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ABSTRACT
Studies on the plasmid stability, plasmid copy number and endo (1,3)(1,4) 

P-glucanase production by free and alginate immobilised recombinant
Saccharomyces cerevisiae cells.

A recombinant yeast strain, Saccharomyces cerevisiae DBY746, containing the 
plasmid pJG317, was grown in a variety of fermentation modes including batch, 
serial batch and chemostat culture incorporating a wide range of media types 
Plasmid pJG317 consists of a 2^-denved yeast episomal plasmid containing the 
gene which encodes for the bacterial enzyme endo (1,3)(1,4) P-glucanase The 
concentration of enzyme produced appears to be proportional to the number of 
plasmid copies per cell Specific enzyme activities were found to be in the range 
of 1 4 x 106 to 4 8 x lO6 U/cell for free cell culture, with a corresponding 
plasmid copy number of 8±0 5 to 40±6 3 copies per cell respectively

A procedure for measuring the copy number of pJG317 in S cerevisiae was 
developed, tested and optimised The procedure is based on Southern 
hybridisation and measured the relative intensities of hybridisation of a probe to 
the single copy yeast chromosomal actin gene and to the multicopy plasmid 
pJG317

Plasmid pJG317 is quite unstable under non-selective conditions and its copy 
number and stability are influenced by both growth rate and nutrient supply By 
immobilising cells in calcium alginate gel beads, the plasmid could be stabilised 
and high volumetric productivities o f up to 3 8 U/ml-h attained Although 
radial gradients in biomass concentration and in percentage of plasmid- 
contaimng cells in the alginate gel beads were confirmed, no significant 
difference was found between the plasmid copy number of cells in the centre of 
the gel beads (36 5±6 8) and cells close to the surface of the gel beads(32 4± 
3 3)
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1.1 H ETERO LO G O U S PROTEIN PRODUCTION IN YEA ST

The yeast Saccharomyces cerevmae has been increasingly employed as a 

host for heterologous gene expression and protein secretion This interest is 

due both to the ease and favourable economics of yeast fermentation, 

developed over the years of industrial experience, and to the rapid progress 

made in the molecular genetics of the organism Saccharomyces is one of a 

small group of GRAS (generally recognised as safe) organisms recognised 

by the FDA (Martin and Scheinbach, 1989) Yeasts, in general, have a 

rapid growth rate and can be grown to very high cell densities They can be 

propagated on simple defined media and can be transformed with a variety 

of either self-replicating or integrating plasmid vectors A wide range of 

genetic, molecular and biochemical techniques have been developed for use 

in yeast The eucaryotic yeasts possess much of the complex cell biology 

typical of multicellular organisms, including a highly compartmentalised 

intracellular organisation and an elaborate secretory pathway which mediates 

the secretion and modification of many host proteins (Emr, 1990) The 

utilisation of the yeast expression system allows a broader range of potential 

applications than is possible with bacterial expression systems Expression 

levels similar to the highest levels seen in E  coh have been achieved in 

yeast S cerevisiae has been successfully used to express high levels of 

several different types of proteins, including soluble cytoplasmic proteins, 

membrane proteins and secreted proteins (Hitzemann et al , 1983, Oberto 

and Davidson, 1985, Sleep et al , 1990)

1.1.1 Introduction of cloned genes

Several methods are presently used to transform yeast cells with cloned 

DNA The most widely used procedures are the spheroplast method (Beggs, 

1978), in which exogenous DNA is incorporated into cells dunng cell 

fusion, and an alkali cation treament that renders intact cells permeable to 

DNA (Ito et al » 1984) The spheroplast method consists of removing the 

yeast cell wall by enzymatic treatment in an osmotically buffered medium 

The medium contains mercaptoethanol, normally used to break disulphide
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bonds in cell wall proteins The inclusion of mercaptoethanol enhances 

spheroplast formation DNA is incorporated into the spheroplasts during 

cell fusion Transformed spheroplasts are then allowed to regenerate cell 

walls m osmotically buffered, selective solid medium High transformation 

efficiencies have been attained with this method The alkali salt procedure 

(Ito et al , 1984) allows transformation of intact cells Metal ions including 

L i+ , N a+ , K + , C s+ , Rb+ and some thiol compounds, such as 2- 

mercaptoethanol, can produce competent cells for DNA uptake Lithium 

acetate treatment appears to be the most widely used method (Martin and 

Scheinbach, 1989) Cells are incubated in lithium to render them 

competent, followed by incorporation of DNA in the presence of 

polyethylene glycol 4000 Although this method is convenient and fast, 

transformation frequencies are somewhat lower than those attained with the 

spheroplast method More recently, another approach, electroporation, has 

been used and a highly efficient method has been reported by Meilhoc et al 

(1990) DNA is electrically introduced into intact yeast cells by applying 

electric field pulses in a simple and rapid procedure Pretreatment o f yeast 

cells in the early phase of exponential growth, with dithiothreitol (DTT) 

increases the transformation efficiency

1.1.2 Yeast plasmid vectors

Yeast cells are generally transformed with plasmid DNA containing 

selectable marker genes The selectable marker is used to select transformed 

cells that are auxotrophic for amino acids such as Leucine (LEU2), 

Tryptophan (TRP1), Uracil (URA3) and Histidine (HIS3) Continued 

selection requires the use of minimal growth media lacking the relevant 

nutnent TRP1 and UR A3 vectors can be selected in the presence of acid 

protein hydrolysates such as casaminoacids These protein hydrolysates lack 

tryptophan and uracil and are often used in semidefined media to enhance 

growth rates (Martin and Scheinbach, 1989) The introduction of the 

leucine defective gene (LEU2-d) as a selectable marker maintains higher 

than average plasmid copies per cell The gene has a truncated promoter 

which reduces transcription levels of the gene High copy number is 

required to allow cell growth in LEU2 auxotrophic strains (Erhart and 

Hollenberg, 1983) Dominant markers such as CUP1 (copper resistance) or
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neo (g418 resistance) are particularly useful when introducing plasmids into 

yeast strains, such as brewing strains, which are polymorphic. They can 

also be used for selection of plasmid bearing cells in rich medium 

(Kingsman et al., 1987). A number of "autoselection systems" have been 

developed to ensure that plasmid selection is maintained, irrespective of 

culture conditions. Bussey and Meaden (1985) showed that expression of 

DNA encoding the yeast killer toxin and immunity gene, could be used for 

self-selection of transformants of laboratory or industrial yeasts, since 

plasmid free cells are killed by plasmid containing (P + ) cells.

Yeast plasmid vectors are usually classed as episomal vectors or integrating 

vectors. Episomal vectors exist as extrachromosomal replicons within the 

cell and are based on either plasmids containing yeast autonomously 

replicating sequences (ARS) which function as origins of replication, or on 

the native 2/xm circle (2pi) plasmid. Integrating vectors are incorporated 

directly onto the yeast chromosomes by exploiting the unusually high 

frequency of homologous recombination found in S. cerevisiae. Once 

integrated, the genes replicate and segregate with the chromosomes during 

mitosis.

1.1.2.1 Episomal vectors

(i) ARS Vectors

The ARS incorporated into these vectors are chromosomal origins of 

DNA replication which allow a single round of DNA synthesis 

during each cell division cycle (Murray and Szotak, 1983). Since 

there are no sequences present on the plasmids that allow for efficient 

segregation to daughter cells, and replication is not amplified, 

plasmid copy number (PCN) is usually dependent on the initial 

number of plasmids introduced into the cells during transformation. 

Plasmid amplification may occur under strong selection pressure, but 

plasmids can be lost at a relatively high rate if selection pressure is 

withdrawn. In practice ARS vectors are seldom used for foreign 

gene expression (Martin and Scheinbach, 1989).
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(n) C E N  P l a s m i d s

CEN vectors are plasmids that contain cloned yeast centromere 

sequences in addition to 2/i origin of replication or ARS The 

presence of the centromere allows the plasmid to be segregated from 

mother to daughter cells, during mitosis, as highly stable single 

copies per cell CEN-ARS plasmids are used where low-level 

expression is desired A related type of yeast episomal vector with 

regulated copy number has been described by Chlebowicz- 

Sledziewska and Sledziewski (1985) Vectors with regulatable 

centromeres were constructed containing the glucose-repressible 

ADH2 promoter adjacent to CEN3 In the ARS vectors, copy 

number could be increased from 1-2 to 5-10 by a switch from 

glucose to ethanol as the carbon source The CEN element was 

inactivated by transcription, leading to the increase in PCN In a 2/i- 
based vector, the PCN could be increased from 1-2 to about 100 and 

was maintained with high stability

(1 1 1) 2^i-Based vectors

The most commonly used expression vectors for yeast are E  coll - 

yeast shuttle vectors based on the 2/i circle The 2/i is a 6 3kb 

plasmid present in most Saccharomyces strains at about 50 to 100 

copies per haploid genome (Hartley and Doneldson, 1980, Futcher,

1988) It has no known function and is stably inherited The 

plasmid encodes four genes FLP, REP1, REP2 and REP3 The 

primary role of the REP system is maintenance of high copy number, 

which in turn is responsible for stability (Jayaram et al , 1983) In 

addition, 2/t contains an origin of replication (ORI), which behaves 

as a typical ARS element Efficient segregation of 2/i depends on 

having ORI and REP3 loci in cis, together with the gene products of 

REP1 and REP2 The simplest 2/i-based vectors contain the 2/i ORI 

and REP3, a yeast selectable marker, and bacterial plasmid 

sequences They are used in cir+ (2/i containing) strains which 

supply REP1 and REP2 gene products, in trans These vectors are 

the most convenient to use routinely, due to their small size and ease 

of manipulation and they generally exist in 10 to 40 copies per cell
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More complex 2/i based vectors contain the REP1 and REP2 genes in 

addition to the ORI and REP3 loci and can be used in cir° (2/i free) 

host strains By propagating the vector in cir° strains, high copy 

numbers may be achieved without the potential complications caused 

by recombination with endogenous 2/i plasmids Furthermore, by 

using cir° hosts, the PCN of the recombinant expression vector may 

be increased, since it represents the only 2/i plasmid in the cell 

There is evidence that 2/i and 2/i based vectors display 

incompatibility (Broach, 1983, Jayaram et al 1983) The presence 

of endogenous 2/i m a yeast strain may reduce the potential PCN of a 

2/i based vector introduced into that particular strain (Gerbaud and 

Guenneau, 1980) In seeking to optimise the PCN of a cloned gene, 

strains devoid of endogenous 2/i (cir°) should be employed in 

conjunction with the appropriate 2/i-denved vectors These more 

complex 2/i based vectors, although cumbersome, are more stable 

and better suited for scale-up than the simpler 2/t-based vectors 

containing just the REP3 and ORI loci

1.1.2.2 Integrating vectors

Chromosomal integration offers a more stable alternative to episomal 

maintenance of foreign DNA Integrating vectors normally contain a 

selectable marker, but lack yeast ORI Since Saccharomyces strains are 

highly recombinogenic, a DNA molecule containing yeast DNA sequences 

once transformed into the cells, will recombine with its homologous 
chromosomal sequences with high frequency Furthermore, plasmid DNA 

that has been linearised will integrate almost exclusively at the chromosome 

sites that are homologous to the cut ends, thus providing a mechanism for 

introducing cloned DNA sequences to specific sites in the genome This 

phenomenon is the basis of gene disruption, where specific native yeast 

genes can be inactivated (Rothstein, 1983) or replaced with altered genes 

that contain modified regulatory or structural regions (Winston et al , 1983) 

When high DNA concentrations of integrating vectors are used in 

transformations, tandem multicopy inserts can result due to repeated 

recombination events (Orr-Weaver and Szostak, 1983) Multicopy
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integrants are relatively stable and have been used, for example, in gene 

dosage studies (Cashmore et al., 1986).

The ribosomal DNA (rDNA) cluster was the target of integration of an 

integrating vector constructed by Lopes et al. (1989,1990). The integrating 

vector contained some rDNA sequences and the LEU2-d marker. The 

rDNA cluster consists of about 140 tandem repeats of a 9.1kb unit on 

chromosome XII. Transformation with the vector gave 100 to 200 copies of 

LEU-I- transformants integrated into the rDNA. The transfomants were 

highly stable, with 80-100% of the integrated copies being retained after 70 

generations. The levels of foreign protein produced using the PGK 

promoter was as high as that produced in 2fx based vectors. Other DNA 

sequences that may be used as targets for integration include the transposable 

element Ty, which is present in 30 to 40 copies per genome in most 

Saccharomyces strains. Kingsman et al. (1985) described the use of a vector 

targetted to replace Ty and whose copy number could be amplified using the 

LEU2-d selection marker. Shuster et al. (1990) used vectors that integrated 

into delta (8) elements, which exist alone or as part of Ty throughout the S. 

cerevisiae genome. The integration vector contained the E. coli lac Z gene 

with the LEU2 and CUP1 markers. The P-galactosidase level achieved was 

up to ten fold that of single copy strains.

1.1.3 Expression of heterologous genes

Gene expression is most frequently regulated at the level of transcription and 

it is generally assumed that the steady state mRNA level is a primary 

determinant of the final yield of a foreign protein (Romanos et al., 1992). 
Most strategies used to express foreign genes in yeast have focussed on the 

production of high mRNA levels, in order to maximise gene expression. 

This has usually been accomplished through the use of multiple copy 

plasmids in order to increase the number of gene sequences per cell by 

fusing coding sequences to strong yeast promoters to enhance transcription. 

Present strategies rely on choosing the most appropriate yeast vector and 

choosing from a large variety of native or engineered promoters which may 

be constitutive and/or regulated, along with the inclusion of an appropriate
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transcription terminator The correct choice is critical for any one 

application, especially where a process is to be scaled-up

1.1.3.1 Promoters

Yeast genes are regulated in a manner similar to higher eucaryotes Yeast 

promoters consist of at least three elements which regulate the efficiency and 

accuracy of initiation of transcription (Struhl, 1989) upstream activation 

sequences (UAS), TATA elements and initiator elements UAS are short 

sequences of DNA that determine the activity and regulation of the promoter 

through specific binding to transcriptional activators They work in both 

orientations, at long distances from the transcription initiation site TATA 

elements are found 40 to 120bp upstream of the initiation site and provide a 

window within which initiation of transcription can occur The initiator 

element, which is poorly defined, directs mRNA initiation at closely 

adjacent sites Yeast promoters may be highly complex, extending over 

500bp, containing multiple UAS, negative regulatory sites and multiple 

TATA elements associated with different initiation sites

Both constitutive and regulated promoters are used for heterologous protein 

production In attempts to generate high levels of mRNA for the 

heterologous gene, early work centered on the use of strong constitutive 

promoter elements from genes involved in glycolysis (Martin and 

Scheinbach, 1989) Although these promoters are amongst the most 

powerful of S  cerevisiae and produce high levels of homologous proteins, 

yields are generally lower when they are utilised to produce heterologous 

proteins The most widely used glycolytic promoters are alcohol 

dehydrogenase (ADH1), phosphoglycerate kinase (PGK) and 
glyceraldehyde-3-phosphate (GAP) (Romanos et al , 1992) Use of 

regulated promoters allow the recombinant cells to be grown to high cell 

densities, under conditions where the heterologous gene is not actively 

expressed Once the desired cell mass has been reached, fermentation 

conditions can be altered so that the gene is derepressed and the heterologous 

protein is highly expressed Promoters for genes involved in galactose 

metabolism, such as GAL1 and GAL10, are glucose repressed and are 

activated by the addition of galactose to the growth medium (Johnston, 

1987) The GAL promoters are tightly regulated Other promoters require



the removal or depletion of a nutrient such as phosphate or glucose from the 

growth medium, the PH05 promoter (Kramer et al , 1984) and the alcohol 

dehydrogenase II - ADH2 promoter (Shuster, 1987) The promoter of the 

copper resistance gene CUP1, encoding copper metallothionen, has been 

used in expression vectors The promoter is tightly regulated and 

independent of culture parameters The concentration o f Cu2+ for induction 

depends on the copper resistance of the host strain (Henderson et al , 1985, 

Etcheverry, 1990)

Fusion of the GAL10 promoter region to the a-interferon (a-INF) structural 

gene has been used to attain high cell densities under glucose repressed 

conditions, with high yields of a-IFN  following induction with galactose 

(Fieschko et al , 1987) By contrast, when a-IFN  was fused to a 

constitutive PGK promoter, early expression, coupled with an unstable 

episomal expression vector resulted in poor cell growth and low yields of 

protein Expression vectors have been engineered to produce hybrid 

promoters which take advantage of strong constitutive promoter elements 

combined with the UAS of regulated genes (Velati-Bellini et al , 1986) 

Most promoters are regulated to some extent, but the most prowerful 

glycolytic promoters are poorly regulated This makes them undesirable for 

use in large-scale culture, where there is more opportunity for the selection 

of non-expressing cells, and unsuitable for expressing proteins toxic to the 

cell In such cases it is preferable to use a tightly regulated promoter, so 

that the growth and expression phases can be separated

1.1.3.2 Terminators

Yeast transcriptional terminators are usually present in expression vectors for 

efficient mRNA 3' end processing Efficient termination is probably 

required for maximal expression (Romanos et al , 1992) In higher 

eucaryotes mRNA 3 1 end processing involves cleavage and polyadenylation 

and it appears that yeast mRNAs follow the same pattern o f termination, 

processing and polyadenylation of pre mRNA (Butler et al , 1990) 

Terminators from a number of genes have been used in expression vectors 

and include ADH1, TRP1, GAP1 and the FLP from 2/i
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1.1.3.3 Transcnption and translation

Such factors as the relative abundance of mRNA, mRNA stability, and the 

efficiency with which the mRNA is translated all influence the level of 

expression of a heterologous gene in yeast (Martin and Scheinbach, 1989) 

The mRNA level is determined by both the rate of initiation and its stability 

Initiation of transcnption is governed by the type o f promoter used The 

elongation of transcripts is not thought to affect the overall rate of 

transcription, but the yield of full length transcnpts (mRNA) could be 

affected by fortuitous sequences in foreign genes which cause pausing or 

termination (Romanos et al , 1992) The half-lives of yeast mRNAs range 

from 1 to 100 minutes and can therefore have a major effect on the steady- 

state mRNA level (Brown, 1989) An inverse relationship between mRNA 

length and stability has been found Ribosome attachment may also 

contnbute to mRNA stability in some cases, but this may be oversimplified 

as a complex relationship between mRNA stability and translation exists 

Translational efficiency is thought to be controlled pnmanly by the rate of 

initiation This is affected by the structure of the 5' untranslated leader of a 

mRNA Initiation in eucaryotes is thought to follow a scanning mechanism, 

whereby the 40S nbosomal subunit plus cofactors bind the 5' cap of the 

mRNA and then migrate down the untranslated leader, scanning for the first 

AUG codon Any part of this process which is affected by the structure of 

the leader could limit the translation initiation rate (Romanos et al , 1992) 

Codon usage is known to affect the translational elongation rate and although 

translational elongation is not normally thought to affect the yield or quality 

of the polypeptide, the codon content of a foreign gene may influence the 

yield of protein, where the mRNA is produced at very high levels This 

may be more likely to occur in growth on minimal medium, when the cell 

produces a wide variety of biosynthetic enzymes, encoded by genes 

containing rare codons (Sharp and Cowe, 1991)

1.1.3.4 Post-Translational processing

The ultimate yield of heterologous protein is equally affected by both the 

rate of synthesis and the rate of degradation Correct polypeptide folding is 

essential to ensure that proteins adopt their functionally-active conformation 

Similarly, processing such as amino-terminal modifications o f the
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polypeptides, must be specific and accurate Amino-terminal modifications 

are the most common processing event and occur on most cytosolic proteins 

(Kendall et al , 1990) Vacuolar proteolysis is influenced by culture 

conditions and increases several fold during nitrogen or carbon starvation, or 

in stationary phase Generally, very low yields are obtained with proteins 

which are naturally short-lived or with some polypeptides which are 

naturally secreted One of the best ways to improve protein stability is by 

segregating the protein product from intracellular proteases, via secretion 

Furthermore secretion also tends to result in a protein of greater quality

1.1.4 Secretion

Most recombinant proteins produced from heterologous genes remain 

trapped in the cell and must be released by cell fracture or enzyme digestion 

This requires that the recombinant protein be purified from other proteins 

present in the cell Yeast cells normally export only a small portion of their 

total protein (0 5% in the case of S cerevisiae) (Romanos et al , 1992) and 

the cell wall appears to constitute a formidable bamer for secretion 

Secretion of foreign proteins therefore can lead to relatively pure mature 

proteins in the medium Homologous proteins secreted by yeast include 

invertase, which is secreted through the plasma membrane, but is trapped in 

the penplasmic space Other proteins actually pass through the cell wall and 

are released into the culture medium, such as the mating hormones a  and a  

factors, which are small, 11 to 13 amino acid polypeptides (Martin and 

Scheinbach, 1989)

Proteins destined for export are synthesized containing an N-termmal signal 

sequence that routes the protein to the endoplasmic reticulum (ER) 

membrane, where it is translocated into the ER lumen Cleavage of signal 

sequences by signal peptidases, N-hnked glycosylation o f asparagine 

residues, disulphide bond formation catalysed by disulphide isomerase, and 

other proteolytic processing and protein folding steps take place here The 

proteins are then routed through the golgi apparatus Transport from the ER 

to the golgi has been shown to be rate limiting (Romanos et al , 1992) 

Further protein processing, such as trimming and addition of carbohydrate 

residues, can take place here Movement through the golgi is followed by
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packaging of secreted proteins into secretory vesicles for export from the 

cell

The addition of carbohydrate moieties to the processed protein is termed 

glycosylation and is both organism and cell type specific Expression o f a 

protein in a heterologous system, will almost certainly result in a product 

with modifications which differ from the native material Oligosaccharides 

may be either N-linked to asparagine or O-linked to senne or threonine 

residues O-Linked oligosacchandes synthesised by yeast are very different 

from those of higher eucaryotes, being composed of mannose residues N- 

Linked glycosylation in yeast and higher eucaryotes is more conserved, and 

involves the addition of a core oligosaccharide unit in the ER (Romanos et 

al , 1992) This core ohgosacchande consists of two N-acetylglucosamine, 

nine mannose and three glucose residues The glucose residues are 

subsequently trimmed from the side chain and one mannose residue is also 

removed These steps are common to yeasts, plants and higher eucaryotes 

Processing of the chain may take place through a stepwise addition of further 

mannose residues which compnse the outer chain, which can be up to 75 

residues long, with many branch chains (Kukuruzinsha et al , 1987) 

Addition of the outer chain to heterologous proteins is regarded as 
"hyperglycosylation", because it results in more extensive glycosylation than 

is found in higher eucaryotic glycoproteins

As many commercially important proteins undergo further modifications 

after synthesis, directing a protein through the yeast secretion pathway may 

also be desirable m terms of the post-translational processing and folding 

that may be essential to its function Most of the secretion systems have 
been constructed by fusing the leader or pre-pro sequences of the a-mating 

factor, or the invertase signal sequence, to the N-terminal portions of the 

foreign gene Recombinant proteins secreted from yeast include Interleukin 

2, Epidermal growth factor (EGF) (Brake et al , 1984), Aspergillus awamon 

glycoamylase (Inms et al , 1985), wheat a-amylase (Rothstein et al , 1984) 

and Bacillus subtihs P glucanase (Cantwell, 1986a)

This approach offers certain advantages over intracellular production Many 

pharmacologically important proteins are naturally secreted and can often 

only adopt their correct conformation by folding within the secretory 

pathway Secretion can be a solution to the accumulation of toxic
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cytoplasmically-expressed proteins However, the modifications made to a 

secreted protein along the secretion pathway may differ from those made by 

higher eucaryotic cells and, as a result, glycosylation is increasingly 

regarded as a drawback to the secretion of therapeutic glycoproteins from 

yeast The yeast proteins which assist in folding and disulphide bond 

formation differ from their counterparts in higher eucaryotes and this may 

affect folding of heterologous proteins, which can result in protein retention 

in the ER and degradation In addition to problems of transport, other 

undesirable events such as aberrant processing or hyperglycosylation may 

take place dunng the secretory process Despite these facts, secretion of 

heterologous proteins is still a most productive and advantageous method of 

recovery Use of glycosylation mutants has allowed the production of more 

homogeneous proteins with limited glycosylation (Melmck et al , 1990) 

Similarly, the use of "super secreting" mutants, which bypass the rate 

limiting step in the secretory process i e transfer of polypeptides from the 

ER to golgi, has resulted in high yields of core-glycosylated proteins (Smith 

et al , 1985) The choice of appropriate leader or signal sequences used to 

direct secretion has been found to influence the quality and quantity of the 

secreted product (Sleep et al , 1990) The choice o f leader sequences and 

their relationship to the structural protein, is crucial to the successful 

secretion of high quality product

One of the major disadvantages of utilising yeasts instead of E  coll for 

heterologous protein production, has been the generally lower yield of 

product, often due to the difficulty in obtaining high level transcription of 

foreign genes This problem appears to have been addressed in S  cerevisiae 

in such ways as overexpressing transcriptional ira/w-activators (e g ADH2) 

(Price et al , 1990), constructing glycolytic promoters with superimposed 

regulation (Walton and Yarranton, 1989), and by random screening for 

super-expressing and super-secreting mutant strains (Sleep et al , 1991) 

The use of yeasts such as Pichia pas tons, which naturally have powerful 

tightly-regulated promoters, has provided an alternative solution There 

have been many successes in the production of therapeutic proteins from 

yeast, for example, the recombinant subunit vaccine against hepatitis B 

virus, human proinsulin, EGF and Human Serum Albumin (HSA) There 

have also been developments in the food industry, such as the experimental 

use of recombinant yeast secreting glucoamylase in brewing (Hammond, 

1991), and the production of chymosin from Kluyveromyces lactis (Van der
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Berg et al , 1990) Problems encountered with using S  cerevisiae as a host 

for heterologous protein production, may be partially or completely 

circumvented by the use of other yeasts such as Pichia pastons, Hansenula 

polymorpha, Kluyveromyces lactis, Yarrowia hpolytica, and 

Schizosaccharomyces pombe (Romanos et al , 1992) Most of these 

alternative systems are based on commercially important yeasts, that have 

been selected for their favourable growth characteristics at industrial scale, 

or on yeasts which have other favourable intrinsic properties, such as high 

level secretion

1.2 B-GLUCANASES

1.2.1 Substrates

The glucans, polymers of glucose linked by glucosidic bonds, are the most 

abundant class of polysaccharides found in nature Structurally they may be 

relatively simple, consisting of linear macromolecules, with the linkages 

between the glucose residues all o f the same type, as m cellulose [(1,4 ) (3-] 

and laminaran [(1,3) P-] Alternatively, they may be of greater complexity, 
possessing more than one type of glucosidic bond, either in linear chains, 

such as in lichenan with (1,3) P- and (1,4) P-linkages, or in having branched 

chains, as in the case of barley glucan with (1,3) P- and (1,4) P-glucosidic 

bonds, or yeast glucan with (1,3) P- or (1,6) P-linkages (Haliwell, 1975, 

Shiota et al , 1985, McClear and Glenmc-Holmes, 1985, Yalpam, 1988)

Glucans have great importance and potential application in the chemical, 

pharmaceutical and food industries, due to their unique chemical and 

physical properties, such as the capacity to alter flow characteristics of 

fluids, and to beneficially interact in the hydrated state with other dispersed 

or dissolved molecular species, which they may bind, chelate, complex, 

emulsify, encapsulate, flocculate, stabilise or suspend (Yalpam, 1988) 

However, besides those commercially utilisable properties, glucans play an 

important role in biological systems, where they are found in 

microorganisms and higher plants, as structural entities of the cell wall, as
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cytoplasmic and vacuolar reserve materials, and as extracellular substances 

(Bielecki and Galas, 1991, Bull and Chesters, 1963) Recent advances in 

the industrial application of polysaccharides and the demand for improved or 

unique product properties, have contributed to the growing interest in 

enzymes which are involved in the biosynthesis, modification and 

degradation of these materials Among the substrates for P-glucanases is 

barley glucan, a high molecular weight, mixed (1,3) (1,4) P-glucan, which 

comprises 75% of the cell wall in barley endosperm (Fincher, 1975) This 

P-glucan has significant effects on the industrial exploitation of barley grain 

It forms highly viscous solutions, and in the brewing industry causes gels, 

hazes and precipitates in beer (Eukenlund, 1972) P-Glucanase action on the 

barley in malting and mashing processes during brewing, degrades the P- 

glucan and allows access of other hydrolytic enzymes to the starch and 

protein reserves m the endosperm Other substrates of importance for 

various p-glucanases include yeast cell walls, laminann, pustulan, curdlan, 

scleroglucan, lentinan and schizophyllan (Bielecki and Galas, 1991)

1.2 2 Distribution, properties and applications

P-Glucanases are produced by many different microorganisms The yeasts 

Saccharomyces sp , Candida sp , Hansenula sp and Schizosaccharomyces 

sp , all produce the enzyme The genus Bacdlus is a rich source of P- 

glucanases (Martin et al , 1980) P-Glucanases produced by filamentous 

fungi or actinomycetes have also been characterised Penicdhum sp , 

Aspergdlus sp , Mucor sp , and Tnchoderma sp , all produce p-glucanases 
(Bielecki and Galas, 1991)

The variety of p-glucanases amongst microorganisms refers not only to their 

properties and modes of action, but also to differentiated regulation of their 
production The enzyme synthesis can be regulated in both positive and 

negative directions by such control mechanisms as induction, feed-back 

inhibition, and catabolite repression Since each of these mechanisms is 

influenced by environmental conditions, factors such as pH, temperature, 

medium composition, aeration and the stage of growth, are all important 

Enzymes may be inducible, semi constitutive or constitutive p-Glucanases 

have different substrate and product specificities They can be exo and endo

15



v :

enzymes which produce a broad range of oligosaccharides Some of the P- 

glucanases have the capability to hydrolyse only (1,3) P-glucosidic bonds, 

while others can hydrolyse glucans with mixed glucosidic bonds such as in 

the case of many Bacillus species, which can produce an enzyme which 

splits both (1,3) p- and (1,4) P-glucosidic bonds (Lloberas et al , 1988)

P-Glucanases may be used directly in cell lysis for the release of intracellular 

or wall associated material, or in conjunction with other techniques to 

improve the rate and yield of product extraction (Kobayashi et al , 1982) 

The enzymes are used in the production and preparation of yeast extracts and 

compounds with adhesive properties, which can be useful for packaging in 

the food industry In the laboratory, p-glucanases play an important role in 

lytic enzyme systems used for the production of protoplasts P-Glucanases 

of known specificity and mode of action are used as a tool for the 

determination of the structure, localisation and isolation of specific 

biopolymers of microbial cell walls (Pastor et al ,1984, Gopal et al , 1984) 

Lentinan, isolated from the Japanese edible mushroom Lentinus edodes , is 

rich in P-glucans and has some immunomodulator activity, which exerts an 

inhibitory action on different types of tumour The use of (1,3) p-glucanase 

is of great importance in the brewing industry to improve wort filtration and 

quality of finished beer by degradation of barley p-glucan The enzyme is 

also used for the quantification of (1,3) (1,4) p-glucan in barley and malt 

(McClear and Glenmc-Holmes, 1985)

1.2.3 Molecular cloning

The problems associated with excess of P-glucans in brewing wort can be 

alleviated by the application of commercial enzyme preparations or by 

construction of a yeast strain capable of hydrolysing the mixed linkage (1,3)

(1,4) P-glucans found in barley (Borriss et al , 1985) Only Bacillus subtihs 

is known to produce an extracellular enzyme which has the same recognition 

site, cleaves the same linkages and produces a similar range o f disacchandes 

from barley p-glucan as the malt P-glucanase (Cantwell et al , 1986a)

Efficient expression of a cloned P-glucanase gene in yeast required not only 

a yeast promoter and terminator sequence for the correct initiation and
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termination of transcription, but also the removal of intervening Bacillus 

DNA sequences upstream of the initiation codon (Cantwell et al , 1986a, 

1986 b) Progressive deletion of DNA sequences in the 5' region, resulted 

in increasing levels of expression of the P-glucanase gene in yeast under 

yeast promoter control Further increases m yield were obtained by using 

the alcohol dehydrogenase (ADH1) promoter Cantwell et al (1986 b) 

constructed two improved P-glucanase secretion plasmids, one with the P- 

glucanase gene fused to its complete signal sequence under ADH1 promoter 

and terminator control (plasmid pJG317), and the second with the P- 

glucanase structural gene, minus its signal sequence, under the control of a- 

factor mating pheromone promoter, its down stream leader sequence and the 

a-factor (plasmid pJG314) Using these plasmids, successful secretion of 

active (1,3) (1,4) p-glucanase by a recombinant yeast, was attained

Endo P-glucanase of Trichoderma reesei has been produced on laboratory 

and pilot-scale using recombinant strains of ’'bottom-fermenting" S 

cerevisiae (Zurbriggen et al , 1991) The purpose of work by Demolder et 

al (1993) was to develop a recombinant yeast strain in which the cell wall 

could be degraded in a controlled manner This was accomplished by 

expressing the (1,3) P-glucanase of Nicotiana plumbaginifoha, in S 

cerevisiae under the control of the yeast GAL1 promoter P-Glucanases 

have also been cloned into bacteria Lee and Pack (1987) transformed a 

Bacillus megaterium strain with a plasmid containing the endo (1,4) p- 

glucanase from Bacillus subtilis The gene encoding endo (1,4) P-glucanase 

in thermophilic Bacillus sp PDV was cloned into E  coh by Sharma et al 

(1987) Louw and Reid (1993) cloned and sequenced the gene for (1,3)

