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Abstract

Ths thesis concerns the analysis of the Exlpodator model for a Belousov-Zhabotinskn
type oscillating chemucal reaction The chemical kinetics of the reaction 1s dis-
cussed 1n detal and a system of kinetic equations, the Explodator, modelling the
system 1s derived The equations are reduced to the system of non-dimensionalised
equations

1 = 2uy + {1 = 3p3) — 2129 — 323,
Ty = ps— Pry+ Jaz; — 2129,

T3 = p3— 203+ 51Ty + 2]

The existence for all time and boundedness of solutions of the Explodator are
proved It 1s also proved that any trajectory solution which starts in the positive
octant subsequently remains in 1t and that the model has a umque equilibrium
pownt 1n the positive octant for a wide range of parameter values

The theory of Hopf bifurcation 1s mmtroduced Stability 1s defined and the
Hopf bifurcation theorem 1s explained The stability properties of the equihbrium
solutions are examuned A result 1s then proved that gives simple necessary and
sufficient conditions i terms of the kinetic parameters, for an equibibrium point
of the system to a be Hopf bifurcation point, and thus for there to be a famuly of
limit cycle solutions AUTO, a software package for continuation and bifurcation
problems 1n ordinary differential equations, 1s used to solve the system and to
determine the stabibty of the periodic solutions The numerical solutions of the
model agree very well with the chemcal kinetics of the reaction and mathematical
theory

Centre Manifold theory 1s used to reduce the model to a two-dimensional
system with the same stability properties as the full system AUTO is then used
to verify that the linear stability of the stationary solutions of the reduced system
agree with that of the solutions of the full model
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Chapter 1

Introduction

1.1 Oscillating Chemical Reactions

Over the past twenty years there has been a large amount of interest 1n biological
and chemical systems which can sustain temporal and spatial oscillations In the
field of chemical oscillators, the Belousov-Zhabotmski reaction 1s one of the most
widely studied chemical reactions of recent years It has been examined by a wide
variety of scientists, mathematicians and engineers This interest 1s due to the
fact that 1t 1s easily carried out and, although chemucally complicated, 1t 1s still
simple compared with examples of oscillating processes arising from biology The
Belousov-Zhabotinskn reaction, which 1s the name given to the cerium 1on catal-
ysed oxidation of malonic acid 1 a sulphuric acid medium, has some very unusual
properties It exhibits temporal oscillations in the concentration of several of the
species present in the reaction mixture In the presence of an indicator, these oscil-
lations are seen by the reagent periodically changing colour between blue and red
When the reagent 1s spread thinly, circular chemucal waves propagate outwards
from a centre The waves are blue and they travel through a red background

Several systems of first order non-linear differential equations have been pro-
posed as models for the Belousov-Zhabotinshu reaction, the best known being
the Oregonator model [12] Mathematicians became 1nterested in the Belousov-
Zhabotinsku reaction because these models provide a new field in which to apply
modern methods of nonlinear differential equations

1.2 Problem Statement

The Explodator 1s a model not only for the Belousov-Zhabotinsku reaction, but for
many other chemical osaillators It consists of the Ezplodator core and one or more



Limatation reactions The core 1s not changed, but different hmitation reactions
are included for different oscillating systems The Explodator Core consists of the
four reaction steps

A+ X — (1+a)X,
X+Y — Z,
Z — (1+0)
Y — Products,

where A 1s an 1mtial reactant, X, Y and Z are intermediate species and a and
b are positive constants whose value lies between zero and one The Explodator
core on 1its own will not produce an oscillating scheme At least one himitation
reaction must be included 1n the model to ensure that the' consumption of the
intermediate species 1s exceeded by production in the net process .

The oscillating scheme examined 1n this thesis 1s a Belousov-Zhabotinskn type
reaction It 1s an oxalic acid substrate system, where elementary bromine pro-
duced as a by-product of the reaction 1s removed by a stream of an inert gas For
this system Noszticzius et al [23] proposed four hmitation reactions and stated
that the inclusion of any one of these imitation reactions with the core produces
an oscillating scheme Since each of the limitation reactions expresses part of
the underlying chemical mechamsm, we include all of them here, and consider
the full Ezplodator model This gives the following system of non-dimensionalised
equations

Ty = 2uy+z1(1 - 3p3) — 2120 — 3p1xf
o = [14—ﬂ$2+30$3—$1$2 (1 ].)

T3 = p3— 203+ 1,73 + 7]

where i, 2, T3 are scaled concentrations of the intermediate species and a, 3,
K1, K2, K3, and p4 are functions of the rates of reaction

1.3 Basic Concepts

If the model 1s to realistically mirror a chemical osallator, the model must reflect
the properties of the chemical system z,, z5, z3 are scaled concentrations of the
intermediate species and should therefore each be positive Reproducible chermcal
oscillations must have some stabilising mechanism which drives the system into a
stable closed orbit Mathematically this means that (1 1) must have a stable imat
cycle solution A stable himit cycle [ 1s a closed periodic orbit 1n phase space such
that every trajectory which begins sufficiently near to T 1s attracted to 1t

2



The main tool which we shall use to show that (1 1) has a periodic orbit 1s
the Hopf bifurcation theorem It considers the situation where an equilibrium
point of a system exchanges stability as a parameter crosses a critical value The
theorem provides conditions which guarantee that there 1s a family of periodic
orbits emanating from this equilibrium point There 1s therefore a qualitative
change 1n the phase space as this critical parameter value 1s traversed At such a
critical parameter value the equilibrium point 1s called a Hopf bifurcation point

1.4 Thesis Outline

Chemical aspects of an oscillating chemucal reaction are dealt with in Chap-
ter 2 The chapter begins with a historical outhne of the work carried out on the
Belousov-Zhabotinskn reaction and a brief review of the best known model for
the reaction, the FKN model Due to problems ansing from the difficulty of mod-
elling such a chemically complex system, a heterogenous Belousov-Zhabotinskn
type reaction 1s then introduced and its chemical mechanism 1s discussed The
Explodator 1s then suggested as a model for the reaction and the system (1 1) 1s
derived

The existence for all time and boundedness of solutions of (1 1) are proved n
Chapter 3 We also prove that any trajectory of (1 1) which starts in the positive
octant subsequently remaimns in it Then 1t 1s shown that (1 1) has a unique
equilibrium point mm the positive octant for a wide range of parameter values
Finally the chapter reviews the work carried out by other authors, the behaviour
of solutions both 1n the absence of any himiting reactions and with the inclusion
of only one limiting reaction

The theory of Hopf bifurcation 1s introduced in Chapter 4 Stability 1s defined
and a version of the Hopf bifurcation theorem 1s explamned To illustrate the
application of this theorem, a simple system exhibiting hmit cycle solutions 1s
discussed

The stabihty properties of the equiibrium solutions of (11} are examined
A result 1s then proved that gives simple necessary and sufficient conditions 1n
terms of the kinetic parameters, for an equilibrium pomnt of (1 1) to a be Hopf
bifurcation point, and thus for there to be a family of limut cycle solutions It 1s a
tnumph that such a simple theorem has been found, because the large number of
parameters 1n (1 1) make hand manipulations almost impossible The symbolic
manipulator MACSYMA did not help either The result enables all the single
limiting reactions to be discussed i1n detail

AUTO, a software package for continuation and bifurcation problems in ordi-
nary differential equations, was used to solve (1 1) and to determine the stability



of the periodic solutions The numerical solutions of (1 1) agreed very well with
the chemical mechanism described in Chapter 2 and the mathematical theory
developed in Chapter 4

The complexity of the manipulations involved precluded determining the sta-
bility of the lhimt cycles using Hopf’s theory Therefore Centre Manifold theory
1s used 1n Chapter 5 to reduce (1 1) to a two-dimensional system with the same
stability properties as (1 1), 1n a hmited parameter range This also required ex-
tensive calculations ' AUTO was then used to verify that the linear stability of

the stationary solutions of the reduced system agreed with that of the solutions
of (11)

