chapter 
two, we saw that solving a (A) = 0  means finding the 
eigenvalues of the eigenvalue problem (2.1.a).It is 
clear from eq.(2.11) that the asymptotic behaviour whose 
coefficient is a( \  ) prevents the solutions from being 
square integrable. If this term can be eliminated, 
then only the right kind of asymptotic behaviour will 
remain - We 4° this by finding the zeros of a(A).

Solving eq.(4.1) m  the regions defined by the 
boundaries of q(x), we obtain the following solutions

, - ¿ i / i
x ¿ ; l/; »  £  j o

i j  t A*
X >  K/X ; Vi rn Q *  e

30
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JI -  - I  

I8

( ~ i U X  +{- da + >
(4.3.b)

Vi
fx!

If we match these solutions at the boundaries of 
q(x), the input pulse, then for the asymptotic behaviour 
given by eq.(2.1.a) we obtain, at x = -a/2, the
following equations

Jt s

?

&  e

(  + ÎÀA -2 - + (“ i l S

_  6/i K

(4.4 a) 

(4.4.b)

i>A)C

For x = +a/2 we find

(4.5.a)

« M e

4 i . a 4  +

( ~ l I A  4; + ( -  i L $

(4.5.b)
These four equations, linear in A, B, a(X) and 

b(il) can then be solved and we obtain, for a(̂ () and b(X)

M *  '

A.(l ) — C y l i  i l li ^  4>̂ v X - V/*  ̂■+ X*£,«/
(4.6.a)

¿¿0 a  (i ' / / A J f * ] }  •<

V 7 ^ (4.6.b)

The zeros of a( ̂  ) , which give the eigenvalues, 
are then found to occur when

-  i L
( 4 . 7 )



Having found the eigenvalues, we can further show 
that they are purely imaginary. We do this as follows :

From eq.(4.7), we obtain

16 cL =  "  V¡3^

and (j i  ^ ~  7  i  ^

If we now define p  as

/  =  i  *  *  / ,  + < ^

then we can write, using eq.(4.8.a)

f i  “t if* ss +  i it*. y j ^

~~ •+ >f<*/(j>i) + i  0̂*0

and hence we fmdy^l and^p2 to be 

j 0 | -  +

J> \ *  ?  «¿(3 ¿ « 4 ^  ¿y0l) ¿ |A ( /> ! ,)

Using eq.(4.8.b), we can also write

i *  -  fl =  ?  + /T1 »A

— 4  Coi  ̂ 9 l )  +  t  J i a / )  (j3>)
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(4 8 b)

(4.9)

(4.10.a) 

( 4 . lO.b)

(4.11.a) 

(4.11.b)

(4.12 a) 

(4.12.b)



and these equations allow us to write

Now

9 =  5  )6 d 0 S /  (jO Loi ( f i )  ( 4 . 1 3 . a)

-- • ! / v • / v (4.13.b)
X  =* -+ f t  i M - l  ( f 1)  ( f * )

, lfytt ^ 0, we have

CoS 1(0 %) ~  -  j >\  /  o
+  ~7 J y ^ U f) *  < 4 - 1 4 - a >

b)

which are contradictory for a > 0 and y  y  o. 

We conclude that there are no zeros of a(^) with 
non-zero real part, i.e., the eigenvalues are purely 
imaginary

A s  L<) j  yc -  o (4 15)

It now remains to solve eq. (4 7) . For purely 
imaginary eigenvalues y , this equation looks like

0 *  ~ )  ( 4 ’ 16) 

If we definep  as

p  = y ^ 1 ~ ^  oL (4 .1.7 j

then eq.(4.17) can be expressed as two equations given 
by
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f) ~ -  p  C o è ^ i p )
-~ 7~ (4.18 a)

and
^  A \  t \  i  *

"  f ì  d  - “ y d

(4 18 b)

- the solutions of which are given by the points of 
intersection of the family of ellipses given by (4.18.b) 
and the cotan function given by (4.18.a). A computer 
plot of these functions is given below in figure (4.1).

As can be seen in the diagram, increasing values of 
the pulse parametersaand/Sresult in larger ellipses and 
thus give rise to more and more intersections. Hence, 
it can be seen that the size of the pulse determines the 
number of eigenvalues, thus determining the number of 
solitons.

