
D ublin C ity U n iv e r sit y
Ollscoil Chathair Bhaile Atha Qiath

SER V IC E C R EA T IO N A N D D E PL O Y M E N T ON AN
IN T EL LIG EN T N E T W O R K

A thesis submitted as a requirement for the degree of
Master of Engineering in Electronic Engineering.

Michael Collins B. Eng.

School of Electronic Engineering
Dublin City University

August 17th 1999

Supervisor: Dr. T. Curran

ACKNOWLEDGEMENTS

I would like to thank Dr. Tommy Curran for his supervision and support throughout the
project. I would also like to thank Olga Ormond, Derek Toibin, Jelena Vasic, Fiona Lodge,
Brendan Jennings and Robert Brennan for their assistance.

DECLARATION

I hereby declare that, except where otherwise indicated, this document is entirely my own
work and has not been submitted in whole or in part to any other university.

Signed: ■Cl'i.L u. ■ Date: ‘JZf r d ? j 9 9)

Abstract

ABSTRACT

Active competition in the telecommunications industry has caused a dramatic shift in focus
for public network operators. Service designers need to be able to easily and rapidly create
services according to the customer’s requirements. This is achievable by using Intelligent
Networks (INs). Two primary goals of service development under the Intelligent Network
paradigm are rapid service crcation using new software technologies and the minimisation of
service development costs through switch vendor independence. This thesis examines the
development of an IN architecture and the deployment of two call control services on it using
the ITU-T Service Independent Building Block (SIB) methodology. The services are
deployed on a narrow-band Excel switching platform.
Various aspects of the IN Conceptual Model (INCM) are examined with a particular
emphasis on the middle two planes: the Global Functional Plane (GFP) and the Distributed
Functional Plane (DFP). Representations of these planes are designed using the ITU-T
Specification and Description Language (SDL) [SDL89] and implemented using Telelogic’s
SDL Development Tool (SDT). SDL provides capabilities to allow logical structuring of the
INCM into its constituent entities, the modelling of communication between these entities
and the processing within them. The Intelligent Network paradigm was developed with a
view to extendibility. Two call control services, Ringback and Group Call Pickup, are
implemented using the SIB methodology. Further services may be created by rearranging the
order of execution of the existing SIBs or, if necessary, by adding new SIBs to the
architecture.
Given the demand for multimedia applications to run on top of emerging broadband networks
it is becoming increasingly more important for network operators to study the enhancement
and evolution of their IN service platforms in order to cope with new customer requirements.
TINA is the leading architecture for multimedia service control and delivery, which defines
an emerging open service platform. Migration from IN to TINA is explored in this thesis by
considering two individual paths of migration. The first path involves the replacement of the
IN service control and management elements (SCF, SMF, SDF) with appropriate TINA
Computational Objects while the switching elements (SSF, CCF) remain IN compliant. As
there is no one-to-one mapping of IN functional entities to TINA computational objects, an
Adaptation Unit is required to facilitate interaction between the legacy IN entities and the

Abstract

TINA Computational Objects. The advantage of this step is that it is possible to keep the
investment of deployed IN SSPs while taking advantage of TINA service modelling. The
second step involves the introduction of TINA into the switch. In this approach the switch
and its switching capabilities may be viewed as a TINA object in itself.
Interworking between IN and TINA (as a step towards full migration to TINA) yields a much
richer service platform. This service platform facilitates the creation of services that
incorporate both IN and TINA features. A TINA service may use pieces of IN functionality
and IN services may also use TINA functionality. It is possible to invoke these hybrid
services from either a PSTN or a TINA terminal.
Three hybrid IN/TINA services were designed to demonstrate the increased resources
available to the service designer using such a platform. A user connected to the IN switch
invokes the Freephone Service. This service uses a TINA database to convert the 1-800
number to an extension number. The call is then connected using IN switching functionality.
The Audio Video Conference, uses TINA computational objects to set up a video stream
between participating users while the audio connection is handled by the IN switching
functionality. This service is invoked from a TINA terminal. A user connected to the IN
switch invokes the Ringback Service but it runs in the TINA domain using both TINA and IN
functionality. Therefore, as well as presenting an application of the IN technology, this thesis
proposes possible steps towards migration to the TINA architecture.

List o f Figures

LIST OF FIGURES
Figure 2.1 Typical non-IN Service Processing M odel...6
Figure 2.2 IN Service Processing M odel... 7
Figure 2.3 Sequencing of Capability Sets versus Tim e... 8
Figure 2.4 Intelligent Network Conceptual Model..10
Figure 2.5 Functional Entities and Relations in the D F P ...12
Figure 2.6 Physical Architecture of the Intelligent Network... 14
Figure 2.7 Key components of the BCSM..................... 16
Figure 2.8 Originating side BCSM for CS-1... 16
Figure 2.9 Terminating side BCSM for CS-1.. 17
Figure 2.10 Using SIBs in the G FP..21
Figure 2.11 Graphic Representation of SIB... 22
Figure 2.12 Ringback Service SIB Chain.. 25
Figure 2.13 Group Call Pickup Service SIB Chain.................. 26
Figure 2.14 TINA Business Model...41
Figure 2.15 Decomposition of the TINA Architecture...42
Figure 2.16 Open Switch Path...47
Figure 2.17 Bridge to Legacy Path... 48
Figure 3.1 SDL System at System Level.. 51
Figure 3.2 SDL System at Block Level... ..51
Figure 3.3 SDL System at Process Level...52
Figure 3.4 ORB Architecture...56
Figure 3.5 Activities of the CORBA-Oriented Approach... 62
Figure 3.6 Schematic View of the SDL System Structure...... .. 65
Figure 3.7 Mapping an Object Model Class to an IDL Interface... 65
Figure 3.8 Mapping Object Model Class Inheritance to IDL Inheritance 66
Figure 3.9 Mapping Object Model Class Aggregation to ID L..67
Figure 3.10 System Architecture of an SDL Application.. 67
Figure 3.11 Generating Code for the SDL Application..68
Figure 4.1 IN System Architecture...73
Figure 4.2 Overview of the IN Conceptual Model in SD L ... 76
Figure 4.3 DFP Represented in SD L.. 77
Figure 4.4 SCF represented in SDL.. 79
Figure 4.5 SDF Represented in SD L..80
Figure 4.6 SRF represented in SDL.. 81

iii

List o f Figures

Figure 4.7 CCF and SSF represented in SDL.. 83
Figure 4.8 CCAF represented in SD L..84
Figure 4.9 GFP represented in SDL.. 85
Figure 4.10 CCAF Section at Process Level... 86
Figure 4.11 Excel CSN Programmable Switch...88
Figure 4.12 Excel Switch and Host Computer..88
Figure 4.13 SDL to User interaction via the Excel Switch.. 95
Figure 4.14 Calling ToneOut ADT from within an SDL Process.. 96
Figure 4.15 Calling EndTone ADT from within an SDL Process.. 97
Figure 4.16 IN System on Host communicating with the Sw itch.. 98
Figure 4.17 Interacting with the switch using ADTs and ExcelEnv.c..99
Figure 4.18 Communication between the CCAF and Excel Sw itch.. 106
Figure 4.19 Accessing the IN Architecture via an O R B ..I l l
Figure 4.20 A hybrid IN/TINA Service being invoked from IN ...112
Figure 4.21 Adaptation Unit between IN and TINA.. 112
Figure 4.22 Hybrid IN/TINA Freephone Service..113
Figure 4.23 Hybrid IN/TINA Audio-Video Conference Service..115
Figure 4.24 Hybrid IN/TINA Ringback Service...117

iv

l i s L o f Tables

LIST OF TABLES
Table 2.1 IN Services targeted by C S-1...9
Table 2.2 INCM Acronyms... 10
Table 2.3 CS-1 SIB s...24
Table 3.1 Major Tools of the SDT Suite... 53
Table 3.2 Mapping Basic Types..64
Table 4.1 Excel Developers Tool Kit functions... 94
Table 4.2 Table Tone Identifiers.. 96
Table 4.3 Calls from the CCAF to the Excel Switch.. 107
Table 4.4 Tone Types...107
Table 4.5 Calls from the Excel Switch to the CCAF.. 109

Table o f Contents

TABLE OF CONTENTS
Chapter 1 INTRODUCTION.. 1

1.1 Overview 1
1.2 Objectives of Thesis.. 2
1.3 Structure of Thesis.. 2

Chapter 2 THE INTELLIGENT NETW ORK...4
2.1 In tro d u ctio n ... 4
2.2 IN D evelopm ent 4

2.2.1 Basic and Intelligent Call Processing...4
2.2.2 Intelligent Network Objectives.. 5
2.2.3 Intelligent Network Service Processing M odel.. 6

2.3 Capability S e ts ... 7
2.3.1 ETSI Standards... 9

2.4 The IN Conceptual M odel.. 10
2.4.1 Service P lane... 11
2.4.2 Global Functional P lane............... ...11
2.4.3 Distributed Functional Plane...12
2.4.4 Physical Plane.. 14

2.5 Particulars of IN CS-1 Service C on tro l..15
2.5.1 Basic Call M anager .. 15
2.5.2 Detection P oin ts............... 18

2.6 The use of SIBs in the Global Functional P lane... 20
2.6.1 Definition of a S IB ...21
2.6.2 Characteristics o f a SIB ...21
2.6.3 Data Parameters For S IB s...22
2.6.4 Basic Call Process (BCP)..23
2.6.5 The Service L ogic ..23
2.6.6 CS-1 SIBs.. 23

2.7 The Services.. 24
2.7.1 Ringback Service..25
2.7.2 Group Call Pick Up Service... 26

2.8 The SIBs used to implement the Services.. 26
2.8.1 Compare SIB ...27
2.8.2 Screen SIB... 29

.Table of Contents

2.8.3 Service Data Management S IB 30
2.8.4 Status Notification SIB... 32
2.8.5 User Interaction S IB ..33
2.8.6 Party Connect SIB 35
2.8.7 Redirect S IB .. 36

2.9 INAP and the addition of new S IB s ... 37
2.10 State of the A r t .. 38

2.10.1 IN Today... 38
2.10.2 Existing IN M odels...................... 39
2.10.3 TINA Overview... 40

2.10.3.1 The Computing Architecture ..42
2.10.3.2 The Service Architecture... 43
2.10.3.3 The Network Architecture... 45
2.10.3.4 The Management Architecture...45

2.10.4 Existing Paths for Migration from IN to TINA... 46
2.10.4.1 Open Switch Path... 46
2.10.4.2 Bridge to Legacy Path...47

2.11 Conclusions on I N .. 49
Chapter 3 TOOLS FOR DEVELOPMENT... 50

3.1 In tro d u ctio n ... 50
3.2 Specification Description Language (SD L)... 50
3.3 SDL Design Tool (SDT)... 53
3.4 CORBA..54

3.4.1 The Object Management Group (OMG).. 54
3.4.2 The Object Management Architecture (OM A)... 55
3.4.3 The Common Object Request Broker (CORBA).. 55

3.4.3.1 The OMG Object Model.. 56
3.4.3.2 The Basic Mechanics of issuing a request... 56
3.4.3.3 Overview of Architectural Components.. 57
3.4.3.4 Interoperability...58

3.5 Interface Definition Language... 60
3.6 Using SDL to develop CORBA object im plem entations.. 61

3.6.1 Using CORBA and SD L ..61
3.6.2 Mapping IDL to SD L... 63
3.6.3 Mapping Object Models to ID L.. 65

vii

Table o f Contents

3.6.4 Implementing an SDL Application... 67
3.6.4.1 The System Architecture... 67
3.6 .4.2 Wrapping the SDL system... 69

3.7 Conclusions... 72
Chapter 4 IMPLEMENTATION OF THE IN CONCEPTUAL MODEL................................ 73

4.1 Introduction ...73
4.2 Overview of the System ... 74

4.2.1 Objectives..74
4.2.2 Mapping of INCM entities to SDL.. 74

4.3 The SDL System...76
4.3.1 Organisation..76
4.3.2 Communication............................. 76

4.4 The DFP Block...77
4.4.1 Organisation..77
4.4.2 Communication.. 78
4.4.3 The SCF B lock... 78
4.4.4 The SDF Block... 79
4.4.5 The SRF B lock... 81
4.4.6 The CCF/SSF Block...82
4.4.7 The CCAF Block.. 83

4.5 The GFP Block...84
4.5.1 Organisation..84
4.5.2 Communication.. 85

4.6 SDL At Process L evel... 86
4.7 The Excel CSN Switch..87

4.7.1 Switch F eatures.. 89
4.7.2 The Host/Switch Communications L ink ...91
4.7.3 The Application Programming Interface (API).. 91
4.7.4 The Developers Tool Kit (DTK).. 92

4.8 Intelligent Network Interaction with the Switch ... 94
4.8.1 Abstract Data Types...95
4.8.2 The Environment Functions..98

4.9 Migrating Towards TINA ... 104
4.9.1 Application of the Open Switch Path ...105
4.9.2 Application of the Bridge to Legacy Path... 110

viii

Table o f Contents

4.9.2.1 Hybrid IN/TINA Freephone Service...113
4.9.2.2 Hybrid IN/TINA Audio-Video Conference..114
4.9.2.3 Hybrid IN/TINA Ringback Service...116

4.10 Conclusions... 118
Chapter 5 EVALUATION CRITERIA FOR THE IN ..120

5.1 Functional C rite ria ... 120
5.2 Non-Functional C rite ria ...121
5.3 M eeting the Evaluation C riteria for the IN ... 121

Chapter 6 CONCLUSIONS... 128
6.1 Overall Conclusion... 128
6.2 Future R esearch...131

BIBLIOGRAPHY.. I
Appendix A Glossary..Ill

A.l Terminology... Ill
A.2 Acronyms...V

Appendix B Excel Switch API Message S et... VII
Appendix C Sample ADTs and the Environment Functions..X

C.l A D Ts.. X
C.1.1 The ToneOut ADT...X
C. 1.2 The EndTone A D T .. XI

C.2 The Environment Functions..XIII
C.2.1 The xlnitEnv Function.. XIII
C.2.2 The xCloseEnv Function..XIV
C.2.3.The xOutEnv Function template..XIV
C.2.4 The xlnEnv Function..XV

Appendix D SDL Signals..XVII
Appendix E Message Sequencing Charts..XXIV

E. 1 Setting up and tearing down a basic two party call.. XXV
E.2 Invoking an IN Service... XXIX
E.3 Group Call Pickup Service...XXXI
E.4 Ringback Service... XXXV
E.5 Hybrid IN/TINA Freephone Service... XXXIX
E .6 Hybrid IN/TINA Audio-Video Conferencing Service...XLI
E.7 Hybrid IN/TINA Ringback Service... XLIII

Introduction

Chapter 1 INTRODUCTION
1.1 Overview

The introduction of software controlled digital exchange systems in the 1960s created the
basis for public telecommunications services with increasingly complex call control features.
By the eighties the growing demand for new services could no longer be satisfied by
following the traditional way of directly modifying the control software in the exchange
systems. The need for time and cost effective, rapid service deployment and for wide-area
network vendor compatibility was satisfied with the introduction of the Intelligent Network
(IN) as a new architectural conccpt [Q.1201]. The IN concept is based on the separation
between call control logic and service logic with a well-defined interface between the two.
Intelligent Networks facilitate the development, with considerable ease and rapidity, of
services by customers or service designers according to a variety o f service requirements.
Because of the separation between the call control and the service logic, services can be
produced independently of equipment manufacturers.
This thesis describes an Intelligent Network architecture, developed using Specification and
Description Language (SDL) [SDL89], which supports the creation of services using ITU-T’s
Service Independent Building Block (SIB) methodology. The architecture is based on the IN
Conceptual Model, which contains four planes: the Service Plane [Q.1202], Global
Functional Plane (GFP) [Q.1203], Distributed Functional Plane (DFP) [Q.1204] and the
Physical Plane [Q.1205]. Each of these planes is considered but particular attention is paid to
the middle two, the DFP and GFP, as the SDL system describes these two planes. The system
runs on a UNIX based network environment and communicates with an Excel narrow-band
switching platform [Excel] to which phone extensions are attached.
Two typical IN call control services were selected for implementation on the system, using
the ITU-T SIB methodology. These services, Ringback and Group Call Pickup, are
constructed from blocks of service functionality, i.e. the SIBs, which reside in the GFP. Users
connected to the Excel switching platform deploy the services.
TINA (Telecommunications Information Networking Architecture) is a distributed
architecture that caters for broadband multimedia type services. With the increasing demand
for multimedia applications on top of broadband networks, interworking between IN and

1

Introduction

TINA is an important area for exploration. Two paths for this migration are presented in this
thesis and their applicability in relation to the system developed. Interworking makes the IN
Service Logic available to objects in a distributed heterogeneous TINA network and vice
versa, thus yielding hybrid IN/TINA services.

1.2 Objectives of Thesis

This thesis will document the design and development of an Intelligent Network, in SDL,
based on the ITU-T standards. In order to give the reader sufficient understanding to
appreciate the decisions made in the design of the system, the Intelligent Network concept
itself will be fully explored and the ITU-T standards will be clarified. The various tools and
concepts used in the project, which include CORBA, SDL, SDT and IDL, are explained as
are the techniques used to bring them together to achieve the project’s objectives.
To demonstrate the operation of the IN system two call-control services will designed. These
services will be explained as will the SIBs from which they are composed. The execution of
these services on the IN will be observed and the simulations run using SDT will be
documented, using Message Sequencing Charts (MSCs).
The functionality and capability of the Excel Narrowband switching platform, on which the
services are deployed, will be explained, as will the methods of controlling and interacting
with the switch.
Also explored are two paths for achieving migration from the Intelligent Network to TINA
[INtoTINA], Migration to TINA makes possible the use of broadband service features in
conjunction with the IN architecture. Paths to achieve interworking, as a step towards full
migration, are explored as are the hybrid IN/TINA services running on this hybrid platform.
Future research and directions, based on an anticipation of new technologies becoming
available, are also considered in the thesis.

1.3 Structure of Thesis

C hapter 2 presents all the information required to fully explain the concept of the Intelligent
Network. An overview of the Q.1200 series of ITU-T IN Recommendations [Q.1200] is
given covering the areas essential to the design of the IN system. The two call control

Introduction

services, selected to be implemented on the IN system, are discussed in detail and broken
down into their constituent SIBs, which are also discussed in detail subsequently. A state of
the art description of the IN and TINA technologies is given in this chapter. An overview of
TINA is presented and two existing paths of migration from IN to TINA are also outlined.
A discussion o f the tools needed to develop the IN is provided in Chapter 3, including the
Specification and Description Language (SDL), used to describe the system, and the SDL
Development Tool (SDT) used to develop it. The concept of CORBA, which facilitates the
communication between distributed software objects, is discussed as is the Interface
Definition Language (IDL) used to define the interfaces between these objects. A discussion
on how all of these concepts are brought together to realise the IN system is also given.
The SDL description of the middle two planes of the INCM is presented in Chapter 4. Each
of the entities implemented in SDL is discussed as is the signalling that occurs between them.
The Excel switch on which the services are deployed is also discussed as is the method of
communication between it and the IN system. Possible interworking scenarios between the
IN system and a TINA network are subsequently presented. A description of three hybrid
IN/TINA services running on the resultant interworking platform is provided.
Chapter 5 outlines the criteria, set out before the development of the system, in order to
evaluate it. A discussion of the success or failure to meet each criterion is also presented.
Chapter 6 concludes the thesis. A summary of the work done in the project is given and
possible directions for future work are discussed.
The Bibliography is followed by the glossary of terms and acronyms in Appendix A. The
vendor specific API message set for communication with the Excel switch is given in
Appendix B. Appendix C provides some Abstract Data Type functions and the Environment
Functions used by the IN system to communicate with the switch. In Appendix D the SDL
signals in the IN system are listed and explained. Message Sequencing Charts showing the
execution of the pure IN and hybrid IN/TINA services are provided in Appendix E.

3

The Intelligent Network

Chapter 2 THE INTELLIGENT NETWORK
2.1 Introduction

In traditional telephony systems the services offered by network operators consisted
principally of basic call connectivity. However, service technology has recently become a
great deal more advanced and increasingly complex services are currently available. The
structure of the traditional Public Switched Telephone Network (PSTN) is not very suitable
for the creation and deployment of such services. Services created on the PSTN are part of
the switching system and this vendor dependence ties the system to the network. The main
problem with this scenario is that the services are localised. In other words if the software for
a service is loaded at a network node only users directly attached to that node may use that
service. If a service is to be altered or upgraded the code must be changed at every node
offering the service. This makes the provisioning and maintenance of a service both very
difficult and very slow. It is also very wasteful of resources as the same service software is
replicated at a wide range of locations.
As the role of services in networks increased in importance the necessity arose for a network
architecture which combated the above problems and allowed network operators and service
providers to design, implement and maintain services with as little effort as possible. The
Intelligent Network (IN) was developed in order to meet these demands by reducing the
length of the service design and development phase. This is achieved by providing a standard
development environment with a set of reusable function blocks and tools to facilitate the
rapid design of a service. IN’s much shorter deployment and provisioning phases are
achieved through centralising all service execution software so that the code for a new service
needs to be installed at only one location from which it is available to all customers on the
network. This centralisation simplifies the task of upgrading and maintaining services.
Independence from switch hardware and software vendors is also provided.

2.2 IN Development

2 .2 .1 B a s ic a n d In te l lig e n t C a ll P r o c e ss in g
Before examining the details of the Intelligent Network it is important to review the way in
which a standard non-IN call is handled:

The Intelligent Network

The caller dials a telephone number and the switching system uses its call processing software to
decide how to handle the call. It either rejects the call request or attempts to set up a circuit
connection to the called customer.

In an Intelligent Network the call is handled as follows:
The caller dials a telephone number and the switching system uses its call processing software to
decide whether to handle the call itself or to request help from external service logic. If help is
required, the switching system sends a message to the external service logic, which decides how
the call is to be handled. One or more call control instructions are sent to the switching system to
tell it how to handle the call. The switching system then either rejects the call request or attempts
to set up a circuit connection to the called customer based on these external service logic
instructions.

This ability to access external service logic by a switching system is the basic principle
behind Intelligent Network call processing.

2.2.2 Intelligent Network Objectives
The objective of IN is to allow the inclusion of additional capabilities to facilitate the
provisioning of services, independent of the service/network implementation in a multi­
vendor environment [Q. 1201]. The ITU-T objectives for this new architectural concept can
be summarised as follows:
• IN should be applicable to all telecommunication networks - PSTNs, ISDNs, mobile

networks, etc.
• IN should enable service providers to define their own services, independent of service

specific developments by equipment suppliers.
• IN should enable network operators to allocate functionality and resources within their

networks and efficiently manage their networks, independent o f network-specific
developments by equipment suppliers.

• IN should be introduced starting from the existing networks and the current ITU-T
recommendations.

• IN should evolve to reflect implementation experiences, new technological opportunities
and market evolution.

5

The Intelligent Network

Driven by the need for standardisation and evolution, ITU-T embarked on a program of work
that addresses global international IN standards and a framework for the standardised
evolution of IN. A phased standardisation process towards the target IN architecture was
adopted, defining a set of Capability Sets for each phase. Each Capability Set (CS) is
intended to address requirements for one or more of the following: service creation, service
management, service interaction, network management, service processing, and network
interworking. This phased standardisation approach takes into account the fact that the
specification and deployment of networks that meet all the objectives o f the IN target
architecture will take many years. In order to allow smooth evolution towards the target, the
IN set of Recommendations shall allow backward compatibility of each evolutionary phase
and open-endedness towards long term views. The goal of the ITU-T is to define a new
architectural concept that meets the needs of telecommunication service providers.

2.2.3 Intelligent Network Service Processing Model
The main three elements of this model are:
• The Basic Call Processes (BCPs).
• The Detection Points (DPs) which allow BCPs to interact with IN service logic.
• IN service logic that can be programmed to implement new supplementary services.

BCP Basic Call Processing

Node A Node B Node C
Figure 2.1 Typical non-IN Service Processing Model

The Basic Call Process should be available all over the network and is designed to support,
with optimal performance, services that do not require special features. In order to achieve
flexibility in service processing the basic call process needs to be modularised into service-
independent sub-processes such that these can be executed autonomously (without
interference from the outside during execution).

6

The Intelligent Network

Fast Service Implementation
i U

Node A Node B Node C
Figure 2.2 IN Service Processing Model

The Detection Points (DPs) are to be added to the basic call process forming the links
between the individual basic call sub-processes and the service logic. During a call the basic
call process should continuously check for the occurrence of conditions on which an
interaction session with IN service logic should be started.
IN service logic uses a programmable software environment that needs to be developed to
allow fast implementation of new supplementary services. New supplementary services can
be created by means of linking blocks of functionality together in the form of service logic.
The IN service logic is able to interact with the basic call process. Thus, by changing logic at
the service control point and modifying network data, a new service that uses existing
network capabilities can readily be implemented.

2.3 Capability Sets

The International Telecommunications Union (ITU) have a phased approach to the
development of the IN standards. Each version of the standards, known as a Capability Set
(CS), is a superset of its predecessor. At the time of writing, the current version of the
standards is ITU Capability Set 1 (CS-1) [Q. 1211] which was released in 1993. The phased
approach of developing Capability Sets is illustrated in Figure 2.3.
It is necessary to explain the functionality of the IN, as defined in CS-1, as the operation of
the IN system developed in this project essentially represents this. CS-1 capabilities are
intended to support services and service features that fall into the category of single ended,
single point of control services, referred to as Type A, while all other services are placed in a
category called Type B. A single-ended service feature applies to only one party in a call and

7

The Intelligent Network

is orthogonal (independent) to both the service and topology levels to any other parties that
may be participating in the call. Orthogonality allows another instance of the same or a
different single-ended service feature to apply to another party in the same call as long as the
service feature instances do not have feature interaction problems with each other. Single
point of control describes a control relationship where the same aspects of a call are
influenced by only one Service Control Function at any point in time [Q.1211].

Capability Sets

Figure 2.3 Sequencing of Capability Sets versus Time

There is a limited set of services targeted by IN-CS1. These are listed in Table 2.1. Some of
these services (indicated by a *) might be only partially supported in CS-1 because they
require additional Type B capabilities. Parts of these services are considered in CS-1 as long
as these parts belong to Type A and do not impose capabilities additional to those required
for other services in the list.

ABD Abbreviated Dialling FPH Freephone
ACC Account Card Calling MCI Malicious Call Identification
AAB Automatic Alternate Billing MAS Mass Calling
CD Call Distribution OCS Originating Call Screening
CF Call Forwarding PRM Premium Rate
CRD Call Re-routing Distribution SEC Security Screening
CCBS Call Completion to Busy SCF Selective Call Forwarding on

8

The Intelligent Network

Subscriber (*) Busy/No Answer
CON Conference Calling (*) SPL Split Charging
CCC Credit Card Calling VOT Televoting
DCR Destination Call Routing TCS Terminating Call Screening
FMD Follow Me Diversion UAN Universal Access Number
VPN Virtual Private Network UDR User-Defined Routing
UPT Universal Personal

T elecommunications
Table 2.1 IN Services targeted by CS-1

Intensive research has gone on since the release of CS-1 in the definition and development of
Capability Set 2 (CS-2), an expansion of existing CS-1 concepts. CS-2 will provide
definitions and classifications to overcome many of the limitations of CS-1, while addressing
all the services and SIBs of CS-1 plus additions.

2.3.1 ETSI Standards
The European Telecommunications Standards Institute (ETSI) is a non-profit making
organisation whose mission is to determine and produce the telecommunications standards
that will be used for decades to come. It is an open forum, representing administrations,
network operators, manufacturers, service providers, and users.
It is the ETSI members that fix the standards work programme in function of market needs.
Accordingly, ETSI produces voluntary standards - some of these may go on to be adopted by
the EC as the technical base for Directives or Regulations - but the fact that the voluntary
standards are requested by those who subsequently implement them, means that the standards
remain practical rather than abstract.
ETSI promotes the world-wide standardisation process whenever possible. Its work
programme is based on, and co-ordinated with, the activities of international standardisation
bodies, mainly the ITU-T and the ITU-R.
When an ITU-T Capability Set is released it is analysed by ETSI and improved upon to make
it more practically applicable. In drafting new versions of the Capability Sets the ITU-T body
take these refinements and improvements into consideration.

9

The TnteiliggnLM steprk

2.4 The IN Conceptual Model

The IN Conceptual Model (INCM) should not be considered in itself an architecture. It is a
framework for the design and description of the IN architecture. Various models and concepts
will be used in the standardisation of IN. The INCM is intended to represent an integrated,
formal framework within which these concepts are identified, characterised and related. To
achieve this, the INCM consists of four planes where each plane represents a different
abstract view of the capabilities provided by an IN-structured network. These views address
service aspects, global functionality, distributed functionality and physical aspccts of IN
[Q.1201] [Q. 1203].

Figure 2.4 Intelligent Network Conceptual Model

BCP Basic Call Process PE Physical Entity
GSL Global Service Logic SIB Service Independent Building Block
CCF Call Control Function SRF Specialised Resource Function
SSF Service Switching Function SDF Service Data Function

Table 2.2 INCM Acronyms
10

The Intelligent Network

2 .4 .1 S e r v ic e P la n e
The Service Plane [Q.1202] illustrates that IN-supported services can be described to the end
user or subscriber by means of a set of generic blocks called Service Features. A service is a
stand-alone commercial offering, characterised by one or more Service Features and can be
optionally enhanced by other Service Features. The service plane represents an exclusively
service-oriented view. This view contains no information whatsoever regarding the
implementation of the services in the network. All that is perceived is the network's service-
related behaviour as seen, for example, by a service user.

2 .4 .2 G lo b a l F u n c tio n a l P la n e
The Global Functional Plane (GFP) [Q.1203] models network functionality from a global or
network-wide point of view. As such, the IN structured network is said to be viewed as a
single entity in the GFP. In this plane, Services and Services Features are redefined in terms
of the broad network functions required to support them. These functions are neither Service
nor Service Feature specific and are referred to as Service Independent Building Blocks
(SIBs).
Contained in the Global Functional Plane are:
• S IB s which are standard reusable network-wide capabilities used to realise Services and

Service Features
• B a s ic C a ll P r o c e ss (BCP) is a SIB which identifies the normal call process from which

IN services are launched, including Points of Initiation (POI) and Points of Return (POR)
which provide the interface to the Global Service Logic (GSL).

• G lo b a l S e r v ic e L o g ic (GSL) which describes how SIBs are chained together to describe
Service Features. The GSL also describes interactions between the BCP and the SIB
chains.

By definition, SIBs, including the BCP, are service independent and cannot contain
knowledge of subsequent SIBs. Therefore, GSL is the only element in the GFP which is
specifically service dependent.
In the GFP basic non-IN calls are processed within the BCP. When an IN supported service is
to be invoked its GSL is launched at a Point of Initiation (POI) by a triggering mechanism

The Intelligent N etw ork

from the BCP. In order to chain SIBs together, knowledge of the connection pattern, decision
options, and data required by SIBs must be available. The GSL describes SIB chaining,
potential branching, and where branches rejoin. At the end of the chain of SIBs, the GSL also
describes the returning point to the BCP by indicating the specific Point of Return (POR). For
a given service at least one POI is required, however, depending upon the logic required to
support the service, multiple PORs may be defined. The use of SIBs is discussed in greater
detail in Section 2.6.

