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The history of computer graphics is as old, almost, as the history of computing it
self Until recently however, it had tended to be confined to the realm of the “aris
tocracy” of computer machines because of its requirement of their high power and 
speed as well as the additional cost of expensive graphics hardware In the last 
number of years however, a significant reduction m the price/performance ratio 
of both graphics and microprocessor technology has brought computer graphics 
within the grasp of the of the ordinary “working class” PC (Personal Computer) 
The nett result of this has been an increase m the number of users of computer 
graphics and its areas of apphcation

One of these areas, tha t of the of generation of realistic three-dimensional images, 
is the subject m atter of this work More specifically, this work is concerned with 
a particular method of generation of such images, known as Raytracmg , which 
has produced some of the most realistic computer generated images to date 
Unfortunately, because of a large appetite for numeric calculation, ray tracing has 
tended to be restricted to mainframe computers The motivation behind this 
research has been to implement a raytracmg algorithm on a microcomputer and 
investigate its performance

4

Chapter one gives a general introduction to the area of computer graphics, while 
chapter two outlines a description of the raytracmg algorithm, its advantages, 
limitations and optimizing techniques Chapter three then goes on to discuss the 
apphcation of raytracmg to the area of solid modelling and sets the context for 
the description of the research in chapter four, which discusses the design, im
plementation and performance of Micro Trace, a microcomputer based ray tracer 
Finally, Chapter five discusses conclusions from the research and possible future 
enhancements to the work
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tocracy” of computer machines because of its requirement of their high power and 
speed as well as the additional cost of expensive graphics hardware In the last 
number of years however, a significant reduction in the price/perform ance ratio 
of both  graphics and microprocessor technology has brought computer graphics 
within the grasp of the of the ordinary “working class” PC (Personal Computer) 
The nett result of this has been an increase m the number of users of computer 
graphics and its areas of application

One of these areas, th a t of the of generation of realistic three-dimensional images, 
is the subject m atter of this work More specifically, this work is concerned with 
a particular m ethod of generation of such images, known as Raytracmg , which 
has produced some of the most realistic computer generated images to date 
Unfortunately, because of a large appetite for numeric calculation, raytracm g has 
tended to be restricted to mainframe computers The motivation behind this 
research has been to implement a raytracmg algorithm on a microcomputer and 
investigate its performance

Chapter one gives a general introduction to the area of computer graphics, while 
chapter two outlines a description of the raytracm g algorithm, its advantages, 
lim itations and optimizing techniques Chapter three then goes on to discuss the 
apphcation of raytracmg to the area of solid modelling and sets the context for 
the description of the research m chapter four, which discusses the design, im
plem entation and performance of MicroTrace, a microcomputer based raytracer 
Finally, Chapter five discusses conclusions from the research and possible future 
enhancements to the work



Chapter 1
A n Introduction  To C om puter  
Graphics

1.1 M otivation
One of the principle advantages of Computer Graphics is its ability to present 
information in a visual form — a form which allows our well developed eye-bram 
pattern  recognition mechanism to perceive and process the information more 
rapidly In this respect, the most frequent use of graphics today is probably to 
draw histograms, pie-charts, and two-dimensional or three-dimensional graphs of 
various m athem atical and economic functions

However, Computer Graphics does play an essential role m many other 
widely varying fields, such as computer simulation, anim ation, exploration maps 
for drilling and mining, computer aided design and manufacture, a rt advertising 
and a profusion of others

The application of Computer Graphics to some of these areas, particu
larly flight simulation and animation, requires images capable of incorporating 
shadows, reflection/refraction of light, removal of hidden surfaces and shading m 
order to make them as true to life as possible Raytracing is the most successful 
m ethod to date of incorporating all of these features into a graphics image and 
is the topic of subsequent chapters The concern of this chapter is to introduce, 
to the newcomer to computer graphics, the basic ideas and concepts involved 
m the generation of graphics pictures, which will enhance the understanding of 
subsequent chapters and facilitate a comparison raytracing with more traditional

1
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graphics techniques

1.2 W hat Is Com puter Graphics ?
Computer Graphics involves the generation of an image of an object from an ap
propriately defined description of the object It is this emphasis on the synthesis 
of pictures of real or imaginary objects th a t distinguishes Computer Graphics 
from the related field of im age/picture processing The latter, which is im por
tan t m areas such as satellite photograph enhancement and chromosome scans, 
is primarily concerned with the analysis of a picture and reconstruction of 2D or 
3D objects from their pictures — the converse process of computer graphics

Since pictures generated using Computer Graphics will ultim ately be seen 
on some sort of display device, before looking at the means by which such pictures 
are generated, some knowledge of the different display technologies will prove 
useful

1.3 D isplay D evices
The most common device for display of graphic output is the Cathode Ray Tube 
(CRT) The basic principle behind a CRT is th a t when a beam of electrons strikes 
a phosphor coated screen light is em itted The em itted light, however, decays 
exponentially with time so the process must be repeated many times per second 
(30 to 60) m order that the light appears unfhckering to  the viewer

The two principle categories of Cathode Ray Tube devices used in computer 
graphics are -

• Vector devices
• Raster devices



1.3.1 V ector D ev ices
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As illustrated in fig 1 a vector device consists of a cathode ray tube, a display 
processor and a refresh buffer containing commands for plotting points, lines 
and characters These commands are interpreted by a display processor which 
converts the digital values into analog voltages which are used to electrostaticly 
displace the electron beam  along the desired path , striking the phosphor and 
emitting light in the process

SCREBJ

figure 11 A vector display device

Since the em itted light decays in something of the order of several hundred 
microseconds, the picture must be continually re-drawn using the commands in 
the refresh buffer (at least 30 times per second) m order th a t the picture does not 
appear to  flicker to the viewer The time taken to re-draw the picture however is 
proportional to the number of lines in it so, where a picture has many lines that 
cannot be draw in less than ~ tt of a second, flicker becomes unavoidable

Vector devices have the advantage of having very high resolution, typically 
4096 screen dots horizontally by 4096 vertically, and a relatively small refresh 
buffer requirement (2K - 30K) Their principle drawbacks however are th a t they 
cannot display solid areas on screen and have only a very limited capability for 
displaying colour They are also expensive m comparison to  raster devices and 
are not suitable for raytracing, as will become clear in chapter two
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1.3.2 R aster D evices

The arrival, in the mid-seventies, of cheap raster graphics devices based on tele
vision technology and having a good capability for colour contributed greatly to 
the development of Computer Graphics and today, raster technology is the one 
most commonly found m graphics display devices

As fig 1 2 illustrates, an image on a raster device consists of a rectangular 
m atrix of points called pixels (short for picture element) Unlike the refresh 
buffer of a vector device which stores screen coordinates, a raster refresh buffer 
stores the intensity of each individual screen pixel The image is then drawn by 
sequentially scanning out each horizontal line of the buffer from left to light, top 
to bottom , to the screen The intensity for each pixel is determined by converting 
the value for the pixel stored in the buffer into an analog voltage th a t controls 
the intensity of the electron beam  at th a t point on the screen

REFRESH BUFFER SCPE&i

figure 1 2  A fast©'' display device

In contrast to a vector device, where a line is stored as two screen coordinate 
values m the refresh buffer, a line is drawn on a raster device by calculating all 
screen pixels th a t the line will cross when drawn on the screen, and setting those 
pixel values accordingly in the refresh buffer There exists a number of efficient 
scan-line algorithms for performing this task not just for lines but for circles and 
other primitives as well (see [FOLE84])

In the simplest raster devices, the refresh buffer uses one binary bit per 
pixel to represent its intensity (1 = 0 N , 0=O FF) Using more bits per pixel will 
perm it a greater range of intensities m the screen image, at the expense of a
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larger refresh buffer requirement

C O L O U R  In colour raster devices each pixel is actually composed of three 
phosphor dots, called a triad One of the dots emits red light when excited by 
an electron beam, the second green and the th ird  blue These three colours, 
known as the primary colours, are used because almost any colour from the 
visible spectrum can be obtained from a suitable combination of them  Three 
electron guns, arranged in the same triangular pattern  as the triads, are used 
to synchronously excite the three phosphor colours so th a t when viewed from 
a distance, the triad will appear as a single dot whose colour is a m ixture of 
the three dots For such devices three intensity values per pixel must be stored, 
corresponding to the intensity of each of the red, green and blue components of 
the pixel For example, storing two bits per prim ary (6 bits per pixel) allows 4 
intensities per primary, giving a to tal of 64 colours

The principle advantages of a raster over a vector device are th a t it is less 
expensive, has a good capability for displaying colour and can display sohd areas 
on screen On the other hand, raster devices do not yet have the same resolution 
as vector ones, 1284 x 1024 being considered high for raster, and have a much 
greater refresh buffer requirement, particularly for colour devices e g  a colour 
raster display with 512 x 512 resolution and 64 colours per pixel requires a refresh 
buffer of 196608 bytes (512 x 512 x 6 bits) However, with the ever decreasing 
cost of memory, this drawback becomes less significant

1.4 Two D im ensional Graphics
Two dimensional objects exist m a completely flattened world The^ have length 
and width (and consequently area), but no thickness or volume, and are usually 
defined to the graphics system in terms lines, polygons, planar curves etc Yet, 
despite the limitation of two dimensions, this area of graphics is still very useful, 
both in its own right and as a stepping stone towards an understanding of the 
discussion of three dimensional graphics in section 1 5

1.4.1 W indow s A nd V iew p orts

As will be seen from the following sections, several diffeient coordinate systems 
axe used in computer graphics The most basic one perhaps is the screen coordi
nate system This is a 2D integer coordinate system whose values m the X  and
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Y  directions range from zero to the horizontal and vertical screen resolution size 
respectively, each coordinate pair directly corresponding to an actual pixel on the 
screen The position of the origin (0,0) can vary from one device to another 
but is usually one of, the upper left corner, lower right corner, or centre, of the 
screen

It would be far too restrictive to use this coordinate system to directly define 
elements of a graphics picture as, not only would the definition have to be altered 
in order to be displayed on a device with different resolution, but the coordinate 
range would be inappropriate for many applications The solution to the problem 
is to use a coordinate system th a t is independent of screen coordinates, called a 
world (or virtual) coordinate system The Cartesian X Y  coordinate system is 
normally used as this virtual coordinate system

The approach is to use this virtual coordinate system to define objects 
and then “m ap” the the virtual coordinates onto screen coordinates Thus, the 
object definition remains independent of the display device and only the m ap
ping changes from one device to another Mapping the entire virtual space onto 
the screen however would mean that only very large objects would be visible 
A rectangular area called a window, defined by four virtual coordinate values
(*<
ordinate space to map onto the screen

mm? X max, Ymin  ̂Ymax ), is therefore used to specify a section of the virtual co-

Similarly, instead of always mapping the window onto the entire screen, a 
greater degree of flexibility in displaying the picture is possible if the window 
can be mapped onto a specified sub-region of the screen This would allow, for 
example, several windows to be displayed simultaneously on different areas of the 
screen A viewport is therefore used to define a rectangular area of the screen 
onto which the window is to be mapped As illustrated m fig 1 5, this window- 
viewport combination allows any section of the virtual coordinate space to be 
displayed on any area of the screen

viewport

9CREEN

figure 1 3 Window to viewport mapping
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M A P P IN G  From fig 1 4 , it can be seen that the equations which map a point 
(W x, W y) inside the window onto a point (K , Vy) mside the viewport are given 
by -
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V - Vy  — ( w  -  W  )——ar---- xmin - 4- Vv x  — \ vv x  t i t  ~  Y x m t n
yy rrmnri * * Tm.in

V = (W - W  \_Tymax_r_i™n. i yy V \ v v y  v v y m x n ) l A r T  V y m t nW  — wvv y m a x  r r  j/m m
( i i )

where the window is defined by {Wxmm, W xmax, Wymtn, W ymax) and the viewport 
by (V̂rmm

Wi_min
W y_m «* WINDOW Wy” m«x

V»_n
Vy_n VIEWPORT

pixel 
.V *d ^  (V i Vy)

Vyd

V«_m*x
Vy_fnm

W y_rrtn W y jrm

preservation of 

horizontal ratios
r  > Wxd Vxd

Wx_max Wx min Vx max Vx

=> Wx Wx Vx Vx mln

Wx max Wx mtn Vxm ax Vx min

- >  Vx =  (Wx W x_mln) _.Vx-™ ax Vx_mtn +  V x _ m in

Similarity

Vy

Wx m « i Wx m in

.... , t Vy_m*x Vy mln(Wy Wy_mln) -------------------------—--------  + Vy_mlnWy_max Wy_mln

figure 1 4 Window to viewport mapping equation 

This defines the mapping function for the window to the viewport In ap-
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plying the function however, it must be ensured th a t points outside the window 
are not mapped, as such points would be m apped onto non-existent screen coor
dinates, resulting in a “wrap-around” effect whereby points m apped beyond the 
right of the screen are “wrapped around” and appear on the left of it A tech
nique known as window clipping, which clips off those parts of the object outside 
the window from the mapping function, is therefore applied As illustrated m 
fig 1 5, there are three possible cases when clipping a line It can he -

•  Entirely outside the window (line A)
• Entirely mside the window (line B)
• Partially inside the window (line C)

w indow

Clipped window 

which is mapped 

to viewport

figure 1 5 Window clipping

Only the third case poses any difficulties since the window clipping opera
tion must determine the intersection of the line with the edge of the window For a 
detailed discussion on window clipping algorithms, such as the Cohen-Sunaerland 
algorithm, see Foley & Van Dam [FOLE84]

1.4.2 2D  M atrix  T ransform ations

As mentioned in the previous section, there are good reasons for defining objects 
using a virtual coordinate system instead of directly using screen coordinates 
Having defined the object in such a coordinate space, many graphics applications
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require that the object can be moved around the virtual space or have its orienta
tion changed, in much the same way as an object m the real world Fortunately, 
there are m athem atical transformations which provide a means of of translating 
(repositioning) and rotating (reorientating) objects In addition to these two op
erations, there exists a scaling transformation th a t can be applied to make an 
object larger or smaller, something which cannot be done with real objects From 
the following discussion of the m athem atics of these three transform ations, it can 
be seen that the use of homogeneous coordinates allows each transform ation to 
be represented as a 3 x 3 m atrix — a result which proves very useful and which 
is discussed at the end of this section

Homogeneous coordinates are coordinates th a t were developed in geometry 
by Maxwell [MAXW46], and later applied to computer graphics by Blinn & 
Newell [NEWE78] A 2D Cartesian point P  (x ,y )  is represented m homogeneous 
coordinates as P  [x\V,yW, W )  where W  is some non-zero scale factor So, given 
a homogeneous coordinate point P ( X , K, W ) , its 2D  Cartesian representation 
P ( x , y )  is given by a; =  ■£, y =  £

P (X, Y, W) =  = P{*,V)

Similanly, for three dimensions

P(X,Y,Z,W) = P ( ^ , L 1 . )= p {XtytZ) (12)

Since W  =  1 throughout this section there is no need to perform the 
division It is only in the perspective transformation m atrix m section 1 5  2 tha t 
a value other than 1 is obtained and a division by W  has to be performed

T R A N S L A T IO N  A point P ( x , y )  is translated to new point P '( x V )  by 
the addition of a displacement D x units parallel to the rr-axis and D y units 
parallel to the y-axis, fig 1 6a This can be expressed in vector form as

[x',y'] = [x,y) + [Dx , D v] ( 1 3 )

Rewriting this m homogeneous coordinates means the translation can be rep
resented as a 3 x 3  m atrix (the reason for using this form will become clear 
later)
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[x',y',l] = [z,y,l]
1 0 0 
0 1 0 

D x D y 1
(] 4)

Y

Y

Y

<•> TRANSLATE

(b) ROTATE

(c) SCALE

Translation Rotation and Scaling transform ations

figure 1 6

R O T A T IO N  Fig 1 6b illustrates the anti-clockwise rotation, by alpha degrees, 
of a point P  (z, y ) about the origin to a new point P* ( x \ y f) From the diagram 
it can be seen that -

X =  r  cos b 
y =  r sin b (15)

and
X 1 =  r cos (a +  b) =  r cos b cos a — r sin b sin a
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y' — r sin(o +  b) =  r  cos b sin a — r sin b cos a ( 1 6 )

Substituting (1 5) into (1 6) gives
X =  X cos a - j / s i n a  
y f =  x s m a  +  y cos a (17)

Using homogeneous coordinates, the rotation can be represented as a 3 x 3  
m atrix, and (17) can be written as

[x ',y ',l]  =  [x,y, 1]
cos a sin a 0

— sin a cos a 0
0 0 1

(18)

For this derivation, positive angles were measured in an anti-clockwise di
rection By substituting the identities co s(-a ) =  cos(a) and sm (—a) =  —sin(a)  
into (17) and (18 ), positive angles can be measured in a clockwise direction

S C A L IN G  A point P ( x , y )  can be scaled by Sx along the x-axis and Sy 
along the y -axis, with respect to the origin, to a new point P '( x ' , 2/'), by the 
following multiplication, fig 1 6c

X — xSx

y' =  ySy (1 9)

The scaling can be represented as a 3 x 3 m atrix by writing the coordinates 
in homogeneous form

[x ',j/ ',l]  =  [x, y, 1]
S x  0 0
0 Sy 0 
0 0 1

(1 10)

C O M P O U N D  T R A N S F O R M A T IO N S  It will often be the case th a t more 
than one of these transformations will want to be performed on an object For 
example, rotating an object about a point other than the origin, say R ( x 1y ) ) 
involves translating R  to the origin, rotating about the origin, then translating 
back again Each of these three transformations must be performed on each point
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on the object If however, each transformation is represented as a 3 x 3 m atrix, the 
three operations can be compounded into one by multiplying the three matrices 
together, resulting m a new 3 x 3  m atrix th a t represents the compound operation 
Multiplying each point on the object by this new m atrix applies the compound 
transformation in one operation, with a resultant com putational saving

1.5 The Third D im ension
The addition of a Z-axis to the X Y  virtual space of 2D graphics allows objects 
to take on depth and volume, but brings with it the complication of trying to 
display a three dimensional entity on a two dimensional screen, in addition to the 
th a t of trying to determine if one object m a scene obscures all or part of another 
— two complications which are discussed in sections 1 5  2 and 1 7 1  respectively

However, it is comforting to know th a t the translation, rotation, and scaling 
transformations of the previous section can still be represented in m atrix form 
when extended to three dimensions Before discussing each of these transfor
mations, it is first worth noting from fig 1 7 th a t there are m fact two possible 
directions m which the positive Z-axis can be faced, giving rise to two different 
coordinate systems The right handed system has the Z-axis pointing m the 
direction of the vector cross product of the X-axis with the Y-axis i e out of 
the page, and is the system used throughout this text, while the left handed one 
has it pointing m the opposite direction

L e ft - H a n d e d

figure 1 7 Right and Left Handed Coordinate System s
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1.5*1 3D M atrix  T ransform ations

Section 14 2  illustrated how each of the two dimensional translation, rotation 
and scaling transformations could be represented as a 3 x 3 m atrix The following 
section outlines their extension to three dimensions, where it can be seen that 
each can be defined by a 4 x 4  m atrix

T R A N S L A T IO N  Using homogeneous coordinates, the translation of a point 
P  (x, y, z)  to another point P f (a/, y z ' )  by displacements of D x, D yj D z parallel 
to the X , F , and Z  axes can be represented by the 4 x 4  m atrix m the following 
equation

[x',y' ,z' ,  1] =  [x , y , z ,  1]
1 0  0 0
0 1 0  0
0 0 1 0

„ D X Dy D z 1
(111)

R O T A T IO N  In three dimensional graphics, three different rotations (one about 
each of the three principle axes) can be performed, each with their own foim  of 
4 x 4  m atrix The positive direction of rotation about an axis is defined as that 
which is anti-clockwise when looking down the positive part of the axis toward 
the origin The 4 x 4  m atrix representation for the rotation of a point P  (x, y, z) 
by an angle a  to a new point P ' (x ',y ',z ')  is given for each type of rotation in 
equations 1 12 to 1 14 below

R O T X

[x' ,y',z' ,  1] =  [x,y,  z, 1]
1 0  0 0
0 co sa  s in a  0
0 —sin a  co sa  0
0 0 0 1

(1 12)

R O T Y

cos a  0 — sin a  0 
0 1 0  0

sm a  0 cos a  0
0 0 0 1

(1 13)
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R O T Z

[x ' ,y ' , z ' , l ]  =  [x ,t/,2 , l ]
cos a sin a 0 0 '

— sin a co sa 0 0
0 0 1 0
0 0 0 1

(1.14)

S C A L IN G  Equation 1.15 below gives the 4 x 4  m atrix for scaling a point 
P  ( x , y , z )  about the origin by factors of Sx, Sy, parallel to the X , Y , and Z  
axes, to a new point P'  (x', y \  z ' ) . Scaling a point about a point other than the 
origin, say i?(a,.&, c) is done by translating the point by (—a , —6 ,—c), scaling 
it, then translating the scaled point by (a, 6, c).

[x ' ,y ' , z ' , l ]  =  [ x , y , z , l ]
S x  0 0 0
0 S y  0 0
0 0 S z  0
0 0 0 1

(1.15)

C O M P O U N D  T R A N S F O R M A T IO N S  As with 2D transformations, mul
tiple transformations can be performed on a point by the multiplication of a 
single 4 x 4  matrix representing the compound transformations — the la tter 
being formed by multiplying together the transform ation m atrix for each of the 
transformations comprising the compound one. It should be noted however, tha t 
such compound transformations are not generally commutative i.e. the order in 
which rotation, scaling and translation is performed is significant.

Such compound transformations allow objects to be defined in their own 
local coordinate system and then transformed into the world (or some other 
intermediate) coordinate system. For example, the car wheels in fig 1.8 are each 
defined in their own local coordinate systems which are then transformed into 
appropriate locations of the car coordinate system, which in tu rn  is transformed 
into the world coordinate system.

1.5.2 3D G eom etric P rojection s

Viewing an object in 2D simply involves specifying a window on the virtual 2D 
view-plane, a viewport on the screen and directly mapping one onto the other 
( section 1.4-4)- The 3D viewing process however is inherently more complex by
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f i g u r e  1 8  Multiple coordinate system s

virtue of the fact that it involves the display of three dimensional objects on a 
two dimensional display device

This difficulty is overcome by the use of planar geometric projections This 
firstly involves projecting the 3D objects onto a 2D projection plane, then m ap
ping this plane onto the screen m the same way as the virtual plane of 2D graphics 
(figs 1 9 and 1 1 1  give examples of two different types of projection) Just as ob
jects in 2D graphics are clipped against a window before being m apped onto the 
viewport, objects in 3D are clipped against a view volume before being projected 
onto the projection plane The projection onto the projection plane of the view 
volume itself then serves as a window to map onto the viewport While in the 
most general case, the projection plane can be any arbitrary plane, the X Y  plane 
is used throughout the following discussion since this leads to a simplification of 
the m athem atics of the two main categories of projection outlined The more 
general case is discussed in [FOLE84]

Many different types of projection can be used in projecting an object onto 
a 2D projection plane The type of projection used will determine what the 
object finally looks like when it is seen on the screen The types of projection 
most commonly used in 3D graphics can be divided into the following two general 
catagones -

[ ] Parallel projections 
[ ] Perspective projections

P A R A L L E L  P R O J E C T IO N S  In this type of projection, fig 1 P, the lines
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of projection are parallel to each other i e the centre of projection is at infinite 
distance from the projection plane The projection is defined by a direction of 
projection, and is classified as orthographic or obhque depending on whether or 
not this direction is orthogonal to the projection plane Common orthographic 
projections are the front (elevation), plan (top), and side (elevation) projections, 
which project onto the X Y , X Z , and Y Z  planes respectively and mathematiclly, 
are the simplest projections to perform e g orthographic projection of a point 
P ( x , y , z )  onto the X Y  plane simply involves “chopping off” the Z  coordinate, 
giving P f (x, y) as the projection plane coordinate of the point

figure 1 9 PARALLEL PROJECTION

Two common oblique projections are the cavalier and cabinet projections, 
where the direction of projection makes an angle of 45 degrees and arctan |  
respectively with the projection plane The m athem atics for an obhque projection 
onto the X Y  plane specified by a direction vector D  (a, 6, c) is given below -

The param etric equation of a line with a direction of D  (p, #, r) and containing a 
point P  (X q , Yq, Zq) is given by the following equation (where t takes on values 
from minus infinity to plus infinity) [ANT081] -

X  — Xq +  tp  
Y  =  Yo +  tq 
Z ~ Zq -f” tv (116)

Hence, from fig 1 10, the equation of the projector through P  ( X p, Yp, Zp) is given
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b y

X  =  X p +  tA  
Y  =  Yp +  t B  
Z  — Zp -(" tC

which intersects the X Y  plane (Z  =  0 plane) at t = _2 e

(1 17)

figure 1 10 Projector equation for a  parallel projection

So, P* ( X V1YV), which is the parallel projection of P  ( X PiYPiZp)  onto the X Y  
plane m the direction of D  (a, 6, c) is given by -

X . =  X „ - Z n-

Yv = (1 18)

Using homogeneous coordinates, the projection can be expressed as a 4 x 4  
m atrix -

[Xv,Y v, Z v, l }  =  {Xp,Yp, Z p, l ]
• 1 0 0 0 '

0 1 0 0
__a

r c 0 0

i— o « 0 0 1
(119)

NOTE Z v  =  0

This format proves very useful since it means th a t the projection can be incorpo
rated into the transformation m atrix for an object by multiplying the two 4 x 4  
matrices
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P E R S P E C T IV E  P R O J E C T IO N S  Perspective projections, fz g  1 11, have 
a centre of projection th a t is a finite distance from the projection plane Unlike 
parallel projections however, perspective projections produce a perspective fore
shortening effect (objects further from the centre of projection appear smaller) 
and hence produce a greater degree of realism, since this effect is also experienced 
by the human visual system

f i g u r e  1 1 1  PERSPECTIVE PROJECTION

The mathematics for a perspective projection onto the X Y  plane specified 
by a centre of projection on the positive Z-axis, a distance d from the origin, is 
outlined below -

From fig 1 12 the equation of the projector is that of a line containing P  (0,0, d) 
and having a direction of -

( X p, Yp, Zp) -  (0,0, d) =  ( X p, Yp, Z p -  d) (1 20)

So, from (1 16), the equation of the projector is given by

X  =  t X p
Y  =  tYp
Z  =  d +  t (Z p ~ d )  (121)

and the projector intersects the X Y  plane at Z  =  0 i.e at t -  —K -
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projector

Projector equation for a  perspective projection

figure 1 12
Therefore, P' { X v, Y x ), the perspective projection of P  (Xp, Yp, Zp) onto the X Y  
plane, is given by -

X, =

Y„ = ( 122 )

As with the parallel projection, using homogeneous coordinates allows this 
perspective projection to be specified as a 4 x 4  m atrix, which means th a t the 
projection of an object can be incorporated into its transform ation m atrix

[ X , Y , Z , W ]  =  [XP,YP, Z P, 1]
r i  o o o 

0 1 0  0 
0 0 0 -Ì 
0 0 0 1

(1 23)

where [X, Y, Z, W] =  [Xpt Yp, 0,1 -  f  ]

However, to return [X, Y, Z, W]  to the form [X„, Yv> Zv , 1] a division by W  is 
required (see equation 1 2)
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There are two types of situation in which the need to represent 3D shapes arises 
The first case is when an existing object such as a car, house or m ountain is to be 
represented as a 3D graphic object, and the second, which frequently occurs in 
computer aided design, is where a designer interactively builds up an imaginary 
3D object on computer from some preliminary sketches of what the object should 
finally look like In the first case, the computer representation of the object should 
try to m atch as closely as possible the exact shape of the real object, and in the 
second, should allow the designer to easily m anipulate the object so th a t it can 
be molded into the desired form

While the previous sections have looked, in some detail, at the means by 
which objects defined in a virtual coordinate system can be scaled, rotated, and 
translated, and then m apped onto screen coordinates to form a final screen image, 
little has been said about the means by which such objects can be defined to the 
graphics system The remainder of this section looks at two contrasting object 
representation schemes commonly used m 3D computer graphics, polygon mesh 
and Constructive Solid Geometry  (CSG) representations The first represents 
sohd objects as closed surfaces which are defined as a collection of polygons while 
the second, the one used in this research, represents them  directly as solids formed 
from by the addition and subtraction of basic solids (called primitive solids) such 
as spheres, cubes, cones and cylinders

1.6.1 P olygon  M esh R epresen tation

Representing an object as a collection of lines means th a t only a line display of 
the object can be generated In addition, weight or volume calculations cannot 
be performed on the object The reason for this is th a t lines alone do not define 
surfaces (see fig 1 13), and it is surfaces that are required to perform hidden 
surface removal, volume calculations, etc

A polygon however can define a bounded planar surface, and a group of 
such polygons, called a polygon mesh, can be used to define the surfaces of some 
object Polygons provide a good means of representing objects that are composed 
of many flat surfaces, such as buildings, tables, desks etc They can also be used 
to represent objects with curved surfaces by approximating the curved part as a 
collection of small polygons, but this gives only an approximate representation 
The error of approximation can however, be made arbitrarily small by using larger

1
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/

/ /

(a) (b) (c) (d)

The sam e set of 12 lines in (a ) can represent any of the three

objects in (b) (c) or (d) A higher level primitive a  surface

is therefore required to unambiguously represent 3D objects

figure 1 13

numbers of smaller polygons to represent the object, bu t this will increase both 
the storage space requirements of the object representation, and the execution 
time of any algorithms that process it

1.6.2 C onstructive Solid G eom etry  (C SG )

In the polygon mesh representation scheme a solid object is modelled, not as a 
sohd, but as a closed surface The CSG representation scheme however models 
solid objects as compositions of primitive solids that are combined using boolean 
set operators The advantages of such a representation are -

[ ] The model represents a true solid with volume
[ ] Solids are bounded by both curves and planar 

surfaces
[ ] Mechanical parts can be particularly well rep

resented

The following three boolean set operators, illustrated m fig 1 14, are used to 
combine primitive (and intermediate) solids -
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t Union
• Intersection
• Difference

Two objects a  cylinder 

and a  cone

« 5

DIFFERENCE INTERSECTION

and intersection operations on two solids

figure 1 14

U n io n  The space occupied by a solid defined as the union of two other solids, 
A and B , is the space occupied by solid A plus the space occupied by solid B

In te rs e c tio n  The space occupied by a sohd defined as the intersection of two 
other solids, A and B , is the space occupied by solid A th a t is also occupied by 
sohd B

D ifference  The space occupied by a solid defined as the difference of two other 
sohds, A and B1 is the space occupied by solid A, less any part of th a t space th a t 
is also occupied by sohd B

The primitive solids normally used are blocks/cubes, spheres, cones, and 
cylinders but others, such as superquadric surfaces [EDWA82] can be used Sohds

Union difference
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formed as a result of the combination of two such primitives can themselves be 
combined, and in this way, representation of more complex solids can be built 
up m the form of a binary tree where the leaf/end nodes are primitive solids, 
the root node represents the entire solid, and the interm ediate -nodes represent 
interm ediate solids (see section 3 2 1)

1.7 A dding R ealism
As mentioned at the start of this chapter, there are some areas where the ap
plication of computer graphics does not not simply require a screen image of 
an object, but an image that looks as real to the viewer as possible Adding 
this realism to the picture involves such techniques as removing hidden surfaces, 
shading objects, incorporating shadows, and adding texture to surfaces

1.7.1 H idden Surface R em oval

Hidden surface removal involves determining which objects in a picture are vis
ible to the viewer and which are obscured by other objects, given a particular 
viewing point, projection type, projection plane etc Although the idea sounds 
quite simple, the reality is th a t its implementation requires such large effort of 
computation th a t many carefully considered algorithms have been developed 
Sutherland, Sproull and Schumacker [SUTH74] survey ten such algorithms and 
provide a good introduction to the topic The details of any particular algorithm 
will depend of course on the object representation scheme in use That is to say, 
an algorithm for removing hidden surfaces from a polygon mesh representation 
will be quite different from one that assumes say, a param etric bicubic patch 
object representation Some of the more commonly used algorithms are outlined 
below

D E P T H  S O R T  The approach of this algorithm, which was developed by 
Newell, Newell and Sancha, is straightforward and simple The general idea is 
to draw all polygons in the scene, but to sort  them  beforehand so th a t polygons 
furthest from the viewer are drawn first In this way, if a polygon is obscured 
from the viewer by another polygon, the obscured polygon (being further from 
the viewer) will have been drawn first and will be overwritten by the obscuring 
one The three general steps of the algorithm are outlined below For a more 
detailed discussion see [NEWE72]
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• Sort all polygons in the scene according to the 
largest z-coordmate of each

• Resolve any ambiguities th a t may arise from any 
overlapping polygons

• Scan-convert each polygon into the refresh buffer 
in descending order of largest z-coordmate

Z -B U F F E R  The z-Buffer algorithm, see [FOLE84], adopts a similar approach 
to the Depth Sort one, except that polygons can be scan converted into the 
refresh buffer m any order through the use of an additional buffer, called a z- 
buffer, which stores for each pixel, the Z  value of the point on the polygon that 
currently covers th a t pixel Only if the Z  value of the point on a subsequent 
polygon which also covers th a t pixel is less than the value stored m the z-buffer, 
is the pixel updated and the z-buffer value for that pixel changed to the new Z  
value

Other algorithms, developed by Bouknight [BOUK70] and W atkins 
[WATK70], also deal with removing hidden surfaces from objects defined by 
polygons While these algorithms, like the two above, can be applied to ob
jects defined by curved surfaces by first approximating the surfaces with many 
small polygons, algorithms for dealing directly with curved surfaces have also 
been developed These include algorithms developed by Weiss [WEIS66], Mahl 
[MAHL72] and Levin [LEVI76] for dealing with objects defined by quadric sur
faces, and algorithms by Catmull [CATM80] and Blmn [BLIN80] for parametriclly 
defined surfaces

1,7.2 Shading

Having removed hidden surfaces through the use of one of the above algorithms, 
the visible surfaces (particularly curved surfaces) must be correctly shaded in or
der to give any sort of real effect For example, a sphere drawn without shading 
would appear as a flat circle on the screen In shading an object, the shading ' 
calculation should take into account such param eters as the position and orien
tation of both the light source(s) and the surface to be shaded, as well as surface 
characteristics (flat, smooth etc ) and, in the case where specular reflection is
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taken into consideration, the position of the viewer The light source can be ei
ther a point source, such as an incandescent bulb, or a distributed source, such as 
a bank of fluorescent lights Point sources however, are normally used since they 
result m the calculation of only a single vector from a point on a surface to the 
light source, whereas several are required to approximate a distributed source 
The exact details of the calculation will of course depend on the complexity of 
the lighting model, which can incorporate an;y or all of the following basic light 
components -

• Ambient light
•  Diffusely reflected hght
• Specularly reflected light

A M B IE N T  L IG H T  Ambient light is a light of uniform brightness found m 
most real environments as a result of the multiple reflections of light from the 
m an) surfaces normally found m such environments, and is the simplest of the
three components to model The amount of ambient light, /¿ ,  reaching a viewer
from a surface is given by -

Ia =  hKa ( 1  2 5 )

where Ia is the intensity of the ambient light, and Ka is the fraction of ambient 
light reflected by the surface

D IF F U S E  R E F L E C T IO N  This is the type of reflection exhibited by dull 
m atte surfaces Such surfaces scatter light equally m all directions and conse
quently appear to have the same brightness from all viewing angles The intensity 
of diffusely reflected hght, from a point on such a surface can be determined 
from Lam bert’s cosme law and is dependent on the cosme of the angle between 
the normal to the surface, N , and the vector in the direction of the hght source 
L , fig 1 15 -

Id =  IpKd c o s  a  ( 1  2 6 )

where Ip is the intensity of the light source and Kd is a number between 0 and 
1 called the diffuse reflection coefficient for the surface, which varies from one



surface to another If N  and L  are normalized, (1 16) can be rewritten using 
the vector dot product -

ID =  IpK d(L N )  (1 27)
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Diffuse reflection intensity is proportional to angle a

figure 1 15

SPECU LA R  REFLECTION Look at any shiny surface and you will see a 
highlighted area i e an area that is significantly brighter than the rest of the 
object and emitting hght that is nearer to the colour of the light source (usually 
white) than the colour of the object itself The highlight is a result of specular 
reflection and is due to the fact tha t shiny surfaces reflect light unequally m 
different directions The intensity of specularly reflected light em itted from such 
a surface rapidly falls off as angle b in fig 1 16 increases

surface

normal

fig U T C  1 16 S pecular reflection

Phong Bui-Tuong approximated this rapid fall off as cosn b [BUIT75], where 
n is typically between 1 and 200, depending on the smoothness of the surface 
(the higher the value, the shiner the surface) The approximation, which is quite 
accurate, is based on an empirical observation rather th a t any theoretical deriva
tion In contrast, the Torrence-Sparrow shading model [TORR66], developed by
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illumination engineers, is a theoretically based one, adapted to computer graph
ics by Blinn and compared with the Phong model in [BLIN77] The amount of 
light th a t is specularly reflected from a surface is also a function of the angle of 
incidence (angle a in fig 1 16) If this function is represented as F  (a), then, 
using the Phong model, the intensity of specularly reflected light, 75, reaching a 
viewer from a surface is approximated by -

Is  =  IpF (a )cosn b (128)

where Ip is the intensity of incident light To reduce com putation of I s , F(a)  
is often set to a constant K 3y which is selected by trial and error to give the best 
results If R  and V  in fig 1 16 are normalized, equation (1 28) can be w ritten 
as -

Is  =  IpI<3(R V ) n (1 29)

Combining ambient, diffuse and specular components, the intensity of light 
reaching a viewer from a surface / ,  is the sum of the three components which, 
from (1 25), (1 27) and (1 29), can be written as -

I  =  IaK a +  Ip [K d{L Ñ )  +  K . { R  V y (130)

Even with the incorporation of all three light components (ambient, diffuse 
and specular), the above lighting model has certain limitations For example, the 
model does not take account of global illumination information, i e m calculating 
the light reflected from a point on a surface, it does not take account of hght 
reflected from or refracted through other objects m the scene th a t may be incident 
on the surface Consequently, the reflection of one object m another object or the 
visibility of one object through a transparent object, will not be emulated m the 
final screen image Both W hitted [WHIT80] and Greenberg [GREE79] however, 
have implemented models that resolve this shortcoming W hitted7s approach 
(which is a raytracmg one) is computationally more expensive than Kay’s (but is 
more general) and is based on an earlier raytracmg algorithm  by Appel [APPE68] 
W hitted’s model is outlined m section 2 3 2 of the next chapter, which deals with 
raytracmg

As the quest for greater visual realism continues, even more complex light
ing models are being developed, such as those by Cook [COOK81] [COOK88], 
Nishita and Nakamae [NISH86] for shading objects illuminated by natural sun
light, Max [MAX86] for dealing with atmospheric illumination, and Cohen and 
Greenberg’s radiosity method [COHE85] of catering for diffuse leflection m com
plex environments
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1.7.3 Shadow s and T exture

While previous sections have looked at the problems of removing hidden surfaces 
from a scene, and the correct shading of objects, no mention has been made of 
the inclusion of shadows in a scene W ith the exception of the case where the 
view-point and the light source are in the same same location, the viewer of a 
scene will observe shadows cast by the objects Since the surfaces th a t he m 
shadow are the ones th a t are visible from the viewpoint but not from the light 
source, some rendering systems calculate shadows by invoking the hidden surface 
algorithm twice, once for the viewpoint and a second time for the light source

Crow examines several ways of generating shadows for polygonal objects, 
[CROW77A], while Lance [LANC78] addresses the generation of curved shadows 
on curved objects In a variation of one of Crows algorithms, Greenberg, Atherton 
& Weiler [GREE78] incorporate shadows for polygonal objects by associating with 
each polygon that is either completely or partly visible from the light source, a 
secondary coplanar polygon th a t marks the area of the first one that is visible 
from the light source These secondary polygons are then used to indicate to the 
shading algorithm which parts of the mam polygons lie m shadow (namely the 
area of the polygon minus that covered by the secondary polygon)

TEXTU RE The shading algorithm described m section 1 7  2, when applied to 
either planar or curved surfaces, produces very smooth and uniform surfaces This 
is because there are actually two types of surface detail, colour and texture, and 
it is the la tter one which gives a surface the roughened look charactenstic of most 
of the surfaces of the real world Since it would be impractical to use potygons 
to a ttem pt to model very fine levels of texture, Catmull [CATM74] pioneered 
a technique of mapping a digitized photograph of the texture of a real surface 
onto a computer generated surface, a technique which was later refined by Bhnn 
and Newell [BLIN76] The technique involves mapping a pattern  array, which 
represents the digitized texture photograph, onto a planar or curved surface, by 
a means similar to that used for pattern filling polygons (see [FOLE84])

A more recent technique applied by Carpenter [CARP82] and M andelbrot 
[MAND82], uses a class of irregular shapes, called fractals, which are proba
bilistically defined and can accurately model natural shapes such as coastlines, 
mountains, snowflakes, tree branches etc



Chapter 2 

A n Introduction  To R ay Tracing

Ray tracing is a very powerful yet simple approach to image synthesis which 
has generated some of the most realistic computer images to date It is capable 
of incorporating multiple reflections and refractions from multiple objects m a 
scene, can deal with multiple light sources, and can model effects such as penum 
bras, motion blur and other fuzzy phenomena th a t would prove difficult, if not 
impossible, with other image generation techniques

The technique was first suggested by Appel [APPE67] and was later used 
by Goldstein and Nagel [NAGE71] as a solution to the hidden surface problem 
But it wasn’t until the late 1970’s that it was implemented by Kay h  Greenberg 
[GREE79] and by W hitted [WHIT80] to render complete images

2.1 The Ray Tracing Approach
From the discussion of computer graphics m the last chapter, it can be seen that 
the conventional approach to three dimensional graphics is to define a viewing 
point, a projection plane and a view volume, then project objects inside the view 
volume onto the projection plane in accordance with a perspective/parallel pro
jection and map the projected coordinates onto screen coordinates The final 
image produced by such a process is an unrealistic wireframe view of the ob
ject/scene However, as outlined m section 1 7, greater realism can be added by 
incorporating hidden surface removal, shading and shadow algorithms at appro
priate stages of the operation

