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CHAPTER_ONE

1. CHEMICAL REACTORS — DESIGN AND MODELLING
2)
1.1 Reaction Kinetics and Reactor Design

The ultimate goal of a chemical engineer 1n dealing with
chemical reactions generally 1ncludes:
1) Selection of the reactor type among many designs.
2) Determination of the requaired reactor size.
3) Specification of operating conditions -

To achieve this goal he/she must have knowledge of
the rate of chemical reaction, the conversaions
obtainable, the nature of physical processes 1nteracting
with the chemical reaction, and the parameters which
influence the preceding

The rates of physical processes e.g. mass transfer
and heat transfer, can be adequately estimated i1in many
cases from the properties of substances participating in
the reaction, flow patterns, the geometry of the reaction
vessel etc. On the other hand, chemical rate data for
most 1ndustrially i1mportant reactions rely upon
experimental investigation of the specific chemical

reactions 1nvolved
Kinetics — Basic Terminology

The amount of a selected component A being canverted
per unit time per unit quantity of a reference variable y
in a chemically reacting system 1s defined as the rate of

reaction rg

| dNa
¥ dt

Molal units are generally used as the amount N of the

An

1 1.1

component being followed, the reference variable y 1n
homogeneous fluid reactions 1s usually the volume of the

reacting fluid V or of the reactor Vr.



In the case of the continuous stirred tank reactor
the volume of the reacting fluid system remains constant,

thus for a first order reaction,

dC
Aa = :FE?“ = -—4{ Cq (moles/l.sec) 1.1.2

In this equation the proportionality constanti& 15
termed the specific reaction rate or "the rate
constant R " and 1t 1s markedly dependent upon

temperature, through the Arrhenius equation

- *RT

R = Ro © 1t 13

Although this equation 1s about 80 years old, 1t
predicts the effect of temperature on the rate constant,
for simple reactions, so accurately that 1t still finds
wide application 1n a great number of reaction kinetic
problems.

In this equation € 1s the activation energy and was
considered by Arrhenius as the amount of energy 1n excess
of the average energy level which the reactants must have
1n order for the reaction to proceed.

In practice, most reactions important i1n i1ndustrial
processes are qulite cemplex 1n nature because their
reaction mechanisms are considerably different from the
stoichiometric equations. However, 1n dealing with
reaction kinetics, one process may account for the major
factor i1n determining the overall rate of reaction and is
termed the '"rate controlling step" My model for the
€.5.T.R. wi1ll be based on some of the outlined

fundamentals.
Reactor Design
Since all chemical processes are centered around the

chemical reactor, a most important factor in determining

the over~all process economy 15 the reactor design .



Unlike equipment for mass or heat-transport
processes, there 1s no straightforward method for
designing equipment to carry out a chemical reaction.
This 1s because the design of a chemical reactor is
governed primarily by the specific reaction system
concerned,

At the start of the design work, the following
information 1s presumably available:

(a) The reaction type, simple or complex.

(b) The need for catalyst.

(c) Phases 1nvolved.

(d) The mode of temperature and pressure control -

1sothermal, adiabatic, vacuum etc.

(e) The production capacity.

In addition basic data required include-*

(1] The chemical rate expressions and variation of

rate parameters with temperature, pressure, etc

(2] The heat—-and mass-transfer characteristics.

[3]1 Physical properties of all components taking

part i1n the reaction.

When the above information and data become
available, the preliminary selection and sizing of the
reactor can proceed.

In general, chemical reactors have bheen broadly
classified 1n two ways, one according to the type of
operation and the other according to design features.
The former classification 1s mainly for homogeneous
reactions, and divides the reactors i1into batch,
continuous or semicontinuous type. A brief description
of these three types follows
1. Batch Reactor This type takes 1n all
the reactants at the the beginning and processes them
according to a predetermined course of reaction during
which no material 1s fed i1nto or removed from the
reactor The tank 1s agitated, and 15 used primarily 1in
a small-scale production. Most of the basic kinetic data

for reactor design are obtained from this type.



2. Continuous Reactor. Reactants are introduced
and products withdrawn simultaneously 1n a continuous
manner in this type of reactor. It may assume the shape
of a tank, a tubular structure, or a tower, and finds
extensive applications 1n large-scale plants for the
purpose of reducing the operating cost and facilitating
control of product quality.

3. Semicontinuous Reactor In this category belang
reactors that do not fit either of the above two types.
In one case some of the reactants are charged at the
beginning whereas the remaining are fed continuously as
the reaction progresses. Another type 1s similar to a
batch reactor except that ore or more of the products 1s

removed continuously.

Chemical reactors have also been basically
classified according to their design features i1n four

ways as represented diagrammatically i1n Fig. 1 1.1,

v
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1. Tank Reactor This 1s probably the most
common type of reactor 1n use 1n the chemical industry.
In most i1nstances 1t 1s equipped with some means of
agitation (e g. stirring, rocking or shaking) as well as
provisions for heat transfer (e g. jacket, external and
internal heat exchangers). This type can accomodate
ei1ther batch or continuous operation over wide ranges of
temperature and pressures. With the exception of very
viscous liquids, a close approximation to perfect mixing
(back mix1ng) can be achieved 1n a stirred-tank reactor.
In a continuous operation, several stirred-ftank reactors
may be connected in series. Also 1n use 1n continuous
operation 15 a single reaction vessel divided into a
number of compartments, each of which 1s equivalent to a

stirred-tank reactor.

2. Tubular Reactor This type of reactor 1is
constructed of ei1ther a single continuous tube or several
tubes 1n parallel. The reactants enter at one end of the
reactor, and the products leave from the other end, with
a continuous vari:ation i1n the composition of the reacting
mixture 1n between. Heat transfer to or from the reactor
may be accomplished by means of a jacket or a shell-and-
tube design. The reactor tubes may be packed with
catalyst pellets or 1nert solids The tubular reactor
finds application 1n cases where back mixing of the
reaction mixture in the flow direction 1s undesirable.
Large—-scale gasous reactions such as the cracking of
hydrocarbons, the conversion of air to NO, and the

oxidation of NO to NOz are examples of the application

of tubular reactors.



3. Tower Reactor A vertical cylindrical
structure with a large height-to-diameter ratio
characterises this type of reactor. It may have baffles
or solid packing (reactant, catalyst, or 1nert) or may be
simply an empty tower, and 1s employed i1n continuous
processes 1nvolving heterocgeneous reactions. Examples
are the lime kiln, and gas-absorption units for
gas-liquid reactions i1ncluding packed towers, plate

towers, and spray towers

4. Fluidized-bed Reactor. This 15 a vertical
cylindrical vessel containing fine solid particles that
are ei1ther catalysts or reactants. The fluid reactant
stream 1s i1ntroduced at the bottom of the reactor at a
rate such that solids are floated 1n the fluid stream
without being carried out of the system. Under this
condition the entire bed of particles behave like a
boci1ling liquid, which tends to equalize the composition
of the reaction mixture and temperature throughout the
bed (1.e, some degree of back mixture i1s obtained). This
1s generally considered one of the distinct advantages of
the fluidized-bed reactor The attrition of catalyst
with entrainment of the resulting fines 1s one of the
disadvantages. It has been applied extensively to
solid-fluid reactions, such as the catalytic cracking or
petroleum hydrocarbons, the conversion of uranium oxides
to uranium flourides, the reduction of some mineral ores,

and the gasification of coal.
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1.2 ABOUT THE CONTINUOUS STIRRED-TANK REACTOR (C.S.T.R)

This type of reactor consists of a well-stirred tank
1into which there 1s a continuous flow of reacting
material, and from which the partially reacted material
passes continuously It 1s because such vessels are
squat 1n shape (e.g. cylindrical vessels as wide as they
are deep) that good stirring of their contents 1is
essential; otherwise there could occur a bulk streaming
of the fluid between 1nlet and outlet and much of the
volume of the vessels would be essentially dead space.

The important characteristic of the C.S5.T.R. 1s the
stirring. The most appropriate first approximation to an
estimation of 1ts performance 1s based on the assumption
that 1ts contents are perfectly mixed. As a conseguence
the effluent stream has the same composition as the
contents and this demonstrates the i1mportant distinction
between the C S.T.R. and the tubular reactor.

A fair approximation to perfect mixing 1s not
difficult to attain 1n a C.S.T.R , provided that the
fluid phase 1s not too viscous. In general terms, 1f an
entering element of material, for example, a shot of dve
1s distributed uniformly throughout the tank 1n a time
very much shorter than the average time of residence 1n
the tank, then the tank can probably be taken to be
‘'well-mixed'., As shown overleaf 1n Fig. 1.2 1, several
permutations are possible i1n the production assembly of a
stirred tank reactor.

One great advantage of the C S.T.R., apart from
simplicity of construction, 15 the ease of temperature
control. The reagents entering the first vessel plunge
immediately intec a large volume of partially reacted
fluid and, because of the stirring, local hot spots do
not tend to occur. Also the tanks of the C.S.T.R. offer
the opportunity of providing a very large area of cooling
surface. In addition to the external surface of the

vessels themselves, a large amount of internal surface,



1n the form of submerged cooling coils, can be provided.
Sometimes, 1n place of coils, a calandria 1s used, as 1in
the example of the Schmid nitrator for nitroglycerine

A further advantage, as compared to the tubular reactor,
1s the openness of the construction. This makes 1t easy
to clean the i1nternal surfaces and 1s i1mportant in the
case of reactions where there 1s a tendency for solid
matter to be depos:ited, e.g. polymerization processes and
reactions 1n which tarry material 1s formed as a
by-product.

For these various reasons the typical fields of
application of the C.S5.T.R. are continuous processes of
sulphonation, nitration, and polymerization. It 1s used
very extensively 1n the organic chemical i1ndustry and
particularly i1n the production of plastics, explosives,
and synthetic rubber. The C.5.T.R. 1s also used whenever
there 1s a speci1al necess:ity for stirring; for example,
in order to maintain gas bubbles or solid particles 1in
suspension 1n a liquid phase, or to maintain droplets of
one liquid i1n suspension 1n another as 1n the nitration
of benzene or toluene The rate of such reactions can be
very dependent on the degree of dispersion, and therefore

on the vigour of agitat:ion
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1.3 MIXING OF FLUIDS

The problem associated with the mixing of fluids
during reaction 1i1s itmportant for extremely fast reactions
in homogeneous systems, as well as for all heterogeneous
systems. This problem has two overlapping aspects:
firstly the degree of segregation of the fluid, or
whether mixing occurs on the microscopic level (mixing of
individual molecules) or the macroscopic level (mixing of
clumps, groups, or aggregates of molecules), and secondly
the earliness of mixing, or whether fluid mixes early or
late as 1t flows through the vessel.

First consider the degree of segregation of a fluaid,
and for convenience let us define terms to represent the
extremes 1n segregation of a fluid. For this suppose
that liquid A 1s available 1n two forms as shown below 1in
Fig. 1 3.1, 1In the first form the liquid 1s as we
normally i1magine 1t, with i1ndividual molecules free to
move about and collide and i1nterm:x with all other
molecules of the liquid. One refers to such a liquid as
a microfluaid. In the second form liquid A 1s availlable
in a large number of small sealed packets, each
containing a large number, say about 1012 to 1018 of
molecules. This type of liquid may be called a

macrofluaid.

|

1 Nk <l

-

L / Microilud :D\ / Macroftud
1 i
!

LE e

LI o

o L/ = —
Individual melecules lase their Each aggregata retains its 1dentity
identity and reactant and acts as a batch reactor
concentration 1 uniform reactant concentration vanes from
throughout aggregate to aggregaty

6)

Difference In behavior of microfluids and macrofluids

Fig. 1.3.1t



In the flow of an 1dealized microfluid and
macrofluid tracer measurements cannot distinguish
between them; however, for chemical reactions these
fluids may behave quite different.

For a microfluid, i1ndividual molecules lose their
indentity and reactant concentration i1s uniform
throughout. For a macrofluid, each aggregate retains
1ts 1dentity and acts as a batch reactor. Reactant
concentration varies from aggregate to aggregate.

The normally accepted state of a liquid or gas 1s
that of a microfluid, and discussions on homogeneous
reactions are based on this assumption

It wi1ll also be assumed that mixing and chemical

conversion 1n the reaction vessel 1s i1instantaneous.



1.4 EXAMPLES OF FIRST ORDER REACTIONS
AND OF OSCILLATORY BEHAVIOUR

The model to be subsequently studied 1s a first
order irrversible exothermic non adiabatic reaction The
rate expression under constant volume conditions 1s given

AQq = - R Ca 1.4 1

Typical examples of a first order reaction are

11 Thermal decomposition of HgOp

=] Pyrolysis of ethane

31 Cyclotrimerization of butadiene over catalyst

4] Pyrolysis of Ca-oxalate

51 Gas—-phase thermal decomposition of ditertiary butyl

peroxide

A chemical system following different paths
depending on whether a parameter 1s i1ncreasing or
decreasing, 1s called chemical hysteresis. This model,
under certain constraints, may give rise to hysteresis,
oscillatory behaviour, and other interesting phenomena
Such behaviour has an electrical analog, a
current-voltage curve resembling Fig. 1.4.1 1n systems
containing a negative resistance element Magnetic
hysteresis occurs 1n a ferromagnet on varying the
direction strength of an applied magnetic field.

Quite a large number of reactions exhibiting
multiple stationary states and chemical hysteresis have
been i1nvestigated, especially by chemical engineers. 0One
fairly simple example of such a system 1s the oxidation

of thiosulphate by peroxide.



Figure 1.4.2 below 1llustrates some experimental
results for this reaction, showing the steady-state

temperature as a function of coolant flow rate.