2.4.3 Distributed Functional Plane
The Distributed Functional Plane (DFP) [Q.1204] describes the functional architecture of an
IN-structured network in terms of units of network functionality, referred to as Functional
Entities (FEs) and the information that flows between functional entities, referred to as
relationships. The DFP architecture is vendor/implementation independent, i.e. the functional
entities and relationships are described independently of how the functionality is physically
implemented in the network. The definition of a Functional Entity (FE) is as follows:
A Functional Entity is a unique group of functions in a single location and a subset of the
total set of functions required to provide a service. One or more functional entities can be
located in the same physical entity [Q.1204].
FEs contain subdivisions, known as Functional Entity Actions (FEAs). SIBs on the GFP are
realised on the DFP by a sequence of Functional Entity Actions and resulting information
flows. The DFP is illustrated in Figure 2.5.

CCAF Call Control Agent Function
CCF Call Control Function
SSF Service Switching Function
SCF Service Control Function
SRF Specialised Resource Function
SDF Service Data Function
SMF Service Management Function
SMAF Service Management Agent Function
SCEF Service Creation Environment Function

Figure 2.5 Functional Entities and Relations in the DFP

12

The Intelligent Network

There follows a brief description of the functional entities in the DFP:
The Call Control Agent Function (CCAF) provides access for users. It is the interface
between user and network call control functions. It receives indications relating to the call or
service from the CCF and relays them to the user as required.
The Call Control Function (CCF) provides call/connection processing and control. It also
provides the capability to associate and relate CCAF functional entities that are involved in a
particular call and/or connection instance. It also provides trigger mechanisms to access IN
functionality (e.g. passes events to the SSF).
The Service Switching Function (SSF) interacts between the CCF and a SCF. It modifies
call/connection processing functions (in the CCF) as required to process requests for IN
provided service usage under the control of the SCF.
The Service Control Function (SCF) commands call control functions in the processing of
IN provided and/or custom service requests. The SCF may interact with other functional
entities to access additional logic or to obtain information (service or user data) required to
process a call/service instance. It contains the logic and processing capability required to
handle IN provided service attempts. It interfaces and interacts with other SCFs if necessary.
The Service Data Function (SDF) contains customer and network data for real time access
by the SCF in the execution of an IN provided service. It interfaces and interacts with other
SDFs if necessary.
The Specialised Resource Function (SRF) provides the specialised resources required for
the execution of IN provided services (e.g. digit receivers, announcements, conference
bridges, etc.). It may contain logic and processing capability to receive/send and convert
information received from users. It may also contain functionality similar to the CCF to
manage bearer connections to the specialised resources.
The Service Creation Environment allows services provided in IN to be defined,
developed, tested and input to the SMF. The output of this function would include service
logic, service management logic, service data template and service trigger information.
The Service Management Agent Function (SMAF) provides an interface between service
managers and the SMF. It allows service managers to manage their services (through access
to the SMF).

13

The Intelligent Network

The Service Management Function (SMF) allows deployment and provision of IN provided
services and allows the support of ongoing operation. Particularly, for a given service it
allows the co-ordination of different SCF and SDF instances, e.g. billing and statistic
information are received from the SCFs and made available to authorised service managers
through the SMAF; modifications in service data are distributed in SDFs, and it keeps track
of the reference service data values. The SMF manages, updates and/or administers service
related information in SRF, SSF and CCF.

2.4.4 Physical Plane
The Physical Plane [Q.1205] of the IN Conceptual Model identifies the different Physical
Entities (PEs) and the interfaces between them.

Figure 2.6 Physical Architecture of the Intelligent Network
The IN consists of the following PEs:
• The Service Switching Point (SSP) - user access to service functionality is provided

through the SSP, which handles call processing, detects service requests and provides
connectivity to the SCP and other SSPs in the network. The SSP contains three discrete
functions - the CCAF, the CCF and the SSF;

14

The Intelligent Network

• The Service Control Point (SCP) - the Service Control Function (SCF) resides here
along with the Global Service Logic (GSL);

• The Service Data Point (SDP) - this houses the SDF and is connected directly to the
SCP. It contains all network data relevant to the execution of services;

• The Intelligent Peripheral (IP) - the SSP maintains a number of channels between itself
and the IP, which contains the Service Resource Function (SRF). Interactions occur
between the SRF and users when the SSP opens a channel between them. The IP receives
instructions relating to announcements and digit collection directly from the SCF and,
when necessary, returns any acquired information.

2.5 Particulars of IN CS-1 Service Control

2.5.1 Basic Call Manager
The Basic Call Manager (BCM) is now described. The particular subjects of the BCM
discussed include the Basic Call State Model (BCSM) and connection events which can lead
to the invocation of IN service logic instances or be reported to already active IN service
logic instances.
The BCSM is a high-level finite state machine description of the CCF activities required to
establish and maintain communication paths for users. Only the aspects that are reflected
upward to the IN service Switching Manager (SM) and Feature Interaction Manager
(FIM)/Call Manager (CM) are visible to IN service logic instances and will be the subject of
standardisation.
The BCSM identifies points in a basic call (PIC: Point In Call) and connection processing
when IN service logic instances are permitted to interact with basic call and connection
control capabilities. PICs identify CCF activities to complete one or more call/connection
activities of interest to IN service logic instances. Detection Points (DP) indicate points in
basic call and connection processing at which transfer of control can occur. Transitions
indicate the normal flow of basic call/connection processing from one Point in Call (PIC) to
another. Events cause transitions into and out of PICs.

15

The Intelligent Network

Transition I I , . ,-4rj Events associated with a transition
j j r

Point In Call (PIC)
7

Figure 2.7 Key components of the BCSM

The BCSM reflects the functional separation between the originating and terminating
portions o f calls. Each is managed by a functionally separate BCM in the SSF/CCF. For IN-
CS1 the following BCSM is defined;

Figure 2.8 Originating side BCSM for CS-1

16

The Intelligent Network

Figure 2.9 Terminating side BCSM for CS-1

1. Initiate a T_BCSM when the authority to place a call attempt has been verified in the
Routing&Alerting PIC of the O B C S M and the originating Basic Call Manager has sent
the call attempt to the terminating BCM for further processing.

2. An indication is sent from the T BCSM to the O BCSM that the Called Party is busy
(causes Routing&Alerting PIC to DP5 transition in O BCSM).

3. An indication is sent from the T BCSM to the O BCSM that the Called Party is being
alerted (causes ring indication to be sent to the Calling Party in Routing&Alerting PIC of
the O BCSM).

4. An indication is sent from the T BCSM to the O BCSM that the Called Party has not
answered within a specified time period (causes Routing&Alerting PIC to DP6 transition
in O BCSM).

5. An indication is sent from the T BCSM to the O BCSM that the Called Party has
accepted and answered the call attempt (causes Routing&Alerting PIC to DP7 transition
in O BCSM).

17

The Intelligent Network

6 . An indication is sent from the 0_BCSM to the T B C S M that the Calling Party has
disconnected (causes T A ctive PIC to DP17 transition in T BCSM).

7. An indication is sent from the T_BCSM to the 0_BCSM that the Called Party has
disconnected (causes O Active PIC to DP9 transition in O BCSM).

8. An indication is sent from the O BCSM to the T_BCSM that the Calling Party has
abandoned (causes SelectFacility & PresentCall or T Alerting PIC to D PI8 transition in
T B C SM)

Note: Indications 6 and 7 are mutually exclusive [Q. 1214].

2.5.2 Detection Points
Certain basic call and connection events may be visible to IN service logic instances.
Detection Points (DPs) are the points in call processing at which these events are detected. A
DP can be armed in order to notify an IN service logic instance that the DP was encountered,
and potentially to allow the IN service logic instance to influence subsequent call processing.
If a DP is not armed, the CCF/SSF continues call processing without SCF involvement. DPs
are characterised by the following four attributes:
1. Arming Mechanism: the mechanism by which the DP is armed. A DP may be statically

or dynamically armed. A DP is statically armed through SMF service feature
provisioning. A statically armed DP remains armed until explicitly disarmed by SMF. A
DP is dynamically armed by the SCF within the context of a call-associated IN service
control relationship. A dynamically armed DP remains armed until detected, or until the
end of the relationship.

2. Criteria: in addition to the condition that a DP be armed, conditions that must be met in
order to notify the SCF that the DP was encountered. DP Criteria can be assigned to a DP
from the viewpoint of range of effectiveness (individual line/trunk based criteria, group
based criteria, office based criteria).

3. Relationship: given that an armed DP was encountered and DP criteria are met, the SSF
may provide an information flow via a relationship:
- If this relationship is between the SSF/CCF and the SCF for the purpose of

call/service logic processing, it is considered to be an IN service control relationship.
This relationship may be of two types: a control relationship if the SCF is able to

The Intelligent Network

influence call processing via the relationship; or a monitor relationship, if the SCF is
not able to influence call processing. With respect to an IN service control
relationship, the information flow provided by the SSF to the SCF on encountering a
DP may initiate a control relationship, may be within the context of an existing
control relationship, or may be within the context of an existing monitor relationship.

- If this relationship is between SSF/CCF and the SCF or SMF for management
purposes, it is considered to be a service management control relationship.

4. Call Processing Suspension: given that an armed DP was encountered and DP criteria
are met for an IN service control relationship, the SSF may suspend call processing to
allow the SCF to influence subsequent call processing. When call processing is
suspended, the SSF sends an information flow to the SCF requesting instruction, and
waits for a response. When call processing is not suspended, the SSF sends an
information flow notifying the SCF that DP was encountered, and does not expect a
response. The call processing suspension attribute is set by the same mechanism that arms
the DP.

Based on these attributes, four types of DPs are identified for CS1 :
• Trigger Detection Point - Request (TDP- R)
• Trigger Detection Point - Notification (TDP- N)
• Event Detection Point - Request (EDP- R)
• Event Detection Point - Notification (EDP- N)
Since a DP may be armed as a TDP and/or EDP for the same call, the BCM should apply a
set of rules during DP criteria processing to ensure single point of control:
• DP-N criteria are processed before DP-R criteria. This ensures that notifications are

provided to SCFs and are not bypassed as a result of call handling instructions that may
occur as a result of a DP-R.

• TDP-R criteria may not be processed if there is any existing control relationship for this
portion of the call. This ensures not to violate the single point of control restriction for
CS-1.

19

The Intelligent Network

• The same DP may be armed multiple times as a TDP-R, with the DP criteria placed in
precedence order through administrative procedures. Subsequent TDP-R criteria can only
be processed if there is no existing control relationship caused by previous DP processing.

• TDP-N criteria may be processed whether or not there is an existing control relationship
for the same portion of the call since TDP-N does not open a control relationship.

• A control relationship persists as long as there is one or more than one EDP-R armed for
this portion of the call. A control relationship terminates, if there are no more EDPs
armed or the call clears. During a control relationship, EDPs may be dynamically
disarmed by the SCF, or are disarmed by the SSF as they are encountered and reported to
the SCF, or when the call clears.

• A control relationship changes to a monitor relationship if there are no more EDP- Rs
armed and one, or more than one EDP-Ns armed. A monitor relationship terminates if
there are no more EDP-Ns armed or the call clears. During a monitor relationship, EDP-
Ns are disarmed by the SSF and reported to the SCF as they are encountered or when the
call clears [Q.1214].

2.6 The use of SIBs in the Global Functional Plane

The network is viewed from the GFP as a single structure. It describes units of service
functionality, referred to as service independent building blocks (SIBs), which are
independent of how the functionality is distributed in the network. The Global Service Logic
(GSL) can describe a service as a chain of SIBs to be executed. An instance of a string of
SIBs describing a service is a Service Logic Program Instance (SLPI). Each SIB is mapped
onto one or more Functional Entity Actions contained within the Functional Entities in the
Distributed Functional Plane (DFP).
Normal, or non-IN, supported services are processed within the BCP. When an IN supported
service is to be invoked its GSL is launched at the point of initiation (POI) by a triggering
mechanism from the BCP. The GSL also describes the returning point to the BCP by
indicating a specific point of return (POR).

20

The Intelligent Network

Figure 2.10 Using SIBs in the GFP

2 .6 .1 D e f in it io n o f a S IB
A SIB is a standard reusable network-wide capability residing in the global functional plane
which is used to create service features. SIBs are of a global nature and their detailed
realisation is not considered at this level but can be found in the DFP and the physical plane.
SIBs are reusable and can be chained together in various combinations to realise services in
the service plane. SIBs are defined to be independent of the specific service and technology
for which, or on which, they will be realised [Q.1203],

2 .6 .2 C h a r a c te r is t ic s o f a S IB
• SIBs are defined completely independently from considerations of any specific

distributed functional and physical plane architectures [Q.1203].
• Interactions among FEs in the DFP are invisible to SIBs in the GFP.
• Individual SIBs must be defined using a standard methodology to allow multi-vendor IN

products to identically support them and to allow service designers to have a common
understanding of the SIB.

• SIBs are monolithic building blocks that the service designer uses to develop new
services. All service features are described by a single SIB or a chain of SIBs.

• SIBs are realised in the DFP by Function Entity Actions (FEAs) which may reside in one
or more Functional Entities (FEs).

• A SIB has one logical starting point and one or more logical end points. Data required by
each SIB is defined by SIB support data parameters and call instance parameters.

• SIBs are reusable. They are used without modifications for other services.

21

The Intelligent N etw ork

2.6.3 Data Parameters For SIBs
SIBs are service independent and have no knowledge about previous or subsequent SIBs used
to describe the service. In order to describe a service using these generic SIBs service
dependent elements are needed. Service dependence can be described by using data
parameters, which enable a SIB to be tailored to perform the required functionality. Data
parameters are specified independently for each SIB and are made available to the global
service logic. Two types of parameters are required for each SIB; static parameters named
Service Support Data (SSD) and dynamic parameters known as Call Instance Data (CID).

¡SSD
Logical | Parameters

Start $ Logical
Ends

CID Input T I CID Output
Parameters 1 ^Parameters

Figure 2.11 Graphic Representation of SIB

Call Instance Data (CID)
CID defines dynamic parameters whose value will change with each call instance. They are
used to specify subscriber specific details such as calling or called line information. This data
can be made available from the BCP SIB, generated by a SIB, or entered by the subscriber.
Associated with each CID value is a logical name, referred to as the CID Field Pointer
(CIDFP). If a SIB requires a CID to perform its function there will be an associated CIDFP
assigned through the SSD.

Service Support Data (SSD)
SSD defines the data parameters required by a SIB which are specific to the service feature
description. The GSL specifies the SSD values for a SIB. The SSD consists of:
• Fixed parameters: Data parameters whose values are fixed for all call instances. For

instance, the "File Indicator" SSD for the Translate SIB needs to be specified uniquely for
each occurrence of that SIB in a given service. The "File Indicator" value is then said to
be fixed, as the value is determined by the service description, not by the call instance.

22

The Intelligent Network

• Field pointers: Identify which CID is required by the SIB. “CIDFP-xxxx” signifies them,
where "xxxx" names the data required. For instance, "CIDFP-Info" for the Translate SIB
will specify which CID element is to be translated. If more than one CID is required by a
SIB to perform its function, then the SSD data parameters will contain multiple fields.

2.6.4 Basic Call Process (BCP)
The BCP is responsible for providing basic call connectivity between parties in the network.
It can be viewed as a specialised SIB which provides basic call capabilities, including:

• connection o f calls
• disconnection o f calls
• retaining CID for further processing

IN supported services are represented through the use o f chains o f SIBs connected to the BCP
SIB (see Figure 2.10). The interface points between the BCP SIB and the chains o f SIBs are
described as points o f initiation and points o f return:
A Point O f Initiation (POI) is the BCP functional launching point for the SIB chains.
A Point O f Return (POR) identifies the point in the BCP where the SIB chains terminate. The
need for specific POI/POR functionality is that the same chain o f SIBs may represent a
different service i f launched from a different point in the BCP.

2.6.5 The Service Logic
The Global Service Logic (GSL) contains the logic that is used to run IN services. An
instance o f a services logic is referred to as a Service Logic Programming Instance (SLPI). A
SLPI defines the order in which SIBs are chained together to accomplish services. The SIB
chain begins with a POI and ends with a POR to the BCP. The SLPI also provides the CID
and SSD parameters for the SIBs.

2.6.6 CS-1 SIBs
SIBs identified in Capability Set 1 include the following:

23

The Intelligent Network

SIB Description
Algorithm Applies a mathematical algorithm to data to produce a data result
Charge Determines special charging treatment for the call, where special refers

to any charging in addition to that normally performed by the basic call
process.

Compare Performs a comparison o f an identifier against a specified reference
value. Three results are possible : identifier is GREATER than the
value, identifier is LESS than the value, identifier is EQUAL to the
value

Distribution Distribute calls to different logical ends o f the SIB based on user
specified parameters

Limit Limit the number o f calls related to IN provided service features
Log Call
Information

Log detailed information for each call to a file. The collected
information may be used by management services and not by call
related services

Queue Provide sequencing o f IN calls to be completed to a called party
Screen Perform a comparison o f an identifier against a list to determine whether

the identifier has been found in the list
Service Data
Management

Enables end user specific data to be replaced, retrieved, incremented, or
decremented

Status
Notification

Provide the capability o f inquiring about the status and/or status changes
o f network resources

Translate Determine output information from input information.
User
Interaction

Allows information to be exchanged between the network and a called
party, where a call party can be either a calling or called party

Verify Provide confirmation that information received is syntactically
consistent with the expected form o f such information

Table 2.3 CS-1 SIBs

2.7 The Services

Two call control IN services; Ringback and Group Call Pickup, were chosen to be
implemented on the IN Architecture using the ITU-T SIB methodology. The services are now
described in terms o f how they work and the SIBs necessary to implement them.

24

The Intelligent Network

2.7.1 Ringback Service
This service is invoked by a caller (Party A) who, having phoned a busy extension (Party B),
decides to request a phone call from that extension when they become available. When the
busy Party B becomes available Party A is rung. When Party A goes o ff hook Party B is rung.
When Party B answers a call is set up between them. The special Ringback service digit-sting
used to invoke the service is ‘69’. The SIB chain designed to depict this service is shown in
Figure 2.12.

Figure 2.12 Ringback Service SIB Chain

The Basic Call Process (BCP) launches the SIB chain with a Point o f Initiation (POI). The
Compare SIB is used to compare the Party B (called party) number to the Party A (service
initiator) number to ensure that they are not the same i.e. that Party A has not initiated an
infinite looping Ringback service on itself. Once it has been established that this is not the
case a User Interaction SIB is called to inform Party A that their request for the Ringback
service has been accepted and is being processed. Simultaneously the Status Notification SIB
begins to continuously monitor Party B ’s line for an on-hook status. On detecting Party B
going on-hook the Party Connection SIB polls (rings) Party A. When Party A picks up and
goes into the off-hook state the Party Connect SIB is called again but this time to poll Party
B. The two parties are connected as soon as Party B goes off-hook. A Point o f Return (POR)
indicates to the BCP that the service has ended. IN call processing has terminated at this point
and the POR indicates that the basic call processing is to be handed over to the call control
function in the switch.

25

The Intelligent N etwork

2.7.2 Group Call Pick Up Service
A user must be a member o f a pre-defined group to use this service. A user at any extension
within a particular group can automatically answer calls ringing on other group member’s
extensions by selecting the Group Pick Up option. The special Group Call Pickup digit-sting
used to invoke the service is ‘7 0 ’. Figure 2.13 shows the SIB chain for Group Call Pickup.

Figure 2.13 Group Call Pickup Service SIB Chain

The BCP detects the request for the IN group pick up service, and a POl instigates the SIB
chain for the service. The service initiator (calling party) number is screened, using the
Screen SIB, to find the group identity for this party. The Service Data Management SIB is
then used to retrieve the list o f party members for this group id. Each party line id in the party
member list is then systematically monitored by the Status Notification SIB for their current
status, until eventually a party with the current status ‘BeingPolled’ (Ringing) is found. Using
the number o f the party that is being polled the Redirect SIB queries the switch to find the
original calling party. The Redirect SIB then terminates the Originating BCSM set up for the
service initiator, and creates a replacement Terminating BCSM. The Party Connect SIB is
given the original caller id and the service initiator id to connect the two. SIB Redirect cleans
up, by killing the Terminating BCSM created for the initial called party, thus the first phone
stops ringing. Call processing is then handed over to the Call Control Function by sending the
POR to the BCP, which in turn instructs the switch to take over the processing.

2.8 The SIBs used to implement the Services

Seven SIBs were required to implement the two chosen services. Five o f these SIBs
(Compare, User Interaction, Status Notification, Screen and Service Data Management) are
defined in Capability Set 1 (CS-1). Two new SIBs (Party Connect and Redirect) had to be

The Intelligent Network

designed in order to make the implementation o f these services possible. This fact serves to
demonstrate the incompleteness o f CS-1 as a defining standard.
SIBs are located in the GFP and map onto functionality located in the DFP. A SIB in the GFP
will call one or more FEA contained within FEs in the DFP. The naming convention for each
o f the FEAs is as follows;

FEAXYYZ, where [Q.1214]:
• X represents the Functional Entity:

2 represents the CCF/SSF
3 represents the SRF
4 represents the SDF
9 represents the SCF

• YY represents the section number o f the SIB:
Algorithm SIB is 01
Compare SIB is 03
Screen SIB is 08
Service Data Management SIB is 09

User Interaction SIB is 12
• Z distinguishes the particular FEAs which have a common XYY.

Therefore, for example, the Compare SIB located in the SCF will use FEA 9031.

2.8.1 Compare SIB
The Compare SIB performs a comparison o f an identifier against a specified reference value,
returning one o f the three logical results:

• identifier is GREATER than the reference value,
• identifier is LESS than the reference value,
• identifier is EQUAL to the reference value.

27

The Intelligent Network

Other logical results can be formulated by combining two o f the logical outputs together
(e.g.<=, >=, or o) . Potential service applications for this SIB include time dependent
routing, and checking the relationship o f current network time to a customer specified time.
The compare function takes place in a FEA in the SCF.
There are two main comparison types identified in the CS-1 standards [Q.1213];
Identifier value - compare the identifier against the reference value. Time - compare network
time to the reference time. Network time is specified as:

• time o f day;
• day o f week; or,
• day o f year;

The use o f the ‘time’ comparison type is not required for the current implementation o f the
compare SIB, and therefore the only comparison type available in this initial prototype is the
‘value’ comparison type.

Compare Input Data
The two types o f input data for the compare SIB; Service Support Data (SSD) and Call
Instance Data (CID) are described.
The Service Support Data (SSD_Compare) consists o f the:

• comparison type, if it is a value or a time that is being compared,
• identifier type, whether the identifier value, and therefore reference value, is of

type integer or a char string,
• integer value, this field is filled in with the identifier value if it’s o f type integer,
• char string value, this field is filled with the identifier value if it’s type char string.

It should be noted that the compare identifier and reference value must be o f the same type,
i.e. both integer values or both char string values.

The Call Instance Data (CID_Compare) consists of:

28

The Intelligent Network

• the integer value, this is the field which contains the reference value if it is o f type
integer,

• the char string value, this field contains the reference value if it is o f type char string.

Compare Output Data
The output (or result) o f the compare SIB is defined by the type Compare_result. There are
four possible results; greaterjhan, lessjhan, equal value or error Jound. The error is
described in the sort SIB_error_cause which accompanies the Compare jresult, the possible
errors for this SIB are invalid^identifier or invalid_reference value.

2.8.2 Screen SIB
Screen performs a comparison o f an identifier against a list to determine whether or not the
identifier exists in the list. The two possible solutions are:

• there is a match for the identifier in the list, or
• there is no match for the identifier in the list.

The SIB could be used, for example, to verify a user ID or PIN, or for the selective call
forward on busy/don’t answer service. The screening function takes place in an FEA in the
SDF functional entity.

Screen Input Data
The two types o f input data for the Screen SIB, SSD and CID, are described.
Service Support Data (SSD_Screen)

• Screen list indicator, or database Id, indicates the list to search for the identifier
match,

• key field name, the field in the database in which the identifier should be located,
• key field type, the type o f the key value,
• key field integer, this field is filled with the key value if that value is an integer,
• key field char string, the value o f the key if the key is o f type char string.

29

The Intelligent Network

Call Instance Data (CID_Screen)
The information in this type is partly filled in by the GSL prior to SIB initiation the
remainder o f the information is the result o f the screening function carrier out by the FEA in
the SDF. This type is then sent back as part o f the SIB’s result.
The contents o f the CID Screen are as follows:

• requested information field name, this presents the field in the database which
must be checked against the reference or key value,

• requested information field type, is it o f type integer or char string,
• requested information field integer, i f the information is o f type integer,
• requested information field’s char string, i f the information is o f type char string.

Screen Output Data
The resultant output is a match, no match or a logical error. The type Screen_result contains
this logical result and also the requested information. The sort SIB_error_cause
accompanies the result information. The error cause for screen can be invalid^identifier, or
invalid screen J ist.

2.8.3 Service Data Management SIB
The Service Data Management SIB enables user specific data in the database to be replaced,
retrieved, incremented, or decremented. An example application would be to retrieve or
replace a customer’s call forwarding number. The service data management operations takes
place in an FEA in the SDF functional entity.

SDM Input Data
The two types o f input data for the SDM SIB, SSD and CID, are described.
Service Support Data (SSD_SDM) contains:

• database ID, this indicates the subscriber data file to be operated on,
• operation, whether this is a replace, retrieve, increment, or decrement operation,

30

The Intelligent Network

• offset value, specifies the amount by which the data element is to be incremented
or decremented.

• new integer value, the replacement value for the data element i f it is o f type
integer,

• new char string value, the replacement char string if the data element to be
replaced is o f type char string.

Call Instance Data (CID_SDM) contains
• key field name, the name o f the field used as a key to indicated the data,
• key field type, the type o f the information contained in the key field i.e. int or

char,
• key field integer, i f the key element is o f type integer this field contains the key

value,
• key field char string, i f key field type is o f type char string then this field contains

the key value for indicating the data,
• retrieved information,

- the return value name, the field in which the return value exists,
- the return value type, whether it is an array o f integers, or o f char strings,
- return integer array, the array o f integers being returned,
- return char string array, the array o f char strings being returned.

SDM Output Data
The information returned from this SIB depends on the type o f operation that has been
performed. The success o f any o f the operations is reported by a simple boolean value,
logicalError. If the result is positive, i.e. an error has occurred, the reason for this error is
given by the accompanying SIB_error_cause parameter. The possible error causes for this
SIB are invalid file_indicator, invalidoperation, invalidreference jvalue,
invalid_information_value, invalidoffsetjyalue.

31

The Intelligent Network

The retrieve action has its own special output report, consisting o f the retrieved information,
described above in the CID information.

2.8.4 Status Notification SIB
The Status Notification SIB allows the SCF the capability o f keeping track o f the status o f
network calls or resources, and the option to store the status in the SDF. There are three
possible types o f monitor the SIB can place on a resource or a call:

• A continuous monitor monitors the resource continuously for a set length o f time,
• A next change monitor traces the resource until the next change in status and then

notifies the SCF, and
• A current status check checks the present status o f the resource and reports it

immediately to the SCF.
There is a time limit set for both the continuous and the next change monitors. A resource can
be in one o f seven states:

• idle,
• waiting for a dial-tone,
• waiting for a dial-string,
• polling,
• being polled,
• connected,
• o ff hook following alert.

The monitoring function is performed by the CCF, which is instructed by an FEA in the SCF
via the SSF functional entity.

Status Notification Input Data
There is one type o f input data SSD_StatusN. Internal to the SIB the StatusReportArg data
type relays the required information between the SCF and the CCF via the SSF.
Service Support Data (SSD_StatusN) contains three fields:

32

The Intelligent Network

• monitor type, continuous, next or current monitor,
• call party, the resource id on which the monitor is to be placed,
• monitor duration, the duration that a continuous or next monitor can last.

The Status Report Argument contains data sent between the SCF and the switch with the
request to monitor a resource. This argument contains the members:

• monitor type,
• monitor duration,
• current line id, the resource id to be monitored,
• resource status, the status required by the SCF, or the status detected by the CCF
• logical error indication, a boolean value with true indicating that errors are present,
• error code, this is the SIB_error_code found if there was an error.

Status Notification Output Data
There are two items o f data returned by the Status Notification SIB: StatusN_result and the
SIB_error_cause. StatusN_result contains:

• the resource status,
• the resource id,
• the logical result, whether there was an error or not.

The possible errors for this SIB are: invalid_type, invalid_resource, invalidjimer,
inconsistent timer set, invalid_resource_status, status Jimer_expired.

2.8.5 User Interaction SIB
User Interaction is a SIB that provides interaction functions with the user, such as the playing
o f an announcement, or the collecting o f information from a party. The announcements can
be customised or generic audio message, DTMF tones, or network progression tones. The
collected information can be DTMF tones, audio, IA5 String Text etc. This SIB provides the
specified announcement to the user, and depending on the repetition type, the message is
repeated a set number o f times, or for a set time length. A functional entity action in the SCF

33

The Intelligent Network

firstly directs the SSF to set-up a connection to the SRF for the traffic o f the user interaction
switch instructions. The SCF then instructs the SRF on what operation to perform and an
information flow takes place between the FEA in the SRF and the SSF. On completion o f the
interaction phase the SCF is alerted with the result. It then instructs the SSF to close down the
connection to the SRF FEA. The collection o f information interaction is not required at this
stage o f the project.

User Interaction Input Data
SSD and CID are both sent to the User Interaction SIB.
Service Support Data (SSD_UI) consists of:

• connected SRF Id, returned by the SSF after the SRF connection has been set up,
• information to send, this is the information that is passed on to the SSF in the form

of PlayAnnouncementArg and includes:
- announcement type, the announcement to send,
- request for repetitions, whether the announcement should be repeated,
- the type o f repetition, time repeat or count repeat,
- the repetition interval, time between repetitions,
- maximum number o f repetitions, if the repetition type is o f type count,
- maximum repetition duration, i f the repetition type is o f the type time.

Call Instance Data (CID_UI) contains:
• collect information indicator, boolean value set to true if there is information to be

collected,
• call party Id, the resource/ destination Id with which to interact

User Interaction Output Data
The result is contained in the type UI_result and contains a logical error result, whether there
is an error or not. It is accompanied by the SIB_error_cause value, which can be set to any

34

The Intelligent Network

of the following: callabandon, collection time out, incorrect digit string,
announcementjesource_unavailable, data collectionjesourcejunavailable,
invalid announcement, invalid calljparty, inconsistent timer_setting,
call status_incompatjvith_ann, call sta tusincom patjw ith jn focollect.

2.8.6 Party Conncct SIB
The first newly designed SIB (not provided by CS-1) is the Party Connect SIB whose
function is to instruct the switch to poll (ring) and to connect different parties. There are three
different operations that this created SIB can provide:

• party connect, connecting two parties,
• poll party, ringing the defined party,
• poll and connect party, poll the identified party and then when the party answers

connect to the second party.
The functionality is located in the FEA at the SCF, which sends the appropriate instructions
to the switch via the SSF.

Party Connect Input Data
There is no service support data defined for the Party Connect SIB, only CID.
Call Instance Data (CID PartyC) contains the following information:

• connection type, whether it’s a poll, poll and connect or connect,
• caller id, the service initiator Id,
• party A id, the identity o f the first party to be polled for a poll connection, to be

connected to in a poll and connect operation, and to be one o f the connect parties
for the connect action,

• party B id, the identity o f the second party involved in the Party Connect action, B
is the polled party in the poll and connect operation, and second connect party for
the connect operation,

35

The Intelligent Network

• first party polled indication, this is a simple Boolean value to indicate that the first
party has already been polled or is ready for the connect state, for the poll and
connect operation.

Party Connect Output Data
The result, PartyC_result, o f the SIB is output along with the SIB_error_cause. It contains
a logical value, indicating the presence o f an error, or not. Possible error causes for the Party
Connect SIB are: invalid_party_id, invalid je so u rce status.