29
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In contrast to this conventional approach, which starts with an object m 
the scene and tries to determine which pixels the object covers when projected 
onto the screen, ray tracing adopts the reverse methodology by starting with a 
pixel and trying to determine which object that pixel maps onto m the scene 
Thus, it could be said could be said th a t conventional approaches map objects 
onto pixels, while ray tracing maps pixels onto objects

In its simplest form, ray tracing involves casting an imaginary ray (repre
senting a ray of light) through each screen pixel into the scene If the ray fails to 
strike any object m the scene, the pixel is given the background colour O ther
wise, the colour of the pixel is determined from the characteristics of the nearest 
object struck by the ray, in accordance with the lighting model being used

The generation of realistic graphics images is not however the only appli
cation of the technique of ray tracing since, the ray could equally well represent 
say, an x-ray, an acoustical path  or the path of a light beam through an optical 
system For example, ray tracing has been used by Roberts [ROBE72] to predict 
acoustical ray paths m the atmosphere, by Maxwell [MAXW86] to calculate the 
radiation configuration factor between two surfaces, and by Higdon [HIGD74] to 
determine the path of a light beam  through a system of reflecting and refracting 
optical elements, as an aid m the design of such systems

2.2 The B asic A lgorithm
Fig 2 1 illustrates the basic idea behind lay tracing an image of some scene For 
each pixel, a ray is cast through the pixel and into the scene The first object 
struck by the ray while “tracing” along it is the visible one for that pixel The 
surface normal at the ray-surface intersection point is then calculated which, along 
with the position of the light source, is used to calculate the colour of the pixel 
The process can be subdivided into three distinct operations, ray generation, ray 
intersection and shading

R A Y  G E N E R A T IO N  The ray can be conveniently represented as a line in 3D 
space, usually defined m param etric form as a point { X Q, Y0, Z0), and a direction 
vector (£)x, Z>y, D z) Given this form, the points on the line are ordered and 
accessed via a param eter, t Each value of t gives rise to a point ( X j Y , Z )  on the 
line given by -
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X  =  X 0 +  t D x 
Y  =  Y0 +  t D y
Z  =  Z0 +  t D z (2 1)

Tracing a  ray through a  scene of objects

figure 2 1

Positive, increasing values of t give points on the ray that are increasingly 
further from the point ( X q,Y q, Z q) m the direction of the ray, while decreasing 
negative values give points that are increasingly further from it m the opposite 
direction

For a parallel view defined by a direction vector (D X1 D y, D z), the equation 
of a ray through a pixel (Xv,y v) is defined by the point ( X V,Y V, 0) and the 
direction (D x, D y, D z), fig 2 2

Rav ecu at ion

x -  Xv ♦ tDx 

Y -  Yv ♦ toy 

2 - 0 ♦ tDz

figure 2 2 Ray equation for a  parallel view
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Similarly, for a perspective \iew  defined by a viewing point at (Vx , Vz), 
the equation of a ray is derived from the point ( X V1YV, 0) and the direction 
( X - V x l Y ~ V y, - V x)y fig 2 3

Rav equation 

X -  Vx + t(Xv Vx)

Y - Vy + L(Yv Vy)

Z - (1 t)Vz

f i g u r e  2  3  Ray equation lor a  perspective view

Once in this form (a point and a direction) the ray is then passed to the ray 
intersection stage where the closest object of intersection with the ray (if any) is 
determined

R A Y  IN T E R S E C T IO N  Finding the closest object of intersection with a 
ray involves checking the ray for intersection with every object in the scene by 
determining if there is a value of t for which (X , Y, Z)  m equation 2 1 lies on 
the object In trying to find a solution for t, there are three possible outcomes, 
which are outlined m table 2 1 below and illustrated m fig 2 4 -

O U T C O M E I N T E R P R E T A T I O N E X A M P L E

n o  s o l u t i o n  f o r  t n o  i n t e r s e c t i o n  w i t h  
o b j e c t

o b j e c t  A  i n  
f x g l  4

t  i s  n e g a t i v e / z e r o i n t e r s e c t i o n  b e h i n d / a t  
t h e  p o m t  ( X 0 , Y 0 )Z 0 )

o b j e c t  B  i n  
f i g 2  4

t  i s  p o s i t i v e i n t e r s e c t i o n  m  r a y  
d i r e c t i o n

o b j e c t  C  i n  
f i g 2  4

T A B L E  2 1
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Three possible outcom es of a  ray- object intersection test, 

represented by objects A B and C

figure 2 4

Having solved for t for each object m the scene, the object with the lowest 
positive value of t is the first object struck by the ray, since t is a measure of the 
distance of the point of intersection from the ray origin ( X 0j 1q, Zq) Substituting 
this value for t into equation 2 1 gives the actual point of intersection between 
the ray and the object, which can then be used to calculate the surface normal 
at th a t point for use m the shading calculation

The m athem atics of the intersection test will depend on the object repre
sentation scheme in use To date, algorithms have been developed for a large 
variety of object representations such as polygonal objects [HECK84], algebraic 
surfaces [HANR83], param etric patches [KAJI83B], sterner patches [SEDE84], 
param etric surfaces [TOTH85], objects defined by sweeping a sphere [VANW84], 
superquadric sohds [EDWA82], fractals [KAJI83A] & [BOUV85] and volume den
sities [KAJI84], as well as objects defined using a CSG (Constructive Soild Ge
ometry) representation, [ROTH82] [YOUS86] and [ARNA87]

Since the determ ination of the closest object of intersection with a ray is 
based on a uniform test (a value for t in equation 2 1),  regardless of object rep
resentation, different object representation schemes can be mixed m the same 
scene All th a t is required is that an appropriate intersection algorithm be incor
porated into the raytracer for each different object lepresentauon scheme The 
ray m tersector then proceeds through the list of objects in the scene calling the 
appropriate intersection algorithm for each object (which will return a value of t 
for the object) and selects the object with the smallest positive t value as ou t
lined above The other components of the rayt racer, the ray generator and the 
shader remain unaffected since the former merely fires rays into the scene while 
the la tter simply requires a point of intersection, a surface norm al and surface 
details such as colour, to determine the shade of a pixel

T H E  S H A D E R  The shader makes use of the surface normal and the char
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acteristics of the intersected object (such as colour) to determine the colour and 
intensity of the pixel, in accordance with the lighting model being used If several 
light sources are in use, the shading calculation is performed separately for each 
one to determine its contribution to the overall intensity If required, the inten
sity of the light reaching the point of intersection can be attenuated  in proportion 
to its distance from the light source However, if the ray did not intersect any 
object, or if all intersections were behind the the ray origin ( X 0 lYQ, Z0), (i e 
only negative values of t were found) the pixel is set to some background colour
i

2.3 A dding To The A lgorithm
The ray tracing algorithm as outlined above will manage to produce screen images 
containing objects that have hidden surfaces removed and th a t are locally shaded 
(z e the shade of any point on the object depends solely on the orientation of 
the surface normal at tha t point with respect to the viewer and the light source, 
and is independent of the overall context of the object in the scene) A much 
greater degree of realism can be achieved however, by adding to the algorithm  the 
capability to calculate shadows, to deal with reflecting and /o r refracting objects 
and to perform antialiasing The first two are incorporated by generating what 
are called secondary rays, while the third calls for the generation of additional 
primary rays1

2.3.1 Shadows

A point on an object is said to lie in shadow with respect to a light source if 
the point can be seen from the viewpoint but not from the light source Having 
calculated the point of intersection of a primary ray with an object, it is possible 
to determine if the point lies in shadow by casting a ray from the point to the 
light source (if there is more than one source, a ray is cast from the intersection 
point to each one) If this ray intersects any opaque object m the scene, then the 
point lies m shadow with respect to the light source, otherwise it does not

In testing this “shadow” ray for intersection with objects it is possible to 
take advantage of the fact th a t we are not interested in finding the closest object of 
intersection with the ray, only if the ray strikes any opaque object Consequently, 
as soon as the ray intersects an object which is not transparent, no further objects

* A  p r i m a r y  r a y  i s  o n e  t h a t  o r i g i n a t e s  a t  t h e  v i e w p o i n t  a n d  p a s s e s  t h r o u g h  a  p i x e l  o n  t h e  
s c r e e n ,  w h i l e  a  s e c o n d a r y  r a y  i s  o n e  t h a t  o r i g i n a t e s  f r o m  s o m e  p o i n t  o n  a n  o b j e c t  i n  t h e  s c e n e
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need be tested since the point then lies in shadow. If the ray strikes a transparent 
object however, the test must proceed, though the intensity of the light from the 
source can be reduced, if desired, to take account of the attenuating effect of the 
object on the light intensity.

In tracing the shadow ray back to the light source, the ray is not refracted 
as it passes through a transparent object (section 2.3.2  discusses refraction), the 
reason being that it is not possible to directly calculate the equation of the ray 
from the light source which, when refracted will pass through the intersection 
point of object A in fig 2.5. Instead the shadow ray equation must be taken to be 
a straight line between the point and.the light source, which as the figure shows, 
can sometimes give erroneous results.

2.3.2  R eflection  and R efraction

Just as surfaces exhibit specular and diffuse reflection of light (section 1 .7 .2 ), so 
too can they exhibit specular and diffuse transmittance. Specular transm ittance 
occurs in transparent materials such as glass, where light can pass through the 
m aterial but is usually refracted, while diffuse transm ittance occurs in translucent 
materials such as frosted glass where, although the light can pass through, it gets 
“scrambled” by the rough surface, with the result th a t objects seen through such 
a material are blurred.

Conventional hidden surface algorithms model transparent objects by ig
noring refraction and shading them as a weighted sum of the individual shades 
calculated for the object itself and the object behind it. However, from fig 2.6
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it can be seen th a t this can sometimes lead to the wrong object being shown 
through the transparent one

object B -

Failure to account for refraction m eans that object A instead 

of B is seen  through the transparent object

figure 2 6

Turner W hitted [WHIT80] introduced a lighting model based on earlier 
ray tracing work by Appel [APPE68] that models refraction of light rather than  
attem pt to  simulate its effects The model also incorporates global illumination 
information in shading an object, i e it takes account of the effects of objects 
acting as secondary light sources and of objects being reflected in other objects

The model proposes that on striking an object a ray be spht up into its 
specularly reflected and transm itted rays Each of these two component rays are 
then traced through the scene If either ray strikes another object, it in tu rn  
is subdivided into its two component rays, which are then traced In this way, 
a binary tree is recursively generated which contains a record of the light rays 
reflected from and refracted through other objects which contribute to the colour 
of the light reaching the viewer along the direction of the original primary ray, 
fig 2 7

In creating the tree, the ray intersection algorithm is called recursively until 
either all branches in the tree aie term inated, or the tree reaches some predefined 
maximum depth The latter case is to safeguard against a situation where two 
objects may be aligned such that the tree has infinite depth Alternatively, the 
tree can be dynamically pruned by taking account of the attenuating effect of 
distance and of transparent objects on light, and stopping when it is such that 
the intensity has been reduced to a level where it is too low to make a notable 
contribution

Once created, the tree is passed to the shader which, starting with the leaf 
nodes calculates the contribution of each to the colour and intensity of the parent
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figure 2  7  Shade tree grown from a single primary ray

node, ending with the root node, which represents the colour of the pixel

2.3.3 A nt i A lias ing

Aliasing is a “noise” effect th a t manifests itself in graphics images as a result 
of attem pting to display an object, which is continuous, on a screen which is 

- n o t '— it consists of a grid of points/pixels The problem of aliasing m com
puter shaded images is addressed by Crow m [CROW77B], and a comparison of 
antialiasing techniques (methods of removmg/reducmg aliasing effects) can be 
found in [CR0W81] Ray tracing, being essentially a point sampling technique, 
is quite prone to the effects of aliasing but, as discussed below, the ray tracing al
gorithm  can be adjusted to incorporate techniques th a t will reduce its damaging 
effect on picture quality

T h e  P ro b le m  Ray tracing has a tendency to suffer from aliasing by virtue of 
the fact th a t it produces an image of a 3D model by sampling the model (through 
the use of rays) only at a specific number of points (the pixels on the screen) For 
each pixel, a ray is cast through the pixel into the scene to determine a colour 
for the pixel Part of the problem of aliasing, fig 2  8, lies in the fact that the ray, 
being represented as a m athem atical line, has no thickness or area whereas the 
pixel does have a physical (though very small) area on the screen

Thus, a ray only allows us to sample one point of a pixel and there is no 
way of calculating what else is visible in the area of j>he pixel around this point 
Consequently, the pixel in fig 2 8 would be shaded red by virtue of the fact th a t 
the ray, when fired through the centre of the pixel, strikes the red object This 
is despite the fact th a t the blue object covers as much of the pixel area as the
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Tracing just a  single ray per pixel can result in aliasing 

in the final image.

figure 2.8

red one. To avoid the aliasing produced by such a situation, the pixel should 
be shaded as the sum of the two object colours, weighted by the area of the 
pixel which each covers, a process known as area sampling a pixel. Despite the 
fact th a t ray tracing is essentially a point sampling technique, area sampling can 
be approximated by sampling the scene at more than one point on a pixel, as 
outlined below.

T h e  S o lu tio n  One solution is to use a technique known as oversampling, 
whereby more than one ray is cast through each pixel, allowing more than  just a 
single point on the pixel to be sampled. The colour for the pixel is then calculated 
as the average colour of the values obtained for all the rays cast through the pixel. 
However, for a screen resolution of 500 x 500 pixels, casting N  rays per pixel 
instead of one requires generating ( N  — 1) x 250000 extra rays which, while 
reducing the effects of aliasing increases the cost, computationally, of generating 
the image.

A more economical approach however, fig 2.9 , is to approximate a pixel 
as a rectangular area on the screen and to cast rays through the corners of the 
pixels instead of the centre. Then, since every pixel shares several of its rays 
with neighboring pixels, only (500 -f 1) x (500 +  1) rays are required to fire four 
rays through each pixel, which amounts to casting 1001 additional rays instead 
of 750,000.

If the intensities calculated at the four points have nearly equal values, then 
it is reasonable to assume th a t the average of the four values represents a good 
approximation to the intensity over the entire pixel region. If however the inten
sities differ by more than some threshold percentage, the pixel area is subdivided 
and new rays generated to probe the subregions of the pixel. This process is 
recursively repeated until a satisfactory degree of detail has been discovered for
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Tractng rays through th e  corners of pixels m eans that 

adjacent pixels can sh are  information

figure 2 9

the pixel, [WHIT80] The intensity of the pixel is then calculated as sum of the 
intensities calculated for each of the subregions, weighted by their area

Even with this la tter approach, aliasing can still manifest itself m certain sit
uations According to Mitchell [MITC87] however, non-uniform sampling yields 
aliasing th a t is less conspicuous to the viewer than th a t yielded by uniform sam
pling (such as the method above) He therefore presents an algorithm  for fast 
generation of non-uniform sampling patterns th a t are optim al in some sense 
Another method, called distributed ray tracing and outlined by Cook, Porter 
and Carpenter [PORT84], also distributes the rays non-uniformly over the pixel, 
thereby overcoming the aliasing of uniform sampling As outlined m section 2 5 1, 
this technique also has the added advantage of distributing the rays m such a 
way as to be able to model such effects as motion blur, depth of field, penumbras 
and fuzzy reflections

In another approach by Amanatides, [AMAN84], the concept of Cone Trac
ing is outlined, whereby the definition of a ray is extended into a cone by including 
information on the spread angle and virtual origin of the ray Unhke a ray, a cone 
has thickness and consequently does not intersect an object at a point, bu t over 
an area, allowing area sampling of a pixel to be performed, (see section 2 5 3 for 
a further discussion)

2.4 Speeding Things Up
The major drawback of ray tracing is tha t due to the large com putational cost 
of generating images, rendering times are usually measured m hours rather than 
minutes According to W hit ted [WHIT80] 75% of the time taken to render lm-
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ages is taken up with calculating the intersection of rays with objects This figure 
can rise to 95% and higher for complex scenes The reason for this is the sheer 
quantity of rays involved, together with the fact tha t each ray is tested for in
tersection with every object m the scene For example generating a 512 X 512 
resolution image of a scene consisting of say 100 polygons, with ju st a single ray 
per pixel, requires 262144 rays and over 26 million ray polygon intersection tests 
If shadows, multiple light sources and reflection/refraction are also incorporated, 
the number of rays can go up by an order of m agnitude Given th a t a scene of 
even m oderate complexity would contain seveial thousand polygons, it is clear 
th a t there is a great need for optimization

One approach to the problem is to try  to reduce the number of lay-object 
intersection tests, by selecting from the entire set of objects m the scene, a small 
subset of high probability candidates against which to test the ray for intersection 
This can be achieved through the use of any of the following techniques, which 
are discussed m the sections below -

[ ] Object bounding volumes 
[ ] Space subdivision 
[ ] Exploiting image coherence

2.4.1 B ounding V olum es

The use of bounding volumes aims at reducing the number of computationally 
expensive ray-object intersection calculations by enclosing each object in a vol
ume, called a bounding volume ( e g  a sphere), which is less expensive to test 
for intersection than the object, fig 2 10 Then, only if the ray intersects the 
bounding volume, is it tested for intersection with the object inside

T y p e s  To date, several different types of bounding volume have been used, 
with cylinders, spheres, and rectangular parallelepipes being the most common 
However, various other types have also been used For example, Kay [KAY84] 
bounds objects with parallelopipeds constructed of planes, Kajiya [KAJI83A] 
uses probabilistic extents to surround procedurally defined fractals and Bouville 
[BOUV85] compares ellipsoids, spherical triangles (the volume defined by the 
intersection of a sphere and a triangle) and triangular prisms as bounding volumes 
m tracing fractals
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Object with rectangular and circular bounding volumes

figure 2 10

C h a ra c te r is tic s  In order to to get maximum benefit from bounding volumes, 
it is im portant th a t they should tightly enclose the object (z e there should be 
as little empty space between the object and the bounding volume as possible) 
since, the tighter the fit, the greater the percentage of rays that do not intersect 
the object will fail the bounding volume intersection test

However, the computational cost of testing a ray for intersection with a 
bounding volume is also another im portant factor in their use, since it would be 
pointless to have a tight fit if the intersection test were as costly as the object 
intersection test itself It is often the case that a more complex bounding volume 
will enclose an object more tightly than a simple one, but will be moie expensive 
to test for intersection Since some objects in a scene will be more expensive to 
test for intersection than others, this may prove an acceptable trade off for those 
objects, as the relative cost of the bounding volume intersection test is less

The to tal cost function for an object is given by Weghorst [WEGH84] as -

C  =  b B  +  i I

where

C is the to tal cost

b  is the number of times the bounding vol
ume is tested for intersection

B is the cost of testing the bounding volume 
for intersection
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1 is the number of times the object is tested 
for intersection

I  is the cost of testing the object for inter
section

The idea is to minimize this function for all objects m the scene For any 
given item  with a given view, b and /  are constant However, by selecting a less 
complex bounding volume, B  can be reduced Unfortunately, this is likely to 
lead to an increase in i Similarly, increasing the complexity decreases i bu t is 
likely to lead to  an increase m B Neither approach is guaranteed to decrease the 
overall cost function C, though there will usually be some optim al solution

The tightness of fit of a bounding volume is often a function of direction 
i e it will not enclose the object tightly on all sides, or, pu t another way, the 
projected void area2 will vary for diffeient directions The result of this is th a t a 
bounding volume which results in a small void area for one direction may not do 
so for all directions This can make the choice of the optim al bounding volume 
difficult at times, as can be seen from fig 2 11a , where the void area between the 
spherical bounding volume and the object (a wheel) is zero, while th a t of the 
rectangular one and the same object is not For a different direction however, 
fig 2 lib., the situation is reversed Thus, the sphere provides a better fitting 
bounding volume for rays coming from one direction, while the rectangular block 
provides a better fit for rays coming from a different direction

S elec tion  As mentioned earlier, the two principle criteria of bounding volume 
selection are tightness of fit (which can be measured as the projected void area 
and can vary for different ray directions) and simplicity of intersection testing 
Unfortunately, the two are generally m conflict with each other m the sense that 
a gam m one is usually achieved at the expense of the other This conflict can 
make the optim al choice of bounding volume for a particular object quite difficult 
at times At one end of the scale, the selection can be based primarily on the 
tightness of fit (withm the bounds of the intersection test expense not exceeding 
that of the object it encloses) For example, Kay and Kajiya [KAY84] have 
implemented a bounding volume that can be made to fit convex hulls arbitrarily 
tightly, at the expense of a more costly intersection test At the other end of the 
scale, the selection can be based mainly on the simplicity of the intersection test 
without worrying about a tight fit Such is the case in W hitted [WHIT80] who

2The projected void area for a particular direction is the difference m the projected areas of 
the bounding volume and the object when orthogonally projected onto a plane perpendicular 
to the direction m question
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rectangular and spherical

(a)

(b)

Wheel with rectangular and spherical bounding volumes from two 

different viewing angles (a ) and (b)

figure 211

uses spheres to bound all objects, since the complexity of the intersection test is 
relatively low and is uniform for all ray directions

Weghorst et al [WEGH84] however, adopts an interm ediate approach The 
bounding volume for each object is optimally selected from a set of three differ
ently shaped volumes, a sphere, a rectangular parallelepiped and a cylinder, each 
of which has associated with it a factor th a t is indicative of the relative com
plexity of its own intersection test compared to th a t of the other two (the sphere 
has the lowest factor and the cylinder the highest) For each object, a bounding 
volume of each type is generated that encloses the object, and the one with the 
least product of volume and complexity factor is selected An interactive program 
allows the selected bounding volume to be manually overridden to compensate 
for the fact th a t the cost of the object intersection test is not taken into account 
m the selection process Weghorst gives tabulated results of image generation 
times of several test images using these selected bounding volumes, comparing 
them  with those taken to generate the same images using only spherical bounding 
volumes (times for other combinations of speedup techniques are also given) In

spherical 8 V 
fits exactly 
no void area

rectangular B V 
contain« void area.

rectangular and spherical 
bounding volumes from
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each case, the generation times for the selected bounding volumes are less than 
those using only the spherical bounding volumes, with the time saving varying 
from 49% to 10%, depending on the image

E X T E N T S  An extent could be loosely defined as a two dimensional bounding 
volume in screen space (as opposed to object space) For example, if all bounding 
volumes are projected onto the screen using the same viewing param eters as for 
the ray tracing, the “ray intersects bounding volume test” can be reduced to a 
point in rectangle test i e to test if a prim ary ray intersects an objects bound
ing volume, we simply check if the pixel spawning the ray lies inside the screen 
rectangle enclosing the projection of the bounding volume on the screen, fig 2 12 
Despite this less costly mtersecrion test, extents have the lim itation th a t they 
cannot be applied to secondary rays, since these rays are not constrained to pass 
through the screen However, they are relatively simple and inexpensive to im
plement and have been used successfully by Roth [ROTH82] m ray tracing objects 
defined by a CSG (Constructive Soild Geometry) representation, section 3 3

Calculation of an o b jects sereen extent from its  projected 

bounding volume

figure 2 12

H IE R A R C H Y  Having enclosed each object in a scene in a bounding volume of 
some sort, finding the object of closest intersection with a ray still involves having 
to test each bounding volume for intersection with the ray (and if it intersects, 
with the object mside) However, enclosing several bounding volumes inside a 
larger bounding volume means that the ray can first be tested for intersection 
with the outer bounding volume Then, if the ray misses this bounding volume, 
it does not have to be tested with any of the bounding volumes inside In turn, 
several of these outer bounding volumes can be enclosed in a still larger bounding 
volume and so on In this way, a hierarchy of bounding volumes can be built
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up in the form of a tree, where the leaf nodes consist of the object bounding 
volumes and the interm ediate nodes consist of bounding volumes th a t enclose 
the bounding volumes of of their respective subtrees, fig 2 13 The root node 
then consists of a volume th a t encloses the entire scene and, finding the object of 
closest intersection with a ray involves descending the tree structure from the root 
node, recursively processing the subtrees of any node whose bounding volume is 
intersected At each level, those branches not intersected by the ray are pruned 
from the search Additionally, if an object is intersected, those branches of the 
tree whose bounding volumes he behind the point of intersection can also be 
pruned, a process known as dynamic tree pruning

A bounding volume hierarchy and its tree  structured representation

figure 2 13

In the limit, as advocated by Rubm and W hitted [RUBI80], the leaf nodes 
themselves can be bounding volumes, m which case the scene can be represented 
entirely by bounding volumes, with no other form of representation The bound
ing volumes used by Rubm consist of parallelepipeds orientated to minimize their 
size Such a structure allows any surface to be rendered since, m the limit, the 
bounding volumes make up a point representation of the object The visibility 
calculations then consist only of a search through the structure to determine the 
correspondence between the terminal level bounding volumes and the current 
pixel The mam advantage of such a representation is tha t the viewing process 
has only a single operation (the search through the structure) and a single prim 
itive type (a bounding volume), which allows the search to be highly optimized 
and makes it a suitable candidate for a hardware implementation

Extents can also be built up into a hierarchy Roth [ROTH82] for example 
uses a hierarchy of extents to enclose objects defined using a CSG representation, 
where the extents are embedded m the object definition tree itself and are used 
to prune non-intersected branches from the intersection test, section 3 3 6
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The creation of a bounding volume hierarchy is a non-tnvial operation, 
-since overlapping of object bounding volumes m space should be minimal and the 
tree should be balanced and organized in such a way as to reflect the geometric 
distribution m space of the objects in the scene [JANS85] A poorly structured 
tree will probably take less effort to construct than a well structured one, but 
is also likely to  result m a longer rendering time for the image For this reason, 
Rubin and W hitted [RUBI80] use a program th a t allows a user to interactively 
built up a hierarchy for a scene, though they also make several proposals for 
autom ating the process Weghorst [WEGH84] also uses a hierarchy, defined by 
the user during modelling, and produces tabulated generation times for several 
test images using various combinations of spherical bounding volumes, selected 
bounding volumes, hierarchy, and a visible surface preprocess (see section 2 ^ 5 )  
In each case, the use of a hierarchical structure reduces the time required to 
render an image, with improvements varying from 14% to 21%, depending on the 
image However, the structure of manually generated hierarchies can sometimes 
be poor, hence Goldsmith and Salmon [GOLD86] have proposed a method for 
the autom atic creation of such hierarchies

2.4.2 Space Subdivision

In contrast to the above bounding volume approach to reducing ray object in
tersection tests, which is an object orientated approach, the space subdivision 
approach, as the name might suggest, is space orientated The general idea is 
tha t the 3D space m which the objects are contained is divided into a number 
of 3D cells Associated with each cell is a hst of all objects either completely 
or partly contained in the cell Then, given th a t a ray enters a particular cell, 
only the objects contained m the object hst for that cell need to be tested for 
intersection Assuming that the cells are checked in the order m which the ray 
will enter them, the search can be term inated as soon as the closest object of 
intersection has been found for the first cell m which an intersection occurs In 
contrast to a hierarchical bounding volume scheme, which functions better when 
objects can be grouped into close clusters, the above scheme is better suited to a 
situation where all objects are uniformly distributed over the entire object space

Cells in a space subdivision scheme differ from bounding volumes m th a t a 
cell may sometimes contain only part of an object, which can lead to a particular 
object being associated with more than one cell In contrast to this, an object is 
never only partly enclosed by a bounding volume Another significant difference 
is the fact tha t the total sum of the volumes of all of the cells represents the 
entire 3D space enclosing the scene without duplication, whereas, the sum of the
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volumes of all of the object enclosing bounding volumes does not

In subdividing the object space into cells, several different techniques can be 
used, the principle ones of which are listed below m order of increasing complexity 
and illustrated m fig 2 14

[ ] Uniform subdivision 
[ ] fixed adaptive subdivision 
[ ] unequal adaptive subdivision

Uniform

(a )

Fixed adaptive 

(b)
Unequal adaptive 

(c )

figure 2 14 S pace subdivision techniques

U N IF O R M  S U B D IV IS IO N  This is the simplest type of cell structure, m 
which the space is divided into a three dimensional rectangular grid of cells of 
equal size, fig 2 Ha,  and is best suited to a situation where the objects are fairly 
uniformly scattered through the scene A ray can be propagated from one cell 
to the next by extending the Digital Differential Analyzer [NEWM79] (a method 
for generating lmes on a 2D raster grid) to three dimensions, a technique used 
by Fujimoto [FUJI86]

An im portant param eter of the division is the number of cells to use If too 
few are used, the technique degenerates to the basic tracing algorithm since the 
size of the cells will be large, as will the number of objects associated with each 
If on the other hand, too many cells are used then too much time will be wasted 
propagating the ray through a large number of mostly empty cells Measure
ments by Fujimoto indicate that for most scenes, the num ber of ray intersection 
calculations decreases quadratically as the number of cells m a uniform subdi
vision increases Since the time taken to propagate the rays increases linearly, 
optim al performance should occur where the sum of these two curves is rmn-
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lmised However, this optimal number is also heavily dependent on the extent 
and distribution of objects withm the scene

F IX E D  A D A P T IV E  S U B D IV IS IO N  The uniform subdivision technique 
has the disadvantage that in a situation where the objects in a scene are unequally 
distributed throughout the scene, some cells will have a large number of objects 
associated with them, resulting m a costly ray propagation through those cells 
Fixed adaptive subdivision, fig 2  14b, attem pts to overcome this drawback by 

'defining a maximum number of objects that can be contained m a single cell If 
this maximum is exceeded for any cell, the cell is subdivided into a fixed number 
of smaller equally sized cells, and the objects redistributed among them  The 
cost of this optimization however, is th a t it is more costly to propagate a ray 
from one cell to the next for this scheme than for uniform division

A common m ethod of implementing a fixed adaptive subdivsion scheme is to 
use an octree structure to represent the cells since, an obvious way to subdivide a 
cell is to divide it equally m two along each of the Y  and Z  axes, giving rise to 
eight equal subcells The ray can then be then be propagated from one cell to the 
next by by traversing the octree structure, with the object data  being accessed 
via the leaves of the tree An alternative means of propagation is by a directory 
index method whereby, an address computation is performed on the basis of the 
coordinates of a particular point and followed by a lookup in a directory table 
called a spatial index

U N E Q U A L  A D A P T IV E  S U B D IV IS IO N  In the fixed adaptive subdivi
sion scheme outlined above, a cell which exceeds the allowed maximum number 
of objects, is subdivided by placing a partition m the middle of each of the X , 
Y  and Z  axes, giving rise to eight equal subcells The unequal adaptive subdi
vision scheme however provides a more flexible subdivision, by allowing multiple 
partitions at arbitrary positions along any of the three axes, fig 2 14c Due to 
this flexibility of partitioning, less space is required to represent an object, since 
the partitions can be placed so as to minimize the number of subcells This is 
achieved however at the cost of an even more expensive ray propagation scheme 
than for fixed adaptive subdivision

Dippe and Swensen [DIPP84] have implemented such a subdivision scheme 
by using a fixed number of arbitrarily shaped tetrahedral cells, each adapted 
in size to contain an equal distribution of objects over all of the cells This 
structure is then used to distribute the ray tracing load over a fixed number of 
parallel processors A similar scheme is also employed by Nemoto [NEM086], 
using orthogonal parallelepipeds for cells
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2.4 .3  C oherence

Another approach to reducing the time taken to ray trace a scene is to exploit the 
similarity of the intersection trees generated by successive rays Such similarity, 
or coherence (the extent to which a scene or a picture of it is locally constant) has 
often been used m traditional rendering algorithms W ith regard to ray tracing, 
it has been noted by Heckbert [HECK84] that in many scenes, groups of rays 
follow virtually the same path  from the eye Therefore, instead of discarding the 
ray intersection tree for a pixel (section 2 3 2) as soon as the shader has used it 
to calculate the intensity of the pixel, the tree is retained and used to predict the 
ray paths for the next pixel

Verroust [VERR85] for example, takes into account the coherence of an 
image to reduce the number of rays fired as part of a hidden surface removal 
algorithm th a t produces wire frame pictures of CSG models In ray tracing para
metric surface patches, Joy [JOY86] also utilizes coherence by using numerical 
information from adjoining rays as initial approximations to a quasi-Newton it
eration employed to solve ray-surface intersections As a result, a significant 
number of ray-surface intersections can be found using much fewer iterations, 
resulting in a significant computational saving PORTRAY, an image synthesis 
system that uses ray tracing to produce realistic images [PEAC86], also employs 
coherence by means of a technique of exploiting bounding volume coherence

Speer [SPEE85] examines the theoretical and empirical performance of a 
coherent ray tracing algorithm that exploits the similarity of the intersection 
trees generated by successive rays However, his results show that the overhead 
of ensuring the validity of ray-object intersections prevents any significant com
putational savings, even in a scene where there is a large degree of coherence 
The need for such validation can be seen from fig 2 15, where the current ray 
intersects the closest object intersected by the previous ray, but also intersects a 
closer intervening object missed by the previous ray As a result of such cases, 
when a ray intersects the same object as a previous ray, it cannot be safely as
sumed th a t this is also the closest object of intersection for the ray Consequently, 
some of the benefits of coherence are lost in checking to see if a closer object is 
intersected, tha t was not intersected by the previous ray

2.4 .4  Parallel A lgorithm s

As mentioned earlier, the majority of the time taken to ray trace most images is 
taken up with ray-object intersection testing Most of the optimizing techniques
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Current ray intersects object hit by previous ray but also stnkes 

an interveamng object

figure 2 15

outlined above address the problem by trying to reduce the number of objects 
against which a ray must be tested Another approach however, is to reahze that 
most of these calculations can be carried out independently of each other and 
hence can be performed simultaneously on different processors

Perhaps the simplest and most extravagant approach to parallel ray tracing 
would be to independently run the ray tracer on several machines, with each 
machine calculating a different part of the final screen image The image files 
generated on each machine could then be collected and amalgamated to form a 
final image The reduction m the time taken to ray trace an image would then be 
directly proportional to the number of machines available This approach how
ever, while simple and effective, is extremely wasteful of the available resources, 
since each machine must have its own copy of the ray tracer and scene, resulting 
in multiple duplication of information

Another approach is to perform the ray-object intersection tests in parallel 
by dividing the list of objects against which a ray must be tested among the avail
able processors This is the approach used by Nemoto who presents an adaptive 
subdivision algorithm for fast ray tracing which has been implemented on a par
allel architecture consisting of a three dimensional computer array, [NEM086] 
The algorithm involves dividing the object space into as many subregions as there 
axe computers and adaptively sliding the boundary surfaces of the subregions so 
that processor loads are uniformly distributed, thereby overcoming the problem 
of load concentration on a particular processor

A different parallel algorithm, developed and implemented by Deguchi on a 
distributed parallel processing system, uses a hierarchical tree structured archi
tecture instead of the 3D array architecture used by Nemoto The hierarchical 
tree-structured image generation system and its parallel processing mechanisms,
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such as da ta  transfer and hierarchical load distribution schemes are outlined in
[DEGU86].

Cleary [CLEA83] outlines a multiprocessor algorithm for ray tracing and 
analyses its performance for a cubic and a square array of processors with only 
local communication between near neighbors. Theoretical expressions for the 
speedup of the system for both configurations are supported by simulations for 
several scenes and indicate th a t a square array of processors generally performs 
better than a cubic one.

In contrast to the above algorithms, which use multiple processors to achieve 
parallelism, Plunket [PLUN85] implements a vectorized ray tracing algorithm 
th a t takes advantage of the full power of the CYBER 205 supercomputer to trace 
rays in parallel on a single processor. Instead of tracing each ray immediately, the 
ray is placed in a ray queue. When this queue becomes full, the vector processor 
of the CYBER 205 fires all rays in the queue at once. The ray tracing program 
then goes back and uses the results where they were originally requested. This 
retooling of the algorithm results in significant speed increases in ray tracing 
times.

2.4.5 O ther Speedups

H a rd w a re  In addition to the various strategies outlined above, several other 
“miscellaneous” approaches that do not easily fit into any of the above categories 
have also been developed. One such approach is th a t by Pulleyblank [PULL87], 
who examines the feasibility of a VLSI chip for calculating the intersection of 
a ray with a bicubic patch to a specified level of accuracy. Estim ates indicate 
th a t such a chip could compute ray-patch intersections at a rate of one every 
15 ms. Images drawn using a software version of the intersection algorithm are 
also presented.

P re p ro c e s s  An optimization th a t does not rely on hardware is tha t by Weghorst 
[WEGH84] who uses a visible surface preprocess to the raytracing algorithm to 
reduce rendering time. The preprocess involves projecting all objects onto the 
image plane (using the same viewing parameters as for the ray tracing) and cre
ating an object list for each pixel, containing all objects that projected onto all or 
part of the pixel. Finding the closest object of intersection for a prim ary ray (one 
that passes through a pixel) simply involves testing the objects in the associated 
list for the pixel concerned. The idea, can be taken a stage further by applying a 
conventional hidden surface algorithm as part of the preprocess (Weghorst uses
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a modification of the z-buffer algorithm, section 1 7 1 )  to determine, and store 
in an item buffer, the closest object for each pixel The ray tracing process can 
then replace the ray-object intersection test for pum ary rays with an index into 
the item  buffer, while using the usual ray tracing m ethod for secondary rays 
The technique is aimed at reducing the cost of the intersection for prim ary rays 
only, and so may not work as well for very reflective/refractive scenes where the 
proportion of secondary rays is higher

S tep w ise  R e fin e m e n t A different approach by Bronsvoort [BRON84] uses 
a m ethod of stepwise refinement of the image by subdivision and aims at re
ducing the cost of rendering an image by reducing the number of pixels whose 
intensities have to be explicitly calculated The algorithm  is based on ideas from 
Roth [ROTH82] for sparce sampling of images and from W hitted [WHIT80] for 
antialiasing images It starts by dividing the screen into squares consisting of 
groups of pixels ( e g  8 x 8  pixels) Rays are then traced through pixels in 
the lower corners of the squares in the usual manner, with all other pixels m 
a square being set to the intensity calculated for the corner pixel The image 
obtained is a coarse approximation to the final image The image is then refined 
by subdividing the squares into 4 equal subsquares and repeating the process for 
selected subsquares, depending on whether or not the intensity differences with 
surrounding ones are above some threshold value This subdivision process is 
repeated until a final user specified resolution is reached If required the process 
can be continued to sub-pixel level, resulting m an antialiased image The image 
is thus stepwise refined as the user watches on the display

Depending on the coherence of the image, the number of pixels whose in
tensities have to be explicitly calculated with a call to the ray tracing procedure 
can be significantly less than the total number of pixels, resulting in a com puta
tional saving Additional savings can be obtained by dynamically increasing the 
initial threshold value as the resolution of the image is stepwise refined, so that 
at higher resolutions, only areas with a large variance are refined

The optimization has the disadvantage however, th a t silvers may occasion
ally be lost from the final image, due to the fact that many pixel intensities are 
not explicitly calculated, but based on the values of neighboring pixels The per
formance of the algorithm in recovering such detail from a scene is dependent on 
the initial square size and threshold values, which are specified by the user Thus, 
for any image, the user can favor generation time over quahty (or vice versa) by 
appropriately selecting these values
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2.5 Other Ray Tracing A lgorithm s
To date, several different variations of the basic ray tracing algorithm  outlined 
in the previous sections have been implemented These include distributed ray 
tracing [PORT84], which has been used to model effects such as fuzzy shadows, 
motion blur and depth of field, as well as variations th a t trace more than one ray 
at a time, such as beam tracing [HECK84], cone tracing [AMAN84] and pencil 
tracing [SHIN87] Each of these variations are briefly outlined below

2.5.1 D istr ib u ted  R ay Tracing

One of the limitations of conventional ray tracing is that ray directions are de
termined precisely from geometry, which results in sharp shadows and sharp 
reflections/refractions m the final image However, by distributing the directions 
of the rays according to the analytic function which they sample, ray tracing can 
incorporate fuzzy phenomena, providing correct and easy solutions to previously 
unsolved or partially problems such as motion blur, depth of field, penumbras, 
translucency and fuzzy reflections This form of ray tracing is known as dis
tributed ray tracing, a phrase coined by Porter, Cook and Carpenter [PORT84]

The analytic function will vary depending on which of the effects is being 
modelled For example,

• sampling the reflected ray according to the spec
ular distribution function produces gloss (blurred 
reflection)

• sampling the transm itted ray produces translu
cency (blurred transparency)

• sampling the solid angle of the light sources pro
duces penumbras

• sampling the camera lens area produces depth of 
field

• sampling in time produces motion blur

For example, distributed ray tracing produces penumbras (fuzzy shadows)
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by distributing illumination rays according to an illumination function, L, rather 
than toward a single light direction. Similarly, fuzzy or hazy reflections are 
produced by distributing reflected rays according to a reflectance function R , 
rather than in a single mirror direction. The shade to be displayed at any pixel 
is then a weighted integral of L and R. However, since this integral may be too 
complex to solve analytically, its value is approximated by firing several rays 
through the pixel, distributed so as to sample the integral at various points. Lee 
[LEE85] derives a relationship between the number of sample rays fired and the 
quality of the estim ate of the integral.

While this distributed form of ray tracing requires th a t several rays be fired 
for each pixel, it is argued by Porter [PORT84] th a t the expense is not much 
greater than the oversampling required for antialiasing images (section 2.3.3), and 
th a t distributing the rays instead offers substantial benefits at little additional 
cost.

2.5.2  B eam  Tracing

In conventional ray tracing, infinitesimally thin rays of light are traced through 
the scene. However, in a different approach used by Heckbert and Hanrahan 
[HECK84], areas are swept through a scene to form beams, hence the term  beam 
tracing. The scenes used by the authors consist of planar polygons since, unlike 
the general case of a beam reflecting from a curved surface, the reflected beam 
from a planar one can be approximated by a pyramidal cone, which reduces the 
complexity of the calculations.

The algorithm is similar in principle to a technique developed by Dadoun, 
Kirkpatrick and Walsh [DAD082] to trace sound beams from audio sources to a 
receiver, and can take advantage of the coherence of polygonal scenes by tracing 
coherent rays (rays that follow similar paths) in parallel as a single beam.

