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ABSTRACT
SELF TUNING  CONTROL OF FERMENTATION PROCESSES

Control o f  fermentation processes is a complex problem due to the inherent
non-lineanties and time varying characterstics o f  the process The application o f
conventional single loop analogue controllers provides poor control due to problems
in tuning individual loops and the lack of ability to implement complex controllers 

The application o f  standard optimal techniques is compounded both by the 

complexity o f  the process and the lack of adequate models as a result o f poorly 

understood dynamics The lack o f  important transducers for product measurement 
coupled with the time varying parameters in a fermentation process provides a
natural test for adaptive control techniques

This thesis includes details o f  modelling and simulation studies earned out on 

a Bakers Yeast fermentation process A mathematical model o f  the growth o f  

Saccharomyces Cerevisiae which desenbes oxidative and aerobic fermentative growth 

on glucose is presented The parameters which influence the growth phases o f  the 

yeast organism are identified by Recursive Least Squares as part o f  an overall 
adaptive control technique

An integrated approach is presented for the on-line estimation o f  the state o f  

a biochemical reactor from presently attainable real time measurments State 

estimation by the presented method o f  Kalman filtering and the above parameter 
estimation technique is used for the development o f  an adaptive control scheme

Details o f  the pilot-plant, instrumentation and computer systems are desenbed 

highlighting the practical problems m these areas and the means by which these 

problems have been overcome
Results are presented to show the sucessful performance o f  the adaptive 

technique and this work indicates that the application o f  an adaptive technique 

could provide great opportunities for the enhancement o f conventional control o f  

fermentation processes
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NOMENCLATURE

C* saturated concentration o f  C 0 2 in the broth (g/1)
C the broth concentration o f  dissolved C 02 (g/1)
D  the dilution rate ( h r 1)
dfo the air bubble diameter in the broth (cm)
dj the impeller diameter (cm)
D 02 the diffusion coefficient for oxygen (cm 2/s)
E the ethanol concentration m the broth (g/1)
F the mput flow  rate o f  air to the vessel(l/mm)
H Henry’s constant for gases
K absolute temperature m Kelvin (Degrees Kelvm)
K^ the factor by which the volumetric absorption coefficient for C 0 2 

than that o f  oxygen
k 02 the saturation constant for dissolved oxygen tensioa  

kga the mass transfer or absorption coefficient for oxygen ( h r 1) 
ks Blackman’s constant
L the air bubble membrane thickness (cm)
N g the m ole concentration o f  a gas (mole)
Ny the stirrer rotation speed (rpm)
O* the saturation concentration o f  dissolved oxygen in the liquid (g/1)
O the dissolved oxygen concentration in the liquid (g/1)
P pressure in the vessel (bar)
p0 the partial pressure o f  oxygen m the gas phase (atm)
R gas constant
Re Reynolds number for a fluid
S substrate concentration (g/1)
Sh Sherwood number for the broth.
Sl the feed concentration o f  glucose (g/1)
V volume o f  liquid m the vessel(l)

( v )

greater



Vf, the ascending bubble velocity (cm/sec)

Vg volume o f  the gas phase (1)
X cell concentration (g/1)
Y x s the yield coefficient o f  biomass on substrate (g/g) 

Y x o the yield coefficient o f  biomass on  oxygen (g/g) 

^  Y x c  the yield coefficient o f  C 02 on biomass (g/g)

GREEK

|i  specific biomass growth rate ( h r 1)
\Iq broth viscosity (g/cm sec)
T specific ethanol growth rate ( h r 1)
5 surface density o f  the broth (g/cm 3)
G f liquid holdup fraction in the reactor 

e g  liquid holdup fraction in the gas 

pc continous phase density (g/cm 3) 
p q density o f  the broth (g/cm 3)
X forgetting factor

(vi)
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CHAPTER 1

INTRODUCTION  

11  EVOLUTION OF FERMENTATION CONTROL

Ancient man was well aware o f  fermentations even though he had little 

knowledge o f what caused them He was aware o f  such fundamentals as making 

intoxicating dnnks from grains and fruit The aging o f  meat and the manufacture 

of alcoholic beverages were man’s first uses o f  feim entatioa The discovery of fruit 
fermentation was made so long ago that the ancient Greeks believed that wine had 

been invented by the god Dionysus The manufacture o f  beer is only slightly less 

ancient than that o f  wine An Assynan tablet o f  2000 B C  even lists beer among 

the commodities that Noah took aboard his Aric In those early days man 

considered feimentation as some sort o f  mystical process, he did not know that he 

was profiting from the activity o f  invisible microorganisms

During the Middle Ages, experimenters learned how to improve the taste o f  

wine, beer and cheese Yet, after thousands o f years o f  expenence, man still did 

not realise that in fermentations he was dealing with a form o f life However, m  

1857, Pasteur proved that alcoholic fermentation was brought about by yeast and 

that yeasts were living cells This discovery was a major turning point and 

considered the birth o f  microbiology With the discovery o f  additional products and 

chemicals produced by fermentations the inhentors o f  Pasteur’s knowledge pushed 
fermentation processes towards commercial practice

The technical innovation that the microprocessor brought to engineering 

systems did not rapidly become apparent m its application to control o f  biological 
systems In fact, in 1973 when the first conference on Computer Process Control 
m  Fermentation was held m D ijon[l], reports on the apphcation o f computer

1



control had only been published for two production plants and one pilot plant in 

the fermentation industry N ot only were the applications few but it was also 

indicated that not all applications were sucessful Special purpose software in 

machine language code made modifications and correction o f  errors difficult 

Combined with limited reliability o f  computer hardware, sensors and transmitters, 
this resulted in overall unsatisfactory performance

Fermentors, before microprocessors, were controlled by analog systems Control 
action was generated by pneumatic or electncal elements with physically defined 

characterstics so as to generate proportional, integral and derivative response to 

error signals When microprocessors became readily available the most natural 
evolution was to append the microprocessor to the existing analog system so as to 

obtain digital logs and supervisory control o f  the process set points [2] Such 

control techniques were at the time practicable but certainly not optimal

Overall at present the fermentation industry has widely accepted computer 

based systems Alford [3] describes the evolution o f  a computer system at Eh Lilly 

& Co at their plant in Indima, U S A  from the early 1970’s to early 1980’s 

Microcomputer development allied with real time operating systems, standard 

modular control languages, realistic process models and on-line programming 

facihties has completely changed the approach to fermentation system desiga

12  CONTROL OF FERMENTATION PROCESSES

The feasibility o f  applying control techniques to fermentation processes is 

today expanding m application Increasing production costs have led to a greater 

interest in data acquisition for performance analysis and on-line control o f  the 

process The ability to control fermentation accurately and automatically would 

enable a reduction in production costs and an increase in yield whilst maintaining



the quality, uniformity and reproductibility o f the product
!

Analysis o f  fermentation processes reveal that many problems face any 

prospective control system designer Until recently the fermentation industry had 

lagged behind in the application o f  control techniques and especially computer 

control Progress m the application o f  computer control techniques has been  

hampered by many o f  the following practical problems

Firstly, the development o f  suitable instruments for the measurment o f  

biological vanables has lagged behind the development o f computer control 
schemes In particular instruments for the measurement of biomass ( e g  bakers 

yeast) and substrate concentrations have not gained wide acceptance as they do not 

withstand the rigorous sterility requirements and those that pass the above test 

prove to be less than durable [4]

Secondly, the fermentation process is more complex than many chemical and 

other types o f processes It contains non-lm eannes and parameters which change 

with time and from batch to batch Hence conventional two and three term 

controllers are difficault to tune and cannot provide optimal performance over the 

whole range o f the process

Thirdly, the development o f  mathematical models to descnbe the fermentation 

process has been restncted by their complexity M odels have been proposed using  

differental equations desenbing the microbial kinetics [5,6] These require 

assumptions that the parameters o f  the m odel equation are constant This does not 

account for the fact that cell activity may switch between different metabolic 

pathways dunng a fermentation life cycle

Despite these problems, a variety o f  control techniques have emerged [7] that 
concentrate on more effective use o f those measurements which are already
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available It will be the purpose o f this thesis to outline how control using self 

tuning techniques would apply to a fed batch fementation process

1 3 MOTIVATION FOR RESEARCH

The research undertaken and the efforts to design a adaptive/self tuning based 

controller for a fermentation system which are descnbed m this disseratation have 

been motivated pnm anly by the upsurge in engineering interest in adaptive/self 

tuning regulators Engineering interest m adaptive control ongnated pnmarly with 

aerospace problems It was found that the use o f classical linear controllers in 

aircraft auto pilots did not always give satisfactory control o f  the altitude o f high 

performance aircraft The changing characterstics o f  a fermentation process also 

necessitates a more sophisticated controller which would automatically adapt itself 

to the process Hence this project was initiated m anticipation o f the applicability 

of a self tuning regultor to a fermentation system

The research was undertaken at the Control Technology Research Unit
(CTRU) at Dublin City University m collaboration with the School o f  Biological 
Sciences

1 4  THESIS STRUCTURE

The research work undertaken in  this project which investigates possible
solutions to the monitoring and control o f  biotechnological processes is presented as 

follows

Chapter 2 presents the basic mathematical models used to descnbe the kinetics 

o f fermation processes In particular, the specific microbial growth rate is presented

4



and the variety of ways available to express its dependence on envoimmental 
factors

Chapter 3 concentrates on the on -lin e identification o f  the fermentation 

parameters that influence growth during a fermentation cycle

Chapter 4  outlines the general state estimation problem and its associated 

theory and outlines the application o f  an Extended Kalman Filter to estimate 

biomass and substrate concentrations from measurements o f  the concentration o f  

carbon dioxide in the exhaust gas

Chapter 5 is concerned with the adaptive control o f  the fermentation process 

with control law formulation being based on pole placement by state feedback.

Chapter 6 presents experimental results from the pilot plant This chapter 

presents comprehensive model validation results and off-line parameter and state 

estimation using experimental results

Chapter 7 comments and concludes on the overall research and highlights 

areas that need further w oik
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CHAPTER 2

MODELLING AND SIMULATION OF FERMENTATION PROCESSES

A  fermentation model is an abstracted and generalised descnption o f  relevant 
aspects o f  a fermentation process In fermentation, as m other processes, an 

accurate mathematical model is  a prerequisite for the simulation, control ’and 

optimisation o f  the process Process m odels used in control systems vary in form 

yet have the unifying feature that they predict process outputs for a given set o f  

inputs The final choice o f  model must be a calculated compnmise between the 

degree o f  simplicity that will allow good control and the equally important desire 

to represent all the important aspects o f  the process accurately In the case under
consideration, the model presented is intended for use in simulation studies where
the model structure will eventually be utilised by a self tuning controller 

implemented on a digital computer It is with the development, uses and limitations 

o f  mathematical models o f  fermentation kinetics and transport that this chapter is 

concerned Vanous fundamentals o f  a biological system are first outlined followed  

by a detailed analysis o f  the kinetics and transport as applied to a fermentation
system

2 1 BIOCHEMICAL FUNDAMENTALS
\

The science o f  biochemistry underlines all mathematical treatment o f
fermentation processes, particularly kinetics which is at the core o f  all models o f  

bioreactors Biochemistry is concerned with the particular types o f  chemical 
reactions found m all living organisms, and which underiy all biological processes 

The challenge in learning biochemical engineering is to understand and analyze the 

processes o f  biotechnology so that we can design and operate them in a rational 
way To reach this goal however, a basic working knowledge o f cell growth and 
function is required [8,Ch 5][9,Ch 4]
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Microorganisms grow by converting substrates ( e g  glucose) present in the 

liquid medium into cell mass ( e g  yeast) and possibly products such as alcohol and 

caibon-dioxide Growth, which is charactensied by an increase in cell mass occurs 

only where certain chemical amd physical conditions are satisfied, such as 

acceptable temperature and pH as w ell as the availability o f  required nutrients For 

the development o f  this model the influence o f temperature and pH are neglected 

because they are assumed constant and controlled dunng a fermentation run.

2 1 1  Bioreactor Techniques

A bioreactor is a vessel designed to faciliate biological reactions A fermentor 

is a type o f bioreactor, designed to faciliate fermentation processes There are 

vanous types o f  fermentors [ 10], e g  bubble column reactors and tower reactors 

However the most widely used is the stirred tank reactor As the name suggests, 
this reactor consists o f  a vessel within which an agitator or impeller stirs the 

liquid broth as outlined in Appendix A  There are three basic fermentation
techniques

a)Batch The liquid, microorganisms and substrates are put into the vessel at
the beginning o f  the batch run and no further additions are made Only
environemental vanables such as temperature, pH and air-flow rate are manipulated 

during the batch run
b)Fed-Batch This employs the same technique as batch, except that substrates 

are fed continuously into the fermentor dunng the run.
c)Continuous With this method, liquid, substrates, and microorganisms are 

continuously fed into and siphoned o ff  the vessel The aim is to keep these 

vanbles in a steady state The total concentration o f  products, substrates and 

microbes fermentor are kept constant

O f these techniques, fed-batch poses the greatest challenge to the control 
engineer Batch fermentation allows only trivial setpoint control o f  temperature and
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pH etc, while continuous fermentations tnes to keep the variables in a steady state 

However, in fed-batch the control engineer must devise an algorithm to obtain an 

optimal substrate feed-rate for a given control objective In fed batch fermentation 

the variables directly controlled are usually substrate feed rate, agitator feed rate 

and aeration rate Measrurements are made o f the composition o f exit gas from the 

fermentor (partial fractions o f carbon dioxide and oxygen) and dissolved oxygen 

concentration Note that none o f the primary variables which concern the control 
engineer (cell growth rate and concentration o f  products in the liquid phase ) are 

mentioned above This again highlights the non-availibility o f  sensors which are 

capable o f  accurately measuring these variables Thus the secondary measurementsf
o f  exit gases need to be augmented by mathematical relations between secondary 

and primary process vanables to obtain pseudo measurements o f  the main states

2 1 2  Metabolism of Bakers Yeast

This section outlines the fundamentals o f  reaction that occur dunng 

fermentation Figure 2 1 gives a diagrammatic representation o f  the principle 

metabolic pathways within the organism under consideration, Saccharomyces 
Cerevisiae [11,Ch 3] The metabolism is very similiar to metabolisms within other 

organisms It is important to remember that every step m the metabolic conversion 

process is controlled by enzymes and to also realise that in a senes chain o f  

reactions, the slowest reaction determines the overall rate Figure 2 2 gives a very 

basic scheme o f  the same metabolism

The mam substances supplied by the organism to  effect metabolic conversions 

are Adenosine diphosphate (ATP) and Nicotinamide adenine dinucleoide (NADH) 
These substances supply much o f  the energy required to carry out the conversions 

At the beginning o f  the metabolism, the substrate glucose (a type o f  sugar) is 

absorbed into the cell from the surrounding environment With the aid o f  ATP, the 

glucose is converted into glucose-E-phosphate This substance can enter two



pathways One which recycles the substance, the other leads to its conversion into 

pyruvate At this stage, two important branches in the metabolism appear, both o f  

which eventually lead to the production o f  Acetyl-Coenzyme- A

As can be seen the intermediate and final pathways are important in the
determination o f  the final product Pathways lead to the production o f ethanol, a
type o f  alcohol and C 0 2, which are released into the environment Generally, in
the presence o f plentiful glucose, a large amount o f  pyruvate is formed This in
turn leads to saturation o f the pathway leading to acetyl-CoA production and drives 

the excess pyruvate into production o f  large amounts o f  ethanol The net result is 

that in the presence o f  excess glucose, ethanol accumulates in the environment

If glucose levels are brought down, the amount o f pyruvate also decreases
This means that the cell looks to ethanol to produce the Acetyl-CoA needed by
the metabolism Thus m the absence o f  glucose the available ethanol is consumed 

However, since the first part o f  the metabolism is inactive in this mode, it is less
efficient m promoting growth. Also in the presence o f excess glucose, the
production o f  ethanol means that much o f  the glucose has been inefficiently
converted to alcohol instead o f  cell mass

The Acetyl-CoA enters a cycle called TAC, the details o f  which are
unimportant save that C 0 2 and NADH  are produced. The NADH then enters into
the so called Respiratory Chain. In this chain 0 2 is taken up and ATP and water
released In the absence o f  oxygen the respiratory chain deactivates and since this 

chain is in senes with the other main metabolic reactions the oxygen level 
becomes growth rate limiting This leads to an effect similiar to the deficiency o f  

glucose

Overall, the metabolism takes in glucose and oxygen to produce cell growth, 
C 0 2, ethanol and H 20



22  MODELLING OF KINETICS

Kinetics, in chemistry, deals with the behaviour o f chemical systems when 

reactants come together and give rise to products Since these reactions are the 

fundamental activities by which changes in biochemical systems occur, the laws 

governing the kinetics of biochemical reactions form the basis o f  all mathematical 
models o f  bioreactors, including fermentors From knowledge o f  the metabolism o f  

