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ABSTRACT

High density high temperature plasmas produced m the foci of powerful 

pulsed laser beams have many applications and have been the subject of 

intensive investigations since high power lasers first became available

The work described in this thesis is iargly concerned with one particular 

application of laser generated plasmas that of photoabsorption spectro­

scopy of ionized species The first chapter provides an introduction to the 

subject by reviewing the work done to date in this area and the various 

techniques which have been used to obtain absorption spectra The 

usefulness of results obtained from VUV absorption spectra is also dealt 

with Recent work on the laser produced continuum source and the 

various applications which the source has found is also reviewed

A detailed description of the experimental method used to create two 

laser produced plasmas on separate targets and study the resulting 

absorptfon spectrum which is observed when continuum radiation emitted 

from one plasma is absorbed by the second plasma is given

New absorption spectra of magnesium aluminium and silicon plasmas 

are discussed and results are presented for the third fourth and fifth 

members of the neon-like isoeiectronic sequence Mg Hi Ai IV and Si V 

The VUV absorption spectra of these ions have been recorded in the 

wavelength range 250 -  60A This is the first recorded observation of 

absorption features along an extended isoeiectronic sequence The 

wavelengths of the principal 2s22p6 XS 0 -  2s22psns nd transitions have 

been measured Also the autoionizing levels due to inner 2s shell 

excitation 2s22p6 1 S 0 -  2s 2p6np1 P 1 have been recorded and wave­

lengths for these features are given

Many new lines particularly in the spectra of aluminium and silicon 

plasmas are reported in this work for the first time Extensive atomic 

structure calculations have been carried out In an attempt to assign these 

features Calculations have also been carried out for the autoionizing 

levels of the neon-like sequence from Na II to Si V



The Xenon isoeiectronic sequence has also been studied m absorption 

and results are presented  for the absorption spectrum of a lanthanum 

plasma The 4d photoabsorption spectrum of La IV has been recorded for 

the first time in this work and this spectrum is discussed m terms of the 

previously observed 4d photoabsorption spectrum of Ba III

Progress on the evaluation of neutron scintillating glasses as new 

detector materials for the VUV spectral region is reported m Appendix 1 

"I his application of laser produced conlinua is discussed and tentative 

results for cerium doped glass scintillators are presented

in Appendix 2 computer programs written over the course of this work are 

described Examples of input and output data are given
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I

In general terms a plasma (sometimes described as the fourth state of matter) 

is matter m a state of ionization a gas ionized sufficiently so that the charge 

separation which can take place in it is small when compared to its 

macroscopic charge density On a macroscopic scale therefore a plasma is 

approximately neutral although Its principal constituents are electrons and 

charged ions

This condition of overall neutrality is given by

N = £N z Z ( 1 1 )
0 x

where Ne is the electron number density and Nz is the number density of ions 

of charge Z In order to produce and maintain such a medium a sufficient 

amount of energy is required to dissociate and ionize the initially neutral matter 

and to give the ions and electrons sufficient kinetic energy to prevent 

immediate reattachment and recombination over the cycle of the plasma

The reactions between particles in a neutral gas are both weak and short 

ranged whereas in a plasma reactions occur between charged particles and 

the Coulomb forces Involved in these reactions are both relatively strong and 

act over a considerably longer range Thus plasma reactions are entirely 

different from those of the original neutral gas

One of the distinguishing features of a plasma is the exhibition of collective 

behaviour Some of the criteria necessary for a plasma to show collective 

behaviour are discussed below and can be summarised in the following four 

expressions relating the mam plasma parameters

1 1 PLASMAS IN GENERAL
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N of N (1 2)e

(1 3)

(1 4)

1_
vc

<1 5)

The condition fullfiied by eqCl 2) is the overall charge neutrality of the 

piasma Ne and N} are the electron and ion number densities respectively 

The range of values of N0 and N, for both laboratory and astrophysicai 

plasmas are extensive as can be seen by reference to fig (1 1) in eq(1 3) 

Xq  is known as the Debye length and is given by

Xq is a shielding distance defined as the distance over which Ne can differ 

appreciably from N0Z in e q d  6) e 0 is the permittivity of free space k is 

Boltzmanns constant Te is the electron temperature and e the charge on 

the electron When discussing collective effects in plasmas Xq is an 

important parameter in that it measures the minimum size of a system in 

which collective effects are dominant when compared with single particle 

effects Again reference to fig (1 1) shows the range of Xq values for the 

different types of piasma
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/m

T/K

Fig (1 1 ) Shows the various types of piasma both laboratory and 
astrophysicaJ together with typical temperature and density ranges, 
and carrisponding vaiues of Xq Jet represents the Joint European 
Torus (After Carroll and Kennedy (1981 ) )
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In order to obtain an expression for Xq one assumes a smooth change m 

electric field In the region of the particle under consideration This 

necessarily assumes a large number of panicles in the neighbourhood The 

third criterion given in e q d  4) ensures that this Is so The plasma frequency 

<jp is defined by the equation

where m0 is the electron mass The plasma frequency Wp is one of the main 

paramoters used In describing collective oscillations in the plasma cjp is 

the cut-off frequency for the transmission of electromagnetic waves through 

a plasma In order that cotloctive oscillations can develop coltisional 

damping must be small, this will bo so whon eq( I 6) is satisfied The 

dopondence of u> the frequency of the Incident waves on the propagation 

constant k = 277/X can be shown from the solution of Maxwells equations for 

an iom/cd medium to bo givon by

W2= Wp + C 2k 2 (1  8)

and the phase and group vefoscitles of such waves In the plasma are 1ound 

to be given in terms of the plasma frequency as.

The subject of waves m plasmas is to say the least complex and is not dealt

(1 7)

2

<1 9)

2

<1 10)
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with further in this work This area of plasma physics may however be pursued 

In a number of general references (see for example Hughes (1975) or Hora

(1 9 8 0 )) given at the end of this chapter

Any account of the fundamental concepts of plasma physics however brief 

would be incomplete without reference to the various atomic processes which 

occur within plasmas Atomic processes govern the way in which photons 

electrons. Ions and neutral atoms within the plasma interact with one 

another Processes such as collisional excitation and de-excitation 

colllsional ionization and recombination photoexcitation and de-excitation, 

photoionlzatlon and recombination are largely self-explanatory They involve 

Interactions between photons and electrons on the one hand and ions and 

neutra* atoms within the plasma on the other This results m a loss or gain of 

kinetic energy for free electrons and a resulting excitatlon# de-excitation or 

Ionization/recombination oi the electronic structure of an ion or neutral atom 

The process of Bremsstrahlung involves free free transitions wilhm an 

electronic structure composed of an electron of charge e and an ion of charge 

Ze The resulting transitions wtthm the compound system of charge ( Z - l ) e  

give rise to continuum radiation when a transition from a higher to a lower 

continuum stale of the system results in the emission of a photon it should be 

noted here that both Bremsstrahlung and the inverse of the process known 

simply as inverse Bremsstrahlung (which involves an electron in such a system 

making a transition to a higher state with a resulting increase in its kinetic 

energy) together play a very important part over the cycle of a laser produced 

plasma A comprehensive review of atomic processes in plasmas is given by 

Cooper (1966) the subject is also covered more recently In the list of general 

references provided at the end of this chapter
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The atomic processes determine the macroscopic state of the plasma The 

criterion of equilibrium in plasmas is used to describe this macroscopic state 

I he tdoal plasma Is doscrlbod as bomg in a btato of complete thermodynamic 

equilibrium, for such a plasma the following would hold <a) all particles 

neutral atoms ions, and electrons would possess Maxwellian velocity 

distributions characterized by the same temperature, ( b) all population 

distributions over the states of atoms and ions would obey the Boltzmann 

formula (c )  the traction of ions in state Z relative to those in state ( Z - l )  

would be given by the Saha equation and finally Cd) the intensity distribution 

of the radiation as a function of frequency and temperature m such an ideal 

thermodynamic enclosure would be given by the Planck formula Such 

conditions do not of course obtain in real plasmas the fact that a plasma 

radiates energy prevents condition (d ) from being fulfilled However, plasmas 

are found to obey other less complete, models of equilibrium For high 

density plasmas fey which is meant that the plasma obeys the density condition

N > 1 6X101 8 T° * 5 x 3 ( 1 1 1 )0 6

(Where x  is the excitation energy in eV of the transition under consideration) 

the equilibrium model applied is that of local thermodynamic equilibrium  

(LTE) in which electron colllsional processes are assumed to dominate At 

lower densities tho coronal model applies and for intermediate plasmas the 

coiUsional radiative model is said to hold The various models of plasma 

equilibrium and the conditions under which each applies are discussed in more 

detail in the general references or for a brief account see Knot (1971) or 

Carroll and Kennedy (1981)
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1 2 LASER PRODUCED PLASMAS

High density high temperature plasmas produced in the foci of powerful (>MW) 

pulsed laser beams have many applications and have been the subject of 

prolonged and very intensive investigations since the early to mid sixties when 

powerful lasers first became available

Laser produced plasmas have in recent years found a number of interesting 

uses One of the major goals of laser plasma physics is the possibility of 

extracting useful quantities of nuclear power indeed there appears to be a 

very definite possibility of producing useful amounts of nuclear fusion energy 

by the use of lasers At low to medium intensities ( lO 1 6 - ^ 1 7Wcm“ 2) all 

materials are heated vaporized and ionized At high intensities ( 1020-  

7022W cm "2) the relalivistic change in the electron mass when quivering in the 

strong laser field ( 1 0 12volts cm- 1 ) results in relativistic optical constants 

which cause quick shrinking of the laser beam to one wavelength diameters 

this has resulted in the detection of ions with energies m excess of lOMeV 

flying against the laser beam (see for example Hora 1980 ) Also the 

excitation of nuclei by lasers has been reported, (Izawa et al (1 9 7 9 )) Laser 

produced plasmas have also been used to achieve compression of matter to 

extremely high densities and as sources of both hard and soft x-rays 

neutrons, and highly charged ions

Also of current interest Is the possibility of achieving laser action at short 

wavelengths (in the VUV/soft x-ray regime) The major problem here is the 

obtainment of a significant degree of population density inversion between the

8



iasing states Recently there have been several reports of population 

Inversions in laser produced plasmas Among the more interesting has been v 

the observation and measurement of population inversions between the upper 

n=4 5, 6 and the lower n=3 levels in C 4 + and C 5 + ions for potential quasi-cw  

lasing in tho X =  3 5 -7 6  nm wavolength range, ( Dixon et al (1977 and 1978)) 

Hydrogen helium and neon like ions are important as laser media as they 

provide metastable levels which can be populated by either collisionai 

excitation or recombination in laser produced plasmas, and much work is 

underway in this field Caicuiations for XUV gain in laser produced aluminium 

plasmas have been carried out by Pert and Tallents (1981) and show 

promising results with predictions of significant small signal gain from the 

hydrogen like Al Xill Baimer a  38 7A transition More recently Silfvast et al 

( 1982) have observed borne fifty new laser transitions in the visible and near 

infrarod in difforont metai vapours in the recombination phase of an expanding 

laser produced plasma and suggest that all of the reported transitions offer 

possible candidates for the long sought after x -ray laser when isoelectronicaiiy 

scaled to higher ion stages Boiko et al (1983) reported the observation of 

stimulated emission due to Be II transitions in a recombining laser produced 

plasma The stimulated emission was observed as a result of transitions in the 

Be II Ion for X = 467 and 436 nm In an expanding laser produced plasma 2cm 

long and approximately 200 ¿¿m wide formed on a solid target by a 20J lOnsec 

Nd—glass laser There have also been the recent reports of substantial 

progress in x-ray lasor technology reported at the Lawrence — Livermore 

laboratory (see  Matthews etal (1 9 8 5 ))

A roviow of progress and fronds in x—ray laser research with particular attention 

to the hydrogen like ion approach is given by Elton (1981) and Pert (1981) 

has reviewed the current state of research in EUV laser action in plasmas in



which he describes the many proposals  outlined for the production of sufficient 

gain at short wavelengths, and the various avenues by which laser action in 

plasmas has been explored with particular attention given to the recombination 

scheme.

The lasers used in the high intensity experiments described above are mostly of 

the Neodymium doped glass variety the output powers of which usually lie in the 

1GW — 1TW range. This output is then focused with an aspheric lens of usually 

f = 10cm onto a solid target situated in a vacuum, and results in focused power 

densities of between 1013 and 101 6 Wcm” 2 achieved for pulse durations 

ranging from lOOpsec to 6nsec. In such plasmas temperatures approaching 

IKeV can be generated and electron densities of 1019 to 1022 c m "1, are 

typical and as a result both high and low energy levels are substantially 

populated. In such fast expanding plasmas population inversions may result in 

the recombination phase.

A useful review of laser produced plasmas  is that of Carroll and Kennedy

(1 9 8 1 ), and for plasmas in the high intensity regime see Kennedy (1 9 8 4 ). A 

general review of the subject of laser produced plasmas has been given by De 

Michelis and Matioli (1981) in which they discuss soft x -ray diagnostics of 

laboratory plasmas in general and also discuss laser produced plasmas as soft 

x—ray sources. Nagel (1984) describes the characteristics and uses of 

x—radiation from laser heated plasmas created on solid targets, and discusses 

recent x-ray measurements obtained with laser repetition rates of up to 10 Hz. 

The possible applications of the laser produced plasma as an x-ray source in 

research and industry are outlined. Morgan (1983) gives a brief account of 

th© salient characteristics of laser produced plasmas and outlines some of the 

principal processes which are responsible for their formation.
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The literature on the subject of laser produced plasmas is extensive the 

intention here has been to give a brief account of laser produced plasmas In 

the next section particular attention is given to the spectroscopic applications 

ie the use of laser produced piasmas as sources of continuum radiation in the 

VUV and as a versatile ion source
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1 3 THE LASER PRODUCED PLASMA AS A LIGHT SOURCE IN THE VUV

The first report of continuum emission from a laser produced plasma was 

published by Ehler and Weissler (1966) Using the output of a 100MW ruby 

Laser focused onto various metal target surfaces, they found that the spectral 

output of the resulting plasmas contained both discrete and continuum 

emission but when high Z targets such as tungsten, platinum and tantalum 

were used the emission lines were only slightly more intense than the 

continuum and that the spectral output from plasmas produced on low Z targets 

contained a much more intense line emission The continua from tungsten 

tantalum and platinum plasmas were found though not accuratly to peak at
O 0

around 200A and to extend to about 120A

Williams (1973) using a photoelectric detector rather than the photographic 

plates used by Ehler and Weissler examined the spectrum of a laser produced 

uranium plasma and found the continuum to peak at around 750& He also 

concluded that no significant continuum emission from uranium existed 

between 250 and 130A this result was later found by Damany and Esteva

(1975) to be in error Studies of continuum emission were also carried out by 

Breton and Papoular (1973) who examined the emission, from high Z metal 

targets between 1000 and 2000& Among the general results they reported 

were observations that the continuum emission per pulse increased almost 

linearly with target irradiance but more slowly with laser pulse length and 

wavelength They also reported on the effect of ambient pressure on 

contirruum emission and found that with an ambient pressure of about 10“ 1 torr 

the continuum was reduced considerably However ih e  continua were found 

to be less sensitive to laser focusing and angle of observation a result also
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observed by Dewhurst Khan and Pert (1975)

The laser produced plasma was investigated primarily as a source of VUV 

continuum emission to provide a background for absorption experiments by 

Kennedy (1977) and Carroll et al (1980) In a series of experiments they 

investigated the spectral output of various metal targets between 30 and 2000 

A The results of their experiments  revealed the existence of strong usable 

continua throughout this spectral region The elements studied were all of high 

2 (57  < Z < 74 ) and strong continua were reported for uranium hafmum, 

tungsten, and for the rare earths in both the normal and grazing incidence 

regions The continua produced from the rare earths and other high Z 

elements were found to possess the following properties which specifically 

recommend them for use m VUV absorption spectroscopy as backlighting 

sources

EASE OF PRODUCTION the only requirement being simple focusing of a Q - 

switched laser on a suitable metal target

EASE OF LOCATION since the target is simply a piece of metal, the plasma 

position is therefore completely controllable by manipulation of the focusing 

optics

SPECTRAL PURITY This is dependent on the purity of the target material 

Spectroscopically pure materials are readily available with purities of better 

than 99 99% so that line free continua are normally obtained 

NOISELESS since the laser producing the plasma can be operated from a 

remote position thus avoiding unwanted electrical noise 

SPECTRAL EXTENT the continuua were found to be strong in the wavelength 

range 30-2000^  depending on the choice of target

PULSE DURATION this was found to be on the same time scale as the laser

13



pulse used to generate the continuum (typically *30ns)

SYNCHRONIZATION by splitting the laser beam two-plasma experiments 

could be performed, a time delay could be Introduced by redirecting one 

portion of the beam using an optical delay line Thus time delays of up to 

lOOnsec could be achieved quite easily For longer time delays electronic 

delay circuitry would need to be employed

SPATIAL EXTENT, the region of continuum emission was found to be very 

small almost point like (typically ~ /¿m)

AMBIENT PRESSURE the source was found to be quite insensitive to ambient 

pressure and as a demonstration of this Kennedy (1977) presented 

absorption studies of the rare gases In the VUV and O'Sullivan (1982 a b) 

reported on experiments Involving VUV absorption of low molecular weight 

organic compounds

REPRODUCABILITY the continua were also found not to suffer seriously from 

pulse to pulse variations in laser output

The results of these experiments were reported in a series of publications 

which followed Carroll Kennedy and O'Sullivan (1978) Carroll Kennedy and 

O'Sullivan (1 9 8 0 ), O'Sullivan Carroll Mc'llrath and Glnter (1981) and later 

a design for a "table fop VUV source* based on the laser produced plasma 

was proposed (Carroll Kennedy and O'Sullivan (1983) ) The usefulness of 

the laser produced plasma as a backlighting source for absorption experiments 

In the VUV was also established by the same authors for LHI (Carroll and 

Kennedy (1 9 7 7 )) and for Be II (Kennedy and Carroll (1 9 7 7 ))

Other workers have also investigated the VUV emission of laser produced 

plasmas, Heckenkamp, Hemzmann and Schonhznse (1981) studied the

14



feasabillty of using laser generated plasmas as VUV continuum sources for 

photoelectron spectroscopy and measured the spectral intensity distribution 

in the wavelength region from 43 -  79nm by energy analysis of the 

photoelectrons ejected from argon atoms Their results showed a shift in the 

emission maximum to lower wavelengths with increasing laser energy Fischer 

and Kuhne (1983) carried out studies into the time duration of the VUV 

emission from laser produced plasmas as a function of pulse length and 

observation wavelength and noted a wavelength dependent correlation between 

laser pulse length and the time duration of the vuv emission from the plasma 

They found the vuv emission to be on the same time scafe as the laser pulse 

length and that by increasing the laser pulse length longer wavelength vuv 

emission was observed

Sinha and Gopi (1980) have studied x-ray and vuv continuum emission from a 

copper target Jannitti Nicolosi and Tondetlo (1983) have reported an 

experiment in which an "extremely clean and intense (** 5X107 Wcm“ 2 Sr“*1 

A ~ 1)*  continuum between 20 and 80& was emitted by a plasma also produced 

on a copper target Other applications of laser produced contmuua besides the 

Investigation of atomic structure have recently been studied Vinogradov et al

(1982) carried out an investigation of laser produced plasmas as a soft x-ray  

source operating at laser power densities of 5X101 1  -  2X1014 Wcm“ 2 They 

studied the conversion efficiency of laser radiation into x-rays emitted by 

plasmas over a wide range of power densities and atomic number of target 

materials (4  -  92) The studies were carriied out with a view to obtaining a 

suitable soft x-ray source for use in x-ray photolltography of resists More 

recently Caro et al (1984) used a laser produced plasma as a soft x-ray  

continuum source to generate metastable ions By focusing a laser beam 

through Li vapor onto a massive target inside the vapor a population of

15



Ll+ (1s2s) ions in excess of 101 5 cnrT3 was measured Ll+ (1s2s) population 

measurements were made for different target materials including thalium 

iron nickel and lithium« the authors also discussed their work with respect to 

possible applications to various proposed extreme ultraviolet laser systems
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1 4 OTHER SOURCES OF CONTINUUM VUV/SOFT X-RAY RADIATION

There are several ways In which continuum vuv radiation may be produced 

Before the advent of laser produced plasmas the major sources of continuum 

VUV were synchrotrons and various types of gas and vacuum spark 

discharges Synchrotrons have been used for vuv spectroscopy since the first 

absorption experiments carried out in the early 1960's (M adden and Codling 

(1963 1964) and Codling and Madden (1 9 6 4 ))  Comprehensive reviews of 

synchrotron radiation and its applications to atomic spectroscopy anrd other 

areas have been given by Codling (1973) and more recently by Wuilieumier 

(1981) and Williams (1983 ) The major disadvantages of syncnrotron 

radiation are that since sychrotrons are large and expensive facilities they are 

generally unavailable to the 'averagp spectroscopist" although this is changing 

as many synchrotron facilities have been built specifically for use as radiation 

sources whereas previously spectroscopists only had access to synchrotrons 

as parasitic users The requirement of an ultra high vacuum environment for 

synchrotron use can impose restrictions on certain types of experiment such 

as absorption experiments involving gases or vapors (o r absorption 

experiments on laser produced plasmas which have nol as  yet been earned  

out) There are also the effects of hard x-rays produced by the machine which 

impose the further restriction that experiments must be carried out remotely 

Clearly the experiments must also be carried out at the site of the storage ring 

or synchrotron and not in the users own laboratory Lastly an important factor 

concerning the nature of the radiation is that synchrotron radiation is highly 

polarized and possesses only small emittance in the plane vertical to the 

electron orbit

17



Because of the above reasons a substantial effort has been put into the 

development of other bright VUV radiation sources. The two potential 

candidates to fulfil this roie are the laser produced plasma, which has been 

discussed above, and the vacuum spark discharge which is discussed below.

Balloffet (1 9 6 0 ), while studying the spectral emission of spark discharges in 

vacuo, observed a continuum which was only present when electrodes of high 

atomic number such as tungsten or platinum were used. In a further report 

Balloffet et al (1961) used a uranium anode and observed continuum radiation 

in the range 80 -  2000A. The discharge conditions were typicially 0 .0 5 # F , 

22kV, 0. 08/zH. with a peak current of 55kA and a pulse duration of 1. 25/xsec. 

Further study by Balloffet et al (1962) of Laue diffraction patterns formed by a 

crystal of NaCI revealed that soft x-rays were also present in the discharge. 

Spatial studies which were carried out indicate that the origin of the continuum 

is located around the high density plasma sheath produced by the high current 

densities. It is thought (Lotte et al (1 9 6 3 )) that the deceleration of electrons 

within this plasma sheath produces bremsstrahlung radiation. Thus with the 

extremely high current densities present in spark discharges a strong 

continuum might be expected. Free bound transitions must also be present but 

to what extent is not known. However, the observations show that the anode 

must be a high Z element and that when low Z anodes are used only line 

spectra are observed.

