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Abstract

As modern drug formulations become more advanced, pharmaceutical companies face the

need for adequate tools to permit them to model complex requirements and to reduce

unnecessary adsorption rates while increasing the dosage administered. The aim of the

research presented here is the development and application of a general stochastic framework

with agent-based elements for building drug dissolution models, with a particular focus on

controlled release systems. The utilisation of three dimensional Cellular Automata and

Monte Carlo methods, to describe structural compositions and the main physico-chemical

mechanisms, is shown to have several key advantages: (i) the bottom up approach simplifies

the definition of complex interactions between underlying phenomena such as diffusion,

polymer degradation and hydration, and the dissolution media; (ii) permits straightforward

extensibility for drug formulation variations in terms of supporting various geometries

and exploring effects of polymer composition and layering; (iii) facilitates visualisation,

affording insight on system structural evolution over time by capturing successive stages

of dissolution. The framework has been used to build models simulating several distinct

release scenarios from coated spheres covering single coated erosion and swelling dominated

spheres as well as the influence of multiple heterogeneous coatings. High-performance

computational optimisation enables precision simulations of the very thin coatings used

and allows fast realisation of model state changes. Furthermore, theoretical analysis of the

comparative impact of synchronous and asynchronous Cellular Automata and the suitability

of their application to pharmaceutical systems is performed. Likely parameter distributions

from noisy in vitro data are reconstructed using Inverse Monte Carlo methods and outcomes

are reported.
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Chapter 1

Introduction

1.1 Introduction to drug dissolution modelling

Drug delivery systems (DDS) are systems for transporting drugs into the body. The main

components of a typical DDS include one or more active agents (i.e. drugs) and one or

more polymers forming the vehicle by which the agents are delivered to the desired area

of the body. The behaviour and breakdown of those polymers, as they traverse the route

of administration (e.g. parenteral, transdermal, oral, through the nervous system, etc.),

influence the time to, and the area of, delivery of the active substances. The intricacies of

drug development require collaboration between scientists of different expertise, notably,

pharmaceutical scientists, bioengineers, computer scientists and others, because there is a

growing need to bring the drug to market faster while maintaining safety of treatment. At

the same time, complex factors that influence drug pharmacokinetics and dissolution must

be taken into account.

The computer modelling of a DDS is a constantly developing field with potential to

become an integral part of pharmaceutical research. In silico simulation of DDS can be useful

for a number of reasons; specifically, (i) it has the potential to reduce the cost of experiment

by reducing the amount of in vitro testing needed, (ii) to reduce the time needed for bringing

the drug to market, (iii) to increase performance during the design phase by allowing more

complex analysis, (iv) to provide better understanding of drug transport processes and

(v) to help identify the required DDS composition and manufacturing procedure. Drug
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dissolution modelling can provide good predictive capability, and improved agreement with

experiment and can help in achieving the desired drug release profile.

A benefit of modelling is that it can be used to explore the influence of many parameters,

such as dissolution device1, geometry, dimension and composition during the drug design

phase and well before the in vivo phase of drug testing.

This is of particular importance as pharmaceutical companies today face a growing

demand for more complex drug designs. Novel formulations are required to reduce side

effects, such as unnecessary absorption, while improving the dosage administered, through

controlled and targeted release. Knowledge about drug release kinetics from such formula-

tions is limited, due to complex interactions between different underlying phenomena and

the environment, often known only through their combined effects. This makes computer

models essential tools in the design of experiments. Unlike classical differential-equation

models, stochastic modelling is applicable to a wide range of systems without requiring

detailed initial knowledge on dissolution mechanisms.

1.2 Controlled DDS Examples

Controlled DDS in general can be classified into reservoir and matrix systems. Reservoir

systems are defined by utilising one or more coating polymers to surround a core of active

substance, which acts as a release-rate controlling material. Matrix systems, also known as

monolithic systems, are characterised by a structural network consisting of a mixture of

polymers and drugs, (Siepmann and Siepmann, 2012a).

Each of these groups can have various different geometries and various release scenarios

and therefore very different complexities. Figure (1.1) illustrates the amount of possible

combinations for diffusion controlled DDS. It can be observed that systems are distinguished

depending on their inner structure and amount of initial drug concentration, together with its

solubility and dispersion, resulting in a relationship which is not always entirely understood.
1The term device is a generic term used here for any kind of drug formulation, including capsules, tablets,

spheres etc. It refers to the formulation consisting of an active substance (the drug) and various carriers
(usually polymers).
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Figure 1.1: An example of DDS classification for diffusion controlled DDS, (Siepmann and
Siepmann, 2012a) described by the ratio of initial (cini) vs saturation concentration (cs) of
the active substance.
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1.3 Thesis scope and contribution

A detailed overview of the status of DDS modelling is given in Chapter 2, which discusses

the main classification of models and analyses key examples from the literature. The chapter

also includes an explanation of the main pharmaceutical phenomena, (as these will be

discussed throughout the thesis), together with the role of in vitro testing in understanding

these. We describe the modelling of polymeric behaviour in general and, specifically, in the

the gastro-intestinal tract, as this plays a central role in controlled drug delivery systems.

In Chapter 3 we cover probabilistic modelling methodology in detail, as this will be the

main focus of the thesis. We introduce key terms and application of Cellular Automata,

Monte Carlo methods, (both in direct and inverse variants) and Agent-Based modelling.

At the end of the chapter, we give an overview of the project performed in collaboration

with the industrial partner which served as initial motivation and reference for this work.

Chapter 4 introduces a novel Cellular Automata based integrative framework and a

meta-model used to create and analyse a series of stochastic models applied to different

controlled release DDS. The meta-model introduces common features which capture the

essence of controlled drug delivery and serve as a basis for deriving the intrinsic models.

The framework allows for easy parameterisation, separation of release mechanisms or their

superposition, (whichever is of interest), graphical visualisation and high performance

execution. Several models are constructed and described in detail, covering the main

pharmaceutical phenomena, namely erosion, swelling and diffusion in the presence of single

and multiple polymeric coatings. The influence of the environment on release is also

investigated.

In Chapter 5 we discuss computational and implementation aspects of the framework

itself. We introduce, for the first time, a discussion of parallelisation strategies in the context

of pharmaceutical models and compare several viable solutions that can be applied depending

on the available computational power. As an addendum, we compare the advantages

and disadvantages of synchronous and asynchronous Cellular Automata implementation,

something that has not been addressed previously for pharmaceutical models.

Chapter 6 presents a detailed high-level analysis of the data, obtained from the various

models described in Chapter 4. Each model was validated against experimental data, which
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served as a test case for performance and predictive potential.

Chapter 7 introduces a different approach to stochastic modelling, which uses Inverse

Monte Carlo methods to “reverse engineer” unknown model parameters from (generally)

noisy experimental data. This approach is then integrated with the previous framework

and models, connecting all stages of the stochastic modelling process, allowing for its use in

concrete industrial applications.

Finally, we present the main conclusions for the work and outline possible future

directions, improvements and developments in Chapter 8.

The appendices include the additional material, including UML diagrams and description

of the underlying code, glossary of abbreviations, definitions and terms, and a list of

publications with selected abstracts, Appendices A - D.
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Chapter 2

Literature review: Pharmaceutical

and Modelling background

In this chapter we present the fundamental theories used in drug dissolution modelling and

review the various approaches available. Representative equations and theory, described

here, have been a basis for all main DDS modelling approaches to date. The focus of this

thesis is in building stochastic models for controlled drug delivery, (where polymers play

an important role), targeting the gastro-intestinal tract. In consequence, the chapter also

reviews models for polymer behaviour in DDS and gives an overview of the main phenomena

involved in simulating dissolution in the gastro-intestinal tract.

2.1 Important phenomena in drug dissolution

In order to choose or develop an appropriate release model, it is of fundamental importance

to understand the underlying mechanisms of release, (Kaunisto et al., 2011). Therefore,

before reviewing DDS modelling itself, we provide short explanations of the key physical

phenomena involved:

1. Diffusion represents the motion of the molecules from a region of higher concentration

to one of lower concentration (i.e. flux). In modelling DDS, diffusion is often described
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by Fick’s laws, (Higuchi, 1960). In one dimension, Fick’s first law can be written as:

J = −D∂c(x, t)
∂x

(2.1)

where J is the diffusion flux, D is the constant diffusion coefficient and ∂c(x, t)/∂x is

the concentration gradient.

Fick’s second law predicts how diffusion causes the concentration to change with time:

∂c(x, t)

∂t
= D

∂2c(x, t)

∂x2
(2.2)

To calculate diffusion mass transport processes in modelling DDS, Fick’s second law

is used in different forms, depending on the geometry of the device, (e.g. Muschert

et al. (2009), Cuppok et al. (2011), Kreye et al. (2011), Seidenberger et al. (2011)).

A finite-difference approximation for determining the drug mass transfer rate, from

cylindrical components consisting of multi-layers, was applied, (McMahon et al., 2003,

2007), and (McMahon, 2008).

Mathematical solutions of the diffusion equations, including detailed explanations

of diffusion processes in solutions, have previous been derived, (Crank, 1975) and

have been used as the basis for similar scientific problems. This work is particularly

relevant to the area of drug dissolution, given that the author investigated different

geometries including plane-sheets, cylinders and sphere and examined both Fickian

and Non-Fickian diffusion.

2. Advection in its general sense represents transfer of material from one region to

another due to the bulk motion of the surrounding fluid. In drug release, it is a

second possible mechanism involved in mass transport, (in addition to diffusion), and

refers to transport with specified velocity along the surface of the drug device, (Crane

et al., 2004b).

3. Degradation is one of the two most important processes in dissolution of polymeric

drug delivery systems. A widely used definition states that it is the process by
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Figure 2.1: Bulk erosion vs. surface erosion.

which chain scission occurs, (during which polymer chains become monomers1 and

oligomers2). Monomers and oligomers have the ability to break down and therefore

dissolve easily, (Göpferich, 1996).

4. Erosion is a consequence of degradation and represents the loss of material from a

polymer. It is an important parameter because it determines the release rate of the

drug, (Siepmann and Göpferich, 2001), (Lao et al., 2011). When a polymer erodes it

leaves space for the drug to be released from the device or for water ingress. Two

types of erosion are defined, (Langer and Peppas, 1983), (von Burkersroda et al.,

2002):

Surface erosion is a homogeneous process and represents the stage during which the

size of the device decreases while preserving its shape; the device loses material only

from its surface;

Bulk erosion is a heterogeneous process, with material being lost from the whole

device, although the device dimensions remain unchanged as the polymer erosion

occurs throughout, (Figure (2.1)). For instance, surface eroding polymers like PLA,

(polylactide), are often used with a co-polymer such as PLGA, (polylactic-co-glycolic

acid), to achieve bulk erosion. PLGA is a bioerodible polymer and is therefore often

used in controlled release.

In general, it is more complex to model erosion than degradation (Siepmann and

Göpferich, 2001), since there is a long list of possible factors that can influence the
1Monomers are the simplest units of polymer. A number of monomers form complex networks of polymer

chains.
2Oligomers are simple molecules, formed of a few monomers only.
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former, (Göpferich and Langer, 1993, 1995a), (Siepmann and Göpferich, 2001); these

include:

• the nature of the chemical bonds - for example, poly(anhydrides) have highly

reactive bonds and a short half-life so that this determines velocity of degradation

• pH changes

• polymer chain length

• bond cleavage velocity

• swellability

• crystallinity

• water diffusivity in the polymer matrix

• composition of the co-polymers - affects the velocity of release rate

• water uptake - influences the speeding of hydrolysis.

In the work presented in this thesis, both bulk and surface erosion play a role in

controlled drug delivery within the gastro-intestinal tract and are modelled explicitly.

5. Swelling represents a process driven by the disentanglement and diffusion of individ-

ual polymer chains from non-hydrated polymer material, caused by solvent intake

(Braido, 2011),(Kimber et al., 2012). It occurs as a response to changes in environment

acidity or temperature conditions, (Gehrke and Cussler, 1989). During this process,

polymer chains transition from a state of low chain motion (glassy) to one of a higher

motion (rubbery). This occurs until thermodynamic equilibrium (relaxation) of the

chains is achieved (Lee and Peppas, 1987). Long polymer chains disentangle and

detach outwards from the main mass, causing a natural concentration gradient to

form from the inside of the device outwards. At the very end of the gradient, polymer

erosion becomes a dominant factor as polymer concentration is very low. This process

essentially characterises swelling as a polymer diffusion process, not unlike drug

diffusion.
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Figure 2.2: Schematic representation of the USP II Paddle Apparatus.

2.2 In vitro dissolution testing

The first step in modelling dissolution of a drug is to determine the in vitro dissolution rate

under various external conditions. To emulate these conditions, a dissolution test apparatus

is used, with standardised measuring methods outlined in the pharmacopoeias, United

States Pharmacopeia (The United States Pharmacopeial Convention, 2007), and European

Pharmacopoeia (Council of Europe, 2007). Conditions in the intestine and stomach, (change

of temperature, pH and dynamic flux), are mimicked in the paddle apparatus II, (USP

II), by varying either the speed of the paddle, or the physico-chemical properties of the

buffer and by monitoring their influence on the drug dissolution rate, (Figure (2.2)). Whilst

these instruments produce overall release profiles, they do not give good insight into the

underlying physical properties and processes within the device, (coating, filling etc.), that

determine the dissolution characteristics, (Kimber et al., 2011b). Diffusion layer thickness,

(the region immediately surrounding the drug device), in the USP II apparatus is important

as not only diffusion but also advection can have significant impact on velocity in the

boundary layer, (McMahon et al., 2003), (Crane et al., 2004a), (Crane et al., 2004b).
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2.3 Fundamental modelling methods in DDS

Existing DDS models can be classified into three broad categories: The first two are based

on a top-down approach where the main underlying phenomena must be known in some

detail. Both mechanistic and empirical models are included in this category. Models in the

third category are stochastic and simulate the probabilistic behaviour of individual particles

in the system with system effects dependant on aggregation.

Modelling drug dissolution is a topic which has attracted attention for more than a

century, so that various alternatives exist; it is necessary to define the area of interest

more precisely, in order to provide a focused review of relevant developments. In the

following sections, therefore, we describe the main equations and models used in complex

drug delivery. For additional information on possible models, a number of reviews have

appeared in the literature over the last ten years or so, (e.g. Narasimhan (2001), Siepmann

and Göpferich (2001), Siepmann and Peppas (2001), Costa and Lobo (2001), Grassi and

Grassi (2005), Barat et al. (2006a,b), Siepmann and Siepmann (2008, 2012a), Sackett and

Narasimhan (2011), Lao et al. (2011), Kaunisto et al. (2011), and from these different

classifications of DDS models can be summarised.

2.4 Mechanistic and empirical models

Mechanistic, sometimes called “phenomenological models” (Sackett and Narasimhan, 2011),

use differential equations for explaining dissolution processes, providing some insight

into their nature at a lab-based level. The main characteristics and advantages of such

models is that they enable investigation of the physical mechanisms influencing release

and, by varying the relevant parameters, can be used not only to mimic experimental

conditions but also as predictive tools. In order to validate such predictions, two options are

possible: (i) comparison of modelling results with experimental data and (ii) validation of

all parameter values included in the model, (as these have physical significance, (Kaunisto

et al., 2011). Another important advantage of using these models is that good matches

with experiment can be obtained since equations are developed to describe accurately the

underlying phenomena for a specific drug formulation. However, this is also the main
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disadvantage as considerable initial knowledge of the important properties is required either

from the manufacturing process itself or to be determined by calculation. Therefore, a

major consideration is to determine the appropriate level of complexity to be reproduced,

in relation to the main release rate-limiting processes, (such as the boundary conditions

and the main mass transport mechanism). Defining models, which accommodate these

requirements is non-trivial, particularly where multiple-parameterisation and fitting are

essential.

Newer pharmaceutical compounds have even more complex behaviour, (Barat et al.,

2006b), so that defining all processes involved is extremely difficult, particularly if knowledge

of the drug delivery system is incomplete, as is often the case. It is sometimes more

appropriate to use empirical models that do not reflect all possible processes and therefore

are easier to implement, while still giving good prediction for drug release. This parsimonious

approach to modelling the complex behaviour has obvious attractions. Such models usually

assume zero-order release kinetics3, where zero-order release can involve superposition of

various mass transport processes, such as diffusion of liquid/drug, polymer swelling or

polymer degradation, (Siepmann and Göpferich, 2001), without requiring exact information

on the way in which each of these influence the release. By paying careful attention to

the assumptions made in these models, sufficient information is obtained for generation of

comparative release curves from different laboratory designs, (Siepmann and Siepmann,

2008). The main disadvantage is limited applicability, i.e. models are based on experimental

behaviour of the particular system studied, so cannot be used to predict the effects of

hypothetical changes on the system behaviour, e.g. influence of coating thickness on the

drug release rate, (Kaunisto et al., 2011).

2.4.1 The principal classical equations

Noyes-Whitney equation

The earliest mathematical models, mechanistic in nature, used to describe system behaviour

in drug dissolution research appeared more than a century ago, (Noyes and Whitney,
3Zero-order release kinetics implies that the release rate is steady with time and is independent of the

concentration of drug. Increasing the concentration will not speed up the rate of the reaction.
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1897), with the derivation of an equation to describe the dissolution of multiparticle

systems, (powders). The authors discovered the dissolution rate of a solid in solution to be

proportional to the difference between the current concentration of the solution and the

maximal concentration of the saturated solution:

dc

dt
= kNW (Cs − c), (2.3)

where Cs is the saturation concentration, c is the concentration of the solute at time t

and kNW is a constant. Since this equation follows first order kinetics4 kNW is considered

to be a first order proportionality constant.

Later models emphasised the assumptions for which the Noyes-Whitney equation (N-W)

is applicable namely (i) a constant area available for dissolution and (ii) a constant and

intense rate of stirring, (Hixson and Crowell, 1931). The N-W equation is used widely in

many applications, particularly to investigate the influence of the particle size distribution

on dissolution profiles, (Hixson and Crowell, 1931), (Higuchi and Hiestand, 1963) where the

complexity of the particle size effect is emphasised. In the analysis of polydisperse multi-sized

systems, (using complex reverse engineering techniques and taking into account variations

of the number of particles), dissolution profiles were found to be strongly influenced by

particle size distribution, (Simões et al., 1996), (de Almeida et al., 1997). An estimation

of particle size from multi-sized powder dissolution was published recently, (Avdeef et al.,

2009) for two scenarios in which particle size either changes or remains constant during

dissolution. A good historical review of applications of the Noyes-Whitney is given by

Dokoumetzidis and Macheras (2006).

Higuchi equation

A second important equation, empirical in nature, and used to describe controlled release

is due to Higuchi (1961). Considered “the father for a mechanistic understanding of

controlled DDS”, (Siepmann and Peppas, 2011), Higuchi derived an equation, which follows

Fick’s first law and relates diffusion-controlled release of drugs from non-swellable and
4First order kinetics describes a release proportional to the concentration of active substance.
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non-biodegradable films under perfect sink conditions, to the diffusivity and solubility5 of a

drug and its initial concentration. With increasing drug solubility, drug release occurs as a

linear function of the square root of time:

Mt = kH
√
t (2.4)

where Mt is the cumulative amount of drug released from the ointment film during time

interval t and where constant kH has a specific meaning and should not be ignored, i.e.

kH = A
√

2ciniDCs (2.5)

where cini is the initial drug concentration and A is the surface area available for

dissolution.

The Higuchi equation must be used with caution, however, since several assumptions

are made: (i) the initial drug concentration in the system is much higher than the drug

solubility, cini >> Cs ; (ii) the diffusivity of the drug is constant; (iii) no swelling occurs; (iv)

perfect sink conditions apply; (v) the geometry is thin film. In consequence, the equation

cannot be applied readily to systems with complex release, e.g. in describing biphasic

release from coated formulations, (Siepmann and Siepmann, 2008), (Siepmann and Peppas,

2011).

Peppas equation

The last of our general equation was derived by Korsmeyer et al. (1983) and Ritger and

Peppas (1987). Adapting the Higuchi equation, the authors provided a generalisation,

which permits application to any geometry, (thin films, cylinders and spheres) and enables

the dominant nature of the release process, (Fickian or non-Fickian/anomalous), to be

determined. This adaptation represents the fraction of drug release Mt/M∞ as a simple
5Solubility is a property of a substance (the solute, e.g. drug) to be dissolved within another substance

(the solvent). The amount of drug which can be dissolved in some volume is defined by the saturation
concentration (Cs). This means that further increase of drug concentration will not result in faster drug
dissolution for given volume.
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Value of n for different geometries
Drug release mechanism

Thin film Thin Cylinder Sphere

n = 0.5 n = 0.45 n = 0.43 Fickian transport: diffusion is
the leading process

0.5 < n < 1.0 0.45 < n < 0.89 0.43 < n < 0.85 Non-Fickian transport, anoma-
lous behaviour: interference of
more than one mass release
mechanism

n = 1.0 n = 0.89 n = 0.85 Zero-order release

Table 2.1: Values for exponent n in the Peppas equation for different geometries and
analogous drug release characteristics in polymeric controlled delivery systems.

power-law equation:

Mt

M∞
= kP t

n (2.6)

where Mt and M∞ represent the amounts of drug released at time t and the total

amount of drug contained in the DDS, respectively, kP is an experimentally determined

parameter and n is an exponent that depends on the system geometry and the mass

transport mechanisms, (as represented in Figure (2.1)). It can be seen from Table 2.1 that

if the exponent n, for the case of spherical geometries for instance, has a value of 0.43,

Fickian diffusion is the leading transport process, while a value of 0.85 refers to zero-order

release, i.e. concentration independent drug release. Values larger than 0.85 indicate the

erosion controlled (also referred to as Case II ) transport, (Kosmidis et al., 2003b).

The Peppas generalisation is used to describe the drug release mechanism and provides

guidance on which model to use, with many authors using the power-law form as the basic

equation. For example, Kosmidis et al. (2003b) used this generalisation to analyse radial

and axial release from cylinder geometries, while Casas et al. (2010) analysed the effect of

shape on drug release. It became the standard method of analysis of any pharmaceutical

device. In recent work, swellable systems were modelled using a probabilistic CA approach,

(Laaksonen et al., 2009a) and Peppas equation was used to estimate the linearity of the

release for drug fractions. Even though the equation cannot fully explain all swellable
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systems of interest, it has proved very useful in the investigation of complex formulations,

where adequate experimental data are not available. In this way, the Peppas exponent n

has been used to explain the trends in different release curve phases, i.e. whether these are

of zero-order or anomalous, (typical for swellable systems), Laaksonen et al. (2009a).

2.5 Probabilistic models

With the development of high-performance computers, a new approach to modelling DDS

was introduced, namely probabilistic models. While these can be both mechanistic and

empirical in nature, they have the advantage of using a bottom-up approach, simplifying

representation of the system and looking at microscopic rather than macroscopic behaviour.

Probabilistic models use statistical techniques such as Monte Carlo (MC) and Cellular

Automata (CA) to describe drug release properties. Moreover, these approaches are flexible,

since differential equations may also be used to define specific elements of release phenomena,

but with stochastic features incorporated, (Siepmann et al., 2002).

The basic premise of probabilistic models is the assumption that we cannot always

determine the precise parameter values when modelling complex systems, and that the

outcomes of individual system reactions can follow stochastic, as well as deterministic rules.

Such models are thus applicable to systems where: (i) the complexity of the modelled device

prohibits usage of differential equations due to the inherent unknowns of many-element

interactions; (ii) where the design formulation of the complex device is undetermined

(most importantly, during the wet-lab experimental stage) making derivation of analytical

solutions prohibitively costly in terms of time. In addition to this, probabilistic methods

were shown not to lack both precision and correctness in prediction, (Zygourakis, 1990),

(Barat et al., 2006a), (Laaksonen et al., 2009a) and thus form a promising alternative to

traditional DDS modelling.

We cover the current state of probabilistic modelling of DDS based on MC and CA

approaches in detail in Chapter 3.
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Designing the parameters in DDS using Weibull function

It is useful also to mention a class of probabilistic dissolution models, which are not based

on discrete space simulations using MC and CA algorithms. One interesting group in

particular are those which utilise the Weibull function, since this function can be applied to

almost all kinds of dissolution and related release curves, (Costa and Lobo, 2001), (Martínez

et al., 2009). In investigating drug release for which diffusion is the dominant mechanisms,

Kosmidis et al. (2003a) used the form:

Mt

M∞
= 1− e(−atb) (2.7)

where Mt/M∞ is defined as for Equation 2.6 and a, b are Weibull parameters.

Starting from the Higuchi equation, the authors linked the Weibull parameters to

physical properties of the drug device, showing that the scale parameter, a, defines the time

scale of the process and depends on the diffusion coefficient, while the shape parameter, b

has a constant value and characterises the curve, (Kosmidis and Macheras, 2007, 2008),

(Villalobos et al., 2009). Furthermore, coefficient b acts as an indicator of the transport

mechanism, such that its value b < 1, b = 1 or b > 1 implies diffusional release, (parabolic

curve), first order release, (exponential curve), or complex release, (sigmoidal curve),

respectively, (Papadopoulou et al., 2006).

2.6 Modelling polymer behaviour in DDS

The primary objective of controlled release devices is to achieve drug release at a desired

and sustained rate. These are the most common type of systems with targeted delivery

being the main benefit, (e.g. in targeting the gastrointestinal tract, we usually do not

want the drug to be released too soon after the oral intake, but only at the target site).

Controlled drug dissolution is maintained by using polymers with different structures. In

Peppas and Langer (1994), the basic principles underlying the usage of biomaterials (such

as polymers) in pharmaceutical preparation are outlined.

One of the most important problems to solve in order to achieve controlled drug release,

therefore, is that of polymer dissolution. In large part, modelling drug dissolution aims to
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understand and predict the physics of drug release from a dissolving polymer, where these

are commonly-used materials, due to their biodegradability.

A first step to understanding controlled drug delivery is to review the most important

phenomena driving release, (previously defined in the Section 2.1), and their influence

on polymers of varied complexity. The main modelling approaches for these fundamental

phenomena are outlined. The connections between models of different types (i.e. top-down

and bottom-up) are also important as the underlying physical phenomena share similar

features, and knowledge obtained using models of one type can be used to derive rules for

another. For example, for the simple probabilistic model of diffusion we use Fick’s law,

which also defines the interaction between individual elements in Monte Carlo models.

The rate of drug release from the polymeric carrier is important as it must be kept in

the therapeutic range, (Sackett and Narasimhan, 2011).

Glassy and rubbery polymers

A useful division of polymers identifies two types based on their dissolution behaviour:

glassy and rubbery (Crank, 1975), (Lee and Peppas, 1987). The former have complex, non-

Fickian, “anomalous” behaviour where dissolution is time-dependent and swelling occurs as a

consequence of penetrant ingress into the drug device. The latter, “rubbery” polymers, have

Fickian behaviour, with diffusion as the main transport process. These rapidly respond

to changes in the environment, such as a change of temperature, (Narasimhan, 2001).

Classification of a given system is needed for the choice of an appropriate value for Peppas

exponent n.

2.6.1 Polymer dissolution

Purely diffusion-controlled systems are the simplest to understand and therefore can be

modelled by direct application of Fick’s laws, Equation 2.1, Equation 2.2, (Siepmann and

Siepmann, 2008). These can be applied to different DDS types, including both matrix

(monolithic) and coated (reservoir) systems.

In general, there are two main differences between dissolution from polymers and non-

polymeric materials: (i) Polymers require an induction time before dissolution can occur,
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while with a non-polymer this can occur instantly; (ii) Polymer dissolution is controlled by its

disentanglement threshold, a function of polymer chain length. An extremely high threshold

leads to a large amount of water intake while low values imply immediate dissolution.

Non-polymeric materials are in general controlled by external mass-transfer resistance

through a liquid layer adjacent to the solid-liquid interface, (Narasimhan, 2001).

In controlled release devices, under assumptions that the coating does not swell or

dissolve, drug permeability is constant and perfect sink conditions are maintained, with

release dependant on the ratio between concentrations of solute and drug. For the case where

drug concentration is higher, zero order kinetics can be used, otherwise first order kinetics

apply, (Heller and Baker, 1980). However, with the need to take into account coating effects

such as swelling and/or cracking due to polymer expansion, these simplifications are not

realistic, and mechanistic models, which can appropriately describe this level of composite

behaviour, are still lacking, (Siepmann and Siepmann, 2008).

2.6.2 Polymer erosion

In early empirical models, Hopfenberg (1976) derived an equation for the analysis of

surface-eroding polymers. The author assumed that the drug release rate was proportional

to the surface area of the device and, as such, can be calculated for any geometry. One

conclusion that can be derived from this model was that only “slabs” have zero-order kinetics.

Additional analysis of the geometry influence on erodible devices was due to Cooney (1972),

who defined two phases of dissolution. One in which molecules detach from the surface

and the other where diffusion into the fluid occurs. The release is described as dependent,

in the case of cylinders, on an “initial length to initial diameter” ratio, where the value

of this ratio defines the rate of release, (zero-order or otherwise). The Hopfenberg model

allowed initial predictions for drug release kinetics and improved understanding of erodible

systems, such as that described, (Zygourakis and Markenscoff, 1996). This led to looking at

the dissolution of polymers as transport processes controlled by two phases, (Narasimhan,

2001), as described earlier, i.e.

• diffusion of the chains through a boundary layer at the solvent-polymer interface

• disentanglement of the polymer chains
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Using the Higuchi equation as a starting point, Heller and Baker (1980) developed a

mathematical model for combining erosion with diffusion while taking into consideration

particular physiochemical phenomena. The authors assumed that degradation in polymeric

matrices with bulk erosion follows first order kinetics. Typical examples of those are

PLA and PLGA matrices. In addition to the purely diffusion-controlled Higuchi here,

permeability in biodegradable polymeric systems is not constant but increases with erosion.

As a consequence drug release initially decreases, (similar to Higuchi), but then increases,

(due to increased permeability), (Siepmann and Göpferich, 2001).

Additional molecular phenomena and their effects on drug dissolution were taken

into account in some studies, e.g. (Narasimhan and Peppas, 1997). These included

chain disentanglement from an amorphous polymer, water diffusion into the polymer and

hydrophilic drug release from spherical PLGA bulk-eroding microspheres. Furthermore,

Batycky et al. (1997) described the phenomena of microsphere hydration and polymer

erosion. Polymer degradation was represented as a combination of two processes - random

and end-polymer scission and the conclusion was drawn that models, based on only one of

these, cannot explain experimentally observed kinetics of particle mass loss and molecular

weight change, so that a combined model was necessary. Finally, a model for predicting

controlled release from both erosion and bulk matrices was developed, (Rothstein et al.,

2009). Drug release was shown to depend on even more mechanisms, such as hydration of

the system, formation of pores, and drug and polymer dissolution.

All these models have improved the understanding of the role of erosion, and its

variations to some extent. Nevertheless, they are still limited and fail to include other

important features such as: interaction between monomer-pore formation, protein-protein

interaction, the influence of pH on polymer chain scission, and the role of polymer swelling

among others, (Batycky et al., 1997).

2.6.3 Polymer erosion and diffusion

Importantly, for investigation of moving boundary problems for surface polymers, two

dissolution fronts, namely the erosion and diffusion front were introduced, (Figure (2.3)),

(Lee, 1980). Here, R refers to the time-dependent position of the moving diffusion front and S
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Figure 2.3: General schematic representation of concentration profile for surface-eroding
polymers. Two key boundary layers are visible: R(t), the time-dependent position of the
moving diffusion front and S(t), the time-dependent position of the eroding front, (Lee,
1980).

to the time-dependent position of the eroding front; A is the initial drug concentration within

the polymer, Cs, drug solubility, (as defined previously), and Cb is the drug concentration

of the well-stirred solution. Different ratios of A/Cs were investigated and led to the

conclusion that increasing this ratio causes decrease in relative drug release rate. The

release reaches zero-order for cases when the initial drug loading is much higher than the

solubility. This concept of multiple fronts, including also one for swelling, have been in use

in later models of dissolution dynamics, for example, Colombo et al. (2000).

