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ABSTRACT

Recent progress in the engineering of long fibre reinforced ceramic matrix 
composites (CMC) fabricated by hot pressing has led to the production of materials 
with high density and good mechanical properties. However, hot pressing limits the 
components to simple plate shapes, which often require very expensive machining. 
Pressureless sintering of CMC preforms to near net shape is a preferred alternative, 
greatly reducing costs and allowing the formation of complex component geometry.

However, there are major technical difficulties. Densification by infiltration of 
vapour or liquid precursors followed by pyrolysis, leads to unacceptable porosity 
(poor mechanical properties / no gas tightness) and very high cost. Densification 
from compacted powders is only possible at high temperatures, risking deleterious 
chemical interactions between the different constituents of the composite. Also, the 
achievement of a fully dense matrix in a composite manufactured by pressureless 
sintering is very difficult. The sintering/densification step requires the movement of 
partially liquefied ceramic particles to allow matrix shrinkage, while the fibre 
preforms are rigid, constraining shrinkage. Selection of more glassy, more mobile 
matrix phases assists densification but detracts from the high temperature mechanical 
properties of the product composite. Effective densification of a high temperature 
CMC has been achieved to date, only by the application of an external, mechanical 
pressure (hot-pressing).

The present work looks to improve the densification processing of a silicon nitride 
matrix composite reinforced with continuous carbon. Conventional low pressure 
processing requires extended heat treatment at temperatures up to 1850°C. This 
study has focussed on matrix phase sintering, principally to explore the ability of 
novel sinter additives to promote the synthesis of lower melting intergranular phases 
in-situ, thereby promoting matrix phase sintering at lower temperatures. This is 
targeted to reduce interphase reactions and to enhance matrix phase mobility at the 
densification temperature, while retaining the high temperature properties of the final 
ceramic. The primary goal was to identify sinter aid compositions which allow 
densification of the candidate matrix phases at lower temperatures by liquid phase 
sintering to greater than 95% Theoretical Density (TD). SÎ3 N4  based ceramics were 
prepared containing sintering additive combinations of the form; Y2 O3 + AI2 O3 , 
Y2 O3 + AI2 O3 + AIN, Y2 O3 + AI2 O3 + CaZrC>3 .

The sintering behaviour, chemical stability, micro structural and phase development, 
and final properties, including hardness and oxidation of the sintered samples were 
examined.

Selected compositions were then used in the fabrication of a carbon fibre reinforced 
ceramic matrix composite by pressureless sintering, gas-pressure sintering and hot- 
pressing. The sinterability and compatibility of the densified composites were 
analysed and simple mechanical testing / microstructural analysis carried out in order 
to evaluate the degree of “composite” behaviour of the material subjected to 
mechanical deformation and fracture.



PUBLICATIONS ARISING

Arising from the present work the following papers have been published subsequent 

to presentations at the respective conferences.

• Influence of CaZrC>3 on the Sintering Behaviour and Microstructural 

Development of Si3N4 Based Ceramics, M. Casey, B. Djuricic, L. Looney, J.-B. 

Veyret and E.Bullock. Presented at: The International Symposium on Nitrides: 

ISN’T II,Limerick, Ireland, June 9-11, 1998. Published in: Nitrides and Oxides, 

Materials Science Forum, Vol. 325-326, pp. 161-167, 1999.

• Tailoring of Grain Boundary Phases for Pressureless Sintering of Long Fibre 

Reinforced SiaN* Composites, M. Casey, B. Djuricic, L. Looney and J.-B. 

Veyret. Presented at: CCC IV, Mons, Belgium, Nov 18-20, 1997. Published in: 

Silicates Industriels, Vol. 64, No. 5-6, pp. 71-74, 1999.



1. INTRODUCTION

Silicon Nitride based ceramics are candidates for high and low temperature structural 

applications, owing to their good mechanical and thermal properties. In particular, 

Si3N4 based ceramics have excellent wear properties and high strength at high 

temperatures. They possess good thermal stress resistance due to a low coefficient of 

thermal expansion coupled with a moderate elastic modulus, which contributes to 

minimising stresses developed during severe temperature transients. SisNj ceramics 

have good resistance to oxidation and, because of their low densities, are attractive 

for the manufacture of low weight components. The major concern in using these 

ceramics and ceramics in general, is their inherent brittleness, which greatly restricts 

their reliability and applicability in service.

Minimising the quantity and size of structural defects, through careful control of raw 

materials and processing can enhance the toughness of ceramics. However, 

problems exist even if a “defect-free” ceramic could be manufactured since flaws are 

present as intrinsic microstructural features, such as grains or grain boundaries, 

which can cause cracking during loading. However, the toughness of a material can 

be considerably enhanced by incorporation of a second, reinforcing phase (whisker, 

particle or fibre) resulting in much a tougher ceramic material. These “ceramic 

matrix composite” (CMC) materials offer a novel opportunity for extending the 

temperature/stress capability of the most advanced structured components in current 

use, which is a major economic driver in today’s industrial technologies.

1.1. Industrial Significance

The inexorable demand for heat engines to operate at ever-higher temperatures is 

driven by simple Carnot-cycle thermodynamics; for contained gases at constant 

pressure, increases in temperature means increases in volume, which in terms of 

engine output means increased in work and economic efficiency. High temperature 

reactions of this kind are inevitably gas phase. In principle, this means that for the
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reagents themselves there is theoretically, no absolute limit to raising process 

temperatures. The problem is containment, where, either the hot gases must be 

retained by a reaction vessel or where they must impinge upon solid mechanical 

components in order to do work. The limit to process temperatures and pressures is 

then only dependent upon the ability of structural materials to contain the process 

gas. At the present time, those components exposed to the most severe conditions of 

tensile stress, corrosion and high temperature are constructed from very advanced 

metallic alloys. However, the current demands for even higher temperature 

capability now surpass the capability of even the most sophisticated alloys, so that 

increasingly industry is turning to ceramics to provide solutions for the next 

generation of structural materials. Key industrial sectors are the gas turbine industry 

and heat exchangers for fossil fuel conversion.

1.2. Applications

1.2.1. Gas Turbine Engines

In a typical modern aircraft gas turbine power unit, air is ingested, compressed to 

1.5MPa and then mixed with a pre-determined ratio of aviation fuel and combusted. 

The gas volume is thereby expanded some 20 times and is forced through a complex 

turbine stage comprising a series of static and rotating turbine rings, before 

exhausting to the air. The rotation of the turbine provides the power to drive the 

input air compressor and to force external air through peripheral annular (bypass) 

ducts giving thrust.

The efficiency of the engine increases with the temperature of the burnt gases 

exhausting from the combustion chamber the so-called turbine inlet temperature 

(TIT). The most critical components are the first row stator blades (nozzle guide 

vanes) and the first stage rotor blades which are exposed to a gas stream of about 

1300°C and stresses, rotational (centrifugal) and bending of some 100 MPa. The 

property requirements of high temperature creep and fatigue strength, corrosion
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resistance, low density, toughness, micro-structural (thermal) stability, etc. mean that 

rotor blades are made of extremely sophisticated high temperature performance 

materials. This exceptional high capability is achieved by exhaustive alloying (often 

up to 12 elements), the development of single crystal components, coating with 

complex thermal barrier systems and extensive engineering of intricate cooling ducts 

leading cold air onto the blade surface. All of this engineering allows the blades, 

with a maximum intrinsic temperature capability of 1000°C, to operate in a gas 

stream temperature 300°C higher. However, ultimately the melting or softening 

temperatures of the alloys themselves limits the operating temperature of metallic 

components. In the case of the turbine superalloys the limit has been reasonably 

reached and the cost of squeezing out a further few degrees of operating temperature 

is not justified by the rewards. Further enhancement of operating efficiency will 

only be achieved by the introduction of an entirely new material system with higher 

intrinsic temperature capability.

Ceramics, by virtue of their chemical state, have a thermal stability, which far 

exceeds that of metals. The common “engineering” ceramics, metal oxides, carbides 

and nitrides, retain high temperature strength to several hundred degrees higher than 

the superalloys, and offer a major step-forward in high temperature structural 

component materials. However, the application requires a combination of properties, 

and enhancement of one particular property can often be achieved only at the cost of 

compromising another. For silicon nitride ceramics, the general balance of high 

temperature specific strength (strength per unit density), hardness, corrosion 

resistance, thermal stability, corrosion resistance, etc. are sufficient to accommodate 

a “skin” temperature capability uncooled, of at least 1350°C, that is well above the 

most advanced superalloys.

Curiously, the first benefit of this increased capability will almost certainly be to 

allow engines to operate at lower gas temperatures, since this gives significant 

environmental benefits. The drive to higher TIT values has been achieved for alloy 

components only by massive injection of cooling air through the component wall 

(both for blades and combustor chambers), which then flows over the metal surface 

to proved a cold insulation layer. While this confers a 300°C-temperature drop from 

the gas stream to the metal surface, this is gained at the expense of the overall gas
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temperatures. To compensate for this combustor temperatures are raised, often to 

1350°C, with creates inevitably an increase in the formation of environmentally 

unfriendly gases of the NOx type. Ceramic structural components will eliminate the 

need for cold gas injection thereby allowing reduced combustor temperatures and a 

concomitant reduction in toxic gas emissions.

The main drawback of the ceramic systems is lack of toughness (resistance to 

impact) and extreme sensitivity to intrinsic flaws. Current attempts to improve 

toughness focus on the entrainment of long ceramic fibres within the ceramic matrix. 

The fibre-matrix interface can be engineered, usually by fibre coating, to provide a 

preferred fracture route with the absorption of otherwise catastrophic fracture energy. 

The incorporation of the fibres, however, introduces major processing difficulties 

and results inevitably in loss of strength, reduced thermal stability and most 

importantly an increase in cost. The benefits are, however, enticing as shown in a 

recent survey of European gas turbine industries by the consultants Quo-Tec 

Limited: Technological Forecast Study on Long Ceramic Fibres for High 

Temperature Applications [1]. Table 1.1 shows optimistic expectations for the 

uptake of these new materials in the next decades, from a technology sector that is 

notoriously cautious and safety conscious in evaluating new concepts.

Best estimates obtained from the above study indicate that CMC materials could 

represent 2.5% of an aero-engine by the year 2010. This represents a value of around 

$ 500 million.

YEAR 2010 2020

Engine Sales (US$ billions) 24 30
Ceramic Components % 2.5 20

CMC Component Value (US$ millions) 600 3,000
Forecasted Consumption of Advanced Ceramic Fibres

World Total (kg) 150,000 600,000
European Total (kg) 50,000 200,000

Table 1.1 World growth forecasts for aeroengine production and CMC components [1]
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1.2.2. Heat Exchangers

Another field of major impact for ceramic matrix composite materials in gas-burning 

heat engines is that of high temperature heat exchangers. Recuperative gas burners 

and associated high temperature heat exchanger components represent the best 

diversification opportunity for high performance CMCs (low mechanical stress, no 

impact problems). These components are targeted to continuous operation for 

several thousand hours at temperatures of up to 1400°C in corrosive (carbon, oxygen, 

and sulphur) gases at pressures up to 100 bar. The benefit of these materials has to be 

seen in higher operating temperatures and therefore thermal efficiency for power 

plant and other industrial applications. The US Department of Energy in a recent 

report [2] predicts that the thermal efficiency of power plant could be increased from 

42 to 52 %, bringing an absolute energy saving for thermal power plant of 23.8 % 

and cost savings of millions of ECU over the whole of Europe. The market volume 

in the USA is higher, in response to which the Department of Energy (DOE) has 

recently initiated a major research programme on ultra high temperature heat 

exchanger materials.

The DOE report specifies the benefits expected from the progressive introduction of 

CMC materials in key components across a range of industrial applications, 

quantifying the expected gain in terms of energy savings, reduction in toxic gas 

emissions and in economic benefit for the year 2010 (Table 1.2)[2]. In addition to 

these benefits the US DOE has estimated the potential to create or save at least 

100,000 industrial sector jobs for US citizens and including multiplier effects the 

number of affected jobs could be around 200,000.
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TECHNOLOGY ENERGY ENVIRONMENTAL ECONOMIC MARKET

BENEFIT BENEFIT BENEFIT POTENTIAL

(quadrillion (reduction million tons) ($billions ($billions

btus) /year) /year)

NO*/year COVyear

Gas turbines (large 
industrial)

0.4 0.3 22.6 1.3 1.5

Gas turbines (small 
industrial)

0.12 0.137 44.5 0.6 10

High Pressure Heat 
Exchangers

0.5 0.1 28.3 1.8 1.5-3

Waste incineration 0.5 2.5 0.3-0.6
Radiant Burners 
(steam burners)

0.066 0.24 3.7 0.33 0.75-1

Hot gas filters 0.1 0.023 5.7 0.5 0.4
Radiant burners 

(drying)
0.15 0.117 8.5 0.75

Reformers 0.25 1.4 0.1-0.2
Radiant burners 

(high temp.)
0.075 4.2 0.38 0.4-0.8

Low Heat Rejection 
Diesel

Diesel particulate 
traps

Other Industrial

Commercial/
residential

0.06 0.113 3.4 0.3

Other non industrial 8
T otal 2.22 1.03 122.3 8.46 16

Table 1.2 World growth forecast for CMC materials [2].

1.2.3. Brake Linings

A mass application currently under development is CMC materials for brake lining 

systems. These brake lining systems will be more expensive than current steel and 

carbon based systems and so will be initially targeted to the higher technology 

markets of aircraft, high-speed trains and large trucks. The potential market is 

estimated to be about 20 MECU per year for trucks alone. The total market in 

Europe will be about 200 MECU and is comparable to the market in the USA. For 

this particular application the tailoring of the fibre/matrix interface will enhance the 

applicability of carbon fibre-ceramic matrix materials since carbon/carbon
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composites are only applicable for short and extreme braking conditions: aircraft, 

racing cars. In particular, CM Cs with tailored interfaces will help these problems 

with a cost effective fibre treatment remembering that any new solution of interphase 

tailoring will be easily adapted to different composite systems.

1.2.4. Future Developments

The successful developm ent o f these materials is controlled by the availability o f 

reinforcing materials and efficient processing techniques. It is believed that 

innovative engineering in these areas w ill widen the range o f potential applications 

and the practicability o f  SijN 4 based composites.

1.3. Materials Selection

The selection o f the individual constituents that make up a CMC (ceramic matrix, 

reinforcement phase and reinforcement phase-matrix interlayer) is o f the utmost 

importance since the perform ance o f  the final product depends both on their 

individual and combined properties. This new generation o f structural materials is 

designed for components that will be subjected to tensile stress. The composite must 

therefore retain strength and structural integrity at high temperatures, initially for 

short to intermediate service lives (hundreds of hours) and in the future for longer 

lifetimes (years). These requirements will demand stability, both intrinsic (resistance 

to chemical decomposition, interphase reaction, phase changes, defect and crack 

growth) and to external constraints (resistance to plastic deformation under 

mechanical loading, to crack growth and fracture under impact loading, thermal 

shock resistance, resistance to oxidation/corrosion by external environment and so

Economic drivers w ill require that the composite is com paratively inexpensive to 

produce and that component manufacture is feasible without the need for costly
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shaping processes. These fabrication constraints will also influence materials 

selection, as, for example, the preferential selection o f sinter phases that will allow 

low cost production while retaining com position and structure compatible with high 

temperature properties.

As indicated earlier, low toughness and low defect tolerance are primary problems, 

indeed, the necessity to find mechanisms to control fracture behaviour in the ceramic 

is the sole reason for the incorporation o f the reinforcing phase. Here the 

combination o f the matrix and fibre is important. The matrix should be bonded to 

the fibre to allow stress transfer from the matrix to fibre under loading, especially 

when the matrix begins to crack. Nevertheless the fibre-matrix bond must be weak, 

so that debonding along the interface is the preferred fracture mode, with the 

concom itant absorption o f fracture energy and dispersion o f crack tip stresses. 

Generally the reinforcement phase should have superior strength and/or 

refractoriness than the ceramic matrix but above all the selection should be based on 

minimising interactive effects between the reinforcing phase and the ceramic. These 

are prim arily o f  two kinds, the mechanical and chemical.

The mechanical com patibility between the fibre and matrix arises from the essential 

requirem ent for the composite to transit between room temperature and high 

temperature (up to 1750°C) both during fabrication and service applications. The 

facility for relief of internal stresses by plastic deformation in the composite is 

extremely limited, especially at lower temperatures, so that any strain differences 

occurring as a result o f thermal expansion mismatch between the phases m ust be 

accommodated by elastic strain within the composite phases. W hen fibre and matrix 

coefficients o f thermal expansion (CTE) are significantly different, fracture o f one of 

the phases by the other is inevitable. In normal practice, this is first evidenced after 

cooling from sintering temperatures. W hen the fibre CTE is lower than the matrix 

CTE, anisotropy shrinkage during cooling generates tensile stresses in the matrix, 

which become “frozen” into the structure. Above a threshold value these will crack 

the matrix to produce an array of parallel lateral cracks transverse to the fibre 

direction. Between two such cracks the matrix shrinkage is accommodated by 

matrix-fibre debonding and/or sliding to relieve the local residual stresses. Thus the
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intercrack spacing can provide a measure of the CTE mismatch between the phases, 

modified by the strength o f the fibre-matrix bond and resistance to sliding.

Both o f these modifiers can be manipulated and are engineered, usually by fibre 

coating. Nevertheless, when designing new composite compositions, the first 

consideration is to minimise CTE anisotropy between the phases. Fibres are not 

structurally isotropic and therefore exhibit different longitudinal and radial CTE 

values. Phase selection can, therefore, be used to enhance properties. Prerequisite is 

that the selection o f phases should as far as possible ensure that the fibre-matrix bond 

strength is weaker than the fibre fracture strength, and that the fibre is not put into 

tensile stress by the cooling matrix to the extent that fibre fracture occurs. These 

properties can also be tailored. Thus for example, for optimum mechanical 

properties o f the composite, the elastic modulus o f the candidate fibre should be 

higher than the matrix, so that the fibres will bear a greater load than the matrix 

during loading and the fibre tensile strength should exceed that of the matrix to an 

extent that the fibres carry the load increasingly with progressive matrix-cracking.

In practical systems, composite fracture behaviour is controlled by the nature o f the 

fibre-m atrix interlayer, especially at high loading rates. Interlayer composition is 

determined by selection o f sinter additives, which distribute to intergranular and 

interface sites during sintering, and if really necessary, the deposition o f fibre 

coatings, although this option increases costs significantly. Here again material 

selection will control toughness, therm al shock resistance, gracile versus brittle 

behaviour, and fibre sliding after local matrix cracking. Compositions must be 

tailored to meet these requirements.

Chem ical interaction gives rises most importantly to degradation o f the reinforcing 

phase (and its beneficial properties) during the fabrication processes and subsequent 

service function at high temperature. The phases should be generally inert, not 

subject to spontaneous decom position or to interphase reaction at high temperature. 

External environments at high temperature are especially reactive so that reinforcing 

phases should have good oxidation resistance and thermal stability. However, this is 

not limited to reinforcing phases. Non-oxide ceramic matrices and complex oxide-
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nitride interface layers are also susceptible to environmental attack at high 

temperatures so that here also a measure o f oxidation resistance is essential.

M aterials selection should also consider other properties as appropriate. Thus 

composites targeted to wear and tribological applications should be designed for 

hardness and wear resistance, while wear debris and possibly the reinforcing phases 

themselves can be engineered to enhance low friction properties o f the sliding 

surface.

Finally the cost and availability of both the ceramic matrix and the reinforcing phase 

must be taken into consideration when making a selection. The effort to optimise 

combinations o f  phases almost invariably leads to more complex fabrication routes 

and increased costs. Possible processing routes for fabrication of the composite 

should therefore be chosen based on their cost effectiveness.

1.3.1. Practical Systems

1.3.1.1. Glass-Matrix Systems

Glass matrices in use are typically oxide materials, oxynitrides and glass-ceramics. 

M uch w ork has been carried out on glass and glass-ceramics reinforced with SiC 

whiskers and fibres. Other reinforcements used are Zr0 2 , mullite and alumina. 

However, most attention has focussed on a SiC fibre reinforced glass ceramic, LiaO- 

Al20 3-S i0 2 (LAS) [3]. This composite however, has been shown to have a 

m aximum use temperature up to about 1100°. This is due to the fact that the glass- 

ceramic reaches its melting point leading to a loss in properties, which makes this 

composite (along with all glass-matrix composites) unsuitable for high temperature 

applications [4].
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1.3.1.2. Oxide Matrix Materials

Alumina and zirconia are the principal oxide matrix materials most widely reported, 

o f interest for commercial components. Alumina reinforced with SiC whiskers 

shows improved mechanical properties over the monolith, with the potential use as a 

cutting tool material [5]. Diamond additions to alumina were found to increase the 

hardness significantly [6 ]. Both AI2O3 and Z r0 2 have been used to form a series of 

particulate reinforced composites (AI2O3 —» Z r0 2 rich), where the most promising 

was the Zr0 2 -toughened alumina [7] [8 ] [9]. Although the toughness o f both o f these 

monoliths can be greatly enhanced they are limited by their poor oxidation behaviour 

and creep properties [ 1 0 ].

1.3.1.3. Non-oxide Matrix Materials

O f greatest importance in this category o f matrices are silicon nitride and silicon 

carbide. Strong covalent bonding, resulting in high-strengths and high melting 

points, and the intrinsic property o f the compounds to form a protective SiÛ2 layer at 

high temperatures in highly oxidising environments, make these non-oxide materials 

highly attractive for use in CMCs.

Significant experimentation has been carried out on the infiltration o f SiC ceramic 

with fibres/fibrous structures o f SiC, graphite and alumino-silicate materials [11] 

[12]. These SiC based composites show potential as both coating and bulk material 

in high-temperature engine applications.

The infiltration o f Si3N4 into fibrous structures o f carbon, titanium nitride and boron 

nitride and subsequent densification is easier than for SiC, prim arily owing to the 

availability o f a wide range o f complex multi-component silicon oxynitride sinter 

phases with other metallic elements [13] [14] [15]. W hile the ultimate mechanical 

properties are intrinsically inferior, the easier fabrication o f Si3N4 composites makes 

these more attractive as practical systems.
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Particle reinforcement has been reported to improve the properties o f SiaN4 , for 

example, thermal shock resistance and electrical behaviour o f Si3N 4-based ceramics 

has been improved by the addition o f BN particles [16]. ZrCVparticulate reinforced 

Si3N4-based composites dem onstrated almost double the strength o f the monolith at 

temperatures higher than 1300°C [17]. SiC whisker composites show even higher 

toughness [18].

The greatest gain is shown, however, by long fibre reinforcements, as illustrated by 

w ork carried at the JRC Institute for Advanced Materials on carbon and silicon 

carbide fibre (both coated and uncoated) reinforced silicon nitride [19] [20].

1.4. Processing Developments

The processing o f a ceramic matrix com posite is an essential part o f the design o f a 

CMC com ponent as it greatly influences the properties o f  the final product. Many 

processing routes are based on the corresponding monolithic fabrication route, but 

the requirem ent to combine two distinct phases together often means a more complex 

fabrication procedure together with increased costs. The ideal processing route 

should be cheap, result in a dense material, allow the fabrication o f complex 

component shapes and prevent any dam age to the reinforcing phase.

Chem ical V apour Infiltration (CVI) is to date the most widely developed process for 

the fabrication o f fibre reinforced CMCs. Large, complex component shapes can be 

m anufactured and a wide variety o f matrices (oxides and non-oxides) can be used. 

One and two-dim ensional carbon and silicon carbide fibre reinforced SiC w ith good 

mechanical properties have been manufactured successfully using this method [2 1 ] 

[22], However, the process is extrem ely slow and expensive, with the ceramic 

matrix reaching at most 85% Theoretical Density.

Sol-gel and polym er infiltration pyrolysis (PIP) techniques are extensively used in 

the m anufacture o f monolithic ceramics and to a limited extent o f CMCs. The sol- 

gel technique has been prim arily applied to oxide systems, such as, AI2O3 and Z r0 2
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using polycrystalline oxide fibres [23]. The PIP technique, on the other hand, has 

focussed principally on the production o f SiC and Si3N4 matrix composites [24]. 

Although the processing temperatures for both routes are significantly lower than for 

conventional processing methods (thus saving costs and minimising fibre damage) 

[25], the fundamental disadvantage o f both methods is that a very large shrinkage is 

incurred resulting in a low volume yield o f ceramic.

1.5. Objectives of the Thesis

The present work researches the potential to improve densification, by low pressure 

sintering, o f a long carbon fibre reinforced silicon nitride matrix composite. The first 

step o f  the project is to investigate the sinterability at lower temperatures of 

candidate SÌ3 N 4  matrix phase systems as monolith ceramics. This looks to the 

formation o f sinter phases which melt at lower temperatures and so promote sintering 

o f SÌ3 N 4  matrix and the composite to high density. The primary goal is to identify 

sinter aid compositions which would allow densification o f the SÌ3N 4  matrix to 

greater than 95% TD at lower temperatures while maintaining thermal stability at 

processing temperatures. The potential o f selected compositions as suitable matrix 

phases for the fabrication o f a C-SÌ3 N 4  com posite is examined.

1.6. Structure of Thesis

The thesis is organised as follows:

• After this introductory chapter, Chapter 2 is a comprehensive literature review of 

the development of CMCs, their properties and fabrication methods. The factors 

involved in the slurry processing technique for fabrication o f a carbon fibre 

reinforced SÎ3N4, is researched. Background theory o f monolithic Si3N4 and 

composite densification behaviour, along with their basic properties is outlined.
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• A description o f all the processing steps involved in the fabrication o f the 

monolith and com posite samples is given in Chapter 3. Also outlined are the 

underlying principles, applications and limitations o f the structural analysis 

techniques used throughout the project. Followed by a description o f the property 

testing carried out.

•  Chapter 4 contains the results and discussion o f the project. The work pertaining 

to the identification o f sintering additive com position for candidate matrix phases is 

outlined first (Section 4.1 -  4.7). This consists of the results o f an extensive 

sintering study o f a range o f SiaN4 followed by detailed discussion on the 

densification behaviour, observations on microstructural analysis and phase 

development, and results and discussion o f the basic property testing carried out.

•  Following the monolith research, a selection o f matrix phase compositions was 

chosen for use in the fabrication o f composite materials. The densifcation 

behaviour and final microstructure of these composites, after densification by 

sintering and hot-pressing are outlined in Section 4.8. The results and discussion of 

some basic mechanical testing o f the hot-pressed composite are given in Section 

4.9.

• The conclusions o f the w ork and suggestions for further work are presented in 

Chapter 5.
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2. LITERATURE REVIEW

2.1. CMCs

2.1.1. Reinforcements

Reinforcements can be in the form o f continuous fibre, short fibre, whisker, or 

particle as illustrated in Figure 2.1 [26].

2.1.2. CMC Principle

Table 2.1 lists fracture toughness (K ic) values o f monolithic compared with 

composite ceramic materials [27]. Increased fracture toughness o f CMCs is greatest 

when long fibre reinforcements are used [28]. The reinforcing fibres act by 

permitting energy dissipating phenom ena at the fibre/matrix interface during 

deformation. These phenomena include crack deflection and fibre bridging as 

illustrated in Figure 2.2 [29].

Deflection o f the crack around the second phase reduces the stress-intensity at the 

crack tip, dissipating fracture energy, which increases the toughness o f  the material. 

The fibre bridging mechanism arises when the crack can pass through the matrix 

without damaging the fibres so that failure o f the composite is dependent on fibre 

failure, which occurs by individual fracture and pull-out of the fibres. These 

mechanisms are essentially dependent on interface properties. The higher stiffness 

and strength o f the fibres means that the failure o f the composite occurs at a higher 

stress and strain than for the unreinforced matrix Figure 2.3 [30],
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Material Fracture Toughness Critical Flaw Size
(MPa*m1/2) (Xm

Conventional Microstructure:
a i2o 3 3.5-4.0 25-33

Sintered SiC 3.0-3.5 18-25

Fibrous or Interlocked
Microstructure : 4.0-6.0 33-74
Hot-pressed Si3N4

4.0-6.0 33-74
SinteredSi3N4

4.0-6.0 33-73
SiALON

Particulate Dispersions:
Al20 3-TiC 4.2-4.5 36-41

Si3N4-TiC 4.5 41

Transformation Toughening:
ZrC^-MgO 9-12 165-294

Zr02-Y20 3 6-9 74-165

Al20 3-Zr02 6.5-15 86-459

Whisker Dispersions:
Al20 3-SiC 8-10 131-204

Fiber Reinforcement:
SiC in borosilicate glass 15-25

SiC in LAS 15-25

SiC in CVD SiC 8-15

Aluminium 33-44

Steel 44-66

Table 2.1 Fracture toughness and critical flaw size of monolithic and 
com posite ceramic materials compared with metals [27].
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Figure 2.1 Schematic illustration o f principal com posite microstructures [26].
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Figure 2.2 Crack deflection and fibre bridging mechanisms [29],
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Figure 2.3 Stress-strain relationship curves of the fibre and matrix in a 
unidirectional, long-fibre reinforced com posite. At composite 
strain, ec, the fibre and matrix stress are Of and a m, respectively. 
[30].

It is clear that the mechanical properties of CMCs are closely related to the fibre- 

matrix bonding. The com posite will be brittle when this bonding is too strong and 

tough when it is weak enough to allow the crack deflection mechanism. Composites 

that dem onstrate good damage tolerance behaviour have a fibre/matrix interface 

bond which is weak due to the presence o f an interphase layer between the fibre and 

the matrix. To date, the only reported successful interfacial compositions are 

pyrolitic carbon (Pyr-C) and boron nitride (BN) because o f their unique layered 

crystal structure oriented parallel to the fibre surface. Under such conditions a 

matrix microcrack propagating in the matrix can be easily deflected at the interface 

due to the low cohesive energy between the crystallographic planes. Unfortunately, 

Pyr-C and BN have poor oxidation resistance (>600°C). One key technological 

challenge is to identify an interphase that is thermally stable at high temperatures 

while having the required properties for crack deflection.
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2.2. Manufacturing of CMCs

The processing o f a ceramic matrix composite is an essential part o f the design o f a 

CMC component as it greatly influences the properties o f  the final product. CMC 

processing has evolved from the development o f glass-matrix fibre composites in the 

1960’s [31]. However, for ceramic matrix composites, the requirement for 

crystalline ceramic matrices and relatively low processing temperatures does not 

allow the simple infiltration o f a fibre preform by the matrix in the molten state.

Chemical Vapour Infiltration (CVI) is to date the m ost widely developed process for 

the fabrication o f continuous fibre reinforced ceramic m atrix composites because 

large complex shapes can be manufactured and a wide variety o f matrices (oxides 

and non-oxides) can be used. Also, in specific systems, the process involves low risk 

o f thermal, chemical and mechanical damage to the reinforcing fibres [32] [33] [34] 

[35]. This process basically involves the preforming o f the fibres into the shape and 

dimensions desired in the final composite, they are then placed into reactant gases 

constituted o f monolith precursors and heated to the required temperature, so that the 

monolith is formed and deposited in the interstices between the fibres. One- and 

two-dimensional carbon and SiC fibre structures have been successfully impregnated 

with SiC (CH3SiCl3 as the gaseous precursor) by the CVI process [35] [36] [11]. 

However, composites processed by CVI are porous, reaching at most a matrix of 

85% Theoretical Density (TD). In addition the process is extremely slow and 

expensive. A more recent “gradient” CVI process has been developed at the Oak 

Ridge National Laboratory [38] [39] [40], which greatly reduces the infiltration time 

by manipulating pressure and thermal gradients in the manufacturing system, but still 

remains extremely costly, and the problem of scaling-up to large structures has yet to 

be overcome.

Sol-Gel and polymer infiltration and pyrolysis (PIP) techniques are extensively used 

in the manufacture o f monolith ceramics and for the infiltration o f fibre preforms to 

fabricate CMCs. Both techniques are based on the formation o f a “green” structure 

using a ceramic precursor matrix, both inorganic and organic, followed by a
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calcination, or pyrolysis treatment to convert to ceramic and achieve a degree of 

densification. Some o f their advantages for making composites are the same as those 

for making monolith ceramics:

•  processing temperatures are lower by hundreds o f degrees Centigrade than for 

conventional processing methods

•  excellent compositional homogeneity can be achieved in single phase matrices

•  these processes have the potential for forming unique multiphase matrices.

The sol-gel technique has been prim arily applied to oxide systems, using 

polycrystalline oxide fibre preforms infiltrated with oxide matrices, such as AI2O 3, 

Z r0 2, S i0 2 and 2 Si0 2 3 Al2 0 3  [41] [42], The polymer pyrolysis technique has 

focused principally on the production of SiC [36] and Si3N4 [43]. A composite 

containing Si3N4 reinforced with C fibre has been successfully manufactured using 

this method [44] [45], However, the cost o f the chemical precursors is high, and 

numerous infiltration/densification cycles are required, making the processing routes 

quite expensive. A  further refinement of PIP technology, used extensively in the 

fabrication o f C/SiC composites, is based upon m etal vapour reactions with an 

infiltrated carbon matrix. In the m ost widely developed system a high char resin is 

infiltrated as liquid into a fibre preform, converted to carbon by heat-treatment and 

then to SiC by infusing w ith Si liquid at approximately 1500°C. However, the 

fundam ental disadvantage o f both processes, is the very large shrinkage incurred 

resulting in relatively low volume yield of ceramic.

The fabrication o f glass and glass-ceramic matrix composites has been successfully 

developed using a slurry impregnation/liquid sintering method [31] [46] [47]. In this 

method, fibres in the form o f multi-filament continuous tows are passed through a 

slurry (containing the matrix material, solvent and binder) and then wound on a 

m andrel and removed as a prepreg. The prepregs are then stacked into piles and 

densified by sintering or hot-pressing. The advantage o f a glass matrix using this 

method is that because o f its low viscosity it can flow around the reinforcing fibres to 

achieve full density w ithout damaging the fibres.
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Sintering o f SiC and Si3N4 matrices utilises secondary additives which form liquid 

intergranular phases allowing sintering by liquid phase transport [48] (discussed in 

detail in Section 2.3). However the densification temperatures are still very high 

(>1550°C) compared to glass ceramics. Green-forming o f  composites by infiltration 

o f ceramic powders is one o f the critical parameters, which requires high uniformity 

and powder packing in the fibre preform. It includes slurry infiltration assisted by 

gas pressure or electrophoretic infiltration [49]. Densification by hot-pressing can 

result in composites with high strength and toughness.

However, hot pressing limits the component geometry to simple plate shapes that 

often require very expensive machining. Pressureless sintering o f CMCs at lower 

temperatures is a preferred alternative, greatly reducing costs and allowing the 

formation o f more complex com ponent shapes.

However, there are major technical difficulties. Achievement o f a fully dense non­

oxide matrix in a fibre-reinforced composite manufactured by pressureless sintering 

is very difficult. Generally during the sintering/densification step, the ceramic matrix 

shrinks, while the fibres are rigid, constraining shrinkage and densification o f the 

matrix phase (discussed in detail in Section 2.4.2). Typically, the sintered structure 

o f the composite contains areas o f well-densified matrix but with a high intrinsic 

volume o f macro porosity [50]. Complete densification o f the whole composite has 

been achieved, to date, only by the application o f an external mechanical pressure 

(hot-pressing).

Traditionally long fibre/Si3N4 matrix composites are sintered using approximately 

10wt% Y2 O3/AI2O 3 additives in the YAG ratio (1:1 molar ratio). Dense composites 

can be achieved by hot-pressing at 1750°C. Guo [51] successfully manufactured a C 

fibre reinforced Si3N4 com posite at 1450°C, by using lower melting sinter phases 

(LiF-M g0 -Si0 2 ), but with detrimental effects to the high temperature mechanical 

properties. The simple replacem ent o f the tradition Y2O 3/ AI2O3 oxides by, for 

example a low melting glass is not sufficient, as the final composite should have 

good mechanical properties at temperatures greater than 1350°C. Ideally what is 

required is a sinter-aid com bination which has a low-melting point but which
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crystallises by post-sintering heat-treatments to crystalline phases which are 

therm ally stable at higher temperatures.

2.2.1. Slurry Processing

The more direct processing method o f  CMCs involves the infiltration of a fibre 

preform  with a dispersion o f ceramic pow der as a slurry. Slurry processing involves 

simply the infiltration o f  a fibre preform  with a dispersion o f the matrix phase 

material, consisting o f the ceramic and sinter aids, prepared as a simple powder-mix. 

Uniform and optimum infiltration o f the fibre preform to high density is o f the 

utm ost importance in this processing method [52]. The parameters o f particular 

importance are:

•  stable and well-dispersed suspensions (high repulsive forces between particles) 

with maximum solid content compatible with low viscosity,

•  excellent wetting o f the fibres by the slurry,

• small pow der particle size to interfibre spacing ratio to allow easy access through 

the fibre pre-form  channels,

•  a controlled consolidation technique to optimise uniform micro structure and high 

packing density in green compacts.