A modern version of this BRV source, as it is now generally known, is 

commercially available from Chelsea Instruments. U. K. The source consists 

of a cylindrical uranium rod which serves as the anode, the brass cathode has 

a central bore and contains a third trigger electrode which initiates the main 

discharge by means of a sliding spark between this trigger electrode and the
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cathode The main discharge produces a hot dense uranium plasma in front of 

the anode, which is viewed end-on through the hole in the cathode The 

source has the following operating paramaters an operating voltage of 20KV, 

capacitance of 0 05^F, stored electrical energy of 10J The anode cathode 

discharge is approximately 3mm The source operates in a pressure of < 10“ 3 

torr and has a repetition rate of 0 1Hz

A radiometric comparfsion of the above BRV source with a laser produced

plasma has been carried out in the normal incidence region by Kuhne (1982)

His main conclusions were that although both sources have a similar

distribution of tim e-integrated spectral radiance the laser produced plasma is

much more reproducible and has a more precisely defined radial distribution

Also the radiation output of the laser produced plasma is not very sensitive to
*

de-focusing or to changes m laser output energy

Another novel source of soft x-ray continuum radiation is the exploding wire In 

this case a large current is passed through a thin wire (diam eter « 0 5 m m ), if 

the current Is sufficiently large («  kA) then the wires explode and pinch on axis 

radiating a short pulse (<* nsec) of continuum soft x-ray radation One 

particular example of this type of source has been used by Riordan and 

Pearlman (1981) to obtain an absorption spectrum of an aluminium plasma
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1 6 PHOTOABSORPTION SPECTROSCOPY OF FREE IONS IN THE VUV

To obtain the absorption spectrum of a medium requires a background source 

with an intensity in the spectral range of interest which is greater than that of 

the absorption ceil This is best achieved by a source the characteristics of 

which resemble those of a black body i e a source which is optically thick 

For neutral species this is readily attainable in the visible part of the spectrum

Based on the above considerations the absorption spectra of ionized species 

would appear to present a serious degree of dtflcuity since the intense sources 

required to observe absorption in ions would lie in the VUV The associated 

problems however have been overcome by a number of different workers 

utilizing a number of different techniques* all of which are based on the use of 

two plasmas one of which serves as the light source and another which serves 

as the absorbing medium It is the intention here to review this research and to 

give an historical perspective to the various methods employed m the study of 

photoabsorption of ionized species

Phenomena related to excitation and ionization of manifoldly charged ions 

provide a wide field of study for theoretical and experimental investigations 

which are of importance to present and future applications such as thermo­

nuclear fusion and x-ray lasers

Until relatively recently emission spectroscopy in the visible, ultraviolet and 

x-ray regions was the only way to carry out experimental studies on the 

properties of ions From emission data it is possible to deduce energies of 

outer unoccupied levels of ions, the ionization potentials of the occupied
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shells, and in some cases (if satellite lines are observed) binding energies of 

the first electronic inner shell In the recent past much theoretical effort has 

gone into numerical calculations of crossections of radiative and non-radlative 

excitation de-excitation and recombination processes m highly charged 

ions this is however only an indirect approach since emission spectroscopy of 

manifoldy charged ions is almost entirely carried out using plasmas or spark 

discharges which contain ions only as an intricate mixture of different species 

with a large range of processes contributing to the macroscopicaity observable 

behaviour It would therefore appear that any improvement in this situation by 

new techniques which would allow the measurement of xuv photoabsoption 

would be welcome However despite this no major effort has been put into the 

study of photoabsorption of ions in the VUV until relatively recently, although 

since about 1968 many successful methods have been developed which enable 

VUV spectra of free ions to be recorded Much valuable knowledge has been 

obtained by the use of these methods all of which require two plasmas Some 

of these methods are discussed in what follows

Huber and Tobey (1968) obtained gf values for lines in Fe I Cr I and Cr II and 

in a later publication Grasdalen Huber and Parkinson (1969) measured gf 

values for lines in Fe I and Fe II They used as an absorption medium a shock- 

heated gas which contained Fe and as a light source they made use of a 

coaxial flash tube with a large aperture which provided a usabjie continuum over 

the spectral region 3150-3780A

HiJdum and Cooper (1972) reported an experiment in which a Z-pm ch dis­

charge was used as an absorption medium to generate the ionized species and 

a modified theta-pinch plasma formed the background light source, f ig d  2 ) 

shows the experimental arrangement
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Fig ( 1 2 )  Shows a schematic view of the windowless system used 
to obtain VUV absorption spectra using a Z-pinch plasma as the 
absorbing medium together with a modified 0 -p inch plasma 
providing the background source (After Hildum and Cooper 
(1972) )

They obtained a brightness temperature for the theta pinch plasma m excess of 

35 000K m the region 1100 -  2000A and illustrated the technique by obtaining 

absorption In known lines of Si 11 Si III and C II The continuum was found to 

extend from 1100A out to the visible

Mehlman Balloffet and Esteva (1969 ) reported an experimental tecnmque by 

which two BRV spark discharges one serving as the ion source while the other 

provided the vuv continuum background were used to study the absorption 

spectra of beryllium and magnesium The experimental arrangement used by 

them is shown in f ig d  3) below

Fig (1  3 ) Shows the experim ental arrangem ent used to obtain a 
VUV absorption spectrum using two synchronised spark discharges 
See text (After Esteva et al (1 9 7 4 ) )
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The plasma P which contains the ions of interest is generated in a modified 

BRV spark device simply by replacing the uranium anode used to generate the 

continuum with a beryllium or magnesium rod The uranium anode producing 

the background light is seen end-on The distance between ions and light 

source is about 3 5cm and no focusing of the background source was used 

Experiments were performed to find the parameters which influenced the 

values of the absorption coefficient in order to obtain maximum absorption and 

largest variation of the absorption coefficient Eiectricial circuits were selected 

which gave maximum peak current, i, together with a maximum value of d i/d t 

at breakdown Both circuits were identical each having capacitors of 0 5/iF 

charged to 22kV and discharged over a period of 1 2/isec It was found 

necessary to operate the system with a time delay between both discharges 

With a time delay of 1 /¿sec the spectra obtained showed strong absorption of 

both continous and discrete nature The technique was used to study auto- 

ionized line series and other features In the spectra of ionized beryllium and 

magnesium In a later publication (Esteva and Mehiman (1 9 7 4 )) autoion- 

ization spectra of magnesium (Mg L II and III) were recorded in the 50-110 eV 

energy range They identified some 68 resonances including the observation 

of the neon like series ls 22s 22p 6 -  l s 22s 22 psns, nd, and several inner shell 

autoiomzing resonances of the type 1s22s22p6 -  l s 22s2p6 np in Mg ill

Carillon, Jaegle and Dhez (1970) reported an experiment involving two laser 

produced plasmas which allowed the absorption of radiation from one piasma 

by another to be observed this was the first time that two laser produced 

plasmas had been combined in this way The experimental arrangement is 

shown in fig (1 4) below The experiment consisted of having two target rods 

(I and ID one of which (I) was placed at a fixed distance from the entrance slit 

of a spectrograph the other (II) was placed between the spectrograph slit and
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(I) in such a way that its distance from the optic axis of the spectrograph could 

be varied Thus plasma (II) formed the absorbing medium and plasma (I) the 

radiating source Movement of target (II) together with the use of optical delay 

lines allowed different regions of the absorbing plasma to be studied The 

experiment used a two concave grating spectrograph and a Nd-glass laser 

which delivered approximately 25 MW of power to each target The radiation 

was detected using a gas flow proportional counter

The point of the experiment as stated above was to observe the absorption of 

radiation from plasma (I)  by plasma (li) To do this, intensity measurements 

were taken in the following manner at a given wavelength X three sucessive 

measurements of intensity were taken Firstly that of the emission from 

plasma (I)  secondly that of plasma ( I I ) ,  and as a final measurement the 

emission of target (I) behind target (II) was examined the experiment was 

repeated a number of times to eliminate fluctuations in laser output power If 

no absorption by target (II)  took place then the last measurement would on 

average be the sum of the first two however this was not the case and the 

conclusion drawn by the authors was that absorption of part of the radiation 

from one plasma by the other did In fact take place A mean value was obtained 

over the duration of the source continuum which was about 40 nsec The 

relative timing of the arrival of the two laser pulses at their respective targets 

could be adjusted by an optical delay line Fig (1 5) shows the transmittance 

of the plasma at 98 A as a function of the distance z' from the hottest part of the 

plasma along the laser axis The hottest region of the plasma was found to 

occur at a distance of about 0 5mm from the target surface For a delay time 

of 12nsec the transmittance increased monotomcally with distance d (see  

f ig ( l 5 ))  but for a delay of 27 nsec the transmittance had a minimum at 

0 8mm The authors Interpreted this minimum as being due to the presence
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as a result of recombination of significant numbers of ions with sufficiently low
o

ionization potentials to be photoiomzed by the 98A radiation (with x  “  125eV)
T

and concluded that such radiative transfer processes appear to be important in

these types of plasmas

Fig ( 1 4 )  The experimental arrangement used to m easure the far 
ultravoilet absorption spectrum of a laser generated aluminium  
plasma R x and R2 are concave gratings and M Is a concave 
mirror (A fter Carillon et al (1970) )
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Fig (1 5) Transmittance T and absorption $ix of EUV radiation 
through a laser produc&d plasma d is the distance from the 
observed ¿one to the hottest part of the plasma which was found to 
be about 0 5mm from the target surface See text (After Carillon 
et al (1970) )

*

In a later publication Jaegle Carillon Dhez, Jamelot Sureau and Cukier

(1971 ) reported on evidence for the possible existence of a stimulated emiss­

ion in the extreme ultraviolet from an aluminium plasma They used the same 

two laser plasma technique and suggested that observed intensity anomalies m 

the absorption spectrum of an aluminium plasma implied the existence of a 

population Inversion between the 2p6 XS|, and the 2 p 54 d 1 P 1 levels m Al IV 

They attributed this population inversion to an interchannel interaction between 

nd states and the continuum I e that the 2p 54 d 1 P 1 level was populated by 

the recombination of the Al V ion with free electrons

In two further reports ( Carillon Jamelot Sureau and Jaegle (1972) and 

Jamelot Sureau and Jaegle (1 9 7 2 )) identifications and measurements of the 

autoiomzlng series in the neon like Al IV ion were made Also they reported on
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the observation ot lines of the type 2p6 -̂Sq -  2p 5 nd3 D 1 , XP X Again this was 

related back to the eanler reports of laser action in the vacuum ultraviolet

Valero (1974) repeated the experiments of Carillon et ai in an attempt to 

explain the reported intensity anomolies He repeated the experiment using 

higher power («  600MW) and used photographic rather than photoelectric 

detection Valero also used a cylindrical lens in conbination with a spherical 

lens to generate both the absorbing and continuum producing plasmas res­

pectively from the same target This was done to create a greater path length 

and so make any intensity anomalies more evident By making observations of 

relative intensities of lines of various ion stages in the plasma he concluded 

that the observed intensity anomalies were m fact due to self absorption and 

hence a relative increase in lines having lower transition probabilities He also

concluded that the alleged observation by Carillon et al (1972) of a Beutler- 
*

Fano profile was in fact due to a low resolution detector system These results 

relating to the report of laser action in the extreme ultraviolet were, at the time 

of publication the subject of considerable controversy, and in further pub­

lications, (Jaegle, Jameiot, Carillon, Sureau and Dhez (1974) and Jam - 

elot CariUon Jaegle and Sureau (1 9 7 5 ) ) ,  the same group carried out 

further calculations in support of their claim One of these publications 

Carillon et al (1974) is of interest here as it describes a "technical device" and 

a "practical method" for the study of photoabsorption m ionized species This 

device employs a "split lens" to focus the laser output onto the target (whether 

a single spherical lens or two separate half spherical lenses are used is not 

clear from the original publication) As can be seen by reference to fig (1 6) 

below By this technique the two plasmas are produced close together on the 

same target, the distance between them being (according to Carillon etal 

(1 9 7 4 )) on average approximately 0 4mm using a two half-optical lens
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system However it Is also clear from fig<1 6) that such a division of a single 

spherical tens will cause the incident laser beam to be focused to the same 

region of the target from both sides of the lens division This will result m the 

production of a single point plasma If two separate half spherical lenses are 

used then two point plasmas will be created however they would be so close 

together that the experiment would be confined to a single target surface So it 

is clear that if the arrangement proposed by Carillon and shown in fig (1 6) is 

used then the experiment would be essentially confined to a smgie target and 

thus preclude the use of a second high z  continuum emitting target The goal 

of this device was acordmg to the authors to atempt to measure a 'negative 

absorption“ for the transition 2 p s4d3 P 1  -  2p 6 XS 0 which is almost forbidden In

the neon like ion Al IV

Fig (1  6) Shows a simpler form of the technique originally 
developed by Carillon etal (1970 ) This version uses two h a ll- 
optical spherical lenses to produce both of the plasmas on the same 
flat target directly In front of the spectrograph entrance slit (After 
Carillon et al (1974) )
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involves the use of tunable lasers to create the ions The tunabie laser has

proven to be a powerful tool in the investigation of atomic structure using the

various spectroscopic methods made possible by their development The

application of the tunable laser to the absorption spectroscopy of ionized

species was first demonstrated by Lucatorto and Mcllrath (1 9 7 6 ), when they
e

were able, using a 1 MW pulsed laser tuned to the X = 5896A 2S x/ 2 -  2P x/2 

resonance transition in sodium to produce nearly complete ionization of a one 

cm diameter column of sodium vapor

The absorption spectrum of the column of ionized vapor was obtained using the 

apparatus shown in fig (1 7) The continuum background used in this exper­

iment was provided by a 8 RV vacuum spark The output of the laser was made 

to traverse a heat pipe which contained the sodium vapor between two plugs of 

helium buffer gas all at a pressure of about 1 torr The continuum produced 

by the BRV source was reflected using a toroidal mirror and transmitted 

through the capillary arrays used to separate the vacuum of the spark chamber 

from that of the heat pipe The small mirror placed near to the entrance slit of 

the 3m grazing incidance spectrograph, allowed for almost colinear illumin­

ation of the sodium vapor by both the laser and the BRV source

Another method which has been used to study ionized species in the VUV
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Fig (1 7) Schematic diagram illustrating the technique used to 
ionize a column of vapor and subsequentfy obtain Its VUV absorption 
spectrum (After Lucatorto and Mclirath (1960) )

The results of the experiment described above allowed measurements of the 

Na+ photoionization continuum to be made The experiment also resulted in 

the observation of the neon like series 2s 22p6 1 S 0 -  2s22 p 5ns nd and six 

members of the autoionizing series 2s22p6 XS 0 -  2s2psnp 1 P 1

This technique of resonant laser-driven ionization has since been applied to 

other vapors and ionization of Li Ca Sr and Ba vapor columns  have been 

observed

In a further modification of the technique to include a second tunable laser 

Lucatorto. Mclirath Sugar and Younger (1981) observed for the first time 

the discrete 4d photoabsorption spectrum of B a*+ The experiment employed 

essentially the same technique with a 1MW pulsed dye laser tuned to the
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5537A resonance line in Ba which completley ionized a 12cm long column («  

2 5X10l s cm ~3) of Ba vapor which allowed the VUV absorption spectrum of Ba 

II to be observed A second laser tuned to the 4935A resonance line in Ba II 

further ionized the column and allowed the absorption spectrum of Ba ill to be 

recorded The resulting redistribution of oscillator strength observed in the 

spectrum of Ba III, when compared with the spectrum of Ba II m the same 

energy region has generated considerable theoretical interest

t
At the time of the first experiment with sodium vapor the mechanism for the 

production of ions by this technique was not well understood Further exper­

imental work by the same group (Lucatorto and Mcilrath (1980) ) has ex­

plained the phenomenon of resonant laser-driven ionization in dense vapors by
/

a combination of several effects including multi-photon ionization dimer 

ionization associative ionization and stimulated Raman scattering

The technique has proved to be a very useful one for photoabsorption studies 

of neutrals, and for singly and doubly ionized species The same group has 

also suggested that the technique has wider applications beyond pure spect­

roscopy such as the use of ion columns as non linear media for up 

conversion into the ultraviolet by four-wave mixing Also possible using this 

technique are studies of recombination lasers as well as studies on the 

chemistry of ion-neutral reactions The technique is however limited by lack of 

crystals suitable for frequencey doubling into the VUV so that photoabsorpUon 

spectra of ionized species higher than III cannot be atempted with this tec­

hnique at this time

Another technique which was used for photoabsorption studies on ionized

species at about the same time was the technique of flash pyrolysis In this
*
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technique metal vapors are heated in a glass or quartz absorption tube which 

Is connected onto a spectrograph at one end and a vacuum chamber 

containing a continuum light source (usually a BRV) at the other The absor­

ption tube is surrounded by a helical flashlamp working at voltages of up to 

lOkV, and capable of emitting a lumimous flux of about 50Jcm—2 on a time 

scale of about 1/usec Using this technique Cantu, Parkinson Tondeilo. and 

Tozzi (1977) were able to obtain the absorption spectrum of Lithium (Li I and Li 

II) m the 215 -  160Â region Using a toroidal mirror to focus the backlighting 

BRV source they were able to obtain spectra m a single shot They reported on 

the observation and measurement of thirteen lines of singly ionized lithium 

together with the continious absorption at the limit of the series Absorption 

lines from inner shell excitations in neutral lithium were also observed and 

tentatively identified

The technique of using two laser produced plasmas to obtain absorption

spectra of ions in the VUV first used by Carillon et al (1970) was (after

incorporating several important modifications) successfully used by Carroll

and Kennedy (1977) to obtain the VUV absorption spectrum of Li+ from 200 to 
o

50A They reported the observation of three members of the doubly excited 

resonances Is 2 l S Q -  2snp1 P 1  and were able to obtain measurements of the 

Fano parameters q and r  for the first member They also observed the 

principal series together with its adjoining photoionization continuum The 

essential differences between this experiment and the experiments of Carillon 

et al (1970) and Valero (1974) are discussed below The technique utilised 

the continuum producing properties of high Z element plasmas discussed in 

section 1 3 The crossed target configuration (in which the laser beams 

entered the target chamber at right angles to each other, ) shown in fig ( 1 8) 

was used
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The single laser beam (1 J in 30 -  40nsec) entered a beam splitter which 

directed halt of the beam via an optical delay line to the continuum producing 

target (in  this case tungsten) and the remainder of the beam to the ion 

producing lithium target This was an advance on the earlier two laser pro­

duced plasma techniques m that for the first time the backlighting source 

behind the absorbing plasma was a continuum producing plasma Also the 

spectra obtained with this variation were spatially resolved t e information 

about the structure of the absorbing plasma was revealed

FigM  8 ) The target configuration used by Carroll and Kennedy
(1977 ) to study the VUV absorption absorption spectrum of a Li 
laser produced plasma L 1 and L 2 are lenses (A fter Carroll and 
Kennedy (1977 ) )

in a later publication Kennedy and Carroll (1977) reported absorption from 

excited states of Be* also observed m a laser produced plasma in this case 

no backlighting conlinuum source was used instead the single laser beam was 

directed to a Beryllum oxide target which contained some other elements of
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higher atomic number, and these elements produced sufficient continuum 

radiation to aiiow the observation of absorption features

The technique of using two laser produced plasmas one as an ion source the 

other as a continuum source to obtain absorption spectra has more recently 

been used successfully by Jannittl, Nicotosi and Tondeiio (1983) in a modifi­

cation of the arrangement first reported by Santi, Jannitti Nicolosi and 

Tondeiio (1981) The method employed involves the division of a Q-switched 

ruby laser beam (<* 85J in 15nsec) between two targets, one of which produces

the continuum radiation and the other the absorbing ions The experimental 

arangement, shown in fig (1 9 ) ,  is relatively complicated when compared with 

that of Carrol! and Kennedy (1977)
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Fig ( 1 9 )  A modified version of the two laser produced plasma 
technique used to study absorption of ionized species (A fter 
Jannitti et al (1981 ) )
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The first beam laser beam 1 in fig (1 9) carries most of the energy (7 0 -  

90%) and after deflection by mirror A, is locused  by lens L2 to produce the 

continuum radiating plasma on target T x Beam 2 which contains the rest of 

the laser pulse is brought to a focus on target T 2 using a sphero-cylindrical or 

spherical lens, L2 , This produces the absorbing plasma The continuum 

radiation generated on target T L is seen through two small holes in mirror A 

and in lens Lx by the toroidial mirror M which collects and focuses the 

continuum radiation The radii of the mirror M are such as to produce a first 

astigmatic image on the entrance  slit S of the two metre grazing incidence 

spectrograph As well as removing the astigmatism the mirror M also helps by 

filling the aperture of ihe spectrograph

With this arrangement the authors have produced absorption spectra of ions of 

low atomic number and have also reported on continuum measurements 

made on targets of low Z Nicolosi, Jannitti and Tondello (1981) concluded 

that plasmas produced on targets of low Z using lasers of moderate power (3  -  

10J) can produce strong ( “  108Wcm“ 2Sr“ 1A“ 1) contlnua in the soft x-ray (10

o
-100A ) region Absorption spectra of the He-like and U -like  stages of beryl­

lium, boron and carbon have been obtained (Jannitti Nicolosi, and Tondello 

(1 9 8 3 )) Recently Jannitti, Nicolosi, and Tondello (1984) have measured the 

Fano parameters q and r  for the Is 2 1 S 0 -  2s2p1 P 1 autoiomzing resonance in 

He-like beryllium Be HI

Another method which has recently been used to obtain absorption spectra of 

ionized species in plasmas also deserves mention because of its relevance to 

work which is reported In chapter 3 Riordan and Pearlman (1981) have 

produced an absorption spectrum of a backlighted aluminium plasma, using 

the exploding wire technique shown m fig (1 10) below The technique utilises
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a backlighting source which consists of a cylindrical array of fine stainless- 

steel wires strung across the diode of a 1-TW  pulsed power generator Current 

passing through the wires cause them to explode radiating an intense 25nsec 

FWHM pulse of soft x-rays

Fig (1 10) Schematic of the exploding wire technique used to 
record the absorption spectrum of an aluminium plasma (After 
Riordan and Pearlman (1981) )

The plasma under investigation in this case aluminium was created by 

irradiating thin foils with the same soft x-ray source used for backlighting 

though it would also be possible to create the absorbing plasma independently 

of the backlighting source The foils used are placed over holes m a foil 

support one hole being left uncovered to measure the wire source The 

spectra were recorded using a 1m grazing incidence spectrograph The 

investigation showed that when the foils received an irradiance of « IJcm “ 2 a 

spectrum of neutral aluminium was obtained The foils were found to be 

opaque below 17oA due to the Lx x 11JL edge in neutral aluminium However 

when the backlighting flux is increased “markedly* (to  what extent is not clear 

in the original publication) the foils are completely ionized The authors report 

the observation of Ne-like Al IV states also satellite lines from Al II and Al 111 

and a single absorption line from Al V The spectra were recorded over the
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range 200 -  80A The observation of the Rydberg series of autoiomzation 

resonances 2s22p6 1 S 0 -  2s2p6np1 P 1 were not reported In conclusion the 

authors suggest that this technique might also be useful in the diagnosis of 

warmer plasmas such as those produced by lasers

0
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The intention in this chapter is to describe the apparatus and experimental 

arrangement used to obtain the absorption spectra of ionized species which 

are reported in chapter three ^

The laser used in these experiments is a commercially available instrument 

and its general characteristics are outlined The spectrograph used to record 

the spectra is described and some details relevant to grazing incidence 

spectrographs in general are also discussed briefly

The experimental method employed is discussed in relation to alignment of the 

spectrograph so that best use is made of the instrument Details of photo­

graphic tests used in alignment of both plasmas with each other and with the 

spectrograph are described AÎso dealt with here is the method of target 

construction which has been found during the course of this work to be an 

important factor influencing the outcome of the experiments reported in chap­

ter three

The intention throughout this section is to provide a clear and concise des­

cription of a series of experiments which have been highly successful in 

providing absorption spectra (in the VUV /  soft x-ray wavelength region) of 

transient ionized species produced in laser generated plasmas

2 1 INTRODUCTION
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2. 1 THE LASER.

The laser used for all of the experiments reported here was a commercially 

available ruby (series 2000) laser, supplied by J K LASERS The laser output 

which is linearly polarized occurs at a wavelength of 694 3nm The laser 

consists of a single oscillator which can deliver approximately 1 5 J of optical 

energy in a single pulse of 30 to 40 nsec (FW HM) duration when operated m 

the Q-switched mode as it was throughout these investigations

It is not the intention here to discuss the physics of ruby lasers as many texts 

exist on the subject, (see general references at the end of this chapter ) 

However some details pertaining to the operation of this particular laser are 

discussed below A schematic diagram which shows the basic construction of 

the laser is shown in fig (2  1) The Pockels cell which makes Q-switchmg 

possible is located in the cavity just in front of the rear mirror and operates at a 

voltage of 2 7kV which can be varied by adjusting the controls on the Pockels 

ceil unit This unit also controls the double pulse facility of the laser this 

allows the laser to be fired in a double pulse mode with a time delay between 

the pulses variable from one to several hundred micro seconds The output of 

the laser is monitored on an energy monitor which takes a portion of the output 

beam and directs it to a photo diode The integrated output from the photo 

diode is converted into a voltage which is proportional to the laser output and 

can be read from the energy monitor

Ruby is quite sensitive to variations in temperature its lasing efficiency rising 

with a reduction in temperature The coolant temprature is generally controlled
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at approximately 2 0 °C The cooling medium used for this laser  is distilled 

water As a further precaution the repetition rate of the laser was restricted to 

thirty shots per minute although it could be run at twice this rate

When operating at full aperture a laser generally oscillates in several trans­

verse modes simultaneously By reducing the aperture (which in the case of 

this laser is located In the cavity behind the output mirror see fig(2 1 ) )  the 

number of modes is progressively restricted untilf the laser is only operating 

in single transverse mode (T E M 0 0 ) This mode generally known as the 

uniphase mode gives very good spatial coherence, and the lowest attainable 

beam divergence and hence a high energy density capability due to its good 

focusabiiity Throughout these experiments the laser was used with the aper­

ture set to its lowest value i e the smallest aperture was used and although 

the laser is not exactly operating in the TEM 00 mode (even with the smallest 

aperture in place) most of the higher order modes are however eliminated by 

the inclusion of the aperture and hence the power output is optimised

Routine maintenance is largely confined to the Pockels cell which is a sealed 

unit (located in the cavity between the rod and the rear reflector see 

fig (2 1 ) )  with anti-reflection coated windows at each end the void between 

the windows and the crystal is filled with FC104 index-matching fluid to 

minimise transmission losses The Pockels cell is checked at regular intervals 

to ensure that the fluid level is correct
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Fig <2 1) Schem atic diagram showing the construction of the ruby laser 

system which was used throughout the work reported here Also shown 

Is the low power HeNe alignment laser which Is aligned along the optic 

axis of the ruby laser



Care must also be taken to ensure that there is nothing in the path of the beam 

which can return direct reflections into the laser It Is important to ensure that 

any lenses in the optical train do not produce back-reflections which come to a 

point focus anywhere near another component, for example piano- convex 

lenses can produce focusing back-refiections from their flat or curved sur­

faces

To faciltate alignment a low power HeNe laser beam is passed through the 

optical system of the ruby laser as seen m fig (2  1) This second laser is 

used to fix precisely the position of optical components used m plasma 

production

2 2 THE TARGET CHAMBER

Most of the experimental work reported here involved a series of two plasma 

experiments earned out in vacuo in target chambers attached to the spect­

rograph just in front of the entrance slit Two target chambers were used for 

the experiments The first of these was constructed of 3mm mild steel plate 

and is of a construction similar to those reported by Kennedy (1977) and 

O'Sullivan (1980) This chamber was such that the plasmas were located 

approximately 10cm from the entrance slit of the spectrograph An alternative 

target chamber was constructed, also of mild steel, which allowed the plasmas 

to be formed approximately 5cm in Iront of the spectrograph entrance slit 

thus increasing the intensity of the light incident on the grating This chamber 

shown in fig(2 2 ) was constructed to allow maximum observation of the 

plasmas formed on the surface of the targets during the course of an exper­

iment and to facilitate alignment

An attachment for holding a HeNe laser at the rear of the chamber was also
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constructed the HeNe laser was aligned along the optic axis of the spectro­

graph and was used in coarse alignment of the plasmas with the entrance slit 

The top plate of the chamber contains the target holder and allows the target to 

be moved such that the optimum position in front of the entrance slit is 

obtained Both top and bottom plates of the chamber are approximately 2 5cm 

thick and are hollowed out to allow the target holder the greatest possible 

vertical motion within the chamber, this allowed relatively long (approximately 

6cm) targets to be constructed The cham ber was also differentially pumped 

this was accomplished by a small 1 " diffusion pump connected to the base of 

the chamber This was felt to be necessary as the entrance slit of the 

spectrograph was normally set between 5- 20/4 and a typical plate required in 

excess of 300 shots This together with the fact that the target rod extends 

through a vacuum seal (which is quite easy to break while the target rod is 

being moved) into atmosphere and was constantly being moved during the 

experiment (every 5 -10  shots) made differential pumping essential

To avoid the problem of the backlighting plasma being obscured and to ensure 

that maximum absorption be observed it was found that the targets had to be 

rotated and held at an angle of between 2 and 5 degrees to the spectrograph 

optic axis This was accomplished by a small piece of brass which was 

machined so as to be circular but with a small lip (as shown in figC2 3 a) ) 

This piece of brass fitted over the target rod and was held onto it with a small 

screw The machined lip which moved in a vertical groove cut in a hollow brass 

tube made to fit over the target holder allowed the target to be held at the 

predetermined angle Thus any angle which was set between the target holder 

and the spectrograph axis could be easily maintained The entire construction 

is shown in fig (2  3)
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F-ig (2  3) Shows an elevation and plan view of the cylindrical 

construction used to set and maintain the angle between the targets and 

the optic axis of the spectrograph during the experiment



2 3 THE SPECTROGRAPH.