2.6.4 Polymer swelling and polymer and drug dissolution

The term swelling-controlled DDS usually refers to systems where the swelling step is the

only release rate-controlling phenomenon or, in the broader sense, to systems where other

phenomena outlined above can play a role, (Siepmann and Siepmann, 2012b). The main

idea of using swellable systems is to control release, particularly for the case of drugs with

low diffusivity, (Arifin et al., 2006). These systems are often based on hydrophilic polymers,
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which can adsorb large amounts of water and cause polymer disentanglement, for instance

hydroxypropyl methylcellulose (HPMC) (Colombo et al., 2000), (Siepmann and Peppas,

2001), (Chirico et al., 2007), (Kimber et al., 2012).

The key features in polymer swelling are: the dry, non-swollen state (with a dense

polymeric network, and restricted molecule mobility) and relaxation of polymeric chains,

or swollen state (where molecule mobility and volume increase), (Figure (2.4)). These are

fundamentally different states and should be modelled as such, (Siepmann and Siepmann,

2012b).

Following earlier matrix models, (Lee and Peppas, 1987), (Harland et al., 1988) of

two phase release consisting of swelling and dissolution, Ju et al. (1995a) developed a

mathematical model for drug and polymer release from HPCS matrices. The model gave a

quantitative relationship between the polymer disentanglement concentration, pp,dis, and

equivalent molecular weight of polymer HPCS matrix,Meq where, below the critical polymer

concentration, polymer chains are detached from the matrix gel and display simultaneous

swelling-dissolution behaviour. Also, a diffusion layer separating the matrix from the bulk

solution was incorporated into the transport regime. The model predicts that overall tablet

size and characteristic swelling time correlate qualitatively with pp,dis. For determining

the relation between pp,dis and molecular weight, a power-law was used and its advantages

and limitations in this case were discussed. The results showed that drug release is more

affected by polymer release than by polymer molecular weight, (Ju et al., 1995a,b).

Subsequently, a model describing the drug release from drug delivery systems consisting

of an ensemble of drug-loaded crosslinked polymer particles was presented, (Grassi et al.,

2000). As main factors affecting drug release, the following were accounted for: the particle

size distribution, the physical state and the concentration profile of the drug inside the

polymeric particles, the viscoelastic properties of the polymer-penetrant system and the

dissolution-diffusion properties of the loaded drug. Two drugs, completely different in

terms of dissolution behaviour, namely, MAP (medroxyprogesterone acetate) and TEM

(Temazepam), were used to be crosslinked with polyvinylpyrrolidone (PVP) particles.

Interesting use of the Weibull distribution was made to model particle size distribution,

in the dry state (corresponding to initial powder conditions). The main novelty of the
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Figure 2.4: (Top) - Detailed schematic of polymer entanglement from non-swollen to swollen
state. Within the dry glassy core, polymers exist in an unhydrated regime with dense
network structure and low molecule mobility, (left). In the swollen glassy layer, solvent
diffusion promotes water concentrations leading to a more mobile network, and very strong
chain entanglement, (middle). As a result of significant swelling, fewer polymers are present
in the gel layer, inducing less though still strong entanglement. Finally, in the water-rich
diffusion layer, the chain entanglement becomes weak. At the gel-diffusion layer interface,
chain entanglement can no longer hold polymers together causing polymer dissolution to
take place, (right). Black dots represent drug particles diffusing from non-dissolved to
highly dissolved state. (Bottom) - Polymer concentration profile equivalent to the top
scheme. The space defined by the double lines represents the undissolved matrix. Adapted
from (Ju et al., 1995a).
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proposed model was in its versatility, as different situations were modelled, and the particle

size distribution analysed. However, its main restriction lies in the fact that it is destined

only for (chemically or physically) crosslinked polymer particles that do not undergo any

kind of erosion.

Lee and Chakraborty (2002) used kinetic Monte Carlo simulation to study the dynamics

of polymer chains as a consequence of random disordered media of monomer obstacles.

The polymer was modelled as a chain of spherical beads within a 3D lattice divided into

cells. The cell can be either occupied by a bead or not. At each MC step the algorithm is

performed to check the chain formation and location of the beads. If a chosen bead is found

to be at the end of a chain, the bond which connects it to its nearest first neighbour will be

rotated to a new position through a randomly chosen angle. Otherwise, the bond will be

rotated in a circular motion by rotating the bonds formed with the two neighbouring beads.

Each movement can be accepted or rejected according to the Metropolis criterion with a

probability ∆U which represents the difference in energy between the old and new chain.

Authors looked at several classes of homo- and hetero-polymers and noted that, above

a threshold temperature, polymers bearing monomers attracted to sites in a disordered

medium and are more mobile than those with neutral or repulsive interactions. This study

improved the understanding of polymer dynamics in disordered media.

In delayed release systems, as a consequence of water ingress, a polymeric coating can

develop cracks due to the hydrostatic pressure build-up. This phenomenon, together with

osmotic pumping, has been investigated in several studies, (Marucci et al., 2010), (Kaunisto

et al., 2011) and is investigated in detail in Chapter 4.

Recently, an interesting novel algorithm was presented for simulating the radial swelling

and dissolution of cylindrical tablets using the Discrete Element Method. Each particle

was allowed to absorb water and swell, pushing against its neighbours and causing an

overall expansion up to the disentanglement threshold. When that threshold is reached,

the polymer dissolves and the particle decreases in size. Detailed parametric studies were

performed to ascertain the main factors influencing polymer dissolution, such as the water

diffusion coefficient, the dissolution rate constant and the disentanglement ratio. The model

was validated against an exact numerical solution for simpler geometries but the additional
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introduction of drug particles is not discussed, (Kimber et al., 2011a, 2012).

2.7 Models for simulation of drug release in gastro-intestinal

(GI) tract

Our research focuses on developing stochastic models for simulating drug dissolution

processes for controlled release formulations, predominantly those which target the GI tract.

Consequently, we now discuss example models used in this context.

2.7.1 Effect of coating on the dissolution

For drugs, specifically targeting transit and dissolution in the gastro-intestinal tract, a

planar tablet geometry in the form of coated drug pellets is often used, as it provides

reliable results, compared to tablet or capsule forms.

Ethylcellulose(EC) is a frequently-used material for coating, as it represents a generally

non-invasive polymer with good film-forming capabilities. It is both inert and hydrophobic,

although able to expand as a consequence of water ingress when maintained under high

humidity, (Geraghty, 2004). Its viscosity depends on its molecular weight during processing,

while mechanical properties such as flexibility, elongation and tensile strength depend on

the degree of polymerisation, (polymer molecular weight). Ethylcellulose is also stable up

to 50 ◦C and, its properties, in general, make it ideal for use in matrix agents, both for

prolonged release or as a coating material.

The influence of different drug types on the release profiles of EC-coated pellets was

analysed, Sadeghi et al. (2003), while a model which considered constant and non-constant

diffusivities using ethylcellulose-based mini-matrices was reported, Verhoeven et al. (2009).

Further, to facilitate the prediction of drug release from coated tablets, (Muschert et al.,

2009) formulated an analytical solution of the behaviour of ethylcellulose-coated thin-film

drugs, using chemical and mathematical analysis. This could be used to speed up the

development of DDS for the treatment of diseases of the GI tract by “minimising” the in

vitro effort needed in laboratory trials. The authors showed that diffusion through the

polymeric film coatings represents the sole uniform drug release mechanism, and fitted the
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results of experimental trials to Fick’s law equations. Furthermore, they managed to show

that the mathematical solution is essentially one-dimensional, due to the dispersion of drug

molecules within polymeric networks and the fact that the surface of the coating is very

large, compared to the thickness of the tablet.

For other types of coatings, Ensslin et al. (2009) demonstrated the direct influence of

film coating thickness and polymer blend ratio on drug release rates. They also gave a

simple mathematical model that provides a way to calculate release rates from initially

known coating parameters, although applicable to a certain type of drug pellets only. Other

drug parameters that affect drug release, specifically in the GI tract, have been studied by

authors such as Ahmed (2005) who investigated the effect of pH of gastric fluid on polymer

swelling and hydration, and Leopold (1999) who gave an overview of the effect of different

types of colon-specific polymers on the rates of swelling, dissolution and erosion. In Liu

et al. (2007) the authors also provided a review for drug delivery mechanisms of the use of

pectin, a polymer well-suited to the gastrointestinal tract due to its reaction with colonic

bacteria.

Most recently, Loney and Susarla (2009) presented a mathematical model for diffusional

release of spherical drug particles which incorporated the innovation of physiological

characteristics in the simulation of the GI tract. These authors highlighted the need for

justification of the assumptions of earlier models, in particular that of perfect sink conditions

in a constantly changing environment, such as the GI tract. The developed model also

accounts for the important role of adsorption.

2.8 Summary

To date many different theories have been performed to tackle different aspects of dissolution.

The choice of adequate models for developing a particular DDS strongly depends on required

accuracy and predictability. Most theories take into account only the most important

properties of the system and are still not oriented toward routine usage by pharmaceutical

scientists, (i.e. empirical models). Therefore, there is a need for optimisation of existing

approaches and research on new ones.

Starting from this viewpoint, but with application to novel formulations in mind and in
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an effort to improve realism, we describe additional molecular phenomena for inclusion in

the models, described in Chapter 4.
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Chapter 3

Probabilistic modelling:

Methodology

This chapter reviews the main methodologies used in the thesis, namely Cellular Automata

and Monte Carlo methods. It discusses the difference between Direct and Inverse Monte

Carlo and reviews in more detail their use in the context of DDS modelling. As building

blocks for controlled release in GI tract are reviewed, at the end of the chapter we present

an overview and motivation for the work presented in the thesis.

3.1 Cellular Automata

In computation theory, cellular automata (CA) are important type of discrete model used

in a number of scientific fields that consist of a regular n-dimensional grid of cells, each

having one of a finite number of states. The state of each cell evolves over discrete time,

starting from an initial state and then progressing through a series of generations, according

to a fixed set of rules that take into account the state of the cell itself and the states of

cells in its neighbourhood.

As a type of modelling tool, cellular automata were first discovered and described by

Ulam and von Neumann in the 1940s, while working on models to describe the growth of

crystals and calculate liquid motion, (von Neumann, 1966). The concept was to describe

the liquid as a group of small, discrete units and derive the motion of each unit in the flow,
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Figure 3.1: An example of Conway’s “Game of life”. Each cell can have one of two states,
alive or dead, i.e. black or white, respectively. As an example of dynamics: If a cell has
two live neighbours, its state remains unchanged, (green case). If a live cell has less than
two live neighbours it dies, “starves” (red, case 1). If a dead cell has exactly three live
neighbours it becomes live, (reproduction occurs), (red, case 2).

according to the behaviour of the neighbouring units.

Perhaps the best known example, frequently used is a two-dimensional, two-state cellular

automaton created by Conway in the 1970s and named “Game of life”, (Gardner, 1970). It

consists of a 2D matrix of cells which can be either alive (black) or dead (white). If a cell

has two living neighbours, its state does not change. If it has three living neighbours it is

revised. In other situations, such as four or more living neighbours (overcrowding) or a

single or no neighbours (starvation) it dies. Thus the set of states includes being alive or

dead, and the set of rules includes various cell transition probabilities changing from one

state to another, Figure (3.1). The initial state of the “Game of life” can be set arbitrarily,

with certain initial configurations receiving wide coverage in scientific literature (Ninagawa

et al., 1998), (Bosch, 2000), (Adachi et al., 2008), (Burguillo, 2013).

Due to the “bottom up” nature of the system description, CA make suitable and powerful

tools for simulating the influence of the microscopic scale on macroscopic behaviour of

complex systems (Hoekstra et al., 2008), (Désérable et al., 2011). Thus, they have a wide

application in scientific fields including traffic modelling (Burstedde et al., 2001; Korcek

et al., 2011; Vasic and Ruskin, 2012), bacteria growth (Margenstern, 2011), fluid dynamics

(Leon et al., 2011; Désérable et al., 2011), modelling of tumours (Patanarapeelert et al.,

2011), gas lattice dynamics and many others.

Cellular Automata can be divided into categories based on a number of properties, with

fundamental distinctions being made by the type of neighbourhood and nature of the rule
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set itself. There are two classical neighbourhood types of interest in multi-dimensional

CA (Figure (3.2)): von Neumann, which considers the orthogonally adjacent cells only

(4 in the case of two-dimensional automata, and 6 the in case of three dimensions), and

Moore, which considers the entire adjacency lattice (so both orthogonal and diagonal

neighbours - 8 for two-dimensional automata, and 26 for three dimensions). While the

Moore neighbourhood potentially offers more realistic interactions (the CA applied to

physical systems for example) it requires more computations to evaluate the target state

of the cell. Before the era of high performance computing, this posed a disadvantage in

applications to complex systems, so von Neumann was generally preferred. However, with

today’s HPC clusters this is no longer crucial to the decision of which to use, with choice

governed instead by the physical realism of the problem space to be modelled.

In terms of other possible multi-dimensional neighbourhoods that could be used to

describe the space of a physical system, it is worth noting the Margolus neighbourhood

which considers the cells of a 2D or 3D lattice divided into 22 or 23 cell blocks, (Toffoli and

Margolus, 1987). Rules are applied locally, and the dynamics of the system are achieved by

shifting the partitioned grid itself (i.e. “cells” contain different “blocks” in each time step),

(Figure 3.2) (bottom).

Another useful division of CA concerns the nature of the state transition rules. Deter-

ministic CA employ rules which are fixed and do not change over time (as in the “Game of

life” for example). In contrast probabilistic Cellular Automata rules may or may not be

applied, depending on random number generation, and relevant for example, to situations

where knowledge of the real system is incomplete. Stochastic CA properties are particularly

useful for drug dissolution modelling and will be extensively covered in later chapters.

A final categorisation of CA type is based on the order and nature of cell state updates.

Synchronous Cellular Automata (SCA) apply transitions in an atomic way by calculating

for the current iteration and applying changes in the next. Thus the state of the system is

not dependent on the order of updates. In contrast, asynchronous Cellular Automata (ACA)

apply updates in the current iteration, so that other cells are aware of the neighbour state

change immediately. A detailed analysis of asynchronous automata and discussion of their

advantages and disadvantages compared to their synchronous counterparts is presented in
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Figure 3.2: Different variations of CA neighbourhoods for 2D matrix. (Top left) Extended
von Neumann neighbourhood, (Top right) Moore neighbourhood, (Bottom) Margolus
neighbourhood, illustrating cell repartitioning to contain different blocks.
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Chapter 4.

3.2 Agent-Based Modelling

Agent-Based Models (ABM, also referred to as multi-agent systems) present a natural

extension of the cellular automata approach. CA can be viewed as a way to model physical

system dynamics by “passively” propagating a change through the modelled system by

influencing a neighbouring cell state. Agents provide “active” dynamism, representing

independent physical entities that are able to move from cell to cell in a single iteration

and are thus better suited for describing active processes, such as drug diffusion. Including

a new feature to an existing CA model, however, introduces additional computational

requirements, and requires good code optimisation and, usually, parallel re-implementation

of the model (Perrin, 2008). The gains, however, are significant. The resulting models

permit large scale simulations and inclusion of various localised effects, such as those found

in the gastro-intestinal tract.

ABM is a model in which the key unit of abstraction is an independent entity (an agent)

that has both spatial and temporal positioning. The generally-accepted properties for an

intelligent agent, (there being no unique definition), are given by Wooldridge and Jennings

(1995):

• Autonomy : acting without intervention with some control over its actions and the

internal state.

• Social behaviour : interacting with other agents through a specific language.

• Reactivity : ability to see part of its environment and change its behaviour according

to the environment state.

• Proactivity : not only reactive to the environment changes but capable of acting itself

and taking the initiative, in order to satisfy identified goals.

ABMs, like CA, provide a generic enough paradigm to be used in a wide variety of

fields. Notable examples include economics modelling (Holland and Miller, 1991), traffic

congestion (Wen, 2008), biomedical systems such as the human immune system (Kim, 2009),
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social and other networks (Ojanen et al., 2010), organisational structures (An, 2012) and

social behaviour (Hughes et al., 2012), as well as medical diagnostics (Rodríguez-González

et al., 2012).

The agent-based approach requires explicit reference to agent-like entities in the system.

Advantages of ABMs include modelling efficiency, robustness, interoperability between

existing systems, and reasonably intuitive solving of problems for which data, expertise

and control are distributed (Jennings and Sycara, 1998). The approach is thus particularly

useful in the context of natural sciences, and permits reciprocity between agents and

biological entities and between real-system interactions and exchanges between agents types.

Agent-based models implementing several agents are referred to as multi-agent systems.

These systems provide a generic framework for model development, as noted by Perrin

(2008).

Although suitable for modelling molecular diffusion processes and naturally compatible

with stochastic models, ABMs have not so far made significant impact on DDS modelling

although an example of their use is given in a seminal paper by Barat et al. (2008). In

this thesis, we use a subset of agent behaviours (namely the autonomy and reactivity) for

describing certain active processes within the modelled device. It would be of interest,

however, to further examine their full potential in DDS system modelling.

3.3 Monte Carlo methods

Monte Carlo methods represent a large class of computational algorithms that utilise

random sampling as a means of optimisation, numerical integration, and generation of

probability samples (important in our case). Initial MC simulations were also done by Ulam

and von Neumann in the 1940s, while working for the Los Alamos National Laboratory.

MC methods have numerous applications, ranging from the physical sciences e.g. fluid

dynamics and astrophysics through traffic modelling, statistical physics to financial analysis

and business, (Sopasakis, 2004), (Tezuka et al., 2005), (Li et al., 2007). The essence of each

MC method lies in generating a set of inputs over a certain domain by sampling from a

probability distribution to define a starting state. A set of deterministic computations is

then performed and aggregated to obtain the “system” result.
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There are two broad method groups for Monte Carlo modelling. The direct methods

use probabilistic distribution sampling for setting initial spatial properties of the model as

well the state of the modelled entities (cells, flows, agents, etc.). Direct, deterministic or

stochastic computations, are then utilised for describing the evolution of such entities over

time to produce the aggregated end result for the system. Conversely, inverse MC methods

utilise the sampling process to try to derive the unknown but feasible distributions for

model parameters, from which the known aggregated result was obtained. In other words,

direct models start from a known initial state and attempt to derive the end result, while

inverse methods start with a known set of one or more end results and try to determine

the possible, but unknown, initial states.

3.3.1 Application of Direct Monte Carlo methods in DDS

When applied to drug dissolution modelling, MC methods bring several advantages. They

allow simulation of dissolution problems at increased resolutions by generating natural

structural variations, and using parameters that can only be estimated using probabilistic

distributions. They describe the system behaviour over time as a stochastic process and

enable observation of certain properties of the system at individual time steps. As an

example, an MC model might describe the internal location of pores within the polymer

structure as random with certain distribution characteristics. Those pores can be allowed

to evolve over time using random transitions to increase in size say, taking in polymer or

drug particles and similarly. A snapshot of the system state can then be obtained at any

time point to determine evolved behaviour.

MC methods have been variously used to take into account mechanisms underlying the

rate-limiting steps in DDS such as diffusion, swelling and erosion. One of the first models,

developed in 1993, (Göpferich and Langer, 1993) simulated microstructural changes in

bioerodible polymers and still remains a basis for all subsequent MC simulation models.

In this model, the polymer matrix was represented by a 2D computational grid, divided

into individual cells. Each cell/pixel corresponded to one of two possible polymer states:

amorphous, (with a higher likelihood of erosion) and crystalline, (with a slower erosion

rate). In the polymer matrix, erosion from one particular cell occurs only if that cell was in
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contact with a previously-eroded neighbour, where MC was used to represent this erosion

as a random phenomenon. The probability of erosion of an individual cell was assumed to

follow a Poisson distribution with the characteristic value for the erosion rate being greater

for amorphous than for crystalline polymers. Each cell was assigned an expectation of life,

(distributed as a first order Erlang distribution).

Improvements on the original model investigated additional factors influencing erosion,

such as porosity and pH changes, (Göpferich and Langer, 1995a). Both mechanistic and

empirical methods were used to describe release of monomers, using Fick’s second law,

(Equation 2.2) and given by:

∂

∂t
c(x, t)ε(x, t) =

∂

∂x
Deffc(x, t)ε(x, t)

∂c(x, t)

∂x
(3.1)

where c is the concentration of the diffusant as a function of the effective diffusivity

Deff and ε is the porosity along the diffusion pathway.

The porosity distribution was interpreted as a network of pores, modelled using a 2D

grid and MC. Degradation was considered as a spontaneous process of transformation from

polymer into monomer with monomer dissolution affected by pH changes and following

Fick’s first law. The innovation lay in the tracking of changes in the molecular weight of

the polymer. The model also enabled determination of the constant rate of erosion, but

not of release predictions for the incorporated drug.

Further improvements led to investigation of surface and bulk erosion from polymers,

(Göpferich and Langer, 1995b), programmable release from several layers of cylindrical

eroding polymers, (Göpferich, 1997a), and erosion from slow and fast-eroding polymers,

(Göpferich, 1997b). Starting from these models, many additional MC-based models for bio-

erodible microparticles were generated and will be discussed further, for example Siepmann

et al. (2002).
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3.3.2 Monte Carlo in modelling DDS for the GI tract

At a relatively early stage, Kalampokis et al. (1999a) presented an interesting “heterogeneous

tube” model for simulating the villi1 of the gastro-intestinal tract by using direct MC for

describing the dissolution and adsorption processes. Transit flow in the tract was simulated

using two diffusion models referring to two types of random walk: the blind ant and myopic

ant, (Kalampokis et al., 1999b). For simulation of the GI tube, an empty cylinder geometry

was used, where the drug, inserted at one end of the cylinder, was allowed to the other end

following the rules of a biased random walk.

3.3.3 Cellular Automata (CA) in Direct Monte Carlo methods

The first use of probabilistic CA models was described for drug release from bioerodible

pellets. Pellets can be as systems, composed of several components of arbitrary geometry and

with different dissolution rates: system behaviour was defined according to local relations,

(Zygourakis, 1990). Subsequently, CA and parallel iterations were used, (Zygourakis and

Markenscoff, 1996), for the design of bioerodible devices, where the transient behaviour

of the surface erosion system was described. As with MC models, (Göpferich and Langer,

1993, 1995a), there are two possible states of polymer cells in the computational grid for

CA: amorphous (highly erodible) and crystalline (poorly erodible). However, Zygourakis

and co-worker’s models were not based on differential equations. Instead, simulations

were used to determine the effects of intrinsic dissolution rate, drug loading and porosity.

Improvements on early models include assumptions on cell-dissolution neighbourhood,

where dissolution of each solid cell depends on the number of solvent-filled neighbours.

Increased solvent around the cell leads to more rapid dissolution. The authors suggested

that simulations could be used for rapid screening of newer formulations and for speeding

up the design process. They pointed out the advantage of the CA approach in terms of its

ability to handle multicomponent systems with arbitrary geometry.

MC, together with CA, was subsequently used for setting initial conditions to investigate

the behaviour of a binary device system, (Barat et al., 2006a,b). The novelty of these models
1The villi are small projections which cover the surface of intestinal wall, and serve for absorption of

fluids and nutrients. The surface area of the wall in this way is increased and it enlarges the area available
for absorption.
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was that they enabled creation of pores “inside” the device, not only on the surface, and

also emphasised the importance of the surrounding medium, not defined in earlier MC/CA

models. The theory on USP II apparatus medium influence was due to Ramtoola and

Corrigan (1987) and Healy and Corrigan (1996), who examined the influence of particle size

and discovered that, in general, higher dissolution rate occurs for increased excipient particle

size. Consequently, two boundary layers were defined in the apparatus: the concentration

layer where advection governs mass transport and the velocity boundary layer, (a small

region around the compact) where diffusion is the main mass transport, (McMahon et al.,

2003), (Crane et al., 2004a), (Crane et al., 2004b). In parallel work, (Barat et al., 2006b),

diffusion was modelled as the sum of the set of particles that can move to a new position.

Particles that pass beyond the concentration boundary layer were considered to be dissolved.

Advection was modelled using the Pohlhausen equation (Crane et al., 2004a) such that if

the particle concentration in the cell is higher than a defined maximum, the particles are

removed by advection. Possible states of the system were defined, according to Göpferich

et al. (1995), Göpferich and Langer (1995b), but with additional update rules.

Pure Cellular Automata application in DDS modelling

In investigating the erosion and swelling behaviour from binary matrix systems, CA without

MC randomisation has been used as well, (Laaksonen et al., 2009a), (Laaksonen et al.,

2009b). The main differences include dispensing with arbitrary lifetimes for the drug and

polymer and assuming that diffusion was based on the pure random walk, thus eliminating

the need for Fick’s first law. There is no specified expectation of life, rather the diffusion

coefficient and rate of disintegration are calculated. These models were developed for several

types of release mechanisms: erodible matrices, diffusion through channels/pores, membrane

controlled release and the investigation of swelling-controlled drug release. Although the

models provided a new perspective, a major limitation was the restriction to 2D cylindrical

geometries due to relatively small simulation space.
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3.3.4 Direct Monte Carlo vs. Inverse Monte Carlo

The Inverse Monte Carlo approach is used for problems, for which we do not have complete

knowledge of the relationship between model parameters and observed data, (Mosegaard

and Sambridge, 2002). One of the main reasons for using this MC variant is thus to avoid

stringent assumptions of linearity between the two, (Socco and Boiero, 2008). Instead, it is

assumed that initial parameters follow a probability distribution, as described in Voutilainen

et al. (2001).

In this context, MC methods can be divided into two groups, (i) sampling methods

and (ii) optimisation methods, (Mosegaard and Sambridge, 2002). The latter are used to

find a globally optimal solution from a number of local optima. Sampling methods are

useful when it is necessary to examine reliability of solutions in order to narrow down the

feasible solution space. One technique, often used for sampling, is the Bayesian paradigm,

where the principle is to take all unknown variables to be random. In general, the Bayesian

framework for posterior distribution evaluation can be represented, (Mitchell, 1997), by:

P (h|E) =
P (E|h)P (h)

P (E)
(3.2)

where P (h) and P (E) are prior probabilities of the hypothesis h and observed data E,

respectively. P (h|E) is the posterior probability2 of h given E and P (E|h) is the likelihood

of obtaining the actual data E, for the specific h.

The Bayesian paradigm for inverse problems is widely used, with examples ranging from

noise reduction, (Davies, 1998), and environmental modelling (Dowd and Meyer, 2003) to

geophysical inverse problems, (Mosegaard and Sambridge, 2002).

IMC methods have been used across many scientific disciplines, also, to solve a set of

related, inverse model problems. As an example, they may be used to find a near-optimal

solution in terms of data fit and adherence to constraints for a posed problem. In another,

IMC methods may be used to search for solutions fitting the data within a certain tolerance.

IMC is a general method of co-called “structural” modelling based on experimental data and

was first described, (McGreevy and Pusztai, 1988), and applied to condensed matter science.
2The posterior probability is the conditional probability determined after additional information is used

to modify the initial, a priori, probability assigned.
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The authors developed and applied the methodology to understand how physical properties

of materials were determined by their atomic structure. Despite origins in condensed matter

physics and solid state chemistry, IMC has also proved applicable to many other different

data, as follows.

In geophysics, a large amount of work has been done on investigation and improvement

of inverse methods, with generally applicable results (Mosegaard and Sambridge, 2002).

Keilis-Borok and Yanovskaja (1967) applied inverse MC methods to determine if “Earth”

models were consistent with seismological data. Geman and Geman (1984) applied simulated

annealing, a technique for finding approximate global optima of a function that cannot

be evaluated directly, to Bayesian image restoration. The authors suggested using the

Metropolis algorithm to sample the posterior distribution and to determine its maximum

estimate.

One of the first algorithms for inverse MC problems was simulated annealing (SA),

(Geman and Geman, 1984), a heuristic algorithm used for finding the global optimum of a

given function in large, discrete search space. The SA algorithm is based on the idea of a

global reduction in the probability of accepting worse case solutions as the solution space is

explored. Each point of the search space (s), analogous to a state of the physical system,

together with the function to be minimised, is considered.

Another algorithm, used to draw samples from a desired probability distribution of

possible parameter values, as long as the function proportional to density is calculable,

is the Metropolis-Hastings algorithm (MH) (Metropolis et al., 1953). Here, the aim is to

generate a series of Markov Chain samples for which the distribution matches that of the

target distribution over an extended period of time. In Bayesian sampling models, the

density proportionality constant, also known as the normalisation factor needs to be known,

so that the MH category of algorithms offers a significant advantage.

An improvement on Metropolis-Hastings is Gibbs sampler, first introduced by Geman

and Geman (1984), which represents a special case of the MH algorithm. It can be

extended to a general framework for sampling from a large set of variables in turn, and can

incorporate the steps of Metropolis-Hastings as part of the algorithm. It is applicable when

the conditional distribution of each variable is known and can be sampled.

39



It is worth mentioning that not all inverse methods apply Bayesian techniques. Early

work was based on simple searches of the parameter space for “best fit” models, (Keilis-Borok

and Yanovskaja, 1967), while a related set of methodologies, namely genetic algorithms

and the neighbourhood algorithm, have more sophisticated evolution characteristics and a

reduction-based approach.

3.3.5 Inverse Monte Carlo in investigating the effect of particle size

distribution

The main difficulty when modelling novel formulations for drug devices lies in unreliable

and inconsistent in vitro data. Data obtained from the pharmaceutical partner have

been extremely noisy and relatively sparse; thus extensive model assumptions have proved

necessary and their validation has been far from straightforward. Determining correct

dependencies is a highly complex process, exacerbated by the inability to measure certain

critical parameters of the system in vitro (notably the diffusion coefficients for drugs and

all polymers involved) and it is often difficult to utilise direct MC techniques because of

this.

In Barat (2006), the authors created a model, based on Inverse Monte Carlo (IMC)

simulations in a Bayesian context, which was capable of extracting knowledge from exper-

imental data, (time series of dissolved quantities). The work leverages de Almeida et al.

(1997), by applying a Bayesian framework and inverse techniques to a powder dissolution

system to reconstruct the set of initial particle size distributions from a large number of

possible states, in order to provide the best fit to the experimental data. Fitting is done by

empirically updating key parameters through repeated comparisons with the experimental

release curves. This approach provides substantial flexibility in determining the important

parameters of the DDS, based solely on available “drug release vs. time from administration”

curves.

The model of Barat (2006) thus took the observable dissolution data as the starting point

and tried to discover a set of key parameters that describe the total number of particles. The

observable dissolution process was decomposed into two components: a deterministic part,

defined by relationships between the state parameters at a given time, and a random noise
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Figure 3.3: Simplified design of the modelled device: yellow cells represent the gelatine
carrier with dispersed drug packets (grey). The device is coated with EC/Pectin layer
(green).

component, assumed to have a Normal (Gaussian) distribution. The size distributions were

updated, according to the de Almeida et al. (1997) algorithm, simulating the deterministic

part of the dissolution process, with the likelihood then calculated for each distribution,

(to determine the most probable values of key parameters together with their confidence

intervals). In the next iteration time step, these probabilities were reused as the starting

point for the next prediction. This cyclic process enables algorithm values to be updated,

while values of parameters are simultaneously measured for each time step.

The main novelty of this earlier work by DCU group was applying IMC techniques to

the field of drug dissolution, showing (importantly) that crucial parameter values could

be determined through analysing a number of release curves under different conditions.

