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Abstract

In m odelling any physical situation, a balance m ust be struck betw een m aking 
enough assum ptions to  give a m athem atically  trac tab le  problem , yet sufficiently 
few assum ptions for the model to rem ain physically realistic In this thesis we 
consider th ree models which have been proposed for rad ia tion  losses m ben t fibre 
optic waveguides and put forward a m odel of our own which will accom m odate a 
fibre w ith a W -shaped refractive index profile of a type currently  encountered m 
industria l production

In C hapter 1 we review the original model of K ath  and K riegsm ann We describe 
m C hapter 2 an idealised ordinary differential equation m odel due to  Paris and Wood 
and its ad ap ta tion  by Burzlaff and Wood to  step-function profiles N either of these 
idealised models will handle the the realistic W -shaped profile C hapter 3 contains 
new work whereby, following the approach of Burzlaff and Wood, we construct a 
m odel which incorporates m the boundary condition various geom etrical param eters 
describing the W -shaped profile The exponentially small im aginary p art of the 
eigenvalue of the resulting boundary value problem  corresponds physically to the 
ra te  of rad ia tion  loss from  th e  fibre

To solve this problem  we use a new general m ethod of Hu and Cheng, which 
relies on concepts introduced by Gmgold These are outlined m C hapter 4 C hapter 
5 s ta rts  w ith a rederivation of the form ula of Hu and Cheng for the im aginary part 
of the eigenvalue for general potentials For our m odel of C hapter 3 the  m ethod 
of Hu and Cheng can be simplified and we obtain  an asym ptotic estim ate  of the 
eigenvalue based on Hankel function solutions of the differential equation This is 
th e  m am  result of the thesis We conclude by showing th a t the general form ula of 
Hu and Cheng yields th e  correct approxim ation for the ra te  of rad ia tion  loss m the 
power index m odels considered by Brazel, Lawless, Liu and Wood
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Chapter 1

T h e  P h y s i c a l  P r o b l e m .

In th is, our opening chapter, we will briefly in troduce the optical tunnelling prob­

lem developed by K ath  and K negsm ann [9] m  the ir 1987 paper “O ptical Tun­

nelling R adiation losses in bent fibre optic waveguides” We will outline the various 

assum ptions the authors make, and show how m aking use of these assum ptions, the 

authors were able to develop a scalar wave equation for their m odel and ieduce it 

to  a simple form Finally, we will give a brief physical explanation of their m odel 

and its results

1.1 Kath and Kriegsmann’s Optical Tunnelling 

Problem.

K ath  & K negsm ann [9] recently considered rad ia tion  losses m bent fibre-optic waveg­

uides, where a rb itrary  deform ations including torsion, m  th ree dim ensions were per­

m itted  Such waveguides are unable to  trap  light perfectly and as a resu lt, energy 

slowly tunnels out of the core region and radiates away m to the cladding This ra te  

of energy loss is represented, m  their m athem atical model, by an exponentially small 

im aginary p art of a complex eigenvalue A of a differential equation boundary  value 

problem

Now, they  assum e a t the s ta rt of their paper th a t the radius of curvature of the bent 

fibre is very large com pared to  the wavelength of light used Also, they  take the



fibre to  be weakly guiding, so th a t the refractive index m th e  cladding deviates only 

slightly from  th a t m the core This, m particu lar, is a justifiable approxim ation for 

fibres which support a sm all num ber of guided modes, and especially for monom ode 

fibres As a result of these assum ptions, they felt justified m m aking use of the 

parabolic or paraxial approxim ation, (pl03, [12]) m their model

So, th e  authors s ta rted  off by constructing a suitable coordinate system , one which 

followed the centre-lm e of the fibre, whilst taking curvature and torsion into account 

and scaled it m  term s of the radius a of the inner core They m ade use of the fact 

th a t for weakly guiding fibres a scalar theory is a reasonable approxim ation, (p339,

[12]), and obtained, in a straightforw ard m anner, a scalar approxim ation, d irectly  

from M axwell’s equations

They achieved this, by starting  w ith th e  curl version of th e  tim e-harm onic wave 

equation for the electric field, given by

V x (V  x E) -  n 2k2E  =  0 (1 1-1)

where

E  =  Electric held,

n0 =  Core refractive index,

nc =  Cladding refractive index,

n =  N orm alised refractive index,

a =  Core radius,

k0 =  Physical wave num ber,

k =  kGa n c

T hey assum ed (1 1-1) to  be m a dimensionless form, and took k to be a dimensionless 

wave num ber, composed of the physical wave num ber k0 and the cladding index, 

n c n, the norm alised index of refraction, (n =  n0/ n c), was taken to  be 1 outside the 

core region N ext, they exam ined typical values, given in [17], for a m onom ode fibre 

T hey found k «  (15 — 40), (th a t is kG ^  6 x 104 cm -1 , a ^  2 — 5 /¿m, n c «  13 )
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So, obviously m  w hat follows, k is trea ted  as a large param eter Also m [17], the 

authors found typical values m  the core region to  be n 2 «  (1 005 — 1 02) Now, 

m aking use of the weakly guiding approxim ation, which allowed them  to assum e 

th a t the difference between the refractive index m the core and the  refractive index 

m the cladding was negligible, the authors suggested th a t the correct scaling should 

be given by (cf Fig 11 )

q2 =  1 +  i 1 i - 2)

where

=  Refractive index m the core relative to  the cladding, 

rj) =  C oordinate axis orthogonal to  the fibre m a torsion free

comovmg coordinate system

T hey felt justified in m aking this scaling as /(£ ,  rj) is usually confined to the range 1 

to  5 and is taken to  be non-zero only m the core region Thus, the calculated values 

of k m  th e  range 15 to  40 then  gives roughly the right values for n m  the core 

The authors next m ade use of the parabolic or paraxial approxim ation [12] and let

E  =  A(<t, ?y) e,ks, (11-3)
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where the variable a  m easures a scaled length along the fibre S ubstitu ting  (11- 

3) into (1 1-1), they  obtained an expression for the am plitude A  of the transverse 

com ponent of the electric field, described by th e  equation

2 i A a +  +  /(£,??) A  - \ - 2 k 2 Ó K a A - \ -  0 ( k 2 ¿2, 5 , 1 /k 2) = 0  (1 1-4)

Here S = a/1 , where I is a typical length scale for the bent centreline 

Then, assum ing th a t the curvature produces an effect com parable w ith the scaled 

index of refraction difference /(£,??)> they took k 2S to  be equal to  unity  This 

com bined w ith k ^  (15 — 40) gave them  a dimensionless radius of curvature of the 

order of a few m illim etres which proved to  be too sm all Therefore, to  give them  

a radius of curvature of a few centim etres to  a few tens of centim etres, the  authors 

assum ed th a t 5 =  1 /k 3 Now, w ith this choice for 6 and neglecting all of the small 

term s, 0 ( l / k 2) and smaller, K ath  and K riegsm ann [9] obtained

2 i A a +  A i€ +  A ^  +  /(£ ,  rj)A +  (2 k a / k )  A  =  0 , (1 1-5)

w here a  =  {cos 6 — T^sin^ and k is a scaled curvature which is 0 (1 ) Here 0 is the 

ro ta tion  of the fibre which removes the torsion As they were looking for solutions 

to  (1 1-5), of the form 1

A(<x,£,r?) =  y{t,,r¡)e%Á°, (11-6)

they substitu ted  (1 1-6) into (1 1-5) to  get

V 2y +  /(£,»?) y -  2 A y +  (2 « ;a /k ) y =  0 (1 1-7)

Finally, to simplify (1 1-7) they let

e =  2 /i/k  and A =  —2/1, (1 1-8)

1A is basically the difference between the propagation constant of the mode and ka, also the 
decay rate Im/1 (which must be positive ) implies ImA must be negative



Figure 1 2 This schem atic shows energy shedding out of the core region 

to  get

V 2y + f((,ri)y + \ y  + eay =  0, (11-9)

the ir scalar wave equation, incorporating the profile of their slightly, bent curved 

optical fibre

1.2 Physical Explanation.

We will now give a brief physical explanation of K ath  & K riegsm ann’s m odel, and 

its results From  (1 1-5), we can see th a t, after the various approxim ations have 

been m ade, th e  only effect of the curvature on their m odel is to  in troduce the  term  

cay  m (1 1-9), which leads to  a ‘tiltin g ’ of th e  refractive index /(£ ,? /) and enables 

the m ode to  tunnel out to  one side In the cladding, where a  is large, f ( ^ r j )  = 0 

This p ertu rba tion  curvature can be explained, by viewing the situation  m norm al 

C artesian  co-ordm ates, (cf Fig 1 2)

In th is coordinate system , we can see th a t energy for large positive values of a  (out 

m the evanescent ta il of the m ode), m ust travel fu rther th an  energy propagating m 

the core region On transform ing to the local coordinate system  following the fibre, 

the influence of this ex tra  distance, is changed to  an effective slowing of the wave, 

via an increased index of refraction
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This loss of energy m the mode, can be explained as follows As one moves away 

from  the core, eventually a point is reached, where the energy propagating in the 

evanescent ta il, cannot keep up w ith the m am  p art of th e  wave propagating m the 

core and thereby changes from an evanescent to  a propagating wave This energy is 

then  shed as it radiates away into the cladding Of course, because this happens m 

th e  evanescent p a rt of the m ode the energy loss is not d ram atic , bu t over a lengthy 

run  can be significant If we borrow some term inology from  quantum  mechanics

[10], [1], we can say, th a t energy tunnels out of th e  core region, across a po ten tial 

barrier where th e  wave is evanescent, until it reaches a region where it can propagate 

again and rad ia te  away
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Chapter 2

R e v i e w  o f  I d e a l i s e d  M o d e l s .

