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Abstract

In modelling any physical situation, a balance must be struck between making
enough assumptions to give a mathematically tractable problem, yet sufficiently
few assumptions for the model to remain physically realistic In this thesis we
consider three models which have been proposed for radiation losses in bent fibre
optic waveguides and put forward a model of our own which will accommodate a
fibre with a W-shaped refractive index profile of a type currently encountcred in
mdustnal production

In Chapter 1 we review the original model of Kath and Kriegsmann We describe
in Chapter 2 an 1dealised ordinary differential equation model due to Parns and Wood
and 1ts adaptation by Burzlaff and Wood to step-function profiles Neither of these
1dealised models will handle the the realistic W-shaped profile Chapter 3 contains
new work whereby, following the approach of Burzlaff and Wood, we construct a
model which incorporates in the boundary condition various geometrical parameters
describing the W-shaped profile The exponentially small imaginary part of the
eigenvalue of the resulting boundary value problem corresponds physically to the
rate of radiation loss from the fibre

To solve this problem we use a new general method of Hu and Cheng, which
relies on concepts introduced by Gingold These are outlined in Chapter 4 Chapter
5 starts with a rederivation of the formula of Hu and Cheng for the imaginary part
of the eigenvalue for general potentials For our model of Chapter 3 the method
of Hu and Cheng can be simplified and we obtain an asymptotic estimate of the
eigenvalue based on Hankel function solutions of the differential equation This 1s
the main result of the thesis We conclude by showing that the general formula of
Hu and Cheng yields the correct approximation for the rate of radiation loss in the
power index models considered by Brazel, Lawless, Liu and Wood



Contents

1 THE PHYSICAL PROBLEM
11 Kath and Kriegsmann’s Optical Tunnelling Problem
12 Physical Explanation

2 REVIEW OF IDEALISED MODELS
21 Paris and Wood’s Model Problem
22 Proof of Non-Self-Adjointness
23 Burzlaff and Wood’s Model Problem
24 Results Obtained From Paris and Wood’s Model

3 A MobDEL For FIBRES WITH W-SHAPED PROFILES
31 Our Model Problem
32 Comparison of our Model Problem to Burzlaff and Wood’s Model
33 Limut Theorem for the Delta Function
34 The Delta Function Limit of our Mode!
35 Another Form of the Equation

4 REVIEW OF RESULTS OF GINGOLD, HU AND CHENG
41 Review of Asymptotic Results for Differential Equations
42 OQOutline of Derivation and Results of Gingold
43 Hu & Cheng’s Application of Gingold’s Results
44 Gmgold’s Formulas Applied to our Model Problem

5 (CALCULATION OF RADIATION LOSS
51 Cntical Level Lines
52 Hu & Cheng’s Method Applied to a General Function Q(t, )
93 Denvation of Radiation Loss
54 Power Index Profiles

6 CONCLUSION

Ct =

—
B O W N

[um—

16
18
20
21
23

25
26
27
29
31

34
34
36
39
44

47



List of Figures

11
12

21
22

31
32

51

Schematic of the behaviour of f(£,7)
This schematic shows energy shedding out of the core region

Step index profile of Burzlafl and Wood’s model
Burzlaff and Wood’s model profile for a bent fibre

Our realistic W-shaped optical fibre profile
Our profile for a bent fibre

Behaviour about critical point ¢,

11

11
12

17
19

40



Chapter 1

THE PHYSICAL PROBLEM.

In this, our opening chapter, we will briefly introduce the optical tunnelling prob-
lem developed by Kath and Kriegsmann [9] in their 1987 paper “Optical Tun-
nelling Radiation losses 1n bent fibre optic waveguides” We will outline the various
assumptions the authors make, and show how making use of these assumptions, the
authors were able to develop a scalar wave equation for their model and 1educe 1t
to a ssmple form Finally, we will give a brief physical explanation of their model

and 1ts results

1.1 Kath and Kriegsmann’s Optical Tunnelling
Problem.

Kath & Kriegsmann [9] recently considered radiation losses in bent fibre-optic waveg-
uides, where arbitrary deformations including torsion, in three dimensions were per-
mitted Such waveguides are unable to trap ight perfectly and as a result, cnergy
slowly tunnels out of the core region and radiates away into the cladding This rate
of energy loss 1s represented, in their mathematical model, by an exponentially small
imaginary part of a complex eigenvalue A of a differential equation boundary value

problem

Now, they assume at the start of their paper that the radius of curvature of the bent

fibre 1s very large compared to the wavelength of light used Also, they take the



fibre to be weakly guiding, so that the refractive index in the cladding deviates only
slightly from that in the core This, in particular, 1s a justifiable approximation for
fibres which support a small number of guided modes, and especially for monomode
fibres As a result of these assumptions, they felt justified in making use of the

parabolic or paraxial approximation, (p103, [12}) in their model

So, the authors started off by constructing a suitable coordinate system, one which
followed the centre-line of the fibre, whilst taking curvature and torsion into account
and scaled 1t 1n terms of the radius a of the inner core They made use of the fact
that for weakly guiding fibres a scalar theory 1s a reasonable approximation, (p339,
[12]), and obtained, in a straightforward manner, a scalar approximation, directly
from Maxwell’s equations

They achieved this, by starting with the curl version of the time-harmonic wave

equation for the electric field, given by

V x (VxE)-n’k’E =0 (11-1)

where

E = Electric field,

ng = Core refractive index,

n. = Cladding refractive index,

n = Normalised refractive index,
a = Core radius,

ko = Physical wave number,

k = k,an.

They assumed (1 1-1) to be 1n a dimensionless form, and took k to be a dimensionless
wave number, composed of the physical wave number k, and the cladding index,
n. n, the normalised index of refraction, (n = ng/n.), was taken to be 1 outside the
core region Next, they examined typical values, given in [17}, for a2 monomodec fibre

They found k =~ (15 — 40), (thatisk, ~ 6 x 10*cm™, a =~ 2~ 5um, n, =~ 13)
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Figure 1 1 Schematic of the behaviour of f(&,7)

So, obviously in what follows, k 1s treated as a large parameter Also in [17], the
authors found typical values in the core region to be n? = (1005 — 1 02) Now,
making use of the weakly guiding approximation, which allowed them to assume
that the difference between the refractive index in the core and the refractive index
mn the cladding was negligible, the authors suggested that the correct scaling should
be given by (cf Fig 11)

f(&:n)
oy 20T (11-2)
where
f(&,m) = Refractive index 1 the core relative to the cladding,
(€,m) = Coordinate axis orthogonal to the fibre in a torsion free

comoving coordinate system

They felt justified in making this scaling as f(£,7) 1s usually confined to the range 1
to 5 and 1s taken to be non-zero only 1n the core region Thus, the calculated values
of k 1n the range 15 to 40 then gives roughly the right values for n 1n the core

The authors next made use of the parabolic or paraxial approximation {12] and let

E=Ao,6n)e", o=1, (11-3)



where the variable 0 measures a scaled length along the fibre Substituting (1 1-
3) mto (1 1-1), they obtained an expression for the amplhtude A of the transverse
component of the electric field, described by the equation

A, + A + Ay + FEMA +2K 6k A+ 0K 6,6,1/k*) =0 (1 1-4)

Here § = a/l, where [ 1s a typical length scale for the bent centreline

Then, assuming that the curvature produces an effect comparable with the scaled
index of refraction difference f(€,7), they took k% to be equal to umity This
combined with k = (15 — 40) gave them a dimensionless radius of curvature of the
order of a few millimetres which proved to be too small Therefore, to give them
a radius of curvature of a few centimetres to a few tens of centimetres, the authors
assumed that 6§ = 1/k® Now, with this choice for § and neglecting all of thc small
terms, O(1/k?) and smaller, Kath and Kriegsmann [9] obtained