However, since it was done as a proof of concept study only and was not applied to real

data many questions remain to be fully investigated, not least in terms of the practical

application value and potential for adaptation to different types of formulation, release or

similarly.

3.4 Project motivation and overview

In summary, the main goal of this project is to develop novel stochastic Cellular Automata

models for simulation of drug delivery systems and apply these in an industrial context to

predict drug release behaviour from coated beads, targeting the gastro-intestinal tract. The
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Figure 3.4: X-ray Tomography of modelled device. (left) A single bead with one layer of
coating; (right) variant of the bead with two coatings.

project was carried out in collaboration with the pharmaceutical partner, Sigmoid Pharma

Ltd., which has acknowledged expertise in developing controlled release formulations,

specifically for treatment of GI tract diseases such as Crohn’s disease and ulcerative colitis.

One of the objectives here is the incorporation of experimental features, characterising

the drug device and collected by the pharmaceutical partner, into a probabilistic model

by mapping these to a set of independent, simple CA rules. The “device” consists of a

capsule, containing hundreds of coated spherical beads, which carry the active substance,

Cyclosporine A (CyA). Due to the complex nature of the device, the underlying release

mechanisms cannot be precisely determined, prompting the need for probabilistic modelling

methods, in order to understand the device behaviour.

A simple cross-section view of the drug design of interest is shown in Figure (3.3)

and X-ray tomography images of actual device (provided by Sigmoid Pharma) in Figure

(3.4). A mixture of ethylcellulose and pectin is used as coating materials. As discussed in

Chapter 2, considerable work has been done by chemists to investigate the pharmaceutical

potential of this type of coating, (specifically its influence on release profiles of different

drug types encapsulated within EC-coated pellets, and on gastric fluid enzymes). All such

features must be taken into account when developing a suitable model. Encapsulated

by the coating, the active substance, Cyclosporine (poorly soluble), is dispersed within a

swellable/hydrophilic gelatine carrier, (Coulter, 2010). While the coated formulation is pH

independent and hydrophobic, the capsule content is highly hydrophilic and dependent

on temperature. To our knowledge, no previous model exists for this type of complex
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formulation and this project comprises original work in the area.

The work to date has included the definition, building and application of a modelling

framework, which provides a foundation for the simulation of physical properties for specific

designs and their effect on drug release kinetics. So far, the framework has been used to build

several models describing specific types of drug behaviour. Details on this implementation

are presented in Chapter 4 of the thesis. Further, the framework has also been applied

to the investigation of other device design parameters and drug release patterns. IMC

methods were used in the context of extracting the unknown parameters, (such as solubilities

and diffusion coefficients), from noisy in vitro data using reverse engineering methods,

(Chapter 7).
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Chapter 4

Models for Controlled DDS

In this chapter a novel, integrative CA framework for drug dissolution is presented with

several subsequent models derived from it. In the context of achieving realistic dynamics,

comparisons are drawn between synchronous and asynchronous Cellular Automata and

their relative merits are discussed. Such analysis is lacking in the literature but can lead to

real improvements in simulation.

4.1 The Meta-Model

In this section, we describe the fundamental basis and initialisation of the computational

framework used for simulations, together with the meta-model1 which includes the CA

modelling features, (such as representation of diffusion), common to all subsequent derived

models. Several models, describing drug release driven by different dissolution phenomena,

(such as erosion and swelling moderated by one or more coating layers for the active compo-

nent), are extensions of the meta-model and are presented in detail in Sections 4.2, 4.3, 4.4,

respectively, while the influence of these specific features on release behaviour is discussed.

Additionally, a model which looks into the influence of in vitro media on the drug device is

also developed, and is described in Section 4.5.
1In this context, we consider “metamodelling” as a practice of construction of a collection of basic

“concepts”. These concepts are used as a mechanism for derivation of different sub-models of interest.
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4.1.1 Fundamentals of developed models

The basis of all probabilistic models developed to date can be described in terms of a

discrete CA framework, satisfying the following conditions:

• Initial cell states are assigned randomly, according to a specified probability distri-

bution, within the structural constraints of the device. (This is because the local

distributions of device features, e.g. drug density or polymer composition at a given

site, are unknown);

• The different dissolution phenomena are modelled independently. (We can separately

investigate the influence of polymer swelling while ignoring coating erosion and

vice-versa);

• The three-dimensional discrete space allows for models of various geometries and

device compositions;

• An efficient large scale simulation. (This, in order to explore molecular level effects).

Recalling Chapter 3, the general formulation is given by Figure (3.3) where a number

of drug beads are contained within a quickly erodible capsule. The models themselves

simulate the dissolution of a single, idealised, drug bead represented in a three-dimensional

space, assuming its release profile to be representative of the cumulative release from all

beads present in the capsule. The simulation space itself is represented by a lattice, divided

into discrete cells, with each being described by a state Ψ(i,j,k,t) defining the aggregate

condition of the bead structure at discrete space coordinates (i, j, k) and at a discrete point

in time (t). The meta-model defines the Cellular Automata rules:

Φ(σ) : Ψ(i,j,k,t) → Ψ(i,j,k,t+∆t) (4.1)

for each cell which are applied to cell state (Ψ) in order to re-evaluate it after each

time increment (∆t) of the simulation. When a particular rule is applied to the cell state,

this is in the context of the states of all neighbouring cells (σ) in the 3D space, (26 in all,

corresponding to a Moore neighbourhood), which also determines the effect of the rule for
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the given cell. The rules, as applied, can thus model any distinct process that causes a

change in the bead state, including drug diffusion, chain-scission of ethylcellulose polymers,

erosion or swelling of the device core.

The bead itself is represented as an “idealised sphere”, consisting of a number of layers

containing the drug molecules. The possible states of each cell represent different structural

forms of the bead that affect the behaviour of these molecules as they diffuse out of the

sphere. The Meta-model defines several common cell types unique to the modelled device,

and re-used by all the derived models:

1. Gelatine cells (designated |P , as of polymer form) which represent the internal

structure of the bead that serves as initial carrier of the drug (Cyclosporine).

2. EC/pectin cells (designated |C), comprise the coating and are used jointly to model

the coating layer of the sphere.

3. Wall cells (designated |W ) mark the boundary of the simulation space and block

any cellular transition occurring outside this.

4. Buffer cells (designated |B) which model the dissolution space around the cell.

5. Solvent cells (designated |S) which represent the internal solution inside the bead

coating that is created as a consequence of dissolution of gelatine material.

Each cell, under certain circumstances, (with the exception of those in the wall layer),

can hold a certain concentration of drug (Cd) represented as discrete “packets” that can

model an arbitrary precision of drug volume loading (v/v)2 within the cell dimensions.

Between subsequent time points in the simulation (∆t), a packet can move (diffuse) to a

neighbouring cell. Thus, the size of the packets and the time step of the simulations are

primary factors in controlling the simulation speed, and we can choose either to simulate

large, bulk diffusion processes or very finely-grained ones, as required.

The models themselves have been developed in several stages, designed to facilitate

our understanding of key behaviour at increasing levels of internal complexity and inter-

dependency, and starting with simple erosion-based transitions. Additional rules were
2In chemistry, volume-in-volume ratio (denoted as v/v) represents the volume of the substance relative

to the total volume of the solution.
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developed to consider specific variants and to represent more realistic, composite interactions

between processes such as diffusion, erosion and swelling.

Meta-model initialisation

At the beginning each cell is initialised to a start state, depending on its location.

1. The coordinates of cells that satisfy the spherical equation:

(i− o)2 + (j − o)2 + (k − o)2 − (r − d)2 ≤ 0 (4.2)

r is the sphere radius with o the centre of the sphere, and d the thickness of the

coating layer are initialised with starting gelatine state (Ψ(i,j,k,0) = |P ), (representing

the polymer inside the bead). For each of these cells, a random number (R) between

0 and 1 is generated and compared to the drug volume (v/v) loading ratio of the

sphere:

Vd =
mdrug · ρsphere
msphere · ρdrug

(4.3)

where m and ρ are, respectively, the mass and the average density of the sphere and

the drug itself.

If R ≤ Vd, the cell is initialised with a number of drug packets, where this number

depends on the desired resolution of the simulation. This ensures that the desired

percentage of cells corresponding to (v/v) ratio will contain drug packets. Drug

diffusion is not permitted through |P cells.

2. Cells which are contained outside the gelatine sphere, but within boundaries defined

by the larger, coating sphere, satisfy the equation:

(r − d)2 ≤ (i− o)2 + (j − o)2 + (k − o)2 ≤ r2 (4.4)

and belong to the coating layer (Ψ(i,j,k,0) = |C). Coating layer cells cannot contain

drug packets.
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3. Cells which satisfy the boundary property (i = 0 ∨ n, j = 0 ∨ n, k = 0 ∨ n) are

initialised as walls: Ψ(i,j,k,0) = |W .

4. All other cells are initialised to represent the buffer solution: Ψ(i,j,k,0) = |B.

5. Solvent (Ψ(i,j,k,t) = |S) cell types do not occur during model initialisation, but only

during cell transitions in the course of model execution.

Transition rules between cell states are represented using dimensionless ratios, (one of

the main advantages of CA models, as this allows comparison of processes occurring at

different velocities).

Modelling diffusion

As described in Section 2.1, the diffusion of a drug in a governed environment is given

by Fick’s laws, which gives the change in concentration gradient over time. Although,

at macroscopic level a given drug formulation may follow either Fickian or non-Fickian

(anomalous) behaviour, we assume that Fick’s laws always hold on smaller scale. Movement

can occur in any one of the directions in three dimensional space, so we assume that there

exists probability of movement in any direction where there is a concentration gradient.

We model the influence of Fick’s laws by allowing each drug packet to have a probability

(Pl) of movement to a given neighbouring cell (l) with lower drug concentration. This

probability is directly proportional to the concentration gradient between two neighbouring

cells, i.e.

∆Cl = C(i, j, k, t)− C(i∗, j∗, k∗, t), (4.5)

where C(i, j, k, t), C(i*, j*, k*, t) represent dimensionless drug concentrations in the

current and adjacent cell, respectively. The sum of all movement probabilities to permitted

neighbouring cells, (i.e. to those for which CA rules do not prohibit movement, non |C

cells), has to satisfy the law governing the sum of probabilities:
n∑
i=0

Pl = 1. Therefore, the
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influence of concentration differences is normalised, giving:

Pl =



∆Ci
k∑

j=0,∆Cj>0

∆Cj

, if ∆Ci ≥ 0

0, if ∆Ci < 0

(4.6)

where i ∈ {0, k} and k is the number of neighbours to the given cell. For certain types

of cells (|W , |C and cells where ∆Ci ≤ 0), Pi is assumed to be 0 by default. To summarise:

according to this rule, if there exists a non-zero concentration gradient between the cell and

any of its valid neighbours, there is a non-zero probability that a drug packet will move to

that cell.

The speed of diffusion itself (i.e. the frequency of drug packets moving from one cell

to another) is calculated using the formula defined by Laaksonen et al. (2009a), which

relates the simulation time step (∆t) with diffusion coefficient (D), and the resolution of

the cellular grid (a):

∆t =
a2

4D
(4.7)

Key release indicators

In order to categorise the release curves obtained from the models (as anomalous, Fickian or

case-2 relaxation) we use Peppas Equation (2.6) (Chapter 2) to classify the drug dissolution,

based on the parameter n and the resulting curve behaviour in achieving zero-order release

rate. The parameters M and M∞ represent the amount of drug released at time t and total

amount of drug respectively, while kp is the kinetic constant. Values of the parameter n

are obtained from resulting release curves, using linear regression methods, where n is the

slope of the log-log line, of cumulative release against elapsed time, for the period during

which the majority of the drug dissolution occurs.

A dimensionless Deborah number (Vrentas et al., 1975) can be used as an additional

descriptor of the release, indicating Fickian or anomalous transport. The Deborah number
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is defined as:

De =
λe
τe

=
λeDw

δ2
(4.8)

where λe represents the characteristic relaxation time of the polymer, τe the characteristic

water diffusion time and δ is gel layer thickness. Changes in Deborah number can be

estimated directly from the water diffusion and polymer swelling probabilities using the

derived version of the equation, where Dw is estimated from the water diffusion probabilities,

while λe and δ are read from the resulting simulation measurements.

4.2 Modelling erodible coated drug devices (ECDD)

The first model specifically developed to address project aims (as stated in Section 3.4) is

designated the ECDD and considers the case for polymeric chain erosion in the coating and

subsequent drug diffusion, where these were assumed to be the primary factors influencing

release3. The main rationale for taking this initial, simplified approach was the availability

of experimental data that showed significant sensitivity of drug release to changes in the

coating thickness, implying erosion due to water intake rate as a primary contributor to

release. There is a long list of possible effects that can influence rates of degradation

and erosion (e.g. pH changes, water diffusivity, composition of polymers, polymer chain

length, (Göpferich and Langer, 1993, 1995a) and so on) and it is of particular importance

to determine the most influential and to establish the dominant release kinetics.

In the theoretical introduction, (Section 2.1), we noted that erosion represents the

scission of polymeric chains, allowing solvent penetration into the coating layer and, further,

into the sphere. On the microscopic scale, we can essentially look at this as a stochastic

process, where the probability of chain breakage is a value following a known distribution.

Such events occur independently of each other and at a specified rate within an interval

of time. Following (Göpferich, 1997b), bulk erosion effects are represented by the Erlang
3This work has been published in (Bezbradica et al., 2011).
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distribution:

e(t) = λe−λt (4.9)

where parameter lambda (λ) in the CA model, describes the rate of polymer breakage,

i.e. porosity formation. This parameter is characteristic of the material and can be changed

if a different coating material is used. In our case, a coating cell is considered to consist of

the mixture of ethylcellulose and pectin. The individual characteristics of each of these

components influence erosion, but we focus on their combined role. The lifetime (τc) of a

coating cell can be determined as inverse by proportion to λ given by:

τc =
1

λ
ln(U), U ∈ Unif [0, 1] (4.10)

where Unif [0, 1] is an Uniform distribution taking values between 0 and 1.

Further, we introduce a new cell type (type 6), namely a coating channel cell (|CH), to

model cracks and pores in the polymer structure caused by erosion of the coating material

or partial chain disentanglement. Unlike |C cells which act as a barrier to drug diffusion,

|CH cells permit drug movement, thus allowing for diffusion through the coating layer.

At the beginning of the simulation, (t=0 ), each |C cell is assigned an individual value of

τc, based on Equation (4.10). In every iteration, this value is decreased by the time step of

the simulation (∆t). When τc falls to zero, the coating cell is considered to be fully eroded

and is thus transformed into a channel cell:

Φ(τc = 0) : |C(i,j,k,t) → |CH(i,j,k,t+∆t) (4.11)

The drug matrix is held together by gelatine, another polymer inside the coating, which

is considered to undergo surface erosion. At t=0, each |P cell is assigned a fixed lifetime

(τp). A process, of progressive solvent penetration through the coating layer, eventually

allows |P cells to come into contact with the solvent cells (|S), hence providing a trigger

for their erosion. As with |C cells, the speed of erosion of a |P cell is determined by the

change in the gelatine lifetime, where this lifetime starts to decrease as soon as the gelatine

cell comes into contact with a |CH or |S cell. Additionally, the decrease in lifetime is

51



Figure 4.1: Schematic representation of CA rules for ECDD model. The main transition
rules given in Table 4.1 are visible. Arrows are showing drug and water diffusion (straight)
and polymer erosion (circular).

proportional to the number of those cells in the direct neighbourhood. Thus,

τp(t+ ∆t) = τp(t)− ks∆t (4.12)

where ks is the number of all surrounding |CH or |S cells. When a |P cell is eroded it

becomes a solvent cell, |S. Table 4.1 summarises the CA rules of model ECDD and Figure

(4.1) shows a schematic example of transitions between two model iterations.

4.3 Modelling swellable coated drug devices (SCDD)

Building on the basis of the previous ECDD model, which laid the foundation for investiga-

tion of some release phenomena of the target device, as well as accessing the efficiency of

the model framework, proposed in Chapter 5, a more complex set of release mechanisms

could then be formulated. It was anticipated that these would improve the simulation

model description of the device behaviour observed by experiment.

The principal addition made was incorporation of polymer swelling phenomena into

the CA system, as gelatine (and related substances) are known to swell under hydration,

(Klepko and Mel’nichenko, 1995). Hydration causes a general increase in the polymer

volume, as water penetrates deeper into the device core, creating a hydrogel layer. The
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Cell type Behaviour description

Buffer (|B) Drug is considered released when it reaches buffer
zone. Cell type acts as a perfect sink.

Ethylcellulose (|C)
Drug-free coating layer. Assigned lifetime, (τc),
based on λ (degradation rate) parameter. Forms
a |CH cell upon complete erosion.

EC channel (|CH) Drug can diffuse through |CH cells.

Gelatine (|P )
Assigned fixed initial lifetime (τp). As it erodes
into |S cells, it facilitates movement of drug “pack-
ets”.

Solvent (|S) Occurs as result of gelatine erosion. Drug can
diffuse through the solvent.

Drug packet
Drug, initially dispersed in gelatine cells. Each
cell can hold a maximum (saturation) amount of
drug “packets”.

Table 4.1: Cell types and rules of behaviour for ECDD model.

thickness and permeability of this layer control the rate of drug release. It should be noted

at this point, that such gelatine swelling phenomena categorise the system as true, non-

porous and swelling-controlled DDS, in contrast to the swelling matrix systems, where drug

diffusion occurs though the porous matrix structure even if there is no solvent penetration.

Characterising the difference is the fact that the drug particles are immobile while a polymer

is in its glassy state, and can diffuse out only after a phase transition to the rubbery state

takes place, (Colombo et al., 2000).

The modelling of such swelling systems is a non-trivial task. Unlike the other major

release mechanisms of polymer erosion and drug diffusion, which can be modelled in relative

isolation, swelling acts in conjunction with these mechanisms to create a complex set of

state transition fronts inside the device. Two of the most important fronts are: (i) erosion,

taking place at the outside water/gel interface, where the disentangled polymer chains

erode, and (ii) diffusion, occurring at the internal solid/dissolved drug interface where

polymer transition from glassy to rubbery state occurs. The difference in radii of those two

fronts, i.e. the gel layer thickness, acts as a major controller of the drug release rate, so

describing its behaviour is crucial (see Figure (4.2)).
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Figure 4.2: Photograph of an HPMC matrix tablet loaded with buflomedil pyridoxalphos-
phate, after one hour of swelling release. Three dissolution fronts are presented allowing for
visualisation of gel-layer thickness, (Colombo et al., 2000).

Swelling has attracted significant attention relatively recently, mostly in mechanistic

and empirical models, ranging from a simple power-law equation, proposed by (Korsmeyer

et al., 1986), to more complex cases, which have used a mechanistic approach linked to

the particular hydration properties of a given device. Examples describing swelling as the

essential parameter in probabilistic models of CA type, are few, with only one major model

described recently, (Laaksonen et al., 2009a). Of course, existing models have limitations,

both in terms of the amount of initial knowledge needed to “feed” the model and also in

terms of limited applicability to complex formulations for targeted delivery, (such as the

one we are investigating).

We thus investigate two related models, one assuming a constant rate of swelling and the

other assuming a varying rate related to the physical behaviour described in the literature

(Singh and Weber, 1996). Both the uncoated and coated drug formulations are modelled,

with the former used mostly for validation of the modelling assumptions. A schematic

representation of CA rules and behavioural transition is presented in Figure (4.3) and

Figure (4.4). The colours represent different cell types, the arrows the direction of transfer

and dots within a cell the concentration. An example of both self state change and lifetime

transfer is apparent from the right hand panel.
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Figure 4.3: Schematic representation of CA rules for uncoated devices. Saturation loading
is 4 drug packets per cell. Initial cell can be under or over saturated.

Figure 4.4: Schematic representation of CA rules for coated devices. The initial cell can be
under- or over-saturated.
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4.3.1 Effect of swelling kinetics - “constant-rate” (SCDDa)

To model swelling, we introduce additional states and cell transition rules to the existing

CA model:

1. Similar to (Laaksonen et al., 2009a), we describe the swelling process by two proba-

bilities - namely the probability, PW , of water diffusing into the polymer cell (core or

coating), and PS , the probability of core polymer chains diffusing out of the initial

core volume, proportional to the swelling rate of the polymer.

2. Each |P cell is assigned a swelling potential (Sp) representing the effect of the stress

field4 formed between the glassy/rubbery interface on one side and rubbery/solvent

interface on the other. This potential allows the cell to swell a certain number of times,

and is linked to the amount of polymer left within the |P cell, which is represented by

the lifetime (τp) (i.e. |P cells with higher lifetime have a higher swelling potential).

This rule combines the swelling and erosion processes into one common parameter,

allowing for a simplified description in the event of difficulty in comparing with

unreliable experimental observations for individual processes.

3. A new cell state representing the rubbery polymer stage, (|WP , as “wet polymer”),

was introduced. This state enables the diffusion of drug cells through the wetted

environment, as well as erosion and swelling of the gel polymer chains themselves. A

separate glassy to rubbery polymer cell transition rule is defined:

Φ(p ≤ kwPW ) : |P(i,j,k,t) → |WP(i,j,k,t+∆t) (4.13)

where kw represents the number of neighbouring water cells, (either |B or |S), PW

the water intake probability, and p, a uniformly distributed random variable, selected

for each cell in every time step. We consider the |P sites (glassy polymer) to be

mechanically and chemically inert, with no swelling, erosion or drug diffusion taking

place.
4The stress field is formed as a consequence of the concentration gradient between two fronts.
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4. Diffusion through |WP cells occurs with probability based on the remaining lifetime

of the cell (τp):

PWG = 1− τp(t)

τp(0)
(4.14)

where PWG represents the probability that a drug packet present in the |WP cell will

move. The drug diffusion rate within the gelatine thus ranges from 0 (immobile) to 1

(rate of drug diffusion in water).

5. As in the ECDD model, |WP cells erode when their lifetime reaches zero, and are

converted into |S cells.

6. The behaviour of gelatine cells is further enhanced as an initial value for τp is set

using the Erlang distribution, Equation (4.10), which describes the nature of the

gelatine erosion more realistically, as this includes both surface and bulk (Ulubayram

et al., 2002).

7. The process of swelling causes the |WP cell to transfer part of its material to a

neighbouring |B or another |WP cell, simulating chain disentanglement in a random

direction:

τp(i
∗, j∗, k∗, t+ ∆t) = τp(i

∗, j∗, k∗, t) + Lc, (4.15)

and

τp(i, j, k, t+ ∆t) = τp(i, j, k, t+ ∆t)− Lc (4.16)

where Lc is a simulation constant representing the lifetime of polymer chains trans-

ferred during individual cell swelling. This value is determined by calculating the

average lifetime of gelatine cells at the beginning of the simulation and dividing this

quantity by Sp.

The lifetime transfer only occurs between cells where there is a “lifetime gradient”.

Swelling is thus represented as the diffusion of polymer from higher “concentration” to
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lower. Further, we choose the target neighbour in the same way as for drug diffusion

- the sum of all probabilities of swelling affecting neighbouring cells must satisfy the

probability sum rule and the movement is proportional to the difference in lifetime.

The formula is the same as in Equation 4.6, with ∆C replaced by ∆τp. Moreover,

there are types of cells (|W , |C, |P or cells where the lifetime difference is negative)

for which the probability is set to zero.

8. The mechanism of drug diffusion through the coating layer is changed. Instead of the

bulk porosity used in the ECDD model, we now assume a more realistic sequence of

events, where the coating layer first takes in water through the ethylcellulose chains

with a probability PW , allowing it to reach the core layer after a certain period of

time. The core layer then begins swelling, according to the rules 1-7 described above,

creating a hydrostatic pressure difference, which has the potential to cause polymer

chain breakage (“cracking”) in the coating, resulting in expansion of gelatine out of

the coated sphere.

9. Finally, we consider the phenomena of polymer blocking and core fragmentation which

are specific to the Cyclosporine formulation modelled. Polymer blocking occurs when

the undissolved Cyclosporine chains attempt to diffuse through the ethylcellulose

membrane. This can lead to significant chain entanglement. This, in turn, causes

micro-pores within the coating to become congested and drug diffusion through

the outer membrane to be reduced significantly. Core fragmentation is the process

whereby large chunks of core gelatin tend to clump together, which results in larger

clumps with reduced solubility that trap the drug inside the bead, causing release

rates to plateau after a certain percentage. We introduce an additional modelling

parameter, PC , representing the probability of a |P cell going into the non-dissolvable

state in each iteration. Such a cell does not loose polymeric material over time and

remains in the same state throughout the simulation.

4.3.2 Effect of swelling kinetics - “varying-rate” (SCDDb)

For various pharmaceutical applications, it is of interest to know the actual swelling kinetics

of the hydrogel which will be used as the drug carrier, as this may have a significant impact
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on drug release itself, (Martínez-Ruvalcaba et al., 2009). There are several theories to date

that deal with hydrogel swelling kinetics. The physics of this process was studied initially

in isolation by Tanaka and Fillmore (1979), Li and Tanaka (1990) and Singh and Weber

(1996). These papers documented two characteristic swelling curves, differentiated by the

ratio (F ) of gelatine volume in equilibrium (maximum swelling point) and its initial volume.

If this is less than a characteristic value of 2.5, (based on the inflection point of the swelling

curve for spherical geometries, Singh and Weber (1996)) then swelling can be considered as

a Fickian process, with the change in sphere radius given by:

ae − a(t)

ae − a0
=

6

π2

∞∑
k=1

exp(−k
2t

τT
) (4.17)

where ae, a0 and a(t) represent the distance from equilibrium radius at the initial,

last and interim swelling times, and τT is the characteristic swelling time of the polymer.

However, as pointed out, (Singh and Weber, 1996), this law holds only for small swelling

rates, and does not give a good prediction for polymer swelling where F is larger than

2.5. In this case, the dissolution process becomes non-Fickian, with swelling predominantly

controlling release, resulting in a slightly different, sigmoidal curve.

We observe the influence of swelling probability changing with time, (as in Tanaka and

Fillmore (1979) and Singh and Weber (1996)). We assume that the probability of polymer

swelling (PS) is linked to the change in radius between two time points, with the exact

mechanism depending on the total ratio of volume change:

PS = e
−C1

t
τT , F < 2.5, (4.18)

PS = C2 [s(t) (1− s(t))] , F > 2.5 (4.19)

where F represents the ratio of the device volumes at equilibrium and initial states

respectively; C1 and C2 are empirical constants that link the swelling kinetics to model

probabilities, (limited by factors such as lifetime and swelling potential), and must be

determined, (a non-trivial task). Finally s(t) represents a logistic curve, used to describe

the sigmoidal nature of the process.
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4.4 Modelling multiple coatings (MCES)

While single coated beads permit the fundamental controlled release scenario (based

on the properties of a single polymer or of a polymer mixed with additives (such as a

Surelease R©/Pectin combination), there are often undesirable side effects that occur as a

consequence of interaction between the core polymer and the coating polymer or between

the coating polymer and the drug. Adding extra layers of different polymers can help

alleviate this issue. Also, these additional coatings can provide other benefits by augmenting

behaviour, such as boosting the dissolution of the drug or by modifying action of the coating.

As an example, a common multi-layer device design includes a core surrounded by two

layers - the inner one is a swellable polymeric layer and the outer one made up of a non

water-soluble polymer. Upon water penetration, the inner coating will swell, causing the

outer one to rupture. Another possible use of multiple coatings is to trap several stages

of a drug between each of these, causing a multi-stage release at different moments of GI

tract transition.

In our specific case, the use of a second coating on the target device was to remove the

negative effects of polymer blocking and core fragmentation, discussed in previous Section,

which were shown to be the major causes of incomplete Cyclosporine release from the beads.

To negate these effects, a second coat of Opadry R© film coating system was added to the

modelled device. The Opadry layer dissolves quickly after the water penetrates the bead

and enhances the gelatin and cyclosporine dissolution within the internal solvent, allowing

the chains to diffuse more quickly and preventing clustering of gelatin within the bead

(Colorcon Inc, 2009).

The multiple coating model (MCES) thus builds on the previous erosion and swelling

models (EC- and SCDD), and we present the additional model characteristics as incremental

delta terms only. It is assumed that those features not explicitly revisited here remain the

same as defined in the general swelling model presented above, (SCDD). The dominant

release control process in MCES is assumed to be either erosion or swelling, with the same

control mechanisms (including the λ factor and water diffusion probability (PWG) for the

gelatin erosion, and swelling potential and swelling probability for gelatin swelling).
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4.4.1 Geometry parameterisation

While the MCES model retains the geometrical characteristics of the previous models (3D

space, variable geometry), the method of specifying the thickness of the coating layers

is simplified somewhat by defining each layer thickness directly. Previous calculations,

based on weight gains (wg), required a knowledge of average polymer density (d), which is

generally unknown as beads undergo a thermal process after layering, (d ∼ f(ρ, wg), where

ρ is unknown). The thickness of the beads under various coating configurations, (none,

single or multiple), can be easily measured under lab conditions and the thickness of the

coatings derived from the difference.

4.4.2 Influx of water into EC/P layer

The coating cracking mechanism, caused by gelatin expansion and noted in reference to the

single coated swelling model (SCDDa), is augmented by allowing the diffusion of active

substance through micro-pores caused by EC polymer separation. The transition is defined

as cell state change from EC cell to a wet EC cell. The change occurs with water diffusion

probability PW , if there is at least one neighbouring solvent, buffer or another wetted EC

cells. The diffusion probability PW can be estimated by the following equation:

PW =

√
Dwater/EC

DCyA/water
(4.20)

i.e. the square root of the ratio of speed of diffusion of water molecules through

ethylcellulose relative to the overall speed of drug diffusion in water, for the given simulation

setup.

4.4.3 Opadry R© layer erosion

As noted earlier, incorporating a further coating requires an additional cell state and

associated rule to model the coating behaviour. The behaviour of Opadry R© polymer is

controlled through erosion only. The role of Opadry was discussed in Section 4.4. Each

Opadry cell is assigned a lifetime, similar to that of gelatin cells. However as the primary

effect of Opadry is to act as a buffer between the outer coating and the inner core, it dissolves
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quickly and a change to the properties of the selected solute parametric distribution is not

needed. Instead, a simplified uniform probability range (lifelower, lifeupper) is sampled to

assign a lifetime to each Opadry cell. A transition rule “Opadry cell” → “wet Opadry cell” is

defined and controlled via an associated probability POP . This parameter is used to delay

the start of layer erosion only. A mean lifetime is assigned, based on in vitro observations

from experiments carried out with the industrial partner.

4.4.4 Diffusion through EC coating permeated with solvent

The two approaches to modelling diffusion of drug through the wetted ethylcellulose chains

used by the ECDD and SCDD models showed qualitatively good results but parameters are

not straightforward to derive from experimental data. Thus, in the MCES model we chose

to describe the process by a similar paradigm to that of Equation (4.20). In order to move

to a neighbouring cell in the EC layer, drug packets have to overcome the PP probability.

They can only move through wetted EC cells. The same rule in selecting direction of

movement, based on concentration difference, still applies (i.e. first we determine if the

drug packet can move while inside a wet EC/P area and then select in which direction).

The PP parameter is critical in order to get the correct range of drug release rates between

different coating thicknesses.

The additional model rules are summarised as a schematic in Figure (4.5).