We will now move on from  K ath  & K riegsm ann’s m odel and show how Paris & 

W ood [15], pu t forward a m ore idealistic, one-dim ensional model, describing K ath  

& K riegsm ann’s fibre A lthough not entirely realistic physically, this m odel had the 

im po rtan t advantage of being solvable explicitly m  term s of Airy functions whose 

asym ptotic  properties are known This sim pler model provided insight into the 

na tu re  of the problem  and form ed a basis for fu tu re im provem ents Burzlaff & Wood

[4] modified Paris & W ood’s model to  produce a less idealised m odel, which could 

still be handled using special functions We will outline how the above were derived, 

prove their non-self-adjomtness, show their profiles and discuss their usefulness 

Finally, we will s ta te , for reference purposes, the results obtained by various authors 

for th e  rad ia tion  loss after solving K ath  & K riegsm ann’s m odel (1 1-9) w ith e a y  

replaced by e a y n ? for different values of n, n £ Z+

2.1 Paris and Wood’s Model Problem.

K ath  and K riegsm ann proceeded to  solve (1 1-9) of th e  previous chapter, by using 

singular pertu rb a tio n  theory They did so by obtaining a regular p ertu rba tion  ex­

pansion m the inner core region and a W KB expansion in the outer cladding They 

then  proceeded to  m atch  these two expansions together and make use of an integral 

conservation law, to  give them  an expression for the rad ia tion  loss from  th e  fibre 

However, although this m ethod is inform ative in its own right, it does not offer us
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a com pletely rigorous analysis of the relatively com plicated equation

V 2y + f ( ( , i l ) y  + \ y  + e a y  = 0 (2 1-1)

To do so fully, would prove to  be very difficult Therefore, it is desirable instead 

to  study first a sim pler one-dim ensional m odel This can be solved explicitly and 

understood m detail Such a model was proposed m 1991, by P ans and Wood [15] 

They observed th a t for small e , m K ath  and K riegsm ann’s model, we are located 

m th e  cladding region, where the p ertu rba tion  /(£ ,  77) m the refractive index is zero 

Therefore, our in terest lies solely m the behaviour of solutions m the neighbourhood 

of a tu rn ing  (or transition) point, which is situated  well into the cladding region

Thus, P ans & Wood [15] felt justified m considering the model problem ,

i<t>t =  -4>xx + eg (x )  4>, (2 1-2)

w ith  th e  general, homogeneous, boundary condition

<j>x (0 , t) +  h <j>x (0 , t ) =  0, (2 1-3)

here, g(x) =  x,  and the positive constant h is twice the integral of the refractive 

index f ( x )  over the core region, as will be explained la ter

One can clearly see th a t this has the same struc tu re  as K ath  and K riegsm ann’s 

m odel So, m aking the same separation of variables

4>{x,t) =  elXty ( x ) : ImA < 0 , (2 1-4)

the authors got

y"(x)  + (X + ex )y (x )  = 0, (2 1-5)
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w ith boundary  condition

y'(0) + h y(0) = 0, (2 1-6 )

at the origin

Now, to  obtain  the boundary condition at infinity, the authors had  to  re tu rn  to 

th e  physical discussion m Section 1 2, which indicates th a t the solution, m ust be an 

outgoing wave beyond the turn ing  point at x  =  —A/e They expressed this condition 

by constructing any solution y(x)  to  have controlling behaviour of the form  eip x̂\  

w here p(x)  is a positive function of as x  -foo The unique function p (z), is 

found via the Liouville-Green substitu tion  y(x)  = etp^  to  be p(:c) =  (2/3) e 1̂ 2 x 3/2

Thus their model problem , is given by

y"{x)  +  (A +  ex )y (x )  =  0 (2 1-7)

y \ 0) +  M O ) =  0 (2 1-8)

where y(x)  has controlling behaviour etp(x\  p(x)  > 0 as x  +oo, h is a positive 

constan t and e > 0

2.2 Proof of Non-Self-Adjointness.

In this section we will show th a t (2 1-7) is non-self-adjoint, and thus m ay possess 

non-real eigenvalues (2 1-7) appears at first glance to  be self-adjoint, m which case 

th e  spectrum  would be real, bu t a careful analysis shows th a t the conditions for 

self-adjom tness are broken by the boundary condition at infinity To see this, let 

Lu  =  —u ff — exu  and denote by ( , ) the usual inner product m  the H ilbert space 

L2(0 ,oo) Therefore, for any functions u , v  € L2(0,oo) satisfying th e  boundary 

conditions, an in tegration by parts  shows th a t
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 oo f°° ------  ------
(u , Lv) =  — [u(x)i/(a;)]0 -f / u ' (x)v '( x )dx  — 6 /  x u (x ) v ( x )d x  (2 2-2)

Jo Jo

The self-adjom tness condition (Lu ,v )  =  ( u , L v )  holds if and only if th e  in tegrated  

term s are equal Since they are clearly equal at the origin, this condition is equivalent 

to

lim  t/( :rW ;r)  =  lim  ii(a;)t;'(:r) (2 2-3)£—>■00 V ' V ' X->00 V ' V V '

W hen we insert the proposed outgoing wave behaviour exp[zpx], we find th a t we

get u ' (x )v (x )  ~  bu t u(x)v ' (x )  ~  —ipf(x),  as x —> -foo The problem  is thus

non-self-adjom t and nonreal eigenvalues m ay occur

A nalysing (2 1-7), we can see th a t it has an eigenvalue a t A =  — /i2, when e =  0, 

bu t th e  pertu rbed  problem  is non-self-adjom t, because of the form  of the boundary 

condition at infinity It is thus possible, for the eigenvalue of the pertu rbed  problem  

to be non-real, and one can see from [19], th a t it has an im aginary part which is 

0  as e —► 0+

Also, using regular pertu rba tive  m ethods, we can obtain  the asym ptotic series1

a  =  +  <2 2 - 4 >

A lthough this can be continued to  as high an order as desired, it will never yield 

any inform ation on ImA This is hardly surprising, since ImA tu rns out to be o (en) 

as e —y 0+  for any n € N

2.3 Burzlaff and Wood’s Model Problem.

In 1991, Burzlaff & Wood [4], considered P an s & W ood’s m odel problem  and pro­

posed a m ore accurate model They considered (2 1-7) to  be th e  lim it as p —> 0 of

*see p31,[14j
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Figure 2.1: Step index profile of Burzlaff and W ood’s model.

th e  following problem :

- y " { x )  +  v (x ) y ( x )  = X y{x) , (2-3-1)

where

v(x)  =
—£ x when | x  |>  p / 2

■2h /p  — e | x  |, when | x  |<  p / 2 ,
(2.3-2)

x  £  5R and y € C^SR).

T hey based the ir m odel on a step-index profile of a m onom ode fibre (cf. Fig. 2.1).

Now, reflection sym m etry in (2.3-1) implies th a t the  lowest eigenfunction is even and 

its derivative is odd, so th a t the  authors could restric t the ir a tten tion  to  x  £  (0 , oo).

In the  lim it as p tends to  zero, they obtained a delta-function po ten tial a t x  = 0+ 

and the  jum p  condition (2 .1-8) for the derivative of y.

A lthough Paris & W ood’s m odel shares some features w ith the  K ath  & K riegsm ann’s 

m odel, it clearly lacks others. F irst of all, the  optical tunnelling problem  is not 

sym m etric (radiation goes out to  one side only), thus the  problem  should be confined 

to  the  half-p lane. Secondly, the approxim ation for a weakly guiding fibre is obviously 

very poor for a delta  function poten tial and thirdly, the optical tunnelling problem  

is a tw o-dim ensional problem .

In reply to  these criticism s, Burzlaff & Wood presented a m ore realistic one-dim ensional

11



model, to which the first two criticisms do not apply and in response to the third 

deficiency, the study of a one-dimensional model, they argued that  it could be jus­

tified by the physical fact that radiation mainly goes out in a narrow cone, along 

the “plane of curvature”. If that plane does riot change much (low torsion ) then 

we have essentially a one-dimensional problem.