2.5.3 C o n e /P en c il Tracing

The problem of conventional ray tracing is th at, being a point sampling technique, 
it is prone to abasing. However, as outlined in section 2.3.3, the effects of aliasing 
can be reduced by sampling a pixel at more than one point. Unfortunately, tracing 
additional rays for each pixel adds to the already high com putational cost of ray 
tracing an image. One way around this problem is to incorporate the idea that 
a pixel represents an area, into the definition of a ray. A ray then becomes a
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pyramid, fig 2 16, with the apex at the eye and the base defined by the four 
planes th a t cut the border of the pixel The intersection calculation between 
such a ray an an object, in addition to determining if there is an intersection, 
calculates the area of intersection with the ray This information can then be 
used as a basis for performing simple area antialiasing

A ray pyramid and its  approximation a s  a  cone

figure 2 16

Given this extended definition of a ray, only a single ray need be cast for 
each pixel However, the intersection calculation between an object and such 
a ray can be quite complex In addition, as the ray is reflected of refracted 
by a curved surface, it can become very distorted, furthering the complexity of 
the intersection calculations Amanatides [AMAN84] addresses this problem by 
approximating the pyramid as a cone Although the intersection calculations can 
still be quite complex, the advantage of such an approximation is that, when 
reflected or refracted, a cone will still represent a good approximation to the 
reflected/refracted components of the original cone

In addition to providing a better means of antialiasing, cone tracing can 
also be used to calculate fuzzy shadows and dull reflections, as well provide as 
a means of calculating the correct level of detail in a texture map Shinya, 
Takahashi and Naito [SHIN87] describe a similar approach, called pencil tracing 
which uses paraxial approximation theory to trace a pencil of rays (rays that 
are near to a given axial ray are called paraxial and said to form a pencil), and 
describes an error analysis m ethod to ensure its accuracy

2.5 ,4  O ther V ariations

R a d io s ity  Another variation used by Wallace, Cohen and Greenberg [WALL87] 
uses a two pass solution to the rendering equation which is a synthesis of radiosity
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and ray tracing methods As mentioned in section 1 7  2, the intensity of hght 
reaching a viewer is composed of diffusely reflected/transm it ted hght and spec
ularly reflected/transm itted light In most ray tracing applications however, the 
diffusely reflected/transm itted contribution from other surfaces in a scene is too 
costly to accurately model and is therefore usually approximated by an ambient 
term  The specularly reflected/transm itted component on the other hand, can 
be approximated using W hitted’s lighting model [WHIT80]

The radiosity m ethod on the other hand, provides a comprehensive method 
of calculating object to object diffuse reflections within complex environments 
containing hidden surfaces and shadows [COHE85] [RUSH86] [SHA088], but 
does not as easily handle the specularly reflected/transm itted component — a 
problem addressed by Rushmeier, [RUSH86] In addition, it has the advantage 
th a t the calculations are independent of the viewpoint, so unlike ray tracing, the 
image does not have to be entirely recalculated if the view-pomt is changed

Combining the two methods should therefore give a more accurate model 
of the lighting effects withm a scene and hence a greater degree of realism in the 
final image The m ethod employed by Wallace involves two passes The first 
is view independent and based on the radiosity algorithm, with extensions to 
include the effects of diffuse transmission The second, which is view dependent 
and based on an alternative-to distributed ray tracing, is used to sample the 
intensities contributing to the specularly reflected or transm itted intensity

In te r re f le c tio n  Rubinstein and Clear [WARD88] outline a raytracing algorithm 
th a t incorporates diffuse interreflection between surfaces with both diffuse and 
specular components A Monte Carlo technique is employed to calculate indirect 
contributions to illuminance a t various locations These indirect illuminance 
values are then averaged over surfaces and used in place of the constant “am bient” 
lighting term

R a y  C la ss ifica tio n  This approach to ray tracing, by Arvo and Kirk [ARV087], 
reduces the number of ray-object and ray-bounds intersection calculations by 
means of 5-dimensional space subdivision Collections of rays originating from 
a common 3D rectangular volume and directed through a 2D solid angle are 
represented as hypercubes in 5-space A 5D volume enclosing the ray space is 
then dynamically subdivided into hypercubes Associated with each hypercube 
is a set of objects which are candidates for intersection Rays are then classified 
into unique hypercubes and tested for intersection with the associated candidate 
set



Chapter 3

R ay Tracing and CSG

While chapter 2  discussed ray tracing m a general context, outlining the general 
algorithm, with its different enhancements, variations and optimization tech
niques, the discussion did not focus in any great detail on any one object rep
resentation scheme This chapter discusses ray tracing in the specific context 
of solid modelling, or more precisely, in the context of a Constructive Solid Ge
ometry (CSG) representation scheme and provides a background setting for the 
research discussion in chapter 4

3.1 Solid M odelling
Solid modelling was born of the need for complete and accessible object-geometry 
information, such as that required for the integration of the design, simulation 
and manufacture phases of engineering products ( e g  an engine part, or even 
a complete engine) Such integration requires th a t any object-geometry infor
m ation ( e g  volume, weight, centre of gravity etc ) required for the simulation 
of the operation of the product, as well as for the m anufacturing process ( e g  
determ ination of machine tool paths), can be extracted from the original object 
representation interactively built up during the design stage

Wire frame, and even polygon representation schemes (section 1 6  2 ), are 
inherently ambiguous and consequently, im portant geometric properties of the 
objects they attem pt to represent cannot be calculated On the other hand, 
solid modelling systems provide unambiguous and informationally complete rep
resentations of rigid solid objects (see [REQU80], [VOEL77] for an introduction)

57
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Some of the more common schemes in use to date are outlined below -

P r im itiv e  In s ta n c in g  This scheme provides families of basic objects such as 
blocks, spheres, cyhnders and cones An object is then represented by its family 
name and param eters specifying its dimensions, orientation and position Such 
a scheme has the advantage of being concise, simple and effective, but is limited 
m the range of objects it can represent

S p a tia l E n u m e ra tio n  In this scheme, an object is represented by a list of 
fixed-sized cubes occupied by the object The smaller the size of the cubes, the 
greater the accuracy with which a given object can be represented but, the larger 
the storage requirement to represent the object However, the use of an octree 
structure, where the object is represented as a hierarchical collection of variable 
sized cubes, can reduce the storage requirements and speed up object processing

Sw eep O p e ra tio n  A sweep operational scheme represents an object by means 
of a primitive object and a trajectory path  The object is defined as the volume 
swept out by moving the primitive along the path Translational and rotational 
sweeps, used in conjunction with a spherical or cyhnderical primitive are among 
the most commonly used

C o n s tru c tiv e  Solid  G e o m e try  As outlined in section 1 6 2, a CSG scheme 
represents an object m terms of compositions of primitive solids th a t are combined 
using boolean set operators (union, intersection and difference) The primitives 
usually used are the block, sphere, cylinder, cone and torus A CSG scheme, com
bined with a primitive instancing scheme to represent primitive objects, provides 
a very elegant and efficient method for representing solid objects

3.2 A n Introduction to  CSG
Constructive solid geometry is becoming the m ethod of choice for a wide range 
of apphcations of engineering design This is in part due to the fact tha t the 
way in which objects are built up using a CSG system, namely through boolean 
operations on primitive and interm ediate solids, reflects the way m which many 
engineering products are actually manufactured For example, the CSG urnon 
and difference operators are the equivalent of the physical operations of welding 
and cutting respectively In addition to this, CSG can be used to provide a means 
of representing solids th a t inherently describes their properties as solids, allowing 
the extraction of information such as contained volumes, masses, m aterial costs, 
and on a more complex scale, changes of shape due to distorting forces and
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machine tool paths for manufacturing purposes

Descriptions of CSG systems are given by Boyse & Gilchrist [BOYS82], who 
describe GMSolid, an interactive modeller for the design and analysis of solids, 
and by Brown [BROW82], who gives a technical summary of a system called 
PADL-2 Requicha & Voelcker [REQU82] present a more general discussion of 
the area however, outlining an historical summary and contem porary assessment 
of solid modelhng, while Myers [M \ER82] views the area from an industrial 
perspective

3.2.1 CSG  R epresen tation
As outhned in section 1 6  2, an object is described in CSG as combinations of 
union, difference and intersection operations on primitive and interm ediate solids, 
fig 3 1 The two most common structures for representing objects defined in such 
a way are a binary tree and a directed acyclic graph (DAG), fig 3 2 In the 
binary tree structure, the leaf nodes represent primitive solids and interm ediate 
nodes represent the interm ediate solids formed by applying the specified operator 
to  the left and right subnodes, with the root node representing the final solid 
In the DAG structure, each vertex of the graph represents either a primitive 
sohd or an interm ediate solid, with a specified vertex representing the final solid 
The DAG structure can, m some cases be more compact than the binary tree 
one, by virtue of the fact tha t the same sub-object can be used many times in 
a description without duplication by having several vertices point to it In the 
binary structure however, a sub-object can be pointed to by only one node (the 
parent one), which means having to duplicate the sub-object

However, both binary tree and DAG structures provide only a means of de
scribing an object In order to render an image of the object, or to extract useful 
information from the structure, most systems convert the structure into a more 
conventional description such as a polygon mesh or boundary patch representa
tion GMSolid (see [BOYS82]) is one such example Roth however, [ROTH82], 
developed a ray tracing technique for rendering objects directly from a binary tree 
structure, w ithout the need to convert to a different representation While there 
has since been several other algorithms developed th a t can do hkewise [YOTJS86] 
[ARNA87], including some based on R oth’s work, [BRON84] [GERV86], all are 
based on a ray tracing approach, which remains to date the only m ethod of 
rendering an image directly from a CSG binary tree or DAG structure
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figure 3 2 CSG and DAG representstions of solids



3.3 R oths CSG Ray Tracing A lgorithm
The general idea behind the technique developed by Roth is essentially the same 
as the ray tracing algorithm outlined in section 2 2  in th a t rays, represented as 
line equations m param etric form, are cast through each screen pixel in order to 
determine the closest object struck by the ray and subsequently, a colour for the 
pixel The difficulty however hes m extracting from the binary tree representation 
of an object, the point of intersection between a ray and the object

In the system developed by Roth, this task is performed by RAYCAST, a 
procedure whose input is a ray and whose output is information about how the 
ray intersects the scene This output takes the form of two hsts, a list of t values 
(see section 2 2, equation 2 1 )  th a t specify the points at which the ray enters and 
exits the solid as it “passes through” it, and a list of surface pointers th a t point 
to the corresponding surfaces through which the ray passes, fig 3 3
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enter/exit t( 1) t (2 ) 1(3) 1(4)
Information

figure 3 3 in/om classification of a  ray by RAYCAST

3.3.1 T hree a lgorithm s in one

Given the information contained m the two hsts, the algorithm  can be modified 
to produce -
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[ ] A line drawing of a solid 
[ ] A shaded image of a solid 
[ ] Calculate the volume of a sohd

L IN E  D R A W IN G  In producing a line drawing of a sohd, we are only m terseted 
in knowing if the surface struck by the ray for a given pixel is different to that 
struck by the ray for the pixel immediately to the left or above it We do not 
therefore need to know the exact point at which the ray intersects the surface 
Consequently, m producing a visible edge drawing of a sohd, the algorithm uses 
only the surface list output by RAYCAST This firstly involves comparing the 
nearest surface struck by a ray cast through pixel (x ,y) (the first pointer m the 
surface list) with th a t returned for pixel (x — l,y )  If the surface is a different 
one, a vertical line one pixel long is displayed a t (x — 0 5, y) The pointer is then 
compared with th a t returned for pixel (x ,y  — 1) If it is different, a horizontal 
line one pixel long is displayed at (x, y — 0 5) In order for these comparisons to 
take place, a record must be kept of the pointers returned for all pixels processed 
so far on the current line, as well as for all pixels from the previous line

S H A D E D  IM A G E  The shaded image algorithm makes use of both the pa
ram eter hst and the surface list output by RAYCAST It uses the first value in 
the param eter list to calculate the exact point of intersection of the ray with 
the closest surface struck (the first surface pointer m the surface hst) m order to 
calculate the surface normal at that point This information is then used in the 
shading calculation to determine a colour for the pixel (section 1 7  2)

V O L U M E  C A L A U L A T IO N  The volume of a solid can be approximated 
by specifying a parallel view (section 1 5  2) so th a t all traced rays are paral
lel to a given direction The traced rays then divide the solid into rectangular 
parallelepipeds whose volumes can be individually calculated and summed to ap
proximate the total volume, fig 3 4 Two of the dimensions of each parallelepiped 
are determined by the horizontal and vertical spacing of the rays on the screen - 
and are consequently known and the same for each parallelepiped The th ird  
dimension, the to tal length of the parallelepiped contained by the sohd can be 
calculated from the in /ou t param eter list Given that the horizontal and vertical 
spacing of the pixels is H  and V respectively, the volume for each ray is then 
calculated as

volume  =  H  x V  x ( t2 -  ti +  t4 -  h  +  tn -  t n_i) x  L (3 1)
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The volume of a n  ob/ed can b e  approximated by summing the 
volumes of the rectangular paralleptpeds cut out by parallel rays

figure 3 4

where L is the length of the direction vector of the ray which, if specified as a 
unit vector, can be omitted from the calculation The error of approximation can 
be made arbitrarily small by using larger quantities of smaller parallelepipeds, 
but this is at the expense of a having to generate more rays, increasing the cost 
of the calculation

Central to all three variations of the algorithm is the means by which RAY- 
CAST calculates the list of m /ou t intersection points Before moving on to this 
discussion m sections 3 3 3 and 3 3 4, a description of the primitive solids and 
coordinate systems used is outlined m the next section Then, having covered 
both of these areas, the remainder of the discussion focuses on the computational 
cost of rendering an image using the algorithm, and ways m which it can be 
reduced

3.3.2 P rim itives A nd C oordinate S ystem s
As outlined earlier, an object is defined in CSG m terms of boolean operations 
performed on a set of primitive solid types and can be conveniently represented as 
a binary tree However, regardless of the complexity of the final solid (represented 
by the root of the tree) a ray must always enter and leave the sohd through a 
surface of one of the prirruti ve solids from which it is composed Consequently, it is 
im portant th a t ray-primitive intersection tests be simplified as much as possible 
It is for this reason th a t several different coordinate systems are employed m 
Roths ray tracing system, namely the screen, primitive and global (or world) 
coordinate systems The user of the ray tracing system however, should be aware 
of only the world coordinate system
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The screen coordinate system, as outlined in section 1 4 I, is a 2D integer 
system used for referencing screen pixels The primitive coordinate systems stem 
from the fact th a t each of the primitive solid types is defined m its own local 3D 
coordinate system, and can be transformed into the world coordinate system m 
any size, orientation and position by applying the appropriate 3D m atrix trans
formations outlined m section 1 5 1  Thus, every instance of a primitive sohd 
type used to define an object, has associated with it a 4 x 4  transform ation 
m atrix which defines the appropriate scahng, rotation and translation operations 
to transform  th a t instance of the primitive into the world coordinate system

The reason for using a local coordinate system m the first place is th a t the 
ray-primitive intersection calculations (section 4 5) can be greatly simplified by 
using the inverse of the object’s transformation m atrix to transform  the ray from 
the world coordinate system back into the primitives local coordinate system 
The intersection test can then be conducted in the local system where the com
putational cost is greatly reduced, by virtue of the fact th a t we are then dealing 
with a unit sphere centered about the origin, a unit cube positioned along the 
positive X Y Z  axes e t c , rather than an arbitrarily sized sphere or block cen
tered about an arbitrary point m an arbitrary orientation This simplification 
results from the fact th a t the value calculated for t (the ray param eter) for the 
intersection of the transformed ray with the primitive, is the same as th a t for the 
intersection of the untransformed ray with the object, but is computationally less 
expensive to calculate

3.3.3 R ay In tersection  A nd C lassification

In the previous discussion of ray-object intersection in section 2 2, despite the fact 
tha t a ray may enter and leave a complex object a t several successive points along 
the ray, only the closest point of intersection of a ray with the object was required 
This point could then be compared with the closest points of intersection for 
all other objects in the scene to determine the first object struck by the ray 
However, the situation with an object defined by a CSG representation is quite 
different since, the final sohd is formed from addition, subtraction, or intersection 
of interm ediate sohds (called composite solids), which are in tu rn  formed from 
similar operations on other composite solids Consequently, m order to know 
where a ray intersects a solid formed from say, the intersection of two other 
sohds, A and B , we need to know where the ray enters and  leaves sohd A , and 
where it enters and leaves sohd B  For this reason, a ray is classified with a sohd 
by a h§t of t (ray param eter) values that correspond to the points on the ray at 
which it enters and leaves the solid



CHAPTER 3 R A Y  TRACING AND CSG 65

So, given a ray and a binary tree defining a solid composition, the ray is 
tested for intersection with the solid by recursively descending the composition 
tree (m postorder) from the top down to the leaf nodes, classifying the ray as m or 
out with respect to ,the primitive sohds they represent, and then returning back 
up the tree, forming the classifications for the the composite (intermediate) sohds 
by combining the classifications of left and right sub-trees The classification for 
the root then represents the m /ou t classification for the final sohd with respect 
to the ray

3,3 .4  C om bining C lassifications

Figure 3 5 illustrates how to combine left and right classifications for each of the 
intersection, union and difference operators (denoted by the symbols —
respectively) by using solid lines to represent segments of a ray that are mside a 
sohd and dashed lines for segments that are not As illustrated for the intersection 
operator in fig 3 6, the combination process is performed m three stages -

• The intersection points from the left and right rays are
_ merged and sorted into ascending order to form a seg

mented composite ray
• Segments of this composite ray axe classified as in or out 

in accordance with the combine operator and the classi
fications of the left and right rays (see table 3 1 )

• Adjacent segments of the composite ray with the same 
classification are merged for simplification

3.3 .5  C om p u tation al C ost

The algorithm as it stands, is something of a brute force m ethod m th a t it tests all 
branches of the tree for intersection with the ray To appreciate the com putational 
cost of such a scheme, consider an example using a sohd composed of 100 primitive 
sohds, displayed on a raster device of 500 x 500 resolution For such a resolution, 
firing one ray per pixel requires th a t 250,000 rays be generated, each of which 
must be tested for intersection and m /ou t classification with the sohd Since the 
sohd is composed of 100 primitive sohds, its binary tree representation contains 
100 leaf nodes, and therefore 99 internal nodes (say 100 for simplicity), giving
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Left Node Right Node

I n t e r s e c t i o n  l 5 J ,  „__
out in out

f i g u r e  3  5  Combining ray classifications

L*lt »  »  n

Right » 4

(1) merged -  •  -  ~ • . . . . »  «  „  +
(2) classified ---------  t  r  , _________T ,

(3) simplified -  •  ■" «  T  ,

Three stage combine process for intersection

figure 3 6
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O PER A TO R LEFT R IG H T C O M PO SITE

intersection (&) OUT OUT OUT
OUT IN OUT

IN OUT OUT
IN IN IN

difference (-) OUT OUT OUT
OUT IN OUT

IN OUT IN
IN IN OUT

union (+) OUT OUT OUT
OUT IN IN

IN OUT IN
IN IN IN

Table 3 1 Ray Classifications

it a total of 200 nodes The four m ajor areas of cost m rendering an image 
of such an object, namely the cost of recursive procedure calls, the cost of ray 
in /o u t classification, the cost of ray transformations, and the cost of ray primitive 
intersection testing, are itemised below -

•  2 0 0  x  2 5 0 , 0 0 0  =  5 0 , 0 0 0 , 0 0 0  r e c u r s i v e  p r o c e d u r e  c a l l s  
E a c h  o f  t h e  2 5 0 , 0 0 0  r a y s  v i s i t s  e a c h  o f  t h e  2 0 0  n o d e s  m  t h e  s o l i d  c o m 
p o s i t i o n  t r e e  v i a  r e c u r s i o n ,  r e q u i r i n g  5 0  mi l l i o n  r e c u r s i v e  p r o c e d u r e  
c a l l s

•  1 0 0  x  2 5 0 , 0 0 0  =  2 5 , 0 0 0 , 0 0 0  r a y  i n / o u t  c l a s s i f i c a t i o n s
A t  e a c h  o f  t h e  1 0 0  i n t e r n a l  n o d e s ,  c l a s s i f i c a t i o n s  o f  t h e  l e f t  a n d  r i g h t  
b r a n c h e s  m u s t  b e  p e r f o r m e d ,  a t  a  t o t a l  c o s t  o f  2 5  m i l l i o n  r a y  c l a s s i 
f i c a t i o n s

•  1 0 0  x  2 5 0 , 0 0 0  =  2 5 , 0 0 0 , 0 0 0  r a y  t r a n s f o r m a t i o n s
F o r  e a c h  o f  t h e  1 0 0  p r i m i t i v e  s o h d s ,  t h e  r a y  m u s t  b e  t r a n s f o r m e d  
i n t o  i t s  l o c a l  c o o r d i n a t e  s y s t e m ,  r e q u i r i n g  a  t o t a l  o f  2 5  m i l l i o n  r a y  
t r a n s f o r m a t i o n s
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• 100 x 3 x 250,000 =  75,000,000 ray  in tersection  te s ts  
Testing a ray for intersection with each of the 100 primitive sohds 
requires testing it with each surface of the primitive Allowing for an 
average of three surfaces per primitive solid (the sphere has 1, the 
cylinder 3, the block 6 etc) ,  this represents a cost of 75 million ray 
surface intersection tests

T O T A L  - 50 million recursive procedure calls 
25 million ray in /ou t classifications 
25 million ray transformations 
75 million ray-surface intersection tests

It it clear from these figures that there is a great need for some form of 
optim ization The method chosen by Roth and described m the section below, is 
th a t of box enclosures

3.3 .6  B ox E nclosures —  A n O ptim ization  ____

The use of box enclosures around the primitive and composite solids can provide 
a means by which non-contributing branches of the tree can be pruned from 
testing with the ray, thereby speeding up the intersection calculations

The scheme works by enclosing each primitive solid in a minimal bound
ing volume as it lies m its own local coordinate system (section 2 4 1 discusses 
bounding volumes) Any transformations that are subsequently applied to an 
instance of the primitive solid are then also applied to its bounding volume so 
th at, when transformed into the world coordinate system, the primitive is still 
enclosed by the transformed bounding volume

Box enclosures are then formed from these transformed bounding volumes 
by projecting them  onto the screen and finding the minimum and maximum 
values of the projected X  and Y  coordinates (see section 2 4 h  fig % 1%) 
The minimum and maximum values of the unprojected Z  coordinates are also 
determined for use m situations where rays may be bounded in depth A box 
enclosure is then defined by these two X Y Z  coordinate pairs, (xm%n, ymtn, zmtn) 
a n d  ( x maar> "Umax) ¿ m a x )
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Box enclosures are then calculated for the interm ediate nodes m the tree 
by ascending the tree and combining the enclosures of the left and right sub
trees, in accordance with the boolean operator of the node Figure 3 1 illustrates 
the calculation of the minimum and maximum X  values of the combined box 
enclosure for each of the three boolean operators The minimum and maximum 
Y  and Z  values are calculated in a similar way Note th a t m the case of the 
intersection operator, the combined enclosure can be smaller than either of the 
enclosures from which it is formed

Enclosure ol 
A union B

Enclosure of 
A minus B

minX «  L^mlnX 

maxX »  L_maxX

□
Enclosure of 

A intersection B

minX -  maximum (L_minX R_minX) 

maxX -  minimum (L_maxX, R_m&xX)

figure 3 7 Combining box enclosures

The reason for using screen projected box enclosures, rather than the origi
nal transformed bounding volumes, is that the the ray-enclosure intersection test 
is essentially a point m rectangle test, namely th a t the pixel spawning the ray 
lies within the rectangular screen enclosure of the projected bounding volume

By storing each box enclosure in its associated node, the solid composition 
tree not only contains a representation of the solid, but also a hierarchical rep
resentation of the space th a t the solid occupies So, at any node of the tree, if 
a ray fails to intersect the node’s box enclosure, the sub-trees of that node can 
be eliminated from further processing Thus, the search for ray intersections re
sembles something of a binary search through the object space, ra ther than the 
exhaustive search required without the box enclosures
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The savings provided by the use of enclosures is dependent both on the 
spatial distribution of the primitives and the organization of the solid composition 
tree, though according to Roth, the former is the more im portant of the two The 
ideal conditions for maximum effect would be th a t no primitive enclosures overlap 
m space and th a t the composition tree be balanced and organized m such a way 
th a t composite sohds close to each other in space are also close to each other in 
the tree The worst situation on the other hand, would be where all primitive 
enclosures overlap each other

However, a situation where large numbers (or possibly all) of the box en
closures of the primitive solids mutually overlap is most likely to occur where a 
user is attem pting to approximate a surface type not provided directly by the 
set of available primitive solid surfaces Such a situation can be more practically 
dealt with by adding a new primitive with the required surface type to the hst 
of available ones

The use of box enclosures, while providing a good means of optim ization, 
has the limitation that it only optimizes for prim ary rays This is because of 
the fact tha t the enclosures are specifically constructed in such a way as to take 
advantage of the fact th a t all primary rays originate at screen pixels Secondary 
rays however, such as shadow or reflected/refracted rays (section 2 3 ), originate 
at object intersection points, so their direction cannot be determined in advance 
For such cases, Roth suggests the use of spherical enclosures The main reasons 
for choosing spheres is th a t they are compactly defined by two values (a centre 
and radius) and have a relatively inexpensive ray intersection test — if the per
pendicular distance from the ray to the centre of the sphere is less than the radius 
of the sphere, the ray intersects, otherwise it does not

3 .3 .7  C ircum stance C lassification

Even m cases where a ray does pass through the box enclosure of a node, it 
can still sometimes be possible to avoid unnecessary ray classifications under 
certain circumstances For example, if the operator at the node is either an 
intersection or a difference operator, and the ray classifies as being out of the left 
sub-solid (i e no intersection), the ray will classify as being out of th a t composite 
sohd regardless of its classification with respect to the right sub-solid There is 
therefore no need to examine the right sub-sohd In the case of the union operator 
however, the right sub-solid must still be processed
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3.4 Further O ptim izations
As outlined m section 2 4, the m ajor part of the time taken to ray trace an image is 
taken up with testing rays for intersection with objects m the scene Optim ization 
techniques therefore aim at trying to reduce the number of ray intersection tests 
that have to be carried out by employing hierarchical bounding volume, space 
subdivision and image coherence techniques Optim ization techniques for objects 
defined by a CSG representation can be broadly placed into the same categories 
However, because of the nature of object definition in CSG, there are differences 
between the corresponding techniques for a CSG representation

For example, the box enclosure m ethod outlined above could be described 
as a hierarchical bounding volume technique yet it differs from those outlined in 
section 2 4 1 by  virtue of the fact tha t the hierarchical structure is embedded 
into the object definition structure itself, namely the object composition tree

3.4.1 E nclosures A nd Tree R earrangem ent

The box enclosures implemented by Roth and outlined above are a specialized 
form of bounding volume, and have the lim itation th a t they can only be used 
for primary rays Gervautz [GERV86], uses spherical enclosures as advocated 
by Roth, as well as rectangular enclosures whose planes he parallel to the X Z , 
Y Z  and X Y  planes These rectangular enclosures differ from Roths box en
closures in th a t the la tter are calculated by projecting the transformed primitive 
bounding volumes onto the screen before taking minimum and maximum X  and 
Y  coordinate values, whereas the former are calculated by taking minimum and 
maximum values without first projecting As a result, the Gervautz enclosures 
can be apphed to both primary and secondary rays, but have a more costly in
tersection test than  Roths Like Roth however, Gervautz forms enclosures for 
interm ediate nodes by combining enclosures for the left and right sub-trees in 
accordance with the nodes boolean operator

Gervautz also employs the commutative and distributive properties of the 
union operator to rearrange sub-trees containing only union operations The 
reasons for rearranging the tree in such manner are twofold -

• The tree can be made more symmetrical, resulting m 
fewer recursive calls to the intersection procedure
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•  Rearrangement can result m smaller enclosures m the 
internal nodes, resulting m fewer unnecessary ray inter- 
section tests with the sub-trees of those nodes, fig 3 8

/ \
/ \  

A C

/ \
/ \  

A B

/ \
+ A

/ \
B C

Three possible tree  arrangem ents for the three objects 

A, B and C The centre one (a best since it results in the 

sm allest enclosure for the left subtree

figure 3 8

3.4.2  Scan-Line Enclosures A nd A ctive  Trees

From figure 3 7, it can be seen that the union operator is the only one of the 
three operators which results m a box enclosure th a t is larger than  either of the 
left or right enclosures from which it is composed — for the intersection operator 
it is smaller than  either left or right enclosures while for the difference operator 
it is the same size as the left enclosure In addition, from fig 3 9 it can be seen 
th a t an object formed from the union of two sub-objects can often have a box 
enclosure th a t contains large volumes of empty space The damaging effect of 
such a situation on the efficiency of enclosures can be even greater if it occurs near 
the leaf nodes of the solid composition tree, since it can then have a cumulative 
effect on enclosures at other union nodes higher up in the tree

S C A N -L IN E  E N C L O S U R E S  Broonsvoort [BRON84], overcomes this prob
lem of box enclosures by using interval enclosures instead Interval enclosures are 
very similar to box enclosures, except th a t the la tter refer to rectangular areas on 
the screen while the former refer to intervals along the current scan line of pixels 
So, instead of storing minimum and maximum X  and Y  values at each node, 
defining a rectangular area on the screen enclosing the primitive or composite 
solid represented by the node, only a minimum and maximum X  value is stored,
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f ig U T C  3 9 ®ox an<* scan- line interval enclosures

corresponding to the section of the current scan line m which the primitive or 
composite solid represented by the node is contained, fig 3 9 The generation of 
the interval enclosures is also similar to the that of box enclosures m that they 
are first explicitly calculated for the primitive solids and then calculated for com
posite solids by applying the corresponding operator to the interval enclosures of 
the left and right sub-trees

Unlike box enclosures however, which remain constant throughout the entire 
rendering process, interval enclosures for composite solids can vary from one scan 
line to another and so have to be recalculated To avoid unnecessary recalculation, 
box enclosures are initially computed for the primitive solids The minimum and 
maximum X  values of each box are then collected and stored in the corresponding 
leaf nodes and the interval enclosures for composite nodes calculated as above 
Then the minimum and maximum Y  values of each box are collected and sorted 
into ascending order m an array At the transition from one scan line to the next, 
the array is checked to see if a maximum or minimum Y value has been crossed 
If one hasn’t, then the interval enclosures are the same for the new scan line as 
for the previous one, otherwise they have to be recalculated

By recalculating interval enclosures at the appropriate times, Broonsvoort 
manages to bypass non-contributing nodes of the CSG tree during each traversal 
For this purpose an active CSG tree, which omits these non-contributing nodes, 
is generated each time interval enclosures are recalculated This active CSG tree 
is implemented through the use of additional pointers in each composite node of 
the sohd composition tree, th a t point to the left and right active sub-trees
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3.4 .3  B ounding R ay D ep th

A different optim ization implemented by Gervautz [GERV86] which can be used 
independently of the enclosures outlined previously m section 3 41, is tha t of 
only testing for intersection along certain sections of a ray, called a bounded ray 
As outhned m section 2 2, a ray is conveniently expressed by a line equation 
m param etric form, where points on the line/ray are ordered and accessed via 
a param eter which can m athem atically take on values of minus infinity to 
infinity However, in some circumstances (outlined below), it makes sense to 
exclude certain sections of this infinite ray from intersection testing by limiting 
the value of t

U se r L im it In some situations, a user may only want an image of objects 
that are near to the viewer i e objects that are far to the back of the scene are 
to be om itted from the image This can be achieved by the user specifying the 
distance behind which objects are to be excluded This distance value can then 
be used to lim it/bound the ray in depth so th a t objects in the excluded zone are 
not tested for intersection Even m cases where no bound is specified, since it 
is unlikely th a t the user wants to see objects behind the view-point, the ray can 
still be bounded by limiting t to positive values only

S hadow  R ay s  Testing if a point on a surface lies m shadow with respect to 
a light source involves casting a ray from the point to the light source Since 
objects beyond the light source with respect to the direction of the ray cannot 
cast a shadow on the surface, the ray can be bounded to the section from the 
point on the surface to the hght source

D y n a m ic a l B o u n d in g  For intersection and difference operators, only those 
parts of the right sub-tree that overlap the left sub-tree are of interest Conse
quently, only th a t section of the ray which intersects the left sub-tree need be 
tested for intersection with the right sub-tree

3.4 .4  Tem porary O bject Trees

As seen earlier, the use of box enclosures embedded into the nodes of the solid 
composition tree can reduce the computational cost of rendering an image of the 
sohd by providing a means by which non-contributing sub-trees can be bypassed 
in the search for ray-solid intersections A sub-tree can only be bypassed however, 
if the ray misses the box enclosure of the sub-tree, which can only be determined 
by testing the ray for intersection with the box enclosure
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If on the other hand, there were a means of knowing m advance th a t partic
ular sub-trees would not be intersected by the ray, a new tem porary solid compo
sition tree could be generated for the ray, which excluded any non-contributing 
sub-trees The ray could be intersected with this tem porary tree more rapidly 
and efficiently by virtue of the fact th a t it would have fewer nodes and possibly 
shallower depth, resulting in fewer recursive calls and intersection tests Unfortu
nately, the cost of generating such a tem porary tree for each ray would probably 
far outweigh any computational savings it provided However, if large groups of 
rays could be found that shared a  common tem porary tree, then savings would 
be possible The tem porary tree for a particular ray could then be found by de
termining the group to which the ray belongs and using its associated tem porary 
tree

Gervautz [GERV86] outlines a m ethod for generating such tem porary trees 
and the groups of rays th a t share a common one To a certain degree, the method 
resembles something of a 2D space subdivision m screen space, in th a t the screen 
is partitioned into a number of rectangular regions, each of which has associated 
with it a tem porary tree containing only those primitive and composite solids 
whose box enclosures project onto the specified region A quadtree structure is 
used to administer the tem porary trees, with the image being rendered rectangle 
by rectangle, by traversing the quadtree and rendering all pixels associated with 
the rectangular region represented by each node Rectangles th a t do not contain 
any primitive or composite solids will have an empty tree associated with them  
and thus can be trivially processed by setting all of their pixels to the background 
colour

The rectangles are generated by first projecting a primitive solid enclosure 
(section 3 4 1 )  onto the image plane The minimum and maximum X  and Y  
values of the projected enclosure then define four halfplanes, x >  xmax1 x < 
x m%n, y>Vmax , y < ymm> and the projection of all primitive sohd enclosures in 
such a fashion produces an irregular rectangular grid pattern  on the screen For 
each rectangular grid region, a tem porary composition tree is formed from the 
original one, containing only those primitive solids whose enclosure projections 
mapped partly or completely into the region, fig 3 10

Using the rules of table 3 2, it is possible to eliminate both non-contributing 
internal and primitive nodes from the original solid composition tree (E  represents 
the node to be eliminated, A represents the other node) -

Because of the fact th a t the primitive solid enclosures were projected onto 
the viewing plane, the rectangles and temporary trees discussed above can only 
be applied to prim ary rays However, by projecting them  onto a plane th a t
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f ig U T C  3 10 Q uadtree administration of tempory object trees

lies between the light source and the scene, a similar quadtree structure can be 
generated which can be used to optimize the tracing of secondary rays to the 
light source Tracing for example, a shadow ray to the light source would simply 
involve determining the rectangle through which the ray passes and intersecting 
it with the associated tem porary tree of that rectangle

The case for reflected and refracted rays however is a little more complex 
than th a t for primary and shadow rays While all prim ary rays are constrained 
to pass through the viewing point, and all shadow rays are constrained to pass 
through the light source, there is no single point through which reflected and 
refracted rays are constrained to pass Consequently, there is no single 2D rect
angular grid that can be generated which is relevant to all reflected/refracted rays 
in the same sense that there is for primary and shadow rays Therefore, to opti
mize for such rays, a 3D grid of cells administered through an octree structure has 
to be generated m place of a 2D grid of rectangles and quadtree structure The 
three dimensional cells and their associated tem porary trees are generated using 
the planes of the primitive solid enclosures (which, as outlined in section 3 4 1, 
lie parallel to the X Z , Y Z  and X Y  planes) m similar fashion to the way m 
which the 2D projections of the enclosures are used to generate the 2D grid and 
tem porary trees
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O p e r a t i o n A c t i o n

U N I O N  ( A  +  E ) e l i m i n a t e  n o d e  A

D I F F E R E N C E  ( A  -  E ) e l i m i n a t e  n o d e  A

D I F F E R E N C E  ( E  -  A ) e l i m i n a t e  n o d e  A  a n d  m i 
n u s  n o d e

I N T E R S E C T I O N  A  k  E ) e l i m i n a t e  i n t e r n a l  i n t e r 
s e c t i o n  n o d e

Table 3 2 Eliminating of non-contnbutm g nodes

3.4 .5  Space Subdivision

Arnaldi [ARNA87] outlines a method of dividing space into 3D cells, into which 
a solid composition tree can be distributed such th a t each cell contains a mini
mal CSG tree consisting only of those primitives from the original tree th a t are 
relevant to the cell Intersecting the ray with the original solid then involves 
propagating the ray from one cell to the next (along the ray direction), and test
ing it with the cells associated CSG tree Since the 3D space is divided in such 
a way th a t the cells fit as closely as possible the primitive solids, the associated 
composition tree for each cell should be significantly smaller and hence, faster to 
intersect tha t the original tree

In order to provide fast and efficient ray propagation from one cell to the 
next, each cell, in addition to its minimal composition tree, has an associated set 
of connectivity information th a t takes the form of a list of pointers to neighboring 
cells Initially, each face of every cell had an associated hst of pointers containing 
a pointer to every cell adjacent to the face The drawbacks associated with this 
m ethod however were firstly, given the non-umformity of the cell sizes, some 
faces of some cells required longer lists that others, which meant that face lists 
had to be dynamically allocated in size Other problems were that in order to 
ensure complete connectivity, many cells contained redundant pointers and that
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propagation of a ray through a face of a cell m\olved an inefficient linear search 
through its associated pointer list

Arnaldi overcame these difficulties by adopting a com er  stitching technique 
used in the design of 2D VLSI layouts and extending it to three dimensions 
Using this m ethod, each cell has a fixed number of pointers (10) associated with 
it th a t connect cells together through their corners, Jig 3 11a Thus, while all 
cells adjacent to a given cell face are not directly connected by these pointers, it 
is still possible to get to any one of them  by taking an indirect “corner route” 
through the appropriate cells, fig 3 11b

(a) Cell connectivity 
pointer»

* 1 ^ -  =  pointers effectively in use 

L  = other pointers

figure 3 11

(b) 2D projection of cell structure showing 

a  ray passing successively through 
ceils P t  P2, P3 and P4

The cells themselves are formed by a two stage process, 2D subdivision of a 
projection plane, followed by its extension to 3D, fig 3 12 The 2D subdivision is 
similar to th a t performed by Gervautz [GERV86] outlined m the previous section 
Firstly, a minimal bounding volume associated with each primitive is projected 
onto the viewing plane, producing a set of rectangles on the plane Each rectangle 
is then decomposed into four segments which are used as the basis for a binary 
space partitioning process that results m a 2D partitioning of the viewing plane, 
whose extension along the Z-axis gives rise to 3D cells, called supercells Each 
supercell is then subdivided into smaller cells along the front and back planes of 
any primitive solid bounding volumes enclosed in the cell

M A IL B O X  As outlined m section 2 4 2 , the general idea behind space subdi
vision schemes is to divide space up into cells and associate with each cell a list 
of all objects either completely or partly enclosed in the cell As the ray passes 
from one cell to the next, it need only be tested for intersection with the list 
of objects associated with the cell Consider however, the case where an object 
is partly enclosed by several different cells Each of these cells will then have
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Creation of 3D cell structure by extending 2D screen 

partitions to three dimensions

figure 3 12

the object in their associated hst Since it is quite possible th a t a ray may pass 
through several of these cells, the object will be tested for intersection more than 
once with the same ray, which is both unnecessary and wasteful

Arnaldi overcomes this problem, which is common to all space subdivision 
schemes, by associating a “mailbox” with each primitive and a unique number 
with each ray The mailbox structure then stores the intersection point (if any) 
and ray number of the last ray that was tested for intersection with the primitive 
Then, before testing the primitive with a particular ray, a test is made to see if 
the ray number m the mailbox is the same as the one for the current ray If 
it is, this primitive has already been tested with this ray and the result can be 
read directly from the mailbox If the number is different, the intersection test 
goes ahead and the ray number and intersection information m the mailbox are 
updated



Chapter 4

M icroTrace

Ray tracing, despite its elegant approach to image synthesis and its realistic image 
generation capabilities, has tended to be confined to the realms of large mainframe 
computers by virtue of its large appetite for com putation This chapter however, 
discusses m detail an implementation of a ray tracer called M cro Trace which has 
been designed, written and developed on a microcomputer A presentation of its 
results and an evaluation of its performance is presented in section 4 8

Before taking a detailed look at the ray tracer m section 4 2, the following 
section gives a brief description of the microcomputer and display device on which 
the research was carried out However, despite having been implemented on a 
specific type of microcomputer with a specific type of display device, the ray 
tracer has been designed with portability m mind Machine independence has 
been facilitated by writing source code that complies with the ANSI C standard, 
while display device independence has been enhanced by providing an option of 
tracing an image to a file, m a format that can be customized for any sort of 
raster device

4.1 Hardware
The microcomputer consists of an IBM AT with a Professional Graphics Display  
and the following specifications -

80
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•  In te l 80286 p ro cesso r ru n n in g  a t  6 MHz
•  In te l 80287 m a th s  cop rocesso r

