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ABSTRACT

SELF TUNING CONTROL OF FERMENTATION PROCESSES

Control of fermentation processes i1s a complex problem due to the mherent
non-hneanties and tume varying charactersics of the process The application of
conventional single loop analogue controllers provides poor control due to problems
in tumng mdividual loops and the lack of ability to implement complex controllers
The applicanon of standard optmal techmques 15 compounded both by the
complexity of the process and the lack of adequate models as a result of poorly
understood dynamics The lack of important transducers for product measurement
coupled with the tme varying parameters in a fermentaton process provides a
natural test for adaptive control techruques

This thesis includes details of modelling and simulaton studies camed out on
a Bakers Yeast fermentation process A mathemancal model of the growth of
Saccharomyces Cerevisiae which descnbes oxidative and aerobic fermentative growth
on glucose 1s presented The parameters which influence the growth phases of the
yeast organism are 1dentified by Recursive Least Squares as part of an overall
adaptive control techmque

An mtegrated approach 1s presented for the on-lme estimation of the state of
a biochemcal reactor from presently attamable real ume measurments State
esimahon by the presented method of Kalman filtenng and the above parameter
estimanon technique 1s used for the development of an adaptive control scheme

Detaills of the pilot-plant, instrumentanon and computer systems are described
highlighting the praciical problems 1;1 these areas and the means by which these
problems have been overcome

Results are presented to show the sucessful performance of the adaptive
techmque and this work mndicates that the applicabon of an adaptive technique
could provide great opportumtics for the enhancement of conventional control of

fermentation processes
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NOMENCLATURE

C* satrated concentraton of CO, n the broth (gN)

C the broth concentratnon of dissolved CO, (gh)

D the dilution rate (hr')

dp the air bubble diameter i the broth (cm)

d;, the impeller diameter (cm)

D,, the diffusion coefficient for oxygen (cm2/s)

E the ethanol concentration m the broth (g/)

F the input flow rate of air to the vessel(l/mmn)

H Henry’s constant for gases

K absolute temperature in Kelvin (Degrees Kelvin)

K4 the factor by which the volumetnic absorpuon coefficient for CO, 1s greater
than that of oxygen

k,, the saturaton constant for dissolved oxygen tension.

kpa the mass transfer or absorption coefficient for oxygen (hr*)
kg Blackman's constant

L the air bubble membrane thickness (cm)

Ng the mole concentraton of a gas (mole)

Ng the strrer rotation speed (rpm)

0" the satranon concentration of dissolved oxygen m the liqmd (g/)
O the dissolved oxygen concentration mn the hiqud (g/h)

P pressure 1 the vessel (bar)

Po the partial pressure of oxygen in the gas phase (atm)

R gas constant

Re Reynolds number for a flud

S  substrate concentration (g1)

Sh Sherwood number for the broth.

S, the feed concentranon of glucose (g/1)

V  volume of hqud in the vessel(l)

(v)



Vp the ascending bubble velocity (cm/sec)

Vg volume of the gas phase (1)

X  cell concentration (g/1)

Yx s the yeld coefficient of biomass on substrate (g/g)
Yxo the yield coefficient of biomass on oxygen (g/g)

Yxc¢ the yeld coefficient of CO, on biomass (g/g)

specific biomass growth rate (hr ')

=

Kc broth viscosity (g/cm sec)

1 specific ethanol growth rate (hrt)
O  surface density of the broth (g/cm3)
€f hqud holdup fracuon 1n the reactor
€g lqud holdup fracton m the gas

pc continous phase density (g/cm3)

ppo density of the broth (g/cm?)

A forgetung factor
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CHAPTER 1

INTRODUCTION

11 EVOLUTION OF FERMENTATION CONTROL

Ancient man was well aware of fermentations even though he had htte
knowledge of what caused them He was aware of such fundamentals as making
intoxicating drinks from gramns and frutt The aging of meat and the manufacture
of alcoholic beverages were man’s first uses of fermentation. The discovery of fruit
fermentation was made so long ago that the ancient Greeks believed that wme had
been invented by the god Dionysus The manufacture of beer 1s only shghtly less
ancient than that of wine An Assynan tablet of 2000 BC even Lsts beer among
the commodities that Noah took aboard ms Ark In those eardy days man
considered fermentanon as some sort of mystical process, he did not know that he

was profinng from the actvity of invisible microorgamsms

Dunng the Middle Ages, expenmenters leamed how to mmprove the taste of
wme, beer and cheese Yet, after thousands of years of experience, man stll did
not realise that in fermentatons he was dealing with a form of life However, 1n
1857, Pasteur proved that alcoholic fermentaton was brought about by yeast and
that yeasts were living cells This discovery was a major turming powmt and
considered the biuth of microbiology With the discovery of additional products and
chemicals produced by fermentations the inhentors of Pasteur’s knowledge pushed

fermentation processes towards commercial practice

The techmcal nnovation that the microprocessor brought to engineenng
systems did not rapidly become apparent m s apphcation to control of biological
systems In fact, m 1973 when the first conference on Computer Process Control

in Fermentaton was held m Dyon[l], reports on the applicahon of computer



control had only been published for two production ;;lants and one piot plant 1n
the fermentation ndustry Not only were the applicatons few but 1t was also
indicated that not all applicatons were sucessful Special purpose software 1n
machine language code made modifications and correction of errors difficult.
Combined with hmited rehiability of computer hardware, sensors and transmitters,

this resulted 1n overall unsatsfactory performance

Fermentors, before microprocessors, were controlled by analog systems Control
action was generated by pneumatic or electncal elements with physically defined
charactersics so0 as to generate proportional, integral and denvatnve response to
error signals When microprocessors became readily available the most natural
evolution was to append the microprocessor to the exising analog system so as to
obtain digital logs and supervisory control of the process set pomnts [2] Such

control techmques were at the ume practicable but certanly not optumal

Overall at present the fermentanon wmdustry has widely accepted computer
based sysiems Alford [3] describes the evolution of a computer system at Eli Lilly
& Co at therr plant in Indima, USA from the early 1970’s to early 1980’s
Microcomputer development allied with real tme operanng systems, standard
modular control languages, realishc process models and on-hne programming

facilines has) completely changed the approach to fermentation system design.

12 CONTROL OF FERMENTATION PROCESSES

The feasiility of applying control techmques to fermentation processes 1s
today expanding i apphcaton Increasing production costs have led to a greater
mierest 1n data acquisition for performance analysts and on-ine control of the
process The ability to control fermentation accurately and automancally would

enable a reduction 1n production costs and an mncrease n yield whilst mamntaining

2



the quahity, umformity and reproducubility of the product
!

Analysis of fermentation processes reveal that many problems face any
prospecuive control system designer Until recently the fermentation industry had
lagged behund m the application of control techumques and especially computer
control Progress m the applicaton of computer control techmques has been

hampered by many of the following practcal problems

Firstly, the development of suitable instruments for the measurment of
biological vanables has lagged behind the development of computer control
schemes In particular nstruments for the measurement of biomass (eg  bakers
yeast) and substrate concentrations have not gained wide acceptance as they do not
withstand  the ngorous stenlity requirements and those that pass the above test

prove to be less than durable [4]

Secondly, the fermentation process 1s more complex than many chemical and
other types of processes It contains non-lineanties and parameters which change
with time and from batch to baich Hence conventional two and three term
controllers are difficault to tune and cannot provide optmal performance over the

whole range of the process

Thirdly, the development of mathematical models to descnbe the fermentation
process has been restncted by their complexity Models have been proposed using
differental  equanons descnbing the microbial kmnetics [5,6] These require
assumptions that the parameters of the model equauon are constant This does not
account for the fact that cell activity may switch between different metabohc

pathways dunng a fermentation lfe cycle

Despite  these problems, a vanety of control techmques have emerged [7] that

concentrate on more effectve use of those measurements which are already



available It will be the purpose of this thesis to outlne how control using self

tumng techmques would apply to a fed batch fementation process

13 MOTIVATION FOR RESEARCH

The resecarch undertaken and the efforts to design a adaptive/self tuning based
controller for a fermentation system which are descnbed m thus disserataton have
been mouvated primanly by the upsurge in engmneenng interest it adapuave/self
tuning regulators Engmneenng interest m adaptive control ongnated pnmarly with
aerospace problems It was found that the use of classical hinear controllers 1n
arcraft auto piots did not always give satisfactory control of the altitude of high
performance aircraft The changing characterstics of a fermentaton process also
necessitates a more sophisticated comtroller which would automatically adapt itself
to the process Hence this project was imnated i anticipation of the applicability

of a self mmng regultor to a fermentahon system

The research was undertaken at the Control Technology Research Umt

(CTRU) at Dubhn City University m collaboration with the School of Biological

Sciences

14 THESIS STRUCTURE

The research work undertaken in this project which investigates possible
solutions to the monitorning and control of biotechnological processes is presented as

follows .

Chapter 2 presents the basic mathematical models used to descnbe the kinebcs

of fermation processes In particular, the specific microbial growth rate 1s presented

4



and the vanety of ways available to express its dependence on envoimmental
factors
Chapter 3 concentrates on the on-line 1dentificaion of the fermentation

parameters that influence growth dunng a fermentation cycle

Chapter 4 outbnes the general state estmation problem and 1its associated
theory and outhmes the application of an Extended Kalman Filter to estunate
biomass and substrate concentratons from measurements of the concentraton of

carbon dioxide in the exhaust gas

Chapter 5 1s concerned with the adaptive control of the fermentatton process

with control law formulation bemng based on pole placement by state feedback.

Chapter 6 presents expenimental results from the pilot plant This chapter
presents comprehensive model vahidaton results and off-line parameter and state

eshmation using expenmental results

Chapter 7 comments and concludes on the overall research and highlights

areas that need further work



CHAPTER 2
MODELLING AND SIMULATION OF FERMENTATION PROCESSES

A fermentation model 1s an abstracted and generalised descnpuon of relevant
aspects of a fermentation process In fermentation, as m other processes, an
accurate mathemarical model 1s a prerequsite for the simulaton, control 'and
opumsation of the process Process models used 1n control systems vary in form
yet have the unifying feature that they predict process outputs for a given set of
mputs The final choice of model must be a calculated compnmuse between the
degree of sumplicity that wiil allow good control and the equally important desire
to represent all the mmportant aspects of the process accurately In the case under
consideranon, the model presented 1s intended for use in simulaton studies where
themodel structure will eventually be utibsed by a self tumng controller
mplemented on a digital computer It 1s with the development, uses and hmitations
of mathemaucal models of fermentation kinetics and transport that this chapter 1s
concemed Vanous fundamentals of a biological system are first outined folowed

by a detaled analysis of the kinetics and transport as applied to a fermentaton
system

21 BIOCHEMICAL FUNDAMENTALS

The science of biochemustry underhnes all mathematcal treatment of
fermentation processes, particularly kimetics which 1s at the core of all models of
bioreactors Biochemustry 1s concemed with the particular types of chemical
reachons found in all living orgamsms, and which underly all biological processes
The challenge n Jearmng biochemical engineenng 1s to understand and analyze the
processes of biotechnology so that we can design and operate them i a rahonal
way To reach this goal however, a basic working knowledge of cell growth and
function 1s required [8,Ch 5){9,Ch 4]



Microorgamuisms grow by converting substrates (e g glucose) present n the
hqud medium mto cell mass (e g yeast) and possibly products such as alcohol and
carbon-dioxide Growth, which 1s charactensied by an increase in cell mass occurs
only where certain chemucal amd physical conditons are sausfied, such as
acceptable temperature and pH as well as the avalabiity of required nutnents For
the development of this model the influence of temperature and pH are neglected

because they are assumed constant and controlled dunng a fermentation run.

211 Bioreactor Techmques

A bioreactor 15 a vessel designed to faciliate biological reactions A fermentor
1s a type of bioreactor, designed to facihate fermentation processes There are
vanous types of fermentors [10], eg bubble column reactors and tower reactors
However the most widely used 1s the stured tank reactor As the name suggests,
this reactor consists of a vessel within which an agitator or mmpelier sars the
hqud broth as outlned in Appendix A There are three basic fermentaton
techmques

a)Barch The hquid, microorgamisms and substrates are put mto the vessel at
thebeginmng of the batch run and no further addinons are made Only
environemental vanables such as temperature, pH and air—flow rate are mampulated
dunng the batch run

b)Fed-Batch This employs the same technique as baich, except that substrates
are fed continuously into the fermentor dunng the run.

c)Continuous With this method, Liquid, substrates, and microorgantsms are
continmously fed into and siphoned off the vessel The aim 1s to keep these
vanbles 1n a steady state The total concentration of products, substrates and

microbes fermentor are kept constant.

Of these techmques, fed-batch poses the greatest challenge to the control

engineer Batch fermentatton allows only trnivial setpont control of temperature and



pH etc, while continuous fermentatons tnes to keep the vanables 1n a steady state
However, in fed-batch the control engineer must devise an algonthm to obtain an
opumal substrate feed-rate for a given control objecuve In fed batch fermentation
the vanables directly controlled are usually substrate feed rate, agitator feed rate
and aeration rate Measrurements are made of the composition of exit gas from the
fermentor (partial fractions of carbon dioxide and oxygen) and dissolved oxygen
concentraion Note that none of the pnmary vanables which concem the control
engineer (cell growth rate and concentration of products in the liqud phase ) are
mentioned above This again highbights the non—availibility of sensors which are
capable }of accurately measunng these vanables Thus the secondary measurements
of exit gases need to be augmented by mathematical relahons between secondary

and pnmary process vanables to obtain pseudo measurements of the mamn states

212 Metabolism of Bakers Yeast

This sechon outlines the fundamentals of reachon that occur dunng
fermentahon Figure 21 gives a diagrammatic representation of the pnnciple
metabohc pathways within the orgamsm under consideranon, Saccharomyces
Cerevisiae [11,Ch 3] The metabolism 15 very simiiar to metabolisms within other
organisms It 1S important to remember that every step in the metabolic conversion
process 1s controlled by enzymes and to also realise that i a senes chamn of
reactions, the slowest reachon determines the overall rate Figure 22 gives a very

basic scheme of the same metabolism

The main substances supplied by the orgamism to effect metabolic conversions
are Adenosine diphosphate (ATP) and Nicotnamide ademine dinucleoide (NADH)
These substances supply much of the energy required to carry out the conversions
At the beginning of the metabolism, the substrate glucose (a type of sugar) 1s
absorbed mto the cell from the surrounding environment With the aid of ATP, the

glucose 1s converted nto glucose-E-phosphate This substance can enter two



pathways One which recycles the substance, the other leads to 1its conversion into
pyruvate At this stage, two important branches in the metabohsm appear, both of

which eventually lead to the production of Acetyl-Coenzyme-A

As can be seen the mtermediate and final pathways are important in the
determination of the final product Pathways lead to the producton of ethanol, a
type of alcohol and CO,, which are released into the environment. Generally, n
the presence of plentiful glucose, a large amount of pyruvate 15 formed Thus 1n
tum leads to saturation of the pathway leading to acetyl-CoA production and dnves
the excess pyruvate mnto production of large amounts of ethanol The net result 1s

that n the presence of excess glucose, ethanol accumulates in the environment

If glucose levels are brought down, the amount of pyruvate also decreases
This means that the cell looks to ethanol to produce the Acetyl-CoA needed by
the metaboism Thus in the absence of glucose the available ethanol 1S consumed
However, since the first part of the metabolism is mactive mm this mode, it 15 less
efficent 1n promotng growth. Also in the presence of excess glucose, the
production of ethanol means that much of the glucose has been efficiently

converted to alcohol instead of cell mass

The Acetyl-CoA enters a cycle called TAC, the details of which are
ummportant save that CO, and NADH are produced. The NADH then enters mto
the so called Respiratory Chain. In this chain O, 1s taken up and ATP and water
released In the absence of oxygen the resprratory chamn deactivates and since this
chan 1s in senes with the other main metabolic reactions the oxygen level
becomes growth rate hmting This leads to an effect simihar to the deficiency of

glucose

Overall, the metabolism takes in glucose and oxygen to produce cell growth,
CO,, ethanol and H,O