2.8.7 Redirect SIB
The second newly designed SIB (not provided by CS-1) is the redirect SIB, used in the Group
Pick Up service for redirecting the call from the original called party to the group member
party who picks up. The actions for this SIB are again performed in the SCF, which directs
the switch on the particular steps.
There are three different operations making up the functionality o f the SIB. These can be
processed as detailed or may be performed individually. The operations are;

• original calling party, determines the original caller,
• terminate party Id, terminates any unneeded basic call state model (BCSM), either

terminating or originating for the particular party id given,
• create party Id, creates the required BSCM for the indicated party.

Redirect Input Data
The input data for this SIB is contained in one type, CID.
Call Instance Data (CID_Redirect) consists of:

• full redirect indicator, flag showing whether the full redirect procedure is to be
performed or i f only a single redirect operation is required,

• the redirect phase, what redirect operation is to be performed, i f the single
operation option is chosen above,

• create party Id, the identity o f the party for which a new BCSM is to be created,
36

The Intelligent Network

• terminate party Id, the identity o f the party whose BCSM must be terminated.

Redirect Output Data
The return values from the redirect SIB are contained in the two types, Redirect_result and
SIB_error_cause. The result type contains

• the redirect phase, if it was only one operation that was performed,
• originating success, a logical result showing the original calling party id was found,
• creation success, a logical value indicating successful creation o f a BCSM,
• termination success, a logical value indicating successful termination o f a BCSM.

There is only one error associated with this SIB: Invalid_Party_Id.

2.9 INAP and the addition of new SIBs

The Intelligent Network Application Protocol (INAP) [Q. 1218] specifies the information
flows to be exchanged between the different entities o f the IN functional model in terms of
protocol data units (PDUs) described by A SN .l (Abstract Syntax Notation #1). The PDUs
themselves represent Remote Operations in the scope o f the Transaction Capability
Application Part (TCAP). For CS-1 the INAP messages between the different functional
entities are already defined.
Given that two new SIBs which are not specified by CS-lhave been created (Party Connect
and Redirect) it is clear that new INAP messages will also need to be created. The new INAP
messages between the FEs because o f the Party Connect SIB are as follows:
From the Party Connect SIB to the SSF (in signal list PC_2_SSF o f Figure 4.4);

• Poll_req_ind
• Poll_Connect_req_ind
• Connect_req_ind

From the SSF to the Party Connect SIB (in signal list SSF_2_PC in Figure 4.4);
• Poll_resp_conf

37

The Intelligent Network

• Poll_Connect_resp_conf
• Connect_resp_conf

The information flows between the FEs due to the creation o f the Redirect SIB are:
From the Redirect SIB to the SSF (in signal list Rdir_2_SSF in Figure 4.4);

• OrigCallerId_req_ind
• TerminateBCSM_req_ind
• CreateBCSM_req_ind

From the SSF to the Redirect SIB (in signal list SSF_2_Rdir in Figure 4.4);
• O rigC allerldrespconf
• Term inateBC SM respconf
• C reateB C SM respconf

In defining these new SIBs and information flows it was necessary to go beyond the scope of
INAP. This again serves to demonstrate the incompleteness o f the current standards.

2.10 State of the Art

This Section explains the current state o f the IN and TINA technologies.

2.10.1 IN Today
The Intelligent Network (IN) concept has evolved gradually from the 1960s when Common
Channel Signalling (CCS) was first introduced in the United States telecommunications
network. Subsequent developments led to the introduction o f direct service dialling,
Freephone services, Virtual Private Networks (VPN), etc. The term Intelligent Network
emerged in 1983/84 as part o f the work done in the USA by Bellcore and others to define the
first non-proprietary network design capable o f supporting Freephone, credit card verification
and VPNs. In 1988 the Telecommunication Standardisation Sector o f the International
Telecommunications Union (ITU-T) and the European Telecommunications Standards
Institute (ETSI) started work on IN standards. The key goal o f this standardisation has been
to enable the development o f network systems that could support rapid deployment o f new

38

The Intelligent Network

services without having to redefine/enhance the network infrastructure with new call
processing features and signalling interfaces.
Today Intelligent Networks are in full commercial service in many European countries, the
Asia-Pacific region and North America. Many other countries are also planning their
introduction. The most widely deployed services in IN are Freephone, Virtual Private
Networks, cashless calling and premium rate services. IN is seen as a key element for
competitive advantages in the telecommunications market. For telecommunication operators,
service customisation, provisioning and management are the immediately assured
applications o f IN. The major driving forces for IN are to speed up time to market, to provide
more effective use o f capital investment and to provide the ability to rapidly create new
services.
The work carried out by ITU and ETSI is leading to increased world-wide standardisation of
IN. The current version o f the ITU standards is Capability Set 2 (CS-2) which was recently
released. The services and SIBs in this project, designed before the release o f CS-2, is based
on CS-1. As CS-2 is a superset o f CS-1 there should not be any compatibility problems when
services based on CS-2 (and later Capability Sets) are implemented.

2.10.2 Existing IN Models
Using the SDL/SDT suite, models o f the IN architecture have been implemented to study
various aspects o f the Intelligent Network Conceptual Model and the suitability o f SDL as a
development language.
A model implemented by [Csu94] was developed to explore the IN Recommendations
[Q.1200] to [Q. 1218] and to be used as a working illustration o f the Intelligent Network
paradigm. This project also pointed out various ambiguities in the Recommendations.
A model o f the INCM developed by [Morris] incorporated a Service Creation Environment
(SCE). A Universal Personal Telecommunications service was developed on the SCE and its
performance and that o f the INCM model were evaluated. The work done on this project
proved that SDL is extremely suitable for the development o f models o f the INCM as it is
very adaptable and conducive to extendibility, which is a key aspect o f the IN architecture.
Both o f these models are restricted to the situation where a single user can interact with the
model and only one service can execute at any one time.

39

The Intelligent N etwork

While these models were very helpful in clarifying ambiguities in the Q Series o f IN
standards [Q.1200] it was felt that the development o f a real IN system, which could handle
actual user calls, would be extremely beneficial. The system developed in this project is not a
model o f the INCM but an actual implementation o f a working and extendible IN system.
Users attached to a switching platform can set-up standard calls or invoke IN services in real
time. It was felt that implementing a simultaneous multi-user, multi-service system would
give a more complete understanding o f how a platform provided by a commercial IN service
provider would actually behave and what real implementation and design issues would be
encountered.

2.10.3 TINA Overview
Telecommunications Information Networking Architecture (TINA) is an effort carried out by
the TINA Consortium (TINA-C) to overcome current network limitations in the provisioning
o f services, fully exploiting the integration o f Telecommunications and Information
Technology. TINA-C is an international collaboration aimed at defining and validating an
open architecture for telecommunication systems for the broadband, multimedia and
information era. TINA addresses the needs o f traditional voice based services, future
interactive multimedia services, information services, and operations and management type
services, and provides the flexibility to operate services over a wide variety o f technologies.
In a TINA network the process space within which all the objects communicate is extended
using a Distributed Processing Environment (DPE). CORBA is a leading example o f a DPE
and has been selected as the TINA-C DPE o f choice. If the objects are to be distributed an
underlying platform must be defined to mediate the communication and presentation aspects
between objects. Classes o f interfaces can be defined using CORBA's Interface Definition
Language (IDL) and then automatically translated into language specific constructs.
The concepts o f a Role and Stakeholder determine the Business Model o f the TINA
architecture. A Role is a position in the telecommunication market while a Stakeholder is a
business entity such as a company. In Figure 2.14 the business model covering the service-
provisioning phase is shown. The identified Roles in this case are the following:

• Customer: User o f services provided by the TINA system.
• Service Retailer: Provides Customers with access to Services (it may use other

providers to support the provision o f these services).
40

The Intelligent N etwork

• 3rd Party Service Provider (3SP)/Content Provider (CP): Aims to support
Retailers and other third party providers with services but does not have direct
obligation to the Customer.

• Broker: Provides stakeholders with information that enables them to find other
stakeholders and services in the TENA system.

• Connectivity Providers: Providing transport connectivity on the Access Network
and/or on the Backbone Network.

C o n n e c t iv i ty P r o v id e r (s)

Figure 2.14 TINA Business Model

Reference Points between different Roles are identified in order to support interoperability.
The Reference Points comprise a set of interfaces describing the interactions taking place
between the Roles. For example, the Retailer Reference Point (Ret-RP) describes the relation
between Customer and Service Retailer.
A Broker mediates with a user to find an appropriate Service Provider (SP). The chosen
Service Provider is then the Retailer for that service. The Retailer mediates access to the
services offered by 3rd Party Service Providers by providing added value functionalities to
the Customer. In addition it also supports the user in service management related activities,
such as subscription, service customisation, management o f customer profiles and data, and
billing procedures. The Retailer acts as a broker for 3SPs and Connectivity Providers (CPs)
by filtering user requests and assuring the Quality of Service (QoS).
The TINA Architecture is decomposed into four main parts:

• Computing Architecture: defines a set of concepts and principles for the design
and building of distributed software and the software support environment.

41

The Intelligent Network

• Service Architecture: defines a set o f concepts and principles for the design,
specification, implementation and management o f telecommunication services.

• Network Architecture: defines a set o f concepts and principles for the design,
specification, implementation, and management o f transport networks.

• Management Architecture: defines a set o f concepts and principles for the
design, specification, and implementation o f software systems that are used lo
manage services, resources, software, and underlying technology.

Figure 2.15 Decomposition o f the TINA Architecture

2.10.3.1 The Computing Architecture
The Computing Architecture describes a telecommunication system from five viewpoints:

• Enterprise: Focuses on the purpose, scope and policies for the system.
• Information: Focuses on the semantics o f information and information

processing activities in the system. It shows how a system is specified in terms of
information entities (objects, classes) and the relationships between them.

• Computational: Focuses on the decomposition o f the system into a set of
interacting objects that are the candidates for distribution.

• Technology: Focuses on the choice o f technology to support the system.

42

The Intelligent Network

The Computing Architecture also defines the Distributed Processing Environment (DPE)
lying over the Native Computing and Communication Environment (NCCE) o f computing
nodes. The DPE provides the support system allowing objects to locate and interact with each
other.

2.10.3.2 The Service Architecture
There are three main sets o f concepts and principles in the service architecture:

• Session concepts, which address service activities and temporal relationships,
• Access concepts, which address user and terminal associations with networks and

services, and,
• Management concepts, which address service management issues.

Session Concepts
Although services may differ in nature they all share the fundamental property o f providing a
context for relating activities - termed a Session. Four types o f sessions have been identified:
• A Service Session is the single activation o f a service. It relates the users o f the service

together so that they can interact with each other and share entities. A service session
contains the service logic and is computationally represented by a Service Session
Manager (SSM). An SSM offers two types o f operational interfaces. The first is a
Generic Session Control Interface. This provides the operations that allow users to join
and leave service sessions. For certain services it may also offer operations to suspend
and resume involvement in a service. The second type o f interface will provide Service
Specific Operations, and will be dictated by the capabilities offered by the service logic.

• A User Session maintains state about a user's activities and the resources allocated for
their involvement in a service session. Examples o f states held in a user session include
the user's accumulated charge, suspension and resumption history, and service specific
state. When a user joins a service session a user session is created. It is deleted when the
user leaves. The service session maintains links to the user sessions and thus provides a
group oriented view.

43

The intelligent Network

• A Communication Session is a service-oriented abstraction o f connections in the
transport network. A communication session maintains state about the connections o f a
particular service session, such as the communication paths, End Points and Quality of
Service (QoS) characteristics. A communication session is only required when streams
between users (or resources) are required. Computationally a Communication Session
Manager (CSM) provides the features o f a communication session.

• An Access Session maintains state about a user's attachment to a system and their
involvement in services. A user can attach to a system in order to launch new or join
existing service sessions. A user may be involved in many services at the same time and
an access session maintains state about this involvement.

Access Concepts
Users need flexible access to services in terms o f the locations from which they access the
service and the types o f terminals they use. User access is therefore distinguished from
terminal access. An agent concept is used in defining the access model. The following types
o f agent have been identified:
• A Provider Agent (PA) provides the access mechanism to the Retailer domain and

connects a user to their User Agent.
• A User Agent (UA) receives requests from users to establish service sessions, or to join

existing service sessions, and creates or negotiates with existing service sessions as
appropriate. Creation is actually carried out by the User Agent sending a request to a
Service Factory (SF). A factory is a DPE service that can dynamically create objects. The
creation o f a service session is subject to subscription and authentication checks. A User
Agent also receives and processes requests to join a service session from service sessions
themselves. This is a form o f incoming call processing where another user has created a
service session and invites the user to join. UAs know the subscribed services that a user
may create. This list can be presented to the user when the user logs onto his UA.

• A Terminal Agent (TA) is responsible for representing a terminal and obtaining the
precise location o f the terminal. Two examples are, which network access point a portable
computer is attached to, and which cell a mobile phone is currently in.

44

The Intelligent Network

In order to access a service, users must associate their User Agents with Terminal Agents.
This may form part o f a logging on process to establish an access session. A user may be
simultaneously associated with many terminals. For example, in a video conference a user
may be using both a workstation and a telephone. Similarly a terminal may be simultaneously
associated with many users, for example, when in a meeting all users associate their user
agents with the telephone in the meeting room. On receiving incoming session requests, a UA
has to determine which TA should be contacted. If the user is currently accessing the system
then an announcement could be issued to one o f the terminals being used, and the user can
instruct the UA which terminal to use. Otherwise the UA will have to determine which
terminal and pass a request to the TA who can alert the user. This determination can be done
through user registration, preferences, and defaults.

2.10.3.3 The Network Architecture
The purpose o f the network architecture is to provide a set o f generic concepts that describe
transport networks in a technology independent way, and to provide mechanisms for the
establishment, modification, and release o f network connections. The network architecture
defines a set o f abstractions that the resource layer can work with. At one end it provides a
high level view o f network connections to services. At the other end it provides a generic
descriptions o f elements, which can be specialised to particular technologies and products.

2.10.3.4 The Management Architecture
The TINA management architecture provides the concepts and principles to build
management systems, which can manage TINA entities. The Management Architecture takes
as input the TMN Recommendation M.3010 [M.3010] that defines the layers in which the
management functionality may be considered to be partitioned for operational purposes. As
with the service architecture, the computing architecture is used to define object types and
interfaces that should be used to manage TINA services, resources and infrastructures.

45

The Intelligent Network

2.10.4 Existing Paths for Migration from IN to TINA
Typically, the types o f services implemented on an Intelligent Network are narrow-band call
control services while those for a TINA network are broadband multimedia type services. It
is becoming increasingly more important for network operators to study the enhancement and
evolution o f their IN service platforms in order to cope with new customer requirements.
Interworking between IN and TINA is a step towards the full migration to TINA. It makes
possible the accessing o f IN service logic or data by TINA objects and, conversely, the
accessing and invocation o f TINA services or functionality by IN entities. Hybrid IN/TINA
services may be developed which contain aspects o f both technologies, therefore yielding a
richer service platform.
Two major evolutionary steps have been identified [INtoTINA]: The Bridge to Legacy Path
involves the replacement o f the SCF with appropriate TINA objects while the SSF remains
IN compliant. The Open Switch Path adapts the switch control interface so that the switch
appears as a TINA object. It is important to note that there is not a one-to-one mapping of IN
functional entities to TINA computational objects. Adaptation Units (AUs) are therefore
required to provide the interworking between the TINA Computational Objects and the
legacy IN [HerzMage].

2.10.4.1 Open Switch Path
This path o f migration from IN to TINA might be preferred by switch vendors as it involves
wrapping their existing switches so that they appear as software objects in a TINA network.
The solution is based on a wide distribution o f intelligent functions over a network o f servers
and terminals and on a manager-agent approach for controlling the switching functions. The
network intelligence moves from a few centralised SCPs to a "web" o f network servers that
support a seamless interaction with CPE/CPN (Customer Premises Equipment/Customer
Premises Network) and Service Provider’s equipment. Network servers are designed to
support specific services or functions. CORBA based platforms that enable applications to
expose and use rich IDL (Interface Definition Language) interfaces for controlling and
managing services support the interaction between software components. This use o f public
interfaces allows the definition o f open and scalable service-specific signalling. The control
and programmability o f switching functions is possible by means o f rich and published
interfaces exposed by so-called "Open Switches".

46

The Intelligent Network

a

2
SCP

= “intelligence”

s

SSP
•

SSP

1X X
) \O

Switch

1. Open, service specific
signalling.

2. Download of CPE software.
3. Connection Management

API or 3rd Party Call
Control.TINA

Open Switch

Figure 2.16 Open Switch Path

Figure 2.16 represents a possible applicability scenario for the Open Switch path. In the first
stage the CPE accesses the network intelligence that offers retailing functions by means o f
the specific protocol; the Retailer Reference Point (Ret-RP). When the choice o f a service or
provider is made, the software needed to use the requested service is downloaded. The CPE is
then loaded with a full-fledged set o f functions for interacting with the service. Upon user
request, network servers o f the intelligent layer can orchestrate the network resources on
behalf o f the users and provider satisfying their communication needs. This solution is
characterised by:

• A high degree o f distribution o f the intelligence. Intelligent functions are equally
scattered between CPEs, network servers, and Service Provider's equipment;
Some intelligent functions are moved from switches to the intelligent layer;

2.10.4.2 Bridge to Legacy Path
This solution is aligned with the current implementation o f IN. It impacts on SCP and Service
Management Systems (SMS) without spoiling the current legacy o f network systems. The
bulk o f intelligence is deployed in a network o f servers that provide advanced functions. The
control over switching functions is exerted by means o f current or future versions o f INAP
protocol [Q.1218]. The network intelligence moves from the centralised SCPs to a "web" of
network servers designed to provide specific functions. Interactions with CPEs may be
mediated by network equipment. A user may access a service either from the SSF side o f the

47

The Intelligent Network

gateway or from the TINA side via an access session using the Ret-RP protocol. The
interaction between software components within the intelligent layer is supported by CORBA
platforms.
Figure 2.17 shows that intelligent functions may be triggered in the same way as for an IN
structured network. SSPs forward INAP messages to the distributed SCP via a gateway that
maps signalling primitives to CORBA IDL interfaces. Services can be provided according to
TINA technology, using Adaptation Units (AUs) to interact with the non-TINA world. A user
may also launch a service from their Terminal/Browser via an access session using the Ret-
RP protocol.

SCP
= “intelligence”

IN
C f

ssp

X

SSP

X O
Switch

D st.D D

Terminal/
Browser

IN-TINA

1. Highly scalable,
distributed Network
Intelligence

2. Gateway function
(CORBA)

a
SSP©

X
Switch

SSP
•

X
\o

Figure 2.17 Bridge to Legacy Path

This solution is characterised by:
• Consistency with the legacy IN systems. The application o f TINA technology in this way

is very compatible with the existing IN approach. N ew services developed on the open
platform can coexist with already deployed services supported by existing SCPs,

• Alignment to the evolution o f IN. The flexibility o f this architectural solution is strongly
tied to the evolution and the capabilities standardised for future releases o f IN
Capabilities Sets. The definition o f mid-call triggers, non-call related functions, user-to-
service signalling, and the integration with B-ISDN could greatly improve the ability to
provide more advanced services,

48

The Intelligent Network

• High degree o f distribution o f the intelligence within the network infrastructure.
Intelligent functions are distributed in a network o f specialised servers, services can be
specialised on a customer basis,

• Management and control functions can be easily integrated due to the use o f a common
processing platform and by the use o f TINA solutions.

2.11 Conclusions on IN

ITU-T and ETSI are responding to the telecommunications industry's need for IN
standardisation and evolution with a program o f work that addresses global IN standards and
a framework for the standardised evolution o f IN. An immediate problem for vendors is that
the CS-1 standards have a very restricted scope: full IN standardisation is an ideal, not a
current reality. CS-1 itself has shortcomings, the standards are not sufficiently unambiguous
to guarantee incompatibility between different vendor products. CS-1, though not being
specified in 100% detail, is however conceptually complete and is the first o f many planned
sets o f capabilities.
To date IN development has been aimed at the construction o f a set o f interfaces and
protocols that clearly separate the switching from the service aspects o f telecommunication
networks. IN is beginning to address the potentially distributed nature o f the service
application software itself and its interoperability with distributed networks such as TINA.
This development is discussed further in Section 4.9. The Telecommunications Information
Networking Architecture Consortium (TINA-C) has been formed by the major network
operators to discuss information networking problems with telecommunications and
computing vendors. TINA-C has developed the TINA architecture, which builds on current
advances in broadband communications and distributed computing technologies, specifying a
software-based architecture for future information networks.

49

Tools for Development

Chapter 3 TOOLS FOR DEVELOPMENT
3.1 Introduction

This chapter discusses the software tools necessary for the development o f the IN architecture
described in the previous chapter. These tools include the Specification Description Language
(SDL) used to describe the Intelligent Network, the SDL Design Tool (SDT) used to
implement the design and the CORBA Architecture which facilitates the execution of
distributed applications.

3.2 Specification Description Language (SDL)

Developed primarily to meet the software design needs o f the telecommunications industry,
Specification Description Language (SDL) [SDL89] is a graphical specification language that
is both formal and object oriented. Its strength is its ability to describe the structure,
behaviour and data o f real-time interactive and distributed systems. It provides a means by
which the structure o f a system may be laid out in a hierarchical manner allowing different
levels o f abstraction, from overview to detail. SDL has been designed to provide the specific
capabilities needed to produce high quality telecommunications software and to minimise the
development cost. The specifications and descriptions expressed in SDL are intended to be
formal in the sense that they may be analysed and interpreted unambiguously. SDL
Specifications may be represented in the form o f a Graphical Representation (GR) and/or an
equivalent Phrase (or textual) Representation (PR).
A system described in SDL consists o f one or more blocks connected by channels, as
illustrated in Figure 3.1. Every block or channel may be further decomposed into blocks and
channels at any level.
At the lowest level a block must contain one or more processes, as shown in Figure 3.2. The
actual behaviour o f the system is described by the combined behaviour o f a set o f processes,
each o f which is modelled as an extended finite state machine that works concurrently with
other processes. Some o f the entities typically contained in a process are shown in Figure 3.3.

50

Tools for Development

Telelogic SDT SDLE - System Untitled/l - *

File Edit View Pages Diagrams Window Tools Help

a > ia |g | g i i g r a u 51 U- in 11 ■ j ITS ■ I Tfnl » I mi iiil -— — mu ï— l j i ■ — ~ I -#

21
System Untitled

Channel2
E N V

j<signalse12)]
BlüCkA

Channell

[(signateet!)]

BlockB

1 (1)

Q i

O
f.":!!:.".ü
a
o
o

Figure 3.1 SDL System at System Level

Telelogic SÛT SUE - Block BlockB/l - *
File Edit View Pages Diagrams Window Tools Help

é t a l a i s u a r a a a i a m k h m o i ?j

Block BlockB
I----- ---

Channell

/ \

Processi

\ /

■ p ® r

P1toP3

[s ig i]

[sig2

/ \

Processi

\ /

C hannell toP3

[Sig3j

/ \

Process3

\ /

1 (1)

f o

a
j| I IM 11 II
_

a

Figure 3.2 SDL System at Block Level

51

Tools for Development

Process Processi

Process End

procedure
call

Process
Create

DUtOUt

A three way
decision

Figure 3.3 SDL System at Process Level

Co-operation between processes is performed asynchronously by discrete messages, called
signals. The channels between processes are the carriers o f these signals. A signalset is a set
o f signals that flow on a given channel.
The data type concept in SDL is based on Abstract Data Types (ADT). In other words a data
type is defined in terms o f its abstract properties rather than in terms o f some concrete
implementation.
In SDL each process has a local memory for storing its variables. A variable can be o f a
predefined or user-defined type. A process can manipulate its variables by assignment task
actions. The values o f variables can, for example, be used to control a transition by a decision
action. Signals can carry values as parameters. When sending a signal, the actual values are
specified as part o f the output symbol. In receiving processes, the values are stored in local
variables specified by the input action.
The Environment denotes anything outside the SDL system. The SDL system may
communicate with objects located outside its boundaries but a limitation is that it is not
possible to distinguish between different objects. Communication with the environment is
achieved using the Environment Functions, which can send and receive messages to and from

52

Tools for Development

objects outside the boundary of the SDL system. The Environment Functions are discussed in
detail in Chapter 4.
The state machine symbols in a process are connected by arcs, which convey the direction o f
control flow as the process executes symbol by symbol. States in SDL processes are waiting
places for events and the process is blocked for that event and transitions out o f the state only
when that event becomes true. Decision symbols are non-blocking which means the condition
or expression is evaluated and whichever branch has the value that branch is followed.
Another process may be created from within a process using the create process entity. Also,
procedures may be called using the procedure call entity.

3.3 SDL Design Tool (SDT)

SDT is the tool developed by Telelogic to ensure correct implementation of the SDL
standard. SDT comprises all SDL rules and syntax [SDL89] and also facilitates the analysis
o f system operation along with target code generation for various real-time operating systems
[SDT93]. Via tools for simulation, graphical debugging o f systems is also possible.
Validation o f design systems helps ensure conformity to requirement specifications, along
with detection o f temporal anomalies such as race conditions, buffer overflows, and
deadlocks. Figure 3.1, Figure 3.2 and Figure 3.3 are screen shots o f the SDT Tool. The tools
incorporated into the SDT package are outlined in Table 3.1 :

TOOL PURPOSE
Editor Allows specification to be implemented graphically.
Message Sequence Chart
(MSC) Editor

Allows creation and editing o f MSCs which can be
verified against an SDL system using the SDT Validator.

Analyser Performs syntax, semantic, and dynamic analysis o f SDL
descriptions.

C Code Generator Converts SDL code to C.
Simulator Allows simulation and testing o f the system operation.
Performance Simulator 30-40 times faster than the ordinary simulator and can

accept input from a file.
File Viewer Keeps track o f files generated by the Editor.

Table 3.1 Major Tools o f the SDT Suite
53

Tools for Development

SDT provides the ability to step through a specification and observe its behaviour, i.e.
simulate it. This is an essential requirement in developing complex systems. This simulation
activity can be achieved by using graphical user interfaces that can interact with the
underlying SDL specification to both drive and observe its resultant behaviour, or relevant
parts o f the resultant behaviour. The Simulator tool allows for the manual examination o f the
specification to be achieved by executing transition by transition. The Simulator also allows
for the internal status o f the specification to be checked, e.g. to check input queues o f certain
processes, or see the values o f certain variables or timers. For complex systems the tool
allows for the hiding o f certain events or for considering only those transitions associated
with particular processes in the system, or the environment o f the system.
Message Sequencing Charts (MSC) can be generated to record the simulation paths o f
interest. These can also be used for regressive testing o f specifications, e.g. when a
specification has its functionality extended, it is necessary to ensure that its previous
behaviours are still present. MSCs can be seen in Appendix E.

3.4 CORBA

This section aims to give an introduction to the Object Management Group's (OMG)
Common Object Request Broker Architecture (CORBA). It provides an understanding o f the
basic mechanics o f the architecture and its components.

3.4.1 The Object Management Group (OMG)
The Object Management Group is a non-profit consortium created in 1989 with the purpose
o f promoting the theory and practice o f object technology in distributed computing systems.
It aims to reduce the complexity, lower the costs, and hasten the introduction o f new software
applications. Originally formed by 13 companies, OMG membership has grown to over 500
software vendors, developers and users. OMG realises its goals through the creation o f
standards that allow interoperability and portability o f distributed object-oriented
applications. They do not produce software or implementation guidelines; only specifications
that are put together using ideas o f OMG members who respond to Requests For Information
(RFI) and Requests For Proposals (RFP). The strength o f this approach comes from the fact

54

Tools for Development

that most o f the major software companies interested in distributed object oriented
development are among OMG’s members.

3.4.2 The Object Management Architecture (OMA)
OMA is a high-level vision o f a complete distributed environment. It consists o f four
components that can be divided roughly into two parts:

• System oriented components, consisting of;
- Object Request Brokers (ORBs) and
- Object Services, and;

• Application oriented components, consisting of;
- Application Objects and
- Common Facilities.

O f these parts, the Object Request Broker (ORB) is the one which constitutes the foundation
o f OMA and manages all communication between its components. It allows objects to
interact in a heterogeneous, distributed environment, independent o f the platforms on which
these objects reside and the techniques used to implement them. In performing its task it
relies on Object Services which are responsible for general object management such as
creating objects, access control, keeping track o f relocated objects, etc. Common Facilities
and Application Objects are the components closest to the end user, and in their functions
they invoke services o f the system components.

3.4.3 The Common Object Request Broker (CORBA)
CORBA specifies a system that provides interoperability between objects in a heterogeneous,
distributed environment and in a way transparent to the programmer. Its design is based on
the OMG Object Model.

55

Tools for Development

3.4.3.1 The OMG Object Model
The OMG Object Model defines common object semantics for specifying the externally
visible characteristics o f objects in a standard and implementation independent way. In this
model clients request services from objects through a well-defined interface. This interface is
specified in OMG IDL (Interface Definition Language). A client accesses an object by
issuing a request to the object. The request is an event and carries information including an
operation, the object reference o f the service provider, and actual parameters, if any. The
object reference is an object name that defines an object reliably.

3.4.3.2 The Basic Mechanics of issuing a request
The central component o f CORBA is the Object Request Broker (ORB). It encompasses the
entire communication infrastructure necessary to identify and locate objects, handle
connection management and delivers data. In general, the ORB is not required to be a single
component; it is simply defined by its interfaces. The ORB Core is the most crucial part o f
the Object Request Broker; it is responsible for the communication o f requests.

Client

■

Object Implementation

¡¡mai
Dynamic IDL
Invocation Stubs

:r:: - :H3
ORB

Interface
IDL

Skeleton
Dynamic

Skeleton
Object

Adapter

ORB Core

u ' “ I interface identical for all ORB implementations

there may be multiple object adapters

stubs and skeletons for each object type

ORB dependent interface

Figure 3.4 ORB Architecture

56

Tools for Development

The basic functionality provided by the ORB consists o f passing the requests from clients to
the object implementations on which they are invoked. In order to make a request the client
can communicate with the ORB Core through the IDL stub or through the Dynamic
Invocation Interface (DII). The stub represents the mapping between the language o f
implementation o f the client and the ORB core. Thus the client can be written in any
language as long as the implementation of the ORB supports this mapping. The ORB Core
then transfers the request to the object implementation which receives the request as an up-
call through either an IDL skeleton, or a dynamic skeleton. Figure 3.4 shows the main
components o f the ORB architecture and their interconnections.

3.4.3.3 Overview of Architectural Components
The Object Adapter (OA) effects the communication between the object implementation and
the ORB core. The OA handles services such as generation and interpretation o f object
references, method invocation, security o f interactions, object and implementation activation
and deactivation, mapping references corresponding to object implementations and
registration o f implementations. It is expected that there will be many different special-
purpose object adapters to fulfil the needs o f specific systems i.e. databases.
OMG specifies four policies in which the OA may handle object implementation activation:

• Shared Server Policy: multiple objects may be implemented in the same program.
• Unshared Server Policy.
• Server-per-Method Policy: a new server is started each time a request is received.
• Persistent Server Policy.

Only in the Persistent Server Policy is the object's implementation supposed to be constantly
active (if it is not a system exception results). If a request is invoked under any other policy
the object will be activated by the OA in the policy specific way. In order to be able to do
that, the OA needs to have access to information about the object's location and operating
environment. The database containing this information is called the Implementation
Repository and is a standard component o f the CORBA architecture. The information is
obtained from there by the OA at object activation. The Implementation Repository may also
contain other information pertaining to the implementation o f servers, such as debugging,
version and administrative information.