21A0+A5£+Ann+f(f,?7)A+ (2I€a/k)A=0, (1 1-5)

where o = £cos § — npsin 6 and & 1s a scaled curvature which 1s O(1) Here 6 1s the
rotation of the fibre which removes the torsion As they were looking for solutions

to (1 1-5), of the form®
A(o,€,m) = y(&,m)e, (11-6)

they substituted (1 1-6) mnto (1 1-5) to get
Viy+f(€n)y—~ 24y + (2ka/k)y =0 (11-7)
Finally, to simplify (1 1-7) they let

e =2x/k and A= =24, (11-8)

1 A 1s basically the difference between the propagation constant of the mode and kg, also the
decay rate ImA (which must be positive ) imphes ImA must be negative
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Figure 1 2 This schematic shows energy shedding out of the core region

to get
Viy+ f(€,m)y+ Ay + eay =0, (11-9)

their scalar wave equation, mcorporating the profile of their slightly, bent curved

optical fibre

1.2 Physical Explanation.

We will now give a brief physical explanation of Kath & Kriegsmann’s model, and
its results  From (1 1-5), we can see that, after the various approximations have
been made, the only effect of the curvature on their model is to imtroduce the term
eay 1 (1 1-9), which leads to a ‘tilting’ of the refractive mmdex f(£,7) and enables
the mode to tunnel out to one side In the cladding, where « 1s large, f(£,7) =0
This perturbation curvature can be explained, by viewing the situation in normal

Cartesian co-ordinates, (cf Fig 12)

In this coordinate system, we can see that energy for large positive values of a (out
in the evanescent tail of the mode), must travel further than energy propagating in
the core region On transforming to the local coordinate system following the fibre,
the influence of this extra distance, 1s changed to an effective slowing of the wave,

via an increased index of refraction



This loss of energy in the mode, can be explained as follows As one moves away
from the core, eventually a pont 1s reached, where the energy propagating in the
evanescent tail, cannot keep up with the main part of the wave propagating in the
core and thereby changes from an evanescent to a propagating wave This energy 1s
then shed as 1t radiates away into the cladding Of course, because this happens in
the evanescent part of the mode the energy loss 1s not dramatic, but over a lengthy
run can be significant If we borrow some terminology from quantum mechanics
[10], [1], we can say, that energy tunnels out of the core region, across a potential
barrier where the wave 1s evanescent, until 1t reaches a region where 1t can propagate

again and radiate away



Chapter 2

REVIEW OF IDEALISED MODELS.

We will now move on from Kath & Kriegsmann’s model and show how Pans &
Wood [15], put forward a more 1dealistic, one-dimensional model, describing Kath
& Kriegsmann’s fibre Although not entirely realistic physically, this model had the
mmportant advantage of being solvable exphcitly in terms of Airy functions whose
asymptotic properties are known This simpler model provided insight into the
nature of the problem and formed a basis for future improvements Burzlaft & Wood
[4] modified Paris & Wood’s model to produce a less 1dealised model, which could
still be handled using special functions We will outline how the above were derived,
prove their non-self-adjointness, show their profiles and discuss their usefulness
Finally, we will state, for reference purposes, the results obtained by various authors
for the radiation loss after solving Kath & Kriegsmann’s model (1 1-9) with eay

replaced by eay™, for different values of n, n € Z*

2.1 Paris and Wood’s Model Problem.

Kath and Kriegsmann proceeded to solve (1 1-9) of the previous chapter, by using
singular perturbation theory They did so by obtaning a regular perturbation ex-
pansion in the inner core region and a WKB expansion in the outer cladding They
then proceeded to match these two expansions together and make use of an integral
conservation law, to give them an expression for the radiation loss from the fibre

However, although this method 1s immformative in 1ts own right, 1t does not offer us



a completely rigorous analysis of the relatively complicated equation

Viy+f(€n)y+Ay+eay=0 (2 1-1)

To do so fully, would prove to be very difficult Therefore, 1t 1s desirable instead
to study first a simpler one-dimensional model This can be solved explicitly and
understood 1n detaill Such a model was proposed 1n 1991, by Paris and Wood [15]
They observed that for small €, mn Kath and Kriegsmann’s model, we are located
in the cladding region, where the perturbation f (¢, n) in the refractive index 1s zero
Therefore, our interest lies solely in the behaviour of solutions 1n the neighbourhood

of a turning {or transition) poimnt, which 1s situated well into the cladding region

Thus, Paris & Wood [15] felt justified in considering the model problem,

1y = — dor + £8(2) &, (21-2)

with the general, homogeneous, boundary cond:tion

$:(0,1) + ho, (0,¢) =0, (2 1-3)

here, g(z) = z, and the positive constant h 1s twice the integral of the refractive

mmdex f(z) over the core region, as will be explained later

One can clearly see that this has the same structure as Kath and Kricgsmann’s

model So, making the same separation of variables

B(z,1) = e?y(z), Imh <0, (2 1-4)

the authors got
y'(z) + (X + ex)y(z) = 0, (2 1-5)



with boundary condition

y'(0) + h y(0) =0, (21-6)

at the origin

Now, to obtain the boundary condition at infinity, the authors had to return to
the physical discussion 1n Section 1 2, which indicates that the solution, must be an
outgoing wave beyond the turning point at z = —A/e They expressed this condition
by constructing any solution y(z) to have controlling behaviour of the form e*(®),

where p(z) 1s a positive function of z, as £ — +oo The unique function p(z), 1s

found via the Liouville-Green substitution y(z) = € to be p(z) = (2/3)e!/? 2%/2

Thus their model problem, 1s given by

V() + (0 +ex)y(z) = 0 (2 1-7)

y'(0) + hy(0) =0 (2 1-8)

where y(z) has controlling behaviour ), p(z) > 0 as = +o00, h 1s a positive

constant and € > 0

2.2 Proof of Non-Self-Adjointness.

In this section we will show that (2 1-7) 1s non-self-adjoint, and thus may possess
non-real eigenvalues (2 1-7) appears at first glance to be self-adjoint, in which case
the spectrum would be real, but a careful analysis shows that the conditions for
self-adjointness are broken by the boundary condition at infinity To see this, let
Lu = —u" — exu and denote by ( , ) the usual inner product in the Hilbert space
L?(0,00) Therefore, for any functions u,v € L%(0,00) satisfying the boundary

conditions, an integration by parts shows that

(Lu,v) = ~[(@ol@ly + [ (e @de —e [ au(eplelds,  (22)



(u,Lv) = —[u(z)v{z)], +/ (z)v'(z)dz — 5/000 zu(z)v(z)dz (2 2-2)

The self-adjomntness condition (Lu,v) = (u,Lv) holds if and only if the integrated
terms are equal Since they are clearly equal at the origin, this condition 1s equivalent

to

NN ’
hm v'(z)v(z) = hm u(z)v (z) (22-3)
When we insert the proposed outgoing wave behaviour exp[ipz], we find that we
get u'(z)v(z) ~ 1p'(2), but u(z)v'(z) ~ —1p'(z), as £ = +00 The problem 1s thus

non-self-adjoint and nonreal eigenvalues may occur

Analysing (2 1-7), we can see that 1t has an eigenvalue at A = —h?, when ¢ = 0,
but the perturbed problem is non-self-adjoint, because of the form of the boundary
condition at infinity It 1s thus possible, for the eigenvalue of the perturbed problem

to be non-real, and one can see from [19], that 1t has an imaginary part which 1s

0 (6_1/E> as € — 0+
Also, using regular perturbative methods, we can obtain the asymptotic series’

2 3 4
., € € be l1le .
A=k o e T saw s T O (224)

Although this can be continued to as high an order as desired, it will never yield
any information on ImA This 1s hardly surprising, since ImA turns out to be o(e™)

as € —+ 0+ forany n € N

2.3 Burzlaff and Wood’s Model Problem.

In 1991, Burzlaff & Wood (4], considered Paris & Wood’s model problem and pro-

posed a more accurate model They considered (2 1-7) to be the himit as p — 0 of

see p31,[14]

10



Figure 2.1: Step index profile of Burzlaff and Wood’s model.

the following problem:

-y {x) + v(x)y(x) = Xy{x), (2-3-1)

where
—£ X when | x |> p/2
V(X) = (2.3-2)
®h/p —e |x |, when |x |< p/2,

x £ R and y € CASR).