(1,4) P-glucanase from Bacillus brevis and characterised the thermostable 

enzyme's biochemical properties Finally, Wolska-Mitaszko (1985) cloned 

and expressed Arthrobacter endo (1,3) P-glucanase in E  coh cells 
(Bielecki and Galas, 1991)
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1.3 PLASMID COPY NUMBER

1.3.1 Introduction

An important parameter in the study of recombinant microbial systems is the 

number of molecules of plasmid in each cell, referred to as the plasmid copy 

number (PCN) Procedures for determining PCN have been developed and 

applied to various recombinant systems to measure both high and low copy 

number plasmids The procedures may differ m the level of sensitivity and 

accuracy, depending on whether they are developed to measure either high 

or low copy number plasmids The limiting factor in measunng low copy 

number plasmids is the DNA detection limit PCN has been measured in 

studies which investigate the influence of cell growth rate on PCN in 

bacteria (Seo and Bailey 1985, 1986) and in yeast (Bugeja et al , 1989), 

nutritional requirement effects on plasmid stability and plasmid content 

(Sayadi et al , 1989), the influence of PCN on the relative levels of many 

individual proteins and ribosome components (Bimbaum and Bailey, 1991), 

the influence of protein over production on cell physiology and plasmid 

stability (Van der Aar et al , 1992), and control and regulation of 2/x copy 

number (Jayaram et al , 1983)

1*3.2 Indirect methods of measuring PCN

Indirect methods of determining PCN do not require measurement of 

plasmid DNA directly, but instead involve measunng the levels of 

expression of particular proteins For R1 plasmid derivative, resistance to 

ampicillin in agar plates is proportional to p-lactamase gene dosage (Uhhn 

and Nordstrum, 1978) Methods based on indirect protein measurements all 

require pnmary proof that the phenotype being analysed is linearly 

proportional to gene dosage, and are therefore limited to plasmids that 

contain one or other of the few genes that show this proportionality Such 

factors as production kinetics, turnover rate and denaturation of the protein 

being qualified, must be taken into account
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1.3,3 Direct methods of measuring PCN

Direct methods for measuring PCN all involve the physical separation of 

plasmid DNA from cell lysates, chromosomal and nbosomal DNA 

Caesium chloride (CsCl) gradient centrifugation (Lovett and Hehnski, 

1975), HPLC (Coppella et al , 1986, 1987) and gel electropheresis (Projan 

et al , 1983) have all been employed to separate plasmid DNA Another 

characteristic of direct methods is a detection system to measure the levels o f 

plasmid DNA present and comparison to the relative levels o f a reference 

DNA, such as chromosomal DNA, nbosomal DNA or individual genes 

CsCl gradients contain ethidium bromide and can be visualised under UV 

light DNA separated by HPLC is also detected by UV Ethidium bromide 

fluorescence densitometry of electropheretic gels is one of the most common 

methods for measuring PCN High and low copy number plasmids require 

different degrees of sensitivity, in that more sensitive methods of detection 

are employed for measuring the PCN of low copy number plasmids DNA 

hydndisation methods, which include hybndisation in solution, sandwich 

hybndisation and Southern hybridisation, are perhaps the most commonly 

used, techniques for detecting DNA for the purpose of determining PCN

1.3.3.1 Caesium chloride gradients

Centrifugation of cell lysates or cleared cell lysates in CsCl gradients 

containing ethidium bromide (EtBr), offers a simple method of separating 

plasmid DNA from chromosomal DNA The separated DNA may be 

visualised under UV illumination and quantified by gel electrophoresis The 

relative intensities of fluorescence of chromosomal to separated plasmid 

DNA or of a standard plasmid DNA preparation to separated plasmid DNA, 

may be measured, giving an indication of the PCN CsCl gradients offer 

minimal estimates of PCN, as all plasmid DNA extracted will not be in 

supercoiled form Nicking of supercoils by shearing, the action of non­

specific endonucleases, or disruption of plasmid relaxation complexes, 

causes plasmid DNA to band with chromosomal DNA in EtBr-bouyant 

density gradients (Lovett and Hehnski, 1975)
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1.3.3.2 HPLC

The Nucleogen DEAE 4000-10 HPLC column has been shown to isolate 

transfer RNA (tRNA), ribosomal RNA (rRNA) and DNA from crude cell 

lysates (Coplan and Riesner, 1984) Coppella et al (1986, 1987) applied 

this HPLC system for PCN determination in both recombinant yeast and E 

coh systems Chromosomal DNA and plasmid DNA coeluted and retention 

was independent of size Therefore, the chromosomal DNA has to be 

removed, by denaturing during isolation of DNA from cells The PCN was 

calculated from the ratio of plasmid DNA to rRNA, and calculated on a per 

cell basis, using published data and measured constants Where the rRNA 

content was not constant, the plasmid peak area (from the chromatogram), 

together with the cell concentration, was used to calculate the PCN per cell

The HPLC technique for measuring PCN is direct and quick but relies 

heavily on constants and variables obtained from published data, which may 

be specific to one particular recombinant system In recombinant yeast, the 

2n circle cannot be separated from expression plasmids and therefore 

assumptions on the number of copies of 2/i must be made, in order to 

calculate the PCN of the expression vector (Coppella et al , 1987) Another 

disadvantage is that, some plasmid DNA may also be removed with the 

chromosomal DNA, leading to an underestimate of PCN

1.3.3.3 Gel electrophoresis

Gel electrophoresis is widely used to separate plasmid DNA to determine the 

PCN (Projan et al , 1983) For high copy number plasmids, direct 

fluorescence densitometry of ethidium bromide-stained electrophoretic 

agarose gels has been employed (Projan et al , 1983, Moser and Campbell, 

1983, Seo and Bailey, 1985, 1986) For low copy number plasmids, where 

the PCN may be as low as one or two copies per cell, more sensitive 

techniques are employed to detect and quantify the DNA separated by gel 

electrophoresis Such techniques include DNA hybridisation (Bitter et al , 

1987, Korpela et al , 1987)
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1.3.3.3.1 Ethidium bromide fluorescence densitometry

High copy number plasmids may be visualised and hence stained by direct 

fluorescence densitometry o f EtBr-stained electrophoretic agarose gels By 

comparing the fluorescence intensity of plasmid bands to some reference 

DNA of known concentration or quantity e g chromosomal band, nbosomal 

DNA (rDNA), or lambda (X) DNA, the number o f molecules per reference 

DNA equivalent can be calculated From this the number of plasmid copies 

per cell may be calculated

Projan et al (1983) developed a simple and straight-forward procedure for 

measuring the PCN of S aureus based on direct fluorescence densitometry 

of EtBr - stained electrophoretic gels The PCN measurement procedure 

consists of separating whole cell lysates by agarose gel electrophoresis, 

staining the gels with EtBr and analysing the stained gel by scanning 

densitometry Typical results are calculated according to the equation

Cp =  Dp x Me 

Dc x Mp

where Cp indicates plasmid copies per cell, and Dp and Dc are the relative 

amounts of plasmid and chromosomal DNA respectively in the gel as 

determined from densitometer scans, Mp is the molecular weight of the 

plasmid and Me is the total chromosomal DNA per cell In order to 

establish the reproducibility and repeatability of the method, Projan et al 

(1983) investigated several parameters influencing the procedure, which 

included the degree of trapping of plasmid DNA in the linear chromosomal 
fraction, the kinetics of stainmg-destaimng, as a function of EtBr and DNA 

concentration, the fluorescence signal as a function of the amount of DNA 

present, and the effect of molecular topology on EtBr binding to DNA in 

agarose The procedure was used to determine the PCN of plasmids ranging 

in size from 4 2 to 27kb and from 12 to 880 copies per cell The 

repeatability of this technique was estimated to be ±20%

Direct densitometry of EtBr fluorescence is perhaps one of the simplest 

methods for measunng PCN However, many variables must be 

standardised, if large errors of up to 20% are to be minimised (Projan et al , 

1983) These variables include gel staining and destaining times, polaroid
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film development conditions (i e linearity of polaroid film response), DNA 

concentration etc The method is only applicable for high copy number 

plasmids

1.3.3.3.2 DNA hybridisation

In the case of low copy number plasmids (as is often the case in recombinant 

yeast), an attractive and accurate alternative for measuring PCN is DNA 

hybridisation Such techniques as hybridisation in solution, Sandwich 

hybridisation and Southern hybridisation have all been employed to quantify 

PCN and differ in the degree of complexity of the procedure (Gerbaud and 

Guenneau, 1980, Jayaram et al , 1983, Korpela et al , 1987)

Hybridisation in solution

DNA hybridisation in solution, when employed to measure PCN, involves 

extraction and denaturation of total DNA and radioactive labelling and 

denaturation of probe DNA A renaturation or reassociation reaction 

between probe DNA and total cellular DNA is monitored using 

hydroxyapatite chromatography, in which the single stranded DNA and the 

reannealed DNA, are eluted at different ionic strengths The radioactivity is 

counted in a scintillation counter and the kinetics of reassociation 

determined The PCN is calculated from the relative quantities of single 

stranded and reannealed DNA (Gerbaud and Guenneau, 1980) DNA 

hybndisation in solution is fast and accurate Reassociation takes place at 

faster rates than in filter bound hybndisation techniques and the technique is 

used to detect minute quantities of DNA (Gelb et al , 1971, Sharp et al , 

1974) However, the technique is time consuming, involved and more 

difficult than filter hybndisation methods (Shepard and Polisky, 1979)

Sandwich hybridisation

A method for detection and quantification of DNA was developed by Ranki 

et al (1983) and modified to measure PCN by Korpela et al , (1987) The 

method is based on a three-DNA-component sandwich hybndisation and



involves the cloning of two non-overlapping restnction fragments of sample 

DNA into two vectors, the plasmid pBR322 and M13 phage The single 

stranded recombinant phage DNA is immobilised on 1cm diameter filter 

discs, while the pBR322 DNA is radioactively labelled, and used as a probe 

When the two reagents are incubated under annealing conditions, no 

radioactivity becomes filter bound Only if denatured sample DNA is added 

as the third reagent, will the radioactive probe become attached to the 

immobilised M13 DNA Many vectors in E  coh and yeast and other cells 

contain an antibiotic resistance marker, such as the ampicilhn or tetracycline 

resistance genes The genes are also present in pBR322, which is the radio­

labelled probe, and therefore the ampicilhn or tetracycline resistance genes 

are being quantified After hybridisation, the filter discs are washed and the 

radioactivity bound to the filters is determined in a counter To convert 

counts per minute into plasmid molecule numbers, standards with known 

amounts of plasmid molecules or chromosomal DNA are analysed

Hybridisation efficiency is dependent on both the filter bound and probe 

DNA concentrations and also on the hybridising conditions (Korpela et al ,

1987) A major attraction of the Sandwich hybridisation technique is its 

suitability for use with crude DNA samples, thus alleviating the need for 

tedious and rigorous DNA isolation procedures

Southern hybridisation

Southern hybridisation involves the binding of a radioactively-labelled 

specific DNA probe to size-fractionated DNA immobilised on nitrocellulose 

or Nylon filters To quantify PCN, a hybridisation probe is utilised which is 

complementary to both plasmid DNA and a native chromosomal gene Such 

DNA probes may derive from either the promoter, transcnption-terminator, 

or auxotrophic selectable marker of the expression vector, since these 

sequences are all also represented in the genome (Bitter et al , 1987) 

Whole cell DNA is isolated, digested with an appropriate restriction enzyme 

and size-fractionated by agarose gel electrophoresis The DNA is then 

transferred to nitrocellulose and hybridised to the radioactive probe 

(Mamatis et al , 1982) Knowledge of the genomic and plasmid restriction 

maps allows identification of the fragment representing either the 

chromosomal gene or the recombinant plasmid The chromosomal fragment
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in each sample is an internal standard for quantification and generally 

represents one (haploid strains) or two (diploid strains) genes per cell 

Comparison of the amount of probe hybridised to the plasmid fragment to 

that hybridised to the chromosomal fragment (of defined copy number) 

allows calculation of the PCN per cell Transfer or binding efficiency of 

DNA fragments in Southern blot analyses is size dependent, and therefore it 

is essential that the plasmid and chromosomal restriction fragments be of 

similar size (Bitter et al , 1987) Calculation of PCN must take into account 

the relative lengths of the fragments and the extent to which the fragments 

are covered by the labelled probe (Broach, 1983) Finally, a more accurate 

PCN is obtained by dividing the PCN by the fraction of cells containing the 

plasmid

Southern hybridisation is an accurate and direct method for measunng PCN 

The procedure must be standardised in order to avoid errors in the values of 

PCN determined Southern hybridisation as a method of determining PCN 

is theoretically precise, but is rather difficult to perform and is time 

consuming It contains inherent flaws that can be avoided only with care 

(Projan et al , 1983)

1.3.3 Application of methods

In one of the most widely used techniques for measunng the PCN, physical 

separation of plasmid from chromosomal DNA was performed by CsCl 

gradient centrifugation followed by detection of the plasmid bands by gel 
electrophoresis Quantification of PCN was by scanning densitometry 

(Moser and Campbell, 1983) The basic procedure involves mixing equal 

concentrations of cells in which the PCN is to be measured, with a second 
cell culture containing a different plasmid of known PCN This addition of 

cells containing a reference plasmid, is to provide an internal standard 

Cleared cell lysates are then prepared and supercoiled plasmid DNAs are 

isolated by equihbnum centrifugation in CsCl-EtBr density gradients The 

plasmid DNAs are then fractionated by gel electrophoresis The relative 

amounts of plasmid DNA are quantified by scanning densitometry This 

procedure yielded a minimum value of PCN, and was employed to estimate 

the PCN of high copy number bactenal plasmids
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Determination of the PCN in yeast cells has employed variations of the 

method developed by Projan et al (1983) i e direct fluorescence 

densitometry of EtBr stained electrophoretic gels One method for 

determining the copy number of a high copy number plasmid in yeast is to 

compare the relative intensity of ethidium bromide staining of a plasmid 

specific restriction fragment to a fragment corresponding to the repeated 

nbosomal DNA (rDNA) sequences in restriction digestions of total DNA, 

isolated from an appropriate transformed strain (Broach, 1983) By 

restricting total genomic yeast DNA with the enzyme Kpn I, a 9 Okb rDNA 

repeat fragment in 100 to 150 copies per cell results (Warner, 1989) Both 

rDNA restriction fragments and plasmid specific restriction fragments stand 

out sharply against the background of staining of random genomic DNA 

fragments, after fractionation of the digested DNA by electrophoresis on 

agarose gels The relative amount of plasmid DNA to rDNA can be 

quantified from densitometer scans of photographic negatives of the gel 

The absolute value of PCN is calculated from the relative intensities o f the 

plasmid and rDNA bands, taking into account the relative sizes of the 

fragments which generated the bands and using the estimate of 100 to 150 

copies of rDNA per haploid genome

Futcher and Cox (1984) modified this procedure to measure the PCN of 2n 

circle-based plasmids in S cerevisiae Total genomic DNA was digested, 

run on agarose gels and then stained with ethidium bromide The most 

prominant bands seen were those due to plasmid restriction fragments and 

those due to the 2 7, 2 23 and 1 82kb Eco RI restriction fragments of 

rDNA By companng the relative intensities of the peaks due to rDNA with 

those due to plasmid fragments, and by taking into account the relative sizes 
of the fragments causing the peaks, and using an estimate of 140 copies of 

rDNA per haploid genome (Schweizer et al , 1969), an estimate of the copy 

number of various plasmids was made The technique developed by Futcher 

and Cox (1984) has been employed by Zealey et al (1988) and more 

recently by Porro et al (1991), to measure the PCN of high copy number 
plasmids in yeasts

Relative to bacterial systems, yeast recombinant plasmids are of low copy 

number. The theoretically precise, accurate and more sensitive techniques 

o f DNA hybridisation are most commonly employed to determine the PCN 

of yeast systems Gebaud and Guerineau (1980) used hybridisation in
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solution to determine the amount of 2/x DNA in different yeast strains. A 

PCN of 10 of the S. cerevisiae expression vector pAAH5 was evaluated 

using Sandwich hybridisation (Korpela et al., 1987). Jayaram et al. (1983) 

investigating 2/x control and regulation employed Southern hybridisation to 

determine the PCN of 2/x derived plasmids.

The yeast integrating vector YIp5 was employed as a probe (Jayaram et al., 

1983) which consists of pBR322 plus a 1.1 kb fragment encoding one o f the 

uracil biosynthetic genes (URA3). Total genomic yeast DNA was digested 

and fractionated by gel electrophoresis, transferred to nitrocellulose and 

probed with labelled YIp5. Two fragments appeared on the autoradiogram; 

one representing the single copy chromosomal URA3 gene and the other; the 

plasmid containing pBR322 sequences. The PCN was calculated from 

densitometer scans of the autoradiogram which yielded the relative 

intensities (i.e. quantities) of single copy URA3 DNA to multicopy plasmid 

DNA. It was shown using this procedure, that 2/x circle and 2/x-based yeast 

plasmids encode certain components required for high copy propagation. 

The existence of a copy control system for 2/x circle and 2/x-based plasmids 

that overides normal cellular restriction on plasmid replication and amplifies 

the plasmid when copy number is low, was hypothesised.

Bugeja et al. (1989) used several probes in their measurements of yeast 

PCN, during glucose limited chemostat culture. The probes included; YIP1 

(Struhl et al., 1979) which is homologous to a plasmid DNA fragment and 

an area of yeast chromosomal DNA around the single copy histidine (HIS3) 

gene; pYIrA12 (Petes et al., 1978) which carries the multi-copy yeast 

ribosomal DNA (rDNA) genes. For 2/x plasmid copy numbers, blots were 

hybridised with YEP6 (Struhl et al., 1979), which is homologous to 2/x 

sequences and the chromosomal HIS3 gene. In the case of single copy HIS3 

probes, it was found necessary to cut the bands from the filter and determine 

radioactivity by liquid scintillation counting to ensure reproducible results.

Instead of using a probe containing two different DNA fragments; one 

homologous to the plasmid DNA sequences and the other homologous to the 

reference chromosomal DNA sequences, Van der Aar et al. (1992) used the 

gene for phosphoglycerate kinase (PGK1) as a probe. The episomal 

plasmids being studied all contained the PGK1 gene, and the yeast genome 

also contains the same single copy PGK1 gene. Southern blotting and
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hybridisation with a single stranded 32P-Iabelled PGK-specific probe was 

performed after digestion of total yeast DNA The PCN was calculated 

from the relative intensity of the hybridising bands on the autoradiogram 

Van der Aar et al (1992) used this procedure in studies on the effects of 

phosphoglycerate kinase overproduction in S  cerevisiae on cell physiology 

and plasmid stability

In conclusion , for bacterial systems with high plasmid content, methods 

employing CsCl gradients and/or gel electrophoresis have been employed to 

measure PCN EtBr-fluorescence densitometry has been used to calculate 

the PCN of such high copy number systems These methods are quick and 

relatively easy to perform Although not very accurate, with errors o f up to 

20%, (Projan et al , 1983), they have been employed to measure large PCN, 

where accuracy is not so critical Variations of these techniques have been 

successfully employed to determine the PCN of recombinant yeast systems 

where the PCN was high Where the PCN is low, more sensitive techniques 

such as DNA hybridisation have been employed While these techniques are 

tedious, time consuming and difficult to perform, they are accurate and 

sensitive enough to measure PCN of 1 or 2 per cell

Most methods which quantify PCN utilise reference DNA Techniques for 

measuring high copy number plasmids have reference DNAs of large 

denominations such as total chromosomal DNA (Projan et al , 1983), 

multicopy plasmids (Moser & Campbell, 1983) or multicopy rDNA (Futcher 

& Cox, 1984) Techniques for measuring low copy number plasmids have 

reference DNAs of low denominations such as single chromosomal markers 

or genes (Bugeja et al , 1989, Van der Aar et al , 1992)

1.4 THE IN FLUEN CE O F ENVIRONM ENTAL CONDITIONS ON 

PLASM ID STA BILITY AND COPY NUM BER

Plasmid stability may be defined as the ability of transformed cells to 

maintain a multicopy plasmid unchanged during cell growth, manifesting its 

phenotypic characteristics (Caunt et al , 1988) Several factors influence the
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instability of a plasmid and include structural instability of the plasmid 

itself, segregation of the plasmid to daughter cells during cell division, and 

the physiological consequences due to plasmid gene expression 

Environmental stresses also play a major role in plasmid stability and include 

such variables as host cell growth rate, nutritional limitations or 

requirements, oxygen concentration and cultivation conditions such as the 

presence or absence of selection pressure, pH and temperature This 

combination of factors may result in the instability of the plasmid becoming 

an important factor in the use of a particular recombinant strain in large 

scale production

Two major types of plasmid instability have been identified in recombinant 

cells Segregational instability is due to a failure to transmit the recombinant 

DNA to progeny cells, and structural instability is due to mutation or 

changes in the structure of the plasmid DNA caused by events such as 

recombination (Caunt et al , 1988) Of the various factors influencing 

plasmid stability, environmental stresses are perhaps the easiest to control 

and hence serve as one route to improving or optimising the plasmid stability 

for a particular host-plasmid bioreactor system The various environmental 

factors or growth conditions and their effect on plasmid stability are 

discussed below

1.4.1 Growth rate

The stability of a 2/x-based plasmid encoding P-galactosidase was measured 

in S cerevmae grown in continuous culture in non-selective medium by 

Impoolsup et al (1989) The apparent stability of the plasmid was found to 

decrease with increasing growth rate An increase in segregational 

instability was the dominant factor in the increased plasmid loss 

Recombinant 2/x plasmids are thought to have defective amplification 

systems and at faster growth rates, the cells have less time to correct 

mistakes made during any one division (Futcher 1988) The PCN 

appeared to be stable

In contrast to the above, Kleinman et al (1986) and Futcher and Cox (1984) 

reported that the stability of 2/i-based plasmids increased with increasing
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growth rate when the strain was grown in defined medium Plasmid 

instability per generation remained constant for a particular growth rate 

Kleinman et al (1986) reported that a possible reason for increased stability 

at higher growth rates was that cell division results in larger buds at fast 

growth rates, which increased the chances o f transfer of plasmids to the 

daughter cell A major factor involved could be more intense selection 

under extreme nutrient limitation of low dilution rate conditions Parker and 

Di Biasio (1987) suggested that the amount of DNA repair may overburden 

the cells repair capabilities, resulting in plasmid loss due to DNA 

degradation This is possibly one reason why at low growth rates, where the 

enzymes essential for DNA repair are synthesised less often, the plamid 

stability is lower The results obtained indicated that the stability of the 

recombinant yeast system used could be improved at high dilution rates and 

also that increased plasmid expression levels resulted in decreased stability 

Walls and Gainer (1989), Da Silva and Bailey (1991), Porro et al (1991) 

also concluded that for recombinant yeasts grown in continuous culture, the 

plasmid loss experienced by the yeast population vanes with dilution rate, 

with the greatest loss occunng at low dilution (growth) rates

Compared with bacterial systems, reported findings on the influence of 

growth rate on PCN in yeast systems are far fewer Porro et al (1991) 

reported that the PCN remained relatively unchanged at different dilution 

rates Bugeja et al (1989), investigating the stability and copy number of a 

2^-based yeast plasmid in S cerevisiae in glucose limited culture reported 

that the average PCN of the cells retaining the plasmid remained constant at 

approximately 50 in high dilution rate culture, whereas it rose to almost 600 

in the low dilution rate culture The plasmid was considerably more stable 
at a high dilution rate than at a lower dilution rate

Growth rate effects in bactenal systems have been much more extensively 

studied Seo and Bailey (1986), investigating the influence of growth rate 

on plasmid stability and copy number in free cell E  coh continuous culture, 

reported that plasmid content exhibits a maximum near the lowest dilution 

rates investigated and decreases as dilution rate increases Throughout this 

study plasmid stability remained high Remikainen and Virkasarvi (1988), 

working with a recombinant E  coh strain and Koizumi et al (1985), 

working with a recombinant Bacillus sp reported that, in contrast to Seo 

and Bailey (1986), the plasmid content increased with increasing growth
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rate These observations of different trends show the absence of a general 

rule and indicate the importance of different plasmids, hosts and growth 

conditions in determining the PCN- plasmid stability - growth rate 

relationships

Siegel and Ryu (1985), De Taxis du Poet et al (1987), Sayadi et al (1989) 

concluded that, as a general observation in recombinant bacterial systems, 

the dilution rate of free cell continuous cultures influences both the plasmid 

stability and PCN Plasmid stability was found to be greatest at the highest 

dilution rates, where the PCN was lowest It was suggested that faulty 

partitioning of the plasmid is not the primary cause of the declining number 

of plasmid-containing cells in the population It seems likely that the 

increased plasmid content at lower dilution rates makes the plasmid-beanng 

cells less competitive compared with the plasmid free segregants, leading to 

a more rapid increase in the plasmid-free fraction of the population (Siegel 

and Ryu, 1985) Factors such as increased expression of cloned gene or 

increased plasmid content, which increase the metabolic burden placed on 

the host cell, result in a more rapid increase in the fraction of plasmid free 

cells in the population De Taxis du Poet et al (1987) reported that for the 

same range of dilution rates, the PCN differed depending on which medium 

was used PCN is not only influenced by growth rate, but can also be 

affected by the nature of the growth limiting nutrient, usually glucose for 

minimal media and which is not determined in more complex media 

(Kleinman et al , 1986), De Taxis du Poet et al , 1987, Remikainen and 

Virkajarvi, 1988, B ugejaetal , 1989)

1.4,2 Nutritional limitations

The nutritional requirements of P +  and P- cells are different and the 

particular type of nutrients supplied may influence the plasmid stability and 

the PCN of the cells (Klemperer, 1979, Sayadi et al , 1989 ) In batch 

culture, E  coh cells containing the R plasmid RP1 had a greater 

requirement for Mg2+, K + and P 0 43 than the host strain At low

concentrations of phosphate, the growth rate of P- cells was greater than P +  

cells, and differed little in a simple salts medium where phosphate was not 

limiting Jones and Melling (1984) studied the stability of pBR322 and
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related plasmids in E coh grown in chemostat culture Experiments were 

performed in glucose-, phosphate- or magnesium- limited chemostats The 
majority of the plasmids studied exhibited the highest stability under 

phosphate limitation The kinetics of plasmid loss varied from plasmid to 

plasmid and was influenced by the imposed nutrient limitation Sayadi et al

(1989), investigating the effects of nutritional limitations on plasmid stability 

in E  coh, reported that when the culture was Mg2+-depieted, the rate of 

plasmid loss was accentuated and the percentage of plasmid-containing cells 

declined Phosphate, ammonium and glucose limitations also caused 

plasmid instability, but the effect was not as pronounced as with magnesium 

depletion The PCN determined after batch culture depended on the nature 

of the growth limiting factors and increased for ammonium and glucose 

limitations and decreased when phosphate and magnesium were limited All 

nutritional limitations led to a decrease in biomass production and cloned 

gene product concentration Caulcott et al (1987), reported that the 

stability of a low-copy number plasmid was very low in batch culture, but 

was significantly stabilised by growth in continuous culture with phosphate, 

nitrogen or potassium limitation However, the plasmid was quite unstable 

when grown in continuous culture with sulphate limitation It appears that 

the small plasmid size and low PCN contributed to the reported findings

Matsui et al (1990) reported that the amino acids cystine, proline, threonine 

and glutamate influence plasmid stability in E  coh Similary, Kunyama et 

al (1992) reported that the addition of a high concentration of L-histidine 

was effective in decreasing the appearance of P- segregants in S  cerevisiae , 

harbouring a 2^-based plasmid, encoding the gene for Hepatitis B virus 

surface antigen Few studies on the direct effects of nutritional limitations 

on plasmid stability have been conducted in yeast, but the influence of 

nutritional limitations on cloned gene product production has been 

documented in several cases Coppella and Dhuqati (1989) found that the 
production of human EGF was highly dependent on the medium used, as a 

chemically defined, non-ennched medium had a significantly lower yield 

than did enriched or complex media PCN and the physiological state of the 

yeast cells did not change with media type
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1*4.3 Oxygen concentration

Changes in the oxygen supply to micro-organisms can have effects on the 

growth rate and metabolic activity of the organism In continuous culture 

studies the plasmid stability of S  cerevisiae was studied in complex media 

sparged with air, oxygen or nitrogen (Lee and Hassan, 1987) The plasmid 

contained the yeast gene for killer toxin production and the corresponding 

immunity gene Plasmid stability was highest with air sparging but 

expression of the cloned gene product was highest in an anaerobic 

environment (N2 sparging)

The introduction of a dissolved oxygen (dO^ shock caused a sharp decrease 

in plasmid stability in S cerevisiae (Caunt et al , 1989) and was more 

pronounced at lower dilution rates In anaerobic conditions, the energy 

yield is much less from carbohydrate sources, and it is thought that the 

sudden scarcity of energy brought about by d 0 2 shock, rendered plasmid 

maintenance even more unfavourable An E  coh culture in which the d 0 2 

was allowed to drop to 5% of maximum saturation and then increased to 

100% saturation immediately, showed similar detrimental effects on plasmid 

stability (Hopkins et al , 1987) In batch culture in the presence or absence 

of selection pressure (ampicillin), plasmid loss was not substantial 

However, when the batch culture was subjected to d 0 2 shock m exponential 

phase of growth, the plasmid stability deteriorated rapidly to 1%, even in the 

presence of ampicillin

It seems likely that oxygen plays an important role in plasmid loss Changes 

in d 0 2 are very important when large scale processes are considered 

Imperfect mixing or micromixing problems are more likely to occur in large 

scale bioreactors, producing pockets of medium where the d 0 2 may be lower 

than the average bulk concentration (Huang et al , 1990)

1.4.4 Cultivation conditions

In cultivation of recombinant strains, optimal microbial growth, plasmid 

stability, PCN and heterologous protein production may all require different 

fermentation conditions Changes in chemical, physical or physiological
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conditions may be necessary during fermentation E  coll, harbouring a 

recombinant plasmid, was grown in a fermenter to study the effects of 

selected process parameters on the growth of the host strain and plasmid 

amplification with chloramphenciol treatment (Reimkainen et al , 1989) 

Eighteen fermentations were performed, in which the fermentation 

temperature, pH and turbidity of the culture at the onset of amplification 

were selected as the independent process parameters It was reported that 

PCN could be influenced by controlling fermentation temperature and pH 

The maximal copy number during growth and the optimal plasmid 

production were found to require fermentation conditions different from 

those needed for optimal host growth and cell division

Aiba and Koizumi (1984) showed that plasmid stability in B 

stearothermophilus was high at temperatures under 50°C, but decreased as 

the temperature was increased above 50°C Son et al (1987) studied the 

effect of temperature on the stability of a particular recombinant plasmid and 

expression of the cloned gene product, cellulase, in Bacillus strain They 

found that although both high PCN and efficient gene expression were 

favoured by higher temperatures, the plasmid was stably maintained only at 

temperatures below 30 °C in batch culture

Recombinant plasmids in yeasts and bacteria are unstable to varying degrees, 

unless a selective pressure is applied to the growing organisms With 

bacteria, antibiotics are commonly used where the host is senstive to the 

drug and the plasmid encodes resistance to the antibiotic (Reimkainen et al ,

1989) Nutntional selection is employed with yeasts, where the host is 

auxotrophic for a particular amino-acid, brought about by a specific 

mutation in one of the genes involved in the synthesis of that amino acid 

The plasmid contains the unaltered gene that has been mutated in the host 

strain thereby compensating for the auxotrophic phenotype of the host 

Continued selection thus requires the use of minimal growth medium lacking 

the relevant amino acid (Impoolsup et al , 1989)