2.2.1.1. Powders in Liquids

The optimisation o f the dispersion characteristics o f a ceramic suspension can be 

achieved once the behaviour o f the ceramic powders in the medium used is known. 

Finely divided ceramic powders have a high surface area to volume ratio so the 

chem ical and physical properties o f their surfaces tend to control their behaviour in 

liquid suspension. The interaction between two particles in dispersion has been 

examined independently by Derjaguin and Landau [53] and Verwey and Overbeek 

[54], leading to the well-known DVLO theory. According to this theory, ever­
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present attractive and repulsive forces between particles in solution govern the 

stability o f a suspension. W hen Van der W aals attractive forces dominate a 

suspension the particles coagulate or flocculate, resulting in particle agglomerates 

and aggregates which sediment out o f solution. The Van der Waals attractive force 

is a function o f the dielectric constant o f the medium and the mass and separation 

distance o f the particles.

For two small spherical particles o f diameter a, the potential energy o f attraction Ua

W here h is the separation between the surfaces o f the two particles and A is the
2 2 n  • 3Hamaker attraction constant (A = n q p, where q is the number o f atoms per cm and 

(3 is the attraction between 2  atoms 1 cm apart).

Repulsion may be provided by the electrostatic interaction between two particles. 

Once added to a liquid, the surface o f  a particle may become charged by desorption 

or adsorption of ions at the surface o f the material, or by a chemical reaction (for 

example, hydrolysis, dissociation and complexation) between the surface and the 

liquid medium [55]. Coulombic forces will repel like-charged ions but attract polar 

liquid molecules and oppositely charged ions into a region near the surface, thereby 

forming what is termed an electrical double layer around the particle. The charge 

distribution can be divided into two regions; ( 1 ) a compact layer close to the particle 

surface where the adsorption o f ions and chemical reactions occur; and (2 ) a diffuse 

layer extending out to the bulk solution in which only electrostatic effects play a part. 

The Gouy-Chapm an-Stem  model o f the double-layer is illustrated in Figure 2.4 [56]. 

The shear plane depicted in the diagram defines the boundary between the fluid, 

which moves with the particle under an applied electrical field, and the bulk solution. 

This boundary is characterised by its potential, termed the zeta potential, £, which is 

regularly used as a measurement o f the stability o f the suspension.

23



Influence of pH

The pH at which <|)£ is zero is termed the isoelectric point, IEP. This pH should not 

be confused with the Point of Zero Charge, PZC, the pH where the charge on the 

particle surface is zero. The interaction between electrical double-layers leads to 

repulsive forces in the solution.

The magnitude o f the repulsion depends on the size and shape o f the particles, the 

distance between their surfaces, the permitivity o f  the liquid media, er, and the 

double-layer thickness. The thickness o f the a double-layer, K’*,is determined using 

[57]:

F l N i Z i 2.2

where,

Ni = concentration of each type o f ion in the dispersion 

Zi = valance o f each type o f ion in the dispersion 

F = Faraday’s constant 

Eo = permitivity o f  free space.

For each system there is a critical zeta potential and range o f double-layer 

thicknesses for which the repulsive potential energy exceeds the attractive potential 

energy, thus producing an energy barrier to coagulation and flocculation. As the 

distance between the double-layers increases to the order o f the particle size, a 

secondary minimum in the potential energy curve appears F igure  2.5 [57].
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Figure 2.4 Gouy-Chapman-Stern model of the electrical double-layer and potential 
decay at an oxide-water interface: o, lattice oxygen; 0 , surface oxygen; •, 
metal ion; © 0, solution ions [56].

Figure 2.5 The potential energy between two particles in a liquid resulting from 
the effects of the Van der W aal’s attraction and double layer 
repulsion [57],
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Use of Organic Additives

As can be seen from Equation 2.2, the thickness o f an electrical double-layer, and 

thus the repulsion between two double-layers can be controlled by varying the ionic 

strength o f the bulk solution. Also, by changing the degree or even the sign o f the 

particle surface charge, by addition o f an electrostatic surface-active agent, a 

surfactant [58]. In nonpolar liquids steric hindrance (which prevents or retards inter- 

or intramolecular interactions as a result of the spatial structure o f the powder 

particles) produces repulsion. Agents that promote repulsion/deflocculation are 

either simple or polym er electrolytes.

For Si3N4 aqueous suspensions, polyelectrolyte dispersants provide stability through 

electrosteric repulsive forces and interact strongly with surface sites on the powder 

[59]. The surface structure o f silicon nitride, is com posed o f acidic silanol (Si-OH) 

and basic silazane (Si2 =NH) groups [60]. The relative abundance o f these sites 

varies with the surface oxide content [61], When added to water, Si-OH and Si2 =NH 

sites generate surface charge by the adsorption o f OH- and H+ ions, as shown in 

Figure 2.6 [60]. These sites may also complex with dissolved ionic species. The 

electrical properties o f the dispersed Si3N4 particles, as a result o f these interactions, 

will govern their interactions with each other and with other charged species in the 

suspension. The isoelectronic point o f Si3N4 , reported in literature, lies in the range 

o f pH 3—>9 [62].
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♦ H zO

* NHj 
->- H,0

♦ H jO

Figure 2.6 The potential reactions of silicon nitride in water [60].

Rheoloqv of Dispersions

The flow o f a liquid can be described by its viscosity T|, defined by

T ) = -  2.3
7

where I  is the shear stress and y  is the shear rate. A  liquid is termed Newtonian if its 

viscosity is independent o f y. If  T) is not independent o f the shear rate, then the liquid 

is non-Newtonian and then its viscosity is defined by

2Aa y

Therefore, by plotting the shear stress versus shear rate, the slope o f the resulting 

curve is r\.
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The stability o f a ceramic dispersion, as discussed before, is of the utmost importance 

in the slurry processing o f ceramic based composites. Rheological measurements 

can be used to obtain information on the state o f dispersion to optimise the flow 

behaviour o f the suspension.

In the 1900’s, Einstein derived a detailed theoretical expression defining the effect of 

the addition o f particles on liquid viscosity. His derivation is explained in detail in 

The Principles o f Colloid and Surface Chem istry [63]. The derivation results in the 

equation:

—  = 1 + 2 .5 /  2.5
Vo

where,

T) = the viscosity o f  the suspension.

Tjo = the viscosity o f the liquid medium, 

f  = the volume fraction o f  particles.

However, the use o f this theory is extremely limited, as it assumes that the particles 

are hard spheres, large compared to solvent molecules (to permit the solution being 

referred to as a continuum) and it neglects the presence o f electric double-layers. It 

is now recognised that the rheology o f a suspension depends on the concentration o f 

particles and on the interparticle forces between them (as described previously).

Dilute, dispersed ceramic slurries exhibit Newtonian rheology. At high volume 

fractions o f powder, the viscosity o f  the slurry increases with increasing shear rate 

(shear thickening). This behaviour occurs due to the kinetics o f  rearrangement and 

because the system m ust increase its volume to allow closely spaced particles to slip 

past one another.

It can be described using the expression

T = K y n 2.6
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where,

K  = consistency index

rj = the exponent that indicates the deviation from Newtonian behaviour.

If, T| = 1, the suspension exhibits Newtonian behaviour.

T| < 1 , the suspension exhibits shear thinning or pseudoplastic behaviour.

T| > 1, the suspension flow is described as shear thickening or dilatant.

Flocculated dispersions show pseudo plastic or thixotropic rheology (when the 

viscosity depends on the shear rate and also on time), because the separation o f 

particles attracted to each other (floes), depends on the shear rate. W hen the 

suspension is sheared, the floes are separated and distributed in the suspension. 

Regeneration o f  the floes, and thus destabilisation o f the suspension, is therefore time 

dependent. A  material is named a Bingham plastic, if it requires a finite stress, yield 

stress, Ty, to initiate flow. This type o f suspension obeys the equation:

*-Ty=nPr 2.7

where T|p is independent of the shear rate.

Figure 2.7, demonstrates the different types o f  rheological behaviour [64]. As is 

apparent the rheology o f  a suspension depends on the concentration o f particles and 

on the interparticle forces between them.
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Figure 2.7 Dependence of shear stress on shear rate for Newtonian, Bingham, and 
pseudoplastic on dilatant systems with and without a yield point [64],

2.2.2. Consolidation of the Green Body

2.2.2.1. Casting

A ceramic slurry can be consolidated by a casting processes. Conventionally, an 

aqueous clay slurry is called a slip and the casting method, slip casting. This method 

simply involves the pouring of the slip into a permeable mould and, as a result of 

capillary suction and filtration forces, the suspending liquid is removed and the solid 

particles are concentrated on the wall of the mould, forming a cast [65]. When an 

acceptable thickness of the cast has formed, the excess slurry is poured off and the 

mould and cast are allowed to dry. During the drying process the cast will shrink 

away from the mould and can be easily dislodged. Slip casting is frequently used for 

the consolidation of a variety of ceramic slurries. For each slurry, the powder 

characteristics; particle size, and shape, must be optimised, also the degree of 

flocculation and pore size of the mould, in order to obtain casts with high particle 

packing densities.
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The rate of casting is defined by Darcy’s Law [66] which describes the flow of liquid 

through a porous medium

/ = £ £  2.8
nL

where,

J = the flux of liquid 

P = the pressure gradient in the liquid 

til = the viscosity of the liquid 

K = the permeability of the porous medium.

After integration of this equation, and the application of appropriate boundary 

conditions, Tiller 

the casting time:

conditions, Tiller and Tsai [65] related the thickness of the consolidation layer, L2, to

Û = M S L  2.9

where, the function H is dependent on the properties of both the consolidated layer 

and the mould,

p = the total filtration pressure 

t = time

T|l = the viscosity of the liquid

It is clear from Equation 2.9 that applying an external source pressure to the slurry in 

the mould can reduce the casting time. This procedure is termed pressure casting or 

pressure infiltration and is widely used in industry to consolidate solids in slurries. 

Highest packing densities are achieved with well-dispersed slurries. The packing 

density is independent of the applied pressure in this case, ~ 0.5MPa. Whereas for 

flocculated slurries, the packing densities are dependent on the pressure (Figure 2.8) 

[67]. Pressure infiltration has been successfully employed in the consolidation of 

long carbon fibre preforms with a submicron silicon nitride aqueous slurry [68]. 

Figure 2.9 represents the system used.
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Figure 2.8 Dependence of packing densities of flocculated slurries on pressure [67].
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Figure 2.9 Pressure Infiltration system [68].
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2.2.3. Pre-Sintering Processes

2.2.3.1. Drying

Drying o f a ceramic green body formed by casting or plastic forming, is an important 

step prior to organic burnout and firing. W hile the problems arising during drying o f 

these ceramics are not as great as those processed using the sol-gel method [69], 

careful control o f drying conditions is essential because cracking and warping can 

occur, due to differential stresses caused by pressure gradients and non-uniformities 

in the green body.

The three stages o f drying are shown in Figure 2.10. The first stage is termed the 

constant rate period (CRP), because the rate o f evaporation o f liquid is independent 

o f time and moisture content [70] [71], and can be described by

Vc = H ( p . - p . )  2.10

where,

pw = vapour pressure o f the liquid at the surface 

pa = ambient vapour pressure

H = evaporation constant, dependent on the temperature, velocity of the drying 

atmosphere and geometry o f the system.

Before drying the meniscus is flat, stage (A) in Figure 2.10. During evaporation dry 

patches form on the surface and are re-wetted by stretching o f the liquid surrounding 

the particles. As a result o f stretching, tension develops in the liquid, stage (B) in 

Figure 2.10, and to balance this, the solid phase goes into compression, and the liquid 

meniscus remains at the surface. As drying continues the contraction of the solid 

phase reduces the porosity and the particles bond together forming a stiff body. The 

liquid meniscus then deepens and the tension in the liquid increases to a maximum 

possible value. Beyond this point the liquid tension cannot overcome the stiffness in 

the solid phase and the evaporation rate decreases. This is the critical point and it 

marks the end o f  the CRP stage. Drying now enters the falling rate period (FRP), 

stage (C) in Figure 2.10 which can be divided into two parts, in the first, evaporation
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of liquid still occurs from the surface and in the second evaporation takes place from 

inside the body by diffusion of vapour.

Stages of Drying
(A) Initial condition

Liquid/vapor meniscus flat

Pore liquid 

Solid phase

(B) Constant rate period

Pressure in liquid at exterior: P,-=—t

Evaporation 

 ► -
Shrinkage

(C) Falling rate period

Maximum capillary pressure:

p J yS V ySl}S P

Empty pores 

Minimum radius of curvature

Figure 2.10 Schematic illustration of drying process [69]. Where, red network 
represents solid phase and blue area is liquid filling pores. ySv and 
Ysl are the solid/vapor and solid/liquid interfacial energies, 
respectively. SP/VP is the surface-to-volume ratio of the pore space.
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As was mentioned earlier, cracking and warping result from differential stresses. 

Pressure gradients may be responsible for introducing stresses according to the 

following equation:

crx =<Jy = <  p  > - p  2 . 1 1

where,

p - negative pressure in the liquid (tension)

<p> - average pressure in the liquid

If the tension which develops in the liquid is uniform then the stress in the solid 

phase is zero. However, p may vary through the thickness causing a differential 

strain as the solid phase contracts more when p is high. The differential strain/stress 

will then cause warping and cracking.

A high evaporation rate can also introduce pressure gradients and thus problems 

according to

2.12
Vi?,

where,

Ve - evaporation rate 

k  - permeability o f the solid phase 

T|l - viscosity o f the liquid 

Vp - pressure gradient

If  V e is high then a large pressure gradient exists in the liquid and this as explained 

above leads to warping and cracking. The influence o f pressure and stress has been 

outlined in detail by Scherer [69].

H owever even if the body is dried uniformly and at a slow rate, cracking and 

warping may still occur. Differential liquid concentration in the body due to forming
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methods leads to differential shrinkage and thus warping. Differential shrinkage may 

also occur due to gradients in particle size within the solid. Figure 2.11 illustrates the 

development o f warping [71]. Drying o f a composite fabricated by a wet-forming 

method, for example slurry infiltration will require extra attention to prevent damage 

to the green body, since the reinforcing phase will introduce mechanical constraints 

to shrinkage and thus hinder uniform drying.

Fast
evaporation

Uniform
evaporationt Ì t

Higher pressure 
Lower pressure

Higher water 
Lower water

Uniform
evaporationt i l  t t t

Finer particles 
Coarser particles

i l l  1 1 1
(a) (b)

Figure 2.11 Development of warping during drying [71],



2.3. Densification of Si3N4 Matrix by Liquid phase sintering (LPS)

As was outlined in the Introduction, Silicon Nitride based ceramics are attractive 

materials for high temperature applications due to their high-strength and melting 

point, resulting from the strong covalent nature o f the Si-N bond. However, these 

high-energy covalent bonds are problematic in the formation o f dense monolithic 

Si3N4 in massive form from a pow der compact. The low self-diffusivity o f these 

covalently bonded materials mean that the species become mobile enough for 

sintering only at high temperature (>1850°C) which is approximately the temperature 

at which Si3N4 starts to decompose. Consequently, early attempts to sinter pure 

Si3N4 were unsuccessful [72]. Shimada et al. [73] did fabricate fully dense pure 

Si3N4 but only with the use o f extremely high pressures (gigapascals). Today, 

successful fabrication o f massive dense silicon nitride from pow der precursors is 

usually achieved by a solution-precipitation process using a low volume fraction 

additive mix which melts at lower temperatures -  liquid phase sintering (LPS).

The fundam ental basis o f the LPS procedure is that at a particular temperature, the 

sintering additives react with each other and with the surface layers o f the ceramic 

pow der particles to form a partially liquid continuous intergranular phase. This 

liquid phase promotes densification by a series o f successive, overlapping steps, (i) 

rearrangement, (ii) solution and precipitation and (iii) microstructural coarsening.

The densification mechanisms occurring during these three steps are outlined in 

Section 2.3.3. But at the outset, the driving force for LPS and the key kinetic and 

thermodynamic factors affecting each step are outlined.

2.3.1. Driving Force for Densification

The liquid phase present at sintering temperature during LPS enhances densification 

by accommodating particle rearrangement (since the friction between particles is
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considerably reduced) and by promoting m atter transport (since diffusion through a 

liquid is significantly faster than in a solid. The driving force for densification by 

LPS stems from the capillary pressure in the liquid surrounding the solid particles. 

In cases where the liquid phase wets and spreads well over the solid particles, it 

removes all solid-vapour interfaces in the system. Although this results in an energy 

decrease in the system it also results in the formation o f pores in the liquid phase. It 

is the removal (or reduction) o f the resultant liquid/vapour interfacial areas that 

provides the driving force for shrinkage and densification o f the system. The 

equation o f Young and Laplace (Equation 2.1) describes the pressure difference 

across a curved surface:

Ap = 2.12
R

where, Ap is pressure difference

Yiv -  the liquid-vapour surface energy 

R -  radius o f the pore in the liquid

The pressure in the liquid is lower that in the pore, thus placing the solid particles 

under a compressive stress, which can be o f a magnitude sufficient to provide the 

driving force for sintering.

2.3.2. Kinetic and Thermodynamic Factors

2.3.2.1. Wetting of Particles/Grains

The contact between a liquid and a solid at equilibrium is illustrated in Figure 2.12 

[74], Equation 2.13 derived by Young (1805) and Dupre (1869) describes the 

relationship,

= r s,+ r lvcos0 2.13
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where, ysv, ysi, and yiv are the specific energies o f the solid-vapour, solid-liquid and 

liquid-vapour interfaces respectively, theta is natural contact angle between the solid 

surface and the liquid meniscus.

A small contact angle, less than 90°, is opened with good wetting o f the solid 

particles. It is generally found that liquids with low surface tension form a low 

contact angle with most solids resulting in good wetting.

Figure 2.12 W etting behaviour between a liquid and a solid, showing the balance 
between the interfacial tensions for a liquid with a contact angle of 0  

[74],

2.3.2.2. Liquid Spreading

Perfect spreading o f the liquid phase across the solid surface occurs to reduce the 

total interfacial energy o f the system, that is when:

r/v + r s/ - r ^ = o  2 1 4

Referring to equation 2.13, the contact angle must be zero to satisfy equation 2.14, 

and thus ensure perfect spreading o f the liquid.
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2.3.2.3. The Dihedral Angle

The dihedral angle, \|/, is defined as the angle between solid-liquid interfacial 

tensions, illustrated in Figure 2.13 [75]. Rahaman [76] defined the equation for this 

situation as,

cos 2.15

yss and Ysi are the solid-solid and solid-liquid interfacial energies (or tensions) 

respectively.

When Ys/Ysi < 2, the dihedral angle is between 0° and 180°, and the liquid does not 

completely penetrate the solid-solid interface (grain boundary). In the case where 

Yss/Ysi > 2, no value of \|/ will satisfy equation 2.15, and the liquid will completely 

penetrate the grain boundary. Complete liquid penetration of the grain boundary 

leads to a reduction in the total energy of the system, as when Ys/Ysi > 2 , the sum of 

the 2  solid-liquid interfacial energies (2ysi) is less than that of the solid-solid interface

y (s s ) -

Grain Grain

Grain boundary

Figure 2.13 The definition of the dihedral angle \j/ for a liquid in contact with the 
corners of the grains [75],
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2.3.2.4. Solubility

The solubility o f the liquid in the solid and also the solid in the liquid influences 

densification by LPS. Ideally the degree o f liquid solubility in the solid phase should 

be such that sufficient liquid is present during sintering to ensure good densification, 

after which it is incorporated into the structure. This type o f sintering is termed 

transient liquid phase sintering. Successful fabrication o f Si3N4 solid solutions 

(SiALONs) is achieved in this manner, in which the amount o f residual liquid phase, 

which is glassy, is substantially reduced, and improvements in material properties are 

seen. These type o f materials are discussed in Section 2.3.7.

Good densification by LPS also requires that the solid has a high degree o f solubility 

in the liquid since as outlined earlier, rearrangement during stage 1  is enhanced by 

the dissolution o f sharp edges and contact points o f the solid particles. Also during 

stage 2 , good solubility is essential for the solution-precipitation mechanism. 

According to equation 2.16 (derived by Raham an [77]), a solid phase with a small 

particle size is m ost favourable for good solubility.

In S ü Ë  2.16
KTR

where, S -  solubility o f  dissolved solid in liquid

So - solubility o f  dissolved solid in liquid at equilibrium 

Q - atomic value

2.3.2.5. Capillary Forces

As was outlined earlier in the present section, the driving force for densification by 

LPS is the presence o f a compressive force on the solid particle as a result o f the 

reduced pressure in the liquid phase. The magnitude and nature o f the compressive
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forces is determined by several factors including the contact angle, the volume of 

liquid, the separation and the particle size. Equation 2.17 describes semi- 

quantitatively, the effects of these factors on the compressive force for an idealised 

model illustrated in Figure 2.14 [78].

F = -n X 2 Ap + 27tXylv cos p  2.17

where, F is positive when the force is compressive, Ap is the pressure difference 

across the liquid-vapour interface (described in Equation 2.12) and yiv is the liquid- 

vapour interfacial energy (surface tension).

Following the detailed discussion by Rahaman [79] a small contact angle (0) is 

required for F to be positive. This reiterates that a small contact angle between the 

liquid and solid phases, that is a good wetting liquid is a prerequisite for the 

achievement of dense materials by liquid phase sintering.

Figure 2.14 Geometrical parameters for an idealised model of two spheres 
separated by a liquid bridge [78].
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2.3.3. Densification Mechanisms

Figure 2.15 illustrate the three overlapping stages arc observed during LPS [80], 

dominant densification mechanism has been dentified for each stage. [48] [81].

Mixed powders
major component 

' -additive 
pore

Stage 1 : Rearrangement
liquid formation and redistribution

Stage 2 : Solution Precipitation
densification , coarsening, and shape accommodation

Stage 3 : Ostwald Ripening
coarsening and pore elimination

Figure 2.15 Liquid phase sintering [48].



2.3.3.1. Stage 1: Rearrangement

During stage 1, rearrangement is the dominant mechanism. If the liquid formed has 

good wetting properties, the surface tension forces (solid-vapour interfacial energy) 

on the solid particles lead to their rearrangement to produce a more stable packing. 

Good solid solubility in the liquid phase means the dissolution of sharp edges and 

contact points between grains can take place, enhancing particle rearrangement thus 

packing of the system. Additionally, capillary forces in the liquid phase act to bring 

about liquid distribution across the solid grains and into pores, leading to further 

rearrangement of the solid particles.

Liquid Distribution

Kwon and Yoon [82] studied the liquid distribution during the LPS of fine tungsten 

powder containing coarse nickel particles. They found that substantial redistribution 

of the liquid phase took place, with sequential filling of the pore occurring in such a 

way that small pore are filled first and larger pores later.

Shaw [83] analysed the redistribution of the liquid during LPS of a two-dimensional 

model of circular particles and showed that initial homogeneous liquid distribution 

across the solid particles is essential for further redistribution of the liquid. Analysis 

of a more complex model based an array of circles containing pores with a range of 

sizes was also carried out by [83], This analysis showed that after the formation of 

an initial amount of liquid phase, the pores with the smallest size will the first to be 

filled, as they have a high surface to volume ratio, so that a given volume of liquid 

eliminates more solid-vapour interface (greater reduction in overall energy of the 

system). As the volume of liquid is increases the sequential filling of pores will 

occur. Shaw’s analysis highlights the importance of (i) homogeneous packing of 

particles to produce a narrow range of pore size, (ii) homogeneous mixing of the 

main powder and the sintering additive to promote the homogeneous distribution of 

the liquid phase. It is also important that the sintering additive powders have small
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particle sizes, otherwise huge voids will remain when the liquid phase forms and fills 

the smaller pores.

Particle Rearrangement

Kingery [48] analysed the particle rearrangement during LPS by using an empirical 

approach, in which the surface tension forces driving densification are in competition 

with the frictional forces resisting rearrangement. Equation 2.18 describes the simple 

kinetic relationship he derived for the variation of shrinkage with time:

where AL is the observed change in length of the material, Lo is the original material 

length and the exponent n, is slightly greater than unity. Although this approach 

allows a quantitative estimation of the shrinkage rate during particle rearrangement, 

it is an idealised approach as the sintering process is treated as an isotropic and 

uniform.

Another approach to the mechanism of particle rearrangement involves the analysis 

of the capillary forces between particles separated by a liquid bridge [84] and 

although this model considers the effect of many parameters, its axial symmetry 

introduces significant limitations on its applicability to real systems.

Liquid Volume and Densification (during rearrangement)

The volume of liquid phase present during the rearrangement stage has a significant 

effect on the densification achieved during this stage. If the volume fraction of liquid 

is greater than 36%, full densification is achieved by rearrangement alone [85]. 

However, in advanced ceramics, the volume fraction of liquid phase is generally 

much lower, so that although a certain degree of densification is achieved by 

rearrangement, full densification requires the contribution from other processes.
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2.3.3.2. Stage 2: Solution-Précipitation

During the second stage of sintering by LPS, rearrangement decreases considerably, 

and solution-precipitation becomes the dominant mechanism. Two models have 

been proposed to describe this stage; (i) Kingery’s model (densification by contact 

flattening) [48], (ii) Densification accompanied by Ostwald ripening [86] .

Kinqerv’s Model

According to this model, the compressive capillary force of the wetting liquid means 

that the solubility (or chemical potential) at the contact points between the particles is 

higher than that at other solid surfaces. A reduction in the energy of the system is 

thus achieved by matter transport away from the contact points (high chemical 

potential) to other surfaces (low chemical potential). Providing the solid has good 

solubility in the liquid phase, solid particles at the contact points go into solution and 

are precipitated at points with lower chemical potential. This allows center-to-centre 

approach of the particles under the action of the surface tension forces. Using this 

model for the solution-precipitation mechanism quantitative estimates of the 

shrinkage rate can be made. According to Equation 2.19, which describes the 

situation when the rate of matter transport is controlled by the diffusion of the solid 

particles through the liquid phase, the shrinkage is proportional to the one-third 

power of the time and inversely proportional to the four-thirds power of the initial 

particle size. Equation 2.20 describes the situation when the interface reaction 

leading to solution (or precipitation) is the rate controlling mechanism, in which 

case, the shrinkage is predicted to be proportional to the square root of the time and 

inversely proportional to the initial particle size.



Regardless of which mechanism is rate controlling, it is clear that a powder with a 

small particle size aids in increasing the shrinkage rate during this stage.

Densification Accompanied by Ostwald Ripening:

Ostwald Ripening applies to the coarsening of precipitates (particles) in solid or 

liquid medium [87] [88] [89]. Smaller particles have a higher concentration of solute 

(liquid phase) surrounding them and so a net flux of matter from the smaller particles 

to the larger ones occurs. Studying the LPS of W(Ni) powder mixtures, Yoon and 

Huppmann [86] observed Ostwald Ripening as the fine tungsten powder particles 

dissolved in the nickel liquid phase and precipitated on the coarse tungsten spheres. 

It is generally thought, however, that although these observations show that Ostwald 

Ripening does occur, it accompanies densification rather than causes it.

Grain Shape Accommodation

In systems where the volume of liquid is insufficient to completely fill the voids 

between the rounded or spherical shaped grains, grain shape accommodation is often 

observed to occur during stage 2. This produces polyhedral grains with flat contact 

surfaces, leading to more efficient packing of the grains, and the liquid is released 

from the well-packed regions and flows into the pores. In systems where the liquid 

volume is fairly large the decrease in energy associated with filling in the remaining 

pores will be not be great, and the grains maintain their original (spherical) shape.

As densification during stage 2 slows down, coarsening begins and becomes the 

dominant process in stage 3.
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2.3.3.3. Stage 3: Microstructural Coarsening

Densification

As mentioned above, densification slows down considerably during this stage of 

LPS. In cases where the volume of liquid is relatively small, the elimination of any 

remaining isolated pores takes place slowly by continued solution-precipitation and 

grain shape accommodation. Kang et al. [90] observed that for a larger volume of 

liquid, the filling of remaining pores occurred by grain growth in a discontinuous 

manner, resulting in a more rounded grain shape and also improved homogeneity of 

the microstructure. Also the analysis by Park et al. [91] determined that densification 

achieved by the filling of remaining isolated pores during stage 3 is controlled by 

grain growth.

Coarsening and Grain Growth

Coarsening by Ostwald ripening is the dominant mechanism in the final stage of 

LPS. Greenwood [87], Lifshitz, Slyozov [88], and Wagner [89] independently 

developed the basic theory, which is termed the LSW theory. This theory is 

applicable to systems with a relatively high volume fraction of liquid, and gives the 

following reaction for the rate of grain growth during stage 3:

R m -R™ = Kt 2.21

where, Ro is the initial radius of the grain, R is the radius of the grain after time, t, K 

is a temperature dependent parameter and the exponent m is dependent on the rate- 

controlling mechanism during grain growth. When m = 3, diffusion through the 

matrix is rate-controlling and when m = 2 , interface reaction is rate-controlling.

In most ceramic systems diffusion through the matrix is found to be the rate- 

controlling step for grain growth. Thus the temperature will affect the rate of grain 

growth, since as the temperature increases, so does the solubility of the solid in the
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liquid and also the diffusion of the solute particles through the liquid. The grain 

growth rate is also affected by the dihedral angle. As the dihedral angle increases, 

the solid-liquid contact area is reduced and thus the rate of matter transport is also 

reduced.

2.3.4. Hot-pressing in the Presence of a Liquid Phase.

A significant increase in the densification rate of a material is observed when a high 

uni-axial mechanical pressure is applied during sintering at high temperatures. This 

is due to an increase in the chemical potential of the atoms at the contact points. In 

order to decrease the energy of the system transport of matter away from these points 

is enhanced, resulting in an increase in the densification rate [92].

2.3.5. The Role of Additives in the Densification of Silicon Nitride

The guidelines outlined earlier for successful densification of a material by liquid 

phase sintering must be taken into account when selecting a suitable sintering 

additive combination for Si3N4. These criteria include, (i) the liquid phase formed 

has good wetting properties (forming low contact angle with the solid phase), (ii) the 

particle sizes of the additive powder and the Si^N4 powder are similar and small, (iii) 

the liquid phase is formed well below the decomposition temperature of Si3N4, (iv) 

Si3N4 is partially soluble in the liquid phase, (v) if transient liquid phase sintering is 

required, the liquid phase forms a solid-solution with Si3N4.

The choice of sintering additive combination is balanced by the requirement of full 

densification and the desired properties of the final product [93]. A material’s 

properties are influenced by many factors, including, (i) the degree of density 

achieved, (ii) the microstructure of the final body, (iii) the amount, composition and 

properties of the intergranular phase.
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The role of the sintering additive during LPS of silicon nitride can be summarised by 

Equation 2.22 [94]. The oxide additive, MxOy, reacts with silica (SiC>2) layer around 

each Si3N4 particle, forming a liquid phase, above the lowest eutectic temperature of 

the system [94].

Si3N4 + Si02 + MxOy —» Si3N4 + M-Si-O-N phase 2.22

Initially magnesium oxide, MgO, was employed as a sintering additive for LPS of 

Si3N4. It is an effective sintering aid, forming a low viscosity liquid at temperatures 

well below the decomposition temperature of Si3N4 (MgO-SiC>2 eutectic = 1550°C) 

[95] [96]. However, any secondary or intergranular phases remaining in the sintered 

body are glassy. The presence of such glassy phases are detrimental to the high 

material’s high temperature properties as a primary property of glasses is that they 

begin to soften at temperatures well below their melting point [97]. Another 

drawback with glasses is that any impurities present in the material tend to be located 

in the glassy intergranular phase, further lowering the melting point [98].

Studies by Gazza [99] [100] suggested that the high temperature properties of liquid 

phase sintered Si3N4 could be improved by using yttria, Y2O3 as a sintering additive, 

as it forms a refractory glass on cooling. Thus strengths of silicon nitride densified 

with yttria are reported to be significantly higher than materials in the Mg-Si-O-N 

system [101] at temperatures greater than 1200°C. However, the sinterability of the 

Y-Si-O-N system is low, as the lowest eutectic is approximately 1600°C. The 

addition of AI2O3 along with Y2O3 was found to improve the sinterability by 

lowering the eutectic temperature of the Y20 3 -SiC>2 melt. However, due to the glass- 

forming ability of Al3+, AI2O3 promotes the formation of residual glassy phases, and 

thus leading to poor high-temperature properties [102]. Many studies into the 

composition of the glassy phase in Si3N4 containing Y2O3 and AI2O3 have been 

carried out it was generally found that if Y2O3 and AI2O3 are added to Si3N4 in the 

ratio 3 Y2O3 : 5 AI2O3, on cooling the liquid phase crystallises to an yttrium- 

aluminium garnet (YAG) phase, and due to its high melting point and good oxidation 

resistance YAG was realised as a desirable intergranular phase in sintered Si3N4 

[103] [ 104] [ 105].
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2.3.6. a- to p-Si3N4 Transformation

Si3N4 has two structural polymorphs a  and (3, first discovered by Turkdogan et al. 

[106]. On comparing the structure of Si3N4 to that of phenacite (Be2Si0 4 ), in which 

the oxygen and beryllium are replaced by nitrogen and silicon, respectively. Hardie 

and Jack [107] determined that the P form is made up of tetrahedra linked along the 

[001] plane in an ABAB packing sequence. In this structure there are continuous 

channels parallel to the c direction. While the a  form has an ABCDABCD packing 

sequence, where the CD layers are the mirror image of the AB layers but displaced 

by 4A. This c-glide means that the channels observed the P structure are closed in 

the a  structure and as result there exists two large interstitial sites per unit cell.

Early investigations suggested that the a- and p-forms were low and high 

temperature structural modifications of SiaN4, but this hypothesis is not consistent 

with the evidence that both forms can be synthesised over a range of temperatures. 

Although the exact phase stability has been debated for many years, it is now 

generally accepted that the synthesis of Si3N4 by a vapour-phase reaction favours the 

formation of the a-structure [108] [109] while the reaction with nitrogen dissolved in 

a silicon melt results in the p-Si3N4 form [ 1 1 0 ].

Transformation from the a- to the (3-form is observed during liquid-phase sintering 

of Si3N4. A solution-precipitation mechanism is suggested to occur at temperatures 

>1400°C: dissolution of a-Si3N4 into the liquid phase, reconstruction of the Si-N 

bonds, and precipitation of P*Si3N4. The extent of transformation depends on (i) the 

initial concentration of the a- and P-forms in the starting SiiN4 powder, (ii) the 

amount of liquid phase present (iii) the viscosity of the liquid phase, (iv) the 

solubility of SijN4 in the liquid phase and (v) the sintering temperature and time at 

temperature.
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2.3.7. SiAION ceramics

As outlined earlier, Si3N4 can be sintered effectively by LPS using a transient liquid 

phase process where the liquid phase is one which is soluble in Si3N4, the resulting 

materials are called SiAlONs. SiAION is the acronym for phases in the Si-Al-O-N 

system. SiAlONs can be divided into two categories: (3-sialons with the general 

formula: Si6-zAlzOzN8-z, where =<z<4.2 [111][112] and a-sialons with the general 

formula: MenL/xSii2-(nM-n)Alm+nOnNi6.n, where Me is a metal ion, x is the valency of the 

metal [113].

[3-sialons are based on the (3-SisN4 crystal structure. During liquid phase sintering of 

Si-Al-O-N materials, SiaN* forms a solid solution with AI2O3, by the replacement of 

Si4+ and N3' by Al3+ and O2. However, metal oxides are still required for near 

theoretical density by pressureless sintering. In a-sialons partial replacement of Si4+ 

by Al3+ occurs with charge compensation taking place by the accommodation of 

other cations into the two interstitial sites present in its structure [114]. There exists 

a size limit to the cations that can be incorporation into the a-sialon lattice, 

successful cations, from their metal oxides, include, Y2O3, CaO, SmO [113].

Compositional ranges of a- and [3-sialons are represented conventionally by a 

Janecke prism.. Figure 2.16 illustrates a Janecke prism for the Y-Si-Al-O-N system 

[115]. As can be seen the a- and (3-sialons phases are compatible with each other 

and in recent years a  + P sialon composite materials have been fabricated 

successfully. By careful control of the starting compositions and processing 

conditions, the final composite can be tailored to produce a material with the 

beneficial properties of both a-sialons and (3-sialon.

