The photochemistry of $\mathrm{M}(\mathrm{CO})_{6}$ and $\left(\eta^{6}\right.$-pyridine $) \mathrm{Cr}(\mathrm{CO})_{3}$

$$
(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \text { or } \mathrm{W}) \text { and related systems. }
$$

This thesis is presented to Dublin City University for the degree, Doctor of Philosophy, by Ciara Breheny BSc

Supervisor Dr Conor Long

School of Chemical Sciences, Dublin City Unıversity

1996

## Declaration

This thesis has not been submitted as an exercise for a degree at this or at any other university. Except as otherwise stated, this work has been carried out by the author alone.

Signed CIARA Brehony Cara Breheny.

## Dedicatıon

This thesis is dedicated to my family, Mum, Dad, Conor, and Saibh

## Acknowledgements

I would like to say a most sincere thank you to all the following people, Dr Conor Long, for his constant support, help, and advice over the past few years All members past and present of the CLRG, namely Irene, Mıck, Maureen, Celia, Mary, Siobhan, and Deirdre Everyone in AG07 who made the past few years enjoyable and unforgettable All members of the chemistry department, especially the technicians, who were always at hand to help when a problem arose (as it invariably did)

A word of thanks to my friends outside DCU without whom the past few years would not have been the same, namely, Marre, Ger, Siobhan, Orla, Greg, Ciaran, Shivaun, Ciara, Teresa, Monica, Susan, Bronagh, Anna, Dawn, and Fiona Also a special thanks to Paul for his support over the past year

Finally, to my family for their never-ending patience with the seemingly endless student life I have undertaken Without therr love and support these past few years would have been a lot more difficult

A special thanks to anyone else I have forgotten

## Abstract

The reaction of $\mathrm{M}(\mathrm{CO})_{s}$ (solvent) with CO has been investigated in a range of alkane solvents, where $\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}$, or W The kinetic and activation parameters have been determined for Reaction 1

$$
\mathrm{M}(\mathrm{CO})_{s}(\mathrm{~S})+\mathrm{CO} \rightarrow \mathrm{M}(\mathrm{CO})_{6} \quad \text { Reaction } 1
$$

For chromuum hexacarbonyl the $\Delta \mathrm{H}^{\neq}$is constant $\left(22 \pm 2 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$, the rate of Reaction 1 increases with the lengthening as the alkane chain, this is reflected in the $\Delta \mathrm{S}^{\neq}$term, which becomes less negative as the alkane chain length increases For the larger metals the variation in the kinetic and activation parameters is less signuficant The kinetic and activation parameters indicate that solvent displacement by CO involves an interchange mechanism for the $\mathrm{Cr}(\mathrm{CO})_{6}$ system, while for the $\mathrm{Mo}(\mathrm{CO})_{6}$ and $\mathrm{W}(\mathrm{CO})_{6}$ systems the mechanism is more associative in character

The photochemistry of $\left(\eta^{6}-2,6-\mathrm{X}_{2} \mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\right) \mathrm{Cr}(\mathrm{CO})_{3}$ was investigated both in low-temperature matrices $\left(\mathrm{X}=\mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}\right.$ ) and in room temperature solution $(\mathrm{X}=\mathrm{H}$, $\mathrm{CH}_{3}$, or $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}\right)$ Room temperature photolysis $\left(\lambda_{\text {exc }}>410 \mathrm{~nm}\right)$ of $\left(\eta^{6}-\right.$ pyndine $) \mathrm{Cr}(\mathrm{CO})_{3}$ in CO saturated methanol yielded $\left(\eta^{1}\right.$-pyndine $) \mathrm{Cr}(\mathrm{CO})_{s}$ which subsequently formed $\mathrm{Cr}(\mathrm{CO})_{6}$ in a secondary photochemical process The efficiency of this reaction is reduced in cyclohexane, or when $\mathrm{X}=\mathrm{CH}_{3}$ rather than $\mathrm{X}=\mathrm{H}$ Photolysis in low temperature matrices resulted in an $\eta^{6}$ to $\eta^{1}$ haptotropic rearrangement of pyridine ( $\lambda_{\text {exc }}=460 \mathrm{~nm}, X=$ H) Visible irradiation in a CO-doped methane matrix produced $\left(\eta^{1}\right.$-pyridine $) \mathrm{Cr}(\mathrm{CO})_{5}$ while in $\mathrm{N}_{2}$ matrix fac- $\left(\eta^{1}\right.$-pyridine $)\left(\mathrm{N}_{2}\right)_{2} \mathrm{Cr}(\mathrm{CO})_{3}$ is formed Irradiation with $\lambda_{\text {exc }}=$

308 nm produced both the ning-slip product and also the CO-loss product
( $\eta^{6}$-pyridine) $\operatorname{Cr}(\mathrm{CO})_{2}$ Time resolved infrared spectroscopy in cyclohexane revealed only the CO-loss product $\left(\lambda_{\text {exc }}=308 \mathrm{~nm}, \mathrm{X}=\mathrm{H}\right)$ The apparent difference in roomtemperature and low-temperature photochemistry is explained by the rapid regeneration of the parent species from the $\eta^{1}-1$ ntermediate This explanation is supported by the laser flash photolysis experments $\left(\lambda_{\text {exc }}=355 \mathrm{~nm}\right)$ in CO-saturated cyclohexane $(S)$, where the recovery of the $\left(\eta^{6}\right.$-pyridine) $\mathrm{Cr}(\mathrm{CO})_{3}$ absorption follows a biphasic tume profile, whereby the faster process was assigned to the $\eta^{1}$ to $\eta^{6}$ rearrangement and the slower to the reaction of $\left(\eta^{6}\right.$-pyridine $) \mathrm{Cr}(\mathrm{CO})_{2}(\mathrm{~S})$ with CO When the matrix photochemistry was investigated in a CO-doped matrix, where $\mathrm{X}=\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}$, no pentacarbonyl or hexacarbonyl species were obtamed Both the nng-slip and the CO-loss product were formed following irradiation with $\lambda_{\text {exc }}=308 \mathrm{~nm}$, and both were sensitive to photoreversal with white light, which may explain the lack of photoproducts following long wavelength photolysis

Crystals of $\left(\eta^{6}-2,6-\mathrm{X}_{2} \mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\right) \mathrm{Cr}(\mathrm{CO})_{3}\left(\mathrm{X}=\mathrm{H}, \mathrm{CH}_{3}\right.$, or $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}\right)$ were characterised by X-Ray diffraction When $\mathbf{X}=\mathbf{H}$ or $\mathbf{C H}_{3}$ an echpsed conformation is adopted, where the carbonyl ligands eclipse the carbon atoms When $\mathrm{X}=\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}$ the more common conformation where the carbonyl groups are in a staggered conformation and eclupse the ring bond centres is adopted In all the compounds the chromium atom is located directly below the arene ning, which is essentially planar

## TABLE OF CONTENTS

(a) Title Page ..... 1
(b) Declaration ..... 11
(c) Dedication ..... 111
(d) Acknowledgements ..... iv
(e) Abstract ..... v
(f) Table of Contents ..... vil
INTRODUCTION: PAGE 1
(i) A brief history of organometallic chemistry ..... 2
(ii) Defintion of an organometallic compound ..... 4
(ili) Organometallic bonds encountered in this study ..... 5
(iv) Excited states encountered in this study ..... 10
(v) Uses of organometallic compounds ..... 11
(vi) The nature of the interaction between solvents and metal centres ..... 13
(vil) Techniques employed for studying organometalhc transtent species ..... 14
References ..... 23

## CHAPTER 1: PAGE 25

1 Literature survey ..... 26
111 Early low temperature studies of the photochemistry of $M(C O)_{6}$ ..... 26
112 Room temperature studies of the photochemistry of $M(C O)_{6}$ ..... 27
113 An in depth study of the photochemistry in the matrix ..... 29
1 I 4 Solution phase photochemistry in weakly coordinatıng solvents ..... 35
115 The photochemistry of $M(C O)_{6}$ in lquefied noble gases ..... 36
116 Investigation of the dynamics of solvation employing picosecond and
femtosecond flash photolysis ..... 37
117 The photochemistry of $M(C O)_{6}$ in the gas phase ..... 41
118 Time resolved photoacoustic calorimetry experiments ..... 45
119 Mechanistic information obtained from solution phase experiments ..... 47
1110 Photochemistry of $M(\mathrm{CO})_{6}$ in the presence of bidentate ligands ..... 49
12 Results and discussion ..... 52
121 Possible mechanisms for solvent dissociatıon ..... 52
122 Spectroscopic information ..... 54
123 Measurement of rate constants ..... 57
I 24 Actlvatıon parameters ..... 59
126 Discussion ..... 62
127 Conclusions ..... 65
References ..... 67

## CHAPTER 2: PAGE 72

21 Literature survey ..... 73
211 Photochemistry of $\left(\eta^{6}\right.$-arene $) M(C O)_{3}$ complexes ..... 73
212 Thermal chemistry of $\left(\eta^{\sigma}\right.$-arene $) M(C O)_{3}$ complexes ..... 75
213 Haptotropic rearrangements ..... 78
214 Molecular orbitals for $\eta^{6}$ pyrıdine vs $\eta^{\prime}$ pyridine ..... 81
215 Pyridine as a $\eta^{6}$ lıgand ..... 83
216 Pyridine as an $\eta^{\prime}$-lıgand ..... 84
22 Results and discussion ..... 87
221 Spectroscopic information ..... 88
222 Steady state photolysis of $\left(\eta^{6}-\right.$ pyridine $) \mathrm{Cr}(\mathrm{CO})_{3}$ ..... 92
223 Matrix Isolation Experiments ..... 101
224 Time Resolved Infrared Spectroscopy Experiments ..... 110
225 Ultraviolet/visible Flash Photolysis Experiments ..... 112
226 Discussion ..... 126
227 Conclusions ..... 135
References ..... 136
CHAPTER 3: PAGE 141
31 Literature survey ..... 142
3 IIX-ray single crystal diffraction ..... 142
312 Crystal structures obtained of related compounds ..... 143
32 Results and Discussion ..... 146
321 Data collection for ( $\eta^{6}$-pyridine) $\mathrm{Cr}(\mathrm{CO})_{3}$ ..... 146
322 Molecular structure of $\left(\eta^{6}-\mathrm{pyridine}\right) \mathrm{Cr}(\mathrm{CO})_{3}$ ..... 147
323 Data collection for ( $\eta^{6}$-2,6-dimethylpyridine) $\mathrm{Cr}(\mathrm{CO})_{3}$ ..... 149
324 Molecular structure of $\left(\eta^{6}\right.$-2,6-dimethylpyrıdine) $\mathrm{Cr}(\mathrm{CO})_{3}$ ..... 150
325 Data collectoon for ( $\left.\eta^{6}-2,6-b i s(t r i m e t h y l s l y l y l) p y r i d i n e\right) C r(C O)_{3}$ ..... 153
326 Molecular structure of $\left(\eta^{6}-2,6-b i s(t r i m e t h y l s l l y l) p y r i d i n e\right) C r(C O)_{3}$ ..... 154
327 Discussion ..... 156
328 Conclusions ..... 159
References ..... 160

## CHAPTER 4: PAGE 162

4 Experimental ..... 163
41 Materıals ..... 163
42 Equipment ..... 163
43 Synthesis of $\left(\eta^{6}-2,6\right.$-bis(trimethylslyl)pyridine) $\mathrm{Cr}(\mathrm{CO})_{3}$ ..... 164
44 Synthesis of $\left(\eta^{6}-\right.$ pyridine $) \mathrm{Cr}(\mathrm{CO})_{3}$ ..... 165
45 Synthesis of ( $\eta^{6}-2,6$-dimethylpyridine) $\mathrm{Cr}(\mathrm{CO})_{3}$ ..... 165
46 Attempted synthests of molybendum and tungsten analogues ..... 166
47 Laser flash photolysis ..... 167
47 1 Sample preparatıon for laser flash photolysis with UV/vis detectıon ..... 167
472 Laser flash photolysts with UV/vis detector apparatus ..... 169
473 Laser flash photolysts with TRIR detectoon apparatus ..... 170
48 Matrix isolation instrumentation ..... 171
49 Steady state photolysis with NMR monitoring ..... 171
410 Determination of extinction coefficients ..... 172
411 Determinatıon of the concentration of CO in an alkane solvent ..... 173
412 Determination of the activation parameters ..... 173
References ..... 175
Appendix 1: PAGE 176
A Extinction coefficients of $M(C O)_{6}$ ..... 177
$B$ Arrhenius and Eyring data for the desolvatıon of the $M(C O)_{s}(S)$ spectes ..... 182
Appendix 2: PAGE 198
A(I) Extmction coeffictents for the ( $\eta^{6}$-arene) $\mathrm{Cr}(\mathrm{CO})_{3}$ compounds ..... 199
(il) Spectroscopic spectra for the ( $\eta^{6}$-arene) $\mathrm{Cr}(\mathrm{CO})_{3}$ compounds ..... 205
B Supplimentary spectra from the matrix isolation experiments ..... 212
Appendix 3: PAGE 216
Crystal data, intensty measurements, and refinements for the ( $\eta^{6}$-arene) $\mathrm{Cr}(\mathrm{CO})_{3}$
compounds ..... 217
Structural parameters for ( $\eta^{6}-2,6$-dimethylpyridine) $\mathrm{Cr}(\mathrm{CO})_{3}$ ..... 219
Observed and calculated structure factors for ( $\eta^{6}-2,6$-dimethylpyridine) $\mathrm{Cr}(\mathrm{CO})_{3}$ ..... 225
Structural parameters for ( $\left.\eta^{6}-2,6-(I M S) p y r ı d i n e\right) \mathrm{Cr}(\mathrm{CO})_{3}$ ..... 236
Observed and calculated structure factors for $\left(\eta^{6}-2,6-(T M S) p y r i d i n e\right) \mathrm{Cr}(\mathrm{CO})_{3}$ ..... 242
Structural parameters for ( $\eta^{6}-$ pyridine $) \mathrm{Cr}(\mathrm{CO})_{3}$ ..... 257
Observed and calculated structure factors for $\left(\eta^{6}-\right.$ pyridine $) \mathrm{Cr}(\mathrm{CO})_{3}$ ..... 262

## INTRODUCTION

This introduction attempts to provide an overview of the relevant chemistry and techniques which are explored in this thesis It is not an extensive review of the relevant literature, this is provided at the beginning of the each chapter

## (1) A brief history of organometallic chemistry

The history of organometallic chemistry can be described as one of unexpected discovenies The oldest compound in the history of organometallic chemistry was prepared and charactensed by Zeise in $1827^{1}$ The compound was called Zerse's salt and was formulated as $\mathrm{PtCl}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{KClH}_{2} \mathrm{O}$ When it was first reported by Zeise his assıgnment was attacked by contemporary chemists and the compound was condemned as a fantasy ${ }^{2}$

In 1848 Bunsen correctly identified, the mixture of $\mathrm{Me}_{2} \mathrm{As}$ - $\mathrm{As}_{\mathrm{Me}_{2}}$ and $\left(\mathrm{Me}_{2} \mathrm{As}\right)_{2} \mathrm{O}$, that had been prepared many years previously The following year Frankland synthesised the first alkylzinc compound These compounds were used extensively as alkylating agents, before being replaced by Gngnard reagents (1900), which were easier to prepare and to handle

The penod between 1870 and 1950 was dominated by the investigation of $\sigma$-bonded organometallic denvatives of non-transition metals These investigations concentrated on synthesis and the applications of these compounds as reagents in organic preparations Dunng this peniod the chemistry of the metal carbonyls were also investigated Nickel and iron carbonyls were first to be discovered by Mond in 1890, ${ }^{3}$
who readily identified the industrial importance of metal carbonyl compounds Further investigatıons were carned out by Hieber after 1930

The turning point in organometallic chemstry, that led to the near exponential growth in the last 46 years can be attributed to the discovery of ferrocene in 1951 by, Kealy and Pauson, ${ }^{4}$ Miller, Tebboth and Tremaine ${ }^{5}$ Wilkinson and Fischer ${ }^{6}$ proposed and confirmed the now familar structure of ferrocene, depicted in Figure 1 The discovery and recognition of this new type of bond between the metal and organic unsaturated molecules prompted the enormous interest in these compounds


Figure 1
(Sandwich structure of ferrocene)

With the discovery of ferrocene, the classical period of organometallic chemistry drew to a close, and the modern era began This was faciltated by the
introduction of physical methods of investigation which afforded detailed information about the structure and bonding in organometallic compounds and made possible the understanding of therr behaviour The development of the organometalhc chemistry of the non-transition elements contmued as well, but the modern period is dominated by the interest m transition metal derivatives

Only two years after the discovery of ferrocene, a revolutionary new process for converting ethylene into polyethylene by a catalyst composed of $\mathrm{TiCl}_{4}$ and $\mathrm{AlEt}_{3}$ was invented by Ziegler and his group at the Max-Planck Institute for Coal Research ${ }^{7}$ This process was then passed on to Natta's group in Italy where its utility was quickly expanded to polymense a varety of other monomers This is a good example of how basic research on organometallic compounds, which were regarded as cunosities at the tıme, suddenly produced a world-wide industrial process, thus justifying the interest that these compounds provoked

## (il) Definition of an organometallic compound

Organometallic compounds are organic compounds that contain at least one dırect metal - carbon bond Accordingly, organometallic compounds can be classıfied as derivatives of main group elements (involving only $s$ - and $p$-orbitals and electrons in bonding) and transition metal derivatives (involving $d$ - and possibly $f$-orbitals) The most common type of bond for the main group elements is a $\sigma$-covalent bond, however the alkalı and alkaline earths form mainly ionic compounds Electron deficient structures are
formed by elements like $\mathrm{Li}, \mathrm{Be}, \mathrm{Mg}, \mathrm{B}$ and Al The transition metals generally form $\pi$ complexes involving dative bonds, but they can just as equally form normal $\sigma$-metalcarbon bonds

## (ill) Organometallic bonds encountered in this study

Bonds between transition metal atoms and unsaturated organic molecules are formed by electron donation in two opposite directions, from the ligand to the metal (direct donation) and from the metal to the ligand (backbonding) In order to participate in this type of bonding, the metal should have a partally filled $d$-shell and should have a low oxidation state, preferably $0 \pm 1$ The unsaturated organic molecule must possess vacant orbitals of suitable symmetry to interact with the filled $d$-orbitals on the metal

## (a) Carbon monoxıde as a ligand

Compounds contanning the carbonyl ligand (CO) are amongst the most widely and intensively investigated species in organometalic photochemistry Figure 2 depicts the bonding interactions of CO with transition metals Empty anti-bonding orbitals on the CO have suitable symmetry for bonding with transition metals The ligand has a lone parr of electrons that are located on the carbon atom and can be donated to the metal, forming a $\sigma$-bond interaction of the donor-acceptor nature The metal can then donate electron density from the occupied $d$-orbital to the vacant anti-bonding orbitals thus forming a $\pi$-bond Therefore the bond between the metal and ligand is actually a double
bond, resulting from the superposition of the $\sigma$ interaction (ligand to metal) and the $\pi$ bond (metal to ligand) This back donation reduces the electron density at the metal centre and strengthens the metal to carbon bond The strengthenung of this bond affects the carbon to oxygen bond, as the carbon monoxide has accepted electrons into its antibonding orbital Therefore this decrease in the bond order results in a decrease in bond strength This decrease in the bond order is reflected in the decrease in the frequency of the C-O absorption bands in the infrared spectrum Metal complexes exhibit shifts of hundreds of wavenumbers to lower energy for their $v(C O)$ bands compared to free CO , consistent with the weakenung of the CO bond, $\left(\mathrm{Cr}(\mathrm{CO})_{6}=\sim 2000 \mathrm{~cm}^{-1}, \mathrm{CO}=2149 \mathrm{~cm}^{-1}\right)$

The number of CO ligands that are bonded to a metal is generally dictated by the 18 electron rule This rule requires that the metals achieve an "effective atomic number" equal to that of the following noble gas Metals that possess an odd atomic order dimenze through metal to metal bond formation $m$ order to satisfy this rule, or alternatively form compounds with other single electron donor ligands Relating this theory to a simple metal carbonyl compound demonstrates the rule clearly Chromum $=$ [Ar] $4 s^{2} 3 d^{4} 4 p^{0}$ ( $e$ six valence electrons), therefore six CO ligands all donatıng two electrons are necessary to satısfy the rule

| Cr | $=6$ electrons |
| :--- | :--- |
| 6 CO | $=12$ electrons |
| $\mathrm{Cr}(\mathrm{CO})_{6}$ | $=18$ electrons |

When one of these CO ligands is removed, employing UV photolysis for instance, the resulting moiety is a 16 electron intermediate, which is exceptionally reactive


Figure 2
(Bonding interactions of CO with transtion metals)
(b) Arene hgands

Arene ligands are extensively employed in organometallic chemistry and will form a signuficant part of this thesis, the normal type of bonding for this type of ligand is where the planar higand lies above the metal, forming a perpendicular bond between the metal and the arene ring Taking benzene as an example of an arene ligand (benzene's $\pi$
orbitals are depicted in Figure 3), the following can describe the interaction between the metal and the arene ning If the $z$ direction is assigned to the axis from the metal to the centre of the arene ligand, the $\mathrm{d}_{\mathrm{z}}{ }^{2}$ orbital should have the correct symmetry to interact with the $a_{2 u}$ orbital However this interaction results in very little overlap as the $d_{z}{ }^{2}$ orbital points at the hole in the benzene ning The next two degenerate orbitals $\mathrm{e}_{\mathrm{lga}_{\mathrm{ga}}}$ and $\mathrm{e}_{\mathrm{l}_{\mathrm{gb}}}$ on the hgand donate electrons $v i a$ a $\pi$ interaction to the $\mathrm{d}_{\mathrm{xz}}$ and $\mathrm{d}_{\mathrm{yz}}$ and in this instance the


Figure 3
(Benzene $\pi$-molecular orbitals, the + and -stgns designate the signs of the molecular orbitals above the plane of the paper )
spatial overlap is large The $\mathrm{e}_{2 u}$ orbital set on the ligand does not have the correct symmetry to interact with any of the metal orbitals, except for a weak interaction with the $d_{x y}$ and $d_{x}{ }^{2}-y^{2}$ orbitals Figure 4 depicts an interaction diagram for the construction of the orbitals of $\mathrm{M}(\mathrm{CO})_{3}$ and $\mathrm{M}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ from the metal orbitals that are presented in the centre of the diagram ${ }^{8}$


Fıgure 4
(An orbital interaction diagram for the formation of $M(C O)_{3}$ and $M\left(\eta^{6}\right.$-benzene))

Thus, benzene and other ligands are good electron donors but poor electron acceptors The electronic properties can be altered by varying the nature of the arene substituents, or indeed as will be outlined in this thesis by varying the nature of the arene

## (iv) Exctted states encountered in this study

The photochemstry of organometallic compounds has been an area of intense interest over the past few decades ${ }^{9}$ This is as a result of the discovery that the irradiation of organometallic compounds can lead to catalytically and synthetically useful transformations

Organometallic complexes can have a vanety of low lying excited states, meaning states that can be populated by optical irradiation $m$ the near-infrared, visible or ultraviolet region (i e $200-1100 \mathrm{~nm}) \quad \mathrm{M}(\mathrm{CO})_{6}$ complexes (where $\mathrm{M}=\mathrm{Cr}$, Mo, or W) have ligand field (LF) transitions at $\sim 333 \mathrm{~nm}$ This transition corresponds to electronic transitions between the " $d$-like" orbitals on the metal Such transitions are also known as "d-d" transitions, or "metal centred" transitions However, as organometallic compounds are highly covalent they actually have considerable ligand character, which can result in the relaxation of the selection rules for the transition, resulting in the high extinction coefficients observed for these transitions The transition is from a filled $t_{2 g}$ orbital of $\pi$ symmetry, that is $\pi$ bonding with respect to the M-CO bond, to the empty $e_{g}$ orbital that is of $\sigma$ symmetry and strongly $\sigma$ antı-bonding with respect to the M-CO bond This transition results in substantial labilisation of the M-CO bond, which is as a result of both the depopulation of the $\pi$ bonding levels and population of the $\sigma$ antı-bonding orbital, the latter appearing to be the most consequential

The $\mathrm{M}(\mathrm{CO})_{6}$ complexes also have metal to ligand charge transfer (MLCT) transitions, observed at $\sim 286 \mathrm{~nm}$ This transition originates in a metal-centred orbital and
terminates in a ligand localised orbital In its most extreme case it can be viewed as oxidation of the metal and reduction of the ligand Therefore an easily oxidised metal centre and a ligand that has low lying acceptor orbitals should exhibit easily accessible MLCT transitions Organometallic compounds generally satisfy these requirements, and thus MLCT transitions are commonplace These transitions may make the M-L bond more photochemically inert, as a result of the population of a ligand localised orbital, that does not substantally influence the metal to ligand bond Such transitions may be valuable as the introduction of a sumilar hgand with a lower lying acceptor orbital, to a complex, will interfere with a LF transition, creating an inert complex with respect to photosubstitution or vice-versa, thus enabling the photochemical behaviour to be "tuned" for particular applications

## (v) USES OF ORGANOMETALLIC COMPOUNDS

Transition metal complexes have been extensively used in industrial and laboratory processes to catalyse a vanety of chemical reactions A catalyst acts by producing an alternative low energy pathway, which speeds up the reaction without losing its chemical identity Inhibitors, catalysts that reduce the rate of reaction are also of great practical importance (e g inhibitors of oxidation, anti-corrosion or antı-knocking additives) The catalyst must have carefully balanced bonding properties such that it has the ability to discriminate between the desired hgand and an alternatıve but nonreactive hgand Homogenous transition metal catalysts, consisting of discrete molecules in
solution, have the advantage that a great number of spectroscopic methods may be used in their investigation and thus detailed information about the nature of the catalytically active transition metal complexes may be obtained

A vacant coordination ste is perhaps the single most important property of an homogeneous catalyst ${ }^{10}$ Organometallic compounds generally have hugh quantum yields for the ejection of a ligand (e g 067 for the photochemical ejection of a CO ligand from $\mathrm{Cr}(\mathrm{CO})_{6}$ in cyclohexane ${ }^{11}$ ), resulting in a coordinately unsaturated species, possessmg the required vacant coordınation site Vacant coordınation sites are not only necessary to activate a substrate by bringing it into the coordination sphere, but coordinatively unsaturated complexes are especially active m oxidative addition and reductive elımınation reactions The action of CO , phosphines and sulphur compounds as "poisons" in catalytic systems can be attributed to the tenacity with which these ligands bind to the vacant coordination sites on the metal Induction penods and the requirement of thermal or photochemical stimulation are usually indications that the active catalyst is formed by the expulsion of a ligand

Hydrogenation of 1,3 dienes has been known for a number of years to be catalysed by $\mathrm{Cr}(\mathrm{CO})_{6}$ This reaction is photoassisted, and photoexpulsion of a CO ligand is essential High yields and selectivities are obtaned from this process ${ }^{12}$ It was also found that the chromium hexacarbonyl catalysed watergas shift reaction, was accelerated by UV irradiation ${ }^{13}$ Organometalhc compounds can also act as thermal catalysts, eg $\eta^{6}$ (arene) $\operatorname{Cr}(\mathrm{CO})_{3}$ thermally catalyses 1,3 , dienes very selectively and in high yields, ${ }^{14}$ however this catalyst requires both elevated temperatures and high $\mathrm{H}_{2}$ pressure As most
of the catalysis involving $\left(\eta^{6}\right.$-arene $) \mathrm{Cr}(\mathrm{CO})_{3}$ and $\mathrm{Cr}(\mathrm{CO})_{6}$ involves ligand loss, thus forming a sixteen electron intermediate, the structure and reactivity of such intermediates are of great interest

## (vi) The nature of the interaction between solvents and metal centres

In Chapter 1 the interaction between $\mathrm{M}(\mathrm{CO})_{s}$ species (where $\mathrm{M}=\mathrm{Cr}$, Mo or W ) and the solvent environment will be discussed Sallard and Hoffmann ${ }^{15}$ investigated the activation of the $\mathrm{C}-\mathrm{H}$ bond upon coordination of the methane and hydrogen to a sixteen electron intermediate There are two possible onentations that the C-H could assume with respect to the metal Firstly it could bond in a perpendicular fashion where the C-H is collinear with the metal (1), and the second is where the $\mathrm{C}-\mathrm{H}$ approaches the metal in such a manner that the metal to carbon, and metal to hydrogen distances are the same (2), as depicted in Figure 4 Mode 2 was found to be more energetically favourable for a $\mathrm{H}-\mathrm{H}$ interaction with a metal centre The interaction with methane was investigated, but the results could also be applied to long chain alkanes It was found that mode 1 was the more favourable type of interaction for methane, as mode 2 resulted in an overlap between the filled metal $d_{x z}$ and the occupied C-H $\sigma$ orbital This repulsive effect dominated, causing the $\mathrm{d}_{\mathrm{xz}}$ orbital to be raised in energy, thus diminishing the stabilisation that was observed for $\mathrm{H}-\mathrm{H}$ interaction


Fıgure 4
(Possible modes of bonding for M-C-H interaction)

## (vil) Techniques employed for studying organometallic transient species

In studying organometallic systems it is important to understand the structures of the intermediates formed during any reaction This information can lead to a greater understanding of the reactivities of certain systems and generates a clearer picture of pathways involved Conventional X-Ray diffraction techniques are not suitable for charactensing transient species, therefore a vanety of techniques are employed to elucidate the structures of these short lived intermediates

## (a) Low temperature techniques

Matrix isolation is a useful tool for determining the structures of intermediates that would not be observed at room temperature The technique is based on the trapping of a parent species in a large excess of an inert solid (the matrix) and then urradiatıng it to generate unstable fragments These are then trapped in the cold matrix
and can then be studied at leisure The matrix is generally a solid gas or frozen hydrocarbons (e g noble gases or $\mathrm{CH}_{4}$ at $10-30 \mathrm{~K}$ ) A more recent advance in this area is to use cast polymer films, this technqque and isolation in a frozen hydrocarbon have the advantage of a greater temperature range There are a great number of spectroscopic technıques that can then be employed to study the trapped intermediate, of these UV/vis and $\mathbb{R}$ are the most common Matrix isolation with IR detection has been extremely successful in studying mononuclear metal carbonyl compounds mainly because of the very narrow IR absorptions with many structure-spectic features that are characteristic of these compounds However this technique does have limitations, it is not easy to use with charged species, very little kunetic information is available as a result of the restricted temperature range and limited diffusion Also the matrix cage may prevent some reaction pathways by preventing the reactant species escaping, thus promotmg recombination processes The intermediates are studied in a low temperature nigid environment Direct comparison with the solution phase therefore is not possible However the results can be used to assist the interpretation of the solution behaviour

Low temperature solutions have also been employed to study metal carbonyl fragments The studies in liquefied noble gases have a particular advantage over other techniques because of the total lack of IR absorptions of these solvents, which when combined with Founer transform infrared (FTIR) allows the weak bands of the coordnated ligands to be observed, as well as the more intense carbonyl bands The species is also being studied in a hquid environment, which makes it possible to obtain
kınetic data by varying the temperature This information can not be obtained from matrix expenments
(b) Flash photolysis of metal carbonyls
(1) UV/visible detection

Flash photolysis is a method for the intiation and study of the primary photochemical processes Light absorption occurs very rapidly ( $10^{-14} \mathrm{~s}$ ) but the decay processes subsequent to this absorption cover a much wider range of times from picoseconds to seconds Conventional flash photolysis was developed by Norrish and Porter in the 1950's for which they received the Nobel prize in $1967^{16}$

When a sudden flash of high-intensity light is absorbed by a reactant, a relatively high concentration of excited molecules or photoproducts are formed and can be observed by UV/vis absorption spectroscopy A complete absorption spectrum over the complete wavelength range can be recorded at one time Alternatively, a single selected wavelength can be monitored over time and thus the kinetics information can be obtained Time resolution of flash photolysis experiments is determmed by the duration of the flash, which is usually a few microseconds in the case of plasma flash lamps but can be as short as picoseconds or even femtoseconds with pulsed lasers

Flash photolysis techniques involving UV/vis detection have several
advantages

- generally metal carbonyl intermediates are easy to detect in solution,
- quantum yields for their formation are high and therr UV/vis absorptions are intense,
- also the high sensitivity of this technique allows the study of very small concentrations of reactive intermediates,
- identification of intermediates can be facilitated if their spectra are characteristic and well resolved from the absorption of the parent,
- it is possible to undertake investigations in the picosecond and even the femtosecond tıme doman,
- it is also very useful that most solvents do not absorb in the visible to near UV region

However the technique does have a number of disadvantages, namely

- the sample must be optically clear to the monitonng hight, therefore the presence of scattering particles must be avoided,
- if the reactive intermediates possess low molecular extinction coefficients, they may not be detected,
- analysis of complicated spectra may be difficult if the absorption bands overlap each other,
- it is also impossible to obtain any structural information from this technique,
- reaction rates can be fast, therefore good time resolution is also essential

This technique is effective in establishing the broad outlines of the photochemıstry of a particular system Nasielski et al ${ }^{17}$ pioneered flash photolysis coupled with UV/vis detection on metal carbonyl systems with their work on the photochemistry of $\mathrm{Cr}(\mathrm{CO})_{6}$ A number of factors, such as moderate solubility in non-polar
solvents, large UV/vis extınction coefficients and high quantum yrelds for photochemical reactions (vide supra) contribute to the suitability of metal carbonyl complexes for flash photolysis with UV/vis detection
(2) Time Resolved IR Spectroscopy

It has long been recognised that vibrational spectra offer more structural information than the spectra in the UV-vis regions Unfortunately, largely because of detector response problems, fast tıme resolved infrared (TRIR) is in practise much more difficult technologically than the corresponding UV/vis experments ${ }^{18}$ With the development of sold-state detectors, and the fact that the $v(\mathrm{CO})$ bands of metal carbonyls are extremely intense, it has been possible to obtain TRIR data at room temperature for the $\mathrm{M}(\mathrm{CO})_{s}$ species in cyclohexane ${ }^{19}$ A conventional flashlamp was used as the photolysis source A globar, monochromator and fast IR detector were employed as a detection system Later systems employed lasers as the photolysis source and an IR laser as detector probe Detection in this technique is based on a "point by point" approach For each UV flash, kınetic measurements are made at one IR wavelength The monitoning wavelength is then changed and the photolysis source is triggered again Thus, using a number of flashes, data can be accumulated for wavelengths across the spectral region of interest These data can then be used to construct "point by point" spectra corresponding to any particular tume delay after the flash Therefore the essential requirements for such measurements are a monochromatic IR beam, a pulsed UV light source and an IR detector Most spectrometers that are arranged to monitor organometallic compounds
only measure changes in IR absorptions Therefore the parent bands, that are being destroyed, appear as negative peaks, and the bands assıgned to the photoproducts appear as positive absorptions Static IR bands, (e g solvent bands) do not appear m the spectra because their $\mathbb{R}$ absorptions do not vary

The photochemistry of $\left[\mathrm{CpFe}(\mathrm{CO})_{2}\right]_{2}\left(\mathrm{Cp}=\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ provides an illustration of the use of TRIR techniques Flash photolysis with UV/vis detection had indicated that the compound dissociated $v z a$ two pathways, ${ }^{20}$ depicted in Reactions

$$
\begin{array}{ll}
{\left[\mathrm{CpFe}(\mathrm{CO})_{2}\right]_{2} \rightarrow \mathrm{Cp}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{3} \text { (long lived) }+\mathrm{CO}} & \text { Reaction } 1 \\
{\left[\mathrm{CpFe}(\mathrm{CO})_{2}\right]_{2} \rightarrow 2 \mathrm{CpFe}(\mathrm{CO})_{2} \text { (short lived) }} & \text { Reaction } 2
\end{array}
$$

1 and 2 However, matrix isolation studies found $\mathrm{Cp}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{3}$ to be the sole product ${ }^{2122}$ Employing ${ }^{13} \mathrm{CO}$ isotopes, Rest et al ${ }^{21}$ showed that this compound had the unusual structure $\mathrm{CpFe}(\mu-\mathrm{CO})_{3} \mathrm{FeCp}$, with three bridging carbonyl groups arranged symmetrically around the Fe -Fe bond This intermediate was unexpectedly stable Undoubtedly UV photolysis also generated the species observed in Reaction 2, but in the enclosed matrix "cage", this species readily recombined so as not to appear in the IR spectra, thus illustrating one limitation of the matrix technique Room temperature flash photolysis coupled with IR detection clearly showed that both of the species were present following UV photolysis ${ }^{23} \mathrm{CpFe}(\mathrm{CO})_{2}$ was the first coordınatively unsaturated species to be identified by TRIR without previous matrix isolation data beıng available

Thus TRIR allows structural information to be obtaned without the loss of
kinetic data Even though it may not always provide a complete solution to every problem, when it is combined with other techniques it becomes a very powerful tool for elucidating the structures of organometallic intermediates

## (c) Gas phase

Studies carned out in the gas phase have a number of advantages over the solution phase work Firstly it is possible to study truly "naked" coordınatively unsaturated species, as there is no environment with which to mteract, unlike the interactions present between the solvent and the "naked" species in solution phase work In kinetic studies, reactions in solution will, in general, be displacement reactions rather than addition reactions Thus, these reactions may not probe the rate of reaction of the "naked" species Coordination of the solvent can also affect the structure of the species being observed since the coordinated solvent molecule can distort the structure of the "naked" coordinatively unsaturated species The insidious feature of this effect is that it is not clear how large an effect solvent coordnation will have on the structure and it is difficult to be sure that any solvent is totally uncoordinating

Gas phase work may also result in a greater number of photolysis products from the absorption of a single photon As observed in the photolysis of $\mathrm{Cr}(\mathrm{CO})_{6}$, where $\mathrm{Cr}(\mathrm{CO})_{5}$ and $\mathrm{Cr}(\mathrm{CO})_{4}$ were produced ${ }^{24}$ Therefore more than one CO ligand may be ejected with one photon However, almost universally in the solution phase only one
ligand is ejected This difference is attributed to the relaxation of the internal vibrationrotation energy by collision with the solvent environment, dissipating the excess energy of the photon, preventing the ejection of a second ligand in solution Such a relaxation is not efficient $m$ the gas phase, therefore the excess energy is available to eject a further ligand The kinetic parameters in the gas phase are usually one or two orders of magnitude faster than the corresponding diffusion controlled reactions in solution Consequently such studies require fast detection systems

## (d) Time resolved photoacoustic calorimetry (PAC)

Pulsed, tıme-resolved photoacoustic calonmetry is a technique which has been used to determine the reaction enthalpy for photomitiated reactions generating either stable products or transient intermediates Because PAC measures thermal relaxation processes, reaction pathways involving intermediates without easily-monitored chromophores can be detected In PAC the amplitude of an acoustic wave after photolysis is dependent on the amount of heat liberated from chemical and physical processes It was found that all "fast" processes ( $<1 \mathrm{~ns}$ ) gave the same signal on the transducer, and all "slow" processes ( $>1 \mathrm{~ms}$ ) were ignored ${ }^{25}$ In between the fast and slow domains, there exists an intermediate regime in which the transducer response tracks the profile of heat deposition

To state any reaction enthalpy with certainty, it is necessary to know precisely the quantum yields for the formation of the product ${ }^{26}$ The quantum yield is only necessary to obtain thermodynamic information, the reaction kinetics, once intiated, are independent of the quantum yield for photoinitiation

## REFERENCES

## (Introduction)

[^0][^1]
## CHAPTER 1

### 1.1 LITERATURE SURVEY

The photochemistry of group six hexacarbonyls has been of great interest over the past thirty years They are of considerable interest because of the role they play as catalysts, as already discussed in the introduction They are ideal systems to study both in the UV and the IR, because of their charactenstic spectra

## 1 I I Early low temperature studies of the photochemistry of $M(C O)_{6}$

Most of the initial work in this field was involved in identifying the species that was formed upon photolysis of $\mathrm{M}(\mathrm{CO})_{6}(\text { where } \mathrm{M}=\mathrm{Cr}, \mathrm{Mo} \text { or } \mathrm{W})^{1,2}$ Intral suggestions, ${ }^{1}$ that a pentacarbonyl was the species formed, was confirmed by Stolz et al ${ }^{2}$ Photolysis of $\mathrm{W}(\mathrm{CO})_{6}$ in a 14 methylcyclohexane 1 sopentane glass at 77 K , produced a photoproduct Infrared peaks charactenstic of a square pyramid of five carbonyl groups around a metal centre were observed, after meltung the glass The possibility of a charged species being produced was discounted because of its solubility m non-polar solvents Also extensive electron spin resonance studies were carried out, indicating no evidence for the existence of unpared electrons Stolz et al ${ }^{3}$ further investigated the metal hexacarbonyls in glasses Because of improvements in technology, monitoning at 77 K was possible and spectroscopy confirmed the $\mathrm{C}_{4 \mathrm{v}}$ structure previously assigned However when the temperature was rased for the molybdenum system, the band pattern of three $\nu_{\mathrm{co}}$
bands changed to two bands of equal intensity, which they assigned to the metal pentacarbonyl with $\mathrm{D}_{3 \mathrm{~b}}$ symmetry However Braterman et al ${ }^{4}$, disagreed with this assignment and proposed that the spectral changes were as a result of polymer formation This was later confirmed by Turner $\underline{\text { et }} \boldsymbol{a l}^{5}$ who observed peaks that were assigned to this polymenc species upon photolysis of the $\mathrm{M}(\mathrm{CO})_{6}(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}$ or W$)$ in an argon matrix, but much weaker than the dominant $\mathrm{M}(\mathrm{CO})_{5}\left(\mathrm{C}_{4 \mathrm{v}}\right)$ and $\mathrm{M}(\mathrm{CO})_{4}$ bands It was also observed that the peaks were dilution dependent, thus suggesting that the peaks could have been a result of the combination of the $\mathrm{M}(\mathrm{CO})_{6}$ and the $\mathrm{M}(\mathrm{CO})_{5}$ fragments

Previous matrix isolation work ${ }^{6}$ had shown a variation of the position of the visible band of the $\operatorname{Cr}(\mathrm{CO})_{s}$ species, depending on the nature of the matrix Turner $\underline{e t}$ $\underline{a l}^{5}$ examined the difference in the spectroscopic behaviour of $\mathrm{Cr}(\mathrm{CO})_{6}$ in a methane matrix, compared with the previously reported argon matrix ${ }^{6}$ The UV/visible spectra of $\mathrm{Cr}(\mathrm{CO})_{6}$ in both matnces were practically identical, however there was a shift in the visible band assigned to $\mathrm{Cr}(\mathrm{CO})_{s}$, produced upon photolysis of the parent compound To explain these shifts it was suggested that there was an interaction between the $\mathrm{C}_{4 \mathrm{v}} \mathrm{Cr}(\mathrm{CO})_{5}$ and the environment that surrounded it , $v a$ the "hole" in the $\mathrm{C}_{4 \mathrm{v}}$ structure

## I12 Room temperature studies of the photochemistry of $M(\mathrm{CO})_{6}$

Contemporary investigations in room temperature solutions were carried out at this tume Kelly $\underline{\text { et al }}^{7}$ studied the photochemistry of $\mathrm{Cr}(\mathrm{CO})_{6}$ in (extensively punfied) cyclohexane and observed a species immediately following the flash This
species had a broad band situated at $503 \mathrm{~nm} \pm 5 \mathrm{~nm}$ and a lifetume of greater than 200 ms This species decayed away to form other species that were assigned as the interaction of the $\mathrm{Cr}(\mathrm{CO})_{s}$ with impunties The possibility that this second band being assigned to a dinuclear species formed by the interaction of the pentacarboyl with the parent compound was disregarded, because a change in the concentration of $\mathrm{Cr}(\mathrm{CO})_{6}$ had no effect on the concentration of this second species The impunties were found to affect the lifetime of the pentacarbonyl with CO It was therefore suggested that a highly reactive species was formed within 50 ns of the excitation of $\mathrm{Cr}(\mathrm{CO})_{6}$, which was assigned to the $\mathrm{Cr}(\mathrm{CO})_{5}$ species

Koerner von Gustorf et al ${ }^{8}$ examined the rates of reaction of the $\mathrm{Cr}(\mathrm{CO})_{s}$ moiety with a vanety of solvents Again it was noted that the preparation of the sample solution was extremely important, as any trace amount of impunty was liable to be complexed to the photoproduct Incorporating the results obtaned by Turner et al, ${ }^{5}$ which indicated there was an interaction between the $\mathrm{Cr}(\mathrm{CO})_{s}$ morety and a hydrocarbon matrix, it was proposed that the $\mathrm{Cr}(\mathrm{CO})_{s}$ species was not completely free, but was "readily available", as it could be expected to weakly interact with the cyclohexane solvent With addition of other solvents to cyclohexane, such as acetone, acetonitrile or benzene, the photogenerated $\mathrm{Cr}(\mathrm{CO})_{s}$ reacted to form the $\mathrm{Cr}(\mathrm{CO})_{5} \mathrm{~L}$ species $(\mathrm{L}=$ solvent) Agan a dependence of the visible bands on L was observed, the relevant $\mathrm{Cr}(\mathrm{CO})_{s} \mathrm{~L}$ band was seen to grow in at the same rate as the $\mathrm{Cr}(\mathrm{CO})_{s}$ decayed, confirming first order kinetics

However useful in obtaining kınetıc data, UV/vis monitored flash photolysis is unable to provide structural data The ideal tool for obtaining structural information mvolves infrared detection Turner et al ${ }^{9}$ carried out an m depth study of the group six metal hexacarbonyls in a variety of matrices, employing both UVivisible and infrared detection When $\operatorname{Cr}(\mathrm{CO})_{6}$ was photolysed in a methane matrix, a new $\mathbf{R}$ spectrum was produced, that was indicative of a $\mathrm{Cr}(\mathrm{CO})_{5}$ species with $\mathrm{C}_{4 \mathrm{v}}$ symmetry as already indicated (vide ante) A visible band was also observed that grew in at the same rate, clearly this band was also due to the $\mathrm{C}_{4 \mathrm{v}} \mathrm{Cr}(\mathrm{CO})_{5}$ With all the hexacarbonyls in a vanety of matnces it was possible to regenerate the parent by longer wavelength photolysis into the visible band This visible band was found to be extremely sensitive to the matrix, varying from 624 nm in Ne to 489 nm in methane, this extreme sensitivity to the matrix environment was not observed with IR detection, where vanations in the $v_{\infty}$ bands were not as pronounced It was then necessary to determine if this vanation was a the result of stereospecific interaction between the $\mathrm{Cr}(\mathrm{CO})_{s}$ and the matrix or alternatively a general solvent effect To clanfy this mixed matnces were employed These experiments were based on the principle that if the effect was a general solvent one, there should be one visible peak with a $\lambda_{\max }$ at a wavelength within the extremes of the individual matrices However this was not observed, when the expenment was carned out in a $\mathrm{Ne} / 2 \% \mathrm{Xe}$ matrix two peaks were observed, which corresponded closely to those reported for the pure matnces Further evidence for a stereospecific interaction was
obtained by using the "tail photolysis" method Irradiation of $\mathrm{Cr}(\mathrm{CO})_{s}$ in its visible band in pure matrices was known to give $\mathrm{Cr}(\mathrm{CO})_{6}{ }^{6(\mathrm{~b})}$, therefore removal of each component of the mixed matrix spectrum in turn, by selective photolysis into one of the bands, should have been possible A reversible photosubstitution reaction was observed, where photolysis into one of the bands produced the other band as well as $\mathrm{Cr}(\mathrm{CO})_{6}$, and the reverse reaction could also be seen, which is depicted in Figure 11 This mterconversion could be repeated several times, untıl the intensities of both photoproducts had decreased because of the production of $\mathrm{Cr}(\mathrm{CO})_{6}$


Figure 1.1
(Tall photolysis in a mixed matrix')

Infrared detection was also employed to observe the $\mathrm{Cr}(\mathrm{CO})_{5}$ fragment in the matrix Companson of spectral behaviour in a variety of matnces demonstrated that the positions of the $v_{c o}$ bands were sensitive to the matrix environment, however both the metal hexacarbonyls and the metal pentacarbonyls were sımilarly affected The constancy of these separations indicated that most of the perturbing effect of the matrix was a
general solvent one Calculations carned out demonstrated that the change in intensity of the hugh frequency $\mathrm{A}_{1}$ band from $\mathrm{Cr}(\mathrm{CO})_{s}-\mathrm{Ar}$ to $\mathrm{Cr}(\mathrm{CO})_{s}-\mathrm{Xe}$ was caused by a decrease in the axial-radial bond angle of about $4^{0}$ Any change in this angle has a dramatic affect on the energies of the molecular orbitals, particularly the one with $a_{1}$ symmetry (Figure 12 ) As the angle $\theta$ increases, the energy of the e orbital nses slightly, while the energy of the $a_{1}$ orbital falls dramatically ${ }^{10}$ Therefore a small increase of the axial-radıal bond angle can generate a signuficant drop in the $\mathrm{e} \rightarrow \mathrm{a}_{1}$ transition energy Also possible is an interaction between the matrix and the $\mathrm{a}_{1}$ orbital of the $\mathrm{Cr}(\mathrm{CO})_{s}$ morety It was concluded that the sensitivity of the visible band position is a combination of these two effects


Figure 1.2
(Relationship between the axial-radıal bond angle and the energies of the molecular orbitals)

The ability to interconvert $\mathrm{Cr}(\mathrm{CO})_{5}-\mathrm{Ne}$ and $\mathrm{Cr}(\mathrm{CO})_{5}-\mathrm{Xe}$ in the matrix mdicated that there was some mobility of the $\mathrm{Cr}(\mathrm{CO})_{s}$ fragment in the matrix Conclusive evidence for this came from matrix expenments, using plane polansed light ${ }^{11}$ The principle of this method is that if a molecule, held ngid by the matrix, is photolysed with plane polarised light only those molecules that are onentated maspecific manner will absorb the light, resulting in dichroic photodepletion The products of this photochemistry will have also a specific onentation, dichroic photoproduction However if dichroic photodepletion is observed without dichroic photoproduction, this would indicate that some intermediate species is mobile duning the photochemical act, thus resulting m some random onentation of the product A mixture of $\mathrm{Mo}(\mathrm{CO})_{s}-\mathrm{Ar}$ and $\mathrm{Mo}(\mathrm{CO})_{s}-\mathrm{N}_{2}$ was generated by unpolarised photolysis, in a mixed $\mathrm{Ar} / \mathrm{N}_{2}$ matrix This led to the production of two randomly onentated species However, upon polarised photolysis into the $\mathrm{Mo}(\mathrm{CO})_{s}-\mathrm{N}_{2}$ band ( 367 nm ), this band became specifically onentated, which was expected because of the theory of dichroic photodepletion The band assigned to $\mathrm{Mo}(\mathrm{CO})_{s}-\mathrm{Ar}$ was seen to increase $m$ intensity, but it remained randomly onentated, therefore not displaying dichroic photoproduction, demonstrating that there inust have been some motion during the reaction, in order to randomize the onentation of the photoproduct

Another phenomenon that is possible with plane polarised light, is called photoreonentation This occurs when the starting material rotates following absorption but does not react This phenomenon was observed when $\mathrm{Cr}(\mathrm{CO})_{6}$ was photolysed in a pure matrix of $\mathrm{N}_{2}$, Ar or methane It was found that linear dichroism developed upon polarised photolysis, photolysis with polansed light produced an increase in the intensity
of the molecules onentated in the opposite direction was observed This onientation was reversible upon rotating the polarization of the irradiating beam by $90^{\circ}$, indicating that in theory it could have been possible to interconvert the onentations This indicated that the molecules were being onentated to positions of lower probability of absorbing the incident radiation, resulting in a bleaching of the particular onentation

Previous studies had been carried out employing the $\mathrm{Cr}(\mathrm{CO})_{s}-\mathrm{CS}$ species which mirrored the reactions of $\mathrm{Cr}(\mathrm{CO})_{6}{ }^{12}$ The elegance of this system was the fact that the CS group could act as a "labelled" CO group, making it possible to follow otherwise unobservable processes Burdett et al ${ }^{11}$ carned out further experiments involving the $\mathrm{Cr}(\mathrm{CO})_{s}-\mathrm{CS}$ species, to determine of the reonentation observed was a smple rotation or a specific intramolecular rearrangement The visible absorption band of the $\mathrm{Cr}(\mathrm{CO})_{4} \mathrm{CS}-\mathrm{Ar}$ species depended on the relative position of the CS group and Ar This species was generated by UV photolysis and showed wavelength dependent isomensation The isomensation was explained by a reonentation of the $\mathrm{Cr}(\mathrm{CO})_{4} \mathrm{CS}$ species via a trigonal bipyramidal intermediate, in a manner analogous to the reonentation of the $\operatorname{Cr}(\mathrm{CO})_{5}$ species Incorporating all the above information the authors then proposed a complete account of the photochemcal behaviour of the $\mathrm{M}(\mathrm{CO})_{6}$ molecule in the matrix, their conclusions are depicted in Figure 13

From Figure 13 when the parent hexacarbonyl is isolated in a mixed matrix of X and $\mathrm{Y}, \mathrm{UV}$ irradiation results in the loss of one CO , to form a $\mathrm{C}_{4 v} \mathrm{Cr}(\mathrm{CO})_{5}$ (spy) molecule This intially generated excited state is not stable in this geometry and therefore
distorts to a tngonal bipyramid (tbp) intermediate The tbp can then relax to three different ground state spy species, with equal probability Each of these three ground state


Figure 1.3
(Photochemical behaviour of $M(C O)_{s}$ in a mixed matrix $X, Y$ )
spy molecules has a vacant site in a different onentation There is an equal chance of the pentacarbonyl fragment interacting with X , Y or recombining with the ejected CO This mechanısm for CO loss from a hexacarbonyl, explains how the CO molecule manages to escape the vacant site $\mathrm{Hay}^{13}$ confirmed that the visible absorption in these complexes
could be assigned to the $\mathrm{e} \rightarrow \mathrm{a}_{1}$ transition and found that the ground state $\mathrm{M}(\mathrm{CO})_{5}$ (spy) species was at lower energy than the tbp species

Therefore by employing matnices and a vanety of different physical, photochemical and chemical methods, it was possible to elucidate the photochemical behaviour of $\mathrm{M}(\mathrm{CO})_{6}$, including a characterisation of the intermediates, which could not have been possible in solution at that time

## 114 Solution phase photochemistry in weakly coordinating solvents

Kelly et al ${ }^{14}$ used perfluorocarbon solvents, to investigate the photochemstry of chromum hexacarbonyl They observed that the $\lambda_{\max }$ of the visible absorption of the $\operatorname{Cr}(\mathrm{CO})_{s}$ in this solvent was $\sim 620 \mathrm{~nm}$ This is very close to the $\lambda_{\text {max }}$ of $\mathrm{Cr}(\mathrm{CO})_{s}-\mathrm{Ne}$ in a Ne matrix $(624 \mathrm{~nm})$ Therefore it was concluded that the perfluoro solvent interacted only very weakly, if at all, with the pentacarbonyl fragment This intermediate reacted with $\mathrm{N}_{2}, \mathrm{CO}$ and cyclohexane at about the diffusion controlled limit for this solvent $\left(66 \times 10^{9} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}\right)^{8}$ The diffusion controlled limit is where there is no barner to activation for the reaction The only parameter that is controlling the rate, is the diffusion of the two molecules so that they are close enough to interact This study confirmed that the $\mathrm{Cr}(\mathrm{CO})_{5}$ species was formed within 50 ns of the excitation of the hexacarbonyl and demonstrated that the species was formed in cyclohexane, within the 5 ns excitation pulse

Further work with $\mathrm{W}(\mathrm{CO})_{6}$ or $\mathrm{Mo}(\mathrm{CO})_{6}$ was conducted in perfluoro
solvents ${ }^{15}$ The production of a $\mathrm{Cr}(\mathrm{CO})_{5}-\mathrm{Cr}(\mathrm{CO})_{6}$ species was also reported and the reaction of this species with CO was investigated It was found that this compound decayed with a bıphasic profile The first fast decay was assigned to the recombination of the species with CO and the longer decay tıme was assigned to the reaction with impunties This species however was formed by the reaction of the $\mathrm{Cr}(\mathrm{CO})_{s}$ fragment with the parent $\mathrm{Cr}(\mathrm{CO})_{6}$ complex and was only observed with a relatively hugh concentration of $\mathrm{Cr}(\mathrm{CO})_{6}$, therefore it was thought that it should not play an important role in reactions in dilute solutions

## 115 The photochemistry of $M(C O)_{6}$ in liquefied noble gases

In a low temperature solvent it is likely that moderately stable species will be stabilised sufficiently to permit study with conventional techniques Perhaps the most revealing spectroscopic technique for transient organometallic species has been infrared The most appropnate solvents would therefore be inert and transparent to IR radiation, of which liquid noble gases are a perfect example This method thus permits the study of novel photogenerated species, and as the species are being studied in a liquid environment it is possible to monitor kınetics, and by measuring kinetic change with temperature, to extract thermodynamic information

A senes of studies were undertaken investigating the photochemistry of $\mathbf{M}(\mathrm{CO})_{6}$ in liquefied noble gases A long lived species was observed upon UV photolysis
of $\mathrm{Cr}(\mathrm{CO})_{6}$ in liquefied xenon or krypton in the presence of di-nitrogen, that was identified as $\mathrm{Cr}(\mathrm{CO})_{5} \mathrm{~N}_{2}{ }^{16}$ The identıfication of $\mathrm{Cr}(\mathrm{CO})_{s}-\mathrm{Xe}$, formed following photolysis of $\mathrm{Cr}(\mathrm{CO})_{6}$ in Xe , or Kr doped with Xe , indicated the extreme reactivity of the $\mathrm{Cr}(\mathrm{CO})_{5}$ fragment ${ }^{17}$ Noble gases have no absorptions in the IR, therefore allowing the observation of IR bands associated with $\eta^{2}-\mathrm{H}_{2}, \eta^{2}-\mathrm{HD}$, or $\eta^{2}-\mathrm{D}_{2}$, which would normally be very difficult to observe It was possible to charactense $\mathrm{M}(\mathrm{CO})_{5}\left(\mathrm{H}_{2}\right)(\mathrm{M}=\mathrm{Cr}$, Mo and W) and $c l s-\mathrm{Cr}(\mathrm{CO})_{4}\left(\mathrm{H}_{2}\right)_{2}$ Also $\mathrm{cls}-\mathrm{Cr}(\mathrm{CO})_{4}\left(\mathrm{~N}_{2}\right)_{2}$ was exclusively formed upon exchange of $c i s-$ $\mathrm{Cr}(\mathrm{CO})_{4}\left(\mathrm{H}_{2}\right)_{2}$ with $\mathrm{N}_{2}{ }^{18}$ Therefore hquefied noble gases provided a general route to charactense whole groups of unstable organometallic compounds and investigate their thermal stability

## 116 Investıgation of the dynamics of solvation employing picosecond and

## femtosecond flash photolysts

The, by now, well established interaction between the photolytically produced $\mathrm{Cr}(\mathrm{CO})_{s}$ and solvent environment, which previously was considered inert, prompted a number of workers to investigate picosecond and femtosecond time-resolved spectroscopy of $\mathrm{Cr}(\mathrm{CO})_{6}$, to investigate the initial solvent co-ordination with the ground state $\mathrm{C}_{4 \mathrm{v}} \mathrm{Cr}(\mathrm{CO})_{5}$ fragment Simon et al ${ }^{19}$ investigated $\mathrm{Cr}(\mathrm{CO})_{6}$ in cyclohexane containing THF, employing picosecond absorption spectroscopy Both $\mathrm{Cr}(\mathrm{CO})_{s^{-}}$ cyclohexane and $\mathrm{Cr}(\mathrm{CO})_{s}-\mathrm{THF}$ were formed following the excitation of $\mathrm{Cr}(\mathrm{CO})_{6}$ In a relatively high concentration of THF (5M) nearly all of the $\mathrm{Cr}(\mathrm{CO})_{s}$-cyclohexane
converted to the THF coordınated species within 25 ps Again using mixed solvent systems, Simon et al ${ }^{20}$ examined the dynamics of the formation of $\mathrm{Cr}(\mathrm{CO})-\mathrm{S},(\mathrm{S}=$ cyclohexane or methanol) and found that the cyclohexane analogue was formed within the tıme resolution of the equipment ( 08 ps ), however the nse time of the $\mathrm{Cr}(\mathrm{CO})_{s}$-methanol species was 25 ps This longer nise time was thought to reflect a greater barner to solvent reorganisation leading to the co-ordination of the solvent molecule to the vacant site of the reactıve $\mathrm{Cr}(\mathrm{CO})_{s}$ intermedıate

The dynamics of solvation were then examined $m$ pentanol ${ }^{21}$ It was
anticipated that it should be possible to observe the reorganisation of the solvent interaction from the less thermodynamically stable, M-alkyl group, to the more favourable M-OH group A difference in the visible absorption band was observed $\mathrm{The} \mathrm{Cr}(\mathrm{CO})_{5}-$ alkyl species had an absorption at $\lambda_{\max }=520 \mathrm{~nm}$, while the $\mathrm{Cr}(\mathrm{CO})_{s}$-hydroxyl species absorbed at 460 nm These results are as expected, in that the alkyl interaction is weaker than the M-OH interaction Immediately upon photolysis, both species were formed, but the alkane complexes were seen to rearrange, with time, to the more thermodynamically stable hydroxyl complexes This interchange could be followed by transient absorption spectroscopy, the band at 520 nm decayed away concurrently with the increased absorption of the 460 nm band There are three plausible mechanisms for this rearrangement Firstly the mechanism could have been dissociative Secondly, it could involve an associative substitution, or finally a unimolecular process, where reonentation of the solvent coordinated to the pentacarbonyl fragment takes place In order to clarify the exact mechanism for this rearrangement, photolysis of $\mathrm{Cr}(\mathrm{CO})_{6}$ was carried out in 1-
propanol and 2-propanol ${ }^{22}$ On a macroscopic level the two solvents have simular properties, therefore the rate for the rearrangement m both solvents should be approximately the same However the intially formed alkane complex disappeared faster in 2-proponol solvent than the 1-proponol The rate of the rearrangement was 3 orders of magnitude faster than that expected for a dissociative mechanism This led to the conclusion that the mechanism was unimolecular for the 2-proponol solvent The solvation in ethanol was also assigned a unimolecular mechanism, as it portrayed sımılar kınetic behaviour

Simon et al ${ }^{20}$ had already shown that the formation of $\mathrm{Cr}(\mathrm{CO})_{5}(\mathrm{MeOH})$ occurred within the first 25 ps , Joly and Nelson ${ }^{23}$ employed femtosecond absorption spectroscopy to study this system and found that the "bare" $\mathrm{Cr}(\mathrm{CO})_{s}$ complex was formed within 500 fs They also noted that there was a 16 ps nise time for the formation of $\mathrm{Cr}(\mathrm{CO})_{5}$-methanol Simular results were obtained for both the tungsten and molybdenum analogues Simon et al ${ }^{24}$ carned out a series of experiments involving the solvation of $\mathrm{Cr}(\mathrm{CO})_{s}$ with a series of linear alcohols, and found that the initial co-ordination of the solvent molecule to the $\mathrm{Cr}(\mathrm{CO})_{s}$ fragment occurs in a random fashion