•  640K  of m a in  m em o ry

•  20 Mb d isk  s to ra g e

4.1.1 Professional Graphics Adapter
T h e  P ro fe ss io n a l G rap h ic s  D isp lay  is a  h igh  q u a lity  co lo u r r a s te r  d isp lay  w ith  a  
re so lu tio n  of 640 x  480 p ixels (h o riz o n ta l x v e rtic a l)  I t  uses fo u r b its  p e r  p r im a ry  
for d isp lay in g  co lours, g iv ing  i t  a  c a p a b ility  o f d is tin g u ish in g  4096 d iffe ren t co lours 
(section 1 3  2 ) T h e  d isp lay  is co n tro lled  by  a  P ro fe ss io n a l G ra p h ic s  A d a p te r  
(P G A ), a  V L S I c a rd  w hich  co n ta in s  th e  re fresh  bu ffer a n d  a  h o s t of b u il t  in 
g rap h ic s  fu n c tio n s , to  w hich  en d  it c o n ta in s  its  ow n 8-bit p ro cesso r, a n  In te l 
8088 F ro m  th e  sch em a tic  lay o u t o f th e  a d a p te r  m  fig 4 A i t  c an  b e  seen  t h a t  th e  
m ic ro c o m p u te r  c o m m u n ica te s  w ith  th e  a d a p te r  v ia "a n  in p u t /o u tp u t  b u ffe r It 
c an  a lso  b e  seen fro m  th e  d ia g ra m  th a t  th e  d isp lay  re fresh  bu ffer is co n ta in e d  on 
th e  a d a p te r  c a rd  a n d  does n o t fo rm  p a r t  of th e  A T ’s a d d re ss  sp ace  C o n seq u en tly , 
th e  A T c a n n o t d ire c tly  ad d ress  th is  m em o ry  a n d  in s te a d  m u st re a d  a n d  se t p ixel 
va lues by  issu ing  th e  a p p ro p r ia te  co m m an d s to  th e  a d a p te r  v ia  th e  in p u t buffer, 
re a d in g  re su lts  b ack  fro m  th e  o u tp u t  buffer

PGA adapter

figure 4 1 Schematic layout 0# IBM AT and PGA

A s m e n tio n e d  ea rlie r , th e  P G A  co n ta in s  a  n u m b e r o f b u ilt  m  g ra p h ic s  fu n c 
tio n s  fo r d raw in g  lines, circles po ly g o n s e tc  w h ich  ag a in  a re  e x e c u te d  by  sen d in g  
th e  a p p ro p r ia te  co m m a n d  a n d  p a ra m e te rs  (in  a  p red efin ed  h ex a d e c im a l fo rm a t)  
to  th e  in p u t buffer In  a d d itio n  to  th ese  2D c o m m an d s , th e  a d a p te r  also  h a s  a
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n u m b e r of 3D g rap h ics  co m m an d s  th a t  a u to m a tic a lly  ap p ly  c lip p in g  a n d  p ro je c 
tio n  to  3D  lines a n d  po lygons In  im p lem en tin g  th e  ra y  t r a c e r  how ever, th is  3D 
c a p a b ility  of th e  P G A  h as b een  d e lib e ra te ly  avo id ed  a n d  o n ly  th o se  cap a b ilitie s  
u su a lly  av a ilab le  fo r m o st o th e r  d isp lay  devices** su ch  as re a d in g /w r i t in g  p ixel 
values a n d  2D lin e  d raw in g , h av e  b een  used

L O O K - U P  T A B L E  As m e n tio n e d  above, th e  P ro fe ss io n a l G ra p h ic s  D isp lay  
h as  a  re so lu tio n  o f 640 x  480 pixels w ith  4 bits/primary  (o r 12 bits/pixel) In s te a d  
of s to rin g  each  p ix e l ex p lic itly  as 12-bits, w hich  w ould  re q u ire  a  re fresh  buffer of 
4 5OK ( 640 X 480 x  12 bits ) th e  a d a p te r  s to res  each  p ix e l as a  sing le  b y te  w hich  
is th e n  u sed  as a n  offset in to  a  256 e lem en t lo o k -u p  ta b le  c o n ta in in g  th e  12 -6 ^  
R G B  value  fo r th e  p ixel, fig 4 2  W h ile  th is  a r ra n g e m e n t red u ces th e  re fre sh  
buffer re q u ire m e n t to  300K , it  m ean s th a t  on ly  256 of th e  4096 p o ssib le  co lours 
can  b e  d isp lay ed  on  sc reen  a t  an y  one  tim e  T h e  u se r  can  se lec t an y  256 o f th e  
4096 co lours b y  a p p ro p r ia te ly  lo ad in g  values in to  th e  lo o k -u p  ta b le  v ia  c o m m an d s  
se n t to  th e  a d a p te r  in p u t buffer C o lours of lines, p o ly g o n s etc a re  th e n  specified  
as values in  th e  ran g e  0 255 w ith  th e  a c tu a l  co lou r b e in g  d e te rm in e d  fro m  th e
va lue  m  th e  lo o k -u p  ta b le

3 5 6 4

3 3 3 4

3 3 3 4

5 S S »

PGA Refresh Butler

RED GREB'J BLUE
0011

0101

1 1 1 f

0 0 0 0
1111

1101

1111

1111

0 0 0 0
0 0 0 0

1110

0 0 0 0
0101
1111

o o o o

2 5 5  |oooo ,1011 i loop
Look Up Table

Look Up Table contents delenmne color displayed

figure 4 2

P G A  L I B R A R Y  As a  p re lim in a ry  s te p  m  b u ild in g  th e  ra y  t ra c e r , a  C  fu n c tio n  
w as w r it te n  for each  P G A  c o m m an d , w hich packages th e  a p p ro p r ia te  p a ra m e te rs  
m  th e  co rrec t p red efin ed  P G A  h ex ad ec im a l fo rm a t, p laces  th e m  m  th e  a d a p te r  
in p u t buffer a long  w ith  th e  a p p ro p r ia te  co m m an d  code, a n d  re p o r ts  r e s u l ts /e r ro r s
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p laced  by  th e  a d a p te r  m  th e  o u tp u t  buffer T h e se  fu n c tio n s  w ere th e n  p laced  m  
a  p ro g ra m  lib ra ry , allow ing  P G A  co m m an d s  to  b e  easily  in c o rp o ra te d  in to  any  
C  p ro g ra m  s im p ly  by  ca lling  th e  co rresp o n d in g  C fu n c tio n

4.2 McroTirace —  The Inner W orkings
W h ile , as m e n tio n e d  e a rh e r, a  rea so n a b le  deg ree  o f m ach in e  a n d  d isp lay  dev ice  
in d e p e n d e n c e  w ere co n sid e ra tio n s  m  th e  design  o f Micro T race, as  w as easy  in 
c o rp o ra tio n  o f c e r ta in  fu tu re  e n h a n c e m e n ts  to  th e  ray  t r a c e r  ( section 5 2,  th e  
p r im a ry  a im  w as to  e x am in e  th e  p ra c tic a lity  a n d  feas ib ility  o f m ic ro c o m p u te r  
ra y  tra c in g , a  q u e s tio n  w hich  is ad d re ssed  m  th e  follow ing c h a p te r  T h e  co n cern  
o f th is  c h a p te r  is to  d esc rib e  m  d e ta il th e  vario u s fu n c tio n a l m o d u les  a n d  th e  
o v era ll desig n  a n d  im p le m e n ta tio n  of M c ro  T race  A lth o u g h  th e  ra y  t ra c e r  h a s  
b een  w r i t te n  m  C  (Microsoft C  version  5 1), a  know ledge of th e  lan g u ag e  is n o t 
a  p re re q u is ite  for an  u n d e rs ta n d in g  of th e  follow ing sec tio n s

4.2.1 A B rief Overview
M c ro T ra c e  is e ssen tia lly  a  p rim itiv e  in s ta n c e  re n d e rin g  sy s te m  (section 3 1 )  
sch em a tica lly  re p re se n te d  in fig 4 3 , w hose se t o f p rim itiv e s  co n sis ts  o f a  cu b e , a  
sp h ere , a  cy lin d e r a n d  a  cone A “scen e” to  be  re n d e re d  is p re se n te d  to  th e  ra y  
t ra c e r  as a  h n k ed  list o f o b je c ts , b u ilt  u p  by th e  u se r th ro u g h  th e  a p p h c a tio n  of 
sca ling , t r a n s la t io n  a n d  ro ta t io n  o p e ra tio n s  o n  th e  p rim itiv e  ty p e s  T h e se  o p e r
a tio n s  a re  p e rfo rm e d  by  fu n c tio n s  p ro v id ed  m  th e  u se r  in te rfa c e  m o d u le , w hich  
a lso  p rov ides various o th e r  se ts  o f fu n c tio n s  fo r defin ing  scene  en v iro n m e n t e le
m en ts  su ch  as p a ra lle l /p e rs p e c tiv e  view , ligh t so u rce  p o s itio n  a n d  in ten s ity , view  
p la n e  etc a n d  for defin ing  im age  o u t p u t / f o r m a t ,  o p tim iz a tio n  o p tio n s  etc

A n im ag e  of th e  scene  can  b e  g e n e ra te d  in  e ith e r  a  p e rsp e c tiv e  o r p a ra lle l 
v iew  (section 1 5  2)  on  an y  v iew ing  p la n e  p e rp e n d ic u la r  to  th e  Z -axis S hadow s 
can  also  b e  in c o rp o ra te d  in to  th e  im ag e  A t p re se n t, o n ly  a  s ing le  h g h t sou rce  
can  b e  specified , b u t  i t  can  b e  specified  to  be  e ith e r  a  d ire c tio n a l h g h t so u rce  (a ll 
lig h t ray s  a re  p a ra lle l to  th e  specified  d irec tio n ) o r a  p o in t h g h t so u rce  p o s itio n e d  
a t  a  specific  X Y Z  c o o rd in a te  in  th e  scene  T h e  c u rre n t lig h tin g  m o d e l (P h o n g ’s 
m o d el, section 1 7  2),  does n o t in c o rp o ra te  tr a n s p a re n t  o b je c ts  b u t 'd o e s  a c co u n t 
for a m b ien t, d iffuse a n d  sp e c u la r  lig h tin g  co m p o n en ts

T h e  ra y  tra c e r  fu n c tio n s m  on e  of two m odes, e i th e r  P G A  o r R G B  m o d e
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M IcroT race

figure 4 3 Schematic diagram ol MicroTrace

T h e  P G A  or P ro fessio n a l G ra p h ic s  A d a p te r  m o d e  allow s b o th  file a n d  sc reen  
im ag e  o u tp u t  o p tio n s  a n d  g e n e ra te s  im ages in a  fo rm a t su ita b le  for d isp lay  on  a  
P G A  d isp lay  T h e  R G B  o r R ed  G reen  B lue m o d e  on  th e  o th e r  h a n d  h as  o n ly  a  
file o u tp u t  o p tio n  a n d  p ro d u ces  im ages in  a  file fo rm a t t h a t  can  b e  cu s to m ized  
fo r d isp lay  on  any  ty p e  o f R G B  d isp lay

4.2.2 PG A  M ode
T h is  is th e  d e fa u lt m o d e  fo r M c ro  T race a n d  allow s th e  o p tio n  of d isp lay in g  
th e  im age  on  a  P ro fess io n a l G rap h ic s  D isp lay  (if o n e  is ava ilab le ) as i t  is be in g  
g e n e ra te d  a n d /o r  o f w ritin g  th e  im ag e  to  a  file in  a  fo rm a t t h a t  c an  la te r  be  
d ire c tly  d isp lay ed  on  one T h e  d e fa u lt se ttin g s  of th is  m o d e  a ssu m e  th a t  a  P G A  
c a rd  an d  d isp lay  is a t ta c h e d  an d  g e n e ra te  o n ly  a  screen im ag e  H ow ever, th e se  
se ttin g s  can  easily  b e  ch an g ed , using  fu n c tio n s in  th e  u se r in te rface  m o d u le , to  
an y  c o m b in a tio n  of file a n d  d isp lay  o p tio n s  T h a t  is to  say, it  is p o ssib le  to  have

[1] screen  b u t  no  file o u tp u t  (d e fa u lt)
[2] file b u t  no  screen  o u tp u t
[3] screen  an d  file o u tp u t
[4] no  o u tp u t  a t  all
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O p tio n  [2] p rov ides fo r th e  g e n e ra tio n  of P G A  im ages on  a  m ach in e  w hich 
does n o t h av e  a  P G A  c a rd  a n d  d isp lay  a t ta c h e d  to  i t ,  w h ile  o p tio n  [4] is u sed  to  
avoid  d isc rep an c ies  t h a t  cou ld  re su lt  fro m  d iiferences m  d is k /d is p la y  sp eed s on 
d ifferen t m ach in es  w hen  c o m p arin g  im ag e  g e n e ra tio n  tim e s

In  P G A  m o d e  tw o o u tp u t  file fo rm a ts  a re  av a ilab le , co m p ressed  fo rm a t 
a n d  u n co m p ressed  fo rm a t (co m p ressed  is th e  d e fa u lt)  In  co m p ressed  fo rm a t 
th e  im ag e  is co m p ressed  u sin g  a  P G A  ru n  le n g th  en co d in g  m e th o d  th a t  c an  
s u b s ta n tia lly  re d u c e  th e  size  o f th e  im ag e  file, w hile  in u n co m p ressed  fo rm a t th e  
im age  is e ssen tia lly  s to re d  as on e  b y te  p e r  p ixel

U n c o m p r e s s e d  F i l e  If th e  u n co m p ressed  fo rm a t is se lec ted , th e  im ag e  file 
g e n e ra te d  w ill n o t b e  ru n  le n g th  en co d ed  b u t  w ill h ave  th e  fo llow ing fo rm a t -

F F  x l  x2 y l  y2  D A TA

T h e  firs t b y te  of th e  o u tp u t  file, h ex  F F  is s im p ly  an  id e n tif ic a tio n  b y te  to  in d ic a te  
th a t  th e  file is in  u n co m p ressed  fo rm  T h e re  th e n  follow s 8 b y te s  w hich  re p re se n t 
th e  x mm, armox, ymtn a n d  yma3: sc reen  c o o rd in a te s  re sp ec tiv e ly  o f th e  v iew p o rt 
specified  fo r th e  im age  E ach  of th e  fo u r c o o rd in a te s  is s to re d  as a  tw o b y te  
in teg e r m  b ack w o rd  fo rm a t ( le a s t s ign ifican t b y te  f irs t1 ) T h e n  follow s th e  d a ta  
m  th e  fo rm  o f one  b y te  p e r  p ix e l m  v ie w p o rt left to  r ig h t, to p  to  b o t to m  o rd e r, 
w h ich  re p re se n ts  th e  P G A  co lou r o f th e  p ixel (section 4 2 3 o u tlin e s  how  th e se  
in te n s itie s  a re  c a lc u la ted )

As o u tlin e d  m  section 4 1 2 ,  w h en  th e  file im ag e  is d isp lay ed , th e  a c tu a l  
co lo u r fo r each  p ixel w ill b e  d e te rm in e d  fro m  th e  co rre sp o n d in g  Yl-bit R G B  e n try  
of th e  256 e lem en t look u p  ta b le  T h is  ta b le  is s to re d  m  a  s e p a ra te  file co n sis tin g  
of 256 tw o b y te  in teg ers  (s to re d  least s ign ifican t b y te  firs t)  w hich  c o n ta in  th e  
R G B  values in th e  fo rm  show n below  (bits 12,13,14 a n d  15 a re  “d o n ’t  ca re s” ) -

C O L O U R B I T S
red 11 10 9 8

g reen 7 6 5 4
b lu e 3 2 1 0

W h ile  i t  m ay  b e  p o ssib le  to  d isp lay  th e  image contained m  such  a  file o n  a  
d isp lay  o th e r  th a n  a  P G A  disp lay , by  using  th e  look  u p  ta b le  in  c o n ju n c tio n  w ith

*If t h e  m a c h i n e  o n  w h i c h  t h e  i m a g e  is g e n e r a t e d  d o e s  n o t  u s e  b a c k  w o r d  s t o r a g e  f o r m a t ,  t h e y  will b e  s t o r e d  n o r m a l l y  i e m o s t  signifi ca nt b y t e  first
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rth e  im ag e  file to  access a n d  m o d ify  p ixel R G B  values, a  m o re  re a d ily  a d a p ta b le  

fo rm a t can  b e  p ro d u c e d  by  se ttin g  A/icro T race in to  R G B  m o d e  w h ere  R G B  values 
a re  e x p lic itly  s to re d  fo r each  p ixel in  th e  im age  file

C o m p r e s s e d  F i l e  If th e  co m p ressed  file fo rm a t is specified  (d e fa u lt)  in  P G A  
m o d e , a  ru n  le n g th  en co d in g  sy s tem  is u sed  to  re d u c e  th e  size o f  th e  im ag e  file 
re su ltin g  in th e  follow ing file fo rm a t -

L ine H ead er D a ta L ine H ead e r D a ta

T h e  line  h e a d e r  w hich  p reced es each  se t o f d a ta ,  h a s  th e  fo rm  -

D 9 line  #  s ta r t  X  en d  X

T h e  D9 is th e  h ex ad ec im a l P G A  code c o m m a n d  code fo r “w rite  en co d ed  
line  of p ix e ls” T h e n  follows th re e  in teg e r n u m b e rs , each  s to re d  as tw o  b y te s  (least 
sig n ifican t b y te  f irs t) , re p re se n tin g  th e  v e rtica l line  n u m b e r  a n d  th e  h o riz o n ta l 
screen  c o o rd in a te s  w here  th is  lin e  beg ins a n d  en d s N o te  t h a t  th e re  is no  ex p lic it 
id b y te  o r v iew p o rt a t  th e  b eg in m g  of th e  file since, m  th is  fo rm a t th e  firs t b y te  
w ill a lw ays b e  D 9 a n d  th e  v iew p o rt is en co d ed  as p a r t  o f th e  im age  d a ta  for each  
line

T h e  d a ta  for each  line  co n sists  of a  series of p ack e ts , of w hich  th e re  a re  tw o 
k in d s -

[i] C O U N T P E L

[2] C O U N T PELO P E L I P E L 2

C O U N T  0 127

C O U N T  128 255

If th e  co u n t is m  th e  ran g e  0 127 th e n  th e  b y te  th a t  follow s is th e  co lou r of
th e  n e x t C O U N T + 1  p ixels A lte rn a tiv e ly , if th e  c o u n t is in  th e  ra n g e  128 255
th e n  th e  n ex t C O U N T -127 b y te s  th a t  follow a re  th e  co lou rs o f th e  n e x t C O U N T - 
127 p ixels As in  u n co m p ressed  fo rm a t, th e se  p ixe l values re p re se n t P G A  colours 
in  th e  ran g e  0 255 (section 4 2 4 o u tlin e s  how  th e se  in te n s itie s  a re  c a lc u la ted )
T h e  a c tu a l  co lours a re  d e te rm in e d , as befo re , fro m  th e  look  u p  ta b le  en trie s , 
w hich  a re  s to re d  in  a  s e p a ra te  file
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C o m p r e s s e d  Vs U n c o m p r e s s e d  In  m o s t cases, co m p ressed  fo rm  is p re fe rab le  
to  u n co m p ressed  fo rm  for tw o reaso n s F irs tly , a n  im ag e  file m  u n co m p ressed  
fo rm a t is q u ite  likely  to  b e  s u b s ta n tia lly  la rg e r th a n  i ts  co rre sp o n d in g  co m p ressed  
c o u n te rp a r t  S econdly , d isp lay in g  a n  im ag e  fro m  an  u n c o m p re sse d  file tak es  
longer by  v ir tu e  of th e  fa c t th a t  th e  P G A  o n ly  a c c e p ts  a  line  o f p ixel values m  
co m p ressed  fo rm a t H ence, each  lin e  o f p ixels re a d  fro m  th e  u n co m p ressed  file 
h as  to  b e  ru n  le n g th  en co d ed  by M c ro  T race b e fo re  b e in g  sen t to  th e  P G A  in p u t 
buffer (section \  1 2)  w h ereas th e  co m p ressed  file c an  b e  s im p ly  re a d  a n d  sen t 
d irec tly  th e re  ,

H ow ever, u n co m p ressed  fo rm a t can  so m etim es b e  usefu l in  m o d ify in g  a  file 
im age  w ith o u t firs t d isp lay in g  i t ,  since th e  e x a c t offset of a  s ing le  p ixel v a lu e  in  th e  
file can  b e  easily  c a lc u la ted , w hereas in co m p ressed  fo rm a t, fin d in g  a  p a r t ic u la r  
p ixel involves read in g  a n d  in te rp re tin g  th e  ru n  le n g th  en co d in g

4.2.3 RGB M ode
R G B  m o d e  p rov ides o n ly  a  file o u tp u t  o p tio n  (no  o u tp u t  can  also  b e  specified) 
T h e  no  o u tp u t  o p tio n , as fo r th e  P G A  m o d e , is u sed  to  avo id  d isc rep an c ies  th a t  
cou ld  re su lt  fro m  differences in  d isk  speeds o n  d ifferen t m ach in es  w hen  c o m p arin g  ~ 
im ag e  g e n e ra tio n  tim es

W h e n  a  file o u tp u t  is specified , th e  o u tp u t  file fo rm a t is th e  sam e  as th a t  
fo r th e  u n co m p ressed  P G A  fo rm a t d esc rib ed  above, e x c e p t th a t  th e  id e n tif ic a tio n  
b y te  is hex  00 , an d  th e  d a ta  co n sis ts  o f th re e  b y te s  p e r  p ixel in s te a d  of o n e  T h e  
th re e  b y te s  re p re se n t th e  re d  g reen  an d  b lu e  in te n s itie s  for th e  p ixe l, each  of w hich  
is a  va lue  m  th e  ra n g e  0 255, g iv ing  a  co lou r p a la te  o f 16 million co lours T h ese
red  g reen  a n d  b lu e  in te n s itie s , as o u tlin e d  m  th e  fo llow ing sec tio n , a re  c a lc u la te d  
m  q u ite  a  d ifferen t w ay to  p ixel in ten s itie s  c a lc u la ted  m  P G A  m o d e

4.2.4 Calculating P ixel Intensities
Sections 4 ^ 2  a n d  4 ^ 3  ab o v e  h av e  o u tlin e d  th e  tw o d iffe ren t o p e ra tin g  m odes 
o f M c ro  T race B o th  m o d es a re  e ssen tia lly  th e  sam e  m  th e  re sp e c t t h a t  in  e ith e r  
m o d e , th e  sam e ray  tra c in g  fu n c tio n s  a re  u sed  to  d e te rm in e  th e  closest o b je c t of 
in te rse c tio n  fo r each  p ixel a n d  th e  sam e  lig h tin g  m o d el is u sed  to  d e te rm in e  p ixel 
co lour an d  in te n s ity  H ow ever, even th o u g h  th e  sam e lig h tin g  e q u a tio n  is ap p lied  
m  b o th  m o d es, th e  w ay m  w hich  it is ap p lied  an d  in te rp re te d  m  th e  tw o m odes 
differs s ign ifican tly
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B efore  loo k in g  a t  how  th e  e q u a tio n  is a p p lie d  m  P G A  a n d  R G B  m o d es  ho w 
ever, th e  e q u a tio n  is firs t su m m a riz e d  below  fo r re fe ren ce  A d e ta ile d  e x p la n a tio n  
o f th e  te rm s  a n d  c o n s ta n ts  o f th e  e q u a tio n  can  b e  fo u n d  m  section 1 7 2 , w hich  
d iscusses th e  P h o n g  lig h tin g  m o d el m  d e ta il  T h e  in te n s ity  o f lig h t / , e m itte d  
fro m  a  p o in t on  a  su rface  w ith  a m b ie n t, d iffuse a n d  sp e c u la r  c o n s ta n ts  o f K a , 
Kd a n d  K a respective ly , is -

I  =  IJ<a +  IdKd +  I sK s

w h ere  Ia is th e  c o n s ta n t a m b ie n t lig h t in te n s ity  a n d  Id a n d  I s a re  th e  c a lc u la te d  
diffuse a n d  sp e c u la r  in te n s itie s  a t  th e  p o in t

P G A  M O D E  In  P G A  m o d e , th e  look  u p  ta b le  is lo ad ed  w ith  16 d ifferen t 
sh ad es o f 16 d ifferen t co lours, fig 4 4 T h e  co lo u r o f a n  o b je c t ,  w hich  is c o n ta in e d  
in  th e  clr field  of th e  s tru c tu re  for th e  o b je c t ( table 4 1), is th e n  specified  as an  
in teg e r va lue  in  th e  ra n g e  0 15, co rresp o n d in g  to  one o f th e  16 co lou r g ro u p s  m
th e  look u p  ta b le  C a lc u la tin g  th e  co lou r o f th e  lig h t e m it te d  fro m  a  p a r t ic u la r  
p o in t on  a  su rface  involves a p p ly in g  th e  ab o v e  lig h tin g  e q u a tio n  to  g e n e ra te  an  
in te n s ity  value in  th e  ra n g e  0 1 for th e  p o in t T h is  v a lu e  is th e n  co n v e rte d  in to
a n  in te g e r va lue  in  th e  ra n g e  0 15 a n d  used  as an  offset in to  th e  co lo u r g ro u p
of th e  o b je c t, re su ltin g  in  a  co lou r m  th e  ra n g e  0 255

15
14

1 2
11

1 
0

MicroTrace color schem e

{ is  colon asch PQA Look Up Table
with 15 shade« )

[40 141 !4* 264 2*4 2S9

224 •26 M 234 2 » 239

«2 U 01 202 20« 207

IT* 77 «ft IM 1*0 191

!I

1* 17 25 2« 30 31

0 1 • 10 14 IS

In PGA mode objects are shaded using the 16 shades of whichever 
of the 16 colors they have been assigned

fig u re  4  4
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Exam ple see jig 4 4

o b je c t co lou r — ► 12
c a lc u la ted  in te n s ity  — > 0 6 la  K a  +  Id  K d  +  Is K s
co n v e rted  in te n s ity  — ► 9 15 x 0 6
fina l co lo u r — ► 201 16 x  12 -f* 9

T h e  sh ad es  for a  g iven  co lou r g ro u p  a re  lo ad ed  b y  th e  u se r  b e fo re  ra y  tra c in g  
com m ences, th ro u g h  on e  o f th e  fu n c tio n s  p ro v id ed  m  th e  u se r in te rfa c e  m o d u le  
F or each  of th e  16 co lou r g ro u p s , th e  u se r specifies to  th e  fu n c tio n  a  sing le  R G B  
value , fro m  w hich  th e  fu n c tio n  g en e ra te s  16 sh ad es fo r th e  co lou r g ro u p  T h is  is 
ach ieved  by  in te rp re tin g  th e  su p p lied  R G B  value  as  th e  X Y Z  lo c a tio n  of a  cell 
m  a n  im a g in a ry  c u b e  co n sis tin g  of 4096 (16 x  16 x  16) su ch  cells, fig 4 5, a n d  
follow ing a  lin e  fro m  th e  o rig in  th ro u g h  th is  cell (a n d  b e y o n d  if n ecessa ry ) u n ti l  i t  
h as  p assed  th ro u g h  16 cells o f  th e  cu b e  T h e  X Y Z  c o o rd in a te s  o f th e se  16 cells 
fo rm  th e  R G B  values of th e  16 sh ad es fo r th e  specified  co lou r g ro u p  A lte rn a tiv e ly , 
a  d iffe ren t fu n c tio n  can  b e  used  w hich , in s te a d  o f  fo llow ing a  line  fro m  th e  o rig in  
u p w ard s , follows it fro m  th e  d iag o n a lly  o p p o s ite  co rn e r, d o w n w ard s T h u s , th e  
sh ad es fo r a  p a r t ic u la r  co lour g ro u p  can  b e  fo rced  to  in c lu d e  e i th e r  w h ite  as  th e  
h ig h e s t in te n s ity  o r b lack  as th e  low est (on ly  a  co lo u r g ro u p  specified  by  a  cell o f 
eq u a l X y Y  an d  Z  co o rd in a te s  co n ta in s  b o th )

Each of the 4096 possible PGA colors can be viewed as  a  subcell 
of a  16x16x16 cube rested on red, green and blue axes

figure 4 5

R G B  M O D E  In  R G B  m o d e , th e  red , g reen  a n d  b lu e  co m p o n e n ts  of th e  lig h t 
e m itte d  fro m  a  p a r tic u la r  p o in t on  an  o b je c t a re  c a lc u la te d  by  firs t c a lc u la tin g  
i t ’s cyan , m a g e n ta  a n d  yellow (C M Y ) c o m p o n en ts  a n d  co n v ertin g  th e m  to  R G B  
T h e  re aso n  fo r u sin g  th e  s u b tra c tiv e  p r im a ry  co lou rs, C M Y , is th a t  re flec tio n  
o f lig h t is e ssen tia lly  a  s u b tra c tiv e  p rocess So, in  th e  sam e  w ay th a t  th e  R G B
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in te n s itie s  for an y  co lou r can  be  in te rp re te d  as th e  re sp e c tiv e  in te n s itie s  o f red , 
g reen  a n d  b lu e  lig h t w hich , w hen  a d d e d  to  b lack  give th e  specified  co lou r, th e  
C M Y  in te n s itie s  o f th e  co lou r a re  th e  re sp e c tiv e  in te n s itie s  o f cy an , m a g e n ta  an d  
yellow , w h ich , w hen  s u b tra c te d  fro m  w h ite  lig h t, give th e  sa m e  co lour

T h e se  C M Y  in te n s itie s  a re  ca lc u la ted  for a  p o in t on  a  su rface  by  a p p ly in g  
th e  lig h tin g  e q u a tio n  th re e  tim es , once fo r each  of cy an , m a g e n ta  a n d  yellow , to  
give an  in te n s ity  for each  m  th e  ra n g e  0 1 T h e se  in te n s itie s  a re  th e n  co n v e rted
to  R G B  in te n s itie s , each  o n e  a n  in teg e r in  th e  ra n g e  0 255

Example

red  =  255 x  (1 -  IaK a +  IdI<c +  I 3K S)
green  =  255 x  (1 -  IaI<a +  h K m +  I SK S)
b lu e  =  255 x  (1 -  IaI (a +  IdI<v +  ISK S)

4.2-5 The Object Structure
M c ro T ra c e  im p lem en ts  a  se t of fo u r b asic  p rim itiv e  ty p e s , fig 4 each  one 
d efined  m  its  ow n local c o o rd in a te  sy s te m  as follow s -

C Y L IN D E R  cy lin d er of u n it  ra d iu s  a n d  le n g th  c en te red  h o r i
zo n ta lly  a long  th e  Z-axis

S P H E R E  sp h e re  of u n it  ra d iu s , cen te red  a b o u t  th e  o rig in

C U B E  u n it c u b e  s ta n d in g  on  p o s itiv e  X Y Z  axes

C O N E  cone of u n it  h e ig h t w ith  b a se  of u n it  ra d iu s , cen 
te re d  h o riz o n ta lly  a long  th e  Z -axis, w ith  its  ap ex  
a t  th e  orig in

A n o b je c t,  w hich  is a n  in s ta n c e  of one  o f th e se  b as ic  p rim itiv e  ty p e s , co n 
sis ts  s im p ly  o f a  basic  p rim itiv e  n am e , a n d  a  4 x  4 tra n s fo rm a tio n  m a tr ix  w hich  
describ es th e  tr a n s la tio n , ro ta tio n  a n d  sca ling  o p e ra tio n s  th a t  t ra n s fo rm  th e  p r im 
itiv e  fro m  its  ow n loca l c o o rd in a te  sy s te m  in to  th e  w orld  c o o rd in a te  sy s te m

T h e  4 x 4  tra n s fo rm a tio n  m a tr ix , a long  w ith  th e  b as ic  p r im itiv e  ty p e  n a m e
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(a ) cube (b ) sp h ere (c ) cone (d ) cylinder

figure 4 6 The tour primitive solids of MicroTrace

a re  s to re d  m  a  C  s t ru c tu re ,  w ith  th e  u ser in te rface  m o d u le  p ro v id in g  fu n c tio n s  for 
a llo c a tin g  sp ace  fo r su ch  an  o b je c t s t ru c tu re ,  a n d  for b u ild in g  u p  th e  tra n s fo rm a 
tio n  m a tr ix  A scene co n sis tin g  of an y  n u m b e r of su ch  o b je c ts  is th e n  p re se n te d  
to  be  ray  t ra c e d  as a  linked  lis t o f th ese  s tru c tu re s

In  a d d itio n  to  s to rin g  a  p rim itiv e  ty p e  n a m e  a n d  tra n s fo rm a tio n  m a tr ix , th e  
s t ru c tu re  h as severa l o th e r  fields, som e o f w hich  a re  filled m  by  th e  ra y  tra c e r  
T h e se  fields c o n ta in  vario u s o th e r  ite m s  of in fo rm a tio n  a b o u t th e  o b je c t req u ire d  
b y  th e  ra y  tra c e r  a n d  th e  sh a d e r e g its  co lou r A c o m p le te  lis t a n d  d e sc rip tio n  of 
th e  fields of th e  o b je c t s t ru c tu re  is g iven  m  table 4 1 below , th o u g h  th e  fu n c tio n  
of som e of th e m  m ay  n o t b e  a p p a re n t u n til th e  a reas  o f ra y -o b je c t in te rse c tio n  
an d  o p tim iz a tio n s  have b een  covered  in  sections 4 5 a n d  4 6 re sp ec tiv e ly

4.3 Ray G eneration
As m e n tio n e d  in section 2 2,  a  ray  can  be  co n v en ien tly  re p re se n te d  as a  lin e  in  
p a ra m e tr ic  fo rm , defined  by  a  p o in t P  (x 0, yo, z0), a  d ire c tio n  v e c to r D  (D x , D y, Dz) 
an d  a  p a ra m e te r  t A ll p o in ts  on  th e  h n e  a re  th e n  o rd e re d  a n d  accessed  v ia  t 
w ith  each  p o in t (x ,y ,  z) on  th e  line  g iven by -

X  — X q +  tD x 
Y  =  YQ + tD y 
Z  — Zq -f* tD z

P o sitiv e  in c reasin g  values of t g ive p o in ts  on  th e  line  t h a t  a re  in c reas in g ly  fu r th e r  
a long  th e  h n e  fro m  {X q,Y q, Z o) in  th e  d ire c tio n  (Dx , D y, D 2), w hile  n eg a tiv e
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Field N am e D escription

primitive name of the primitive type from which the object is de
rived

transform 4 x 4  transformation matrix

inverse 4 x 4  inverse transformation matrix

xmin xmax 
ymm ymax

screen rectangle (extent) enclosing the object’s projected 
bounding volume

zneax zfar nearest & furthest Z coordinates of object’s transformed 
B V from primary ray origin

clr object’s PGA colour group (0 15)

rnd roughness of the object’s surface (used as a coarse approx
imation of a textured surface)

ka kd ks object’s ambient, diffuse and specular reflection constants

pwr object’s specular power constant

cmy object’s cyan, magenta and yellow reflection ratios

next pointer to next object in list

T ab le  4 1 T h e  O b je c t S tru c tu re
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d ecreasin g  values g ive p o in ts  t h a t  a re  fu r th e r  in th e  o p p o s ite  d ire c tio n  F or th is  
rea so n , th e  p o in t (X 0, ^o, Z 0) 1S o ften  re fe rred  to  as th e  ra y  o rig in

A n  im age  is th e n  ra y  tra c e d  by  c a s tin g  a  ra y  th ro u g h  each  p ix e l m  th e  screen , 
d e te rm in in g  th e  closest o b je c t s tru c k  by  th e  ra y  a n d  c a lc u la tin g  th e  sh a d e  of th e  
o b je c t a t  th e  p o in t o f in te rse c tio n , w hich  th e n  b ecom es th e  co lou r fo r th e  p ixel

In  M c ro  T race, th e  ray  eq u a tio n  fo r a  g iven  p ixel is d e te rm in e d  fro m  th e  
p e rs p e c tiv e /p a ra lle l  v iew ing  p a ra m e te rs , th e  v ie w p o rt, th e  w indow  a n d  th e  view  
p la n e  T h e  firs t s tag e  in  d e te rm in in g  th e  ra y  e q u a tio n  fo r a  p ix e l is to  m a p  th e  
p ixel o n to  th e  v iew  p lan e , w h ere  th e  view  p la n e  c an  b e  an y  p la n e  p a ra lle l to  th e  
X Y  p lan e , i e Z  =  dis t , (w h ere  dist  is th e  d is ta n c e  o f th e  p la n e  fro m  th e  
o rig in ) So, g iven  th e  fo llow ing v iew p lan e , w indow , a n d  v ie w p o rt -

v iew p lan e  — ► Z = d is t
v iew p o rt — ► vxl vx2 vyl vy2
w indow  — ► wxX wx2 wyi wy2

a  p ixel (X v, Yv) on  th e  screen  m ap s o n to  th e  p o in t ( X W1 Yw, dist)  o n  th e  w indow  
w h ere  -

\ r  _ , / y  \ ^ x 2  ^ x lX\u — UJxl (-'Mi ^xX )
VX2 - Vxl

Yw = wyl + (Yv -  vyl) - ^  ~  Wyl (4 2)
v y2  ^ y l

T h is  m a p p e d  p o in t ( X w, Yw,dist)  fo rm s o n e  h a lf  o f th e  ra y  e q u a tio n , th e  
ra y  o rig in  T h e  second  p a r t ,  th e  ray  d irec tio n  is d e te rm in e d  fro m  th e  p a ra l
le l /p e rs p e c tiv e  v iew ing p a ra m e te rs  If th e  view  is defined  to  b e  a  p a ra lle l p ro je c 
tio n  ty p e  view  i e th e  v iew er is p o sitio n ed  a t  in fin ity  a lo n g  a  specified  d ire c tio n  
th e n  all p r im a ry  rays a re  p a ra lle l to  th e  g iven  d ire c tio n  (Px ,P y,P z) O n  th e  
o th e r  h a n d , if  i t  is a  p e rsp e c tiv e  p ro je c tio n  ty p e  view  th e n  th e  v iew er is a t  a  
g iven  p o in t (-Yv, Y^, Zv) a n d  a ll p r im a ry  rays w ill h av e  a  s lig h tly  d ifferen t d irec 
tio n , see section 2 2 T h e  ray  d ire c tio n  (Dx, D y, D z) can  th e n  b e  d e te rm in e d  for 
a  p e rsp e c tiv e  o r p a ra lle l view  by  -

p e rsp e c tiv e  (Dx, D y, Dz) = ( X w -  X t1 Yw -  Yv, dist -  Zv) 

p a ra lle l (Dx1D y, D z) = (Px ,P y,P z)
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T h is  ra y  e q u a tio n , defined  by th e  p o in t ( X w, Yw, dist)  a n d  th e  d ire c tio n  (Z>x , Dy, D z), 
is th e n  te s te d  for in te rse c tio n  w ith  th e  lis t o f o b je c ts  in  o rd e r  to  d e te rm in e  th e  
closest o b je c t (if an y ) s tru c k  by  th e  ray

4.4 Transforming The Ray
In  te s t in g  an  o b je c t for in te rse c tio n , it  is m u ch  s im p le r to  te s t  th e  p rim itiv e  ty p e  
fro m  w hich  th e  o b je c t is d eriv ed  th a n  to  te s t  th e  o b je c t itse lf  T h is  is b ecau se  th e  
p rim itiv e  lies u n ifo rm ly  sized an d  p o s itio n e d  in  its  ow n local c o o rd in a te  sy s tem , 
w h ereas th e  o b je c t lies a rb itra r i ly  sized  a n d  o r ie n ta te d  m  w orld  c o o rd in a te  sp ace

P ro v id e d  th a t  th e  ra y  is c o rrec tly  tra n sfo rm e d  fro m  w orld  c o o rd in a te s  to  
th e  local c o o rd in a te  sy s te m  o f th e  p rim itiv e  ty p e  fro m  w hich  th e  o b je c t  is deriv ed , 
th e  value  for t fo u n d  fro m  in te rse c tin g  th e  tra n s fo rm e d  ra y  w ith  th e  p rim itiv e  is 
th e  sam e  as t h a t  fo u n d  b y  in te rse c tin g  th e  u n tra n s fo rm e d  ra y  w ith  th e  o b je c t, 
b u t  is c o m p u ta tio n a lly  less ex p en siv e  to  c a lc u la te  T h e  co rre c t tra n s fo rm a tio n  is 
fo u n d  by  u sin g  th e  inverse  of th e  o b je c ts  4 x 4  tra n s fo rm a tio n  m a tr ix  to  tra n s fo rm  
th e  ra y  fro m  w orld  to  p rim itiv e  c o o rd in a te s  In  M c ro  T race , th is  inverse  m a tr ix  is 
c a lc u la ted  for each  o b je c t befo re  ray  tra c in g  com m ences a n d  s to re d  m  th e  inverse  
field of th e  o b je c t s t ru c tu re  ( table 4 I )

F or a  g iven o b je c t, tra n s fo rm in g  th e  ray  involves tra n s fo rm in g  b o th  its  o ri
g in  a n d  d ire c tio n  by  m u ltip ly in g  th e m  by  th e  o b je c t’s 4 x 4  inverse  tra n s fo rm a tio n  
m a tr ix , A /7 , as follows -

tra n s fo rm e d  ra y  o rig in  =  [Xo, Yq, Z 0, 1] M I
tra n s fo rm e d  ra y  d irec tio n  =  [.Dx , Dy iD z  ̂0] M I

4.5 R ay Intersection
In  its  s im p lest form , th e  closest o b je c t s tru c k  by  a  g iven  ra y  is d e te rm in e d  by 
te s tin g  th e  ray  for in te rse c tio n  w ith  every  o b je c t m  th e  lis t a n d  se lec tin g  th e
one th a t  gives th e  low est value o f t for an  in te rse c tio n  (re m e m b e r i is a  m e a 
su re  of th e  d is ta n c e  o f th e  in te rse c tio n  p o in t fro m  th e  ra y  o rig in ) Section 4 6 
how ever, d iscusses severa l o p tim iz a tio n  tech n iq u es th a t  h av e  b een  im p le m e n te d  
w hich  sig n ifican tly  red u ce  th e  set o f o b je c ts  t h a t  h av e  to  b e  te s te d  to  som e su b se t 
c o n sis tin g  o n ly  o f th o se  o b je c ts  w ith  a  h igh  p ro b a b ility  o f b e in g  in te rse c te d  by
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th e  ray, re su ltin g  in  a  s u b s ta n tia lly  red u ced  im age  g e n e ra tio n  t im e  T h e re  are  
fo u r ray -p rim itiv e  in te rse c tio n  te s tin g  fu n c tio n s  in  M c ro  T race, on e  for each  of 
th e  fou r p rim itiv e  ty p e s  F or each  p rim itiv e  ty p e , th is  te s t  g en e ra lly  involves -

