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ABSTRACT

Machinability assessment of two high strength materials were earned out using 

uncoated and coated carbide tool inserts The materials investigated were EN24T 

steel (290 BHN) and inconel 718 (415-444 BHN) The objectives of these 

investigation were to generate cutting data m relation to the machining responses 

i e , tool life, surface roughness, and cutting forces The cutting tests were carried 

out using one-variable-at-a-time and design of expenments

For one-variable-at-a-time experiment, cutting forces and tool life were measured 

In these tests, the cutting variables i e , cutting speed, feed rate, and depth of cut 

were varied to study their effects on the tool life and cutting forces The different 

tool life exponents of the extended Taylor’s tool life equation were determined 

graphically With the design of expenments, the combined effects of the cutting 

vanables were investigated on the machining responses

The experimental data based on the design of expenments were analyzed by the 

response surface methodology, statistical regression packages, and sequential 

estimation techniques Various mathematical models were developed using these 

techniques The adequacy of each model was judged by statistical analysis

Using the mathematical models of different responses, a computerized machinability 

data base system was developed to facilitate the optimum selection of cutting 

parameters The selection of cutting parameters is applicable for EN24T steel and 

inconel 718 only However, the data base could be extended to incorporate different 

work materials and tool combinations
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N O M EN C LA TU R E

a augment length

b matnx of the parameter estimates

BHN Bnnell hardness number

P parameter to be estimated

d depth of cut (mm)

6 experimental error

f feed rate (mm/rev)

Fx axial (feed) force

Fy radial force

f 2 tangential force

F resultant cutting force

KT crater depth (mm)

M Pa mega pascals

H parameter vector known from prior information

n number of observations

ni speed exponent

n2 feed exponent

n 3 depth of cut exponent

N unit of force (newton)

P number of parameters

covariance matrix of the errors

P covariance matnx of estimates

Q metal removal rate (cm3/min)

Ra observed arithmetic average surface roughness (/zm)
A

Ra predicted surface roughness (/xm)

t t- distnbution statistics

T tool life (minutes)
A
T predicted tool life (minutes)

T charge am plifier sensitivity

V cutting speed (m/min)

v b b average width of flank wear (mm)

-X-



VBn width of notch wear (mm)

\p  covariance matrix of nfi
x matrix of independent machining variables

xT transpose of x

(xTx ) 1 inverse of the matnx (xTx)

x, coded variable (speed)

x2 coded variable (feed)

x3 coded variable (depth of cut)

y observed logarithmic response (tool life, surface roughness, or

cutting force)

y predicted response in logarithmic scale

(y - y) residuals

y (n x 1) vector of observations on y
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INTRODUCTION

The basic requirements for the automation of the process planning and numerical 

control programming functions in computer integrated manufacturing (CIM) systems 

are the machinabihty data base systems The data base systems provide the 

information needed for the automatic selection of machining data and this has 

become an important component in the implementation of CIM With the growing 

need for industrial production automization and increasing use of expensive machine 

tools, the need of industry for actual and optimized data is increasing so that these 

machine tools can be utilized and used economically The increased application of 

computer aided manufactunng (CAM) to machining operations by the use of CNC 

machine tools has enhanced the need for the development a machinabihty data base 

systems

The need for selection of machine tools, the determination of optimized cutting data 

and the selection of tools and cutting materials are mam problems in planning 

machining conditions Many researchers in this regard have suggested a 

machinabihty data base systems which will provide information needed for the 

automatic selection of machining data The purpose of the data base system is to 

generate the recommended cutting speed, feed rate, and depth of cut using an 

optimization algorithm

The main objectives of this research study are

1— Generation and analysis of cutting test data for high strength EN24T steel of

hardness 290 BHN

CHAPTER 1
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2— Generation and analysis of cutting tests data for a nickel base super alloy, 

inconel 718

3— Development of mathematical models for steel and inconel, using different 

statistical regression model building techniques

4— Development of a computerized machinabihty data base system

The work programme of this project is outlined in the following diagram

Machinabihty Studies /  Data Base Systems

Work-material

Experimental
investigation

- Cutting Tool

I
Steel EN24T 
(290 BHN)

One-vanable-at-a-time

- Cutting force
- Tool life

- Uncoated carbide

Design of experiments

- Cutting force
- Tool life
- Surface finish

I
Nickel-base Alloy 

(Inconel 718)

One-vanable-at-a-time

- Cutting force
- Tool life

- Uncoated carbide
- Coated carbide

Design of experiments

- Cutting force
- Tool life
- Surface finish

- Cutting T ool Uncoated carbide - Un coated carbide
- Coated carbide

Model “ Regression by ordinary least square - Regression by ordinary least square
building - Statistical regression techniques - Statistical regression techniques

- Sequential estimation - Sequential estimation

Data Base Output (Recommended cutting conditions)



Chapter 2 titled literature survey gives a general introduction to nickel base super 

alloys and their applications It also covers the literature survey of the following two 

main areas i e , 1) high strength materials, focusing mainly on the machinability of 

inconel and 11) machinability data base systems

While Chapter 3 on the machinability of nickel base super alloys, gives a general 

discussion on the machinability assessment and the factors affecting machinability 

The machinability parameters 1 e tool life, surface roughness, and cutting forces 

generally investigated in the machinability of a material are discussed Also, the 

different cutting tools and their application in relation to the turning of inconel have 

been discussed

The development of machinability models are presented in Chapter 4 It includes an 

analysis for developing mathematical models using response surface methodology 

The different regression model building techniques i e , i) backward elimination, 11) 

stepwise regression, 111) forward selection, and i v )  all possible subset regression for 

developing mathematical models are also discussed

Also, another different technique known as, sequential estimation technique, which 

can be used for building model equations is also discussed in this chapter

The expenmental facilities are descnbed in Chapter 5, in which the expenmental 

set-up used for the cutting tests are outlined These include the descnption of Kistler

3-component dynamometer, surface roughness tester, and tool maker’s microscope 

The chemical and mechanical properties of the work matenals used for the tests are 

presented The cutting tool matenal and tool geometry are also descnbed

Chapter 6 covers the experimental results based on one-vanable-at-a-ti me for 

EN24T steel and inconel 718 The cutting forces and tool life results are presented 

and analyzed The effects of speed, feed, and depth of cut on cutting forces and tool 

lives are discussed Variation of the cutting forces with respect to speed, feed, and 

depth of cut are also shown in different plots The range of the cutting vanables are 

established from these figures which have been used as a guide line for the design 

of expenment in the following chapter
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Also in Chapter 6, the tool wear of uncoated carbides are investigated when turning 

EN24T steel and inconel 718 Moreover, wear of coated carbides are studied when 

turning inconel 718 and compared with those of the uncoated carbide inserts for the 

same machining conditions Finally, the tool life exponents for velocity, feed, and 

depth of cut in the extended Taylor’s tool life equation have been determined 

graphically and presented

In Chapter 7, the experimental results based on the design of experiments are 

presented for EN24T steel and inconel 718 Tool lives, surface roughness, and 

cutting forces have been measured/recorded when the uncoated carbide inserts were 

used to machine both steel and inconel In the case of turning of inconel 718 with 

coated carbide inserts, only the tool life and surface roughness have been 

investigated and recorded Mathematical models of tool life, surface roughness, and 

cutting force based on the response surface methodology are given Response 

contours of tool life, surface roughness, and cutting force are also shown in 

different plots Dual response contours of metal removal rate and the different 

responses are also shown

Chapter 8 uses the statistical regression model building techniques and sequential 

estimation technique outlined in Chapter 4 and analyses of the experimental results 

of Chapter 7 Model equations obtained by the regression model building techniques 

have been presented in this chapter The criteria used in the selection of machining 

variables are also discussed Moreover, the experimental tool life data set of Table 

7 2 has been analyzed using the sequential estimation technique The model equation 

obtained in the case of EN24T steel has been compared with that obtained by the 

multiple linear regression analysis The advantages of sequential estimation as a 

model building technique for the development of machmabihty data base systems are 

also discussed

A machmabihty data base system has been developed in Chapter 9, using the results 

and analysis of Chapters 7 and 8 In this chapter various types of machmabihty data 

base systems are discussed The data base system that has been developed in this 

chapter, is applicable for a combinations of EN24T steel and uncoated carbide, 

inconel 718 and uncoated carbide, and inconel 718 and coated carbide tools only
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Depending on the user’s selection (input) of operation, work material, tool material 

and a given tool life, the system provides an output where it displays a set of 

recommended cutting conditions (speed, feed, depth of cut) Also, it calculates the 

surface finish to be achieved and the power requirement

Finally, conclusions and recommendations for further work have been discussed in 

chapter 10 These are in relation to the machmabihty assessment of the nickel base 

super alloys and the development of machmabihty data base systems



CHAPTER 2

LITERATURE SURVEY

2.1 Introduction

A reasonable amount of work has been reported so far with regard to the machining 

of high strength materials But the literature in the areas of inconel is yet very much 

limited The following review is based on the turning of high strength materials 

especially with regard to turning of inconel 718

The use and advantages of high strength materials have been highlighted followed 

by a review of literatures related to our work Finally, some works have been 

reported on the machmabihty data base systems

2.2 High Strength Materials

The difficult to machine materials are often referred to as space age materials, or 

high strength temperature resistant (HSTR) matenals, or corrosion and oxidation 

resistance matenals [1] These difficult to machine materials have high hardness, 

high strength at high temperature, an affinity to react with the tool matenals, and 

low thermal diffusivity These give nse to higher cutting temperature The high 

strength temperature resistant matenals are alloys of nickel, nickel-iron or cobalt 

that exhibit a combination of mechanical strength and resistance to surface 

degradation generally unmatched by other metallic compounds These materials are 

usually referred to as super alloys



The primary uses of these alloys are m, (1) aircraft gas turbines disks, combustion 

chambers, bolts, castings, shaft exhaust systems, blades, vanes, etc , (11) steam 

turbine power plants bolts, blades, stack gas reheaters, (111) reciprocating engines 

turbo chargers, exhaust valves, hot plugs, etc , ( iv )  metal processing hot work tool 

and dies, casting dies, (v) medical applications dentistry uses, prosthetic devices, 

(vi) space vehicles, (vn) heat-treating equipment, (vm) nuclear power systems, ( ix )  

chemical and petrochemical industries, (x) pollution control equipment, and (xi) coal 

gasification and liquefaction systems These super alloys (Ni, Fe-Ni, Co-base) are 

further subdivided into wrought, cast, and powder metallurgy alloys Figure 2 1 

shows a classification of these alloys

Nickel base alloys contain at least 50% nickel whereas in nickel-iron base alloy, 

nickel is the major solute component In addition, deleterious elements such as 

silicon, phosphorus, sulphur, oxygen, and nitrogen must be controlled through

SUPER ALLOY

IRON BASENICKEL BASE

~ —  In con el ( 5 8 7 , 5 9 7 ,6 0 0 , 6 0 1 , 6 1 7 ,  

6 2 5 , 7 0 6 , 7 1 8 , X 7 5 0 )

—  N im o m c ( 7 5 , 8 0 A ,9 0 ,1 0 5 ,1 1 5 ,  

2 6 3 ,9 4 2 ,P E  1 1 ,PE 16,P K  3 3 )

—  R en e ( 4 1 , 9 5 )

—  U d im et ( 4 0 0 ,5 0 0 ,5 2 0 ,6 3 0 ,  

7 0 0 ,7 1 0 , 7 2 0 )

—  P yrom et 8 6 0

—  A stro lo y

—  M - 2 5 2

H a ste llo y  (C - 2 2 ,G -3 0 ,S ,X )

—  W aspaloy

—  U nitem p A F 2-ID A 6

—  C abot 2 1 4

—  H aynes 2 3 0

_  In coloy ( 8 0 0 , 8 0 1 , 8 0 2 ,8 0 7 ,  

8 2 5 , 9 0 3 , 9 0 7 , 9 0 9 )

—  A - 2 8 6

—  A llo y  9 0 1

—  D isca lo y

—  H aynes 5 5 6

—  H - 1 5 5

—  V -57

C O B A L T  B A S E

— Haynes 188

— L-605

— M A R - M 9 1 8

— M P 35N

— MP159

— S te llile  6B

—  E lg ilo y

Figure 2.1 Classification of super alloys



appropnate melting practices Other trace elements such as selenium, bismuth and 

lead must be held to a very small (ppm) levels in critical parts Many wrought 

nickel base super alloys contain 10-20% chromium, up to about 8% aluminium and 

titanium combined, 5-15% cobalt, and small amount of boron, zirconium, 

magnesium and carbon Other additives are molybdenum, niobium, and tungsten 

Chromium and aluminium are also necessary to improve surface stability [2]

The super alloys are suitable for high temperature application Nickel base alloys, 

which are the most suitable against oxidation, may be used up to temperatures of 

1010 °C The cobalt alloys exhibit the greatest strength at temperatures in the range 

of 980 °C The iron base alloys are not as effective as the nickel base and cobalt 

base alloys with respect to oxidation stability and high temperature strength The 

cobalt high temperature alloys have machining characteristics similar to the nickel 

base alloys Two types of heat treatment are usually recommended on bars, 

forgings, and flash welded rings of nickel base super alloys [3] These are i) 

solution heat treatment (annealed), and 11) precipitation heat treatment (aged)

In the solution heat treatment process, the specimen is heated to a temperature 

within the range 927°C-1010°C (1700°F-1850°F), holding at the selected temperature 

within +  14°C (±25°F ) for a time commensurate with the cross-sectional thickness

-8-



and cooling at a rate equivalent to air cool or faster This leads to hardness of ^  

*  12-15

In the precipitation heat treatment (aged) process, the specimen is heated to a 

temperature within the range of 718°C-760°C (1325°C-1400°F), holding at the 

selected temperature within +  8°C ( ±  15°F) for approximately 8 hours, cool at a rate 

of 55°C ±  8°C (100°F ±  15°F) degrees per hour to a temperature within the range 

of 621°C-649°C (1150°F-1200°F), holding at the selected temperature within ±8°C  

(+15°F ) for approximately 8 hours and air cool Instead of 55°C (100°F) degrees 

per hour cooling rate to 621°C-649°C (1150°F-1200PF ), the product may be furnace 

cooled at any rate provided the time at 621°C-649°C (1150°F-1200°F ) is adjusted 

to give a total precipitation heat treatment time of approximately 18 hours This 

usually leads to hardness of Rc «  41-43 The heat treatment phenomena is shown 

in Figure 2 2

Among the commercially available super alloys, 718 stands out as the most 

dominant alloy in production It accounts for as much as 45% of wrought nickel 

based alloy production and 25% of cast nickel based products [4]

2.3 Machinability Assessment: High Strength Materials

The following review is in relation to the tool life, surface finmsh, and cutting 

forces obtained during turning of high strength temperature resistant materials with 

special emphasis on inconel 718

Shaw et al  [5] observed from their experiments that super alloys strain harden 

during machining They noticed that a chip being cut from such a alloy had red hot 

edges while the centre of the chip was cooler They concluded that this high edge 

temperature is a consequence of a yield criterion which allows the edge to yield at 

a lower stress than the centre, the total effect therefore favouring a greater tendency 

to form large welds and heavy pullouts



Shaw and Nakyama [6] have discussed in detail the important aspects involved in 

machining difficult to machine materials They have recommended that for 

machining high strength temperature resistant materials, tool should be refractory 

to avoid plastic flow, have high wear resistant to avoid wear and have good bnttle 

fracture resistance to avoid chipping

Taraman [7] developed mathematical models (1st and 2nd order) for cutting force, 

surface roughness, and tool life in terms of cutting speed, feed, and depth of cut 

He earned out the tests under dry cutting conditions using tungsten carbide 

disposable inserts having a nose radius of 0 8 mm The workpiece was SAE 1018 

cold-rolled steel, 100 mm in diameter, and 600 mm in length He developed the 

following first order equations based on the expenmental results

F c = 560 V'0116 f 755 d0 665

R = 4626 V~°363 f l 1371 d ° m5 (2 -Da *

T = 24949 K"1406 y^0 248 d"0177

These equations indicate that a reduction in all the investigated outputs (cutting 

force, surface roughness, and tool life) is achieved with the increase in the cutting 

speed However, as the feed increases, the surface roughness and cutting force 

increase while the tool life is reduced An increase in the depth of cut reduces tool 

life, however, it causes an increase in surface roughness and cutting force Also it 

should be noted that the feed effect is dominant on surface roughness and that the 

tool life is affected most by cutting speed, less affected by feed and least affected 

by depth of cut

Smart and Trent [8] investigated the temperature distnbution in the tools used to 

machine nickel alloys They observed that while machining nickel base alloys, the 

tool temperatures were much higher than in conventional steels but the temperature 

gradient was lower An example of machining cast iron and Nimonic 75 at 10 

m/min showed maximum temperature of 320 °C and 800 °C respectively Moreover, 

the tip of the cutting edge was the hottest location while machining nickel alloys
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Lee et al [10] and Trent [11] have discussed the depth of cut notch wear 

mechanisms of ceramic cutting tools when machining super alloys They pointed out 

that as the chips become segmented with a typically ragged appearance, an 

interrupted seizure and breakage process cause a pull-out of the tool material For 

good resistance against this type o f wear, toughness of the tool as well as a low 

reactivity against the work material is required

Kramer and Hartung [12] have determined the solution wear rates of five different 

carbide tools (coated and uncoated) in the turning of two different nickel base 

alloys A series of cutting tests earned out on inconel 718 (255 BHN) and inconel 

X  (282 BHN) at a cutting speed of 135 m/min, feed of 0 127 mm/rev, and depth 

of cut of 1 27 mm using tools with 0 79 mm nose radius They observed that the 

test results were in good agreement with the relative wear rates predicted from the 

thermochemical data

The solution wear was the pnmary wear mechanism in the cratenng of the carbides 

which limits its wear resistance However, they have suggested that unless more 

adherent coatings can be produced, coated tools may offer little benefit over the 

uncoated tools Titanium carbide and hafnium carbide proved to have substantially 

greater wear resistance than tungsten carbide

Wilson and El-Baradie [13] earned out a series of turning tests on vitallium, a 

cobalt base alloy, to investigate cutting forces, tool wear and surface finish Carbide 

and cubic boron nitride (CBN) inserts having three different rake angles (-6°, 0°, 

+6 °) were used They noticed very high cutting forces up to 1000 N at a feed rate 

of 0 08 mm/rev and a depth of cut of 0 25 mm Cutting tools with the positive rake 

angle resulted in the smallest cutting forces The wear of carbide tools with negative 

rake angle and low cutting speed (< 2 0  m/min) was a combination of adhesive, 

abrasive, and diffusive wear In case of CBN inserts, flank wear curves did not 

show the three distinctive zones (initial rapid wear, steady wear, and final abrupt 

wear) The surface finish produced by the carbide tools improved when the cutting 

speed was in excess of 30 m/min The performance of CBN tools with regard to the 

surface finish was extremely good
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Research was conducted by Huet and Kramer [14] and Wnght and Chow [15] to 

find the relationship between the cutting speed and temperature of the cutting edge 

during machining of nickel alloys such as inconel 718 and mmomc 75 They noticed 

that at low speeds, the rate of increase of temperature of the cutting edge was very 

high However, as the speed increased, the gradient was found to decrease

Baker [16] reported that Kennametal Inc , USA has developed a new cutting tool 

material (Kyon 2000) that consisted of a sialon composition and was capable of 

machining nickel base alloys at higher cutting speeds and higher feed rates than 

those of ceramic tools Moreover, its toughness was higher than the conventional 

ceramics

Vigneuaera/ [17, 21]andBhattacharyyaeffl/ [18] recommended ceramic or cubic 

boron nitride for machining inconel 718 However, they noticed that cubic boron 

nitride tools developed notch wear at the cutting edge because of its low toughness 

and low thermal diffusivity

Komandun et al [19] mentioned that the nickel base alloys have properties that 

would cause a transition from a continuous chips to segmental chips as the cutting 

speed was increased They thought that the segmental chips were encountered from 

the workpiece that has poor thermal properties, high hardness and/or hexagonal 

closed packed crystal structure

Komandun and Schroeder [20] noticed from their machining test of inconel 718 

(400 BHN) that chips formed changed with the cutting speed Al lower speed ( <  30 

m/min), the chips are continuous and coiled while shear localization of the chip 

began at speeds between 30 to 90 m/min and the segments were joined together in 

long coils At speeds above 150 m/min, isolated segments of chips were formed

Sadat [22] examined surface charactenstics of machined inconel 718 (38 Rc) using 

natural and controlled contact length at vanous cutting speeds under dry and 

lubricated conditions Four levels of cutting speed (6 6, 18, 36, and 60 m/min) and 

a constant feed rate (0 01 mm/rev) were selected for the test The machining tests 

were earned out with cemented carbide tools He observed that for a given cutting
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speed, both the tangential and feed forces were lower under controlled contact 

length of 0 15 mm as compared to 0 39 mm natural contact length These tool 

forces decreased with an increase in cutting speed He also observed that the effect 

o f lubricants on the tool forces was negligible at high cutting speed and the forces 

decreased with the increase of cutting speed

Bhattacharyya et al [23] investigated tool lives when machining inconel 718 (504 

BHN) and 901 (407 BHN) with silicon carbide whisker reinforced A120 3 composite 

ceramic tool at various speeds (150, 215, and 300 m/min) and compared the results 

with those obtained from sialon tools In the initial tests, feed and depth of cut were 

kept constant at 0 18 mm/rev and 2 5 mm respectively A second series of 

machining tests were carried out using a variable depth of cut (4 to 2 mm) Speeds 

of 215 and 300 m/min were used with a feed of 0 18 mm/rev All the cutting tests 

were carried out with flood coolant

They observed that whisker reinforced ceramic tools gave appreciably longer tool 

lives at all speeds when machining inconel 718 but this was not true with inconel 

901 Sialon exhibited lower wear with 901 Flank wear rate increased and 

consequently the tool lives decreased as the cutting speed increased from 215 m/min 

to 300 m/min although the performance of sialon on inconel 718 was very poor 

giving an even worse performance than the whiskered ceramic on inconel 901 at this 

higher speeds At a constant depth of cut, notching was responsible for tool rejection 

but at variable depth of cut flank wear was the cause of tool failure

Zhonghn [24] has mentioned the development of a new ultra fine grain cemented 

carbide tool in a cemented carbide company in China The wear resistance of the 

tool, as he reported, has increased by 3 - 10 times the conventional cemented 

carbide tool when machining difficult to machine materials

Klaphaak [25] of Ovomc Synthetic Materials Company has outlined that the coating 

materials that prolong tool life are high hardness, smoothness, and a controlled 

tendency to diffusion with the work material The Company has developed an 

amorphous boron carbide coating which proved to be effective in machining of 

various super alloys



Mital and Mehta [26, 27] generated surface finish data for a wide variety of metals 

and alloys (aluminium alloy 390 (71 5 BHN), ductile cast iron (183 BHN), medium 

carbon leaded steel 10 L45 (197 BHN), medium carbon alloy steel 4130 (195 BHN), 

and inconel-718 (340 BHN)) for a wide range of machining conditions A 

randomised complete block factorial design was used with four levels of feed rates 

(0 0508, 1 27, 0 203, and 0 3048 mm/rev), and three levels of tool nose radii 

(0 794, 1 190, and 1 587 mm) Three levels of cutting speeds (22 9, 30 5, and 38 1 

m/min) were used for machining test of inconel They developed predictive surface 

roughness model for inconel and was given by

R = -15 11 - 5 06(r) + 157(V *fl + 19 62(r*/> -  0 95(K *r */)
(2.2)

- 761 ln(# + 149 exp(r) -  0 3 6 ^

The equation was found to be non-linear and in addition to the main effects, the 

interactive effects on surface roughness were also highly significant

Dontamsetti and Fischer [28] investigated the factors affecting surface roughness in 

finish turning of grey cast iron (195 BHN) using uncoated tungsten carbide inserts 

Four levels of cutting speed and feed rate, two levels of nose radius and three levels 

of tool wear were used as independent variables They observed that the speed, feed 

and nose radius had a significant affect on surface roughness Also, interactions 

between tool wear and each of the other three variables were highly significant

Kitagawa et al [29] have investigated the flank wear characteristics of tungsten 

carbide tools m turning plain carbon steel without a built up edge by measuring 

temperature, normal stress, and wear rate on the flank wear land The characteristic 

equation for crater wear which was derived from an adhesive wear model was 

applicable to descnbe the flank wear as well The equation was given by

dW = C exp (-A ) (2.3)
ot dL 0r
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where W is the wear volume per unit area of the worn surface, L  is the wear 

distance, ax is the normal stress on the worn surface, 0t is the absolute temperature 

in Kelvin, and C and X are the characteristic constants depending on the 

combination of the tool and work material

Ohtani and Yokogawa [30] have investigated the wear mechanism of the cubic boron 

nitride (CBN), ceramic and carbide tools and the cutting forces encountered when 

turning tool steel having several level of hardness ranging form 18 R,. - 60 Rc Three 

levels of cutting speeds (100, 150, and 200 m/min), a constant depth o f cut of 0 2 

mm, and a feed rate of 0 1 mm/rev were used under dry cutting condition They 

observed that the life span of carbide tools decreased as the workpiece hardness 

increased, while the life span of CBN and ceramic tools showed the opposite results 

The mode of tool failure for CBN and ceramic was abrasion wear by hard alloy 

carbide particles contained in the workpiece The increasing rates of cutting force 

components against flank wear were slower for carbide tools than for the other tool 

They concluded that the stress distributed on the worn flank face was lower in 

carbide tools

Focke et al [31], Tan [32], Oishi et al [33], Iijima et al [34], Masuda et al [35], 

and Takeyama [36] studied the wear of cutting tools when machining nickel base 

alloy They all have reported the formation of notch wear which was a problem for 

the tool failure

Enomoto et al [37] tested the effect of work material hardness on the life of CBN 

cutting tool in the turning of chromium-molybdenum steels They found that the 

CBN tool indicated the shortest tool life in the cutting of Cr-Mo steels when the 

hardness was low In the case of carbide tool, it exhibited shorter tool life with the 

increase of work material hardness

Focke et al [38] have reported excessive flank wear with time, when turning super 

alloys (Inconel 718, Rene 95) with cemented carbide tools at recommended cutting 

speed Also, they observed crater formation on the top rake with its maximum depth 

close to the cutting edge When attempting to machine with carbides at faster than 

the recommended speed on these super alloys, the rate of depth of crater was found
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to move toward the cutting edge

Richards and Aspinwall [39] have presented a comprehensive review o f literature 

on the use of ceramic tools for the machining of nickel based alloys They have 

concluded that CBN, sialon, and whisker reinforced alumina have offered better 

overall performance than either conventional or mixed alumina compositions as a 

consequence o f greater mechanical and thermal integnty Depth of cut notch wear 

was the main cause of tool failure irrespective of tool material composition 

However, reduced notching was observed with both CBN and sialon tools at high 

cutting speed These tools were reported to have been used at a cutting speed ten 

times greater than used with the cemented carbide toolings

Jang and Seireg [40] utilised dynamic simulation to develop a generalised equation 

for predicting surface roughness in turning operation covering the practical range 

of dynamic characteristics and cutting conditions They have given an equation 

describing the total roughness of the machined components as

where R =  total predicted surface roughness, R(Fx(t)) =  roughness generated by 

the dynamic cutting force The dynamic cutting force is given by

where Ks =  cutting resistance, a property of the work material, A, =  instantaneous 

uncut chip cross-sectional area, and Fd(t) =  damping force Using the test data 

reported in reference [9], they developed the following equation based on the 

simulation

R  = R(f,r) + R(Fx(t)) (2.4)

Fx(t) = Ks A ft)  -  FJt) (2.5)

(2.6)
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This equation was compared with that of Hasegwa et al [10] which was based on 

experimental data and was given by

= 62 424  K"0433 f * 13 d °m  r~°468 (2.7)

Good correlation between the simulation results and the experimental results was 

observed

Komanduri [41] suggested sialon ceramics for rough machining of nickel-iron base 

super alloys These ceramic tools were much tougher than alumina ceramic and have 

low coefficient of thermal expansion (x/i of that of cemented carbide and 1/3rd of that 

of alumina)

Hanasaki et al [42, 43] have investigated the tool wear of cemented carbide coated 

tools when machining high nickel alloy (N i~50% ) under dry cutting conditions 

They used four kinds of coated tools with the thickness of the coating layer of 2 ~  

3 fxm The coating layers were TiC and TiN which were single layer and TiN on 

TiC and A120 3 on TiC which were double layers Three cutting speeds (60, 100, & 

140 m/min) at a constant feed rate of 0 1 mm/rev and depth of cut of 0 5 mm have 

been used They observed less flank wear on the cemented carbide tools A 

TiC/A120 3 coatings on the cemented carbide had the least wear among the coated 

tools

Szeszulski et al [44] earned out experiments on the wear of silicon carbide whisker 

reinforced aluminium oxide tools when machining inconel 718 Single point cutting 

tests were conducted with circular button type inserts Cutting speeds were of 456 

m/min, 612 m/min and 762 m/min, feed rate was 0 25 mm/rev and depths of cut 

were 0 76 mm and 1 3 mm The work matenal was annealed and water quenched 

in the form of cylindrical bar stock of 152 mm diameter and the reported hardness 

was 201 BHN (centre) to 242 BHN (surface)

Three distinct wear types namely, flank wear, depth of cut notch wear and trailing 

edge wear were observed The magnitude of each was a function of the cutting 

conditions For both depths of cut, flank wear accelerated as the cutting speed was
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increased from 456 m/min to 612 m/min, but did not increase when the speed was 

raised to 762 m/mm Adhesion and abrasion were the likely wear mechanisms for 

the tool failure However, the flank wear behaviour did not show any significant 

change as the depth of cut was increased

Depth of cut notch wear was predominant and grew severe with increasing speed 

but tended to level off at 762 m/min for both depths o f cut This suggested a change 

in wear mechanisms which was most likely due to substantial workpiece as well as 

tool softening Trailing edge wear was severe at the lowest cutting speed, and 

roughly independent of the depths of cut Otherwise, the wear pattern showed trends 

similar to those observed for both flank wear and depth of cut notch wear

Brandt et al [45] investigated wear mechanisms of ceramic cutting tools when 

machining inconel 718 (370 BHN) under lubricated condition The machining tests 

were performed as a continuous turning operation on a cylindrical bar of 180 mm 

length and 700 mm diameter using a depth of cut of 1 5 mm, feed rate of 0 15 

mm/rev and 0 25 mm/rev, and speeds ranging from 150 m/min to 450 m/min 

Ceramic tool grades CC 620 (an alumina based material with additions of Zircoma), 

CC 670 (based on alumina and SiC whiskers), and CC 680 (Sialon) round inserts 

were used for the evaluation of tool life and wear mechanism 

They found that tool life for the sialon grade was mainly dependent on flank wear 

whereas for the whisker grade, the tool life criterion was notch wear for most of the 

cutting conditions investigated They observed that wear area was concentrated 

mamly to the cutting edge Work piece material penetrated very long distance into 

the sialon tool material In the surface region, it was observed that Ni, Fe, and Cr 

diffused along the grain boundaries into the sialon tools Ti, Nb and Al were 

observed to form a coating on the tool surface In the case o f SiC whisker 

reinforced alumina, flank worn zone showed that Fe, Cr and Ni diffused rather a 

long way into the tool material whereas Ti and Nb showed an enrichment at the 

tool surface The silicon content decreased as the SiC whiskers were dissolved but 

not the carbon content, which probably was a result of reaction of carbon with the 

carbide forming elements Cr, Ti, and Nb in the workpiece material

Bandyopadhyay and Teo [46] developed 1st and 2nd order surface roughness
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prediction models for high speed dry turning using coated carbide inserts Based on 

the factorial design of expenment, they evaluated the effects of cutting speed, feed, 

and depth o f cut on the surface finish The workpiece material was SAE 1020, 250 

mm long and 155 mm in diameter Five levels of speed (200, 285, 400, 560, and 

800 m/min), feed (0 0584, 0 0737, 0 094, 0 1168, and 0 1488 mm/rev), and depth 

of cut (0 344, 0 50, 0 71, 1 0, and 1 454 mm) were used They concluded that the 

predicted roughness was significantly affected by the feed Cutting speed and depth 

of cut have a minor effect However, the surface finish improved with the increase 

of cutting speed They developed the following general equation relating surface 

roughness with the cutting parameters

R = 304 86 V~°322 f  1284 d° 596 (2 . 8)

Ezugwo et al [47] investigated the effects of high pressure coolant supply on tool 

wear and cutting forces when machining inconel 901 (407 BHN) A cylindrical bar 

of about 450 mm long and 205 mm diameter was used as the test specimen Carbide 

inserts of ISO designation (CNMP 12 04 12/08 and CNMA 12 04 12/08) and 

ceramic inserts (CNMG 12 04 12 and SNGN 12 04 16)) were used as the cutting 

tools The turning tests were earned out at speeds varying from 20 m/min to 55 

m/min and at feed rate of 0 127 mm/rev and 0 18 mm/rev They observed that 

notching was the dominant cause of tool failure for both the inserts In case of 

carbide inserts, notching increased with increasing cutting speed and time 

Flank wear was the main reason for insert rejection when cutting with sharp edged 

carbide inserts (CNMA 12 04 08, CNMP 12 04 08) using high pressure coolant 

supply The CNMA 12 04 12 and CNMP 12 04 12 inserts gave longer tool lives in 

relation to the CNMA 12 04 08 and CNMP 12 04 08 Tool lives achieved with SiC 

whisker reinforced alumina ceramic tools using high pressure coolant supply and 

using square inserts (SNGN 12 04 16) were low compared to cutting with the 

conventional coolant supply Longer tool lives were obtained at lower speeds when 

cutting with both inserts

The ceramic inserts failed mainly by a combination of notching at depth of cut 

region and severe fracture at the tool nose The conventional coolant supply 

produced longer tool lives as compared to high pressure coolant supply However
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at higher speed (55 m/min) and depth of cut (2 5 mm), the high pressure coolant 

supply did suppress the premature fracture of the carbide inserts The cutting forces 

decreased with the increase of speed and increased with the increase o f feed and 

depth of cut However, the difference in cutting forces for conventional and high 

pressure coolant supply was very small

Kazuhiro et al [48] investigated the performance of cutting tool (CBN) on turning 

mconel 718 According to his findings, tool life was affected significantly due to 

adhesion of work material to the tool tip during cutting operation He also examined 

the reaction between the tool material and workpiece and observed that due to metal 

diffusion between the binder phase of the cutting tool and the workpiece, tool wear 

was accelerated

El-Wardany et al [49] investigated the effect of cutting parameters (speed, feed, 

nose radius, and depth of cut) on the surface finish generated during turning of 

hardened steel AISI 1552 of 60 Rc hardness using ceramic tools Four levels of 

feed, nose radius, and depth of cut and two levels of cutting speed were used They 

developed a first-order mathematical model describing surface roughness as a 

function of the cutting parameters as

Ra = -3 8906 F02551 Z 2431 <T00421 r~02354 (2.9)

The positive exponent of velocity, however, does not agree with the general trend 