Using 266 nm excitation of $\mathrm{Cr}(\mathrm{CO})_{6}$ in cyclohexane, Wang et al ${ }^{25}$ claimed to have observed "naked" $\mathrm{Cr}(\mathrm{CO})_{s}$ using picosecond IR transient absorption spectroscopy They also postulated that the excited $\operatorname{Cr}(\mathrm{CO})_{5}$ fragment decayed to both $\mathrm{C}_{4 \mathrm{v}}$ and $\mathrm{D}_{3 \mathrm{~h}}$ and that the $\mathrm{D}_{3 \mathrm{~b}}$ species decayed 23 times faster than the $\mathrm{C}_{4 \mathrm{v}}$ species They also examined the dynamics of the solvation of $\mathrm{Cr}(\mathrm{CO})_{s}$ in $\mathrm{THF}^{26}$ and confirmed that the initial co-ordination of the solvent to the $\mathrm{Cr}(\mathrm{CO})_{s}$ occurred randomly, but then the
$\mathrm{Cr}(\mathrm{CO})_{s}(\mathrm{THF})$ species, bound to $\mathrm{C}-\mathrm{H}$ group on the THF, rearranges to the $\mathrm{Cr}(\mathrm{CO})_{s}(\mathrm{O}-$ $\mathrm{C}_{4} \mathrm{H}_{8}$ ) species Like the cyclohexane work they identıfied two states that led to products, again they found that the $D_{3 b}$ species reacted faster than the $C_{4 v}$ species ( $D_{3 b}$ species reacts 7 times faster than the $\mathrm{C}_{4 \mathrm{v}}$ species for co-ordination at the $\mathbf{O}$ site)

Sumon and $\mathrm{Xie}^{27}$ presented data that contradicted the above results The photochemistry of $\mathrm{Cr}(\mathrm{CO})_{6}$ in THF was investigated, but picosecond absorption spectroscopy was used Under these conditions $\mathrm{Cr}(\mathrm{CO})_{6}$ underwent photodissociation and solvation within the time resolution of the expenment and the dynamics of the solvent rearrangement were sımilar to that reported for the solvation of $\mathrm{Cr}(\mathrm{CO})_{s}$ with the linear alcohols The time scale for solvent mugration was found to be at least an order of magnitude faster in these expenments than those reported from the transient IR study The fact that a 266 nm pump beam was employed in the $\mathbb{R}$ experiments was a possible reason for the observation of both the $\mathrm{C}_{4 \mathrm{v}}$ and the $\mathrm{D}_{3 \mathrm{~b}}$ states The high energy of the 266 nm laser beam could have resulted in the formation of different initial species, consequently, the dynamics studied may not have been those of the $\mathrm{Cr}(\mathrm{CO})_{5}$ species Lee and Harris ${ }^{28}$ carried out picosecond pump-probe ( 295 nm ) measurements $m$ the visible region with 1 ps time resolution, $m$ order to investigate the solvation dynamics A rise tıme for the $\mathrm{Cr}(\mathrm{CO})_{s}($ cyclohexane $)$ species was measured ( 17 ps ) that was between that of Wang et al ${ }^{25}(100 \mathrm{ps})$ and Simon et al ${ }^{20}(<1 \mathrm{ps})$ The red tall of the absorption spectrum of the $\mathrm{Cr}(\mathrm{CO})_{s}$ solvated species was monitored ( 622 nm in cyclohexane) This region in the spectrum corresponds to the vibrationally hot species, and it was found that this species decayed away with a lifetime of 21 ps , which is very close to the rise time
observed at 500 nm Therefore the nise tıme for the $\mathrm{Cr}(\mathrm{CO})_{s}($ cyclohexane) species was postulated to be as a result of vibrational relaxation

Joly and Nelson ${ }^{29}$ conducted a femtosecond transient absorption study into the photodissociation of $\mathrm{M}(\mathrm{CO})_{6}(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}$, or W$)$ in a vanety of linear alcohols, in order to determine the role of the solvent on the intial CO dissociation event The CO dissociation appeared to be independent of the solvent, implying that the dissociating fragment felt no signuficant influence from the solvent neighbours The dissociation time did not vary with the substitution of tungsten for chromium, indicating that the triplet state plays no role in the reaction For all three metal hexacarbonyls, photoejection of the initial CO was found to occur within 500 fs , complexation of the solvent to the $\mathrm{Cr}(\mathrm{CO})_{s}$ fragment was complete within the next several picoseconds The results also suggested that the solvent had no influence over which of the six CO's dissociated, but the initial solvent configuration did determine which part of the solvent coordinated with the $\mathrm{Cr}(\mathrm{CO})_{s}$ species

## 117 The photochemistry of $M(\mathrm{CO})_{6}$ in the gas phase

Coordinately unsaturated metal carbonyls have also been studied in the gas phase This method of investigation has a number of advantages over the solution phase A comprehensive review of the subject has been published ${ }^{30}$ However considering the importance of solution phase chemistry, it may be argued that solution studies are more important, not withstanding the added complications of the solution phase Firstly, as
already shown, these coordinately unsaturated species form interactions with the solvent environment within the picosecond time scale, therefore any kinetic measurements will actually be displacement reactions rather than addition reactions Therefore in solution these reactions may not probe the interaction of the "naked" species with the incoming ligand Secondly, coordination of the solvent may influence the structure of the species being studied, thus making it difficult to unambiguously assign the structure of the "naked" fragment The gas phase is not affected by solvent co-ordination therefore it is a valuable tool to further investigate the photochemistry of these species

The gas phase differs from the solution phase in that multiple coordinately unsaturated species are formed following the absorption of one single UV photon, these species are only formed in condensed phases upon photolysis of mitally produced coordinately unsaturated species This fragmentation of the parent species results from the sequential loss of CO coupled to a high degree of internal energy retention in the remaining metal carbonyl fragment In the gas phase a high degree of internal energy retention results in the eventual ejection of successive CO ligands in order to dissipate the excess energy This was demonstrated by Yardly et al ${ }^{31}$ who studied the $\mathrm{Fe}(\mathrm{CO})_{5}$ system and employed large excesses of $\mathrm{PF}_{3}$ as a trapping agent to coordınate to the "naked" species, formed following excitation of the parent $\mathrm{Fe}(\mathrm{CO})_{s}$ species It was also demonstrated that upon increasing the photolysis wavelength, a hugher number of the CO ligands were ejected from the $\mathrm{Fe}(\mathrm{CO})_{5}$ molecule Multıple CO loss processes were also observed upon photolysis of $\mathrm{Cr}(\mathrm{CO})_{6}{ }^{32}$ Only $107 \mathrm{~kJ} \mathrm{~mol}^{1}$ of energy is required to break one $\mathrm{Cr}-\mathrm{CO}$ bond, photon excitation energy of $481 \mathrm{~kJ} \mathrm{~mol}^{-1}$ was employed in the gas phase
experments, therefore sufficient energy was available to potentrally break four bonds This did not occur in condensed media, as rapid dissipation of excess energy to the surrounding environment was possible This explains the difference between the gas phase and condensed phase results

A pulsed laser pyrolysis technique was employed by Smıth et al ${ }^{33}$ to study the gas phase thermal decomposition of $\mathrm{Fe}(\mathrm{CO})_{5}$ and $\mathrm{M}(\mathrm{CO})_{6}(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}$, or W$)$ These results provided first bond dissociation energies for $\mathrm{Fe}(\mathrm{CO})_{5}=1718 \mathrm{~kJ} \mathrm{~mol}^{-1}$, $\mathrm{Cr}(\mathrm{CO})_{6}=155 \mathrm{~kJ} \mathrm{~mol}^{1}, \mathrm{Mo}(\mathrm{CO})_{6}=1676 \mathrm{~kJ} \mathrm{~mol}^{-1}$, and $\mathrm{W}(\mathrm{CO})_{6}=1927 \mathrm{~kJ} \mathrm{~mol}^{1}$ $\mathrm{Cr}(\mathrm{CO})_{6}$ decomposed via a dıfferent mechanism from the other hexacarbonyls, as the rate determining step was not the first bond scission, but a subsequent bond scission, which had a $1676 \mathrm{~kJ} \mathrm{~mol}{ }^{1}$ activation energy

Weitz et al ${ }^{34}$ employed tıme-resolved infrared spectroscopy (TRIR) to study the gas phase photofragmentation of $\mathrm{Cr}(\mathrm{CO})_{6}$ These results confirmed that the "naked" $\mathrm{Cr}(\mathrm{CO})_{5}$ fragment had a square pyramidal structure, only $\mathrm{Cr}(\mathrm{CO})_{5}$ and $\mathrm{Cr}(\mathrm{CO})_{4}$ were observed upon photolysis at $351 \mathrm{~nm}\left(3436 \mathrm{~kJ} \mathrm{~mol}{ }^{1}\right.$ ), as there was only enough energy to eject two CO ligands Breckenndge and Stewart ${ }^{35}$ again employed transient absorption spectroscopy to study the photofragmentation of $\mathrm{Cr}(\mathrm{CO})_{6}$ in the gas phase The hexacarbonyl was photolysed at 355 nm , again this was just sufficient energy to remove two CO hgands The uncomplexed $\mathrm{Cr}(\mathrm{CO})_{s}$ was observed with a $\lambda_{\text {max }}$ at 620 nm This is consistent with the values obtained from the solution work in perfluoro solvents ${ }^{15}$ or in rare gas matnces ${ }^{9}$

Weitz et al ${ }^{36}$ vared the excitation wavelength ( $193 \mathrm{~nm}, 248 \mathrm{~nm}, 351 \mathrm{~nm}$ ) and montored the different fragments produced by TRIR The results indicated that the gas-phase structures of the $\operatorname{Cr}(\mathrm{CO})_{x}(x=5,4,3$, and 2$)$ species were sumilar to those observed in condensed phase medra ${ }^{6(b), 9}$ Variable wavelength excitation of $W(C O)_{6}$, demonstrated that more energy was required to remove two CO ligands, than for $\mathrm{Cr}(\mathrm{CO})_{6}$ analogue ${ }^{37}$ Usıng an Exımer laser $351 \mathrm{~nm}(\mathrm{XeF})$ and $308 \mathrm{~nm}(\mathrm{XeCl})$ excitation produced $\mathrm{W}(\mathrm{CO})_{5}$ However when more energy was employed $248 \mathrm{~nm}(\mathrm{KrF}) \mathrm{W}(\mathrm{CO})_{4}$ was the mann product The $\mathrm{W}(\mathrm{CO})_{5}$ fragment was assigned a $\mathrm{C}_{4 v}$ symmetry, again consistent with the matnx work ${ }^{9}$


Figure 1.4
(Interactıon diagram for the perpendicular approach of a $\mathrm{C}-\mathrm{H}$ bond to $\mathrm{M}(\mathrm{CO})_{s}$ )

Brown et al ${ }^{38}$ studred the interaction of alkanes with $\mathrm{W}(\mathrm{CO})_{5}$ in the gas phase, employing TRIR as the detection system The results demonstrated that the binding energy increased as the length of the alkane chain increased, no binding energy for the interaction of methane with the $\mathrm{W}(\mathrm{CO})_{\text {s }}$ fragment was observed It was concluded that the binding energy was less than $21 \mathrm{~kJ} \mathrm{~mol}^{-1}$ Photoelectron spectroscopy demonstrated that the C-H $\sigma$ molecular orbital (MO) in alkanes rose in energy, with increasing alkane size The largest change in alkane MO could be observed between $\mathrm{CH}_{4}$ and $\mathrm{C}_{2} \mathrm{H}_{6}$ and this correlated with the largest change in alkane binding energy (from $<21$ $\mathrm{kJ} \mathrm{mol}^{-1}$ to $31 \mathrm{~kJ} \mathrm{~mol}{ }^{1}$ ) Therefore as the $\mathbf{C}-\mathrm{H} \sigma$ MO increased to match the energy of the $a_{1}$ orbital of the metal (Figure 14) the binding energy was found to increase accordingly, as was expected for a $\sigma \rightarrow$ metal bonding mechanism

## 118 Time resolved photoacoustic calorimetry experiments

Tıme resolved photoacoustic calonmetry (PAC) has been employed to measure the strength of bonds to coordinately unsaturated species This method uses the amplitude of an acoustic wave produced following photolysis Yang et al ${ }^{39}$ measured the strength of the $\mathrm{Cr}(\mathrm{CO})_{s}-\mathrm{L}$ bonds in heptane, where L is a vanety of ligands including CO Companing these results to the $\mathrm{Cr}-\mathrm{CO}$ bond dissociation energy in the gas phase, it was concluded that co-ordination of heptane leads to a $42 \mathrm{~kJ} \mathrm{~mol}^{-1}$ stabilisation of the $\mathrm{Cr}(\mathrm{CO})_{\text {s }}$ fragment To examine stenc effects, the workers carried out a study where the incoming ligands contained a number of methyl groups, for instance pyridine, 2-picoline, 2,6-
lutidine ${ }^{40}$ It was found that the enthalpy for the dissociation of heptane from
$\mathrm{Cr}(\mathrm{CO})_{s}$ (heptane) was exothermic for all the ligands, but decreased in magnitude by about $97 \mathrm{~kJ} \mathrm{~mol}^{-1}$ upon successive methylation of the ligand This was not surprising due to the increasing stenc hindrance about the nitrogen with the extra methyl groups The metalheptane bond strength is approximately $42 \mathrm{~kJ} \mathrm{~mol}{ }^{1}$, and as the $\Delta \mathrm{H}^{+}$for the two ligands are 21 or $31 \mathrm{~kJ} \mathrm{~mol}^{-1}$ the transition state must be associative for the incoming ligand Also as the $\Delta \mathrm{S}^{\neq}$values for both systems are close to zero, it was suggested that the there is a high degree of heptane-metal bond lengthening concurrent with the association of the incoming ligand, indicative of an interchange mechanism

Burkey et al ${ }^{41}$ used PAC to determıne the enthalpies for CO dissociation from $\operatorname{Cr}(\mathrm{CO})_{6}$ in pentane, heptane, isooctane or cyclohexane and values of 1168,1126, 1084 and $1001 \mathrm{~kJ} \mathrm{~mol}^{1}$ respectively, were obtaned These values obtained depended on the quantum yreld ( $\Phi$ ) for CO dissociation from $\operatorname{Cr}(\mathrm{CO})_{6}$, it was assumed that $\Phi$ was independent of the solvent, Wieland and van Eldik ${ }^{42}$ showed that this was not the case The solvated intermediate was trapped with a vanety of ligands and it was found that the $\Phi$ for the ligand substitution, did not depend on the entering ligand or its concentration, it only depended on the solvent employed, indicating a dependency of the $\Phi$ on the solvent ${ }^{\prime}$ Burkey et al ${ }^{41}$ calculated the $\mathrm{M}(\mathrm{CO})_{s}$ (heptane) bond strengths $(\mathrm{M}=\mathrm{Cr}$, Mo or W ) by subtracting the M-CO bond energies ${ }^{33}$ from the enthalpies of CO dissociation in heptane (vide supra) The values obtained for $\Delta \mathrm{H}_{\mathrm{m}-\mathrm{s}}$ were $\mathrm{Cr}(\mathrm{CO})_{5}($ heptane $)=371 \mathrm{~kJ} \mathrm{~mol}^{-1}, \mathrm{Mo}(\mathrm{CO})_{s}($ heptane $)=363 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and
$\mathrm{W}(\mathrm{CO})_{s}($ heptane $)=559 \mathrm{~kJ} \mathrm{~mol}^{1}$, these bond energies were used to explain the differences in the gas phase and the solution phase activation enthalpies for $\mathrm{Mo}(\mathrm{CO})_{6}$ and $\mathrm{W}(\mathrm{CO})_{6}\left(335 \mathrm{~kJ} \mathrm{~mol}^{1} \text { and } 25 \mathrm{~kJ} \mathrm{~mol}^{-1} \text { respectively }\right)^{33,44}$

Burkey and Nayak ${ }^{43}$ investigated the low quantum yield for CO loss from $\mathrm{Cr}(\mathrm{CO})_{6}$ observed m fluorocarbon solvents, employing PAC They concluded that a more efficient cage recombination of CO was occurred in one solvent and this was primarily responsible for the low $\Phi$ obtained $\Phi$ is independent of excitation wavelength, thus indicatıng that the low $\boldsymbol{\Phi}$ was not as a result of more efficient vibrational relaxation It could therefore be concluded that the relative strong coordination of cyclohexane to the $\mathrm{M}(\mathrm{CO})_{s}$ fragment inhibited the recombination of the CO m the solvent cage and led to its expulsion

## 119 Mechanistic informatıon obtained from solution phase experiments

Infrared and ultraviolet detection have also been used to determine the reaction kinetics of the intermediate that was produced by laser pulse photolysis of $\mathrm{M}(\mathrm{CO})_{6}$ Graham and Angehct ${ }^{44}$ employed IR detection to measure the substitution reactions of $\mathrm{M}(\mathrm{CO})_{6}$, they proposed that the intial ejection of the CO ligand occurred via a dissociative mechanism, positive values for entropy of activation supported this proposition Addition of the ligand was then proposed to occur via an associative process again supported by entropy values, in this case negative The enthalpy of activation of CO dissociation was found to be nearly the same for $\mathrm{Cr}(\mathrm{CO})_{6}$ and $\mathrm{W}(\mathrm{CO})_{6}$, however the value
was lower for the $\mathrm{Mo}(\mathrm{CO})_{6}$ analogue It was also noted that as the Mo and W metals were larger than the Cr , they had a greater tendency to undergo associative substitution reactions, on stenc grounds

Earher work had shown that $\mathrm{Cr}(\mathrm{CO})_{s}$ was lable to coordinate to an impunty at room temperature even in ngorously punfied cyclohexane ${ }^{8,45}$ Church et al ${ }^{46}$ charactensed the trace product formed following photolysis of $\mathrm{Cr}(\mathrm{CO})_{6} \mathrm{~m}$ cyclohexane, as the $\mathrm{Cr}(\mathrm{CO})_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)$ species and investigated the kinetic effect of water in these systems Activation parameters for the decay of this species allowed an estimate of $75 \pm 15 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for the dissociation of the $\mathrm{H}_{2} \mathrm{O}$ ligand It was also found that $\mathrm{Cr}(\mathrm{CO})_{5}\left(\mathrm{C}_{6} \mathrm{H}_{12}\right)$ reacted 13 tımes faster with water than with CO, demonstratıng the importance of impurities in the overall investigation of the photochemistry of $\mathrm{Cr}(\mathrm{CO})_{6}$ Lees and Adamson ${ }^{47}$ obtained a kınetıc estımate of tungsten to methylcyclohexane bond energy to be $<133 \mathrm{~kJ} \mathrm{~mol}{ }^{1}$, employing a UV detection system

A mechanistic study of the substitution reactions of $\mathbf{M}(\mathrm{CO})_{s}(\mathrm{THF})$ by a vanety of ligands was carned out using conventional and high pressure stopped flow analysis ${ }^{48}$ As M changed from Cr to Mo to W , the $\Delta \mathrm{V}^{\neq}$values exhbited a trend towards negative values and this was interpreted as a gradual change over from a dissociative pathway to a more associative mechanısm The activation parameters for the displacement of cyclohexane or $n$-heptane from $\mathrm{W}(\mathrm{CO})_{5}$ by 1-hexene were estimated to be within experimental error of each other $\left(\Delta \mathrm{H}^{\neq}=342 \text { and } 35 \mathrm{~kJ} \mathrm{~mol}^{-1} \text { respectively }\right)^{49}$ The observed entropies of activation were suggestive of some residual C-H-W bonding in the
transition states leading to the W -alkane bond breaking, $\mathrm{W}(\mathrm{CO})_{5}\left(\mathrm{n}\right.$-heptane) $\Delta \mathrm{S}^{\boldsymbol{*}}=75 \mathrm{~J}$ $\mathrm{K}^{1} \mathrm{~mol}^{1}$ and $\mathbf{W}(\mathrm{CO})_{s}($ cyclohexane $)=\Delta \mathrm{S}^{\neq}=-155 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \quad$ Mechanisms for the displacement of fluorobenzene, chlorobenzene and $n$-heptane from $\mathrm{Cr}(\mathrm{CO})_{5}$ by 1-hexene and pıpendine were mvestigated ${ }^{50}$ The enthalpies of activation for these reactions were compared with the bond energes obtained by the PAC studies, and it was found that the PAC results were some $21-29 \mathrm{~kJ} \mathrm{~mol}^{-1}$ greater The more dissociative mechanisms appeared to correlate better with the PAC results, however for benzene, where an agostic interaction was inferred prior to bond dissociation, a difference of $234 \mathrm{~kJ} \mathrm{~mol}^{-1}$ was observed between the two methods The PAC results depended on the quantum yield for CO dissociation and as already shown, ${ }^{41,51}$ the quantum yield varied with alkane solvent, therefore their values were viewed with caution

## 1110 Photochemistry of $M(C O)_{6}$ in the presence of bidentate ligands

Photolysis of group 6 metal hexacarbonyls in the presence of a vanety of potentially bidentate hgands, has also been investigated ${ }^{52-62}$ It was found that the ligand initially photosubstituted one CO ligand, ultımately leading to the bidentate chelate complex The ligands employed were a varnety of substituted dumine type ligands (1,4 dıazabutadienes, $2,2^{\prime}$-bipyridines and 1,10 phenanthrolines) Oıshi et al ${ }^{52}$ observed that the bidentate $\mathrm{M}(\mathrm{CO})_{4}(1,10$-phenanthroline) was formed faster when $\mathrm{M}=\mathrm{W}$ and Mo than for Cr , this was attrbuted to the M to CO bond length, in chromum, being shorter than
that of the other two metals, thus the electronic interaction between the adjacent nitrogen and the metal must be stronger for W and Mo Further work investigated the activation parameters for this process and found that the both the entropies and volumes of actıvation for Mo and $\mathbf{W}$ were negative, supporting an interchange mechanism for the ejection of the second $\mathrm{CO}^{53}$ For chromium however the entropy of activation was negative and the volume of activation was positive, this could mdicate a lengthening of the CO bond rather than the $\mathrm{Cr}-\mathrm{N}$ bond shortening as the ngid chelating ning adjusts into the transition state An unexpected precursor to the formation of the tetracarbonyl has also been observed, when the ligand, 4,4-Dimethyl-2,2'-bipyndine was employed with the aim of generating a monodentate $\mathrm{Cr}(\mathrm{CO})_{s} \mathrm{~L}$ It was found that the ligand bound to two $\mathrm{Cr}(\mathrm{CO})_{s}$ unts, rather than one ${ }^{54}$

The pressure dependence of the quantum yreld for photosubstitution of CO in $\mathrm{M}(\mathrm{CO})_{4}$ (1,10- phenanthrolne), where $\mathrm{M}=\mathrm{Cr}$, Mo and W has been mvestıgated at different excrtation wavelengths It was found that upon photolysis in the UV region, a positive value for the volumes of activation was observed, thus indicating that higand field photolysis resulted in dissociative substitution mechanism If low lying MLCT states are populated at longer wavelengths, so that the energy of the gap to the lowest LF state increases and thermal back population becomes less important, the residual quantum yield could then be interpreted in terms of the MLCT states Therefore photolysis into the metal to hgand charge transfer state (MLCT) ( 546 nm ) resulted in negative values for Mo and W , which was taken as strong evidence for an associative mechanism The Cr values
for volume of activation were slightly positive and this was interpreted as a dissociative process from the MLCT state for the smaller Cr analogue ${ }^{55,56}$

### 1.2 RESULTS AND DISCUSSION

As already discussed coordınatively unsaturated metal complexes are sufficiently reactive to form complexes with alkane solvents A stereospecific interaction exists between the metal centre and the alkane solvents ${ }^{63}$ This interaction may play a role in C-H insertion, $\beta$-elimination, ligand exchange and hence catalytic reactions, therefore a thorough investigation into the solvent to metal interaction is essential

In order to investigate the reactivity of the metal to solvent bond, the desolvation process of the $\mathrm{M}(\mathrm{CO})_{\mathrm{s}}$ (Solvent) species (Reaction 11) was investigated, where $\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}$, and W The incoming ligand was CO and the solvents were a variety of straight chain and cyclic alkanes

$$
\begin{array}{llll}
\hline \mathrm{M}(\mathrm{CO})_{6} & \mathrm{~S} \\
\mathrm{M}(\mathrm{CO})_{5}(\mathrm{~S})+\mathrm{CO} & \text { Reaction } 11
\end{array}
$$

## 121 Possible mechanisms for solvent dissociation

There are three possible mechanisms for the dissociation of the solvent molecule from $\mathrm{M}(\mathrm{CO})_{s}(\mathrm{Sol})$ These are represented in Figure 15 The first involves a dissociation of the solvent, with subsequent coordination of the CO to reform the $\mathrm{M}(\mathrm{CO})_{6}$ molecule The $\Delta \mathrm{H}^{\neq}$for this possibility should equal to the bond dissociation energy for the respective system, as dissociation of the ligand must occur prior to reaction with $\mathbf{C O}$ The second occurs when the CO enters the reaction sphere before the solvent is
dissociated and forms a 20 electron transition state, before ejection of the solvent The final possibility is the interchange mechanism in which the CO is being coordinated as the solvent is dissociating in a concerted process

The activation enthalpy required for a dissociative reaction should be close to the M -solvent bond strength, because the bond is largely broken m going to the transition state The bond strengths have been obtained for the coordination of heptane

(1) Dissociation
(2) Association
(3) Interchange

Fıgure 1.5
(Possible mechanisms for solvent displacement by CO )
with $\mathrm{M}(\mathrm{CO})_{s}$ they were reported to be 42,38 or $55 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for Cr , Mo or W
respectively ${ }^{41}$ Figure 16 depicts the enthalpies of activation that would be necessary for
a dissociate type of mechanism for $\mathrm{Cr}(\mathrm{CO})_{s}(\mathrm{~S})$ and the enthalpies of activation obtained in this study

A dissociative process would result a near zero or positive entropy of activation, as expected as the transition state is less ordered An associative mechanism would have a negative value of $\sim-100 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{1}$ or less, resulting from the more ordered transition state As a result it can be seen that an interchange mechanism would have a $\Delta S^{\neq}$value in between the above possibilities


Figure 16
(Scheme depicting the differences in $\Delta H^{\neq}$for solvent dissociation)

## 122 SPECTROSCOPIC INFORMATION

The $\mathrm{M}(\mathrm{CO})_{6}$ complexes exhibit a number of intense $\left(\varepsilon>10^{2}\right)$ transitions in the UV-visible region of the spectrum Figure 17 shows the ground state absorption
spectra for $\mathrm{M}(\mathrm{CO})_{6}(\mathrm{M}=\mathrm{Cr}$, Mo or W$)$ in cyclohexane The lowest energy absorption is found at $\sim 333 \mathrm{~nm}\left(30,000 \mathrm{~cm}^{-1}\right)$ for all three metals and is assigned as the ${ }^{1} \mathrm{~A}_{1 \mathrm{~g}} \rightarrow{ }^{1} \mathrm{~T}_{1 \mathrm{~g}}$ ligand field (LF) transition This band is a shoulder on the more intense $\mathrm{M} \rightarrow \pi^{*} \mathrm{CO}$ charge transfer transition, found at $\sim 286 \mathrm{~nm}\left(\sim 35,000 \mathrm{~cm}^{-1}\right)$ A second LF band ${ }^{1} \mathrm{~A}_{1 \mathrm{~g}} \rightarrow{ }^{1} \mathrm{~T}_{2 \mathrm{~g}}$ is observed at $266 \mathrm{~nm}\left(37,500 \mathrm{~cm}^{-1}\right)$ and the most mtense transition at 233 nm ( $43,000 \mathrm{~cm}^{-1}$ ) is assigned as the second component of the $\mathrm{M} \rightarrow \pi^{*}$ CO CT transition An extra band is observed for Mo and $W$, at an energy lower than the ${ }^{1} A_{1 g} \rightarrow{ }^{1} T_{1 g}$ hgand field (LF) transition, which has a higher $\varepsilon$ for W than Mo This band was assigned to the lowest LF spin forbidden singlet $\rightarrow$ triplet transition, ${ }^{1} \mathrm{~A}_{1 \mathrm{~g}} \rightarrow{ }^{3} \mathrm{~T}_{1 \mathrm{~g}}$ This transition was allowed because of spin-orbit coupling, which is applicable in the case of tungsten However the band is also observed for the $\mathrm{Mo}(\mathrm{CO})_{6}$ and this metal is not large enough for spin orbit coupling to have an affect, this transition would therefore not be allowed, thus casting some doubt over this assignment The intensittes of the LF bands are uncommonly large because of the high degree of covalence in these molecules, which means that the molecular orbitals have substantial contribution from both the metal and ligand atomic orbitals, thus tending to remove restrictions associated with the intensity of LF transitions

The relevant spectroscopic data, obtained in cyclohexane, for the three compounds employed in this study, are presented in Table 11, the experimental detals are presented in Appendix IA


Figure 1.7
(UV-visible spectra of (a) $\mathrm{Cr}(\mathrm{CO})_{6}$ (b) $\mathrm{Mo}(\mathrm{CO})_{\sigma}$ (c) $\mathrm{W}(\mathrm{CO})_{6}$ in cyclohexane)

| Compound | $v_{\mathrm{Co}}\left(\mathrm{cm}^{-1}\right)$ | $\lambda_{\max }(\mathrm{nm})$ | $\varepsilon @ 354 \mathrm{~nm}$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{Cr}(\mathrm{CO})_{6}$ | 1985 | 280 | $20 \times 10^{2}$ |
| $\mathrm{Mo}(\mathrm{CO})_{6}$ | 1985 | 298 | $26 \times 10^{2}$ |
| $\mathrm{~W}(\mathrm{CO})_{6}$ | 1981 | 298 | $84 \times 10^{2}$ |

Table 1.1
(Spectroscopic data for $M(C O)_{6}$ in cyclohexane)

## 123 Measurement of rate constants

The $\mathbf{M}(\mathrm{CO})_{s}$ (solvent) species was formed by excitation, of the respective hexacarbonyl, at 355 nm The $\lambda_{\text {max }}$ for the $\mathrm{M}(\mathrm{CO})_{5}$ (solvent) species were found to be, $\operatorname{Cr}(\mathrm{CO})_{s}(\mathrm{~S})=\sim 500 \mathrm{~nm}, \mathrm{Mo}(\mathrm{CO})_{s}(\mathrm{~S})=\sim 420 \mathrm{~nm}$ and $\mathrm{W}(\mathrm{CO})_{s}(\mathrm{~S})=\sim 450 \mathrm{~nm}$ Figure 18 displays a typical two dimensional spectrum for the $\mathrm{Cr}(\mathrm{CO})_{s}($ Cyclohexane) species It can be seen that following excitation at 355 nm , the transient species is formed within $10 \mu \mathrm{~s}$ (from the literature it is clear that the transient species has been formed well before $10 \mu \mathrm{~s}^{20,25}$ ), and it has nearly decayed back to baselıne after $150 \mu \mathrm{~s}$ As the solvated complex decays back to the baseline, as can be seen in Figure 19, it indicates that there is an efficient back reaction with CO to reform the parent $\mathrm{M}(\mathrm{CO})_{6}$ species Any impurities $(\mathrm{X})$ in the solvent would result in the production of a side product $\mathrm{M}(\mathrm{CO})_{s}(\mathrm{X})$, hindering efficient back reaction with CO, thus resulting in the trace not returning completely to the baseline The $\lambda_{\text {max }}$ for the species was observed at $\sim 500 \mathrm{~nm}$, as this value does not vary greatly between the solvents the kinetics were measured at this wavelength for all the solvents ${ }_{\text {e }}$


Figure 1.8
(UV/vis spectrum of $\mathrm{Cr}(\mathrm{CO})_{s}($ Solvent ) in Cyclohexane at different time intervals following excitation with $\lambda_{\text {exc }}=355 \mathrm{~nm}$ )

It has already been proven that the formation of the $\mathrm{M}(\mathrm{CO})_{s}(\mathrm{~S})$ species is a single photon process ${ }^{51}$ This was done by varying the power of the laser and measurng the absorbance of the product It was found that the absorbance of the product increased as the voltage of the laser was increased The relationship between the two was linear, thus indicating a single photon process

The observed rate constant ( $\mathrm{k}_{\mathrm{obs}}$ ) for the reaction of $\mathrm{M}(\mathrm{CO})_{s}(\mathrm{Sol})$ with CO was measured at 298 K Pseudo first order condittons were maintaned for the three systems, as the concentration of CO was always much larger than the concentration of the $\mathrm{M}(\mathrm{CO})_{s}(S)$ species The $k_{\text {obs }}$ was then obtamed from the plots of $\ln \left(\mathrm{A}_{\infty}-\mathrm{A}_{0}\right) /\left(\mathrm{A}_{\infty}-\mathrm{A}_{4}\right)$ vs time, an example of the decay observed is shown in Figure 19 The second order rate
constant $\left(\mathrm{k}_{2}\right)$ was then obtained by dividing $\mathrm{k}_{\text {obs }}$ by the concentration of $\mathrm{CO}^{64}$ in the respective solvent


Figure 1.9
(Decay of Mo(CO)s(Cyclohexane) montored at 420 nm )

## 124 Actıvatıon parameters

The activation parameters the $\mathrm{k}_{\text {obs }}$ were obtained by measunng over a temperate range of 279-310 K and Eyring and Arrhenius plots were then constructed This assumed a zero intercept in the plot of $\mathrm{k}_{\text {obs }}$ vs [CO] From these plots it was possible to obtain the activation parameters for the reaction of $\mathrm{M}(\mathrm{CO})_{s}(\mathrm{~S})$ with CO , all the experimental data are in Appendix IB Figure 110 shows an Arrhenius and Eynng plot for $\mathrm{W}(\mathrm{CO})_{6}$ in Cyclohexane


Figure 1.10
(Arrhentus and Eyrmg plots for Reaction 1 1 $M=W$ ), in Cyclohexane)
The second order rate constants and the activation parameters obtained in these studies are presented in Table 12

|  | Solvent | $\mathrm{k}_{2}{ }^{\text {a }}$ | ${ }^{\mathrm{b}} \mathrm{Ea}^{\text {7 }}$ | ${ }^{\text {c }} \Delta \mathrm{H}^{\prime}$ | ${ }^{\mathrm{d}}$ $\mathbf{S}^{\neq}$ | ${ }^{e} \Delta \mathrm{G}^{\neq}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Cr}(\mathrm{CO})_{s}(\mathrm{~S})$ | ${ }^{\text {f }}$ Cyclo | $23 \times 10^{6}$ | 25 | 22 | -46 | 35 |
|  | ${ }^{8}$ Mecyclo | $35 \times 10^{6}$ | 26 | 24 | -40 | 35 |
|  | Heptane | $93 \times 10^{6}$ | 23 | 21 | -42 | 33 |
|  | Decane | $12 \times 10^{7}$ | 26 | 23 | -30 | 33 |
|  | Dodecane | $24 \times 10^{7}$ | 26 | 24 | -24 | 31 |


|  | Solvent | $\mathrm{k}_{2}$ | $\mathrm{Ea}^{\neq}$ | $\Delta \mathrm{H}^{\neq}$ | $\Delta \mathrm{S}^{\neq}$ | $\Delta \mathrm{G}^{\neq}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ${ }^{\mathrm{f}}$ Cyclo | $47 \times 10^{6}$ | 22 | 21 | -48 | 35 |
|  | ${ }^{\mathrm{g}}$ Mecyclo | $58 \times 10^{6}$ | 23 | 21 | -45 | 34 |
|  | Heptane | $78 \times 10^{6}$ | 24 | 21 | -41 | 34 |
|  | Decane | $88 \times 10^{6}$ | 23 | 21 | -42 | 33 |
|  | Dodecane | $49 \times 10^{7}$ | 20 | 19 | -35 | 29 |


|  | Solvent | $\mathrm{k}_{2}$ | $\mathrm{Ea}^{\neq}$ | $\Delta \mathrm{H}^{\neq}$ | $\Delta \mathrm{S}^{\neq}$ | $\Delta \mathrm{G}^{\neq}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ${ }^{\mathrm{f}}$ Cyclo | $72 \times 10^{5}$ | 20 | 18 | -73 | 40 |
|  | ${ }^{\mathrm{g}}$ Mecyclo | $21 \times 10^{6}$ | 22 | 20 | -58 | 37 |
|  | Heptane | $18 \times 10^{6}$ | 23 | 20 | -58 | 37 |
|  | Decane | $11 \times 10^{6}$ | 23 | 21 | -59 | 38 |
|  | Dodecane | $17 \times 10^{6}$ | 22 | 20 | -60 | 38 |

${ }^{\mathrm{a}} @ 298 \pm 2 \mathrm{~K},\left(\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}\right),{ }^{\mathrm{b}} \pm 2 \mathrm{~kJ} \mathrm{~mol}^{-1},{ }^{\mathrm{c}} \pm 2 \mathrm{~kJ} \mathrm{~mol}^{-1}{ }^{\mathrm{d}} \pm 4 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1},{ }^{\mathrm{e}} \pm 2 \mathrm{~kJ} \mathrm{~mol}^{1}$,
${ }^{\mathrm{f}}$ Cyclo $=$ Cyclohexane,${ }^{\mathrm{B}}$ Mecyclo $=$ Methylcyclohexane
Table 12
(Second Order Rate constants and activation parameters for $M(\mathrm{CO})_{s}(S)$ )

## 126 Discussion

There are a number of trends that can be observed from the data presented in Table 12 Investigating the $\mathrm{Cr}(\mathrm{CO})_{6}$ results first it can be seen that there is an obvious increase in the $\mathrm{k}_{2}$ value in going from cyclohexane to dodecane This increase m the rate of reaction is not reflected in the $\Delta \mathbf{H}^{*}$ values, which are found to be the same, within expermental error $\left(22 \pm 2 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ As the reactions of the "naked" $\mathrm{Cr}(\mathrm{CO})_{s}$ with alkanes are close to the diffusion controlled limut $\left(66 \times 10^{9} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}\right.$, for cyclohexane with $\left.\mathrm{Cr}(\mathrm{CO})_{s}\right)^{8}$, the $\Delta H^{*}$ term for the reaction of $\mathrm{Cr}(\mathrm{CO})_{s}($ sol $)$ with CO should approximate the bond energy of the metal to solvent bond The binding energy for Cyclohexane, $52 \mathrm{~kJ} \mathrm{~mol}^{-1}$, obtaned from photoacoustic calorimetry (PAC) measurements, is nearly twice the value obtaned in this study However similar studies carried out on the $W(C O)_{6}$ system, employing PAC, yielded higher values for the binding energies, than $\Delta \mathbf{H}^{\neq}$ values obtaned from kinetic studies ${ }^{48}$ A dissociative mechanism for the Reaction 12 would require a $\Delta \mathrm{H}^{*}$ value approximating the interaction energy obtaned in the PAC

$$
\mathrm{Cr}(\mathrm{CO})_{s}(\mathrm{~S})+\mathrm{CO} \rightarrow \mathrm{Cr}(\mathrm{CO})_{6}+\mathrm{S} \quad \text { Reaction } 12
$$

measurements As the $\Delta H^{\neq}$values obtained in this study are half the interaction energy it would appear that a dissociative mechanism is precluded $\mathrm{The} \Delta \mathrm{H}^{\neq}$values required for a
dissociative mechanism compared to values obtained in this study as depicted in Figure 16

As there is no correlation between the $\Delta \mathrm{H}^{\neq}$values and the rate of Reaction 12 , the variation in the rates must be reflected in the $\Delta \mathrm{S}^{\neq}$term The $\Delta \mathrm{S}^{\neq}$term becomes less negative as the solvent changes from cyclohexane to dodecane, varying from $-46 \mathrm{~J} \mathrm{~K}^{-1}$ $\mathrm{mol}^{-1}$ to $-24 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ respectively The $\Delta \mathrm{S}^{\neq}$values would be expected to be closer to zero, if not positive, for a dissociative mechanism and an associative mechanism should result m more negative values than those obtaned, $\boldsymbol{i} e$ there would be a sıgnuficant decrease $m$ the entropy of the reaction at the transition state Therefore the $\Delta \mathbf{S}^{\boldsymbol{\#}}$ values appear to indicate that the mechanism for the displacement of the solvent from $\mathrm{Cr}(\mathrm{CO})_{s}$ occurs via an interchange process An interchange mechanism has also been postulated for the displacement of cyclohexane and methylcyclohexane from $W(C O)_{s}$ by 4Acetylpyridıne ${ }^{65}$ and the displacement of solvent (S) from $\left(\eta^{6}-\right.$ arene $) \mathrm{Cr}(\mathrm{CO})_{2}(\mathrm{~S})$ by $\mathrm{CO}^{66}$ Yang et al ${ }^{40}$ concluded that there was considerable lengthenung of the Cr to heptane bond concurrent with the association of either pyridine and 2-picoline as the incoming ligand It was reported that the $\Delta H^{\neq}$value was $\sim 21 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for the replacement of heptane by pyridine, which is lower than the reported Cr-heptane interaction energy, therefore indicating that this reaction also was not a dissociative mechanism, but in fact an interchange mechanism Pyridme as a nucleophile is very similar to CO, except that it possesses reduced $\pi^{*}$ accepting ability

The $\Delta \mathbf{S}^{\neq}$values reflect the differences in the $\mathbf{k}_{2}$ values, the reason for this could be as a result of the motional freedom attained by the solvents upon desolvation When an alkane solvent forms an agostic bond with the $\mathrm{Cr}(\mathrm{CO})_{s}$ motety its motional freedom is restricted, this is more evident for the longer chain alkanes Therefore the rate of displacement would be faster for the longer chain alkanes as the removal of the restriction leads to a more favourable onentation for the solvent

Investigating the effect of increasing the atomic mass of the metal, it can be seen from Table 12 that the change of solvent does not have as significant an effect as for the chromum system The rates for solvent displacement from $\mathrm{W}(\mathrm{CO})_{5}$ for the straight chain alkanes show very little vanation and this is reflected in the $\Delta \mathrm{S}^{\neq}$values The $\Delta \mathrm{S}^{\neq}$ values are smaller than those reported for the chromium system, this is a reflection of the size of the metal, as the larger metal leads to less stenc hindrance Seven coordinate chemistry is extensive for Mo and $W$, however it is not for the Cr system The fact that there is not the same stenc hindrance around the tungsten is also reflected in the slower rates of reaction, as the motional freedom of the solvent is not as restricted as for the chromum system The rate of displacement of cyclohexane from the $\mathrm{W}(\mathrm{CO})_{\text {s }}$ morety does appear to be slower than the other solvents, this difference in rate is reflected in the $\Delta \mathbf{S}^{\neq}$ value which is slightly more negative, thus indicating that cyclohexane is not as restricted upon coordination to tungsten

The $\Delta \mathrm{S}^{\neq}$values again support an interchange mechanısm for $\mathrm{Mo}(\mathrm{CO})_{6}$, as the metal is larger than chromium, the stenc hindrance is not as pronounced, therefore it can be seen that there is no variation between heptane and decane, within experimental
error Dodecane does have a faster rate of reaction, this is reflected in the slightly more negative value for the $\Delta \mathrm{S}^{\neq}$, indicating the restriction placed on the solvent upon coordination and the subsequent freedom of rotation achieved upon desolvation

## 127 Conclusions

In this study, any vanation for the rate reaction from the $\mathrm{M}(\mathrm{CO})_{s}(\mathbf{S})$ species is only reflected in the values for the entropy of activation The values for the enthalpy of activation remain constant This is also reflected in the similanty in the position of the $\mathrm{M}(\mathrm{CO})_{s}(\mathbf{S})$ peaks in the UV/visible spectra for the vanous solvents The relationship between the $\Delta S^{7}$ values and the $k_{2}$ values can be explaned in terms of the liberation of motional freedom attaned upon desolvation, which influences the kinetics of the reaction

The activation parameters obtained for the Reaction 13 , (where $\mathrm{M}=\mathrm{Cr}$, Mo or W) can be interpreted as evidence for a gradual changeover from an interchange mechanism to a more associative type mechanısm along the senes Cr , Mo to W This trend along the senes, towards a more associative mechanism has been observed

$$
\mathrm{M}(\mathrm{CO})_{s}(\mathrm{~S})+\mathrm{CO} \rightarrow \quad \mathrm{M}(\mathrm{CO})_{6}+\mathrm{S} \quad \text { Reactıon } 13
$$

previously ${ }^{47,67}$ The fact that the variation in rates is not as apparent for the Mo and $W$ systems could be as a result of the larger size of these metals compared to the chromum system The solvents will therefore not be as restricted upon coordination to the larger metals Therefore alkane chain length does not play as significant a role in the kinetics of the larger metals, as the impetus to attan motional freedom upon desolvation is not as pronounced

## REFERENCES

## (Chapter 1)

${ }^{1}$ (a) Orgel L E Nature, 1961, 191, 1387
(b) Dobson G R., El Sayad M A , Stolz I W , Inorg Chem, 1962, 1, 526
(c) Strohmerer W, Chem Ber , 1961, 94, 3337
${ }^{2}$ Stolz I W , Dobson G R , Shelıne R K , J Am Chem Soc , 1962, 84, 3589-3599
${ }^{3}$ Stolz I W , Dobson G R , Sheline R K , J Am Chem Soc , 1963, 85, 1013-1014
${ }^{4}$ Boylan M J , Braterman P S , Fullarton A , J Organometal Chem, 1971, 31, C29
5 Graham M A , Perutz R N, Pohakoff M, Turner J J , J Organometal Chem, 1972, 34, C34

6 (a) Graham M A , Rest A J , Turner J J , J Organometal Chem , 1970, 24, C54 (b) Graham M A., Pohakoff M , Turner J J , J Chem Soc A, 1971, 2939

7 Kelly J M , Hermann H, Koerner von Gustorf E , J Chem Soc, Chem Commun 1973, 105
${ }^{8}$ Kelly J M , Bent D V , Hermann H , Schulte-Frohlınde E , Koerner von Gustorf E , J Organometal Chem, 1974, 69, 259
${ }^{9}$ Perutz R N , Turner J J , J Am Chem Soc, 1975, 97, 4791

Burdett J K , Grzybowskı J M , Perutz R N , Polıakoff M , Turner J J , Turner R F , Inorg Chem 1978, 17, 147

12 (a) Polakoff M , Inorg Chem , 1976, 15, 2022
(b) Poliakoff M, Inorg Chem, 1976, 15, 2892
${ }^{13}$ Hay P J , J Am Chem Soc , 1978, 100, 2411
${ }^{14}$ Bonneau R., Kelly J M , J Am Chem Soc, 1980, 102, 1220
${ }^{15}$ Kelly J M , Long C , Bonneau R, J Phys Chem, 1983, 87, 3344
16 (a) Marer II W B , Pohakoff M , Simpson M B , Turner J J , J Chem Soc ,
Chem Commun , 1980, 587
(b) Marer II W B , Pohakoff M , Sımpson M B , Turner J J , Inorg Chem , 1983, 22, 911
${ }^{17}$ Sımpson M B , Polakoff M , Turner J J , Marer II W B , McLaughlin J G , $J$ Chem Soc, Chem Commun, 1983, 1355

18 (a) Upmacis R K , Polakoff M , Turner J J , J Am Chem Soc , 1986, 108, 3645
(b) Jackson S A , Upmacis R K , Polaakoff M , Turner J J , Burdett J K , Grevels F W , J Chem Soc, Chem Commun, 1987, 678
${ }^{19}$ Simon J D , Peters K S , Chem Phys Lett, 1983, 98, 53
20

21

23

24

25

Simon J D , Xıe X , J Phys Chem , 1986, 90, 6751
Sımon J D , Xıe X , J Phys Chem, 1987, 91, 5538
Sımon J D , Xie X , J Phys Chem, 1989, 93, 291
Joly A G , Nelson K A , J Phys Chem, 1989, 93, 2876
Simon J D , Xie X , J Am Chem Soc , 1990, 112, 1130
Wang L, Zhu X , Spears K G , J Am Chem Soc , 1988, 110, 8695
${ }^{26}$ Wang L , Zhu X , Spears K G , J Phys Chem, 1989, 93, 2
27

28
Lee M , Harns C B , J Am Chem Soc , 1989, 111, 8963
Joly A G , Nelson K A , Chem Phys, 1991, 152, 69
30
Weitz E , J Chem Phys, 1987, 91, 3945
(a) Nathanson G , Gtlan B , Rosan A M , Yardly J T , J Chem Phys, 1981, 74, 361
(b) Yardly J T , Gtlan B , Nathanson G , Rosan A.M , J Chem Phys , 1981, 74, 370
${ }^{32}$ Tumas W , Gtlan B , Rosan A M , Yardly J T , J Am Chem Soc , 1982, 104, 55
${ }^{33}$ Lewis K E, Golden D M , Smith G P J Am Chem Soc, 1984, 106, 3905
34
Seder T A, Church S P, Ouderkırk A J, Wertz E, J Am Chem Soc, 1985, 107, 1432

35

36
Seder T A, Church S P , Weitz E J Am Chem Soc, 1986, 108, 4721
Ishıkawa Y , Hackett P A , Raynor D M , J Phys Chem , 1988, 92, 3863
(a) Ishikawa Y , Brown C E , Hackett P A , Raynor D M , Chem Phys Lett 1988, 150, 506
(b) Brown C E , Ishikawa Y, Hackett P A , Raynor D M , J Am Chem Soc, 1990, 112, 2530

39
Yang G K , Peters K S , Varda V , Chem Phys Lett , 1986, 125, 566
40 Yang G K , Varda V , Peters K S , Polyhedron, 1988, 7, 1619

[^2]${ }^{61}$ Lindsay E, Vlcek Jnr A , Langford C , Inorg Chem 1993, 32, 2269
${ }^{62}$ Grevels F W , Kayran C , Ozkar S , Organometallics 1994, 13, 2937
${ }^{63}$ Brookhart M , Green M L H , J Organomet Chem 1983250395
${ }^{64}$ Makranczy J , Megyery-Balog K , Rosz L , Patyt D , Hungarian J Indust Chem, 1976, 4, 169
${ }^{65}$ Dobson G R , Spradling M D , Inorg Chem , 1990, 29, 880
${ }^{66}$ Creaven B S , George M W , Gnzberg A G , Hughes C , Kelly J M , Long C , McGrath I M , Pryce M T , Organometallcs, 1993, 12, 3127
${ }^{67}$ (a) Zhang S , Dobson G R , Bajaj H C , Zang V , van Eldık R , Inorg Chem, 1990, 29, 3477
(b) Zhang S , Zang V , Bajaj H C , Dobson G R , van Eldık R, J Organomet Chem, 1990, 397, 279

## CHAPTER 2

### 2.1 LITERATURE SURVEY

## 211 Photochemistry of $\left(\eta^{6}\right.$-arene $) M(\mathrm{CO})_{3}$ complexes

Early reports on the chemistry of $\left(\eta^{6}\right.$-arene $) \mathrm{M}(\mathrm{CO})_{3}$ complexes claimed that both arene exchange ${ }^{1}$ (Reaction 2 1) and $\mathrm{CO} \operatorname{loss}^{2}$ (Reaction 2 2) were general photoreactions
$\left(\eta^{6}\right.$-arene $) \mathrm{M}(\mathrm{CO})_{3} \underset{\substack{h \nu \\ \text { arene* }}}{\substack{h \nu \\ \\ \hline}}$

|  | $\eta^{6}$-arene $) \mathrm{M}(\mathrm{CO})_{3}$ | ${ }_{\mathrm{L}}^{h \nu}$ |
| :--- | :--- | :--- |
|  | $\left(\eta^{6}\right.$-arene $) \mathrm{M}(\mathrm{CO})_{2} \mathrm{~L}+\mathrm{CO}$ | Reaction 22 |

When $\mathrm{M}=\mathrm{Cr}$ the quantum yield ( $\Phi$ ) for Reaction 22 is high and many ( $\eta^{6}$-arene) $\mathrm{Cr}(\mathrm{CO})_{2} \mathrm{~L}$ complexes can be synthesised by photochemical methods Reaction 22 was also observed for the Mo analogue ${ }^{3}$ however the W species was found to be photomert This was a cunosity given the similanties in the photochemistry of the $\mathrm{M}(\mathrm{CO})_{6}$ system $\left(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}\right.$, or W) Wnghton et al ${ }^{4}$ reported that the $\Phi$ for the formation of $\left(\eta^{6}\right.$-arene $) \operatorname{Cr}(\mathrm{CO})_{2}$ (pyndine) was 072 , (where arene $=$ benzene or mesitylene) following photolysis of $\left(\eta^{6}\right.$-arene $) \operatorname{Cr}(\mathrm{CO})_{3}$ in the presence of pyndine This
was later confirmed by Gibert et al ${ }^{5}$ and the efficiency of the arene exchange was given as approximately a sixth of this value Reaction 21 was found to be suppressed by the addition of CO and this reaction was only a minor component m the overall photochemistry These results were consistent with dissociative loss of CO as the primary excited state decay process of $\left(\eta^{6}\right.$-arene $) \mathrm{Cr}(\mathrm{CO})_{3}$ A relatively high $\Phi$ was reported for the displacement of CO from $\left(\eta^{6}\right.$-mesitylene $) \mathrm{Cr}(\mathrm{CO})_{3}$ by $N$-dodecylmaleımıde m benzene of $09,{ }^{6}$ no benzene - mesitylene exchange was observed $m$ these experiments

Contmuous photolysis of $\left(\eta^{6}\right.$-arene $) \mathrm{Cr}(\mathrm{CO})_{3}$ complexes produces both the arene ring and $\mathrm{Cr}(\mathrm{CO})_{6}{ }^{7}$ Bamford et al ${ }^{8}$ observed that upon addition of $\mathrm{CCl}_{4}$ the rate of arene generation increased, while in the absence of $\mathrm{CCl}_{4}, \mathrm{CO}$ suppresses the reaction as a result of recombination with the $\left(\eta^{6}\right.$-arene $) \mathrm{Cr}(\mathrm{CO})_{2}$ species

Oxidative addition of a trisubstituted silane to $\left(\eta^{6}\right.$-arene $) \mathrm{Cr}(\mathrm{CO})_{2}$ had been established to result from irradiation of the tricarbonyl species in solution, producing the coordinatively unsaturated $\left(\eta^{6}\right.$-arene $) \mathrm{Cr}(\mathrm{CO})_{2}$ species As a result of the high efficiency of the CO loss from these compounds, even at low temperatures, ${ }^{9}$ these compounds were studied in order to elucidate the quantitative data regarding oxidative addition, as the CO dissociation could be induced faster than the thermal oxidative reaction ${ }^{10}$ Trisubstituted silanes underwent oxidative addition to a number of photochemıcally generated ( $\eta^{6}$ arene $) \mathrm{Cr}(\mathrm{CO})_{2}$ species The reactions of silanes with transition metal carbonyl complexes are of interest because hydrosilation is a reaction of considerable importance Beyond this, however, the reactions of silanes serve as readily studied analogues of C-H bond activation

CO loss from $\left(\eta^{6}\right.$-arene $) \mathrm{M}(\mathrm{CO})_{3}$ has also been observed in the gas phase, the ejection of one CO was the predominant process upon 355 nm excitation, whule the production of $\left(\eta^{6}\right.$-arene $) \mathrm{M}(\mathrm{CO})$ and $\left(\eta^{6}\right.$-arene $) \mathrm{M}(\mathrm{CO})_{2}$ in a ration of 52 was observed upon 266 nm excitation ${ }^{11}$ The extreme reactivities of these coordinatively unsaturated species was again demonstrated by the observation of addition of $\mathrm{N}_{2}$ and $\mathrm{H}_{2}$ to ( $\eta^{6}$ $\left.\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Cr}(\mathrm{CO})_{2}$ in the gas phase ${ }^{12}$ Kubas et al ${ }^{13}$ had observed and isolated products with an $\mathrm{M}-\eta^{2} \mathrm{H}_{2}$ non classical type of interaction Zheng et al ${ }^{12}$ concluded that the dihydrogen complexes formed in the gas phase were "non-classical" molecular hydrogen complexes, as the CO frequencies did not shift to the higher wavenumbers as would be expected for bonding in a classical dihydride, because of the oxidation of the metal centre

## 212 Thermal chemistry of $\left(\eta^{6}\right.$-arene $) M(\mathrm{CO})_{3}$ complexes

Although CO loss from the excited state of $\left(\eta^{6}\right.$-arene $) \mathrm{M}(\mathrm{CO})_{3}$ appears to be the most efficient process, arene exchange reactions dominate the ground state (i e thermal) reactions Arene exchange between free arene and an $\left(\eta^{6}\right.$-arene $) \mathrm{M}(\mathrm{CO})_{3}$ complex generally requires elevated temperatures if the solvent is etther an aromatic hydrocarbon or a non-coordinatmg solvent Arene exchange can occur by a number of mechanisms Firstly, it can proceed by an intramolecular dissociative process, which involves ether complete arene dissociation or possibly a multistepped ligand dissociation [for $\left(\eta^{6}\right.$-arene $) \mathrm{ML}_{3}$ species] prior to the new ligand coordinating Secondly, intramolecular arene associative processes are possible, which results from a rearrangement prior to the association of the new arene Finally an intermolecular process
is possible, where the high energy species are stabilised by interaction with the parent complex, ether via a M-L-M (if L is an effective bndging molecule) or a M-arene-M type bond ${ }^{14}$



Scheme 2.1
(Proposed mechanism for arene displacement indicating simultaneous exchange of two complex molecules ${ }^{15}$ )

Strohmerer et al ${ }^{15}$ reported that a major component of arene exchange reactions in heptane ( or heptane/THF mixtures) follows second order kinetics, the rate
constant was independent of arene concentrations This led to the mechanism presented in Scheme 21

However this mechanism was not compatible with the observation of Jackson et al ${ }^{16}$ that cis- or trans- complexes of 1- or 2-methylindane failed to isomerize on heating in the absence of the free arene Catalysis of arene exchange by donor solvents was demonstrated by Mahaffy and Pauson ${ }^{17}$ thus indicatmg that the solvents inttated partial arene displacement from the metal (Scheme 2 2) Moreover, Zimmerman et al ${ }^{18}$ also reported the presence of a, presumably solvent stabilised, $\mathrm{Cr}(\mathrm{CO})_{3}$ fragment Therefore stressing the more specific role that donors played mpromoting the arene displacement reaction than previously assumed ${ }^{15}$


Scheme 22
(Solvent imitnated arene displacement ${ }^{17}$ )

A thorough investigation was conducted by Traylor, Stewart and
Goldberg ${ }^{19}$ into the mechanisms for arene exchange in these systems. It was reported that the CO ligand can act as a nucleophilic catalyst, ${ }^{19(a)(\mathrm{c})}$ resulting in CO redistnbution between the two complexes As the CO ligand was known to be capable of acting as a bridging ligand the possibility of a bridged complex was also considered The $\pi$ system of the arene nng was then extended and the neighbounng group participation was investigated, these results confirmed the possibility that the coordination of the arene ning could be "unzıpped" from $\eta^{6}$ to $\eta^{4}$ to $\eta^{2}$ Although no direct evidence for such a process was obtained

## 213 Haptotropic rearrangements

The term haptotropic rearrangements refers to cases where an $\mathrm{ML}_{n}$ unit changes its connectivity (hapto number) with some ligand possessing multicoordınate site possibilities In the majonty of cases the ligand is a polyene, as a result the coordination site changes from one coordination site to another in a bicyclic polyene Albright et al ${ }^{20}$ conducted theoretical investigation of the mınımum energy pathways for shifting an $\mathbf{M L}_{n}$ group from one ring to another in a bicychc polyene Howell et al ${ }^{21}$ calculated the dynamics of ring slippage, employing extended Huckel molecular orbital calculations to investigate the energetics of the proposed haptotropic rearrangements A potential energy surface was created for the slippage of an MnCp group in benzene- MnCp This provides a good model for the $\mathrm{Cr}(\mathrm{CO})_{3}$ group in the analogous group 6 system Figure 21 depicts the potential energy surface for the slipping of the MnCp group in benzene- MnCp


Figure 2.1
(The distance scale on the lower left is plotted in $02 \AA$ intervals, the energy contours are in kcals mol ${ }^{1}$ The ground state is given by the large solid circle, a minimum by an open circle, and a transitton state by a cross The energies of these points relative to the ground state are explicitly given ${ }^{2 l}$ )

It was found that the potential surface around the $\eta^{6}$ ground state is nearly circular and quite steep until the MnCp group reaches the periphery of the benzene ring There was no evidence for the intervention of a discrete $\eta^{4}$ intermediate The potential was found to rise as the coordination moved towards an $\eta^{1}$ intermediate untıl it reached a transition state, then continuing along the reaction path leading to an intermediate that could have been labelled as the $\eta^{1}$ species, however there was still substantial bondıng from the neighbouning carbons The orbital interactions for $\left(\eta^{6}\right.$ benzene $) \mathrm{Cr}(\mathrm{CO})_{3}$ have been discussed in the introduction It can be seen that there is not a great deal of interaction lost between the $d_{z}{ }^{2}$ and the $a_{2 u}$ orbital upon slipping towards the $\eta^{1}$ configuration, thus the energy of this orbital remains nearly constant The interaction
between the $e_{1 g b}$ and the $d_{y z}$ is affected slightly more than the $e_{1 g a}$ to the $d_{x z}$ interaction Given this rise in energy there is still a significant stabilisation of the benzene ring orbitals upon coordination to the $\mathrm{Cr}(\mathrm{CO})_{3}$ unit, this stabilisation persists in the $\eta^{1}$ configuration The filled orbitals on the metal, which could be viewed as three lone pars that are directed between the CO ligands, are destabilised along the reaction path as a result of repulsion between them and the benzene $\sigma$ orbitals This destabilisation results m mixing of the filled molecular orbital and the empty receptor orbitals on the metal, which causes the orbital to become stabilised and could explain the shallow minimum depicted in the potential energy surface presented m Figure 21

The haptotropic rearrangement was also examuned for ( $\eta^{6}-2,6-$ dimethylpyndine $) \mathrm{Cr}(\mathrm{CO})_{3}$, it was found that arene exchange reactions were faster for this compound, compared even to the naphthalene analogue The binding energy was found to be the very close for the two compounds, and this was estımated to be $183 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for the $\left(\eta^{6}\right.$ pyridine $) \operatorname{Cr}(\mathrm{CO})_{3}$ compound By comparison the addition of two methyl groups, at the 2 and 6 positions on the pyridine rang, raised the energy by $8-13 \mathrm{~kJ} \mathrm{~mol}^{-1}$ Slippage of the ring to the $\mathrm{C}_{3}$ in the 2,6-dımethylpyridıne was said to be more favourable than the analogous slippage in the benzene, as there is intermuxing of the $\pi$ and the $\pi^{*}$ orbitals in the pyndine this leads to more electron density on the $\mathrm{C}_{3}$ and the $\mathrm{C}_{5}$, making this reaction path more favourable Replacement of the CH group in the benzene by the more electronegative N atom leads to splittıng of the degenerate $\mathrm{e}_{\mathrm{igb}}$ and $\mathrm{e}_{\text {iga }}$ orbitals, with the $e_{1 g b}$ orbital being lowered in energy Therefore its stabilisation by the $d_{x z}$ orbital on the metal is decreased, as a result of which the $\eta^{6}-\eta^{1}$ reaction path is more favoured

## 214 Molecular orbitals for $\eta^{6}$ pyridine vs $\eta^{1}$ pyridine

The interaction of the benzene ning with a $\mathrm{Cr}(\mathrm{CO})_{3}$ unit has been discussed in the introduction and is depicted in Figure 4 In this study the arene employed was pyridine and, as indicated, the substitution of a carbon in the benzene ning for a nitrogen does affect the energy levels of the molecular orbitals Figure 22 depicts the changes in the molecular orbitals from benzene to pyridine The intermixing of the $\pi$ and the $\pi^{*}$ orbitals in the pyndine redistributes the electron density From the perturbations in the molecular orbitals on the pyridine ring it can be seen that the interaction with the $\mathrm{e}_{1 \mathrm{gt}}$ and the $\mathrm{d}_{\mathrm{yz}}$ should not be greatly different from the benzene analogue However the lowenng of the energy of the $e_{1 g \mathrm{~g}}$ leads to the destabilisation of its interaction with the $d_{x z}$ orbital on the metal ${ }^{22}$ Therefore pyridne should be a poorer $\pi$-donor ligand and a better $\pi$-acceptor to a metal centre than benzene

When the nitrogen binds to the metal in an $\eta^{1}$ mode, the $\pi \rightarrow \pi^{*}$ transitions of the pyridine ring are not affected because the bonding is directly through the lone par The transition from the $\mathrm{n} \rightarrow \pi^{*}$ level on the ring is signuficantly altered and the $n \pi^{*}$ state becomes obscured by often energetically similar energy levels