'The calculations 1n this chapter were mitially done by hand and checked using the symbolic
manipulator MACSYMA



Chapter 2

The Belousov-Zhabotinskii
Reaction

2.1 Historical Outline

Osallating or periodic phenomena are common to many areas of physics, biology
and astronomy Examples of oscillating processes include the orbits of planets,
the motion of pendulums and the biological clocks that govern our mternal or-
gans Until the mid twentieth century, chemists beheved that the existence of
chemical reactions which exhibit temporal or spatial oscillations was prohibited
by the Second Law of Thermodynamucs This law states that the entropy of the
universe tends to increase Applied to chemuical reactions the principle states that
a closed chemical system at constant temperature and pressure must continuously
approach an ultimate equilibrium state That 1s, if two substances react to form
a third substance, 1t 1s expected that the reaction will continue steadily until the
reactants are exhausted or an equlibrium 1s reached

In 1958 a Russian chemist, B P Belousov [1], accidentally discovered a system
which seemed to defy the second law of thermodynamucs He noticed that if citric
acid and sulphuric acid are dissolved 1in water with potassium bromide and a
cerium salt, the colour of the mixture changes periodically from colourless to pale
yellow Although accounts of reactions such as this had been reported before
these were mainly dismissed as non reproducible phenomena Belousov’s reaction
differed because 1t was easily reproduced In 1964, A M Zhabotmskn [31] began
a systematic study of Belousov’s reaction He modified the reaction by adding an
indicator which produced a more dramatic colour change He also discovered that
if a thin layer of the reagent 1s left undisturbed blue dots appear which spread out
a pattern of spiral bands of alternate colour As a result of Zhabotinskn’s work
the reaction 1s now commeonly called The Belousov-Zhabotinski Reaction



There was increased interest 1n such reactions as a result of the work of Pri-
gogie [26] Prigogine was the first to point out that oscillations are in fact possible
for some systems provided they are far enough from equilibrium In such systems
1t 1s the concentrations of the intermediate and catalyst species that oscillate not
the imitial and final species For his work 1n this area Prigogine recieved the Nobel
Prize for chemistry in 1977

Although the Belousov-Zhabotinsku reaction became well known as a result
of Zhabotinskn’s work, very little was known about the chemical mechamsm of
the reaction In 1972, R Field, E Koros and R Noyes {11] produced a detailed
reaction mechanism which was widely accepted and 1s commonly called the FKN
model Since then the FKN model and 1t’s skeletonised version, the Oregonator
[12], has served as a basis for study in the area of chermcal oscillations J Tyson
[29] produced an extensive review of the work done on the Oregonator 1n 1976

In 1984, Z Noszticzius, H Farkas and Z A Schelly [23] published a paper
which proposed an alternative skeleton model due to experimental facts which
emerged that were difficult to explain with the Oregonator {20,21] One of the
problems with the model was due to the kinetic parameter F' The hinetic be-
haviour of the model depends critically on # When F < 1/4 oscillations do
not occur 1n the Oregonator model However the reactions included 1n the model
would only produce an F value of less than 1/4 The model suggested by Nos-
ticzius et al does not include such a parameter

2.2 The Field, Koros and Noyes Model

The FKN model may be summarised in the five main steps

Br~ + HBrO, + H* — 2HOBr,
Br~ + BrO; +2HtY -— HBrO,+ HOBr,
203t + BrO; + HBrO, +3H* — 2Ce*" +2HBrO, + H,0,
2HBrO, — HOBr+ BrOj + H*,
nCe't + BrOz + 0z —
nCe**+ Br~ + oxidised organic species, (2 5)

where BrOz and Oz represent brominated and unbrominated organic species
respectively

The oxidation of organic species by Ce**, described by reaction 2 5, 1s ex-
tremely complex when the organic substrate 1s malonic acid As a result the
model contains an unknown parameter which depends on the stoichiometry of
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reaction 25 This problem may be avoided by finding an organic substrate with
limited mechanistic possibilities for oxidation with Ce*t

2.3 Heterogenous BZ Oscillators

Noszticzius and Bodiss [22] found that if oxalic acid 1s used as the organic substrate
and the Br; produced 1s removed by bubbling an nert gas stream through the
reaction muxture, a heterogenous type Belousov-Zhabotinskn (BZ) type reaction
occurs This reaction proceeds in two stages in which different reactions are
dominant For the purpose of the model we will use square brackets to denote the
concentrations of the chemical species
Stage I

In aqueous solution bromic acid 1s a strong acid and a good oxidising agent
It 1s reduced by oxalic acid to produce bromous acid, CO, and water according
to

BrO3; + (COOH); — HOBr +2C0; + H;0

The cycle starts with the autocatalytic growth of HBrO, and the subsequent
oxidation of Ce**

HBT'O3 + HBT02 + 2H+ + 2063+ — 2HB7‘02 + HQO + 2064+

During this growth period [Brt] and [HO Br] are low or neghgible However as
[H BrO,] starts to increase some HOBr appears due to the reaction

2HBrO; — HOBr + HBrO;

After a delay, large amounts of HOBr are produced The HOBr 1n turn produces
Br, by the reaction

2HOBr + (COOH)y —s Bry + 2C0, + 2H,0

Eventually [Br,| reaches a high enough value so that Br_ 1s in equlibrium with
the bromine

Br,+ H,O = HOBr+ Br- + H*

It 1s because of this step that 1t and similar Belousov-Zhabotinskn oscillators
are called bromine hydrolysis controlled oscillators However since the equi-
librium 1n the hydrolysis Lies well to the left (kjyrwara = 110s€c™ kreperse =
8 x 10°M~2sec™!)[10, Ch 26], HOBr 1s consumed 1n such large amounts that its
consumption exceeds 1ts autocatalytic growth At this point [H BrO,]| reaches 1t
maximum value and starts to fall Stage II then takes over

7
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Figure 21 Schematic representation of the heterogenous Ce®*-BrO3 -Oxalic acid
system Imtial reactants are bolded in the diagram

Stage I1

At this point [Br,] 1s still increasing due to accumulated HOBr The Br,
must be removed by some physical or chemical process Without such a process
the oscillations would not occur In this case the Br; 1s removed by bubbling
nitrogen gas through the reaction mixture The physical removal of Br; can be
regarded as the chemical process

BT‘2 — Brg(g)

First the [HOBr] and then the [Br,] start to decrease Due to the low [HOBr],
oxalic acid reacts instead to reduce Ce*t according to

2Ce** + (COOH), — 2C0, +2HY +2C >

Once [Br;] and [HO Br] have become sufficiently low stage I can again take over

We may represent the reactions schematically by Figure 2 1 In Figure 2 2 we
see how the Explodator model replicates how the concentrations of the interme-
diate species vary with time
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Figure 22 Vanation 1n the concentration of the intermediate species with time
(see section 4 4) During stage I, HBrO; mcreases until 1t reaches its maximum
value, this produces an 1ncrease 1n the concentration of HOBr and Br; However,
once 1t has reached 1ts peak, the concentration of H BrO, starts to decrease and
after a delay the concentrations of the other species decay until the reach their
mimimuin value- The cycle then repeats



2.4 The Explodator Model for BZ type Oscil-
lators.

Due to shortcomings in the FKN model, Noszticzius, Farkas and Schelly [23]

proposed an alternative scheme based on the heterogenous Belousov-Zhabotinskn

oscillator described above The Ezplodator 1s a scheme which not only models the

Belousov-Zhabotinskn reaction, but also can be generalised to include the Bray-

Liebhafsky reaction [2], the Briggs-Rauscher reaction [3] and their modifications
The Ezplodator Core consists of the four main steps