Selective media generally will not prevent segregational and structural 

plasmid loss, but will inhibit the growth of plasmid-free segregants Under 

nutritional selection it may be possible for plasmid-free cells to replicate, 

due to pools of the missing precursor or ammo acid being present m the cell 

cytoplasm or in the bulk medium (Mason, 1991) If selection pressure is
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extreme (e g high antibiotic concentration), then even low copy number 

plasmid containing cells will be inhibited, forcing a population of high PCN 

cells (Dennis et al , 1985) Growth media incorporating either nutritional 

or antibiotic selection usually maintain a high plasmid stability However, 

these media are unecomomcal for large-scale processes

Futcher and Cox (1984) summarising on the wide variety of environmental 

factors which influence PCN and plasmid stability in yeasts, stated that,

"The wide variation in the behaviour o f different plasmids in various 

hosts implies that the control o f  copy number and instability o f  

plasmids is complex, finely balanced and easily upset It seems 

unlikely that any simple rule could explain the array o f results 

obtained ”

Several strategies can be used to improve plasmid stability, such as selective 

methods, including maintaining selection for antibiotic resistance by use of 

antibiotics in the growth medium, complementation of host auxotrophy by 

incorporating auxotrophic markers on plasmid vectors, resistance to heavy 

metals such as copper and the incorporation of suicide proteins Non- 

selective methods include incorporation of partition loci to obtain controlled 

partitioning of the plasmid to the daughter cells during cell division (Kumar 

et al , 1991) As an alternative integrating vectors which are non- 

autonomously replicating plasmids that contain yeast DNA and transform 

yeast at low frequencies, may be utilised (Parent et al , 1985) The plasmid 

then undergoes integration into the chromosome by homologous 

recombination Other non-selective methods or strategies for improving 

plasmid stability include the separation of growth and gene expression 

phases by employing a temperature sensitive expression mutant or controlled 

promoter (Sledziewski et al , 1988) Once cells have grown to a high 

density, the temperature can be changed or the repressor removed, allowing 

gene expression The use of immobilisation of whole living recombinant 

cells is an attractive alternative for stabilising plasmids under non-selective 

growth conditions (De Taxis du Poet et al , 1987) The gel beads are seen 

to act as a reservoir of plasmid-containing cells and over-growth o f plasmid- 

free segregants does not occur
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1.5 IMMOBILISATION OF LIVING CELLS

Cells may be immobilised by a variety of methods including, (1) physical 

attachment to an inert carrier such as silica or glass, (1 1) entrappment 

methods using various hydrogels, (1 1 1) methods which cause aggregation or 

flocculation and (iv) physical containment of cells behind membranes 

(Nagashima et al , 1984) Entrapment methods are the most commonly 

employed means of immobilising cells In addition to natural polymers such 

as alginate, carrageenan, cellulose, gelatin and agar, synthetic polymers such 

as polyacrylamide, hydrophobic monomers and photo-cross-linkable resins 

have been used (Fukui and Tanaka, 1982)

A cell suspension is usually mixed with the viscous polymer and charged 

drop wise to a gelating solution where gel beads are formed The gel beads 

are incubated in nutrient media where the entrapped cells grow to form 

microcolomes Eventually after continued growth the microcolonies near 

the surface begin to merge together and reduce the diffusion of nutrients to 

and inhibitory products from the gel beads As a result, sharp radial 

gradients in growth rate, cell density and cell activity arise When the cell 

density near the bead surface reached the maximum that the earner can 

accommodate, cells are pushed from the bead surface at a rate commensurate 

with continued immobilised cell growth (Monbouquette et al , 1990)

When cell immobilisation occurs naturally, as in waste water treatment and 

in vinegar fermentation, processes seem to benefit from it This tends to 

suggest that if other microorganisms could be encouraged to immobilise 
naturally, then they too could be exploited to advantage In fermentation 

processes where immobilisation has been induced, there is considerable 

evidence that the operational stability has been enhanced compared to free 

r cell systems (Dervakos and Webb, 1991) Immobilisation influences the 

physiology and performance of cells through a number of parameters which 

may act in opposite directions Immobilised cells grow and exist in an 

environment, which is not only governed by intraparticle diffusion 

limitations, but also by physical boundanes Diffusion limitations may 

result in substrate limitation and product inhibition, while the physical 

boundanes allow the separation of extracellular metabolites which can result 

in increased productivities compared to free cell systems On the other
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hand, the very nature of physical boundaries may restrict cell growth and 

therefore inhibit the metabolic activity of immobilised cells (Hahn- 

Haegerdal, 1990) The methods employed for immobilising cells are many 

and varied and have been reviewed extensively (Rosevear et al , 1987, 

Tampion and Tampion, 1987) Many o f the techniques have been taken 

directly from enzyme immobilisation technology and the choice for a 

particular application is largely governed by the required physiological state 

of the cells and their application

1.5.1 Advantages

The merits of using immobilised cells in place of free cells in suspension 

depend on the characteristics of the particular system The major advantages 

include

1.5 1.1 Enhanced biological stability

The stability of immobilised cells may be substantially higher than that of 

freely suspended cells The storage and operational stability of viable cells 

can be greatly extended by immobilisation (Nagashima et al , 1984, Mugmer 

and Jung, 1985) When the cells are not viable, the increased catalytic 

stability of intracellular activities can be attributed to the protective effect of 

the immobilisation matrix against such physio-chemical challenges as 

temperature, pH, and organic solvents (Bajpai and Margantis, 1987, Barros 
et al , 1987) In the case of viable non-growing or slow-growing cells, 

increased extracellular enzyme biosynthesis (which compensates for enzyme 

dénaturation or deactiviation) the capability of cells to assimilate products 

released from lysed cells for growth and maintenance, and the possibility of 

reduced cell mass degradation rates, all contribute to the enhanced stability 

experienced by immobilised cells (Koshcheenko et al , 1983, Toda and Sato,

1985) When the cells are growing, a balance between cell growth and cell 

deactivation (or leakage) is maintained and becomes important in 

maintaining a constant metabolic activity over long periods of time 

Enhanced stability for recombinant immobilised cells in the absence of 

selection pressures has been ascribed to the decreased number of cell
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divisions within the matrix, which prevents the appearance and take-over of 

plasmid free cells (de Taxis du Poet et al , 1986, Sayadi et al , 1989)

1.5.1.2 High biomass concentration

The relatively high biomass concentrations observed within immobilised cell 

particles can lead to enhanced reaction rates and thus, reduced reactor 

volumes Dhulster et al (1984) observed a very high E  coh cell density 

within the cavities of K-carrageenan gel of at least two orders of magnitude 

higher than the cell density in free cell suspension (1 7 x 1011 cells/ml-gel 

compared to 8 x 108 cells/ml) The ability to operate chemostat cultures at 

dilution rates in excess of the organism's maximum specific growth rate 

becomes feasible with immobilised cells, thus increasing the volumetric 

productivities and reducing the risk of microbial contamination

1.5.1.3 Improved product yields

One of the most common factors for increased product yields in immobilised 

cell systems is through channelling the flow of energy away from cell mass 

synthesis In most of these systems excessive cell growth is undesirable and 

hence a medium is used such that growth rate and thus biomass is reduced 

(Foerberg et al , 1983) Other factors contributing to improved product 

yields include the extended use of the catalytic activities of the cells in the 

immobilised state and advantageous metabolic changes within the 

immobilised cell (Doran and Bailey, 1986, 1987)

1.5.1.4 Integration with down stream processing

The ability to treat cells as a discrete phase facilitates cell-liquid separation

Recovery of cells for further processing or disposal can be achieved by 

draining the fermenter In this way the first downstream processing step is 

integrated with fermentation The recovery and purification o f products may 

also be affected by cell immobilisation K-Carrageenan immobilised cells of 

Myxococcus xanthus secreted foreign proteins out of the beads while native
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proteins were predominantly retained within the gel The beads represented 

the first purification step for protein recovery (Younes et al , 1987)

1.5.1.5 Advantageous partition effects

The use of an appropriate matrix may aid m establishing a favourable 

microenvironment for the immoblished cells Yeast cells immobilised in k -  

carrageenan produced a very high concentration of ethanol at a very high 

value of glucose conversion (Wada et al , 1981) It was suggested that the 

ethanol shunned the very polar gel phase and thus reduced the extent of 

product inhibition within the aggregate Fukui and Tanaka (1982) 

demonstrated the effectiveness of hydrophobic gels in bioconversions 

involving poorly water-soluble organic substrates such as steroids

1.5.1.6 Cell proximity

Reactions which are normally performed in a series of steps, can be earned 

out in the same vessel with significant productivity/cost advantages The 

conversion of starch to ethanol, which involves an enzymatic step followed 

by a fermentation step using co-immobilisation of glucoamylase and S 

cerevisiase is one such example (Fukushima and Yamade, 1984)

1.5 2 Metabolic changes

Immobilised cells show various modifications in physiology and biochemical 

composition compared to free cells Altered morphological forms as well as 

higher or lower metabolic activity, growth rates and product yields have 

been observed (Hilge-Rotmann and Rehm, 1990) The effects o f the 

microenvironment on yeast metabolism were studied by Chen and Wu 

(1987), who found that yields of various metabolic products and the 

utilisation ratios of various specific amino acids differed from those of free 

cells in suspension culture
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Disturbances m the growth pattern of immobilised cells due to contact with 

the immobilisation matrix or other cells were proposed by Doran and Bailey 

(1986), in order to explain various metabolic changes of yeast cells 

immobilised on crosslinked gelatin These metabolic changes included 

reduced biomass yields, decreased specific growth rates and increased rates 

of glucose consumption and ethanol production The observed changes were 

attributed to disturbances to the yeast cell cycle by cell attachment, which 

may have caused alterations in the normal pattern of bud development, DNA 

replication and synthesis of cell wall components Other studies observed 

that the intracellular pH of immobilised cells was lower than that of 

suspended cells (Galazzo and Bailey, 1989) Hilge-Rotmann and Rehm

(1990) measured increased specific activities of the glycolytic enzymes 

hexokinase and phosphofructokinase in immobilised yeast cells and suggest 

that the alterations in physiology are apparently connected with growth of 

cells in aggregates Changes in the cell membrane permeability caused by 

interactions between cells and the immobilisation matrix may allow the 

passage of enzyme sustrates which cannot enter the normal cell Enhanced 

product excretion may also be a result of altered membrane permeability 

(Dervakos and Webb, 1991)

It has also been hypothesised that changes in cell morphology caused by 

immobilisation may be responsible for enhancement in the metabolic 

activities of cells Chlorotetracycline production by immobilised 

Streptomyces aureofaciens was correlated with the morphological 

development of cells in the gel (Mahmoud and Rehm, 1986) It was 

observed that micropellets were formed within alginate beads which were 

never found in free cell culture of the mycelia These micropellets may 

have enlarged the active biological surface and hence, may be the reason for 

the higher productive capacity of immobilised cells

Compounds present in an immobilisation matrix may contribute to a more 

favourable medium composition Immobilising Saccharomyces bayanus 

cells on celite or entrapment within K-carrageenan resulted in higher ethanol 

production (Vieira et al , 1989) The increase was due to medium 

supplementation with the compounds present in the immobilisation supports 

Reduced water activity and/or oxygen deficiency was proposed by 

Mattiasson and Hahn-Haegerdal (1982) in order to explain changed yields or 

new metabolic behaviours in immobilised cells Changes in osmotic
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pressure and surface tension were suggested by Vijayalakshmi et al (1979) 

in order to explain a three fold increase in the oxygen uptake rate of yeast 

cells when immobilised onto a cross-linked support

Finally, under conditions of mass transfer limitation, cells immobilised at 

certain locations withm a matrix may be exposed to concentrations of 

substrates and products which promote a particular pathway for the flow of 

mass within the cell and therefore, the production of metabolites associated 

with this pathway It is possible that such conditions of concentration are 

not achievable in free cell culture due to the stoichiometncal or operational 

constraints imposed by the bioreactor type and mode of operation (Dervakos 

and Webb, 1991)

1*5.3 Operational, biological and diffusional considerations of cell 

immobilisation

Immobilisation of living cells may lead to operational, biological or 

diffusional problems The mechanical properties of the immobilisation 

earner or matrix are important in determining the operational life-time of an 

immobilised cell bioreactor Mechanically stable carriers can withstand the 

pressure exerted by the entrapped growing cells, by intraparticle gas 

formation and are also able to resist harsh hydrodynamic conditions, as well 

as compaction in packed beds The choice of the bioreactor and its 

operating conditions may be restncted by the mechanical stability of the 

earner Certain nutnent concentrations in media can cause disruption or 
dissolution of carriers, for example, the presence of cation chelating agents, 

such as phosphate, can dissolve calcium alginate gel beads (Dainty et al ,

1986) Factors that have been reported to stabilise immobilisation earners 

include the use of alternative counterions like Ba2+ and Sr2+ in alginate 

gelation (Tanaka and Ine, 1988, Ogbonna et al , 1989), or media 

supplementation with calcium ions

Cell leakage from the immobilisation matrix is usually undesirable Wang et 

al (1982) reported that increased shaking speed/agitation or local fluid shear 

greatly increased the rate of cell leakage Uncontrolled growth o f 

immobilised cells, apart from decreasing product yields, may also result in a
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number of operational problems Fermenter plugging is often observed as a 

result of cell overgrowth The stability and integrity of the earner is also 

affected by the concentration of gaseous products within the matnx which 

may lead to the flotation and/or rupture of the beads This has been 

observed repeatedly in ethanol fermentations where carbon dioxide is one of 

the main products Other problems introduced by cell immobilisation 

include increased substrate limitations caused by diffusion resistances This 

is especially relevant in the case of oxygen, leading to many attempts to 

increase the oxygen supply to immobilised cells (Ghommidh et al , 1981, 

Adlercreutz and Mattaisson, 1982) Finally, as the product concentration 

increases with distance from the earner surface, the effects of product 

inhibition become more pronounced and may eventually lead to a decrease in 

reaction rate

Cell immobilisation, with its many advantages over free cell systems, can 

lead to many changes in the behaviour of immobilised microorganisms An 

immobilised cell system is a heterogeneous system as there are at least two 

phases, a solid gel matrix and a liquid culture medium Cell distnbution 

within the gel matrix is non uniform The cell population m terms o f 

morphology, age and metabolic activity, may vary depending on nutrient 

supply within the matrix The immobilisation matrix itself may affect cell 

metabolism, cell division or budding The greatest benefit is derived in 

systems where some, but not too much growth occurs This may occur 

when growth is limited by diffusional effects Even so, viable immobilised 

cell systems can achieve remarkably high cell densities There is clearly a 

balance to be reached between increased volumetric productivity, due to 

greater numbers of cells, and reduced specific productivities due to 
increasingly severe diffusional limitations
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1.6 IMMOBILISATION OF RECOMBINANT CELLS

1.6.1 Plasmid stability

High plasmid stability and biomass productivity are important factors for the 

development and commencal exploitation o f genetically engineered cells It 

can be shown mathematically that immobilisation may stabilise a plasmid 

bearing population (Bailey and Ollis, 1986) By immobilising the 

recombinant cells in a solid matrix, such as calcium alginate or k -  

carrageenan gel beads, growth of cells is usually retarded (De Taxis du Poet 

et al , 1987, Walls and Gainer, 1989) This slowing down of growth 

combined with the physical constraints of a solid matrix, restricts the

number of cell divisions, which in turn reduces the chances of a plasmid

containing cell losing its plasmid and hence its ability to produce the

recombinant protein of interest Immobilisation stabilises the plasmid and 

greatly improves productivity Inloes et al (1983), Mosbach et al (1983), 

De Taxis du Poet et al (1987), Nasn et al (1987a) investigating

immobilisation of whole living cells for recombinant protein production 

concluded that improved plasmid stability in immobilised cell systems cannot 

be explained by just a single factor In general, it is thought that higher 

plasmid stability is due, m part, to the absence of competition between P +  

and P- cells within the gel matrix, or the restriction on the number of cell 

divisions within the matrix It may also be due in part to increased PCN 

Furthermore, the microenvironment of immobilised cells may also play an 

important role in higher plasmid stabilities

Plasmid beanng E  coh were immobilised in K-carrageenan beads and 

cultivated in a chemostat (De Taxis du Poet et al , 1986) Plasmid 

inheritability profiles were different for free and immobilised cell systems 

The initial percentages of plasmid-containing cells were equal After 18 

generations, the percentages of P +  cells remaining were 21% and 65% 

respectively for free and immobilised cells Cells released from gel beads 

when grown in subsequent batch culture, did not maintain a better plasmid 

inheritability then that of free cells The mechanical properties o f the gel 

beads allows only a limited number of cell divisions (10 to 16) in each clone 

of cells before the clone escapes from the gel bead This number of 

generations is not sufficient for the cells to appear within the cavities or
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microcolonies In a free cell system P- segregants could only be detected 

after approximately 25 to 30 generations (Nasri et al , 1987a)

Nasn et al (1987a) extended this analysis to three genetically different E  

coh hosts, using the same plasmid as before, and again reported that, in the 

absence of selection pressure, the fraction of cells in the beads containing the 

plasmid was greater than in free cell cultures In free cell culture, all strains 

exhibited varying degrees of plasmid instability However, when 

immobilised, all three strains showed stable plasmid maintenance for the 

duration of the culture When P +  and P- cells were co-immobilised P- cells 

did not overun the culture, which illustrates the absence of competition 

between P- and P +  cells It also suggests that increased plasmid stability is 

not due to plasmid transfer between cells

Nasn et al (1987a, 1987b) suggested a mechanism for increased plasmid 

stability in immobilised recombinant E  coll cells The gel beads may be 

regarded as a reservoir of cells carrying the plasmid, with the slower 

growing cells in the core of the bead exhibiting a higher percentage of P +  

cells than the faster growing cells at the surface of the bead The 

recombinant cells grow in the outer layer for 10 to 16 generations, where 

they form microcolomes After prolonged incubation, the gels lose much of 

their mechanical rigidity and, consequently, a sequential cell leakage from 

the disrupted gel is observed This sequential cell leakage in turn exposes 

those cells in the inner sections of the gel to increased accessibility to 

oxygen and nutrients The lost recombinant cells are continuously being 

replenished by newer cells of higher plasmid stability The number of 

generations the cells undergo in a gel bead (10 to 16) is not sufficient for P- 

cells to segregate in large enough numbers and take over the culture In an 

attempt to relate this increased plasmid stability with PCN, it was 

hypothesised that as the microcolomes enlarge, growth of recombinant cells 

inside the microcolomes represents a period of gradually decreasing plasmid 

copy number up to a level at which instability becomes apparent It is 

thought that a gradient in both plasmid stability and PCN may exist 

throughout the gel beads

Walls and Gainer (1989, 1991) investigated the effects of immobilising a 

recombinant strain of S cerevisiae on the plasmid stability and specific 

productivity of secreted a-amylase The yeast cells were immobilised via
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gluteraldehyde to the gelatin beads and used in both fluidised and packed bed 

configurations Plasmid stability increased for the immobilised cells during 

continuous culture at dilution rates both above and below washout 

Continuous free cell suspension cultures were not stable and rapidly lost the 

plasmid Immobilisation resulted in increases in both specific and 

volumetric productivity during continuous culture, with a packed bed design 

resulting in the highest specific productivity

In a study of (1,3) (1,4) P-glucanase production by a recombinant yeast 

strain immobilised in calcium alginate gel, Cahill et al (1990) reported a 

20-fold increase in the enzyme productivity of a continuous immobilised cell 

bioreactor system compared with a free cell batch fermentation 

Immobilised plasmid stability was consistently higher than free cells The 

percentage of plasmid containing cells in the inner part of the beads, the 

outer part of the beads and those cells leaked from the matrix was measured 

It was concluded that the gel beads act as a pool of P +  cells, with the 

plasmid stability of cells in the bead core exceeding that of cells immobilised 

at the bead surface

1.6.2 Factors affecting plasmid retention, expression of cloned genes 

and biomass production

1.6 2.1 Inoculum size

Inoculum size or initial cell loading (ICL) influences the plasmid stability of 

immobilised cell cultures Berry et al (1988), investigating the effect of 

inoculum size on plasmid stability, selected different ICL in the range of 4 7 

x 103 to 2 1 x 1010 cells/ml-gel With a low ICL, the number of cells m the 

gel beads increased dramatically, with giant colonies observed near the gel 

surface and in the centre of the gel beads This illustrated that with a low 

ICL, oxygen and nutrient mass transfer limitations were minimised In 

contrast, very high ICL resulted in dense growth limited to the outer 50 to 

150 pm of the gel beads The cells of a high ICL undergo only 3 to 5 cell 

divisions to reach the same biomass which result after 26 generations from 

the low ICL Higher plasmid stability was obtained with high ICL because 

fewer cell divisions took place before the recombinant cells leaked from the
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gel matrix In contrast, cells of a low ICL undergo many more cell 

divisions, increasing the probability of plasmid loss and increasing 

competition between P- cells and PH- cells, resulting in a lower proportion 

of immobilised cells bearing the plasmid Berry et al (1988) reported that 

expressed gene product activity increased with increasing ICL, as a result of 

slightly higher biomass concentration High cell densities within gel beads 

have resulted in increased production of proinsulin (Bimbaum et al , 1988) 

Several studies have shown that the inoculum size does not however, affect 

the final biomass concentration in the matrix which is primarily controlled 

by the mechanical properties o f the matrix (Simon, 1989, Walsh, 1993)

1.6.2.2 Matrix effects

Few studies have been reported on the effect of using different matrices to 

immobilise recombinant cells As outlined in Section 1 5 1, the use of an 

appropriate matrix may aid in establishing a favourable microenvironment 

for immobilised cells, such as polar effects which may play a role in 

preventing product inhibition in ethanol production It was reported that 

ethanol shunned the very polar K-carrageenan gel beads thus leading to high 

production yields (Wada et al , 1981) Hydrophobic gels have been used in 

bioconversions involving poorly water-soluble substrates such as stenods 

(Fukui and Tanaka, 1982) Certain compounds present m the 

immobilisation matrix may contribute to a more favourable medium 

composition or, the reduced water activity or oxygen deficiency in many 

immobilisation matrices can alter the metabolic behaviour of immobilised 

cells (Mattiasson and Hahn-Haegerdal, 1982)

Among the agarose, alginate and polyacrylamide gels tested for 

immobilisation of recombinant E  coh cells for proinsulin production, 

agarose was reported to be the most effective, since it allowed rapid release 

of entrapped labelled insulin Alginate and polyacrylamide beads released 

only 15 to 20% of entrapped insulin (Mosbach et al , 1983) Bimbaum et 

al (1988) chose agarose to immobilise insulin producing cells due to its high 

porosity Agar, agarose, alginate, K-carrageenan, polyacrylamide gels have 

all been used to immobilise recombinant microrgamsms However, other 

matrices used for immobilisation of recombinant cells include silicone
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polymer, silicone foam, cotton cloth and Cyclodex 1 microcamers (for 

mammalian cell immobilisation) (Kumar and Schugerl, 1990)

Expressed gene product productivités have been shown to increase with 

increasing gel bead volume fraction (Berry et al , 1988, Bimbaum et al ,

1988) By maintaining a high gel bead volume in the bioreactor, volumetric 

productivities were increased due to the increased total biomass in the 

bioreactor However, plasmid stability was independent of gel bead volume 

(Bimbaum et al , 1988) Promsulin production was studied using different 

gel bead volumes In the case of beads prepared from low inoculum, the 

promsulin concentration was found to increase with increasing number of gel 

beads in the medium (Birnbaum et al , 1988) Higher volumetric 

productivities were observed with an increased microcarner concentration, 

for production of human immune interferon by recombinant mammalian 

cells Specific productivities remained constant for different microcarner 

concenetrations (Smiley et al , 1989)

Furui and Yamashita (1985) reported that diffusion coefficients of solutes in 

immobilised E  coh cells, decreased with increasing gel concentration 

Gosmann and Rehm (1986) reported that increasing alginate concentration 

led to a decrease in the specific oxygen uptake rate by immobilised cells 

The findings suggest that low gel concentrations minimise mass transfer 

limitations and maximise biomass production Berry et al (1988) studied 

the effects of K-carrageenan concentration on growth and plasmid stability of 

recombinant E  coh cells and reported a slight increase in biomass 

concentration with lower gel concentrations There was no significant 

difference in plasmid stability resulting from changes in gel concentration

1.6.2 3 Nutritional limitations

Although there are several reports on the effects of nutntional limitations on 

plasmid stability and cloned gene expression in free cell recombinant 

cultures (Coppella and Dhurjati, 1989, Turner et al , 1991), only a few 

studies have been reported on the effects of nutntional limitations of 

immobilised recombinant cells The effects of nutritional limitations on 

plasmid stability and cloned gene product activity in free and immobilised E  

coh cells were investigated by Sayadi et al (1989) Glucose, nitrogen,
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phosphate, and especially magnesium limitation affected the plasmid stability 

in immobilised cell systems In all limited medium conditions, 

concentrations of plasmid-free cells increased in both free and immobilised 

cell systems, but the effect was considerably reduced in the latter 

Phosphate and magnesium limited conditions influenced the plasmid stability 

significantly In the case of magnesium depleted culture the plasmid was 

shown to be relatively unstable and a decrease in viable cell number dunng 

immobilised continuous culture was observed In contrast to free cell 

systems, the cloned gene product activity increased in immobilised cells 

under all culture conditions It was suggested that the greater plasmid 

instability was due to the increased requirement of plasmid-containing cells 

for several nutnents, particularly magnesium, compared to plasmid-free 

cells

Sode et al (1988) investigated the effect of medium cycling on cloned gene 

expression in immobilised yeast cell culture S  cerevisiae cells were 

transformed with an a-peptide secreting vector and continuous production o f 

the a-peptide was performed using immobilised recombinant cells in a 

column reactor In an attempt to improve productivity, the feed to the 
column was alternated between minimal and complex medium This 

medium cycling method resulted in 1 4 times higher a-peptide being 

produced during a 150 hour penod compared with that achieved by feeding 

minimal medium

One of the few studies on nutritional requirements for immobilised yeast 

involved step changes in feed medium composition in a plug flow reactor 

employing immobilised Kluyveromyces fragilis cells, followed by a return 

to a basal medium (Chen et al , 1990) A defined medium containing a 

mixture of essential nutnents with an inorganic nitrogen source, maintained 

90% of the productivity in the reactor compared to the usual complex 

medium This defined medium was unable to promote growth of the 

immobilised cells during reactor startup Experiments on reduced 

ammonium sulphate concentration in minimal medium and reduced yeast 

extract and peptone concentrations in complex medium, indicated that stable 

productivity could be maintained for extended periods in the absence of any 

nutnents with the exception of a few salts Productivity rates decreased by 

35 to 65% as nitrogenous nutrients were eliminated and in the absence of 

limited nitrogenous nutrients, growth rates reduced by 75 to 95%
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Nutritional deficiencies can lead to a decoupling of growth and productivity 

of immobilised yeast (Chen et al , 1990) Parascandola et al (1993) studied 

the effects of medium composition on the production o f two yeast cell wall 

enzymes, invertase and acid phosphatase, in immobilised cells of S 

cerevisiae Rich and minimal media, various concentrations of carbon

source (raffinose or glucose) and mode of nutrient supply (batch or 

continuous systems) were all investigated The above two studies were 

performed with non-recombinant yeast systems, but illustrate nevertheless 

possible changes in nutrient requirements upon immobilisation Further 

evidence of the influences of medium composition on plasmid stability in 

free cell systems has been included in section 1 4 2

1.6.2.4 Incubation conditions

Sayadi et al (1987) studied the effect of temperature on plasmid stability At 

31°C plasmid pTG201 was stable, but as the temperature increased to 42°C, 

the stability decreased in both free and immobilised cell systems However, 

cells grown in the immobilised cell system showed higher plasmid stability 

during the temperature increase The production of cloned gene product 

increased with increasing temperature due to the presence of a temperature 

sensitive promoter system residing on the plasmid A two-stage continuous 

immobilised cell culture system was employed in order to separate the cell 

growth phase from production of cloned gene product In the first stage 

immobilised cells were grown in the repressed state at the lower 

temperature As the cells were immobilised, the plasmid stability was 

maintained high The leaked cells from the first stage were fed continuously 
into a second stage where the higher temperature derepressed the cells 

leading to higher productivity A very similar bioreactor system was 

developed by Berry et al (1990) using the same host and cloned gene 

product, catechol 2 ,3-dioxygenase Transcription of the gene was controlled 

by the trp promoter In the first stage o f a two-stage chemostat an 

immobilised culture was grown in the presence of tryptophan which acted as 

repressor A high plasmid stability was maintained The cells released from 

the gel beads were continuously transferred into the second stage reactor 

where expression was induced by 3 P-indolyl acrylic acid leading to efficient 

production of catechol 2,3-dioxygenase
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Proinsulin production was shown to be improved between 25 to 30 °C with 

an optium pH of 7 0 The stability of the plasmid m this optimal range was 

not reported (Birnbaum et al , 1988)

1.6.2.5 Aeration and agitation

By supplying pure oxygen to an immobilised cell reactor, Mann Imesta et 

al (1988) reported that the immobilised cells maintained a higher plasmid 

stability The recombinant cells were shown to grow faster in air than in 

pure oxygen However, final biomass concentrations were higher from 

immobilised cells grown in pure oxygen Furthermore, beads cultured in 

pure oxygen contained larger microcolomes in the centre The PCN and 

proportion of plasmid containing cells were maintained with little change for 

more than 200 generations under pure oxygen supply Huang et al (1989) 

undertook similar studies and showed that increased plasmid stability with 

pure oxygen was the result of lower growth rates and decreased expression 

of cloned gene product In a further study by Huang et al (1990), the effect 

of agitation on plasmid stability, biomass production and cloned gene 

product activity was investigated The growth rate of immobilised cells was 

independent of agitation in complex medium and increased with increasing 

agitation in minimal medium This is probably due to increased external 

transport of oxygen and nutnents It was suggested that the growth rate of 

immobilised cells attained a maximum in complex medium due to nutnent 

effects which are possibly more important

Agitation rate could not exert any effect on immobilised cell growth rate 
even if external diffusion of nutnents was improved with higher agitation 

Increased agitation caused increases in shear stress at the bead surface, in 

which cells residing on the outer layer of the beads leaked more rapidly into 

the medium Plasmid stability decreased with increasing agitation rate both 

for free and immobilised cells in minimal medium, but varying the agitation 

rate did not appear to influence the plasmid stability of immobilised cells in 

complex medium This was explained by the fact that the rate of plasmid 

loss was constant, owing to a constant growth rate of cells in complex 

medium In conclusion, mild agitation is favourable for the maintenance of 

plasmid stability and higher immobilised biomass concentration and hence 

higher productivities
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1.6.3 Heterologous protein production

Expression of cloned gene product by immobilised recombinant cells has 

been employed for an increasing number of hosts and vector systems 

Increased catechol 2,3-dioxygenase resulted after fermentations 

incorporating both immobilised and free E  coh in a two-stage chemostat 

(Berry et al , 1990) A relatively high production rate o f P-lactamase was 

maintained successfully for more than three weeks in a hollow fibre 

membrane bioreactor under continuous operation (Inloes et al , 1983) 

Recombinant E  coh cells were immobilised in silicone foam for the 

production of the thermostable amylase and a five-fold increase in enzyme 

levels was achieved in a semi-continuous culture compared to free cell 

cultures (Oriel, 1988) Higher concentrations of human proinsuhn could be 

produced with immobilisation of cells at higher cell concentrations 

(Birnbaum et al , 1988) Long term stability of a continuous immobilised S 

cerevisiae bioreactor system was reported by Karkare et al (1986) in which 

a-human chorionic gonadotropin was produced
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CHAPTER TWO 

MATERIALS AND METHODS
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2.1 ORGANISM

A Saccharomyces cerevisiae haploid strain DBY746 (a-his3 - A1 leu 2-3 leu 

2-112 ura 3-52 trp l-289a ) was utilised in all experiments For 

convenience, the organism will be referred to simply as pJG317 or DBY746 

(pJG317) throughout this work

2.2 PLASM IDS

Plasmid pJG317 is a derivative of pAAH5 (Ammerer, 1983)and encodes the 

endo P-(l,3) (l,4)-glucanase gene from Bacillus subtihs under the control of 

the yeast ADH1 promoter

Plasmid pRB149 which was a gift from Dr David Botstein, Department of 

Biology, Massachusetts Institute of Technology, Cambridge, 

Massachusettes, USA, and consists of the 3 8kb yeast chromosomal P-actin 

gene (Ng and Abelson, 1980) cloned into the yeast integrating vector YIp5

2.3 BU FFER S AND SOLUTIONS

2.3.1 DNS (3.5 - Dinitrosalicvlic acid) (for measuring p-glucanase 

activity and glucose concentration)

3,5 - Dimtrosalicylic acid 
Potassium Sodium tartrate 

Sodium hydroxide

10g/l 

300 g/1

16 g/1
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2.3.2 PBS (Phosphate buffered saline) (Dialysing buffer for p-glucanase 

assay)