Saccharomyces Cerevisiae already outlined, a mathematical description o f  the uptake 

o f  substrates and their utilization within the cell will be developed Aerobic 

bakers-yeast fermentation also utilises oxygen dissolved in the liquid to enable 

growth and a model o f  the usage o f dissolved oxygen will be developed The 

m odelling and utilisation o f products such as alcohol and carbon dioxide will also 

be condsidered The model developed here is for a fed-batch fermentation process

22.1  Cell Growth.

In the initial attempts to model and understand cell population kinetics we 

shall first present models in which only cell mass or number concentrations will be 

employed to characterise the biophase The nett rate o f  cell mass growth rx , is 

often written as [ 12 ],

where X(t) is the cell mass per unit culture volume and \if which has units o f  

reciprocal time, is the specific growth rate o f  the cells For a perfectly mixed fed 

batch fennentor m which the culture is being diluted at a rate D  (hr-1) then a 

mass balance using the above equation gives,

rx = K O  X ( t ) (2 1)

dX = [ | t ( t )  - D ( t ) ] X ( t )  
dt

(2 2 )

X( t 0) = x 0 (2 3)
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D ( t )  = m i  (2  4 )
V( t)

where F(t) is the volumetric feed flowrate o f input substrate (g/lhr) and V(t) is 

the culture volume Section 2 2  6 deals with the growth rate \l in more detail

2.2.2 Substrate Utilisation.

Microorganisms require substrates to synthesise new cellular and extracellular
products and also to provide the energy necessary to drive the reactions Thus
growth and substrate utilisation are both closely related A consumption rate for the
substrate may be expressed as,

r s = - h C Q X U ) (2  5 )
Yx s

where Yx s is the yield o f biomass per unit substrate
For a fed-batch reactor to which a substrate concentration o f  Sj (g/I), defined as 

the input feed concentration is added a mass balance o f  the above gives,

dS = z H t n X t U  + D ( t ) [ S x( t )  - S ( t ) ]  (2  6 )
a t  y x  g

There is no guarantee that the yield factor, an empiraclly defined, apparent 
stoichiometric ratio is a constant for a given organism in a given medium [13]
However i f  a yield factor is approximately constant for a particular cell cultivation 

system it provides useful knowledge o f the cell mass and substrate concentration

2.2 3 Dissolved Oxygen Utilisation

Absorption o f  oxygen from air into a fermentation broth for use by the 

microorganisms is critical to the process o f  growth Only oxygen dissolved in the 

liquid may be used by the cells The rate at which oxygen is taken up by the 

cells from the fluid is called the Oxygen uptake rate (OUR) and is proportional to 

the cell mass growth rate

11
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where Yx 0  is a parameter known as the yield o f  cell mass per gram o f  oxygen 

utilised To avoid oxygen deficiency within the vessel air must transported mto the 

vessel by some process o f  aeration. This transport mechanism will be dealt with
later

2 2 4  Ethanol Production and Consumption

To examine the ethanol producuon and consumption effects within a reactor, 
the metabolism is divided mto two stages The first stage from the adsoiption o f  

glucose to the production o f alcohol and the second stage from the consumption of  

alcohol to the production o f H20

In the first stage, ethanol is produced when excess substrate causes one 

branch o f  the metabolism to be saturated and the branch which produces ethanol to 

activate The production o f excess ethanol is known as the Crabtree Effect 
[8,Ch 10 ][ll,C h  5]] The rate at which ethanol is produced depends on the level 
o f  glucose as well as on the cell mass The Ethanol production rate (EPR) if  no 

ethanol is already present is described by,

EPR! = 'Cmax S X = % X (2  8 )
k s+ s

where x is the ethanol growth rate per unit biomass, i^nax 1S maximum value
o f  t and k§ a rate limiting constant.

However,the presence of ethanol in the medium inhibits the further 

production o f  ethanol At low concentrations, this effect is neligible but at higher 

concentrations inhibition becomes significant This effect can be in incorporated m

OUR = -MX (2 7)

12



an overall ethanol production rate equation by,

EPR = EPR, (2  9 )
1 + E /k e

with E is the ethanol concentration and kg a rate limiting constant for ethanol

In the second part, ethanol consumption occurs when ethanol acts as a 

substrate, cutting out the metabolism that acts on glucose Thus the consumption 

rate depends on ethanol concentration and also on dissolved oxygen in the liquid 

It can be shown that when two substrates are rate limiting in a single  

enzyme-controlled reaction senes, then the overall rate is the product o f  the 

individual rates Thus the ethanol consumption rate (ECR) may be written as,

ECR = Cmax E 0  X = £ X (2  10)
(k o 2+ 0 ) ( k e +E)

where £ is the ethanol consumption rate per unit biomass, is the maximum
value o f £ and kg is a rate limiting constant for ethanol and k02 the saturation 
constant for dissolved oxygen

Thus the overall ethanol concentration is described by

dE = ECR - EPR (2  11)
d t

iJE “ ( Tmax S 
3T ( l+ E /k e ) ( k s +S )

-  Cmax H O  ) X ( 2  1 3 )
(k “ ^ ) ) ( k e+E)

2.2.5 Carbon Dioxide Production

Carbon dioxide (C 0 2) is produced or evolved by the cell dunng the growth 

cycle The carbon dioxide is secreted by the cell and becomes dissolved in the 

fluid and may exist in the liquid phase m any o f  the four forms C 0 2, H 2C 0 3, 
H CO 3- and CO 3‘" C 0 2 is produced at two stages in the metabolism cycle, firstly,



when ethanol is produced and secondly, after the TAC cycle
In the first case the carbon-dioxide produced is proportional to the ethanol 

produced and in the second case it is proportional to the cell mass produced 

(growth rate) Thus the carbon dioxide evoluton rate (CER) is described by,

CER = k Cl EPR + k C2 \iX (2  14)

where k ^  and are constants o f  proportionally for ethanol
and cell mass production respectively
Overall the level o f  dissolved C 0 2 is descnbed by,

d £  = CER + CTR (2  15)
d t

where CTR is the rate at which C 0 2 is  transported across the gas liquid interface 

Only the dissolved C 0 2 molecule is transported across the gas liquid interface and 

this transport phenomena w ill be presented m detail m Section 2 3

It is important to model the amount o f dissolved C 0 2 even though it does 

not directly affect the growth rate This is because measurements o f  exhaust C 0 2 

can be related to dissolved oxygen concentration and hence growth rate via 

equation (2 14)

2 X 6  M odels o f  the Specific Growth Rate \l

The general goal m  making a good medium is to  support good growth o f  

biomass and/or high rates o f product synthesis such as alcohol production 

depending on the type o f  fermentation in progress This does not mean that all 
nutrients should be supplied m graet excess For one thing, excessive concentrations 

o f a nutnent can inhibit or poison cell growth Moreover, if  the cell grows too 

extensively their accumulated metabolic end product w ill often disrupt the normal 
bioochemical processes o f the cell Consequently it is common practice to limit



total growth by limiting the amount of one nutrient in the medium

A functional relationship between the specific growth \i and an essential 
compound’s concentration was proposed by M onod [14] This specific growth rate 

model which expresses the dependence o f  |X on the substrate concentration S as 

follows

M- = Umax — S—  X (2  16)
k s +S

where Mmax 1S th e  maximum grow th  r a t e  and k s i s  th e  " M ic h a le is -  

Menten" p a ra m eter

The biomass growth is often presumed to slow  down at high biomass
concentrations A possible model to accomodate this situation is the following
specific growth rate depending on both S and X,

\i = Umax — S _  (2  17)
k cX+S

w ith  k c a c o n s t a n t  w h ich  was p r o p o sed  by C o n t o is  [1 5 ]

Aerobic fennentation are processes where the microorganisms need oxygen to 

develop properly In such cases, dissolved oxygen (DO ) in the culture medium can 

be considered an additional substrate If two substrates (DO and S) are rate
limiting m a single enzyme controlled reaction senes, then die overall rate is the 

product o f  the individual rates This law which has M onod similanties is often 

referred to as the Ollson model for specific growth rate p.,

^ = Mmax — S—  — Q—  (2  18 )
k s +S kO24 0

where kfl2 is the saturation constant and O is the dissolved oxygen concentration



The effect o f  ethanol in promoting cell growth can be understood by refemng 

to Figure 2 1 This shows that the tw o substances, glucose and ethanol, act in 

parallel to promote cell growth Thus, unlike series rates which are multiplicative, 
parallel rates add together to determine the overall rate Thus on the whole, if  

taken in conjuction with the Ollson model, three rate limiting substrates are 

involved the first two, ethanol and glucose rates, are in parallel and add together
This resultant rate is m series with the oxygen reaction and thus the oxygen rate
is multiplied by the resultant to give the overall rate This growth rate model
referred to as the Comprehensive model may be descnbed as,

\i = (Umax —S -  + vmax - E„. )  Q— (2 l9)
k s+S k e +E kO2+ 0

where v max is the maximum rate o f  product formation

2 3 MODELLING OF TRANSPORT

W hile kinetics deals with how substances interact to form products, another 

aspect o f  the system that must be m odelled is the mechanism by which the
substances come together in order to faciliate reaction [16] Whether transport rates 

becom es important depends on the magnitude o f  the rate o f transport compared to 

the rate o f  reaction If the rate at which som e substance is  transferred to the area 

o f  interaction is o f  similiar or lesser magnitude than the rate at which the
substance is taken up by the reaction then the transport mechanism becomes rate
limiting in the overall reactioa If, however, the transport rate is faster than the 

rate o f  reaction then there will always be substances available for reaction

The purpose o f  aeration in fermenatation is to supply oxygen to and at the
same time to remove carbon dioxide suspended m the culture broth after being
evolved by the microbial cells M ixing in the gas and liquid phases affect the
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aeration characteristics o f  a fermentor Liquid phase mixing also influences the 

residence time distribution o f  the broth and therby yields o f  microbial mass and 

products In the sparged stirrer fermentor which we will deal with, air is sparged 

mto the broth which is continuously mechanically agitated Dispersion o f  gas 

bubbles is done mainly by the mechanical force o f the impeller

Glucose fed mto the fluid becomes dissolved immediately, unlike gases which
are held in air bubbles before dissolving In this model the transport o f  glucose is 

ignored This leaves the transport o f  gases as the important features in the overall 
model o f  transport in agitated systems This is particulary true o f  oxygen as it 
may have a growth limiting effect The importance o f carbon dioxide is that 
primary variables may be inferred from exhaust gas analysis In this section a 

comprehensive model o f  the transport o f  oxygen and carbon dioxide w ill be 

developed

2 3 1  Oxygen Transfer

In section 2 2 3  the term oxygen transport rate (OTR) was introduced into 

the kinetics model The rate o f  transfer o f oxygen from air bubbles to the 

dissolved state is vitally important to keeping a good supply o f  oxygen as 
demanded by aerobic fermentations The oxygen must cross the gas-liquid interface 

to be o f  use to the cells This mechanism is controlled by the liquid phase mass 

transfer resistance It is sufficient to state from previous investigators 

[8,Ch 8][17,Ch 9] that the rate o f  oxygen transfer can be stated as,

OTR = k c a (0 *  - 0 )  (2  20)"

where kjq is the liquid phase m ass transfer coefficient (cm/hr) and a is the bubble
surface area per unit volum e o f  liquid (cm 2/cm 3), 0 * is  the saturation 

concentration o f  dissolved oxygen  and O is the dissolved oxygen concentration in

V

17



the liquid The lumped kg a term is usually referred to as the volumetric transfer 

coefficient ( h n 1)

2 3  2 Carbon D ioxide Transfer

Carbon dioxide transfer can be developed m exactly the same way as oxygen 

transfer This implies that we can wnte a similiar equation for the carbon dioxide
transfer rate (CTR) as for oxygen

CTR = Krf Kc a(C * - C) (2  2 1 )

where C* is the saturated concentration o f  C 0 2 in the liquid, C is the liquid
concentration o f  dissolved CO 2 and is the factor by which the volumetnc
absorption coefficient for oxygen is greater than that o f  C 0 2

Equations (2 20) and (2 2 1 ) both contain kg a, the volumetnc absorption 

coefficient for oxygen and, in principle, this term is variable depending on certain 

factors including aeration o f  the vessel and agitation rate The next section analyses 

this term in more detail

2 3  3 Absorption Coefficient

The volum etnc absorption coefficient is composed o f  tw o terms as already 

outlined The first teim k q is  the rate o f mass transfer across the gas liquid
interface and the second term a is the interfacial area per unit volume The first
term k# is "conductance" o f  the gas-liquid membrane , i e  it is a measure o f  the
ease with which mass crosses the gas liquid interface The local mass flux at the
gas liquid interface for a bubble is given by [8,Ch 8]



where D 02 i s  the diffusion coefficient = Pm/L  where Pm is the permeability o f  

the membrane and L is the membrane thickness and z is the coordinate measure 

from gas into liquid phase, with its origin at the gas liquid interface 

The Sherwood number Sh is defined [9] by

= kc(0* - 0) (2 22)

Sh = k c d j (2  2 3 )

° 0  2

where dj is the impeller diameter for agitated systems

N ow , kg is proportional to the average fluid velocity since an increase
in fluid velocity will increase the density difference between gas and liquid phase
This average fluid velocity is, m turn, proportional to the power input per unit 
volume by an impeller in an agitated system according to

“ rms = *  (d h  P ») , / 3  (2  2 4 )
(PCV)1/3

with dfc being the bubble diameter, the power input to the agitator, V the 

volum e o f  the fluid, pc the continuous phase density and k a scaling constant 
If w e define the Reynolds and Schmidt numbers [8] for stirred systems as,

Re = P qNs Vs 2/\ i c ( 2  2 5 )

S c = tic /p D 02 ( 2 2 6 >

with being the fluid viscosity, pq the fluid density, Ny the stirrer rotation speed
and Ds  the stirrer diameter, then it can be shown that Sh = g(Re,Sc) with g( ) 
som e function o f  R e and Sc According to data presented by Calderbank [18] and 

Richards [19] the correlation,

Sh = 0 13 S c 1 / 2 R e 3/ 4 (2 2 7 )

is accurate for systems with turbulent aeration Combining (2 23)-(2 27) gives
1 9



k 0 d , = 0  13 (PoNoD5) i / 2  ^ 3/ «  (2  2 8 )
0 5 T "  (PC D02) 3/4

If jj^, p q and D02 are considered constant then

k c = 0 1 3 ^ 1 / *  ( 2  2 9 )

The value o f  the interfacial area, a, in an aerated and agitated system depends 

on agitator power mput The shear tip o f  the stirrer tends to cause small bubbles 

to be formed, which increases the interfacial area per umt volume In addition, 

bubbles have only a limited lifespan from the time they enter the fluid until they 

disperse Since the amount o f  bubbles entering the fluid is dependent on the air
flow rate, then the number o f  bubbles m the fluid is also dependent on the air
flow rate According to Calderbank [18], the value o f the interfacial area is given  

by

a « (P f / V ) 2 / 5  p g i / s  ( V s / V t , ) ’ / *  (2  3 0 )
53/5

with Pg the agitator power requirement for an aerated system, vs the average linear 

velocity o f  air per cross sectional area in the vessel, vj, the ascending bubble 

velocity, 8 the surface density o f  the fluid and V the liquid volume Overall 
assuming v^ and 5 are constant then combining (2 29) and (2 30) gives the 

following volumetnc coefficient,

k fia = 0  13 ( P g / V ) 2/ s  v s ' / 2  N , ’ / 2  ( 2  3 1 )

It is important to have k$a modelled with potential control inputs Nj or Pg
for control stge consideration and implementatloa

2.34 Gas Phase Concentrations

From the oxygen and carbon dioxide transport equanons given m Section
(2 3 1) and Section (2 3 2) and using standard thermodynamic and gas laws w e will
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now develop equations for the concentration of 0 2 and CO 2 in the exhaust gas of 

a fermentor In order to denve such equations, we first make use o f  a fundamental 
gas law called Dalton’s Law which states that the sum o f  the m ole fractions o f all 

substances m a gas is unity, 
n
I  Xj = 1 (2 32)

i= l
where x , are the molal concentrations o f the constitutent gases A lso the
mole fraction  o f  a gas is defined as

x g = p g / P  =  NG R T /P  ( 2  3 3 )

where pg is the partial pressure of the gas and P the pressure o f  the overall 
solution Nq  is the mole concentration o f  the gas, R the universal gas constant 
and T the temperature 

Henry’s Law states that,

0*  = P0 /H ( 2  3 4 )

where p0 is the partial pressure o f oxygen m the gas phase and H is the Henry’s
law constant