Figure 2.2
(Molecular perturbations of the HOMO and LUMO levels in benzene and pyridine)

The differences between $\sigma$ and $\pi$ bonding have also been observed in chemisorbed pyridine on $\mathrm{N}_{1}(001)^{23}$ The $\pi$ bonded species was observed at low coverages and when the temperature was rased to room temperature It was found that the $\pi \rightarrow \pi^{*}$ transitions were not observed for the $\pi$ bonded species in the electron energy loss study A strong metal to hgand charge transfer was observed for the $\sigma$ bonded species, which is consistent with a low lying $\pi^{*}$ acceptor orbital on the pyridine

## $\underline{215 \text { Pyrıdine as a } \eta^{6} \text { lıgand }}$

There have been very few reported $\pi$ pyndine metal complexes in the Interature untıl recently ${ }^{24}$ The earhest type of complex was synthesised by Tımms P L ${ }^{25}$ using the cocondensation reaction of "hot" chromum atoms with pyndine and trufluorophosphine $\left(\mathrm{PF}_{3}\right)$, to form $\left(\eta^{6}\right.$-pyndine $) \mathrm{Cr}\left(\mathrm{PF}_{3}\right)_{3}$ The yield was very low and the man products of the reaction was the $\sigma$ bonded complex ( $\sigma$-pyridıne) $\mathrm{Cr}\left(\mathrm{PF}_{3}\right)_{s}$ A number $\pi$ complexes were reported employing substituted pyridine nngs, where the nitrogen was stencally protected by methyl groups ${ }^{26}$ and were produced by direct complexation of chromium hexacarbonyl in dioxan Employing the same strategy of sterically blocking the nitrogen, $\operatorname{bis}\left(\eta^{6}-2,6\right.$-dımethylpyndine)chromıum was also synthesised ${ }^{27}$ In order to prevent bonding via the nitrogen Fischer et al ${ }^{28}$ used $N$-methyldrhydropyndine ligands, resulting in the formation of (1-methyl-1,2,-dihydropyndine) $\mathrm{Cr}(\mathrm{CO})_{3}$, which is complexed $v z a$ an $\eta^{2}$-alkenyl and an $\eta^{3}-4$ electron vinylamine system

Formation of an $\eta^{6}$ pyridine complex $\mathrm{Mo}\left(\mathrm{PMePh}_{2}\right)_{3}\left(\eta^{6}\right.$ pyridine) from a $\sigma$ bonded pyridıne in $\mathrm{Mo}\left(\mathrm{N}_{2}\right)_{2}\left(\mathrm{NC}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PMePh}_{2}\right)_{3}$ was reported ${ }^{29}$ Pyridıne has also been reported to act as an $\eta^{6}$ ligand when bonded to ruthenum ${ }^{30}$ The polymeric complex $\left[\mathrm{Cp}{ }^{*} \mathrm{RuCl}\right]_{n}$ (where $\mathrm{Cp}^{*}=\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}$ ), was employed as a precursor for the production of $\left[\mathrm{Cp} * \mathrm{Ru}\left(\eta^{6}\right.\right.$ pyndine $\left.)\right] \mathrm{Cl}^{29(a)}$ The compound $\mathrm{Ru}(\mathrm{Cp})\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}(2$, methylpynidne) was reported ${ }^{29(\mathrm{~b})}$ to thermally rearrange to $\mathrm{Ru}(\mathrm{Cp})(2, \text { methylpyndine })^{+}$

When Elschenbroich $\underline{\text { et al }}^{31}$ reported the synthesis of bis $\left(\eta^{6}\right.$-pyridine $) \mathrm{Cr}$ in 1988, interest was renewed for the synthesis of other $\eta^{6}$-pyndine complexes The
observed from the W species was therefore considered to be LF in character and the emission lifetımes were in the range expected for heavy-metal complexes exhubiting emission which has spin forbidden character

Luminescence assigned as ongınatıng in a low lying MLCT excited state has been reported from complexes of the general formulae $\mathrm{M}(\mathrm{CO})_{5} \mathrm{~L}$ and $\mathrm{M}(\mathrm{CO})_{4} \mathrm{~L}_{2}$, where $\mathrm{M}=\mathrm{W}, \mathrm{Mo}$, and $\mathrm{L}=$ an electron donor ligand, in low temperature glasses ${ }^{35}$ or matnces ${ }^{36}$ The failure of group 6 metal carbonyl complexes to luminesce in solution was attributed to the relatively high photoreactivities and efficient nonradiative decay of the excited states of these complexes However, Lees ${ }^{37}$ reported electronic absorption, emission and excitation spectra obtained from a senes of $\mathrm{Mo}(\mathrm{CO})_{5} \mathrm{~L}$ species (where L was a senies of 4-substituted pyridine ligands) in room temperature solution In the electronic spectra of each of the complexes the position and the intensity of a shoulder (430-450 nm ), observed on the more intense LF transition, was found to be dependent on the nature of the solvent This band was assigned to an MLCT transition, and the strongly electron withdrawing substituents yielded substantially lower energy MLCT absorptions Broad, unstructured emission with quantum yields in the order of $10^{-4}-10^{3}$ was reported from these complexes, following excitation at 436 nm , in room temperature benzene This emission was assigned to be from the low lying MLCT excited state Importantly, for $\mathrm{Mo}(\mathrm{CO})_{s}$ (pyridine) in which the lowest lying excited state is LF in character, ${ }^{36}$ no emission at room temperature was observed Therefore investigating a wide variety of $\mathrm{M}(\mathrm{CO})_{s} \mathrm{~L}$ complexes enables the formulation of a theoretical model which embodies the
excited state charactenstics of these species and provides the possibility of excited state tuning

Room temperature emission was also observed from $\mathrm{M}(\mathrm{CO})_{4} \mathrm{~L}_{2}$ complexes ( $\mathrm{L}=$ pyridine or a substituted pyridine) ${ }^{38}$ Again the emission was found to onginate from the low energy MLCT excited state For complexes of the general formula $\mathrm{M}(\mathrm{CO})_{4} \mathrm{~L}(\mathrm{M}$ $=\mathrm{Cr}, \mathrm{Mo}$ or W and $\mathrm{L}=$ dumine ligand) the varation in energy of the MLCT state is one of the largest known among norganic or organometallic species ${ }^{39}$ When $L$ is 2,2bıpyridıne or 1,10-phenanthrolıne the low lying MLCT states are well separated from the higher energy LF states that they offer an opportunity to study the photophysical and photochemical properties of the MLCT excited state exclusively

### 2.2 RESULTS AND DISCUSSION

Early photochemical studies on the $\left(\eta^{6}\right.$-arene $) \mathrm{Cr}(\mathrm{CO})_{3}$ system found that the quantum yield for the CO loss reaction (Reaction 23 ) was $072^{6}$ and the quantum yield for the arene exchange reaction (Reaction 2 4) was approximately one sixth of this value

$\begin{array}{|ccc|}\hline & h \nu \\ & \left.\eta^{6} \text {-arene }\right) \mathrm{Cr}(\mathrm{CO})_{3} & \begin{array}{c}\rightarrow \\ \text { arane* }\end{array} \\ \hline\end{array} \eta^{6}$-arene $\left.{ }^{*}\right) \mathrm{Cr}(\mathrm{CO})_{3}+$ arene $\quad$ Reaction 24

Consequently Reaction 23 was studied in some detall, and the possibulity that the arene exchange reaction was photoassisted, was largely overlooked Some indirect evidence of a second photoproduct, possibly one involving a ring-slip process, was obtained in earlier UV/vis monitored flash photolysis experiments of ( $\eta^{6}$ benzene $) \mathrm{Cr}(\mathrm{CO})_{3}{ }^{40}$ Additional transient signals were observed following flash photolysis, which could not be assigned to the known photoproduct ( $\eta^{6}$ benzene) $\mathrm{Cr}(\mathrm{CO})_{2}$ (solvent), or any species formed by a subsequent reaction of this intermediate It was reasoned that if there was a functionality on the arene ring that could
"trap" the ning slippage, prior to the loss of the arene, it would give conclusive evidence for the existence of this pathway and a handle with which to study this reaction path The obvious choice was therefore the pyridine ring, as the metal to ligand bond is very similar to the $\left(\eta^{6}\right.$-benzene $) \mathrm{Cr}(\mathrm{CO})_{3}$ system, however pyridine also possesses the lone parr on the nitrogen, which is widely known to bond to the transition metals in an $\eta^{1}$ fashon It was the ease with which the nutrogen bonded to the metals in the $\eta^{1}$ fashion that precluded earher studies of this system, as no synthetic method had been developed to prevent this mode of interaction Consequently the photochemistry of $\left(\eta^{6}-\right.$ pynidine $) \mathrm{Cr}(\mathrm{CO})_{3}$ and its 2,6-disubstituted derivatives was investıgated, by matrix isolation and tume resolved spectroscopic techniques, in the hope of detecting haptotropic changes at the heteroarene ligand

## 221 Spectroscopic information

In this investigation $\left(\eta^{6}\right.$-pyridine $) \mathrm{Cr}(\mathrm{CO})_{3}(1)$ was studied in most detal Companison was made with systems contaming bulky groups at the 2 and 6 positions on the pyridine ring, for example $\left(\eta^{6}-2,6-\right.$ dımethylpyndine $) \mathrm{Cr}(\mathrm{CO})_{3}\left[\left(\eta^{6}-2,6-\right.\right.$ lutidıne $\left.) \mathrm{Cr}(\mathrm{CO})_{3}\right](\mathbf{2})$ and $\left(\eta^{6}-2,6-\mathrm{bis}(\right.$ trimethylsilyl $)$ pyridıne $) \mathrm{Cr}(\mathrm{CO})_{3}(\mathbf{3})$

Table 21 summarises the spectroscopic information obtained for the three compounds and compares them to the literature values Three absorptions of almost equal intensities are observed in the IR spectrum of compound 1 , which has $C_{8}$ symmetry The UV spectrum contains a valley at 280 nm through which it is possible to observe transient species in the UV flash photolysis experiments While it is thought that the band with the
$\lambda_{\text {max }}$ represents the chromium to pyridine charge transfer transition, by companson with the UV/vis spectra of the other $\left(\eta^{6}\right.$-arene $) \mathrm{Cr}(\mathrm{CO})_{3}$ compounds Complexes of the general formula ( $\eta^{6}$-arene) $\mathrm{Cr}(\mathrm{CO})_{3}$ exhibit a number of LF and MLCT transitions, which are

| Compound 1 ( $\eta^{6}$-pyrıdıne) $\mathrm{Cr}(\mathrm{CO})_{3}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\nu_{\mathrm{co}}\left(\mathrm{cm}^{-1}\right)$ |  | ${ }^{1} \mathrm{H}$ NMR ( p pm ) ${ }^{\text {b }}$ |  | $\lambda_{\text {max }}(\mathrm{nm})^{\text {a }}$ | $\varepsilon^{\text {a }}$ at $\lambda_{\text {max }}$ |
| $\mathrm{A}^{\mathrm{a}}\left( \pm 1 \mathrm{~cm}^{1}\right)$ | Ref $33^{\text {c }}$ | A (400MHz) | Ref 33 | $\mathrm{A}( \pm 2 \mathrm{~nm})$ | $\mathrm{A}^{\oplus}$ |
| $\begin{gathered} 1997 \\ 19389 \\ 19268 \\ \hline \end{gathered}$ | $\begin{aligned} & 1985 \\ & 1920 \end{aligned}$ | $\begin{aligned} & 657(\mathrm{~m}, 2 \mathrm{H}) \\ & 564(\mathrm{~m}, 1 \mathrm{H}) \\ & 525(\mathrm{~m}, 2 \mathrm{H}) \\ & \hline \hline \end{aligned}$ | $\begin{aligned} & 656(\mathrm{~m}, 2 \mathrm{H}) \\ & 565(\mathrm{~m}, 1 \mathrm{H}) \\ & 526(\mathrm{~m}, 2 \mathrm{H}) \\ & \hline \end{aligned}$ | 316 | $881 \times 10^{3}$ |
| Compound 2 ( $\eta^{6}$-2,6-dımethylpyridine) $\mathrm{Cr}(\mathrm{CO})_{3}$ |  |  |  |  |  |
| $\nu_{\mathrm{co}}\left(\mathrm{cm}^{-1}\right)$ |  | ${ }^{1} \mathrm{H}$ NMR (p p m ) |  | $\lambda_{\text {max }}(\mathrm{nm})^{\text {a }}$ | $\varepsilon^{\text {a }}$ at $\lambda_{\text {max }}$ |
| $\mathrm{A}^{\mathrm{a}}\left( \pm 1 \mathrm{~cm}^{1}\right)$ | Ref 26(a) ${ }^{\text {d }}$ | $\mathrm{A}^{\mathrm{b}}(400 \mathrm{MHz})$ | Ref 26(a) ${ }^{\text {e }}$ | $\mathrm{A}( \pm 2 \mathrm{~nm})$ | $\mathrm{A}^{\oplus}$ |
| $\begin{gathered} 1987 \\ 1926 \\ 19168 \end{gathered}$ | $\begin{aligned} & 1986 \\ & 1925 \\ & 1913 \end{aligned}$ | $\begin{aligned} & 565(\mathrm{t}, 1 \mathrm{H}) \\ & 512(\mathrm{~d}, 2 \mathrm{H}) \\ & 241(\mathrm{~s}, 6 \mathrm{H}) \\ & \hline \end{aligned}$ | $\begin{aligned} & 475(\mathrm{t}, 1 \mathrm{H}) \\ & 415(\mathrm{~d}, 2 \mathrm{H}) \\ & 200(\mathrm{~s}, 6 \mathrm{H}) \\ & \hline \end{aligned}$ | 318 | $602 \times 10^{3}$ |
| Compound 3 |  | $\left(\eta^{6}-2,6-b ı s(t r i m e t h y l s i l y l) p y r ı d ı n e\right) \mathrm{Cr}(\mathrm{CO})_{3}$ |  |  |  |
| $\mathrm{V}_{\mathrm{co}}\left(\mathrm{cm}^{-1}\right)^{\text {a }}$ |  | ${ }^{1} \mathrm{H}$ NMR ( p p m ) ${ }^{\text {b }}$ |  | $\lambda_{\text {max }}(\mathrm{nm})^{\text {a }}$ | $\varepsilon^{\text {a }}$ at $\lambda_{\text {max }}$ |
| $\mathrm{A}\left( \pm 1 \mathrm{~cm}^{-1}\right)$ | Ref 33 ${ }^{\text {c }}$ | A ( 400 MHz ) | Ref 33 | $\mathrm{A}( \pm 2 \mathrm{~nm})$ | $\mathrm{A}^{\oplus}$ |
| 1984 | 1980 | 548 (d,2H) | 548 (d,2H) |  |  |
| 1919 | 1905 | $528(\mathrm{t}, 1 \mathrm{H})$ | $529(\mathrm{t}, 1 \mathrm{H})$ | 324 | $785 \times 10^{3}$ |
| 1924* |  | $032(\mathrm{~s}, 18 \mathrm{H})$ | $033(\mathrm{~s}, 18 \mathrm{H})$ |  |  |

Table 21
( ${ }^{a}$ in cyclohexane, ${ }^{b}$ in $\mathrm{CDCl}_{3},{ }^{c}$ in chloroform, ${ }^{d}$ in $n$-hexane, ${ }^{e}$ in $C_{6} D_{6},{ }^{*}$ shoulder, ${ }^{\oplus} \pm 1 \% \mathrm{~L} \mathrm{~mol}^{\prime} \mathrm{cm}^{\prime} \quad A=$ data obtained in this study

Data in full presented in Appendix 2A)


Figure 2.3
(Ground state absorption spectrum and IR spectrum of compound 1 in cyclohexane)
present in the ground state absorption spectrum of compound 1 Figure 23 contains both a ground state absorption spectrum and an IR spectrum of compound $\mathbf{1}$ in cyclohexane The ${ }^{1} \mathrm{H}$ NMR data indicates the presence of two sets of equivalent hydrogens and one unique hydrogen, the peaks are all shifted upfield with respect to free pyridıne The ${ }^{13} \mathrm{C}$ NMR spectrum was also obtained (Appendix 2A), it indicated the presence of four unique carbon atoms in the molecule

The lack of symmetry makes spectral interpretation easy, as the number of $v_{\infty}$ absorption bands exhibited by a particular photofragment will equal the number of carbonyl ligands in the fragment A decrease in the $v_{c o}$ frequency of the CO bands is observed upon methylation of the pyndine ning (compound 2) This is as a result of increased electron density at the metal, resulting in donation to the antibonding orbitals of the CO ligand, thus decreasing the $\mathrm{C}-\mathrm{O}$ bond order A further decrease is observed for compound 3, indıcating the increased electron donating ability of the trimethylsilyl substituents

The UV absorption spectra of the three compounds are similar to other $\left(\eta^{6}\right.$-arene $) \mathrm{Cr}(\mathrm{CO})_{3}$ complexes This is illustrated in Figure 24 , where ground state absorption spectra are presented of $\left(\eta^{6}\right.$-benzene $) \mathrm{Cr}(\mathrm{CO})_{3}$ and $\left(\eta^{6}-2,6-\right.$ dımethylpyridıne $) \mathrm{Cr}(\mathrm{CO})_{3}\left(\sim 14 \times 10^{-4} \mathrm{M}\right)$ are presented The spectra are very similar, the shoulder on the 318 nm absorption is at a slightly lower energy for the ( $\eta^{6}-2,6-$ dimethylpyridine $) \mathrm{Cr}(\mathrm{CO})_{3}$ compound


Figure 2.4
(Ground state absorption spectra for ( $\eta^{6}$-benzene)Cr(CO) ${ }_{3}$
and $2\left(\sim 14 \times 10^{4} \mathrm{M}\right)$ in cyclohexane)

## 222 Steady state photolysis of $\left(\eta^{6}-\right.$ pyridine $) \mathrm{Cr}(\mathrm{CO})_{3}$

The photochemistry of $\left(\eta^{6}\right.$-pyridine $) \mathrm{Cr}(\mathrm{CO})_{3}$ was investıgated in etther $\mathbf{C O}$ saturated $\mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{CD}_{3} \mathrm{CN}, \mathrm{CD}_{3} \mathrm{OD}$, or $\mathrm{DMSO}-\mathrm{d}_{6}$ and was followed by ${ }^{1} \mathrm{H}$ NMR spectroscopy ( $\lambda_{\text {exc }}>410 \mathrm{~nm}$ ) All the samples were degassed by three "freeze pump thaw" cycles (see expenmental section) before addition of $\mathbf{C O}$, at 1 atm pressure The samples were protected from the light dunng this procedure

The inital spectra of the aromatic region for $\left(\eta^{6}\right.$-pyridine $) \mathrm{Cr}(\mathrm{CO})_{3}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ and $\mathrm{CD}_{3} \mathrm{CN}$ are presented in Figure 25 and Figure 26 respectively Only the parent
(a) Time zero

(b) Time 50 minutes


Figure 2.5
(Steady state photolysis of (1) in $C_{6} D_{6}, \lambda_{\text {exc }}>410 \mathrm{~nm}$ )


Figure 2.6
(Steady state photolysis of (1) in $\mathrm{CD}_{3} \mathrm{CN}, \lambda_{\text {exc }}>410 \mathrm{~nm}$ )
bands are present before photolysis in these solvents A reduction in intensity of these bands are observed upon excitation at $\lambda>410 \mathrm{~nm}$ ( 275 watt, xenon arc lamp), with concomitant formation of bands assigned to $\left(\eta^{1}\right.$-pyridine $) \operatorname{Cr}(\mathrm{CO})_{s}$ and free pyridine These assignments were confirmed by companson with authentic samples of the relevant compounds etther prepared independently, or obtained from supphers Table 22 contans all the band positions of $\left(\eta^{6}\right.$-pyridme $) \mathrm{Cr}(\mathrm{CO})_{3},\left(\eta^{1}-\right.$ pyndine $) \mathrm{Cr}(\mathrm{CO})_{5}$, and pyridine in the deuterated solvents employed in this study It is important to note that the band positions for pyndıne and ( $\eta^{1}$-pyridıne) $\mathrm{Cr}(\mathrm{CO})_{5} \mathrm{~m} \mathrm{CD}_{3} \mathrm{CN}$ are very similar This explans why there appears to be only one product in Figure 26

| Solvent | $\left(\eta^{6}\right.$-pyndıne $) \mathrm{Cr}(\mathrm{CO})_{3}$ <br> $(\mathrm{ppm})$ | $\left(\eta^{1}\right.$-pyndine $) \mathrm{Cr}(\mathrm{CO})_{5}$ <br> $(\mathrm{ppm})$ | pyndıne <br> $(\mathrm{ppm})$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{C}_{6} \mathrm{D}_{6}$ | $574,432,391$ | $783,642,595$ | $856,715,682$ |
| $\mathrm{CD}_{3} \mathrm{CN}$ | $670,588,548$ | $862,781,732$ | $860,768,731$ |
| $\mathrm{CD}_{3} \mathrm{OD}$ | $667,591,550$ | $866,784,732$ | $856,781,740$ |
| $\mathrm{DMSO}_{6}$ | $693,613,574$ | $866,791,743$ | $858,772,733$ |

Table 2.2
( ${ }^{1} H$ NMR band positions in various solvents at 400 MHz )

IR analysis of the final solution confirmed the presence of the pentacarbonyl species, as a band at $\sim 2070 \mathrm{~cm}^{-1}$ was observed Unfortunately, the other two bands for this species (at lower wavenumbers), were obscured by the parent absorption The charactenstic band of chromum hexacarbonyl was also observed at $1984 \mathrm{~cm}^{-1}$, inferrng that the rng-slip process had occurred Therefore photolysis of $\left(\eta^{6}-\operatorname{pynd}\right.$ nne $) \operatorname{Cr}(\mathrm{CO})_{3}$, at $\lambda>410 \mathrm{~nm}$ for
$\sim 50$ minutes in $\mathrm{C}_{6} \mathrm{D}_{6}$ or $\mathrm{CD}_{3} \mathrm{CN}$ results in the depletion of the parent with the production of the $\left(\eta^{1}\right.$-pyridine $) \mathrm{Cr}(\mathrm{CO})_{5}$, which in turn is photolysed to produce free pyridine and $\mathrm{Cr}(\mathrm{CO})_{6}$ The overall reaction sequence is outlined in Scheme 23


In these experiments the intial spectra in $\mathrm{CD}_{3} \mathrm{OD}$ or DMSO- $\mathrm{d}_{6}$ before photolysis, shows that the parent complex is not the only species present This demonstrates the efficiency of these solvents in "trapping" the intermediates Every care was taken to prevent any stray light photolysis prior to the initial spectrum However, because of the lengthy degassing procedures employed it is impossible to ensure that the solution was kept in the dark at all tınes This is a possible explanation why the photoproducts are observed prior to photolysis, as can be seen in Figure 27 for photolysis in $\mathrm{CD}_{3} \mathrm{OD}$ (however a thermal process cannot be excluded) In this solvent, both free pyridıne and $\left(\eta^{1}\right.$-pyndine) $\mathrm{Cr}(\mathrm{CO})_{5}$ possess a peak at $\sim 784 \mathrm{ppm}$ (vide supra), however there is sufficient resolution between the other two peaks to observe the subsequent photolysis of the $\left(\eta^{1}-\right.$ pyridıne $) \operatorname{Cr}(\mathrm{CO})_{s}$ complex to form the free pyndine Following 15 minutes of photolysis, at $\lambda_{\text {exc }}>410 \mathrm{~nm}$, in $\mathrm{CD}_{3} \mathrm{OD}$, a higher percentage of the parent species is depleted, than was observed following $\sim 50$ minutes photolysis in either $\mathrm{C}_{6} \mathrm{D}_{6}$ or $\mathrm{CD}_{3} \mathrm{CN}$ Further photolysis of the $\mathrm{CD}_{3} \mathrm{OD}$ solution resulted in noisy spectra as a result of the production of a precipitate
(a) Time zero

(b) Time 15 mimutes


Figure 2.7
(Steady state photolysis of (1) in $\mathrm{CD}_{3} O D, \lambda_{\text {exc }}>410 \mathrm{~nm}$ )


Figure 28
(Steady state photolysis of (1) in DMSO- $d_{6} \lambda_{\text {exc }}>410 \mathrm{~nm}$ )

Figure 28 depicts the spectra for the photolysis of $\left(\eta^{6}\right.$-pyridine $) \operatorname{Cr}(\mathrm{CO})_{3}$ in
DMSO- $\mathrm{d}_{6}$ The intial spectrum contains practically the same amount of photoproduct as parent, demonstratıng the capability of the DMSO $^{2} \mathrm{~d}_{6}$ to act as a donatıng solvent, thus efficiently "trapping" the ring slip process This efficiency may also be reflected in the absence of the pentacarbonyl species in the spectrum As with photolysis $m \mathrm{CD}_{3} \mathrm{OD}$, nearly all of the parent is depleted after 15 minutes

The relative quantum efficiency for the disappearance of the parent depends on the solvent employed and on the substituents on the pyridine ring in the 2,6positions, as measured by UV/vis spectroscopy Absorbances were measured at the $\lambda_{\max }$ for the parent species, in CO-saturated solvent The samples were then photolysed at $\lambda_{\text {exc }}$ $>410 \mathrm{~nm}$, and the decrease in absorbance was measured over the same time period

| Compound | Solvent | OD difference after <br> 10 s photolys1s ${ }^{\text {a }}$ | Relative quantum <br> efficlency $\left(\mathrm{CH}_{3} \mathrm{OH} \mathrm{C}_{6} \mathrm{H}_{12}\right)$ |
| :---: | :---: | :---: | :---: |
| $\left(\eta^{6}\right.$-pynidne $) \mathrm{Cr}(\mathrm{CO})_{3}$ | $\mathrm{CH}_{3} \mathrm{OH}$ | 00376 | $23 \quad 1 \quad$ |
|  | $\mathrm{C}_{6} \mathrm{H}_{12}$ | 001664 |  |
| $\left(\eta^{6}\right.$-2,6-lutıdıne $) \mathrm{Cr}(\mathrm{CO})_{3}$ | $\mathrm{CH}_{3} \mathrm{OH}$ | 003072 | 331 |
|  | $\mathrm{C}_{6} \mathrm{H}_{12}$ | 000932 |  |

Table 2.3
Relative quantum efficiencies for the photochemical depletion of compounds 1 and 2
${ }^{\text {a }}$ average of first two absorbance differences)

Table 23 gives the relative quantum efficiencies in the two solvents It can be clearly seen that the process is more efficient in the methanol solvent, confirming what
has been observed in the NMR experiments The effect of the substituents at the 2 and 6 positions on the pyndine ning could also be obtained from these expenments Depletion of the parent in cyclohexane is approximately twice as efficient for $\left(\eta^{6}-\mathrm{pyndine}\right) \mathrm{Cr}(\mathrm{CO})_{3}$ when compared with $\left(\eta^{6}-2,6\right.$-lutidine $) \mathrm{Cr}(\mathrm{CO})_{3}$ Figure 29 shows the photochemical depletion of $\left(\eta^{6}-2,6-\right.$ lutidine $) \mathrm{Cr}(\mathrm{CO})_{3}$ in cyclohexane, compared to methanol


Figure 2.9
(Photochemical depletion of $2\left(\lambda_{\mathrm{cxc}}>410 \mathrm{~nm}\right)$ in $\mathrm{C}_{6} \mathrm{H}_{12}$ or $\left.\mathrm{CH}_{3} \mathrm{OH}\right)$

In methanol the total photolysis time is only 330 seconds, however in cyclohexane the compound was photolysed for a total of 780 seconds The efficiency of photodepletion of the $\left(\eta^{6}-2,6-\right.$ bis(trimethylsilyl)pyndine) $\mathrm{Cr}(\mathrm{CO})_{3}$ compound in cyclohexane is essentally zero

## 223 Matrix Isolatıon Experiments

(a) The photochemistry of $\left(\boldsymbol{\eta}^{6}\right.$-pyridine) $\mathrm{Cr}(\mathrm{CO})_{3}$

The photochemistry of $\left(\eta^{6}\right.$-pynidine $) \mathrm{Cr}(\mathrm{CO})_{3}$ was investigated in a number of different matrices The photochemistry was investıgated in a methane matrix at 12 K at two different excitation wavelengths At longer excitation wavelength ( 460 nm ) depletion of the parent bands (1999, 1939, and $1924 \mathrm{~cm}^{-1}$ ) was observed with concomitant formation of three bands ( 1957,1841 , and $1833 \mathrm{~cm}^{1}$ ) This is depicted as a difference spectrum (Figure 2 10(a)), where the depletion of the parent bands are shown as negative peaks and the product bands as positive peaks As discussed previously, the number of CO bands for this system is related to the number carbonyl groups present in the photofragment provided additional symmetry is not introduced Therefore as there are three bands present in the product upon excitation at 460 nm , CO-loss has not occurred from this species This photofragment was assigned to a heteroarene ring slip product ( $\eta^{\mathrm{x}}$-pyridıne) $\mathrm{Cr}(\mathrm{CO})_{3}(\mathrm{x}<6)$ Confirmation that CO -loss is insignificant under these conditions is obtaned by the fallure to observe free CO in the matrix


Figure 210
(Difference Spectra obtained after irradiation of a $\mathrm{CH}_{4}$ matrix at 12 K containing ( $\eta^{\sigma}$-pyridine) $\operatorname{Cr}(\mathrm{CO})_{3}(a) \lambda_{\text {exc }}=460 \mathrm{~nm}$ (b) $\left.\lambda_{\mathrm{exc}}=308 \mathrm{~nm}\right)$

At shorter wavelength excitation ( 308 nm ), two bands are observed (the low-energy band is subject to matrix splitting) in addition to the bands of the ring slip product The two bands ( 1945 and $1888 \mathrm{~cm}^{-1}$ ) can be observed in Figure 210 (b) and are assigned as the CO loss product, $\left(\eta^{6}\right.$-pyndine $) \mathrm{Cr}(\mathrm{CO})_{2}$ for a number of reasons Firstly free CO is observed in matrix, at $2137 \mathrm{~cm}^{-1}$ Secondly, the high energy band is shutted by $56 \mathrm{~cm}^{-1}$ relative to the equivalent parent absorption This wavenumber shift is identical to that observed for the $\left(\eta^{6}\right.$-benzene $) \mathrm{Cr}(\mathrm{CO})_{3}$ system ( 1983 to $\left.1927 \mathrm{~cm}^{-1}\right)^{41}$ Averaging the two low energy absorptions of the parent ( $1931 \mathrm{~cm}^{-1}$ ) a shift of $44 \mathrm{~cm}^{-1}$ is observed which compares to the shift of $38 \mathrm{~cm}^{1}$ observed in the ( $\eta^{6}$-benzene) $\mathrm{Cr}(\mathrm{CO})_{3}$ system, $(1915$ to $1877 \mathrm{~cm}^{1}$ )

These results had shown that a ring shp process did occur following long wavelength irradiation, but the extent of the haptotropic rearrangement could not be determined Therefore experiments were conducted in $\mathrm{N}_{2}$ or CO -doped matnces in order to obtain more information about the ring slip process

Irradiation in a $\mathrm{N}_{2}$ matrix $\left(\lambda_{\text {exc }}=460 \mathrm{~nm}\right)$ produced three bands (1967, 1987, and $1884 \mathrm{~cm}^{-1}$ ) confirming the conservation of the $\mathrm{Cr}(\mathrm{CO})_{3}$ motety (Figure $211(\mathrm{a})$ ) Two bands of similar intensity were also observed in the $v_{\mathrm{NN}}$ region (2221 and $2188 \mathrm{~cm}^{-1}$ ), indicative of two cis-coordinated $\mathrm{N}_{2}$ ligands The wavenumber difference between the $v_{\mathrm{N}-\mathrm{N}}$ antisymmetric and symmetric vibrational modes $\left(33 \mathrm{~cm}^{1}\right)$ is similar to the differences observed for $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Nb}(\mathrm{CO})_{2}\left(\mathrm{~N}_{2}\right)_{2}$ in hquid xenon $\left(39 \mathrm{~cm}^{1}\right)$,


Fıgure 2.11
(Difference Spectra obtained after irradiation of a $N_{2}$ matrix contaiming

$$
\left.\left(\eta^{6}-p y r i d m e\right) C r(C O)_{3}(a) \lambda_{\mathrm{cxc}}=460 \mathrm{~nm} \text { (b) } \lambda_{\mathrm{cxc}}=308 \mathrm{~nm}\right)
$$

and $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{V}(\mathrm{CO})_{2}\left(\mathrm{~N}_{2}\right)_{2}$ in a $\mathrm{N}_{2}$ matrix $\left(32 \mathrm{~cm}^{-1}\right)^{42}$ Therefore 460 nm irradiation of $\left(\eta^{6}\right.$-pyridıne) $\mathrm{Cr}(\mathrm{CO})_{3}$ in $\mathrm{N}_{2}$ matrix produces $f a c-\left(\eta^{1}\right.$-pyridıne $)\left(\mathrm{N}_{2}\right)_{2} \mathrm{Cr}(\mathrm{CO})_{3}$

Irradiation of a $\mathrm{N}_{2}$ matrix containing ( $\eta^{6}$-pyridıne) $\mathrm{Cr}(\mathrm{CO})_{3}$ with $\lambda_{\text {exc }}=308$ nm , resulted in additional bands at $1957 \mathrm{~cm}^{1}$ and $1910 \mathrm{~cm}^{-1}$ (Figure $211(\mathrm{~b})$ ) This two band pattern is assigned as the CO loss product, as the absorption of free CO is observed following photolysis (Appendix 2B(1)) Therefore both the ring slip product and the CO loss product are formed sımultaneously in the $\mathrm{N}_{2}$ matrix In this case however, the $\boldsymbol{v}_{\mathrm{N}-\mathrm{N}}$ bands observed following 308 nm irradiation are of dıfferent relative intensities (cf insets in Figure 2 11) An explanation for this is that the $\left(\eta^{6}\right.$-pyndine $) \mathrm{Cr}(\mathrm{CO})_{2}\left(\mathrm{~N}_{2}\right)$ species, possesses a $v_{\mathrm{N}-\mathrm{N}}$ band that overlaps with the low-energy $\nu_{\mathrm{NN}}$ band of the fac- $\left(\eta^{1}-\right.$ pyridıne $)\left(\mathrm{N}_{2}\right)_{2} \mathrm{Cr}(\mathrm{CO})_{3}$ species

Photolysis of $\left(\eta^{6}\right.$-pyridne $) \mathrm{Cr}(\mathrm{CO})_{3}$ in a $\mathrm{CH}_{4} \mathrm{CO}(101)$ matrix with a $\lambda_{\text {exc }}$ of 460 nm resulted in a three band pattern (marked *, 2070, 1937, and $1916 \mathrm{~cm}^{\mathbf{1}}$ ) characteristic of the ( $\eta^{1}$-pyndine) $\mathrm{Cr}(\mathrm{CO})_{5}$ species with local $\mathrm{C}_{4 \mathrm{v}}$ symmetry (Figure 2 12) Also present is a band at $1983 \mathrm{~cm}^{-1}$ which is assigned to $\mathrm{Cr}(\mathrm{CO})_{6}$, which is probably formed by subsequent photolysis of the pentacarbonyl photoproduct If the matrix is further photolysed with $\lambda_{\text {exc }}=250 \mathrm{~nm}$, bands at 2030,1909 , and $1870 \mathrm{~cm}^{1}$ are formed which have been assigned to a tetracarbonyl species that is produced by CO-loss from ( $\eta^{1}$ pyridine $) \operatorname{Cr}(\mathrm{CO})_{s}$ Also formed with $\lambda_{\text {exc }}=250 \mathrm{~nm}$ is a peak at $1956 \mathrm{~cm}^{1}$ (Figure 2 12), which has tentatively been assigned as one of the bands for the $\mathrm{Cr}(\mathrm{CO})_{5}\left(\mathrm{CH}_{4}\right)$ species (2088, 1961, and $1932 \mathrm{~cm}^{1}$ ) ${ }^{43}$ The band at $1961 \mathrm{~cm}^{1}$ was found to be relatively more intense than the other two bands, which may explain why they were not observed This


Figure 212
(Spectra obtained after irradıatıon of a $\mathrm{CH}_{4} \mathrm{CO}(10 \mathrm{l})$ matrix containing
$\left(\eta^{6}-\right.$ pyridme $) C r(C O)_{3}$ (a) $\lambda_{\text {exc }}=460 \mathrm{~nm}$ (b) subsequent $\left.\lambda_{\mathrm{cxc}}=250 \mathrm{~nm}\right)$
pentacarbonyl species could be produced by etther irradiation of $\mathrm{Cr}(\mathrm{CO})_{6}$ or $\left(\eta^{1}-\right.$ pyridine) $\mathrm{Cr}(\mathrm{CO})_{s}$

Subsequent long wavelength photolysis ( $\lambda_{\text {exc }}=530 \mathrm{~nm}$ ) of the tetracarbonyl species regenerated the ( $\eta^{1}$-pyridıne) $\mathrm{Cr}(\mathrm{CO})_{5}$ complex (Appendix $2 \mathrm{~B}(11)$ ) When an excitation wavelength of 370 nm was employed, $\mathrm{Cr}(\mathrm{CO})_{6}$ was formed and possibly the $\mathrm{Cr}(\mathrm{CO})_{5}\left(\mathrm{CH}_{4}\right)$ species (Appendix 2B(ii1)) The results obtained when the $\left(\eta^{6}-\right.$ pyridine $) \mathrm{Cr}(\mathrm{CO})_{3}$ compound underwent long wavelength photolysis in a methane matrix indicated that a ring slip process occurred The extent of this haptotropic rearrangement was not determined untıl photolysis of the compound was carried out in a CO doped and a $\mathrm{N}_{2}$ matrix The results obtained from irradiation of $\left(\eta^{6}\right.$-pyridine $) \mathrm{Cr}(\mathrm{CO})_{3}$ in both a $\mathrm{N}_{2}$ and a CO doped matrix are consistent with an $\eta^{6}$ to an $\eta^{1}$ haptotropic rearrangement following long wavelength photolysis
(b) The photochemistry of $\left(\eta^{6}-2,6-b i s(t r i m e t h y l s i l y l) p y r i d i n e\right)\left(\mathbf{C r}(\mathrm{CO})_{3}\right.$

The matrix photochemistry of $\left(\eta^{6}-2,6-\mathrm{bis}(\right.$ trimethylsilyl)pyridıne $) \mathrm{Cr}(\mathrm{CO})_{3}$ was investigated, in order to observe the effect of the bulky substituents on the resulting photochemistry When the compound was photolysed at $\lambda_{\mathrm{exc}}=460 \mathrm{~nm}$, in an Ar matrix containing $10 \%$ CO, no photochemical change was observed When an excitation wavelength of 250 nm was employed depletion of the parent was observed with concomitant growth of two bands assigned to the dicarbonyl species (1942 and $1890 \mathrm{~cm}^{1}$ ) This can be observed in Figure 2 13(a), where the two bands can be seen to grow in following the 250 nm excitation Subsequent photolysis with $\lambda_{\text {exc }}=313 \mathrm{~nm}$ results in an


Figure 2.13
(Spectra obtained after irradıatıon of an $\operatorname{ArCO}(101)$ matrix containing $\left(\eta^{6}-2,6-\right.$
(TMS)pyridme) $\mathrm{Cr}(\mathrm{CO})_{3}$ (a) $\lambda_{\text {exc }}=250 \mathrm{~nm}, 313 \mathrm{~nm}$ (b) $\lambda_{\text {exc }}=313 \mathrm{~nm}, \lambda_{\text {cxc }}>530 \mathrm{~nm}$ )
increase in the bands assigned to the dicarbonyl species, but new bands are also observed at 1954,1854 , and $1845 \mathrm{~cm}^{-1}$ These new bands are assigned to the ( $\eta^{1}-2,6-$ bis(trimethylsilyl)pyndıne) $\mathrm{Cr}(\mathrm{CO})_{3}$ species by companson with the photochemistry of the ( $\eta^{6}$-pyridine) $\mathrm{Cr}(\mathrm{CO})_{3}$ in a methane matrix

Figure 2 13(b) shows the photoreversibility of the $\eta^{1}$ and the dicarbonyl species Following photolysis at 313 nm , (producing both the photoproducts), if the matnx is irradiated with white light, a depletion of these bands is observed with concomitant regeneration of the parent bands

The photochemistry of $\left(\eta^{6}-2,6-\mathrm{bis}(\right.$ trimethylsilyl $)$ pyndıne $) \mathrm{Cr}(\mathrm{CO})_{3}$ was also investigated in a $\mathrm{N}_{2}$ matrix (Figure 2 14) Photolysis at 460 nm results in the production of a $v_{\mathrm{N} \cdot \mathrm{N}}$ band at $2180 \mathrm{~cm}^{1}$ and two $v_{\mathrm{co}}$ bands at 1947 and $1904 \mathrm{~cm}^{1}$ which are assigned


Figure 214
(Spectra obtained after irradiation of a $N_{2}$ matrix containing $\left(\eta^{6}-2,6\right.$-(TMS)pyridine $\left.) \mathrm{Cr}(\mathrm{CO})_{3} \lambda_{\mathrm{oxc}}=460 \mathrm{~nm}, 280 \mathrm{~nm}\right)$
as the dicarbonyl species $\left(\eta^{6}-2,6\right.$-bis(trimethylsilyl)pyndıne $) \operatorname{Cr}(\mathrm{CO})_{2}\left(\mathrm{~N}_{2}\right)$ Confirming this assignment is the presence of free CO in the matrix following photolysis This process is not very efficient, a small amount of the ring slip product can also be observed Following photolysis at 280 nm slightly more of the ning slip product can be observed, however the bands are still weak and it proved impossible to determine if the photoproduct interacts with the matrix environment

## 224 Time Resolved Infrared Spectroscopy Experiments

The photochemistry of $\left(\eta^{6}\right.$-pyridine $) \mathrm{Cr}(\mathrm{CO})_{3}$ was investigated in CO saturated cyclohexane solution and was monitored by TRIR spectroscopy The concentration of CO in the cyclohexane solution was $90 \times 10^{-3} \mathrm{M}^{44}$ Figure 215 represents the difference spectrum, obtained $1 \mu$ after excitation with a laser pulse ( $\lambda_{\text {exc }}=$ 308 nm ) The negatıve peaks observed at 1999,1940 , and $1930 \mathrm{~cm}^{-1}$ correspond to depletion of the parent compound The positive peaks at 1950 and $1890 \mathrm{~cm}^{-1}$ are assigned to the photoproduct $\left(\eta^{6}\right.$-pyridine $) \mathrm{Cr}(\mathrm{CO})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{12}\right)$ because they are at wavelengths similar to the bands observed for the dicarbonyl species in a $\mathrm{CH}_{4}$ matrix (vide ultra) Examination of the negative lower frequency bands of the parent, shows that the 1940 $\mathrm{cm}^{1}$ band is not of the same intensity as the $1930 \mathrm{~cm}^{1}$ band The initial spectrum of the compound exhibits two bands of nearly equal intensity The could be a result of overlap with the $1950 \mathrm{~cm}^{1}$ band of the photoproduct


Figure 2.15
(The TRIR spectrum obtained in room temperature CO -saturated $\mathrm{C}_{6} \mathrm{H}_{12}$, $1 \mu \mathrm{~s}$ after excitation $\left(\lambda_{\text {exc }}=308 \mathrm{~nm}\right)$ of $\left(\eta^{6}\right.$-pyridine $\left.) \mathrm{Cr}(\mathrm{CO})_{3}\right)$

Following $\sim 16 \mu \mathrm{~s}$ a very weak band at $2066 \mathrm{~cm}^{1}$ can be observed, also at this tume a band at $\sim 1916 \mathrm{~cm}^{-1}$ (overlappıng with the parent depletion) is present, these bands are assigned as the pentacarbonyl species These results indicate, that unlike the matrix results, the CO loss process is more efficient in solution compared to the ring slip process

The photoproducts were observed to decay over $\sim 50 \mu \mathrm{~s}$ regenerating the parent, although not quantitatively, according to Reaction 25 The rate constant for this reaction was determined by subtracting the $\mathrm{k}_{\text {obs }}$ in the absence of CO from that in the presence of 9 mM CO and dividing by 9 mM , and was found to be $14 \times 10^{7} \mathrm{dm}^{3} \mathrm{M}^{-1} \mathrm{~s}^{-1}$

$$
\left(\eta^{6} \text {-pyrndıne }\right) \mathrm{Cr}(\mathrm{CO})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{12}\right)+\mathrm{CO} \xrightarrow{\mathrm{k}_{2}}\left(\eta^{6} \text {-pyndıne }\right) \mathrm{Cr}(\mathrm{CO})_{3}+\mathrm{C}_{6} \mathrm{H}_{12} \quad \text { Reaction } 25
$$

## 225 Ultraviolet/visible Flash Photolysis Experiments

A senies of UV/vis flash photolysis experiments were undertaken in a vanety of solvents and under different gasses The effect of changing the solvent media was examined for the three complexes under investigation in this study
(a) The photochemistry of $\left(\eta^{6}-\right.$ pyridine $) \mathrm{Cr}(\mathrm{CO})_{3}$
(1) Cyclohexane

The photochemistry of $\left(\eta^{6}\right.$-pyridine $) \mathrm{Cr}(\mathrm{CO})_{3}$ was investıgated by UV/vis flash photolysis with $\lambda_{\text {exc }}=355 \mathrm{~nm}$ in CO saturated cyclohexane Figure 216 depicts a difference spectrum obtained $5 \mu \mathrm{~s}$ after the laser pulse The negative peak observed at $\sim 330 \mathrm{~nm}$ represents the depletion of the parent compound The photoproducts absorb in the valley of the parent absorption ( 290 nm ) and a weaker absorption is present at $\sim 500$ nm Analysis of the kınetic parameters associated with the absorption at 290 nm indicates that this species reacts with CO with identical $\mathrm{k}_{2}$, within experimental error, to that obtaned from TRIR expenments ( $14 \times 10^{7} \mathrm{dm}^{3} \mathrm{M}^{1} \mathrm{~s}^{-1}$ )


Figure 2.16
(UV/vis difference spectrum obtained in room temperature CO saturated $\mathrm{C}_{6} \mathrm{H}_{12}$,

$$
\left.5 \mu \text { s after excitation }\left(\lambda_{\text {exc }}=355 \mathrm{~nm}\right) \text { of }\left(\eta^{6}-\text { pyridine }\right) \mathrm{Cr}(\mathrm{CO})_{3}\right)
$$

The $\mathbf{k}_{2}$ values were obtained from different $\mathbf{C O}$ concentrations When the experiment is repeated under an Ar atmosphere, no depletion of the photoproduct, that absorbs at 290 nm , was observed This indicates that the decay of this species has a dependence on CO Therefore this absorption could be assigned to the CO loss product, or possibly to the formation of a dinuclear species formed in the absence of CO

Under a CO atmosphere the parent absorption that is monitored at 330 nm recovers by two temporally resolved processes The slower process, $l e$ that occurring after the time indicated by the arrow in Figure 2 17, corresponds to the reformation of the


Fıgure 2.17
(The transient signal obtained following photolysts $\lambda_{\mathrm{axc}}=355 \mathrm{~nm}$ ) of $\left(\eta^{6}-\right.$-pyridine $) \mathrm{Cr}(\mathrm{CO})_{3}$ in room temperature, CO saturated, $\mathrm{C}_{6} \mathrm{H}_{12}$, montored at 330 nm )
( $\eta^{6}$-pynidine) $\mathrm{Cr}(\mathrm{CO})_{3}$ species $v z a$ the reaction depicted in Reaction 25 The value for $\mathrm{k}_{2}$ for this reaction is $11 \times 10^{7} \mathrm{dm}^{3} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ when the concentration of CO is $90 \times 10^{-3} \mathrm{M}$, as presented in Table 24 This $\mathrm{k}_{2}$ value is not identical to the value obtained at 280 nm although it is within expenmental error, however the transients at 330 nm are notsier, possibly explaining the difference observed When the concentration is decreased by half, to $45 \times 10^{-3} \mathrm{M}$, the rate is similarly affected dropping to $63 \times 10^{6} \mathrm{dm}^{3} \mathrm{M}^{-1} \mathrm{~s}^{1}$ Therefore confirming the assignment of this process as the recombination of the dicarbonyl species with CO reforming the parent Examination of the transients indicate that the process is not fully reversible

| $[\mathrm{CO}](\mathrm{M})$ | $\mathrm{k}_{\text {obs }}\left(\mathrm{s}^{-1}\right)$ |
| :---: | :---: |
| $90 \times 10^{-3}$ | $11 \times 10^{7}$ |
| $45 \times 10^{-3}$ | $63 \times 10^{6}$ |

## Table 24

( $k_{\text {obs }}$ for Reaction 25 at different concentrations of CO)

The faster process, up to the time indicated by the arrow mi Figure 2 17, is completed within the nise tıme of the current equipment ( $\sim 40 \mathrm{~ns}$ ) This process has been assigned to the recovery of $\left(\eta^{6}\right.$-pyridine $) \mathrm{Cr}(\mathrm{CO})_{3}$ from the $\left(\eta^{1}-\mathrm{pyrid} n e\right) \mathrm{Cr}(\mathrm{CO})_{3}$ intermediate

## (2) Acetonitrile

The photochemistry of $\left(\eta^{6}\right.$-pyndine $) \mathrm{Cr}(\mathrm{CO})_{3}$ was investigated by UV/vis flash photolysis with $\lambda_{\text {exc }}=355 \mathrm{~nm}$ in CO saturated acetontrile Acetonitnle is a better coordinating solvent than cyclohexane, because of the lone pair on the nitrogen Formation of a band with $\lambda_{\text {max }}$ at 500 nm was observed, which did not decay within the tıme scale of this expenment The fast process assigned as the reversal of the ring slip process could be observed at 310 nm (Figure 218) A photoproduct was found to absorb in the same region as the parent species, the formation of this photoproduct could be observed, again not decaying within the timescale of the expenment This photoproduct could possibly have been the $\left(\eta^{6}-\right.$ pyrndıne $) \mathrm{Cr}(\mathrm{CO})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ species


Figure 2.18
((The transient signal obtained following photolysis $\lambda_{\text {axc }}=355 \mathrm{~nm}$ ) of ( $\eta^{6}$-pyridine) $\mathrm{Cr}(\mathrm{CO})_{3}$ in room temperature, CO saturated, $\mathrm{CH}_{3} \mathrm{CN}$, monttored at 310 nm )

The ground state UV/vis spectrum, obtained duning the flash photolysis experiment, reveals some information about the spectrum of this photoproduct Examınation of the spectrum (Figure 2 19) reveals that a band is produced at $\sim 410 \mathrm{~nm}$ This band is assıgned as a pentacarbonyl species, which could be the $\left(\eta^{1}-\operatorname{pyridine}\right) \operatorname{Cr}(\mathrm{CO})_{5}$ or the $\mathrm{Cr}(\mathrm{CO})_{s}\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ compound The spectrum of the $\left(\eta^{1}-\mathrm{pynd} n \mathrm{e}\right) \mathrm{Cr}(\mathrm{CO})_{5}$ compound in acetonitnie is similar to the photoproduct formed following photolysis A band can also be observed growing in at $\sim 500 \mathrm{~nm}$, thus absorption is assigned to the relatively stable species $\left(\eta^{6}\right.$-pyninne) $\mathrm{Cr}(\mathrm{CO})_{2}\left(\mathrm{NCCH}_{3}\right)$ (vide ultra) The depletion of the parent band can also be observed at 330 nm


Figure 2.19
(Ground state absorption spectrum of $\left(\eta^{6}-\right.$ pyridine) $\mathrm{Cr}(\mathrm{CO})_{3}$ following photolysis $\lambda_{\text {exc }}=355 \mathrm{~nm}$ ) in room temperature, CO saturated, acetonitrile)

An infrared spectrum obtained of the solution after the expenment confirms the presence of a pentacarbonyl species and also indicates the presence of $\mathrm{Cr}(\mathrm{CO})_{6}$ The bands are broad as would be expected in acetonitnie The charactenstic band of $\mathrm{Cr}(\mathrm{CO})_{6}$ can be observed at $1984 \mathrm{~cm}^{-1}$ The two lower absorption bands of the pentacarbonyl compound are overlapping with the parent, but broadening of the parent bands are observed, indicating the presence of some other species The proof for the existence of this pentacarbonyl species in the solution comes from the presence of the distinctive $a_{1}$ band observed at $2071 \mathrm{~cm}^{1}$ A spectrum was obtaned of $\left(\eta^{1}-\operatorname{pyrid} n \mathrm{ne}\right) \mathrm{Cr}(\mathrm{CO})_{\mathrm{s}}$ in
acetonitrile and the positions of the bands were identical with those found in this experiment
(b) The photochemistry of $\left(\eta^{6}-2,6\right.$-lutidine $) \mathrm{Cr}(\mathrm{CO})_{3}$
(1) Cyclohexane

The photochemistry of $\left(\eta^{6}-2,6\right.$-lutidine $) \mathrm{Cr}(\mathrm{CO})_{3}$ was also investigated by $\mathrm{UV} / \mathrm{vis}$ flash photolysis with $\lambda_{\text {exc }}=355 \mathrm{~nm}$ in CO saturated cyclohexane Photoproducts were observed at sımilar wavelengths to those seen for the $\left(\eta^{6}\right.$-pyridine $) \mathrm{Cr}(\mathrm{CO})_{3}$ system Figure 220 depicts the transients observed at two different wavelengths The first transient observed at 280 nm corresponds to the formation of the dicarbonyl species and its subsequent recombination with CO The second represents the depletion of the parent absorption ( 330 nm ), followed by its biphasic recovery, which corresponds to the fast reversal of the ning slip product and the slower recombination of the dicarbonyl species with CO Examination of the kınetic parameters of the recombination of the dicarbonyl species with $C O$, according to Reaction $26(\mathrm{~S}=$ cyclohexane $)$, yields a $\mathrm{k}_{2}$ value of $15 \times$ $10^{7} \mathrm{dm}^{3} \mathrm{M}^{-1} \mathrm{~s}^{-1}($ at 280 nm$)$

```
            k
(\eta}\mp@subsup{\eta}{}{6}-2,6-lutidne) )Cr(CO)\mp@subsup{)}{2}{}(S)+\textrm{CO}->(\eta\mp@subsup{\eta}{}{6}-2,6-lut1dne)Cr(CO)\mp@subsup{)}{3}{}+\textrm{S}\quad\mathrm{ Reaction 26
```



Figure 2.20
(The transient signals obtained following photolysis, $\left(\lambda_{\text {exc }}=355 \mathrm{~nm}\right)$ of
$\left(\eta^{6}-2,6\right.$-lutidine $) \mathrm{Cr}(\mathrm{CO})_{3}$ in $\mathrm{C}_{6} \mathrm{H}_{12}(\mathrm{CO})$, montored at (a) 280 nm , (b) 330 nm )

In Figure 220 the $\mathrm{k}_{\text {obs }}$ obtained for the recombination with $\mathbf{C O}$ are shown, the $\mathrm{k}_{2}$ values can then be found by, dividing this value by the concentration of $\mathrm{CO}\left(90 \times 10^{-3} \mathrm{M}\right)$

The ground state absorption spectra obtained duning the flash photolysis experiment exhibits a sharp isosbestic point at $\sim 298 \mathrm{~nm}$ The parent absorption decreases durng the experiment, which agrees with the results of the flash photolysis experiments observed in Figure 220 The transient signals indicate that Reaction 26 in not totally reversible, and that the parent depletion does not fully recover on the finte-scale of this expenment, which would explain the decrease in the parent absorption

When the experiment is repeated under an Ar atmosphere, depletion of the parent absorption is observed at 330 nm , but this tme no recovery is observed The transient at 280 nm shows the formation of the dicarbonyl species, this species does not decay in the time scale of the experiment ( $100 \mu \mathrm{~s}$ ) Ground state UV/vis absorption spectra obtained durng the expenment are similar to those obtaned under a CO atmosphere This indicates the isosbestic points, observed in both spectra, could be a result of the formation of the $\left(\eta^{6}-2,6\right.$-lutidine $) \mathrm{Cr}(\mathrm{CO})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{12}\right)$ species However under the Ar atmosphere the presence of a dinuclear species cannot be discounted

## (2) Acetonitrile

The photochemistry of $\left(\eta^{6}-2,6\right.$-lutıdıne $) \mathrm{Cr}(\mathrm{CO})_{3}$ was investigated by UV/vis flash photolysis with $\lambda_{\text {exc }}=355 \mathrm{~nm}$ in CO saturated acetontrile A transient signal was observed at 280 nm assigned to the dicarbonyl species, $\left(\eta^{6}-2,6-\operatorname{lutid} \mathrm{ne}\right) \mathrm{Cr}(\mathrm{CO})_{2}(\mathrm{~S})$, where $S$ is acetonitrile This species was not observed to react with CO No transient
signal was observed at 500 nm in this experiment, unlike the $\left(\eta^{6}\right.$-pynidine $) \mathrm{Cr}(\mathrm{CO})_{3}$ expenments The ground state absorption spectra obtained dunng the flash photolysis expenment exhbits an isosbestic point at $\sim 300 \mathrm{~nm}$ A band can be observed growing at -500 nm , correspondıng to the $\left(\eta^{6}-2,6-\mathrm{lutid} n e\right) \mathrm{Cr}(\mathrm{CO})_{2}(\mathrm{~S})$ species (Figure 221 ) Another weak band can be observed at $\sim 400 \mathrm{~nm}$, which could possibly be a pentacarbonyl species, ether $\left(\eta^{1}-2,6-\right.$ lutidine $) \mathrm{Cr}(\mathrm{CO})_{s}$ or $\mathrm{Cr}(\mathrm{CO})_{5}\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ This is confirmed by an $\mathbb{R}$


Figure 2.18
(Ground state absorption spectrum of $\left(\eta^{6}-2,6\right.$-luttdine $) \mathrm{Cr}(\mathrm{CO})_{3}\left(\sim 13 \times 10^{4} \mathrm{M}\right)$ following photolysis $\lambda_{\text {exc }}=355 \mathrm{~nm}$ ) in room temperature, CO saturated, acetonitrile) spectrum obtained of the final solution, again exhibiting the distinctive $2074 \mathrm{~cm}^{-1}$ band of the pentacarbonyl species (Figure 222 ) Two bands are assigned to the dicarbonyl species ( $\eta^{6}-2,6$-lutidme $) \mathrm{Cr}(\mathrm{CO})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)$, because of their sımilanty to the bands observed in the


Figure 2.22
(IR spectrum of the solution obtained following photolysis of $\left(\eta^{6}-2,6-l u t i d i n e\right) \mathrm{Cr}(\mathrm{CO})_{3}$

$$
\lambda_{\text {exc }}=355 \mathrm{~nm} \text { ) in room temperature, CO saturated, acetonitrile) }
$$

methane matrix for the ( $\eta^{6}$-pyridine) $\mathrm{Cr}(\mathrm{CO})_{2}\left(\mathrm{CH}_{4}\right)$ species (1945 and $1888 \mathrm{~cm}^{-1}$ ) No $\mathrm{Cr}(\mathrm{CO})_{6}$ was observed in this expenment, the $\mathrm{Cr}(\mathrm{CO})_{6}$ is presumably formed by the photolysis of the pentacarbonyl species The photolysis tıme in this expenment was shorter than the corresponding experiment conducted with the $\left(\eta^{6}-\mathrm{pyridine}\right) \mathrm{Cr}(\mathrm{CO})_{3}$ compound This could possibly result in an insufficient amount of the pentacarbonyl species being formed, hence preventing the production of $\mathrm{Cr}(\mathrm{CO})_{6}$
(c) The photochemistry of $\left(\eta^{\mathbf{6}}-\mathbf{2 , 6 - b i s}(\right.$ trimethylsilyl $)$ pyridine $) \mathrm{Cr}(\mathrm{CO})_{3}$
(1) Cyclohexane

The photochemistry of $\left(\eta^{6}-2,6-\mathrm{bis}(\right.$ tnmethylsilyl $)$ pyridıne $) \mathrm{Cr}(\mathrm{CO})_{3}$ was investigated by UV/vis flash photolysis, with $\lambda_{\text {exc }}=355 \mathrm{~nm}$ in CO saturated cyclohexane A transient absorption was observed at 280 nm , and this species reacted with CO with a $\mathrm{k}_{2}$ value $16 \times 10^{8} \mathrm{dm}^{3} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ according to Reaction 27 , (where TMS $=2,6$ bis(tnmethylsilyl) and $\mathrm{S}=$ cyclohexane) This $\mathrm{k}_{2}$ value was obtaıned by dividing the $\mathrm{k}_{\mathrm{obs}}$ by the concentration of CO at 1 atm of CO
$\left(\eta^{6}-(\mathrm{TMS})\right.$ pyridıne $) \mathrm{Cr}(\mathrm{CO})_{2}(\mathrm{~S})+\mathrm{CO} \xrightarrow{\mathrm{k}_{2}}\left(\eta^{6}-(\mathrm{TMS})\right.$ pyridıne $) \mathrm{Cr}(\mathrm{CO})_{3}+\mathrm{S}$ Reaction 27

The transient signal observed at 280 nm is shown in Figure 2 23(a) From this it can be seen that the species responsible for the absorption decays fully to regenerate the parent complex At 330 nm both the very fast reaction assigned to the reversal of the ring slip process and the recombination with CO is observed (not illustrated) No transient species is observed at 500 nm

The ground state absorption spectra obtained during the flash photolysis expenment shows no change, which is consistent with the reversibility observed for the transient species Consequently the IR spectrum of the final solution also shows no photoproducts

Figure 2 23(b) shows the transient signal observed at 280 nm under an Ar


Figure 2.23
(The transient stgnals obtained following photolysts, $\left(\lambda_{\text {exc }}=355 \mathrm{~nm}\right)$ of ( $\left.\eta^{6}-2,6-(T M S) p y r ı d i n e\right) C r(C O)_{3}$ in $C_{6} H_{12}$ monitored at 280 nm (a) CO (b) Ar)
atmosphere, in cyclohexane This could be the $\left(\eta^{6}-2,6-(\mathrm{TMS})\right.$ pyndine $) \mathrm{Cr}(\mathrm{CO})_{2}(\mathrm{~S})$ species or possibly a dinuclear species not involving the arene ring, as the substituents would probably hunder this interaction This transient signal did not decay on the tumescale of the experiment

The ground state absorption spectrum monitored dunng the experiment in the absence of CO , exhibits depletion of the parent complex with concomitant growth of bands at $\sim 260 \mathrm{~nm}$ and 280 nm and a weak broad band in the visible region ( 440 to 520 $\mathrm{nm})$ The IR spectrum of the final solution shows the production of bands at $\sim 1870 \mathrm{~cm}^{-1}$ and a shoulder on the parent band $\sim 1934 \mathrm{~cm}^{1}$ similar to the bands observed for the
dicarbonyl species in an Ar CO matrix ( 1890 and $1942 \mathrm{~cm}^{-1}$ ), supporting the assignment of this species as the $\left(\eta^{6}-2,6-(\mathrm{TMS})\right.$ pyndine $) \mathrm{Cr}(\mathrm{CO})_{2}(\mathrm{~S})$ complex

## (2) Acetonitnle

The photochemistry of $\left(\eta^{6}-2,6-b i s(\right.$ tnmethylsilyl $)$ pyridıne $) \mathrm{Cr}(\mathrm{CO})_{3}$ was investigated by UV/vis flash photolysis with $\lambda_{\text {exc }}=355 \mathrm{~nm}$ in CO saturated acetonitnle The formatıon of the dicarbonyl species, $\left(\eta^{6}-2,6-(\mathrm{TMS})\right.$ pyndine $) \mathrm{Cr}(\mathrm{CO})_{2}(\mathrm{~S})$, is observed at 280 nm , which does not decay within the timescale of the experiment No transient stgnals were observed at 500 nm The ground state absorption spectrum depicted in Figure 224 shows the growth of two bands assigned to ( $\eta^{6}-2,6$-(TMS)pyndine) $\mathrm{Cr}(\mathrm{CO})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ at $\sim 260$ and $\sim 500 \mathrm{~nm}$ Unlike the $\left(\eta^{6}-\mathrm{pynd}{ }^{2} \mathrm{ne}\right) \mathrm{Cr}(\mathrm{CO})_{3}$ and