They based their model on a step-index profile of a monomode fibre (cf. Fig. 2.1).

Now, reflection symmetry in (2.3-1) implies that the lowest eigenfunction is even and
its derivative is odd, so that the authors could restrict their attention to x £ (0, 00).
In the limit as p tends to zero, they obtained a delta-function potential at x = 0+

and the jump condition (2.1-8) for the derivative of y.

Although Paris & Wood’s model shares some features with the Kath & Kriegsmann’s
model, it clearly lacks others. First of all, the optical tunnelling problem is not
symmetric (radiation goes out to one side only), thus the problem should be confined
to the half-plane. Secondly, the approximation for a weakly guiding fibre is obviously
very poor for a delta function potential and thirdly, the optical tunnelling problem

is a two-dimensional problem.

In reply to these criticisms, Burzlaff & Wood presented a more realistic one-dimensional

n



model, to which the first two criticisms do not apply and in response to the third
deficiency, the study of a one-dimensional model, they argued that it could be jus-
tified by the physical fact that radiation mainly goes out in a narrow cone, along

the “plane of curvature”. If that plane does riot change much (low torsion ) then

we have essentially a one-dimensional problem.

So, the following model (cf. Fig. 2.2)2 replaces (2.3-1)-(2.3-2):-
-tI(x) + v(x)y{x) = Ay(x), (2.3-3)

where
mex, when | x |> p/2
v(z) = (2.3-4)
2/ilp - ex, when |Xx |< p/2,

X £ Rand h> 0.

Here p is assumed to be much larger than e, but otherwise arbitrary. In particular,
p may be small, so that the weakly guiding approximation is justified. To complete
the model, appropriate boundary conditions are chosen at plus and minus infinity.

The Paris & Wood model can be obtained by integrating (2.3-1), across the core anil
20 is the rotation of the fibre which removes the torsion.

12



getting 1ts limit as p —+ 0 However, as the model 1s now confined to the half-axis,
the authors had to impose the conditions y(z) = y(—=z) and y'(z) = —y'(z), into

their boundary conditions to ensure this 1s taken into account So we get the himit

as p = 0 of
+9/2 +p/2
--/ y'(z)dz - 2h (y(z)/p)dz
-p/2 ~p/2
+p/2 +p/2
+ e/ ’ cy(z)dr = - A ’ y(z)dz  (23-5)
-p/2 ~p/?
Now,
i [ ds = [ y(z)d(z)d 236
b [ (o) [9) de = [ u(z)d(a)da, (23-6)
=
ot ot
—/_ y'(z)dz — 2h [ y(z)d(z)dzx
o o
+ e/_ cy@)ds = =X [ y(e)dz,  (237)
=
~2y/(0%) - 2hy(0%) = 0, (239)
=
J(0%) + hy(0*) =0, (239)

1s their boundary condition at the origin The boundary condition at mnfinity 1s the

same as 1n Paris & Wood’s model

So as p — 0, the model (2 3-1), (2 3-2) leads to
—y'(=) + o(2)y(z) = Mla), = € 0,00), (23-10)

with boundary condition
y'(0%) + Ay(0*) =0 (2 3-11)

at the origin, where z € [0,00) and y € C*(R) y(z), as discussed, also has the

13



behaviour (), where p(z) 1s a positive function of z, as = 400

2.4 Results Obtained From Paris and Wood’s Model.

Pans & Wood [15] succesfully solved their model equation (2 1-7), by using Airy
functions and the Stokes phenomenon They found the imaginary part of the eigen-

value to be

2h? (—4h3

A —— + -
Im paiedd Sy ), e =0 (2 4-1)

Brazel, Lawless and Wood [3], solved the case for the delta function potential with
the term resulting from the bending ¢z replaced by ez?, by using Weber’s solutions
of the parabolic cylinder equation They found the imaginary part of the eigenvalue
to be

—mh?

ImA ~ —2h2623p ((é;'/'z—)') , g — O+ (2 4-2)

Liu and Wood [11], solved the case for the delta function potential with this time the
term resulting from the bending ez replaced by ez™, n > 3 There were no special
functions available for them to use, so they had to rely on other methods They first
identified the WKB approximate solution for large z, which satisfied the outgoing
wave condition and matched this to the Airy function approximate solution, valid 1n
the neighbourhood of the turning pomnt z = (—/\/E)I/n nearest to the positive real
axis They then substituted this into the boundary condition at the origin, which
led to an eigenvalue relation and thus a general formula for Im()) given by

_opnt2)/(n)

ImA ~ —2h26.'1:p{ -
gl/n

S(n)} ) e — 0t (2 4-3)

where
[(1/n + 1I(3/2)

§(n) = T(3/2 + 1/n)

VAl (2 4-4)

14



Chapter 3

A MODEL FOR FIBRES WITH

W-SHAPED PROFILES.

In Chapter 2, we saw how Burzlaff & Wood [4] put forward a inore realistic pro-
file for the shightly bent, monomode fibre, (2 3-10)-(2 3-11) However, like Paris &
Wood’s model, 1t 1s still 1dealistic 1n nature, picked because 1t can also be solved
explicitly, although technically more difficult, using special functions whose asymp-
totic properties are well known In industry and in the production of fibres, things
are seldom 1deal and frequently flaws occur

In this chapter we will concentrate on one particular method used in the production
of monomode optical ﬁbre; We will describe in detail how the fibre 1s formed
and comment on a flaw that frequently occurs 1n it We will put forward a profile
for this fibre and mathematically incorporate 1t, into a model similar 1n nature to
Burzlaft & Wood’s model Then, we will obtain boundary conditions, particular to
our profile, both at the origin and at infinity, in much the same way as Burzlaff &
Wood obtained theirs Finally, we will rescale our model, into a form, which will
enable us to calculate the radiation loss, using a method proposed by 1lu & Cheng

n [6]

15



3.1 Our Model Problem.

There are various methods used 1n industry, in the production of optical fibres One
such method, known as C V D (Chemical Vapour Decomposition) 1s frequently used
and 1s described as follows A tube of commercial fused silica of, for example, Im
in length and with a 20mm nner diameter, 1s rotated on a lathe and 1s heated
externally by an oxyhydrogen burner The hot zone is only a few centimetres long
and can be shifted along the tube The vapourised source material 1s passed through
the tube together with oxygen in a proportion appropriate to the type of glass to
be produced In the hot zone, at about 1600°C, 1t oxidises and then 1s deposited on
the mner surface of the tube as a thin layer of oxide By shifting the hot zone back
and forth many times and simultaneously altering the gaseous mixture, the desired
refractive-index profile, 1s produced through the accumulation of many layers of
varying composition After the deposition process, the tube 1s heated further, until
at about 2000°C 1ts softening temperature 1s reached, and the tube contracts and
finally collapses under the influence of surface tension, to form a solid glass rod of
roughly 10mm 1n diameter, called a preform It contains in 1ts interior the refractive
index profile of the fibre-to-be Now, frequently, a flaw occurs 1n the process, known
in the industry as ‘Burnout’ It results in a refractive index dip along the centre of

the preform, (cf Fig 3 1) described by the profile

t+2—;-[Rm+ﬁ(1—R)"]:n2 when R < 1

co?

n?(R) = { (31-1)

t=n%, when R > 1

R = =z/a,the normalised radial coordinate,
ne = Refractive index in the core,
ng = Refractive index in the cladding,