The gas phase o f  the fennentor is made up o f C 0 2> 0 2 and N 2 ( if  the very
low concentrations o f  H 20  are ignored) It is assumed that N 2 is an inert gas, l e
that it does not react Thus the molar conventradon o f  N 2 does not change The 

difference between inflow ing (i) and outgoing (o) oxygen mass flow  (Q) relative to 

the liquid volume can be calculated [20] as

Q * 0 2  “ 0 ^ 0 2  [ 1 “ X0 C 0 2 ]  X * 0 2  ’  H - X ' c o z ]  x<?0 2

Q*02 * ‘ 0 2  [ 1 - x* 0 2 - x* C 0 2 ] (2  3 5 )

Likewise the rate o f  change o f molal oxygen concentration m the gas phase may
21



be calculated as,

dOU _ (On, - OTR)V (2 36)a r  vg Mo2

where Vg is the volume of the gas phase and M q2 is the molecular weight of 
oxygen
W e  now assume that the molar fractions m  the exit gas are the same as those in 

the gas phase of the fermentor (le x° 02 = Xq2 etc ) Then using (2 33) to 

convert (2 36) to a mole fraction quantity and substitution of (2 35) the following 

differential equation for the oxygen mole fraction in the gas phase results

dx02 F*

dt eg V

[i-xC02] x i 02 - n - x * C02] x0
[ 1 - X 0 2 - X C 0 ]

R T €f OTR
(2 37)

P €g
By simillar arguments to above denvation of balance equations for carbon 

dioxide yields the following differential equation,

dxCO 2 F*

dt 6g v

[ 1*^0 2  ̂ X^C02 " t ^ ”^^02  ̂ *CO 2
[1-X0 2-XC0]

R T 6 f CTR

P €,
(2 38)

where ef is the mean liquif holdup m  the reactor = Vf/[VffVg] and eg is the 

mean relative gas holdup m  the reactor = Vg/[Vf+Vg]

24 FED B A T C H  F E R M E N T E R  SIMULATION

In order to assess the bioreactor model's accuracy and to facilitate controller 

appraisal, the model was simulated in software The simulator uses a classical 

fourth order Runge-Kutta technique for integration, one of the more advanced and 

pertiaps the most widely used m  engineering applications for non-linear systems In
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this section numerical integration techniques are addressed with particular emphasis 

on the Runge-Kutta technique, program structure is outlined with the help of a 

flowchart and the criterion for choice of numerical integration is discussed

241 Numerical Integration Methods

The essence of a numerical method is to convert a differential equation mto 

an equivalent model composed of difference equations In this form the model can 

be programmed on a digital computer Numerical algorithms differ mostly as a 

result of the specific procedure used to obtain the difference equations In general, 

as the accuracy of the approximation is increased, so too is the complexity of the 

programming involved Here we discuss why the Runge Kutta integration method 

was chosen in preference to other available methods

The principle of all numerical integration methods is to estimate the system 

states at time (t+h) given the states at time t where h is the sampling penod [21]
For a general equation of the form,

*=/(x,u,t) " (2 39)

At each step computations are done by some formula normally based upon 

the Taylor senes,

x(t+h) = x(t) + hx(t) + hi x(t) (2 40)
2 »

If h is chosen to be sufficiently small and if sufficient higher order derivatives of 

x and powers of of x are taken then the value x(t+h) can be perfectly found The

simplest method, called the Euler method, only takes the first power of h into

account assuming the terms m  If1 (n>l) are very small compared to h This is 

valid only if h < 1 The Euler method has the form,

x(t+h) = x(t) + h/(x,u, t) (2 41)
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The Euler method is of limited practical use due to it’s large truncation error 

per step of order h2 This is exaggerated when a large step length h is used If it

was possible to use a very small step h and if round off error did not occur in

the calculations then the Euler method would satisfy most requirements However,

the overall solution for Euler, even when small values of the sampling penod h

are used, remains strongly dependant upon the sample penod

The Runge Kutta denvation [22,Ch 8] follows the same pattern as Euler 

except terms up to h4 are retained in equation (240) Again for a general equation 

of the form,

The Runge Kutta algorithm does not require calculation of the higher 

denvatives of x as is indicated m  the Taylor senes method Instead, the algorithm 

utilizes the computation of X*.u) at various points Also since the fourth order 

numencal integration method incorporates the first four denvatives of the Taylor 

senes the truncation error is of the order h5

2 4 2  Simulation Program Structure

Figure 2 3 shows the outline flowchart for the simulation program The Runge 

Kutta routine is called penodically from the m a m  C program at times determined 

by the integration interval An integration interval of 0 005 (18sec) hours was used

x = /(x,u,t) (2 42)

the formula for advancing the solution step is 

x, = x 0 + h (K, + 2K2 + 2K3 + K4) (2 43)

= / ( * 0,y 0)
K 2 = / ( x 0 + h/2, y 0 + hK,/2) 
K 3 = / ( x 0 + h/2, y 0 + hK2/2) 
K 4 = /(x0 + h, y 0 + h K 3)

(2 44) 

(2 45) 

(2 46) 

(2 47)
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and the value of each state was printed out to a data file at periods of 0 1 hours 
The twenty hour run time of the simulation was typical of a real system Figure

2 4 and Figure 2 5 outline the structure of the two main functions in the

simulation program

2 5  SUMMARY

In this chapter the basic fundamentals of a fermentation system were 

outlined A  comprehensive model for a fed batch bakers yeast fermentation was 

then presented The modelling section was divided into two stages

Modelling of kinetics 

Modelling of transport

The Runge-Kutta numerical integration technique used to simulate the model on a 

digital computer were then presented complete with the structue of the simulation 

program This model structure and simulation studies defined the starting point and

basis for the development of the self tuning control strategy to be applied to the

bioreactor
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CHAPTER 3

PARAMAMETERIZATION AND IDENTIFICATION OF THE 
FERMENTATION PROCESS

31 INTRODUCTION

Self-tuning controller may be divided into two types, implicit and explicit

The implicit self tuner schemes incorporate the controller parameters into the

identification procedure thus removing the requirement to identify the plant

seperately The explicit self tuning controller used in this research exhibits the 

following two features,

1 „ A  parameter estimator that monitors the inputs and outputs of the

fermentation process and hence computes dynamic estimates of the process in terms 

of a set of parameters in a predefined mathematical description of the process 

Models for such an exercise will be presented in this section.

2 A  control design algonthm that accepts data from the parameter estimator 

to calculate the required control signal using a control law This will be presented 

in chapter five

Most parameter identification techniques have had their greatest sucess with 

linear systems Biological systems are inherently non-linear and m  the presence of 

such non-lineanties the process equations must be structured m  a suitable linear 

form for use in a parameter identification proceedure Processes which are

non-linear and time van ant may therefore be sucessfully controlled most notably 

because of the the self tuning controller's ability to track time varying parameters

A  key factor in the self-tuner is the structuring of the model used by the

parameter estimator Based on the various models for the specific growth rate |X
26



outlined in Chapter 2 different identification models will be presented ranging from 

a simple model which has no structure on growth rate |i to a comprehensive 

structure which incorporates ethanol and dissolved oxygen terms in the expressionS'
for growth rate

3 2  LEAST SQUARES IDENTIFICATION

The goal in process identification is to infer a model (and estimates of the

model parameters) given a process input/output data record This activity can be

earned out m  an ,'off-hne,, manner, in which all data is analysed at once 

(Classical Least Squares), or by using "on-line" techniques where the addition of a 

new data point is employed to update the model parameters (Recursive Least 

Squares) In self tuning control sequential updating of the model parameters is 

more appropiate than non-sequential processing of the input-output data Algonthms

which are suited to real time usage and are based on sucessive updating of the

model parameters are called "recursive" There are a large number of recursive 

identification algonthms described in the literature [23,24], the most popular of 

which is Recursive Least Squares (RLS)

3.2.1 Recursive Least Squares

If we consider a dynamical system with input sysytem u(t) and output signal 

y(t) Suppose that these signals are sampled in discrete time at t= 1,2,3 and that 

the sampled data values can be related through the following linear difference 

equation,

y(t) + a 1y ( t - l )  + + any ( t - n )  = b ,u (  t - 1) + + b ^ t - l )
(3 1)

This may be wntten m  the form

y(t) = eT(t) 4»(t) (3 2>

27



where 0 (t) and 0 (t) are the regressor and parameter vectors respectively, 

0T(t) = { a, an b, b,„ } (3 3)

fl>T (t) = { -y(t-l), -y(t-n) u(t-l), u(t-m) }
(3 4)

One way to obtain estimates of 0(t) is to try and minimise the prediction error 

using the following criterion and minimising with respect to 0 (t)

N
JN<*> = 1 [y (0  - eT(t)<i»ct)] 2t=i

(3 5)

Minimisation of Jĵ  wrt 0  gives the estimate of 0  as,

0(N) =
N
l  C(t )OT(t)  
t=l

N
I <K(t)y(t) 
t=l

(3 6)

For real time applications it is possible to rewrite (3 6) in a recursive fashion
as

6 (t) = 0(t-l) + L(t)[y(t) - eT(t-l)0(t)] (3 7)

L(t) = pq-l)3»(U____________ (3 8)
1 + 4>(t)P(t-l)fl>(t)

P(t) =P(t-l) - (3 9)
1 + 0T (t)P(t-l)«»(t)

3 32 RLS for Time Varying Systems

The RLS algonthm can be modified to maintain its sensitivity to process 

parameter variations This may be done by introducing an exponential weighting 

factor, called a forgetting factor [25,Ch 13], in the performance index,

N
JN (0) = I [y(t) . 0T (t)(D(t) ]2 (3 10)

t=l
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where X is the exponential forgetting factor, 0 < X < 1 The forgetting factor is a 

measure of how fast old data is forgotten For X < 1, more weight is placed on 

recent measurements than on older measurments The following modified RLS for 

time varying systems results,

0(t) = 0(t-l) + L(t)[y(t) - 0T(t-l)*(t)] (3 11)

L(t) = P f t - l V p m  (3 12)
\+ 4>(t)P(t-l)0(t)

P(t) = i r P(t-l) - P l t - l M . m T a i B Í I z - ü  1 (3 13)
x l i + i>T (t)P(t-i)<i»(t) !

In the simulation results that follow a variable forgetting factor approach is 

sometimes taken based on the nature of the expected parameter vanations [26] The 

exponential forgetting factor where N  is the total number of data points

and i the current data or iteration point is commonly used

Much of the theory on self tuning control is based chi the requirement of 

"persistent excitation" Parameter estimation will be sucessful only when the eneigy 

level of the input , both m  amplitude and m  spectral content, is above a certain 

threshold For a fed batch process Lozano [27] has shown that a pseudo random 

binary sequence (PRBS) with magnitude equal to 10% of the input feed 

concentration added to the feed concentration satisfies thie above condition

Also in the simulation, a suitable choice of the initial covariance matrix P(0) 

must be made For P(0), a diagonal matnx with large elements (eg 104 or larger) 
implies that the users confidence m  the initial set of parameter estimates is poor, 

while small values fotr the diagonal elements implies good initial estimates In the 

simulation results presented a large value of P(0) is chosen (10*) that will initially 

cause rapid changes in the parameter estimates via equations (3 11) and and (3 12)
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3 3 IDENTIFICATION MODELS

This section covers the topics of model selection and the parameterization of 

these models It is assumed that measurements of the vanous states of biomass, 

substrate, dissolved oxygen and ethanol are available where applicable

3 31 Unstructured model

If we reproduce equations (22) and (2 6) which describe the rate of change 
of biomass and substrate m  a fed batch fermentor and impose no predefined 

structure on ^ the growth rate

dX = (|i(t) - D(t))X(t) (2 2)
dt

d£ = - U l l )  J i l t l  + D O M S j i Q - S O ) ]  (2 6)
dt Yx s

H(t)= \i (3 14)

A  discrete time model can be obtained by a first order Euler approximation 

of the derivative as

dX O l = XOJ-JCil-JJ. '  (3 15)dt h
where X(t) denotes the biomass concentration and h is the sampling penod All

identification models presented use a Euler approximation for discretization.

Identification models based on a fourth order Runge-Kutta dicretization methods 

proved too complex for practical use

Substituting eqt (3 15) into (3 12) and (3 13) gives

X(t) = X(t-l) + hnX(t-l) - hD(t-l)X(t-l) (3 16)

S(t) = s ( t - i )  + hD( t - i ) [Sj ( t ) - s ( t ) ]  - u a - n x ( t - n
Yx s (3 17)
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To use recursive least squares type identification algorithms we must first 

obtain expressions for the system which are linear in the parameters This sset of 

equations for all the models to be outlined will consist of a known measurement 

vectors y(t), a known regressor Oft) and an unknown parameter vector 0(t) It is 

the function of the RLS routine to identify the elements of the parameter vector 

given a set of process input and output measurmenis

Thus equation (3 16) may be written as,

y(t) = 0T(t) <D(t) (3 18)

where

y(t) = { X(t)-X(t-1)+hD(t-l)X(t-l) } (3 19)

4>T(t)= { hX(t-l) } (3 20)

eT( t )  = { H } (3 21)

Similarly, by discretization of (3 17) the parameter Y x s may be identified,

Yx s[S(t-l)-S(t)*hD(t-l)S1(t-l)-hD(t-l)S(t-l)]
= h*L(t-l)X(t-l)

(3 22)

Substitution of eqt (3 16) into the rhs of (3 17) gives a direct estimate of the yield 

coefficient Y x s

y x s =  l x i i l- m - n - h D a - m a -DJ________
[S(t-l)-S(t)-hD(t-l)S1(t-l)-hD(t-l)S(t-l)]

(3 23)

The expression for the identification of the parameterYxs shows it to be 

independent of the model of the growth structure This may also be represented in 

the same least squares format as before,
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where

y(t) = { X(t)-X(t-l)-hD(t-l)X(t-l) } (3 25)

y ( t )  = eT ( t )  4>(t) (3 24)

4>T (t) = { S(t-l)-S(t)-hD(t-l)Sj(t-l)-hD(t-l)S(t-l) }
(3 26)

eT(t)  = { Yx s } (3 27)

332 Monod Model

For this second model we impose the following Monod-like structure on the 

growth rate,

= k4nax S(t) (3 28)

k s+S(t)

Using a similiar procedure as before, the discretized equations for biomass and 

substrate become,

X(t) = X(t-l) + husft-nx(t-l) - hD(t-l)X(t-l)
ks+S(t-l)

(3 29)

S(t)  = S ( t - l )  + h D( t - l ) [S j ( t ) -S ( t ) ]  - hHœajSd-DXd- l )
^X S[^S+^( ^“1)]

(3 30)

The recursive least squares structure for (3 29) is,

y(t) = eT( t )  4>(t) (3 3i)
where

y(t) = { X(t)-X(t-l)+hD(t-l)X(t-l) }S(t-l)
(3 32)

0T (t) = { hS(t-l)x(t-l), X(t-l)-X(t)-hD(t-l)X(t-l) }
(3 33)
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9 ^ ( 0  “ ( Mtnax, ) (3 34)

The denvation of a direct estimate or least squares estimate of Y x s follows 

the same procedure as outlined in Section 3 31 does not differ from (3 23) or 

(3 2 4 H 3  27)

3 3 3 Ollson Model

A  third identification model may be derived from imposing an Ollson like 

structure on the growth rate |x

*i(t) = um S(t) 0(t) (3 35)

ks+S(t) k 02+O(t)

The discretized equations for biomass and substrate become,

X(t) = X(t-1)+ hM,naxS(t-l)0(t-l)X(t-l)

[ks+S(t-l)][k024O(t-l)] 
- hD(t-l)X(t-l) (3 36)

S(t)= S(t-1)+ hD(t-1)[S|(t)-S(t)] -

h M m a x S i t -O X d -D O d - l )
Yx S[k s+S(t-l)][k024O(t-l)]

(3 37)

An RLS structure linear in the parameters gives,

y(t)=eT(t) 0 (t) (3 38)

where

y(t) = { X(t)-X(t-l)+hD(t-l)x(t-l) }0(t-l)S(t-l)
(3 39)
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<HT (t) = ( hX(t-l)S(t-l)0(t-l), -0 (t-1)0, S(t-1)Q, -0 }
(3 40)

eT (t) = { Umax, k s , k 02, k sk 02 } (3 41)

Q = { X(t)-X(t-l)+hD(t-l)X(t-l) } (3 42)

Again the estimate for Yxs is as equation (3 23) and (3 24)-(3 27)

3 3 4 Comprehensive Model

Using the comprehensive structure of growth rate n a fourth identification 

model is derived

^ ( D  = ( mnax S(t) + «„.ax E(t) ) 0(t) (3 43)

k,+S(t) ke+E(t) k 02+0(t)

The discretized equations for the two main state variables biomass and

substrate concentration become,

X(t) = X(t-1)+ hmnaxS(t-l)0(t-l)X(t-l)