Usually, surface finish improves with the increase of speed

Sadat and Reddy [50, 51] examined the surface integrity o f mconel 718 (27 Rc) 

nickel-base super alloy at various cutting speeds, depths of cut, and chip-tool contact 

lengths using orthogonal cutting conditions Silicon-nitnde (Sialon) based ceramic 

insert tools were used with and without the application of a coolant Ring specimens 

of 65 mm o d and 54 mm i d was machined at five levels of speed ranging from 

12 m/min to 96 6 m/mm The various depths of cut were 0 028, 0 051, 0 074, and 

0 99 mm and chip-tool contact lengths were 0 051 mm and 0 102 mm 

In general, the cutting forces (tangential and feed components) decreased with an
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increase in cutting speed and increased with the increase in depth of cut and chip- 

tool contact length The change in cutting force with the change in chip-tool contact 

length was almost insignificant They have explained that due to an increase in 

cutting speed, tool-rake face temperature is increased and consequently shear plane 

length is decreased and hence the cutting forces were decreased The increase m 

cutting forces with increasing depth of cut was due to the increase in the volume of 

the material removed with the increase in energy expended They found that the 

lubricant was effective at low cutting speed in reducing the tool forces that led to 

lower hardness and plastic strain in the surface region

Narutaki et al [52] and Yamane et al [53] earned out high speed machining tests 

for inconel 718 (420 BHN) with SiC whisker reinforced alumina (A120 3/SiC), 

silicon mtnde, and TiC added alumina ceramic tools (A120 3/TiC) The SiC whisker 

tool showed good performance in respect of notch wear in the speed range of 100- 

300m/min However, when the speed exceeded 400 m/min, the TiC added alumina 

tool showed the smallest wear compared to other tools Notch wear and flank wear 

of sialon and SiC whisker reinforced alumina became large when the cutting speed 

was high (400 m/min) or the feed rate was high (0 32 mm/rev) They have 

suggested that these tools have low wear resistance under high cutting temperature 

and the cause of tool failure was diffusion wear instead of abrasive wear

El-Baradie [54] has developed surface roughness prediction model (1st and 2nd 

order) for turning grey cast iron (154 BHN) using carbide inserts under dry 

conditions and a constant depth of cut The model was developed in terms of cutting 

speed, feed rate, and tool nose radius Based on the first order equation, the surface 

roughness as a function of the cutting variables were given by

Ra = 50 44 K*0317 f m  r ~°684 (2.10)

The equation indicates that an increase in either the cutting speed or the tool nose 

radius decreases the surface roughness, while an increase in the feed increases the 

surface roughness
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Balazinski et al [55] investigated the effect of feed variation on tool wear when 

machining inconel 600 They observed experimentally a 33% decrease of tool wear 

by varying the cutting feed rate throughout the cutting process The comparison 

between constat feed and variable feed processes were based on the constant volume 

of metal removal rate in a given time span

Gatto and Iuliano [56] earned out high speed turning tests on inconel 718 using 

silicon carbide whisker reinforced ceramic tools in order to develop a wear model 

for the inserts They observed different wear patterns along the length of the flank 

On edge radius, considerable chipping and some welded material were present In 

the central section, wear was due to abrasive effect of chip that caused the cutting 

edge to move backward At the end of the cutting edge notch wear was present 

Furthermore, they noticed chip creeping at the face of the tool and this was even 

more pronounced when the cutting speed was more that 500 m/min

Table 2 1 gives a summary of the machinability assessment of inconel 718 earned 

out by different investigators
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Table 2.1 Machinability assessment of inconel - 718

Investigators H eat

Treatm ent

B H N

M  a c  h  i  n  i n g V a r i a b l e s C uttm g T o o l

Speed (m /m in ) F eed  (m m /rev) D o c  (m m )

S K Bhattacharyya et al ( ’8 7 ) 5 0 4 1 5 0 , 2 1 5 ,  3 0 0  (F lo o d  C oolan t) 0 18 2  5 0 ,  4 - 2  (Taper) A120 3/SiC , Sialon,

4 0 7 S N G N  1 2 0 4 1 6

A  B Sadat ( * 8 7 ) 3 8  R e 6 6, 1 8 , 3 6 , 6 0  , D ry &  C oolant 0 10 C em ented C arbide

A  M i t a l & M  M ehta ( ’88) 3 4 0 2 2  9 ,  3 0  5 ,  3 8  1 0  0 5 0 8 , 0  1 2 7 , 0  7 9 4 ,  1 1 9 , 1 5 8 7 C arbide (C oated &  U ncoated)

0  2 0 3 2 , 0  3 0 4 8 0 (N R )

G Brandt, et al ( ’9 0 ) 3 7 0 1 5 0 , 3 0 0 ,  4 5 0  (C oolan t) 0  1 5 , 0  2 5 1 5 A120 3/SiC , S ialon, A l20 3/ Z r 02
K J S zeszu lsk i et al ( ’9 0 ) A nnealed & 3 7 8 , 4 5 6 , 5 3 4 ,  6 1 2 , 6 8 4 , 7 6 2 0  1 3 ,0  2 , 0  2 5 , 0  7 6 A120 3/SiC , R N G N

W Q , 2 0 1 - 2 4 2 0  3 1 , 0  3 8 , 0  5 1

E O  E zu gw u , et al ( ’9 1 ) Inconel - 9 0 1 , 2 0 ,  2 6 ,  3 2 ,  4 0 ,  4 7 ,  5 5 ,  1 5 0 , 2 1 5 , 0  1 2 7 , 0  18 0  5 , 1 0 ,  1 2 5 , C arbide C N M P  1 2 0 4 1 2 / 0 8  &

4 0 7  H v 3 0 0 1 5 , 2  5 ,  3  0 C N M A  1 2 0 4 1 2 / 0 8 ,  A120 3/SiC ,

C oolan t (N orm al &  h ig h  pressure) C N M G  1 2 0 4 1 2

A  B Sadat & M  Y  R eddy 2 7 9  H v 1 2 , 2 1 ,  3 7  8, 8 7 5 ,  9 6  6, C oolant 0  0 2 8 , 0  0 5 1 , 0  0 7 4 , S13N 4 (S ia lo n )

( ’9 2 ) 0  0 9 9

K Shintani et al ( ’9 2 ) A ged , 4 5 0 6 0  - 2 4 0 C B N

N  N arutaki et al ( ’9 3 ) A ged , 4 2 0 1 0 0  - 4 0 0 0  1 2  - 0  3 4 0  5 0 A120 3/SiC , S i3N 4, & ,  A120 3/TiC ,

S N G N  1 2 0 4 0 8  (Square),

R N G N  1 2 0 4 0 0  (B utton)



2.4 Machinability Data Base Systems

Machinability data base systems are essential for the selection of optimum cutting 

conditions during process planning, and these form an important component in the 

implementation of Computer Integrated Manufacturing (CIM) systems 

Computerized machinability data systems can be classified into four general types 

such as

I) Data storage and retrieval system,

II) Empirical equation system,

III) Mathematical model system, and

i v )  Machinability data selection expert system

The data storage and retrieval system is based on the collection and storage of large 

quantities of data m computer data storage files from laboratory experiments and 

shop experience and then simply retrieving the data (recommended cutting speeds, 

feed rates, and cost information) for any specific cutting operation

The empirical equation system generally uses the expanded Taylor’s tool life 

equation to calculate the cutting parameters The data for a particular condition is 

translated to an empirical form and expressed as a generalised empirical equation 

[57]

The mathematical model systems attempt to predict the optimum cutting conditions 

for a specific operation The machining response data such as tool life, surface 

roughness, cutting force, power, etc , are used as the primary data for use in a 

machinability data base system The mathematical models o f these machining 

responses are developed as a function of the machining variables using a model 

building module

With the advent of expert systems, some new concepts for the design of 

computerized machinability data selection systems have been developed Expert 

systems are computer based tools which are employed to solve problems that need 

a significant amount of expertise It consists of a knowledge base, and inference
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engine, and a working memory. The knowledge base is a repository of facts, 

hypothesis which are stored using an appropriate knowledge representation scheme. 

The inference engine searches through the knowledge base in order to find a suitable 

solution for the problem using working memory for that storage of data that is 

created or used in the process. The machinability data selection expert system 

provides cutting parameters from its data base depending on the user’s inputs such 

as tool material, work material, hardness of the work material etc. The use of 

computers to assist people in generating machining parameters has become a critical 

area both in research/academic institutes and industry [58-61].

Rasch and Rolstadas [62] have carried out a series of finish turning tests in order 

to establish a functional relationship among the response (surface roughness) and the 

machining independent variables (speed, feed, tool nose radius, cutting time, tool 

quality, and material quality). They developed a mathematical equation based on the 

regression analysis. The equation based on 99.9% confidence interval was given by

Ra = 2.95 f 1 r~0A T«3 (2.11)

w here/is the feed in mm/rev, r is the tool nose radius in mm, and T is the tool life 

in minutes. With this equation as a basis, they developed an automatic system for 

calculation of optimal cutting data. The system provided optimal feed, speed, and 

tool nose radius as output for a given surface roughness, diameter and cutting 

length.

Friedman et al. [63] presented a concepts and design of computerized numerical 

machining data bank suitable for implementation in manufacturing. The systems of 

the data bank consisted of three modules namely; machinability data file module, 

model building module, and optimization module. The machining data file consisted 

o f a basic file containing numerical data on machining material and machining 

operation. The machining data file could be updated depending on various feed back 

information. The model building module is used to estimate a mathematical 

relationship between the response and the cutting parameters. The output of model 

building module served as input for the optimization module. The optimization
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module optimizes a target function (cost, production or profit) under different 

constraints (surface finish, power etc )

Eversheim et al [64, 65] developed programmes on turning, milling, and drilling 

for selection of cutting data These programme systems generate production 

documents like tables for cutting data, manufacturing instructions etc depending on 

input information of machine tool, tool data, workpiece/tool material, and lot size

Zdeblic [66] proposed a machinability data base structure consisting of three 

modules These are (i) manufacturing data, (11) model building, and (in) 

manufacturing analysis and optimization The input to the data base structure comes 

from process plans and the output of the data base structure are recommended 

cutting tools and machining conditions The manufacturing data modules consists of 

four data files (machining data, machinability models, supporting data, and 

part/operation data) The model building module consisting of three elements (model 

form selection, parameter estimation, and risk analysis), develops a mathematical 

model between the machinability responses and machinability variables The 

manufacturing analysis/optimization module contains the specific algorithms which 

recommends the correct cutting tool, cutting speed, and feed rate

Balaknsnan and DeVnes [67, 68] attempted to present a comprehensive survey of 

the work which has been done in the area of computenzed machinability data base 

systems They have analyzed the techniques used by various systems to obtain 

recommended or optimum cutting conditions

Balaknsnan & DeVnes [69] have proposed sequential maximum a postenon as a 

mathematical tool for use in the mathematical model type machinability data base 

systems According to their investigation, this technique was a better alternative to 

the commonly available regression analysis methods

Wang and Wysk [70] have developed an expert system for machining data selection 

The structure of the system had four modules, User Interface module (UIM), 

Knowledge Base Module (KBM), Empincal Equation Module (EEM), and Data 

Base Module (DBM) Written in FORTRAN 77, the system was designed to
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generate and display machining data on a computer screen based on the input data 

for material, tool, and operation The system included almost all of the common 

machine shop operations like turning, milling, etc

Chapman [71] has described one machinability software package called The Gte 

Valentine Network This programme incorporates exhaustive data files that include 

information on virtually all common part materials, cutting grades, tool geometries, 

as well as application results obtained over a wide range of operating parameters 

and machining conditions in field tests and production operation Typical 

information provided by the programme are machinability rating of parts materials, 

grade of the cutting material, optimum cutting speed, optimum feed rate, chip 

control information, tool life, power consumption, and cost of operation

Badiru [72] has outlined a guideline on how industrial engineers can successfully 

take the lead in beneficial implementations of the emerging technology of expert 

systems One of the potential application areas include computer aided 

manufacturing

Yeo et a l [73] have developed an expert system based on COMMON LISP 

(Artificial Intelligent Language) for machinability data selection in turning The 

essential feature of the system was that, a knowledge base contained all facts m a 

codified form and a working memory stores the description of work material, 

cutting tool etc The inference engine where the reasoning takes place used forward 

chaining which started with a set of assertions (data) provided as input This 

involved pattern matching until a recommendation was made or no more rules could 

be satisfied An user interface allowed interaction with the users The programme 

provided speed, feed, depth of cut, and power requirement depending on the input 

of work material type, hardness and tool geometry

Yeo et al [74] investigated various multiple regression model building techniques 

on machinability data (tool life and surface roughness) in order to study the 

suitability of the empirical equations They have made a comparative analysis o f the 

first-order and second order regression model using the vanous stepwise regression 

selection methods The output of the regression model building module could be
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incorporated into an expert system for achieving an integrated manufacturing 

system

Gopalakrishnan [75] has descnbed the different methods that could be used to make 

expert systems suitable for application in the field of machining parameter selection 

He has analyzed the design of expert systems with respect to the different techniques 

that helps the expert system shells in the areas of data acquisition, inference path 

modification and user input to make them function effectively m the domain of 

machining parameter selection Some expert systems that are in use in the domain 

of manufacturing has been outlined Cuttech is such a system that recommends 

cutting tool, speeds, feeds for machining

Singh and Raman [76] provided a comprehensive survey of literature on 

machinability parameter selection systems followed by a literature based analysis of 

the anomalies of machining and the process and material effects in machining They 

developed a prototype expert system called Mete:c for machining parameter 

selection It consisted of three modules, 1) a rule-onented data base containing 

nominal feeds and depths of cut compiled from Machining Data Handbook [77], 11) 

a rule base for simulating the metal cutting process, and 111) a user friendly interface 

to collect inputs from the user and provide the outputs The system was limited to 

four combinations of tools and work materials However, the rule base could be 

expanded to accommodate other tool and work material combinations



CHAPTER 3

MACHINABILITY ASSESSMENT

3.1 Introduction

This chapter presents an overall description about machinability assessment and the 

different factors affecting the machinability A brief discussions about the different 

cutting tool materials have been presented The different parameters usually 

investigated for a machinability test have been presented

3.2 Machinability

The term machinability is used to refer to the ease with which a work material is 

machined under a given set of cutting conditions A prior knowledge of a work 

material is important to the production engineer so that he can plan its processing 

efficiently If a material A is more machinable than material B, it can mean that less 

power is required to machine material A, or a higher tool life is achievable with 

material A, or a better surface finish can be obtained with matenal A Moreover, 

ease of chip disposal, cutting temperature, operator safety, etc are other criteria of 

machinability as well

It is important to mention that the machinability is only applicable to a particular set 

of circumstances under which the observations are made Machinability of a matenal 

A may be better than that of B with respect to surface finish under a set of cutting 

conditions while machinability of material B may be better than that o f A with 

respect to tool life under a different set of cutting conditions
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According to Ernst [78], the term machinability means a complex physical property 

of a metal which involves true machinability, fmishability or ease of obtaining a 

good surface finish and abrasiveness or abrasion undergone by the tool during 

cutting

Boulger [79] has defined machinability as the removal of chips with satisfactory tool 

life and surface finish Boston [80] has defined machinability as the response of a 

metal to machining which gives long tool life under otherwise equal conditions when 

compared with other materials, provides good surface finish, produces well broken 

chips, gives uniform dimensional accuracy of successive parts, produces each part 

at the lowest overall cost, and requires lower power consumption in removing a 

given quantity o f chips

Reen [81] has pointed out that for accurate rating of machinability, three factors 

namely, tool life, surface finish, and power consumed during cutting must be 

considered Similar views are expressed by Shaw [1] Trent [12] has outlined that 

tool life, cutting force, chip shape, surface fimsh/integnty are all important 

parameters for machinability assessment of a material According to Sandvik [82], 

machinability of a material is the ability of the work material to be machined

In general machinability of a material can be considered as a combination of small 

cutting force, high metal removal rate, longer tool life, better surface 

finish/integrity, well broken chips, and uniform dimensional accuracy The different 

factors influencing machinability of a material are (i) machining operations, (11) 

cutting conditions, ( m )  workpiece properties, ( iv )  tool properties, and (v) machine 

tool-tool-workpiece dynamics

The machining operation may be a continuous cutting operation (turning) or an 

intermittent cutting operation (milling) The cutting conditions which influence the 

machinability parameter are cutting speed, feed, depth o f cut, and cutting fluid 

Higher the cutting speed is, lower is the tool life This is true for feed as well 

Moreover, as the feed increases, the power consumed during cutting also increases 

Higher the depth of cut is, the greater is the power requirements
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The workpiece properties which have a pronounced affect on machinability are it’ s 

microstructure, chemical composition, and physical properties A small change in 

the microstructure of a material can greatly affect its machinability [83] The 

chemical composition of a material also influence its machinability The presence 

of sulphur, lead, and phosphorus improve machinability of a material while 

chromium, vanadium, nickel, and molybdenum retard machinability The presence 

o f hard abrasive carbides m the microstructure can have a detrimental effect on 

machinability [84] The physical properties of a material affecting machinability are 

it’s hardness and work hardening properties [85]

The tool material and it’s geometry also have an influence on the machinability of 

a matenal The requirements of a good cutting tool is it’ s high hardness and 

toughness, good wear resistance, mechanical and thermal shock resistance and the 

ability to maintain these properties at very high temperatures encountered during 

metal cutting operation Rake angle of a cutting tool has an affect on the cutting 

force As the rake angle becomes positive, the cutting force decreases [86]

Tool matenal and geometry must carefully be chosen in relation to the workpiece 

matenal to be machined, the kinematics and stability o f the machine tool to be 

employed The main cutting tool materials in use are (i) high speed steel, (11) cast 

alloys, (in) cemented tungsten carbides, ( i v )  coated cemented carbides, (v) T1C-T1N 

based cermets, (vi) ceramics, (vn) polycrystalline diamond and cubic boron nitnde, 

and (vm) single crystal diamond

Tungsten based cemented carbide are the oldest among the hard cutting tool 

materials in use The present tungsten carbides for cutting applications are classified 

into P, M, and K codes The P group is for cutting matenals with long chips such 

as carbon steels, alloy steels, and femtic steels The M group is used for cutting 

matenals with long to medium chips such as steel castings, austenitic steels, and 

ductile cast iron The K group is used for cutting matenals such as grey cast irons, 

non ferrous alloys, non metals Coated carbides have the advantage of wear 

resistance o f ceramics and the strength o f cemented carbides The coating materials 

are TiC, TiN, and A120 3 and the coating layers may be single, or multiple with 

coating thickness varying from 3 - 10 /zm The mam factors affecting the cutting
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performance of coated tools are the kind of coatings, the thickness of the coating, 

the coating method, and the substrate

Ceramics and cubic boron nitride (CBN) have excellent hot hardness, good wear 

resistance and chemical stability properties which make them suitable for machining 

many difficult to machine material Two basic ceramic materials are used for cutting 

tools These are aluminium oxide (A120 3) and silicon nitnde (Si3N4) Aluminium 

oxide ceramics are further divided into (1) pure ceramic (A120 3 4- Z r02), (11) mixed 

alumina (A120 3 +  TiC), and (in) reinforced alumina (A120 3 +  SiCw) The whisker 

reinforced alumina ceramics give superior cutting performance in the case of 

machining super alloys Sialon (Si3N4) cutting tools have been in use since 1980 

The main advantage of this ceramic is it’ s higher toughness values The feed rate 

can be doubled compared to the conventional A120 3 based ceramics

Heat resistant super alloys possess some characteristics which deter their 

machinability The metallurgical characteristics responsible for the good strength and 

creep resistance of nickel base super alloys at high temperatures are liable for their 

being difficult to machine These matenals work harden rapidly during machining 

Other factors such as low thermal diffusivity, presence of carbide particles are also 

responsible for their poor machinability

3.3 Machinability Tests

A range of machinability tests have been developed, often to assess specific cutting 

conditions, whilst others are used for more general machining assessment 

Sometimes machinability data is expressed m the form of a single index such as a 

"standard" material being ranked as 100% with others having values relative to it 

The ratings can be dependent on the type of test as well such as the Volvo 

"flycutting” milling test [87] Here the tests have index values on a "100 scale" In 

general a machinability test assess the speeds and feeds which are varied by trial and 

error and with specified constraints [88]

Nevertheless, the three mam parameters o f machinability assessment are i) cutting 

force, 11) tool life, and 111) surface finish Figure 3 1 shows different machinability
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parameters in the form of input/output model of turning operation These three 

parameters have been measured/recorded in our machinability tests of EN24T steel 

and inconel 718 A brief discussion of these parameters follows

3.3.1 Cutting Force

The metal cutting process is a result of two relative movements between the cutting 

tool and the work material which has to be machined The relative movements 

between the cutting edge and the work piece material results in an amount of metal 

corresponding to the depth of cut being separated from the workpiece matenal in the 

form of chips whilst the feed movement brings new matenal in front of the cutting 

edge after a particular cut has been finished

An understanding of the forces and velocities which occur dunng the vanous cutting 

processes is the essential basis for determining the size and matenal of the load 

transmitting elements together with the required driving power The machining 

processes can be classified into (1) orthogonal cutting processes and (11) oblique 

cutting processes In orthogonal cutting, the cutting edge is perpendicular to the 

relative velocity between tool and workpiece and involves two forces The oblique 

cutting, on the other hand, involves a three-force situation where the cutting edge 

is inclined to the cutting velocity The details of these cutting processes with regard 

to chip formation are descnbed m different books and papers [89-99] A short 

outline of the different forces involved in the oblique cutting is explained

In the turning operation, the pnmary cutting motion is rotational with the tool 

feeding parallel to the axis of rotation The resultant cutting force F  which acts upon 

the cutting tool is resolved into three components in the three directions as shown 

in Figure 3 2 The tangential force Fz acts along the direction of the cutting speed 

l e, it is tangential to the turned surface This is the main component of cutting 

force, which together with the cutting speed determines the net power required for 

the main spindle drive The tangential force accounts for almost 99% of the power 

required by the process The feed force Fx acts along the direction o f the tool feed 

This force is usually about 15%-50% of the tangential force Fz but accounts for only 

a small percentage of the power required The power required for the feed dnve is
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determined by the feed force together with the feed velocity The radial or thrust 

force Fy acts perpendicular to the turned surface This force is about 30%-50% of 

the feed force Fx and contnbutes very little to power requirements because the 

velocity in the radial direction is negligible The net resultant force F  becomes

f  = { ff T p f T T f

Figure 3.2 Three components of measurable cutting forces acting on a single- 
point turning tool in obhque machining
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3.3.2 Tool Life

In metal cutting operations, the tool life is one o f the most important economic 

considerations Any tool or work material improvements that increase tool life is 

desirable Cutting tools are in metal to metal contact with the chip and workpiece 

under conditions of very high stress at high temperature The existence of extreme 

stress and temperature gradients near the surface o f the tool further aggravates the 

situation

The term tool wear refers to the degradation of the cutting and/or clearance surface 

of the tool, fracture, and a reduction of the tool mechanical properties due to high 

temperature [100] Tool wear is a product of a combination of four load-factors 

which continually attempt to change the geometry of the cutting edge [101] These 

four factors are mechanical, thermal, chemical, and abrasive which result in five 

basic wear mechanisms such as (l) adhesive wear, (11) abrasive wear, (m) diffusion 

wear, ( i v )  fatigue wear, and (v) oxidation wear Acting in isolation or in 

combination, these mechanisms cause two distinct wear modes [100]

The first type known as irregular wear, includes cracking, breakage, chipping, and 

plastic deformation of the insert The second type defined as regular wear consists 

of flank wear on the nose and the primary cutting edge, and the crater wear across 

the rake face of the tool insert Flank wear is generally the normal type of tool wear 

and is responsible for increasing the cutting force and the interfacial temperature 

Crater wear, on the other hand, is usually observed when machining steel and other 

high melting point metals at a relatively high cutting speeds The crater is formed 

some distance away from the cutting edge in the region where the tool is hottest

The simple mechanism of adhesive wear [102] is based on the concept o f the 

formation of welded joints and the subsequent destruction of these joints when two 

mating surface come close enough together Dunng metal cutting, when these 

junctions formed between the chip and tool materials are fractured, small fragment 

o f tool material can be tom out and earned away on the underside o f the chip or on 

the new workpiece surface
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Abrasive wear involves the removal of tool material by mechanical action when hard 

particles on the underside of the chip pass over the tool face The abrasion process 

depends on the hardness, the elastic properties and the geometry of the two mating 

surfaces Usually, the larger the amount of elastic deformation a surface can sustain, 

the greater will be its resistance to abrasion wear [103]

In the diffusion type wear, solid state diffusion plays an important role when surface 

temperatures become very high and surface velocities are low Bowden and Tabor 

[104] suggested that some diffusion must occur in the adhesion of contacting 

asperities During metal cutting operation, when the temperature at the interface of 

the tool and work material is very high, diffusion can take place where atoms move 

from the tool material to the work material This leads to the weakening of the tool

When two surfaces slide in contact with each other under pressure, asperity on each 

contacting surface is associated with a wave of deformation At some distance ahead 

of the asperity the underlying matenal is compressed, while behind the asperity, 

tensile stresses elongate the matenal This change in sign of the stress as an aspenty 

passes a given point can cause fatigue failure of the matenal below the surface In 

theory, wear particles are created by cracks, formed underneath the surface, 

spreading and moving up to the surface [105]

The main manifestations of tool wear are flank wear and/or crater wear Wear on 

the flank face of a cutting tool is caused by fnction between the newly machined 

work matenal surface and the contact area on the tool flank This results in a loss 

of relief angle on the clearance face of the tool The width of the wear land gives 

an indication of the amount of wear and can be readily measured by means of a 

toolmaker’ s microscope The crater wear occurs on the rake face of the tool in the 

form of a pit known as crater The crater formed on the tool face conforms to the 

shape of the chip underside and is restncted to the chip-tool contact area

A tool life cntenon is defined as a predetermined threshold value of a tool wear 

measure which indicates that a tool is to be rejected after the threshold value is 

reached In metal cutting operation, unfortunately the wear of the face and flank of 

the cutting tool is not uniform along the main cutting edge It is therefore necessary
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to specify the locations and degree o f wear when deciding on the amount of wear 

permissible before replacing the tool

Figure 3 3 shows wear pattern of a single point tool As shown in the figure, the 

crater depth KT is measured at the deepest point of the crater and it vanes along the 

main cutting edge Flank wear is generally greatest at the extremities of the main 

cutting edge Because of the complicated flow of chip at the tool comer region of 

the cutting edge, the conditions are more severe at the comers The width of the 

flank wear land at the tool comer C is designated by VBC while that at the opposite 

end is designated by VBN known as notch or groove wear

KB = Crater width

KM = Crater centre distance

KT = Crater depth

V BH = A verage w idth o f  flank wear 

VBm„= M axim um  w idth o f  flank wear 

V B N = W idth o f  notch w ear  

V B C = W idth o f  flank w ear at tool com er

Figure 3 3 Features of single-point-tool wear in turning operations
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In the central part of the active cutting edge, the wear land is fairly uniform and is 

designated as zone B The average wear land in this region is VBb and maximum 

wear land width is designated as VB^  The cntena recommended in the ISO 3685 

[106] standard dealing with tool life testing are as follows

3.3.2 1 Common criteria fo r  high-speed steel tools

a) catastrophic failure,

b) The average width of the flank wear land VBb =  0 3  mm, if the 

flank wear land is considered to be regularly worn in zone B,

c) the maximum width of the flank wear land VBb max =  0 6  mm if the 

flank wear is irregularly worn, scratched, chipped or badly grooved 

on zone B

3.3 2 2 Common cntena fo r  sintered carbide tools

a) The average width of the flank wear land VBb =  0 3  mm, if the 

flank wear land is considered to be regularly worn in zone B ,

b) the maximum width of the flank wear land VBb max = 0 6  mm if the 

flank wear is not regularly worn on zone B

c) the depth of the crater KT (mm) is given by the formula

KT = 0 0 6  + 0 3 /

w h ere/is the feed in mm per revolution

3 3 2 3 Common cntena fo r  ceramic tools

a) The average width of the flank wear land VBb =  0 3  mm, if the 

flank wear land is considered to be regularly worn in zone B,

b) the maximum width of the flank wear land VBb max = 0 6  mm if the 

flank wear is not regularly worn on zone B

c) catastrophic failure
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3.3.3 Surface Roughness

In any machined surface, the term used to describe its geometrical quality is known 

as surface roughness Roughness of a surface refers to a property of a machined 

surface Surface roughness is that part of surface finish (surface texture) which can 

be defined as the marks left by the action of the production process used, such as 

turning operation

Surface roughness consists of relatively closed-spaced or fine surface irregularities 

usually in the form of feed marks left by the cutting tool on the machined surface 

It is measured by the heights of the irregularities with respect to a reference line 

The surface texture of a machined surface consists of primary texture (roughness) 

and secondary texture The primary texture can be measured by various indices such 

as average arithmetic roughness height Ra, smoothemng depth Rp, maximum 

roughness R„ and root-mean-square RMS height [107]

With the exception of RMS, these various indices (Ra, Rp, Rt) are common in use 

The index most commonly used is the arithmetic roughness height Ra The 

secondary texture is that part of the surface texture which underlies the roughness 

All types of machine vibrations, occurrence of built-up-edge, inaccuracies in the 

machine tool movement may contribute to secondary texture Figure 3 4 shows the 

various components and parameters of a machined surface

The average arithmetic roughness Ra is also known as centre line average CLA 

(British) and arithmetic average AA (American) Ra is quoted in microns 

representing a mean value of roughness The CLA or AA roughness Ra is obtained 

by measuring the mean deviations of the peaks from the centre line of a trace, the 

centre line being established as the line above and below which there is an equal 

area between the centre line and the surface trace The theoretical relationship 

between the surface roughness value and the feed /  is given by the following 

equation [108]
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R = 0 0 3 2 1 /

where rf is the comer radius of the cutting tool

A R = R oughness spacing

A w= W aviness (Secondary texture)

Rt = Roughness (Primary texture)

W + R, = W aviness + Roughness

Ra= Average arithmetic roughness 

R= Sm oothening depth 

RMS = Root-Mean-Square

Figure 3.4 Various components and parameters of a machined surface

The smoothening depth Rp is the distance between the highest point and the mean 

line Rp usually results from the condition of the cutting tool The maximum peak

to valley height within the tracing stroke of a surface profile is known as Rt The
\

RMS is average geometric roughness and was an American standard Its numerical 

value is some 11 % higher than that of Ra



CHAPTER 4

DEVELOPMENT OF MACHINABILITY MODELS 

4.1 Introduction

A machinability model may be defined as a functional relationship between the input 

of independent cutting variables (speed, feed, depth of cut) and the output known 

as response (tool life, surface finish, cutting force) of a machining process (Figure 

3 1) In order to develop this model, it is necessary to design and carry out an 

experiment involving the work material and the cutting tool The experimental work 

provides the response data as a function of the cutting speed, feed rate, and depth 

of cut used

In developing a data base system, these machining response data (tool life, surface 

finish, cutting force) are used as the primary data and mathematical model of these 

responses are developed as a function of the cutting variables using a model building 

module

The response surface methodology and the designs for fitting a first-order and 

second-order model have been described in this chapter Also, the different 

statistical regression model building techniques for developing mathematical models 

have been discussed A relatively new approach known as sequential estimation 

technique which might be useful for model building in the development of 

machinability data base systems has also been descnbed in this chapter
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4.2 Response Surface Methodology

Response surface methodology (RSM) is a combination of experimental and 

regression analysis and statistical inferences The concept of a response surface 

involves a dependent variable y called the response variable and several independent 

variables x lt x2, , xk [109] The RSM was initially developed and described

by Box [110-112] in the study of optimization problems in chemical processing 

engineering Mead and Pike [113] and Hill and Hunter [114] reviewed the earlier 

work on RSM This has been used in tool life modelling, surface roughness 

modelling, and in other machining processes [7,54, and 115 -119]

If all of these variables are assumed to be measurable, the response surface can be 

expressed as

y = f  (*i, xv  , xk) (4.1)

The goal is to optimize the response vanable y It is assumed that the independent 

variables are continuous and controllable by the experimenter with negligible error 

The response or the dependent vanable is assumed to be a random vanable

Say in a turning operation, it is necessary to find a suitable combination of speed 

(jc7), feed (x2), and depth of cut (x3) that optimize tool life (y) The observed 

response y as a function of the speed, feed, and depth of cut could be wntten as

y = f  (*i> * 2> * 3) + 6 (4 -2)

where e is a random error If the expected response is denoted by E(y) =  r}, then 

the surface represented by rj =  f(x; , x2, x3) is called a response surface It is 

required to find a suitable approximation for the true functional relationship between 

y and the set o f independent vanables jc/s Usually a low order polynomial (first- 

order and second-order) in some regions of the independent vanables is employed
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The first-order model

k
y = P„+ IP * + e (4.3)

and the second-order model

k k

i
J

are generally utilized in RSM problems The j8 parameters of the polynomials are 

estimated by the method of least squares

The matrix approach of solving equation (4 3) or (4 4) has been adopted in our 

analysis We define y to be an (n x  1) vector of observations on y, x to be an (n x 

p ) matrix of independent variables, ($ to be a (p x 1) vector of parameters to be 

estimated, e to be an (n x 1) vector of errors Equation (4 3) or (4 4) can be written 

in the matrix form as

The least squares estimate of /3 is the value b which, when substituted in equation 

(4 3) or (4 4), minimizes e'e The normal equations can be expressed as

(4.5)

(4 6)

where /J is replaced by b matrix If (xTx) is non-singular, the solution of the normal 

equations can be written as

b = ( * r* )  xx Ty (4.7)
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where xT is transpose of the matrix x and (xTx ) 1 is the inverse of the matnx (xTx) 

The details of the solution by this matnx approach is explained in reference [120, 

121] The response surface analysis is done in terms of the fitted surface Designs 

for fitting response surfaces are known as the response surface design The main 

purpose of RSM is to ascertain the optimum operating regions for the system 

involving the independent vanables

In developing the response surface designs, Box and others [122,123] have found 

that the calculations can be simplified if the designs can be rotated A rotatable 

design is one that has equal predictability m all directions from the centre and the 

points are at constant distance from the centre In a rotatable design, the vanance 

of the predicted response J  at some point* is a function only of the distance of the 

point from the design centre, and not a function of direction An expenmental 

design with this property will leave the vanance of 5> unchanged when the design is 

rotated about the centre (0, 0, ,0)

4.2.1 Designs for fitting the first-order model

Say it is necessary to fit the first-order model in k variables

y = P«+ EP.-*.+ 6 (4,8)i=l

An orthogonal first-order design may be employed which minimize the vanance of 

the regression co-efficients A first order design is said to be orthogonal if the 

off-diagonal elements of (xTx) matnx are all zero This leads to the cross products 

of the columns of the x matnx sum to zero The orthogonal first-order design is of 

two types such as (i) 2k factonal design, and (11) simplex design

(i) 2k factorial design

A factorial design of expenment is one in which all levels of a given factor are 

combined with all levels of every other factor in the expenment For example, if
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there are a levels of factor A and b levels of factor B , then each replicate contains 

all ab treatment combinations Factorial designs are more efficient than one-factor- 

at-a-time experiments A factorial design is necessary when interactions between the 

variables are to be investigated Furthermore, factorial designs allow effects of a 

factor to be estimated at several levels of the other factors, giving conclusions that 

are valid over a range o f experimental conditions This is explained more in detail 

by Hicks [109] and Montgomery [121] In using 2k factorial designs, it is assumed 

that the k factors are coded to the standardized levels ± 1  Let us suppose that we 

use 23 design to fit the first-order model

y = P* + Pi*i + Pa + Py*3 + 6 (4-9)

The x matrix for fitting the model is

Po Pi h  P3

X =

The first column of the x matrix of independent variables contain only l ’ s This is 

the general convention for any regression model containing a constant term &0y by 

imagining the $0 terms to be of the form where x0 is a dummy variable always 

taking the value 1 The off-diagonal elements of (xTx) matrix are zero for this 

design It is interesting to note that the 2k design does not take into account the 

estimate of the experimental error unless some runs are repeated The common 

method of including replication in the 2k design is to augment the design with
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several observations at the centre (xt =  0, i =  1,2, ,k) The inclusion of centre

points to the 2k design does not affect the regression co-efficients (ft) for / >  1, but 

the estimate of (30 becomes the grand average of all observations Moreover, the 

centre points do not influence or change the orthogonal property of the design

(u) Simplex method

The simplex method of the design is a regularly sided figure with k +  1 vertices in 

k dimensions A simplex design is an equilateral triangle for k =  2, a tetrahedron 

for k =  3 A more detailed description can be found in reference [121]

4.2.2 Designs for fitting the second-order model

The most commonly used design for fitting a second-order model is the central 

composite design An experimental design for the second-order model must have at 

least three levels of each factor so that the model parameters can be estimated 

These designs consist of a 2k factorial (coded as ±  1 notation) augmented by 2k axial 

points ( + a ,  0, 0, ,0), (0, ±ot9 0, ,0), (0, 0, +<*, ,0), , (0, 0, 0,

± a )  and n0 centre points (0, 0, , 0) Figure 4(a) and 4(b) represent a central

composite first-order and second-order designs respectively for k =  3

The choice of a  helps make a central composite design rotatable The value of a  for 

rotatability depends on the number of points in the factorial portion of the design 

A value of a  =  F *  yields a rotatable central composite design where F is the 

number of points used in the factorial portion of the design For k =  2, a  =  1 414 

and for k =  3, a  =  1 682 The central composite design may be built-up from the 

first-order design (2k) by adding the axial points and several central points

The selection of the number of central points n0 control the properties of the central 

composite design With proper choice of n0f the central composite design sign may 

be made orthogonal or it can be made a umform-precision design In a uniform- 

precision design the variance of $ at the origin is equal to the variance of $ at unit 

distance from the origin There are other forms of rotatable designs which are useful 

as well for problems involving two or three variables These are known as 

equiradial designs [121]
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The first-order central composite design involving three variables as shown in 

Figure 4 1(a) consists of twelve experimental runs comprising of two blocks Eight 

experiments constitute 23 factorial design with an added centre point repeated four 

times (9,10,11,12) Block 1 (1,4,6,7,9,10) and block 2 (2,3,5,8,11,12) together 

provide a precise estimate of the 0 parameters of equation (4 9)

A second-order model is developed by adding six augment points to the factorial 

design The augment points consists of three levels for each of the independent 

variables denoted by V 2 , 0, V l  These six experimental run of block 3 shown in 

Figure 4 1(b) is repeated twice to develop the second-order model Block 4 

(19,20,21,22,23,24) is a repetition of Block 3
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Figure 4.1 Central composite design for K = 3; (a) First-order Design, 
(b) Second-order design
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4.3 Statistical Regression Model Building Techniques

A wide range of regression model building techniques available in commercial 

statistical packages can be used to derive the functional relationship between the 

response and the machining independent variables. Given a single response variable 

y and k independent variables xs (i =  1 to k), the objective is to determine the 

subset of the k independent variables and the regression model which taken together 

best describe the relationship between y and the Xj’ s. In selecting the best regression 

equation, the following steps are to be specified. These are (a) the largest model 

with all the independent variables to be considered, (b) a criterion to be specified 

for selecting a model, (c) a strategy to be specified for applying the criterion, and 

(d) the specified analysis to be conducted.