The reader is referred to a number of reviews, in particular the work by Jack [112], 

Hampshire [115] and Ekstrom et al. [116].
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Figure 2.16 Janecke prism  representation of the Y-Si-Al-O-N system, [ref]

2.4. Incorporation of Reinforcements

2.4.1. Fibre - Matrix Interactions

Another difficulty arises in processing CMCs with chemical interaction between the 

different constituents in the composite. A direct fibre/matrix reaction for the 

composite of interest, carbon fibre reinforced silicon nitride composite, can be 

expressed as,

This reversible reaction was found to proceed to the right under 1 bar nitrogen 

pressure and at sintering temperatures >1440°C [117]. Simple free energy of 

formation thermodynamics in this system, suggest that a stable C fibre reinforced

Si3Nt(s)+3C(s)<* SiC(s)+2N2{g) 2.23
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silicon nitride composite can be attained if the nitrogen partial pressure and sintering 

temperatures are maintained above the upper equilibrium curve in Figure 2.17 [117].

The compatibility of additional oxide additives with the reinforcing C phase must 

also be considered. Equilibrium calculations have been carried out for many high- 

melting oxides and the results are illustrated in Figure 2.18 [118].
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Figure 2.17 Nitrogen partial pressures as a function of temperature for Si3N4 
decomposition and carbonisation. (Adapted from Nickel et. al.
[117]).
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Figure 2.18 Equilibrium partial pressure of CO oxides in contact with carbon [118].

Reversible reactions between C(s) and the individual oxides result in the formation 

of the corresponding metal carbide and carbon monoxide gas (reactions 2.24-2.28)

[118].

3C(s) + Si02 (s) o  SiC(s)+2CO(g) 2.24

3C{s) + Zr02{ s ) d  ZrC(s)+2CO(g) 2.25

3C(s)+ CaO(s)<^> CaC2(s) + CO(g) 2.26

6C{s)+ Al40 4C(s)<=> Al4C3{s)+ 4CO(g) 2.27

7C(s)+Y20 3(s )&  2YC2{s)+3CO{g) 2.28
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Reactions of this type involving solid to gas changes in state can be considered using 

The Second Law of Thermodynamics in the form:

AG = G0+nRT(\np) 2.29

where;

AG = change in free energy of the system 

Go = standard free energy term 

p = pressure of products/pressure of reactants

This suggests that the reaction direction is dependent upon the local gas pressure at 

the point of reaction. If the CO gas can easily escape from the reaction interface, via 

pores or cracks in the matrix, then the reaction, which is the carbothermic reduction 

of the oxides, will continue. In a dense, pore-free matrix the carbon monoxide 

cannot move away freely from the interface, and the only method of transport of CO 

being by solid-state diffusion, which through this system is expected to be extremely 

difficult.

During sintering the additional oxides can react with the Si3N4 matrix and the 

reactivity between the compounds formed and carbon must also be taken into account. 

Si02 (present on the surface of silicon nitride powders) may have an effect on the 

C/Si3N4 composite stability. From thermodynamic calculations Si02 is unstable in the 

presence of Si3N4 and under all feasible sintering conditions outlined for a C/ Si3N4 

system, reaction 2.30 proceeds to the right.

Si02(s,l) + Si3N 4 <=> 2Si2N 20{s) 2.30

The reaction product, silicon oxynitride (Si2N20) is thermodynamically very stable. 

There is no data on its reaction with C but it may react with the Si3N4 matrix. It is 

necessary also to include the product of reaction (2.12) SiC, in the thermodynamic 

considerations. It was found that both Si3N4 and SiC are stable in the presence of 

Si2N20  up to 1838°C (1 bar N2) and that the same equilibria in the ternary system Si- 

N-C (examined earlier) are found in the quaternary system Si-C-O-N but with the
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additional presence o f Si2N2 0 . Thus, it is reasonable to apply directly the conclusions 

drawn from thermodynamic calculations of the ternary system Si-C-N, to the system 

also containing SiC>2 , Si-N-O-C.

Experimental investigations [119] (as outlined in section 2.3.7) on the systems 

containing AI2O3 as a sintering aid have shown that a Si3N4 solid solution (sialon) is 

formed. At higher temperatures a [3- Si3N4 solid solution is formed and is in 

equilibrium with C and Si2N 2 0  over the temperature range o f interest. Y2O3 present as 

a sintering aid is found to form an additional phase (Y-a-sialon) in equilibrium with [}- 

Si3N4. Almost all available oxygen atoms from both Y 2O3 and AI2 O3 will react to 

form more stable Si2N2 0  phases.

The composition o f these silicon oxynitride phases may well influence the sintering 

behaviour, mechanical properties, and oxidation resistance [ 1 2 0 ] of the resulting 

composite but, as explained earlier, Si2N 2 0  phases will not affect the 

stability/compatibility limits o f the matrix (Si3N4) and reinforcing phase (C) as 

outlined in Figure 2.18 [118].

2.4.2. Sintering Constraints

The non-sintering fibres in a continuous fibre reinforced ceramic matrix composite 

constrained densification o f the matrix occurs. Hseuh et al. [121] and Raj [122] 

modelled this effect on the densification o f glass matrices with rigid inclusions. 

These models were based on the supposition that as the matrix densifies it shrinks 

onto a rigid inclusion placing it under a compressive stress. Accordingly a uniform 

tensile stress within the m atrix results. The magnitude o f this tensile stress was 

predicted to be high and constrains matrix densification either by crack/void forming 

or differential densification. However Scherer [123] later showed that the large 

tensile stresses predicted by the above models result from incompatible parameters 

that generate negative value’s for Poisson’s ratio. Thermodynamically, a negative 

Poisson’s ratio value is feasible but it is never observed during the sintering o f a 

porous solid [124].
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Based on the viscoelastic deformation of a porous material during sintering, Scherer 

[123] developed a model for the densification rate of a composite material, allowing 

only positive values of Poisson’s ratio. This model predicted that the transient 

stresses generated during sintering of composites are relatively small compared to the 

stress values predicted by Raj and Hseuh. On comparing densification rates 

predicted by Scherer’s model and those observed experimentally for glass matrix 

composites, Rahaman and De Jonghe [125] surmised that the model fitted well to 

densification rates observed for composites with a low volume fraction of inclusions 

(< 15vol%), but deviated significantly from the densification rates observed for 

composites with increased volume fraction inclusions.

On increasing the volume fraction of inclusions, a stage is reached where inclusion- 

inclusion contacts form and result in a continuous network of inclusions, termed a 

percolating network throughout the sample. The volume fraction of inclusions when 

a percolating network is first formed is called the percolating threshold. Rigid 

inclusion-inclusion contacts within the percolating network will retard sintering and 

sintering will stop if the structure is completely rigid. According to Rahaman and De 

Jonghe [125] composites with an inclusion volume fraction of >16% (percolation 

threshold) will be impossible to densify by pressureless sintering. Nonetheless many 

composites, particularly glass matrices and ceramics with good liquid forming 

properties, with much higher volume fraction inclusions can be successfully 

densified. The reason for this is that at sintering temperature the glass of liquid 

phase formed sufficiently wets and lubricates the inclusions, preventing the rigid 

nature of the network and thus significantly minimising the constraint on 

densification of the matrix.

Combining the observations of Rahaman and De Jonghe [125] and his earlier 

experimental results [126], Lange et al. [127] put forward a model based on the 

theory that it is interaction between the inclusions that constrain densification of the 

ceramic matrix in CMCs. This model analysed a 2-D array of reinforcements on a 

simple cubic lattice, Figure 2.19 [127]. A basic geometrical analysis showed that the 

shrinkage strain and thus densification of the matrix between two inclusions depend 

on the amount of matrix phase between the inclusion pair. Assuming that the
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shrinkage strain of each network pair is equal to the linear shrinkage of the 

composite, the distance between the inclusions thus effects densification. In the 2-D 

array, the relative amounts of powder (that is the ratio of amount of powder between 

reinforcements to the distance between them) is greater between inclusions on 

diagonal sites than between inclusions on edge sites. Thus during sintering, the 

powder between the edge sites will densify better relative to the powder between 

diagonals, leading to differential densification of the powder compact within the 

composite. This model was supported by the experimental observations of Dagleish 

et aL [128] who observed differential densification which led to the formation of 

large cracks and a lower than full theoretical density in AI2 O 3 powder matrices 

containing large ZrC>2 inclusions.

Figure 2.19 Constrained shrinkage in the sintering of a composite [127].

The presence of incipient cracks in the matrix influence densification as they open 

during constrained sintering to relieve the constraint [126]. The production of well- 

dispersed slurries and consequently crack-free composite green bodies is thus of the 

utmost importance. However, density distributions have also been observed in un­

cracked composite green bodies. This was attributed to formation of regions of 

dense matrix (between inclusions on edge sites, as outlined above), which resist the

Rigid
inclusions

Ceramic
Matrix
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Microhardness measurements have been commonly used in the past to characterise 

silicon nitride [ 131 ][ 132][ 133][ 134]. Pratt [132] was the first to report that the a  and 

(3-phases of Si3N4 could be distinguished by their microhardness behaviour and 

found that polycrystalline a-Si3N4 was harder than the (3-phase. Further 

investigations [135] into the microhardness of both single crystal and polycrystalline 

a  and (3-Si3N4 supported initial observations. It has been seen that the indent in the 

single crystal (3-Si3N4 phase has a much larger diameter than that in the harder 01-  

phase [135]. Discrepancies in measurements due to differences in crystallographic 

orientation as outlined by Chakraborty et al.[136], were avoided in this case, as 

measurements were taken with both phases in similar orientation. Calculated 

hardness values for this system are shown in Table 2.2 [135]. The Vickers 

microhardness (VMH) of single crystal a-Si3N4 was determined to be approximately 

28% higher than P~Si3N4. Similarly single-phase polycrystalline a-Si3N4 had higher 

VMH than polycrystalline a  + (3-Si3N4, suggesting that polycrystalline a-Si3N4 is 

harder than polycrystalline (3-Si3N4 [135].

Nature of SiaNj lOOg load 

VHM ioo 
(kgf.mm'2)

200g load 

VHM2oo 
(kgf.mm'2)

300g load 

VHM200 

(kgf.mm'2)

500g load 

VHM200 

(kgf.mm-2)

a-Single Crystal 4527 3784 n.d. n.d.

P-Single Crystal 3577 2957 2408 1987

a-Polycrystalline 3784 2664 2286 1755

a + p- 
Polycrystalline

2239 1648 1390 1037

n.d. : not determined

Table 2.2 The variation of Vickers microhardness (VHM) with sample and load. 
(Selected data from Chakraborty et al. [135]).

The reason why the a-phase of Si3N4 is harder than the P remains unclear. The two 

structural forms have similar densities, both are hexagonal and constructed from 

covalently bonded S1N4 tetrahedra joined in a 3-dimensional network [137], 

However, as explained in detail earlier (Section 2.3.7), in the P-form the tetrahedra
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are packed in an ABAB packing sequence, the oc-form on the other hand has an 

ABCDABCD packing sequence. The different packing sequences result in long, 

continuous channels parallel to the c-axis in (3-Si3N4, but only large, closed holes in 

oc-Si3N4. Also the oc-form unit cell’s c-axis is approximately twice that of the (3- 

structure. Greskovich et al. [138] suggested that the decreased micro hardness of [3- 

Si3N4 is due simply to the ease of movement of material through the continuous 

channels during indentation. However, the hardness of a material has been related to 

its Peierls stress for dislocation motion, which itself is related to the c-axis Burgers 

vector of a material [139]. This led Erkstrom [140] to suggest that the long c-axis in 

the a-form of Si3N4 gives a higher resistance to dislocation motion compared to the 

[3-structure, resulting in higher hardness.

2.5.1.2. Fracture Toughness

The strength of a given material is determined by two factors, the ‘fracture toughness 

or resistance to crack extension’ and the ‘largest or most severe flaw 

[141][142][143]. The presence of a crack decreases the strength of a structure and 

this strength decreases progressively with increasing crack size [144]. As outlined in 

Section 2.1.2, the resistance to cracks, that is the fracture toughness, Kjc of ceramics 

is inherently poor (Kic = 0.5 -  5MNm'3/2) [145].

Unlike the attractive thermomechanical properties of Si3N4-based materials outlined 

in Sections 1.3.1.3 and 2.3, its low fracture toughness hinders its potential use for 

some applications. Accordingly, much research has focused on controlling the 

microstructure of Si3N4 ceramics (via controlled processing) in an attempt to improve 

fracture toughness. Most improvements have been reported for materials where the 

Si3N4 grains are grown in situ during processing (in situ toughening). The resultant 

microstructure consists of elongated Si3N4 grains which can increase fracture 

toughness by dissipating energy (if the interface is weak [146]) upon crack 

propagation [147][ 148]. In these in situ toughened materials the fracture toughness 

is dominated by the morphology of the Si3N4 grains, that is the grain size and aspect 

ratio. [149]. The influence of grain boundary phase composition on the fracture

62



toughness of Si3N4-based materials has also been realised. Studying the Si-Y-Mg- 

Al-O-N, Peterson and Tien [150] found that the presence of residual stresses in the 

grain boundaries, caused by thermal expansion mismatch, resulted in improved 

fracture toughness. While Becher et al. [151], researching P-Si3N4 whiskers in 

oxynitride glasses, found that the interfacial bonding was influenced by the glass 

chemical composition. Debonding, and thus improved fracture toughness, was 

observed when the glass had a low nitrogen and oxygen content. Following these 

observations and supported by his own results for Si3N4 with a range of second-phase 

chemistry, Kleebe et al. [152] concluded that the fracture toughness of the Si3N4 

materials was influenced not only by the Si3N4-grain morphology, but by the glass 

composition at the interface (influencing the interfacial bonding) and the residual 

stresses at grain boundaries, all of which are controlled by the chemical composition 

of the grain boundary phase.

2.5.1.3. Oxidation Behaviour 

Oxidation of Pure Silicon Nitride

Four oxidation reactions have been identified for Si3N4:

Si3N4(s) + 302(g) = 3Si02(g) + 2N2(g) 2.31

4Si3N4(s) + 302(g) = 6Si2N20(s) + 2N2(g) 2.32

2Si2N20(s) + 302(g) = 4Si02(s) + 2N2(g) 2.33

2Si2N20(s) = 4Si(s,l) + 2N2(g) + 0 2(g) 2.34

Based on a collection of thermodynamic data [153] [154], Singh et al. [154] derived 

the Si-O-N phase stability diagram, following which the theoretical overall reaction 

for the oxidation of Si3N4 is,

Si3N4(s) + 302(g) —> 3Si02(s) + 2N2(g) A G ()6ook) = -1661kJmol"1 2.35
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It has been shown that Si3N4 possesses intrinsically good oxidation resistance due to 

the initial formation of a surface SiC>2 layer, which is resistant to oxidants, and so the 

oxidation becomes self-passivating. The oxidation kinetics of Si3N4 are generally 

found to follow a parabolic rate law.

Am = Kt + b ~ K t  2.36

where Am is the mass gain per unit area, K is the parabolic rate constant, t is time 

and b is a constant related to the additive content. Deviations from this model do 

occur and are well documented. Derived from Fick’s first law, the parabolic rate law 

suggests a diffusion controlled process [155]. The oxidation of pure silicon nitride 

has been observed to be controlled by the diffusion of oxygen through the oxide SiC>2 

layer to the Si3N4 surface.

Oxidation of ShNa + Sintering Addtives

The required use of sintering additives, most commonly metal oxides, for the 

fabrication of Si3N4 results in an intergranular phase in the sintered body (Section 

2.3). Many investigations into the oxidation behaviour of Si3N4 ceramics sintered 

with Y20 3 and AI2O3 have been carried out [156] [157] [158]. It is generally 

accepted that the oxidation behaviour of these ceramic materials changes with 

temperature, where the temperature boundaries of behaviour depend on the additive 

content and the composition of the intergranular phases. At lower temperatures 

(~<1050°C) oxidation of Si-Y oxynitrides and silicate glasses occurs and the rate of 

oxidation is relatively rapid and dependent on the inward diffusion through grain 

boundaries [159]. This is accompanied by volume expansion and the growth of an 

oxide film on the Si3N4 surface. A gradual change in oxidation behaviour takes place 

as the temperature increases. Controlled by oxygen diffusion through the oxide film, 

growth of the film takes place at the Si3N4/film interface. Parabolic kinetics are 

observed as the resultant silica dissolves in the silicate glass, until the liquidus 

composition of silica is reached. Crystalline silica is then formed at the reactive 

surface, which results in a significant reduction in the oxidation rate observed as the
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diffusivity o f oxygen is reported to be slower through crystalline silica than through 

amorphous silicates [160]. At higher temperatures (~>1450°C) an acute increase in 

oxidation rate is observed due to the dissolution o f crystalline Si0 2  into the glassy 

phase and further heating leads to the disintegration o f the protective oxide scale.

The addition o f zirconia to Si3N4 + Y 2O3 +AI2O3 ceramics notably effects the 

oxidation kinetics. Small additions o f ZrC>2 have been reported to improve the 

oxidation resistance o f these materials [161] [162] whereas when the ZrC>2 content in 

the starting powder exceeds approximately 2 0 wt% severe degradation occurs

resulting in catastrophic failure [163]. This degrading oxidation is attributed to the 

presence o f Zr-oxynitride phases in the Si3N4 ceramic, formed by the incorporation 

o f nitrogen into the tetragonal zirconia structure, according to the following reaction 

[164],

xSi3N4 + Z r0 2 (t)->  Zr0 2-3/2Nx + (3x/2)Si2N20  2.37

At low temperatures, 600-1000°C, the Zr-oxynitride phase reacts with oxygen to 

produce monoclinic ZrC>2 ,

Zr0 2 -3x/2N x + 3 x 0 2 —> ZrC>2 (m) + (x/2)N2 2.38

Accompanying the formation o f monoclinic zirconia is a molar volume increase and

in systems with relatively high volumes o f zirconia, this molar volume increase leads 

to significant build up o f compressive stresses at the surface. Surface spalling and 

disintegration o f the sample surface occurs to relieve the compressive stresses [163]. 

At higher temperatures (>1000°C), the compressive stresses are relieved by 

deformation [98] and so catastrophic failure is not observed.

It is thus essential to avoid the potential formation o f  Zr-oxynitride phases during the 

fabrication o f Si3N4 + Y 2 O 3 + AI2 O3 + Zr0 2  ceramics. This may be achieved simply 

by limiting the amount o f ZrC>2 in the starting composition to less than 20wt%. In 

cases where high quantities o f Zr0 2 are required (to enhance fracture toughness [165] 

[166]), evidence exists that the stabilisation o f the starting zirconia by a stabiliser
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(Y3+, for example) on reaction with Si3N4 prevents the formation of Zr-oxynitride 

phases [163], In addition, it has been reported that the use of lower sintering 

temperatures avoids the formation of ZrN and Zr-oxynitride [167].

2.5.2. Si3N4/C Composite

2.5.2.1. Mechanical Properties of Ceramic Matrix Composites

The main aim in the development of composites is to produce a material that has 

improved properties over the individual components. In CMCs the addition of 

continuous fibres significantly increase the toughness of the inherently brittle 

ceramic matrix.

In general, long fibre reinforced composites are designed to function as 

unidirectional load beading materials with the stress placed along the fibre direction 

[168], When a composite is placed under stress the load is shared initially between 

the matrix phase and the fibres, in amounts proportional to their volume fractions. 

This continues as the load increases until the cracking stress of the matrix is reached. 

After matrix cracking begins the load is transferred to the fibres and ultimately either 

single crack or multiple crack failure of the composite occurs. In cases where the 

volume fraction of fibres is less than a critical value or when the fibre-matrix bond is 

strong, the fibres cannot sustain the load and the crack extends through the matrix 

resulting catastrophic failure. In cases where substantial fibre failure does not occur, 

the composite does not fail catastrophically (in contrast to monolithic ceramics after 

initial matrix cracking). Instead energy-dissipating mechanisms such as fibre-matrix 

debonding, crack deflection and fibre pullout occur as illustrated earlier in Figure

2.2. This stage is characterised by the progressive cracking of the matrix 

orthogonally to the applied stress until a saturated level is reached when the 

composite consists of transverse parallel cracks perpendicular to the fibre direction, a 

distance x apart. According to the Aveston, Cooper, Kelly (ACK) model [169], 

which assumes a constant interfacial shear stress, x, the distance x, is given by,
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X =

S f j 2t
2.39

where Vm and Vf are the volume fractions of the matrix and fibres respectively, cmu 

is the ultimate fracture strength of the matrix and r is the fibre radius.

In characterising the failure behaviour of composites, the following parameters are 

generally considered.

• The Elastic Modulus, Em, of the composite as a whole (matrix plus fibres) which 

reflects on the stiffness of the material under mechanical loading.

• The onset of matrix micro-cracking (at stress oc), which is marked by the initial 

departure from linearity/elastic region in the stress/displacement curves.

• The development of a regular array of transverse matrix cracks. This is a widely 

reported feature of continuous fibre ceramic composites where the periodicity of 

the cracks (crack spacing) is dictated by a characterised stress transfer length 

associated with the bridging fibres. This length is determined by the ability of 

the interface to accommodate the local stress. Figure 2.20 shows a simplified 

model. For a composite with Ematnx > Efibre (designed), the matrix is 

progressively subject to tensile strain (elastic) until this exceeds the matrix 

fracture stress, when it cracks. The local interfacial stress at the crack then 

becomes zero. The matrix segments then shrink away from the crack (crack 

opening) and, in a well-designed composite, the crack is deflected along the 

fibre-matrix interface, debonding the phases. Also in a well-designed system, 

with a glissile interphase structure, the matrix cracks may slide along the fibre 

surface. The distance, x, between successive matrix cracks is dependent upon 

these interfacial properties. Finally, when the composite fractures, the debonded 

fibre lengths emerge from the fracture surfaces as 'pulled-out'fibres. The length 

of the pull-out also reflects the debonding properties.

• As outlined above, matrix microcracking continues to saturation level, at which 

the fibres bear the entire load. After this the stress-displacement curve steepens 

as the fibres are strained elastically to their failure stress, Of, dictated by the
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ultimate strength o f the fibres [170], followed by catastrophic failure o f the 

composite.

Matrix
Phase

■*— d-

Distance

Figure 2.20 Simplified model of periodic matrix microcracking in 
with characteristic crack spacing, d.

a composite
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3. EXPERIMENTAL PROCEDURE

3.1. System Selection

An analysis was made of the literature survey into the most promising candidates for 

lower temperature liquid phase sintering of Si3N4. From this analysis two series 

were selected for further study, with compositions based upon an AI2O3-Y2O3 

composition in which the AI2O3 content is replaced incrementally by lwt%AlN and 

by lwt%CaO initially and then incrementally by 0.5wt%CaC), respectively. These 

are compared with a reference mixture with the standard YAG composition (3 AI2O3: 

5 Y2O3 molar ratio) as sintering additive. The compositions studied are listed in 

Tables 3.1 - 3.3. As outlined in the Introduction, for the pressureless sintering of a 

Si3N4/C composite, a Si3N4 matrix with good sinterability at lower temperatures, 

with good mechanical properties is required. Thus the first step of the current study 

was to carry out a sintering study of the monolithic SisN4 with different sintering 

additive combinations.

3.1.1. Si3N4 + Y20 3 + Al20 3 + AIN

The introduction of increments of AIN into the sinter additive mixture was made in 

order to determine the effect of the AIN: A120 3 ratio on the sintering of the Y-Si-Al- 

O-N. This combination was selected following the encouraging results obtained by 

Komeya et al. [171] for the composition Si3N4 + 5 wt%Y2C>3 + 4 .5AI2O3 + 2wt%AlN. 

In the present series the Y2C>3 content was kept constant to prevent any influence on 

the sintering behaviour of changing the total wt% sintering additive (changes in the 

vol%liquid formed). It was also anticipated that AIN as a sintering aid will play a 

beneficial role in the liquid forming and liquid composition in this system, by 

introducing excess Al3+ into the liquid and that the excess nitrogen should result in a 

secondary phase with improved properties. AIN is often employed in the fabrication
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of a-sialons, which as reported by Hwang and Cheng [173] can be pressureless 

sintered to near full density at temperatures <1600°C.

3.1.2. Si3N4 + Y2O3 + AI2O3 + CaZr03

CaO was considered as a candidate sintering additive in the present study as it forms

very low temperature eutectic with S i0 2 at approximately 1170°C [173], and thus

should promote good densification of Si3 N4  at low temperatures. It is recognised that

the presence of Ca in any secondary or intergranular phases in the final material

may be deterimental for high temperature properties. However, the solubility of CaO

in the fX-S 13N4  structure is extremely good [113] and it was expected that by
2+incorporation into the Si3 N4  structure any residual phases will be cleaned of Ca . 

Since the additive CaO cannot be dispersed in aqueous solution, a pre-cursor, 

CaZr0 3 , was used. Under high temperature sintering, it is predicted that at CaO- 

S i0 2 melting temperature, CaZr03 will dissociate into CaO and Zr0 2  [174], Zirconia 

has also been reported as a successful sintering agent for Si3 N4 [165] and recently 

has gained considerable interest as an additional additive in the Si3 N4 - Y2 0 3  - AI2O3 

system, where it is thought to act as a growth modifier promoting crystallisation of 

residual glassy phases [175][176][177]. The amounts of CaZrOs chosen reflect the 

initial addition of lwt%CaO and further increases to 1.5 and 2wt%. To maintain the 

total additive content at 10wt%, the wt% of Y2 O3 and AI2 O3 added were adjusted 

accordingly.
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Sample

Label

Si3N4 Y 2O 3 a i 2o 3 AIN

0A1N
wt% 88.5 5 6.5 -

mol% 88 3 9 -

IAIN
wt% 88.5 5 5.5 1
mol% 84 3 7 4
2A1N
wt% 88.5 5 4.5 2

mol% 84 3 6 7

3A1N
wt% 88.5 5 3.5 3
mol% 83 3 4.5 9.5
4A1N

w t% 88.5 5 2.5 4
mol% 81 3 3 13

Table 3.1 Compositions of ceramic samples in the Si3N4 + Y2 0 3 + A12 0 3 + AIN 
series investigated.

C om position

L ab el

Si3N 4 Y 20 3 a i2o 3 CaO Z r 0 2

3.2C aZ

wt% 90 3.4 3.4 1 2.2
mol% 88 2 5 2.5 2.5

4 .8C aZ

wt% 90 2.6 2.6 1.5 3.3
mol% 88 1.5 3.5 3.5 3.5

6 .4C aZ

wt%
mol%

90
88

1.8
1

1.8
2

2
4.5

4.4
4.5

Table 3.2 Compositions of the ceramic samples in Si3 N4 + Y20 3 + A12 0 3 + 
CaZr03 system investigated.
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Composition

Label

SÌ3N4 y 2 o 3 AI2 O3

REF

wt% 90 6.9 3.1
mol% 91 4 4

Table 3.3 C o m p o sitio n  o f  the r e feren ce  ceram ic  sa m p les  in v estig a ted .

3.1.3. Powders

Starting powders were submicrometer dimension a-phase SisNj powder with sinter 

additives, Y2 O3 , AI2 O3 , AIN (coated - to improve dispersion) and CaZr0 3  (Table 

3.4).

P ow der P roducer S pecific  Surface  

A rea  (m 2/g)

M ean  Particle  

Size dsojxm

Si3N4(SN-E10) UBE 10-14 0.55

Y20 3 (Grade C) H. C. Starck 10-16 <1

A120 3 (RA207LS) Alcan Chemicals 7 0.5

AIN Alfa 3 1.4

CaZr03 Condea Chemie 29.9 <15

Table 3.4 P ow d er C h aracter istics.

3.2. Powder Dispersion Analysis

3.2.1. Dispersion Experiments

T h e q u a lity  o f  the fin a l sin tered  ceram ic  is d irectly  d ep en d en t upon  the form ation  o f  

a green  form  o f  m a x im u m  d en sity , agg lo m era te-free  and w ith  the p ow d er particles
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uniformly close packed. Irregular packing or the inclusion of agglomerates 

automatically introduces significant flaws which cannot be removed by subsequent 

treatment and which intrinsically contribute to loss of strength and toughness in the 

final product. The formation of an optimally packed green form is crucially 

dependent upon the quality of the powder dispersion, where ideally the powder 

particles should be suspended separately, be mutually repulsive and be supported in 

the suspension by simple Brownian movement with no tendency to sediment. 

Unfortunately, the economics of green forming require that the slurries are also 

castable in finite time and form green bodies of maximum density, therefore 

requiring a maximum powder content in the dispersion. Inevitably then, the optimal 

green forming process is a compromise between suspension quality and castability.

Despite these constraints, much can be done to optimise the quality of the dispersion 

by careful control of the electro-chemical interaction between solvent and the powder 

particles and in the physical processing of the slurry and the casting technique.

Evaluation of dispersion quality was made by measuring the Electrokinetic Sonic 

Amplitude (ESA) of suspended particles using a Matec™ Applied Sciences, 

Electrokinetic Sonic Analysis System™. This analysis system generates relative 

motion between particles and the liquid surrounding them as a sound wave passes 

through a suspension. The amplitude of the motion is controlled by the 

solvent/particle density difference, the size and shape of the particle and the 

frequency of the sound wave. A ceramic powder suspended in a polar solvent 

generates an electrical double layer, which distorts during relative motion. This 

distortion results in the displacement of the charge of the particles, producing an 

alternating electric dipole. The amalgamation of the electric dipoles from all the 

particles produces an electric field. The opposite phenomenon also takes place, that 

is, when an electric field is applied to a dispersion an acoustic wave is generated. 

The Matec™ system works on this principle by applying an electric field to a 

dispersion and measuring the many electroacoustic effects which are produced. 

These effects are then related to transport properties and hence the “microstructure” 

in the dispersion [178], that is, the electrochemical-relationship between the particles 

and the solvent (2.2.1.1, Figure 2.4). High Electro Sonic Amplitude (ESA) of the
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resultant acoustic wave indicates a highly charged particle surface producing 

repulsion and hence a stable dispersion. The expression,

ESA (co) = cAp(|) Gf̂ id(to) 3.1

relates the measured acoustic wave amplitude (ESA) to dispersion properties and 

suspension mobility parameters.

In Equation 3.1 [178], c = velocity of sound in suspension, Ap = solvent/particle 

density difference, (j) = powder volume fraction, Gf = electrode geometry factor, (id = 

dynamic mobility. At solid volume fractions > 10% this expression loses validity, as 

interparticle spacing and electrical double layer thickness become comparable, and 

the amplitude of the acoustic wave produced is no longer linear with dispersion 

concentration. The specificity of the technique also implies that ESA values can 

only used when comparing dispersions of the same material and solids content.

The technique provides a measure of particle zeta potential (Q, using Equation 3.2 

(Smoluchowski’s equation)

Hd= 3.2

where, (e) is the solvent di-electric constant and (r|) is the solvent viscosity.

Matee™ experiments were carried out on ultrasonically dispersed aqueous solutions 

of AlN(coated) and CaZr03 powders. The individual dispersions contained 200mls 

H2 O and 2vol% powder. Each one was mixed on a magnetic stirrer and then 

subjected to high shear rate agitation by means of a dip in ultrasonic probe (Branson 

B30 Sonifier Cell Disruptor). In addition to ESA, probes are included to monitor 

temperature, conductivity and pH of the suspension. The experiments were carried 

out in titration mode, using an automated burette that allows the timed delivery of 

additive solutions (acids, bases, surfactants). 0 .1M solutions of NaOH and HNO3 

were used to vary the pH. Figure 3.1 illustrates the system used.
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Figure 3.1 Matee™ system.

3.3. Green body formation

Figure 3.2 describes the basic processing route for green body fabrication. The 

individual steps are described in detail in the following sections.
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Drying

• Controlled Humidity
• 48hrs

Organic Burnout

Program

• 2°C/min to 90°C,
1 hr hold

.  2°C/min to 400°C,
1 hr hold

* 300°C/mln to 20°C

Green Body Measurements

Mass (g) -  Laboratory Balance 
Dimensions (mm3)  -  Vernier Callipers 
Density (g/crrf) -  Hg displacment

Figure 3.2 Basic Processing Route.
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3.3.1. Mixing and Milling

Deionised water based slurries were prepared with a solid content of 65wt%. The 

slurries were attrition milled with 2mm diameter silicon nitride balls for 1.5hrs to 

break up agglomerates. When CaZr0 3  was used as an additive it was necessary to 

mill the calcium zirconate powder for up to 2  hours prior to the addition of the other 

powder, in order to reduce the agglomerate size as much as possible. The coated 

AIN powder was added towards the end of the attrition milling for just 15 minutes at 

slow speed to minimise damage to the protective coating. For this system, an 

organic phosphate ester, Emphos CS, was employed as a wetting agent to encourage 

dispersion of the coated AIN powder. The dispersions were stabilised with 1.1 wt% 

ammonium polymethlyacrylate (Darvan C) and brought to pH 10.3-10.5 using tetra- 

methyl ammonium hydroxide (TMAH) to maintain a stable dispersion.

Earlier experience [6 8 ] had shown that the complete break up of all agglomerates in 

these slurries could be achieved only by attrition milling. Attrition milling is one of 

the most efficient dispersing or comminuting techniques, in which the power input 

from the attritor is used directly to agitate the media. This contrasts with more 

commercial processes which rotate or vibrate a large heavy vessel containing the 

media charge. Three types of attritors are currently available; (1) batch, (2) 

continuous, (3) circulation. A batch attritor was employed in this project, being most 

suitable to the scale of the experiments (Figure 3.3)[179]. The material to be ground 

or dispersed is placed in the stationary attritor tank with a charge of grinding balls. 

The central rotating shaft with several horizontal arms provides agitation of the 

material and the balls. The balls move randomly through the slurry, causing irregular 

movement and promoting individual impacts rather than a laminar flow movement 

(Figure 3.4)[179] . The balls are also spinning in different rotation directions while 

randomly moving through the media, thereby exerting shearing forces on the 

adjacent slurry. Both the impact action and shearing force promote efficient grinding 

and dispersing (Figure 3.5)[ 179] and encourage micro mixing by breaking up 

agglomerates of different material particles and dispersing them in a slurry.
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Figure 3.6 illustrates the media agitation in the attritor [179]. Maximum agitation is 

seen to occur at about 2/3 the radius from the centre. Grinding does not occur 

against the vessel walls so that vessel wear is small and thinner walled vessels can be 

used with better heat transfer, thus enhancing temperature control of the media inside 

the vessel. The horizontal arms attached to the central rotational shaft are designed to 

move the slurry not only around the vessel but also laterally, in and out of its most 

effective zone.

The major contribution to contamination of the slurry comes from the wear of 

grinding balls so that the selection of balls of composition the same as the slurry 

powder is of the utmost importance. Other sources of contamination are the tips of 

the agitator arms, the vessel lining wall and the grid plates. In the current system the 

potential for contamination was almost completely removed by employing grinding 

balls made of high purity silicon nitride (2 mm) and using a vessel liner, grid plates 

and arms made of silicon nitride.

Following attrition, the slurry was rocked in a low frequency vibrating table to 

encourage separation of the milling balls, and was filtered through a sub-millimetre 

metal mesh. To prevent contamination of consecutive slurry runs the balls were 

washed thoroughly between batches. The beaker of collected slurry was then 

agitated on a magnetic stirring plate until casting.
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IRREGULAR MOVEMENT

Figure 3.4 Irregular Movement [179],



IMPACT

SHEAR

Figure 3.5 Impact and Shear [179].

Figure 3.6 Attritor Action [179]
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3.3.2. V iscosity Measurements

Prior to pressure casting viscosity measurements were made on each aqueous slurry 

prepared. A rotational technique was used, as outlined in Section 2.2.1.1, this 

method provides the simplest, general method for taking quick and intermittent 

measurements. A simple cone and plate viscometer is illustrated in Figure 3.7.

Q

Figure 3.7 A simple cone and plate viscometer.

A concentric cylinder viscometer, which is an advanced model of the cone and plate 

viscometer, was used. Attached to a shaft, a rotating cylinder (the bob) is rotated in 

the slurry within a concentric cylinder (the cup). Although the calculation of 

viscosity is automated, a brief outline of the calculation is described. Since the 

viscosity of a fluid is T| = x/y, measurements of shear stress, x and shear rate, y are 

required.
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The shear stress is determined from

r  = ■
M

2m-1 h
3.3

where M is torque, r is the radius of measurement and h is the height of the bob. For 

a steady state flow of fluid, the torque throughout the gap is constant and so can be 

measured at the bob surface and the shear stress calculated for any point within the 

fluid. For a Newtonian fluid the viscosity is independent of shear rate, so that as the 

shear stress decreases across the gap in proportion to r'2, the viscosity stays constant
t  rs

and correspondingly the shear rate decreases with respect to r' . An average shear 

rate is thus calculated for the centre of the gap

y = Q 3.4

where Q is angular velocity and Rc and Rb are the radii of the cup and bob 

respectively.