Figure 224
(Ground state absorption spectrum of $\left(\eta^{6}-2,6-(T M S) p y r i d i n e\right) C r(C O)_{3}$ following
photolysts $\left(\lambda_{\text {exc }}=355 \mathrm{~nm}\right)$ m room temperature, CO saturated acetontrile)
( $\eta^{6}-2,6$-lutıdıne $) \mathrm{Cr}(\mathrm{CO})_{3}$ systems no band at $\sim 400 \mathrm{~nm}$ is observed, indicating that no ( $\eta^{1}$ -2,6-(TMS)pyridine) $\mathrm{Cr}(\mathrm{CO})_{s}$ or $\mathrm{Cr}(\mathrm{CO})_{s}\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ is formed This is confirmed by the IR spectrum, the only photoproducts observed are assigned to the dicarbonyl species, (1945 and $\left.1870 \mathrm{~cm}^{-1}\right)\left(\eta^{6}-2,6\right.$-(TMS)pynidıne $) \mathrm{Cr}(\mathrm{CO})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)$

## 226 Discussion

The formation of $\left(\eta^{1}\right.$-pyridine $) \mathrm{Cr}(\mathrm{CO})_{5}$ and ultımately $\mathrm{Cr}(\mathrm{CO})_{6}$ as a result of the photolysis of $\left(\eta^{6}\right.$-pyndine $) \mathrm{Cr}(\mathrm{CO})_{3} \mathrm{~m}$ the presence of CO , demonstrates that CO loss is not the only photochemical route accessible to this complex If this were the case, then no photochemical change would be apparent under these conditions The efficiency of this photochemical process is dependent on the nature of the solvent and the substituents $\alpha$-to the nitrogen on the pyridine ring From the steady state experiments (Section 22 2) it can be seen that photolysis m solvents with a Lewis base character (eg methanol or dimethylsulphoxide) results in a more efficient formation of the pentacarbonyl species and the free pyndine, than photolysis in cyclohexane, benzene, or acetonitnle This suggests that solvents play a role in stabilising the intermediate formed from the haptotropic rearrangement of the pyridıne ring The UV/vis flash photolysis experiments (Section 22 5) of the three compounds, demonstrate the effect of the substituents $\alpha$-to the nitrogen on the pyridine ring When hydrogen atoms are present at the 2 and 6 positions the pentacarbonyl species is formed However, bulky trimethylsilyl groups appear to hinder the production of the pentacarbonyl species The matrix isolation experiments
prove to be valuable in determining the nature of the intermediate formed via the ring slip process

The photochemistry of $\left(\eta^{6}\right.$-pyridine $) \operatorname{Cr}(\mathrm{CO})_{3}$, solated in a range of low temperature matrices exhibited a wavelength dependency Long wavelength irradiation ( $\lambda_{\text {exc }}=460 \mathrm{~nm}$ ) results in an haptotropic change of the pyndine ring coordination This was observed in a methane matrix, where the photoproduct possessed a three band pattern in the $v_{c o}$ region which corresponds to the number of CO ligands present Therefore no CO loss occurred, further supported by the absence of a band associated with free $\mathbf{C O}$ in the matrix, and the only photochemistry mvolved an hapticity change of the pyridine coordination The photochemistry of $\left(\eta^{6}\right.$-pyridine $) \mathrm{Cr}(\mathrm{CO})_{3}$ was investigated in a nitrogen matrx to elucidate the extent of this hapticity change The results suggested that an $\eta^{6}$ to $\eta^{1}$ haptotropic rearrangement occurred producing the 14 electron, doubly coordınatively unsaturated, ( $\eta^{1}$-pyndıne) $\mathrm{Cr}(\mathrm{CO})_{3}$, which subsequently coordinates to two $\mathrm{N}_{2}$ molecules This species, fac-( $\eta^{1}$-pyridine $)\left(\mathrm{N}_{2}\right)_{2} \mathrm{Cr}(\mathrm{CO})_{3}$ has two absorption bands in the $v_{\mathrm{N}-\mathrm{N}}$ region Following long wavelength irradiation $\left(\lambda_{\text {exc }}=460 \mathrm{~nm}\right)$ in a CO nch matrix ( $\eta^{1}-$ pyridine $) \mathrm{Cr}(\mathrm{CO})_{s}$ is predominantly formed, the tetracarbonyl compound is only produced followng subsequent photolysis of the pentacarbonyl species $\left(\lambda_{\text {exc }}=250 \mathrm{~nm}\right)$ Regeneration of the pentacarbonyl species occurs following white hight photolysis of the tetracarbonyl photoproduct Therefore the results from these two matrix environments suggests, that absorption of a visible photon, generates two vacant coordination sites on the metal, as a result of the $\eta^{6}$ to $\eta^{1}$ haptotropic rearrangement of the pyridine ring as depicted in Scheme 24


Shorter wavelength irradiation ( 308 nm ) of $\left(\eta^{6}\right.$-pynidine $) \mathrm{Cr}(\mathrm{CO})_{3}$ isolated in a $\mathrm{CH}_{4}$ matrix produced two photoproducts Again the $\left(\eta^{1}\right.$-pyridine $) \mathrm{Cr}(\mathrm{CO})_{3}$ species was observed, and also further bands at 1945 and $1888 \mathrm{~cm}^{-1}$ In these experiments a band assigned to free CO was also observed These bands were assigned to the CO loss product, because of the presence of free CO in the matrix Confirmation of this assignment was attained by a comparison of the shifts in the band positions, between the parent to the photoproduct, relative to the shifts observed for the $\left(\eta^{6}\right.$-benzene $) \mathrm{Cr}(\mathrm{CO})_{3}$ system The high energy band of the photoproduct is shifted by $56 \mathrm{~cm}^{1}$ compared to the parent compound in both the $\left(\eta^{6}\right.$-benzene $) \mathrm{Cr}(\mathrm{CO})_{3}$ and the $\left(\eta^{6}\right.$-pyndine $) \mathrm{Cr}(\mathrm{CO})_{3}$ systems Averaging the lower energy absorptions, results in a shift of $44 \mathrm{~cm}^{1}$ for the $\left(\eta^{6}-\right.$ pyndıne $) \mathrm{Cr}(\mathrm{CO})_{3}$ system, this is sımılar to the shift observed for the $\left(\eta^{6}\right.$-benzene $) \mathrm{Cr}(\mathrm{CO})_{3}$ system ( $38 \mathrm{~cm}^{-1}$ ) Therefore the photochemıstry of $\left(\eta^{6}\right.$-pyndıne $) \mathrm{Cr}(\mathrm{CO})_{3}$ exhibited a wavelength dependence when isolated in a range of matrices Long wavelength photolysis resulted in an haptotropic rearrangement of the pyridine ring, without any CO-loss, (which is the most common photoproduct observed upon photolysis of $\left(\eta^{6}\right.$-arene $) \mathrm{Cr}(\mathrm{CO})_{3}$ compounds), whereas shorter wavelength photolysis produced both ( $\eta^{6}$ pyridme $) \mathrm{Cr}(\mathrm{CO})_{2}(\mathrm{~S})$ and also the ring slip product

The matrix photochemistry of $\left(\eta^{6}-2,6-b i s(\right.$ trımethylsılyl $)$ pyridıne $) \mathrm{Cr}(\mathrm{CO})_{3}$ was examined to investigate the effect of the bulky substituents on the photochemistry of this system In contrast to the photochemistry of the unsubstituted analogue described above, no evidence for the production of a pentacarbonyl or hexacarbonyl species was obtained, following photolysis of the TMS derivative In fact when the compound was photolysed with an excitation wavelength of 460 nm , no photoproducts were observed in the IR spectrum Irradiation with $\lambda_{\text {exc }}=313 \mathrm{~nm}$ produced both the ring-slip and CO-loss species, although the absorption bands of the ring slip product were weak The


Figure 225
(The UV/vis spectrum of $\left(\eta^{6}-\right.$ pyridine) $\mathrm{Cr}(\mathrm{CO})_{3}$ in a $\mathrm{CH}_{4}$ matrix at $12 \mathrm{~K}(-)$, and the same matrix following irradiation 60 s with $\lambda_{\text {exc }}=308 \mathrm{~nm}(--)$ These spectra are not corrected for matrix scatter )
photoproducts underwent photoreversal upon white light photolysis, this may explain the lack of photoproducts observed following 460 nm irradiation, which may sımply reflect an efficient photoreversal of the ring-slip product Figure 225 shows that the photoproducts formed following 308 nm irradiation of $\left(\eta^{6}-\right.$ pyndine $) \mathrm{Cr}(\mathrm{CO})_{3}$ in a methane matrix, which exhibit a broad absorption in the visible region of the spectrum When the photochemistry of $\left(\eta^{6}-2,6-\mathrm{bis}(\right.$ trimethylsilyl)pyridıne $) \mathrm{Cr}(\mathrm{CO})_{3}$ is investigated in a $\mathrm{N}_{2}$ matrix, the predominant photoproduct is the dicarbonyl species, even following long wavelength irradiation However the process is very inefficient Weak bands were observed which could be assigned as the ring-slip product, however these bands were so weak it proved impossible to detect any $\nu_{\mathrm{N}-\mathrm{N}}$ bands associated with this species Therefore it is not possible to ascertain if the ring-slip product interacts with the $\mathrm{N}_{\mathbf{2}}$ matrix UV/vis flash photolysis experiments of $\left(\eta^{6}-2,6-\mathrm{bis}(\right.$ trimethylsilyl $)$ pyndine $) \mathrm{Cr}(\mathrm{CO})_{3}$ in acetonitnle provided no evidence for the presence of the pentacarbonyl species, unlike analogous expenments involving $\left(\eta^{6}\right.$-pyndıne $) \mathrm{Cr}(\mathrm{CO})_{3}$ and $\left(\eta^{6}\right.$-lutidıne $) \mathrm{Cr}(\mathrm{CO})_{3}$ Possibly indicatıng that, interaction of the environment with the two vacant coordination sites (produced by the ring slip process), is hindered by the two bulky substituents $\alpha$-to the nitrogen on the pyndine ring

In order to investigate the effect of these substituents, when the pyridine ring is bound to the metal via the $\eta^{1}$ interaction, the X-ray data obtaned (Chapter 3) for the ( $\eta^{6}-2,6-\mathrm{bis}($ trimethylsilyl $)$ pyndine $) \mathrm{Cr}(\mathrm{CO})_{3}$ compound was examıned Using the "UNLOCK MODEL" facility in Schakal $-92^{45}$ the chromium tricarbonyl unit was located $20 \AA$ from the nitrogen atom This is approximately where it would be followng an $\eta^{6}$ to
$\eta^{1}$ haptotropic shift Analysis of the close contacts for this onentation indicated that there was sufficient freedom to permit coordination of the pyridine nitrogen atom to the chromum tricarbonyl unit, but not to higher order carbonyl units or additional solvent or matrix molecules This explains why the presence of the trimethylsilyl groups $\alpha$-to the coordınating nitrogen atom prevents the formation of the metal pentacarbonyl or metal tetracarbonyl species

The photochemıstry of $\left(\eta^{6}\right.$-pyndıne $) \mathrm{Cr}(\mathrm{CO})_{3}$ was investigated in cyclohexane and montored by TRIR The results indicated that the primary photonduced process resulted in the production of the dicarbonyl species, only very weak bands associated with the pentacarbonyl species were subsequently observed Two plausible explanations are possible for this observation

Firstly, that the ring slip process is only observed as a result of secondary photolysis of the CO loss product If this were the case then the ring slip product would only be observed following steady state photolysis and not be observed following pulsed laser photolysis This explanation is discounted on two grounds, firstly the ring slip product is observed in the matrix experiments, following long wavelength photolysis, in the absence of any dicarbonyl species being present Secondly, photolysis of the dicarbonyl species results in regeneration of the parent species and not the nng-slip product

The second explanation for the difference between the matrix results and the TRIR results concur with the results obtained in the UV/vis flash photolysis experiments Monitoring the recovery of the depleted parent absorption at 330 nm
following pulse photolysis at 355 nm , demonstrated that the recovery followed a bıphasic time profile The faster of these recovenes, measured to occur within 40 ns , was assigned to the reversal of the ring-slip process This process would then occur within the nise-time of the TRIR equipment, preventing any observation of this process As the TRIR expenments were carned out in cyclohexane which, according to the UV/vis results, does not act as an efficient "trap" for the ring slip product, only a small amount of the pentacarbonyl species would be formed This leads to the conclusion that although the ning slip process accounts for a signficant proportion of the energy absorbed, it does not lead to discernble photoproducts in solution unless the $\eta^{1}$ species is "trapped" by a donor solvent

The $\mathrm{k}_{2}$ values obtained from TRIR and UV/vis flash photolysis experiments for Reaction 28 are the same withn expenmental error The TRIR results were obtaned by subtracting the $\mathrm{k}_{\text {obs }}$ in the absence of CO from that in the presence of 9 mm CO and dividing by 9 mm The UV/vis results were obtained by dıviding the $\mathrm{k}_{\text {obs }}$ by the concentration of CO at different concentrations of CO

$$
\left(\eta^{6} \text {-pyrıdıne }\right) \mathrm{Cr}(\mathrm{CO})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{12}\right)+\mathrm{CO} \xrightarrow{\mathrm{k}_{2}}\left(\eta^{6} \text {-pynidıne }\right) \mathrm{Cr}(\mathrm{CO})_{3}+\mathrm{C}_{6} \mathrm{H}_{12} \quad \text { Reaction } 28
$$

Table 25 contains a summary of the $\mathrm{k}_{2}$ values obtained from UV/vis flash photolysis experiments, for the reaction of the solvated complexes with CO It can be seen that the

| L | $\mathrm{k}_{2}\left(\mathrm{dm}^{3} \mathrm{M}^{-1} \mathrm{~s}^{1}\right)$ <br> [cyclohexane $( \pm 10 \%)]$ |
| :---: | :---: |
| pyridıne | $14 \times 10^{7}$ |
| 2,6-lutıdıne | $15 \times 10^{7}$ |
| 2,6-bis(trimethylsilyl)pyndıne | $16 \times 10^{8}$ |

Table 2.5
(The second order rate constants ( $k_{2}$ ) for the reaction of $\mathrm{LCr}(\mathrm{CO})_{2}(\mathrm{~S})$ with CO at 298 K$)$
rates for the reaction when the arene ligand is pyridine or 2,6-lutidine do not differ greatly However the rate for the reaction, when the substituents are the bulky trimethylsilyl groups, is one order of magnitude faster This increase in rate with increasing substitution on the arene ring has been observed previously ${ }^{46,40}$ Results obtained by Poliakoff et al ${ }^{45}$ indicated that substitution of the cyclopentadienyl ning changes the rate of reaction of the $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{R}_{5}\right) \mathrm{Mn}(\mathrm{CO})_{2}(n$-heptane $)$ intermediates with CO , where $\mathrm{R}=\mathrm{H}, \mathrm{CH}_{3}$, or $\mathrm{C}_{2} \mathrm{H}_{5}$ As the electronic factors for the ligands when R is $\mathrm{CH}_{3}$ or $\mathrm{C}_{2} \mathrm{H}_{5}$ are simular, it was suggested that the ongin of the variation in rates was steric rather than electronic As the trimethylsilyl ligands do differ electronically from the H and $\mathrm{CH}_{3}$ higands, both stenc and electronic factors may play a role in increasing the rate of the reaction of $\left(\eta^{6}-2,6-\right.$ bis(trimethylsilyl)pyridıne) $\operatorname{Cr}(\mathrm{CO})_{2}(\mathrm{~S})$

Scheme 25 summanses the overall photochemistry and subsequent thermal reactions of the $\left(\eta^{6}\right.$-pyndine $) \mathrm{Cr}(\mathrm{CO})_{3}$ compound The photochemistry of the $\left(\eta^{6}-2,6-\right.$ lutidine $) \mathrm{Cr}(\mathrm{CO})_{3}$ is very similar to the reactions represented in Scheme 25 However the photochemistry of the $\left(\eta^{6}-2,6-\mathrm{bis}(\right.$ tramethylsilyl $)$ pyridine $) \mathrm{Cr}(\mathrm{CO})_{3}$ does differ from the


Scheme 2.5
(CO ligands are represented thus -for clarity Reaction condittons (i) $\lambda_{\text {axc }}<360 \mathrm{~nm}$, Sol = cyclohexane, (il) $\lambda_{\text {exc }}>308 \mathrm{~nm}$, (ili) $\tau_{1 / 2}<40 \mathrm{~ns}$ in cyclohexane, (iv) Sol $=$ acetonitrile, benzene, cyclohexane, dimethylsulphoxide, or methanol, (v) CO saturated acetontrile, benzene, cyclohexane, or methanol, (vi) $\lambda_{\text {exc }}=460 \mathrm{~nm} N_{2}$ matrix, $(v i t) \lambda_{\text {exc }}=$ $460 \mathrm{~nm} 10 \% \mathrm{CO} \mathrm{m} \mathrm{CH}_{4}$ matrix, (vili) $\lambda_{\text {exc }}=250 \mathrm{~nm} \mathrm{10} \mathrm{\%} \mathrm{CO} \mathrm{mCH} \mathrm{matrix}_{4}$ (ix) $\lambda_{\text {exc }}>$ $530 \mathrm{~nm} 10 \% \mathrm{CO}_{\mathrm{m}} \mathrm{CH}_{4}$ matrix, (x) hv 10\% CO in $\mathrm{CH}_{4}$ matrix )
above scheme The bulky substituents $\alpha$-to the nitrogen on the pyridne ning play a role in hindering the ring slip process Therefore although this haptotropic rearrangement does occur, reactions (iv), (vi), or (vir) in Scheme 25 do not proceed for this complex The photochemistry of this complex is dominated by the extreme photoreversibility of the two photochemical pathways, resulting in a very photostable system compared to the other two complexes

## 227 Conclusions

Although the photochemistry of this system is relatively simple, a variety of techniques were required to elucidate the photochemical pathways of the $\left(\eta^{6}-\right.$ pyridine $) \mathrm{Cr}(\mathrm{CO})_{3}$ compound When the data collected from the dfferent techniques were compared, a complete picture of the photochemistry of this system was possible If however, only the TRIR technique was employed, an overly simplistic interpretation of the photochemical routes available to these compounds, would have been obtained

This study has demonstrated the importance of the rung slip process $m$ the photochemistry of the $\left(\eta^{6}\right.$-arene $) \mathrm{Cr}(\mathrm{CO})_{3}$ complexes The lone pair on the nitrogen has acted as a very efficient trap for this process, even when it is stencally hindered by substituents $\alpha$-to the nitrogen These results have also confirmed the importance of the solvent environment when investigating the photochemistry of organometallic compounds For instance when the photochemistry is carned out in a solvent with a strong Lewis base character, more of the products formed via the ring slip process can be observed However investigation in a solvent that is a weaker base, could result in this process being missed entrrely, as a result of its high reversibility

## REFERENCES

## (Chapter 2)

${ }^{1}$ Strohmeer W , von Hobe D , Z Naturforsch, Teil B, 1963, 18, 981
2 (a) Strohmeer W , Hellmann H, Z Naturforsch, Teil B, 1963, 18, 769
(b) Strohmeier W , Hellmann H, Chem Ber , 1963, 97, 2859
(c) Strohmeier W, Hellmann H, Chem Ber , 1964, 97, 1877
(d) Strohmerer W , Hellmann H, Chem Ber , 1965, 98, 1598
(e) Strohmeer W , Popp G , Guttenberger J F , Chem Ber , 1966, 99, 165
(f) Strohmener W , Guttenberger J F , Muller F J , Z Naturforsch , Teil B, 1967, 22, 1091
(e) Guttenberger J F , Strohmeier W , Chem Ber, 1967, 100, 2807
(a) Fischer E O , Kuzel P , Z Naturforsch, Tetl B, 1961, 16, 475
(b) Strohmeier W , von Hobe D , Z Naturforsch, Teil B, 1963, 18, 770

Z Naturforsch, Teil B, 1976, 31, 1091
6
Nasielskı J , Denısoff O ,J Organomet Chem 1975, 102, 65
(a) Trembovler V N , Baranetskaya N K , Fok N V , Zaslavskaya G B , Yavorskıı

B M , Setkına V N , J Organomet Chem, 1976, 117, 339
(b) Trembovler V N, Yavorskı B M , Setkına V N , Baranetskaya N K , Zaslavskaya G B , Evdokumova M G , Russ J Phys Chem, 1974, 3, 1231

8 Bamford C H, Al-Lamee K G, Konstantınov C J, J Chem Soc, Faraday Trans I, 1977, 73, 1406
${ }^{9}$ Rest A.J , Sodeau J R , Taylor D J , J Chem Soc , Dalton Trans I, 1978, 651
${ }^{10}$ Hill R S , Wrighton M S , Organometallics, 1987, 6, 632
${ }^{11}$ Wang W , Jin P , Lu Y , She Y , Fu K-J , J Phys Chem, 1992, 96, 1278
${ }^{2}$ Zheng Y, Wang W , Lin J , She Y , Fu K-J , J Phys Chem, 1992, 96, 9821
(a) Kubas G J , Ryan R R , Swanson B I ,Vergamın P J , Wasserman H J , J Am Chem Soc, 1984, 106, 451
(b) Kubas G J , Ryan R R , Wrobleskı D A , J Am Chem Soc , 1986, 108, 1339

14
Muetterties E L , Bleeke J R , Sievert A C , J Organomet Chem 1979, 178, 197
(a) Strohmeier W , Mittnacht H , Z Phys Chem, 1961, 29, 339
(b) Strohmeier W, Starnico E H , Z Phys Chem, 1963, 38, 315
(c) Strohmeier W , Muller M , Z Phys Chem, 1964, 40, 85

16
(a) Jackson W R , Nicholls B , Whiting M C , J Chem Soc 1960, 469
(b) Gracey D E F , Jackson W R , McMullen C H, Thompson N, $J$ Chem Soc (B), 1969, 1197
(a) Mahaffy C A L , Pauson P L , J Chem Res (S), 1979, 126
(b) Mahaffy C A L , Pauson P L , J Chem Res (M), 1979, 1752

18
Zımmerman C L , Shaner S L , Roth S A , Willeford B R , $J$ Chem Res (S), 1980, 108
${ }^{9}$ (a) Traylor T G , Stewart K , Organometallics, 1984, 3, 325

## References for Chapter 2

(b) Traylor T G , Stewart K , J Am Chem Soc , 1984, 106, 4445
(c) Traylor T G , Stewart K , Goldberg M J , Organometallics, 1986, 5, 2062
(d) Traylor T G , Stewart K , J Am Chem Soc , 1986, 108, 6977
(e) Traylor T G , Goldberg M J , J Am Chem Soc , 1987, 109, 3968
(f) Traylor T G , Goldberg M J , Organometallics, 1987, 6, 2413
(g) Traylor T G , Goldberg M J , Organometallics, 1987, 6, 2531
${ }^{20}$ Albnght T A , Hofmann P , Hoffmann R , Lillya C P , Dobosh P A.,
$J$ Am Chem Soc , 1983, 105, 3396
${ }^{21}$ Howell J A S , Ashford N F , Dixon D T , Kola J C , Organometallics, 1991, 10, 1852
22 "Orbital Interactions In Chemıstry" Albright T A , Burdett J K , Whangbo M-H , John Wiley \& Sons, New York 1985
${ }^{23}$ DiNardo N J , Avouns Ph , Demuth J E , J Chem Phys , 1984, 81, 2169
${ }^{24}$ Pannell K H , Kalsotra B L , Parkanyı C , J Heterocyclıc Chem, 1978, 15, 1057
25
(a) Timms P L , Angew Chem 1975, 87, 295
(b) Tımms P L , Angew Chem Int Ed, Engl, 1975, 14, 273
${ }^{26}$ (a) Biedermann H G , Ofele K , Tajtelbaum J , Z Naturforsch Teil B, 1976, 31, 321
(b) Biedermann H G , Ofele K, Schuhbaur N, Tajtelbaum J, Angew Chem Int Ed. Engl, 1975, 14, 639
${ }^{27}$ (a) Sımons L H , Rıley P E , Davis R E , Lagowskı J J , J Am Chem Soc, 1976, 98, 1044
(b) Ruley P E , Davis R E Inorg Chem , 1976, 15, 2735
${ }^{28}$ Fischer E O , Ofele K , J Organomet Chem, 1967, 8, 5

29
${ }^{30}$ (a) Chaudret B , Jalon F A , J Chem Soc , Chem Commun , 1988, 711
(b) Fish R H , Kım H -S , Fong R H , Organometallics, 1989, 8, 1375

31

Chem Ber, Teıl B, 1988, 121, 1983
32
(b) Wnghton M , Hammond G S , Gray H B , Inorg Chem , 1972, 11, 3122
${ }^{36}$ Boxhoorn G , Oskam A , Gibson E P , Narayanaswamy R , Rest A J , Inorg Chem, 1981, 20, 783
${ }^{37}$ Lees A J , J Am Chem Soc, 1982, 104, 2038

McGrath I M , Pryce M T , Organometallics, 1993, 12, 3127
42
Elschenbrorch C , Koch J , Kroker J , Wunsch M , Massa W , Baum G , Stork G ,

Davies S G , Shipton M R , J Chem Soc , Chem Commun ,1989, 995
Davies S G , Shipton M R , J Chem Soc , Perkin Trans 1, 1991, 501
Daves S G, Shipton M R , J Chem Soc , Perkin Trans 1, 1991, 757
(a) Wrghton M , Hammond G S , Gray H B , J Am Chem Soc, 1971, 93, 4336

Chun S , Getty E E , Lees A J , Inorg Chem, 1984, 23, 2155
Manuta D M , Lees A J , Inorg Chem, 1983, 22, 3825
McGrath I M , Ph D Thesis, Dublin City University, 1993

Creaven B S , George M W , Gnzburg A G , Hughes C , Kelly J M , Long C ,

George M W , Haward M T , Hamley P A , Hughes C , Johnson F P A , Popov V K ,

## References for Chapter 2

Polakoff M, J Am Chem Soc, 1993, 115, 2286
${ }^{43}$ Perutz R N, Turner J J , J Am Chem Soc , 1975, 75, 4791
${ }^{44}$ Makrancszy J , Megyery-Balog K , Rosz L , Patyt D,

Hungarıan J Indust Chem, 1976, 4, 269
${ }^{45}$ Keller E , SCHAKAL-92, A programme for Graphical representation of Molecular Structures, Knstallographisches Institut der Universitaet, Freiburg, Germany, 1992

46 Johnson F P A , George M W , Bagratashvil V N , Vereshchagina L N , Polakoff M, $J$ Chem Soc , Mendeleev Commun, 1991, 26

## CHAPTER 3

### 3.1 LITERATURE SURVEY

## $311 X$-ray single crystal diffraction

The essential feature of a crystal is its internal regulanty, not its external form Occasionally objects have gleaming faces, which are generally associated with crystals, and turn out to be amorphous Some crystals appear to lack any gleaming faces and actually prove to be crystalline Therefore the internal regulanty is the determining factor in identifying a crystal A crystal consists of a repetition of three dimensional blocks which are called the unit cells Each of these unt cells may contann one or more molecules, and all the unit cells are identical The shape of the unit cell is charactenstic of the material involved These shapes can be grouped into families, which are known as crystal systems

Diffraction methods for determining structural information are all based on the same theory The methods differ from each other mainly $m$ the source of the beam that stnkes the atoms The beam could consist of X-rays, neutrons or electrons and the each method has different advantages and restrictions When a beam of X-rays strikes two atoms, the scattered X-ray beams in a certain direction will be out of phase with each other to an extent that depends on the wavelength of the X-rays, the distance between the atoms, and their onentation This phase difference could ether result in the beams cancelling each other out, resulting in a reduction of the diffracted beam, or constructive interference resulting in a stronger beam

X-ray diffraction from single crystals is by far the most important of all the structural techniques, with about 10,000 structures being reported every year This technıque allows the precise measurement of bond angles and bond lengths The X-rays are diffracted by the electrons in the atoms, this results in one of the limitations of this technique If the molecule contans "heavy" atoms, ( $e$ e those of high atomic number containing many electrons), these atoms will influence the scattering more than the lighter atoms, thus possibly obscurng the presence of these smaller atoms Hydrogen atoms are particularly affected by this, thus the errors in the hydrogen positions are greater than the larger atoms Therefore the positions of the hydrogen atoms are often assumed The neutron diffraction technique can be employed to locate the hydrogen atoms, as the neutrons are diffracted by the nucle1, however a source of neutrons is very expensive therefore this technique is not as widely employed as the X-ray diffraction method Even with the lack of information of the lighter atoms, this method has been employed to analyse the structure of complicated crystals, contanning hundreds and thousands of atoms in the unt cell Since the location of an atom in the molecule, obtaned from X-ray diffraction, is an average of all the positions it occupied during the determination, the resultant structure is often presented in terms of thermal ellipsoids These are probability indicators of where the atoms are most likely to be found

## 312 Crystal structures obtained of related compounds

The three compounds examined in this study all contain a pyridine ring, or a substituted pyndine nng, bound in a $\eta^{6}$ fashion to a chromium atom The crystal
structure of $\operatorname{bis}\left(\eta^{6}-2,6\right.$-dımethylpyridine $) \mathrm{Cr}$ has been reported ${ }^{1}$ It was found that the crystals exhibited two different morphologies, one proved to be triclinic (Form A) and the other form was orthorhombic (Form B) In the triclinic form the chromum was found to be an inversion centre and the pyndıne nngs were stnctly parallel The orthorhombic form contans a $\mathrm{C}_{2}$ axis that is parallel to the nitrogen and the para carbon, and contains chromum The methyl groups are staggered with respect to the groups on the opposite ning

The geometrical features of the two morphologies are sumılar, the crystal to rung atom distances are $2136 \AA$ for both forms For companson the mean Cr-C distance in bis $\left(\eta^{6}\right.$-benzene $) \mathrm{Cr}$ is $2142 \AA^{2},{ }^{2}$ or $213 \AA^{3}$ and in ( $\eta^{6}$-benzene $) \mathrm{Cr}(\mathrm{CO})_{3}$ the distance has been reported as $2243 \AA^{4}$ or $2221 \AA^{5}$ The pyndine nngs were found to be planar in the triclinic form, but slightly boat shaped in the orthorhombic form, with the nitrogen and the para carbon being slightly distorted towards the Cr atom The methyl groups in the triclinic form lie out of the pyridine plane and away from the Cr , however no deviation from the pyridine plane is observed for the orthorhombic crystal

Elschenbroich et al ${ }^{6}$ substituted the pyridine rung at the 2 and 6 positions with the bulky trimethylsilyl groups, which prevented the nitrogen being $\sigma$ bound to the metal Therefore the pyridine ring could be complexed to chromum in an $\eta^{6}$ fashion and then the bulky substituents could be removed to produce the bis $\left(\eta^{6}\right.$-pyndine $) \mathrm{Cr}$ compound Crystals were grown of this compound, it was found that the average Cr to carbon (or nitrogen) in the ring was $2133 \AA$, which was very similar to the average distance observed in the bis ( $\eta^{6}$-2,6-dımethylpyndine) Cr complex The carbon to ntrogen
bond distance in "free" pyridine, obtained from microwave measurements, was reported to be $1.34 \AA,{ }^{7}$ in this compound it was found to be $1.38 \AA$. The carbon to carbon distances were the same, $1.40 \AA$ in both cases. The internal angles at the nitrogen and the two carbons meta to the nitrogen are practically the same $118^{\circ}$, the carbons at the 4 and 6 positions have angles of $\sim 121^{\circ}$, however the angle at the carbon at the 2 position is $123^{\circ}$, which is close to the value for free pyridine at this position, $124^{\circ}$.

Table 3.1 contains a summary of the bond lengths, and Table 3.2 contains the bond angles at the respective atoms, obtained for the pyridine ring in the three different compounds. The individual atoms are numbered as depicted in Figure 3.1.


Figure 3.1
(Numbering employed for the atoms in the pyridine ring in Table 3.1 and 3.2)

| Bonds | Free pyridine | $\operatorname{bis}\left(\eta^{6}-2,6\right.$-dimethylpyridine $) \mathrm{Cr}$ |  | bis $\left(\eta^{6}\right.$-pyridine $) \mathrm{Cr}$ |
| :--- | :---: | :---: | :---: | :---: |
|  |  | Form A | Form B |  |
| $\mathrm{N}^{2}-\mathrm{C}_{2}$ | $1.34(5)$ | $1.405(11)$ | $1.382(4)$ | $1.38(4)$ |
| $\mathrm{C}_{2}-\mathrm{C}_{3}$ | $1.39(5)$ | $1.386(13)$ | $1.390(6)$ | $1.40(4)$ |
| $\mathrm{C}_{3}-\mathrm{C}_{4}$ | $1.40(5)$ | $1.394(14)$ | $1.394(6)$ | $1.39(4)$ |
| $\mathrm{C}_{4}-\mathrm{C}_{5}$ | $1.40(5)$ | $1.423(13)$ | $1.413(6)$ | $1.40(4)$ |
| $\mathrm{C}_{5}-\mathrm{C}_{6}$ | $1.39(5)$ | $1.372(12)$ | $1.395(5)$ | $1.41(4)$ |
| $\mathrm{C}_{6}-\mathrm{N}$ | $1.34(5)$ | $1.373(11)$ | $1.378(4)$ | $1.38(4)$ |

## Table 3.1

(Bond lengths ( $A$ ) in the pyridine ring obtained from references 7,1 , and $\sigma$ )

| Bond Angles | Free pyndıne | bis( $\eta^{6}-2,6$-dımethylpyridıne)Cr |  | bis $\left(\eta^{6}\right.$-pyndıne)Cr |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Form A | Form B |  |
| N | 1167 | $1168(7)$ | $1169(2)$ | $1180(3)$ |
| $\mathrm{C}_{2}$ | 124 | $1210(8)$ | $1223(3)$ | $1234(3)$ |
| $\mathrm{C}_{3}$ | 1186 | $1223(8)$ | $1205(3)$ | $1173(3)$ |
| $\mathrm{C}_{4}$ | 1181 | $1158(9)$ | $1178(4)$ | $1215(3)$ |
| $\mathrm{C}_{5}$ | 1186 | $1211(8)$ | $1194(4)$ | $1187(3)$ |
| $\mathrm{C}_{6}$ | 124 | $1229(7)$ | $1228(3)$ | $1213(3)$ |

Table 3.2
(Bond angles ( ${ }^{\circ}$ ) at the relevant atom in the pyridine ring from references 7, 1, and 6)

### 3.2 RESULTS AND DISCUSSION

The full hists of data are presented in Appendix 3, including the tables
containing the crystal data, intensity measurements, and refinements for the three compounds

## 321 Data collection for $\left(\eta^{6}-\right.$ pyridine) $\mathrm{Cr}(\mathrm{CO})_{3}$

The compound $\left(\eta^{6}\right.$-pyridine $) \mathrm{Cr}(\mathrm{CO})_{3}$ was synthesised by the method described by Davies and Shipton ${ }^{8}$ and suitable crystals were grown from diethyl ether $/ n$ hexane solution Collection of the crystallographic data was carned out with an EnrafNonius CAD-4 duffractometer, at Trnuty College Dublin

A yellow crystal of dimensions $09 \times 08 \times 06 \mathrm{~mm}$ was selected for the molecular structure determination Mo K $\alpha$ radiation with $\lambda$ of $071069 \AA$ was used in the analysis of the compound at 293 K The number of reflections measured was 1589 , and the index range was $\mathrm{h}=-10$ to $9, \mathrm{k}=0$ to 7 , and $\mathrm{l}=0$ to 10 The unit cell was found to be monoclinic with unit cell dımensions of $\mathrm{a}=10752(5) \AA, \mathrm{b}=7652$ (5) $\AA$, and $\mathrm{c}=$ 11110 (2) $\AA$ and $\beta=1118$ (5) ${ }^{0}$ The density was calculated to be $1684 \mathrm{~g} \mathrm{~cm}^{-3}$ The space group $P 2_{1} / \mathrm{c}$ was established with $\mathrm{Z}=4$

Data reduction was carred out using NRCVAX DATRD $2^{9}$, programs that were employed to solve the structure NRCVAX SOLVER, and to refine the structure NRCVAX LSTSQ John N Low at the University of Dundee assisted in solving the structure of this compound Molecular graphics were obtaned by ORTEPH ${ }^{10}$ The hydrogen atoms were located on a difference map and then given normalised bond lengths of $108 \AA$ and allowed to nde on therr parent atoms The final calculated R values were $R=0044$ and $w R=0061$

## 322 Molecular structure of $\left(\eta^{6}-\right.$ pyridine $) \mathrm{Cr}(\mathrm{CO})_{3}$

Figure 32 contans a view of the molecule with atomic numbering scheme The atoms are depicted as displacement ellipsoids drawn at the $30 \%$ probability level Table 33 contains the fractional atomic coordinates and equivalent isotropic displacement parameters Table 34 contans selected geometnc parameters for $\left(\eta^{6}\right.$-pyrdine $) \mathrm{Cr}(\mathrm{CO})_{3}$ Table 35 contans a selected bond angles for the compound


Figure 3.2
(ORTEP diagram for the molecular structure of $\left(\eta^{6}-\right.$ pyridine $) \mathrm{Cr}(\mathrm{CO})_{3}$ Hydrogen atoms omitted for clarıty)

| Atom | $\mathbf{x}$ | $\mathbf{y}$ | $\mathbf{z}$ | $\mathbf{U}_{\text {eq }}$ |
| :---: | :---: | :---: | :---: | :---: |
| Cr 1 | $024257(5)$ | $002605(9)$ | $018428(5)$ | $00427(6)$ |
| C 1 | $03175(4)$ | $-00975(7)$ | $03383(5)$ | $0070(3)$ |
| $\mathbf{O} 1$ | $03647(3)$ | $-01745(6)$ | $04330(3)$ | $0111(3)$ |
| C 2 | $01775(4)$ | $-01758(6)$ | $01000(4)$ | $0058(3)$ |
| O 2 | $01344(3)$ | $-03074(5)$ | $00447(3)$ | $0089(3)$ |
| C 3 | $00883(5)$ | $00442(5)$ | $02178(4)$ | $0052(3)$ |
| O 3 | $-00076(4)$ | $00527(5)$ | $02408(3)$ | $0076(2)$ |
| N 11 | $03461(4)$ | $02752(5)$ | $02494(4)$ | $0072(3)$ |
| C 11 | $02300(5)$ | $03047(6)$ | $01449(6)$ | $0074(4)$ |
| C 12 | $01985(4)$ | $02192(6)$ | $00255(4)$ | $0064(3)$ |
| C 13 | $02871(4)$ | $01000(6)$ | $00121(4)$ | $0063(3)$ |
| C 14 | $04082(5)$ | $00677(6)$ | $01161(4)$ | $0061(3)$ |
| C 15 | $04319(4)$ | $01561(6)$ | $02304(4)$ | $0066(3)$ |

Table 33
(Fractional atomic coordinates and equivalent isotropic displacement parameters ( $\AA^{2}$ ), e sd's in brackets, $\mathrm{U}_{\mathrm{eq}}=(1 / 3) \Sigma_{1} \Sigma_{\mathrm{J}} \mathrm{U}_{1 \mathrm{j}} a_{1}{ }^{*} a_{\mathrm{J}}{ }^{*} \mathrm{a}_{1} \mathrm{a}_{\mathrm{j}}$ )

| Bond | Length $(\AA)$ | Bond |
| :---: | :---: | :---: |
| Crl-C1 | $1857(5)$ | Cl-O1 |
| Cr1-C2 | $1825(5)$ | Cength $(\AA)$ |
| Crl-C3 | $1835(5)$ | $1146(6)$ |
| Cr1-N11 | $2190(4)$ | C3-O3 |
| Crl-C11 | $2171(5)$ | N11-C11 |
| Cr1-C12 | $2213(4)$ | C11-C15 |
| Crl-C13 | $2211(4)$ | C12-C13 |
| Crl-C14 | $2202(4)$ | C13-C14 |
| Cr1-C15 | $2149(4)$ | C14-C15 |

Table 3.4
(Selected bond lengths for $\left(\eta^{6}-\right.$ pyridine) $\left.\mathrm{Cr}(\mathrm{CO})_{3}\right)$

| Bond angle | C $^{\circ}$ ) |
| :---: | :---: |
| C11-N11-C15 | $1153(7)$ |
| N11-C15-C14 | $1243(7)$ |
| C15-C14-C13 | $1180(7)$ |
| C14-C13-C12 | $1205(8)$ |
| C13-C12-C11 | $1179(8)$ |
| $\mathrm{C} 12-\mathrm{C} 11-\mathrm{N} 11$ | $1240(8)$ |

Table 3.5
(Internal bond angles in the pyridine ring for $\left(\eta^{6}-\right.$ pyridine) $\left.\mathrm{Cr}(\mathrm{CO})_{3}\right)$

## 323 Data collectıon for $\left(\eta^{6}\right.$-2,6-dimethylpyridine) $\mathrm{Cr}(\mathrm{CO})_{3}$

The compound $\left(\eta^{6}-2,6\right.$-dimethylpyndine $) \mathrm{Cr}(\mathrm{CO})_{3}$ was synthesised by the method described in Chapter 4 and suitable crystals were grown from diethyl ether $/ n$ hexane solution Collection of the crystallographic data was carned out with an EnrafNonius CAD-4 automatic diffractometer, at Tnnity College Dublin

A yellow crystal of dımensions $05 \times 05 \times 025 \mathrm{~mm}$ was selected for the molecular structure determination Mo $\mathrm{K} \alpha$ radiation with $\lambda$ of $071069 \AA$ was used in the analysis of the compound at room temperature The number of reflections measured was

1790, of which 940 were independent reflections The index range was $h=0$ to $13, k=-7$ to 7 , and $1=0$ to 14 The unit cell was found to be orthorhombic, with unit cell dımensions of $a=130308(13) \AA, b=62875(6) \AA$, and $c=127099(10) \AA$ The density was calculated to be $1551 \mathrm{~g} \mathrm{~cm}^{-3}$ The space group Pna2 ${ }_{1}$ was established with $\mathrm{Z}=4$

The structures were solved using the Patterson strategy of Shelxs-86 ${ }^{11}$ and refined by full matrix least squares on $\mathrm{F}^{2}$ using Shelxs- $93{ }^{12}$ Manupulations of the molecular structures were made using Schakal-92 ${ }^{13}$ The final calculated $R$ values were $\mathrm{R}=0024$ and $w \mathrm{R}^{2}=0060$

## 324 Molecular structure of $\left(\eta^{6}-2,6\right.$-dimethylpyridine $) \mathrm{Cr}(\mathrm{CO})_{3}$

Figure 33 contains an Ortep diagram of the molecular structure of $\left(\eta^{6}-2,6-\right.$ dimethylpyndine $) \mathrm{Cr}(\mathrm{CO})_{3}$, with the atomic numberng scheme employed in the following tables Table 36 contains the fractional atomic coordinates and equivalent isotropic displacement parameters Table 37 contans selected geometric parameters for $\left(\eta^{6}-2,6-\right.$ dimethylpyndine $) \mathrm{Cr}(\mathrm{CO})_{3}$ Table 38 contans a selected bond angles for the compound


Figure 3.3
(ORTEP diagram for the molecular structure of $\left(\eta^{\dot{6}} \text {-dimethylpyridine)Cr(CO) }\right)_{3}$
Hydrogen atoms omitted for clarity )

| Atom | $\mathbf{x}$ | $\boldsymbol{y}$ | $\mathbf{z}$ | $\mathbf{U}_{\text {eq }}$ |
| :---: | :---: | :---: | :---: | :---: |
| Crl | $07418(1)$ | $01403(1)$ | $02839(5)$ | $0028(1)$ |
| N1 | $08652(3)$ | $-01031(6)$ | $02811(16)$ | $0036(1)$ |
| O1 | $05959(11)$ | $-00471(23)$ | $01269(8)$ | $0066(4)$ |
| O2 | $06171(4)$ | $05429(7)$ | $02759(22)$ | $0082(2)$ |
| O3 | $05951(9)$ | $-00309(21)$ | $04419(8)$ | $0054(3)$ |
| C2 | $08723(13)$ | $00109(28)$ | $01924(9)$ | $0039(4)$ |
| C3 | $08808(18)$ | $02265(29)$ | $01923(12)$ | $0040(4)$ |
| C4 | $08844(4)$ | $03395(9)$ | $02787(20)$ | $0042(2)$ |
| C5 | $08830(15)$ | $02287(30)$ | $03769(12)$ | $0040(4)$ |
| C6 | $08699(13)$ | $00026(20)$ | $03723(10)$ | $0035(3)$ |
| C7 | $08654(21)$ | $-01261(32)$ | $00963(16)$ | $0075(6)$ |
| C8 | $08733(18)$ | $-01228(24)$ | $04689(13)$ | $0051(4)$ |
| C9 | $06492(13)$ | $00308(27)$ | $01870(11)$ | $0038(4)$ |
| C10 | $06654(4)$ | $03877(8)$ | $02830(22)$ | $0047(2)$ |
| C11 | $06551(13)$ | $00310(28)$ | $03818(10)$ | $0037(4)$ |

Table 36
(Fractional atomic coordinates and equivalent isotropic displacement parameters ( $\AA^{2}$ ),

$$
\text { e s d's in brackets, } \left.\mathrm{U}_{\mathrm{eq}}=(1 / 3) \Sigma_{\mathrm{i}} \Sigma_{\mathrm{j}} \mathrm{U}_{\mathrm{y}} a_{1} * a_{\mathrm{j}}^{*} \mathrm{a}_{1} \mathrm{a}_{\mathrm{j}}\right)
$$

| Bond | Length ( $\AA$ ) | Bond |
| :---: | :---: | :---: |
| Crl-C11 | $1820(2)$ | N1-C2 |
| Crl-C10 | $1847(5)$ | O1-C9 |
| Cr1-C9 | $1860(2)$ | O2-C10 |
| Cr1-C6 | $2191(14)$ | O3-C11 |
| Cr1-C2 | $2210(2)$ | C2-C3 |
| Crl-N1 | $2220(4)$ | $1140(2)$ |
| Cr1-C4 | $2242(5)$ | C2-C7 |
| Cr1-C5 | $2260(2)$ | C3-C4 |
| Cr1-C3 | $2220(2)$ | C4-C5 |
| N1-C6 | $1340(2)$ | C5-C6 |

Table 3.7
(Selected bond lengths for ( $\eta^{6}-2,6$ dimethylpyridine) $\mathrm{Cr}(\mathrm{CO})_{3}$ )

| Bond angle | $\left({ }^{\circ}\right)$ |
| :---: | :---: |
| C6-N1-C2 | $1174(5)$ |
| N1-C2-C3 | $1227(12)$ |
| C2-C3-C4 | $1229(12)$ |
| C3-C4-C5 | $1179(5)$ |
| C4-C5-C6 | $1168(11)$ |
| C5-C6-N1 | $1222(10)$ |

Table 3.8
(Internal bond angles in the pyridine ring for ( $\eta^{6}$-dimethylpyridine) $\left.\mathrm{Cr}(\mathrm{CO})_{3}\right)$

## 325 Data collection for ( $\eta^{6}-2,6$-bis(trrmethylsilyl)pyridine) $\mathrm{Cr}(\mathrm{CO})_{3}$

The compound $\left(\eta^{6}-2,6-\mathrm{bis}(\right.$ tramethylsilyl $)$ pyndine $) \mathrm{Cr}(\mathrm{CO})_{3}$ was synthesised by the method described by Davies and Shipton ${ }^{8}$ and suitable crystals were grown from diethyl ether $/ n$-hexane solution Collection of the crystallographic data was carried out with an Enraf-Nomus CAD-4 automatic diffractometer, at Trinty College Dublin

A yellow crystal of dimensions $04 \times 04 \times 03 \mathrm{~mm}$ was selected for the molecular structure determination Mo $\mathrm{K} \alpha$ radıation with $\lambda$ of $071069 \AA$ was used in the analysis of the compound at room temperature The number of reflections measured was 3326, of which 3096 were independent reflections The index range was $h=0$ to $8, k=0$ to 23 , and $1=-11$ to 11 The unit cell was found to be monochnic, with unit cell dimensions of $\mathrm{a}=77088$ (6) $\AA, \mathrm{b}=230928$ (9) $\AA$, and $\mathrm{c}=104365$ (8) $\AA$ The density was calculated to be $1296 \mathrm{~g} \mathrm{~cm}^{-3}$ The space group $\mathrm{P} 2_{1} / \mathrm{n}$ was established with $\mathrm{Z}=4$

The structures were solved using the Patterson strategy of Shelxs- $86^{11}$ and refined by full matrix least squares on $\mathrm{F}^{2}$ using Shelxs- $93{ }^{12}$ Manıpulations of the molecular structures were made using Schakal-92 ${ }^{13}$ The final calculated $R$ values were $R$ $=0032$ and $\mathrm{wR}^{2}=0078$

## 326 Molecular structure of $\left(\eta^{6}-2,6\right.$-bis(trimethylsslyl)pyridine) $\mathrm{Cr}(\mathrm{CO})_{3}$

Figure 34 contains an Ortep diagram of the molecular structure of $\left(\eta^{6}-2,6-\right.$ bis(trimethylsilyl)pyridine) $\operatorname{Cr}(\mathrm{CO})_{3}$, with the atomic numbering scheme employed in the following tables Table 39 contans the fractional atomic coordinates and equivalent isotropic displacement parameters Table 310 contains selected geometnc parameters for $\left(\eta^{6}-\mathrm{bıs}\left(\right.\right.$ trimethylsilyl)pyndıne) $\mathrm{Cr}(\mathrm{CO})_{3}$ Table 311 contains a selected bond angles for the compound


Figure 3.4
(ORIEP diagram for the molecular structure of $\left(\eta^{6}\right.$-bis(trimethylsilyl)pyridine) $\mathrm{Cr}(\mathrm{CO})_{3}$ Hydrogen atoms omitted for clarity)

| Atom | x | $y$ | z | $\mathrm{U}_{\text {eq }}$ |
| :---: | :---: | :---: | :---: | :---: |
| Cr 1 | 02487 (1) | 01253 (1) | 00330 (1) | 0037 (1) |
| S11 | 01267 (1) | 02731 (1) | 01137 (1) | 0040 (1) |
| S12 | 01739 (1) | 00601 (1) | 03521 (1) | 0045 (1) |
| N1 | 01911 (3) | 01633 (1) | 02140 (2) | 0035 (1) |
| 01 | 01284 (4) | 01859 (1) | -02156 (2) | 0080 (1) |
| 02 | 03895 (4) | 00346 (1) | -0 1308 (3) | 0095 (1) |
| 03 | -0 1025 (4) | 00684 (1) | -00135 (3) | 0095 (1) |
| C2 | 02651 (3) | 02051 (1) | 01458 (2) | 0035 (1) |
| C3 | 04298 (4) | 01956 (1) | 01029 (3) | 0043 (1) |
| C4 | 05165 (4) | 01435 (1) | 01267 (3) | 0047 (1) |
| C5 | 04405 (4) | 01012 (1) | 01987 (3) | 0045 (1) |
| C6 | 02796 (4) | 01113 (1) | 02437 (2) | 0037 (1) |
| C9 | 01762 (4) | 01631 (1) | -0 1190 (3) | 0051 (1) |
| C10 | 03363 (5) | 00691 (2) | -00671 (3) | 0058 (1) |
| C11 | 00337 (4) | 00889 (2) | 00071 (3) | 0055 (1) |
| C12 | 02188 (6) | 03162 (2) | -00122 (4) | 0083 (1) |
| C13 | 01375 (5) | 03162 (2) | 02646 (3) | 0066 (1) |
| C14 | -0 1011 (4) | 02496 (2) | 00619 (4) | 0073 (1) |
| C15 | 02329 (6) | 00874 (2) | 05192 (3) | 0075 (1) |
| C16 | -0 0671 (5) | 00623 (2) | 03100 (4) | 0072 (1) |
| C17 | 02617 (6) | -00139 (2) | 03339 (4) | 0083 (1) |

Table 3.9
(Fractonal atomic coordinates and equivalent isotropic displacement parameters ( $A^{2}$ ), e s d's in brackets, $\left.\mathrm{U}_{\mathrm{eq}}=(1 / 3) \Sigma_{1} \Sigma_{j} \mathrm{U}_{1 \mathrm{j}} a_{1}{ }^{*} a_{j}{ }^{*} \mathrm{a}_{1} \mathrm{a}_{\mathrm{j}}\right)$

| Bond | Length $(\boldsymbol{\AA})$ | Bond | Length $(\mathbb{\AA})$ |
| :---: | :---: | :---: | :---: |
| Cr1-C11 | $1846(3)$ | N1-C2 | $1367(3)$ |
| Cr1-C10 | $1846(3)$ | O1-C9 | $1155(4)$ |
| Cr1-C9 | $1835(3)$ | O2-C10 | $1146(4)$ |
| Cr1-C6 | $2205(3)$ | O3-C11 | $1147(4)$ |
| Crl-C2 | $2183(3)$ | C2-C3 | $1416(4)$ |
| Cr1-N1 | $2180(2)$ | C2-S11 | $1904(3)$ |
| Cr1-C4 | $2209(3)$ | C3-C4 | $1382(4)$ |
| Cr1-C5 | $2198(3)$ | C4-C5 | $1405(4)$ |
| Cr1-C3 | $2204(3)$ | C5-C6 | $1400(4)$ |
| N1-C6 | $1397(3)$ | C6-S12 | $1890(3)$ |

## Table 310

(Selected bond lengths for $\left(\eta^{6}-2,6\right.$ bis(trimethylstlyl)pyridine) $\left.\mathrm{Cr}(\mathrm{CO})_{3}\right)$

| Bond angle | $\left({ }^{\circ}\right)$ |
| :---: | :---: |
| C6-N1-C2 | $1192(2)$ |
| N1-C2-C3 | $1203(3)$ |
| C2-C3-C4 | $1207(3)$ |
| C3-C4-C5 | $1184(3)$ |
| C4-C5-C6 | $1208(3)$ |
| C5-C6-N1 | $1198(2)$ |

Table 3.11
(Internal bond angles in the pyridine ring for ( $\eta^{6}$-bis(trımethylsilyl)pyridine)Cr(CO) ${ }_{3}$ )

## 327 Discussion

In all three complexes the chromium atom is stuated directly below the arene ring centroid, the arene ning is essentally planar, and the chromumtricarbonyl unit is coordinated $v i a$ the $\pi$ system of the heteroarene ring The mean chromum to ring-atom distance for $\left(\eta^{6}\right.$-pyridine $) \operatorname{Cr}(\mathrm{CO})_{3}(1),\left(\eta^{6}-2,6\right.$-dimethylpyndine $) \mathrm{Cr}(\mathrm{CO})_{3}(2)$, and $\left(\eta^{6}-\right.$ bis(trmethylsılyl)pyridıne) $\mathrm{Cr}(\mathrm{CO})_{3}(3)$ is 2189,2224 , and $2196 \AA$ respectıvely These distances are longer then the distances reported for the $\operatorname{bis}\left(\eta^{6}-\mathrm{pyridine}\right) \mathrm{Cr}$ and the $\mathrm{bis}\left(\eta^{6}-\right.$ 2,6-dımethylpyndine) Cr compounds, 2133 and $2136 \AA$, but shorter than the correspondıng distances for the $\left(\eta^{6}\right.$-benzene $) \mathrm{Cr}(\mathrm{CO})_{3}$ complex $2242 \AA$

The conformation of the tricarbonyl unit in compound 3 is staggered, which is the more common conformation observed for $\left(\eta^{6}\right.$-arene $) \mathrm{Cr}(\mathrm{CO})_{3}$ complexes ${ }^{14}$ However, compounds $\mathbf{1}$ and $\mathbf{2}$ adopt an eclipsed conformation, where in compound $\mathbf{1}$ the carbonyl groups eclipse C11, C13 and C15, and in compound 2 the carbonyl groups echpse C2, C4, and C6 This results in the carbonyl group C10-O2 being trans to the nitrogen in complex 2, and the carbonyl group $\mathbf{C 2}-\mathrm{O} 2$ is trans to the nitrogen in compound 1


Figure 3.5
(Pyridine ring with atom numbering employed for Table 3 12)

|  | Angles at the respective atoms m the arene nng $0^{\circ}{ }^{\circ}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | free pyndıne | Compound 1 | Compound 2 | Compound 3 |
|  | 1167 | $1153(7)$ | $1174(5)$ | $1192(2)$ |
| C2 | 124 | $1243(7)$ | $1227(12)$ | $1203(3)$ |
| C3 | 1186 | $1180(7)$ | $1229(12)$ | $1207(3)$ |
| C4 | 1181 | $1205(8)$ | $1179(5)$ | $1184(3)$ |
| C5 | 1186 | $1179(8)$ | $1168(11)$ | $1208(3)$ |
| C6 | 124 | $1240(8)$ | $1222(10)$ | $1198(2)$ |

Table 3.12
(Bond angles in the pyridine ring for the three complexes in this study and free pyridine)

It can be seen from Table 312 that upon substitution at the pyridine ring the angle at the nitrogen atom becomes more obtuse and the two angles at the C2 and C6 become more acute The angles for the uncomplexed 2,6-dimethylpyndme and 2,6bis(trımethylsilyl)pyridıne are not known therefore the effect of coordınation of the chromumtricarbonyl unit cannot be obtained However examination of the differences between the free and complexed pyndine show that a slight distortion of the pyridine ning occurs Comparison of the bond angles in the bis $\left(\eta^{6}-2,6\right.$-dimethylpyndine $) \mathrm{Cr}$ and
compound 2 shows that the angles are very simular with only a slight distortion observed at C4 and C5

|  | Bond lengths in the arene ring $(\AA)$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | free pyndine $^{7}$ | Compound 1 | Compound 2 | Compound 3 |
| N-C2 | $1340(5)$ | $1371(7)$ | $1340(2)$ | $1367(3)$ |
| C2-C3 | $1390(5)$ | $1404(8)$ | $1360(3)$ | $1416(4)$ |
| C3-C4 | $1400(5)$ | $1366(7)$ | $1310(3)$ | $1382(4)$ |
| C4-C5 | $1400(5)$ | $1405(6)$ | $1430(3)$ | $1405(4)$ |
| C5-C6 | $1390(5)$ | $1376(7)$ | $1430(2)$ | $1400(4)$ |
| C6-N | $1340(5)$ | $1368(7)$ | $1340(2)$ | $1397(3)$ |

Table 3.13
Bond lengths in the pyridine ring for the three complexes in this study, and "free" pyrıdine for comparison)

The bond lengths in compounds $\mathbf{1}$ and $\mathbf{3}$ appear to be very similar, however in compound 2 the first three bond lengths in Table 313 are significantly shorter than the other two compounds A slight distortion of the pyridine ning can be seen as a result of complexation with the chromumtricarbonyl unit, compared with the free pyndine Companson of the bond lengths observed for the bis( $\eta^{6}-2,6$-dımethylpyndme $) \mathrm{Cr}$ compound (Table 3 1) to the $\left(\eta^{6}-2,6\right.$-dımethylpyridine) $\mathrm{Cr}(\mathrm{CO})_{3}$ complex shows a sıgnificant variation in lengths of all the bonds

## 328 Conclusions

The three complexes all possess planar arene nings, with the chromum atom situated directly below the arene ning $\operatorname{The}\left(\eta^{6}\right.$-bis(tnmethylsilyl)pyndine) $\operatorname{Cr}(\mathrm{CO})_{3}$ compound is the only one to exhibit the common staggered conformation, where the carbonyl groups echpse the ring bond centres The conformation of the other two complexes is the more unusual eclipsed form A slight distortion of the pyridine ring can be observed upon complexation to the chromiumtncarbonyl unit

## REFERENCES

## (Chapter 3)

${ }^{1}$ (a) Simons L H , Ruley P E , Davis R E , Lagowsk J J , J Am Chem Soc, 1976, 98, 1044
(b) Ruley P E , Davis R E , Inorg Chem , 1976, 15, 2736
${ }^{2}$ Keulen E , Jellınek F , J Organomet Chem, 1966, 5, 490
${ }^{3}$ Ibers J A , J Phys Chem 1964, 40, 3129
${ }^{4}$ Rees B , Coppens P , Acta Crystallogr , Sect B, 1973, 29, 2516
${ }^{5}$ Balley M F , Dahl L F , Inorg Chem , 1965, 4, 1314
${ }^{6}$ Elschenbroich C , Koch J , Kroker J , Wunsch M , Massa W , Baum G , Stork G , Chem Ber, Teil A, 1988, 121, 1983
${ }^{7}$ Bak B , Hansen L , Rastrup-Andersen J , J Chem Phys, 1954, 22, 2013
${ }^{8}$ Davies S G , Shipton M R , J Chem Soc , Perkin Trans 1, 1991, 501
${ }^{9}$ Gabe E J , Le Page Y , Charland J,-P , Lee F L , White P S , J Appl Cryst, 1989, 22, 384
${ }^{10}$ Johnson C K , ORTEPH Report ORNL-5138 Oak Rıdge Natıonal Laboratory, Tennessee, USA
${ }^{11}$ Sheldrick G M SHELXS-86, Programme for Crystal Structure Determination, Acta Cryst, 1990, A46, 467
${ }^{12}$ Sheldrick G M SHELXS-93, Programme for Crystal Structure Refinement, University

## References for Chapter 3

of Gobttingen, Gottingen, Germany 1993
${ }^{13}$ Keller E SCHAKAL-92, A programme for Graphical representation of Molecular Structures, Kristallographisches Institut der Unıversitaet, Freiburg, Germany 1992

14 Meutterties E L , Bleeke J P , Wucherer E J , Albright T A , Chem Rev, 1982, 82, 499

## CHAPTER 4

## 4 EXPERIMENTAL

## 41 Materials

The following solvents were of spectroscopic grade and were used without further purfication cyclohexane, decane, dodecane, heptane, methylcyclohexane (Aldrich) Argon and carbon monoxide was supphed by arr products and IIG respectively Chromum hexacarbonyl, molybendum hexacarbonyl, and tungsten hexacarbonyl (Aldrich) were all used without further punfication Tetrahydrofuran was dried over sodium and benzophenone, and stored under argon and sodium Diethyl ether, petroleum ether ( $40^{\circ}$ $60^{\circ}$ ) and 2,6-lutidine were received from Aldrich and used without further punfication Diethyl ether was dred and stored over sodıum for the synthesis of $\left(\eta^{6}-\right.$ bis(trımethylsılyl)pyndıne) $\operatorname{Cr}(\mathrm{CO})_{3} \quad$ Alumınıum oxide was actıvated neutral, standard grade ca 150 mesh (Aldnch) The following materials were used without further punfication 2,6-dibromopyndine, butyllithrum 25 M solution in hexanes, trmethylsilyl chlonde, mill- Q water, and tetrabutylammonium fluonde (Aldnch) 1,4-Dioxan was dned over sodium and benzophenone and filtered through activated alumina prior to use

## 42 Equipment

Infrared spectra were recorded on a Perkın Elmer 983-G, a Nicolet 205
FTIR spectrometer, or a Perkin Elmer 2000 FTIR spectrometer using a 01 mm sodium chlonde solution cell UV/vis spectra were recorded on a Hewlett Packard 8452A
photodıode array spectrometer usmg a quartz cell of 1 cm pathlength NMR measurements were performed on a Bruker model AC 400 MHz spectrometer

## 43 Synthesis of $\left(\eta^{6}-2,6\right.$-bis $\left(\right.$ trimethylsllyl)pyridine) $\mathrm{Cr}(\mathrm{CO})_{3}$