2h/p = Height of the profile, where h > 0,

a=p/2 = Coieradius,

16
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Figure 31 Our realistic W-shaped optical fibre profile

B = Scaled central dip,
o = Width of the central dip,

m = Grading of the profile

Here, the parameters m, # and ¢ have the following constraints imposed on them,

15<m< co, 0<p8<l, 4<o< 0 (3 1-2)

From (3 1-1), we see that we have a power law graded index profile, with a refractive

index profile centered along the axis of the fibre

17



3.2 Comparison of our Model Problem to Burzlaff
and Wood’s Model.

We will now apply (3 1-1) to Kath & Kriegsmann’s paper [9], to develop an expres-
sion for the refractive index 1n the core relative to the cladding This will enable us
to convert our profile (3 1-1) 1nto a model similar 1 nature to Burzlaff & Wood’s

So, applying (3 1-1) to (1 1-2), we get

2 2k rRm —RY*
nZ(R):n—C;:t_‘- 2 [R™+8(1 R)]’ (32.1)
n; t
=
(R = 14+ 3[R+ (1~ R’ (32:2)
Comparing (3 2-2) with (1 1-2), reveals that,
o%:
fen) = F(R) = o (R + 61~ R’ (323)

which gives us our expression for the refractive index in the core, relative to the

cladding

Now, comparing our profile (Fig 3 1), to Burzlaff & Wood’s (Fig 2 2), one can see
that the core radius of both 1s p/2 Therefore, our expression for the normalised
radial coordinate becomes,

X
R_;=? (3 2-4)

m s (5)=5E1G) 5] e

which we will now denote by D(z)

and

18



Figure 32 Our profile for a bent fibre

Our model (cf Fig 32)!, for simpliaty symmetrised with respect to left-right

reflection, 1s given by

—y"(z) +v(z)y(z) = Ay(z), 1€ (~00,00), (3 2-0)
where
’ ~elal, when |1 (> ¢
v(z) = ) (3 2-7)
“D(al)=¢l 1], when|1|<

Now, like in Burzlaff & Wood’s model [4], we are sull only interested in the behaviour
of our solutions neat a turning pomt situated well into the cdladding, that s where
D(jz!) =0 Because of this, we will imposc the restriction on y(1) that it must

have a controlling behaviour of the form e?®) wheie p(z) 1s a positive {unction of

16 1s the rotation of the fibre which temoves the torsion

19



z,as x — +oo A comparison of (3 2-7), with (2 3-4), shows that D (] z |) replaces
the constant function —2h/p We shall now show that this causes the two models
to also differ 1n the expression of the boundary condition at the origin

As before, (2 3-5), we integrate across the core from —p/2 to +p/2, and take the
limit as p —+ 0 Following the method of Burzlaff & Wood we impose the symmetry
conditions y(z) = y(—z) and y'(—z) = —y’(z), confining our model to the half axis
We get the limit as p — 0 of,

+p/2 +p/2
~[ Y@de ~ ["D(a)y(e)de

— €/+p/2 zy(z)dz = )\/+p/2 y(z)dz, (3 2-8)

—p/2 -p/2

gving us,
o+ +p/2

/ — -
—y'(@)|,_ - lm L, DUz Dy(e)ds =0 (32-9)
Obwiously, the integral in (3 2-9), poses a problem To solve 1t we will use a limiting
form of the delta function, to show that the integral in (3 2-9) may be replaced by
the value of y at the origin, multiplied by a constant factor containing the shape
parameters, 8, o and m, of the core refractive index profile The theorem which

enables us to do so, can be found n (p 110, [18]) Because of 1ts importance to this

project, we will state 1t below

3.3 Limit Theorem for the Delta Function.

Let f(z) = f(z1, ,z,) be a nonnegative locally integrable function on %, for
which [ f(z)dz =1 With o < 0 define

fola)=—f(Z)=—r (2, 2), (33-1)

then {fs(z)} 15 a delta family as o — 0 [and, setting « = 1/k , the sequence

{sk(z) =k"f(kzy, ,kz,)} 1s a delta sequence as k — oco] The substitution
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y = z/a yields these three properties

(2) [, Jalz)dz =1, (33-2)

(b) ili% oA fo(z)dz =0 foreach A > 0, (33-3)

(c) lm fo(z)dz =1 foreachA > 0 (3 3-4)
a—=0/|z|<A

so that for small positive , fu(x) 1s highly peaked about z = 0 1n such a way that
the total strength of this distributed source 1s umty, with most of 1t near the origin
Also, from [18], we can take the property that,

lim .. folz)p(z)dz = ¢(0), (3 3-5)

o—=rcp

for each ¢ 1in C§°(R,), where as before {f,} 1s an n—dimensional delta family

(as o = ap)

3.4 The Delta Function Limit of our Model.

In our case n = 1, as we are dealing with a one-dimensional model Thus, for the

theorem to hold
+p/2
/ D(|z]) da (3 4-1)

-p/2
must be equal to unity Clearly, this 1s unlikely to be the case, but we will evaluate

the integral, to obtain a scaling factor H

+p/2 2 tp/2 m o
[T Dzl de = 2hE [(2”‘) +ﬁ(1—2|m|)}dm
-p/2 pt J-p/2 p p

g+l p K2 [ o m te/2,
_ WU (~2) dz+/0 (2) dz]

-p/2

2 0 o +p/2 o
+2hk5l/ <1+2—$) da:+/p (1—2—”) dz]
pt -p/2 p 0 p

oL p 2 {Q(p/Z)m“] hkzﬁ[ 2 ]

pmtit m+ 1 t lo+1
2hk? 1 Ié]
= =H#1 -
i [m-l—l a+1] # (34-2)
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Now, letting a function G(z), be a scaled version of D(z), defined by

6z) = 22,

we get the desired property,

+p/2
/ G(z)de = 1

~p/2

So from (3 4-2) and (3 4-3) we get,

o g 2]

m+1 o+l

(34-3)

(3 4-4)

(3 4-5)

Thus, to apply the theorem, we must choose an a and rewrite G(z) into the form

Guz) = LG (f)

o (87

Choosing o = p/2, we get

R S b 2|$|>m E( _Mﬂ
G”/Z()_[TﬁlJr;%]p[?( p ol ’

so as p/2 = 0,

Gp/Z(x)""> |:m_]-.§-—1—+a'ﬁ?}

where §(z), 1s the delta function

Hence (3 2-9), 1s replaced by

@) L 7 sa)y(a)d
—y'm_—————/ z)y(z)dz = 0
N R
and we get, using (3 3-5)
2/(0) = g7 4(0) = 0
- - Y = U,
[ + 3]
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, 1
y(0)+§

[—I—_ﬁ—}j! y(O) =0 (3 4—11)

m+1 o+1

Therefore, we are left with the following non-self-adjoint eigenvalue problem,

y"(z) + [A+ ezl y(z) = 0, (3 4-12)
with boundary condition,
) + [ ! (0)=0 (3 413)
Y T L3 ylv) =4, -
2| + o)

at the origin, where z € (0,00) and y(z), has controlling behaviour of the form
e'?(?) where p(z) 1s a positive function of z, as * — +oo Now, 1t 18 obvious from
our boundary condition at the ongin (3 4-13) that the physical constants, m, 8 and
o, on which our profile depends, are present Therefore, the information on the
shape of the refractive index profile in the core 1s included 1n our problem, via the

boundary condition at the origin

3.5 Another Form of the Equation.

Finally 1n this chapter, we will convert (3 4-12)-(3 4-13), nto the form required by
Hu & Cheng’s method [6] So, substituting = = %, into (3 4-12), we get,

2

d“y
-2 41 _
e qm+[A+eq t|y=0 (3 5-1)
Here we used the fact that
dy dy dt —q Ay
= L 2 - -2
dz dt dz ¢ dt (352)
and
d?y d [dy d dy d’y
—_— = — — = — -9 = = ¢ 2 -
dz? ~ dz (d:r) dx (5 i) - e (35-3)
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Now, by letting ¢ = —1, we get the form required by Hu & Cheng [6],

2d2y A
emﬂ +t]y=0, (3 5-4)
where A € € and t € (0,00)
Also, (3 4-13) 1s replaced by
e y(0) + ! (0) = 0 (3 5-5)
y Yy = -
2|7 +
So, (3 4-12)-(3 4-13) becomes
ely" () + A+ t]y(t) =0, (3 5-6)
ey’ (0) + { ! (0) =0 (35.7)
y | v(0) =0, -
2 [ + 541

where ¢ € (0,00) and y(¢) has controlling behaviour of the form ()] where p(t) 1s
a positive function at ¢, as { — +oo

Comparing the above problem, with adiabatic invariance problems, or 1eflection
coefficient problems (see [1],{7],[8],[16],[13],etc ) one can clearly see that they share
not only similar equations, but also similar methods, to compute the radiation loss,

as well as the reflection coefficient

24



Chapter 4

REVIEW OF RESULTS OF GINGOLD,

Hu AND CHENG.