The eigenvalues were obtained from the numerical 
solution of the equation

»

9

FIGURE (4.1)

(4.19)



and these eigenvalues are given m  table (4.1) for 
three different sets of pulse parameters. Figures (4.2) 

(4,£) are computer plots of the eigenfunctions 
obtained from the eigenvalues in table (4.1).

cf=2 , 0 = 1 a =3, 0 = 2 a =4, 0=2

V = 0 ,391022 r? = 0.982587 V=0. 206312
V = l .  789603 V= 1.447273

V =1.874812

TABLE (4.1)

Figure (4.1) shows that the number of 
intersections, N, which is the number of eigenvalues, 
is given by the equation

N  a /  1 j.  »I ß  \

<T f ~ t >
- where<..> denotes the greatest integer less than 

the argument.

That eq.(4.20) holds can be easily seen if one
considers the ellipse which intersects the x-axis at the
point p  = V 2- For this value of J>, y = 0 and so we
have p * = ia 01 from which we deduce aß/w = 1/2. The
parameters a  and ß  are just large enough for this
ellipse to cross the cotan function once Equation
(4.20) gives N = < 1 / 2 + a ß / i r  > = 1  which is the same
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number.

FIGURE (4.2) : Pulse parameters: a = 2,  ¡3 = 1.
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The pulse parameters a =2 and 0 =1 define an ellipse 
which is just large enough to intersect with the cotan 
function once only and hence a pulse of this size 
results in only one eigenvalue, the eigenfunction for
which is given m  figure (4.2) above.

SCHS0D1NGtR LQUATIGN -- ^CUARt Wfl L FOtF NT AL

x
HOLF WIDTH = 3 HOLE DfcTTH - 2 _____

FIGURE (4.3) : pulse parameters: a = 3, 0 -  2.

For larger pulse parameters, a =3 and 0=2, the
resulting ellipse intersects with the cotan function
twice admitting two eigenvalues. The two eigenfunctions
are given m  figure (4.3). Figure (4.4) contains the
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eigenfunctions of the three allowable eigenstates for 
the pulse parameters a =4 and/3 =2.

i.CW'jl'JUR LGUATION --- SOUARfc Wf LL FOTfc NT i AL

x
H0tc W t D TH 4 HOLE DLPTH * 2

FIGURE (4.4) : Pulse parameters: a = 4, 0=2.
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In every case, the number of solitons contained in 
a given pulse q(x) is the same as the number of 
eigenvalues of the underlying wave equations eigenvalue 
problem.

We conclude that the number of solitons contained 
in any rectangular pulse is given by the simple 
equation, eq.(4.20), which gives the soliton number m  
terms of the pulse area. This is the result obtained in 
chapter 3 where pulses of sech(x) form were studied. 
This chapter completes the analysis [5 ] of rectangular 
pulses where only purely imaginary eigenvalues had been 
considered.
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CHAPTER FIVE

EXPONENTIAL PEAK PULSES

In this chapter, we solve the eigenvalue problem

Vl1 + t'/U/ " (5.1.a)

"" ^  - ^ ^ 1  (5. 1 .b)

where q is a family of input pulses given by

^60 =  ^ t\Cf(-Al)d) (5.2)

Equations (5.1. a, b) imply

v.' * + i u , y ,  m  0  ^

- ( i f ) '  vi* + [a1  ̂ s o <5-3-b>
u  L a *  J
where q(x) = iu(x) . If, for x > 0, we make the 

following change of variables:

*  > o : s = ^ (/«  i/i
t  r  ’ V 7  <5' 4)

then eq.(5.3.b) can be transformed to Bessel's
equation as outlined below:

40



{

Equation (5.4) implies
d l̂ =  ( 5 . 5 . a)

d x ds
s: ¿ %l J j*  f  » ¿ W V i .  (5 5 . b)

d x 1, dts d s x
Substituting these derivatives into eq.(5.3.b)

gives

¿ V i j A  ^  h v  +  ^ vj  ^  e  e

J (5.6)

If we now use \p= v 2 / ^ s , we find

d   ̂ -  i d ~  ( I  ̂i
i t  7 *  d t  i  s *  ( 5 - 7 - a )

¿ 1  ^  ~  - J .  J _  e tO * . X J _  J  - J  L ^ i / e  7 VI

J i '  W ’ V ,  / " V « '  U f ‘  l  i vV ;  '  ’

Using eqs(5.7) and defining

v  = t - a  .  x (5.8)

allows us to write eq.(5.6) as Bessel's equation of 
order v

m  + _ l + 11 - y  = o  
J > '  s  7 7  \  7 V  (5 - 9)