(ks+S(t-l)][kOJ+0(t-l)]

+ hr^ajEC t -1 )0( t -1 )X( t -1)

[ke+E(t-l)][k02+O(t-l)]

S(t)= S(t-1)+ hD(t-l)[S,(t)-S(t)] -

MmaxS(t-l) + % axE(t-l) 1 hX(t-l)0(t-l)

[ks+S(t-l)] ke+E(t-1) I Yx s[k0J+O(t-l)]
(3 45)

- hD(t-l)X(t-l)

(3 44)
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An RLS structure linear in the parameters may be extracted giving

y(t) = 0T(t) *(t) (3 46)

where

y(t) = { X(t)-X(t-l)+hD(t-l)x(t-l) }E(t-l)0(t-l)S(t-l)
(3 47)

4>T (t) = { hX(t-l)S(t-l)0(t-l)E(t-l), -0(t-l)E(t-l)Q, 

-E(t-l)S(t-l)Q, -0(t-l)S(t-l)Q, 

hS(t-1)0(t-1)X(t-1),

hE(t-l)0(t-l)X(t-l), -S(t-1)Q, -0(t-l)fl,
-E(t-1)Q, -Q } (3 48)

and

8̂ (t)  = { (Mmax+,Dmax)» ^s* ^02 ’ ^e» ^e^max* ^s^ax*

^ 0z^e* ^s^o2* ^e^o 2̂ s 1
(3 49)

fl = { X(t)-X(t-1 )+hD(t-l)X(t-l) } (3 50)

In this identification scheme many lumped parameters are identified Identification 

of parameters kg and kg is used to get estimates of Umax from the lumped 

parameter kgi^^ and similarly kg is used to identify k^max 

Again the estimate for Y xs is as eqt (3 23) and (3 24)-(3 27)

34 SIMULATION RESULTS

This section will outline identification results for the models presented above with 

use of the following parameters and inputs,

Mmax ~ 0 3 k02 = 0 0006 Yx s _ q  5
ks = 0 22 ke = 0 5  vmax = 0 15
\  s = 0 5 D = 0 2

Table 3 1
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In these identification studies a constant forgetting factor refers to simulations 

in which X is kept constant (eg X=099) An exponential forgetting factor refers to 

using where N  is the total number of data points and 1 the current

iteration or data point Fig 3 1 and Fig 3 2 identify a time varying growth. This is 

equivalent to tracking the unstructured growth rate in Section 3 31 Results are

presented which compare the tracking properties of a constant forgetting factor (Fig

3 1) and exponential forgetting factor (Fig 3 2) Both of the above simulations try

to identify an overall growth rate from a Monod simulation in which the kg

parameter has been changed to a value of 5 to increase the overall time vanence 
of

Fig 3 3 presents the results for the identification of the Monod parameters of 

Section 3 32 The results again compare the convergence properties of the constant 

(Fig 3 3) and exponential (Fig 3 4) forgetting factor The yield parameter Yxs is 

estimated using the direct estimate of equation (3 23)

The convergence of Ollson model parameters are shown m  Fig 3 5a and 3 5b

The convergence is aided by an exponential forgetting factor Fig 3 5a is scaled to

show two of the Ollson parameters, f%iax and kg while Fig 3 5b shows the ko2 
parameter and the lumped parameter ksk02 Table 3 2 compares actual and

identified parameters

p aram ete r a c tu a l
valu e

e s t im a te d
v a lu e

Mmax
k sk02
k Sk0 2

0 3 
0 22
0 0006
1 32x10“4

0 3 
0 22
0 00598
1 44x10- 4

Table 3 2
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The identification of the parameters of the comprehensive model of Section 

3 34 is shown in Fig 3 6a and 3 6b Fig 3 6a is scaled to show the following

parameters, l%iax‘K)max’ ks» ê» ^e^max ^s^e wtule ^ig 3 6b shows the 

remaining parameters of equation (3 49)

parameter actual
value

estimated
value

Mmax+% a x
ks
ke
ke^max
kske
k O 2
ksvmax
Ko 2ke k ir 0 2 * S
keko 2ks

0 45
0 22  
0 50  
0 15 
0 11 
0 0006  
0 0330
0 0003
1 3 2 X 1 0 -4 
6 6x 10’ 5

0  45
0  2198
0  4979  
0 1491

0 1105  
0  0059  
0  0329  
0 00038
2 9 x 1 0 *4  
2 2 1 x l0 '4

Table 3 4

3.5 DISCUSSION

It is obvious that the popular estimation technique of recursive least squares 

will exhibit good convergence when property applied Based on the results 

presented above there are several conclusions that can be drawn about the the 

features of a sucessful estimation scheme for a fermentation system

It has been shown m  the literature [6] many times that the tracking of time 
varying parameters requires te use of a variable forgetting factor A  comparsion of 

the convergence properties of Fig 3 1 and Fig 3 2 shows a marked improvement 

with the use of a variable forgetting factor over that of a constant forgetting factor 

for tracking the time varying specific growth rate |i The effect of the forgetting 

factor can be seen from equation (3 13),

P(t) = 1 rP(t-l) - P f t - M t ^ t ^ P f t - n  ! (3 13)
X I 1 + 0 1’(t)P(t-l)0 (t) J

The forgetting factor X, prevents the elements of P from becoming too small This
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maintains the sensitivity of the RLS algorithm and allows new data to continue to 

effect the parameter estimates

The convergence of the Monod parameters are presented in Fig 3 3 and Fig

3 4 Again the use of an exponential forgetting factor improves parameter

convergence (Fig 3 4) over that of a constant forgetting factor

The Ollson parameters of Fig 3 5a and 3 5b show that two of the parameters 

(Umax kg) converge while the parameters ko2 and ko2 kg although they 

converge have very small values Only m  a self tuning environment could the

controller sensitivity to these parameters be tested

The Comprehensive Model parameters shown m  Fig 3 6a and Fig 3 6b show
six significant parameters hnax+^iax- h ' ê- keHrnax- 311(1 M m a x  (F'g3 6a) 
with the rest converging to their respective values in Fig 3 6b-d Both the Ollson 

and Comprehensive structures utilise an exponential forgetting factor It remains to 

be seen if the Comprehensive growth rate structure was used as part of an

identification scheme in a self tuning controller whether the controller performance 

would be adversely affected by neglecting some or all of the small parameter

values

3.5 S U M M A R Y

Chapter 3 has outlined various model structures that may be used in the

identification of fermentation systems Four models have been presented and their

respective simulation results show good parameter identification The type of model

structure chosen for the parameter estimation algorithm will ultimately depend on
\

the type of fermentation run in operation The presentation of the vanous models 

attempts to cover all metabolic pathways that yeast can take during the process of 

fermentation
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CHAPTER 4

STATE ESTIMATION TECHNIQUES F O R  BIOREACTORS 

41 INTRODUCTION

It will be instructive to define at the outset of this chapter several 

terms which will be used repeatedly in the context of estimation techniques m  a 

bioreactor system It should be recognised at this point that besides temperature and 

pH which are always among the state variables, the other components of the state 
vector depend on the nature of the model of the biological system considered In 

fermentation systems one is mainly interested in biomass and substrate 

concentration and also the level of dissolved oxygen concentration because it affects 

the rate of microbial growth Culture parameters or growth parameters are the 

parameters that describe the state of growth of micro-organisms, such parameters 

then will be the specific growth rate \if the various yields, Y, and the mass 

transfer rates of 0 2 and C 0 2 m  the liquid phase and others

The importance of on-line estimation may be seen in the fact that 

presently the majority of fermentation processes are interfaced with various types of 

instruments for exhaust gas analysis Such instruments are becoming an integral part 

of standard bioreactor instrumentation With the introduction of computers mainly 

for data acquisition and logging a few measurements are recorded as received and 

occasionaly some additional parameters (respiratory quotient) requiring simple 

calculations are mcluded m  the computer printout of the process The m a m  point 

of the estimation studies to be presented is that there is a great deal of additional 

information that may be obtained from the available measurements This 

information,pnmanly m  the form of estimated state variables and culture 

parameters, requires little additional effort and can be employed on-line in the 

systems that already employ dedicated computing capabilities Important information
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such as the level of cell biomass, specific growth rates, yields and concentration of 

products may be obtained at various operating points and as complexity increases 

additional correlations may be introduced to provide for indeterminable parameters

Needless to say the on-line estimation of various states and parameters 

facilitates greatly the study of the performance of a microbial culture Not only 

does it provide for an extended array of parameters that can be monitored, thus 

descnbing more completely the biolgical process, but it also yields information at 

short sampling intervals compared to the process dynamics, thus eliminating the 

uncertauutyand speculation about the events that took place between two 

consecutive samples Finally, the filtering of measurements, which is part of the 

estimation process, eliminates any random noises and yields smooth reliable 

estimates

The pnmary variable that is desirable to control in a fermentation 

process is cell growth Thus, it is necessary to be able to both measure this 

variable or alternatively measure the cell concentration, from which cell growth rate 

can be determined However, no reliable or accurate instrumentation is available 

which allows direct on-line measurement of these variables

In spite of recent developments in optical, ion selective and enzyme 

sensors most of the concentration variables in the fermenter liquid phase cannot be 

measured on-line Sensors measuring the biomass and substrate concentrations would 

be most advantageous but as yet there are no such comercially available sensors 

suitable for industrial applications The monitoring of physiological and biochemical 

parameters in fermentation processes has not significantly advanced and almost 

universally pH, dissolved oxygen and redox potential are the only states that can 

be monitored for control puroposes [28] More recently, the monitoring of dissolved 

carbon dioxide and the exploitation of developments m  lower cost mass 

spectrometry to replace and extend infrared gas phase momtonng [29], has received
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attention Today’s measurement technology covers only a small fraction of the 

desirable information needed to improve microbial growth and production 

Maintaining maximum production is difficult because of unpredictable changes in 

process parameters in batch and fed-batch fermentation and lack of on-line 

information concerning the process states

With digital set-point control gaining popularity and increasing use of digital 

computers, for example in programmed start up procedures, automated variations of 

set points to implement optimal policies and also predetermined response to various 

pertubation, clearly the determination of a new set point will rely on accurate 

knowledge of the bioreactor state and state estimates will be indispensible for this 

purpose Some methods use differential equations expressing the tune rate of 

change of state variables as a function of the operating and culture parameters to 

give a structured self contained set of equations while other techniques are more 

model independent. The presentation of various general frameworks which achieve 

the state estimation objective by utilizing various macroscopic and elemental 

balances and appropriate estimation techniques will be the subject of the following 

chapter

4 2 OBSERVERVABILITY OF A  NON-LINEAR S Y S T E M

In linear control theory there are methods for the design of observers which 

converge exponentially to true state values [30,Ch 9] For non-linear systems , 

there are very few works dealing with this subject and the applications are not 

numerous For a fermenter system Monod-type formulas are widely used to describe 

cell growth limited by a single substrate The model equations are,

X = (|i-D)X (4 1)

S = D[S,-S] - _iÜ L  (4 2)
s

41



H = Hm S (4 3)
---------  V
ks+S

where X  and S are the biomass and substrate concentration respectively, D  is the 

dilution rate, is the feed substrate concentration and \imf Y xs, and ^  are 

characterstic parameters of the process

A  system is observable if, for each pair of imtal states x y (0), x 2(0)t we can 
find an input variable u(t) such that x y, x 2, are distinguishable by observations of 
the corresponding output variables y, (t) and y 2(t) There are some works dealing 

with theoretical aspects of observers for non-linear systems and we firstly present 

a theorem about the observervability of non-linear systems The theorem presented 

by Gallegos [31] is an extension af a lemma given by Willamson [32] and deals 

with the observablity of a nonlinear system

Th&rem
A  necessary and sufficient condition for the system 

m
x = f(x) + Ig^x) u t , »=(«!, um )T g Rm (4 4)

i=l
y = h(x) xeRn , yeR (4 5)

to be completely »uniformly, locally, observable is that there exists a system of

local coordinates on Rn such that (4 4) is of the form

*1 g n ( x i)
* 9 gj  2( X 1*X2)
t + I »

xn 1=1 *
F(x) gin(x *x * *xn)

y = x , , (4 7)

From (4 6) and (4 7), it is possible to estimate the state vector through

successive denvatives of the output and input vanables This theorem will be

applied to a fermentation system in the foliowmg section
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4 3 STATE ESTIMATION

The central control objective of any bioreactor is to provide 

optimal growth conditions for biomasss growth. General vanables such as 

temperature and pH can be sucessfully controlled by conventional loops However, 

other important process vanables such as biomass, product and substrate utilization 

are rarely measured on-line These important process vanables can be estimated 

using available standard measurements in conjuction with mathematical relationships 

Frequently, the parameters of the system must be determined before the predictions 

of the model become available for design or control purposes Their values can be 

determined from correlations, simple experiments or linear regression ideas as 

outlined in the Chapter 3 The joint development of modem control theory and 

microprocessors has seen the introduction of techniques, such as Kalman filtering 

which may be organised for parameter and state estimation In order to determine 

whether a system is performing properly and ultimately to control the system 

performence the designer must know the states of the system The technique of 

determining the states of a system from noisy measurements of states (auxiliary or 

otherwise) is called Kalman filtering

Stephanopoulos and San [35] utilize measurements of 0 2 and C 0 2 in the gas 

stream and employ proper macroscopic matenal and elemental balances to measure 

the total growth rate and yield With these measurements available an extended 

Kalman Filter is employed to produce estimates of the state vanables Dekkers [36] 

outlines an indirect estimation method for on-line determination of the biomass 

concentration, the specific growth rate, the substrate utilization rate and the ethanol 

concentration of a fed batch bakers yeast fermentation Dekkers denves a 

measurement model from stochiometnc considerations These equations and a simple 

state model for the biomass and the biomass production rate are used in an 

extended Kalman filter for estimation of the process vanables
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In this section three types of algorithms for the estimation of state 

variables such as substrate and biomass will be outlined Two non-adaptive 

algorithms for state estimation are presented [33,34] In section 4 4 adaptive 

algorithms will be presented The word ’’adaptive" is used for state estimation 

schemes since the algorithms are designed to continuously adapt the structure of 

the observer to the variations of the growth parameters The general estimation 

problem and its associated theory will then be outlined with particular reference to 

the application of a Kalman filter to the state estimation problem m  a fermentation 

process

4 31 Non-linear Observer

In this section we will make use of the theorem in Section 4 2 to estimate 

the state vector of the model equations of the fermentor Equations (4 l)-(4 3) have 

the form given by (4 6) and (4 7) with,

tlx ' -X ' 0
f(x)= --ILL- * g,(*)=

Yx s . -s 1

and u,=D, u 2=DS} The system is therefore observable and the fermentation model 

may be expressed as the following model

z . Z2 S i i ( z i) g 2 l ( Zl)
z, — F(z)

+
g . 2<Z1-Z2>

U1 +
g 22^Z1 fZ2>

y = z i (4 io)

with z 1 = x (4 11)
z 2 = M-x (4 12)

g , , (z.) = -z, (4 13)
g 12(z,,z2) = Z 2 (z2 - 2) (4 14)
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g 21(z 1) = 0 
g 2 2 ( z i , z 2 )  =  ( M m z  i “ z  2 ) 2

l*inksz 1

(4 15)
(4 16)

F(z) = z z 2 . (Mtnz r z 2) 2 (4 17)

From equtation (4 9) it is possible to estimate the state vector since,

z 2 = z, . g M (ztl)D = y + Dy (4 18)

In this way, if the biomass concentration jt is measured (unfortunately

Gallegos [31] makes this restrictive assumption), it will only be necessary to 
estimate the substrate concentration S The following estimate for S results,

a  s  2
S = --------

Mmz 1 - * 2 (4 19)

From equation (4 9) we see the need for having the derivative of the process 

output However using an Euler approximation we may write,

y(t) * yil) - y(t-T) (4 20)
T

with T small compared to the process dynamics From (4 11) we have in discrete 

form

A
S(k)= ksa [y(k) - y(k-l) + TDy(k)]

Hmy(k) - a( y(k) - y(k-l) + TDy(k) ) (4 21)
i

where a=l/T
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43 2 Non-adapüve Observer

When the substrate concentration S(t) (or biomass concentration X(t) ) is 

measured on-line and the yield coefficient is known a simple algorithm can be 

implemented to estimate X(t) (or S(t)) If we rewrite the model equtations (41-4 3) 

and let k, be the yield coefficient

\

X = (H-D)X (4 1)

S = D[S,-S] - k,(xX (4 4)

H = Hm S (4 3)

ks+S

The basic derivation of the estimation algorithm is based on the fact that in

microbial growth, the rate of biomass production is proportional to the rate of

substrate consumption Assuming that X(t) is available for on-lme measurement an

auxiliary state vanable Z(t) is defined by the following equation,

dZ(i1 = D(t)[Sj(t) - Z(t)] 
dt (4 22)