A+X — (1+ad)X,
X+Y — Z,
Z — (14d)Y,

Y — products,

where X, Y and Z are intermediate species, A 1s an 1nitial reactant and a and b
are positive values less than one However the Explodator core alone will not yield
an oscillating scheme [18] Other reactions must be included to ensure that the
production of the intermediate species 1s hirmuted by consumption These reactions
are thus called the Limaitation reactions The Explodator core for the oxalic acid
oscillating system described above can be modelled by the four main reactions

HBrOs + HBr0O, + 2H* +2Ce* — 2HBrO, + H,0 +2Ce**, (26)
HBrO, + Bry + H,0 — 3HOBr, (27)

2HOBr + (COOH), — Bry+2C0, + H,0, (2 8)

Br, — Bryy (29)

We want to write these equations in the form given above The initial reactants
(COOH),, Ce**, HBrO3 and H,SOy are used up slowly and thus their concen-
trations are much higher than those of the intermediate species present Sulphuric
acid 1s used as a source of hydrogen ions, which are buffered by the bisulphate 1on
H350y, therefore [H*] does not change appreciably during the reaction Hence
for the purpose of the model [(COOH),), [Ce**), [HBrO3|, [H;50,] and [H*]
will be considered constant over a short time period

We now let A = [HBrO3], B = [Bryy,], X = [HBr0,), Y = [3HOBr] and
Z = [B'I‘Q]

Reaction 2 6

HBrOs + HBrO, + 2HY 4+ 2Ce®t — 2HBrO, + H,0 + 2Ce**

10



This reaction occurs 1n several steps, 1ts rate determiming step being the formation
of the BrOj radical

H* + BrO; + HBrO, =% 2HBrO} + H,0
Thus 1n our model we write reaction 2 6 as
A+ X 250X (2 10)

Reaction 2 7 y
HBrO, + Br, + H,0 —= 3HOBr

This 1s a sumple one step reaction and 1ts rate law 1s given by
R = ky|H BrO,][Br,)|H,0]

Since H,O 1s present 1n large quantities 1ts concentration may be considered con-
stant and the rate law becomes

R = ky[HBrO,]{Br,],

where k; = k3[H,0] So we may write the reaction as
X+Y -2 27 (211)
Reaction 2 8
2HOBr + (COOH); — Bry+2C0,+ H,O

This 1s a complex reaction and 1ts rate law cannot be determined from the above
equation However, Noszticzius et al [23] have wnitten the model equation 1n the
form

Y £,32/2 (2 12)

Reaction 2 9
BT2 i) Brg(g)

The removal of Br; from the system 1s a physical not a chemical process It
requires the bubbling of an inert gas stream through the reaction mixture This
process can be regarded as a first order reaction where k4 1s a function of the gas
flow rate and reaction volume For our model the reaction 1s written as

zX B (2 13)
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To complete the model we must include at least one hrmitation reaction
Noszticzius et al 23] suggest as hrmtation reactions

2HBrO, — HOBr+ HBrO,, (2 14)

HBrOs;+ (COOH); — HBrO; +2C0,, (2 15)
HBrO,+ (COOH); — HOBr +2C0; + H,0, (2 16)
Bryg -— Bry (217)

Agamm we let A = [HBrOs], B = [Bryy)}, X = [HBr0,], Y = [3HOBr] and
Z = [BT‘2]
Reaction 2 14

9H BrO, 22 HOBr + HBrO;

This 1s an elementary reaction and so we may write 1t as
oX 2 y/34 4 (2 18)
Reaction 2 15
HBrOs + (COOH); 22 HBr0, + 2C0, + H;0
The rate law for this reaction may be represented by
R = ki ,]JHBrO3][(COOH),],

which may be written as
R = kLg[HBT’O3]

where ky; = ki,[(COOH),] Since [(COOH),| 1s considered constant for the
model then &y, 1s also constant Thus reaction 2 15 may be written as

At x (219)
Reaction 2 16
HBrO, + (COOH), £ HOBr + 200, + H,0
As before this may be written as
X 2 yy3, (2 20)

where kr3 = kp,[(COOH),]
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Reaction 2 17 .
BTz(g) —'I'"‘-* BTQ

This 1s the reverse reaction of 29 Symbolically 1t may be written as

B 7 (2 21)

where k[A = k_4
The four limitation reactions are now represented by

2X — Y/3+4 A,
A — X,

X — Y/3

B — Z

2.5 Mathematical Formulation of the Exploda-
tor.

The Law of Mass Action states that the rate of a reaction 1s proportional to the
active concentration of the reactants In fact, the rate of a reaction 1s the product
of the rate constant for the reaction and the concentrations of the reactants in-
volved Thus, the rate of change of the concentration of an intermediate species 1s
the sum of the rates of the reactions where the intermediate species 1s produced,
minus the sum of the rates of the reactions where the species 1s consumed On
applying this law to the Explodator core and the hmitation reactions, we get

Z—X = khAX — kXY - I‘;LIX2 + koA — ks X,
T
‘;_Y = —koXY +3k3Z/2 — kY + k4B,
.
%_ = kXY — ksZ + ki X2/3 + ks X/3

The derivation of these reactions 1s quite easy For equation (2 22), the second
term on the nghthand side comes from (2 11), the third term from (2 18) and the
fourth from (2 19) The first term 1n (2 22) comes from (2 10) and 1s the sum of

2k AX — kyAX since one unmit of X 1s consumed 1n the reaction while two units
are produced

13



To transform the equations to dimensionless form we make the substitutions

z1(t) = ko X(7), zo(t) = kY(7), z3(t) = koZ(7),

kA k1A kA
a = k;, ﬂ=k4_, t = kAT,
2k A L kA
po= ki, p2 = kakp, ps = ki3,
3k, 2k A 3k A
He = kpsko B
(k1A)?

Under this transformation the equations become

Ty = 2pp+z(1l —3p3) — 132 — Bulmf,
T2 = p4— Pz 4+ 3azz — 1172,

2
T3 = par3—2ar3+ 122 + p1Ty

14



Chapter 3

Existence and Uniqueness

3.1 Existence and Boundedness of Solutions
Our model system has been represented by the system of differential equations

Ty = 2#2 + .'1:1(1 - 3{13) — 1T — 3”1.’173;
Ty = g — ﬂ.’l}z + 3(1:133 — I1Z9, (3 1)

2
T3 = p3T — 2023 + I;T7 + piIy,

where z,, ¢, and z3 are scaled concentrations of the intermediate species and
must be positive Therefore we look for solutions of (3 1) which satisfy z,(t) >
0,z2(t) > 0 and z3(t) > 0, on some time mterval [0,T)

In order to give a result on the existence of solutions of (3 1) we define

Q@ = {(z1, 22, z3}|71 > 0,22 > 0,23 > 0} (32)

Q 15 a globally invariant set for (3 1) if for every £ in Q, the unique solution z( , €)
of (3 1) satisfying z(0) = £, exists on [0,00) and z(t) € Q for all ¢ > 0
We may write (3 1) 1n the form

z = f(z), (33)

where £ = (z1,2,,23) and f R® — R® Let Q be an open subset of R® where
09 and 0 denote the boundary and closure of §) respectively A point zg € 99 1s
called an egress point of Q with respect to (3 1) if for some solution z(t) satisfying
z(t) = xo, there exists ¢ > 0 such that z(t) € Q fortp —e <t <t A pont
z; € 0N 1s called a nonegress pownt 1f 1t 1s not an egress point

Lemma 3 1 [13] Let U(z) be a real valued function on a neighbourhood N of
To € 0N such that z(t) € QN N 1f and only 1of U(z) <0 Then a necessary and
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sufficient condition for zo to be a nonegress point s that U(z) < 0 for z € Q,
where U(z) = (grad U) f(z)

Theorem 3 2 The set Q is a globally invarant set for (3 1)