For x < 0, the change of variables

^  a , s ^ * A
t i  V T  ( 5  1 0 )

enables us to obtain the following

d ^ \  -  jLi J\J{
da ds

41
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¿ V i  *  S t t h .  +  ¿ v W ,  

J  n" ds it
(5 11 b)

Substituting eqs(5.11) into eg.(5.3.a), we find

i ' i '  +  4  ¿ v ^ ' l  i /.  =

j i '  J

Now, using \p = vl/y/s, we find

Ä _ J_ u>

S h d s  I  sV l

o (5.12)

-

(5.13.a)

tf/V l/) _ _ L  J Vi _i _i_ U (5 13.b)
J"1 ¿ / / v ds  4 ^ /l

again defining * as

V s  / - ¿ i

• ?  - i ) (5.14)

it is easily seen that the Bessel equation of order 
is the same equation as equation (5 12).

For x < 0, Bessel's equation, (5.9), has the 
solution

V l  -  =  ¿ 1  yfT Xj(0 + ¿X^TT < 5 - 1 5 )

where cl and c2 are constants to be determined and 
Jv (i)is the Bessel function of order v given by

r M
(5.16)

Using this vl, we can find v2 by using eq.(5.1.a). 
We find:
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Vx = J V, + ci U
ds

(5.17)

For the first component of vl, civëj„ (s), v2 is

*  _ l  ü < »  + V / V  f y i ;  . f  i l  T i f t ,  

sVT i s
<=. J j A ~Svli) N>? ^i)

i t  s
For the secona component, c2y/sJ_ (s) , we find

(5.18)

v/, «  : O i = J j _  T j ( t )  -_v_X*& 
l i s  /

- giving the complete solution for x < 0 as

^  =  £ 1 V 7  4  <-%'U T. (̂s) 

\ j x =* - ¿ i V T T j + i ^  4  ¿ ¡ t V J

(5.19)

(5.20)

These solutions must have the asymptotic behaviour 
as given by eg. (2.11) for x -> - Expressing vl and v2
in terms of x we obtain

? b  ( # ( r f  f ‘/ —  / CO 6) \
{ s  I  ) * ± *

v y 9 M 0 ) / ^ c

i / i x

1 -4  

T - k) \ i l

. y , * * ^

F U T ^ j l )  (t)^ 

r w  ( f )  (iLK

5.21)

(5.22)

Ii\ order to make the coefficients or exp(-iAx) one 
and zero for vl and v2 respectively, we first make use
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of the fact that for vl, the J_j,(s) function becomes
infinite as x . (That this is so is obvious from
eq.(5.16) ). This implies that c2 must be zero. That
vl must approach exp(-i Àx) as x 4  - ̂  then implies
that cl = 2" C V ^ f V + l ) .

For x > 0, the solution of Bessel's equation is 
given in terms of v2 as

vk “ Ci  T„()) + C u f i  (5 23)

for constants c3 and c4. Using (5.1.b), the
corresponding solution, vl, can then be found in a
similar way to finding v2 from vl for x < 0. The
complete solution for x ) 0 is then

M\ ~  4  6 j

/ - - r  ( 5 ' 2 4 )
c  C i y S  J v ( t )  + C k y J  J.oAO

Expressing these solutions in terms of x, for x> 0

(5.25)

£ .+  ( * ) /  °  \  I /  \ \ / (5.26)
ri V) c

If we compare these equations with the asymptotic
behaviour of v*as given m  eq (2 1 1), we find c3 and C 4
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The complete solution,v for x > 0 is therefore 
given by

> i . .  _ /  _ \  . j  - ¡ i .

*

It now remains to calculate the coefficients a(A) 
and b(/0 - To do so, we note that the two solutions 
obtained above, i.e., for positive and negative x, must 
be the same at x = 0. This matching condition then
gives, for s = ^ , ' 4 p  ^  „ / ^  ̂  ,

If, for convenience, we define a ( A )  as

^  - ¿ . ( D i  U ) ai/ r ( ’ o ) \  ( 5 3 0 )

W V Y v -h)
then eq(5 29) can be written in the following form

r f t )  -

(5.31)
Hence

r .  m  J y l D

Solving for a(JL) and b(A) / we obtain



We have found a (A) for real values of A. Real 
values of A imply that v 4 N i) ¡0} Analytically
continuing into the complex upper half plane, in which

Note: a(JO and b(A) which are given in terms of
the linearly independant pair J v and J can also be 
expressed [5 ] in terms of and In any case, the 
condition on the number of zeros is the same.