4.5 Influence of dissolution environment in MCES models

Of utmost importance for drug devices which have to transition between different dissolution

media is the distinction between how each environment influences drug behaviour. In

augmentation of the MCES model, (and indeed any of the presented models so far, as the

changes are orthogonal to the specific model rules), we can also mimic the influence of the

different environment (e.g. in the case of the Sigmoid Pharma project, this includes acidic,

(pH = 1.2) and enteric, (pH = 6.8) environments). Two parameters are proposed. The first

is the relative ratio of drug diffusion coefficients between the two environments, (effectively

allowing for slow-down or speed-up of the dissolution). The second is related to the presence

of chemical additives in the environment, which increase the relative capability of the
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Figure 4.5: A schematic representation of the CA rules for MCES model. The additional
rules of drug diffusion and Opadry erosion are displayed. Arrows show drug and water
diffusion (straight), polymer erosion (semi-circular) and polymer transfer (swelling, circular).

current environment to dissolve the target drug. As an example, Cyclosporine solubility is

low in acidic environments, but dissolution is fast with the addition of surfactants, such as

sodium dodecyl sulfate (SDS).

We have modelled the following properties of the dissolution environment:

• Dissolution rate - i.e. the speed of dissolution. The parameter defines the probability

of a CyA packet dissolving in given time step and it is directly proportional to the

dissolution rate which can be determined empirically using a variation of the Noyes-

Whitney Equation (2.4.1), given by:

DR =
AD

h

(
Cs −

Xd

V

)
(4.21)

where DR is the dissolution rate, A is the surface area of drug, h the thickness of

boundary layer, Cs the saturation concentration of drug in different media, Xd the

amount of dissolved drug and V the volume of the active dissolution media.
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• Solubility - the maximum amount of drug that can dissolve in a defined volume of

solvent. It is defined and parametrised as the dissolved drug percentage after which

no more dissolution occurs due to saturation of the media. The solubility is estimated

using the formula:

Stot = km(CSURF − CMC) (4.22)

where CSURF is the concentration of surfactant, CMC the critical micelle5 concen-

tration of the solubiliser used, (for example SDS surfactant used in the Sigmoid

experiments has CMC of 0.008M/l) and km is the molar solubilisation capacity of

drug.

• Changes in diffusivity with temperature: Temperature changes directly influ-

ence the diffusion coefficient, so this can be partially modelled if we understand the

connection between the temperature (T ) and the drug diffusivity of the environment

(D). For that purpose, we can use Stokes-Einstein formula to estimate D for different

T :

D =
kbT

6πηr
(4.23)

where η is the viscosity of the medium, kb is the Boltzmann constant, T is the

temperature of the environment and r is the radius of the spherical particle.

4.6 A comparison of SCA and ACA in probabilistic pharma-

ceutical modelling

In the literature, both synchronous (CA) and asynchronous (ACA) types of automata have

been used so far, (Section 3.1), without analysing their comparative impact on resulting

model outputs. Choosing the appropriate update mechanism, besides having an impact

on the perceived realism of the simulation, also has practical benefits for the applicability
5Aggregation of molecules in a colloidal solution.
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of different model parallelisation algorithms and their performance when used in large-

scale simulation context. High-fidelity models described in the previous sections have

further stressed the need for analysing differences between the two. In this section, we

compare several variants of probabilistic CA and ACA update algorithms for building

models of complex systems used in controlled drug delivery. Advantages and disadvantages,

related to different synchronous and asynchronous modelling scenarios, are outlined and

the performance obtained reported.

In research papers on application of CA to the DDS field, synchronous and asynchronous

update methods have been used, (Göpferich, 1997a; Siepmann and Siepmann, 2008; Barat

et al., 2008; Laaksonen et al., 2009a), but their effectiveness has not been analysed.

Choosing, the algorithm of cellular matrix iteration and the order of application of the

local rules, affects how temporal realism of the physical process is represented. As a

DDS is physicochemical in nature, chaotic or random updates might represent the system

dynamics better than synchronous, “all-at-once”, changes. On the other hand, as the size

and complexity of the models grows, scalability and the need for efficient parallelisation

of model space restricts use of the asynchronous methods due to performance, (Bandman,

2006b). Understanding the effects of synchronicity and asynchronicity on model outputs,

can enable optimal choices to be made during model development. It is also worthwhile to

examine the equivalence of substituting one iteration rule for another while maintaining

model outputs such as drug release rates and device geometry changes within acceptable

ranges. The transition of CA to ACA has been investigated in the literature in other

modelling contexts (Kalgin, 2008; Alba et al., 2002; Bandman, 2006b).

In this part of the chapter we compare behavioural characteristics, model outputs and

performance for different synchronous and asynchronous CA update mechanisms in the

context of probabilistic models used in controlled drug delivery and their parallel implemen-

tation, (where differential equations are not applicable due to the inherent unknowns in the

parameter space). We introduce the mechanisms as components of a wider meta-model

presented and describe how their logic fits into the CA system.

Section 4.6.1 presents the design methodology used for developing the CA rule sets,

together with comparison of different CA and ACA update mechanisms when used in the
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context of the meta-model and a theoretical analysis of their properties and variations in

parallel and sequential implementations. We summarise findings in the final section and

consider directions for future improvement.

4.6.1 CA and ACA modelling

Design methodology

As for any model build, the first stage involves transfer of the domain knowledge of the

structural and behavioural characteristics of the DDS to the CA model. Figure (4.6)

outlines the main modelling classes of interest, where the DDS consists typically of different

polymeric coatings, carriers or matrices, (Bezbradica et al., 2011). There are several distinct

DDS characteristic categories to be considered:

• the shape and geometry of the system (slab, cylindrical or spherical) - this is captured

in the shape and size of the model cellular matrix;

• the polymer composition of the device defined by states of the matrix cells;

• the polymer physico-chemical interaction mechanisms (laws) - described by character-

istic behaviours that occur inside the DDS;

• the drug loading and initial dispersion within the device;

• the influence of the dissolution environment on polymer behaviour.

The models, with above characteristics, are classified as kinetic CA or ACA models

(Bandini et al., 2010). Based on the way we choose to represent the physical phenomena

modelled, we can adopt rules, which are either deterministic or probabilistic, (or a combi-

nation of both) affecting the individual cell behaviour and the surrounding neighbourhood.

Both classical CA neighbourhood mechanisms (Von Neumann and Moore) can be used for

either model type.

Another important aspect of the meta-model in context of the CA or ACA used is the

establishment of the initial configuration and dispersion of elements within the modelled

device as well as the existence of boundary conditions. Although it is common for various
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Figure 4.6: Meta-model diagram with detailed components.

families of CA update mechanisms to operate under periodic boundary conditions (Xiao

et al., 2005; Voorhees, 1990; Burstedde et al., 2001), pharmaceutical models benefit from

using the fixed equivalent, as drug movement across the matrix boundaries is used as a

direct method for calculating release rates. To satisfy the condition that the models need

to mimic the inhomogeneous nature of the physical device, with exact distributions not

available from experimental data, the meta-model establishes the initial cell states using

stochastic distributions within the known device geometry. The stochastic aspect usually

has a lower and upper limit which is deduced from in vitro experiments, and the distribution

of values within the limits follows a probabilistic distribution, chosen to mimic known

chemical properties of the material, (for example its diffusion coefficients or degradation

rate). Therefore, various direct Monte Carlo algorithms can provide a natural solution to

the initial condition problem, by establishing a random starting state for each simulation

run. The stability of the obtained models can thus be tested, by validating that variation

in model outputs is not statistically significant for multiple runs using the same parameter

set.
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4.6.2 Update methods

Crucially, a good description of the model dynamics, i.e. the closest qualitative match to

the behaviour of the pharmaceutical system modelled, relies on choosing the appropriate

update method of the cellular automaton itself. While both synchronous and asynchronous

modelling have been used for this type of systems, an evaluation of the influence on model

performance and correctness is lacking. This is addressed here, with particular emphasis

on the correctness of the update rules as we consider several standard synchronous and

asynchronous CA update methods (Schönfisch and de Roos, 1999; Bandini et al., 2010;

Baetens et al., 2012).

Mathematically, the principal features of the 3-dimensional DDS models can be repre-

sented as a cellular automaton using a tuple representation, given by:

ACA = {G,A,U,Θ, F} (4.24)

where G denotes a set of cell coordinates (the model matrix in our meta model). In the

case of a three-dimensional system:

G = Z3 = {(i, j, k)|1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, 1 ≤ k ≤ Nz} (4.25)

A is the model alphabet - a finite set of possible cell states (the aggregate polymer

states in the conceptual model) and U denotes the cell neighbourhood (including the cell

itself). Then A (U(x), t) denotes the state of a neighbourhood of cells U around a given cell

x at a moment in time t. The behaviour of the system is described by a set of elementary

transition rules for the conceptual model, F, where these are applied to the states of a

neighbourhood of cells U. For the sequential case of synchronous updates, we can

write the following:

Fs = {f(x) : A(U(x), t)→ A(U(x), t+ 1)|x ∈ G} (4.26)

Finally, Θ denotes the CA/ACA update order function, applied to G and A in order

to advance the global model state. As a basis for Θ we investigated the application of
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several random and ordered asynchronous update methods, (see e.g. (Cornforth et al., 2005;

Valsecchi et al., 2010)) and compared these to the well-used synchronous method.

For a clearer description of the implementation of the different forms of Θ, we move

from the mathematical to the algorithmic description:

• We implement the different update forms as modifications of the basic synchronous

CA two-phase update algorithm of the main matrix G (Table 4.3a);

• The first ACA update method investigated is the random order algorithm which

involves updating cells of G in a random order which is changed every time a full

cell sweep is finished. All cells are updated in each time step of the simulation

(Table 4.3b);

• The random cyclic algorithm is a variation of the random order algorithm, with

the difference that a single random permutation of G is always used (a cycle). Random

permutation of G is chosen at the beginning of the simulation (Table 4.3c);

• In the random independent method (Table 4.3d), one cell is chosen at random

for updating at each time step. In the overall simulation, each cell should thus be

updated approximately the same number of times. However, over shorter time periods

a given cell may be updated significantly more often. To achieve uniform selection,

the algorithm thus depends heavily on the size of the cycle of the random number

generator implementation. The Mersenne Twister algorithm has been used in this

case, to reduce bias (Matsumoto and Nishimura, 1998);

• Finally, the fixed cyclic sequential algorithm (Table 4.3e and 4.3f) was used

in two forms: in the first one, cells of G are visited in sequential order of their

coordinates, (first width, then depth, then height in 3D). In the second form, cells are

sorted based on their state (A), so that polymers of certain types are given simulation

priority over polymers of other types (outer coating, then the inner coating, then

the core). The order of cell simulation within the same polymer type is sorted by its

coordinates.
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(a) Synchronous algorithm:
for each time step t
S ← random permutation of cells in G
Sd ← temporary copy of S

for each cell x in matrix S
for each rule f in F
A(U(x), t+ 1)|Sd = f(U(x), t)|S

for each cell x in matrix Sd
A(U(x), t+ 1)|S = A(U(x), t+ 1)|Sd

(b) Random order algorithm:
S ← random permutation of cells in G

for each time step t
x ← next cell from S
for each rule f in F
A(U(x), t+ 1)|S = f(U(x), t)|S

if x = last cell from S
S ← random permutation of cells in M

(c) Random cyclic algorithm:
S ← random permutation of cells in G

for each time step t
x ← next cyclic cell from S
for each rule f in F
A(U(x), t+ 1)|S = f(A(U(x), t))|S

(d) Random independent algorithm:
for each time step t

x ← random cell from G
for each rule f in F
A(U(x), t+ 1)|S = f(A(U(x), t))|S

(e) Fixed cyclic sequential algorithm (1):
for each time step t

x ← next cyclic cell from G
for each rule f in F
A(U(x), t+ 1)|S = f(A(U(x), t))|S

(f) Fixed cyclic sequential algorithm (2):
S ← type-sorted set of cells from G

for each time step t
x ← next cyclic cell from S
for each rule f in F
A(U(x), t+ 1)|S = f(A(U(x), t))|S

Table 4.2: Synchronous/asynchronous Cellular Automata update algorithms.
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Equivalence of Sequential and Parallel Implementations

In a concrete, model execution context, the mechanisms presented above only apply as

long as the simulation is sequential. Once the algorithm has to scale up to be applicable to

large data sets, the inclusion of parallelisation will have fundamental impact on the update

logic. It can be shown that in our case synchronous matrix updates are more suitable for

parallelisation, as the effect of parallel updates on the resulting state should be equivalent.

Consider a parallel version of the fundamental rule set given in (Equation 4.26):

Fp = {f(x1, ...xn) :
k⋃
i=1

A(U(x), t)→
k⋃
i=1

A(U(x), t+ 1)|x1, ...xn ∈ G} (4.27)

Essentially, parallelising the update mechanism by splitting the CA space into disjoint

domains, each having a set of boundary cells, introduces a simultaneous update of k cells

at a time, where n represents the degree of parallelisation. The exact selection of cells x1,

... xn depends on the particular parallel algorithm being used. In the synchronous case,

the state of a neighbourhood of cells U(x) at moment t depends only on the same state

for the previous instant t− 1, and not on any currently updated state of any of the other

neighbourhoods. Therefore, for synchronous updates, it holds that FS ⇔ FP , which is in

line with Bandman (2006a).

For asynchronous updates, the equivalence of sequential and parallel implementation

breaks down. As the parallel version of the rule set presents a set of functions applied

simultaneously, the order of their application can result in a different overall state of the

matrix. This is always true if any of the chosen neighbourhoods U(xi) overlap.

Therefore, in the case of random order and random cyclic updates, we expect the

parallelisation to always result in a slightly different model output. The same holds for

different variations of fixed cyclic rules, presented in Table 4.3, where the idea of the

underlying algorithm essentially breaks down. The only exception to this rule is the

random independent order of updates, which might produce equivalent results, but only

if, in each individual iteration, cells xi are chosen from each parallel domain so that their

neighbourhoods U(xi) are non-overlapping.
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From an implementation point of view, for parallelisation of pharmaceutical models

using some of the industry standard parallel APIs, such as Message Passing Interface

(MPI), synchronous updates are preferable from the execution speed point of view, as

simulations have a practical wall-clock time limit of 24hrs, (the amount of time it would

take to run a single in vitro experiment). Synchronous updates are extremely efficient in

terms of execution speed, especially as they can utilise two-sided communication using MPI

to send and receive primitives. Asynchronous parallelisation schemes require one-sided

communication primitives such as MPI “put” and “get”, utilising the remote memory access

mechanism (RMA), which, although slower, allows for the cell state to be asked for or

provided on demand, without the need to wait on some eventual update (Thakur et al.,

2004).

Finally, it is important to note, according to Toffoli and Margolus (1987) that, for

relatively slow changing stochastic CA models, the expected variance in outputs between

synchronous and asynchronous update methods would be small. This results from the fact

that large-scale, low-probability models do not have too many cell state updates in each

iteration, which in turn limits the number of cases where overlapping neighbourhoods are

updated.

4.6.3 Model properties

Table 4.3 revisits the main CA rules used, in the meta-model described, with respect to

their impact on neighbouring cells and the type of update performed (probabilistic or

deterministic). Following the notation from Section 4.6.2, each of the transition functions

is applied to an alphabet of CA states:

A = {PCOAT , PCORE , S,D} (4.28)

where PCOAT and PCORE denote the coating and core polymers respectively, S represents

solvent cells and D drug molecules. The rules can also be described using a more formal

notation:

• erosion: polymer lifetime of a given cell x (l(x)) decreases linearly with time according
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Phenomenon Rule behaviour Type
Erosion Applies to all polymer cells.

Amount of polymer present
represented through randomly
distributed cell lifetime.
Polymer degradation directly
mapped to lifetime decrease.

Initial state - probabilistic;
Subsequent updates - determinis-
tic;
Neighbour-independent.

Diffusion Applies to drug carrying cells.
Drug moves from cells with higher
concentrations to cells with lower
concentration.
Destination cell chosen with pro-
portional probability.
Initial drug dispersion set using
probabilistic distribution.

Initial state - probabilistic;
Subsequent updates - probabilis-
tic;
Neighbour-dependent.

Swelling Applies to core polymeric cells.
Amount of polymer present in cell
is transferred to a neighbouring
cell according to concentration gra-
dient.
Destination cell chosen with pro-
portional probability.

Initial state - derived from erosion;
Subsequent updates - probabilis-
tic;
Neighbour-dependent.

Dissolution Applies to cells outside of drug
device boundaries.
Drug is removed after it crosses
the boundary.
Amount of drug removed depends
on set probability.

Initial state - derived from diffu-
sion;
Subsequent updates - probabilis-
tic;
Neighbour-independent.

Table 4.3: Elementary CA rule matrix for the meta-model together with descriptions and
type quantifiers.
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to the following function: fe(x) : {l(x)→ l(x)− t|∀x ∈ {PCOAT , PCORE}}

• diffusion: the amount of drug present in cell xa (d(xa)) partially transitions to a

neighbouring cell xb with probability pdiff : fdiff (xa, xb) : {d(xa, xb)
pdiff−−−→ d(xa) −

∆d, d(xb) + ∆d|∀xa ∈ {D}, xb ∈ U(xa),∆d > 0}

• swelling: the amount of polymer present in a cell is distributed in a similar fash-

ion, using probability ps: fs(xa, xb) : {l(xa, xb)
ps−→ l(xa) − ∆l, l(xb) + ∆l|∀xa ∈

{PCOAT , PCORE}, xb ∈ U(xa), xb ∈ {PCOAT , PCORE , S},∆l > 0}

• dissolution: finally, the process of partial or total drug dissolution is described as

the reduction in drug molecule count of a given cell once it transitions to solvent

state: fdiss(x) : {d(x)
pd−→ d(x)− n|∀x ∈ {S}, n ≤ d(x)}

Multiple rule combinations can be superimposed (e.g.f(x) = fe(fdiff (fs(x)))) to fully

define a cell behaviour during a single iteration if the given cell state satisfies all the

alphabet preconditions of the rules given in Equation (4.28).

4.6.4 ACA to CA transition

The initial model developed, ECDD (Section 4.2), used a random order ACA update scheme,

(Bezbradica et al., 2011). This was used for two reasons, (i) to more faithfully represent

the nature of chemical processes occurring inside the device (ii) for performance reasons,

with the initial model using thread-level parallelism, deemed more suitable for ACA update

types as cell state exchange is not as expensive as in process-level implementations.

However, since further model extensions and increasing complexity required a transition

to synchronous updates in order to achieve faster running times, certain compositions of

elementary rules were found to be no longer applicable (Bezbradica et al., 2012). As rule

applications in ACA lead to an immediate change in the matrix state, readily visible to all

other rules, the possibility of having “undefined” states, where two consecutive state changes

lead to an invalid cell neighbourhood in the next iteration, cease to apply. With synchronous

models, on the other hand the possibility exists that an elementary rule changes the state

of the cell in the next iteration, such that subsequent executions of other elementary rules

on the same cell no longer apply. For the case of the erosion rule, the complete loss of
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polymer now has to block further swelling updates originating from the cell, even though

the swelling rule would be applicable to the cell state in the current iteration. Accordingly,

diffusion has to adapt to its valid neighbours changing to the polymer state due to swelling

in the next iteration, which would then make any drug movements invalid.

4.7 Summary

In the first part of this chapter we incorporated all main dissolution phenomena, (defined in

Chapter 2, Section 2.1), into our meta-model. As such, we created a novel comprehensive

and complex modelling framework which allows easy extrapolation of a base model to

different desired geometries, dissolution scenarios or device structures used in complex drug

design, (and with capability well beyond that required by the Sigmoid Pharma project).

Within these models, we have been able to combine stochastic prediction of outcomes, with

empirical information, from observation of in vitro experiments, in order to access the

impact of parameter changes.

The rationale for taking this approach was to address certain limitations of earlier

model applicability to complex structures, (such as coated swellable formulations) and to

supplement sparse a priori experimental data needed for calibration.

In the second part of this chapter we presented an overview of methodological considera-

tions, important to modelling drug delivery systems using CA and ACA, and have analysed

the advantages and disadvantages of each update method. While some flexibility is possible

in choosing between asynchronous and synchronous methods for approximate solutions in

this context, this is governed by structural requirements.
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Chapter 5

Model Implementation and Analysis

Currently, a “hot-topic” in computing, Data Analytics typically refers to the use of large

scale computing to solve problems involving “big data”. The use of Data Analytics in

drug design and discovery was of limited use historically, as the process of in vitro drug

release was considered akin to a black box, where different inputs were varied in order to

tailor desired outputs1. In this sense, the internal dynamics of the pharmaceutical device

could not be deduced solely by observation as this presents a superimposed picture of the

phenomena involved.

As described in Chapter 1 pharmacokinetic modelling of drug release from a DDS,

from the drug discovery phase through to development and manufacturing, provides both

support for the decision-making process as well as an improved and effective usage of drug

development time together with reduction of design parameter space. The basis for analyses

both within and between input data sets is also covered. This has the potential to reduce

the amount of in vitro/in vivo testing required, important to cost-effective and flexible

solutions. Hence, in silico modelling and analysis could enable extensive offline testing and

evaluation of parameter sensitivity, (Bader, 2012).

In our case, in vitro and in silico data analysis and development of the current models

were performed based on the workflow presented in Figure (5.1). This continuous feedback

loop is composed of several distinct stages, separated into two main parts (enterprise partner

and modeller).
1This work has been published in (Perrin et al., 2012).
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The initial drug design and in vitro testing in the USP II apparata (The United States

Pharmacopeial Convention, 2007), has been performed by the enterprise partner. The data

are filtered to determine the variables of interest, intrinsic to the drug device design process,

(input parameters such as geometry, size, drug loadings, and coating thicknesses), and

relevant to the modeller (e.g. the types of physical processes/chemical reactions present,

release curves for different parameter sets, etc.). The data obtained were used in the

construction of the CA models presented here and shed light on different assumptions about

the dissolution processes.

The models are then optimised for parallel execution and simulated on high performance

computing clusters for various input data sets, in order to maximise the gain from running

many simulations at once. As the laboratory testing is performed for periods of up to 24

hours, in order for in silico simulations to be cost-effective, the workflow and the underlying

framework must be able to support large numbers of simulations over a relatively short

time period.

Two main sets of simulation results are generated: (i) a control set, which validates

results against the known experimental data points and is used to assess model usability

for predictive purposes. For controlled release, a sigmoidal (“S” Shaped) release curve is

expected, demonstrating properties of zero-order release kinetics during a period when the

device passes through a region of maximum adsorption; (ii) a generic data set showing

variations of release profiles, dependent on parameter changes, which can then be used to

feed back into the drug design process.

If the model validation shows promising results, extensive optimisation can also be

performed in order to ensure model robustness and reusability for similar drug device

analysis. An insight on system evolution is also provided by graphical representation of the

model, which captures successive stages of the dissolution.
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Figure 5.1: Data analysis and modelling workflow. The workflow starts at initial design of
the pharmaceutical device and preliminary in vitro testing. The resulting data are filtered
for the experiments that include relevant experimental variables, and are used to construct
the CA models. High Performance in silico simulations and data visualisation are then
used to investigate the influence of parameter change to the release profiles. If the control
results accurately describe the experimentally observed data, the simulated scenarios can
be used to reduce the space of further experimental designs.

5.1 Parallelisation strategies for large scale Cellular Automata

frameworks in pharmaceutical modelling

Here, we focus further on the implementation aspects of the simulation stage, with re-

sulting data analysis and visualisation covered in subsequent chapters2. One of the main

challenges in pharmaceutical data analytics is that uncovering structures and patterns in

complex, heterogeneous datasets is a computer-intensive task, requiring significant com-

putational resources. Recent advances in high-performance computing provide part of

the solution. Multicore systems are now more affordable and more accessible. Advances
2This work has been published in (Bezbradica et al., 2012).
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in high-performance computing (HPC) have resulted not only in improved performance

but also in greater availability of such resources. The cost per GFLOPS3 dropped below

$1000 for the first time in 2000, below $42 in 2009, (Nakasato, 2009), and below $2 in

2011, (Stevenson et al., 2011). Ongoing development of cloud-based solutions is likely to

further increase availability and affordability of HPC resources. HPC solutions are already

having significant impact on Data Analytics in a range of disciplines. This served us the

motivated for providing an overview of the challenges and present a detailed case study for

pharmaceutical R&D, since practical applications are lacking in the context of optimisation

and parallelisation of large-scale, high-precision, high-fidelity DDS CA simulations. The

key obstacle to parallelisation of pharmaceutical models is not only the amount of data

involved, but also the fact that many of these models incorporate agent-like behaviour

within the CA framework in order to describe pharmaceutical components. This makes

communication across process boundaries expensive.

In this chapter, we investigate how to develop more advanced methods for data analytics

and focus on a specific case of model-driven analysis. We apply two parallel-computing

application programming interfaces (APIs), namely OpenMP and MPI, to partition the

simulation space and analyse the applicability of each API to the problem individually, as

well as in the hybrid solution. We examine the speedup potential and overhead for local

and global communication for simulation speed and solution scalability.

5.1.1 Advantages of High Performance Computing

If we are speaking in Data Analytics terms, there are two sources of “big data” in general in

pharmaceutical analysis. The first is due to novel drug formulations generating considerable

experimental data from the design stage (Coulter, 2010), which require processing in order

to deduce relations between design parameters. Synthetic sources depend on the device,

where fine resolution is needed for micro- and nano- scale simulations, requiring high

performance, large scale infrastructure to execute. Even though such resources today are

readily available, either from local scientific computing clusters or commodity public cloud

infrastructure, the algorithmic solutions are less well-reported in the scientific literature,
3109 floating point (i.e. real number) operations per second.
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(Bader, 2012).

A second source of data comes from the problem of implementing parallelisation of CA

systems themselves, where the key challenge is that of the efficient transfer of large amount

of cell state information, which contain high-precision data, across process boundaries

where communication is expensive, (Bezbradica et al., 2012). This problem becomes more

complex for multiple scales as we switch from classical CA models, to ones incorporating

agent-like behaviour, (such as those of particle diffusion within the drug device).

Depending on the available infrastructure and on the need for granularity, the general

model framework, described in Chapter 4, can be adapted for different parallelisation

strategies, (Bezbradica et al., 2012). On one level, process level parallelism, which requires

more extensive computing resources, can be used at the development and analysis stages,

for processing of large data sets of experimental data, in order to reduce input requirements

from wet-lab experiments. Lighter, thread4 level parallelism can be utilised even under

laboratory conditions and is adequate for further analysis of single parameter ranges. Finally,

there is a possibility of adopting a hybrid approach, allowing selection between the two

strategies, which maximises the utilisation of available high performance infrastructure by

applying both thread and process level parallelism, (Silberschatz et al., 2012).

Inter-thread and inter-process communication overhead occurs as a consequence of the

cell state being exchanged during an execution rule and is solved by introducing boundary

cell layers, where communication is either sequentialised, (i.e. uses locking5), for the case of

threads, or delegated to one of the two neighbouring processes for process level parallelism.

5.1.2 Parallelisation Schemes

In order to develop the most efficient parallelisation algorithm for the CA model presented,

we need to understand the fundamental types of cell communications and cell transfers

occurring. Traditional synchronous CA models usually follow a standard pattern where

a cell state is passively dependent on its neighbours and, based on their state values, is
4In a programming context, threads represent a lower level parallelisation abstraction than processes. A

process would represent a general sequence of execution (i.e. an application) while a thread would represent
a sequence of execution within the process itself. Each process can have multiple threads.

5Locking is a general thread programming concept, where given thread blocks waiting for another thread
to perform a dependent action.
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Figure 5.2: Elementary Types of CA Rules present in the Model.

updated itself in the following iteration. These kinds of models should fit into the category

of so called “embarrassingly parallel” problems, where parallelisation of the problem space

is straightforward, (Massaioli et al., 2005). However, differences in the rule types in our

case mean that certain types of shared state and synchronisation between different parallel

processes is necessary.

Rule Types

In the models presented in the earlier chapters, each cell has a state describing the current

status of several different physico-chemical phenomena:

• The amount of degradation of polymer chains;

• The extent of expansion potential of polymer chains;

• The number of drug particles present in the cell.

These sub-states are mutually independent and can be updated separately from each

other. Thus, we cannot treat whole cell state updates as “atomic”6, only sub-state ones.

Therefore, every single cell has the potential to be updated several times during a single

simulation iteration.

The model rules that affect those sub-states can generally be classified into three

fundamental types (Figure (5.2)):

• Temporal rules which change the state of a single cell without neighbour influence.

This type of rule is always deterministic (e.g. polymer degradation over time)
6The atomic instruction is “indivisible”. It cannot be interrupted before its completion. For example, if

the CPU attempts to read from the memory it can only see operation as completed or not and will not be
able to read its inner state.
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• Neighbourhood-dependent rules which change the state of a single cell, based on

the combination of states from neighbouring cells. This type of rule can either be

deterministic (polymer erosion) or probabilistic (polymer wetting)

• Neighbourhood-dependent rules which change both the state of the cell and the state

of one of its neighbours. This type of rule is always probabilistic (e.g. drug diffusion,

polymer swelling).

It is also important to note, that conflicts can occur in shared cell updates of different

types (i.e. swelling and diffusion or erosion and swelling). In this case, we define a permitted

order of cell updates, where a state change will block further updates of certain kinds. For

example, erosion of a cell which degrades all the remaining polymer will further block any

swelling rules which can be executed from that cell.

The particular obstacle to overcome for parallelisation of the model to be efficient is

effective communication of the third type of rule across parallelisation boundaries. Recall

that these rules were introduced to realistically simulate the physico-chemical processes

which have an active spatial span, as opposed to being passively affected by the neighbour

state. However, the ability of the cell to affect the neighbour state in a probabilistic manner

leads to the possible occurrence of multiple updates of a single cell from two or more of its

neighbours (Figure (5.2)). To resolve possible conflicts several approaches may be used:

• The neighbouring cell can be marked as updated for all sub-states and no further

state changes permitted;

• The neighbouring cell can be marked as updated for a single type of sub-state change

(e.g. polymer swelling), but other types of state changes (e.g. drug diffusion) may be

permitted;

• The neighbouring cell state can be updated multiple times and all types of state

changes may be permitted. In this case, changes are considered to be additive.

In order to preserve the realism of the physical process, all models generally assume the

third approach; however there can be cases where the neighbouring cell is precluded from a

certain type of update (e.g. due to change of state). To illustrate the point let us consider
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Algorithm 1 Update(Matrix M)

1: Secondary = M

2: shuffled_cell_vector = Shuffle(M)

3: for each c in shuffled_cell_vector do

4: for each rule in rule_list do

5: Apply(c, rule) ⇒ Secondary

6: M = Secondary

7: ComputeRelease(M)

Table 5.1: The pseudo code for the basic model algorithm.

two examples. Example 1: the drug diffusion algorithm selects the same target cell for

drug packet movement from two different neighbours. In order to correctly describe the

resulting movement, the destination cell will contain packets from both sources. Example

2: polymer expansion into the coating layer has caused a neighbour state change which

prevents any further updates to the destination cell. In general, for the latter updates, we

assume a “priority approach” based on which cell caused the first change to the destination

cell state. Any subsequent attempts to change the state are ignored. However, from the

parallel implementation perspective, this implies both the need for cells to communicate

their state across to that of the destination cell, as well as some kind of “locking access” to

the destination cell during the update process, in order not to cause partial or incorrect

updates and thus loss of data.

5.1.3 Model Parallelisation Algorithms

The main model algorithm uses two 3D matrices, primary and secondary, to hold the state

of the dissolution space in the current and next iterations respectively. The algorithm

performs multiple pass visits of each cell in the primary matrix. The cells are visited in

random order, using a shuffle approach, to avoid any potential bias or rule cycle. In the

first pass, when a cell is visited, all possible behaviours defined for the particular cell type

are evaluated, and applied based on calculated probabilities. The resulting state is then

updated in the secondary matrix. When the first pass is finished, the matrices are swapped,
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Figure 5.3: Parallelisation Strategies - OpenMP. (Left) Primary matrix is divided into equal
regions with boundary (thread-shared) layers, each simulated by a dedicated thread (Centre)
Non-boundary updates are applied directly to the secondary matrix, while the boundary
updates are exchanged between the threads. (Right) The updated state is gathered back to
the primary matrix.

and a second pass is performed to calculate the resulting global state of interest to the

modellers, such as new dissolution boundary fronts, and overall amount of drug dissolved.