22 MODELLING OF KINETICS

Kinencs, i chemistry, deals with the behaviour of chemical systems when
reactants come together and give nse to products Since these reactions are the
fundamental activines by which changes in biochemical systems occur, the laws
governing the kinetics of biochemical reactions form the basis of all mathematical
models of bioreactors, mncluding fermentors From knowledge of the metabolism of
Saccharomyces Cerevisiae already outlined, a mathematical descripton of the uptake
of substrates and ther unlizaton within the cell will be developed Aerobic
bakers-yeast fermentation also utibses oxygen dissolved in the Lquid to enable
growth and a model of the usage of dissolved oxygen will be developed The
modelling and utihisation of products such as alcohol and carbon dioxirde will also

be condsidered The model developed here 15 for a fed-batch fermentation process

221 Cell Growth.

In the mnbal attempts to model and understand cell populaton kinetics we
shall first present models in which only cell mass or number concentrations will be
employed to charactense the biophase The nett rate of cell mass growth ry, 1s

often wntten as [12],

rxy = k() X(t) 21D

where X(t) 1s the cell mass per umt culture volume and p, which has umts of
reciprocal time, 1s the specific growth rate of the cells For a perfectly mixed fed
batch fermentor i which the culture 1s being diluted at a rate D (hr-') then a

mass balance using the above equation gives,

dX = [p(t) - D(t)]IX(t) (2 2)
dt
X(t,) = x, (2 3)

10



D(t) = E(t) (2 4)
V(t)

where F(t) is the volumetnc feed flowrate of input substrate (gl hr) and V() 1s

the culture volume Section 226 deals with the growth rate u in more detail

222 Substrate Utihisation.

Microorganisms require substrates o synthesise new cellular and extracellular
products and also to provide the energy necessary to dnve the reactons Thus
growth and substrate utilisaton are both closely related A consumption rate for the
substrate may be expressed as,

rg = -R(DX() (2 5)
Yx s
where Yy ¢ 1s the yield of biomass per umit substrate
For a fed-batch reactor to which a substrate concentraton of S, (g/l), defined as

the 1nput feed concentration i1s added a mass balance of the above gives,

48 = (XY + D(t)[S;(t) - 8(t)] (2 6)
There 1s no guarantce that the yield factor, an empiraclly defined, apparent
stoichiometnic rano 1S a constant for a given orgamism 1 a given medwum {13]
However 1f a yield factor 1s approximately constant for a particular cell cultivation

system 1t provides useful knowledge of the cell mass and substrate concentration

223 Dissolved Oxygen Utihsahon

Absorption of oxygen from ar wnto a fermentanon broth for use by the
microorgamsms 1S cnucal to the process of growth Only oxygen dissolved in the
hqud may bc used by the cells The rate at which oxygen ss taken up by the
cells from the flud 1s called the Oxygen uptake rate (OUR) and 1s proportional to
the cell mass growth rate

11



OUR = _-uX 27)

YXO

where Yy o 1s a parameter known as the yiweld of cell mass per gram of oxygen
utiised To avoid oxygen deficiency within the vessel air must transported into the

vessel by some process of aeration. This transport mechamsm will be dealt with

later
224 Ethanol Production and Consumption

To examine the ethanol producton and consumption effects withn a reactor,
the metabolism 1s divided into two stages The first stage from the adsorption of
glucose to the producton of alcohol and the second stage from the consumption of

alcohol 10 the production of H,O

In the first stage, ethanol 15 produced when excess substrate causes one
branch of the metabolism to be sawrated and the branch which produces ethanol to
activate The production of excess ethanol 1s known as the Crabtree Effect
[8,Ch 10J[11,Ch 5]] The rate at which ethanol 1s produced depends on the level
of glucose as well as on the cell mass The Ethanol production rate (EPR) if no

ethanol 1s already present 1s described by,

EPR, = Tgax SX  =1X 2 8)
s v

where T 1§ the ethanol growth rate per umt biomass, tp,y 1s the maximum value

of 7 and kg a rate limiting constant.

However,the presence of ethanol 1n the medium inhibits the further
production of ethanol At low concentrations, this effect 1s nehigible but at higher
concentrations inhibiion becomes sigmficant. This effect can be in incorporated m

12



an overall ethanol production rate equation by,

EPR = _EPR, (29
T+ E/kg

with E 15 the ethanol concentration and ke a rate limiting constant for ethanol

In the second part, ethanol consumptuon occurs when ethanol acts as a
substrate, cutting out the metabolism that acts on glucose Thus the consumption
rate depends on ethanol concentration and also on dissolved oxygen n the hquid
It canbe shown that when two substrates are rate hmiing m a single
enzyme-controlled reachon senes, then the overall rate is the product of the

mdividual rates Thus the ethanol consumption rate (ECR) may be wniten as,

ECR = Upag E O X =UX (2 10)
(K2+0) (kg+E)

where { 1s the ethanol consumption rate per umt biomass, {pax 15 the maximum
value of { and k. 1s a rate hmung constant for ethanol and k,, the saturation
constant for dissolved oxygen

Thus the overall ethanol concentration 1s descnbed by

dE = ECR - EPR (2 11)

dE = ( T S

Tt (ENG) (E59S)
-t EO ) X (2 13)
(k“miike-i-Ei

225 Carbon Dioxide Production

Carbon dioxide (CO,) 1s produced or evolved by the cell dunng the growth
cycle The carbon dioxide 1s secreted by the cell and becomes dissolved in the
flud and may exist in the hqwud phase in any of the four forms CO,, H,CO,,

HCO," and CO,~ CO, 1s produced at two stages in the metabolism cycle, firstly,
13



when ethanol 1s produced and secondly, after the TAC cycle
In the first case the carbon-dioxide produced 1s proporttonal to the ethanol
produced and in the second case 1t 1s proportional to the cell mass produced

(growth rate) Thus the carbon dioxide evoluton rate (CER) 1s described by,

CER = k¢, EPR + k¢, kX (2 14)

where k., and k., are constants of proportionally for ethanol
and cell mass production respectively

Overall the level of dissolved CO, 1s descnibed by,

dC = CER + CTR (2 15)
dt

where CTR 1s the rate at which CO, 1s transported across the gas hiquid interface
Only the dissolved CO, molecule 1s transported across the gas liqud interface and

this transport phenomena will be presented m detal m Section 23

It 1s mportant to model the amount of dissolved CO, even though it does
not directly affect the growth rate This 15 because measurements of exhaust CO,
can be related to dissolved oxygen concentranon and hence growth rate wvia

equation (2 14)

226 Models of the Specific Growth Rate u

The general goal n making 2 good medium 1s to support good growth of
biomassand/or high rates of product synthests such as alcohol production
depending on the type of fermentahon in progress This does not mean that all
nutnents should be supphed in graet excess For one thing, excessive concentrations
of a nutnent can mhibit or poison cell growth Moreover, 1if the cell grows too
extensively theirr accumulated metabolic end product will often disrupt the normal
bicochemical processes of the cell Consequently 1t 1s common practice to limit

14



total growth by hmiting the amount of one nutrient in the medium

A functional relatonship between the specific growth p and an essental
compound’s concentraion was proposed by Monod (14] This specific growth rate
model which expresses the dependence of W on the substrate concentratton S as

follows

k= tmax S X 2 16)
kg+S

where Jpax 1s the maximum growth rate and kg 1s the "Michaleis—

Menten" parameter

The biomass growth 1s often presumed to slow down at ligh biomass
concentranons A possible model to accomodate this situation is the following

specific growth rate depending on both S and X,

b= Hpax —S 2 17
ko X+S
with k. a constant which was proposed by Contoi1s [15]

Aerobic fermeniation are processes where the microorgamsms need oxygen to
develop properly In such cases, dissolved oxygen (DO) m the culture medium can
be considered an addmonal substrate If two substrates (DO and S) are rate
hmitng m a single enzyme controlled reaction senes, then the overall rate 1s the
product of the mdividual rates Ths law which has Monod simiantes 15 often

referred to as the Ollson model for specific growth rate y,

M= Hpax S 0 (2 18)
kg+S kg ,+0

where kg, 15 the saturanon constant and O 1s the dissolved oxygen concentration
15



The effect of ethanol in promoung cell growth can be understood by refernng
to Figure 21 This shows that the two substances, glucose and ethanol, act in
parallel to promote cell growth Thus, unlike senes rates which are multiplicative,
parallel rates add together to determine the overall rate Thus on the whole, if
taken m conjuction with the Ollson model, three rate hmiting substrates are
mvolved the first two, ethanol and glucose rates, are in parallel and add together
This resultant rate 1s m senes with the oxygen reaction and thus the oxygen rate
1s muluphed by the resultant to give the overall rate This growth rate model

referred 10 as the Comprehensive model may be descnbed as,

B = (bpax —S _ + Vpax —E ) Q (2 19)
kg+S ke+E kg ,+0
where vax 1s the maximum rate of product formanon

23 MODELLING OF TRANSPORT

While kinetics deals with how substances interact to form products, another
aspect of the system that must be modelled 1s the mechamsm by which the
substances come together in order to faciliate reaction [16] Whether transport rates
becomes mmportant depends on the magmtude of the rate of transport compared to
the rate of reachon If the rate at which some substance 1s transferred to the area
of interacton s of simbar or lesser magmtude than the rate at which the
substance 1s taken up by the reacton then the transport mechamism becomes rate
Imining 1n the overall reaction. If, however, the transport rate 1s faster than the

rate of reaction then there will always be substances available for reaction

The purpose of aeration in fermenatation 1s to supply oxygen to and at the
same tme to remove carbon dioxide suspended m the culture broth after being

evolved by the microbial cells Mixing i the gas and hquid phases affect the

16
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acration charactenstics of a fermentor Liquid phase mixing also 1influences the
residence e distnbution of the broth and therby yelds of microbial mass and
products In the sparged surrer fermentor which we will deal with, airr 1s sparged
mto the broth which 1s continuously mechanically agitated Dispersion of gas

bubbles 1s done mainly by the mechamcal force of the mmpeller

Glucose fed mto the flud becomes dissolved immediately, unhike gases which
are held in ar bubbles before dissolving In this model the transport of glucose 1s
ignored This leaves the transport of gases as the important featres win the overall
model of transport n agitated systems Ths 1s particulary true of oxygen as it
may have a growth Lmiting effect The mmportance of carbon dioxide 1s that
pnmary vanables may be wnferred from exhaust gas analysis In this section a
comprehensive model of the transport of oxygen and carbon dioxide will be

developed

231 Oxygen Transfer

In sechon 223 the term oxygen transport rate (OTR) was wmtroduced into
the kinetics model The rate of transfer of oxygen from ar bubbles to the
dissolved state 1s vitally important to keeping a good supply of oxygen as
demanded by aerobic fermentanons The oxygen must cross the gas-liquid interface
to be of use to the cells This mecharusm 1s controlled by the hqud phase mass
transfer resistance It 1s  sufficient to state from previous investigators

(8,Ch 8](17,Ch 9] that the rate of oxygen transfer can be stated as,

OTR = kpa (0* - 0) (2 20)

where kp 1s the hqud phase mass transfer coefficient (cm/hr) and a 1s the bubble
surface area per umt volume of hqud (cm?/cm?), O* 1s the saturaton

concentration of dissolved oxygen and O 1s the dissolved oxygen concentration in

17



the iqmd The lumped kpa term 1s usually referred to as the volumetnc transfer

coefficient (hr—?)

232 Carbon Dioxide Transfer

Carbon dioxide transfer can be developed in exactly the same way as oxygen
transfer This implies that we can wnte a sumthar equaton for the carbon dioxide

transfer rate (CTR) as for oxygen

CTR = K4 Kpa(C* - C) (2 21)

where C* 1s the saturated concentration of CO, m the hqud, C 1s the hqud
concentration of dissolved CO, and Ky 1s the factor by which the volumetnc
absorption coefficient for oxygen is greater than that of CO,

Equanons (220) and (221) both contain kpa, the volumetnic absorption
coefficient for oxygen and, mn pnnciple, this term 1s vanable depending on certain
factors including acration of the vessel and agitation rate The next section analyses

this term m more detail

233 Absorption Coefficient

The volumetnic absorption coefficient 1s composed of two terms as already
outhned The first term kp 1s the rate of mass transfer across the gas liqud
mterface and the second term a 1s the nterfacial area per umt volume The first
term kp 1s "conductance” of the gas-hquid membrane , 1€ 1t 15 a measure of the
ease with which mass crosses the gas liqud interface The local mass flux at the

gas hquid nterface for a bubble 1s given by [8,Ch 8]

Mass flux = - Dy, 80

8z 1z=0
18



= ko(0* - 0) (2 22)

where Dy, 1s the diffusion coefficient = P/l where Py 1s the permeability of
the membrane and L 1s the membrane thickness and z is the coordinate measure

from gas into hquid phase, with its ongin at the gas hquid nterface
The Sherwood number Sh 1s defined [9] by

Sh = ko d, (2 23)

D02
where d, 1s the impeller diameter for agitated sysiems

Now, kp 1s proportional to the average fluid velocity uny,g, Since an increase
in fluud velocity will increase the density difference between gas and lLiquid phase
This average flmd velocity 1s, in turn, proportional to the power input per umt

volume by an impeller 1n an agiated system according to

Urps = kK (dp Pl)1/3 (2 24)
(pcV) 1/ @

with d, being the bubble diameter, P, the power mput to the agitator, V the
volume of the fluid, p, the conunuous phase density and k a scaling constant

If we define the Reynolds and Schmidt numbers [8] for strred systems as,

Re
Sc

PeNsDs2/uc (2 25)
Re/PDo (2 26)

with y. bemng the flud wiscosity, pp the flmd density, N the sturrer rotaton speed
and D the strrer diameter, then 1t can be shown that Sh = g(Re,Sc) with g( )
some function of Re and Sc According to data presented by Calderbank [18] and
Richards [19] the correlaton,

Sh = 0 13 Sc1/2 Re3/4 (2 27)

1s accurate for systems with turbulent aeraton Combinung (2 23)-(2 27) gives
19



kod, = 013 (EQN;Ds)‘/Z pe3la (2 28)
Do Be'l? (pQD02)3/4

If pe, pp and Dy, are considered constant then
kg = 0 13N,/ 2 (2 29)

The value of the interfacial area, a, ;nt an aerated and agitated system depends
on agiator power wput. The shear tip of the strrer tends to cause small bubbles
to be formed, which increases the interfacial area per umt volume In addition,
bubbles have only a limited hfespan from the time they enter the flud until they
disperse  Since the amount of bubbles entenng the flud 15 dependent on the ar
flow rate, then the number of bubbles m the flud 1s also dependent on the ar

flow rate According to Calderbank [18], the value of the interfacial area 1s given

by
a « (Pg/V)2/5 porls (vg/vp)t/2 (2 30)
83/s

with P, the agiator power requirement for an aeraied system, vg the average hinear
velocity of arr pér cross sectional area in the vessel, w, the ascending bubble
velocity, & the surface density of the flud and V the hqud volume Overall
assuming v, and & are constant then combming (229) and (230) gives the

following volumetnc coefficient,
kpa = 0 13 (Pg/V)2/s vg1/2 Nj1/2 (2 31)

It 1s mmportant to have kpa modelled with potental control inputs N, or Pg

for control sige consideranon and implementation.

234 Gas Phase Concentrations

From the oxygen and carbon dioxide transport equanons given m Section

(231) and Section (232) and using standard thermodynamic-and gas laws we will
20



now develop equations for the concentraton of O, and CO, 1 the exhaust gas of
a fermentor In order to denve such equations, we first make use of a fundamental
gas law called Dalton’s Law which states that the sum of the mole fractions of all

substances m a gas 1S umty,

n
Ix, =1 (2 32)

where X, X are the molal concentratons of the consttutent gases Also the

mole fraction of a gas 1s defined as

where Pg 18 the partial pressure of the gas and P the pressure of the overall
soluion Ng 15 the mole concentranon of the gas, R the umversal gas constant
and T the temperature

Henry’s Law states that,
0* = py/H (2 34)

where py 1s the partal pressure of oxygen m the gas phase and H 1s the Henry's
law constant.