From Chapter 3, we are left with (3 5-6), a non-self-adjoint Sturm-Liouville prob-
lem, with boundary conditions (3 5-7) at the origin and behaviour ¢, p(¢) > 0
as t = oo Now, to solve (3 5-6) we could use special functions ( that 1s ‘Airy’
functions), whose Poincaré asymptotic properties are well known and whose ex-
ponential improved expansions have recently been obtained Information gathered
from these exponentially small corrections 1s absolutely essential for us to calculate

the transcendentally small quantity Im(A), that 1s the radiation loss

However, this method has already been employed by various authors ([14], [19],[15],[11])
As a result, we will use a relatively new method proposed by Jishan Hu & Wing-
Cheong Cheng 1n their 1990 paper [6] In this paper, the authors make use of the
work developed by Harry Gingold [5] to obtain approximate asymptotic solutions to
problems similar in nature to (4 2-1) Heivmg obtained these solutions they then use
a method (developed nitially to solve reflection coefficient problems, by Gingold &

Hu [7]) to obtain an expression for the transcendentally small radiation loss
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4.1 Review of Asymptotic Results for Differential
Equations.

Before we move on and obtain solutions to our particular problem (3 5-6)-(3 5-7), the
question must be asked “why not apply more well-known methods to our problem?”

We know that in the mathematical sciences, there exists a voluminous amount of
literature, dealing with asymptotic formulas for the approximation of solutions, to

equations of the form

y"(t) = e(t)y(t) (41-1)

The ‘Liouville-Green’ approximation, the basis of the “WKB Approximation’, seems
to be the earliest and obvious example However, although this method 1s valid at
an irregular singulanity of (4 1-1), 1t fails at a regular singularity and also 1n the very

important case of a turning point

Another method which could be used, although not strictly speaking an asymptotic
formula 1s the Frobenius method Unfortunately, although 1t 1s applicable in the
neighbourhood of a regular singular point, 1t fails in the neighbourhood of an 1r-
regular singularity Various other asymptotic formulas improve their vahdity as the
variable tends to infinity, but become invalid at a finite point It 1s clear, therefore,
that although there are various asymptotic methods available to solve equations of

type (4 1-1), they all fail at certain points on the infinite interval

Clearly, what 1s needed 1s an asymptotic formula which 1s valid throughout the en-
tire infinite interval Gingold’s formulas fulfill this need He proved them to be valid
m a half neighbourhood of a point ¢,, irrespective of whether ¢, 1s a regular or an
irregular singular point  He also showed (except for some exceptional cases) that
his formulas are valid at a turming point Finally, he provided examples whereby
ordinary differential equations were taken on an infinite interval, including singu-
larities at the endpoints and thus provided a uniformly valid approximation on the
entire infinite interval It is therefore only natural to label these formulas ‘invariant’

Here, Gingold means ‘invariant’ in the scnse that they are valid all the way up to a
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turning point

4.2 Outline of Derivation and Results of Gingold.

Gingold’s formulas will, as we have already mentioned allow us to obtain two linearly
independent asymptotic solutions to (4 1-1) and their respective derivatives But
how did Gingold obtain these approximate solutions? In this section, we will give
a brief outhine of the method he used First however, we will need to define the
following functions and assume that they adhere to Convention 2 1 & Assumption

292, p 320 [5]

Lit) = i [(:(’f)t])s,g, (4 2-1)
o) = l"[izﬁgrﬂ (4 2-2)
I = qu>+ 35%3)1 (423)
r(t) %Tii% (4 2-4)
e(t,r) = exp [2 /:J(s)ds] (4 2-5)

Gingold begins by rewriting (4 1-1) into 1ts companion matrix differential system

Y, Y=(y) (4 2-6)
y/

He then performs two successive linear transformations,

Y =

@(t) 0

Y = W1Y1 and Y1 = WQYQ,
where

‘%z{mm”4wmﬁ“} m_l[ﬁ-W}
O] () | ’
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9 = m+m'=2coshO(t),

Y = m-—m~ =2snhO(t) (4 2-8)
and /
1 @]

"= [1 + zL(t)J (429)

Here L(t) and ©(t) are defined by (4 2-1) and (4 2-2) respectively This enabled hum,
to transform (4 1-1) into a form amenable to a method of diagonalisation Then,
using various assumptions, conventions and lemmas !, with proofs supplied, he was

able to obtain a fundamental solution set of (4 1-1) as t — +o00, given by ?
Y(t) = Wi()Wa(t) (1 + P(1) Z(2), (4 2-10)

where I 1s the 1dentity matrix and

ezp{-l— It J(s)ds} 0

4 2-11)
0 e:z:p{— N J(s)ds} (

2(t) =

Thus, using (4 2-10), Gingold was able to obtain a fundamental solution set of (4 1-
1), that 1s two linearly independent solutions and their respective derivitives, which

we will now state below

wlt) = O {coshO(t) + ssmhO(t)} (1 + pr)

1 [cosh®(t) — 15inh®(8)] pa } exp {+ / t J(.s)ds} L (4212)
ya(t) = [ {[coshO(t) + 1s1nhO(t)] pr2

~[coshO(1) — 1snhO(W)) (1 + pzz)} exp | - [ t J(s)ds}, (4213)
ui(t) = (O] {[coshO(t) = 15:mhO()] (1 + p11)

+1[coshO(t) + 15mhO(t)] pn } ezp {+ / t J(s)ds} . (4214)

see lemma 2 1,7]
HI + P(t)) 15 a continuously invertible 2 x 2 matrix tunction
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yat) = (O] {[coshO(t) — 151nhO(t)] pg
41 [coshO(t) + 15:nhO(t)] (1 + pa2)} exp {— /t J(s)ds} (4 2-15)

Now, the entries of P(t), p,x, (3,k = 1,2), satisfy a Volterra integral equation,
expressed in {7] Under certain conditions they form convergent series for any t €

[a,b] given by 3

too st . A [h n
pu(t, o, a21) = Z/ T(to)dtO/ r(to)e(to, to)dto

m=0 Y11 @21
s the - N in N
N / 'l di, / r(t)e(tn, f)dln, (4 2-16)
n=1"Y 11 @21
+00 t . . It . .
p22(t70127022) = Z/ T(to)dto/ T(to)e(to,to)dto
m=0 Y22 @12
Toplar o . [t n
II / r(i,)di, / r(tn)e(En, ta)dtn,  (42-17)
n=1 v <22 Q12
+oo t . . R
pra(t, g, 002) = Z/ r(to)e(t, to)dto
m=0 Y12
m tn—l A A tn A
I f r(f)din / F(ta)e(En, ta)dtn, (4 2-18)
n=1 Y ¥22 12
+oo t . . .
pa(t, 0, 001) = Z/ r(to)e(to, t)dto
m=0 ~ %21

m in1 ~ A {n ~
11 / r(f,)di, / F(t)e(tn F)dtn,  (42-19)
n=1 Y% a21

where ay, 7,k = 1,2, are arbitrary constants m [a,b]