Proof We define S;,S; and S3 by

S1o= {($1,12,$3)|$1 =0,z 20-;3:320},
3'2 = {(171,.’152,1123)'221 2 01$2 = 0, Ty > 0},
Ss = {(z1,%2,23)[z1 > 0,25 > 0,23 = 0},

then 0Q = S; U S; US; @ 1s globally a invariant set for (3 1) if every z(t) € 9Q
1S a nonegress point

Assume first that g2 > 0 We consider S; and let Uy(z) = —z1, therefore
Ui(z) < 0 for z(t) € Q On 5
Ul = (_1,0a0) (zlaxZ,xS)

= —(2#2 + 2’1(1 - 3#3) — Z1Ty — 3#113’12)11:0
= —2[12 < 0

Simularly we consider S; and let Usy(x) = —z,, thus Uy(z) < 0 for z(t) € @ On
Sy
U2 = (0, _1’0) ($1,$2,.’E3)

= —(ﬂ4 —_— IBIL'Q + 3&3:3 - .T1$2)1:7=0
—([t4 + 3Cl$3) < 0

Finally on S5 we let Us(z) = —z3 so that Us(z) < 0 for z(t) € Q

Us = (0,0,-1) (21,2, 23)
= —(paz1 — 2az3+ 122 + 1123),-0

= —(paz1 + 2172 + mz}) < 0

Hence any trajectory with an initial value in @, cannot cross the boundary 9Q
and thus remains 1n Q

We now consider the case when p; = 0 As before U; < 0 and U; < 0, thus
any trajectory starting in () can only leave through S; We define

E = {($1,$2,$3)|.’£1 = 0}

16



such that S; C ¥ Consider the imitial value problem

Iy = 07 T (0) = El’
Ty = pg4— Pzy+3az3, z2(0) = &
T3 = —2azs, J53(0) = {3,

which has a unique solution Solutions of (3 1) which are in ¥ for some 1nitial
time are always in  Thus ¥ 1s an invanant manifold (surface) By umqueness a
trajectory cannot leave () and intersect S) thus no trajectory can leave @ through
S

In a closed chemical system, such as the one we are examining, all concentra-
tions must be bound variables of time, because no new molecules are introduced
into the system

Suppose that zg 1s m ¢, and let = be the unique solution of (3 1) satisfying
z(0) = zo For ¢ =1,2,3, z,(t) > 0 for all ¢ in the maximal interval of existence
[0,T) of this solution If T' < oo, z,(t) = oo as ¢t — T for some 3 In order to
show that this does not occur, we introduce

'U(t) =T (t) + 2.’1,'2(t) + 3$3(t)

It 1s easy to show from (3 1) that

v =2(pg + pa) + Ty — 2Pz2 < 2(p2 + p4) + v,
on [0,T) Hence
d
—(v(t)e™ < 2(ug + pq)e™,
di {
and therefore
v(t) < 2(pa + pa)(e = 1) +0(0)e!,0<t < T
Thus T =00 O

3.2 Equilibrium Solutions
The equilibrium solutions of (3 1) are solutions of

= 2ﬂ2+$1(1—3[13)—&,'1172—3[111%,
= pq — Pz + 3azz — 11y,

= p3r —20z3+ 1122 + ule
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We find that there are two equilibrium solutions defined by

Bl —3ps) — p2 —pa t X

14 68u, ’
z2 = (x1+2p2 +2p4)/28, (34)
z3 = {2} + (22 + 2p4 + B) 4 2812} /6B,

5]

where
x = {(B — 3Bus — p2 — pa)* + 4821 + 68u1)}/? (35)

Only the positive root has chemical significance since any limit cycle solution
surrounding an equilibrium point which 1s not 1n @ will involve negative concen-
trations of the mtermediate species It 1s easily shown that there 1s a unique
solution 1 @ if either

po > 0or B(1—3ps) —py >0 (36)

We denote by £ this steady state solution 1n @) where ¢ = &(a, 3, p1, pa, i3, p4)

3.3 Absence of Periodic Solutions of the Ex-
plodator Core.
The Explodator core consists of the reaction steps (26) to (29) and may be

reduced, by letting g, = 0 for 2 = 1, ,4, to the following set of differential
equations,

1 = T1— I1Z9,
T, = —fzy+3azz — z,14, 3mn
Ta = ‘2(1.’113 4+ z12,

This system has only one equilibrium poimnt 1n ), namely,

f(aaﬂ): (2:311’,3/0)3 (3 8)

which was shown by Noszticzius et al {23] to be always linearly unstable (see
defimition on page 20) The global analysis of solutions of (3 7) was accomplished
by Kertesz {18] His results are embodied in the following theorems

Theorem 3 3 There is a one dimensional manifold, 5, wn Q n which, solutions
of (37) tend to§ ast — oo
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We let Qo = Q/nU¢
Theorem 3 4 (1) Solutions of (8 7) tn Qo are not bounded

(v) If @ > 1 then all trajectories 1n Qq oscillate around € as they approach
mfinity

(1) If a < 1, then after e finite number of oscillations the trajectories in Qo
cease to oscillate and

thm z(t) = oo,

where z(t) = (z,(t), 22(t), za(t))

3.4 The Explodator Model with one limiting
reaction.

Noszticzius, Farkas and Schelly proposed that the incorporation of any one of
the himuting reactions into the model results in a system which exhibits himmt
cycle oscillations By considering the rate constant of the included reaction as
a bifurcation parameter, p, they state that, when « > 1, the following can be
proved for each case

(1) There exists a unique equilibrium pomnt £(x) 1n the set @ for every u mn an
interval [0, p,) where p; > 0

1) There exists a critical parameter value, po, 1n the interval (0, 41) such that
9
£(p) 1s unstable for 0 < g < po

and
£(u) 1s stable for py < p < py

(m) At the critical value po a Hopf bifurcation takes place, near the critical value
a hmt cycle exists

The above statements were proved 1n detail only for the inclusion of the limiting
reaction (2 15)
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Chapter 4

Hopf Bifurcation

Since periodic changes 1 the concentrations of the intermediate species are ob-
served 1n the Belousov-Zhabotinskn reaction we look for stable limit cycle solutions
of (31) m Q Here we analytically and numerically apply the Hopf Bifurcation
Theorem

4.1 Linear Stability and Hopf Bifurcation The-
ory

The system (3 1) can be written 1n the form
z = F(z,a), (41)

where the function F R3 x R — R® 15 analytic The parameter « 1s specifically
indicated and the parameters 8 > 0, gy > 0, gp > 0, p3 > 0, gy > 0 are suppressed
m this section It was shown n Section 3 2 that (4 1) has a family, {{(e)}, of
equilibrium points 1n @

Let F;(z,a) be the Jacobian matrix of F'(z, ) The equihbrium pont (¢(a), a)
of (4 1) 1s linearly stable f Re A < 0 for every eigenvalue X of F,(é(a), ) Simularly,
the equihbrium poimnt (é(a), ) 1s linearly unstable 1f Re A > 0 for some eigenvalue
A of F (é(a),a) The relationship between linear stability of equilibrium points
and their asymptotic stability 1s explored, for example, 1n [13, Ch I1I] or[15, Ch
%

The case of an ezchange of linear stability at an equibbrium point (é(ap), ao) 18
genencally covered by the Hopf Bifurcation Theorem The result presented here
15 not based on Hopf’s original result [14], but on [7,8] The treatment in [15, Chs
VII & VIII] 1s closely related (z,a) 1s a periodic solution of (4 1) with period T
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if, and only if, (u,a) 1s a 27-periodic solution of
u+ G(u,a) =0,

where

=
_——

o
~—

I

z(tT/2x) - {(a),

T
-é;F(u + E(O‘)’a)

Q
R
£
|

It 1s this formulation of the problem which 1s used in {7,8] However the results
here are stated for (4 1)
Let 29 = é(ao), and
Ly = F(z4,0) (42)

We make the following assumptions

Al ww 1s an algebraically simple eigenvalue of Ly, and 1nw 1s not an eigenvalue
forn=20,2,4, |,