The gas phase of the fermentor 1s made up of CO,, O, and N, (f the very
low concentratons of H,O are ignored) It 1s assumed that N, 1s an imnert gas, 1¢
that 1t does not react Thus the molar conventranon of N, does not change The
difference between inflowing (i) and outgoing (o) oxygen mass flow (Q) relative to

the hquid volume can be calculated [20] as

Qy, - o, [I_XOCOQ} Xlg, - [1-xteo,] x%,

Q102 x102 [1'x002'x0C02] (2 35)

Likewise the rate of change of molal oxygen concentration in the gas phase may

21



be calculated as,

d0, _  (Qq, - OTR)V (2 36)
N P

where Vg 1s the volume of the gas phase and Mg, 1s the molecular weight of
oxygen

We now assume that the molar fracttons m the exit gas are the same as those 1n
the gas phase of the fermentor 1e x0y, = x5, etc ) Then using (233) to
convert (236) to a mole fracnon quanuty and substitution of (2 35) the following

differential equanon for the oxygen mole fraction 1n the gas phase results

dxo, F! [1-Xco,l Xtp, - [1-X¥g,]1 Xq,

dt €g V [1-xg,-X¢o]

RTes OIR

(2 37)
P €g

By similiar arguments to above denvation of balance equations for carbon

dioxade yields the following differential equation,

dxco, Fi [1-x9,]1 xteo, - [1-x¥g,]) Xco,
RTeg CIR
- (2 38)

Pe
where € 1s the mean hqun% holdup m the reactor = Vg[Vg+Vg] and €g 15 the

mean relatve gas holdup n the reactor = Vg/[Vf+Vg}

24 FED BATCH FERMENTER SIMULATION

In order to assess the bioreactor model’s accuracy and to facilitate controller
appraisal, the model was simulated 1in software The simulator uses a classical
fourth order Runge-Kutta techmique for integranon, one of the more advanced and
perhaps the most widely used i engineenng applications for non-linear systems In
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this secuon numencal integranon iechniques are addressed with particular emphasis
on the Runge-Kutta techmque, program structure 1s outlmed with the help of a

flowchart and the cntenon for choice of numencal mtegraton i1s discussed

241 Numencal Integration Methods

The essence of a numencal method 1S to convert a differental equation into
an equvalent model composed of difference equations In this form the model can
be programmed on a digital computer Numencal algonthms differ mostly as a
result of the specific procedure used to obtamn the difference equations In general,
as the accuracy of the approximanon 1s increased, so too 1s the complexity of the
programming 1nvolved Here we discuss why the Runge Kutta integration method

was chosen mm preference 10 other available methods

The pnnciple of all numencal mntegraton methods 15 to eshmate the system
states at tme (t+h) given the states at ime t where h 1s the samphng penod [21]

For a general equation of the form,
X = f(x,u,t) (2 39)

At each step computatons are done by some formula nomally based upon
the Taylor senes,

x(t+h) = x(t) + hx(t) + h2 x(t) (2 40)
X

If h 1s chosen to be sufficiently small and if sufficient higher order denvatives of
x and powers of of x are taken then the value x(t+h) can be perfectly found The
simplest method, called the Euler method, only takes the first power of h 1nto
account assumung the terms in b0 (n>1) are very small compared to h  This 1s

valid only if h € 1 The Euler method has the form,

x(t+h) = x(t) + hf(x,u,t) (2 41)
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The Euler method 1s of lumited practical use due to it’s large truncation error
per step of order h2 This 1s exaggerated when a large step length h 1s used If nt
was possible to use a very small step h and if round off error did not occur in
the calculanons then the Euler method would satisfy most requirements However,
the overall solubon for Euler, even when small values of the sampling penod h

are used, remains strongly dependant upon the sample penod.

The Runge Kutta denvaton [22,Ch 8] follows the same pattemn as Euler
except terms up to h4 are retained 1 equation (240) Agamn for a general equation
of the form,

x = f(x,u,t) (2 42)

the formula for advancing the solution step 1s

X, = x, + h (K, +2K2+2K3+K4) (2 43)
6
where
K1 = f(xgsyo) (2 44)
K, = f(x, + h/2, y, + hK,/2) (2 45)
Ka = f(x, + h/2, Yo + hK,/2) (2 46)
K, = f(x, + h, Yo + hKa) (2 47)

The Runge Kutta algonthm does not requre calculaton of the higher
denvatives of x as 1s indicated 1n the Taylor senes method Instead, the algonthm
utbizes the computaion of Ax,u) at vanous pomts Also since the fourth order
numencal mtegraton method mcorporates the first four denvauves of the Taylor

senes the truncation error 1s of the order hS

242 Simulahon Program Structure

Figure 23 shows the outhne flowchart for the simulaton program The Runge
Kutta routine 1s called penodically from the main C program at tmes determined
by the integranon interval An integranon interval of 0005 (18sec) hours was used
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and the value of each state was pnnted out to a data file at peniods of 01 hours
The twenty hour run ume of the sumulaton was typical of a real system Figure
24andFigure25 outlne the structure of the two mamn funcions 1 the

simulation program

25 SUMMARY

In this chapter the basic fundamentals of a fermentattion system were
outhned A comprehensive model for a fed batch bakers yeast fermentation was

then presented The modelling section was divided into two stages

Modelling of kinetics

Modelling of transport

The Runge-Kutta numencal integration techmque used to simulate the model on a
digital computer were then presented complete with the structue of the sumulation
program This model structure and simulation studies defined the starting pomnt and
basis for the development of the self tuning control strategy to be applied to the

bioreactor
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CHAPTER 3

PARAMAMETERIZATION AND IDENTIFICATION OF THE
FERMENTATION PROCESS

31 INTRODUCTION

Self-tuning controller may be divided into two types, implicit and explicit
The imphcit self tuner schemes incorporate the controller parameters into the
identification procedure thus removing the requirement to 1dentify the plant

seperately The explicit self wning controller used n this research exhibits the
following two features,

t . A parameter estumator that momitors the mputs and outputs of the
fermentauon process and hence computes dynamic esimates of the process mn terms
of a set of parameters in a predefined mathematical description of the process

Models for such an exercise will be presented mn this section.

2 A control design algonthm that accepts data from the parameter estmator
to calculate the required control signal using a control law This will be presented

in chapter five

Most parameter identificavon techmques have had thewr greatest sucess with
linear systems Biological systems are inherently non-linear and in the presence of
such non-lineantes the process equations must be structured m a suitable linear
form for use mn a parameter idenificanon proceedure Processes which are
non-hnear and tome vanant may therefore be sucessfully controlled most notably

because of the the self tuming controller’s ability to track time varying parameters

A key factor in the self-tuner 1s the structunng of the model used by the
parameter estimator Based on the vanous models for the specific growth rate p
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outhned mn Chapter 2 different identificanon models will be presented ranging from

a simple model which has no structure on growth rate B to a comprehensive

structure  which incorporates ethanol and dissolved oxygen terms mn the expression
Ve

for growth rate
32 LEAST SQUARES IDENTIFICATION

The goal in process wdentificabon 15 to mnfer a model (and estimates of the
model parameters) given a process input/output data record This activity can be
camed out n an "off-hne” manner, mm which all data 1s analysed at once
(Classical Least Squares), or by using "on-lne" techmiques where the addinon of a
new data pomt is employed to update the model parameters (Recursive Least
Squares) In self tuning control sequential updating of the model parameters 1s
more appropiate than non-sequential processing of the imnput-output data Algonthms
which are suited to real tme usage and are based on sucessive updating of the
model parameters are called "recursive” There are a large number of recursive
identificahon algonthms described 1n the literature [23,24], the most popular of

which 1s Recursive Least Squares (RLS)
321 Recursive Least Squares

If we consider a dynamical system with wnput sysytem u(t) and output signal
y(t) Suppose that these signals are sampled in discrete tme at t=1,2,3 and that
the sampled data values can be related through the following hnear difference

equation,

\

y(t) + a,y(t-1) + + apy(t-n) = b,u(t-1) + + bpu(t-1)

31

This may be wntten in the form

y(t) = 8T(t) o(r) (3 2)
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where O(t) and ©(t) are the regressor and parameter vectors respectively,

8T (1) (3 3)

[}
—_—
o
£
=
o
o
=]
e

1]

oT(t) = { -y(t-1), -y(t-m) u(t-1), u(t-m) }

(3 4)
One way to obtain estimates of ©(t) i1s to try and mummise the predicton error
using the following cnterion and muumising with respect to 6(t)
N

ING®) = zlty(t) - 8T(no(t)]? (3 5)
t=

Mimmisanon of Jy wrt © gives the esumate of © as,

N "7 N
8(N) = T o(1)eT(r) T O(1)y(t) (3 6)
1=] t=1

"For real time applications 1t 1§ possible to rewnte (36) in a recursive fashion

8(t) = B8(t-1) + L(t)[y(t) - 8T(t-1)&(t)] 37

L(t) = PA-Do((1) (3 8)
1 + O()P(t-1)0(t)

P(t) = P(t-1) - B{:-]}g(t)mT(t)B(t-l) 39
1 + ®T()P(t-1)O(t)

332 RLS for Time Varying Systems

The RLS algonthm can be modified to maintam its sensttivity to process
parameter vanations This may be done by introducing an exponential weighting

factor, called a forgetting factor [25,Ch 13), in the performance index,

=z

IN®) = Z AN-t [y(t) - 8T(1)d(1)]? (3 10)
t=1
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where A 1s the exponential forgetung factor, 0 < A ¢ 1 The forgethng factor 15 a
measure of how fast old data 1s forgotten For A < 1, more weight 1s placed on
recent measurements than on older measurments The following modified RLS for

time varying systems results,

8(t) = 8(t-1) + L(1)[y(r) - 8T(t-1)d(t)] (3 11)

L(t) P(t-Do(t) (3 12)

A O(L)P(t-1)0(t)

P(t) =1 [ P(t-1) - _LI_L}.Q_(_D_QILDLLI_H i (3 13)
A 1 + ¢1(t)P(t-1)0(t)

t

In the simulatnon results that follow a vanable forgeting factor approach 1s
sometimes taken based on the nature of the expected parameter vanations [26] The
exponential forgetng factor A=AN-! where N 1s the total number of data points

and : the current data or iteraton pownt 1s commonly used

Much of the theory on self tumng control 1s based on the requrement of
"persistent excitation” Parameter estmation will be sucessful only when the energy
level of the wnput , both m amplitude and 1 spectral content, 1s above a certain
threshold For a fed batch process Lozano [27] has shown that a pseudo random
binarysequence (PRBS) with magmtude equal to 10% of the wmput feed

concentration added to the feed concentration satisfies thie above condition.

Also mn the simulaton, a switable choice of the mmtial covanance matnx P(0)
must be made For P(0), a diagonal matnx with large elements (e g 104~ or larger)
unphes that the users confidence m the mmtial set of parameter eshmates i1s poor,
while small values fotr the diagonal elements imphes good mmtial estimates In the
sumulation results presented a large value of P(0) 1s chosen (103) that will imually

cause rapid changes in the parameter estimates via equations (3 11) and and (3 12)
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33 IDENTIFICATION MODELS

This section covers the topics of model selection and the parametenization of
these models It 1s assumed that measurements of the vanous states of biomass,

substrate, dissolved oxygen and ethanol are available where applicable

331 Unstructured model

If we reproduce equations (22) and (26) which descnbe the rate of change
of biomass and substrate mm a fed batch fermentor and impose no predefined

structure on i the growth rate

gﬁ = (u(t) - D(t))X(t) (2 2)
t

a8 = -u() . X(1) + D(t)[S,(t)-S(t)] (2 6)
dt Yx s

p(t)=p (3 14)

A discrete ume model can be obtaned by a first order Euler approximaton

of the denvative as

dX() = X(1)-X(1-1) (3 15)
dt h

where X(t) denotes the biomass concentraton and h 1s the sampling penod All
identtficabon  models presented use a Euler approximation for discretizaton.
Identificaton models based on a fourth order Runge-Kutta dicretization methods
proved too complex for practical use

Substituting eqt (3 15) into (312) and (3 13) gives

X(t) = X(t-1) + huX(t-1) - hD(t-1)X(t-1) (3 16)
S(t) = S(t-1) + hD(t-1)[S;(1)-S(t)] - w(r-DX((-1)

Yx s (3 17)
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To use recursive least squares type 1identification algonthms we must first
obtam expressions for the system which are linear mn the parameters This sset of
equations for all the models to be outlined will consist of a known measurement
vectors y(t), a known regressor ®(t) and an unknown parameter vector €(t) It 1s
the funchon of the RLS routine to identify the elements of the parameter vector

given a set of process mnput and output measurments

Thus equation (3 16) may be wntten as,

y(t) = 8T(t) o(t) (3 18)
where

y(t) = { X(t)-X(t-1)+hD(t-1)X(t-1) } (3 19)

oT(t)= { hX(t-1) } (3 20)

8T(t) = ( n ) (3 21)

Sumlarly, by discretizaton of (317) the parameter Yy ¢ may be identfied,

Yy s[S(t-1)-S(t)-hD(t-1)S, (t-1)-hD(t-1)S(t-1)]

= hp(t-1)X(t-1)
(3 22)

Substitution of eqt (3 16) mnto the rhs of (317) gives a direct esumate of the yield
coefficient Yy ¢
Yx s = IX(t)- X(t-1)-hD(t-1IX(t-1)]

{S(t-1)-S(t)-hD(t-1)S,(t-1)-hD(t-1)S(t-1)]
(3 23)

Theexpression for the identificahon of the parameterYy( shows it to be
independent of the model of the growth structure This may also be represented in

the same least squares format as before,
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y(t) = 8T(t) o(t) (3 24)

where
y(t) = { X(t)-X(t-1)-hD(t-1)X(t-1) } (3 25)
oT(t) = { S(t-1)-S(t)-hD(t-1)S,(t-1)-hD(1-1)S(t-1) }
(3 26)
8T(1) = { Yx 5} (3 27)

332 Monod Model

For thus second model we impose the following Monod-like structure on the
growth rate,
n(t) = Hpax S(t) (3 28)
kg+S(t)

Using a sumihar procedure as before, the discretized equations for biomass and

substrate become,

X(t) = X(1-1) + huS(1-1X(1-1) - hD(t-1)X(t-1)
kg+S(t-1)
(3 29)

S(t) = S(t-1) + hD(t-1)[S,(t)-S(t)] - hygaS(t-1)X(t-1)

Yy slkgyS(t-1)]

(3 30)
The recursive least squares structure for (3 29) s,
y(t) = 8T(t) (1) (3 31)
where
y(t) = { X(t)-X(t-1)+hD(t-1)X(t-1) }S(t-1)
(3 32)

oT(t) = { hS(t-1)x(t-1), X(1-1)-X(t)-hD(t-1)X(t-1) }
(3 33)
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8T(1) = { mpax, ks } (3 34)
The denvation of a direct esumate or least squares estumate of Yy g follows
the same procedure as outhned 1 Secton 331 does not differ from (323) or
(324)(327)

333 Ollson Model

A third identificaion model may be denved from imposing an Ollson hke

structure on the growth rate L

R(t) = up S(t) 0(t) (3 35)°

kg+S(1)  k,,+0(t)

The discretized equations for biomass and substrate become,

X(1) = X(t-1)+ hypyyS(1-1)0(t-1)X(t-1)

[kg+S(t-1)][k,,+0(t-1)]

- hD(t-1)X(t-1) (3 36)

S(1)= S(t-1)+ hD(t-1)[S,(t)-S(t)] -
hitmaxS (t-1)X(t-1)0(t-1)

Yy ¢lkg S(t-1)1[k,,+0(t-1)]
(3 37)

An RLS structure linear in the parameters gives,

y(1)=8T(t) o(t) (3 38)

where

y(t) = { X(1)-X(t-1)+hD(t-1)x(t-1) }O(t-1)S(t-1)
(3 39)
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oT(t)