D

°c

20 40 e0 80

(cn?’s)

Fig 1.4.1 Fig. t.4.2

We have seen how multiple stationary states can
exist, and how a system can change from one set of such
states to another when the external parameters are
altered. But to obtain oscillatory behaviour like that of
the heartbeat, one needs a mechanism that will switch the
system back and forth without external i1ntervention. One
much-studied example of an oscillatory chemical reaction
1s the bromination of malonic acid 1n the presence of an
oxi1dation—-reduction couple, such as Celll, CelV knawn

as the Belousov-Zhabotinski1 reaction.

5 CHa(coon), + 3BROy ¥ 3H — 3BRCH{tooH), +2Hco0N +4co, +S5Hy0

Fiqure 1.4 3 shows the oscillatory behaviour observed
1in this reaction. The oscillations persist i1in a
well-stirred beaker for nearly an hour, as long as the
concentration of reactants 1s such as to keep the system
far from equilibrium; 1n an open system, fed with
reactants and depleted of products, they can persist

indefinitely.

-4 loq (Ce¥/ce™)
10
ot b\ ley(Bil)
'o—s 4 i e [l —t 1
o S 10 15 20 25 130
Fig. 1.4.3 mn



1.5 FORMULATION OF THE GOVERNING ERUATIONS

Let us consider a continuous perfectly mixed stirred
tank reactor with recycle. In arder to define the
problem more clearly the chemical reaction will be taken
to be first order, exothermic non adiabatic, and

irreversible. Thus

'Y
A — B. AH < O 1.5.1

Furthermore, the following assumptions shall be made

1. Mixi1ng 1s undelayed.
2. The chemicals behave as microfluids.
3. The heat capacity of the vessel and cooling coils

may be i1gnored.

4. Thermal properties and inlet composition of the
reactants are sensibly constant.

3. There 1s no feedback control.

6. Coolant temperature and recycle rates remain

constant.

FRESH  Tg @ F@ | Jb v T @_9

STREAM  Cf Ca Ca “NF
aa aan)
Wl RECYCLE
@ (1-A)F STREAM

Fig. 1.5.1
A schematic picture of the C.5.T.R.

It will be shown that the concentration and
temperature of A 1n the reactor may be modelled by a pair
of coupled ordinary differential equations using material

and enthalpy balances respectively.



MATERIAL BALANCE ON REACTANT A
Z.In - Z Out = Z Accumulation
Apply the balance over a short time 1nterval At . The

entire flowrate to the reactor 1s F (m3/sec) 1ncluding
the recycle flowrate of (I"/\)F .

In: 1 A F.CF At
2 (1-A)F C at
Out: 3 F. C At
4 A.V At

Accum: 3 \/.C.I - VC\

t1aAt t
Therefore V 4€ = A F (C;—C) -V A 1.5.2
at’
where A = - R C .. Rate of reaction
-FRT
and k = o € .Arrhenius constant

Introducing two dimensionless variables (x, t) and
constants as follows help describe the system in the most

econaomical way possible. '3)

Ce - C
X = _E_ Dimensionless concentration
v
\
t = e——— Reduced time 1.9 3
FA
t'
,t = — Dimensionless time

T

Equation 1.5.2 naow becomes,

4 Ly + Re (1-x) 1.5.4

dt



However, 4& 1s temperature dependent through the
Arrhenius function and further dimensionless parameters

need be i1ntroduced as follows

E

2{ = — Arrhenius Constant
R Te
-
S = Roe€ T Damkohler Constant 1.5.5

(T -7
J TF

) el Dimensionless Temperature

However
E
—eﬂ/R= /Qﬂ'QO T.'r—

[]j
o)
Py
>
o]

)
m
~——
m
{
m
S

[
o
>
/\
J
~
e’
“+
#
m
7
el
(
==
2R

It
o
3
—~
J
N
+
&

|
L‘\

£n (S/() ¥ (\ :ﬂ‘j /x\)

A

{

s erp(ﬁ%) 1.5.6

Thus, the material balance, as described by 1.5.4 now,
finally evolves as a non-linear differential equation
which 1s a function of two dimensionless variables (x, y)

as follows:

C_c:%_ = ~-x +t S(!-I)QYP(ﬁq\g_m—) 1.5.7




ENTHALPY BALANCE ON REACTANT A

The heat balance is applied on reactant A over the open
system as highlighted in Fi1g. 1 5.1,

Energy gained and lost in the i1nlet and outlet streams by
heat transfer, accumulated within the vessel, and lost by
both reaction and cooling, 15 designated, and 1ndexed

below relevant to the appropriate figure.

Bulk Transfer 1) In I ASFCp Tr At
2) In I(-A)$F G T At

Bulk Transfer S) Out 0 $F Ce T At
Loss by Reaction Out 0 AN (-AH) At
Loss by Cool.ing 4)  Out 0 A A (1-T).at
Accumulation Acc A M CPT\ -M CPT‘
tant t

In - Out = Accumulation

Thus ZI-%o zA.

The heat balance equation thus becomes-*
Pv.Cp = c\\:' “SFGAMTT)+ Vi) ke -RAa(T-Tc) 158

AT _( Te-T (-AH) -AnA
AN e-T) v [—\ &kt (T-Te
dt ) g CP f\l P )
but dF dt AT, chain rule
wREN

)

AT = d"). E 2 TF)

ot dt NI
Hence from 1.5 B8 1t follows that

dy = -\ +{(-M)Cp X}k VKL 1.5.9
et $ CP Te CF

Ak
S’\ICF FA Te

_16_




(-on) Ce ¥
Lot ol - 5 C?FTF}
an = A .A Y
i p [f V Cp
Therefore
C
dy - -9+ &R () - (yoye)

Hence, the two dimensional system of ordinary non linear

differenti1al equations evolves as

-3+ (%) exp (575 - B (4-90)

1 5.10
-X ¥ r(_\’I)_‘eﬁfP(lJ_hj—Mj).

~

p o

4 ;p » & Y ,"jc constants

Note 1) The rec;cle rate (\“%» influences the residence
time C =(%‘q\)and only & and B depend directly
upon

2) This model 1s without feedback control which 1s

extensively discussed i1in Appendix D.



CHAPTER_TWO

2 EXISTENCE, UNIQUENESS

2.1 This section gives,
which the existence
the two dimensional

equations below are

Given: AL

3

Recall:

H

——— e e -

AND BOUNDEDNESS OF SOLUTIONS

with proof, the domain within
and uniqueness of solutions to
system of ordinary differential

assured.

-x +8(-x)exp (i)
-y +d B(x) explrrgre) - ply- )

_ cp—c>
x = (&%
Ce

2.1 1

and: "j T:TF) bell

\¢

Intuirtively, the physical

be as follows.

0<¢<C £ Cg
0¢ T ¢ 0O

o¢x < |

¥ <Y L 0O

Table 2 1 1

domains of C, T, x, and y would

v

1%
/1. /

Fig. 2.1.1

This autonomous system may be abbreviated to

X - f\("\"))

".3 £ (x\4)

which may be represented 1n vector notation

——

X = F (%)



Lemma 2.

1

Proof 2.1.1

Theorem 2.1.2

Proof 2

1

2

For any £>0 the function f(x,g) 1s
continuously differentiable on the domain

De = Uoy] w[-¥+¢, ™), 2.1.6

The only potentially singular point 1s 1f
the denominator i1n the function 08?(j%;ﬁ§\
attains a zero value. This occurs only

at 4= - ¥ which 1s outside of DE. .
Hence E(lpﬁ 1s continuously
differentiable on DC Q.E.D.

For any initial condition (x(oh‘ﬁ(ﬂ)

on DL the system 5 = E(qu admits a unique
local solution (x(%),3(t33 for L 1n some
time i1nterval EO,T] .

Immediate; from lemma 2.1.1 and the
classical existence and uniqueness theorem
on 0.D.E.'s as stated below and referensed
{2

from Chapter &4, section ! of Sanchez.
Q.E.D.

Existence and Uniqueness Theorem.

Given the equation (ﬁ) X =F (X,w) defined and continuous

in the doma1n1)€ contained 1nlR® and furthermore the

aF  Of

partial derivatives 353 Y Y yv:2h2 are defined and

continuocus
in Uithere
satisfying

defined 1n

on DE , then for every point (I(ﬂ"ﬁ(d)
exi1sts a unique solution (x(t)p‘;(,t\) of (%)
the 1ni1tial condition )((o) =(!(o)"1(o)) and

1ts neighbourhood.

The proof of local existence and uniqueness of solution

15 based on the method of successive approximations which

formulates a converqQing sequence to the solution

12)



Uniqueness of solutions 1s of i1mportance, 1f for
instance, one wishes to approximate a solution
numerically. If two solutions X= #(t) and X ='P(f) of
the equatlon‘:é = E(T.\ﬁ) both satisfy ¢t°\ =¢lte) = %o ,
the 1niti1al condition, then these solutions are i1dentical
in their common i1nterval of definition Ek. The previous
theorem gives sufficient conditions for the existence and

uniqueness of solution of the first order equation.

Lemma 2.1.3 The domain Dc’zs 1nvariant under the
evolution determined by the system 2.1.1
namely that for any i1nitial
condition (x(o),M(O)) on DC the
corresponding local solution (Xtt)f3(€))
remains 1in DE, for £ ¢ T .

Proof 2.1 3 It suffices to check Fhat the vector field
E’(r,\) points i1nwards on the boundary of
the domain DQ:EO,l] x[—)fﬁ,oo) .3)

Let us examine the behaviour of i and'j on the bounds

of DE .

For -f.(!‘\s)

- +8(|-t)\e:9(\—:’w§') 2.1.7

X("‘P(Tﬁﬁ)) > 0 2.1.8

Then +\(°fj)

-\ <0 2.1.9

and £\ (1)

Graphically this 1s represented overleaf in Fig. 2.1.2

_ao_



° x — '
Fig. 2.1.2

Thus x(t) € [6p] Wt € [o,t)

Continuity of }d’(,\) implies that X (t) 1s bounded away
from the boundary for t QEO,T]. )

A si1ngularaity ofﬁ -5, and i?. occurs at M: - « One
thus needs to examine ’:3(_!,\) close to Y= -y

Evaluate ~4 (x,4) for 4 1n the neighbourhood of =¥ .

Let 4 = -x(I-¢) where £>0, £ small. 2.1.10
R = ulirg) + & TO-n)exp(oy &) + BE (1FE) +pYe
Where ‘f(&) =(£f__£—) 2.1.11

§ ) > 0
£€~->0
and Ay = S (p) +pMe > O 2.1.12
M ~>-¥

because K)P'T; and T* are all positive.

Therefore,") 1s always bounded away from ‘j=-8 which 1n

itself 15 the only singularity point for this system on

D = [o] = [~ ,w), 2.1.13



An alternative approach to the i1nvariance of the system
of 0.D.E.'s may be briefly summarized as follows: Il)

Rewriting the system 1n the following manner.

f-‘- (e*'.x) = et.-f(r.\s) a.1.14
Nup) & (1) trep)
dt:(e = ¢ d fom) 1e | B e 2.1.15
‘\1
where f(xn‘ﬁ) = 5("“). 91?(1*3[&-) 2.1 16

Substitution and i1ntegration directly yield

~le) - & x(e) -p e - (“jlb) -~ d X(0) = B Ve )‘C'*"‘P)
1+ Y
tes r-
="*(“f’)j e )X('C)dt 2.1 17

Since *(t) € [0,1) then the above equation 1mplies
that‘g(t) 15 also uniformly bounded.
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Theorem 2.1.4 V(t‘(o\,'\s(ﬂ) in DG) 3 ML and L>-¥ such
that the local solution (XCe),w(E)) ,t<T,
originating at ("(°),\1(°)) remains 1nside the
compact set Dy = [04] x[4uyM] for £L&T

Moreover M =mat(‘v§(o),~j,,) 2.1.18
-
where Mo =B MY rade 2.1.19
'+B
And L = mn (‘\5(0);3._) 2.1 20
where M = B Me 2.1.21
1+

Proof 2 1.4 Inturtively, one may examine the behaviour
of ‘V)(!,‘Vg) as a function of X and .

with the aid of Fig. 2.1.3 below

~ = -y(ep) +pYe v S exp (TRyy)  2e1.ee

205a)=(3 :?a/x)

Fig. 2.1 3

Upper bound value ‘50
The max value of & a(hx)EXP(ﬁ%’/_a)
1s d S expy .
for '\j>’ Y, then ‘\5(!,\1) L0

Lower bound value ™M

for ‘\3 { My then ")("M‘ >0
Hence 1f the 1nitial condition 1s outside these bounds

then the local solution 1s driven towards this closed

region and (X(tl'\‘(t\) will remain i1nside D._'n
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This conclusion may be represented graphically below:

M, - (xC0),3000)

v

o NN\

L. (x10),34(e))

Fig 2.1.4

Trajectories (!(&)pﬂﬁl) will tend towards the bounded
region.

Steady state solutions can only exist within this region
(R). Moreover, local solutions remain within the compact
subset D._.n .

It will be shown later 1n section 4.1 that all steady
solutions i1ncluding periodic solutions must lie within R
and that this region could be further modified, 1i1f

required.