[1] checking if th e re  is a  va lue  of t fo r th e  ra y  w hich  
gives a  p o te n tia l  in te rse c tio n  p o in t w ith  an y  of th e  
p r im itiv e ’s su rfaces

[2] s u b s ti tu tin g  th is  va lue  fo r t (if on e  is fo u n d ) in to  
th e  ray  e q u a tio n

[3] check ing  if th e  re s u l ta n t  p o in t  lies on  th e  co rre 
sp o n d in g  su rface  of th e  p rim itiv e  (a n d  c a lc u la tin g  
th e  su rface  n o rm a l a t  t h a t  p o in t if it  does)

H ow ever, g iven t h a t  we a re  on ly  in te re s te d  m  th e  closest p o in t o f in te rse c tio n  
o f th e  ra y  w ith  any  o b je c t, un less th e  t value fro m  s ta g e  [1] is less th a n  th a t  for th e  
closest in te rse c tio n  fo u n d  m  p ro cessin g  th e  lis t o f o b je c ts  so fa r, i t  c a n ’t p o ssib ly  
p ro d u c e  a  c loser in te rse c tio n  so it  is p o in tle ss  to  p ro ceed  w ith  s tag es  [2] a n d  [3]

C o n seq u en tly , each  of th e  fou r ra y -p rim itiv e  in te rse c tio n  fu n c tio n s  o u tlin e d  
in  sections 4 5 1 to  4 $ 4 below , in a d d itio n  to  b e in g  g iven  a  ra y  to  te s t  for 
in te rse c tio n , is a lso  g iven  th e  low est in te rse c tio n  value  o f t fo r th e  ra y  w ith  any  
o b je c t m  th e  lis t te s te d  so fa r  ( th is  value is in itia lly  se t to  som e very  h ig h  value) 
a n d  th e  su rface  n o rm a l a t  th e  c o rre sp o n d in g  in te rse c tio n  p o in t E a c h  tim e  a  closer 
in te rse c tio n  is fo u n d , th e  value  a n d  su rface  n o rm a l a re  u p d a te d  to  reflec t th e  new  
in te rse c tio n  T h ese  th re e  e n titie s , th e  ra y  to  b e  te s te d , th e  closest in te rse c tio n  
so fa r  an d  th e  su rface  n o rm a l a t  th a t  in te rse c tio n  a re  re fe ren ced  m  th e  fo llow ing 
sec tio n s as -

E N T I T Y D E S C R IP T IO N

( x 0 îy0,Zo) ray origin

( D X  , D y  , D z ) ray direction

nearest t value of closest object 
intersection so far

normal surface norm al a t closest 
intersection so far



4.5.1 Cube Intersection
T h e  c u b e  p rim itiv e  is a  u n it  c u b e  defined  by  six  su rfaces, each  on e  p a ra lle l to  one 
o f th e  X Y Z  axes -
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surface equations bounds test surface normal

X  = 0 0 < = Y , Z < = 1 ( - 1, 0, 0)
X  = 1 0 < = Y , Z  <=1 ( 1, 0, 0)
Y  = 0 0 < =  <=  1 ( 0 , -1 ,  0)
Y  = 1 0 < = X , Z < = 1 ( 0, 1, 0)
Z = 0 0 < = X , Y  < = 1 ( 0, 0 , - 1 )
Z = 1 0 < =  X,Y < =  1 ( 0, 0, 1)

F in d in g  th e  closest p o in t o f in te rse c tio n  o f th e  c u b e  w ith  a  tra n s fo rm e d  ra y  
involves te s tin g  each  su rface  for in te rse c tio n  w ith  th e  ra y  For each  su rface , th is  
involves find ing  th e  v a lu e  o f t (if an y ) fo r w hich  th e  ray  in te rse c ts  th e  c o rre sp o n d 
ing  p la n e  If  th is  va lue  is less th a n  “n e a re s t” (see section 4 5 above) th e n  th e  
e x a c t p o in t o f in te rse c tio n  is d e te rm in e d  a n d  te s te d  to  see if i t  com plies w ith  th e  
b o u n d s  te s ts  fo r th e  su rface  If it  com plies, th e n  an  in te rse c tio n  h a s  b een  fo und  
T h e  te s t  for th e  Z  = 0 su rface  is o u tlin e d  m  p seu d o -co d e  below , th e  te s ts  for 
th e  re m a in in g  su rfaces b e in g  very  s im ila r

I n t e r s e c t i o n  T e s t  F o r  Z  — 0 S u r f a c e

F in d  t for w hich  ray  in te rse c ts  Z  =  0 p la n e  -

2  =

=> Zo  -f tD z  =
=> t = Dz

0

(4 3)
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P s e u d o  C o d e

i f  (Dz i s n o t  0 )  / *  D z =  0  r a y  p a r a l l e l  t o  p l a n e  * /
b e g i n *1qIII

i f  ( t <  ne arest)  a n d  (t >  0 )
b e g i n

X  =  X o  + 1 D x / *  c a l c u l a t e  p o i n t  o f  i n t e r s e c t i o n  * /
Y  =  Y 0  + 1 Dy
i f  ( X  < =  1 )  a n d  ( X  > =  0 )  a n d  ( Y  < =  1 )  a n d  ( Y  > =  0 )

b e g i n
n e a r e s t  = t

n o r m a l  —  ( — 1 , 0 ,  0 )
e n d

e n d
e n d

4.5,2 Sphere Intersection - -
T h e  sp h e re  p rim itiv e  is defined  as a  u n it  sp h e re  c e n te re d  a t  th e  o rig in  w ith  th e  
fo llow ing su rface  e q u a tio n  -

s u r f a c e  e q u a t i o n b o u n d s  t e s t s u r f a c e  n o r m a l

X 2  +  Y 2  +  Z 2 =  1 N O N E (X ,Y ,Z )

O ne w ay of te s t in g  if th e  ray  in te rse c ts  th e  sp h e re  is to  te s t  if th e  p e rp e n d ic 
u la r  d is ta n c e  b e tw een  th e  ray  a n d  th e  o rig in  ( th e  ce n tre  o f th e  sp h e re ) is less th a n  
one ( th e  ra d iu s)  T h is  sim p le  te s t  w ill n o t how ever g ive th e  p o in t o f in te rse c tio n  
b e tw een  th e  ra y  a n d  th e  sp h e re  (w hich  is re q u ire d  fo r c a lc u la tin g  th e  su rface  
n o rm a l)  A lte rn a tiv e ly , s u b s ti tu tin g  th e  ra y  e q u a tio n  in to  th e  su rface  e q u a tio n  
for th e  sp h e re  p ro d u ces  a  q u a d ra tic  e q u a tio n  m  t w hich  can  b e  so lved  using  a  
q u a d ra tic  fo rm u la  S u b s ti tu t in g  th e  solved v a lu e  for t b a c k  in to  th e  ray  e q u a tio n  
th e n  gives th e  e x a c t p o in t of in te rse c tio n  b e tw een  th e  ray  a n d  th e  sp h e re  T h is  
la t te r  a p p ro a c h  is th e  one o u tlin e d  below  -
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S u b s t i tu t in g  th e  ray  e q u a tio n

X  =  X 0 + W x 
Y  = Y0 + tD y 
Z  = Zq +  tD z

(4 4)

in to  th e  sp h e re  e q u a tio n '

X 2 + Y 2 + Z 2 = 1

gives

(Xo +  tD xf  +  (F 0 +  tD y)2 +  (Zq +  tD zf  =  1

E x p a n d in g  a n d  re a rra n g in g  gives a  q u a d ra tic  m  t w hich  c an  b e  so lved  w ith  th e  
fo rm u la

_  B  ±  y /B 2 -  A C  
A

w here

>1 = D\ + D\ + D]
B  = D xX o +  D yYo +  D zZ0 
C  =  X l  + Y 2 + Z t - 1 

(4 5)

T h e  in te rse c tio n  te s t  is th e n  b ased  on th e  sq u a re  ro o t te rm , w ith  th e  follow ing 
in te rp re ta tio n s  -
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V a lu e  o f N u m b e r  o f I n t e r p r e t a t i o n
B 2 - A C in te r s e c t io n s o f  r e s u l t

zero 1 ray tan gen ta i -  no in tersection
negative 0 com plex solution -  no in tersection
positive 2 two intersections -  take closest

4.5.3 Cylinder Intersection
T h e  cy lin d e r p r im itiv e  co n sists  o f a  cy lin d er of u n i t  ra d iu s  a n d  le n g th , defined  by 
th e  fo llow ing th re e  su rfaces -

s u r f a c e  e q u a t io n b o u n d s  t e s t s u r f a c e  n o r m a l

X 2 +  Y 2 =  1 
Z  =  0 
Z  =  1

0 < =  Z  < =  1 
X 2 + Y 2 < =  1 
X 2 +  Y 2 < =  1

(X ,Y ,  0) 
( 0 ,0 , - 1 )  
(0 ,0 , 1)

I n t e r s e c t i o n  T e s t  F o r  X 2 +  Y 2 -  1 S u r f a c e

T h e  te s t  for th is  su rface  is d eriv ed  m  th e  sam e  w ay as t h a t  fo r th e  sp h e re , b y  su b 
s t i tu t in g  th e  ray  e q u a tio n  in to  th e  su rface  e q u a tio n , w ith  th e  re s u lta n t e q u a tio n

( X q  +  tD x )2 +  ( io  +  tDy)2 =  1

E x p a n d in g  a n d  re a rra n g in g  gives a  q u a d ra tic  m  t w hich  ag a in  can  be  solved w ith  
th e  fo rm u la

t = B ±  yJB2 -  A C

w here
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A  =  D l  +  D ]

B  =  D xX 0 + D yY0 
C  =  X 20 + Y02 - 1

(4 6)

A s for th e  sp h e re , th e  in te rse c tio n  te s t  is b a sed  on  th e  sq u a re  ro o t te rm , w ith  th e  
sam e in te rp re ta tio n s

I n t e r s e c t i o n  T e s t  F o r  O t h e r  S u r f a c e s

T h e  in te rse c tio n  te s t  fo r th e  o th e r  tw o  cy lin d er su rfaces is v ery  s im ila r to  
th a t  o f th e  Z  = 0 su rface  for th e  c u b e  i l lu s tra te d  above , w ith  th e  ex c e p tio n  th a t  
th e  b o u n d s  te s t  is s lig h tly  d ifferen t i e h av in g  c a lc u la te d  a  v a lu e  X  a n d  Y } th e  
p o in t a t  w hich  th e  ray  in te rse c ts  th e  p la n e  in q u e s tio n , th e  te s t

( X  < =  1) a n d  ( X  > =  0) a n d  ( Y  < =  1) a n d  ( Y  > =  0)

is rep laced  by

( X 2 + Y 2) < =  1

4.5.4 Cone Intersection
T h e  cone p rim itiv e  co n sists  o f a  cone of u n it  h e ig h t a n d  ra d iu s , w ith  th e  a p e x  a t  
th e  o rig in , a n d  is defined  by th e  follow ing tw o  su rfaces -

surface equation bounds te st surface norm al
X 2 + Y 2 -  Z 2 = 0 

Z =  1
0 < =  Z < = 1 
X 2 + Y 2 < =  1

(X,Y,0)
(X , Y , x / l - Z 2)

I n t e r s e c t i o n  T e s t  F o r  X 2 +  Y 2 — Z 2 = 0 S u r f a c e

T h e  in te rse c tio n  te s t  for th is  su rface , like th e  sp h e re , is d e riv ed  b y  s u b s ti
tu t in g  th e  ray  e q u a tio n  in to  th e  su rface  e q u a tio n , p ro d u c in g  -
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(X 0 +  tDx)2 +  (F0 + tDy)2 -  (Z0 +  tD2f =  0

A g a in , e x p a n d in g  a n d  re a rra n g in g  gives a  q u a d ra t ic  in  t w h ich  as befo re , 
c an  b e  solved w ith  th e  fo rm u la

J B  ±  V B 2 -  A C  
A

w h ere

A = D 2x + D 2y - D l  
B  — D xX o +  DyYo — D , Z 0 
C  =  X 2 + Y 2 - Z 2

(4 7)

T h e  in te rse c tio n  te s t  for th e  o th e r  su rface  is- id e n tic a l to  th a t  o f th e  Z  — 1 
cy lin d er su rface

4.6 Shadow Rays
Section 2 3 1  d e sc rib ed  how  it was p ossib le  to  d e te rm in e  if  a  p o in t w as in  shadow  
w ith  re sp e c t to  a  lig h t so u rce  by  tra c in g  a  ray, ca lled  a  shadow  ray, fro m  th e  p o in t 
to  th e  lig h t so u rce  If th e  ra y  h its  an y  o p aq u e  o b je c t, th e  p o in t lies in  shadow  
M c ro  T race uses a  d ifferen t se t o f ray -p rim itiv e  in te rse c tio n  fu n c tio n s  fo r te s t in g  
sh ad o w  rays in  o rd e r  to  ta k e  a d v a n ta g e  of th e  fac t t h a t  th e  o n ly  co n cern  is w h e th e r  
o r n o t th e  ra y  s trik es  an y  su rface  be tw een  its  o rig in  a n d  th e  lig h t so u rce  T h e  
fu n c tio n s  a re  very  s im ila r to  th e  ones o u tlin e d  ab o v e  a n d  differ o n ly  in  th e  re sp e c t 
th a t  as soon  as th e  ra y  is fo u n d  to  s tr ik e  an y  su rface  o f an y  o b je c t ,  no  fu r th e r  
su rfaces o f t h a t  o b je c t a re  te s te d , no  su rface  n o rm a l o r p o in t o f in te rse c tio n  a re  
ca lc u la ted , an d  n o  fu r th e r  o b je c ts  a re  te s te d
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4.7 O ptim izations
As o u tlin e d  in section 2.4, 75%  of th e  tim e  ta k e n  to  ra y  tra c e  a n  im ag e  is ta k e n  u p  
w ith  ca lc u la tin g  th e  in te rse c tio n  of rays w ith  o b je c ts . G iven  th a t  th e  ra y -o b je c t 
in te rse c tio n  ca lcu la tio n s  h av e  b een  o p tim iz e d  as fa r as p o ssib le , th e  o n ly  w ay of 
red u c in g  th is  figure  is to  a t te m p t  to  red u ce  th e  n u m b e r  o f ra y -o b je c t in te rse c tio n  
te s ts .  O ne  w ay of do ing  th is  is to  t r y  to  d e te rm in e , befo re  te s tin g  th e  ra y  w ith  
th e  lis t o f o b je c ts , th o se  o b je c ts  t h a t  th e  ra y  h a s  n o  ch an ce  o f h it t in g . T h ese  
m issed  o b je c ts  can  th e n  b e  ex c lu d ed  from  th e  te s t ,  so t h a t  th e  ra y  is te s te d  for 
in te rse c tio n  w ith  o n ly  a  sm all su b se t o f o b je c ts  t h a t  h av e  a  h ig h  p ro b a b ility  of 
b e in g  h it .  T h e  d ifficu lty  of such  a  schem e how ever, lies in  fin d in g  a  m ean s  of 
easily  id en tify in g  as m a n y  of th e se  m issed  o b je c ts  as p o ssib le , w hich  w ill b a la n c e  
th e  n u m b e r o f such  o b je c ts  d e te c te d  a g a in s t th e  c o m p u ta tio n a l cost o f d e te c tin g  
th e m .

T h e  fo llow ing sec tio n s o u tlin e  fou r o p tim iz a tio n s  em ployed  by M c ro  T race 
w hich  p ro v id e  d ifferen t m e th o d s  o f red u c in g  th e  n u m b e r of o b je c ts  a g a in s t w hich  
a  ra y  m u st b e  te s te d , a n d  h ave  b een  called

•  P ix e lb u ffe r

•  E x te n ts

•  G rid

•  S o rtlis t

T h e  o p tim iz a tio n s  have  b een  im p le m e n te d  in  such  a  m a n n e r  as to  b e  co m 
p le te ly  in d e p e n d e n t fro m  one a n o th e r . T h a t  is to  say, th e y  can  b e  u sed  e ith e r  
in d iv id u a lly , o r in  an y  co m b in a tio n . E ach  one  is co n tro lled  by its  ow n flag v a ri
ab le , w hich  if se t m ean s th a t  th e  o p tim iz a tio n  is to  b e  em ployed . T h e  flags in  
tu r n  a re  se t by  calling  th e  a p p ro p r ia te  fu n c tio n s  fro m  th e  u se r in te rface  m o d u le  
(M c ro T ra c e  se ts  all fo u r o p tim iz a tio n s  on by d e fa u lt) .

All fou r o p tim iz a tio n s  o p e ra te  on ly  for p r im a ry  ray s  a n d , w ith  th e  e x cep tio n  
of th e  th ird ,  th e  P ixe lbu ffe r, can  o p e ra te  w hen  e ith e r  a  file a n d /o r  a  d isp lay  im age  
o u tp u t  h as  b een  re q u e s te d  —  th e  P ix e lb u ffe r can  o n ly  b e  u sed  w ith  a  d isp lay  
o u tp u t  since it  relies on  re a d in g  p ixel values in  ad v a n c e  of tra c in g  to  d e te rm in e  
w h e th e r  o r n o t a  ray  sh o u ld  b e  c a s t for a  g iven p ixel. T h e  effectiveness o f th e  
o p tim iz a tio n s  a t  red u c in g  re n d e rin g  tim e  is ex am in ed  in  section 4-8, w h ere  im age 
g e n e ra tio n  tim es for various co m b in a tio n s of th e  fou r a re  ta b u la te d  for severa l
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te s t  im ages

Sm ce all o f th e  o p tim iz a tio n s , w ith  th e  e x cep tio n  o f S o rtlis t  re ly  o n  th e  
e x is ten ce  of a  b o u n d in g  vo lum e fo r each  o f th e  fou r p r im itiv e  o b je c t  ty p e s , befo re  
lo ok ing  a t  each  o f th e  o p tim iz a tio n s  in d e ta il, a  b r ie f  d e sc rip tio n  of th e  b o u n d in g  
vo lum es used  m ay  p rove useful

4.7.1 Bounding Volumes
As o u th n e d  in  section 2 4,  th e  m a jo r ity  o f o p tim iz a tio n  tech n iq u es c u rre n tly  
em ployed  in  ra y  tra c in g  can  b e  b ro a d ly  classified  as e ith e r  sp ace  su b d iv is io n  o r 
b o u n d in g  v o lu m e te ch n iq u es  O ne  of th e  reaso n s fo r se lec tin g  b o u n d in g  vo lum es 
over sp ace  su b d iv is io n  as th e  basis  o f m o st o f th e  M c ro  T races o p tim iz a tio n s  was 
th a t  sp ace  su b d iv is io n  tech n iq u es  h ave  a  te n d e n c y  to  re q u ire  q u ite  la rg e  a m o u n ts  
o f m em o ry  a n d , g iven a  m em o ry  “b u d g e t” of 640K  it was felt th a t  b o u n d in g  
vo lum es w ould  give a  b e t te r  s p a c e /p e rfo rm a n c e  ra t io  —  reg ard less  of th e  n u m b e r  
of o b je c ts  in a  scene, M c ro  T race sto res  a  to ta l  o f o n ly  fou r b o u n d in g  vo lum es 
(one fo r each  of th e  fo u r p r im itiv e  o b je c t ty p e s)

Section 2 4 ¿ .d iscu ssed  m  som e d e ta il  th e  issue  o f b o u n d in g  vo lum es w here  
th e  g en e ra l id e a  is to  su rro u n d  each  o b je c t in  a  vo lum e th a t  is less co stly  to  te s t  
for in te rse c tio n  th a n  th e  o b je c t i t  encloses T h e n , o n ly  if th e  ray  in te rse c ts  th e  
b o u n d in g  vo lum e, is i t  te s te d  for in te rse c tio n  w ith  th e  o b je c t  in side

In  M c ro  T race how ever, each  o b je c t is n o t ex p lic itly  su rro u n d e d  in  its  ow n 
b o u n d in g  vo lu m e In s te a d , o n ly  fou r b o u n d in g  vo lum es e x is t, one for each  of 
th e  fou r p rim itiv e  ty p es , fig 4 7 U nlike th e  p rim itiv e  ty p e s , w hose sh a p e  a n d  
p o s itio n  a re  n o t ex p lic itly  defined  an y w h ere  m  th e  ray  t ra c e r  ( th e y  a re  im p lic itly  
defined  in  th e ir  re sp ec tiv e  ra y -p rim itiv e  in te rse c tio n  fu n c tio n s) , th e  fou r b o u n d in g  
volum es a re  ex p lic itly  s to re d  in  an  a rray , each  as a  se t of e ig h t X Y Z  co o rd in a te s  
T h e  b o u n d in g  v o lum e for a  p a r t ic u la r  o b je c t can  th e n  b e  c a lc u la te d  w hen  n eed ed  
s im p ly  by  ap p ly in g  its  tra n s fo rm a tio n  m a tr ix  to  th e  e ig h t v ertices o f th e  v o lu m e 
of th e  p rim itiv e  fro m  w hich  th e  o b je c t is d erived

T h e  rea so n  for c a lc u la tin g  r a th e r  th a n  s to rin g  th e  o b je c t  b o u n d in g  vo lum es 
is th a t  s to rin g  th e  b o u n d in g  v o lu m e m  th e  o b je c t s tru c tu re  w ould  in c rease  th e  
sp ace  re q u ire d  to  s to re  a n  o b je c t by a b o u t  50%  In  a d d itio n , all o f th e  o p tim iz a 
tio n s  below  m ak e  use  of o b je c t b o u n d in g  vo lum es o n ly  to  e x tra c t  som e in itia l  
in fo rm a tio n  a b o u t an  o b je c t O nce th is  in fo rm a tio n  has b een  e x tra c te d  a n d  
s to re d  m  th e  o b je c t s t ru c tu re ,  th e re  is no fu r th e r  need  for th e  b o u n d in g  vo lum e.



CHAPTER 4 MICROTRACE  104

( a )  c u b e
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fig u re  4  7  The four primitive bounding volumes

C o n seq u en tly , b o u n d in g  vo lum es a re  c a lc u la ted  one a t  a  tim e  fo r each  o b je c t 
befo re  ra y  tra c in g  com m ences a n d  a re  passed  to  an y  a c tiv e  o p tim iz a tio n s  w hich  
in  tu r n  e x tra c t  a n d  s to re  an y  in fo rm a tio n  th e y  req u ire , a n d  a re  th e n  d isc a rd e d

I t  can  b e  seen fro m  fig 4 7 th a t  th e  b o u n d in g  vo lu m e fo r each  o f th e  sp h ere , 
cy lin d er a n d  cu b e , co n sis ts  o f a  e ith e r  a  cu b ic  o r re c ta n g u la r  b lock  defined  by 
e ig h t c o o rd in a te s , w h ich  fo rm  th e  e ig h t co rn ers o f th e  b lock  In  th e  case  of th e  
cone  how ever, th e  b o u n d in g  vo lum e is a  p y ra m id , re q u ir in g  o n ly  five v e rtices  for 
d e fin itio n  For th e  sake o f co n sis ten cy  how ever, th is  b o u n d in g  v o lum e is s to re d  
as e ig h t v ertices by  d u p lic a tin g  th e  a p ex  c o o rd in a te  th re e  tim e s  T h is  p re v e n ts  
h av in g  to  t r e a t  th is  vo lum e as a  specia l case  a n d  m ean s th a t  all fu n c tio n s  w hich  
p rocess b o u n d in g  vo lum es n eed  b e  p re se n te d  w ith  n o th in g  m o re  th a n  a  list of 
e ig h t v e rtices , reg a rd less  of th e  p rim itiv e  ty p e  to  w hich  th e  b o u n d in g  v o lum e 
be longs

4.7.2 Pixelbuffer
For m a n y  scenes, a  la rg e  p e rc e n ta g e  of p ixel values w ill b e  se t to  th e  b ac k g ro u n d  
co lou r it  th e  rays w hich  th e y  spaw n  do  n o t in te rse c t an y  o b je c ts  a t  all T h e  
id ea  b e h in d  th is  o rig in a l o p tim iz a tio n , w hich  is re fe rred  to  m  M c ro  T race as 
P ix e lb u ffe r, is to  p ro v id e  an  easy  m ean s of d e te c tin g  such  p ixe ls , so t h a t  th e y  can  
th e n  b e  a u to m a tic a lly  se t to  th e  b a c k g ro u n d  co lour w ith o u t h av in g  to  g e n e ra te  
a n d  tra c e  a  ray  fo r th e m

F irs tly , all p ixels o n  th e  screen  a re  se t to  a  g iven  co lo u r T h e n , one by  one 
th e  b o u n d in g  v o lum e for each  o b je c t is ca lc u la ted  a n d  d ra w n  o n  th e  screen  as
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six  p o ly g o n s, filled in g iven  co lou r W h en  all o b je c ts  h av e  b e e n  p ro cessed  m  th is  
way, th e  re su lt  is a  screen  co n sis tin g  of p ixels th a t  h av e  one of tw o  co lours —  th e  
in it ia l  co lour a n d  th e  co lour u sed  to  fill th e  p o ly g o n s T h e  fo rm er a re  th e  ones 
w hose  ray s  d efin ite ly  m iss all o b je c ts

W h e n  ray  tra c in g  co m m ences, b e fo re  c a s tin g  a  ra y  th ro u g h  a  p ix e l, th e  
co lou r o f th e  p ix e l is ex am in ed  to  see if i t  is th e  sam e  co lou r as th a t  u sed  to  fill 
th e  p ro je c te d  b o u n d in g  vo lum es If i t  is n ’t ,  th e n  th e  p ix e l is im m e d ia te ly  se t to  
th e  b a c k g ro u n d  co lou r a n d  th e  n e x t p ixel p ro cessed

E ven  th o u g h  th is  schem e d e te c ts  a  la rg e  p e rc e n ta g e  of all p ixels w hose ray s 
do  n o t in te rse c t an y  o b je c t, it  c a n n o t alw ays d e te c t all o f th e m  since, w ith  th e  
e x cep tio n  of th e  cu b e , all o f th e  b o u n d in g  vo lum es w ill c o n ta in  som e void  sp ace  
(te som e e m p ty  sp ace  b e tw een  th e  o b je c t a n d  th e  b o u n d in g  vo lum e) w hich  m ay  
p ro je c t o n to  p ixels t h a t  a re  n o t o th e rw ise  covered  by  a  n o n -v o id  p a r t  o f  som e 
o th e r  vo lum e T h e  p e rc e n ta g e  o f p ixels fa lh n g  in to  th is  c a te g o ry  how ever w ould  
n o rm a lly  b e  q u ite  low, b u t  cou ld  b e  fu r th e r  re d u ced  by  th e  use  of t ig h te r  b o u n d in g  
vo lum es T h is  how ever w ould  b e  a t  th e  cost o f in c reasin g  th e  o v erh ead  of s to rin g , 
tra n s fo rm in g  a n d  re n d e rin g  th e  b o u n d in g  vo lum es, a  cost w hich  is u n like ly  to  p ay  
fo r itse lf  in  te rm s  o f in c reased  p e rfo rm a n c e  of th e  o p tim iz a tio n

C O S T  A N D  P E R F O R M A N C E  T h e  co st o f im p le m e n tin g  P ix e lb u ffe r con 
sists  en tire ly  of th e  cost o f re a d in g  each  p ixel once, w hich  is c o n s ta n t fo r a  g iven 
v iew p o rt size, a n d  th e  cost o f g e n e ra tin g  a n d  re n d e rin g  th e  b o u n d in g  vo lum es, 
w hich  is p ro p o rtio n a l to  th e  n u m b e r o b je c ts  m  th e  scene  T h e  sav ings o b ta in e d  
fro m  P ix e lb u ffe r on  th e  o th e r  h a n d  a re  d ire c tly  p ro p o r tio n a l to  th e  n u m b e r  of 
e m p ty  p ixels (ones w hich  do  n o t have  th e  fillco lour a f te r  all b o u n d in g  vo lum es 
h av e  b e e n  re n d e re d ) a n d  is in d e p e n d e n t of th e  n u m b e r of o b je c ts  in  th e  scene 
since, g iven  -

#  pixels =  N
#  fillcolour p ixels =  F
#  o b je c ts  =  n

th e  sav ings a re  ca lc u la ted  as

( N - F ) n  F  - , ,savings =  jV n  =  1 -  j j  (4 8)

W h ile  P ix e lb u ffe r p rov ides a  m ean s of easily  d e te c tin g  th o se  p ixels w hose ray s will 
n o t in te rse c t an y  o b je c t ,  it  h as  th e  lim ita tio n  th a t  pixels fa iling  to  fall in to  th is
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ca te g o ry  m u s t h av e  th e ir  ray s  te s te d  fo r in te rse c tio n  w ith  a ll o b je c ts  m  th e  scene 
I t  does how ever h av e  th e  a d v a n ta g e  o f b e in g  re a so n a b ly  effective a n d  easy  to  
im p le m e n t a n d  does n o t in c u r e ith e r  a  la rg e  c o m p u ta tio n a l  o r s to ra g e  o v e rh ead

4.7.3 Extents
As o u tlin e d  in section 2 4 1, a sso c ia tin g  a n  o b je c t w ith  a  b o u n d in g  vo lu m e w hich  
tig h tly  encloses th e  o b je c t, b u t  is c o m p u ta tio n a lly  less ex p en siv e  to  te s t  for in te r 
sec tio n  w ith  a  ray, can  red u c e  th e  co st o f ray  tra c in g  a n  im ag e  T es tin g  th e  ray  
fo r in te rse c tio n  w ith  th e  b o u n d in g  vo lum e how ever, s ti l l  re q u ire s  th e  use o f ex 
p en siv e  flo a tin g  p o in t a r i th m e tic  since i t  is p e rfo rm e d  in  w orld  c o o rd in a te  sp ace  
In  a d d itio n  to  th is ,  th e  b o u n d in g  vo lum e w ould  h av e  to  b e  s to re d  w ith  th e  o b je c t 
w hich , as m e n tio n e d  ea rlie r , w ould  in c rease  th e  sp ace  re q u ire d  to  s to re  a  sing le 
o b je c t by a b o u t  50%

E x te n ts ,  w hich  is b ased  on R o th ’s u se  of b o x  en c lo su res  [R O TH 82] (see 
section 3 3 5),  overcom es th e se  tw o p ro b lem s how ever b y  u sin g  a  2D  “b o u n d in g  
v o lu m e” ca lled  a n  e x te n t, w hich is e ssen tia lly  a  re c ta n g le  in  sc reen  sp ace  th a t  
encloses th e  o b je c t, section 2 4 1  T h e  firs t p ro b lem , th a t  o f h av in g  to  use  flo a tin g  
p o in t a r i th m e tic , is th u s  overcom e since te s t in g  of e x te n ts  is d o n e  in  in te g e r sc reen  
sp ace  a n d  th e  second , th a t  o f s to rag e , by  v ir tu e  of th e  fa c t t h a t  an  e x te n t req u ires  
s to ra g e  fo r ju s t  fo u r in teg ers , w hich  co m p ares v ery  fa v o rab ly  w ith  th e  tw en ty  
fo u r flo a tin g  p o in t n u m b ers  re q u ired  for a  b o u n d in g  vo lu m e In  fa c t, in  Microsoft 
C  version  5 1, w here  a n  in te g e r occupies 2 b y te s , a n d  a  long  flo a t 8, an  e x te n t 
req u ires  o n ly  4%  o f th e  s to ra g e  re q u ire d  for a  b o u n d in g  vo lu m e (8 b y te s  co m p a re d  
to  192)

O b je c t e x te n ts  a re  c a lc u la ted  for each  o b je c t b e fo re  ra y  tra c in g  com m ences 
by  g e n e ra tin g  a  b o u n d in g  vo lu m e for each  o b je c t a n d  find ing  i ts  m in im u m  a n d  
m a x im u m  X  a n d  Y  c o o rd in a te s , w hich  a re  th e n  p ro je c te d  o n to  screen  co o r
d in a te s  a n d  s to re d  as fo u r in teg ers  m  th e  xmm, xmax, ymin , a n d  ymax  fields 
re sp ec tiv e ly  o f th e  s t ru c tu re  for th e  o b je c t ( table 4 1) T h e se  in te g e r  co o rd in a te s  
( x m i n , y m m )  a n d  (xmax, ymax)  fo rm  th e  low er left a n d  u p p e r  r ig h t co rn e rs  of 
th e  sc reen  e x te n t o f th e  o b je c t

W h en  ra y  tra c in g , befo re  te s tin g  a  ra y  fo r in te rse c tio n  w ith  a  p a r t ic u la r  
o b je c t, th e  p ixel th a t  sp aw n ed  th e  ray  is te s te d  a g a in s t th e  o b je c t ’s sc reen  e x te n t 
O n ly  if th e  p ixel lies in sid e  th e  e x te n t, is th e  ray  te s te d  fo r in te rse c tio n  w ith  th e  
o b je c t
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C O S T  A N D  P E R F O R M A N C E  T h e  cost o f u sin g  E x te n ts  a m o u n ts  to  th e  
cost o f g e n e ra tin g  th e  e x te n t  for each  o b je c t, p lu s  th e  cost o f te s t in g  a  p ixel 
a g a in s t th e  e x te n t each  tim e  th e  o b je c t is te s te d  for in te rse c tio n  w ith  a  ray. T h e  
fo rm er co n sists  o f th e  cost o f g e n e ra tin g  th e  b o u n d in g  v o lu m e  fo r each  o b je c t 
(w hich  is d iv id ed  am o n g  a ll a c tiv e  o p tim iz a tio n  schem es) as w ell as th e  cost of 
find ing  a n d  p ro je c tin g  th e  m in im u m  a n d  m a x im u m  X  a n d  Y  c o o rd in a te s . T h e  
te s t  to  see if a  p ixel (x , y) lies in s id e  an  e x te n t req u ire s , in  th e  w o rst case, 4 
in teg er co m p ariso n s (since all o f th e  fo u r co n d itio n s  a re  wa n d ” c o n d itio n s , as soon  
as one fa ils, th e  overa ll co n d itio n  fails)

(x  ^  — x mor) a n d  (x  > =  x mtn) a n d  (y ymax) a n d  (y > =  ymin)

In  th e  w o rst p o ssib le  case , w h ere  th e  p ixel for every  ra y  lies in sid e  th e  e x te n t 
for every  o b je c t,  e x te n ts  b eco m e a  lia b ility  r a th e r  th a n  a n  a sse t since  te s tin g  th e  
p ixel w ith  a n  o b je c ts  e x te n t  becom es su p erflu o u s a n d  m ere ly  ad d s  to  th e  co st of 
te s tin g  th e  ray  w ith  th e  o b je c t. E ven  in  such  ra re  cases how ever, th e  lia b ility  
w ould  b e  m in im a l since th e  cost o f th e  p ix e l-e x te n t te s t  is neg lig ib le  in  co m p ariso n  
to  th a t  o f th e  ra y -o b je c t te s t .  O p tim a l sav ings on th e  o th e r  h a n d , w ould  o ccu r for 
a  scene c o n ta in in g  a  la rg e  n u m b e r o f o b je c ts  w ith  as l i t t le  o v erlap p in g  o f e x te n ts  
as possib le . In  th e  b e s t p o ssib le  case, w here  th e re  is no  o v erlap p in g  a t  all, each  
p r im a ry  ra y  w ould  th e n  h av e  to  b e  in te rse c te d  w ith  (a t  m o s t)  a  sing le o b je c t fro m  
th e  e n tire  list.

W h ile  th e  “ray  in te rse c ts  e x te n t” te s t  is m uch  c h e a p e r to  p e rfo rm , b o th  fro m  
a  c o m p u ta tio n a l a n d  a  s to ra g e  p o in t o f view , th a n  th e  “ra y  in te rse c ts  b o u n d in g  
vo lu m e” te s t ,  th e  fac t th a t  it  is p e rfo rm ed  in  sc reen  sp ace  m ean s th a t  i t  c an  on ly  
b e  ap p lied  to  p r im a ry  ray s, since th e se  a re  th e  o n ly  ray s th a t  a re  c o n s tra in e d  
to  pass th ro u g h  th e  screen . T h e  b o u n d in g  vo lum e te s t  o n  th e  o th e r  h a n d , is 
p e rfo rm e d  in  o b je c t sp ace  an d  h en ce  can  b e  ap p lied  to  b o th  p r im a ry  a n d  sec
o n d a ry  rays. H ow ever, th e re  is n o th in g  to  p re v e n t b o th  schem es b e in g  em ployed  
s im u ltan eo u sly  it. to  use  screen  sp ace  e x te n ts  fo r te s tin g  p r im a ry  ray s, a n d  to  
u se  o b je c t sp ace  b o u n d in g  vo lum es for seco n d ary  ray s —  a  p o ss ib ility  o u tlin e d  
in  stction 5.2.1.