{ hX(t-1)S(t-1)0(t-1), -0(t-1)Q, S(t-1)Q, -0}

(3 40)
8T(t) = { Pmax, Ks» ko, kgky, } (3 41)
Q = { X(1)-X(t-1)+hD(t-1)X(t-1) } (3 42)

Agam the esumate for Yy g 1s as equation (323) and (324)-(327)

334 Comprehensive Model

Using the comprehensive structure of growth rate 1 a fourth identfication

model s denved

R(t) = ( Hmax S(t) + vpax E(t) ) 0O(1) (3 43)
Kg#S(1) ke E(t) k,,+0(t)

The discretized equations for the two mamn state vanables biomass and

substrate concentration become,

X(t) = X(t-1)+ hpg, S(t-1)0(t-1)X(t-1) - BD(t-1)X(t-1)

[kg+S(t-1) 11k, ,+0(t-1)]
+ hogyxE(1-1)0(t-1)X(t-1)

[ke+E(t-1)1{k,,+0(t-1)] (3 44)

S(t)= S(t-1)+ hD(t-1)[S,(t)-S(t)] -

MmaxS(t-1)  + vpa.E(t-1) hX(t-1)0(t-1)
[kg4S(t-1)] Kk +E(t-1) Yy ¢lky,+0(t-1)]

(3 45)
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An RLS structure hnear in the parameters may be extracted giving

y(t) = 8T(t) o(1) (3 46)
where
y(t) = { X(t)-X(t-1)+hD(t-1)x(t-1) JE(t-1)0(t-1)S(t-1)
(3 47)
oT(t) = { hX(t-1)S(t-1)0(t-1)E(t-1), -0(t-1)E(t-1)Q,
-E(t-1)S(t-1)Q, -0(t-1)S(t-1)Q,
hS(1-1)0(t-1)X(t-1),
hE(t-1)0(t-1)X(t-1), -S(t-1)Q, O(t-1)Q,
-E(t-1)Q, -2} (3 48)
and
8T(1) = ( (Mmax*Vmax). Kg.» Ko;» Ke. KeMmax: KsUmax:
ko ke, kgko,, kekgokg )
(3 49)
Q = { X(t)-X(t-1)+hD(t-1)X(t-1) } (3 50)

In this 1dennficaion scheme many lumped parameters are identified Identificaton
of parameters ke and kg 1s used to get esnmates of Wy from the lumped
parameter kellmay and similarly kg 15 used to identfy kg,max

Agamn the esumate for Yy g 15 as eqt (323) and (324)-(327)

34 SIMULATION RESULTS

This section will outhine dennficaton results for the models presented above with

use of the following parameters and nputs,

Yxs=05 D =02

Table 3 1
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In these idenufication studies a constant forgetung factor refers to simulations
mn which A 1s kept constant (g A=099) An exponental forgetting factor refers to
using A=AN-? where N 1s the total number of data pomnts and t the current
iteration or data pomnt. Fig 31 and Fig 32 1denify a tume varying growth. This 1s
equvalent to tracking the unstructured growth rate mn Secton 331 Results are
presented which compare the tracking properties of a constant forgeting factor (Fig
31) and exponential forgettng factor (Fig 32)Both of the above simulations try
to idenufy an overall growth rate from a Monod simulaton in which the kg
parameter has been changed to a value of 5 to increase the overall tme vanence

of u

Fig 33 presents the results for the identificaton of the Monod parameters of
Secuton 332 The results again compare the convergence properties of the constant
(Fig 33) and exponental (Fig 34) forgetng factor The yield parameter Yy ¢ 1S

estmated using the direct estmate of equation (3 23)

The convergence of Ollson model parameters are shown m Fig 35a and 3 5b
The convergence 1s aided by an exponential forgetting factor Fig 3 5a 1s scaled to
show two of the Ollson parameters, pm,x and kg while Fig 35b shows the kg,

parameter and the lumped parameter kgk,, Table 32 compares actual and

identified parameters

parameter actual estimated
value value
Rmax 03 03
kg 022 022
kg, 0 0006 0 00598
kekg, 1 32x10-4 1 44x10-4

Table 3 2
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The idenuficanon of the parameters of the comprehensive model of Section
334 1s shown mm Fig 36a and 36b Fig 36a 1s scaled to show the following
parameters, Umax+Vmax: Ks Ke» KeMmax and kgke while Fig 36b shows the

remaing parameters of equation (3 49)

parameter actual estlmateda1
value value

Kmax+Vmax | O 45 045

kg 0 22 0 2198

ke 0 50 0 4979

Kellmax 015 0 1491

kgke 011 0 1105

kg, 0 0006 0 0059

KgVmax 0 0330 0 0329

kq ke 0 0003 0 00038

k) ke 1 32x10-4 2 9x10-4

kekp K¢ 6 6x10-5 2 21x10-4

Table 3 4

35 DISCUSSION

It 15 obvicus that the popular estmation techmque of recursive least squares
will exhibit good convergence when properly applied Based on the results
presented above there are several conclusions that can be drawn about the the

features of a sucessful estimaton scheme for a fermentation system

It has been shown m the literature [6] many times that the tracking of tme
varying parameters requires the use of a vanable forgetting factor A comparsion of
the convergence propernes of Fig 31 and Fig 32 shows a marked improvement
with the use of a vanable forgetting factor over that of a constant forgetung factor
for tracking the nme varying specific growth rate g The effect of the forgetting

factor can be seen from equation (3 13),

P(t) =1 [P(t-1) - E(t-]}m(t)@T(t)P(t-ll (3 13)
A [ 1 + 1 ()P(t-1)0(t) ]

The forgettng factor A, prevents the elements of P from becoming too small Ths
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maintains the sensiivity of the RLS algonthm and allows new data to continue to

effect the parameter estimates

The convergence of the Monod parameters are presented mn Fig 33 and Fig
34 Agan the use of an exponennal forgeting factor improves parameter

convergence (Fig 34) over that of a constant forgetting factor

The Ollson parameters of Fig 35a and 3 5b show that two of the parameters
(Wmax and kg) converge while the parameters k,, and k;, kg although they
converge have very small values Only in a self tumng environment could the

controller sensivity to these parameters be tested

The Comprehensive Model parameters shown in Fig 36a and Fig 36b show
six sigmficant parameters WPmax+Vmax, K Keo Kelmax: kke and kqumax (Fig3 6a)
with the rest converging to thewr respective values i Fig 3 6b-d Both the Ollson
and Comprehensive structures utihse an exponential forgetung factor It remams to
be seen if the Comprehensive growth rate structure was used as part of an
idenuficaton scheme mn a self turing controller whether the controller performance
would be adversely affected by neglecing some or all of the small parameter

values
35 SUMMARY

Chapter 3 has outhned vanous model structures that may be used in the
identificanon of fermentanon systems Four models have been presented and therr
respective simulation results show good parameter identificanon The type of model
structure chosen for the parameter esumation algonthm will ultmately depend on
the type of fermentanon run 1n operation. The presentaton of the various models

attempts to cover all metabohic pathways that yeast can take dunng the process of

fermentation
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CHAPTER 4

Y

STATE ESTIMATION TECHNIQUES FOR BIOREACTORS

41 INTRODUCTION

It wil be wnstruchve to define at the outset of this chapter several
terms which will be used repeatedly in the context of estumation techmques m a
bioreactor system It should be recogmsed at thuis pomnt that besides temperature and
pH which are always among the state varigbles, the other components of the state
vector depend on the nature of the model of the biological system considered In
fermentabon systems one 1s mamly mterested 1 biomass and substrate
concentration and also the level of dissolved oxygen concentration because 1t affects
the rate of microbial growth Culture parameters or growth parameters are the
parameters that describe the state of growth of micro-organtsms, such parameters
then will be the specific growth rate p, the vanous yields, Y, and the mass

transfer rates of O, and CO, in the iqud phase and others

The mmportance of on-lne estimaton may be seen in the fact that
presently the majonty of fermentation processes are interfaced with vanous types of
mstruments for exhaust gas analysis Such instruments are becoming an ntegral part
of standard bioreactor instrumentation With the mtroducton of computers mainly
for data acqusiton and logging a few measurements are recorded as received and
occasionaly some addibonal parameters (respiratory quotient) requing sumple
calculanons are included mn the computer pnntout of the process The mamn point
of the esumaton studies to be presented 1s that there 1s a great deal of additional
nformation that may be obtamed from the available measurements This
informanon,pnmanty m the form of esumated state vanables and culture
parameters, requires litile additonal effort and can be employed on-line in the

systems that already employ dedicated computing capabiliies Important information
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such as the level of cell biomass, specific growth rates, yields and concentraton of
products may be obtaned at vanous operaing points and as complexity increases

additonal correlations may be introduced to provide for ndeterminable parameters

Needless to say the on-line eshmation of vanous states and parameters
facilitates greatly the study of the performance of a mucrobial culture Not only
does 1t provide for an extended array of parameters that can be momtored, thus
descnbing more completely the biolgical process, but it also ywelds informaton at
short samphng intervals compared to the process dynamics, thus elimmating the
uncertainityand  speculation about the events that took place between two
consecutive samples Finally, the filtenng of measurements, which 1s part of the
eshmaton process, elunmnates any random noises and yields smooth reliable
estimates

The pnmary vanable that is desirable to control 1n a fermentation
process 1s cell growth Thus, 1t 1s necessary to be able to both measure ths
vanable or alternatively measure the cell concentration, from which cell growth rate
can be determimned However, no reliable or accurate mnstrumentaton 1s avarlable

which allows direct on-line measurement of these vanables

In spite of recent developments in optical, ion seclecive and enzyme
sensors most of the concentration vanables mn the fermenter hqud phase cannot be
measured on-line Sensors measunng the biomass and substrate concentrations would
be most advantageous but as yet there are no such comercially avaiable sensors
suitable for industnal applicaions The momtonng of physiological and btochemical
parameters 1n fermentation processes has not sigmficantly advanced and almost
umnversally pH, dissolved oxygen and redox potential are the only states that can
be momtored for corntrol puroposes [28] More recently, the momtoring of dissolved
carbon dioxide and the explotanon of developments in lower cost mass

spectrometry to replace and extend infrared gas phase monitonng [29), has received
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attenton Today’s measurement technology covers only a small fraction of the
desirable information needed to 1mprove microbial growth and production
Maintaiming maximum production 1s difficult because of unpredictable changes 1n
process parameters in batch and fed-batch fermentation and lack of on-line

information conceming the process states

With digital set-point control gaimng populanty and increasing use of digital
computers, for example in programmed start up procedures, automated vanatons of
set pownts to implement optumal policies and also predetermined response to varous
pertubanon, clearly the determinaton of a new set pont will rely on accurate
knowledge of the bioreactor state and state estunates will be indispensible for thus
purpose  Some methods use differental equations expressing the tume rate of
change of state vanables as a function of the operatung and culture parameters to
give a structured self contamned set of equations while other techmques are more
model mdependent. The presentanon of vanous general frameworks which achieve
the state eshmation objecive by utthzing varous macroscopic and elemental

balances and appropnate estimation techmiques will be the subject of the following

chapter

42 OBSERVERVABILITY OF A NON-LINEAR SYSTEM

In linear control theory there are methods for the design of observers which
converge exponentially to true state values [30,Ch 9] For non-linear systems |,
there are very few works dealing with this subject and the applicabons are not
numerous For a fermenter system Monod-type formulas are widely used to descrnibe

cell growth himited by a single substrate The model equations are,

<
"

(L-D)X 4 1)

7]
i

D[S,-8] - _ux (4 2)

Yx s
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H=HyS (4 3)
ks+S

where X and S are the biomass and substrate concentration respectively, D 1s the
diluton rate, S; 15 the feed substrate concentraton and Wn,, Yy, and kg are

charactersic parameters of the process

A system 1s observable if, for each pair of mmtal states x,(0), x,(0), we can
find an nput vanable u(t) such that x,, x,, are disunguishable by observations of
the corresponding output vanables y,(z) and y,(t) There are some works deahing
with theoretical aspects of observers for non-linear systems and we firstly present
a theorem about the observervabiiity of non-linear systems The theorem presented
by Gallegos [31] 1s an extension af a lemma given by Willamson [32] and deals

with the observablity of a nonhnear system

Theorem
A necessary and sufficient condinon for the system
m
x = f(x) + Ig,(x) uy, u=(u, um)T e R (4 4)
1=1
y = h(x) xeR0, yeR 4 5)

to be completely ,umformly, locally, observable is that there exists a system of

local coordinates on RN such that (44) 1s of the form

X, [ 81.(x,)
' g1,(x,.x
ot IR I U, (4 6)
xn 1=1 .
| F(x) gin(x X . ,Xp)
y = X, . 417

From (46) and (47), 1t 1s possible to esumate the state vector through
successive denivatives of the output and nput vanables This thecorem will be

applied to a fermentation system mn the following section
42



43 STATE ESTIMATION

The central control objective of any bioreactor 1s to provide
optimmal growth conditons for biomasss growth. General vanables such as
temperature and pH can be sucessfully controlled by conventional loops However,
other important process vanables such as biomass, product and substrate utilization
arc rarely measured on—lmme These important process vanables can be estmated
using available standard measurements in conjuction with mathemaucal relahonships
Frequently, the parameters of the system must be determuned before the predictons
of the model become available for design or control purposes Their values can be
determined from correlations, sumple expenments or Lnear regression 1deas as
outhned mn the Chapter 3 The joint development of modem control theory and
microprocessors has seen the mtroduction of techmques, such as Kalman filtenng
which may be orgamised for parameter and state eshmation. In order to determine
whether a system 1s performing properly and ultumately to control the system
performence the designer must know the states of the system The techmque of
determuning the states of a system from noisy measurements of states (auxiliary or

otherwise) 15 called Kalman filtening

Stephanopoulos and San [35] uthze measurements of O, and CO, 1n the gas
stream and employ proper macroscopic matenal and elemental balances to measure
the total growth rate and yweld With these measurements available an extended
Kalman Filter 1s employed to produce estimates of the state vanables Dekkers [36]
outhnes an indirect estmation method for on-line determmnation of the biomass
concentration, the specific growth rate, the substrate utilization rate and the ethanol
concentratonof a fed batch bakers yeast fermentatton. Dekkers denves a
measurement model from stochiometnic considerations These equations and a simple
state model for the biomass and the biomass produchon ratc are used m an

extended Kalman filter for esimation of the process vanables
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In this section three types of algonthms for the esumation of state
vanables such as substrate and biomass will be outlmed Two non-adaptive
algonthms for state estumation are presented [33,34] In section 44 adaptuve
algonthms will be presented The word "adaptive” 1s used for state estimation
schemes since the algonthms are designed to continuously adapt the structure of
the observer to the vanatons of the growth parameters The general estimation
problem and its associated theory will then be outlined with particular reference to
the application of a Kalman filter to the state eshmation problem m a fermentation

process

4131 Non-lmear Observer

In this sechbon we will make use of the theorem in Section 42 to estumate
the state vector of the model equations of the fermentor Equations (4 1)-(4 3) have

the form given by (4 6) and (4 7) with,

-X 0
f(x)= ] (4 8)
1

PX
-_UxX ] ’ 8|(X)=[ ]’ gz(x)z

Yx S -

and u,=D, u,=D§; The system 1s therefore observable and the fermentation model

may be expressed as the following model

Z, Z, gll(zl) g21(z1)
= + l]1 + [ ]02
z, F(Z) gzz(z1vzz) (4 9)

g,,(z,.2,)
y=z, (4 10)
with Z, =X (4 11)
z, = Ux (4 12)
g,,(z)) = -z, (4 13)
g,,(2,,2) =2, (z, -2) (4 14)
HmZ , -



g,,(z,) =0 (4 15)

g£,,(z,,2,) = (Ugz,-2,)? (4 16)
HnKsZ,

F(z) =2,/2, . (MpzZ,-z,)? (4 17)
Z,; HoksYx s

From equtation (49) 1t 1s possible to esumate the state vector since,

Z, =2, . §,(z;,)D =y + Dy (4 18)
In thus way, 1f the biomass concentration x 1s measured (unfortunately