Theorem 2.1 5 For any 1initial condition {(¥x(e) ,ﬂ(ﬂ) ontk
the system X F(r,vj) admits a unique
global solution (x(¢),v(t)) ,yt20

Proof 2.1.95 By Theorem 2.1.4, the local solution
(x(t\fq(t» 1s confined 1n the compact set

DL'I‘I = [O,l] X El,ﬂ],

where L = muw (“)lb),\J;)
and M max (v, M)
and Dl.,ﬂ C DC\

The proof of a unique global solution 1s given in
"Differential Equations, Dynamical systems and linear
Algebra" by Morris Hirsh/Stephen Small, Chapter 8,

Section S5, p. 172. 3)



CHAPTER_THREE

Tt e — ———— —— —

3 LOCAL PROPERTIES

3.1 EXISTENCE OF EQUILIBRIA.

Steady states, or critical points, exist when

0 3.1.1

F (1-xs) e"?(\;:)oshf\) 3.1 2
and Mg = & 5(“ Yss erl’(ﬁﬁ)'ﬁ(‘ﬁs"ﬂ(} 3.1.3

Subscript "s" refers to steady state soclutions.

x =

This occurs when IS

)

Combining 3 1 2 and 3.1.3 yields the steady state system

X ~ (L ¥y #pYc)
5 = 3(YS) with 3(YSS=(l_;S BQiF(H’ﬁ +;!'(0(rsiﬂ1’)t)) 3.1.4

— Y
and ‘V)S = d ,S‘:;Bp\a‘— 3.1 5

Theorem 3.1.1 For eL’y and H’F'> 0O there 1s at least one
solution (14‘ﬂ5) to the steady state

system.

Proof 3.1.1 From the boundedness of the steady

solutions

xg € [oltl
and Mg € [L,H] See 2.1 4

-\
Hence exp (T:q%7g) 1s finite.
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For any ° € [°n°) d xg € [0,1] which
satisfies the steady state equation below, as a

result of the "intermediate value theorem"

Xg = (-7 exp (atyy).

Recall that the boundedness of (!Ct),ﬂ(*)) € Dy,m
where Oyn = Lo} « LM (yle),0) , Max(y(9),9,) ]

was outlined i1n Theorem 2.1.5

For clarity, a pictorial representation of the steady

state solution g set will be given.

X )
Given 9(rg) = (l-!k )ex?(|+33/8
for Xg erb,i] and Mg T M

1+ B

Required to show that'a Xg such that for a finite ;3
that

]

9(x5) has at least one solution.

o4

Note: 1)9(” o
2)9(1)= o0

and 3) 3(15) 1s continuously differentiable at least

once on the domain.

Intuitively, as 1s represented graphically below a
horizontal line © = 5} will 1ntersect the function

at least once.

il--------

|
ér 3(‘0 :
|

Fig. 3.1.1.
The question of multiplicity of steady states now

naturally arises.



3.2 MULTIPLICITY OF STEADY STATES.

For fixed values ofd,,ﬁ‘b’,"')c’the dependence of the steady
state solutionX¢on the Damkohler number,g, will have one

of the few possible shapes shown below 1n Fig. 3.2.1

5
‘3(:‘5\ g
3 "
d2
@) [ m, M2
‘1’5=\

Fig. 3.2 1 Ly ——

d9
If é;‘ 0 < 5; such that 3 < O then three equilibria

may occur as can be clearly seen e.g. points A, B, and C

13) BMc\ 2.
+— —
Lemma 3 2.1 d)[ 4(|:5 b’) 3e1
g -2 k)
1+8 X(J+131-QE§)
1S a necessary condition for the existence

of a multiplicity of steady states

Proof 3.2.1

'xs - (dxs +B‘)c)
d = 93lxg)= V- Yy QYP(HP +.é(¢xsfaqﬁ)

d
Evaluat1ng‘13?'= O gives two roots m.,ma which 1n order
that they be real requires condition 3 2 1 above.

See Appendix [A] for more detailed calculations,
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d9
‘Given condition 3.2.1 and :1‘~r1 :: y then J3¢¢ <0

when M cXqem, . That 1s, three different equilibria
theoretically may exist as steady state solution sets to

a particular problem.

The nature of these equilibria however depends upon

relationships between the parameters J, P'V' AND "jc



3.3 STABILITY OF CRITICAL POINTS

The local stability character of the steady state
solution can be determined by examining the sign of the

)

real part of the eigenvalues of the Jacobian matrix

oA o

DX oY
= \ofr ) : 3 3.1
- - s
ox 3ﬂ =M
-t Xy
1~ e (1444 /¥)2
S = 332
~d s
4 *-—————
\- g - (uee) (1 +9six)>

The e1genva1ue5’2.(1z are given by the roots of the

characteristic equation

A = (w3 + (oevT) = 0 3.3.3

d9
Mathematically 1t evolves that Tﬁ‘O &S Der I 40
Hence the '"slope" condition above defines steady states

which are always unstable "SADDLE POINTS".

AL ‘,s) - (wp) *('f_:’sl_z\‘ 334

2= (R £ dn) 27 335
where A = (TR 'S) 2 . 4 Detd 3.3.6
Der J 1s quadratic 1n P&y ) Roots at m,,m,

TR Y 1s cubic 1n Yg .
The trace functions smallest root 1s negative, the other

two roots are denoted by $" Sz.

See Appendix [BJ], for numerical evaluation of ©DeT 3}
and TR J as functions of Ag at steady state.

The stability and nature of the critical points of the

system are now summarised i1n the Table 3.3.1 overleaf.
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NATURE oF

t
Ber 7¢O : SADDLE UNSTABLE
[
A¢ O lRT#+O ShRAL -
|
Ot I >0 ipc¢o :Tﬁ: o CENTER STAMdLE
a=0 : NoOE -
i
ad>»>o! 1M NoDE -
!
D¢t S = D ! DEGENERATE -
Table 3 3.1
Note: The spiral, proper and i1mproper node, may be

stable or unstable depending upon the sign of the

trace of the Jacobian matrix

The second 'dynamic' stability condition 1s violated for
those values of x‘ at which Ta 7 takes on non negative
values.
The points (S,,S;) where TR T= O defines the onset of
instability

12)
Theorem 3.3.1 The critical points of the linear system

may be classified as follows:

1) If 0erT<¢0, then the critical point 1s a saddle
point. In the case of 3 critical points thas
condition may be strictly applied to the middle
critical point.

2) If Dex 3> 0, the steady state 1s a spiral 1f ACO
and Te 3#0 , a center 1T A<0G and TaT* O, a

proper node or an improper node 1f A > 0.
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The type of critical point for the non-linear problem 1s
the same as that for the linear problem except in the
case of a center which 1n the case of the non-linear

problem 1t may be either a center or a spiral.

Recall that we proved in Theorem 2.1.4 that the
trajectory 1s confined 1n &2 compact set: this i1n turn
1implies that 1f the system of 0.D.E.'s exhibits a unique
equLIEbrxum then 1t 15 globally asymptotically stable.B)
That 1s, ;‘or every 1initial condition Ao 1n b& s then

—

Lim x(t)-*;' = 0 3.3.7

€t ~>0
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3.4 STEADY STATE RESPONSE

—

One may now characterise the stability and number of

critical points for all parameters i1in this problem.

-\ - dxs
T = =< (ve) + (s /w )2 3.4.1
- 148 - A Xy
De1 Y e (_—U*‘ask\'\‘\ 3.4.2
Mg = 4% +pYc 3.4.3
1+B

S.,Sz are the middle and higher roots of TR Y= 0, the
other root being always negative for this particular

problem. See Appendix [C]l for details.

M, M, are the roots of DET Y = O

By comparing the relative values of the four roots
my,;m, S, and Szone may determine for any given Xg
all permutations related to stability and multiplicity of

solutions to this well posed problem.

Indeed this full classification i1s given overleaf 1n
Table 3.4.1



_.EE_

=H= OoF ] J
CLASS | "M, M, S1, 52 |emicaL ponTs RANGE OF 'Xg NATURE OF CR/CAL POINT
THMAGINARY
I IMAGINARY s Ogt > 1 \ O <« Xs < | ASYAPIONCALLY STABLE NODE OR SPIRAL
'
3 € (o’;l\
2 a |O<cm<cm & | | TMAGINARY \4 6—&\-’@—”0 LsdmMmy U Xp 2 My |asnprioucauiy STABLE NODE OR SPiRAL
“ O<em, &S, & Sz <Myl ?)'f 32¢9¢5, ™M, ¢ Xg L M2 SAODLE
3 o<smLs, ¢m, < Sa" ‘ XsE (O,mn) \V (S.,'\ ASTHPTONCALLY STARLE NODE OR SPIRAL

OR

Xs € (_m' om?-)

SADOLE

Is € (MZ‘ SL)

UNSTABLE SPHRAL OR NODE

O<KS,¢mem, £S, < |

x5 € (0,5,) v (52,1)

ASYHPTOWCALLY STABLE NOOE OR SpiRAL

OR X, € (W‘u,mz_) SAOOLE
3 A € (S.m.) U(mz,sz) UNSTABLE  SPIRAL  OR  NODE
5. |Tracwaer [0<s,csct | xse (5,,5:) sTAmE  spesL OR weos
\ A€ (O,S.)u(&“l) ] smee sprAL OoR NooE
6 | oememacs < 5,40 | X €(om)u(m,s)o(5.,)| swmee sprrac ok wooe
oR x5 € (S,,5.) UNSTABLE SPIRAL  OR  NODE
'5. X € (W‘.,mz)- A SADDLE

\ h g€ 2718Yl



CHAPTER_FOUR

4. BIFURCATION PHENOMENA
4.1 PERIODIC BIFURCATION THEORY

Hopf Theorem for Vector Fields 1n‘Rz .

THEOREM 2)
Consider the 2 — Dimensional differential system
2 X
Z = Fcf ('2) where (2) = (x)) 4 1.1

Let 25 be a & dependent equilibrium. Denote by 9{ the
Jacobian matrix of T3 at 25 and by _?(5‘) ¥ ‘lw(a_) the
eigenvalues of 9{. Suppose that for some value of X= Sc

the following conditions hold.

f(é'.:)-_- o 4.1.2
and 4= O(5, O  "STRICT CROSSING HYPOTHESIS". 4.1 3
a¥r

2
Then for every choice of a vector b 1niR there exi1sts two

differentiable functions

A (-€€) =>R and S (-6 ™R
with A(O\ = 0 ,T(o\ =0 such that for every S
in (_"fpe) the differential system .Z = Fg‘ +s als) has a
peri1odic solution of perlodEEE,\(|+ s‘?“) originating at

ié-g, +SD (e

Moreover, the direction of bifurcation and the associated
stabi1lity of the periodic solution can be explicatly
determined from the sign of the two numbers A'(O)

and g}‘g(S}). A necessary condition for bifurcating
orbits to be stable, 1s that these numbers have the came

sign.
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8)

A NOTE ON HOPF BIFURCATION.

HOPF BIFURCATION refers to the evolution of stable
periodic orbits from a stable fixed point, as a
parameter ;— crosses a critical value. The appearance
of closed orbits 1s i1nterpreted as a "shift of stability"”
from the original stationary solution. An i1nitial
condition near the original fixed point 1s attracted to

and becomes i1ndistinguishable from the closed orbit. See
Fig. 4.1.1 below.

(EY) PARAMETER 9 FURTHER

INCREASES BIFURCATION
@ — (O) — —
0' g
! .
STABLE .. APPEARANCE OF A “«..CLOSED ORBIT
POINT CLOSED ORBIT GROWS IN
AMPLITUDE

Figure 4.1.1
The Hopf Bifurcation.
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APPLICATION OF THE HOPF THEOREM TO THE C.S.T.R.

Comment:~

b
Given system 1, X -X +5(|'*)"P(I+\1/g). 4.1.4

a\
Y = =M td S (i-x)exp ("rﬁ‘;,';.) -p(Y4-Ye).
let the bifurcation parameter bep ;
where M = d-9Js 4.1.5
:s= Damkohler constant at steady state.
For Xp(°)= O one must linearize system 1 around a
steady state, 1 e. let'i =X-~Xy. However, this 1s 5)
A
equivalent to examining the Jacobian Matrix at X = 0 .
1.e. o Xp(o,o) 1s equivalent to
-\ X
T~xsg (97532
J = " 4 x 4.1 &
=4 X5 _(14p) + 3
vy NIk
where A .= TRT * JTaT? -4 per T, 4.1.7
For, complex eigenvalues this requires that
™Y = O 4.1.8
and Dee 3 > o 4.1.9
-\ d..)f;
where T J = (\-x, -(148) * (v ¥)? 4.1.10
143 . % ¥s )
Dex J = ( s YEYYIE 4.1.11
Y = d Xy +8 Y ) 4.1.12
S '+P

TR Y may be written as a "cubic" in Xy,

Nt J may be written as a "quadratic" in X .



-

NO HOFF BIFURCATION WITHOUT COOLING

P 1s a measure of the heat transfer coefficient between
reactor and coolant whose normalised dimensianless
temperature 1s ’3(' .

P = 0 corresponds to an adiabatic reactor; no cooling.

Theorem &.1.2 In system 1,there can be no periodic
orbits when B =0.

Proof 4.1.2 Given X = =% + f(x,4) 4.1.13
M = = +d f5,m) 4 1.16
where-’(l.‘u)= r.("*)fll’(u‘?’“)‘ 4.1.15

¢

Combining equations 4.1.13 and 4.1.14 yields

dx-y = ~(dx-v) 4.1 16

Let Winv)= dx-\ 4.1.17

Therefore W(xm) = ~wix), 4.1.18
-t

Solution W = W, . 4.1 19

but 1f X andVY are periodic, with the same period, thenW
will be periodic. This 15 not true from eqt. 4.1.19, and
hence no periodic solutions can exist without cooling.
Q.E.D.

The only possible exception to “\N(mq)not being periodic"”
1s 1f Weg2 0 , VLt |
and hence o. X (&) = v (¢t) V(x;")) € DE s [o.'] KE‘B'Q’C ,00) .