KH2P 0 4 1 09 g/1

Na2H P04 1 705 g 1

NaCl 9 0 g/1

2.3.3  Solutions for the isolation of total genomic DNA from veast

SPM Sorbitol 0 9M

Sodium phosphate buffer (pH7 5) 0 05M

2-mercaptoethanol (freshly added) 0 14M

TE buffer Tris Cl lOmM

Na2-EDTA ImM

pH 8 0

Lyticase Lyticase enzyme (Sigma) was dissolved m 0 05M

potassium phosphate buffer (pH 7 5) to a final 

concentration of 8,000 U/ml

RNase (DNase free) 10 mg/ml RNase A (Sigma) was dissolved m

lOmM Tns Cl (pH7 5), 15mM NaCl, heated to 

100°C for 15 minutes, allowed to cool slowly to 

room temperature and stored at -20 °C

Phenol/chloroform mix 100 g phenol was dissolved in 100 ml chloroform

with 4 0 ml isoamylalcohol and 0 8 g 8- 

hydroxyquinolone The phenol mix was stored 

under lOOmM Tns Cl (pH7 5) at 4°C in the dark
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2.3.4 Solutions for maxi-preps of plasmid DNA (large-scale isolation of 

plasmid DNA from E  coh)

Triton mix 20% Triton X-100 5 0 ml

0 25M EDTA 12 5 ml

1 0M Tns Cl (pH8 0) 2 5 ml

H20  to 50 ml

2.3.5 Solutions for mini-preps of plasmid DNA (small-scale isolation of 

plasmid DNA from E  coh)

Solution 1 0 5M Glucose

0 1M EDTA

1 0M Tris Cl (pH8 0) 

H20

1 0 ml 

1 0 ml 

0 25 ml 

7 75 ml

Solution 2 (Made freshly every month and stored at room 

temperature)

1 N NaOH 

SDS

H20

2 0 ml 

1 0 ml 

7 0 ml

Solution 3 (3M Potassium acetate, pH 4 8) To 60 ml of 5M 

potassium acetate, 11 5 ml of glacial acetic acid 

and 2 85 ml of H20 were added

2.3 .6  Buffers for DNA manipulations

Restriction buffers Buffers were supplied by BRL and were used

according to the manufacturer's instructions
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Ligation buffer (10x) Tns Cl (pH7 6) 200mM

MgCl2 lOOmM

ATP lOmM

DTT lOOmM

DTT was stored as a 500mM stock at -20°C and 

added separately to ligation reactions

STE buffer Tns Cl (pH 8 0) lOmM

NaCl lOOmM

EDTA lOmM

2.3.7 Buffers for agarose gel electrophoresis

50 X TAE Tris 2 OM

Glacial acetic acid 242 g

0 5M EDTA 100 ml

pH 8 0

5x Bromophenol blue Bromophenol blue 0 25%(w/v)

Ficoll (type 400) 25 %

2.3.8 Solutions for isolation of DNA from agarose

Sodium iodide solution 90 8 g Nal was dissolved in 100 ml H20 The
solution was filtered through Whatman no 1 filter 

paper, 15 g of Na2S 0 4 was added and the solution 

stored at 4°C in the dark

Ethanol wash solution Ethanol 50%

NaCl lOOmM

Tris HC1 (pH7 5) lOOmM

EDTA ImM

This solution was stored at -20°C
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2.3.9 Solutions for Southern hybridisation

Depurination solution HC1 0 25M

Denaturing solution NaCl 87 66 g/1

NaOH 20 g/1

Neutralising solution NaCl 87 66 g/1

lM T n s Cl (pH 8 0) 500 ml

Transfer buffer (20x  SSC) NaCl 175 83 g/1

Tnsodium citrate 88 2 g/1

pH 7 0

Denhardt's solution Ficoll 10 g/1

Polyvinylpyrrolidone 10 g/1

BSA (Fraction V) 10 g/1

Prehybridisation solution 6x SSC

5x Denhardt's solution 

0 5% SDS

100 ¡igimX denatured salmon sperm DNA

Hybridisation solution as for prehybridisation solution except it contains

in addition EDTA (0 1M) and the 32P-labelled 

DNA

2.3.10  Solutions for Dig-DNA (non-radioactive) hybridisation

Hybridisation solution 5x SSC

Blocking reagent 1 0%

N-lauroylsarcosine, Na-salt 0 1 %

SDS 0 02%
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Buffer 1 (Maleate buffer) Maleic acid 0 1M

NaCl 0 15M

pH 7 5

Buffer 2 (Blocking solution) 1 % solution o f blocking reagent dissolved in

Buffer 1

Buffer 3 Tris Cl 0 1M

NaCl 0 1M

MgCl2 0 05M

pH 9 5

Colour Solution NBT solution 45 fil

X-phosphate solution 35 ¿tl

Buffer 3 10 ml

2.4 MEDIA

All media was sterilised by autoclaving at 121°C (15 psi) for 15 minutes

2.4.1 Bacteriological

Luna Bertani (LB) medium contains the following components per litre

Tryptone (Oxoid) 10 0 g

NaCl 10 0 g
Yeast extract 5 0 g
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2.4.2 Selective

Selective medium (minimal medium) contained the following components

Both glucose and uracil were added separately to media after autoclaving 

from sterilised stock solutions of 40% (w/v) and 0 25% (w/v) respectively 

20 Og/1 Oxoid bacteriological agar no 1 was added to the above for solid 

medium preparation

2.4.3 Non-selective

Non-selective medium yeast-extract-peptone-dextrose(YEPD) contained the 

following components

Yeast extract (Oxoid) 10 0 g/1

Bacteriological peptone (Oxoid) 20 0 g/1

Glucose 20 0 g/1

When this medium was used for immobilised cell growth it was 

supplemented with 0 015% CaCl2 to help maintain the structural integnty of 
the beads In both yeast extract and peptone, there are significant amounts 

of phosphates which may disrupt the gel 20 0 g/1 Oxoid technical agar no 

3 was added to the above for solid medium preparation

Yeast nitrogen base (without amino acids)

Glucose

Uracil

Succinic acid 

Sodium hydroxide

6 7 g/1 

20 0g/l 

20 0 mg/1 

10 0mg/l

6 0 g/1
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2.4.4 Salts

All salts media were supplemented with amino acids, as required

Amino Acid Supplement Final concentration

Histidine 1 ml/1 of 2 0% soln 20 mg/1

Trypophan 5 ml/lof 0 4% soln 20 mg/1

Leucine 2 ml/1 of 1 5% soln 30 mg/1

Uracil 8 ml/1 of 0 25 % soln 20 mg/1

All media were adjusted to pH 5 0 Succinic acid (10 mg/1) sodium 

hydroxide (6 g/1) buffering system was used

Salts A Basal salts medium (Meth Microbiol , Vol 4)

generally used for carbohydrate or nitrogen 

assimilation studies

Glucose 20 0 g/1

Yeast extract 1 0 g/1

KH2P 0 4 1 0 g/1

M gS04 7H20  0 5 g/1

(NH4)2S 0 4 5 0 g/1

Salts B Davis's yeast salt medium (Meth Microbiol , Vol

4)

Glucose 20 Og /1
Yeast extract 1 0 g/1

KH2P 0 4 2 0 g/1

NaCl 2 0 g/1

(NH4)2S 0 4 1 0 g/1

(NH4)2N 0 3 1 0 g/1

NA2H P04 4 0 g/1
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Salts C Non-nutritious salt medium (Chen et al , 1990)

Glucose 20 0 g/1

M gS04 7H20 0 5 g/1

KH2P 0 4 1 36 g/1

2,4.5  Yeast Extract optimisation

This medium is a modification o f YEPD (Section 2 4 2), where the peptone 

has been replaced by an inorganic nitrogen source (NH4)2S 0 4 All media 

were adjusted to pH5 0 and contained the succinic acid sodium hydroxide 

buffering system The media were also supplemented with histidine (20 

mg/1), tryptophan (20 mg/1), leucine (30mg/l) and uracil (20mg/l)

All media contained Glucose 20 0 g/1

(NH4)2S 0 4 1 0 g/1

Media no 1 contained 0 g/1 Yeast extract 

Media no 2 contained 0 5 g/1 Yeast extract

Media no 3 contained 1 0 g/1 Yeast extract

Media no 4 contained 3 0 g/1 Yeast extract

Media no 5 contained 6 0 g/1 Yeast extract

2.4 6 Phosphate optimisation

This medium is a modification of the Basal Salts medium (Section 2 4 4 ) 

with varying concentrations of KH2P 0 4 As with previous optimisation 

media, it was supplemented with the amino acids tryptophan, leucine, uracil 

and histidine, and incorporated the succinic acid sodium hydroxide 

buffering system The media were adjusted to pH 5 0
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All media contained Glucose 20 0 g/1
Yeast extract 1 o g/1
(NH4)2S04 5 0 g/1
MgS04 7H20 0 5 g/1

Media no 1 contained 0 g/1 KH2P04 
Media no 2 contained 1 0 g/1 KH2P04 
Media no 3 contained 2 5 g/l KH2P04 
Media no 4 contained 5 0 g/1 KH2P04 
Media no 5 contained 10 0 g/1 KH2P04

2.4.7  Nitrogen optimisation

As with previous optimisation media, these media was supplemented with 
histidine, tryptophan, uracil and leucine, adjusted to pH 5 0 and 
incorporated the succinic acid sodium hydroxide buffering system

f
All media contained Glucose 20 0 g/1

Yeast Nitrogen base 1 7 g/1
(without amino acids and ammonium sulphate)

Media no 1 contained 0 g/L (NH4)2S04 
Media no 2 contained 2 5 g/L (NH4)2S04 
Media no 3 contained 5 0 g/L (NH4)2S04 
Media no 4 contained 10 0 g/L (NH4)2S04 
Media no 5 contained 15 0 g/L (NH4)2S04

2.5 CULTIVATION CONDITIONS

The organism was maintained on selective medium agar plates grown for 72 
hours at 30°C and then stored for one month at 4°C before transferring to 
fresh selective medium
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2.5.1 Inoculum preparation

The yeast strain was inoculated from an agar plate into a 500 ml 
Erylenmeyer flask containing 200 ml selective medium This "seed" culture 
was incubated at 30 °C on an orbital shaker at 150 rpm for 24 to 48 hours 
Cell counts and/or Optical Density (OD600) were measured and the required 
volume added to either flasks of media for free cell culture or a given 
quantity of sodium alginate for immobilisation

In the case of immobilised cell fermentations where high cell loads were 
required, the seed culture was centrifuged and the pellet resuspended in 10 
ml of 0 01% peptone water and the cell concentration measured The 
required volume of concentrated cell suspension was then added to sodium 
alginate for immobilisation

2.5.2  Cell immobilisation

Cells were immobilised in 3% calcium or strontium alginate gel A solution 
of sodium alginate from Laminaria Hyperborea (71% guluromc acid and 
29% Manuromc acid - Lennox Chemicals, Dublin, Ireland) was prepared at 
a concentration of 3 0 g per 70 ml The solution was boiled to help 
dissolution, and autoclaved at 121°C for 15 minutes When cooled, a 
calculated amount of inoculum yeast suspension was added to the alginate 
solution to yield the desired initial cell loading (ICL) and the volume was 
adjusted to 100 ml using sterile distilled water

The suspension was mixed well and pumped through stenle silicone tubing 
(outside diameter 4 mm) The desired alginate volume/weight was expelled 
dropwise from a height of approximately 20 cm into stenle 0 2M CaCl2 or 
0 1M SrCl2 Beads of 5 mm diameter were formed and allowed to harden 
for 2 hours in this solution at room temperature The beads were then 
washed in sterile 0 01% peptone water and inoculated into growth media 
All preparation work was carried out in a laminar flow cabinet
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Shake flask cultures were performed in either (a) 200 ml of medium in 500 
ml Erylenmeyer flasks or (b) 400 ml of medium in 1 litre Erylenmeyer 
flasks The flasks were incubated at 30°C, on an orbital shaker at 150 rpm

2.5.3 Shake flask cultivation

2.5.4  Batch fermentation

Batch fermentations were perfomed m a 2 Litre bioreactor (Life Sciences 
Laboratories Ltd , Luton, England) Operating parameters were as follows,

Temperature 30°C
pH (controlled at) 5 0
Agitation 400 rpm
Aeration 1 0 v/v/min
Liquid volume 1 3 1
pH controlled with 1M H2S04 / 2M NaOH

Silicone anti-foam (7000 K) was added to medium at a rate of 0 1 ml per 
litre prior to autoclaving The fermentation vessel and medium were 
autoclaved at 121°C for 30 minutes Air supplied to the bioreactor was 
filtered through two 0 45/*m Sartonus PTFE air filters Temperature was 
monitored using a resistance thermometer and controlled to 0 1°C using a 
water jacket Using a pH controller with an Ingold stenhsable pH probe, 
the pH was controlled to 0 02 pH units The bioreactor was agitated by two 
sets of four-blade turbine impellers of diameter 45 mm and spaced 55 mm 
apart The vessel contained two 120 mm x 20 mm baffles The vessel 
diameter was 160mm

Some batch fermentations were performed in a 16 litre Microgen fermenter 
(New Brunswick Scientific Co Inc , Edison, N J , USA) using YEPD 
medium Operating parameters were as follows

Temperature 30°C
Agitation 600 rpm
Aeration 1 0 v/v/min

63



Liquid volume 10 01

Silicone antifoam (7000 K) was added to the medium at a dosage rate of 
0 lml per litre prior to autoclaving The fermentation vessel and medium 
were sterilised in situ at 121°C for 30 minutes Temperature was monitored 
using a resistance thermometer and controlled to within 0 1 °C The vessel 
of diameter 220 mm was agitated by three sets of six-blade turbine impellers 
of diameter 720 mm and spaced 100 mm apart The vessel contained four 
450mm x 22 mm baffles

2.5.5 Serial batch cultivation (free cells)

A flask of YEPD medium (pre-shaken at 30°C) was inoculated to give a cell 
concentration of 104 cells/ml and incubated at 30°C and 150 rpm for 24 
hours From this a fresh pre-warmed, pre-aerated flask was inoculated to 
yield an initial cell concentration of 104cells/ml This flask was then 
incubated as above for 24 hours and so on Samples were taken at the end 
of each batch for enzyme activity, cell number, plasmid stability and PCN 
measurement

2.5.6 Repeated batch cultivation (Immobilised cells)

Immobilised cell gel beads were prepared and inoculated to a fresh flask of 
pre-warmed, pre-aerated medium which was either YEPD medium or m 
cases of pre-incubation, selective medium The beads were incubated for 24 
hours at 30°C and 120 rpm after which the medium was decanted The 
beads were then washed twice in sterile 0 01% peptone-water, and 
transferred to a flask containing fresh YEPD medium The number and 
types of media changes (e g salts media, low nitrogen media or high 
phosphate media instead of YEPD media) depended on the particular 
experiment The ratio of immobilised cells to medium volume and vessel 
volume also varied between the different experiments Samples of beads 
and medium were taken at the end of each batch for enzyme activity, cell 
concentration, plasmid stability and PCN
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2.5.7 Continuous fermentation

Continuous fermentations were carried out in a 1 litre glass bioreactor with a 
working volume of 0 5 litre YEPD medium was used in all cases, and 
silicone anti-foam (7000k) was added to medium reservoirs at a dosage of 
0 1 ml per litre prior to autoclaving The fermentation vessel (and 
medium), tubing, air filters, inlet and outlet connections, 8 litres of medium 
(contained in a 10 litre medium-reservoir vessel) were autoclaved at 121°C 
for 30 minutes Air supplied to the bioreactor at a rate of 2 v/v/min, was 
filtered through two 0 45/xm Sartonus PTFE air filters The pH of the 
medium was set at pH5 0 prior to autoclaving and was found not to fluctuate 
to any great extent during the course of the fermentation The medium in 
the bioreactor was agitated by a magnetic stirrer and the air was introduced 
via a ring sparger The chemostat apparatus (including medium reservoirs) 
was incubated in a 30°C warm room Dilution rates are specified for each 
individual experiment The bioreactor was inoculated from a seed culture at 
a high cell density The cells were grown in batch mode for 16 to 20 hours 
until the desired cell concentration was reached The high initial cell density 
minimised the number of generations (and hence the fraction of P- cells) 
before stationary-phase was reached The fermentation was then switched to 
continuous mode Depending on the required dilution rate, the medium was 
supplied to the bioreactor by means of a Watson Marlow peri static pump 
adjusted to give the desired flow rate The exit line was set at a level which 
ensured that a constant volume of 500 ml was maintained in the bioreactor 
and passed through a second Watson Marlow pump set at maximum flow 
rate Thus the flow rate was set by the feed pump while the exit pump acted 
to maintain the fermenter volume The flow rate was periodically checked 
by measuring the flow to the spent medium reservoir Samples were taken 
throughout the fermentation and analysed for enzyme activity, cell number, 
plasmid stability and PCN measurement
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2.6 SAMPLING AND MEASUREMENT OF FERMENTATION 
PARAMETERS

2.6.1 Bead dissolution

2.6.1.1 Total dissolution

Three to five immobilised cell beads were weighed accurately before 
dissolving them in 10 to 15 ml of 10% sodium citrate solution at 30°C by 
shaking on an orbital shaker for 2 hours

2 6.1.2 Multistep dissolution (Boross et al , 1990, Walsh et al ,
1993)

This technique was used to progressively dissolve successive layers from the 
surface of calcium alginate gel beads 20 beads were placed on Whatman 
no 1 filter paper, to remove any surface liquid and then weighed on an 
analytical balance The average diameter of a single gel bead could then be 
calculated The 20 beads were placed in 10 ml of dissolving solution (1 - 
10% sodium citrate) and placed on a magnetic stirrer for 5 minutes at room 
temperature The gel beads were removed, dried on filter paper and 
weighed again, yielding a new average bead diameter The fraction of 
dissolving solution contained those cells which had been removed from the 
outer layer of the alginate beads The beads were placed in a fresh 10 ml 
fraction of dissolving solution and the process repeated In this way 
successive layers of alginate were dissolved and the cells present in those 
layers could be counted and assayed for plasmid stability and PCN In order 
to remove very thin layers of alginate, the dissolution time or concentration 
of sodium citrate was reduced When required, the procedure was scaled up 
(60 beads in 30 ml fractions of dissolving solution) so that sufficient cells 
could be harvested from the inner sections of the alginate beads, where cell 
numbers were about one tenth that of the outer sections
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2.6.2 Cell enumeration

2.6.2.1 Free cells

Total cell counts were performed using a Neubauer haemocytometer All 
counts were performed in duplicate Standard curves of cell number versus 
OD600 were constructed for cells in YEPD and selective medium Dunng 
the course of a fermentation in either of these media, the cell number could 
be obtained from the samples OD600

2 .6.2.2 Immobilised cells

To calculate total cell numbers per bead or per g alginate, total dissolutions 
were performed on the beads as in Section 2 6 11 The OD600 was 
measured and from a standard curve of yeast cell number in sodium citrate 
versus OD600 the cell number was calculated To calculate cell number per 
section of bead, multistep dissolutions were performed on the beads, as 
described in Section 2 6 12 The OD600 was measured and using the cell 
number versus OD600 standard curve the number of cells per section of bead 
could be calculated

2.6 3 Cell viability

Cell viability was measured using surface colony counts by the spread plate 
method Samples were serially diluted on 0 01% peptone Aliquots of 0 1 
ml were dispersed evenly over the surface of YEPD agar plates using a 
sterile glass spreader Duplicate spread plates were made and the particular 
dilutions used were chosen so as to ensure that approximately 10, 100 and 
1000 colonies per plate grew on incubation at 30°C for 48 hours Viability 
was expressed (on a percentage basis) as the number of viable cells divided 
by the total cell number (measured as outlined in Section 2 6 2 above)
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2.6 4 Glucose analysis

Glucose analysis was performed on all samples using the dimtrosalicyhc acid 
(DNS) method of Miller (1959) Analysis was performed on suitably 
diluted samples of cell-free medium

2.6.5  B-Glucanase activity assay

The procedure used was that developed by Cahill (1990) This assay 
measures the reducing sugar levels released from p-glucan by the enzyme 
per unit time Since the levels of reducing sugars in fermentation media are 
initially high and thereafter vary with time, it is necessary to remove this 
background sugar Dialysis removes the sugars effectively without loss of 
enzyme Dialysis tubing with a molecular weight cut-off of 10,000 was 
boiled in lOmM EDTA for ten minutes to regulate the pore size After 
washing in distilled water, 5 ml samples were placed in the tubing and 
sealed with dialysis tubing clips To ensure minimal volume increase dunng 
dialysis, the samples were pressurised into the smallest amount of tubing

Samples were dialysed overnight at 4°C, against phosphate buffered saline 
(PBS) with three changes of buffer at least three hours apart The enzyme 
substrate was freshly prepared before each assay A solution of 1% P- 
glucan was prepared in 0 1M phosphate buffer (pH 7 0) by boiling Upon 
cooling 1 ml quantities were ahquoted into the reaction test tubes using a 
Gilson P-1000 micro-pipette, for accurate dispensing without solution 
droplets adhering to the dispenser The tubes were allowed to attemperate 
for 10 minutes at 50°C in a waterbath The reaction was initiated by adding 
enzyme and allowed to proceed for precisely 10 minutes Samples were 
quenched with 2 ml DNS

Sample blanks consisted of 1 ml of 1 % P-glucan, 2 ml of DNS reagent and 
finally 1 ml of sample added and incubated for 10 minutes at 50°C As the 
presence of the DNS reagent inhibited enzyme action, the blanks were a 
measure of the residual sugar in the samples after dialysis
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After incubation, the samples were boiled for 10 minutes, cooled rapidly in 
a tap water bath and after addition of 10 ml of distilled water to each tube 
and mixing, the absorbance on a PYE unicam UV/VIS spectrophotometer at 
540nm was measured Subtracting the blank values from the sample values, 
the concentration of glucose equivalents released from the p-glucan substrate 
solution could be calculated using glucose as the standard Units of P- 
glucanase activity are expressed as /xg of glucose equivalents, released per 
minute per ml of sample

2.6.6 Plasmid stability measurement

2.6.6.1 Free cells

Samples were suitably diluted and spread plated so as to ensure that 10, 100 
and 1000 colonies grew on duplicate sets of YEPD agar plates After 
incubation at 30°C for 48 hours, 200 colonies were randomly replica plated 
onto selective media and onto YEPD agar plates Colonies that did not 
grow on the selective medium but did grow on YEPD were counted as 
plasmid-free cells, whereas colonies that grew on both were counted as 
plasmid-containing cells

2.6.6.2 Immobilised cells

Plasmid stability of cells immobilised throughout the alginate gel beads was 
measured by performing total dissolutions on the beads using 2% sodium 
citrate (see Section 2 6 11) After suitable dilution the samples were spread 
plated onto YEPD plates and treated similarly to the free cell samples 
(Section 2 6 6 1) Plasmid stability of cells immobilised in different regions 
of the gel beads were measured by performing multistep dissolutions on the 
beads using 2% sodium citrate (see Section 2 6 12) Suitable dilutions were 
made and samples were spread on YEPD plates The samples were then 
treated similarly to free cell samples (Section 2 6 6 1)
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2.7 RECOMBINANT DNA TECHNIQUES

2.7.1 Transformation of E Coh

Prepartion of competent cells

A flask containing 100 ml LB medium was inoculated with 1 0 ml of an 
overnight culture of JA221 and incubated at 37°C until OD600 of 0 3 to 0 4 
was reached The culture was chilled on ice for 30 minutes before 10 ml 
was harvested by centrifugation at 10,000 rpm for 10 minutes at 4°C The 
cells were washed in 5 ml ice-cold 50mM MgCl2 and resuspended in 5 ml of 
ice-cold 50mM CaCl2 After 30 minutes on ice, the cells were centrifuged 
as before and resuspended in 1 ml of 50mM CaCl2

Transformation of competent cells

Plasmid DNA (up to 250ng) was added to 200/xl aliquots of competent cells 
in an Eppendorf tube and incubated on ice for 1 hour The transformation 
mix was heat shocked by incubating at 42°C for exactly 2 minutes and 
returned to ice immediately A 0 8 ml quantity of LB medium was added 
and the samples incubated at 37°C for 1 hour to allow expression of the 
plasmid encoded antibiotic resistant marker gene Cells were plated on LB 
agar containing the appropriate selective antibiotic and incubated overnight 
at 37°C

2.7 2 Isolation of plasmid DNA from E Coh

2.7.2.1 Small scale (Birnboim and Doly 1979)

Cells were grown overnight at 37°C in LB medium incorporating the 
appropriate antibiotic Samples of 1 5 ml were pelleted by centrifugation 
and the supernatent discarded The pellet was resuspended in lOÔtl of 
Solution 1 and left on ice for 5 minutes Solution 2 (200/xl) was then added 
and mixed by inversion Again the sample was left on ice for 10 minutes
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150/il of Solution 3 was added, mixed by inversion and the sample left on 
ice for 5 minutes After centrifugation at 10,000 rpm for 5 minutes in order 
to pellet chromosomal DNA, 400/xl of supematent containing plasmid DNA 
was removed to a fresh tube An equal volume of phenol/chloroform was 
added and vortexed After centrifugation the aqueous layer was removed to 
a new tube and 0 8 ml of ice cold ethanol was added The sample was 
allowed to stand at room temperature for 10 minutes before the DNA was 
pelleted by centrifugation at 10,000 rpm for 10 minutes The pellet was 
washed twice in 70% ethanol dried under vacuum, and resuspended in 30- 
50/xl TE buffer containing 5fi\ RNase

2.7.2.2 Large scale

Cells from a late log phase culture (250 ml) were harvested by centrifugation 
and resuspended in sucrose (25% in 50mM Tns Cl, pH8 0) to a volume of 
2 ml The cell suspension was transferred to a screw cap polycarbonate 
50iTi tube (Beckman) and 0 4 ml of lysozyme (20 mg/ml in 0 25M Tns Cl, 
pH8 0) was added Upon incubation on ice for 5 minutes, 0 8 ml of 0 25M 
EDTA was added, the cells mixed and incubated on ice for a further 10 
minutes A 3 2 ml quantity of Triton lysis mix (Section 2 3) was added, 
mixed and left on ice for 15 minutes When cell lysis was evident (indicated 
by an increase m viscosity of the mixture) the sample was centrifuged at 
40,000 rpm for 40 minutes at 4°C Exactly 6 9 g of caesium chloride was 
dissolved in the cleared lysate This solution was transferred to a Quick Seal 
polyallomer ultracentnfuge tube (Beckman) and 0 18 ml of an ethidium 
bromide solution (10 mg/ml) was added The total solution weight was 
adjusted to 14 1 g with lOmM EDTA, pH8 0 The tube was filled with 
mineral oil, heat sealed and centrifuged at 50,000 rpm for 24 hours at 18°C 
to form a density gradient The plasmid band, which had separated from the 
chromosomal band was visualised by ultra violet transillumination and 
extracted from the tube using a sterile 18 gauge needle and 1 ml synnge 
Ethidium bromide was removed from the sample by extracting with 
isopropanol saturated with 20xSSC The DNA was dialysed against TE 
buffer (pH8 0) for at least 12 hours, with 3 changes of buffer to remove the 
caesium chloride
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2.7.3 Isolation of total PNA from S. cerevisiae

This procedure is a modification of that of Cryer et al. (1975).

2.7.3.1 Free cells

A total of lxlO9 cells were harvested by centrifugation. The pellet was 
washed once with 10 ml distilled water and once with 2 ml SPM (Section 
2.3). The cells were resuspended in 0.5 ml SPM. A 20 /xl sample was 
taken and diluted in 5 ml distilled water and the OD600 measured. This 
value represented time zero OD value for evaluation of protoplasting 
efficiency. 100 /xl of Lyticase enzyme was added and mixed. The sample 
was incubated at 30°C for 1-2 hours, or until a reduction of OD600 to 10- 
30% of the original OD600, when a 20 /xl sample was diluted in 5 ml distilled 
water. 100 /xl Proteinase K, 50 /x 1 of ImM EDTA : 0.25M sodium 
phosphate (pH8.0) and 70 /xl of 25% (w/v) SDS were added to the yeast 
spheroplasts. This lysis mixture was incubated for 30 minutes at 37°C. On 
completion of incubation, 500 /¿I of phenol/chloroform was added and mixed 
by inversion. The sample was left on ice for 10 minutes, before 
centrifugation at 12,000 rpm for 5 minutes. The upper aqueous phase was 
carefully removed using a wide bore pipette (cut-off tip of 1 ml blue Gilson 
Tip) to a fresh tube. The lower phase (including the interphase) was back 
extracted with 200 /xl of TE buffer, centrifuged as before and the supematent 
pooled with the aqueous phase of the previous extraction. Two further 
phenol/chloroform extractions were perfomed as above except with no back 
extraction of the interphase to ensure complete deproteinisation and 
extraction of lipids. The aqueous phase was extracted once with 700 /xl 
chloroform at room temperature. 1 ml of ethanol (-20°C) was added and the 
sample mixed by inversion and incubated at -20°C for at least 2 hours. The 
total DNA was pelleted by centrifugation at 12,000 rpm for 10 minutes. 
The DNA pellet was dried at 50°C washed twice with 70% ethanol and 
carefully dissolved overnight in 300 /xl TE buffer. 15/xl of RNase was added 
to the dissolved DNA, and incubated for 30 minutes at 37°C. The DNA 
solution was again deproteinised, precipitated with ethanol and washed in 
70% ethanol as before. Finally, the DNA pellet was carefully dissolved in 
100 /xl TE buffer.
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2.7.3.2 Immobilised cells

Depending on whether DNA was to be isolated from cells from whole 
alginate beads or cells located in different regions of the bead, total 
dissolutions (Section 2 6 1 1) or multistep dissolutions (Section 2 6 1 2 )  
were earned out respectively A total of lxlO9 cells were harvested by 
centrifugation and washed three times in 20 ml distilled water The washed 
cells were treated as in Section 2 7 3 1 above

2.7.4 GENERAL DNA MANIPULATIONS

2.7.4.1 Restriction digestions

Restriction buffers were supplied by the manufacturers and used under the 
recommended conditions For restriction of 15-20 ¡x\ of total yeast DNA, 2 
jul of restnction enzyme (Sal I) and 2 5 /¿I of the appropnate buffer were 
added The solution volume was then adjusted to 25 /¿I with stenle distilled 
water After 2 hours incubation at 37°C a further 1 fi\ of restnction enzyme 
was added and the mixture incubated overnight at 37°C

2.7.4 2 Ethanol precipitations

Precipitation of DNA was achieved by the addition of l/10th the volume of 
3M sodium acetate and 2 volumes of ethanol After incubation at -20°C for 
at least 1 hour, the DNA was recovered by centnfugation at 10,000 rpm for 
20 minutes, the pellet washed once with 70% ethanol, dned under vacuum 
and dissolved in TE buffer

2.7.4.3 Dephosphorylation of DNA

1 unit of calf intestinal phosphatase (CIP) was added at the end of a 
restriction digest and the sample incubated at 37°C for 20 minutes The 
reaction was stopped by heating to 65°C for 5 minutes after the addition of
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l/10th volume 10x STE, lOmM EDTA and l/20th volume 10% SDS, 
(added to denature the enzyme) The DNA was extracted with 
phenol/chloroform and ethanol precipitated

2,7.4.4  Ligation

Ligations were performed in lx ligation buffer using 1 unit of T4 DNA 
ligase Vector and insert DNAs were mixed in a ratio of approximately 
1 10 ^

2,7.5  Agarose yel electrophoresis

Agarose gels (0 9%) were prepared m a horizontal gel apparatus (Atto) and 
run at a constant voltage of 35 V in lx TAE buffer overnight A 
concentration of 5x bromophenol blue dye was added to samples before 
loading Gels were stained in ethidium bromide (5 ptg/ml) for 30 minutes, 
destained in water for 5 minutes and the DNA visualised by UV 
transillumination Gels were photographed using Kodak TnX-pan 35mm 
film which was developed with Kodak Universal developer (1/8 v/v in 
distilled water) for 10 minutes at 20°C and fixed in Kodafix (1/4 v/v in 
distilled water) Printing was on Kodak F4 photographic paper using Kodak 
Dektol developer and Kodak Umfix fixer

2.7.6 Isolation of DNA fragments from agarose gels - gene clean 
procedure

After agarose gel eletrophoresis, the DNA band of interest was cut from the 
gel and weighed Two to three volumes of sodium iodide solution were 
added to the agarose The sample was vortexed and incubated at 55°C for 5 
minutes or until the agarose had completely dissolved A 2-5 jul quantity of 
glass bead slurry - Silica 325 mesh glass beads (which were prepared by T. 
Ryan, Dublin City University) was added, the sample vortexed and left on 
ice for 5 minutes The beads were centrifuged at 12,000 rpm for 5 seconds,
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and the supernatent discarded The glass bead pellet was washed three times 
with 150 ¿il ice-cold ethanol wash solution, centrifuging for 5 seconds 
between each wash The DNA was eluted from the pelleted beads by 
resuspending in 10-20 /¿I TE buffer, and incubating for 3 minutes at 55°C 
The beads were then centrifuged and the eluate collected The elution step 
was repeated to ensure maximum recovery of DNA