Gallegos [31] makes this restnctive assumption), it will only be necessary to
esimate the substrate concentraton S The following estmate for S results,

UpZ . 2, (4 19)

From equaunon (49) we see the need for having the denvatve of the process

output However using an Euler approximation we may wrte,

y(t) = 3) - 30T (4 20)

with T small compared to the process dynamics From (4 11) we have in discrete

form

A
S(k)=  kga [y(k) - y(k-1) + TDy(k)]

Mpy(k) - a( y(k) - y(k-1) + TDy(k) ) (4 21)
where a=1/T
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432 Non-—adaptive Observer

When the substrate concentraton S(t) (or biomass concentration X(t) ) 1s
measured on-hine and the yield coefficient 1s known a smple algonthm can be
mmplemented to estmate X(t) (or S(t)) If we rewnte the model equtations (4 14 3)

and let k, be the yield coefficient

X = (u-D)X 41)

S = D[S,-S] - k,pX (4 4)

H=pgS (4 3)
kg+S

The basic denvauon of the eshmation algonthm is based on the fact that in
microbial growth, the rate of biomass production 1s proportional to the rate of
substrate consumption Assuming that X(t) 1s available for on-line measurement an

auxibary state vanable Z(t) is defined by the following equation,

dZ(1) = D(1)[S, (1) - Z(1)]
dt (4 22)

The motuivation for the ntroduction of Z(t) may be seen from the fact that if we

define Y=k X, then from (4 143),

AIY(13+5(1)] = D(t)[S,(t)-(Y(1)+S(1))]
dt (4 23)

Companng (415) and (416), Z(t) can obviously be considered as an on-line
esimate of Y(t) + S(t), with an estmation error

e(t) = Z(t) - [Y(t) - S(1)] (4 24)
govemed by the stable dynamic equation

de(t) = -D(t)e(t) (4 25)
dt

The above algonthm 1s stable as D » O and on-lme estimate of S(t) can now be
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computed as

S(t) = Z(1) - k,X(1) (4 26)

A simple discrete ume version of thus algonthm has been denved by using a first

order Euler approximation for dZ/dt

Z(k+1) = Z(k) + TD(kK)[S, (k) - Z(k)] (4 27)

A

S(k) = Z(k) - k,X(k) (4 28)
where k 15 the ime index and T s the samplhing penod
433 Extended Kalman Filter

A bnef presentaton of the basic features of the general state estimation
problem 15 outhned below A lmear system 1s first considered because exact

solutions are available for such systems The non-linear case 1s then discussed

In a biochemical reactor system, as i1s often the case with state estimation
problems, the state of the system 1s not directly measurable but is observable
throughthe measurement of outputs of the system, such as exhaust gas
concentraions If the state x of a dynamical system satsfies the hnear equation of

(4 29) then the state eshmation problem can generally be stated as follows,

X = Ax + Bu + {(t) (4 29)
The linear equation 1s forced by the non-random control input u and the random
disturbance {(t) One must develop an algonthm for determuning the state x(t) at

ume t from the observations of an output y(t) of the system, contammated by the

random errors &(t) and related to the state x by,
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y = Hx + §(1) ' (4 30)

Because of the errors & in the measurement, x, the true state cannot be found
- only an esumate for x 1S possitble Therefore m the presence of the random
noises {(t) and E(t) the eshmation problem 1s understood 1n the sense of finding
an eshmate of the state x such that the uncertauty, or vanence, of the estimation
emmor 158 mimmised [37,Ch 5] If the noises {(t) and &(t) can be modelled by a
white noise process then the esimate x can be found as the solution of the

following filter equation,

2 = A% + Bu + K[y - H) (4 31)
with K, the filter gain given by,

K = PHTR-1 (4 32)
and the vanence of the eshmauon ermor (a measure of the uncertammty n the
esumate of x), P = E[(x-x)(x-x], given by

P = AP + PAT + Q - PHTR-1HP (4 33)

The matnices Q and R (posiive semi-defimte) are measures of the intensity of the

noises & and [, respectively with Q&(t) = E[{)¢T ()] and R&(t) = E[E®ET ()]

The above equations descnbe the evoluhon of the estmate of x and 1ts
varience P with time for a lnear system Most systems of practical interest |,

however, are non-hnear and of the general form,

x = f(x) + {(v) y = h(x) + §(t) (4 34)

For such systems, a vanety of filtenng algonthms have been dewvised, one of
which is the Kalman filter, obtained by linearzing the non-linear equations around

the current esumate and applymng (4 14 5) to the lineanzed equations,
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£ =% +Kly - h®)] (4 35)
K = PhTR)R-! (4 36)
P = f(X)P + PIT(R) + Q - PAT(DR-'h(X)P (4 37)

Theabove equanons apply to the case when the measurements are taken
continuously 1n ome If we consider a continuous non-linear stochastic model of
micro-organism growth and substrate consumption dynamics in a batch fermentation

process and output model that consists of measurement of the carbon diwoxide

evolution rate,

x(t)
y(t)

F(x(1)) + §(1) (4 38)
H(x(t)) + &(1) (4 39)

where x(t) 1s the state vector consising of biomass (x,) and substrate

concentrations (x,) and the components of F(x) are,

f,(x(t)) = py x, X, (4 40)
kS + X,
fo,x(1)) = g x, x, (4 41)

y(t) 1s the carbon dioxide evolunon rate which 1s related to the state vector by the

non-linear function H(x(t)) where,

1 Kmax X, X,
H(x(t)) = (4 42)
Yx ¢ kg +x,

where Yy o 1 yield of carbon dioxide on biomass

In our model equatons (494 10) state and measurement noise with

covarience
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E[{(1)E()T)

03, (4 43)

and

E[E(1)E(DT] = RS, (4 44)
The mnal state of the model 1s to be assumed nommally distnbuted stochastic
vanable with mean E[x(o)] = x(o)
and covanance

Elx(0) - x(D))(x(e) - x(2)T] =P (4 45)
Since the state vector x(t) 1s unmeasurable on-line and in the presence of state
and observation noise the problem posed 1s how to find an on-line estimaton
algonthm based on avalable measurement of carbon dioxtde evoluton rate The
extendedKalman filter apphicaton 1s presented as a techmque for on-lne
estmaton of state vanables based on the model process equatons (4 38-445) The

configurauon of such an estmation scheme 1s shown m Figure 41

Applying a simple Euler approximation to the above continuous model, we
can denve the following discrete non-linear stochasnic model of micro-organism
growth and substrate consumption for the batch fermentation process as

x(k+1)

g(x(k),T) + {(k) (4 46)
y(k) H(x(k)) +£(k) (4 47)
where g(x(k),T) = x(k) + TF(x(k)) and T 1s the samplng interval The extended

Kalman filter equations may be wnitten as follows

x(k+1/k+1) = x(k+1/k) + K(k+1)[y(k+1) - H x(k+1/k)

(4 48)
x(k+1/k) = g(x(k/k),T) (4 49)
K(k+1) = P*(k+1) KT [HP*(k+1)HT + R]-1 (4 50)
P*(k+1) = O(k)P(k)®(k) + Q (4 51)
P(k+1) = {1 - K(k)H]P*(k) (4 52)
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where

x(k+1/k+1) 1s the opumal state esumate at tme k+l

x(k+1/k) 1s the state esumate at tme k+1 based on estmate x(k/k) at tme k
(prediction)

y(k+1) 1s the output observation vector

H 1s the hneanzed observauon matrix

K(k+1) 1s the Kalman gamn matnx.

K&+ D[y(k+1) - H=x(k+1/K)] 1s a comecuon sequence

Pk) 1s a symmetnc error filtenng matnx.

P*(k+1) 15 a symmetnc error prediction covanence matrix

®(k) 1s the transihion matnix of the lineansed model evaluated at time k for
esimate x(k/k)

Q 1s the state noise covanence

R 15 the output noise covarence

The transiton matnx (k) can be obtaned by linecanzation of the non-linear
discrete model around esamate x(k), where ®k) = I + T]J lx(k) The Jacobian

matnx of the model equations 1s descnibed as,

1, = 8f (x(1)) = X, (k/K)
(4 53)
5%, (t) |x(k/k) ks+x,(k/k)
J,, = 8f (x(t)) = kgupx, (k/k)
sz(t) [x(k/k) [kg+x,(k/k)]? (4 54)
I, = 8f,(x(1)) = ppx,(k/K)
(4 55)
dx,(t) fx(k/k) Yy slkgix,(k/k)]
J,, = df,(x(1)) = Hpkox , (k/k)
_— (4 56)
ox,(t) ]x(k/k) Yy slkg+x,(k/k)]?
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and the lineari1zed observation matrix becomes,

H,, = 8H(x(t)) = pgx,(k/k)
(4 57)
8%, (1) |x(k/k) Yy clkgyx,(k/k)]
H,, = S8H(x(t)) = kohpx, (k/k)
(4 58)
44 COMBINED STATE AND PARAMETER ESTIMATION

The algonthms presented mn  Secion 43 rely on the avaibdty of
measurements of one or more states and the knowledge of the parameters
Algonthms which are configured to allow state and parameter estmation are

outlined 1in the following sections
441 Partially Adaptive Observer

In this section a state eshmaton algonthm 1s presented that 1s referred to as
a "partially adaptive observer” We assume that the specific growth rate j(t) 1s the
only \unknown parameter and that the yweld coefficients are known. Considenng the
problems with avalability of rehable on-line  sensors for the measurement of
substrate and biomass, the case of the eshmation of the biomass concentraton X(t)
from the disolved oxygen concentranon O(t) 1s considered Augmenting eqts

(414 3) to include an equation for the dissolved oxygen concentration we have,

do(L) = kja(o(t)* - 0(t)) - w(£).X(1)
dt Yx o (4 59)

where kja 1s the mass transfer coefficient (hr -1y,
O(t)* 1s the concentration of oxygen that would exist in
the bulk hquid phase if 1t were in thermodynamic equilibrium
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with the gas phase (g/),
O 1s the actual concentration of oxygen in the hquid phase,

Yx o 18 the yield of biomass on oxygen (g/g)

If we consider a broreactor descnbed by equations (4 143) and (4 31) and we
assume that the dissolved oxygen concentration O(t) 1s measured on-line Then the
following adaptive observer can be wused to estimate on-line the biomass

concentration X(t)

d0(1) = kla[O(l)* ~0(t)JW(t)- D(t)0(t) - aﬁ(l)
dt
-bX(t) + C,[0(t) - O(1)] (4 60)

» A A A

‘%{“‘l = R(1) - D(1)X(1) + C,[0(t)- O(1)) 4 61)
t

A A

‘15“1 = -C,[0(t) - O(t)] (4 62)
t

where agan C,-C, are design parameters which are at the disposal of the user to
control the speed of convergence, while a and b fixed constants and R(t) 1s an

on-line estimate of the total growth rate R(t),

A
R(t) = p(t) X(t) (4 63)

442 Fully Adaptive Observer

In this section a "fully adaptve observer" will be outined which does not
requre any pnor knowledge of the yweld parameters or growth rate p, that is they
will be assumed to be unknown. If we again consider the bioreactor descnbed by

(4143) and assume that the biomass concentration X(t) 1s measured on-line If
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we define the auxiiary time varying parameters

8,(t) = S(t) - u(t) (4 64)
0,(t) = k,u(t) (4 65)

Then the following state space representation 1s equivalent to (4 14 3)

dX(1) = -0, (t)X(t) + X(t)S(t) - D(t)X(t) (4 66)
dt

Qg_(_t_)_ = -8,(t)X(t) + D(1)S,;(t) - D(t)S(t) (4 67)
t

The following fully adaptive observer can be denved from the above to estimate

on-line the substrate concentration S(t)

A

.3 N
Qgill = -8,(1)X(t) + X(t)S(t) - D(t)X(t)
t
+ CIX(1) - X(1)] (4 68)
A “ A
gg_u_l = -8,(1)X(t) -D(t)S(t) + D(1)S,(t) +
t
+ [C, + CX(V(D)2I[X(1)- X(1)] (4 69)
dV(t) = -D(L)V(t) + X(t) (4 70)
dt
A A
49, (1) = -CX(1)[X(1) - X(1)] 4 )
dt
A A
dB,(t) = -C.X(t)V(t)[X(t) - X(1)] (4 12)
dt

where V(1) 1s an auxihary filtered value of X(t) and C,—C, are the design
parameters These parameters are at the disposal of the user in order to control the

speed of convergence [33]
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45 SIMULATION RESULTS

Simulation results are first presented for the estimation of substrate S(t) using
the non-linear observer of Section 431 As the discrete form of the observer 1n
equation (4 21) uses the Euler method to esttmate the rate of change of biomass at
the output the effect the changing of the mtegration imterval has on the esamate of
substrate 1s shown m Fig 42a-c for h=05hr, 005hr and 0(025hr Each simulations

use the following paramater values

}Lmax=08 Yxs 05 Sl =990 S(0)=120

ks =05 D

042 X(0)=03

Table 4 1

It may also be observed that the esumate of substrate in equation (4 20)
depends on the process parameters Wpmax and kg However, for fermentabon
processes, these parameters change frequently and an estimation error will be
produced Fig 43 illustrates this problem when from t=5hr to t=5 Shr the parameter

KWmax 1§ vaned 15% about its nommnal value

The non-adaptive observer of Sectton 432 exhibits varying degrees of sucess
when apphed mn simulaton Intally the estimation of S(t) was camed out on the
same simulated process as indicated by Table 41 Results for the esamation of
S(1) are shown mm Figure 44 The convergence of the staic estmate was slow and
as equation (4 25) relates the rate of convergence of the eshmate to the didution
rate 1t was deemed necessary to vary the input diluhon rate, D Figure 45
Nlustrate the convergence of the esumate for a process with D=0 75hr-' and Fig
4 6 shows the convergence of the estimate for a batch fermentation. In the above

simulation the imtial value of the auxihary vanable was Z(0)=120

The Extended Kalman Filter outhined m Section 433 1s based on the
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availlable measurement of the carbon dioxide evolution rate (CER) The simulated
CER wn mol/¢ hr corrupted by a 10% pseudo randon bmnary sequence for estimatnon
purposes 1s shown in Fig 47 The filter shows excellent esumates of Biomass 1n
Fig 48 and also Substrate mn Fig 49 when given the correct mhal conditions, an
imtial value of P=0 for the estimate emor covanence matnx and a 10% corruption
on the CER measurment at each sampling nterval However, performance of the
filter suffers when incorrect mtial conditions are given as ts shown for Biomass n
Fig 410 and for Substrate in Fig 411 This 1s a signuficant problem because mn a

real fermentation plants correct imtial values of states are seldom available

46 DISCUSSION

Some modem techmiques have been applied in this chapter to solve the
problem of state estmation in a fermentaton context. The convergence of the state
estmates 1n the first method of a non-linear observer proves to be very dependent
on the sampling interval Fig 4 2a-c shows how the error in the substrate estimate
deceases as the sampling rate increases Overall this estmation scheme proves to
be "ngid" and unable to cope with paramater varanons as shown in Fig 43 The

non-adaptive scheines would therefore be of little practical use

The non-adaptive observer has a major drawback mm that the speed of
convergence 1s completly determined by the expenmental conditions through the
dilunon rate D(t) This leads to poor results especially in batch operations (Fig 4 6)
and furtheremore there 1s a bias on the esumate of S(t) if there 1s an iutial error
on Z(t) This techmque of state eshmaton shows better convergence as the dilution
rate increases Convergence for a diution rate of D=07Shr!' 1s shown in Fig 45
but such increases m dilution rate have the physical sigmfance of producing large

increases 1n biomass concentraton X(t)
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The Extended Kalman Filter proved to be the most sucessful techmque of
state estimation as shown in Fig 48 and Fig 49 Unfortunately as with the rest of
the estimation schemes 1t 1S very sensitive to mcorrect imfial state estimates and
the filter fals to recover from this mmbal bias as outhned in Fig 410 and Fig
411 One solutton to this may be the use of an iteratve Kalman Filter where
iterations of the output equations at each sampling mterval could help to reduce

the estmation errror

47 SUMMARY

This chapter has attempted to demonstrate how accurate biomass and substrate
eshmaton may take place under standard fermentabon conditions The numencal
results show that the Extended Kalman Filter give sausfactory results dunng
computer simulaton while the non-hnear and adaptive observer are two restrictive
in theirr assumptions about the availabiity of measurements of biomass and
substrate Such measurements are not avalable on lne wia sensors and thus
assumption coupled with the fixed parameter approach of the observer leaves such

observer 1l equipped for on-hine usage
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CHAPTER 5
SELF TUNING CONTROL OF FERMENTATION PROCESSES
51 INTRODUCTION

A vanety of control schemes have been applied recently to fermentation
systems The techniques involved controlling several process parameters wmcluding
dissolved oxygen tension, respiratory qoutient, oxygen uptake rate, biomass and
temperature In 1975 , Miskiewicz et al [38] descnibed a control system to control
the nutnent supply to the system on the basis of dissolved oxygen concentration
An altemative scheme, for mamtaiung dissolved oxygen concentration, 1s to control

the oxygen air or sparge rate and/or agitaton speed, Kobayashi et al [39]

The control of respiratory quotient (RQ) has also been a popular approach
Aiba et al [40] controlled RQ in the range 10 to 12 by step changes in the feed
rate to prevent substrate acculumation. The control of oxygen uptake rate (OUR) 1n
copjucion with RQ has been proposed by Pengner and Blachere [41] and
Raimerez at al [42] The technioque involves step changes in the substrate feed
rate dependant on the values of RQ and OUR Woehrer et al [43] unhsed both

RQ and ethanol to control the glucose medmum addition.