Since only one pass occurs at any one time, there are no conflicts in cell updates. The

algorithm pseudo-code is described in Table 5.1.

Thread-level Parallelism (TLP)

The first approach we consider, for solution of the efficiency problem, involves thread-level

parallelisation on a symmetric multi-processing (SMP) architecture. The main matrix is

kept as is, and the secondary matrix is divided into logical regions of equal size, where

updates in each region are controlled by a separate execution thread (Figure (5.3)). Since

the matrix state is shared in memory and visible to all threads, we now have the potential

for conflicts in cell state updates. In order to minimise the negative effects of explicit thread

synchronisation, cell state locking is considered only at region boundaries. Namely, two

boundary layers on each side of the region, except in the case of the first and last region,

are considered to be “shared” and locking is enforced for any state changes in that region

during the single update period.

However, other threads are permitted to make any updates that are considered legal

by the rule set, after the lock is lifted. The pseudo-code for the algorithm modification is

given in Table 5.2. The standard OpenMP API primitives have been used as a means of

implementing the parallelisation of the for loops in the main algorithm.

Although the approach provides a straightforward algorithmic solution to the problem,

SMP architectures are generally limited by the number of available execution cores, and
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Algorithm 2 UpdateByThreads(Matrix M)

1: Secondary = M

2: parallel for each region in M.Regions

3: shuffled_cell_vector = Shuffle(region)

4: for each c in shuffled_cell_vector do

5: if(IsShared(c) == true) then lock(Secondary(c))

6: for each rule in rule_list do

7: Apply(c, rule) ⇒ Secondary(region)

8: if (IsShared(c) == true) then unlock(Secondary(c))

9: #end parallel

10: M = Secondary

11: ComputeRelease(M)

Table 5.2: The pseudo code for the thread-level algorithm.

performance gain, i.e. speedup, from this type of parallelisation has a “hard ceiling” set by

the underlying architecture. Hence, in order to improve the execution times further, we

have to cross the process and machine boundaries.

Process-level Parallelism (PLP)

In order to split the algorithm execution across the different execution nodes, the focus shifts

to solving the communication problem instead of the synchronisation one. In distributed

computing platforms, such as MPI, a state has to be explicitly shared by sending and

receiving over the communication network. This network now introduces an additional

variable in the model performance, and necessitates the definition of a communication

pattern between different model regions.

Generally, the CA model space can be efficiently sent to separate execution nodes

using the explicit MPI commands MPI_Scatter and MPI_Gather, i.e. “scatter-gather”

algorithm, (Kandalla et al., 2010). Regions of equal size are sent (scattered) from a “master”

process, responsible for overall state management, to two or more “slave” processes, which

are solely responsible for the simulation of a single region. After the regions have been

simulated, their state is returned (gathered) back by the master process, which is responsible
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Algorithm 3 CrossProcessUpdate(Matrix M, int rank)

1: Secondary = M

2: n = Secondary.Regions.Count

3: Matrix region

4: if (rank == MASTER) then

5: Scatter(M.Regions) ⇒ region

6: for each c in Shuffle(region) do

7: if(IsBoundary(c) == true) then skip

8: ApplyRules(c, rule_list) ⇒ Secondary(region)

9: ExchangeBoundary(rank, rank + 1)

10: for each c in Shuffle(region.boundary) do

11: ApplyRules(c, rule_list) ⇒

12: Secondary(region.boundary)

13: if (rank == MASTER) then begin

14: Gather(M.Regions) ⇐ Secondary(region)

15: ComputeRelease(M)

16: end

Table 5.3: The pseudo code for the process-level algorithm.
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Figure 5.4: Parallelisation Strategies - MPI. (Left) The simulation space is divided into
separate processes (master and a number of slaves), with boundary layers shared between
them (Centre) After internal cell state updates, neighbouring processes exchange boundary
layer information (Right) After the boundary calculations are completed, the state of the
simulation space is gathered back by the master process.

for assembling them back together and calculating the resulting output. It is interesting to

note that, due to the fact that the master process is idle during the period between the

scatter and gather phases, it also assumes the role of the slave, by assigning itself as owner

of one of the regions to update.

In our particular case, the scattering of the regions is not enough, because regions

share logical space of the CA framework, so that a mechanism to send boundary cell states

across this logical space needs to be present. Although MPI allows for asynchronous data

communication that can be used on a per cell basis (i.e. a cell sends out updated state

information as soon as it is changed), this places a prohibitive performance strain, both

in terms of the amount of micro-communications that need to occur and due to the fact

that any boundary cell update would need to wait on neighbour boundary state updates in

order to continue with the execution. To avoid this, we choose to serialise the boundary

layer updates to the end of the region update cycle. As with the concept of thread-level

shared layers, we introduce process-level shared layers. These are constructed of boundary

layers in each region. As illustrated in Figure (5.4), the update of the boundary layers is

now the sole ownership of just one of the neighbouring process regions that share those

layers. Upon completion of region updates, which can be done without the need for data

from neighbouring processes, boundary layer information is sent to the “owner” process

which completes the region update cycle, and returns the updated state back to the initial
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process. The main cycle then completes with the slave processes sending back the resulting

state to the master. The resulting pseudo-code is presented in Table 5.3: for brevity, the

function ApplyRules replaces the behavioural “for loop” from previous code examples, which

was responsible for rule applications.

Although this approach allows a much larger parallelisation ceiling, the fact that it

involves cross-process communications, usually made across a physical network, means

that the bandwidth speed is the main bottleneck that impacts performance. Even when

executing on the same node, using inter-process communication, the overhead can be

particularly large, especially considering the amount of data present in the model.

Hybrid Parallelism (HP)

The advantages and disadvantages of the proposed parallelisation strategies naturally lead

to the solution where both are combined in order to minimise the negative impacts of each

(Jin et al., 2011). On the one hand, we want to avoid the “hard ceiling” present in the

SMP solution by leveraging cross-process communication, while on the other, we want to

minimise the communication overhead present in the message-passing paradigm. In order to

achieve this, we execute one process per node via MPI, but implement the threading within

each region by using OpenMP. As a result, the process-level communication is reduced to

an absolute minimum, while the limit to the amount of cores that can be used is drastically

increased. Of course, communication overhead and non-parallelisable elements of the model

will result in diminishing returns as the number of cores increase. Also the model geometry

will be the ultimate limit, as the number of cores approaches the number of layers present.

The resulting hybrid pseudo-code algorithm is shown in Table 5.4 and its schematics are

given in Figure (5.5).

The central part of Figure (5.6) shows the CA rule type executions described in the

context of the hybrid model. The top panel of the central diagram represents the diffusion

process through three distinct update scenarios. In scenario 1, we have the normal case,

isolated (i.e. independent of shared space) rule execution, where a set of drug molecules

can choose to move to a suitable neighbour. Scenarios 2 and 3 display rule updates which

occur inside the shared layer. In this case state locking is performed, and cell access is
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Figure 5.5: Parallelisation Strategies - Hybrid. (Left) The simulation space is divided across
master/slave process with each process further dividing the space over multiple threads
(Centre) Internal state calculations are performed by each thread in each process with the
boundary threads exchanging the state information. (Left) The resulting state is gathered
by the master process.

Figure 5.6: Hybrid parallel model incorporating main rule types. Each of the processes
computes the internal cell transitions, divided into three core types.

sequentialised on a first-come first-served basis. In scenario 2, there is no additional contest

from the other thread, so regular cell state update occurs. However, in scenario 3, as the

synchronous CA update mechanism is used, a second update will not be aware of the

changes made by the first, resulting in a need to “resolve the update conflict”. In this case,

we assume the resulting state will be cumulative and both diffusions are permitted, unless
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a super-saturation7 of the cell occurs.

The middle panel in the central diagram in Figure (5.6) shows similar update scenarios

in the context of erosion rules. As rules in this case are passive and affect the self-state

only, there is a “smaller” potential for conflicts. In case of shared layer access, however, it is

still necessary to lock the cell, in order to prevent other rule types from affecting it.

Finally, the last central panel of Figure (5.6) represents the scenarios for simulation,

which incorporates swelling effects. These are fairly similar to the diffusion updates, with

added complexity that polymer transfer to neighbouring cell occurs, influencing erosion

cycle in the subsequent iteration.

5.2 Performance Metrics

5.2.1 Development and execution environment

The code for the models was written in the C++ programming language. It consists of

approximately 11000 lines of code divided across 20 classes. The build environment is a

combination of g++ compiler with Eclipse used as an IDE, on Ubuntu Linux, running on

VMWare Player within a Windows 7 environment. The compilers used on the compute

clusters included Intel and GNU C++. Standard outputs of the simulation program are

drug release and structural data (e.g. diffusion and swelling fronts, porosity) at desired time

points. In addition to this, there is a need to visually observe the evolution of models for

two main reasons: firstly, visualisation enables the interfacing with different subject matter

experts, e.g. pharmaceutical scientists and biotechnologists. Secondly, it allows a basic

verification during different stages of model development. Visualisation was performed

using OpenGL and displays a model cross-section as it evolves over time, to facilitate an

in-depth observation of processes occurring within the different layers, Figure (6.1). It is

implemented as an optional, separate component of the program, allowing two types of

data processing, numerical and graphical.

The parallelised algorithms are based on GNU OpenMP (GOMP) and Open MPI
7Super-saturation of the cells allows a larger concentration of the drug within the cell volume than

that which would result as a consequence of an ordinary diffusion flow. It usually occurs during the drug
formulation phase.
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libraries. Real simulation runs were performed on SMP architecture cluster provided by

ICHEC (The Irish Centre for High End Computing) (Stokes) and DCU (Ampato), with 12

and 8 cores per node, respectively. For each set of parameters, ten runs were performed to

assess simulation robustness, showing negligible differences in outputs, (much as expected)

as all models are both large-scale and high-resolution.

Model runs were performed using ICHEC Stokes supercomputer. Stokes is an SGI Altix

ICE 8200EX cluster with 320 compute nodes. Each compute node has two Intel (Westmere)

Xeon E5650 processors and 24GB of RAM. The nodes are interconnected via two planes

of ConnectX Infiniband. Our model was implemented in C++ (using the gcc 4.3.0 64bit

compiler), OpenMPI version 1.4.3 and GNU OpenMP (GOMP) version 3.1. In all cases,

1440 iterations of the simulation were run, with one iteration configured to represent one

minute of real time. This choice was based on the need to correlate the data obtained

to the in vitro experiments which usually run for 24 hours. The bounding volume of the

simulation space was 300 x 300 x 300 cells, resulting in around 2.7 GB of in-memory model

data.

5.2.2 Performance for TLP

The focus of the first set of runs was on performance gain achievable using OpenMP

parallelisation only. Simulations were run for 1-8 cores, in addition to the execution times,

we observed the speedup of different code segments and their relative participation in

overall program execution. Figure (5.7) (top) shows the improvement in execution times,

which is significant and near-linear. At the lower end of the tested spectrum, the initial

execution time for non-parallelised code is almost 11 hours, while at the opposite end (8

cores) we gain a 6-fold improvement in wall-time in execution speeds. From the other two

measurements, we can see that the potential for speedup in parallel sections of the code

can bring further time reductions, as parallel code still represents a larger fraction of the

total executed code8. However, we are bound by the limitation of the SMP architecture,

which prevents further expansion of the thread-parallel approach.
8Parallel speedup indicates the reduction in speed achieved in part of the code which is parallelised.

In contrast, total speedup refers to reduction in speed of the overall code, including both parallel and
sequential part.
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Algorithm 4 HybridUpdate(Matrix M, int rank)

1: Secondary = M

2: n = Secondary.Regions.Count

3: Matrix region

4: if (rank == MASTER) then

5: Scatter(M.Regions) ⇒ region

6: parallel for each slice in region.slices

7: for each c in Shuffle(slice) do

8: if(IsBoundary(c) == true) then skip

9: if(IsShared(c) == true) then lock(c)

10: ApplyRules(c, rule_list) ⇒ Secondary(region)

11: if(IsShared(c == true) then unlock(c)

12: #end parallel

13: ExchangeBoundary(rank, rank + 1)

14: for each c in Shuffle(region.boundary) do

15: ApplyRules(c, rule_list) ⇒

16: Secondary(region.boundary)

17: if (rank == MASTER) then begin

18: Gather(M.Regions) ⇐ Secondary(region)

19: ComputeRelease(M)

20: end

Table 5.4: The pseudo code for the hybrid algorithm.
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5.2.3 Performance for PLP

Dividing the algorithm across compute nodes allows us to lift the restrictions imposed by

the thread-level paradigm, using the MPI framework. We investigated the performance of a

pure-MPI (i.e. no threading) solution over 2-32 cores, with the goals both of comparing the

performance to OpenMP as well as examining the potential for speedup and the overhead

for local and global communication on simulation speed and solution scalability. Results

obtained (see Figure (5.7) (middle)) show that, for this model size, communication overhead

has a significant impact on simulation times, although the potential of the MPI solution is

ultimately greater as it does not suffer from “ceiling” limitations.

Interestingly, due to expensive communication, the MPI solution is not as efficient as a

comparable OpenMP one. Since the “scatter and gather” operations incur a certain overhead

(from 1-2 seconds wall-clock time per iteration in our experiments), the sequential portion

of the simulation (S-time) is increased, relative to the parallel component (P-time). For the

case of 8 cores, the relative performance is almost 40% improved for thread-level parallelism.

However, the real benefit occurs for a larger number of cores, where the MPI solution

benefits from practically unlimited infrastructure. This holds for all models described in

Chapter 4 regardless of the overhead caused by each model complexity.

5.2.4 Performance for HP

Combining the two approaches presented above was the ultimate objective of this experiment.

By using the fine-grained parallelism within a compute node, and thus avoiding the

communication price, we expected to gain some advantage over the coarser-grained approach

that MPI provides (Pope et al., 2011). Figure (5.7) (bottom) presents the comparison of

the two. From Figure 5.7 (middle), even with MPI for increasing number of cores, there is

an increase in the relative sequential execution time. This is in agreement with findings

presented in Figure 5.7 (bottom), where the total improvement in execution speeds reaches

a plateau after a certain number of cores. Above a certain point, (at around 64 cores), the

performance of both MPI and hybrid approach reaches the limit for the model.

Finally, we investigated the average time taken to simulate each of the parallel slices

and conclude that further optimisation is possible by applying an appropriate dynamic load
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(Left) Execution Times (OpenMP); (Centre) Parallel vs. Total Speedup (OpenMP); (Right) Sequential
vs. Parallel Execution (OpenMP)

(Left) Execution Times (MPI vs. OpenMP); (Centre) Parallel vs. Total Speedup (MPI); (Right)
Sequential vs. Parallel Execution (MPI)

(Left) Execution Times (Hybrid vs. MPI); (Centre) Parallel vs. Total Speedup (Hybrid); (Right)
Per-Slice Simulation Times (1x8)

Figure 5.7: Performance Results: OpenMP (top), MPI (middle) and Hybrid (bottom).
As complexity of parallelisation and number of cores increase, the hybrid approach shows
better performance gains over the other two.
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balancing solution. For future work, some refinement of the approach is indicated enabling

current benchmarks to be re-evaluated for different model-space division strategies.

5.3 Conclusions

We have presented several parallelisation strategies, aimed at improving performance of the

CA frameworks, used as a modelling basis for pharmaceutical investigations performed in

previous chapters. Each strategy is viable, depending on the speedup requirements and

available infrastructure. In general, cluster computing permits the in-depth simulation of

complex drug formulations, as well as the evaluation of a wide parameter range through

reduction of in silico experiment time.

The results show that the hybrid approach offers the best performance, followed closely

by the pure MPI based solution (i.e. no threading) over 8-32 cores. With the promised

advances in MPI implementation, this gap may reduce further. Further improvements

may be possible and can be attempted by experimenting with different load balancing

methods, in order to close the gap observed in individual thread/process execution times.

Finally, it would be interesting to see the applicability of the proposed solutions when run

as part of commodity cloud computing infrastructures, which already promise a flexible

and cost-effective solution platform, (Schatz et al., 2010) for the types of research questions

of core importance to the pharmaceutical industry.

We also showed the implementation and benefits of a complete cycle of in silico data

analysis in the stages of drug development, starting from a workflow towards comparison

and parameter investigation stage. We have demonstrated both the feasibility and the

advantages of combining this process with the in vitro development. The amount of possible

analysis that can be done by the modelling framework in terms of the investigation of

parameter influence on drug release is practically unlimited, allowing the analysis of model

data from a variety of different perspectives. The HPC extension to the framework makes it

more applicable for a wider set of problems, allowing for a fast and cost-effective modelling

solution. Depending on the size of the device simulated (on milli-, micro- or nano-scale),

an appropriate parallelisation strategy can be chosen to maximise the processing power

available.
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Chapter 6

Simulation and Results

In this chapter we discuss results for all of models developed in Chapter 4. For each of

these, a detailed sensitivity analysis was performed, demonstrating a key advantage of using

the stochastic modelling approach, i.e. the potential to predict the influence of various

parameter values and ratios. This allowed for the possibility of “stress testing” the extreme

scenarios and combinations, as theoretical model verification is clearly important. All models

developed in this thesis were validated against experimental data and showed good matching.

Furthermore, as models progress in complexity, (starting from the relatively simple, ’ECDD’,

to the more complex ’SCDD’ and ’MCES’), the difference between simulation and experiment

are seen to decrease, demonstrating that this incremental approach, to incorporation of

increasing complexity, yielded satisfactory results.

6.1 Simulations for model for erodible coated drug devices

(ECDD), Section (4.2)

The initial values for the ECDD model, (Section 4.2), were chosen according to the available

in vitro data and, unless otherwise stated, the erosion rates of gelatine and ethylcellulose

are taken to be 90 minutes and 2 days, respectively. The sphere was set at 1.43 mm in

diameter, and to contain 5% of EC coating. The drug loading is kept constant for all

simulations at 10.8% of the mass. Visualisation of the erosion model shows the bulk erosion

of the coating layer and the delayed erosion process of the gelatine core as the main drivers
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Figure 6.1: Simplified internal morphology of one 3D sphere simulating drug dissolution
through coating layer (ethylcellulose). Enlarged: part of the sphere with definition of model
cell types.

of drug release, (Figure (6.1)).

The physical size distribution of spheres determines the actual mean and variance of

the release rate, (Figure (6.2)). This feature suggests a refinement of initial parameters

is necessary, (e.g. coating thickness or drug loading), as these are directly dependent on

the size of the sphere. Increasing the sphere size mostly slows down the drug release due

both to the capability of the device to hold more drug and the fact that larger spheres have

heavier and thus less permeable coatings.

The first step in the modelling was to determine the most appropriate time interval in

which cell states should be updated, as this correlates directly with the diffusion coefficient

used. This essential parameter directly determines the diffusion process speed (from

Equation 4.7) and has order of magnitude of seconds, (from Fick’s first law and dimensional

analysis). Simulations were then performed for intervals between 5 seconds and 1 minute,

(Figure (6.3)). By comparing results against experimental data, (Figure (6.7)), a time

interval of 30 seconds was chosen for all subsequent simulations.

The effect of porosity in the coating layer was investigated by varying the lifetime of EC

cells, (i.e. varying τc, Equation (4.10)), to obtain different release behaviour for different

lifetimes of EC chains, (Figure (6.4)). The slower release rate of the drug is due to decreased

porosity, i.e. slower channel formation occurring in the coating.
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Figure 6.2: Release profiles as a function of the bead size [in mm].

Weight gain of the coating thickness is also one of the primary factors influencing drug

formulation and performance. Here, we varied the coating levels from 4% - 8%, (Figure

(6.5)). The release curves qualitatively reproduce a reduction in diffusion rate, but the

impact of adjusting the weight gain is somewhat smaller than observed in vitro. This is

expected, to some extent, as perfect sink conditions are modelled in our case. In reality,

the concentration of EC in the boundary layer inhibits movement of drug packets and some

local saturation occurs. This phenomenon must be taken into account in future model

extensions.

Since the gelatine represents a mixture of different substances (peptides and proteins)

and the total lifetime was not known precisely from experiment, different values were

investigated as parameters of our simulation. As can be seen, (Figure (6.6)), the lifetime of

the gelatine carrier can be considered to be negligible in terms of influence on final release

rate. However, gelatine is an important controller of the drug release in the initial stages,

as it influences the “burst effect” by accelerating drug transfer through EC channels.

This, simplified, model comparison showed good prediction potential. In analysing the

results, it should be remembered that measurements of the in vitro release rates using

different dissolution media in USP II may have certain limitations in terms of release
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Figure 6.3: Release profiles as a function of the simulation time interval.

detection depending on drug solubility. The insolubility of the Cyclosporine causes a

fragmented release, which requires adding surfactants to the dissolution media in order

to improve drug solubility. If suitable amount of surfactant is not present, the equipment

used is not able to detect exact release rates, (Maggi et al., 1996). As a result, the release

curve may reach a platform at 80% of total release, (although 100% is accounted for in the

experiment).

Although simulated results do not reproduce quantitative in vitro data precisely, (Figure

(6.7)), results obtained are promising. These show that the ECDD model predicts qualita-

tively similar behaviour compared to that seen for experimental release curves. Results

also show that the behaviour of the device cannot be modelled using erosion only, but that

other phenomena, such as swelling, have to be taken into account (Atyabi et al., 2004).

The next focus was thus incorporation of the swelling effect, caused by increased hydration

of the broken polymer chains. Additionally, the model should be augmented to include

the effect of different polymer coatings and different media surrounding the drug (biphasic

release) in order to simulate the different surroundings in the proximal and distal GI tract

environments. Nevertheless, the initial approach enables comparison of a set of simulated
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Figure 6.4: Release profiles as a function of the coating degradation rate lambda.

and experimental release curves, allowing us to determine key parameters and their values

for this novel formulation, and to reproduce qualitative behaviour. This allowed for the

comparisons with a large set of simulated and real release curves in order to estimate best

fit parameter values.

6.2 Simulations for model for swellable coated drug devices

(SCDD), Section (4.3)

6.2.1 Validation against experimental data

The first set of runs for the SCDDa model was performed against available experimental

batch data in order to validate the model prediction capabilities. The data used was

provided by Sigmoid Pharma and consisted of two batches of uncoated spheres with different

Cyclosporine A loadings (10% and 15% respectively) and three batches of Surelease/Pectin

coated spheres of different coating thickness (4.6%, 7.4% and 15% weight gain respectively).

Example visualisation of simulations is presented in Figure (6.8).

Due to a lack of experimental data for all bead sizes, the absolute coating thickness
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Figure 6.5: Release profiles as a function of the coating weight gain.

Figure 6.6: Release profiles as a function of the gelatine lifetime.
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Figure 6.7: Simulated release profiles against experimental release profiles. Experimental
data provided by Sigmoid Pharma Ltd.

Figure 6.8: Visualisation of the SCDD model with relevant cell types. The spheres show
progression from initial to the dissolved state. Green indicates the gel layer, and red the
solid gel state. We can observe the “ghost shell” of the coating remaining in the end after
core material has eroded completely.
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Figure 6.9: Linear regression curve used for estimating absolute thickness (in cm) from the
available weight gain data. Experimentally available measurements and X-ray images show
good linear correlation. This indicates that the approach is feasible for thicknesses > 21µm;
(note that the position of the intercept indicates that the relation is non-linear somewhere
below this point).

was derived from the relative weight gains by means of linear regression using known

measurements and X-ray tomography images showing actual coating regions after the

thermal processing. The regression curve used is plotted in Figure (6.9).

In order to analytically compare the level of correlation between simulation and the

experiments we chose to employ the widely used similarity factor (f2) equation as described

by Shah et al. (1998), which considers two profiles to be similar on the basis of (i) overall

profile similarity and (ii) similarity at every dissolution sampling point. Our measurements

satisfied the conditions described and the factor was employed to analyse the statistical

similarity between two given dissolution profiles. The results are accepted as similar if the

value falls within the 10th percentile range (corresponding to values of f2 between 50 -

100, with 50 indicating a 10% boundary and 100 a perfect match; correlated results fall

somewhere within the range). The similarity factor is calculated using the equation:

f2 = 50log

100

[
1 +

1

k

k∑
i=1

wi(yexp − ysim)2

]0.5
 (6.1)
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where log indicates the base-10 logarithm, k indicates the number of sample points

taken, wi the weight factor that takes into account the variability of samples at each

timepoint, yexp and ysim the experimental and simulated release data at each timepoint

respectively. The weight factor was calculated using the equation given by Moore and

Flanner. (1996):

wi = log
{

100
[
1 + (yexp − ysim)2

]0.5} (6.2)

Simulation parameters were chosen based on direct experimental observations provided

by Sigmoid Pharma. In situations where those observations were not available (or possible

to obtain) we used available reference data from literature. Table 6.1 provides a summary

of the parameter values used for validation with experimental data.

The main rate limiting parameter, the diffusion coefficient of Cyclosporine A was set at

2 · 10−6 cm2/s, as indicated by the measurements made by Trammer et al. (2008), Park

et al. (2013), which put the CyA diffusion speed within the range of 0.96− 5 · 10−6cm2/s.

The base diameter of the sphere was derived by averaging bead size data available from

laboratory measurements, and gelatine lifetimes were chosen based on visual observations

made in the Sigmoid lab. Probability of core swelling was kept to the low swelling region

as observations showed that no significant expansion of the core occurred during the bead

dissolution. Relative speed of the diffusion of water into the Surelease layer, (PW ), was

derived using the measurements made by Ravindra et al. (2000) and Equation (4.20) and

set to 0.16. Similar investigation was performed for the speed of water diffusion into the

core layer (PWG) using available gelatine/water interface data from Domenek et al. (2008)

which reported the experimental value to be of the order of 108cm2/s, resulting in relative

speeds of order of 10−2 when compared with the main diffusion coefficient. The duration

of the experiment was 24 hours, with comparative measurements made at 1, 2, 3, 4, 6, 12,

16, 18, 20 and 24 hours respectively.

Two parameters, which could not be derived either from reference data or experiments,

were the coating diffusion probability (PP ) and the amount of entanglement (PC). The

entanglement rate could be estimated from available release data by looking at the “plateau”

the release curves would attain as the CyA would no longer dissolve. The coating diffusion
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Parameter Simulation value Experimental reference

Sphere diameter 1.65mm (1.5mm uncoated) 1.65mm (1.5mm uncoated)

Df 2 · 10−6 cm2/s 0.96 · 10−6 - 5 · 10−6 cm2/s

Gelatin λ 60 min 60 - 120 min

PS 0.3 0 - 0.5

PW 0.16 0.16

PWG 0.01 0.01

PP 0.3 N/A

PC 0.1 N/A

Duration 24 h 24h

Table 6.1: Key SCDDa model parameters used for comparison with experimental data.
Reference parameters were derived from batch data, experimental observations and literature.
The coating permeability and probability of entanglement was estimated based on simulated
model data ranges.

had to be estimated, using the comparison between available release, with sensitivity

analysis data. It would be of interest to investigate this value in vitro by performing

experiments on diffusion of CyA through Surelease films to further validate the estimated

value. In addition to parameter values represented, it is also important to indicate that in

the uncoated release scenario the dissolution media used was water instead of SDS, and

therefore the maximum solubility of CyA was capped, as indicated by the experimental

measurements.

The resulting simulation release curves for each batch are presented in Figures (6.10)

to (6.13) respectively. Table 6.1 summarises the main batch parameters, while Table 6.2

gives similarity factors obtained for each curve. We can conclude that a very good match

is obtained with the majority of the simulation points falling within the normative 10%

variability range (i.e. having similarity factor values within the range of 50 to 100) indicate

good agreement with the reference data. The only outlier is the FC021/09 batch, for witch

the release curve showed anomalous behaviour and this might have been influenced by noise

in the data (each batch had only two repeated data measurements). More measurements
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Modelled batch Achieved similarity factor

EXP11/085 (uncoated, 10% d.l.) 100 (<1%)

EXP12/111 (uncoated, 15% d.l.) 74 (<3%)

FC015/09 (15% Surelease, 10% d.l.) 61 (<6%)

FC008/09 (7.4% Surelease, 10% d.l.) 82.9 (<2%)

FC021/09 (4.6% Surelease, 10% d.l.) 40 (<15%)

Table 6.2: Values of the similarity factor (f2) for different experimental modelling scenarios
for SCDDa. Results show good match allowing for sample error. The only outlier was
batch FC021/09 which fell outside 10% variability acceptable.

might establish a better baseline for comparisons and allow for better normalisation or

identification of outliers, so that these could be allowed for in the comparison.

6.2.2 Sensitivity analysis

After obtaining satisfactory results for the SCDDa model (as described in the previous

section), we investigated the model’s ability to describe major phenomena influencing

release, as well as to predict parameter changes required to obtain zero-order release, a

desired quality of controlled release devices. For the purpose of classifying the results

based on dominant release phenomena, we used the Korsmeyer-Peppas model described by

Equation (2.6) to divide the results into specific release categories. The results obtained

are described in detail in the following sections. Changes for each of the parameters were

evaluated for three key release scenarios: (i) erosion dominant release; (ii) swelling dominant

release and (iii) the equilibrium between the two which should lead to a constant gel layer

driving the release profile. Each parameter change scenario, (except for the changes in

coating thickness), was performed for both the cases of uncoated and coated beads in

order to compare the two and help to understand the impact of coating on swellable beads.

Additionally, the dynamics of dissolution behaviour was examined through the positions of

two characteristic transition boundaries within the device (e.g. Figure (6.17): the swelling

front, (where polymer moves from being in a static to dynamic state), and the erosion front,

(where polymer starts dissolving). These are the best indicators of the spatial nature of the
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Figure 6.10: Experimental vs. simulated results for batches EXP11/180 (10% CyA loading)
and EXP12/111 (15% CyA loading). Obtained similarity factor shows less than 1%
difference in the obtained profiles. The maximum dissolution amount was capped as the
dissolution medium used for the experiments was water instead of SDS.
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Figure 6.11: Experimental vs. simulated results for batch FC008/09 (7.4% Surelease coating
and 10% CyA loading). Obtained similarity factor shows the results fall into the standard
variability range (<10%).
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Figure 6.12: Experimental vs. simulated results for batch FC015/09 (15% Surelease coating
and 10% CyA loading). Obtained similarity factor shows the results fall into the standard
variability range (<6%).
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Figure 6.13: Experimental vs. simulated results for batch FC021/09 (4.9% Surelease
coating and 10% CyA loading). Obtained similarity factor shows the results fall outside
the standard variability range (<15%). We believe this anomalous behaviour is due to
noisy data, and better results could be achieved by repeating experimental measurements
in order to obtain smoothed results.
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underlying phenomena, which cannot be observed directly or solely from release data.