57

Tools for Developm ent

The interfaces to objects can be specified in two ways: either in OMG IDL, or they can be
added to the Interface Repository, another component o f the architecture. The Dynamic
Invocation Interface (DII) allows the client to specify requests to objects whose definition
and interface are unknown at the client's compile time. In order to use DII the client has to
compose a request (in a way common to all ORBs) including the object reference, the
operation and a list o f parameters. These specifications - o f objects and services they provide
- are retrieved from the Interface Repository, a database which provides persistent storage of
object interface definitions. The Interface Repository also contains information about types o f
parameters, certain debugging information, etc.
A server side analogue to DII is the Dynamic Skeleton Interface (DSI); with the use o f this
interface the operation is no longer accessed through an operation-specific skeleton,
generated from an IDL interface specification, instead it is reached through an interface that
provides access to the operation name and parameters (as in DII above the information can be
retrieved from the Interface Repository). Thus DSI is a way to deliver requests from the ORB
to an object implementation that does not have compile-time knowledge o f the object it is
implementing. Although it seems at the first glance that this situation doesn't happen very
often, in reality DSI is an answer to interactive software development tools based on
interpreters and debuggers. It can also be used to provide inter-ORB interoperability which
will be discussed in the next section.

3.4.3.4 Interoperability
There are many different ORB products currently available; this diversity is very wholesome
since it allows the vendors to gear their products towards the specific needs o f their
operational environment. It also creates the need for different ORBs to inter-operate.
Furthermore, there are distributed and/or client/server systems which are not CORBA-
compliant and there is a growing need for providing interoperability between those systems
and CORBA. In order to answer those needs OMG has formulated the ORB interoperability
architecture.
Implementational differences are not the only barriers that may separate objects. Other
reasons might include strict enforcement o f security, or providing a protected testing
environment for a product under development. In order to provide a fully inter-operable
environment all those differences have to be taken into account. This is why CORBA

58

Tools for Development

introduces the higher-level concept o f a domain, which roughly denotes a set o f objects
which for some reason, be it implementational or administrative, are separated from all other
objects. Thus, objects from different domains need some bridging mechanism (mapping
between domains) in order to interact. This bridging mechanism should be flexible enough to
accommodate both the scenarios where very little or no translation is needed (as in crossing
different administrative domains within the same ORB). The interoperability approaches can
be most generally divided into immediate and mediated bridging. With mediated bridging
interacting elements o f one domain are transformed at the boundary o f each domain between
the internal form specific to this domain and some other form mutually agreed on by the
domains. This common form could be either standard (specified by OMG, for example HOP),
or a private agreement between the two parties. With immediate bridging elements o f
interaction are transformed directly between the internal form o f one domain and the other.
The second solution has potential to be much faster, but is the less general one; it should be
therefore possible to use both. If the mediation is internal to one execution environment (for
example TCP/IP) it is known as a "full bridge", otherwise if the execution environment o f
one ORB is different from the common protocol we say that each ORB is a "half bridge".
Bridges can be implemented either internally to an ORB (say just crossing administrative
boundaries), or in the layers above it. If they are implemented within an ORB they are called
in-line bridges, otherwise they are called request-level bridges. The in-line bridges can be
implemented through either requiring that the ORB provide certain additional services or
through introducing additional stub and skeleton code. Interacting through the request-level
bridges goes roughly like this: the client ORB "pretends" that the bridge and the server ORB
are parts o f the object implementation and issues a request to this object through the DSI
(DSI does not need to know the specification o f its object at compile time). The DSI, in co­
operation with the bridge, translates the request to a form which will be understood by the
server ORB and invokes it through DII o f the server ORB; the results (if any) are passed back
via a similar route. In order to perform its function the bridge has to know something about
the object; thus it either needs to have access to the Interface Repository, or be only an
interface specific bridge with the applicable interface specifications "hardwired" into it.
In order to make bridges possible it is necessary to specify some kind o f standard transfer
syntax. This function is fulfilled by General Inter-ORB Protocol (GIOP) defined by the
OMG; it has been specifically defined to meet the needs o f ORB-to-ORB interaction and is
designed to work over any transport protocol that meets a minimal set o f assumptions. Of

59

Tools for Development

course, versions o f GIOP implemented using different transports will not necessarily be
directly compatible; however their interaction will be made much more efficient.
Apart from defining the general transfer syntax, OMG also specified how it is going to be
implemented using the TCP/IP transport and thus defined the Internet Inter-ORB Protocol
(HOP). In order to illustrate the relationship between GIOP and HOP, OMG points out that it
is the same as between IDL and its concrete mapping, for example its C++ mapping. HOP is
designed to provide "out o f the box" interoperability with other compatible ORBs (TCP/IP
being the most popular vendor-independent transport layer). Further, HOP can also be used as
an intermediate layer between half-bridges and in addition to its interoperability functions,
vendors can use it for internal ORB messaging (although this is not required, and is only a
side-effect o f its definition). The specification also makes provision for a set o f Environment-
Specific Inter-ORB Protocols (ESIOP). These protocols should be used for "out o f the box"
interoperability wherever implementations using their transport are popular.

3.5 Interface Definition Language

Interface Definition Language (IDL) is a generic term for a language that lets a program or
object written in one language communicate with another program written in an unknown
language. In distributed object technology, it is important that new objects be able to be sent
to any platform environment and discover how to run in that environment. An Object Request
Broker (ORB) is an example o f a program that would use an interface definition language to
"broker" communication between one object program and another one.
An interface definition language works by requiring that a program's interfaces be described
in a stub or slight extension o f the program that is compiled into it. A broker program uses
the stubs in each program to allow them to communicate.
IDL defines the types o f objects by specifying their interfaces. It is required that all OMG
services be specified using a declarative language emphasising the separation o f interface and
implementation. It is programming language neutral and network neutral, and thus it is used
as a means o f describing data types. It provides a two-tier encapsulation system: data-types
(basic and user-defined), and objects, which allows for sophisticated modelling o f a
distributed domain. The syntax o f OMG IDL is derived from C++, removing the constructs

60

Tools for Development

o f an implementation language and adding a number o f new keywords required to specify
distributed systems.
To sum up, OMG 1DL is used to statically define the interfaces to objects, to allow invocation
of operations on objects with differing underlying implementations. From the IDL
definitions, it is possible to map CORBA objects into particular programming languages or
object systems.

3.6 Using SDL to develop CORBA object implementations

With the advent o f CORBA to manage large, heterogeneous object systems, the need to be
able to specify, verify, and test such systems is becoming increasingly important. It is not
sufficient to be able to specify object behaviour using for example C++, because the
behaviour o f such systems is not easily verifiable. Instead, by using a formal description
language such as SDL to define the object behaviour all the commonly used techniques for
verification and validation, provided by SDT [SDT93], become available.

3.6.1 Using CORBA and SDL
There are basically two ways to use SDL with CORBA, depending on whether SDL is
viewed as a specification or design language:

• The SDL-orienled approach, where a CORBA platform is used as execution
system for SDL processes.

• The CORBA-oriented approach, where SDL is supported as the implementation
language for the definition o f behaviour and treated in the same way as the already
supported implementation language C++.

The SDL-oriented approach
The SDL-oriented approach is primarily used when SDL is viewed as a specification
language. Once the specification o f the entire distributed system has been performed in SDL,
it should be partitioned into arbitrarily small subsystems that are then (optionally)
implemented on different machines and communicate with each other using CORBA. The

61

Tools for Development

smallest unit o f partitioning should be at the process level. In this case, IDL descriptions are
automatically generated from the SDL system; it might, however, be necessary to limit the
available SDL concepts when using this approach.

The CORBA-oriented approach
The CORBA-oriented approach, on the other hand, is primarily used when SDL is viewed as
an implementation language, and a given IDL description should be designed using SDL.
That IDL description is used to generate a stub (skeleton) in SDL, to which behaviour is then
added. The most important parts o f the development process when using the CORBA-
oriented approach are shown in Figure 3.5.
The activities, which can be clearly distinguished when using this approach, are:

1. Convert an IDL description to an SDL stub.
2. Define the behaviour o f the SDL system using the generated SDL stub as the

starting point.
3. Generate the C/C++ code that is used to implement the SDL application.
4. Generate the C++ code that is needed by the ORB.

Figure 3.5 Activities o f the CORBA-Oriented Approach

The activities which concern the developer are the first two; the user must be aware that the
SDL system is a CORBA server (i.e. an object implementation that can also act as a client by
requesting services from other object implementations). By using the mapping rules,
described in Section 3.6.2 below, it is possible create a tool that automatically converts an
IDL description to an SDL stub. The latter two activities described above are also performed
automatically.

62

Tools for Development

3.6.2 Mapping IDL to SDL
In order to create the implementation language stub it is necessary to provide mapping rules
from IDL to SDL. The mapping rules may be summarised as follows:
• A module provides a namescope and a mechanism to group interfaces. As such it is

mapped to a block type, where nested modules become nested block types.
• An interface is mapped to a process type. As the interface contains the attributes and

operations that are available on an object, the corresponding process type contains the
appropriate SDL definitions o f these. Object references are mapped to PId values.

• An operation describes a service that is offered by an object, and it can be defined either
as synchronous, where the client is blocked while the request is being handled by a
server, or as asynchronous (using the keyword one-way), where the client making the
request simply continues executing. In the former case, the operation is mapped to a
remote procedure, while in the latter it is mapped to a signal. Raises and context
expressions are still subject to be mapped, as are exceptions.

• An attribute is mapped to a declaration o f a variable together with two remote procedures
that are used to get and set the value o f the variable. If the attribute is defined as read­
only, the set operation is omitted.

• Interface inheritance must be flattened in SDL, where both operations and attributes
defined in a base type have to be duplicated in a derived type, i.e., SDL inheritance
cannot be used.

• Constants are mapped to synonyms.
The mapping o f basic types is shown in Table 3.2.

IDL Type SDL Type svntype of
long CORBA long Integer
short CORBA short Integer
unsigned long CORBA unsigned long Integer
unsigned short CORBA unsigned short Integer
double CORBA double Real
float CORBA float Real
char CORBA char Character

63

Tools for Development

boolean CORBA boolean Boolean
octet CORBA octet Octet

Table 3.2 Mapping Basic Types
Note that predefined types have the prefix ‘CORBA_’ in SDL. The type any currently have
no suitable mapping in SDL. Constructed types are mapped as follows:

• An enum is mapped to a newtype with the appropriate literals.
• A struct is mapped to a newtype with the corresponding struct.
• A union is mapped to a newtype with a corresponding struct, where the first

member o f the struct is a tag matching the union’s switch type.
The template types are mapped as follows:

• A sequence is mapped to the generator string.
• A string is mapped to the type CORBAstring, which is a syntype o f Charstring.

The complex declarators are handled as follows:
• An array is either mapped to the generator array, together with an additional type

to define its index range, or as the generator CORBAarray, which is defined to
have a limited index range corresponding to that o f the original IDL array.

SDL System Structure
An SDL system based on the above mapping rules has a particular architecture; one package
is used to define interface concepts, such as types, signals and remote procedures, whereas
another is used to contain the structural information that can be derived from the IDL
description. Other SDL clients that want to access services from this object implementation
can reuse the interface package. Consider the SDL system shown in Figure 3.6.
In this example, an object implementation in SDL is created from the IDL file named
objects, idl. The stub that is created will contain one package named objects interface, and
one package named objects ̂ definition1, this latter package also contains a system type named
objects_system. The object implementation should make use o f services that are defined in
the IDL file other, idl. In order for the system implementing objects to access these services,
the IDL description o f other is also converted to SDL, but only the interface package
(otherJnterface) needs to be used.

64

Tools for Development

Figure 3.6 Schematic V iew o f the SDL System Structure

3.6.3 M apping Object M odels to IDL
The Paste As functionality o f SDT allows a developer to copy an object in one model and
paste it as IDL while creating an implementation link (implink) between the two.
Implementation links are used to maintain a relationship between objects in different models.
The transformation rules that are considered here for that are very simple and straightforward.
The strength o f this approach is that for each object that is pasted, an implink is created
between the copied class and the IDL entity, thereby facilitating trace mechanisms for
example.

Classes: An object model class can be mapped to either a module or an interface. In the
former case, the resulting module is always empty, even i f the class contained both attributes
and operations. In the latter case, however, all attributes and operations are mirrored using
IDL syntax as far as possible. This latter mapping is shown in Figure 3.7.

Account

amount double
insert(amount)
withdraw^ c ode) : status

// interface Account
interface Account {

attribute double amount;
one w ay void insert(am ount) ;
status withdraw(code);

};

Figure 3.7 Mapping an Object Model Class to an IDL Interface

Tools for Development

The comment included in the mapping is used to contain the optional implink that is created
between the class and the interface. It is not possible to express all information that is needed
in the IDL description simply by mapping a class like this. Usually some manual additions
must be made, such as type definitions, constants, and exceptions, but also simple matters
like defining for each operation parameter whether it is an in, inout or out parameter.
Furthermore, it might be necessary to define an attribute as readonly, or whether an operation
is oneway or not. All operations are considered asynchronous by default, unless it can be
determined that it should be synchronous. This is done by either defining a return type for the
operation, or by inserting {sync} or {async} after it.

Inheritance: The mapping o f object model class inheritance is only applicable when an
object model class is mapped to an interface, and in that case the class inheritance is mapped
as interface inheritance, as is shown in Figure 3.8.

! ! interface Account
interface Account {
};
H interface BarLkAccount
interface BankAccount: Account {
},

Figure 3.8 Mapping Object Model Class Inheritance to IDL Inheritance

Aggregation: When mapping aggregations, all object model classes that are not leaves are
mapped as modules. However, the leaves themselves may be either modules or interfaces,
and it is the responsibility o f the user to decide which. Aggregations are thus mapped to
nested modules where the innermost layer may be either interfaces or modules. Figure 3.9
shows an example o f aggregation mapping.

66

Tools for Development

//m odule Bank

};
Figure 3.9 Mapping Object Model Class Aggregation to IDL

3.6.4 Implementing an SDL Application
In this section the implementation o f the CORBA-oriented approach is discussed in more
detail. The SDL application created is supposed to work as a client/server in a heterogeneous,
distributed environment as only one o f many such parts, i.e. the system has been decomposed
into lesser parts that may or may not be implemented using different programming languages.
CORBA is the glue between these parts.

3.6.4.1 The System Architecture
An SDL application can be used as both a server and a client. This is illustrated
architecturally in Figure 3.10.

Client Object Implementation
SDL System ■

Environment Functions
C++ Wrapper C++ Wrapper

ORB (including stubs, skeletons, interfaces, boa, etc.)

Figure 3.10 System Architecture o f an SDL Application

An ordinary SDL application without the CORBA support only consists o f the SDL system
itself along with its environment functions that are used to connect the system to the outside
world. In the CORBA-oriented approach, a wrapper is placed around the SDL system to
imitate the behaviour o f objects in a way that makes sense to the ORB. The C++ wrapper and
its functionality is further discussed in Section 3.6.4.2.

67

Tools for Development

Based on the development process depicted in Figure 3.5, the development o f the object
implementation side starts with an IDL description. The complete process using Orbix (the
CORBA package from IONA) is described as follows :
1. The IDL description is used as the basis for an SDL stub, which is generated by an SDT

specific IDL compiler. At the same time, a C++ wrapper for the object implementation
side is also generated using the same IDL compiler.

2. The ORB also uses the IDL description to generate ORB specific C++ code, but has an
ORB specific IDL compiler for this purpose.

3. A developer then provides the behaviour o f the SDL system stub.
4. If any services from other servers are required (on the client side o f the SDL application),

their IDL descriptions should be converted to SDL using the SDT specific IDL compiler.
Code is also generated for the C++ wrapper. As for the ORB, it uses its own IDL compiler
to generate the necessary C++ code.

5. C code representing the designed SDL system is generated automatically using the SDT C
Code Generator.

These steps are shown graphically in Figure 3.11.

Figure 3.11 Generating Code for the SDL Application

The environment functions are predefined and are always the same regardless o f the SDL
(CORBA) application; all system specific information is placed in the wrapper. When the C
and C++ code has been generated as above it is compiled and linked with a set o f pre­
compiled libraries (including an SDL kernel providing runtime support o f the SDL system
and ORB specific libraries) to form an executable SDL application.

68

Tools for Development

3.6.4.2 Wrapping the SDL system
To get a functioning SDL application, the behaviour o f the SDL system wrapper is especially
important. The wrapper can be said to consist o f two parts: the environment functions and the
class definitions that are generated from the IDL descriptions.

Scheduling
Since the SDL system is capable o f acting as a client, it has its own scheduling mechanism.
Requests made to other servers are sent through an environment function to the C++ wrapper,
where the request is processed and then passed on through the ORB to the intended server. At
regular intervals, the scheduler calls another environment function to check whether there are
events pending from the ORB. Should such an event be present, it is processed, and then sent
to the appropriate process instance. The entire SDL application is scheduled within a single
UNIX process, and requests that are made internally in the SDL system are not managed by
CORBA. Contrast this with the SDL-oriented approach, where all requests would be sent
through CORBA, possibly from multiple UNIX processes.

Environment Functions
The environment functions are responsible for managing the communication between the
ORB and the SDL system. Two o f these environment functions are responsible for passing
requests to and from the SDL system. Another environment function is used to initialise the
SDL system and its environment. In this case, it is particularly used to initialise the
communication with the ORB. The environment functions use buffers to store all requests
before they are treated, both for incoming and outgoing requests.

Objects versus Process Instances
When the ORB communicates with the object implementation, it only sees the C++ wrapper
and the objects that are defined within it; the SDL system itself is completely hidden.
The SDL system, on the other hand, controls the objects that are present in the C++ wrapper
by mirroring each process instance as an object. Whenever a new process instance is created
in SDL a new object representing that process instance is created in the wrapper. When a
process instance is terminated, the object is also removed.

69

Tools for Development

An object that receives a requests passes it along to its corresponding process instance (it
first has to convert the request into a suitable format, i.e. a signal or remote procedure). In
SDL, all object references are represented using PId values. A C++ client, however, would
still access the process instance o f an SDL object implementation using its ordinary object
references.

Multithreading
In order to handle requests correctly, it is necessary to make use o f a multithreaded ORB. On
the object implementation side, each new request from the ORB must be treated in a thread of
its own. The reason for this is that a synchronous operation is mapped to a remote procedure
in SDL, which in turn is implemented as the sending o f two asynchronous signals (call and
reply). When the request is received, a call signal is sent into the SDL system. While the
operation is waiting for a reply, the SDL system must be able to execute other requests,
which is not possible unless each request is executed in its own thread, while the SDL system
is scheduled in a main thread.
On the client side, the situation is very similar. While waiting for a reply to a request made to
the ORB, the SDL system must be able to continue to execute, which means that all such
server requests must also be executed in separate threads.
The SDL system thus executes in one thread, and each request that is received by or sent
from the SDL system results in a new, detached thread which disappears once the request has
been handled.
The ORB is responsible for creating the appropriate threads for requests to the SDL system,
while the C++ wrapper is responsible for creating threads for requests aimed at other servers.
The C++ wrapper must also provide a sufficiently multithread-safe environment.

The C++ implementation classes
As part o f the ORB specific code, a set o f IDL C++ classes are generated which represent the
IDL interfaces. It is then up to the developer to provide C++ implementation classes that
implement these IDL C++ classes. The ORB provides mechanisms for connecting the IDL
C++ classes and the C++ implementation classes to each other. Each IDL C++ class must
have at least one corresponding C++ implementation class.

70

Tools for Development

In the C++ wrapper, the C++ implementation classes are the most important part, as they
provide the ‘behaviour’ o f the SDL system. A request that is made to an object is passed to
the appropriate process instance after having been processed. This processing is specific
depending on whether the operation is asynchronous or synchronous. Due to the increased
complexity when dealing with synchronous operations it is considerably easier to manage
asynchronous operations.
For an asynchronous operation, the following steps have to be performed by an object:

1. Allocate memory for the signal.
2. Convert the parameters o f the operation to SDL signal parameters.
3. Send the signal to the process instance corresponding to the current object.
4. Return, i.e. exit the request thread.

For a synchronous operation, on the other hand, some additional steps are necessary:
1. Allocate memory for the remote procedure call.
2. Convert the parameters o f the operation to SDL remote procedure call parameters.
3. Send the remote procedure call to the process instance corresponding to the

current object.
4. Wait for a reply, i.e. block the request thread until the appropriate remote

procedure reply is received. It is necessary to pass information about the current
thread’s identity in the call/reply signals to ensure that the appropriate thread
receives the correct reply (since the order in which replies are received is not
guaranteed to be the same as the order in which they were sent).

5. Convert the SDL remote procedure reply parameters to C++ parameters.
6. Release the memory held by the reply.
7. Return, i.e. exit the request thread, and pass the obtained data back to the client.

L ocatin g a server object
One particular problem that must be addressed is how a server object is located. In SDL a
request can be made either to a specific PId value or without specifying a particular receiver.
In the first case, the object reference o f the receiver is already known, and there is no

71

Tools for Development

problem. In the second case, however, an appropriate receiver must first be located. There are
two approaches to this problem:
A bind concept can be introduced in SDL which would be responsible for finding a server
implementing the required request. However, this solution does not remove the problem with
requests that are made without specifying a receiver.
When the C++ wrapper receives a request with no apparent receiver, an ORB specific bind
command, to find an appropriate server object, can be performed. Once the request has been
performed this object reference can be stored for subsequent requests o f the same kind to
reuse, or released, thereby requiring a new bind command for each new request.

3.7 Conclusions

This chapter presented an overview o f the tools and technologies required to complete the
project. These included the programming language SDL, in which the IN system was
designed and the tool used to develop it, SDT. As the project is also concerned with the
extendibility and evolution o f IN towards TINA it was also necessary to explain the concepts
o f CORBA and IDL, which facilitate the operation of distributed applications.
It has been shown that it is useful to use SDL in conjunction with CORBA. By combining the
two, SDL becomes an important language to consider when dealing with distributed systems.
SDL can be supported as an implementation language for the definition o f behaviour o f a
distributed system. This is useful given the many advantages o f SDL and the package SDT.
The behaviour o f these CORBA objects can be tested using SDT Simulations. Also Message
Sequencing Charts (MSCs) can be produced. With SDL systems the behaviour and
architecture o f what they describe can be both very easily understood and modified. By using
a CORBA platform as the execution system for interacting SDL processes the advantages o f
distribution can be gained. Different components o f a large heterogeneous system can be
located on different platforms and can interact by sending messages to each other via the
ORB. They need know nothing o f the other objects implementation other than their
interfaces.

72

Im plem entation of the INCM

Chapter 4 IMPLEMENTATION OF THE IN CONCEPTUAL
MODEL

4.1 Introduction

This chapter describes the development in SDL, using the SDT package, o f an Intelligent
Network architecture based on the ITU-T Standards [Q.1200]. The system interacts with an
Excel switching platform [Excel] via the CCAF processes. Thus users attached to the switch
may interact with the architecture in the establishment of basic calls or the running of IN
services, two of which are provided with the IN. Users communicate with the DFP layer of
the INCM via the Excel switching platform, as shown in Figure 4.1 below. To establish a
basic call they go offhook and dial the appropriate digits. The CCF (Call Control Function)
connects the user to their terminating party. If, after going offhook, the user wishes to invoke
an IN service they dial the appropriate digits and control is passed up to the SCF (Service
Control Function) and the higher layers which deal with IN service control.

Figure 4.1 IN System Architecture

The SDL representation of the IN is based on the middle two planes of the Intelligent
Network Conceptual Model (INCM), namely, the Global Functional Plane (GFP) and the
Distributed Functional Plane (DFP). The mapping of the INCM entities to SDL constructs is
outlined in the next section o f this Chapter. The architecture of the IN system is then
discussed with each SDL block being considered individually. The organisational and
communicational aspects of each block are also discussed.

73

Im plem entation of_the..INC-M

Models o f the INCM have been developed before but having the IN interact with a switching
platform, to which users are connected, allows us to see the actual operation o f a real time IN
system. The Excel switch will be discussed in detail in this chapter as will the method of
communication between it and the IN system.

4.2 Overview of the System

This section discusses the objectives in designing the IN system and how the INCM entities
are mapped to SDL.

4.2.1 Objectives
The aim o f the project was to build an executable Intelligent Network based on ITU-T’s IN
Conceptual Model. Two call control services, Ringback and Group Call Pick Up, were to be
realised on the system using the ITU-T SIB methodology. The IN system must be able to
communicate with an Excel CSN Programmable Switching Platform on which the services
are deployed. The IN system must be capable o f handling simultaneous multiple users and
multiple services and also be capable o f incorporating further services easily, with the
addition o f new SIBs or the rearrangement o f the order o f execution o f the existing ones.

4.2.2 Mapping of INCM entities to SDL
The SDL system developed represents the middle two planes o f the INCM, namely the
Global Functional Plane (GFP) and the Distributed Functional Plane (DFP). By definition an
SDL system and its environment are conceived o f as a structure o f blocks connected by
channels. It follows that both the GFP and DFP should be represented by a block structure.
These two blocks are connected to each other and to the environment via channels.

GFP Entities
In the GFP the entities to be represented in SDL include the SIBs, the BCP and the GSL.
Seven different SIB types are used in various combinations to realise the two services;
Ringback and Group Call Pickup. Each o f these SIBs may be invoked any number o f times

74

Im plem entation of the INCM

and each time with different data parameters. Thus a mechanism is needed to be able to
dynamically create an instance o f a SIB type and assign it data parameters. The process
concept was therefore considered to be the most suitable way to represent each of the SIB
types. A manager process is therefore necessary to dynamically create SIB process instances.
Since the GSL is used to control the order in which SIBs are invoked it should be represented
by this manager process concept also. This GSL process has the ability to create a process
instance o f any o f the SIB types and dynamically configure the parameters. A process
represents the BCP since it is also a SIB. The BCP and GSL processes communicate via a
signal route as do the GSL and each o f the SIB processes. SIBs in the GFP are
representations o f functionality realised by FEAs in the DFP so it must be possible for a SIB
to communicate with the relevant FEAs in the DFP. Each o f the SIBs are connected via a
signal route to the channel connecting the GFP and DFP, When a SIB instance is created it
sends a signal to an FEA in the DFP. This causes a number o f interactions between the FEAs
in the DFP in order to realise the functionality o f the SIB and the SIB process instance in the
GFP receives a response from the DFP via the channel.

DFP Entities
Block structures in SDL can be nested in order to achieve more abstraction or clarity. The
DFP block is subdivided into blocks, which contain processes in order to improve the
readability o f the system. In the DFP there are two levels o f granularity, FEs and FEAs. The
FEs are represented by SDL blocks while the FEAs are represented by SDL processes within.
The FE blocks communicate with each other via channels. Two o f the FE blocks, the SCF
and CCFSSF, communicate with the GFP via the channel between the GFP and the DFP.
When a chain o f FEAs is executed to realise a SIB the SCF block must communicate with the
GFP as the first and last FEAs in the chain always reside in the SCF. The first FEA receives
the initial request from the SIB process in the GFP and the last FEA executed sends a
response to the SIB process in the GFP. The BCP process in the GFP sends instructions to the
SSF process in the block CCFSSF. In the CCFSSF block a single process each represents the
originating Basic Call State Model (BCSM) and the terminating BCSM.

75

Im p lem entation o f the IN.CM

4.3 The SDL System

The operation o f the IN system is described by the Message Sequence Charts (MSC) included
in Appendix E.

4.3.1 Organisation
As shown in Figure 4.2, the INCM has two blocks representing the GFP and the DFP.

Figure 4.2 Overview o f the IN Conceptual Model in SDL

4.3.2 Communication
The two blocks communicate via the GFP DFP channel. Signal lists are used to reduce the
amount o f information in the diagram. The Excel switch resides in the environment, outside
the SDL system. The interactions with the Excel switch are detailed in Section 4.8. A
limitation with SDL is that it is not possible to separate different entities in the environment
i.e. when a signal is sent it is only possible to define the environment to be the recipient and
not a specific entity in the environment.

76

im plem entation o f the INCM

4.4 The DFP Block

The Distributed Functional Plane lies between the Global Functional Plane and the Physical
Plane in the INCM.

4.4.1 Organisation
The Distributed Functional Plane is represented in SDL by the DFP block. The DFP block is
partitioned into sub-blocks for each o f the FEs which in turn contain the FEA processes. The
naming convention for FEA processes is given in Section 2.8. The DFP block can be called a
subsystem specification as it allows the designer to gain an overview by grouping a number
o f block specifications into higher level specifications.

GFP„2_DFP

Block DFP [(DFP_2_GFF)] 1 0)

SRF
SCF_SRF

[(SC F_2_S R F)] [(S R F_2_S C F)

[(C C FS 5 F_to_S R F)1
CCFSSF ¿¡RF

GFP_DFP
r

[(GFP_2_0FP)]

SCF

[(C CAF_to_C C FS S F)]

SCF_SDF [(SCF_2_SDF)]
t :----- V-

[(SDF_2_SCF)]
SDF

/{(CCFSSF_to_SCF)]

CCFSSF_SCF

[(S C F_to_C C FS S F)]

CCFSSF

CCAF_CCFSSF

[(C C FS S F_to_C C AF)] ,

[(C CAF_2_to_C CFS S F)]

CCAF_2_CCFSSF
[(CCFSSF_to_CCAF_2)]

CCAF

[(User_to_CCAF)]

CCAF.User

J
[(C CAF_to_U3er)]

CCAF_2

[(User_to_CCAF_2)]
CCAF_2_User

’U'
[(CCAF_2_toJJser;]

DFP_User DFP User

Figure 4.3 DFP Represented in SDL

77

Implem entation o f the INCM

The FEs and the communication paths between them correspond directly with the model o f
the DFP presented in Chapter 2. From Figure 4.3 it can be seen that an originating (CCAF)
and a terminating (CCAF 2) Call Control Agent Function have been specified. This allows
for the simulation o f non-IN calls, i.e. the connection o f a calling party attached to CCAF and
a called party attached to CCAF_2. The CCFSSF block specifies the functionality for both
the CCF and SSF.

4.4.2 Communication
Channels are used to allow communication between FEs and to the surrounding system.
Signal lists are used to improve the readability o f the diagram. The DFP communicates with
the GFP via the channel GFP DFP.
When a Detection Point is encountered in the Basic Call State Model (BCSM) the CCF sends
the signal InitialDP to the GFP. Parameters carried in the signal indicate the type o f the
detection point. By sending signals to the SSF the Global Service Logic (GSL) in the GFP
can influence how the call is completed. As can be seen from Figure 4.2, only the SCF is
allowed to communicate with the SDF, via the channel SCF SDF.
The SRF and the SCF communicate via the channel SRF SCF. The SCF sends signals such
as Play_req_ind to the SRF indicating that an announcement should be played to a user. The
SRF responds to the SCF with the message Completion je sp _ c o n f i f the announcement is
successful and no input is expected from the user.
The functionality o f a SIB in GFP is realised by sending a query (e.g. Screen_Query, with
parameters o f the query being contained in the parameters o f the signal) from the SIB to the
relevant FEA in the DFP. On receiving the query the FEA will generate and send, if
necessary, a query to other FEAs in order to process the query. The response to the query
(e.g. Screen Reponse) will be sent to the SIB in the GFP. Signals sent within the system are
shown in Appendix D.

4.4.3 The SCF Block
The SCF block represents the Service Control Function. The SCF commands call control
functions in the processing o f IN provided and/or custom requests.