The zeros of a(A) are the eigenvalues of eq.(5.1) 
and are the solutions of

It can be further shown that there are no solutions 
of eq.(5.35) for non-real v with Re v > -1/2 The
proof runs as follows[5 ]* We assume that J u ± Ju+/ has 
a real zero s for non-real v . Then, using the 
Mittag-Leffler expansion [7,p497]

(5.35)

(5.36)
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follows, where 3 U„ are the zeros of s vJv ( s ) .  

This equation cannot hold because Re 3^ /Im 3^  ^ 0 for
k \  0 f o r all n with Im 3  ̂0 [g], and because thereN UA.

are 3^ with Re 3 Ufr̂ oand Im j ueK 4 0 This leaves with 
the problem of finding and studying the points of 
intersection of J and J . We will denote theseV U+i

intersection points as s^( v ) for real order *3 = -1 / 2

>-1/2. Showing that labelling these points jAoJfcs is 
easy because, if ^ changes, the number of points of 
intersection stays the same, and s„ changes 
continuously with *>1, Furthermore, sA —* for n &

and for -?> & , and increases monotonically with
>)[<>; consequences of Lemmas 2.3 and 2.5 in ref. ].
This implies that ŝ (-l/2) = (2n-l)7r/ 2  determines the 
number of solitons.

Solutions of eq(5.35) were obtained numerically 
using Newton's method Using the values of the 
intersection points obtained, a graph of (P/eC) against 
 ̂was plotted,(figure(5.1) ). As can be seen from the
diagram, increasing values of (PM) give rise to more 
and more intersection points and hence more eigenvalues. 
As m  the case of rectangular pulses, see chapter 4, 
an increasing pulse size means an increasing capacity 
for eigenstates and hence solitons.
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FIGURE (5.1) S

Table (5.2) contains several of the eigenvalue 
solutions to equation (5.35) for their corresponding 
pulse parameters JL and 0 The associated eigenfunctions 
are given in figures (5.3) and (5.4). The initial pulse 
for the parameters given in figure (5.3) is just large 
enough to support one eigenstate. The pulse for the 
parameters in figure (5.4) is large enough for two 
eigenvalues and the two associated eigenfunctions are 
shown.

cL = 1 . 0 jB = 2.043 a( = 1 . 0 p = 2.514
r? = 1 . 0 V = 1.4

rj = 0 . 1

TABLE (5.2)
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FIGURE (5.3) . Pulse parameters: = 1, p =2.043.

fjCHR0D 1 NGt R tCUAT'ON --- f XTONE.NT 1 AL F£AK INTOT PUl SL

X
ALPHA - 1 3LTA - 2 I M  [TA ( c n u m i m i  - 0 I_______________

FIGURE (5.4) Pulse parameters: oí = 1 , £ = 2.514
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If we define F as follows

F  = f a . U , c ) d * (5.38)

then the number of solitons contained m  a given 
pulse with parameters c/ and 0 is N where

and < .. > denotes the integer less than the 
argument.

That this is so can most readily be seen if one

( P /u ) when ̂  * “1/2. For this particular value of  ̂ ,

.cos(0/*O* The sine and +cosine functions intersect at 
intervals of 2 ir with the first intersection occurring
at (P/oi.) = t r / 4 , while the sine and -cosine functions 
first intersect at the value ( P /oi) = 3 t r / 4 .  For any 
value of ( p / u  ) that we take, the number of
intersections of j^4l (<3/ ¿) with J0(iVoO up to this value 
of (PAO is l i, where n is the greatest integer such that

( 5 . 3 9 )

considers the points of intersection of (f3/*) andiX

( 5 . 4 0 )

For this value of (0/*O # then, it is clear that



Equation (5.39) then gives the number of 
intersections as N. This equation is the equation for 
the number of solitons contained in the initial pulse. 
It relates the soliton number to the area of the pulse 
and is the same result we obtained when we studied 
rectangular pulses and pulses of sech(x) form.
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CHAPTER SIX

THE SUPER-GAUSSIAN PULSE

We want to solve the linear eigenvalue problem 
(2 .1 .a) for the special case

U( t ¿i
Z M

] (6 . 1 )

The pulse in eq.(6.1) represents a typical laser 
pulse and is for this reason a very important one. From 
eg.(6 .1 ), we obtain

( 6 . 2 )

Substituting (6.2) into the eigenvalue eguation

\ ; i -  ¡¿j  \ j '  +  r  r  -  ¿ j i u 1 +  i u i "

u. L u
U s  o

we obtain

I / , 1 1 W ,  . i * )  x “ * ” 1 V , '