So, the following model (cf. Fig. 2.2)2 replaces (2.3-l)-(2.3-2):-

- t l"(x) +  v(x)y{x)  =s Ay(x),  (2.3-3)

where

v ( z )  =

x £ SR and h >  0.

Here p is assumed to be much larger than e , but otherwise arbitrary. In part icular, 

p may be small, so that the weakly guiding approximation is justified. To complete 

the model, appropriate boundary conditions are chosen at plus and minus infinity. 

The Paris &: Wood model can be obtained by integrating (2.3-1), across the core anil

20 is the rotation  o f  the fibre which removes the torsion.

■ex, when | x |>  p/2

2/i/p  -  e x , when | x |<  p /2 ,
(2.3-4)
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getting its limit as p —> 0 However, as the model is now confined to the half-axis, 

the authors had to impose the conditions y(x)  =  y ( —x)  and yf(x) =  —yf(x),  into 

their boundary conditions to ensure this is taken into account So we get the limit 

as p  -> 0 of

/*+p/2 r + p / i
-  y [ x ) d x  -  2 h ( y ( x ) / p ) d x

J -p / 2  J -p / 2

r+ p /2  /*+p/2
-f e x y ( x ) d x  =  — A /  y ( x ) dx  (2 3-5) 

J -v / 2  J —v/2

Now,
r+ p /2  r0 +

, { y { x ) / p ) d x  =  /  y ( x ) 8 { x ) dx ,  (2 3-6)
P“+0 J  —p/2 J o -

f y f,( x )dx  — 2 h f  y ( x ) S ( x ) dx
JO- J0“

/■Û+ y-0+
+  e x y ( x ) d x  =  — A / y (x )d x , (2 3-7) 

Jo- Jo-

— 2 j/(0 + ) -  2/iy(0+ ) =  0, (2 3-8)

y/(0+ ) +  /ii/(0+ ) =  0>  ̂ (2 3-9)

is their boundary condition at the origin The boundary condition at infinity is the 

same as in Paris & Wood’s model

So as p  —> 0, the model (2 3-1), (2 3-2) leads to

- y " { x )  +  v(x)y(x)  =  Xy(x),  x e [ 0 ,o o ) ,  (2 3-10)

with boundary condition

y'(0+ ) +  /iy(0+) =  0 (2 3-11)

at the origin, where x  6 [0, oo) and y £  C°(9i) y ( x ), as discussed, also has the
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behaviour exp̂ x\  where p(x)  is a positive function of x, as x  —> -foo

2.4 Results Obtained From Paris and Wood’s Model

Paris & Wood [15] succesfully solved their model equation (2 1-7), by using Airy 

functions and th e  Stokes phenom enon They found the im aginary p art of the eigen­

value to  be

ImA „  - — exp ( e -»■ 0+ (2 4-1)
6 y 3s J

Brazel, Lawless and Wood [3], solved the case for the delta  function po ten tia l w ith 

the te rm  resulting from the bending ex  replaced by e x 2, by using W eber’s solutions 

of the parabolic cylinder equation They found the im aginary p art of the eigenvalue 

to  be

Im A  2h 2exp  £ 0+ ^  4' 2^

Liu and Wood [11], solved the case for the delta  function poten tial w ith this tim e the 

te rm  resulting from  the bending ex  replaced by ere71, n  >  3 There were no special 

functions available for them  to use, so they had to rely on other m ethods T hey first 

identified th e  W K B approxim ate solution for large z, which satisfied the  outgoing 

wave condition and m atched this to the Airy function approxim ate solution, valid in 

the  neighbourhood of the turning point x  =  (—A /e)1̂ 71 nearest to  the positive real 

axis They then  substitu ted  this into the boundary condition at the origin, which 

led to  an eigenvalue relation and thus a general form ula for Im(A) given by

f _9A(n+2)/(n) 1
ImA ~  —2h exp I  ^  S(n )  > , e —> 0+ , (2 4-3)

where
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Chapter 3

A  M o d e l  F o r  F i b r e s  W i t h  

W - S h a p e d  P r o f i l e s .

In C hapter 2, we saw how Burzlaff & Wood [4] pu t forward a m ore realistic pro­

file for the slightly bent, m onom ode fibre, (2 3-10)-(2 3-11) However, like P an s & 

W ood’s model, it is still idealistic m nature , picked because it can also be solved 

explicitly, although technically m ore difficult, using special functions whose asym p­

to tic  properties are well known In industry  and m the production of fibres, things 

are seldom ideal and frequently flaws occur

In this chapter we will concentrate on one particu lar m ethod  used in the production 

of m onom ode optical fibres We will describe m detail how the fibre is formed 

and com m ent on a flaw th a t frequently occurs m  it We will pu t forw ard a profile 

for this fibre and m athem atically  incorporate it, into a m odel sim ilar m n a tu re  to 

Burzlaff &; W ood’s m odel Then, we will obtain  boundary conditions, particu lar to 

our profile, bo th  at the origin and at infinity, m  m uch the same way as Burzlaff & 

W ood obtained theirs Finally, we will rescale our model, into a form , which will 

enable us to  calculate the radiation loss, using a m ethod proposed by IIu  &; Cheng 

in [6]
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3.1 Our Model Problem.

T here are various m ethods used in industry, m th e  production of optical fibres One 

such m ethod, known as C V D (Chem ical Vapour Decom position) is frequently  used 

and is described as follows A tube of com mercial fused silica of, for exam ple, lm  

m length  and w ith a 20m m  inner d iam eter, is ro ta ted  on a la the and is heated  

ex ternally  by an oxyhydrogen burner The hot zone is only a few centim etres long 

and can be shifted along the tube The vapourised source m ateria l is passed through 

the tu b e  together w ith oxygen m a proportion appropria te  to  the type of glass to 

be produced In the hot zone, a t about 1600°C, it oxidises and then is deposited on 

th e  inner surface of the tu b e  as a th in  layer of oxide By shifting the hot zone back 

and forth  m any tim es and sim ultaneously altering the gaseous m ixture, the  desired 

refractive-m dex profile, is produced through the accum ulation of m any layers of 

varying com position A fter the deposition process, th e  tube is heated fu rther, until 

a t about 2000° C its softening tem pera tu re  is reached, and the tu b e  contracts and 

finally collapses under th e  influence of surface tension, to  form  a solid glass rod of 

roughly 10mm m diam eter, called a preform  It contains m  its interior the refractive 

index profile of the fibre-to-be Now, frequently, a flaw occurs m the process, known 

in the  industry  as ‘B u rn o u t’ I t results m a refractive index dip along the centre of 

the  preform , (cf Fig 3 1) described by the profile

t  + f  [Rm +  ß ( l  -  R)°] = n l , when R  <  1
n '( R ) = <  :  “  (3 1-1)

lcl >t — n% , when R  >  1

where.

R  =  x /a , the norm alised radial coordinate,

n co =  Refractive index in the core,

n ci =  Refractive index m the cladding,

2 h /  p =  Height of the profile, where h >  0, 

a =  p /2  =  Core ladius,
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Figure 3 1 O ur realistic t^ -shaped  optical fibre profile

¡3 =  Scaled central dip, 

a  — W id th  of the central dip, 

m  — G rading of the profile

Here, th e  param eters m, p  and a  have the following constraints im posed on them ,

1 5 <  m  <  oo, 0 <  /? <  1, 4 <  <7 <  oo (3 1-2)

From  (3 1-1), we see th a t we have a power law graded index profile, w ith a refractive 

index profile centered along the axis of the fibre
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3.2 Comparison of our Model Problem to Burzlaff 

and Wood’s Model.