The reason for choosing a large maximum model is to include the basic variables, 

the higher order and interaction terms of the basic variables. The next step is to 

specify a selection criterion for selecting the best model. The selection criterion is 

an index that can be computed for each model and used to compare the models. 

Many selection criteria for choosing the best model have been suggested [124]. In 

our analysis, four selection criteria namely RMSp (Residual mean square), R square, 

Adjusted R square, and Mallows Cp have been considered. These are described in 

Appendix A. The next step is to specify a technique for selecting the variables. Such 

a technique determines how many variables and also which particular variable 

should be in the final model.

Computer programs based on different techniques are available in commercial 

statistical packages. These are (i) backward elimination, (ii) forward selection, (iii) 

stepwise regression, and (iv) all possible subsets regression. The various regression 

model building techniques are briefly described below.

4.3.1 Backward elimination

The backward elimination method computes a regression equation with all the 

independent variables. A partial F  statistic is calculated for every variable treated 

as though it were the last variable to enter the regression equation. The lowest
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observed partial F-test value is compared with a preselected F  value known as Foul 

If the lowest F-test value is greater than Foun the regression equation as calculated, 

is the final model If on the other hand, the lowest F-test value is less than Foun the 

corresponding variable is removed, and the regression equation is recomputed with 

the remaining variables The lowest F-test value is compared again with Foul and the 

procedure is repeated in this way until all the F-test values are greater than Fout 

[120] The regression equation obtained at this stage is the final model

4.3.2 Forward selection

In this method, the variable having the highest correlation with the dependent 

variable is selected as the first variable to enter into the model Then a regression 

equation is computed The significance of the variable entered, is checked by 

applying partial F-test If F  statistic is not significant, the procedure stops and 

concludes that no independent variables are important predictors On the contrary, 

if F  value is significant, the procedure continues with the inclusion of the next 

variable Among the remaining variables, the one, having the highest partial 

correlation with the dependent variable is selected as the second vanable and a 

second regression equation is computed Again, F  statistic is checked for 

significance A preselected value of F, known as Fm, determines whether a vanable 

is significant or not The procedure continues until no vanables qualify for Fw value 

or all the independent variables are entered and the final model is obtained

4.3.3 Stepwise regression

This method is a modified version of forward selection that allows re-examination, 

at each step, of the vanables incorporated in the model in previous steps The first 

vanable is selected as in forward selection A vanable that entered at an early stage 

may become superfluous at a later stage because of its relationship with other 

vanables now in the model To check on this, at each stage a partial F-test for each 

variable presently in the model is evaluated and compared with a preselected Foul as 

though it were the most recent vanable entered, irrespective of its actual entry point 

into the model The vanable with the lowest insignificant partial F  value is 

removed, the model is refitted with the remaining variables, the partial F  values are
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calculated and similarly examined, and so on The entire procedure continues until 

no more variables can be entered or removed [125] and the final model is reached 

To prevent the same vanable from cycling in and out, Fm must be larger than Fout

The forward selection, backward elimination, and stepwise regression algonthms are 

available m SPSS [126], BMDP [127], and Minitab [128] programme packages For 

our analysis, SPSS package has been used

4.3.4 All possible subset regression

The procedure for this regression requires to fit each possible regression equation 

associated with each possible combination of the k independent variables For k 

independent variables, the number of models to be fitted would be 2k - 1 Once 2k - 

1 models have been fitted, the models are assembled into sets involving 1 to k 

vanables and arranged according to Cp (Appendix A) cntenon

A computer algonthm for this regression given by G M Furmval and R W Wilson 

[129] is available in the BMDP [127] package and this algorithm has been used in 

the analysis On the basis of Cp and user defined k, the program produces the ‘best 

K ’ subsets out of all possible regressions In addition, the program also gives the 

‘best K ’ subset with one variable, the ‘best K ’ subset with two vanables and so on 

up to the subset with all the vanables depending on the number K Finally, the 

program provides the ‘best K ’ out of all the ‘best K s’ with all the statistics and 

residuals for the subset and that becomes the final model

4.4 Sequential Estimation Procedure

This is another suitable model building procedure to estimate model parameters of 

a machinability model which we have proposed as a means for efficient parameter 

estimation The use of this technique is common in the area of on-line system 

identification [130,131] without any apparent application in the machinability model 

parameter estimation
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A sequential maximum a posteriori (MAP) estimation technique is capable of 

utilizing prior information regarding the parameters in addition to information 

regarding the measurement of errors Inclusion of pnor parameter information can 

have the beneficial effect of reduction of variances o f parameter estimators 

Assuming a response model of the form given in Equation (4 9), the equation for 

MAP estimation of the model parameters ¿ map are given as [132]

Where

bMAP  = l*|» + P MAP * T f '  <y - (4*10 )

p uap = < r 1 *  + v ; Y  (4  n )

b =  Parameter vector I p x l]  to be estimated

Up =  Parameter vector [pX7] known from pnor information

P =  Covanance matnx of estimates [p x p ]

x =  Matnx [nXp] of independent vanables

y =  Dependent (Response) vanable vector [n x ]]

^  =  Covanance matnx of the errors [nxri]

=  Covanance matnx of {p x p ]

Equations (4 10) & (4 11) can be transformed into sequential form by letting

b~ K v  y -7 l+i. p - p ,.v  v r p s x ~x**v (4 -12>

where <t> i s mX m diagonal covanance matnx of errors where m is the number of 

observations taken at each time The subscnpt i refers to the sequence number 

Substituting Equation (4 12) to Equations (4 10) & (4 11) gives

K i  = b, + p ^i xh  <tC\ (ylM - (4.13)

T , - 1 -K - 1^,*1 = (*,+i *  p , ) (4.14)
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Here bI + 1  is an estimator for all p  parameters based on yu y2, y3, ,y1+I as well

as on prior information, if any In order to use the above formulation, it is 

necessary to invertp x p  matrix P1 + 1  and the mxm  matnx ^ 1 + 1  at each time If m(p, 

inverses of the matrices in Equation (4 14) can be found by using the matnx 

inversion lema The matnx inversion lema is descnbed m Appendix B Using the 

equation of the Appendix B, Equation (4 14) yields

»+i = P. (*,+1 P . X1 + 1 i+i)■' * ,+i r, (4.15)

♦,'A P, * , * 1  (* ♦,-l)
- 1 (4.16)

Even though P1 + 1  is a/? xp  matnx, the matnces on the nght hand sides of Equations 

(4 15) & (4 16) have become mxm  These mxm  matnces are to be inverted m 

order to calculate PI + 1  Substituting Equations (4 15) & (4 16) into Equations (4 13) 

& (4 14), we obtain

A+i xl + 1

^i+i ^i+i + xi+i A+i

^+i = ^+i C
e.+l - O’.*! "  X,*l b.)

b t*  1 b i + e i * l

P,> 1 = P> ~ * , * 1

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

where A, A, K, and e are the intermediate values required for updating the values 

of b and P Equations (4 17-4 22) give a general sequential procedure that can be 

used for Ordinary Least Squares (OLS), Weighted Least Squares (WLS), Gauss- 

Markov, Maximum Likelihood (ML), and MAP estimation
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Equations (4 17-4 22) can be simplified further when there is a single observation 

at each time i e , m =  1 This is because A1 + 1  is a scalar and thus its inverse is a 

scalar The sequential estimation for m =  1 implied by Equations (4 17-4 22) is

^«,1 + 1  5T xi+\jc
k= 1

(4.23)

a.+i °<+i+ ^>2xi+ijc ^*¿+1
(4.24)

u.t+ 1

1 + 1

(4.25)

ei+i i

b , = b + K  , e .tM+ 1  UJ U./ + 1 l + l

(4.2 6) 

(4.27)

tfv,i+i ^  ^ + i  2, 3, , p (4.28)

where u =  1, 2, 3, , p and o*]+x is the variance of yt+1 It may be noted that there

are no simultaneous equations to solve or non scalar matrices to invert A computer 

programme written in Fortran can estimate the model parameters sequentially using 

Equations (4 23-4 28) The sequential estimation procedure can be utilized to 

estimate the model parameters with/without prior information The prior information 

provides data for initial model parameters, the covariance matrix Pu v 0  and the 

standard error of estimate ox Details of the analysis on the basis of this method are 

described in references [69,133]
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CHAPTER 5

EXPERIMENTAL FACILITY

5.1 Introduction

In this chapter the experimental facilities used for assessing the machinability have 

been discussed The details of the machines/equipment, work materials, and cutting 

tool inserts used have been descnbed

5.2 Experimental Set-up

A three component dynamometer in conjunction with the charge amplifiers, a UV 

recorder, and a computer were used to measure and record the cutting forces 

Surface finish was measured by a Surftest detector while the tool wear was 

measured under a Toolmakers microscope A schematic diagram of the set-up used 

for force measurement is shown in Figure 5 1 The following machine, equipments, 

work materials and cutting tool inserts comprised the experimental set-up

5.2.1 Machine and equipments

(a) A Colchester M1600, 10HP engine lathe with maximum spindle speed 1600 

rpm, feed range of 0  06 - 1  0  mm/rev,

(b) Kistler three component dynamometer (type 92625A1, calibrated range Fx 

=  0-15000 N, Fy =  0-15000 N, and Fz =  0-3000 N) with three Kistler 

charge amplifiers (type 5011), and a UV recorder (type M l2-150A),
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Figure 5.1 A schematic diagram of force measuring set-up

(c) Surface roughness tester (Mitutoyo surftest 402 series 178)

(d) Tool wear measuring microscope (Mitutoyo TM300 toolmakers microscope)

The force measuring system consists of a 3-component dynamometer, a distribution 

box, three charge amplifiers, an analog to digital (A/D) converter, a computer with 

printer facility and a light beam oscillograph recorder Surface finish were recorded 

by a Surftest detector and flank wear were measured by a Toolmaker’s microscope

5 2 1 1  Three-component dynamometer

It is a piezo-electnc transducer that measures the three orthogonal components of 

a cutting force and consists of a basic unit and a fixture for lathe This is procured 

from Kistler piezo-instrumentation, type 9265A1 for turning The basic unit is the 

mam component and consists of a stainless steel base plate, a mounting plate with 

a cooling system, and transducers The base plate has mounting flanges and on one 

side, it has a 9-pm Fischer flanged socket

-57-



The four 3-components transducers are held under high preload m between the 

baseplate and the mounting plate They are shielded thermally and mechanically 

The preload is necessary in order to enable tensile forces in the z-direction and 

cutting forces to be transmitted by factional contact The fixture consists of a base 

plate and a yoke and opening of the yoke takes up the cutting tool holder

A detailed technical data of the dynamometer is given in the Kistler manual [134] 

The calibrated range of Fx and Fy are from 0 to 1 5 kN and that of Fy is from 0 to 

3 0 kN The sensitivities are -7 87 pC/N for Fx, -7 91 pC/N for Fy, and -3 58 pC/N 

for Fz An isometric view of the dynamometer is shown in Figure 5 2 The unit is 

mounted on a smooth ground flat surface which in turn is fixed to the cross-slide of 

a lathe The position of the tool holder is such that the point of application of the 

cutting force was within 50 mm in front of the front plate and 115 mm above the 

base plate of the dynamometer

Figure 5.2 Kistler three-component dynamometer
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The force to be measured is introduced via the tool holder and the mounting plate, 

and distnbuted between four 3-component transducers These force transducers are 

arranged m a rectangle between the mounting plate and base plate Resolution of the 

force applied into its three components takes place in the transducers A 

proportional electric charge corresponding to each of three force components is 

generated in the dynamometer and converted by the charge amplifiers into 

proportional voltages

5 2 1 2  Distribution box

The distribution box acts as a connecting link between the dynamometer and 

amplifiers The Fx and Fy outputs of the transducers are led in pairs and the Fz 

output singly to the Fischer flanged socket From the socket, the signals for the 

individual components are added to the distribution box From the box, the three 

force components are connected to three charge amplifiers by means of special low 

noise BNC cables

5 ,2 .1 3  Charge amplifier

This is a mains-operated microprocessor controlled one-channel amplifier, type 

5011 Three of these types were used for 3-component forces It converts the 

electnc charge yielded by the piezo-electnc transducers into a proportional voltage 

signal The continuous range setting as well as the microprocessor controlled 

electronics allow for a simple and clearly arranged manipulation The technical 

details are given in Kistler charge amplifier manual [135] Depending on the 

magnitude of the cutting forces, the measuring range could be set up in the amplifier 

through a combination of transducer sensitivity T and scale S Every channel was 

adjusted to the number of kN per volt output corresponding to the range From the 

charge amplifiers, the output is parallely connected to a computer and an UV 

recorder

5 2 1.4 A/D converter

The analog to digital converter receives signals from the transducer via the charge 

amplifiers It is an 8 -channel 12 bit successive approximation high speed converter, 

full scale input for each channel is ±5  volts with a resolution of 2 44 millivolts, and 

the conversion time being typically 25 microseconds
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5.2.1.5 Computer

This is a 640 Kbyte RAM with 42 Mbyte disc space with IBM compatible VDU. 

It digitizes the signal through a programme written in BASIC language and displays 

the magnitude of the component forces through a printer output.

5.2.1.6 Lightbeam oscillograph recorder

This is a M12-150A [136] direct writing recorder. It uses a low power light source 

with a high performance optical system together with a servo controlled chart drive 

system. The performance of the lamp is optimised by operating it from a regulated 

supply to eliminate the damage caused by short term overloads and supply 

fluctuations. In the stand-by mode, the lamp is run below full power and is instantly 

brought up to full power at the commencement of recording. Up to 12 channels of 

information can be recorded on a 150 mm wide roll of direct print out paper.

The principle of operation follows from the ability to reimage a tiny light source as 

a spot of light for each channel, which can be deflected across the full width of light 

sensitive paper, by the mirror of a miniature galvanometer. The resulting record 

becomes visible shortly after emergence from the recorder, by the action of the 

ambient light on the recorded image.

5.2.1.7 Surface roughness tester

Surface roughness can be expressed numerically in a number of ways, but the most 

widely used is the arithmetical mean deviation designated as Ra. The different 

parameters used to express surface roughness are Rz, Rp, and RMS values [107]. In 

our experimental work, Ra values have been used to express surface roughness. It 

is defined as the arithmetical average value of the departure of the profile above and 

below the reference line (centre line) throughout the prescribed sampling length. 

Surftest detector from Mitutoyo has been used for this purpose. The detector is 

made up of (a) driving/display unit, (b) a slider, (c) a skid, (c) a detector, and (d) 

a nosepiece.

Figure 5.3 shows a schematic diagram of the instrument. A cut-off value was set 

before measuring the roughness. Cut-off is a filtering operation which is performed 

by a frequency dependent electronic filter. Its function is to suppress waviness
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(secondary texture) to whatever degree is required within the limitation of the cut­

off unit It may be noted here that a misleading roughness height value could be 

obtained for the surface if proper value of cut-off is not selected Three sample 

measurements over the diameter were taken at each observation point to ensure that 

the values obtained are representative of the whole surface area The average of the 

three readings were taken as the roughness value

Figure 5.3 A schematic of surface roughness measurement with the Surftest

The specifications of the Mitutoyo Surftest - 402 [137] are as follows

Driving/Display unit:

Displayable parameters 

Displayable range (¿tm)

Cut-off value (mm) 

Driving speed

R „ Rq {RMS), Rzi and R ^

(Ra) /?,)=> 0 01 - 2 0, 0 1 - 10 0, 0 2 - 50 

(Rz, R => 0 1 - 10 0, 0 2 - 50 0, 1 - 250 

0 25, 0 8 , and 2  5

0 5 mm/s during measurement and 

approximately 1  mm/s during return
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Elevation range of 

the detector 

Display 

Power supply

Detector:

Detecting method 

Stroke 

Stylus tip 

Tip shape 

Tip radius

Curvature of radius of skid 

5 2 1 8  Toolmakers microscope

The Tool maker’s microscope used for flank wear measurement was a precision 

optical measuring instrument with the following specifications [138]

Type: Column supported erect type, TM301

Microscope: Eyepiece optical tube Vertical tilt angle 30 degrees,

monocular type 

Objective Magnification 3x,

Working distance 72 5 mm 

Eyepiece Magnification lOx 

Image Erect image 

Maximum height of workpiece: 150 mm 

Column optical distance: 148 mm

Contour illuminator: Adjustable telecentric aperture stop

Light source Halogen lamp 6 V, 20W 

Control panel: Power switch with pilot lamp

Power supply: 100,110,120,220,240 VAC, 50/60 Hz

Coarse range is 40 mm, fine range is 10 mm 

Liquid crystal display

Nickel cadmium storage batteries/ AC adapter 

9V-800 mA

Differential inductance type 

0 3 mm 

Of diamond 

Conical of 90°

5 fxm 

30 mm

A schematic of the microscope is shown m Figure 5 4
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n:

Figure 5.4 Mitutoyo toolmakers microscope

5.2.2 Work-piece material

The work materials used as the test specimen were 1 ) high strength steel specified 

as EN24T (2 metre long and 76 2 mm diameter) and 1 1 ) inconel 718 Two 

cylindrical bars of inconel (1 metre long and 55 mm diameter) were used for the 

tests The details of material properties are given in Table 5 1, Table 5 2, and Table 

5 3

The nickel alloy 718 round bar to AMS 5663G specification was purchased from 

Devtec Ltd, Ireland at fully heat treated condition By fully heat treated condition, 

it means that the specimen is solution treated (980 °C for 2 hours, oil quenched) and
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Table 5.1 Chemical composition of inconel-718
AMS 5663G C Si Mn P S Cr Fe Mo Bi

1 0.034 0.07 0.08 0 . 0 1 0.0017 18.43 BAL 2.98 (0.25 ppm

2 0.036 0.08 0.03 0 . 0 0 1 (0 . 0 0 1 17.20 BAL 2.98 (0.00003

AMS 5663G Ni Al Ti Co Cu B Pb Cb/Nb+Ta Se

1 52.67 0.56 1 . 0 1 0 . 1 1 0.04 0.0041 (0.5 ppm 5.10 (3 ppm

2 51.17 0.65 1.03 0 . 1 1 0 . 0 2 0.0045 0 . 0 0 0 1 5.241 0 . 0 0 0 1

Table 5.2 Mechanical properties of inconel-718

AMS 5663G Yield 0.2%PS 
(MPa)

Tensile Stress 
(MPa)

Reduction of 
Area %

Elongation % Condition Hardness HB

1 1248 1419 49 2 0 Room Temp 415

1027 1140 48 19 649 °C

2 1176 1422 43 2 2 Room Temp 444

951 1154 44 26 649 °C



Table 5.3 Composition and properties of EN24T

Chemical composition %

c Si Mn P S Cr Ni Mo

0 40 0 27 0 47 0  0 1 009 1  0 1 1 34 0  2 1

Ultimate tensile strength 925 MPa

Yield strength 820 MPa

Hardness 290 BHN

aged (720 °C for 8  hours, furnace cooled to 620 °C and held for 8  hours, air 

cooled) The details of heat treatment phenomena is discussed in chapter 2 1 and in 

reference [139]

5.2.3 Tool material

Cemented tungsten carbide (both uncoated and coated) cutting tool inserts were used 

for turning These inserts are manufactured by Sandvik

Cemented tungsten carbide inserts specification CNMA 12 04 04, uncoated carbide 

H13A, and coated carbide GC3015 (approach angle Kr =  95°, rake angle =  -6 °, 

angle of inclination =  -6 °) and tool holder (PCLNR25 M l2) GC3015 has a thick 

layer of A12 0 3  on top of a layer of titanium carbide The total thickness of the 

coatings is lÔ tm [140] A view of the coated insert is shown in Figure 5 5
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Figure 5.5 A coated carbide (GC3015) cutting tool insert

-66-



CHAPTER 6

EXPERIMENTAL RESULTS AND DISCUSSIONS: ONE-VARIABLE- 

AT-A-TIME

6.1 Introduction

In this chapter, the cutting force and tool life test results (for EN24T Steel and 

Inconel 718) are presented and analyzed The main analysis include

1 Cutting forces The effect of the machining independent variables, i e 

cutting speed, feed rate, and depth of cut

2 Tool life The effect of the cutting speed, feed rate, and depth of cut when 

using uncoated and coated carbide cutting tools

6.2 EN24T Steel

In carrying out the experiments of one-vanable-at-a time, two machining

independent variables out of the three (speed, feed, and depth of cut) were kept 

constant and the machining response (cutting force, tool life) was measured/recorded 

by varying the third variable The turning tests were performed on a high strength 

material (290 BHN) The objectives of these tests were

(i) to estimate the cutting forces and derive optimum cutting conditions

(n) to find the tool life values and relationships.

(m) to determine the exponents of the cutting variables
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6.2.1 Cutting force

A series of oblique cutting tests was earned out on a Colchester lathe to investigate 

the effect of cutting forces on speed, feed and depth of cut All the tests were run 

dry and Sandvik uncoated carbide inserts designated as H13A were used as the 

cutting tools The specification of the insert have been desenbed m section 5 2 A 

high strength steel specified as EN24T steel (290 BHN) was used as the workpiece 

matenal

In order to measure the different cutting force components Fz, Fx, and Fy (tangential, 

axial, and radial), the tool holder was mounted on the Kistler dynamometer 

connected to a PC based data acquisition system through the charge amplifiers The 

Kistler piezoelectnc dynamometer was mounted on the lathe A UV chart recorder 

was also incorporated in the data acquisition system to measure the force 

components and compare the values with those obtained through the computer 

Chapter 5 desenbes the details of these instrumentations and equipments used

In the force-speed tests, a constant feed rate (0 25 mm/rev) and depth of cut (0 25 

mm) were maintained while the speed was varied from 5 to 280 m/min In 

investigating the effect of feed on the cutting force, feed rate was vaned from 0  08 

to 0 60 mm/rev at a constant cutting speed (124 and 90 3 m/min) and depth of cut 

(0 25 and 1 0 mm)

The cutting forces at various depth of cuts (0 25 to 1 5 mm) were measured at a 

constant cutting speed (90 3 m/min) and different feed rates (0 10, 0 15, 0 25, 0 40, 

and 0 50 mm/rev) A new cutting edge was used at each expenmental condition 

Three data points were taken at each condition and average values are shown on the 

different plots

Figure 6  1 illustrates vanation of the tangential F2, feed Fx9 and radial Fy forces 

with the cutting speed at a constant feed rate (0 25 mm/rev) and depth of cut (0 25 

mm) At low speed (5-70 m/min), Fz which is the main power component of the 

cutting forces was found to be high and then decreased as the speed increased to 

about 60 - 70 m/min It increased again with the increase of speed and this
r
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continued until the speed reached about 130 m/min. Beyond this speed, Fz decreased 

gradually with the increase of speed.

As the speed increased from 60 m/min, Fy remained almost constant. The feed force 

Fx, increased until 130 m/min and gradually became constant as the speed was 

increased. The tangential force which accounts for the power consumption was the 

highest among the three components. The feed force was about one half of the 

tangential force.

The built up edge (BUE) had a major influence on the cutting forces encountered 

during machining. As the cutting speed increased, the friction between the chip and 

tool increased and when this became large enough to cause a shear fracture in the 

region of the tool face, a BUE forms. At very low speed, there was no BUE 

because the temperature on the face of the chip was not high enough to cause the 

chip surface to behave in a ductile manner. So the force was high at the low speed 

since no BUE was present to alter the rake angle.

With the increase of speed, BUE started growing and became maximum in size 

when the speed was around 60 - 70 m/min. As the size of the BUE grew large, it 

changed the effective rake angle of the tool and the forces became low. This 

phenomena was observed when the cutting speed was around 60 - 70 m/min. When 

the speed was increased from 70 - 130 m/min, the BUE size decreased and 

disappeared at 130 m/min where the cutting forces were high again. Beyond this 

cutting speed, the material on the tool face began to soften due to high cutting 

temperature and the tool face friction was reduced. The chip tool temperature 

increased and shear resistance of the chip contact layer dropped. This resulted in 

lower forces [141].

Figure 6.2 and Figure 6.3 depict the force-feed trend at two different constant 

speeds and depth of cuts. Figure 6.2 is for a cutting speed of 124 m/min and depth 

of cut of 0.25 mm while Figure 6.3 is for a cutting speed of 90.3 m/min and depth 

of cut of 1 mm. In both cases, the cutting forces increased with the increase of feed. 

The rate of increment is almost linear which suggests that the cutting force is 

directly proportional to the feed rate.
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The feed force was smaller than the radial force when the depth of cut was 0 25 

mm It may be because at low depth of cut, the chip flow approaches radial 

direction and the force increases as a result With the increase of speed, chip flow 

changed its direction until it became longitudinal and thereby increasing the axial 

component [141]

Figure 6  4 shows the variations of cutting forces with depth of cut at constant speed 

and feed rate The tangential and the feed forces were observed to increase linearly 

and have the similar trend but the radial component increased slowly with the depth 

of cut As the depth of cut was increased from 0 5 mm to 1 0 mm, tangential force 

was almost doubled

Figure 6  5 through Figure 6  7 shows the individual component of the cutting forces 

with depth of cut at various feed rates
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6.2.2 Tool life

To investigate the tool life relationship, a series of cutting tests was run under 

different cutting conditions In these experiments, feed and depth of cut had three 

levels each and cutting speed had four levels The levels chosen for the variables are 

given in Table 6  1

Table 6.1 Levels of different cutting variables

Velocity (m/min) Feed (mm/rev) Depth of cut (mm)

33 0 15 0 5

65 0 30 1  0

94 0 40 1 5

125

Round bar of high strength steel specified as EN24T was turned with uncoated 

carbide cutting tool inserts manufactured by Sandvik Each test was started with a 

new insert edge and all the tests were run under dry condition Depending on the 

cutting conditions and wear rate, machining was stopped at various intervals of time 

varying from 1/2 minute to 1 minute to record wear on the insert The wear was 

then measured using a Mitutoyo TM300 Toolmakers microscope Further testing 

was stopped and an insert was rejected when average flank wear equal to or greater 

than 0 30 mm was reached

ISO 3685 [106] was used as a guide in determining the wear criterion For each set 

of cutting conditions, one cutting edge was used Average flank wear values have 

been plotted against cutting time for different experimental conditions from Figures 

6  8  to 6  1 0
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Figure 6  8  is a plot of tool wear for various cutting speeds while feed rate and depth 

of cut were kept constant Clearly three wear zones were observed at low speeds 

These were (1 ) primary or initial wear zone with an abrupt increase in flank wear, 

(1 1 ) secondary wear zone (or steady state region) for a longer period of tool life 

time, and (1 1 1 ) tertiary or accelerated wear zone leading to tool failure The extent 

of these zones is greatly dependent on the cutting speed [96] At higher speed (125 

m/min), wear rate was very rapid and three zones were not clearly defined Flank 

wear increased almost linearly with cutting time until failure occurred

In Figure 6  9, the three characteristic tool wear curves are shown for three different 

feed rates at constant speed and depth of cut It is obvious that as the feed rate 

increased tool life decreased But the effect of feed compared to speed on tool life 

was less pronounced As the feed rate was doubled from 0 15 to 0 30 mm/rev, tool 

life was changed from 6  22 minute to 5 3 minute whereas it was almost halved 

when the cutting speed was changed from 33 to 65 m/min

Flank wear at different depth of cuts under constant speed and feed rate is shown 

in Figure 6  10 The depth of cut had very little effect on tool life Although depth 

of cut was changed from 0 5 to 1 5 mm, tool life reduced from 5 75 to 4 5 minutes 

only Comparing the three figures, it can be concluded that cutting speed has the 

greatest influence on tool life followed by feed rate and depth of cut
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In order to determine the three exponents of the cutting variables (speed, feed, and 

depth of cut), the tool life data are plotted on logarithmic coordinates shown in 

Figure 6  11(a) - 6  11(c) Tool life values for different velocities, feed rates, and 

depth of cuts are obtained from Figure 6  8 , 6  9, and 6  10 respectively

The best fit line obtained by regression analysis [106] has been drawn m each case 

represented by the solid line in Figure 6  11(a) through Figure 6  11(c) The slope of 

these lines are the exponents (l/n j, (l/n3), and (l/n^ corresponding to velocity, 

depth of cut, and feed respectively These exponents describe the effect of the 

cutting variables (speed, depth of cut, and feed) on tool life The larger the value 

l/n1? the steeper the V-T slope and greater the change in tool life for a given change 

in cutting speed The values of the various exponents calculated from figures 6  11(a) 

- 6  11(c) are shown in Table 6  2

Table 6.2 Values of exponents for various cutting variables

Tool material Exponent

ni
(speed)

n 2

(feed)
n 3

(DOC)

Uncoated carbide 0 50 2 25 3 9

The largest value of 1/nj compared to l/n2  or l/n3  suggests that speed has the 

greatest influence on tool life followed by the feed rate and depth of cut
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Figure 6.11 Graphical calculation of tool life exponents (a) speed, (b) depth of 
cut, (c) feed
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With the outcome of the test results of turning EN24T steel, the following

conclusions could be made

1 The feed force may not vary in the same manner as the tangential force 

because the latter acts m the direction of cutting which is considerably larger 

than the force along the direction of feed

2 Higher cutting speeds increase tool temperature and accelerate all types of 

tool wear Cutting forces decrease with increase in speed since the shear 

strength of the workpiece decreases

3 With the increase of feed, cutting force increases and the likelihood of 

chipping of the cutting edge through mechanical shock also increases

4 The higher the depth of cut, the greater is the chip-tool contact area and 

higher is the tool temperature This accelerates the abrasive, adhesive, and 

diffusion wear processes

5 The range of speed exponent n, for the carbide tool material is reported to 

be 0 2 - 0 49 [96] which compares well with the one obtained in Table 6  2

\

6  It is usually found that 1/nj ) l/n2  ) l/n3  so that the cutting speed has the 

greatest influence on tool life followed by feed and depth of cut
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6.3 Inconel-718

Round solid bars (length 1 metre, diameter 55 mm) of inconel 718 (415 - 444 BHN) 

were turned with Sandvik carbide (uncoated and coated) tools in order to assess the 

cutting forces and tool lives under various cutting conditions All the turning tests 

were run dry The cutting tool materials used were in the form of tips (SOP 

rhomboid shaped) without any chip breaker which were attached to a tool holder 

The composition and properties of carbide tools have been described in Chapter 5

6.3.1 Cutting force

The force measuring set up described in section 6  11 had been adopted to record 

the three components of the cutting force in turning inconel 718 In the force 

measurement, only uncoated carbide tools have been used to machine inconel 718 

The machining operation involved continuous turning at three different feed rates 

(0 12, 0 20, 0 30 mm/rev) and three different depth of cuts (0 5, 1 0, 1 5 mm) with 

the cutting velocity varying from 8  m/min to 69 m/min

Figures 6  12 - 6  14 show the variation of tangential, axial (feed force), and radial 

forces with cutting speed at a feed rate of 0 12 mm/rev, and depth of cuts of 0 5, 

1 0, and 1 5 mm respectively Similar plots of force speed variation at different feed 

rates of 0 20 mm/rev and 0 30 mm/rev have been presented in Figures 6  15 - 6  17 

and Figures 6  18 - 6  20 respectively

All these figures depict that the tangential component of the cutting force Fz is the 

highest in magnitude followed by the axial Fx and radial Fy components Generally 

as the speed increased, the forces decreased and became constant At very low 

speed, the force was relatively higher The axial force was higher than the radial 

force at higher depth of cuts (1 0 and 1 5 mm)

When the depth of cut was low (0 5 mm) and feed was high (0 30 mm/rev), the 

radial force was higher than the axial force (Figure 6  19) This suggested that the 

chip flow direction was radial instead of axial at lower depth of cut With the
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increase in depth of cut, the direction of chip flow changed from radial to axial with 

an increase in the axial force

Figure 6  21 and 6  22 show the variation of the resultant cutting force F  with cutting 

speed for various feed rate at depth of cut of 1 0 and 1 5 mm respectively In all 

cases, F  increased as the feed increased

Figure 6  23 presents the variation of resultant cutting force with feed rate at three 

different cutting velocities at a constant depth of 1 0 mm The cutting force was 

observed to increase linearly with the feed rate A similar trend was observed when 

the forces were plotted against different depth of cuts as shown in Figure 6  24 The 

forces were found to increase linearly with the depth of cut
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6.3.2 Tool life

The tool life expenments were earned out in three set of test runs The first set of 

experiments was conducted by varying the cutting velocities at constant feed rate 

(0 20 mm/rev) and depth of cut (1 0 mm) During the second set of experimental 

runs, feed was varied while the cutting velocity and depth of cut were kept constant 

The depth of cut was varied during the third set of expenments while the cutting 

velocity and feed rate were kept constant

Tool wear values were recorded using a Mitutoyo TM300 Toolmakers microscope 

ISO 3685 [106] was used as a guide in establishing the wear cntenon Each test was 

started with a new cutting edge and machining was stopped and the insert was 

removed to measure its wear at different interval of time ranging from one to two 

minutes Further machining was stopped and an insert was rejected when the 

average flank wear exceeded 0 30 mm Three test runs were earned out for each 

cutting condition and the average wear values were considered to determine the tool 

life The expenmental conditions are shown in Table 6  3

Table 6.3 Experimental cutting conditions

Velocity V (m/min) Feed f (mm/rev) Depth of cut d (mm)