4.3 Hu & Cheng’s Application of Gingold’s Results.

In section 4 2, we showed how Gingold obtained approximate asymptotic solutions
to equations of the form (4 1-1) and their respective derivatives We will now show
how Gingold’s formulas can be used for more arbitrary functions and not just for
functions with an eigenvalue dependence such as ours If we replace A + t, 1n (3 5-6),

with Q4 (t) we get
e’ y"(t) + [Q+(1)] y(t) = 0 (43-1)

3see [7], Lemma 2 1
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Here we assume that Q4(t) adheres to the following conditions

(1) Q4+(t) e C* (la, b)), with 0 < a <b< oo,

(thus making the function continuous and infinitely differentiableon [a, b]),

(2) Qu(t) £ 0V 1 € (ab),

(thusensuring (4 3 — 1) has no turning point on (a, b)),
QL)
Q@+(1)°
(thus ensuring that L*(t) # — 1,V t € [a,b]),

Q)
(4) /a (Qiﬂ(t))

(thus ensuring the existence of L*(¢) everywhere on the real line) (4 3-2)

(3)

<M, Vtela,b],

dt < o

— 3

We can obtain asymptotically approximate solutions for a wider class of potential
functions Assumption (3) 1s imposed to ensure an mduced turning point never
occurs That 1s, there exists no t € [a, b] such that J(t) # 0 If such a t did exust,
1t would render our solutions trivial By making these assumptions, we are able
to obtain, using Gingold’s formulas, two linearly independent solutions of (4 3-1)
and their respective derivatives, that 1s (4 2-12)-(4 2-15), with ¢(¢) replaced with
— @Q+(t)/e?*, for a general function Q4

Assumption (4) ensures that the difference between the controlling behaviours of
our solutions and the controlling behaviours obtained by a Liouville-Green approx-

umation, that 1s

o

1s uniformly bounded So we can extract from our solutions their WKB approxima-

tions and their respective derivatives given by

t

wt) ~ al-QuOI  eap{+ [ I(s)ds)
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+ oo [-Q () WP{— /t J(S)dS} , (4 3-4)
vt ~ o QM en{+ [ ‘ J(s)ds}

+ar Qi ean{- [ I(s)as}, (435)
where
1) = JM +(12) (436)

4.4 Gingold’s Formulas Applied to our Model
Problem.

Before we move on to obtain an expression for the radiation loss 1n the next chapter,
we will first apply Gingold’s formulas to our particular problem As 1t happens we
do not require approximate asymptotic solutions to our problem (3 5-6)-(3 5-7) as
our local solution 1s our global solution and asymptotic matching 1s not required
However, we will obtain 1ts solutions in this section, purely as an example of how
Gingold’s formulas can be applied to any function @4 which obeys conditions (4 3-
2)

So, by rewriting (3 5-6) into the form (4 1-1), we get

" A+t
o+ |52 w0 =0 e+ 4 11)
with boundary condition
ey/(0) + ;} y(0) = 0 (44-2)
2 [.mlT + af—l] ’

where ) 1s a complex eigenvalue, 0 < £ < 1 and m,f,0 are defined by (3 1-1)
Comparing (4 1-1), with (4 4-1), we find that

e(t) = # (4 4-3)
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so substituting (4 4-3), into (4 2-12)-(4 2-15), gives us

—(A+1)

g2

~1/4
n(t) = l ] {[coshO(t) + 151nhO(t)] (1 + p11)

—1[coshO(t) — 15:nhO(t)] p2 } exp {-I— /t J(s)ds} ) (4 4-4)

—(A+1)

~1/4
= } {[coshO(t) + 151nhO(t)] p12

() = [

—1[coshO(t) — 15emhO(t)] (1 + p2a)} exp {— /t J(s)ds} , (44-5)

B +1/4
yi(t) = [—Ml {[coshO(t) — 15anhO(t)] (1 + p11)

+12[coshO(t) 4 15:nhO(t)] pa1 } ezp {+ /t J(s)ds} ; (4 4-6)

—(A+1

) +1/4
yo(t) = [ 2 } {[coshO(t) — 15:nhO(t)] p12

+ 1 [coshO(t) + 15:nhO(E)] (1 + pe2)} exp {— /t J(s)ds} (4 4-7)

where

) = J —(l\e;r 28 (16(/\1+ t)2> (148)

We are allowed to do this as V¢ € [0,+00), A +t #0as A € € So there are
no turning points or induced turning points present, which would render equations

(4 4-4)-(4 4-7), nonexistent or trivial That 1s A + ¢ satisfies conditions (4 3-2)

Now having so far obtained asymptotic approximate solutions to (4 4-1) valid all
the way up to a turning point, we can extract from (4 4-4)-(4 4-7) 1ts equivalent
WKB approximations We are justified in doing this, as the difference between the
controlling behaviours of (4 4-4)-(4 4-7) and the controlling behaviours, obtained by

a Liouville-Green approximation, that 1s

/tJ —(A€2+ = (16(/\1+ s)2>ds - /i m”“’ e
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1s uniformly bounded, Vi € [0, oo}, A € €

So, we can express the general solution to (4 4-1) and 1ts derivative, for large positive

t, as follows

() ~ e [—(/\+t)]_1/4e:cp{+/tj(s)ds}

S
+a ['“; ”] o ezp{~ [ J(s)as}, (44-10)
Jt) ~ o [‘“; ”]HM cop{+ [ J(s)ds}
| B T et
where
J(t) = \) Ay, (16( L t)z) (4412)
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Chapter 5

CALCULATION OF RADIATION LOSS.

We developed 1n Section 4 4, an asymptotic solution to our problem (3 5-6), as
t — + co with boundary condition (3 5-7), at the origin and behaviour (), p(t) > 0
at co In this chapter, we will extend our problem into the complex plane and obtain
an expression for the radiation loss ImA To do this, following Hu and Kruskal [8] we
will have to move away from the real axis into the complex ¢-plane and solve along
the nearest level line L; on which our critical point ¢ = — A lies First however, we
will explain what a level line 1s, outline what occurs on a level line near a power-
type critical point, define what are critical and major critical points and generally
attempt to give an understanding to the concepts and i1deas used throughout the

rest of this chapter

5.1 Critical Level Lines.

To explain what Hu and Kruskal mean by a level line , we must first take a general

second-order linear differential equation, say

2

d*y
L4 t, A N)y=20 1-1
e =5 + QN (51-1)

and state 1ts WKB approximate solutions

y(t) ~ C {M]_l/dexp{+£/t[Q(s,/\)]l/gc[s}

62
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+ [:@-6(?—/\)] " emp{—é/t [Q(s, A"/ ds} , t— doo (51-2)
Now, no matter where you move in the complex plane, the magnitude of one of our
solutions to (5 1-1), will increase while the magnitude of the other will decrease
That 1s one of the solutions will become subdominant to the other, depending on
where you are 1n the complex plane However, if both of our WKB exponentials were
of the same order of magnitude, then a level line would occur where both solutions

would be of equal importance So the level lines of (5 1-1),

exp{:i:é [ 10031 dt}’, (5 1-3)

occur where both the WKB exponentials have the same magnitude, that 1s where

Im {/z [Qt, \)]? da:} = const (5 1-4)