2,7.7  Determination of DNA concentration

Serial 1 1 DNA dilutions were prepared by mixing 5 ¡i\ of DNA sample 
with 5fx\ of TE buffer After addition of 1 fx 1 of bromophenol blue dye, 5 /zl 
of each dilution was loaded onto a 1 2% agarose gel In the same way 
dilutions of DNA (of known concentration) were made and loaded onto the 
same gel Electrophoresis was performed at 100 V for 20 minutes The gel 
was then stained with ethidium bromide and destained in water The 
concentration of sample DNA was estimated by comparing the intensity of 
fluorescence of the samples with that of the standard DNA samples

2.7.8 Southern blotting - transfer of DNA to nitrocellulose filters

The technique used is that described by Southern (1975) and modified by 
Smith and Summers (1980), whereby nucleic acids are transferred 
bidirectionally by diffusion to produce two blots which are essentially 
identical

After electrophoresis, the gel was placed in several volumes of 0 25M HC1 
solution, gently agitated for 15 minutes at room temperature This 
incubation was performed twice The gel was next rinsed well with water 
and incubated in several volumes of denaturing solution with agitation for 1 
hour The denaturing solution was decanted and the gel was soaked for 1 
hour in neutralising solution again with constant shaking To transfer DNA 
fragments from agarose gels to nitrocellulose, a sheet of nitrocellulose 
(Schleicher and Schnell) presoaked in 6X SSC was placed on top of three 
sheets of Whatman 3MM filter paper saturated in the same buffer The
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filter paper and nitrocellulose sheets were the same size as the gel Next the 
gel was place on top of the nitrocellulose sheet Another nitrocellulose sheet 
was added on top of the gel and three more buffer saturated Whatman 3MM 
filter papers were added A stack of paper towels (5-8 cm high) was placed 
underneath and on top of the filter papers and a light weight was placed on 
top to ensure even contact Transfer was allowed to proceed overnight 
Dunng the first 2 hours of transfer the gel stack was inverted every 20 
minutes to ensure even transfer The nitrocellulose sheets were then
removed, soaked in 6X SSC at room temperature for 5 minutes, air dried, 
and baked for 2 hours at 80°C

2.7.9  Preoartion of radioactive probe

Random primer labelling of probe DNA was performed using a "Prime a 
gene" kit (Promega), based on the method developed by Feinberg and 
Vogelstein (1983)
25ng of DNA was linearised and denatured by heating to 100°C for 5 
minutes and transferred to ice The reaction consisted of

5x labelling buffer 10 ¡A
Mixture of 3 unlabelled dNTPs 20 /¿I each
Denatured linear DNA template 25 ng
Acetylated BSA (1 mg/ml) 2 /xl
[32P] dATP (3,000 Ci/mM) 5 fA
Klenow polymerase 5 /¿I
Sterile water to 50 ¡A

The components were mixed gently and the reaction tube incubated at room 
temperature for 1 hour The reaction was terminated by heating to 100°C 
for 2 minutes and chilled on ice 2/xl of 0 5M EDTA was added and the 
labelled, denatured probe DNA was used directly for hybridisation to 
nitrocellulose filters
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2.7.10 Preparation of non-radioactive probe

Using a "DIG -DNA labelling and detection kit" (Boehnnger Mannheim), 
DNA was labelled by random primed incorporation of digoxigenin-labelled 
deoxyundine-triphosphate The dUTP was linked via a spacer arm to the 
steroid hapten digoxigemn, 100 ng of DNA was linearised and denatured as 
in Section 2 7 9 
The reaction consisted of

Freshly denatured probe DNA 100 ng
hexanucleotide mixture 2(x\
dNTP labelling mixture 2fi\
(containing dATP, dCTP, dGTP (ImMol/L), dTTP 
(0 65mMol/l), DIG-dUTP (0 35mMol/l)
Klenow polymerase 2fi\

The components were mixed gently and incubated at 37°C for at least 1 
hour The reaction was quenched by addition of 2 ¿d EDTA (0 2 mol/1) and 
the labelled DNA precipitated by addition of 2 5 ¿tl LiCl (4 mol/l) and 75 fi\ 
ethanol (-20°C) The mixture was left to stand at -20°C for 2 hours The 
DNA was pelleted by centrifugation at 12,000 rpm for 10 minutes, washed 
with 70% ethanol, dried under vacuum and dissolved in 50 ¡jl\ TE buffer 
Labelled DNA could be stored at -20°C or used directly for hybridisation to 
nitrocellulose filters

2 7.11 Hybridisation of Southern filters

2.7.11.1 Radioactive labelled probe

The baked filter was soaked in 6x SSC for 2 minutes and placed into a heat- 
sealable plastic bag Prehybridisation fluid (0 2 ml/cm2 of nitrocellulose 
filter) pre-warmed to 68°C was added to the bag After squeezing air from 
the bag it was sealed and incubated at 68°C for 4 hours with constant 
shaking After prehybridisation, the fluid was replaced with hybridisation 
solution (50 /xl/cm2 filter) containing the 32P- labelled denatured probe The

77



bag was again incubated at 68°C with constant shaking for 16-20 hours 
After hybridisation the filter was washed in the following solutions 5 
minutes at room temperature with 2x SSC/0 5% SDS, 15 minutes at room 
temperature with 2x SSC/0 1% SDS, 2 hours at 68°C with 0 lx SSC/0 5% 
SDS, this last wash was repeated for a further 30 minutes The filter was air 
dried, placed in a heat sealable plastic bag and exposed to Kodak X-ray film 
After exposure, the film was developed and fixed using Kodak DX-80 
developer and Kodak FX-40 X-ray liquid fixer

2.7.11.2 Non-radioactive labelled probe

The nitrocellulose filter was prehybridised in a sealed plastic bag in 
hybridisation solution (0 2 ml/cm2 filter) at 68°C for at least 1 hour After 
prehybndisation the fluid was replaced with fresh hybridisation solution (25 
fiVcm2 filter) containing freshly denatured labelled probe DNA The filter 
was incubated at 68°C overnight The filter was then washed in the 
following solutions 2x 5 minutes at room temperature with 2x SSC/0 1 % 
SDS and 2x 15 minutes at 68°C with 0 lx SSC/0 1% SDS

For immunological detection the "DIG-DNA labelling and detection" kit 
(Boehringer Mannheim) was used The filter was washed briefly in buffer 1 
(maleate buffer) before incubating for 30 minutes in buffer 2 (blocking 
solution) The filter was incubated for a further 30 minutes in 20 ml of 
diluted antibody i e 1/5000 dilution or 150 mU/ml of anti digoxigenin AP 
conjugate Unbound antibody conjugate was removed by washing for 2x 15 
minutes with 100 ml buffer 1 (maleate buffer) The filter was equilibrated 
for 2 minutes in 20 ml buffer 3 For colour development the filter was 
incubated in 10 ml colour solution in the dark The reaction was stopped by 
washing the filter in TE buffer for 5 minutes

2.8 DETERMINATION OF PLASMID COPY NUMBER

Total yeast DNA was isolated, digested with an appropriate restriction 
endonuclease, fractionated electrophoretically, transferred to nitrocellulose
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and probed with pPC64 Plasmid pPC64 consists of 2 7kb puC-19 DNA 
plus a 1 2kb fragment of the yeast chromosomal p-actin gene 
Autoradiography was performed at room temperature using Kodak X-ray 
film

In each lane of the resultant autoradiogram,two fragments showed 
hybridisation, the chromosomal P-actin and the plasmid PJG317 fragment 
homologous to the pBR322 sequences of puC-19 The plasmid copy number 
was determined from the relative intensities of the single copy P-actin band 
to the multicopy plasmid band

Using a GS-300 Transmittance/Reflectance Scanning Densitometer coupled 
to a GS-350 Data System (Hoefer Scientific Instruments, San Francisco), the 
autoradiogram was scanned and the area under each peak measured The 
plasmid copy number (PCN) was calculated from the following equation

PC N  =  ü k L  Mm. L.
A i c t  ^ p l a s  $

where Dplas area under plasmid peak

£>act area under p-actin peak

2 7

" « .  1 2
percentage plasmid positive cells

Mplas and Mact are the sizes of the puC-19 and p-actin DNA fragments on the 
probe available for hybridisation and represent the degree of homology of 
probe to plasmid and to chromosomal DNA

Each autoradiogram contained a "reference" DNA sample (i e a sample of 
yeast total DNA of known copy number), to which all measurements of 
PCN were adjusted proportionally to ensure that the reference DNA sample 
maintained a constant PCN In this way, PCN was determined relative to 
the single copy chromosomal p-actin gene and to a reference sample of 
known copy number, allowing comparisons of PCN calculated from 
different autoradiograms
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CHAPTER THREE 

INTRODUCTION TO RESULTS
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3.1 INTRODUCTION

One of the problems associated with using recombinant microorganisms in 

large scale fermentation is plasmid instability, where the plasmid encoding 

the gene for the formation of a product such as an extracellular enzyme is 

lost as the fermentation progresses. (Imanaka and Aiba, 1981, Noack et al , 

1981, Snenc et al , 1986) One way o f alleviating this and hence greatly 

improving productivity is to slow down the growth o f the organism This 

may be accomplished by immobilising the plasmid-containing cells in a solid 

matrix, such as a calcium alginate gel bead and using these gel beads as 

heterogenous catalysts in a bioreactor Immobilisation also allows 

continuous processing in the case of extracellular protein production and also 

has the advantage o f retaining cells in the bioreactor (Dervakos and Webb, 

1991) Figure 3 1 illustrates the increased plasmid stability and improved 0- 

glucanase production by immobilised S  cerevisiae cells, harbouring the 

plasmid pJG317, which contains the gene which encodes for the enzyme

fermentation period (days)

Figure 3 1 Plasmid stability and (i-glucanase profiles in free and 
immobilised yeast cell fermentations 
(arrow indicates increase in glucose concentration from 2 to 5%)
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The improved plasmid stability in immobilised cell systems can be explained 

by a combination of the following reported findings (Mosbach et a l , 1983, 

De Taxis du Poet et al , 1987, Nasn et al , 1987a, Dervakos and Webb, 

1991)

(i) The restriction in the number of cell divisions that occur before the

cells escape from the gel beads and are washed out o f the reactor

(11) The allowance of only a few generations (10 to 16) of plasmid minus

(P-) cells to compete with plasmid containing (P + )  cells before they 

detach from the gel

(m) The absence of competition between P +  and P- cells inside the gel

beads due to the mechanical properties o f the gel bead system

(iv) The maintenance of stable PCN in the cells for longer periods

(v) The avoidance of genetic modifications or fluctuations which

normally occur after prolonged growth o f mircroorgamsms m free

cell cultures

(vi) P +  cells are continuously replenished by new P +  cells which reside 

deeper m the gel bead and whose growth was retarded by nutrient 

and/or oxygen depletion Thus gel beads can be a dynamic reservoir 

o f concentrated P +  cells

It has been shown that cell growth within an immobilisation matrix is 

heterogeneously distributed due to diffusional resistances (Gosmann and 

Rehm, 1986, Godia et al , 1987, Mann-Imesta et al , 1988) The surface 

microcolomes merge to form a dense layer o f cells, reducing the diffusion of 

nutrients to and inhibitory products from the gel beads As a result sharp 

radial gradients m growth rate, cell density and cell activity arise 
(Monbouquette et al , 1990) It is likely that the heterogeneous distribution 

of cell growth is responsible for the gradient in plasmid stability observed 

within the beads Whether or not this increased stability is due, m part, to a 

higher PCN has yet to be conclusively established Indeed, for immobilised 

recombinant bacterial cells containing multicopy plasmids, it has been shown 

that immobilised cells contain a higher PCN than free cells (De Taxis du 

Poet et al , 1987, Sayadi et al , 1989) The measured PCN of immobilised 

cells was an average of high PCN corresponding to the internal cell 

population which grew at a low growth rate due to restrictions in oxygen and 

nutnents, and low PCN corresponding to the external cell population which 

had a higher growth rate closer to that of free cells It was hypothesised that
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due to diffusion limitations, a gradient in cell growth rate and PCN exist 

The compartmentalisation of cell growth may also be responsible for the 

higher plasmid stabilities obtained in immobilised cell systems There are 

no reported cases of PCN measurements for immobilised yeast, although 

data from free cell recombinant yeast fermentations indicates that growth 

rate may influence PCN in certain cases (Bugeja et al , 1989)

A bioreactor system has been developed which employed immobilised 

recombinant S cerevisiae cells and continuously produced the enzyme endo 

(1,3) (1,4) P- glucanase with little sign of decline for periods of up to 240 

hours in non selective medium The enzyme productivity of this reactor was 

over 20 fold that o f a batch fermentation employing selective media (Cahill 

et al , 1990) The percentage o f P +  cells in the core of the beads, the bead 

surface and those cells leaked from the matrix was measured by making 

cross sections o f the gel beads and isolating cells from the appropriate 

sections A gradient of plasmid containing cells was found to exist 

throughout the gel beads with the cells on the surface having a lower 

stability than cells in the bead core

Harvesting cells from specific locations wthin a gel bead is difficult Most 

procedures employed for measuring PCN e g ethidium bromide 

fluorescence densitometry, CsCl gradient centrifugation and DNA 

hybridisation, are tedious and time consuming For these reasons, the PCN 

of cells at different locations throughout the gel bead (such as the inner core 

or the outer layer) has not been directly measured

This study set out to develop, test and optimise an accurate and reproducible 
procedure for measunng the PCN of recombinant yeast The recombinant 

system chosen was the system of Cahill et al (1990) S  cerevisiae 

DBY746, transformed with the plasmid pJG317 acted as the model 

Plasmid pJG317 is 13kb in size and carries the gene encoding the enzyme 

endo (1,3) (1,4) P-glucanase pJG317 is a derivative of plasmid pAAH5 

except that it carries the glucanase gene from BaciUius subtihs under the 

control o f ADH1 promoter The PCN of pAAH5 was measured as 10 

(Korpela et al , 1987) and it is reasonable to assume that pJG317 is also a 

low copy number plasmid For this reason a procedure for measunng the 

PCN had to be both accurate and sensitive After rejecting the ethidium
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bromide fluorescence technique, a procedure based on Southern 

hybridisation was developed

The technique was used to investigate the influence o f growth rate on PCN 

and plasmid stability in free cell yeast fermentations Free cell growth rates, 

plasmid stabilities, PCN and enzyme specific productivities were 

established The growth rate of immobilised cells depends on their location 

in the gel beads Consequently the PCN may vary, giving rise to a radial 

gradient in PCN m immobilised cells Using recently developed and refined 

multistep dissolution techniques (Walsh et al , 1993) the plasmid stability 

gradients obtained by Cahill et al (1990) were confirmed and the PCN of 

cells was directly measured at three different locations throughout the gel 

beads Finally, the effect of environmental growth conditions on plasmid 

stability, PCN and p-glucanase productivity in immobilised and free cells 
were investigated
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CHAPTER FOUR

DEVELOPMENT OF A REPRODUCIBLE AND 
ACCURATE PROCEDURE FOR MEASURING PLASMID

COPY NUMBER
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4.1 ELEMENTARY WORK ASSOCIATED WITH USING
SOUTHERN HYBRIDISATION AS A MEANS FOR 

MEASURING PLASMID COPY NUMBER

4.1.1 Restriction mao of plasmid P.TG317

Many methods used to measure PCN involve restricting the chromosomal 

and plasmid DNA A detailed restriction map o f the plasmid is necessary to 

provide information on the sizes and numbers of DNA fragments obtained 

upon restriction with a particular enzyme

Using single and double restriction digestion of plasmid pJG317 DNA, a 
comprehensive restriction map of the plasmid was established Figures 4 1 

and 4 2 are the restriction patterns after gel electrophoresis Table 4 1 is a 

summary of the fragment sizes determined relative to X DNA size markers 

Finally Figure 4 3 represents a restriction map of plasmid pJG317

Table 4 1 DNA fragment sizes resulting from restriction digestion o f  
p JG 3 I7  DNA

Restriction Enzyme Fragment size (kb)
EcoR I 11 5, 2 2
S a i l 6 6, 4 7, 1 1, 0 5
P stI 4 5, 4 0, 3 6, 1 0
Kpn 1 11 2, 2 5
Bam HI 11 2 , 1 6 , 1 0
Hmd III 12 3, 0 8
Xba I 13 2
EcoR I +  Kpn I 9 1, 4 8, 4 4, 2 1, 1 8
EcoR I +  Sal I 4 7, 3 7, 2 2, 1 1, < 1 0
Pst I +  Sal I 6 6, 4 7, 4 2, 2 8, 2 6, 1 3,

1 0
Kpn 1+  Xba I 9 8, 2 5, 1 4
Xba I +  Sal I 6 5, 2 5, 2 3, 1 1
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LANE 2 4 6 8 10 12

^  * L à »  N " ;< v S A M H M  '  * ' s  x
1 X Hind III +  EcoR I
2 X EcoR I
3 X Hind III
4 Bam HI
5 Kpn I
6 Xba I
7 S a i l
8 Ps t I
9 Hind IIIi
10 EcoR I
11 pJG317 uncut
12 X EcoR I
13 X Hind III

Figure 4 1 Restriction digestion of plasmid pJG317
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i X Hind III + EcoR I
2 pJG317 uncut
3 EcoR I + Kpn I
4 Kpn I
5 Kpn I +Xba I
6 PstI
7 Pst I + Sal I
8 Sail
9 Sal I + EcoR I
10 Xba I + Sal I
11 EcoR I
12 EcoR I
13 X Hind III + E coR I

Figure 4 2 Single and double restnction digestions of plasmid pJG317
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Figure 4 3 Schematic diagram of plasmid pJG317 restriction sites 
(EcoR I, Hind III, Kpn I, Pst I, Bam HI, Sal I)
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4.1.2 Optimisation of procedures

The procedure used for isolating total DNA was that of Cryer et al (1975) 

However, because of the difficulty in restricting yeast DNA the procedure 

was modified by incorporating extra phenol/chloroform extractions, longer 

ethanol precipitations at -20°C and by adding a step which involved washing 

the DNA pellet with 70% ethanol The procedure outlined in Section 2 7 3 

incorporates the modification steps

The cell lysis procedure used Lyticase (Sigma) instead of Zymolyase This 
step was optimised with respect to quantity o f enzyme used, incubation time 

and quantity of cells used Optimisation o f the DNA isolation procedure 

ensured that a high yield of clean DNA could be obtained The 

measurement of PCN by DNA hybridisation required complete digestion o f 

total yeast DNA The restriction conditions were modified to include extra 

restriction enzyme and overnight incubations The fully modified DNA 

isolation procedure (including cell lysis) is outlined in Section 2 7 3 and the 

optimised restriction conditions are outlined in Section 2 7 4

4.2 EVALUATION OF THE SUITABILITY OF SEVERAL 

PROBES AND CHARACTERISATION OF DBY746 FOR THE 

PRESENCE OF 2a DNA

To measure the PCN by DNA hybridisation a probe must be constructed in 

such a way that it contains two essential fragments of DNA One o f these 

fragments must bind or hybndise to the plasmid DNA while the other 
fragment must bind to some reference DNA which usually resides on the 

chromosome Examples of such reference DNA fragments include the 

single copy Uracil gene (Jayaram et al , 1983), the P-actin gene (Apostol 

and Greer, 1988) and the histidine gene (Bugeja et al , 1989) or the 

multicopy nbosomal DNA (Broach, 1983) PCN is calculated from the 

intensity of hybridisation to the plasmid specific fragment, relative to the 

intensity of hybridisation to the reference DNA
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The vector DNA pUC-19 was chosen as the plasmid specific portion of the 

probe since both pUC-19 and pJG317 contain homologous pBR322 DNA 

sequences Also by inserting a reference DNA fragment into the vector 

pUC-19 and cloning the resultant plasmid a plentiful supply of probe DNA 

is ensured

The Uracil (URA3) gene and the P-actin gene which both reside as single 

copies on the yeast chromosome were chosen as reference DNA fragments 

Finally the particular Saccharomyces cerevisiae DBY746 strain being used 

was characterised by confirming the presence o f 2/x DNA and determining 

the 2/i restriction map

4.2.1 Restriction analysis of B-actin and URA3 regions within the veast 

genome

Measuring PCN by Southern hybridisation partly involves restricting total 

genomic DNA and later hybridising a probe to one particular segment of the 

genomic DNA i e the reference DNA fragment To assess the potential for 

P-actin or URA 3 to be used in the probe and as the reference DNA 

fragment, the number and sizes of the restriction fragments relative to those 

of pJG317 DNA had to be determined

Total yeast DNA was isolated from the parent strain DBY746 and restricted 

with the enzymes, EcoR I, Hind III, Kpn I, Sal I, Pst I, Xba I After gel 
eletrophoresis the DNA was immobilised on nitrocellulose filters (Section 

2 7 7) which were probed with radioactively labelled p-actin DNA or URA3 
DNA

Both the p-actin and URA3 genes were obtained by restriction digestion of 

the plasmid pRB149 with EcoR I (Figure 4 4) This plasmid was a gift from 

Dr David Botstein (Shortle et al , 1982) and consists of the 3 8kb P-actin 

gene inserted into the yeast integrating vector YIp-5 EcoR I restriction of 

pRB149 DNA yielded two fragments a 3 8kb P-actin gene fragment and 

the 5 5kb YIp-5 fragment which were separated by gel electrophoresis 

(Section 2 7 5) and purified by the gene clean procedure (Section 2 7 6)

91



The 3 8kb p-actin DNA fragment contained the whole P-actin gene (Ng and 

Abelson, 1980) and was labelled with 32P-dATP (Section 2 7 9) and 

hybndised to the nitrocellulose filters containing restricted DBY746 DNA 

Figure 4 5 is the resultant autoradiogram, showing restricted DNA 

fragments of the DBY746 chromosomal P-actin single copy gene (Ng and 

Abelson, 1980) Table 4 2 shows the P-actin restriction fragment sizes 

obtained from the autoradiogram and compares them with the predicted 

restriction fragments sizes of Ng and Abelson (1980) It may be concluded 

that the restriction fragment sizes obtained agree very closely to those 
predicted of Ng and Abelson
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EcoRI

EcoR I RESTRICTION

Figure 4 4 Schematic diagram of plasmid pRB149 and restriction to yield 
two probes (1) 3 8kb P-actin gene and (11) 5 5kb YIp5 vector 
containing a 1 Ikb URA3 DNA fragment



Figure 4.5 Autoradiogram of the restriction fragments o f the single copy 
chromosomal p-actin gene of DBY746
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Table 4 2 Restriction pattern of chromosomal $-actin gene fragments 
from autogradiogram in Figure 4 5 (HI) and that of Ng and 
Abelson (1980) (#2)

Restriction Enzyme Fragment size #1 (kb) Fragment size #2 (kb)

Hindlll 3 9 & 2  7 3 7 &2 5
E coR I 4 0 3 8
S a il 9 4 > 3  8
Xba I 9 4 & 20 > 3  8
Kpnl 3 9 & 3 0 > 3  8 &  > 2  3
PstI 4 8 4 6

Note > implies that the fragment sizes are greater than the value listed As the values
taken from the literature were from diagrams/restriction maps the exact sizes are 
unknown

The 5 5kb YIp5 DNA fragment was isolated from pRB149 along with the P- 

actm DNA fragment and also used as a probe and hybridised to restricted 

DBY746 genomic DNA YIp5 consists o f pBR322 DNA plus a 1 lkb 

fragment spanning the yeast URA3 gene (Struhl et al , 1979) As no 

pJG317 DNA was present in the DBY746 genomic DNA, only the URA3 

DNA fragment hybridised to DBY746 URA3 gene fragments (Figure 4 6) 

Table 4 3 compares the restriction fragment sizes of those obtained from the 
autoradiogram with those of Struhl et al (1979)

Table 4 3 Restriction pattern of chromosomal URA3 gene fragments 
from autoradiogram in Figure 4 6 (#1) and that of Struhl et
al (1979) (#2)

Restriction Enzyme Fragment size #1 (kb) Fragment size #2 (kb)
Hindlll 4 0 & 2 2 (5 0) 4 1 &  2 3
E coR I 10 0 & 8 0 > 3  3 & > 3  3
Sal I 23 0 & 6 6 > 4  3 & > 2  1
Xba I 20 0 > 5  9
Kpn I 7 0 & 8 0 > 5  9
PstI 7 4 &  < 1  0 > 4  8 &  0 6

Note > implies that the fragment sizes are greater than the value listed As the values
taken from the literature were from diagrams/restnction maps the exact sizes are 
unknown

95



s £■ 3 a s a ̂ kb

Figure 4.6 Autoradiogram o f the restriction fragments of the single copy 
chromosomal URA3 gene of DBY746.



A comparison o f both the P-actin and URA 3 regions of the DBY746 

genome, with respect to the number of fragments and the particular sizes of 

the fragments resulting from restriction digestion, led to the conclusion that 

P-actin had the greatest potential as the reference portion of a probe to be 

employed for measuring PCN

4.2.2 Characterisation of DBY746 for the presence of 2a DNA

The 7\x circle is a 6318bp double stranded DNA plasmid present in most 

Saccharomyces strains (including DBY746) at 60 to 100 copies per haploid 

genome (Clarke-Walker and Miklos, 1974, Hartley and Donelson 1980) As 

complete restriction o f DBY746 genome is a prerequisite for PCN 

determination by DNA hybridisation in order to separate out the reference 

DNA fragment from the total chromosomal DNA, it was necessary to 

determine the position of the 2¡x restriction fragments relative to restricted 

chromosomal and pJG317 DNA fragments In this way any interference due 

to the presence o f 2\x restriction fragments on probe hybridisation or PCN 

calculation can be predicted and/or prevented

Total yeast DNA was isolated restricted electrophoresed and blot-transferred 

to nitrocellulose filters as described in Section 4 2 1 By restricting plasmid 

pJG317 with Xba I and Kpn I a 1 4kb 2\x DNA fragment was cut out and 

separated by gel eletrophoresis and purified by the gene clean procedure 

(Section 2 7 6), labelled (Section 2 7 9) and hybridised to the nitrocellulose 

filter containing restricted genomic DBY746 DNA (Figure 4 7)

The restriction fragments obtained agree very well with those of Jayarem et 

al (1983) The different intensity of bands (z e faint and dark) are due to 

different degrees of homology between the 1 4kb 2¡x probe DNA and the 

various restriction fragments As expected neither o f the restriction enzymes 
Sal I nor Kpn I cut the 2/x DNA
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Figure 4.7 Autoradiogram of the restriction fragments o f the 2\l circle
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4.2.3 Evaluation of pUC-19 as plasmid specific-portion of the probe

A potential probe used to measure PCN needs to contain sequences that will 

hybridise to pJG317 pUC-19 and pJG317 have the ampicillin resistant gene 

(Amp11) of pBR322 pUC-19 can hybridise to pJG317 and hence could be 

used as the plasmid pJG317 specific portion o f a probe

Total DBY746 DNA with and without plasmid pJG317 DNA was isolated, 

restricted with the restriction enzymes, EcoR I, Hind III, Xba I, Sal I and 

fractionated by agarose gel electrophoresis The DNA was transferred to 

nitrocellulose filters and probed with labelled pUC-19 DNA (Figure 4 8) 

pUC-19 bound to those pJG317 restriction fragments containing pBR322 

sequences and futhermore did not bind to any DBY746 parent DNA 

However, on close examination of the autoradiogram faint bands can be seen 

on the DBY746 parent strain DNA By comparing the pattern of these 

bands with those in Figure 4 7 (Ip  restriction pattern), it can be seen that 

they are very similar It may be concluded that pUC-19 may hybridise non- 

specifically to some circle DNA, but this is unlikely to interfere with the 

measurement of PCN

Reviewing the results of the above hybridisations a suitable probe for 

measuring PCN can be planned The probe should consist of the 3 8kb P- 

actin gene inserted into the vector pUC-19 On restriction of total genomic 

DBY746 DNA including plasmid pJG317 with the endonuclease Sal I and 

hybridising with the P-actin/pUC-19 probe, 2 clear bands would result on an 

autoradiogram The pUC-19 part of the probe would hybridise to the 6 6kb 

Sal I restriction fragment of pJG317 while the p-actin part of the probe 
would hybridise to the 9 4kb Sal I restriction fragment containing the 
chromosomal p-actin gene in one copy per genome The PCN can then be 

calculated from the intensity of hybridisation to the 6 6kb plasmid specific 

fragment relative to the intensity of hybridisation to the 9 4kb p-actin DNA 
fragment
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DBY746(pJG317) DNA DBY746 DNA 

probed with pnC-19 probed with puC-19

Autoradiogram of pJG317 restriction fragments homologous 
with puC-19 DNA, and non-specific binding o f puC-19 to 
genomic DBY746 DNA.



4.3 CONSTRUCTION AND CLONING OF PROBE DNA

The 3 8kb p-actm gene was excised from plasmid pRB149 by EcoR I 

restriction After fractionation o f the DNA fragments by gel electrophoresis 

(Section 2 7 5) the p-actm DNA was purified by the gene clean procedure 

(Section 2 7 6) Commercial pUC-19 vector DNA (Boehnnger Mannheim) 

was restricted with EcoR I and dephosphorylated using calf-intestinal 

phosphatase (Section 2 7 4) A ligation reaction involving the 

dephosphorylated vector DNA (pUC-19) and the insert DNA (P-actin gene) 

was performed (Section 2 7 4) E  coh JA221 cells were then transformed 

with the new 6 5kb (2 7kb pUC-19 +  3 8kb P-actin) plasmid (Section 

2 7 1 )  Finally for confirmation, DNA was isolated from positive 

transformants (Section 2 7 2 1) and restricted with EcoR I The presence of 

a 2 7kb and 3 8kb band indicated that the cloning had been successful The 

new plasmid consists of the P-actin gene inserted into pUC-19 and is 

referred to as pPC64 This is the probe which will be used to measure 

PCN A large quantity of pPC64 DNA was prepared by the maxi prep 

procedure (Section 2 7 2 2)

4.4 TESING THE NEW PROBE FOR ABILITY TO MEASURE 
PCN

Total DNA was isolated from yeast, restricted and electrophoresed, before 

being transferred to nitrocellulose filters The newly constructed probe 
(pPC64) was linearised and labelled Hybridisation of probe to the DNA 

immobilised on the filters was allowed to proceed at 68°C overnight (Figure 

4 9 (a)) The following points can be made

(0 Lanes 3 to 10 contain total DNA restricted with Sal I As

expected two bands are visible and represent the 9 4kb

restriction fragment of the single copy chromosomal P-actm
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gene, and the 6 6kb restnction fragment of the multicopy 

plasmid pJG317

(II) Lanes 11 to 13 contain total DNA restricted with Pst I As

predicted three bands are visible and represent the 4 6kb

chromosomal P-actin restnction fragment, the 4 Okb pJG317 

restriction fragment and a very small chromosomal p-actin 

restnction fragment

(III) Lane 2 shows total parent strain (DBY746) DNA (i e no

plasmid present) restncted with Sal I Only the 9 4kb p-actin

band is visible Figure 4 9 (b) shows lanes 2 and 3 with a 

longer exposure time The presence o f the single P-actin 

band in lane 2 is more visible here

(iv) Lane 1 contains unrestncted probe pPC64 DNA which acts as 

a positive control

102



LANE 1 2 3 4 5 6 7 8 9 10 11 12 13 2 3

(a)

Figure 4.9

4-lk.l
• • •  ¿hOft

(b)

(a) Autoradiogram of total genomic DBY746 (pJG317) 
DNA probed with probe pPC64 (puC-19 +  P-actin).

(b) Lanes 2 and 3 after longer exposure time.
Note the single chromosomal P-actin band o f DBY746 DNA only 
in lane 2 and the p-actin band plus the plasmid pJG317 band of 
DBY746 (pJG 317) DNA in lane 3.
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4.5 CH ARACTERISATIO N AND CONFIRM ATION O F 

HYBRIDISATION

Plasmid copy number is calculated as described in Section 2.8

PCN =

where

=  flpu. _L
A c  M pl„  s

®plas area under

Act area under

MpUs 2.7

Mac, 1.2
s percentage

Afplag and A/act are the sizes of the pUC-19 and P-actin DNA fragments on the 

probe (pPC64) available for hybridisation to filter bound DNA. These 

values represent the degree o f homology o f the probe with plasmid and 

chromosomal DNA. In the construction and cloning o f this probe the 3.8kb 

P-actin gene was inserted into the 2.7kb pUC-19 vector yielding a plasmid 

of size 6.5kb. This was confirmed by restriction analysis.