The techmque of matenal balancing has been implemented by Cooney et al
[44Jand Wanget al [45] to esumate biomass and control a bakers yeast
fermentanon It was also applied to pemcillin fermentaton in 1982 by Wang [46]
The optimal operation of a fed-batch reactor for maximal biomass productivity was
presented by Weigand uet al [47] using the maximum pnnciple by mamipulation
of the substrate feed rate Simibar optimal control strategies have also been
described by Constantinidies [48) and by Blanch and Rogers [49] The application

of a classical proporononal and integral (P+I) controller and multivanable control
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by a non-interacing controller has been descnbed by Takamatsu et al [S0O}

Although 1t 1s generally recogmsed that the convenuonal PID regulator 1s
remarkably effecuve in practice, 1ts imtial tuming and the mamntenance of good
tuung on a plant with many control loops can be a time consuming actvity,
particulary if the process dynamics are slow The PID regulator really only exhibits
good performance for domunant second order plants with fixed parameters Self
tuung control 1s one approach to the automatuc tuning problem for a system with
time varying parameters As outhmed previously a self tumng controller consists of
two main elements Firstly, a recursive parameter estmator that computes estimates
of plant dynamics in terms of a set of parameters in a structured model and
secondly a control design algonthm as outhned 1n Figure 51 The self tuning
regulator 1s very flexible with respect to the design method Self tuners based on
pole placement, mimimum-vanence control and LQG control have been considered
{51] Muluvanable adapuve/self tuming control of fermentahon processes has also

been presented by Yousefpour [52] and by Williams [53]

A self wning regulator based on pole placement via state feedback wall be
considered 1n this chapter An algonthm 1s called self tumng, if, as the number of
input and output samples tend to infimty the control signal generated becomes that
which would be produced by the corresponding feedback law designed on the basis
of known process dynamucs - the pnnciple of cernainty equivalence Self tuners are
performance onented, whereby, the engineer specifies a deswred closed loop
performance, despite unknown plant parameters or dnft. Compare this to PID where
the user specifies coefficients K, T, T4 to try to obtan good performance at
current plant condiions despite the fact that this control may detenorate at a later

stage if the parameters change

In this chapter we will introduce the the idea of self tuning control as

apphed to a fermentation process We wall first outhne the concept of lineanzation
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as we will lneanze the non-linear fermentation process for control purposes The
controller will be designed using state feedback and we will look at the single
mnput single output (SISO) case followed by the mult input multt output (MIMO)
case The parameter estimation algonthm (RLS) and the Extended Kalman Filter
will then be introduced mto the overall self tuning controller as outhned in Figure
52

52 PROCESS MODEL

If we reproduce the discretized equations for our two-state fed batch model

with a Monod structure on the specific growth rate

X(k) = X(k-1) + huS(k-1)X(k-1) - hD(k-1)X(k-1)
kg+S(k-1)
' S 1
S(k) = S(k-1) + hD(k-1)[S; (k)-S(k)] - hgS(k-1)X(k-1)

Yy s[kg+S(k-1)]
(5 2)

where h 1s the sampling penod in hours
An equivalent discretized non-lnear state space representaton of the process

may be obtamed,

x(k) = A(k-1)x(k-1) + B(k-1)u(k-1) (5 3)
where

x(k) = (X(k) S(k)T (5 4)

u(k-1) = D(k-1) (5 5)

and the components of the A and B are respectively,

a,, =1+ hygS(k-1) , a,,=0 (5 6,57)
(kg4S(k-1))



Y
I

21 -hpupS(k-1) , a,,=1 (5 8,5 9)

Yy olkgyS(k-1)]

and
b,, = -hX(k-1) (5 10)
b,, = h(S;(k)-S(k-1)) (5 11)
53 PROCESS MODEL LINEARISATION

We wil first Iimit our analysis of the process to obtaimng linear dynamics of
thesystem This may seem incompatible with the fact that most of the
bioengineenng processes are modelled by non-linear equations However, hnear
techniques are valuable because there 1s no general theory for the analytical
solunon  of non-linear differential equanons and consequently no comprehensive
analysisof non-lnear dynamic systems Also a non-hinear system may be
adequately approxmmated by a hnear system near some operating conditions
Sigmficant advances m the linear control theory permit the synthesis and design of
very effective controllers even for non-lnear processes Fundamental, therefore , 1s
the concept of lneanzation and the procedure for approximaung non-linear systems

by linear systems

The following equanons represent general non-lmear and tme varying
dynamics
x(k+1)

y(k)

f(x(k),u(k),k) (5 12)
g(x(k),u(k) k) (5 13)

where

x(k) 1s the state vector, u(k) is the mput vector, y(k) 1s the the output

vector , and the vector functions f and g specify the non-linear systenm dynamics

The first step 1n the linearization process is to find the equlibnum pomnt(s) of

the system when inputs assume their constant or stcady values For any system we
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say that x, 1s an equubbrium state if 1t does not change under constant u,

For discrete nme systems, X, 1s the solution of the equation

x(k+1)-x(k) = f(x(k),u,) = 0 (5 14)

Wecan then wuse Taylor semes to expand these equations about the
equhibnum pomnt (x u,), the hnear terms of a Taylor senes expansion of (51)

and (52) retaining only first order terms are given by,

x(k+l) = f(x,,uy) + &f (x-xg) + &f (u-uy)
dx 1%, ug duixg,u,
(5 15)

A simihar expansion of (5 13) will yeld,

y(k+l) = g(x,,u,) + 88 (x-x;) +3g (u-uy)

Ox1x, U, Suixg,u,
(5 16)
If we define the mncremental vanables &x=x-x,, Su=u-u; and dy=y-y,, then
the resulung hneanzed equations become,
dx(k+1) = A* 8x(k) + B* du(k) 5 17)
dy(k) = C* 8x(k) + D* Bu(k) (5 18)

where the matnx,

*

AT = &f (xu'un) , B* = _§_f_(xo'llo)

ox ox (5 19,5 20)
C* = 8 (x4.u,) , D* = 3g (x,,u,)

ox ox (5 21,5 22)

531 Lineanzed State Space Mdel- Single-Input Single-Output (SISO)

Using (417-420) we obtan the following hnear vanabonal model for the
plant,
Sx(k+1) = A* 8x(k) + B* du(k) (5 25)

where
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dx(k)= [x(k)-x,, s(k)-s )T (5 26)
du(k)= [D(k)-D,] (5 27)

and the components of the A* and B* are respectively,

,a=1+ hugS, - hD,, a* hk gugX

0 12

[}
L}

[kg+S,] [kg+S,]2
(5 28,5 29)
3*21 = -hugS, ’ a*zz =1 - hugX kg - hD,

Yx slkg+S,] Yy s(kg+S,)?

(5 30,5 31)
and
b*,, = -hX, (5 32)
b*,, = h(S,;(k)-S,) (5 33)

Imposing the conditions expressed mn (4 12) on equanons (316) and (317)

gives the following equilibrium points for biomass and substrate

S, = kgD, ’ Xy, =Yx s (8;- kgD )

“max'Do “max‘Do
(5 34,5 35)

532 Lineansed State Space Model - Multi-Input Mult-Output (MIMO)

Using (417-420) we obtan the following mult-input mulh-output hnear

vanational model for the plant,

Sx(k+1) = A* 8x(k) + B* Su(k) (5 36)
where

dx(k)= [x(k)-x,, s(k)-s4]T (5 37)

Bu(k)= [u,(k)- u,o(k), u,(k)- u,y (k)17 (5 38)
with u, (k)= D(k) (5 39)
and u, (k)= D(k)S, (k) (5 40)
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and the components of the A* and B* are respectively,

N 1+ hpgS, - hu,,, a*1z= hkghpX,

1Y
]

(kg+S,] (kg+S,]2
(5 41,5 42)
* *
a ,, = -hpgS, v 2 ,, =1 -hugkg -hu, ,
Yx slkg+S,] Yy s(kg+S,)?
(5 43,5 44)
and
b"‘11 = -hxo , b12 =0 (5 45)
b"“2 = h(S,(k)-S,) » b, =h (5 46)

Imposing the condibons expressed in (4 12) on equations (316) and (317)
gives the followmng equilibrium points for biomass and substrate of the MIMO
system,

S, = kgu,, : Xo = Yx sl(u,o/u,g) -S4l

Hmax-U, ¢
(5 47,5 48)

533 Controllabihity

If we consider the discrete time system that uses the following statee space

model
x(k) = Ax(k-1) + Bu(k-1) (5 49)
y(k) = Cx(k) (5 50)

The system 1s controllable 1f 1t 1s possible to find a control sequence such

64



that an arbitrary state can be reached from any imtal state in fimte tme If we
define the controllability matnx [30,Ch 5] as,

W.=1[BAB An-1B ] (5 51)
if W, has rank n, then 1t 1s possible to find n equations from which the control
signal can be found such that the mmtial state is transferred to the desired final

state x(k) and the system 1s deemed controllable

The controllabiity of the SISO and MIMO systems may be analysed by

taking the parameter values of Table 31 with an equilibrum mput Dy = 02 hr!

and mput feed concentration of 9g/

The controllability matnx of the SISO lineanzed system becomes,

W, =| 239  -065
4178 1 318

(5 52)

This matmx 1s not full rank and Ackemmans formula [30,Ch 9] states that
We! must exist for SISO state feedback design (or any other feedback structure
that gives closed—loop poles specified by some polynominal P(z)=0 )

For the MIMO case the controllability matrix becomes,

W, =| 239 0 2469 -0 181
022 -05 0417 -0 137

- I (5 53)

This matnx has rank=2 and 1s controllable It 1s with the design of a state
feedback controller for the MIMO model that the remainder of this chapter wall
deal 'Therefore 1t 1s worthwhile to examme the accuracy of the lneansanon
procedure outlined in Section 53 To use a hneansed model of a non-linear plant

it 15 deswrable that the magnmitude of the Mgher order denvauves m the Taylor
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series expansion of equation (515) tend towards zero A comparsion of the

matrices A* with A*, and B* with B*, should validate this 1dea where,

A* = Bf (x,uy) , B* = 3f(x, u,)

ox ox (5 19,5 20)
A* = B2 (x,,u,) , B* = 82f(x, u,)

dx? dx 2 (5 54,5 55)

For plant parameters of Hpq=08, Yy =05, k=05 and equlibnum mputs of

u, ,=0685714 and u,, =4 8 the followng matnces result,

A¥=1o0 0 0653 B =| 2 0
-1 37 -0 5551 3001

(5 56,5 57)
A*=10 -0 0373 B*, =] 0 0
0 0 0746 0 0

(5 58,5 59)

The above, relatively small, values of the second denvatives would mmply that the
lineansed model should be a good approxumation of the non-linear model when

operating about the equilibnun inputs u,, and u,,
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54 REGULATION BASED ON POLE PLACEMENT BY STATE FEEDBACK

The regulation problem 1s discussed in this section with the fundamental
design method of pole placement being developed The purpose 1s to arrange a
feedback structure so that all poles of the closed loop system assume prescribed
values The problem 1s imtally solved under the restnctive assumption (for
fermentation systems) that all state vanables can be measured directly [19] Any

linear system may be represented as,
x(k+1) = A(k-1)x(k-1) + B(k-1)u(k-1) (5 60)

Because feedback solutions are deswred, 1t 1s necessary to specify the
information available for generating the control signal Because the properties of the
system are specified by the closed loop poles, the closed loop system must be
linear The feedback must also be linear so the admissible controls for the
fermentor model can be expressed as a linear feedback

u(k) = L x(k) = -1,X(k)-1,S(k) (5 61)

With thus feedback the closed loop system becomes

x(k+1) = [A(k)-B(k)L(k)1x(k) = Ac(k)x(k) (5 62)
where
Ac = la,,-by 1, a,,-b,,1, (5 63)
321'b2111 azz‘bulz
]

Equatng the charactenstic equaton of A.(k) to the following desired

characterstc equation
22 + p.z + p2 =0 (5 64)

where p, and p, are the desired pole locahons and solving for the two state
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feedback gams 1, and 1, (APPENDIX A) we get,

1, = (t + Lu)/v (5 65)
1, = (vp,p, - vq -rt)/(ru + v) (5 66)
vhere
t=p,+p,-a, -a,, (5 67)
u=">b, +b,, (5 68)
v=-(b,, +b,,) (5 69)
q=a,,a,, - a,,a,, (5 70)
r=a,b, +b,a,,-a,b,, -a,b, (5 71)
s =a,,b,, +a,,b,, -a, b, -a,b,, S 72)

The pole placement problem had been solved exphcitly and mn the following
the secton sumulation results wil be presented for a self tunng state feedback

controlier

55 SIMULATION RESULTS

The sumulation results that follow will be divided mto section as follows
Firstly, simulation studies wil be presented that compare the lineansed and
nonhnear models of the fermentahon process Then the operatton of a fixed
parameter state feedback controller will be outlined followed by a self tuning state
feedback controller Both the above controllers assume the avahbility of
measurements of the output states, this 1s not true of the real plant and hence the
need to introduce a self wmng Extended Kalman filter This 1s based on output
measurements of carbon dioxide from the fermenter and provides estimates of the
states (biomass and substrate) A sampling penod of h=005hr (3 mn) will be used

m the sumulation studies to follow
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551 Non-Linear and Lincansed Plant Comparsion

In the comparative studies between the non-linear and lneansed plant the

following parameters and wnputs are used

7

Table 5 1

These mputs and parameters give equbbnum state values of X,=422gA and
S,=0552g/l Figure 53 shows a comparsion between the hneansed and non-linear
plant when operating from an imuial state vector (X,S) of x = (2,4) The results in
Figure 54 Mhighlight the problem of moving the operating conditions of the plant
further away from the equilibnum states Figure 54 shows lmnear and non-linear
models operaung with an inal state vector of x = (05,8), far removed from the
equbbnum states This sitwaton is not 1deal as 1n the real plant the imnal states
will be far removed from the equilibnum states of the plant. This problem may be
solved by updanng the equiibnum model at each sampling interval The new

lmeansed model 1s calculated using the previous states of the non-hnear model as,