In the present study a Contraves Rheomat 115 rate controlled viscometer was used 

for viscosity measurements. The instrument has a DIN 145 cup/bob assembly with a 

3mm gap width (Rc = 48.5mm, Rb 0 45.5mm). An average shear rate of 130s'1 was 

in the centre of the gap (as determined by Equation 3.4), by ramping the shear rate 

from 0  to 1 0 0  revolutions per minute.
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3.3.3. Pressure Filtration

Figure 3.8 illustrates the equipment used for pressure casting of green forms (this 

figure is also Figure 2.9, in Section 2.2.2.1 and is shown again here for clarity). 

Casting of monolith green bodies in the present work employed the same system, 

without the grid. Two larger filter papers (0.45|im, 90mm diameter) and one smaller 

(0.45jim, 50mm diameter) were placed on the porous surface of the ceramic filter, 

sprayed with water and held in place by vacuum. It was essential that these papers 

were smooth and flat as the base of the cast body forms on that surface. The inside 

walls of the mould were sprayed with a releasing agent (CIL Release Agent 171 IE, 

Compounding Ingredients Limited) to prevent the slurry drying and sticking to the 

walls during casting. The mould was then mounted on the base of the vessel. The 

slurry was poured carefully into the mould and the vessel lid attached and sealed 

tightly. A gas-pressure of 5 to lObar was applied for 10-15 minutes.

gas

1

Fibre
preforms Removal of liquid

Vacuum assisted 
—►

Ceramic filter Microfilter

Excess o f slurry

Pressure vessel

M etallic

Macrofilter

Figure 3.8 Pressure Infiltration System [6 8 J.
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3.3.4. Drying

Drying slowly and uniformly is important to avoid anisotropic shrinkage and 

cracking. The wet green bodies were placed in a drying box, and the humidity slowly 

lowered by intermittent spraying of the interior glass walls with water, followed by 

drying in laboratory air. After 48 hours samples were selected for organic burnout 

and the remainder were stored in a dessicator for future use.

3.3.5. Organic Burnout

Selected samples were heated to 400°C for 1 hour (see Figure 3.2 for program 

details) to remove remaining intrinsic water and organics (dispersing and wetting 

agents).

3.4. Densification Experiments

3.4.1. Pressureless Sintering

Monolithic and composite samples were sintered in a graphite crucible (outer 

diameter: 100mm, inner diameter: 50mm, height: 150mm) as illustrated in Figure 

3.9. The sinter furnace is equipped with a single in-situ dilatometer and for each 

sintering run of the monolithic samples, one sample for in-situ dilatometry was 

included. Samples were embedded in a powder bed in order to reduce volatisation 

[180]. The powder bed contained 25% of the sample composition and 75% inert 

boron nitride to inhibit sintering of the ceramic additives in the powder bed. 

Graphite pieces (45mm x 45mm x 3mm) were placed above a layer of powder bed to 

keep the specimen flat, since non-uniformities in the green body density and 

anisotropic cooling both lead to differential shrinkage, bending, and porosity during 

sintering. Sintering temperatures ranged from 1400°C-1650°C for the AIN series and
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the reference material, while materials containing calcium zirconate were sintered at 

1450°C, 1650°C, and 1750°C. A heating rate of 5°C/min was used, for hold times of 

up to 4 hours, followed by fast cooling (8 °C/min). A low over-pressure of lObar N2 

pressure was introduced at low temperatures and to encourage further closure of 

porosity, it was maintained for 30 minutes after the hold time at sintering 

temperature. Both sample compositions were held after each sinter run, at 1300°C 

for 2  hours on cooling to help induce crystallisation of the secondary grain boundary 

phase. The crystallisation step was omitted during the cooling of the composite 

sample in order to minimise fibre-matrix interaction and the cooling rate was reduced 

to 3°C/min, to help prevent potential matrix-microcracking occurring as a result of 

the CTE mismatch between the ceramic matrix and the fibres. Temperatures lower 

than 720°C were measured by a Pt/Pt-Rh thermocouple positioned inside the wall of 

the furnace. At higher temperatures the thermocouple degrades and is unreliable for 

temperature control. A pyrometer was used at temperatures >720°C. To maintain 

accurate sintering temperatures both the thermocouple and pyrometer were calibrated 

at regular intervals throughout the study. The recently developed Philips 

Temperature Control Rings (PTCRs) were also used regularly during sintering runs. 

The shrinkage of the PTCR diameter reflects the actual temperature at the point 

where the ring is located in the furnace. In the present study, the rings were placed in 

the lid of the graphite crucible. The measured ring diameter is then converted to ring 

temperature using a conversion table supplied by the manufacturer. Two 

temperature ranges of PTCRs were used, 1340°C - 1520°C and 1450°C - 1750°C. 

These rings offer an accuracy of within ±3°C.
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Green Bodies

Graphite Pieces

Powder Bed

Sintering Experiments

Temperature Pressure

• 5°C/min to i400-1750 °C « 1 0  bar N2
• 2-4hrs hold time • 3-5hrs hold time
• 8°C/min to R.T. • Normal release

Sintered Body

Measurements Sample Preparation
for Analysis

• Mass • XRD, SEM, TEM
• Dimensions • Indentation
• Density • Oxidation

• Bending

Figure 3.9 Sintering Experiments and Analysis.

3.4.2. Dilatometry Experiments

A series of dilatometry experiments were carried on monolithic sample 

compositions, which were selected based on early densification results. Cut green 

body samples (20mm x 10mm x 5mm) were set up in a Netzch table-top dilatometer,
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model 402E. The samples were heated at a constant heating rate of 5°C/min to 

1600°C for 2 hours.

3.4.3. Gas Pressure Sintering

Composite samples were sintered at 1600°C for a 2 hour hold time, under 60bar N2 

pressure. The samples were set up in a graphite crucible in the same manner as 

described for the pressureless sintering experiments and heated to temperature at a 

rate of 5°C/min. A gas over-pressure of lObar was introduced at low temperatures 

and increased at approximately 1200°C (the temperature of initial liquid phase 

formation determined from the dilation curves of the monolith matrix) to promote 

densification and then raised to reach the maximum 60bar at 1500°C. The pressure 

was held for 30 minutes after the 2 hour hold at 1600°C, which along with a very 

slow cooling rate, is expected to help reduce matrix micro-cracking.

3.4.4. Hot-pressing

Green body samples were cut to dimensions of 72mm X 45mm to fit the graphite 

mould used in the hot-press. The samples had, on average, green body thickness of 

5mm. The samples were hot-pressed in a N2 atmosphere and a mechanical load of 

8 8 kN, corresponding to a pressure of 127bar was applied to the mould. Heating 

ramps were set to 10°C/min and the mechanical pressure was introduced around the 

temperature of liquid phase formation (1200°C) and increased to reach maximum 

100°C below the peak temperature.
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3.4.5. Shrinkage, Mass Loss and Density Measurements

Basic shrinkage and mass loss values of samples were calculated on the simple basis 

of the sample thickness and sample mass differences respectively, after heat 

treatment. The percentage shrinkage, %S, was calculated from:

„  _ AL Thickness Difference
= ---- = ------—-------- ;---------- 3.5

L0 Original Thickness

And the percentage mass loss, %ML, was calculated from:

AM Mass Difference %ML = ------= -------------------  3.6
M 0 Original Mass

Sample dimensions were measured using Vernier callipers. Sample masses were 

measured on a balance with an accuracy to ±0 .0 1  g.

Monolithic green and sintered body density was determined by an Archimedes 

immersion technique using a mercury balance (Figure 3.10) [181]. Archimedes' 

principle states that a body immersed in a fluid is buoyed up by a force equal to the 

weight of the displaced fluid. Using a Hg balance, the upthrust force is defined as:

F = V phgg 3.7

Where, V is the volume of displaced liquid, phg is the density of mercury and g is the 

acceleration due to gravity. In the Hg balance method, the sample is submerged in 

the mercury by a saddle and so must exert an equal, but opposite downward force to 

the upthrust force, F. This force is represented as a mass value on the balance. 

Inserting this value into Equation 3.7 (F=m.a, with a equal to g), the volume of the 

ceramic body can be determined and used to calculate its density (density = 

mass/volume).
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The irregular, porous surfaces of the composite green bodies may lead to entrapment 

of mercury and serious contamination during sintering and hot-pressing, only the 

densities of heat-treated composite samples were measured using the Hg balance 

technique.

Figure 3.10 Schematic diagram of the mercury balance used for bulk density 
measurements.

The rule of mixtures was used to calculate theoretical densities.

^ Total Mass of Powders _
Monolithic Theoretical Density =  ——— — -— ———    t t t t t  ^  s 77T77Z3 M(Si3N4) , M(Y20 3) , M(A120 3) , M( X)

------------------------------------- | _ ------------------------------------------- - f -  *

p(Si3N4) p(Y20 3) p (A120 3) p( X)
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where M and p are the mass and density of the given powders and X represents AIN 

or CaZrC>3.

Composite Theoretical Density = \Vf p f  + (lOO —Vf  )Jxp m 3.9

where Vf is the volume fraction of fibres and pf and pm are the densities of the fibre 

and matrix respectively.

3.5. Materials Characterisation

3.5.1. Introduction

Liquid-phase sintering of the Si3N4-based ceramics studied here, produces a dense 

material consisting mainly of the two S13N4 phases a  and P, and intergranular phases 

of varying composition. The performance of these ceramics depends primarily on 

the properties of the primary SiaN* phases but is also greatly influenced by the 

chemical composition of the intergranular phases. Also the microstructure of the 

material is an important parameter, as the size and shape of the Si3N4 grains and the 

volume fraction of the intergranular phases may influence the material’s 

performance. There exists therefore a complex relationship between low and high 

temperature behaviour and material composition and morphology.

X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive 

X-ray Analysis (EDX), Image Analysis and Transmission Electron Microscopy 

(TEM) techniques were used in this study to analyse the phase composition and 

microstructure in the dense materials.
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3.5.2. X-ray Diffraction (XRD)

Identification of the phases present in the sintered ceramic bodies was carried out 

using X-ray diffraction (XRD). The acquisition of information is rapid, non­

destructive and can be obtained from powder, single crystal, or flat polished 

crystalline materials. X-rays are diffracted by the lattice planes of crystals, the 

diffraction path and the resulting diffraction pattern being dependent on the 

arrangement of atoms in the crystal and is thus characteristic of the crystal. 

Monochromatic radiation of known wavelength is used in all XRD instruments 

where the diffraction angle is always 29 and constructive interference between the 

diffracted beams occurs when the Bragg Law (Equation 3.10) is satisfied:

À. = 2ds\nd  3.10

where 0  is the incident angle, d is the distance between lattice points (lattice spacing) 

and A, is the wavelength.

Identification of complex atomic structures require detailed indexing of the 

diffraction pattern and intricate corrections to the collected intensity data [182][183]. 

In practise, experimentally accessed diffraction patterns are identified by reference to 

a compilation of “standard” patterns (JCPDS) which have been developed for most 

known compounds.

3.5.2.1. E qu ipm en t u s e d

In this study, phase analysis was made using a standard Philips PW 3700 x-ray 

diffractometer configuration Be filtered Cu Ka radiation with a long fine focus beam 

(0.4mm X  12mm). The samples were scanned for a period of 2hours lOmins. 

Analysis of the final diffraction patterns was computer assisted using the Rietveld™ 

analysis system that utilises a “best-fit” method between the unknown phases and a 

database of reference spectra of phases.
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3.5.2.2. Sample Preparation

• 2 ‘The sintered bodies were cut into approximately 1cm pieces and polished to l|i.m 

surface finish using a series of diamond pastes. A flat surface helped to improve the 

quality of the diffracted signal. It was observed after sintering that certain samples 

had a variation in colour from the surface to the centre. The gas composition through 

a bulky porous pre-ceramic form during high temperature sintering will vary from 

the outside to the centre, which may result in the formation of different reaction 

products. To study this tendency, analysis was made at different depths from the 

surface of the cross-sections of a number of samples submitted for XRD analysis.

3.5.3. Scanning Electron Microscopy (SEM) and Energy Dispersive Analysis 

(EDX)

The principles behind the techniques of SEM and EDX are based either directly or 

indirectly on the interaction between an applied electron beam and the sample. The 

incident (primary) beam is directed onto the material, where it is partly reflected 

from the surface and partly undergoes a number of different interaction events with 

either the electrons or nuclei of the sample atoms or both. These interactions occur in 

a region of the sample known as the interaction volume. Elastic events are those that 

result in little or no beam electron energy loss and occur when the incident beam 

interacts with the nucleus of the sample. Interactions between the beam and the 

atomic electrons result in a high loss of beam electron energy and are termed 

inelastic events. Each incident electron can trigger more than one event.

X-rays are generated when electrons of high velocity are bombarded onto a solid. 

The electrons decelerate as they fall into the sample generating a continuous 

spectrum called Bremsstrahlung. Superimposed on the continuous spectrum is a line 

spectrum with a few high-intensity, sharp peaks whose energy and wavelength are 

characteristic of the composition of the sample. These peaks arise as a result of the 

interaction of the incident beam with the electrons of the sample.
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According to the Bohr model of the atom, sample electrons are arranged in 

increasing energy level or shells labelled, K, L, M,... corresponding to the principal 

quantum numbers, n = 1, 2, 3 ....The incoming electron beam excites atomic 

electrons their stable energy levels to higher energy shells. These electron then 

casade back to the lowest energy level possible, emitting “quantum” of energy 

proportional to the difference in shell energy level. This quantum is emitted as an X- 

ray photon with a characteristic wavelength (Figure 3.11) [184]. The relationship 

between the wavelength of the photon and the energy is given in equation 3.11. Each 

element in the periodic table has a unique number of electrons and thus a unique set 

of quantum numbers, such that the energy and wavelength of the X-ray spectrum 

produced is characteristic of the particular element.

cE = hi) and v —— 3.11
A

where, E = energy, h = Planck’s constant (6.626 X 10"34 JHz'1), D = frequency, c 

speed of light (2.998 X 108ms"1), and X = wavelength.

Characteristic X - ray

Figure 3.11 T h e B ohr m od el o f  th e  atom  and ch aracteristic  X -rays
em itted  [1 8 4 ].



Secondary electrons are produced by inelastic interactions between primary electrons 

and loosely held sample electrons, which are displaced and enable them to escape 

from the surface. Also, primary electrons may be deflected several times within the 

atom losing significant amounts of energy and those close to the surface may escape 

as secondary electrons. Regardless of origin, secondary electrons have very low 

energy (<50eV) and only those in the outermost regions of the sample can escape. 

Thus they contain important information about the sample surface (topography). 

Detection of these low-energy secondary electrons is possible as they are produced in 

large quantities. The yield decreases exponentially with the depth of their 

generation, with over half the total yield of secondary electrons being emitted within 

a depth of approximately 0.5nm (5A) [185], The angle between the primary electron 

beam and the sample surface greatly influences the yield of secondary electrons since 

the area of emission increases as the beam hits the surface with a small angle. This 

provides a grey level difference determined by local topography.

Backscattered electrons (BSE) are produced as a result of elastic interactions 

between the primary electron beam and the nucleus of the sample. Little or no 

energy loss is expected although the BSE leave the surface over a wide spectrum of 

energies (50eV—>50keV). The energy distribution of the BSE is more dependent on 

the angle of the incident beam with the sample rather than its energy. At a low angle 

the primary electrons have a higher probability of being backscattered by atoms close 

to the surface. Since BSE are produced as a result of elastic interactions with the 

nucleus of the sample, the yield of BSE and thus the intensity of the signal is directly 

dependent on the atomic number of the scattering element.

The basic interactions between an incoming electron beam and a sample are shown 

in Figure 3.12 [185].
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Figure 3.12 Types of electron-beam-excited electrons and radiation and the depth 
of the region below the specimen surface from which information is 
obtained [185].

One of the most versatile instruments for investigating the morphology of materials 

is the Scanning Electron Microscope (SEM). It covers a wide range of magnification 

extending from 10,000x up to 150,000x. Some advantages include; easy 

magnification adjustment, large depth of field (depth of focus), and stereographic 

image display. Also the images formed are easy to interpret and clear pictures of as- 

polished and etched specimens are possible. The sample under investigation is 

irradiated with a finely focused electron beam (5-10r|m) which is scanned across the 

sample surface. Secondary and Back Scattered electrons will be emitted from each 

point of scanning (as described before). The emitted electrons are induced to move 

to a collector (electron detector) under a positive potential of approx. lOkeV
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(accelerating voltage). When they strike the scintillator they generate photons which 

are then amplified by a photomultiplier. The amplified beam controls the brightness 

of the spot on the cathode ray tube (CRT) that is shown in real time with the electron 

beam scanning the surface. The magnification achieved is a function of the ratio 

between the area scanned to the area of the image on the CRT, so the magnification 

is increased by scanning smaller areas on the sample.

One minor disadvantage is that, in non-conductive materials, the incident electrons 

induce electrostatic charging of the surface that interferes with the emergent 

electrons causing loss of resolution. This problem is overcome by pre-coating the 

specimen with a conductive layer; carbon if chemical analysis is required or gold to 

enhance topographical contrast.

Contrast between topographical features can be observed because the intensities of 

both SE and BSE are dependent on the angle of incidence of the primary electron 

beam and the surface. However, since SE are emitted from areas close to the surface 

(as outlined above) SE signals are most suitable for discriminating topography; 

variations in the roughness in the surface cause changes in the incident beam angle 

and thus the development of contrast in the final image. Secondary electrons are 

emitted from all directions from the sample resulting in shadowless images. These 

characteristics provide accurate and well-contrasted images of sample topography, 

giving especially good depth of focus from rough surfaces.

The backscattered electron image shows a contrast more dependent on the atomic 

numbers of the sample constituent elements rather than on the topography of the 

surface. The intensity of the BSE beam increases as the atomic number increases, 

resulting in a brighter image, thus it is possible to identify the elemental composition 

of the scanned area. If the surface is evenly polished the BSE signal can be used to 

distinguish between phases which have identical elements present but in different 

concentrations.

A LEO 430 Scanning Electron Microscope was used for this study. It has a 

magnification range of 15x to 300,000x and an accelerating voltage range from
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300V to 30kV. As described earlier, this potential is applied to the collector and 

when positive SE are collected and when the collector is at a negative potential only 

BSE are detected.

3.5.3.1. E nergy D ispersive  X-ray A n a lysis  (EDX)

Qualitative chemical analysis of the sample was carried out using an EDX system 

within the LEO 430 SEM. Characteristic X-rays emitted from the specimen have 

energies corresponding to individual elements. The X-rays are absorbed by an Si[Li] 

semiconductor detector placed at the tip of the electron detector. The X-ray photons 

generate current pulses, the height of which are proportional to the individual X-rays. 

The signal is amplified and passes through a multichannel analyser, where the pulses 

are grouped according to their voltages. The information is processed in a 

microcomputer and displayed on the screen as an “elemental map” of peaks. 

Elemental analysis of a very small area can be performed by locating the fine 

electron beam on the spot to be studied. The information is obtained from an area 

approximately 1 to 10|j.m in the X and Y planes. An average of the elemental 

composition of an area can be obtained by scanning the beam over the area. 

Elements with high atomic numbers are easily separated by their significant lines 

however, lighter elements are difficult to detect. Elements below atomic number 11 

(sodium) cannot be analysed owing to the presence of a beryllium window in front of 

the crystal detector which absorbs low energy X-rays. Advanced systems use a 

diamond window which allows analysis down to N, but this is very expensive. A 

windowless detector could also be used but this is not recommended for reasons of 

detector cleanliness.

A Link ISIS computer analysis system (Oxford Instruments) was used in this study. 

It utilises a Windows 95 user interface allowing the user to easily and quickly master 

the application.
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3.5.3.2. Sample Preparation

Cross-sections were embedded and back-filled in an epoxy resin block and then 

polished with a buffing machine to a l|im finish. Since a SEM analyses the surface 

layer of a sample, it is essential that the sample surface is clean. The samples were 

carbon coated and silver paint was used to make contact between the sample and the 

holder.

3.5.4. Quantitative Image Analysis

In the simplest terms, the morphological features of a material may be displayed on a 

visual display unit as an electronic image. The two most widely used imaging 

techniques are by the scanning of optical micrographs, or directly from a digital 

camera and detector (for example in a scanning electron microscope). The “digital” 

image consists of a matrix of points called pixels, each with a grey or colour value. 

In material science applications the images are usually black and white, and one byte 

is dedicated to every pixel; every pixel can assume 256 different grey values. 

Quantitative Analysis is then achieved by setting a “grey-level” threshold, which 

separates or rejects the pixels on the basis of their grey value. The retained pixels 

may then be counted electronically. Increasingly sophisticated algorithms are now 

developed to allow determination of more and more complex geometry features, for 

example to discriminate between features of different aspect ratio, size, shape, 

orientation, straight or branched, and so on.

In practise, the methodology is fraught with sources of inaccuracy. Reproducibly 

accurate and reliable analysis demands rigid procedural standardisation and 

discipline. The operation of image analysis involves three main stages, Specimen 

Preparation, Image Acquisition and Image Analysis, all of which introduce 

assumptions and errors. Typical examples include; during Stage One, (Specimen 

Preparation), the accurate definition of the edge of a feature, especially where the 

hardness changes across the feature edge is a major source of error and is wholly 

dependent upon the quality of metallographic preparation. The risk of material
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damage during preparation, pullout and rounding off of edges all artificially increase 

the size of a feature. Similarly, lack of focus during Stage Two, (Image Acquisition) 

leads to deceptively high values. Here, also, the discrimination of the grey-level is a 

primary source of error. In very few practical cases is the edge of a feature sharp to 

the accuracy of one pixel. The selection of the boundary is totally dependent upon 

the algorithm selected for grey level separation, the so-called thresholding or 

segmentation operation. Finally during Stage Three, (Image Analysis) image sample 

size, (very many images are better than very few, but larger features are better than 

smaller), feature shape and dimension, all lead to lower precision of measurement.

Recent International Round Robin exercises [186] including several major European 

organisations have gone some way toward normalising the procedures for the 

quantitative analysis of defect structures in ceramic materials, and the methodology 

developed in these exercises has been used in the present study.

3.5.5. Transmission Electron Microscopy (TEM)

Transmission electron microscopy (TEM) allows very detailed microstructural 

analysis of materials to be carried out. Magnifications ranging from 1000 to 450,00 

are possible, with resolution to the Angstrom Unit level. Crystal structure

determination along with qualitative and semi-qualitative analysis of areas as small 

as 30r|m in diameter are possible.

TEM operates in two modes, imaging mode and diffraction mode. In both modes the 

source of illumination in a TEM is an electron beam of at least lOkeV, which is 

directed onto the specimen surface. As the electrons strike the specimen they 

undergo different interactions depending on the internal microstructure of the 

specimen. The electrons may simply pass through amorphous regions (be 

transmitted), or be diffracted by crystalline regions in the specimen. When using the 

microscope in the imaging mode the resultant transmitted or diffracted beam is then 

captured, to form an image on a fluorescent screen. The angle of the incoming beam 

is adjusted to select only one electron beam to form the image; a bright field image is
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formed if the directly transmitted beams are selected, and a dark field image if 

diffracted beams are selected. The contrast observed is a function of the diffraction 

patterns of the crystalline regions in the specimen. These electron images can be 

used to distinguish between amorphous and crystalline regions.

3.6. Investigation of the Monolithic Ceramics’ Properties

3.6.1. Hardness Tests

The Vickers hardness (HV) test is one of the most common techniques used for 

measuring hardness in ceramics. Figure 3.13 illustrates the shape of the Vickers 

indenter and resulting impression [187]. This technique is extremely economical and 

simple. The greatest advantage of the technique is that only a small amount of 

specimen is required; typically some 1 0 0  indentations can be made on a single 

surface of edge dimension 10mm. It does have its limitations however. Results from 

a Hardness Round-Robin test in ceramic materials [188] indicate that errors (as high 

as 15%) and biases lead to high levels of uncertainty, which increase with increasing 

hardness level.

The many factors that may influence the quality of microindentation tests (these also 

apply to bulk hardness tests) are outlined in Table 3.5 [187].
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Figure 3.13 Schematic diagram of the shape of the Vickers indenter and 
impression [187].

Instrument factors Measurement factors Material factors

Accuracy of applied load Calibration of the 
measurement system

Heterogeneity in composition 
or microstructure

Inertia effects, speed of 
loading

Resolving power of the 
objective

Crystallographic texture

Angle of indentation Magnification Quality of the specimen 
preparation

Lateral movement of the 
indenter or specimen

Operator bias in sizing Low reflectivity or 
transparency

Indentation time Inadequate image quality

Indenter shape deviations Nonuniform illumination

Damage to the indenter

Insufficient spacing between 
indents or from edges

Table 3.5 Factors affecting precision and bias in microindentation hardness 
testing [187].
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The following guidelines have been suggested for optimum measurements 

[187][ 188].

• The indenter should be examined periodically for correct geometry and surface 

damage.

• The indenter should be properly aligned (±1°) to the stage plate.

• The specimen surface should be perpendicular to the indenter.

• The indentation must be larger than the microstructural features.

• An adequate number of indentations should be used (5-10).

• Badly damaged indentation must be ignored. Spacing of indents is important as 

indenting produces plastic deformation and a strain around the indent. If the 

spacing is too small then the new indent will be affected. ASTM recommends 

spacing of 2.5 times the Vickers diagonal length.

• Specimen preparation is important. A clean, flat, mirror surface is essential. For 

low loads ASTM recommends a sample thickness of 2.5 times the Vickers 

diagonal length.

• Hardness can vary with indentation load, at low loads. Loads >9.8N(lkg) are 

suggested.

Samples within each series were chosen based on their densities ensuring that the 

influence of porosity on hardness is minimised, so that the effect of composition and 

residual a-Si3N4 could be observed. To correlate residual porosity with hardness and 

to determine the quantitative nature of porosity dependence on hardness, samples 

with the composition 3.2CaZ with a range of densities were selected.

The samples (approximately 10mm x 5mm X 5mm) were mounted in epoxy resin 

and polished to mirror finish with l(lm diamond paste. The polished samples were 

subjected to Vickers diamond pyramidal indentation under a load of 5kg, for 10 

seconds. Care was taken to make indentations only on those areas which had no 

visible pores, as it was essential to minimise the influence of porosity on the hardness 

behaviour. The guidelines for obtaining optimum values (outlined earlier) were 

closely adhered to. The indented samples were then examined by optical microscopy 

with magnification of 200x (in reflected polarised light) and the dimensions of the
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indent measured to the highest accuracy possible. Vickers Hardness (HV5) was 

calculated using the standard equation,

1.8544FH V  = 3.12

where,

F = the indentation load (grams-force) 

d = the average indentation diagonal (Jim)

Resulting hardness values are expressed in kgf/mm rather than the equivalent 

gf/|im2. 5-10 indentations were made for each specimen and the error of 

measurement was estimated in terms of standard deviation from the mean.

3.6.2. Fracture Toughness

For the evaluation of fracture toughness, the critical stress intensity factor, Kic, of a 

material, can be determined by measuring the size of cracks formed around the 

indent during Vickers hardness indentation [189] [190]. A schematic diagram of the 

twp type of crack geometries, Palmqvist and median cracks, that form around 

Vickers indentations is illustrated in Figure 3.14. Often termed Indentation Fracture 

this method is widely used as it is very quick and cost-effective, requires a small 

volume of material and can be carried out in tandem with Vickers indentation tests. 

The guidelines for optimum Vickers hardness results (as outlined earlier) also apply 

to Kic measurements. In addition, it was essential that the crack length be measured 

immediately after indentation, as postindentation crack growth is reported to occur in 

ceramics with glassy grain boundary phases [191].

The difficulties with this technique include (i) the accuracy to which the crack 

lengths can measured, (ii) the expressions given in literature assume that the crack 

formed is one of the two ideal fracture model type cracks, and (iii) the wide range of 

expressions reported in literature and (iv) and the inconsistency between reported
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indentation fracture toughness values and fracture toughness values measured by the 

conventional single edge notched beam (SENB) test. The reader is refereed to the 

many review papers that exist which assess the Vickers indentation fracture 

toughness test and the many indentation toughness equations [ 192] [ 193][ 194].

Indentation fracture measurements were conducted on each of the samples subjected 

to Vickers hardness tests, Section 3.6.1. Equations were selected from literature and 

are outlined in the Results and Discussion, Section 4.6.1.

Figure 3.14 Comparison of (a) median cracks and (b) Palmqvist cracks around a 
Vickers indentation.

3.6.3. Oxidation Behaviour

A series of oxidation experiments were carried out on monolithic samples with the 

composition 3.2CaZ (Si3N4 + 3 .4 wt%Yi0 3  + 3 .4 wt%Al2C>3 + 3 .2 wt%CaZr0 3 ) 

sintered at 1600°C. Although no Zr-O-N type phases were detected in this particular 

material as was outlined in Section 2.5.1.3, even trace amounts of such phases in 

SisN4 ceramics result in catastrophic degradation of the materials oxidation
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resistance, which, of course, would lessen its suitability as a matrix phase for the 

fabrication of a SisN^C composite in the present study.

3.6.3.1. S am ple Prepara tion

The sintered samples were cut into test samples of dimension 5mm x 5mm X 4mm, 

(suitable for the thermobalance). The cut surfaces were polished with a range of 

diamond pastes to O.ljlm, subsequently ultrasonic ally cleaned in ethanol and finally 

dried in an oven at 100°C to a constant weight, ±10|lg.

3.6.3.2. Long Term O xidation T ests

The samples were subjected to long term oxidation tests (100 hours) at each 100°C 

interval within the temperature range 600°C< T < 1000°C, over which (range) Zr-O- 

N phases are reported to cause catastrophic oxidation. Sample weights before and 

after long term tests were weighed to ± 1 0 (lg.

3.6.3.3. Therm ogravim etric A n a lysis  a n d  S hort Term Oxidation  

T ests

Oxidation tests were carried out in a Cahn TG171 automatic recording 

thermobalance, Figure 3.15. The samples were placed in a high purity alumina 

crucible, which was suspended in the furnace from a sapphire fibre support attached 

to the balance. The furnace was then raised, sealed and the sample exposed to dry air 

(<5ppm H2O) flowing at 55ml/min.

The onset of oxidation was determined by thermogravimetric analysis carried out by 

heating the samples at a heating rate of 2°C/min to 1500°C, with a 2 hour hold time
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at temperature. Following the results of the thermogravimetric analysis, an initial 

investigation into the oxidation kinetics of the material was carried out by a series of 

short term tests (20 hours) at 1200°C, 1300°C and 1400°C. A slow heating rate was 

set to 250°C and then increased to 40°C/min up to the hold temperature. After the 

isothermal holds, the furnace was cooled slowly at a slow rate set so that the natural 

cooling curve of the thermobalance was followed.

Weight measurements recorded on the thermobalance in the present study, have an 

accuracy of ±l(ig, in a lg change every 30 seconds. To ensure reproducibility, 

duplicate runs were carried out at each oxidation temperature and the initial and final 

weights of the samples were measured on a separate balance to check the calibration 

of the thermobalance. Also the weight data recorded for each run were corrected for 

any effects of heating and Pt evaporation by subtracting the data recorded for a blank 

run with a “dummy” alumina specimen.

Figure 3.15 Cahn T G 1 7 1  au tom atic  record in g  th erm ob alan ce.
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3.7. Investigation of Composite Properties

3.7.1. 3-point Bend Tests

Composite samples of both matrix phase compositions (IAIN and 3.2CaZ) gas- 

pressure sintered at 1600°C and hot-pressed at 1600°C and 1700°C were tested in 3- 

point bending. The composite samples were cut with a diamond saw to dimensions 

of 45mm x 4mm X 3mm. 6  to 7 bars of each material were tested. The experiment 

set up is illustrated in Figure 3.16. A silicon carbide jig was used with an outer span 

dimension (1) of 30mm and inner span (10 of 10mm. The samples were loaded in a 

direction parallel to the fibre direction. The failure stress, CTf, was calculated 

according to

3.13
2b h

where F is the peak force at fracture (N), b is the test piece width (mm) and h is the 

test piece height (mm).

Figure 3.16 3 -point bend test set up.
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4. RESULTS AND DISCUSSION

4.1. System Selection

As outlined in Section 3.1, Tables 3.1 and 3.2, the ceramic compositions studied 

comprise of two types of materials based on sintering additives, and a reference 

material. For clarity the chemical compositions are listed again in Tables 4.1- 4.3. 

The chemical compositions are expressed here in both mol% and wt%, in the 

remainder of the text they are expressed only in wt%.

Sample SÌ3N4 y 2o 3 a i 2o 3 AIN

Label

0A1N
wt% 88.5 5 6.5 -

mol% 88 3 9 -
IAIN
wt% 88.5 5 5.5 1
mol% 84 3 7 4
2A1N
wt% 88.5 5 4.5 2
mol% 84 3 6 7
3A1N
wt% 88.5 5 3.5 3
mol% 83 3 4.5 9.5
4A1N

wt% 88.5 5 2.5 4
mol% 81 3 3 13

Table 4.1 Com positions o f ceramic samples in the S i3N 4 + Y20 3 + A120 3 + AIN 
series investigated.
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Composition

Label
Si3 N4 y 2o 3 ai2o 3 CaO Z r0 2

3.2CaZ
wt% 90 3.4 3.4 1 2 . 2

mol% 88 2 5 2.5 2.5

4.8CaZ
wt% 90 2 . 6 2 . 6 1.5 3.3
mol% 88 1.5 3.5 3.5 3.5

6.4CaZ
wt%
mol%

90
88

1.8
1

1.8
2

2

4.5
4.4
4.5

Table 4.2 Compositions of the ceramic samples in Si3N4 + Y20 3 + A120 3 + 
CaZr03 system investigated.

Composition
Label

SÌ3 N4 Y2O3 a i2o 3

REF

wt% 90 6.9 3.1
mol% 91 4 4

Table 4.3 Chemical composition of the reference ceramic samples investigated.

4.2. Powder Dispersion Analysis

4.2.1. Dispersion Experiments

The methodology used for fabrication of green bodies in this study (Section 3.3) 

requires that the starting ceramic powders remain stable in aqueous suspension for up 

to 6 hours. Earlier studies [19] found that Si3 N4 , Y2 O3 , AI2 O3 aqueous suspensions 

can be stabilised for up to 8 hours. Since AIN and CaZrC>3 powders will also be 

added to these powders in significant quantities, their stability in water was examined 

over a period of 10 - 24 hours, using a commercial ESA equipment (Matec™). As
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reviewed in Section 2.3.3 the measurement of Electronic Sonic Amplitude (ESA) can 

be used to evaluate the dispersion characteristics of powder particles in liquid 

suspension. When the ESA value of a dispersion is a high value (positive or 

negative), then the liquid suspension is most stable (the balance between attractive 

and repulsive charges of the double layer is optimum for stability). Change in this 

value towards zero indicates progressive loss of stability and an increase in tendency 

to agglomerate.

The analysis of an aqueous solution of regular AIN powder confirmed earlier reports

that aluminium nitride is unstable in water [195] [196]. Results for a 2vol% AIN

aqueous suspension are illustrated in Figure 4.1. The suspension remains at a 

negative ESA value (within a maximum range of values) that is, it retains stability, 

over a period of approximately 2.5 hours, after which its ESA values deviates 

quickly from its maximum value range and the suspension becomes unstable. 

Agglomeration of the suspension, along with an increase in temperature and 

evolution of ammonia was observed. Coinciding with the decrease in stability was a 

rise in pH of the dispersion (Figure 4.2), which can be explained by the hydrolysis 

of the AIN according to the following reactions [195]:

AIN + 2H 20  -> AlOOH(amorph) + NH3 T 4.1

NH3 + H 20  <-> NH+ + OH- 4.2

AlOOH + 2 H 20 ^ >  Al(OH )3(cryst) + H 20  4.3

This problem was overcome by using a coated, water-resistant AIN powder, denoted 

here as A1NWR (supplied by Advanced Refractory Technologies Incorporation). 

The individual AIN powder particles are coated with an organic compound, which 

increases the stability of the powder in water. The organic coating is hydrophobic so 

that for good dispersion in a water medium, a wetting agent is required. ESA results 

for a 2vol% A1NWR aqueous suspension (plus lwt% wetting agent, Emphos CS- 

1361, Witco Chemical) are illustrated in Figure 4.1. The presence of a wetting 

agent is not expected to affect greatly the stability of the suspension and so should 

not invalidate the comparison between the stability of the two AIN powder 

suspensions. The suspension maintains its maximum ESA value range, and hence
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stability for up to 7 hours before slowly deviating away from its maximum. 

However, no coagulation was observed and no rise in pH, similar to that for the 

uncoated AIN powder, occurred (Figure 4.2).

Figure 4.3 illustrates the variation of ESA with time for a 2vol% CaZrC>3 aqueous 

suspension. The suspension is stable (remains within its maximum negative ESA 

value range) for up to 7 hours, after which time the ESA value was seen to move 

towards zero, but no agglomeration of the suspension was observed. The pH of the 

suspension remained constant.