Influence of ethylcellulose coating thickness

The first parameter investigated was the thickness of the ethylcellulose coating. The release

curves were simulated for thicknesses of 0.04mm, 0.08mm and 0.16mm respectively. The

results are presented in Figures (6.14) and (6.15). As expected the increase in thickness

causes both a decrease in release rates, as well as larger offset until the release begins, as

the surrounding buffer needs more time to penetrate the ethylcellulose matrix. Analysing

the Peppas n factor for the three scenarios, thinner coatings indicated, as expected, larger

diffusion influence, with the values of n decreasing correspondingly. Most n values were

within the anomalous region, indicating the influence of both erosion and swelling on the

release, however for thicker coatings n values indicated erosion controlled release. This

suggests that heavier coatings inhibit swelling behaviour within the sphere.
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Figure 6.14: Influence of ethylcellulose coating thickness on resulting drug release curves in
the equilibrium scenario. Thickness was varied from 0.04mm to 0.16mm and, as expected,
caused an overall decrease in swelling rate. Release curves mostly indicated anomalous
release with erosion and swelling equally controlling the release behaviour. Peppas n values
obtained ranged from 0.7 to 1.29 indicating a zero-order release (n = 0.85) is possible to
achieve.
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Figure 6.15: (top) Influence of ethylcellulose coating thickness on resulting drug release
curves in the fast erosion scenario. Thickness was varied from 0.04mm to 0.16mm and,
as expected, caused an overall decrease in swelling rate. Release curves mostly indicated
anomalous release with erosion and swelling equally controlling the release behaviour.
Peppas n values obtained ranged from 0.61 to 1.05. (bottom) Influence of ethylcellulose
coating thickness on resulting drug release curves in the fast swelling scenario. Thickness
was varied from 0.04mm to 0.16mm and led to overall decrease in swelling rate. The release
curves mostly indicated anomalous release with erosion and swelling equally controlling
the release behaviour and thinner coatings trending towards diffusion controlled, Fickian
release. The Peppas n values obtained ranged from 0.57 to 1.04.
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Influence of drug loading on release profiles

Another device design parameter that we considered was the amount of drug loading (in

volume terms). Figures (6.16) to (6.26) show the effect of changing drug fractions from

0.2 to 0.8 across the three scenarios modelled, (namely fast erosion, fast swelling and

equilibrium) and across coated and uncoated beads.

A major difference in how drug loading influences release is found for coated and

uncoated beads. In the first place, obtained profiles show diffusion to be dominant release

mechanism. Peppas n values range from 0.41 to 0.55 indicating Fickian influence at lower

loading levels, and anomalous ones (> 0.55) indicating higher influence of swelling at upper

drug loading levels. The results agree with those of (Laaksonen et al., 2009a) as higher

amounts of drug by volume of the device lead to a smaller amount of gel polymers, and lower

probability that a drug particle will be bound to the gel phase. This holds for both fast

erosion and equilibrium scenarios, but in the case of the fast swelling scenario represented

in Figure (6.25) we observe a behaviour which seems more consistent with that reported

by Siepmann and Peppas (2001). The increased swelling enlarges the rubbery gel state

trapping the drug particles for a longer time. The increased size of the gel front is visible

in Figure (6.25).

For coated formulations, the reduced release is consistent across all of the three scenarios.

As the presence of coating inhibits swelling, coated formulations are generally more erosion

controlled, thus preventing the drug particles getting entangled in the wet polymer and

thus diffusing out more quickly. Obtained Peppas numbers confirm this, with investigated

release ranges not varying much from n = 1.01 to 1.16, indicating erosion controlled, case

II release.

Effects of gelatine clustering and entanglement on release profiles

During the verification of the SCDDa model against experimental release data, one critical

factor which negatively influenced the experimental profiles was partial core dissolution and

entanglement of long, undissolved gelatine polymer chains with the ethylcellulose coating.

This appears to have led to partial blockage of the pores formed during buffer penetration

into the coating and large portions of drug ending up “encased” in the gel solid (glassy)
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Figure 6.16: Influence of drug loading on release profiles from coated beads displaying
combined erosion and swelling behaviour. The decrease in release rates with increase in
drug amounts is attributed to faster core erosion and a smaller gel layer due to the coating
inhibiting swelling.
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Figure 6.17: Influence of drug loading on swelling and erosion front changes for an equilibrium
release scenario (coated beads). A decrease in gel layer thickness is caused by lack of a core
material (due to a higher drug percentage). A constant gel layer thickness can be achieved
by balancing the erosion and swelling influence leading to more stable and predictable
release.
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Figure 6.18: Influence of drug loading on release profiles from coated beads - displaying fast
erosion behaviour. The decrease in release rates with increase in drug amounts is attributed
to faster core erosion and a smaller gel layer due to the coating inhibiting swelling.
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Figure 6.19: Influence of drug loading, on swelling and erosion front changes, for a fast
erosion release scenario (coated beads). The decrease in gel layer thickness is caused by
a lack of core material due to a higher drug percentage. A constant gel layer thickness is
achieved, but the collapse of the core does not allow it to be maintained for a prolonged
time due to lack of swelling.
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Figure 6.20: Influence of drug loading, on release profiles from coated beads, displaying fast
swelling behaviour. The decrease in release rates with increase in drug amount is attributed
to faster core erosion and smaller gel layer due to the coating inhibiting swelling.
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Figure 6.21: Influence of drug loading, on swelling and erosion front changes, for a fast
swelling release scenario (coated beads). Decrease in gel layer thickness is caused by lack of
core material, due to the higher drug percentage. The high variability in the wet gel phase,
as shown generally leads to an unstable release.
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Figure 6.22: Influence of drug loading, on release profiles from uncoated beads, displaying
fast erosion behaviour. The increase in release rates with increase in drug is attributed to
smaller gel layer due to increased amount of drug solids. At the lower end of the investigated
range (20% drug loading volume) the release tends more towards Fickian behaviour (n =
0.45).

phase. This phenomenon is difficult to observe in vitro and, mostly, it is the effects which

are measured empirically. It was of interest, therefore, to simulate the correlation between

the probability of its occurrence (PC) and the resulting decrease in release curves.

We again ran sensitivity analysis simulations across all three release scenarios and

Figures (6.27), (6.29) and (6.31) show release curve changes for each scenario, while Figures

(6.28) and (6.32) indicate the amount of drug trapped in the solid gel state. Note that the

released amount and the trapped drug amount are not mutually exclusive. There may be

free moving drug particles in the solvent area within the coating that are also unable to

diffuse out.

Comparing release curves, we can see that the apparent relationship is exponential

to some degree in all cases. Highly erodible cores are the least impacted as, although a

proportion of drug stays within the core, pore blocking is much reduced since the movement

of core polymers is also significantly inhibited. Varying the parameter above 20% in this case

produced almost linear reduction (roughly 10% per step), indicating that diffusion through
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Figure 6.23: Influence of drug loading, on swelling and erosion front, changes for fast erosion
release scenario (uncoated beads). The decrease in gel layer thickness is caused by the
lack of core material, due to the higher drug percentage. A constant gel layer thickness is
achieved, but the collapse of the core does not allow it to be maintained for a prolonged
time due to lack of swelling.

the coating was not impacted and the majority of trapped drug was in the core. Observing

scenarios where swelling of the core is a greater force driving the release, the inability of drug

to diffuse through the coating can be shown to exponentially increase as the entanglement

probability gets bigger. In the case of balanced dissolution, (Figure (6.27)), the difference

in release between 10% and 20% entanglement probabilities is more pronounced, while in

the case of highly swellable cores it is marked in the extreme. Therefore, the erodability of

the core plays a major role in preventing negative impact on release.

6.2.3 Results for Variable rate swelling models

As described in the section 4.3.2, SCDDb model is based on the experimentally observed

behaviour of gelatine to have a non-constant swelling rate, (decreasing either exponentially

or sigmoidally). As the non-linearity constants of the equations (4.18) and (4.19) cannot be

derived from the available experimental data, it is of interest to compare a set of simulated

profiles for three cases: (i) constant swelling probability (Laaksonen et al., 2009a); (ii)
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Figure 6.24: Influence of drug loading, on release and front changes, for an equal erosion
and swelling release scenario (uncoated beads). (top) The increase in release rates with
increase in drug is attributed to smaller gel layer due to increased amount of drug solids.
(bottom) The decrease in gel layer thickness is ascribed to the lack of core material due to
higher drug percentage. Equal influence of erosion and swelling results in constant gel layer
thickness leading to stable release.
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Figure 6.25: Influence of drug loading, on release profiles from uncoated beads, displaying
fast swelling behaviour. The initial increase and subsequent rapid decrease in release rates
with increased drug amounts is attributed to larger area of the gel layer due to larger
swelling.
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Figure 6.26: Influence of drug loading, on swelling and erosion front changes, for a fast
swelling release scenario (uncoated beads). The decrease in gel layer thickness is ascribed
to the lack of core material due to higher drug percentage. The high variability in the wet
gel phase, as shown, generally leads to unstable release.
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Figure 6.27: Influence of increasing entanglement probability (Pentanglement = PC) for
release curves in the equilibrium release scenario. These curves show an exponential decline
due to the presence of swelling, which blocks the drug diffusion channels throughout the
core.
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Figure 6.28: Influence of increasing entanglement probability (Pentanglement = PC) with
the amount of solid drug remaining in the core in the “equilibrium” release scenario. The
amount of remaining drug shows an exponential increase due to the presence of swelling,
which blocks the drug diffusion channels throughout the core.
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Figure 6.29: Influence of increasing entanglement probability (Pentanglement = PC) for
release curves in the fast erosion release scenario. The release curves show a linear decline
due to lack of swelling with little impact on existing drug diffusion channels throughout
the core.
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Figure 6.30: Influence of increasing entanglement probability (Pentanglement = PC) with
the amount of solid drug remaining in the core in the fast erosion release scenario. The
difference in the amount of drug remaining shows that entanglement effect is not significant
as the speed of erosion did not allow blocking or clustering phenomena to occur.
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Figure 6.31: Influence of increasing entanglement probability (Pentanglement = PC) with
the amount of solid drug remaining in the core in the fast swelling release scenario. The
amount of remaining drug shows an exponential increase due to the amount of swelling,
which blocks the drug diffusion channels throughout the core.
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Figure 6.32: Influence of increasing entanglement probability with amount of solid drug
remaining in the core in the fast swelling release scenario. The amount of remaining drug
shows high exponential increase due to presence of swelling, which blocks the drug diffusion
channels throughout the core.
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Figure 6.33: The effect of changing a swelling probability that is constant during the time
of the simulation. Resulting profiles show a constant decrease with increased swelling.

exponentially decreasing swelling probability (Tanaka and Fillmore, 1979), (Li and Tanaka,

1990) and (iii) sigmoidally decreasing swelling probability (Singh and Weber, 1996).

Figures (6.34) and (6.35) show the results obtained for the case of a highly swellable

scenario. Figure (6.30) shows the effect of varying a constant swelling probability (PS)

across the full value range [0, 1]. The resulting profiles show a uniform decrease with

increased swelling, which seems in relatively poor agreement to what would be expected in

vitro (Laaksonen et al., 2009a). This can be explained by the fact that swelling plays a

major role at the start of the dissolution process, while later it can be less relevant as the

amount of remaining material is low. In the case of exponential and sigmoidal probability

change, the initial swelling rate is always high, it is only the dropoff rate that changes. This

is apparent from Figures (6.34) and (6.35) where the difference is more pronounced at later

stages of the release curve.
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Figure 6.34: Effect of variable swelling probability on drug release curves in the case of
exponentially decreasing PS .
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Figure 6.35: Effect of variable swelling probability on drug release curves in the case of
sigmoidally decreasing PS .
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Figure 6.36: Visualisation of the MCES model with relevant cell types. The spheres show
progression from initial to the dissolved state through different dissolution environments
(HCl and SDS). Green indicates the gel layer, and red the solid gel state.

6.3 Simulations for model for multiple coated drug devices

(MCES), Section (4.4)

6.3.1 Validation against experimental data

First MCES model runs, (Section 4.3), were performed for the purpose of comparing

simulation results with available in vitro experimental data for Surelease/Opadry coated

devices provided by Sigmoid Pharma. A set of simulation parameters, corresponding either

to direct experimental observations or available literature, was chosen (Table 6.3). Then the

respective thicknesses of Surelease/Pectin and Opadry layers were varied to match those

values used in the lab experiments. Example visualisation of the performed simulations

through different environments (HCl and SDS) is given in Figure (6.36).

The average diameter (d) of the modelled sphere was set to 1.8mm (including both

coating layers of varied size). The diffusion coefficient (Df ) of Cyclosporine A was set at

2 · 10−6 cm2/s, placing it within the range of 0.96 · 10−6 − 5 · 10−6 cm2/s as measured by

Trammer et al. (2008), Park et al. (2013). Gelatin λ factor, (Equation (4.9)), and Opadry

lifetime were estimated from ranges observed during experiments. Based on improved

understanding of the main release control phenomena, (obtained during development of
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previous models), the swelling probability (PS) was estimated to be in the low range, as

swelling of the core, especially in double coated formulations was not observed to be marked.

Relative rate of diffusion of water into the Surelease layer (PW ) was estimated based on

measurements made by Ravindra et al. (2000) and the CyA diffusion coefficient (Equation

(4.20)) and found to be around 0.16. A similar derivation was performed for the case of

water diffusion into the core layer (PWG) using available gelatine/water interaction data

from Domenek et al. (2008) which gave an experimental value of approximately 10−8 cm2/s,

resulting in relative speeds of approximately 10−2 when compared with the main diffusion

coefficient. Probability of the clustering/blocking phenomenon was kept at zero, under the

assumption that presence of Opadry inhibits this process from occurring. Finally, as the

in vitro solution was changed after two hours from the acidic (HCl) to the enteric (SDS)

environment, we have kept the solubility of CyA low in HCl, (as reinforced by experimental

observations). The only parameter, where direct experimental values could not be obtained,

and where controlled, wet-lab investigation would be desirable was relative diffusion of

Cyclosporine A through the Surelease membrane. This had to be estimated by comparing

available release curves and sensitivity analysis data. The value chosen agreed with most of

the experimental curve profiles used, but it would be of interest to validate this in isolated

in vitro experiments on Surelease slabs. The duration of the simulation was 24 hours,

corresponding to experiment, with control values sampled at 1, 2, 4, 6, 12 and 24 hours

respectively. The values of the simulation parameters are summarised in Table 6.3.

For analytical comparison we used the similarity factor of Equation (6.1) with standard

weight factor as for Equation (6.2).

The obtained results are plotted in Figures (6.37) to (6.42) for each batch respectively,

and Table 6.4 summarises the similarity factors achieved. As shown, a very good match

was seen for different variations in thicknesses of both layers with similarity factors staying

in the range of 2% - 3% and not exceeding 8%. The only outlier was the batch using

relatively low amounts of Opadry (2.7%). As indicated from its graph (6.41) slower release

was observed, which seemed to be due to some clustering of gelatine occurring within the

bead, (even though in our models we assume this value to be zero), as the Opadry levels

used were not significant to inhibit this phenomenon fully. Overall, however, a majority of
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Parameter Simulation value Experimental reference

Sphere diameter 1.8 mm 1.8 mm

Df 2 · 10−6 cm2/s 0.96 · 10−6 - 5 · 10−6 cm2/s

Gelatin λ 60 min 60 - 120 min

Opadry(c) lifetime 120 min 30 - 120 min

PS 0.3 0 - 0.5

PW 0.16 0.16

PWG 0.01 0.01

PP 0.2 N/A

PC 0.0 0.0

HCl solubility 0.0 0.0

SDS solubility 1.0 1.0

Duration 24 h 24h

Table 6.3: MCES model parameters used for comparison with experimental data. The
reference parameters were derived from batch data, experimental observations and literature.
The coating permeability was estimated based on simulated model data ranges.

Modelled batch Achieved similarity factor

11-085 (10% Opadry, 11% Surelease, 10% d.l.) 73.46 ( 3%)

11-086 (10% Opadry, 17% Surelease, 10% d.l.) 86.01 ( 2%)

11-115 (10% Opadry, 23% Surelease, 10% d.l.) 72.01 ( 3%)

11-227 (6.3% Opadry, 10.3% Surelease, 10% d.l.) 82.9 ( 2%)

11-241 (2.7% Opadry, 12.1% Surelease, 10% d.l.) 46.17 ( 12%)

12-119 (10% Opadry, 11% Surelease, 15% d.l.) 54.96 ( 8%)

Table 6.4: Values of the similarity factor (f2) for different modelling scenarios. Results
show a good match within the limits of sample variability.
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Figure 6.37: Experimental vs. simulated results for batch 11-085 with 10% of Opadry and
11% of Surelease/Pectin layer weight gains respectively. The achieved similarity factor was
73.46 (indicating less than 3% difference in release profiles).
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Figure 6.38: Experimental vs. simulated results for batch 11-086 with 10% of Opadry and
17% of Surelease/Pectin layer weight gains respectively. The achieved similarity factor was
86.01 (indicating less than 2% difference in release profiles).
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Figure 6.39: Experimental vs. simulated results for batch 11-115 with 6.3% of Opadry and
12.1% of Surelease/Pectin layer weight gains respectively. The achieved similarity factor
was 72.01 (indicating less than 3% difference in release profiles).

simulation results were in good agreement with experiment, suggesting a large degree of

confidence in the models’ ability to react correctly to main design parameter changes.

6.3.2 Sensitivity analysis

Following validation of the MCES model as useful for modelling controlled release from

double coated spheres in Section 6.3.1, we investigated its ability to predict factors influ-

encing zero- or near zero-order release in several dissolution scenarios. We chose to analyse

the effect of the MCSE model parameters in three key cases: (i) where erosion/diffusion

is the dominant release phenomenon; (ii) where swelling of the polymer core is the main

phenomenon and (iii) where both phenomena are contributing equally. All three scenarios

are examined over a range of both design and internal parameters.

Influence of ethylcellulose/pectin coating thickness

The first parameter investigated was the thickness of the outer, ethylcellulose/pectin, layer

which is a major factor influencing release behaviour.
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Figure 6.40: Experimental vs. simulated results for batch 11-227 with 10% of Opadry and
23% of Surelease/Pectin layer weight gains respectively. The achieved similarity factor was
82.09 (indicating less than 2% difference in release profiles).
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Figure 6.41: Experimental vs. simulated results for batch 11-241 with 2.7% of Opadry and
23% of Surelease/Pectin layer weight gains respectively. The achieved similarity factor was
only 46.17 (12% match). We explain this by the fact that release was significantly slower
when compared to other experiments and reached the plateau at around 90% indicating
some clustering effects were occurring due to low concentrations of Opadry.
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Figure 6.42: Experimental vs. simulated results for batch 12-119 with 10% of Opadry and
11% of Surelease/Pectin layer weight gains respectively. The drug loading in this case was
15% of mass. Achieved similarity factor was 54.96 (less than 8% difference).

Figure (6.43) shows the influence of changing the thickness for the case of fast eroding

spheres. As expected, increase in thickness causes a decrease in release rate greater than

that observed in the SCDD model. It also increases the initial delay as water needs more

time to penetrate ethylcellulose polymeric chains, degrade the Opadry coat and only then

penetrate the gelatine core. Examining values of Peppas n factor, this decreases with

thickness increase and indicates strong Case II, erosion controlled release, consistent with

the expectations of the used parameter set. Best values (n = 0.86) were obtained for

small coating thicknesses indicating that thinner coatings produce curves consistent with

zero-order release (n = 0.85). The n factor further increases as the coating thickness

increases going further into the region of erosion controlled release.

Figure (6.44) represents corresponding dissolution radii change of the core sphere,

indicating that the core radii dynamics are not affected by thickness change. The delay

factor caused by the thicker coatings is visible as it also delays the start of the swelling

process. The results are consistent with the erodible device with constant gel layer thickness,

although, (as indicated by the Peppas factor), erosion forces do play a major role in release.
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Figure 6.43: Influence of outer coating (Surelease) thickness on resulting drug release
curves. The thickness was varied from 0.04 mm to 0.16 mm and causes a decrease in overall
release. The profiles closer to zero-order release were better correlated with smaller coating
thicknesses with 0.04 mm giving Peppas n values of approx 0.86.
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Figure 6.44: Influence of outer coating (Surelease) thickness on resulting core radii. The
delay in the start of the swelling process is visible from the picture. The gel layer thickness
was constant indicating good zero-order release potential. However a rapid erosion dynamic
in the model was the main driver of release.
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Figure 6.45: Influence of outer coating (Surelease) thickness on resulting drug release
curves. The thickness was varied from 0.04 mm to 0.16 mm and causes a decrease in overall
release. However, this shows better potential for zero-order release than the rapidly erodible
device. Profiles closer to zero-order release were again better correlated with smaller coating
thicknesses with 0.04 mm giving Peppas n values of 0.85, indicating zero order release was
achieved.

Figures (6.45) and (6.46) analyse the same coating variation, but this time for a scenario

where swelling and erosion forces are approximately equal. We observe similar effects for

drug release rates and for thinner coatings (due to more constant release in the desired

area), with good n values obtained (0.85) indicating zero-order release from the sphere.

Radii behaviour shows more stable core degradation, with larger but still not significant

swelling effect. The gel layer thickness was constant throughout the release, showing that

balancing erosion and swelling phenomena in the core material helps to achieve more stable

release, which is in agreement with results obtained in Laaksonen et al. (2009a).

Finally, we looked at the other end of the spectrum by simulating the coating influence

in a “fast swelling” scenario. It is important to note here that rapid swelling will also lead to

rapid subsequent erosion (as polymer chains will disentangle fast and thus undergo increased

exposure to the surrounding buffer much more quickly, leading to their degradation). This

is also reported by Laaksonen et al. (2009a) However, the initial swelling will influence the

release profile differently from erosion. Figures (6.47) and (6.48) present resulting release
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Figure 6.46: Influence of outer coating (Surelease) thickness on resulting core radii for the
“equilibrium” scenario. Gel layer thickness was constant, indicating good zero-order release
potential, with erosion and swelling dynamics balancing each other.

behaviour. The release is faster in general as the swelling polymer chains are carrying

the drug particles out of the sphere. Once the core material is spent, a similar residual

release profile is exhibited across all values of the parameter. The best n factor obtained is

0.87, slightly worse than for the equilibrium scenario in terms of obtaining constant release.

The resulting radii in Figure (6.48) show the expansion/collapse behaviour of the quickly

swellable polymer.

Influence of Opadry R© coating thickness

Figures (6.49) - (6.54) show release and dissolution radii profiles when varying the thickness

of the inner, Opadry coating, across all three dissolution scenarios. Although smaller, a

significant effect on release exists, with thinner coatings again achieving a better value of

Peppas n factor (0.92). It is worth pointing out that the variation in Opadry thickness

does not take into account the possible occurrence of the clustering/blocking effect and we

assume that the smallest coating thickness used is enough to allow complete dissolution of

the gelatine core. The results obtained show that the release is still in the erosion-dominated
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Figure 6.47: Influence of outer coating (Surelease) thickness on resulting drug release curves
for “fast swelling” cores. The thickness was varied from 0.04 mm to 0.16 mm and led to
decrease in overall release. Profiles closer to zero-order release were slightly worse than the
“equilibrium” scenario with the best Peppas n of 0.87.
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Figure 6.48: Influence of outer coating (Surelease) thickness on resulting core radii for the
fast swelling scenario. Profiles illustrate a quick expansion/collapse of the swelling polymer.

134



0 200 400 600 800 1000 1200 1400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Inner coating (Opadry) thickness (equilibrium)

time(minutes)

re
le

as
e(

fr
ac

tio
n)

thickness = 0.08 mm
thickness = 0.16 mm
thickness = 0.24 mm

Figure 6.49: Influence of inner coating (Opadry) thickness on the resulting drug release
curves for cores, where swelling and erosion are in equilibrium. The thickness was varied
from 0.08 mm to 0.24 mm and led to somewhat smaller decrease in overall release when
compared to effect of outer coating variations. All profiles show erosion-controlled behaviour
with the best Peppas n = 0.92.

zone.

Diffusion of drug through polymer coating

Here we look at the influence of the PP parameter which controls the relative diffusion speed

of drug packets through the outer coating. Figures (6.55) to (6.57) present simulation results

corresponding to varying PP in range from 0.2 to 0.8. Although the relative difference

between release curves is small, their categorisation according to the Peppas n factor

shows the increase in the contribution of diffusion to the release, moving the profiles from

erosion-controlled into the anomalous phase. The value of n ranges from 0.83 (for fast

erosion scenario) to 0.61 (for fast swelling scenario). The erosion and swelling radii are not

impacted by changes in diffusivity of the coating. Although previously reported work deals

with the same phenomena in the core, rather than coating, the underlying mechanism and

the results obtained are similar to those of Narasimhan (2001) which investigated the effect

of drug diffusion on the release profiles.
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Figure 6.50: Influence of inner coating (Opadry) thickness on resulting core radii for the
“equilibrium” scenario. The profiles illustrate a constant gel layer thickness throughout the
release.
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Figure 6.51: Influence of inner coating (Opadry) thickness on resulting drug release curves
for cores where erosion is the dominant force. The thickness was varied from 0.08 mm to
0.24 mm and all profiles show strong erosion-controlled behaviour with the best Peppas n
= 0.94.
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Figure 6.52: Influence of inner coating (Opadry) thickness on resulting core radii for the
“fast erosion” scenario. The profiles illustrate a constant gel layer thickness although the
core collapse is also rapid, resulting in a somewhat stronger erosion controlled behaviour.

0 200 400 600 800 1000 1200 1400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Inner coating (Opadry) thickness (fast swelling)

time(minutes)

re
le

as
e(

fr
ac

tio
n)

thickness = 0.08 mm
thickness = 0.16 mm
thickness = 0.24 mm

Figure 6.53: Influence of inner coating (Opadry) thickness on the resulting drug release
curves for cores where swelling is strong. Thickness was varied from 0.08 mm to 0.24 mm.
The profiles still show strong erosion-controlled behaviour with the best Peppas n = 0.93.
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Figure 6.54: Influence of inner coating (Opadry) thickness on the resulting core radii for
the “fast swelling” scenario. The profiles illustrate an expanding gel layer, causing fast core
collapse.

As the inner coating is not permeable to drug and collapses quickly during bead

dissolution it is not of particular importance.

Influence of drug loading to release profiles

Finally, we examine the effect of drug loading on the release profiles from double coated

devices. We varied the loading from 20% to 80% of the mass of the sphere for the three

distinct scenarios and the results are shown in Figures (6.58) to (6.63). The results agree

with observations reported by Siepmann and Peppas (2001), where increasing the drug

volume caused a decrease in release curves due to larger dominance of the drug solid phase.

The influence of drug volume has the biggest impact on the release of swellable devices,

but, for the purpose of achieving zero-order release, lower concentrations are desirable and

lead to the best results (values of n are 0.85, 0.82 and 0.87 for fast erosion, equilibrium

and fast swelling scenarios, respectively). Higher drug concentrations lead to less polymer

material in the core, and hence increased erosion, as evidenced by both the increase in

Peppas factor and the radii changes in Figures (6.59), (6.61) and (6.63).
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Figure 6.55: Influence of PP changes on the release profiles in the “fast erosion” scenario.
PP was varied from 0.2 - 0.8 with 0.2 step. Results show an increase in dissolution speed
with profiles moving through the anomalous region (0.66 ≤ n ≤ 0.83) towards a more
Fickian, diffusion controlled release.
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Figure 6.56: Influence of PP changes on the release profiles in the “equilibrium” scenario.
PP was varied from 0.2 - 0.8 with 0.2 step. Results show an increase in dissolution speed
with profiles moving through the anomalous region (0.69 ≤ n ≤ 0.78) towards a more
Fickian, diffusion controlled release.
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Figure 6.57: Influence of PP changes on the release profiles in the “fast swelling” scenario.
PP was varied from 0.2 - 0.8 with 0.2 step. Results show an increase in dissolution speed
with profiles moving through the anomalous region (0.61 ≤ n ≤ 0.82) towards a more
Fickian, diffusion controlled release.

The results of the analysis are summarised in Table (6.5). For the general case model

usage, in terms of understanding the parameter influence described here, it is important to

note the direction of change in n rather than its absolute value, as the Peppas factor is

influenced by many key parameters of the model (for example drug diffusion coefficient as

the main rate limiting factor).

Influence of dissolution environment on release profiles

Lastly, we investigated the influence of certain properties of the dissolution environment

itself in order to understand how factors such as drug solubility and temperature differences

can be modelled.

Figure (6.64) shows the effects of applying solubility and dissolution rate limitations

to drug release from the modelled device, (Equations (4.22) and (4.21)). We applied the

two together as they describe related phenomena. As shown, we can effectively model the

gradual drop in solubility as the drug approaches the fixed solubility rate. This enables

the “cap” value to be included in the model once the solubilisation effect of a particular
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Figure 6.58: Influence of drug loading levels on release curves for the “equilibrium” scenario.
The loading was varied from 20% to 80% with 20% steps. The Peppas factor ranges from
anomalous behaviour (0.82) for 20% to case II erosion-controlled behaviour (1.1) for 80%
consistent with the increase in solid drug state and decrease in polymeric material in the
core.

0 200 400 600 800 1000 1200 1400

0.
0

0.
2

0.
4

0.
6

0.
8

Volume loading (equilibrium)

time(minutes)

ra
di

us
(m

m
)

o
o
o

swelling front
erosion front
gel layer thickness

Figure 6.59: Influence of drug loading levels on the main dissolution fronts for “equilibrium”
scenario for levels of loading ranging from 20% to 80%. The decrease in front size is directly
related to decrease in available polymeric material in the core.

141



0 200 400 600 800 1000 1200 1400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Volume loading (fast erosion)

time(minutes)

re
le

as
e(

fr
ac

tio
n)

Volume loading = 20%
Volume loading = 40%
Volume loading = 60%
Volume loading = 80%

Figure 6.60: Influence of drug loading levels on the release curves for the “fast erosion”
scenario. The loading was varied from 20% to 80% with 20% steps. The Peppas factor
ranges from zero-order release (0.85) for 20% to case II erosion-controlled behaviour (1.16)
for 80% consistent with the increase in solid drug state and decrease in polymeric material
in the core.
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Figure 6.61: Influence of drug loading levels on main dissolution fronts for the “fast erosion”
scenario for levels of loading ranging from 20% to 80%. The decrease in front size is directly
related to decrease in available polymeric material in the core.
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Figure 6.62: Influence of drug loading levels on release curves for the “fast swelling” scenario.
The loading was varied from 20% to 80% with 20% steps. The Peppas factor ranges from
near constant release behaviour (0.87) for 20% to case II erosion-controlled behaviour (1.09)
for 80% consistent with the increase in solid drug state and decrease in polymeric material
in the core.
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Figure 6.63: Influence of drug loading levels on main dissolution fronts for “fast swelling”
scenario for levels of loading ranging from 20% to 80%. The decrease in front size is directly
related to decrease in available polymeric material in the core.
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Modelled scenario Peppas n range Release phenomena

Thickness of the outer coating 0.85 - 1.19 Erosion dominant over
swelling with increasing values
of the parameter.

Thickness of the inner coating 0.94 - 1.12 Erosion dominant with increas-
ing values of the parameter.
Smaller influence when com-
pared to outer coating.

Coating diffusivity 0.61 - 0.83 Diffusion becoming a domi-
nant process with increasing
values of the parameter. Ex-
treme values lead to Fickian
behaviour.

Drug loading 0.82 - 1.16 Erosion of the core driving the
release as core material is re-
placed by the drug. Swelling
more pronounced for lower val-
ues.

Table 6.5: Summary of the parameter sensitivity analysis presented in this section. Results
show that model is able to simulate a wide range of dominant release phenomena.
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Figure 6.64: Influence of various drug solubility levels on release curves. Drug release
reaches a plateau at expected levels, with a slow decline in drug dissolution rates.
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Figure 6.65: Examining the effect of changes of environmental temperature on drug diffusion
speeds shows negligible differences.

environment on the drug is known.

Additionally, Figure (6.65) shows the influence of environmental temperature on the

release curves, correctly predicting increased release due to increased diffusion rate. In the

case of the modelled drug (Cyclosporine A) the differences are small and have little effect,

but drugs with lower diffusion rates might be expected to have a larger shift.

6.4 ACA experimental results, Section (4.6)

For each of the described update mechanisms, simulations investigated the following:

• The shape of the release curve during a 24hr period, (characteristic of GI tract

transition time for the drug) (Figure (6.66) left)

• The radii of two main reaction fronts (Figure (6.66) right).