78

Implementation of the INCM

3FP

FJ8GF

F_SRF

S_DFP

r.scF

P_DFP

Organisation
The SCF block, shown in Figure 4.4, contains seven FEA processes, which are created by the
SCF_Manager when needed. When a SIB runs a sequence o f FEAs the first and last FEA to
be run is always in the SCF.

Communication
The FEAs are connected to the edge o f the block via signal routes. Some FEAs act as
interfaces to the GFP, i.e. they receive and send signals to and from SIB processes in the
GFP. These FEA processes e.g. process FEA 9081, can communicate with the GFP via the
channel GFP_DFP. The rest o f the FEAs communicate with other FEAs in the SDF and SRF
blocks.

4.4.4 The SDF Block
The Service Data Function is represented in SDL by the SDF block. The SDF contains
customer and network data for real time access by the SCF in the execution o f IN services.

s c f _ m

|t5w_3L5Dn] [(SOF_2Li<i)]

GFP_ >FP 2ScreenSIB

[ii*r_3uQfP>]

.SDF

FEA 9081 (0,10)
—✓{t

[{OFP_2_DFP)]

SDM2S Of

[tw « _ ï_ 5 0 f j] [<5af_2_iOM!

GFP_?FP 2SDMSIB

8F_SCF PC2SSF

t . . __ — - — -------------------

FEAJ9D91(0,10)

?FP 2P«tyCSIB________

[(PC_i.orP)]

C CF4SF_8CF M r2 S S F

GFP.

SCF_ Manager

2Dmp1

[iftfUMSfl] [<S3ÜjMto
rjFP

fiSClMgr_3_S5Fl1,

2CmpSlB

10)

GFP.

[|C6ft.S_OrPJ

[(5SF_ JL U I)] [(U U L S S P ij1

u e s r f

[lSRi„i.Ui|j] [cUL^SftF)]

2UISIB[(UULQfPl]

FEA.9151
(0 ,1 0)

[iH s rJ u m n] 2SSF
Q< tg « V

r i

FEA 9101
(0 ,1 0)

x y V /

SK2SSF CCFSj

[l55F_?_5Tfl] [|5 fC 3_S 5n]

_________ 25Um ?N 3IB Gt

Figure 4.4 SCF represented in SDL

79

in m k m g nt(itio)i_Q£lbg.JNCM

Figure 4.5 SDF Represented in SDL

Organisation
The organisation o f the SDF is shown in Figure 4.5. Two SIBs in the GFP make use o f FEAs
in the SDF: the Screen SIB and the Service Data Management (SDM) SIB. The screen SIB
makes use o f the process FEA 408 1 that performs the screening o f the database needed for
the screen SIB. The SDM SIB makes use o f the process FEA 4091 that performs the retrieval
operations.

Communication
Each o f these processes communicates with FEAs in the SCF. An SDF request follows the
following basic format:

• An FEA process in the SCF generates a database query and sends it to the relevant
process in the SDF.

• The FEA process in the SDF receives the signal, performs the database operation
and returns the result to another FEA in the SCF (not the one that generated the
query).

• The FEA process in the SCF then returns the result to the SIB in the GFP.

80

Implementation o f the 1NCM

4.4.5 The SRF Block
The Specialised Resource Function is represented in SDL by the SRF block. The SRF
provides the specialised resources required for the execution o f IN provided services i.e. digit
receivers and playing announcements.

Block SRF

FEA_3122
(0,10)

UI2 2SCF

1(1)
SCF ÜRF

[p I ay _re q J n d] [c o m p I eti o n_re s p_c o nf]

U12 2SSF CCF3SF

Tfr SRFReport_resp_conf] ^Announcement]

FEA_3121
(0, 10)

Uli 2SSF

Release_req_ind]

CCFSSF_S

4
3F

[sRFSetup_resp_confj

[sRFSetup_req_ind]

srfmgr_ui

SRF_Mgr [sRFSetup_req_ind]

SRFMgr_2SSF
CCFSSF SRF

SRF

Figure 4.6 SRF represented in SDL

Organisation
The SRF block is illustrated in Figure 4.6. There are three processes in the block:

• Process F E A 3121 accepts an SRF set-up request from the SSF, finds an available
resource and returns the resource identifier to the SSF.

• Process F E A 3 122 plays announcements to the user and collects user digits
• Process SRF Mgr manages the creation and deletion o f processes in the block.

81

Im plem entation o f the TNCM

Communication
Process FEA 3121 communicates with the SSF via the signal route U I12S S F . This signal
route carries SRF set-up messages. Announcements to be played to the user are sent from the
SCF to the process FEA_3122 via the signal route UI2_2SCF. These announcements are then
relayed to the SSF via the signal route UI2_2SSF.

4.4.6 The CCF/SSF Block
The block CCFSSF represents the CCF and SSF combined. The CCF is the Call Control
Function in the network that provides call connection, processing and control. The SSF is the
Service Switching Function which, associated with the CCF, provides the set o f functions
required for interaction between the CCF and SCF.

Organisation
The organisation o f the block CCFSSF is shown in Figure 4.7. The Orig_BCSM process
represents the Originating Basic Call State Model (BCSM). This process contains the
functionality to realise the call model presented in Chapter 2. The user interacts with the
process Orig_BCSM via the block CCAF. The terminating BCSM (represented by the
process Term BCSM) handles the call completion aspects o f a call. The process SSF
contains the functionality o f the switch.

Communication
The process Orig BCSM communicates with the CCAF via the signal route
CCAF Orig BCSM. During the call set-up phase all information from the user is sent to the
Orig_BCSM process. If the SSF decides that upon reception o f a detection point (DP), it
needs to communicate with the intelligent service layers above then it sends a request to the
service logic. This is done by sending a DP to the Basic Call Process in the GFP where it is
interpreted as a POI for the launch o f a SIB chain. The service logic may instruct the SSF to
set-up a connection between the user and the SRF. In this case all information from the user
is routed transparently through the SSF to the SRF.
The SSF communicates with the BCP process in the GFP via the signal route SSF_SCF. The
SSF is connected directly to the SCF, CCAF, CCAF2 and SRF processes.

82

■Implementation o f the TNCM

CCA ̂ CCFSSF CCAF_ 0rlg_BCSM

[(OrisLBCShL 0_CCAF)]

CCAF

C C AF_2_C C FS S F

Block CCFSSF [(Tenru BC S ht_to_CCA F_2)]

CCAF 2 Term BCSM

HD

[(CCA F_3_to_TtHTL_ BCSM)]
' \

Orig_B C S M_Term_B C S M
/ \
lerm_BCSM(o,>

Uily_D U OlY

\ / [(Term. BC s M_1o_orig_ BC 5 M)][(Orig_ EC 5 hLto_Term_ bc SM)L J

CCAF. CCFSSF CCFMgr_CCAF

sCCFMgr_Orig_BCSM

[t(»PMr_1o_oH4>reWl C C FMgr_Term_B C o j ^(CCFMgr.to.T^BCSM)]

[(Orig_ EC s M_t0_CCF MgnJ

[(CCA F_to_CC F Mgr)]

[(55F_to_CCFMgr)

[(CCFMgr_to_SSF)_

CCFS >F SRF
SRF_SSF

'[(CCFS5F_to_5RF)] [(SRF_tc„CCFSSF)]

[(Temu ECSM_1o_CCF Mgn]

CCFMgr_CCAF_2

[(CCAF_2_to_CCFMgr)] CCAF_2_CC

CCFSSF
SSF CCAF

[(sc F_to_cc Fssnp SS F_C C AF_2

SSF SCF

|(CCFSSF_1o_CCAF)]

CCAF 2 CC

[(CCFSSF.tc.SCF)] [(CCF55F_t0_CCAp_2)]

SF

FSSF

CCFSSF SCF

Figure 4.7 CCF and SSF represented in SDL

4.4.7 The CCAF Block
The Call Control Agent Functions (CCAFs) provide access to users via the Excel Switch. The
originating Call Control Agent Function and a terminating CCAF are each represented by a
single block; CCAF and CCAF2. The CCAF process interacts with the calling party o f a call
while the CCAF_2 process interacts with the called party.

83

Implementation oftlie.lN C M

CCAF

CCAF

Organisation
The block CCAF is illustrated in Figure 4.8. As the block CCAF2 is very similar to block
CCAF so it is not discussed any further. The block contains only one process.

Communication
The process CCAF communicates with the user via the signal route CCAF_USER. All
interaction between the user and the Intelligent Network passes through the Excel switch and
the process CCAF. The interaction between the Process CCAF and the Excel Switch will be
discussed in more detail in Section 4.8. The process CCAF sends any user input to the block
CCFSSF via the signal route C C A FSSF. Similarly any announcements to be played to the
user are received from the block CCFSSF and passed on to the user

4.5 The GFP Block

4.5.1 Organisation
The organisation o f the GFP block is shown in Figure 4.9.

Jser

Block CCAF 1(1)

CCAF USER
'j(C C A F _ to JJse r)] [(User_to_CCAF)]

^(CCF3SF_to_CCAF)]

:c f s s f CCAF CCFSSF
(CCAF_to_CCFSSF)]

Figure 4.8 CCAF represented in SDL

84

Im plem entation o f the TNCM

_DFP

_DFP

_DFP

A single process each represents the GSL, the BCP and each SIB type. The process GSL
contains the service logic for both services, describing the SIB chains and providing all the
variables. The process BCP acts as an interface between the SSF and GSL. Detection points
are sent from the SSF to the BCP. These detection points are interpreted as POIs and then the
service is launched from the GSL. Each o f the SIBs and the GSL process symbols bear the
text (0,10). This is SDL notation to define how many instances o f a process initially exist and
what the maximum number o f instances allowed is. The first value inside the parenthesis is
the initial number and the second is the maximum number o f instances allowed to exist at any
one time. In this case it is clear that at system start-up there are no instances o f any processes
in the GFP other than the BCP and that there can be a maximum o f ten instances o f each of
the other processes. Therefore since only ten instances o f the GSL are allowed a maximum of
ten services can run on the system at any one time.

4.5.2 Communication
To invoke the next SIB in the SIB chain, the GSL must configure the parameters for the SIB
and send these parameters in a signal to the relevant SIB process. Upon reception o f the SIB
parameters the SIB process will immediately call on an FEA in the DFP to carry out the
functionality o f the SIB with the given parameters. From Figure 4.9, it can be seen that the
GSL has a separate signal route to each o f the SIBs and these SIBs each have a signal route

85

' [(6CP_2_DFP)] 1(1)

F P_2_DFP
[(FEA_2_SIBUI)]

[(5iBUI_2_FEA)]

/ N

SIB Ul
(0,10)

s

BCP

/

GFf J_OFP
[(FCA.i.siaro]

[(GSL_2_UI)]

2U(BCP_GSL

[(P O U _ C S t)

G F f

[(FEA_2_SlBCmp)]

CotapaieZSCF

<§too_2_Gsn]
ZScr / S

 | SIB_Screen
-[(Sir_2_GSl)] [(G S L (0,10)

[(SIBCmp_2_FEA)]

[{FEA_2_SI8Sit>] GFP_2
Scie£m25CF

[iS ie fttiJLFEA)]

[(FEA_2_SIBSN)]

S

[(SI8SNJ_FtA)] ,

[(SIBScr_2_FEA)]

[(SftV? GSt)]
[(SN_2_GSL)] 2SDM

[(CSL_2_W>]

[(FEA_2_SIBSDM)] ,
t SDM ZSCF !

[(S IB S D M JJE A)

Figure 4.9 GFP represented in SDL

Im plem entation o f the TNCM

connected to the channel GFP_DFP. An FEA in the DFP will return a response, via the
channel GFP DFP, to the SIB process that originated the request. This response will then be
sent from the SIB process back to the GSL which will make a decision based on this response
as to which SIB to invoke next. The SIBs used and their data parameters have been discussed
in Chapter 2.

4.6 SDL At Process Level

It would be impossible to explain how each SDL process in the SDL system operates yet
rather than completely ignoring the system operation at this level a certain section o f one
process will be considered. We will look at a small part o f the CCAF process - one page of
code out o f five. The process page is shown below in Figure 4.10.

Process C C A F 2(5)

Figure 4.10 CCAF Section at Process Level

86

Im plem entation o f the TNCM

The process begins, according to SDL protocol, with a Begin symbol as shown above. It
immediately moves to the Idle state. From this state the process can receive the signals
O ff Hook, On Hook, Alert or Announcement. Signals arriving in the CCAF are either from
the switch or the CCF process. Which o f these signals that the CCAF receives determines
which path to follow in the process. If it receives the Off_Hook signal from the switch
(bearing the extension number o f the user who has gone offhook - currentlineid) then the
process sends this signal on to the CCF via the CCAF_CCFSSF channel. The CCAF then
returns to the idle state - this is represented diagrammatically by the state symbol with a dash
in it instead o f a state name. If the CCAF receives an On Hook signal from the switch it
passes it on to the CCF in the same fashion.
If the CCAF receives an Alert signal from the CCFSSF then it knows that it must send an
Alert tone to the appropriate user. This is done in the task box shown above. In the task box
the ToneOut ADT is passed the Toneld and user line identifier, as parameters, and run. If this
ADT is successful (it returns TRUE to value ok) the process returns to the Idle state.
Otherwise it jumps to the part o f the CCAF process that deals with errors.
If the CCAF process receives an Announcement signal from the CCFSSF then it checks what
type o f announcement is to be sent in a decision box. If the announcement is o f the type
confirm then it calls the ToneOut ADT again and passes it the appropriate parameters. If it is
to be a warn announcement then the ADT is called with a different Toneld. Again, if an error
occurs the process jumps to the section that deals with errors. Otherwise the process returns
to the Idle state where it is ready to receive more SDL signals.
This is a very small part o f the CCAF’s functionality to consider but it gives an idea o f how
the SDL system operates at process level.

4.7 The Excel CSN Switch

The call control services developed on the Intelligent Network Architecture are deployed on a
telephony switching system. The IN architecture communicates with and controls this remote
switching system. The switching system used is the Excel CSN (Communications Service
Node) switching platform shown in Figure 4.11.

87

Im plem entation o f the INCM

Figure 4.11 Excel CSN Programmable Switch

This section discusses the switch itself and the techniques used to establish communication
between it and the IN. The CSN Programmable Switch is a narrow-band 1,024 port non-
blocking programmable switch from the Excel product range. The switch itself is relatively
unintelligent; all but the most basic software being resident on a host computer.
The switch comes with a Developers Tool Kit (DTK); a set of C code functions and programs
which can be manipulated to develop applications to be run on the switch. The Developers
Tool Kit, which is resident on the host computer, communicates with the switch by means of
an Application Programming Interface (API) messaging set, which is provided in Appendix
B. The Developers Tool Kit also provides four sample programs which show how these C
functions may be used in an application.

Host Computer

D T K

c> Stream Socket
Ethernet Connection

IP Address
API M essages

User A User BExcel CSN Switch

Figure 4.12 Excel Switch and Host Computer

Im plem entatipn .p f the 1N.CM

The CSN hardware components include a matrix CPU, network interface cards, Digital
Signal Processing (DSP) service card, ISDN and DASS 2 packet engine cards. It adapts to all
standard network and line interfaces including T l, E l, J1, ISDN PRI and DASS 2.

4.7.1 Switch Features
Compact, powerful, flexible 1,024 port switch

• T l, E l, J1 and analogue network interfaces
• SS7 and ISDN signalling packet engines
• Multi-function DSP

High performance, scaleable switching
• Distributed, multiprocessor architecture
• Fully compatible with other switching systems from the Excel product range such

as the LNX platform and EXS environment
• Exclusive selective space switching on service cards conserves time-slots for

network
• Node in distributed EXS architecture via EXNET controller
• Bus interface (RBI) for network-transparent access to external service resources

Open, programmable architecture
• High level application programming interface (API)
• Exclusive Programmable Protocol Language (PPL)

The core o f the CSN consists o f a 1,024 port matrix CPU in a small-footprint, seven-slot
chassis. The CSN is hardware and software compatible with the LNX product also from the
Excel range. It uses identical network line interfaces, service resources, common channel
signalling packet engines, and host interfaces.

Open Programmability: Communications between the CSN and the host use a standard API
message format, conducted over standard protocols. Thus, the CSN does not require a
specific type o f computer, operating system or programming language.

89

Im plem entation o f the INCM

Configurability: It is possible to connect directly to external voice resources without using
network interfaces. When configured with Excel's Resource Bus Interface (RBI), the CSN
connects to voice resource products through the use o f industry-standard interfaces such as
PEB, or MVIP, providing access between these resources and all ports. The RBI occupies
only one I/O slot, instead o f the front and back slot pair occupied for each network interface.
Thus, service providers can make wider use o f the universal slots in the CSN.

Scalability: The CSN and the Excel LNX switch share major components so it is possible to
upgrade the CSN to an LNX to support higher port capacities. With the installation o f an
EXNET Controller, the CSN becomes a node in an Expandable Switching System (EXS),
supporting expansion to 30,720 non-blocking ports over dual EXNET rings. This scalability
provides seamless integration o f all EXS switching resources with CSN resources.

Performance and Flexibility: The modular design o f the CSN, featuring a mid-plane chassis
and extensive use o f daughter boards, enables new technologies to be introduced to the
system. The CSN’s distributed processing architecture utilises microprocessors on each
element in the switch environment, resulting in improved performance per footprint. Excel’s
selective space switching architecture places a time-slot interchange on all major logical
elements to optimise system resources. The result is an efficient use o f network interfaces and
cost savings for the service provider. Service resources and common channel signalling
packet engines are available to all network line interfaces, eliminating the need to dedicate
line interface channels to these resources and providing system-wide access to all internal
resources. CSN system software takes advantage o f the distributed architecture by utilising a
layered call processing software architecture which maps messages to an internal ISDN-
based format. This enables applications to be developed independently o f network protocols,
simplifying development efforts and expediting time to market.

Reliability: The CSN delivers the robust, system-wide fault tolerance commonly associated
only with large central office (CO) switching environments. The CSN offers full 1+1
redundancy on the local system bus and the power supply. Within the chassis parameters,
optional 1+1 redundancy can be achieved for the matrix CPU, host connection and for ISDN,
SS7 and Sub-rate controllers. With multiple DSP cards, redundant pooling o f individual DSP

90

Im plem entation o f the TNCM

resources is also available. N + l redundancy is available for all digital T l, E l network
interfaces. CSN hardware redundancy works in tandem with automatic fault isolation and
switches over to affect a seamless backup without interruption in service. In addition, the
ability to physically remove, replace or add board components while the CSN remains in
operation enhances and speeds maintenance and even expansion because it eliminates the
need to power down the system. This is achieved by staggered connector design which
applies power to the installing component prior to the connection o f logic.

4.7.2 The Host/Switch Communications Link
A link must be established between the host computer and the switch so that they can
communicate. This can be either an RS-232 serial link or Ethernet. In this scenario Ethernet
link is used. The host software provides Transport Control Protocol/Internet Protocol
(TCP/IP) messaging between the host and the switch. The communicating paradigm between
the switch and the host is the standard client/server model where the switch performs the role
o f the server and the host performs the role o f client. All Ethernet communication occurs
through the stream transport service TCP. The switch has an IP address that is stored in
EPROM on the EX/CPU card. The IN, developed in SDL, runs on a UNIX platform on the
host computer and communicates with the switch by opening up a stream socket through
which all API messages pass. It is the responsibility o f the host to establish and maintain this
connection since the host performs the role o f the client. The host establishes this connection
by performing a connectQ call that specifies a port number, along with the IP address
configured when the EX/CPU card was powered up.

4.7.3 The Application Programming Interface (API)
The Excel Application Programming Interface (API) is a set o f messages used for
communication between the host and the switch. Using the API messages the host can
configure the switch and perform call processing functions. The switch uses the API
messages to communicate call processing information, alarms, polls and status information to
the host. There are 256 API messages which can be seen in Appendix B. The messages can
be categorised into three groups:

• Configuration messages

91

Im plem entation o f the INCM

• Call Processing Messages
• Alarms and Maintenance Messages.

The receiver o f an API message must return a response. The response contains a status byte,
which includes the result o f the message sent. The host should analyse all status bytes to host-
initiated messages to determine if they succeeded or failed.
Messaging between the host and switch is not symmetrical. Host messages are different from
switch messages. The message flows between the host and switch are asynchronous. The host
can send multiple messages to the switch, while the switch simultaneously sends multiple
messages to the host. The host uses call processing to set up the intended connection. The
communications driver software matches up acknowledgement messages (ACKs) returning
from the switch for status validations.
Unique message sequence numbers align returning message ACKs with the original message.
The originator o f the message selects the sequence number. Typically, the host software
driver provides this function for host initiated messages. This provides a unique sequence
number counter for each message type. The host allows up to 255 outstanding messages for
each message type.

4.7.4 The Developers Tool Kit (DTK)
The Developers Tool Kit software provides the host application developer with a set o f C
callable functions that perform basic functions required by host applications for Excel
switching products. These functions include the following;

• Message Framing
• Checksum Calculation
• Handling O f Special Characters (OxFD)
• Inbound and Outbound Message Queues
• Message Acknowledgement Utilities
• Excel System Software Download
• Log file
• Text translation

92

implem entation o f the IN CM

The Tool Kit consists o f these basic function modules, header files, and four sample
programs that demonstrate how to use the functions. The four sample programs included with
the DTK do the following;

• Download switch system software from a file residing on the host to the switch.
• Configure the switch from the host, using a configuration file.
• Continuously poll the switch for Switch originated messages.
• Log all operations in a text file.

The operations o f the basic functions in the DTK are outlined below.

Receive Message Functions: Messages received by the host from the switch are handled by
the functions xlcom jcvJram erQ and x lcom jcv jn sg (). The application, on reading bytes
from the switch, stores them in a buffer. These bytes are then sent to the x lco m jcv JramerQ
function which handles the lower level communications protocol. It ensures that all messages
begin with the frame byte OxFE, takes care o f special character encoding and validates
message checksums. The message is then queued until removed by the x lcom jcvjn sgQ
function. This function yields a return code to indicate success or failure o f its operation. It
also yields a pointer to a data structure containing the message itself.

Send Message Functions: The logic for sending messages to the switch from the host is
provided by the functions xlcom sndJram erQ and x lcom jnd jnsg Q . In order to send a
message the application calls xlcom jnd jnsgQ . This assigns the next available message
sequence number to the message and saves it for later acknowledgement match up. This
function then invokes xlcom snd JramerQ to frame the message, take care o f checksum and
handle special characters before sending it.

Sequence Number Assignment Logic: When sent, each message is assigned a sequence
number ranging from 0 to 255. It is therefore possible to have 256 host initiated messages
awaiting switch acknowledgement messages at any time. Every time xlcom jnd jnsg Q is
called the sequence number to be used is incremented. If this number is already in use then a
failure code is returned. Failure codes also occur when messages have been in the

93

Implementation o f the INCM

acknowledgement waiting queue for too long or if too many messages have been sent in a
short amount o f time.

Acknowledgement Message Matching Logic: When the functionxlcom_rcvjnsg() receives
a message from the switch it determines i f it was switch initiated or host initiated. If it was
host initiated then it is an acknowledgement from the switch. The original message is then
located using its sequence number and matched to the acknowledgement message. The
xlcom_rcvjnsg() function also provides an expiration mechanism for messages awaiting
acknowledgement. This avoids messages being “stuck” in the acknowledgement queue and
the potential o f not having available message sequence numbers for new outgoing messages.
Table 4.1 provides a list o f some o f the functions provided by the DTK:

Function Summary
xlcom_init() To initialise the Excel Developers Tool Kit
xlcom_rcv_framer() To frame/queue Excel API messages sent from the

Excel switch to the Host.
xlcom_rcv_msg() To return a switch initiated message or an

acknowledgement message received over the Excel
API.

xlcom_snd_framer() To translate Host send message data into Excel API
“framed” message data.

xlcom_snd_msg() To send a Host initiated message to the switch over the
Excel API.

xlcom_snd_ack() To send a Host acknowledgement to a switch
initiated message over the Excel API.

xlcom_check_msg_ack_timers() To check for switch acknowledgement message wait
timer expiration.

Table 4.1 Excel Developers Tool Kit functions

4.8 Intelligent Network Interaction with the Switch

The IN interacts with a user via the Excel switch. The Call Control Agent Functions (CCAF
and CCAF_2) o f the IN are SDL processes which communicate with users via the switch. A

94

Im plem entation o f the INCM

CCAF exists for every user on the system. In a call connection scenario the CCAF process
deals with the calling party while the CCAF_2 process deals with the called party.

Host Computer
SDL IN System • S D L Processes

Figure 4.13 SDL to User interaction via the Excel Switch

The CCAF processes communicate with the switch using the API message set as shown in
Figure 4.13. The SDL system uses a combination o f two separate techniques to communicate
with the switch using the API messages. These techniques are:

• Abstract Data Types (ADTs)
• Environment Functions

Abstract Data Types can be used to execute C code (i.e. the DTK functions) to interact with
the switch. An ADT can generate an appropriate API message, send it and match it with the
acknowledgement message when received. However by using ADTs it is not possible for the
IN system to know when a switch initiated message has occurred i.e. an offhook, onhook or
dialled digits. In order to capture such switch initiated messages the IN system must be able
to continuously poll the switch. The SDL system achieves this by using the Environment
Functions (in ExcelEnv.c). Therefore ADTs are suitable for sending host initiated messages
while the Environment Functions are more suitable for capturing switch initiated messages.

4.8.1 Abstract Data Types
An Abstract Data Type has no specified data structure. Instead it specifies a set o f values, a
set o f operations allowed on the data type and a set o f equations that the operations must
fulfil. This approach makes it possible to map SDL data types to data types used in other
high-level languages such as C or C++. ADTs can also be used to execute code that is located
in a program outside the SDL system so long as that external program is linked to the SDL

95

Im plem entation o f the TN.CM

system at compile time. ADTs are used in the Intelligent Network SDL system to execute the
C code functionality o f the DTK in order to interact with and control the switch. A call to
execute C code using an ADT can be made from within a task box in a SDL process. To
explain this let us consider the use o f ADTs to send a tone to a user. When the CCAF process
needs to send a tone (Ringing, Busy, Dial, or Error etc.) to a particular user an ADT,
ToneOut, is used. Figure 4.14 shows the command in the task box.

ok :=
T o n e O u t (L in e , Tone)

Figure 4.14 Calling ToneOut ADT from within an SDL Process

Calling ToneOut is rather like calling a procedure in other programming languages such as C.
The ADT is passed two parameters, Line and Tone, and it supplies a return value, ok.

• ok is the return value. The ADT returns True if it executes correctly and False if
an error condition is encountered.

• ToneOut is the name o f the ADT procedure.
• Line is an integer value associated with a particular user. Each user attached to the

switch is identifiable by a unique Line identifier.
• Tone is an integer value used to identify the type o f tone that should be sent.

The Tone identifiers are as follows:

Tone Tone Identifier
Dial Tone 1
Ringing Tone 2
Busv Tone 3
Error Tone 4
Alert Tone 5

Table 4.2 Table Tone Identifiers

96

im plem entation o f the 1NCM

The C code that executes this ADT’s functionality resides outside the SDL system in a C
program called User.c. This program contains the C code functionality o f all the ADTs used
in the system. At compile time the SDL system is converted to C code. This C program is
then linked with User.c.
The ToneOut ADT is shown in Appendix C, complete with comments to explain its
operation. It can be seen that the ToneOut ADT performs the following;

• Generates an API message Connect Tone Pattern and gives it the appropriate
parameters to identify the user and the Tone Type.

• Frames and sends the API message to the switch across the stream socket.
• Waits for an acknowledgement message from the switch.
• Matches the acknowledgement message with the one sent.
• If the message was received and acknowledged return a Boolean value o f True.

Another ADT, EndTone, is used to cancel tones. This is also called from a task box in the
SDL application in the same manner as the ToneOut ADT.

ok :=
E n d T o ne (L in e)

Figure 4.15 Calling EndTone ADT from within an SDL Process

This ADT stops all tones to a user so it is not necessary to pass it a Tone identifier as a
parameter. EndTone generates a Disconnect Tone Pattern API message, frames it, sends it to
the switch and waits for and matches the acknowledgement in the same way as the ToneOut
ADT does. Again the functionality o f this ADT is in the program User.c. Like the ToneOut
ADT the ok return value is True if no errors were encountered. The EndTone ADT is also
shown and commented upon in Appendix C.
Figure 4.16 shows how User.c, the environment functions and the IN are linked at compile
time.

97

Im plem entation o f the INCM

Host Computer

SDL IN (converted to
C Code)

EvcelEnv.c User.c

o -
User A

Ethernet Connection
IP Address

All 3 C files are
linked together at
compile time into
one executable
system.

I
Stream Socket

API Messages

User B

Excel CSN Switch

Figure 4.16 IN System on Host communicating with the Switch

4.8.2 The Environment Functions
The environment functions manage the SDL system’s interactions with the external
environment (the Excel switch) and are located ExcelEnv.c, which is linked to the SDL
system at compile time. This C program handles all messages received by the SDL system
from the switch. The Environment Functions are:

• xlnitEnv which is called during the initialisation o f the application
• xCloseEnv, which is called during the termination o f the application.
• xOutEnv which should treat signals sent to the environment.
• xlnEnv which treats signals sent to the SDL system from the environment.

As mentioned previously ADTs, rather than the xOutEnv, function are used to send host
initiated messages to the Excel switch. Because ADTs have no way o f knowing when switch
initiated messages occur the xlnEnv function is used to receive messages into the SDL
system. xlnEnv continuously polls the environment for the occurrence o f such switch initiated
messages. This is achieved by using a recurring loop in xlnEnv function.

98

Im plem entai ion o f the 1NCM

H ost Com puter IN System

£ExcelEnv.c
xlnitEnv User.c

xCloseEnv
x 1 n E h v

0

x O u t E u v
(NOT
USED)

ADTs

User A User B

Excel CSN Switch

Figure 4.17 Interacting with the switch using ADTs and ExcelEnv.c

The environment functions for the interacting with the Excel switch, as shown in Figure 4.17,
are now described:

Functions xlnitEnv and xCloseEnv
These functions handle the initialisation and termination o f the environment. The function
xlnitEnv w ill be called during the start up o f the program. Its first action is to create the
socket stream between the switch and the host. It also initialises the switch. The xCloseEnv
function shuts down the socket between the host and the switch and frees up all unused
memory. Both functions are shown in Appendix C.

Function xOutEnv
Each time a signal is sent from the SDL system to the environment o f the system, the
function xOutEnv is called. This function is not used in conjunction with the IN SDL system
because ADTs were deemed to be more suitable. However its use will be explained for the
sake o f completeness. The xOutEnv function would have as a parameter the signal being sent.
The signal contains the signal type, the sending and receiving process instance and the
parameters o f the signal.

void xOutEnv (xSignalNode *S);

99

Im plem entation o f the INCM

The parameter o f xOutEnv is an address to xSignalNode, that is an address to a pointer to a
struct representing the signal. The reason for this is that the signal that is given as parameter
to xOutEnv should be returned to the pool o f available memory before return is made from
the xOutEnv function. This is made by calling the function xReleaseSignal, which takes an
address to an xSignalNode as parameter, returns the signal to the pool o f available memory,
and assigns 0 to the xSignalNode parameter. So there should be a call:

xReleaseSignal(S);

before returning from xOutEnv. The xReleaseSignal function is defined as follows:

void xReleaseSignal (xSignalNode *S);

In the function xOutEnv you may use the information in the signal that is passed as
parameters to the function. First it is usually suitable to determine the signal type. This is best
performed by i f statements containing expressions o f the following form, assuming the signal
has the name Sigl in SDL:

(*S)->NameNode == Sigl

Suitable expressions to reach the Receiver, the Sender, and the signal parameters are:

(*S)-> Receiver
(*S)->Sender
((yPDPjSigl)(*S)) -> Paraml
((yPDP_Sig 1)(* S)) -> Param2

Sender will always refer to the sending process instance, while Receiver is either a reference
to a process in the environment or the value xEnv. xEnv is a PId value that refers to an
environment process instance, which is used to represent the general concept o f environment,
without specifying an explicit process instance in the environment. The structure o f the
xOutEnv function is shown in Appendix C.