U, o= Kpax*S, Uyo = [ (Xo/Yx §)48,]%u,,
kg + S,
(5 73,5 74)
Figure 55 shows the good approximation between the lhineansed and non-linear for
the updated equihbnum pomnt. The idea of an updated equilibbnum point will be

used 1n a control structure later

552 Fixed Parameter Controller

The block diagram of a state feedback controller for a fermentation plant 1s
shown mn Fig 56 The controller feedback gans are designed using the current A*

and B* of the lineansed model The control mputs to the plant m the MIMO
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model are defined as ul the diluton rate, D, and u2 the product of the diution
rate and the mnput feed substrate (u2=D*S;) The reference staie trajectonies (X,S)

must therefore be multiphied by the inverse steady state gain matnx Ggg where,

Ggy = B*-1 [ I-(A*- B* L)) (5 75)
where L 1s the feedback gan matnx and I the identity matnx Results for thus

control structure will now be presented

Fiqure 57 shows results for state deviations of (2,3) » (24,38) The plant
was lhineansed around its unal condiions and the closed loop poles were chosen
asp,=p, = 08 Figure 57 shows the cnucally damped plant response
(non-oscillatory) for these pole locations Figure 58 shows the control mputs for
these state devianons and Figure 59 isolates the control input ul (ddution rate) to
show that 1t 1s a reahsuc put for the actual plant, u2 1s a constant times the
dduton rate  as previously outhned Figure 59 shows the mmtal correction needed
n the control mput as the equlibruum model 15 based on the inverse relatonship
outhned m equations (573) and (574) At t=0 the plant 1s assumed t0 be m
equlibnum with equibbrium states equal to the mmtial conditions and equilibnum

control mnputs solved via the nverse relationship outhined above

As expected when the setpoints are moved away from the current equilibnum
pomnt (the mnal conditions) the control performance suffers Figure 510 shows the
controller performance for the same closed loop poles of 08 but with larger state
deviations than previously, (2,3) 5 (454) The plant outputs attain their respective
setponts but not m the desired cntically damped reponse The control nputs in
Figure 511 are unreahsnc for the acrual plant Hence this control structure 1s

Iimited n 1ts application

Two aliemanves may be considered Firstly, a lineansed model about the
setpoint could be used and secondly, for large dewviahon intermediate setpoints could

be chosen to give plant outputs that go from their mmtal conditions to their
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respective  setpoints in a piecewise manner with intermediate updating of the

lineansed model

For a lineansed model about the setpoint we use the state trajectones of (2,3)
-+ (24,38) Fig 512 shows the plant output for thus approach and 513 shows the
mput dilubon rate The plant /o values are similiar to the results for lineanzing
about the imtial conditions For imtial condibons far removed from the setpoint the
plant does not show a cnucally damped response erther but does show different
control wnputs Figure 514 shows the plant o/p for lineansing about the set points
and large deviahons of states The profile 1s smoother than that shown in Figure
510 but again not cntically damped Of the control wnputs in Figure 515 the

dilution rate shows an unreabstic value for the actual plant

The second altematve, as mentioned earlier, 1s to munplement a method of
piecewise lmeansation, wherby an iftermediate setpont 1s defined and the
equihbnum model updated once thus pomnt is reached Updatng the equlibnum
model at each samphng interval was not possible as the large correcton 1n the
control mput as shown i Fig 59 occured at each samphing interval and negative
values of equiibrum states resulted Results are shown in Figure 516 when the
piecewise update techmque 1S used The control inputs are shown in Figure 517
This method provides better scope as the plant can be dnven from its mmnat

condinons to some remote value n a piecewise fashion.

553 Self Tuming Controller

The schematic diagram of a self tuning state feedback controller for a
fermenter 15 shown in Figure 518 The non-linear plant 1s simulated with a Monod
growth structure and the parameter identificanon model of Section 332 1s used m

the Recursive Least Squares (RLS) identificaton techmque The non-hnear plant 1s

simulated with the following parameter values,
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Hmax=0 8 kg =0 22 Yy =05
Table 5 2

The plant outputs are shown in Figure 519 for state trajectones of (2,3) -
(24,38), these trajectones will be used throughout the remainder of the simulaton
studies as will closed loop pole locations of p, = p, =08 The convergence of
the plant parameters 1s shown m Figure 520 The yweld parameter Yy ¢ has been
identified using the direct estimate techmque of Chapter 3 The parameters Hmax
and kg were identified using an RLS subroutine Imtial parameters estmates of
Hmax =01 and k=005 and Yy ¢=01 were used mn all simulations Clearly the
parameters of Figure 520 begin to converge after 0Olhr A forgetting factor of
A=095 and mmnal covanence matnx P=105 were used The control action of
Figure 521 although severe at first, due to the bad mutial estmates of parameters
and an invers¢ equiibnum calculahon based on these eshmates, improves as the

parameters converge

The performance of the sclf tumng controller 1s now mvestgated for a
changing plant parameter At t=07br the plant parameter jpax 15 changed by 10%
aroundits nominal value 10 YPpae=088 Agan A=095 and P=105 apply
Simulation results are shown in Figures 522-524 The plant outputs are shown n
Figure 5>22 and despite the disturbed parameter value the set points are reached
at t=4 55hr Even with this disturbed parameter the control mputs in Figure 524
are acceptable for an actual plant. The idennfied plant parameters of Figure 523
show slow recovery after the Mpay 1s disturbed It was decided to change the
forgethng factor to A=09 and investgate the effects on parameter convergence
when Wmax 1s disturbed Simulation results for the plant outputs, parameter
convergence and control inputs are shown in Figures 525-527 The parameter
convergence properues are improved the setpoints are reached in 2 85hr compared
to 4 55hr n the previous case As expected the control action, shown m Figure
527, associated with such an unprovement in performance 1s severe and in fact

not suited for an actual plant
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56 CONCLUSIONS

This chapter on self tuning control of fermentation processes has attempted to
join together much of the work and ideas outlined in the previous chapters The
self tmng controller used incorporated the procedures outlined mm Chapter 3
regarding the identificabon of plant parameters and the effect of continual updating
of these parameters Detailed stdies of the controller performances over a range of
condions has been outlined Some work remawns especially that of the mntroduction
of a self wnng Kalman Filter mto the overall control loop This aside the self
tuner showed encouraging results The main ment of the self tuner 1s its ability to
track time varying parmeters and coupled with the process of lineansation it may
be possible to mprove the control of an actual fermentation process However, In
some of the simulation studies outhmed mmtal control signal and parameter
vanations are unacceptable In a real system the view of the self tuner as a black
box device which can be connected to a system and left to look after itself may
be somewhat of a myth Care would be needed in settng lumits on the control
signal and on parameter vanations Perhaps a self tuner used as part of a control
system would be more beneficial The applicaton of the self tuner to a real plant

18 necessary and looks feasible with the introduction of an Extended Kalman Filter
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CHAPTER 6

EXPERIMENTAL RESULTS AND MODEL VALIDATION '

This chapter will present expenmental results from a piot scale fermentor
The process nstrumentation and measurements techmiques are outlined for the
system Model validaoon, identificaton of model parameters and an on-hne method
of state estimaton 1s nveshgated for a batch process Finally, the validity of the

expenimential results 1s discussed

61 PROCESS INSTRUMENTATION

This secnon will discuss the mstrumentaton employed for the fermentathon of
bakers yeast on on 10-litre pilot plant fermentor, as outlmed in Appendix A The
fermentanon vessel used was a New Brunswick SF-116 fermentor This stainless
steel vessel 1s steam sterilisable and the vessel contents were typically sterihised at
120°C and 15psig for 45-60 minutes before innoculation The vessel 15 equipped
with an agrtator and dunng fermentation process the medwm 1s agitated at 300-400
mpm A samphng port which must be steam stenihised pnior to each sample facilites

off-hne analysis

A New Brunswick Scienttfic Senes 900 polarographic dissolved oxygen
elecitode was used to measure dissolved oxygen levels A New Brunswick
Sciennfic dissolved oxygen transmutter (Model DO-50) with a 0-10mV analog
output comresponding to 0-100% saturaton was used in conjunction with the

electrode

An 1mportant feature of any fermentabon instrumentation are the gas analysers
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An Analytical Development Company analyser, type SS206, was used to momtor
CO, levels m the exhaust gas stream The exhaust gas for carbon dioxide
measurment was first passed through a drying column contaming calcum chlonde
to remove excess moisture before entermg the infra-red analyser The analyser
gives 0-5v output for 0-10% CO, A Servomex S570A analyser was used (0
measure oxygen levels m the exhaust gas Agan pnor to analysis the gas was
dned by passing through a column of silica gel( The paramagnetic oxygen analyser

outputs a lnear 0-1V for 0-100% oxygen

A calhbraton routine preceeded each fermentation run. The carbon dioxide
analyser was set to zero using air as normal air content 15 0003% CO, while the
span of the mstrument was set using a 5% CO, gas supply Zero on the oxygen
analyser was set using a mnitrogen gas supply and the span of the wnstrument was
set using air as normal air content 18 21% The saturation level of the dissolved
oxygen probe was set by bubbhing air through the medium in the vessel at 12
Ymn arr input and 300rpm agiator speed (the operating conditions) The zero set
on the dissolved oxygen instrument was obtained by bubbling mtrogen through the

medium

The vanous instrumentation signals were signal conditioned and 1nterfaced to a
IBM companble 386 based Personal Computer via Metrabyte DASH16 and DDA06
mput/output cards The DASH16 provides timers and D/A facilities and uses an
industry standard (HI-674) 12 it successtve approximation converter with a 12ps
converston time All instrumentaton signals were filtered and interfaced m
differennal configuration which provided 90db common mode rejecton and +10v
common mode range The DDAO6 provides 6 independent 12 bit D/A converters
and 24 bis of digial /O and are TTL/CMOS compatabile The exhaust gas was
channeled to the CO, and O, analysers using 24V solenoids. The Solenoids were
“thrown" by Darlington Dnvers tnggered by the digital output lines The exhaust

gases were sampled every 5 min (0083 hr) with a 30 sec delay from tnggenng of
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the solenoid to sampling (1e¢ the solenoids were thrown at 45 min ntervals) This
was necessary to to allow the exhaust gas to stream through the drying columns
and register the respective analyser At S min intervals the recorded value of CO,,

O, or DO was the mean value over 100 consecutive samples

6.2 MATERIALS AND METHOD

The preparanion for a fermentabon was in two stages The first stage mvolved
the preparataion of a yeast mnoculum and the second the preparation of the
growth medum The imnnoculum was used to seed a production medium batch and
incubated over 20hrs The acwal production batch stage was the strred aerated
fermentation process and was run in the New Brunswick pilot-plant fermenter

Following the fermentation the yeast was harvested by continuous centnfugation.

62.1 Innoculum Preparation

Cane molasses -40g/1
(NH,) ,S0, - 5g/l
pH 5 0-5 2 before sterilization (121°C, 20 min)
pH 4 7-4 9 before 1noculation
A flask contaimng 400ml concentrates was wmnoculated with 2-4ml of a yeast
cell suspension (Saccharomyces Cerevisiae) The flasks was incubated on a shaker
table at 30°C for 24h

622 Medium Preparation

Eight htres of medium was prepared according to the following recipe,
Cane molasses - 20g/1

(NH,) SO, - 5g/1
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Anti1foam - 50ml

(poloxyethyleneglycol-ppg)

pH 5 0-5 2 before sterilization (121°C, 45min)

pH 4 7-4 9 before 1noculation

The mediuum 1n the vessel was stenlised at 121°C for 45 muin with constant

agitanon The producnon medum was moculated with a 10% voulme of the seed
culture and incubated at 30°C, 300rpm and 12 v/v/min Dunng the production
fermentation samples were taken at t; and every two hours thereafier to determine

sugar levels and dry weight of yeast.

63 PRODUCTION OF LABORATORY RESULTS

To vahdate the model for the system 1t was necessary to obtain accurate
measurments of the two mamd state vanables i an off-line fashion as there are no
avahable sensors for on line measurement Measurements of biomass (gl) were
obtained using the techmque of dry weights and levels of glucose were found

using a sugar reducing test.

631 Wet Cell Weight/Dry Yeast Weight

The process of obtamng dry yeast weight measurements was imtated by
preweighing 10ml centnfuge tubes Then 10ml of yeast culture was pipetted nto
the centnfuge tube and spun in a Sorval RC SB high speed centnfuge at 10,000
pm for 10 mins The supematant was poured off and saved for the sugar
determination expenment to follow The weight of the pellet and the tube was
recorded The wet cell or sludge weight was calculated in umts of g To obtan
dry yeast weight measurements the pellet was resuspended in Sml of disnlled water
and the contents placed in a heated oven (120°C) for 24hr on preweighed trays

Upon removal and weighing dry yeast weights per 10ml may be calculated This
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can then be scaled t0 a reading of g/l

632 Sugar Level Determmation

Sugar levels dunng the fermentanon may be momtored using a method
called DNS for the esumaton of reducing sugars By addiion of of 3.5 Dimtro
§a1¢cycl¢c acid (DNS) to a broth sample a reachon occurs which causes a
colouremetnc change in the broth. This coloremetnc change may be detected at a

wavelength of 540nm

A stock solution of 1% glucose was prepared 1n a volumetnc flask and
solunons of 01% (Img/ml) were prepared from them as required. Dilutions of
samples were prepared usmg distlled water A set of glucose standards n the
range 0-1 mg/ml was also prepared which consists of reading of optical density
versus glocose concentration A 2ml sample of standard was placed in a tube and

2 ml of DNS reagent added

The tubes were covered and boded for 10 mins After removing and
immediate cooling, 10 ml distilled water was added to all tubes The optical
density of the sample solunon at 540nm was measured with a Pye Umncam
SP6-550 spectrophotometer The standard curve of optical density versus glucose
concentraton then allowed calculation of the glucose concentration of the fermenter

samples mn g/l
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64 MODEL VALIDATION

The following model valhidaton sechon will be divided mnto three parts In the
first part, a compantuve study between expenmental and simulated results for the
main states (biomass and substrate) will be presented The second will vahdate the
dissolved oxygen measurements and mn the third the exhaust gas levels will be
studied Where applicable m the following sections the different specific growth
rate models outhned i Chapter 2 will be used and a study of parameter vanations

and their effects will take place

641 Validation of Biomass and Substrate Measurements

To vahdate the pnmary states we considered the fermentaton run to be
substrate limiting and the following sections outhne the fitting of a Monod growth
rate structure to the expenmental results Fig 61 and Fig 62 shows a comparative
test between expenmental and simulahon with the following parameters,

Hpax =03 k=40 Yy =016
Table 6 1

The profiles show encouraging results for biomass m Fig 61 The
concentrationofglucose shown i Fig 62 does not decay fast enough m
comparsion with the expenmental results so it was deemed necessary to Increase
the rate of actvity Wpax The results of vanous increases m py,y 1s shown for
biomass and substrate mn Fig 63 and Fig 64 respecuvely A value of
Hmax=035hr* would seem to be most sutable for vahdation of the biomass and

substrate measurements
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642 Validation of Dissolved Oxygen Measurements

The dissolved oxygen measurements from the New Brunswick Probe outputs a
saturaion level of dissolved oxygen concentrahon of between 0-100% For
comparston with simulation values, I(i)% saturation 1n the broth was taken as 004
g of dissolved oxygen [8,Ch 8] Thus 1s the saturation level of dissolved oxygen
in distilled water at 30°C A comparasion between expenmental and simulaton
values of dissolved oxygen for varymg ppax 1S shown m Fig 65 with use of the

following parameter values,

k¢ =40 Yy =016 Yy,=12
Table 6 2
and kpa = 300hr' Fig 66 shows profiles of dissolved oxygen when operating
with the parameters of Table 62 (Wp,x = 03) and varymg the value of the
adsorption coefficient kpa A value of Hpax=03hr' and kpa=330hr' was deemed
a best fit for dissolved oxygen validation.