These correspond to anti-Stokes lines in a more conventional treatment Assume
that Q(z, A) 1s a power-type critical point, whose nature 1s as yet unknown There-
fore, Q(z) ~ b(z — )77 %,z — 2o, where b # 0, 1s a constant and v 1s a real
number Then to the leading order, Hu & Kruskal [8] showed that the structure of
the level lines of (5 1-1) near z = 2z can be divided topologically into four different
classes (1) If v < 0, they consist of rose curves, and the angle of each leaf 1s 7/ ||
(2) If v > 0, they consist of hyperbolic-like curves, and the angle of each leaf 1s
again 7/ |y] (3)(a) If v = 0 and Rebd'/? # 0, then they consist of an infinite
number of spirals intersecting at 2z = z, (b) if ¥ = 0 and Reb'/2 = 0, they consist

of an infinite number of circles centred at z = zg

In our problem, y = 3/2 > 0, so (2) above applies In particular as we shall see,
when the constant in (5 1-4) 1s zero, v8 = km, k = integer, which 1s a set of half-
lines through z = z, The angle between two consecutive limes 1s 7/ |y|' Finally,

in this section, we define a critical point to be a zero or singularity of the general

1For further information on (1),(2),(3), see [8]
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function ¢(¢,A) mn (51-1) We define a ‘nearest critical level imne’ to be that level
line on which a critical point first occurs, and we call a critical point a ‘major critical

point’, if 1t 1s found on the nearest critical level line

5.2 Hu & Cheng’s Method Applied to a General
Function Q(t, A).

In this section we will outline briefly the method used by Hu & Cheng [6] in ob-
taining an expression for the radiation loss from equations of type (5 1-1) with an
arbitrary function Q(¢,A) From Section 4 3, we showed how Hu & Cheng obtained
approximate asymptotic solutions to (4 3-1), (1e (4 4-4)-(4 4-5)), using Gingold’s
imvariant formulas, removing the eigenvalue dependence of Q(¢,A) and using Q4(t)
subject to conditions (4 3-2) Combining the outgoing wave solution (1 e the solution
with positive exponent) with the boundary condition at the origin, left the authors

with a well-defined problem given by

ey'(t) + Qt, Ny =0,  t€(0,+00),
ey'(0) + hy(0) = 0, (521)
y(t) ~ Qe exp{+ [f I(s)ds},  t— +oo

where t 15 a sufficiently large real number

Thus the authors were left with the job of obtamning the radiation loss from (5 2-1)
To achieve this, they used a method similar to the one used to solve the reflection
coefficient problems, studied by Gingold & Hu [7] > They began by moving (5 2-1),
into the complex t-plane and solved it along the nearest critical level line From

(5 1-4), we know that the level lines of (5 2-1) are given by

Re {/t J(s)ds} = const, (5 2-2)

on which the authors assumed there exists at least one critical point of the differential

*See [1],(8],[13],[16]
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equation where,

10 ="+ (i) 029

Now, as the function Q(¢, A) 1s unknown, the authors made a number of assumptions
relating to 1t They assumed that the eigenvalue A 1s known and that ¢t = ¢, 15 a
critical point on 1ts nearest level ine L; They also assumed that near t = ¢, Q(t, )

has an asymptotic behaviour of the form
Q(t, A) ~be(t —t)™ %, tat, >0 (5 2-4)

With . > 0, and from our discussion in Section 5 1, the level lines of (5 2-2) are at
an angle of 7/ |7y| from each other and consist of hyperbolic hike curves For example,
if we take the simplest case and centre our critical point at the origin, that 1s let

te=0,b=1and y=13/2, weget fig 50

~10 -5 0 5 10

Fig. 5.0. Level curves for (5 2-2)

The authors argued that on L, away from the critical point ¢ = {., the leading
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behaviour of y can be represented by

y(t) ~ [Q(, /\)]_1/'1 [n e:cp{+/t: J(s)ds} + 7q ez;p{—/t: J(s)ds}] ,
t - 400 (5 2-5)

where the values of 1,7, can be determined by the continuation of the bchaviour

(52-1) of y near +o0o So comparing (5 2-5) with (5 2-1) gives

{ ri = exp{—[{ J(s)ds}, (5 2-6)

7‘220

The authors then argued that 1n a neighbourhood of ¢t = ¢., the leading term of y
satisfies

ey (1) + be(t — )"y (t) =0, (52-7)

whose local solution can be expressed in terms of Hankel functions, that 1s

y(t) = (t = 1) {Tabliy,, (emwre) + Tai, (S20-0v)} (529)

The asymptotic representations of these Hankel functions are given in [8]

So matching their local solution (5 2-8) to their invariant asymptotic solution (5 2-5)

allowed them to obtain expressions for 7} and 7, given by

{Tl_r’\” (5 2-9)
T2 =r V 267

However, as they were only interested in the behaviour of their solutions near the

-t
4"1c e ‘9

origin, they extended the solution (5 2-8), passing through ¢ = ¢. from the branch L,,
to the next branch L,, at the same level in the clockwise direction This 1s equivalent
to a change in the argument of (t —1.)* by —m The Hankel transformation formula

they used to achieve this can be found 1n (8]
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Hence on Z2, to the leading order, the function y has the form

y = (t- ic)l/2e*'* {[2 Ticos(w/2%) - T2e’~r] H{

+ [Tie-*] HAC <))y, (5.2-10)

Now, on L2 away from the critical pointt = ic, Hu & Cheng argued that the function

y has the form
y ~ Q(t\ A)-1/4 r[exp”-\- J(s)ds™j + r2exp J(s)dsjj . (5.2-11)

So matching (5.2-11) with (5.2-10) near t = tc, taking into account what occurs to

both of them as they pass through the Stokes line —&/7 gave them

1 (VA ’ (5.2-12)
ro= e 2+ TiCos(tt/27¢c) - r2e‘* ] v/ISfee+,'A e+ii,
thus giving the authors the asymptotic behaviour of their solution near the origin.
Finally, using the boundary condition at the origin, (5.2-12) and some mathematical

manipulation Hu & Cheng were able to obtain an expression for the radiation loss

given by
Im(Q (0, A) ~ ESJRZEE)T cos (nlie ~ 2Imr) e'"2Re(r), e -» 0+, (5.2-13)
where

5.3 Derivation of Radiation Lo0ss.

In the previous section we showed how Hu & Cheng in their paper [6] obtained
an expression for the radiation loss from (5.2-1), with Q(t, A) an arbitrary function
adhering to conditions (4.3-2). In this section, we will apply Hu & Cheng’s method

to our particular problem. However, unlike Hu & Cheng’s method, we do not require
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Figure 51 Behaviour about critical point ¢

asymptotic matching as Q(¢,A) = A +1, V¢ and not just for ¢ = oo Therelore, the

local solution 1s the global solution, that 1s

y(t) = (¢ + X" {T0 HY) (2 0w0e2) + To HL (2 02},

(531)

1s our global solution to

ey"(t) + (A +t)y(t) = 0, € (0,+00), (53-2)

where for the moment the transmission coefficients Ty, T are arbitrary The asymp-

totic representations for our Hankel functions H! and H? are

H{j3 (0v0ere) = \/E\/%(/\+t)_3/4e+‘(§2:(/\+t)3/2)e—z%
s

[1+0 (50w0-1))

(5 3-3)
Hl(i)S (32—:(/\+t)3’2) — \/2 _32_6(/\ + t)_3/4 e " %(/\+t)3/2) e+z§—’2’
T\

[1 + O (&0+0)-2/2)] (5 3-4)
valid as | +t| — oo, for |arg (2 (0+1)*/2)| < 7, (cf Fig 51)

Now, as we are dealing with an outgoing wave solution tending to +00, we must set
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T =0 This gives
y(t) = (t+ N {TH (Zosrn)}, 1= oo, (5 3-5)

which has leading asymptotic behaviour,

y(t) ~ To (t + A/ \/i( F Ay EM) e o, (53-6)

valid as we have mentioned n sector 1 (see Fig 51) We require however, the
asymptotic behaviour of our solution near the origin, that 1s 1n sector 2 (sec Fig
51) To obtain this we need to change the argument of (A +t)*2 by —7  We

therefore require the following Hankel connection formula given in [8] °
Hijy(e™2) = Hijp(#) + ¢ H{jg(2), (53-7)
where