The photoabsorption studies reported here, (chapter three ) were ail earned  

out in the extreme ultraviolet/soft x-ray region of the spectrum below 300A In 

this wavelength region the decrease in reflectance of ail materials with decre­

asing wavelength necessitates the use of grazing incidence spectrographs to 

obtain usable grating efficiency and, in general, the closer the incident angle 

a  approaches 90° the lower will be the cut-off wavelength of the instrument 

For example, a platinum coated grating as used with the spectrograph dis­

cussed here has a critical wavelength (in  angstroms) of approximately equal 

to 2 64 times the grazing angle m degrees, therefore at an angle of 4 °  (which 

was the angle of incidence used throughout this work) the wavelength cut-off 

should be approximately 1 1 3  angstroms However due to scattered light this 

theoretical cut-off minimum is never in fact achieved, in practice and for the 

spectrograph discussed here the minimum observable wavelength was about 

36A This cutoff is also due to the fact that none of the sources used in this 

work emit strongly below about 40A

The theory and construction of spectrographs is well known and is dealt with in 

a number of texts see for example Samson (1967) There are however some 

important points relating to grazing incidence spectrographs in general which 

should be mentioned here

Astigmatism is the major abberation in concave mirrors and this imperfection 

Is inherited by the concave diffraction grating The theory of astigmatism was 

first developed by Rung and Mankopf (1927) and has since been dealt with in
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detail by Beutier (1945) and Namioka (1961) Astigmatism results in a point 

on the siit being imaged into a vertical line, that is, focusing is achieved only 

m the horizontal plane The length z of the astigmatic image is given by,

z = lcos£__ + ^  sm 2a  + sinatanacos£ ] (2 1 )
cosa

whare a  is the angle of incidence, and J3 Is the angle of the diffracted ray The 

first term gives the contribution due to the entrance slit of finite vertical length 

I and the second term is the astigmatism produced by a point on the entrance 

slit L represents the length of the ruled lines illuminated It can be seen from 

eq (2  1 ) that the image becomes more stigmatic for near normal incidence 

and quite stigmatic for The astigmatic image also has an associated

curvature which was studied by Beutier (1945) who identified two types of 

curvature, astigmatic curvature due to the astigmatism of a point source at the 

entrance slit and enveloping curvature caused by the finite length of the 

entrance siit when illuminated

Astigmatism can be tolerated in spectroscopy since only horizontal focusing is 

required to separate the various wavelengths However at grazing angles it is 

considered a major disadvantage since it reduces the light intensity per unit 

area of the image and imposes strict focusing conditions to produce maximum 

resolution, also spatial information from the source is lost Techniques for the 

reduction or elimination of astigmatism were not employed during this work and 

will not be discussed here

Dispersion expresses the way in which the various wavelengths are distributed 

over the Rowland circle Angular dispersion Is defined as d/9/dX and for a fixed
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angle of incidence we have

d£  = m (2 2)dcosÆ

We are usuaiiy more interested in the actual number of angstroms per mm 

dispersed along the Rowland circle This quantity the reciprocal of the linear 

dispersion dx/dX is called the plate factor and is given by

£  = d co s l .  3 ,
dX mR

whare R is the radius of curvature of the grating

While dispersion determines the separation of wavelenghts along the Rowland 

circle the resolving power determines whether this separation can be disting­

uished Resolving power is defined as X/AX and depends (if diffraction limited)

on the order number m and the number of ruled fines N exposed to the incident 

radiation, it is usually written.

The resolving limit of a grazing incidence instrument is, in practice limited by 

the slit width if the siit width is smali then resolving power is good but with 

wide slits poor resolution is obtained in the work presented m later chapters 

the siit width was varied between 5 and 30/um Typical values for resolution of 

the spectrograph used here are given below The influence of slit width on 

resolution has been discussed by Mack etai (1932)

Also of considerable importance is the grating efficiency, this can be defined

(2 4)
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as the percentage of the incident radiation flux returned by the grating into a 

given spectral order The groove shape is important in determining how much 

radiation is concentrated into a given order also the type of reflective coating 

used in this case platinum The groove shape is described by the blaze angle 

0 blazed gratings are designed to have maximum efficiency over a certain 

wavelength region The grating used in this work had a blaze angle of 0=1 ° 4 7' 

and is most efficient in the 60A wavelength region

The instrument used for the investigations reported here was a two metre 

grazing incidence spectrograph model £580 supplied by HILGER ANALYTICAL 

and has specifications summarised in table(2 1) The grating was supplied by 

BAUSCH & LOMB and has the parameters, also listed below in table(2 1)

TABLE 2 1
Summary of the spesifications of the 2 m grazing incidence 

spectrograph used throughout this work

0
Range 5 -  950A -  depending upon grating fitted

Grating BAUSCH & LOMB Radius of curvature 2 metres 
Ruling 1200 grooves per mm 
Ruled area 25 X 35 mm 
Blank size 35 X 45 X 10mm 
Blaze angle 1°47 '
Minimum grazing angle 40 minutes 
Angles of incidence 86 88 or 89°
Plates 2“ X 25* (max)
Working pressure 10 " 3 -  10“ 5torr
Slit widths used 10 -  SQfim
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Three interchangeable entrance siit assemblies giving angles of incidence of 

86° , 88° and 89° respectively were also supplied The plate holder used with 

this instrument takes 2" plates with a maximum length of 25“. the curved 

surface of the plate holder (on which the plates are positioned) is machined to 

a positional accuracy of 0 0002“, (0  005mm) The plate holder can be 

replaced with a tracking slit assembly which converts the spectrograph into a 

grazing incidence monochrometer thus photographic or photoelectric detec­

tion may be employed

The spectrograph is pumped by a 5* water cooled diffusion pump coupled to a 

rotary pump which together can evacuate the spectrograph from atmospheric 

pressure to a working pressure of TO-"3 to 10“ 5torr in approximately fourteen 

minutes Fig (2  4 a) shows the spectrograph in crossection The siit jaws are 

lapped onto their mount so that they are effectively vacuum sealed The only 

gas leak between the spectrograph and the target chamber is then the flow 

between the siit jaws and with slit widths of up to 10/tm this leak is considered 

Insignificant However It was found that the siit jaws needed to be cleaned  

regularly to remove debris from the plasma This was due to the close 

proximity of the plasma to the siit Cleaning of the siit jaws was carried out by 

simply removing the lower jaw from the assembly and removing the debris by 

drawing a match stick across the edges of the slit jaws

The walls of the spectrograph vacuum tank are constructed from a m ag- 

nesium-ztrcomum alloy casting this alloy offers good vacuum properties is 

extremely stable and is very light in weight The base of the tank is shaped to 

reduce the internal volume and the sides are ribbed externally to reduce 

distortion under vacuum The top of the tank is a removable lid made from 

12mm aluminum alloy plate and is sealed with an o-rm g The plate holder
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also shown In fig C 2 4 a ) , consists of two main parts both constructed of the 

same material as the tank Fig (2  4 b) shows the way In which the plate A is 

held against the main body B by means of a shaped back C, assisted by two 

cord strips D The entire plate holder is supported kinematically within the 

tank Two points are located at the top end and a third at the lower end The 

cassette is held down on these supports by spring loaded lugs which engage in 

grooves in the side of the main tank A maximum plate length of 25" can be 

used The addition of a moveable baffle between the entrance slit and the plate 

holder allowed for multiple exposure of the same photographic plate by dividing 

the plate into sections
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2 4 PHOTOGRAPIC PLATES

The plates used to record the spectra reported in later chapters were KODAK 

SWR plates These plates are slow when compared to other plates used In the 

VUV for example KODAK SC5 or 101 01 plates however SWR plates were 

found over the course of this work to produce clean measurable spectrograms

The processing technique followed simply consists of using four trays two of 

water one of developer (KODAK D -1 9 ) ,  and one of fixer (KODAFIX) The 

temperature was that of the room and varied between 20 and 24°C  The plates 

were placed first in a tray of distilled water for 2 -3  minutes they were then 

transfered to the developer tray (the developer being changod for each plate ) 

for 2 minutes After washing in the third tray for a further 2 minutes the plates 

were transfered to the final tray and fixed for 5 minutes However despite 

following this procedure for each plate differences in plate density were found 

even between plates of identical exposure Scattered tight from the spect­

rograph was also found to present problems This is however to be expected 

when one considers that the average exposure required for an absorption 

spectrum was of the order of 300 shots This number of shots can be set in 

perspective when one considers that to record a reference emission spectrum  

(which is usually aluminium or silicon) for a typical plate required on average 

only 15-20 shots The reasons for this difference in the number of shots 

required for the two spectra will be discussed in chapter 3 This therefore sets 

a practical limit on the minimum wavelength which can be recorded photo­

graphically in absorption with this instrument this was found to be about 60 

angstroms The use of SWR and other plates have been described together
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with developing procedures by Hoag and Miller (1969) and measurements of 

sensitivities and characteristic curves etc are given by Burton Hatter and 

Ridgely (1973) SWR plates as with all plates used in the VUV are extremely 

sensitive to abrasion and must be handled with care

Each absorption spectrum recorded had overlaying a section of it, an emiss­

ion spectrum which was used as an external reference (internal references 

were also used where possible) with known lines from which positions on the 

plate of unknown features could easily be measured The following procedure 

was used in measuring the wavelengths of spectral features The plates were 

measured on the photoelectric comparator in the Physics department at Uni­

versity College Dublin This instrument is operated by hand and esentially 

allows the accurate determination of the positions of spectral lines along a 

photographic plate, and is accurate to about 1/£m The transducer used on 

the comparator is interfaced to a micro computer and the positions of both 

known and unknown features are recorded on a printed output To compute 

final wavelengths of unknown features a computer program was written to read 

the data in the form of a series of x y points (x (p osition ), y(w aveiength)) 

The program used a least squares subroutine taken from the NAG numerical 

subroutine library to fit an Nth order polynomial to the data This program  

allows interpolation to be carried out so that the positions of unknown features 

can be converted into wavelengths The program together with sample input- 

/output data is listed in appendix two Wavelengths for the reference lines 

usuaiy from Al or Si were taken from Kelly and Palumbo (1973) Final errors 

in wavelength measurements using this technique are normally no more than 

±0 03A
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2 5 OPTICS ANO ALIGNMENT TESTS

Fig (2  5) shows schematically the arrangement used to obtain the absorption 

spectra of a number of different laser produced plasmas The method empl­

oyed used two lenses usually one a half-optical spherical lens and the other 

cylindrical or in some cases whare two point plasmas were used, one half- 

optical spherical and the other three-quarters-optical spherical lens (The  

term half-optical lens is taken to mean a lens that was cut along a diameter of 

its circular face so that two half-optical lenses were obtained and similarly for 

the term threequarter-optical) Both had the same focal length (typically 

f=6cm ) One half-optical spherical lens was used to create the continuum 

backlighting source by focusing a portion (typically between 30 and 70%) of 

the laser output to a point focus on a high z metal target usually tungsten or 

hafnium The remaining portion of the beam was then focused by the second 

lens to a line focus on the second target to create the absorbing ions As can 

be seen in fig (2  5) the laser beam is directly split along the laser axis which 

means that optical delay lines were not required by this method, that is, all of 

the available energy in the beam was utilised for plasma production
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Fig (2  5) Shows the layout of the optical system used to study 

photoabsorption In Ionized species produced In a laser produced line 

plasma using a point laser produced plasma as the continuum source
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A number of important motions of the lenses are possible, these are required 

for accurate alignment of the source and absorbing plasmas with the entrance 

slit of the spectrograph Each lens may be independently moved backwards 

and forward along the laser axis this is particularly useful when an isonuclear 

series is to be studied since successive de-focusmg of the absorbing plasma 

reduces the laser irradiance at the target surface and means that lower or 

higher ion stages can be selected This essentially gives a coarseiy tunable 

source of ions simply be moving a lens one way or another (See fig (2  5 ) )

Accurate (< 0 2mm) lateral and vertical motions of both lenses are also 

possible, however with the present system these motions do not exist inde­

pendently for each lens The lateral motion of both lenses (that is motion 

parallel to the spectrograph optical axis) allows different portions of the laser 

output to be directed to each target Although it was usual to split the laser 

beam roughly 50-50  to each target it was found that even if as little as 30% of 

the beam was directed to the continuum producing target that absorption could 

still be seen in lower stages of ionisation For example an absorption spectrum  

of Mg2+ could be obtained by splitting the laser beam such that the continuum 

producing target received only 30% of the beam For higher ion stages, for 

example the absorption spectra of SIV reported m chapter three 50% of the 

beam was directed to each target

The large number of shots required to obtain an absorption spectrum (typically 

300 -  400) require that the targets be constantly moved. In this case every 5 -  

10 shots It is also required that the target be held rigidly at an angle of 

between approximately 2 °  and 5 °  to the spectrograph axis during the exper­

iment These two factors alone impose restrictions on the focusing of both 

lenses onto the targets as well as on the alignment of the plasmas with the
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spectrograph slit The alignment procedure whereby both plasmas were al­

igned accurately with each other and with the spectrograph slit involved 

carrying out photographic alignment tests These alignment tests are carried  

out after coarse alignment (by which is meant alignment by eye of the two 

HeNe laser beams positioned along the spectrograph axis and the ruby iaser 

axis ) of the plasma with the spectrograph entrance slit A target such as 

boron has many well known lines such as those in hydrogen and heiium -like  

boron which will only be observed if the core of the plasma is directly m line 

with the entrance silt of the spectrograph So by moving the lenses in front of 

the slit over a predetermined range (typically 2 mm ) and at regular intervals 

within this range exposing a section of a photographic plate the optimum height 

of the plasma in front of the spectrograph entrance slit was easily found The 

sectioning of the plate was accomplished by the use of a baffle this baffle is 

located between the plateholder and the grating and consists of a brass piate 

with a rectangular section removed from the center, the baffle can be tra­

versed at right angles to the spectrograph axis, and can be set to any width by 

using layers of insulating tape in such a way that a great many narrow stripes of 

the plate can be exposed in sequence The baffle was also used to overlap 

absorption spectra with a reference In another type of alignment test two 

targets one a high z metal the other a sample of magnesium were used and 

again a vertical range was chosen and after development of the plate the 

portion of maximum absorption was taken as optimum It should be noted here 

that these tests are only feasible due to the fast (<2 0  minutes) "turn around 

time" of the system that is its fast pumping time and also because of the 

high (30  shots per minute) rep rate of the laser It is hoped In the future to be 

able to use the monochrometer attachment together with a photoelectric 

detection system (currently being developed in this laboratory by Mythen) to 

facilitate alignment
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Focusing of both lenses was achieved in quite a simpie way by observing 

scattered iight from the aiignment laser located at the rear of the target 

chamber with a small telescope focused at Infinity This is not the best way to 

optimise the focusing of such a lens the correct focusing technique for such a 

system has been described by Kennedy (1977) However the technique was 

justified when one considers that the targets were constantly being moved by 

hand during the experiment and so very accurate focusing could not be 

maintained over the course of a single experiment (experiments consisted of 

on average, 300 shots) and so the above method which would appear to be 

accurate to about ±0 20mm was found over the course of this work to be 

adequate
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2 6 TARGET CONSTRUCTION.

A relatively simple method of target construction was used. It involved the use 

of sheet materials of approximately 1mm thick This type of material is readily 

available m spectroscopically pure form Two such pieces of material are 

chosen, one is used as the continuum producing target while the other is used 

as the source of absorbing ions Both materials are placed flat on another 

piece of sheet material in this case used printed circuit board was found to 

have the right properties (that is the used PCB was found to be easy to cut to 

the required shape and was also found to bond well to the target materials, it 

was also freely available) The targets were then bonded to the piece of board 

using an epoxy resin in this case ARALDITE which is easily mixed and has a 

hardening time of about 5 minutes depending on the mix The edges of the 

targets were then surrounded with resin in this way they were held rigidly to 

the surface of the board After a sufficient drying time the targets could be 

worked with a smooth file to ensure that both target surfaces are aligned with 

respect to each other The targets thus made were then connected to the 

target rod The only problems associated with this technique are those en­

countered when using reactive materials such as Na and K whare the oxidation 

time is short when compared with the drying time of the resin
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3 1 INTRODUCTION.

Measurements and calculations for absorption spectra of various iaser pro­

duced plasmas are reported here, the emphasis in this work has been placed 

on the study of both the neon and xenon-llke isoelectronic sequences, al­

though absorption in other ion stages (outside of these sequences) has also 

been observed Many of the lines observed in absorption were known from 

emission spectra previous to this work However many new lines particularly 

in the absorption spectra of Al ill and Si IV have been recorded and are  

reported here for the first time Extensive calculations have been carried out to 

determine the nature of these unknown lines Absorption along the neon-iike  

sequence has been extended to the fifth member (Si V) and results partic­

ularly for Al IV and Si V are presented here for the first time Also reported

here are tentative results obtained from absorption studies of ions of the 

elements lanthanum and cerium particularly La IV and Ce V both of which are 

members of the xenon-ilke isoelectronic sequence

The principal series 2 p 6 1 S 0 -  2p 5ns nd for each of the third fourth and fifth

members of the neon-like sequence have been observed, the wavelengths of 

each of these lines have been measured and are compared with known values 

Also observed and measured for the above members of the neon-llke seq­

uence were the Inner shell 2s22p6 XS 0 -* 2s2p 6np1 P x autoionizing transitions

Wavelengths for these asymmetric features have also been measured and are 

compared with previous experimental measurements where available, and with 

theoretical calculations
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Lines due to known transitions in the higher ionization stage of magsesium (Mg  

IV) have also been identified, and in the spectra of aluminium and silicon 

about 100 unknown absorption lines have been measured Many of these lines 

are only observed m the absorption spectra of these elements and are absent 

from emission spectra obtained by focusing the laser output to form a single 

point plasma The absence of these (as yet unidentified) lines from emission 

spectra of aluminium and silicon would seem to suggest that these transitions 

are the result of inner-shell or two-electron excitations involving the 2s and 

2p subshells Transitions from excited states may also be involved It is also 

possible that these unidentified absorption features may occur over a number 

of different ion stages (III -  VI) Calculations have been carried out m an 

attempt to assign these transitions

Also presented in this chapter for the first time is the vacuum ultraviolet 

absorption spectrum of a laser produced lanthanum plasma obtained between 

80 and 160À several discrete absorption features have been observed in this 

region Of particular interest are those lines In the 85 -  120A region which are 

thought to arise due to the collapse of the 4f wavefunction in La IV These 

features seem analogous to the lines which arise from the redistribution of 

oscillator strength which have been reported for Ba 111 by Lucatorto Mclirath 

Sugar and Younger (1 9 8 1 ). the La IV spectrum Is discussed In terms of that 

analysis

I

The overall objective in this chapter is to present a series of absorption spectra 

of ionized species (produced in laser plasmas) which have been obtained over 

the course of this work The large number of transitions seen in absorption 

together with the number of ion stages over which these transitions have been
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observed clearly demonstrate the usefulness of the two laser produced plasma 

technique and show It to be a potentially powerful tool for the experimental 

Investigation of atomic structure, particularly in relation to inner-shell and 

autoiomzmg levels "

72



3 2 THE NEON-UKE ISOELECTRONIC SEQUENCE PREVIOUS WORK

3 2 A) Ne I.

The first member of the neon-like isoelectromc sequence is neutral neon Ne I 

which has the ground state configuration l s 22s2 2p6 AS 0 The VUV absorption 

spectrum of Ne I was first studied by Codling, Madden and Ederer (1967) 

using as a light source the 180 Mev electron synchrotron at the National 

Bureau of Standards in Washington USA They observed the principal series of 

discrete structures which arise due to the excitation of a single 2 p electron 

from the ground state 2s22p6 XS 0 to excited states of the form 2s22p sns nd 

converging on the 2P X/ 2 3 / 2 limits Also observed were a very prominant 

Rydberg series of autoiomzmg resonances due to the promotion of a single 

inner-shell 2s electron to levels with energies greater than the 2 P L/ 2 ion­

ization energy a number of series due to the simultaneous excitation of two of 

the 2p electrons in transitions of the type 2p6 -  2p 4m l,  m' V  were also 

recorded

3 2 B )  Na II

The VUV photoabsorption spectrum of the second member of the neon-like  

sequence Na II was studied by Lucatorto and Mcilrath (1976) They used the 

tunable laser technique, pioneered by them, which has already been des­

cribed in chapter one (see page 30) They obtained the vacuum ultraviolet 

absorption spectrum of Na 11 in the wavelength region 420-150A  and reported 

the observation of the Na+ 2p 6 l S Q -  2p sns nd series together with thei
lowest-lying autoionization resonances involving the excitation of a single 2s 

subshelf electron 2s22p6 1 S 0 -  2s2p6 1 P 1 Six members of this series were 

measured Also measured was the near-threshoid photoiomzation crossection
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a (N a *  -* N a *+) . which was derived from measurements made on photographic 

plates calibrated with the helium I s 2 1 S a -  2snp1 P 1 autoionlzlng resonances

The objective of the tunable laser experiments of Lucatorto and Mciirath was to 

observe absorption from excited states of neutral sodium by using the laser to 

create a column of excited sodium atoms However although photoabsorption 

of neutral sodium was observed in the absence of the laser (i e absorption of 

the sodium vapor contained in the heat pipe) no evidence of transitions from 

excited states was reported

3.2. C) Mg III

The vacuum ultraviolet absorption spectra of neutral and ionized magnesium  

(Mg I Mg II and Mg III) were produced by Esteva and Mehlman (1974) using a 

two-plasma technique involving two low inductance vacuum sparks, (see  

chapter one page 22) More recently Kastner, Crooker Behring and Cohen 

(1977) have obtained the absorption spectrum of Mg ill (again using a low 

inductance vacuum spark as the ion source) in a magnesium plasma

Esteva and Mehlman (1974) identified a total of 68 resonances from Mg I, II 

and III Of these 38 lines of singly ionized magnesium were unclassified They 

observed the absorption spectrum of Mg ill which in the wavelength region
o

240 -  150A consists of the normal series transitions involving the excitation of a 

single 2p electron These lines were previously observed in emission by 

Soderqvist (1934) Also recorded by Esteva and Mehlman were a Rydberg 

series of autoionizlng resonances due to the excitation of an inner shell 2s 

electron The wavelengths of six members of this series were measured
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The next member of the neon-like Isoelectronic sequence is AI IV Some 

features in the absorption spectrum of this ion were studied by Carillon 

Jamelot, Sureau and Jaegie (1972) using the technique of two laser produced 

plasmas one acting as the continuum source and the other as the ion source 

(see  chapter one page 25) Kastner et ai (1977) studied the absorption of an 

aiuminium plasma in the vacuum ultraviolet using a single low inductance 

vacuum spark and have observed the 2p6 -  2 p sns nd series along with several 

members of the inner shell autoionizmg transitions 2s 22p6 1 S 0 -  2s2p6 1  3 PX 

However with both of these techniques a true absorption spectrum of the 

aluminium plasma was not obtained In the case of the technique used by 

Carillon et al, this was due to the fact that the target used by them to produce 

the continuum radiation was the same as the ion producing target and the 

emission spectrum of an aluminium laser pruduced plasma is in this wave-
o

length region (160 -  70A) dominated by intense line emissions which has the 

effect of partially obscuring absorption features which may exist in the under­

lying recombination continuum (In the case of the theta-pinch technique 

used by Kastner et al a similar effect occurs i e the absorption spectrum is 

obscured by emission features ) Jamelot Sureau and Jaegie (1972 ) iden­

tified with density traces of photographic recordings new lines in the 2 p 6 l S$

-  2 p 5nd series in A IV in addition to those identified by Soderqvist (1934 ) who 

assigned the series to n=5 As well as these identifications Carillon Jamelot 

Sureau and Jaegie (1972) reported the identification of two members of the 

2 s 22p 6 AS 0 -  2s2p6np1 P 1 and three members of the 3 P 1 series However 

Kastner etal (1977) dispute the assignment by Carrilion e ta l (1972 ) of the 3P X 

series and have identified this series of strong absorption features as the XS 0 -  