The motivation for the introduction of Z(t) may be seen from the fact that if we

define Y ^ X ,  then fiom (4 M3),

d m m s m i  = d u m s ^ m y î o +s o ) ) ]
dt (4 23)

Comparing (415) and (416), Z(t) can obviously be considered as an on-lme

estimate of Y(t) + S(t), with an estimation error

e(t) = Z(t) - [Y(t) - S(t)] (4 24)

governed by the stable dynamic equation

ik.(U = -D(t)e(t) (4 25)
dt

The above algorithm is stable as D  ^ 0 and on-lme estimate of S(t) can now be
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computed as
S(t) * Z(t) - k,X(t) (4 26)

A  sunple discrete time version of this algorithm has been derived by using a first 

order Euler approximation for dZ/dL

where k is the time index and T  is the sampling penod

4 3 3 Extended Kalman Filter

A  brief presentation of the basic features of the general state estimation 

problem is outlined below A  linear system is first considered because exact 

solutions are available for such systems The non-linear case is then discussed

In a biochemical reactor system, as is often the case with state estimation 

problems, the state of the system is not directly measurable but is observable 

through the measurement of outputs of the system, such as exhaust gas 

concentrations If the state x of a dynamical system satisfies the linear equation of 

(4 29) then the state estimation problem can generally be stated as follows,

x = Ax + Bu + £(t) (4 29)

The linear equation is forced by the non-random control input u and the random 

disturbance £(t) One must develop an algonthm for determining the state x(t) at

time t from the observations of an output y(t) of the system, contain mated by the

random errors £(t) and related to the state x by,

Z(k+1) = Z(k) + TD(k)[S,(k) - Z(k)] (4 27)

A
S(k) = Z(k) - k,X(k) (4 28)
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y = Hx + 4 ( t ) i (4 30)

Because of the errors £ in the measurement, x, the true state cannot be found 

- only an estimate for x is possible Therefore m  the presence of the random 

noises £(t) and £(t) the estimation problem is understood in the sense of finding 

an estimate of the state x such that the unceitaimty, or vanence, of the estimation 

error is minimised [37,Ch 5] If the noises £(t) and £(t) can be modelled by a 

white noise process then the estimate x can be found as the solution of the 

following filter equation,

x = Ax + Bu + K[y - Hx] (4 31)

with K, the filter gam given by,

K = PH^R ' 1 (4 32)

and the vanence of the estimation error (a measure of the uncertamity in the 

estimate of x), P = E[(x-x)(x-x)̂ ], given by

P = AP + PAr + Q - PH^R^HP (4 33)

The matnces Q  and R  (positive semi-definite) are measures of the intensity of the 

noises £ and £, respectively with Q5(t) = Ef^t)?7®] and R 8(t) = E[£(t)̂ (t)]

The above equations descnbe the evolution of the estimate of x and its 

vanence P with time for a linear system Most systems of practical interest , 

however, are non-linear and of the general form,

x = f(x) + C(t) y = h(x) + £(t) (4 34)

For such systems, a vanety of filtering algonthms have been devised, one of 

which is the Kalman filter, obtained by lineamng the non-linear equations around 

the current estimate and applying (4 1-4 5) to the lineanzed equations,
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£ = f(x) + K[y - h(*)]
K = Ph7'(x)R*1
P = f(x)P + Pf^x) + Q - Phr (x)R-’h(x)P

(4 35) 

(4 36) 

(4 37)

The above equations apply to the case when the measurements are taken 

continuously in time If we consider a continuous non-linear stochastic model of 

micro-organism growth and substrate consumption dynamics in a batch fermentation 

process and output model that consists of measurement of the carbon dioxide 
evolution rate,

x(t) = F(x(t)) + C(t) (4 38)

y(t) = H(x(t)) + £(t) (4 39)

where x(t) is the state vector consisting of biomass (xt) and substrate 

concentrations (x2) and the components of F(x) are,

f,(x(t)) = Hn, x, x 2 (4 40)

ks + X 2

= Hm x, x 2 (4 41)

^X s(ks + * 2)

y(t) is the carbon dioxide evolution rate which is related to the state vector by the 
non-linear function H(x(t)) where,

1 mnax x i x 2 
H(x(t)) =     (4 42)

c ks + X2 
where Y xc is yield of carbon dioxide on biomass

In our model equations (4 9*410) state and measurement noise with

covanence
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E[C(t)C(t) r l = Q5,j (4 43)

5jj = 1 for i = j 
0 for i * j

and

E [ 5 ( t ) 5 ( t ) r l = R5,j (4 44)
The initial state of the model is to be assumed normally distributed stochastic 

variable with mean E[x(o)] = x(o) 

and covariance

E[x(o) - x(o’) ) (x (o )  - x ( o ) ) r ] = P (4 45)
Since the state vector x(t) is unmeasurable on-line and in the presence of state

and observation noise the problem posed is how to find an on-line estimation

algorithm based on available measurement of carbon dioxide evolution rate The

extendedKalman filter application is presented as a technique for on-line 

estimation of state variables based on the model process equations (4 38-4 45) The

configuration of such an estimation scheme is shown m  Figure 4 1

Applying a simple Euler approximation to the above continuous model, we 

can denve the following discrete non-linear stochastic model of micro-organism 

growth and substrate consumption for the batch fermentation process as 

x(k+l) = g(x(k),T) + C(k) (4 46)

y(k) = H(x(k)) +£(k) (4 47)

where g(x(k),T) = x(k) + TF(x(k)) and T  is the sampling interval The extended 

Kalman filter equations may be written as follows

x(k+l/k+l) = x(k+l/k) + K(k+l)[y(k+l) - H x(k+l/k)

(4 48)

x(k+l/k) = g(x(k/k),T) (4 49)

K(k+1) = P*(k+1) [HP*(k+l)H^ + R]*l (4 50)

P*(k+1) = 4»(k)P(k)<!>(k) + Q (4 51)

P(k+1) = [I - K(k)H]P*(k) (4 52)



where
x(k+l/k+l) is the optimal state estimate at time k+1
x(k+l/k) is the state estimate at time k+1 based on estimate x(k/k) at time k 

(prediction)

y(k+l) is the output observation vector 

H  is the lineanzed observation matnx 

K(k+1) is the Kalman gain matnx.

K(k+l)[y(k+l) - Hx(k+l/k)] is a correction sequence 

P(k) is a symmetnc error fUtenng matnx.

P*(k+1) is a symmetnc error prediction covanence matnx

<l>(k) is the transition matnx of the lineansed model evaluated at time k for 

estimate x(k/k)

Q  is the state noise covanence 

R  is the output noise covanence

The transition matnx 0(k) can be obtained by linearization of the non-linear 

discrete model around estimate x(k), where 0(k) = I + T  J j x(k) ^  Jacobian 

matnx of the model equations is descnbed as,

HmX2( k / k )
(4 53)

8x , ( t )  |x(k/k) k s + x 2( k / k )

J , 2 = 8 f , ( x ( t ) ) ^sHmX^k/k)
^*2^ )  jx(k/k) 

J21 = 8f2(x(t)) -Hmx^k/k)

[ k s +X2( k / k ) ] 2 (4 54)

(4 55)
8x i( 0  jx(k/k) Yx s [ks+x 2(k /k ) ]

J 23 = S f 2(x( t ) ) MfflkjX,(k/k)
(4 56)

Jx(k/k) Yx s f k s + x 2( k / k ) ] 2
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and the linearized observation matrix becomes.

H,, = 5H(x(t)) ^ x 2(k /k)
(4 57)

8*,(t) [x(k/k) c [ks+x 2(k/k)]

H 1 2 8H(x(t)) k sH tn X ,(k/k )
(4 58)

8x 2(t) |x(k/k) Yx c [ks+x2(k/k) ] 2

44 COMBINED STATE AND PARAMETER ESTIMATION

The algorithms presented in Section 4 3 rely on the availibilty of

measurements of one or more states and the knowledge of the parameters 

Algorithms which are configured to allow state and parameter estimation are 

outlined in the following sections

In this section a state estimation algorithm is presented that is referred to as 

a "partially adaptive observer*’ W e  assume that the specific growth rate (̂t) is the 

only unknown parameter and that the yield coefficients are known. Considering the 

problems with availability of reliable on-line sensors for the measurement of 

substrate and biomass, the case of the estimation of the biomass concentration X(t) 

from the disolved oxygen concentration 0(t) is considered Augmenting eqts 

(4 1-4 3) to include an equation for the dissolved oxygen concentration we have,

441 Partially Adaptive Observer

f l o m  = lqa(0( t )*  - 0( t ) )  - UÜLXÜ.)
It Yx o (4 59)

where kja is the mass transfer coefficient (hr “1),
0 (t)* is the concentration of oxygen that would exist in 

the bulk liquid phase if it were in thermodynamic equilibrium
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Y x 0 is the yield of biomass on oxygen (g/g)

If we consider a bioreactor described by equations (4 1-4 3) and (4 31) and we 

assume that the dissolved oxygen concentration O(t) is measured on-line Then the 

following adaptive observer can be used to estimate on-line the biomass 

concentration X(t)

with the gas phase (g/1),
0(t) is the actual concentration of oxygen in the liquid phase,

dQitl = k,a[0(t) -0(t)]W(t)- D(t)0(t) - aR(t)
dt A

-bX(t) + C,[0(t) - 0(t)] (4 60)

d i O l  = R(t) - D(t)X(t) + C 2[0(t)- 0(t)] (4 61)
dt

d B m  = -c3[0(t) - 0 ( t ) ]  (4 62)
dt

where again C,-C3 are design parameters which are at the disposal of the user to 
control the speed of convergence, while a and b fixed constants and R(t) is an 

on-lme estimate of the total growth rate R(t),

R(t) = m t )  X(t) (4 63)

4 4 2  Fully Adaptive Observer

In this section a "fully adaptive observer" will be outlined which does not 

require any pnor knowledge of the yield parameters or growth rate |i, that is they 

will be assumed to be unknown. If we again consider the bioreactor described by 

(4 1-4 3) and assume that the biomass concentration X(t) is measured on-line If
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we define the auxiliary time varying parameters

0,(t) = S(t) - n(t) (4 64)

e 2(t) = k,n(t) (4 65)

Then the foliowmg state space representation is equivalent to (41-4 3)

dX(t) = -8 ,(t)X(t) + X(t)S(t) - D(t)X(t) (4 66)
dt

d S U I  = -02(t)X(t) + D(t)Sj(t) - D(t)S(t) (4 67)
dt

The following fully adaptive observer can be denved from the above to estimate 

on-lme the substrate concentration S(t)

0,(t)X(t) + X(t)S(t) - D(t)X(t)

+ C,[X(t) - X(t)] (4 68)

0 2(t)X(t) -D(t)S(t) + D(t)S,(t) +

+ [C2 + C 3X(t)V(t)2][X(t)- X(t)] (4 69)

d X iii = - 
dt

d i a l  = -

dt

dV(t) = -D(t)V(t) + X(t) (4 70)
dt

dO,(t) = -C3X(t)[X(t) - X(t)] (4 71)

dt

d8 2(t) = *C3X(t)V(t)[X(t) - X(t)] (4 72)

dt

where V(t) is an auxiliary filtered value of X(t) and C\-C3 are the design 

parameters These parameters are at the disposal of the user m  order to control the 

speed of convergence [33]
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4.5 SIMULATION RESULTS

Simulation results are first presented for the estimation of substrate S(t) using

the non-linear observer of Section 4 31 As the discrete form of the observer in

equation (4 21) uses the Euler method to estimate the rate of change of biomass at 

the output the effect the changing of the integration interval has on the estimate of

substrate is shown in Fig 4 2a-c for h=05hr, 0 05hr and 0 025hr Each simulations

use the following paramater values

Umax = 0 8 s = 0 5 S, = 9 0 S(0) = 12 0

k s = 0 5  D = 0 42 X(0)= 0 3

Table 4 1

It may also be observed that the estimate of substrate in equation (4 20) 

depends on the process parameters Umax and kg However, for fermentation

processes, these parameters change frequently and an estimation error will be

produced Fig 4 3 illustrates this problem when from t=5hr to t=5 5hr the parameter 

Mjnax is vaned 15% about its nominal value

The non-adaptive observer of Section 4 3 2 exhibits varying degrees of sucess 

when applied in simulation Initially the estimation of S(t) was earned out on the 

same simulated process as indicated by Table 41 Results for the estimation of 

S(t) are shown in Figure 4 4 The convergence of the state estimate was slow and 

as equation (4 25) relates the rate of convergence of the estimate to the dilution 

rate it was deemed necessary to vary the input dilution rate, D  Figure 4 5 

illustrate the convergence of the estimate for a process with EMnShr -1 and Fig
4 6 shows the convergence of the estimate for a batch fermentation* In the above 

simulation the initial value of the auxiliary variable was Z(0)=120

The Extended Kalman Filter outlined m  Section 4 3 3 is based on the
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available measurement of the carbon dioxide evolution rate (CER) The simulated 

CER in mol/C hr corrupted by a 10% pseudo randon binary sequence for estimation 

purposes is shown in Fig 4 7 The filter shows excellent estimates of Biomass m  

Fig 4 8 and also Substrate m  Fig 4 9 when given the correct initial conditions, an 

initial value of P=0 for the estimate error covanence matrix and a 10% corruption 

on the CER measurment at each sampling interval However, performance of the 

filter suffers when incorrect initial conditions are given as is shown for Biomass in 

Fig 410 and for Substrate in Fig 4 11 This is a significant problem because in a 

real fermentation plants correct initial values of states are seldom available

46 DISCUSSION

Some modem techniques have been applied in this chapter to solve the 

problem of state estimation m  a fermentation context The convergence of the state 

estimates in the first method of a non-linear observer proves to be very dependent 

on the sampling interval Fig 4 2a-c shows how the error m  the substrate estimate 

deceases as the sampling rate increases Overall this estimation scheme proves to 

be "rigid" and unable to cope with paramater variations as shown in Fig 4 3 The 

non-adaptive schemes would therefore be of litde practical use

The non-adaptive observer has a major drawback in that the speed of 

convergence is completly determined by the experimental conditions through the 

dilution rate D(t) This leads to poor results especially in batch operations (Fig 4 6) 
and fuitheremore there is a bias on the estimate of S(t) if there is an initial error 

on Z(t) This technique of state estimation shows better convergence as the dilution 

rate increases Convergence for a dilution rate of D=0 75hr1 is shown in Fig 4 5 

but such increases m  dilution rate have the physical sigmfance of producing large 

increases in biomass concentration X(t)
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The Extended Kalman Filter proved to be the most sucessful technique of

state estimation as shown m  Fig 4 8 and Fig 4 9 Unfortunately as with the rest of

the estimation schemes it is very sensitive to incorrect initial state estimates and 

the filter fails to recover from this initial bias as outlined in Fig 4 10 and Fig 

411 One solution to this may be the use of an iterative Kalman Filter where

iterations of the output equations at each sampling interval could help to reduce

the estimation errror

47 S U M M A R Y

This chapter has attempted to demonstrate how accurate biomass and substrate 

estimation may take place under standard feimentation conditions The numerical 

results show that the Extended Kalman Filter give satisfactory results dunng 

computer simulation while the non-linear and adaptive observer are two restrictive 

m  their assumptions about the availability of measurements of biomass and 

substrate Such measurements are not available on line via sensors and this 

assumption coupled with the fixed parameter approach of the observer leaves such 

observer ill equipped for on-line usage
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CHAPTER 5

SELF TUNING CONTROL OF FERMENTATION PROCESSES
t

51 INTRODUCTION

A  variety of control schemes have been applied recently to fermentation 

systems The techniques involved controlling several process parameters including 

dissolved oxygen tension, respiratory qoutient, oxygen uptake rate, biomass and

temperature In 1975 , Miskiewicz et al [38] described a control system to control 

the nutnent supply to the system on the basis of dissolved oxygen concentration

An alternative scheme, for maintaining dissolved oxygen concentration, is to control

the oxygen air or sparge rate and/or agitation speed, Kobayashi et al [39]

The control of respiratory quotient (RQ) has also been a popular approach 

Aiba et al [40] controlled R Q  in the range 1 0 to 1 2 by step changes in the feed 

rate to prevent substrate acculumatioa The control of oxygen uptake rate (OUR) in 

conjuction with R Q  has been proposed by Pengner and Blachere [41] and

Raimercz at al [42] The techmoque involves step changes m  the substrate feed 

rate dependant on the values of R Q  and O U R  Woehrer et al [43] utilised both 

R Q  and ethanol to control the glucose medium addition.