Graphically this 1s represented thus by the line L:dxtj'

as shown 1n Fig. 4.1.2
L

EITY Y

Fig. 4.1.2



However, a line cannot carry a periodic solution as this
violates the theorem of the existence of a unique
solution (2.1.2)
Thus Wg = O 1s also not a solution. Q.E.D.
Note: An alternative approach 1s to investigate the
eigenvalues of the Jacobian Matrix J, which must
be purely imaginary. For this to occur
requires: TaJ =0 and DT Y > ©

However, forP=0 , setting ®TF =0 1t follows

that et 3 ==V , and hence Hopf bifurcation will not be
possible; Details are given below.
- XY
-y (W95 1xr)2
T = A Xy L(ep) ¢ A Ys
5 \-Xy ) (te v /y)2
-t
Let ¢ = -y
p.= © for ease of calculation
- s
) w
Thus Vs = \dlg#) -l+dws
TR Ty = ¢ +dw -1 = 0 as required
Hence Dert -SS = -¢ -d W = =1,
o (R)A +DerI = O

= ‘}\z—| = ) hence 1s= ¥, only,
When P =0 y the roots of the characteristic equation are
real and they can never be purely i1maginary. Therefore,
the formulation of periodic orbits due to HOPF
BIFURCATION cannot occur.
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REGIONS WHERE PERIODIC SOLUTIONS CANNGT OCCUR

Theorem 4.1 3 Whenever (x(ﬁ),“ﬂ(t)) 1s a periodic orbit

then B Ve ¢ w(t) ¢ 25, expl¥) +pye
Y "+ p

Proof 4.1.3 From system 1},

>
3 = mw e a T (ex)exe(Wyrs ) - ALY )
= =9(I1+B) +BY, +4 T (1-%) "“(’(T%W)
B VM
A) When Mo =TTep = M
then -\3 =& §iy,y) 30 v % €Lo,1],
for M < M then ﬂ; > 0
B) When ~ =23 'l'j;“) +8 Ve SV
then 3 = & F(Cre)erign)-epr) < o VW x €[]
for Y > ™M, then '\3 < 0

These upper and lower bounds may be represented

graphically as shown below 1n Fig. 4 t 3
3<0
Ny 2
SSRINNNNNN

~ >0

M

Fig. 4.1.3
No periodic solutions are possible outside of the shaded
area. It should be noted however, that ™M, and“jkimay be
refined further. Q.E.D.

The significance of these upper and lower bounds will be
clearly seen 1n the phase portra:it solutions numerically
evaluated by a NAG computer programme, which are

documented in Chapter 3.
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4 2 STABILITY OF THE BIFURCATING ORBIT
A "Sample" Explanation on Stability.

The characteristic equation of a 2 - Dimensional Jacobian

Matrix 1s

Ae-(TRI)A +Det T = O. 4.2.1
() Te3J.

A typical plot of the

Trace function 1s shown
for the C.S5.T.R. model.

A ‘\\\$e>
1in Fag. 4.2.: Negative Fig. 4.2.1
Note: TR T; = f(rys) = (®)
3 at ;5 = :e{ yvehe.

A detailled phase plot may be obtained close to where the
Trace of the Jacobian vanishes by reparameterizing Js in

the neighbourhood of 8}_ as follows
3¢s) = Sc + S.A(s),

Then, linearizing about 8 =0, yields from TAYLORS THEORY

?
Sg - S¢ 2 5.4 + ol8?) .. s —>o
For A.CO) < 0a typical plot of the above expressian
would be as follows 1n Fig. 4.2.2

f\ﬂs)

Se A'(°\< 0 = ;S <J-c .

o] g —=>

Fig. 4.2.2
Hence pertiodic solutions to this differential system 1n
the neighbourhood of tyc would be possible only for 53 < Sc

as 1s shown diagrammatically overleaf in Fig. 4.2.3.



- 1

In this example, 1f :; 0 unstable

ale)< © Je

= S}Q < 5;

However, bifurcation 15 normally described as being "to
the left" by reference to the conventional b}furcat1on
diagram where the bifurcation parameter O 1s the first
variable. See Fig. 4.2.4 below. In any event the

—

periodic orbits will necessarily be unstable.

H
S &
Fig 4.2.4

The last condition of the theorem shows that there 1s a
direct link between the direction of bifurcation and the

stability of the bifurcating orbit

A phase diagram for (¥Q)MW)), when dg 15 'close to' e,
y about a critical point (s) would be as follows 1n Fig.
4'2.5.

\
x (&) ) {_:L——D unstable periodic
9
\ S ’ orbit
\ 4
. R4
Yty —>
Fig. 4.2.5

This example of an unstable closed orbit 1s also referred
te as "SUBCRITICAL BIFURCATION". 6)



-Development of a stable closed orbit, known as
SUPERCRITICAL BIFURCATION 1s shown below i1n Fig. 4.2.6.
This evolution of periodic solutions 1s straictly Hopf

Bifurcation.

/\AJ
unstable fixed point &€& /J =X‘$‘Xf-

parabolic

stable closed

orbait

. K)%: 5
D

stable fixed point

Fig. 4.2.6

For 4 1n the neighbourhood of & , the radius of the
closed orbi1t 1s proportional to,’p .
M 1s a perturbation parameter.

Bi1furcation occurs at /V =0

A pictorial summary of the nature of bifurcating orbits
and their relationship to the salient parameters 1s now
given overleaf i1n Table 4.2.1.
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A)

B)

As can be seen for four out of the eight cases no

Alo)> ©

I d<¢ 3-; é'> a-;
§$(3)>0 Gy ®
S

T < de T> Jc

£'(3.) <o

JEION

et

A’(o\< o)

| J‘(S.g J‘>61
P (3e)>0 @U G
N J'(&,@ ;>8g
feree] ©s) ©

Table 4.2.1

bifurcation to periodic orbits occurs.

Of the remaining four examples,

surrounded by stable orbits the other two are surrounded

by unstable arbits

Intuitaively,

stability of bifurcating periodic orbits -

the following condition 1s necessary for

SUPERCRITICAL BIFURCATION.

1 d
A'(0) AND g5 P(de) MUST HAVE THE SAME SIGN
SEE @ FOR STABILITY CONDITION

- 43 -
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. 4.3 DEVELOPMENT OF HOPFS BIFURCATION THEORY

For the 2 dimensional autonomous system 1t 1s

desireable to write 1t 1n the following form

aw
X

= A% w

+ S Glw,s) 4.3.1

where S 1s a small parameter

and where A has purely i1maginary eigenvalues.

Given S as the bifurcation parameter; then to

achieve the necessary formulation above, one

reparameterizes the original differential system

z =

let ia =
S

¢ =

I

Ts

w ()

(e
o
]

()
=)
il

and (}?O«)

Fe(2)

2& + S Als)

!

L

Ts

as follows

Equilibrium solutions

close to craiticalaty, C.

Magnified time function.

T(1+Vens)

(Z('c) - 25, )
S

Magnified view of a
solution 1n the
neirghbourhood of a

bifurcation point.

Jacobian function when

=8 the trace vanishes.
Rs - Rse
&- = J-g
< _Ags
dd ,rsé"
F3(E+sw) = S Aj.w 4.3.2
s
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~ Introducing the new variables, the original differential

system may be reformulated as follows

o o4 . s
T W) 5 g B0 T %
_ (\ + S T(s),) Fs(z).
5

(l + :.\T(s) )(S As W +¢ Q&w).

w45 (@9 R w 4 (e T W),

s $
' W(‘t’)= A°w + S(A(S) cw+mnsw +(14%s) Q W) 4,3.3

Thi1s differential system 15 now 1n the desired format,
and the solution by the method of variation of parameters

15 Y

14 e -#a° s s
wlrs)-e b +se fe . [A(s) cw +Tts) AW +(\+s¢cs))a’.w} ds.

©

This solution 1s T periodic, and

)
AGs) | T(s) € c(ee) | o) = O = Wto),
Thus the original system
: S
2@k)= F (iﬁt) has a Tg periodic solution
=(s) =
2= 2+ SW(_T; t ,S) 4.3.4
which 1s stable, 1ff afo)> © at 9,
1Ff Ate)< o at de,

Continuity properties of’VV(T,S) now directly lead to the

following proposition.
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u)
PROPOSITION 4.3.1

The solution VV(Y}S) can be expanded i1n S as
wlYs) = wite) + s wlr) +swplrs) a.as

YR
where W(‘(,o)= e .
1 4] t-d‘ﬂ °
e

W, LY) = e QL (w(x,o)) da
\’N?.('(lg)“—____—‘> o -
S =>0—

Thus, 1t 15 possible to evaluate \N(,T,S) 1n the neighbour-
hood of S = 0,

CR®
Since W(Yﬁ) and € are both T periodic, then

expression 4.3.3 vields

T T
o _e®
A(S)Jé‘nc‘ W(d s)da + Ws)[e"‘;lswtc,s)ck +(14 s,vrsye‘nqsw{‘gs)dh 0  4.3.6
® o o
Equating terms of first order i1n S, gives
91- ['g i ' 1-,(3’» AR° T'Kﬂod 3
A'te)je‘ ce .bir +\T(o)Je Re bdr *Je ]‘;Q(‘N(dﬁ))) =0 4.3.7
o () 0o sz0

From the above equation 1t will be possible to determine
explicity the ty(°) function, i1ncluding 1ts sign. Thus
the stability of periodic orbits in the neighbourhood

of Sh{ ,1-=|, e may be evaluated.

However, the first two 1ntegral expressions 1n egquation

4,.3.7 may be simplified further.



T_ ° o R°
a) I| = Q‘a A €J.b AL = Tﬂo.'b_ 4.3.8

°

S AR® o AR° T/0o ' o0
b) I J. ¢ e b.dsf =E<C-?—.'U’gﬂ(ﬁ)_b. 4.3.9

Simplification 1n case b 1s obtained as follows.

Since the eigenvalues of A° are :j\1J; , then

-
A° = R.D R,
withp = [ Yo °
o) “LlJo
and R = Some i1nvertible matraix.
Ta'A
D e (o)
Hence @ = ) AW,
o] e
—CosAwy. L + SndLwp. D 4.3.10
-]
1
. )
Thus Ia =f(foSJUo,I- Smx\»'g_9°)c°(('osxuo'[ + Sinad WA )1) dr
LY W
° ° o

which yields the result outlined i1n (b) above.

Simplification of these 2 i1ntegrals yields the following

general expression

A{o)—(( tﬂ‘t A )\; % ‘T(o)Tﬂ% *Jn o (Q(w[a s))) 4.3.11
o] $:=0
As 'b' 15 a vector 1t may be suitably chosen for ease of
|
calculation, as will be shown, such that A (e} may be

readily evaluated.



4.4 DIRECTION OF BIFURCATION
4.4,.1 The previous section outlined the derivation
from general theory of a specific analytaical
expression, the sign of which ascertains the
direction of bifurcation and the associated
stabi1lity of the periodic orbits of a 2

dimensional differential system.

In the case of this continuous stirred tank reactor
model, inputting numerical data for the constants

d.'P, X)gand Y st1ll results in a very deta11‘ed
calculation 1n order to evaluate the sign of A(0) ; the

desired result.

The ensueing derivations are pioneered by the author for

the more complex case of & finite.

Again, the object of this analysis 1s to evaluate the

sign of A‘(Dx from the following expression.

T
(-]
' !: o, ' 0.0 ! N ARG [ s
Al)z (C V:th)b + T)TAY +je -J-S(Q(w(x,s))) =0 4.4.1
o S-_-o
\
Indeed, the second term involving GYb) will be
eliminated from the calculations as 1t will be shown

later that this 1s possible by a suitable choice of the

vector b.

The calculations are consequently divided now i1nto two

parts;s;
Evaluating a)-]a:(co-w'ﬂoﬂ%“#) 4.4.,2
T.
b) IQAE(Q‘(WH,S))) ar 4.s.3
S
o

$=0



4.4,2 To evaluate — (C - Hoc ) for ¥ finite.

2

The vector field 1s represented by the expression,

=
F§(2)= -x +0(tx) e . 4.6,
BYe -(118)y + & S (1-x) e 73

- X
A stationary point P =(:1)1s evaluated from,

-

% +BYe,
M 1+

WF) = & =¥ (4% +8v. )
where 3('2) = ( b 4 e‘ aL’L-I'P\)g f‘((*"p)a’
B ¢

The Jacobian 3—5 (Z) at equilibrium may be calculated to

give,
- z
% (F\x

Jg@=l=tn i va(Ems) % [ 4ox

\

MY
However the craitical value of the Damkohler constant 5;
15 when the Trace of the Jacobian vanishes;
- ° -\ {
Hence 3‘(2:)= A =[x i‘(H’B + T-?) 4.4.5
-dX | -
[l & ‘= x=rc
O
The matrix € 1s defined as
ol =
—?(3(2))§':6’c
_ d - dy
‘(a ) ("‘*T(i) )
F=5e  \4Y dd /5=5.
3 (d ¢ 43 ) \ ‘ot
T\ A% BHL dy T
g, 105
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Straightforward differentiation yields

o (LA P Al
o= @) (rpirend]
-d d¥? . 24 % | a'lx
[GEALAE S TV IR T T 3 )xz_r‘
¥ e
(v ) = [ — _dUp) ¥tx (1-x)
where ¢ (x,) (l,_..;)‘c (“*4&1’9'}:)*(“#)—3'12) Xx‘ .
7,
- O¢ Det R
(). X,
(1ep) X
Simplifying the notation : SEC = A A
as follows;
|
Let '~;c = 'b.
| =
A
N bav e p
~-d ab b
! v )
c = 2L -'—_Z'tz:;ad ((“P) a.)
-db* d.b“c‘z’ZdtH}nd’ do w?
1+p
Clearly ﬂ°(;)= -b(;u)
-da
and a suitable choice of b = ( \ )w111 eliminate

)
the Qo) T A°b  term from the general expression 3.2

Further calculations give

. -ab' 1\ = abl »
é(&%dﬁ ﬂ°)(:>) Lﬂ(d)if “P)(-h‘q-u‘ndl-?_iﬁi. 5*') 4.4.8
0

XS 25w rp A&
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Using the relationship : 1)b+|+p

216((tp)a-)

dyad?
wt 4.4.9

W

W

and evaluating the scalor product of this vector with

('ﬁ“) gives, upon simplification;

fegr) (1) e mE

- i)
This result 1s exactly equivalent to the 1nf1n1teb’ case. ©
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T .o
~AR
4.4,3 To evaluate jelr %S(Qs(‘w(d,s))) dr
©
Sto

where Qs(‘\f) = _Ei(i'h&)' Fl(i) 4
g2

and ,k, = S."U(/I'S)
v (t,s) V() v ()
Wrla,3) = (\[(,f‘s)) : (V(K)) +S(\I‘(1)) ¥ O(S).