2 0

26 0  2 0 1  0

36

48

0  1 2

2 0 0  2 0 1  0

0 30

1  0

2 0 0  2 0 1 5

2  1
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Both coated and uncoated carbide inserts were investigated in these tool life tests 

The details of these tools have been described in section 5 2 The flank wear values 

of uncoated carbide inserts for different cutting conditions have been presented m 

Figure 6  25 through 6  28

Figure 6  25 shows the progression of the width of the flank wear land against 

cutting time when the test has been repeated three times at the same cutting 

conditions The wear progression in all cases were very similar and the tool life 

values ranged form 18-20  minutes

In all tool life cutting expenments, the tests were repeated three times and the 

average value is plotted Figure 6  26 depicts tool wear obtained from four different 

speeds at constant feed rate and constant depth of cut At the cutting speeds of 36 

and 48 m/min, wear progression was almost linear and very rapid and the tool life 

was short Dunng machining at these cutting conditions, chips were observed to be 

red hot and broken When the cutting speed was changed to 20 m/min, initial wear 

was rapid, followed by a gradual steady wear, and then an abrupt wear until failure 

occurred

Figure 6  27 and 6  28 represent tool wear values for vanous feed rates and depth of 

cuts respectively With the increase of feed rate, tool wear increased At high feed 

rate, broken and fragmented chips were observed dunng machining The rate of tool 

wear with respect to the depth of cut (Figure 6  28) was very similar with those of 

feed rates

With the identical set of expenmental conditions, tool life of the coated carbides was 

also investigated Figure 6  29 through Figure 6  31 represent such plots for different 

cutting velocities, feed rates, and depth of cuts respectively In general, the tool life 

of coated carbide was observed to be shorter when compared with that of the 

uncoated carbide for identical expenmental condition

The tool life dependence on the tool material at various cutting speeds, feed rates, 

and depth of cuts are shown in Figure 6  32 to 6  34 These tool life values have been 

obtained from Figures 6  26 to 6  31 From Figure 6  32, it is observed that at a
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cutting velocity of 2 0  m/min, the performance of uncoated carbide tools was much 

better than that of the coated carbide As the velocity was increased, both coated 

and uncoated carbides tool lives were the same

When the tool life was investigated at various feed rates, the life of uncoated carbide 

tools was better (Figure 6  33) Coated carbide tools proved to be better only when 

the depth of cut was higher (15  and 2 1 mm) as shown in Figure 6  34

The reason for accelerated tool wear of the coated tools at 20 m/min may be due 

to the fact that the deposition process (Chemical Vapour Deposition) used for 

coatings might reduce the tool toughness Komg [142] pointed out that CVD 

coatings usually reduce the toughness of the carbide substrate The toughness of the 

tool may have a dominant role in resisting the wear mechanism when the speed is 

low [43]

However, the toughness of the coated tool improves with the temperature [142] and 

these were observed when the depth cut was higher (1 5 and 2 1 mm) The 

increased tool lives in the case of coated carbide tools with higher depth of cuts 

proves that coatings improved its toughness at high temperatures The temperatures 

in the cutting zone is usually higher when the depth of cut is higher

The advantage of using a coated carbide tool rather than an uncoated tool for 

machining inconel 718 was not clear, but the coated tools appeared to have 

performed better when the depth of cut exceeded 1 0 mm These observations agree 

with the recommendations made by Shaw [1] that in general coated carbides are not 

useful for machining high temperature alloys (either nickel- or cobalt base)

The GC3015 tool has a thick layer of A12 0 3  on top of a layer of TiC The total 

thickness of the coating is 10 ¡im The thick layer of A12 0 3  increases its wear 

resistance property at higher speeds However, the coating can reduce the toughness 

of the carbide substrate The toughness strength of tungsten carbides is higher than 

that of the coated carbide while the chemical stability and resistance of diffusion to 

oxidation of coated carbides are better

-92-



0 5  

0 4

1
«  0 3

5
<u 
£ 02

GctS
E

01 

o
0 5 10 15 20 25

C u ttin g  tim e  (m m )

Figure 6.25 Tool wear plot of uncoated carbide inserts for three cutting test 
runs

- V  = 20 m/min
- f  = 0 20 mm/rev
- d = 10 mm

+
-f

= 1 =

-h

- +
-

- * +

■ +  *  :

:  +  +
+

-±
-

1 J J 1 J-1-1-1—1. -1. 1 1 J-1-1-1-i-L_J. 1 .1 i 1 1 1 L 1 1 I I 1 1 1 11. 1 1-1-1-1-L .L 1 1 J-1-1-1_

Cutting time (min)

Figure 6.26 Tool wear of uncoated carbide inserts at different cutting speeds
-93-



Figure 6.27 Tool wear of uncoated carbide at different feed rates

Cutting time (mm)

Figure 6.28 Tool wear of uncoated carbide at different depth of cuts
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Figure 6.29 Tool wear of coated carbide inserts at different cutting speeds

Figure 6.30 Tool wear of coated carbide inserts at different feed rates
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f  = 0 20 mm/rev 
d = 1 0 mm
□  Coated tool

Uncoated tool

26 36 48

Cutting velocity V  (m/min)

Figure 6.32 Tool life dependence on tool material at different cutting speeds
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At low cutting speed, the shorter tool life of coated tools suggested that the 

toughness of the tool might be important to resist the wear mechanism of the tool 

At speeds greater than 20 m/min, the toughness of coated tools seem to have 

improved with temperature and its performance with regard to the tool wear 

improved significantly

Coated tool gave higher tool lives at 1 5 and 2 1 mm depths of cut than the 

uncoated tools Flank wear may be considered as a combination of abrasive and 

diffusion wear At high speeds, carbide tools failed due to thermal softening of the 

cobalt binder phase and subsequent plastic deformation of the cutting edges

The three exponents (cutting velocity, feed rate, and depth of cut) of the Taylor’s 

tool life equation have been determined graphically for uncoated and coated carbide 

inserts and are presented in Figures 6  35 and 6  36 respectively The speed 

exponents in both cases as shown in Figure 6  35 (a) and Figure 6  36 (b) were within 

the range (0 2-0 49) for carbide tools [96] In case of the uncoated carbide tool, the 

effect of depth of cut and feed on the tool life was noticeably same (Figure 6  35 

(b) and Figure 6  35 (c))

The effect of depth of cut on the coated carbide is rather interesting Figure 6  36

(b) depicts that the depth of cut has very negligible effect on the flank wear 

compared to the effect of the velocity and feed rate This might explain as to why 

the coated tools performed better at higher depth of cuts Comparing the feed and 

depth of cut exponents, we see that the uncoated tools are most sensitive to feed and 

depth of cut changes than the coated tools
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Figure 6.35 Graphical calculation of tool life exponents (a) speed, (b) depth of 
cut, and (c) feed for uncoated carbide insert
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The following conclusions could be made with regard to the turning of inconel 718

with uncoated and coated carbide tools

1 Uncoated carbide cutting tools showed better performance with respect to 

different cutting speeds and feed rates In the speed range of 26 to 48 

m/mm, no significant difference in tool life values were observed for the 

coated and uncoated tools At higher speeds, the cutting forces did not 

decrease because of higher shear stress

2 The use of coated tools were justified only when the depths of cut exceeded 

1 0 mm The depth of cut exponents also suggest that it has relatively less 

influence on the wear of coated tools than the uncoated tools

3 The effect of cutting speed on tool life is more pronounced than the effect 

of feed rate and depth of cut for coated tools In case of uncoated tools, the 

effect of speed on tool wear is followed by the effect of depth of cut and 

feed rate

4 In general, the uncoated carbide tools gave higher tool life than the coated 

carbide tools when machining inconel-718

5 The recommended cutting speed for machining inconel using the uncoated 

tungsten carbide should be within 15-25 m/min, feed rate should be 0 15 - 

0  2 0  mm/rev, and depth of cut should be 1  0  - 1  5  mm
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EXPERIMENTAL RESULTS AND DISCUSSIONS: DESIGN OF 

EXPERIMENTS

7.1 Introduction

This chapter is divided into two sections Section 7 2 descnbes the experimental 

results and discussions for EN24T steel based on the design of experiment Tool 

life, surface roughness, and cutting force models have been developed and presented 

with figures based on the design of expenment The experimental results and 

discussions together with the mathematical models on tool life, surface roughness, 

and cutting force for inconel 718 have been described in Section 7 3

7.2 Design of Experiment for EN24T Steel

In order to establish an adequate functional relationship between the machining 

response (tool life, surface roughness, cutting force) and the cutting parameters 

(cutting speed, feed, and depth of cut), a large number of cutting tests are needed 

It requires a separate set of tests for each and every combination of cutting tool and 

workpiece material This increases the total number of tests and as a result 

experimentation cost also increases

The design of experiments takes into account the simultaneous variation of speed, 

feed, and depth of cut, and predicts the response This approach is known as 

response surface methodology where the response of the dependent variable (tool

CHAPTER 7
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life, surface roughness, or cutting force) is viewed as a surface and was first 

pioneered by Wu [115] Factorial designs are widely used in experiments involving 

several factors where it is necessary to study the combined effect of these factors 

on a response The meaning of the factorial design is that each complete trial or 

replication of the all possible combinations of the levels of the factors are 

investigated By using the response surface methodology and 23  factonal design of 

experiment, first and second order models have been developed with 95% 

confidence level These model equations have been used to develop the response 

contours for different cutting conditions

The proposed functional relationship between the machining response and machining 

independent variables can be represented by the following

R = C ( y * r  d") € CM )

where R is the response, V ,f  and d are the cutting speed (m/min), feed (mm/rev), 

and depth of cut (mm) respectively, and C, I, m, n are constants and e is a random 

error The response R may be tool life T in minutes, or surface roughness Ra in 

microns, or cutting force F  in newton Equation (7 1) can be written in the 

following logarithmic form

IrtR = InC + I InV + m Inf + n Ind + lne ^*2)

The linear model of equation (7 2) is

y = Po*o+ Pi*i + Pj*2 + P a  + 6 (7-3)

where y is the measured response in a logarithmic scale, x0 =  1  (dummy variable), 

Xj =  InV, x2 =  In/, x3 =  Ind, e =  lne" where e is assumed to be a normally 

distributed uncorrelated random error with zero mean and constant variance, P0 =
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InC, fih |S2, and &3 are the model parameters The estimated response can be wntten 

as

y = y ~ e = V o + V i  + V 2 + V s  (7,4)

where £ is the estimated response, b0, fc2, and ^  are estimates of 0 O, ft, 0 2, and 

fi3 respectively The second order model can be expressed as

7  = y -  e = V o + V i  + V 2 + V s  + *11*1

+  +  bl£  +  *1 2 *1 *2  +  *>13*1*3 +  * W 3

(7 5)

Equation (7 5) is useful when second order effects of V, / , ¿Z, and the two way 

interactions among V, f, and d are significant The significance of these variables 

are judged by statistical analysis The parameters of equations (7 4) and (7 5) have 

been estimated by the method of least squares using a Matlab computer package

A design consisting of twelve experiments has been used to develop the first-order 

model Eight experiments represents a 23  factorial design, where the experimental 

points are located at the vertices of a cube illustrated in Figure 4 1(a) Four 

expenments represent an added centre point to the cube, repeated four times to 

estimate pure error The complete design consists of twelve expenments in two 

blocks, each block containing six expenments The ‘£’ parameters of equation (7 4) 

were calculated on the basis of only six tests of the first block consisting of 

expenment numbers 1, 4, 6 , 7, 9, and 10 Another second block of six tests (2, 3, 

5, 8 , 11, & 12) were added with the first block results to provide a precise estimate 

of the ‘6 ’ parameters The combined blocks improve the confidence interval of the 

parameters and help improve precision in the analysis of vanance The design 

provides three levels for each of the independent vanables

As the first-order model is only limited over a narrow range of vanables, the 

expenments were extended to obtain a second-order model Six augment points were 

added to the face of the cube, where each was chosen at a selected augment length
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of a/ 2 The six expenments were repeated twice to increase the model accuracy as 

shown in Figure 4 1(b) The resulting twelve or twenty four expenments form the 

central composite design [121] Such a design has been used by Taraman [7], 

Bandyopadhyay & Teo [46], El-Baradie [54], and the authors [143] in order to 

investigate the effects of cutting vanables on the tool life and surface finish In this 

turning investigation, uncoated carbide cutting tools have been used

Depending on the cutting conditions and wear rate, machining was stopped at 

vanous intervals of time varying from 1/2 minute to 5 minutes to record wear on 

the insert Flank wear has been considered as the cntena for tool failure and the 

wear was measured under a Mitutoyo TM300 Toolmakers microscope Further 

testing was stopped and an insert was rejected when average flank wear greater than 

0 30 mm was recorded [106]

Surface roughness was measured using a Mitutoyo Surftest The vanous roughness 

height parameters such as average roughness Ra, smoothemng depth Rp, root mean 

square Rgf and maximum peak to valley height Rt can be closely correlated [144] 

The present study uses the average roughness (Ra) for characterisation of surface 

roughness It is most widely used in industry for specifying surface roughness A 

cut off value of 0 8  or 2 5 was selected depending on the magnitude of roughness 

All the expenments were run dry and each expenment was started with a new 

cutting edge At each expenmental condition, three readings were recorded along 

the diameter of the work piece and the average values are taken and presented

To measure the different cutting force components, the tool holder was mounted on 

the dynamometer connected to a PC based data acquisition system through the 

charge amplifiers The Kistler piezoelectnc dynamometer was mounted on a lathe 

A UV chart recorder was also incorporated in the data acquisition system to 

measure the force components and compare with those obtained through the 

computer output Three cutting tests were conducted at each experimental point and 

average cutting force have been taken into consideration
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The levels of independent variables and coding identifications are presented in Table 

7 1 Table 7 2 shows the experimental cutting conditions together with the measured 

tool life, surface roughness, and cutting force

The transforming equations for each of the independent variables are

x _ WV) ~ ln(65)
1 ln(117) - ln(65)

x = ln(fl - ln(0  25) (?<6)
2 ln(040) - ln(0 25)

x m ln(d) -  ln(075)
3 ln(l 125) -  ln(0 75)

Table 7.1 Levels of independent variables

Levels Lowest Low Centre High Highest

Coding V 2 - 1 0 1 V2

Speed V (m/min) 28 36 65 117 150

Feed f (mm/rev) 0  1 2 0 15 0 25 0 40 0 50

Doc d (mm) 0 42 0 50 0 75 1 125 1 33
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Table 7.2 Experimental conditions and results

Trial No Speed V 
(m/mm)

Feed f 
(mm/rev)

Doc d 
(mm)

Coding7
3

Response

x2 * 3 Tool life 
T (mm)

Surface roughness
K  0 ™ )

Cutting force 
F(N)

1 36 0 15 0 500 24 60 1 8 447
2 117 0 15 0 500 1 - 1 - 1 2 30 1 233 363
3 36 0 40 0 500 - 1 1 - 1 1 0  80 5 3 833
4 117 0 40 0 500 1 1 - 1 1  60 5 067 703
5 36 0 15 1 125 - 1 - 1 1 14 80 2 133 1023
6 117 0 15 1 125 1 - 1 1 2 14 1 45 789
7 36 0 40 1 125 - 1 1 1 12 25 6  233 1610
8 117 0 40 1 125 1 1 1 1 35 5 167 1386
9 65 0 25 0 750 0 0 0 5'22 2 433 772

1 0 65 0 25 0 750 0 0 0 4 82 2 3 756
1 1 65 0 25 0 750 0 0 0 5 00 2 367 767
1 2 65 0 25 0 750 0 0 0 5 12 2 467 762
13 28 0 25 0 750 V2 0 0 18 0 3 633 972
14 150 0 25 0 750 V2 0 0 0  8 6 2 767 696
15 65 0 1 2 0 750 0 V2 0 5 00 1 153 526
16 65 0 50 0 750 0 V2 0 3 60 6  333 12678
17 65 0 25 0 420 0 0 V 2 5 80 2 533 473
18 65 0 25 1 330 0 0 V2 3 75 3 2 1290
19 28 0 25 0 750 V 2 0 0 18 35 3 233 1015

2 0 150 0 25 0 750 V2 0 0 0  8 8 2 967 681
2 1 65 0 1 2 0 750 0 V 2 0 5 70 1  2 1 508
2 2 65 0 50 0 750 0 V2 0 3 90 6  733 1237
23 65 0 25 0 420 0 0 V 2 6  40 2  833 437
24 65 0 25 1 330 0 0 V 2 4 30 3 267 1359



7.2.1 Tool life model

7 2 1 1  Results, discussions, and optimization First-order model

The tool life models based on the first and second block of six experiments are

7  = 1 6941 - 1 1194jCj - 0 247jc2 - 0 1016x3 (7.7)

and

7 = 1 575 - 09853^ - 0212x2 - 00544x3 (7.8)

respectively Table 7 3 of Appendix C shows the 95% confidence interval for the 

first block of six tests Draper and Smith [120] have given the details of variance 

calculations The 95% F-test for one degree of freedom is 161 while the ratio of the 

mean square of lack of fit to mean square of pure error is 6  18 95% confidence 

interval of the second block is shown in Table 7 4 of Appendix C The calculated 

F-value is found to be 22 36 Hence both of the models are found to be adequate 

However, if we look at Table 7 3 & 7 4, the 95 % confidence intervals are rather 

large As such, test results of block 1 & 2 are combined and analyzed

The predicted tool life model for the combined blocks in coded form is

7  = 1 6345 - 10523*! - 0 2295x2 - 0 078jc3 (7.9)

The analysis of variance and 95% confidence interval are shown in Table 7 5 and 

Table 7 6  of Appendix C respectively The ratio of lack of fit to pure error is 3 91 

while F-statistics is 9 01 Therefore, the model is adequate Equation (7 9) 

describing the too life model can be transformed by using equation (7 6 ) into the 

following form

T  = 4564 K'17903 d ~ o i m
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The equation shows that the tool life decreases with the increase of cutting speed, 

feed, and depth of cut The cutting speed has the most dominant effect on tool life 

followed by the feed and depth of cut The equation of metal removal rate Q 

(cm3 /min) in logarithmic form is given by

ln<? = ln K  + l n / + l n d  (7-11)

where d is in mm,/ i s  in mm/rev, and V is in m/min Combining equations (7 6 ) 

& (7 11), the metal removal rate for a specific depth of cut (0 75 mm) becomes

In Q = 2 5004 + 0 5878^ + 047jc2 (7.12)

Equation (7 9) is utilised to develop tool life contours in speed-feed plane at the 

selected level of depth of cut Figure 7 1 through 7 3 shows the contours at three 

different depths of cut These contours help predict the tool life at any zone of 

experimental domain

The response contours generated by Equation (7 12) is superimposed on Figure 7 2 

and is shown in Figure 7 4 These contours would be useful in finding the maximum 

attainable tool life for a given metal removal rate Companng the points A and B 

of Figure 7 4, one can select the cutting parameters (velocity and feed rate) at A 

which will result in a gain in tool life by 50% for the same metal removal rate
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Cutting velocity V (m/mim)

Figure 7.1 Tool life contour in velocity-feed plane at a depth of cut 
of 0.50 mm

Cutting velocity V (m/min)

Figure 7.2 Tool life contour in velocity-feed plane at a depth of cut
of 0.75 mm
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Guiting velocity V (m/mm)

Figure 7.3 Tool life contour in velocity-feed plane at a depth of cut 
of 1 125 mm

Cutting velocity V (m/mm)

Figure 7.4 Dual response contours of tool life and metal removal
rate m velocity-feed plane at 0.75 mm depth of cut.
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7.2 1 2 Results, discussions, and optimization* Second-order model 
Even though the first-order model was found to be adequate, the second-order model 

was postulated to extend the variables range in obtaining the relationship between 

the surface roughness and the machining independent variables The model was 

based on the central composite design with added augment points to the nucleus of 

the design The distance of the augment point was 1 4142 units The model equation 

is given by

7  = 1546 - 1064*. - 0 177*, - 0113*, - 0 047*?
(7.13)

+ 0  012x\ + 0  062*3 + 0  024*j*2 + 0  0 1 8 *^  + 0  067*2*.,

The analysis of variance is shown in Table 7 7 while the 95% confidence level is 

shown in Table 7 8  of Appendix C Table 7 7 shows that the interaction terms are 

not significant at 95% confidence level The second order terms are almost 

insignificant The 95% confidence interval is found to be large The model equation 

(7 13) is plotted in speed-feed plane for three selected level of depth of cuts in 

Figure 7 5 through 7 7 The contours do not show any sign of non-lineanty and 

thereby conforms that the first order model is adequate Figure 7 8  is a plot of dual 

response of metal removal rate and tool life The tool life profile for T =  3 minutes 

intersects metal removal rate Q at 10 and 20 cm3/mm If we select the cutting speed 

and feed at the intersection of T =  3 and Q =  20 cm3 /min, a 100% gain in metal 

removal rate will be obtained from the intersection at Q =  10 cm3/min

Table 7.7 Analysis of variance for twenty four tests

Source Sum of 
Squares

Degrees of 
Freedom

Mean
Squares

Fcal Fob

Zero-order term 58 66189 1 58 662 9071 8

First-order terms 18 801614 3 6  2672 758 05
Second-order terms 0 098244 3 0 03275 3 99 4 07
Interaction terms 0 0429 3 0 0143 1  73
Block 0 16771 3 0 0559 6  76
Lack of fit 0 047202 3 0.0157 1.90
Pure error 0 06614 8 0 0082675
Total 77 8857
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Figure 7.7 Tool life contour (2nd order) in a depth of cut of 1.125 nun
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7.2.2 Surface roughness model

7.2 2 1 Results, discussions, and optimization• First-order model

The postulated model for surface roughness based on the twelve set of expenments 

are

y  = 10146 - 01246^ + 0 6045jc2 + 0 0642*3 (7.14)

Equation (7 14) describing the roughness model can be transformed by using 

equation (7 6 ) into the following form

R = 41 6  K" 0 2 1 2  d0  1 5 8 3  (7.15)a

The equation indicates that the surface finish improves with the increase of speed 

while it deteriorates with the increase of feed or depth of cut Combining Equation 

(7 6 ) & Equation (7 11), the metal removal rate equation for a specific depth of cut 

(0 50 mm) could be written as

ln<? = 2 0949 + 0 5878^ + 0 47* 2  (7.16)

Equation^ 14) is plotted in Figure 7 9 through 7 11 at three different depth of 

cuts These response contours help predict surface roughness at any zone of 

experimental domain Figure 7 12 represents dual response contours of metal 

removal rate and surface roughness at 0 50 mm depth of cut However, the analysis 

of variance as shown in Table 7 9 of Appendix C reveals that the first order model 

is inadequate at 95% confidence interval The ratio of lack of fit to pure error at 

95% confidence is found to be 34 5 while its tabulated value is 9 01 Having found 

the first order model inadequate, the levels of the independent variables were 

extended to postulate a second order model
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040

015
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DOC = 1125 mm

36 65 117
Cutting velocity V (m/mm)

Figure 7.9 Surface roughness (1st order) contour in velocity-feed 
plane at a depth of cut of 0.50 mm.

<u>

Cutting velocity V (m/mm)

Figure 7.10 Surface roughness (1st order) contour m velocity-feed 
plane at a depth of cut of 0.75 mm.
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040 IT

Cutting velocity V (m/mm)

Figure 7.11 Surface roughness (1st order) contour in velocity-feed 
planes at a depth of cut of 1.125 mm.

I

Cutting velocity V (m/mm)

Figuie 7.12 Dual response contours of surface roughness and
metal removal rate in velocity-feed plane at 0.50 mm depth of cut.
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7  2  2  2  R e s u l t s ,  d i s c u s s i o n s ,  a n d  o p t i m i z a t i o n  S e c o n d - o r d e r  m o d e l  

A  se con d -o rd e r m od e l w a s  postu lated  to extend the v a r ia b le s  ra n ge  in  o b ta in in g  the 

re la tio n sh ip  betw een the surface  ro u gh n e ss  and  the m a c h in in g  independent va r iab le s  

T h e  m od e l is  based  o n  tw enty fo u r  set o f  exp erim ents and  the param eters o f  

E q u a t io n  (7  5 ) are  g iv e n  b y

7  = 0 905 - 0094*. + 0 604x2 + 0064*, + 0 102jcf
(7 .17 )

+ 0  042x^ + 0 071*3 + 0  066*1*2 -  0  019X j*3 -  0 019x ^x3

T h e  estim ated  re spo n se  and  the 95 %  co n fid e n ce  in te rva l fo r  each o f  the tw enty  fo u r  

test c o n d it io n s  w ere  ca lcu lated  and sh o w n  in  T a b le  7  11 o f  A p p e n d ix  C  T h e  

fo rm u la e  fo r  c a lc u la t in g  the co n fid e n ce  in te rva l at the c o m e r,  central and  au gm e n t  

p o in ts  are

215 5 S ( y  -  y )  

2 4  d f

y + t 4 f a f l

5 S ( y  -  y ) : 

24  d f

(7 .1 8 )

rt\2

^ +V.«/2 \
1 S ( y  -  y )

3 d f

re sp e ct ive ly  T h e  d f  is  the degrees o f  freedom  w h ic h  is  14 in  th is  ca se  T h e  a n a ly s is  

o f  va r ian ce  a s sh o w n  in  T a b le  7  10 o f  A p p e n d ix  C  d ep ic ts  that the in teraction  term s  

are  no t s ig n if ic a n t  at the 95 %  co n fid e n ce  le ve l bu t the lin e a r  an d  squ are  te rm s are  

s ig n if ic a n t  T h e  f in a l m od e l b e com e s
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7  = 0 905 -  0 094Xj + 0 604x2 + 0 064x3 + 
0 102xj + 0 042x  ̂ + 0 071xj

(7.19)

E q u a t io n  (7  19) is  p lotted  m  F ig u re s  7  13 th rou gh  7  15 a s co n to u rs  fo r  each o f  the  

re spo n se  su rfaces at three selected le v e ls  o f  depth o f  cuts (0  50, 0  75, &  1 125 

m m ) I t  is  c lear fro m  these f igu re s  that su rface  fin ish  im p ro v e s  w ith  the in crease  o f  

cu ttin g  speed at con stan t feed rate an d  con stan t depth o f  cu t H o w e v e r ,  it decreases  

w ith  the increase  o f  feed rate

E q u a t io n  (7  16) can  be  su p e rim p o se d  o n  F ig u re  7  13 fo r  d iffe ren t v a lu e s  o f  m etal 

re m o v a l rate Q  F ig u re  7  16 is  a  p lo t  o f  o n e  o f  th is su p e n m p o s it io n  F r o m  F ig u re  

7  16, cu ttin g  param eters (speed, feed, and  depth o f  cut) at p o in t A  w o u ld  resu lt in  

a su rface  fin ish  o f  3 /¿m  at the rate o f  10 c m 3/m m  m etal re m o v a l rate, w h ile  those  

at the p o in t B  w o u ld  resu lt the sam e  su rface  fin ish  at the rate o f  m etal re m o v a l o f  

2 0  c m 3/m in

T h e  cu ttin g  co n d it io n s  at B  is  g iv in g  e xactly  o n e  and  h a lf  t im es the m etal re m o v a l 

rate than that at A  H e n ce , o n e  can  ch o o se  the cu ttin g  param eters at B  w itho u t  

sa c r if ic in g  the surface  fin ish  T h is  reduces m a c h in in g  tim e  s in ce  m etal re m o v a l rate  

at B  is  5 0 %  h igh e r than that o f  A
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Cutting velocity V (m/mm)

Figure 7.13 Surface roughness (2nd order) contour in velocity-feed 
plane at a depth of cut of 0.50 mm.

Cutting velocity V (m/mm)

Figure 7.14 Surface roughness (2nd order) contour in velocity-feed 
plane at a depth of cut of 0.75 mm.
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1

Cutting velocity V (m/mm)

Figure 7.15 Surface roughness (2nd order) contour in velocity-feed 
plane at a depth of cut of 1.125 mm.

Cutting velocity V (m/mm)

Figure 7.16 Dual response contours of surface roughness and 
metal removal rate m velocity-feed plane at 0.50 mm depth of cut.
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7.2.3 Cutting force model

7 2 3 1 Results and discussions First-order model
T h e  postu lated  m od e l fo r  the cu ttin g  fo rce  based  o n  the tw e lve  set o f  experim ents  

are

7 = 6671 -  00984*! + 0 2875x2 + 0 3678jc3 (7.20)

E q u a t io n  (7  20 ) d e sc r ib in g  the fo rce  m od e l can  be  tran sfo rm e d  b y  u s in g  equation  

(7  6) in to  the fo l lo w in g  fo rm

F = 4854 V~°1673 f 6X7A d°m5 (7.21)

T h e  equation  ind icate s that the cu ttin g  fo rce  decreases w ith  the in crease  o f  speed  

w h ile  it in creases w ith  the increase  o f  feed o r  depth o f  cu t T h e  depth o f  cut is  

fo u n d  to h ave  the m a x im u m  in flu e n ce  on  the cu ttin g  fo rce  H o w e v e r ,  the m o d e l w a s  

fo u n d  to b e  inadequate  b a se d  on  the a n a ly s is  o f  v a r ia n c e  at 95  %  co n fid e n ce  in te rva l 

T h e  ra tio  o f  la c k  o f  fit to pu re  e rror w a s  45  5 w h ile  its F -s ta t is t ic s  w a s  9  01 S in c e  

the first -o rd e r m od e l w a s  inadequate, the le ve ls  o f  the independen t v a r ia b le s  w ere  

extended and  fu rther experim entation  w ere  e a rn e d  out

7 2 3 2 Results and discussions on second-order model
A  se con d -o rd e r m o d e l w a s  postu lated  to extend  the v a n a b le s  ra n ge  in  o b ta in in g  the 

re la tio n sh ip  betw een the cu ttin g  fo rce  and  the m a c h in in g  independen t v a n a b le s  T h e  

m o d e l is  based  on  tw enty  fo u r  set o f  e x p e n m e n ts  and  the param eters o f  E q u a t io n  

(7  5 ) are  g iv e n  b y

y = 6 647 - 0 114*, + 0 3001*2 + 0 3728*3 + 00313*? (7>22)

+ 0  0 1 7 5 * 2  - 0  0006*3 + 0  0 1 8 5 x ^ 2  - 0  0 0 4 * ^  - 0  0333*2*3

T h e  a n a ly s is  o f  v a r ian ce  has sh ow n  that la c k  o f  fit w a s  in s ig n if ic a n t  at the 9 5 %  

co n fid e n ce  le ve l
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T h e  fo llo w in g  c o n c lu s io n s/re co m m e n d a tio n s  co u ld  be m ade  out o f  the test resu lts

1 R e sp o n se  su rface  m e th o d o lo g y  co m b in e d  w ith  the fac to r ia l d e s ig n  o f  

e xp erim ents are  u se fu l techn iques fo r  the p re d ic tio n  o f  to o l life , su rface  

ro u gh n e ss, and  p o w e r (cu ttin g  fo rce ) R e la t iv e ly ,  a  sm a ll n u m b er o f  d e s ign e d  

e xp erim ents are requ ired  to generate  m uch  u se fu l in fo rm a tio n  w h ic h  are  u sed  to  

d e ve lo p  the p re d ic t in g  equations fo r  the re spo n se  D e p e n d in g  o n  the re sponse  

data  p ro v id e d  b y  the d e s ig n  o f  experim ent, f irst  o rd e r and  secon d  o rder  

p re d ic t in g  equ ation s h a ve  been deve loped

2 T h e  to o l life  equation  sh o w s  that the cu ttin g  speed is  the m a m  in f lu e n c in g  factor  

on  the too l w ear fo llo w e d  b y  the feed rate and  depth o f  cut In c re a s in g  e ither o f  

these three cu ttin g  v a n a b le s  retard the too l l ife  F ir s t  o rd e r an d  secon d  o rder  

su rface  ro u g h n e ss  p red ic tio n  equations h ave  been d e ve lo ped  fro m  the fa c to n a l  

d e s ig n  o f  e x p e n m e n ts  A n a ly s is  o f  v a n a n c e  h as ind icated  that the second  o rder  

m o d e l is  m o re  adequate  fo r  the su rface  ro u gh n e ss  and  cu ttin g  fo rce  w h ile  first  

o rd e r m od e l is  adequate  fo r  too l life

3 D u a l  re spo n se  con to u rs p ro v id e  u se fu l in fo rm atio n  abo u t the m a x im u m  atta inab le  

too l l ife  fo r  a  g iv e n  m etal re m o v a l rate a s a  fu nctio n  o f  a ll three cu tting  

independen t v a n a b le s

4  T h e  re su lts h ave  revealed  that the e ffect o f  feed on  the su rface  ro u g h n e ss  is  

m u ch  m o re  p ro n o u n ce d  than the e ffects o f  ve lo c ity  and  depth  o f  cu t H o w e v e r,  

h igh e r  cu ttin g  speed im p ro v e s  the su rface  f in ish

5 I f  the f irst  o rde r m o d e l is  fo u n d  to b e  adequate  on  the b a s is  o f  statistica l 

a n a ly s is ,  there is  no  need fo r  ad d itio n a l tw e lve  tests on  the au gm e n t p o in ts  A s  

in  th is study, the va r ian ce  a n a ly s is  fo r  the secon d  o rd e r to o l life  m o d e l sh o w s  

that in teraction  te rm s and  the squ are  term s are sta tistica lly  in s ig n if ic a n t

6  T h e  too l l ife  co n to u rs  are  u se fu l to fin d  out the o p t im u m  cu ttin g  c o n d it io n s  fo r  

a g iv e n  too l life
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7.3 Design of Experiment for InconeI-718

T h e  le v e ls  o f  independent va r ia b le s  an d  c o d in g  id e n tific a t io n s  u sed  in  th is  d e s ig n  are  

presented in  T a b le  7  12 T w o  types o f  ca rb id e  in serts w ere  used  fo r  th is tu rn in g  

in v e st iga t io n  T a b le  7  13 sh o w s  the exp erim enta l c o n d it io n s  an d  re su lts  ob ta ined  b y  

u s in g  uncoated  ca rb id e  cu ttin g  to o l in serts w h ile  T a b le  7  14 is  ob ta ined  b y  u s in g  the 

coated  ca rb id e  cu ttin g  in serts T o o l  l ife  and  su rface  ro u gh n e ss  w ere  in vestiga ted  

w h en  m a c h in in g  m co n e l w ith  the coated  to o ls  w h ile  a ll the three re sponse s w ere  

in ve stiga ted  w h en  the uncoated  ca rb id e  in serts w ere  used  T h e  too l life , su rface  

ro u gh n e ss, and  cu ttin g  fo rce  m easurem ent p rocedu re s d e scrib e d  in  section  7  2  w ere  

fo llo w e d

Table 7.12 Levels of independent variables for inconel-718
L e v e ls L o w e s t L o w C e n tre H ig h H ig h e s t

C o d in g -V2 -1 0 1 V2

Sp e e d  V  (m /m in ) 7 10 18 33 45

Feed  f  (m m /re v ) 0  12 0  15 0  20 0  25 0  30

D o c  d (m m ) 0  80 0  90 1 25 1 75 2 0

T h e  tra n s fo rm in g  equ ation s fo r  each o f  the independen t va r ia b le s  are

x  = H V )  ~  ln (1 8 )

1 ln(33) -  ln(18)

x  _  In f l)  -  ln (0  2 0 )

2 ln(0 25) - ln(0 20)

x _ Hd) -  ln(l 25)
3 ln(l 75) -  ln(l 25)
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Table 7.13 Experimental conditions and results (uncoated carbide inserts)

T ria l N o Speed V  

(m/m in)

Feed f  

(m m /rev)

D o c  d 

(m m )

C o d in g Response

*2 *3 T o o l life  

T  (m m )

Surface roughness  

R* < j i m )

Cutting force  

F ( N )