This compound was synthesised according to the method described by Davies and Shipton ${ }^{1}$ 2,6-dibromopyridine ( $125 \mathrm{~g}, 525 \mathrm{mmol}$ ) was added as a solid to butyllithum ( $50 \mathrm{~mL}, 110 \mathrm{mmol}$ ) in dry diethyl ether ( 100 mL ) under nitrogen at $-78^{\circ} \mathrm{C}$, the mixture was stırred at this temperature for 15 hours Trimethylsilyl chlonde ( 12 mL , 110 mmol ) in dry diethyl ether ( 10 mL ) was added dropwise, the mixture was allowed to warm to room temperature, and the stırring was continued overnight The resulting light tan suspension was filtered through Celite and the solvent was evaporated to give a yellow oll Distillation of this oll (94-96 ${ }^{\circ} \mathrm{C}$ ), under reduced pressure, produced a colourless oll The ${ }^{1} \mathrm{H}$ NMR data showed a peak at 033 ppm assigned to the 18 methyl hydrogens, and a multıplet at $744-736 \mathrm{ppm}$ assigned to the three aromatic hydrogens These values are simular to the values reported in the literature

2,6-Bis(trimethylsilyl)pyridme ( 1 g ) was placed m a two necked round bottom flask and was degassed with argon Chromum hexacarbonyl ( $\sim 18 \mathrm{~g}$ ) and filtered 1,4-dioxan ( 25 mL ) was added This solution was further degassed prior to being heated to reflux The reaction was heated to its reflux temperature under argon for 24-30 hours, until brown/green precipitate was produced The mixture was allowed to cool and the solution was decanted from the unreacted chromum hexacarbonyl It was then
filtered through alumina and evaporated to produce a yellow oll This oil was then chromatographed on a flash silica column (eluent, petroleum ether diethyl ether, 151 , $\mathrm{v} / \mathrm{v}$ ), with positive argon pressure, resulting m a yellow oil, that under prolonged pumping produced an amber crystalline solid The spectroscopic information for this compound is presented m Table 21

## 44 Synthesis of ( $\eta^{6}-$ pyridine) $\mathrm{Cr}(\mathrm{CO})_{3}$

To $\left(\eta^{6}-2,6-b ı s(\right.$ trımethylsilyl $)$ pyndıne $) \mathrm{Cr}(\mathrm{CO})_{3}(120 \mathrm{mg})$ in dry THF (20 mL ) at $-78{ }^{\circ} \mathrm{C}$, was added tetrabutylammonium fluonde ( 240 mg ) and 3 drops of mill- Q water The mixture was stirred, protected from the light, warmed to room temperature and stırred for 15 hours Removal of the solvent gave a dark ol that was immediately flash chromatographed (eluent, drethyl ether) with positive argon pressure, to produce a yellow solution When the solvent was evaporated a yellow crystalline product was formed, spectroscopic information can be observed in Table 21

## 45 Synthesis of $\left(\eta^{6}-2,6\right.$-dimethylpyridine) $\mathrm{Cr}(\mathrm{CO})_{3}$

This compound was synthesised in a sımilar way to described by Mahaffy et $\underline{a l}^{2}$ with minor alterations Chromum hexacarbonyl ( 06 g ) was added as a solid to dry THF ( 10 mL ) and 2,6-dımethylpyridıne ( 50 mL ) The reaction mıxture was degassed for 05 hour with argon, and was then heated to reflux temperature for $\sim 15$ hours The reaction mixture was allowed to cool, the solution was decanted from the unreacted
chromum hexacarbonyl and the solvent evaporated under reduced pressure The resulting yeilow solid was punfied by column chromatography on an alumina column (eluent, petroleum ether dethyl ether, $73, \mathrm{v} / \mathrm{v}$ ) Spectroscopic information for this complex is presented in Table 21

## 46 Attempted synthesis of molybendum and tungsten analogues

In order to investigate if photochemical haptotropic rearrangements could also be observed for the normally photochemically inert tungsten system, the synthesis of $\left(\eta^{6}-2,6\right.$-dımethylpyridıne $) \mathrm{W}(\mathrm{CO})_{3}$ and $\left(\eta^{6}-2,6\right.$-bis(trimethylsilyl)pyridine) $\mathrm{W}(\mathrm{CO})_{3}$ was attempted Direct complexation of $\mathrm{Mo}(\mathrm{CO})_{6}$ or $\mathrm{W}(\mathrm{CO})_{6}$ with 2,6-dımethylpyndine resulted in the production of two complexes However upon separation of these complexes it transpired that, one of these products was the pentacarbonyl, as was expected, however the second band was not a tricarbonyl species, it could possibly have been the tetracarbonyl species Further heating resulted in degradation of the products The complex $\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{~W}(\mathrm{CO})_{3}$ was formed to act as a precursor, it was refluxed in 2,6dımethylpyridıne ( 4 h ), in a variation of the method described by King and Fronzagha ${ }^{3}$ However this still resulted in the 2,6-dimethylpyridine bonding to the metal in the $\sigma$ fashon It was decided that possibly 2,6-dımethylpynidine did not offer enough stenc hindrance, therefore the ligand 2,6-bis(trimethylsilyl)pyndine was employed However, even with this increased stenc hindrance the preferred mode of bonding was via a $\sigma$ interaction, producing the pentacarbonyl species

## 47 Laser flash photolysis

### 47.1 Sample preparation for laser flash photolysis with UV/vis detection.

Samples were prepared in a specially designed degassing bulb that was attached to a fluorescence cell This cell was cleaned thoroughly by steeping in chromic acid for at least 24 hours pror to use All the samples were prepared such that the absorbance values were between 05 and 15 absorbance unts at 355 nm (excitation wavelength) The concentration could then be calculated from previously calculated extinction coefficients All the absorbance readings were recorded on the UV/vis spectrometer, and any changes in the ground state absorption spectrum was also recorded durng the expenment The samples were then degassed by three cycles of freeze-pumpthaw procedure to $10^{-3}$ Torr, followed by a substantal hquid pump phase in order to remove any impunttes eg water Either argon, or a required pressure of carbon monoxide, was then added to the cell to check to reversibility of the processes being investigated The concentration of CO was calculated to be $90 \times 10^{-3} \mathrm{M}$ in cyclohexane, $85 \times 10^{-3} \mathrm{M}$ in $n$-decane, $68 \times 10^{-3} \mathrm{M}$ in $n$-dodecane, and $12 \times 10^{2} \mathrm{M}$ in $n$-heptane, at one atmosphere of $\mathrm{CO}^{4}$ The concentration in methylcyclohexane was taken as the same as cyclohexane, $90 \times 10^{3} \mathrm{M}$ Durng the preparation the samples were protected from light


Figure 4.1
(A schematic diagram of the laser system used in the laser flash
photolysis experiments with UV/vis detection)

### 4.7.2 Laser flash photolysis with UV/vis detector apparatus

A schematic diagram of the flash photolysis instrumentation is presented in
Figure 41 The excitation source in a Nd-YAG (neodynium yttrium aluminum garnet) laser which operates at 1064 nm , but can be frequency doubled, tripled, or quadrupled to generate a second, third, or fourth harmonic frequency at 532,355 , or 266 nm respectively The power of the laser can be vaned by applying different voltages across the amplifier flash tube The pulse time is approximately 10 ns At 355 nm , which is the excitation wavelength employed in this study, the energy is typically 45 mJ per pulse The circular laser pulse is directed via two Pellin-Broca prisms onto the sample cuvette When the pulse passes through the power meter situated after the first prism, but before the sample cuvette, the oscilloscope is triggered The monitonng light source is an air cooled 275 watt Xenon arc lamp arranged at nght angles to the laser beam The monitonng beam passes through the sample and is directed to the entrance slit of an Appled Photophysics $\mathrm{f} / 3$ monochromator $v z a$ a crrcular lense UV/vis filters were employed ( $\lambda>410 \mathrm{~nm}$ or $\lambda>345 \mathrm{~nm}$ ) between the montoring source and the sample to prevent excessive sample photodegradation A Hamatsu five stage photomultipher operating at 850 V was placed at the exit slit of the monochromator The aborbance changes were measured by a transient digitiser (oscilloscope) via a variable load resistor The dggitiser, a Hewlett Packard HP 54510A oscilloscope was interfaced to an Olivett PCS 286 microcomputer via an IEEE bus All signals were stored on floppy discs

A typical transient sıgnal was obtained by the following procedure An $\mathrm{I}_{0}$ was recorded, which corresponds to the amount of light that passes through the solution
before the laser flash It was measured by obtanning the difference m mV of the amount of light transmitted by the solution, when the shutter of the monitoning beam is opened and then closed Therefore a typical trace depicts the change in voltage with time, which corresponds to the time resolved absorbance The resultant transient signals were analysed using first order kınetics If all the data is collected with the same time bases and voltage settings, a two dimensional spectra can be obtained ma "point by point" manner, which produces a spectrum over the wavelength range at a fixed time interval

### 4.7.3 Laser flash photolysis with TRIR detection apparatus

The instrumentation for the laser flash photolysis expenments with TRIR detection has been described elsewhere ${ }^{5}$ The instrumentation employed $m$ these studies consisted of a Lambda Physik EMG 200 excimer laser ( $\lambda=308 \mathrm{~nm}$ with XeCl , output attenuated to $90-100 \mathrm{~mJ}$ per pulse) as the excitation source A normal IR flow cell with $\mathrm{CaF}_{2}$ windows and $d=1 \mathrm{~mm}$ was used A globar served as the monitoning light source, with a HgCdTe photodiode detector The system has a response tıme of $1-2 \mu \mathrm{~s}$ and a spectral resolution of $3-4 \mathrm{~cm}^{1}$ The expenments were carried out at room temperature The routine procedure for prepanng the stock solution involved three freeze-pump-thaw procedures, followed by saturation with the desired gas atmosphere in the reservoir ( 1 atmosphere) Dunng the intervals between the laser shots the cell was emptied and refilled with fresh stock solution from the reservoir through a magnetic valve system TRIR difference spectra were built up by the "point by point" method

## 48 Matrix isolation instrumentation

The instrumentation employed for the matrix isolation experiments have been described elsewhere ${ }^{6}$ The set-up consists of an Aır Products Model CS 202 Displex closed-cycle helum refngerator, which cools a NaCl spectroscopic window to $10-12 \mathrm{~K}$ The window temperature is monitored separately by a thermocouple embedded in a cavity close to the window centre The flow of the matrix gases ( $>9999 \%$, L'Aır Liquide), 15 $2 \mathrm{mmol} \mathrm{h}^{-1}$, is controlled by a calibrated micrometer needle valve and a vacuummeter assembly The pressure in the gas inlet line is continuously checked by a separate thermotron gauge Evaporation rates were controlled by first depositing onto a quartz crystal microbalance, mounted in good thermal contact to the side of the target window holder In general the guest host ratio was better then 11000 Infrared spectra were recorded on a Perkın-Elmer Model 1720 FTIR spectrometer

## 49 Steady state photolysis with NMR monitoring

The samples were prepared in a degassable quartz NMR tube in the deuterated solvent of choice The solution was then subjected to three freeze-pump-thaw procedures Great care was necessary as the quartz in the NMR tube was very thin and could crack very easily The samples were protected from the light with aluminum foll, however exposure to the light was necessary to venfy that the solution had melted prior to further freezng The sample was liquid pumped and then saturated with 1 atm of carbon monoxide A NMR spectra was obtained of the starting compound, then the solution was
placed in front of an air cooled 275 watt xenon arc lamp, with a UV/vis filter ( $\lambda>410$ nm ), and turned manually for a prescribed time penod

## 410 Determination of extınction coefficients

The extinction coefficients were determined at 355 nm (excitation
wavelength) for all the compounds To obtain the concentrations of the compounds, the Beer-Lambert law was employed The Beer-Lambert law is given by

$$
\mathrm{A}=\varepsilon \mathrm{c} 1
$$

where $A=$ absorbance at the excitation wavelength (A U )
$\varepsilon=$ molar extınction coefficient $\left(\mathrm{dm}^{3} \mathrm{~mol}^{1} \mathrm{~cm}^{1}\right)$
$\mathrm{c}=$ concentration ( $\mathrm{mol} \mathrm{dm}^{-3}$ )
l = pathlength of cell ( 1 cm )
The extinction coefficients for the $\left(\eta^{6}-\operatorname{arene}\right) \mathrm{Cr}(\mathrm{CO})_{3}$ compounds are
presented $m$ Appendix 2A The extinction coefficients for the $\mathrm{M}(\mathrm{CO})_{6}$ (where $\mathrm{M}=\mathrm{Cr}$, Mo, or W) are given in Appendix 1A.

## 4 I1 Determination of the concentration of CO in an alkane solvent

The solubility of CO in hydrocarbon solvents was determined using the mole fraction data reported by Makranczy et al ${ }^{4}$ The calculations for cyclohexane are given as an example,

- solubility of CO at 298 K (expressed as a mole fraction) $=994 \times 10^{-4} \mathrm{moles}^{-1}$,
- 1 litre of cyclohexane $=779 \mathrm{~g}$,
- 1 mole of cyclohexane $=84 \mathrm{~g}$
$\Rightarrow \quad$ moles/htre $=1 / 84 \times 779 \quad \Rightarrow \quad=9274$ moles $/ \mathrm{litre}$
$\Rightarrow \quad 994 \times 10^{-4} \mathrm{moles}^{-1}=$
\#[CO]
9274 moles/litre
$\Rightarrow \quad[\mathrm{CO}]=91 \times 10^{-3} \mathrm{M}$ at l atmosphere


## 412 Determination of the activation parameters

The activation parameters were obtained from Eyning and Arrhenius plots The activation energy can be obtained from the slope of the line in the Arrhenius plot The Arrhenius equation is given by

$$
\ln \mathrm{k}_{2}=-\mathrm{E}_{\text {act }}^{\neq} / \mathrm{RT}+\ln \mathrm{A}
$$

where $k_{2}=$ rate of decay $\left(1 \mathrm{~mol}^{-1} \mathrm{~s}^{-1}\right)$

# REFERENCES 

## (Chapter 4)

${ }^{1}$ Davies S G , Shipton M R , J Chem Soc , Perkin Trans 1, 1991, 501
${ }^{2}$ Mahaffy C A L , Pauson P L , Inorg Synth, 1979, 19, 154
${ }^{3}$ King R B , Fronzagha A , Inorg Chem, 1966, 5, 1837
${ }^{4}$ Makranczy J , Megyery-Balog K , Rosz L , Patyt D , Hungarian J Indust Chem, 1976, 4, 269
${ }^{5}$ Schnaffer K , Grevels F -W , J Mol Struct , 1988, 173, 51
(a) Gerhartz W , Grevels F -W , Klotzbucher W E , Organometallics, 1987, 6, 1850
(b) Klotzbucker W E , Cryogentcs, 1983, 23, 554
(c) Grevels F -W , Klotzbucker W E , Inorg Chem , 1981, 20, 3002

APPENDIX 1

## SECTION A

## 1 A 1 Extinctıon coefficients of $\mathrm{Cr}(\mathrm{CO})_{6}$ in alkane solvents

## $\mathrm{Cr}(\mathrm{CO})_{6}$ in Cyclohexane

| Concentration <br> $\left(\times 10^{-3} \mathrm{M}\right)$ | Absorbance @ 354 nm <br> $(\mathrm{A} \mathrm{U})$ |
| :---: | :---: |
| 0 | 0 |
| 10 | 0212 |
| 15 | 0296 |
| 20 | 0399 |
| 25 | 0505 |
| 30 | 0615 |



Therefore the extınctıon coefficient for $\mathrm{Cr}(\mathrm{CO})_{6}$ in cyclohexane at 354 nm is $20 \times 10^{2} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{1}$

## $\mathrm{Cr}(\mathrm{CO})_{6}$ In Methylcyclohexane

| Concentration <br> $\left(\times 10^{3} \mathrm{M}\right)$ | Absorbance @ 354 nm <br> $(\mathrm{A} \mathrm{U})$ |
| :---: | :---: |
| 0 | 0 |
| 10 | 0232 |
| 15 | 0341 |
| 20 | 0469 |
| 25 | 0575 |
| 30 | 0693 |



Therefore the extinction coefficient for $\mathrm{Cr}(\mathrm{CO})_{8}$ at 354 nm in methylcyclohexane is $231 \times 10^{2} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{1}$

## $\mathrm{Cr}(\mathrm{CO})_{6}$ in Heptane

| Concentration <br> $\left(\times 10^{-3} \mathrm{M}\right)$ | Absorbance @ $\mathbf{3 5 4} \mathrm{nm}$ <br> $(\mathrm{A} \mathrm{U})$ |
| :---: | :---: |
| 0 | 0 |
| 10 | 0235 |
| 15 | 0352 |
| 20 | 0468 |
| 25 | 0580 |
| 30 | 0682 |



Therefore the extinction coefficient for $\mathrm{Cr}(\mathrm{CO})_{6}$ in heptane at 354 nm is $229 \times 10^{2} \mathrm{dm}^{3} \mathrm{~mol}^{1} \mathrm{~cm}^{-1}$

## 1A2 Extinction coefficlent of $\mathrm{Mo}(\mathrm{CO})_{6}$

## $\mathrm{Mo}(\mathrm{CO})_{6}$ in Cyclohexane

| Concentration <br> $\left(\times 10^{-3} \mathrm{M}\right)$ | Absorbance @ 354 nm <br> (A U ) |
| :---: | :---: |
| 0 | 0 |
| 025 | 0061 |
| 050 | 0126 |
| 075 | 0187 |
| 100 | 0262 |
| 150 | 0392 |



Therefore the extinction coefficient for $\mathrm{Mo}(\mathrm{CO})_{6}$ in cyclohexane at 354 nm is $263 \times 10^{2} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$

## $\underline{1 A 3}$ Extinction coefficient of $W(C O)_{6}$

## $\mathrm{W}(\mathrm{CO})_{6}$ in Cyclohexane

| Concentration <br> $\left(\times 10^{-3} \mathrm{M}\right)$ | Absorbance @ 354 nm <br> $(\mathrm{A} \mathrm{U} \mathrm{)}$ |
| :---: | :---: |
| 0 | 0 |
| 025 | 0181 |
| 050 | 0377 |
| 075 | 0583 |
| 100 | 0821 |
| 150 | 1242 |



Therefore the extinction coefficient for $\mathrm{W}(\mathrm{CO})_{6}$ in cyclohexane at 354 nm is $836 \times 10^{2} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$

## SECTION B

The following data was employed to obtain the activation parameters for Reaction A , where $\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}$, or W
$\mathrm{M}(\mathrm{CO})_{5}(\mathrm{~S})+\mathrm{CO} \rightarrow \quad \mathrm{M}(\mathrm{CO})_{6} \quad$ Reactıon $A$

## $\mathbf{C r}(\mathrm{CO})_{6}$ IN CYCLOHEXANE



Arrhenius data $\quad$| $1 / T(e-3)$ | In k2 |
| :---: | :---: |
| 31 | 1564 |
| 315 | 155 |
| 319 | 1542 |
| 324 | 1529 |
| 33 | 1508 |
| 336 | 1489 |
| 341 | 147 |
| 346 | 146 |



Eyring data | $1 / T(e-3)$ | In $K 2 / T$ |
| :---: | :---: |
| 31 | 986 |
| 315 | 974 |
| 319 | 967 |
| 324 | 956 |
| 33 | 937 |
| 336 | 919 |
| 341 | 902 |
| 346 | 893 |

## $\mathrm{Cr}(\mathrm{CO})_{6}$ IN METHYLCYCLOHEXANE



|  |  |  |
| :---: | :---: | :---: |
|  | 318 | 156 |
|  | 324 | 1548 |
|  | 328 | 1541 |
| Arrhenıus data | 332 | 152 |
|  | 339 | 1497 |
|  | 344 | 1484 |
|  | 347 | 1473 |
|  | 352 | 1458 |



|  |  |  |
| :---: | :---: | :---: |
|  | 318 | 985 |
|  | 324 | 975 |
|  | 328 | 968 |
| Eyrıng data | 332 | 949 |
|  | 339 | 928 |
|  | 344 | 917 |
|  | 347 | 907 |
|  | 352 | 893 |

## $\mathbf{C r}(\mathbf{C O})_{6}$ IN HEPTANE



|  |  |  |
| :---: | :---: | :---: |
|  | 328 | 1628 |
|  | 331 | 1611 |
| Arrhenius data | 336 | 1605 |
|  | 34 | 159 |
|  | 348 | 1565 |
|  | 353 | 1557 |



Eyring data $\quad$| $1 / T\left(e_{3}^{x} 3\right)$ | $\operatorname{yn}$ K $2 / T$ |
| :---: | :---: |
| 328 | 1056 |
| 331 | 104 |
| 336 | 1035 |
| 34 | 102 |
| 348 | 999 |
| 353 | 993 |

$\mathrm{Cr}(\mathrm{CO})_{\text {/ }}$ IN DECANE


344 16


186

## $\mathbf{C r}(\mathrm{CO})_{6}$ IN DODECANE



|  |  |  |
| :---: | :---: | :---: |
|  | 328 | 1725 |
|  | 331 | 1717 |
| Arrhenius data | 336 | 1701 |
|  | 341 | 1686 |
|  | 344 | 1675 |



|  |  |  |
| :---: | :---: | :---: |
|  | 328 | 1153 |
|  | 331 | 1146 |
| Eyrıng data | 336 | 1131 |
|  | 341 | 1117 |
|  | 344 | 1108 |

## Mo(CO) $\mathbf{6}^{\text {IN CYCLOHEXANE }}$



|  |  |  |
| :---: | :---: | :---: |
|  | 32 | 1577 |
|  | 324 | 1571 |
|  | 329 | 1554 |
| Arrhenıus data | 332 | 1543 |
|  | 336 | 1535 |
|  | 343 | 1514 |
|  | 348 | 1502 |
|  | 353 | 1488 |



|  |  |  |
| :---: | :---: | :---: |
|  | 32 | 1003 |
|  | 324 | 997 |
|  | 329 | 982 |
| Eyrıng data | 332 | 973 |
|  | 336 | 965 |
|  | 343 | 946 |
|  | 348 | 936 |
|  | 353 | 923 |

## Mo(CO) ${ }_{6}$ IN METHYLCYCLOHEXANE



|  |  |  |
| :---: | :---: | :---: |
|  | 329 | 1585 |
|  | 332 | 1568 |
|  | 336 | 1557 |
| Arrhenius data | 341 | 1544 |
|  | 346 | 1539 |
|  | 35 | 1523 |
|  | 354 | 1508 |
|  | 358 | 1498 |



|  |  |  |
| :---: | :---: | :---: |
|  | 329 | 1013 |
|  | 332 | 997 |
|  | 336 | 987 |
| Eyrıng data | 341 | 976 |
|  | 346 | 973 |
|  | 35 | 957 |
|  | 354 | 943 |
|  | 358 | 935 |

## Mo(CO) ${ }_{6}$ IN HEPTANE



Arrhenius data | $I f(e-3)$ | $t^{\prime \prime} k{ }^{2}$ |
| :---: | :---: |
| 322 | 1629 |
| 327 | 1614 |
| 33 | 1608 |
| 336 | 1587 |
| 343 | 1571 |
| 347 | 1557 |



| I/T $(e-3)$ | $\operatorname{InK2/T}$ |
| :---: | :---: |
| 322 | 1055 |
| 327 | 1042 |
| 33 | 1036 |
| 336 | 1017 |
| 343 | 1003 |
| 347 | 99 |

Mo(CO) ${ }_{6}$ IN DECANE


Arrhenius data | $7 \pi(e, 3)$ | nk2 |
| :---: | :---: |
| 32 | 1645 |
| 326 | 1625 |
| 331 | 1608 |
| 336 | 1599 |
| 343 | 1577 |
| 347 | 1569 |
| 351 | 1556 |
| 355 | 1544 |



Eyrıng data $\quad$| $1 / T\left(e^{-3}\right)$ |  |
| :---: | :---: |
| 32 | $\ln K 2 / T$ |
| 326 | 107 |
| 331 | 1037 |
| 336 | 1029 |
| 343 | 101 |
| 347 | 1002 |
| 351 | 991 |
| 355 | 98 |

Mo(CO) ${ }_{6}$ IN DODECANE

| 170 Arrhenius Plot |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
| $175$ |  |  |  |  |  |  |  |  |
| 174 |  |  |  |  |  |  |  |  |
| 331 | 333 | 335 | 337 | 339 | 341 | 343 | 345 | 347 |
|  |  |  |  | 1/T(e- |  |  |  |  |


Arrhenius data


192
W(CO) ${ }_{6}$ IN CYCLOHEXANE

Eyring Plot

193

## W(CO) ${ }_{6}$ IN METHYLCYCLOHEXANE



Arrhentus data | $1 / \pi(e-3)$ | $\ln k 2$ |
| :---: | :---: |
| 329 | 1471 |
| 331 | 1464 |
| 336 | 1456 |
| 341 | 1439 |
| 345 | 1431 |
| 348 | 142 |
| 352 | 1409 |



|  |  |  |
| :---: | :---: | :---: |
|  | 329 | 8996 |
|  | 331 | 893 |
| Eyring data | 336 | 885 |
|  | 341 | 871 |
|  | 345 | 864 |
|  | 348 | 854 |
|  | 352 | 844 |

## W(CO) ${ }_{6}$ IN HEPTANE



Arrhenıus data | $1 / \sqrt{1}(e-3)$ | $\ln k 2$ |
| :---: | :---: |
| 332 | 1455 |
| 336 | 1441 |
| 341 | 143 |
| 345 | 1417 |
| 351 | 1401 |
| 354 | 1391 |
| 362 | 1374 |



|  | $1 / 7$ (e3) | InK2/T2 |
| :---: | :---: | :---: |
|  | 332 | 884 |
|  | 336 | 871 |
| Eyring data | 341 | 862 |
|  | 345 | 85 |
|  | 351 | 836 |
|  | 354 | 827 |
|  | 362 | 812 |

W(CO) ${ }^{\text {IN }}$ DECANE


MT(e-3)dmk2/T

| 332 | 833 |
| :--- | :--- |
| 336 | 825 |
| 341 | 812 |
| 346 | 798 |
| 352 | 784 |
| 357 | 771 |

196

Eyrıng data
W(CO) ${ }^{6}$ IN DODECANE

Arrhenius data


Eyring data
197

## APPENDIX 2

## SECTION A

## $\underline{2 A \text { Extinction coefficients for the ( } \eta^{6} \text {-arene) } \mathrm{Cr}(\mathrm{CO})_{3} \text { compounds }}$

$$
\text { (1) }\left(\eta^{6}-\text { pyridıne }\right) \mathrm{Cr}(\mathrm{CO})_{3}
$$

| Concentration <br> $\left(\times 10^{-4} \mathrm{M}\right)$ | Absorbance @ 354 nm <br> $(\mathrm{A} \mathrm{U})$ |
| :---: | :---: |
| 0 | 0 |
| 1 | 0277 |
| 2 | 0492 |
| 3 | 0837 |
| 4 | 1220 |
| 5 | 1589 |


| Absorbance ( $\mathrm{A} U$ ) | Beer's Law Fit |  |  |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| Concentration ( $\mathrm{xe-4}$ ) M |  |  |  |

Therefore the extinction coefficient for ( $\eta^{6}$-pyridine) $\mathrm{Cr}(\mathrm{CO})_{3}$ in cyclohexane at 354 nm is $32 \times 10^{3} \mathrm{dm}^{3} \mathrm{~mol}^{1} \mathrm{~cm}^{-1}$

| Concentration <br> $\left(\times 10^{4} \mathrm{M}\right)$ | Absorbance @ 316 nm <br> $(\mathrm{A} \mathrm{U})$ |
| :---: | :---: |
| 0 | 0 |
| 1 | 1042 |
| 2 | 1851 |
| 3 | 2883 |
| 4 | 3486 |



Therefore the extinction coefficient for ( $\eta^{6}$-pyrdine) $\mathrm{Cr}(\mathrm{CO})_{3}$ in cyclohexane at 316 nm is $88 \times 10^{3} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$
(2) $\left(\eta^{6}\right.$-2,6-dımethylpyridine) $\mathrm{Cr}(\mathrm{CO})_{3}$

| Concentration <br> $\left(\times 10^{-4} \mathrm{M}\right)$ | Absorbance @ 354 nm <br> $(\mathrm{A} \mathrm{U} \mathrm{)}$ |
| :---: | :---: |
| 0 | 0 |
| 04 | 0069 |
| 1 | 0191 |
| 16 | 0328 |
| 2 | 0401 |
| 4 | 0832 |



Therefore the extinction coefficient for ( $\eta^{6}-2,6$-lutidıne) $\mathrm{Cr}(\mathrm{CO})_{3}$ in cyclohexane at 354 nm is $21 \times 10^{3} \mathrm{dm}^{3} \mathrm{~mol}^{1} \mathrm{~cm}^{-1}$

| Concentration <br> $\left(\times 10^{-4} \mathrm{M}\right)$ | Absorbance @ 318 nm <br> $(\mathrm{A} \mathrm{U})$ |
| :---: | :---: |
| 0 | 0 |
| 04 | 0205 |
| 1 | 0558 |
| 16 | 0961 |
| 2 | 1165 |
| 4 | 2390 |



Therefore the extınction coefficient for $\left(\eta^{6}-2,6\right.$-lutıdıne $) \mathrm{Cr}(\mathrm{CO})_{3}$ in cyclohexane at 318 nm is $61 \times 10^{3} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{1}$
(3) ( $\eta^{\mathbf{6}}$-2,6-bıs(trımethylsilyl)pyrıdıne) $\mathbf{C r}(\mathbf{C O})_{3}$

| Concentration <br> $\left(\times 10^{-4} \mathrm{M}\right)$ | Absorbance @ 354 nm <br> (A U ) |
| :---: | :---: |
| 0 | 0 |
| 05 | 0164 |
| 11 | 0433 |
| 19 | 0693 |
| 23 | 0836 |
| 47 | 1749 |



Therefore the extınctıon coefficıent for ( $\eta^{6}-2,6-\mathrm{bıs}\left(\right.$ trımethylsilyl)pyrıdıne) $\mathrm{Cr}(\mathrm{CO})_{3}$ in cyclohexane at 354 nm is $37 \times 10^{3} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$

| Concentration <br> $\left(\times 10^{-4} \mathrm{M}\right)$ | Absorbance @ 324 nm <br> $(\mathrm{A} \mathrm{U})$ |
| :---: | :---: |
| 0 | 0 |
| 05 | 0384 |
| 11 | 1008 |
| 19 | 1609 |
| 23 | 1949 |
| 47 | 3686 |


 in cyclohexane at 324 nm is $79 \times 10^{3} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$
Infrared spectrum, at room temperature, of $\left(\eta^{6}\right.$-pyndine $) \mathrm{Cr}(\mathrm{CO})_{3}$ in cyclohexane



Infrared spectrum at room temperature of $\left(\eta^{6}-2,6-(\mathrm{TMS}) \mathrm{pynd} \mathrm{ne}\right) \mathrm{Cr}(\mathrm{CO})_{3}$ in cyclohexane

${ }^{1} \mathrm{H}$ NMR spectrum of $\left(\eta^{6}\right.$-pyridme $) \mathrm{Cr}(\mathrm{CO})_{3}$ in $\mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\left(\eta^{6}\right.$-pyridıne $) \mathrm{Cr}(\mathrm{CO})_{3}$ m $\mathrm{CDCl}_{3}$

隹

## $112$




SECTION B

( $\eta^{6}$-pyridine) $\mathrm{Cr}(\mathrm{CO})_{3}$ in a $\mathrm{CH}_{4} \mathrm{CO}$ matrix (10 1)



Cr (CO) 3 (pyridine) CO: CH4 (1 10)
50 nin 250 na
$10 \sin 370 \mathrm{~nm}$


## APPENDIX 3

Crystal data, intensity measurements, and refinements for the three compounds

|  | $\begin{aligned} & \mathrm{S}^{2} \mathrm{~L}^{2} \\ & \text { pyridine. } \end{aligned}$ | $\begin{aligned} & \text { 6, L, } \\ & 2,6 \text {-dimethylpyidine } \end{aligned}$ | $2,6 \text { bis(TMS)pyridine }$ |
| :---: | :---: | :---: | :---: |
| Formula | $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{NO}_{3} \mathrm{Cr}$ | $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NO}_{3} \mathrm{Cr}$ | $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{CrSI}_{2}$ |
| Crystal system | monoclinic | orthorhombic | monochinc |
| Space group | $\mathrm{P} 2 / \mathrm{c}$ | Pna ${ }_{1}$ | P2/n |
| $a, \AA$ A | 10752 (5) | 130308 (13) | 77088 (6) |
| $b, \AA$ | 7652 (5) | 62875 (6) | 230928 (9) |
| c, $\AA$ | 11110 (2) | 127099 (10) | 104365 (8) |
| $\beta$, ${ }^{\circ}$ | 11180 (5) |  | 97312 (4) |
| Volume, $\AA^{3}$ | 8487 (7) | 10413 (2) | 1842 (2) |
| Z | 4 | 4 | 4 |
| Density, $\mathrm{g} \mathrm{cm}^{-3}$ * | 1684 | 1551 | 1296 |
| Abs coeff, $\mathrm{mm}^{-1}$ | 128 | 1082 | 0758 |
| Crystal size, mm | $090 \times 080 \times 060$ | $050 \times 050 \times 025$ | $040 \times 040 \times 030$ |
| $\theta$ range, ${ }^{\circ}$ | $100-2200$ | $313-2547$ | $176-2496$ |
| Index ranges h, $\mathrm{k}, 1$ | $-10 \rightarrow 9,0 \rightarrow 7,0 \rightarrow 10$ | $0 \rightarrow 13,-7 \rightarrow 7,0 \rightarrow 14$ | $0 \rightarrow 8,0 \rightarrow 23,-11 \rightarrow 11$ |
| Reflections collected | 1589 | 1790 | 3326 |
| Independent reflections | $791\left(\mathrm{R}_{\mathrm{mtt}}=0046\right)$ | $940\left(\mathrm{R}_{\mathrm{mt}}=0031\right)$ | 3096 ( $\left.\mathrm{R}_{\text {utt }}=00177\right)$ |
| Refinement method | on $F$ | full matrix on $\mathrm{F}^{2}$ | full matrix on $\mathrm{F}^{2}$ |
| Data, restraints, parameters | 791,0,118 | 940,1, 155 | 3096, 0, 203 |
| Goodness-of-fit on $\mathrm{F}^{2}$ |  | 0907 | 1082 |
| Final R indices $[\mathrm{I}>2 \sigma(\mathrm{I})]$ |  | $\begin{aligned} & \mathbf{R}_{1}=0024, \\ & \mathbf{w R}^{2}=0060 \end{aligned}$ | $\begin{aligned} & \mathbf{R}_{1}=0032, \\ & \mathbf{w R}^{2}=0078 \end{aligned}$ |
| R indices (all data) | $\begin{aligned} & \mathrm{R}=0044, \\ & \mathrm{wR}=0061 \end{aligned}$ | $\begin{aligned} & \mathbf{R}_{1}=0055, \\ & \mathbf{w R}^{2}=0076 \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathbf{R}_{1}=0074, \\ & w \mathbf{R}^{2}=0092 \\ & \hline \end{aligned}$ |
| Max diff peak, hole, $\mathrm{e} \AA^{3}$ | 038, -0 28 | 0302,-0253 | 0308, -0 229 |

(Crystal data, intensty measurements, and refinements for $\left(\eta^{6}-L\right) C r(C O)_{3}$ compounds * = calculated value )

Structural parameters for $\left(\eta^{6}\right.$-2,6-dimethylpyridine $) \operatorname{Cr}(\mathrm{CO})_{3}$

Table la Atomic coordinates $\left(x 10^{4}\right)$ and equivalent isotropic displacement parameters ( $A^{2} \times 10^{3}$ ) for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{CrNO}_{3} \mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized UlJ tensor

|  | x | y | z | $\mathrm{U}(\mathrm{eq})$ |
| :---: | :---: | :---: | :---: | :---: |
| Cr(1) | 7418 (1) | 1403(1) | 2839 (5) | $28(1)$ |
| N(1) | 8652 (3) | -1031 (6) | 2811(16) | 36 (1) |
| O(1) | 5959(11) | -471(23) | 1269(8) | 66 (4) |
| O(2) | 6171(4) | 5429(7) | 2759 (22) | 82(2) |
| O(3) | 5951 (9) | -309 (21) | 4419 (8) | 54(3) |
| C (2) | 8723 (13) | 109 (28) | 1924(9) | 39 (4) |
| C(3) | 8808(18) | 2265 (29) | 1923(12) | 40(4) |
| C (4) | 8844 (4) | 3395 (9) | 2787 (20) | 42(2) |
| $\mathrm{C}(5)$ | 8830(15) | 2287(30) | 3769(12) | 40(4) |
| C(6) | 8699(13) | 26 (20) | 3723(10) | 35 (3) |
| $\mathrm{C}(7)$ | 8654 (21) | -1261(32) | 963 (16) | 75 (6) |
| C (8) | 8733 (18) | -1228(24) | 4689 (13) | 51(4) |
| C(9) | 6492 (13) | 308 (27) | 1870(11) | $38(4)$ |
| C(10) | 6654 (4) | 3877 (8) | 2830 (22) | 47 (2) |
| C(11) | $6551(13)$ | 310 (28) | 3818(10) | 37 (4) |

Table 2a Bond lengths [A] and angles [deg] for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{CrNO}_{3}$

| $\mathrm{Cr}(1)-\mathrm{C}(11)$ | 1 | $82(2)$ |
| :---: | :---: | :---: |
| $\mathrm{Cr}(1)-\mathrm{C}(10)$ |  | 847 (5) |
| $\mathrm{Cr}(1)-\mathrm{C}(9)$ | 1 | 86(2) |
| $\mathrm{Cr}(1)-\mathrm{C}(6)$ | 2 | 191(14) |
| $\mathrm{Cr}(1)-\mathrm{C}(2)$ | 2 | $21(2)$ |
| $\mathrm{Cr}(1)-\mathrm{N}(1)$ | 2 | 220 (4) |
| $\mathrm{Cr}(1)-\mathrm{C}(4)$ | 2 | 242 (5) |
| $\mathrm{Cr}(1)-\mathrm{C}(5)$ | 2 | 26(2) |
| $\mathrm{Cr}(1)-\mathrm{C}(3)$ | 2 | $22(2)$ |
| $\mathrm{N}(1)-\mathrm{C}(6)$ |  | 34 (2) |
| $\mathrm{N}(1)-\mathrm{C}(2)$ | 1 | 34 (2) |
| $\mathrm{O}(1)-\mathrm{C}(9)$ | 1 | 14(2) |
| $\mathrm{O}(2)-\mathrm{C}(10)$ | 1 | 165 (7) |
| $\mathrm{O}(3)-\mathrm{C}(11)$ |  | 16 (2) |
| $\mathrm{C}(2)-\mathrm{C}(3)$ | 1 | 36 (3) |
| $\mathrm{C}(2)-\mathrm{C}(7)$ | 1 | 50(2) |
| $\mathrm{C}(3)-\mathrm{C}(4)$ | 1 | 31 (3) |
| $\mathrm{C}(4)-\mathrm{C}(5)$ | 1 | 43(3) |
| $\mathrm{C}(5)-\mathrm{C}(6)$ | 1 | 43 (2) |
| $\mathrm{C}(6)-\mathrm{C}(8)$ | 1 | 46 (2) |
| $\mathrm{C}(11)-\mathrm{Cr}(1)-\mathrm{C}(10)$ | 89 | $3(8)$ |
| $\mathrm{C}(11)-\mathrm{Cr}(1)-\mathrm{C}(9)$ | 84 | 8(2) |
| $\mathrm{C}(10)-\mathrm{Cr}(1)-\mathrm{C}$ (9) | 87 | $6(8)$ |
| $\mathrm{C}(11)-\mathrm{Cr}(1)-\mathrm{C}(6)$ | 88 | $4(7)$ |
| $\mathrm{C}(10)-\mathrm{Cr}(1)-\mathrm{C}(6)$ | 138 | 3 (8) |
| $\mathrm{C}(9)-\mathrm{Cr}(1)-\mathrm{C}(6)$ | 133 | 6(6) |
| $\mathrm{C}(11)-\mathrm{Cr}(1)-\mathrm{C}(2)$ | 134 | $3(7)$ |
| $\mathrm{C}(10)-\mathrm{Cr}(1)-\mathrm{C}(2)$ | 136 | 1 (8) |
| $\mathrm{C}(9)-\mathrm{Cr}(1)-\mathrm{C}(2)$ | 90 | 8(7) |
| $\mathrm{C}(6)-\mathrm{Cr}(1)-\mathrm{C}(2)$ | 62 | 6(2) |
| $\mathrm{C}(11)-\mathrm{Cr}(1)-\mathrm{N}(1)$ | 101 | 6(7) |
| $\mathrm{C}(10)-\mathrm{Cr}(1)-\mathrm{N}(1)$ | 166 | 1 (2) |
| $\mathrm{C}(9)-\mathrm{Cr}(1)-\mathrm{N}(1)$ | 101 | 8 (6) |
| $\mathrm{C}(6)-\mathrm{Cr}(1)-\mathrm{N}(1)$ | 35 | 3 (6) |
| $\mathrm{C}(2)-\mathrm{Cr}(1)-\mathrm{N}(1)$ | 35 | 2 (6) |
| $\mathrm{C}(11)-\mathrm{Cr}(1)-\mathrm{C}(4)$ | 138 | 3 (8) |
| $\mathrm{C}(10)-\mathrm{Cr}(1)-\mathrm{C}(4)$ | 88 | 6(2) |
| $\mathrm{C}(9)-\mathrm{Cr}(1)-\mathrm{c}(4)$ | 136 | 6 (8) |
| $\mathrm{C}(6)-\mathrm{Cr}(1)-\mathrm{C}(4)$ | 66 | 7 (5) |
| $\mathrm{C}(2)-\mathrm{Cr}(1)-\mathrm{C}(4)$ | 63 | 5 (6) |
| $\mathrm{N}(1)-\mathrm{Cr}(1)-\mathrm{C}(4)$ | 77 | 5(2) |
| $\mathrm{C}(11)-\mathrm{Cr}(1)-\mathrm{C}(5)$ | 104 | O(7) |
| $\mathrm{C}(10)-\mathrm{Cr}(1)-\mathrm{C}(5)$ | 103 | 6(7) |
| $\mathrm{C}(9)-\mathrm{Cr}(1)-\mathrm{C}(5)$ | 165 | 7 (7) |
| $\mathrm{C}(6)-\mathrm{Cr}(1)-\mathrm{C}(5)$ | 37 | 5 (6) |
| $\mathrm{C}(2)-\mathrm{Cr}(1)-\mathrm{C}(5)$ | 74 | 9(5) |
| $\mathrm{N}(1)-\mathrm{Cr}(1)-\mathrm{C}(5)$ | 65 | 6(5) |
| $\mathrm{C}(4)-\mathrm{Cr}(1)-\mathrm{C}(5)$ | 37 | 1 (8) |
| $\mathrm{C}(11)-\mathrm{Cr}(1)-\mathrm{C}(3)$ | 163 | 6(7) |
| $\mathrm{C}(10)-\mathrm{Cr}(1)-\mathrm{C}(3)$ | 103 | 3 (7) |
| $\mathrm{C}(9)-\mathrm{Cr}(1)-\mathrm{C}(3)$ | 105 | 9(6) |
| $\mathrm{C}(6)-\mathrm{Cr}(1)-\mathrm{C}(3)$ | 75 | 2 (6) |
| $\mathrm{C}(2)-\mathrm{Cr}(1)-\mathrm{C}(3)$ | 35 | 7 (7) |
| $\mathrm{N}(1)-\mathrm{Cr}(1)-\mathrm{C}(3)$ | 64 | 5(6) |
| $\mathrm{C}(4)-\mathrm{Cr}(1)-\mathrm{C}(3)$ | 34 | 1(8) |
| $\mathrm{C}(5)-\mathrm{Cr}(1)-\mathrm{C}(3)$ | 63 | 2 (2) |
| $\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(2)$ | 117 | 4(5) |
| $\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{Cr}(1)$ | 71 | 1(7) |
| $\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{Cr}(1)$ | 72 | 2(7) |


| $\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{N}(1)$ | 1227 (12) |
| :---: | :---: |
| $\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(7)$ | 125 3(13) |
| $\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(7)$ | 112 0(14) |
| $\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{Cr}(1)$ | 72 3(10) |
| $\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{Cr}(1)$ | 72 6(7) |
| $\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{Cr}(1)$ | 1264 (14) |
| $\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$ | 122 9(12) |
| $\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{Cr}(1)$ | 73 9(9) |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{Cr}(1)$ | 71 9(10) |
| $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$ | 117 9(5) |
| $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{Cr}(1)$ | 72 0(10) |
| $\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{Cr}(1)$ | 72 0(9) |
| $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$ | 1168 (11) |
| $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{Cr}(1)$ | 70 9(8) |
| $\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{Cr}(1)$ | 68 7(8) |
| $\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(5)$ | 122 2(10) |
| $\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(8)$ | 117 5(10) |
| $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(8)$ | 119 9(11) |
| $\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{Cr}(1)$ | 73 5(7) |
| $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{Cr}(1)$ | 73 7(8) |
| $\mathrm{C}(8)-\mathrm{C}(6)-\mathrm{Cr}(1)$ | 132 0(14) |
| $\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{Cr}(1)$ | 176 (2) |
| $0(2)-\mathrm{C}(10)-\mathrm{Cr}(1)$ | 176(3) |
| $\mathrm{O}(3)-\mathrm{C}(11)-\mathrm{Cr}(1)$ | 176(2) |

Symmetry transformations used to generate equivalent atoms

Table 3a Anisotropic displacement parameters $\left\langle\mathrm{A}^{2} \times 10^{3}\right.$ ) for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{CrNO}_{3}$ The anisotropic displacement factor exponent takes the form $-2 \mathrm{pi}^{2}\left[\mathrm{~h}^{2} \mathrm{a}^{\star^{2}} \mathrm{U} 11+\quad+2 \mathrm{hk} \mathrm{a}^{\star} \mathrm{b}^{\star} \mathrm{Ul} 2\right]$

|  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | ---: | ---: | ---: |
|  | U11 | U22 | U33 | U23 | U13 | U12 |
| Cr(1) | $31(1)$ | $24(1)$ | $28(1)$ | $1(2)$ | $1(2)$ | $0(1)$ |
| $N(1)$ | $35(2)$ | $29(2)$ | $43(3)$ | $-15(6)$ | $-12(9)$ | $5(2)$ |
| $O(1)$ | $78(9)$ | $76(8)$ | $44(6)$ | $-13(6)$ | $-27(6)$ | $-23(7)$ |
| $O(2)$ | $62(3)$ | $38(2)$ | $146(7)$ | $5(9)$ | $-2(10)$ | $14(2)$ |
| $O(3)$ | $49(6)$ | $68(6)$ | $45(6)$ | $2(6)$ | $5(5)$ | $-6(5)$ |
| $C(2)$ | $26(6)$ | $68(9)$ | $23(7)$ | $4(6)$ | $4(6)$ | $2(7)$ |
| $C(3)$ | $52(11)$ | $42(9)$ | $25(8)$ | $10(7)$ | $3(8)$ | $1(9)$ |
| $C(4)$ | $35(3)$ | $35(3)$ | $56(5)$ | $21(8)$ | $14(8)$ | $-4(2)$ |
| $C(5)$ | $29(8)$ | $40(9)$ | $50(9)$ | $-10(8)$ | $-14(8)$ | $-5(8)$ |
| $C(6)$ | $41(7)$ | $19(5)$ | $44(8)$ | $11(5)$ | $-1(7)$ | $8(6)$ |
| $C(7)$ | $66(11)$ | $94(13)$ | $65(11)$ | $-48(8)$ | $12(9)$ | $23(9)$ |
| $C(8)$ | $68(10)$ | $48(8)$ | $38(7)$ | $1(5)$ | $0(7)$ | $2(7)$ |
| $C(9)$ | $26(8)$ | $38(9)$ | $50(8)$ | $10(7)$ | $3(6)$ | $0(6)$ |
| $C(10)$ | $39(3)$ | $33(3)$ | $69(4)$ | $15(10)$ | $-3(11)$ | $0(2)$ |
| $C(11)$ | $48(10)$ | $42(9)$ | $20(6)$ | $0(6)$ | $1(7)$ | $-2(7)$ |
|  |  |  |  |  |  |  |

Table 4a Hydrogen coordinates ( $\times 10^{4}$ ) and isotropic displacement parameters $\left(\mathrm{A}^{2} \times 10^{3}\right)$ for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{CrNO}_{3}$

|  | x | y | z | U (eq) |
| :---: | :---: | :---: | :---: | :---: |
| H(3) | 8841 (47) | 2851(113) | 1355 (62) | 4(14) |
| H(4) | 8983 (81) | 4678(195) | 2556(147) | 171(63) |
| H(5) | 8823 (99) | 3147 (191) | 4513(106) | 92 (55) |
| H (7A) | 9132 (81) | -2408(150) | 872 (113) | 82 (23) |
| H(7B) | 8702 (102) | -306(196) | 376 (89) | 82 (23) |
| H (7C) | 7970 (45) | -1821(198) | 1005 (111) | 82 (23) |
| H(8A) | 8496(102) | -2630 (102) | 4516(117) | 82 (23) |
| H(8B) | 8325(90) | -662 (222) | 5252 (74) | 82 (23) |
| H(8C) | 9439(32) | -1295 (229) | 4905 (95) | 82 (23) |

Observed and calculated structural factors for $\left(\eta^{6}\right.$-2,6-dimethylpyridıne $) \mathrm{Cr}(\mathrm{CO})_{3}$

Appendix 3
Table $5 a \quad$ Observed and calculated structure factors Page 1

| $\mathbf{h}$ | $\mathbf{k}$ | 1 | 10 FO | 10 FC | $10 \mathbf{s}$ | $\mathbf{h}$ | $\mathbf{k}$ | 1 | 10 FO | 10 FC | 10 s | $\mathbf{h}$ | $\mathbf{k}$ | $\mathbf{1}$ | 10 FO | 10 Fc | $10 \mathbf{s}$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2 | 0 | 0 | 881 | 923 | 3 | 12 | 0 | 1 | 168 | 166 | 3 | 4 | 1 | 2 | 243 | 236 | 1 |
| 4 | 0 | 0 | 1421 | 1543 | 4 | 0 | 1 | 1 | 943 | 990 | 22 | 5 | 1 | 2 | 338 | 337 | 4 |
| 6 | 0 | 0 | 586 | 604 | 4 | 1 | 1 | 1 | 1029 | 1081 | 20 | 6 | 1 | 2 | 276 | 284 | 4 |
| 8 | 0 | 0 | 1073 | 1109 | 7 | 2 | 1 | 1 | 679 | 664 | 7 | 7 | 1 | 2 | 168 | 169 | 1 |
| 10 | 0 | 0 | 317 | 313 | 3 | 3 | 1 | 1 | 87 | 97 | 2 | 8 | 1 | 2 | 32 | 44 | 31 |
| 12 | 0 | 0 | 0 | 53 | 1 | 4 | 1 | 1 | 372 | 366 | 5 | 9 | 1 | 2 | 0 | 32 | 1 |
| 1 | 1 | 0 | 164 | 166 | 1 | 5 | 1 | 1 | 116 | 126 | 1 | 10 | 1 | 2 | 0 | 32 | 1 |
| 2 | 1 | 0 | 73 | 65 | 2 | 6 | 1 | 1 | 415 | 426 | 5 | 11 | 1 | 2 | 113 | 108 | 5 |
| 3 | 1 | 0 | 339 | 338 | 3 | 7 | 1 | 1 | 415 | 415 | 3 | 12 | 1 | 2 | 167 | 163 | 2 |
| 4 | 1 | 0 | 467 | 453 | 4 | 8 | 1 | 1 | 381 | 378 | 2 | 13 | 1 | 2 | 120 | 114 | 4 |
| 5 | 1 | 0 | 151 | 142 | 2 | 9 | 1 | 1 | 367 | 370 | 2 | 0 | 2 | 2 | 41 | 41 | 3 |
| 6 | 1 | 0 | 351 | 321 | 2 | 10 | 1 | 1 | 199 | 193 | 2 | 1 | 2 | 2 | 707 | 714 | 6 |
| 7 | 1 | 0 | 476 | 463 | 3 | 11 | 1 | 1 | 193 | 188 | 2 | 2 | 2 | 2 | 45 | 48 | 11 |
| 8 | 1 | 0 | 120 | 109 | 2 | 12 | 1 | 1 | 149 | 147 | 4 | 3 | 2 | 2 | 548 | 554 | 2 |
| 9 | 1 | 0 | 22 | 16 | 22 | 13 | 1 | 1 | 49 | 45 | 21 | 4 | 2 | 2 | 232 | 224 | 1 |
| 10 | 1 | 0 | 0 | 26 | 1 | 1 | 2 | 1 | 282 | 269 | 2 | 5 | 2 | 2 | 580 | 591 | 5 |
| 11 | 1 | 0 | 87 | 91 | 4 | 2 | 2 | 1 | 605 | 587 | 11 | 6 | 2 | 2 | 230 | 225 | 2 |
| 12 | 1 | 0 | 248 | 248 | 2 | 3 | 2 | 1 | 341 | 323 | 2 | 7 | 2 | 2 | 498 | 506 | 4 |
| 13 | 1 | 0 | 202 | 197 | 2 | 4 | 2 | 1 | 110 | 109 | 1 | 8 | 2 | 2 | 0 | 34 | 1 |

## for C 9 H 10 CrNO

| $\mathbf{h}$ | $\mathbf{k}$ | $\mathbf{l}$ | 10 FO | 10 Fc | $10 \mathbf{s}$ | $\mathbf{h}$ | $\mathbf{k}$ | $\mathbf{l}$ | 10 FO | 10 Fc | 10 s |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 10 | 1 | 3 | 194 | 189 | 2 | 3 | 2 | 4 | 618 | 623 | 3 |
| 11 | 1 | 3 | 212 | 207 | 2 | 4 | 2 | 4 | 42 | 46 | 30 |
| 12 | 1 | 3 | 179 | 178 | 3 | 5 | 2 | 4 | 714 | 719 | 4 |
| 13 | 1 | 3 | 49 | 54 | 13 | 6 | 2 | 4 | 92 | 98 | 2 |
| 1 | 2 | 3 | 198 | 190 | 2 | 7 | 2 | 4 | 428 | 432 | 6 |
| 2 | 2 | 3 | 278 | 265 | 2 | 8 | 2 | 4 | 0 | 29 | 1 |
| 3 | 2 | 3 | 108 | 99 | 1 | 9 | 2 | 4 | 182 | 177 | 2 |
| 4 | 2 | 3 | 90 | 87 | 2 | 10 | 2 | 4 | 89 | 87 | 9 |
| 5 | 2 | 3 | 113 | 112 | 2 | 11 | 2 | 4 | 194 | 190 | 2 |
| 6 | 2 | 3 | 0 | 34 | 1 | 12 | 2 | 4 | 84 | 90 | 27 |
| 7 | 2 | 3 | 173 | 169 | 1 | 13 | 2 | 4 | 180 | 179 | 3 |
| 8 | 2 | 3 | 93 | 94 | 3 | 1 | 3 | 4 | 210 | 215 | 1 |
| 9 | 2 | 3 | 300 | 301 | 2 | 2 | 3 | 4 | 68 | 67 | 3 |
| 10 | 2 | 3 | 0 | 26 | 1 | 3 | 3 | 4 | 142 | 146 | 2 |
| 11 | 2 | 3 | 144 | 148 | 2 | 4 | 3 | 4 | 48 | 53 | 5 |
| 12 | 2 | 3 | 0 | 44 | 1 | 5 | 3 | 4 | 62 | 64 | 4 |
| 13 | 2 | 3 | 72 | 71 | 5 | 6 | 3 | 4 | 99 | 93 | 3 |
| 0 | 3 | 3 | 411 | 418 | 2 | 7 | 3 | 4 | 134 | 135 | 2 |
| 1 | 3 | 3 | 557 | 555 | 7 | 8 | 3 | 4 | 0 | 54 | 1 |
| 2 | 3 | 3 | 225 | 229 | 1 | 9 | 3 | 4 | 172 | 178 | 2 |
| 3 | 3 | 3 | 313 | 312 | 2 | 10 | 3 | 4 | 0 | 9 | 1 |

Appendix 3
h k 1 10Fo 10FC 10s
$\begin{array}{llllllllllll}2 & 2 & 0 & 154 & 152 & 2 & 7 & 2 & 1 & 12 & 17 & 11\end{array}$
$3 \quad 2 \quad 0 \quad 1040 \quad 1030 \quad 3$
$\begin{array}{llllll}4 & 2 & 0 & 677 & 634 & 8\end{array}$
$\begin{array}{llllll}5 & 2 & 0 & 783 & 784 & 4\end{array}$
$\begin{array}{llllll}6 & 2 & 0 & 101 & 105 & 2\end{array}$
$\begin{array}{llllll}7 & 2 & 0 & 321 & 332 & 2\end{array}$
$\begin{array}{llllll}8 & 2 & 0 & 45 & 25 & 17\end{array}$
$\begin{array}{llllll}9 & 2 & 0 & 279 & 278 & 2\end{array}$ $\begin{array}{llllll}10 & 2 & 0 & 5 & 5 & 5\end{array}$ $\begin{array}{llllll}11 & 2 & 0 & 256 & 259 & 2\end{array}$ $\begin{array}{llllll}12 & 2 & 0 & 7 & 5 & 7\end{array}$ $\begin{array}{llllll}13 & 2 & 0 & 173 & 168 & 2\end{array}$
$1 \begin{array}{llllll}1 & 3 & 0 & 145 & 140 & 1\end{array}$
$\begin{array}{llllll}2 & 3 & 0 & 325 & 314 & 4\end{array}$
$\begin{array}{llllll}3 & 3 & 0 & 0 & 54 & 1\end{array}$
$\begin{array}{llllll}4 & 3 & 0 & 276 & 281 & 1\end{array}$
$\begin{array}{llllll}5 & 3 & 0 & 94 & 90 & 2\end{array}$ $\begin{array}{llllll}6 & 3 & 0 & 111 & 91 & 2\end{array}$
$\begin{array}{llllll}7 & 3 & 0 & 122 & 122 & 5\end{array}$
$\begin{array}{llllll}8 & 3 & 0 & 122 & 121 & 6\end{array}$
$\begin{array}{llllll}9 & 3 & 0 & 253 & 254 & 2\end{array}$ $\begin{array}{llllll}10 & 3 & 0 & 140 & 133 & 6\end{array}$
h $k$ 10Fo 10Fc 10s $\begin{array}{llllll}8 & 2 & 1 & 0 & 51 & 1\end{array}$
$\begin{array}{llllll}9 & 2 & 1 & 252 & 246 & 2\end{array}$ $\begin{array}{llllll}10 & 2 & 1 & 45 & 35 & 17\end{array}$ $\begin{array}{llllll}11 & 2 & 1 & 266 & 267 & 3\end{array}$ $\begin{array}{llllll}12 & 2 & 1 & 84 & 82 & 4\end{array}$ $\begin{array}{llllll}13 & 2 & 1 & 101 & 104 & 4\end{array}$ $\begin{array}{llllll}0 & 3 & 1 & 61 & 45 & 13\end{array}$ $\begin{array}{llllll}1 & 3 & 1 & 312 & 324 & 6\end{array}$ $\begin{array}{llllll}2 & 3 & 1 & 390 & 389 & 2\end{array}$ $\begin{array}{llllll}3 & 3 & 1 & 604 & 617 & 6\end{array}$ $\begin{array}{llllll}4 & 3 & 1 & 558 & 539 & 3\end{array}$ $\begin{array}{llllll}5 & 3 & 1 & 558 & 549 & 3\end{array}$ $\begin{array}{llllll}6 & 3 & 1 & 31 & 41 & 31\end{array}$ $\begin{array}{llllll}7 & 3 & 1 & 339 & 338 & 2\end{array}$ $\begin{array}{llllll}8 & 3 & 1 & 0 & 36 & 1\end{array}$ $\begin{array}{llllll}9 & 3 & 1 & 220 & 218 & 2\end{array}$ $\begin{array}{llllll}10 & 3 & 1 & 201 & 205 & 2\end{array}$ $\begin{array}{llllll}11 & 3 & 1 & 148 & 148 & 2\end{array}$ $\begin{array}{llllll}12 & 3 & 1 & 194 & 194 & 4\end{array}$ $\begin{array}{llllll}13 & 3 & 1 & 133 & 133 & 3\end{array}$ $\begin{array}{llllll}1 & 4 & 1 & 44 & 52 & 8\end{array}$
h k 1 10Fo

1122195
122266
$\begin{array}{lll}13 & 2 & 2\end{array}$
13242
$\begin{array}{lll}2 & 3 & 2\end{array}$
$\begin{array}{lll}3 & 3 & 2\end{array}$
432120
$\begin{array}{llll}5 & 3 & 2 & 126\end{array}$
$\begin{array}{lll}6 & 3 & 2\end{array}$
$\begin{array}{llll}7 & 3 & 2 & 127\end{array}$
830
$\begin{array}{lll}9 & 3 & 265\end{array}$
$\begin{array}{lll}10 & 3 & 2\end{array}$
1132126
$\begin{array}{llll}12 & 3 & 2 & 82\end{array}$
$13 \quad 3 \quad 2 \quad 25$
$0 \quad 4 \quad 2408$
$\begin{array}{lll}1 & 4 & 2\end{array}$
$2 \quad 4 \quad 2 \quad 449$
$\begin{array}{lll}3 & 4 & 2\end{array}$
$4 \quad 4 \quad 2 \quad 435$
$\begin{array}{llll}5 & 4 & 2 & 175\end{array}$

10 Fc 10 s
h $k$ 10Fo 10Fc 10s
h $k$ 10Fo 10Fc 10s
$\begin{array}{llllllllllllll}195 & 2 & 4 & 3 & 3 & 161 & 167 & 1 & 11 & 3 & 4 & 62 & 70 & 62\end{array}$ $\begin{array}{llllllllllllll}64 & 5 & 5 & 3 & 3 & 431 & 441 & 3 & 12 & 3 & 4 & 65 & 64 & 25\end{array}$
$\begin{array}{llllllllllllll}152 & 3 & 6 & 3 & 3 & 257 & 252 & 1 & 13 & 3 & 4 & 81 & 87 & 5\end{array}$
$\begin{array}{llllllllllllll}234 & 1 & 7 & 3 & 3 & 392 & 387 & 2 & 0 & 4 & 4 & 772 & 775 & 5\end{array}$ $\begin{array}{llllllllllllll}164 & 1 & 8 & 3 & 3 & 133 & 124 & 2 & 1 & 4 & 4 & 132 & 137 & 2\end{array}$ $\begin{array}{llllllllllllll}142 & 1 & 9 & 3 & 3 & 186 & 187 & 2 & 2 & 4 & 4 & 430 & 423 & 2\end{array}$ $\begin{array}{llllllllllllll}115 & 2 & 10 & 3 & 3 & 56 & 61 & 25 & 3 & 4 & 4 & 271 & 272 & 3\end{array}$ $\begin{array}{llllllllllllll}125 & 2 & 11 & 3 & 3 & 189 & 190 & 2 & 4 & 4 & 4 & 88 & 82 & 3\end{array}$ $\begin{array}{llllllllllllll}35 & 10 & 12 & 3 & 3 & 122 & 121 & 3 & 5 & 4 & 4 & 75 & 70 & 4\end{array}$ $\begin{array}{llllllllllllll}124 & 2 & 13 & 3 & 3 & 153 & 141 & 5 & 6 & 4 & 4 & 220 & 215 & 1\end{array}$ $\begin{array}{llllllllllllll}21 & 1 & 1 & 4 & 3 & 121 & 122 & 2 & 7 & 4 & 4 & 0 & 35 & 1\end{array}$ $\begin{array}{llllllllllllll}272 & 1 & 2 & 4 & 3 & 99 & 96 & 2 & 8 & 4 & 4 & 343 & 342 & 2\end{array}$ $\begin{array}{llllllllllllll}38 & 27 & 3 & 4 & 3 & 0 & 28 & 1 & 9 & 4 & 4 & 144 & 145 & 5\end{array}$ $\begin{array}{llllllllllllll}130 & 4 & 4 & 4 & 3 & 77 & 87 & 5 & 10 & 4 & 4 & 242 & 241 & 2\end{array}$ $\begin{array}{llllllllllllll}75 & 4 & 5 & 4 & 3 & 156 & 157 & 3 & 11 & 4 & 4 & 140 & 142 & 8\end{array}$ $\begin{array}{llllllllllllll}48 & 25 & 6 & 4 & 3 & 134 & 145 & 2 & 12 & 4 & 4 & 104 & 103 & 4\end{array}$ $\begin{array}{llllllllllllll}418 & 2 & 7 & 4 & 3 & 40 & 37 & 12 & 1 & 5 & 4 & 98 & 92 & 5\end{array}$ $\begin{array}{llllllllllllll}88 & 2 & 8 & 4 & 3 & 93 & 91 & 3 & 2 & 5 & 4 & 0 & 13 & 1\end{array}$ $\begin{array}{llllllllllllll}442 & 3 & 9 & 4 & 3 & 30 & 10 & 30 & 3 & 5 & 4 & 105 & 108 & 5\end{array}$ $\begin{array}{llllllllllllll}282 & 1 & 10 & 4 & 3 & 0 & 39 & 1 & 4 & 5 & 4 & 138 & 143 & 3\end{array}$ $\begin{array}{llllllllllllll}422 & 6 & 11 & 4 & 3 & 35 & 47 & 22 & 5 & 5 & 4 & 80 & 79 & 4\end{array}$ $\begin{array}{llllllllllllll}178 & 2 & 12 & 4 & 3 & 106 & 103 & 4 & 6 & 5 & 4 & 113 & 115 & 3\end{array}$