-#R;
J_(n{_[\_ 1
<X+ 315, ) AR -R ¥

F,)- (i*ﬂ)- F\(!') R= (3+8y) 1-

'Q‘§ : 3

PV (1HpYF4R,) + 43 (1-1-R,) €

- 43R .(upRy td¥ 3Ry
-3 (3

Y
but eb’ R mdy be expanded and simplified to yield

1 Ry >
SR [en D REARF +ol) ]

where D ¥/ (319)2 4 4 11

(52 (+3)) [ 2. (543 )" P

( y)
[

r =(Bk—eu"(mﬁ)+Bx‘(x+§)")/6(w~‘q)‘_ 4.4.13

Therefore;

Fs(z+R) -A(Z).R =(7'c ER} -Z DR, e'x;,) +(iFki -t ER “nYi) +o(R)
\=%

-x



Consequently

- - -~ - _ 3 -
Qs(w(d;s))=(:.5 V?&,s) -%D Vlas) vins) + 5 3 Fvlas) - 5. Eulasvilas) d'.\ + ofs)
-%

1\/- . s L
=(&X:E(v‘,2&v.v,)g__ ovv+sov 4 svu.)nx PV :,_i u\,‘)+ ols)
- -

and differentiation gives;

- - 3 -
L] of\)(w(n,s)) =(iXZxEvv. - % D{uyavw)au BV -_{_Ev\f) 4.4.14
ds =%

-2

S0
From the preceeding equation one now needs to determine s

Vi
the vectors W = (3) and W, = (V|)as described 1in
proposition 4.3.1

(oywa = Sinay, Fundamental
v w (=%

\N = v) = ) matrix
cdXt  SiawA solution. 4.4.15
1= W
ol o
(£-q,)R
v - -
and W, = v:)=Jd"|,(’. [t Eva-_'g__ va}(i) 4.4.16
> =%
| B+
Noting that Fl(d = (J. ) then,

s
W, ) = jdtbii E Veg) =X D u(y) vlq,)“(l)(ow(mg) ' (P‘") S W (4 ,)].
° % w

Thus

A
osu(c-q )t %fm‘uh-q,)

¢
_ T - 20 s + 2050w Goswd
\N‘(A’) Jodli(?d.t ‘_9 ‘:‘T + 20 Yawva (03w }(4

Gy w(a-q) + 4 frd(4-q) Jorr(-R)2

and_d_é.s)‘\rl(ds\
ds ( 9)

may be evaluated as the function overleaf.

$=0
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<
1\ a3 206
(dj}%!(u_&)((:? Es %D"_i) );\N'Uf -‘__._% bY¢ SWJ()J[G (\r‘c)}% loswv(s-q) + % S ("'9)} d”

o

e
& F Df-dx Sewr
oW (..i)i - X 'U(l") )J°[G (\f.‘):l {COSW("‘) 1 P&‘.y\“ u(‘-$)) Jv

- -.3.3 -
= ELZE _RFL: St <% € Gitnir fosud
v W (93 ard(E)3 1% ()2

where G(‘U,J) {(Zd.xE _D)f..\'!wx ¥ 29O Sinwas (oS'UX‘S
%’ W

ecallin a (! =( - ) ‘
Recalling that e . (i) Aol faws A (&)

\ . B
= loswa (J.)- Sovd (*_ )
oV
becomes a very lengthy

men [ 2L @ ukes)
6

integral of combinations of sine and cosine functions

which may be reduced to the following expression after 1F
has been multiplied by the Scalar(‘ﬁx)to eliminate the QYﬂ

term as was previously explained.

(J -4f d o (d“(ufa,,)))tld;)(-.:; )

-2mde [(aue :__Z_Q){z(?ubr )10 -25 0 +5[-u%E A

TRRITENE =

\-

208 ¢ sLBﬂ)_\)B o[auiE o X 1) +hD'wz)

+28 [au‘ () % 1 ww‘*} rberf(2 ) -IBatiF

=%
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=2£__&si3 -3(a¢ie-mz-3o(l- ‘)(za.ie-zo -buH{-E X2 o 34TF
yBwS (1-x)? t-t) l_u’t) ( I3 ¥ \)

Resubstitution of this formula and the result of the

expression for (((0-—‘- a°(°ﬂ°)(')),("‘") back i1nto
Wt 0 \

the original bifurcation equation as described by
equation 4.3.11 yields as expression for the [A‘lo)]

function for “finite ¥ "

gt Ta®

Initi1ally, one could evaluate this function for X=00

A lokﬂ [[_zue -?Db]?l l)[zdtﬁ - zob}ﬁ[wf- RE[ar)b+a op,zgh]].a .4.18

(infinite).

In this case Pe = |
Ec — 2
Fe =& 4 4,19
and A'(O) =__d'.2izi_, ut(b_') “’(25‘*‘)" (25'&@)2 . 4.4.20
gt Tac® |
where ‘b =dS§,~1- B for"i. =1 or 2
a = S

and 1t = 4alb -b?

This expression 15 in agreeance with the result as

obtained by Poore “)

Comment:-— In the i1nfinite case, once & and P are
given then the sign of A’(O) 1s known. In
the finite case, evaluation of';andqxs
achieved through numerical 1i1terative
procedures leading to a far more
complicated routine 1n ascertaining the

sign of A(6) at criticality.
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CHAPTER_FIVE

S

=] NUMERICAL ANALYSIS
9.1 ABOUT NAG

Now that the modelling and the associated
analytical work has been duly carried ocut for this two
dimensional non-linear system 1t 1s wholly appropriate to
confirm the analysis by carrying out further detailed
numerical work,

The numerical algorithms group (N.A.G.) Fortran
library 1s very extensive and the Mark 11 revised
routines were used to solve this system of ordinary -
differential equations.

The NAG library offers a range of "Driver"
programmes which may be suitably altered for the
programmers neéﬁs. In the NAG Fortran library, the
author chose routine DOZ2EBF which integrates a STIFF
system of first order ordinary differential equations
over a range with suitable 1nitial conditions using a
variable-order variable-step GEAR method, and returns a
solution at points specified by the user.

Indeed to give the reader an appreciation of the
extent of the library for ordinary differential equations
alone, a summary of available routines are copied
overleaf i1n Table 5.1 1.

A special class of 1nitial-value problems are
those for which the solutions contain rapidly decaying
transient terms. Such problems are called stiff: an
alternative way of describing them 1s to say that certain
ei1genvalues of the Jacobian matraix %;%5 have large
negative real parts when compared to others. These
problems require special methods for efficient numerical
solution: the metheods designed for non—stiff problems
tend to be very slow, because they need small step-

lengths to avoid numerical instability
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SUMMARY OF AVAILABLE ROUTINES

- Problem Routine
Merson's Adams BGears
INITIAL-VALUE PROBLEMS
Driver Routines ... ¢cve..n
Integration over a range DO2BAF DO2CAF DO2EAF
- with i1ntermediate output DO2BBF DO2CBF DO2EBF
— with global error estimate
and stiffness check DOE2BDF - -
Integration unti1l a component -
of thé solution attains DO2BGF DO2CGF DO2EGF
a grven value
Integration Routines DO2PAF DO2RAF DO2GQBF
Integration over one step DO2YAF - -
Interpolation on the solution
all components DO2XAF DO2XGF DO2XGF
one component DO2XBF DO2XHF DO2XHF
BOUNDARY-VALUE PROBLEMS
Shooting Method .. .o . .
simple parameters DO2HAF
generalised parameters DO2HBF, DO2AGF
additional facilities DO2SAF
Finite difference method -
simple parameters DO2GAF
linear problem DO2GBF
full non—-linear problem DO2RAF
Chebyshev collocation . cau
single equation DO2JAF
first order system DO2JBF
general system DO2TGF
Sturm-Liouville Eigenvalue ...
regular problems DO2KAF
general problems DO2KDF
eigenfunction calculation DO2KEF

Table S5.1.1

- 57 -




To solve the equations arising 1n Gears method
an approximatiaon to the Jacobian matrix %31 1s
required. This approximation can be calculated
internally, but the user may supply an analytical
expression for the Jacobian via a parameter to the
routines DO2EBF, DOZ2EHF and DO2GBF. In most cases
supplying a correct analytical expression will reduce the

amount of computer time used.
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S.a THE DOZ2EBF-DRIVER ROUTINE

The elementary draiver programme, which 1i1tself
"calls up" the appropriate NAG programme, has been
extensively modified by the author.

A process flow chart 1s given overleaf for
clarity.

In this case, the routine i1ntegrates a system of

ordinary differential equations
Y. = WK (T,Y.'Yz) =12 5.2.1

fram ¥ =X to T = Xend The system 1s defined by
subroutine FCN which evaluates FL 1n terms of T ’

and .T| ’ *é « The solution 15 returned via the user
supplied routine OUTPUT at a specified set of points.
The accuracy of the integration and the interpolation 1is
cantrolled by the parameters TOL and IRELAB. The
Jacobian of the system Y =F (T',*') 1s supplied 1n
the routine PEDERV.

Further details on the programme specifications,
error warnings, and other parameters may be obtained 1n
the DOZEBF—-NAG Fortran library routine document

A copy of the modified programme i1s attached
Each sections function 1s clearly described in the
programme and may be followed by using the complimentary

flow chart.
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FLOWCHART

START

FUNCTION STATEMENTS

S awp T

CALCULATE NUMBER PRINT
OF STEADY STATES 1 OR 3

EVALUATE CRITICAL BAND
INPUT FOR O (M, m; )
DAMKOHLER -
NUMBER 4
o CALCULATE EI PRINT
BIFURCATION POINTS $1152
S ' sl
EVALUATE PRINT
(1) CRITICAL POINTS NODE, ETC
(2) THEIR NATURE
DO K 1,N SUBROUTINES
> CALL NAG
——— /@;x 2 svsrem/

INPUT I.C

3

N

EVALUATE TRAJECTORY

Figure 3 2.1

———— GLOBAL

PRINT

SOLUTION




aooaon

o0

noaao

- CONTINUOUS STIRRED TANK REACTOR (C.S.T.R.) - MODEL

(A) THE DAMKOHLER FUNCTION

FUNCTION UU (G,S,TT)
REAL*8 UU, G,S,TT
UU= S - (G /(1 0D0 — B Y)*DEXP( TT )
RETURN
END

FUNCTION BB(G,P,Q,R,U,TT,V)
REAL*8 BB,G,P,Q,R,U,TT,V

BB = (((( P/R )*%2 ODO + P%( 1.0DO + @ )Y)*( G*G ))
+ ((( V2 ODO »*( P/R ) — P%( 1 ODO + Q@ ))%*G ) + ( UxV))=*
( = DEXPC TT ))»/((( 1 ODO — G »*( V + ( P*G/R )))*%x2.0D0)
RETURN
END
(B) THE TRACE OF THE LINEARISED SYSTEM

FUNCTION CC(X,Y,P,Q,R)
REAL*8 CC,X,Y,P,Q,R,

CC = -1.0D0/( 1.0DO - X ) = ( 1.0DO + @ ) + (
P¥X )/(( 1.0DO + ( Y/R ))%*%2.0D0 )
RETURN
END

.