However, evidence from Figure 4.9 and detailed restriction analysis of 

pPC64 DNA (Figure 4.10) revealed that the deletion of 2.6kb had 

occurred. Table 4.4 lists the various fragment sizes obtained by digestion of 

pPC64 with the different restriction enzymes. Figure 4.11 is a schematic of 

the P-actin gene as mapped by Ng and Abelson (1980) and a restriction map 

of pUC-19 DNA (Yanisch Perron et al., 1985). From results of Figure 4.10 

and Table 4.4 the position o f the 2.6kb deletion in plasmid pPC64 was 
established and is represented in Figure 4.11

Despite the deletion of 2.6kb from pPC64, 1.2kb of the P-actin gene 

remains in 2.7kb pUC-19 vector. All that is required for measuring PCN is 

a fragment of DNA that will hybridise to the reference DNA (in this case the 

p-actin chromosomal gene) and to the multicopy plasmid DNA. 

Furthermore, the sizes of the fragments which hybridise to the reference and 

plasmid DNA sequences must be known. Figure 4.9 shows that pPC64 with
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a 2 6kb deletion can be successfully applied to measure PCN For 

calculation of PCN, MpIas is 2 7 while A/acl is 1 2

Table 4 4 DNA fragment sizes resulting from restriction digestion of 
plasmid pPC64 DNA (Figure 4 10)

Restriction Enzyme Fragment size (kb) Conclusions

EcoRI 4 0 One EcoR I site missing

Bam HI 3 2 &  0  8 |3-actin Bam HI site present

PstI 3 8 &  0 2 P-actin Pst I site present

Bgl II + EcoR I 4 0 Bgl II site missing

PvuII 1 6  &  2 4 1 2kb insert into pUC-19

A val 4 0 Ava I site missing
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LANE 2 4 6 8 10 12

'v "'......................................^  - <

i 3 8kb B-actin gene
2 pUC-19 DNA uncut
3 lkb X ladder 12 to lkb
4 pPC64 DNA uncut
5 EcoR I
6 Bam HI
7 Ps tI
8 Bgl II +  EcoR I
9 Pvu II
10 Ava I
11 pPC64 DNA uncut
12 lOObp X  ladder

Figure 4 10 Restriction digestion of plasmid pPC64 (probe)
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(a ) ß-actin Gene

Hind HI EcoR I Hind in  EcoR I PstI Hind HI

EcoR I 
MCS

EcoR I

| 4 ---- 1 2 kb DELETION 2 6 k b - ^ |

(b) pUC-19

Pvull

Figure 4 11 Schematic diagrams of (a) restriction map of p-actin gene 
(Ng and Ableson,1980) showing the 2 6kb deletion and (b) 
simplified restriction map of puC-19 (Yanisch-Perron et al ,
1985)

MCS Multiple cloning site
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4.6 OPTIM ISATION O F PCN M EA SU REM EN T PRO CED U RE

Figure 4 12 shows the influence of X-ray film exposure time on PCN 

Longer exposure times result in darker bands After long exposure times the 

intensity of the band on the X-ray film and the measured PCN are not 

linearly related, resulting in an underestimate of PCN Figure 4 12 

represents the linearity of response o f the X-ray film Figure 4 13 illustrates 

the effect o f DNA concentration on PCN DNA concentration was varied 

by loading different quantities of DNA to the agarose gel, resulting in 

various quantities o f DNA being immobilised onto the nitrocellulose filters 

Linearity of DNA concentration was measured with respect to plasmid band 

intensity on the autoradiogram From Figure 4 13 it may be concluded that 

any quantity o f DNA above 10/d of a standard total DNA isolate solution 

(approx 2/ig total DNA) has no effect on PCN as measured by plasmid 

band intensity on the autoradiogram The quantity of cells harvested, from 

which total DNA was isolated was thus decreased and standardised at lxlO 9 

cells The quantity of DNA used in restriction reactions and the amount of 

DNA loaded to agarose gels was also standardised In this way the quantity 

of DNA isolated, restricted and used to measure PCN was standardised and 

maintained within the linear range o f X-ray film response, ensunng a 

reproducible PCN result The reproducibility of the procedure was tested by 

harvesting 4 sets o f cells from the same fermentation and isolating the DNA 

from each cell sample The PCN of each sample was measured yielding the 
following results

Sample 1 PCN = 11
Sample 2 PCN = 9
Sample 3 PCN = 10
Sample 4 PCN = 9
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4.7 DISCUSSIO N

Methods of measuring PCN based on caesium chloride separation of plasmid 

from chromosomal DNA (Shepard and Polisky, 1979, Moser and Campbell, 

1983) are inherently uncertain in that they depend on the plasmid having a 

covalently closed circular (CCC) configuration and are not easily correctable 

for occurrence o f non-CCC forms or for loss of plasmid DNA dunng 

preparative procedures These methods give minimum estimates of PCN 

The use o f HPLC to measure PCN (Copella et al , 1986, 1987 (a)) could 

also be classed as a physical separation method This procedure, although 

attractive due to its reliability, speed and ease of performance, contains 

inherent flaws DBY746 contains the endogenous yeast 2/a circle 

However, the HPLC method fails to separate this from other plasmid DNA 

This procedure relies heavily on constants and variables obtained from the 

literature, which may be specific to one particular recombinant system 
Hybridisation methods (Gerbaud and Guenneau, 1980, Jayaram et al , 1983, 

Bitter et al , 1987, Korpela et al , 1987) are theoretically precise, but are 

difficult to perform and are time consuming Indirect methods based on 

gene dosage all require primary proof that the phenotype being analysed is 

linearly proportional to gene dosage (Uhlin and Nordstrom, 1976) and are 

therefore limited to plasmids that contain genes that show this 

proportionality

Fluorescence densitometry of agarose electrophoretic gels (Projan et al , 

1983, Futcher and Cox, 1984) presents a quick, easy and relatively reliable 
procedure for determining PCN This method was unsuccessfully applied to 

the DBY746 (pJG317) recombinant system (data not shown) The plasmid 

DNA band (CCC-form) was very faint and barely visible on ethidium 

bromide stained electrophoretic gels When total yeast genomic DNA 

(including plasmid pJG317) was restricted the background level o f restricted 

DNA fragments was too great to pick out the plasmid DNA bands Korpela 

et al (1987) measured the PCN of the expression vector pAAH5 using the 

precise and accurate sandwich hybridisation procedure and found this vector 

to exist in 10 copies per cell, when grown on selective medium The PCN 

of pAAH5 was unchanged when viral genes were inserted Plasmid pJG317 

consists of the expression vector pAAH5 with the gene encoding (1,3) (1,4)
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(3-glucanase inserted. It was assumed that pJG317 also exists in 
approximately 10 copies per cell. This may be the reason why on ethidium 

bromide stained gels, the pJG317 DNA band was barely visible compared 

with the large chromosomal band, the multicopy 2/z circle or rDNA 

restriction fragments. This procedure was used by Projan et al. (1983) and 

by Futcher and Cox (1984) to measure the PCN of medium to high copy 

number (30 to 880) plasmids. It was concluded that this procedure cannot 

be employed to measure the PCN of the low copy number plasmid pJG317.

Hybridisation methods although difficult to perform and time consuming are 

exact, accurate and if performed carefully are very reproducible (Bitter et 

al., 1987). Several hybridisation methods o f varying complexity may be 

employed to measure PCN, such as Southern hybridisation, Sandwich 

hybridisation and hybridisation in solution. Of these methods it was decided 

to develop a procedure for measuring PCN based on Southern hybridisation 

as this procedure is more straight forward and less difficult to perform.

Essential requirements in the development of a procedure for measuring 

PCN based on Southern hybridisation include :

•  a restriction map of the plasmid

• a restriction map of the region of the genome containing the 

reference DNA.

•  an effective and reproducible procedure for isolating restrictable 

genomic DNA.

Early work concentrated on achieving the above. As potential reference 

DNA, the loci of URA3 (uracil) and (3-actin were investigated. Standard 

procedures for the isolation and restriction o f total genomic yeast DNA were 
modified and are as outlined in Chapter Two.

A most important element of any PCN method using hybridisation is the 

probe used. This is usually complementary to both plasmid DNA and a 

native chromosomal yeast gene. Such DNA probes may derive from either 

the promoter, transcription terminator or selectable marker of the expression 

vector, since these sequences are all also represented in the yeast genome 

(Bitter et al., 1987). The chromosomal fragment on each probe acts as an 

internal standard for PCN quantification and generally represents one gene 

per haploid genome. The following chromosomal gene fragments have been 

utilised in probes for measuring PCN in yeast: UR A3, P-actin, HIS, rDNA
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and PGK (Jayaram et al , 1983, Apostol and Greer, 1988, Bugeja et al , 

1989 Broach 1983, Van der Aar et al ,1992)

Of the two loci investigated as possible reference DNA fragments in a probe 

to measure PCN, p-actin proved to have the most promise Restriction of 

total genomic yeast DNA with Sal I produced a 9 4kb fragment containing 

the whole P-actin gene, which meant that autoradiograms had only a single 

band when probed with DNA containing P-actin DNA For quantification 

of PCN scanning densitometry o f the autoradiograms is required and the 

fewer the bands present, the more accurate the calculation o f intensity and 

the lower the chance of background interference

The probe also needs to contain sequences that will hybndise to plasmid 

pJG317 These are provided by the presence o f pBR322 sequences m both 

pUC-19 and pJG317 Probing total genomic DBY746 (pJG317) DNA with 

pUC-19 yielded a single band on the autoradiogram in the case o f Sal I 

restriction This band represents the 6 4kb Sal I restriction fragment of 

pJG317 The possibility of pUC-19 cross reaction (/ e non-specific binding 

to 2/i DNA) was investigated and found to be possible but unlikely

Using recombinant DNA techniques, probe pPC64 was constructed and 

cloned Despite the fact that a deletion of 2 6kb in the P-actm gene 

occurred, the probe was successfully employed to measure the PCN of 

DBY746 (pJG317) The probe was characterised by detailed restriction 

analysis and the portion of pUC-19 and P-actin sequences available for 

hybridisation determined

PCN is calculated from the relative intensities o f the single copy P-actm 

band to the multicopy plasmid pJG317 band, obtained from densitometer 

scans o f the autoradiograms The calculations are based on those of Jayaram 
et al (1983) and Projan et al (1983) Filter hybridisation depends on two 

processes, diffusion of probe to the filter and hybridisation o f the probe at 

the filter (Anderson and Young, 1985) Assuming diffusion effects to be 

constant (identical hybridisation reaction conditions which maximise 

diffusion such as high incubation temperature, low reaction volume and 

agitating the reaction mixture) and also assuming to be constant or ignoring 

such factors as probe DNA reassociation kinetics or stenc hindrance effects, 

hybridisation is a function o f the concentration of filter bound DNA The
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probe pPC64 hybridises to the plasmid band and the p-actin band in 

proportion to their concentrations The different rates of hybridisation o f 

probe DNA, to the plasmid and P-actm DNA is driven by the concentration 

of homologous DNA available for hybridisation on the probe A correction 

factor o f 1 2/2 7 =  0 44 compensates for the increased tendency o f the 

probe DNA to bind to filter bound plasmid DNA as opposed to p-actin DNA 

due to the differences in homologous sequences The probe pPC64 contains 

1 2kb o f the p-actin gene and 2 7kb o f pUC-19 DNA Finally, the PCN 

calculation takes into account the percentrage o f cells that contain the 

plasmid so that the final PCN calculated is the PCN of plasmid bearing cells 

in the population

The procedure for measunng PCN was standardised and optimised by 

investigating such factors as

• quantity of cells harvested

• quantity o f DNA loaded onto the gels (Figure 4 13)

•  exposure time of the autoradiograms (Figure 4 12)

Only by maintaining identical procedures such as DNA isolation, restriction, 

Southern blotting, probe labelling and hybridisation reaction conditions in 

addition to noting the results from optimisation studies will the PCN 

procedure be accurate and reproducible The repeatibihty of the procedure 

was tested by obtaining PCN values that differed very little m identical 

fermentation samples The PCN of pAAH5 of which pJG317 is a derivative 

was measured as 10 to 11 copies per cell using the newly developed and 

optimised PCN procedure (data not shown) Korpela et al (1987) measured 

the PCN of pAAH5 as 10 copies per cell using the Sandwich Hybridisation 

procedure

Various probes have been used to measure the PCN in yeast, each 

containing different reference DNA fragments, usually derived from 

selectable markers or rDNA fragments Apostol and Greer (1988) used a 
probe containing the 3 8kb p-actin gene inserted into the vector pBR322 

This probe was used to investigate the copy number and stability o f yeast 2/x 

circle based plasmids carrying a transcription conditional centromere 

Apostol and Greer(1988) isolated total genomic yeast DNA and restricted it 

with the enzyme Hind III The labelled probe detected two single copy 

chromosomal fragments corresponding to the 3 7kb and the 2 5kb Hmd III P 

-actin restriction fragments (Fig 4 5) The probe also detected two plasmid
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bands at 10 5 and 8 6kb Each lane on the resulting autoradiogram had four 

bands which makes scanning densitometry difficult The system developed 

in the present work could have employed restriction o f total genomic DNA 

with enzymes such as EcoR I, Pst I, Hind III or Kpn I, all of which would 

have resulted in multiple (3 or more) chromosomal (3-actin or plasmid bands 

on the autoradiogram Restriction o f total genomic DNA with Sal I results 

m a single chromosomal p-actin band and a single plasmid pJG317 band 

which makes scanning densitometry and hence PCN calculation easier 

Also, throughout this study, in conjunction with PCN, the plasmid stability 

of free and immobilised cells under various growth and environmental 

conditions is investigated Plasmid instability can be either structural or 

segregational The added advantage o f having a minimum number of 

restriction fragments on the autoradiogram is that any large plasmid 

deletions or rearrangements can be easily detected, thus ascertaining whether 
structural instabilities occur
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CHAPTER FIVE

INVESTIGATION OF THE INFLUENCE OF 
GROWTH RATE ON PLASMID STABILITY, 
PLASMID COPY NUMBER AND ENZYME 
PRODUCTION IN FREE CELL CULTURE
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5.1 INTRODUCTION

Immobilisation of recombinant cells results in an increase m the apparent 

plasmid stability Gradients in plasmid stability exist throughout a particular 

gel bead, with the slow growing cells on the inside having a higher 

percentage of plasmid-contaming cells than the faster growing cells on the 

outside of the gel beads (De Taxis du Poet et al , 1987, Cahill et al , 1990) 

The gradient in plasmid stability is a consequence o f the gradient in 

immobilised cell growth rate, which in turn is caused by increased 

diffusional resistances to essential nutrients and oxygen from the outer to the 

inner regions o f the gel beads, as cell growth proceeds (Gosmann and Rehm, 

1986, Mann Imesta et al , 1988, Sayadi et al , 1989) In order to quantify 

the gradient in plasmid stability in immobilised cells, it was necessary to 

measure the PCN of immobilised cells and determine whether a gradient in 

PCN exists across the gel beads However, before this can be 

accomplished, a study on the influence o f cell growth rate on plasmid 

stability and PCN had to be performed, since growth rate is one o f the major 

factors governing plasmid stability and PCN m recombinant cells This 

study was conducted using free cells

The relationship between free cell growth rate, plasmid content and cloned 

gene product was also studied Increased PCN and cloned gene expression 

can lead to an increased metabolic load or burden on recombinant cells, 

leading to a decrease in the percentage of plasmid-beanng cells

Finally, since the PCN of free cells in vanous different fermentation types 

was to be measured this study would serve as a good test o f the newly 

developed procedure for PCN measurement This procedure was developed 

using yeast cells grown in batch culture in selective medium In this study, 

batch, senal batch and continuous cultures in selective and complex media 
were performed
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5.2 FR E E  C E L L  BATCH FERM EN TA TIO N S

Figure 5 1 represents the complete fermentation profile (cell growth, 

enzyme production and sugar consumption) o f free cells grown on selective 

medium in a 2 L  Life Sciences bioreactor (Section 2 5 4) Using a 15 L  

Microgen fermenter with a working volume o f 10 L  (Section 2 5 4) the 

fermentation profile of free cells grown on YEPD medium was followed and 

is illustrated in Figure 5 2

In order to measure plasmid copy number (PCN) o f cells total chromosomal 

and plasmid DNA was isolated from the cells (Section 2 7 3) and restricted 

with endonuclease Sal I (Section 2 7 4) The DNA was fractionated 

electrophoretically (Section 2 7 5) and transferred to nitrocellulose (Section 

2 7 7) The DNA probe pPC64 containing P-actin sequences in the vector 

pUC-19 was labelled with 32P (Section 2 7 9) and hybridised to the 

nitrocellulose filter (Section 2 7 11) Autoradiography using X-ray film was 

then performed The autoradiogram was scanned using a densitometer and 

the area under each peak was determined (Section 2 8) The plasmid copy 

number of each sample was calculated from the relative intensities of 

hybridisation of the probe DNA to the single copy P-actin chromosomal 

gene and the multicopy plasmid pJG317 (Section 2 8) Figure 5 3 shows the 

eletrophoretic pattern of total yeast DNA restricted with Sal I Figure 5 4 is 

the resulting autoradiogram when this DNA was hybridised to pPC64, and 

Figure 5 5 shows examples of densitometer scan tracings of Lanes 2 and 8 

of the autoradiogram Finally, Table 5 1 shows the values o f PCN 
calculated

117



pl
as

m
id

 
st

ab
ili

ty
 

(%
)[ 

O 
]. 

en
zy

m
e 

ac
tiv

ity
 

(U
/m

l)
[ 

■ 
]

3
>.
>
"o
O
a>
E>*NC©

E

1 o 8 f

C
o

1 0 7 2
C
©Ocoo

1 0 '

r 25

“ 20 _

-  15

10

fe rm enta tion  time (h)

Figure 5 1 Fermentation profile for free cells in selective medium

o>

oO)
□(A

10

10

10

25

20

-  15

-  5

O)

io Scou
ocn
3tn

fe rm enta tion  time (h)

Figure 5 2 Fermentation profile for free cells m YEPD medium

118



LANE I  4 6 8 10 12

kb

21

5 8 , 5  6 

4 9  
3 5

................................SAmiB: * * * . ;
l X size markers
2 Standard reference DNA
3 Batch fermentation (YEPD) 49 h
4 Batch fermentation (YEPD) 30 h
5 Batch fermentation (YEPD) 25 h
6 Batch fermentation (YEPD) 12 h
7 Batch fermentation (YEPD) 6 h
8 Batch fermentation (Selective) 58 h
9 Batch fermentation (Selective) 49 h
10 Batch fermentation (Selective) 35 h
11 Batch fermentation (Selective) 25 h
12 Batch fermentation (Selective) 12 h
13 Probe DNA (pPC64) { + ve control}

Figure 5 3 Restriction pattern of total genomic DBY746 (pJG317) DNA 
cut with endonuclease Sal I



LANE 13 12 11 10 9 8 7 6 5 4 3

{St

*

Figure 5 4 Autoradiogram of the single copy chromosomal P-actm band 
and multicopy plasmid pJG317 DNA band, of cell samples 
during batch fermentation on selective (Lanes 8-12) and 
YEPD (Lanes 3-7) media

(Samples in each lane are as in Figure 5 3)
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LA N E  6 12h fermentation on YEPD medium

L A N E  *1 25h fermentation on selective medium

Figure 5 5 Densitometer scan tracings of autoradiogram m Figure 5 4 
Note (a) Lane 6 = 1 2  hours growth on YEPD

(b) Lane 11 = 25 hours growth on selective medium 
PCN is calculated from the relative peak areas
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Table 5 1 PCN values fo r  free cell fermentations on selective and non 
selective media

SELECTIVE MEDIUM
Time (h) Gen Plasmid

Stability
(%)

PCN

12 2 2  - 100 8
25 4 9 100 8
35 5 100 8
49 5 100 9
58 5 100 9

YEPD MEDIUM
Time (h) Gen Plasmid PCN

Stability
(%)

6 1 5 57 25
12 5 49 25
25 7 37 33
30 7 1 37 27
55 7 5 33 34

122



5.3 SE R IA L BATCH FERM ENTATIO NS

In order to follow the total loss of plasmid from a cell population and to 

determine if a corresponding decline in enzyme production occurred, serial 

batch fermentations using YEPD were performed (Section 2 5 5) Figure 

5 6 shows that the decrease in plasmid positive cells is accompanied by a 

decrease in enzyme activity These decreases follow an exponential decay 

pattern

When measuring PCN of samples, no plasmid band was detected on the 

autoradiograms after generation number 63 at which time only 1 5% o f the 

cell population were plasmid harbouring cells This result confirms that 

when plasmid stability equals zero percent as measured by the replica plate 

method (Section 2 6 6), no plasmid can be detected by DNA hybridisation 

Figure 5 7 illustrates the loss of plasmid from the cell popluation Here, 

densitometer scan tracings o f the cell population after 12 generations (26% 

plasmid positive cells) are compared with that o f the same cell population 

after 63 generations (15%  plasmid positive cells) However as Table 5 2 

shows, there is little or no change in the PCN o f the cells with a mean value 

o f 25±5 5 copies per plasmid bearing cell

Table 5 2 PCN values fo r  free cells in serial batch fermentations

Time (h) Generation Plasmid Stability (%) PCN
24 12 26 33
48 25 15 18
72 38 7 23
96 50 3 5 25
120 63 1 5 27
144 76 0 -
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(a) Generation no. 12 (plasmid stability = 26% )

(b) Generation no. 63 (plasmid stability = 1.5%)

Figure 5 7 Densitometer scan tracings of cells in serial batch 
fermentation at (a) Generation no 12 and (b) Generation no 
63
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5.4 CONTINUOUS CU LTU RE

The previous studies examined plasmid stability, PCN and cloned gene 

expression in batch culture In order to evaluate environmental effects in 

more well defined conditions, a continuous culture system was used (Section 

2 5 7) and dilution rate was altered in order to obtain different specific 

growth rates The parameters determined as a function of dilution rate 

include plasmid stability, PCN and P-glucanase activity

The value for the maximum specific growth rate ( ju ^ )  of DBY746(pJG317) 

has been previously shown to be 0 8h“‘ (Cahill, 1990) A dilution rate of 

0 67h_1 was chosen as an example of a fast growing culture However, 

washout o f the chemostast occurred indicating that D — 0 67h_l was close to 

or possibly greater than /imax Therefore a dilution rate of 0 5h_1 was chosen 

as an example of a fast growing culture (doubling time, td =  1 5 h) and a 

dilution rate of 0 lh 1 was chosen to represent a slow growing culture (td 

= 6  9 h) The number of generations in the chemostat was calculated from 

D t f ln2 , where D is the dilution rate and t is the time (De Taxis du Poet 

etal 1987)

Figures 5 8 and 5 9 show the fermentation profiles of continuous cultures at 

dilution rates of 0 5h_1 and 0 lh '1 respectively Unlike at the lower dilution 

rate (Figure 5 9), there is a slight downward trend in cell numbers and an 

upward trend in sugar concentration at D = 0  5h_1 (Figure 5 8), indicating 

that D = 0  Sir1 is quite close to Any slight fluctuations in the system, 
especially m flow rates, could result in a loss of cells
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5.5 TH E IN FLU EN CE O F GROW TH R A TE ON PLASM ID 

STA BILITY  AND PCN

The operation of a glucose limited chemostat enabled direct control over 

growth rate of the cells A fast (D =  0 5hrl) and slow (D = 0  lh-1) growing 

cultivation was achieved Senal batch cultivation (Section 5 3) represents a 

cell population growing in excess nutrients with no limitations in other 

environmental factors such as oxygen supply In other words, the cells 

growing in serial batch grew at a maximum or near maximum specific 

growth rate before slowing down when nutrients became exhausted The 

cells were soon after reinoculated into fresh medium and continued to grow 

at their maximum specific growth rate When investigating the influence of 

growth rate on plasmid stability and PCN, data from a slow and fast 

growing culture was obtained from chemostat studies, and data from an 

assumed maximum specific growth rate was obtained from senal batch 

fermentations The influence o f growth rate on plasmid stability is shown in 

Figure 5 10 while growth rate effects on PCN are presented in Figure 5 11

1 2 8



In 
(p

la
sm

id
-p

o
si

tiv
e

 
ce

ll 
co

nc
en

tr
at

io
n 

[n
o 

/m
l]

)

generation num ber ( - )

Figure 5 10 Plasmid stability profiles for free cells m senal batch and
chemostat cultures

129



pl
as

m
id

 
co

pi
es

 
(n

u
m

b
e

r/
ce

ll)

80

70 

60 

50 

40 

30 

20 

10 

0
0 10 20 30 40 50 60 70

generation num ber ( - )

Figure 5 11 Plasmid copy number profiles for free cells in senal batch and
chemostat cultures

a  serial batch (mean PCN = 25)

O chemostat with D = 0 5h 1 (m ean PCN = 32) 

•  chemostat with D = 0 1h 1 (m ean PCN = 40)

O

-i 1----1----1----1----i----1----1----1----1----r~
10 20 30 40 50 60

generation num ber ( - )

130



J

5.6 TH E RELA TIO N SH IP BETW EEN GROW TH RA TE. PCN AND 

EN ZYM E PRO DUCTIVITIES

By reviewing all free cell fermentations i e batch fermentations in shake 

flasks and in fermenters, using both selective and YEPD media, and 

continuous cultures operated at high and low dilution rates, a relationship 

between growth rate, PCN and enzyme activity and enzyme productivity 

was established and is presented in Table 5 3 Where 

apparent specific activity (U/cell) =  EIXt

specific enzyme activity (U/plasmid positive cell) =  (E/Xi)(100/P+) 

volumetric enzyme productivity (U/ml-h) =  E/tj- {for batch systems} 

volumetric enzyme productivity (U/ml-h) =  Eav D {for continuous systems}
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Table 5 3 Relationship between growth rate, plasmid copy number, enzyme 
activity and enzyme productivity for different free cell fermentations

Fermentation Plasmid

copy

number

Specific 

activity 

(10"6 U/cell)

Enzyme

productivity

(U/ml-h)

Plasmid

stability

(% )

Selective medium 

2 1 bioreactor

8 1 4 1 7 100

YEPD flask“ 

(fast ft)

27 2 9 2 2 30b

Chemostat 

D  = 0 5  h 1

32 3 4 22 0 high

Chemostat 

D  = 0 1 h 1

40 4 8e 10 0 low

a mean value from several different flask scale fermentations 
b final plasmid stability
c mean value obtained from two continuous fermentations
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5.7 PCN CO RRECTIO N FA CTO RS

The procedure for determining PCN is intricate and involves many variables 

which are difficult to control Such variables include quantity o f DNA 

transferred to nitrocellulose, degree of incorporation of radioisotope into 

probe DNA, degree of hybridisation of particular sequences to filter bound 

DNA, autoradiogram exposure time etc These factors cause the estimation 

of PCN to vary from one autoradiogram to another

In order to standardise the PCN values obtained, two samples were selected 

from each of the free cell fermentations (batch, serial batch and continuous) 

and the PCN determined from a single autoradiogram (Figure 5 12) From 

these data the relative PCN values o f the different fermentations was 

calculated Furthermore any of these DNA samples used in this 

autoradiogram could be used as a "standard reference" in future PCN 

measurements Each "standard reference" has an accepted PCN value as 

determined from this autoradiogram (Figure 5 12) When used with other 

samples in other autoradiograms the final PCN value can be adjusted 

according to the relative values of PCN of the standard refrence sample in 

the new autoradiogram and the accepted PCN determined from this 

autoradiogram In this way a PCN value becomes reproducible from one 

autoradiogram to the next and also takes into account the relative differences 

in PCN from one fermentation type to another In practice usually two 

different standard reference samples were included m all agarose gels and 

hence autoradiograms, so as to minimise errors in PCN correction factors
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LANE 2 3 5 6 7 8

i Continuous culture (D=0.67 h'1) Gen no. 9
2 Continuous culture (D=0.5 h*1) Gen no. 5
3 Continuous culture (D=0.1 h 1) Gen no. 8
4 Serial batch culture Gen no 25
5 Batch culture (YEPD) T=6 h
6 Batch culture (YEPD) T=49 h
7 Batch culture (Selective) T= 12 h
8 Batch culture (Selective) T=58h

Figure 5.12 Comparison of the PCN of cells from different fermentations 
for the purpose of establishing "standard references" and 
correction factors.
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5.8 DISCUSSIO N

Growth of the yeast with or without plasmid pJG317 is greater in YEPD 

(Complex) medium than in selective medium with final cell numbers in the 

former ten times that in the latter This corresponds to about two and a half 

more generations Since the cloned gene product, (1,3) (1,4) P-glucanase 

production is growth associated (Cahill, 1990), enzyme production is greater 

in YEPD than in selective medium Despite the fact that there is a loss in 

the number of plasmid containing cells and hence those cells which can 

produce the p-glucanase enzyme when the cells are grown non-selectively, 

the volumetnc enzyme productivities and specific enzyme activities are 

higher for YEPD batch culture than for selective batch culture (Table 5 3) 

Plasmid pJG317 is quite unstable under non-selective conditions, with the 

percentage plasmid containing cells falling to 37% after only 24 hours The 

PCN of cells grown in both media did not change drastically throughout the 

fermentations There was greater variation in the PCN values o f cells grown 

in YEPD as opposed to selective medium (Table 5 1) The average PCN for 

the two batch fermentations were 8 4+0 5 copies and 29 8±4 4 copies per 

cell for selective medium and YEPD respectively Although the growth rate 

of cells affects PCN (Bugeja et al , 1989, Walls and Gainer, 1989) and the 

growth rate of cells in YEPD is greater than that in selective medium, other 

factors such as medium composition or nutrient requirements/limitations 

must also play a role m determining PCN

Serial batch fermentation was performed until plasmid pJG317 was totally 
lost from the cell population Figure 5 6 clearly shows a decrease in 

enzyme activity with plasmid loss Cloned gene product activity is

proportional to the concentration of plasmid in the cells This result is in 

agreement with results from Kingsman et al (1985) and Romanos et al 

(1992) for a constitutively expressed plasmid encoded gene product During 

the measurement of PCN, the autoradiogram clearly showed the 6 6kb Sal I 

restriction fragment becoming fainter as the fermentation progressed, until it 

disappeared altogether (Figure 5.7) The 3-actin band intensity remained 

relatively constant for each sample This result confirms the loss o f plasmid 

from the cells as the measured plasmid stability decreases Therefore, it 

may be assumed that segregational instability rather than structural instability
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is the dominant factor in the increased pJG317 loss Futcher and Cox 

(1984), Impoolsup et al (1989) and Porro et al (1991) also reported 

segregational instability as the major reason for plasmid loss in recombinant 

yeast cell fermentations The PCN of the cell population decreased as the 

plasmid was lost However, the PCN per plasmid containing cell remained 

relatively constant with an average PCN value of 25 2±5 5 copies per cell 

(Table 5 2) This compares well with YEPD batch culture

In order to assess the effects o f growth rate on plasmid stability, PCN and 

enzyme activity, better defined and controlled growth conditions were 

necessary For this reason chemostat culture was performed Low 

(D = 0  lh_1) and high (D = 0  Sir1) dilution rates were investigated Serial 

batch culture represents a cell population growing in excess nutrients with 

little or no limitations in other environmental factors such as oxygen supply 

Although it was very difficult to exercise control over cells in serial batch, it 

is assumed that the cells grow at a maximum or near maximum growth rate 

Figure 5 10 illustrates the effect of growth rate on plasmid stability It can 

be seen that the plasmid has a higher stability at higher growth rates than 

lower growth rates Kleinman et al (1986) suggested that a possible reason 

for increased plasmid stability at higher growth rates could be that cell 

division results in larger buds at high growth rates, thus increasing the 

chances of plasmid transfer to the daughter cells From Figure 5 10, it can 

also be seen that the plasmid loss per generation remains constant for the 

different growth rates In this way plasmid loss kinetics are similar to some 

enzyme decay kinetics (i e exponential decay) and as in the case of enzymes 

the half-lives of the plasmid may be calculated Half the number of plasmid 

bearing cells lose plasmids every 14 generations at near maximum growth 

rates (serial batch) while at low dilution rates, the same number of cells lose 

their plasmids every 5 generations Futcher and Cox (1984) also reported 

that for several recombinant yeast systems, plasmid instability per generation 
remained constant for a particular growth rate Bugeja et al (1989), Walls 

and Gainer (1989), Porro et al (1991) and De Silva and Bailey (1991) all 

reported that for recombinant yeasts grown m continuous culture, the loss of 

the plasmid varied with dilution rate In all cases the greatest loss occurred 

at the lower dilution rates The results obtained indicate that the stability of 

the recombinant yeast system may be improved by operating at high growth 
(dilution) rates
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Porro et al (1991) found the PCN not to change at different dilution rates 

while Coppella et al (1989) reported that PCN showed no dependence on 

the physiological state of the cell In the DBY746(pJG317) recombinant 

yeast system, the PCN of fast growing cultures (serial batch) which had the 

highest plasmid stability had the lowest PCN of 25 2±5 5 copies per cell 

The next fastest growing culture (D = 0  5hrl) had an average PCN value of 

32 3±5 7 copies per cell, while the slow growing culture (Z?=0 l lr 1) which 

had the lowest plasmid stability had the highest PCN of 40 0±6 3 copies per 

cell A one way analysis of variance least significant difference test with 

significance level 0 05, which tests whether the means o f samples are 

significantly different from each other was performed, and showed the 

average PCN values at all three growth rates to be significantly different 

from each other

Siegel and Ryu (1985) reporting on a kinetic study of instability of a 

recombinant plasmid in E  coh in continuous culture draw conclusions which 

may be applied to this recombinant S cerevisiae system in order to explain 

the influence of growth rate on plasmid stability and PCN It is suggested 

that the increased plasmid content (or PCN) at low growth rates makes the 

plasmid-carrying cells (P + ) less competitive with those cells which have lost 

the plasmid (the plasmid free segregants, P-) i e a difference in growth rate 

between P- and P +  cells exists This would lead to a more rapid increase in 

the P- fraction of the population Plasmid stability would be lower in the 

slow growing cultures due to the metabolic burden placed on the cells as a 
result of high plasmid content and increased expression of the cloned gene 