- f

\lto-

(6.3)

^ : 0  ( 6 - 4 )

First, we try to find a solution in terms of a 
series for x < 0 , i.e.,
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oö

\J\ ^  ^  ] ¿¿A. y 0 ~ X < O (6 5)

A - o

and using eg.(6.5) and eg.(6.3) we obtain
&

E
A - 0

U iyi. t[  « i sc) X a , 5  - A i ^ ( 6 . 6 )

= o

If for convenience we let

(6 7)

then eg.(6 .6) becomes
-w**

E u . /  +  v j h X ; ^ ' - - r f ' i  E ^ ü-< ( 6 . 8 )

A=f t A- ¿A. ̂  |

Solving for Un we find

U * t o

4 k

>

/
-o*

*  - T . ;  / /  ( ' i  *  ¿ ¿ ( ¿ V i

i  « U U ' “ -»>

whence

- A ’ / <
■Ö*

r  - l i i /  -
J t

— cff
U w L 'M a J *

i D K 6 . 1 0 )

Having now found vl(x) in terms of an infinite 
series, it is easy to show that

- t i t  ^ y % t \  - L d ) ( x^ )  d>

^ j l L u .  ( 6 - 1 1 )

^ 0  A -  I

I

Equations (6.11) and (6.5) are the formal
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solutions to the eigenvalue problem (2.1.a). We must 
show convergence before we can proceed any further. To 
do this, we use the Weirstrasse M-test to show that the 
series of Un for Un given by eq.(6.10) is uniformly 
convergent, i.e., we must find constants Mn, n = 
1 ,2 ,.., oO such that

A - i

Equations (6 .1 2) and (6.13) then imply uniform 
convergence. We find the constants Mn as follows: Using

(6 . 12)

with the constants Mn satisfying 
tP

< * (6.13)

we can write

Choosing a suitable £ such that

J (6.16)

* the equation

/  . * f r r r w

J e

follows for m ^  1/2. This then implies
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a ,  U  f e

c * " t u  —
and therefore

I (6.18)

l U i l  4  ( \„  f t * *  j f

i *
^  / ^ i /I*.

(6.19)

For n = 2, we find a similar formula, and in
general

, ,  ,
U l \ ( ) Q  A  < l f  f i t  < f  ( 6 . 2 0 )

holds for x €  (-̂ /-£), € > 0. Using the
Weirstrasse M-test it can be shown that the series (6.5)
and (6 .1 1 ) are convergent on this interval.
Analagously, we can find v2 and vl in the form of
convergent series on (£,*»).

Letting the eigenvalue I be of the general 
complex form -

(6.21)

we can now split up Un(x) in equation (6.14) 
into its real and imaginary parts. Combining these with 
(6.5) and (6.11), we obtain the real and imaginary parts 
of vl(x) and v2(x). These simple but tedious 
calculations yield the following:

*
f t *

( ’ ?  ¿ t i i y c * ) - K S U  ( ' * * ) ) ( ? i£o  

~ ~X. ¿6i ('*.*)('£■} —
( 6 . 2 2 )
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V l - f )  s>+ C m )  •  t* ^ ¿ C x x j ) i f i6v  «+ i t 6 0 )

9 ¿Oj ( ^ x j  -  *  ¿ / M &  " ' ^  ¿0 )-

(6.23)

/2 i { iA /x j }s  -

VWI

£

z 6 i v - M v()

- /^o ^

l / x V+i?V)

\ m

t ' y P ib J  - x P%kj)(-'f\l^) ^ '7 v /x jJ

U) -T 4 &),)_

I* *  fate) -> *rf(x))('rf(i< )-r'fiC o)

( 6 . 2 4 )

( 6 . 2 5 )

where
*

i l l » ¿ 0 »

-  / - ^ 4 r

-
—  o£>

X

? /
- 6 »

/ 4 )

J / A

( 6 . 2 6 . a)  

( 6 . 2 6 .b )

i.^ 0 ¿oS
—  cP

~  CO

i j i

( 6 . 2 6 . C )

- ^ 4 r

C o /
u/.V*

t k ' f A 4 M M

- < #

Tj 6 0  -  d  i jU)  , j  *  i j . , fk,
1 7

( 6 . 2 6 . d )  

(6  27)

/?fo *  ¿9/Ql X), j  +  ^  *)• Cei ^  ] ( 6 . 2 8 . a)

& 6 0  = Cd iCiL ^ ,  ¿ o ; j ( ^ ) ^ /ir )V j -  j  ( 6 . 2 8 . b )
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What remains is to match these solutions for x < 
0 and x > 0 and thus determine the eigenvalues This, 
of course, can only be done with the help of a computer 
and a VAX 11/785 mainframe was used.