Appendix 3
h k 1 10FO 10Fc 10s
$\begin{array}{llllll}11 & 3 & 0 & 163 & 165 & 2\end{array}$ $\begin{array}{llllll}12 & 3 & 0 & 132 & 133 & 3\end{array}$ $\begin{array}{llllll}13 & 3 & 0 & 0 & 8 & 1\end{array}$ $\begin{array}{llllll}0 & 4 & 0 & 223 & 244 & 1\end{array}$ $\begin{array}{llllll}1 & 4 & 0 & 160 & 165 & 1\end{array}$ $\begin{array}{llllll}2 & 4 & 0 & 497 & 501 & 3\end{array}$ $\begin{array}{llllll}3 & 4 & 0 & 124 & 116 & 2\end{array}$ $\begin{array}{llllll}4 & 4 & 0 & 551 & 548 & 4\end{array}$ $\begin{array}{llllll}5 & 4 & 0 & 217 & 221 & 1\end{array}$ $\begin{array}{llllll}6 & 4 & 0 & 233 & 227 & 1\end{array}$ $\begin{array}{llllll}7 & 4 & 0 & 167 & 163 & 3\end{array}$ $\begin{array}{llllll}8 & 4 & 0 & 188 & 189 & 2\end{array}$ $\begin{array}{llllll}9 & 4 & 0 & 0 & 24 & 1\end{array}$ $\begin{array}{llllll}10 & 4 & 0 & 243 & 241 & 2\end{array}$ $\begin{array}{llllll}11 & 4 & 0 & 45 & 47 & 9\end{array}$ $\begin{array}{llllll}12 & 4 & 0 & 169 & 168 & 2\end{array}$ $\begin{array}{llllll}1 & 5 & 0 & 0 & 54 & 1\end{array}$ $\begin{array}{llllll}2 & 5 & 0 & 215 & 216 & 5\end{array}$ $\begin{array}{llllll}3 & 5 & 0 & 76 & 67 & 4\end{array}$ $\begin{array}{llllll}4 & 5 & 0 & 15 & 16 & 14\end{array}$ $\begin{array}{llllll}5 & 5 & 0 & 0 & 9 & 1\end{array}$ $\begin{array}{llllll}6 & 5 & 0 & 0 & 23 & 1\end{array}$
h k l 10Fo 10Fc 10s $\begin{array}{llllll}2 & 4 & 1 & 0 & 37 & 1\end{array}$ $\begin{array}{llllll}3 & 4 & 1 & 79 & 84 & 23\end{array}$ $\begin{array}{llllll}4 & 4 & 1 & 121 & 123 & 2\end{array}$ $\begin{array}{llllll}5 & 4 & 1 & 63 & 55 & 19\end{array}$ $\begin{array}{llllll}6 & 4 & 1 & 125 & 125 & 2\end{array}$ $\begin{array}{llllll}7 & 4 & 1 & 156 & 152 & 3\end{array}$ $\begin{array}{llllll}8 & 4 & 1 & 104 & 105 & 3\end{array}$ $\begin{array}{llllll}9 & 4 & 1 & 38 & 50 & 37\end{array}$ $\begin{array}{llllll}10 & 4 & 1 & 124 & 123 & 3\end{array}$ $\begin{array}{llllll}11 & 4 & 1 & 37 & 20 & 19\end{array}$ $\begin{array}{llllll}12 & 4 & 1 & 73 & 81 & 15\end{array}$ $\begin{array}{llllll}0 & 5 & 1 & 380 & 379 & 2\end{array}$ $\begin{array}{llllll}1 & 5 & 1 & 0 & 24 & 1\end{array}$ $\begin{array}{llllll}2 & 5 & 1 & 309 & 308 & 2\end{array}$
$\begin{array}{llllll}3 & 5 & 1 & 139 & 139 & 3\end{array}$
$\begin{array}{llllll}4 & 5 & 1 & 306 & 304 & 2\end{array}$ $\begin{array}{llllll}5 & 5 & 1 & 169 & 165 & 2\end{array}$
$\begin{array}{llllll}6 & 5 & 1 & 340 & 341 & 2\end{array}$
$\begin{array}{llllll}7 & 5 & 1 & 104 & 102 & 3\end{array}$
$\begin{array}{llllll}8 & 5 & 1 & 202 & 206 & 2\end{array}$
$\begin{array}{llllll}9 & 5 & 1 & 0 & 38 & 1\end{array}$
$\begin{array}{llllll}10 & 5 & 1 & 112 & 106 & 4\end{array}$
h k $1 \mathbf{1 0 5 0}$
$\begin{array}{llll}6 & 4 & 2 & 292\end{array}$
$\begin{array}{lll}7 & 4 & 2\end{array}$
$\begin{array}{llll}8 & 4 & 2 & 183\end{array}$
$\begin{array}{llll}9 & 4 & 2 & 83\end{array}$
$\begin{array}{llll}10 & 4 & 2 & 210\end{array}$
$\begin{array}{llll}11 & 4 & 2 & 112\end{array}$
$\begin{array}{llll}12 & 4 & 2 & 190\end{array}$
$\begin{array}{llll}1 & 5 & 2 & 13\end{array}$
$\begin{array}{llll}2 & 5 & 2 & 29\end{array}$
$\begin{array}{llll}3 & 5 & 2 & 0\end{array}$
$\begin{array}{llll}4 & 5 & 2 & 72\end{array}$
$\begin{array}{llll}5 & 5 & 2 & 15\end{array}$
$\begin{array}{llll}6 & 5 & 2 & 82\end{array}$
$\begin{array}{llll}7 & 5 & 2 & 41\end{array}$
$\begin{array}{lll}8 & 5 & 20\end{array}$
$\begin{array}{llll}9 & 5 & 2 & 90\end{array}$
$\begin{array}{llll}10 & 5 & 2 & 94\end{array}$
$\begin{array}{llll}11 & 5 & 2 & 0\end{array}$
$\begin{array}{llll}0 & 6 & 2 & 153\end{array}$
$\begin{array}{llll}1 & 6 & 2 & 121\end{array}$
$\begin{array}{llll}2 & 6 & 2 & 136\end{array}$
$\begin{array}{llll}3 & 6 & 2 & 303\end{array}$


Appendix 3

| $\mathbf{h}$ | $\mathbf{k}$ | $\mathbf{1}$ | 10 FO | 10 Fc | $\mathbf{1 0 s}$ | $\mathbf{h}$ | $\mathbf{k}$ | $\mathbf{1}$ | 10 FO | 10 Fc | $10 \mathbf{s}$ | $\mathbf{h}$ | $\mathbf{k}$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 7 | 5 | 0 | 56 | 63 | 13 | 11 | 5 | 1 | 36 | 25 | 13 | 4 | 6 |
| 8 | 5 | 0 | 178 | 182 | 2 | 1 | 6 | 1 | 37 | 34 | 9 | 5 | 6 |
| 9 | 5 | 0 | 109 | 112 | 3 | 2 | 6 | 1 | 0 | 2 | 1 | 6 | 6 |
| 10 | 5 | 0 | 145 | 148 | 3 | 3 | 6 | 1 | 19 | 16 | 19 | 7 | 6 |
| 11 | 5 | 0 | 22 | 37 | 22 | 4 | 6 | 1 | 0 | 19 | 1 | 8 | 6 |
| 0 | 6 | 0 | 188 | 190 | 2 | 5 | 6 | 1 | 23 | 24 | 23 | 1 | 7 |
| 1 | 6 | 0 | 63 | 58 | 5 | 6 | 6 | 1 | 62 | 55 | 5 | 2 | 7 |
| 2 | 6 | 0 | 138 | 144 | 2 | 7 | 6 | 1 | 89 | 83 | 10 | 3 | 7 |
| 3 | 6 | 0 | 329 | 325 | 2 | 8 | 6 | 1 | 53 | 49 | 11 | 4 | 7 |
| 4 | 6 | 0 | 111 | 114 | 3 | 0 | 7 | 1 | 0 | 14 | 1 | 2 | 0 |
| 5 | 6 | 0 | 393 | 387 | 3 | 1 | 7 | 1 | 221 | 222 | 2 | 4 | 0 |
| 6 | 6 | 0 | 128 | 128 | 4 | 2 | 7 | 1 | 0 | 14 | 1 | 6 | 0 |
| 7 | 6 | 0 | 140 | 140 | 4 | 3 | 7 | 1 | 211 | 209 | 2 | 8 | 0 |
| 8 | 6 | 0 | 105 | 108 | 3 | 4 | 7 | 1 | 22 | 43 | 21 | 10 | 0 |
| 9 | 6 | 0 | 0 | 24 | 1 | 5 | 7 | 1 | 165 | 163 | 2 | 12 | 0 |
| 1 | 7 | 0 | 0 | 18 | 1 | 0 | 0 | 2 | 1735 | 1657 | 13 | 0 | 1 |
| 2 | 7 | 0 | 80 | 93 | 8 | 2 | 0 | 2 | 966 | 987 | 4 | 1 | 1 |
| 3 | 7 | 0 | 23 | 26 | 22 | 4 | 0 | 2 | 199 | 185 | 2 | 2 | 1 |
| 4 | 7 | 0 | 24 | 24 | 24 | 6 | 0 | 2 | 379 | 386 | 3 | 3 | 1 |
| 5 | 7 | 0 | 0 | 32 | 1 | 8 | 0 | 2 | 665 | 655 | 5 | 4 | 1 |
| 2 | 0 | 1 | 246 | 253 | 2 | 10 | 0 | 2 | 359 | 366 | 3 | 5 | 1 |
| 4 | 0 | 1 | 242 | 238 | 2 | 12 | 0 | 2 | 135 | 137 | 3 | 6 | 1 |
| 6 | 0 | 1 | 560 | 545 | 4 | 1 | 1 | 2 | 308 | 297 | 3 | 7 | 1 |

1 10FO 10FC 10 s
h $k 110 \mathrm{FO}$ 10FC 10s h $k$ 1 10FO 10Fc 10s $\begin{array}{llll}2 & 128 & 130 & 3\end{array}$ $\begin{array}{llll}2 & 282 & 277 & 1\end{array}$
$\begin{array}{llll}2 & 142 & 141 & 3\end{array}$ $\begin{array}{llllll}0 & 0 & 4 & 489 & 491 & 3\end{array}$ $\begin{array}{llllll}2 & 1 & 5 & 480 & 491 & 3\end{array}$ $\begin{array}{llllllllllll}2 & 0 & 4 & 808 & 824 & 5 & 3 & 1 & 5 & 521 & 514 & 3\end{array}$ $\begin{array}{llllllllllll}4 & 0 & 4 & 768 & 801 & 5 & 4 & 1 & 5 & 757 & 751 & 4\end{array}$ $\begin{array}{llllllllllll}6 & 0 & 4 & 374 & 381 & 3 & 5 & 1 & 5 & 581 & 573 & 4\end{array}$ $\begin{array}{llllllllllllllll}2 & 53 & 38 & 10 & 6 & 0 & 4 & 374 & 381 & 3 & 5 & 1 & 5 & 581 & 573 & 4\end{array}$ $\begin{array}{llllllllllllllll}2 & 42 & 56 & 42 & 8 & 0 & 4 & 359 & 353 & 3 & 6 & 1 & 5 & 355 & 350 & 2\end{array}$ $\begin{array}{lllllllllllllllll}2 & 57 & 54 & 17 & 10 & 0 & 4 & 305 & 302 & 3 & 7 & 1 & 5 & 259 & 266 & 3\end{array}$ $\begin{array}{llllllllllllllll}2 & 0 & 19 & 1 & 12 & 0 & 4 & 193 & 193 & 3 & 8 & 1 & 5 & 91 & 88 & 3\end{array}$ $\begin{array}{llll}3 & 34 & 49 & 8\end{array}$ $\begin{array}{llll}3 & 468 & 454 & 4\end{array}$ $\begin{array}{llll}3 & 206 & 185 & 2\end{array}$ $\begin{array}{llll}3 & 0 & 10 & 1\end{array}$
$\begin{array}{llll}3 & 211 & 208 & 2\end{array}$ $\begin{array}{llllllllll}3 & 184 & 182 & 3 & 6 & 1 & 4 & 0 & 26 & 1\end{array}$
$\begin{array}{llllllllll}3 & 957 & 965 & 10 & 7 & 1 & 4 & 159 & 164 & 2\end{array}$ $\begin{array}{llll}3 & 232 & 220 & 3\end{array}$
$3580 \quad 586 \quad 6$
$\begin{array}{llllllllll}3 & 1125 & 1118 & 24 & 10 & 1 & 4 & 143 & 139 & 2\end{array}$
$\begin{array}{llllllllll}3 & 351 & 351 & 2 & 11 & 1 & 4 & 137 & 134 & 3\end{array}$
$\begin{array}{llllll}6 & 2 & 5 & 48 & 52 & 10\end{array}$

| 3 | 581 | 562 | 3 | 12 | 1 | 4 | 113 | 111 | 3 | 7 | 2 | 5 | 0 | 33 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{llllllllllllllll}3 & 412 & 421 & 2 & 13 & 1 & 4 & 0 & 27 & 1 & 8 & 2 & 5 & 63 & 67 & 36\end{array}$
$\begin{array}{llllllllllllllll}3 & 13 & 32 & 13 & 0 & 2 & 4 & 272 & 275 & 3 & 9 & 2 & 5 & 301 & 302 & 2\end{array}$

## Appendix 3

| 8 | 0 | 1 | 156 | 157 | 2 | 2 | 1 | 2 | 197 | 208 | 2 | 8 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 0 | 1 | 137 | 137 | 3 | 3 | 1 | 2 | 144 | 150 | 1 | 9 | 1 |

1 10F'O 10FC 108

| 3 | 298 | 303 | 3 | 1 | 2 | 4 | 364 | 381 | 2 | 10 | 2 | 5 | 0 | 8 | 1 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 3 | 257 | 263 | 1 | 2 | 2 | 4 | 106 | 98 | 1 | 11 | 2 | 5 | 211 | 218 | 3 |

## Table 5 a Observed and calculated structure factors for C9H10CrNO3 Page 2



Appendix 3
h $x$ 10FO 10FC 10
h k 1 10FO 10FC 10s
h $k$ 10Fo 10Fc 10s
$\begin{array}{llllllllllllllllll}9 & 4 & 5 & 0 & 24 & 1 & 9 & 5 & 6 & 0 & 44 & 1 & 7 & 1 & 8 & 76 & 85 & 4\end{array}$ $\begin{array}{llllllllllllllllll}10 & 4 & 5 & 86 & 93 & 18 & 0 & 6 & 6 & 92 & 89 & 4 & 8 & 1 & 8 & 19 & 59 & 19\end{array}$
$\begin{array}{llllllllllllll}0 & 5 & 5 & 509 & 511 & 3 & 2 & 6 & 6 & 94 & 95 & 3 & 10 & 1\end{array}$
$\begin{array}{lllllllllllllllll}- & 5 & 5 & 262 & 261 & 1 & 3 & 6 & 6 & 163 & 156 & 2 & 11 & 1 & 8 & 85 & 83\end{array}$
$\begin{array}{llllllllllllllllll}2 & 5 & 5 & 304 & 300 & 2 & 4 & 6 & 6 & 142 & 145 & 2 & 12 & 1 & 8 & 82 & 91 & 19\end{array}$
$\begin{array}{llllllllllllllllll}3 & 5 & 5 & 60 & 66 & 5 & 5 & 6 & 6 & 182 & 179 & 2 & 0 & 2 & 8 & 0 & 33 & 1\end{array}$
$\begin{array}{llllllllllllllllll}4 & 5 & 5 & 103 & 102 & 3 & 6 & 6 & 6 & 160 & 157 & 2 & 1 & 2 & 8 & 38 & 387 & 2\end{array}$
$\begin{array}{llll}5 & 74 & 77 & 6\end{array}$
$\begin{array}{llllll}2 & 0 & 7 & 378 & 387 & 3\end{array}$
$\begin{array}{llllll}2 & 2 & 8 & 76 & 68 & 3\end{array}$
$\begin{array}{lllllllllllllllll}6 & 5 & 5 & 225 & 225 & 3 & 4 & 0 & 7 & 44 & 46 & 7 & 3 & 2 & 8 & 383 & 384\end{array}$
$\begin{array}{llllllllllll}7 & 5 & 5 & 182 & 17 B & 4 & 6 & 0 & 7 & 2 & 28 & 21\end{array}$
$\begin{array}{llllllllllll}8 & 5 & 5 & 276 & 277 & 2 & 8 & 0 & 7 & 248 & 252 & 2\end{array}$
$\begin{array}{llllllllllll}9 & 5 & 5 & 161 & 173 & 3 & 10 & 0 & 7 & 126 & 130 & 4\end{array}$
$\begin{array}{llllll}6 & 2 & 8 & 84 & 83 & 18\end{array}$
$\begin{array}{llllllllllllllllll}10 & 5 & 5 & 130 & 134 & 3 & 12 & 0 & 7 & 43 & 56 & 16 & 7 & 2 & 8 & 292 & 299 & 2\end{array}$
$\begin{array}{llllllllllllllllll}1 & 6 & 5 & 0 & 21 & 1 & 0 & 1 & 7 & 310 & 312 & 4 & 8 & 2 & 8 & 68 & 68 & 4\end{array}$
$\begin{array}{llllllllllllllllll}2 & 6 & 5 & 12 & 35 & 11 & 1 & 1 & 7 & 187 & 203 & 1 & & 9 & 2 & 8 & 224 & 227\end{array}$
$\begin{array}{llllllllllllllllll}3 & 6 & 5 & 0 & 63 & 1 & 2 & 1 & 7 & 41 \perp & 416 & 10 & 10 & 2 & 8 & 20 & 17 & 19\end{array}$
$\begin{array}{llllllllllllllllll}5 & 6 & 5 & 45 & 59 & 17 & 4 & 1 & 7 & 44 & 436 & 3 & 12 & 2 & 8 & 0 & 24\end{array}$
$\begin{array}{llll}3 & 8 & 37-36\end{array}$
$\begin{array}{llllll}7 & 6 & 5 & 0 & 12 & 1\end{array}$
$\begin{array}{llllll}6 & 1 & 7 & 245 & 245 & 1\end{array}$
$\begin{array}{llllllllllll}0 & 7 & 5 & 0 & 40 & 1 & 7 & 1 & 7 & 246 & 247 & 1\end{array}$
$\begin{array}{llllll}8 & 1 & 7 & 173 & 167 & 4\end{array}$
$\begin{array}{llllllllllll}2 & 7 & 5 & 0 & 40 & 1 & 9 & 1 & 7 & 0 & 44 & 1\end{array}$
$\begin{array}{llllll}2 & 3 & 8 & 33 & 17 & 10\end{array}$
$\begin{array}{llllll}3 & 3 & 8 & 64 & 64 & 5\end{array}$
$\begin{array}{llllll}4 & 3 & 6 & 92 & 91 & 3\end{array}$
$\begin{array}{lllll}5 & 3 & 8 & 17 & 32\end{array}$

| 6 | 3 | 9 | 120 | 123 | 3 | 2 | 2 | 11 | 59 | 65 | 15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | 3 | 9 | 239 | 240 | 3 | 3 | 2 | 11 | 116 | 115 | 2 |
| 8 | 3 | 9 | 76 | 74 | 44 | 4 | 2 | 11 | 35 | 29 | 9 |
| 9 | 3 | 9 | 93 | 91 | 4 | 5 | 2 | 11 | 0 | 18 | 1 |
| 10 | 3 | 9 | 59 | 60 | 25 | 6 | 2 | 11 | 58 | 50 | 23 |
| 1 | 4 | 9 | 83 | 80 | 3 | 7 | 2 | 11 | 0 | 24 | 1 |
| 2 | 4 | 9 | 35 | 51 | 25 | 8 | 2 | 11 | 0 | 39 | 1 |
| 3 | 4 | 9 | 59 | 62 | 23 | 9 | 2 | 11 | 102 | 104 | 4 |
| 4 | 4 | 9 | 0 | 19 | 1 | 0 | 3 | 11 | 77 | 81 | 4 |
| 5 | 4 | 9 | 85 | 84 | 4 | 1 | 3 | 11 | 170 | 169 | 2 |
| 6 | 4 | 9 | 38 | 61 | 16 | 2 | 3 | 11 | 138 | 131 | 4 |
| 7 | 4 | 9 | 70 | 73 | 5 | 3 | 3 | 11 | 235 | 227 | 2 |
| 8 | 4 | 9 | 107 | 105 | 3 | 4 | 3 | 11 | 164 | 173 | 2 |
| 9 | 4 | 9 | 0 | 13 | 1 | 5 | 3 | 11 | 249 | 250 | 2 |
| 0 | 5 | 9 | 186 | 186 | 3 | 6 | 3 | 11 | 0 | 65 | 1 |
| 1 | 5 | 9 | 0 | 36 | 1 | 7 | 3 | 11 | 156 | 163 | 3 |
| 2 | 5 | 9 | 208 | 209 | 2 | 8 | 3 | 11 | 32 | 16 | 32 |
| 3 | 5 | 9 | 75 | 69 | 8 | 1 | 4 | 11 | 0 | 42 | 1 |
| 4 | 5 | 9 | 213 | 215 | 2 | 2 | 4 | 11 | 0 | 11 | 1 |
| 5 | 5 | 9 | 102 | 107 | 4 | 3 | 4 | 11 | 35 | 31 | 18 |
| 6 | 5 | 9 | 175 | 175 | 2 | 4 | 4 | 11 | 32 | 23 | 14 |
| 1 | 6 | 9 | 0 | 20 | 1 | 5 | 4 | 11 | 23 | 43 | 23 |
| 0 | 0 | -0 | 697 | 705 | 5 | 6 | 4 | 12 | 67 | 58 | 10 |
| 2 | 0 | -0 | 449 | 449 | 4 | 0 | 5 | 11 | 101 | 95 | 3 |

$h k 1$ 10FO 10FC 10s h k 1 10FO 10FC 10s
$\begin{array}{llllllllllll}0 & 0 & 6 & 957 & 940 & 5 & 10 & 1 & 7 & 187 & 188 & 2\end{array}$
$\begin{array}{llllllllllll}2 & 0 & 6 & 463 & 479 & 4 & 11 & 1 & 7 & 137 & 132 & 5\end{array}$
$\begin{array}{llllllllllll}4 & 0 & 6 & 342 & 358 & 3 & 12 & 1 & 7 & 151 & 153 & 3\end{array}$
$\begin{array}{llllllllllll}6 & 0 & 6 & 612 & 614 & 5 & 13 & 1 & 7 & 126 & 121 & 3\end{array}$
$\begin{array}{llllllllllll}8 & 0 & 6 & 319 & 317 & 3 & 1 & 2 & 7 & 0 & 23\end{array}$ $\begin{array}{llllllllllll}10 & 0 & 6 & 126 & 133 & 4 & 2 & 2 & 7 & 154 & 163 & 1\end{array}$ $\begin{array}{llllllllllll}12 & 0 & 6 & 231 & 228 & 3 & 3 & 2 & 7 & 77 & 70 & 3\end{array}$
$\begin{array}{lllllllllll}- & 1 & 6 & 144 & 129 & 1 & 4 & 2 & 7 & 122 & 119\end{array} 2$
$\begin{array}{llllllllllll}2 & 1 & 6 & 264 & 243 & 3 & 5 & 2 & 7 & 30 & 40 & 30\end{array}$
$\begin{array}{llllllllllll}3 & 1 & 6 & 74 & 79 & 2 & 6 & 2 & 7 & 91 & 93 & 24\end{array}$
$\begin{array}{llllllllllll}4 & 1 & 6 & 153 & 154 & 3 & 7 & 2 & 7 & 74 & 72 & 4\end{array}$
$\begin{array}{llllllllllll}5 & 1 & 6 & 171 & 161 & 4 & 8 & 2 & 7 & 50 & 58 & 10\end{array}$
$\begin{array}{llllllllllll}6 & 1 & 6 & 30 & 20 & 9 & 9 & 2 & 7 & 196 & 197 & 4\end{array}$
$\begin{array}{llllllllllll}7 & 1 & 6 & 253 & 250 & 2 & 10 & 2 & 7 & 0 & 23 & 1\end{array}$
$\begin{array}{llllll}8 & 1 & 6 & 48 & 57 & 7\end{array}$
$\begin{array}{llllllllllll}9 & 1 & 6 & 259 & 256 & 2 & 12 & 2 & 7 & 0 & 46 & 1\end{array}$ $\begin{array}{llllllllllll}10 & 1 & 6 & 169 & 169 & 2 & 0 & 3 & 7 & 124 & 125 & 2\end{array}$ $\begin{array}{llllllllllll}1 \_ & 1 & 6 & 14 & 21 & 14 & 1 & 3 & 7 & 362 & 360 & 2\end{array}$ $\begin{array}{lllllllllll}12 & 1 & 6 & 108 & 111 & 3 & 2 & 3 & 7 & 224 & 220\end{array}$ $\begin{array}{llllllllllll}13 & 1 & 6 & 0 & 9 & 1 & 3 & 3 & 7 & 380 & 378 & 2\end{array}$ $\begin{array}{llllllllllll}0 & 2 & 6 & 35 & 36 & 5 & 4 & 3 & 7 & 224 & 224 & 4\end{array}$
$\begin{array}{llllllllllll} & 2 & 6 & 115 & 139 & 4 & 5 & 3 & 7 & 2 & 5 & 209\end{array} 3$
$\begin{array}{llllllllllll}2 & 2 & 6 & 243 & 236 & 1 & 6 & 3 & 7 & 102 & 100 & 3\end{array}$
$\begin{array}{lllllllllllll}3 & 2 & 6 & 780 & 761 & 5 & 7 & 3 & 7 & 2 & 8 & 215 & 2\end{array}$
$\begin{array}{llllllllllll}4 & 2 & 6 & 141 & 136 & 2 & 8 & 3 & 7 & 96 & 103 & 3\end{array}$
$\begin{array}{llllllllllll}5 & 2 & 6 & 674 & 658 & 6 & 9 & 3 & 7 & 277 & 278 & 2\end{array}$
h k 1 10FO 10FC 10s $\begin{array}{llllll}6 & 3 & 8 & 4 & 58 & 41\end{array}$
$\begin{array}{llllll}7 & 3 & 8 & 87 & 87 & 4\end{array}$ $\begin{array}{llllll}8 & 3 & 8 & 0 & 12 & 1\end{array}$ $\begin{array}{llllll}9 & 3 & 8 & 145 & 148 & 2\end{array}$ $\begin{array}{llllll}10 & 3 & 8 & 0 & 26 & 1\end{array}$ $\begin{array}{llllll}11 & 3 & 8 & 84 & 77 & 5\end{array}$
$0 \quad 4 \quad 8 \quad 345 \quad 334$
$\begin{array}{llllll}1 & 4 & 8 & 112 & 114 & 3\end{array}$
$\begin{array}{llllll}2 & 4 & 8 & 284 & 283 & 1\end{array}$
$\begin{array}{lllll}3 & 4 & 8 & 128 & 131\end{array}$
$4 \quad 4 \quad 8 \quad 214 \quad 214$
$\begin{array}{llllll}5 & 4 & 8 & 92 & 96 & 3\end{array}$
$\begin{array}{llllll}6 & 4 & 8 & 21 & 212 & 2\end{array}$
$\begin{array}{llllll}7 & 4 & 8 & 0 & 41 & 1\end{array}$
$\begin{array}{llllll}8 & 4 & 8 & 187 & 189 & 2\end{array}$
$\begin{array}{llllll}9 & 4 & 8 & 14 & 68 & 14\end{array}$
$\begin{array}{llllll}10 & 4 & 8 & 127 & 128 & 3\end{array}$
$\begin{array}{llllll}1 & 5 & 8 & 0 & 21 & 1\end{array}$
$\begin{array}{llllll}2 & 5 & 8 & 0 & 20 & 1\end{array}$
$\begin{array}{llllll}3 & 5 & 8 & 29 & 38 & 29\end{array}$
$\begin{array}{llllll}4 & 5 & 8 & 52 & 49 & 22\end{array}$
$\begin{array}{llllll}5 & 5 & 8 & 19 & 4 & 19\end{array}$
$\begin{array}{llllll}6 & 5 & 8 & 106 & 102 & 7\end{array}$
$\begin{array}{llllll}7 & 5 & 8 & 45 & 55 & 35\end{array}$
$\begin{array}{llllll}8 & 5 & 8 & 60 & 57 & 7\end{array}$ $\begin{array}{llllll}0 & 6 & 8 & 92 & 100 & 4\end{array}$

| 4 | 0 | . 0 | 43 | 52 | 12 | 1 | 5 | 11 | 0 | 12 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | 0 | -0 | 81 | 87 | 6 | 2 | 5 | 11 | 158 | 161 | 4 |
| 8 | 0 | . 0 | 419 | 417 | 4 | 3 | 5 | 11 | 84 | 80 | 5 |
| 10 | 0 | -0 | 288 | 283 | 3 | 0 | 0 | 12 | 601 | 602 | 6 |
| 1 | 1 | -0 | 156 | 163 | 4 | 2 | 0 | 12 | 264 | 261 | 2 |
| 2 | 1 | _0 | 0 | 43 | 1 | 4 | 0 | 12 | 0 | 45 | 1 |
| 3 | 1 | -0 | 20 | 52 | 19 | 6 | 0 | 12 | 219 | 214 | 3 |
| 4 | 1 | -0 | 82 | 88 | 25 | 8 | 0 | 12 | 307 | 313 | 3 |
| 5 | 1 | . 0 | 207 | 213 | 2 | 1 | 1 | 12 | 0 | 26 | 1 |
| 6 | 1 | - 0 | 83 | 91 | 28 | 2 | 1 | 12 | 27 | 25 | 27 |
| 7 | 1 | -0 | 0 | 68 | 1 | 3 | 1 | 12 | 18 | 23 | 17 |
| 8 | 1 | -0 | 0 | 22 | 1 | 4 | 1 | 12 | 74 | 82 | 4 |
| 9 | 1 | -0 | 28 | 33 | 27 | 5 | 1 | 12 | 0 | 27 | 1 |
| 10 | 1 | -0 | 14 | 26 | 14 | 6 | 1 | 12 | 89 | 93 | 12 |
| 11 | 1 | -0 | 48 | 49 | 17 | 7 | 1 | 12 | 90 | 98 | 9 |
| 0 | 2 | -0 | 44 | 49 | 44 | 8 | 1 | 12 | 32 | 4 | 31 |
| 1 | 2 | -0 | 294 | 288 | 2 | 9 | 1 | 12 | 55 | 42 | 24 |
| 2 | 2 | -0 | 30 | 17 | 30 | 0 | 2 | 12 | 34 | 43 | 34 |
| 3 | 2 | -0 | 291 | 287 | 2 | 1 | 2 | 12 | 193 | 189 | 2 |
| 4 | 2 | -0 | 91 | 91 | 3 | 2 | 2 | 12 | 33 | 41 | 18 |
| 5 | 2 | -0 | 313 | 317 | 3 | 3 | 2 | 12 | 270 | 268 | 2 |
| 6 | 2 | -0 | 191 | 191 | 2 | 4 | 2 | 12 | 97 | 106 | 3 |
| 7 | 2 | -0 | 235 | 240 | 2 | 5 | 2 | 12 | 240 | 239 | 4 |
| 8 | 2 | -0 | 19 | 10 | 18 | 6 | 2 | 12 | 43 | 51 | 42 |
| 9 | 2 | -0 | 128 | 131 | 3 | 7 | 2 | 12 | 147 | 143 | 3 |
| 10 | 2 | -0 | 64 | 80 | 6 | 8 | 2 | 12 | 30 | 33 | 18 |

## Appendix 3

| 6 | 2 | 6 | 167 | 163 | 2 | 10 | 3 | 7 | 93 | 93 | 4 | 1 | 6 | 8 | 13 | 127 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | 2 | 6 | 216 | 217 | 1 | 11 | 3 | 7 | 146 | 147 | 3 | 2 | 6 | 8 | 98 | 94 | 8 |
| 8 | 2 | 6 | 60 | 66 | 5 | 12 | 3 | 7 | 67 | 68 | 11 | 3 | 6 | 8 | 17. | 173 | 4 |
| 9 | 2 | 6 | 162 | 165 | 2 | 1 | 4 | 7 | 105 | 94 | 3 | 4 | 6 | 8 | 114 | 103 | 3 |
| 10 | 2 | 6 | 199 | 200 | 2 | 2 | 4 | 7 | 115 | 118 | 2 | 2 | 0 | 9 | 113 | 113 | 3 |
| 1. | 2 | 6 | 216 | 220 | 2 | 3 | 4 | 7 | 64 | 69 | 20 | 4 | 0 | 9 | 224 | 226 | 2 |
| 12 | 2 | 6 | 7 | 17 | 6 | 4 | 4 | 7 | 134 | 138 | 3 | 6 | 0 | 9 | 23 | 223 | 2 |
| 13 | 2 | 6 | 152 | 149 | 5 | 5 | 4 | 7 | 37 | 34 | 36 | 8 | 0 | 9 | 33 | 30 | 18 |
| - | 3 | 6 | 93 | 83 | 2 | 6 | 4 | 7 | 196 | 200 | 2 | 10 | 0 | 9 | 0 | 33 | 1 |
| 2 | 3 | 6 | 122 | 122 | 2 | 7 | 4 | 7 | 42 | 40 | 41 | 12 | 0 | 9 | 157 | 150 | 4 |
| 3 | 3 | 6 | 0 | 8 | 1 | 8 | 4 | 7 | 0 | 14 | 1 | 0 | 1 | 9 | 467 | 466 | 3 |
| 4 | 3 | 6 | 115 | 118 | 4 | 9 | 4 | 7 | 52 | 52 | 11 | 1 | 1 | 9 | 246 | 245 | 2 |
| 5 | 3 | 6 | 166 | 159 | 2 | 10 | 4 | 7 | 0 | 8 | 1 | 2 | 1 | 9 | 305 | 305 | 2 |
| 6 | 3 | 6 | 130 | 129 | 2 | 0 | 5 | 7 | 430 | 434 | 3 | 3 | 1 | 9 | 330 | 331 | 2 |
| 7 | 3 | 6 | 107 | 104 | 3 | 1 | 5 | 7 | 136 | 135 | 3 | 4 | 1 | 9 | 160 | 156 | 4 |
| 8 | 3 | 6 | 0 | 24 | 1 | 2 | 5 | 7 | 238 | 239 | 2 | 5 | 1 | 9 | 117 | 114 | 3 |
| 9 | 3 | 6 | 86 | 82 | 4 | 3 | 5 | 7 | 23 | 21 | 22 | 6 | 1 | 9 | 234 | 236 | 1 |


| 1 | 3 | . 0 | 30 | 38 | 29 | 1 | 3 | 12 | 0 | 19 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 3 | - 0 | 216 | 222 | 1 | 2 | 3 | 12 | 50 | 66 | 10 |
| 3 | 3 | _ 0 | 29 | 30 | 13 | 3 | 3 | 12 | 0 | 21 | 1 |
| 4 | 3 | -0 | 53 | 45 | 6 | 4 | 3 | 12 | 40 | 50 | 10 |
| 5 | 3 | - 0 | 0 | 25 | 1 | 5 | 3 | 12 | 19 | 45 | 19 |
| 6 | 3 | . 0 | 84 | 86 | 32 | 6 | 3 | 12 | 0 | 9 | 1 |
| 7 | 3 | _0 | 135 | 134 | 3 | 7 | 3 | 12 | 48 | 43 | 47 |
| 8 | 3 | - 0 | 0 | 15 | 1 | 0 | 4 | 12 | 118 | 117 | 8 |
| 9 | 3 | . 0 | 134 | 139 | 7 | 1 | 4 | 12 | 73 | 70 | 5 |
| 0 | 4 | - 0 | 224 | 219 | 2 | 2 | 4 | 12 | 186 | 186 | 2 |
| 1 | 4 | - 0 | 62 | 54 | 5 | 3 | 4 | 12 | 63 | 59 | 6 |
| 2 | 4 | . 0 | 213 | 209 | 2 | 4 | 4 | 12 | 211 | 212 | 2 |
| 3 | 4 | - 0 | 125 | 124 | 3 | 5 | 4 | 12 | 77 | 74 | 5 |
| 4 | 4 | - 0 | 230 | 226 | 2 | 2 | 0 | 13 | 0 | 59 | 1 |
| 5 | 4 | -0 | 78 | 83 | 5 | 4 | 0 | 13 | 13 | 16 | 12 |
| 6 | 4 | 10 | 203 | 198 | 4 | 6 | 0 | 13 | 86 | 93 | 6 |
| 7 | 4 | -0 | 43 | 58 | 43 | 8 | 0 | 13 | 81 | 89 | 7 |



## Structural parameters for

## $\left(\eta^{6}-2,6\right.$-bis(trimethylsilyl)pyridine) $\mathrm{Cr}(\mathrm{CO})_{3}$

Table 1b Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotroplc displacement parameters $\left(A^{2} \times 10^{3}\right)$ for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{CrNO}_{3} \mathrm{Si}_{2} \mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalızed UıJ tensor

|  | x | y | z | U (eq) |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Cr}(1)$ | 2487(1) | 1253(1) | 330 (1) | $37(1)$ |
| S1(1) | 1267 (1) | 2731 (1) | 1137 (1) | 40(1) |
| Si (2) | 1739 (1) | 601 (1) | 3521(1) | 45 (1) |
| N(1) | 1911 (3) | 1633 (1) | 2140(2) | $35(1)$ |
| O(1) | 1284(4) | 1859 (1) | -2156(2) | 80(1) |
| O(2) | 3895 (4) | 346 (1) | -1308(3) | 95(1) |
| O(3) | -1025 (4) | 684(1) | -135 (3) | 95(1) |
| C(2) | 2651 (3) | 2051(1) | 1458(2) | 35 (1) |
| C (3) | 4298 (4) | 1956(1) | 1029 (3) | 43 (1) |
| C(4) | 5165 (4) | 1435 (1) | 1267(3) | 47 (1) |
| C (5) | 4405 (4) | 1012 (1) | 1987(3) | 45 (1) |
| C (6) | 2796(4) | 1113 (1) | 2437(2) | 37 (1) |
| C (9) | 1762 (4) | 1631 (1) | -1190(3) | 51(1) |
| C (10) | 3363 (5) | 691 (2) | -671(3) | $58(1)$ |
| C(11) | 337 (4) | 889 (2) | $71(3)$ | 55 (1) |
| C(12) | 2188 (6) | 3162 (2) | -122(4) | 83 (1) |
| C(13) | 1375 (5) | 3162 (2) | 2646 (3) | 66 (1) |
| C(14) | -1011(4) | 2496 (2) | 619 (4) | 73 (1) |
| C(15) | 2329 (6) | 874 (2) | 5192(3) | 75 (1) |
| $\mathrm{C}(16)$ | -671(5) | 623 (2) | 3100 (4) | $72(1)$ |
| C(17) | 2617 (6) | -139(2) | 3339 (4) | 83 (1) |

Table 2b Bond lengths [ $\AA$ ] and angles [ ${ }^{\circ}$ ] for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{CrNO}_{3} \mathrm{Si}_{2}$

| $\mathrm{Cr}(1)-\mathrm{C}(9)$ | 1 835(3) |
| :---: | :---: |
| $\mathrm{Cr}(1)-\mathrm{C}(10)$ | 1846 (3) |
| $\mathrm{Cr}(1)-\mathrm{C}(11)$ | 1 846(3) |
| $\mathrm{Cr}(1)-\mathrm{N}(1)$ | 2180 (2) |
| $\mathrm{Cr}(1)-\mathrm{C}(2)$ | 2 183(3) |
| $\mathrm{Cr}(1)-\mathrm{C}(5)$ | 2 198(3) |
| $\mathrm{Cr}(1)-\mathrm{C}(6)$ | 2 205(3) |
| $\mathrm{Cr}(1)-\mathrm{C}(3)$ | 2 204(3) |
| $\mathrm{Cr}(1)-\mathrm{C}(4)$ | 2 209(3) |
| Si (1)-C(14) | 1851 (3) |
| SI (1)-C(13) | 1 856(3) |
| Sı (1)-C(12) | 1859 (4) |
| Si (1)-C (2) | 1 904(3) |
| Sl (2)-C(16) | 1 854(4) |
| Si (2)-C(17) | 1857 (3) |
| S1 (2)-C(15) | 1 856(3) |
| SI (2)-C(6) | 1890 (3) |
| $\mathrm{N}(1)-\mathrm{C}(2)$ | 1367 (3) |
| $\mathrm{N}(1)-\mathrm{C}(6)$ | $1397(3)$ |
| O(1)-C(9) | 1 155(4) |
| $\mathrm{O}(2)-\mathrm{C}(10)$ | 1 146(4) |
| O(3)-C(11) | 1 147(4) |
| $\mathrm{C}(2)-\mathrm{C}(3)$ | 1416 (4) |
| $\mathrm{C}(3)-\mathrm{C}(4)$ | $1382(4)$ |
| $\mathrm{C}(4)-\mathrm{C}(5)$ | $1405(4)$ |
| $\mathrm{C}(5)-\mathrm{C}(6)$ | 1400 (4) |
| $\mathrm{C}(9)-\mathrm{Cr}(1)-\mathrm{C}(10)$ | 8644 (14) |
| $\mathrm{C}(9)-\mathrm{Cr}(1)-\mathrm{C}(11)$ | $8544(14)$ |
| $\mathrm{C}(10)-\mathrm{Cr}(1)-\mathrm{C}(11)$ | 89 1(2) |
| $\mathrm{C}(9)-\mathrm{Cr}(1)-\mathrm{N}$ (1) | $11898(11)$ |
| $\mathrm{C}(10)-\mathrm{Cr}(1)-\mathrm{N}(1)$ | $15456(12)$ |
| $\mathrm{C}(11)-\mathrm{Cr}(1)-\mathrm{N}(1)$ | 91 83(12) |
| $\mathrm{C}(9)-\mathrm{Cr}(1)-\mathrm{C}(2)$ | $9314(12)$ |
| $\mathrm{C}(10)-\mathrm{Cr}(1)-\mathrm{C}(2)$ | 153 91(13) |
| $\mathrm{C}(11)-\mathrm{Cr}(1)-\mathrm{C}(2)$ | 116 90(13) |
| $\mathrm{N}(1)-\mathrm{Cr}(1)-\mathrm{C}(2)$ | 3653 (8) |
| $\mathrm{C}(9)-\mathrm{Cr}(1)-\mathrm{C}(5)$ | 15424 (13) |
| $\mathrm{C}(10)-\mathrm{Cr}(1)-\mathrm{C}(5)$ | $9057(13)$ |
| $\mathrm{C}(11)-\mathrm{Cr}(1)-\mathrm{C}(5)$ | 12012 (13) |
| $\mathrm{N}(1)-\mathrm{Cr}(1)-\mathrm{C}(5)$ | $6711(10)$ |
| $\mathrm{C}(2)-\mathrm{Cr}(1)-\mathrm{C}(5)$ | 78 58(11) |
| $\mathrm{C}(9)-\mathrm{Cr}(1)-\mathrm{C}(6)$ | $15613(12)$ |
| $\mathrm{C}(10)-\mathrm{Cr}(1)-\mathrm{C}(6)$ | 117 41(13) |
| $\mathrm{C}(11)-\mathrm{Cr}(1)-\mathrm{C}(6)$ | 9347 (12) |
| $\mathrm{N}(1)-\mathrm{Cr}(1)-\mathrm{C}(6)$ | 37 16(9) |
| $\mathrm{C}(2)-\mathrm{Cr}(1)-\mathrm{C}(6)$ | $6609(10)$ |
| $\mathrm{C}(5)-\mathrm{Cr}(1)-\mathrm{C}(6)$ | 37 09(10) |
| $\mathrm{C}(9)-\mathrm{Cr}(1)-\mathrm{C}(3)$ | 9264 (13) |
| $\mathrm{C}(10)-\mathrm{Cr}(1)-\mathrm{C}(3)$ | 116 26(14) |
| $\mathrm{C}(11)-\mathrm{Cr}(1)-\mathrm{C}(3)$ | 154 44(13) |
| $\mathrm{N}(1)-\mathrm{Cr}(1)-\mathrm{C}(3)$ | 66 85(10) |
| $\mathrm{C}(2)-\mathrm{Cr}(1)-\mathrm{C}$ (3) | 37 66(10) |
| $\mathrm{C}(5)-\mathrm{Cr}(1)-\mathrm{C}(3)$ | 65 88(12) |
| $\mathrm{C}(6)-\mathrm{Cr}(1)-\mathrm{C}(3)$ | 78 15(11) |
| $\mathrm{C}(9)-\mathrm{Cr}(1)-\mathrm{C}(4)$ | 117 15(13) |
| $\mathrm{C}(10)-\mathrm{Cr}(1)-\mathrm{C}(4)$ | 8975 (14) |
| $\mathrm{C}(11)-\mathrm{Cr}(1)-\mathrm{C}(4)$ | 157 25(13) |
| $\mathrm{N}(1)-\mathrm{Cr}(1)-\mathrm{C}(4)$ | 7974 (10) |


| $\mathrm{C}(2)-\mathrm{Cr}(1)-\mathrm{C}(4)$ | 67 26(11) |
| :---: | :---: |
| $\mathrm{C}(5)-\mathrm{Cr}(1)-\mathrm{C}(4)$ | 37 17(11) |
| $\mathrm{C}(6)-\mathrm{Cr}(1)-\mathrm{C}(4)$ | 67 09(11) |
| $\mathrm{C}(3)-\mathrm{Cr}(1)-\mathrm{C}(4)$ | $3651(11)$ |
| $\mathrm{C}(14)-\mathrm{SI}(1)-\mathrm{C}(13)$ | 110 1(2) |
| $\mathrm{C}(14)-\mathrm{SI}(1)-\mathrm{C}(12)$ | 112 6(2) |
| $\mathrm{C}(13)-\mathrm{SI}(1)-\mathrm{C}(12)$ | 109 4(2) |
| $\mathrm{C}(14)-\mathrm{SI}(1)-\mathrm{C}(2)$ | 10743 (14) |
| $\mathrm{C}(13)-\mathrm{SI}(1)-\mathrm{C}(2)$ | 10921 (14) |
| $\mathrm{C}(12)-\mathrm{Si}(1)-\mathrm{C}(2)$ | 1081 (2) |
| $\mathrm{C}(16)-\mathrm{SI}(2)-\mathrm{C}(17)$ | 111 6(2) |
| $\mathrm{C}(16)-\mathrm{SI}(2)-\mathrm{C}(15)$ | 109.4(2) |
| $\mathrm{C}(17)-\mathrm{SI}(2)-\mathrm{C}(15)$ | 111 1(2) |
| $\mathrm{C}(16)-\mathrm{SI}(2)-\mathrm{C}(6)$ | $10968(14)$ |
| $\mathrm{C}(17)-\mathrm{Si}(2)-\mathrm{C}(6)$ | 108 9(2) |
| $\mathrm{C}(15)-\mathrm{SI}(2)-\mathrm{C}(6)$ | $1061(2)$ |
| $\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(6)$ | 119 9(2) |
| $\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{Cr}(1)$ | 71 88(14) |
| $\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{Cr}(1)$ | 72 41(14) |
| $\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | 120 3(3) |
| $\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{Sl}(1)$ | 114 (2) |
| $\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{Sl}(1)$ | 125 3(2) |
| $\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{Cr}(1)$ | 71 59(14) |
| $\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{Cr}(1)$ | 72 0(2) |
| $\mathrm{Sl}(1)-\mathrm{C}(2)-\mathrm{Cr}(1)$ | 127 50(13) |
| $\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$ | 120 7(3) |
| $\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{Cr}(1)$ | 71 9(2) |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{Cr}(1)$ | 70 4(2) |
| $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$ | 118 4(3) |
| $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{Cr}(1)$ | 71 5(2) |
| $\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{Cr}(1)$ | 71 0(2) |
| $C(6)-C(5)-C(4)$ | 120.8(3) |
| $\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{Cr}(1)$ | $717(2)$ |
| $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{Cr}(1)$ | $71.8(2)$ |
| $\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(5)$ | 1198 (2) |
| $\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{Sl}(2)$ | 115 8(2) |
| $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{Sl}(2)$ | 124 4(2) |
| $\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{Cr}(1)$ | 70 43(14) |
| $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{Cr}(1)$ | 71 2(2) |
| $\mathrm{Si}_{1}(2)-\mathrm{C}(6)-\mathrm{Cr}(1)$ | 133 49(14) |
| $\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{Cr}(1)$ | 178 6(3) |
| $\mathrm{O}(2)-\mathrm{C}(10)-\mathrm{Cr}(1)$ | 179 0(3) |
| O(3)-C(11)-Cr (1) | 176 6(3) |

Table 3b Anısotropic displacement parameters ( $\mathrm{A}^{2} \times 10^{3}$ ) for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{CrNO}_{3} \mathrm{Si}_{2}$ The anlsotropic displacement factor exponent takes the form $-2 p I^{2}\left[\mathrm{~h}^{2} \mathrm{a}^{\star^{2}} \mathrm{U} 11++2 \mathrm{hk} \mathrm{a}^{\star} \mathrm{b}^{\star} \mathrm{Ul2}\right]$

|  | U11 | U22 | U33 | U23 | U13 | U12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Cr}(1)$ | $38(1)$ | $36(1)$ | 37 (1) | -2(1) | 9(1) | 1 (1) |
| Si (1) | 47 (1) | $32(1)$ | 42 (1) | $2(1)$ | 4(1) | 2 (1) |
| Si (2) | 63 (1) | 33 (1) | 40 (1) | 4(1) | 11 (1) | 0 (1) |
| N(1) | $39(1)$ | 33 (1) | 33 (1) | 1(1) | 7 (1) | 1 (1) |
| O(1) | 100(2) | 91 (2) | 48 (1) | 14(1) | $3(1)$ | 11 (2) |
| O(2) | 113 (2) | 85 (2) | 90 (2) | -36(2) | 22 (2) | 32 (2) |
| O(3) | 71 (2) | 129(3) | $81(2)$ | -3(2) | -4(2) | -47(2) |
| C(2) | 36 (2) | 33 (2) | 36 (1) | -2(1) | $3(1)$ | -4 (1) |
| C (3) | $39(2)$ | 45 (2) | 47 (2) | 2 (1) | 10(1) | -9(1) |
| C(4) | 31 (2) | 54 (2) | 58 (2) | -2 (2) | 10(1) | 2 (1) |
| C(5) | 39 (2) | 44 (2) | $51(2)$ | 1 (1) | -1(1) | 11 (2) |
| C (6) | 41 (2) | 33 (2) | 37 (2) | 1(1) | 4(1) | 2 (1) |
| C(9) | 58 (2) | 55 (2) | 40(2) | -1(2) | 10(2) | -2 (2) |
| C(10) | 65 (2) | 55 (2) | 55 (2) | -10(2) | 9(2) | $9(2)$ |
| C(11) | 56 (2) | 65 (2) | 44 (2) | -3(2) | 4(2) | -14(2) |
| C(12) | 116(3) | 62 (2) | 77 (3) | 30 (2) | 32 (2) | 11 (2) |
| C(13) | 76 (3) | 57 (2) | 63 (2) | -14(2) | 1 (2) | 14(2) |
| C(14) | 49(2) | 58 (2) | 106(3) | -15(2) | -13(2) | 8 (2) |
| C(15) | 110(3) | 72 (3) | 45(2) | 0 (2) | 11 (2) | -21(2) |
| C(16) | 68 (2) | 82 (3) | 70 (2) | 10 (2) | 21 (2) | -16(2) |
| C(17) | 126(4) | 43 (2) | 88 (3) | 11 (2) | 37 (3) | 15 (2) |

Table 4b Hydrogen coordinates ( $\mathrm{x} 10^{4}$ ) and isotropic displacement parameters ( $A^{2} \times 10^{3}$ ) for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{CrNO}_{3} \mathrm{Si}_{2}$

|  | x | y | z | U (eq) |
| :---: | :---: | :---: | :---: | :---: |
| H(3) | 4702 (37) | 2218(12) | 557 (26) | 41(8) |
| H(4) | 6228 (41) | 1367 (13) | 875 (28) | 51(8) |
| $\mathrm{H}(5)$ | 4919 (35) | 688(12) | 2157 (24) | 33 (7) |
| H (12A) | 3366 (6) | 3273 (2) | 190(4) | 117(4) |
| H (12B) | 1489 (6) | 3502 (2) | -317(4) | 117 (4) |
| H (12C) | 2184 (6) | 2933(2) | -890(4) | 117(4) |
| H(13A) | 2560 (5) | 3282 (2) | 2907 (3) | 117 (4) |
| H (13B) | 980 (5) | 2930 (2) | 3315 (3) | 117 (4) |
| H (13C) | 641 (5) | 3498 (2) | 2497 (3) | 117 (4) |
| H(14A) | -1053(4) | 2274 (2) | -162 (4) | 117 (4) |
| H(14B) | -1749(4) | 2831 (2) | 466 (4) | 117 (4) |
| H(14C) | -1411(4) | 2263(2) | 1283(4) | 117 (4) |
| H (15A) | 3577 (6) | 864 (2) | 5411(3) | 117 (4) |
| H(15B) | 1792 (6) | 635(2) | 5783(3) | 117 (4) |
| H(15C) | 1924 (6) | 1266 (2) | 5247 (3) | 117 (4) |
| H (16A) | -1082(5) | 1010(2) | 3205 (4) | 117 (4) |
| H(16B) | -1204 (5) | 366 (2) | 3660(4) | 117 (4) |
| H(16C) | -974 (5) | 503 (2) | 2220(4) | 117 (4) |
| H(17A) | 3864 (6) | -135(2) | 3563 (4) | 117(4) |
| H (17B) | 2335(6) | -264 (2) | 2460 (4) | 117 (4) |
| H(17C) | 2106(6) | -401 (2) | 3900 (4) | 117(4) |

Observed and calculated structural factors for
$\left(\eta^{6}-2,6-\right.$ bis(trimethylsilyl)pyridine) $\mathrm{Cr}(\mathrm{CO})_{3}$