100

Im plem entation o f the INCM

Function xlnEnv
In order to make it possible to receive signals from the environment and send them to the
SDL system the function xlnEnv is repeatedly called during the execution o f the system.
During such a call the environment is scanned to see if anything has occurred (i.e. a switch
initiated message) which should trigger a signal to be sent to the CCAF process within the
SDL system.

void xlnEnv (SDL_Time Time_for_next_event);

To implement the sending o f a signal into the SDL system two functions are available:
xGetSignal, which is used to obtain a data area suitable to represent the signal, and
SDL Output, which sends the signal to the specified receiver according to the semantic rules
o f SDL. The parameter Time fo r next event contains the time for the next event scheduled in
the SDL system. The parameter will either be:

• 0, which means that the function can be executed immediately,
• Greater than 0, indicating that the next event is a timer output scheduled at the

specified time, or
• A very large number indicating that there is no scheduled action in the system,

that is, the system is waiting for external stimuli.
The environment should be scanned, current outputs performed, and returned as fast as
possible i f Time has past Time for_next_event. For communication with the switch the
TimeJor_next_event parameter is zero since it is desirable to capture a switch initiated
message as soon as it occurs.
The function xGetSignal, which is one o f the service functions suitable to use when a signal
should be sent, returns a pointer to a data area that represents a signal instance o f the type
specified by the first parameter.

xSignalNode xGetSignal (xSignalldNode SType, SDL_PId Receiver, SDL_PId Sender);

The components Receiver and Sender in the signal instance will also be given the values of
the corresponding parameters.
SType: This parameter should be a reference to the symbol table node that represents the
current signal type. Using the system interface header file, such a symbol table node may be

101

Im plem entation o f the 1NCM

referenced using the signal name directly. The message received will be either Onhook,
Offhook or DigitsDialled, which are all o f a special type defined in the system interface
header file. The system interface header file is an automatically generated header file that is
included with the system at compile time.
Receiver: This parameter should either be a PId value for a process instance within the SDL
system, or the value xNotDefPId. The value xNotDefPId is used to indicate that the signal
should be sent as an output without a TO clause, while i f a PId value is given it is treated as
an output with a TO clause. Note that PId values for process instances in an SDL system
cannot be calculated but have to be captured from the information (sender or parameter)
carried by signals coming from the system. This is the normal procedure in SDL to establish
direct communication. The PId value in this case will be that o f the CCAF process.
Sender: Sender should either be a PId value representing a process instance in the
environment o f the current SDL system or the value xEnv. xEnv is a PId value that refers to
an environment process instance, which is used to represent the general concept o f the SDL
environment, without specifying an explicit process instance in the environment. In this
scenario xEnv is used to refer to the Excel switch.
The function SDL Output takes a reference to a signal instance and sends the signal into the
SDL system according to the rules o f SDL.

void SDL Output (xSignalNode S, xldNode ViaList[]);

S: This parameter is a reference to a signal instance i.e. Offhook, Onhook or DigitsDialled,
with all components filled in.
ViaList: This parameter is used to specify whether or not a VIA clause part o f the output
statement. The value (xldNode *)0 is used if no VIA clause is present.
To introduce a via list in the output requires a variable, which should be an array o f xldNode,
that contains references to the symbol table nodes representing the current channels (or signal
routes) in the via list. In more detail, we need a variable:

ViaList x!dNode[N];

102

Implementation o f the INCM

where N should be replaced by the length o f the longest via list we want to represent plus
one. The components in the variable should then be given appropriate values, such that
component 0 is a reference to the first channel (its symbol table node) in the via list,
component 1 is a reference to the second channel, and so on. The last component with a
reference to a channel must be followed by a component containing a null pointer (the value
(xldNode)O). Components after the null pointer will not be referenced. It is shown below how
to create a via list o f the two channels, C C A FU ser and CCAF_2_User.

ViaList xIdNode[4];
/* longest via has length 3 */

/* this via has length 2 */
ViaList[0] = (xIdNode)xIN_CCAF_User;
ViaList[l] = (xIdNode)xIN_CCAF_2__User;
ViaList[2] = (xldNode)O;

The variable ViaList may then be used as a ViaList parameter in a subsequent call to
SDL Output. To send a signal Ofjhook from xEnv into the SDL system the code will be (for
the sake o f simplicity lets consider the case without parameters):

SDL_Output(xGetSignal(Offhook, CCAFPId, xEnv), ViaList[0]);

The code will be similar for an Onhook signal. Both signals will contain the integer parameter
LinelD which specifies which extension caused the event. The handling o f parameters is dealt
with as follows:
If DigitsDialled, with two integer parameters (i.e. ‘69’ invoking Ringback service) should be
sent from xEnv to the process instance referenced by the variable CCAFPId, the code will be:

xSignalNode OutputSignal; /* local variable */
OutputSignal = xGetSignal(DigitsDialled, CCAFPId, xEnv);
((yPDP_DigitsDialled)OutputSignal)->Digits = 69;
SDL_Output(OutputSignal, ViaList[0]);

103

Implementation o f the 1NCM

It is more difficult to give a structure for the xlnEnv function, than for the xOutEnv function
discussed previously.

void xlnEnv (SDL_Time Time_for next event)
{
xSignalNode S;
if (Sigl should be sent to the system) {

SDL Output (xGetSignal(Sigl, xNotDefPId, xEnv), (xldNode *)0);
}
if (Sig2 should be sent to the system) {

S = xGetSignal(Sigl, xNotDefPId, xEnv);
((xPDP_Sig2)S)->Param 1 = 3;
((xPDP_Sig2)S)->Param2 = SDLTrue;

SDL Output (S, (xldNode *)0);
}
/* and so on */

}

An xlnEnv function will in principle consist o f a number o f i f statements where the
environment is investigated. The environment is checked continuously until a switch initiated
message such as Offhook, Onhook or DigitsDialled is detected. When such a message is
detected then that signal is to be sent to the SDL system by executing the appropriate code to
send the signal. The structure given above demonstrates the design o f the xlnEnv function.
The xlnEnv function is presented in Appendix C.

4.9 Migrating Towards TINA

Two possible paths for the migration from IN to TINA have been identified: the Open Switch
path and the Bridge to Legacy path [INtoTINA]. These paths have been discussed in Section
2.10.4. Realising these paths was beyond the scope o f this project but there follows a study o f
how they could be applied to the IN architecture developed here.

104

Im plementation o f .Lhfi.lNCM

4.9.1 Application of the Open Switch Path
Migration from IN to TINA could be achieved by providing an IDL interface to the Excel
switch so that it could be observed as a TINA object. Across this IDL interface the switch
could send to and receive messages from objects in a TINA network. A TINA service could
be invoked when a user interacts with the switch (i.e. goes off-hook, on-hook or dials digits).
TINA objects could control the switch by sending instructions to its IDL interface and a
TINA session may call on the switch to perform certain functions such as connecting users,
playing announcements, sending tones etc. In this scenario the IN has disappeared and full
migration to TINA has been achieved. Users attached to the switch may invoke and interact
with TINA services immediately.
Interworking between the IN system developed in this project and such a TINA styled
version o f the Excel switch would be a step towards this full migration. This could be
achieved by allowing the Call Control Agent Functions (CCAFs) o f the IN to control the
switch via its IDL interface in a CORBA environment. Work has already been carried out by
the COMET group [COMET] in providing standard CORBA based interfaces to broadband
switches produced by different vendors. This standardisation, referred to as Open Signalling
[OpenSig], removes the necessity to know the vendor dependent API message sets when
interacting with a switch. The work done by the COMET group in this area would be useful
in designing an interface to the Excel switch. However, the COMET group focused
exclusively on broadband switches whereas this project is concerned with developing an
interface for the narrow-band Excel switch.
The CCAFs o f the IN must also be given IDL wrapping so that they can communicate with
CORBA messages across a TINA domain. An object, CCAFInterface, would be created to
receive CORBA signals on behalf o f the IN. These CORBA signals would then be converted
to SDL and sent into the CCAFs via the Environment Functions. Similarly, by creating an
object, Excellnterface, which contained the Excel Developers Tool Kit (DTK) functionality
and has an IDL interface, CORBA signals could be received on behalf o f the switch,
converted to the Excel API and passed to the Excel switch. All these CORBA signals would
pass between objects via an ORB. This is illustrated below.

105

Im plem entation of the INCM

^ E x c e l A P I M essa g e s

Figure 4.18 Communication between the CCAF and Excel Switch

Since Excellnterface contains the DTK functionality to communicate with the switch it can
receive CORBA messages to control the switch. Therefore a user wishing to control the
switch can do so without having to know the vendor specific Excel API message set (Given
in Appendix B). There are two directions of communication to be considered: CCAF initiated
messages and switch initiated messages.

CCAF Initiated Messages
The basic call control functionality of the CCAFs includes the setting up and tearing down of
calls, the detection of Onhooks, Offhooks and digits dialled, and the sending of
announcements and tones. The CCAF call control functionality is achieved by invoking the
following IDL methods on the interface of Excellnterface:

Calls from CCAF to Switch Purpose
Connectus(LineID, LinelD) Connect two specified parties in a voice call.
Disconnectus(LineID, LinelD) Tear down a call between two specified parties.
ToneOut(LineID, TonelD) Send a specified tone to a specified party.

106

im plem entation o f theJN C M

EndT one(LinelD) Cancel a tone to a specified party.
Announcement(LineID, AnnID) Send a specified announcement to a party.

Table 4.3 Calls from the CCAF to the Excel Switch

These messages carry parameters as defined below:
LinelD is an integer value which maps onto the channel number that the Excel switch uses to
denote each extension attached to it.
AnnID is an integer value identifying the announcement played to users.
TonelD is an integer referring to the specific tone to be sent to an extension. See Table 4.4.

T on elD T one
1 Dial Tone
2 Ringing Tone
3 Busy Tone
4 Error Tone

Table 4.4 Tone Types

When Excellnterface receives a CORBA signal the appropriate Excel API message is
generated. This message is then framed and sent to the switch using the DTK functionality.
Excellnterface then waits for acknowledgement o f the message from the switch.
Excellnterface also contains translation tables so that LinelDs can be converted to channel
identifiers understood by the switch.
To examine further the communication between the CCAF and the switch, consider the
following example, while referring to Figure 4.18.

Example: Connecting a Call
The SDL system wishes to connect two parties in a basic call. The following SDL signal is
sent from the CCAF to the CCAFInterface object via the Environment Functions:

Connectus(Partyl, Party2)

107

Implem entation of th e IN CM

The parameters Partyl and Party2 represent the users to be connected in the call.
CCAFJnterface sends this message and its parameters as a CORBA signal, via the ORB, to
the IDL interface o f Excellnterface. This CORBA signal invokes the method
Connectus (Party 1, Party2) in Excellnterface. This method generates the API message
Connect (See Appendix B). The Partyl and Party2 identifiers received in the CORBA
message are translated to channel identifiers understood by the switch and passed as
parameters o f the API message. The API message is framed and sent to the switch. A copy of
the message is stored in a buffer until an acknowledgement is received back from the switch.
The acknowledgement and the stored message are then matched and the message is removed
from the buffer. If no acknowledgement is received an error condition, ConnectFailed, is
raised. On receipt o f the Connect message the switch establishes the connection between the
two parties. The IDL Definition for Excellnterface is as follows:

typedef short LinelD;
typedef short TonelD;
typedef short AnnID;
exception ConnectFailed;
exception DisconnectFailed;
exception ToneOutFailed;
exception EndToneFailed;
exception AnnF ailed;
interface Excellnterface {

void Connectus (in LinelD origparty, in LinelD termparty)
raises (ConnectFailed);

void Disconnectus (in LinelD origparty, in LinelD termparty)
raises (DisconnectFailed);

void ToneOut (in LinelD origparty, in TonelD tone)
raises (ToneOutFailed);

void EndTone (in LinelD party) raises (True, False)
raises (EndToneFailed);
void Announcement (in LinelD party, in AnnID announcement)

raises (AnnFailed);
};

108

Im plcmgntatioti.Ql'the TNCM

Switch Initiated Messages
Switch initiated messages occur when a user interacts with the switch by going Onhook,
Offhook or by dialling digits. These messages are shown in Table 4.5 below.

Calls from the Switch to IN Purpose
Offhook(LinelD) When a user goes Offhook.
Onhook(LinelD) When a user goes Onhook.
DialledDigits(Digits) When a user dials digits.

Table 4.5 Calls from the Excel Switch to the CCAF

The parameter Digits is an integer representing dialled digits.
As the occurrence o f switch initiated messages can not be predicted Excellnterface must
continuously poll the switch. When an event does occur it is converted to the appropriate
CORBA message o f Table 4.5. Channel numbers representing extensions will be converted to
LinelD parameters o f the CORBA message. The message is sent to CCAFInterface via the
ORB. From CCAFInterface the message is passed to the appropriate CCAF process in the IN
system via the Environment Functions. CCAFInterface determines which CCAF the message
is intended for and sends it into the SDL system via the Environment Functions. This is
illustrated by the example described below.

Example: A user going Offhook
A user connected to the Excel switch goes Offhook. The switch sends the API message Call
Processing Event (see Appendix B) to Excellnterface which is continuously polling the
switch. The Call Processing Event message contains the channel identifier o f the user and an
indicator that the event was an Offhook as parameters o f the API message. Excellnterface
converts the channel identifier to a LinelD and sends the CORBA message Offhook to
CCAFInterface with this LinelD as a parameter. CCAFInterface sends this message to the
CCAF process in the SDL system via the environment functions. The IDL description o f
CCAFInterface is shown below.

typedef short LinelD;
typedef short Digits;

109

Im plem entation o f the TN CM

typedef boolean status;
exception CommsFailure;
interface CCAFInterface {

status Onhook (in LinelD party)
raises (CommsFailure);
status Onhook (in LinelD party)
raises (CommsFailure);
status DialledDigits (in LinelD party, in Digits digits)
raises (CommsFailure);

};

4.9.2 Application of the Bridge to Legacy Path
The Bridge to Legacy Path o f migration to TINA was discussed in Section 2.10.4.2. A
solution that would be very suitable to the system developed in this project would be to place
the gateway within the SCP rather than between the SSP and the SCP, as proposed in the
Bridge to Legacy path. The gateway would separate the SIBs and the Service Logic from the
SCF, allowing certain entities o f the SCF to double up as TINA objects. This technique is
more readily achievable on the IN system developed in this project than full bridge to legacy
implementation proposed in Section 2.10.4.2, while still allowing for an exploration o f IN
TINA interworking.
Wrapping the IN SIBs and the Service Logic o f the SCP in IDL would make them viewable
as TINA objects. Thus they may be accessed by either the IN SCF or by other distributed
TINA objects. Thus hybrid IN/TINA services may be developed. Services (IN, TINA or
hybrid IN/TINA) may be launched by sending a detection point from the SSF to the SCF or
indeed via a service retailer in the TINA environment. This scenario provides a service
designer with a richer service platform, as it is possible to use aspects o f both technologies IN
and TINA.
Objects in a TINA network may therefore interact with the IN system via an ORB. This
allows TINA services to incorporate IN logic in their design, thus creating hybrid IN-TINA
services. TINA services may be launched from the IN system in the same manner as IN
services, i.e. by launching a SLPI from the BCP. The IN system will interact with these TINA
objects across a gateway as i f they were IN Service Features in the Service Plane [Q.1202].
The resulting service platform consists o f two parts: a legacy IN part and a new TINA part. It
is necessary for these two parts to interwork for the provisioning o f services. Consequently a

110

Im plem entation o f the INCM

corresponding Adaptation Unit (AU) must be developed for the mapping between the IN
architecture and the TINA architecture [HerzMage], For the fu ll bridge to legacy path this
AU would be located between the SSP and the TINA service architecture. The mapping
between INAP operations [Q. 1218] and interface operations o f TINA Computational Objects
on a DPE would also be defined. Locating the gateway between the SIBs and SLPI, and the
SCF, reduces the complexity o f the AU while still allowing Interworking between the legacy
IN and the TINA network and therefore facilitates exploration o f the benefits o f Interworking
within the context o f this project.

Figure 4.19 Accessing the IN Architecture via an ORB

The TINA Computational Objects (which have been discussed in the TINA Overview of
Section 2.10.3) that will communicate with the IN system across the Adaptation Unit include:
User Application (UApp): The part o f the service seen from the User domain.
Provider Agent (PA): This provides the access mechanism to the Retailer domain and
connects a user to their User Agent.
User Agent (UA): This represents a user in the Retailer domain. It allows for the startup and
the joining o f service sessions by a user. There is one o f these for every service.
Service Factory (SF): This is an object that knows how to start up a particular type of
service. There is one o f these for each type o f service available. On a service request from a
user, the User Agent contacts the Service Factory and passes on the request.
Service Session Manager (SSM): This deals with the general management o f a service. The
Service Factory creates one o f these per service session.

I l l

Im plenientali.Qii.Qf the.INCM

Service Support Object (SSO): This is an object which provides service logic to support a
service.
Figure 4.20 shows a hybrid service consisting o f both IN and TINA service logic. Such a
service or indeed a pure TINA service may be invoked from the IN system. The SSM invokes
IN SIB functionality as well as TINA functionality, i.e. a TINA SSO.

Figure 4.20 A hybrid IN/TINA Service being invoked from IN

Figure 4.21 gives another view o f the Adaptation Unit interfacing between the TINA
architecture and the legacy IN.

Figure 4.21 Adaptation Unit between IN and TINA

112

Im plem entation o f the 1NCM

From the TINA side the AU appears as an end user system, i.e. the Retailer Reference Point
(RET-RP), consisting o f a User Application (UApp), any number o f Service Session Objects
(SSOs) and a Provider Agent (PA). From the IN side the AU appears as an SLPI and a set o f
SIBs. The SLPI and SIBs existed previously as SDL processes. They have been extracted
from the SCF and given IDL wrappings so that they now exist as TINA objects. The
extracted SIBs and SLPI must now be accessed from the IN system via a CORBA gateway.
In this design the SLPI doubles up as a TINA UApp and a single TINA object SLPI/UApp
contains the functionality o f both. This object is seen from the IN side as the SLPI and from
the TINA side as the UApp. An SLPI/UApp object will exist for each service. Similarly, the
SIBs o f the IN double up as TINA SSO object(s). An SSO may correspond to a single SIB or
a sequence o f two or more SIBs.

4.9.2.1 Hybrid IN/TINA Freephone Service
The execution o f the hybrid IN/TINA Freephone Service is now detailed. The service is
launched from the IN side o f the AU. The steps explained below are numbered in Figure
4.22. An MSC for this service is provided in Appendix E.5.

Figure 4.22 Hybrid IN/TINA Freephone Service

1: Having received the appropriate detection point from the SSF, the Basic Call Process
selects and launches the Freephone SLPI/UApp across the gateway.

113

Implementation o f the INCM

2: The SLPI/UApp requests the Provider Agent (PA) to create a Freephone User Agent (UA).
Note: A new UA will exist for each service launched.
3: The PA creates a new UA specifically for the Freephone service.
4: The UA requests the Service Factory (SF) to create a Freephone SSM.
5: The SF does so and passes the SSM the reference for the UApp, which has been passed as
a parameter o f messages 2,3 and 4.
6: The Freephone SSM now queries the UApp.
7: The UApp responds to the SSM in the manner appropriate to the service being run. For the
case o f the Freephone service the UApp passes the SSM the Freephone number (i.e. 1800-)
for translation to a destination line identifier.
8a: The SSM checks the translation table for the Freephone number using a TINA SSO i.e. a
Database SSO.
8b: Alternatively, the SSM could use an IN SIB/SSO in the AU. In this example the S1B/SSO
is the IN Translate SIB which converts the Freephone number into a destination line address.
9: The SSM launches the Party Connect SIB/SSO which connects the service initiator with
the Freephone party by signalling to the IN SSF across the gateway.

4.9.2.2 Hybrid IN/TINA Audio-Video Conference
The execution o f a hybrid IN/TINA audio-video conference service across the AU is now
described. In this example two parties are connected in the conference. It is, however,
possible to connect any number o f parties. Each party in the conference has a User
Application (UApp) on which they view the video connection and a telephone extension on
which they hear the audio connection. The voice connections between the telephone
extensions (ExtnA and ExtnB) are made by the narrow-band IN system while the video
stream connections between User Applications are handled by the broadband TINA side.
User A launches the service from UAppA. The conference uses the IN Party Connect SIB to
set up the audio connection. The Connection Manager (CM), is used to connect the video
stream between UAppA and UAppB. For the sake o f clarity, the entities in the AU other than
the Party Connect SIB/SSO have been omitted from Figure 4.23.

114

Im plem entation o f the INCM

User B

CPE/CPN CPE/CPN

TCM

User A

ExtnA Excel Switch \ ~^ 1 ExtnB

Figure 4.23 Hybrid IN/TINA Audio-Video Conference Service

The USM supports a user-centred view o f the service in terms o f personalised interfaces. The
SSM has a global view o f the session. It co-ordinates the association o f parties within the
session, supports the negotiation o f communication resources and QoS parameters, and
orchestrates the end-to-end communication. The Connection Manager (CM) sets up the video
connection across the stream interface and co-operates with terminals' applications in order to
close the communication on stream interfaces. The negotiation is based on an abstract view
o f resources and communication links independent from the underlying transport network.
The Generic Session End-Point (GSEP) is a service independent computational object. It
models the minimal set o f capabilities as an end-point o f an access session by interacting with
the User Agent to perform service session control and invitation deliverance. When the video
stream has been set-up the SSM invokes the Party Connect SIB/SSO to connect the phone
extensions by calling both and setting up a basic call. The steps to create this service are
illustrated in the MSC in Appendix E.6 and described below:
1. User A requests the Conference service from the PA. This is done from UAppA on their

terminal. The extension number (ExtnA) o f their nearest phone is passed as a parameter
o f the service request.

Gateway

Excel Switch

Adaptation
Unit

115

im plem entation o f the TNCM

2. The PA passes the service request on to the SF via the UA.
3. The SF creates the Conference SSM and a USM for User A.
4. User A invites User B to join the conference by sending an invite message from UAppA

to the USM.
5. The USM passes the invitation request on to the SSM.
6. The SSM passes the request to the UA o f User B.
7. This invitation is then passed on to UAppB.
8. User B decides to join the service and sends a join request to the SSM, carrying the

extension number o f the nearest phone (ExtnB) as a parameter.
9. The SSM requests a stream from the GSEP o f both parties.
10. The GSEP o f both parties negotiates with their TCM for the stream information

appropriate to the user’s terminal.
11. This stream information for each terminal is sent to the SSM via the GSEP s.
12. The SSM asks the CM to set up the stream connections.
13. The CM creates the stream connection and informs the TCMs that they are ready.
14. The SSM establishes the audio connection by calling the IN SIB Party Connect and

passing it the extension numbers to be connected as parameters. The SIB interacts with
the IN system across the gateway to achieve this audio connection.

When the service ends resources are released and the session closes down. This requires the
deletion o f resources from the Session Graph and the corresponding release o f network
resources. When the graph is empty the session is completed. The audio connection ends
when the users go on-hook and the call is tom down as normal.

4.9.2.3 Hybrid IN/TINA Ringback Service
The execution of the hybrid IN/TINA Ringback service across the AU is now detailed. The
service is launched from the IN side o f the AU. (It may be useful to reread Section 2.7.1
which describes the operation o f the Ringback Service.)

116

Im plem entation o f the INCM

Figure 4.24 Hybrid IN/TINA Ringback Service

The steps, explained below, are numbered in Figure 4.24.
1: Having received a detection point from the SSF the Basic Call Process selects and

launches the Ringback SLPI/UApp.
2: The SLPI/UApp requests the PA to create a Ringback UA.
3: The PA creates a new UA for the Ringback service.
4: The UA requests the SF to create a Ringback SSM.
5: The SF creates a Ringback SSM and passes it the reference o f the SLPI/UApp, which has

been passed as a parameter o f messages 2,3 and 4.
6: The Ringback SSM now queries the SLPI/UApp.
7: The SLPI/UApp responds to the SSM by sending it the identifiers for the user initiating the

service and the busy extension on which the Ringback is to be done.
8: The Ringback SSM launches an SSO to ensure that the extension initiating the service is

not the same as the extension on which the Ringback is being done i.e. that an infinite

117

Im plem entation o f the IN.CM

looping Ringback on itself is not being set up. The SSO responds to the SSM indicating
that the numbers are not equal.

9: The Ringback SSM then launches the Status Notification SIB/SSO. This SIB plays an
announcement to the service initiator (via the SSF) to indicate that the service has been
initiated.

10: Simultaneous to the execution o f step 9, the User Interaction SIB/SSO is launched. This
SIB places a watch on the extension on which the Ringback is being done. As soon as this
extension goes on-hook the SSM is informed.

11: Once the Ringback extension has gone on-hook the SSM launches the PartyConnect
SIB/SSO which connects the two extensions.

12: When the parties have been connected the SSM informs the Ringback SLPI/UApp.
A Message Sequence Chart (MSC) showing the operation o f this hybrid IN/TINA Service is
provided in Appendix E.7.
It is important to note that the use o f the Adaptation Unit described in the service examples
above is an exploration o f the feasibility o f migrating to TINA from IN by interworking the
service layers. The ideal solution would situate the Adaptation Unit between the SSF and the
SCF. This, however, was beyond the scope o f this project. An AU between the SSF and SCF
which converts INAP messages [Q.1218] from the SSF to CORBA based messages for a
TINA network above is currently being designed and developed by a response to a Request
For Proposal by the Object Management Group telecom domain task force [OMG].

4.10 Conclusions

This Chapter described how an Intelligent Network architecture, based on the ITU-T IN
Conceptual Model, was developed in SDL. The mappings o f the INCM entities to SDL were
explained as were the organisation and the communication channels for each entity.
The Excel Switch, on which the services were deployed, was described in detail as were the
techniques used to interact with it: ADTs and the Environment Functions.
Simulations o f the two selected IN services, Ringback and Group Call Pickup, were run and
Message Sequence Charts showing their operation are presented in Appendix E. These MSCs
show clearly how the IN services are launched from the Basic Call State Manager, and fully

118

Im plem entation .of .the 1NCM

describe their operation. They also demonstrate how a basic non-IN call is set up and torn
down between two parties.
It was found that modifications to the Basic Call State Model processes were necessary each
time a new service is introduced in the Intelligent Network. The BCSM has to know when an
IN service is being invoked so that it may pass control up to the service layer via a detection
point. Dialling the digit strings ‘69 ‘or ‘70’ launches either o f the services. Therefore each
time a new service is added a special digit string may have to be assigned, i.e. 71, 72 and so
on. This means that there is more to be done when adding new services than adding new
SIB s. It will usually be necessary to modify the BCSM so that it recognises new digit string
service requests. However, it is anticipated that as the system expands to contain more SIBs
and services the necessary modifications will decrease.
A step towards the open switch path o f migration to TINA that could be applied to the system
developed in this project was presented. This path makes communication with the switch
possible via a CORBA environment. Examples were presented to demonstrate how the IN
would communicate with the switch via a CORBA gateway.
Instead o f fully replacing the entire SCF with TINA computational objects as proposed in the
Bridge to Legacy path o f Migration to TINA another method o f interworking suitable to the
system developed in this project was proposed. This path is a step towards full migration and
its benefit is that it enables the doubling up o f certain entities as IN functional Entities and
TINA computational objects. Thus it was shown that it is possible to invoke TINA services
from an IN service platform. It was also shown that services could be built consisting o f both
IN and TINA functionality. This ability to combine broadband multimedia features with a
narrowband IN system provides a much richer service platform.
Three hybrid IN/TINA services were designed to run on this platform: Freephone, Audio-
Video Conferencing, and Ringback. These services use aspects o f both the IN and TINA
technologies and are therefore richer than plain IN services. The execution o f these services
can be observed by examining the MSCs in Appendix E.5, E.6 and E.7.

119

Evaluation Criteria for the IN

Chapter 5 EVALUATION CRITERIA FOR THE IN

Before developing the Intelligent Network architecture it was necessary to establish certain
criteria with which to evaluate the system and its performance. These criteria may be divided
into two categories: Functional Criteria and Non-Functional Criteria.

5.1 Functional Criteria

Multiple Users
The system must be capable o f handling multiple simultaneous users. Many users will be
attached to the switching system and the IN software must be able to respond appropriately to
each user. The IN has no control over the timing and frequency o f such user interactions but
it must handle all o f them regardless o f current operations or events in the IN. The number o f
users interacting with the IN should not be limited by the IN software itself.

Multiple Services
Two IN services should be provided for execution on the IN architecture and it must be
possible for both these services to run concurrently in any combination. This must also be the
case for any further services added at a future date. In other words it should not matter what
service is launched first and at what stage o f its execution that the next service is launched
and so on. The services must be able to coexist on the architecture and be completely
independent o f each other.
Feature Interactions are a problem that may occur in an Intelligent Network. This is a
phenomenon where a service fails to perform as expected. The failure is due to interference
from other services on the IN. Rigorous testing o f the system must be performed to ensure
that service interaction does not occur.

120

Evaluation Criteria for the IN

5.2 Non-Functional Criteria

Reliability
The operation o f the system must be repeatable, dependable and sufficiently robust that
crashing or hanging does not occur. Test case scenarios, designed to reveal any inappropriate
behaviour o f the system, should be run.

Fault Tolerance
The IN system must be able to effectively handle any runtime faults that may occur. The
system should be able to recover from such faults and if necessary report them in a
meaningful way to the system users.

Scalability
Scalability is essential to the concept o f Intelligent Networks. INs were initially conceived in
order to reduce the time to market for new services and to make the design o f new services
easier. It must be possible therefore that the IN system can be added to at later stages o f its
existence. This evolving o f the system relates to the addition o f new services as well as new
functional entities. Also, interaction between the IN and broadband technologies such as
TINA must be considered.

5.3 Meeting the Evaluation Criteria for the IN

It is now necessary to verify that the criteria outlined in Sections 5.1 and 5.2 have been met.

Multiple Users
The IN architecture is capable o f handling multiple simultaneous users. The system interacts
with the users via the two processes CCAF and CCAF_2. Only one instance o f each of these
processes ever exist. For every new user that interacts with the system a BCSM (Basic Call
State Model) process in the CCFSSF Block is created. There are two types o f BCSM process.
If the user is a calling party then an 0_BC SM (Originating BCSM) is created whereas if the

121

Evaluation Criteria for the IN

user is a called party a T_BCSM (Terminating BCSM) process is created. The BCSM process
for each user is a high-level fmite state machine description o f that user’s current state - be
they involved in a basic call or an IN service invocation. The IN software puts no limit on the
number o f BCSM processes that can be created. There is a certain amount o f overhead
attached to signal flow management when dealing with multiple simultaneous user action.
Therefore the memory o f the host computer and the number o f ports on the switching system
are the only factors which limit the maximum number o f users that can simultaneously
interact with the IN. The Excel CSN switch used in this project can handle a maximum of
1,024 ports. Tests have shown that the IN can comfortably handle as many as 30 users
interacting with it in the establishment o f calls without the occurrence o f any error conditions.