In order to numerically calculate the solutions 
vl and v2 , several approximations must be found for the 
infinite series given by eqs. (6.5) and (6.11). In 
particular, the number of terms in the series given by 
(6 .1 0) must be finite, for computational reasons, and 
the choice of the integration limits for the Un and the 
Un must be calculated.

The choice for N, the number of terms summed in 
the series of the Un must be such that the ratio of the 
sum of the number of terms discarded to the number of 
terms kept is small. In a similar manner, the choice 
of the lower limit of integration must be an accurate 
approximation to minus infinity. Choosing such a point 
xi for minus infinity would mean , for each U, 
excluding an integration from minus infinity to xl and 
only considering the integral from xl to x'. The point 
xl would have to be chosen in order to ensure that the 
sum of these N omitted integrals is negligible when 
compared to those N kept.

Appendix 1 contains working software code
necessary for computing the real parts of vl and v2

given by equations (6.22) and (6.24) for this problem.
The programs for obtaining the imaginary parts, given by
equations (6.23) and (6.25), can be readily obtained
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through small changes to the subroutines FCN and SCN A 
full description of the code is given in the appendix.

Much work remains to be done in order to solve 
completely the eigenvalue problem for this input pulse. 
In particular, the solution v must be matched at x = 0 
for realistic values of the parameters and m.
Matching the solutions like this will determine the 
eigenvalues A- We hope that we have opened the way for 
obtaining the solution for this problem.
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APPENDIX

FORTRAN code for the evaluation of the solutions to the 
eigenvalue problem for the super-Gaussian pulse
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Author
F i l e
D ate
V ers io n
Computer

D e sc r ip t io n

t i e ™

/ l ' u n

A u x il ia r y
r o u t in e s

Kevin Breen 
REV21 FOR 
12-June-1988 
3 4
DEC VAX 11/785

this program computes a numerical 
approximation to the following integral

x >

CU) C(<")
—ot>

the program calls the following NAG 
subroutines
D01AJF
E02ADF
E02AEF

and the following function subprograms
TCN
OFCN
UFCN

U ser d e fin e d  
r o u t in e s The user must define the following 

functions
FCN
SCN

R eferen ces NAG FORTRAN Library Manual 
Volumes 1 and 2
Press,Flannery,Teukolsky,Vetterling 
Numerical Recipes 
Cambridge University Press
Gerald, Curtis (1978)
Applied Numerical Analysis 
Addison-Wesley Publishing Company
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oo

program integrate

parameter ( liw=1001rnx=50,ilim=10 ) 
implicit double precision (a-h,o-z) 
dimension x(nx),y(nx) 
dimension workl (liw),work2(liw) 
dimension iwork (liw),rms(nx) 
dimension weight(nx) 
dimension u (nx,llim),v(nx, ilim) 
dimension ustore (nx),vstore(nx) 
dimension utemplO (nx)fvtemplO(nx)
dimension tl (nx),t2(nx),t3(nx),t4(nx),t5(nx),t6(nx) 
dimension t l  (nx),factor(nx) , temp5(nx) 
dimension temp (nx),temp2(nx) ,temp3(nx),temp4 (nx) 
common /blockOl/ delta,m,aO,eta,alpha,tcheb(nx,nx) 
common /block02/ xmax,xmin,coeff(nx) 
external fen,sen,ten,ufcn,ofcn

Open the data file and read the following variables
a lower integration limit
b . upper " "
delta * used in integrand
m " 11 "
aO .1 .1 M
eta : imaginary part of eigenvalue (lambda)
alpha • used in integrand
npnnt : output unit number
akap real part of eigenvalue (lambda)

open(unit=10,file='suzy.dat',status='old')
read(10,10000)a
read(10,10000)b
read(10,10000)delta
read(10,10010)m
read(10, 10000) aO
read(10,10000)eta
read(10,10000)alpha
read (10,10010) npnnt
read(10,10000)akap
close(unit=10,status='keep')
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c----------------------------------------------------------------
c
c print file header m  the output file
c
c----------------------------------------------------------------

write (nprint, 20000) 
write(nprint,10030)a 
write(nprint,10031)delta 
write(nprint,10032)m 
write(nprint, 10033) aO 
write(nprint,10034)eta 
write(nprint,10036)alpha 
write(nprint,20000)