FUNCTION HH(X,Y,P,Q,R)
REAL*8 HH,X,Y,P,Q,R

HH = ( -1 ODO/(( 1.0D0 — X »*%¥2.0D0 )) + P/ ((
1.0DO + ( Y/R ))*%#2 ODO ( - ( 2,.0DO*P*PxX )/¢(( 1.0DO + @
Y*¥R*(( 1 ODO + ( Y/R ))*%3,0D0 ))

RETURN
END

INPUTTING ALPHA (P), BETA (&), GAMMA (R), Yc (W)

SUBROUTINE CONST(P,Q,R,U,)
REAL*8 P,Q,R,U

P = 8.,0D0
@ = 3 ODO
R = 20.0DO
U = -2.0D0
RETURN

END

IMPLICIT REAL*8 (A-H,0-2)

REAL*8 XEND, TOL

INTEGER I, IFAIL,IR,IW,J,MPED,N,NOUT,ITER,ITMAX
REAL*8 W(2,20),Y(2)

EXTERNAL FCN,OUT,PEDERV

COMMON /SFACT/S,XEND,H,I,TOL,A,B,NOUT



(1) CALCULATING THE NUMBER OF STEADY STATES

aooo

CALLCONST(P,Q,R,U)
V = (1.0D0 + @ + (Q*U/R))
Z = (4%(U%%2))/((1.0D0 + @) — (&4/R)*V)
WRITE ( &,1040 )
READ (S, 1050 )NOUT
WRITE (NOUT, 1090)
WRITE (NOUT, 1060)2
IF ( P - 2 )1010,1010,1020
1010  WRITE(NOUT, 1080)
GO TO 1030
1020  WRITE(NOUT, 1070) -
1030  CONTINUE _
1040  FORMAT(_" INPUT THE OUTPUT CHANNEL ")
1050  FORMAT( I1 )
1060  FORMAT (4OHOMULTIPLE STEADY STATES REQUIRES ALPHA>, F10 4)
1070  FORMAT(/,10X," %% THREE CRITICAL POINTS MAY EXIST *% ",/)
1080  FORMAT(/,10X," %% ONLY ONE CRITICAL POINT EXISTS ** ",/)
1090  FORMAT(4(1X/), 31H DO2EBF EXAMPLE PROGRAM RESULTS/1X)

c
c (2) EVALUATING THE CRITICAL RANGE
c FOR THE DAMKOHLER NUMBER
c
@1 = ( 1.0D0 + @)
Bl = ((( P/R Y*#%2 ODO ) + ( Q1%*P))
DM3 = ( P#P )% ((( 2 ODO*@*U)/( R¥R ) + (( 2 ODO/R ( -
1 1.0DO*Q1*%*2 ODO ) - ( & ODO*V*VUxB1)
IF (DM3 LT.O0 0) GO TO 2030
DM2 = (( —P»((( 2 ODO/R Y*V )— @t )) + (( DM3 )**0 350DO
1 Y)/(C 2%B1 )
DM1 = (( —-P#(({ 2 ODO/R )»*V }— Q1 )) - (( DM3 )**0.50DO
1 1)/ 2%B1 )
T™1 = ( - ( P*DML +Q%U )/( V + (( P%DML )»/R }))
DK1 = ( DM1/¢ 1.0DO - DM1 ))*DEXP( TM1 )
TM2 = ( - ( P+*DM2 +Q@%U )Y/ V + (( P*¥DM2 /R )))
DK = ( DM2/7( 1.0DO - DMZ ))*DEXP( TMZ2 )
WRITE(NOUT,2010)DK2,DM2
WRITE(NOUT,2020)DK1,DM1
c
2010 FORMAT (/,3X,"” THE LOWER CRITICAL DAMKOHLER VALUE IS " ,
1 Di2.6," AT X = ",D12.6,// )
2020 FORMAT (/,3X," THE UPPER CRITICAL DAMKOHLER VALUE IS "
1 D12.6, " AT X = ",D12.6,// )
2030 CONTINUE
Cc
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T (3) PERIODIC BIFURCATION

aooon

CALL CONST(P,Q,R,U)
ITMAX = 20
EPS = 1.0D-10
DD3040 L =2,1000
X = 0.0010DO%*( L -1 )

ITER = O
DIFF = 1 ODO

YO = ( P*X + Q%U )/( 1.0D0 + Q@ )
FTRX = CC(X,YO,P,Q,R)

XN = ( X -— 0.0010D0 )

YN = ( PXN + Q%U )/( 1.0D0 + @ )
FTRN = CC(XN,YN,P,Q,R)

IF ¢ FTRN .EQ. 0.0D0Q )GO TQ 3030
IF ( FTRX/FTRN ) 3010,3010,3040

3010 DO WHILE ((DIFF.GT EPS).AND.(ITER.LT.ITMAX))
ITER = ITER + 1
YO = ( P*X + Q%U )/( 1.0D0 + Q )
FTRX = CC(X,Y0,P,Q,R)
ATRX = HH(X,YO,P,Q,R)
X1 = X — ( FTRX/ATRX )
DIFF = DABS( X1 - X )
X = X1
END DO
3050  CONTINUE
DEL = ( X/( 1 ODO — X ))#DEXP( -YO/( 1.0DO + ( YO/R )))
WRITE(NDUT,3030)X1,DEL
3030 FORMAT(/,3X," PERIODIC BIFURCATION AT X = "D12 &," AND A
1 DAMKOHLER CONSTANT OF ",D12 & )
3040  CONTINUE
C



o000

4010

4020

4030
4040
40350
4060
4070
4080

(&) EVALUATING THE CR
WRITE(6,4030)
READ(S,4040)S

WRITE (NOUT,4050)S

ITMAX = 20

EPS = 1.0D-9
WRITE(NOUT,4020)

DO 4150 K =2,1000
G = 0.0010DO*( K

ITER = O
DIFF = 1.0DO
TT = ( - ( P*G +
FF = UU(G,S,TT)
GP = ( G — 0.001
TP = ( — ( P*GP
FP = UU(GP,S,TP)
IF ¢ FF/FP ) 401
DO WHILE ((
TT = ( = (
ITER = ITER
FF = UU(G,S
FA = BB,G,P
Gl
DIF
' IF
G =
END
Ge = ( PG + Q%*U )»/( 1.0
TR = ¢ — 1 ODO/(C 1 ODO
(¢ 1.0DO + ( G2/R ))*x2
DETJ = ( 1 ODO + & )Y/ ( 1
(¢ 1.0DO0 + ( G2/R ) )*»2
DELJ = (( TRJI*%2 ODO ) -

WRITE (NOUT,4130)

WRITE (NOUT,4120)TRJ,DETJ
WRITE(NOUT,4140)G,G2

IF( DETJ LT.0.0 YWRITE(N
IF(DETJ GT O O AND DELJ
IF(DETJ GT.O 0.AND.DELJ
IF(DETJ.GT O O AND DELJ
IF(DETJ.GT.0.0.AND DELJ
IF(DETJ GT.0.0 AND.DELJ
FORMAT (/ , 20X, "% %5825 %% 2%
"% EVALUATING THE CRITIC
"AND THEIR NATURE",8X,"*
126 36 H 36 4 96 96 3 I K I I I I I K%
FORMAT( " INPUT THE DAMK
FORMAT(D12.6)
FORMAT (/ ,3X, "THE DAMKOHL
FORMAT(/,3X," THIS CRITI
FORMAT(/,3X," THIS CRITI
FORMAT(/,3X," THIS CRITI

ITICAL POINTS AND THEIR NATURE

- 1)

G*U )/ V + ( P*G/R )))
oDO )
+ @*U Y/ V + ( P*GP/R) )))

0,4010,41350
DIFF.GT EPS).AND (ITER LT.ITMAX))
PG + Q*U )/( V + ( P%G/R)))

+ 1
,TT)
,0,R,U,TT,V)
= G - FF/FA
F = DABS( Gl — G )
(DIFF GT.1.0D0)GO TO %150
G1
DO
DO + Q )
-G )) - ( 1.0D0 + @ ) + (( PxG)/
0DO )
.0DO - G ) - (( P*G )/
0DO )
( 4 ODO#DETJ ))
,DELJ
OUT ,4060)

GT.0.0 AND.TRJI.LT O OWRITE(NOUT,4070
GT.O0 O.AND.TRJ.GT.0 DIWRITE(NOUT,4080
LT 0.0 AND TRJ EQR.O0.0)WRITE(NOUT,4090
LT.0.0 AND.TRJ GT 0 O)WRITE(NOUT,4100
LT.0.0 AND.TRJ.LT O0.0)WRITE(NOUT,4110
IR N NR RN HRRRRRR" / DP0X,

AL POINTS #",/,20X,"*",8X,

",/,20X,

KRR WNNRKN" ) /)

OHLER NUMBER ")

ER CONSTANT IS",D12.6,/)

CAL POINT IS A SADDLE POINT *,//)
CAL POINT IS A STABLE NODE “,//)
CAL POINT IS AN UNSTABLE NODE “,//)



4090
4100
4110
4120
4130
4140
4150

o000

6010
6020

_FORMAT(/.3X," THIS CRITICAL POINT IS A CENTRE “,//)

FORMAT(/.3X," THIS CRITICAL POINT IS AN UNSTABLE SPIRAL ",//)
FORMAT(/ 3X,"” THIS CRITICAL POINT IS A STABLE SPIRAL ",//)
FORMAT(/,3X,3(3X,D13.6))

FORMAT/,BX," TRACE J ",3X,"DETERMINANT J",3X," DELTA J" )
FORMAT(//3X,"A S5TEADY STATE IS X = ",DE12 &,2X,"Y = ",Dl12.6,/.
CONT INUE

(6) EVALUATING TRAJECTORIES BY GEARS METHOD

FOR VARIOUS INITIAL CONDITIONS

WRITE(NOUT,&6140)

N =2

Iw = 20
MPED = O
A = 0 0DO
B = 0 ODO
IR =2

DO 6020 K = 1,1

WRITE(&,6030)
READ(5,6060)Y(1),Y(2)

WRITE (NOUT,&040) Y(1),Y(2)

DO 6010 J = 5,5

TOL = 10.%%(-J)

WRITE (NOUT,6090) TOL
WRITE(NOUT,5050) S
SRITE(NOUT,4100)

X = 0.0DO

XEND = 20.0D0

H = (XEND - X)/400 ODO

I = 399

IFAIL = 1

CALL DOREBF(X,XEND,N,Y,TOL,IR,FCN,MPED,PEDERV,
OUT,W, IW, IFAIL)
WRITE(NOUT,6110) IFAIL

IF (TOL.LT O O YWRITE(NOUT,6130
CONT INUE

CONTINUE

MPED = 1
WRITE(NOUT,5150)

DO 6080 K = 1,1
WRITE(&,6030)
READ(S,6060)Y(1),Y(2)
WRITE(NOUT,5040)Y(1),Y(2)
DO 6070 J = 5,5

TOL = 10.%%(-J)
WRITE(NOUT, 6090) TOL
WRITE(NOUT,&050)5S
WRITE(NOUT,6100)

X = 0.0DO

XEND = 20.0D0

H = (XEND - X)/20.0DO
I =19

IFAIL = 1



6030
6040

6030
6060
6070
6080
6070
6100
6110
6130
6140
6150

noooaaon

CALL DOREBF (X, XEND,N,Y,TOL,IR,FCN,MPED,PEDERY,

TOUT,W,IW,IFAIL)

WRITE(NOUT,&110) IFAIL
IF (TOL.LT.0.) WRITE(NOUT,6130)

FORMAT( " INPUT INITIAL CONDITIONS ")
FORMAT(/,3X, "INITIAL CONDITIONS ARE V(1)
= ",D12 &," Y(2) = ",D12.6 )
FORMAT (/,3X, " DAMKOHLER CONSTANT = ",F10.4,// )
FORAMT( 12D12.6 )
CONT INUE
CONT INUE
FORMAT (22HOCALCULATION WITH TOL = , D8 1 )

FORMAT(40H X AND SOLUTION AT EQUALLY SPACED POINTS)
FORMAT(8H IFAIL = , I1)

FORMAT (24H RANGE TOO SHORT FOR TOL)

FORMAT (32HOCALCULATING JACOBIAN INTERNALLY)

FORMAT (31HOCALCULATING JACOBIAN BY PEDERV)

STOP

END

THE (2%2) C.S T R. SYSTEM MODEL

SUBROUTINE FCN(T,Y,F)

REAL*B T

REAL*B F(2),Y(2)
COMMON/SFACT/S,XEND,H,T,TOL,A,B,NOUT
CALL CONST(P,Q,R,U)

Fe1) = =Y(1) + (S%(1.0DO-Y(1))*DEXP((Y(2))/
(1.0DO+((Y(2)}}/R))))

F(2) = -Y¥(2) + (P#S*(1,0D0-Y(1))*DEXP((Y(2))/
(1.0DO+((Y(2))/R)))) — QA*((Y(2)) -U )

RETURN

END



_—— THE JACOBIAN MATRIX

oo

SUBROUTINE PEDERV(X,Y,PW)

REAL*8 X

REAL#8 PW(2,2),Y(2)
COMMON/SFACT/S,XEND,H,I,TOL,A,B,NOUT
CALL CONST(P,Q,R,U)

Z = S*#DEXP(=-Y(2))/(1 ODO + ((Y(2))/R))

PW(1,1) = -1.0DO - Z
PW(1,2) = ({Y(1) — 1 ODO )»*Z )/(( 1.0DO + ((Y(2))/R))*%2.0D0O)
PW(2,1) = — P*2Z
PW(2,2) = — (1 ODO + @ ) — ( P*( 1.0DO — Y(1))%Z )
1 /(C 1 ODO + ((Y(2))/R))**2 0DO) ,
RETURN
END -
C —_—
C PRINTING THE UNIQUE SOLUTION :
G i
SUBROUTINE OUT(X,Y)
INPLICIT REAL*8 (A-H,0-2)
REAL*8 Y (2) .
COMMON/SFACT/S, XEND,H,I,TOL,A,B,NOUT
INTEGER J, NOUT,I
CALL CONST (P,Q,R,U)
WRITE (NOUT,9010) X, (Y(J),J = 1,8)
WRITE(&6,9010) X, (Y(J),J =1,2)
TT1 = DABS(Y(1)-A)
TT2 = DABS(Y(2)-B)
TT3 = DMAX1(TT1,TT2)
IF (TT3 LT TOL) RETURN
X = XEND - FLDAT(I)#*H
I=1-1
A= Y(1)
B = Y(&)
RETURN
%010 FORMAT ( 1H , F7.2 ,2D10.3)
END



5.3 CLASSIFICATION OF DYNAMIC BEHAVIOUR
IN PARAMETRIC SPACE

For fixed o , B , ¥ , ¢ , the dependence of
the steady state conversion X , and the steady state
temperature'j , on the Damkohler number 5-, 1s

investigated for the system.