We will now apply (3 1-1) to  K ath  & K riegsm ann’s paper [9], to develop an expres­

sion for th e  refractive index m the core relative to  the cladding This will enable us 

to  convert our profile (3 1-1) into a m odel sim ilar m natu re  to  Burzlaff & W ood’s 

So, applying (3 1-1) to  (1 1-2), we get

n 2 t  + — fR™ +  (3(1 -  R )'T]
n (R) = - f  =  P—  —--------— , (3 2-1)

n i t

n 2(R) =  l +  —  [R"1 + / ? ( 1 - R ) ‘r] (3 2-2)
Pt

Com paring (3 2-2) w ith (1 1-2), reveals th a t,

9hk2
f ( t , v ) = m  = —  [Rm + /9(1 -  R ) 1 , (3 2-3)

which gives us our expression for the refractive index m the core, relative to the

cladding

Now, com paring our profile (Fig 3 1), to  Burzlaff & W ood’s (Fig 2 2), one can see 

th a t th e  core radius of bo th  is p /2  Therefore, our expression for the norm alised 

radial coordinate becomes,
_  x 2x , %
R =  -  =  —  3 2-4

a p

and

'<*> = ' (t ) = H r

which we will now denote by D(x)

t  h ’ H Y
(3 2-5)
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Our model (cf Fig 3 2) 1, foi simplicity symmetrised with respect lo lefl-iight 

reflection, is given by

-  y"(x) +  v(x)y(x)  =  A y{x),  x £ ( - o c ,  oo), (3 2-0)

where,
e | x L when | t  |>  $

(3 -;-7)
- D ( |  x | ) - e  | i |, when M <  *

Now, like in BurzlafF& Wood’s model [¿I], wc die still only interested in the helms lour 

of our solutions neai a tuining point situated well into the cladding, I hat is where 

D (| x |) =  0 Because of this, wc will l nil pose the icsti iction on y( i )  that it must 

have a controlling behaviour of the form etp(l) wheie p[x)  is a positive function of

l6 is the rotation o f  the fibre which lem oves  the toibion
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x,  as x  —> -foo A com parison of (3 2-7), w ith (2 3-4), shows th a t D  (| x  |) replaces 

the constant function —2h /p  We shall now show th a t this causes th e  two models 

to  also differ m th e  expression of the boundary condition at the origin 

As before, (2 3-5), we in tegrate across th e  core from  —p/2  to -\~p/2, and take the 

lim it as p —> 0 Following the m ethod of Burzlaff & Wood we impose th e  sym m etry  

conditions y(x )  = y ( —x)  and y '(—x)  =  —y ^ z ) , confining our m odel to  th e  half axis 

We get the lim it as p -> 0 of,

■ + p / 2  „  r + p / 2f - i - P f *  .. f ' P f  4
/  y ( x ) d x  -  £>(| X \ ) y (x )dx

J — p/2 J — p/2
r+p/2 /*+p/2

£ / zy(a;)d;c — X y ( x ) d x , (3 2-8)
J—vi2 J —v/2-p /2  J  —p/2

giving us,
o+ r+p/2

y ( * ) | o _  -  1 ™  J _ p/2 £>(|  a; |)y(a:)da: =  0 (3 2-9)

Obviously, the integral m (3 2-9), poses a problem  To solve it we will use a lim iting 

form of the de lta  function, to  show th a t the integral in (3 2-9) m ay be replaced by 

th e  value of y a t the origin, m ultiplied by a constant factor containing the  shape 

param eters, ¡3, cr and m , of the core refractive index profile The theorem  which 

enables us to  do so, can be found m (p 110, [18]) Because of its im portance to this 

pro ject, we will s ta te  it below

3.3 Limit Theorem for the Delta Function.

Let f ( x )  = f ( x u  , x n) be a nonnegative locally m tegrable function on £ftn for 

which f ( x ) d x  =  1 W ith  a  <  0 define

/ „ ( * )  =  \ f  ( - )  =  \ f  p - ,  (3 3-1)
a n \ a j  a n \  a  a  J

then  { /a(tf)}  1S a delta  fam ily as a  —> 0 [and, setting  a  =  1 /k  , the sequence 

{S k ( x ) =  k nf ( k x i : , k x n)} is a delta  sequence as k  —> oo] The substitu tion
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y  =  x / a  yields these th ree properties

(a) [  f a { x ) d x  — 1, (3 3-2)
J 3?n

(b) lim f  f a ( x ) d x  =  0 for each A > 0 , (3 3-3)
o' —^0 j \ x \ > A

(c) lim  [  f a ( x ) d x  =  1 for each A > 0  (3 3-4)
«-►0 J\x\<A

so th a t for small positive a ,  f a ( x )  is highly peaked about x  =  0 m such a way th a t 

the to ta l streng th  of this d istribu ted  source is unity, w ith m ost of it near the origin 

Also, from [18], we can take the p roperty  th a t,

lim  J  f a ( x ) < f > ( x ) d x  — 0 (0), (3 3-5)

for each <f> m C ^ K n ) ,  where as before { f a} *s an n-dim ensional de lta  fam ily 

(as a  ao)

3.4 The Delta Function Limit of our Model.

In our case n =  1, as we are dealing w ith a one-dim ensional m odel Thus, for the 

theorem  to  hold
r+p/2
/  D ( \ x \ ) d x  (3 4-1)

J - p f  2

m ust be equal to  unity  Clearly, this is unlikely to  be the case, bu t we will evaluate 

the  integral, to  obtain  a scaling factor H

r + p /2
I D  (I x  I) dx

2  h k 2 r + r l 2

- p / 2 £p t  J - p / 2  

2 m+1 h k 2
pTTl+i £

2 h k ' z ß

+  0 1 -
2 I a I

P
dx

p t

2771+1 ft fc2
pm+1 I

2 h k 2

/•O /*+p/2
/  ( ~ T)m d x +  (x )m dx
J-p /2  Jo

J-p/2 \  p  J JO \  p  )

2(p/2) m-h 1 ~

t

7 7 1 + 1  

m + 1  a + 1

+
A *2 /?

¿7+ 1 .

= H ^  1 (3 4-2)
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Now, le tting  a function G (x), be a scaled version of D( x ), defined by

G(x) =
D(x)  

H 1
(3 4-3)

we get th e  desired property,

r+p/2
/  G(T)iix =  1 

J~pf2
(3 4-4)

So from  (3 4-2) and (3 4-3) we get,

G (I) =  I T T T
m+1 “r a+1

2m| s  r  +  ^  ^  _  2j_x
p?7l+l p  . p (3 4-5)

Thus, to  apply the theorem , we m ust choose an a  and rew rite G(x) into the  form

1 „  f  x
G a(x) = - G ( - )

a  \ a J
(3 4-6)

Choosing a — p/2 ,  we get 

Gp/2(z) =

so as p /2  0,

1 2 '

1 +  p } m+1 o"+l. P .

1 2 | x

2 ( “ 7 "
(3 4-7)

Gpf2{x)
— +  ^ -  Lm+1 ' cr+1

¿(x), (3 4-8)

w here ¿ (z ), is the de lta  function 

Hence (3 2-9), is replaced by

- y ' M

and we get, using (3 3-5)

0+ 1
0- f 1 +  0 }.m+1 ’ <t+1.

■o+
(3 4-9)

- 2 y \ 0) -
—  +  -JL  m+1 a+1

2/(0) =  0, (3 4-10)
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y(0) =  0 (3 4-11)
. Lm +1 <r+l J _

Therefore, we are left w ith the following non-self-ad jo in t eigenvalue problem ,

(j, on which our profile depends, are present Therefore, the inform ation on the 

shape of the refractive index profile m the core is included in our problem , via the 

boundary  condition a t the origin

3.5 Another Form of the Equation.

Finally  in this chapter, we will convert (3 4-12)-(3 4-13), into the form required by 

Hu & C heng’s m ethod [6] So, substitu ting  x  =  into (3 4-12), we get,

y"{x)  +  [A +  ex] y{x)  =  0 , (3 4-12)

w ith boundary condition,

y ' ( 0 ) +  o \ _ l L +  j l i  y(0) =  °
LZ [m+l ir+lj J

(3 4-13)

at the origin, where x  E (0 , oo) and y(a?), has controlling behaviour of the form 

6lp(x)̂  where p(x)  is a positive function of as, as x  —> +oo  Now, it is obvious from 

our boundary condition a t the origin (3 4-13) th a t the physical constants, m ,/J  and

(3 5-1)

Here we used th e  fact th a t

dy_ _  dt_ _  dy_
dx dt dx dt

(3 5-2)

and
d2y d
d x2 dx

A
dx dt2

(3 5-3)
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Now, by le tting  q = — 1, we get the form required by Hu & Cheng [6],

,2rf2Z/
£ - ^ 2  +  + 1] y  — 0.

where A 6 C and t £ (0, oo) 

Also, (3 4-13) is replaced by

e  y ' ( 0 )  +

So, (3 4-12)-(3 4-13) becomes

2/ (0) =  0

(3 5-4)

(3 5-5)

+  [A +  i] y(t)  — 0 ,

ey'(0) + 2/ (0 ) =  0 ,

(3 5-6)

(3 5-7)
2 [ ^ t +  4 t]

where t  £ (0 , oo) and y(t) has controlling behaviour of the form e Lp̂ \  where ^(¿) is 

a positive function at t, as t -» +oo

C om paring the above problem , w ith adiabatic invariance problem s, or leflection 

coefficient problem s (see [1],[7],[8],[16],[13],etc ) one can clearly see th a t they share 

not only sim ilar equations, bu t also sim ilar m ethods, to com pute the  rad ia tion  loss, 

as well as th e  reflection coefficient
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Chapter 4

R e v i e w  o f  R e s u l t s  o f  G i n g o l d ,  

H u a n d  C h e n g .