M ultiple Services
The IN system was designed to handle the execution o f multiple simultaneous services. This
is made possible through the dynamic creation and termination o f processes. Whenever a new
instance o f a service is requested the necessary processes are created and then terminated as
soon as they have been executed. Thus the number o f existing processes grows and decreases
dynamically, throughout the life-cycle o f the system, depending on how busy it is. An
account o f what processes are currently alive and their PId addresses is continuously updated
so that there is never any confusion as to what instance o f what service each process is
dedicated to. Monitoring the PIds o f the processes ensures that all signals are sent to the
correct process instance, and that they do not interfere with other signals or processes in the
system. There is an amount o f overhead attached to signal flow management when dealing
with multiple simultaneous service action.
Two Intelligent Network services were designed for the architecture: the Ringback service
and the Group Call Pickup service. An IN service is launched when the BCP creates a GSL
process and informs it which service it requires to be executed. The GSL process executes the
SLP (Service Logic Program) for the requested service. These SLPs launch the appropriate
SIB processes in the correct order to achieve the necessary functionality to realise the service.
The IN software allows for a maximum o f 10 instances o f the GSL process to exist. This
means that no more than 10 IN services can simultaneously coexist on the architecture.
A maximum o f 10 instances o f each SIB can exist at any one time. However, because each
SIB terminates immediately after its operation is complete and because the design o f the SIB
chains that implement the services are sufficiently simple a deadlock situation will not arise

122

Evaluation Criteria for the IN

where one service is unable to invoke a SIB it requires - even if 10 services are running
concurrently.
Further future services may be created which use a greater number o f SIBs and where there is
more sharing o f SIBs between the services. This could, in a worst case scenario, reduce the
maximum number o f services that can coexist. However, i f necessary the maximum number
o f SIBs or GSLs that can be invoked can be easily increased.
It will always be possible to execute a maximum o f 10 instances, in any combination, o f the
two services developed in this project. This has proved true in rigorous testing o f the system,
launching the services in various combinations with varying timing.
Feature Interaction is a problem which may occur when multiple services exist
simultaneously. The two services implemented in this project did not have any special feature
interaction requirements so no major problems were encountered. One o f the
recommendations made by this thesis in the final chapter, for future work, is the development
o f a Feature Interaction Manager.

Reliability
The reliability o f the system was verified by running simulations. These generated Message
Sequence Charts (MSCs) which were checked thoroughly for any unexpected behaviour.
Unexpected caller hang-ups, introduced into the system during a call or the execution o f a
service, were an important issue. When they occur a M idjCall signal is introduced. If the
abandoning user is running an IN service the signal sent to the GSL and all the active
processes relating to the relevant service are terminated. An error signal is returned to the
CCF via the SSF containing the error cause unexpectedhangjup as parameter. The CCF then
kills all its active processes for that service i.e. the relevant BCSM processes.
All the parameters and process actions were examined closely at the end o f each scenario test
to ensure that all the required tasks were being performed. Scenarios tested were:

Single service activation-.
• Ringback with various phone number combinations from 10001 - 10011,
• Group Call Pickup with various phone number and group number combinations,

123

Evaluation Criteria .for.the IN

• Ringback repeated with a user hang-up introduced at each SIB processing state,
• Group Call Pickup repeated with a user hang-up introduced at each SIB processing

state.
Multiple simultaneous service activation:

• The two services repeatedly, beginning first with one and introducing the other at
various stages and visa versa,

• The two services repeatedly, as above, but with the introduction o f a user hang-up
at different stages,

• Ringback, two at the same time,
• Group Call Pickup, two at the same time,
• Ringback and two Group Call Pickups,
• Group Call Pickup and two Ringbacks,

MSCs for tests with more than four or five services proved very difficult to read and took
considerable effort to verify. Some o f the exception cases detected are:

• Group Call Pickup operation can not be performed on a phone that is being polled
due to Ringback.

• A resource cannot have the same service set twice for it, i.e. it can have both a
Group Call Pickup and a Ringback service set for it, but not two Ringback or two
Group Call Pickup services.

Fault Tolerance
Whenever an error condition in the IN system occurs an alarm is generated and the details of
the error are printed to the screen on the host computer. A user will be able to see in which
FEA, or otherwise, that the error occurred and o f what type it was. In each SIB or FEA
process there is a flag called logicalError. When an error occurs this is set to true. A variable
SIBErrorCause is used to specify exactly what type o f error it was. For example in
FEA_4081, which carries out the functionality o f the Screen SIB, possible error causes might
include invalid screen J is t or invalid J ile J d . Errors occurring in the lower layers o f the IN
are similarly reported. All ADTs return a Boolean operator to indicate success or failure.

124

Evaluation Criteria for the IN

The IN system is very robust and no crashes or hangs have yet occurred, despite the rigorous
testing it has been given. The design is in itself "tolerant" to certain problems. Consider the
scenarios o f user and system related faults.
User Related Faults: Users o f the system may stop dialling digits or stop in the middle o f a
call without notice. The time check mechanisms ensure that such an occurrence does not lead
to an interruption o f service for other users. If a user stops dialling for some reason while
entering a number, then the dialled digits timer detects this interruption and kills off the
process that dealt with that user’s call in the first place. No interruption o f service occurs for
anyone else and the system continues as normal. Also, users may dial invalid numbers and
again the same idea applies: service is maintained for everyone else and the user gets an
announcement informing them that the number they dialled was invalid.
System Related Faults: Probably the most important aspect o f fault tolerance in the system is
its distributed software architecture. Controlling processes and managers within the system
recognise requests and distribute them to the appropriate processes. This aspect o f the
architecture design is helpful in handling faults. Any "system type" problem will only effect
the users o f that particular call instance and not the entire system. When such a situation
occurs the call for the affected user is shut down and the rest o f the system carries on
unaffected.
It could be possible to add some sort o f "Still alive" signal to the system at a future date. This
could be sent periodically from each call instance process to the controlling process or a
"fault tolerant manager" indicating that everything is ok. If this signal is not received within a
certain time frame then the relevant process can be killed, possibly a new one could be
created to replace it and the problem reported to a log file for later study. It would be useful
to build some techniques into the system to recover from such runtime faults. Recovery
should be transparent to the user.

Scalability
The IN Architecture in its current form and facilitates the execution o f two IN services. The
architecture may, however, be further enhanced at a later stage by adding further services and
features to it. The SDL/SDT development suite facilitates scalability very well. It is relatively
simple to add further blocks or processes to an existing SDL system. This is one o f the
reasons why SDL/SDT was chosen to implement the architecture.

125

Evaluation Criteria for the IN

SDL allows the dynamic creation and termination o f processes in a system at run time. This
technique is used several times in this system. It is possible to change the maximum number
o f processes by simply incrementing the rightmost figure inside the parenthesis on the face o f
a process instance. This would be useful i f it was decided that more numbers o f SIBs need to
be allowed to concurrently exist.
It is possible to add a new service to the architecture by editing the Global Service Logic,
which determines which SIB functionality is to be invoked and in what order. Adding a new
service, which uses the existing SIBs on the architecture, would simply be a matter of
opening the GSL process and entering into it a new SIB chain describing the order o f SIB
execution.
It is very likely that to add a new service to the system it will be necessary to add new SIBs.
Adding a new SIB process to the GFP Block can achieve this. SIB processes are relatively
simple. They describe the order o f execution o f FEA processes in the SCF, SDF and SRF
Blocks o f the DFP. Further FEA processes can similarly be added to the SDL system when
necessary.
Currently, the functionality o f the SRF is limited to the playing o f announcements. The SRF
exists to provide the specialised resources required for the execution o f IN provided services.
Thus its functionality could later be extended to include resources such as digit receivers,
conference bridges et cetera.
Similarly, the SDF, in its current form, is limited to storing and retrieving call-related data. Its
functionality could be extended to include roles such as calculating call costs, storing caller
specific data, network data and communicating with other SDFs i f necessary.
Further Functional Entities could be added to the IN at a later date. These might include a
Service Creation Environment (SCE) on which services could be designed using a Graphical
User Interface (GUI) and a pallet o f service functionality from which components can be
dragged and dropped onto a workspace. Such a SCE would automatically generate the
Service Logic from this workspace and the newly designed service could be subsequently run
on the architecture.
A Service Management Function or a Service Management Agent Function, as described in
Section 2.4.3, could also be added to the system at a later date. The introduction o f a Feature
Interaction Manager (FIM) to prevent service interactions was discussed earlier. An FIM
could be developed in SDL and added to the system at a later date.

126

Evaluation Criteria for the IN

Interacting with a broadband TINA domain is an important area for future consideration. If
the advantages o f a TINA broadband service could be combined with those o f a narrowband
IN then there is greater possibility for richer hybrid IN/TINA service development. This was
discussed in detail in Section 4.9.

127

Conclusions

Chapter 6 CONCLUSIONS
6.1 Overall Conclusion

The purpose o f this project was to design and develop an Intelligent Network (IN) prototype,
based on the standardised architecture, with particular emphasis on its service creation
aspects. This thesis outlined the implementation o f two services on the IN prototype using the
ITU-T SIB methodology. The deployment o f these services on an Excel switching platform is
also described. The possibility o f migrating the prototype to conform to TINA was also
explored. Two techniques for doing this were investigated. The first involves making the IN
SIBs and Service Logic accessible from the TINA network and vice versa. This is a step
towards fully replacing the SCP by TINA computational objects. The other path for migration
involves the replacement o f the SSF and switch by a TINA open switching object. A step
towards this is making the switch controllable from a TINA domain.

Intelligent Networks
The Telecommunication industry’s need for IN standardisation and evolution is being
responded to by ITU-T and other organisations. The CS-1 standards have a very restricted
scope and are not sufficiently unambiguous to guarantee compatibility between different
vendors’ products. IN development to date has been concerned with the construction o f a set
o f interfaces and protocols that clearly separate the switching from the service aspects of
telecommunication networks. Distribution o f the service application software itself is now
being addressed. The TINA Consortium (TINA-C) was formed by the major network
operators to discuss information-networking problems with telecommunications and
computer vendors. Interworking between IN and TINA is a step towards full migration from
IN to TINA and allows the development o f hybrid IN/TINA services with broadband
capabilities.

The Use of SDL
The SDL language was chosen to implement the Global Functional Plane (GFP) and the
Distributed Functional Plane (DFP) o f the IN architecture. The selection o f SDL was largely

128

Conclusions

motivated by the availability o f the SDT tool and the graphical syntax o f the language, which
provides a means o f developing the system in an intuitive flow chart like manner.
Using SDL has a number o f advantages over traditional programming languages. The SDL
Graphical Representation (GR) description o f the GFP/DFP planes o f the INCM gives an
overview o f the system that is easier to understand than a C/C++ representation. SDL also
offers the possibility to make late changes quickly and easily to the implementation if the
specification is changed. Another advantage o f using the SDL/SDT suite over other
development environments is the ease with which testing can be performed. SDT allows
simulations o f the system to be run, where it is possible to step through its execution at any
level o f detail. At the same time MSC charts can be created so that the whole operation o f the
system can be viewed.
However, a limitation o f SDL is that it is not possible to separate different entities in the
environment, outside the SDL system. The Excel switch communicates with the IN using the
Excel API message set. Messages are sent to the switch from the IN by calling Abstract Data
Types (ADTs) which execute C code communication functionality that comes with the
switch. Switch initiated messages are captured by the environment function and then sent into
the IN as SDL signals.
Integration o f the current version o f SDT with CORBA is poor but this is being addressed in
the next version to be released.

SDL Implementation o f the IN
The SDL implementation o f the IN focuses on the GFP and the DFP planes, each o f which
are represented by an SDL Block. The ITU-T Recommendation series [Q.1200] could be
improved by using a complete SDL description. Only process diagrams are provided, without
any structuring information and without any signal or data definitions. This means that the
SDL diagrams in the standards only serve as illustrations o f the written text in the standards.
When building the IN system a number o f implementation decisions had to be made. It
became clear as the system was being developed that many issues concerning the operation of
the INCM had not been fully examined by the standards and consequently the development
became a means o f exploring issues as well as producing an implementation o f the standards.
SDL facilitated the specification o f both the distribution o f functionality and communication
within the system very well.

129

Conclusions

The Services
The two IN call control services chosen for implementation were Ringback and Group Call
Pickup. These services were implemented using seven SIBs, five o f which are defined in CS-
1 while the other two had to be designed afresh in this project. Both services are narrowband
call-control services that might typically be used in an office environment.
The Ringback service is invoked by a user (dialling ‘69’) who has rung an extension that is
busy. The user, having invoked the service, then hangs up. When the called party becomes
available, the service initiator is rung. On answering, the called party is then polled and the
parties are connected when the called party goes o ff hook.
The Group Call Pickup service is used when an extension rings but the person who owns it is
away from their extension but at another one nearby. The call can be diverted to and
answered from the other extension so long as that extension is a member o f the same
predefined group as the ringing extension.
The concept o f migration from IN to TINA was explored and three hybrid services were
designed to explore the possibilities for interworking on this architecture. The Freephone
service is initiated by a user attached to the IN but uses a TINA database to convert the
Freephone 1800 number to an extension number. The IN call is then connected by the IN
Party Connect SIB. The Audio Video Conference is launched by a user from a terminal
represented by a TINA User Application. The service connects two users by a video stream in
the TINA domain. The users are connected in a voice call by using the call connection
capabilities o f the IN. The Ringback service is initiated by an IN user but uses both IN SIBs
and TINA computational objects.

Service Creation
Seven SIBs were needed to implement the two selected IN services. The SIB methodology
was found to be quite useful in terms o f service creation. Further call control services would
reuse many o f these existing SIBs so that a large variety o f services could be achieved
without requiring an enormous bank o f SIBs. Both services developed in this project reused
the Party Connect and the Status Notification SIBs. Further SIBs, released in CS-2, will
increase again the variety o f services possible.

130

Conclusions

By interworking with a TINA environment the development o f hybrid IN/TINA services was
possible. Interworking yields a greater variety o f services which use aspects o f both the
broadband and narrowband technologies.
The development o f a Service Creation Environment Function (SCEF) in the DFP was
outside the scope o f this project.

The Excel Switch
The switch on which the services are deployed is an Excel CSN narrow band switching
platform. This switch, which can have up to 1,024 ports connected to it, is itself relatively
unintelligent. All but its most basic intelligence resides on the host computer connected to it.
The switch comes with a Developers Tool Kit (DTK) which is a package o f C code
functionality residing on the host computer. The DTK facilitates communication with and
control o f the switch via its API message set. The functionality provided by the DTK is very
adaptable and can be used to achieve a wide variety o f applications to run on the switch. A
disadvantage is that the API is specific to the Excel vendor. N ew Environment functions and
ADTs would need to be written to communicate with a switch from a different vendor. It
would be possible to communicate with the switch using a CORBA gateway. This concept,
known as Open Signalling [OpenSig], makes control o f the switch possible using a standard
known interface rather than the vendor specific Excel API message set.
ADTs in the SDL system use the DTK functionality to build Excel API messages, send them
across a UNIX socket stream to the switch and wait to match a returning acknowledgement.
The Environment functions continuously poll the socket stream to capture switch-initiated
messages when they occur. The messages were then converted to SDL signals and passed
into the IN system.

6.2 Future Research

Version 3.3 o f SDT was used in this project. Version 3.4 will not have any changes in the
current CORBA support, however, work is being done on remodelling the entire CORBA
support for the following release. This version will be based on HOP, i.e. all signals that are
sent to or from the SDL system can be sent using HOP, thereby making it possible to connect

131

Conclusions

the SDL application to any ORB system. This also means that it will be possible to generate
IDL descriptions from SDL. This will help the achievement o f IN/TINA interworking.
It would be very useful to develop a Service Creation Environment Function (SCEF) with a
Graphical User Interface (GUI) that is part o f the IN. At present the IN services are each
described in the Global Service Logic (GSL) by a chain o f SIBs. With a GUI oriented SCEF
it would be possible to select SIBs from a library, drag them onto a workspace and connect
them to implement a service. This string o f SIBs would then be automatically converted into
a Service Logic Program Instance (SLPI) in the GSL.
At present the IN system has a reserve o f seven SIBs. It would be beneficial to implement all
the CS-1 SIBs on the Architecture. All new SIBs described in further Capability Set releases,
i.e. CS-2, CS-3 etc., should also be incorporated into the architecture to provide a richer
reserve o f service creation capabilities.
The IN system developed in this project can handle multiple users running multiple services
simultaneously. The services that were implemented did not have any special feature
interaction requirements and therefore feature interaction was not a prime issue in the system
design. Feature Interaction is, however, a valid topic for future study on this project it is
recommended that a Feature Interaction Manager be added to the architecture.
Work is being done currently by the OMG Group [OMG] to define a standard INAP to
CORBA translation for signalling between the SSP and a TINA service platform. This work
would be very relevant to plans to migrate the system in this project to TINA. It would also
be worthwhile to explore the possibility o f replacing the SSF and switch with a TINA object
and therefore achieve full migration from IN to TINA using the Open Switch technique.

132

Bibliography

[Q.1200]

[Q. 1201]

[Q.1202]

[Q.1203]

[Q.1204]

[Q.1205]

[Q.1208]

[Q.1211]

[Q.1213]

[Q. 1214]

[Q.1215]

[Q.1218]

[Q.1219]

BIBLIOGRAPHY

ITU-T Recommendation series Q.1200: Q-Series Intelligent Network
Recommendation structure, Helsinki, 1993.
ITU-T Recommendation Q.1201: Principles o f Intelligent Network
Architecture, 1993.
ITU-T Recommendation Q.1202: Intelligent Network Service Plane
Architecture, 1993.
ITU-T Recommendation Q.1203: Intelligent Network Global Functional Plane
Architecture, 1993.
ITU-T Recommendation Q.1204: Intelligent Network Distributed Functional
Plane Architecture, 1993.
ITU-T Recommendation Q.1205: Intelligent Network Physical Plane
Architecture, 1993.
ITU-T Recommendation Q.1208: General Aspects o f Intelligent Network
Application Protocol, 1993.
ITU-T Recommendation Q.1211: Introduction to Intelligent Network
Capability Set 1, 1993.
ITU-T Recommendation Q.1213: Global Functional Plane for Intelligent
Network CS-1, 1993.
ITU-T Recommendation Q.1214: Distributed Functional Plane for Intelligent
Network CS-1, 1993.
ITU-T Recommendation Q.1215: Physical Plane for Intelligent Network CS-1,
1993.
ITU-T Recommendation Q.1218: Interface Recommendations for Intelligent
Network CS-1, 1993.
ITU-T Recommendation Q.1219: Intelligent Network Users Guide for
Capability Set-1, 1993.

[M.3010]

[SDT93]

[SDL89]

[Csu94]

[Morris]

[INtoTINA]
[HerzMage]

[OMG]

[OpenSig]

[COMET]
[Excel]
[ABC]

[SDTsu]

ITU-T Recommendation M.3010: Principles for Telecommunication
Management Network, 1993.
SDT Version 2.3 Users Guide and Reference Manual, Telelogic Malmoe AB,
1993.
ITU-T Recommendation Z.100, “Specification and Description Language
SDL", 1989.
Peter Csurgay, “Service Creation and Deployment in an Intelligent Network
Laboratory”, Masters Thesis at IDT, NTH, Trondheim, 1994.
Conor Morris, “An SDL based Intelligent Network service development
environment”, Masters Thesis, University o f Limerick, 1996.
Cesare Mossotto, “From IN to TINA - the Step Forward?” CSELT, July 1997.
U. Herzog, T. Magedanz, "Intelligent Networks and TINA - Migration
And Interworking Issues", Proceedings o f IS&N'97, Como, May 1997.
Request For Proposal, “Interworking between CORBA and Intelligent
Network Systems”, OMG document, telecom/97-12-06, 1997.
A. A. Lazar, F. Marconcini, “Towards an Open API for ATM Switch
Control”, COMET Group, April 1996.
http://comet.ctr.columbia.edu/opensig/
Excel LNX User’s Manual, Excel Inc., 1996.
A1 Kelley and Ira Pohl, “A Book on C”, The Benjamin/Cummings Publishing
Company, second edition, 1990.
Telelogic SDT Customer Support: support@telelogic.se, Telelogic Malmoe
AB.

______________ Bibliography

II

http://comet.ctr.columbia.edu/opensig/
mailto:support@telelogic.se

■Appmdix A

Appendix A Glossary
A .l Terminology

Architecture: Any ordered arrangement of the parts of a system.
Basic Call: A call between two users that does not include additional features.
Basic Call Process: The sequence of activities used in processing a basic call attempt.
Call Instance Data: An identifier that defines subscriber specific details (i.e. its value will

change with each call instance) for Service Independent Building Blocks
in the Global Functional Plane.

Deploy: To spread out (troops, etc.) so as to form a wider front to station or place
(forces, equipment, etc.) in accordance with a plan to spread out or place
like military troops.

Dynamic
Arming/Disarming:

Enabling/disabling of a Detection Point by a Service Control Function in
the course of service control execution for a particular call/service
attempt.

Entity: A part, device, subsystem, functional unit, equipment or system that can
be individually considered.

Event: A specific input to and/or output from a given state in a finite state
machine model that causes a transition from one state to another.

Event Detection Point: A detection point that is dynamically armed.
Feature Interaction: A situation that occurs when an action of one feature affects an action or

capability of another.
Functional Entity: A set of processes defined for the purpose of achieving a specified

objective, an entity that comprises a specific set of functions at a given
location.

Global Service Logic: Logic in the Global Functional Plane that is used to realise service
features.

Information Flow: An interaction between a communicating pair of functional entities.
IN Conceptual Model: A planning model used for defining the Intelligent Network architecture.
Library: An assembly of objects, routines, programs, etc. that may be drawn upon

for use in the performance of functions.
Manager: A function that directs and/or controls operations of a function or an

assembly of functions to allow a functional entity to perform all or part
of the expected functional entity actions.

Object: An intrinsic component of an entity that is described at an appropriate
level of abstraction in terms of its attributes and functions.

Plane: A part of the IN Conceptual Model.
Point in Call: A state in the Basic Call State Model.
Point of Initiation: A functional interface between basic call processing and service logic

over which service control is initiated.
Point of Return: A functional interface between basic call processing and service logic

hi

Appendix .A

over which call processing control is returned to basic call processing.
Relationship: The complete set of Information Flows, where they exist, between two

Functional Entities.
Resource: In telecommunications, any network element that van be drawn upon in

providing service, e.g. a circuit, a receiver, etc.
Service Control: Direction of the functions or processes used to provide a specific

telecommunications service.
Service Creation: An activity whereby the capability to provide a supplementary service is

brought into being from specification to development and verification.
Service Data: Customer and/or network information required for the proper

functioning of a service.
Service Feature: A reusable part of one or more service capabilities forming all or part of

a service.
Service Logic: A sequence of processes/functions used to provide a specific service,
Service Logic
Program:

A software program containing service logic.

Service Logic
Program Instance:

The invocation and application of a particular Service Logic Program in
providing a service or a service feature for a specific call/service
attempt.

Service Management: Management of user and/or network information required for the proper
operation of a service.

Service Provider: An organisation that commercially manages services offered to service
subscribers.

Service Subscriber: An entity that contracts for services offered by service providers.
Service Support Data: An identifier that defines data parameters of specific service feature

descriptions for Service Independent Building Blocks in the Global
Functional Plane.

Single-Ended Service
Feature:

A feature, e.g. call/service attempt manipulation, that applies to only one
of the parties that may be involved on a call/service attempt.

Single Point Of
Control:

A control relationship where the same phase or aspect of a call/service
attempt is influenced by one and only one Service Control Function.

Static
Arming/Disarming:

Enabling/disabling of a detection point, as directed by a Service
Management Function, to cause a specific action by call/service
processing whenever a specific point in call/service processing is
encountered.

Supplemented Call: A basic call with added service features or capabilities.
Trigger: A stimulus for initiating an action.
Trigger Detection
Point:

A detection point in basic call processing that is statically armed.

Vendor or
Implementation
Independence:

The characteristic that allows products from different vendors to work
together in the same environment; and/or allows physical units serving
as the same functional entity(ies) produced by different vendors to be
used interchangeably.

IV

Appendix A

A.2 Acronyms

ADT Abstract Data Type
API Application Programming Interface
AU Adaptation Unit
BCP Basic Call Process
BCSM Basic Call State Model
CCAF Call Control Agent Function
CCF Call Control Function
CCS Common Channel Signalling
CII) Call Instance Data
CIDFP Call Instance Data Field Pointer
CM Connection Manager
CO Computational Object
CORBA Common Object Request Broker

Architecture
CPE Customer Premises Equipment
CPN Customer Premises Network
CS Capability Set
CSM Communication Session Manager
CSN Communications Service Node
DFP Distributed Functional Plane
DP Detection Point
DPE Distributed Processing Environment
DTK Developers Tool Kit
DIM F Dual Tone Multi-Frequency
ESIOP Environment Specific Inter-ORB

Protocol
ETSI European Telecommunications

Standards Institute
FE Functional Entity
FEA Functional Entity Action
FIM Feature Interaction Manager
GFP Global Functional Plane
GIOP General Inter-ORB Protocol
GSEP Generic session End Point
GSL Global Service Logic
GUI Graphical User Interface

IDL Interface Definition Language
nop Internet Inter-ORB Protocol
IN Intelligent Network
INAP Intelligent Network Application

Protocol
INCM Intelligent Network Conceptual

Model
IP Intelligent Peripheral
ISDN Integrated Services Digital

Network
ITU International Telecommunications

Union
KTN Kernel Transport Network
MSC Message Sequence Chart
NCCE Native Computing and

Communication Environment
ODL Object Description Language
OMG Object Management Group
OO Object Oriented
OOD Object Oriented Design
ORB Object Request Broker
PA Provider Agent
PE Physical Entity
PIN Personal Identification Number
PPL Programmable Protocol Language
PSTN Public Switched Telephone

Network
QoS Quality of Service
RET-RP Retailer Reference Point
RFI Request For Information
RFP Request For Proposal
SCF Service Control Function
SCEF Service Creation and Environment

Function
SCP Service Control Point
SDF Service Data Function
SDL Specification and Description

Language
v

Appendix A

SDT SDL Design Tool
SF Service Factory
SIB Service Independent Building Block
SLEE Service Logic Execution Environment
SLPI Service Logic Program Instance
SMAF Service Management Agent Function
SMF Service Management Function
SOMT SDL Object Modelling Technique
SP Service Plane
SRF Special Resource Function
SSD Service Support Data
SSF Service Switching Function
SSM Service Session Manager

SSO Service Support Object
TA Terminal Agent
TBCSM Terminating Basic Call State

Model
TCM Terminal Connection Manager
TDP Trigger Detection Point
TINA Telecommunications Information

Networking Architecture
TMN Telecommunication Management

Network
UA User Agent
UApp User Application
USM User Session Manager

VI

Appendix-B

Appendix B Excel Switch API Message Set

Alarm Cleared...OxCl
Alarm...0xB9
Answer Supervision Mode Configure OxBB
Assign EXS Host/Slave...........................0x6E
Assign Logical Node ID0x10
Assign Logical Span ID...........................0xA8
B Channel Configure............................... 0xC8
B Channel Query.......................................OxCA
Become Active..OxAl
Busy Out Flag Configure.........................0xD3
Busy Out..0x18
Call Control Instructions Query..............0x87
Call Processing Event.............................. 0x2E
Call Progress Analysis Class Configure .0xB3
Call Progress Analysis Configuration Query 0x8A
Call Progress Analysis Pattern Configure 0xB2
Call Progress Analysis Result................. 0x34
Card Population Query............................0x07
Card Status Query.................................... 0x83
Card Status Report................................... 0xA6
CCS Redundancy Configure................... 0x5B
CCS Redundancy Query..........................0x6C
CCS Redundancy Report.........................0x73
Channel Connection Status Query......... 0x01
Channel Parameter Query....................... 0x80
Channel Release Request........................ 0x37
Channel Released With Data.................. 0x69
Channel Released..................................... 0x49
Clear System Software.............................OxOC
Collect Digit String.................................. OxBC
Conference Create.................................... 0x4B
Conference Delete Request..................... 0x4C
Conference Deleted..................................0x4D
Connect One-Way Forced....................... 0x50

Connect One-Way To Conference 0x4F
Connect To Conference.......................... 0x4E
Connect Tone Pattern..............................0x2F
Connect Wait..0x17
Connect With Data.................................. 0x05
Connect With Pad.................................... 0x03
Connect.. 0x00
CPC Detection..0x47
Cross Connect Channel.......................... 0x1 A
Cross Connect Span................................Ox 1C
Cross Disconnect Channel..................... OxlB
Cross Disconnect Span........................... OxlD
D Channel Assign......................................0xC4
D Channel De-assign................................ 0xC5
D Channel Facility List Configure 0xC6
D Channel Facility List Query................ OxCB
Diagnostics Indication............................ 0x45
Disconnect Tone Pattern........................ Ox IE
Distant End Release Mode Configure.... 0xB8
Download Begin Brecord.........................0x9B
Download Begin Srecord.........................0xA2
Download Brecord....................................0x9C
Download Complete................................. 0xA4
Download Srecord.....................................0xA3
DS0 Status Change..................................0x42
DSP Service Cancel................................OxBE
DSP Service Request.............................. OxBD
DSP SIMM Configure............................ OxCO
El Span Configure..................................0xD8
El Span Query.. OxDB
E-ONE Loop Back Configure/Query 0x91
E-ONE Loop Back Configure/Query 0x91
EXNET Ring Configure.........................0x74
EXS Node Configuration Query........... 0x7E

VII

Appendix B

EXS Node Configure...............................0x7F
Fault Log Query....................................... 0x86
F ilter/Timer Configure.............................Ox 12
Flash Timing Configure...........................0x16
Generate Call Processing Event..............OxBA
Generic Report..0x46
Inpulsing Parameters Configure..............0x28
Inpulsing Parameters Query.................... 0x89
Inseize Control... 0x2B
Inseize Instruction List Configure.......... 0x29
ISDN Interface Configure....................... 0x60
ISDN Query..0x63
ISDN Terminal Configure...................... 0x62
J1 Span Configure.................................... 0x19
Line Card Switchover..............................0x24
Local End Release Mode Configure 0x21
Loop Timing Configure.......................... 0x4A
Node Status Query................................... 0x6F
Node Status Report..................................0x70
Outpulse Digits.. 0x20
Outseize Control...................................... 0x2C
Outseize Instruction List Configure 0x2A
Park Channel...OxBF
PCM Encoding Format Configure......... 0xD9
Poll Interval Configure........................... 0x9F
Poll Request..0x9E
Poll...OxAB
PPL Assign...OxDl
PPL Audit Configure................................OxDC
PPL Audit Query....................................... OxDD
PPL Configure...0xD7
PPL Create... 0xD4
PPL Data Query...OxDE
PPL Delete... OxDA
PPL Event Indication................................0x43
PPL Event Request......................... 0x44
PPL Protocol Query.................................. OxDF
PPL Table Download................................ 0xD6