The technique of matenal balancing has been implemented by Cooney et al 

[44] and Wang et al [45] to estimate biomass and control a bakers yeast 

fermentation It was also applied to penicillin fermentation m  1982 by Wang [46] 

The optimal operation of a fed-batch reactor for maximal biomass productivity was 

presented by Weigand uet al [47] using the maximum principle by manipulation 

of the substrate feed rate Similiar optimal control strategies have also been 

described by Constantmidies [48] and by Blanch and Rogers [49] The application 

of a classical proporotional and integral (P+I) controller and multivanable control
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by a non-interacting controller has been described by Takamatsu et al [50]

Although it is generally recognised that the conventional PID regulator is 

remarkably effective in practice, its initial tuning and the maintenance of good 

tuning on a plant with many control loops can be a time consuming activity, 

particulary if the process dynamics are slow The PID regulator really only exhibits 

good performance for dominant second order plants with fixed parameters Self 

tuning control is one approach to the automatic tuning problem for a system with 

time varying parameters As outlined previously a self tuning controller consists of 

two main elements Firstly, a recursive parameter estimator that computes estimates 

of plant dynamics in terms of a set of parameters in a structured model and 

secondly a control design algonthm as outlined in Figure 51 The self tuning 

regulator is very flexible with respect to the design method Self tuners based on 

pole placement, mmimum-vanence control and L Q G  control have been considered 

[51] Multivanable adaptive/self tuning control of fermentation processes has also 

been presented by Yousefpour [52] and by Williams [53]

A  self tuning regulator based on pole placement via state feedback will be 

considered m  this chapter An algonthm is called self tuning, if, as the number of 

input and output samples tend to infinity the control signal generated becomes that 

which would be produced by the corresponding feedback law designed on the basis 

of known process dynamics - the principle of certainty equivalence Self tuners are 

performance oriented, whereby, the engineer specifies a desired closed loop 

performance, despite unknown plant parameters or dnft Compare this to PID where 

the user specifies coefficients K, T1# Tj to try to obtain good performance at 

current plant conditions despite the fact that this control may detenorate at a later 

stage if the parameters change

In this chapter we will introduce the the idea of self tuning control as 

applied to a fermentation process W e  will first outline the concept of linearization
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as we will linearize the non-linear fermentation process for control puiposes The 

controller will be designed using state feedback and we will look at the single 

input single output (SISO) case followed by the multi input multi output (MIMO) 

case The parameter estimation algonthm (RLS) and the Extended Kalman Filter 

will then be introduced into the overall self tuning controller as outlined in Figure 

52

5.2 PROCESS MODEL

If we reproduce the discretized equations for our two-state fed batch model 

with a Monod structure on the specific growth rate \i

X(k) = X(k-l) + hu&IkiU Xtt-l) - hD(k-l)X(k-1) 
ks+S(k-l)

(5 1)

S(k) = S(k-l) + hD(k-l)[Sj(k)-S(k)] - h ^ k - l ^ k - 1)

Yx s[ks+S(k-l)]

(5 2 )
where h is the sampling period in hours

An equivalent discretized non-linear state space representation of the process 

may be obtained,

x(k) = A(k-l)x(k-l) + B(k-l)u(k-l) (5 3)

where

x(k) = (X(k) S (k))T (5 4)
u(k-l) = D(k-l) (5 5)

and the components of the A and B are respectively,

an  = 1 + hMfflS(k-l) , a,j = 0 (5 6,5 7)

[ks+S(k-l)]
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\

J

Yx s[ks+S(k-l)]

b 1, = -hX(k-l) (5 10)

b 12 = h(S1(k)-S(k-l)) (5 11)

a 21 = -hM oS(k-l) , a 22 = 1 (5 8 ,5  9)

5 3 PROCESS M O D E L  LINEARISATION

W e  will first limit our analysis of the process to obtaining linear dynamics of 

the system This may seem incompatible with the fact that most of the

bioengineering processes are modelled by non-linear equations However, linear

techniques are valuable because there is no general theory for the analytical

solution of non-linear differential equations and consequently no comprehensive

analysisof non-linear dynamic systems Also a non-linear system may be

adequately approximated by a linear system near some operating conditions

Significant advances in the linear control theory permit the synthesis and design of

very effective controllers even for non-linear processes Fundamental, therefore , is

the concept of linearization and the procedure for approximating non-linear systems 

by linear systems

The following equations represent general non-linear and time varying

dynamics

x(k+l) = f(x(k),u(k),k) (5 12)
y(k) = g(x(k),u(k),k) (5 13)

where

x(k) is the state vector, u(k) is the input vector, y(k) is the the output

vector , and the vector functions f and g specify the non-lmear systenm dynamics

The first step in the linearization process is to find the equilibrium point(s) of

the system when inputs assume their constant or steady values For any system we
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say that x0 is an equilibrium state if it does not change under constant u0

For discrete time systems, x0 is the solution of the equation
x(k+l)-x(k) = f(x(k),u0) = 0  (5 14)

W e  can then use Taylor senes to expand these equations about the 

equilibnum point (x0,u0), the linear terms of a Taylor senes expansion of (5 1) 

and (5 2) retaining only first order terms are given by,

x(k+l) = f(x0,u0) + ¿£ (x-x0) + ££ (u-u0)
8xix u 0 5uix0,u0

(5 15)

A  similiar expansion of (5 13) will yield,

y(k+l) = g(x0,u0) + £g (x-x0) + £g (u-u0)
8 x ix 0fU0 5uix0,u0

(5 16)

If we define the incremental vanables 5x=x-x0, 8u=u-u0 and 5y=y-y0, then

the resulting linearized equations become,

8x(k+l) = A* 8x(k) + B* 8u(k) (5 17)

8y(k) = C* 8x(k) + D* 8u(k) (5 18)

where the matnx,

A* = M  (X0>u 0) , B* = M ( x 0 tu 0)
8x 8x (5 19,5 20)

C* = ¿g (x0,u0) , D* = (x0 u 0)
Sx 8x (5 21,5 22)

5 31 Lmeanzed State Space Mdel- Single-Input Single-Output (SISO)

Using (4 17-4 20) we obtain the following linear vanational model for the

plant,
8x(k+l) = A* 8x(k) + B* 8u(k) (5 25)

where
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5x(k)= [x(k)-x0, s(k)-s0JT (5 26)

8u(k)= [D(k)-D0] (5 27)

and the components of the A* and B* are respectively,

a ii — l +  hn®S0 - hD0 , a 12 - hksHfljXp

*1 21

[ks+S0] [ks+S0] 2
(5 28,5 29)

■*MmSo * 3 22 = 1 - hD0
Yx stk s+S0] Yx s(ks+S0) 2

(5 30,5 31)

and

b * „  = -hX0 (5 32)

b* 12 = h(Sj(k)-S0) (5 33)

Imposing the conditions expressed in (412) on equations (316) and (317) 

gives the following equilibrium points for biomass and substrate

So = M o  . X 0 = Yx s (Sj- k sD„ )

Mmax'D0 mnax'^o
(5 34,5 35)

5 32 Linearised State Space Model - Multi-Input Multi-Output (MIMO)

Usmg (417-4 20) we obtain the following multi-input multi-output linear 

variational model for the plant,

5x(k+l) = A* 8x(k) + B* 8u(k) (5 36)

where

8x(k)= [x(k)-x0, s(k)-s0]T (5 37)
8u(k)= [u,(k)- u 10(k), Uj(k)- u 2o(k)]T (5 38)

with u, (k)= D(k) (5 39)

and u 2(k)= D(k)S,(k) (5 40)
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and the components of the A* and B* are respectively,

a*,, = 1 + hHn|S0 - huI0, a* , 2 = hksJ^X,, 

[ks+S0] [ks+S0]*
(5 41,5 42)

a 21 = -hHujSj , a 22 = 1 -ltyigjkg -hu,

and

Yx stks+S0] Yx s(ks+S0)i

(5 43,5 44)

b*,, = -hX0 , b 12 = 0 (5 45)

b* 12 = h(S,(k)-S0) , b 22 = h (5 46)

Imposing the conditions expressed in (412) on equations (316) and (317) 

gives the following equilibrium points for biomass and substrate of the M I M O  

system,

So = k su io * X 0 = Yx s K U 2o/u iq) “ S 0]

Mmax’u io
(5 47,5 48)

5 3 3 Controllability

If we consider the discrete tune system that uses the following statee space 

model

x(k) = Ax(k-l) + Bu(k-l) (5 49)

y(k) = Cx(k) (5 50)

The system is controllable if it is possible to find a control sequence such
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that an arbitrary state can be reached from any initial state in finite time If we 

define the controllability matnx [30,Ch 5] as,

Wc = [ B AB An -’B ] (5 51)

if W c has rank n, then it is possible to find n equations from which the control 
signal can be found such that the initial state is transferred to the desired final 

state x(k) and the system is deemed controllable

The controllability of the SISO and M I M O  systems may be analysed by 

taking the parameter values of Table 3 1 with an equilibnum input D 0 = 02 hr1 
and input feed concentration of 9g/l

The controllability matnx of the SISO linearized system becomes,

Wc = -2 39 -0 659

4 78 1 318

(5 52)

This matnx is not full rank and Ackermans formula [30,Ch 9] states that 

w c-i must exist for SISO state feedback design (or any other feedback structure 

that gives closed-loop poles specified by some polynommal P(z)=0 )

For the M I M O  case the controllability matnx becomes,

Wc = -2 39 0 -2 469 -0 181

0 22 -0 5 0 417 -0 137

(5 53)

This matnx has rank=2 and is controllable It is with the design of a state 

feedback controller for the M I M O  model that the remainder of this chapter will 

deal Therefore it is worthwhile to examine the accuracy of the hneansauon 

procedure outlined in Section 5 3 To use a linearised model of a non-linear plant 

it is desirable that the magnitude of the higher order denvatives m  the Taylor
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senes expansion of equation (515) tend towards zero A  comparsion of the 

matrices A* with A*, and B* with B*, should validate this idea where,

A* = M  (x0 u ) , B* = £ i( x  u ) 
8x 5x (5 19,5 20)

A ,= ¿II (x0,u0) , B ,= ¿lt(x0 u 0)
8x2 8x2 (5 54i5 55)

For plant parameters of ^ ^ = 0  8, Y xs=05, 1^=05 and equiLbnum inputs of 

u 10=0 685714 and u20=4 8 the following matnces result,

0 0 0653 B* = 2 0
-1 37 -0 5551 -3 1

(5 56,5 57)

a V 0 -0 0373 0 0
0 0 0746 0 0

(5 58,5 59)

The above, relatively small, values of the second derivatives would imply that the 

linearised model should be a good approximation of the non-linear model when 

operating about the equilibnun inputs u, 0 and u2 0
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54 REGULATION B A S E D  O N  POLE PLAC E M E N T  B Y  STATE F E E D B A C K

The regulation problem is discussed in this section with the fundamental 

design method of pole placement being developed The purpose is to arrange a 

feedback structure so that all poles of the closed loop system assume prescribed 

values The problem is ini tally solved under the restnctive assumption (for 

fermentation systems) that all state variables can be measured directly [19] Any 

linear system may be represented as,

x(k+l) = A(k~l)x(k-1) + B(k-l)u(k-l) (5 60)

Because feedback solutions are desired, it is necessary to specify the 

information available for generating the control signal Because the properties of the 

system are specified by the closed loop poles, the closed loop system must be 

linear The feedback must also be linear so the admissible controls for the 

fermentor model can be expressed as a linear feedback

u(k) = L x(k) = -1,X(k)-l2S(k) (5 61)

With this feedback the closed loop system becomes

x(k+l) = [A(k)-B(k)L(k)]x(k) = Ac(k)x(k) (5 62)

where

a 11“^1 ! 1, a ,2-b, ,1 2
a 21 ' ^ 2 1  1 1 a 2 2 _ ^ 2 1  1 2

(5 63)

Equating the characteristic equation of Ac(k) to the following desired 

characteristic equation

z 2 + p 1 z + p 2 =0 (5 64)

where p 1 and p2 are the desired pole locations and solving for the two state
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feedback gains 1, and 12 (APPENDIX A) we get,

1, = (t + l2u)/v (5 65)

12 = (vPiP2 - -rt)/(ru + v) (5 66)
where

t = p, + p 2 - a,, - a 22 (5 67)

u = b 21 + b 22 (5 68)
v = -(b,, + b 12) (5 69)

q = a i l a 22 - a 12a 21 (5 70)
r = a, 2b 21 + b 22a 12 - a 22b 1l - ^ 22^12 ^
s = a 21b t1 + a 21b 12 - a 11b 21 - a ^ b ^  (5 72)

The pole placement problem had been solved explicitly and m  the following 

the section simulation results will be presented for a self tuning state feedback 

controller

5 5  SIMULATION RESULTS

The simulation results that follow will be divided into section as follows 

Firstly, simulation studies will be presented that compare the lineansed and 

nonlinear models of the fermentation process Then the operation of a fixed

parameter state feedback controller will be outlined followed by a self tuning state r

feedback controller Both the above controllers assume the availibility of

measurements of the output states, this is not true of the real plant and hence the

need to introduce a self tuning Extended Kalman filter This is based on output 

measurements of carbon dioxide from the fermenter and provides estimates of the 

states (biomass and substrate) A  sampling period of h=005hr (3 mm) will be used 

in the simulation studies to follow
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Non-Linear and Linearised Fiant Comparsaon

In the comparative studies between the non-linear and linearised plant the 

following parameters and inputs are used

Mmax"0 8 ks =0 22 Yx s=0 5
u 10 =0 42 u 20=4 97

Table 5 1

These inputs and parameters give equilibrium state values of X 0=4 22g/1 and 

S 0=0 552g/l Figure 5 3 shows a comparsion between the linearised and non-linear 

plant when operating from an initial state vector (X,S) of x = (2,4) The results in

Figure 5 4 highlight the problem of movmg the operating conditions of the plant

further away from the equilibnum states Figure 5 4 shows linear and non-linear

models operating with an initial state vector of x = (0 5,8), far removed from the 

equilibnum states This situation is not ideal as in the real plant the initial states 

will be far removed from the equilibnum states of the plant This problem may be 

solved by updating the equilibnum model at each sampling interval The new

linearised model is calculated using the previous states of the non-linear model as,

u io= ^%iax*S0 u 20 = [ (Xo/Yx s)+Sq1*u io

ks + S 0
(5 73,5 74)

Figure 5 5 shows the good approximation between the lineansed and non-linear for 

the updated equilibnum point The idea of an updated equilibnum point will be 

used in a control structure later

55 2 Fixed Parameter Controller

The block diagram of a state feedback controller for a fermentation plant is

shown in Fig 5 6 The controller feedback gains are designed using the current A*

and B* of the lineansed model The control inputs to the plant in the M I M O
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model are defined as ul the dilution rate, D, and u2 the product of the dilution 

rate and the input feed substrate (u2=D*St) The reference state trajectories (X,S) 

must therefore be multiplied by the inverse steady state gam matnx Gss where,

GM  = B * - W  I-(A*- B* L>] (5 75)

where L is the feedback gam matnx and I the identity matnx Results for this 

control structure will now be presented

Fiquie 5 7 shows results for state deviations of (2,3) -> (2 4,3 8) The plant
was lineansed around its initial conditions and the closed loop poles were chosen 

asp,=p2 = 08 Figure 5 7 shows the cntically damped plant response

(non-oscillatory) for these pole locations Figure 5 8 shows the control inputs for

these state deviations and Figure 5 9 isolates the control input ul (dilution rate) to 

show that it is a realistic input for the actual plant, u2 is a constant times the 
dilution rate as previously outlined Figure 5 9 shows the initial correction needed 

m  the control input as the equilibrium model is based on the inverse relationship 

outlined m  equations (5 73) and (5 74) At t=0 the plant is assumed to be m

equilibrium with equihbnum states equal to the initial conditions and equilibnum 

control inputs solved via the inverse relationship outlined above

As expected when the setpoints are moved away from the current equilibnum 

point (the initial conditions) the control performance suffers Figure 5 10 shows the 

controller performance for the same closed loop poles of 08 but with larger state 

deviations than previously, (2,3) (4 5,4) The plant outputs attain their respective

setpoints but not in the desired cntically damped reponse The control inputs in 

Figure 5 11 are unrealistic for the actual plant Hence this control structure is 

limited in its application

Two alternatives may be considered Firstly, a lineansed model about the

setpoint could be used and secondly, for large deviation intermediate setpoints could
be chosen to give plant outputs that go from their initial conditions to their
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respective setpomts m  a piecewise manner with intermediate updating of the

linearised model

For a linearised model about the setpoint we use the state trajectories of (2,3)