From C hapter 3, we are left w ith (3 5-6), a non-self-adjom t Sturm-LiouviJlc prob­

lem, w ith boundary conditions (3 5-7) a t the origin and behaviour p(¿) >  0

as t —>• +oo Now, to solve (3 5-6) we could use special functions ( th a t is ‘A iry’ 

functions), whose Poincare asym ptotic properties are well known and whose ex­

ponential im proved expansions have recently been obtained Inform ation gathered 

from  these exponentially small corrections is absolutely essential for us to  calculate 

th e  transcendentally  sm all quan tity  Im(A), th a t is the radiation loss

However, th is m ethod has already been employed by various authors ([14], [19],[15],[11]) 

As a result, we will use a relatively new m ethod proposed by Jishan  Hu & Wing- 

Cheong Cheng m their 1990 paper [6] In this paper, the authors m ake use of the 

work developed by H arry Gingold [5] to  obtain  approxim ate asym ptotic solutions to 

problem s sim ilar m  natu re  to  (4 2-1) Having obtained these solutions they then  use 

a m ethod (developed initially  to solve reflection coefficient problem s, by Gingold & 

Hu [7]) to  obtain  an expression for the transcendentally  sm all rad ia tion  loss

25



4.1 Review of Asymptotic Results for Differential 

Equations.

Before we move on and obtain  solutions to our particu lar problem  (3 5-6)-(3 5-7), the 

question m ust be asked “why not apply m ore well-known m ethods to  our p iob lem ?” 

We know th a t m  the m athem atical sciences, there exists a volum inous am ount of 

lite ra tu re , dealing w ith asym ptotic formulas for the approxim ation of solutions, to 

equations of the form

y"(t) = <p(t)y(t) (4 1-1)

T he ‘Liouville-Green’ approxim ation, the basis of the ‘W KB A pproxim ation’, seems 

to  be the earliest and obvious exam ple However, although this m ethod is valid at 

an irregular singularity of (4 1-1), it fails at a regular singularity and also m the very 

im portan t case of a tu rn ing  point

A nother m ethod which could be used, although not s tric tly  speaking an asym ptotic 

form ula is the Frobem us m ethod U nfortunately, although it is applicable m the 

neighbourhood of a regular singular point, it fails in the neighbourhood of an ir­

regular singularity Various other asym ptotic form ulas im prove their validity as the 

variable tends to  infinity, bu t become invalid at a finite point It is clear, therefore, 

th a t although there  are various asym ptotic m ethods available to  solve equations of 

type (4 1-1), they  all fail a t certain  points on the infinite interval

Clearly, w hat is needed is an asym ptotic form ula which is valid throughout the en­

tire  infinite interval G ingold’s formulas fulfill this need He proved them  to be valid 

m a half neighbourhood of a point t 0, irrespective of w hether t 0 is a regular or an 

irregular singular point He also showed (except for some exceptional cases) th a t 

his form ulas are valid at a turning point Finally, he provided exam ples whereby 

ordinary differential equations were taken on an infinite interval, including singu­

larities a t the endpoints and thus provided a uniform ly valid approxim ation on the 

entire infinite interval It is therefore only na tu ra l to  label these form ulas ‘invarian t’ 

Here, Gingold means ‘invarian t’ in the sense th a t they are valid all the way up to  a
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tu rn ing  point

4.2 Outline of Derivation and Results of Gingold.

G m gold’s formulas will, as we have already m entioned allow us to  obtain  two linearly 

independent asym ptotic solutions to  (4 1-1) and the ir respective derivatives B ut 

how did Gmgold obtain  these approxim ate solutions7 In this section, we will give 

a brief outline of the m ethod he used F irst however, we will need to define the 

following functions and assume th a t they adhere to  Convention 2 1 & A ssum ption 

2 2, p 320 [5]

m

0(i)

m

r ( t ) 

e ( i , r )

4 i m
3/2

=  In
1 -  iL(t)
1 +  iL(t)

1/4

\ 4 <p(t)

L'(t)
2 1 +  L 2{t) 

exp

(4 2-1) 

(4 2-2)

(4 2-3) 

(4 2-4) 

(4 2-5)2 J  J(s )ds

Gmgold begins by rew riting (4 1-1) into its com panion m atrix  differential system

(4 2-6)
0 1 \

y
Y ' = Y , Y  =

_ <p(t) 0 _ v y' )

He then  perform s two successive linear transform ations,

Y  =  W,. Y i and Y i =  W 2 Y 2,

where

W x =

(4 2-7)

W 2 = 1

1

1

t

TT

T— (
+----

1 w )]+1/4.
2

I 1
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$ = m  +  m  1 =  2 cosh 0 (t), 

?/> =  m — m _1 =  2 s in k  Q(t) (4 2-8)

and
1/4

(4 2-9)

Here L (i) and 0 ( i )  are defined by (4 2-1) and (4 2-2) respectively This enabled him , 

to  transform  (4 1-1) into a form am enable to  a m ethod of diagonalisation Then, 

using various assum ptions, conventions and lemmas w ith proofs supplied, he was 

able to  ob ta in  a fundam ental solution set of (4 1-1) as t  —y +oo, given by 2

1 — iL(t)
1 +  iL (t)

(4 2-10)

where I  is the identity  m atrix  and

m  =
exp^-\- f* J ( s ) d s j  0

0 exp  j — f* J(s)d+
(4 2-11)

Thus, using (4 2-10), Gmgold was able to  obtain  a fundam ental solution set of (4 1- 

1), th a t is two linearly independent solutions and their respective derivitives, which 

we will now sta te  below

2/ i ( i )  =  { [ c o s h O ( t )  +  i s m h Q ( t ) ] ( l  +  p n )

— i [coshQ(t ) — is inhQ(t ) \  /?2i} exp { + r  , (4 2-12)

y 2{ t )  =  [^ ( t ) ] " ’1^4 { [ c o s h Q ( t )  +  i s m h ® ( t ) ] p i 2

—i [cosh©(t) — i s mhQ( t ) ]  (1 +  P22)}  exp y* J ( s ) d s j  , (4 2-13) 

y[(t) = {[coshG(t)  — isinh(d(t)]  (1 +  p n )

4-1 [coshQ(t) -f isinhQ(t)]  p21} exp  |  +  1  J(s)<fs j  , (4 2-14)

1see lemma 2 1,[7]
i (l +  P(t)) is d. continuously invertible 2 x 2  matrix function
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y f2( t )  =  [^ (O ]" 1"1^4 { [ c o s h Q ( t )  — i s i n h Q ( t ) ] p u

+ i  [c o s h Q ( t ) + i s i n h Q ( t ) \  (1 -f P 2 2 ) }  e % P  j  — j  J (s )d s j (4 2-15)

Now, the entries of P(t ) ,  phk-> { j , k  =  1 ,2), satisfy a V olterra integral equation,

expressed m [7] U nder certain  conditions they form convergent series for any t £

[a, 6] given by 3

£ ?  f 1,
p n { t , a i U a 2i) = /  r ( t0)dtQ / r ( t0)e(t0, t 0)dt0

m=o Ja11 Ja21
l am f t n - 1 f t n

n /  r ( t n ) d t n  r ( tn)e(tn, t n)dtn, (4 2-16)
7 1 = 1  a ? U  21

+  ° °  rt a a /-i0
P22(i, <*12, <*22) = Y s  r(to)dto / r(to)e(io, to)dio

m_0 ■'«22

n /  r( tn)dtn r ( tn)e(tn, t n)dtn, (4 2-17)
n—1  ̂«22 ■'«12
+ ° °  rt A

Pi2(i, £*12, 0:22) = Y ^  r ( i 0 ) e ( t , t 0 ) d t 0
m=0 •/a '2
™ r l n- 1 A /'in
n /  r { t n ) d t n  r ( t n ) e ( t n , t n ) d t n , (4  2-18)
n=;1  ̂«22 *̂ «12
+ ° °  ft

P 2 i ( t ,  O n ,  a 2i )  = Y 1  r ( i 0 ) e ( i 0 , t ) d i 0

m=a ■y“21
m r t n

n /  r{tn)dtn r ( tn)e( tn, t n)dtn, (4  2-19)
n—1 ■'¿*11 •'¿*21

where ajk, =  1, 2 , are a rb itrary  constants m [a,b]

4.3 Hu & Cheng’s Application of Gingold’s Results.

In section 4 2, we showed how Gingold obtained approxim ate asym ptotic solutions 

to  equations of the form  (4 1-1) and their respective derivatives We will now show 

how G m gold’s formulas can be used for m ore a rb itra ry  functions and not ju s t for 

functions w ith an eigenvalue dependence such as ours If we replace A +  t, in (3 5-6), 

w ith  Q + (t) we get

e2 y"(t)  +  [Q+(t)] y( t)  =  0 (4 3-1)

3see [7], Lemma 2 1
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Here we assum e th a t Q +(t) adheres to the following conditions

(1) Q +(t) £ C 00 ( [a , b]) ,  w ith 0 <  a < b <  oo,

(thus making the function continuous and infinitely differentiable on [a, b])