1 10 0 15 0 900 “1 _ | 64 2 2  667 906

2 33 0 15 0 900 1 -1 -1 6 0 1 8 111
3 10 0 25 0 900 -1 1 34 8 4 167 1222

4 33 0  25 0  900 1 1 -1 2 8 4 433 1167

5 10 0  15 1 750 -1 -1 1 41 7 3 233 1830

6 33 0  15 1 750 1 -1 1 2 75 1 867 1365

7 10 0  25 1 750 -1 1 1 16 9 4 333 2428

8 33 0 25 1 750 1 1 1 1 3 4  1 2123

9 18 0 20 1 250 0 0 0 11 7 3 067 1439

10 18 0 20 1 250 0 0 0 15 2 3 467 1404

11 18 0 20 1 250 0 0 0 12 3 2 667 1417

12 18 0 20 1 250 0 0 0 13 5 3 1 1419

13 7 0 20 1 250 -V2 0 0 33 0 3 767 1721

14 45 0 20 1 250 V2 0 0 1 44 2 9 1255

15 18 0 12 1 250 0 -V2 0 37 1 1 637 985

16 18 0 30 1 250 0 V2 0 3 7 6 3 1981

17 18 0 20 0 80 0 0 V 2 20 8 2 5 930

18 18 0 20 2 0 0 0 V2 7 0 3 2 2105

19 7 0 20 1 250 V 2 0 0 39 0 3 9 1680

20 45 0  20 1 250 V2 0 0 1 6 3 3 1243

21 18 0  12 1 250 0 -V2 0 32 8 1 197 979

22 18 0  30 1 250 0 V2 0 4 3 6 433 1887

23 18 0  20 0 80 0 0 V 2 24 6 2 6 877

24 18 0 20 2 0 0 0 V2 8 3 2 7 2120



Table 7 14 Experimental conditions and results (Coated carbide inserts)
T ria l N o Speed V  

(m /m m )

Feed f  

(m m /rev)

D o c  d  

(m m )

Codin]7
O Response

X i x2 x 3 T o o l life  

T  (m in)

Surface  

roughness  

R a Q i m )

1 10 0 15 0 900 -1 _ 1 30 1 2 967

2 33 0 15 0 900 1 -1 -1 6 5 3 433

3 10 0 25 0 900 -1 1 -1 20 8 7 133

4 33 0 25 0 900 1 1 -1 1 6 4 233

5 10 0  15 1 750 -1 -1 1 21 4 2 867

6 33 0  15 1 750 1 -1 1 3 5 2 6

7 10 0  25 1 750 -1 1 1 16 0 4 8

8 33 0 25 1 750 1 1 1 0 95 4 967

9 18 0 20 1 250 0 0 0 12 2 3 267

10 18 0  20 1 250 0 0 0 10 7 4 2

U 18 0 20 1 250 0 0 0 12 8 5 467

12 18 0 20 1 250 0 0 0 10 0 5 533

13 7 0 20 1 250 V2 0 0 21 8 6 067

14 45 0  20 1 250 V2 0 0 2 1 4 267

15 18 0 12 1 250 0 a / 2 0 17 8 2 3

16 18 0 30 1 250 0 V2 0 6 3 5 933

17 18 0 20 0  80 0 0 V2 12 5 4 367

18 18 0  20 2 0 0 0 V2 9 4 3 8

19 7 0 20 1 250 V2 0 0 24 7 5 567

20 45 0 20 1 250 V2 0 0 1 8 3 567

21 18 0 12 1 250 0 V 2 0 20 0 1 5

22 18 0 30 1 250 0 V2 0 5 18 6 1

23 18 0 20 0 80 0 0 V2 12 1 3 767

24 18 0 20 2 0 0 0 V2 8 6 4 1



7.3.1 Tool life model

T h e  too l life  equation  o f  uncoated  ca rb id e  insert based  on  the f irst  tw e lve  

exp erim enta l re su lts (T a b le  7  13) m  coded  fo rm  are

= 2  3 8 82  -  1 2 7 1 8 *,  -  0  3 7 8 4 *2 -  0  3 3 7 7 *,  (7 .24 )

T h e  a n a ly s is  o f  v a r ian ce  at 9 5 %  co n fid e n ce  in te rva l h a s sh o w n  that the ra tio  o f  la c k  

o f  fit to p u re  e rro r w a s  3 65 w h ile  the F -s ta t is t ic s  w a s  9  01 (T a b le  7  15 o f  A p p e n d ix  

C )  T h e re fo re , the m o d e l w a s  adequate  E q u a t io n  (7  2 4 ) d e sc r ib in g  the too l life  

m od e l can  be  tran sfo rm e d  b y  u s in g  equation  (7  23 ) in to  the fo l lo w in g  fo rm

T  ,  = 383  5 V ~ 2 m s  r 16952 d ' 1003 (7 .25 )uncoated carbide J

T h e  equation  sh o w s  that the too l life  decreases w ith  the increase  o f  cu ttin g  speed, 

feed, and  depth o f  cu t T h e  cu ttin g  speed h as the m o st d o m in a n t e ffect on too l life  

fo llo w e d  b y  the feed and  depth o f  cu t C o m b in in g  equ atio n s (7  23 ) &  (7  11), the 

m etal re m o v a l rate fo r  a  sp e c if ic  depth o f  cu t (1 25  m m ) b e com e s

In  Q  = 1 5 0 1  + 0  6 0 6 x t + 0  2 2 3 x 2 (7 .2 6 )

E q u a t io n  (7 2 4 ) is  u tilised  to d e ve lo p  to o l life  co n to u rs  in  speed-feed  p lane  at the 

selected le ve l o f  depth o f  cu t F ig u re  7 17 th rou gh  7  19 sh o w s  the co n to u rs  at three  

d iffe ren t depth o f  cuts T h e se  co n to u rs  he lp  p red ic t the to o l life  at a n y  zon e  o f  

exp erim enta l d o m a in

T h e  re sp o n se  con to u rs generated  b y  E q u a t io n  (7  26 ) is  su p e rim p o se d  o n  F ig u r e  7 18 

and  is  sh o w n  in  F ig u re  7  2 0  S in c e  the first -o rd e r m od e l w a s  fo u n d  adequate, the 

m o d e l based  on  the tw enty ex p e n  m ental resu lts are no t presented
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B a se d  on  the experim enta l re su lts o f  T a b le  7 14, the first -o rd e r to o l life  equation  in  

cod ed  fo rm  u s in g  coated ca rb id e  insert is  g iv e n  b y

y coated carbuU = 2 1285 -  1 0915xx -  04208*, -  0218*3 (7*27)

E q u a t io n  (7  2 7 ) d e sc r ib in g  the to o l life  m o d e l can  b e  tran sfo rm e d  b y  u s in g  equation  

(7  2 3 ) in to  the fo l lo w in g  fo rm

T  w  = 85 2 K " 1801 f ~ x 885 d " 0647 (7 .2 8 )coated carbide J

7.3.2 Surface roughness model and optimization

T h e  postu la ted  m od e l fo r  su rface  ro u gh n e ss  based  on  the tw e lve  set o f  exp erim ents  

o f  T a b le  7  13 is

9 ^ ^  -  1 1364 - 0 117*, ♦ 0 3034*2 ♦ 00237x3 (7.29)

E q u a t io n  (7  29 ) d e sc r ib in g  the ro u gh n e ss  m od e l can  be  tran sfo rm e d  b y  u s in g  

equation  (7  23) in to  the fo l lo w in g  fo rm

R = 47 8 V~°193 /  3596 ¿00704 (7.30)
^ t u i c o c t t d  c c r b id t

T h e  expected e ffects o f  the cu ttin g  va r ia b le s  on the re spo n se  w ere  o b se rve d  A  

se co n d -o rd e r m o d e l w a s  postu lated  to extend the va r ia b le s  ra n ge  in  o b ta in in g  the 

re la tio n sh ip  betw een the re spo n se  and the cu ttin g  independen t v a r ia b le s  T h e  m od e l 

based  o n  tw enty  fo u r  set o f  exp erim ents is  g iv e n  b y
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A -— - « .  = 1 107 '  0096*. + 0419x2 + 0037*3 + 0071*? (7.31) 
- 0 001*2 “ 0 044*3 + 0 119*j*2 -  0 034* x*3 -  0 0335*^

E q u a t io n  (7  31) is  p lo tted  in  F ig u re  7 21 th ro u gh  7  23  a s con to u rs fo r  each o f  the  

re spo n se  su rfaces at three selected le v e ls  o f  depth o f  cu ts (0  90, 1 25, &  1 75  m m )  

I t  is  c le a r  fro m  these f ig u re s  that su rface  fin ish  im p ro v e s  w ith  the in crease  o f  cu ttin g  

speed at con stan t feed rate and  con stan t depth o f  cu t H o w e v e r ,  it decreases w ith  the  

in crease  o f  feed rate

E q u a t io n  (7  26 ) can  be su p e rim p o se d  on F ig u r e  7  2 2  fo r  d iffe ren t va lu e s  o f  m etal 

re m o v a l rate Q  F ig u re  7  24  is  the p lo t o f  su p e n m p o s it io n  o f  su rface  ro u gh n e ss  and  

m etal re m o v a l rate con to u rs at a  depth o f  cu t o f  1 25  m m  F r o m  F ig u re  7 24, 

c o m p a r in g  the p o in ts  A  &  B ,  o n e  can  ch o o se  the cu ttin g  param eters (speed  and  feed) 

at B  w ith o u t s a c r if ic in g  the su rface  f in ish  T h is  redu ces m a c h in in g  t im e  sin ce  the  

m etal re m o v a l rate at B  is  1 0 0 %  h igh e r than that at A

F ig u r e  7  25 represents d u a l re spo n se  con to u rs o f  too l l ife  and  su rface  ro u g h n e ss  It  

is  in te re sting  to note  that a  p a rticu la r  su rface  ro u gh n e ss  p ro f ile  in tersects th rou gh  

d iffe ren t to o l life  co n to u rs  and  v ic e  ve rsa  L o o k in g  at the p o in ts  A  and  B  on  the  

su rface  ro u g h n e ss  p ro f ile  o f  3 2 ¿¿m, the cu ttin g  speed and  feed at A  w i l l  y ie ld  a  too l 

life  o f  2 0  m inutes w h ile  that at p o in t 5 ,  the too l l ife  is  10 m in u te s A  net g a in  o f  

1 0 0 %  to o l life  is  p o ss ib le  i f  one  selects the cu ttin g  param eters at the p o in t A

B a se d  on  the experim enta l re su lts o f  T a b le  7  14, the f irs t -o rd e r su rface  ro u gh n e ss  

equ ation  fo r  the coated  ca rb id e  insert is

y cotMd «■** = 14114 -  0 0549*, + 0 2812*2 -  0 0686*3 (7.32)



Speed V (m/nun)

Figure 7.21 Surface roughness (2nd order) contours in speed-feed 
plane at a depth of cut of 0.90 mm.

Speed V (m/nun)

Figure 7.22 Surface roughness (2nd order) contour m speed-feed 
plane at a depth of cut of 1.25 mm.
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7 10 18 33 45

Figure 7.23 Surface roughness (2nd order) contour m speed-feed 
plane at a depth of cut of 1.75 mm.

Speed V (m/mm)

Speed V (m/mm)

Figure 7.24 Dual response contours of surface roughness and 
metal removal rate in speed-feed plane at 1.25 mm depth of cut
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Equation (7 32) can be transformed by using equation (7 23) into the following form

R = 42 35 r 0091 Z 2598 rf-*204 (7.33)
a c o a te d  c a r b id e

T h e  e ffects o f  the cu ttin g  va r ia b le s  on  the re spo n se  are  rather in te re sting  T h e  

su rface  f in ish  w a s  o b se rved  to im p ro v e  w ith  increase  o f  speed o r  depth o f  cut 

N o t ice a b ly ,  the e ffect o f  depth o f  cu t o n  the im p ro v e m e n t o f  su rface  f in ish  w a s  

m o re  than the e ffect o f  the speed P e rh ap s w ith  h ig h e r  depth o f  cut, m ate ria l 

b e co m e s  m o re  r ig id  and  su rface  fin ish  im p ro v e s  A  seco n d -o rd e r m od e l w a s  

postu lated  to extend the va r ia b le s  ra n ge  m  o b ta in in g  the re la t io n sh ip  betw een the  

re spo n se  and  the cu ttin g  independent va r ia b le s  T h e  m o d e l b a se d  on  tw enty  fo u r  

set o f  exp erim ents is  g iv e n  b y

Ycoa^^uU  = 1494 -  0 098*, + 0 348*2 -  0039*3 + 004*?
-  0  137*2 -  0  047*3  ” 0  0 6 7 * j* 2 + 0  0 3 9 * j* 3 + 0  0 0 9 * ^

7.3.3 Cutting force model

T h e  first  o rde r m o d e l fo r  cu ttin g  fo rce  is

= 7 238 - 0 0784^ + 0 1787*2 + 0 319*3 (7.35)
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Equation (7 35) can be transformed by using equation (7 23) into the following form

F  = 5 9 38  V ~®1294 f m  d 0948 (7 .3 6 )

T h e  equation  sh o w s  that the cu ttin g  fo rce  decreases w ith  the in crease  o f  speed w h ile  

it in creases w ith  the in crease  o f  feed o r  depth o f  cu t T h e  depth o f  cu t is  fo u n d  to 

h ave  the m a x im u m  in flu e n ce  on  the cu ttin g  fo rce  H o w e v e r ,  the m od e l w a s  fo u n d  

to b e  inadequate  based  on  the a n a ly s is  o f  v a r ian ce  at 9 5 %  co n fid e n ce  in te rva l T h e  

ra tio  o f  la c k  o f  fit to p u re  e rro r w a s  35 9 w h ile  its F -s ta t is t ic s  w a s  9 01 S in c e  the 

f irs t -o rd e r m od e l w a s  inadequate, the le v e ls  o f  the independen t v a r ia b le s  w ere  

extended and  fu rther experim entation  w ere  carried  out

A  se con d -o rd e r m od e l w a s  postu lated  to extend the v a r ia b le s  ra n ge  in  o b ta in in g  the 

re la tion sh ip  betw een the cu ttin g  fo rce  and  the m a c h in in g  va r ia b le s  T h e  m od e l is  

based  on  tw enty fo u r  set o f  exp erim ents and is  g iv e n  b y

9  uncoated carbide = 7 263  -  0 0 9 4 ^  + 0  2 0 9 x2 + 0  3 1 0 x3 + 0 0 0 8 ^  (7  3 7 )

-  0 0 2 *2  “ 0  019*3 + 0  033xjx2 -  0028xjjc3 + 0  0 0 2 x^ 3

(

T h e  a n a ly s is  o f  v a r ian ce  has sh o w n  that la c k  o f  fit w a s  in s ig n if ic a n t  at 9 5 %  

co n fid e n ce  le ve l E q u a t io n  (7  37) is  p lotted  in  speed-feed  p la n e  at three le v e ls  o f  

depth o f  cu ts and  are  sh o w n  in  F ig u re  7 2 6  th ro u gh  7  28  C o m p a r in g  the figu re s,  

w e  can  say  that the cu ttin g  fo rce  increases w ith  the increase  o f  depth o f  cu t o r  feed  

w h ile  w ith  the in crease  o f  the speed, it decreases F ig u r e  7  29  is  a  d u a l re sponse  

co n to u rs  o f  the fo rce  and  the m etal re m o v a l rate T h e  in te rsection s o f  Q  =  2 5 and  

5 c m 3/m in  w ith  F  =  1500 N  revea ls  that the cu ttin g  param eters at the intersection  

o f  Q  =  5 c m 3/m m  and  F  =  1500 N  g iv e s  a  net g a in  o f  1 0 0 %  increase  in m etal 

re m o v a l rate fo r  the sam e  sp in d le  p o w e r



Speed V (m/min)

Figure 7.26 Cutting force (2nd order) contour in speed-feed plane 
at a depth of cut of 0.90 mm.

Speed V  (m /m m )

Figure 7.27 Cuttmg force (2nd order) contour in speed-feed plane 
at a depth of cut of 1.25 mm.
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7 10 18 33 45

Figure 7.28 Cutting force (2nd order) contour in speed-feed plane 
at a depth of cut of 1.75 mm.

Speed V (m/mm)

Speed V  (m /m m )

Figure 7.29 Dual response contours of cutting force and metal 
removal rate in speed-feed plane at a depth of cut of 1.25 mm.
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T h e  fo l lo w in g  co n c lu s io n s/re co m m e n d a tio n s  co u ld  be  m ad e  out o f  the test resu lts

1 In  the case  o f  coated too ls, the e ffect o f  feed on  too l life  is  m u ch  m ore  

p ro n o u n ce d  than the e ffect o f  speed T h e  m a gn itu d e  o f  the feed exp on en t is  

fo u n d  to be  greater than the ve lo c ity  exp on en t a s  presented  in  E q u a t io n  (7  28 )

2 T h e  e ffect o f  depth o f  cu t on  the too l life  is  g reate r in  the case  o f  uncoated  

ca rb id e  than the coated  ca rb id e  T h e  depth o f  cu t exp on en ts ( d ^ « ^  =  -1 003,  

boated =  "0  647) fo r  uncoated  to o l is  h igh e r

3 T h e  su rface  ro u gh n e ss  generated  b y  the uncoated  and  coated  to o ls  are  m o stly  

in flu en ced  b y  the c h an ge  in  feed T h e  increase  in depth o f  cut im p ro v e s  the 

su rface  f in ish  p rod u ce d  b y  the coated ca rb id e  to o ls  w h ile  it is  the o p p o site  w hen  

the uncoated  to o l h ave  been used

4 T h e  cu ttin g  fo rce  decreases w h en  the speed is  increased  w h ile  it increases w hen  

the feed o r  depth o f  cu t is  increased

5 T h e  d ua l re spo n se  con to u rs o f  too l life  and  su rface  ro u g h n e ss  is  ve ry  u se fu l in  

a s se ss in g  the m a x im u m  atta inab le  too l life  fo r  the sam e  su rface  f in ish
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CHAPTER 8

ANALYSIS OF EXPERIMENTAL RESULTS BY STATISTICAL 
PACKAGES AND SEQUENTIAL ESTIMATION 

8.1 Introduction

Se c tio n  8 2 o f  th is  chapter presents m o d e l param eters o b ta ined  b y  the d iffe ren t  

statistica l re g re ss io n  m ode l b u ild in g  techn iques T h e  techn iques are

( I) b a ck w a rd  e lim in a t io n ,

(II)  fo rw a rd  se lection,

(III) stepw ise  re g re ss io n , and  

( iv )  a ll p o ss ib le  subset re g re ss io n

T h e  m o d e l param eters presented in d iffe ren t tab les are based  on  the exp erim enta l 

re su lts fo r  too l life , su rface  ro u gh n e ss, and  cu ttin g  fo rce s  g iv e n  in T a b le s  7 2, 7  13 

and  7  14 fo r  both  steel and in co n e l W h i le  section  8 3 o f  the chapter presents m od e l 

param eters based  on  the sequentia l e stim ation

8.2 Statistical Regression Packages

S P S S  and  B M D P  p ro g ra m m e s  h ave  been used fo r  b u ild in g  d iffe ren t m o d e ls  T h e  

a ll p o s s ib le  subset re g re ss io n  has been e a rn e d  out b y  u s in g  B M D P  p a c k a g e  w h ile  

the re m a in in g  three techn iques h ave  been con ducted  b y  u s in g  S P S S  co m p u te r

p a c k a g e  In  a ll cases, p ro g ra m m e s  have  been w n tte n  to run  the p a c k a g e
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F o r  b u ild in g  a  f ir s t  o rder m o d e l g iv e n  b y  equation  (7  4 ), the natu ra l v a r ia b le s  (both  

re spo n se  and  independent) are  converted  in to  the d e s ig n  v a r ia b le s  b y  their 

lo g a r ith m ic  tran sfo rm atio n s  F o r  d e v e lo p in g  a  second  o rde r m o d e l as pe r E q u a t io n  

(7  5 ), the squares and  c ro ss  p rod u ct va r ia b le s  are  com p u te d  fro m  the respective  first  

o rd e r d e s ig n  va r iab le s

T h e  re a so n s fo r  u s in g  data  tran sfo rm a tio n s  are

1 to stab ilize  the va r ian ce  o f  the dependent va riab le ,

2 to n o rm a liz e  the dependent v a r ia b le  i f  the n o rm a lity  a ssu m p tio n  is  v io la ted ,

and

3 to lin earize  the re g re ss io n  m o d e l i f  the o r ig in a l data su g ge st  a  m od e l that is

n o n lin e a r  in  e ither the reg re ss io n  coe ffic ien ts  a n d /o r  the v a r ia b le s  (re spo n se  

o r  independent)

A  deta iled  d iscu ss io n  o f  the propertie s o f  v a r io u s  tran sfo rm atio n s  can  b e  fo u n d  in  

re ferences [120, 145-148] It  is  rather fortunate  that the sam e  tran sfo rm atio n  often  

h e lp s to a c c o m p lish  the first tw o  g o a ls  and  som etim es even  the th ird , rather than  

a c h ie v in g  o n e  g o a l at the expense  o f  e ither o f  the o ther tw o

T h e  lo g a r ith m ic  tran sfo rm atio n  (y  =  I n R )  can  i) stab ilize s the v a r ian ce  o f  the 

re spo n se  va riab le , 11) n o rm a liz e s  the re sponse  v a r ia b le  i f  the d istr ib u tion  o f  the 

re s id u a ls  fo r  re spo n se  is  p o s it iv e ly  skew ed, and  m )  lin ea rize s the re g re ss io n  m ode l 

i f  the re la tion sh ip  o f  re spo n se  to so m e  independent v a r ia b le  su gge sts  a  m od e l w ith  

co n siste n tly  in c re a s in g  s lo p e

F m  an d  F o u l  v a lu e s  determ ine  the n u m b er o f  v a r iab le s  in  the f in a l m o d e l o f  b a c k w a rd  

e lim in a tio n , fo rw a rd  se lection, an d  step w ise  re g re ss io n  techn iques T h e  va lu e s  fo r  

F m  an d  F o u i  are  re lated to ¿-statistic b y  the re lation  o f  F  =  ?  T h e  ¿-statistic  o f  the 

coe ffic ien t, de fined  a s the ratio  o f  the coe ffic ie n t va lu e  to its standard  d ev ia t io n ,  

in d ica te s  the s ig n if ic a n ce  o f  the v a r ia b le  in  the m od e l A  95  %  co n fid e n ce  le ve l fo r  

the set o f  data  s ize  m  th is a n a ly s is  h as t  v a lu e  o f  abo u t 2 0  T h e  c o r re sp o n d in g  F  

v a lu e  sh o u ld  be  4 0  and  fo r  th is reason  F m  =  4 0  and F o u t  =  3 9  h ave  been a ss ign e d  

to the p ro g ra m m e
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A  va r ia b le  m u st p a ss  bo th  the to lerance  and m in im u m  to lerance  test in  o rd e r to enter 

and  rem a in  m  the reg re ss io n  equation  A  v a r ia b le ’s to le rance  is  the p ro p o rt io n  o f  

va r ian ce  re m a in in g  after the e ffects o f  the independent va r ia b le s  a lre ad y  in  the  

equation  h ave  been partitioned  out It  is  o n e  m in u s  the squared  m u lt ip le  co rre la tion  

o f  that independent v a r ia b le  w ith  the o ther independent v a r ia b le s  a lre ad y  in  the  

equ ation  T h e  m in im u m  to le rance  is  the m in im u m  o f  recom pu ted  to le rances o f  the 

v a r ia b le s  in  the equation  w h en  a  v a r ia b le  is  entered at the next step A  va lu e  o f  

0  0001 has been used w h ic h  ap p lie s  to both  to le rance  tests T h is  s ig n if ie s  that a  

v a r ia b le  d oe s no t enter an  equation  i f  it ’s squared  m u lt ip le  corre la tion  w ith  a ll the 

independen t va r ia b le s  is  greater than 1 - 0  0001 =  0  99 99 , n o r  d oe s it enter i f  it 

w o u ld  cau se  the squared  m u lt ip le  corre la tion  fo r  a n y  v a r ia b le  a lre ad y  in  the equation  

to exceed 0  9 9 9 9  T h e  ch o ice  o f  fitt in g  a  first o rd e r o r  second  o rd e r m o d e l is  not 

o b v io u s  fro m  the data

H o w e v e r ,  i f  the f irst  o rd e r e ffect is  p re d o m in an t in  the data, fitt in g  a  secon d  o rder  

m od e l b y  the techn iques described , w o u ld  resu lt in  a  f irst  o rde r m od e l H e n ce , the 

se lection  o f  the o rde r o f  the equation  is  au tom ated  b y  the d iffe ren t techn iques i f  a ll 

the independen t v a r ia b le s  are  in c lu d ed  in  the p ro g ra m m e

8.2.1 EN24T Steel

T a b le s  8 1 th rou gh  8 3 o f  A p p e n d ix  D  sh o w  the estim ated  param eters o f  the best 

m o d e ls  ca lcu lated  b y  the d iffe ren t m o d e l b u ild in g  techn iques u s in g  the data o f  T a b le  

7 2  fo r  to o l life , su rface  ro u gh n e ss, and  cu ttin g  fo rce s  re spective ly  T h e  v a r io u s  

param eter va lu e s  1 e  , the m od e l co -e ffic ie n ts  are sh o w n  in each b o x  w h ile  its t -  

sta tistics are  sh o w n  w ith in  the parenthesis b e lo w  A d d it io n a l sta tistics such  a s R 2, 

a d j u s t e d  R 2, and  standard  e rro r o f  estim ate  s , are  a lso  g iv e n  in  the tab le  T h e  

statistica l param eters o f  the fu ll fo rm  o f  the f irst  o rde r and  the secon d  o rd e r m o d e l 

are  a lso  in c lu d e d  in the tab le
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8.2.2 Inconel 718

T a b le s  8 4 th rou gh  8 6 sh o w  the estim ated  param eters o f  the best m o d e ls  ca lcu lated  

b y  the d iffe ren t m o d e l b u ild in g  techn iques u s in g  the data o f  T a b le  7  13 fo r  to o l life ,  

su rface  ro u gh n e ss, and  cu ttin g  fo rce s  re sp e ctive ly  W h i le  T a b le s  8 7  and 8 8 o f  

A p p e n d ix  D  sh o w  the estim ated  param eters fo r  too l life  and  su rface  ro u gh n e ss  

re sp e ctive ly  w hen  u s in g  the data  o f  T a b le  7 14

H a v in g  ch osen  a  m o d e l that is  best suited fo r  a  p a rticu la r  sam p le  o f  data, the 

re g re ss io n  d ia gn o st ic  m ethods such  a s re sid u a l a n a ly s is  are  nece ssary  to dem onstrate  

the adeq u acy  o f  the m od e l W e  de fin e  the ith re s id u a l £„ to be  the d iffe ren ce  

betw een the m easured  v a lu e  y, and  the p red icted  v a lu e  y, n am e ly , 5, =  y, - y,, i =  

1,2, ,n T h e  e rror £, re flects the am o u n t o f  d isc re p an cy  (re s id u a l) betw een the 

o b serve d  an d  p red icted  va lu e s  that is  s till p resent after h a v in g  fitted the m o d e l T h e  

u su a l a ssu m p t io n s  m ade  abo u t the e rror a  o f  E q u a t io n  (7  4 ) o r  E q u a t io n  (7  5 ) fo r  

re g re ss io n  a n a ly s is  are  that they are  independent, h ave  zero  m ean, h ave  a  constan t  

variance , and  fo llo w  a  n o rm a l d istr ibu tion

T h e  re s id u a ls  de rive d  fro m  the predicted  equ ation s o b ta ined  b y  the d iffe ren t  

techn iques sh o u ld  agree  w ith  these a ssu m p t io n s  In  o rd e r to in ve st iga te  w hether  

there is  an y  de v ia t io n  fro m  these a ssu m p tio n s, re sidua l p lo ts  h ave  been e a rn e d  out  

T h e se  are (i) p lo t  o f  standard ized  re sidu a ls, and  (111) n o rm a l p ro b a b ility  p lo t o f  

re s id u a ls
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Table 8.4 Statistical parameters for tool life (uncoated carbide)
InconeL 718 Coefficients and t-values Selection criteria

b„ b, ^2 b3 b n b * b33 bi2 bn b23 R 2 Adj

R 2

s

B ackw ard -0  597 

(-0  53)

1 898

(2 5)

-2 0 

(-11 5)

-0 642  

(-4 8)

-0 376  

(-7 1)

97 55 97 04 0 203

Fo rw ard 3 758 

(18 8)

-0 508 

(-22 0)

-0 687  

(-10 9)

-0 375 

(-6 6)

97 04 96 60 0 2 1 8

Stepw ise 3 758 

(18 8)

-0 508 

(-22 0)

-0 687 

(-10 9)

-0 375 

(-6 6)

97 04 96 60 0 2 1 8

A l l  Poss ib le 3 758 

(18 8)

-0 508 

(-22 0)

-0 687 

(-10 9)

-0 375 

(-6 6)

97 04 96 60 0 2 1 8

1st order 4 8

(8 45)

-1 892 

(-15 98)

-2 016  

(-7 94)

-1 094  

(-4 83)

94 47 93 64 0 297

2nd order -4 133 

( -1 2 )

2 469

(2 0)

-5 497  

(>2 0)

-1 072  

(-0  6)

-0 711

(-4 5)

-0 97 

( - 1 4 )

0 027  

(0 04)

0 124

(0 25)

-0 254

(-0 66)

-0 427 

(-0 48)

97 97 96 66 0 216



Table 8.5 Statistical parameters for surface roughness (uncoated carbide)
Inconel 718 Coeffic ients and t-values Selection criteria

b0 b, b2 b 3 bn b^ b 33 b 12 b 13 bz. R 2 Adj

R 2

s

Backw ard 2 516  

(22 5)

0 118

(9 16)

0 512  

(14 5)

91 20 90 36 0 122

Fo rw ard 1 937  

(3 76)

-0 675 

(-1 15)

0 181

(3 23)

0 738 

(3 7)

91 74 90 50 0 122

Stepw ise 2 516  

(22 5)

0 118

(9 16)

0 512 

(14 5)

91 20 90 36 0  122

A l l  Possib le 2 516  

(22 5)

0 118

(9 16)

0 512 

(14 5)

91 20 90 36 0 122

1st order 3 924  

(14 28)

-0 152 

(-2 53)

1 464 

(11 38)

0 109 

(0 95)

87 25 85 34 0  151

2nd order 2 615  

(1 2 8 )

0 162 

(0 23)

0 448 

(0 29)

0 146 

(0 14)

0  174

(1 93)

0 353  

(0 91)

-0 324 

(-0 91)

0 787  

(2 76)

-0 174 

(-0 79)

-0 382  

(-0 75)

94 02 90 17 0 123



Table 8.6 Statistical parameters for cuttmg force (uncoated carbide)
Incone l 718 Coefficients and t-values Selection criteria

b0 bi b2 b3 bn b 22 b33 bi2 bi3 b23 R 2 Adj

R 2

s

B ack w ard 7 779 

(307 7)

1 419  

(11 78)

0 049 

(17 08)

-0 18 

(-3 06)

0 248 

(37 6)

-0 136 

(-3 36)

99 62 99 51 0 023

Fo rw ard 7 94  

(85 4)

0 189 

(1 79)

1 441

(12 6)

0 031 

(3 1)

-0 196 

(-3 5)

0 184

(5 15)

-0 14 

(-3 68)

99 68 99 56 0 021

Stepw ise 7 779  

(307 7)

1 419  

(11 78)

0 049 

(17 08)

-0 18 

(-3 06)

0 248  

(37 6)

-0 136 

(-3 36)

99 62 99 51 0 023

A l l  P oss ib le 7 779 

(307 7)

1 419  

(11 78)

0 049 

(17 08)

-0 18 

(-3 06)

0 248

(37 6)

-0 136 

(-3 36)

99 62 99 51 0 023

1st order 8 643 

(120 4)

-0 151 

(-9 61)

0 723 

(21 53)

0 943  

(31 46)

98 72 98 53 0 039

2nd order 7 884

(20 6)

0 058 

(0 44)

0 228 

(0 78)

1 474

(7 37)

0 028 

(1 63)

0 032 

(0 44)

-0 191

(-2 87)

0 207  

(3 87)

*0 142 

(-3 45)

0 019  

(0 196)

99 69 99 49 0 023



T h e  a n a ly s is  o f  to o l life  data set o f  T a b le  8 4  are  presented and  d iscu sse d  F ig u re  

8 1 sh o w s  the p lo ts  o f  standard ized  re s id u a ls  a ga in st  p red icted  va lu e s  o f  too l life  fo r  

m co n e l w h en  uncoated  ca rb id e  to o ls  w ere  u sed  I t  sh ou ld  be  no ticed  fro m  T a b le  8 4  

that the b a c k w a rd  e lim in a tio n  ( B E )  and  a ll p o ss ib le  subset re g re ss io n  ( A P S )  have  

resu lted in  iden tica l m od e l param eters w h ile  the step w ise  re g re ss io n  ( S R )  and  

fo rw a rd  se lection  ( F S )  h ave  p rod u ce d  a  d iffe ren t set o f  iden tica l param eters T h e  

standard ized  re s id u a l z t =  e j s  is  o ften  e xam in e d  rather than e, in  a  re sidu a l an a ly s is ,  

w h ere  s  is  the standard  e rro r o f  estim ate  o f  the m o d e l T h e  standard ized  re s id u a ls  

fa ll w ith in  the b o u n d s  o f  p lu s  o r  m in u s  tw o  standard  d e v ia t io n s  lim its ,  and  are  

p o s it iv e ly  an d  n e ga tiv e ly  s ign e d  w ith  equ a l freq uen cy  N o  m o d e l in ad e q u ac ie s  are  

revealed  in  these p lo ts  T h is  c o n f irm s  that the b a s ic  a s su m p tio n s  abo u t the e rro r are  

h o ld in g

F ig u r e  8 2 dep ic ts the standard ized  n o rm a l p ro b a b ility  p lo t  o b ta ined  b y  b ack w ard  

e lim in a t io n /a ll p o s s ib le  subset T h e  so lid  d ia g o n a l lin e  in d ica te s the expected  

n o rm a lity  o f  the re s id u a ls  and the o b se rved  n o rm a lity  are sh o w n  b y  ( + )  s ig n  T h e se  

p lo ts  sh o w  that the re s id u a ls  are  n o rm a lly  d istribu ted, a s  there is  little  de v ia t io n  o f  

the o b se rve d  n o rm a lity

F ig u r e  8 3 and  8 4 sh o w  the re sidu a l p lo t and  n o rm a l p ro b a b ility  p lo t  re spective ly  

fro m  step w ise  re g re ss io n /fo rw a rd  se lection  A g a in  the iden tica l m od e l param eters  

h ave  been ob ta ined  b y  these tw o  techn iques

T h e  d iffe ren t m od e l b u ild in g  techn iques d o  not n e ce ssa r ily  p rod u ce  the sam e  best  

m o d e l as sh o w n  in  T a b le  8 1 th rou gh  8 8 fo r  d iffe ren t re sp o n se s  and  fo r  d iffe ren t  

m ate ria ls  and cu ttin g  to o ls  In  o rde r to co m p a re  the ad v an tage  o f  one  techn ique  o ve r  

the others, so m e  crite rion  has to be  e stab lish ed  fo r  se lectin g  the best m ode l and  the  

best m ode l b u ild in g  techn ique  T h e  v a r io u s  uses o f  re g re ss io n  m o d e ls  are [149] 

m o d e l b u ild in g ,  p red ic tion , and  e stim ation  o f  param eters In  the case  o f  

m a c h in a b ility  data  base  system s, o p tim iz a tio n  o f  m a c h in in g  re sp o n se s is  the m am  

ob jective  and  therefore, the m a in  use o f  the m od e l is  the e stim ation  and  p red ic tion  

o f  param eters T h e  c o m m o n ly  used crite ria  fo r  th is p u rp o se  are a d j u s t e d  R 2  an d  

va r ia n ce  s  o f  the p red icted  va lu e s  in  the m od e l
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Material Inconel 7 1 8  
Cutting tool Uncoated carbide 
Technique BE/APS
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Figure 8.2 Standardized normal probability plot from BE/APS
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Material Inconel 7 1 8  
Cutting tool Uncoated carbide 
Technique SR/FS