XP X series Both Kastner et al (1977) and Carillon et al (1972) have reported

3 2 D) Ai IV
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th© observation of the intercombmation transitions XS 0 -  3 P X Kastner et af 

describe these features (shown below in fig(3  1 b) ) as appearing as narr­

ower profiles superimposed on the longer wavelength side of the mam 1 S £J -* 

profiles

The difficulty of identifying absorption features from a spectrum dominated by 

strong emission lines can be judged by reference to the density trace (fig 

(3  1 a ) ) , recorded by Jamelot et ai (1975) and also from the subsequent 

controversy which surrounded the anouncement of a stimulated emission 

reported by this group (Jagele etaf (1971) and Jaegle eta I (1 9 7 4 )) One of 

the problems with an intense line spectrum is that any intensity anomalies 

which may arise in density traces of such spectra are clearly open to inter­

pretation Both fig (3  1 a) and fig (3  1 b) (which was recorded by Kastner et 

al (1 9 7 7 )) show such an intense emission spectrum for aluimmium over the 

100 -  70A wavelength region

3 2  E) Si V

The fifth member of the neon-like sequence is four times ionized silicon (Si V) 

the VUV absorption spectrum of this member is reported here for the first time 

The main ns and nd series have been observed m emission (Soderqvist 

(1934) Ferner (1 9 4 1 )) and more recently m absorption (Kastner et al 

(1 9 7 7 )) previous to this work However no observation of autoionizing struct­

ures above the 2P 1/ 2 have as yet been reported for the Si V ion
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Fig (3  1 a b) Shows two density traces taken in the same 
wavelength region both are of aluminium plasmas Fig (3  1 a )  
which is taken from Jamelot et al (1972) shows the region of the 
spectrum around the second member of the series of autoionfzing 
resonances 2s22p 6 l S 0 -  2s2p6n p 1 P 1 Fig (3  1 b) is taken from 
Kastner et al (1977 ) and is a trace of the wavelength region 96 -  
75Â and shows the members of the series to n-8  In both fig 
(3  1 a) and fig (3  1 b) the dominant features of the region are in 
fact the strong emission lines which make it difficult to obtain 
unambiguous information about the absorption features Fig 
(3  1 b )  also shows the 3 P X series which according to Kastner et al 
are observed as weak absorption features to the longer wavelength 
side of the 1 P I  profiles
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3 3 THE NEON UKE SEQUENCE PRESENT WORK

An overview of the present work on photoabsorption along the beginning of the 

neon-llke isoelectronic sequence is given m table (3  1) and fig (3  2) Table 

(3  1 ) contains the wavelengths of the 2s22p6 l S 0 -  2s2p6np1 P 1 autolonizmg 

resonances for the second third fourth and fifth members of the sequence 

(Na II -  Si V) Also included in table (3  1) for compartslon are theoretical and 

experimental values of the same features obtained by other workers previous to 

this work Fig (3  2) shows the absorption spectra of Mg III« Al IV and Si V

3 3 A ) Mg ¡11

The VUV absorption spectrum of Mg ions obtained during the course of this 

work is shown in fig (3  2) and in more detail in fig (3  3) The spectrum is 

different from that obtained by Esteva and Mehlman (1974) in that we have 

observed lines from stages III, IV and V but not from I or II This is to be 

expected given the conditions of the experiment, 1 e the fact that the con­

tinuum producing portion of the backlighting plasma is located at the hottest 

region (about 0 5mm from the surface) of the continuum producing target 

This means that only the hottest region of the fore-plasm a will be exposed to 

the continuum produced m the backlighting plasma, and it would appear from 

the magnesium spectra reported in this work that only ions of stage higher than 

II are produced here despite the fact that the cylindrical lens producing the 

fore-plasm a was, in the case of magnesium focused either m front of or 

behind the target by up to 1 5 cm The fact that no time delay exists between 

the two plasmas in the experiment is also a factor Focusing of the laser 

directly onto the magnesium target gives essentially the same type of spectrum
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as de-focusmg does But when the ion producing portion of the beam was 

de-focused it was found that the features due to absorption of Mg lit ions were 

enhanced This enhancement can be attributed to the fact that the de-focused  

plasma contains a greater density of Mg ill ions

Fig(3 3 a) shows the principal series of the Mg fli ion due to the excitation of a 

single 2p electron The lines due to these 2s22p 6 XS 0 -  2s2psnsnd transitions 

are strong and in the case of the nd series are seen also to be very broad 

indicating that the fore plasma contained a large number of Mg III ions in the 

ground state these lines are listed in table (3  2) together with literature 

values taken from Kelly and Palumbo (1973) Also in fig (3  3 a) are lines due 

to transitions in the Mg IV ion of the type 2s22p5 2P ± / 2 ~ 2s22P 4ns. which will 

be discussed in section 3 4 Figure (3  3) shows the spectacular onset of 

continuum absorption after the 2P X/ 2 3 / 2 limits Fig (3  3 b) shows the 

absorption of magnesium in the 200-150A  wavelength regions Seen here are 

further groups of lines due to Mg IV transitions of the type 2s22P 5 2P ^ / 2 

2s22p4 nsnd also to be discussed in section 3 4 To shorter wavelengths are  

observed the Rydberg series of asymmetric structures assigned to the trans- 

itions2s22p6 1 S 0 -  2s2p6np 1 P 1 (which are listed in table (3  1 )) In the 

above case six members of this series were observed Fig(3  3 c) is an 

enlargement of the region containing the inner shelf structures showing clearly 

their asymmetric nature

3 3 B ) Al IV

The features observed in the absorption of an aluminium plasma are now

discussed This is the first absorption spectrum of aluminium ions to show 

clearly the discrete ns nd series together with the strong autoiomzmg reson­

ances above the 2P 1 / 2  limit As shown in fig (3  2) the structures observed
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are essentially the same as the isoelectromc structures observed in the 

spectrum of Mg III also shown m fig (3  2) The dominant absorption is again 

as in the case of Mg IM due to the principal 2s 22p6 l S 0 -  2s 22p 5nsnd series 

with some less intense absorption features possibly being due to the higher 

stage AJ V or the lower stage Al III ion

It is also clear from Fig (3  2) that the onset of the photoionization continuum is 

not as dramatic as in the case of magnesium This may be expained by the fact 

that it is more difficult to generate large numbers of Ai IV ions than Mg III ions 

As with magnesium the Rydberg series of asymmetric resonances 2s22p6 1S Q 

-2 s 2 p 6np1 P 1 can be clearly seen in the photoionization continuum Also 

noticable in fig(3  2) is the energy gap between the 2p6 2 P x/ 2 3/2  Hmits and 

the first member of the autoiomzing series in Ai IV which is not as great as that 

of Mg III It can be seen that there is no absorption observed between the limits 

and the first member as there is in the case of the magnesium spectrum, 

niether is there any absorption observed to wavelengths shorter than the first 

(2 p 63pI P I ) member This spectrum was obtained using the method described

in chapter two with a halfmum target providing the continuum radiation

Measured values of the 2s22p6 XS 0 — 2s2p5 ns, nd lines in AI IV are are  

presented in table (3  2) together with literature values (taken from Kelly and 

Palumbo (1 9 7 3 )) The list of measured wavelengths of the autoionizing feat­

ures 2s22p6 XS 0 — 2s2p6 l P L observed in the photoionization continuum of Al 

IV between 100 and 70A are listed in table (3  1) along with the values 

obtained by Carillon et al (1972) and more recently those of Kastner et ai 

(1977) together with calculated values obtained m the course of this work As 

was mentioned m section 3 2 above both Carillon et ai (1972) and Kastner et 

ai (1977) reported the observation of the 2s22p® 1 S 0-2s2p 6 n p 3p 1 auto-
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ionizing structures in absorption spectra of Al iV These features can be seen 

in the density trace of Al IV recorded by Kastner et al and shown above m 

flg (3  1 b) They appear as prommant absorption dips to the longer wave­

length side of the *S 0 -* 1P1 profiles It must be noted here that the present

work which has revealed the first unambiguous absorption spectrum of the A! IV
o

ion in this wavelength region <70 -  100A) has not revealed the existence of the 

1S 0 -♦ 3P X series An enlarged view of the wavelength region containing the 

XS 0 -» 1R 1 resonances is shown in fig (3  4 a)

3 .3  C ) Si V

The VUV photoabsorption spectrum of a silicon plasma is also shown in fig
#

(3  2) The spectrum is isoelectromc to the magnesium and aluminium spec­

tra discussed earlier The pnncipat series of the neon-like Si V ion together 

with the first member of the 2s22p6 AS 0 -  2s2p6np1P 1 autoiomzmg series are 

shown The spectrum also shows many other absorption lines some of which 

are equal in (and in some cases of greater) intensity than those assigned to 

the Si V Ion These structures are thought to be due to absorption in'the iower 

stage Si IV ion The reason for this tentative assignment is as follows The 

absorption spectrum of Si V was, by far, the most difficult of the spectra to 

obtain this is because in producing Si V we are at the limit of the laser energy 

available for the production of ions Thus It is assumed that instead of 

producing a plasma In which the dominant ion population is Si V we are in fact 

producing a plasma which contains significant populations of both SI V and the 

lower stage Si IV ion The spectrum of Si V shown in fig (3  2) was recorded 

using a two half-optical spherical lens configuration the use of a cylindrical 

lens to create the fore plasma results in a spectrum in which the SI V features
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are extremely weak A similar effect occurs m the case of a magnesium plasma 

in which populations of both Mg 111 and Mg IV are found to be present despite 

de-focusmg of the lens used to create the fore plasma

Kastner et al (1977) reported the observation of inner shell autoiomzmg levels 

in the ions along the beginning of the neon-like isoelectronic sequence They 

state, with reference to silicon, that although the neon-like Si V ions were 

present in the plasma under investigation, (evident from the observed Si V 

emission lines ) no evidence of the 2s22p6 1S tJ -  2s2p6np1P 1 series was 

found The authors suggested that the spark used does not always take place 

in such a way as to produce the spatial plasma configuration needed to observe 

absorption lines and suggest further that observation of Si V absorption would 

require a hot central continuum emitting region surrounded by a cooler region 

containing the Si V ions

The present series of experiments enabled the observation of the first three 

members of the autoiomzmg 2s22p6 l S 0 -  2s2p6np1P 1 series in the neon-like  

Si V ion to be made the wavelength of the 3p 4p and 5p members are given in 

table (3  1) The first member is shown in fig(3  4 b) and Is clearly an 

asymmetric structure

The spectra shown in fig (3  5 a -d ) were recorded by focusing the entire laser 

output onto the surface of a plane silicon target with a single spherical lens and 

sucesslvely da-focusing the laser beam by moving the lens with respect to the 

target This series of spectra demonstrate two important features of this 

variation in the absorption technique Firstly the fall off in the number of 

emission lines from higher ion stages in the plasma is clearly shown The fall 

off m emission lines with progressive de-focusing especially at shorter wave-
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lengths enables the underlying recombination continuum to be observed 

which although weak is clearly visible Secondly because of de-focusmg the 

actual size o1 the plasma increases as the laser beam is progressively de­

focused the diameter ot the plasma resulting from de-focusmg of the laser 

beam between 2 5 and 7 5mm vanes between I and 3mm This plasma will 

not be eilher as dense nor will it contain significant populations of highly 

Ionized atoms however It does provide a significant path length along which 

transitions from lower ion stages in the plasma absorb the recombination 

continuum The absorption of the 2s22p6 -  2s22 p 5nd series is“observed in the 

more de-focused plasma also visible m the more de-focused plasma 

Fig(3  5d) Is the almost complete absorption of the n=3 members of the 2p6 -

2p 5ns series Three members of Ihe inner shell autoiomzmg series 2s22p 6 

1S 0 -  2s2p6np1P 1 are also clearly visible and are mdicaled in the central 

spectrum of fig (3  5) The n=3 first member ot this series can be seen clearly 

In fig (3  5 a) and as can be seen the structure appears asymmetric However 

in fig's (3  5 b and c) the asymmetric shape of this feature seems to receed 

and be replaced by what appears to be the emergence of a second absorption 

line to the short wavelength side of the n=3 member This may also be 

interpreted as being a change in the shape of the profile of the n -3  member 

which seems to change significantly from fig (3  5 a) to fig (3  5 d) however 

the exact nature of the effect giving rise to this apparent profile change 

cannot be confirmed without a series of density traces from a number of such 

plates taken under varying conditions It is interesting to note however that the 

wavelength of Ihe first (2s2p63p) member of Ihis autoiomzmg series has been 

measured during the course of this work at 75 70A, the 2P 3/ 2 x/ 2 limits are 

given (Martin and Zalubas (1 9 8 3 )) as 74 35/? and 74 07^ respectively 

Calculated values of these limits (also this work) are 74 15A and 74 O^A 

respectively while tbe calculated wavelength of this first member is 74 47A

83



Clearly the feature lies to Ihe long wavelength side of the 2P L/ 2 ,,mi* 1 e K

falls in energy terms below the ionization limit If this is the case then the

feature should not be autoionizing However the results of absorption exper­

iments (fig 3 4 b ) ) show the feature to be asymmetric thus strongly suggest­

ing that it has an autoionizing character One very tentative suggestion to 

explain this apparent paradox is that plasma broadening effects lower the 

effective ionization limit and so the level which falls below Eqq for the isolated 

atom in fact falls above E^for the plasma case This might also serve to explain

why 1he profile shape tor this feature seems to vary with plasma conditions

Measured values of the 2p5 ns. nd series observed in Si V are given in table

(3  2) togelher with values taken from Kelly and Palumbo (1973)
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TABLE (3  1)

Wavelengths of the autoionizing features

2s2 2p 6 1 S 2s2p6 np 1 P̂o 1
observed in the second third fourth and fifth 

members of the neon like isoeiectronic sequence 
All wavelengths are given in angstroms

Na II Mg III Al I V SI V

*  LM *T W X TW *  EM *  TW *E M  X K *  TW *T W

OD
(A

a - a

ft »  4

A -  5

n ■ 6

177 24 176 90 174 61

164 92 164 90  162 60

126 48 126 50 125 65 125 19 126 49 95 35  94 48 95 56  94 73 91 98

160 66

156 57

166 68

114 30  114 32 113 44  113 36 114 34

110 13 110 16 109 31 109 27 110 12

108 02  108 08 107 31 107 34

84 27 84  14 84  88 83 82  82 97

80 62 80 58 80 09 79 87

78 79 78 88

75 10 74 47

65 10 64 71

61 67 61 43

A *  7

A *  8

157 55

156 88

155 106 92

106 30

106 26 107 05

105 60

77 79 

77 18

1/2
IlmU 104 50 103 61 104 39 75 38 74 97

56 86

k arc

k n  a re  the  resu lts  o f K astner a t s i (19 7 7 )

Xi y a re  the  resu lts  o f Luoa to fto  end M oltra th  (1976 )

Xp m  a re  the  resu lts  o f Esteva and M ehlrpan (1 9 /4 )

k c  a re  the  resu lts  o f C a rillo n  a t a l (1972 )

XTW a re  resu lts  ob ta ined  d u rin g  th is  work



TABLE 3 2

Wavelengths of the principal 2s*2p* 1S0 — 2sa2p5ns/ nd series measured 
for the third fourth and fifth members of the neon-like Isoeiectronic 
sequence (M g III A! Ill and Si V) Wavelengths are considered to be 
accurate to about *0  03A and were measured from a number of plates AJI 
wavelengths are given in angstroms

* 9 Hi At IV » l V

S w k KP f

IM  S3 166 526 30 >61 66 161 666 as 116 95 118 966 3s

» 7  I t 167 194 M 160 06 160 073 3s 117 93 117 860 3s

! M  47 196 510 30 131 64 131 652 30 97 13 97 143 30

162 97 162 973 4s 129 729 30 .___ _ 96J>8 »6 439 30

1(2 25 16? 240 4» 1*4 52 124 543 4s 90 83 90 652 4S

i n  37 171 395 40 124 03 124 034 4s ------^ > 9 0  06 90 453 4s

170 tO 170 602 40 116 93 116 921 40 85 51 85 579 40

169 7» 169 740 5s 116 48 116 464 40 85 14 85 175 40

19S 12 169 150 5s 114 74 114 737 5s 5s

1*4 93 164 954 50 *14 33 114 313 5s 5s

194 37 164 384 5d 111 59 111 589 50 80 93 61 113 5d

163 $4 163 586 6s i n  20 m  196 50 80 37 60 807 5<J

161 61 60 110 59 6s - 6s

16C 70 7s 110 13 6s 6s

16C 24 7s 108 67 108 907 6d 78 94 76 903 60

159 80 159 755 70 106 506 106 535 60 78 65 78 611 60

7s 7s

7s 7S

107 31 107 370 70 70

106 66 106 990 70 70

p are values E0iJ

Kelly and Palumbo (1973).
W are i i IiE over the course of this work.
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Fig (3  2) Shows absorption in the third fourth and fifth members of 

the neon-like sequence The principal ns nd series are seen 

together with the inner shell autoionizing levels The magnesium  

and aluminium spectra were both obtained using a hafnium target to 

provide the backlighting source in both cases a cylindrical lens 

was jjsed  to create the fore plasma The silicon spectrum was 

obtained using two half-optical spherical lenses and a tungsten 

plasma was used to backlight the fore plasma

87



70 90 110 130 150 170 190A
■ . . . . .  »

AI IV Absorption

inner shell

o
Si V Absorption

I

inner shell
; i üM ,i "-H-- -------LJ------U- - li---------- LI___ —-L-nd

■ r?—  ■i • i • i •
--------- ns



Fig (3  3 a b c) Shows the absorption spectrum of a magnesium  

plasma In the wavelength region 190 -  90A and shows absorption in 

Mg HI and Mg IV (see text for details )
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Fig (3  4 a b) Shows enlargements of the wavelength regions 

containing the autoiomzmg series in both Al IV and Si V observed m 

the absorption spectra of laser produced plasmas in the course of 

this work
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Fig (3  5 a -d ) A series of silicon spectra in which the plasma 

conditions were varied i e the laser producing the plasma was 

progressivly de-focused from 0 - 7  5mm (See text for details)
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3 4 ABSORPTION IN MAGNESIUM IONS Mg IV

The measured wavelengths of lines due to transitions m Mg IV observed in the 

wavelength region (200-100A ) are given m Table (3  3) the measured wave­

lengths of the 2p4ns, nd series in Mg IV are given together with values of these 

lines taken from Kelly and Palumbo (1973) These features are shown above 

in fig (3  3) and are strong indicating that a large number of these ions were 

present in the fore plasma Between 130 and 110^ there are groups of weaker 

absorption lines, most of which are unresolved Kelly and Palumbo (1973) list 

many lines of the type 2p 4nd in this wavelength region in the Mg IV ion It is 

therefore reasonable to assume that the wavelengths listed as unknown in table 

3 3 are due to this type of transition
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Known lines observed In absorption In the spectrum of Mg IV 

All wavelengths are given In angstroms 

lines have been measured from a number of plates

TABLE 3 3

ijyy I  gp eUssiHcetion

188 15 188 148 2 *2 p * *>9» \ / .
183 35 183 442 *P§ \ / . -

2p4 3s

181 38 181 »45
\ „ -

180 80 180 787
\ / . -

180 85 180 818
* . / -

180 06 180 071 *p -  
s J

172 38 172 811
\ „ - * 0, / ,

171 58 171 857
W

180 77 180 8088
\ / “

180 24 180 2358
V “ ■‘ w ,

147 58 147 535 2 p * 2p4 30
■ « u

148 84 148 854

148 52 148 526 -

140 83 140 815
\ / , -

140 52 140 525

140 17 140 178

138 70 138 8884 2 p * 2p4 4s

138 32 138 395 ao _ _  
i / a

138 08 137 870

133 21 133 196«
\ / - 80

132 83 132 800
X ,

132 58 130 825 40 V s a
132 55 132 510

,p i / » - 4s
, 0 » /»

125 96 125 810
,p w -

125 54 125 495
,p „ -

wavelengths HsteO below were measured al the centers 
of broed features assumed to be closely spaced lines due 

to transitions similar «o tftose listed above

classification 

not Known124 »0 

124 SO 

123 20 
120 0#
111 13
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3 5 THE SODIUM ISOELECTRONIC SEQUENCE

3 5 A) Al lit.

Ions from the sodium isoelectromc sequence have also been studied m absor­

ption in the course of this work The spectrum which is shown m fig (3  6 b) 

shows many differences when compared with the spectrum of fig (3  6 a) 

Both spectra were recorded using the same technique with a hafnium plasma 

providing the backlighting source In the case of the spectrum shown in fig 

(3  4 a) however the portion of the laser beam used to create the fo re- 

plasma was tightly focused onto the aluminium target The spectrum shown m 

fig (3  4 b) was obtained under similar conditions but for this spectrum the 

fore-plasm a was created with a de-focused laser beam i e the portion of the 

laser beam used to create the ions was focused m front of the aluminium 

target The differences in the two spectra are very distinct Spectrum (b) 

shows many more absorption lines than spectrum (a ) These spectra also 

show when compared with the overlaping emission reference (fig (3  6 b) also 

aluminium) that the majority of the absorption lines observed in spectrum (b ) 

do not appear as emission features in the emission spectrum This fact wouid 

seem to indicate that the transitions giving rise to these absorption features 

may in fact be due to Inner shell excitations or to levels involving the 

simultaneous excitation of two electrons These transitions may also occur 

over a number of different ion stages although the following argument would 

seem strongly to favor the lower ion stage Ai III

If we refer back to the magnesium spectra shown m fig's 3 2 and 3 3 it can be 

seen that these spectra consist of strong absorption features due to the Mg ill 

ion and also equally strong absorption m the Mg IV ion The spectrum of Si V
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also shown in fig (3  2) is also a mixture of more than one ion stage the other 

stages probably being III and IV The absorption spectrum of an aluminium 

plasma shown in fig (3  2) however, only shows strong absorption in the Al IV 

stage with only very weak contributions from other ion stages Thus we may 

conclude that under the plasma conditions obtaining in the experiments repor­

ted here it is possible to observe absorption m ion stages III IV and V only 

Contributions from stages II and VI may occur but are so weak as to be 

unobserved So for the spectrum shown m fig< 3 6 b) which was observed m a 

defocused line plasma and contains the principal series of Al IV along with 

many other strong absorption lines) it may be assumed most of the absorption 

must arise from the lower stage Al III ion However despite this qualitative 

assessment extensive calculations have been carried out to establish the exact 

nature of these features these calculations are discussed below

Calculations were carried out over a number of ion stages < III—VI) in order to 

assign the unknown lines to transitions The possibility that these lines might 

be due to transitions involving single valence electron excited states of any or 

all of the ion stages (Al ll-AI VII) was ruled out after all possible wavelengths 

resulting from such transitions were calculated according to the selection rule 

AJ=0±1 for all known levels of the aluminium atom and its positive ions up to Al 

VI The levels and corresponding quantum numbers were taken from Martin 

and Zalubas ( 1979) The computer program used to compute the wavelengths 

of the excited states is given, along with sample input and output in appendix 

two

Two electron excitations have been largly ignored in this work All of the two-

electron transitions calculated here fall out side of the wavelength range 170- 
«

120A There is also the difficulty of calculating this type transition with the
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Dirac Fock package of Grant et ai (1980) (which was used for aii of the 

calculations reported in this work) in that two-electron exctiations usually 

result in configurations with three or more open shells for non-reiativistic 

configurations the program sets a limit of three on the number of open shells 

allowed For configurations involving more than this number of open shells the 

Dirac Fock program will not perform the calculation unless the problem is 

defined in terms of relativlstic cofigurations In the work reported here only the 

non-relativistic mode was used It has been the experience of this work that 

most of the two-electron transitions atempted could not be calculated with the 

Dirac Fock program

Since as mentioned above the lines appear m absorption only it must be

concluded that these iines are in fact due to inner shell transitions involving
*

either a single 2s or 2p electron Calculations on transitions of this type were 

carried out and by a process of elimination it was found that the Al ill ion was 

the only ion stage in which such transitions fall into the correct wavelength 

region The type of transitions considered most iikeiy to be responsible for the 

observed structures are given below

' ( 1 )  2s 22 p 63s 2 S i / 2  —  2s 22 p S 3 s 2 2 P i / 2  3 /2

(2 ) 2 s 22 p 63s 2 S l / 2 —  2s ^ 2p S 3s ns

(3) 2 s 22 p 63s 2 S l / 2 —  2s 22 p 5 3s nd

Similar levels in the sodium like Mg II ion were observed by Esteva and 

Mehlman (1974) and so before proceeding further with the discussion of the 

Ai III and SI IV lines observed during the course of this work a discussion of 

the Mg II lines will be given Many of the Mg II lines were recalculated during 

this work in order to provide an isoeiectronlc comparison with the calculations
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carried out for the Al HI and Si IV ions

The Mg it levels reported by Esteva and Mehlman are due to one-electron  

excitation configurations of the type 2p53snl with I -  0 or 2 The upper level 

classification becomes difficult here because of the three open shells, and in 

fact single configuration calculations with the Dirac Fock package of Grant et al

(1980) fail completely for many of the Mg II levels observed by Esteva and 

Mehlman because of the strong configuration interaction involved Presented 

in table 3 6 are a few of the Mg II levels observed by Esteva and Mehlman 

together with their calculated values The calculations carried out by Esteva 

and Mehlman involved computation of core parameters under LS coupling first 

and then computations taking the running electron into account

The calculations carried out as part of this work for Mg II and the fsoelectronic 

Ai ill involved simply the computation of specific configurations with total 

angular momentum quantum number J = l / 2  or 3 / 2  (Calculations involving 

configuration interactions for these levels have not at this stage been 

undertaken ) These calculations are intended to represent only a tentative 

analysis of the absorption structures observed in the spectrum of Ai HI The 

results of the calculations are listed in table 3 4 for Mg II and m table 3 5 for 

Al III Also listed in table 3 5 are experimental values for absorption lines 

observed in the spectrum of an aluminium plasma tn the course of this work 

and which correspond to the wavelength range of the calculated Al III lines 

Relative intensities of these lines are also given Some of the experimental 

wavelengths listed in table 3 5 are listed more than once, this is because 

these particular values were found to fit into more than one range of calculated 

wavelengths (see table 3 5)
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TABLE 3 4