A2 The crossing condition

Re A(ao) # 0,

holds, where A is an eigenvalue of F,({(a),«) and the dash imphes differen-
tiation with respect to «

Our second assumption ensures that the eigenvalues cross the imaginary axis
transversally Figure 4 1 shows a possible path of the particular pair of eigenvalues
that satisfy M) = 2w If all other eigenvalues have strictly negative real parts
then Figure 4 1 illustrates a loss of stability

Theorem 4 1 (The Hopf Bifurcation Theorem) There are analytic functions
e — T(e), e — a(e) and € — z{c), defined on (—eq,€5), for some eg > 0 These
functions have the following properties

(1) t— z(e)(t) has period T(€) and 1s a solution of (4 1),
(1) a(0) = ag, z(0) = z¢ and T(0) = 27/w,

(112) there 1s a positive number n such that +f (z1,01) s a solution of ({ 1) of
pertod Ty, and [Ty — 27 [w| < 1, lay —ao| < 1, and |z1(t)| < for 0 <t < Ty,
then there 1s an € € (—2g,€0) and 8 € [0,27) such that Ty = T(¢), p1 = p(e),
and z,(t) = z(e)(t + 6),
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Figure 41 The transversal crossing of the imaginary axis for the pair of eigen-
values satisfying A(ag) = fw

(w) the parameter € can be chosen so that a(e) = a{—¢) and T(¢) = T(—¢) for
0<lel<eg

If a # 0, the analyticity of a requires that either a(e) > g or a(e) < o for all
small € # 0 These two cases are termed supercritical and subcritical bifurcation
respectively

The linear mapping Lo has a real eigenvalue v, as well as tw We now
determine the linear stabulity of the periodic orbits found 1n Theorem 4 1 under the
assumption that ¥ < 0 To do this, we review some material on linear equations
with periodic coefficients For more details, see [13, Ch III} or [15, Ch VI]]

Consider the linear equation

w = A(t)w, (43)

where A(t) R® — R?® has period T We denote by U the fundamental solution
satisfying U(0) = I and

U=ARU (44)
Since A(t) 1s T-pertodic U(t+T') 1s also a solution of (4 4) Therefore there exists
a non-singular matnx C such that

Ut +T) = Ut)C (4 5)
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C = U(T) 1s called the monodromy matriz The (possibly complex) eigenvalues
of C are called Floguet multiphers, and x 1s a Floguet ezponent if e*T 15 a Floquet
multiplier « 1s a Floquet exponent if, and only 1f, the equation

z=A(t)z — &z (4 6)
has a nontrivial T-periodic solution To see this consider a Floquet multiplier &7

Then there 1s an eigenvector ¢ of C such that
Cy=eTy (47)

If w(t) = U(¢)y, then w 1s a solution of (4 3) Moreover 2(t) = e "*U(t)y> solves
(46) Since

Z(t4T) = e MDY+ T = e e TUU(T)Y
= e MUty = 2(1),

z has period T' Since z 1s continuous and periodic, it must be bounded Because
w(t) = e*z(t), w(t) — 0 exponentially as t — oo 1f Rex < 0, and w(t) —» oo
exponentially as t — oo 1f Rex > 0 It 1s not hard to prove that w = 0 1s a stable
(asymptotically stable) solution of (4 3) if, and only if, every Floquet multipher
satisfies Rex < 0 (Rex < 0) If (43) has at least one multiplier satisfyng
Rex > 0, then w = 0 15 unstable

We examine the solutions of the varational equation

w = A(t, e)w, (4 8)

where
Aty e) = Fo(z(e)(t), ae)) (49)

Clearly A( ,¢) has period T(¢) The periodic solution (z(¢), a(e)) of (4 1) 1s said to
be hinearly stable if every Floquet multipher of (4 8) satisfies Rex < 0 If (4 8) has
at least one multiplier satisfying Rex > 0, then (z(¢), a(€)) 1s a hnearly unstable
solution of (4 1) For a result that relates the hnear stabihity of (z(e), a(e)) to
orbital stability with asymptotic phase, see [13, Ch VI]

By differentiating (4 1), 1t 15 clear that w = z 15 a nontrivial solution of (4 8)
Thus 0 1s a Floquet exponent of (4 8) for all |e| < &, A(£,0) = Ly At £ = 0, the

values of ¥ for which

z = Loz — Kz, (4 10)

has nontrivial solutions are {o(Lo)£mw n =0,1,2, } Thus x =01s adouble
eigenvalue
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Theorem 4 2 Equation (4 8) has two Floguet exponents which aepproach ¢ as
€ > 0 One s 0 and the other 1s k(e), where k (—¢;,€1) = R 15 an analytic
function and £(0) = 0 Moreover there s a continuous function ¥ (—¢€,6) - R
such that

k(e) = ed'(e)x(e), (4 11)
and

x(0) = —Re \'(0) (412)

This result determines the sign of £ Equation (4 8) has the Floquet multipli-
ers corresponding to exponents 0, k(¢) and another multiplier which must be in
lefthand side of the complex plane Therefore the linear stability of the periodic
solution (z(€), a(¢)) 1s determined by £ If Re M'(0) < 0 and ea/(¢) < 0, the peri-
odic solution 1s linearly stable But if Re A’(0) < 0 and ea’(¢) > 0, the periodic
solution 1s linearly unstable

4.2 An Example of the Application of the Hopf
Bifurcation Theorem

As an 1llustration of the Hopf Bifurcation theorem consider the system

Ty = Ip— xl(ﬁ + 73 - a),

Ty = —1; —2p(22 + 22 — @), (4 13)
which may be wnitten in the form
z = F(z,a)

where ' R? x R — R? This system has an equillhrium point at the origin and
its linearisation at (0,0) may be represented by

= F;(0,a)r
where
roa=( % 1) (414)

The eigenvalues of F;(0,) are A(a) = a2 When a = 0, F(0,a) has purely
imaginary eigenvalues and Re A’(0) = 1, thus the crossing condition holds Hence,
by Theorem 4 1, there exists a periodic solution to (4 13) To exphatly see this,
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we transform the equations to polar form by the change of variables z; = rcos 8

and z; = rsmd, so that (4 13) becomes

r = r(a—-r?),
6 = -1

The general solution of (4 15) 1s

roa!/? for a # 0,
_ | BrG-men
rt) = To fora =0,
[1 + 2t7‘0]l/2

0(t) = t— 6o,

where ro = r(0) and 6, = #(0) Hence, when o # 0

roal/?

T, (t) = [T(z) + (a _Tg)e—mt]l/z
1/2

cos(fy ~ t),

To&x

T (t) = 2 (a— rg)ewZQt]UZ

G, —t
2 sin(fo ~ t),

and when a =0
(l'l(t) - [1 +2tr0]1/2

To
xg(t) = Wsm(%—t)

cos(fp — 1),

We look at three separate cases

(4 15)

(1) When a < 0 then r < 0, § < 0 and the equilibrium point 1s a stable focus
Trajectories of (4 15) spiral inwards exponentially from the onigin as t — oo

as shown 1 Figure 4 2

(n) When a = 0 then r < 0, # < 0 and trajectories spiral linearly towards the

ongin as t — oo, as shown 1n Figure 4 3
(i) For a >0

=0 fOI'T():\/a

>0 forry<a
2
<0 forry>

25
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X2

Figure 4 4 The phase portrait of system() for a < 0

We can see that when 9 = \/a then

T, = \/Ecos(ﬂo—t),
z;, = +asm(fy—1?)