(2) Q+(t) 7̂  0 V i e  (a7b):

(thus ensuring (4 3 — 1) has no turn ing  point on (a, b))

(3) <  M  , V i  € [a , 6].
G +W 3

(thus ensuring th a t L2(t) /  - 1 ,  V t  G [a, b]),

(4) /
J  a

Q'+jt)
Q f ( t )

dt <  oo,

(thus ensuring the existence of L 2 (t ) everywhere on the real line) (4 3-2)

We can obtain  asym ptotically  approxim ate solutions for a wider class of po ten tial 

functions A ssum ption (3) is im posed to  ensure an induced turn ing  point never 

occurs T h a t is, there  exists no i E [a , b\ such th a t J ( t )  ^  0 If such a t did exist, 

it would render our solutions triv ial By m aking these assum ptions, wc are able 

to  obta in , using G ingold’s formulas, two linearly independent solutions of (4 3-1) 

and the ir respective derivatives, th a t is (4 2-12)-(4 2-15), w ith cp(t)  replaced with 

— (5 -t-(i)/e:2, for a general function Q+

A ssum ption (4) ensures th a t the difference between th e  controlling behaviours of 

our solutions and the controlling behaviours obtained by a Liouville-Green approx­

im ation, th a t is

f \
~Q+{s) (}_ Q+OO 

e2 V4 Q+(a).
ds Q+(s ) ds. (4 3-3)

is uniform ly bounded So we can ex tract from our solutions their W KB approxim a­

tions and their respective derivatives given by

y(t)
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where

+ c2 [ - Q +(t))~lf4 e x p i ^ - J  J ( s ) d s j ,  

i'(t) ~  Ci [—Q + ( i)]+1/i4 exp  | +  j  J ( s ) d s j

+ c2 [ ~ Q +(t)]+1/i e x p i ^ - J  J ( s ) d s j ,

J( t )  =
(iQ+(t)) |

4 Q+{t)

(4 3-4)

(4 3-5)

(4 3-6)

4.4 Gingold’s Formulas Applied to our Model 

Problem.

Before we move on to  obtain  an expression for the rad ia tion  loss m  the next chapter, 

we will first apply G m gold’s formulas to  our particu lar problem  As it happens we 

do not require approxim ate asym ptotic solutions to  our problem  (3 5-6)-(3 5-7) as 

our local solution is our global solution and asym ptotic m atching is not required 

However, we will obtain  its solutions m  this section, purely as an exam ple of how 

G m gold’s formulas can be applied to  any function which obeys conditions (4 3- 

2)
So, by rew riting (3 5-6) into the form (4 1-1), we get

y"M
(A + 1)

y(i) =  0 , i £ ( 0 ,+ o o ) (4 4-1)

w ith boundary condition

ey'(O) + y(o) =  o: (4 4-2)

where A is a com plex eigenvalue, 0 <  e < 1 and m ,/? ,a  are defined by (3 1-1) 

C om paring (4 1-1), w ith (4 4-1), we find th a t

ip{t) =
(A + 1)

(4 4-3)
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so substitu ting  (4 4-3), into (4 2-12)-(4 2-15), gives us

2/i (*) =

2/2 (t)

y[(t)  =

¡ ¿ ( 0  =

—(A + 1) - 1 / 4

{[cos/l0(t) + ZSl7i/i0(f)] (1 + pn)

— z [cosh<d(t )  — isink®(t)] p2i} exp j+  J  J(s)ii,s j  , (4 4-4)

- (A  +  t ) 1/4

{ [ c o s h Q ( t )  +  i s m h Q ( t ) ] p i 2

- i [coshQ(t) — zsmhQ(t)] (1 -f P22)} exp { - J* J{s)ds|, (4 4-5) 

- (A  + 1) + 1/4

{ [ c o s h Q ( t )  — i s i n h Q ( t )] (1  +  p r

+1 [coshQ(t) + ismhQ(t)] p2i} exp j  + j  J(s)fli5j , (4 4-6)

- (A  +  t )
+1/4

{ [ c o s h Q ( t )  — z s z n / i 0 ( i ) ] p i 2

+ 1  [ c o s h O ( t )  - f  t s i n h Q ( t ) ]  (1  +  P2 2 ) }  e x p  j — J  J(s)dsj (4 4-7)

where

J(t) = (A + 1)
+

i 6(A + ty
(4 4-8)

We are allowed to  do this as W  E [0, +  oo), A +  t ^ O a s A ^ C  So there are 

no tu rn ing  points or induced turning points present, which would render equations 

(4 4-4)-(4 4-7), nonexistent or triv ial T h a t is A +  t  satisfies conditions (4 3-2)

Now having so far obtained asym ptotic approxim ate solutions to  (4 4-1) valid all 

the way up to  a tu rn ing  point, we can ex tract from  (4 4-4)-(4 4-7) its equivalent 

W KB approxim ations We are justified m doing this, as the difference between the 

controlling behaviours of (4 4-4)-(4 4-7) and th e  controlling behaviours, obtained  by 

a Liouville-Green approxim ation, th a t is

f \

- (A  +  s)
+

1
16(A +  s)2

)*  - / / (A +
■d s , (4 4-9)
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is uniform ly bounded, V i E [0, oo], A E C

So, we can express the general solution to  (4 4-1) and its derivative, for large positive 

t, as follows

y(t)

v'(t)

- (A  + 1) - 1/4

exp \ -f J l J (s )d i

+  c2
-(A  + 1) - 1 / 4

e x p { - J *  J { s ) d s | ,  (4 4-10)

(A +  t) +  1/4

exp < -f

- (A  +  ¿) +  1/4

exp

J* J{s)di  

— J  J(s)dt (4 4-11)

where
-(A  + t)



Chapter 5

C a l c u l a t i o n  o f  r a d i a t i o n  l o s s .

We developed in Section 4 4, an asym ptotic solution to  our problem  (3 5-6), as 

t —y +  oo w ith boundary condition (3 5-7), at the origin and behaviour eip^ \  p(t) >  0 

at oo In this chapter, we will extend our problem  into the  com plex plane and obtain  

an expression for the radiation loss ImA To do th is, following Hu and Kruskal [8] we 

will have to  move away from the real axis into the com plex i-plane and solve along 

the nearest level line L\  on which our critical point t =  — A lies F irst however, we 

will explain w hat a level line is, outline w hat occurs on a level line near a power- 

type critical point, define w hat are critical and m ajor critical points and generally 

a tte m p t to  give an understanding to  the concepts and ideas used throughout the 

rest of this chapter

5.1 Critical Level Lines.

To explain w hat Hu and Kruskal m ean by a level line , we m ust first take a general 

second-order linear differential equation, say

£2 +  Q(t,  t y y  =  0 ( 5 H )

and sta te  its W KB approxim ate solutions

y(t) ~  C\  ̂ exp |+ ~  J  [<9(a, A)]I/2oisj
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+  c 5
- Q ( t ,  A) - 1/4

e2
e x p j —  j  [Q(s, A)]1̂ 2 d s j  , t —> ±00 (5 1-2)

Now, no m a tte r  where you move m the complex plane, th e  m agnitude of one of our 

solutions to  (5 1-1), will increase while the m agnitude of the o ther will decrease 

T h a t is one of th e  solutions will become subdom m ant to  the other, depending on 

where you are m  th e  com plex plane However, if bo th  of our W KB exponentials were 

of the sam e order of m agnitude, then  a level line would occur where both  solutions 

would be of equal im portance So the level lines of (5 1-1),

(5 1-3)e x p i ^ ± - J  [Q(t}\ ) ] 1̂ 2 dt

occur where bo th  the W KB exponentials have the same m agnitude, th a t is where

Im j J  [Q(i, A)]1̂2 da; j  =  const (5 1-4)

These correspond to  anti-Stokes lines m  a m ore conventional trea tm en t Assume 

th a t Q(z,  A) is a power-type critical point, whose na tu re  is as yet unknown T here­

fore, Q(z)  b(z — Z0)27 2, 2  ̂ zo, where b ^  0 , is a constant and 7 is a real

num ber T hen to  the leading order, Hu & Kruskal [8] showed th a t the s truc tu re  of 

the  level lines of (5 1-1) near z = z0 can be divided topologically into four different 

classes (1) If 7 <  0, they  consist of rose curves, and the angle of each leaf is 7r/  ¡7 1

(2) If 7 >  0, they consist of hyperbolic-like curves, and th e  angle of each leaf is 

again 7r /  (7 1 (3)(a) If 7 =  0 and R e b 1/ 2 ^  0, then  they consist of an infinite

num ber of spirals intersecting at z =  z0, (b) if 7 =  0 and R e b 1/ 2 =  0, they consist 

of an infinite num ber of circles centred at z — zo

In our problem , 7 =  3 /2  >  0 , so (2) above applies In particu lar as we shall see, 

when th e  constant m (5 1-4) is zero, 7 $ =  k7r, k =  integer, which is a set of half- 

lmes through z  = zq The angle between two consecutive lines is 7r /  I7 |x Finally, 

m  this section, we define a critical point to  be a zero or singularity of th e  general

^ o r  further information on (1),(2),(3), see [8]
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function Q(t,X)  m  (5 1-1) We define a ‘nearest critical level line’ to  be th a t level 

line on which a critical point first occurs, and we call a critical point a ‘m ajor critical 

p o in t’, if it is found on the nearest critical level line

5.2 Hu & Cheng’s Method Applied to a General 

Function Q ( t ,  A).