Contains some of the Mg II autolonlzln^ levels with the experimental and 
calculated values of Esteva and Mehlman (1974) Also listed are calculations 
carried out tor these Mg II levels In the course of this work Intensities have 
been measured from the density trace of Esteva and Mehlman, taking their

est line to be 1 0 0

• «

k TW *E M in tens ity *  EM

249 53 248 47 9 5 255 06

246 10 247 14 8 0 253 64

204 10 203 42 10 0 205 03

203 86 202 27 10 0 200 90

196 21 193 64 3 0 197 93

196 16

197 77 193 31 4 0 197 39

197 70

197 41 193 09 4 0 197 06

197 15

197 14 192 55 6 0 196 40

196 84 -
195 86 192 40 6 0 196 16

195 83

195 32 191 56 8 0 196 08

191 30 6 0 194 34

193 96 189 37 4 0 193 56

193 85 

193 81 

193 5« 

193 23 

193 21 

193 20 

I *2 81 

191 56

191 66 

191 84

191 SO 

191 43 

191 11 

191 10 

191 09 

190 n  

189 44

189 36

190 36 

190 36 

190 27 

169 86 

18« 64 

16« 47 

186 M  

186 16

188 91 

186 84

186 47 

185 »6

5 0 

4 0

3 0 
2 0

190 21 

189 96

192 62 

190 89

165 5« 2 0 169 47

164 05 2 0 167 67
the reaulta at Eateve «n il M am m on (1974) 
m u  ft* obtained aa pan at thia eortt

Classification

ip*3» 2P*3»

2 p * 3 .  2 p *3 »

3/2
1 / 2

2p*3a  *S 1 /a —  2 p *3 a 3 d (J*3 /21

2p *3 a  *S l / a —  2 p *3 s 3 d C J « l/2 I

EM are
TW are
* are th e o re tica l reaulfa

2 p *3a4d  [ J = 1 /2  3 /2  i

2p *3 a  4d I J » 1 /2  3 /2  J

2p *3 a  5d [ J = 1 /2  3 /2  1

2p*3a  6d i  J = l / 2  3 /2  1

2p 3e 76 i J -  1 /2  3 /2  1
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TABLE 3 5

Contains the list of absorption lines observed In the spectrum of a de-focused 
aluminium line plasma and are thought to be due to levels In the At III Ion 
Each of the experimental values has a number of calculated values The 
classification is given simply as the configuration and the total angular 
momentum qunatum number J used In the calculation of the level

C losa lH cotlon 

I J*3/2 1 
2 p *3» 2 I J - l / 2  1

? p *3 » 2

2p 3s3d [ J = 3 /2  1 /2  J

2p 3s4<J [ J *  3 /2  1 /2  J

2p 3s5d I J *  3 /2  1 /2  ]

2p *3»64  I J a 3 /2  1 /2  )

2p 3a7d I J *  3 /2  1 /2  1

S w *T W In tens ity

170 00

le a  »

141 80
141 49
140 99

140 55 139 68
139 51

2 0 
2 0

140 46 138 72 
138 48

5 0 (b )  
5 0

139 81 r
138 19 2 0

139 43 137 98 
137 73

5 0
a o

139 37 137 32 6 0
138 46 136 45 1 0
138 20
137 33

130 59
- 131 «0 

128 53
2 0 ^  
2 5

130 14 128 45
128 29

2 5 
2 5

129 79
9 128 21 

127 37
2 5 
6 5

129 98 12« 76 
126 13

1 0 
1 0 (b )

12« 37

126 3«
12« 34

12« 17
12« 76 1 0

12« 12
126 13 1 0 (b )

125 93 *
124 51 1 5

125 91
124 02 1 0

125 64

124 98

124 97

124 90

124 24
-

124 13

123 90 124 51 

124 02

1 5 

1 0

123 97 f

123 62 123 41 
122 49

o 
o

 
<■> 

*-

122 95

122 91

123 32
122 9«

122 71 123 41 3 0

122 89 i 122 49 1 0

122 44
121 90 1 0

121 77

121 ; s

TYt a ro  roau lto  o b ta in * *  aa p o rt o f tftta work 
*  a r t  th e o re tic a l raau ita

In io n tt ilo o  a rc  t aiaWv« to  tho  160 07SA Hno in AJ V  which 
lU o n g t i i  Ha c  o b a o r v o d  o n  in *  p4a to a n d  h o i  
•e ffm o tod  in to n a lly  o f 10 0

_

th o
on



There are also other lines from the spectrum of the aluminium plasma which do 

not fit into the range of lines tentatively identified in the work described above 

Some of these lines may belong to configurations of the type 2p63s -  2p 53sns 

which cannot be calculated using the Dirac Fock package of Grant et ai

(1980) it is also possible that these lines are the result of configuration 

interactions between the levels listed in tabie 3 6 or that they arise from higher 

or lower ion stages than AI III These lines are listed below in table 3 7 along 

with unidentified absorption lines observed in the spectrum of a silicon 

plasma

3 5. B) SI IV

The absorption spectrum of a silicon plasma presented m fig (3  7) shows 

absorption lines from the Si V ion and also other intense absorption features 

thought to be due to the lower ion stages Si IV and Si III These lines are visible 

in the wavelength region 120 -  85A and are thought to be mainly due to the Si 

IV ion and are therefore analogous to the lines which have already been 

discussed above for the case of the aluminium spectrum and have been 

tentativiy asigined to transitions in the AI III ion These lines are also listed 

below in Table (3  7) as being un-ldentified No analysis of these levels has as 

yet been undertaken However, it may be assumed that if these unidentified 

lines belong to the Si IV ion then such an analysis would follow along the lines 

of the AI 111 case
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TABLE 3 6
Wavelengths of unknown lines measured In the spec ta of both aluminium and 
silicon plasmas and thought to be from Al III and 81 IV respectlvly 
Wavelengths were measured from a number of plates Estimated Intensities 
are given for the Al III lines only and are (as in table 3 6) relative to the 
160 073A line in Al IV which is taken as 10 0 (b ) indecates a broad line

Al III Intensity Si IV

150 78
/

2 0 (b )
110 37

149 99 2 5 (b )
107 05

146 85 3 0
106 78

146 04 2 0
106 34

145 70 2 0
105 62

144 00 4 0
105 18

143 79 4 0
104 52

136 25 1 0
102 43

136 08 1 0
102 10

136 00 1 0
101 62

135 67 1 0
100 50

135 51 3 0
99 64

135 35 1 0
99 20

135 18 1 0
98 72

134 77 1 0
97 50

134 45 3 0 (b )
97 08

134 04 1 0
96 40

133 87 1 0
92 35

133 71 1 0
91 93

133 14 1 0
91 .67

132 82 1 0
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3 6 THE XENON ISOELECTRONIC SEQUENCE

The xenon isoelectronic sequence is of considerable theoretical interest at this 

time The fourth and fifth members of this sequence La IV and Ce V have been 

studied in absorption in the course of this work, the same technique being 

used as with the neon-like and other ions reported above

The xenon sequence has been the subject of intense theoretical study since the 

experimental observation by Lucatorto Mcllrath Sugar and Younger (1981) of 

discrete structure m the 4d photoabsorption spectrum of Ba Hi The VUV photo 

absorption spectra of the 4d subshell in the /sonuclear sequence consisting of 

Ba I Ba II and Ba III observed by Lucatorto et al (1981)  is shown in fig (3  8) 

Of particular interest in the sequence is the Ba HI spectrum which exhibits
r

several sharp resonances each containing appreciable oscillator strength 

below the ionization threshold This situation is to be contrasted with neutral 

barium for which only a broad resonance above threshold is observed

Barium with 2=56 is at the edge of 4f collapse, neutral ground state atoms with 

Z < 56 have 4f orbitals which are hydrogenic and have rav~17a0 while elements 

with Z > 57 have a collapsed 4f orbital with rav« l a a The nature of the 4d 

photoabsorption is therefore expected to depend critically on whether or not 

the 4f orbital can be considered collapsed or not

Several atempts have been made to analyse this "redistribution of oscillator 

strength" since its experimental observation, some of this work is briefly 

discussed below

109



PHOTON ENERGY (electron volts)

Fig (3  8) Shows the photoabsorption spectrum of the Isonuclear 
sequence Ba i Ba II and Ba III in the 80 to 160eV energy range 
Plotted are cross sections for the photoexcitatlon of a 4d electron 
along the isonuclear sequence The striking difference in the Ba III 
spectrum indicates a partial contraction of the 4f orbital in the 
absence of barium's two outer electrons (after Lucatorto et al 
(1981 ) )

Connerade and Mansfield (1982 ) discussed the 4d photoabsorption spectrum 

of Ba ill in terms of a term -dependent hybridization of the 5f wave functions in 

Ba I and Ba 111 They state that unlike in neutral barium the 4d-»5f transition 

cannot be neglected in the discussion of the 4d spectrum of Ba IK They point 

out that 4d^nf(n>5) transitions (rather than 4d-*np) must be responsible for 

the prominent discrete structure below the 4d threshold of Ba III Kelly Carter 

and Norum (1982) calculated the photoiontzation of the 4d subshelis of Ba I



and Ba III using a Hartree-Fock approximation with and without the inclusion of 

relaxation effects They conclude that Hartree-Fock calculations can give 

reasonable photoionization results for a complicated system such as the 4d 10 

subshell of barium they also suggest that relaxation effects can in cases such 

as neutral barium be very important in cross section calculations Nuroh Stott 

and Zaremba (1982) performed calculations for the photoabsorption spectra of 

Ba I II and III near the 4d ionization threshold using the tim e-dependent local 

density approximation, these calculations have provided results which are in 

quantitive agreement with the experimental data of Lucatorto et al (1981)  The 

results also suggest that the sharp resonant structures below threshold in Ba Ilf 

are due to transitions to hybridized f states which are strongly modified by 

electron-eiectron interactions, which is consistant with the term-dependent 

Hartree Fock calculations (Connerade and Mansfield ( 1 9 8 2 ) ) ,  but goes be­

yond these calculations in predicting the detailed spectral distribution Kucas 

Karosene and Karazija (1983)  used a Hartree Fock model to study the 4d - 

photoabsorption spectrum of Ba Hi and have shown that the strong absorption 

lines m the spectrum of Ba HI correspond to excitations of a 4d electron in the 

Rydberg nf series Cheng and Froese Fischer (1983)  considered the collapse 

of the 4f orbital for xenon like ions in the region of the 4d-*nf ef excitations also 

using a term-dependent Hartree Fock technique They have found the 4f 

orbital to be strongly term-dependent and have concluded that the appearence  

of intense absorption lines In the observed spectrum of Ba HI is due to the 

partial collapse of the 4f orbital in the 4d-*f1P channel They have also extended

their calculations to include other ions of the xenon isoelectronic sequence 

and have generated the theoretical absorption spectra for the xenon like 

isoelectronic sequence from Xe I to Nd VII These spectra are shown in fig 

(3 . 9) below and show that after the 4f orbital Is completely collapsed for high 

degrees of ionization along the
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isoeiectronic sequence the bulk of the absorption oscillator strength is 

concentrated at the 4d94fxP level so that the only strong line in the spectrum is 

again the 4d'*4f1P transition Cheng and Johnson (1983) used the relalivlstic 

random phase approiximation to study photoionization of the inner 4d shells of 

Xe i Cs II Ba III and La IV they calculated total cross sections partial cross 

sections branching ratios and angular-dlstributton asymmetry parameters 

and have studied their systematic trends along the isoeiectronic sequence

Photon Energy (eV)

Fig (3  9) Shows theoretical absorption spectra for the first seven 
members of the xenon-like isoeiectronic sequence The rectangles 
represent the effective ociliator strength distrobutions of Cheng and 
Froese Fischer ( 1983) for the 4d-*nf1P transitions (n=4-9) The 
continuum cross sections are random phase approximation results 
of Cheng and Johnson (1983) (after Cheng and Forese Fischer 
(1983 ) )
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They obtained important dynamic effects of eiectron correlation from an eigen 

channel analysis involving the eigen quantum defects the eigen dipole ampli­

tudes and the transformation U matrices They have also found that there are 

shape resonances in the effective potential for f electrons and that the 

collapse of the 4f orbital along the isoeiectronic sequence is clearly related to 

changes in f orbitals m passing through these resonances The most recent 

theoretical work on Ba III is that of Clark (1984) m which he shows that the role 

of true collective effects in the 4d photoabsorption spectrum of Ba Hi are 

minor His analysis shows that the most significant departures from indepen­

dent particle behaviour are in fact due to correlations involving the 5p not the 

4d shell their importance is magnified by the delicate balance of opposing 

smgle-particie forces His réévaluation of ionization limits has revealed the 

presence of Beutler-Fano structures in the experimental data of Lucatorto et ai

(1981)

The analysis of this type of spectrum is quite involved as has been shown 

above The next section however deals with the recent observation in this 

laboratory of what appear to be similar structures in the spectra of La IV and Ce 

V

3 6 A La IV AND Ce V

The absorption spectrum of lanthanum is shown in fig (3 10) and shows the 

absorption spectrum of a lanthanum plasma recorded between 160 and 80A 

also shown in fig(3 10) is the discrete structure observed between 110 and 

90A which is entirly analogous to the features observed by Lucatorto et al

(1981) in the VUV absorption spectrum of a column of Ba III ions
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1 he spectrum of a cerium plasma has also been investigated m the same 

wavelength region as part of this work This speclrum is however exremely 

weak and despite numerous atempts at improvement the spectrum still remains 

to be recorded with the same strength as the lanthanum spectrum and is 

therefore not reproduced photographically here 7 he 4d photoabsorption spe­

ctrum of Ce V < which is not reproduced here) also shows a degree of discrete
o

structure m the 90A region similar to that observed in tia Hi and La IV

lable 3 7 a is a list of the absorption features measured in the spectrum of a 

lanthanum laser produced plasma belween 160 and 120A while table 3 7 b  

lists the wavelengths of the discrete structure observed between 110 and 90A 

lh e  relative intensities of these features are also given m table 3 7 The 

strongest lines in the region have been given an intensity of 10 The weaker 

features were measured from photograpic prints of this wavelength region As 

the summary of previous theoretical work on the isoelectronic Ba HI features 

suggest the analysis of this type of structure presents a serious degree of 

difficulty For this reason no analysis of the La IV spectrum is presented here 

Consequently all of the structures observed in the La IV spectrum are classified 

in table 3 7 as unknown and the spectrum is therefore presented here simply 

as a qualitative observation
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TABLE 3 7 A
Wavelengths of absorption structure observed m the spectrum of a lanthanum 
plasma in the wavelength range 160 to I20A Wavelengths were measured 
from a number of plates

X. classificationexp
160 81 Unknown
159 43
159 44
150 24
140 93
140 92
140 52
13/ 19
136 70
136 08
132 42
129 75
129 76

TABLE 3 7 B
Wavelengths and relalive intensities of absorption features observed in Ihe 
spectrum of a lanthanum plasma in the wavelength range 110 to 90A 
Wavelengths of the strong features were measured from a number of plates

X relative intensity classification

104 33 3 0(b) Unknown
99 06 * 10 0
98 41 1 0
97 85 2 0
9 / 08 * 8 0
96 21 3 0
95 52 * 10 0
95 14 2 0
94 15 3 0
93 43 * 8 0
92 77 * 6 0
92 19 2 0
91 81 * 8 0
91 59 * 6 0
91 20 1 0
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APP 1 1 INTRODUCTION

The work reported in the preceding four chapters of this thesis has dealt with 

the application of laser produced continua to the study of photoabsorption of 

ionized species also laser produced This application of the laser produced 

continuum source serves to demonstrate its usefulness in the VUV region The 

uses of such a versatile source of VUV continuum radiation are not limited to 

the study of atomic structure, as was pointed out in chapter one The ease of 

production intensity, spectral purity and spectral coverage of the laser 

produced continua make them ideal for other applications for example laser 

produced continua are suited for use as radiometric standards and in partic­

ular as transfer standards ( Kuhne (1980) and Carroll Kennedy and O'Sullivan 

(1980))

The reproducibility of laser produced continua (also discussed in chapter one) 

makes them suitable for relative intensity measurements Laser produced 

continua are also useful! for transmission /  refelection measurements in the 

vacuum ultravilolet/soft x-ray region

It is proposed to discuss m this appendix one further application of laser 

produced continua This application concerns the use of laser generated VUV 

continuum radiation to carry out studies into the luminescence efficiency of 

amorphous solids (glasses) as a function of irradiation wavelength It should 

be pointed out here before further discussion that the work described in this 

appendix is at present being undertaken in this laboratory but has not yet 

reached completion Therefore this appendix must be seen as a progress
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report on the application of laser produced continua to the study of lumin­

escence in soiids The work m progress involves the measurement of relative 

luminescent decay times and spectral emission as a function of base glass 

composition and activator type The long term object of this project is to 

develop new detector materials for use throughout the vacuum ultraviolet (3 -  

200nm)

APP1 2 DETECTOR MATERIALS FOR THE VUV

The various modes of interaction between radiation and neutral matter provide 

the underlying principles of all detectors For vacuum ultraviolet radiation 

these interactions involve the photoiomzatlon of gases, the ejection of photo­

electrons from solids chemical changes photo-conductivity fluoresence or 

thermal effects The range of detectors for the VUV is extensive among the 

most widely used are photographic emulsions ( which were used for the work 

reported in the proceeding sections of this thesis) photoelectric detection 

and the use of fluorescent materials A full discussion of the various detector 

materials used in the vacuum ultraviolet region has been given by Samson 

(1967) Discussions in this appendix will be confined to fluorescent mat­

erials only

APP1 3 FLUORESCENT MATERIALS

Since the construction of the first photomultiplier In 1936 fluorescent materials 

have been used to detect 7~rays and nuclear particles The first use of 

fluorescent materials for the detection of ultraviolet radiation was made by 

Parkinson and Williams (1949) who used a manganese activated willermte 

phospher which responded down to 1450A Johnson Watanabe and Tousey
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(1951) studied several fluorescent materials m the 850 -  2000A wavelength 

range Included in this group of materials was the phospher sodium salicylate 

(NaC7Hs0 3) which was found to have the highest efficiency over the entire 

wavelength range studied they found it easy to prepare and not to be affected 

by a vacuum These properties have made sodium salicylate the most comm­

only used fluorescent detector in the VUV The first measurement of the 

relative fluorescent yield of sodium saiicyiate was carried out by Dajardin and 

Schweegler (1934) who reported a constant efficiency between 2200 and 

3400A these results have also been confirmed ( Slavin, Mooney and Palumbo 

(1961) ) for wavelengths shorter than 2200A However other measurements 

( Samson (1964) and Knopp and Smith (1964) ) reveal that there appears to 

be an aging effect which reduces the fluorescence efficiency at shorter 

wavelengths they suggest (contrary to the results of Johnson et al (1951)) 

that this is possibly due to the vacuum environment in which the detector m 

used

The fluorescent emission spectrum of sodium salicylate was first measured by 

Thurnau (1956) who also found the spectrum to be independent of the exciting 

wavelength for the wavelength region 275 -  2537^ The fluorescent emission 

spectrum of sodium salicylate has also been measured in the course of this 

work and is shown in fig (APP1 3) The maximum intensity of fluorescence is 

located at 4200A The fluorescent decay time of sodium saiicyiate seems to be 

in the region between 7 and 12nsec, early measurements made by Nygaard 

and Sigmond (1961) gave a value of 12nsec, however Nygaard (1965) 

quotes a decay time of 7nsec Other measurements by Herb and Sciver (1965) 

give a value of between 8 5 and lOnsec

Plastic scintillators form an important group of fluorescent materials for use in
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the VUV region Although the fluorescent efficieny of plastic scintillators is

much less than that of sodium salicylate and is not even approximately constant
©

with wavelength these sc/ntilJators are used in the VUV from 100 -  2000A 

Several of these scintillators are commencally available, the most common of 

which is the NE102 scintillator ( Nuclear Enterprises Ltd ) the fluorescent 

wavelength at maximum emission is 4200A and the fluorescent decay time is of 

the order of 2 2nsec

Glass scintillators have not as yet been developed for use as VUV detectors but 

they do offer advantages over both plastic scintillators and sodium salicylate in 

that glass is a much more robust material and is ideal for use under vacuum 

conditions Work in this area at present under way in this laboratory is 

described in what follows The work is concerned with the evaluation of 

neutron scintillating glasses as VUV detectors The glasses which are pres­

ently under investigation were originally developed by Spowart (1969) for the 

detection of thermal neutrons A review of neutron scintillating glasses has 

been given by Spowart (1976) in which the physics of the various glass types is 

described The glasses are critically doped with rare earth impurity activators 

either cerium in the form of Ce3+ or terbium in the form of Tb3+ ( Spowart 

(1979 a b) ) The glasses also contain lithium which is used to detect the 

neutrons through the 6 LI (not) reaction When a thermal neutron is Incident on 

a sample of glass containing 6Li the neutrons react at the 6Li site in the glass 

via the 6Li3 (na) reaction two charged particles the a  particle and the triton 

are released as a result of the interaction The Q-value for the reaction is of 

the order of 4 76MeV and the angle between the emergent particles is 180°

The triton carries away 2 72MeV of the energy and the a  particle the remaining 

2 04MeV The range of the a  particle In glass is much shorter than the triton 

due to its greater charge and mass Both of these particles on passing through
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the glass host create a series of electron hole pairs which drift through the 

solid and eventually recombine at the Ce3+ or Tb3+ activator sites The atomic 

physics of the Ce3 + activator is discussed below The cerium is present in the 

glass host as Ce3+ having lost three electrons (5dx 6s2) A Ce3+ concen­

tration of >99% is deliberately arranged during the manafacture of the glass 

as Ce4+ is unwanted due to its strong absorption band which overlaps the Ce3 + 

emission In general the luminescence of rare earth impurities in giass hosts 

is characterised by sharp emission bands because the transitions occur 

among inner well shielded 4f electrons Electrons in this deep 4f shell are 

screened from the environment by outer electrons Cerium differs from the 

other rare earth activators, in that being at the beginning of the lanthanide 

series it has only one 4f electron This single 4f electron can give rise to two 

energy levels m one the orbital and spin moments of the electron are parallel 

( 2F 7/  2) and in the other state both moments are anti-parallel ( 2F s /  2) The 

excitation process is thus 4fn -• 4fn“ 15d1 and the emission is from the 5d 

states The 5d orbit lies at the surface of the ion and is strongly infiuenced by 

the varying energy environment provided by the disorderd crystal field of the 

amorphous glass host As a consequence of this the 5d state is split into many 

components depending on the site symmetry of the cerium activator This 

leads to a broad emission band centered at 3500A In the cerium doped 

glasses under investigation in this work the separation of the 4f -  5d band has 

been estimated (Spowart (1976)) at about 25X103cm“ 1 Thus the 4f electron 

probably requires its energy in units of « 2-3eV for transfer into the excited 5d 

state (Spowart (1976)) The average lifetime of the 5d state is short of the 

order of 10“ 7 to 10“ 8sec since the 5d -  4f emitting process is an allowed 

electric dipole transition This results in decay times ( Spowart (1976) ) for 

the Ce3+ emission of about 0 14/tsec

124



The cerium activators may be excited directly by completely by-passing the 

Li(na) centers A photon of sufficient energy incident on the glass will excite 

theCe3 + center and the resulting fluorescence may then be detected Thus 

the glasses described may be used as photon detectors The experimental 

method used to evaluate these glasses as VUV detectors, together with initial 

results of the work presently m progress are described in the next section

APP1 4 EXPERIMENTAL DETAILS.