• The device composite structure changes during characteristic stages of the dissolution,

(visualisation of details) (Figure (6.67)).

In Figures (6.66a1), (6.66a2) and (6.67a) we show the results for synchronous updates,

(used as a basis for relative comparison with all subsequent ACA methods). Comparing with
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Figure 6.66: (left) Drug release curves during a 24hr simulation period for different update
methods (blue - release curve, grey - synchronous reference value); (right) Bead radii
changes over time (green - swelling front, blue - erosion front, black - core radius).
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random order updates, (Figures 6.66b1, 6.66b2, 6.67b), we find a good match, with negligible

release curve difference, (indicating that the methods are effectively interchangeable e.g.

where synchronous update is deemed more appropriate, (for specified structure for example

(Bezbradica et al., 2012)).

Figures (6.66c1/d1), (6.66c2/d2) and (6.67c/d) show possible alternatives to the asyn-

chronous random order method. It can be seen that the random independent selection

(Figure (6.66)d1) produces release curves, which are significantly shifted with respect to

expectation, although radii behaviour is similar, in the sense that polymer transitions occur

at the same rate. Features, which give rise to this discrepancy, can be observed in model

visualisations, where large drug clusters (black diamonds) occur as a consequence of some

cells being updated more often than others, (Figure (6.67d)). Random cyclic updating, on

the other hand, produces release curves which are qualitatively similar to those expected,

(Figures (6.66c1), (6.66c2) and (6.67c)), although radii decrease dynamics are much slower.

Finally, Figures (6.66e1), (6.66e2) and (6.67e), show results obtained using sequential

matrix sweeps. This approach is not recommended due to the significant bias, which can

be observed in the visualisation, leading to highly non-realistic radii dynamics.

It is also important to note that our results do not display the variance associated

with many CA models when switching from asynchronous to synchronous updates, (Fatès

et al., 2006; Sloot et al., 1999). As the stochastic model is both slow changing, with usual

probability values used «1, and highly symmetrical, due to the spherical device geometry,

results obtained do not show highly anomalous results. This is in line with theorems

presented in Toffoli and Margolus (1987) relating to equivalence between slow changing

synchronous and asynchronous update processes in CA models.

As a final assessment, we examined the overall performance in terms of simulation

length using different ACA mechanisms in thread-level execution context. As expected,

sequential algorithms were the fastest, as these could utilise the CPU memory cache better.

The random cyclic variants also perform well, which might make them an optimal choice for

the scenario where the simulation efficiency is needed, as opposed to state update realism.

The worst performers are the random order algorithms which are not able to leverage the

processor cache, due to constantly changing order of memory access. However, these offer

147



Figure 6.67: Model visualisation for 10, 30, 150, 400 and 700 minute intervals, respectively:
(a) synchronous; (b) random order; (c) random cyclic; (d) random independent; (e) fixed
cyclic sequential.
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Figure 6.68: Comparison of parallel and total simulation times for different synchronous
and asynchronous update mechanisms. The examined mechanisms are, in order, FCS1 -
Fixed Cyclic Sequential (1st variant); FCS2 - Fixed Cyclic Sequential (2nd variant); RC -
Random Cyclic; RI - Random independent; RO - Random Order.
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the best simulation realism and precision when compared to the synchronous variant, so

the pros and cons of each should be weighed when making the decision. Figure (6.68)

shows the performance gains associated with switching between different asynchronous

update methods. We can observe that methods which utilise the CPU caching better due

to the inherent order of updates generally perform better. Figure (5.7) (middle) shows

the performance profile for synchronous updates when switching from a thread-level to

process-level parallelisation model (Bezbradica et al., 2012). Although synchronous updates

do not perform to the same level as asynchronous ones, they do not have a parallelisation

limit, and thus, ultimately, can be scaled to any number of nodes allowed by the model size.

6.5 Summary

In this chapter we presented the results and accompanying analysis of simulation runs

performed for each of the developed models (described in Chapter 4). For each model,

two kinds of simulations were run. First type were the ones intended to validate to what

degree the models were able to simulate in vitro dissolution of an actual pharmaceutical

device. The second type focused more on the model outputs for different kinds of erosion

and swelling scenarios.

Results obtained during the experimental validation stage are promising and show that

probabilistic approach is viable for pharmaceutical modelling methods. The results obtained

by the ECDD model represented an initial “gauge” which was used to further refine the

cellular automata rules and derive more complex models (SCDD and MCES) whose match

with the experimental data was more satisfactory.

Running sensitivity analysis on all models, on the other hand, demonstrated the

versatility of the underlying modelling mechanism. We are able to simulate different

intrinsic polymer behaviours with only a change in the parameter set and add incremental

components, such as additional coatings to the modelled device. Utilising standard release

curve classification methodologies we are able to profile our results and get an insight into

the in vitro behaviour based on the simulated data.

Both investigations also emphasised the need for other methods as means to optimise

values of the input parameters, further explored through application of Inverse Monte Carlo
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methods, Chapter 7.

Finally, at the end of the presented chapter we digressed a bit into the computational

problematic of the asynchronous vs. synchronous approach to iterating over the simulation

space. We showed that choosing the proper iteration algorithm has a significant impact

on the obtained results and the simulation realism, and has to be taken into account

during model development. The type of asynchronicity chosen was not only shown to have

an influence to the release curves and dissolution fronts, but also on the overall model

performance. Our findings show that one of the most appropriate solutions is random

order asynchronous, but a synchronous solution is viable as well. In this regard, model

visualisation provides valuable additional insight on structural behaviour and dissolution

mechanisms, which is not readily apparent from working with standard release curve data

alone, or which is inaccessible from supplementary experiment. These findings could be

useful for future modelling scenarios where it may be necessary to switch from one update

mechanism to another, e.g. for large-scale optimisation, or in response to the need to

describe component interactions in various tailored solutions.
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Chapter 7

Inverse Monte Carlo

We have so far covered development and usage aspects of probabilistic drug dissolution

models in two main stages: model development - in which fundamental physico-chemical

laws are translated into model behavioural rules and model prediction - in which a con-

structed model is used to understand the physical system behaviour under novel parameter

combinations. In between the two, however, there is an essential phase of model calibration,

where the initial base mapping is established between the experimental results and the

starting set of model parameters that will be tweaked in the prediction phase, (Figure

(7.1)). We now focus on this calibration phase, in which it is essential to understand how

the structure of the model relates to experimental data, as this forms the basis of the later

predictive analysis.

In our examination of the suitability and application of Monte Carlo (MC) techniques

to modelling of drug dissolution system phenomena we have so far mostly paid attention

to the “direct” question. That is to say, starting from a set of parameters as the basis for

generating different probability distributions applied in the model space, we have measured

the resulting drug release curves. However, the values of the constituent parameters of

those sets can only be estimated from available experimental data. Noise is often an issue

and some parameters values are difficult to obtain without costly experimental analysis.

Also, various models include parameters, the purpose of which is simplification of model

realisation rather than direct one-to-one mapping with the physical world.

In the calibration phase, we turn the initial problem around by asking the inverse
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Figure 7.1: Successive stages of the modelling process. (1) During model development
behavioural rules are established to represent the physical processes occurring within the
modelled drug device. (2) During the calibration phase, certain (non-design) parameters,
values for which cannot be obtained from experiment, are examined and indicative ranges
investigated. (3) Finally, when both the rule set and base parameter values are known, the
model can be used to predict drug release curve changes for changes in design parameters.

question: starting with the experimental data given and assuming certain error margins,

what is the optimal set of model parameters that would describe the experimentally observed

system behaviour. The inverse problem is always posed within a certain set of constraints,

(well-known experimental conditions), so that the problem space can be constrained, in

order not to end up answering an extremely general question.

7.1 Applications of inverse modelling

IMC methods are a variation on the standard Metropolis-Hastings algorithm (Metropolis

et al., 1953), a Markov Chain Monte Carlo (MCMC) method that calculates random

sequences from a probability distribution, where direct sampling is not applicable (i.e. the

exact probability distribution function is not known). The aim of the method is to produce

a structural model which is consistent with one or more sets of experimental data (within

acceptable errors), and subject to a set of constraints. Its purpose is not to answer the

question of model correctness, as that cannot be known in the general case, but rather to

gauge the usefulness of the model in understanding the relationship between the structure

and some physical property (McGreevy, 2001).

It is important to emphasise here, before reviewing the specific inverse modelling

methods of interest to finding our solution, the difference between Inverse Monte Carlo and

standard data fitting methods (Mosegaard and Sambridge, 2002). The idea is to start from
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a known experimental model and derive the possible values of unknown input parameters.

In doing this, we must explore the parameter space. The best parameter set will, of course,

give the best match to the experimental results, but that is of secondary importance to

some sense. The value of parameters found in this way is they can be used for future

prediction, rather than to evaluate the direct model in itself!

7.2 Application of inverse methods for elucidation of unknown

parameter values; Sampling from multi-variate distribu-

tions

In this chapter, we apply the inverse Monte Carlo (IMC) algorithms to the solution of the

inverse problem posed at the beginning of this chapter. We present an approach based on

Metropolis-Hastings and Gibbs algorithms for sampling from the model parameter space.

As a preliminary, we explore possible approaches that help illustrate issues that can arise

during inverse modelling.

7.2.1 Sampling from joint parameter distributions

Simulated Annealing

At the core of inverse algorithms, (incorporating a general Bayesian approach), is sampling

from an unknown joint distribution of the parameter space. For a single-dimensional Normal

distribution, methods such as adaptive rejection sampling can be used, (Robert and Casella,

2011), although MC methods in general could be considered to be too costly for single

dimensional applications, where more direct numerical methods can be applied (Mosegaard

and Sambridge, 2002).

However, for multi-variate parameter problems, MC numerical methods give a consider-

ably better convergence rate, (order of N−1/2 as opposed to N−1/M , where N is the number

of iterations and M the number of dimensions in the problem space).

We present here several viable approaches to solving the inverse sampling problem in

drug dissolution models and outline the advantages and disadvantages of each. The methods

generally build on elements of each other, so represent a natural evolution in application to
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problems of increasing complexity, and we present them in this corresponding sequence.

The first approach utilises simulated annealing for finding the global optimum of a

release function in large, discrete search space. Each point of the search space (s), analogous

to a state of the physical system is considered, together with the function E(s) to be

minimised.

At each step, the heuristic would consider a neighbouring state s′ of the current state,

and decide between moving the system or remaining in the current state depending on the

resulting change to E(s). The idea of the algorithm is to be able to accept a non-greedy

step for E(s) with a given probability, so that the algorithm does not get trapped in a local

optimum and is able to converge ultimately to a global optimum.

We mark the probability of a transition between neighbouring states using an acceptance

probability function P (e, e′, T ) that depends on the energies e = E(s) and e′ = E(s′) of

states s and s′. T represents the globally varying parameter, (typically called temperature

in early applications of the algorithm). The acceptance probability function must tend

to zero when T tends to zero. Therefore, for sufficiently small values of T the system

will increasingly favour moves that reduce energy values. The temperature T thus plays

a crucial role in controlling the evolution of the state s of the system depending on its

sensitivity to variation of system energies. For large T , the evolution of s is sensitive to

coarser energy variations, while it is sensitive to finer energy variations when T is small.

Also, in order for the algorithm to converge, T has to decrease at each step following an

annealing schedule which has to end with T = 0.

The Metropolis-Hastings algorithm (M-H)

We have already mentioned the Metropolis-Hastings algorithm as one way of performing

the sampling operation from multi-dimensional distributions. The algorithm can be used

to draw samples from a desired probability distribution P (X̄), where X̄ represents the

parameter vector, as long as the function proportional to density is known. The resulting

set of samples constitutes a Markov chain whose distribution, after sufficient length of time,

matches that of the target. In most Bayesian sampling models, the density proportionality

constant, also known as the normalisation factor needs to be known, thus this category
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of algorithms offers a significant advantage by allowing a sample to be generated without

needing to know the proportionality constant. The algorithm works as follows:

1. An arbitrary probability density Q(x′|xt) is chosen, also known as the proposal density

or jumping distribution. This is used to sample a proposal value x′, given a known

sample value xt. The proposal distribution must be a symmetric one, with the most

commonly used being the Normal and Uniform distributions. The proposal density is

used to explore the probability space using a random walk, thus generating a Markov

chain.

2. Once the proposed new sample is drawn, we calculate the acceptance ratio a =

P (x′)/P (xt). If a ≥ 1 we accept the proposed value and if a < 1 then we accept it

with probability a. That is, we generate a uniformly distributed random number

from r = U(0, 1) and accept the sample if r ≤ a. This is done in order to avoid the

problem of the search algorithm being trapped in local minima.

3. The algorithm should settle down after a certain number of iterations, after which

only small oscillations around the candidate value are performed.

However, the Metropolis-Hastings algorithm can suffer from a number of disadvantages

to which we need to pay attention when analysing the results:

1. The samples suffer from the so called correlation problem. In this, nearby samples will

be correlated with each other and will not correctly reflect the desired distribution. In

order to avoid this, we can take every nth sample. We can also increase the jumping

width (the variance of the proposal distribution) but we have to avoid the likelihood

of sample rejection.

2. It takes some time for the samples to converge to the desired distribution, especially

if the starting point is in the low density region. Thus, a burn-in period is necessary,

where a number of initial samples are discarded.

For problems with a larger number of dimensions, it can be difficult to properly set the

proposal density and define the jumping width. An alternative approach is to use Gibbs

sampling, a variant of the original Metropolis-Hastings algorithm.
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Gibbs Sampling

The Gibbs sampler generates an instance from the distribution of each variable in turn,

conditional on the current values of the other variables. This sequence of samples constitutes

a Markov chain converging to the desired joint distribution after a certain burn-in period,

making it ideal for Bayesian applications as they are typically specified as a collection of

conditional distributions.

The steps of a Gibbs sampling algorithm can be specified as follows:

• Suppose we want to generate samples from vector X̄ = {x1, x2, ..., xn} that follows

a joint distribution p(x1, x2, ..., xn), and denote such a sample in i-th iteration as

X̄(i) = {x(i)
1 , x

(i)
2 , ...x

(i)
n }

• We assume (using e.g. known experimental data or system constraints) an initial

value of the parameter vector X̄(0)

• For each sample i = {1, 2, ...k} we sample each variable x(i)
j from the distribution

conditional on the value of all other variables. The associated probability is thus:

p(x
(i)
j |x

(i)
1 , ..., x

(i)
j−1, x

(i)
j+1, ..., x

(i)
n )

The resulting samples approximate to the desired joint distribution of all the variables.

In addition, we can also approximate the marginal distribution of any subset of variables

by simply examining the samples for that subset and the expected value of any variable

can be approximated by averaging over all the samples.

The initial values for X̄(0) can either be assumed from experimental data, set randomly

(using a simple uniform distribution for example) or obtained from some other algorithm,

such as Expectation-Maximisation (Dempster et al., 1977).

As with Metropolis-Hastings, it may be necessary to apply burn-in periods and thinning1

to ensure good convergence and avoid correlation between the nearby samples.
1Thinning represents selecting every nth sample, where n is taken from the empirical observations of

the inverse process. This allows ignoring small oscillations in obtained acceptance results.
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7.3 Bayesian credibility intervals

In Bayesian inference, credibility intervals are the analogue of confidence intervals in

frequentist probability2. However, unlike the confidence interval, which is defined as an

estimated range of values which is likely to include an unknown population parameter,

credibility intervals tell us how likely it is for the parameter to reside within a given

contiguous interval [a, b]. The tightness of the interval (in both definitions) is denoted by

value α, such that (1-α)% of the probability mass is within the interval. One usual measure

is a 95% credibility interval, describing the 95% chance that the real value is within the

given boundaries.

There are two main conventions for determining interval boundaries:

• We choose the shortest possible interval which encloses (1-α)% of the posterior mass.

This is called a “highest posterior density” or HPD credibility interval.

• We choose the interval boundaries so that an equal amount of the probability mass

lies on either side of the interval. This is called a “symmetric” credibility interval.

7.4 IMC Algorithm Description

In combination with direct MC methods, our IMC algorithm depends on several key

properties. First, direct MC model inputs are structured into vectors of individual parameter

values:

X̄ = {X1, X2, ..., Xn} (7.1)

Where each Xi corresponds to one of the fundamental Direct MC model parameters,

(e.g. λ factor describing polymer lifetime or various diffusion probabilities).

Starting from these parameters there exists a measurable model output Y for the

given parameter vector X̄, (the simulated release curve) and there exists a corresponding
2Frequentist probability considers a definition of a random event as an absolute in terms of occurrences

during a controlled experiment. Bayesian methods on the other hand deal with probability of an event
relative to another that might have previously occurred.
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experimental measure to which the simulated output can be compared, within some margin

of error (usually experimental batch data with standard measurement error):

Y = F (X̄) + Θ(X̄) (7.2)

where F (X̄) denotes the deterministic part of the functional dependency between the

system input and output and Θ(X̄) is the stochastic part resulting from uncertainties and

noise in the physical model, (Barat, 2006)

A set of constraints is placed on the possible values of the input vectors to limit the

parameter space. These constraints are made based on understanding of the physical system.

A constraint can also, for example, discard input vectors which produce experimental data

outside of the acceptable error limits without performing the minimisation at all. In our

DDS case, the constraints come from experimental data that it is possible to measure: most

importantly this includes the major diffusion coefficient of the drug, coating thicknesses

and properties of constituent polymers.

An initial configuration of the model X̄init (selection of the initial parameter vector) is

made. This selection can be random, but it is useful to start with a reasonable estimate in

order to avoid long algorithm convergence rates or the isolated space problem. In principle,

IMC modelling is independent of the starting configuration, so this requirement is not a

strict one. However, in practice, the convergence time can be drastically shortened except

for the simplest of cases. Also, we make here an important assumption that any point

in our parameter space is reachable from any other point by repeatedly sampling from

posterior distributions of individual parameters.

For each parameter in the input vector, there exists a means of generating a new

sample based on the value of the previous one, thus creating a Markov chain. This can be

achieved by selecting an initial proposal density or jumping distribution, Q((X̆)|Xt), usually

a Gaussian, based on the value of the initial parameter Xt ∈ X̄init, and then modifying that

density if the new parameter value gives better agreement with the experimental data than

was previously available. The adjustment is achieved by use of an appropriate sampler,

e.g. with the Gibbs, (Geman and Geman, 1984) or a Particle filter method, (Doucet et al.,

2001).
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Figure 7.2: An illustration of bi-variate MVN for different values of µ and Σ. Adapted
from (Ng, 2013).

In our case, since the values of the model parameters have an expected value that can

be assumed to lie in a certain narrow range, using a Gaussian as a prior might present

itself as a natural choice. In context of the full parameter vector sampling however, this

translates into sampling from a multi-variate distribution, so we will use the Multi-Variate

Normal (MVN), and its truncated form as the source distribution.

The MVN distribution represents a generalisation of the Gaussian distribution to higher

dimensions and can be used to represent k -valued random vectors whose every linear

combination has a univariate normal distribution. It is often used to describe any set of

real-valued random variables centered around a mean value (Figure (7.2)). In our case this

would be any likely set of parameters which describes a system with the same or very similar

release behaviour compared to the experimental one. The spread of these “parameter points”

describes the stability of the system solution and is represented through the deviation of

the MVN. The MVN can be written using the following notation:

X ∼ Nk(µ,Σ) (7.3)

where X is the k -dimensional parameter vector taking values from Rn, µ is the k -
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dimensional mean vector:

µ = [E[X1], E[X2], ..., E[Xk]] (7.4)

and Σ is a k × k positive, semi-definite covariance matrix

Σ = [Cov[Xi, Xj ]], i = 1, 2, ..., k; j = 1, 2, ..., k (7.5)

It can be said that a variable X ∈ Rn is multivariate normal if any linear combination

of X is univariate normal, i.e. aX = Σn
i=1aiXi,∀a ∈ Rn is normally distributed.

We make an assumption here that the set of parameters in our model is independent

(and indeed, this is a consequence of the way in which the direct model has been constructed,

since each one of the constituent parameters describes an independent property of the

model - a single physico-chemical process), and we can generally assume that each of these

parameters follows a normal distribution centered on the theoretically precise value and

with a variation that represents the natural variation effects of the polymeric structure.

If we assume then that possible values for each of the model parameters Xi are normally

distributed with N(µ, σ2), the combined parameter vector of our model X is a multi-variate

normal distribution with N (µ,Σ), where µ = (µ1, µ2, ..., µn) and the covariance matrix is

given by:

Σ =



σ2
1 0

σ2
2

. . .

0 σ2
n


(7.6)

where σ2
i represents the variance of individual distribution components.

In addition, as each of the model parameters is bounded by some limit (a, b), representing

either a physical constraint, (for example the polymer degradation lifetime always larger

than zero), or a mathematical constraint, (probabilities always drawn from [0, 1] interval),

parameter sets are not from the MVN distribution itself, but rather from its truncated, uni-

and multivariate, version. Although more efficient methods for sampling from truncated
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distributions including specialised MCMC and Gibbs sampling have been proposed in the

literature (Kotecha and Djuric, 1999) we have chosen to use a simpler rejection sampling

method as the number of variable parameters is not too large. However, if better performance

is desired or the parameter set is large, specialised sampling methods are an option.

Finally, as we are using Gaussians to define priors of individual parameters, we need to

know their mean and standard deviations. As those are unknown (and essentially, explored

using the sampling algorithm itself), we assume an adaptive approach.

We start from a reasonable estimate of µ and σ for every parameter. As the sampling

algorithm should converge to the optimal values, the estimate can essentially be anything

with good coverage of the valid parameter range [a, b], but choosing estimates for µ based

on expected subranges of [a, b] would yield faster convergence. Based on the mean of the

prior distribution, the measure of difference to the experimental results and the spread of

the accepted parameter values, we can calculate the µ and σ of the posterior distribution.

Based on these, we can define the transition of the inverse algorithm from iteration i to

iteration i+ 1:

N (k) (µi,Σi)→ X
(k)
i → F

(
X

(k)
i

)
→ χ2

i → A
(
χ2
i

)
→ N (k) (µi+1,Σi+1) (7.7)

Where A(χ2
i ) is an acceptance function the result of which is used to accept or reject

a particular input vector and χ2 is the measure of fitness between the simulated and

experimental results:

χ2 =
Σ (yobs − F (X))2

σ2
(7.8)

With all of the above defined, we can run the IMC algorithm in several steps:

1. Define the initial input parameter vector - X̄init,

2. Pass the vector through a Gibbs sampler to obtain the next proposal sample,

3. Run the direct simulation with the proposed sample and quantify the simulation

output based on the indicator of χ2 value for the agreement between simulated and

experimental values at key measurement points,
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Figure 7.3: Graphical representation of the main stages of Inverse Monte Carlo algorithm,
used for deduction of unknown parameter sets. Arrows indicate the flow of information
between different steps.

4. Use an acceptance function A(X, χ2) that will set the next sample as the current

sample and modify the mean and standard deviation of the input parameters if the

χ2 is the best one obtained so far,

5. Repeat the procedure until the set of acceptable input values converges to a narrow

set that satisfies all the constraints. The resulting mean and standard deviation will

then describe the possible range of interest for the given parameter.

The main stages of the algorithm are illustrated in Figure (7.3).
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7.4.1 Algorithm optimisations

The Gibbs sampler usually requires from several hundred to several thousand iterations in

order to converge to the desired distribution. Also, a certain number of initial samples is

usually discarded as the burn in period. This number of forward simulations can place a

significant performance penalty that makes minimisation of running time of each iteration

of primary importance if convergence time is to be reduced.

As the runtime of forward simulation is a constant, there are two possible approaches

to optimisation of the total convergence time. One approach is to increase the number

of forward simulations run in each iteration of the algorithm and the other is to reduce

the sample space. We focus on the former optimisation and reduction of the sample space

using a simplified approach based on sensitivity of the output to parameter variations. We

also outline the possible algorithm improvements for sample space reduction using the

neighbourhood algorithm in Section 7.6.

Increasing the number of forward iterations is achieved by parallelising the sampling

and forward simulation steps of the IMC algorithm. Instead of taking one sample at a time,

we draw n distinct samples from the same prior and run a simulation for each at the same

time. At the end, we can accept the best sample as the next one and modify the mean and

standard deviation of the priors as already described.

Further optimisation can be achieved by examining the sensitivity of the release curve

for different simulation parameters (e.g. using a standard sensitivity analysis approach).

As it is common for small variations in parameter values to produce nearly identical results,

then if absolute precision of those values is of secondary importance we can reduce the

sample space by discretising it to some acceptable precision before sampling occurs. This

will drastically reduce the sample size and allow us to perform an exhaustive search in

realistic time. The discretisation and loss of precision could result in somewhat larger

standard deviation and thus less precise mean estimates of the parameter values, but these

are still useful for the purposes of modelling.
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7.5 Simulations and Results

In order to validate the approach presented above in a practical experimental setting, we ran

the inverse simulation of our double coated model described in Chapter 4 with comparison

function operating against a known in vitro sample. The sample represented averaged

data from 6 batches of double coated beads. The coating polymers used were Surelease R©

mixed with Pectin - X% of total weight gain - serving as a release control mechanism, and

Opadry R©, (Colorcon Inc, 2009), - 10% of total weight gain - used to prevent polymer

blocking reaction between the gelatinous core and the top coat. A bead contained 10.8% of

mass drug loading of the active substance - Cyclosporine A. An average diameter measured

in the batch was 1.65mm. The in vitro dissolution environment consisted of two different

solutions: 0.1 HCl concentration for the first 2 hours, and 0.75 SDS enzyme concentration

from 2 to 24 hours.

We varied four simulation parameters:

• The gelatin λ factor, indicating the mean lifetime value of core cells,

• The probability of water diffusion into polymeric chains of Surelease/Pectin outer

coating (PW ),

• The diffusion of water into core layer (PWG),

• The diffusivity of Cyclosporine A through the outer layer (PP ).

With the exception of the λ factor, which is known to lie within certain limits, the

rest are probabilities whose values are derived from the diffusion coefficients of various

polymers (according to rules similar to Equation (4.20)), and, as indicated in the Chapter 4,

Section 4.4, can be at best guessed using rather general data available from the literature.

Therefore, they make good candidates for inverse modelling. The λ factor was selected in

order to understand how inverse search applies to parameters with known limits.

The set of parameters that were varied, along with their initial mean, deviation,

boundaries and sampling precision used, is given together in Table 7.1.

The inverse simulations were performed under a set of known constraints used for

other parameter values, either specified as part of the experiment or derived from known
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Parameter Init. µ Init. σ Left bound Right bound Precision range

λ factor 100 50 50 200 100

PW 0.05 0.02 0.001 0.1 10−3 - 10−2

PWG 0.05 0.02 0.001 0.1 10−3 - 10−2

PP 0.5 0.2 0.01 1 10−2 - 10−1

Table 7.1: The inverse model parameter space. The initial mean, standard deviation,
bounds and precision of each investigated parameter are given. The truncated normal
distribution, defined by {µ, σ, left bound, right bound}, was used as the initial sampling
prior for each parameter.

literature. The list of constraints used, along with their values is given in Table 7.2. All

simulations were run with a cell matrix precision of 0.03 mm per cell in order to enable faster

forward simulation time. This has to be taken into account when analysing the results, as

according to Equation (4.20) smaller precision will lead to generally larger probability values

(as diffusion coefficients values are inversely proportional to the dimension of individual

cells). Deriving probabilities from values obtained at coarser precision for these of finer

precision simulations is straightforward, as the resulting probability along a direction of

drug movement can be obtained by multiplying the individual cell probabilities together.

Some accumulation of error is possible, as indicated in a similar case, (Barat, 2006). Of

course, coarser precisions do not allow for simulations involving small variations of drug

coatings, (something that would be a preferred target of investigation, originally flagged for

the direct model). However, since those parameters are used as constraints, then, as long

as the required thickness can be modelled at the given precision, the ability to vary the

drug coating parameter so finely is not needed.

Volumetric loading was derived from mass loading using a process, similar to that

described in Chapter 4, Section 4.4, and was found to be ≈ 20%. Also in line with the

double coated model data described, the diffusion coefficient of CyA was kept at a standard

value of 10−6cm2/s. The mean Opadry lifetime was assigned to be 30 minutes, based on

experimental in vitro observations. Swelling probability was chosen so that the swelling

of gelatine core is one of the more dominant processes affecting the release. Finally, the

blocking and clustering effects of gelatine, observed to significantly impact release rates

toward the latter end of the simulation have been removed, as the dissolving Opadry
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Parameter Value
cell size 0.03 mm

volumetric loading 20%
mass loading 10.8%

Df 10−6cm2/s

Opadry R© lifetime 30 min
PS 0.5
PC 0.00
PD 1.00

surelease/pectin coat 0.06 mm
Opadry coat 0.06 mm

Table 7.2: Physical constraints for the inverse simulations. The coating thicknesses, Opadry
lifetime and volumetric and mass loadings were derived from existing batch data. The
swelling probability was set to enable controlled behaviour, influenced by both swelling
and erosion, as observed in the Direct MC experiments in Section 6.3. The probability
of gelatin blocking/clustering due to the low solubility inside the core is zero as dissolved
Opadry R© significantly enhances gelatin solubility. Finally, the diffusion was set to be the
fastest process.

coat causes better and more complete degradation of gelatin within the bead. Finally, we

assumed the CyA diffusion to be the fastest process in the bead, and therefore used it as

a reference value for measuring other relative diffusivities using the equations defined in

Chapter 4, Sections 4.3, 4.4.

We first examined the convergence properties of the Gibbs sampler used. Figure (7.4)

shows the change of χ2 value over approximately 1400 iterations, while Figures (7.5) and

(7.6) show, respectively, the comparison of experimental and simulated curves during

different convergence periods and χ2 convergence patters for different input parameter

ranges. Regression analysis using a locally weighted smoothing line (LOESS method) was

plotted against the data to show the convergence behaviour. Each point represents the χ2

value obtained for each forward simulation, with 10 sequential points representing each

parallel batch of iterations. The optimal values selected in each batch are visible as the

lowest points of the graph showing the optimal χ2 change. As expected, the algorithm takes

some time to converge. The burn-in period took around 800 iterations, after which the

sampling stabilised around values of χ2 between 70 and 80. Noting the vertical distribution

of points during the inverse simulation we can see how the sampling distributions are

getting narrower producing sample parameter vectors with decreasing standard deviations.

At around the 400th iteration there was a brief example of the sampler entering the local
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Figure 7.4: Changes of chi-square value indicating the correspondence between simulated
and experimental values in each iteration. The convergence trend is indicated using a
LOESS* smoothing line (blue). Selected chi-square values - the best ones in a given run -
are the lowest points of the graph. The first dip in the smoothing line indicates a point
where the Gibbs sampler exited from a local minimum.

168



0 200 400 600 800 1000 1200 1400

0
20

40
60

80
10

0

Time(min)

R
el

ea
se

(%
)

0 200 400 600 800 1000 1200 1400

0
20

40
60

80
10

0

Time(min)

0 200 400 600 800 1000 1200 1400

0
20

40
60

80
10

0

Time(min)

Simulated
Experimental

Forward simulation vs. experimental results
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vergence periods. (Left) Initial configuration; (Centre) After burn in period (Right) After
stabilisation.

169



0 5 10 15 20 25 30 35

0
50

0
10

00
15

00
20

00

Index

χ2

0 5 10 15 20 25 30

0
50

0
10

00
15

00
20

00

Index

0 10 20 30 40 50

0
50

0
10

00
15

00
20

00

Index

Convergence patterns for different initial priors

Figure 7.6: Convergence patterns for different input parameter ranges.

minimum, and exiting it to continue converging. This shows the recovery advantage of

using the acceptance functions that take locally minimal χ2 values. Although convergence

to zero is ideal, we have to take into account the quality of the proposed constraints, which

will never completely reflect the actual values in the experiment, i.e. the variance never

reaches zero. With respect to data match for the simulation, using the converged vector of

parameter values against the experimental data, we observe this to be very good, (Figure

(7.5)). In the same figure, we demonstrate the same trend on selected samples of forward

simulations. The first comparison represents the release curve, which matches poorly with

experimental data from which the sampling algorithm started. At the end of the burn-in

period, slightly better agreement is achieved. Finally, after convergence has stabilised the

resulting release curve fluctuates only slightly around the optimal value found.