In this section we will outline briefly the m ethod  used by Hu & Cheng [6] m ob­

taining an expression for the rad ia tion  loss from equations of type (5 1-1) w ith an 

a rb itra ry  function Q ( t , A) From  Section 4 3, we showed how Hu & Cheng obtained 

approxim ate asym ptotic solutions to  (4 3-1), (i e (4 4-4)-(4 4-5)), using G m gold’s 

invariant form ulas, rem oving the eigenvalue dependence of Q ( t , A) and using Q+(t)  

subject to  conditions (4 3-2) Combining the outgoing wave solution (i e the solution 

w ith positive exponent) w ith the boundary condition at th e  origin, left the  authors 

w ith a well-defined problem  given by

e2y"{t) +  Q(t,  X)y =  0, t <E (0 ,+ o o ),

< e y ’{0) +  h y ( 0) =  0 , (5 2-1)

y{t) ~  [<3+(i )]” 1/4 ea;p{-|-/j J ( s ) d s } ,  t  +oo

w here t  is a sufficiently large real num ber

Thus the authors were left w ith the job of obtaining the rad ia tion  loss from (5 2-1) 

To achieve this, they used a m ethod sim ilar to  the one used to solve the reflection 

coefficient problem s, studied by Gmgold & Hu [7] 2 They began by moving (5 2-1), 

in to  th e  com plex ¿-plane and solved it along the nearest critical level line From 

(5 1-4), we know th a t the level lines of (5 2-1) are given by

R e i ^ j  J ( s ) d s j  =  cons t , (5 2-2)

on which the authors assum ed there exists at least one critical point of the differential

2See [1],[8],[13],[16]
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equation where,

j ( t )  =
- Q ( i , X )  , (  Q'(t,  X)

+ (5 2-3)
\  ' V 4 W .A )

Now, as the function Q(t ,  A) is unknown, the authors made a number of assumptions 

relating to it They assumed that the eigenvalue A is known and that t =  t c is a 

critical point on its nearest level line L\ They also assumed that near t =  /c> Q{t > 
has an asymptotic behaviour of the form

27c-2 (5 2-4)

W ith 7C >  0, and from our discussion in Section 5 1 , the level lines of (5 2-2) are at 

an angle of 7r/  (7 ) from each other and consist of hyperbolic like curves For example, 

if wq take the simplest case and centre our critical point at the origin, that is let 

tc =  0, b =  1 and 7  ~  3 /2 , we get fig 5 0

F ig . 5.0, Level curves for (5 2-2)

The authors argued that on L\ away from the critical point t =  ¿C1 the leading
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behaviour of y can be represented by

y(t)  ~  [Q(t, A)]-1/4 r i  exp | +  ^  J ( s ) d s |  +  r 2 ezp  j  -  ^  J ( s ) d s |

t -*  +00  (5 2-5)

where th e  values of r \ , r 2 can be determ ined by the continuation of the behaviour 

(5 2-1) of y near +00 So com paring (5 2-5) w ith (5 2-1) gives

n  =  exp { - ¡ I  J ( s ) d s } ,  

r 2 =  0

T he authors then  argued th a t m a neighbourhood of t =  tCl the leading te rm  of y 

satisfies

e2y"(t) + bc(t -  i c)27c" 2Z/(0 =  0, (5 2-7)

whose local solution can be expressed m term s of Hankel functions, th a t is

y(t)  =  (i -  t cy<2 { T . H ^  + T2h [%1c } (5 2-8)

T he asym ptotic  representations of these Hankel functions are given m [8]

So m atching their local solution (5 2-8) to  their invariant asym ptotic solution (5 2-5) 

allowed them  to obtain  expressions for T\ and T2 given by

Ti = r M/ ^ e t^ e lT,
c (5 2-9)

T2 =  r2 J ^ e

However, as they were only interested m  the behaviour of their solutions near the 

origin, they extended the solution (5 2-8), passing through t  ~ t c from  the branch 

to  th e  next branch L2, at the same level m the clockwise direction This is equivalent 

to  a change m the argum ent of (t — t c)lc by —tt The Hankel transform ation form ula 

they  used to  achieve this can be found in [8]
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Hence on Z/2, to the leading order, the function y has the form

y =  (t -  i c)1/2 e* '*  {[2  Ticos(w/2%)  -  T2 e’^ ]  H {̂

+ [T ie - '* ]  H[%yc (# < « -« .)* )} . (5.2-10)

Now, on L2 away from the critical point t =  i c, Hu & Cheng argued that the function 

y has the form

y ~  Q(t\  A)- 1 /4 r[exp^-\-  J(s)ds^j +  r'2 exp  J (s )d s jj  . (5.2-11)

So matching (5.2-11) with (5.2-10) near t =  t c, taking into account what occurs to 

both of them as they pass through the Stokes line — 7r/ 7  gave them

1 V '  ’ (5.2-12)
r'0 =  e 2~i* TiCos(tt/27c) -  r 2e‘ * ]  v/IS fe e+,' Ä  e+ ii ,

thus giving the authors the asymptotic behaviour of their solution near the origin. 

Finally, using the boundary condition at the origin, (5.2-12) and some mathematical 

manipulation Hu & Cheng were able to obtain an expression for the radiation loss 

given by

Im (Q(0, A)) ~  — 7~ 7o— T cos (n l i e  ~  2Im r) e"2Re(r), e -»  0 + , (5.2-13)
cosyK /  ¿ ic )

where

5.3 Derivation of Radiation Loss.

In the previous section we showed how Hu & Cheng in their paper [6] obtained 

an expression for the radiation loss from (5.2-1), with Q(t ,  A) an arbitrary function 

adhering to conditions (4.3-2). In this section, we will apply Hu & Cheng’s method 

to our particular problem. However, unlike Hu & Cheng’s method, we do not require
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asym ptotic m atching as Q ( t , A) =  A + t, V i and not ju s t for t —> oo Therefore, the 

local solution is the global solution, th a t is

y{t) =  (t +  A)1/i2 {T> H[% ( i  +  T2 (*(A +t)3/2)} , (5 3-1)

is our global solution to

e2y"{t) + { \  + t)y ( t )  = 0, t e {  0,+oo), (5 3-2)

where for the m om ent the transm ission coefficients T i : T2 are a rb itrary  The asym p­

to tic  representations for our Hankel functions H 1 and H 2 are

^ ( A  +  i) -3 /4 e+*(ft(A+03/2) e- . £  

[1 +  0  (V(*+0- s/2) ] ,

^ y / | (A +  t ) - 3 / 4 e - . ( ^ + i ) ^ ) e + . f f  

[1 +  0  ( f  ( A + i) - 3/2)]

(5 3-3)

(5 3-4)

valid as |A +  i | -» oo, for |arg ( £  (A +t)3/2)| < 7r, (cf Fig 5 1)

Now, as we are dealing w ith an outgoing wave solution tending  to  + 00, we m ust set
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T2 = 0 This gives

y(t)  = (t + \ y / 2 { T 1H {11/ l ( i ; {x+t ) ^ ) } ,  i  ^  00 , (5 3-5)

which has leading asym ptotic behaviour,

y(t)  ~  Ti (t +  A)1/2 \ f ^ ( t  +  A)-3^4 e+ , (3*^+^ 1 ) e " ‘ ™ , t  —> oo, (5 3-6)
V 7T

valid as we have m entioned in sector 1 (see Fig 5 1) We require however, the 

asym ptotic  behaviour of our solution near the origin, th a t is in sector 2 (see Fig 

5 1) To obtain  this we need to change the argum ent of (A -f t )3^2 by — 7r We 

therefore require the following Hankel connection form ula given in [8] 3

=  H[%(z) +  e -  * # $ ( * ) ,  (5 3-7)

where

2 = ¿ (A+i)3/2 (5 3~8)
Hence, (5 3-5) becomes

y(t)  = T \ ( t  + X)1/2 + e * 3 i / ^ ( ,z ) J ,  £ y 0-f- (5 3-9)

w ith leading asym ptotic behaviour,

y(t)  ~  Ti (t -f A)"1/4 | e + l^ e _t +  e ~ l ^  e+I 2̂ e~ l 3 J ,

£ —̂ 0-f- (5 3-10)