The series of experiments which are at present being carried out m this 

laboratory to evaluate the scintillating glasses described above as detector 

materials for use in the VUV are discussed below

The laser produced contmua from various high 2 metal targets (discussed in 

chapters one and two) are used as the radiation source The experiments have 

been designed to measure the luminescent output of the various glass types 

under investigation by irradiating the glass samples with the laser produced 

continuum radiation The eventual aim of the experiments is to obtain lumin­

escence efficiency measurements for the various glass types over the entire 

VUV wavelength region 2000-30A To carry out the proposed experiments two 

vacuum ultraviolet instruments are used The first of these is a scanning 

normal incidence monochrometer which covers the wavelength range 5000-
o O

400A the second instrument for use below about 500A is the grazing 

incidence spectrograph equiped with the monochrometer attachment already 

discussed in chapter two

The experimental arrangement used to study the luminescent emission of the 

various glass types as a function of irradiating wavelength in the normal
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incidence region is shown in fig (APP1 1 a) Samples of the various materials 

under investigation are placed in the sample holder ( specially constructed for 

the purpose ) shown in fig (APP1 1 b) The sample holder is located in one 

arm of the normal incidence monochrometer m place of the exit slit attachment 

such that the various samples can be located in turn approximately on the 

Rowland circle The sample holder is constructed from brass and can hold a 

total of twelve samples each sample is rotated in turn manually onto the 

Rowland circle so as to be irradiated by a monochromatic portion of the laser 

produced continua Also connected to the exit arm of the monochrometer is 

the sample chamber which is both light and vacuum tight A photomultiplier 

tube (EMI type 9813B) is attached to the sample chamber and is used to detect 

the luminescence Between the glass samples and the photomultiplier is 

placed a piece of plane glass which serves to filter out any of the VUV radiation 

which may emerge from the monochrometer during the experiment (for
r

instance, if one of the samples being investigated was to fall from the sample 

holder) This filter also ensures that only the luminescence emission from the 

various samples is being detected by the PM tube
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Fig (API l a b )  a) Shows the arrangement of both the target 
chamber and sample chamber attached to the normal Incidence 
spectrograph
b ) Shows the construction of the brass sample holder used to hold 
the samples during the experiments



The time duration of the continuum emission from the laser produced piasmas 

used to excite luminescence m the glass samples is typically of the order of 

30nsec ( FWHM ) and the luminescent decay times of the various samples 

(both glass and other scintillator types) lie in the range 1 0 - 0  l^sec Each of 

the light pulses when incident on the photocathode of the photomultiplier will 

result in a negative charge pulse as output The time duration of this charge 

pulse will depend on a number of factors (such as the decay time of the 

photomultiplier the particular output circuit being used and the input im- 

pedence of the instrument used to record the pulse ) but will in general be of a 

similar time duration to the decay times of the samples The instrumentation 

requirements of the experiments described here are therefore dictated by the 

temporal properties of the output pulses discussed above The instrumentation 

used must also be compatible with the repetition rate of the laser used to 

produce the plasmas which in this case as was discussed in chapter two is 

low The requirement is therefore that of an instrument capable of taking the 

negative pulse of the photomultiplier as an input and giving as its output a 

voltage/number which is proportional to either the pusle height or the area 

under the pulse respectively

The instrument which has been acquired for this purpose is a digital storage 

oscilloscope (Philips PM 3311) which is capable of recording at intervals of 

8nsec A full description of the instrument will be given by Mythen at a later 

date The oscilloscope records the photomultiplier output by sampling at 

intervals of 8nsec the samples are then used to reconstruct the pulse which 

may then be displayed on the oscilloscope screen The oscilloscope can store 

in memory a total of four complete pulses which may then be displayed 

simultaneously for comparison The oscilloscope is also interfaced with a
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microcomputer which enables a large number of puises to be stored per­

manently and analysed at a later date A chart recorder and/or a printer are 

also connected to the computer and are used as final output devices this 

arrangement is shown schematicaiiy in fig ( APP1 2 )
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Pig (API 2) Shows a schematic view of (he experimental arrangement 
used to aqulre and process data used to evaluate the proformance of 
neutron scintillating glasses as VUV radiation detectors In the normal 
Incidence region



To measure the luminescence output as a function of excitation wavelength in 

the normal incidence region the following procedure is followed The samples 

to be investigated are placed in the sample holder which would typically contain 

a number of the glass samples to be investigated and would also contain for 

comparison samples of sodium salicylate other commericiaiy available scin­

tillators and a sample of non-scintillating ("ordinary") glass The mono- 

chrometer is then scanned in steps of 5 -  loA over the wavelength range 2000 
-  400A At each wavelength interval each sample is rotated into position so as 

to be exposed to the laser produced continuum radiation Each sample is held 

in position for 10 laser shots and the pulses recorded by the storage scope 

are transfered to the computer where an average value is taken and stored 

along with the wavelength at which the measurement was taken This pro­

cedure is repeated for each sample in the holder and when the monochrometer 

has reached the end of the wavelength range a curve of wavelength against 

luminescent emission intensity for each of the twelve samples in the sample 

holder can be plotted and compared

For wavelengths shorter than 400A the experiment is repeated using the 

monochrometer attachment of the two metre grazing incidence spectrograph ( 

described in chapter two ) The work described above has not as yet been 

completed and so results obtained by the method described above are not 

presented here However the luminescent emission spectra of some of the 

glass samples under investigation have been measured using an integrating 

sphere These results are shown in fig (APP1 3) along with the luminescent 

emission spectrum of sodium salicylate obtained in the same way It may be 

seen from fig (APP1 3) that the glass scintillators have a response which is 

similar to, but not as intense as that of sodium salicylate However glass
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scintillators because of the nature of glass offer advantages over sodium 

salicylate and plastic scintillators In that they are robust and solid detectors 

Whereas sodium salicylate is only a coating of crystals on a piece of glass and 

is therefore subject to wear and also to adverse conditions (such as oil vapor) 

found in a typical vacuum environment (Samson (1964)) Plastic scintillators 

are also subject to mechanical wear but have the added problem that the 

fluorescent efficiency of plasitc scintillators is not even approximately constant 

with wavelength and is much less than sodium saiicylate The glass detectors 

may also be removed from the spectrograph and cleaned whereas sodium 

salicylate must be replaced

When the experiments described above are complete it is hoped to have 

response curves for the various glass samples along with that of sodium 

salicylate and other commercially available plastic scintillators over the entire 

VUV wavelength range (30 -  2000A) It is also hoped to obtain quantum 

efficiency measurements over the same range
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Fig (API 3) Luminescent emission curves obtained using a 1m 
Integrating sphere Ih e  excitation wavelength used was 254nm Curve 
(a) Is sodium salicylate, ( b e )  are cerium doped glasses
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APP2.1 INTRODUCTION.

This thesis has deait with the development of a technique for recording 

absorption spectra of laser produced ionized species in the VUV/XUV wave­

length region. In some sections of that work it was necessary to employ 

computer programs to. analyse data, carry out atomic theory calculations and 

in one instance to decide if transitions between excited states had been 

observed. This appendix deals only with those programs which were written as 

a part of that work and which have been refered to in previous sections of the 

thesis. The atomic theory programs (Dirac Fock and Hartree Fock) are not 

discussed here (although many modifications have been carried out on these 

programs as part of this work). Other software has also been written, to 

control the running of the Dirac Fock program as a batch job. and also to 

generate data for the Dirac Fock program when it was required to; for 

example, calculate energies of similar transitions along an isoelectronic seq­

uence. Other programs for graph plotting and data analysis have also been 

written, these programs will also not be discussed here. Rather it is proposed 

to confine the discussion to the two programs specifically refered to in the 

proceeding chapters of this thesis.

APP2.2 THE POLLYFIT PROGRAM.

As discussed in chapter two (section 2. 5) each photographic plate containing 

an absorption spectrum had an overlapping emission spectrum usually of 

aluminium or silicon which served to provide a series of roforonco wavelengths
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from which wavelengths of unknown features in the absorption spectrum could 

be determined The photographic plates were measured on the photoelectric 

comparator in the Physics Dept of University College Dublin For each plate 

measured a series of data points in x y form is obtained The position of the 

feature along the piate is represented by x (measured to and its

corresponding wavelength by y For each plate the positions of a series of 

known reference lines along the plate are noted, also noted are the positions 

of each unknown feature This data is then entered into data files in the 

computer ( VAX 11/785 ) where it can be used by the POLLYFIT program which 

is described below

The POLLYFIT program (iisted below) uses two routines taken from the NAG 

(Numerical Algrithms Group) software library The first E02ADF is called to fit 

the data points (contained in an input file) to an N*h order Chebychev 

polynomial The program uses four input/output data files NIN and NOUT are 

the numbers of the main input and output files and are given as input by the 

user when the program is run The first part of the program fits the data to the 

Chebychev polynomial and writes the results (a sample of which is given below 

after the program listing) to the output file NOUT The Chebychev coefficients 

(which are calculated for each order up to a maximum N spesified by the user 

at input) for which the best fit has been obtained are written to a second output 

file called CH DAT These coefficients are then used In the second part of the 

program to interpolate the wavelengths of the unknown features The inter­

polation part of the program calls the second NAG routine E02AEF which uses 

the coefficients stored in CH DAT and the x values (stored in the second input 

file called PTS DAT) of the unknown features to generate the wavelengths of 

these features A best fit is normally obtained for second or third order 

polynomials, higher order fits do not normally produce better accurecy The
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program is listed below along with a typical set of input and output data Two 

other subroutines are also called in POLLYFIT the first TIMEDATE returns to the 

output file the time and date at which the program was run The second 

subroutine CPUTIMER (written to time the run of large atomic theory pro­

grams) returns a value of the cpu time used during the program run Both of 

these routines use VAX/VMS run time library (RTL) system routines which are 

called as needed in the program (see program listing for details)
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o POi-i-YFIT i s  o program wmcn c o m e s  o u i  qn Ntn oroer r e g r e s s i o n  
on a s e x  ot o r o i t r o r y  ooto  p o i n t s  wmcn ore g iven  os  i n p u i .  
Nag l i b r a r y  mar* 5 r e l e a s e  su b r o u t in e s  F02«r»F and FO2hFF 
are  used to  f i t  tne aata ond a l s o  t o  i n t e r p o l a t e .

Tne n e lp  o f  Gerard Q7Connor o f  tne  computer s e r v e c e s  u n i t  =■ 
o f  tn e  National  I n s t i t u t e  f o r  Higaer Facuation m  DudI i n  =■ 
w itn  tne  i n t e r p o l a t i o n  part  o f  t m s  program i s  acknowledged =■

c h o r a c te r  t i t l e # R 0  
COMMON MN, NOUT, i t i n e  , i d a t e
INTEGER I ,NRGwS,M,K,IUGnT,KPi_USl , IFhI i. , IPi_US* ,

* oPuUS *,M2,R, R2, RPlUSi, MM , N , NPuUS , MPi.US 4 T M='i_US2 
DOUB K PRECISION Xi ,XM,D,XARG, XC*FR,FITf R£S,X(200) , Y (200> , 

*w( 2 0 0 ) , A( 5 0 , 5 0 ) , A<(50) , S (50 )  , wGRK ( 3 ,200) f wGRK2( 2 ,5 0 )  ,
*Fi_Mi , Fi.J , XChP, P, B(200) , R«fcG£ , MID, XPT, « , C, FNR, X*N 

LOGICA». MIIiPT

CAi i. CPUTIM'R ( - 1  ) 
****************************************************************  

Four i n p u t /o u t p u t  f i l e s  are used NIN and KuuT are input and * 
o utput  f i l e  nunoers s p e c i f i e a  a t  in p u t  mj tne user ana *
c o n t a i n s  tne  input ana output data  o f  tne  nam program. *
PTS-DhT h o i a s  tne p o in t s  to  be i n t e r p o l a t e a ,  Ck.DmT n o ia s  *
the cr\eoycnev c o e f f s  computed m  tne  f i r s t  part o f  tne *
progran ana usea m  tne i n t e r p o l a t i o n  s e c t i o n  wmcn s t a r t s  a t  * 
12345..................................................................................................................................  *

0=FMUNIT=3,FIi_ii>rC*.DiVr’ , SThTUS^’ *~wt > 
wRITH (5 ,88886)
RFrD( 5 ,9 9 9 9 7 )MN,NGUT

Put a a a te  ana t i n e  on tne outp ut

Ctt.i. t im eaate

wRITF <5,500)
40.  w r i te  (n o u tr499 >
499 format ( / / *  ****************************

* * * * * * * * * * * * * * * * * * * * * * * * *  f
* / ’ P 0 * .  i- Y F  I T . r ,
* /  9 **************************************************** r )

500 FORMAT ( T Fnter a t i t l e  f o r  tne  output ( up to  80 c n r s  ) r ) 
R£hD (5 ,5 1 0 )  TITt.t
wRITF (KuuT,509) t i t l e  
wRITF ( 15,510 ) t i t l e  
KRuwS - 50

509 format ( / / / /  lx ,A80)
510 format <1A80 )

wRTTF (5 ,88888)  
20 RcAD (5 ,9 99 9 7 )  M 139



hrt=M
IF (M.i.F.O) STOF 
WRITH (5 ,8^887 ,
R£«D ( 5 r99997) K 
IwG«T= 1.0  
KPi.OSl = K ♦ 1
no t>o R=iy«

IF ( I^ un T .tQ .1 .0 )  GO TO 40 
RFAD (NIN,*) X(R), YCR)
GO TO eO 

40 Hr toll (NIN,*) X(R), YCR) 
g(R) -  1.0  

¿>0 CONTINut
WRITF CNOuT,99994) M, K 
IF ( IwG.-nT • bZ . 1) GO TO 80 
wRITH (NuUT,99993)
GO TO i 00 

80 URITH (N0UT,9999?)
100 DO 140 R=1,M

IF ( l ijGnT.Nt. i )  GO TO 1?0
wRITF (M3uT,99991) Ry X(R), YCR)
GO TO 140

120 wRITF (NuuT,9999x > Ry X(R), YCR)r W(R)
wRITF (15 ,99991)  Rf X(R)yY(R)

140 c on t in u e
IFhI i. = 1
Chi. l F0?HDF(tt,KPi.U5; ,NRuwS,X,Yyw,wORKl f wuRK2,h , S TIFAIi ) 
IF (IFAIi-.N^.O) GO TO 300 
wRITH (NuUT,99990)

C
C Tne Cneoysnev coeft<i ore put i n t o  o f i l e  c o l l e d  Ch .DmT 
C ana are  r e c a l l e d  i n t o  tne  secona p a r t  o f  tne program 
C t o  be usea m  i n t e r p o l a t i o n . . . . . •
C

VAL=999.
DO 1*>0 IPi-USl^l ,*Pi_liSl 

I =- IPi.USl -  1 
wRITE (NOuT,99969)  I
WRITH (N0UT ,99988 ) ( A < IPi_US 1 , J=*»-bS1 ) , JF * AjS i = i , IPi.US 1 ) 
URITF (4 ,99 9 88 )  (A(IPuUS* , ^i.OS 1 ) , j?*_USl = l , IP^USi ) 
wRITF (KOUT,99987) S(IP*USl)

IF ( ABS(S(IPi.bSl>) .i ,T. Vhi_ ) TnFN 
I I I  = IPi_USl 
VAi.=5(IPi.USl )

ENDIF 
1*0 CONTINut

II  = I I I - l
WRITF ( NOUT , 88885 ) V«i_ , 11 
wRITF( 3 , 5 5 5 ) I I I
WRITF(3,55o) ( h( I I I , P ) , P = I , I I I )

555 FORMAT(15)
55* F0RHAT(F20.3)

Ci-OSF (3)
C
C a l c u l a t i o n  o f  tne crteoycnev coeff¥*2is  now complete*
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180

240
260
280

300
320

340

360

380

400

99998
99997
99994

DO 180 IPi.OSl^i ,KP*_OSl
AK( IPi-U51 ) -  A(KP» USi,IPi-USl>
w r i t e (3 ,5 5 © )a *  ( i p ï u s i  )
CONTINUE 
XI » X U )
XM = X(M)
D * XM -  XI 
WRITE (N0UT,9998f>) K 
WRITE C15,9998©> K 
MI DPT = . Fh«„5E .
M2 = 2*M -  1 
R = 0
DO 280 R2=1,M?+1

IF(R2.EG-M2+1 >G0T0 12345 
IF ( .NOT.MIDPT) GO TO 220 
XARG « 0 . 5D0*( X( R) +X( R+1))
XC«PR = ((XARG-Xi)-(XM-X«RG))/D 
IFAÏL = 1

A \ ,  XC«fRy 
TO 200 
XmnGj F IT

200

220

ChI i„ E02«Fr (*Pi USl , A \ y XC«fRy FITy IFmïi ) 
IF ( TFAÎI- .NE-0) GO 
WRITE (NOuTy99985)
GO TO 260
WRITE <NOüTy99984) XARG 
GO TO 260 
R = R + 1
XCAPR = ( (X (R )-X l)
IFAIL = 1
CALL F02AFF(KP»U S I, AKy XCAPR, FITy TFAIi ) 
IF ( TFAIi..NE-0) GO TO 240 
RFS = FIT -  Y(R)

(X M -X (R )) ) /D

WRITE 
WRITE 
GO TO 
WRITF 
MIDPT 

CONTINUE 
GO TO 20 
GO TO 
wRITr 
GO TO 
wRITE 
GO TO 
WRITE 
GO TO 
WRITE 
GO TO 
WRITE 
GO TO 
FORMAT

(NOUTy99991) Ry X ( R ) y F IT ,  RES 
( 1 5 y99991) RyX (R ) , F IT ,R E S  
2©0
(NOUTy99983) Ry X (R )
= -NOT-MIDPT

(3 2 0 ,  340,  3©0, 
(NOuT ,9998?)
20
(NOUT , 9 9 9 8 i )
20
(NOUT,99980)
20
(NOUT,99979)
20
(NOUT,99978)
20

<fRFSU»_TSf / / )

3 8 0 , 4 0 0 ) ,  I F h IL

FORMAT (2 1 4 )  
FORMAT < / / / *  
t s e t  o f  dato

Nth; ord*r polynomial  f i t  t o  an a r b i tr a r y  
p o i n t s - r j / J---------------------------------------

/ / *  Input aata /» T, / / y Nuwoer o f  aata
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» p o in t s  = 7 y 1 4 f / /  9 Hoximum degree  = 7yI4 )
99993 FORMAT </ 9 Unit  w e ig h t in g  d o c to r s  ore u s e d .  7y

* / / 3 x y 7 r 7 y3 x y 7 P o s i t i o n  X ( r ) T, o x y 7 waveiengtn  Y ( r ) 7/ )
9999? FORMAT ( / / 7 r Ad sc isso  X(r) O ra m o ie  Y(r>7 )
99991 FORMhT ( iXf I 3 yl x yF l 0 . 3 f lOx y F 1 0 .3 y1 Ox yF¿2 .8 )
99990 FORMhT ( / / 7 RFSu.TS7, / 7 ------------7 )
999B9 FORMhT ( / 7 DFGRFFTf 1 4 , / / T J CwciBYSi-irV CurTFF h( J ) 7/ )
9998B FORMAT < lx y F 20 .8 )
99987 FORMhT ( / 7 R .h .S .  r e s i d u a l  - 7y F20 .8 )
9998© FORMAT < / 7 POi.YnOMIrL APPROXIMhTION rND R^SIDuh'.S FOR B“GR^F7f

* I 4 f / / 7 R POSITION WnVFi £NGTm 7f
* 7 RFSIDUhl7, / )

99985 FORMAT (3 x yF 1 0 .3 yI0 x yf 10-3)
99984 FORMAT ( 5 x yF 2 0 .3 y7 wrgunent o u t s ia e  range .  7 )
99983 FORMhT ( l x yI 3 y F i 0 . 3 y7 «RGUM"NT GuTSTD  ̂ R«NG£7)
9998? FORMAT ( /  7 NON-POSITIVE w~IGmTt )
99981 FORMAT < / 7Values o f  m a e p e n n e m  v a n a o l e  not

* in c r e a s in g  » o n o t o m c a i  l y  . 7 >
99980 FORMhT ( / 7 Values o f  m a ep en a en t  v a r ia n le  a l l  equal 7)
99979 FORMhT ( / 7 T o o  few a i s n n c t  v a lu e s  o f  tne m a e p e n a e n t  v a n o o i e ,  
99978 FORMhT C/7 NROwS FhI i.S TO FXCFtD MAXIMUM DFGRFF7)
88888 F0RMAT(//y7 Input the  No o f  data p o i n t s  n . f )
88887 F0RMAT(//y 7 Input the  naxtnun degree  7>
8888© FORMhT( / / , 7 Input and outp u t  f i l e  numbers ( n m  and nout ) 7)
88885 FORMAT( / / / / y 7 MinmuM R.M.S. r e s i a u a l  i s  i s .  7yF10 .7

* y7 and occurs  fo r  degree  7y 13)
12345 CONTINUE 
C

CALL CPUTIMFR (1)
C
C ************************************************************
C RANGF ♦ MIDPT OF DATh TO Br INTFRPui-hT^D ARc CAt CU>.ATiD
C ThFSF ARF USFD IN ThF SChI ING C«l CUt ATIONS................................
C ************************************************************

RhNGF=X(MM)-X(1)
MID=X(l>+(range/2>
RFUTND<3>
0PFN<17yFIi F= 7PTS. DAT9ySTATUS= 70 D7 )
OPFN( UNIT=3y FIi.F = 7Crt. DhT7 ySTHTUS-7u DT )
NIN=3 
N0uT=7 

wRITF (NuuT y©9995)
IF (Mn.LF.O) 5T0=

22 RFrD <NINy©9997ytND"©7) N 
NP»_US1 = N 
HP i US I = Mrf + 1 
MPt US? = Mrt + 2 
Fi.Mi = Mrt -  i
RFAD (NINyA9996) (B( I ) y 1= I yNPi USD 
wri t e  ( nout y 69994)
WRITE (N0UTy69991)

R=0 
I JK= 1
DO WHILF( IJK.FG.1)
R-R+l
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READ( I7,7998,END^7)XCAF 
C ************************************************************
C SCALING CA1 CUlATIONS ARF NOW DONE TO SCALE ThE X(r) VALU~S
C SUCH THAT X(»ox) RFCOHFS + 1 AND X(»m> BFCOMFS - 1 - . .
C I .E , - K X ( r ) < + I  .......... .................................................................................
C ************************************************************

XPT=XCAP
XCAP=(XCAP-MID) / C RANGF/2>
IFAIL = 1
CALL E02AEF(NPi.USI, B, XCAP, P,  IFhI O  

IF ( IFhI u .NE. 0 )GOTO 44
C
C WAVELENGTH TO ENERGY CONVERSION..........
C

E n r -12 3 9 8 .5 4 15/P

WRITE (NOUT,69990) R, XPTf P,Enr
C
C FND OF CONVERSION...............................................
C

i f  (p .e q . ( O .O ) )  tnen
go t o  44
e l s e
go t o  ©6 
e n m f

44 WRITE (NOUT,©9989> R, XPT
¿6 END DO 

GO TO 22 
67 c l o s e (3)

c l o s e  (17)
CALL CPUTIMFR (0)
ChLl CPUTIM^R (1)
WRITE (5 ,5 5 5 5 5 )

WRITE (5 ,55554  >
WRITF (5 ,5 5 55 3 )

w r i te  ( n o u t , 55555)  
w r ite  ( n o u t , 55554)  

w r i te  ( n o u t , 55553)
69999 FORMAT (6A4, 1h3)
69997 FORMAT (15)
©999© FORMAT ( F 2 i . i l )
69995 FORMAT ( jli-0)
69994 f o r n o t  ( / /»****************************

*********************************f
* / ’ I N T E R P O L A T I O N
* F O L  L O W S ' ,
* / 9 ***************************** 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * )

69991 FORMAT ( / / *  R P o s i t i o n  X(r) Wovelength Y ( r ) T,
* 9 Energy ( e V ) V )

69990 FORMAT ( I x ,  I 3 , ? x , f  1 0 .3 ,  7 x ,  f  1 0 . 3 ,  1 2 x , f  10. 3 ,3 x ,F lO .  3 )
69989 FORMAT ( l x ,  I 3 v?x ,F lO »3v 9 ARGUMENT o u t s io e  RbNGE.*)
55555 f o r n o t  ( / / / 7 *****************************  

***********************)
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55554 *or»ot  ( / / »  E N D  O F  D A T A . » )
55553 fo r g o t  < / / '  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

**********************)

7998 FORMAT<F20.3 )
STOP' END 0“ PROGRAM9 
END

C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

SUBROUTINE CPUTIMER ( I )
INTFGER*4 LTBSTNIT_TIMER,L.IBSSr,uw_TIMcR ,i TBSSTATJTIMER, 

*VALU =:, CODE , STATUS 
INTEGER DAYS,n0uR5,M INuIT
REAL VALUERS,M INS,M IN,SECS,nURS,SIXTY,TFOUR,nUNDT  
COMMON NIN,NOUT

C
C THIS SUBROUTINE CAi CURATES TmE CPU T IM r  W-vICn IS  US’ D
c Du r in g  tme program r u n .
C IT  HAS Two MOD'S r
C O )  1=0 WRITES TO SYSSOUTPUT T n E  T IM ' USED IN  SECONDS
C SINCE THE LAST CALl .  UNLESS OTnERWIS” ASSIGNED
C SYSSGUTPUT IS  ThE SCREEN.
C
C I = - l  USED TO IN IT 'A i IS ’  TnE CPU T IM r  STORED SThTUS.
C
C (2 )  1=̂ 1 RETURNS TnE CPU TIM'" US”D SINCE i. hST CA> t Tu
C i_IBi>TNTT_TTMER UAS M A D E... TnE RESU T IS  Wa ITEN
C TO TnE NOUT F I i_ E . . . .
c
C TnE VAX/VMS RUN-TIME LIBRARY (RTu > ROUTINES i^TB^TNIT T IM r R 
C i.TBS5TrT_TIMER AND i_IBSSnOW_TIMER ARE USED TO Ch ! Cux-bTE
C TnE CPU TIM^S DISPLAYED____
C
C * * * * * * I N I T IA i  I7E  TnE CPU T IM E R * * * * * * * *
C

IF  ( I . E Q . - l )  GO TO i 
IF  ( I .E G .  0 ) GO TO 2 
IF  ( I .E Q .  I )  GO TO 3

C
C MODE < i )
C

1 CAi.l LIB*INIT_TIMER 
RETURN

2 CODE =* 0
CAt.L LIBSSnOw TIMFR (,CODE,)
CODE = 2
CALL LlB*SriOg_TIHER C,CODE,>
RETURN

C
C MODE (2) *** PRINT OUT TnE CPU TIMr USED *** 
C

3 C0DE=2
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HUNDT = 100-0
SThTU5= i.IB£5TAT_TIMFR (ZREF (CODE ) f ZRFF( VA Ur ) , )

C IF  ( .NOT.STATUS)~CAi L LIBSSIGNAl (ZUAL (SThTUS) )
UALU -  VAi UF/hUNDT 
SIXTY = 6 0 -0  
TFOUR =  7 4 . 0c
I F  (VAIU .G E. SIXTY) ThFN
MINS *  VALU/SIXTY
SFCS -(M IN S  -  IN T (M IN S ))*S IX T Y
e ls e
secs = v o lu  
END IF

C
IF  (MINS -GE. SIXTY) TkFN
HRS MINS/SIXTY
MIN = (uRS -  IN T (kR S))#S IXTY
M INUIT = TNT(MIN)
e l s e
n i n u i t  = mt(MINS)
END IF

C
IF  (HRS .G E. TFOUR) TnEN 
DAY = nRS/TFOUR 
HURS = (DAY- IN T(D A Y)) «SIXTY  
HOURS -= IN T (nURS)
DAYS » IN T (D hY) 
e ls e
HOURS ~ m t(rtR S )
END IF

C
WRITE ( NOUT,2 2 2 )DhYS, «OURS, MINUIT, SFCS 

222 FORMhT ( / /4 X ,* E lÂ SED CPU TIM* FOR TnIS PROC-SS IS .  » , / /
* 4 X , I 2 , , s T, I 2 , T5, , I 2 , T: T,F 5 .7  )

RFTURN
END

C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

SUBROUTINE tiB ^ o o ie  
C tim e a o te  re tu rn s  tne tim e  ond d o te  o f  e x e c u tio n  o f  tn e  program
C IT  US'S Trir  UTI* ITY TIMF AND DhTE ROUTINES wrtlCrt RFTuRNS
C TIME AND DbTE IN  IN C«ARACTER*12 FORMhT .