The converse would apply to cells growing at fast growth rates

Several findings suggest that factors other that growth rate influence PCN, 

such as the nature of the growth limiting nutrient or the more intense 

selection that occurs under extreme nutrient limitation of low dilution rate 

conditions (Kleinman et al , 1986, De Taxis du Poet et al , 1987, 

Reinikainen and Virkajarvi, 1988, Bugeja et al , 1989) The influence o f 

nutrient requirements and / or limitations is investigated in the present study 
and is presented in Chapter Seven

Throughout the free cell fermentations enzyme activity, plasmid stability and 

PCN were measured Table 5 3 outlines the relationship between these 

parameters Slow growing cultures have a higher plasmid content (PCN)
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and also tend to have a greater specific enzyme activity The greater the 

number of plasmid copies present m the cell, the greater the cloned gene 

expression leading to a higher enzyme production This finding reinforces 

the possibility of a greater metabolic burden occurring in those cells with 

higher PCN (and hence higher enzyme production), leading to a greater loss 

of plasmid from the cells i e a low plasmid stability This is observed in 

slow growing cultures The opposite is found in fast growing cultures Low 

PCN results in lower specific enzyme activity and therefore a lower stress or 

metabolic burden on the recombinant cells, which leads to a higher plasmid 

stability Table 5 3 shows this to be the case for DBY746 (pJG317) free cell 

fermentations

That such a correlation may be made is testimony to the reproducibility and 

effectiveness o f the method for measuring PCN Having been developed, 

tested and optimised with cells grown in the simplest, fermentation type i e 

batch culture in selective medium, the procedure was applied to a complete 

range of multiple samples for various different cultivation conditions using 

complex media The consistency of results for a given fermentation and the 

difference in results between different fermentations implies that the 

procedure may be confidently employed to measure the PCN of recombinant 

yeast systems The lowest PCN value measured was 8 copies per cell for 

selective batch culture and the highest PCN value measured was 40 copies 

per cell for continuous culture at a dilution rate o f D =01  h_I The values 

obtained are comparable to those of yeast episomal plasmids which is 
typically about 20 to 40 per genome and the stability is less than that of the 

native 2\l circle (Futcher and Cox, 1984, Bugeja et al , 1989)

The use o f selective pressure in all seed cultures should ideally provide a 

population consisting of 100% plasmid containing cells However, this is not 

the case, as can be seen from Figures 5 2, 5 8 and 5 9 where the starting cell 

population contains about 70% plasmid containing cells Various experiments 

on seed cultivation conditions were unable to increase this value, although 

younger seed cultures did result in slightly higher plasmid stabilities The 

selective pressure is not totally effective because the growth rate o f plasmid- 

free cells in selective medium is not zero (Syamsu et a l , 1992) The reason for 

the relative ineffectiveness o f the selective medium is thought to be leakage o f 

the gene product or some component which forms the basis o f the selective 

mechanism Leakage, whether directly into the plasmid-free daughter cells or
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into the bulk medium itself, followed by uptake by the plasmid-free segregants, 

enables them to grow in conditions which were expected to select against them 

(Snenc et a l , 1986 Satyagal, 1989, Mason, 1991)
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CHAPTER SIX

DETERMINATION OF GROWTH AND PLASMID 
STABILITY PROFILES IN IMMOBILISED CELL 

CULTURE AND MEASUREMENT OF PLASMID COPY
NUMBER
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6.1 INTRODUCTION

The technique developed for measuring PCN was successfully applied to 

free cell fermentations involving different media and differing fermentation 

modes The relationships between growth rate, plasmid stability, PCN and 

enzyme activity have also been investigated Using the multistep dissolution 

technique of Walsh et al (1993) immobilised cell cultures of DBY746 

(pJG317) were studied by isolating and analysing cell samples from various 

locations throughout the gel beads The heterogeneous nature o f cell growth 

in the gel beads was illustrated It was also established that the plasmid 

stability (averaged over the whole bead) of immobilised DBY746 (pJG317) 

cells was greater than for free cells Using the multistep dissolution 

technique the evolution of a gradient m plasmid stability throughout the gel 

beads dunng a fermentation was detected The PCN of immobilised 

recombinant yeast has not been reported although it has been hypothesised 

that a difference in PCN might exist in cells immobilised in different 

locations within the gel beads, and is a contributing factor to the higher 

plasmid stability and the gradient in plasmid stability which exists in 

immobilised cells In order to test this hypothesis, the PCN of cells 

immobilised in various locations throughout the gel beads was measured

Diffusion resistances give rise to a heterogeneous growth pattern in 

immobilised cell gel beads, which in turn give rise to populations o f cells 

with diffenng plasmid stabilities (Nasn et al , 1987a) This is due to cells 

growing faster in the outer sections of the gel beads and other cells growing 

slower in the inner regions of the beads The influence of growth rate on 

PCN for free cell cultures has been described in the previous chapter and 

this study is extended to determine if growth rate differences affect the PCN 
in an immobilised cell system
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6.2 ENZYM E PRODUCTION AND PLASM ID STA BILITY

Immobilised cells were prepared as m Section 2 5 2 with an ICL of 106 

cells/g-gel Repeated batch cultivation (Section 2 5 6) was performed with 

50g gel beads in 250ml medium in a 0 5 1 Erylenmeyer flask and three 

medium changes in YEPD A similar immobilised cell fermentation was 

performed with the first batch incubation in selective medium rather than 

YEPD, with subsequent batch incubations in YEPD The purpose of this 

was to assess the effect of first incubating the immobilised cells in selective 

medium (a term referred to as "Preincubation") on enzyme production and 

plasmid stability On preincubation of the beads, the cells grew from 106 to 

108 cells/g-gel, and as selective medium was used, the whole population 

maintained the plasmid pJG317 To contrast this method of fermentation a 

control of ordinary repeated batch fermentations were earned out m YEPD 

only (i e no preincubation m selective media) Premcubation thus selected 

for a large population of plasmid beanng immobilised cells at the beginning 

o f a particular fermentation

Table 6 1 and 6 2 show that preincubation does result in higher plasmid 

stabilities of immobilised cells and hence higher enzyme activity, compared 

to immobilised cells grown in YEPD only Final cell numbers are quite 

close to each other for the different fermentations

Table 6 1 Plasmid stability, enzyme activity and cell growth in repeated 
bacth fermentation with preincubation in selective medium

Batch Cell 
concentration 

(no /g-gel)
Plasmid
Stability

(%)

Enzyme
activity
(U/ml)

Leaked cell 
concentration 

(no /ml)
Selective 9 4 x 10’ 65 33 0
YEPD n 9 1 x 10* 54 97 3 0 x 107
YEPD Wl 9 4 x  10* 53 97 3 3 x 107
YEPD #3 1 3 x 10» 46 105 a 9 4 x 107

a 48 h incubation
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Table 6 2 Plasmid stability, enzyme activity and cell growth in repeated 
batch fermentation with no preincubation

Batch Cell 
concentration/ 

(no /g gel)
Plasmid
Stability

_ (%)
Enzyme
activity
(U/ml)

Leaked cell 
concentration 

(no /ml)
YEPD n 6 5 x  10* 28 54 5 2 x  106
YEPD #2 1 3 x 109 25 59 5 1 x 107
YEPD #3 1 5 x 109 22 49 5 4 x 107
YEPD #4 1 7 x 109 22 64 a 9 2 x 107

a 48 h incubation

6.3 GROWTH PROFILES IN ALGINATE BEADS

Using the multistep dissolution technique (Section 2 6 12) cell numbers 

throughout the alginate gel beads were calculated for the above repeated 

batch fermentation Figure 6 1 illustrates the development o f a gradient m 

cell growth as the fermentation progresses A similar gradient also 

developed in those beads in the repeated batch culture with no preincubation

6.4 PLASMID STABILITY PROFILES IN ALGINATE BEADS

Dunng the course of the above repeated batch fermentations beads were 

sampled at each media change and multistep dissolutions performed in order 

to measure the plasmid stability of cells throughout the beads (Section 

2 6 6 2) Total dissolutions (Section 2 6 1 1 )  were also performed to 

determine the average plasmid stability o f all cells immobilised at that 

particular time dunng the fermentation
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pre-incubauon m selective medium)
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Multistep dissolutions were earned out in such a way so as to liberate cells 

from the outer 200/xm of the gel beads (referred to as ’’outer cells") and cells 

from the inner 2 Omm of the gel beads (referred to as "inner cells") k 

Therefore, plasmid stability could be determined for inner cells, outer ceils, 

cells from the total bead (referred to as "total cells") and also cells which 

had leaked from the gel matnx Table 6 3 shows that a gradient in plasmid 

stability does exist throughout the gel beads and Figure 6 2 illustrates the 

progressive loss of plasmid from cells in the inside and outside of the beads 

and also from leaked cells over the course of a fermentation run

Table 6 3 Plasmid stability profiles (%) fo r  immobilised cells during 
repeated batch culture (with preincubation)

Batch Total cells
(%)

Outer cells
<%)

Inner cells
<%)

Leaked cells
(%)

Selective 65 - - -

y e p d  n 53 53 69 54
YEPD Wl 54 52 65 46
y e p d  n 46 46 63 29

6.5 M EA SU REM EN T O F PLASM ID COPY NUM BER

In order to measure the PCN of cells immobilised throughout the alginate 

gel beads and of cells located in the inner and outer regions o f the beads, 

total and multistep dissolutions (Section 2 6 1) were performed Beads were 

sampled throughout the repeated batch fermentations desenbed in Section 

6 2 and dissolutions were performed so as to liberate the cells from 

throughout the beads ("total cells"), from the inner 2 Omm ("inner cells") 

and from the outer 200jLtm ("outer cells") Total DNA was isolated from the 

cells (Section 2 7 3), restncted, electrophoresed, blot transferred and 

hybndised to probe pPC64 so that the PCN could be determined Due to 

differences in cell numbers throughout the gel beads, different numbers of 

beads had to be progresively dissolved in order to harvest enough cells from 

the outside and inside of the gel beads In the case of outer cells, multistep 

dissolutions were performed on a sample size of 6 beads, so as
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to isolate a sufficient quantity of DNA to measure the PCN of one sample 

In the case of inner cells, where cell numbers were of the order of ten times 

less than on the outside of the bead, up to 60 beads had to be progressively 

dissolved, so that the PCN of one sample of inner cells could be measured

On development of the autoradiograms, it was noticed that instead of the 

usual two bands that appear (i e the chromosomal p-actm band and the 

plasmid pJG317 band), there was a third band present This extra band was 

located between the two former bands and was approximately 8 Okb in size 

Several characteristics associated with the appearance of this extra band 

included the fact that it was independent o f hybridisation temperature (64°C 

or 68°C), it was reproducible, it appeared much more frequently in

immobilised cell DNA samples than in free cell DNA samples It was 

noticed that, the longer the cells were immobilised the darker or more 

intense the extra band was and it only appeared faintly in free cell samples 

where plasmid stability (and hence plasmid content per cell) was high 

Figure 6 3 is an example of an autoradiogram showing the P-actin band, the 

pJG317 band and the extra band

It was unlikely that the DNA isolation procedure was responsible, as

samples isolated together and using the same reagents showed different 

results / e DNA from leaked cells (where no extra band was present) was 

isolated together with DNA from immobilised cells (where the extra band 

was present) It is possible that the appearance of this extra band was the 

result of partial digestion o f the yeast total DNA and in particular pJG317 

As shown in Figure 6 4, complete digestion of pJG317 by the restriction 

enzyme Sal I yields four fragments, of sizes 6 6, 4 7, 1 0 and 0 5kb 

However, a partial digestion could yield extra fragments of 7 6 and 5 2kb 

These fragments would contain sections o f the P-glucanase gene The extra 

band appearing on the autoradiograms could be the 7 6kb partial fragment 
from pJG317

In order to test this hypothesis, the following experiment was performed 

The P-glucanase gene was cut from plasmid pJG106 (P-glucanase gene in 

pUC-19 vector), gene cleaned and labelled non-radioactively (Section

2 7 10) A duplicate nitrocellulose filter to one that had been previously 

probed with 32P- labelled pPC64 and showing the extra band was then 

probed with this new P-glucanase probe (Section 2 7 112)  The results in
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Figure 6 4 Schematic diagram o f plasmid pJG317 showing the resultant 
fragments o f complete Sal I restriction digestion and partial 
digestion (The 7 6kb partial restriction fragment is the "extra 
band")

NOTE The P-Glucanase gene, when used as a probe hybridises to the completely restricted 
0 5 and 1 Okb fragments and hybridises to the 7 6 and 5 3kb partially restricted DNA 
fragments The p-Glucanase probe also hybridises to linear open circular, covalently closed 
circle and multimer forms of the unrestricted plasmid that would be present in a partially 
restricted total yeast DNA sample
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Figure 6 5 show that the extra band and multimer bands did hybridise to the 
p-glucanase probe Therefore, it was concluded that DNA from 

immobilised cells was not restricting completely Without complete 

restriction of the DNA the procedure for measunng PCN is not accurate

To circumvent the problem of incomplete DNA restriction of immobilised 

cell samples, the DNA was diluted 2 fold, and extra restriction enzyme was 

used, (4jd enzyme per 20/xl diluted DNA) This improved the restnctability 

of the DNA samples and the PCN was measured Some lanes on the 

autoradiogram had a faint extra band and the PCN was calculated from the 

relative intensities of the single copy P-actin band to the sum of the 6 6kb 

pJG317 band and the faint 7 6kb partially cut pJG317 band The resultant 

value was regarded as an estimated rather than an absolute PCN value 

Each immobilised cell sample was assayed for PCN up to 4 different times 

yielding absolute values or a mixture of absolute and estimated values An 

average figure yielded the final PCN for that particular sample Figure 6 6 

illustrates autoradiograms for which absolute PCN values (complete 

digestion) and estimated PCN values (partial digestion) were calculated 

Also shown are samples from which the partial restriction of DNA was too 

great to yield an accurate figure for PCN and hence these sample were 

rejected Table 6 4 shows the calculated PCN for immobilised cells 

including those values estimated in the case of partial digestion of the DNA 

Table 6 5 is a summary of the results for PCN o f immobilised cells during 

repeated transfer fermentations with and without preincubation

Finally, a second repeated batch fermentation was performed in YEPD (with 

no preincubation) Starting with 10^ cells/g-gel the immobilised cells were 

grown to 1 2 x 10^ cells/g-gel over three batch incubations Multistep 

dissolutions were performed to remove cells from the outer 0 5mm ("outer 

cells") inner 3 0mm ("inner cells") and cells throughout the whole bead 

("total cells") PCN was measured as before on samples from the final 

batch fermentation The results were very similar to the first set of repeated 

batch experiments The PCN values obtained were as follows total cells 

33, inner cells 29, outer cells 39, leaked cells 36 plasmid copies per cell

From the above results, it may be concluded that the PCN of immobilised 

DBY746 (pJG317) cells does not vary significantly throughout a gel bead
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Unlike growth or plasmid stability no detectable gradient in PCN exists 

throughout an immobilised cell gel bead
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LANE 1 2 3 4 5 6 7 8 9 10 11 12

«P labelled 
pPC64

(a)

_  [3-actin band 

— 7.6kb partial
6.6kb plasmid band

t

—  Mul timers

non-radioactively _ _ _ . 
i . .. . 0 . *  Multi mers
labelled p-glucanase

7.6kb partial 

5.3kb partial —

0.5 + l.Okb P-glucanase 
gene fragments

Small p-glucanase 
gene fragments

Figure 6.5 Duplicate filters showing the "extra" band probed with (a) 
pPC64 and (b) P-glucanase gene.

N ote: On com plete restriction only the small p-glucanase gene DNA fragm ents which are
cut out o f  plasm id pJG317 on Sal I restriction should be visible (Lanes 1-7).
T he presence o f  m ultim er bands, and bands at 7 .6  and 5 .3kb  in only those lanes 
show ing an extra band (i.e . lanes 10-12) indicates the presence o f P-glucanase 
D N A  in these bands, leading to the conclusion o f  partial digestion o f  pJG317 being 
responsible for the "extra" band.
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LANE

\

Chromosomal 
p-actin ----

6.6kb
completely  -----
restricted pJG317

Unrestricted and 

multimers of 
pJG317

Partial digest 
of pJG317

■ ■ ■ I ¡1W i l l
1 Complete restriction; absolute value of PCN
2 Slight partial restriction; estimated value of PCN
3 Much partial restriction; impossible to accurately measure PCN
4 Complete restriction; absolute value of PCN
5 Slight partial restriction; estimated value of PCN
6 Much partial restriction; impossible to accurately measure PCN
7 Much partial restriction; impossible to accurately measure PCN

Figure 6.6 Autoradiogram in which total genomic DNA from 
immobilised cells was probed with pPC64.

Note: PCN was calculated normally in cases of complete restriction (Lanes 1 and 4). An
estimated value of PCN was obtained in cases where slight partial restriction 
fragments occurred (Lanes 2 and 5). However, partial restriction was too extensive 
in other cases (Lanes 3, 6, 7) for any accurate value of PCN to be calculated.
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Table 6 4 Calculated PCN fo r  immobilised cells during repeated batch 
fermentations with and without preincubation

SAMPLE FERMENTATION PCN AVERAGE
PCN

Total Selective 18, 2 2 * 20
cells YEPD 1 32, 24*, 2 9 * 28

YEPD 2 30, 29❖ 30
YEPD la 25, 26, 21, 25 24
YEPD 2a 29, 36», 30*, 38 ❖ 33
YEPD 3a 29, 37*:* 33
YEPD 4a 32, 32 32

Inner YEPD 1 28*, 33 31
cells YEPD la 33 33

YEPD 2a 46, 33 40
YEPD 3a 29, 34<*, 43 35
YEPD 4a 34, 48, 41 41

Outer YEPD 1 34* 34
cells YEPD la 30*:*, 36 28

YEPD 3a 28*> 28
YEPD 4a 34 34

Leaked YEPD 1 34 34
cells YEPD 2 27, 30 29

YEPD 3 30, 36 33
YEPD 2a 32, 37, 34 34
YEPD 3a 20, 33, 30 28
YEPD 4a 34, 34, 45 38

Note (i) Selective, YEPD 1, YEPD 2, YEPD 3 Repeated batch
fermentation involving preincubation o f  alginate beads in selective 
medium, followed by 3 consecutive incubations in YEPD

(u) YEPD la , YEPD 2a, YEPD 3a, YEPD 4a Repeated batch
fermentation involving 4 consecutive batch incubations in YEPD

(m) ❖  indicates estimated value o f  PCN, calculated from the
relative intensities o f single copy chromosomal $-actin DNA and the 
sum o f the faint partial p JG 3J 7 7 6kb fragment and the normal 6 6kb 
p JG 317 completely restricted plasmid fragment
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Table 6 5 PCN of immobilised cells in YEPD -  summary of results

Location of cells Mean PCN Number of data points
Inner 36 5±6 8 11
Outer 32 4±3 3 5

Leaked 32 6±5 6 14

Note The statistical analyis performed on the three samples above plus the total 
dissolutions was a one way analysis of variance Least significant difference test 
with significance level 0 05, which tests whether the means of samples are 
significantly different from each other

6.6 DISCUSSIO N

Two distinct phases of immobilised cell growth have been reported 

(Monbouquette et al , 1990) Early in a typical immobilised cell 

fermentation, the cells throughout the gel matnx rapidly divide and grow at 

approximately equal rates The result of this first phase is an increasing 

bioreactor volumetric productivity and very low leaked biomass 

concentrations in the fermenter The cells continue to grow and form 

spherical micro-colonies (Gosmann and Rehm, 1988) After a number of 

generations a second phase in immobilised cell growth becomes apparent 

The microbial population becomes increasingly non-uniform and the more 

rapidly growing surface colonies consume substrates and nutrients to the 

detriment of cells located in the interior of the gel beads Eventually a dense 

outer layer of biomass forms around a relatively sparsely populated core 

(Wada et al , 1980, Monbouquette et al , 1990, Walsh et al , 1993) Figure 

6 1 illustrates the development of the heterogeneous distribution of cells 

within the calcium alginate gel beads Throughout the course of a repeated 

batch fermentation, relatively uniform growth takes place during the first 

batch culture Cell numbers increase in both selective and YEPD media 

(Table 6 1 and 6 2) corresponding to 6 5 and 9 3 generations respectively 

As growth progresses, a gradient m biomass concentration develops with an 

approximate 10 fold higher cell concentration developing on the bead outer
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surface compared with the bead intenor Cells on the surface of the bead 

undergo 11 to 12 generations, while cells in the core of the bead undergo 8 

to 9 generations The characteristic feature of this second phase of 

immobilised cell growth is the appearance of pseudo steady-state levels of 

leaked cells, residual nutrients and product in the bulk medium surrounding 

the gel beads (Monbouquette et al , 1990)

Plasmid pJG317 is unstable and is rapidly lost from a population o f growing 

DBY746 (pJG317) cells This has been illustrated in free cell batch and 

continuous fermentations (Chapter Five) Usually cells are immobilised at 

high concentrations and they quickly grow and attain the pseudo steady- 

state, characteristic o f the second phase o f an immobilised cell fermentation 

Only a few generations occur which prevents excessive loss o f the 

recombinant plasmid from the cell population (Berry et al , 1988, Sayadi et 

al , 1989, Walls and Gainer, 1989, 1991) Investigations into the influence 

of environmental conditions on immobilised cell growth and enzyme 

productivity were conducted and the results obtained from varying the cell 

load (inoculum) indicated that a medium cell loading of 106 cell/g-gel 
yielded higher enzyme production and greater stability of the immobilised 

cell system compared with low (103 cell/g-gel) and high (108 cells/g-gel) cell 

loadings These results are discussed m greater detail in Chapter Seven 

The production of cloned gene product i e P-glucanase, in immobilised cell 

culture is also discussed in Chapter Seven This is the reason for 

immobilising the cells at a cell load of 106 cells/g-gel in the above 

experiments Dunng the first stage of a repeated batch culture between 6 

and 9 generations take place m the immobilised cells (Table 6 1 and 6 2) in 

selective and YEPD media respectively In the case of YEPD (where there 

is an absence of selective pressure), this amount o f growth and number of 

cell divisions is sufficient for a substantial number of the plasmid containing 

cells to lose the plasmid Repeated batch cultivation in YEPD results in a 

rapid decrease in plasmid stability (Table 6 2) In an effort to circumvent 

this problem, the first incubation in the repeated batch cultivation was 

performed in selective medium Immobilised cells were able to grow and 

divide rapidly and attain a high biomass concentration while still maintaining 

the plasmid due to selective pressure Once a high cell density had been 

reached, the immobilsed cells were transferred into YEPD where they 

continued to grow and produce the P-glucanase enzyme Due to the physical 

restraint imposed by the gel matrix and the hetergeneous nature o f biomass
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distribution in the gel beads, the cells grew at what appeared to be a slower 

rate and the plasmid was not lost from the population at any appreciable 

rate

The successful application of this preincubation in selective medium is 

reflected in the increased plasmid stability of the immobilised cells dunng 

repeated batch cultivation compared with the relatively low plasmid stability 

of immobilised cells in batch fermentations in YEPD only This increased 

plasmid stability results in an increased enzyme production in the 

immobilised cell fermentation (Tables 6 1 and 6 2) The stability of the 

preincubation system is reflected by the smaller quantities o f released or 

leaked cells appearing m the bulk medium during the course o f the repeated 

batch culture The half life of penicillin G produced by immobilised P 

chrysogenum was found to be nine fold greater than with free, cells when 

the immobilised cells were periodically placed into a minimal production 

medium (Deo and Gaucher, 1984) Sode et al (1988), in an attempt to 

improve productivity in an immobilised recombinant yeast bioreactor, found 

that alternating the feed to the column bioreactor, between minimal and 

complex media resulted in 1 4 times greater a-peptide production compared 

with that achieved only by feeding minimal medium

Nutrient depletion and physical boundaries limit the growth of immobilised 

cells (Hahn-Haegerdal, 1990) This has successfully been exploited to 

enchance the stability of plasmids in immobilised recombinant cell systems 

(De Taxis du Poet et al , 1987, Inloes et al , 1983, Sayadi et al , 1989, 

Cahill et al , 1990, Walls and Gainer, 1991) This enhanced stability has 

also been demonstrated for immobilised DBY746 (pJG317) cells in the 
present work Repeated batch cultivations were performed over a four day 

penod The plasmid stability decreased to 46% yet the enzyme was still 

produced in high levels (80 to 100 U/ml) A free cell fermentation over the 

same time penod resulted in the plasmid stability decreasing to less than 

10%, with a corresponding decline in enzyme activity Figure 3 1 illustrates 

this point very clearly Here an immobilised cell fermentation is conducted 

in the usual manner - high cell loadings and repeated batch fermentation 

with no preincubation in selective medium These results are graphically 

compared to a standard free cell senal batch fermentation over the same time 

penod The results clearly show that the bead-averaged plasmid stability of
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immobilised cells is greater than the plasmid stability of free cells This 
results in greater P-glucanase production in the immobilised cell system

Using the multistep dissolution technique of Walsh et al (1993), 

immobilised cells from different locations in the gel beads were isolated 

Cell numbers were calculated per weight of gel bead dissolved, and plotted 

versus distance from the centre of the gel (Figure 6 1) When the gel beads 

were exposed to a sodium citrate solution, the bead diameter decreasd 

linearly with time, and is a function of the CaCl2 concentration used for gel 

formation (Walsh et al , 1993) By calculating the linear rate o f reduction 

of the gel bead diameter, dissolution times required to dissolve specific 

fractions of the gel beads could be predicted Cells from the outer 200/nm of 

the gel beads and the inner 2 Omm were isolated The plasmid stability of 

the inner cells, outer cells and the cells which had leaked from the gel beads, 

were measured Figure 6 2 shows that a gradient of plasmid stability exists 

throughout the beads Cells residing on the outside of the gel beads grow 

faster (Figure 6 1) and lose the plasmid at a greater rate than slower growing 

cells which reside in the inside of the beads Leaked cells lose the plasmid 

at rates comparable with free cells The rate o f plasmid loss is more 

pronounced dunng the early stages o f immobilised cell fermentation due to 

the outer cells growing at a faster rate because o f access to nutrients In the 

latter stages of the fermentation, when a pseudo steady-state exists, the rate 

of plasmid loss of cells on the surface of the beads approaches that of the 

cells in the inner core This is because cells on the outside, although still 

growing at faster growth rates are quickly shed from the bead surface This 

is reflected in the sharp decrease m plasmid-containing cells in the leaked 

cell population in the latter stages of the fermentation (Figure 6 2) Cahill 
(1990) detected and measured a gradient in plasmid stability in immobilised 

cells of DBY746 (pJG317) by partitioning cross sections o f gel beads 

Plasmid stability gradients were measured in both gel cylinders and gel 

beads Using the multistep dissolution method in the present work, the 

standard deviation of the PCN was lower than that measured by Cahill 

(1990), resulting in greater accuracy in the plasmid stability values

In an attempt to explain the gradient in plasmid stability m immobilised 

cells, the PCN of cells on the outside and inside of the gel beads were 

measured in addition to cells isolated by dissolving entire beads and also 

cells leaked from the gel matnx It has been shown that recombinant
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immobilised bacterial cells containing multicopy plasmids have higher PCN 
than free cells (De Taxis du Poet et al , 1987, Sayadi et al , 1989) 

However, the PCN of these immobilised cells is a weighted average of high 

PCN o f the internal cell population and low PCN of the external ceil 

population It has already been established that PCN vanes with cell 

growth rate (Chapter Five), in agreement with the findings of Bugeja et al 

(1989) also working with a recombinant S  cerevisiae strain Results from 

growth profiles of immobilised DBY746 (pJG317) cells show that a gradient 

in growth (Figure 6 1) and plasmid stability (Figure 6 2) does indeed exist 

These gradients are caused by the resistance to oxygen and nutnent diffusion 

into and through the gel beads, and by the physical nature o f the gel matnx 

It was of interest therefore to examine if a difference m PCN could be 

detected between slow growing internal cells and faster growing external 

cells

Measurement of PCN of immobilised cells was quite difficult due to 

incomplete digestion of total genomic DNA in some immobilised cells 

samples This led to a decrease in the accuracy in calculating PCN The 

problem was largely overcome by diluting the DNA and using extra 

restnction enzyme It was quite difficult to restnct the DNA isolated from 

cells that had been immobilised for long penods of time while DNA isolated 

from leaked cells was easier to restnct The fact that the total DNA was 

only partially restncted appeared to be due to immobilisation This could be 

due to the polyploid nature o f some immobilised cells (Doran and Bailey, 

1986) The cellular composition of S  cerevisiae cells is affected by 

immobilisation Measurements of intracellular polysacchande levels showed 

that immobilised yeast stored larger quantities of reserve carbohydrates and 

contained more structural polysacchande than free cells (Doran and Bailey,

1986) The DNA content of immobilised cells may be several times greater 

than that of exponential phase suspended cells Other findings on the change 

in metabolism in immobilised yeast cells include increased glycolytic 

enzyme activities (Hilge-Rotmann and Rehm, 1990) , lower internal pH of 

immobilised cells (Galazzo and Bailiey, 1989), altered membrane 

permeability (Devakos and Webb, 1991) The fact that the problem of 

partial digestion of total genomic DNA was circumvented to a large degree 

by diluting the DNA indicates that some inhibitory intracellular substance 

present m the DNA solution may have been diluted to below some threshold 

concentration where it no longer interferred with DNA restnction Because
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DNA from cells immobilised for shorter penods of time and DNA from 

leaked cells (which probably underwent some generations in suspension) 

were restricted with little-or no problem suggests that some metabolic 

change occurs in immobilised cells, rather than the immobilisation matrix or 

dissolution system (alginate and/or sodium citrate) being responsible for the 

difficulties m estimating PCN

Table 6 6 Mean PCN o f cells immobilised throughout the gel beads and 
fo r  free cell fermentations

Fermentation type Mean PCN Number of data points
Inner cells (immobilised) 36 5±6 8 11
Outer cells (immobiJised) 32 4±3 3 5
Leaked cells (immobilised) 32 6±5 6 14
Bead-averaged (immobilised) 29 6±4 6 14
Serial batch (free) 25 2±5 5 5
Batch (free) 28 8±4 4 5
Continuous D =0 5h'[ (Free) 32 3±5 7 7
Continuous D =0 lh-1 (Free) 40 0±6 3 10