For both the uncoated and coated AIN, and the CaZrC>3 suspensions the initial time 

delay observed in reaching their maximum stability (Figure 4.1, Figure 4.3) is 

simply the time required for the powders to become well dispersed in the aqueous 

media. The coated AIN powder requires a slightly longer time than the uncoated 

powder to become well dispersed due to its poorer wettability (even with the use of a 

wetting agent). The relatively long time taken for both powders to achieve stable 

dispersions may be due to the fact that the suspensions were ultrasonically dispersed 

and mixed on magnetic stirrer while the ESA measurements were taken. Dispersion 

of individual particles requires breaking up the original agglomerates. This requires 

massive input of energy and while these dispersion techniques result in well 

dispersed suspensions, they are slow. The observed time delay is expected to be 

greatly reduced in the green body formation process used in preparing the samples, 

as the ceramic dispersions are mixed using a highly effective mixing and milling 

process for up to 1.5 hours, as outlined in Section 3.3.1.
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Figure 4.1 Variation o f  ESA with time for AIN and coated AIN, A1NWR.
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F ig u r e  4 .3  Variation o f ESA with tim e for CaZr03.

Having established chemical stability for the reactant species, the next step was to 

optimise the suspension conditions, in order to guarantee a stable, uniform 

distribution of single particles of maximum concentration in the suspension. A better 

understanding of powder particle stability in suspension is obtained by establishing 

the zeta potential across a range of pH values. ESA provides a measure of the 

particle mobility in the suspension, which is related to zeta potential and so provides 

an equivalent guide to particle stability.

Dispersions containing coated AIN (A1NWR) and CaZrOs were prepared as 

explained in Section 3.2.1 and were titrated with 0.1M HNO3, while measuring ESA. 

Figure 4.4 (a) and (b) show that the isoelectronic points of AIN and CaZrC>3 in water 

are equal to 5 and 5.5 respectively. Previous studies [197] found the IEPs of Si3N4, 

Y2O3, and AI2O3 in water to be 6.2, 8.7 and 8.2 respectively and a stable dispersion 

of a mixture of these powders has been achieved once the pH of the dispersion is 

maintained above 10. These results suggest that the AIN or CaZrC>3 powders, reach a 

maximum ESA value at pH 10, beyond which stability is not improved, and thus 

they will be stable under the same conditions as the Si3N4 , Y2O3, and AI2O3 powders.
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( a )  (b)

Figure 4.4 Titration of 1M HNO3 in 2vol% suspensions of (a) A1NWR and (b) 
CaZr03.

4.2.2. Suspension Rheology

Green form morphology is a decisive factor in determining the structural quality of 

the final sintered ceramic -  flaws in the green body are inevitably retained in the 

microstructure of the sintered form. The quality of both monolithic and composite 

green form morphology depends crucially upon the rheology of the ceramic slurry 

(powder dispersion). An earlier in-depth study by Plunkett et al. [198] determined 

the conditions for optimum dispersion for the fabrication of green bodies of a carbon 

fibre reinforced Si3N4 composite containing a sinter additive mixture of 5wt% each 

of AI2O3 and Y2O3 (this was used as the reference composition in this study), by 

attrition milling an aqueous suspension containing:

• 65wt% powder content

• 0. lwt% dispersant (Darvan C)

• 0.1 wt% wetting agent (Aerosol OT) for composite fabrication

• at a pH 10.4

• The resultant viscosity of the slurry should lie within 12- 20 cps.
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Aqueous slurries of the compositions outlined in Tables 4.1-4.3, were prepared 

according to these parameters and their resultant rheological behaviour and viscosity 

measured to confirm their suitability for use in the filtration and infiltration processes 

for each series.

Shear stress versus shear rate plots of selected slurries from each composition series 

show near Newtonian behaviour, Figure 4.5,. When the shear stress was converted 

to differential viscosity (using the average shear rate method) and plotted against 

shear rate, near Newtonian behaviour was seen down to a shear rate of approximately 

20s1 (Figure 4.6). The observation of an initial high viscosity/high shear rate, was 

also observed by Plunkett et al. [198], and was attributed to the formation of 

networks between polar water molecules and amino groups of the dispersant. The 

viscosity of each slurry composition was seen to lie well within the range of 1 2 - 

2 0 cps outlined above, ensuring that these compositions are suitable for fabrication of 

monolithic and composite green forms by the filtration and infiltration methods 

respectively.

Shear Rate (s'1) Shear Rate (s'1)

(a) (b)

Figure 4.5 Shear stress plotted against shear rate for slurries used for (a) 
monolithic fabrication and (b) composite fabrication.
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Figure 4.6 V iscosity profiles o f  slurries used for (a) m onolithic fabrication and (b) 
com posite fabrication.
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4.3. Green Body Formation

Monolithic and composite green bodies were cast using pressure filtration and 

pressure infiltration respectively. A slurry charge, introduced into the mould (Figure 

3.8) was filtered under 20 bar gas pressure. Initial casting experiments established 

that the time required to express the water from the sediment mat, varied between 12  

and 15 minutes. A shock of sudden gas pressure change can result in the 

development of dry channels and cracking of the ceramic cake. Also the green forms 

were difficult to remove from the mould. These problems were overcome by 

controlling gas pressures, limiting time at maximum pressure to 1 0  minutes followed 

by very slow pressure release, and the application of a mould release agent. Finally a 

casting time of 10 minutes and pressure of 7 bar were used as optimum parameters 

for fabrication of the green bodies. For some samples it was necessary to apply a 

vacuum for 10-15 minute to completely dry the surface before removing the sample 

from the casting mould. After drying in the controlled humidity box, and organic 

burnout of the samples, green densities of up to 60%TD were achieved.
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4.4. Sintering Studies and Sample Analysis

4.4.1. Introduction

The conditions under which the monolithic silicon nitride based samples were 
sintered are outlined in Section 3.4.1. Initial sintering experiments were carried out 
with a 2 and 4 hour hold time at the sintering temperature. However, the longer hold 
time resulted only in very minor increases in final density (~ 0.5%). A shorter 
production time is more cost-effective and possible fibre/matrix reactions in the final 
composite should be minimised by shorter holding times, as explained in 2.4.1. A 

two hour hold time at sintering temperature was then selected for the main study. 
The different compositions were sintered over a range of temperatures between 
1400°C and 1750°C. The general reproducibility of sintering for each series was 
evaluated by the inclusion of a number of replicates for a particular 
composition/temperature. The results were found to be very consistent, with an 
average standard deviation range of 0.08 -  0 .2 , calculated for the density values 
calculated at each sintering temperature.

To gain a greater understanding of the sintering mechanisms and the potential of the 
ceramics in the present study; the Si3N4 + Y2O3 + AI2O3 + AIN series and the Si3N4 + 
Y2O3 + AI2O3 + CaZr0 3  series, a comprehensive study was made of both the 
microstructure and chemical composition after sintering at selected temperatures. 
The microstructure of dense SijNpbased ceramics materials can consist mainly of 

the two Si3N4 phases a  and P, and intergranular phases of varying composition (see 

details in Section 2.3.6). The quantitative determination of the a  and P content in the 

selected samples was made using X-ray diffraction (XRD). The interpretation of the 
XRD data was made with care, taking into account the limitations of the technique:

• Poor crystallinity of the intergranular phase

• Distortion of peaks due to solid-solution or impurities means that the data is, at 

best semi-quantitative

• Grain orientation effects are not considered
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• Minimum detectable phase concentration is roughly 5%, so that many crystalline 
grain boundary phases may not be detected

Figure 4.7 shows three typical X-ray diffraction patterns corresponding to the green 
body material, a partially transformed material and a fully transformed sintered body. 

The figure shows the peaks selected for semi-quantitative determination of the a/(3 

content in each sample. The presence of a crystalline intergranular phase can be seen 
in Figure 4.7 (b). The semi-quantitative analysis of the data was carried out by 
normalising the intensity of the phase detected (I) to the intensity of the pure 
standard (Io).

The degree of transformation from the a- to the P-SisNj structure in the materials is 

discussed in terms of the amount of ¡3 estimated, which is expressed as a percentage 

of the total amount of Si3N4 detected:

Degree of Transformation — % f i— ———r 4.4
[oc + p )

The results and discussion of the sintering behaviour and analysis of the Si3N4 + 
Y2O3 + AI2O3 + AIN series and the Si3N4 + Y2O3 + AI2O3 + CaZrC>3 series are 
presented separately. They were investigated not to compare directly with each 
other, but as individual novel Si3N4-based materials. A range of sintering additive 
compositions within each individual series was studied. Some comparisons are made 
with the reference material.
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X-ray patterns corresponding to (a) green body material, (b) partially 
transformed material and (c) fully transformed material.
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4.4.2. SÌ3N4 + Y2O3 + AI2O3 + AIN Series

4.4.2.1. D ensification  R esu lts

Figure 4.8 illustrates the variation of percent theoretical density (%TD) of the 

sintered samples with increasing sintering temperature. As would be expected for 

these systems, samples with constant grain boundary chemistry, that is a constant 

AIN and AI2O3 content, increased in density with increased sintering temperature. 

Thus the density of sample 4A1N (4wt% AIN, 2.5wt% AI2O3) increases from 

69.3%TD after sintering at 1400°C to 98.5%TD at 1650°C, and similarly the density 

of 2 AIN (2wt% AIN, 4.5wt% AI2O3) increases from 86.35%TD at 1400°C to 

98.4%TD at 1650°C. The results show that the addition of AIN lowers the 

temperature required for sintering to closed porosity (approximately 94- 95%TD). 

This temperature is reduced by at least 150°C for all AIN concentrations, 1- 4A1N as 

compared to the reference material and by 200°C for lwt% AIN addition, from 

1650°C.

Temperature (°C)

Figure 4.8 Variation o f  %TD with temperature for each com position in the AIN 
series and the reference material.
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The densification results of the 1-4A1N compositions between 1500°C and 1650°C 
are shown in more detail in Figure 4.9. The IAIN composition performs best, 

producing a >98%TD at all temperatures above 1500°C, as does the 3A1N sample 

above 1550°C.

Temperature (°C)

Figure 4.9 Variation o f % T D  with temperature (>1500°C) for selected  
com positions.

Densification of SiaNt ceramics by liquid-phase sintering, as discussed in Section
2.3, involves three mechanisms or stages; rearrangement, solution-diffusion- 
reprecipitation and coalescence [48]. The contributions of the different stages to 
densification are dependent on the type of sintering additive used. Since the amount 
of yttrium added was kept constant in the series studied here, the differences in 
sintering mechanisms and the resultant percent TD at each temperature is considered 
to be dependent on the AIN and AI2O3 content in the different compositions. Figure 
4.10 illustrates the variation of sintered TD with AIN and AI2O3 content over the 
range of sintering temperatures studied. In this representation of the densification 
results, the significant effect of the addition of AIN on the sintering behaviour within 
the Y-Si-Al-O-N system can easily be seen. However, explanation of the results of 
varying the AIN and AI2O3 content over a range of values on the sinterability of these 
SijN4 based ceramics is certainly not simple. As seen previously in Figure 4.8, and 
more clearly in Figure 4.10, the addition of lwt%AlN improves the ceramic density
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at lower sintering temperatures. For example, the density obtained at 1400°C for 

0A1N (Owt% AIN and 6.5wt% AI2O3) was 72.34%TD, whereas sample IAIN with 

lwt% AIN and 5.5wt% AI2O3, reached 91.48%TD. The final density of the sintered 

samples does not however, increase further with increasing amounts of AIN 

(decreasing amount of AI2O3). Sample 2A1N (2wt% AIN, 4.5wt% AI2O3) exhibits 

poorer sinterability than IAIN at each temperature up to 1600°C, reaching 

90.94%TD at 1450°C compared to 97.31%TD reached by IAIN. Increasing the AIN 

content to 3wt% in sample 3A1N resulted in improved sinterability from the 2A1N 

composition but yet is not as good as IAIN. A further increase in AIN content to 

4wt% resulted in a ceramic with significantly poorer sinterability, reaching just 

79%TD after sintering at 1450°C, showing similar %TD values to the sample with no 

AIN.

The observed variation in sintering behaviour with AIN and AI2O3 content was not 

observed when the samples are sintered at temperatures 1600°C and 1650°C.
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Figure 4.10 Influence of AIN and A120 3 content on the final density after 
sintering for 2 hrs at the given temperatures.



4.4.2.2. Mass Loss Measurements

Very low mass losses (from 0.1% to 0.86%, with a standard deviation ±0.03) were 

observed in the present work for all compositions at all temperatures (Table 4.4) 

compared to those observed by Itturiza et al [199] (typically 3-6%) and in other 

comparable compositions [200][201]. This is most probably due to the use of lower 

temperatures, the application of a low over-pressure (10 bar N2), and the use of 

graphite pieces to compact the sinter powder bed around the sample, which, in 

combination, prevent decomposition of SiaNt and inhibit volatilisation of gaseous 

products from the sample surface [180] [202]. Moreover, Lange et al [203] have 

reported that mass losses are minimised when the densification kinetics are rapid, 

which has been taken into account in selecting the sintering condition for the present 

study.

Sam ple

C om position

L abel

% M ass L oss

S in tering  

T em p eratu re  (°C)

1400 1450 1500 1550 1600 1650

0A1N 0.61 0.62 0.71 0.1 0.45 0.4
IA IN 0.56 0.51 0.44 0.66 0.4 0.5
2A1N 0.51 0.49 0.46 0.4 0.6 0.6
3A IN 0.56 0.49 0.4 0.5 0.4 0.5
4A1N 0.5 0.86 0.78 0.5 0.1 0.3
R E F 0.4 0.32 0.43 0.5 0.55 0.5

Table 4.4 Measured % mass losses for compositions sintered at the given temperatures.

4.4.2.3. Shrinkage R esu lts

It is clear at this stage that the sintering mechanisms occurring especially at lower 

temperatures are strongly dependent on the AIN/AI2O3 content ratio. To further
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analyse and help understand the effect of varying the AIN and AI2O3 content, a set of 

dilatometry experiments was carried out on compositions 1-3A1N. Rectangular 

green bars of samples of the compositions were heated to 1600°C at a rate of 5°C/min 

and held at temperature for up to 8  hours (See Section 3.4.3 for details). The 

resultant dilation curves are illustrated in Figure 4.11. As expected from the 

sintering results, sample IAIN reached the highest shrinkage of 15.75% and again 

2A1N has the minimum shrinkage of 14.36%. The shrinkage of all compositions is 

seen to start at around 1350°C, and increases with increasing temperature. The 

influence of hold time at temperature on resultant shrinkage values is outlined in 

Table 4.5. As can be seen, for each composition, the greatest increase in shrinkage 

(approximately 2%) occurs during the first 2 hours at constant temperature. Holding 

the samples for a longer time at temperature proved only slightly beneficial to 

shrinkage. After 8  hours, shrinkage of sample 1 and 2 AIN increased by 

approximately 0.2% and sample 3A1N by 0.5%. These results confirm densification 

results in preliminary experiments, outlined earlier, that a hold time of 2  hours is 

sufficient for good densification.

6 9
Time (Hrs)

1600

1200

800

400

0

Figure 4.11 D e p en d en ce  o f  d yn am ic sh rin k age on  tem perature and tim e for  
co m p o sit io n s  1-3 A IN .
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Sam ple  

Composition Label

% Shrinkage

Hold Time at 

Temperature (hrs)

0 2 4 6 8

IAIN 13.6 15.5 15.62 15.71 15.75

2A1N 11.9 14.18 14.32 14.36 14.36

3A1N 11.86 14.08 14.70 14.78 14.78

T a b le  4 .5  Shrinkage values after holding at temperature.

4.4.2.4. a- to  fl-Si3N4 Transform ation

Table 4.6 outlines the %P-Si3Nt content detected in each composition within the 

S13N4 + Y2O3 + AI2O3 + AIN series after sintering at the given temperature. As 
expected the degree of transformation increases as the sintering temperature 

increases, for example, the sample with composition 0A1N consists of 46.57% (3- 

Si3N4 after sintering at 1400°C and is completely transformed to f}-Si3N4 after 

sintering at 1600°C, similarly in the sample with composition 2AIN, 2 1 .7 4 %P-Si3N4 

was detected in the sample sintered at 1400°C and complete transformation was 
observed in the sample sintered in 1600°C. This behaviour is as expected, since the 
a-phase is thermodynamically unstable at temperatures >1400°C and transforms to 

the more stable P-phase [106].

The influence of the sintering additive composition, that is the AIN/AI2O3 ratio, on 
the transformation behaviour is illustrated in Figure 4.12. The addition of AIN to 
the Y-Si-Al-O-N system is seen to have a significant effect on the a  to P phase 
transformation. The addition of lwt% AIN favours the transformation at lower 

temperatures, for example the P-S13N4 detected at 1400°C for 0A1N was 15%, 

whereas sample IAIN had 21.74% P-SijN4. The P-Sî N* detected in the sintered 

samples does not however increase with further increasing amounts of the AIN/AI2O3 

ratio, sample 2A1N (2wt% AIN, 4.5wt% AI2O3) has a lower % p-phase than IAIN
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after sintering at each temperature from 1450°C to 1600°C, consisting of 68.3% P- 

SiaN4 at 1500°C compared to 96.15% P-S13N4 detected in IAIN. When the AIN 

content was increased to 3wt% in sample 3A1N the transformation from a  to P-SijNt 

was improved slightly in the same temperature range but the degree of 

transformation is still less than sample IAIN. Sample 4A1N (4wt% AIN, 2.5wt% 

AI2O3) exhibits much poorer transformation behaviour, with just 5% P-SiaNt after 

sintered at 1400°C, showing a lower degree of transformation at all temperatures to 

the sample with no AIN.

Comparing Figure 4.10 and Figure 4.12, the a  to P phase transformation seems to be 

concurrent with densification.

Sample
Composition

Label

Temperature (°C)

1400 1450 1500 1550 1600
0A1N 15 35 62 75 94
IAIN 21.49 58.82 96.15 95.2 100
2A1N 21.74 43.75 68.3 77.8 100
3A1N 19.96 48.69 78 82.83 95.23
4A1N 5 16.67 50 68 83.5

T a b le  4 .6  %p-Si3N 4 detected using XRD in materials densified at the specified  
temperatures.
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Figure 4.12 Influence o f  AIN and A120 3 content on the %P-Si3N4 measured after 
sintering for 2hrs at the given temperatures.

4.4.2.5. D iscu ssion  on  R eaction  S eq u en ces  during Sintering

A closer picture of the influence of varying the AIN/AI2O3 ratio is seen from the 
differential shrinkage behaviour shown in Figure 4.13. Here the shrinkage values of 
Figure 4.11 have been differentiated with respect to time to show the shrinkage rate 
with increasing temperature. The start of measurable shrinkage occurs between 
1150°C and 1200°C for each sample, and has been attributed to the formation of 
YAM (Y4AI2O9) [204]. The total shrinkage at this temperature is very small and is 
most likely due to some degree of particle rearrangement. With increasing 
temperature the shrinkage rate shows two maxima. The first occurs at around 
1335°C. It is most probable that this step also contributes little to overall shrinkage 
see Figure 4.11(b). The second maximum, occurs at around 1550°C for sample 
IAIN and 2 AIN and 1575°C for 3A1N. Sample 3A1N exhibits a different behaviour 
at this step, in that it seems to require a higher temperature to reach its maximum 
shrinkage rate.
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Temperature (°C) Temperature <°C)

(a) (b)

Figure 4.13 Variation o f shrinkage rate with temperature in the temperature 
range (a) 1100-1400°C, and (b) 1100-1600°C.

The first distinct shrinkage step at approximately 1335°C has been associated with 
the formation of the SiCVYiCVAkOa ternary oxide eutectic [205]. This step 
contributes very little to the overall shrinkage since the amount of SiC>2 in the starting 
compositions is very small (~lwt%) thus limiting the amount of eutectic melt formed 
and so is essentially independent of starting compositions (AIN/AI2O3 ratio).

At temperatures greater than approximately 1350°C, Y2O3 and AI2O3 , crystallise out 
of solution as YAG (Y3AI5O12), as detected by XRD in each composition after 
sintering at 1400°C and detailed in Table 4.7. The precipitation of YAG reduces the 
amount of liquid phase present, resulting in the retardation in shrinkage observed. 
Compared with Bandyopadhyay et al [204] who reported a total absence of shrinkage 
from 1400°C to 1500°C due to the YAG formation, the degree of retardation is small 
in the present case. This is considered a result of the small amounts of YAG formed 
in the grain boundary phases in the present case, compared to the bulk amounts 

formed in the a-SiAlON ceramics studied by reference [204], so that the effect is 

much less pronounced.

At higher temperatures, >1400°C, YAG redissolves into the liquid phase and the 
amount of liquid phase increases significantly. The amount of liquid phase formed
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during this step plays a major role in sample densification behaviour. XRD analysis 

of the sample with composition IAIN showed that YAG is completely redissolved 

into solution at temperatures >1400°C while temperatures >1450°C are required for 

the redissolving of YAG in 2A1N and 3A1N (Table 4.7). An increased volume of 

liquid phase rich in Y, Al, and O is thus present in IAIN at lower temperatures, 

contributing to the superior densification achieved by IAIN (97%TD) after sintering 

at 1450°C.

Sam ple

C om position

L abel

P h ases D etected  (I/I0)

T em p eratu re 1400 1450 1500 1550 1600

IAIN Y A G (30) - - - -

2A1N Y A G (40) Y A G (40) Y 2SiA 105N (15) - -

3 AIN Y A G (40) Y A G (30) Y 2SiA 105N(t) - -

Table 4.7 Crystalline phases detected in the selected materials after sintering 
at the given temperatures.

In addition, the amount of AI2O3 in the starting composition influences volume of 

liquid phase formed and thus densification [93][206]. In the present study density 

increased with increasing alumina content (with the exception of composition 2A1N) 

at all temperatures. After sintering at 1450°C composition 4A1N (2.5wt% AI2O3), 

3A1N (3.5wt% AI2O3) and IAIN (5.5wt% AI2O3) reached densities of 79%TD, 

94%TD, 97%TD respectively. However, when the alumina content was once again 

increased in composition 0A1N (6.5wt% AI2O3) the densification achieved was just 

79%TD (see Figure 4.8). Identical densification behaviour was observed by 

Bandyopadhyay et al. [204] who found that on moving the SiAlON compositions 

towards the AkCVrich side of the Si3N4-Y2C>3.9 AlN tie line, as the composition 

becomes richer in alumina, a larger volume of liquid phase is formed and better 

densification occurred and above a certain amount of AI2O3, the amount of liquid 

phase reduced, hence poorer densification occurred. Also the existence of an 

optimum AI2O3 concentration (approximately 6 wt%) has been observed by Itturiza et
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al [199] in their study on the densification of sintered and HIP-sintered Si3N4 with 

Y2O3 and AI2O3 addition.

Bandyopadhyay et al [204] suggested this behaviour was due to formation of 

increased amounts of (3-SiAlON acting as a ‘sink’ for aluminium and oxygen by 

changing either its level of substitution in Si3N4 or its volume fraction formed. 

Although no p-SiAlON was detected in the present samples at lower temperatures, 

this does not rule out the above explanation, since, as mentioned earlier, the amount 

of the grain boundary phases in these samples is very small and could not be detected 

by XRD.

The poorer sinterability at lower temperatures of composition 2A1N (2wt% AIN, 

4.5wt% AI2O3) which is most likely a real effect, remains difficult to explain. As 

outlined in Table 4.7, the crystalline phase, Al-substituted N-a-wollastonite 

(Y2SiA1 0 5 N) was detected in the 2A1N and 3A1N materials after sintering at 1500°C. 

Y2SiA1 0 5 N forms by glass devitrification and is unstable at temperatures above 

1100°C [207]. This suggests that it forms during cooling and thus does not affect the 

densification. However, it is reported that Y2SiA1 0 5 N forms instead of YAG [208] 

when the Al content in the liquid phase sintering medium is reduced. This leads to 

the speculation that this specific composition encourages the removal of Al, and O, 

into the SijNj structure (forming a (3-sialon) which then reduces the amount of liquid 

phase available for densification as outlined above.

The temperature at which maximum shrinkage rate occurs for each composition, 

corresponds to the highest dissolution rate of SiaNt and AIN into the liquid phase. 

An extensive wetting study carried out by Hwang and Chen [172] revealed a 

significant difference between the physical and chemical affinity of AIN and Si3N4 to 

the oxide melt. AIN was found to exhibit faster reaction kinetics than Si3N4 at 

temperatures around 1420°C due a much lower contact angle with the oxide melt. 

Depending on the amount of liquid oxide phase and AIN present, liquid ‘trapping’ 

can occur in localised areas rich in AIN. Dissolution of Si3N4 and corresponding 

macroshrinkage is then delayed until the temperature is high enough to cause the 

redistribution of the liquid phase. This reasoning may be used to explain the slightly
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high secondary eutectic temperature of compositions IAIN and 2A1N compared to 
that for the SÎ3N4-A1 2 0 3 -Y2 0 3  system [172] and the delay in macroshinkage of 
composition 3A1N, richer in AIN.

The liquid forming abilities and wetting behaviour of the nitrides (Si3N4 + AIN) in 
these samples will also influence the a- to P-SiaNi phase transformation behaviour 

which occurs by solution/reprecipitation. The good liquid forming properties at 
temperatures >1400°C of the sample with composition IAIN is reflected in the 

higher percent of P-SijNt detected. The lower degree of transformation exhibited by 

2A1N supports the explanation given for its poorer densification behaviour, that is, 
this particular combination of sintering additives forms a low volume of liquid phase 
during sintering. The relatively high degree of transformation exhibited by 3A1N at 
lower temperatures corresponds to its liquid phase forming and densification 

behaviour. However, the %P-Si3N4 detected in samples sintered at temperatures 

>1500°C are slightly lower than expected from the densification results. Similar 
behaviour is seen for 4A1N, that is in relation to the other compositions, the degree of 

transformation at temperatures <1500°C is low, corresponding to the poorer liquid 
phase formation and densification (due to low AI2O3 content), but at higher 
temperatures the transformation is considerably lower although the density is 
relatively good. These observations correspond to the delay in macroshrinkage 
observed in 3A1N due to presence of increased amounts AIN in Y-Si-Al-O-N which 

leads to delayed dissolution of oc-SiîNt in the oxide liquid phase and thus 

precipitation of P-SÎ3N4 until a slightly higher temperature [172].

Figure 4.14(a)-(e) shows the densification and transformation after sintering at the 
given temperatures, suggesting that although transformation occurs concurrently with 
densification, they take place at different rates. That is, each sample composition 
within the Si3N4 + Y2O3 + AI2O3 + AIN series achieved maximum densification 

before the completion of the a  to P transformation. This is attributed to the 

formation at temperatures >1500°C of a sufficient volume of liquid phase and 

transport of this liquid by viscous flow and/or diffusion into the pores leading to 
densification (corresponding to the maximum densification rates observed at 
approximately 1500°C for compositions 1-3A1N, see Figure 4.13). Since the
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transformation of a- to p-Si3N4 takes place via solution of a-SiaN4 and 

reprecipitation of P-SiaNt, this mechanism can continue after densification is 

achieved.

To summarise, the densification results of a range of compositions in the AIN series 

selected show a distinct improvement over the standard SiaN* + YAG system. Within 

the AIN series, composition IAIN (lwt%AlN, 5 .5 wt%Al2 0 3) shows superior 

sinterability at each temperature. The intergranular phase formed in this sample 

composition is most probably near to the AI2O3 rich side of the SiaN4-Y2 0 3 .9 AlN tie 

line as studied by Bandyopadhyay et al [204], and the addition of 5.5wt% AI2O3 

being the optimum concentration for maximum densification. This composition thus 

appears to have the most potential as a matrix phase material for the pressureless 

sintering of a ceramic matrix composite.
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Temperature (°C)

(a)

3-

Temperature (°C)

(b)

Temperature (°C) 

(C)

Temperature (°C)

(d)

Figure 4.14(a-e)

Temperature (°C)

(e)

Densification (blue line, primary y-axis) and degree of 
transformation (red line, secondary y-axis) as a function of 
sintering temperature for composition 1-4A1N respectively.
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4.4.2.6. M icrostructural Analysis

The variation in the sintered microstructure of the sample with composition IAIN 

(lwt% AIN, 5.5wt% AI2O3) with temperature is illustrated using the series of 

micrographs in Figure 4.15 (a)-(c). After sintering at 1400°C the sample 

microstructure consists of a small population of isolated macro pores but is 

predominantly made up of uniformly distributed micro pores smaller in size than in 

the starting compact (approximately l|im). These micro pores are most likely 

remnants of the fine interparticle spacing in the green body, which have not been 

fully removed at this sintering temperature. On sintering at 1450°C, all the micro 

porosity has been filled by the increased volume of liquid phase formed at this 

temperature (as discussed in sub-section 4.4.2.5). A limited number of macro pores 

are still present which have in general developed a more spherical and slightly larger 

shape compared to the macro pores in the sample sintered at 1400°C. Further 

development of the microstructure is seen in the sample sintered at 1600°C. Small 

quantities of well-separated macro pores remain which again are slightly larger than 

those in the samples sintered at lower temperatures. The observed sequential filling 

of smaller pores first occurs because such pores have a high surface to volume ratio 

so that a given volume of liquid removes more solid/vapour interface. This follows 

the analysis by Shaw [83] and corresponds to the observations by Kwon and Yoon

[82], referred to in Section 2.3.3.3. Removal of larger pores requires an increased 

volume of liquid phase, which corresponds to the almost complete elimination of 

porosity after sintering at 1600°C. It should be noted that although the 

macro/globular pores in the present samples grow slightly with increasing 

temperature they remain relatively small in size (<l(lm).

The removal of porosity with temperature observed in the microstructure 

corresponds well with the calculated percent theoretical densities. The density

SEM Analysis
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increased from 90%TD to 97%TD to 99%TD after sintering at 1400°C, 1450°C and 

1600°C respectively.

secondary pores

(c) -  sintered at 1600°C
Figure 4.15 Variation of microstructure of sample IAIN sintered for 2hrs at the 

specified temperatures.

Density distribution is seen to be relatively uniform throughout the samples, apart 

from a porous region approximately 5(lm from the surface of the samples illustrated 

in Figure 4.16 (slightly out of focus), which is most likely a sintering edge-effect.

Changes in the morphology of the SisN* grains with sintering temperature are also 

observed. The observed deepening/darkening of grey colour of the bulk S i ^  matrix 

with increasing density is a real effect and accompanies increased densification 

[209]. Etching of the samples, which would show the Si^N* grains more clearly, 

proved difficult with the present material. However, the a —»P-SijN* transformation
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(equiaxed —> rod-like morphology) with temperature (as detected by XRD) can be 

seen to some extent in the samples sintered at 1400°C and 1450°C (Figure 4.15(a) 

and (b)). Although out of focus, due to the high magnification, the micrographs of 

the sample sintered at 1600°C (Figure 4.15(c)) and at a higher magnification in 

Figure 4.17) show the rod-like facetted prism shaped |3-Si3N4 grains.

Figure 4.16 Density gradient observed near the surface of sample IAIN sintered 
at 1600°C.

Figure 4.17 P-Si3N4 grains in sample IAIN sintered at 1600°C

As outlined in Section 3.5.3, back-scattered electron imaging (BSE) distinguishes 

between phases by elemental contrast where heavier elements appear brighter. EDX 

analysis (Figure 4.18) confirmed that the white phases observed in the present 

materials are yttrium rich. These secondary phases are present in fine quantities and
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materials are yttrium rich. These secondary phases are present in fine quantities and 

no clear pattern of distribution is observed. In the sample sintered at 1400°C the 

“white” secondary phase is most probably precipitates of YAG since XRD analysis 

(discussed previously in sub-section 4.4.2.5 and outlined in Table 4.7) detected 

YAG in this sample. No crystalline phases were detected in the samples sintered at 

1450°C and 1600°C suggesting that in these cases the “white” secondary phases 

observed in the SEM images are yttrium-rich glassy phases.

Figure 4.18 E D X  trace  for a sp ot a n a ly sis  of the lig h t area o b serv ed  in 
m icrograph  F igu re 4 .1 5 (c ) .

The effect of sintering additive composition on the microstructure after sintering at 

1600°C is illustrated in Figure 4.19 (a) to (d). The variation in the AIN and AI2O3 

content between samples IAIN, 2A1N, 3AIN and 4A1N does not have a significant 

effect on the microstructural development. A limited quantity of closed porosity is 

observed in each sample, the development of p-SiîNt grains can be seen and the 

content and distribution of an yttrium-rich phase is very similar in each sample. The 

improved densification behaviour of the compositions within the SÎ3N4 + Y2O3 + 

AI2O3 + AIN series compared with the reference material (Si^Nj +YAG) is 

confirmed by the large quantities of closed porosity still present in the reference 

material after sintering at 1600°C (Figure 4.19 (d)).
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Figure 4.19 V aria tion  o f  m icrostru ctu re w ith  sa m p le  co m p o sit io n  after s in ter in g  
for 2 h ou rs at 1600°C  (g r e y -S i3N 4; w h ite: Y -r ich  p h ase, b la ck -p o res).

TEM analysis

The volume of intergranular “sinter” phase proved generally too low for detection by 

conventional bulk XRD measurement. An attempt was made using one sample, 

IAIN sintered at 1500°C, to establish grain boundary phase composition and 

microstructure using Transmission Electron Microscopy (TEM). In situ EDX 

analysis was performed to determine the composition of the secondary phases.

Typical bright field images of the sample are shown in Figure 4.20. The 

microstructure formed in this sample is seen to contain globular/rounded oc-SiaN4 

grains and hexagonal/prismatic P-SbN4 grains, some porosity and an intergranular 

phase. Selected area diffraction of the intergranular (secondary) phase around the 

Si3N4 grains showed no diffraction pattern suggesting that this is a non-crystalline
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(glassy) phase. Moreover, the contrast of the intergranular phase did not alter during 

sample tilting that is when a dark field image was created (Figure 4.21). These 

observations confirm the XRD analysis that the intergranular phase is completely 

glassy. Semi-quantitative EDX analysis revealed that the glassy phase contains N, 

O, Al, Si, and Y (29.8, 41.9, 6.5, 14.2 and 7.4 atomic % respectively). This 

composition was consistent (±2%) for three selected areas (Figure 4.22) suggesting 

that the composition of the intergranular phase is homogeneous.

Intergranular
phase

x60,000

Si3N4

Figure 4.20 TEM bright field images of sample IAIN after sintering at 1500°C.
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Si3N4grains
Intergranular

phase

Figure 4.21 TEM dark field images of sample IAIN after sintering at 1500°C
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Figure 4.22 Glassy regions (X) selected for EDX analysis.
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4.4.3. Si3N4 + Y20 3 + Al20 3 + CaZr03 Series

4.4.3.1. D ensification  B ehaviour

The variation in density (expressed as percentage theoretical density, %TD) of the 

sintered samples with increasing sintering temperature is illustrated in Figure 4.23. 

Samples with constant sintering additive combinations increased in density with 

increased sintering temperature, for example, the density of sample 3.2CaZ (4.8wt% 

CaZrC>3, 2.6wt% Y2O3, 2.6wt% AI2O3) increases from 73.3%TD after sintering at 

1400°C to 96.97%TD at 1700°C. Samples with the compositions 4.8wt% CaZr0 3  

and 6.4wt% CaZrÛ3 are seen to reach higher densities than the reference material 

after sintering at temperatures <1600°C. The addition of calcium zirconate to the Si- 

Y-Al-O-N system is seen to significantly enhance densification at lower sintering 

temperatures (<1600°C) and in particular the sample with composition 3.2CaZ, 

densifies better than the reference material at each sintering temperature, reaching 

close to full density (>95%TD) at 50°C lower than the reference material.

Figure 4.24 illustrates in more detail the densification results of the 3.2-6.4wt% 

CaZrC>3 compositions between 1550°C and 1700°C. At all temperatures above 

1600°C, the 3.2CaZ composition densifies best, producing a >98%TD. The 4.8CaZ 

sample also performs well, reaching close to full density after sintering at 1600°C, 

obtaining maximum density of 97%TD after sintering at 1700°C. The densification 

of the sample with composition 6.4wt% CaZ (6.4wt% CaZrC>3, 1.8wt% Y2O3, 

1.8wt% AI2O3) is comparatively good at 1550°C, but achieves lower density after 

sintering at higher temperatures.
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Figure 4.23 Variation of %TD with temperature for each composition in the CaZ 
series and the reference material.