Figure 8.3 Standardized scatter plot of residuals from SR/FS
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Figure 8.4 Standardized normal probability plot from SR/FS
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I t  is  ev ident fro m  T a b le  8 4 that the b a c k w a rd  e lim in a tio n  and  a ll p o s s ib le  subset 

reg re ss io n  h ave  s  =  0  203, a d j  R 2  =  9 7  0 4  w h ile  the step w ise  re g re ss io n  and  

fo rw a rd  se lection  output h ave  s  —  0  218 , and  a d j  R 2  =  9 6  60  E a c h  p a ir  o f  m od e l 

b u ild in g  techn iques (b ack w ard  e lim in a t io n /a ll p o s s ib le  subset re g re ss io n  and  

step w ise  re g re ss io n /fo rw a rd  se lection ) h ave  p rod u ce d  a  d iffe ren t set o f  identica l 

p aram eters fo r  a  p a rticu la r  m ateria l

T h e  m a in  d isad van tage  o f  the fo rw a rd  se lection  techn ique  is  that o n ce  a  v a r ia b le  is  

entered in to  the m ode l, it co u ld  never be  e lim in ated  at a  later stage  (T a b le  8 5, and  

8 6 ) even i f  its ¿-statistic  fa lls  b e lo w  a  pre-se lected  ( t  =  2 ) v a lu e  H o w e v e r ,  th is has  

not been o b se rve d  in  the a n a ly s is  o f  too l life  data T h e  step w ise  techn ique, o n  the  

other hand, is  cap ab le  o f  e lim in a t in g  a  v a r ia b le  w h ic h  b e co m e s n o n -s ig n if ic a n t  at a  

later stage  T h is  techn ique  has its o w n  lim ita tio n s  a s  w e ll T h e  se lection  p rocedure  

starts w ith  o n e  v a r ia b le  d e p e n d in g  on  F m  v a lu e  H a d  there been F m  v a lu e  le ss  than  

4 fo r  a ll the v a r ia b le s  at the b e g in n in g ,  the techn ique  w o u ld  h ave  p rod u ce d  no  

so lu tio n  at a ll H o w e v e r ,  th is w a s  not the case  in  o u r  a n a ly s is  H e n c e  the ch o ice  has  

been lim ite d  betw een the b ac k w ard  e lim in a tio n  and  a ll p o s s ib le  subset re g re ss io n

In  the b a c k w a rd  e lim in a tio n  technique, e lim in a tio n  p roce d u re  starts fro m  the fu ll  

m od e l d e p e n d in g  on  the s ign if ic a n c e  o f  each v a r ia b le  I f  w e  co m p a re  its s  and  a d j  

R 2  w ith  those  o f  stepw ise  and  fo rw a rd  se lection  in T a b le  8 4, it is  ev id en t that the  

b a c k w a rd  e lim in a tio n  has h igh e r  a d j  R 2  and  lo w e r  s  v a lu e s  T h e se  ind ica te  that the  

m o d e l is  better than step w ise  re g re ss io n  o r  fo rw a rd  se lection  T h e  a ll p o ss ib le  subset 

reg re ss io n  has a lso  p rodu ced  identica l re su lts together w ith  b a c k w a rd  e lim in a tio n  

techn ique  T h e  second  o rde r m od e l w ith  a ll the va r ia b le s  h ave  adjusted R 2  

c o m p a ra b le  to those  ob ta ined  b y  a ll p o ss ib le  subsets and  b a ck w a rd  e lim in a tio n  

H o w e v e r ,  i f  w e  lo o k  at ¿-statistics o f  the coe ffic ien ts, m o st o f  its v a lu e s  are lo w e r  

than 2

A  c o m p a ra tiv e  a n a ly s is  o f  the m o d e ls  ob ta ined  fro m  fo u r  d iffe ren t techn iques h as  

been m ad e  in  o rd e r to eva luate  the re lative  ad van tage s  o f  o n e  o v e r  the o ther fo r  

ap p lica t io n  in the m a c h in a b ility  data base  sy ste m s T h e  fo l lo w in g  c o n c lu s io n s  can  

be  m ade  d e p e n d in g  on  the c o m p a r iso n
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1 T h e  step w ise  re g re ss io n  and  fo rw a rd  se lection  h ave  p rod u ce d  iden tica l m od e l 

param eters in  m o st cases, w h ile  the b a c k w a rd  e lim in a tio n  an d  a ll p o ss ib le  

subset re g re ss io n  h ave  resu lted  in  a  d iffe ren t set o f  iden tica l m o d e l 

param eters in  a ll cases

2 T h e  standard  e rro r o f  estim ate  s , h a s been fo u n d  to be  sm a lle r  fo r  b a c k w a rd  

e lim in a tio n  and  a ll p o ss ib le  subset re g re ss io n  in  m o st case s T h e  a d j  R 2  is  

fo u n d  to b e  la rge r  fo r  b a ck w a rd  e lim in a tio n  an d  a ll p o ss ib le  subset 

re g re ss io n  S m a lle r  v a lu e  o f  s  and  la r g e r  va lu e  o f  a d j  R 2  are  an in d ica tio n  

o f  the accu racy  o f  the m od e l

3 W ith  a ll the param eters in  the m ode l (2 n d  o rde r M L R ,  T a b le  2 ), s  is  greater  

than that ob ta ined  b y  the b a ck w a rd  e lim in a tio n  and  subset re g re ss io n  T h e  

sm a lle r  v a lu e  o f  s  w ith  the le sser n u m b er o f  v a r iab le s, in d ica te s that the 

m ode l is  m o re  accurate

4  Be tw een  the fo rw a rd  se lection  and step w ise  re g re ss io n , fo rw a rd  se lection  h as  

its  o w n  lim ita tio n s  O n c e  a  v a r ia b le  is  entered in to  the m od e l, th is techn ique  

can  not re m o v e  it even  i f  its F  statistic b e co m e s sm a lle r  than F o u t  (T a b le  8 5 

and  8 6) T h e  stepw ise  re gre ssio n , not h a v in g  th is  d raw b ack , w o u ld  be a  

better ch o ice

5 T h e  b a ck w a rd  e lim in a tio n  and  a ll p o ss ib le  subset re g re ss io n  are  better 

techn iques fo r  m od e l b u ild in g  in  the m a c h in a b ility  data b a se  system  A s  lo n g  

as the p ro d u ct o f  inpu t a rray  o f  data  m atr ix  ( X T* X )  is  n o n -s in g u la r ,  the 

b a ck w a rd  e lim in a tio n  w il l  y ie ld  a  so lu tio n  and  m a y  be  a  better ch o ice  than  

the subset re g re ss io n  B u t  i f  the p ro d u ct m atr ix  b e co m e s s in gu la r ,  a ll 

p o ss ib le  subset w o u ld  be  the best ch o ice
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8.3 Sequential Estimation

A  deta iled  a n a ly s is  o f  too l life  data set o f  T a b le  7  2 are presented here  S in c e  the 

to o l l ife  m od e l h a s p ro v e d  to be  o f  first -o rd e r in  gen e ra l, hence  the too l l ife  data are  

a n a lyze d  o n ly  b y  the sequentia l e stim ation  In  the case  o f  too l life  data  o f  in co ne l 

fo r  the uncoated  and  coated ca rb id e  too ls, fin a l m o d e ls  are  presented  w itho u t g iv in g  

the deta iled  ite rative  a n a ly s is  T h e  p roced ure  is  s im ila r  to that sh ow n  in the 

sub section  8 3 1

8 .3 .1  E N 2 4 T  S te e l

T h e  exp erim enta l to o l life  data  generated d u r in g  the tu rn in g  o f  E N 2 4 T  steel a s  g iv e n  

in  T a b le  7  2 h ave  been used  A  com pu te r p ro g ra m m e , w ritten  in  Fo rtran , uses  

equ ation s (4  2 3 -4  2 8 ) o f  chapter 4, to estim ate  the m od e l param eters sequ en tia lly  

A p p e n d ix  E  d e scrib e s th is p ro g ra m m e

T h e  m od e l param eters and  their re levan t sta tistics w ere  ca lcu la ted  u s in g  a  statistica l 

p a c k a g e  T h e  m o d e l g iv e n  b y  the re g re ss io n  a n a ly s is  is

/  = 8 4 8 9 5  -  1 7 9 8 lX j  -  0  3566x2 -  0  2 7 7 7 jc3 (8 .1 )

T h e  standard  e rro r o f  the va r ia b le s  x u  x 2, x 3, and  the con stan t are  0  0616, 0  0732 , 

0  08 91 , and  0  2 7 9 6  re spective ly  T h e  other statistica l param eters are R 2  =  97  8, 

a d j u s t e d  R 2  =  9 7  5, standard  e rro r s  =  0  1458, and  F  sta tistics (3 ,2 0 ) =  294  86

8  3 1 1  S e q u e n t i a l  e s t i m a t i o n  w i t h o u t  p r i o r  i n f o r m a t i o n

T h e  param eter e stim ates based  on  m u lt ip le  re g re ss io n  a n a ly s is  se rves a s  a  b a s is  fo r  

e va lu a tin g  the su itab ility  o f  sequentia l e stim ation  T h e  sam e  param eters c o u ld  be
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obta ined  b y  sequentia l e stim ation  u s in g  E q u a t io n s  (4 2 3 -4  28 ) In  sta rtin g the  

sequentia l p rocedure , the in it ia l v a lu e s  o f  b u 0, Puv o> and  a,2 are  requ ired  In  the O L S  

a n a ly s is ,  o 2  is  constant, in it ia l v a lu e s  o f  b u0 are u n k n o w n  and  P uv0 =  K I  w h ere  I  

is  the identity  m atr ix  and  K  is  a  n u m b er L e t  the in it ia l v a lu e s  o f  b u 0 be  zero, the  

v a lu e  o f  K  =  107 and  o 2  =  1 fo r  l =  1,2, ,n T h e  v a lu e s  o f  param eters and  their 

v a r ia n c e s  com p u te d  at each step d u r in g  sequentia l e stim ation  are  g iv e n  in  the T a b le  

8 9

Table 8.9 Sequential analysis of the tool life data set
w ith o u t  p r io r  in fo r m a t io n

N o M ode l parameter estimate Variances

o f

obs b0 b> b2 b3 ^00 Pu P 22 P 33

0 0 0 0 0 0 0 0 0 107 IO 7 IO 7 107

1 0 179 0 640 -0 339 -0 124 9 *1 0 6 2 8 *106 7 9 9 * IO 6 9 7 *106

2 2 049 -2 011 -3 887 - I  420 8*106 1 440 2 9 1 *10 6 9 1*106

3 5 955 -2 011 - 8393 -4 127 3*106 1 440 2 079 6 8 *106

4 5 705 -1 815 -6 0 4 6 -3 954 3 *1 0 6 0 720 1 039 6 8 *106

5 8 110 -1 815 -6 0 4 6 -4 8 4 7 13 892 0 720 1 039 2 661

6 7 955 - I  751 -6 0 4 6 - 3577 12 192 0 480 1 039 1 521

7 8 391 - I  793 -4 7 6 4 -2 0 2 7 7 679 0 450 0 650 0 950

8 8 381 -1 786 - 4679 - 1924 7 483 0 360 0 520 0 760

9 8 383 -1 786 -4 6 7 7 - 1924 7 467 0 360 0 520 0 760

10 8 377 -1 786 -4 6 8 3 - 1924 7 453 0 360 0 520 0 760
11 8 375 -1 786 -4 6 8 4 - 1924 7 442 0 360 0 519 0 760
12 8 376 -1 786 -4 6 8 3 - 1924 7 433 0 360 0 519 0 760

13 8 133 -1 731 -4 6 9 6 - 1924 6 057 0 291 0 519 0 760
14 8 370 - I  794 -4 7 1 5 - 1924 5 309 0 239 0 519 0 760
15 8 480 - I  794 - 3805 - 1924 5 155 0 239 0 415 0 760
16 8 469 -1 794 - 3872 - 1924 4 950 0 239 0 340 0 760
17 8 465 -1 794 - 3870 -2 1 7 7 4 947 0 239 0 340 0 613
18 8 447 -1 794 - 3875 -2 5 4 7 4 921 0 239 0 340 0 505
19 8 323 -1 767 - 3880 -2 5 4 7 4 260 0 206 0 340 0 505
20 8 443 -1 798 - 3887 -2 5 4 8 3 867 0 179 0 340 0 505
21 8 465 -1 798 - 3699 -2 5 4 8 3 796 0 179 0 290 0 505
22 8 486 -1 798 - 3572 -2 5 4 8 3 693 0 179 0 252 0 505
23 8 482 -1 798 - 3568 - 2932 3 692 0 179 0 252 0 435
24 8 489 “1 798 - 3566 - 2777 3 678 0 179 0 252 0 378
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T h e  fin a l param eter va lu e s  ob ta ined  b y  the sequentia l e stim ation  is  o b se rved  to be  

the sam e  as the ones ob ta ined  b y  re g re ss io n  a n a ly s is  even  th o u gh  a2 =  1, and  b u0 

=  0  w ere  used a s the start-up  va lu e s  T h e re fo re , the f in a l param eter va lu e s  are not  

affected  b y  an  a rb itra ry  v a lu e  o f  a  =  1 in  the sequentia l e stim ation  T h e  c o v a n a n c e  

m atrix  Puvn is  equal to [XTX ] \  w h ereas th is  m a tr ix  fro m  reg re ss io n  a n a ly s is  is  

g iv e n  b y  s 2  *  [XTX ]1 =  (0  1458)2 *  [XTX ]1 T h is  can  be  checked  b y  m u lt ip ly in g  

the f in a l v a r ian ce s  o f  the v a r io u s  param eters in  T a b le  8 9 b y  (0  1458)2 and  

c o m p a r in g  w ith  those  fro m  the reg re ss io n  a n a ly s is

T h e  d isc re p a n cy  in  the va lu e s  o f  the standard  de v ia t io n  fo r  the d iffe ren t param eters  

obta ined  fro m  the sequentia l e stim ation  and  reg re ss io n  a n a ly s is  is  d ue  to in it ia l v a lu e  

( a t =  1) a ssu m e d  fo r  sequentia l a n a ly s is  I f  the in it ia l v a lu e  is  taken a s equa l to the  

standard  e rro r o f  estim ate  s  =  0  1458, then sequentia l e stim ation  w o u ld  y ie ld  the 

sam e  standard  de v ia t io n  o f  the param eters as those  ob ta ined  b y  the reg re ss io n  

a n a ly s is  H o w e v e r ,  the param eter estim ates are no t affected  b y  a, even th ough  an  

arb itra ry  va lu e  o f  a x =  1 w a s  taken a s the start up  v a lu e  A n  estim ate  o f  a„ k n o w n  

as s  can  h ow ever, be  com pu ted  u s in g  the param eter va lu e s  ob ta ined  fro m  sequentia l 

estim ation

T h e  actua l v a lu e s  o f  a ,  is  ca lcu lated  b y  the equation

s 2 = o ?  = ^

E( yt - 9i (8.2)

n-p

w h ere  y, is  ca lcu la ted  fro m  E q u a t io n  (7  4 ) T h e  d iffe ren t param eters used to  

ca lcu la te  s  is  taken fro m  the fin a l step o f  sequentia l e stim ation  F r o m  the an a ly s is ,  

it is  c le a r  that, sequentia l e stim ation  p ro v id e  the sam e  in fo rm a tio n  a s the m u lt ip le  

re g re ss io n  techn ique  T h e  im p o rtan t ad v an tage  is  that even i f  the m a tr ix  [ X TX ]  doe s  

not h ave  an y  inverse , th is m ethod  can  still y ie ld  a  so lu tio n  S in c e  n o  m atr ix  inve rse  

is  nece ssary  in  th is  a n a ly s is ,  it is  ve ry  u se fu l fo r  ill-c o n d it io n e d  data
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T a b le  8 10 illu stra te s the re la tive  erro rs  in  the param eters fo r  d iffe ren t va lu e s  o f  K  

S m a ll  and  la rg e  v a lu e s  o f  K  in  0 =  K I  can  lead  to  inaccu rate  param eter va lu e s  

S m a ll  v a lu e s  im p ly  p r io r  estim ates are accu ra te ly  k n o w n , w h ic h  is  no t co m p atib le  

w ith  O L S  e stim ation  T h e  re su lts in  the T a b le  in d ica te  that a  v a lu e  o f  K  betw een 107 

to 1012 is  app rop ria te  fo r  th is a n a ly s is  s in ce  the d iffe ren ce  m  param eter e stim ates in  

these case s and  the re g re ss io n  a n a ly s is  are  n e g lig ib le

Table 8.10 Relative errors in parameter estimates for different values of K
K value Param eter estim ates

bi

1
10
102

103
104

10s
106

107

108
109

1010
1011
1012
1013
1014
1015

1 8238

6 1520 

8 1774 

8 4571 

8 4862  

8 4891 

8 4894  

8 4894  

8 4894  

8 4894  

8 4894  

8 4894  

8 4894  

8 4894  

8 4851

7 8349

-0 3715 

-1 3157 

-1 7340  

-1 7914  

-1 7974 

-1 7980 

-1 7981 

-1 7981 

-1 7981 

-1 1981 

-1 7981 

-1 7981 

-1 7981 

-1 7974  

-1 7963 

-1 3157

-0 7979 

-0 5593 

-0 3844  

-0 3595  

-0 3566  

-0 3566 

-0 3566 

-0 3566 

-0 3566 

-0 3566 

-0 3566 

-0 3566 

-0 3566 

-0 3555 

-0 3544 

-0 0204

-0 3458 

-0 3322 

-0 2855 

-0 2785 

-0 2778 

-0 2777 

-0 2777 

-0 2777  

-0 2777 

-0 2777 

-0 2777  

-0 2777 

-0 2777 

-0 2764  

-0 2743 

-0 1719

M LR 8 4895 1 7981 -0 3566 -0 2777

T h e  p ro p e r  va lu e  o f  K  depends on  the param eter va lu e s, the m agn itu d e  o f  the 

independen t v a r ia b le  and  the n u m b er o f  s ig n if ic a n t  ca lcu la ted  d ig it s  F o r  K  =  10°k 

w h ere  K  is  la rge , the co n d itio n  fo r  K  not too  la rg e  is  g iv e n  [132] as

n t  <  n c  -  lo g

2> û
*=1

2°1
(8.3)
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w here  n c is  the n u m b er o f  s ig n if ic a n t  ca lcu la ted  d ig it s  used in  the co m p u te r U s in g  

x lk  fro m  T a b le  7  2, E q u a t io n  (8  3) g iv e s  nk <  12 5 w ith  n c =  14 (d ou b le  

p re c is io n ) In  o ther w o rd s, K  sh o u ld  be  le ss  than 12 5 in  o rd e r not to be too la rge  

T h is  i s  con sisten t w ith  the re su lts sh o w n  in  T a b le  8 10 A s  the ra n ge  o f  K  is  

ob se rve d  to be  w ide , a  v a lu e  o f  K  betw een 106 and  1012 sh o u ld  be  adequate  fo r  

a n a ly s in g  these type  o f  data

F r o m  T a b le  8 9, it  is  o b se rve d  that param eter estim ates and  their va r ian ce s  stab ilize s  

at fifth  iteration  T h e  h ig h  va r ian ce s  o b se rve d  up  to fourth  step are d ue  to the e ffect  

o f  zero  in it ia l param eter va lu e s  and  h ig h  va r ian ce s  a ssu m e d  as the start-up  va lu e s  

I f  p r io r  in fo rm atio n  are  av a ilab le , rea so nab le  estim ates c o u ld  be  obta ined

8  3 1 2  S e q u e n t i a l  e s t i m a t i o n  u s i n g  p r i o r  i n f o r m a t i o n

T h e  sequentia l e stim ation  p roce d u re  g iv e n  b y  E q u a t io n s  (4  2 3 -4  28 ) can  a lso  be  used  

w h en  p r io r  in fo rm a tio n  re g a rd in g  the param eter estim ates and  the co v a r ia n ce  m atr ix  

are  a v a ila b le  T h e  sub jective  p r io r  in fo rm a tio n  abo u t the in it ia l param eters b u0, the  

c o v a r ia n ce  m atr ix  P uv 0 and  cr, fo r  the too l life  data  set is

8 4894 ' 00782 -0 0158 0 0075 0 0023'
-17981

, P n =
-0 0158 00038 00000 00000

- 0  3 566
9 uvO 0 0075 00000 00053 00000

- 0  2 777 00023 00000 00000 00080

T h e se  va lu e s  are  ob ta ined  fo rm  T a b le  8 9 w h ic h  are based  on  a n a ly s is  w ith o u t p r io r  

in fo rm a tio n  T h e  co v a r ia n ce  m atr ix  P uv 0 is  equa l to P uv 24*  (0  1458)2 P uv 24 is  taken  

fro m  T a b le  8 9 U s in g  these p n o r  in fo rm atio n , the sequentia l e stim ation  w a s  

p e rfo rm e d  on the sam e  too l life  data g iv e n  in  T a b le  7 2  T h e  re su lts o f  the a n a ly s is  

are  tabu lated  in  T a b le  8 11 T h e  resu lts in d ica te  that the param eter va lu e s  and  their  

va r ia n c e s  up  to the fourth  steps d o  no t d iffe r  fro m  those  in  the subsequen t steps 

s ig n if ic a n t ly  H e n c e  the m od e l ob ta ined  at each sequence  c o u ld  b e  used fo r  se lectin g
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the m a c h in in g  co n d it io n s  at the subsequent sequence  It  is  a lso  apparen t fo rm  T a b le  

8 9  &  T a b le  8 11 that the im p o rtan ce  o f  the p r io r  in fo rm a tio n  d im in ish e s  a s  the 

n u m b er o f  o b se rva t io n s  increases H e n c e  i f  su ffic ie n t n u m b e r  o f  data  are  a v a ila b le  

and  param eter estim ates o b ta ined  fro m  the f irst  fe w  ite ra tion s are no t required, p r io r  

in fo rm a tio n  is  then not im p o rtan t O th e rw ise , p r io r  in fo rm a tio n  is  necessary

Table 8,11 Sequential analysis of the tool life data set with prior information
N o M ode l parameter estimate Variances

o f

obs b0 b, b2 b3 Poo Pn P22 P33

0 8 4894 -1 7981 -0 3566 -0 2777 0782 0 0038 0 0053 0080

1 8 5524 -1 8220 -0 3846 -0 3132 0769 0 0036 0 0051 0076
2 8 5472 -1 8210 -0 3855 -0 3143 0701 0 0034 0 0048 0073

3 8 4458 -1 8051 -0 4089 -0 2902 0642 0 0032 0 0045 0069
4 8 4366 -1 8013 -0 4044 -0 2947 0631 0 0030 0 0043 0067

5 8 4317 -1 7999 -0 4028 -0 2972 0614 0 0029 0 0041 0063

6 8 3713 -1 7865 -0 4153 -0 2773 0583 0 0028 0 0040 0059
7 8 4588 -1 7982 -0 3980 -0 2567 0527 0 0027 0 0038 0056
8 8 4510 -1 7932 -0 3921 -0 2495 0524 0 0025 0 0036 0054

9 8 4537 -1 7931 -0 3918 -0 2495 0524 0 0025 0 0036 0054

10 8 4533 -1 7931 -0 3919 -0 2495 0524 0 0025 0 0036 0054

11 8 4543 -1 7931 -0 3918 -0 2495 0523 0 0025 0 0036 0054
12 8 4559 -1 7930 -0 3916 -0 2495 0523 0 0025 0 0036 0054

13 8 3726 -1 7748 -0 3923 -0 2495 0484 0 0024 0 0036 0054
14 8 4522 -1 7961 -0 3931 -0 2495 0459 0 0022 0 0036 0054

15 8 4839 -1 7963 -0 3662 -0 2495 0455 0 0022 0 0033 0054

16 8 4787 -1 7963 -0 3693 -0 2495 0448 0 0022 0 0031 0054

17 8 4782 -1 7963 -0 3692 -0 2559 0448 0 0022 0 0031 0049
18 8 4720 -1 7964 -0 3695 -0 2679 0447 0 0022 0 0031 0046
19 8 4136 -1 7835 -0 3699 -0 2679 0418 0 0020 0 0031 0046
20 8 4688 -1 7982 -0 3704 -0 2679 0400 0 0019 0 0031 0046
21 8 4781 -1 7982 -0 3625 -0 2679 0397 0 0019 0 0029 0046
22 8 4871 >1 7982 -0 3571 -0 2679 0392 0 0019 0 0027 0046
23 8 4858 -1 7981 -0 3568 -0 2848 0392 0 0019 0 0027 0043
24 8 4894 -1 7981 -0 3566 -0 2777 0391 0 0019 0 0027 0040

-157-



8.3.2 Inconel 718

T h e  too l life  m od e l ob ta ined  b y  the sequentia l e stim ation  o f  experim enta l data set 

o f  T a b le  7 13 and  7  14 are

carbide = 4 8004 -  1 8919 x, -  2 0164 x2 -  1 0936 x3 (8.4)

and

y coaud carbide = 4 4654 -  1 5564 -  1419 x2 -  0 5003 x3 (8.5)

re spective ly

In  com p u te r integrated  m an u fac tu r in g  system  ( C IM ) ,  the need fo r  au tom atic  

se lection  o f  m a c h in in g  data in  a  m ath em atica l m od e l type  m a c h in a b ility  data base  

system  requ ires a  su itab le  m od e l b u ild in g  techn ique  T h e  Sequ en tia l M a x im u m  a  

P o ste r io r i ( M A P )  m ethod  is  p ro p o se d  a s a  m athem atica l too l fo r  use in  the m ode l 

b u ild in g  m o d u le  T h is  techn ique  app ears to be  su itab le  s in ce

1 T h e  co m p u ta tion  is  e ffic ie n t and  can  c o n t in u a lly  update  param eter e stim ates  

as n ew  o b se rva t io n s  are  added

2 C o m p u te r  m e m o ry  sto rage  requ irem ent is  sm a ll

3 M a t r ix  in v e rs io n  m a y  not b e  needed

4 I f  there is  o n ly  one  independent o b se rva t io n  at each step i ,  o n ly  a  sca la r

needs to be  inverted  re ga rd le ss  o f  h o w  m a n y  param eters are present and

there are  n o  s im u ltan e ou s equ ation s to so lve

5 P r io r  in fo rm a tio n  o f  the param eter estim ates and  c o -v a n a n c e  m atr ix  can  be  

used

6  T h e  re su lts ind ica te  that the sequentia l e stim ation  techn ique  p ro v id e s  the 

sam e  in fo rm atio n  a s the reg re ss io n  a n a ly s is
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CHAPTER 9

DEVELOPMENT OF THE COMPUTERIZED MACHINABILITY DATA 
BASE SYSTEM

9.1 Introduction

In  th is chapter, a  com pu te rized  m a c h m a b ility  data b a se  sy ste m  h as been d eve loped  

u s in g  the resu lts o f  chapter 8 O n c e  the m ath em atica l m o d e ls  o f  m a c h in in g  

re sponse s re la tin g  the m a c h in in g  va r ia b le s  h ave  been determ ined  in  the p re v io u s  

chapter, these equ atio n s h ave  been u tilised  in  d e v e lo p in g  the data base  T h e  data  

b ase  system  presented  here is  v a lid  fo r  E N 2 4 T  steel an d  in co n e l 718  o n ly

9.2 Machmability Data Base Systems

T h e  ob jective s o f  the com pu te rized  m a c h m a b ility  data b a se  sy ste m s are i) to p ro v id e  

re co m m e n d a tio n s  fo r  o p t im u m  cu ttin g  data, 11) to p ro v id e  a  l in k  betw een the shop  

f lo o r  an d  p ro d u ct io n  en v iron m en ts, an d  111) to p ro v id e  a  m eans b y  w h ich  

adjustm ents m ade  on  the sh op  f lo o r  can  be  reflected in  fu ture  re co m m e n d a tio n s  o f  

cu ttin g  data m ade  b y  the data b a se  system

T h e  e x is t in g  com pu te rized  m a c h m a b ility  data base  sy ste m s ( C M D B S )  can  be  

c la ss if ie d  a s (i) D a ta  sto rage  and  R e tr ie v a l sy stem s, (11) E m p ir ic a l  equ ation  system s,  

( in )  M a th e m a t ic a l m o d e l system s, and  ( iv )  E x p e rt  system  [6 3 ,15 0 ] F ig u r e  9 1 

sh o w s  the d iffe ren t types o f  data b a se  sy ste m s
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In  the data sto rage  and  re trieva l system s, a  se n e s  o f  re co m m e n d e d  cu ttin g  speeds, 

feeds, and  o ther re lated in fo rm a tio n  is  stored in  co m p u te r data  sto rage  an d  re trieva l 

file s, w h ic h  can  be  retrieved th ro u gh  a  u se r fn e n d ly  in te rface  p ro g ra m  T h is  

in fo rm a tio n  c o m e s  fro m  sh op  experience, lab o ra to ry  experim ents, an d  m a c h in in g  

data  h a n d b o o k s  T h e  m a in  d isad van tage  o f  th is  system  is  that it  requ ires h ig h ly  

experienced  p e rso n n e l to eva luate  the in c o m in g  data and  to update  the data f ile s

E m p ir ic a l  equation  sy ste m s u tilize  the extended T a y lo r ’s to o l-life  equ ation s to 

ca lcu la te  the cu ttin g  param eters T h e  data  fo r  a  p a rticu la r  c o n d it io n  is  reduced  to an  

e m p ir ic a l fo rm  and  exp ressed  a s  a  gen era lized  e m p ir ic a l equation  T h e  system s  

e xc lu d e  the need to store  the trem en dou s am o u n t o f  data fo r  a  w id e  c o m b in a t io n  o f  

m ateria ls, too ls, and  o pe ratio n s

M a th e m a t ic a l m o d e l sy ste m s are based  on  equ ation s ob ta ined  fro m  exp erim enta l data  

w h ic h  c lo se ly  m atch  the m a c h in in g  situation  M a th e m a t ic a l m o d e ls  o f  re spo n se  such  

as to o l-life  (extended  T a y lo r ’s too l life  equation ) are  d e ve lo p e d  as a  fu n ctio n  o f  

speed, feed, and  depth o f  cu t fo r  se lectin g  e c o n o m ica l cu ttin g  co n d it io n s  O n c e  the  

m o d e l is  deve loped , the co e ffic ie n ts  o f  the m o d e l are  stored in  a  f i le  and  these are  

used instead  o f  the o r ig in a l data in  an  o p tim iz a tio n  a lg o r ith m  d e s ign e d  to ob ta in  an  

o p tim u m  set o f  cu ttin g  c o n d it io n s

E x p e rt  system  can  be  d eve loped  u s in g  a  c o m m e rc ia lly  a v a ila b le  expert sy ste m  she ll 

E x p e rt  system  im p lie s  that the system  is  equ ipped  w ith  d o m a in  sp e c if ic  k n o w le d g e  

and  pattern d irected  in fe rence  so  that it s im u la te s  h u m an  experts in  se n sin g ,  

re a so n in g , and  g iv in g  an sw e rs  to sp e c if ic  p ro b le m s  T h e  k n o w le d g e  that an  expert  

system  needs are  d o m a in  facts (type  o f  operation , w o rk p ie c e  m ateria ls, cu ttin g  too ls  

etc ), re la tio n sh ip  betw een the facts (w o rk  p ie ce  m ateria l and  cu ttin g  too l), and  

m eth ods fo r  e m p lo y in g  these re la tio n sh ip s  in  p ro b le m  s o lv in g  (fo rw a rd  ch a in in g ,  

b a c k w a rd  c h a in in g ,  o r  m ix e d  use  o f  bo th )
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Figure 9.1 Different types of machinability data base systems (MDBS)



9.3 Development of the Data Base System

T h e re  are  tw o  types o f  cu ttin g  c o n d it io n s  n am e ly ; ( i)  re co m m e n d e d  (n o n -o p t im u m )  

cu ttin g  co n d it io n s  o r  ( ii)  o p t im u m  cu ttin g  c o n d it io n s  w h ic h  are  u su a lly  d e rived  b y  

the e x is t in g  com pu te rized  m a c h in a b ility  data b a se  system s. R e c o m m e n d e d  cu ttin g  

co n d it io n s  are  those  w h ere  a  p a rticu la r  m a c h in in g  ope ration  can  be  p e rfo rm e d  e a s ily  

w ith in  the re co m m e n d e d  con d ition s. O p t im u m  cu tting  co n d it io n s, on  the con trary ,  

are  based  on  so m e  e c o n o m ic  o r  p e rfo rm an ce  ob jective s such  a s g iv e n  to o l life , co st  

fu n c tio n s, su rface  fin ish , pow er.

T h e  e x is t in g  C M D B S  ad op ts d iffe ren t m ethods to ob ta in  e ither o f  the tw o  cu ttin g  

con d ition s. T o  obta in  the reco m m en d ed  cu ttin g  co n d it io n s; e m p ir ic a l equation  o r  

m a c h in a b ility  chart o r  sto rage /re trieva l m ethod  is  used. T h e  e m p ir ic a l equation  

m ethod  uses e m p ir ic a l e qu ation s fo r  speed and  feed w h ich  co n s id e rs  d iffe ren t cu ttin g  

variab le s. In  the m a c h in a b ility  chart m ethod, the data is  con verted  in to  chart fo rm  

to relate speed, feed, and  too l life . T h e se  charts are  stored in  f ile s  fo r  d iffe ren t  

m ateria ls. In  the sto rage /re trieva l m ethod, speeds and  feeds are  stored in  the fo rm  

o f  actual v a lu e s  o r  as coe ffic ie n ts  and  factors. F e e d  rate is  ob ta ined  fro m  the too l 

d iam eter th rou gh  in te rpo lation  o f  the feed cu rve  u s in g  the feed factors.

T h e  o p tim u m  cu ttin g  co n d it io n s  can  be  ob ta ined  b y  gen e ra lized  m in im u m  cost/ o r  

m in im u m  p ro d u ct io n  tim e  equ ation s o r  b y  T a y lo r ’s equation  o r  b y  extended T a y lo r ’s 

equation. In  the gen e ra lized  co st and  p ro d u ct io n  m ethods, the co st and  tim e  fo r  an  

operation  d e p e n d in g  on  the inpu t param eters (speed, feed, depth o f  cut, and  cut 

ge o m e try ) are ca lcu lated  fo r  v a r io u s  c o m b in a t io n s  o f  cu ttin g  c o n d it io n s  and  the 

ch o ice  is  le ft to the user. In  T a y lo r ’s to o l-life  equation , the equ atio n s fo r  co st and  

tim e  are  ob ta ined  as a  fu nctio n  o f  co st param eters an d  cu ttin g  speed. T h e  extended  

T a y lo r ’s too l life  equation  is  used  in  o b ta in in g  the o p t im u m  cu ttin g  c o n d it io n s  fo r  

a g iv e n  tool l ife  o r  fo r  m in im u m  co st o r  fo r  m in im u m  p ro d u ct io n  tim e.