CHARACTER*?5 IT IM ~ ,ID bTE 
COMMON NIN,NOUT 
CALl T IM 1: (IT IM E )
CALL DbTE ( ID hTE) 
w r ite  (nout,*e>5) IT IM ^ ,ID bTE 

6 *5  fo rm a t ( / / / / *  Tm s p o l l y f i t  was ru n  a t  y, l A 8 ,
*  y on t he  * , i h i 0 ,  y. y )

RETURN
END
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This p o l l y f i t  wos run o t  2 1 :3 1 :5 6  on the  14-DEC-85 .

***************************************************
P O L L Y F I T .

Nth; order polynomial f i t  t o  on a r b i t r a r y  s e t  o f  data p o i n t s .

Input data

Number o f  data p o i n t s  = 9

Maximum degree = 3

Unit  w e igntm g f a c t o r s  ore  u sed .

r P o s i t i o n  X(r) Wavelengtn

1 54.534 i 6 i .686
2 5*.374 160 .073
3 91 .120 131.441
4 107.353 118.984
5 120.059 109 .514
6 132.498 100.616
7 143.o75 9 2 .8 7 5
8 147.641 90 .2 0 0
9 159.881 8 2 .0 8 2

RESULTS

BtGRfc.ii 0

J CntBYSntV CQEFF A(J)

232.77133333  

R.M.S. r e s ia u a l  = 29 .37941885

BtGRtt 1

J CntBYSntV COtFF A<J)

240.93488821
-40 .0893*728

R.M.S. r e s id u a l  = 1 .22o93804
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DEGREF 2

J ChEBYSriEV COEFF A(J>

240 .94589588
-3 9 -7 8 4 2 2 3 3 3

1-40995351

R.H.S. r e s id u a l  -  0.023*4705

DEGREE 3

J ChEBYSmEV COEFF A(J)

240-93521107  
-3 9 -7 7 9 9 2 * 3 7  

1-40997521  
- 0 -0 1 5 * 5 1 4 4

R.H.S. r e s i a u a i  = 0.02158993

J1ini»un R.H.S. r e s i d u a !  i s  i s .  0 .0215899  and o c cu rs  to*  degree 3  

POlYNOMIAl APPROXIMATION AND RESIBUAlS FOR DEGREE 3

R POSITION WAVElENGTH RESIDUAL

1 54.534 1*1-673 - 0 .0 0 1 2 4 1 4 4
55.454 1*0.878

2 5*-374 1*0.085 0 .0 12 2 92 0 7
73.747 145.452

3 91 .120 131.458 0 .0 0 1* 7 53 5
99.23* 125.135

4 107.353 118.948 -0 .0 0 3 1 0 2 5 5
i 13.70* 114.198

5 120.059 109.530 0 .0 1 *3 7 17 4
12*.279 105.039

6 132.498 100.624 0 .0 0 75 ¿ 55 8
138.087 9*.721

7 143.*75 92.880 0 .0 0 5 1 4 9 1 3
145.*58 91.532

8 147.*41 90.191 -0 .0 0 9 0 * 2 8 2
153.7*1 8*.101

9 159.881 82.082 0 .0 0 00 0 29 3

ElAPSEB CPU T±HK FOR THIS PROCESS IS .  

Os 0: Or 0-71
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f t

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
1*
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

I N T E R P O L A T I O N  F O L L O W S

o s i t i o n  X(r) Wavelength Y(r) Energy (i

54 .534 161.674 76-689
5 6 .374 160-086 77-449
91 .2 10 131.386 94-367
98.09© 126-015 98 .38 9
98 .778 125-488 98-802

107-353 118.948 104.235
107.99© 118-463 104-661
120.059 109-530 113-197
132-09© 100-907 122-871
132.498 100-624 123.217
143-675 92.880 133-490
144.040 92-631 133-848
147-641 90-191 137-470
157-200 83-833 147.895
159-88i 82-082 151-052

0 .0 0 0 ARGUMENT o u t s id e  RANGE.
0-000 ARGUMENT o u t s i a e  RANGE.

56-540 159.943 7 7 .5 1 9
5©-854 159-672 7 7 .6 5 0
57-335 159-259 77-851
57-7©© 158-889 78-033
58-134 158.573 78-188
59.01© 157.81b 78-562
59 .594 157.324 78-809
59-933 157-035 78-954
©6-078 151-832 8 1 .6 60
6©.58© 151.405 81-890
©7.235 150.861 8 2 .1 85
©8-0©7 150.165 82-566
©8-747 149.597 82-880
69 -1©© 149-247 83-074
71-942 146-942 8 4 .3 77
72-293 146-651 84-544
72 .2 95 146-650 84 .5 45
75-407 144.087 86-049
75-665 143.875 86 .1 76
80-700 139.775 88-704
80.981 139.547 88 .8 48
82 .030 138.700 89-391
82-263 138.513 89-512
82-842 138.046 89-814
83.201 137-758 90-003
8 3 .6 46 137.400 9 0 .2 37
84-996 136.318 90 .953
85-361 136-026 91-148
86-020 135.500 91-502
86-299 135-277 91-653
87 .004 134-716 92-035
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49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103

87 .3 53 134.438
87 .7 90 134.091
88 .4 2 7 133 .585
89 .3 49 132.855

0 .0 0 0 ARGUMENT o u t s id e
0 .0 0 0 ARGUttFNT o u t s id e
0 .0 0 0 ARGUMENT o u t s id e
0 .0 0 0 ARGUMENT o u t s id e

94 .9 49 128.458
95 .2 68 128.209
95.361 128.137
95 .6 8 3 127.886
9 6 .4 2 3 127.311
9 7 .7 7 4 126.264
97 .8 55 126.201

0 .0 0 0 ARGUMENT o u t s i d e
0 .0 0 0 ARGUMENT o u t s i d e
0 .0 0 0 ARGUMENT o u t s i d e
0 .0 0 0 ARGUMENT o u t s i d e
0 .0 0 0 ARGUMENT o u t s i a e

100 .104 124 .467
100.741 123 .978
101 .647 123.283
102 .745 122.444
103 .513 121.858

0 .0 0 0 ARGUMENT o u t s i d e
0 .0 0 0 ARGUMENT o u t s i d e
0-000 ARGUMENT o u t s id e
0 .0 0 0 ARGUMENT o u t s i d e

108 .607 118.004
108.681 117.948
109 .095 117.637
109 .497 117.336
110.081 116.898
113 .035 1 14 .696
113-561 114.306
114.230 113 .810
113.053 114.683
113 .579 114.293
117 .546 111.367
117.793 111.186
118.191 110.895
118.568 110 .619
119 .078 110.246
119-501 109-937
119-718 109-779

0 .0 0 0 ARGUMENT o u t s i a e
0 .0 0 0 ARGUMENT o u t s i a e
0 .0 0 0 ARGUMENT o u t s i a e

120 .234 109.403
120 .386 109.292

0 .0 0 0 ARGUMENT o u t s i a e
0 .0 0 0 ARGUMENT o u t s i d e
0 .0 0 0 ARGUMENT o u t s i d e

140 .008 95 .394

RANGE
RANGE
RANGE
RANGE

RANGE
RANGE
RANGE
RANGE
RANGE

RANGE
RANGE
RANGE
RANGE

RANGE
RttfvGE
RANGE

RANGE
RANGE
RANGE,
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104 0 .0 0 0 ARGUMENT o u t s id e RANGE.
105 0 .0 0 0 ARGUMENT o u t s id e RANGE.
106 0 .0 0 0 ARGUMENT o u t s id e RANGE.
107 0 .0 0 0 ARGUMFNT o u t s id e RANGE.
108 156.560 84 .254
109 156.623 84 .2 12
110 156.447 8 4 .3 2 8
111 0 .0 0 0 ARGUMENT o u t s id e RANGE.
112 0 .0 0 0 ARGUMENT o u t s id e RANGE.
113 0 .0 0 0 ARGUMENT o u t s id e RANGE.
114 140.001 9 5 .3 9 9
115 139.999 9 5 .4 00
116 133.881 9 9 .6 52

147 .158
147 .230
147 .078

179 .965
179.964
124.418

ElAPSED CPU TIME: FOR TnIS PROCESS IS .  

0: 0: 0: 1 .26

E N D 0 F D A T A .
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APP2 3 THE ENERGY LEVELS PROGRAM.

This program was written in order to determine if any of the unknown absor­

ption tines observed in the spectra of silicon and aluminium plasmas were due 

to transitions involving known excited states of ion stages likely to be contained 

in the plasma The program takes as input a series of energy levels and 

corresponding values of the quantum number J and by the application of the 

selection rule AJ = 0 ±1 determines the wavelengths of ail allowed transitions 

between the levels given as input The program also restricts the output data to 

within two wavelength iimits spesified as input The values of the energy levels 

(in cm ~ L) are stored In a file called INPUT DAT along with the quantum 

number J and the term value The term value for each level is a non numerical 

character quantity which simply identifies the individual levels being used 

(eg 1S0 or 3P1 etc) The term value takes no part in the numerical calcu­

lations of the program and is simply used in the printed output for easy 

identification (see sample input/output data) Typical input and output data 

follows the listing of the program given below The sample Input given below is 

the list of all known energy levels of the Al IV ion taken from Martin and Zalubas 

(1979) and the output is the list of all allowed conbinations of these levels A 

DCL (Digital Command Language) procedure (not included in the program) is 

then used to sort the output m order of decreacmg wavelength
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£ ••* * « •« * « •« « « * •••* ••» •* * * * * * •* « •« * » « * * * * « « * * « * * * « * * ••« * « « «  
c *c *
C r PROGRrM TwAT CrLCULrTES All TwE POSSIBlF AlLOWED *
C *
C TRrNSITIONS BETWEEN r  NUMBER OF KNOwN ENERGY lEVElS *
C *
C U H X C h A R E  G I V E N  A S  I N P U T  *c *
C T O G E T H E R  W I T n  *c *
C C O R R I S P O N D I N G  V h L U E S  OE  *c *
C T r i E  QU h N T U H  N U M B E R  J- *

CmrRrCTER*11 TITLE*50rTERM(i000>
RErl L(iOOO),J(1 0 0 0 ) ,E < 1 0 0 0 ) ,  A( 1000) , j IK,Wl IMi , wlIM2 
INTEGER I , K,N 
CoMon i t i * e , i d a t e

C INPUT AND OUTPUT FIlES ARE OPENED- ■INPUT.DrT* CONTrINS TnE 
C
C lEVElS AND J VAlUES UrilCn TnE PROGRrM USES TO ChlCUlATE hll 
C
C OF TnE POSSIBLE lEVElS ACCORDING TO T«E SELECTION RUlES
C
C TnE CAlCULrTED lEVElS ARE STORED IN T«E OUTPUT FIlE WrtlCn 
C
C «AS BEEN GIVEN TnE NAME *lEVElS.DrT*

OPEN (UNIT=4rFlLE=rLEVELS2.DAT* f STATUS= *NEUf )
OPEN (UNIT=3r FIi.E= ' INPUT . DrT» f STrTUS= ' OlD ' )
OPEN ( U N IT=7f F I l E= ' LEVEl S . DAT» f STATUS“ » NEU» )

C
C Read o t i t l e  fo r  the  o u tp u t  .
C

WRITE ( 5 ,5 5 5 )
READ (5 ,5 5 4 )  TITlE

WRITE ( 4 ,5 5 * )  TITlE 
WRITE ( 5 y5 5 1> TITlE 

555 FORMrT ( 2X,/ / / / / / / / / /  r Input  o t i t l e  fo r  tne o u t p u t . ' / / / )  
554 FDRMrT( 1A50 )
551 FORMrT (1X.1A50 / /  )

C
C Read a date  fo r  tne  o u tp u t
C

c a l l  t iK e a o te
C
C D e f in e  o s  in p u ts  tne  lo n g w ov e len g th  h m t  
C and th e  sh o r t  vavwiength i m i t  o f  the  
C o u tp u t  wavelengtns  ra n ge .
C

WRITE(5,**3)
READ ( 5 9**1) Wi.IMi
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WRITE ( 5,©62)
RErD <5f o©1) W'.IM2

*63 
6©2 
60 k

C
c
C

155 
98

C
c 
c

660
*

120
*

130 
125

*
*

135
C
C The s e l e c t i o n  r u l e s  ore now a p p l i e d  by u s in g  tne n e s t e d  ao loops  
C be low .
C

DO 77 1=1,N - i  
DO 88 K»7+I,N-1
IF ( J ( I )  .EG. 0 .  .AND. J(K) .EG. 0 .  ) GO TO 88 
JIK = ABS( J d ) - J ( K )  )
IF <<JIK .EG .0 .) .0R .(JIK .E G .1 .>>  TntN 

GO TO 100
Ei.St 

GO TO 88
END IF

lOO E ( I )  = ABS(Ld)-LCK) )
A ( I >= l . / ( E < I > / l . E 8 >

IF ( (  ACI) .LE. wlIHI ).AND.( A (I )  .G t .  Wi_IM2 >) TrtFN 
GO TO 95

ELSE 
GO TO 88

END IF
95 WRITE <4,175 )TERM<T>fL<T)fTERM<K),L<K),J<I),J(iO ,JIi<,E< I) , A(I) 

WRIT* <7,175 )TERM<I) ,i_ < I) ,TERM<K) ,l-<iO,J<I),J<K)tJTi<yE<I),A<l> 
WRITE <5,185 ) L<I),L<K),J<I>,J<K>,JIK,E<I>,A<I)

175 FORMAT <X,A1i,?X,F13.3,4X,A11,2X,F13.3, 3X, F5.2,
# 3X, F5.2, 5X, F5.2, 3X, FI3.3, IX, FI3.3 »

185 FORMAT < F13.3,3X,F13-3,3X,F5.2,3X,F5.2,

FORMAT ( // ' Input the long-wove length li.i*.r)
FORMAT < // » Input the snort-woveiengtn ii.it.* )
FORMhT <IF 13.0)
Read m  the energy levels and tne *J* values.
read <3,155,end=?8 ) < l.<N),J<N>,TERM<N),h=l,1000) 
for.ot < f13.3,f5.2,oi1 )
CLOSE <3)
write woveiength ii.its to ouipui »lie
write < 5,6*0 ) wii»l,wiii»2
write < 4,«>t>0 ) wiinl,wii.2
FORMAT <//lX, 'Uaveiengtn output is resiricted to between’,

/ F8.3,* ond ’,F7.3, ’ angstroms ’ // )
URITE <5,120)
WRITE <4,125)
WRITE <5,130)
URITE <4,i35)
FORMAT< 4X, * lEVEi. 1 » ,8X, »«.EVEi. 2*,«X,*J<I)»,3X,»J<2>*,
2X, *DEi.TA J*, 3X » NEU LEVEi_»,8X, »UAVEi.EWSTn* )
FORMAT < 9X , * CM <-!)*,12X,* CM < -1) * , 4©X , 1 CM < -1) * , 20X , * < i. / T / ) 
FORMAT < 2X , * TERM < 1) * , 9X , » i.EVEi. < 1) » , ©X , » TERM < 2 ) » 14X , r i.EVEi. < 2) » , 
10X,*J<l)’,5X,rJ<2)r,4X,*DEi_TA< J)*, 3X,»htU LEVEl »,
AX, * UAVEi.ENGT ri * )
FORMAT < 18X,»CM<-1)»,19X,»CH<-1>»,40X,»CM<-1)»,13X,»<A>»/ )
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* 2 X ,F 5 .2 ,3X ,F 13 .3 ,3X ,F  13.3  )
88 CONTINUE
77 CONTINUE

s e l e c t i o n  r u l e s  ore app l ied  and l e v e l s  c a l c u l a t e d .

WRITE ( 5 , 7 7 7 )
WRITE ( 5 ,7 7 8 )

WRITE (5 ,7 7 9 )
WRITE ( 4 ,7 7 7 )

WRITE (4 ,778)
WRITE ( 4 ,7 7 9 )

WRITE ( 4 , 8 8 0 )
WRITE ( 4 , 8 8 1 )

WRITE ( 4 ,8 8 2 )
WRITE (4 ,  991)

WRITE ( 4 ,  990)
777 FORMAT ( / /  ' ******************************************* ' / / )
778 FORMAT ( ' E N D  O F  D A T A  ' / / >
779 FORMAT < ' ******************************************* ' / / )
880 FORMAT ( / / '  ==============“ ==“ ==— ===“ —

# r= = = r= = = = = = rr3 = = = = rr= = = = = rr r r r r= = = = r= = = rr r= = rr r r r r3 .= =  f / / >
881 FORMAT( * OUTPUT IS ARRANGED TN ORDER OF DECENDING

* WAVELENGTn BElOW.'/ /)
882 FORMAT ( ' ========================«===================

f / /  )

991 FORMAT(7X, 'TERM( I ) ' ,9X, 'LFVEl < 1 ) * ,6X ,  'TERM(2> ' ,4X, tlEVEl (2 )  ' ,
* 10X, ' J ( 1 ) ' , 5 X , ' J ( 2 ) ' , 4 X ,  'DclTA(J) ' ,  3X,'NEU LEVEl ' ,
* 6X, »WAVELENGTmt )

990 FORMAT ( 18X, 'CH(-1> ' , I9X, ' C M ( - I ) ' ,  40X,'CM(-1) ' , 1 3 X , ' ( A ) ' / /  >
888 Cl o s e (3 )

ClGSE(4 )
999 CLOSE(7)

STOP 'END OF JOB'
END

C*****************************************************************
SUBROUTINE timedate  

C t im ea ate  r e t u r n s  tne time and d a te  o f  e x e c u t io n  o f  tne  program 
C IT USES TmE UTIi.ITY TIME AND DATE ROUTINES wrilCri RETURNS
C TIME AND DATE IN IN CnARACTER* 12 FORMAT.

Cr»AR«CTER*25 ITIME,IDATE 
COMMON NIN,NOUT 
CAlL TIME ( ITIME)
CALL D«TE (IDATE) 
w r i te  ( 4 y**5) ITIMr,IDATE 
w r i te  ( 5 ,6 * 5 )  ITIM” ,IDATE 

665 format ( / / / / '  Tms progrom was run a t  ' ,1A8,
* ' on t h e  ' , 1 A10, )

RETURN
END
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Input data for the 

000000 . 0 0 . 0 . 0

energy levels program 

ISO IV 85743©.70 2 . 0 r2C3/232 IV
t>iòo44. 20 2.0 3P2 TV 8 5 7 6 4 2 .7 0 5 .0 ,2 C 9 /2 3 5 IV
618473.90 1.0 3P1 IV 8 5 7 6 4 5 .9 0 4 . 0 f 2C9/234 IV
620060.10 0.0 3P0 IV 8 5 7 8 1 0 .5 0 3 . 0 f 2C5/233 IV
624717.50 1.0 IP1 IV 8 5 7 8 3 5 .1 0 2 . 0 , 2C5/232 IV
671632.50 1.0 351 IV 8 5 8 0 5 1 .4 0 3 . 0 ,2 1 7 / 2 3 3 IV
671632.00 1.0 3B3 IV 8 58 0 5 5 .6 0 4 . 0 , 2T7/234 IV
680859.80 3 . 0 3B2 IV 8 6 1 2 4 6 .9 0 3 . 0 f 2C7/233 IV
681683.30 2.0 3D1 IV 8 61 2 5 2 .4 0 4 . 0 , 2T7/234 IV
682981.80 1.0 IDI IV 8 6 1 2 5 7 .7 0 3 . 0 f 2C5/233 IV
685728.20 2.0 1D2 IV 8 6 1 2 7 4 .8 0 2 . 0 , 2C5/232 IV
686959.10 1.0 1P1 IV 8 7 0 9 9 1 .9 0 2 . 0 , 2C3/232 IV
687830.50 2.0 3P2 IV 8 7 1 5 1 2 .2 0 1 -0 ,2 C 3 /2 3 1 IV
688309.60 0.0 3P0 IV 8 74 4 2 2 .9 0 0 . 0 , 2C1/230 IV
688649.40 i .O 3P1 IV 8 7 4 7 5 6 .8 0 1 . 0 , 2C1/231 IV
714096.90 0.0 150 IV 8 9 4 6 1 0 .0 0 1 .0 ,2C1/231 IV
759193.40 0.0 3P0 IV 8 9 6 1 4 0 .0 0 1 . 0 , 2C3/231 IV
759596.80 1.0 3P1 IV 8 97 1 9 7 .1 0 1 .0 ,2C3/231 IV
760472.30 2.0 3P2 IV 8 9 7 2 1 7 .6 0 2 .0 ,2 C 3 /2 3 2 IV
761688.40 4 . 0 3F4 IV 8 9 7 3 2 4 .7 0 5 .0 ,2 C 9 /2 3 5 IV
762272.50 3 . 0 3F3 IV 8 9 7 3 2 8 .4 0 4 . 0 , 2C9/234 IV
763613.60 2.0 3F2 IV 8 9 7 4 1 6 .8 0 3 . 0 , 2C5/233 IV
764297.10 3 . 0 1F3 IV 8 9 7 4 3 5 .7 0 2 .0 ,2 C 5 /2 3 2 IV
766880.80 1.0 3D1 IV 8 9 7 4 7 0 .3 0 2 .0 ,2 C 5 /2 3 2 IV
767345.50 3 . 0 3D3 IV 8 ° 7 4 7 1 .00 3 .0 ,2 C 5 /2 3 3 IV
767750.60 2.0 3D2 IV 8 9 7 5 0 6 .5 0 5 . 0 , 2C11/235 IV
767035.70 2.0 1D2 IV 8 9 7 5 0 6 .0 0 6 . 0 , 2C11/2 3 ìi» IV
770836.90 1.0 IDI IV 8 9 7 5 3 7 .5 0 3 . 0 , 2C7/233 IV
801882.30 2.0 2C3/232 IV 8 9 7 5 4 0 .1 0 4 . 0 , 2C7/234 IV
802907.50 1.0 2C3/231 IV 8 9 7 5 7 1 .0 0 3 .0 ,2 C 7 /2 3 3 IV
805309.70 0.0 2 € 1/230 IV 897572 .11 4 . 0 , 2C7/234 Iv
806234.90 1.0 2CI/231 IV 8 9 7 6 0 8 .5 0 4 . 0 , 2C9/234 IV
821408.90 1.0 2 l 1/231 IV 8 9 7 6 1 0 .0 0 5 . 0 , 2C9/235 IV
827799.50 0.0 2C1/230 IV 8 99 3 1 0 .0 0 i .0 ,2 C 3 /2 3 1 IV
824080.00 3 . 0 2 l5 / 2 33 IV 9 0 08 3 6 .9 0 3 . 0 , 2C5/233 IV
824544.70 2.0 2Ü5/232 IV 9 0 0 8 5 4 .1 0 2 . 0 , 2C5/232 IV
825277.90 1.0 2Ü3/231 IV 9 0 0 8 4 3 .6 0 3 . 0 , 2C7/233 IV
825739.60 2.0 2C3/232 IV 9 0 0 8 4 7 .7 0 4 .0 ,2 C 7 /23 4 IV
827845.90 1.0 2C3/231 IV 9 0 0 9 8 8 .4 0 4 .0 ,2 C 9 /2 3 4 IV
828439.20 2.0 2C3/232 IV 9 0 0 9 8 9 .0 0 5 . 0 , 2C9/235 IV
828498.80 1.0 2 l 1/231 IV 9 00 9 9 0 .2 2 3 .0 ,2 C 7 /2 3 3 IV
836666.50 0.0 2C1/230 IV 9 0 0 9 9 1 .3 5 4 .0 , 2 C 7 / 2 34 IV
851722.10 0.0 2 t 1/230 IV 9 17 2 5 0 .0 0 1.0 , 2 C 1/231 IV
852007.50 1.0 2C1/231 IV 9 1 8 1 6 0 .0 0 1 . 0 , 2C3/231 IV
852570.50 2.0 2C3/232 IV 9 21 4 4 0 .0 0 1 . 0 , 2C3/231 IV
855272.70 1.0 2C3/231 IV 9 3 1 3 6 0 .0 0 1 . 0 , 2C3/231 IV
852706.80 4 . 0 2C7/234 IV 9 34 6 7 0 .0 0 1.0 ,2C3/231 IV
853039.10 3 . 0 2C7/233 IV 9 67 8 0 4 .0 0 1.0,2P3/2uIM IV
853749.40 2.0 2C5/232 IV 9 71 2 4 6 .0 0 1 . 0 ,2 P 1 /2 l IH IV
853971 .50 3 . 0 2C5/233 IV 1045200 .00 v1 . 0 , 3P1 IV
856625.40 2.0 2C5/232 IV 1046500 .00 , 1 . 0 , 1P1 IV
856859.90 3 . 0 2C5/233 IV 1183700 .00 , 1 .0 ,3 P l  IV
856843.10 2.0 2C3/232 IV 1185100 .00 91 . 0 V1P1 IV
858642.00 1.0 2C3/231 IV 1241000 .00 r 1 . 0 , l P l  IV
857409.60 1.0 2C3/231 IV 12*9200 .00 f I . O ylPl  IV
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n n n n n « i n ^ n r n o o o o o o o o o o c o o o o f f l « c i t ( s # i t ® i i e « r n i n r i n o o o i n i n i f t i n r i n i n r i n i r  — r»r\rMMp*r\NNiNrsoooooooooo©oo©o©tt®©©©®tt©© — — — n ^ n o o o ^ ^  “ “ * ~ ~ * * ~ 
B - - - ~ - e c c s a « r r ! i r ) i o n n i n i n i n o o © o © - c < ' 0 ' C - c - - - - - « ® ® f f e © i n n i r ) r ‘
» I I ' • t • • * * » • • • ! » •  » • « » » ! >