In order to understand how parameter convergence to best fit values with observed

experimental data depended on the initial priors used for their sampling, we analysed the

parameter variation rate for priors of different sizes. As the sampling of parameter values
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Figure 7.7: Comparison of the variation of λ sample (dependent on choice of priors) with
different bounds and parameter ranges. (left) Medium-sized initial prior using truncated
normal {µ = 80, σ = 50, a = 50, b = 150} (centre) Smaller-sized initial prior using
truncated normal {µ = 50, σ = 30, a = 50, b = 140} (right) Larger initial prior using
truncated normal{µ = 100, σ = 50, a = 50, b = 200}.
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at iteration k is dependent on χ2 convergence at iteration k − 1, which itself is influenced

by the entire set of parameter values changed up to that iteration, we cannot base the

analysis of parameter value correctness solely on comparison with resulting χ2 values, but

must take into account also the value variations within the sample parameter space. Thus,

small variations of the sampled parameter value can indicate one of two things: (1) the

parameter has converged around the optimal value or (2) the initial prior is too restricted

and the sampling algorithm cannot escape the local minimum. To understand which of

these apply, we need to look at the corresponding convergence of the acceptance ratio. Case

(2) is illustrated in Figures (7.7)(a) and (7.7)(b). If we look at the respective χ2 square

convergence patterns, (Figure (7.7)) overall, we see that convergence is clearly established

for the parameter range in (c) but is lacking for (a) and (b). This, along with the range of

samples explored in (c) gives a better indication that the parameter value found is suitable.

Finally, we examined credibility intervals of the resulting MCMC chain for the λ factor

values. Figure (7.7)(c) shows the resulting upper and lower bounds of the 95% credibility

interval in each sampling iteration, displayed as highest precision density (HPD) intervals.

The HPD intervals give the smallest credibility range and, although they are not invariant

under changes of the parameter value, we are usually only interested in the intervals of the

last few samples, (which indicate that the optimal parameter value has been found).

The next parameter examined was water permeability through the outer membrane.

Again, we used three intervals of decreasing size. Figure (7.9) shows the convergence

patterns for three different intervals. In contrast to the convergence of the λ factor, it is

much more difficult to establish a reasonable convergence pattern in this case. There is

no clear grouping of the results around a common cluster of values and the changes in the

mean are frequent. The standard deviation remains constant without decreasing further.

However, if we consider the results of the sensitivity analysis in Chapter 6, this pattern of

results can be inferred from the fact that the model output is not very sensitive to changes

in coating water permeability. Thus, the Gibbs sampler would often accept changes in P[W ]

as those would result in χ2 values not far away from the previous ones.

Another parameter that shows good convergence properties is the diffusivity of CyA in

the outer coating (PP ). Figure (7.10) shows the convergence for the three size intervals
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Figure 7.8: Convergence of mean and standard deviation of prior distribution used by
the Gibbs sampler, with 95% credibility intervals for λ values for case (c) of Figure 7.7.
Reduced standard deviation constrains possible optimal values of the parameter. High
probability density (HPD) credibility intervals were calculated for those MCMC samples,
generated using the resulting priors.
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Figure 7.9: Convergence pattern of PW values for three different initial priors. (left)
Large-sized initial prior using truncated normal {µ = 0.05, σ = 0.02, a = 0.1, b = 0.9}
(centre) Medium-sized initial prior using truncated normal {µ = 0.03, σ = 0.02, a = 0.01,
b = 0.06} (right) Small-sized initial prior using truncated normal {µ = 0.005, σ = 0.002,
a = 0.001, b = 0.01} Convergence pattern is not present for any of the used priors, and
parameter variation cannot be correlated with χ2 convergence trends.
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Figure 7.10: Convergence pattern of PP values for three different initial priors. (a) Large-
sized initial prior using truncated normal {µ = 0.3, σ = 0.3, a = 0.1, b = 0.9} (centre)
Medium-sized initial prior using truncated normal {µ = 0.1, σ = 0.1, a = 0.1, b = 0.8}
(right) Small-sized initial prior using truncated normal {µ = 0.05, σ = 0.03, a = 0, b = 0.2}
Convergence is improved with each sampling prior and corresponds to that of χ2.

mentioned before. The first two show convergence all the way to the lower boundary,

indicating that the lower sampling boundary can be lowered, and the precision of sampling

increased. Using a smaller sampling interval from [0, 2] shows good convergence around

the 0.04 mark and a good match with the respective χ2 convergence patterns.

Finally, the convergence intervals for diffusivity of water into the gelatin core (PWG) are

shown in Figure (7.11). Again, good convergence is established with narrowing intervals,

and in line with the overall convergence of the release curve.

Overall, we can say that we note that relatively good candidate values for three of the

four parameters investigated were found. In the case of PW we can see that the relatively

low model sensitivity to changes of the parameter does not give us sufficient confidence in

its values.
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Figure 7.11: Convergence pattern of PWG values for three different initial priors. (left)
Large-sized initial prior using truncated normal {µ = 0.05, σ = 0.02, a = 0.01, b = 0.09}
(centre) Medium-sized initial prior using truncated normal {µ = 0.02, σ = 0.01, a = 0.01,
b = 0.06} (right) Small-sized initial prior using truncated normal {µ = 0.005, σ = 0.002,
a = 0.001, b = 0.1} Convergence is improved with each sampling prior and corresponds to
that of χ2.
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7.6 Extensions: Optimisation of parameter space search us-

ing Neighbourhood algorithm

7.6.1 The Neighbourhood algorithm (NA)

The IMC model presented so far depends on running the forward model for each sampling of

the parameter vector. If the forward model can be evaluated using an analytical expression

this does not present a problem. However, in the majority of models which solve the forward

problem stochastically by iterating many times over properties of a large discrete space,

(such as in Cellular Automata simulations) this results in a significant runtime overhead,

which impairs the effectiveness of the inverse approach.

Sambridge (1999) developed an inversion algorithm for multidimensional parameter

spaces that saves significant time by utilising the existing knowledge on data misfits from

previously run simulations. The search algorithm uses what is known as Voronoi cells

to derive the search in parameter space, (Voronoi, 1908). Given a set of points (“control

points”) in a parameter space, Voronoi cells represent nearest neighbour regions of the space,

each containing one of the control points, with all other points within a region defined as

having a smaller distance norm to one control point than to all the others.

Formally, this can be represented by the following. Let P = {X1, X2, ...Xnp} mark a

set of points in d-dimensional parameter space of interest, where 2 ≤ np ≤ ∞ and Xi 6= Xj

for i 6= j. The Voronoi cell around the control point Xi is given by:

V (Xi) = {X|||X −Xi|| ≤ ||X −Xj ||forj 6= i, (i, j = 1, 2, ..., np)} (7.9)

The Voronoi cells created in this way are used to approximate (i.e. interpolate) the

misfit function3 across the entire parameter space. The algorithm takes the following

simplified form:

• Create the approximation of the misfit surface from the np previous models for which

the forward simulation has been run,
3Misfit function can be considered as analogue of the “goodness of fit” function presented earlier in the

work. Larger values would indicate poorer match with the experimental results.
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• Utilise the resulting approximation, (instead of running forward modelling again),

together with the chosen search algorithm, (simulated annealing, M-H or Gibbs, for

example), to generate the next ns samples,

• Combine the real and approximate results and repeat.

The misfit function is set to a constant value within each of the Voronoi cells (NA-

surface). Therefore in order to find the value of the misfit function at any given point, we

only need to look up the Voronoi cell to which it belongs.

Integration of NA with M-H and Gibbs samplers

Let the sampling density function be S(X). Then, as noted earlier, the M-H algorithm

performs a move from point A to point B along one of the d parameter axes, according to

the probability distribution q(XB|XA), and the move is accepted if

r < min

[
1,
S(XB)q(XB|XA)

S(XA)q(XA|XB)

]
(7.10)

As the q is usually chosen to be symmetric (so q(x|y) = q(y|x)), we can simplify the

acceptance criterion to

r < min

[
1,
S(XB)

S(XA)

]
(7.11)

The acceptance/rejection step requires the misfit function to be evaluated at point B,

requiring one solution to the forward problem along each of the parameter axes. However,

a large number of parameter permutations will be rejected leading to the large “wasted”

computational cost.

The M-H method can be integrated directly into step (2) of the described “idealised”

algorithm. At each stage, the M-H method is used to draw nS statistically independent

samples from the current NA-misfit surface, thus using it as an approximation for the

actual misfit function, and to avoid solving the forward problem.

If we denote the computation time of forward modelling by TFM , that of the neigh-

bourhood search as TNN , and the number of iterations as IT , we can represent the cost of
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generating samples using the NA-surfaces as:

TNA = TFM + TNNITd (7.12)

On the other hand, the cost of using forward modelling each time is:

Tmisfit = TFMITd (7.13)

Leading to a cost reduction ratio of

TNA
Tmisfit

=
1

ITd
+
TNN
TFM

(7.14)

As in almost all relevant cases we expect ITd� 1 and TFM � TNN the cost saving is

significant, and we can generate many more samples from the desired joint distribution for

the same computational cost.

The usefulness of this approach depends on the nature of the forward problem (its cost)

and the sample size of nS . Larger sample sizes lead to existing NA-surfaces being exploited

for longer. On the other hand, as nS is decreased the NA-surfaces are updated more rapidly

requiring more forward solutions to be computed.

In the case of applying NA algorithm as a step in the Gibbs sampler, the cost reduction

is even greater:

TNA
Tmisfit

=
1

nad
+
TNN
TFM

(7.15)

with na corresponding to the number of parameter samples generated along one of the

d axes.

7.7 Summary and Conclusion

In this chapter we have described the systematic development and examples of inverse

modelling algorithms, and we have designed and evaluated a possible approach to elucidating

unknown parameter values, based on analysing the results of hundreds of forward simulations.

We have shown that using the Gibbs sampler and Metropolis-Hastings algorithm as the
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basis for inverse methods gives good parameter estimates and can converge in reasonable

time, (which may yet be improved further). This makes these methods very useful in the

context of drug modelling since in practice, the actual value of many parameters, (usually

derived from theory) are subject to considerable experimental error. We have established

good convergence for several of the investigated parameters, giving good credibility intervals

on true parameter value.
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Chapter 8

Concluding discussion and future

work

8.1 Summary and Conclusions

Although modelling of DDS has been extensively studied, there is growing need for improved

models, which are able to accommodate more complex formulations as well as help expand

theoretical knowledge in the real world applications. The results from this research have

so far successfully facilitated comparison of simulated and experimental release curves,

allowing us to determine key parameters and their values for the novel drug formulation,

introduced by Sigmoid Pharma, and to reproduce qualitative release behaviour patterns

observed in experimental systems in vitro.

Initial models predicted the essential biphasic, sigmoidal nature of the release curves

for coated beads, and provided good insights into mechanisms affecting controlled drug

release. Model organisation allows independent investigation not only of superposition of the

phenomena of interest but also their individual contribution to release rates, supporting the

case for using probabilistic modelling methods in controlled drug delivery. Most importantly,

we have now introduced parallelisation in order to facilitate processing of large amounts of

data.

The models also allow us to look into the role of coating in controlled release, which is

one device design aspect less well addressed in the literature so far, yet widely used in the
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pharmaceutical industry.

Main findings

• The first three chapters of the thesis provided an in-depth assessment of the current

state of DDS modelling and outlined particular advantages of using stochasticity as

an integral part of drug dissolution modelling. The main methodologies that can

be utilised in this context were presented. Fundamental formulae used for all three

main modelling groups were discussed. In addition, status and limitations of existing

models were outlined. This led to identification of questions that need to be addressed

in new models, serving as the motivation for development of the further models

presented in this thesis.

• Chapters 4 and 5 presented a new integrative modelling process and framework,

flexible enough to accommodate not only the simulation of all major dissolution

phenomena, but also straightforward at very little “cost”. These are based on having

a unified, common, meta model which describes a basic set of rules intrinsic across

derived models. We showed the advantage of this approach by deriving three specific

models that address all main release phenomena, (erosion, swelling and diffusion)

with very good results when compared to experimental in vitro data. We have

shown that the influence of particular Cellular Automata update mechanism plays

an important role in the realism achieved in describing problem dynamics. Finally,

we have shown that adaptation of the framework for high performance execution

has a major impact in reducing the simulation time and allowing greater scalability

for multiple simultaneous solutions, or, equivalently, increasing spatial resolution at

which the simulations are performed. The HPC solution developed is adaptable to

the size of the available parallel infrastructure.

• Results presented in Chapter 6 validated the developed models against experimental

data and showed a very good match, with the majority of the results falling within

acceptable sampling range. Additionally, with models increasing in complexity, the

differences between simulation and experiment were shown to decrease demonstrating

that the progressive approach, towards incorporating additional details, was sound.
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• Finally, in Chapter 7 we introduced a novel application of Inverse Monte Carlo

methods to the field. We demonstrated a feasible approach for reverse engineering the

unknown model parameter values from generally noisy data by using a combination of

Gibbs sampling and Metropolis-Hastings algorithms. The approach gave good results

with reasonable time to convergence. It is clear that IMC methods can be very useful

in real world applications as direct models often suffer from trying to determine many

simulation parameters of the in vitro experiment from incomplete, sparse or noisy

data.

8.2 Future Work

The models developed here have permitted investigation of the role of coating in controlled

release, which is one of the device design aspects least understood so far in the literature,

yet widely used in the pharmaceutical industry. A number of follow-on projects is clearly

indicated.

Controlled vs. instant release for drugs of similar profiles

To evaluate model validity, simulation results should be compared to independent experi-

mental data (Seidenberger et al., 2011). The goal of such an auxiliary project would be

to understand how factors such as excipient choice, erosion/swelling mechanisms, drug

loading, different media, drug solubility and so on influence instant vs. controlled release

formulations. The question is whether we can use knowledge from one drug to predict

release aspects of another? For example, certain dissolution phenomena can be better

studied in isolation. Looking at instant release tablets will improve our knowledge of what

is happening in the first few hours of release. To our knowledge there are no models which

currently investigate these very different release profiles.

The influence of fragmentation and percolation on drug release from poly-

disperse matrix systems

Fragmentation processes and percolation of drug particle networks have been little modelled

to date. Probabilistic modelling of this aspect of release would provide more realistic simu-

lation of drug release from devices, where underlying dissolution phenomena are aggregated,

rather than occurring at an individual cell level. This is of considerable importance for
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pharmaceutical investigation.

The influence of Type IV dissolution apparatus on drug release from matrix

controlled release tablets

As mention in the thesis, the most widely used dissolution apparatus is the USP Type II, (The

United States Pharmacopeial Convention, 2007). However, its hydrodynamic conditions are

far from ideal. It was shown that there are highly variable shear distributions and velocity

gradients throughout the vessel, particularly in the area immediately surrounding the device.

The Type IV apparatus works on a “flow through method”, where the device is held in a

fixed position with the dissolution medium pumped through the device holder. This makes

the Type IV apparatus highly applicable for poorly soluble drugs and for detecting changes

in pH in the dissolution media, (Greco et al., 2011), (Shiko et al., 2011). A collaboration

with Pharmaceutical Department from University College Cork (UCC) is planned with the

idea of adapting the meta-model so that main features of Type IV can be simulated.

Sample space minimisation in Inverse Monte Carlo methods using neigh-

bourhood algorithm

In Chapter 7, we described one possible way to further optimise the speed of the inverse

algorithm. As shown in Figure (7.4) it takes a relatively large number of iterations to

pass the burn − in period and stabilise around the optimal value. Considering that for

high precision simulations runtime of individual forward simulation is significant, so that

the entire iteration set is relatively slow, (even if we consider parallelisation of individual

runs), reducing the parameter space becomes the primary way of speeding up the inverse

simulation. We can apply the neighbourhood algorithm and divide our space into Voronoi

cells to that end. This, and other means of sample space reduction would be an interesting

subject for future work in this area.

Pseudo-random number generation algorithms

Similar to the pattern observed when analysing different asynchronous update mechanisms,

it would be useful to investigate the influence of various pseudo-random number generation

algorithms on the properties of large populations of different cell types. As random number

generation forms the basis of the Monte Carlo approach used in the models, any bias initial

state generation patterns on the resulting models should be understood.
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Model interface unification

The ideal, of course, would be integration of all described models into one unified general-

purpose system. This would facilitate use of the models as prediction tools through a single

interface, adapted for pharmaceutical scientists to investigate various dissolution scenarios.
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Appendix A

Framework and individual model

implementation details

The framework and models have been implemented using an object-oriented paradigm,

with model classes representing an extended version of the ones offered by the modelling

framework. The framework defines a set of common modules, including the definition

of the main Cellular Automata matrix, the parallel algorithms used for its traversal, the

visualiser used for graphical display of the state of each iteration and the configuration

block responsible for reading the simulation parameters from a file. Unified Modelling

Language (UML) class diagram of the framework and one of the derived models (MCES) is

represented in Figure A.1. Note that only the most important class methods and attributes

have been displayed for brevity purposes. What follows is a more detailed description of

each class:

CA Matrix

The CAMatrix is the abstract class holding the parameters and methods relevant to

describing the Cellular Automata space (matrix) itself. Besides the spatial (width, height,

depth, number of cells) and temporal (number of iterations, current iteration, global time)

attributes it defines several key simulation methods:

• Initialise() is a virtual method responsible for assigning the initial state of each cell

in the matrix. It must be derived by any class implementing the specific device model
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Figure A.1: UML diagram of the developed code. Thick dashed line shows the division
between the classes and methods provided by the framework and meta-model and the ones
derived by the individual models.
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and geometry.

• Update() is a method called during each iteration by either the Visualiser class

(if the graphical representation mode is enabled) or the main program. It uses the

UpdateOrder to traverse the CA matrix space and calls the virtual UpdateState()

function defined by derived geometry classes. The Update() function also handles

the scatter-gather logic of the MPI parallelisation and the division of matrix space

across individual threads within the single process using OpenMP.

• ComputeRelease() is a function that calculates the amount of released drug within

the matrix and calls the virtual method ComputeSpecific() implemented by the

derived models. ComputeSpecific() can then calculate model outputs specific to

the drug/geometry being modelled (e.g. dissolution fronts, coating porosity, gel

blocking amount, etc.)

• ProfileResults() gathers profiling parameters using several timers dispersed across

the code, such as the duration of single iteration, durations of iterations in each MPI

process and the amount of time spent in parallel and sequential code.

Sphere

Sphere is a class derived from CAMatrix() describing the specific device properties, in-

cluding its geometry. It defines the main model parameters (swelling probability, clustering

probability, probability of diffusion of water through ethylcellulose etc.) and is respon-

sible for setting up the initial state. It implements the virtual methods of Initialise(),

UpdateState() and ComputeSpecific() to add the logic specific to the model itself.

Visualiser

The Visualiser class is responsible for displaying the graphical representation of the

CAMatrix on the screen using OpenGL libraries. It does so by traversing the cross section

of the matrix and drawing each cell depending on the type of material, its lifetime and

number of drug packets present.
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Configurator

The Configurator class is responsible for parsing the configuration file with the simulation

parameters and making those available to other classes.

Cell and derived classes

Cell class represents the basic building block of the CA matrix. It contains information

about a particular cell, including the type of material (through specific subclasses) and the

amount of drug present. It also contains several attributes describing the position of the

cell within the matrix and whether it is shared between several processes for the purpose of

MPI parallelisation.

UpdateOrder

UpdateOrder implements the specific cell traversal algorithm, which can be either syn-

chronous (each cell in order) or asynchronous (random cells depending on the ACA algorithm

used). It has a single virtual method GetNext() which is responsible for returning the

next cell to update.

Distributions

Distributions is a static class that provides several random number generation methods

used for sampling from different distributions (uniform, Gaussian, Erlang, etc.)

Behaviour and derived classes

Behaviour is a virtual class providing a single virtual method Apply() which is used to

calculate the next state of the given cell as the traversal algorithm updates it. The derived

classes implement the method for specific behaviour desired (i.e. erosion, swelling, diffusion,

dissolution and so on).

Typical iteration algorithm

The simulation starts by initialising the MPI and OpenMP runtimes and setting up the initial

CA matrix state by calling the Initialise() method of the Sphere object. Depending on
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whether visualisation is enabled, the Update() method is set up to be called by the OpenGL

runtime before rendering each frame of the animation to the screen, or, if the visualisation

is disabled (in HPC cluster execution context for example), it is called sequentially as many

times as there are iterations. The Update() method itself distributes the matrix state

across all of the initiated MPI processes, which in turn execute an OpenMP parallel loop

over the individual sections received (thus dividing the space further across threads). Each

thread invokes the UpdateSpecific() method on the cell obtained via the UpdateOrder

object. This, in turn, applies all of the desired behaviours on the cell, setting its final state.

After the simulation goes through all cells, the main MPI process collects the resulting

state, performs release data calculations and writes the output into a file that can be later

plotted using any available tabular processing program (such as R). In case of cluster

executions, the plotting is performed automatically as part of the execution script thus

producing readily-available graphs once the simulation finishes.
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Appendix B

List of abbreviations

ABM Agent Based Modelling

ACA Asynchronous Cellular Automata

API Application Programming Interface

CA Cellular Automata

CyA Cyclosporine A

DDS Drug Delivery System

EC Ethylcellulose

EC/P Ethycellulose/Pectin

EXP Experiment

GI Gastro-intestinal

HPC High-Performance Computing

HPMC HydroxyPropyl MethylCellulose

IMC Inverse Monte Carlo
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LOESS Locally Weighted Scatterplot Smoothing

MC Monte Carlo

MCMC Markov Chain Monte Carlo

M-H Metropolis Hastings algorithm

MPI Message Passing Interface

MVN MultiVariate Normal distribution

NA Neighbourhood Algorithm

N-W Noyes-Whitney equation

PLA Polylactide

PLGA Polylactic-co-glycolic Acid

SA Simulated Annealing

SCA Synchronous Cellular Automata

SEM Scanning Electron Microscope

SMP Symmetric MultiProcessing

UML Universal Modelling Language

USP United States Pharmacopeia
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Appendix C

Glossary

• Biodegradable - capable of being decomposed by living organisms.

• Coating weight gain - amount of device mass increase (in %) after application of

the coating layer.

• EXP11/085, EXP11/086, EXP11/115, EXP11/180, EXP11/227, EXP12/111,

EXP12/119, FC008/09, FC015/09, FC021/09 - Laboratory designations of in

vitro experiments performed by Sigmoid Pharma. These experiments were used for

comparison with simulation results.

• In silico - via a computer simulation.

• In vivo - within a living organism.

• In vitro - in an artificial environment outside the living organism.

• Locally Weighted Scatterplot Smoothing - a set of regression methods combining

multiple regression models in a k -nearest-neighbour meta-model. Used for plotting a

smooth curve through a set of data points.

• Message Passing Interface - a computing standard for implementing parallelisation

across processes using message transfers. There are various implementations of the

standard, including OpenMPI and MPICH.

• Opadry R© - a complete film coating system that combines polymer, plasticiser and

pigment in a dry concentrate. Developed by Colorcon R©.
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• OpenMP - application programming interface that provides shared memory multi-

processing. It is commonly used on SMP architectures.

• Parenteral - administration of pharmaceutics by intravenous routes.

• Process-level parallelism - code parallelisation methodology using heavy-weight

processes usually executing on different computers (nodes). Technologies such as

different MPI implementations are commonly used to achieve process-level parallelism.

• Surelease - aqueous coating system utilising ethylcellulose as a rate controlling

polymer. Developed by Colorcon R©.

• Symmetric MultiProcessing - hardware architecture where two or more processors

are connected to a single shared main memory. This allows the code executing on

each processor to access a common shared memory space.

• Thread-level parallelism - code parallelisation methodology using light-weight

threads (or strands of operation) to execute sections of the code concurrently. Tech-

nologies such as OpenMP are commonly used to achieve thread-level parallelism.

• Transdermal - administration of pharmaceutics through the skin.

• Volumetric loading - the volume of a drug relative to the volume of the device. A

more suitable description for the amount of drug for the case of spatial simulations,

as the mass loading does not give information on the amount of space consumed by

the drug.
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Appendix D

List of publications

1. Perrin, D., Bezbradica, M., Crane, M., Ruskin, H. J. and Duhamel, C.

High-Performance Computing for Data Analytics, 2012 IEEE/ACM 16th

International Symposium on Distributed Simulation and Real Time Ap-

plications (DS-RT), pp.234 - 242, Dublin, October 2012.

URL: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6365069

Abstract One of the main challenges in data analytics is that discovering structures

and patterns in complex datasets is a computer-intensive task. Recent advances in

high-performance computing provide part of the solution. Multicore systems are now

more affordable and more accessible. In this paper, we investigate how this can be

used to develop more advanced methods for data analytics. We focus on two specific

areas: model-driven analysis and data mining using optimisation techniques.

2. Bezbradica, M., Crane, M., and Ruskin, H. J. Parallelisation strategies

for large scale cellular automata frameworks in pharmaceutical modelling,

2012 International Conference on High Performance Computing and Sim-

ulation (HPCS), pp.223 - 230, Madrid, July 2012.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6266916

• Selected among best six papers of HPCS 2012. Nominated for the HPCS 2012

Outstanding Paper Award
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Abstract Cellular Automata (CA) properties facilitate the detail required for the

bottom-up approach to modelling and simulation of a broad range of physico-chemical

reactions. In pharmaceutical applications, CA models use a combination of discrete-

event rules based on probabilistic distributions and fundamental physical laws to

predict the behaviour of active substances (drug molecules) and structural changes

in Drug Dissolution Systems (DDS) over time. Several models of this type have

been described so far in the scientific literature. Yet practical applications are

lacking in the context of large-scale, high-precision, high-fidelity simulations. The key

obstacle to parallelisation of such models is not only the amount of data involved,

but also the fact that many of these models incorporate agent-like behaviour within

the CA framework in order to describe pharmaceutical components. This makes

communication across process boundaries expensive. In this paper, we apply different

parallelisation strategies to a large scale CA framework, used to model coated drug

spheres. We use two parallel-computing application programming interfaces (APIs),

namely OpenMP and MPI, to partition the simulation space. We analyse the

applicability of each API to the problem individually, as well as in the hybrid solution.

We examine speedup potential and overhead for local and global communication for

simulation speed and solution scalability. For these types of problems, our results show

that performance is much improved for appropriate combinations of parallelisation

solutions.

3. Bezbradica, M., Ruskin, H. J., and Crane, M. Applications of High Per-

formance Algorithms to Large Scale Cellular Automata Frameworks used

in Pharmaceutical Modelling. Submitted by invitation for journal Con-

currency and Computation: Practice & Experience. Expected to appear

in the 4th Quarter, 2013 (Tentative).

Abstract Background: Cellular automata (CA) frameworks have been gaining mo-

mentum as a promising tool in the field of in-silico Drug Dissolution System (DDS)

modelling. This is due to their inherent properties which facilitate the detail required

for a bottom-up approach to modelling as well as their ability to support simulations

of a broad range of physico-chemical reactions. In pharmaceutical applications, CA
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models use a combination of discrete-event rules, based on probabilistic distributions

and fundamental physical laws, in order to predict the behaviour of active substances

and structural changes in a DDS over time.

Several models of this type have been successfully described so far in the scientific

literature. Nevertheless, practical applications are lacking in the context of large-scale,

high-precision, high-fidelity simulations requiring significant amount of data and

computing resources to execute. In the present high performance computing era,

such resources are readily available, but algorithmic solutions in the field tend to lag

behind. The key obstacle to parallelisation of such models is not only the amount

of data involved, but also the fact that many of these models incorporate agent-like

behaviour of pharmaceutical components within the CA framework, which makes

communication across process boundaries computationally expensive.

Methods: In this paper, we consider different parallelisation strategies for a CA

framework used in modelling coated drug spheres. Here, one of the main factors

influencing drug dissolution is sensitivity to the physical thickness of the spherical

coating. This is orders of magnitude smaller compared to the core sphere of drug,

so that large 3D models are needed to accommodate the measurement range. Two

parallel-computing application programming interfaces (APIs), namely OpenMP and

MPI, are used to partition the simulation space.

Results: We analyse individual applicability of each API to the problem, as well as in

the hybrid form. Speed-up potential and overhead for local and global communication

are also explored for simulation execution time and solution scalability. For these types

of problems, results indicate that performance can be greatly improved for appropriate

combinations of parallelisation strategies. This finding has important implications for

the scope of such models, enabling incorporation of diverse interactions at small-scale

within the global framework.

4. Bezbradica, M., Ruskin, H. J., and Crane, M. Modelling Drug Coatings:

A parallel cellular automata model of ethylcellulose-coated microspheres,

Proceedings of The International Conference on Bioscience, Biochemistry
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and Bioinformatics, ICBBB 2011 5, pp.419 - 424, Singapore, February

2011.

URL: http://www.etlibrary.org/?m=fbook&a=details&aid=2923

Abstract Pharmaceutical companies today face a growing demand for more complex

drug designs. In the past few decades, a number of probabilistic models have been

developed, for the purpose of giving a better insight into the microscopic features

of these complex designs. Of particular interest are those models that simulate

controlled release systems to provide targeted dose delivery. Controlled release is

achieved by using polymers with different dissolution characteristics. We present here

a model of a drug delivery system based on Monte Carlo methods, as a framework

for Cellular Automata mobility, and show a solution for model enhancement through

parallelisation. The objective is the high performance simulation of targeted drug

release in the gastro-intestinal tract, from a capsule composed of ethylcellulose coated

microspheres. The overall aim is to understand the importance of various molecular

effects with respect to system evolution over time. Important underlying mechanisms

of the process, such as erosion and diffusion, are described.

5. Bezbradica, M., Ruskin, H. J. and Crane, M. Probabilistic models for

dissolution of ethylcellulose coated microspheres, in Proceedings of The

European Simulation and Modelling conference, ESM’2010, pp.408 - 412,

Hasselt, Belgium, October, 2010.

The book edited by Janssens, G. K., Ramaekers, K. and Caris, A. ISBN 978-90-77381-

57-1

Abstract In the last few decades, a number of probabilistic models for drug delivery

have been developed. Of particular interest are those that model controlled release

systems to provide targeted dose delivery. Controlled release is achieved by using

polymers with different dissolution characteristics. We present here a model based

on Monte Carlo and Cellular Automata approaches, for simulating drug release from

coated microspheres in the gastro-intestinal tract. Controlled release is obtained

using ethylcellulose as the coating polymer. Modelling features, such as the drug and
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coating dissolution are nontrivial, since material is non-homogenously dispersed and

the dissolution exhibits complex behaviour. Important underlying mechanisms of the

process, such as erosion, are described here.

6. Bezbradica M., Crane M. and Ruskin H. J. Probabilistic modelling of

drug dissolution, ERCIM news, 84, pp.42 - 43. January, 2011.

URL: http://ercim-news.ercim.eu/en84/research-and-innovation/

Abstract The project at Dublin City University aims to establish new computational

models for drug dissolution systems, specifically for sustained release drugs used

in the gastro-intestinal tract. It seeks to improve existing algorithms and develop

improved ones to predict the release curves of active substances. High-performance

computing and cellular automata are used to investigate probabilistic drug dissolution

phenomena. The project is an ongoing collaboration with industrial partner, Sigmoid

Pharma Ltd.
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