This solution 1s the circle 2 + 22 = o and 1s periodic with period 27 Also,
r(t) approaches « as t approaches infimty Thus the origin 1s an unstable
focus and all solutions which do not start at the origin tend towards the
periodic solution 7 = \/a as t — oo as depicted 1n Figure 4 4

We can see that on passing through the critical value of o = 0 the solutions un-
dergo an exchange i hnear stabihity and the phase portrait undergoes a quahtative
change which results 1n the appearance of a himit cycle solution

The Hopf Bifurcation theorem 1s proved by Hale [13] using the Lyapunov-
Schmidt procedure to reduce the problem to a 2 dimensional system Polar co-
ordinates are then used, as 1n the illustration, to show the existence of a unique
Limuit cycle solution
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4.3 Hopf Bifurcation in the Full Explodator Model

The Full Ezplodator Model 1s the resulting system of equations on including all
the hmiting reactions i the model It has already been shown 1n section 3 2 that
the full Explodator model has an equilibrium pont (£(e), ), defined by (3 4)
The equilibrium point may be translated to the origin by performing the change
of variable

y=z-¢,
where
¥ = (1,92, ¥3),
and
z = (z1,22,%3)

Under this change of variable (3 1) becomes

y1 = (1=3p3 —6mé ~ &) — &iye — 31ys — Niye,
y2 = =&y — (& + Byz + 3ays — iy, (417)
ya = (pa+2mé + &)y + E1yz — 20y3 — 1y + n1yas

which may be written 1in the form
y =Gy, a),

where G R® x R — R® The linearised stability of (4 17) 1s determined by the
eigenvalues of the Jacobian matrix

1=3ps —6mb&—& =& 0
Gy(0,0) = ~& & -8 3a (4 18)
p3 + 2p161 + &2 & —2a,
The eigenvalues are solutions of the cubic characteristic equation
A2+ ag(2)A? + ay (@)X + ap(a) = 0, (4 19)

where

az(a) = & +&E(146p)+3p3+ 8 -1+ 20,
ai(@) = (2a+B+&) (& +6pmb +3us— 1) —aby + 208 — &ia,
agle) = —2aB(1 —6uiéy ~ 3us — &) + aby
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By using the definitions of &, and x given by (3 4) and (3 5) these equations may
be reduced to the following

az(a) = 2a+ Co, (4 20)
a(a) = aC +Cy, (421)
ap(a) = 2ayx (4 22)

where

Co = B+&+x/8-&/28,
Ci = 2Ax/B-6&/28)+26-¢&,
Co = (B+&)(X/B-E&/28) - &L,
It 1s important to note that y, Cy, C, and C, are independent of o In order

to simphfy further calculations 1t 1s necessary to look at the signs of the above
expressions To do this we exarmune the signs of x — £;/2 and 28 — ¢

(1) From equation (3 5) we can see that

X 2 —=B(1 = 3us) + p2 + pa, (4 23)
therefore

Bl —3ps) — pa — pa + X
2(1 + 6Bu,)
X
> —_—
— X 1+66l£1,
> 0 (4 24)

il

x —¢&/2

(1) By (3 4) we see that £, satisfies the quadratic

(1 4+ 68u1)é7 + 26:(3Bpa — B+ pa + pa) = 4Bu,
Since {3 >0, 3 > 0, p2 > 0 and g4 > 0 then
£ + 261 (p2 — B) < 4Bz (4 25)
By completing the square of the left hand side of (4 25) 1t 1s easy to see that
(& + 12 — B)? < (2 + B2,
and
Sitpz—BSp+ B

Therefore
& <28 (4 26)
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From these results 1t follows that
Co>0,C1 20 (4 27)

A close examination of the inequalities shows that C; = 0f and only if y, = 0 for

1=1,2, 3,4 We now use the Routh-Hurwitz criterion to determine 1f solutions
of (4 17) satisfy Re (1) < 0

Lemma 4 3 (The Routh-Hurwitz Criterion) If
Pz)=2"+an12" '+ 4 ayz+ag (4 28)

1s a polynomual of real coefficients, let Dy, Dy, , D, denote the follounng deter-
manants,

Dy = a1,
Gn-1 Gn-3 Gp-5 Qn—(2k-1)
1 an-2 GQn—yg An—(2k-2)
0 dp-1 Qpn-3 Gn—(2k-3)
D = 0 1 An-2 Qn—(2k—4)
0 0 0 a(n_k)
where k =2, ,nanda,_; =0 forj >n The necessary and sufficient condition
for the roots of
P(z)=0 (4 29)

to lie wn the half plane Rez < 0, 1s that Dy > 0 fork =1, ,n

Thus the Routh-Hurwitz criteria for the hnear stability of the solutions of
(417) are

D1
as >0) (4 30)

D2
az ao

1 q = @,a; — ap > 0 (4 31)

and
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D3

Gy Qg 0
1 ay 0 = ao(azal bt ao) >0
0 as Qo

From (4 24) and (4 26), D1 always holds Also x > 0 imples that ao > 0
Hence (£(a), @) 1s hnearly stable if and only if

aza; —ao >0 (4 32)
Theorem 4 4 Suppose that (3 6) holds Then
(1) If Cy =0, (£(a),a) s unstable for all o > 0
(v) If Cy >0, Cz 2 0 and CoCy — 2x > 0, (£(a),a) s stable for all « > 0
(1) If C; > 0 and C; < 0 there 1s a unique positive value oy such that
(é{a), @) 1s unstable for 0 < a < aq

and
(é(a), a) 1s stable for ag < «

Proof A necessary and sufficient condition for ({(), @) to be lhnearly stable 1s
that condition 4 32 holds Thus we examine the quadratic

gla) = a(a)ai(a) - aofa) (433)
= 20%C; + o(CoC + 2C; — 2x) + CoCo (4 34)

Assume first that C; =0 Then, as has been noted, u, = 0for2=1,2,3,4 An
easy calculation shows that

Co=38,Co=-28,x=1p (4 35)

Thus ¢ becomes
(@) = =2B(36 + 2a), (4 36)

and q(a) < 0 for @ > 0 Thus the equilibrium point 1s unstable
Suppose now that the hypotheses of (n) hold Then ¢ attains 1ts mimmum
at a non positive value of @ Since CyC; > 0, 1t either has complex roots, two

negative roots or a pair of real roots of opposite sign In every case ¢(a) > 0 for
alla>0
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Assume now that the hypotheses (1) hold Since C;Cy < 0, ¢ has a unique
positive root ap (€(@), @) undergoes an exchange of Linear stabihty at a = ap
ap 18 given by

o = —C £ /C?* - 8C,yC,C,

0 4C,
and C = CoCy + 2C; — 2y The theorem then follows from the graph of ¢ O
Remark Theorem 4 4 1s not exhaustive since we cannot prove that CoC; —2x > 0

(4 37)

if C; > 0and C, >0 However if ) = g = 0 then €, < 0 Moreover if either (i)
p1>0and g, =0 for 2 =2,3,4 or (1) g2 >0 and g, =0 for 2 = 1,3,4, 1t can be
shown that CoC; —2x >0 We now see 1f the crossing condition holds for the

full Explodator When a = ag the charactenstic equation may be written as
A (ao) + X (ap)az(ao) + M ao)ar (o) + ar(ap)az(ag) = 0,
which, when factorised, becomes
(Mao) + az(a0)) (N (o) + as(e)) = 0

Thus there 15 a pair of complex conjugate eigenvalues which satisfy

Mag) =t/ ay(ag)

and a third eigenvalue
v(ap) = —az{ap) < 0

and assumption (Al) required to apply the Hopf Bifurcation Theorem holds We
now wish to venfy that the crossing condition (A2) holds To find M'(ag) we return
to look at the charactenstic equation (4 19) Since the eigenvalues are simple, and
hence differentiable, the derivative of each eigenvalue satisfies

\(e)X(@) + 20x(e)X(@)() + dh(a)A(a)
+ ai(@)N(e) + aj(@)M(e) + ap(e) = 0, (438)
where the dash implies differentiation with respect to @ Rearranging (4 38) yields

Ma) = —Ma){ay(a)r(a) + ai(a)} — ag(a)
IN@) + 2az(a)X(a) + a; ()