PPL Table Initiate Download.................0xD5
PPL Timer Configure..............................OxCF
PPL Transmit Signal Configure.............0xD2
RBI-I/O Card Configuration Query...... 0x8D
RBI-I/O Card Configure......................... 0x8C
Receive Signalling Configure................0x15
Recorded Announcement Connect........ 0x55
Recorded Announcement Delete............0x54
Recorded Announcement Disconnect.... 0x56
Recorded Announcement Download Initiate 0x52
Recorded Announcement Download..... 0x53
Recorded Announcement Query............0x57
Recorded Announcement Report.......... 0x58
Release Channel With Data....................0x36
Release Channel...................................... 0x08
Request For Service With Data..............0x2D
Request For Service................................0x40
Reset Configuration.................................. OxOB
Reset Matrix.. 0x9D
Ring Status Query.....................................0x71
Ring Status Report....................................0x72
Service State Configure.......................... OxOA
Span Filter Configure..............................OxCD
Span Filter Query.................................... OxCE
Span Status Query...................................0x84
SS7 CIC Configure..................................0x6A
SS7 CIC Query...0x67
SS7 ISUP Message Format Configure... 0x6B
SS7 ISUP Message Query......................0x68
SS7 Signalling Link Configure............... 0x5E
SS7 Signalling Link Query......................0x65
SS7 Signalling Link Set Configure 0x5D
SS7 Signalling Link Set Query............... 0x64
SS7 Signalling Route Configure 0x5F
SS7 Signalling Route Query....................0x66
SS7 Signalling Stack Configure 0x5C
SS7 Signalling Stack Query.....................0x6D
SS7 TUP Message Format Configure.... 0x8F

VIII

Appendix B

SS7 TU P Message Query............................0x90

Standby Line Card Configure....................0x23

Start Dial Configure......................................0x13

Subrate Connection Management.............OxOD

Synchronisation Priority List Configure.0x06

Synchronisation Priority List Q u ery0x81

System Configuration Q u e ry0xB4

System Configuration.................................. OxAF

System Log Q u e ry ..0x82

System Resource Utilisation Q uery 0x8E

T1 Span Configure.. 0xA9

T1 Span Q u e ry .. 0x85

Tag Configuration...OxDO

Tim e S e t...0xB5

Transmit Cadence Pattern Configure 0x30

Transmit Cadence Pattern Q u e ry 0x59

Transmit Signalling Configure..................0x14

Transmit Tone Configure........................... 0x31

Transmit Tone Q u ery0x5A

Trunk Type Configure................................. 0x11

Version Request.. 0x02

IX

Appendix C

Appendix C Sample ADTs and the Environment Functions

C.l ADTs

C .l . l The ToneOut ADT

/* * /
/* ToneOut.adt: Sends a tone to a user. */
/* * /
SDL_Boolean ToneOut (SD LInteger LinelD, SD L Integer TonelD) {
RTNCODE rtncode;
UBYTE responseack;
CONNECT JT O N E M S G connectTone;
responseack = FALSE;

/* BUILD THE CONNECT TONE API MESSAGE */
connectTone.length = (UBYTE)8;
connectTone. type = XLMSGtypeCONNECT_TONE;
connectTone.seq_num = (UBYTE)O;
connectTone.lsid = (UBYTE)get_lsid(LineID);
connectTone.channel = (UBYTE)get_channel(LineID);
connectTone.tone = (UBYTE)ToneID;
connectTone.cyclesMSB = (UBYTE)OxFF; /* Continuos Tone */
connectTone.cyclesLSB = (UBYTE)OxFF;
connectTone.eventflag = (UBYTE)O; /* Don’t inform host of Tone completion */
/* SEND THE CONNECT TONE API MESSAGE */

if ((rtncode=xlcom_snd_msg(matrix_id, app_key, (UBYTE *)&connectTone))
== XLDTKrtnSUCCESS)

{
/* WAIT FOR A RESPONSE */

printf(" Connecting Tone\n");
while (¡response ack && (rtncode = XLDTKrtnSUCCESS))
{

/* COLLECT BYTES FROM THE SWITCH */
xlusr_com read(X LDTKmtxA, raw_buf, sizeof(raw_buf), &byte count);

/* FRAME MESSAGES */
if (byte_count > 0)
{

X

Appendix C

rtncode = xlcoin_rcv_fiamer(XLDTKnitxA, &rawJbuf[Q], byte count);
}

/* PROCESS SWITCH RESPONSE MESSAGES */
while (xlcom_rcv_msg(XLDTKmtxA, &rcv_blk) == XLDTKrtnSUCCESS)
{

if (rcv_blk.app_key = appkey)
{

/* MATCH THE ACKNOWLEDGEMENT WITH THE MESSAGE SENT */
if (((CONNECT_TONE_MSG *)(&rcv_blk.rcv_msg[0]))->type = connectTone.typc)
{

response_ack = TRUE;
switch (rcv_blk.status)
{

case XLDTKrtnSWACK:
rtncode = XLDTKrtnSUCCESS;
break;

default:
rtncode = rcv_blk.status;
break;

}
break;

}
}

}
}

if (rtncode = XLDTKrtnSUCCESS)
{
/* RETURN BOOLEAN VALUE TO SYSTEM TO INDICATE SUCCESS*/

return (SDL l ’rue);
}
}

C.1.2 The EndTone ADT

/ * --

/* EndTone.adt: Operator Function: EndTone
/* Disconnect a tone out for a specific Line Id
/ * --

SDL_Boolean End Tone (SD LJnteger LinelD)

*/
*/

*/
*/

XI

Appendix C

{
RTNCODE rtncode;
UBYTE response_ack;
UBYTE raw_buf[XLDTKsizeXL_MSG];
UWORD byte count;
X L C O M R C V B L K rcv_blk;
DISCONNECTTONE^MSG disconnectTone;
response ack = FALSE;

/* BUILD THE DISCONNECT TONE API MESSAGE */
disconnectTone.length = (UBYTE)8;
disconnectTone.type = XLMSGtypeDISCONNECTTONE;
disconnectTone.seq_num = (UBYTE)0;
disconnectTone.lsid = (UBYTE)getlsid(LinelD);
disconnectTone. channel = (UBYTE)getchannel(LineED);
if ((rtncode=xlcom_snd_msg(matrix_id, app key, (UBYTE *)&disconnectTone))

== XLDTKrtnSUCCESS)
{

/* WAIT FOR A RESPONSE */
printf("Disconnecting Tone\n");
while (!response_ack && (rtncode == XLDTKrtnSUCCESS))
{

/* COLLECT BYTES FROM THE SWITCH */
xlusr com_read(XLDTKmtxA, raw buf, sizeof(raw_buf), &byte_count);

/* FRAME MESSAGES */
if (byte count > 0)
{
rtncode = xlcom_rcv_framer(XLDTKmtxA, &raw_buf[0], byte count);

}
/* PROCESS SWITCH RESPONSE MESSAGES */

while (xlcom_rcv_msg(XLDTKnitxA, &rcv_blk) == XLDTKrtnSUCCESS)
{

if (rcv_blk.app key == app_key)
{

/* MATCH THE ACKNOWLEDGEMENT WITH THE MESSAGE SENT */
if (((DISCONNECTJTONE MSG *)(&rcv_blk.rcv_msg[0]))->type == disconnectTone.type)
{

response_ack = TRUE;
switch (rcv blk.status)

case XLDTKrtnSWACK:
{

XII

Appendix C

rtncode = XLDTKrtnSUCCESS;
break;

default:
rtncode = rcvblk.status;
break;

}
break;

}
}

}
}

}
if (rtncode == XLDTKrtnSUCCESS)
{

/* RETURN BOOLEAN VALUE TO SYSTEM TO INDICATE SUCCESS*/
return (SD L True);
}

C.2 The Environment Functions

C.2.1 The xlnitEnv Function

/*--

xlnitEnv
 */

void xInitEnv(v o id)
{
int addr_size;
char TmpStr[132];
struct timeval t;
t.tv_sec = 60;
t.tv u sec = 0;
exit program = TRUE;

sprintf(ip addr, "136.206.36.143"); /* IP Address of Excel Switch */
printf("IP address of switch: %s\n", ip_addr);

XIII

Appendix C

sprintf(TrapStr, "\nMy Pid: %d\n", xGlobalNodeNumber());
printf(TmpStr);

/* INITIALISE THE EXCELSWITCH */
if (xlcom_init() == XLDTKrtnSUCCESS) {

xlusr_init();
rtncode = xlusr_com_open(ip_addr, XLDTKmtxA);
if (rtncode == XLDTKrtnSUCCESS) {

exit_program = FALSE;
}
else {

xlusr_com_usage("Excel - SDL Interface", NULL);
SDL_Halt();

}
}
fprintf(stdout,"\nEnter <p> to poll or <q> to qu it:");

}

C.2.2 The xCloseEnv Function

/*--

xCloseEnv extern
 — ■*/
void xCloseEnv(void)
{
PRINTF("\nClosing this session.");
xlusr_com_close(XLDTKmtxA);
xlusr_cleanup();

}

C.2.3.The xOutEnv Function template

/* The OutEnv Function is not used but its structure is shown for the sake of completeness */
void xOutEnv (xSignalNode *S)
{
if ((*S)->NameNode == Sigl) {

/* perform appropriate actions */
xReleaseSignal(S);
return;

X IV

A ppen d ix C

}
if ((*S)->NameNode == Sig2){
/* perform appropriate actions */
xReleaseSignal(S);
return;
}

/* and so on */

C.2.4 The xlnEnv Function

/*--

xlnEnv

void x!nEnv(S D L T im e Time for next event)
{
struct timeval t;
f d s e t readfds;
char *Instr;
char SignalName = '\0';
xSignalNode yOutputSignal;
xSignalNode Offhook;

xSignalNode Onhook;
xSignalNode DigitsDialled;
int i = 0;
char chr = '\0';
/* CHECK TO SEE IF THERE IS A SWITCH INITIATED MESSAGE */

FD_ZERO(&readfds);
#ifndef XMONITOR

FD_SET(1 ,&readfds);
#endif

FD SET(In Socket,&readlds);
if (select(getdtablesize(),&readfds,0,0,&t) > 0) {
/* READ THE MESSAGE FROM THE SOCKET */

if FD ISSET(In_Socket, &readfds) {
Instr = (char *)xAlloc(151);
do {

read(In_Socket, &chr, 1);
Instr[i++] = chr;

} while (chr! ='\0*);
sscanf(Instr, "%c", &SignalName);

XV

Appendix.C

/* REMOVE THE PARAMETER FROM THE MESSAGE */
Parameter = GetParam(Instr);

/* OFFHOOK SIGNAL */
if (SignalName == 'Offhook') {
/* SDL-signal Offhook */
yOutputSignal = xGetSignal(Offhook, xNotDefPId, xEnv);
((yPDP_Offhook)OutputSignal)->Param = Parameter;
SDL_Output(yOutputSignal, ViaList[0]);

}
/* ONHOOK SIGNAL */

else if (SignalName == 'Onhook') {
/* SDL-signal Onhook */

yOutputSignal = xGetSignal(Onhook, xNotDefPId, xEnv);
((yPDP_Onhook)OutputSignal)->Param = Parameter;
SDL_Output(yOutputSignal, ViaList[0]);

}
/* DIGITSDIALLED SIGNAL */
else if (SignalName = 'DigitsDialled') {

/* SDL-signal DigitsDialled */
yOutputSignal = xGetSignal(DigitsDialled. xNotDefPId, xEnv);
((yPDP_DigitsDialled)OutputSignal)->Param = Parameter;
SDL_Output(yOutputSignal, ViaListfO]);

}
/* FREE UP M E M O R Y */

xFree((void* *)&Instr);
}

}

X V I

Appendix D

A p pend ix D SD L Signals

This Appendix gives a description o f some o f the major SDL signals that are used in the
implementation o f the IN architecture. SDL signals are passed between processes on
interconnecting signal routes. They are carried between SDL blocks by interconnecting
channels. An SDL signal may or may not carry parameters.
SDL processes are modelled as extended finite state machines that work concurrently
with other processes. The reception o f a signal causes a process to leave its current state
and move, via certain operations, to a new state. Depending on how the process is
designed the operations it performs on its way to entering each new state dictate its
behaviour.
If a signal route or channel carries many signals then the SDL diagram can become very
cluttered. For this reason signal lists are used. Instead o f showing all the individual
signals on a route they can be represented collectively as a signal list. This Appendix
shows the signals contained in the main signal lists o f the system and explains their
purpose. The signal lists can be seen in the Figures o f Chapter 4.
As already mentioned some signals carry parameters. For the sake o f clarity these
parameters are omitted here.

D F P S ig n a l s

The following signal lists, between the DFP Functional Entities, are shown in Figure
4.3.

User to CCAF
O ffllo o k ,
D ialString,
On Hook

These are the signals which come from a user connected to the Switch
in the Environment. When the user goes Off_Hook, On H ookor dials
digits (DialJString) the signal is sent to the CCAF in the IN.

XVII

Append ix !)

The parameters of these signals would contain the line number of the user and the
Dial_String signal would also carry the digits dialled.

CCAF to User
Dialtone,
Busytone,
Ringingtone,
Errortone,
Announcement

The IN interacts with the User through the CCAF (or CCAF_2)
process. Sending one of these signals to the switch plays a tone or
an announcement. The user’s line number is carried as a parameter
of the signal.

The same signals exist between CCAF_2 and User

CCAF to CCFSSF
O ffH ook.
D ialString,
On Hook

The CCAF passes on the signals and parameters received from the
switch to the CCFSSF process. Similarly for CCAF 2.

CCFSSF to CCAF
Dialtone,
Busytone,
Ringingtone,
Errortone,
Announcement,
Connectus,
Disconnectus,
Alert,
CancelDialtone,
CancelRingingtone,
CancelErrortone,
CancelAlert,
CancelBusytone

The CCFSSF process instructs the CCAF processes to send tones or
an announcement to a user by sending the signals Dialtone,
Busytone, Ringingtone, Errortone, Announcement to it.
The signal Connectus instructs the CCAF to connect users in a call.
Disconnectus instructs it to disconnect them again
Alert instructs it to send an Alert tone to a User,
The CCAF is instructed to Cancel a user’s tone by the signals
CancelDialtone, CancelRingingtone, CancelErrortone, CancelAlert,
CancelBusytone.
Again these signals carry the line number of the user as parameter.

These signals are repeated between CCAF_2 and CCFSSF.

XVIII

Appendix D

The SCF can instruct the SRF to perform a specialised resource function, such as
playing an announcement to a user, as part of an IN service.

S C F 2 S R F
Play req ind SCF instructs SRF to play announcement.

S R F 2 S C F
Completion resp conf Indication to SCF that the request has been completed.

S R F to C C F S S F
SR FSetuprespconf,
Announcement

This signal confirms a connection between the SRF and CCFSSF.
The SRF requests the SSF to play an announcement to a user.

C C F S S F to S R F
SRF S etup_req_ind,
Release_req_ind,
SRFReport resp conf

Request for a connection between the SRF and SSF.
Indication that the connection has been terminated.
Confirmation that the SRF request (Announcement) is complete.

The Screen SIB and the SDM (Service Data Management) SIBs access the FEAs in the
SDF to perform data related functions.

S C F 2 S D F
ScreenQ_req_ind,
SDMQ req ind

SCF requests the SDF to perform a Screen operation.
Request for SDM operation.

S D F 2 S C F
ScreenQ_resp_conf,
SDMQ resp conf

Database response for screening data.
Database response for SDM operation.

XIX

Appendix D

Interactions between the SCF and the lower level layers are now considered. Many SIBs
in the service layers need to interact with the lower layers to connect users, retrieve
more information, monitor resources etc.

SCF to CCFSSF
Poll_req_ind,
Poll_Connect_req_ind,
StatusRep_req_ind,
In itia lD Prespconf,
Connect req ind

Party Connect SIB instructs the SSF to call a user.
Party Connect SIB instructs the SSF to call and connect to a user.
SCF asks CCF to monitor a resource (i.e. wait for an onhook).
This indicates to the CCF the end of an IN service.
Party Connect SIB instructs the SSF to connect two parties.

CCFSSF to SCF
InitialDP,
Mid_Call,
SRFSetup_resp_conf,
StatusRep_resp_conf,
Poll_resp_conf,
Connect resp conf

CCF invokes an IN service by sending a Detection Point to SCF.
Report of a user hang-up during the execution of a service.
Confirm to SCF connection between SRF and SSF.
Response to the Status Notification SIB.
Response to Party Connect SIB that a party has been polled.
Response to PC SIB that parties have been connected.

While the SIB processes reside in the GFP, the FEA (Functional Entity Action)
processes that implement their functionality reside in the Functional Entities of the
DFP. A SIB invokes the FEAs by sending a Query to the SCF. The SCF will then create
the appropriate FEA process(es) and initiate them. Once all the FEAs implementing a
SIB have executed the SCF will send a Response back to the SIB in the GFP.

GFP 2 DFP
In itia lD P resp con f
CompareQuery,
UI_Query,
StatusN_Query,
PartyCQ uery,
ScreenQuery,
SDM_Query,

Indicates end of an IN service and gives control back to CCF.
Request from the Compare SIB to launch and run the Compare FEAs.
Request from the UI SIB to launch and run the UI FEAs.
Request from the SN SIB to launch and run the SN FEAs.
Request from the PC SIB to launch and run the PC FEAs.
Request from the Screen SIB to launch and run the Screen FEAs.
Request from the SDM SIB to launch and run the SDM FEAs.

XX

Appendix P

D F P 2 G F P
InitialDP,
M idC all,
Compare_Response,
UIResponse,
StatusN_Response,
PartyC_Response,
Screen_Response,
SDM Response,
Redirect Response

The SCF instructs the BCP to launch a new service.
The SCF informs the IN service of a user hang-up.
Indicate to Compare SIB that all relevant FEAs have executed.
Indicate to UI SIB in the GFP that all relevant FEAs have executed.
Indicate to SN SIB that all relevant FEAs have executed.
Indicate to Party Connect SIB that all relevant FEAs have executed.
Indicate to Screen SIB that all relevant FEAs have executed.
Indicate to SDM SIB that all relevant FEAs have executed.
Indicate to Redirect SIB that all relevant FEAs have executed.

Redirect Query Request from the Redirect SIB to launch and run the Redirect FEAs.

The following signal lists, within the SCF Block, can be seen in Figure 4.4. When a SIB
runs a sequence of FEAs the first and last FEA to be run is always in the SCF. Consider
the Status Notification SIB. The first and last FEA for this SIB in the SCF is
FEA 9101. Similar signals exist for the other SIBs available but they are not considered
here

M g r 2 91 01
StatusNQuery The SCF launches this FEA and sends it (as a parameter) the line

number whose Status is to be monitored.

S N 2 S S F
StatusRep req ind A request sent to the SSF for a monitor or status check on a resource.

S S F 2 S N
StatusRep resp conf The SSF response to the request for a monitor or status check.

S N 2 G F P
StatusN Response When the SIB has finished the Response is sent back to the GFP.

XXI

A p p endix D

The following signal lists, within the CCFSSF Block, can be seen in Figure 4.7.

CCAF to CCFMgr
O ffH ook,
Dial_String,
On Hook

When the CCAF receives a signal from the switch it passes it on to
the CCFMgr process in the CCFSSF block.

CCAF_2 also passes the signals which it receives on to CCFMgr.

CCFMgr to Orig BCSM
On Hook, Off Hook,
Dial_String,
Process_Shutdown,
ConnectNow,

The CCFMgr passes the CCAF signals onto the Originating
BCSM.
When a user abandons a call kill the BCSM representing them.
Connect the user represented by OBCSM to another user.

CCFMgr to Term BCSM
On Hook, Off Hook,
Process_Shutdown,
ConnectNow

C C A F 2 signals are passed on to Term BCSM .
If the user abandons the call then shut down their BCSM.
Connect the user represented by TBCSM to another user.

Orig BCSM to Term BCSM
ConnectNow,
Close Connection,
Close_Connection_conf,
Who Are Y ou_req_ind,
Who Are You resp conf

One BCSM requests a connection to another.
Request to close the connection.
Confirmation of the connection.
Query to find out what user a BCSM represents.
The response indicating the user it represents.

Term BCSM to Orig BCSM
ConnectNow_conf,
Close_Connection_conf,
CloseConnection,
Who Are Y ou_req_ind,,
Who Are You resp conf,

Confirmation of the connection between BCSMs.
Confirmation of the disconnection between BCSMs.
Request to close the connection.
Query to find out what user a BCSM represents.
The response indicating the user it represents.

XXII

Appendix P

G F P S IG N A L S

The following signal lists, within the GFP Block, can be seen in Figure 4.9.

B C P 2 D F P
InitialDP resp conf Indicates the end of an IN service and hands over control to CCF.

D F P 2 B C P
InitialDP,
Mid Call

CCF tells the BCP to launch an IN service.
Reports a user hang-up to the BCP. which will inform the GSL.

P O R 2 B C P
POR,
Service Failure

Signal returned to BCP from GSL at the end of service processing.
The service did not execute properly.

P O I 2 G S L
POI Point of Initiation from BCP to GSL to indicate start of a service.

G S L 2 S N
SIBStatusN Params The GSL launches the SN SIB and sends it appropriate parameters.

S N 2 G S L
SIBStatusN Result When the SIB has finished it sends its result to the GSL.

S IB S N 2 F E A
StatusN_Query The SN SIB launches the chain of FEAs beginning and ending in

the SCF.

F E A 2 S IB S N
StatusN Response Response from the FEA in the SCF to the SN SIB after completion.

Very similar signals exist in the GFP pertaining to the other SIBs.

XXIII

Appendix E

A ppend ix E

Message Sequencing Charts

This Appendix uses Message Sequencing Charts (MSCs) to demonstrate the operation of the
Intelligent Network architecture and the services deployed on it. An MSC is a graphical and
textual language used for the description and specification of the interactions between system
components. MSCs are also used to provide an overview specification of the communication
behaviour of real-time systems.
The MSCs in this appendix describing the operation of the IN services were generated from
real simulations. However, they have been modified slightly for the sake of clarity: all
superfluous information has been removed so that the more important interactions and
operations pertaining to the overall system can be more clearly observed. Signal parameters
not relevant to the overall system have been removed where it is felt they might otherwise
cause confusion.
Each process in the SDL system is represented by a vertical line. Signals are represented as
horizontal lines running between the processes. Time is represented as running along the
vertical axis of the system, however it is not attempted by these MSCs to truly represent the
timing of the system’s internal interactions.
The following aspects of the IN behaviour are represented by the MSCs:
• Section E. 1 shows the setting up and tearing down of a basic two party call.
• Section E.2 shows the invocation of an IN service by sending a Detection Point to the

higher layers of the IN.
• Section E.3 shows the operation of the Group Call Pickup service.
• Section E.4.demonstrates the operation of the Ringback service.

MSCs are used to explain the operation of the following hybrid IN/TINA services:
• Section E.5 details the operation of the hybrid IN/TINA Freephone Service.
• Section E .6 details the operation of a hybrid IN/TINA Audio-Video Conferencing

Service.
• Section E.7 details the operation of the hybrid IN/TINA Ringback Service.

XXIV

Appendix E

E .l Setting up and tearing down a basic two party call

This MSC demonstrates the operation of the lower layers of the IN system in setting up a
basic two party call. An IN service is not invoked therefore the higher service layers aie not
shown in this MSC. Both users are represented by Line Identifiers. The Line ID of the
Calling party is 10002 and the Line Identifier of the Called Party is 10006. After the call has
been set up, party 1006 hangs up to end the call. Party 10002 then hangs up and the call is
torn down.

XXV

Appendix E

MSC E1 Basic Two Party Call

XX V I

Appendix E

xxvn

Appendix E

I env_0 I
process CCFMar pro cess Qria BC.SHfaM 88 Tflnn BC.g M. D i8«S5 SSF... J TOWSS CCAF p M M CCAF 2
IC C F M q r1 3 I Orta BCSM 1 I 1erm _BCSM_1 J ì I SSF 1_4 | I CCAF_1_5 | I CCAF 2 1 , 6 |

On_Hook

[10002]

MCLOSECOI

ClosB_Connactio — ; >_conl

StatusJJpda 0

[10002,1
''IPUl'DO'

■MhoAreYou .ro q ji

*

WJ.

<W4RESP

WhoAreYou_resf _conl

On_Hook

[10002]
Status_Upda[o

[10002, k a]

v A

[10002]
whj,'iPUTDOWl

Slalus_Upda 0

[1OOO6, id a]

X

Dlsconnectus

[10006,10002]

< Idle

On_Hoi k

¿1100C

< Idle >

>

XXVIII

A ppendix E

E.2 Invoking an IN Service

This MSC shows how an IN service is launched from the Basic Call State Manager. A user
goes off hook and dials the digits ‘70’ in order to launch the Group Call Pickup service. This
scenario might arise when a user is away from their desk but hears their phone ringing. They
are at an extension now which is in the same predefined group as their phone and they wish
to answer their phone from this other extension.
When the basic call state manager detects the digits 70 it knows that it is a service invocation
and it sends an Armed Trigger to the SSF from where a detection point, InitialDP, with all
the appropriate parameters, is sent to the Basic Call Process in the Global Functional Plane.
The detection point can be seen arriving at the BCP in E.3.

XXIX

A ppendix E

MSC E2 Answering a Group Call

"Kij BCP

I env_0 | Q

[(■ 70, 70, 1

BCP3
process CCFMgr

I CCFMqr_1_3~l

OfLHook X
[10002J

DiaLString

7̂0, 10002J

3002, continue_wit

(. 70, 70,1

i_exlsting, false, st

e------------5002, continuG_wil

process SSF process CCAF

I SSF 1 4 I I CCAF_1_5 I
1 r \ I " -1
< Z >

process Orig_BCSM

- &riq_BCSM_1_t
10002, normal

OfLHook

<W4
: '

40FFH00I

[1OOO2]

iok>

Dialtone

[10002]

W4DIGITS

DiaLString

7̂0, 10002J
Trigger_Wa

Î------------
¡tus_timer_Qxplred ■>]

W<ffNSTRUCTld>lS

Armed. Trigger

. 70, 70, 10002,

uexlstlng, false, st

nb>is

---------------5
ontinue_with_exis

Initiale

itus_tlmer_explred

Off_Ho(

1001

-i
DiaLStrir

70,100C

ng, false, status_ti ner_expired .)]

■>]

XXX

Appendix E

E.3 Group Call Pickup Service

This MSC shows the operation of the Group Call Pickup service. For the sake of clarity only
the upper service layers are shown. Therefore all the lower level Distributed Functional Plane
(DFP) functional entities are represented by the single process line; LOWER LAYERS.

XXXI

Appendix E

MSC E3 Group Call pickup (Upper Layers)

XXXII

Appendix E

XXXIII

AIXXX

SO 0 9|BU| LUI

I »10WUO0 'eoooi'sooc
J'. kTiJmj IMUUOQ

, w _dsftj HSOa»l»u|W-

[90001]p uniiWHitHiWMiQ
i:Wl|rV3J<W»H:#08] nwt

[(eoooi 'eoooi sojoi ,ns^a"*t«|i*um)

X
Bfluodwu-j»«j(p©y

[isoooi 'eoooi ‘0¿l]

Jc 2± n r

Opwj'ipyy
k ^ E ^gsaarf

l s l i > 3 J ~ ~ « l [(eoool

¥
juoa-òaaJ- daingw]

[tiwoo »w*»»«))1

1 ’ey)]

"b«i-WS0B*lIBU!ul,8l

g“fsÜ3ÄyT5ä̂cn (»_odv»~j«s1 iMXVT jbS w»» si i p«jjodipsu Bpsy'sfe i e i i s s i i r i doa I5 Mggud 1 iss hbmub 1 ‘"jflgwaajr1

3 x ipuäddy

Appendix E

E.4 Ringback Service

This MSC shows the operation of the Ringback service. For the sake of clarity only the upper
service layers are shown. Therefore all the lower level Distributed Functional Plane (DFP)
functional entities are represented by the single process line; LOWER LAYERS.

xxxv

Appendix E

XXXVI

Appendix E

XXXVII

Appendix E

p<?P ,
I BCP 1_1 11 QSL 1_6 | 5 1: f Mn r. -t ij r r T j 3

isat3£Jtarrm LOWER UVYERS HMER LAVÊ
 7K----

proeeso BIB PortyC—
Aye.A

SiaPaityC.̂ ni’T!

' fetolòòc
X

lnlUalDP_r«ap_conl

1000fl,10002)J
PartyC_Query

procaM FEA_9H1

SIB,P«4yC:2lj a H

/ p C . w i d y \

(, potlandconnftct, VX >5.10002)]
1 Poll_Co nn *c t_ r»qjnd

^»yop«rii^
^10000. I0002J

X
[(», 10002,1000«]]

\ /A

Pofl_ConMct_ro*p_eonf

[lO C M ,1,10002, Conf!*Ci*d

xxxvm

Appendix E

E.5 Hybrid IN/TINA Freephone Service

This MSC shows the operation of the hybrid IN/TINA Freephone service. This MSC was
created using the SDT MSC Editor. It describes how the IN entities and the TINA
Computational Objects interact with each other to realise the hybrid service.
The service is launched from the IN side of the Adaptation Unit when a user goes off hook
and dials a 1800 freephone number. The Freephone service uses a TINA database (SSO
Database) to convert the 1800 number into an extension number. The IN SIB Party Connect
is then used to connect the service initiator to the called party.

XXXIX

Appendix E

3C INTINAfreephone
This hybrid IN/TINA Service is launched from the IN side when the party at extension 1000 dials the Freephone number 1800-10 which translates 1001.

J I sf I I BÇP I I [
InltDP

[Freephone, 1
180010]

1̂000,1001]

lnitialDP_resp_conf «-------------

FreephonePOl

[lOOO,180010j

FreephonePOR

SF

CrealeUAFreaphon *------------ Ì

FreephoneData

Qi 0 0 0 .180010J

FreephoneComplete

Terminate

Freephone
a uà

C reale Freephone S! >M

j feSM Freephon j
Free honeDalaRequest

X

Is s o OatabQsel I SIB/SSO .
1 r 1 pany uâ an1'

Translate

[180010]

Translate Result[1001]

X

PartyConnocl[1000,10011
ConnectDo* e

XLII

Appendix E

E.6 Hybrid IN/TINA Audio-Video Conferencing Service

This MSC shows the operation of the hybrid IN/TINA Audio-Video Conferencing service.
The Service is launched by a user on the TINA side of the Adaptation Unit via a terminal -
their User Application, represented by UApp.
When the called party accepts the conference invitation the Connection Manager is used to
set up the video connection between the users terminals.
The IN SIB Party Connect is then used to connect the users in an audio call via their
telephone extensions. The Party Connect SIB establishes this connection by communicating
with the IN SSF.

XL!

Appendix E

XLII

A ppendix E

E.7 Hybrid IN/TINA Ringback Service

This MSC shows the operation of the hybrid IN/TINA Ringback service. The Service is
launched from the IN side of the Adaptation Unit in the same way as a normal IN Ringback
Service is launched. However in this scenario the SLPI launched is for the hybrid Ringback
service.

X L m

A ppendix E

SC INTINARIngback

■“Ku This hybrid IN/TINA Service is launched from the IN side. Extension 1000 Is placing a Rlngback on Extension 1001.

I SSF I I BCP j L g l n g g r t J | PA J

[
R ii 10ngback, 1000, 1001]

tialDP_resp_conf

i---------------

RingbackPOl

[l000.100l]

[[1000,1001]

RingbackPOR

Creato UARlrtgiba---------- 5

RingbackData

i IE i

•------4 LM |
Ringback

CreatoRln^back^SW
- — j fsSM Rjnpbackl

Ring jackDMaRoqucsl

VA

I SSO Comparo! I SIBSSO I I SIB/SSO I I sisïsio II m, 1 Trgânmr.r - "1 m’ath1- TT3TmTOïîras*'r

[1000,1001]
^ CompareResull

^Confirm, 1000j

StatusNotification

F ngbackComplete

Compare

£greater_thanj

Userlnteraction

[continous, 1001

c----------

PartyConnect

[po ll,1000,1001]

PartyConnect

^pollandconnect,

X

«0,1001]

StatusN_Result

£l teingPolled, 100lJ|

rmr wity tùririèd!

Party C_Resu It

PartyC_Result

XLIV