T h e  ob jective  is  to p ro v id e  m ath em atica l e qu ation s w h ich  corre la tes the m a c h in in g  

re spo n se s (to o l life , su rface  f in ish , cu ttin g  fo rce  etc.) w ith  the m a c h in in g  va r iab le s  

(cu ttin g  speed, feed rate, depth o f  cut). A  m ath em atica l m o d e l type  data base  system  

is  based  on th is p red icted  equation  fitted to an exp erim enta l data. T h e re  are  d iffe ren t
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c o m m e rc ia l re g re ss io n  a n a ly s is  p a c k a g e s  [1 2 6 -1 2 8 ,1 5 1 ] a v a ila b le  to p red ic t a  

m ath em atica l equation  fro m  experim enta l data T h e se  re g re ss io n  techn iques are 1) 

a ll p o ss ib le  subset re g re ss io n , u )  b a ck w a rd  e lim in a tio n , in )  stepw ise  re g re ss io n , and  

iv )  fo rw a rd  se lection  In  p re d ic t in g  the m o d e l equation , w e  h ave  used  the b a c k w a rd  

e lim in a tio n  techn ique  A fte r  the m o d e l is  deve loped , the co -e ffic ie n ts  o f  the m od e l 

are  stored  in a  f i le  an d  these c o -e ffic ie n ts  are  u sed  to d e r ive  the o p t im u m  cu ttin g  

data  b a se d  on  a  g iv e n  to o l life

In  th is  project, a  m ath em atica l m o d e l type  data  b a se  sy ste m s h ave  been deve loped  

w here  the cu ttin g  c o n d it io n s  (speed, feed, an d  depth o f  cut) are  d isp la y e d  fo r  a  

g iv e n  too l life  A  b lo c k  d ia g ra m  o f  the p ro p o se d  data b a se  structure  is  sh o w n  in  

F ig u re  9 2

9.3.1 Mathematical model systems

T h e  m athem atica l m od e l sy ste m s are  based  on  the m ath em atica l m o d e ls  fitted to 

exp erim enta l data T h e se  data h ave  been generated  e xp e r im e n ta lly  b y  the d e s ig n  o f  

e x p e n m e n ts  o u tlin ed  m  chapter 7  M a th e m a t ic a l m o d e ls  o f  to o l life , in  the fo rm  o f  

extended T a y lo r ’s to o l-life  equation  h ave  been de ve lo p e d  O n ly  a  first -o rd e r fo rm  

o f  the too l life  equation  h as been con side red  s in ce  it w a s  o b se rve d  that the to o l life  

equation  is  first-o rd e r

In  the case  o f  su rface  ro u gh n e ss  and cu ttin g  fo rce s, the b a c k w a rd  e lim in a tio n  

a lg o r ith m  has been used  to  determ ine  the c o r re sp o n d in g  re sp o n se  equation  O n c e  the  

equ ation s h ave  been d eve loped  b y  th is a lg o r ith m  (T a b le  8 1 - T a b le  8 8), the c o ­

e ffic ien ts  o f  these equ ation s are stored in  a  f i le  an d  u sed  instead  o f  the o r ig in a l data  

T h e  too l l ife  co -e ffic ie n ts  are  u sed  to d e n v e  cu ttin g  data fo r  a  g iv e n  to o l l ife  A fte r  

the cu ttin g  c o n d it io n s  are obta ined, the m o d e l co -e ffic ie n ts  fo r  su rface  ro u g h n e ss  and  

cu ttin g  fo rce s  eva luate s the su rface  f in ish  to b e  ach ieved  and  the requ ired  p o w e r  

F ig u r e  9 3 sh o w s  the operation  m o d u le  o f  the data  b a se  in  the fo rm  o f  in p u t and  

output
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RETRIEVAL/INPUT DATA KNOWLEDGE BASE STORAGE
Operation (Turning, Drilling, Milling)
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T
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Minimum cost Given tool life

Recommendedcutting
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Figure 9.2 Mathematical model type machinability data base system



INPUT FILES
O p era tio n  f i le

T u rn in g

M a teria l f i le

- I n c o n e l- 7 1 8

- S te e l E N 2 4 T

C u ttin g  to o l f i le

T u n g s te n  c a r b id e

- u n c o a te d  ca r b id e

- c o a te d  ca r b id e

OUTPUT
SpeedTool life
Feed

Model co-efficients 
T = f(V,f,d) Depth of cut
R.= f(V,f,d) 
F = f(V,f,d)

----------* Surface roughness
Power

Figure 9,3 Machmability data base m the form of input and output

9.3.2 Methodology and environments

T h e  m e th o d o lo g y  and  the e n v iro n m e n t adopted  fo r  the d e ve lo p m e n t o f  the data base  

are  d e scribed  in  th is  section  T h e  data b a se  is  lim ite d  to o n ly  one  type  o f  too l and  

tw o  types o f  w o rk  m ate ria ls  co m b in a t io n  H o w e v e r ,  there is  a  p ro v is io n  fo r  further  

in c lu s io n  o f  too l and  w o rk  m ateria l i f  the exp erim enta l data  are  a v a ila b le  T h e  data  

base  has the too l and  w o rk  m ateria l co m b in a t io n  o f  uncoated  tungsten  ca rb id e  and  

E N 2 4 T  steel and  tungsten  ca rb id e  an d  m co n e l 7 1 8

T h e  structure  o f  the m a c h m a b ility  data  b a se  sy ste m s a s sh o w n  in  F ig u r e  9 4  co n s ists  

o f  the fo l lo w in g  m o d u le s

(I) data base  m odu le ,

( II) m o d e l equation  m odu le ,

(m )  k n o w le d g e  base  m o d u le  and

( iv )  u ser in te rface  m o d u le
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Data Base

Figure 9.4 Structure of the machmability data base

T h e  data b a se  m o d u le  co n s ists  o f  the experim enta l data f i le  o f  T a b le s  7  2 , 7  13, and  

7 14 re la tin g  to the speed, feed rate, and  depth o f  cu t to  the to o l life  T h e  m o d e l 

equation  m o d u le  con ta in s the equ ation s d eve loped  b y  the re g re ss io n  a n a ly s is  an d  the 

co e ffic ie n t o f  the equation  fro m  C h ap te r  8

T h e  k n o w le d g e  base  m o d u le  co n s ists  o f  the fo l lo w in g  in fo rm a tio n

1 M a c h in in g  operation

a) T u r n in g

2 W o r k  m ate ria ls

a) In c o n e l-7 1 8

b ) E N 2 4 T  steel



3 T o o l  m ate ria ls

c ) T u n g s te n  ca rb id e  in serts (U n co a te d  an d  C o a te d  carb ide )

T h e  u se r in terface  m o d u le  enab les the u se r to interact an d  execute  the p ro g ra m m e

D e p e n d in g  on  the u se r’s inpu t o f  the w o rk  m ate ria l / to o l co m b in a t io n , the system  

d isp la y s  a  re spo n se  f ile  w h ic h  sh o w s  the d iffe ren t c o m b in a t io n s  o f  speed, feed rate, 

an d  depth  o f  cut together w ith  the too l b fe  ach ieved  A  separate  f i le  stores the 

m o d e l co -e ffic ie n ts  o b ta ined  b y  the re g re ss io n  a n a ly s is  o f  the exp erim en ta l data T h e  

u ser is  then asked  i f  he w an ts the cu ttin g  data fo r  a  to o l l ife  d iffe ren t fro m  the 

a lre ad y  d isp la y e d  data  I f  the a n sw e r is  yes, the u se r is  requested to g iv e  a  va lu e  o f  

too l l ife  in  m in u te s G iv e n  the inpu t v a lu e  o f  the to o l life , the p ro g ra m m e  ca lcu late s  

the cu ttin g  param eters and  d isp la y s  d iffe ren t c o m b in a t io n s  o f  re co m m e n d e d  speed, 

feed, and  depth o f  cu t T h e  surface  ro u gh n e ss  va lu e  and  p o w e r  req u irem ent co u ld  

be  obta ined  b y  p r o v id in g  the va lu e s  o f  speed, feed, an d  depth o f  cut A  f lo w  chart  

o f  the p ro g ra m m e  is  sh o w n  in  F ig u re  9 5

W ritte n  in  F O R T R A N  u s in g  the M ic r o s o f t  F O R T R A N  C o m p ile r  ve rs io n  3 2, the 

p ro g ra m m e  at the m om en t is  v a lid  o n ly  fo r  tu rn in g  operation  and  is  d e s ign e d  fo r  

ru n n in g  on  a P C  A p p e n d ix  F  g iv e s  the deta iled  p ro g ra m m e  T h e  p ro g ra m m e  

d e rive s  the cu ttin g  co n d it io n s  fo r  E N 2 4 T  steel and  in co n e l 718  w ith  ca rb id e  to o ls  

A  p ro g ra m m e  output is  o u tlin ed  in  Se c tio n  9 3 2  1

A  gen e ra l structure  o f  the c o m p u te n ze d  m a c h in a b ility  data  base  has been presented  

in  th is chapter T h e  m a in  ob jective  o f  the data b a se  is  to generate  the o p tim u m  

cu tting  speed, feed rate, and  depth o f  cut u s in g  the m o d e l co e ffic ie n ts  o b ta ined  b y  

re g re ss io n  a n a ly s is  o f  the experim enta l data

A lth o u g h  the o v e ra ll data b a se  m o d u le  is  no t fu lly  d eve loped , the use  o f  m o d e l 

co e ffic ie n ts  fo r  ge n e ra tin g  the o p t im u m  cu tting  data  h ave  been attem pted T h e  data  

base  m o d u le  can  be  extended to in c lu d e  d iffe ren t c o m b in a t io n s  o f  cu ttin g  to o ls  and  

w o rk  m ate ria ls  a s  w e ll



Figure 9.5 Programme flow chart



9 3.2.1 Programme Output

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

W E L C O M E  T O  M D B S  

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

>  >  O P E R A T IO N  M O D U L E  <  <

(1) T U R N IN G

(2) M I L L IN G

P L E A S E  T Y P E  ( l)/(2 ) A N D  P R E S S  E N T E R  

1

>  >  M A T E R I A L  S E L E C T IO N  <  <  

W S E L E C T  Y O U R  M A T E R I A L  w  

1 IN C O N E L -7 1 8 /2  Steel E N 2 4 T  

P L E A S E  T Y P E  (1) / (2) A N D  P R E S S  E N T E R  

1

P L E A S E  T Y P E  M A T E R I A L  H A R D N E S S  IN  B H N  

425

>  >  T O O L  S E L E C T IO N  <  <

^ S E L E C T  Y O U R  C U T T IN G  T O O L W  

1 U N C O A T E D  C A R B ID E  / 2 C O A T E D  C A R B ID E  

P L E A S E  T Y P E  (1) I  (2) A N D  P R E S S  E N T E R  

1
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AN EXPERIMENTAL DATA FILE

V E L O C IT Y F E E D D O C T L IF E

(m /m in) (mm /rev) (mm ) (m in)

10 0 150 900 64 20

33 0 150 900 6 00

10 0 250 900 34 80

33 0 250 900 2 80

10 0 150 1 750 41 70

33 0 150 1 750 2 75

10 0 250 1 750 16 90

33 0 250 1 750 1 30

1 8 0 200 1 250 13 20

7 0 200 1 250 33 00

45 0 200 1 250 1 44

18 0 120 1 250 37 10

1 8 0 300 1 250 3 70

18 0 200 800 20 80

1 8 0 200 2 000 7 00

D O  Y O U  W A N T  C U T T IN G  P A R A M E T E R  V A L U E S  F O R  A  D IF F E R E N T  T O O L  L I F E 1 

IF  Y E S  P L E A S E  T Y P E  1, IF  N O  P L E A S E  T Y P E  2 A N D  P R E S S  E N T E R  

1

T O O L  L I F E  =  12 0  m in
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T U R N IN G  O P E R A T IO N  

M A T E R I A L  IN C O N E L -7 1 8  

H A R D N E S S  IN  B H N =  425 

C U T T IN G  T O O L  U N C O A T E D  T U N G S T E N  C A R B ID E

feed Ve locity

(m m /rev) (m /m in)

12 48 6 32 6 28 6 25 7 21 8

15 38 3 25 7 22 6 20 3 17 2

20 28 2 18 9 16 6 14 9 12 7

25 22 2 14 9 13 1 11 8 10 0

30 18 3 12 3 10 8 9 7 8 2

D O C  (m m ) = 0 50 1 0 1 25 1 50 2 0

T o  have surface roughness estimate, select velocity, feed, depth o f  cut from  the table and 

type the values o f  velocity, feed, and doc 

16 6, 0 20, 1 25

Roughness in m icron =  3 102801 

Pow er watt =  396 2 W
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CHAPTER 10

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK 

10.1 Conclusions

A fte r  the a n a ly s is  o f  the test resu lts, the fo l lo w in g  c o n c lu s io n s  c o u ld  be m ade  abou t  

the m a ch in a b ility  a sse ssm en t o f  steel an d  in co n e l 718  and  the d e ve lo p m e n t o f  the  

m a ch in a b ility  data b a se  sy ste m s

10 1.1 Machinability of EN24T steel (290 BHN) 

i) Cutting forces

O n e - v a r i a b l e - a t - a - t i m e

—  C u t t in g  fo rce s  in  d ry  tu rn in g  o f  E N 2 4 T  steel decreases as the speed increases  

a b o ve  130 m /m in  T h e  av e rage  tangen tia l fo rce  F z, w h ic h  is  the m a in  

co m p o n e n t o f  the cu ttin g  fo rce s is  abo u t 4 5 0  N  at a  feed  o f  0  25 m m /re v  and  

depth o f  cu t o f  0  25 m m

—  W it h  the in crease  o f  feed rate o r  depth o f  cut, cu ttin g  fo rce s  in crease  a lm o st  

l in e a r ly  A t  1 0  m m  depth o f  cut, F z  is  abo u t 800  N  w h ile  at 1 5 m m  it is  

1200 N  w h en  feed rate is  0  25 m m /re v  F z  ch an ge d  fro m  800  N  to 1300 N  

w h en  the feed is  ch an ge d  fo rm  0  25 to 0  5 0  m m /re v

—  A t  a  depth o f  cu t lo w e r  than 0  25 m m , the ra d ia l co m p o n e n t o f  the cu tting  

fo rce  F y  is  h igh e r  than F x  H o w e v e r  w h en  the depth o f  cut exceeds 0  5 0  m m ,  

F x  b e co m e s h igh e r
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D e s i g n  o f  e x p e r i m e n t

—  T h e  first-o rd e r fo rce  m o d e l equation  has sh o w n  that a  c h a n g e  in  the depth  

o f  cut has the m a x im u m  affect on  the cu ttin g  fo rce  fo llo w e d  b y  the e ffect o f  

feed and  speed H o w e v e r ,  in c re a s in g  the cu ttin g  speed reduces the fo rce

—  F r o m  the first -o rd e r fo rce  equation , the d iffe ren t v a lu e s  o f  exponen ts are, nj 

=  -0  1673, n2 =  0  6124, an d  n 3 =  0  9085

—  T h e  seco n d -o rd e r and  the in te ractive  e ffects o f  the m a in  cu ttin g  va r ia b le s  on  

the cu ttin g  fo rce  are s ig n if ic a n t

li) T o o l  life

O n e - v a r i a b l e - a t - a - t i m e

—  T h e  cu ttin g  speed seem s to h ave  a  p ro n o u n ce d  e ffect on  the too l l ife  T h e  

p ro g re ss io n  o f  to o l f la n k  w e ar is  ex trem e ly  faster w h en  the speed exceeds 

100 m /m in

—  T h e  d iffe ren t v a lu e s  o f  too l life  exp on en ts ca lcu la ted  g ra p h ic a lly  fro m  the 

extended T a y lo r ’s too l life  equation  are, speed exp on en t n t =  -0  5, feed  

exp on en t n2 =  -2 25, and  depth o f  cut exp on en t n 3 =  -3 9 T o o l  w e a r is  

in flu e n ce d  m o st ly  b y  the c h an ge  in  cu ttin g  speed fo llo w e d  b y  feed and  depth  

o f  cut

D e s i g n  o f  e x p e r i m e n t

—  F r o m  the a n a ly s is  o f  the exp erim enta l to o l life  data  set o f  the d e s ig n  o f  

experim ents, the cu ttin g  speed is  the m a in  in f lu e n c in g  fac to r on  the too l life  

fo llo w e d  b y  the e ffect o f  feed an d  depth o f  cu t T h e  v a r io u s  exponen ts  

ca lcu lated  are, -  -0  558, n2 =  -2  05, n 3 =  -5 2

—  T h e  se con d -o rd e r and  in te ractive  e ffects o f  the m am  cu ttin g  va r ia b le s  on  too l 

l i fe  is  not s ign if ic a n t
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ui) Surface roughness

D e s i g n  o f  e x p e r i m e n t

—  T h e  e ffect o f  feed on  surface  ro u gh n e ss  is  m u ch  m o re  p ro n o u n ce d  than the 

effects o f  speed o r  depth o f  cu t A s  the cu ttin g  speed increases, the surface  

f in ish  im p ro v e s

—  F r o m  the first -o rd e r su rface  ro u gh n e ss  equation , the d iffe ren t exponen ts  

ca lcu la ted  are, speed nj =  -0  212, n 2 =  1 28 61 , n 3 =  0  1583

—  In  ad d ition  to the e ffect o f  the m a in  cu ttin g  va r iab le s, the se con d -o rd e r  

effects are  a lso  s ign if ic a n t  on  the su rface  ro u g h n e ss

—  W ith in  the speed ra n ge  o f  3 6  - 150 m /m in ,  feed ra n ge  o f  0  15 - 0  25  

m m /re v  and  depth o f  cut up  to 1 5 m m , a  re a so n a b ly  g o o d  su rface  fin ish  (2 - 

4 fim) is  atta inab le

Cutting conditions
—  T h e  h ig h  hard n e ss o f  E N 2 4 T  steel (2 90  B H N )  lim it s  the cu ttin g  speed  

b e yo n d  150 m /m in  T h e  re co m m e n d e d  speed ra n ge  sh o u ld  be  w ith in  60  - 

130 m /m in , feed ra n g e  0  15 - 0  25  m m /re v , and  depth o f  cu t c o u ld  be  as 

h igh  as 1 5 m m

10.1,2 Machinability of mconel 718

0 Cutting forces

O n e - v a r i a b l e - a t - a - t i m e

—  T h e  m a gn itu d e  o f  the feed fo rce  F x  is  c o m p a ra b le  w ith  the tangen tia l fo rce  

F z  I t  is  abo u t o n e  h a lf  o f  the tangen tia l fo rce

—  T h e  m agn itu d e  o f  the resu ltant cu ttin g  fo rce  is  a lm o st  d o u b le d  a s the depth  

o f  cut is  dou b le d  W h e n  the depth o f  cu t is  increased  fro m  0  5 to 1 0  m m ,  

resu ltant fo rce  F  increases fro m  5 0 0  to 1000 N  Id e n tic a l trend is  o b se rve d  

even  w hen  the feed rate is  dou b led

—  In  gen e ra l, the cu ttin g  fo rce s  stab ilize s a s  the cu ttin g  speed is  increased  T h e  

cu ttin g  fo rce  increases lin e a r ly  w ith  the feed and  depth o f  cut
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D e s i g n  o f  e x p e r i m e n t

—  T h e  depth o f  cu t h a s the m o st s ign if ic a n t  e ffect o n  the cu ttin g  fo rce  fo llo w e d  

b y  the feed and  cu ttin g  speed W ith  the increase  o f  feed  o r  depth o f  cut, 

cu ttin g  fo rce s  increase

—  F r o m  the first -o rd e r fo rce  equation , the d iffe ren t v a lu e s  o f  exponen ts are, n 1 

=  -0  1294, n2 =  0  801, and  n3 =  0  9 4 8

—  T h e  se con d -o rd e r and  the in teractive  e ffects o f  the m a in  cu ttin g  va r ia b le s  on

the cu ttin g  fo rce  are  s ig n if ic a n t

it) T o o l  life

O n e - v a r i a b l e - a t - a - t i m e

—  W h e n  the cu ttin g  speed is  m o re  than 4 0  m /m in ,  to o l life  is  ve ry  lo w  (about  

2 m inute s) and  th is  is  true fo r  bo th  coated  and  uncoated  ca rb id e  in serts

—  T h e  p e r fo rm an ce  o f  uncoated  ca rb id e  to o ls  ap p ears to be  better than that o f  

the coated  ca rb id e  to o ls

—  T h e  use  o f  coated ca rb id e  to o l is  ju st if ie d  w h en  the depth o f  cu t is  h igh e r  

than 1 0  m m

—  In  gen era l, the too l life  o f  uncoated  ca rb id e  is  h ig h e r  than that o f  the coated

ca rb id e  to o ls

—  T h e  g ra p h ic a l ca lcu la t io n  o f  to o l l ife  exponen ts sh o w  that fo r  uncoated  

ca rb id e  too ls, n t =  -0  48, n 2 =  -0  78, n 3 =  -0  73  w h ile  fo r  the coated  

carb id e  too ls, n x =  -0  50, n2 -  -0  95, n3 =  -2  75

D e s i g n  o f  e x p e r i m e n t

—  T h e  e ffect o f  depth o f  cut on  to o l life  o f  the coated ca rb id e  seem s to be  ve ry  

in s ig n if ic a n t  w h ile  the e ffect o f  feed is  m o re  p ro n o u n ce d  than the e ffect o f  

speed

—  T h e  too l l ife  exp on en ts ca lcu lated  fo rm  the f irst -o rd e r equ atio n s fo r  uncoated  

and  coated to o ls  are, nj =  -0  48, n 2 =  -0  59, n3 =  -0  9 9 7  and  =  -0  55, 

n 2 =  -0  53, n 3 =  -1 545  re spective ly
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m) Surface roughness

D e s i g n  o f  e x p e r i m e n t

—  S u r fa c e  ro u gh n e ss  p rod u ce d  b y  the ca rb id e  to o ls  is  m o s t ly  a ffected  b y  the  

c h an ge  m  feed T h e  increase  in  depth o f  cu t in creases su rface  ro u gh n e ss  

w h en  uncoated  to o ls  are  u sed  bu t in  the case  o f  coated  too ls, in crease  in  

depth o f  cu t im p ro v e s  the su rface  f in ish

—  F r o m  the fir s t -o rd e r  su rface  ro u gh n e ss  equation , the d iffe ren t exponen ts fo r  

uncoated  an d  coated  to o ls  ca lcu la ted  are, speed nj =  -0  193, n2 =  1 3596,  

n3 =  0  0 7 04  and  speed n, =  -0  091, n2 =  1 25 98 , n 3 =  -0  2 0 4  re spective ly

—  W ith in  the speed ra n ge  o f  10 - 30  m /m in  and  feed up  to 0  2 0  m m /re v , a 

re a so n a b ly  g o o d  surface  f in ish  ( 2 - 4  ¿¿m ) is  a tta inab le

Cutting conditions
—  T h e  re co m m e n d e d  cu ttin g  speed fo r  m a c h in in g  in co n e l w ith  the ca rb id e  to o ls  

is  15 - 25  m /m m , feed ra n g e  sh o u ld  be  0  15 - 0  2 0  m m /re v , and  depth o f  

cut co u ld  be  a s h ig h  a s  1 5 m m

M o d e l  b u i ld in g

—  R e sp o n se  su rface  m e th o d o lo g y  can  be  used su c c e ss fu lly  and  e ffic ie n tly  to  

d e ve lo p  m ath em atica l m o d e ls  fo r  m a c h in in g  re sp o n se s (cu ttin g  force, too l 

life , and  su rface  ro u gh n e ss)  in  tu rn in g  operation  o f  an y  m ateria l and  too l 

c o m b in a t io n s  T h is  p ro v id e s  a  la rge  a m o u n t o f  in fo rm a tio n  w ith  a  sm a ll  

am o u n t o f  exp erim entation s

—  R e sp o n se  con to u rs w o u ld  be  ve ry  u se fu l in  o p t im iz in g  the cu ttin g  v a r ia b le s  

w ith  respect to d iffe ren t re sponse s T h e se  m a y  be e ither to in crease  the too l 

l i fe  o r  to im p ro v e  the su rface  fin ish  o r  to m in im iz e  the p o w e r requ irem ent  

fo r  m a x im u m  m etal re m o v a l rate

—  T h e  d iffe ren t re g re ss io n  m o d e l b u ild in g  techn iques can  a lso  be  used  fo r  

d e v e lo p in g  m ath em atica l m o d e ls  T h e se  techn iques are  b a c k w a rd  e lim in a tio n ,  

step w ise  re g re ss io n , fo rw a rd  se lection, and  a ll p o s s ib le  subset re g re ss io n  

techn ique
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— Out of the four model building techniques, it is recommended that backward 

elimination and all possible subset regression techniques would be most 

suitable in model building for the machinability data base systems

— The sequential estimation technique was found to be a better alternative to 

regression techniques as a model building tool The advantages of this 

technique is that the computation is efficient, matrix solution is not required, 

and data storage requirements are small It provides the same information as 

the regression analysis However, this technique is limited to the 

development of first-order model only The usefulness of this technique is 

yet to be verified for a second-order model Preliminary investigation has 

shown a variation of the second-order model co-efficients from the multiple 

linear regression techniques

10.1.3 Machinability data base systems

— The computenzed machinability data base system developed in this project 

covers only EN24T steel and mconel 718 It provides the optimum cutting 

conditions for a given tool life However, it could be extended to incorporate 

any combinations of any other work material and tools in future

— For developing the machinability data base, the use o f statistical regression 

packages can be employed to build adequate models Once a model is 

developed, its co-efficients can be stored and used to relate the 

corresponding response (tool life, surface roughness, cutting force) with the 

cutting variables These model equations will provide the recommended 

cutting conditions which relate the actual machining environments
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10 2 Recommendations

— With a view to developing a comprehensive computenzed machinability data 

base systems using mathematical models, a large quantity of expenmental 

data are required These are necessary to validate the usefulness o f a model

— It would be helpful to identify a model for a specific hardness group o f

materials and generalize it for that hardness range

— Machinability assessments of EN24T steel and inconel 718 are first steps

towards the development of the data base The use o f different tool materials 

and tool geometries may be useful to compare the variations in the surface 

roughness model and include it in the mathematical models

— Different cutting fluids may be used to machine the same materials under the 

same cutting conditions and compare the different responses with those under 

dry conditions

— The use of various ceramic tools for machining inconel 718 may be useful

These will help compare the response models and may be mcoiporated m 

the mathematical model type data base system
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APPENDIX A

Residual mean square s2 (RMSp): The estimated error of variance for the p- 

vanable model is given by

RSS_RMSn = ------ 1
'  n-p

where RSSP =  error (residual) sum of square of the /^-variable model 

n =  total number of data points 

p  =  number of parameters in the model

R  square statistic: The sample squared multiple correlation R2 is a natural candidate 

for deciding which model is the best and is given by

RSSn
R2 = 1 ------ 1

TSS

R2 is the square of the correlation between y and y and 0 <  R2 <  1

where TSS = (y, - y):
1=1

is the total sum of squares for the response y

Adjusted R  square: This has the following mathematical form

A d jR 2 = 1 -  ( 1 - Ä 2) (— )
n-p

Mallows C p. The statistic is defined as

RSSn
Cp = — T -  (n ~2P)s

Cp is closely related to adjusted R2 and is also related to R:
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Let A be p x m  and B be m xp  matrices Let Im be the m x m  identity matrix An 

identity and some rearrangements of it are as follows

APPENDIX B

Matrix Inversion Lemma

-A(Im + BA) = -  (/ , *AB)A (B l)

lp = (Ip *  AB) - (/, + AB)A(Im *  BA) 'B  0 » )

Premultiplying (B2) by (Ip +  AB ) 1 gives

(Ip + AB) ' = Ip - A(Im + BA) lB (»3)

Let P be defined by

P 3 [ x V 1*  + V$Y{ = I V V 1*  + (B4)

Using Equation (B3) for (B4) and substituting A =  V^xT^ 1 and B =  x yields

- VqXt(xVqXt + tyY'xV  ̂ (B5)

This equation is called the Matrix Inversion Lemma Equation (4 15) is found from 

Equation (B5) by letting



Equation (B l) can be written as

Substituting the values for A and B results in

PxTty~l = VpXT(xVpXT + ilr) “1 (B7)

Equation (4 16) is obtained from equation (B7)

(Ip + ABYXA + A(Im + B A ) 1 (B6)
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APPENDIX C

Table 7.3 95% Confidence interval for block 1, Tool life (y =  1.6941 - 1.1194x, - 0.247x2 - 0.1016x3)

Tnal
No

T y 9 A

T y A

T

Lower Upper Lower Upper

1 24 6 3 2027 3 1621 23 62 2 5366 3 7876 12 64 44 15
4 1 6 0 47 0 4293 1 54 -0 1962 1 0548 0  82 2 87
6 2 14 0 7608 0 7201 2 05 0 0946 1 3456 1 1 0 3 84
7 12 25 2 5055 2 4649 11 76 1 8394 3 0904 6  29 21 98
9 5 22 1 6525 1 6941 5 44 1 4274 1 9608 4 17 7 10

1 0 4 82 1 5728 1 6941 5 44 1 4274 1 9608 4 17 7 10

Table 7.4 95% confidence interval for block 2, Tool life (y =  1.575 - 0.9853x, - 0 .2 1 2 x2 - 0.0544x3)

Tnal
No

T y A

T y A

T

Lower Upper Lower Upper

2 2 30 0 8329 0 8561 2 35 0 5181 1 1741 1 6 8 3 23
3 10 48 2 3795 2 4027 11 05 2 0647 2 7407 7 8 8 15 50
5 14 8 2 6946 2 7179 15 15 2  3799 3 0559 1 0  80 21 24
8 1 35 0 3001 0 3233 1 38 -0 0147 0 6613 0 98 1 94

11 5 00 1 6094 1 5750 4 83 1 4309 1 7191 4 18 5 58
1 2 5 12 1 6332 1 5750 4 83 1 4309 1 7191 4 18 5 58
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Table 7.5 Analysis of variance for twelve tests (Tool life)

Source Sum of Squares Degrees o f Freedom Mean Square Fc 1 Fob

Zero-order term 32 059083 1 32 0591 9071 6
First-order term 9 32881 3 3 109603 879 9
Block 0 04255 2 0 02128 6 02 9 01
Lack of fit 0 069106 5 0 01382 3 91
Pure error 0 003534 1 0 003534
Total 41 5032

Table 7.6 95% confidence interval for the combined block 1 & 2 (Tool life) 
(y =  1.6345 - 1.0523xj - 0.2295x2 - O.O7 8 X3)

Tnal No T y Ay A

T Ay A

T

Lower Upper Lower Upper

1 24 6 3 2027 2 9943 19 97 2 807 3 1816 16 56 24 08
2 2 30 0 8329 0 8897 2 43 0 7024 1 077 2 02 2 93
3 10 8 2 3795 2 5353 12 62 2 348 2 7226 10 46 15 22
4 1 60 0 47 0 4307 1 54 0 2434 0 618 1 27 1 85
5 14 8 2 6946 2 8383 17 09 2 651 3 0256 14 17 20 61
6 2 14 0 7608 0 7337 2 08 0 5464 0 921 1 73 251
7 12 25 2 5055 2 3793 10 8 2 192 2 5666 8 95 13 02
8 1 35 0 3001 0 2747 1 32 0 0874 0 462 1 09 1 59
9 5 22 1 6525 1 6345 5 13 1 5546 1 7144 4 73 5 55

10 4 82 1 5728 1 6345 5 13 1 5546 1 7144 4 73 5 55
11 5 00 1 6094 1 6345 5 13 1 5546 1 7144 4 73 5 55
12 5 12 1 6332 1 6345 5 13 1 5546 1 7144 4 73 5 55
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Table 7.8 95% confidence interval for the second order tool life model
(y =  1.546 - 1.063X! - 0.177x2 - 0.113x3 - 0.047x,2 +  0.012x22 +  0.062x32 

+  0.024x!x2 +  0.018x!x3 -I- 0.067x2x3>

T n a l N o T y *

A
T ? f

L ow er U p p er L ow er U pper

1 2 4  6 3 2 0 2 7 3  0 3 3 9 2 0  7 8 2  9 5 7 6 3 2 7 9 0 1 9  2 5 2 6  5 5

2 2  3 0 0  8 3 2 9 0  8 2 4 5 2 2 8 0  5 8 7 8 1 0 6 9 6 1 8 0 2  9 1

3 10 8 2  3 7 9 5 2  4 9 8 1 12 16 2  1 3 4 4 2  7 4 3 2 8 4 5 15 5 4

4 1 6 0 0  4 7 0  3 8 3 1 1 4 7 0  2 2 4 9 0 6 2 8 2 1 2 5 1 8 7

5 14 8 2  6 9 4 6 2  6 3 9 3 1 4  0 0 2  4 4 9 5 2  8 8 4 4 11 5 8 17 8 9

6 2  14 0  7 6 0 8 0 5 0 0 3 1 6 5 0  5 1 5 7 0  7 4 5 4 1 6 7 2 11
7 12  2 5 2  5 0 5 5 2  3 7 0 5 1 0  7 0 2  2 6 0 4 2 6 1 5 6 9  5 9 13 68
8 1 3 5 0  3 0 0 1 0  3 2 6 9 1 3 9 0 0 8 1 8 0  5 7 2 0 1 0 9 1 7 7

9 5  2 2 1 6 5 2 5 1 5 4 5 9 4  6 9 1 4 0 6 7 1 6 8 5 1 4  0 8 5  3 9

10 4  8 2 1 5 7 2 8 1 5 4 5 9 4  6 9 1 4 0 6 7 1 6 8 5 1 4  0 8 5  3 9

11 5  0 0 1 6 0 9 4 1 5 4 5 9 4  6 9 1 4 0 6 7 1 6 8 5 1 4  0 8 5  3 9

12 5  12 1 6 3 3 2 1 5 4 5 9 4  6 9 1 4 0 6 7 1 6 8 5 1 4  0 8 5  3 9

13 18 0 2  8 9 0 4 2  9 5 5 5 19  2 1 2  7 7 9 4 3  1 3 1 6 1 6  11 2 2  9 1

14 0 86 -0 1 5 0 8 -0 0 5 2 5 0  9 5 -0 2 2 8 6 0  1 2 3 6 0  9 5 1 13

15 5  0 1 6 0 9 4 1 8 1 9 8 6 17 1 6 4 3 7 1 9 9 5 9 6 17 7  3 6

16 3 6 1 2 8 0 9 1 3 1 8 4 3  7 4 1 1 4 2 3 1 4 9 4 5 3  13 4 4 6

17 5  8 1 7 5 7 8 1 8 2 9 1 6 2 3 1 6 5 3 0 2 0 0 5 2 5  2 2 7  4 3

18 3 7 5 1 3 2 1 7 1 5 1 0 3 4  5 3 1 3 3 4 2 1 6 8 6 4 3  8 0 5  4 0

19 1 8  35 2  9 0 9 6 2  9 5 5 5 19  2 1 2  7 7 9 4 3 1 3 1 6 16  11 2 2  9 1

20 0 88 -0 1 2 7 8 -0 0 5 2 5 0  9 5 -0 2 2 8 6 0  1 2 3 6 0  9 5 1 13

21 5  7 1 7 4 0 5 1 8 1 9 8 6 17 1 6 4 3 7 1 9 9 5 9 6 17 7  3 6

22 3 9 1 3 6 1 0 1 3 1 8 4 3  7 4 1 1 4 2 3 1 4 9 4 5 3  13 4 4 6

2 3 6 4 1 8 5 6 3 1 8 2 9 1 6 2 3 1 6 5 3 0 2  0 0 5 2 5  2 2 7  4 3

2 4 4  3 1 4 5 8 6 1 5 1 0 3 4  5 3 1 3 3 4 2 1 6 8 6 4 3 8 0 5  4 0



Table 7.9 Analysis of variance for twelve tests (Surface roughness)

Source Sum of
squares

Degrees o f 
freedom

Mean
square

Fed Fub

Zero-order term 12 3538 1
First-order term 3 08072 3 1 02678
Lack of fit 0 16599 5 0 033198 34 5 9 01
Pure error 0 00289 3 0 000963
Total 15 6034

Table 7.10 Analysis of variance for twenty four tests (Surface roughness)

Source Sum of
squares

Degrees o f 
freedom

Mean
square

F c a l F (ab

Zero-order term 26 3511222 1 26 3511 4765 1
First-order terms 6 05672891 3 2 01891 365 35
2nd-order term 0 15344598 3 0 05115 9 26 4 07
Interaction terms 0 04099516 3 0 01367 2 47
Block 0 03034388 3 0 01011 1 83
Lack of fit 0 02122935 3 0 00708 1 28
Pure error 0 04420668 8 0 00553
Total 32 6663
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Table 7.11 Second order surface roughness model and 95% confidence interval
for twenty four tests