99 t—

£  96u> c 0) a
n o
aJ
oa>■C

93

90 -

87
1500 1550 1600 1650

Temperature (°C)

1700 1750

Figure 4.24 Variation of %TD with temperature (>1550°C) for each composition 
in the CaZ series.
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As with the other compositions studied, the densification follows the three step 

mechanism of rearrangement, solution-diffusion-reprecipitation and coalescence 

[48], so that the liquid properties of the sintering additive phase will be the factor 

primarily controlling each mechanism step of the densification process, and 

ultimately the final densification achieved (discussed in Section 2.3). The present 

series of compositions is complex, with four sintering additives employed; AI2O3, 

Y2O3, and CaZrC>3 (CaO and &O2). However, since the ratio of AI2O3 and Y2O3 

added is kept constant at lwt%:lwt%, the sintering mechanisms and percent 

theoretical density obtained can be considered to be dependent on the content of the 

novel sintering additive CaZrÛ3 with respect to the content of AI2O3 and Y2O3. 

Figure 4.25 illustrates the variation of sintered %TD with the content of each 

sintering additive over the range of sintering temperatures studied and clearly shows 

the beneficial effect of adding CaZrC>3 on the densification behaviour of the Y-Si-Al- 

O-N system. For example, the reference material (standard YAG additive 

combination) densifies little after sintering at 1400°C, reaching just 57%TD, whereas 

the sample with composition 3.2CaZ (3.2wt% CaZr0 3  + 3.4wt% AI2O3 + 3.4wt% 

Y2O3) reached 6 6 %TD, while at 1500°C an even more significant improvement was 

observed, with reference material reaching 70%TD and 3.2CaZ reaching 83%TD. 

Increasing the CaZrC>3 content to 4.8wt% results in a minor improvement in 

densification at 1400°C and 1450°C reaching 6 8 %TD and 73%TD respectively, in 

comparison to 6 6 %TD and 71%TD achieved by 3.2CaZ. However, above 1450°C, 

the sample 3.2CaZ exhibits better sintering behaviour. A further increase in the 

CaZrC>3 content is not seen to improve the densification behaviour as the sample with 

highest CaZrC>3 content (6.4wt%) densifies to the same extent as 3.2CaZ at 1400°C 

and 1450°C, but exhibits poorer densification at higher temperatures.
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3-4 2.6 1.8 wto/oAkCh/YzOs

Figure 4.25 Influence of sintering additive content on the final density after 
sintering for 2 hrs at the given temperatures.

4.4.3.2. M ass L o ss  M easurem en ts

Table 4.8 shows the mass losses observed for each composition in the Si3N4-Y2C>3- 

Al2 0 3 -CaZr0 3  series and the reference material. These values observed are very low 

compared to those reported for similar Si3N4-based ceramics (typically 3-6%) 

[199][201]. Since the experimental procedure used in sintering this series of 

compositions is identical to that used for the Si3N4-Y2 0 3 -Al2 0 3 -AlN series, the 

observed low mass losses can be attributed similarly to:

• The low sintering temperatures used in this study

• The application of a relatively high pressure

• The use of graphite pieces to compact the sinter powder bed around the sample

As before, these factors help minimise the decomposition of SÎ3N4, and reduce the 

volatilisation of gaseous products from the sample surface [180] [203] and again, it
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may be that the densification kinetics for the present composition are advantageously 

rapid [2 0 2 ].

Sam ple

C om position

L abel

% M ass L oss

S in tering

T em p eratu re

(°C)

1400 1450 1500 1550 1600 1650 1700

3.2CaZ 0.5 0.4 0 .53 0.5 0.3 0.6 0.2

4.8CaZ 0.4 0.13 0.56 0.5 0.2 0.3 0.2

6.4CaZ 0.1 0.2 0 .4 0.4 0.2 0 .2 0.3

REF 0.4 0 .32 0.43 0.5 0.55 0.5 -

Table 4.8 M easured  % m ass lo s s e s  for  c o m p o sit io n s  in  th e  C aZ ser ies  and the  
re feren ce  m ateria l s in tered  at the g iv e n  tem peratures.

4.4.3.3. Shrinkage R esu lts

A set of dilatometry experiments were carried out for each composition in the SÎ3N4- 

Y2 0 3 -Al2 0 3 -CaZr0 3  series to further investigate and help determine the effect of 

varying the individual additive content on the densification mechanisms and 

behaviour of these compositions. Rectangular green bars of samples of each 

composition were heated to 1600°C at a rate of 5°C/min and held at temperature for 

up to 8  hours (see Section 3.4.3 for details). Figure 4.26 illustrates the resultant 

dilatant curves, which confirm the sintering results obtained; that is, sample 3.2CaZ 

reaches the highest shrinkage of 15.89%, slightly less shrinkage occurred in sample 

4.8CaZ and the sample with highest CaZrCb content, 6.4CaZ shows considerably 

lower shrinkage of 14.15%.

Table 4.9 outlines the influence of hold time at temperature on resultant percent 

shrinkage values. Significant increases in shrinkage (approximately 4.5%) are seen 

to occur during the first 2 hours at temperature. For each composition, prolonging
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the holding time at temperature resulted in very low increases in shrinkage of 

approximately 0.16%. These results confirm densification results in preliminary 

experiments, outlined in the introduction to this chapter, that a hold time of 2  hours is 

sufficient for good densification.

0)U)m
c

</)
vOo'*

6 9

Time (Hrs)

1600

oo
1 2 0 0  a)

3 -------- 3.2CaZ
■ g 4.8CaZ

Î K ^ “ * 6 -4 C a Z  
800 q  Temp (°C)

Figure 4.26 D e p e n d e n c e  o f  d yn am ic sh r in k a g e  on  tem perature and tim e  for  
c o m p o sitio n s  3 .2 -6 .4 C a Z .

Sam ple L abel 

C om position

% Shrinkage

H old  T im e at 

T em p eratu re  

(H rs)

0 2 4 6 8

3.2C aZ 9.99 15.71 15.85 15.88 15.89

4 .8C aZ 11.72 15.32 15.44 15.46 15.47

6 .4C aZ 8.44 14 14.12 14.15 14.15

Table 4.9 Percent shrinkage values after hold tim e at temperature for the CaZ series.
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4.4.3A. a- to fJ-Si3N4 Transformation

Table 4.10 outlines the %P~Si3N4 detected in each composition within the S13N4 + 

Y2O3 + AI2O3 + CaZrOa series after sintering at the given temperature. Analysis of 
samples sintered at lower temperatures was focussed on the sample with composition 
3.2CaZ (3.2wt% CaZrC>3 + 3.4wt% Y2O3 + 3.4wt% AI2O3) as this composition 
exhibited superior densification. As expected the degree of transformation increases 
as the sintering temperature increases, for example, the sample with composition 

3.2CaZ consists of 0% P-SÎ3N4 after sintering at 1400°C and is completely 

transformed to P-S13N4 after sintering at 1700°C, while in the sample with 

composition 4.8CaZ, 76.52%P-SÎ3N4 was measured in the sample sintered at 1600°C 
and complete transformation was observed in the sample sintered in 1700°C. This 

behaviour corresponds to the thermodynamic instability of the a-phase which at 

temperatures above 1400°C transforms to the more stable P-phase [106].

The influence of the sintering additive composition, that is the CaZrOa/A^OiA^Oa 
content, on the transformation behaviour is illustrated in Figure 4.27. The addition 
of increased amounts of CaZrC>3 to the Y-Si-Al-O-N system clearly encourages the a  

to P phase transformation during sintering at 1600°C and 1650°C. For example, after 

sintering at 1600°C 71.43% P-SÎ3N4 was measured in sample 3.2CaZ compared to 

76.52% in the sample 4.8CaZ and 80.45% in the sample 6.4CaZ. Similar increases 

in the % P-SÎ3N4 detected were observed after sintering at 1650°C. Each 

composition had completely transformed after sintering at temperatures >1700°C.

Although the XRD results shown in Figure 4.27 are limited, comparing this figure 
and Figure 4.25 (Influence of CaZrC>3 and AI2O3/Y2O3 content on the final density) 
suggests that factors influencing densification at lower temperatures encourage the 
retention of the a-Si3N4 structure in the sample 3.2CaZ. At higher temperatures the 

(X- to p-Si3N4 transformation is seen to be concurrent with densification.
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Sample

Composition

Label

Temperature (°C)

1400 1450 1500 1550 1600 1650 1700 1750

3.2CaZ 0 30.77 52.3 70.54 71.43 75 100 100

4.8CaZ - - - - 76.52 80.33 100 -

6.4CaZ - - - - 80.45 85.4 100 -

Table 4.10 %P-Si3N4 detected using XRD in materials densified at the specified 
temperatures.

3.4 2.6 1.8 W t% A I20 3 ^ 2 0 3

Figure 4.27 Influence of CaZr03 and Y20 3/A120 3 content on the %P-Si3N4 
detected sintering for 2 hrs at the given temperatures.

4.4.3.5. D iscu ssio n  on R eaction  S eq u e n c e s  during Sintering

In the following discussion, CaO and Zr02 (added as the novel sintering additive 

CaZrC^) are considered to behave as separate entities during the densification
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process since the compound CaZrC>3 was not detected by XRD analysis after 

sintering at any of the temperatures (Table 4.11).

The influence of the sintering additive combinations on the sintering behaviour can 

be seen in Figure 4.28, which illustrates the variation in the shrinkage rate observed 

for each composition. The start of measurable shrinkage occurs at approximately 

1090°C for each composition, but the total shrinkage at this temperature is minimal. 

Significant shrinkage begins above 1200°C and continues up to maximum 

temperature. Samples 3.2CaZ and 4.8CaZ exhibit almost identical shrinkage 

behaviour, while sample 6.4CaZ has a lower shrinkage rate at temperatures greater 

than 1400°C.

T em pera tu re  (°C) Tem perature (°C)

(a) (b)

Figure 4.28 Variation of shrinkage rate with temperature in the temperature 
range (a) 1000-1450°C and (b) 1000-1600°C.

The onset of shrinkage at 1050°C-1100°C may be attributed to the formation of a 

ternary eutectic oxide melt. The lowest eutectic in the present series, Si3N4-Y2C>3- 

Al2 0 3 -CaZr0 3 , is formed when Si0 2 , ever present on the surface of Si3N4 powders, 

reacts with AI2O3 and CaO. Since CaO and AI2O3 are present in much larger 

quantities than the very low concentration of SiC>2, the volume of liquid formed at 

this temperature is independent of starting composition. According to the CaO-SiCh-
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AI2O3 phase diagram the lowest eutectic temperature is 1170°C [210], slightly higher 

than that observed here. The principal densification mechanism at this stage is the 

redistribution of liquid phase, resulting in slightly closer packing (via rearrangement) 

of the powder particles. However this step contributes little to overall 

shrinkage/densification since as mentioned above, the amount of eutectic liquid 

oxide formed is limited by the amount of Si0 2  present in the starting compositions, 

estimated to be no more than lwt%.

Significant shrinkage is seen to begin as the temperature increases above 1200°C. 

This is most probably due to the formation of larger amounts of the Ca0 -Si0 2 -Al2 0 3  

oxide melt, encouraging further particle rearrangement leading to enhanced close 

packing of the powder particles. The observed shrinkage at these temperatures 

corresponds well to the work carried out by Van Rutten et al [211] on Ca-ct- 

SiAlONs, who reported the onset of shrinkage at 1225°C, rising to measurable 

shrinkage at 1350°C.

Also encouraging shrinkage, is the formation of the Y2 0 3 -Si0 2 -Al20 3  ternary 

eutectic oxide melt at approximately 1350°C [205]. The amount of liquid phase 

increases further at higher temperatures because the dissolution of nitrogen (from 

Si3N4) lowers the eutectic temperature of the system [212]. The shrinkage rate then 

continuously increases, reaching a maximum at the maximum temperature, 1600°C.

Working with bulk Ca-a-sialon phases, which may resemble the grain boundary 

phases in the present material, Van Rutten [211] analysed in detail, the sequential 

solution of crystalline phases into the eutectic melt, between 1300 and 1600°C. 

While the crystalline phases present in the current materials are too small to detect 

using XRD (Table 4.11), the shape of the shrinkage rate curves is compatible with 

his analysis. Accordingly, the significant increase observed in the present study 

between temperatures 1300-1350°C corresponds to the formation of significant 

quantities of liquid phase [211]. Van Rutten estimates that the solution of SisN4 

begins at 1450°C which is consistent with the distinct acceleration observed in 

Figure 4.28.
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It is speculated that in the present systems zirconia plays a limited role in the 

densification behaviour, particularly during sintering at lower temperatures. 

Although the solubility of zirconia at low temperatures in the liquid phases formed in 

the present materials is not known, it is expected that the solubility in pure silicate 

liquids is low, because, as pointed out earlier, zirconia can be used as a nucleating 

agent in silicate glass systems [175] [176]. Also the lowest eutectic reported within 

the present system is most probably the ternary Al20 3 -Si0 2-Zr0 2 eutectic at 1700- 

1710°C [213]. This is reflected in the XRD analysis results outlined in Table 4.11, 

where yttria-stabilised-zirconia and tetragonal zirconia were detected in sample 

3.2CaZ after sintering at lower temperatures. At higher sintering temperatures 

zirconia may participate in liquid phase formation due to the formation of the 

eutectic above and a certain amount of zirconia may dissolve in the liquid phase. At 

1700°C, Cheng and Thompson [176] observed that the solubility of Zr02 in Y2O3- 

Al20 3-Si02 liquids was around 10wt%, but that the dissolved Zr02 precipitated out 

of solution during cooling from sintering temperature. During the densification of a 

Si3N4/Zr0 2 composite ceramic, Falk and Holmstrom [214] also observed the solution 

and precipitation of Zr02. The XRD results in the present study are consistent with 

these observations, as Zr02 was observed in all sample compositions after sintering 

at higher temperatures.

As outlined in Table 4.11 the present materials contained only tetragonal zirconia. 

This may be due to the size and composition of the zirconia grains that allowed 

retention of the high temperature form by mechanical constraints enforced by the 

surrounding matrix [174]. Although not detected by XRD, it is also certainly 

possible in the present systems that the yttria and/or calcia present has been 

incorporated into the Zr02 grains during densification contributing to the 

stabilisation of the tetragonal phase [215].
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S am ple

C om position

L abel

T em perature (°C)

1400 1450 1500 1550 1600 1650 1700 1750

3.2C aZ Z r02 Z r02 Z r02 Z r02 Zr02 Zr02 Zr02/ZrN

CaSiAlON

ZrOz/ZrN

CaSiAlON

4.8C aZ Zr02 Zr02 Zr02/ZrN

CaSiAlON

Zr02/ZrN

CaSiAlON

6.4C aZ Zr02 Z r02 Zr02/ZrN

CaSiAlON

Zr02/ZrN

CaSiAlON

Table 4.11 Crystalline phases detected in the selected materials after sintering 
at the given temperatures.

Zr02/ZrN -  ZrC>2-3xaNx; CaSiAlON - Ca6Al2Si2OioN2 phases.

As mentioned earlier, the XRD results are limited for samples 4.8CaZ and 6.4CaZ 

however, some correlation between the liquid forming abilities and wetting 

behaviour of Si3N4 and the a- to (3-Si3N4 phase transformation behaviour are made. 

The good liquid forming properties of the sample with composition 3.2CaZ at 

temperatures >1550°C (resulting in good densification) corresponds to a lower 

degree of transformation, compared to samples 4.8CaZ and 6.4CaZ. This behaviour 

corresponds well with the hypothesis that the intergranular phases in the present 

materials are similar to the bulk Ca-a-sialon studied by Van Rutten et al. [211]. It is 

well documented that these materials have excellent liquid phase forming properties, 

and that CaO stabilises the a-Si3N4 structure [113][216][217]. It is thus not 

unreasonable to speculate that the sample with composition 3.2CaZ encourages the 

formation of an increased amount of these sialons compared to the samples with 

compositions 4.8CaZ and 6.4, which exhibit higher degrees of transformation. The 

complete transformation to P-SisN4 observed in all sample compositions after 

sintering at temperatures >1650°C suggests that the possible Ca-a-sialons formed at 

lower temperatures redissolve into the liquid phase and reprecipitate as (3-Si3N4.
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To summarise, an improvement in densification behaviour compared to the standard 

SiaN4 + YAG system was observed in the range of compositions in the CaZ series 

selected. The samples with composition 3.2CaZ (3.2wt% CaZrOa + 3.4wt% Y2O3 + 

3.4wt% AI2O3) exhibited superior densification over the compositions 4.8CaZ and 

6.4CaZ. This is most likely due to the beneficial effect of the presence of CaO 

(CaZr03) in forming a low temperature melting eutectic and the presence of 

sufficient alumina forming large of amounts of liquid phase at each temperature. 

The intergranular phase formed in this composition probably resembles the bulk Ca- 

a- sialons studied by Van Rutten et al [211], Also the densification behaviour of this 

composition is probably enhanced by the alumina and yttria content in sample 

3.2CaZ, which is close to that reported by Itturiza [199] (5.5wt% AI2O3, 5.5wt% 

Y2O3) as the optimum for densification in the Si3N4-Y2 0 3 -Al2C>3 system. 

Composition 3.2CaZ thus seems to be the best candidate as a matrix phase material 

for the pressureless sintering of a ceramic matrix composite.

4.4.3.6. M icrostructural A n a lysis  

SEM ANALYSIS

Figure 4.29 (a)-(h) illustrates the variation in sintered microstructure of the sample 

with composition 3.2CaZ (3.2wt% CaZr0 3 , 3.4wt% AI2O3, 3 .4 wt%Y2 0 3) with 

sintering temperature. After sintering at 1450°C a high degree of both micro and 

macro porosity is observed in the sample microstructure, which reflects the low 

percent theoretical density achieved after sintering at this temperature (73.2%TD), 

Figure 4.29 (a). Although at a lower magnification, the filling of micro porosity in 

the sample after sintering at 1600°C, can be seen in Figure 4.29 (b), corresponding to 

the larger amount of liquid phase formed at this temperature (as discussed in the sub­

section 4.4.3.5). The microstructure includes a population of randomly distributed 

spherical macro pores. Further development of micro structure is seen in the sample 

sintered at 1700°C (Figure 4.29 (d)). Reduced quantities of macro pores remain 

which are well-separated and are slightly larger than those in the samples sintered at
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lower temperatures. Although these spherical macro pores have grown slightly, their 

average size remains relatively small < l|xm. Complete removal of porosity is seen 

in the sample sintered at 1750°C (Figure 4.29 (e)). As with the AIN series, discussed 

in Section 4.4.2.6, the sequential removal of smaller pores in the microstructure of 

the present material occurs at lower temperatures also follows the analysis by Shaw

[83] and corresponds to the observations by Kwon and Yoon [8 6 ]. Removal of 

larger pores requires an increased volume of liquid phase, which corresponds to the 

almost complete elimination of porosity after sintering at 1600°C and full 

densification after sintering at 1750°C.

The observed removal of porosity with temperature in the microstructure 

corresponds well with the calculated percent theoretical densities. The density 

increased from 71%TD to 97.9%TD to 98%TD to 99%TD after sintering at 1450°C, 

1600°C, 1700°C, and 1750°C respectively.

No density variation through the samples was observed.

The development of the morphology of the SiaNi grains with sintering temperature is 

also observed. The a —»P-SiiNi transformation with temperature (as detected by 

XRD) can be seen by comparing Figure 4.29 (a), (c) and (e) (although slightly out of 

focus, due to the high magnification used) which illustrate the microstructure of the 

samples sintered at 1450°C, 1600°C and 1750°C respectively. After sintering at 

1450°C no prism shaped P~Si3N4 grains are visible, corresponding with the XRD 

results (0%P-Si3N4 detected). The development of rod-like, facetted prism shaped p- 

SiaN4 grains is apparent in the sample sintered at 1600°C (71% p-SisN* detected 

using XRD) and the microstructure of the sample sintered at 1750°C shows P-Si3N4 

grains.
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(a) -  s in tered  at 1450°C

(c) - 1600°C -high m agnification

(b) -  sin tered  at 1600°C

(d) - sin tered  at 1700°C

(e) - 1750°C - centre (f) - 1750°C -  close  to surface
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(g) 1750°C -  surface scale (h) 1450°C -  close to surface

Figure 4.29 (a-h) V aria tion  o f  m icrostru ctu re  o f  sa m p le  3 .2 C a Z  sin tered  for
2hrs at the sp e c if ie d  tem peratures. (g r e y -S i3N 4; w h ite -Y /Z r-  
r ich  phase; b la ck -p o res)

As outlined in Section 3.5.3, back-scattered electron imaging (BSE) distinguishes 

between phases by elemental contrast where heavier elements appear brighter. In 

each sample composition examined using SEM, two possibly different secondary 

phases were formed. One has a light grey colour, and is present in fine quantities 

while the other is ‘brighter’ and is present in discrete particles (resembling 

precipitates). EDX analysis also suggested that the secondary phases observed in the 

present materials have different chemical compositions. Although the peaks for 

zirconium and yttrium lie very close together, the brighter phase is richer in 

zirconium (zirconium has a heavier atomic weight than yttrium), thus most likely 

corresponds to the Zr0 2  detected using XRD. No other crystalline phases were 

detected in the samples sintered at 1450°C and 1600°C suggesting that in these cases 

the “light grey” secondary phases observed in the SEM images are yttrium-rich 

glassy phases. Although traces of a calcium sialon were detected in the samples 

sintered at 1700°C and 1750°C, EDX analysis of the light grey phase detected 

significant quantities of yttrium, so it is most probable that the light grey phase 

observed is an yttrium-rich glass similar to that in the aforementioned samples. Both 

types of secondary phases are uniformly distributed throughout the samples sintered 

at 1450°C and 1600°C. In the samples sintered at 1700°C and 1750°C, a distinct
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increase in the concentration of the bright secondary phase at the surface was 

observed (Figure 4.31(f) and (g)), compared to for example, the sample 1450°C 

(Figure 4.31(h)). This phenomenon is discussed with respect to observations made 

using optical microscopy.

Although slightly poor in quality, the effect of sintering additive composition on the 

microstructure after sintering at 1700°C can be seen by comparing Figure 4.29 (d) 

and Figure 4.30 (a) and (b). The variation in the sintering additive content between 

samples 3.2CaZ, 4.8CaZ and 6.4CaZ does not have a significant effect on the 

microstructural development. The development of p-Si3N4 grains can be seen to 

some extent and the content and distribution of both secondary phases is very similar 

in each sample. The slightly superior densification behaviour of 3.2CaZ at this 

temperature is confirmed as an increasing degree of porosity is observed going from 

3.2CaZ to 4.8CaZ to 6.4CaZ.

(a) 4.8CaZ
Figure 4.30 Variation of microstructure with sample composition after sintering 

for 2 hours at 1700°C.

OPTICAL MICROSCOPY

Differentiating between the two types of secondary phases observed using SEM was 

easier using an oil immersion lens on an optical microscope, as the Zr-rich phase has 

a distinct orange/brown colour, illustrates a series of micrographs of the 3.2CaZ 

materials sintered at temperatures >1600°C.

(b) 6.4CaZ
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(c) Sintered at 1700°C - edge

(b) Sintered at 1700°C -  centre

(d) Sintered at 1750°C -  centre

(e) Sintered at 1750°C - edge
Figure4,31 Variation of microstructure of sample 3.2CaZ sintered lor 2hrs at the 

specified temperatures.

As mentioned earlier (Section 4.4,3,5), during the sintering process, CaO dissociates 

from CaZrO? at approximately 11?0°C, as the CaO forms a ternary eutectic with 

AI2O3 and Si02. Zr02 is then released at the site of the original particle. Reference 

1176] suggests that the solubility of Zr02 in a Y20 3-Si02-Al20 j liquid increases with 

temperature to approximately 10 wt% at 1600"C, which is far above the nominal Zr02



concentration in the present material. Also referenced is the tendency of Zr02 to 

promote nucleation in similar glass systems, so that its solubility is assumed to 

approach zero at lower temperatures [175][ 177]. The current range of 

microstructures provides further indications of the behaviour of ZrC>2 during the 

sintering of the sample with composition 3.2CaZ, sintered at temperatures from 

1600°C to 1750°C for two hours in a nitrogen atmosphere.

After sintering at 1600°C, the Zr-rich phase appears as small (approximately l|im) 

discrete precipitates distributed at approximately 10 0 |im distances from each other. 

The precipitates are all roughly of the same size and are uniformly distributed 

throughout the structure, and are clearly not coherent with the underlying matrix of 

the light grey Si3N4 matrix and white coloured yttrium-rich intergranular phase. 

There is no indication of further reaction with the surrounding constituents, either 

solid, liquid or gaseous, and no apparent coarsening or segregation to the edges of 

the samples. Although no nitride species was detected using XRD, it is possible that 

nitrogen has entered the ZrC>2 structure forming an oxynitride compound, as was 

possibly detected in the samples sintered at higher temperatures (Table 4.11). The 

volume fraction of these precipitates within the sample is very low (<lvol%) and 

does not account for the original concentration of Zr added to the starting materials 

in the form of CaZrC>3.

After sintering at 1650°C, the distribution of the Zr-rich phase is not significantly 

different. The particles seem to contain a higher proportion of the black granular 

species than observed in the sample sintered at 1600°C, but apart from this, the 

morphology of the samples is not noticeably different.

Sintering at 1700°C introduces significant changes to the sample morphology. All of 

the Zr-containing particles are considerably larger, approximately 3-5|lm in 

diameter, and seem to contain two distinct compounds, nominally; orange coloured 

single crystals, normally associated with a nitride species, and a small black granular 

precipitate (possibly oxide). The general interparticle spacing, however, is similar to 

that observed in the 1600°C and 1650°C sintered material, so that the overall volume 

fraction of the discrete Zr-precipitates has increased three-fold. Concurrently, the
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SiaN4 bulk material has darkened. At the surface a Zr-rich layer is seen to have 

formed, and a subscale area depleted in orange precipitates is observed. These 

observations correspond with the XRD data (Table 4.11), as ZrCh and a Zr-rich 

compound were detected in the surface of this sample. It was difficult, however, to 

determine the exact composition of this Zr-rich phase. The X-ray patterns were 

slightly shifted from those of ZrN, which may be caused by the presence of oxygen 

in the lattice. This Zr-rich compound may be ZrN or a Zr-oxynitride (ZrC^xNtx/s) 

formed by direct nitridation of Zr0 2  [164], at the surface and with amounts, below 

XRD detection level, formed by possible reaction with Si3N4 towards the centre.

After sintering at 1750°C, the sample’s morphology exhibits the same development 

trends, but are even more pronounced. The Zr-precipitates are well-facetted and 

uniformly orange in colour. However, the most significant changes are seen in the 

surface areas. A distinct surface scale of orange crystals has formed over an 

extensive subscale zone of some 1 0 0 |im of matrix, which is totally depleted in 

orange precipitates. This is indicative of the development of a composition gradient 

within the material, by the reaction of a Zr-species with gaseous N2 from the external 

sinter gas, and subsequent diffusion of the mobile dissolved Zr-compound down the 

concentration gradient of the depleted surface layer. Also, within this zone the bulk 

Si3N4 phase retains its light grey colour.

Thus, for this particular sample composition and sintering conditions, the material 

stability changes at approximately 1650°C. At 1600°C, ZrC>2 released after 

decomposition of CaZrC>3, appears to dissolve in the local liquid phases, remain in 

solution and to reprecipitate partially on cooling as a mixed nitride and oxide. The 

low precipitate volume fraction observed in the sample sintered at 1600°C, suggests 

that the majority of Zr remains in the bulk phase. The high mobility of the Zr-phase 

seen in the large subscale depleted zone of the 1700°C sintered material indicates that 

the dissolved species are well distributed in the 1600°C and 1650°C sintered material. 

However, here the precipitates are invariably small and well distributed with no 

indication of segregation and coarsening so that they are most probably precipitated 

during the final cooling stage.
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After sintering at temperatures >1700°C, a significant change in the bulk Si3N4 

matrix remote from the surface zone coincides with a general formation of more 

coarse Zr-O-N precipitate. The requirement for increased free nitrogen suggests that 

the observed colour change in Si3N4 is associated with a change in its stoichometry 

(possibly the start of decomposition), releasing nitrogen for reaction with the Zr- 

phase. This speculation is supported by the retention of the normal Si3N4 light grey 

morphology in the high nitrogen content zone of the subscale region, which will 

inhibit decomposition. Concurrently, reaction between the dissolved Zr-phase and 

external N2 is favoured, resulting in the formation of large amounts of a Zr-O-N scale 

and segregation of the mobile Zr-phase to the surface, as occurs in functionally 

gradient materials.

Thus there appears to be significant dissolution of Zr02 into the liquid phase at 

temperatures >1700°C, which will have some effect on the sintering behaviour and 

crystallinity of the grain boundaries of the present material. However, of greatest 

importance in the present study is the sintering behaviour at lower temperatures, 

which is clearly independent of Zr0 2 .

TEM Analysis

To further examine the different characteristics observed using optical microscopy 

between the surface and the centre of the 3.2CaZ material sintered at 1750°C, 

Transmission Electron Microscopy (TEM) was carried out. Also in situ EDX 

analysis on five selected areas within each phase detected was carried out. Thin foil 

samples were prepared from a region as close to the sample surface as possible, and 

also from a region in the centre of the material.
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The microstructure of the Si3N4 grains in the surface and the centre was similar, 

consisting of predominantly prismatic/hexagonal P-S13N4 grains (Figure 4.32).

Figure 4.32 Overall microstructure observed in the CaZ sample.

However a difference in the nature of intergranular phases formed and their 

compositions was observed. In the foil taken from the material’s surface, a glassy 

phase and two types of crystalline intergranular (secondary) phases were detected. 

Comparing Figure 4.33 (a) and (b), which illustrate dark field and bright field images 

respectively, the glassy phase is that phase which has fixed contrast in both fields. 

Using semi-quantitative EDX analysis (Figure 4.34 illustrates an example area), the 

glassy phase was determined to be homogenous to within ± 1  atomic percent,

Intergranular
phase

p-Si3N4

containing N, O, Al, Si, Y, Ca, Zr (27.7, 40.2, 9.2, 14, 4.6, 3.3 and 1 atomic % 

respectively).

1 6 3



Figure 4.33 (a-b) Typical dark and bright field images observed in the region
close to the surface of the CaZ sample analysed.

One of the two types of crystalline phases was seen to be more dense and to have a 

irregular shape, and to be rich in zirconium (Figure 4.35 shows two examples of this 

phase). Its composition, in atomic percent (at%), was determined to contain within 

±1 atomic percent, 17at%N, 15at%0, 2.5at%Al, 9.7at%Si, l.lat%Y, lat%Ca and 

53.7at%Zr.
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Figure 4.35 E x a m p les o f  th e  Z r-rich  c r y sta llin e  p h a se  d etec ted  in  the reg io n  
c lo s e  to  th e  su rfa ce  o f  the C aZ  m aterial.

Figure 4.36 illustrates a typical area of the second, less dense, crystalline phase 

detected. This phase was determined to contain a significantly lower concentration 

of zirconium, just 0.2at% (compared to 53.7at% detected in the crystalline phase 

described above) and to consist also of N, O, Al, Si, Y, Ca (24, 44.3, 1.2, 14.5 12.8, 

and 3.1 atomic % respectively).

Figure 4.36 T y p ica l area o f  th e  se c o n d  ty p e  o f  c r y sta llin e  p h a se  d etec ted  in the  
reg io n  c lo s e  to  the su rfa ce  o f  the C aZ  m aterial.
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A glassy intergranular phase and only one crystalline phase were detected in the foil 

taken from the centre of the sample. The glassy phase was determined to contain N, 

O, Al, Si, Y, Ca, Zr (31.9, 37.8, 6.5, 15, 4.7, 3.4, and 0.6 atomic % respectively, 

homogeneous to within ±1 at%), Figure 4.37 sows an example of an area selected for 

EDX analysis.

Figure 4.37 E x a m p le  o f  th e  g la s sy  p h a se  (X ) d e tec ted  in  the cen tre  o f  th e  C aZ  
sam ple.

The crystalline phase detected was similar to the Zr-rich crystalline phase found in 

the surface, in that it had a composition with a high Zr concentration, had a high 

density and an irregular shape, which indeed was even more pronounced (Figure 

4.38). Its composition was determined to consist of 14.5at%N, 8.7at%0, lat%Al, 

7.3at%Si, 1.4at%Y, 1.4at%Ca and 65.9at%Zr.
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Figure 4.38 E xam p les o f  th e  irregular shaped , Z r-rich  cr y sta llin e  p h ases d etec ted  
in  th e  cen tre  o f  th e  C aZ  sam ple.
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4.5. Hardness

4.5.1. Introduction

Vickers Hardness (HV5) was calculated using the standard equation,

± 8 544F 4_5

where,

F = the indentation load (kg) 

d = the average indentation diagonal (mm)

Resulting hardness values are expressed in kgf/mm . 5-10 indentations were made 

for each specimen and the error of measurement was estimated in terms of standard 

deviation from the mean.

Section 2.5.1.1 outlines the factors that govern the hardness of these materials 

including grain size, porosity, amount of residual (X-Si3N4 present, and the load used. 

The effect of the load was removed by using a standard 5kg load for all tests and the 

variation of grain size between the samples is assumed to be minimal as discussed 

and illustrated in Section 4.4.2.6 and Section 4.4.3.6 . Therefore, apart from 

composition, the factors that may be responsible for variations in hardness in the 

present materials are the degree of densification and residual a -S i j^  content.

4.5.2. Si3N4 + Y20 3 + AI2O3 + AIN Series

Table 4.12 contains data on sample label, percentage theoretical density (%TD), 

phase content (% residual a-Si3N4, and crystalline phases) and Vickers hardness 

values under 5kg load (HV5) for samples tested from the Si3N4 + Y2O3 + AI2O3 +
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AIN series and the reference material. These particular samples of (0-4) AIN., were 

chosen as they have similar densities, in an attempt to minimise the influence of 

porosity on hardness (as outlined in Section 2.5.1.1), so that the effect of composition 

and residual a-Si3N4 could be observed. It is recognised that the sample of the 

reference material tested has a lower density than desired, however this was the only 

sample of this material remaining and is taken into consideration in the discussion of 

the results.

Sample
Composition

Label

%TD HV5 (standard 
deviation)

% Residual
(X-SÌ3N 4

(a/a+p).100

Crystalline Phases
(Trace amounts)

4A1N 98.3 1715.15 (43.43) 21 y 2o 3

3A1N 98.1 1557 (71.77) 5 y 20 3

2A1N 98.2 1451.65 (73.78) 0 -
IAIN 98.7 1633.76 (56.65) 0 -
REF 94 1495.56 (30.04) 14 YAG

Table 4.12 Percentage theoretical density (%TD), Vickers hardness, and XRD data for 
the tested materials.

Figure 4.39 illustrates the variation of hardness with sample composition for the 

Si3N4-Y2 0 3 -Al20 3 -AlN series of samples and the reference material. Within error 

limits the difference in hardness in the samples is not great. The plot does seem to 

suggest that, with the exception of the sample with composition 2A1N, the addition 

of AIN to the Si3N4-Y2 0 3-Al2 0 3 system slightly improves the hardness of the Si3N4 

material. For example, samples with compositions IAIN and 4A1N have a HV5 

value of 1634 and 1712 respectively, compared with a HV5 value of 1496 of the 

reference material. Also the hardness of the samples with compositions 0AIN and 

2A1N lie in the lower range of the hardness values measured within the 0-4A1N 

composition series.
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Figure 4.39 Variation of hardness with sample composition for samples in the 
Si3N4-Y2 0 3 -Al20 3 -AlN series and the reference material.

Figure 4.40 illustrates the variation of hardness with composition against the %TD 

of the samples. As expected, the slight variation in the %TDs of the 0-4A1N samples 

is not significant enough to directly influence their hardness values, Figure 4.2. As 

mentioned above, the reference sample tested had a lower density than desired for 

true comparison of hardness values and it can be seen in Figure 4.40, the high 

porosity of the reference material reduces it hardness value.

The influence of percentage residual (X-Si3N4 on the hardness of the materials is 

illustrated in Figure 4.41. A general trend of increasing hardness with percent 

residual a-SiaN4 is observed going from 2A1N, with 0% residual a-Si3N4 (HV5 = 

1451.65) to 4A1N, with the highest % residual oc-Si3N4 content, having the highest 

hardness; HV5 = 1715.15. One exception to this trend is the IAIN sample, which 

has a high hardness but with 0% residual a-Si3N4. Also the reference material has a 

high percentage of residual a-SisN* but low hardness.
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Figure 4.40 Influence of sample compositions on the resulting hardness and on 
the %TD for samples in the Si3N4-Y203-Al203-AlN series and the 
reference material.
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Figure 4.41 Influence of sample compositions on the resulting hardness and % 
residual a-Si3N4 for samples in the Si3N4-Y20 3-Al20 3-AlN series 
and the reference material.