Table
5b
h $k 1$ 10Fo 10Fc 10s
$\begin{array}{rrrrrr}2 & 0 & 0 & 1612 & 1445 & 16 \\ 4 & 0 & 0 & 0 & 66 & 1 \\ 6 & 0 & 0 & 283 & 287 & 3 \\ 8 & 0 & 0 & 208 & -94 & 4 \\ 1 & 1 & 0 & 117 & -18 & 1 \\ 2 & 1 & 0 & 581 & 570 & 4 \\ 3 & 1 & 0 & 272 & 282 & 2 \\ 4 & 1 & 0 & 465 & 453 & 4 \\ 5 & 1 & 0 & 104 & -01 & 4 \\ 6 & 1 & 0 & 130 & -35 & 4 \\ 7 & 1 & 0 & 28 & 10 & 28 \\ 8 & 1 & 0 & 116 & -15 & 7 \\ 0 & 2 & 0 & 238 & 238 & 1 \\ 1 & 2 & 0 & 1882 & 1850 & 12 \\ 2 & 2 & 0 & 8 & 10 & 8 \\ 3 & 2 & 0 & 935 & 945 & 5 \\ 4 & 2 & 0 & 220 & 223 & 2 \\ 5 & 2 & 0 & 442 & 436 & 4 \\ 6 & 2 & 0 & 49 & 66 & 14 \\ 7 & 2 & 0 & 49 & 79 & 48 \\ 8 & 2 & 0 & 132 & -32 & 6 \\ 1 & 3 & 0 & 441 & 454 & 3 \\ 2 & 3 & 0 & 577 & 565 & 4 \\ 3 & 3 & 0 & 213 & 203 & 1 \\ 4 & 3 & 0 & 216 & 216 & 2 \\ 5 & 3 & 0 & 25 & 41 & 24 \\ 6 & 3 & 0 & 244 & 241 & 3 \\ 7 & 3 & 0 & 0 & 1 & 1 \\ 8 & 3 & 0 & 0 & 33 & 1 \\ 0 & 4 & 0 & 834 & 865 & 3 \\ 1 & 4 & 0 & 512 & 509 & 4 \\ 2 & 4 & 0 & 691 & 680 & 4 \\ 3 & 4 & 0 & 76 & 65 & 4 \\ 4 & 4 & 0 & 896 & 928 & 6 \\ 5 & 4 & 0 & 236 & 240 & 2 \\ 6 & 4 & 0 & 206 & 200 & 3 \\ 7 & 4 & 0 & 81 & 92 & 9 \\ 8 & 4 & 0 & 18 & 67 & 18 \\ 1 & 5 & 0 & 547 & 527 & 4 \\ 2 & 5 & 0 & 610 & 572 & 5 \\ 3 & 5 & 0 & 202 & -94 & 2 \\ 4 & 5 & 0 & 198 & -95 & 2 \\ 5 & 5 & 0 & 120 & -18 & 4 \\ 6 & 5 & 0 & 26 & 70 & 26 \\ 7 & 5 & 0 & 0 & 33 & 1 \\ 8 & 5 & 0 & 63 & 50 & 13 \\ 0 & 6 & 0 & 470 & 470 & 4 \\ 1 & 6 & 0 & 832 & 850 & 4 \\ 2 & 6 & 0 & 323 & 321 & 3\end{array}$
h $k$ 10FO 10FO 10s

| 2 | 11 | 0 | 216 | 206 | 2 | -3 | 0 | 1 | 727 | 683 | 5 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 3 | 11 | 0 | 40 | 27 | 39 | -1 | 0 | 1 | 1370 | 1294 | 12 |
| 4 | 11 | 0 | 253 | 256 | 2 | 1 | 0 | 1 | 936 | 961 | 3 |
| 5 | 11 | 0 | 112 | 117 | 5 | 3 | 0 | 1 | 318 | 316 | 3 |
| 6 | 11 | 0 | 189 | 185 | 4 | 5 | 0 | 1 | 303 | 296 | 2 |
| 7 | 11 | 0 | 139 | 143 | 6 | 7 | 0 | 1 | 84 | 84 | 8 |
| 8 | 11 | 0 | 0 | 27 | 1 | -8 | 1 | 1 | 205 | 201 | 4 |
| 0 | 12 | 0 | 360 | 359 | 3 | -7 | 1 | 1 | 296 | 296 | 3 |
| 1 | 12 | 0 | 0 | 10 | 1 | -6 | 1 | 1 | 271 | 280 | 2 |
| 2 | 12 | 0 | 409 | 416 | 4 | -5 | 1 | 1 | 378 | 383 | 3 |
| 3 | 12 | 0 | 521 | 508 | 5 | -4 | 1 | 1 | 54 | 27 | 7 |
| 4 | 12 | 0 | 379 | 385 | 4 | -3 | 1 | 1 | 37 | 48 | 9 |
| 5 | 12 | 0 | 119 | 129 | 5 | -2 | 1 | 1 | 26 | 48 | 25 |
| 6 | 12 | 0 | 290 | 290 | 3 | -1 | 1 | 1 | 1141 | 1054 | 8 |
| 7 | 12 | 0 | 135 | 134 | 6 | 0 | 1 | 1 | 1061 | 922 | 7 |
| 8 | 12 | 0 | 171 | 173 | 5 | 1 | 1 | 1 | 1413 | 1230 | 13 |
| 1 | 13 | 0 | 0 | 54 | 1 | 2 | 1 | 1 | 112 | 99 | 2 |
| 2 | 13 | 0 | 110 | 110 | 4 | 3 | 1 | 1 | 759 | 755 | 5 |
| 3 | 13 | 0 | 0 | 17 | 1 | 4 | 1 | 1 | 513 | 518 | 4 |
| 4 | 13 | 0 | 0 | 58 | 1 | 5 | 1 | 1 | 163 | 158 | 3 |
| 5 | 13 | 0 | 112 | 101 | 6 | 6 | 1 | 1 | 240 | 239 | 3 |
| 6 | 13 | 0 | 68 | 62 | 11 | 7 | 1 | 1 | 0 | 78 | 1 |
| 7 | 13 | 0 | 138 | 156 | 6 | 8 | 1 | 1 | 82 | 73 | 9 |
| 0 | 14 | 0 | 112 | 112 | 3 | -8 | 2 | 1 | 103 | 88 | 7 |
| 1 | 14 | 0 | 721 | 747 | 6 | -7 | 2 | 1 | 51 | 5 | 14 |
| 2 | 14 | 0 | 0 | 26 | 1 | -6 | 2 | 1 | 140 | 142 | 4 |
| 3 | 14 | 0 | 315 | 317 | 3 | -5 | 2 | 1 | 0 | 44 | 1 |
| 4 | 14 | 0 | 0 | 14 | 1 | -4 | 2 | 1 | 354 | 345 | 3 |
| 5 | 14 | 0 | 123 | 106 | 5 | -3 | 2 | 1 | 350 | 335 | 3 |
| 6 | 14 | 0 | 84 | 84 | 9 | -2 | 2 | 1 | 298 | 304 | 2 |
| 7 | 14 | 0 | 239 | 229 | 4 | -1 | 2 | 1 | 530 | 539 | 3 |
| 1 | 15 | 0 | 0 | 196 | 1 | 0 | 2 | 1 | 760 | 767 | 4 |
| 2 | 15 | 0 | 56 | 47 | 9 | 1 | 2 | 1 | 384 | 382 | 2 |
| 3 | 15 | 0 | 177 | 176 | 3 | 2 | 2 | 1 | 550 | 552 | 4 |
| 4 | 15 | 0 | 176 | 176 | 3 | 3 | 2 | 1 | 882 | 877 | 5 |
| 5 | 15 | 0 | 162 | 167 | 4 | 4 | 2 | 1 | 517 | 509 | 4 |
| 6 | 15 | 0 | 36 | 32 | 35 | 5 | 2 | 1 | 0 | 51 | 1 |
| 7 | 15 | 0 | 0 | 42 | 1 | 6 | 2 | 1 | 0 | 15 | 1 |
| 0 | 16 | 0 | 516 | 512 | 5 | 7 | 2 | 1 | 186 | 193 | 4 |
| 1 | 16 | 0 | 0 | 15 | 1 | 8 | 2 | 1 | 23 | 23 | 23 |
| 2 | 16 | 0 | 455 | 444 | 4 | -8 | 3 | 1 | 0 | 81 | 1 |
| 3 | 16 | 0 | 94 | 87 | 6 | -7 | 3 | 1 | 0 | 73 | 1 |
| 4 | 16 | 0 | 235 | 229 | 3 | -6 | 3 | 1 | 75 | 56 | 8 |
| 5 | 16 | 0 | 58 | 42 | 12 | -5 | 3 | 1 | 311 | 316 | 3 |
| 6 | 16 | 0 | 167 | 162 | 5 | -4 | 3 | 1 | 565 | 585 | 4 |
| 7 | 16 | 0 | 102 | 89 | 8 | -3 | 3 | 1 | 149 | 161 | 2 |
| 1 | 17 | 0 | 97 | 105 | 5 | -2 | 3 | 1 | 1126 | 1173 | 4 |
| 2 | 17 | 0 | 183 | 187 | 3 | -1 | 3 | 1 | 56 | 33 | 3 |
| 3 | 17 | 0 | 63 | 59 | 9 | 0 | 3 | 1 | 1098 | 938 | 6 |
|  |  |  |  |  |  |  |  |  |  |  |  |


| $\mathbf{h}$ | $\mathbf{k}$ | $\mathbf{1}$ | $\mathbf{1 0 F O}$ | $\mathbf{1 0 F C}$ | $\mathbf{1 0 s}$ | $\mathbf{h}$ | $\mathbf{k}$ | $\mathbf{l}$ | $\mathbf{1 0 F O}$ | $\mathbf{1 0 F C}$ | $\mathbf{1 0 s}$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  |  |  |  |  |  |  |  |  |  |  |
| 8 | 5 | 1 | 129 | 137 | 6 | -4 | 11 | 1 | 508 | 503 | $\mathbf{4}$ |
| -8 | 6 | 1 | 128 | 128 | 6 | -3 | 11 | 1 | 440 | 450 | 4 |
| -7 | 6 | 1 | 82 | 69 | 8 | -2 | 11 | 1 | 259 | 271 | 2 |
| -6 | 6 | 1 | 0 | 51 | 1 | - | 11 | 1 | 913 | 935 | 5 |
| -5 | 6 | 1 | 382 | 385 | 3 | 0 | 11 | 1 | 180 | 195 | 1 |
| -4 | 6 | 1 | 0 | 8 | 1 | - | 11 | 1 | 437 | 439 | 4 |
| -3 | 6 | 1 | 404 | 397 | 4 | 2 | 11 | 1 | 624 | 629 | 4 |
| -2 | 6 | 1 | 777 | 775 | 5 | 3 | 11 | 1 | 0 | 47 | 1 |
| -1 | 6 | 1 | 402 | 412 | 3 | 4 | 11 | 1 | 518 | 514 | 5 |
| 0 | 6 | 1 | 668 | 659 | 3 | 5 | 11 | 1 | 115 | 130 | 5 |
| 1 | 6 | 1 | 316 | 313 | 3 | 6 | 11 | 1 | 298 | 301 | 3 |
| 2 | 6 | 1 | 595 | 574 | 5 | 7 | 11 | 1 | 65 | 79 | 13 |
| 3 | 6 | 1 | 36 | 61 | 35 | 8 | 11 | 1 | 65 | 67 | 14 |
| 4 | 6 | 1 | 126 | 124 | 3 | -8 | 12 | 1 | 0 | 2 | 1 |
| 5 | 6 | 1 | 154 | 154 | 4 | -7 | 12 | 1 | 0 | 55 | 1 |
| 6 | 6 | 1 | 92 | 103 | 7 | -6 | 12 | 1 | 0 | 11 | 1 |
| 7 | 6 | 1 | 34 | 33 | 34 | -5 | 12 | 1 | 82 | 86 | 7 |
| 8 | 6 | 1 | 109 | 109 | 7 | -4 | 12 | 1 | 122 | 128 | 4 |
| -8 | 7 | 1 | 95 | 114 | 9 | -3 | 12 | 1 | 79 | 80 | 6 |
| -7 | 7 | 1 | 184 | 184 | 4 | -2 | 12 | 1 | 211 | 228 | 2 |
| -6 | 7 | 1 | 118 | 113 | 5 | - | 12 | 1 | 101 | 95 | 3 |
| -5 | 7 | 1 | 346 | 346 | 3 | 0 | 12 | 1 | 232 | 239 | 2 |
| -4 | 7 | 1 | 468 | 483 | 4 | - | 12 | 1 | 420 | 419 | 3 |
| -3 | 7 | 1 | 404 | 392 | 3 | 2 | 12 | 1 | 395 | 404 | 4 |
| -2 | 7 | 1 | 417 | 438 | 4 | 3 | 12 | 1 | 151 | 157 | 3 |
| -1 | 7 | 1 | 201 | 206 | 2 | 4 | 12 | 1 | 124 | 122 | 4 |
| 0 | 7 | 1 | 674 | 665 | 3 | 5 | 12 | 1 | 0 | 55 | 1 |
| 1 | 7 | 1 | 134 | 112 | 2 | 6 | 12 | 1 | 255 | 266 | 3 |
| 2 | 7 | 1 | 834 | 856 | 5 | 7 | 12 | 1 | 72 | 93 | 11 |
| 3 | 7 | 1 | 190 | 199 | 2 | 8 | 12 | 1 | 53 | 44 | 52 |
| 4 | 7 | 1 | 0 | 19 | 1 | -8 | 13 | 1 | 126 | 126 | 7 |
| 5 | 7 | 1 | 14 | 39 | 14 | -7 | 13 | 1 | 218 | 220 | 4 |
| 6 | 7 | 1 | 0 | 8 | 1 | -6 | 13 | 1 | 361 | 364 | 4 |
| 7 | 7 | 1 | 0 | 37 | 1 | -5 | 13 | 1 | 209 | 216 | 3 |
| 8 | 7 | 1 | 160 | 168 | 5 | -4 | 13 | 1 | 167 | 163 | 3 |
| -8 | 8 | 1 | 32 | 41 | 31 | -3 | 13 | 1 | 125 | 124 | 4 |
| -7 | 8 | 1 | 129 | 132 | 6 | -2 | 13 | 1 | 352 | 347 | 3 |
| -6 | 8 | 1 | 226 | 219 | 3 | -1 | 13 | 1 | 66 | 68 | 6 |
| -5 | 8 | 1 | 164 | 158 | 3 | 0 | 13 | 1 | 518 | 514 | 5 |
| -4 | 8 | 1 | 55 | 49 | 9 | 1 | 13 | 1 | 363 | 365 | 4 |
| -3 | 8 | 1 | 296 | 294 | 2 | 2 | 13 | 1 | 261 | 281 | 2 |
| -2 | 8 | 1 | 236 | 242 | 2 | 3 | 13 | 1 | 405 | 406 | 4 |
| -1 | 8 | 1 | 347 | 342 | 3 | 4 | 13 | 1 | 0 | 32 | 1 |
| 0 | 8 | 1 | 222 | 201 | 1 | 5 | 13 | 1 | 203 | 197 | 3 |
| 1 | 8 | 1 | 81 | 78 | 3 | 6 | 13 | 1 | 68 | 75 | 11 |
| 2 | 8 | 1 | 408 | 383 | 4 | 7 | 13 | 1 | 218 | 215 | 4 |
| 3 | 8 | 1 | 220 | 225 | 2 | -7 | 14 | 1 | 53 | 42 | 17 |
| 4 | 8 | 1 | 222 | 235 | 2 | -6 | 14 | 1 | 122 | 121 | 6 |
| 5 | 8 | 1 | 133 | 148 | 4 | -5 | 14 | 1 | 247 | 248 | 3 |



| $\mathbf{1 0 F C}$ | $\mathbf{1 0 s}$ | $\mathbf{h}$ | $\mathbf{k}$ | $\mathbf{l}$ | $\mathbf{1 0 F O}$ | $\mathbf{1 0 F C}$ | $\mathbf{1 0 s}$ | $\mathbf{h}$ | $\mathbf{k}$ | $\mathbf{1}$ | $\mathbf{1 0 F O}$ | $\mathbf{1 0 F C}$ | $\mathbf{1 0 s}$ |
| ---: | ---: | ---: | ---: | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 65 | 3 | 6 | 8 | 1 | 47 | 49 | 16 | -4 | 14 | 1 | 39 | 30 | 39 |
| 215 | 2 | 7 | 8 | 1 | 97 | 107 | 8 | -3 | 14 | 1 | 58 | 65 | 9 |
| 481 | 4 | 8 | 8 | 1 | 46 | 39 | 22 | -2 | 14 | 1 | 224 | 229 | 2 |
| 465 | 4 | -8 | 9 | 1 | 20 | 54 | 20 | -1 | 14 | 1 | 84 | 97 | 5 |
| 514 | 4 | -7 | 9 | 1 | 124 | 129 | 6 | 0 | 14 | 1 | 478 | 482 | 5 |
| 265 | 2 | -6 | 9 | 1 | 223 | 209 | 3 | 1 | 14 | 1 | 135 | 135 | 3 |
| 123 | 6 | -5 | 9 | 1 | 204 | 206 | 3 | 2 | 14 | 1 | 239 | 238 | 2 |
| 65 | 1 | -4 | 9 | 1 | 742 | 757 | 7 | 3 | 14 | 1 | 34 | 20 | 34 |
| 29 | 25 | -3 | 9 | 1 | 362 | 369 | 3 | 4 | 14 | 1 | 0 | 44 | 1 |
| 75 | 9 | -2 | 9 | 1 | 888 | 892 | 5 | 5 | 14 | 1 | 0 | 10 | 1 |
| 103 | 6 | -1 | 9 | 1 | 28 | 300 | 2 | 6 | 14 | 1 | 167 | 169 | 5 |
| 303 | 2 | 0 | 9 | 1 | 196 | 207 | 3 | 7 | 14 | 1 | 60 | 51 | 15 |
| 604 | 4 | 1 | 9 | 1 | 629 | 658 | 5 | -7 | 15 | 1 | 0 | 110 | 1 |
| 42 | 1 | 2 | 9 | 1 | 42 | 27 | 9 | -6 | 15 | 1 | 259 | 259 | 3 |
| 465 | 3 | 3 | 9 | 1 | 518 | 510 | 4 | -5 | 15 | 1 | 207 | 209 | 3 |
| 156 | 1 | 4 | 9 | 1 | 266 | 272 | 2 | -4 | 15 | 1 | 15 | 52 | 15 |
| 684 | 5 | 5 | 9 | 1 | 0 | 33 | 1 | -3 | 15 | 1 | 356 | 356 | 3 |
| 353 | 3 | 6 | 9 | 1 | 114 | 106 | 6 | -2 | 15 | 1 | 68 | 64 | 7 |
| 291 | 3 | 7 | 9 | 1 | 233 | 235 | 3 | -1 | 15 | 1 | 146 | 134 | 3 |
| 212 | 2 | 8 | 9 | 1 | 0 | 33 | 1 | 0 | 15 | 1 | 382 | 383 | 3 |
| 104 | 5 | -8 | 10 | 1 | 0 | 56 | 1 | 1 | 15 | 1 | 148 | 157 | 3 |
| 44 | 1 | -7 | 10 | 1 | 39 | 17 | 39 | 2 | 15 | 1 | $39-$ | 391 | 3 |
| 118 | 5 | -6 | 10 | 1 | 183 | 181 | 4 | 3 | 15 | 1 | 294 | 292 | 2 |
| 62 | 20 | -5 | 10 | 1 | 394 | 408 | 3 | 4 | 15 | 1 | 196 | 198 | 3 |
| 36 | 27 | -4 | 10 | 1 | 320 | 312 | 3 | 5 | 15 | 1 | 280 | 277 | 3 |
| 214 | 4 | -3 | 10 | 1 | 108 | 108 | 4 | 6 | 15 | 1 | 172 | 164 | 4 |
| 54 | 24 | -2 | 10 | 1 | 58 | 57 | 6 | 7 | 15 | 1 | 8 | 74 | 10 |
| 327 | 3 | -1 | 10 | 1 | 145 | 132 | 2 | -7 | 16 | 1 | 50 | 33 | 19 |
| 204 | 3 | 0 | 10 | 1 | 15 | 138 | 1 | -6 | 16 | 1 | 0 | 26 | 1 |
| 168 | 3 | 1 | 10 | 1 | 83 | 64 | 4 | -5 | 16 | 1 | 0 | 52 | 1 |
| 882 | 5 | 2 | 10 | 1 | 189 | 201 | 2 | -4 | 16 | 1 | 145 | 144 | 4 |
| 82 | 3 | 3 | 10 | 1 | 130 | 136 | 3 | -3 | 16 | 1 | 0 | 12 | 1 |
| 1605 | 16 | 4 | 10 | 1 | 129 | 121 | 4 | -2 | 16 | 1 | 32 | 48 | 31 |
| 731 | 9 | 5 | 10 | 1 | 93 | 87 | 6 | -1 | 16 | 1 | 0 | 6 | 1 |
| 63 | 4 | 6 | 10 | 1 | 0 | 23 | 1 | 0 | 16 | 1 | 20 | 21 | 20 |
| 746 | 5 | 7 | 10 | 1 | 134 | 138 | 6 | 1 | 16 | 1 | 224 | 226 | 2 |
| 224 | 2 | 8 | 10 | 1 | 0 | 27 | 1 | 2 | 16 | 1 | 175 | 186 | 3 |
| 324 | 3 | -8 | 11 | 1 | 110 | 108 | 7 | 3 | 16 | 1 | 298 | 294 | 2 |
| 294 | 2 | -7 | 11 | 1 | 280 | 286 | 3 | 4 | 16 | 1 | 47 | 39 | 47 |
| 10 | 21 | -6 | 11 | 1 | 137 | 142 | 5 | 5 | 16 | 1 | 32 | 52 | 32 |
| 184 | 4 | -5 | 11 | 1 | 375 | 378 | 3 | 6 | 16 | 1 | 26 | 52 | 26 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |

# Table <br> 5b Observed and calculated <br> structur Page 

h $k$ 10Fo 10FC 10s

## factors for $\mathrm{C}_{14} \underline{\mathrm{H}}_{21} \mathrm{CrNO}_{3} \mathrm{Sl}_{2}$

$10 \mathrm{~s} h \mathrm{~h} 110 \mathrm{FO} 10 \mathrm{FC} 10 \mathrm{~s}$ h k 110 FO 10 FC 10s


| 1OFC | $\mathbf{1 0 s}$ | $\boldsymbol{h}$ | $\mathbf{k}$ | $\mathbf{1}$ | $\mathbf{1 0 F O}$ | $\mathbf{1 0 F c}$ | $\mathbf{1 0 s}$ | $\boldsymbol{h}$ | $\mathbf{k}$ | $\mathbf{l}$ | $\mathbf{1 0 F O}$ | $\mathbf{1 0 F c}$ | $\mathbf{1 0 s}$ |
| ---: | ---: | ---: | ---: | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 60 | 11 | -1 | 14 | 2 | 29 | 293 | 3 | 5 | 20 | 2 | 75 | 83 | 11 |
| 110 | 9 | 0 | 14 | 2 | 227 | 217 | 2 | -5 | 21 | 2 | 0 | 47 | 1 |
| 79 | 11 | 1 | 14 | 2 | 290 | 305 | 3 | -4 | 21 | 2 | 7 | 73 | 10 |
| 5 | 9 | 2 | 14 | 2 | 140 | 131 | 4 | -3 | 21 | 2 | 58 | 65 | 13 |
| 167 | 4 | 3 | 14 | 2 | 226 | 223 | 3 | -2 | 21 | 2 | 170 | 166 | 4 |
| 318 | 2 | 4 | 14 | 2 | 165 | 163 | 4 | -1 | 21 | 2 | 0 | 5 | 1 |
| 129 | 4 | 5 | 14 | 2 | 64 | 39 | 11 | 0 | 21 | 2 | 249 | 245 | 2 |
| 485 | 4 | 6 | 14 | 2 | 47 | 36 | 47 | 1 | 21 | 2 | 0 | 72 | 1 |
| 347 | 3 | 7 | 14 | 2 | 0 | 62 | 1 | 2 | 21 | 2 | 63 | 64 | 12 |
| 523 | 4 | -7 | 15 | 2 | 187 | 179 | 4 | 3 | 21 | 2 | 60 | 71 | 13 |
| 396 | 3 | -6 | 15 | 2 | 168 | 170 | 5 | 4 | 21 | 2 | 11 | 118 | 7 |
| 166 | 2 | -5 | 15 | 2 | 49 | 63 | 48 | 5 | 21 | 2 | 39 | 63 | 38 |
| 23 | 1 | -4 | 15 | 2 | 173 | 175 | 3 | -5 | 22 | 2 | 82 | 95 | 10 |
| 132 | 3 | -3 | 15 | 2 | 0 | 59 | 1 | -4 | 22 | 2 | 69 | 68 | 11 |
| 55 | 16 | -2 | 15 | 2 | 84 | 95 | 6 | -3 | 22 | 2 | 103 | 101 | 7 |
| 69 | 10 | -1 | 15 | 2 | 108 | 107 | 4 | -2 | 22 | 2 | 84 | 93 | 8 |
| 70 | 11 | 0 | 15 | 2 | 266 | 267 | 2 | -1 | 22 | 2 | 96 | 95 | 7 |
| 162 | 5 | 1 | 15 | 2 | 232 | 237 | 2 | 0 | 22 | 2 | 106 | 103 | 4 |
| 93 | 8 | 2 | 15 | 2 | 96 | 102 | 5 | 1 | 22 | 2 | 352 | 358 | 3 |
| 4 | 1 | 3 | 15 | 2 | 73 | 75 | 8 | 2 | 22 | 2 | 268 | 262 | 3 |
| 101 | 7 | 4 | 15 | 2 | 0 | 52 | 1 | 3 | 22 | 2 | 219 | 216 | 4 |
| 55 | 27 | 5 | 15 | 2 | 97 | 100 | 7 | 4 | 22 | 2 | 122 | 121 | 6 |
| 174 | 3 | 6 | 15 | 2 | 0 | 44 | 1 | 5 | 22 | 2 | 167 | 166 | 5 |
| 188 | 3 | 7 | 15 | 2 | 172 | 173 | 5 | -4 | 23 | 2 | 140 | 144 | 6 |
| 462 | 4 | -7 | 16 | 2 | 0 | 51 | 1 | -3 | 23 | 2 | 124 | 132 | 6 |
| 79 | 4 | -6 | 16 | 2 | 145 | 144 | 5 | -2 | 23 | 2 | 120 | 110 | 6 |
| 638 | 5 | -5 | 16 | 2 | 115 | 117 | 6 | -1 | 23 | 2 | 154 | 147 | 4 |
| 60 | 16 | -4 | 16 | 2 | 364 | 362 | 3 | 0 | 23 | 2 | 35 | 17 | 34 |
| 538 | 4 | -3 | 16 | 2 | 130 | 121 | 4 | 1 | 23 | 2 | 70 | 83 | 10 |
| 40 | 12 | -2 | 16 | 2 | 674 | 679 | 5 | 2 | 23 | 2 | 139 | 152 | 5 |
| 403 | 3 | -1 | 16 | 2 | 142 | 149 | 3 | 3 | 23 | 2 | 86 | 88 | 9 |
| 316 | 3 | 0 | 16 | 2 | 298 | 278 | 2 | 4 | 23 | 2 | 0 | 93 | 1 |
| 303 | 2 | 1 | 16 | 2 | 267 | 264 | 2 | -7 | 0 | 3 | 342 | 345 | 3 |
| 135 | 5 | 2 | 16 | 2 | 15 | 18 | 14 | -5 | 0 | 3 | 238 | 228 | 2 |
| 237 | 4 | 3 | 16 | 2 | 190 | 194 | 3 | -3 | 0 | 3 | 95 | 82 | 3 |
| 51 | 1 | 4 | 16 | 2 | 152 | 151 | 4 | -1 | 0 | 3 | 858 | 880 | 4 |
| 14 | 25 | 5 | 16 | 2 | 36 | 4 | 35 | 1 | 0 | 3 | 722 | 678 | 4 |
| 67 | 9 | 6 | 16 | 2 | 264 | 263 | 4 | 3 | 0 | 3 | 157 | 153 | 2 |
| 107 | 6 | 7 | 16 | 2 | 68 | 75 | 14 | 5 | 0 | 3 | 65 | 66 | 9 |
| 205 | 3 | -7 | 17 | 2 | 50 | 46 | 20 | 7 | 0 | 3 | 117 | 107 | 6 |
| 295 | 3 | -6 | 17 | 2 | 140 | 140 | 6 | -8 | 1 | 3 | 78 | 82 | 10 |
| 417 | 4 | -5 | 17 | 2 | 155 | 155 | 5 | -7 | 1 | 3 | 110 | 107 | 6 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Table 5b
Page 3

| -6 | 1 | 3 | 0 | 80 | 1 | -1 | 6 | 3 | 629 | 627 | 5 | 611 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -5 | 1 | 3 | 455 | 450 | 4 | 0 | 6 | 3 | 261 | 295 | 2 | 711 | 3 |
| -4 | 1 | 3 | 171 | -72 | 2 | 1 | 6 | 3 | 209 | 211 | 2 | -8 12 | 3 |
| -3 | 1 | 3 | 336 | 342 | 3 | 2 | 6 | 3 | 329 | 339 | 3 | -7 12 | 3 |
| -2 | 1 | 3 | 72 | 64 | 4 | 3 | 6 | 3 | 165 | 167 | 3 | -6 12 | 3 |
| -1 | 1 | 3 | 185 | -82 | 1 | 4 | 6 | 3 | 280 | 272 | 3 | -5 12 | 3 |
| 0 | 1 | 3 | 665 | 656 | 3 | 5 | 6 | 3 | 188 | 189 | 3 | -4 12 | 3 |
| 1 | 1 | 3 | 41 | 47 | 8 | 6 | 6 | 3 | 0 | 63 | 1 | -3 12 | 3 |
| 2 | 1 | 3 | 743 | 736 | 5 | 7 | 6 | 3 | 0 | 93 | 1 | -2 12 | 3 |
| 3 | 1 | 3 | 702 | 692 | 6 | 8 | 6 | 3 | 115 | 124 | 8 | -1 12 | 3 |
| 4 | 1 | 3 | 133 | -27 | 3 | -8 | 7 | 3 | 95 | 104 | 8 | 012 | 3 |
| 5 | 1 | 3 | 35 | 29 | 24 | -7 | 7 | 3 | 65 | 65 | 12 | 112 | 3 |
| 6 | 1 | 3 | 112 | . 04 | 6 | -6 | 7 | 3 | 464 | 461 | 4 | 212 | 3 |
| 7 | 1 | 3 | 0 | 59 | 1 | -5 | 7 | 3 | 267 | 271 | 2 | 312 | 3 |
| 8 | 1 | 3 | 0 | 52 | 1 | -4 | 7 | 3 | 703 | 705 | 7 | 412 | 3 |
| -8 | 2 | 3 | 124 | -24 | 6 | -3 | 7 | 3 | 36 | 75 | 35 | 512 | 3 |
| -7 | 2 | 3 | 163 | -72 | 4 | -2 | 7 | 3 | 560 | 560 | 4 | 612 | 3 |
| -6 | 2 | 3 | 206 | 210 | 3 | -1 | 7 | 3 | 49 | 29 | 6 | 712 | 3 |
| -5 | 2 | 3 | 0 | 33 | 1 | 0 | 7 | 3 | 190 | 176 | 2 | -7 13 | 3 |
| -4 | 2 | 3 | 276 | 285 | 2 | 1 | 7 | 3 | 569 | 567 | 4 | $\begin{array}{llll}-6 & 13\end{array}$ | 3 |
| -3 | 2 | 3 | 525 | 529 | 4 | 2 | 7 | 3 | 455 | 442 | 4 | -5 13 | 3 |
| -2 | 2 | 3 | 17 | 45 | 16 | 3 | 7 | 3 | 353 | 360 | 3 | -4 13 | 3 |
| -1 | 2 | 3 | 433 | 413 | 3 | 4 | 7 | 3 | 307 | 307 | 3 | -3 13 | 3 |
| 0 | 2 | 3 | 173 | -78 | 1 | 5 | 7 | 3 | 227 | 229 | 3 | -2 13 | 3 |
| 1 | 2 | 3 | 739 | 730 | 4 | 6 | 7 | 3 | 213 | 215 | 3 | $\begin{array}{ll}-1 & 13\end{array}$ | 3 |
| 2 | 2 | 3 | 159 | . 70 | 2 | 7 | 7 | 3 | 146 | 144 | 5 | 013 | 3 |
| 3 | 2 | 3 | 138 | -26 | 3 | 8 | 7 | 3 | 113 | 110 | 8 | 113 | 3 |
| 4 | 2 | 3 | 264 | 265 | 2 | -8 | 8 | 3 | 118 | 114 | 7 | 213 | 3 |
| 5 | 2 | 3 | 93 | -04 | 6 | -7 | 8 | 3 | 118 | 103 | 6 | 313 | 3 |
| 6 | 2 | 3 | 84 | 87 | 8 | -6 | 8 | 3 | 75 | 71 | 9 | 413 | 3 |
| 7 | 2 | 3 | 0 | 15 | 1 | -5 | 8 | 3 | 0 | 50 | 1 | 513 | 3 |
| 8 | 2 | 3 | 120 | . 26 | 7 | -4 | 8 | 3 | 83 | 78 | 6 | 613 | 3 |
| -8 | 3 | 3 | 163 | -70 | 5 | -3 | 8 | 3 | 130 | 143 | 3 | 713 | 3 |
| -7 | 3 | 3 | 40 | 52 | 40 | -2 | 8 | 3 | 248 | 240 | 2 | $\begin{array}{lll}-7 & 14\end{array}$ | 3 |
| -6 | 3 | 3 | 236 | 231 | 3 | -1 | 8 | 3 | 71 | 53 | 4 | -6 14 | 3 |
| -5 | 3 | 3 | 212 | 211 | 2 | 0 | 8 | 3 | 200 | 205 | 2 | -5 14 | 3 |
| -4 | 3 | 3 | 193 | 201 | 2 | 1 | 8 | 3 | 527 | 510 | 4 | -4 14 | 3 |
| -3 | 3 | 3 | 425 | 427 | 4 | 2 | 8 | 3 | 129 | 118 | 3 | -3 14 | 3 |
| -2 | 3 | 3 | 174 | -77 | 2 | 3 | 8 | 3 | 561 | 574 | 5 | -2 14 | 3 |
| -1 | 3 | 3 | 601 | 602 | 4 | 4 | 8 | 3 | 143 | 137 | 4 | -1 14 | 3 |
| 0 | 3 | 3 | 71.3 | 688 | 9 | 5 | 8 | 3 | 0 | 49 | 1 | 014 | 3 |
| 1 | 3 | 3 | 425 | 422 | 3 | 6 | 3 | 3 | 0 | 65 | 1 | 114 | 3 |
| 2 | 3 | 3 | 166 | -53 | 2 | 7 | 8 | 3 | 103 | 112 | 8 | 214 | 3 |
| 3 | 3 | 3 | 333 | 325 | 3 | 8 | 8 | 3 | 48 | 61 | 48 | 314 | 3 |
| 4 | 3 | 3 | 0 | 78 | 1 | -8 | 9 | 3 | 136 | 130 | 6 | 414 | 3 |
| 5 | 3 | 3 | 218 | 221 | 3 | -7 | 9 | 3 | 114 | 114 | 6 | 514 | 3 |
| 6 | 3 | 3 | 180 | -73 | 4 | -6 | 9 | 3 | 55 | 48 | 13 | 614 | 3 |
| 7 | 3 | 3 | 156 | - 52 | 5 | -5 | 9 | 3 | 444 | 441 | 4 | 714 | 3 |

## structure factors for $\mathrm{C}_{14} \underline{H}_{21} \mathrm{CrNO}_{3} \underline{S 1}_{2}$.

OFo 109C 10s
$267 \quad 262 \quad 3$ $140 \quad 149 \quad 6$
44
134
117
235
519
519
383
174
520
263
419
54
0
0
0
79
36
60
142
22
239
85
85
63
546
168
430
487
437
410
410
110
$\begin{array}{rrr}40 & 13 & 40\end{array}$
$\begin{array}{lll}39 & 53 & 38\end{array}$
0
189
46
216
216
352
25
710
201
303
352
252
710
303
$\begin{array}{rrr}78 & 76 & 7 \\ 231 & 227 & 3 \\ 17 & 73 & 17\end{array}$
$\begin{array}{rrr}17 & 73 & 17 \\ 0 & 6 & 1\end{array}$
$81 \quad 50 \quad 10$

| 262 | 3 |
| ---: | ---: |
| 149 | 6 |
| 66 | 44 |
| 132 | 6 |
| 124 | 6 |
| 231 | 3 |
| 530 | 4 |
| 372 | 3 |
| 188 | 3 |
| 519 | 4 |
| 268 | 1 |
| 431 | 4 |
| 160 | 3 |
| 49 | 1 |
| 4 | 1 |
| 8 | 1 |
| 85 | 10 |
| 34 | 35 |
| 47 | 13 |
| 147 | 5 |
| 61 | 22 |
| 239 | 3 |
| 90 | 6 |
| 51 | 7 |
| 569 | 5 |
| 163 | 2 |
| 433 | 4 |
| 482 | 4 |
| 438 | 4 |
| 408 | 3 |
| 110 | 6 |
| 13 | 40 |
| 53 | 38 |
| 45 | 1 |
| 184 | 4 |
| 57 | 16 |
| 220 | 3 |
| 26 | 1 |
| 347 | 3 |
| 256 | 2 |
| 707 | 10 |
| 201 | 3 |
| 298 | 2 |
| 76 | 7 |
| 227 | 3 |
| 73 | 17 |

    h k 1 10FO 10FO 10s
    h k 1 10FO 10FC 10s
    | -6 | 18 | 3 | 93 | 76 | 8 | 6 | 1 | 4 | 0 | 21 | 1 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| -5 | 18 | 3 | 0 | 52 | 1 | 7 | 1 | 4 | 105 | 107 | 7 |
| -4 | 18 | 3 | 257 | 257 | 3 | 8 | 1 | 4 | 77 | 73 | 11 |
| -3 | 18 | 3 | 112 | 113 | 5 | -8 | 2 | 4 | 0 | 105 | 1 |
| -2 | 18 | 3 | 206 | 204 | 3 | -7 | 2 | 4 | 141 | 145 | 5 |
| -1 | 18 | 3 | 0 | 3 | 1 | -6 | 2 | 4 | 34 | 44 | 34 |
| 0 | 18 | 3 | 165 | 170 | 2 | -5 | 2 | 4 | 354 | 347 | 3 |
| 1 | 18 | 3 | 116 | 123 | 5 | -4 | 2 | 4 | 115 | 117 | 4 |
| 2 | 18 | 3 | 161 | 155 | 4 | -3 | 2 | 4 | 366 | 365 | 4 |
| 3 | 18 | 3 | 141 | 141 | 5 | -2 | 2 | 4 | 332 | 327 | 3 |
| 4 | 18 | 3 | 39 | 30 | 39 | -1 | 2 | 4 | 74 | 81 | 4 |
| 5 | 18 | 3 | 130 | 132 | 6 | 0 | 2 | 4 | 113 | 94 | 2 |
| 6 | 18 | 3 | 20 | 74 | 19 | 1 | 2 | 4 | 523 | 513 | 4 |
| -6 | 19 | 3 | 157 | 149 | 5 | 2 | 2 | 4 | 69 | 76 | 5 |
| -5 | 19 | 3 | 0 | 73 | 1 | 3 | 2 | 4 | 403 | 412 | 3 |
| -4 | 19 | 3 | 103 | 100 | 7 | 4 | 2 | 4 | 0 | 27 | 1 |
| -3 | 19 | 3 | 89 | 85 | 7 | 5 | 2 | 4 | 353 | 355 | 3 |
| -2 | 19 | 3 | 96 | 102 | 6 | 6 | 2 | 4 | 160 | 162 | 4 |
| -1 | 19 | 3 | 0 | 75 | 1 | 7 | 2 | 4 | 139 | 137 | 6 |
| 0 | 19 | 3 | 122 | 128 | 4 | 8 | 2 | 4 | 99 | 78 | 8 |
| 1 | 19 | 3 | 311 | 310 | 2 | -8 | 3 | 4 | 56 | 47 | 14 |
| 2 | 19 | 3 | 112 | 121 | 6 | -7 | 3 | 4 | 107 | 108 | 6 |
| 3 | 19 | 3 | 275 | 276 | 3 | -6 | 3 | 4 | 22 | 47 | 21 |
| 4 | 19 | 3 | 176 | 170 | 4 | -5 | 3 | 4 | 268 | 274 | 2 |
| 5 | 19 | 3 | 86 | 84 | 9 | -4 | 3 | 4 | 228 | 226 | 2 |
| -6 | 20 | 3 | 59 | 35 | 15 | -3 | 3 | 4 | 84 | 95 | 4 |
| -5 | 20 | 3 | 73 | 80 | 11 | -2 | 3 | 4 | 423 | 423 | 4 |
| -4 | 20 | 3 | 94 | 89 | 7 | -1 | 3 | 4 | 242 | 256 | 2 |
| -3 | 20 | 3 | 0 | 10 | 1 | 0 | 3 | 4 | 152 | 159 | 1 |
| -2 | 20 | 3 | 0 | 25 | 1 | 1 | 3 | 4 | 74 | 62 | 4 |
| -1 | 20 | 3 | 0 | 54 | 1 | 2 | 3 | 4 | 520 | 508 | 4 |
| 0 | 20 | 3 | 99 | 109 | 10 | 3 | 3 | 4 | 96 | 108 | 4 |
| 1 | 20 | 3 | 323 | 325 | 3 | 4 | 3 | 4 | 453 | 462 | 4 |
| 2 | 20 | 3 | 41 | 58 | 21 | 5 | 3 | 4 | 144 | 137 | 4 |
| 3 | 20 | 3 | 77 | 69 | 9 | 6 | 3 | 4 | 191 | 193 | 4 |
| 4 | 20 | 3 | 138 | 137 | 5 | 7 | 3 | 4 | 119 | 134 | 7 |
| 5 | 20 | 3 | 43 | 38 | 43 | 8 | 3 | 4 | 73 | 74 | 12 |
| -5 | 21 | 3 | 333 | 331 | 3 | -8 | 4 | 4 | 163 | 155 | 5 |
| -4 | 21 | 3 | 97 | 88 | 7 | -7 | 4 | 4 | 0 | 4 | 1 |
| -3 | 21 | 3 | 158 | 146 | 4 | -6 | 4 | 4 | 236 | 235 | 3 |
| -2 | 21 | 3 | 75 | 79 | 9 | -5 | 4 | 4 | 213 | 216 | 3 |
| -1 | 21 | 3 | 17 | 15 | 17 | -4 | 4 | 4 | 251 | 251 | 2 |
| 0 | 21 | 3 | 181 | 180 | 4 | -3 | 4 | 4 | 157 | 141 | 2 |
| 1 | 21 | 3 | 110 | 119 | 6 | -2 | 4 | 4 | 626 | 597 | 5 |
| 2 | 21 | 3 | 78 | 80 | 9 | -1 | 4 | 4 | 475 | 487 | 4 |
| 3 | 21 | 3 | 181 | 177 | 4 | 0 | 4 | 4 | 1183 | 1176 | 3 |
| 4 | 21 | 3 | 38 | 60 | 37 | 1 | 4 | 4 | 157 | 156 | 2 |
| 5 | 21 | 3 | 144 | 150 | 6 | 2 | 4 | 4 | 632 | 632 | 4 |
| -1 |  |  |  |  |  |  |  |  |  |  |  |



| $\mathbf{1 0 F C}$ | $\mathbf{1 0 s}$ | $\mathbf{h}$ | $\mathbf{k}$ | $\mathbf{l}$ | $\mathbf{1 0 F O}$ | $\mathbf{1 0 F C}$ | $\mathbf{1 0 s}$ | $\mathbf{h}$ | $\mathbf{k}$ | $\mathbf{l}$ | $\mathbf{1 0 F O}$ | $\mathbf{1 0 F C}$ | $\mathbf{1 0 s}$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 56 | 43 | -5 | 22 | $\mathbf{3}$ | 0 | 22 | 1 | 3 | 4 | 4 | 422 | 415 | 3 |
| 129 | 5 | -4 | 22 | 3 | 4 | 50 | 26 | 4 | 4 | 4 | 0 | 12 | 1 |
| 69 | 11 | -3 | 22 | 3 | 138 | 134 | 5 | 5 | 4 | 4 | 328 | 335 | 3 |
| 61 | 14 | -2 | 22 | 3 | 16 | 16 | 16 | 6 | 4 | 4 | 239 | 241 | 3 |
| 364 | 3 | -1 | 22 | 3 | 75 | 75 | 9 | 7 | 4 | 4 | 18 | 27 | 18 |
| 91 | 5 | 0 | 22 | 3 | 22 | 12 | 22 | 8 | 4 | 4 | 149 | 150 | 6 |
| 508 | 4 | 1 | 22 | 3 | 182 | 179 | 4 | -8 | 5 | 4 | 134 | 136 | 6 |
| 443 | 3 | 2 | 22 | 3 | 163 | 164 | 4 | -7 | 5 | 4 | 113 | 106 | 6 |
| 476 | 4 | 3 | 22 | 3 | 0 | 43 | 1 | -6 | 5 | 4 | 86 | 88 | 7 |
| 523 | 4 | 4 | 22 | 3 | 185 | 180 | 4 | -5 | 5 | 4 | 174 | 176 | 3 |
| 298 | 3 | -4 | 23 | 3 | 168 | 170 | 5 | -4 | 5 | 4 | 47 | 485 | 4 |
| 240 | 3 | -3 | 23 | 3 | 103 | 111 | 7 | -3 | 5 | 4 | 173 | 170 | 2 |
| 106 | 52 | -2 | 23 | 3 | 87 | 82 | 8 | -2 | 5 | 4 | 688 | 696 | 5 |
| 15 | 1 | -1 | 23 | 3 | 87 | 72 | 8 | -1 | 5 | 4 | 79 | 83 | 4 |
| 20 | 1 | 0 | 23 | 3 | 64 | 47 | 7 | 0 | 5 | 4 | 63 | 41 | 3 |
| 100 | 7 | 1 | 23 | 3 | 0 | 40 | 1 | 1 | 5 | 4 | 464 | 445 | 4 |
| 251 | 3 | 2 | 23 | 3 | 35 | 31 | 34 | 2 | 5 | 4 | 192 | 189 | 2 |
| 32 | 1 | 3 | 23 | 3 | 46 | 88 | 46 | 3 | 5 | 4 | 570 | 567 | 5 |
| 466 | 5 | 4 | 23 | 3 | 0 | 41 | 1 | 4 | 5 | 4 | 105 | 111 | 5 |
| 99 | 5 | -8 | 0 | 4 | 133 | 122 | 6 | 5 | 5 | 4 | 49 | 26 | 14 |
| 369 | 3 | -6 | 0 | 4 | 394 | 402 | 3 | 6 | 5 | 4 | 25 | 245 | 3 |
| 283 | 2 | -4 | 0 | 4 | 416 | 436 | 4 | 7 | 5 | 4 | 136 | 134 | 6 |
| 100 | 5 | -2 | 0 | 4 | 152 | 159 | 2 | 8 | 5 | 4 | 98 | 80 | 9 |
| 124 | 5 | 0 | 0 | 4 | 209 | 188 | 1 | -8 | 6 | 4 | 38 | 15 | 37 |
| 45 | 17 | 2 | 0 | 4 | 650 | 638 | 6 | -7 | 6 | 4 | 62 | 53 | 12 |
| 26 | 36 | 4 | 0 | 4 | 574 | 584 | 5 | -6 | 6 | 4 | 0 | 11 | 1 |
| 124 | 6 | 6 | 0 | 4 | 231 | 226 | 3 | -5 | 6 | 4 | 488 | 502 | 4 |
| 30 | 1 | 8 | 0 | 4 | 20 | 7 | 19 | -4 | 6 | 4 | 82 | 75 | 6 |
| 41 | 1 | -8 | 1 | 4 | 185 | 183 | 4 | -3 | 6 | 4 | $59-$ | 583 | 4 |
| 15 | 1 | -7 | 1 | 4 | 123 | 129 | 5 | -2 | 6 | 4 | 440 | 421 | 4 |
| 30 | 1 | -6 | 1 | 4 | 336 | 326 | 3 | -1 | 6 | 4 | 802 | 783 | 5 |
| 10 | 17 | -5 | 1 | 4 | 42 | 37 | 15 | 0 | 6 | 4 | 44 | 33 | 25 |
| 82 | 1 | -4 | 1 | 4 | 6 | 50 | 7 | 1 | 6 | 4 | 763 | 750 | 5 |
| 283 | 3 | -3 | 1 | 4 | 199 | 204 | 2 | 2 | 6 | 4 | 0 | 39 | 1 |
| 385 | 4 | -2 | 1 | 4 | 15 | 9 | 14 | 3 | 6 | 4 | 243 | 237 | 2 |
| 521 | 3 | -1 | 1 | 4 | 808 | 809 | 5 | 4 | 6 | 4 | 376 | 383 | 3 |
| 207 | 3 | 0 | 1 | 4 | 629 | 636 | 15 | 5 | 6 | 4 | 242 | 241 | 3 |
| 268 | 3 | 1 | 1 | 4 | 128 | 137 | 2 | 6 | 6 | 4 | 145 | 149 | 5 |
| 141 | 4 | 2 | 1 | 4 | 30 | 314 | 2 | 7 | 6 | 4 | 76 | 66 | 10 |
| 128 | 5 | 3 | 1 | 4 | 502 | 507 | 5 | -8 | 7 | 4 | 74 | 65 | 11 |
| 140 | 5 | 4 | 1 | 4 | 54 | 39 | 10 | -7 | 7 | 4 | 166 | 167 | 4 |
| 129 | 6 | 5 | 1 | 4 | 243 | 239 | 3 | -6 | 7 | 4 | 237 | 238 | 3 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |

# Table 5b Page 



## structure factors for $\quad \mathrm{C}_{14} \underline{H}_{21} \mathrm{CrNO}_{3} \mathrm{Sl}_{2}$.

| 121 | 123 | 3 | -2 | 3 | 5 | 129 | 126 | 3 | -8 | 9 | 5 | 136 | 129 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 36 | 40 | 35 | -1 | 3 | 5 | 405 | 418 | 3 | -7 | 9 | 5 | 66 | 74 | 12 |
| 370 | 369 | 3 | 0 | 3 | 5 | 418 | 402 | 2 | -6 | 9 | 5 | 143 | 148 | 5 |
| 41 | 38 | 23 | 1 | 3 | 5 | 137 | 136 | 3 | -5 | 9 | 5 | 22 | 98 | 21 |
| 130 | 122 | 6 | 2 | 3 | 5 | 343 | 346 | 3 | -4 | 9 | 5 | 15 | 66 | 14 |
| 148 | 143 | 5 | 3 | 3 | 5 | 234 | 241 | 2 | -3 | 9 | 5 | 270 | 267 | 2 |
| 22 | 43 | 22 | 4 | 3 | 5 | 90 | 95 | 6 | -2 | 9 | 5 | 206 | 207 | 2 |
| 254 | 251 | 3 | 5 | 3 | 5 | 31 | 62 | 31 | -1 | 9 | 5 | 114 | 116 | 4 |
| 0 | 29 | 1 | 6 | 3 | 5 | 80 | 71 | 9 | 0 | 9 | 5 | 375 | 375 | 2 |
| 120 | 128 | 6 | 7 | 3 | 5 | 0 | 27 | 1 | 1 | 9 | 5 | 179 | 180 | 3 |
| 150 | 152 | 4 | -8 | 4 | 5 | 47 | 44 | 20 | 2 | 9 | 5 | 275 | 281 | 2 |
| 130 | 126 | 3 | -7 | 4 | 5 | 118 | 105 | 6 | 3 | 9 | 5 | 165 | 170 | 3 |
| 0 | 32 | 1 | -6 | 4 | 5 | 276 | 276 | 3 | 4 | 9 | 5 | 74 | 70 | 8 |
| 213 | 211 | 4 | -5 | 4 | 5 | 297 | 297 | 2 | 5 |  | 5 | 124 | 120 | 5 |
| 69 | 62 | 11 | -4 | 4 | 5 | 174 | 164 | 3 |  | 9 | 5 | 0 | 5 | 1 |
| 192 | 197 | 4 | -3 | 4 | 5 | 557 | 548 | 4 | 7 | 9 | 5 | 62 | 56 | 14 |
| 53 | 40 | 18 | -2 | 4 | 5 | 496 | 495 | 4 | -8 | 10 | 5 | 168 | 167 | 5 |
| 27 | 61 | 27 | -1 | 4 | 5 | 937 | 942 | 5 | -7 | 10 | 5 | 26 | 53 | 25 |
| 205 | 201 | 4 | 0 | 4 | 5 | 264 | 260 | 1 | -6 | 10 | 5 | 0 | 14 | 1 |
| 120 | 117 | 6 | 1 | 4 | 5 | 565 | 563 | 4 | -5 | 10 | 5 | 204 | 200 | 3 |
| 163 | 162 | 4 | 2 | 4 | 5 | 115 | 118 | 4 | -4 | 10 | 5 | 121 | 120 | 4 |
| 14 | 12 | 14 | 3 | 4 | 5 | 251 | 251 | 2 | -3 | 10 | 5 | 26 | 25 | 25 |
| 147 | 150 | 4 | 4 | 4 | 5 | 88 | 90 | 6 | -2 | 10 | 5 | 601 | 629 | 5 |
| 103 | 95 | 6 | 5 | 4 | 5 | 254 | 259 | 3 | -1 | 10 | 5 | 75 | 80 | 6 |
| 116 | 102 | 6 | 6 | 4 | 5 | 39 | 39 | 38 |  | 10 | 5 | 800 | 809 | 4 |
| 34 | 33 | 33 | 7 | 4 | 5 | 238 | 234 | 4 | 1 | 10 | 5 | 0 | 12 | 1 |
| 38 | 43 | 38 | -8 | 5 | 5 | 22 | 12 | 22 | 2 | 10 | 5 | 303 | 303 | 3 |
| 121 | 108 | 6 | -7 | 5 | 5 | 177 | 182 | 4 | 3 | 10 | 5 | 0 | 47 | 1 |
| 195 | 181 | 4 | -6 | 5 | 5 | 245 | 251 | 3 | 4 | 10 | 5 | 58 | 57 | 12 |
| 21 | 17 | 20 | -5 | 5 | 5 | 74 | 88 | 8 | 5 | 10 | 5 | 65 | 64 | 11 |
| 253 | 249 | 3 | -4 | 5 | 5 | 484 | 489 | 4 | 6 | 10 | 5 | 240 | 235 | 4 |
| 0 | 3 | 1 | -3 | 5 | 5 | 187 | 184 | 2 | 7 | 10 | 5 | 0 | 9 | 1 |
| 128 | 129 | 5 | -2 | 5 | 5 | 74 | 88 | 5 | -7 | 11 | 5 | 0 | 67 | 1 |
| 100 | 98 | 7 | -1 | 5 | 5 | 178 | 179 | 2 | -6 | 11 | 5 | 195 | 196 | 4 |
| 26 | 40 | 25 | 0 | 5 | 5 | 187 | 189 | 1 | -5 | 11 | 5 | 0 | 45 | 1 |
| 0 | 43 | 1 | 1 | 5 | 5 | 772 | 769 | 6 | -4 | 11 | 5 | 0 | 63 | 1 |
| 141 | 139 | 6 | 2 | 5 | 5 | 0 | 43 | 1 | -3 | 11 | 5 | 138 | 148 | 4 |
| 145 | 149 | 5 | 3 | 5 | 5 | 248 | 248 | 2 | -2 | 11 | 5 | 348 | 329 | 3 |
| 182 | 178 | 4 |  | 5 | 5 | 146 | 146 |  | -1 | 11 | 5 | 122 | 136 | 4 |
| 127 | 126 | 6 | 5 | 5 | 5 | 32 | 90 | 31 | , | 11 | 5 | 226 | 228 | 1 |
| 0 | 11 | 1 | 6 | 5 | 5 | 75 | 67 | 10 | 1 | 11 | 5 | 114 | 103 | 4 |
| 15 | 22 | 15 | 7 | 5 | 5 | 73 | 52 | 11 | 2 | 11 | 5 | 269 | 273 | 3 |
| 119 | 110 | 6 | -8 | 6 | 5 | 104 | 97 | 8 | 3 | 11 | 5 | 173 | 167 | 3 |
| 33 | 8 | 33 | -7 | 6 | 5 | 41 | 48 | 25 | 4 | 11 | 5 | 60 | 46 | 11 |
| 254 | 248 | 3 | -6 | 6 | 5 | 251 | 251 | 3 | 5 | 11 | 5 | 70 | 71 | 11 |
| 600 | 596 | 5 | -5 | 6 | 5 | 242 | 248 | 3 | 6 | 11 | 5 | 0 | 10 | 1 |
| 257 | 253 | 2 | -4 | 6 | 5 | 463 | 451 | 4 | -7 | 12 | 5 | 202 | 205 | 4 |
|  |  | 2 | -3 | 6 | 5 |  |  | 36 | -6 |  | 5 | 61 | 52 | 12 |





| 46 | 33 | 22 | -6 12 | 6 | 34 | 13 | 33 | -1 | 19 | 6 | 125 | 125 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 47 | 45 | 18 | -5 12 | 6 | 68 | 63 | 10 | 0 | 19 | 6 | 133 | 130 | 3 |
| 61 | 58 | 11 | -4 12 | 6 | 87 | 100 | 7 | 1 | 19 | 6 | 79 | 77 | 9 |
| 193 | 195 | 3 | -3 12 | 6 | 181 | 174 | 3 | 2 | 19 | 6 | 187 | 182 | 4 |
| 67 | 56 | 8 | -2 12 | 6 | 227 | 232 | 3 | 3 | 19 | 6 | 114 | 124 | 7 |
| 224 | 224 | 2 | -1 12 | 6 | 0 | 15 | 1 | 4 | 19 | 6 | 94 | 96 | 9 |
| 82 | 87 | 5 | 012 | 6 | 103 | 102 | 5 | -4 | 20 | 6 | 126 | 117 | 6 |
| 0 | 15 | 1 | 112 | 6 | 426 | 427 | 4 | -3 | 20 | 6 | 126 | 135 | 6 |
| 186 | 186 | 2 | 212 | 6 | 39 | 43 | 20 | -2 | 20 | 6 | 131 | 129 | 5 |
| 113 | 105 | 4 | 312 | 6 | 243 | 244 | 3 | -1 | 20 | 6 | 0 | 43 | 1 |
| 102 | 108 | 5 | 412 | 6 | 47 | 43 | 19 | 0 | 20 | 6 | 48 | 39 | 18 |
| 163 | 162 | 4 | 512 | 6 | 0 | 40 | 1 | 1 | 20 | 6 | 0 | 7 | 1 |
| 34 | 7 | 33 | 612 | 6 | 19 | 24 | 19 | 2 | 20 | 6 | 37 | 54 | 37 |
| 173 | 166 | 4 | -7 13 | 6 | 160 | 147 | 5 | 3 | 20 | 6 | 117 | 120 | 7 |
| 0 | 19 | 1 | -6 13 | 6 | 63 | 59 | 12 | -4 | 21 | 6 | 136 | 128 | 6 |
| 42 | 36 | 29 | -5 13 | 6 | 248 | 254 | 3 | -3 | 21 | 6 | 143 | 136 | 5 |
| 112 | 114 | 8 | -4 13 | 6 | 271 | 274 | 3 | -2 | 21 | 6 | 50 | 55 | 12 |
| 102 | 114 | 7 | -3 13 | 6 | 210 | 212 | 3 | -3 | 21 | 6 | 136 | 135 | 5 |
| 292 | 299 | 3 | -2 13 | 6 | 321 | 319 | 3 | 0 | 21 | 6 | 0 | 41 | 1 |
| 290 | 284 | 3 | -1 13 | 6 | 91 | 100 | 6 | 1 | 21 | 6 | 137 | 133 | 5 |
| 335 | 332 | 3 | 013 | 6 | 0 | 25 | 1 | 2 | 21 | 6 | 196 | 188 | 4 |
| 222 | 214 | 2 | 113 | 6 | 70 | 59 | 8 | 3 | 21 | 6 | 0 | 79 | 1 |
| 160 | 167 | 3 | 213 | 6 | 157 | 155 | 4 | -3 | 22 | 6 | 74 | 80 | 11 |
| 114 | 131 | 4 | 313 | 6 | 281 | 277 | 3 | -2 | 22 | 6 | 170 | 178 | 5 |
| 260 | 264 | 1 | 413 | 6 | 0 | 21 | 1 | -1 | 22 | 6 | 0 | 36 | 1 |
| 423 | 409 | 4 | 513 | 6 | 145 | 130 | 5 | 0 | 22 | 6 | 0 | 8 | 1 |
| 135 | 129 | 4 | 613 | 6 | 26 | 45 | 26 | 1 | 22 | 6 | 42 | 7 | 42 |
| 494 | 501 | 5 | -7 14 | 6 | 0 | 30 | 1 | 2 | 22 | 6 | 155 | 155 | 5 |
| 258 | 251 | 3 | -6 14 | 6 | 0 | 11 | 1 | -2 | 23 | 6 | 104 | 99 | 7 |
| 221 | 218 | 4 | -5 14 | 6 |  | 47 | 1 | -1 | 23 | 6 | 0 | 43 | 1 |
| 175 | 166 | 5 | -4 14 | 6 | 0 | 10 | 1 | 0 | 23 | 6 | 209 | 213 |  |
| 0 | 16 | 1 | -314 | 6 | 248 | 254 | 3 | 1 | 23 | 6 | 130 | 112 | 6 |
| 0 | 22 | 1 | -2 14 | 6 | 35 | 42 | 34 | -7 | 0 | 7 | 98 | 98 | 7 |
| 48 | 56 | 18 | -1 14 | 6 | 231 | 233 | 3 | -5 | 0 | 7 | 182 | 176 | 3 |
| 111 | 126 | 7 | 014 | 6 | 150 | 146 | 2 | -3 | 0 | 7 | 247 | 245 | 2 |
| 219 | 222 | 3 | 114 | 6 | 67 | 75 | 9 | -1 | 0 | 7 | 240 | 238 | 2 |
| 176 | 170 | 3 | 214 | 6 | 171 | 169 |  | 1 | 0 | 7 | 227 | 219 | 2 |
| 52 | 67 | 11 | 314 | 6 | 117 | 109 | 6 |  | 0 | 7 | 522 | 524 | 5 |
| 265 | 265 | 2 | 414 | 6 | 46 | 11 | 19 | 5 | 0 | 7 | 328 | 332 | 3 |
| 0 | 54 | 1 | 514 | 6 | 0 | 28 | 1 | -8 | 1 | 7 | 39 | 64 | 39 |
| 154 | 147 | 2 | -6 15 | 6 | 114 | 103 | 6 | -7 | 1 | 7 | 0 | 15 | 1 |
| 135 | 134 | 4 | -5 15 | 6 | 161 | 160 | 4 | -6 | 1 | 7 | 135 | 132 | 5 |
| 225 | 226 | 3 | -4 15 | 6 | 200 | 198 | 4 | -5 | , |  | 39 | 61 | 38 |
| 46 | 54 | 15 | -315 | 6 | 331 | 327 | 3 | -4 | 1 |  | 45 | 41 | 13 |
| 65 | 60 | 10 | -2 15 | 6 | 241 | 236 | 3 | -3 | 1 | 7 | 136 | 191 | 3 |
| 81 | 94 | 9 | -1 15 | 6 | 104 | 101 | 5 | -2 | 1 | 7 | 355 | 350 | 3 |
| 0 | 9 | 1 | 015 | 6 | 265 | 257 | 5 | -1 | 1 | 7 | 0 | 29 | 1 |
| 241 | 232 | 4 | 115 | 6 | 16 | 41 | 15 | 0 | 1 | 7 | 225 | 226 | 1 |




Table
Page 6
5b. 6
h $k \quad 1$ 10Fo 10FC 10 s

| 4 | 10 | 7 | 0 | 11 | 1 | 1 | 18 | 7 | 65 | 41 | 11 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 5 | 10 | 7 | 44 | 46 | 24 | 2 | 18 | 7 | 214 | 221 | 4 |
| 6 | 10 | 7 | 113 | 110 | 8 | 3 | 18 | 7 | 86 | 78 | 9 |
| -7 | 11 | 7 | 83 | 77 | 9 | -4 | 19 | 7 | 38 | 54 | 38 |
| -6 | 11 | 7 | 163 | 171 | 5 | -3 | 19 | 7 | 0 | 0 | 1 |
| -5 | 11 | 7 | 43 | 54 | 20 | -2 | 19 | 7 | 0 | 1 | 1 |
| -4 | 11 | 7 | 30 | 27 | 30 | -1 | 19 | 7 | 45 | 19 | 44 |
| -3 | 11 | 7 | 113 | 123 | 5 | 0 | 19 | 7 | 31 | 46 | 31 |
| -2 | 11 | 7 | 96 | 99 | 6 | 1 | 19 | 7 | 149 | 150 | 5 |
| -1 | 11 | 7 | 326 | 339 | 3 | 2 | 19 | 7 | 17 | 46 | 16 |
| 0 | 11 | 7 | 92 | 93 | 4 | 3 | 19 | 7 | 12 | 11 | 12 |
| 1 | 11 | 7 | 190 | 191 | 3 | -4 | 20 | 7 | 39 | 57 | 39 |
| 2 | 11 | 7 | 138 | 137 | 5 | -3 | 20 | 7 | 276 | 265 | 3 |
| 3 | 11 | 7 | 64 | 58 | 10 | -2 | 20 | 7 | 103 | 95 | 7 |
| 4 | 11 | 7 | 83 | 75 | 9 | -1 | 20 | 7 | 147 | 145 | 5 |
| 5 | 11 | 7 | 47 | 42 | 21 | 0 | 20 | 7 | 0 | 24 | 1 |
| -7 | 12 | 7 | 162 | 165 | 5 | 1 | 20 | 7 | 68 | 55 | 11 |
| -6 | 12 | 7 | 0 | 1 | 1 | 2 | 20 | 7 | 0 | 17 | 1 |
| -5 | 12 | 7 | 201 | 199 | 4 | -3 | 21 | 7 | 72 | 82 | 12 |
| -4 | 12 | 7 | 120 | 115 | 5 | -2 | 21 | 7 | 38 | 30 | 38 |
| -3 | 12 | 7 | 267 | 277 | 3 | -1 | 21 | 7 | 232 | 225 | 4 |
| -2 | 12 | 7 | 31 | 39 | 31 | 0 | 21 | 7 | 35 | 9 | 35 |
| -1 | 12 | 7 | 181 | 184 | 3 | 1 | 21 | 7 | 0 | 15 | 1 |
| 0 | 12 | 7 | 194 | 183 | 2 | 2 | 21 | 7 | 28 | 0 | 27 |
| 1 | 12 | 7 | 267 | 262 | 3 | -2 | 22 | 7 | 171 | 169 | 5 |
| 2 | 12 | 7 | 180 | 177 | 4 | -1 | 22 | 7 | 0 | 27 | 1 |
| 3 | 12 | 7 | 233 | 223 | 3 | 0 | 22 | 7 | 154 | 156 | 4 |
| 4 | 12 | 7 | 40 | 48 | 40 | 1 | 22 | 7 | 98 | 98 | 8 |
| 5 | 12 | 7 | 167 | 158 | 5 | -6 | 0 | 8 | 89 | 78 | 8 |
| -6 | 13 | 7 | 128 | 123 | 6 | -4 | 0 | 8 | 146 | 147 | 4 |
| -5 | 13 | 7 | 0 | 81 | 1 | -2 | 0 | 8 | 172 | 172 | 3 |
| -4 | 13 | 7 | 0 | 10 | 1 | 0 | 0 | 8 | 410 | 410 | 2 |
| -3 | 13 | 7 | 0 | 63 | 1 | 2 | 0 | 8 | 18 | 12 | 17 |
| -2 | 13 | 7 | 217 | 224 | 3 | 4 | 0 | 8 | 223 | 221 | 4 |
| -1 | 13 | 7 | 125 | 116 | 5 | 6 | 0 | 8 | 42 | 33 | 29 |
| 0 | 13 | 7 | 23 | 74 | 23 | -7 | 1 | 8 | 177 | 177 | 4 |
| 1 | 13 | 7 | 22 | 35 | 22 | -6 | 1 | 8 | 121 | 116 | 6 |
| 2 | 13 | 7 | 0 | 4 | 1 | -5 | 1 | 8 | 263 | 268 | 3 |
| 3 | 13 | 7 | 46 | 39 | 46 | -4 | 1 | 8 | 301 | 301 | 2 |
| 4 | 13 | 7 | 46 | 1 | 19 | -3 | 1 | 8 | 251 | 248 | 2 |
| 5 | 13 | 7 | 93 | 86 | 9 | -2 | 1 | 8 | 471 | 479 | 4 |
| -6 | 14 | 7 | 130 | 124 | 6 | -1 | 1 | 8 | 139 | 141 | 4 |
| -5 | 14 | 7 | 0 | 67 | 1 | 0 | 1 | 8 | 111 | 105 | 3 |
| -4 | 14 | 7 | 327 | 330 | 3 | 1 | 1 | 8 | 69 | 78 | 8 |
| -3 | 14 | 7 | 44 | 105 | 43 | 2 | 1 | 8 | 0 | 10 | 1 |
| -2 | 14 | 7 | 217 | 215 | 3 | 3 | 1 | 8 | 124 | 105 | 5 |
| -1 | 14 | 7 | 0 | 28 | 1 | 4 | 1 | 8 | 209 | 212 | 4 |
| 0 | 14 | 7 | 117 | 114 | 3 | 5 | 1 | 8 | 126 | 127 | 6 |
|  |  |  |  |  |  |  |  |  |  |  |  |


| $\mathbf{h}$ | $\mathbf{k}$ | $\mathbf{1}$ | $\mathbf{1 0 F O}$ | $\mathbf{1 0 F C}$ | $\mathbf{1 0 s}$ | $\mathbf{h}$ | $\mathbf{k}$ | $\mathbf{l}$ | $\mathbf{1 0 F O}$ | $\mathbf{1 0 F C}$ | $\mathbf{1 0 s}$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 6 | 4 | 8 | 28 | 37 | 27 | -6 | 12 | 8 | 34 | 15 | 33 |
| -7 | 5 | 8 | 59 | 63 | 14 | -5 | 12 | 8 | 127 | 119 | 6 |
| -6 | 5 | 8 | 110 | 96 | 6 | -4 | 12 | 8 | 0 | 42 | 1 |
| -5 | 5 | 8 | 163 | 157 | 4 | -3 | 12 | 8 | 135 | 133 | 5 |
| -4 | 5 | 8 | 0 | 13 | 1 | -2 | 12 | 8 | 23 | 12 | 23 |
| -3 | 5 | 8 | 316 | 316 | 3 | -1 | 12 | 8 | 0 | 6 | 1 |
| -2 | 5 | 8 | 115 | 112 | 5 | 0 | 12 | 8 | 0 | 15 | 1 |
| -1 | 5 | 8 | 339 | 342 | 2 | 1 | 12 | 8 | 126 | 132 | 5 |
| 0 | 5 | 8 | 432 | 423 | 3 | 2 | 12 | 8 | 0 | 14 | 1 |
| 1 | 5 | 8 | 69 | 64 | 8 | 3 | 12 | 8 | 28 | 14 | 28 |
| 2 | 5 | 8 | 322 | 322 | 3 | 4 | 12 | 8 | 51 | 25 | 16 |
| 3 | 5 | 8 | 103 | 87 | 6 | -6 | 13 | 8 | 153 | 145 | 5 |
| 4 | 5 | 8 | 15 | 44 | 15 | -5 | 13 | 8 | 32 | 67 | 32 |
| 5 | 5 | 8 | 177 | 179 | 5 | -4 | 13 | 8 | 269 | 271 | 3 |
| -7 | 6 | 8 | 41 | 9 | 27 | -3 | 13 | 8 | 230 | 225 | 3 |
| -6 | 6 | 8 | 37 | 72 | 36 | -2 | 13 | 8 | 151 | 157 | 4 |
| -5 | 6 | 8 | 229 | 233 | 3 | -1 | 13 | 8 | 133 | 143 | 5 |
| -4 | 6 | 8 | 0 | 22 | 1 | 0 | 13 | 8 | 0 | 13 | 1 |
| -3 | 6 | 8 | 109 | 106 | 5 | 1 | 13 | 8 | 114 | 115 | 6 |
| -2 | 6 | 8 | 190 | 185 | 3 | 2 | 13 | 8 | 0 | 86 | 1 |
| -1 | 6 | 8 | 49 | 47 | 11 | 3 | 13 | 8 | 219 | 227 | 4 |
| 0 | 6 | 8 | 39 | 34 | 11 | 4 | 13 | 8 | 136 | 115 | 6 |
| 1 | 6 | 8 | 43 | 25 | 42 | -5 | 14 | 8 | 44 | 33 | 21 |
| 2 | 6 | 8 | 87 | 68 | 7 | -4 | 14 | 8 | 41 | 36 | 23 |
| 3 | 6 | 8 | 0 | 16 | 1 | -3 | 14 | 8 | 35 | 2 | 35 |
| 4 | 6 | 8 | 47 | 48 | 46 | -2 | 14 | 8 | 79 | 73 | 8 |
| 5 | 6 | 8 | 0 | 2 | 1 | -1 | 14 | 8 | 105 | 104 | 6 |
| -7 | 7 | 8 | 0 | 44 | 1 | 0 | 14 | 8 | 45 | 45 | 17 |
| -6 | 7 | 8 | 37 | 36 | 36 | 1 | 14 | 8 | 19 | 7 | 19 |
| -5 | 7 | 8 | 0 | 15 | 1 | 2 | 14 | 8 | 132 | 144 | 6 |
| -4 | 7 | 8 | 93 | 95 | 6 | 3 | 14 | 8 | 127 | 125 | 6 |
| -3 | 7 | 8 | 202 | 204 | 3 | 4 | 14 | 8 | 57 | 56 | 16 |
| -2 | 7 | 8 | 330 | 327 | 3 | -5 | 15 | 8 | 153 | 155 | 5 |
| -1 | 7 | 8 | 153 | 145 | 4 | -4 | 15 | 8 | 83 | 74 | 9 |
| 0 | 7 | 8 | 223 | 217 | 2 | -3 | 15 | 8 | 344 | 353 | 3 |
| 1 | 7 | 8 | 145 | 150 | 4 | -2 | 15 | 8 | 20 | 30 | 20 |
| 2 | 7 | 8 | 140 | 133 | 5 | -1 | 15 | 8 | 131 | 125 | 5 |
| 3 | 7 | 8 | 94 | 91 | 7 | 0 | 15 | 8 | 46 | 55 | 22 |
| 4 | 7 | 8 | 260 | 268 | 3 | 1 | 15 | 8 | 64 | 55 | 11 |
| 5 | 7 | 8 | 159 | 152 | 5 | 2 | 15 | 8 | 84 | 97 | 9 |
| -7 | 8 | 8 | 0 | 42 | 1 | 3 | 15 | 8 | 23 | 51 | 23 |
| -6 | 8 | 8 | 120 | 126 | 6 | 4 | 15 | 8 | 0 | 17 | 1 |
| -5 | 8 | 8 | 104 | 111 | 7 | -5 | 16 | 8 | 22 | 25 | 22 |
| -4 | 8 | 8 | 218 | 218 | 3 | -4 | 16 | 8 | 102 | 97 | 7 |
| -3 | 8 | 8 | 74 | 66 | 8 | -3 | 16 | 8 | 0 | 20 | 1 |
| -2 | 8 | 8 | 91 | 82 | 6 | -2 | 16 | 8 | 0 | 19 | 1 |
| -1 | 8 | 8 | 180 | 184 | 3 | -1 | 16 | 8 | 90 | 82 | 7 |
| 0 | 8 | 8 | 80 | 79 | 30 | 0 | 16 | 8 | 74 | 87 | 24 |