c----------------------------------------------------------------
c
c compute the set of inner integration points
c
c----------------------------------------------------------------

delx=dabs( (b-a)/dfloat(nx-1) ) 
do 205 k=l,nx 
x (k)=a+dfloat(k-1)*delx 

205 continue
c----------------------------------------------------------------
c
c set tolerances for use in the NAG routines
c
c----------------------------------------------------------------

atol=0 ld-5 
rtol=0 ld-5

c----------------------------------------------------------------
c
c D01AJF calculate an approximation to the integral of a
c function over a finite interval [a,b] , here we compute
c the integral of the user supplied function FCN and store
c the result in the y array

do 20 k=l,nx
ifail=0
call dOlajf(fen,a,x (k),atol,rtol,result,err, 

* workl,liw,iwork,liw,lfail)
if(ifail .ne. 0)stop 
y (k)=result

20 continue
write(*,*) ' inner integral evaluated '
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 --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
c
c E02ADF computes weighted least squares polynomial
c approximations to an arbitrary set of data points , we
c now fit such a polynomial to the discrete set of points
c generated by DQ1AJF
c
c----------------------------------------------------------------

xmin = x (1) 
xmax = x(nx) 
weight(1)=0 ldl 
do 21 k=2,nx
weight (k)=dabs(1 OdO/y(k))

21 continue
call e02adf(nx,nx,nx,x,y,weight,workl,work2,tcheb,rms,

* lfail) 
do 961 k=l,nx
coeff (k)=tcheb(nx,k)

961 < continue
write (*,*) ' tchebyshev polynomial calculated '

c----------------------------------------------------------------
c
c The outer integral is now computed using D01AJF and we
c store this approximation m  u(k,l)
c
c----------------------------------------------------------------

do 725 k=l,nx
v (k, 1) =tcn (x (k) ) 
ifail=0
call dOlajf(ten, a,x(k),atol,rtol,result,err,

* workl,liw,iwork,liw,ifail) 
u(k,1)=result
if (ifail ne 0)stop

725 continue
write (*,*) ' u (1) computed '

c----------------------------------------------------------------
c
c Compute the remaining sequence of integrals
c
c----------------------------------------------------------------

do 4000 iterm =2,6
write(*,*)' iterm = ',iterm

c----------------------------------------------------------------
c
c Fit Chebyshev polynomials to previously computed value
c
 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

do 221 k=2,nx
weight(k)=1.OdO 

221 continue
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do 233 k=l,nx 
ustore(k)=u(k,iterm-1)

233 continue
call e02adf(nx,nx,nx,x,ustore,weight,workl,work2,tcheb,

* rms,lfail) 
do 962 k=l,nx

coeff(k)=tcheb(nx,k)
962 continue
c----------------------------------------------------------------
c
c Now compute the inner integral for all x values
c
c----------------------------------------------------------------

do 605 k=l,nx 
ifail=0
call dOlajf(ufcn,a,x(k),atol, rtol, result,err,

* workl,liw,iwork,liw,lfail) 
if(ifail ne 0)stop 
temp(k)=result

605 continue
c----------------------------------------------------------------
c
c The inner integral has been computed and the result
c stored m  the temp array The next loop computes the
c approximations to the outer integrals by first fitting
c a polynomial to the inner points and then calling the
c D01AJF integration routine
c
c----------------------------------------------------------------

call e02adf (nx,nx,nx,x,temp,weight,workl,work2,
* tcheb,rms,lfail) 

do 963 k=l,nx
coeff(k)=tcheb(nx,k)

963 continue
do 606 k=l,nx
v(k,iterm)=ofcn(x(k)) 
ifail=0
call dOlajf(ofcn,a,x(k),atol,rtol,result,err,

* workl,liw,iwork,liw, lfail) 
if(lfail ne. 0)stop
u (k,iterm)^result 

60 6 continue
4000 continue
c----------------------------------------------------------------
c
c Open the output file and print results
c
c----------------------------------------------------------------

open(unit=22,file='v21 dat' ,status='new') 
do 5000 k=l,nx

sumu=0 OdO 
sumv=0.OdO
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do 6000 iterm=l,llim
sumu=sumu+u(k, iterm) 
sumv=sumv+v(k,iterm)

6000 continue
ustore(k)=0 ldl+sumu 
vstore(k)=0 Idl+sumv
utemplO(k)=ustore(k) *dcos(akap*x (k))*dexp (eta 