(2 4,3 8) Fig 512 shows the plant output for this approach and 5 13 shows the

input dilution rate The plant i/o values are simihar to the results for linearizing 

about the initial conditions For initial conditions far removed from the setpoint the 

plant does not show a critically damped response either but does show different r

control inputs Figure 5 14 shows the plant o/p for linearising about the set points

and large deviations of states The profile is smoother than that shown in Figure

510 but again not critically damped Of the control inputs in Figure 5 15 the

dilution rate shows an unrealistic value for the actual plant

The second alternative, as mentioned earlier, is to implement a method of 

piecewise linearisation, wherby an intermediate setpoint is defined and the

equilibnum model updated once this point is reached Updating the equilibnum 

model at each sampling interval was not possible as the large correction in the

control input as shown in Fig 5 9 occured at each sampling interval and negative 

values of equilibnum states resulted Results are shown in Figure 5 16 when the 

piecewise update technique is used The control inputs are shown in Figure 5 17 

This method provides better scope as the plant can be dnven from its initial

conditions to some remote value in a piecewise fashion

55 3 Self Tuning Controller

The schematic diagram of a self tuning state feedback controller for a

feimenter is shown in Figure 5 18 The non-linear plant is simulated with a Monod 

growth structure and the parameter identification model of Section 3 3 2 is used in 

the Recursive Least Squares (RLS) identification technique The non-linear plant is 

simulated with the following parameter values,
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8 ks =0 22 Yx s=0 5
Table 5 2

The plant outputs arc shown in Figure 519 for state trajectories of (2,3) -+

(24,3 8), these trajectories will be used throughout the remainder of the simulation 
studies as will closed loop pole locations of p t = p2 =0 8 The convergence of 

the plant parameters is shown m  Figure 5 20 The yield parameter Yxs has been 

identified using the direct estimate technique of Chapter 3 The parameters U m ax  

and kg were identified using an RLS subroutine Initial parameters estimates of

Mtnax =01 and 1^=0 05 and Y x s= 0 1 were used in all simulations Clearly the 

parameters of Figure 5 20 begin to converge after OOlhr A  forgetting factor of 

k=0 95 and initial covanence matnx P=105 were used The control action of 

Figure 5 21 although severe at first, due to the bad initial estimates of parameters 

and an inverse equihbnum calculation based on these estimates, improves as the

parameters converge

The performance of the self tuning controller is now investigated for a

changing plant parameter At t=07hr the plant parameter 1% ^  is changed by 10% 

around its nominal value to Mmax^ 88 Again 0 95 and P=105 apply

Simulation results are shown m  Figures 5 22-5 24 The plant outputs are shown in>
Figure 5 22 and despite the disturbed parameter value the set points are reached 

at t=4 55hr Even with this disturbed parameter the control inputs in Figure 5 24 

are acceptable for an actual plant The identified plant parameters of Figure 5 23 

show slow recovery after the Umax 1S disturbed It was decided to change the

forgetting factor to X=0 9 and investigate the effects on parameter convergence

when |imax 1S disturbed Simulation results for the plant outputs, parameter 

convergence and control inputs are shown in Figures 5 25*5 27 The parameter 

convergence properties are improved the setpoints are reached in 2 85hr compared 
to 4 55hr m  the previous case As expected the control action, shown m  Figure 

5 27, associated with such an improvement in performance is severe and m  fact 

not suited for an actual plant
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5 6 CONCLUSIONS

This chapter on self tuning control of fermentation processes has attempted to 

join together much of the work and ideas outlined in the previous chapters The 

self tuning controller used incorporated the procedures outlined in Chapter 3 

regarding the identification of plant parameters and the effect of continual updating 

of these parameters Detailed studies of the controller performances over a range of 

conditions has been outlined Some work remains especially that of the introduction 

of a self tuning Kalman Filter into the overall control loop This aside the self 

tuner showed encouraging results The main ment of the self tuner is its ability to 

track time varying parmeters and coupled with the process of linearisation it may 

be possible to improve the control of an actual fermentation process However, in 

some of the simulation studies outlined initial control signal and parameter 

variations are unacceptable In a real system the view of the self tuner as a black 

box device which can be connected to a system and left to look after itself may 

be somewhat of a myth Care would be needed in setting limits on the control 

signal and on parameter vanations Perhaps a self tuner used as part of a control 

system would be more beneficial The application of the self tuner to a real plant 

is necessary and looks feasible with the introduction of an Extended Kalman Filter
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CHAPTER 6

This chapter will present experimental results from a pilot scale fermentor 

The process instrumentation and measurements techniques are outlined for the 

system Model validation, identification of model parameters and an on-line method 

of state estimation is investigated for a batch process Finally, the validity of the 

expenmential results is discussed

6 1 PROCESS INSTRUMENTATION

This section will discuss the instrumentation employed for the fermentation of 

bakers yeast on on 10-litre pilot plant fermentor, as outlined in Appendix A  The 

fermentation vessel used was a New Brunswick SF-116 fermentor This stainless 

steel vessel is steam stenlisable and the vessel contents were typically sterilised at 

120°C and ISpsig for 45-60 minutes before innoculation The vessel is equipped 

with an agitator and during fermentation process the medium is agitated at 300^00 
rpm A  sampling port which must be steam sterilised pnor to each sample facihtes 

off-line analysis

A  New Brunswick Scientific Senes 900 polarographic dissolved oxygen 

electrode was used to measure dissolved oxygen levels A  New Brunswick 

Scientific dissolved oxygen transmitter (Model D0-50) with a O-lOmV analog 

output corresponding to 0-100%  saturation was used m  conjunction with the 

electrode

An important feature of any fermentation instrumentation are the gas analysers

EXPERIMENTAL RESULTS AND MODEL VALIDATION
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An Analytical Development Company analyser, type SS206, was used to monitor 

C O  2 levels in the exhaust gas stream The exhaust gas for carbon dioxide 

measurment was first passed through a drying column containing calcium chlonde 

to remove excess moisture before entering the infra-red analyser The analyser 

gives 0-5v output for 0-10% C 0 2 A  Servomex 570A analyser was used to 

measure oxygen levels m  the exhaust gas Again pnor to analysis the gas was 

dried by passing through a column of silica gel The paramagnetic oxygen analyser
r

outputs a linear 0-1V for 0-100% oxygen

A  calibration routine proceeded each fermentation run. The carbon dioxide 

analyser was set to zero using air as normal air content is 0 003% C 0 2 while the 
span of the instrument was set using a 5% C 0 2 gas supply Zero on the oxygen 

analyser was set using a nitrogen gas supply and the span of the instrument was 

set using air as normal air content is 21% The saturation level of the dissolved 

oxygen probe was set by bubbling air through the medium in the vessel at 12 
Vmin air input and 3O0rpm agitator speed (the operating conditions) The zero set 

on the dissolved oxygen instrument was obtained by bubbling nitrogen through the 

medium

The various instrumentation signals were signal conditioned and interfaced to a 

IBM compatible 386 based Personal Computer via Metrabyte D A S H  16 and DDA06 

input/output cards The D A S H  16 provides timers and D/A facilities and uses an 

industry standard (HI-674) 12 bit successive approximation converter with a 12̂ is 

conversion time All instrumentation signals were filtered and interfaced in 

differential configuration which provided 90db common mode rejection and ±10v 

common mode range The DDA06 provides 6 independent 12 bit D/A converters 

and 24 bits of digital I/O and are TTL/CMOS compatabile The exhaust gas was 

channeled to the C 0 2 and 0 2 analysers using 24V solenoids. The solenoids were 

"thrown” by Darlington Dnvers triggered by the digital output lines The exhaust 

gases were sampled every 5 min (0083 hr) with a 30 sec delay from tnggenng of
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the solenoid to sampling (íe the solenoids were thrown at 4 5 min intervals) This

was necessary to to allow the exhaust gas to stream through the drying columns

and register the respective analyser At 5 min intervals the recorded value of C 0 2, 

0 2 or D O  was the mean value over 100 consecutive samples

62 MATERIALS A N D  M E T H O D

The preparation for a fermentation was m  two stages The first stage involved 

the preparatation of a yeast innoculum and the second the preparation of the 

growth medium The innoculum was used to seed a production medium batch and 

incubated over 20hrs The actual production batch stage was the stirred aerated 

fermentation process and was run in the New Brunswick pilot-plant fermenter 

Following the fermentation the yeast was harvested by continuous centnfugatioa

6.2.1 Innoculum Preparation

Cane molasses -40g/l 

(NH4)2S04 - 5g/l

pH 5 0-5 2 before sterilization (121°C, 20 min)

pH 4 7-4 9 before inoculation

A  flask containing 400ml concentrates was innoculated with 2-4ml of a yeast 

cell suspension (Saccharomyces Cerevisiae) The flasks was incubated on a shaker 

table at 30°C for 24h

62 2 Medium Preparation

Eight litres of medium was prepared according to the following recipe,

Cane molasses - 20g/l 

(NH4)2S04 - 5g/l
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Anti foam - 50ml 

(poloxyethyleneglycol-ppg)

pH 5 0-5 2 before sterilization (121°C, 45min) 

pH 4 7-4 9 before inoculation

The medium in the vessel was sterilised at 121°C for 45 m m  with constant 

agitation The production medium was inoculated with a 10% voulme of the seed 

culture and incubated at 30°C, 300rpm and 12 v/v/min During the production 

fermentation samples were taken at t0 and every two hours thereafter to determine 
sugar levels and dry weight of yeast

63 PRODUCTION O F  L A B O R A T O R Y  RESULTS

To validate the model for the system it was necessary to obtain accurate 

measurments of the two m a m  state variables in an off-line fashion as there are no 

available sensors for on line measurement Measurements of biomass (gA) were 

obtained using the technique of dry weights and levels of glucose were found 

using a sugar reducing test

6 31 Wet Cell Weighl/Dry Yeast Weight

The process of obtaining dry yeast weight measurements was initiated by 

preweighing 10ml centnfuge tubes Then 10ml of yeast culture was pipetted into 

the centnfuge tube and spun in a Sorval R C  SB high speed centnfuge at 10,000 

rpm for 10 mins The supernatant was poured off and saved for the sugar 

determination experiment to follow The weight of the pellet and the tube was 

recorded The wet cell or sludge weight was calculated in units of g/1 To obtain 

dry yeast weight measurements the pellet was resuspended m  5ml of distilled water 
and the contents placed in a heated oven (120°Q for 24hr on preweighed trays 

Upon removal and weighing dry yeast weights per 10ml may be calculated This
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can then be scaled to a reading of g/1 

6 32 Sugar Level Determination

Sugar levels dunng the fermentation may be monitored usmg a method 

called DNS for the estimation of reducing sugars By addition of of 3,5 Dimtro 
Salicyclic acid (DNS) to a broth sample a reaction occurs which causes a 

colouremetnc change in the broth. This coloremetnc change may be detected at a 

wavelength of 540nm

A  stock solution of 1% glucose was prepared in a volumetnc flask and 

solutions of 0 1 %  (1 mg/ml) were prepared from them as required. Dilunons of 

samples were prepared usmg distilled water A  set of glucose standards in the 

range 0-1 mg/ml was also prepared which consists of reading of optical density 

versus glocose concentration A  2ml sample of standard was placed in a tube and 

2 ml of D N S  reagent added

The tubes were covered and boiled for 10 mins After removing and 

immediate cooling, 10 ml distilled water was added to all tubes The optical 

density of the sample solution at 540nm was measured with a Pye Unicam 

SP6-550 spectrophotometer The standard curve of optical density versus glucose 

concentration then allowed calculation of the glucose concentration of the fermenter 

samples in g/1
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6 4  MODEL VALIDATION

The following model validation section will be divided into three parts In the 

first part, a compantive study between experimental and simulated results for the 

m a m  states (biomass and substrate) will be presented The second will validate the 

dissolved oxygen measurements and m  the third the exhaust gas levels will be 

studied Where applicable m  the following sections the different specific growth 

rate models outlined in Chapter 2 will be used and a study of parameter variations 

and their effects will take place

641 Validation of Biomass and Substrate Measurements

To validate the primary states we considered the fermentation run to be 

substrate limiting and the following sections outline the fitting of a Monod growth 

rate structure to the experimental results Fig 6 1 and Fig 6 2 shows a comparative 
test between expenmental and simulation with the following parameters,

Mmax = 0 3  ks = 4 0 Yx s = 0  16

Table 6 1

The profiles show encouraging results for biomass m  Fig 61 The 

concentration of glucose shown in Fig 62 does not decay fast enough in 

comparsion with the expenmental results so it was deemed necessary to increase 

the rate of activity 1% ^  The results of vanous increases in 1% ^  is shown for 

biomass and substrate in Fig 6 3 and Fig 6 4 respectively A  value of 

^ m a x = C) 35hr1 would seem to be most suitable for validation of the biomass and 

substrate measurements
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6 4 2 Validation of Dissolved Oxygen Measurements

The dissolved oxygen measurements from the New Brunswick Probe outputs a 

saturation level of dissolved oxygen concentration of between 0-100% For 

comparsion with simulation values, 100% saturation m  the broth was taken as 004 

g/1 of dissolved oxygen [8fCh 8] This is the saturation level of dissolved oxygen 

m  distilled water at 30°C A  comparasion between experimental and simulation 

values of dissolved oxygen for varying is shown in Fig 6 5 with use of the
following parameter values,

k s = 4 0 Yx s = 0 16 Yx 0 = 1 2
Table 6 2

and kg a = 300hr1 Fig 6 6 shows profiles of dissolved oxygen when operating
with the parameters of Table 62 (Mmax = 0 3) and varying the value of the

adsorption coefficient k$a A  value of Hmax=0 3hr1 and k^a=330hr1 was deemed 

a best fit for dissolved oxygen validation

64 3 Validation of Gas Analysts

The results from the carbon dioxide analyser are shown in Fig 6 7 with the 
mole fraction concentration of carbon dioxide in the exhaust gas reaching a 

maximun of 15% The results from the Servomex oxygen analyser is shown in 

Fig 6 8 The accuracy of this Servomex oxygen analyser proved to be the issue of 

most concern throughout many fed-batch runs While a decrease m  oxygen levels 

from the normal 21%  is seen at the output the instruments minimum value of 

203% is quite disappointing A  comparative study of experimental and simulated

results of exhaust C 0 2 and 0 2 for changing is shown in Fig 6 9 and Fig
6 10 respectively
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65  IDENTIFICATION USING EXPERIMENTAL RESULTS

As was pointed out in Section 6 3 the measurements of biomass and substrate 
were achieved off-line for the purpose of model validation Initially parameter 

estimates were found usmg a classical least squares structure Ten data points were 

taken due corresponding to the 2hr sampling interval during the 20hr run As a 

Monod growth rate structure proved most sucessful in Section 64 the data was 

formatted to identify the Monod parameters as m  Section 3 3 2 Classical Least 

squares returned the following Monod parameters, U m a x ^ * 4?, ^=-0 529 and 

Y x s=0 092 It will be seen later that these values differ fro the RLS results as the 

Classical Least Squares method identifies one set of parameters that suit over the 

whole fermentation run

For use m  a recursive least squares identification package, as would be the 

case m  an on-line self tuning controller, it is necessary to obtain more data points 

of substrate and biomass than the ten that were achieved dunng the 20hr run 
Three methods of data interpolation were tned initially to obtain sufficient data 

points for the recursive least squares technique These are presented m  Section 

6 5 1 to estimate the parameters of an unstructured growth rate model and the most 
sucessful interpolation technique is then used for the parameter estimation of the 

Monod and OUson models m  Section 652

6.5 1 Unstructured Growth Rate Model

The first method of interpolation used was a polynominal fit to the 

experimental biomass and substrate profiles The polynominal fit for biomass and 

substrate is shown in Fig 611 and Fig 612 respectively Data points were now 

extracted at intervals of 005hr and inputted to the RLS routine Results are 

displayed in Fig 6 13
The second method took a straight line fit between each of the ten data
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points in a piecewise fashion and again extracted data points at intervald of

0 05hrs Results are displayed in Fig 6 14
The third method of interpolation strove to fit french curves between the data 

points This was done manually and hence data points were read at 05hr intervals 

Results are displayed in Fig 6 15
Thepiecewise fit, discussed later, was deemed the most suitable for 

identification purposes and was then used to estimate the parameters of a Monod 

and Ollson model

6.5 2 Monod and Ollson Growth Rate Models

In this section we assume a Monod dependent growth rate and using the

piecewise data fit and sampling interval of h=0 05 results for a Monod parameter

estimation is shown in Fig 6 16 and Fig 6 17 Results for the Monod parameters

show reasonable correlation with thoses used m  the experimental validation The 

yield parameter is identified as 012 (016 m  validation), while |iniax is identified 
as 022hr1 (0 35hr1 in the validation) The kg parameter shows the biggest 

variation from the validation values A  time varying parameter with a minimum 

value of -3 2 was identified (Fig 617) but a value of 4 0 used m  validation 

These variations will be discussed m  the next section

For an Ollson growth rate structure we include the measured values of 

dissolved, oxygen. The dissolved oxygen samples were taken every 5 m m  (0 083hr) 

and equivalently the sampling interval on the piecewise fits of biomass and 

substrate was changed to 0083hr Results are presented in Fig 6 18
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6 6 DISCUSSION