«■« « ~c c c ^ 0' 0‘ > 0*i Nr s r s r j t \ NNNNr v®®®®®- < ' C- C' C' C®©c e ® — — -  o o o » ( k > o  
r \ c \ r . t s i N ^ » - ‘ K r r ‘ r > f f i © ® ® © - c  c  c  c c  c  «  c  « 1 -  -  c  c  c  © *•&>■ i\ -c w rs - coo*-rJ>rir^^c>>o»KirthO^Kiift>o»n«>rv-orii cr^»ffor.<-wps<
» » - « f v o c i  n ^ o >  c  © o  c ^ - r . n > N T f N r 5 ^ f > * ^ r . « p > . f v ^ 0 i N B < M i n r t 0 » f \ > i » j - ® r \  
o  c  c  m o  o  c  c  n- «r o  it i - » o - - < M O - « c > f l O o i o ( t » o o i ) ® T ^ o t ( n i ^ i n B r i / )  
N r > « ' c - c f * t f r > - c ' c f ' . n * ’>-c « M o n t o i n < t f > i o i r t i o  e w  w  io in c i n i f l i n i n - « n i n ' c i r j r )  c  in «  c m

m to io in m m r 10 IT
rs fS rv rv r\ r .  r es ts
n n < <  < ^  — — -<• • * • < • • t
o o o  o  o t* K K> <
0* +m m rs o  o r. o
© y*\ n  n  > >  - o
o © r\ o  n <  r <s o
c r> m © r ts r
tn c to io c n  to c rt

© o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o ©o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o
l l t l t l l t t l l l l l l l t l t l k l l l l l t l  > • » »  ■ • * >  • I I • t I I 1 «  I I I

-  O  O  O  O  O - - - - - © 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - - - - - 0 0 0 0 © - - - © © © - - - - - - O O O - - - -

O O O O O O O O O O O O O O O O O O O O O O © © © ©  
© © © O O O O O O O  '  *■ *■ “ '  ■ '  “

O O O O O O O O O O O O O O O O C O O O O O O O O O O Oo o o o o o o o o o o o o

o  o  o  o  o  o o o o o o o o o *j o o o o o o o o o o o c  o o o o o o o o o o o o o o o c
- o o o o o - - - — r .  p> r* r .  r*

o o o o o o o o o o o o• • • • > • • • • « • «  I I I I « I I « I_ — «(NMS- - - C\(\(SOOO — — — O O O O

O O O O O O O O O O O O O Oo o o o o o o o o o o o o o■ • • I • i * > •  1 * 1 1
o o o o o o o o o o o o o o o
r N O O O O l N O O C O i N O O O O  — o r v - « r v - o r \ - « r s —o r y  

C K* 10 -  >  «  K n  -  9> 
0 D » < M Q 5 f  X M T I S t  C 

r *  -  ~  r \  p »  k >  -  -  r v r « r * 5  -  -  i \  i \

o oo o o o o o o oo o o o o o o o
t I I • ( * (

o o o o o o o o
( N O O O O f N O O  c rs -  o >o rv -  c r m- o  orr> ts © © v c rs. © ©

- - - - - . O O O O O O O O O O  
O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

• * I I I I I * i I t I I f • ^  ^O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O00(NOOOot\ooootNOOfvoofNOOr.oof\oof\oorNo
O C\ fs — © r\ <« rs -  O f S - « O f s* ' C O r v - c o w* ' C O f N ' > C O f S ' C O r . * C P >  
— 0* «  K If) — <► «  rt  ^  >  C — *C — >  C — 0* C — O- C -  >  c  — >  C 9>
» ' C P . f f t t ^ ' C r . a a ^ ' C r . T ' C ^ ^  c t % »  c f N . ^ « c t s ^ > c r . » < ,N - c  — —r.n.K' — --rtpvr>rv(Nf f̂\fN»̂ pvp̂ r'Pwf\wfsr.«r\r',»̂ rN

 N   x  _______  \ ̂  ^  S _ S X X s  V \ x
r » w  —  —  —  t s r t  —  —  —  r * w  —  —  —  (n w  —  —  —  r s.  r t  —  —  —  —  —  —  —  p *  —  — t \  —  —  c *  —  —  —  —  ( \  —  —  r »  —  —  t s  —

® tn r» io «  m 10 10 10 iO 10 o o  o  o  o  o o  o O O
a  n N N N N r \  r\  r .  r ,  r% o o  o  o o o  o  o o  o
-  © s ©  © © — — -  -  — 10 to 10 10 IO IO to ir to to
▼ n r n  w r» o’ o  o  o  o N I S S N (S N I\  IN i \  rv» N N N N N • C ' 0 ' C < - C mm — M M n «  w « n•c ̂ T ♦  V T o  o  o  o  o N Ps ps. IS fN 0 c « c c
«  s O © © © o  o  o  o  o ♦ f  »  ♦ T^  mm — — ■■ r .  i s fs r% rs r\ rs r \  t \ N N N N  Ko  •*•« c c c X o -i < < C C >c c C <  < •c C

O O O O O  — — — — — — — — — — ttaacst\r*ooor»cNP»rsr»»NN.f>vrsN 
0 0 0 0 0 K M M n w e * c © © - - - - - - r ! ^ « < < ' c r r n B C t t w• • » • » • • • • »  ■ > • * •  • • • ■ • ■  I I I ,fNifWf̂ rviNMWMMW — ™ — — — Sfi(t^lV>OQO0i0| 0| I>^0t 'C<'<K> rtnnf*)tfs©©sa©o©ssr\r\f\inifttftf''tfr*)OOQ**T(v^0‘0‘ 
C C -C C-C C ' C ' C ' C ( h & ’ > { h O ‘ N r \ N > » > O t © © S m K ) t t ' C ' C ' 0 0 0 0  —— — — — — — — — — — < \ r \ r \ r \ < \ t r t t f l i O ' C ' < ' C N r s f ' \ m © © © a f f l T * * ' & .^NNNNC&OSSffiSSOffi9iS0SSBS(OSS(fiS(SOfi"«»n
'O 'C  C <  C < <  *4 C -C •$ O ' C - C ' C ' C ' C - C ' C ' C ' C - ^ - O ' C - C ' C - C ' C  C <  N N N  N

=>3 * >
r* — — — — — o o o o o -  — -  — — — — — -  — r t w w n w -  — — -  i A . a . i a . a . a . a . Q . L a . a . i i f i . f l . u 9 ( D n i f i ( i ) O f i f l o a o f i f i Q _________ — — Nfyri — — — (NfMfNOOO — — — O o O o o o a o a a . a . a . a a . a . a . 6 .  i n i a u e f f i i-------

157



v-o*r*0®rsiofNr*>®«r''« — «Tiorswio® h- nœinpiNncœsnNO^- 'OSSf t i i*r w c ■« n <► — Nioftroworsfs^rscnrsc« o — ▼ xcNfr-rstonrs'rttc^xwNOttioiOXfs
r v i s r ’) » ,) ' « N ' « 0 '0 » P ‘ — N O ' r t C K ® — 9 * — z  ~  î s x t * -  — ~  — o x > r s i O f N © c N C N r N r s - ®i i i • t i • i • i • i i « i i • • < i i i t C  * « ■ • ( *  t t « i ( t i ( « i * * »

- - - - -  - -  c  - - - - -

« s œœ œ r 10® ® 1010Wro10s On tf>io n io10 ■1 ® m« io a n œroœ ® r r  o o  n o o o o n f )(Ntt® o ® Nrs Os Nfs M t\ ® o —CNrs -  rs rs ■ ® rv CN IS ® -  ® —œ o rs rsœotNOooors,—< -  - x x n tr Mtr W S M< 10r)— n - n • h — w -  w n - « -  *  - rt 'C - 'C io o o io -r* « * • » i • • > * • » « • • * • > » * i • « * * * * 1 ■ • i • i « i t i t i *
x r> n rs rs x x O' 9*O' > ♦ wrs rs. o 10m10 CNo « it « ® o CN O <«10 ® > < - <NW-«SO®MOOrs o rs rs * ® o n ♦ * < 9 œn M OMrs V® i _ — -  «  ̂ - rs —•«  ̂^ ®CNOO c >c •« -0 ® -9 X Orv -  ioo K>rs * ® 10rs rs rs tr Mfs O H>o 1 1 rs ® r> ^ o o - —r  ▼ rs K)N<OOOtTW rtN * Ps ® X 10r r. 0*«■® fNo>« ♦ MO10 CN - o i 3 ~ o o — — CNfN r fs fN r  ^ jo®o»orscN«no-«O'« o « o « o 10o » O10(Or\ (Nrs CNO O Oo i Z o o o o o o o o o o o O O o - - - - - f y f v10 10 10to 10 10 »01010101010m1010r 1010m tn m10 «i1ft

z u 10 »0io io rs10 10tn10 W 10ntntntntmfitntntntn

O O Oo o o o o o o o o o o o o o o o o o o

ifRft

A
N*
« o o o o o o o o o o o o o o o o o o o o oo o o o o o o o o o o o o o o o o o o o o o 1 H o o oo o o o o o o o o o o o o o o o o o» t t * t • • « • • • • * %* » • • t • ft ft _! « » « » » • * I t * t t l l t l t l i *

-  o o *»o o o mmo o o -  o ftft*ft
A o - o -  - -  o 0-0 - - 0 - 0 0 0 0 0 -

o o o o o o o o o o o o o o O o o o o o o o
ftftftft

ACN o o o o o o o o o o o o o o o o o o o o oo o o o o o o o o o o o o o Oo o o o o o o • o o o o o o o o o o o o o o o o o o o o oft • • « t • 1 ■ t t * • » • 1 ft * » ft D ft ft * * » 1 * * « * I I  * I
- **" “ "

«■
“ “ “ “ " "

ftft1 "
«• —

~
« — ^  ̂^ ^ — —

o o o o o o o o o o o o o o o o o o O Ôo
ft1ft A o o o o o o o o o o o o o o o o o o o o oo o o o o o o o o o o o o o o o o o o o o o ft — o o o o o o o o o o o o o o o o o o o o o» • • • t t • • » • * • • • » • • » • • t ft V I * I • « t * l i * « « t i t i l l i !O — —f» CN CNN

“
CMfNCNfN

~
(N

“
o

" "
CN - CN ftft1 “Ï — rsi — ÍN tNCN —CN-  CN - t \ r \ - o -  — -  - -  o

o o o o o o o o o Oo Oo o o o o o o o o o
3 IIo h o o o o o o o o o o o o o o o o o o o o oo o o o o o o o o o o o o o o o o o o o o o >4 « o o o o o o o o o o o o o o o o o o o o oo o o o o o o o o o o o o o o o o o o o o o A ft o o o o o o o o o o o o o o o o o o o o ol i t » * » • » 1 ■ » t • t * • * « ft i * 1 ft * « 1 1 1 • • * * 1 I • l l t t t l l l lo o o o o o o o o o o o o o o o o o o o o o X ft o o o o o o o o o o o o o o o o o o o o oNON o M O(No rs o CNo tNCNfv (NENINCN (N ININ t- ft O CNCN O OCN O o o O rs o o o o o o o o r s fsX IN X r, x rs * PVi x PS. •«fN««•«-« < ■*•c >c >« •*-« (3 ft ■̂ rs -c < n. rs * - rs CN -  < rscNrsrsrsps — —X > X > -c > X o x > « » c « ■« € -« « « « Z ft CN tr c c 0» rs >C 10» > tn c >>»*>ro««io c <cn « rs « r\ e r. « pv c n. c rs rs CNr\ es CNrs rs CNrs it ft •»w ä S CNrs -c a c\ ® < < Œ CNc *  < €® ® ® ® rsr.W fN Win r  rs n rs mrs K- CNmr r « r r.« wtft w ft _ -— -  r r  rs - r* - fs p> -  r rv r rsrs — — — — rtK“ “ ■—H M M ”* —m* "" — “ —M —"" t ky ft *■ —-  -  - “■ “ *■ — “ —
4 ft 4. Z3 1 » « u

y > » > y » y > 5 > > a  « » => o y 9 y*-« M *• N" >— ►- H»►*M*•m *- t- M Z 1 m H* tm
X s x z z £ z z Z z Z z z z z z O 1 A z z « z X zM M p» M H* *- 1—M**h- w tm Z ft rs, M H »“_ :> - Z> - > _ y __> _ __— * tfe ft •»* ^ - - > 5 -  >rv ►« rs c* IN CNtmIN►»INCNINes rs rs CNr. CNr« U ft z ►- [NfN M t- IN Ml M*m h- rsS V S» S V V V V N\ V S*S s* NN. <1. II a N's 's 's N Xm >a —— — ————— ——M—« •>■—h «■ —h C I i* «■ —M M —*• MmmM — ■■BU Oa. ® &0 «XÜ) a COû. encc toWa U) tr te teto ft H a cnto &. a. t/j CLCl cl  ̂ trfN — CN-  rs - r. «ars CN tNtNÍNfNtNtNrs rs estN U ftO ft ft

r*> rs rs -  n rs - -  -  r» - - - - K ‘ W --tNf,

r  w wn w r mww1010® D IOn O® 1010® 10n
« ft I* ft St ft w IOio « w © r s W K* »0m p in io o o o o n itr*. — —— — c\ f\ ——f\ (NO® rs —Oœfs rs S Nrs. ft ft — rs N CN - 9 - œM — fSfN — — rso o o o rs®n ® ©m rt « x ® e x * « ■«® « tr *«œs *  S •« O 1 — ® < s  >c n « ® •c s n ® '« ro t^ ^ )o o « ® <» « < * * * • > » > ■ • ■ * • » t • • i ft ■w Ä * * i i i t » 1 1 1 i t i i t i i i ir) x x IN CN Wn o o o On 10■«rvrs > ♦ ® ♦ rs » Z ft  ̂ — -  ». s o n t * n O rt S nr»'Cr><NtNfNr>jT>o > o rs rs - —9 s 10IOron n ® Oo n o ▼ Nr» *■* ft Ik t ® r- MO D Y S « s e o — rs>>rK »w M ro— 10 10* W X « ® ® fs rs Oo œo » n CNV10 MN ft > rs rs rs -« io > o O'«« ««to -  « •« <« X r\ n!► t* o o m« X X NNNrs o —CN)0■«w♦ tnn a « 141 Z CN toio rs - » CNrs < — « wìO>> — — — —•««'Ìio tr io x X X x >0X * 'C «̂N o Oo o rs fN CNrs Ui V -  u ® rNCN ■« S IN S < < cd r \ < «niONNSNOOrs rs n rs rs rs rs rs rs rs rs Nrs rs e ®s ® ®0 ®® 13 ft Z ft « ft * ft

« ® ®  IS  •«® ■« IS rs ■« 9 rsrsrsN ex « x ® s

> y 3 > y O' •>

(t ft« 1 ft0 ft > > y y 3M♦— N- *■ ftA *■ N* m *- w
n O M —CN VH ft CN•m (N — «1 Ûy > y > Z>y y r* r»r»r» r*r» 3 1 w y r» yt« H»M M ►« M M»M ►- MCNÍNINCNfN CNCh a. a X ►» rs ft hHWH ^ ^ n MHNNHHNNfNnN's S s>V V S„S »- ■ a N \ X so  — —in cn cnfN——CNIN(NfN«Mr) M ——m m « n 3 1 UJ -  W« CN - n —fN rsiN—O — MM — — —A. H 0. 0. & Il 11a a a Oa a a u U l-t Uwu u u O II »- a  kJ u f i C u O a f l f iw lL<LILCLUlAfi®k.t^M M M, ** m m "* IN fN rs INrs rs inrs ft — rs tN n n  rN - M M fSwrîDronnrînrscN

158



65 L

- *S$£SSSg |  Î t s  Î S M i M Î S M M t a t a t S î S M & S i î t & i ' l î î i S M M : ! «  
^ i ^ S S S S ?  t i t  55ï f; ïSÎ5SSS;ïr: ï552SI§S! ' i ; ï1SiîïSSÏÏSSSSSS5S 

SîSSSgSSoîSSoSÿSSSSii iSSîSSiSiSSî i ï iSSSSgSÜSgSSSSSSSîJSSI » I »

tz%
s i l

S s s S = c s § a § § i S s i S S § § s £ S s l â i 3 l i i s 8 s S s S â â a i s i E s 3 s 8 i S 3 § S S S £ l

" x s n n n ” "*""
^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ « ^ « ^ £ € < c c c c c c c c < c ~ c ^ c ^ c c < : ~ < : ^ ^ c < - < : ^ < : < : c < c c < : - r  

* x î u n  a z s  ât âr a *  * * 5 5
■••**-<•« — ■*■« — »4 v* a* Ht wt >4 —
c  c c c c c c  c  c  c  c  c  c c  c  c  c e

MUW\)WUJWJUMOKIM»'MU\J<JM<JSJUMV<J1JiJ>W'U^W'‘"W>'U«V'W,JMMMUlJ<JV'juW> - ^ V ^ N J ' J \ J N ) V \ ) M A * , A ^ A \ ) ^ ^ » . > » . > » - 9 * * Â Œ \ l ® V ® \ i ® ® 0 D \ J ® > J V * ® ' J * \ . * ^ * * * A * N ; \ J
S5S.3Sî:8.î . i : t t5|55ôSSS5S5;5'555S2Jî!tif5îSÏ,StSSÎ53gô?SSSÔ5555?:
ggSgSSSSSSSgggiigSgggggggSggggggSgSgggggSSggSgSgggggSgSS

- 0 " j “ - M “ w e - e w - o o - 0 “ - M - w - s i O - - - N J O M - - w - e c ' N - - w \ ) » ' j - * ' V O » > j o - e M -

ggggggggggggggg§sggss§gggggs§gg$§gsgg$ggggggggggggggg§g

SggggggggggggggSggggggggggggggggggSggggggggggggggggggSg

e » , » o o “ 6 ,« - 6 “ * * o » “ 0 * ' 0 0 “ 0 " 0 “ - e o o ' - * * " e o ,* e - " - o o - - © * o o * , » 0 “ “ 0 - » o

SSSrnSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

g

®>- J ^BÏ t i W>W#“ # ® l l “ ,DO^»ïS>ÎW>UOSJ  ® - - > . - ® B Wi * - W&  J  w - .  a -  # ÿ w ► -  J
3 ï § ï ; 3 l 3 a g û S 5 3 g a i § ï ? ; 3 g D 5 g g ; ÿ - $ â S 5 ï 3  3gS ;Sg5ïdù33 l33 i lS I

S 2 S 8 5 S j ? ? ? l l l î ï E S 5 5 s 5 ^ 3 5 3 s s S j s 5 î ! S ? ï ! 5  3SSS5ÏS3ÎSSS882SSS*
M D 0 - - O W J > si O - > - 0 > ,ü N) UWMI >«' j O- S J 5  ><0»J*î WA* « C« >* 0 - * »  S( s  * < fc, < O -  *  ^ <0 O nJ J <
i ï i l i z ï z i t . ï s ï t s i i z î i î s i i î i i ï ï û ï ï i ï ü z ï ï z ' è s î z t ï ï ï z t ï ï ü i z ï i



09
1

3P2 IV 616644.188 IPI IV 1769200.000 2.003D3 IV 671632.000 7S1/2. IM IV 137*620.000 1.00381 IV 671632.300 781/21 IM IV 1376620.000 1.00180 IV 0.000 351 IV 671632.300 0.00180 IV 0.000 3D3 IV 671632.000 0.00180 IV 0.000 IDI IV 602901.013 0.00180 IV 0.000 IPI IV 606939.175 0.00180 IV 0.000 3P1 IV 688649.373 0.00IPI IV 624717.500 781/21 IH IV 1376620.000 1.003P0 IV 620060.173 761/2» IH IV 1376620.000 0.00
3 P Ì IV 610473.073 781/21 TH IV 1376620.000 1 00
3P 2 IV 616644.188 761/21 IH IV I37ao20.000 7.00180 TV 0.000 3PI IV 739396.013 0.00160 IV 0.000 3D! IV 766600 813 0.00180 IV 0.000 IDI IV 770036.073 0.00160 IV 0.000 ?r3/23l IV 002907.300 0.00160 IV 0.000 7CI/211 IV 806734.875 0.00160 IV 0.000 ?n/231 ÎV 871400.875 0.00160 IV 0.000 7C3/23I(IV 075277 075 0.00160 IV 0.000 7T3/231 IV 827045.075 0.00180 IV 0.000 7CI/231 IV 070498-813 0.00160 IV 0.000 ?ri/73l IV 052007.500 0.00180 IV 0.000 7T3/231 IV 055772.608 0.00160 IV 0.000 713/231 IV 057409.ft?5 0.00160 IV 0.000 7r3/23l *V 858642.000 0.00
160 IV 0.000 7r3/71l ïV 871512.188 0.00
180 IV 0.000 7C1/71I IV 87475a .813 0.00
160 IV 0.000 7TI/23I IV 694610.000 0.00
160 IV 0.000 7C3/23I TV 896140.000 0.00
160 IV 0.000 7r3/711 IV 897197.175 0.00
160 IV 0.000 7T3/73I IV 899310.000 0.00
180 IV 0.000 711/231 IV 917750.000 0.00
160 IV 0.000 213/731 IV 918160.000 0.00
160 IV 0.000 7C3/731 IV 971440.000 0.00180 IV 0.000 7f3/231 IV 931360.000 0.00180 IV 0.000 7T3/231 IV 934670.000 0.00
160 IV 0.000 2P3/2I IH IV 967804.000 0.00
180 IV 0.000 7rM/7l IH IV 971746.000 0.00160 IV 0.000 3P1 IV 1043200.000 0.00
180 IV 0.000 1P1 IV 1046500.000 0.00180 IV 0.000 3P1 IV 1 183700.000 0.00
180 IV 0.000 IPI IV 1105100.000 0.00
180 IV 0.000 IPI IV 1741000.000 0.00
160 IV 0.000 IPI IV 1769700.000 0.00
180 IV 0.000 761/21 IM IV 1376620.000 0.00

F N D O F  D A T A



1

1.00 1.00 637533.813 133.2441.00 0.00 634988.000 152.*751 .00 0.00 634987.300 152.6751.00 1 00 671612.300 148 8911 .00 1.00 671632.000 148.8911 .00 1 .00 682981.813 146.4171 .00 1.00 686919 173 143.3691 .00 1 .00 688649.373 143.2121 .oo 0.00 701902.500 147.4701 .00 1 .00 706539.873 141.5311 00 0.00 708146.175 141.2141 00 I .00 709975 813 140.850
1 00 1 .00 739396.813 131.6491 .00 1 oo 7*6880.813 130.398I .00 1 .00 770836 875 179.779
1 .00 1.00 802907.300 I'M.347
I .00 1 .00 806234.875 124.033I .00 1 .00 871408 875 171.7421 00 1 .00 873277.875 171.1711 .00 1 .00 877845 873 120.7951 .00 1 .00 B'18498.813 120.7001 .00 1 .00 857007.500 117.3701.00 1 .00 8*>5772 .688 116 9721 .00 1 00 857409 675 116.*301 .00 r.oo 858647.000 116.4*3I .00 I .00 871512.188 1 14.7431 .00 1.00 874756.813 114.3171 .00 1 .00 894*10.000 111.7811 .00 1 .00 896140.000 111.3901 .00 1 .00 897197.175 1 11.4381 .00 1 .00 899310 000 111.1961 .00 1.00 917750.000 109.0221 00 1 .00 918160.000 108.9131 .00 1 .oo 971440.000 108.3761 .00 1 .00 931360.000 107.3701 .oo 1 .oo 934670.000 106.9901.00 1 .00 967804.000 103.3271 .oo 1 .00 971246 000 102.9611 .00 1 .00 1045200.000 95 6751 .00 1 .00 k04*500.000 95.3571 00 1 .00 1183700 000 84.4811 00 1 .00 1183100.000 84.3811 00 1.00 1741000.000 80.5801.00 1 .00 1769200.000 78.7901 00 1.00 k376*20.000 75.380

t

I



The NAG (Numerical Algnthms Group) reference/user manual Vol 2

Martin WC and Zalubas R J Phys Chem Ref Data 8 pp 817 -  864 

(1979)

REFERENCES FOR APPENDIX TWO

161



ACKNOWLEDGEMENTS

t am grateful to a number of people for assistance received during 

the course of this work

I would firstly like to thank my research supervisor Dr Eugene T 

Kennedy for his constant and sustained interest m the project as 

well as for his patience and attention to detail My thanks also go to 

the other members of the laser applications group at N I H E D, 
Gerard O'Sullivan John Costello and Ciaran Mythen for useful and 

helpful discussions over the course of this work I would also like to 

express my thanks to Professor P K Carroll of the Physics Depart­
ment University College Dublin, for allowing me the use of the 

photoelectric comparator to measure photographic plates during 
this work

I am also grateful to the technical staff of the School of Physical 
Sciences at N I H E D for much valuable assistance while this work 

was in progress I also offer my thanks to Dr J Vos and the 

technical staff of the School of Chemical Sciences for the use of 
equipment in that department Lastly I would like to thank David 

O'Callaghan for help received in the preparation of the prints which 

appear in this thesis and also to Jos Evertson of the I I R S for the 

use of the microdensitometer

162