Evaluating the above expression at a = ag with A(ag) = 1y/a1(ag) we find that

ay(ao)ar(ao) — ag(ao) — 2(\/“1(0’0)‘1'1(%))
~2a;(a0) + 1(2a2(0)y/ar (o))
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and the crossing condition 1s determined by

Lo dh(eo)ay(@0) + ax(ao)d (o) — db(an)
Re X (o) = a1(00) + a3{a0)

Let
Ala) = gy(a)ai(a) + az(@)aj(e) — ag(a),

then the crossing condition (A2} 1s satisfied if A(ap) # 0 From equations (4 20),
(4 21) and (4 22) we find that

A(a) = 46!01 + 202 + 0100 - 2X
Since ap satisfies ¢{ag) = 0 then

2&80] + 00(202 + Clcg - ?.,X)

Qg

il

A(ao) -+ 20100
= _ G + 2C1ap
Qo

But we have already shown that C; > 0 and Cy > 0, thus the crossing condition
holds when C; < 0

Theorem 4 5 The system of equations (4 17) has a famiy of periodic solutrons
when Cy < 0 and C; > 0

This result follows directly from theorem 4 4, the result above and the Hopf Bi-
furcation Theorem

4.4 Numerical Results

AUTO 1s an 1ntegrated collection of FORTRAN routines for continuation and
bifurcation problems in ordinary differential equations The primary purpose of
the pachage 1s the computation of branches of stable or unstable periodic solutions

of
u(t) = f(u(t)v A)s
where u, f € R™ and A denotes a free parameter The package also contains

algorithms for computing steady state solutions and algorithms for the accurate
determination of hopf bifurcations

The determination of branches of steady state solutions involves solving the
algebraic system

flw,A) =0
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Thus the package contains continuation algorithms for general algebraic systems
In addition there are a number of related continuations that can be useful in
the analysis of (44) These include the computation of curves of imut points
and curves of hopf bifurcation points For such computations A will have two
components

AUTO also contains an interactive graphics program PLAUT, which can pro-
duce bifurcation diagrams, to show the stability properties of the solutions, and,
two and three dimensional plots of the periodic solutions found To illustrate
bifurcation behaviour graphically, PLAUT uses symbols that distinguish between
stable and unstable solutions A heavy continuous curve represents stable station-
ary solutions and unstable stationary solutions are indicated by dashed curves An
open arcle indicates an unstable periodic solution, a solid circle a stable solution
These branches are continuous, the gaps between the dots do not indicate a break
m the solution For every parameter in the corresponding range there 1s a pen-
odic orbit A solid square marks a hopf bifurcation point Locally stable periodic
solutions encircle unstable stationary solutions, thus the direction of the periodic
solutions emanating from a hopf point 1s related to the stabihty properties of the
solutions

In the bifurcation diagrams a quantity called the norm 1s used When dealing
with stationary solutions of (4 4) the norm 1s simply the vector i;norm, 1e, for
u=(u;, ,u,) welet

ul= {‘;u?}l"",

while for periodic solutions

= (M2 S ut)e

1=1
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Figure 4 5 Bifurcation diagram for the full Explodator model with yy, 3, g =0
a 15 treated as the bifurcation parameter, with an mmitial value of « = 05 The
iteration 1s started with 8 =10, p, =02 and { =(20,12,14) This system
has a single branch of steady state solutions, with one Hopf Bifurcation point at
a =694 This agrees with the positive value of ag found by using (4 35) There 1s
a branch of stable periodic orbits emanating from the Hopf point, with an 1mtial
penod T' = 6 29 Plotting information was obtained for orbits at the marked
pomnts 8, 9, 10 and 11
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Figure 4 6 A 2-dimensional plot of the periodic orbits marked n figure 4 5 The
parameter values and periods for these orbits are

orbit 8,
orbit 9,
orbit 10,
orbit 11,
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Figure 47 A 3-dimensional plot of the orbits marked 1n figure 4 5, with the
projections on the planes marked by dotted lines A plot of z vs time obtained
from orbit 11 may be seen in figure 22 The numerical solution 1s therefore
consistent with the modelling assumptions made 1n Chapter 2 A local centre
manifold can be detected 1n the vicimty of the equilibrium point
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Figure 4 8 Bifurcation diagram for the full Explodator model with py, py = 0
a 15 treated as the bifurcation parameter, with an mmtial value of &« = 05 The
1teration 1s started with 8 =10, u3 =025, ug =02 and ¢ = (01,0 25,0 05) This
system has a single branch of steady state solutions, with one Hopf Bifurcation
pomt at & =138 x 107? This agrees with the positive value of aq found by using
(4 35) There 1s a branch of stable periodic orbits emanating from the Hopf point,
with an 1mtial period T = 18 x 10? These orbits are initially stable Plotting
information was obtained for orbits at the marked ponts 6, 7, 8, 9 and 10

o
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Figure 49 A 3-dimensional plot of the orbits marked i figure 4 8, with the
projections on the planes marked by dotted hnes The parameter values and
periods for these orbits are A local centre mamfold can be detected 1n the vicinity

of the equilibrium pomnt

The parameter values and periods for these orbits are

orbit 6,
orbit 7,
orbit 8,
orbit 9,
orbit 10,

R R R R R
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135x107%, T =191 x 10
128 x107%, T =227 x 10?%,
120 x107%, T =287 x 10%,
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Chapter 5

Centre Manifolds

The centre manifold theorem often provides us with a way of reducing the dimen-
sion of a system under consideration, and gives information regarding stability
The method mvolves restricting attention to an invariant mamfold (surface) to
which all solutions 1n a neighbourhood of the equilibrium point are attracted ex-
ponentially In this chapter we will reduce the system of equations (3 1) to a
2-dimensional system

5.1 Invariant Manifolds and the Centre Mani-
fold Theorem

Consider the compact form of equation (4 17)

y=G(y) (51)

where G R™™ — R™™ A set § C R*™ 1s said to be a local invariant manifold
for (5 1) 1f, for yo € S, the solution y(t) of (5 1) with y(0) = yo1s1n S for |t| < T,
where T > 0 If we can always choose T' = oo, then we say that S 1s a global
wnvariant manzfold

Consider the system

T = A.’I] + f(il:l,l'z),
T2 = B.’Ig +g(.’t1,$2), (5 2)

where z; € R*, 2, € R™, f, g € C? and A and B are constant matrices We
make the following assumptions

C1 All the eigenvalues of A have zero real parts,
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C2 All the eigenvalues of B have negative real parts

The case when the exgenvalues of B have nonzero real parts 1s covered by [5 ,16,17]
! The situation examined here 1s that looked at by Carr [4)
Consider the hnearised system

1 = Az,

23 = B, (53)

Under assumption C1, the component, z, of the solution which corresponds to
those eigenvalues with negative real parts will approach zero as ¢ tends to infinity
Hence the solutions (z1,z2) of (53) will approach the centre eigenspace [The
centre eigenspace 1s the space spanned by the eigenvectors corresponding to those
eigenvalues with zero real part] The centre manifold theorem tells us that this
behaviour extends to the full non-linear system

Theorem 5 1 (Centre Mamfold Theorem) [4,16,17]
Assume that C1, C2 hold and f(z1,x;), g(z1, ;) satisfy

f(0,0)= 0 =g4(0,0),
f0,0)= 0 =4'(0,0),
then there ezists a C? function defined on {z € R™ |z| < é}, such that
(x) h(0) =0,~'(0) =0,
(v) the set
Mc = {(xl,mz)lfllg = h((l'l),fl'l € Rn}
15 an wnvariant mantfold in R"™ ynder the flow of (5 2),

The theorem tells us that there exists a surface (a Local Centre Mamfold)
which at the equilibrium point 1s tangent to the subspace spanned by the eigen-
vectors corresponding to those exgenvalues with zero real part The surface need
only exist near the equihibrium point (0,0) All solutions which start sufficiently

close to the equilibrium point will tend asymptotically to a centre mamifold The
flow on the centre mamfold 1s governed by the n-dimensional system

w= Aut flu, h(w) (54)
Theorem 5 2 [{]