The statistical analysis performed on the samples in Table 6 6 was a one way 

analysis of variance Least significant test with significance level 0 05, 

which test whether the means of samples are significantly different from 

each other No significant gradient in PCN of immobilised cells can be 

detected It has been shown for free cells that PCN is affected by growth 

rate However, it must be noted that extremes of growth rate were tested 

Slow growing cultures (D = 0 llv1) had a doubling time of almost 7 hours 

while fast growing cultures (D = 0  5h~l) had a doubling time of 1 5 hours 

Yet despite these wide differences in growth rate, a relatively small 

difference in mean PCN was measured, i e mean PCN = 3 2  3±5 7 for the 

fast growing culture and a mean PC N =40+6 3 for the slow growing culture 

In immobilised cells a difference in growth rate exists, yielding beads where 

the biomass concentration on the outside of the gel beads is 10 times greater 

than that in the inside This difference in growth rate is enough to bring 

about a gradient in plasmid stability It is possible that the difference in 

growth rate between inner and outer cells does cause the evolution of a cell 

population with diffenng average PCN However, it may be that as the
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difference in growth rate is not very large, the difference in PCN is also not 

so large, and the technique employed for measuring the PCN is not sensitive 

enough to accurately detect these small differences Although biomass 

concentration m immobilised cells differs by a factor of 10, this represents a 

difference of approximately 3 to 4 generations between cells on the inside 

and outside of the gel beads This indicates that although growth rate 

differences exist, it is not nearly as large as the difference in growth rate 

found in free cell continuous cultures, where a difference in PCN was 
detected

In summing up, the results obtained here support some of the reported 

advantages of immobilising recombinant cells Biomass concentrations are 

higher by a factor of 10 for immobilised cells compared with free cells 

Also, it was observed in several fermentation cases throughout this study, 

that irrespective of the initial cell loading or whether preincubation in 

selective medium was performed, the final cell concentration o f immobilised 

cells was always approximately equal This will be demonstrated further in 

Chapter Seven This phenomenon has been reported by several investigators 

(Mitani et al , 1984, Godia et al , 1987, Simon, 1989, Walsh, 1993) It has 

been shown that the apparent plasmid stability o f DBY746 (pJG317) cells is 

improved by immobilisation, which is in agreement with the findings of 

Sayadi et al (1989), Cahill et al (1990) and Walls and Gamer (1991) A 

gradient in plasmid stability was measured in the immobilisation matrix 

which was brought about by nutnent limitation and physical boundaries 

causing a gradient in biomass concentration throughout the gel beads PCN 

of immobilised cells was measured but as summarised in Table 6 6, no 

gradient in PCN was detected This is possibly due to the small differences 

in PCN that would arise in immobilised cell populations from various 

locations throughout the gel beads, growing at rates which are not large 

enough to produce significant differences in PCN

1 6 1



V

CHAPTER SEVEN

EFFECT OF ENVIRONMENTAL GROWTH CONDITIONS 
ON PLASMID STABILITY, PLASMID COPY NUMBER 

AND ß-GLUCANASE PRODUCTION IN  FREE AND 
IMMOBILISED CELL CULTURE
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7.1 INTRODUCTION

The DBY746 (pJG317) recombinant yeast system has been investigated in 

both free and immobilised cell culture Growth rate effects on plasmid 

stability, PCN and biomass concentration have been studied and are 

important for the stability of P-glucanase production Due to its increased 
plasmid stability and increased enzyme production, an immobilised DBY746 

(pJG317) cell system is perferrable and hence many of the investigations into 

improving enzyme production concentrated on the immobilised cell system

Immobilisation factors such as the effects o f cell loadings and type of 

counter-ion used in immobilisation matrix gelation have been reported to 

influence cloned gene productivities (Berry et al , 1988, Tanaka and Ine, 

1988, Ogbanna et al , 1989) Such investigations were performed for the 

DBY746 (pJG317) immobilised cell system It has also been reported that 

various nutritional requirements and/or limitations can affect both the 

productivity and the genetic and biological stability o f a recombinant cell 

system (Sode et al , 1988, Sayadi et al , 1989, Turner et al , 1991) The 

above work was conducted with free cell bacterial and yeast systems 

Reports on the nutritional requirements o f immobilised yeast are scarce 

(Chen et al , 1990) and even fewer reports on the effect of nutritional 

requirements/limitations on recombinant immobilised yeast cell systems 

exist In the present study the influence o f nutrient availability on the 

immobilised recombinant yeast system was investigated and the final section 

of this project attempted to relate nutrient effects with the PCN of the cells 

Previous results on PCN showed that the greatest difference in PCN 

occurred in different media (Chapter Five) The PCN of cells grown in 

YEPD was up to 5 times greater than the PCN of cells grown in selective 

medium Due to the difficulties encoutered in measunng the PCN of 

immobilised cells (Chapter Six), all media influences on enzyme 

productivities were first performed with immobilised cells but the actual 

relationship between nutritional requirements and/ or limitations and PCN 
was performed with free cells

Of the various factors which can influence the genetic stability and 

productivity of a recombinant cell system, environmental stresses are
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perhaps the easiest to control and hence serve as one route to improving or 
optimising the particular recombinant cell bioreactor system The various 

environmental stresses which influence ß-glucanase production by 

immobilised cells were investigated and some of these stresses were 

explained on a genetic level by measuring the PCN of the cells

7.2 INVESTIGATION INTO THE USE OF STRONTIUM AS THE 

COUNTERION IN THE GELATION OF ALGINATE BEADS

In attempts to improve the stability of the immobilised cell system, the 

calcium ions used as the counter-ion m alginate gelation may be replaced 

with strontium or banum to yield more chemically and physically stable gel 

beads (Tanaka and Ine, 1988) Cells were immobilised in both calcium 

alginate and strontium alginate gel beads at a cell load of 106cells/g-gel 

The cells used for immobilisation were from the same seed fermentation 

The beads were preincubated for 36 hours in selective media before being 

transferred to YEPD media Repeated batch cultivation involving three 

transfers was performed for each sample of immobilised cells (Section 

2 5 6) Figure 7 1 shows the fermentation profile for calcium alginate and 

strontium alginate immobilised cells No real difference in growth, sugar 

assimilation, and plasmid stability was detected Enzyme production was 

slightly higher for strontium alginate beads However this advantage was 

negated by the fact that the strontium ion caused precipitation m selective 
medium Further investigations established that some component of the 

yeast nitrogen-base used in selective media was being precipitated during 

incubation Because of this, no further experiments were performed with 
strontium alginate gel beads
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Figure 7 1 Fermentation profiles of immobilised cell gel beads (a) Calcium
alginate (b) Strontium alginate
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7.3 TH E IN FLUEN CE O F C E L L  LOAD ON PLASM ID STA BILITY

AND ENZYM E PRODUCTIVITY

Calcium alginate gel beads were prepared at three different initial cell 

loadings (ICL) High - 108 cells/g-gel, Medium - 106 cells/g-gel and Low - 

103 cells/g-gel The gel beads were preincubated in selective media for 36 

hours before being transferred to YEPD media Repeated batch 

fermentations were performed with five media changes taking place YEPD 

incorporating 2% glucose was used for the first three media but this sugar 

concentration was increased to 5% for media change numbers four and five 

Each immobilised cell system was exmained for overall enzyme production, 

biomass production, plasmid stability and bead stability i e bead diameter, 

leaked cell concentration and bead hardness By preincubating the gel beads 

m selective media , the immobilised cells were allowed to reach a high and 

equal biomass concentration o f approximately 108 cells/g m each system and 

by maintaining selection pressure, a large proportion of the cells were 

plasmid positive at the beginning of fermentation in YEPD media 

Preincubation of the gel beads allowed each immobilised cell system to 

reach comparable levels of biomass concentration and enzyme producing 

potential (i e approximately equal plasmid stabilities) at the start o f the 

repeated batch cultivation Figure 7 2 shows the effect of cell load on 

enzyme activity, plasmid stability, biomass production and bead diameters 

This last parameter was measured as alginate gel beads have been shown to 

swell over the course of a fermentation as a result of cell growth (Walsh et 

al , 1993) Table 7 1 outlines the mean volumetric and specific enzyme 

activities for each immobilised cell system

Table 7 1  Mean volumetric productivities and specific enzyme activities 
o f immobilised cells at various ICL

ICL Mean volumetric productivity 
(U/ml h)

Mean specific activity (U/ceU)
High (108 cells/g gel) 2 58 3 31 x 107
Medium (106 cells/g gel) 3 15 3 84 x 107
Low (103 cells/g gel) 2 58 6 77 x 107
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7.4 THE INFLUENCE OF MEDIA COMPOSITION AND
N UTRITIONAL LIM ITATIO N S ON EN ZYM E 

PRODUCTIVITY. PLASM ID STA BILITY  AND BIO M ASS 

PRODUCTION IN IM M O BILISED  C E L L  CU LTU R E

From a seed fermentation incubated in selective medium 40 g quantities of 

calcium alginate beads were prepared with an ICL o f 106 cell/g-gel These 

beads were then incubated m selective media for 36 hours to increase 

biomass concentration and maintain a high proportion of plasmid-containing 

cells Repeated batch fermentations with three media changes were then 

conducted The media used depended on the particular experiment being 

performed The alginate beads (40 g) were incubated for 24 hours m 200ml 

medium in a 0 5 1 Erylenmeyer flask Samples o f beads and fermentation 

broth were taken before each media change and the following parameters 

measured leaked cells, cell concentration per bead, enzyme activity, 

residual sugar concentration and plasmid stability Five expenments were 

performed as part of this investigation They included

(a) Effect of bulk nutrients (Sections 2.4.1 and 2.4.2)

•  selective medium

• selective medium enriched with 6 0 g/1 casasmino acids
(Difco)

• YEPD medium

• YEPD medium enriched with 6 0 g/1 casamino acids

•  selective medium and leucine (non-selective minimal medium)

(b) Effect of salts media (Section 2.4.4)

•  basal salts medium - Salts A

• Davis's salts medium - Salt B

• non-nutntious salts medium - Salts C

(c) Effect of yeast extract concentration (Section 2.4.5)

• yeast extract concentrations of 0, 0 5, 1 0, 3 0 and 6 0 g/1
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(d) Effect of ammonium/nitrogen concentration (Section 2.4.7)

• ammonium sulphate concentrations o f 0, 2 5, 5 0, 10 0 and 
15 0 g/1

(e) Effect of phosphate concentration (Section 2.4.6)

•  potassium dihydrogen phosphate concentrations of 0, 1 0, 2 5,

5 0 and 10 0 g/1

Figures 7 3 to 7 7 show the results o f immobilised cell fermentations in all 

the above media with results for enzyme activity, biomass production and 

plasmid stability Table 7 2 represents a summary of results from all the 

media investigations The maximum enzyme activity, maximum biomass 

concentration, average specific enzyme activity and average volumetric 

enzyme productivity for each fermentation are shown
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Figure 7 5 The influence of yeast extract concentration on (a) immobilised 
and leaked cell concentrations, (b) enzyme activity, (c) plasmid 
stability, and (d) specific enzyme activity during immobilised cell 
culture
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and leaked cell concentrations, (b) enzyme activity, (c) plasmid 
stability, and (d) specific enzyme activity during immobilised cell 
culture
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Table 7 2 Enzyme production and biomass concentration of immobilised
cell fermentations on different media

FERMENTATION Max enzyme 

activity (U/ml)

Max biomass

concentration
(cells/g-gel

Average specific

enzyme activity 
(U/cell)

Average
volumetric

productivity
(U/ml-h)

Selective 26 6 4 x 108 3 78 x 10*7 1 01
Enriched selective 34 1 3 x 109 3 54 x 10-7 1 38
Selective +  LEU 24 7 3 x 108 3 02 x 10-7 0 97

YEPD 98 2 1 x 109 4 95 x 10-7 3 15
Enriched YEPD 116 1 9 x 109 6 24 x 10 7 3 8

Basal salts 57 1 4 x 109 4 9 3 x 107 2 27
Davis's salts 49 1 2 x 109 3 87 x 10*7 1 75

Non-nutntious salts 30 9 3 x 108 2 49 x 10-7 0 81

0 g/1 yeast extract 21 6 9 x 108 2 56 x 10 7 0 75
0 5 29 1 2 x 109 2 72 x 10-7 1 1
1 0 44 1 3 x 109 3 64 x 10-7 1 46
3 0 57 1 2 x 109 4 7 4 x 107 2 16
6 0 63 1 5 x 109 3 6 4 x 107 2 2 5

0 g/1 ammonium 19 4 8 x 108 3 94 x 10-7 0 67
2 5 g/1 " 58 1 2 x 109 5 12 x 10-7 2 24
5 0 g/1 62 1 2 x 109 6 44 x 10-7 2 47
10 0 g/1 58 1 4 x 109 5 81 x 10-7 2 34
15 0 g/1 56 1 3 x 109 5 19 x 10-7 2 07

0 g/1 phosphate 45 1 0 x 109 5 09 x 107 1 59
1 0 g/1 52 1 3 x 109 5 65 x 10-7 1 93
2 5 g/1 48 1 4 x 109 471 x 107 1 85
5 0 g/1 48 1 3 x 109 5 26 x 10 7 1 76
10 0 g/1 48 1 4 x 109 3 6 8 x 107 1 57
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7.5 TH E IN FLUEN CE O F MEDIA COM POSITION AND 
NUTRITIONAL LIM ITATIO NS ON EN ZYM E 

PRODUCTIVITY AND PCN IN F R E E  C E L L  CU LTU RE

From the media effects on enzyme production in immobilised cell culture 

(Section 7 4), a selection of media that displayed differing specific enzyme 

activities were chosen for further study The aim o f this study was to 

determine whether media composition and nutritional limitations influence 

PCN and, if so, to establish a relationship between media composition, 

specific enzyme activity and PCN The following media were chosen

(1) Selective medium (Section 2 4 1)

(11) Selective medium enriched with 6 0 g/1 casamino acids (Section

2 4 1)

(in) YEPD (Section 2 4 2)

(IV) YEPD enriched with 6 0 g/1 casamino acids (Section 2 4 2)

(v) Selective medium with 5 0 g/1 ammonium sulphate (Section 2 4 7)

(VI) Selective medium with 15 0 g/1 ammonium sulphate (Section 2 4 7)

(vu) Selective medium with 2 5 g/1 ammonium sulphate (Section 2 4 7)

(VUl) Basal salts medium with 1 0 g/1 potassium dihydrogen phosphate

(Section 2 4 6)

(IX) Basal salts medium with 10 0 g/1 potassium dihygrogen phosphate
(Section 2 4 6)

(X) Dextrose, ammonium sulphate medium with 0 5 g/1 yeast extract
(Section 2 4 5)

(Xl) Dextrose, ammonium sulphate medium with 6 0 g/1 yeast extract
(Section 2 4 5)

Serial batch cultivation (Section 2 5 5) involving three media transfers was 

performed for each medium with approximately 30 generations taking place 

Biomass concentration, enzyme activity and plasmid stability were assayed 

before each transfer Cell pellets were also harvested and the total genomic 

DNA from each sample was isolated Using this DNA, the PCN for each 

sample was determined
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Table 7 3 outlines the results obtained detailing biomass concentration, 
plasmid stability, enzyme activity and PCN for each medium over 
approximately 30 generations of growth The mean specific enzyme 

activities and mean PCN are also represented Figure 7 8 is an 

autoradiogram showing the various intensities (and hence numbers of copies) 

of the plasmid on all 11 different media
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Table 7 3 Enzyme production, biomass concentration and PCN of free
cells grown on different media

Medium Sample Cell conc 
(cells/ml)

Gen Plasmid
stability

(%)

Enzyme
Activity

(U/ml)

Specific 
enzyme activity

(U/cell)

| PCN Mean spec 
enzyme 
activity 
(U/cell)

Mean
PCN

Selective 1 3 7 x 107 8 3 63 48 2 1 x 10^ 20

2 4 4 x 107 20 4 67 49 1 7 x 10*6 14 1 9 x  lO“6 14
3 3 7 x 107 28 9 71 52 2 0 x 10-6 9

Selective 1 8 9 x 107 9 8 44 45 1 2 x 10-6 36
ennched 2 1 2 x 10* 20 29 34 9 8 x 10"7 10 1 1 x 10-6 10
YEPD 1 8 2 x 107 9 5 35 85 3 0 x 10“6 26

2 7 1 x 107 22 2 17 51 4 2 x 10-6 22 3 7 x 10-6 25
3 8 3 x 107 31 8 11 35 3 8 x 10-6 26

YEPD 1 8 1 x 107 9 4 38 85 2 8 x 10"6 14
ennched 2 7 0 x 107 22 1 19 48 3 6 x 1 0 ^ 19 3 5 x 10-6 18

3 8 2 x 107 31 7 10 34 4 2 x 10-6 21
Nitrogen 1 4 4 x 107 8 6 67 47 1 6 x 10-6 14
2 5g/l 2 6 9 x 107 21 2 74 40 7 8 x 10"7 8 1 3 x 10 •« 11

3 4 2 x 107 29 8 72 42 1 4 x 10-6 11
Nitrogen 1 4 7 x 107 8 7 59 50 1 8 x 10-6 14

5g/l 2 7 0 x 107 21 4 62 47 1 1 x lO"6 16 1 7 x 10-6 16
3 5 2 x 107 30 7 47 56 2 3 x 10-* 17

Nitrogen 1 2 6 x 107 7 9 59 29 1 9 x lO"6 12
15 g/I 2 6 3 x 107 20 4 73 41 8 9 x 10‘7 8 1 4 x 10-« 10

3 2 3 x 107 28 2 67 22 1 4 x 10-6 9
Phosphate 1 7 0 x 107 9 2 61 62 1 5 x 10“6 8

lg/1 2 4 0 x 107 21 2 21 46 5 3 x lO"6 12 3 3 x 10-6 13
3 5 6 x 107 30 3 16 28 3 1 x lO“6 18

Phosphate 1 6 9 x 107 9 2 55 55 1 5 x 10"6 8
10g/l 2 3 9 x 107 21 1 22 46 5 4 x 10-6 11 3 0 x lO"6 9

3 5 4 x 107 30 2 25 29 22X1CT6 9
Yeast 1 1 7 x 107 7 2 35 0 18

Extract 2 2 0 x 107 18 2 12 0 22 20
0 5 g/I 3 1 0 x 107 24 8 15 0 21
Yeast 1 7 3 x 107 9 3 31 33 1 5 x 10‘6 12

Extract 2 2 7 x 107 20 6 10 0 13 1 5 x 10-* 13
6 g/I 3 2 0 x 107 28 2 2 0 -
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LANE

P F Standard reference DNA
2 Yeast extract 0.5 g/1 20
3 Yeast extract 6.0 g/1 13
4
5
6 
7

Phosphate 10.0 g/1 
Phosphate 1.0 g/1 

Ammonium sulphate 2.5 g/1 
Standard reference DNA

9
13
11

8 Ammonium sulphate 15.0 g/1 10
9
10

Ammonium sulphate 5.0 g/1 
YEPD enriched with casamino acids

16
18

11 YEPD 25
12 Selective medium enriched with casamino acids 10
13 Selective medium 14
14 Standard reference DNA -

Figure 7.8 Autoradiogram showing the different plasmid intensities (and 
hence content) of free cells grown on various different media.
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7.6 DISCUSSION

In order to prolong or improve the stability of immobilised cell bioreactor 

systems attempts have been made to improve the stability o f the calcium 

alginate gels One approach used is to further crosslink the gel bead with 

gluteraldehyde (Takata et al , 1977) Other methods include the binding of 

alginate to polycations (Bimbaum et al , 1988) and the use of various 

different counter-ions in the gelling process (Tanaka and Ine, 1988) 

Tanaka and Ine (1988) reported that strontium and banum alginate beads 

were more chemically and physically stable in electrolyte solutions than 

calcium alginate beads Ogbonna et al (1989) concluded that SrCl2 is best 

for immobilisation of aerobic microbial cells m both alginate and 

carrageenan gel beads It was reported that cell leakage out of the beads was 

compantively lower and unlike calcium alginate beads, strontium alginate 

was relatively stable in the presence of phosphates and citrate Figure 7 1 

shows that biomass concentration remains approximately equal for calcium 

and strontium alginate beads with slightly higher enzyme activities in the 
case of strontium alginate However, as preincubation in selective medium 

of strontium alginate beads results in precipitation of some component of the 

yeast nitrogen base, the use of strontium alginate as an immobilisation 

matnx was discontinued

Investigations into the effects of cell load on the overall productivity and 

stability of the immobilised cell bioreactor system shows that a medium ICL 

of 106 cells/g-gel resulted in the greatest enzyme production, and the most 

stable immobilised cells with respect to genetic (plasmid) stability and 
physical stability of the beads (illustrated by the least amount of ceil 

leakage) The low ICL (103 /g-gel) resulted in the highest specific enzyme 

activity due to the absence of diffusion resistances which allowed cells in the 

inner sections of the beads to grow and produce the enzyme However, due 

to the greater number of generations plasmid stability decreased quicker than 

in the high (108 cells/g-gel) or medium ICL The low ICL resulted m the 

beads becoming quite unstable as the huge size of the microcolonies exerted 

very large stresses on the bead structure This physical instability is 

reflected in the large degree of cell leakage throughout the fermentation and 

especially in the early stages Berry et al (1988) also reported the presence
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of giant microcolomes throughout the gel beads when employing low ICL 
Plasmid stability was greatest for high ICL due to the reduced number of 

cell divisions before a steady state condition arose, where leaked cells were 

being replaced by cells from the inner sections o f the gel beads In contrast 

to the present work, cloned gene product activity reported by Berry et al

(1988) was greatest in the case of high ICL due to the higher biomass 

concentrations reached As mentioned previously (Section 6 6) and in 

agreement with the findings of Simon (1989) and Walsh (1993), the final 
immobilised cell concentration reached was approximately equal for high 

and medium ICL and only slightly lower for the low ICL, resulting m the 

greatest enzyme productivity occurring with medium ICL

The investigations into the influence of nutritional requirements/limitations 

yielded the following findings and conclusions (Table 7 2) Enzyme 

activity, biomass concentration and volumetric productivities increase with 

increases in bulk nutrient concentrations, especially nitrogenous compounds 

such as casamino acids (casein hydrolysate) or yeast extract Yeast nitrogen 

base (YNB) which forms the base of the selective medium, is limiting in 

inositol (Henry et al , 1977) and it cannot efficiently support respiratory 

growth It is suitable only for fermentative culture with ethanol being 

accumulated in batch culture, subject to catabolite repression (Chen et al , 

1983) Supplementation of YNB medium with casamino acids permits 

respiratory growth with the result that higher cell densities can be attained 

P-Glucanase activity was higher in YNB plus casamino acids than in 

ordinary YNB as higher biomass concentrations were achieved However, 

like Chen et al (1993), the higher biomass yields obtained by casamino 

acids supplementation do not automatically guarantee an enhancement in 

product yields by secretion There was no increase in the specific enzyme 

activity The use of YEPD medium enriched with casamino acids resulted 

in greater specific activities and volumetric productivités compared with 

YEPD which in turn had greater biomass concentration, enzyme specific 

activities and volumetric productivities compared to YNB, possibly due to 

the increased availability of excess nitrogenous compounds Rossini et al 

(1993) reported that secretion of a recombinant product by S  cerevisiae was 

not evident in YNB medium, but could be increased slightly by 

supplementation with the organic nitrogen sources of yeast extract and/or 

peptone Supplementation of YNB medium with casamino acids resulted in 

the production of greater quantities by S cerevisiae of the recombiant
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human epidermal growth factor However, the product was rapidly 

degraded by secreted proteases (Coppella and Dhuijati, 1989) It was noted 

that (like P-glucanase production) the production o f hEGF was highly 

medium dependent as the chemically defined non-ennched YNB medium 

had a significantly lower yield than enriched medium and YEPD medium, 

which elicited no measurable extracellular proteolysis

Chen et al (1990) reported that yeast extract and peptone apparently meet 

similar nutritional requirements for yeast growth and productivity 

Therefore, to assess the influence o f yeast extract on cell growth and enzyme 

production in the present work, peptone was replaced by 1 0 g/1 ammonium 
sulphate Figure 7 5 shows that enzyme specific activities and volumetric 

productivities increase with increasing concentrations o f yeast extract , 

although the effect becomes less pronounced at higher yeast extract 

concentrations This result is very similar to that of Chen et al (1990) also 

working with immobilised yeast Rossini et al (1993) found that the 

fraction of secreted P-galactosidase is roughly proportional to the yeast 

extract and/or peptone content of the growth medium and also that 

increasing the level o f yeast extract or peptone above that found in YEPD 

medium does not improve P-galactosidase secretion efficiency The results 

obtained in the present work and those from the afore-mentioned literature 

indicate the possible existence of some saturation or threshold point of 

organic nitrogen supply in the form of yeast extract or peptone, above which 

cloned gene product formation ceases to increase Nipkow et al (1984) 

reporting on the development of a synthetic medium for continuous 

cultivation of Zymomonas mobihs established that yeast extract could be 

replaced by a mixture of six mineral salts The nitrogen source m the 

medium was supplied by increased concentrations o f ammonium sulphate 

Other studies indicate that cell growth and cloned gene product secretion by 

S  cerevisiae were relatively insensitive to changes in the concentrations of 

KH2P 0 4, NaCl, M gS04, yeast extract and casamino acids However, it was 

observed that high ammonium sulphate concentrations were necessary for 

efficient secretion of the heterologous protein (Turner et al , 1991)

The results obtained for nitrogen and phosphate effects are clearly shown in 

Figures 7 6, 7 7 and 7 4 The absence of a nitrogen source as m the non- 

nutntious salts medium (Figure 7 4) or 0 0 g/1 ammonium sulphate (Figure 

7 6) resulted in little or no growth o f biomass and very poor enzyme
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production Increasing the ammonium sulphate concentration to 5 0 g/1 

yielded optimum production o f P-glucanase Further increases resulted in a 

decline in the specific enzyme activity and volumetric productivity 

Comparing the results from the three different salts media (Figure 7 4), it 

can be seen that Davis’s salts medium which is high in phosphates (2 0 g/1 

KH2P 0 4, 4 0 g/1 NaH P04) has a lower productivity than the Basal salts 

medium which is high in nitrogenous compounds (5 0 g/1 ammonium 

sulphate) Results suggest that nitrogenous compounds are more influential 

than phosphates in p-glucanase production by immobilised DBY746 

(pJG317) cells There appears to be only a slight difference in productivities 

when the phosphate concentrations are varied (Figure 7 7) Overall 

volumetric productivities seem to vary little, with perhaps the enzyme 
specific activities decreasing slightly with increasing phosphate 

concentration Chen et al (1990) reported that, although an immobilised 

cell population could be maintained for extended periods (80 hours) in a 

bioreactor with reduced ammonium sulphate, the productivity dropped as the 

nitrogenous nutnents were eliminated The growth rates of biomass also 

dropped quite rapidly It was concluded that nutritional deficiencies largely 

decoupled growth and productivity of the immobilised yeast However, this 

phenomenon is not observed with immobilised DBY746 (pJG317) cells 

Although plasmid stability and biomass concentration do not change 

dramatically when the cells are immobilised, any changes (mainly decreases) 

that do occur, take place in cases where there is a corresponding decrease in 

(3-glucanase activity Continuous patulin production by immobilised P 

urticase was found be to greatly dependent on nitrogen supply in the feed 

medium (Jones et al , 1983)

Table 7 3 illustrates the effect o f nutrient requirements/limitations on PCN 

As the above results were obtained with immobilised cells, it was very 

difficult to assess whether the plasmid stability o f the organism was affected 

by the various nutrient deficiencies Previous results (Chapter Five) have 

indicated a five fold difference in PCN of cells grown in YNB medium 

(selective medium) and YEPD Several reports suggest that, although 

growth rate influences PCN, the availability of nutnents may possibly play 

an equally important role in determining the PCN of cells (De Taxis du Poet 

et al , 1987, Bugeja et al , 1989) To test this hypothesis and also in an 

attempt to explain the different specific enzyme activities obtained with the 

vanous media used in the above studies the influence of vanous media types
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on PCN was directly investigated There is evidence to support the 
suggestion that media or specific nutritional requirements influence PCN 

The PCN measured m different media under different nutritional 

requirements/limitations varied from a minimum of 9 to a maximum of 25 

plasmid copies per cell For a given medium, PCN vanes with specific 

activity - as previously determined in growth rate studies, when it was 

observed that as specific activity decreased in faster growing cultures the 

PCN also decreased In the present study, instead of growth rate being the 

major influencing parameter, it is nutnent availability that causes a change 

in the PCN and hence a corresponding change m the specific enzyme 

activity When companng PCN values for different media, despite the fact 

that PCN values differ, no such relationship between specific activity and 

PCN in different media is observed In conclusion, the PCN o f cells grown 

in different media with different nutntional deficencies vanes, and for any 
particular medium, the PCN is proportional to the specific enzyme activity 

and is thus medium specific Plasmid stability does vary from one medium 

to the other due to the diffenng degrees of selection pressure m each 

medium In some cases, where the PCN is higher, and hence also the 

specific activity, the plasmid stability is found to be lower This relationship 

with plasmid stability is somewhat vague and is not so obvious as growth 

rate influences Few reports on media effects on recombinant yeast PCN 

exist Coppella and Dhuijati (1989) reported that the PCN did not change as 

a result of changing the medium Hollenberg (1982) also reported that the 

PCN of the 2/i circle does not change with the physiological state o f the cell 

Bugeja et al (1989) also found the PCN of the endogenous 2p circle 

remained unchanged at different growth rates and yet a large difference in 

PCN at different growth rates was recorded for the 2^-denved expression 

vector It can only be concluded that the normal regulation and control o f 

2fi copy number and replication does not extend to some circle-denved 

plasmids such as the yeast episomal plasmids of which pJG317 is one type 

This plasmid pJG317 generally exists in low copy numbers (9-40 copies per 

cell), while the 2/x circle exists in high copy numbers (100-150 copies per 

cell) This fact reinforces the breakdown in normal 2/x circle replication 

mechanisms or regulation thereof

As a general observation throughout the course of this work, the specific 

enzyme activities were higher for free cells than for immobilised cells 

Although high biomass concentrations are achieved in immobilised cells, not
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I

all cells produce the cloned gene product Due to the heterogeneous nature 
of growth of immobilised cells, a reduction in growth rate which occurs is 

accompanied by a reduction in specific fermentation rate (Hahn-Hagerdal, 

1990) Finally, enzyme activities in specific media (YNB and ammonium 

sulphate media) are higher in free cell culture, while activities in 

general/complex media (YEPD and salts media) are higher in immobilised 

cell culture
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CHAPTER EIGHT 

CONCLUSIONS



A procedure for measuring the PCN of recombinant yeast was developed, tested 

and optimised The procedure is based on Southern hybridisation and measures 
the relative intensities of hybridisation of a probe to the single copy yeast 
chromosomal actin gene and to the multicopy plasmid pJG317

Plasmid stability increases with increasing growth rate in free cell culture PCN 

decreases with increasing growth rate The specific P-glucanase activity is 

proportional to the plasmid content (PCN) of the cell The only type of plasmid 

instability that was detected was segregational instability

Immobilised cell culture with medium cell loadings of 106 cells/g-gel, which are 

preincubated in selective medium before being transferred to complex (YEPD) 

medium, ensures the attainment of high biomass concentrations with a high 

percentrage of plasmid-containing cells This system of immobilised cell culture 

ensures highest enzyme production with the highest genetic and physical 

stability

Using the multistep dissolution technique, the heterogeneous growth patterns of 

immobilised cells were illustrated A gradient in plasmid stability exists 

throughout the immobilised cell population with slow growing cells in the inner 

sections of the gel beads having a higher plasmid stability than faster growing 

cells residing on the bead surface, which in turn have a higher plasmid stability 

than cells which have leaked from the immobilisation matnx

Immobilised cells have a higher plasmid stability than free cells Enzyme 

production over long periods of time is greater for immobilised cells where the 

volumetnc productivity is greater However, the specific enzyme activity is 

greater for free cells due to the reduction in growth rate of immobilised cells 

brought about by diffusion resistances

No significant gradient in PCN was detected throughout an immobilised cell gel 

bead This is possibly due to the relatively small differences in growth rate 

between cells in the inner and outer regions of the gel beads not being 

significant or large enough to produce cell populations with large differences in 

PCN No significant change in PCN occurs in immobilised cell fermentations 

compared with free cell fermentations

187



Nutrient requirements and limitations influence the PCN of recombinant yeast 

The PCN varies with the media used and for any specific medium, the PCN is 

proportional to the specific P-glucanase activity This may| explain why 
immobilised and free cells have differing enzyme activities Of the nutrients 

investigated, enzyme production is greatest in complex media Nitrogenous 

compounds play a major role in enzyme production and also significantly affect 

cell growth

It may be concluded that the Ip. derived yeast episomal plasmid pJG317 does 

not behave in a similar fashion to the endogenous 2/x circle The plasmid is 

quite unstable under non-selective culture conditions and its copjy number and 

stability is influenced by both growth rate and nutrient supply The quantity of 

cloned gene product (p-glucanase) appears to be proportional to the number of 

plasmid copies per cell The plasmid may be stabilised and high volumetric 

productivities attained by employing immobilised cell culture

Recomendations for further work

1 Integrating the P-glucanase gene into the DBY746 chromosome is one 

means of stabilising the production of the enzyme A study comparing 

the production of plasmid-encoded P-glucanase and chromosome- 

encoded P-glucanase in free and immobilised cell culture ^vould provide 

an insight into the potential of each system for long term continuous 

enzyme production

2 This study shows that a relationship between the number of plasmid 

copies per cell and enzyme production does indeed exist Further work 
on the kinetics of p-glucanase production and degradation, with PCN 

being monitored could provide details of this relationship

3 To fully assess if a gradient in PCN does exist in cells immobilised 

throughout the gel beads, a recombinant system with a high PCN and 

showing a larger difference in PCN at different growth rates should be 

chosen and the same studies as were performed with the 

DBY746(pJG317) recombinant system repeated
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