* *x (k))
tl(k)=0 5d0*((x(k)/delta)** (2*m) ) 
t2 (k)=alpha*tl(k) 
t3 (k)=dexp(tl(k)) 
t4 (k)=dcos(akap*x(k) ) 
t5 (k) =dsm (akap*x (k) )
16 (k)=dcos(t2(k) )
17 (k) = d s m  (t2 (k))
factor(k)=-(1 OdO/aO) *dsin((x(k)*akap)+t2(k)) 
vtemplO(k)=factor(k)*vstore(k) 
write (22, 826)x(k),vtemplO(k) 
write (56,826)x(k),utemplO(k)

5000 continue
close(unit=22,status^'keep') 
write (npnnt, 20001) 
write (npnnt, 20000)

826 format (lh ,2dl6 .6)
300 format (lh ,dl6 6)
900 format (lh , 2dl6 6)
1 0 0 1 0 format(1 6 )
1 00 00 format(dl6; 6)
98000 format(3dl6.6)
20000 format(lh, 5 0 h -------* 2 Oh------- -)
2 0 0 0 1 format(lh, 5 0 h -------* 20h------- -)
1 0 0 2 0 format (lh ,2x,8hb = , dlO 4, 2x,* 8hans = ,dl6 6,2x,6herr = ,dl6 6)
10030 format (lh ,2x,8ha = , dl 6 6)
10031 format (lh ,2x,8hdelta = ,dl6 6)
10032 format (lh ,2x,8hm = ,1 6 )
10033 format (lh ,2x,8ha0 = ,dl6 6)
10034 format (lh ,2x,8heta = ,dl6 . 6)
10035 format (lh ,2x,8han = ,dl6 6)
10036 format (lh ,2x,8halpha = ,dl6 6)

end
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c---------------------
function fcn(x)

User supplied function to define the f (x) integrand

implicit double precision (a-h,o-z)
parameter ( liw=1001,nx=50,ilim=10 )
common /blockOl/ delta,m,a0,eta,alpha,tcheb(nx,nx)
terml=(x/delta)
m2 = 2 *m
term2--0 5d0*(terml**m2)
term3=dexp(term2)
term4=((alpha/2 OdO)*(terml**m2))
term5=-eta*dcos(term4)
term6=-akap*dsin(term4)
fcn= (term3*(term5+term6))
return
end
function scn(x)

c User supplied function to define the g(x) integrand
c
c------------------------------------------------------------

implicit real*8(a-h,o-z)
parameter ( liw=1001,nx=50,ilim=10 )
common /blockOl/ delta,m, aO,eta,alpha,tcheb(nx,nx)
termll=x/delta
m2 = 2 *m
term22=-0 5d0*(termll**m2)
term33=dexp(term22)
term44=((alpha/2.OdO)* (termll**m2))
term55=dcos(term44)
scn=(term33*term55)
return
end
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c----------------------------------------------------------
fu n c t io n  tc n (x )

c----------------------------------------------------------
c
c E02AEF evaluates a polynomial from it's Chebyshev
c series representation
c
c----------------------------------------------------------

implicit double precision (a-h,o-z) 
parameter ( liw=1001,nx=50,ilim=10 ) 
common /block02/ xmax,xmin,coeff(nx) 
xbar={(x-xmin)- (xmax-x))/ (xmax-xmin) 
ifail=0
call e02aef(nx,coeff,xbar,poly,lfail)
if(ifail ne 0)stop
tcn=scn(x)*poly
return
end

c----------------------------------------------------------
fu n c tio n  o fc n (x )

c----------------------------------------------------------
implicit double precision (a-h,o-z) 
parameter ( liw=1001,nx=50,ilim=10 ) 
common /block02/ xmax,xmin,coeff(nx) 
xbar=((x-xmin)- (xmax-x))/(xmax-xmm) 
ifail=0
call e02aef(nx,coeff,xbar,poly,lfail)
if(ifail.ne.0)stop
ofcn=scn(x)*poly
return
end

c----------------------------------------------------------
fu n c tio n  u fc n (x )

c----------------------------------------------------------
implicit double precision (a-h,o-z) 
parameter ( liw=1001,nx=50,ilim=10 ) 
common /block02/ xmax,xmin,coeff(nx) 
xbar=((x-xmin)- (xmax-x))/(xmax-xmin) 
ifail=0
call e02aef(nx,coeff,xbar,poly,lfail)
if(lfail ne.0)stop
ufcn=fcn(x)*poly
return
end
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