'We assume that no eigenvalues have positive real parts since 1n such a case the centre
manifold will not be attractive ast — oo
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(1) Suppose that the zero solution of (5 4) 15 stable (asymptotically stable)(unstable)
Then the zero solution of (5 2) 1s stable (asymptotically stable)(unstable)

(11) Suppose that the zero solution of (5 4) s stable Let (z;(t),z2(t)) be a so-
lution of (52) with (z,(0),z2(0)) sufficiently small Then there ezists a
solution u(t) of (5 4) such that ast — oo

n(t) = u(t)+0(e™),
z2(t) = h(u(t)) + O(e™),

where v > 0 1s a constant

5.2 Finding the Centre Manifold

We now discuss how to reduce a system to 1ts centre manifold In order to obtain
an approximate expression for the centre manifold we write z, as a function of
z,, and expand in a power series For every ¢ R"®™ — R™ where ¢ € C* with

#(0) = 0 and ¢'(0) = 0, we define

(mé)(z1) = Dod(z1)[Az1 + f(21,8(21))] — Bé(21) — g(1, 8(21))

From the second equation of (5 2) 1t 1s easy to see that

Theorem 5 3 [4]
If
(me)(z1) = O(|z]") as z; — 0, (55)
where r > 1, then
|h(z1) — ¢(z1)| = O(|z]") as 21 — 0

We will now 1llustate this method by looking at the Limited Exploder Model
We look at the system of equations (31) and let yy, = g3 = p4 = 0 Thus,
§=2;B3£2=1+na'nd

Y1 = —ny — 2By — N1y,
v2 = —(1+n)y1 — 3Byz + 3ays — yiv, (5 6)
v = (14n0)n +20y2 — 2ays + 11y,
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where 7 = p,/8 The lineansed form of (5 6) has eigenvalues whose real parts
depend on the value of @ However, we can write (5 6) 1n the equivalent suspended
form

vi = —ny1 — 2B8y2 — Y1y,

Y2 = —(14+n)y —3Py2 + 3ays — y1ye2,

ys = (149)y +28y: — 2ays + y1y2, (57)
— 0,

n =0

For this system, the terms ny; and Sy, are considered non-linear and the linearised
form of (5 7) has as eigenvalues —2¢, with multiphaty 1, and 0, with multiphaty
4

We now write (5 7) in the matnx form
y =My + N(y)

where y = (y1,¥2,¥3,5,%), M 15 a constant matrix and N(y) contains all the
terms quadratic in y We may wnte (5 2) 1n the form required by Theorem 5 1
by performing the change of variables v = P~'y, where P 1s the transformation

matrix corresponding to the eigenvalues found above Under this transformation
(5 2) becomes

v = Avt f(v,vs),
—2avs + g(v,vs), (58)

Us

where v = (vq, v, v3,v4),

oo R <O
== en B B o}
[ o= wws R e}
oo oo

—(va — 3us)(v1 + v3/a)
3(vy — 3vs)(v1 + v3/)/2 4+ vy (a + 3/2)vs + a(vy — 3us)
f(v,vs) 0 )
0
g(v,vs) = (2a+ 1)evivg + (avy + v3)(v2 — 34)]/2a,

and vz = B, vy =1 By Theorem 5 1, the system (5 8) has a 4-dimensional centre
manifold

Vs = h(vl,v2,v3,v4)
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Consider the power series approximation for k,

2 2 2
é(vy,vs) = a1vy + aavivy + a3v; + astavs + asv;

2
+ asV1V3 + a7V + agV1V4 + Q94 + a10V3V4 (59)

From equations (5 5) and (5 8) we can see that

(me)(v) = g—i —(v2 = 38)(v1 + v3/a))
+ 0¢ [3(v2 — 3¢)(v1 + va/a)/2 + vi(a + 3/2)vy + a(vy — 39)]

v,
+ 204 — (2a + 1)[av vy + (v + v3)(vy — 3¢)]/2a

Substituting (5 7) into this expression and neglecting cubic and higher order terms
gives

(m¢)(u) = a(agvlz + 2(13‘01'02 + aqviv3 + 09'011)4)
20¢ — (20 + 1)(aviv4 + avy, vz + v2v3) /2

Equating the coefficients to zero, solving the ten resulting equations for a,, 2 =
1,10, and substituting these values in (5 9) yields

142a,, v? Va¥3 Uy U3

d(v) = ( io )(—E + v1v; + & 9a + v1v4)

Thus, by applying Theorem 5 3 we find that

1422, o2 BB up 3
1o ) §+Ulv2+7——23+v177)+0(|”|)

h(v) = (

We may now substitute h(v) into (5 4) and expand 1n order to obtain the approxi-
mate equations on the centre manifold Since 8 and 5 are constants, the equations
on the centre mamfold are reduced to the 2-dimensional system

uy = Anup+ Appuz + Buuf + Biaugu, + O()UP),

Uqg = A21U1 + A22U2 + Bgluf + Bzgul'UQ + O(|u|3), (5 10)
where
3052
Ap = 0 - 20
A12 = gQa
o
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Bu = 2@-{-1,

B = 30(r-0),
_ 372 3Qﬂ2
Ay = (1+np)a 277(I>— 5
38
= ——=9
A22 20 )
By = a<I>-—%2<I>+1,
3
By = 390(;‘) - é) - 5(77 - é)a
and
14 2a
£ = 4o’
o

Although (5 10) 1s an approximation to the equations on the centre manifold, the
stability properties of (5 6) will be contained mn (5 10)

5.3 Numerical Results
AUTO 1s now used to find, and examine the stabihity of, periodic solutions of the

full Explodator and the reduced system g 1s used as the bifurcation parameter
1n each case
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Figure 51 Bifurcation diagram for the full Explodator model with pq, s, ug =0
B 1s used as the bifurcation parameter, with an 1mtial value of 3 = 10 The 1t-
eration 1s started with @ = 50, p; = 0 and ¢ = (2,1,002) The system has a
bifurcation point at B = —1, which yields a branch of unstable stationary solu-
tions On this branch either the parameter § s less than zero or the equilibrium
point is not in the quadrant @ There 1s a hopf bifurcation point at 3 = 2 97 x 1072
with an emanating branch of stable periodic solutions Plotting information was
obtained for several periodic solutons
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Figure 52 A 2-dimensional plot of the periodic orbits found for the full Exploda-
tor model The parameter values and periods of the orbits are

orbit 24, B =295 x 102, T = 6229,
orbit 25, A =282 x 10%, T =6 38,
orbit 26, B =255x 10%, T =6 57,
orbit 27, =219 x 10%, T =6 86
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Figure 53 A 3-dimensional plot of the periodic orbits found for the full Exploda-
tor model The projections on the planes are marked by dotted lines
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Figure 5 4 Bifurcation diagram for the reduced system f 1s used as the bifurca-
tion parameter, with an imitial value of 8 = 1 0 The 1teration was started with
a =50, pz=0and{=(0,0) The system has a bifurcation pomnt at § = —1
which yields a second branch of stationary solutions There 1s a hopf bifurcation
pomnt at 8 = 2 97 x 1072 with an emanating branch of stable periodic solutions
The stability of the first periodic solution found does not agree with that of the
full model However, for this solution z 1s very small (e g x3 15 of the order
of 1072*) and since AUTO 15 implemented in double precision there 1s an unpre-
dictibility associated with these results The stability of all other solutions found
close to the origin agree mn both systems The bifurcation points are 1dentical for
both systems Higher order terms in the approximation of the centre mamfold
become 1mportant outside a neighbourhood of the origin, so the vahidity of these
numerical results 1s restricted Obviously, cubic and even quartic terms should be
mncluded if this restriction 1s to be weakened
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