10FC 10s

$\begin{array}{rr}160 & 6 \\ 56 & 10\end{array}$
440
1127
957
1773
$6 \quad 10$
$\begin{array}{rr}1 & 28 \\ 123 \quad 3\end{array}$
5210
$\begin{array}{ll}32 & 1 \\ 18 & 1\end{array}$
2642
331
$\begin{array}{rr}10 & 1 \\ 160 & 5\end{array}$
3353
$\begin{array}{r}89 \\ 191 \\ \hline\end{array}$
187
108
$283 \quad 2$
1173
4124
$\begin{array}{ll}172 & 3 \\ 234 & 3\end{array}$
1355
$80 \quad 10$
$\begin{array}{rr}8 & 1 \\ 44 & 1 \\ 26 & 13\end{array}$
$45 \quad 19$
$155 \quad 4$
$\begin{array}{rr}135 & 4 \\ 95 & 6\end{array}$
$290 \quad 2$
$44 \quad 12$
$7 \quad 11$
$81 \quad 15$
$\begin{array}{rr}168 & 4 \\ 94 & 8\end{array}$
449
h $k 1$ 10Fo 10Fc 10s

| 1 | 8 | 8 | 38 | 20 | 38 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 2 | 8 | 8 | 48 | 48 | 15 |
| 3 | 8 | 8 | 159 | 175 | 5 |
| 4 | 8 | 8 | 119 | 122 | 6 |
| 5 | 8 | 8 | 112 | 100 | 7 |
| -7 | 9 | 8 | 129 | 101 | 6 |
| -6 | 9 | 8 | 112 | 111 | 7 |
| -5 | 9 | 8 | 0 | 26 | 1 |
| -4 | 9 | 8 | 163 | 160 | 4 |
| -3 | 9 | 8 | 38 | 42 | 21 |
| -2 | 9 | 8 | 125 | 117 | 5 |
| -1 | 9 | 8 | 329 | 329 | 3 |
| 0 | 9 | 8 | 147 | 143 | 3 |
| 1 | 9 | 8 | 439 | 446 | 4 |
| 2 | 9 | 8 | 134 | 132 | 5 |
| 3 | 9 | 8 | 322 | 325 | 3 |
| 4 | 9 | 8 | 142 | 140 | 5 |
| 5 | 9 | 8 | 46 | 10 | 20 |
| -6 | 10 | 8 | 0 | 17 | 1 |
| -5 | 10 | 8 | 0 | 1 | 1 |
| -4 | 10 | 8 | 17 | 27 | 17 |
| -3 | 10 | 8 | 74 | 81 | 8 |
| -2 | 10 | 8 | 148 | 145 | 4 |
| -1 | 10 | 8 | 142 | 145 | 4 |
| 0 | 10 | 8 | 15 | 12 | 15 |
| 1 | 10 | 8 | 0 | 11 | 1 |
| 2 | 10 | 8 | 184 | 191 | 4 |
| 3 | 10 | 8 | 195 | 197 | 4 |
| 4 | 10 | 8 | 70 | 78 | 11 |
| 5 | 10 | 8 | 0 | 35 | 1 |
| -6 | 11 | 8 | 0 | 12 | 1 |
| -5 | 11 | 8 | 200 | 202 | 4 |
| -4 | 11 | 8 | 58 | 60 | 12 |
| -3 | 11 | 8 | 116 | 115 | 5 |
| -2 | 11 | 8 | 158 | 155 | 4 |
| -1 | 11 | 8 | 0 | 10 | 1 |
| 0 | 11 | 8 | 326 | 336 | 10 |
| 1 | 11 | 8 | 274 | 272 | 3 |
| 2 | 11 | 8 | 376 | 373 | 3 |
| 3 | 11 | 8 | 75 | 77 | 10 |
| 4 | 11 | 8 | 148 | 154 | 5 |
| 5 | 11 | 8 | 68 | 62 | 13 |

h k 1 10Fo 10Fc 10s

| 1 | 16 | 8 | 0 | 24 | 1 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 2 | 16 | 8 | 42 | 21 | 41 |
| 3 | 16 | 8 | 9 | 50 | 9 |
| -4 | 17 | 8 | 100 | 101 | 7 |
| -3 | 17 | 8 | 33 | 25 | 32 |
| -2 | 17 | 8 | 127 | 119 | 6 |
| -1 | 17 | 8 | 36 | 7 | 36 |
| 0 | 17 | 8 | 236 | 228 | 2 |
| 1 | 17 | 8 | 45 | 34 | 20 |
| 2 | 17 | 8 | 192 | 186 | 4 |
| 3 | 17 | 8 | 27 | 19 | 26 |
| -4 | 18 | 8 | 0 | 30 | 1 |
| -3 | 18 | 8 | 33 | 7 | 33 |
| -2 | 18 | 8 | 216 | 213 | 4 |
| -1 | 18 | 8 | 0 | 51 | 1 |
| 0 | 18 | 8 | 84 | 76 | 6 |
| 1 | 18 | 8 | 66 | 78 | 12 |
| 2 | 18 | 8 | 57 | 54 | 15 |
| -3 | 19 | 8 | 25 | 51 | 24 |
| -2 | 19 | 8 | 170 | 161 | 5 |
| -1 | 19 | 8 | 177 | 173 | 4 |
| 0 | 19 | 8 | 0 | 14 | 1 |
| 1 | 19 | 8 | 248 | 247 | 4 |
| 2 | 19 | 8 | 78 | 66 | 10 |
| -2 | 20 | 8 | 57 | 24 | 15 |
| -1 | 20 | 8 | 154 | 145 | 5 |
| 0 | 20 | 8 | 0 | 62 | 1 |
| 1 | 20 | 8 | 0 | 3 | 1 |
| -7 | 0 | 9 | 69 | 78 | 13 |
| -5 | 0 | 9 | 144 | 151 | 5 |
| -3 | 0 | 9 | 548 | 538 | 5 |
| -1 | 0 | 9 | 625 | 625 | 6 |
| 1 | 0 | 9 | 226 | 228 | 3 |
| 3 | 0 | 9 | 39 | 10 | 39 |
| 5 | 0 | 9 | 67 | 65 | 13 |
| -7 | 1 | 9 | 8 | 8 | 7 |
| -6 | 1 | 9 | 96 | 92 | 7 |
| -5 | 1 | 9 | 58 | 63 | 12 |
| -4 | 1 | 9 | 54 | 23 | 12 |
| -3 | 1 | 9 | 182 | 184 | 4 |
| -2 | 1 | 9 | 198 | 199 | 3 |
| -1 | 1 | 9 | 124 | 127 | 5 |

h k 1 10Fo 10Fc 10s


4
h $k$ 10Fo 10Fc 10s

$$
\begin{array}{rrrr}
-5 & 8 & 9 & 142 \\
-4 & 8 & 9 & 62 \\
-3 & 8 & 9 & 161 \\
-2 & 8 & 9 & 118 \\
-1 & 8 & 9 & 70 \\
0 & 8 & 9 & 0 \\
1 & 8 & 9 & 166 \\
2 & 8 & 9 & 207 \\
3 & 8 & 9 & 265
\end{array}
$$

N

$$
\begin{array}{rrrrrr}
-6 & 9 & 9 & 44 & 47 & 23 \\
-5 & 9 & 9 & 100 & 89 & 7 \\
-4 & 9 & 9 & 167 & 159 & 4
\end{array}
$$

$$
\begin{array}{rrrr}
3 & 9 & 9 & 0 \\
-2 & 9 & 9 & 40 \\
\hline
\end{array}
$$

$$
67
$$

$$
\begin{array}{rrrr}
-6 & 10 & 9 & 260 \\
-5 & 10 & 9 & 42
\end{array}
$$

$$
\begin{array}{llll}
-4 & 10 & 9 & 175 \\
-3 & 10 & 9 & 102
\end{array}
$$

OHNMかOTIN

$$
\begin{array}{rrrr}
0 & 11 & 9 & 201 \\
1 & 11 & 9 & 90
\end{array}
$$

$$
\begin{array}{rrrrrr}
1 & 11 & 9 & 90 & 73 & 8 \\
2 & 11 & 9 & 48 & 28 & 47 \\
3 & 11 & 9 & 125 & 133 & 6 \\
4 & 11 & 9 & 111 & 119 & 8 \\
-5 & 12 & 9 & 150 & 142 & 5 \\
-4 & 12 & 9 & 26 & 24 & 26 \\
-3 & 12 & 9 & 259 & 256 & 3 \\
-2 & 12 & 9 & 0 & 37 & 1 \\
-1 & 12 & 9 & 226 & 228 & 3 \\
0 & 12 & 9 & 92 & 79 & 20
\end{array}
$$

h k 1 10Fo 10Fc 10s

| 0 | 16 | 9 | 66 | 56 | 66 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 16 | 9 | 295 | 291 | 3 |
| 2 | 16 | 9 | 0 | 42 | 1 |
| -3 | 17 | 9 | 41 | 59 | 26 |
| -2 | 17 | 9 | 23 | 12 | 23 |
| -1 | 17 | 9 | 125 | 119 | 6 |
| 0 | 17 | 9 | 45 | 53 | 45 |
| 1 | 17 | 9 | 142 | 139 | 6 |
| -2 | 18 | 9 | 136 | 134 | 6 |
| -1 | 18 | 9 | 180 | 185 | 5 |
| 0 | 18 | 9 | 180 | 174 | 3 |
| 1 | 18 | 9 | 0 | 30 | 1 |
| -6 | 0 | 10 | 0 | 18 | 1 |
| -4 | 0 | 10 | 113 | 107 | 6 |
| -2 | 0 | 10 | 313 | 314 | 3 |
| 0 | 0 | 10 | 55 | 69 | 34 |
| 2 | 0 | 10 | 190 | 192 | 4 |
| 4 | 0 | 10 | 143 | 151 | 6 |
| -6 | 1 | 10 | 74 | 72 | 11 |
| -5 | 1 | 10 | 114 | 121 | 6 |
| -4 | 1 | 10 | 188 | 186 | 4 |
| -3 | 1 | 10 | 149 | 136 | 4 |
| -2 | 1 | 10 | 199 | 201 | 4 |
| -1 | 1 | 10 | 171 | 171 | 4 |
| 0 | 1 | 10 | 221 | 221 | 3 |
| 1 | 1 | 10 | 173 | 168 | 4 |
| 2 | 1 | 10 | 0 | 54 | 1 |
| 3 | 1 | 10 | 179 | 175 | 4 |
| 4 | 1 | 10 | 31 | 46 | 31 |
| -6 | 2 | 10 | 0 | 39 | 1 |
| -5 | 2 | 10 | 35 | 39 | 35 |
| -4 | 2 | 10 | 134 | 125 | 5 |
| -3 | 2 | 10 | 130 | 142 | 5 |
| -2 | 2 | 10 | 24 | 27 | 24 |
| -1 | 2 | 10 | 156 | 152 | 4 |
| 0 | 2 | 10 | 172 | 163 | 3 |
| 1 | 2 | 10 | 231 | 225 | 3 |
| 2 | 2 | 10 | 95 | 101 | 8 |
| 3 | 2 | 10 | 155 | 158 | 5 |
| 4 | 2 | 10 | 63 | 69 | 14 |
| -6 | 3 | 10 | 140 | 120 | 6 |
| -5 | 3 | 10 | 227 | 222 | 3 |
| -4 | 3 | 10 | 160 | 153 | 4 |
| -3 | 3 | 10 | 257 | 262 | 3 |
| -2 | 3 | 10 | 30 | 22 | 29 |
| -1 | 3 | 10 | 135 | 133 | 5 |
| 0 | 3 | 10 | 116 | 119 | 4 |
| 1 | 10 | 110 | 110 | 6 |  |


| $\mathbf{h}$ | $\mathbf{k}$ | $\mathbf{l}$ | $\mathbf{1 0 F O}$ | $\mathbf{1 O F C}$ | $\mathbf{1 0 s}$ | $\mathbf{h}$ | $\mathbf{k}$ | $\mathbf{1}$ | $\mathbf{1 0 F O}$ | $\mathbf{1 0 F r}$ | $\mathbf{1 0 s}$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\mathbf{2}$ | 6 | 10 | 0 | 21 | 1 | 0 | 1 | 11 | 56 | 69 | 55 |
| 3 | 6 | 10 | 0 | 25 | 1 | 1 | 1 | 11 | 96 | 97 | 8 |
| $\mathbf{4}$ | 6 | 10 | 0 | 25 | 1 | 2 | 1 | 11 | 144 | 142 | 5 |
| -5 | 7 | 10 | 90 | 88 | 8 | 3 | 1 | 11 | 0 | 73 | 1 |
| -4 | 7 | 10 | 87 | 73 | 8 | -5 | 2 | 11 | 63 | 64 | 13 |
| -3 | 7 | 10 | 221 | 221 | 4 | -4 | 2 | 11 | 167 | 168 | 5 |
| -2 | 7 | 10 | 230 | 233 | 3 | -3 | 2 | 11 | 100 | 105 | 7 |
| -1 | 7 | 10 | 211 | 214 | 4 | -2 | 2 | 11 | 0 | 36 | 1 |
| 0 | 7 | 10 | 255 | 253 | 2 | -1 | 2 | 11 | 48 | 48 | 48 |
| 1 | 7 | 10 | 0 | 75 | 1 | 0 | 2 | 11 | 0 | 64 | 1 |
| 2 | 7 | 10 | 45 | 61 | 45 | 1 | 2 | 11 | 130 | 134 | 6 |
| 3 | 7 | 10 | 33 | 33 | 32 | 2 | 2 | 11 | 41 | 29 | 27 |
| -5 | 8 | 10 | 0 | 1 | 1 | 3 | 2 | 11 | 52 | 2 | 52 |
| -4 | 8 | 10 | 181 | 171 | 4 | -5 | 3 | 11 | 80 | 76 | 10 |
| -3 | 8 | 10 | 58 | 53 | 13 | -4 | 3 | 11 | 156 | 147 | 5 |
| -2 | 8 | 10 | 146 | 133 | 5 | -3 | 3 | 11 | 37 | 40 | 37 |
| -1 | 8 | 10 | 47 | 39 | 46 | -2 | 3 | 11 | 130 | 127 | 6 |
| 0 | 8 | 10 | 0 | 26 | 1 | -1 | 3 | 11 | 71 | 61 | 10 |
| 1 | 8 | 10 | 126 | 115 | 6 | 0 | 3 | 11 | 178 | 178 | 3 |
| 2 | 8 | 10 | 0 | 67 | 1 | 1 | 3 | 11 | 121 | 112 | 6 |
| 3 | 8 | 10 | 105 | 108 | 7 | 2 | 3 | 11 | 145 | 146 | 5 |
| -5 | 9 | 10 | 254 | 253 | 4 | 3 | 3 | 11 | 133 | 141 | 7 |
| -4 | 9 | 10 | 19 | 69 | 18 | -5 | 4 | 11 | 153 | 154 | 5 |
| -3 | 9 | 10 | 192 | 192 | 4 | -4 | 4 | 11 | 0 | 1 | 1 |
| -2 | 9 | 10 | 162 | 159 | 4 | -3 | 4 | 11 | 117 | 117 | 6 |
| -1 | 9 | 10 | 22 | 46 | 21 | -2 | 4 | 11 | 77 | 77 | 9 |
| 0 | 9 | 10 | 134 | 127 | 6 | -1 | 4 | 11 | 90 | 83 | 7 |
| 1 | 9 | 10 | 114 | 121 | 7 | 0 | 4 | 11 | 0 | 14 | 1 |
| 2 | 9 | 10 | 0 | 30 | 1 | 1 | 4 | 11 | 46 | 54 | 20 |
| 3 | 9 | 10 | 116 | 108 | 7 | 2 | 4 | 11 | 145 | 143 | 5 |
| -5 | 10 | 10 | 96 | 94 | 8 | -4 | 5 | 11 | 47 | 45 | 18 |
| -4 | 10 | 10 | 0 | 67 | 1 | -3 | 5 | 11 | 135 | 140 | 6 |
| -3 | 10 | 10 | 0 | 48 | 1 | -2 | 5 | 11 | 94 | 91 | 7 |
| -2 | 10 | 10 | 34 | 18 | 34 | -1 | 5 | 11 | 128 | 125 | 5 |
| -1 | 10 | 10 | 85 | 89 | 8 | 0 | 5 | 11 | 47 | 13 | 32 |
| 0 | 10 | 10 | 79 | 80 | 35 | 1 | 5 | 11 | 168 | 165 | 5 |
| 1 | 10 | 10 | 144 | 153 | 5 | 2 | 5 | 11 | 0 | 4 | 1 |
| 2 | 10 | 10 | 0 | 78 | 1 | -4 | 6 | 11 | 0 | 7 | 1 |
| 3 | 10 | 10 | 48 | 46 | 47 | -3 | 6 | 11 | 0 | 33 | 1 |
| -4 | 11 | 10 | 168 | 160 | 5 | -2 | 6 | 11 | 80 | 98 | 9 |
| -3 | 11 | 10 | 0 | 27 | 1 | -1 | 6 | 11 | 55 | 66 | 15 |
| -2 | 11 | 10 | 159 | 154 | 5 | 0 | 6 | 11 | 241 | 239 | 2 |
| -1 | 11 | 10 | 47 | 43 | 17 | 1 | 6 | 11 | 0 | 19 | 1 |
| 0 | 11 | 10 | 75 | 82 | 11 | 2 | 6 | 11 | 135 | 128 | 6 |
| 1 | 11 | 10 | 74 | 78 | 10 | -4 | 7 | 11 | 98 | 105 | 8 |
| 2 | 11 | 10 | 60 | 61 | 14 | -3 | 7 | 11 | 187 | 189 | 4 |
| -4 | 12 | 10 | 120 | 123 | 7 | -2 | 7 | 11 | 238 | 237 | 4 |
| -3 | 12 | 10 | 178 | 187 | 4 | -1 | 7 | 11 | 146 | 148 | 5 |




## Structural parameters for $\left(\eta^{6}\right.$-pyridine $) \mathrm{Cr}(\mathrm{CO})_{3}$

Table la Atomic coordinates ( $\times 10^{4}$ ) and equivalent isotropic displacement parameters ( $\mathrm{A}^{2} \times 10^{3}$ ) for $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{CrNO}_{3} \mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Ul] tensor

|  | x | y | z | U (eq) |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Cr}(1)$ | 2426(11) | 260(16) | 1842 (11) | 46(8) |
| $\mathrm{C}(1)$ | 3195(8) | -996(13) | 3392 (9) | $72(7)$ |
| O(1) | 3663 (7) | -1748(10) | 4332 (6) | 108(6) |
| C (2) | 1762 (8) | -1801(13) | 998 (9) | 65 (6) |
| O(2) | 1342(7) | -3102 (9) | 455(7) | 88 (5) |
| C(3) | 870 (8) | 448 (10) | 2188(7) | 53 (5) |
| O(3) | -81(6) | 523(8) | 2406 (6) | 78(4) |
| $\mathrm{N}(11)$ | 3484(8) | 2774 (10) | 2508 (7) | 74(5) |
| C(11) | 2309(10) | 3059(11) | 1456 (11) | 74 (8) |
| C(12) | 1975 (8) | 2201(12) | 257 (9) | 70(6) |
| C(13) | 2890(9) | 1013(12) | 120(8) | 65 (6) |
| C (14) | 4084(8) | 662 (11) | 1155 (8) | 57 (6) |
| C(15) | 4337(8) | 1565(13) | 2315 (8) | 69 (6) |
| H(14) | 4890 | -17 | 1140 | 70 |
| H(12) | 1060 | 255 | -530 | 80 |
| H(15) | 5170 | 1300 | 3210 | 79 |
| H(13) | 2660 | 190 | -730 | 81 |
| H(11) | 1570 | 3790 | 1680 | 93 |

Table 2a Bond lengths [A] and angles [deg] for $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{CrNO}_{3}$

| $\mathrm{Cr}(1)-\mathrm{C}(1)$ | $1875(10)$ |
| :---: | :---: |
| $\mathrm{Cr}(1)-\mathrm{C}(2)$ | $1838(11)$ |
| $\mathrm{Cr}(1)-\mathrm{C}(3)$ | 1857 (8) |
| $\mathrm{Cr}(1)-\mathrm{N}(11)$ | 2 217(7) |
| $\mathrm{Cr}(1)-\mathrm{C}(11)$ | 2 178(8) |
| $\mathrm{Cr}(1)-\mathrm{C}(12)$ | 2 215(8) |
| $\mathrm{Cr}(1)-\mathrm{C}(13)$ | 2 224(7) |
| $\mathrm{Cr}(1)-\mathrm{C}(14)$ | 2 205(7) |
| $\mathrm{Cr}(1)-\mathrm{C}(15)$ | 2165 (8) |
| $\mathrm{C}(1)-\mathrm{O}(1)$ | $1133(12)$ |
| $\mathrm{C}(2)-\mathrm{O}(2)$ | 1165 (13) |
| $\mathrm{C}(3)-\mathrm{O}(3)$ | $1137(10)$ |
| $\mathrm{N}(11)-\mathrm{C}(11)$ | $1383(14)$ |
| $\mathrm{N}(11)-\mathrm{C}(15)$ | 1374 (13) |
| $\mathrm{C}(11)-\mathrm{C}(12)$ | 1406 (15) |
| C(12)-C(13) | 1389 (14) |
| $\mathrm{C}(13)-\mathrm{C}(14)$ | $1396(12)$ |
| C(14)-C(15) | 1397 (13) |
| $\mathrm{C}(1)-\mathrm{Cr}(1)-\mathrm{C}(2)$ | 89 1(4) |
| $\mathrm{C}(1)-\mathrm{Cr}(1)-\mathrm{C}(3)$ | 88 5(3) |
| $\mathrm{C}(1)-\mathrm{Cr}(1)-\mathrm{N}(11)$ | $982(4)$ |
| $\mathrm{C}(1)-\mathrm{Cr}(1)-\mathrm{C}(11)$ | 1312 (4) |
| $\mathrm{C}(1)-\mathrm{Cr}(1)-\mathrm{C}(12)$ | 164 9(4) |
| $\mathrm{C}(1)-\mathrm{Cr}(1)-\mathrm{C}(13)$ | 139 5(3) |
| $\mathrm{C}(1)-\mathrm{Cr}(1)-\mathrm{C}(14)$ | 104 6(3) |
| $\mathrm{C}(1)-\mathrm{Cr}(1)-\mathrm{C}(15)$ | 87 6(3) |
| $\mathrm{C}(2)-\mathrm{Cr}(1)-\mathrm{C}(3)$ | 87 8(3) |
| $\mathrm{C}(2)-\mathrm{Cr}(1)-\mathrm{N}(11)$ | 165 6(3) |
| $\mathrm{C}(2)-\mathrm{Cr}(1)-\mathrm{C}(11)$ | 139 4(4) |
| $\mathrm{C}(2)-\mathrm{Cr}(1)-\mathrm{C}(12)$ | 103 9(4) |
| $\mathrm{C}(2)-\mathrm{Cr}(1)-\mathrm{C}(13)$ | 87 3(3) |
| $\mathrm{C}(2)-\mathrm{Cr}(1)-\mathrm{C}(14)$ | 98 9(3) |
| $\mathrm{C}(2)-\mathrm{Cr}(1)-\mathrm{C}(15)$ | 132 3(4) |
| $\mathrm{C}(3)-\mathrm{Cr}(1)-\mathrm{N}(11)$ | 104.7(3) |
| $\mathrm{C}(3)-\mathrm{Cr}(1)-\mathrm{C}(11)$ | 88 5(3) |
| $\mathrm{C}(3)-\mathrm{Cr}(1)-\mathrm{C}(12)$ | 99 4(3) |
| $\mathrm{C}(3)-\mathrm{Cr}(1)-\mathrm{C}(13)$ | 1317 (3) |
| $\mathrm{C}(3)-\mathrm{Cr}(1)-\mathrm{C}(14)$ | 165 3(3) |
| $\mathrm{C}(3)-\mathrm{Cr}(1)-\mathrm{C}(15)$ | 1395 (4) |
| $\mathrm{N}(11)-\mathrm{Cr}(1)-\mathrm{C}(11)$ | $367(4)$ |
| $\mathrm{N}(11)-\mathrm{Cr}(1)-\mathrm{C}(12)$ | 67 5(3) |
| $\mathrm{N}(11)-\mathrm{Cr}(1)-\mathrm{C}(13)$ | 79 1(3) |
| $\mathrm{N}(11)-\mathrm{Cr}(1)-\mathrm{C}(14)$ | 67 3(3) |
| $\mathrm{N}(11)-\mathrm{Cr}(1)-\mathrm{C}(15)$ | $365(4)$ |
| $\mathrm{C}(11)-\mathrm{Cr}(1)-\mathrm{C}(12)$ | 37 3(4) |
| $\mathrm{C}(11)-\mathrm{Cr}(1)-\mathrm{C}(13)$ | 65 9(3) |
| $\mathrm{C}(11)-\mathrm{Cr}(1)-\mathrm{C}(14)$ | 77 9(3) |
| $\mathrm{C}(11)-\mathrm{Cr}(1)-\mathrm{C}(15)$ | 64 9(4) |
| $\mathrm{C}(12)-\mathrm{Cr}(1)-\mathrm{C}(13)$ | $365(4)$ |
| $\mathrm{C}(12)-\mathrm{Cr}(1)-\mathrm{C}(14)$ | 66 3(3) |
| $\mathrm{C}(12)-\mathrm{Cr}(1)-\mathrm{C}(15)$ | 78 0(3) |
| $\mathrm{C}(13)-\mathrm{Cr}(1)-\mathrm{C}(14)$ | $367(3)$ |
| $\mathrm{C}(13)-\mathrm{Cr}(1)-\mathrm{C}(15)$ | $661(3)$ |

Appendıx 3

| $\mathrm{C}(14)-\mathrm{Cr}(1)-\mathrm{C}(15)$ | 37 | $3(3)$ |
| :--- | ---: | :--- |
| $\mathrm{Cr}(1)-\mathrm{C}(1)-\mathrm{O}(1)$ | 179 | $6(9)$ |
| $\mathrm{Cr}(1)-\mathrm{C}(2)-\mathrm{O}(2)$ | 179 | $6(7)$ |
| $\mathrm{Cr}(1)-\mathrm{C}(3)-\mathrm{O}(3)$ | 178 | $4(7)$ |
| $\mathrm{Cr}(1)-\mathrm{N}(11)-\mathrm{C}(11)$ | 70 | $1(4)$ |
| $\mathrm{Cr}(1)-\mathrm{N}(11)-\mathrm{C}(15)$ | 69 | $7(5)$ |
| $\mathrm{C}(11)-\mathrm{N}(11)-\mathrm{C}(15)$ | 115 | $3(7)$ |
| $\mathrm{Cr}(1)-\mathrm{C}(11)-\mathrm{N}(11)$ | 73 | $2(5)$ |
| $\mathrm{Cr}(1)-\mathrm{C}(11)-\mathrm{C}(12)$ | 72 | $7(5)$ |
| $\mathrm{N}(11)-\mathrm{C}(11)-\mathrm{C}(12)$ | 124 | $0(5)$ |
| $\mathrm{Cr}(1)-\mathrm{C}(12)-\mathrm{C}(11)$ | 69 | $9(5)$ |
| $\mathrm{Cr}(1)-\mathrm{C}(12)-\mathrm{Cr}(13)$ | 72 | $1(4)$ |
| $\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{Cr}(13)$ | 117 | $9(8)$ |
| $\mathrm{Cr}(1)-\mathrm{C}(13)-\mathrm{C}(12)$ | 71 | $4(4)$ |
| $\mathrm{Cr}(1)-\mathrm{C}(13)-\mathrm{C}(14)$ | 70 | $9(4)$ |
| $\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$ | 72 | $5(8)$ |
| $\mathrm{Cr}(1)-\mathrm{C}(14)-\mathrm{C}(13)$ | 69 | $8(4)$ |
| $\mathrm{Cr}(1)-\mathrm{C}(14)-\mathrm{C}(15)$ | 118 | $0(7)$ |
| $\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$ | 73 | $8(4)$ |
| $\mathrm{Cr}(1)-\mathrm{C}(15)-\mathrm{N}(11)$ | 72 | $9(5)$ |
| $\mathrm{Cr}(1)-\mathrm{C}(15)-\mathrm{C}(14)$ | 124 | $3(7)$ |
| $\mathrm{N}(11)-\mathrm{C}(15)-\mathrm{C}(14)$ |  |  |

Symmetry transformations used to generate equivalent atoms

Table 3a Anisotropic displacement parameters ( $\mathrm{A}^{2} \times 10^{3}$ ) for $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{CrNO}_{3}$ The anisotropic displacement factor exponent takes the form $-2 \mathrm{pl}^{2}\left[\mathrm{~h}^{2} \mathrm{a}^{\star^{2}} \mathrm{U} 11+\quad+2 \mathrm{hk} \mathrm{a}^{\star} \mathrm{b}^{\star} \mathrm{U} 12\right]$

|  | U11 | U22 | U33 | U12 | U13 | U23 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Cr}(1)$ | 46(1) | 54 (1) | 45 (1) | 46(2) | 24(2) | 84 (1) |
| C (1) | 48 (2) | 99 (2) | 78 (3) | 10 (6) | 34 (9) | 12 (2) |
| O(1) | 94 (9) | 157 (8) | 75(6) | 30 (6) | 34 (6) | 72 (7) |
| C(2) | 64 (3) | 71 (2) | 79(7) | 11 (9) | 49 (10) | 20(2) |
| O(2) | 103 (6) | 59 (6) | 116(6) | -10(6) | 59(5) | -16(5) |
| C(3) | 54 (6) | 60 (9) | 41(7) | 0 (6) | 13 (6) | 4-(7) |
| O(3) | 55 (11) | 108 (9) | 84 (8) | -3(7) | 42(8) | -14(9) |
| N(11) | 72 (3) | 77 (3) | $79(5)$ | -15(8) | $34(8)$ | -12(2) |
| C (11) | 89 (8) | 45 (9) | 116(9) | 7 (8) | 71 (8) | 11 (8) |
| C(12) | 65 (7) | 73 (5) | 71 (8) | 7 (5) | 23 (7) | 38 (6) |
| C(13) | 77 (11) | 81 (13) | 54(11) | -12(8) | 46(9) | 10(9) |
| C(14) | $53(10)$ | 71 (8) | 56 (7) | -2 (5) | $31(7)$ | 8 (7) |
| C(15) | 44(8) | 91 (9) | 72 (8) | -8(7) | 21(6) | 16(6) |



## CR COMPLEX

Columns are 10Fo | 1 | kFO |
| :--- | ---: |
| -10, | FC | $\left.\begin{array}{lrrr} \\ 2 & 191 & 186 & 1475 \\ 4 & 22 & 28 & 1996 \\ 6 & 74 & 71 & 868 \\ { }^{2}-10, & 1, & 1 & \\ 2 & 15 & 17 & 2479 \\ 3 & 149 & 154 & 905 \\ 4 & 87 & 94 & 598 \\ 5 & 260 & 270 & 1027 \\ & -9, & 0,1 & \\ 2 & 90 & 104 & 911 \\ 4 & 196 & 199 & 1345 \\ 6 & 150 & 165 & 1432 \\ 8 & 81 & 80 & 868 \\ & -9, & 1, & 1\end{array}\right)$ $7148149 \quad 938$ 8109 5527* $\begin{array}{rrrr} & -9, & 2, & 1 \\ 1 & 33 & 34 & 963 \\ 2 & 46 & 47 & 736 \\ 3 & 28 & 34 & 1086 \\ 4 & 182 & 187 & 997 \\ 5 & 52 & 69 & 704 \\ 6 & 151 & 157 & 957 \\ 7 & 37 & 36 & 920\end{array}$

|  | -9, | 3,1 |  |
| ---: | ---: | ---: | ---: |
| 1 | 206 | 204 | 1058 |
| 2 | 20 | 25 | 1518 |
| 3 | 127 | 125 | 905 |
| 4 | 49 | 43 | 736 |
| 5 | 32 | 35 | 980 |
| 6 | 62 | 58 | 690 |
|  | -8, | 0, | 1 |
| 2 | 226 | 225 | 1258 |

Page 1
$\left.\begin{array}{rrrr}1 & \mathrm{kFo} & \mathrm{Fc} & \mathrm{SIG} \\ 4 & 294 & 295 & 828 \\ 5 & 331 & 333 & 859 \\ 6 & 107 & 101 & 778 \\ 7 & 66 & 61 & 583 \\ 8 & 121 & 125 & 890 \\ 9 & 45 & 51 & 843 \\ & -6, & 4,1 & \\ 1 & 165 & 164 & 935 \\ 2 & 193 & 193 & 905 \\ 3 & 66 & 61 & 552 \\ 4 & 58 & 70 & 598 \\ 5 & 199 & 207 & 935 \\ 6 & 125 & 112 & 859 \\ 7 & 192 & 194 & 1012 \\ 8 & 242 & 234 & 1043 \\ & -6, & 5, & 1\end{array}\right)$

| 4 | 252 | 251 | 1258 |  | -7, | 2,1 | 1 |  | 2 | 265 | 285 |
| ---: | ---: | ---: | ---: | :--- | :--- | :--- | :--- | :--- | ---: | ---: | ---: |
| 767 |  |  |  |  |  |  |  |  |  |  |  |
| 6 | 21 | 25 | 1692 | 1 | 173 | 176 | 890 | 3 | 6 | 12 | $3400 *$ |
| 8 | 271 | 286 | 1388 | 2 | 246 | 263 | 843 | 4 | 15 | 1 | 1768 |
|  | -8, | 1, | 1 |  | 3 | 56 | 54 | 550 | 5 | 145 | 146 |
| 1 | 54 | 61 | 614 | 4 | 347 | 354 | 828 | 6 | 114 | 115 | 767 |
| 2 | 13 | 17 | $2201 *$ | 5 | 154 | 156 | 905 | 7 | 5 | 14 | $3001 *$ |
| 3 | 210 | 212 | 890 | 6 | 312 | 310 | 890 | 8 | 263 | 261 | 951 |
| 4 | 10 | 4 | $2144 *$ | 7 | 161 | 166 | 966 | 9 | 126 | 136 | 890 |
| 5 | 264 | 264 | 890 | 8 | 176 | 185 | 1012 |  | -6, | 3, | 1 |
| 6 | 83 | 101 | 598 | 9 | 118 | 127 | 798 | 1 | 66 | 62 | 522 |
| 7 | 161 | 168 | 997 |  | -7, | 3,1 |  | 2 | 44 | 55 | 611 |
| 8 | 57 | 62 | 675 | 1 | 326 | 330 | 890 | 3 | 199 | 205 | 828 |


| 1 | 138 | 141 | 767 |
| ---: | ---: | ---: | ---: |
| 2 | 180 | 200 | 706 |
| 3 | 15 | 7 | 1347 |
| 4 | 364 | 381 | 736 |
| 5 | 204 | 212 | 767 |
| 6 | 236 | 249 | 798 |
| 7 | 7 | 13 | $4014 *$ |
| 8 | 24 | 19 | 1084 |
| 9 | 57 | 68 | 675 |
| 10 | 148 | 154 | 920 |
|  | -5, | 3,1 |  |
| 1 | 288 | 296 | 767 |

N

Columns are 10Fo $\begin{array}{rrrr}1 & \mathrm{kFO} & \mathrm{Fc} & \mathrm{Sig} \\ & -5, & 3,1 & \\ 2 & 224 & 222 & 767 \\ 3 & 64 & 63 & 460 \\ 4 & 116 & 115 & 706 \\ 5 & 260 & 273 & 828 \\ 6 & 189 & 192 & 874 \\ 7 & 275 & 276 & 890\end{array}$ $\begin{array}{lrrl}8 & 8 & 4 & 4336 * \\ 9 & 280 & 274 & 1012\end{array}$ $-5,4,1$

| 1 | 51 | 46 | 583 |
| ---: | ---: | ---: | ---: |
| 2 | 176 | 171 | 859 |
| 3 | 243 | 257 | 859 |
| 4 | 220 | 227 | 874 |
| 5 | 221 | 215 | 890 |
| 6 | 184 | 183 | 951 |
| 7 | 22 | 16 | 1394 |
| 8 | 19 | 14 | 1625 |


|  | -5, | 5,1 |  |
| ---: | ---: | ---: | ---: |
| 1 | 231 | 231 | 920 |
| 2 | 164 | 174 | 951 |
| 3 | 33 | 25 | 852 |
|  |  |  |  |
| 4 | 66 | 66 | 583 |
| 5 | 50 | 59 | 720 |
| 6 | 183 | 180 | 1027 |
| 7 | 155 | 153 | 1000 |
|  | -5, | 6,1 |  |
| 1 | 5 | 16 | $3391 *$ |
| 2 | 45 | 43 | 796 |
| 3 | 143 | 141 | 874 |
| 4 | 131 | 126 | 905 |
| 5 | 118 | 103 | 813 |

$\begin{array}{llrr}4 & 42 & 48 & 607\end{array}$
$6 \quad 639 \quad 600 \quad 3948$ $8 \quad 254 \quad 2441215$ $\begin{array}{llll}10 & 175 & 174 & 1475\end{array}$

10Fc 10000Sıg, *
$\begin{array}{rr}1 & \mathrm{kFo} \\ 3 & 121 \\ 4 & 353 \\ 5 & 87 \\ 6 & 188 \\ 7 & 34 \\ 8 & 30 \\ 9 & 4 \\ 10 & 135 \\ & -4 \\ 1 & 57\end{array}$
Fc Sig
132706
35
$87 \quad 84 \quad 59$
$188 \quad 186 \quad 79$
34
301
31
55767 1 3,
5
$\begin{array}{rrrr}309 & 890 & 10 & 6\end{array}$

216
3
4
4
5
6

3
3
39
80
12
8
9
1

1
2
3
2
3
3
-4
2
1
2
4
$-4$

4
5
6
7
8
1

2
3
3
$\begin{array}{cc}4 & 14 \\ 5 & 208 \\ 6 & 15 \\ 7 & 18 \\ 8 & 250 \\ & -4 \\ 1 & 2 \\ 2 & 19 \\ 3 & 10 \\ 4 & 28 \\ 5 & 108 \\ 6 & 17\end{array}$
7
for Insignificant
$\left.\begin{array}{rrrr}1 & \text { kFo } & \text { Fc } & \text { Slg } \\ 5 & 292 & 308 & 675 \\ 6 & 226 & 226 & 736 \\ 7 & 456 & 472 & 767 \\ 8 & 142 & 142 & 905 \\ 9 & 276 & 277 & 951 \\ 10 & 6 & 19 & 1698 * \\ & -3, & 2,1 & \\ 1 & 148 & 160 & 598 \\ 2 & 55 & 30 & 399 \\ 3 & 49 & 65 & 383 \\ 4 & 618 & 587 & 2485 \\ 5 & 174 & 180 & 736 \\ 6 & 259 & 276 & 767 \\ 7 & 78 & 77 & 536 \\ 8 & 18 & 24 & 1396 \\ 9 & 34 & 28 & 935 \\ 10 & 171 & 177 & 1074 \\ & -3, & 3, & 1\end{array}\right)$
$5 \quad 129 \quad 132 \quad 813$
$6 \quad 161 \quad 168 \quad 859$
$\begin{array}{rrrr}7 & 293 & 296 & 874 \\ 8 & 67 & 61 & 583\end{array}$
92042021012 $-3,4,1$

| 1 | 264 | 276 | 751 |
| ---: | ---: | ---: | ---: |
| 2 | 382 | 397 | 736 |
| 3 | 247 | 258 | 767 |
| 4 | 341 | 352 | 798 |
| 5 | 419 | 429 | 828 |
| 6 | 247 | 249 | 890 |
| 7 | 66 | 65 | 598 |
| 8 | 28 | 24 | 1089 |
|  | -3, | 5,1 |  |
| 1 | 202 | 202 | 859 |
| 1 | 207 | 201 | $0<0$ |


|  |  | Page | 2 |
| ---: | ---: | ---: | ---: |
|  |  | kFo | Fc | S1g


| 1 | 251 | 271 | 598 | 4 | 46 | 45 | 765 | 3 | 24 | 28 | 1011 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2 | 93 | 88 | 604 | 5 | 8 | 2 | $4513 *$ | 4 | 22 | 26 | 1148 |
| 3 | 357 | 390 | 614 |  | -3, | 0, | 1 |  | 5 | 53 | 45 |
| 4 | 112 | 110 | 690 | 2 | 935 | 921 | 2733 | 6 | 91 | 91 | 659 |
| 5 | 570 | 528 | 2623 | 4 | 813 | 788 | 3211 | 7 | 124 | 130 | 890 |
| 6 | 210 | 208 | 767 | 6 | 429 | 454 | 998 |  | -3, | 6, | 1 |
| 7 | 42 | 45 | 628 | 8 | 71 | 65 | 738 | 1 | 14 | 10 | 1793 |
| 8 | 60 | 60 | 567 | 10 | 154 | 169 | 1475 | 2 | 103 | 105 | 767 |
| 9 | 142 | 149 | 982 |  | -3, | 1,1 |  | 3 | 146 | 141 | 895 |
| 10 | 19 | 22 | 1526 | 1 | 454 | 432 | 1994 | 4 | 128 | 136 | 859 |
|  | -4, | 2,1 |  | 2 | 737 | 702 | 2025 | 5 | 119 | 113 | 890 |
| 1 | 105 | 124 | 636 | 3 | 467 | 426 | 2148 | 6 | 4 | 8 | $2735 *$ |
| 2 | 322 | 347 | 644 | 4 | 211 | 216 | 614 |  | -3, | 7, | 1 |


| 9 | 143 | 143 | 890 |
| ---: | ---: | ---: | ---: |
|  | -2, | 4, | 1 |
| 1 | 129 | 142 | 767 |
| 2 | 259 | 266 | 736 |
| 3 | 126 | 132 | 798 |
| 4 | 6 | 1 | $3538 *$ |
| 5 | 165 | 178 | 859 |
| 6 | 117 | 117 | 798 |
| 7 | 46 | 38 | 720 |
| 8 | 153 | 159 | 1043 |
|  | -2, | 5, | 1 |
| 1 | 6 | 3 | $3499 *$ |
| 2 | 147 | 138 | 859 |

: R COMPLEX
Columns are 10 Fo 1 kFo Fc Sig

|  | -2, | 5,1 |  |
| ---: | ---: | ---: | ---: |
| 3 | 150 | 146 | 890 |
| 4 | 160 | 147 | 920 |
| 5 | 183 | 186 | 935 |
| 6 | 122 | 119 | 859 |
| 7 | 21 | 29 | 1359 |


|  | -2, | 6,1 |  |
| ---: | ---: | ---: | ---: |
| 1 | 165 | 162 | 951 |
| 2 | 163 | 166 | 951 |
| 3 | 38 | 30 | 828 |
| 4 | 134 | 132 | 859 |
| 5 | 26 | 27 | 1161 |
| 6 | 79 | 84 | 614 |


|  | -2, | 7, | 1 |
| ---: | ---: | ---: | ---: |
| 1 | 35 | 38 | 935 |
| 2 | 49 | 52 | 765 |
| 3 | 169 | 160 | 1104 |


|  |  | Page 3 |  |
| :---: | :---: | :---: | :---: |
| 1 | kFo | Fc | Sı |
| 2 | 637 | 617 | 1902 |
| 3 | 40 | 47 | 07 |
| 4 | 63 | 50 | 44 |
| 5 | 320 | 347 | 706 |
| 6 | 85 | 93 | 67 |
| 7 | 374 | 380 | 59 |
| 8 | 62 | 71 | 644 |
| 9 | 145 | 143 | 90 |
|  | 1, | 2, 1 |  |
| 0 | 164 | 172 | 06 |
| 1 | 594 | 577 | 1994 |
| 2 | 834 | 829 | 2148 |
| 3 | 29 | 30 | 581 |
| 4 | 807 | 770 | 2608 |
| 5 | 368 | 389 | 736 |
| 6 | 291 | 304 | 828 |
| 7 | 15 | 12 | 1698 |
| 8 | 35 | 38 | 950 |
| 9 | 23 | 21 | 1473 |
|  | 1 , | 3, 1 |  |
| 0 | 234 | 258 | 14 |
| 1 | 577 | 558 | 2362 |
| 2 | 46 | 56 | 44 |
| 3 | 177 | 200 | 06 |
|  | 39 | 41 | 644 |
|  | 316 | 319 | 798 |
| 6 | 150 | 144 | 920 |
| 7 | 233 | 240 | 951 |
| 8 | 138 | 139 |  |
|  | 1, | 4, 1 |  |
| 0 | 153 | 160 | 736 |
| 1 | 248 | 245 | 36 |
| 2 | 286 | 297 | 736 |
| 3 | 664 | 615 | 2945 |
| 4 | 318 | 330 | 828 |
| 5 | 156 | 152 | 920 |
| 6 | 122 | 124 | 828 |
| 7 | 42 | 42 | 828 |
|  | 1, 5, 1 |  |  |


| 6 | 67 | 68 | 488 | 5 | 573 | 530 | 1828 | 1 | 23 | 23 | 960 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 7 | 110 | 112 | 767 | 6 | 122 | 115 | 569 | 2 | 90 | 97 | 438 |
| 8 | 15 | 22 | 1686 | 7 | 130 | 123 | 629 | 3 | 96 | 88 | 475 |
| 9 | 39 | 29 | 857 | 8 | 24 | 19 | 808 |  | 1, | 0, | 1 |
|  | -1, | 3,1 |  | 9 | 34 | 45 | 656 | 0 | 30 | 12 | 304 |
| 1 | 540 | 514 | 2316 |  | 0, | 2,1 |  | 2 | 930 | 953 | 2516 |
| 2 | 21 | 8 | 709 | 0 | 351 | 335 | 1841 | 4 | 722 | 721 | 3384 |
| 3 | 263 | 278 | 659 | 1 | 290 | 318 | 401 | 6 | 277 | 279 | 1085 |
| 4 | 21 | 19 | 843 | 2 | 785 | 789 | 1678 | 8 | 47 | 62 | 1041 |
| 5 | 91 | 92 | 655 | 3 | 326 | 336 | 476 |  | 1, | 1, | 1 |
| 6 | 19 | 14 | 1167 | 4 | 66 | 70 | 325 | 0 | 389 | 366 | 1442 |
| 7 | 235 | 231 | 890 | 5 | 141 | 140 | 542 | 1 | 994 | 1033 | 1626 |


| 1 | 108 | 117 | 751 |
| ---: | ---: | ---: | :---: |
| 2 | 102 | 98 | 717 |
| 3 | 26 | 28 | 1027 |
| 4 | 6 | 8 | $3290 *$ |
| 5 | 52 | 50 | 675 |
| 6 | 150 | 152 | 938 |
|  | 1, | 6,1 |  |
| 0 | 43 | 37 | 736 |
| 1 | 179 | 181 | 951 |
| 2 | 120 | 117 | 828 |
| 3 | 182 | 188 | 997 |
| 4 | 95 | 95 | 675 |

:R COMPLEX
Columns are 10Fo 1 kFo FC Sig 1, 6, l
52082031058 1, 7, 1
$0 \quad 132 \quad 138 \quad 890$ $\begin{array}{llll}1 & 71 & 66 & 644\end{array}$ $\begin{array}{llll}2 & 188 & 180 & 1074\end{array}$ $\begin{array}{lcll}0 & 1054 & 1118 & 2256\end{array}$ 25395102907 $4 \quad 58 \quad 59 \quad 564$ $6 \quad 641 \quad 5914382$ 82072191388 1200218506 $\begin{array}{llll}2 & 24 & 25 & 581\end{array}$ $3 \quad 544 \quad 5292377$ $4 \quad 51 \quad 55 \quad 475$ $5 \quad 320 \quad 339 \quad 767$ $6 \quad 28 \quad 31 \quad 976$ $7 \quad 21 \quad 15 \quad 1349$ $8 \quad 147 \quad 150 \quad 859$

$$
\begin{aligned}
& 2 \\
& 4 \\
& 6 \\
& 8
\end{aligned}
$$ 2, 2, 1

$\begin{array}{llll}0 & 135 & 152 & 552\end{array}$
$1 \quad 36 \quad 30 \quad 430$ $2474 \quad 450 \quad 2347$
$\begin{array}{llll}3 & 55 & 67 & 399\end{array}$
$4 \quad 335 \quad 355 \quad 736$
$5 \quad 109 \quad 114 \quad 736$
$6 \quad 335 \quad 334 \quad 859$
$\begin{array}{llll}7 & 142 & 147 & 907\end{array}$
$8 \quad 2292251027$

| 0 | 115 | 110 | 675 |
| :--- | :--- | :--- | :--- |
| 1 | 307 | 322 | 644 |
| 2 | 270 | 286 | 675 |
| 3 | 405 | 407 | 736 |
| 4 | 270 | 285 | 782 |
| 5 | 328 | 333 | 828 |

$$
0
$$

2

10Fc 10000Sig, * for Insignificant 1 kFo Fc Sig l kFo Fc Sig
$\begin{array}{llllllll}0 & 45 & 49 & 614 & 1 & 89 & 77 & 644\end{array}$
$\begin{array}{lllll}1 & 156 & 156 & 859 & 2\end{array}$ 2
3
41
5
6

|  | 2, | 6,1 |  |
| ---: | ---: | ---: | ---: |
| 0 | 135 | 144 | 813 |
| 1 | 70 | 64 | 567 |
| 2 | 25 | 26 | 1134 |
| 3 | 75 | 67 | 583 |
| 4 | 22 | 20 | 1950 |
|  | 2, | 7, | 1 |
| 0 | 12 | 13 | $6335^{*}$ |
| 1 | 35 | 31 | 980 |

$$
3
$$

$$
0
$$

$$
125
$$

- 


## Page 4

| $l$ | kFo | FC | S1g |
| ---: | ---: | ---: | ---: |
| 2 | 107 | 114 | 747 |
| 3 | 43 | 35 | 706 |
| 4 | 35 | 25 | 857 |
| 5 | 33 | 33 | 966 |
|  | 4, | 5,1 |  |
| 0 | 26 | 31 | 1025 |
| 1 | 174 | 175 | 935 |
| 2 | 41 | 30 | 767 |
| 3 | 121 | 121 | 874 |
| 4 | 58 | 58 | 690 |


| 7 | 22 | 26 | 1363 | 7 | 97 | 93 | 675 | 7 | 82 | 75 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 8 | 53 | 49 | 796 |  | 3, | 3,1 |  |  | 4, | 3, |
|  | 2, | 4,1 |  | 0 | 58 | 65 | 413 | 0 | 55 | 53 |
| 0 | 330 | 334 | 720 | 1 | 432 | 446 | 690 | 1 | 10 | 5 |
| 1 | 293 | 298 | 736 | 2 | 142 | 155 | 767 | 2 | 169 | 168 |
| 2 | 185 | 191 | 798 | 3 | 102 | 97 | 720 | 3 | 300 | 293 |
| 3 | 63 | 68 | 522 | 4 | 96 | 100 | 675 | 4 | 88 | 71 |
| 4 | 66 | 66 | 522 | 5 | 192 | 182 | 920 | 5 | 101 | 94 |
| 5 | 83 | 86 | 583 | 6 | 76 | 75 | 567 | 6 | 77 | 71 |
| 6 | 149 | 155 | 1012 | 7 | 128 | 134 | 905 |  | 4, | 4,1 |
| 7 | 182 | 184 | 1074 |  | 3, | 4,1 |  | 0 | 251 | 263 |
|  | 2, | 5, | 1 |  | 0 | 68 | 73 | 475 | 1 | 215 |
|  | 205 |  |  |  |  |  |  |  |  |  |


| 614 | 4 | 32 | 30 | 976 |
| ---: | ---: | ---: | ---: | ---: |
|  | 5 | 120 | 122 | 840 |
| 475 |  | 5, | 4,1 |  |
| 1418 | 0 | 94 | 103 | 706 |
| 828 | 1 | 232 | 237 | 890 |
| 828 | 2 | 156 | 154 | 951 |
| 624 | 3 | 45 | 39 | 751 |
| 717 | 4 | 154 | 150 | 945 |
| 583 |  | 5, | 5,1 |  |
|  | 0 | 108 | 100 | 791 |
| 798 | 1 | 83 | 88 | 567 |
| 828 | 2 | 43 | 44 | 813 |

Columns are 10Fo 10Fc 10000Sig, * for Insignificant 1 kFo Fc Sig 1 kFo Fc Sig 1 kFo Fec Sig

|  | 5, | 5,1 |  |  | 6, | 3,1 |  | 2 | 11 | 17 | $1994 *$ |
| :--- | ---: | ---: | ---: | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 3 | 117 | 117 | 852 | 0 | 96 | 96 | 673 | 3 | 20 | 19 | 1407 |
|  | 5, | 6,1 | 1 | 1 | 200 | 203 | 890 | 4 | 11 | 15 | $5594 *$ |
| 0 | 60 | 52 | 675 | 2 | 145 | 143 | 895 |  | 7, | 2, | 1 |
| 1 | 41 | 39 | 888 | 3 | 277 | 276 | 951 | 0 | 18 | 13 | 1962 |
|  | 6, | 0,1 |  | 4 | 13 | 3 | $7577 *$ | 1 | 5 | 21 | $3261 *$ |
| 0 | 269 | 273 | 1085 |  | 6, | 4,1 |  | 2 | 252 | 251 | 951 |
| 2 | 141 | 155 | 1258 | 0 | 178 | 180 | 951 | 3 | 59 | 59 | 675 |
| 4 | 133 | 137 | 1171 | 1 | 119 | 112 | 778 | 4 | 150 | 138 | 905 |
|  | 6, | 1,1 |  | 1 | 2 | 47 | 50 | 767 |  | 7, | 3,1 |
| 0 | 72 | 67 | 522 | 3 | 40 | 40 | 902 | 0 | 219 | 221 | 935 |
| 1 | 243 | 249 | 798 |  | 6, | 5,1 |  | 1 | 200 | 199 | 982 |
| 2 | 85 | 82 | 611 | 0 | 83 | 77 | 598 | 2 | 133 | 131 | 890 |
| 3 | 262 | 265 | 890 | 1 | 71 | 58 | 614 | 3 | 46 | 38 | 843 |
| 4 | 51 | 50 | 690 | 2 | 103 | 97 | 717 |  | 7, | 4,1 |  |
| 5 | 170 | 156 | 1043 |  | 7, | 0,1 |  | 0 | 149 | 146 | 938 |
|  | 6, | 2,1 |  | 0 | 59 | 53 | 781 | 1 | 102 | 103 | 704 |
| 0 | 416 | 430 | 798 | 2 | 270 | 267 | 1302 | 2 | 156 | 141 | 980 |
| 1 | 225 | 239 | 843 | 4 | 214 | 219 | 1475 |  | 7, | 5,1 |  |
| 2 | 85 | 77 | 614 |  | 7, | 1,1 |  | 0 | 160 | 147 | 969 |
| 3 | 28 | 35 | 1055 | 0 | 97 | 93 | 675 |  | 8, | 0,1 |  |
| 4 | 70 | 65 | 614 | 1 | 288 | 287 | 890 | 0 | 238 | 232 | 1302 |
| 5 | 11 | 6 | $6291 *$ |  |  |  |  |  |  |  |  |

## Page 5

$\left.\begin{array}{lcrr}l & \mathrm{kFo} & \mathrm{Fc} & \mathrm{Sig} \\ 2 & 100 & 107 & 998 \\ & 8, & 1, & 1 \\ 0 & 63 & 67 & 583 \\ 1 & 153 & 156 & 1012 \\ 2 & 57 & 55 & 675 \\ 3 & 240 & 234 & 1043 \\ & 8, & 2,1 & \\ 0 & 229 & 228 & 951 \\ 1 & 90 & 90 & 659 \\ 2 & 87 & 79 & 611 \\ & 8, & 3, & 1\end{array}\right)$


[^0]:    ${ }^{1}$ Zeise W C , Pogg Ann, 1827, 9, 632
    2 Lebig J, Ann, 1837, 23, 12
    ${ }^{3}$ Mond L, Langer C , Quncke F, J Chem Soc , 1890, 57, 749
    4 Kealy T J , Pauson P L , Nature, 1951, 168, 1039
    5 Miller S A , Tebboth J A , Tremaine J F , J Chem Soc , 1952, 632
    6 (a) Wilkinson G , Rosemblum M , Whitıng M C , Woodward R B , J Am Chem Soc 1952, 74, 2125
    (b) Fischer E O , Pfab W , Z Naturforsch Tetl B, 1952, 7, 377

    Academıc Press, New York, 1979
    (a) Wrighton M , Schroeder M A , J Am Chem Soc 1973, 95, 5764
    (b) Platbrood G , Wilputte-Stemert L , Bull Soc Chım Belg, 1973, 82, 733

[^1]:    ${ }^{15}$ Sallard J Y , Hoffmann R , J Am Chem Soc , 1984, 106, 2006${ }^{18}$ Polakoff M, Wetz E , Adv Organomet Chem, 1986, 25, 277Hermann H, Grevels F-W , Henne A , Schnaffer K , J Phys Chem , 1982, 86, 5151Casper J V , Meyer T J , J Am Chem Soc, 1980, 102, 7794Hooker R H, Mahmoud K A, Rest A J, J Chem Soc, Chem Commun, 1983, 1022Hepp A F , Blaha J P , Lews C , Wnghton M S , Organometallics, 1984, 3, 174Moore B D , Simpson M B , Polakoff M, Turner J J, J Chem Soc ,
    Chem Commun, 1984, 972${ }^{4}$ Ishukawa Y, Brown C E , Hackett P A , Raynor D M , J Phys Chem,1990, 94, 2404${ }^{25}$ Rothberg L J , Simon J D , Bernsteın M , Peters K S , J Am Chem Soc,1983, 105, 3464

[^2]:    ${ }^{41}$ Morse J M , Parker G H, Burkey T J , Organometallics, 1989, 8, 2471
    ${ }^{42}$ Wieland S , van Eldik R , J Phys Chem, 1990, 94, 5865
    ${ }^{43}$ Nayak S K , Burkey T J , Organometallics, 1991, 10, 3745
    ${ }^{44}$ Graham J R , Angelicı R J , Inorg Chem 1967, 6, 2082
    ${ }^{45}$ Hermann H , Grevels F -W , Henne A., Schnaffer K , J Phys Chem, 1982, 86, 5151
    ${ }^{46}$ Church S P , Grevels F W , Hermann H , Schaffner K , Inorg Chem 1985, 24, 418
    ${ }^{47}$ Lees A, Adamson A W, Inorg Chem 1981, 20, 4381
    ${ }^{48}$ Wieland S , van Eldik R, Organometallics, 1991, 10, 3110
    ${ }^{49}$ Dobson G R , Asalı K J , Cate C D , Cate C W , Inorg Chem 1991, 30, 4471
    50
    Zhang S , Dobson G R , Organometallics, 1992, 11, 2447
    51

    55

    56

    Walsh M M , PhD Thesis at Dublin City University 1993
    Oıshı S , Organometallıcs, 1988, 7, 1237
    Zhang S , Zang V , Dobson G R , van Eldık R , Inorg Chem 1991, 30, 355
    Creaven B S , Grevels F W , Long C , Inorg Chem 1989, 28, 2231
    Wieland S , van Eldık R, J Chem Soc, Chem Commun, 1989, 367
    Wieland S , Reddy K B , van Eldık R , Organometallics 1990, 9, 1802
    Schadt M J , Gresalfi N J , Lees A J, Inorg Chem 1985, 24, 2942
    Schadt M J , Lees A J , Inorg Chem 1986, 25, 672

    Kalyanasundaram K , J Phys Chem 1988, 92, 2219
    Zhang S , Dobson G R , Inorg Chem 1990, 29, 598