T h e  l im ita tio n  on th e  use  of e x te n ts  to  p r im a ry  rays is n o t o f m a jo r  sig
n ificance  to  M icro T race a t  p re se n t since, by  v ir tu e  o f th e  fa c t t h a t  i t  c u rre n tly  
in c o rp o ra te s  ju s t  a  sing le lig h t sou rce , a n d  th a t  th e  o n ly  se c o n d a ry  ray s  tra c e d  
axe shadow  ray s, th e  n u m b e r of p r im a ry  rays c a s t w ill a lw ays b e  g re a te r  th a n  
th e  n u m b e r of seco n d a ry  rays (ex cep t in  th e  ra re  case  w here  all p r im a ry  ray s 
in te rse c t a n  o b je c t, w hen  th e  tw o will b e  e q u a l) . H ow ever, sh o u ld  M c ro  T race, 
a t  som e p o in t in th e  fu tu re , b e  u p g ra d e d  to  in c o rp o ra te  m u ltip le  lig h t sources 
a n d /o r  tr a n s p a re n t  o b je c ts , it is q u ite  likely th a t  th e  n u m b e r of se c o n d a ry  rays
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will exceed  th a t  o f p r im a ry  ones a n d  seco n d ary  ray  o p tim iz a tio n s  w ould  th e n  b e  
a  s ig n ifican t fa c to r  in  its  p e rfo rm a n c e  Such u p g ra d e s  a n d  se c o n d a ry  ra y  o p ti
m iz a tio n s  axe d iscu ssed  m  section 5 2

A n o th e r  lim ita tio n  on  th e  usefu lness o f  e x te n ts  is th a t ,  d e p e n d in g  o n  th e  
sh a p e  a n d  o r ie n ta tio n  o f th e  o b je c t, th e y  can  so m etim es c o n ta in  la rg e  vo id  a reas , 
w hich  red u ces th e ir  effectiveness, fig 4 8 O ne  w ay o f re d u c in g  th is  vo id  a re a  
w ould  b e  to  u se  a  p o ly g o n a l e x te n t in s te a d  of a  re c ta n g u la r  on e  S uch  an  e x te n t 
cou ld  enclose  th e  p ro je c te d  vo lum es w ith o u t any  vo id  a re a  since a ll fou r b o u n d in g  
v o lum es m  M c ro  T race  co n sist of po ly g o n s a n d  so w ill a lw ays fo rm  a  p o ly g o n  w h en  
p ro je c te d  o n to  th e  screen  T h e  co st o f g e n e ra tin g  p o ly g o n a l e x te n ts  how ever 
w ould  b e  g re a te r  th a n  th a t  for re c ta n g u la r  ones, as w ould  th e  cost o f s to ra g e  a n d  
te s tin g

Screen extents can sometimes contain large void areas
figure 4 8

4.7.4 Grid
W h ile  th e  E x te n ts  o p tim iz a tio n  o u tlin e d  in  th e  p rev io u s sec tio n  p rov ides a  qu ick  
a n d  easy  te s t  to  see if  a  p r im a ry  ray  s ta n d s  a  go o d  ch an ce  of h it t in g  an  o b je c t, 
th e  co m p le te  list o f o b je c ts  is s till p ro cessed  for every  ra y  T h e  G rid  o p tim iz a tio n  
on th e  o th e r  h a n d  p ro v id es a  m ean s o f su p p ly in g  a  lis t o f o b je c ts  for each  ray  
th a t  is a  su b se t o f th e  e n tire  lis t o f o b je c ts , co n sis tin g  o n ly  o f th o se  o b je c ts  w ith  
a  h igh  p ro b a b ility  o f b e in g  in te rse c te d  T h e  o p tim iz a tio n  is b ased  o n  ideas by 
G e rv a u tz  [GERV86] for p a r t i t io n in g  screen  sp ace  in  o rd e r  to  c re a te  te m p o ra ry  
o b je c t tre e s  (section 3 4 4)  an d  by A rn a ld i [A RN A 87] fo r g e n e ra tin g  3D cells for 
sp ace  su b d iv is io n  (section 3 4 5)

T h e  o p tim iz a tio n  resem bles so m e th in g  o f a  sp ace  su b d iv is io n  te c h n iq u e  (sec
tion 2 4 2 ) in  tw o d im en sio n a l screen  sp ace  as o p p o sed  to  th re e  d im en sio n a l o b 
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je c t  sp ace  T h e  id ea  is to  im p o se  a  re c ta n g u la r  g rid  o n  th e  sc reen  a n d  to  a sso c ia te  
w ith  each  re c ta n g le  a  h s t o f o b je c ts  t h a t  a re  p a r t ia l ly /c o m p le te ly  c o n ta in e d  m  
th a t  re c ta n g le  T estin g  a  ra y  for in te rse c tio n  w ith  th e  scen e  th e n  involves d e te r 
m in in g  th e  re c ta n g le  to  w hich th e  p ixel sp aw n in g  th e  ra y  b e lo n g s, a n d  te s t in g  th e  
ra y  for in te rse c tio n  w ith  th e  asso c ia ted  h s t o f o b je c ts  fo r th a t  re c ta n g le  S ince, 
as m e n tio n e d  ea rlie r , a ll fo u r o p tim iz a tio n s  can  b e  u sed  e ith e r  to g e th e r  o r in d e 
p e n d e n tly , an y  o f th e  o th e r  o p tim iz a tio n s  c an  b e  u sed  to  sp eed  u p  th e  te s t in g  of 
th e  ra y  w ith  th is  a b b re v ia te d  list

M c ro  T race uses a  fixed g rid  size o f 20 cells h o riz o n ta lly  b y  20 cells v e rtica lly  
reg a rd less  of th e  size of th e  screen  C onsequen tly , th e  la rg e r  th e  sc reen , th e  g re a te r  
th e  n u m b e r o f p ixels a sso c ia ted  w ith  each  cell T h e  g rid  is im p le m e n te d  as a  20x20 
a rra y  o f p o in te rs  to  linked  lis ts , w ith  each  e lem en t of a  lin k ed  lis t c o n ta in in g  a  
s ing le  p o in te r  to  a n  o b je c t w hose e x te n t overlaps th e  cell, fig 4 9 W h ile  s to r in g  
th e  g n d  as an  a r ra y  m ean s th a t  th e  n u m b e r of cells is fixed (ch an g in g  th e  n u m b e r 
req u ire s  re -defin ing  th e  a rra y  d im ensions m  th e  so u rce  code a n d  reco m p ilin g ) it  
does h av e  th e  a d v a n ta g e  of p ro v id in g  fa s t a n d  easy  access to  th e  o b je c t p o in te r  list 
for a  g iven  p ixe l, w hich  sim p ly  involves u sin g  th e  p ixels c o o rd in a te s  as an  in d ex  
in to  th e  a rra y  A lte rn a tiv e  s tru c tu re s  w hich  p ro v id e  a  m o re  flex ib le  a p p ro a c h  for 
im p lem en tin g  th e  g rid  a re  d iscussed  m  section 5 2 1

Implementation of GRID using array of pointers to linked lists

figure 4 9

T h e  g rid  is g e n e ra te d  by scan n in g  th e  lis t o f o b je c ts  o nce  for each  cell, 
g e n e ra tin g  th e  linked  lis t o f p o in te rs , a n d  th e n  se tt in g  th e  co rre sp o n d in g  a r ra y  
e n try  to  p o in t to  th e  h s t C ells th a t  do  n o t c o n ta in  an y  o b je c ts  h av e  a  NULL  
p o in te r  in  th e ir  co rresp o n d in g  a rra y  e n try  In  d e te rm in in g  w h e th e r  o r n o t an  
o b jec tro v e rlap s  a  cell, th e  o b je c ts  screen  e x te n t is used  in s te a d  of i ts  b o u n d in g  
v o lum e A lth o u g h  th is  will so m etim es give a  less a c c u ra te  a p p ro x im a tio n  as 
to  w h e th e r a n  o b je c t o verlaps a  cell th a n  if th e  th e  o b je c ts  screen  p ro je c te d
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b o u n d in g  vo lu m e w ere used  (e x te n ts  g en era lly  c o n ta in  a  la rg e r p e rc e n ta g e  of 
void sp a c e ), th e  fo rm er is a  less ex p en siv e  te s t  to  p e rfo rm  In  a d d itio n , since 
th e  G rid  o p tim iz a tio n  w ould  n o rm a lly  b e  u sed  m  c o n ju n c tio n  w ith  th e  E x te n ts  
o p tim iz a tio n , th e  c o m p u ta tio n a l ex p en se  of g e n e ra tin g  th e  g rid  is fu r th e r  red u ced  
as o b je c t e x te n ts  w ill a lre a d y  h ave  b een  g e n e ra te d

4.7.5 Sortlist
S u p p o se  th a t ,  in s te a d  of h av in g  to  te s t  a  ra y  fo r in te rse c tio n  w ith  w ith  a  h s t 
o f o b je c ts  in  ra n d o m  o rd e r , th e  o b je c ts  in  th e  lis t w ere p re se n te d  in  th e  sam e 
o rd e r  in  w hich  th e y  a re  e n c o u n te re d  by  th e  ra y  T h e  first in te rse c tio n  o f  th e  ra y  
w ith  su ch  a  lis t w ou ld  th e n  b e  g u a ra n te e d  to  b e  th e  closest one , so as soon  as an  
in te rse c tio n  is fo u n d , th e  re m a in in g  o b je c ts  in  th e  lis t n eed  n o t b e  te s te d  T h is  is 
th e  g en era l id e a  b e h in d  a n o th e r  o rig in a l o p tim iz a tio n  em ployed  by  M c ro  T race, 
ca lled  S o rth s t

B efore  ray  tra c in g  com m ences, b o u n d in g  vo lum es a re  c a lc u la te d  for each  
o b je c t T h e  closest a n d  fu r th e s t  Z  c o o rd in a te s  of each  fro m  th e  o rig in  o f th e  ray, 
a re  c a lc u la te d  a n d  s to re d  m  th e  znear a n d  zfar fields re sp ec tiv e ly  o f th e  o b je c t 
s t ru c tu re  (see table 4 1) T h e  te rm s  closest a n d  fu r th e s t  a re  u sed  in p lace  of 
m in im u m  an d  m a x im u m  since, fro m  fig 4 10, d e p e n d in g  on  th e  d ire c tio n  of th e  
p r im a ry  ray , Z mtn co u ld  b e  e ith e r  th e  c losest o r th e  fu r th e s t  from  th e  ra y  o rig in

A case  where Znear is equal to Zmax instead of Zmm

fig u re  4 10

T h e  linked  h s t o f o b je c ts  p re se n te d  to  M c ro  T race is th e n  s o r te d  in to  a s 
cend ing  o rd e r  of znear  c o o rd in a te s  by  re a rran g in g  th e  links in  th e  lis t, a  fu n c tio n  
w hich  is p e rfo rm ed  by an  efficient so rtin g  a lg o r ith m  for linked  lis ts  th a t  req u ires  
o f th e  o rd e r of N  log N  co m p ariso n s (w here  N  is th e  n u m b e r  of o b je c ts  m  th e  
h s t)  [ER D E89]
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Since  th is  lis t rep re se n ts  on ly  an  a p p ro x im a tio n  to  th e  o rd e r  in  w hich  a  ray  
w ill e n c o u n te r  th e  o b je c ts , as i l lu s tra te d  in  fig 4 Hy ^  is u n sa fe  to  cease  te s tin g  
o b je c ts  m  th e  lis t as soon  as a n  in te rse c tio n  is fo u n d  H ow ever, g iven  Z c, th e  
Z —c o o rd in a te  o f th e  closest in te rse c tio n  fo u n d  in  p ro cessin g  th e  lis t so fa r, it  is 
a lw ays safe to  cease  te s tin g  as soon as an  o b je c t is e n c o u n te re d  w hose znear  
c o o rd in a te  lies fu r th e r  fro m  th e  ray  o rig in  th a n  Z c

Even though object B ties closer to the ray origin than A 
the ray intersects object A at a  closer point

fig u re  4  11

C O S T  A N D  P E R F O R M A N C E  T h e  cost o f im p le m e n tin g  th e  so r tin g  o p ti
m iz a tio n  co n sists  o f th e  cost o f in itia lly  g e n e ra tin g  th e  so r te d  lis t o f o b je c ts , p lu s 
th e  cost p e r  ray  of te s tin g  th e  znear o f each  o b je c t w ith  Z c T h is  l a t te r  co st in  
tu rn  will d ep en d  on how  soon  a  safe  ex it p o in t is reach ed  in  th e  lis t o f o b je c ts  
T h e  co n d itio n s for o p tim a l p e rfo rm a n c e  o f S o rtlis t w ou ld  b e  a  scene w here  th e re  
is h t t le  o r n o  o v erlap p in g  of o b je c ts  a lo n g  th e  Z —axis (o v erlap p in g  on  X  a n d  Y  
axes w ould  h av e  no  effect) T h is  is in c o n tra s t  to  th e  E x te n ts  o p tim iz a tio n , w here  
o v erlap p in g  a long  th e  Z —axis h as no  affect on  p e rfo rm a n c e  b u t  o v e rlap p in g  on  
th e  X  a n d  Y  axes does

4.8 Presentation  o f R esults
T h is  sec tio n  e v a lu a te s  th e  p e rfo rm an ce  of each  of th e  fo u r o p tim iz a tio n s  o u tlin e d  
above by  p re se n tin g  a n d  a n a ly s in g  tra c in g  tim es a n d  o th e r  s ta t is t ic s  for tw o te s t  
im ages g e n e ra te d  b y  M c ro T ra c e  P h o to g ra p h s  o f th e  tw o  im ages, a  scene  of 
sn o o k er b a lls  a n d  a  chem ical la ttic e , a re  show n in  figs 4 12 a n d  4 13, a lo n g  w ith  
co lou red  d ia g ra m s i l lu s tra tin g  th e  g rid  cells a n d  o b je c t e x te n ts  (figs 4 H  a n d  
4 1 5 )
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4.8.1 The Test Images
S n o o k e r  B a l l s  Figure 4 12 show s an  im ag e  of a  se t o f sn o o k er b a lls  w ith  th e  
v iew er s i tu a te d  b e h in d  a n d  above  th e  p ack  of fe d  b a lls , loo k in g  dow n th e  ta b le  
T h e  scene  co n sists  o f 253,440 p ixels a n d  c o n ta in s  21 o b je c ts , each  one a  sp h ere  
T h e  deg ree  to  w h ich  o b je c t e x te n ts  overlap  each  o th e r  as w ell as th e ir  d is tr ib u tio n  
am o n g  th e  g rid  cells (tw o  fa c to rs  w hich  affect th e  efficiency of th e  E x te n t a n d  
G rid  o p tim iz a tio n s)  can  b e  seen  fro m  fig 4 14a, w h ich  il lu s tra te s  th e  cells of 
th e  g rid  a n d  th e  o b je c t  screen  e x te n ts 2 as th e y  w ould  a p p e a r  to  M c ro  T race In  
ad d itio n , th e  deg ree  o f o v erlap p in g  o f th e  znear a n d  zfar c o o rd in a te s  of th e  o b je c t 
b o u n d in g  vo lum es, a  fa c to r  w hich  affects th e  efficiency o f S o rtlis t, is i l lu s tra te d  
in  fig 4 14b, w h ich  show s th e  b o u n d in g  vo lum es w h en  o r th o g ra p h ic a lly  p ro je c te d  
o n to  th e  xz-p la n e  te w hen  view ed fro m  above

L a t t i c e  Figure 4 13 show s th e  la t t ic e  scene, w hich  co n sis ts  of 54 o b je c ts  —  
27 sp h eres  a n d  27 cy h n d e rs  T h e  n u m b e r of p ixels for th is  scene  (223 ,680) is 
d ifferen t from  th a t  o f  th e  sn o o k er b a lls  b y  v ir tu e  o f  th e  fa c t th a t  th e  p ro g ra m  
w hich  g e n e ra te d  th e  scene a u to m a tic a lly  ca lcu la tes  a  w indow  o n  th e  v iew  p la n e  
t h a t  is ju s t  sufficient to  enclose  th e  scene an d  a d ju s ts  th e  specified  v ie w p o rt to  
m a in ta in  th e  co rrec t w in d o w /v ie w p o rt ra t io  A s fo r th e  sn o o k er scene, fig 4 15a 
i l lu s tra te s  th e  g rid  cells a n d  o b je c t e x te n ts  a n d  fig 4 15b show s a  p la n  view  of th e  
scene

4.8.2 Explaination Of Terms
T h e  re su lts  o f tables 4 3 an d  4 4 w ere g a th e re d  by  tra c in g  each  o f th e  la t t ic e  
a n d  snooker im ages six  tim e s  —  once w ith  no  o p tim iz a tio n s  ac tiv e , o nce  w ith  all 
o p tim iz a tio n s  a c tiv e  a n d  once w ith  on e  o f  each  o f  th e  fo u r o p tim iz a tio n s  a c tiv e  
T h e  d e riv a tio n  a n d  m e a n in g  o f each  s ta t is t ic  is o u th n e d  in  table 4 2

T h e  firs t tw o s ta tis t ic s  o f each  ta b le , “rays t r a c e d ” a n d  “rays in te rs e c te d ” 
a re  re a lly  o n ly  re lev an t to  cases w here  th e  P ix e lb u ffe r o p tim iz a tio n  is a c tiv e  
T h e  value  of “ray s g e n e ra te d ” w ould  re p re sen t th e  n u m b e r of p ixe ls th a t  h a d  th e  
fillcolour a f te r  th e  P ix e lb u ffe r p rep ro cess  (section 4 ? 2),  w h ile  “ra y s  in te rse c te d ” 
w ould  re p re se n t th e  p e rc e n ta g e  of th o se  p ixels w hose rays in te rse c te d  a n  o b je c t 
an d  th e re fo re  p ro v id es  an  in d ic a tio n  of th e  void sp ace  c o n ta in e d  in  th e  p ro je c te d  
b o u n d in g  volum es —  th e  higher th e  p e rc e n ta g e , th e  lower th e  a m o u n t o f void 
space

2 T h e  e x t e n t s  a r e  o u t l i n e d  m  r e d  a n d  f i l l e d  m  y e l l o w  f o r  c l a r i t y
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STATISTIC D E SC R IPT IO N

rays traced 
rays intersected
R -0  Tests - 

per ray- 
total 

% reduction

Time - 
preprocess
Total

• % of pixels for which a ray was generated
• % of generated rays which intersected some object

• Average no of ray-object tests per ray
• Total no of ray-object tests m millions
• Reduction m required no of ray-object tests as a % of 

that required to test every ray with every object

• Time to calculate inverse transformation matrices, sort ob~ 
ject list, calculate extents etc

• Ray tracing time +  preprocess time (hh mm ss)

% N 0  time • Total time as a % of non-optimized time

T ab le  4 2 D e sc rip tio n  of re su lts  te rm s

In  re la tio n  to  ra y -o b je c ts  te s ts ,  th e  te s ts  p e r  ray , to ta l  te s ts  a n d  p e rc e n ta g e  
re d u c tio n , i l lu s tra te  from  d ifferen t p e rsp e c tiv e s , th e  o v era ll effectiveness of th e  
a c tiv e  o p t im iz a t io n s ) m  red u c in g  th e  n u m b e r o f re q u ire d  ra y -o b je c ts  te s ts  w hich , 
as can  b e  seen  fro m  th e  ta b le s , h a s  th e  g re a te s t b e a r in g  on  sp eed in g  u p  tra c in g  
tim e s  A lso in  re la tio n  to  ra y -o b je c t te s ts ,  th e  p e rc e n ta g e  o f te s ts  re su ltin g  in  
an  in te rse c tio n , “% h its ” , gives a n  in d ic a tio n  o f th e  efficiency o f th e  E x te n ts  a n d  
G rid  o p tim iz a tio n s  (sections 4 7 3 a n d  4 7 4 ) a t  lim itin g  ra y  in te rse c tio n  te s ts  to  
o b je c ts  w ith  a  h igh  p ro b a b ility  o f b e in g  h it ,  a n d  of th e  effectiveness o f th e  so rtin g  
of th e  S o rtlis t o p tim iz a tio n  (section 4 7 5)

4.8.3 Discussion Of Results
F ro m  a  g lan ce  a t tables 4 2 an d  4 w hich h s t th e  s ta tic t ic s  fo r each  o p tim iz a 
tio n  in o rd e r of decreasin g  re n d e rin g  tim e , it  is c lear t h a t  E x te n ts  p ro v id es  th e  
g re a te s t tim e  sav ings fo r b o th  im ages a n d  th a t  no o p tim iz a tio n  is slow er th a n  th e  
u n o p tim iz e d  tim e  N o te  how ever t h a t  th e  o rd e r of o p tim iz a tio n s  m  b o th  ta b le s  
is d ifferen t —  G rid  is th e  second  slow est o p tim iz a tio n  fo r th e  la t t ic e  w h ereas
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Grid & Extents (left) and plan view (right) for SNOOKER image 
Figure 4.14 (a) and (b)

SNOOKER BALLS — >• 21 objects, 253440 pixels

Optimizations
STATISTIC none SI Pb Gd Ex All
rays traced 
rays intersected

100.00%
36.99%

100.00%
36.99%

49.57%
74.62%

100.00%
36.99%

100.00%
36.99%

49.57%
74.62%

R -0  Tests 
per ray 
% hits 
total
% reduction

21.00 
10.17% 
5.30 M 
0.00%

16.85 
9.18% 

4.27 M 
19.76%

21.00 
5.66% 

2.64 M 
50.43%

8.77 
13.56% 
2.22 M 
58.24%

0.98 
60.13% 
0.25 M 
95.34%

1.27 
58.83% 
0.16 M 
97.01%

Time
preprocess
Total

0 sec 
4:35:06

1 sec 
3:48:18

7 sec 
2:22:26

2 sec 
2:02:55

0 sec 
00:30:51

7 sec 
00:22:04

% N.O. time 100.00% 82.99% 51.76% 44.68% 11.21% 8.02%

Table 4.3: Snooker Scene Statistics.
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Grid k  Extents (left) and plan view (right) for LATTICE image 
Figure 4.15 (a) and (b)

LATTICE — ► 54 objects, 223680 pixels

Optimizations
STATISTIC none SI Gd Pb Ex All
rays traced 
rays intersected

100.00%
41.58%

100.00%
41.58%

100.00%
41.58%

63.52%
65.46%

100.00%
41.58%

63.53%
65.46%

R O  Tests 
per ray 
% hits 
total
% reduction

54.00 
4.54% 

12.07 M 
0.00%

44.99 
4.03% 

10.06 M 
16.69%

35.07 
3.76% 

7.84 M 
35.06%

54.00 
1.86% 

7.67 M 
36.48%

2.09 
30.52% 
0.47 M 
96.13%

2.43 
34.98% 
0.34 M 
97.14%

Time
preprocess
Total

1 sec 
12:35:16

2 sec 
10:53:38

2 sec 
8:07:39

16 sec 
7:59:17

2 sec 
00:55:43

17 sec 
00:41:50

% N.O. time 100.00% 86.54% 64.57% 63.46% 7.37% 5.53%

Table 4.4: Lattice Scene Statistics.
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P ix e lb u ffe r is for th e  sn o o k er b a lls  In  b o th  cases how ever, S o rt lis t is th e  slow est 
o p tim iz a tio n , th o u g h  i t  gives a  g re a te r  sav ing  for th e  sn o o k er b a lls  th a n  fo r th e  
la t t ic e  T h ese  a n d  o th e r  in te re s tin g  a sp e c ts  of th e  le s u lts  a re  fu r th e r  an a ly z e d  
below  u n d e r  th e  h ead in g s of th e ir  re sp ec tiv e  o p tim iz a tio n s

E x t e n t s  F ro m  b o th  re su lts  ta b le s  i t  is c lea r t h a t  E x te n ts  gives a  fa r g re a te r  
re d u c tio n  in  tra c in g  tim e  th a n  an y  sing le  o th e r  o p tim iz a tio n  —  th e  tim e  fo r th e  
sn o o k er balls b e in g  red u ced  to  ju s t  over 11% o f th e  u n o p tim iz e d  tim e  a n d  th a t  of 
th e  la t t ic e  to  ju s t  over 7% It can  also  b e  seen  th a t  th e  “% h i ts ” fo r th e  sn o o k er 
b a lls , a t  60 13%, is a lm o st tw ice  th a t  fo r th e  la t t ic e , 30 52%  T h e  low er fig u re  for 
th e  la t t ic e  is p ro b a b ly  a  re su lt  o f th e  size a n d  o r ie n ta tio n  of th e  cy lin d ers , w hich  
causes th e ir  e x te n ts  to  c o n ta in  a  la rg e r am o u n t o f vo id  sp ace  a n d  c o n seq u en tly  
re su lts  in  a  g re a te r  n u m b e r o f n o n -in te rse c tin g  rays h av in g  to  b e  te s te d  for th e se  
e x te n ts

I t  is in te re s tin g  to  n o te  how ever th a t  in  sp ite  of th is  fa c t, a n d  th e  fac t th a t  
th e re  is g re a te r  o v erlap p in g  of e x te n ts  (c o m p are  fig 4 w ith  4 15a), E x te n ts  
p ro d u ces  a  g re a te r  sav ing  m  re n d e rin g  tim e  fo r th e  la t t ic e  scene T h is  is p ro b a b ly  
d u e  to  th e  slig h tly  la rg e r re d u c tio n  in  ra y -o b je c ts  te s ts  for th is  scene, 96 13% 
co m p a re d  to  95 34% , a n d  th e  la rg e r n u m b e r o f  o b je c ts  (54 a g a in s t 21) th o u g h  
th e  issue  is c lo u d ed  so m ew h a t by th e  fac t th a t  th e  cy lin d ers  m  la t t ic e  scene  h ave  
a  m o re  expensive  ray -in te rse c t ion  te s t  th a n  th e  sp h eres  so figures for re d u c tio n s  
in  ra y -o b je c t te s ts  a re  n o t as  s tra ig h t fo rw ard  as for th e  sn o o k er scene, w h ere  all 
o b jec ts  have th e  sam e  te s t  cost

P ix e lb u f F e r  In  section 4 7 2 it w as o u tlin e d  how  th e  sav in g  fro m  P ix e lb u ffe r is 
re la te d  on ly  to  th e  n u m b e r of fillcolour pixels an d  is in d e p e n d e n t o f th e  n u m b e r 
of o b je c ts  in  th e  scene T h is  fac t is confirm ed  fro m  th e  figures in  th e  re su lts  
ta b le s  w here , for b o th  im ages, th e  su m  of th e  “ray s tra c e d ” p e rc e n ta g e  a n d  “% 
re d u c tio n ” is 100, in d ic a tin g  th e  re la tio n sh ip  o f  equation 48 In  a d d itio n , th e  
re n d e rin g  tim e , ex p ressed  as a  p e rc e n ta g e  o f th e  u n o p tim iz e d  re n d e rin g  tim e , is 
a lm o st p ro p o rtio n a l to  th e  “rays tra c e d ” figure w hich , as o u tlin e d  above , in d ic a te s  
th e  p e rc e n ta g e  o f pixels th a t  h a d  th e  fillcolour a f te r  th e  P ix e lb u ffe r p rep ro cess  
A co m p ariso n  o f th e  “ray s in te rse c te d ” s ta t is t ic  for b o th  im ages show s th a t  a  
h ig h er p e rc e n ta g e  of ray s  w ere in te rse c te d  m  th e  sn o o k er scene, in d ic a tin g  th a t  
th e  p ro je c te d  void  a re a  (on  th e  view  p lan e) o f th e  b o u n d in g  vo lum es fo r th is  scene 
w ere, on  av erage , less th a n  th o se  in  th e  la t t ic e  scene  N o te  th a t  th e  s ig n ifican tly  
longer p rep ro cess  tim e s  for th is  o p tim iz a tio n  is, m  b o th  im ag es, a  re s u lt  o f th e  
tim e  ta k e n  to  d raw  th e  filled po ly g o n s o f th e  b o u n d in g  vo lum es o n  sc reen

G r i d  T h e  p e rfo rm an ce  of th e  G rid  o p tim iz a tio n  can  b e  seen  from  th e  ta b le s  
to  be  b e t te r  for th e  snooker th a n  for th e  la ttic e  scene  A look  & fig 4 14a a n ^
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4 15a show s th a t  th e  rea so n  is p ro b a b ly  d u e  to  th e  g re a te r  deg ree  o f o v erlap p in g  
in  th e  o b je c t e x te n ts  fo r th e  la t t ic e  scene, re su ltin g  in  a  la rg e r  n u m b e r o f o b je c ts  
b e in g  a sso c ia te d  w ith  m an y  cells In  a d d it io n  th is  scen e  h as  a  m u ch  sm alle r 
p e rc e n ta g e  of e m p ty  cells I t  can  b e  seen fro m  th e  ta b le s  to o , t h a t  th e  n u m b e r 
of ra y -o b je c t in te rse c tio n  te s ts  p e r  ra y  is g re a te r , as a  p e rc e n ta g e  of th e  n u m b e r  
o f o b je c ts  in  th e  scene, for th e  la t t ic e  im age  —  ag a in , th is  is p ro b a b ly  a  re su lt  of 
th e  g re a te r  o v erlap p in g  a n d  d isp e rs io n , over th e  g rid  a re a , o f th e  o b je c t e x te n ts  
T h ese  o b se rv a tio n s , to g e th e r  w ith  th e  fa c t th a t  th e  p e rc e n ta g e  o f ra y -o b je c t te s ts  
th a t  p ro v e  p o sitiv e  ( “% h i ts ” ) is sign ifican tly  low er fo r th e  la t t ic e  seem s to  su g g est 
th a t  sm alle r cells, o r  a  d is tr ib u tio n  o f o b je c ts  over som e so r t o f h ie ra rc h ica l cell 
s t ru c tu re  (section 5 2 1 )  m ig h t p rove  m o re  benefica l fo r th e  la t t ic e  scene

S o r t l i s t  In  b o th  im ages, S o rtlis t p ro d u ces  th e  least re d u c tio n s  m  re n d e r in g  
tim e s  of an y  o f th e  o p tim iz a tio n s  b u t, in  sp ite  o f th is , s till  m an ag es  to  re n d e r  th e  
sn o o k er im ag e  in  ju s t  u n d e r  h a lf  th e  u n o p tim iz e d  tim e , w ith  a  figure  of ju s t  over 
86%  for th e  la t t ic e  A look  a t  fig 4 14& show s th a t  th e re  is h t t le  o v e rlap p in g  of 
znear a n d  zfar co o rd in a te s  fo r th e  snooker scene In  e x am in in g  fig 4 15b how ever, 
w hich  a p p e a rs  to  show  h t t le  o v erlap p in g , i t  m u st b e  re m e m b e red  th a t  th e re  a re  
in  fa c t tw o s im ila r tie rs  o f o b je c ts  d ire c tly  below  th e  v isib le  o n e  show n So, w hile  
o v erlap p in g  within th e  th re e  h o riz o n ta l tie rs  is sm all, for th e  scene  as a  w hole  it 
is sig n ifican tly  g re a te r  th a n  for th e  sn o o k er scene —  a  fa c t in d ic a te d  n o t o n ly  by 
a  co m p ariso n  o f p e rc e n ta g e  ren d e rin g  tim es b u t  also  by  a  low er p e rc e n ta g e  o f ray  
h its  a n d  a  lower p e rc e n ta g e  re d u c tio n  of ray  o b je c t in te rse c tio n  te s ts

O v e r a l l  F ro m  th e  ta b le s , it  is ce lar th a t  th e  fo u r o p tim iz a tio n s , w hen  em ployed  
s im u ltan eo u sly , sig n ifican tly  red u c e  re n d e rin g  tim es fo r b o th  im ages —  th e  la t t ic e  
scene  tak es  on ly  5 53%  of th e  u n o p tim iz e d  re n d e rin g  t im e  a n d  th e  sn o o k er scene 
ju s t  8 02%  A look  a t  th e  “% h i ts ” s ta t is t ic  how ever, w h ich  is 34 4%  for th e  
la t t ic e  a n d  58 83%  for th e  snooker b a lls , com bined  w ith  th e  fa c t t h a t  over 90%  
of th e  ab o v e  re d u c tio n s  m  ren d e rin g  tim es re su lts  fro m  th e  E x te n ts  o p tim iz a tio n , 
reveals  th a t  th e re  is ro o m  fo r y e t fu r th e r  o p tim iz a tio n , p a r t i c u la r ly  in th e  o th e r  
th re e  o p tim iz a tio n s  W ays m  w hich th is  can  b e  ach ieved , a lo n g  w ith  su g g estio n s 
for a d d itio n a l o p tim iz a tio n s , a re  o u tlin e d  in  section 5 2 1

4,8.4 Results For Other M achines
D u rin g  th e  co u rse  of th is  re sea rch , m ic ro c o m p u te rs  w ith  m u ch  g re a te r  c a lcu 
la tin g  c ap ab ilitie s  b ecam e  av a ilab le  F ro m  th e  ray  tra c in g  tim e s3 a n d  te ch n ica l

3The times given are tracing times for both images using the Grid, Extents and Sortlist 
optimizations, with no screen of file output
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sp ec ifica tio n s fo r th e se  m ach ines (table 4 5) it  can  b e  seen  th a t  u p  to  a  ten-fold 
sp eed  in c rease  on th e  A T w as ach ieved  by  som e T h is  can  o n ly  lead  one to  im ag 
in e  w h ere  ra y  tra c in g  w ill lead  in th e  fu tu re , as y e t m o re  p ow erfu l a n d  fa s te r  
m ach in es  b eco m e av a ilab le  —  a  p ro sp e c t d iscu ssed  m  section 5 3

M a c h i n e S p e c i f i c a t i o n
T r a c i n g  T i m e

S n o o k e r L a t t i c e
P r o c e s s o r c o - p r o c e s s o r m i n  s e c m i n  s e c

I B M  A T 8 0 2 8 6  m H z 8 0 2 8 7 2 2  1 0 4 1  5 5
I B M  P S - 2 8 0 3 8 6  16 M H z 8 0 3 8 7 3  4 6 6  3 1
S u n  3 8 6 i 8 0 3 8 6  2 5 M H z 8 0 3 8 7 2  2 0 4  0 8
O l i v e t t i  3 8 6 8 0 3 8 6  2 5  M H z 8 0 3 8 7 2  0 4 3  3 4

T ab le  4 3 T rac in g  T im es  For V arious M ach ines



C hapter 5

C onclusions & Further W ork

5.1 Conclusions
I t  is c lea r fro m  th e  re su lts  of section 4 8 t h a t  c u rre n t m ic ro c o m p u te rs  a re  well 
c a p a b le  of h a n d lin g  th e  m assive  c o m p u ta tio n  involved  in g e n e ra tin g  ray  tra c e d  
im ages w hich , on ly  a  few years  ea rlie r, w ould  h av e  b een  th e  sole d o m a in  o f m a in - 
fram e  a n d  su p e r c o m p u te rs  T h e  ever in c reasin g  sp eed  a n d  pow er of th e se  m ic ro 
c o m p u te rs  (in  th e  d u ra tio n  of th is  re sea rch , a  ten-fold sp eed  in crease  o c cu rred , 
table 4 5)  w ill allow  m o re  com plex  a n d  re a lis tic  im ages to  b e  g e n e ra te d , w hile  
th e ir  d ec reasin g  co st w ill en su re  a  w ider b ase  o f use a n d  a p p lic a tio n  of th e  a re a  
rea lis tic  im ag e  sy n th es is , a n d  co n seq u en tly  of ray  tra c in g  W h ile  i t  is d ifficu lt to  
m ak e  fu tu re  p re d ic tio n s  re g a rd in g  an  a re a  as ra p id ly  e x p a n d in g  a n d  develop ing  
as c o m p u te r  g rap h ic s , it does n o t seem  u n re a so n a b le  to  ex p e c t th a t  in  th e  fo re
seeab le  fu tu re , th e  g e n e ra tio n  o f rea lis tic  im ages will be  as av a ilab le  an d  s ta n d a rd  
a  u se  for m ic ro c o m p u te rs  as d e sk to p  p u b lish in g  is to d a y

5.2 Future Work
T h e  follow ing sec tions o u tlin e  th e  in c o rp o ra tio n  o f severa l a d d itio n a l fea tu re s  
to  M c r o 7 r a c e  th a t  w ill fu r th e r  en h a n c e  a n d  e x te n d  its  re n d e rin g  a n d  trace - 
sp eed  c ap ab ilitie s  T h e  e n h a n c e m e n ts  a re  d iscussed  e ith e r  in section 5 2 1  01 

section 5 2 2, d e p en d in g  on  w h e th e r  or n o t th e ir  im p le m e n ta tio n  w ould  re q u ire  
m o d ifica tio n  o f th e  ray  tra c in g  a lg o r ith m  on  w hich  th e  ra y tra c e r  is b a se d

121
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5.2.1 Enhancing McroTVace
T h is  sec tio n  o u tlin e s  severa l rec o m m e n d a tio n s  fo r fu r th e r  e n h a n c in g  th e  sp eed  
a n d  p e rfo rm an ce  of M icro T race, w hich  do  n o t re q u ire  m o d ifica tio n  of i ts  ra y  
tra c in g  a lg o r ith m  o r a l te r  i ts  n a tu re  as a  p rim itiv e  in s ta n c in g  re n d e rin g  sy s te m

O P T I M I Z I N G  T H E  O P T I M I Z A T I O N S  W h ile  i t  is c lea r fro m  section 4 8 
th a t  th e  fo u r o p tim iz a tio n s  em ployed  by  M icro T race , Pixelbuffer, Extents, Grid 
an d  Sorthst , sign ifican tly  im p ro v e  re n d e rin g  tim es , fu r th e r  o p tim iz a tio n  sh o u ld  
s till b e  p o ssib le  from  finer tu n in g  of fou r, as w ell as fro m  th e  a d d itio n  o f new  
o p tim iz a tio n s

E x t e n t s  T h e  E x te n ts  o p tim iz a tio n  (section ^ 7 5 ) ,  w hich  a t  p re se n t s to re s  each  
o b je c t’s e x te n t in  th e  o b je c t s t ru c tu re  itself, cou ld  b e  m o d ified  to  in c o rp o ra te  
h ie ra rc h ica l e x te n t  in fo rm a tio n  e ith e r  in  a  s e p a ra te  s t ru c tu re  o r in  a  m od ified  
o b je c t lis t s t ru c tu re  T h e  a d d itio n  of a  second  p o in te r  field to  th e  o b je c t s t ru c tu re  
of table 4 1 w ould  allow  for a  tw o d im en sio n a lly  s tru c tu re d  o b je c t lis t w hich  cou ld  
b e  fash io n ed  in to  som e fo rm  of h ie ra rch y  e ith e r  by  th e  u se r o r a u to m a tic a lly , as 
a  p rep ro cess  to  tra c in g

P i x e l b u f f e r  T h e  P ix e lb u ffer o p tim iz a tio n  (section 4 ^ 2 )  w h ich  a t  p re se n t 
fills each  o b je c t b o u n d in g  vo lum e m  a  sing le  “fill” co lou r, cou ld  b e  m od ified  
to  a  sim plified  ite m  b uffe r o f th e  k in d  im p le m e n te d  b y  W eg h o rs t [W EG H 84] 
(section 2 4  5)  by  filling each  vo lum e in a  u n iq u e  co lo u r If, as in th e  S o r th s t 
o p tim iz a tio n , th e  b o u n d in g  volum es w ere so r te d  on th e  b asis  of th e ir  znear co
o rd in a te s  befo re  b e in g  filled, b o u n d in g  volum es fu r th e r  fro m  th e  ray  w ould b e  
o v e rw ritte n  by  closer o b scu rin g  ones If each  b o u n d in g  vo lum e cou ld  th e n  b e  
filled in  a  u n iq u e  co lour, th e  co lour of a  p ixel w ould  b e  a  d ire c t in d ic a tio n  of th e  
b o u n d in g  vo lum e closest to  th e  ray  o rig in  for th a t  p ixel

W h ile  th e re  is s till n o  g u a ra n te e  th a t  th e  o b je c t enclosed  m  th is  b o u n d in g  
vo lu m e is th e  closest one in te rse c te d  by  th e  ray, som e o b je c ts  c an  s till b e  elim - 

- m a te d  fro m  th e  search , since on ly  th o se  b e h in d  th e  b o u n d in g  vo lum e m a p p e d  
o n to  th e  p ix e l h ave  to  b e  te s te d  In  a  case w h ere  th e re  w ere  m o re  th a n  255 
p rim itiv es  how ever, b o u n d in g  volum es w ould  h ave  to  sh a re  co lours so , each  p ixel 
co lour, in s te a d  o f co rresp o n d in g  to  a  sing le  b o u n d in g  vo lum e, w ould  co rre sp o n d  
to  th e  g ro u p  asso c ia ted  w ith  th a t  co lou r Such  a  g ro u p  co lo u r schem e cou ld  be  
used  m  co n ju n c tio n  w ith  th e  h ie ra rch y  schem e ab o v e  to  d ire c tly  id en tify  v ario u s  
g ro u p s o f th e  h ie ra rc h y  w ith o u t h av in g  to  search  th e  h ie ra rc h ica l s t ru c tu re

G r i d  In c reased  p e rfo rm a n c e  from  th e  G rid  o p tim iz a tio n  (section 4 ^ 4 )  cou ld  
p ro b a b ly  b e  ach ieved  by  u sin g  a  m o re  flexible s t ru c tu re  th a n  th e  rig id ly  im p o sed
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20 x  20 cell a r ra y  s t ru c tu re  c u rre n tly  im p le m e n te d  T h is  co u ld  involve e ith e r  
a llow ing a  d y n a m ic a lly  d e te rm in e d  n u m b e r o f cells h o riz o n ta lly  a n d  v e rtic a lly  by 
im p le m e n tin g  th e  g rid  as a  tw o -d im en sio n a l lin k ed  lis t s t ru c tu re ,  o r m o re  flexib le 
s till, a  q u a d tre e  s tru c tu re  g e n e ra te d  a long  th e  lines of t h a t  u sed  by G e rv a u tz  
[G ERV 86] to  g e n e ra te  te m p o ra ry  o b je c t tre e s  (section 3 4 4)

A D D I T I O N A L  P R I M I T I V E S  T h e  se t o f fo u r p r im itiv e  ty p e s  c u rre n tly  
im p le m e n te d  by  M c ro  T race (cu b e , sp h e re , cy lin d er, cone) co u ld  b e  a u g m e n te d  
by  th e  a d d itio n  o f  severa l new  p rim itiv e  ty p e s  T h e  a d d itio n  of a  new  p rim itiv e  
ty p e  req u ires  m in o r code m o d ifica tio n  a n d  p r im a rily  involves th e  in c lu sio n  of 
a  fu n c tio n  th a t  will te s t  a  ray  for in te rse c tio n  w ith  th e  p rim itiv e , re tu rn in g  a  t 
v alu e  a n d  su rface  n o rm a l if i t  does T h e  a d d itio n  o f a  torus p r im itiv e  for ex am p le , 
defined  by  -

s u r f a c e  e q u a t i o n b o u n d s  t e s t

( X 2 + Y 2 + Z 2 + 1 -  r 2)2 
- 4 ( * 2 +  r 2) =  0

N O N E

w ould  involve th e  in c lu sio n  of a  fu n c tio n  th a t  cou ld  solve th e  fo u r th  o rd e r e q u a tio n  
in  t p ro d u c e d  by s u b s ti tu tin g  th e  ray  e q u a tio n  in to  th e  ab o v e  su rface  e q u a tio n , 
a lo n g  w ith  tw o m in o r m o d ifica tio n s —  th e  in c lu sio n  o f th e  new  p rim itiv e  ty p e ’s 
n a m e  m  th e  lis t o f av a ilab le  p rim itiv e s , a n d  a  s ta te m e n t in  th e  ra y  in te rse c tio n  
fu n c tio n  to  call th e  new ly  a d d e d  ra y - to ru s  in te rse c tio n  fu n c tio n  w h en ev er a  to ru s  
is e n c o u n te re d  in  th e  o b je c t list

A N T I A L I A S I N G  As o u tlin e d  in section 2 3 3, a lia s in g  is a  “n o ise” effect th a t  
c an  o ften  m a n ife s t itse lf  in  g rap h ic s  im ages a n d  h av e  a  d eg ra d in g  affect on  im age  
q u a lity  W h ile  th e  in c o rp o ra tio n  of an y  of th e  a n tia lia s in g  tec h n iq u e s  d e sc rib ed  in  
t h a t  sec tio n  w ould  p ro v id e  M c ro  T race w ith  som e m e a su re  o f p ro te c tio n  a g a in s t 
th e  d am ag in g  effects o f ab asin g , g iven th e  m ic ro c o m p u te r  e n v iro n m e n t a n d  m em 
o ry  lim ita tio n  o n  w hich  M c ro  T race c u rre n tly  ru n s , th e  m e th o d  d e sc rib ed  by fig
ure 2 9 w ou ld  seem  th e  m o st a p p ro p r ia te , since th e  a d d it io n a l a n tia lia s in g  rays 
a re  sh a re d  am o n g  a d ja c e n t p ixels

N E W  O P T I M I Z A T I O N S  A t p re se n t, all fou r o p tim iz a tio n s  em p lo y ed  by 
M c ro  T race a re  con figu red  to  o p tim ize  for p r im a ry  ray s since, a t  p re se n t, th e  
o n ly  seco n d ary  ray s tra c e d  a re  shadow  rays H ow ever, th e  in c lu sio n  of som e fo rm  
of o p tim iz a tio n  th a t  w ould  be  ap p licab le  to  seco n d ary  rays w ould b en e fit tra c in g  
tim e s  fo r im ages w here  a  u se r has specified  th e  in c o rp o ra tio n  o f shadow s in to  th e
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im age  O n e  m e th o d  w ould  be  to  ex p lic itly  s to re  each  o b je c t ’s b o u n d in g  v o lum e 
in  th e  o b je c t s t ru c tu re ,  a llow ing seco n d ary  ray s to  b e  d ire c tly  te s te d  ag a in s t 
th e  b o u n d in g  vo lu m e to  d e te rm in e  if th e  o b je c t in sid e  n eed s to  b e  te s te d  As 
o u tlin e d  m  section 4 ^ 1  how ever, s to rin g  th e  b o u n d in g  vo lu m e in  th e  o b je c t 
s t ru c tu re  w ould  re su lt  in a  50%  in c rease  its  size

A m o re  econom ica l m e th o d  w ould  b e  to  s to re  a  3 -d im en sio n a l re c ta n g u la r  
p a ra lle lp ip e d  th a t  encloses th e  b o u n d in g  vo lum e T h is  w ould  req u ire  s to ra g e  for 
ju s t  tw o X Y Z c o o rd in a te s , as o p p o sed  to  e ig h t for th e  b o u n d in g  v o lum e, b u t  
w ould  c o n ta in  a  g re a te r  vo id  a rea , re su ltin g  in a  la rg e r  p e rc e n ta g e  o f rays th a t  
do n o t in te rse c t th e  o b je c t, in te rse c tin g  th e  b o u n d in g  v o lu m e  A lte rn a tiv e ly , 
sp h e rica l b o u n d in g  vo lum es cou ld  b e  used  a n d  s to re d  as ju s t  tw o f lo a tin g  p o in t 
values, a  c e n te r a n d  ra d iu s  A n o th e r  a lte rn a tiv e  w ould  b e  th e  im p le m e n ta tio n  of 
a  sp ace  su b d iv is io n  schem e a lo n g  th e  h n es of section 2 4 2 —  a  u n ifo rm  sp ace  
su b d iv is io n  w ould  p ro b a b ly  b e  th e  m o s t s tra ig h t fo rw ard

5.2.2 Extending M cro Trace
T h is  sec tio n  o u tlin es  tw o ex ten sio n s to  M c ro  T race th a t  w ould  re q u ire  som e m o d 
ifica tio n  o f th e  ray  tra c in g  a lg o rith m  fo r th e ir  im p le m e n ta tio n  T h e  firs t, th e  
in c o rp o ra tio n  of re flec tion  a n d  re fra c tio n  m  screen  im ages w ould  fu r th e r  im p ro v e  
th e  rea lism  of scenes tra c e d  by  M c ro  T race, w hile  th e  second , th e  e x te n s io n  of 
th e  o b je c t re p re se n ta tio n  schem e from  a  p rim itiv e  in s ta n c in g  to  a  C SG  re p re se n 
ta tio n , w ould  en la rg e  th e  ra n g e  a n d  co m p lex ity  o f so lids th a t  cou ld  b e  h a n d le d

R E F L E C T I O N  &; R E F R A C T I O N  T h e  m e th o d  c u rre n tly  em ployed  by 
M c ro  T race  to  c a lc u la te  th e  co lo u r a n d  in te n s ity  of a  p ixel, is to  fire a  sing le  ray  
th ro u g h  th e  p ixel in to  th e  scene  a n d  ap p ly  P h o n g ’s lig h tin g  e q u a tio n  [BU IT75] 
o f section 1 7 2 &t th e  in te rse c tio n  p o in t o f th e  c lo sest ra y -o b je c t in te rse c tio n  
W h ile  acc o u n tin g , to  a  rea so n a b ly  a c c u ra te  deg ree , for th e  a m b ie n t, diffuse an d  
sp e c u la r  re flec tio n  fro m  th e  specified  p o in t on  th e  o b je c t ,  th e  e q u a tio n  is a p p lied  
devoid  of th e  o b je c ts  c o n te x t m  th e  o v era ll scene  C o n seq u en tly , th e  re flec tio n  
o f one o b je c t in  a n o th e r , o r th e  in c o rp o ra tio n  of t r a n s p a re n t  o b je c ts  c a n n o t b e  
m o d elled  m  th e  final screen  im age  W h i t te d ’s e x te n d e d  lig h tin g  m odel [W H IT80] 
how ever p rov ides a  m e th o d  o f a c c u m u la tin g  th e  g lo b a l i llu m in a tio n  in fo rm a tio n  
n ecessa ry  to  acco u n t for th e se  effects As o u tlin e d  m  section 2 3 2 , th e  m o d e l 
p ro p o ses th a t  on  s tr ik in g  an  o b je c t, a  ray  be  d iv id ed  in to  i ts  sp e c u la rly  re flec ted  
an d  t r a n s m it te d  rays T h e se  rays in tu rn  a re  recu rs iv e ly  tra c e d  to  see if  th e y  
s trik e  an y  o b je c ts , a llow ing th e  illu m in a tio n  in fo rm a tio n  for th e  o rig in a l ra y  to  
be  b u ilt u p  in  th e  fo rm  of a  b in a ry  tree
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T h e  in c o rp o ra tio n  of th is  m o d el in to  M c ro  T race w ould  p r im a rily  involve 
m ak in g  th e  ray -scen e  in te rse c tio n  fu n c tio n  recu rsiv e  ( th e  ra y -p r im itiv e  in te rse c 
t io n  fu n c tio n s  w ould  rem a in  u n a lte re d )  so th a t  on  s tr ik in g  a n  o b je c t th e  re flec ted  
a n d  re fra c te d  ray s a re  recu rsive ly  tra c e d  a n d  th e  in te rse c tio n  in fo rm a tio n  p laced  
in  an  a p p ro p r ia te  b in a ry  tre e  s tru c tu re .  T h e  co lou r a n d  in te n s ity  of a  p ix e l w ould  
th e n  b e  d e te rm in e d  by  ap p ly in g  P h o n g ’s lig h tin g  e q u a tio n  to  each  n o d e  o f th e  
tre e , s ta r t in g  w ith  th e  lea f n odes a n d  w ork ing  recu rsiv e ly  u p  to  th e  ro o t n o d e , 
w hich  w ould  rep re se n t th e  fina l co lour of th e  pixel. T h e  a d d itio n  o f a  transmis
sion coefficient a n d  a  refractive index field to  th e  o b je c t s t ru c tu re  w ould  a lso  be  
re q u ired  for c a lc u la tio n  of th e  d ire c tio n  of a  re fra c te d  ray  th ro u g h  a  t r a n s p a re n t  
o b je c t.