171



An exact analysis of the Vickers hardness of complex materials, such as the Si3N4- 

based materials studied here is very difficult, as there is more than one contributing 

factor. The pronounced negative effect upon the hardness exerted by the presence of 

porosity, seen for the reference material, confirms the work carried out by many 

authors [140][218][219][220]. Since the sample has a high %residual a-Si3N4 

content but low hardness it is most likely that the porosity effect overrides the other 

influences on its hardness. Therefore, it is most probable, that if a sample of the 

reference material with a sintered density close to the %TD of 1-4A1N samples was 

tested, it would have improved hardness over the sample in this testing series and 

might lie in the same range as the hardness values for the 1-4A1N samples measured 

here. When the influence of porosity was removed for the samples within the Si3N4- 

Y2 0 3 -Al2 0 3-A1N series, the observed hardness values of samples with compositions 

2-4wt%AlN, are seen to be directly dependent on the percent residual a-Si3N4 

content. The high hardness of IAIN cannot be explained on this basis however, as it 

has 0% residual a-SisN*. It has just a slightly higher percentage theoretical density; 

~0.4% higher than the other compositions which may increase its hardness slightly 

but since the difference is so small, this suggests that its chemical composition must 

be influencing its hardness. In Section 4.4.2.5 it was suggested that the excellent 

sinterability of the composition IAIN was due to sintering additive phase 

combination resulting in the formation of a-, [3-, or a/p-sialons as the intergranular 

phase. The high hardness of IAIN, supports this speculation since sialons, in 

particular, a-sialons are known to have higher hardness than bulk Si?N4 materials 

[140].

4.5.3. Si3N4 + Y20 3 + Al20 3 + CaZr03 Series

Data on sample label, percentage theoretical density (%TD), phase content 

(%residual a-Si3N4 and crystalline phases) and Vickers hardness values under a 5kg 

load (HV5) with the percentage coefficient of variation, for samples tested from the 

Si3N4 + Y2O3 + AI2O3 +CaZr03 series, is listed in Table 4.13. As with the materials 

tested from the SisNt + Y2O3 + A12C>3 +A1N series, these specific samples from the 

CaZ series were tested as they were samples available (those remaining after
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microstructural analysis) with densities closest to each other. This should help to 

minimise the influence of porosity on the measured hardness, and thus the effect of 

composition and residual a-SiaN4 should be more easily observed. Again it is 

recognised that the reference material sample tested has a lower density than desired 

which is taken into account in the discussion of the results.

Sam ple

C om position

L abel

%TD (H V 5) (standard 

deviation)

% R esidual 

a -S i3N 4 

(a/a+P)xlO O

C rysta lline Phases

(T race Am ounts)

3.2CaZ 97.1 1468.17 (47.41) 29.47 Z r 0 2(t)

4.8CaZ 96 1346.51 (32.95) 23.48 Z r 0 2(t)

6.4CaZ 96 1338.41 (35.41) 14.6 Z r 0 2(t)

REF 94 1495.56 (30.04) 14 Y A G

Table 4.13 Percentage theoretical density (% TD), Vickers hardness, and X R D  data for 
the tested materials.

The variation of hardness with sample composition for the Si3N4 + Y2O3 + AI2O3 

+CaZrC>3 series of samples and the reference material tested is shown in Figure 

4.42. Within error limits, the difference in hardness between the samples is not very 

great. It is clear from the plot, however, that the addition of increased amounts of 

CaZrC>3 to the Si3N4 + Y2O3 + Al2 0 3 system slightly decreases the hardness of the 

Si3N4-based material. For example, the hardness of the sample with composition 

3.2CaZ (HV5 1468) compares well with the reference material (HV5 1496), while 

samples with compositions 4.8CaZ and 6.4CaZ have hardness values of 1347 and 

1338 respectively.

Figure 4.43 shows the variation of hardness with composition against the %TD of 

the samples. The slight variation in %TD of the 3.2-6.4CaZ samples is reflected to 

some extent in their hardness values. The sample with the highest density, 3.2CaZ, 

has the highest hardness value while the increased level of porosity in samples 

4.8CaZ and 6.4CaZ results in lower hardness values. This is not unexpected, since, 

as was explained in Section 2.5.1.1, the hardness is strongly dependent on the sample
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density. What is surprising however, is that the reference material, with a lower 

%TD, relative to the samples in the CaZ series, has a higher hardness value.

wt% CaZr03

Figure 4.42 Variation of hardness with sample composition for samples in the 
Si3N4-Y2 0 3 -Al20 3 -CaZr0 3  series and the reference material.
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Figure 4.43 Influence of sample compositions on the resulting hardness and on
the %TD for samples in the Si3N4-Y20 3 -Al20 3 -CaZr0 3  series and the 
reference material.
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Figure 4.44 illustrates the influence of percent residual ot-Si3N4 on the hardness of 

the tested materials. Within the CaZ series, a general increase in the percent residual 

a-Si3N4 results in an increase in the hardness values measured. Going from 6.4CaZ 

with 14.6% residual a-Si3N4 content (HV5 = 1338) to 3.2CaZ with the highest 

residual a-Si3N4 content, having the highest hardness value; HV5 = 1468. Again 

comparing these results for the CaZ series with the reference material leads to an 

unexpected result, as the residual ot-SisNj content in the reference material is low, 

similar to that in the 6.4CaZ sample, but has a much higher hardness value.
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Figure 4.44 In flu en ce  o f  sa m p le  c o m p o sit io n s  on  the resu ltin g  hardness and % 
resid u a l a - S i 3N 4 for sam p les in  th e  S i3N 4-Y 2 0 3-A l2 0 3 -C aZ r0 3  ser ies  
and th e  re feren ce  m aterial.

As with the AIN series of materials, there are a number of contributing factors in the 

complex Si3N4-Y2 0 3-Al2 0 3 -CaZr0 3  based materials studied here, an exact analysis 

of Vickers hardness values is very difficult (as was outlined in Section.2.5.1.1 and 

Section 4.5.2) [140][218][219][220]. In the comparison of the samples within the 

CaZ series and the reference material the chemical composition seems to have the 

strongest influence on the resulting hardness values, as the reference sample tested 

had lower theoretical density and percent residual a-Si3N4. The addition of CaZr03 

to the Y-Si-Al-O-N system is therefore considered to have a slightly negative effect
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on hardness. However, Ca a-sialons, formed by the substitution of CaO to the Si-Al- 

O-N (possibly occurred in the intergranular phases of the present series of materials, 

Section 4.4.3.6 ) are reported to have enhanced hardness over other Si3N4-based 

materials. The poorer hardness of the materials in the present series is thus thought 

to be due to the presence of zirconia, detected by XRD, in each of the samples tested, 

see Table 4.11, as it has a fairly low hardness, approximately 970-1070 (HV10) 

[140]. It is not surprising, therefore, that as the amount of Zr02 (added in the form of 

CaZrC>3) is increased slightly within the CaZ series, the resulting hardness decreases 

slightly, Figure 4.43. This observation corresponds well with the work carried by 

other researchers [165] [221], who observed that the measured hardness of bulk 

Si3N4-ZrC>2 composites decreased with increasing amounts of Zr02 added. It is most 

likely, however, that the increase in Zr02 content alone is not wholly responsible for 

the observed progressive decrease in hardness in going from sample 3.2CaZ to 

4.8CaZ to 6.4CaZ. As was shown in Figure 4.43 and Figure 4.44, a decrease in 

both percent theoretical density and percent residual oc-Si3N4 also occurs within the 

CaZ series, which most definitely contribute to the observed decrease in HV5 values.

4.5.3.1. Effect  o f  P ercen tage D en sity  on H ardness

The data presented in Table 4.14 shows that the hardness measured under a 5kg 

load, increases with increasing percentage theoretical density for a given 

composition. For example, sample 3.2CaZ sintered at 1400°C with 6 6 %TD has a 

HV5 value of 463.8, whereas sample 3.2CaZ sintered at 1750°C with almost full 

density (98.2%TD), has a HV5 value of 1532.2. Mukhopadhyay et al [219], in 

defining a quantitative relationship between density and microhardness for SÎ3N4 and 

Sialon ceramics, found equation 4.2 best described their data.

H = [0.19 exp (4.49Z))] ± 0.55 (GPa) 4.6
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The applicability of Equation 4.6 to the present data is illustrated in Figure 4.45. It is 

seen that the equation fits quite well to the experimental data and therefore could be 

used to predict hardness close to actual experimental data on the basis of theoretical 

density only, for similar Si3N4-based materials.

S am p le C om position  

L abel

(Sintered Temperature)

% TD V ickers H ardness  

(H V 5)

3.2CaZ(1400) 66 463 .79  (20.85)

3.2C aZ (7500) 82.5 1076.83 (16.06)

3 .2C aZ(7600) 97.1 1 4 6 8 .1 7 (4 7 .4 1 )

3 .2CaZ(7 750) 98 .2 1 5 3 2 .1 5 (4 9 .9 3 )

Table 4.14 Percentage theoretical density (%TD), Vickers hardness data for the 
tested materials.

%TD

Figure 4.45 Relationship between percentage theoretical density and Vickers 
hardness of samples with composition Si3N4 + 3.4wt%Y20 3 + 
3.4wt%Al20 3 + 3.2wt%CaZr03.
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4.5.4. Comparison o f the Materials Studied here w ith Published Data

Table 4.15 outlines a comparison between the Vickers hardness, HV2, of fully dense 

SiaN4-based materials observed by Chakraborty and co-workers. [135] and the HV5 

values measured in the present study. Although the difference in loads used for 

testing does not allow for a direct comparison [2 2 1 ], the values indicate that the 

hardness of the materials tested in this study fit well to those tested by Chakraborty et

Sample Composition Hardness HV2
Chakraborty

p -S i3N 4 +  YA G 1630

a -S i3N 4 +  p-S i3N 4 +  Y A G 1745

a -S iA lO N 2261

P -SiA lO N 1686

Present Study Hardness HV5
IA IN 1634

2A1N 1452

3A1N 1557

4A1N 1712

3.2C az 1468

4.8C aZ 1347

6.4CaZ 1338

REF 1496

Table 4.15 Comparative Vickers hardness values measured by Chakraborty and those 
measured in the present study.
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4.6. Fracture Toughness

4.6.1. Calculations

Several expressions to calculate the fracture toughness, the critical stress intensity 

factor, Kic, from indentation tests exist, as outlined in Section 3.6.2. The choice of 

which one to employ depends primarily on the type of crack formed. Serial 

polishing of the surfaces of the materials tested in this study has shown that the 

cracks are Palmqvist type in all cases, as shown in Figure 4.46, where the crack end 

is not touching the indentation diagonal. Further polishing of the surfaces revealed 

however, that the cracks are much deeper than the classically presented Palmqvist 

shape as shown in Figure 4.47, where the indentation has been completely polished 

away but the cracks are still present. This suggests that the crack type may fall 

between Palmqvist and median, agreeing with observations made on similar SiaN4- 

based ceramics [223] [224].

Figure 4.46 Typical indentation observed in the samples tested (a) and at higher 
magnification (b) showing the crack tip detached from the 
indentation diagonal.
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Figure 4.47 T y p ica l o b serv a tio n  w h ere  the d iam on d  in d en ta tio n  has been  
c o m p le te ly  rem o v ed  b y  ser ia l p o lish in g , sh o w in g  that the cracks are 
deeper than th e  in d en ta tio n  but do not lin k  to  form  m ed ian  cracks.

Table 4.16 lists a selection of equations proposed in the literature for the analysis of 

Vickers indentation fracture measurements. The equations are divided into two 

groups; those based on the median crack geometry, M and those based on the 

Palmqvist crack geometry, P. Kjc values for each sample composition were then 

calculated from these equations, when applied to the data obtained from the Vickers 

hardness testing.

Reference Designation Equation

Anstis et al. [225] A N /M K lc =  0 .016 (E/H v) 1 /2(P/c3/2)

Niihara et al. [226] NI/M K lc =  ( M B C ^ E /H ^ P /c 372)

Laugier [227] LA/P K lc =  O .O lSC E /H vA P /c^X a/l)1'2

Niihara [228] NI2/P K lc =  0 .0122(E /H v)2/5P /(al1'2)

Shetty et al. [229] SH /P K lc =  0.031P /(al1/2)

Table 4.16 L ist o f  eq u a tio n s p resen ted  in  literatu re for the a n a ly s is  o f  V ickers  
in d en ta tion  fractu re tests .

E  -  Young’s Modulus (GPa)
H v -  Vicker’s Hardness (GPa)
P -  Load (N)
c -  crack length from  the center o f  indent to the crack tip (m)
I -  crack length from  the corner o f  the indent o f  the indent to the crack tip (m) 
a -  indent radius (m).
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Table 4.18 and Table 4.20 outlines the Kic values for the AIN series and CaZ series 

of compositions respectively, calculated from the fracture measurements listed in 

Table 4.17 and Table 4.19.

Sam ple
C om position

L abel

a
(x  10'5m)

c
(x  1 0 5m)

1
(x  10"5m)

H v
(G Pa)

IA IN 3.68 8.58 4.9 16.85

2A1N 4 8.25 4.25 14.4

3A1N 3.85 8.35 4.5 15.36

4A1N 3.68 9.33 5.65 16.85

R E F 3.94 8.14 4.2 14.67

Table 4.17 Indentation fracture measurement results for sample compositions in 
the Si3N4-Y20 3-Al2 0 3 -AlN series and for the reference material.

S am p le
C om p osition

L abel

K lc (M P a.m iW)

E q uation A N N i l L A N I2 SH

IA IN 4.17+0.08 6.03+0.09 5.47+0.14 7.35+0.11 6.08+0.21

2A1N 4.80+0.14 6.8310.16 7.21+0.28 7.76+0.18 6.00+0.26

3A1N 4.54±0.11 6.51±0.13 7.59+0.15 7.60+0.15 6.05+0.15

4A1N 3.67±0.05 5.32±0.06 4.49+0.09 6.84Ì0.08 5.66+0.21

R E F 4.83±0.05 6.90+0.06 7.25+0.11 7.83±0.07 6.13+0.21

Table 4.18 Fracture toughness, Kic, values calculated for samples compositions 
in the Si3N4-Y2 0 3 -Al20 3 -AlN series and for the reference material.
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Sam ple
C om position

L abel

a
(x  10 5m)

c
(X 10‘5m)

1
(x  10'5m)

H v
(G Pa)

3 .2C aZ 3.98 8.48 4.5 14.4

4.8C aZ 4.15 8.73 4.576 13.21

6.4C aZ 4.16 8.81 4.65 13.13

R E F 3.94 8.14 4.2 14.67

Table 4.19 In d en ta tion  fracture m easu rem en t resu lts  for sam p le  c o m p o sit io n s  in  
th e  S i3N 4-Y 2 0 3-A l2 0 3 -C aZ r0 3  ser ie s  and for the re fe r en ce  m aterial.

Sam ple
C om position

L abel

Kic (M Pa. in 12)

E quation A N N i l L A N I2 SH

3.2C aZ 4.58±0.08 6.4710.09 6.7110.16 7.5510.11 5.60+0.18

4 .8C aZ 4.59±0.06 6.4910.07 7.1110.13 7.8210.08 5.6210.16

6 .4C aZ 4.6010.07 6.54+0.07 7.1410.13 7.8310.08 5.7910.18

R E F 4.8310.05 6.9010.06 7.2510.11 7.8310.07 6.1310.21

Table 4.20 F racture to u g h n ess , K ic, v a lu es  ca lcu la ted  for sam p les co m p o sit io n s  
in  th e  S i3N 4-Y 2 0 3-A l20 3-C aZ r0 3  ser ies and for the re feren ce  
m aterial.

T h e  K ic v a lu es  ca lcu la ted  u sin g  the se le c t io n  o f  eq u ation s d iffer  con sid erab ly . T he  

A n stis  eq u ation  is l ik e ly  to  resu lt in  an u n d erestim ation  o f  the m ater ia ls’ fracture  

to u g h n ess , as it is a  m o d e l fo r  m aterials m ore brittle than th o se  stud ied  here, w h ich  

form  c la ss ic  m ed ia n  in d en tation  crack s, w h ile  re la tion s for true P a lm q v ist cracks, 

L au g ier  and N iih ara2 , resu lt in  so m ew h a t h igh er  v a lu es than ex p ec ted . F o llo w in g  

the ob serva tion s m ad e a b o v e  o n  the crack  p ro file s , it is m o st probab le that the actual 

K ic v a lu es  for the present m aterials l ie  b e tw een  the v a lu es ca lcu la ted  u sin g  N iih a ra l  

fo r  m ed ian  cracks and S h etty  for P a lm q v ist cracks. T h is is sup p orted  b y  w ork  

carried o u t b y  D u sz c a  [2 2 4 ] w h o  com p ared  K ic va lu es m easured  b y  the indentation  

m eth o d  to  th o se  m easu red  from  b en d in g  tests  o f  s in g le  e d g e  n otch ed  b eam s (S E N B )  

fo r  a S i3N 4 +  S i3N 4 - w h isk er  sy ste m  and fou n d  that the N iih a ra l and S h etty
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equations resulted in Kic values closest to those measured by SENB method. The 

fracture toughness values calculated using the Shetty equation were selected for 

discussion, as the equation does not include the Young’s Modulus, E, of the material, 

which for the present series of material is an estimate value.

4.6.2. Si3N4 + Y20 3 + Al20 3 + AIN Series

Figure 4.48 illustrates the variation of Kic values with composition for samples in 

the Si3N4-Y2 0 3 -Al20 3 -AlN series and the reference material. Samples with 

compositions 1-3A1N are seen to have very similar fracture toughness values; 6.08, 

6.05 and 6.05 respectively. Although the reference material has a lower theoretical 

density (as mentioned above), it has a good fracture toughness value of 6.13, slightly 

higher than samples 1-3AIN. A significant decrease in fracture toughness is 

observed for the sample with composition 4A1N.

As outlined in Section 2.5.1.2, the fracture toughness of monolithic Si3N4 ceramics is 

reported in the literature to be mainly governed by the morphology of the Si3N4- 

matrix grains, that is, the grain diameter and aspect ratio of the grains [149]. As was 

explained in Section 4.4.2.6. although different sintering additive combinations were 

employed, the samples used in the present study (sintered at 1600°C) exhibit similar 

fine-grained microstructures, which might be considered unfavourable for fracture 

toughness. However, the Kic values calculated here compare well to those calculated 

for similar systems (4-7 MPa.m [223]). The observed fracture toughness values 

may be attributed to the compositions of the grain boundary phases present in the 

sintered materials [150] [152], which are controlled by the starting compositions. 

Differences in the thermal expansion coefficients of the Si3N4 matrix phase and the 

surrounding grain boundary phase introduce residual stresses in the material, which 

as reported by Peterson et al. [151] influence crack deflection around the Si3N4 

grains. The fracture toughness is improved if tensile stress in the grain boundary 

phase and compressive stress in the silicon nitride grains are present [151], this 

occurs when the thermal expansion coefficient of the grain boundary phase is greater 

than that of the silicon nitride grains.
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The high fracture toughness observed for the reference material, is most probably 

due therefore to the presence of YAG in the grain boundary as the thermal expansion 

coefficient of silicon nitride and YAG are 3.6 and 8.0 respectively. Although 

measurement of the thermal expansion coefficients of the grain boundary phases of 

the materials in the Si3N4-Y2 0 3 -Al2 0 3 -AlN was beyond the scope of the present 

study, the variation in their fracture toughness can be explained qualitatively. It is 

reasonable to correlate the good fracture toughness observed to differences in the 

thermal expansion coefficients of the Si3N4 matrix grains and the grain boundary 

phases present in the sintered materials. The similarity in Kic values calculated for 

samples 1-3A1N in the Si3N4-Y2 0 3 -Al2 0 3 -AlN series suggests varying the AIN: 

AI2O3 within this range, does not result in a significant alteration in the thermal 

expansion coefficient of the grain boundary phase in the sintered materials. On 

increasing the AIN: Al2 0 3 ratio to 4A1N: 2 .5 AI2O3 (sample 4AIN) a significant 

decrease in fracture toughness is observed (Figure 4.48). This result corresponds 

well to work carried by Peterson et al. [150] and Kleebe et al. [152] who reported 

that increasing the nitrogen content of the grain boundary phase in a SijNt-based 

ceramic decreased the thermal expansion coefficient of the phase, resulting in poorer 

fracture toughness.

5.5 4.5 3.5 2.5
wt%AIN
wt%AI203

Figure 4.48 Relationship between fracture toughness (K ]c) and com position for samples 
in  the S i3N 4-Y 2 0 3 -A l20 3 -A lN  and the reference material.
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4.6.3. Si3N4 + Y2O3 + AI2O3 +CaZr03 Ssriss

The variation of Kic values with composition for samples in the SijNi-YiC^-AkOs- 

CaZrC>3 series and the reference material is shown in Figure 4.49. Within the CaZ 

series of materials, the sample with composition 6.4CaZ exhibits superior toughness; 

5.79MPa.m1/2. Very similar fracture toughness values were calculated for samples 

with compositions 3.2-4.8CaZ; 5.6 and 5.62 respectively. The reference material 

(although with higher porosity) has a slightly higher fracture toughness value, 6.13, 

than each composition within the CaZ series.

As was outlined for the AIN series, the morphology of Si3N4-matrix grains primarily 

governs the fracture toughness of monolithic SisN^-based materials [149]. A study 

of the microstructure of the samples from the CaZ series tested here (Section 

4.4.3.6), shows that although different combinations of sintering additives were 

employed, all samples had similar fine-grained microstructure, with the random 

distribution of small quantities of prismatic-shaped |3-Si3N4 grains. The presence of 

such grains enhances the fracture toughness of a material by deflecting the crack path

[147][148]. Indeed the fracture toughness of the present materials compares very
• ■ 1/2 well with those calculated for similar systems (4-7MPa ) [223].

It is well documented that a suitable dispersion of tetragonal zirconia (t-ZrC^) 

particles in composite materials improves fracture toughness by transformation 

toughening [7]. Thus the slight increase in Kic going from 3.2 to 4.8CaZ and the 

more significant increase observed in 6.4CaZ is not surprising and is probably due to 

the increased amount of ZrC>2-

The comparatively high fracture toughness value of the reference material was 

discussed in the previous section.
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Figure 4.49 R ela tio n sh ip  b e tw een  fracture to u g h n ess  (K ]c) and c o m p o sit io n s  for 
sa m p les  in  the S i3N 4-Y 2 0 3 - A l20 3 -C aZ r0 3  and th e  re feren ce  m aterial.

4.7. Oxidation Behaviour of the 3.2CaZ Material

4.7.1. Introduction

The addition of Zr02 (as CaZr0 3 , in the current study) to the Y-Si-Al-O-N system 

introduces the potential formation of zirconium oxynitride (Zr-O-N) phases, which if 

present result in catastrophic degradation during oxidation at lowers temperatures; 

600°C < T <1000°C (discussed in Section 2.5.1.3) [163] [164]. Evidence in the 

literature suggests that the minimum wt% of Zr02 in the starting composition 

resulting in the formation of the easy-to-oxidise Zr-O-N phases is approximately 

20wt% [163], Although the weight percent (%wt) of Zr02 in the current CaZ series 

of materials (2.2wt%, 3.3wt%, 4.4wt%) is significantly lower than this value, and 

that no Zr-O-N phases were detectable by XRD in the sample tested (discussed in

x  - reference
m aterial

 1 1 1 !----------- 1—
0 1.6 3.2 4.8 6.4

wt% CaZr03

186



section 4.4.3.5) a preliminary set of oxidation tests was carried out, as even trace 

amounts of the phases have been reported to significantly lower the oxidation 

resistance of SiîNrbased materials. The material with composition 3.2CaZ 

(3 .2 wt%CaZr0 3  + 3 .4 wt%Y2Û3 + 3 .4 wt%Al2 0 3 ) sintered at 1600°C, was selected for 

testing, as this material exhibited superior densification and so was chosen as a 

potential matrix for the fabrication of a pressureless sintered ceramic matrix 

composite.

4.7.2. Thermogravimetric Analysis

Figure 4.50 shows the mass gain detected with increasing temperature (at a constant 

heating rate of 2°C/min) for the sample with composition 3.2CaZ, sintered at 1600°C. 

No detectable oxidation occurs at temperatures <1000°C, suggesting that this sample 

does not contain any easy-to-oxidise zirconium oxynitride phases. Detectable mass 

gain is seen to start at >1100°C and slowly increases as the temperature is raised to 

approximately 1350°C. Above 1350°C, the mass gain detected increases rapidly.

Temperature (°C)

Figure 4.50 T h erm ograv im etric  cu rve for sa m p le  3 .2 C a Z , sin tered  at 1600°C , 
sh o w in g  th e  m ass ga in  d etec ted  w ith  in crea sin g  tem peratures.

187



4.7.3. Long and Short Term Tests

3.2CaZ samples (after sintering at 1600°C) were oxidised for 100 hours, at 600°C, 

700°C, 800°C, 900°C and 1000°C. As mentioned above, this temperature range is 

that over which Zr-O-N phases, if present, result in catastrophic failure. No mass 

gains were detected at each temperature, and no oxidation products were detected 

using XRD. Both of these results support the hypothesis that no zirconium 

oxynitride phases are present in the 3.2CaZ material after sintering at 1600°C, and 

that the ceramic is stable to oxidation at lower temperatures.

Short-term oxidation tests (20 hours) at 1200°C, 1300°C and 1400°C were carried out 

to gain a basic understanding of the oxidation kinetics and mechanisms of the 

3.2CaZ material. The mass gain versus time curves for the 3.2CaZ samples oxidised 

at the given temperatures are shown in Figure 4.51. Mass gain follows the classical 

parabolic relation:

where (Am/S) = the mass gain (g.m 2) at time, t, K = Koexp(AH/RT) (g2.m-4.s_1) is the 

parabolic rate constant and b is a constant which accounts for the effect of a non­

parabolic initial stage, because initial oxidation occurs with the formation of an

growth. Figure 4.52 illustrates the parabolic behaviour at each oxidation 

temperature. Oxidation at 1200°C follows parabolic behaviour over the 20 hour hold

limited time intervals; approximately 10 hours and 2.4 hours, respectively. 

Oxidation rate constants calculated using equation 4.1, for parabolic behaviour at 

each temperature are outlined in Table 4.21.

4.7

‘oxide’ film by a l st-order process, followed by diffusion-controlled parabolic

time, while oxidation at 1300°C and 1400°C deviates from parabolic behaviour after
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Time (secs)

Figure 4.51 M ass gain  for sa m p le  3 .2 C a Z  o x id ise d  at variou s tem peratures for a 
20  hour h o ld  tim e.

Time (mins)

Figure 4 .5 2  P arab olic  m ass ga in  for sam p le  3 .2 C a Z  o x id ised  at various  
tem peratures for a 2 0  hour hold  tim e.
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Oxidation Temperature (°C) Oxidation rate constant (mg2/cm4.min)
1200 2.51 x lO '4

1300 1.54 x  10'3

1400 1.53 x  10'2

Table 4.21 Values of the oxidation rate constant after oxidation for 20 hours at 
different temperatures.

4.7.4. Oxidation Products and Surface Morphology

Table 4.22 lists the crystalline phases, detected using XRD, in the samples after 

oxidation at each temperature. Figure 4.53 illustrates approximate semi- 

quantitative analysis of the XRD results. As expected, crystabolite, SiC>2, formed by 

the direct oxidation of SiaN4 was the principal oxidation product detected, with 

increasing amounts of calcium aluminium silicate, Ca3Si2AleOi6 detected with 

increasing oxidation temperature. Trace amounts (I/Io ^ 5) of zircon, ZrSiC>2 and 

calcium silicate, CaSiQ* were detected after oxidising at 1300°C and 1400°C.

Oxidation 
Temperature (°C)

1 2 0 0 1300 1400

Phases Detected Si02

Ca3Si2Al6Oi6
Si02

Ca3Si2Al60 i6

CaSiÛ4

ZrSi02

Si02

Ca3Si2Al60i6
CaSi04

ZrSi02

Table 4.22 Crystalline phases detected in the samples after oxidation at the 
given temperatures.
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Temperature (°C)

Figure 4.53 Development of crystalline phases in the samples after 20 hour hold 
at the outlined temperatures.

Although slightly out of focus, the formation of an oxide layer on the sample surface 

oxidised at 1400°C is shown in Figure 4.54 (a). Figure 4.54 (b) illustrates the 

development of an oxide layer in a crack formed from the surface towards the centre 

of the sample.

(a) (b)

Figure 4.54 (a-b) An oxide layer formed at the surface and in a crack of the
sample oxidised at 1400°C, respectively.
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4.7.5. D iscussion on the Oxidation Mechanism

Although the oxidation tests carried out were limited, some conclusions can be made 
on the oxidation behaviour of the Si3N4-Y2(>3-Al2C)3-CaZrC)3 material studied. The 
good oxidation resistance at low temperatures of the 3.2CaZ material tested in the 
current study is most likely a result of the absence of any easy-to-oxidise Zr-O-N 
phases. ZrC>2 in the current material is thought not to directly influence oxidation, 
and at oxidising temperatures >1300°C reacts with the Si02 on the surface forming 
ZrSi0 2 . Bellosi et al [161] studying the stability of Si3N4-Al20 3 -ZrC>2 composites in 
oxygen environments made similar observations.

As was outlined in Section 2.5.1.3 although there is good evidence for cation 
diffusion through intergranular phases in some cases, the majority opinion seems to 
support oxygen diffusion as rate controlling in most examples [156] [157]. The 
present materials appear to behave similarly to other Si3N4 materials (containing 
Y2O3 and AI2O3), that is, an initial relatively rapid oxidation of the intergranular 
glassy silicate material accompanied by a volume expansion with accompanying 
growth of an ‘oxide’ film on the surface (non-parabolic kinetics) is followed by, 
oxygen diffusion-controlled growth of the oxide film by reaction at the film/Si3N4 

interface. The product, silica dissolves in the silicate glass until the liquidus 
composition concentration of silica is reached (parabolic kinetics) as seen in the 
present data (Figure 4.51). At this point crystalline silica can form at the interface, 
which then dramatically reduces the oxidation rate as diffusion of oxygen through 
silica is some orders of magnitude slower than through silicates (crystalline or 
glassy).
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4.8. Composite Densification and Microstructure

4.8.1. Densification Results

Densification
Conditions

1600°C 
lObar N2

1600°C 
60bar N2

1600°C
hot-pressed

1700°C
hot-pressed

Matrix %TD 85 85.7 99 .7 99.9

Composite %TD 88 88.7 99.8 99 .9

Vf% 30.8 31 .2 36.5 38.7

% Shrinkage 12.9 16.2 36.2 38.7

% Mass Loss 9 .2 3.8 4.1 2.9

Table 4.23 P h y sic a l p rop erties o f  th e  1A 1N /P 25C  co m p o site  after d e n s if ic a tio n  
under s p e c if ie d  c o n d itio n s .

Densification
Conditions

1600°C 
lObar N2

1600°C 
60bar N2

1600°C
hot-pressed

1700"C
hot-pressed

Matrix %TD 75 82.7 96 .7 97.1

Composite %TD 75.5 86.3 97 .6 97.9

Vf% 31.39 31.1 40.3 38 .2

% Shrinkage 15.8 16.7 39.1 37.6

% Mass Loss 8.2 3.8 5.2 4.2

Table 4.24 P h y sic a l p rop erties o f  th e  3 .2 C a Z /P 2 5 C  co m p o site  after 
d e n s if ic a t io n  under sp e c if ie d  c o n d itio n s .

The physical changes induced in the samples during densification by pressureless 

sintering (10 bar N2), gas-pressure sintering (60 bar N2) and hot-pressing (uniaxial 

127 bar N2) of the 1A1N/P25C and 3.2CaZ/P25 composites are summarised in Table 

4.23 and Table 4.24 respectively. Both of the novel composite systems show a
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higher propensity to densify than the standard reference composition; the IAIN and 
3.2CaZ matrix phase compositions reaching 85 and 75 percent theoretical density 
respectively compared with 6 8  percent for a standard YAG matrix composite 
prepared as a reference material in the present study.

The application of a higher N2 pressure (60 bar) in gas-pressure sintering is seen to 
have a minimal effect on the densification of the 1A1N/P25C composite, increasing 
the density of both the matrix phase and the whole composite by approximately 0.7 
percent. However, under these conditions the density of the matrix phase in the 
3.2CaZ/P25C composite increases by more than 10 percent and the density of the 
whole composite by 7 percent.

The results show that for both composites, the application of a high uniaxial 
mechanical pressure (127 bar N2), that is hot-pressing, leads to good densification 
and closed porosity. After hot-pressing at the lower temperature, 1600°C, the 
1A1N/P25C composite is fully dense (99.7%TD), with only a slightly higher density 
of 99.9%TD, achieved at the higher hot-pressing temperature, 1700°C. The 
3.2CaZ/P25C composite reaches close to full density after hot-pressing at 1600°C 
(97.6%TD), again with only a minimal density increase to 97.9%TD after hot- 
pressing at 1700°C.

In the 1A1N/P25C composite the percent volume fraction of fibres, %Vf, is seen to 
increase as the density increases. For example, the %Vf increases from 30.8% to 
38.7% as the density increases from 8 8 %TD to 99.9%TD. The %Vf results for the 
3.2CaZ/P25C composite are somewhat inconsistent with the density values. The 
%Vf calculated for the pressureless sintered material, which is 76% dense and in the 
gas-pressure-sintered material, which reaches 82.7%TD is essentially the same. The 
composite hot-pressed at 1600°C, with 96.7%TD does have an increased %Vf value, 
40.3%, but a slightly reduced %Vf value of 38.2% is seen for the sample with 
97.1%TD after hot-pressing at 1700°C. The %Vf results for both composite 
compositions indicate that hot-pressing is required to ensure that the %Vf in the final 
material corresponds to the optimum value of approximately 40 vol% for good 
mechanical properties [230].
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% Theoretical Density % Theoretlcal Density

(a) (b)

Figure 4.55 The variation o f % Shrinkage and % M ass Loss with % Theoretical D ensity  
for (a) the 1A1N/P25C com posite and (b) the 3.2CaZ/P25C composite.

Figure 4.55 illustrates the variation in %shrinkage and %mass loss with composite 
theoretical density for the 1A1N/P25C composite (a) and the 3.2CaZ/P25C composite
(b). The shrinkage values outlined represent the change in linear thickness of the 
sample after the densification procedure. As expected, the shrinkage of both 
composite compositions corresponds with sample percent theoretical density 
achieved, that is, composite shrinkage increases with increasing percent theoretical 
density.

The observed mass losses for both the 1A1N/P25C and 3.2CaZ/P25C composites also 
correspond well with the composites’ %TD, given that the mass loss values are seen 
to decrease as the percent theoretical density values increase. As expected, the mass 
losses are minimal after hot-pressing, as the densification kinetics are rapid and good 
densification is achieved. The significant decrease in %mass loss seen between the 
pressureless sintered materials and the gas-pressure sintered materials however, is 
not reflected in a significant rise in theoretical density. Mass losses during sintering 
of these types of materials are usually associated with volatilisation of gaseous 
products and are viewed as a competitive phenomenon to densification. It was 
expected that employment of the sintering procedures outlined below, which were 
successful in the pressureless sintering of the monolithic sample, (Sections 4.4.2.2
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and 4.4.3.2) would also be successful in minimising volatilisation reactions in the 
composite materials. That is, the use of:

• Sinter powder bed

• Graphite pieces

• Overpressure of N2

• Low sintering temperature

4.8.2. Microstructural Observations

4.8.2.1. Fibre Distribution

Image analysis was performed to determine the distribution of fibres within the gas- 
pressure sintered 1A1N/P25C and 3.2CaZ/P25C composites. Images suitable for 
analysis were selected based on the guidelines outlined in Section 3.5.4. These 
analysis results are approximations since high accuracy with such a disperse 
distribution of fibres would require the analysis of several hundreds of images. 
Figure 4.56 shows an example of a typical SEM original image of the composite 
samples, with the contour of the measured phase overlaid in red. The fibre 
distribution through the sample depth was determined by examining the area fraction 
of fibres calculated for a number of images taken of the sample, as listed in Table 
4.25. Of the two samples, a more uniform distribution of fibres was observed within 
the 1A1N/P25C composite sample, with the average area fraction value of 

27.59±3.89 corresponding well with the calculated volume fraction value, V/ of 

31.2% (outlined above). In the 3.2CaZ/P25C composite sample variation in 
distribution of fibres was seen between the upper surface, which contained fewer 
fibres (Figure 4.57) and the bulk of the sample. This structure arises as a result of the 
‘squeezing out’ of a monolithic ceramic layer due to over-pressing the fibres in the 
mould during the green forming process (Section 3.3). These monolithic surface 
layers were considered misrepresentative of the bulk ‘composite’ structure and were
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om itted  from  the area fraction  ca lcu la tio n s. T h e  resu ltant ca lcu la ted  v a lu e  o f  3 0 .3 9  ±

3 .6 3  b ased  on  the S E M  im a g es , relates w e ll  to  the ca lcu la ted  V / o f  31 .39% .