6 6 1  M odel Validation

In the analysis and design o f  any control system it is necessary to have a 

mathematical model o f  the given plant Such a mathematical model must describe 

thesystem dynamics as completely as possible The model validation and 

identification studies presented above provide some interesting insights into the 

dynamics o f  a batch fennentor

The validation o f  biomass and substrate results proved to be the most 
sucessful The results o f  Fig 6 3 and Fig 6 4 provided acceptable fits for both 

primary states but variations in Umax affect not only biomass and substrate results 

but also dissolved oxygen Havmg neglected the effects which Uma* had on the 

other states it was through validation o f  the dissolved oxygen measurement that the 

complex dynamics and interdependence o f  many states and parameters ^could be 

seen for fermentation processes

In Fig 6 5 it may be seen that the rate o f  uptake o f  oxygen from the 

dissolved state by the yeast cells is strongly dependent on the growth rate At 
higher values o f  uptake o f  oxygen by the cells, is greater than the rate
at which oxygen is being dissolved into the broth. In fact at Mmax=0 35 the broth 

becomes deficient in dissolved o x y g ea  Manipulation o f the adsorption coefficient 

kQa was then considered to increase the rate o f  oxygen transport into the system  

It is evident in Fig 6 6 that increasing the value o f  kg a prevents a deficiency in  

dissolved oxygen We also see that under conditions o f  constant 1% ^  variations m  

the value o f  k%a changes the minimum concentration o f dissolved oxygen but not 

what point in time at which this minimum occurs

As with any control system the accuracy o f  the instruments used must be
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investigated The galvanic dissolved oxygen probe used provided a continuous 

concentration measurement in solution o f  oxygen partial pressure in percent of
oxygen An oxygen permeable membrane seperates the cathode and anode electrode 

internals from the m edium fluid Reactions at the electrode surfaces produce small
amounts o f  current to provide voltage measurement which is correlated to the
oxygen flux through the membrane In early batch runs it was found that the 

normal membrane did not withstand the ngirous sterilization and agitation
procedure The new membrane left the instrument less sensitive and thereafter span 

sets (100%) in the calibration routine took the order o f  8 mmutes

Another issue that must be addressed with regard to the DO probe is its loss
o f  calibration over a 20hr batch run The instrument fails to recover 100%
saturation even when relative activity in the vessel has ceased This may be 

explained by either o f  the following Firstly, the probe was calibrated in the 

medium outlined m Section 6 2 2 with high substrate and low  biomass
concentrations The solubility o f  oxygen in the resulting medium o f  20hr later with 

high biomass, low  substrate concentration and secondary products m ay only be 40% 

o f  initial reading as the probe indicates Secondly, accumulation o f  various bodies
on and around the membrane over the 20 hrs would have an adverse effect on the
permeability o f  the membrane The answer is most likely a combination o f  the two
because when the probe was removed at the end o f  the run and placed in 

saturated distilled water it only attained readings in the 70-90% range

It was thought that in the batch run presented that the broth became deficient 
in oxygen and this could have had an effect on DO, 0 2 and C 0 2 measurements 

At t=10hr the air input was increased from 121/mm to 141/mia The dissolved  

oxygen level o f  the broth (Fig 6 5) and the 0 2 level m  the exhaust gas (Fig 6 8) 

shows increased concentrations and the carbon dioxide exhaust (Fog 6 7) the 

expected decrease at t=10hr This would imply that die dissolved oxygen state was 

in equilibnum and that the rate o f  consumption was equal to the rate o f  transport
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It can only be assumed that the fermentation may have been oxygen limiting at

some time between t=7hr and t=10hr If the system was oxygen limiting it may
\

explain the slighdy lower than expected exhaust C 0 2 output A typical "trough" 

shaped dissolved oxygen concentration o f  Fig 6 6 may have pushed the 

experimental and simulation values o f  C 0 2 in F ig 6 9  closer

The Servomex 570A  oxygen analyser measures the paramagnetic susceptibility 

o f  the oxygen and has a quoted accuracy o f  ± 0  1% and a response time o f  less 

than 7 5 seconds with an inlet pressure o f  lOpsig Unfortunately the analyser did 

not display such accuracy during any o f  the batch runs and definetly for 

fermentationpurposes a model 580A with a 0-25% range would be more 

appropriate than the current single 0-100% range

6 62  Experimental Identification of Parameters

In light o f  the results from the identification o f  parameters using experimental 
results w e must look at the validity ami the physical significance o f  some o f  the 

identified parameters First we will look at the results o f  fitting an unstructured 

growth model to the experimental data via the three methods o f  data interpolation.

The maximum rate o f  growth m  the system occurs at t=7hr (p. «  dX/dt) 
The polynominal fit data fails to estimate this and returns a maximum growth rate 

occunng at t= l 2hr m Fig 6 1 3  This occurs because in the polynomianl fit the 

slope o f  the biomass and substrate profiles are changed substantially and hence 

the occurence o f  the maximum value o f  the parameter \i is changed

The piecew ise data fit o f  Fig 6 14 returns a better estimate o f growth with a 

peak at t=7hr The overall profile o f | i  in F ig 6 1 4  is not as smooth as m the 

polynominal fit o f  Fig 6 13 with the parameter changing in a piecewise fashion
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H owever the maximum value o f jx=0 3 5 h r 1 compares well with the value used in 

the m odel validation section. The french curve data fit returns an peak estimate o f  

p =0 28 at t=7 5hr but as data points were taken at 0  5hr intervals compared with 

0 0 5  in the above two cases this method suffers mainly because o f the manual 
interpolation o f  data from the graphs

The yield paramater Yx s  is defined as the yield o f  biomass on substrate or
AX/AS The yield o f  2 2g/l (Fig 6 1) o f  biomass from 12g/l (Fig 6 2) o f  substrate
implies Y x s= 0 18 The polynommal fit (Fig 6 1 3 )  and piecewise fit (Fig 6 1 4 )
estimate an increasing yield rate that converges to a value of 0 1 2  The French
curve fit in Fig 6 15 estimates a poor value o f  Yx s = 0 0 6

From the above estimation scheme the piecew ise fit proved most sucessful and 

was then used to fit a Monod growth structure to the data The Monod parameters 

jxm ax and Yx s are shown in Fig 6 16 with the kg parameter shown m Fig 6 17 

The parameters Umax Yx s  converge to expected values However the RLS
estimate o f  kg is poor This would seem to validate the results o f  Fig 6 3 and Fig 

6 4  that when fitting a Monod model to the data descrepancies existes between 

experimental and simulated values due to model inaccuracies In an RLS framework 

these descrepancies manifest themselves in the identification of a time varying but 
incorrect ks parameter

In Fig 6 1 8  an Ollson growth rate structure was fitted to the data The
paramater converge to unrealistic values and prove that for the fermentation m
question was substrate limiting and not double substrate limiting Therefore the
growth rate for this run is best descnbed by a Monod growth rate structure
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6 7  SUMMARY

This chapter has outlined the work undertaken in a pilot plant on a 101 

fermentor with details o f  materials, methods and process instrumentation. Using the 

experimental results model validation and identification studies were earned ou t  

The results indicate that for the results presented from the pilot plant, a Monod 

growth rate best desenbed the process
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CHAPTER 7
CONCLUSIONS

The computer control and optimization o f fermentation processes is o f  great
econmomc interest to industry and has created a substantial research interest in 

academic institutions This thesis has outlined research undertaken into the self
tuning control o f  fermentation processes at the Control Technology Research Unit 
(CTRU) at Dublin City University in collaboration with the School o f  Biological 
Sciences

The analysis o f  fermentation processes reveal many problems that face the
designer o f  a se lf tuning controller The main hurdles in a se lf tuning context are 

the need for an accurate model structure that describes the system completely and
the availability o f  process measurements for the purpose o f  on -lin e identification o f
system parameters To further complicate the control system design, bioprocesses 

are systems which are inherently non-linear and highly interactive This is evident 
from the fact that the biomass concentration is not only affected by the substrate 

concentration but by the dissolved oxygen concentration, stirrer speed, pH and
temperature

In this thesis, a comprehensive model for a fed batch Baker’s Yeast
fermentation has been developed It has been demonstrated that the choice o f
model for a fermentation process depends largely on the the control objective, as
well as on the relative importance o f vanous transport and kinetic factors under 

conditions most likely to be found in the course o f  an actual implementation The 

transport model presented is applicable to any agitated and aerated reactor while
the kinetic model depends on the metabolism o f  the specific organism

The cntical importance o f  on-line estimation methods results from the j
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inaccuracy o f  the presently available growth models, the rather small number o f  

measurements that presently can be made on-line and the high sensitivity that m ost 

biological systems exhibit to variations m the environmental conditions Most 

biosensors have not gamed wide scale acceptance on industnal process with 

problems m the area o f robustness and long term stability This problem o f  the 

availability and reliability o f  on-line sensors and the considerable delay that can be 

introduced into process measurements by off-line analysis has led to investigation 

mto process observers such as the Kalman Filter This method of state estimation 

has tned to improve control techniques by moving from the off-line to the on-line 

domain The Kalman Filter observer is not without problems as a fixed parameter 

model can suffer from simplifications made in the fermentor model system The 

simulation results presented show that the Kalman Filter, like the non-linear and 

non-adaptive observers, suffers the m ost from inaccurate initial estimates o f  the 

process states

A Recursive Least Squares (RLS) algonthm for the identification o f  system  

parameters based on on-line measurements o f  the states has been presented The 

good agreement between simulated and experimental parameters indicates that the 

proposed algonthm would be very useful in a se lf tuning control context especially 

as the RLS shows good tracking o f tune varying parameters with a vanable 

forgettmg factor

The particular self tuning control algonthm developed provided interesting 

results It strove to include the vanous parts o f  the controller already developed 

seperately viz the identification and estimation algonthms The state feedback 

controller developed differed from other se lf tuning controllers presented in the 

literature in that it attempted to the control process states and not optimally control 

the envoimment in which biomass could grow The results show that a self tuning 

controller can sucessfully be applied to a fed batch fermentation process simulated 
on a digital computer
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The possibility of future work as a result o f  this study o f fermentation 

processes lies mainly in the real time implementation o f  the self tuning control 
strategy at a pilot plant scale In this thesis an integrated approach has been 

presented for the on-line estimation o f state variables and culture parameters The 

real time application o f any self tuning strategy w ill depend on the avaihbility o f  

accurate measurements o f  the state variables The problem o f  determining the states 

of a system from noisy measurements o f  exhaust gases via the technique of 

Kalman Filtering has shown promise but additional work is needed The current 
method is based on the non-linear correlation between the process states and the 

carbon dioxide output in the exhaust gas However, as mentioned eaiiier, the filter 

suffers from maccurate initial state estimates and one area o f  future woik could be 

the use o f  an iterative Kalman Filter which incorporates iterations o f  the output 
equations to reduce the estimation errors and the bias due to poor initial estimates 

The future availability o f  accurate measurements o f  oxygen concentration m the 

exhaust gas could further enhance any estimation algorithm

In future estimation schemes consideration should also be given to more 

complex algorithms The relatively large sampling time associated with the control 
o f fermentation processes ensures adequate processing time is available for any 

increase in complexity o f algorithms These algorithms may consist o f  using a 

combined state and parameter estimators [52] rather than the presently seperate 

Recursive Least Squares and Kalman Filter techniques Consideration should also be 

given to cases where the state noise covariance Q and observation noise covariance 

R are not known a pnon Algonthms are available that can be used on-line to 

identify the unknown covariances

Future control schemes could also revert back to the popular approach o f  

controlling the environment in which maximum growth rates could be achieved 

The control o f  the dissolved oxygen concentration via the input air flow rate and
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agitation speed is one approach that could be tried m a self tuning context

The use o f  modelling and optimization for on-line computer control, coupled 

with the increasing use o f available sensors for momtonng fermentation processes 

w ill continue to be o f  interest to industry The progress in control techniques must 
be influenced m a positive manner by academic efforts and hopefully the research 

undertaken for this thesis will contribute to the increasingly important field o f the 

control o f  biological systems
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F I G  2.3 O U T L I N E  F L O W C H A R T  
OF S I M U L A T I O N  P R O G R A M .
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F I G  2.4 F L O W C H A R T  OF R U N G E - K U T T A  S U B R O U T I N E
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F I G  2.5 O U T L I N E  FLOllCHflRT OF S U B R O U T I N E
WITH D I F F E R E N T I A L  EQTS. OF THE MODEL

( d E R IU 'F  d f  t f > )
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DESCRIBING THE F IRST  PROCESS STATE F>N>

( d e p iu ^  end )

\

1 0 1



Fig 3.1 Growth Rate , lam bda = 0.99

9

Fig 3.2 Growth Rate , lam bda = exp
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Fig 3.3 Monod,lambda = 0.99

Fig 3 .4  M onod,lam bda=exp
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Fig 3 .5a Ollson P a ra m eters

Fig 3.5b Ollson Param eters

104



Fig 3.6a C om prehensive  Model

Fig 3.6b C om prehensive  Model
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Fig 3.6c C om prehensive  Model

Fig 6.3d C om prehensive  Model
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Fig 4 .2a NL Observer ,h = 0.5

hr

Fig 4.2b NL observer ,h  = 0 .05
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Fig 4 .2c  NL Observer,h = 0 .025

Fig 4.3 NL o b s e r v e r ,u m a x + 15%
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Fig 4.4 NA observer,D = 0 .42

Fig 4.5 NA observer,D = Q.75
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Fig 4.6 NÀ observer,D = 0

Fig 4.7 C02 Evolution  Rate
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Fig 4 .8  EKF -  B iom ass
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Fig 4.9 EKF -  S u b stra te

hr
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Fig 4 .10 EKF — Biomass

Fig 4.11 EKF -  Substrate
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Fig 5-1 Sel f T u n i n g  R e g u l a t o r

Fig 5.2 Self T u n i n g  R e g u l a t o r  for a F e r w e n t o r
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Fig 5.3 Model Comparsion

h r

Fig 5.4 Model Comparsion

hr
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Fig 5.5 Updated eq u i l ib r iu m  pt.
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Fig 5.7 Feedback  Controller
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Fig 5.8 Control Inputs
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Fig 5.9 D i lu t ion  rate
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Fig 5.10 P lant  o / p  —large dev
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Fig 5.11 Control i / p - l a r g e  dev

Fig 5.12 P lant  o / p  s e t  pt. l inz.
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Fig 5.13 u l ,  s e t  p t  l inz

hr



Fig 5.15 Set pt l i n z - l a r g e  dev

Fig 5.16 P iecew ise  l inz .
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Fig 5.17 Control i / p ,  p / w  linz

F I G  5.18 S C H E M A T I C  OF SELF T U N I N G  S T A T E  F E E D B A C K  
C O N T R O L L E R  FOR A F E R M E N T E R .
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Fig 5.19 Self Tuning Regulator(STR)

(STR)

Fig 5.20 S T R -P aram e te r  I.D.
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Fig 5.21 STR-Control i / p
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Fig 5.22 ST R -States
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Fig 5.23 STR- P a r a m e  ter I.D.

Fig 5.24 STR-Control i / p ’s
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Fig 5.26 S T R -P aram eter  I.D.
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Fig 5.27 STR —Control i / p ’s
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Fig 6.1 Biomass
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Fig 6.2 Substrate
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Fig 6.3 B iom ass ,vary in g  u m a x
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Fig 6.4 S u b stra te ,v a ry in g  u m a x
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Fig 6.5 Dissolved 02 ,vary  u m a x

Fig 6.6 Dissolved 0 2 ,vary kla
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Fig 6.7 F e r m en to r  CO2
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Fig 6.8 F e r m e n to r  02
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Fig 6.9 E xhaust  C02
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Fig 6.11 B io m ass  curve f i t

0 00 0 20 0 U  0 i l  0 i l  i 01 1 22 M 2  1 ?2 1 52 <" 1 1

Fig 6.12 S u b s tr a te  curve f i t
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Fig 6.13 Polynorninal  f it
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Fig 6 .14  P iecew ise  f it
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Fig 6.15 F ren ch  curve f i t
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Fig 6.16 P iecew ise  fit, Monod



Fig 6.17 P iecew ise  fit, Monod

Fig 6.18 P iecew ise  fit ,  Ollson
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APPENDIX A

! I

Agi + a+r.r

ralciun 
Chi or id**

ExhdU5+ 6*5

DO
Pm he

u
Tn
Vent

pH

Drying

Minfins

^1 11<"* fiel

Tenp
Control
Lonps

New Brunsuick FerM^n+pr

pn
analyser

(ftZ
dnslyc^r

H2
analyser

S o l 1d 
Drivers

SlQHtfl 
Condi t i wrung

C o M p u t e r  C o u p l e d  F e r M e n t a t i o n  P r o c e s s

137