C S G  R E P R E S E N T A T I O N  A t p re se n t, M c ro T ra c e  p ro v id es a  se t o f four 
p r im itiv e  o b je c t ty p e s  w ith  w hich a  u ser can  b u ild  u p  a  scene  th ro u g h  th e  a p p li
ca tio n  o f sca ling , ro ta tio n a l an d  tra n s la tio n a l o p e ra tio n s  on  th e  p rim itiv e  ty p e s , 
u sing  th e  m a tr ix  tra n s fo rm a tio n  o p e ra tio n s  in  th e  u se r in te rfa c e  m o d u le . W h ile  
th e se  tra n s fo rm a tio n s  p ro v id e  a  m ean s of g e n e ra tin g  a  v a rie ty  o f sh a p e s  fro m  ju s t  
fo u r b asic  ones (e.g. a  re c ta n g u la r  b lock of a rb i tr a ry  d im en sio n s can  b e  g e n e ra te d  
by  a p p ro p r ia te ly  sca ling  th e  cu b e  p rim itiv e ) , th e  a b ility  to  co m b in e  solids u sin g  
th e  u n io n , d ifference an d  in te rsec tio n  b o o lean  o p e ra tio n s  of section 3.2.1 w ou ld  
sign ifican tly  in crease  th e  ra n g e  an d  co m p lex ity  o f so lids th a t  cou ld  b e  g e n e ra te d .

E x te n d in g  th e  c u rre n t p rim itiv e  in s ta n c in g  re p re se n ta tio n  schem e to  a  C S G  
re p re se n ta tio n  w ould  req u ire  e ith e r  a  b in a ry  tre e  o r D A G  solid  d e sc rip tio n  schem e 
in  p lace  o f th e  c u rre n t linked  list d esc rip tio n . In  a d d itio n , th e  ray -so lid  in te rse c 
tio n  fu n c tio n , w hich a t  p re se n t involves a  lin ea r search  th ro u g h  th e  lin k ed  lis t, 
w ould  h ave  to  recu rsiv e ly  search  th e  b in a ry  tre e  (o r D A G ) d e sc rip tio n , s ta r t in g  
w ith  th e  leaf nodes a n d  w ork ing  recu rsive ly  u p  to  th e  ro o t n o d e  (section 3.3), 
com bin ing  th e  ray  c lassifica tions a t  each  n o d e  as o u tlin e d  in  section 3.3.4• I*1 
o rd e r th a t  th e  c lassifica tions cou ld  be  co rrec tly  co m b in ed , th e  ra y -p rim itiv e  in 
te rse c tio n  fu n c tio n s  w ould  also have  to  b e  m odified  to  r e tu rn  a  lis t o f all values 
of t fo r w hich  th e  ray  in te rse c ts  th e  p rim itiv e  —  th e y  c u rre n tly  r e tu rn  o n ly  th e  
c losest in te rse c tio n  p o in t.

5.3 Ray Tracing —  The Future
R ay  tra c in g , d e sp ite  its  la rg e  c o m p u ta tio n a l o v erh ead , a n d  its  lab e llin g  by  som e as 
a  b ru te  force m e th o d , looks se t to  co n tin u e  as th e  d o m in a n t force  in  th e  sy n th es is  
of realistic computer images. A t th e  same time, th e  g e n e ra tio n  o f p h o to re a lis tic  
c o m p u te r  im ages is no lo n g er o f p u re ly  academ ic  in te re s t b u t  is g ra d u a lly  m oving
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o u t in to  th e  ev ery d ay  w orld , a  fa c t th a t  is e m p h asized  by th e  re c e n t a n n o u n c e m e n t 
of Renderman b y  P ix a r  In c  w hich  is a  new  p ro p o se d  s ta n d a rd  in te rfa c e  b e tw een  
th re e -d im e n s io n a l g e o m etric  m o d ellin g  sy s tem s a n d  p h o to re a lis tic  re n d e r in g  sys
te m s  [A PO D 89] T h e  se p a ra tio n  o f th ese  tra d it io n a lly  in te g ra te d  m o d e llin g  a n d  
re n d e rin g  o p e ra tio n s , to g e th e r  w ith  a  s ta n d a id  in te rface  b e tw een  th e  tw o, sh o u ld  
m ean  th a t  in th e  fu tu re  i t  w ill b e  p o ssib le  to  in d e p e n d e n tly  se lec t m o d e llin g  a n d  
re n d e rin g  sy s tem s th e re b y  m ak in g  it  s im p ler to  u p g ra d e  a  sy s te m  as  m o re  re a lis tic  
Tenderers b ecom e av ailab le

R ay  tra c in g  is p ro b a b ly  cap a b le  o f d ea lin g  w ith  m o re  of th e  m a n y  issues 
o f re a h s tic  im age  sy n th esis  in c o rp o ra te d  in to  Renderman , such  as m o tio n  b lu rr ,  
a n tia lia s in g , shadow s, te x tu re  m a p p in g  a n d  p ro g ra m m a b le  sh a d in g  lan g u ag es , 
th a n  an y  o th e r  ad v an ced  re n d e rin g  sy s te m  c u rre n tly  av a ilab le  In  fa c t, a  v a r ia tio n  
o f ray  tra c in g , know n as  d is tr ib u te d  ray  tra c in g  a n d  o u th n e d  in  section 2 5 1, h a s  
a lre a d y  b e e n  d eveloped  a n d  used  by P o r te r  [PO R T 84] to  g e n e ra te  on e  o f th e  firs t 
c o m p u te r  im ages to  pass as a  p h o to g ra p h

W ith  th e  m a jo r  ad vances in  th e  sp eed  a n d  co m p lex ity  of g rap h ics  a n d  m ic ro 
p ro cesso r h a rd w a re  in  th e  p a s t  d ecad e , th is  s ta te  o f th e  a r t  in  c o m p u te r  g ra p h ic s  
re sea rch  is no  longer th e  confine of th o se  fo r tu n a te  en o u g h  to  h ave  access to  la rg e , 
ex p en siv e  m ain fram es b u t  is ra p id ly  b eco m in g  m o re  w idely  av a ilab le  to  th e  la rg e  
b ase  of m ic ro c o m p u te r  users —  a  fa c t th a t  is re in fo rced  by  th e  recen t a p p e a ra n c e  
o f ray  tra c in g  packages fo r m ic ro c o m p u te rs  such  as th e  A corn  Archimedes a n d  
th e  C o m m o d o re  Amiga

A lready , th e  c a lc u la tin g  pow er o f m an y  m ic ro c o m p u te rs  is a p p ro a c h in g  a n d  
even  exceed ing  th a t  o f v as tly  m ore  ex p en siv e  m a in fram es  a n d  seem s se t to  in 
c rease  s till fu r th e r  in th e  n e a r  fu tu re  In te l fo r e x am p le  h av e  recen tly  a n n o u n c e d  
th e  80860 40 MHz  R IS C  p ro cesso r (R ed u ced  In s tru c tio n  S e t C o m p u te r)  w ith  a  
b u ilt  in  m a th s  cop rocesso r c ap ab le  o f 17 million f lo a tin g  p o in t o p e ra tio n s  p e r  
second , g iv ing  it a b o u t 40 tim es th e  c o m p u tin g  pow er of th e  m ach in e  o n  w hich  
th is  re sea rch  was c a rried  o u t [H EN N 89] A t th e  sam e  tim e , g rap h ic s  d isp lay s 
w ith  reso lu tio n s  o f 800 x  600 p ixels th a t  can  d isp lay  u p  to  256 s im u lta n e o u s  
co lours fro m  a  p a le t t  of over 16 million a re  b e in g  f i t te d  as  s ta n d a rd  to  th e se  
in creasin g ly  pow erfu l m ach ines T h e se  tw o d ev e lo p m en ts  sh o u ld  see th e  ad v en t 
of b e t te r ,  fa s te r  a n d  m o re  w idely  ava ilab le  ray  tra c in g  p ro g ram s in  th e  fu tu re , 
th e re b y  g iv ing  it a  w ider b a se  of a p p lic a tio n  In  fa c t i t  w ould  n o t b e  over a m b i
tio u s  to  say  th a t  packages for th e  sy n th esis  of re a lis tic  im ages will b e  as av a ilab le  
an d  v aried  on  fu tu re  m ic ro c o m p u te rs  as th o se  for desk  to p  p u b h sh in g  a re  to d a y

In  p a ra lle l w ith  th e se  h a rd w a re  d ev e lo p m en ts , re c e n t ray  tra c in g  resea rch  
h as  re su lte d  in a lg o rith m s c a p a b le  o f ta k in g  full a d v a n ta g e  of th e  pow erfu l m ic ro 
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c o m p u te rs  of th e  fu tu re  For ex am p le , th e  recen t a d v e n t of m ic ro c o m p u te rs  such  
as th e  A ta ri A B A Q , w hich  h a s  n o t ju s t  one, b u t  u p  to  12, p ow erfu l t r a n s p u te r  
p ro cesso rs ex e c u tin g  in  p a ra lle l, p re se n ts  ex c itin g  p o ss ib ilitie s  fo r th e  im p le m e n 
ta t io n  o f som e o f th e  p a ra lle l ray  tra c in g  a lg o rith m s o u th n e d  in  section 2 4 4 
a n d  seem s to  b e  a  p ro m is in g  avenue m  th e  u l t im a te  q u e s t fo r rea l- tim e , o r  n e a r  
re a l- tim e  ray  tra c in g

A n o th e r  in te re s tin g  p o ss ib ility  is th a t  o f a  h a rd w a re  im p le m e n ta tio n  o f ray - 
o b je c t in te rse c tio n  te s ts  P u lle y b la n k  ex am in es ju s t  su ch  a  p o ss ib ility  in  h is p a p e r  
on  th e  feas ib ility  o f a  V L S I ch ip  fo r ra y - tra c in g  b icu b ic  p a tc h e s  H is e s tim a te s  
in d ic a te  th a t  su ch  a  ch ip  cou ld  c a lc u la te  ra y -p a tc h  in te rse c tio n s  a t  a  r a te  o f on e  
every  15m s, o r a b o u t  67 p e r  second  G iven  th e  fa c t t h a t  ray s  can  b e  tra c e d  
in d e p e n d e n tly  o f each  o th e r , severa l o f th ese  ch ips o p e ra tin g  in  p a ra lle l w ould  
c o n s t i tu te  a  very  pow erfu l ra y - tra c in g  eng ine  In  fac t, ju d g in g  b y  th e  c u rre n t 
t r e n d  in  h a rd w a re  im p le m e n ta tio n  of “co n v en tio n a l” g rap h ic s  a lg o rith m s  su ch  
as lin e  d raw in g , p o ly g o n  sh a d in g  a n d  z -bufferm g, g rap h ic s  ca rd s  w ith  in  b u ilt  
h a rd w a re  fac ilities  for ray  tra c in g  w ould  n o t seem  to o  m u ch  o f a n  im p o ss ib ility  
m  th e  fu tu re
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/« FUHCTIOH HEADER FILE

This file contains the function prototype declarations for all 
the functions of the raytracer, from the following modules -

RTRACE C 
RAYIITER C 
OPTIMIZE C 
USERFACE C

SHADE C 
PGADPEHD 
BUILD C

/ «

\
« /

▼oid

RTRACE C MODULE

transformvector 
transf ormpo ut 
raycast 
testray

generateray
preprocess
raytrace
rgbtrace
normalize

(double (*m) [4].double «vec,double «mvvec) , 
(double (*m)[4].double *pt.double *invpt), 
(struct OBJOT «scene.mt x.int y.char *c), 
(struct OBJCT «o.double *pt.double «dim, 
double *nrml,double *dst).
(int x.int y»double *p,double *d),
(struct OBJCT * «scene),
(struct OBJCT * «scene).
(struct OBJCT «scene),
(double «▼)

int
linecompress

inshado»

(unsigned char *bufin,unsigned char «bufout, 
int y.int xl, int x2),
(struct OBJCT «scene,struct OBJCT «obj, 
double «pt,double «dim,double tl) ,

struct OBJCT *
nextobject (struct OBJCT *o,struct nde * «n),

/ *

I

* /

▼oid

RAYIITER C MODULE

m t

tracecube (double ♦pt,double •dim, double ♦nrn.
double «nearest),

tr&cesphere (double ♦pt.double «dim, double ♦nrm.
double ♦nearest),

txacecylinder (double •pt,double «dim, double *nrm
double «nearest).

tracecone (double •pt.double «dim, double «nrn,
double «nearest).

stracecube (double •pt»double •dim .double tl).
stracesphere (double ♦pt.double ♦dim double tl).
stracecylinder (double «pt,double *dim,donble tl).
stracecone (double ♦pt,double ♦dim .double tl)



FUNCTION H

is a s  ss»  gasa  eaa a a s s s

OPTIMIZE C MODULE

* /

▼oíd
transf ormToltune (double («m)[ 4 ]»double (*▼) [3} »double (*r)[3]>
calczdepth (double (*▼)[3}»struct OBJCT »o)»
calcextent (double (*▼)[3]»struct OBJCT *o),
makegrid (struct OBJCT «scene)»
project7olume (double (*t)[3]),

int
compare (struct OBJCT *a,struct OBJCT *b)

struct nde *
getnode (int i,mt j),

struct OBJCT •
sortlst (struct OBJCT *p,int (cdecl ♦compare)()),

* /

▼oid

* /

SHADE C MODULE

pgashade (unsigned char *c,struct OBJCT *obj,double *ray,
double *lght»double *nnnl,int x»int y»int shad) 

rgbshade (unsigned char *c,struct OBJCT »obj,double +ray,
double *lght»double *nrml»int x,int y,mt shad)

PGADPEID C MODULE

▼oid

int

/ *
S3

I

* /

▼Old

pgatrace (struct OBJCT «scene)»
generatergbup (int c,int r»int g»int b)»
generatergbdovn (int c»int r»int g»int b),
rendervolume (double (*▼)[ 3 ], int c), 
loadpgafxle (char *str),
initpga (void)»
qaitpga (void),

readcolors (char *str)»
savecolors (char *str),

BUILD C MODULE

oatscale (double (+m)[4] double si double sy double sa)
mattranslate (double («m)[43»double tx,double ty,double tz)
ptscale (double *p,double sx,double sy»double sz),
pttranslate (double *p»double tx,double ty,double tz),
matrotx (double (*m)[4].double deg)
matroty (double (*m)[4]»double deg),



FUNCTION H i

1

matrotz 
ptrotx 
ptroty 
ptrotz

(double (*m) [4]»double deg) 
(double *p»double a), 
(double *p,double a)» 
(double *p»double a)»

int
inversematrix (double (*c)[4]»double (*b)[4])f

struct OBJCT ♦
getobject (void),

int
setwindow

setviewport
setlightsource
setprojectiondirection
setlighttype
setprojection
setformat
setvievplanedistance 
setambientlight 
setfileoutput 
setcompression 
setscreen
setbackgxoundcolor
setfillcolor
setshadows
setdither
setpixolbuffer
setsortlist
setextents
setgrld

(double x l,d o u b le  x2»double y l 
double y 2 ),

( i n t  x l , i n t  x2»m t y l» m t  y 2 ), 
(double x ,do ub le  y»double z), 
(double x»double y ,do ub le  z)» 
(enum l ig h t ty p e  l g h t ) ,
(enum p ro jty p e  p r o j ) »
(enum form at f rm ) ,
(double d is t ) »
(double amb)»
(ch a r * s t r ) ,
( i n t  cmp),
( in t  s c r ) ,
( i n t  co l)»
( in t  c o l ) »
( i n t  s h d )»
( m t  d t h ) ,
( in t  b u f ) »
( in t  a r t ) ,
( i n t  e x tn ) ,
( in t  g r d ) ,

readvievport (int *xl,iat *x2,mt *yl,int
readproj ectiondirection (double *x,double *y,double 1
readlightsource (double *x,double *y,double 1
readsindow (double **1,double *x2,

double *yl,double *y2)»
readlighttype (enum lighttype *lght).
readprojection (enum projtype ♦proj),
re adf ile output (struct _iobuf *fp),
readformat (enum format *frm) ,
readriewplanedistance (double *dist),
readambieut1lght (double *amb)»
readcompression (int • cmp),
readextents (int *extn),
readscreen (int *acr),
r eadbackgroundcol or (int «col),
readfillcolor (int *col),
readshadovs (mt *shd)»
readdither (int *dth)»
readpixelbuffer (int *buf) »
reads ort list (unt *srt)»
readgrid (int *grd),



TYPED EFH

I This file contains the "typedef" declarations that define I 
} the various enumerative and structure types |

*1

•define
•define
•define
•define
•define

IÏFIÏITY 
GRIDROV 
GRIDCOL 
0 1  1  
OFF 0

100000000 0 
20 
20

/* TYPEDEF DECLARATIOIS

The following global types are defined -

lightytype — > enumerative type for defining point or 
directional light source

projtype — > enumerative type for defining parallel or
perspective projection

format — > enumertive type for defining ray tracing mode
i e red green blue (rgb) or Professional 
Graphics Adaptor (pga) mode

OBJECTTYPE enumerative type for primitive solid names

VECTOR 1x3 double array for vector XfY,Z coordinates

POUT 1x3 double array for point X,Y,Z coordinates

MATRIX 4x4 double array for matrix transforms

I0DE structure type used for forming linked list
of pointers to objects (see grid optimization)

next — > pointer to next node
ptr — > pointer to primitive

OBJECT structure type for primitive definition -

fields next — >
primitive — >
transform — >
inverse — >
c l r  —>
xmin, aa>
ymin, ymax 
znear.zfar — >

ka, kd, ks —

parr — >
rad — >
any — >

pointer to next primitive 
type of primitive 
transformation matrix 
inverBe transformation matrix 
primitive color (0 IS) 
screen rectangle enclosing 
projected bounding volume 
nearest k furthest Z coords of 
transformed bounding volume, 
v r t primary ray origin 

> ambient, diffuse and specular 
reflection constants (should 
add up to one) 
specular pover constant 
roughness (0 2)
cyan, magenta k yellow 
reflection ratios
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enum lighttype 
enum projtype 
emun format

{ lightdirection, lightpoint >, 
{ parallel, perspective 
< rgb, pga >,

typedef enum {cube.sphere,cylinder,cone) OBJECTTYPE,

typedef double VECTOR[3],
typedef double P0IIT[3],
typedef double MATRIX[4][4],

typedef struct OBJCT {
struct OBJCT * next, 
OBJECTTYPE primitive,
MATRIX
int

double

> OBJECT,

transform,inverse, 
clr,
xmin, xmax, ym in, ymax, 
zne&r, z f a r ,  
k a ,k d ,k s ,p » r ,  
rn d , 
any [3 ] ,

typedef struct nde
struct nde • next, 
OBJECT * ptr,

> BODE,
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; S S S 5 5 8 S S S 8 3 = :

I This file contains declarations of the various global flags, I 
I parameters and variables used bty the raytracer I

♦include "typedef h" 

/*
8 S 3 S S S S

I

*/

extern lut 

extern double 

extern POUT

a a g a g a g a a a B s s a a s s s x j a a B f f n a a s s s a a s s g s g a s s a s a s s s s

GLOBAL PARAMETER DECLARAT!OBS |

fillcolor, 
background, 
vxl,vx2,vyl,vy2,

ambient,
wxl, wx2, wyl, wy2, 
viewplanedist,

viewpoint,
light,

/* fill color */
/* background color */
/* viewport */

/* ambient light intensity */ 
/* window on viewplane */ 
/♦ viewplane distance from */

/ * perspective viewpoint */
/* light source */

extern VECTOR

extern FILE *

projection, 

outflie,

/* projection direction */

/* output file for image */

/ ♦

I

• /

extern int

GLOBAL FLAGS

PERSPECTIVE, / *
SHADOWS, / *
DITHER, / *
fileout, / *
PGA, / ♦
COMPRESS, / *
SCREE1, / *
POIITSOURCE, / *

/ *

EITEITS, / *
SORTLIST, / •
PIXELBUFFER, / *
GRID, / •

i> parallel projection *
io shadows *
lo dither on pixels *

output image to screen * 
light interpreted as a * 
vector and not a point *

Use extents *
Sort scene list *
Use pixel buffer *
Use grid *

/ *

GLOBAL VARIABLES
: s s s = s a
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extern char ♦
nameof[4], /* string names of primitives */

extern int
dither4[4][4], /* 4x4 dither matrix */

extern double
xfacvw, yfacvw, /♦ viewport -> window X-ratio */
xfacwv, yfacwv, /♦ window -> viewport Y-ratio */

extern IQDE *
gxid[GRIDROW][GRIDCOL], /* pointers to linked lists*/

extern POUT
volume [4] [8] , /* 8 vertex bounding volume */

/* for each primitive type ♦/
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/* TUISFOHHATIOI MATRIX FUJCTIOBS MODULE
sa a sa  a s s a s s s a s B a a s s s s  s  3sa s s s  a s s  si s s a  »cases s s s  s a a s s  s s s a s r  a s s  a : s s = :

This module contains functions for modifying a 4x4 
transformation matrix to incorporate a translation, rotation or 
scaling operation, in addition to functions for translating, 
rotating or scaling an individual point

Functions -
inversematnx 
mat translate 
matscale 
mat rot x 
matroty 
matrotz

getobject
pttranslate
ptscale
ptrotx
ptroty
ptrotz

* /

♦include
♦include
♦include
♦include
♦include

<stdio h> 
<malloc h> 
<math h> 
"typedef h" 
"function hu

/* structure and other typedef definitions«/ 
/♦ function prototype declarations */

/ * MATRIX FUHCTIOHS

The following functions are used to build up a transform matrix 
for a primitive, comprising of translation, rotation and scaling 
operations which will transform it from its own local coordinate 
system into the world coordinate system, with a different 
position, size and orientation

matrotx alter matrix to take in rotation about X axis
matroty " " " " " " Y axis
matrotz " " ” *' " " 2 axis

matscale alter matrix to take in scaling along X,Y,Z axes

mattranslate alter matrix to take in translation along X,Y,Z

inverBematrix Calculate inverse of a 4x4 matrix

I0TE Since rotations are not commutative le the 
order in which they are carried out is 
significant, there is a seperate function for 
each axis

void matrotx (m,deg)
MATRIX m, /♦ transform matrix */
double deg, /* degrees to rotate */

I Modifies specified transform matrix, m, to take in a rotation by I
I deg degrees about the X axis (result returned in m) |

{double c,s,rad,t[4], 
int i,

for (i=0, K4, i++) 
tfi] » m[i] Cl] i

/* used to help optamize the */ 
/• matrix multiplication */
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rad » deg/57 295779, /* convert degrees to radians */
c ■ cos(rad), 
s ** sin(rad),

for (i*0, i<4, i++)
{ m[i3[l3 ■ t[i]*c - m[i][2]*s, /* modify matrix to take in */
m[i3 [23 a m[i][23*c + t[i3*s, /* the rotation Optimize the */
> /* multiplication by omitting */

/* columns of zeros */

void aatroty (m.deg)
MATRIX a, 
double deg,
/*

i Modifies specified transform matrix, a, to take in a rotation by I 
I deg degrees about the Y axis (result returned in m) I

{double c,8,rad, t [4], 
int i,

for (i=0, i<4, i++) 
t[i] - m[i] [0] ,

rad - deg/57 295779, 
c * cos(rad),
8 » sin (rad), 
for (i«0, i<4, i++)
{ m[i][0] * t[i]*c + m[i][2]*s, 
m[i][2] ■ m[i][2]*c - t[i]*s,

>

void matrotz (a,deg) /* similar to matrotx function above */
MATRIX a, 
double deg,
/ *

( Modifies specified transform matrix, m, to take in a rotation by |
I deg degrees about the Z axis (result returned in m) |

{double c,s frad ft[4], 
int if

for (i®0, i<4, i++) 
t[i] ■ m[i] [0] ,

rad » deg/57 295779, 
c ■ cos(rad), 
s = sin(rad), 
for (i**0, i<4, i++)
{ n[i][0] a t[i]*c - m[i][l]*s, 
n[ij[l3 * m[i][l]*c + t[i]*s, 

>

void aat8cale(m,sx,sy,sz)
MATRIX m, /* transformation matrix */
double sx,sy sz /• scaling values for X Y Z axes •/
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I Modifies specified transform matrix, m, to take in scaling I 
I (w r t the origin) by factors of sx, sy and sz along the I, Y, I 
I and Z axes respectively (result returned in m) {

•tint i,

for (i=0, i<4, i++) 
{ m[iHO] sx, 
m[i][l3 *** sy, 
m[i][2] *» sz,

>

/• modify matrix to take in ♦/
/* scaling operations */
/* Order of performing the */
/* scaling operations unimportant */

void mattranslate(m,tx,ty,tz)
MATRIX m, 
double tx,ty,tz.

/* transformation matrix 
/* translation values for X, Y Z axes

* /
* /

/*
» g a a a a sa eas

I Modifies specified transform matrix, m, to take in translation I 
I (w r t the origin) of tx, ty and tz units along the X, Y and Z I 
I axes respectively (result returned in m) I

* /

{int i,

for (i«0, i<4, i++)
im[i] [0] +« m[i][3]*tx, 
m[i] Cl3 ♦* nCi]C33*tyf 
m[ij[2] «■» m[i][3]*tz, 
>

/* modify matrix to take in ♦/
/• translation operations •/
/* Order of carrying out the */
/• translations doesn’t matter */

int inversematrix(c,b)
MATRIX c,b,

/ •
aaanaaaaoitaBBUaBuaascassgBgsaasaBsagasBaaaBBaagBaagaaaaassaaagaBa 
I Returns in b, the inverse of the 4x4 transform matrix specified I
I in c (which remains unchanged) The inverse is calculated by I
I performing on an identity matrix, the same elementary row I
I operations required to reduce matrix c to the identity matrix I

* /

{double d,
MATRIX a,
int i,j,row,found, 
double tmp,

for (i«0, i<4, i++) /* don’t want to alter matrix c */
for (j=0, j<4, j++) /* so copy to local matrix, a */
atiHj] » ctiHj],

for (i=0, i<4, i++) /* initialize b to identity */
for (3*0, j<4, 3++) /* matrix */
if (1 j) b[i3Cj] * 1 0 ,
else b[i] [j] » 0 0
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f o r  ( r ow *0, r o w < 4 ,  ro w + + )  { i f  (a[row] [row] '*»1 0 ) { if ( a C r o w ] t r o w ]  '« 0  0 )

{d ® 1 0/aCrow]Crow], 
for (i=»0, i<4, i++)
{ a [row] Ci] *3 d, 
b[row][i] *= d,
>

>e l s e
{
found “ 0, i 11 row+1, 
while (('found) kk (i 
{
if (aEi]Crow] '» 0) 
{found * 1, 
d ** 1 0/a[i] [row] ,

/* d i a g o n a l  e n t r y  n o t  a 1 ** *//* if n o t  t h e n ,  if e n t r y  n o t  a */ /♦ ze ro , m u l t i p l y  r o w  t>y it s *//* r e c i p r o c a l  to m a k e  a o n e  */

/* if e n t r y  a zo r o ,  t h e n  */ /* s e a r c h  i n  c o l u m n  b e l o w * /  /* f o r  n o n - z e r o  e n t r y  */< 4))

f o r  (j«0, j<4, j++) { a [r ow] Cj] + *  d  b [ ro w] Cj] + =  d  
>

> i + *  1,
>(' found) r e t u r n

/* found one T */
/* Then take reciprocal, */ 
/• d, and add d times */ 
/* this row to the one */ 
/* above, to get a one in*/

* a [ i ] C j ], / * the required diagonal*/
* bCi] [j],

>
>f o r

{
(i*r ow+ l, i<4, i++)

i f  ( a C O C r o w ]  0 0)d  *  -a[i] [row] , f o r  (j*0, j<4, J++){ aCi] [j] + »  d  • aCro w] [3] , b C i] Cj] + *  d  * b [ r o w ]  Cj] > 
>

>

/* no non-zero entry in */ 
/* column below =*> matrix */ 
/* not invertible */

/* have a one in diagonal */ 
/•so set all entries in */ 
/* col below to zero ♦/

>

f o r  (i*r ow- l, i>»0, i — )
{ if (a Ci ][r ow ] •= 0 0){ d  ■  - a [ i ] C r o w ] ,  f o r  (3*0, j<4, j++){ a Ci] C3] d  • aCrow] C3]» b C i ] [ j ]  + ■  d  * b [ r o w ]  C3] * 

>
>

>

/* now set all entries */ 
/• m  col above to zero */

>

return 1, /* indicate success */

/* PÛIBT MAIIPULATIOI FUICTIOHS

I The following functions can be used to rotate, translate or I
I scale an individual point with respect to the origin |
I I
I ptrotx rotate point about X axis |
I ptrcty • * Y axis I
I ptrotx • z axis |
I ptscale scale point w r t origin |
I pttranslate translate point w r t origin |
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▼old ptrotx (p,a)
POIIT p, 
double a,

{double c,s,rad,t[3], 
int i,

for (i»0, i<3, i++) 
t[i] » p[i3,

rad ■ (double)a/57 2975, 
c ■ cos (rad), 
s * sin(rad),

pCl] ■ t[l]*c - t[23*s,
p[23 ■ t[2]*c + t[l3*s,

>

void ptroty (p,a)
POIHT p, 
double a,

{double c,s,rad,t[3], 
int i,

for (i*0, i<3, i++) 
t[i] - p[i],

rad » (double)a/57 2975, 
c ® cos(rad), 
s » a in (rad) ,

p C o ]  »  t [ o 3 * c  ♦  t C 2 3 * a ,  
p [ 2 ]  ■  t [ 2 ] * c  -  t [ 0 3 * s ,

>

▼oid ptrotz (p,a)
POIIT p, 
double a,

{double c,s,rad,tt3], 
int i,

for (i**0, i<3, i++) 
t[i] B pEi3,

rad » (double)a/57 2975, 
c » cos(rad), 
a = sin(rad),
pC03 ■ tC03*c - t[l3*s, 
p[i3 * t[i3*c + tCo3*s,

>

▼Old ptscale(p,sx,ay,sz )
POIIT p,
double 8 X ,sy ,sz ,
{
p[03 *• sx, p[l3 •* sy, p[2] *« sz,

>
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void pttranslate(p,tx,ty,tz) 
POIIT p,
doable tx,ty,tz,

{
p[0] +» tx, 
p[l] +» ty, 
p[2] +» tz,

>

/* OBJECT FUHCTIOHS

I zzgetobjectzzz zzzzzuses malloc to get space for new OBJECT I 
I structure and return pointer to it |

* /

OBJECT *getobject()
/ ♦

I Returns a pointer to space allocated for nev OBJECT structure I 
I The transformation matrix is initialized to the identity matrix I 
I and the next pointer field to HULL |

* /
{int i,j,
OBJECT *p,

p - (OBJECT *)malloc(sizeof(OBJECT)), 
for (i*0, i<4, i++) 
for (3«0, 3<4, 3++)
if (i ™  j) p->transform[i] [3] » 1 0, 
else p->transform[i] [j] = 0  0, 

p->next » IULL, 
p->prisitive » sphere, 
p->ka » 1 0,
p->kd »0 4,
p->ks * 0  6,
p->rnd » 0  8,
p->pwr ■ 20, 
p->clx « 0,
p->cmy[0] » p->cmy[1] = p->aay[2] « 0 3, 
return p,
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/« USER IHTERFACE HODULE

The functions contained in this module provide the user with a 
means to read and change the various viewing parameters, 
optimizations and output options of the raj tracer

Parameter Setting Functions

setprojectiondirection 
setviewplanedistanc e 
setbackgroundcolor 
setambientlight 
setlightsource 
setfileoutput 
setfillcolor 
setviewport 
setwindow

Parameter Heading Functions

readproj ectlondirection 
r e adv ie «plane dist ance 
readbackgroundcolor 
readaabientlight 
readlightsource 
readìileoutput 
readfillcolor 
readviewport 
readwindov

* Other functions

Flag Setting Functions

setprojection
setlighttype
setshadows
setdither
setformat
setscreen
setcompression
setpixelbuffer
setertents
setsortlist
setgrid

Flag Reading Functions

readprojection
readlighttype
readahadows
readdither
readformat
readscreen
readpixelbuffer
readsortlist
readertents
readgrid

generatergbdown 
loadpgafilecom 
generatergbup 
loadpgafile 
readcolors 
savecolors 
initpga 
quitpga

* All of these functions interact directly with the PGA card 
and are contained in the PGADPEHD C module

* /

♦include
♦include
♦include

<stdio h> 
"global h" 
"function h"

/* global parameters flags k variables +/ 
/* function prototype declarations */

/ * PARAMETER SETTIIG FUHCTIOIS

The following functions each set one or more of the raytracer 
viewing and lighting parameters -

Function Parameters Set

setprojectiondirection
setviewplanedistance
setbackgroundcolor
setambientlight
setlightsource
setfileoutput
setfillcolor
setviewport
setwindow

parallel projection direction 
view plane distance from origin 
background color 
ambient light intensity 
light source position or direction 
output image to file 
fillcolor for bounding volumes 
viewport
window on viewplane
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int setprojectiondirection(x,y,z) 
double x,y,z,
/*
t Sets the direction for parallel projection to the specified XYZ I 
I direction through the global variable projection The default is I 
t the direction (0,0,-1) ie orthographic projection I

*/
{
projectionCO] » x, 
projection[1] * y, 
projection[2] = z ,

>

int setviewplanedistance(dist) 
double dist,
/*
I Default viewplane is the Z30 plane This function changes it to ( 
I Z*dist plane by setting the global variable viewplanedist I

*/
{
viewplanedist « dist,

>
int setbackgroundcolor(col) 
int col,
/*
t The global variablê background is the color to which all pixels I 
I that do not intersect any object are set (defaults 13) |

*/
{
background ■ col,

>

int setambientlight(amb) 
double amb,
/*

I Set ambient light intensity through global variable ambient | 
I Default a 0 2 I

*/
ambient * amb,

>

int setlightsource(x,y,z) 
double x,y,zf 
/*
I Sets the elements of the global variable light, which can be |
I interpreted as a point or a vector (see setlighttype below) |
I Default is (0,0,1) |

*/
{
light CO] » x, 
light Cl] * y, 
light C2] =» z ,>
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int setfileoutput(str) 
char *str,
/*
I Specifies that the raytraced image be sent to a file «hose name 1 
I iB specified in str (default is no file output) |
S B B B a a a g g 8 a a a a B m m a 3 S 3 3 = g s a a a t i J - a s a B s s s s a a g = s s s s s B S = = s g s s s s a a = 5 s

*/
{
outfile = iopen(str,"wb"),
FILEDUT » 01,

>

int setfillcolor(col) 
int col,
/*
} FiUcolor is the color in which the transformed bounding volumes I
I of the primitives are filled when using the pixelbuffer |
I optimization It can be any color other than the background I
I color (Default is color 112) I

int setviewport(xl,x2,yl,y2) 
int xl,x2,yl,y2,/• -
I Screen viewport defined by the global variables (vxl,vyl) and | 
I (vx2,vy2) the lower left and upper right coordinates Default is | 
I (0,0) and (639,479), PGA maximum resolution I

*/
{
vxl » xl, vx2 = x2, 
vyl » yl, vy2 3 y2,

>

int 8etwindow(xl,x2,yl,y2) 
double xl,yl,x2,y2,
/*
i window on viewing plane defined by the global variables i 
I (wxl.wyl) and (wx2,wy2) the lower left and upper right | 
I coordinates respectively Default is (-100 100) k (-100,100) |

*/
{
wxl * xl, wx2 » x2, 
wyl » yl, wy2 = y2,

>
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/» FUG SETTIHG FUHCTIOHS

I The following functions each set one of the raytracers global 
I flags that control optimization, shadows etc

Function Flag affected

setcompression perspective or parallel projection
setprojection perspective or parallel projection
setlighttype point or directional light
setshadows include/exclude shadows
setdither do/don’t apply dither matrix to pixels
setformat select PGA or RGB format
setscreen display generated image on screen

setpixelbuffer pixel buffer optimization on/off
setsortlist do/don’t sort primitive list
setextents extents optimization on/off
setgrid rectangular grid optimization on/off

int setcompression(cmp) 
int anp,
/*

s a a r . a s m s a B B a a a a s a s a B a s a a s a a a a a u a a a s s B a a a a a T iB T iB a s s s s B S s a a a a a s s s a a
I If the COMPRESS flag is set and the output file is set to PGA |
I format, a compressed image file is generated by run length |
I encoding the original image A description of the run encoding |
i method used can be found in the function runencode in the I
I raytracing module RTRACE C |

s a a a a s a s s a s  a a a a  s s s a  s a a a a a a  n s a a  a a a a n  a a a a a a a a a a a a a a a

cmp,

int setprojection(proj) 
enum projtype proj,
/*
I Defines a perspective or parallel projection by approplately | 
I setting the global variable PERSPECTIVE to 01 (1) or OFF (0) |
I The default is OFF le parallel projection |

*/
{

if (proj perspective)
PERSPECTIVE ° 01, 

else
PERSPECTIVE » OFF,

>

int setlighttype(lght) 
enum lighttype Ight,
/*
I The XYZ elements of the global variable light can be interpreted | 
I coordinates of a light source at the point (X,Y,Z), or as a | 
I vector in the direction of a light source at infinity The | 
I latter is slightly loss oxpensivo, computationally, to model I 
I since all light rays are then parallel Default is direction I 
I interpretion le P0IITS0URCEs0FF |
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if (lght =n lightpoint) 
POIITSOURCE ■ OB, 
else POIITSOURCE « OFF,

int setshadows(&hd) 
int shd,
/*
I If the global variable SHADOWS is set, shadows will be | 
I incorporated auto the raytraced image (This greatly increases | 
I the time taken to render an image and so is OFF by default) |