Trial No K y $ A

K

A

K
Lower Upper Lower Upper

1 1 8 0  5878 0 5 72 4 0  4545 0 6903 1 773 1 575 1 9 94

2 1 233 0  2095 0  289 0  1711 0  4069 1 335 1 187 1 502

3 5 3 1 6677 1 686 1 5681 1 8039 5 398 4  798 6  073

4 5 0 67 1 6227 1 6686 1 5507 1 7865 5 305 4 715 5 9 68

^  5 2 133 0  7575 0 7784 0  6605 0 8963 2 178 1 936 2 45

6 1 45 0  3716 0  4198 0  3019 0  5377 1 522 1 352 1 712

7 6 233 1 8299 1 8168 1 6989 1 9347 6  152 5 468 6  922

8 5 167 1 6423 1 7242 1 6063 1 8421 5 6 08 4  9 84 6  309

9 2 4 33 0  8891 0  9049 0  838 0 9718 2 4 72 2 312 2 643

10 2 3 0  8329 0  9049 0  838 0  9718 2 4 72 2 312 2 643

11 2 367 0  8616 0  9049 0  838 0  9718 2 472 2 312 2 643

12 2 4 67 0  903 0 9049 0  838 0  9718 2 4 72 2 312 2 643

13 3 633 1 2901 1 242 1 1573 1 3267 3 463 3 183 3 768

14 2 7 67 1 0178 0  9762 0 8915 1 0609 2 6 5 4 2 4 39 2 889

15 1 153 0  1424 0 1334 0  0487 0  2181 1 143 1 05 1 2 44

16 6 333 1 8458 1 8432 1 7585 1 9279 6  317 5 804 6  875

17 2 533 0  9 29 4 0  9538 0  8691 1 0385 2 5 95 2 385 2 825

18 3 2 0 1 1632 1 1388 1 0541 1 2235 3 123 2 869 3 399

19 3 233 1 1734 1 242 1 1573 1 3267 3 463 3 183 3 768

20 2 967 1 0 87 6 0  9762 0  8915 1 0609 2 6 5 4 2 439 2 889

21 1 21 0  1906 0 1334 0 0487 0 2 1 8 1 1 143 1 05 1 2 44

22 6 733 1 9 07 0 1 8432 1 7585 1 9279 6  317 5 804 6  875

23 2 833 1 0413 0  9538 0  8691 1 0385 2 595 2 385 2 825

2 4 3 2 67 1 1839 1 1388 1 0541 1 2235 3 123 2 869 3 399



Table 7.15 Analysis of variance for twelve tests on inconel 
(Tool life, uncoated carbide)

Source Sum of 
Squares

Degrees of 
Freedom

Mean
Square

Fed Ftob

0-order term 68 4400803 1 68 4400 5165
lst-order term 14 9969056 3 4 99898 377 2
Lack o f fit 0 2461969 5 0 04839 3 65 9 01
Pure error 0 0397537 3 0 01325
Total 83 7222167

-C7-
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Table 8.1 Statistical parameters for tool life

EN 24T  Steel Coefficients and t-values Selection criteria

b0 bi b2 b3 bn b ^ b33 bi2 bi3 b23 R2 Adj

R2

s

Backward 4  78  

( 3 1 5 )

-0 357  

(-5 5)

-0 215  

(-32 7)

0  433  

(3 7)

98 24 97 98 0  13

Forward 4  78

( 3 1 5 )

-0 357  

(-5 5)

-0 215  

(-32 7)

0  433

(3 7)

98  24 97 98 0  13

Stepwise 4  78  

( 3 1 5 )

-0 357  

(5 5)

-0 215  

(-32 7)

0  433  

(3 7)

98  24 97 98 0  13

All Possible 4  78  

( 3 1 5 )

-0 357  

(-5 5)

-0 215  

(-32 7)

0  433  

(3 7)

98  24 97 98 0  13

1 st order 8 489

(30  37)

-1 798  

(-29 18)

-0 357  

(-4 87)

-0 278  

(-3 1)

97  79 97 46 0  146

2nd order 5 535

(2 32)

-0 4 26  

(-0 42)

-0 5 55  

(-0 64)

0  086  

(0 09)

-0 148 

(-1 26)

0  0 1 6  

(0 096)

0  358  

(1 43)

0 081  

(0 47)

0  073  

(0 35)

0  33

(1 3)

98  53 97 58 0  142
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Table 8.2 Statistical parameters for surface roughness

EN 24T  Steel Coefficients and t-values Selection criteria

b0 bi b2 b3 b„ t>22 b33 b12 bi3 b23 R2 Adj

R2

s

Backward 7 791  

(7 5)

-2 4 0

(-5 4)

0 914

(2 4)

0  43  

(5 7)

0  24

(3 3)

0  4 6 6

(4 2)

0 2 34  

(3 1)

99  0 98  57 0 063

Forward 2 742  

(34  1)

0 676  

(4 6)

0 121

(3 7)

-0 114 

(’2 4)

96  16 9 5  58 0  11

Stepwise 2 742  

(34  1)

0 676  

(4 6)

0  121

(3 7)

-0 114

(-2 4)

9 6  16 95  58 0 11

All Possible 7 791 

(7 5)

-2 40

(-5 4)

0 914

(2 4)

0  43

(5 7)

0  2 4

(3 3)

0  4 6 6  

(4 2)

0  2 34

(3 1)

99  0 9 8  57 0  063

1st order 3 452  

(15 41)

-0 159

(-3 22)

1 213 

(20  67)

0  161

(2 24)

95  68 9 5  03 0  117

2nd order 7 848

(7 32)

-2 42

(-5 3)

0  887

(2 27)

0  6 27  

(1 45)

0  307  

(5 8)

0  2 4

(3 2)

0  4 6 6

(4 2)

0 2 34  

(2 99)

-0 079  

(-0 83)

-0 0 94

(-0 83)

99  09 98  51 0  0 6 4
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Table 8.3 Statistical parameters for cutting force

EN 24T  Steel Coefficients and t-values Selection criteria

b0 bi b2 b3 b„ b22 b33 bn bi3 b23 R2 Adj

R2

s

Backward 10 2 88

(22 9)

-0 962  

H  6)

0  834

(8 3)

0  6 85  

(8 6)

0  0 92

(3 7)

0  0 99

(2 8)

-0 166  

(-3 0 )

99  58 99  43 0 031

Forward 7 719  

(203)

0  6 8 7  

(6 8)

0  133 

(21 4)

-0 165 

(-2 4)

99  1 98  97 0  042

Stepwise 7 719  

(203)

-0 962  

(-4 6)

0  8 34

(8 3)

0  6 87  

(6 8)

0  133 

( 2 1 4 )

-0 165  

(-2 4)

99  1 98  97 0  0 42

All Possible 10 2 88

(22 9)

0  6 8 5  

(8 6)

0  092  

(3 7)

0  0 99

(2 8)

-0 166

(-3 0)

99  58 99  43 0 031

1st order 8 591  

(96 81)

-0 193

(-9 86)

0 603  

(25 93)

0  9 1 7  

(32 24)

9 8  91 98  74 0  0 4 6

2nd order 9 995  

(19 1)

-0 90

(-4 0)

0  585  

(3 08)

0  7 65  

(3 6 3 )

0  0 9 4

(3 67)

0  103 

(2 84)

0  02  

(0 36)

0  0 62  

(1 63)

-0 0 16  

(-0 36)

-0 166  

(-3 0)

99  65 9 9  43 0  031
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Table 8.7 Statistical parameters for tool life (coated carbide)

Inconel 718 Coefficients and t-values Selection criteria

b,, b, b2 b3 b„ t>22 b33 bn bn t>23 R2 Adj

R2

s

Backward 3 602

(19 2)

-0 75  

(-8 31)

-1 0 64  

(-3 78)

-1 0 19

(-3 72)

-1 7 07  

(-5 34)

96  48 95 74 0  196

Forward 3 511  

(18  3)

-0 6 92  

(-7 5)

-0 901  

(-3 12)

-1 523  

(-4 64)

-0 178

(-3 4)

96  19 95  39 0  204

Stepwise 3 511  

(18  3)

-0 6 92  

(-7 5)

-0 901 

(-3 12)

-1 523  

(-4 64)

-0 178 

(-3 4)

96  19 95  39 0  2 04

All Possible 3 6 02  

(19  2 )

-0 75  

(-8 31)

-1 0 64  

(-3 78)

-1 019

(-3 72)

-1 7 07  

(-5 34)

96  48 95  7 4 0  196

1st order 4  4 6 5

(7 27)

-1 5 5 6  

(-11 6)

-1 419

(-4 93)

-0 5 0

(-1 95)

89 0 6 87 42 0  337

2nd order 1 753

(0 5)

0  47  

(0 38)

-1 228  

(-0 45)

1 4 85

(0 79)

-0 772  

(-4 82)

-1 267  

(-1 83)

-0 931  

(-1 48)

-1 5 43  

(-3 06)

-0 352  

('0 9)

0  331  

(0 36)

96  77 94  7 0 0  2 19
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Table 8.8 Statistical parameters for surface roughness (coated carbide)

Inconel 718 Coefficients and t-values Selection criteria

b0 bi b2 b3 bn b22 b33 bi2 bi3 b23 R2 Adj

R2

s

Backward 2 885  

(12 25)

-0 16

(-2 3)

-0 378  

(-8 5)

78 84 76 83 0 173

Forward 2 885  

(12 25)

-0 16 

(-2 3)

-0 378  

(-8 5)

78 84 76  83 0  173

Stepwise 2 885  

(12 25)

-0 16 

(-2 3)

-0 378  

(-8 5)

78 84 76  83 0  173

All Possible 2 885  

(12 25)

-0 16

(-2 3)

-0 378  

(-8 5)

78 84 76  83 0  173

1st order 3 908  

( 1 1 5 3 )

-0 16

(-2 17)

1 239  

(7 82)

-0 121

(-0 86)

76  89 73 4 2 0  186

2nd order 3 723  

(1 29)

-1 37  

(-1 4)

-1 156 

(-0 53)

-0 201 

(-0 13)

0  07  

(0 55)

-1 116

(-2 01)

-0 52  

(-1 03)

-0 469  

(-1 16)

0 196 

(0 63)

0  153 

(0 21)

85 59 76  33 0  175
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P A R A M E T E R  (M  =  1, N  =  4 ,  N N  =  4 ,  M M  =  2 4 )

D O U B L E  PR E C ISIO N  X (M M ,N ), Y (M M ), P (N ,N N ), B (N ), E l ,  A (M ,N N ),

+  S U M , S U M 1, D E L , A T (N N ,M ), A K (N ), P P (N ,N N ), B B (N )

O P E N  (U N IT  =  9 , ST A T U S =  ’O L D ’, FILE =  ’T O O L E 2 D A T ’)

O P E N  (U N IT  =  8, ST A T U S =  ’U N K N O W N ’, FILE =  ’T O O L 2 O U T ’)

O P E N  (U N IT  =  3 , ST A T U S =  ’U N K N O W N ’, FILE =  ’T O O L 3 O U T ’)

R E A D  ( 9 , * )  ((X (I,J ), J =  1 ,4 ) ,  I =  1 ,M M )

R E A D  ( 9 , * )  (Y (I), I =  1,M M )

R E A D  ( 9 , * )  ((P(J,JJ), JJ =  1 ,4 ) , J =  1 ,4 )

R E A D  ( 9 , * )  (B (I), I =  1 ,4 )

*** **  * * * * * * * * * * * *  * * ***  * * * * * *  **  ***  * * * * * *  * * * * * * * * *  * * * * * **  * * * *  * ** *

C C A L C U L A T IO N  OF E l  

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

E l l  =  0  

D O  1 II = 1 ,  M M  

D O  2  I =  1, 4

B B (I) =  B (I)

2  C O N T IN U E  

D O  3 IJ =  1 ,4  

D O  3 KJ =  1 ,4

PP flJ, KJ) =  P(IJ, KJ)

3 C O N T IN U E

E l l  =  0  

D O  4 1 =  1 ,4

E l l  =  E l l  +  X (II,I)*B B (I)

E l =  Y (II) - E l l

4  C O N T IN U E  

W R IT E (3 ,*) Y (II)

W R IT E (3 ,*) ’E l =  E l

-E2-



* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C C A L C U L A T IO N  OF A (I,J) A N D  D E L  

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

D O  5  1 = 1 , 1  

D O  5  J =  1, N N  

S U M  =  0  

D O  6 K =  1, N  

S U M  =  SU M  +  X (II,K )*P P (K ,J )

6 C O N T IN U E

A (1 ,J ) =  SU M  

5  C O N T IN U E

W R ITE ( * , * )  (A (1 ,J ), J =  1 ,4 )

S U M 1 =  0  

D O  7  J =  1, 4  

W R ITE ( 3 , * )  A (1 ,J ), X (II,J)

A T (J ,1) =  A (1,J)

SU M 1 =  S U M 1 +  X (II ,J )*A T (J ,1)

7  C O N T IN U E

D E L  = 1 0  +  S U M 1 
C D E L  =  0 0 2 1 2 5 7 6 4  +  SU M 1

W R ITE ( 3 , * )  ’D E L  =  % D E L

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C C A L C U L A T IO N  OF B A N D  P 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

D O  8 1 =  1 , 4

A K (I) =  A T (I,1)/D E L  

B (I) =  B B (I) +  A K (I)*E 1  

D O  9 J =  1 ,4

P (I,J) =  PP(I,J) - A K (I)*A T (J ,1 )

IF (I N E  J) T H E N  

P (J,I) =  P(I,J)

E N D IF  

9  C O N T IN U E

8 C O N T IN U E

W R ITE ( * , * )  (A K (I), 1 - 1 , 4 )

W R IT E  ( * , * )  ’E l =  ’,E 1 
W R IT E  ( 8 ,1 3 )

13 F O R M A T  (//9 X , ’B -  ’)

-E3-



W R IT E  ( 8 ,1 1 )  (B (I), I =  1 ,4 )

11 F O R M A T  (5 X , F 1 0  5 )

W R ITE ( 8 ,1 4 )

1 4  F O R M A T  (/5 X , ’P (u v ) =  ’)

W R ITE ( 8 ,1 2 )  ( (P (I J ) ,  J =  1 ,4 ) ,  I =  1 ,4 )

12  F O R M A T  (4 (5 x ,  F 1 2  4 ))

1 C O N T IN U E  

STO P  

E N D

-E4-
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C O M M O N  /C D A T A / T  

C O M M O N  /ID A T A / K ,L ,K K ,M ,M M

W R ITE * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ’ 

W R ITE ( * ,  * )  ’ W E L C O M E  T O M D B S ’

W R ITE ( * , * ) ’* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ’ 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

W R ITE ( * , * )  ’ >  >  O PE R A T IO N  M O D U L E  <  <  ’

W R IT E  ( * , * )  ’( I )  T U R N IN G ’

W R ITE ( * , * )  ’(2 )  M IL L IN G ’

W R ITE ( * , * )  ’P L E A SE  T Y P E  ( l ) / ( 2 )  A N D  PR ESS E N T E R ’

R E A D  ( * , * )  K

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

W R IT E  ( * , * )  ’ >  >  M A T E R IA L  SE LEC TIO N  <  <  ’

W R ITE ( * , * )  ’^ S E L E C T  Y O U R  M A T E R I A L ^ ’

W R ITE (*> *) ’ 1 IN C O N E L -71 8 /2  E N  2 4 T ’

W R ITE ( * , * )  ’P L E A SE  T Y P E  (1 )  / (2 )  A N D  PR ESS E N T E R ’

R E A D  ( * , * )  KK  

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

W R ITE ( * , * )  ’P L E A SE  T Y P E  M A T E R IA L  H A R D N E S S  IN  B H N  ’ 

R E A D  ( * , * )  L

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

W R ITE ( * , * )  ’ >  >  T O O L  SE LE C TIO N  <  < ’

W R ITE ( * , * )  ’^ S E L E C T  Y O U R  C U T T IN G  TOOL>™ ’

W R ITE ( * , * )  ’1 U N C O A T E D  C A R B ID E  / 2  C O A T E D  C A R B ID E ’ 

W R IT E  ( * , *  ) ’P L E A SE  T Y P E  (1 )  / (2 )  A N D  PR ESS E N T E R ’

R E A D  ( * ,  * )  M

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

W R ITE ( * , * )  ’A N  E X P E R IM E N T A L  D A T A  F IL E ’

W R ITE ( * , 5 )

F O R M A T  (2 X , ’V E L O C IT Y ’ ,4 X ,’F E E D \6X , ’D O C \3 X , ’T L IF E ’) 

W R ITE ( * ,6)

F O R M A T  ( ” , 2 X ,’(m /m in )’,3 X ,’(m m /rev)’,3 X ,’( m m ) \ 3 X , ’(m m )’)  

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

IF (KK EQ  1 A N D  M EQ 1) T H E N  

C A L L  D A T A !

E L SE IF (K K  E Q  1 A N D  M  E Q  2 )  T H E N  

C A L L  D A T A 2



ELSE IF (KK EQ  2  A N D  M  EQ 1) T H E N

C A L L  D A T  A 3

E N D IF

W R ITE ( * , * )  ’D O  Y O U  W A N T  C U T T IN G  P A R A M E T E R  V A L U E S  FO R  A  D IF F E R E N T  

+ T O O L  LIFE9 IF Y ES P L E A SE  T Y P E  1, IF N O  P L E A SE  T Y P E  2  A N D  PRESS  

+ E N T E R ’

R E A D  ( * , * )  M M  

IF (M M  EQ  1) T H E N  

G O  T O  10  

E N D IF  

STOP

Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

1 0  W RITE ( * , * )  ’PLE A SE  T Y P E  E X P E C T E D  TO O LL IFE  T IN  M IN  &  PRESS E N T E R ’ 

R E A D  ( * , * )  T

Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

IF (KK EQ 1 A N D  M EQ 1) T H E N  

C A L L  IN C

ELSEIF (KK EQ  1 A N D  M  EQ 2 )  T H E N  

C A L L  C INC

E LSE IF(K K  EQ  2  A N D  M EQ  1) T H E N

C A L L  E N 2 4

E N D IF

E N D

Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

S U B R O U T IN E  D A T A I  

£  * * * * * * * * * * *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * *

R E A L  X (1 5 ,4 )

C O M M O N  1C D A T A / T  

C O M M O N  /ID A T A / K ,L ,K K ,M ,M M

O P E N  (U N IT  =  8, ST A T U S =  ’O L D ’ , FILE =  ’IN C  D A T ’)

R E A D  (8, * )  ((X (I,J ), J =  1 ,4 ) ,  I =  1 ,1 5 )

W R ITE ( * , 9 )  ((X (I,J ), J =  1 ,4 ) ,  I =  1 ,1 5 )

9  F O R M A T  (2 X , F 5  1, 6X , F 4  3 ,5 X ,F 5  3 ,3 X ,F 5  2 )

R E T U R N

E N D

-F3-



Q ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

S U B R O U T IN E  D A T A 2  

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

R E A L  X (1 5 ,4 )

C O M M O N  /C D  A T  A / T  

C O M M O N  /ID A T A / K ,L ,K K ,M ,M M

O P E N  (U N IT  =  8, S T A T U S  =  ’O L D ’, FILE =  ’C IN C  D A T ’)  

R E A D  (8, * )  ((X (I,J ), J =  1 ,4 ) ,  I =  1 ,1 5 )

W R ITE ( * , 1 1 )  ((X (I,J ), J =  1 ,4 ) ,  I =  1 ,1 5 )

11 F O R M A T  (2 X , F 5  1, 6X , F 4  3 ,5 X ,F 5  3 ,3 X ,F 5  2 )

R E T U R N

E N D

Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

S U B R O U T IN E  D A T A 3  

£  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

R E A L  X (1 5 ,4 )

C O M M O N  /C D  A T  A / T  

C O M M O N  /ID A T A / K ,L ,K K ,M ,M M

O P E N  (U N IT  =  8, S T A T U S  =  ’O L D ’, FILE =  ’E N 2 4  D A T ’) 

R E A D  (8, * )  ((X (I,J ), J -  1 ,4 ) ,  I =  1 ,1 5 )

W R ITE ( * , 1 3 )  ((X (I,J ), J =  1 ,4 ) ,  I =  1 ,1 5 )

13 F O R M A T  (2 X ,F 5  1 ,6 X ,F 4  3 ,5 X ,F 5  3 ,3 X ,F 5  2 )

R E T U R N

E N D

C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

S U B R O U T IN E  IN C  

£  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

R E A L  f (5 ), d (5 ), V (5 ,5 ) ,  R, P, Force, V el, feed, d o c ,b 0 ,b l,b 2 ,b 3  

+  , c 0 , c l , c 2 , c 3 , c l l , c 2 2 , c 3 3 , c l 2 , c l 3 , c 2 3 , a 0 , a l , a 2 , a 3 , a l l , a 2 2 , a 3 3 , a l 2  

+  ,a l3 ,a 2 3  

C O M M O N  /C D A T A / T  

C O M M O N  /ID A T A / K ,L ,K K ,M ,M M

O PEN  (U N IT  =  8, ST A T U S =  ’O L D ’, FILE -  ’feeddoc dat’)  

R E A D  (8, * )  (f(I ), I =  1 ,5 )

R E A D  (8, * )  (d(II), II =  1 ,5 )

O PE N  (U N IT  =  9 , ST A T U S =  O L D  , FILE =  incc datT)

R E A D  ( 9 , * )  b 0 ,b l ,b 2 ,b 3 ,c 0 ,c l ,c 2 ,c 3 ,c l  I , c 2 2 , c 3 3 , c l 2 , c l 3 , c 2 3 ,

+  a 0 , a l ,a 2 , a 3 , a l l , a 2 2 , a 3 3 , a l 2 , a l 3 , a 2 3
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D O  1 0 0  1 =  1 ,5  

D O  1 5 0  II =  1 ,5

V (I,II) =  E X P ((A L O G (T ) - bO -b2*A L O G (f(I)) - b 3 *A L O G (d (II)))/b l)

1 5 0  C O N T IN U E  

1 0 0  C O N T IN U E

IF (K  EQ 1) T H E N

W R ITE ( * , * )  ’ T U R N IN G  O P E R A T IO N ’

E LSE

W R ITE ( * , * )  ’ M IL L IN G  O P E R A T IO N '

E N D IF

IF (KK EQ  1) T H E N

W R ITE ( * , * )  ’M A T E R IA L  IN C O N E L -718’

ELSE IF (KK E Q  2 )  T H E N  

W R ITE ( * , * )  ’M A T E R IA L  E N  2 4 T ’

E N D IF

W R IT E  ( * , * )  ’H A R D N E S S  IN  B H N  =  \  L  

IF (M  EQ 1) T H E N

W R ITE ( * , * )  ’C U T T IN G  TO O L U N C O A T E D  T U N G S T E N  C A R B ID E ’ 

E LSE IF (M  EQ  2 )  T H E N

W R ITE ( * , * )  ’C U T T IN G  T O O L  C O A T E D  T U N G S T E N  C A R B ID E ’ 

E N D IF

W R IT E  ( * , 1 1 )

11 F O R M A T  ( ’ l \ 5 x , ’f , 9 x , ’V elo city ’)

W R ITE ( * , 12)

1 2  F O R M A T  ( ’ ’ ,3 x , ’(m m /rev)’, 3 x , ’(m /m in )’)

D O  1 6 0 1  =  1 ,5  

W R ITE ( * , 1 3 )  f(I), (V (I,II), II =  1 ,5 )

13 F O R M A T  ( ’ \ 5 x , F 4  2, 5 (F 7  1))

1 6 0  C O N T IN U E

W R ITE ( * , 1 4 )

1 4  F O R M A T  ( ’ ’, ’D O C  (m m ) = \ 2 X , ’0  5 0 \ 4 X , ’ l 0 ’,3 X ,’ 1 2 5 ’,3 X ,’1 5 0 ’, 

+ 4 X , ’2  O’)

W R ITE ( * , * )  ’T o have surface roughness and pow er estim ate, select  

+  V elo city , feed, depth o f  cut from  the table and type the values 

+ o f  V el, feed, d o c ’

R E A D  ( * , * )  V el,feed ,d o c
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R =  EXP(cO +  c l*A L O G (V e l)  +  c 2 *A L O G (fe e d )+ c 3 *A L O G (d o c ) +

+ c l  l* (A L O G (V e l) ) * * 2  +  c 2 2 * (A L O G (fe e d ))* * 2  +

+ c 3 3 * (A L O G (d o c )) * * 2  +  c l2 *A L O G (V e l)*A L O G (fe e d ) +

+ c l  3 *A L O G (V e l)*  A L O G (d oc) +  c 2 3 *A L O G  (feed ) *A L O G  (d o c))

F orce =  EXP(aO +  a l*A L O G (V e l)  +  a 2*A L O G (feed ) -I- a 3*A L O G (d o c ) +  

+ a ll * ( A L O G ( V e l ) ) * * 2  +  a 2 2 * (A L O G (fe e d ))* * 2  +

+ a 33  * (  A L O G (d o c ))* *2  +  a l2 *A L O G (V e l)*A L O G (fe e d ) +

+ a l 3 *A L O G (V el)*A L O G (d o c) +  a 2 3 *A L O G (fe e d )*A L O G (d o c ))

P =  (F o r c e *V e l)/6 0

W R ITE ( * , * )  ’R oughness in m icron = \  R  

W R ITE ( * , * )  ’P ow er in W att = \  P 

R E T U R N  

E N D

Ç H * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

S U B R O U T IN E  C INC

Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

R E A L  f(5 ),  d (5 ), V (5 ,5 ) ,  R , V e l,f e e d ,d o c ,b 0 ,b l ,b 2 ,b 3 ,c 0 ,c l,c 2 ,

+  c 3 , c l  I , c 2 2 , c 3 3 , c l2 ,c l 3 , c 2 3 ,a 0 , a l , a 2 ,a 3 , a l  I ,a 2 2 ,a 3 3 , a l2 ,a l3 ,a 2 3  

C O M M O N  /C D  A T  A / T  

C O M M O N  /ID A T A / K ,L ,K K ,M ,M M

O P E N  (U N IT  =  8, ST A T U S =  ’O L D ’, FILE =  ’feeddoc dat’)

R E A D  (8, * )  (f(I), I =  1 ,5 )

R E A D  (8, * )  (d(II), II =  1 ,5 )

O P E N  (U N IT  =  9 ,  ST A T U S =  ’O L D ’, FILE =  ’cin cc dat’)

R E A D  ( 9 , * )  b 0 ,b l ,b 2 ,b 3 >c 0 , c l , c 2 , c 3 , c l l , c 2 2 , c 3 3 , c l 2 , c l 3 , c 2 3 ,

+ a O ,a l ,a 2 ,a 3 ,a l 1 ,a 2 2 ,a 3 3 ,a l2 ,a l3 , a 2 3  

D O  1 0 0  1 =  1 ,5  

D O  1 5 0  II =  1 ,5

V (I,II) =  E X P ((A L O G (T ) - bO - b 2 *A L O G (f(I))  - b 3 *A L O G (d (II)))/b l)

1 5 0  C O N T IN U E  

1 0 0  C O N T IN U E

IF (K  EQ  1) T H E N

W R IT E  (+,+) T U R N IN G  O PE R A T IO N  

E LSE

W R ITE ( * , * )  ’ M IL L IN G  O P E R A T IO N ’

-F6-



E N D IF

IF (KK EQ  1) T H E N

W R IT E  ( * , * )  ’M A T E R IA L  IN C O N E L -718’

ELSEIF (K K  EQ 2 )  T H E N  

W R ITE ( * , * )  ’M A T E R IA L  E N  2 4 T ’

E N D IF

W R IT E  ( * , * )  ’H A R D N E S S  IN  B H N  =  ’ , L  

IF (M  E Q  1) T H E N

W R ITE ( * , * )  ’C U T T IN G  T O O L  U N C O A T E D  T U N G S T E N  C A R B ID E ’ 

ELSE IF (M  EQ  2 )  T H E N

W R ITE ( * , * )  ’C U T T IN G  T O O L  C O A T E D  T U N G S T E N  C A R B ID E ’ 

E N D IF

W R ITE ( * , 1 1 )

11 F O R M A T  ( ’ l ’,5 x , ’f \ 9 x , ’V e lo c ity ’)

W R ITE ( * , 1 2 )

1 2  F O R M A T  ( ’ ’ ,3 x , ’(m m /rev)’ , 3 x , ’(m /m in )’)

D O  1 6 0  I =  1 ,5  

W RITE ( * , 1 3 )  f(I), (V (I,II), II =  1 ,5 )

13 F O R M A T  ( ’ \ 5 x , F 4  2 , 5 (F 7  1))

1 6 0  C O N T IN U E

W R IT E  ( * , 1 4 )

1 4  F O R M A T  ( ’ ’ , ’D O C  (m m ) = \ 2 X , ’0  5 0 ’ ,4 X ,’ 1 0 \ 3 X , ’ l 2 5 \ 3 X , ’ l 5 0 ’ , 

+ 4 X , ’2  O’)

W R ITE ( * , * )  ’T o have surface roughness estim ate, select V elo city ,

+  feed, depth o f  cut from  the table and type the valu es o f  V el,

+  feed, doc resp ectively’

R E A D  ( * , * )  V el »feed,doc

R =  EXP(cO +  c l*A L O G (V e l)  +  c 2 *A L O G (feed ) +  c 3 *A L O G (d o c ) +

+ c l  l* (A L O G (V e l) ) * * 2  +  c 2 2 * (A L O G (fe e d ))* * 2  +

+ c 3 3 * (A L O G (d o c )) * * 2  +  c l2 *A L O G (V e l)*A L O G (fe e d ) +

+ c 13 *  A L O G (V  el) *  ALO G (d oc) +  c 2 3 *A L O G  (feed ) *A L O G  (d o c))

F orce =  EXP(aO +  a l*A L O G (V e l)  +  a 2*A L O G (feed ) +  a 3*A L O G (d o c ) +  

+ a ll * ( A L O G ( V e l ) ) * * 2  +  a 2 2 * (A L O G (fe e d ))* * 2  +

4- a 33 * (  A L O G (d o c ))* *2  +  a l2 *A L O G (V e l)*A L O G (fe e d ) +  

+ d l3 *A L O G (V e l)*A L O G (d o c ) +  a 2 3 *  A LO G  (fe e d )*  ALO G (d o c))

P =  (F o r c e *V e l)/6 0
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W R ITE ( * , * )  ’R oughness in m icron — \ R  

W R ITE ( * , * )  ’P ow er m W att = ’,P  

R E T U R N  

E N D

-'i * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

S U B R O U T IN E  E N 2 4  

2 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

R E A L  f (5 ) ,  d (5 ), V (5 ,5 ) ,  R ,V e l,fe e d ,d o c ,b O ,b l,b 2 ,b 3 ,c O ,c l,c 2 ,c 3 ,

+  c l l ,c 2 2 , c 3 3 , c l 2 , c l 3 , c 2 3 , a 0 , a l , a 2 , a 3 , a l l , a 2 2 , a 3 3 , a l 2 , a l 3 , a 2 3  

C O M M O N  /C D  A T  A / T  

C O M M O N  /ID A T A / K ,L ,K K ,M ,M M

O P E N  (U N IT  =  8, ST A T U S =  ’O L D ’, FILE -  ’feeddoc dat’)

R E A D  (8, * )  (f(I ), I =  1 ,5 )

R E A D  (8, * )  (d (II), II =  1 ,5 )

O PE N  (U N I T = 9 ,  ST A T U S =  ’O L D \ F I L E - ’cin cc dat’)

R E A D  ( 9 , * )  b 0 , b l ,b 2 , b 3 , c 0 , c l , c 2 , c 3 , c l l , c 2 2 , c 3 3 , c l 2 , c l 3 , c 2 3 ,  

+ a 0 ,a l ,a 2 ,a 3 ,a l  I , a 2 2 ,a 3 3 , a l2 ,a l3 ,a 2 3  

D O  1 0 0  1 =  1 ,5  

D O  1 5 0  II =  1 ,5

V (I,II) =  E X P ((A L O G (T ) - b 0 - b 2 *  A L O G (f(I)) - b 3 *A L O G (d (II)))/b l)  

1 5 0  C O N T IN U E  

1 0 0  C O N T IN U E

IF (K EQ 1) T H E N

W R ITE ( * , * )  ’T U R N IN G  O P E R A T IO N ’

ELSE

W R ITE ( * * )  ’M ILLIN G  O P E R A T IO N ’

E N D IF

IF (KK EQ  1) T H E N

W R ITE ( * , * )  ’M A T E R IA L  IN C O N E L -718’

ELSE IF (KK EQ 2 )  T H E N  

W R ITE ( * , * ) ’M A T E R IA L  E N  2 4 T ’

E N D IF

W R ITE ( * , * )  ’H A R D N E S S  IN  B H N  =  L  

IF (M  EQ  1) T H E N

W R IT E  ( * , * ) ’C U T T IN G  T O O L  U N C O A T E D  T U N G S T E N  C A R B ID E ’ 

E LSE IF (M  EQ  2 )  T H E N

W R ITE ( * , * ) ’C U T T IN G  T O O L  C O A T E D  T U N G S T E N  C A R B ID E ’ 

E N D IF
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W R ITE ( 3 , 1 1 )

11 F O R M A T  ( ’ 1 ’, 5 x , T , 9 x , ’V e lo c ity ’)

W R ITE ( * , 1 2 )

1 2  F O R M A T  ( ’ \ 3 x , ’(m m /rev)’ ,3 x , ’(m /m in )’)

D O  1 6 0  1 =  1 ,5  

W R ITE ( * , 1 3 )  f(I), (V (I,II), II =  1 ,5 )

13 F O R M A T  ( ’ ’,5 x ,F 4  2 , 5 (F 7  1 »

1 6 0  C O N T IN U E

W R ITE ( * , 1 4 )

1 4  F O R M A T  ( ’ ’ , ’D O C  (m m ) =  \ 2 X , ’0  5 0 \ 4 X , ’ l  0 \ 3 X , ’ l  2 5 \ 3 X , ’ l  5 0 ’ , 

+ 4 X , ’2  0 ’)

W R ITE ( * , * )  ’T o have surface roughness estim ate, select V elocity ,

+  feed, depth o f  cut from  the table and type the values o f  V el,

4-feed, doc resp ectively’

R E A D  ( * ,  * )  V el, feed ,d oc

R =  E X P (cO + c l  *A L O G (V el) +  c 2 *A L O G (feed ) +  c 3 *A L O G (d o c ) +  

- f e l l  * (  A L O G (V  e l))  * * 2  +  c 2 2 * (A L O G (fe e d ))* * 2  +

+  c3 3 * (  ALO G (d o c)) * * 2  +  c l2 *A L O G (V e l)*A L O G (fe e d ) +

-f c 13 *  A L O G (V  el) *A L O G (d o c) +  c 2 3 *  A LO G  (fe e d )*  A LO G  (d o c))

F orce =  EXP(aO +  a l*A L O G (V e l)  +  a 2*A L O G (feed ) +  a 3*A L O G (d o c ) +  

+ a ll * ( A L O G ( V e l ) ) * * 2  +  a 2 2 * (A L O G (fe e d ))* * 2  +

+ a 3 3 * (A L O G (d o c ))* * 2  +  a l2 *A L O G (V e l)*A L O G (fe e d ) +

-f a 13 *  A LO G  (V  el) *  A LO G  (d oc) +  a 2 3 *A L O G (fe e d )*A L O G (d o c ))

P =  (F o r c e *V e l)/6 0

W R ITE ( * , * )  ’R oughness in m icron =  ’, R 

W R ITE ( * , * )  ’P ow er in W att =  \  P  

R E T U R N  

E N D

WRITE (*,11)
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