However, as we want the behaviour of our solution on the Stokes line S2> we need to

find the superasym ptotic representation, bo th  below and above the Stokes line S 2

and take th e  average This is the process adopted by P an s & Wood m their 1989 

paper [15], subsequently justified by B erry’s paper [2], which showed th e  sm ooth

^taking m to be -1
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change of th e  m ultiplier, from 0 to 1, w ith error function dependence, as th e  Stokes 

line is crossed This leaves us w ith the leading asym ptotic behaviour

y(t) ~  Ti 4- A)“ 1/4 e- i 2 e~™ 12 }

+  y  \ j^ -  (t +  A)"1/4 e” * 2 e~ ' 3 {e+' (z)e+! tf  } , £ —> 0 +  (5 3-11)

on the Stokes line S 2 (see Fig 5 1) After gathering term s,

y ( t )  ~  T l ] J ^ { t  +  A ) - 1/ 4 e - ’ { 2 +  ^  +  T +  ? }

+  ^ - t / ^ - ( i  +  A )-1/4 e+ , { 2 + ^ “ ^ “ ?} ,  £ - > 0  +  (53-12)
2 V 7T

y(t)  ~  T ^ C f  +  A)“ 1/4 !
2

£ —y 0-|- (5 3-13)

y{t) ~  r 1 ^ ( i  +  A )-1/4 { - l e - * z e - ! t  +  l e + ^ e - ’Tf} ,

£ -* 0 +  (5 3-14)

4te-,ac"^ + ¿e+,*e“f«r/(i) ~ Ti y — (t 4- A)+1/M -  {

£ —̂ 0~h (5 3-15)

Now, taking t = 0, we get

y(°) ~ ^ ^ (A r ^ j-tc -'e -»  + ie+^e-»},
e ->■ 0 +  (5 3-16)
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w here now z =  2 /(3e) À3/2 and

r'(0) ~  T ! ^ ( A ) +1/ ^  { + î e - , z e - ’ Tf +  i  e+ ' z e- ’ t f  J

c  —y 0  H- (5 3-17)

S ubstitu ting  (5 3-16) and (5 3-17) into our boundary condition at the origin (3 5-7), 

we get

i x 1/4 

+ P  A~1/4

1 _i_ . , -  *5jt
+ i e  e 12 +  -  e+ e 12

¿4

0, (5 3-18)

as £ —y 0 -f, where

So (5 3-18), becomes

P  =
_ J _  +  J -
m + 1 ~  5+1

(5 3-19)

A -  - P
2 / 1 + z/2e+2T\ 2 

I 1 — i / 2 e +2r )  ’
£ 0 +  , (5 3-20)

where

Here we use th e  fact th a t

=  l- [ 0 [X +  s ] ^ d i
£ J — X

(5 3-21)

r°
/ J(s)<i

»/“ À
5 — T —  ̂ 0, £ —̂ 0 ~b (5 3-22)

Now, taking the leading term s of (5 3-20), we get

A ~  - P 2 ( l  +  z2e+2T) , e -4 0 + (5 3-23)

Thus to  obtain  our expression for the radiation loss, we need the following form ula 

derived in [11] T h a t is

\  = - P 2 -  n'  £n/ { 2 P )n + o{en) (5 3-24)

43



In our particu la r case n  =  1, which implies A =  —P 2 — s / 2 P  So from  (5 3-21) and 

(5 3-24)
2i . 2i r „ 13/2=  f i A3/2 =  f l r _ p 2 _ £ / 2p l J^  
3e ^  L ' J3e

(5 3-25)

T  =  —
2 P 3 

~3tT
3e

1 + 4P^ +

Here we take (—l )3/2 to  be e ' 3’ =  + t  Then

(5 3-26)

e+2r =  e ^ " t 1+î ^ '+ ] (5 3-27)

and we have to  leading order

e+2T =  e ^ - 1

Therefore, from  (5 3-23)

r 2 P 2 [ - 4 P 3
Im iX )  ~  exp< —-—

e 3c

(5 3-28)

(5 3-29)

where P  = P ( P , a , m )  is defined by (5 3-19) and contains the shape param eters

5.4 Power Index Profiles.

In section 2 4 we sta ted  how various authors, [19],[3], [11], used asym ptotic m ethods 

to  solve P an s  & W ood’s model

y"(x ) +  +  e x n)y{x)  =  0 , (5 4-1)

w ith boundary condition

y'(°) +  M ° )  = (5 4-2)

for the respective cases n =  l , n  =  2 , r a > 2  and how through doing so they  obtained 

expressions for th e  radiation loss, I m \  In this thesis, we showed for th e  particu lar 

case n =  1, how by sim ply rescaling our m odel (3 5-6)-(3 5-7), sim ilar m natu re  to

r
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P an s  & W ood’s, into

£ 2y"( t )  + {X +  t ) y ( t )  =  0, (5 4-3)

w ith boundary condition

ey'(0) + P y { 0) =  0 , (5 4-4)

we can obtain  w ithout the need for asym ptotic m atching, an expression for the 

rad ia tion  loss given by
2h2 f — Ah3 1 . .

I m X ~  e x p i  —-— > (5 4-5)

Sim ilanly, for th e  cases n =  2 , n >  2 we can apply Hu & C heng’s m ethod  to  (5 4-1) 

and obtain  a general expression for the rad ia tion  loss, I m X  This can be achieved 

by substitu ting  x  =  eqt  into (5 4-1) to  get

£ 2y"{ t )  + (X* +  t n) y { t )  = 0, (5 4-6)

w ith  boundary condition

ey '(0) +  P y ( 0) =  0 , (5 4-7)

—2(2n+l)
where X* — Xe  "+2

So, if we apply Hu & C heng’s m ethod, outlined m section 5 3 to  (5 4-6), this tim e

taking  into account any asym ptotic m atching th a t occurs and using th e  fact th a t

7 — 3/2  and

A =  - P 2 -  n I ¿ 7 ( 2 P ) n +  o(en) : (5 4-8)

we can obtain  a general form ula for the rad ia tion  loss for n > 1, given by 4

r _ 2 /j(»+2>/« r ( i  +  i / n ) r ( 3/ 2) l  
I m  X ~  —2/i exp  < -------—----------------------- r----> (5 4-9)

I £1/n r ( f  +  £) J v ;

lsee (2 4-3) or [11]
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For exam ple if we take the case n =  2, from (5 4-9) we get

/ m A ~ - 2 / i 2 e z p j - ^ -  (5 4-10)

(5 4-11) 

(5 4-12)

which is w hat Brazel, Lawless & Wood obtained m [3] So not only does Hu & 

C heng’s m ethod offer us a m ethod to  obtain  the rad ia tion  loss to  equations of type

e2y"(t) + Q(t,  A) y(t)  = 0 , (5 4-13)

w ith Q(t,  A) =  A +  for any n (E Z + , it also offers us a m ethod to ob ta in  the 

rad ia tion  loss for m ore a rb itrary  functions as long as they adhere to conditions 

(4 3-2)
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Chapter 6

C o n c l u s i o n .

We have addressed m this thesis the problem  of modelling rad ia tion  loss from weakly- 

guidm g optical fibres w ith realistic refractive index profiles We have seen th a t while 

the m odel of K ath  and Kriegsm ann is close to  the physics, an explicit m athem atical 

solution is not possible On th e  o ther hand, the idealised models described m C hap­

te r 2 , while solvable explicitly m term s of special functions, can rightly be criticised 

on physical grounds and cannot be used for m any real fibres such as th e  W -shaped 

profile which is the subject of our work

In C hapter 3 we have used the m ethods of Burzlaff and Wood to develop a new 

m odel for fibres w ith W -shaped profiles W hile lacking some physical features, it 

is still to lerably realistic m  containing the shape param eters of the refractive index 

profile m the boundary condition at the origin and hence m the eventual solution for 

th e  eigenvalue param eter, whose im aginary p art corresponds to  the ra te  of energy 

loss

O ur work then  led us to consider m ethods applicable to  differential equation 

m odels w ith a m ore general refractive index profile m  the po ten tial In C hapter 4 

we have described recent results of Hu and Cheng, Gmgold and Kruskal We have 

explained m C hapter 5 how Hu and Cheng developed a form ula for the im aginary 

p art of th e  eigenvalue for general potentials This is a novel approach which could 

lead to  fu rther results outside this thesis For th e  po ten tial considered m our model 

of the W -shaped profile fibre, a simplification of the m ethod  of Hu and Cheng
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allowed us to  construct explicit Hankel function solutions of the differential equation 

Taking into account the Stokes phenom enon for the H ankel function, we arrived at 

th e  estim ate  of the im aginary p art of th e  eigenvalue

We showed finally th a t direct substitu tion  m the form ula of Hu and Cheng 

produced the same result m  this case, as it did for the power index profiles considered 

by Brazel, Lawless and Wood and by Liu and Wood
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