. )
X = -x + 3G-x)exp (g5

3.3 1

™

v 44 5 (1-x) exp (Gi57) —p(4- e )

However for wvarious relationships of the
parameters d-, P ,ef and'ﬂc s the dynamic behaviour may
be specifically classified as i1s fully outlined 1n
Chapter Three, Table 3.4.1.

At this point, the range of problems available
to the author 1s i1nfinite.

A significant departure form previous papers on
the C.S5.T.R. 1s made in the fact that ¥ will be taken
to be finite.

In order to assist an overview of results:

typical fixed values will be taken for the following two

constants.

E
X =—é—?‘f_- = 20 Arrhenius constant

5.3 &
(—‘——%ﬁ)8= -2 Cooling constant
*

This leads to a representation of the (J.,P )

e

parametric space where three lines of criticality may be

specified.

_68_



These critical limes arise from the following

canditions

Yy (HP+ p-‘%,sa

M (1) d HP_%(H_“p%L)

B Multiplicity
S (2) S1, Sg2, real Dynamic instability
SM (3) 81 = M1 RQualitative change

Various regians 1n parametric space are
described by these three lines as shown below 1n Fig.
3.3.1 The 1interpretation of the nature of the equilibria
within these regions 1s slightly complex as the relative
values to one another of the roots My ,My, S, and Sy,
needs to be known and whether or not these roots are

complex These curves are best solved empirically ‘3)

28

21

14
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S.4 SAMPLE PROGRAMME RESULTS

The purpose of this chapter 1s not to rigidly
define all possible solution sets to this problem but
moreover to present a flavour to the reader of the range
of solutions with particular reference to Hopfs
Bifurcation phenomena.

In this light therefore, a sample of numerical
solutions was obtained for a range of parameters as shown
on Fig. 5.3.1

The constants ;3 » & 5 and Y were fixed as
follows

B = 3

¥ = 20 All typical values.

e = -2

The dimensionless group number (dl ) was varied
as shown 1n Table 5.4.1 below to give four distinctive

points on the ¢d , B ) plare.

v

Region ol Root Sequence
I 8 My My, 9% , 5t -caomplex
II 12 m, , My complex, $S., Syreal
I11 20 O &S &em, emy &S < |
IV 26 0 &m & Si&my ¢S4 )

Table S 4.1

The programme was run for these four cases
choosing appropriate values for 3_, the Damkohler number,
and suitable 1niti1al conditions. Results from each of
the four cases are summarised overleaf in Table S.4.2.

The Damkohler numbers were chosen, where
possible, so that at least one equilibrium lay close to
the conversion values S1 or Sp. Thus 1t became
possible to numerically see Hopf's bifurcation as 1s
shown 1n the next section on the analysis of data.

Multiplicity requaires & > 16.7975.
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REGION I 11 111 IV
ALPHA ( A ) 8 12 20 26
O. - - 0.3708 0.1653
Ou - - 0 4302 0.3070
E; 1.70 0.996 0.43016 0.2648
CRITICAL
POINTS 1 1 3 3
S\ - 0.5000 0.2629 0.1974
S2 - 0 7859 0 8955 0.9162
m, - - 0.2698 0.7107
M2 - - 0.6265 0.1822
NATURE OF SPIRAL(S)| SPIRAL(S) | SPIRAL(U) | SPIRAL(S)
CRITICAL SADDLE (U) | SADDLE (U)
POINTS SPIRAL(U) | SPIRAL (L)
(%)

Table S 4 2

A sample of the programme results for case IV 1s
attached overleaf. All the data under the column marked
asteri1sk (%) may be found on the programme page.

The "trajectory" data 1s not given as hundreds
of data points are evaluated. However, the resulting

graph 1s given 1n detail.
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595 ANALYSIS OF DATA

As can be seen from the results, the values of
the Damkohler number was chosen where possible to evoke
periodic orbits as the phase trajectories.

These results may only be understood by

examining the following two diagrams for each case.

(1) Conversion ( X ) versus Damkohler number ( S—)

(2) Phase trajectory: (Tj ) versus (X ).

For the four cases shown the following Table

summarises the results.

Case I 11 ITI v

|
Node | Stable 1 1 o) 1
Spiral | Unstable 0 0 2 1
Saddle ) 0 1 1
Ltimit ! Stable 0 1 1 1
Cycle : Unstable 9] 1 0 0
Total Invariants 1 3 4 4

Table 3 4 3
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5.6 DISCUSSION OF NUMERICAL RESULTS

The purpose of this section 1s to give a brief
explanation aof the nature of the graphs for the four
qualitative regions taken as examples, and to relate

these results to the C S, T.R. 1tself.

CAl Region I

For any given value of the Damkohler number only one
steady state solution exists. This cratical point, or
equilibrium 1s globally asymptotically stable, as 1s
depicted graphically by the phase portraits. The product

conversion waould give a 50% vield.

[B] Region 11

Sti1ll only one craitical point may exist, however 1t
may now be either stable or unstable depending on the
s1gn of the trace function which produces real roots at

S1 and Sp.

In this example (E; ) 1s chosen so that the

equilibrium 15 stable but lies close to and below Si.

Thus the critical point 1s surrounded by an unstable
periodic orbit, which 1n turn 1s surrounded by a stable

periodic orbzit.

The phase portrait 1s quite complex about the
equilibrium. All 1nitial conditions starting outside the
unstable periodic orbit will have phase trajectories

converging to a stable periodic orbit (marked in red)
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All 1nitial conditions starting i1nside the
-~unstable periodic orbit will tend towards the steady

critical point, which again yields a 50% conversion

It should be noted that for the majority of
inltial conditions this system would tend to drive 1tself
1nto a periodic equilibrium solution, yielding an
interesting ‘'oscillating'’ situation for the process

engineer.

~-L{C1] Region III -
—~Multiplicity of steady states now may occur as

( ) has become large enough.

In this particular example all three of the
steady states are unstable, due to appropriate selection
of the Damkohler constant, and i1ndeed these equilibria

are surrounded by a very large stable periodic aorbait.

Experimentally this would be a very i1interesting
phenomenon to observe, with significant and rapid cyclic

temperature and conversion variations occuring.

A further smaller decrease of the Damkohler
constant would vyield the graph of type shown 1n region
IV. This would have manifested i1tself by a large
reduction 1n the size of the periodic orbit and the

evolution of one stable critical point.

£D1] Region IV

The evolution of a stable periodic orbit
surrounding an unstable equilibrium as a parameter ( S')
18 perturbed 1s recognised as Hopfs Bifurcation. The

bifurcation 1s strictly exhibited i1n this Region IV.
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This phase plane 1s also characterised by the

‘exi1stence of a separatraix.

Clearly some 1nitial conditions will tend to
result i1n periodic orbit solutions whilst others will

tend to the lower stable spiral equilibrium.

Exact determination of the separatrix would be
possible by carefully 'reversing time' in the evolution
equations and starting with an 1nitial condition on one
of the eigenvectors associated with the saddle point,
which 15 always the middle of the three eguilibrium

points.

As one transgresses from region I to IV the
Damkohler constant ¢ 6.) 15 decreased accordingly from
1 70 to O 996 to O 43106 to 0.2648B whilst the
dimensionless group number ( dL) 1s 1ncreased form 8 to
12 to 20 to 24 This i1nverse relationship leaves

potential for further studies.

Clearly, there 1s great scope for i1intriguing
numerical work which 1s best supported by a clear

understanding of the analytical work preceeding it

These results only fringe on the scope for
further studies. However, results are explicity obtained
and 'THEORY' (anrnalytical work) and 'PRACTICE' (numerical

work) do agree.

More significantly Hopfs Bifurcation phenomenon

1s described and evident 1n detail.
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CONCLUSIONS AND RECOMMENDATIONS

Oscillatory dynamical behaviour for a first order
irreversible exothermic reaction 1n 3 continucus well
stirred tank reactor without feedback control has been

studied here 1n detail.

Material and enthalpy balances give rise to a two
dimensional autonomous system of non-linear differential
equations, which for certain parametric relationships may

exhibit a multiplicity of steady states.

The author has concentrated on the evolution of
bifurcating stable periodic orbits known as limit cycles
through the application of Hopf's theorem for vector.
fields 1n RE. Indeed, a direct link 1s established
between the direction of bifurcation and the stability of
the bifurcating orbi1t. Development of a stable closed
orbit, known as supercritical bifurcation, 1s straictly

referred to as Hopf Bifurcation.

The author pioneered the derivation of a detailed
analytical expression the sign of which determines the
stability of bifurcating periodic orbits for finite

Arrhenius constant (5’)

This expression differs greatly from results of all
other papers i1n that for finite Zf‘ the sign of the
appropriate number Zy(O) depends only on the system
parameters and not as 1n this case on the associated
value of the critical points. Indeed, as i1s done 1n this
text the value of the critical points may only be
determined through numerical 1terative procedures The
programme written covers dynamic behaviour 1n parametric

space for finite ( ZS ).
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i Bifurcation to periodic orbits may only occur at
points where the trace of the Jacobian vanishes provided

that the strict crossing hypothesis of Hopf applies

This paper analyses the local nature of this theory,
establishes the direction and stability of bifurcating
orbits and then numerically analyses the branches of
these solutions as the Damkohler parameter 1s perturbed
The model with proportiornal feedback control may give
rise to new and i1interesting phenomena that may not

already exist 1n the original system

It 15 clear to the author that there 1s significant
scope ‘for further work on the dynamic response behaviour
of the continuous stirred tank reactor specifically for
the finite Damkohler case Grounds for further detailed
mathematical research would be to assume that the reactor
1s 1ndeed not well stirred and this model would then give
rise to a system of partial differential equations. Also
in the light of technical developments 1n the i1ndustrial
fi1eld, this model should be studied i1n conjunction with
the proportional feedback controller case to develop a
comprehensive understanding of the phase portraits
possible and assist the engineer i1n obtaining reactor

control and maximising product yield.
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APPENDIX A

MULTIPLICITY CONDITION

L3 - (4
Given 3(1’:) = ﬁexr('*ﬁ(‘*?(::d:;‘h)) Damkohler number A.l
g from Chapter 3.
d = 1) ex = (43 +8Y,)
then _Ja'; G $) P(”P*‘;'@’S*F’ﬁt) A.2

(r-x)2 (14p 4 é@.rs-r PYe))?

where @ [rs) =(§;+¢(u;))x: "(2("?’%‘-);—"‘”“))*5“’('*9*1?_)2 a3

This quadratic function Q(x;) has two roots: at m, andm,
and Q») £ 0 for Mg X5 my These roots correspond to
maxima and minima of the Damkohler function 5-2 3(1;) as

shown below 1n Fi1g. A.1l

0= 9(xy)

Thus M, and Mp are the limit values of Ag 4 only

within which multiplicity of steady state solutians may

occur .,

The solution set of %3— = Q(10= O vyields the following
5

™, My ={‘¢[-§(ub4.§$f.)-(nﬂy_\: nn'la}/ i-(“';;i +J.(np)§ YA
where Dy =J.{J.[z—;&‘° +(%-u¥l+p)]z-H[um_f%]z[%m,ﬁ]. A5

In order thatm, s My have real roots, then DH;O must be
true which yields the desired result.

4 > y(ee *P-}Q)l Q.E.D. A.6
1+p -.%(wp ib%(,)




APPENDIX B

EVALUATION OF DETJ;  AND TR), FUNCTIONS.

- b 4

Given TS = [ =% (EETF
LY 'Y VLS. S £
=% U J ey,

1) DETJ;

v
Det Jy =(up \i- (d‘x‘ - X from the Jacobian B.1
Y AR ATTYED

;(up )_ dxy
s ] (1))

Q*B)( ”""’/23)z "(‘*Y'.)(l'\'s)
ARE AR S TYINY

\
T (e Oep)( 1 4s /)R La(rg] B.2

4% 2 2
for Qux) = (;—-‘H.(up))x‘ +(2(l+p f?t) ..((“”)13 +(HP+ [_S%J_c) B.3

Thus the conditions Det Jg = O

are synonomous.

and i’—

drs

and Det'Ts < O defines steady states which are unstable
saddle points* indeed this "slope condition" 15 a
prerequisite for multiplicity of steady state solution

sets.



2) TRYs

By inspection of the Jacobian matrix

=1 d X .
Tr 13 =(W -(”5) + (\.‘,_,_\”\1\ :::: B.4
= ' 30+8)4ax +p‘n}‘ ¥(i4p) +a +fY (\7‘
‘(n-tXn‘!lx)l[ ¥ (14p) -(ue)- ‘( s(ep) | +dx(i-r)

'
MR Feo

(Cup)sax+ ) = (W + 2 (stip)pad % + 2B9eaing) + ¥ ) +4¢ )

f(,) [ML(“_) (‘!,t* 2 (wlp)#990) 2 + 2y mp) + 3l Stk < g )} B.5 v

t
+ X (50w )

Oty L Br3)ar 24 _24P%e)
x'(d'J'a-l(Hp)‘ ¥ o prlapy/

B!
- 2(2B) Ak . 2BYcA(24P) & 26Yc , PV
+ % (&+lup) (D - G ¢ 2

- (2+p + 7-(?41’)5”(. (z.‘.p)(?ﬂ‘k 2)

¥ iep)
L 8
For TeJs = o B 6
3 3t (ep)t-w YO vy Wy .(F(z‘))
Then F()st) = I?-l qlx':q.q‘x‘«l-qo a cubic nnxs B.7

where the constants Q. , 4, , and Qg have been

calculated as functions of o s 5% , Me as girven

belaw.
2204p) 4 4R 20}y - 2BYe
A = ‘( e * X
NECC.IE LGl L ARCTICR, T ffh&)l
* -t -~ & Lteg) e 'z

((l'fBXHM& 2(2+{s)a\k 2 S (up)@} )



APPENDIX C
ROOTS OF THE TRACE FUNCTION
Finding the roots of the trace function, Trj(lgs =0, 1s
equivalent to examining for the roots of the following
cubic expression.