643 Vahdation of Gas Analysis

The results from the carbon dioxide analyser are shown i Fig 67 with the
mole frachon concentration of carbon dioxide in the exhaust gas reaching a
maximun of 15% The results from the Servomex oxygen analyser 1s shown mn
Fig 68 The accuracy of this Servomex oxygen analyser proved to be the issue of
most concemn throughout many fed-batch runs While a decrease in oxygen levels
from the normal 21% 1s seen at the output the mstruments mimmum value of
203% 1s quite dissappointing A comparative study of expenmental and simulated
results of exhaust CO, and O, for changing pya¢ 1S shown 1 Fig 69 and Fig

6 10 respectively
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6.5 IDENTIFICATION USING EXPERIMENTAL RESULTS

As was pomnted out in Section 63 the measurements of biomass and substrate
were achieved off-bne for the purpose of model validatton Imnally parameter
estmates were found using a classical least squares structure Ten data points were
taken due correspondmg to the 2hr sampling interval dunng the 20hr run As a
Monod growth rate structure proved most sucessful in Sechon 64 the data was
formatted 10 1dennfy the Monod parameters as mn Section 332 Classical Least
squares retumned the followmng Monod parameters, ppax=0147, kg=-0529 and
Yx <0092 It will be seen later that these values differ fro the RLS results as the
Classical Least Squares method identifies one set of parameters that swt over the

whole fermentation run

For use m a recursive least squares identification package, as would be the
case mn an on-hne self tuning controller, 1t 1s necessary to obtain more data pomnts
of substratce and biomass than the ten that were achieved dunng the 20hr run
Three methods of data interpolation were tned imtially to obtain sufficient data
pomnts for the recursive least squares techmique These are presented m Section
651 to esumate the parameters of an unstructured growth rate model and the most
sucessful interpolanon techmque 1s then used for the parameter estimation of the

Monod and Ollson models in Section 652

651 Unstructured Growth Rate Model

Thefirst method of interpolanon used was a polynominal fit to the
expennmental biomass and substrate profiles The polynominal fit for biomass and
substrate 1s shown in Fig 611 and Fig 612 respectvely Data pomnts were now
extracted at intervals of 00Shr and inputted to the RLS routne Results are
displayed in Fig 613

The second method took a straight line fit between each of the ten data
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pomnts in a piecewise fashion and again exiracted data pomts at ntervald of
0 05hrs Results are displayed in Fig 6 14

The thurd method of mnterpolabon strove to fit french curves between the data
pomts This was done manually and hence data pomnts were read at O Shr intervals
Results are displayed in Fig 6 15

Thepiecewise fit, discussed later, was deemed the most sutable for
idenuficanon purposes and was then used to0 esumate the parameters of a Monod

and Ollson model

652 Monod and Ollson Growth Rate Models

In this secton we assume a Monod dependent growth rate and using the
piecewise data fit and sampling mterval of h=005 results for a Monod parameter
esumation 1s shown in Fig 616 and Fig 617 Results for the Monod parameters
show reasonable correlanon with thoses used 1n the expenmental validation The
yield parameter 1s 1dentified as 012 (016 m vahdauon), while (.« 15 1dentfied
as 022hr' (035hr' in the vahdahon) The kg parameter shows the biggest
vanation from the validaton values A ume varying parameter with a mumumum
value of -32 was identified (Fig 617) but a value of 40 used in validation

These vanations will be discussed m the next section

For an Olison growth rate structure we include the measured values of
dissolved ,oxygen. The dissolved oxygen samples were taken every Smun (0 083hr)
and equivalently the sampling interval on the piecewise fits of biomass and

substrate was changed to 0083hr Results are presented in Fig 6 18
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66 DISCUSSION

661 Model Validahon

In the analysis and design of any control system it 1S necessary to have a
mathematical model of the given plant. Such a mathematical model must descnbe
thesystem dynamics as completely as possible The model validaton and
idenuficanon studies presented above provide some interesting isights nto the

dynamics of a batch fermentor

The validanon of biomass and substrate results proved to be the most
sucessful The results of Fig 63 and Fig 64 provided acceptable fits for both
pnmary states but vanatons m .y affect not only biomass and substrate results
but also dissolved oxygen Having neglected the effects which pp .. had on the
other states it was through validation of the dissolved oxygen measurement that the
complex dynamics and interdependence of many states and parameters could be

seen for fermentation processes

In Fig 65 1t may be seen that the rate of uptake of oxygen from the
dissolved state by the yeast cells 1s strongly dependent on the growth rate At
hugher values of Up.x the uptake of oxygen by the cells, 1s greater than the rate
at which oxygen 1s being dissolved mto the broth. In fact at ppya,=035 the broth
becomes deficient i dissolved oxygen. Mampulaton of the adsorption coefficient
kpa was then considered to increase the rate of oxygen transport nto the system
It 15 evident 1n Fig 66 that increasing the value of kpa prevents a deficiency 1n
dissolved oxygen We also see that under conditions of constant .. vanations in
the value of kpa changes the miumum concentration of dissolved oxygen but not

what point in time at which this mimimum occurs

As with any control system the accuracy of the nstruments used must be
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mvestigated The galvamic dissolved oxygen probe used provided a conunuous
concentration measurement 1n solution of oxygen partial pressure in percent of
oxygen An oxygen permeable membrane seperates the cathode and anode electrode
internals from the medium flud Reactons at the electrode surfaces produce small
amounts of current to provide voltage measurement which 1s correlaied to the
oxygen flux through the membrane In early baich runs it was found that the
normal membrane did not withstand the ngirous stenhzaton and agitation
procedure The new membrane left the instrument less sensiive and thereafter span

seis (100%) in the calibration routine took the order of 8 minutes

Another 1ssue that must be addressed with regard to the DO probe 1s 1its loss
of cahbration over a 20hr batch run The instrument fails to recover 100%
saturabon even when relatve activity in the vessel has ceased This may be
explamed by either of the followmng Firstly, the probe was calibrated m the
medium outhned m Section 622 with high substrate and low biomass
concentrations The solubiity of oxygen in the resuling medium of 20hr later with
high biomass, low substrate concentration and secondary products may only be 40%
of mmnal reading as the probe mdicates Secondly, accumulation of various bodies
on and around the membrane over the 20 hrs would have an adverse effect on the
permeabuity of the membrane The answer 1s most likely a combination of the two
because when the probe was removed at the end of the run and placed i

saturated distlled water it only attamned readings mn the 70-90% range

It was thought that in the batch run presented that the broth became deficient
in oxygen and this could have had an effect on DO, O, and CO, measurements
At t=10hr the arr mput was mcreased from 12l/min to 14l/mun. The dissolved
oxygen level of the broth (Fig 65) and the O, level n the exhaust gas (Fig 6 8)
shows 1ncreased concentrations and the carbon dioxide exhaust (Fog 67) the
expected decrease at t=10hr This would imply that the dissolved oxygen state was

in equiibnum and that the rate of consumption was equal to the rate of transport.
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It can only be assumed that the fermentanon may have been oxygen Lmiting at
some time between t=7hr and t=10hr If\ the system was oxygen lmiting 1t may
explain the slightly lower than expected exhaust CO, output. A typical "trough”
shaped dissolved oxygen concentrabon of Fig 66 may have pushed the

expenmental and simulation values of CO, m Fig 69 closer

The Servomex 570A oxygen analyser measures the paramagnetic susceptibility
of the oxygen and has a quoted accuracy of 0 1% and a response time of less
than 75 seconds with an inlet pressure of 10psig Unfortunately the analyser did
notdisplaysuch accuracy duning any of the batch mns and definety for
fermentatonpurposes a model 580A with a 0-25% range would be more

appropnate than the current single 0-100% range

662 Expenmental Identficaton of Parameters

In hight of the results from the identificanon of parameters using expenmental
results we must Jook at the vahdity and the physical sigmficance of some of the
idennfied parameters First we will look at the results of fithng an unstructured

growth model to the expenmental datza via the three methods of data interpolation.

The maximum rate of growth mn the system occurs at t=7hr (U o dX/dt)
The polynommal fit data fals to eshmate this and returns a maximum growth rate
occunng at t=12hr n Fig 613 This occurs because in the polynomianl fit the
slope of the biomass and substrate profiles are changed substantially and hence

the occurence of the maximum value of the parameter y 1s changed

The piecewise data fit of Fig 6 14 reums a better esimate of growth with a
peak at t=7hr The overall profile of p 1n Fig 614 1s not as smooth as m the

polynominal fit of Fig 613 with the parameter changing 1n a piecewise fashion

85



However the maximum value of u=03Shr' compares well with the value used
the model validation secton. The french curve data fit retuns an peak estimate of
pu=028 at t=7 Shr but as data pomnts were taken at O Shr intervals compared with
005 in the above two cases this method suffers manly because of the manual

interpolation of data from the graphs

The yield paramater Yy ¢ 1s defined as the yield of biomass on substrate or
AX/AS The yield of 22g/1 (Fig 61) of biomass from 12g1 (Fig 62) of substrate
mplies Yy =018 The polynomnal fit (Fig 613) and piecewise fit (Fig 6 14)
estmate an increasing yield rate that converges to a value of 012 The French

curve fit in Fig 6 15 estmates a poor value of Yy (=006

From the above estimation scheme the piecewise fit proved most sucessful and
was then used to fit a Monod growth structure to the data The Monod parameters
Mmax and Yy g are shown m Fig 616 with the kg parameter shown m Fig 6 17
The parameters Wmax and Yy o converge to expected values However the RLS
estmate of kg 1s poor This would seem to vahdate the results of Fig 63 and Fig
64 that when fithng a Monod model to the data descrepancies existes between
expenmental and simulated values due to model naccuracies In an RLS framework
these descrepancies mamfest themselves n the identtficaion of a time varying but

mcorrect kg parameter

In Fig 618 an Ollson growth rate structure was fited to the data The
paramater converge to unrealisic values and prove that for the fermentahon m
question was substrate hmiting and not double substrate hmiting Therefore the

growth rate for this run s best descnbed by a Monod growth rate structure
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67 SUMMARY

Thus chapter has outhned the work undertaken mn a pilot plant on a 101
fermentor with details of matenals, methods and process nstrumentation. Using the
expennmental results model validaon and identficahon studies were camed out
The results mndicate that for the results presented from the piot plant, a Monodq

growth rate best descnbed the process
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CHAPTER 7

CONCLUSIONS

The computer control and opumization of fermentaton processes i1s of great
econmomc terest to industry and has created a substantal research interest
academic institutions Thus thesis has outlined research undertaken nto the self
tuning control of fermentaon processes at the Control Technology Research Ut
(CTRU) at Dubin City University mn collaboraton with the School of Biological

Sciences

The analysis of fermentation processes reveal many problems that face the
designer of a self tumng controller The main hurdles 1n a self tuning context are
the need for an accurate model structure that descnbes the system completely and
the availability of process measurements for the purpose of on-lmne idennfication of
system parameters To further complicate the control system design, bioprocesses
are systems which are mnherently non-linear and highly interactive This 15 evident
from the fact that the biomass concentraion is not only affected by the substrate
concentration but by the dissolved oxygen concentration, sturer speed, pH and

temperature

In ths thests, a comprehensive model for a fed batch Baker's Yeast
fermentanon has been developed It has been demonstrated that the choice of
model for a fermentahon process depends largely on the the control objective, as
well as on the relahve importance of vanous transport and kmenc factors under
conditions most hkely to be found m the course of an actual implementaton The
transport model presented 1s applicable to any agitated and aerated reactor while

the kineuc model depends on the metabohism of the specific orgamsm

The cntical mmportance of on-lme esumation methods results from the
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naccuracy of the presently available growth models, the rather small number of
measurements that presently can be made on-ine and the high sensitvity that most
bological systems extubit to vanations m the environmental condiions Most
biosensors have not gamned wide scale acceptance on 1ndustnal process with
problems in the area of robusmess and long term stablity This problem of the
availabiity and rehability of on-line sensors and the considerable delay that can be
introduced mnto  process measurements by off-line analysis has led to investigation
into process observers such as the Kalman Filter This method of state estimation
has tned to mprove control techmques by moving from the off-line to the on-line
domain The Kalman Filter observer 1s not without problems as a fixed parameter
model can suffer from simphlfications made in the fermentor model system The
simulation results presented show that the Kalman Filter, ke the non-linear and
non-adapuve observers, suffers the most from inaccurate mmtial estmates of the

process states

A Recursive Least Squares (RLS) algonthm for the identficabon of system
parameters based on on-line measurements of the states has been presented The
good agreement between simulated and expenmental parameters indicates that the
proposed algonthm would be very useful in a self tuning control context especially
as the RLS shows good tracking of time varying parameters with a vanable

forgeting factor

The parbcular self tuning control algonthm developed provided interesting
results It strove to include the vanous parts of the controller already developed
seperately  viz the identficaton and estimation algonthms The state feedback
controller developed differed from other self tuning controllers presented in the
Iterature in that 1t attempted to the control process states and not opumally control
the envormment i which biomass could grow The results show that a self tuning

controller can sucessfully be apphed to a fed batch fermentanon process simulated

on a digital computer
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The possibility of future work as a result of this study of fermentation
processes lies mawnly 1n the real time implementation of the self turung control
strategy at a piot plant scale In this thesis an integrated approach has been
presenied for the on-line estimanon of state vanables and culture parameters The
real ome applicanon of any self turung strategy will depend on the availibility of
accurate measurements of the state vanables The problem of determining the states
of a system from noisy measurements of exhaust gases via the techmique of
Kalman Filtenng has shown promuse but addiional work 1s needed The current
method 1s based on the non-lnear correlation between the process states and the
carbon dioxide output in the exhaust gas However, as mentioned earlier, the filter
suffers from maccurate wmtal state estimates and one area of future work could be
the use of an 1teraive Kalman Filter which ncorporates iterations of the output
equations to reduce the estimation errors and the bias due to poor witial estimates
The future availabiity of accurate measurements of oxygen concentrahon in the

exhaust gas could further enhance any estmation algorithm

In future estmation schemes consideration should also be given to more
complex algonthms The relatively large sampling time associated with the control
of fermentation processes ensures adequate processing time 1s avaliable for any
increase 1n complexity of algonthms These algonthms may consist of using a
combined state and parameter estmators [52]) rather than the presently seperate
Recursive Least Squares and Kalman Filter techmiques Consideraton should also be
given to cases where the state noise covanance Q and observation noise covanance
R are not known a pnon Algonthms are available that can be used on-line to

idennfy the unknown covanances

Future control schemes could also revert back to the popular approach of
controling the environment in which maximum growth rates could be achieved

The control of the dissolved oxygen concentraton via the mput air flow rate and
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agitaton speed 1s one approach that could be tned in a self tuning context

The use of modelling and opuumization for on-line computer control, coupled
with the ncreasing use of available sensors for momtonng fermentation processes
will continue to be of mnterest to wndustry The progress mn control techmques must
be influenced 1n a posiive manner by academic efforts and hopefully the rescarch
undertaken for this thesis will contribute to the ncreasingly mmportant field of the

control of biological systems
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FIG 2.4 FLOWCHART OF RUNGE-KUTTA SUBROUTINE
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Fig 3.1 Growth Rate,lJambda=0.99
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Fig 3.3 Monod,lambda=0.99
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Fig 3.9a Ollson Parameters
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Fig 3.6a Comprehensive Model
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Fig 3.6c Comprehensive Model
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Fig 4.2a NL Observer,h=0.5
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Fig 4.4 NA observer,D=0.42
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Fig 4.6 NA observer,D=0
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Fig 4.10 EKF — Biomass
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Fig 5.7 Feedback Controller
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Fig 5.9 Dilution rate
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Fig 5.11 Control i/p—large dev
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Fig 5.13 ul, set pt linz
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Fig 5.15 Set pt linz—-large dev
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Fig 5.17 Control i/p, p/w linz
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Fig 5.19 Self Tuning Regulator(STR)
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Fig 5.21 STR-Control i/p
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Fig 5.23 STR—Parameter 1.D.
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Fig 5.25 STR-States
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Fig 6.1 Biomass
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Fig 6.3 Biomass,varying umax
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Fig 6.9 Dissolved 0Z2,vary umax
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Fig 6.7 Fermentor COZ
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Fig 6.11 Biomass curve fit
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Fig 6.13 Polynominal fit
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Fig 6.15 French curve fit
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Fig 6.17 Piecewise fit, Monod
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