Figure 4.56 An example of an SEM image used area fraction calculations. The 
measured phase is overlaid in red.

Figure 4.57 An area containing few fibres close to the surface of the CaZ/CP25 
composite material.
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1A1N/P25C G PS 3.2C aZ /P 25C  GPS

A rea  F raction  (% ) A rea F raction  (% )

Im age 1 27.1 Image 1 29.3

Im age 2 30.6 Image 2 24.3

Image 3 23.7 Image 3 30 .2

Im age 4 28.8 Image 4 29 .4

Im age 5 21.8 Im age 5 31 .4

Im age 6 28.8 Im age 6 33.7

Im age 7 25.8 Image 7 32 .0

Im age 8 34.1 Image 8 31 .2

A verage 27 .59 Im age 9 36.8

Standard  D eviation 3 .89 Im age 10 25.6

A verage 30 .39

Stan d ard  D eviation 3.63

Table 4.25 Area fraction measurement results on SEM  images using im age analysis.

4.8.2.2. C racks an d  P o ro sity

Figure 4.58 and Figure 4.59 illustrate the microstructure of a transverse section 
typically observed in both composite compositions after pressureless sintering and 
gas-pressure sintering respectively. Matrix macro-cracking is seen in all samples, 
particularly in areas of closely-packed fibres, although the extent of cracking is 
significantly less in the gas pressure sintered composite samples. These cracks are 
clearly related to the facility for the matrix components to migrate and densify in the 
different morphology zones of the composite. As discussed in sub-sections 4.4.2 and
4.4.3 the matrix phases in both composites densify by liquid phase sintering, where 
‘particle-rearrangement’ is the dominant stage in the shrinkage and densification. 
The larger areas of free matrix material (Figure 4.58) densify well with no visible 
macro flaws. Areas containing few fibres, also sinter without visible flaws. 
However, the ready densification and shrinkage of these areas will set up uniform
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hydrostatic tensile stresses in surrounding areas. Where these surrounding areas of 
matrix are not free to move, that is, are constrained by closely packed or interwoven 
fibres, void formation and macro-cracking is seen to develop, particularly at the 
surface of the fibres. This occurrence has been reported extensively for particulate- 
and whisker-reinforced ceramic matrix composites [125][129] and [231].

(a) (b)
Figure 4.58 T y p ica l m icrostru ctu re, illu stra tin g  s in ter in g  cracks o b serv ed  in  

c o m p o s ite  m ateria ls p ressu re le ss  s in tered  at 1600°C .

Figure 4.59 T y p ica l m icrostru ctu re, w ith  so m e  sin ter in g  crack s, o b serv ed  in  
c o m p o s ite  m ateria ls gas p ressu re  s in tered  at 1600°C .

The composite green form contains approximately 35% porosity and has little or no 
interparticle bond strength. Such porosity may be considered as a population of 
intrinsic flaws, which provide a route to relieve the tensile stress in the matrix, that 
is, the cracks or flaws will open further during constrained sintering. The matrix 
region adjacent to the crack continues to densify by kinetically transferring pores to
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the open crack [129]. The morphology of the composition studied here suggests that 
the macro-cracks or flaws tend to initiate at the fibre-matrix interface (weakest link) 
leading to the matrix shrinking away from and detaching from the fibres, resulting in 
the microstructure observed in Figure 4.58. Figure 4.58 (b) highlights this 
phenomenon more clearly; a ‘large’ void/pore is seen to have formed in an area 
completely surrounded by fibres, while the adjacent matrix has densified reasonably 
well.

Even in composites that are ‘crack-free’ after fabrication, retarded densification is 
expected to occur along the surfaces of the reinforcing phase, as predicted by Lange 
[127]. In low fibre density areas in the composites, the concentration of cracks is 
less, and the inhibition of the fibres on the sintering of the matrix is less as the matrix 
is seen to have densified well. The resultant effect of the inhibiting role of the non- 
sintering fibres on matrix sintering, is a composite with inhomogeneous densification 
throughout the matrix and a less than theoretical final matrix and composite density.

It is possible that the formation of these localised ‘differential-sintering’ cracks in the 
composites during pressureless sintering contributes to the higher mass losses 
observed in these samples as the surface area of both matrix and fibre susceptible to 
decomposition is greatly increased.

As reported above and illustrated in Figure 4.59, cracking along the fibre-matrix 
interface is less in the composites densified by gas-pressure sintering. The increased 
N2 pressure tends to inhibit decomposition of the matrix and gaseous attack of the 
fibres at the crack surface. Lower mass losses are observed in the gas-pressure 
sintered composites, and slightly improved densification compared with the 
pressureless composites.

The effect of applied pressure is confirmed in Figure 4.60 (a) and (b) which illustrate 
the microstructures typically observed for both composite compositions after hot- 
pressing at 1600°C and 1700°C respectively (under an applied mechanical load of 
127bar). These microstructures verify the almost 100% theoretical density values 
calculated for these materials. The matrices are seen to have minimal porosity and 
no cracking is seen. In this case the applied pressure acts not only to inhibit
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pressure acts not only to inhibit decomposition but more significantly to improve the 
matrix mobility and to remove intrinsic porosity.

Figure 4.60 Typical ‘crack-free’ microstructure observed in composite materials 
hot-pressed at 1600°C (a) and 1700°C (b).

4.8.2.3. Fibre-Matrix Interface

As discussed in Section 2.4.1, one of the major factors negating the feasibility of 
manufacturing ceramic matrix composites without the use of uniaxial mechanical 
pressure (hot-pressing) is the potential of fibre-matrix interaction during processing 
which leads to poorer mechanical behaviour in the final composite [50]. The 
guidelines outlined in Section 2.4.1. for preventing such reactions were carefully 
followed in the present work and the observations of the pressureless and gas- 
pressure sintered composites are very encouraging. Figure 4.61 shows the typical 
microstructure observed in longitudinal cross-sections of the pressureless sintered 
composites. Minimal fibre-matrix interaction is seen to have occurred with the fibres 
essentially intact. The black tips to the fibres observed are polishing artefacts. 
Negligible interaction was also seen in the gas-pressure-sintered materials, as seen in 
Figure 4.62. Figure 4.63 illustrates that no reaction between the fibre and matrix 
phases is visible in SEM after hot pressing at both 1600°C and 1700°C.
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Figure 4.61 Typical microstructure, showing intact fibres, observed in a 
longitudinal cross-section of composite materials pressureless 
sintered at 1600°C.

Figure 4.62 T y p ica l m icrostru ctu re, sh o w in g  lit t le  fib re-m a tr ix  in teraction , 
o b serv ed  c o m p o s ite  m ateria ls gas p ressu re  sin tered  at 1600°C .

(a) (b)
Figure 4.63 T y p ica l m icrostru ctu re, sh o w in g  c o m p le te ly  in tact fib res, ob served  

c o m p o site  m ateria ls h o t-p ressed  at 1 6 0 0 °C  (a) and 1700°C  (at a 
higher m a g n ifica tio n ).
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Image Analysis was carried out on a series of SEM images of the gas-pressure 
sintered 1A1N/P25C and 3.2CaZ/P25C composites. The SEM images selected for 
analysis were corrected according to the guidelines outlined in Section 3.5.4. Figure
4.64 shows an example of an adjusted result image. Table 4.26 outlines the results 
for the fibre diameters in these composites. Figure 4.65 and Figure 4.66 illustrate the 
results graphically. These figures should be compared with equivalent data for the 
starting material, measured in the same condition using the same technique. The 

manufacturer’s specification for fibre diameter is a single figure, 1 1  (lm, with no 
indication of variation within the sample or of method of measurement. Preparation 
of comparative samples of as-received fibres raises problems of consistency, fibres 
mounted in epoxy resin are difficult to polish without rounded edges and the edge 
definition is by no means the same as in the ceramic matrix. This is important as an 

error of say, ljxm in a diameter of lOjim introduces a 20% error. Green form 

composites were very difficult to polish. Finally, a good comparison could be made 
with fibres in the hot pressed composite, where SEM showed very clean, smooth and 
wholly unattacked edges for fibres in the AIN composite and only very marginally 
roughened edges in the CaZ matrix material. The AIN sample was taken to indicate 
the original fibre diameter. Diameters were measured in an optical microscope at 
magnification of 1 0 0 0 , taking 2 0  measurements per sample.

Fibres touching Fibres loo
boundaries are attached’ are
eliminated eliminated

Figure 4.64 A n  e x a m p le  o f  an S E M  im a g e  ad ju sted  for im a g e  a n a ly sis . The  
m easu red  d iam eter is  o u tlin ed  in  red.
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Sam ple

C om position

L abel

P reparation

techn ique

T otal num ber  

o f  fibres

M ean  (|xm) Standard

deviation

1A1N/CP25 Hot pressed 20 10.58 0.8

Gas pressure sintered 132 10.4 0.5

3.2CaZ/CP25 Hot pressed 20 10.44 0.88

Gas pressure sintered 102 10.0 0.7

Table 4.26 Fibre diameter measurement using optical m icroscopy for the hot-pressed  
material and SEM  /  im age analysis for the gas pressure sintered material.
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Figure 4.65 G raphical rep resen ta tio n  o f  im a g e  a n a ly s is  resu lts  o f  fib re  d iam eter  
for the 1A 1N /P 25C  c o m p o site  gas p ressu re  sin tered  at 1600°C .
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Figure 4.66 Graphical representation of image analysis results of fibre diameter 
for sample 3.2CaZ/P25C gas pressure sintered at 1600°C.

These results are valuable in confirming the thermal stability of the two systems 
studied but not conclusive in predicting composite behaviour. The diameter of the 
totally undamaged fibres in the AIN hot pressed material varied from 12.08 to 

9.43|lm, which even allowing for some operator inconsistency (certainly not more 

than 0 .2 |im, in 1 0 fj.ni) represents a huge variation across the batch, (not recognised 

by the manufacturer). The increasingly roughened surface of the other fibres 
introduces a degree of uncertainty of the determination of the fibre edge. 
Nevertheless, the reductions in diameter are completely insignificant for both AIN 
materials and for the CaZ hot pressed composite, and only marginally significant for 
the gas pressure sintered CaZ composite. No new phases corresponding to possible 
reaction products were ever detected using XRD analysis.

In practice, the degree of degradation of the fibre-matrix interface which is required 
to influence composite fracture properties needs be of the order of only nanometers 
[50][232] which is not at all visible using the above techniques. But what is shown
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here confirms that the materials selected for this study, in a fully unprotected and 
non-optimised condition are nevertheless chemically stable for the intended purpose 
and will form viable composites, where the phases retain their intrinsic properties.

4.8.2.4. P h ase  A n a lysis  a n d  Distribution

Table 4.27 lists the phases detected using XRD in both composite compositions 
after densification under the specified conditions. The composites were found to 
include silicon nitride, carbon and an intergranular phase (in the 3.2CaZ/CP25 
composites). As reported above no fibre/matrix reaction products were detected.

Complete conversion from a- to fJ-Si3N4 occurred in the matrix phase of the 
1A1N/CP25 composite during each densification process and temperature. Hot- 
pressing at 1700°C of the 3.2CaZ/CP25 composite was required for full 
transformation. However, increased N2 pressure applied during sintering at 1600°C 

is seen to promote transformation of a-Si3N4 ; the % ¡J-Si3N4 detected increased from 
63% to 78% as the N2 pressure applied increased from 10 bar to 60 bar. Hot-pressing 

(uniaxial 127 bar N2) at the same temperature resulted in a further increase to 93% 0- 

Si3N4 transformed. These results for both composite compositions are consistent 
with results for the monolithic ceramic matrices, outlined in Table 4.6, Section
4.4.2.4 and Table 4.10, Section 4.4.3.4.

No intergranular crystalline phase was detected in the composite 1A1N/CP25. This 
indicates clearly that the white, yttrium-rich phase, observed in significant quantities 
using SEM is non-crystalline; probably an yttrium-rich glass with the same chemical 
composition as the glassy phase observed in the pressureless sintered monolithic 
samples (Section 4.4.2.5). These intergranular phases are randomly distributed 
throughout the bulk composite with no obvious segregation to the fibre/matrix 
interface or surface of the samples (Figure 4.63).

Detection of yttrium-stabilised zirconia and tetragonal zirconia in the 3.2CaZ/CP25 
is consistent with XRD results of the pressureless sintered samples (Section 4.4.3.5 )
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and corresponds to the large white precipitates observed using SEM (Figure 4.62). 
The second intergranular white phase seen in the SEM micrographs is most probably 
glassy, as it was not detected by XRD. These phases are randomly distributed 
throughout the bulk material however, with the exception of the pressureless sintered 
sample, significant local migration to the surface of the secondary phases was 
observed (Figure 4.62).

The reader is referred to Sections 4 .4 .2 .6  and 4 .4 .3 .6  fo r  m ore comprehensive 

discussion on these intergranular phases.

Sample Label Densification Conditions

PS 1600°C G P S 1600°C H P  1600°C H P  1700°C

A1N/CP25 100%P-SÌ3N4 100% p-Si3N 4 100% P-Si3N 4 100%p-SÌ3N4

c c c c

C aZ /C P 25 63%P-SÌ3N4 78%P-SÌ3N4 93% P-SijN4 100%P-SÌ3N4

c c C c

Y -Z r0 2 Z r 0 2(t) Z r 0 2(t) Z r 0 2(t)

Table 4.27 P h ases d e tec ted  in  th e  c o m p o s ite  m ateria ls after d e n s if ic a t io n  under  
th e  sp e c if ie d  co n d itio n s .

Y-ZTÛ2 -  ytrria stabilised zirconia; Zr02(t) -  tetragonal zirconia

PS -  Pressureless sintered, GPS -  Gas Pressure sintered, HP -  Hot Pressed.

4.8.2.5. C ooling Cracks

Figure 4.67 illustrates two other types of macro-cracking (not explained by localised 
differential sintering) observed in samples of both composite compositions after 
pressureless and gas-pressure sintering. The very large cracks illustrated in Figure 
4.67 (a) are located in the middle of the samples and are most likely a result of 
differential cooling due to the position of the samples in the furnace. The walls of 
the furnace begin cooling slightly earlier than the inside of the furnace, and in turn 
the sides of the composite samples close to the walls start cooling before the middle
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of the sample. Shrinkage from the outside of the material will then exert a tensile 
stress on the centre of the material. This effect was seen earlier during cooling of 
plates of sintered monolithic Si3N4, which were packed in a powder bed with no 
constraining graphite piece above. Without the graphite piece acting as thermal 
insulation, cooling occurred from above and the SiaN4 plates warped considerably 
during cooling due to advanced shrinkage of the upper surface of the plate compared 
with the lower. The positioning of a restraining graphite piece provided weight and 
improved thermal insulation and flat sintered plates were attained.

The second type is an array of macro-cracks transverse to the longitudinal fibre axis, 
observed in the pressureless and gas-pressure sintered composite materials are shown 
in Figure 4.67 (b). This type of cracking is widely reported as arising from 
differences in the physical properties of the component phases in fibre reinforced 
composites, leading to the development of internal stresses. Thus, on cooling from 
high temperatures, a mismatch in coefficient of thermal expansion (CTE) between 
fibres and matrix will generate stress levels capable of cracking the matrix phase. In 
this study a mismatch in coefficients of thermal expansion (CTE) exists between the 
Si3N4-based matrix and the CP25 fibres (Si3N4, a  =2.25-2.87xlO"6oC‘1, CP25 fibres, 

a  = 22 x 10"6 K 1). Similarly where the phases have significantly different Emod 

values, the application of mechanical stress leads to the development of internal 
(interfacial) stresses. The distance between these cracks is related to of the 
composites’ interfacial shear stress, x and is discussed more extensively in the 
section dealing with the mechanical bending tests of the hot-pressed materials 
(Section 4.9.3)
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(a) (b)

Figure 4.67 C racks o b serv ed  during c o o lin g , due to  d ifferen tia l c o o lin g  (a) and  
C T E  m ism atch  (b).

4.9. Composite Mechanical Properties

Composite samples hot-pressed to high densities were selected for mechanical 
property testing, to establish that the phases selected will indeed form a viable 
composite, however poorly optimised; to confirm that these materials exhibit 
“composite” failure behaviour of the systems under mechanical stress and to examine 
the thermal stability of the phases in the composites during typical processing 
conditions of temperature and environment during sintering under mechanical 
pressure. Materials selected for testing corresponded with the matrix phase 
compositions; IAIN and 3.2CaZ hot-pressed at 1600°C and at 1700°C. 3-point 
bending tests were carried out as described in Section 3.7.

4.9.1. Deformation Behaviour

Figure 4.68 illustrates typical examples the stress/displacement plots obtained for 
each sample tested. The behaviour observed is typical of composite failure 
behaviour, and can be described as the following three distinctive steps [127] (as 
outlined in detail in Section 2.5.2.1):
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an initial elastic region where no damage to the composite occurs 
a period of progressive matrix micro-cracking where increasing 
displacement is non-linear with increasing load, and small load drops 
occur. This continues until the capacity for the matrix to micro-crack is 
saturated. At this stage load transfer to the fibres approaches 100% 
a close-to-elastic region where the fibres sustain the full load until 
maximum stress where catastrophic failure occurs.

Displacement (|im)

Figure 4.68 Representative bending Stress-Displacement curves for the 
composites tested.

4.9.2. Mechanical Properties Values

Table 4.28 outlines the Young’s Modulus, E, the matrix cracking stress, Gc, and the 

maximum failure stress, O f, for each composite sample tested. The mechanical 
property values of these composites are determined by several factors:

• chemical integrity of the phases -  degradation at high temperatures
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• density of the composite

• morphology of the composite; defect population size, shape, distribution, 
uniformity of the fibre distribution

• interphase/interfacial relationships

In discussing the values measured for the composites tested the following limitations
must be recognised:

• All specimens from each batch were cut from the same plate, so that any 
variations in the processing conditions of the plate will affect all 6  test pieces. 
While both the green forming and hot pressing stages were performed using well- 
developed long-established techniques, the occasional discrepancy in plate 
quality is unavoidable, especially as the hot pressing work was contracted out. 
Neither time nor financial constraints allowed for the preparation of a series of 
replication plates.

• Degradation of the chemical integrity arises from spontaneous decomposition of 
the phases or by reaction between the component phases themselves or with the 
external gas environment. These reactions almost inevitably involve gaseous 
attack or evolution so that the physical transport of gas to and from the reaction 
site will influence reactivity. Hot pressing was conducted in 27bar N2 pressure to 
minimise gas reactions, but nevertheless the possibility for reaction will clearly 
increase from the centre of the plate to the edge. Inevitably, this introduces a 
variation in homogeneity across the plate. Specimens cut from the centre of the 
plate are then expected to have superior quality and better mechanical properties, 
than those cut from the edge.
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1A1N/P25 Composite

Hot-pressed at 1600°C Hot-pressed at 1700°C

E
(GPa)

Oc

(MPa)
Of

(MPa)

E
(GPa)

oc
(MPa)

Of

(MPa)
127 271 301.6 132.5 149.5 444
154 232.5 465.2 128.2 151.3 316.8

158.7 256.1 271.1 145.9 154.2 507.6
131.9 217.3 221.5 142.4 127.8 269.9
161 346.9 347.1 143.7 145.5 369.7

116.7 226.8 353.6 130.2 149.9 415
617.8

Mean ± Standard Deviation Mean ± Standard Deviation

141.6±18.7 258.4±47.7 326.7±83.8 137.2±7.7 146.4±9.5 420.1±117.7

3.2CaZ/P25 Composite

Hot-pressed at 1600°C Hot-pressed at 1700°C

E
(GPa)

Oc

(MPa)
O f

(MPa)

E
(GPa)

Oc

(MPa)
O f

(MPa)
144.4 250 382.9 84.9 1 2 0 301.8

154.2 281.7 464.9 1 0 0 .6 153.1 360.5

144.7 243.2 625.8 116 152 439.5

146.4 272.4 448 133.3 153.1 630.7

142.5 271.6 475.6 99 145.2 438.5

138.7 253.6 347.4 96.1 153.9 1067.1

152.9 250 484.2

Mean ± Standard Deviation Mean ± Standard Deviation

146.3+5.5 260.4114.6 461.3+88 105+17.1 146.3113.2 539.7+281.2

Table 4.28 Elastic modulus (E), matrix cracking stress (ac), and failure stress (Of) 

measurements for bend samples.
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4.9.2.1. Young’s Modulus

The initial stress-strain behaviour at room temperature is clearly dominated by the 
matrix phase. If no major differences in chemical degradation occur during 
processing and the specimen densities are equivalent, the variation in Emod should not 
be great. The results reflect not only the similarity in this property, but also a high 
precision (low standard deviation) between specimens. The close similarity in the 
Emod values of AIN composite processed at 1600°C and 1700°C points to good 
chemical integrity even after exposure to the higher hot pressing temperature. The 
almost identical Emod values of the 3.2CaZ system at 1600°C suggests that this 
system is also not degraded, but the consistently lower values for 1700°C material 
raises some concern as to the higher temperature stability of the material. However, 
as reported in Section 4.4.3.2, the mass loss observed in the 3.2CaZ composite after 
hot pressing at 1700°C was not significantly greater than in the other systems, 
implying that the phases within the composite remain stable after hot pressing. The 
reason behind the reduction in Young’s Modulus with increasing hot pressing 
temperature remains unclear and requires analysis beyond the scope of this study.

4.9.2.2. Matrix M icrocracking

The onset of matrix microcracking depends upon the ability of the matrix to 
withstand elastic strain, which is controlled not only by the matrix phase itself, but is 
also influenced by the defect population morphology and distribution, especially the 
presence of macro defects, and particularly upon the fibre-matrix bonding properties. 

Both systems show a consistent reduction in oc in raising the processing 
temperatures from 1600°C to 1700°C, significantly outside the standard deviations of 
the results. It is assumed that this reduction is not a result of the macro defect 
structure as this is introduced at the green forming stage and is unlikely to change 
during hot pressing. Preliminary SEM analysis of the fibre-matrix interfaces of the 
composites studied showed the interfaces to be very similar after hot pressing at 
1600°C and 1700°C, (Section 4.8.2.3), however, it is possible that differences do 
exist but confirmation of this would require TEM or HRTEM analysis, which were
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not possible in the present study. The observed loss of matrix strength might 
therefore be influenced by localised fibre-matrix interaction at the interface. This 
supposition is supported by the work carried by Sabouret et al. [233], on comparable 
composite systems densified under identical processing conditions. Using TEM and 
HREM analysis reference [233] observed that the properties of the fibre-matrix 
interface significantly influenced the matrix cracking.

4.9.2.3. Ultim ate C om posite  Fracture

The ultimate fracture strength of the composite is strongly fibre dominated. In 
principle, under simple uniaxial tensile loading where all fibres can be gripped 
equally, the tensile strength of a bundle of parallel fibres will be the sum of the 
individual filaments. In bending, the maximum stress is borne by the extreme outer 
layer of the convex surface. In a continuous fibre composite the strength of the outer 
layer is very dependent upon the fibre distribution. Ideal composite design with 
approximately 1 0  micrometer diameter fibres, is targeted to a uniform distribution 
where the interfibre spacing is much less than the critical flaw size of the matrix 
phase, that is, less than ~30 micrometers for a well densified sintered silicon nitride.

From these considerations the large scatter in ultimate fracture strength is attributed 
to poor uniformity of fibre distribution in the composite. As discussed in Section
4.8.2.1. macrography studies of the hot pressed composites showed that the fibre 
array is often distorted under these conditions, losing the regular architecture of 
straight, parallel filaments. The result is a loss of fibre distribution uniformity 
introducing a large variation in interfibre spacing. Figure 4.69 (a) and (b) illustrate 
typical layered structure of composites studied. The significant feature of this is the 
formation of layers of pure matrix phase of appreciable thickness, which provide 
easy fracture paths, negating the toughening effect of a 1 0  micrometer interspaced 
reinforcing phase.
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$  300p.m

Figure 4.69 T h e la y ered  structure o b serv ed  (a ), a lth ou gh  a poor q u ality  im age, 
the n o n -u n ifo rm  d istr ib u tio n  o f  fib res  is apparent at h igher  
m a g n ifica tio n  (b ).

The present results do not allow a convincing conclusion to be made about the 
effects of sintering temperature or composition. The differences in fracture strength 
of the particular combinations are proportionately large compared with the total 
averages, but all are within the standard deviation values. It is then not useful to 
make absolute comparison between them. Since all combinations involve the same 
fibres in the same volume fraction, the results only demonstrate the need for an 
improved uniformity of structure. To achieve such optimum architecture requires 
rigorous optimisation of all processing steps, as carried out by Sabouret et al [20]. 
Although such developments in processing are beyond the scope of the present study, 
the present results do show that the quality of the composite, and the resulting 
mechanical properties, are very sensitive to composite morphology, and that this is 
eminently engineerable.

4.9.3. Interfacial Shear Stress

The development of transverse matrix cracking with increasing strain allowed an an 
estimation of the interfacial stress, x, to be made, which determines the length over 
which the stress is transferred from the fibres back to the matrix (see Section 

2.5.2.1). Control of x is critical, since by varying x, the prevalent failure mechanism 
and the resultant non-linearity in the stress/displacement plots can be modified.
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Marshall and Evans [234] demonstrated Equation 4.8 to be accurate for application 
to bend tests:

T — ■° c R

4dVf
1 4,8

EmVm,

where, oc is the matrix cracking stress (the stress at which the stress/displacement 

curve deviates from linearity), R is the fibre radius, d is half the average crack 
spacing, E is the Young’s Modulus and V is the volume fraction of the component 
(matrix or reinforcement). Figure 4.70 illustrates the typical micro-crack spacing 
observed, with average d = 1.75x10"* m. Following equation 4.7, a value of 1.32MPa 

for x, was obtained for a composite typical of those in the present study, which is low 

compared to those measured for similar composites [235] [236].

Figure 4.70 Matrix micro-crack spacing behind the fracture surface.

4.9.4. Crack Growth and Failure Behaviour

In unreinforced ceramics the growth of a single flaw and its propagation as a crack 
can result in total failure. The improvement in the composite failure behaviour over 
the monolithic ceramic was investigated through comparative tests on three samples
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of a commercial silicon nitride ceramic, which were machined and tested following 
the same procedure as the composite samples. The presence of fibres clearly 
influences the growth and propagation of cracks. Figure 4.71 illustrates the brittle 
nature of these monolithic ceramic samples, compared to the composite samples.

Displacement (¿im)

Figure 4.71 The brittle fracture o f  a com m ercial Si3N 4 m onolith ceramic compared to 
typical com posite behaviour o f  samples tested.

Microscopic evaluation of the fractured specimens provides insight into the fracture 
mechanisms. At distances remote from the fracture surface, Figure 4.72(a) clearly 
illustrates the crack-bridging by the fibres in the composite during the matrix micro­
cracking stage. During the fracture process itself, Figure 4.72 (b) shows that the 
initial fracture is transverse, and brittle with no fibre-matrix debonding or fibre pull- 
out. In a small number of cases the curves show this first crack as a partial fracture 
at lower stresses before complete failure of the specimen (3.2CaZ-hot-pressed at 
1600°C in Figure 4.68).
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( a )  ( b )

Figure 4.72 Typical periodic matrix micro-cracking (a) follow ed by clean fracture (b).

Optical microscopy of failed test pieces also illustrates ‘step-like’ growth after the 
initial crack, suggesting delamination between fibre and matrix and dispersion of the 
crack path along the fibre surface Figure 4.74 (a) and (b). All specimen fracture 
surfaces showed extensive cracking along the fibre orientation away from the 
fracture surface. In most cases the delaminated surfaces are irregular through the 
fracture surface but in some cases show a distinct fracture step from the convex 
bending surface before becoming more typically irregular. This evidence coincides 
with the early, partial failure and sudden stress-drop observed in the load- 
displacement curves (Figure 4.68) and almost certainly results from poor fibre 
distribution in the composite leading to a plane of weakness (only ceramic matrix 
phase present) as explained earlier, and thus premature crack propagation in the 
micro-cracking stage.

Again the comparison between composite and monolith crack growth and failure 
behaviour can be seen in the respective optical microscope images. Figure 4.73(a) 
shows the crack deflection by the fibres in a composite sample and Figure 4.73 (c) 
showing the growth of a crack resulting in total, failure in a monolithic ceramic 
sample.
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Figure 4.73 Typical crack growth in  the com posites samples (a) and final fracture 
surface (b) in com parison to the brittle behaviour o f  the monolithic samples 
(c).

4.9.5. Matrix-Fibre Interface

Matrix-fibre interfacial mechanical behaviour can be seen from the extent of fibre 
pull-out in the fracture surfaces and the regular transverse cracking behind the 
fracture surface. Figure 4.74 (a) and (b) show the typical fibre pull-out observed in 
the samples tested, which is not extensive, suggesting strong matrix-fibre bonding. 
This confirms results from many authors [237][238] [239] who then applied fibre 
coatings to weaken the matrix-fibre interface. Distinguishing between the relatively 
small fibre-matrix debonding (Figure 4.74 (b)) and the fairly massive longitudinal 
cracking observed in Figure 4.74 (a) implies that while the matrix and fibre are 
strongly bonded prior to the application of the load and during the matrix micro­
cracking, the propagation of the major crack until complete failure is still preferred 
along the direction of the fibres.

219



Figure 4.74 Typical fracture surfaces with little fibre pullout.

4.9.6. Summary of Results

The densities and average mechanical properties of the composites studied are 
summarised in Table 4.29. The composite failure stress, for each composition, 
increases with increasing final density, corresponding well with previous studies 
carried out on similar systems studied [197][240]. Within error limits, the Young’s 
modulus changes little with increasing density for each composite composition.

The important engineering property for the composite is however, the avoidance of 
brittle failure in the initial elastic region. The design stress limits for components in 
service will ensure that the material remains within the elastic stress range for normal 
operation. What is important then, is that failure by brittle fracture in the elastic 
range is eliminated so that deviations from normal stress conditions do not lead to 
catastrophic failure. All of the composites tested in the present series show an 
extensive range of matrix microcracking above the elastic region, confirming the 
ability of the materials to confer a degree of toughness and defect tolerance to the 
matrix ceramic. Thus, the observed failure mechanisms and microstructural analysis 
along with the comparative values, demonstrate that the present composites have
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typical composite failure behaviour whose phases are not degraded during high 
temperature processing.

C om posite  

H ot-P ressin g  

T em p. & 

C om position

C om posite

D ensity

(% T D )

M atrix

D ensity

% T D

V olu m e

%

F ibre

E  (G Pa) Or (M Pa) oc (M Pa)

1600°C

1A1N/P25

99.81 99.75 36.51 141.6±9.5 326.7±84.2 258.4+47.7

1700°C

1A1N/P25

99.98 99.97 38.65 137.2±7.7 420 .1±117.7 146.4±18.7

1600°C  

3.2CaZ, P25

97.64 96.72 40.33 146.3±5.5 461.3±88 260.4±14.6

1700°C

3.2CaZ/P25

97.85 97.85 38.22 116±16.8 539.7+281.2 146.2±5.5

1700°C

Si3N4/P25* '

211+4 664±88 174±44

1600°C

S i3N 4/P 2 5 !|!

207±7 558±37 129±7

1700°C

Si3N4/P25*

200±15 430+20 140±20

Table 4.29 Summary o f  com posite sam ple densities and average mechanical properties 
(±  standard deviation).

*- optimised silicon nitride composite fabricated and tested by Sabouret [10]. 

optimised silicon nitride composite fabricated and tested by Olivier [11],
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5. CONCLUSIONS, CONTRIBUTIONS AND PROPOSED 

FURTHER RESEARCH

5.1. Conclusions

The identification of sinter aid compositions which allow densification of the 
candidate matrix phases at lower temperatures by liquid phase sintering to greater 
than 95% Theoretical Density (TD) was achieved. Selected matrix compositions 
proved to be suitable for use matrix phases in the fabrication of carbon fibre 
reinforced silicon nitride compositions.

5.1.1. Materials development

• Compositional engineering of the liquid phase formed during sintering of 
monolithic SÎ3N4 led to a reduction of up to 150°C in the sintering temperature 
required for near-full densification (>95%TD) compared to the reference YAG 
sinter additive composition.

• Densification of green body SÎ3N4 forms with varying additive concentration 
within Y2O3 + AI2O3 + AIN series showed that the addition of lwt% AIN was 
optimum for good densification at lower temperatures, reaching near-full 
densification at 1450°C. Within the CaZ series, the addition of just lwt%CaO 
(corresponding to 3 .2 CaZrC>3) was beneficial for densification achieving near-full 
densification at 50°C lower than the reference material. In both series of 
compositions the Al20 3  content was a crucial factor in final densification 
achieved.

• Chemical stability of these novel materials was maintained during sintering.
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• The reaction sequences occurring during sintering of the AIN series and the CaZ 
series materials followed work carried out in parallel by Bandyopadhyay et al. 
[204] and Van Rutten [211], respectively.

• Densification of both series of compositions was seen to occur by sequential 
filling of smaller pores first, observed using SEM. Homogeneous densification 
was also observed, accompanied by the development of a fine-grained 
microstructure.

• a- to P-Si3N4 transformation was seen to accompany densification at each 
sintering temperature for each composition within the IAIN series. At lower 
temperatures (<1600°C) enhanced densification of the sample 3.2CaZ occurred 

with retention of the a-Si3N4 structure.

• Sample porosity and percent residual a-Si3N4 were the dominant factor affecting 
the hardness of the sintered materials in both series. Hardness values in the range 
HV5 1452-1715 were measured for the AIN series of materials. The presence of 
ZrC>2 reduced the hardness of the samples in the 3.2CaZ resulting in hardness 
values in the range HV5 1338-1468.

• The crack type formed around the indent during hardness testing was 
intermediate between Palmqvist and median type. The Shetty equation for 
fracture toughness calculation was selected to best suit the present materials. The 
Kic values calculated here compare well to those calculated for similar systems 
(4-7MPa.m,/2).

• Preliminary oxidation tests on the selected 3.2CaZ material showed that the
formation of easy-to-oxidise Zr-O-N phases has been avoided. The material

• « • 2 
sh o w ed  g o o d  o x id a tio n  resistan ce  (o x id a tio n  rate con stan t o f  1.53 X 10‘

mg2/cm4.min at 1400°C).

• Using the selected novel matrix phases, IAIN and 3.2CaZ, successful fabrication 
of Si3N4/C composite green bodies by pressure casting was achieved.
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• A reduction of 100°C hot-pressing temperature required for full density was 
achieved for both composite compositions. The matrix and fibres in these 
composites had excellent thermal and chemical stability during the processing 
conditions. Under preliminary 3-point bend tests these composites exhibited 
'composite failure behaviour'.

• Fibre-matrix interactions were successfully limited in the composites densified 
by gas-pressure and pressureless sintering. However, constrained sintering 
caused by the presence of the fibres occurs, resulting in less than full theoretical 
density.

5.1.2. Processing Developments

• Incorporation of water-sensitive powders, AIN and CaO was successfully 
achieved by using an AIN water-resistant powder and adding CaO as its zirconate 
CaZrOa.

• Matec™ studies proved a dependable method for analysing suspension 
behaviour.

• Green body cracking was prevented by using a casting pressure of 7 bar for 10 
minutes followed by very slow pressure release, and the application of a mould 
release agent. Application of a vacuum for 10-15 minute completely dried the 
surface of samples in the casting mould. Controlled drying helped prevent 
warping.

• Homogeneous distribution of fibres in the composite material was seen to be 

essential for good densification.
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• Surrounding the samples with a sinter powder bed prevent volatilisation of 
gaseous products and placing a graphite piece above a layer of powder bed 
resulted in flat sintered monolithic samples.

• The use of graphite pieces in pressureless and gas-pressure sintering of the 
composite materials prevented warping, however, due to differences in the CTE 
between the matrix and fibre, cooling cracks were observed.

• Good sintering temperature control was maintained by using pyrometric contol 
with a window cleaning device, along with constant, regular calibrations and 
temperature checks using Philips Temperature Control Rings.

5.2. Contributions

• The present study has provided an insight into the densification behaviour of 
novel Si3N4-based ceramics.

• These novel Si3N4-based ceramics exhibit excellent potential as matrices for the 
fabrication of long fibre reinforced ceramic matrix composites without the need 
for expensive hot-pressing.

5.3. Proposed Further Research

The following research and development steps are proposed to contribute to the 
present field of study.
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5.3.1. M onolithic Si3N4

• An extensive analysis, using Transmission Electron Microscopy, of the grain 
boundary phases formed during sintering of the material studied.

• An investigation into the development and composition of Zr-rich phases 
observed.

5.3.2. SÌ3N4/C Fibre Composite

• A systematic processing investigation using various combinations of fibre 
wetting agents, fibre volume, types of fibre (SiC fibres and coated fibres are 
suggested).

• Investigation into varying the sintering parameters, temperature, pressure, heating 
rate to enhance composite densification.
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