Flxy= x> +°\1’fl +ax 4+ g C.1

where al, a, , Qgare given 1n Appendix B.

and F(0)= -(?::)(b’(u%-l-ﬂ‘h) < 0 c.o
and F(1) = _(_&ﬂ(lf{up);& w"‘)z < 0 C.3

Given the three roots of this expression as do ,P° ’
that 1s .

o ]

Flx) =x7-3 (4, s) + X (dobo + A¥ot¥odo) -doPo %o C:%

A typical plot of the trace function 1s as follows 1n
Fig C.1

\ /N
d°\ _/ Po b—o

Fig C.1

The nature of this curve can be deduced from the sign of
the constants @y ,Q4, , and 90 , and the expression

given for Tr ](r;) 1n Appendix B.
This function will have two roots S, and SL where for

come critical o, 1t occurs that O < § = %2 < ) |

This condition will define the onset of instability.
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APPENDIX D
CHEMICAL REACTOR - CONTROL THEORY

The potential benefits of advanced controls for
continuous and batch reactors i1nclude 1ncreased
productivity and i1mprovements in safety, product quality,
and batch to batch uniformity. Control loops will
program temperature and pressure and maintain
concentration and séfety, while providing sequencing and
record keeping functions.

In the case of an exothermic react:ion the amount
of heat generated i1ncreases as the reaction temperature
rises. The addition of a feedback controller stabilizes
an open loop unstable process only 1f the control loop 1is
fast and does not contain too much 'deadtime'.

A real reactor has several lags and delays. The
four i1nteracting time-lags i1n a chemical reactor are

shown below 1n Fi1g. D.1

L4 77 7 \7
F
X
—

’:i-,‘) l I Overflow
Fig. D.1 1l ! TFw Tea
F 2 4

als
Cold T
water £ T A
Fe T, ) T, Te

Time constants for the system are defined as follows,

with typical values given:

Thermal: o= (wic, /a>(T'T‘\
Reactor Wall: Y, = (Watr)e) (T-To) D.1
Coolant: Ty = (Wh /Q) (Tl'Tc)

Thermal-bulb: Co = W, € /,ﬂ‘ ﬂl'
W refers to the weight of 2lement and C 1s 1ts specific

heat capacity.
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In a well designed reactor, deadtime, should be
held to less than 10% of the thermal time constant .

For good temperature control a recirculating
cooling water system, where part of the coolant leaving
the reactor jacket or cooling coils 15 pumped back to the
coolant i1nlet, 1s desirable because 1t guarantees a
constant high rate of water circulation This keeps the
Jacket deadtime constant, the heat transfer coefficient
high, and eliminates cold and hot spots.

However cascade contraol, where two temperature
controllers operate 1n series with the output of the
reaction - temperature controller becoming the set point
of the slave jacket - water temperature controller 1i1s
very common. It 1s preferred that the slave controller
maintain the jacket outliet and not the i1nlet temperature,
because th:s way the jacket and 1ts dynamic response 1s
included i1n the slave loop. The period of oscillation of
the master loop 1s usually cut 1n half as direct control
1s replaced by cascade as shown below 1n Figure D.2

PID

/’l @ 7;L
. uMaster Setpaint

O Ot
Slave

X {proportional only
— Return 15%)

Fig. D @2

g lo—4i-0

r ) Supply of
heat transfer
Equal % medium

In exothermic reactions one of the critical
safety constraints 1s coolant availability. The reaction
rate 1n a continuous reactor may be matched to the
capacity of the cooling system. The optimizing
controller detects the opening of the coolant valve and

rf 1t 15 less than 90% admits more feed by increasing the

_87_



Nget point of the flow recorder controller. When the
coolant valve opens beyond 90% the production rate 1s
lowered so that the reactor will never be allowed to run
out of coolant. An 1deal reactor temperature controller
will permit rapid automatic rise to reaction temperature,
without overshoot and will then accordingly control.

For highly unstable, accident prone reactors an
added protective device can be provided, whose action 1s
based on the permissible rate of temperature rise during
heat up. This will prevent the process from building up
thermal 1nertia as the region of potential i1nstability 1s
approached

A reactor control system should:

1. Provide the ability to maximise production
2. Minimise shutdowns

3. Maximise the percentage of ontime.

4 Minimise the variations i1n utility and

raw—material demand.

S. Provide smooth operation 1in terms of
constant conversion, yield and product
distribution

6. Permit easy startup and shutdown.

However, the overriding, primary design objective 1s that
the reactor must be safe for both the operating personnel
and the environment

UNIT CONTROLLERS

A "Unit Controller” can control a plant unit operation -
in a reactor, a distillation tower, a compressor, or any
other subsystem. This represents a major step forward,
because we will gradually stop thinking 1n terms of
controlling single loops as pressures, flows or
temperatures and will start thinking i1nstead 1in
multivariable terms - controlling the overall unit
operation. High-level unit controllers also provaide
subroutines for scaling, automatic loeop tuning, valaidity
checks, and all those other features, that today involve

substanti1al development risk and expense.
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IMPERFECT CONTROL

A servo—-mechanism so perfect that signals of
temperature deviation produce proportional changes i1n the
flow rate of the coolant without either.delay or error
does not exist. 1In practice thermocguple readings will
actuate a motor which will turn a valve and at all stages
there wi1ll be errors and delays. Following the accepted
practice of servo—mechanism theory, all these factors may
be lumped into one transfer function.

It 1s 1mportant, though to find out whether the
time lag of an 1mperfect system which 1s ultimately a
proportional controller can destroy the possibility of
control However, to relieve the burden of analytical
complexities, 1t will be assumed that a control system
receives signals of the deviation of reactor temperature
and uses them to give perfect proportional control of the
rate of cooling,

Therefore chemical reactor with control from
hence refers to a stirred tank reactor with "perfect
proportional" control only

Stabiltiy "1n the large" 1s determined by making
extensive calculations on the full non linear equations
describing the system thus obtaining phase plane
portraits of the trajectories. Stability "in the small"
may be determined by the first theorem of Lyapurnov. The
former requires considerable effort, and the latter gives
ng 1nformation on the size of the pertubation which 1s
allowed. The second method or direct method of Lyapunov
1s a procedure which 1f successful would enable one to
compute the size of the pertubation by defining a region
of the phase plane i1nside of which, for a stable system,
all temperatures would 'lead to a critical point'. The
synthesis of these Lyapunov functions 1s more of an art
than a science, as methods for the construction of a
Lyapunov function for which the corresponding region of
asymptotic stability 1s of significant si1ze are not known

for most non linear systems.
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A CONTROL MODEL - FOR THE C.S.T.R

Control of the reactor 1s accomplished by making the flow
of the coclant through the reactor cooling coils a
function of the reactor temperature.

The further the temperature of reactant A lies above the
steady state temperature then the more the coolant flow
control valve 1s open to enhance cooling and a more
expedient approach to equilibrium

Formerly, heat was removed to the coolant at a rate Q,

-

where:

i T /R, A (T—T¢> J/sec p.2
A veves... COo1l surface area m2
Tc .... Coolant temperature ( K)

R +2.... Heat transfer coefficient (J/m2 k/sec)

The heat transfer coefficient evaluated at steady state
(hg), relates to the material of construction of the
reactor and thermal properties of the constituents and 1s
assumed constant over the temperature intervals

concerned
Thus a = R F}(T-Tc> D 3

In the case of proportional control more heat 1s removed
to the coolant by 1ncreasing the coolant flowrate The
degree of i1ncrease of coolant flowrate 1s directly
proportional to the magnitude of the constituents

temperature above steady state. IO)

Thus Qp =R A1+ (T-Ts\)(T—TC) D.4

This simple linear i1nterpolation will effect proportional

control, and 1s the appropriate medel for heat removal.
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1)

. The enthalpy balance with control row becomes

fvc?‘?;')\f Fep(TeTo) + Cow) v R ¢ -vu¥ DS

where U* 15 the heat removal rate to the coolant per
unit volume. 1t 15 a function of T and the temperature
and flow rate of the coolant.

Reparameterizing as before, and noting that

T-71
"3 T”i)b’ D.6

{}

an = (X' T ]

d K\, ( . r\) D.7
i)

-f‘lr‘»;)= X =-X +6‘(i-x\exp(‘fﬁ7}‘) D.8

]

,f‘(-,m) = -3 - +a & (1-x)ex p(-“—\?j—l;) 'p(H' Ke(‘]"j;))( ‘]"jc) D.9

Some points worth noting;

1) The cooling term has now becaoame a quadratic
function 1n vy

) At v = vg, 1 J =1, 2, 3, whether there are

, one, two or three real solutions, then this two

dimensional non linear system has the same
steady state solution sets as the model without
contral.

3) The proportional control model 1s a localised
one as Yg,; 15 specific to the steady state 1n

question.

The Jacobian for this system at a particular steady state
15
- / oY
35(2)- S:\. of 14795
2 I xaxyg
Thi1s new Jacobian now becames

-\ ¥
Ty = [T (T
X 0.4 S A -
|-y$’ (“ﬂ) 1.('—0-“;/3\'- pK!(\aS \)‘,



The Trace of the original system with cooling was

-

\ d
Ta (%)= (‘13, ~(p) +(;.1:,—ﬂz>' D 10

The Determinant of the original system was

-\ _ 40 L Xy
De1(3)- ( \-,,) ) (Wﬂ) o

For the model with control, these new functions now

evolve as

T\\(Sn)= TRUA - P K\’ (\')S"k) D.12

-3

Det ('SN) = Den (_'I,) + B Kp (M) D.13

Thus the stability of a critical point may be altered by

proportional control.

In examining the nature of stab:ility of the C.S5.T.R. with
control one must firstly examine the sign of the Trace

and Determinant functiomns as given above.

The following two axioms are a basis for the control

rationale.

1) T > Te

This means that cooling 1s occurring: not heating. That
1s, at steady state heat 1s being removed from the
reactor. This 1s a thermodynamic prerequisite, as the
reaction 1s exothermic, and the rate of heat generation

will equal the rate of heat removal at steady state.

Dimensionlessly this implies that;

My-Me > O
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@ O <Cay <Cape
This means that at steady state, the concentration of
species A 1n the reactor i1s always less than the feed

concentration. This 1s because A 1s being converted to B
< |

Ca, s

= o)
> e

Dimensionlessly, this i1mplies that;
0 « (I-)ts\ <\

From the above ftwo expressions i1t follows that
("19"‘1@)> 0 D.14
Ms "“‘C) > 0 D.1S
L =y
Given @ = ¢ (B4, c) = POYs-ve). D 16

and E)

M- Me

e(ﬁp‘%,’sf‘iek p ( D.17
1=y

where ¢ and © are strictly positive functions i1n the

domain specified for this problem then the control model

may be further abbreviated as follaows.

TaOw)= Tels) - e ¢ D 18
DeT ('5'4)'—‘ dber (T} + ke © D.19

It directly follows that Tk(]ﬁ) may always be made
negative, and DE1(T~) may always be made positive by
choice of a suitably positive value of Kp; where Kp

1s the perfect variable propoertional feedback controller

gain.
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Proof of the following proposition now becomes i1mmediate
by employing the ROUTH — HURWITZ criteria.

Proposition D.1 Given that the response of a perfect
controller 1s proportional to the deviation from "steady
state" then local asymptotic control may always be

attained by sufficient amplification of the signal.

Corollary D.2 If (f3,ﬂs)xs stable without control,
then for Kp2©, 1t remains stable with control.

Proof D.2

Given Ta(S°\< o]

and De1(Te) > O
then for Ta(Tm) = Ta(%) -%p ¢

and 061 () = Dex(Tel *+Xp ©

where ¢'D' Kp are all positive
then 1h(1~)< o]
and Dér(in)> ©

and stability with control 1s sti1ll attained.

Corollary D 3 For Kp%0, local control improves
stability of the steady state solution set

Proof D 3

From D.2 1t follows
Telwk TelTo)
and  Derliw)> Det(3s)
Noting Al = LTREIM) Dy + 067 (In) = O

then 0 Y (Tl On) & JAN \ (2
where Dy = (R (TN”I‘H oS (T")»

then the eigenvalues of the Jacobian become more negative

and stability 1s strengthened.

\€ AN < 20 < O D.20

The rate of approach to equilibrium 1s accelerated.

—9‘}" )



NUMERICAL EXAMPLE OF PROPORTIONAL CONTROL — SADDLE POINT

Assumption: Coolant and feed temperatures are equal
throughout the reactaion.

Given: d=27.,P=3,'j,_=0,8=20,6.=0q,

Comment: Multiplicity exi1sts, by section 3.2.

One solution set 1s

Xy = 046559, A saddle point
~s = 2-56032
Tﬁl?o\ =2 11syY > O From programme
061(753' == %U< O numerical results

-

Examining the control model yields the following

calculations

Mg-9e = T-SC03L
{~%g = © S3uul

$s = T6BAUL

’ ©s = b 3¥ 503

and
Teimj= 2 9y -Kke 768216
DeT(Iy)= ~ SLUB + Xp Iy 31503
Te(lw)= © 1f kp = O283b
0er(Tn)= © 1f Kp = O 0¥}
Conclusion: Local stability requires 1‘? > 0284

Thus for kp') \, a rapi1d approach to a stable steady

state, which originally was unstable without control,

will be achieved. Y
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