35(/\ +1)°/* (5 3-8)

Hence, (5 3-5) becomes
y(1) =Ty (L + V2 {H{A(=) + e FHIMR)}, e 0+ (53-9)

with leading asymptotic behaviour,

3 . .
yt) ~ T €(t+>‘ 1/4{“2 _'%+e_’(2)e+‘ﬁe—l§}a

e— 0+ (5 3-10)

However, as we want the behaviour of our solution on the Stokes linc S,, we need to
find the superasymptotic representation, both below and above the Stokcs line S,
and take the average This 1s the process adopted by Paris & Wood in their 1989

paper [15], subsequently justified by Berry’s paper [2], which showed the smooth

Ytaking m to be -1
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change of the multiplier, from 0 to 1, with error function dependence, as the Stokes

line 1s crossed This leaves us with the leading asymptotic behaviour

36 ™ 5n
1) o~ Ty —=(t+ N Vet 2 gmm [gm g1 17
y( ) 11/ - ( + ) € e {e e }

REEE
2 T

sm

(t+ N e e i {eh@et B o0y (53411)

on the Stokes line S, (see F1ig 51) After gathering terms,

y(t) ~ Tl\/S—g(t—f‘)\)_lM et {zt g}
m

+% i—e(t+/\)“1/4e+’{z+?—§—%—%}, e 0+ (5312)
N
y(t) ~ Tl\/%(wm—l“{e—”e—”f—: el
e 04+ (5313)
=
y(t) ~ T :ir—s(t-l-/\)_l/‘i{—ze_“’e ’%-{—le*”e“’%},
e—0+ (5 3-14)
N
V@)~ T Eaaari e g et

e—>0+ (5 3-15)
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where now z = 2/(3¢) A¥? and

5w 1 5w
y'(O) ~ T 3_6(/\)“/4_1_ {—}—1@“”3“’3 + 3 e+’ze_’ﬁ}’
V =
e 0+ (5 3-17)

Substituting (5 3-16) and (5 3-17) into our boundary condition at the origin (3 5-7),

we get
5w 1 =157
Z/\l/4 [+Ze——zze~—zﬁ + 5 e+tze 12 ]
5 1 L
+P/\-.1/4 [_ e FeTt 12 + 5 e-l-tze—'sl_z'] —)O, (5 3—18)

as € — 0+, where

P= - (5 3-19)
2 | + )
So (5 3-18), becomes
1 +1/2e+27\?
A~ —PP | — 2
(1—2/2@”’ , €= 0+, (5 3-20)
where
A
= -/ (A + 5]"/2ds (5 3-21)
€J-x
Here we use the fact that
0
//\J(s)ds—T—>0, e 0+ (5 3-22)
Now, taking the leading terms of (5 3-20), we get
Ao =P (1412¢57), e 0+ (5 3-23)

Thus to obtain our expression for the radiation loss, we need the following formula

derived 1n [11] That 1s

A= —P%—nle"/(2P)" + o(c") (5 3-24)
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In our particular case n = 1, which implies A = —P? — ¢/2P So from (5 3-21) and

(5 3-24)
— &)\3/2 — 2_Z

) 3/2
=g - [-P?—ef2P]"", (5 3-25)
=
2P3 3e
__wrr . 3 3.26
> [1+4P3+ ] (53:26)
Here we take (—1)32 to be e=*7 = +1 Then
o2 = (it ] (5 3-27)
and we have to leading order
et = eTh (5 3-28)
Therefore, from (5 3-23)
2P? ~4p3
A ~v—— 5 3-29
tm() ~ 2 eap{ ] (5329

where P = P(3,0,m) 1s defined by {5 3-19) and contains the shape parameters

5.4 Power Index Profiles.

In section 2 4 we stated how various authors, [19},[3], [11], used asymptotic methods

to solve Paris & Wood’s model

y'(z)+ (A +ez™)y(z) =0, (5 4-1)
with boundary condition
y'(0) + hy(0) = 0, (5 4-2)

for the respective casesn = 1,n = 2,n > 2 and how through doing so they obtained
expressions for the radiation loss, ImA In this thesis, we showed for the particular

case n = 1, how by simply rescaling our model (3 5-6)-(3 5-7), similar 1n nature to
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Paris & Wood’s, nto
e'y"(t) + (A +t)y(t) = 0, (54-3)

with boundary condition

ey'(0) + Py(0) =0, (5 4-4)

we can obtamn without the need for asymptotic matching, an expression for the

2h? —4h®
[m)\w——exp{ } (5 4-5)
e

radiation loss given by

3e

Simularily, for the cases n = 2, n > 2 we can apply Hu & Cheng’s method to (5 4-1)
and obtain a general expression for the radiation loss, ImA This can be achieved

by substituting z = €% 1nto (5 4-1) to get
ey (t) + (A +7)y(t) =0, (5 4-6)

with boundary condition
ey'(0) + Py(0) =0, (5 4-7)

=2(2nt1)
where M\* = g7 =72

So, if we apply Hu & Cheng’s method, outlined 1n section 5 3 to (5 4-6), this time
taking into account any asymptotic matching that occurs and using the fact that
v = 3/2 and

A=—P? —n'e"/(2P)" + o(e™), (5 4-8)

we can obtain a general formula for the radiation loss for n > 1, given by *

(5 4-9)

_ 9 pnt2)/n
[m/\N_thezp{ 2h F(1+1/n)F(3/2)}

o IG + D)

see (2 4-3) or [11]
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For example if we take the case n = 2, from (5 4-9) we get

—2h? Fz(é)
~ —9h2 —_— N2/ -
Im A 2h exp{ S T() (5 4-10)
-2h%* 7
2
N — 7 h?
~ —2h ezp{—2el/2 } (5 4-12)

which 1s what Brazel, Lawless & Wood obtained mn [3] So not only does Hu &

Cheng’s method offer us a method to obtain the radiation loss to equations of type
e’y"(t) + Q(t, V) y(t) = 0, (5 4-13)

with Q(¢t,A) = A +t*, for any n € Z*, 1t also offers us a method to obtan the

radiation loss for more arbitrary functions as long as they adhere to conditions

(4 3-2)
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Chapter 6

CONCLUSION.

We have addressed in this thesis the problem of modelling radiation loss from weakly-
guiding optical fibres with realistic refractive index profiles We have seen that while
the model of Kath and Kriegsmann 1s close to the physics, an explicit mathematical
solution 1s not possible On the other hand, the 1dealised models described in Chap-
ter 2, while solvable explicitly in terms of special functions, can rightly be criticised
on physical grounds and cannot be used for many real fibres such as the W-shaped

profile which 1s the subject of our work

In Chapter 3 we have used the methods of Burzlaff and Wood to develop a new
model for fibres with W-shaped profiles While lacking some physical features, 1t
1s still tolerably realistic in containung the shape parameters of the refractive index
profile in the boundary condition at the origin and hence 1n the eventual solution for
the eigenvalue parameter, whose 1maginary part corresponds to the rate of energy

loss

QOur work then led us to consider methods applicable to differential cquation
models with a more general refractive index profile in the potential In Chapter 4
we have described recent results of Hu and Cheng, Gingold and Kruskal We have
explained in Chapter 5 how Hu and Cheng developed a formula for the imaginary
part of the eigenvalue for general potentials This 1s a novel approach which could
lead to further results outside this thesis For the potential considered in our model

of the W-shaped profile fibre, a simplification of the method of Hu and Cheng
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allowed us to construct explicit Hankel function solutions of the differential equation
Taking into account the Stokes phenomenon for the Hankel function, we arrived at

the estimate of the imaginary part of the eigenvalue

We showed finally that direct substitution in the formula of Hu and Cheng
produced the same result in this case, as 1t did for the power index profiles considered

by Brazel, Lawless and Wood and by Liu and Wood
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