*/
{

SHADOWS » shd,
>
int setdither(dth) 
int dth,
/*
I If the global variable DITHER is set, a a 4x4 dither matrix is ( 
I applied to calculated pixel intensities (Default is OFF) |

*/
{

DITHER ■ dth,
>

int setformat (fra) 
enum format frm,
/*

Selects either PGA or RGB format for image In PGA format, the 
image is displayed on the Professional Graphichs Display The 
RGB mode does not generate a screen image but is used to affect 
the output file format -

Output file format can be either rgb or pga (default is pga)

pga zzzzEach pixel stored as one byte representing a color in 
the range 0 255 which is used by the pga card as an
index into a color table containing a 12-bit entry 
which determines the color actually displayed on the 
screen

rgb zzzzEach pixel stored as three bytes, one for each of its 
red, green and blue intensities

int setscreen(scr) 
int scr,
/♦
I If the global variable SCREEI is set, the raytraced image will I
I be displayed line by line on screen as it is generated |
i Default is 01 |
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{
SCREES ** acr,

>

int setpixelbufferCbuf) 
int buf,
/*
t If the global variable PIZELBUFFER is set, primitive bounding I
i volumes are rendered rendered on screen, filled in fillcolor I
] (another global variable), to reduce rendering tine I
I Default is 01 I

*/
PIZELBUFFER = buf,

>
int setsortlist(srt) 
int srt,
/*
I If the global variable SORTIHG is set, the list of primitives I
I passed to the raytracer is sorted in order of increasing I
I distance from the ray to reduce rendering time |
) Default is 01 I

*/
i

SORTLIST - srt,

int aetextents(ertn) 
int extn,
/*
I If the global variable EXTEHTS is set (=1), screen extents are I
I generated for each primitive to reduce rendering time ]
I Default is 01 I

int setgrid(grd) 
int grd,
/*
I If GRID, a global variable, is set, the screen is partitioned 1
I into a set number of rectangles each of which has associated I
I with it a set of pointers to primitives in the scene list whose I
I screen enclosures cross the rectangle I
I Default is 01 j

*/
GRID * grd,

>
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/• PARAMETER READIIG FUICTIOÏS
883SCSBS3SB8333SSS8S

I The following functions are used to read the current values of 
I the viewing and lighting parameters of the raytracer -

Function Parameters Returned

I readprojectiondirection 
I readviewplanedistance 
I readbackgroundcolor 
I readambientlxght 
I readlightsource 
I readfileoutput 
I readfillcolor 
I readviewport 
t readwindow

parallel projection direction 
view plane distance from origin 
background color 
ambient light intensity 
light source position/direction 
output file for image 
fillcolor for bounding volumes 
viewport
window on viewplane

*/
int readprojectiondirection(x,y,z) 
double *x,*y,*z,

•x * projection[03,
*y a projection[1],
*z ** projectionC2],

>
int readviewplanedistance(dist) 
double »dist,

♦diBt » viewplanedist,
>

int readbackgroundcolor(col) 
int *col,

♦col * background,
>

int readambientlight(amb) 
double ♦amb,

•amb ™ ambient,
>

int readlightsource(x,y,z) 
double *x,*y,*z,
{
♦x » light CO],
*y « light Cl],
♦z *» light C2],

>
int readfileoutput(fp)
FILE *fp,

fp » outflie,
>

int readfillcolor(col) 
int *col,
i
♦col a fillcolor,>
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int readviewport(xl,x2,yl,y2) 
int *xl,*x2f*yl,*y2>
{
*xl = vxl, *x2 = vx2,
*yl ® vyl, *y2 = vy2,

>

int readwindow(xl,x2,yl,y2) 
double *xl,*yi,*x2,*y2,

*xl » wxl, *x2 *» wx2,
*yl ° wyl, *y2 * wy2f

>

/• FLAG READIIG FUICTIONS

The following functions return the current settings for the 
various global flags used by the raytracer -

Function Flag Returned

readcompreBsion perspective or parallel projection
readprojection perspective or parallel projection
readformat PGA or RGB image format
readscreen screen image on/off
readlighttype point or directional light
readshadows include/exclude shadows
readdither do/don’t apply dither matrix to pixels

readpixelbuffer pixel buffer optimization on/off
readsortlist do/don’t sort primitive list
readextents extents optimization on/off
readgrid rectangular grid optimization on/off

int readcompression(cap) 
int *anp,

*aap » COMPRESS,
>

int readprojection(proj) 
enum projtype *proj,

if (PERSPECTIVE «  01) 
•proj ® perspective, 

else
•proj a parallel,

>

int readlighttype(Ight) 
enum lighttype *lght,
{
if (POIITSOÜRCE =* 01) 
•lght « lightpoint, 
else
•lght a lightdirection,>
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int readshadows(shd) 
int *8hd,

•shd a SHADOWS,
>

int readdither(dth) 
int *dth,
{

•dth. - DITHER,
>
int readf ormat (scr) 
enna format *scr,
{
if (PGA *» 01) 
♦scr * pga, 
elsa 
*»cr *» rgb,

>

int readscreen(scr) 
int *scr t 
{
•scr * SCREEI,

>
int readpixelbTiffer(buf) 
int *buf,
{

•buf » PHETJBUFFER,
>

int readsortlist(srt) 
int *srt,
{

•srt a SORTLIST,
>

int readextents(extn) 
int «axtn,
{

•ortn * EXTESTS,
>

int readgrid(grd) 
int *grd,
{

•grd » GRID,
>



/• RAYTRACIIG MODULE RTRACE C

R T R A C E C

This nodule contains the raytracing functions themselves, namely 
raytrace and raycast, which coordinate the overall raytracing 
operation

Raytracing Functions Utility Functions

raytrace nextobject
• pgatrace transformvector
rgbtrace transfompoint
inshadow generateray
raycast preprocess
testray normalize

• function uses PGA library function calls, code so 
contained in PGA dependent module PGADPEHD C

s a s s B a a a a i j a a a s a a a g a g a s s s a g a a s s s s s a a c s s s s s s s s

#include 
♦include 
♦include 
♦include 
♦include

<stdio h> 
<malloc h> 
<math h> 
•’typedef h" 
"function h"

/* typedef definitions for POIIT etc * /
/* function prototype declarations */

/* DEFAULT PARAMETER VALUES

I Define default values for various global parameters such as I
i window» viewport etc Values defined below can be accessed by I
I the user through the appropiate function calls described in the I
I user interface module USERFACE C ]

*/
int

fillcolor » 112» /* fill color */
background a 113, /* background color */
vxl » 0, vx2 « 639, /* viewport */
vyl a o, vy2 = 479,

double
ambient »0 2, 
viewplanedist 500 0,

W X l a  -100 0, wx2 a  100 0, 
wyl a -100 0, wy2 a 100 0,

/* ambient light intensity */ 
/* viewplane distance from */ 
/* origin (along Z axis) */ 
/* window on viewplane */

POIHT
viewpoint a { o, 0, 0 }, /* perspective viewpoint */
light { 1, 1, 1 }, /• light source */

VECTOR
projection 3 { o, 0, -1 }, /* projection direction */

FILE *
outfile » IULL, /* output file for image */
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/• GLOBAL FLAGS

Define default values for various global flags that define 
whether various options such as shadows, optimizations etc are 
defined below Each flag can be either OV or OFF The default 
values defined below can be accessed and set 01 or OFF by the 
user through the appropiate function calls described in the user 
interface module USERFACE C

int
PERSPECTIVE a OFF, / ♦ a> parallel projection ♦/
POUTS OURCE a OFF, /* light interpreted as a */

/♦ vector and not a point * /

SHADOWS a OFF, / * Ho shadows * /

DITHER ■ OFF, / * Vo dither on pixels ♦  /

FILEOUT s OFF, / * Ho output file generated*/
COMPRESS a OH, / * Compress PGA file format*/
SCREEH » 0 1 , /* Display screen image ♦/
PGA a OH, / * Generate PGA format * /

tions * /

EXTEITS a OH, / * Use extents * /

SORTLIST = OFF, /* Sort scene list * /

PIXELBUFFER a 0 1 , / * Use pixel buffer * /

GRID a 0 1 , /+ Use grid * /

/* GLOBAL VARIABLES

The Following global variables and are used exclusively by the 
raytracer

nameof — >

dither4 — >

xfacTw — > 
yfacvw — >

xfacwv
yfacwv

grid

volume

cylinder

sphere

cube

array of pointers to string names of primitives

4x4 dither matrix

viewport to window X ratio 
viewport to window Y ratio

window to viewport X ratio 
window to viewport Y ratio

GRIDROV x GRIDCOL 2D array of pointers to a linked 
list of pointers to objects

contains bounding volume for each of the four 
primitive types in local unit coordinates -

rectangular box, back face centered at origin 
XYZ dimensions => 2 x 2 x 1

rectangular box, centered at origin XYZ 
dimensions 3 2 x 2 x 2

pyramid, apex at origin 
length “ 1, base “ 1 x 1

unit cube along X, Y, and Z axes (bounding volume 
for cube is itself a cube)
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char *
name of [4] {"cube'V’sphere" /‘cylinder" ,"cone" > ,

int
dither4[4][4]

dit her 8 [8] [8] =» {

0, 3, 2, 10,
12, 4, 14, 6,
3, 11, 1, 9,

15, 7. 13, 5
>,

o, 32, 8, 40, 2, 34, 10, 42,
48, 16, 56, 24, 50, 18, 58, 26,
12, 44, 4, 36, 14, 46, 6, 38,
60, 28, 52, 20, 62, 30, cn 22,

3, 35, 11, 43, 1, 33, 9, 41,
51, 19. 59, 27, 49, 17. 57, 25,
i s , 47, 7, 39, 13, 45, s . 37,
63, 31, 55, 23, 61, 29, 53, 21 >

double

IODE

xfacvw, yfacvw, 
xfacwv, yfacwv

grid [GRIDROV] [GRIDCOL] ,

/* viewport -> window */ 
/* window -> viewport */

POIIT
volume [4] [8]

0, 0, 0, 1, 0, 0 ,
1, 1, 0, 0, 1, 0,
0, 0, X, 1, 0, 1,
1, 1, 1, 0, 1, 1,

-1, -1, -1, l.-l.-l,
I, 1,-1, *1, 1,-1, -1, -1, 1. 1, -1, 1, 
1, 1, 1, -1, 1, l,

-1, -1, 0, 1, -1, 0, 
1, 1, 0, -1, 1, 0, 
-1,-1, 1, 1,-1, 1, 1, 1, 1, -1, 1, 1,
0 , 0 , 0, 0 , 0, 0,
0 , 0, 0, 0, 0, 0 ,-1, -1, 1, 1, -1, 1, 
1, 1, 1, -1, 1, 1

/* cube * /

/* sphere */

/* cylinder */

/* cone */

/* UTILITY FU1CTI08S

preprocess

transiormvector 

transforopoint 

generateray

a a s s s s a s s a s a s n s s a s :

process “tiBt of objects prior to raytracing, 
calculating inverse matrices, extents etc

applies a transform matrix to vector

applies a transform matrix to point

maps given pixel (I Y) to window and 
generates ray equation
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I
I nextobject used by raycast to determine the next object
| to be tested for intersection
I
I normalize converts a vector to unit form
I
I linecompre8S compresses image file size
I

*/
void preprocess(scene) 
OBJECT * «scene,

{OBJECT * o,
POIIT vol[83,

if (POUTS OURCE »» OFF) normalize(light),

xfacwv = (double)(vx2-vxl)/(wx2-wxl), 
if (xfacvv <0 0) xfacwv =» -xfacvw, 
yfacwv » (double)(vy2-vyl)/(wy2-wyl), 
if (yfacwv <0 0) yfacwv = -yfacwv,

xfacvw ■ 1 0/xfacwv, 
yfacvw » 1 0/yfacwv,

for (oB*scene, o'=HULL, o=o->next)
{inversematrix(o->transform ,o->inverse), 
if ((EXTEHTS OH) II (SORTLIST 01) 11 

(GRID 01) || (PIIELBUFFER ==» 01) )
{tranBformvolume(o->transform,volnmfl[(int)o->primitive3 ,vol), 
if (SORTLIST —  01) calczdepth(vol,o),
if ((PIIELBUFFER »  OS) I I (ElTESTS »  01) 11 (GRID »  OH)) 
projectvolume(vol), 

if ((PIIELBUFFER »  01) Aft (PGA »» OH) t t  (SCREEI »  01)) 
rendervolume(voi,fillcolor), 

if (EXTE1TS OH) calcextent(vol,o),
>

if (SORTLIST 01) «scene ■ sort1st(«scene»compare), 
if (GRID **= OH) makegrid(*scene),
>

void tran8formvector(m,vec,inwec)
MATRIX m,
VECTOR vec,invvec,
/♦
I Applies transformation matrix specified in m, to specified I 
I vector, vec, returning result in invec, the transformed vector I

*/
{
inwectO] * vec[0]*m[0] [0] + vec[l]*m[l] [0] + vec[2]«m[2] [0] ,
inwec [1] a vec[0]*m[0Hl] + vec[l3*m[l3 [1] + vec[2]*m[2] [l] ,
inwec[23 * vec[0] «m[0] [2] + vec[l]«m[l] [2] + vec [2] *m[23 [2] ,

>

void transformpoint(m,pt,mvpt) 
MATRIX m,
POUT ptfinvpt,
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I Applies transformation matrix specified in m, to specified I 
I point, pt, returning result in invpt, the transformed point I

*/
{
invpt [0] * pt[0]*m[0] [0] + pt[l]*m[l] [0] + pt [2]*m[2] [0] + m[3] [0] ,
invpt [1] ■ pt [0] *m[0] [1] pt[l]*m[l] [1] + pt [2]*m[2] [1] + m[3] [1] ,
invpt [2] a pt [0]*m[0] [2] + pt [1] *m[l3 [2] + pt[2]*m[2] [2] + m[33 [23,

>

void generateray(x,y,p,d) 
mt x,y,
POIIT p,
VECTOR d,
/*

/* pixel screen coordinates */
/♦ calculated ray origin */
/* calculated ray direction */

I Generates the equation of a ray through the specified pixel4 
I (x,y), as a point, p, and direction vector, d

sgsssgasssssssas:
*/
{
pCO] *» (x - vxl) * xfacvw + wxl. 
pCl] * (y ** vyl) * yfacvw + wyl, 
p[2] a vieoplanedist,

/* map pixel to window in */ 
/* IY plana */

if (PERSPECTIVE 
{

OFF)

d[0] 
- d[l] 
d[2] 
>

else
{
d[03
d[l]
d[2]
pCO]
p[l]
pC2]
>

■ projection[0], 
a projection[13, 
» projection[2],

a p[03 - viewpoint[0],
* p[l] - viewpointtl], 
■ p[2] - viewpoint[2],
* viewpoint [0] ,
* viewpoint [1] ,
“ viewpoint [2],

/* zero »> parallel view */

/* parallel view ==> read */
/* specified direction */

/* defined «> perspective view */

/* perspective view »»> calculate */ 
/* direction from view point and */ 
/* mapped pixel point on window •/

void normalize(v)
VECTOR v, /* vector to be normalized */
/*
I Takes vector of arbitrary length, v, and overwrites it with the I 
I calculated unit vector in the same direction |

{double modi,

modi a sqrt(v[0]*v[03 + v[l3*v[l3 + v[23*v[23), /* vector length */
v[03 /a modi, v[l3 /a modi, v[23 /a modi, /* unit vector */
>
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OBJECT * nextobject(o,n)
OBJECT *o,
IODE **n,
/*
I This function, is used by raycast to determine the next object to I
I test for intersection If the grid optimization is in use, the I
I next object is found from the linked list of pointers for the 1
I grid, otherwise the next object is simply the next one in the I
I object list I

*/
i
if (GRID M  OFF) return o->next, 
if ((*n) »  IULL) return FULL,

*n » (*n)->next, 
return (*n)->ptr,

>

int linecompress(bufin,bufout,y,xl,x2)
unsigned char bufin[], /* line to be encoded •/

buf out [3, /• encoded line */
int y,xl,x2, /* screen line number and */

/* start ft end pixel numbers ♦/

This function compresses a line of pixels nsing a run length 
encoding system compatible with that of the PGA Each line of 
the image is proceeded by the hexadecimal code D9, which is the 
PGA code for ’write encoded line of pixels1 Then follows three 
integer numbers, each stored as two bytes (least significant 
byte first), representing the line number and the pixel numbers 
where this line begins and ends le

D9 line • start x end x data

Using this foimat, the image file can be sent directly to the 
PGA without any processing whenever the image needs to be 
displayed from the file

The data consists of packets, of which there are two kinds -

[1] COUIT PEL { COUIT 0 127 >
[2] C0U1T PELO PEL! PEL2 { COUIT 128 255 >

If the count is in the range 0 127 then the byte that follows
is the color of the next COUIT+1 pixels

If the count is in the range 128 255 (le MSB = 1) then the
next COUIT-127 bytes that follow are the colors of the next 
COUIT-127 pixels

*/
{unsigned char *p,*t,count 
int ptr“0,len,

len ■ x2 - xl + 1,
p ■ buf m,
bufouttptr++] a 0xd9, /* PGA code ♦/
bufoutCptr++] » y ft Oxff, /* line t LSB */
bufout[ptr++] = (y ft OxffOO) >> 8, /* line t  MSB */
bufout[ptr++] = xl ft Oxff, /* start pixel LSB */
buf out [ptr++] ** (xl ft OxffOO) »  8, /* start pixel MSB */
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bufout[ptr++3 ° i2 I Oxfl, /* end pixel LSB */
bufout[ptr++3 * (x2 ft OxffOO) » 8 ,  /* end pixel MSB ♦/

while (len > 1)
{count ■ 0,
if (*p »  *(p+l)) /* m  of same color */
{count +» 1, 
len -» 2,
p +» 2,
while ((len > 0) ft* (count <127) ft* (*p «  «(p-1)))
{count++,
len— ,
P++.
}

bufout[ptr++] = count, 
bufoutCptr++3 « *(p-l),
}

else
{t » p, /♦ run of different color */
count +** 1, 
len -** 2,
p +■ 2,
while ((len > 0) ft* (count < 127) ftft

(*p * ( p - D )  f t «  ( * p  . =  *(p+l)))
{len— ,
count++,

>
bufout[ptr++3 a count + 128, 
for (, t<p, t++)
bufout[ptr++3 ** *t,
>

if (len > 0)
{bufoutCptr++] = 0, 
bufout[ptr++3 = *p,
>

return ptr,
>
/*  E1YTB1CEE

The following are the principal functions of the ray tracer -

inshadow Checks if a given point lies in shadow

testray Tests a specified object for intersection with a
given ray

raycast Casts a ray through a specified pixel into the
scene of objects, tests for intersection and 
returns the appropiate color for the pixel

* pgatrace Passes pixels in top to bottom, left to right
fashion to raycast and collects/coordinates the 
returned pixel intensity values to build up a 
screen and/or file image for the PGA adapter 
monitor

rgbtrace Same as pgatrace except that pixels are
calculated as three seperate intensities (red, 
green ft blue) Produces only a file output

raytrace initializes the raytracer and calls either
pgatrace or rgbtrace to generate the mage

* function code in PGADPEBD C module
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int inshadow (scene,obj,pt,dira,tl)
OBJECT «obj,«scene, /♦ list of objects */
POIBT pt, /• pt ft dim — > ray equation */
VECTOR dim,
double tl, /♦ upper limit for t */
/*

a i a s a n g a n g a s s a a s s s a a a s s a a a  s a t s s s  a s s  s a a s s  a s s  a  a s a a a  s s s s a  a s a s s a  a s  s a a a a

I Checks if a point on an object lies in shadow by testing the I 
I given shadow ray, specified by pt ft dim and originating at a I 
I point on the object pointed to by obj, for intersection with the I 
I list of objects pointed to by scene An upper limit for t is 1 
I specified in tl, since objects beyond the light source need not I 
I be tested I

*/

{OBJECT *o,
POIIT invpt,
VECTOR invdira,
mt shadoŵ O, /* break as soon as any intersection found +/

for (obscene, ((o^IULL) ftft (shadowlBl)), o=o->next) 
if (o ,B obj) /* don’t want to test intersected object */
{
transformpoint(o->inverse,pt,invpt), /* transfoxm ray */
transformvector (o->inverse,dim, invdim),

switch (o**>primitive) { /* test for intersection */

case cube shadow ** stracecube(invpt,invdim,tl) ,
break,

case sphere shadow » stracesphere(invpt,invdim,tl) ,
break,

case cylinder shadow » stracecylinder(invpt,invdim,tl),
break,

case cone shadow 53 stracecone(invpt, invdim,tl) ,
break,

>
return shadow, /* shadow=l if intersection with any object */

void testray(o,pt, dim, nrml, dst)
OBJECT *o, /* pointer to object to test */
POIIT pt, /* pt ft dim —  > ray equation */
VECTOR dim,nrml, /* nrml returned surface normal */
double *dst, /* minimum t value */
/*
I Tests the given ray, specified in pt ft dim, for intersection I
I with the object pointer to by o If an intersection is found, |
I which is closer than the t value specified in dst, the surface I
I normal at the point of intersection is returned in nrml, wnd dst |
I is updated |

•/
{POIIT invpt, invdim,

transformpoint(o->inverse,pt,invpt), /* transform ray */
transf ormvector (o->inverse ,dira, invdim)
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switch (o->prunitive) {

case cube tracecubeCinypt ,invdirn,nxml,dst) ,
break,

case sphere tracesphere(invpt,inTdirn,nrml,dst),
break,

case cylinder trace cylinder (invpt, mvdirn ,nrml ,dst),
break,

case cone tracecone( invpt, invdinwnrml.dBt),
break,

>

void raycast(scene,x,y,c)
OBJECT »scene, /* pointer to list of objects */
int x,y, /* current pixel */
char • c, /♦ returned pixel color */

{double dst»IIFIHITY,tl, 
nearest»IHFIIITY,
Zn,

OBJECT *closestsVULL»*o, 
int row,col,shadsO,
IODE *n,

POUT pt ,dim,
nnal, invnrml, 
lght, interst,

generateray(x,y,pt,dim), /* generate ray equation for pixel */

if (SORTLIST »  01)
Zn ■ pt[2] + nearest »dim [23, /* Z coord of nearest intersection * /

if (GRID «  01)
{ /* calculate rectangle in ♦/
row =• (vy2-y) /( (vy2-vyl) /GRIDR0V+1) , /* which pixel lies */
col « (x-vxl)/((vx2-vxl)/GRIDC0L+l),

if ((n»grid[row3[col3> M  IULL) /* any objects in this the */
{*c ■ background, /* rectangle * * /
o B IULL,
>
else o » n->ptr,
>
else o 9 scene,

while (o 'a IULL) /* test list of objects */
{
if ((EZTEITS »  Of) t t

( (x>o->xxtax) II (x<o->min) II (y>o->ymax) I I (y<o->ymin))) 
{o a nextobject(o,kn), 
continue, /* pixel outside extent of current */
} /* object, so skip object */

if ((SORTLIST a» oi) U  (o->znear < Zn)) 
break,
testray(o,pt .dir̂ nrmljfcdst), 
i f  (dst < nearest)
{nearest a ¿at /* closer intersection */
closest “ o, 
if (SORTLIST aa oi)
Zn “ pt[23 + nearest*dim[23 ,>
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o * nextobject(o,fcn),
>

if (closest IULL)
{
transformvector(clo8est->tr&nsform,nxml,invnrml), 
if ((POIUSQURCE == OH) || (SHADOWS *= OH))

{interst[03 * pt[03 + nearest*dim[03 , 
interst[13 * pt[l3 + nearest*dim[l3,
interst[2] * pt[2] + nearest*dirn[2],
>

normalize(invnrml), 
normalize (dim),

if (POIITSOURCE »  OH)
{lght [0] » light [0] - interst [0] ,
lght[l3 « light [1] - interst [13 , 
lght[23 8 light[23 ~ interst[2], 
normalize(lght), 
if (SHADOWS an OH)
{ if (lght [03 ,s 0) tl « (light [03 - interst[03)/Ight[03, 

else
if (lght[l3 ,a 0) tl a (lightCl3 - interst[13)/lght[l3, 
else
if (lght[23 ' a  0) tl a  (light[23 - interst[23)/lght[23,

}
>

else
{ lght[03 a  light[0],
lght[13 a light[13, 
lght[23 “ light[23, 
if (SHADOWS «  01) tl a IHFIHITY,> - - -  -

if (SHADOWS »» oi)
shad a  inshadow(scene,closest,interst,lght,tl),

if (PGA a» oi) pgashade(c,closest,dim,lght,invnrml,x,y,shad) , 
else rgbshade (c f closest (dim, lght, invnrml ,x, y, shad) ,
>

else *c a  background,

▼oid rgbtrace(scene)
-OBJECT «scene,

{char *bf, *ptr, id, 
int x,y,

bf a malloc((3*vx2-vxl+l)),

if (FILEOUT «a 01)
{id a OxOO, /* write id byte to
fwrite((char outille),
fwrite((char *)*vxl,sizeof(int),1,outfile), 
fwrite((char *)tvx2,sizeof(int),l,outfile), 
fwrite((ehar *)Avyl,sizeof(int),l,outfile), 
fwrite((char *)fcvy2,sizeof(int),l,outfile), 
>

for (y»vy2, y>avyl, y— )
{ptr ® bf
for (xarxl, x<=vx2, x++,ptr+»3) 
raycast(scene,x,y,ptr), 

if (FILEOUT Of) 
fwrite(bf ,3,vx2-vxl+l ,outf ile) ,>

indicate RGB format */ 

/* write viewport */
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free(bf), 
fclose(ontfile),

>

▼old raytrace(scene) 
OBJECT * «scene,

preprocesB(scene), 
if (PGA) pgatrace(«scene), 
else rgbtrace(«scene),

>
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/• RAT IITEBSECTIOI MODULE

This nodule contains the ray-primitive intersection test 
functions There are two sets of functions for each of the four 
primitive types, the first set for testing primary rays and the 
second for testing shadow rays

Primary Ray Functions

tracecylinder 
tracesphere 
tracecube 
tracecone

Secondary Ray Functions

stracecylinder
stracesphere
stracecube
stracecone

«/

tinclude <math h>
«include "typedef h" /* structure and other typedef definitions*/ 
tinclude "function h" /* function prototype declarations */

tdefine EPS1L0I 0 00001

/« RAY PRIMITIVE IITERSECTIOI FUHCTIOHS -- PRIMARY RAYS

I The following four functions are used to test a ray for 
I intersection with one of the four primitive types implemented 
I Each one takes a ray as input, along with the lowest t value 
I found in processing the list of primitives to date, and modifies 
I the value if the ray intersects the primitive at a closer point 
I If such is the case, the normal to the surface at the point of 
I intersection is returned by modifying the vector nrm. and the 
I closest point of intersection, nearest, is updated

«/

void tracecube(pt.dim.nrm,nearest) 
POUT pt,
VECTOR dim. nrm. 
double «nearest.
f *
I Tests given ray. specified by a pout. pt. and a direction I
I vector, dim. for intersection with a unit cube defined by 6 I
I planes - )
I 1 * 0  X » 1 Y = 0 Y « 1 2 = 0 Z = 1 |

*/
{double X.Y.Z.t.

if (dim CO] '■ 0) /* ray on x=0 plane “* */
i t »  -pt [0] /dim CO] , /« if ray intersects X=0 */
if (Ct < «nearest) ftft (t > 0)) /* plane at positive t */
{Y ■ ptCl] + t«dim Cl] , /* value lower than the */
Z » pt C2] ♦ t*diraC2], /* current closest one, */
if ((Y <- 1 0) k k (Y >»0 0) k k /* then check to see if */

(Z <■ 1 0) ft* (Z >» 0 0)) /* it intersects face 0 */
{«nearoat h t /•of cub« */
nrmCO] =-10, 
nrmCl] » 0  0, 
nrmC2] =» 0 0, 
>>
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t » (1 0-pt[0])/dxm[0], 
if ((t < «nearest) ft* (t > 0))
{Y ■ pt[l] + t«dxra£l3 ,
Z » pt[23 + t «dim [23 ,
if (CY <a 1 0) k k (Y >#0 0) kk

(Z <- 1 0) k k (Z >« 0 0))
{ «nearest a t,
nrm[03 8 1 0, 
nrm[l3 a o 0,
nm[2] a o 0,
>

>
>

if Cdim[l3 •» o)
{ t a -pt£l3/dxra£l3, 
if C(t < «nearest) it ( t > 0))
{X a pt[0] + t*dirn[0] ,
Z a pt[2] + t*dirn[2] ,
if ((X <» 1 0) kk (X >a o 0) kk

(Z <" 1 0) k k CZ >a 0 0))
{ «nearest ° t, 
nrm[0] = 0 0,
nrm[l3 8 -1 0,
arm[2] = 0 0,
>

>
t a (t 0-pt[l])/dirn[l], 
if ((t < «nearest) Jfc* (t > 0))
{I a pt[0] + t«dira[0],
Z a pt[2] + t«dxm[2] ,
if (CX <a 1 o) k k (X >a o 0) kk

-t(Z <a 1 o) k k (Z >a o 0))
{ «nearest = t,
nrm[03 »0 0, 
nxm[l3 « 1 0 , 
nna[2] a o 0,
>

>
>

if (dimC2] »* 0) 
i  t a -pt £23/dxm [23 , 
if ((t < «nearest) kk (t >0))
{Y a pt[l3 + t«dxm[l3,
X a pt£03 + t«dxm[03, 
if ((Y <■ 1 0) k k (Y >» 0 0) kk

(X <*10 } k k (I >= 0 0))
{ «nearest a t, 
nrm[03 * 0 0, 
nrm[l3 * 0 0, 
nun [23 a -t 0,
>

>
t a (1 0-pt[23)/dim[23, 
xf ((t < «nearest) it (t > 0))
{Y a pt [13 + t«dim[l3 ,
X a pt[03 + t «dim £03, 
if ((Y <- 1 0) k k (Y >a 0 0) kk

(X <■ 1 0) k k (X >» 0 0))
{ «nearest » t, 
nrm£03 »0 0, 
nrn[l3 » 0 0
nxm[2] « 1 0,>>>>

/* test X=1 plane */

/« test Y=0 plane «/

/* test Yal plane «/

/« test Z-0 plane «/

/* test Z»l plane «/
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▼oid tracesphere(pt,dim,nrm »nearest)
POIIT pt,
VECTOR dim, nrm, 
double «nearest,
/*
I Tests ray specified by pt and dim for intersection with a cube I
I of unit radius, centered about origin, by solving a quadratic I
| equation for t, obtained by substituting ray equation into I
( sphere equation Equation is solved using the formula ~ I
t I
I t » (-B +/- sqrt(B«B - 4«A*C))/<2«A) I

«/
{double A,B,B_2,C,AC,BAC,t,

A « dim[0}«dim[0] + dira[l]«dim[l] + dira[2]*dim[2] ,
B ■ dim[0]«pt[0] + dim[l]«pt[l] + dim[2]«pt[2],
C * pt[0]«pt[0] + ptCl]*ptCl] + ptC2]*pt[2] - 1 0,
B_2 » B*B,
AC * A«C,
BAC » B.2 - AC,
if (BAC >0 0) /« BAC < 0 **=> complex roots «/
{ /• BAC * 0 ==> ray is tangent «/

t » (-B - sqrt(BAC))/A, 
if ((t < «nearest) t k  (t > 0))
{«nearest m t, 
nrm[0] ■ pt[03 + t«dim[03, 
nrm[l] » pt[l] + t«dim[l], 
nrm[23 » pt[2] + t«dira[2],
>

} - -

void tracecylinder(pt,dim,nrm,nearest) 
POIHT pt,
VECTOR dim,nrm, 
double «nearest,
/*
I A ray, specified by pt and dim, is tested for intersection a 
I cylinder of unit length and unit radius, centered along the 
I positive z axis, with its back face centered about the origin 
I Three asperate tests are performed, one for each of - 
I
I the back face unit circle on Z=0 plane, centre at (0,0,0)
I the front face unit circle on Z=1 plane, centre at (0,0,1)
I the main body tube of unit radius centered along Z axis

*/
{double A,B,B_2,C,AC,BAC,t,X,Y,Z,

if (dim[2] '= 0 0)
{ t » -pt [23 /dim [2] 
if ((t < «nearest) k t (t > 0))
{
X a pt[0] ♦ t*dira[0],
Y * pt£l] + t*dira[l], 
if ((X«X ♦ Y«Y) <* 1 0) 
{ «nearest « t, 
nzm[0} " 0 0, 
nim[l] = 0  0, 
nrm[2] »-10,
>

/• test back face */

/« closer intersection with */
/* Z=0 plane “* */
/* xf yes, calculate point */
/• of intersection */
/* Does point lie on back face «/
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t = (1 0-pt[2])/dira[2], /* test front face in sane way «/
if ((t < «nearest) it (t > 0))
{
X ** pt[0] + t«dim[0] ,
Y *» ptCl] ♦ t*dim[ll, 
if ((1*1 + Y*Y) <» 1 0)
{ «nearest =* t, 
nrmCO] «0 0, 
nrm[l] »0 0, 
nrm [2] »10,
>

>
>

1 * dim[0]*dimE0] +■ dirn[l]*dirn[l] , /* test nain body by */
B - dira[0]*pt[0] + dira[l]«ptEl], /* solving a quadratic */
C ** pt[0]«pt[0] + pt[l]*pt[l] - 1 0, /• equation for t */
B.2 » B*B,
AC » A*C,
BAC - B_2 - AC,

if ((BAC > 0 0) tk (1 »  0 0)) /* BAC < 0 »> complex root */
{ /* BAC = 0 »> ray tangent */

t «* (-B - sqrt (BAC) ) /A, 
if ((t < «nearest) At (t > 0))
{Z * pt [2] + t*dirn[2], 
if ((Z <» 1 0) U  (Z >» 0 0))
{ «nearest =* t,
nrm[0] *» pt[0] + t*dirn[0],
nrm[l] » pt El] + t*dimEl],
nrm [2] * 0,
>

>
> “ -

▼oid tracecone(pt,dim,nrm,nearest) 
POIIT pt,
VECTOR dirn, nrm, 
double «nearest,
/«
I Specified ray, defined by pt and dim, is tested for |
I intersection with a cone of unit length, apex at origin, and I
I base of unit radius, centre (0,0,1) Two seperate tests are |
I performed, one for the base and one for the main body I

*/
{ d o u b l e  A , 8 , B _ 2 , C , A C , B A C ,t, X , Y , Z ,

A * dim[0]*dim[0] + diraEl]*dimEl] " dim[2]«dim[2] ,
B « dim [0] «pt [0] + dim[l]*ptCl] “ pt[23*dimE2]
C « pt[0]*pt[0] + pt[l]*pt[l5 - pt[2]*ptE2],
B_2 = B*B,
AC * A*C, /* test with main body by */
BAC « B_2 - AC, /« solving quadratic fot t */
if ((BAC >00)tt (A •» 0 0))
{

t ■ (-B - sqrt(BAC))/A, 
if ((t < «nearest) tt (t > 0))
{Z “ ptE2] + t«dimE2], 
if ((Z <a 1 0) tt (Z >» 0 0))
{«nearest = t,

* P*[0] + t*dim[0]J
nrm[l] » pt[l] + t*dim[l] , 
nrm[2] » sqrt(l 0 - Z « Z ),>>>
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if (dirn[2] '** 0 0) /♦ test base» same test as */
{ t ■ (1 0-pt[2])/dirn[2], /* front face of cylinder */
if ((t < «nearest) ftft (t >0))
{X = pt[0] ♦ t*dim[0],
Y * pt[l] + t«dira[l], 
if (<I«X + Y*Y) <» 1 0)
{ «nearest = t, 

nxm[0] «0 0, 
arm Cl] »0 0, 
nzm[2] ■ 1 0,

>

/♦ RAY-PRIHITIVE ISTERSECTIOI FUICTIOIS —  SHADOW RAYS

These four functions below are used to test shadow rays le I 
rays traced from a point on an object to the light source, for I 
intersection with one of the four primitive solid types The I
functions are very similar to the primary ray intersection I
functions above but differ in the respect that they do not need I 
to determine the closest surface of a primitive struck by the I 
ray, only if the ray strikes any surface between the ray origin t
and the light source ie 0 < t < tl where tl is the upper limit I
determined from the distance of the ray origin to the light I 
source The return value is 0 if there was no intersection, 1 if | 
there was I

int stracecubeCpt,dirn,tl)
POIIT ptf 
VECTOR dim, 
double tl,
{double X,Y,Z,t,

if (dim CO] '* 0)
{ t ■ -pt CO]/dim CO] , 
if ((t > EPSILOI) ftft (t< tl))
{Y ■ ptCl] + t«dimCl],
Z ■ pt[2] + t*dimC2],
if ((Y <= 1 0) kk (Y >= 0 0)

(2 <» 1 0) ft* (Z >» 0 0))
return 1,

}
t » (1 0-ptCO])/diraCO], /« test I**l plane */
if ((t > EPSILOI) kk (t < tl))
{Y » ptCl] + t«dimCl],
Z * ptC2] + t«dimC2] ,
if ((Y <»10) ft* (Y >- 0 0) ftft

(Z <■ 1 0) ft* (Z >* 0 0))
return 1,
>
}

if (dimCl] ,a* 0) /* test Y=0 plane */
{ t * -ptCl]/dimCl] i
if ((t > EPSILOI) ft* (t < tl))
{I ■ ptCO] ♦ t«diraC0]
Z » ptC2] + t*dimC2],
i f  ( ( I  < »  1  0 )  f t *  ( I  > ■  0  0 )  ftft

(Z <» 1 0) ftft (Z >» 0 0))
return 1,>

/« test X+O plane */

/* allow for roundoff error */

ftft



RAYINTER C

t « (1 0**pt[l])/dim[l], /* teat Y»1 plane */
if ((t > EPSILOI) ftft (t < tl))
{X ■ pt[0] ♦ t*dim[0] ,
Z * pt[2] + t*dira[2],
if ((X <«* 1 0) ft* (X >« 0 0) ftft

(Z <» 1 0) ftft (Z >» 0 0))
return 1,

}
>

if (dim[2] 0) /♦ test Z=0 plane */
{ t ■ -pt[2]/dirn[2],
if (Ct > EPSILOI) ftft (t < tl))
{Y « pt[l] + t*dirn[l],
X * pt[0] + t*dim[0], 
if (CY <= 1 0) ft* (Y >= 0 0) ftft

(X <» 1 0) ft* (X >* 0 0))
return 1,

>
t » (1 O-pt[2])/dira[2], /* test Z=1 plane */
if ((t > EPSILOI) ftft (t < tl))
{Y » pt[l] ♦ t*dim[l],
I a pt[0] + t*dira[0],
if ((Y <» 1 0) ft* (Y >« 0 0) **

(I <a 1 0) ** (X >« 0 0))
return 1,

>
}

return 0,
>

int stracesphere(pt,dim,tl)
POIIT pt,
VECTOR dim, 
double tl,
{double A,B>B_2,C,AC,BAC,t,

A » dim [0] «dim [0] + dira[l]*dim[l] + dim[2]*dim[2] , 
B a dira[0]«pt[0] ♦ dim[l]*pt[l] + dira[2]*pt[2j ,
C a pt[0]*pt[0] + pt[l]*pt[l] + pt[2]*pt[2] - 1 0,
B_2 - B*B,
AC * A*C,
BAC a b.2 - AC, 
if (BAC >0 0)
{

t - (-B - sqrt(BAC))/A, 
if ((t > EPSILOI) ftft (t < tl» return 1,
>

return 0,
>

int straeecylinder(pt,dim,tl)
POIIT pt,
VECTOR dim, 
double tl,

{double A,B,B.2,C,AC,BAC,t,X,Y,Z,

if (dim[2] '« 0 0) /* teat back face */
{ t = -pt[2]/dira[2] ,
if ((t > EPSILOI) ft* (t < tl))
{I « pt[0] ♦ t*dim[0] ,
Y a pt[l] + t*dirn[l] ,
if ((I*X + Y*Y) <» 1 0) return 1,
>
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t ■ (1 O-pt[2])/dirn[2], /* test front face */
if ((t > EPSIL01) It Ct < tl))
{X * ptCO] + t*dirnCO] ,
T ® pt[l3 ♦ t*dim[l3,
if (CI*X + Y*Y) <= 1 0) return 1,
>

>
A * dira [03* dira [03 + dxra[l]*dirn[l] , /* test main body */
B *» dirn[03*pt[03 + dira[l3*pt [1],
C ■ pt[0]*pt[0] + pt[l3*pt[l3 - 1 0,
B_2 - B*B,
AC * A*C,
BAC ■ B_2 - AC,

if ((BAC > 0 0) it (A ’= 0 0))
{

t « (-B - sqrt(BAC))/A,
if ((t <» 0) tl (t >=* tl)) return 0,
Z * pt [2] + t*dim[23,
if ((Z <= 1 0) tt (Z >= 0 0)) return 1,
>

return 0,
>

int stracecone(pt,dira,tl)
POIIT pt,
VECTOR dim, 
double tl,

{double A,B,B_2,C,AC,BAC,t,I,Y,Z, ~ —  —  -------

if (dim[23 ** 0 0) /* test base * /
{ t ■ <1 0-pt[23)/dira[23,
if ((t > EPSILOI) it (t < tl))
{X » pt[03 + t*dira[03,
T » pt [13 + t*dim[l3,
if ((I*X + Y*Y) <= 1 0) return 1,
>

>
A ■ dira[03*dim[03 + dira[l3*dira[l3 - dira[23*dira[23 ,
B « dira[03*pt[03 + dim[l3*pt[l3 - pt[23*dim[23,
C ■ pt[03*pt[03 + pt[i3*pt[i3 - pt[23*pt[23,
B_2 * B*B,
AC - A*C,
BAC » B_2 - AC, /* teat main body */
if ((BAC > 0 0) it (A 0 0))
{

t * (-B - aqrt(BAC))/A,
if ((t <■ 0) II (t >* tl)) return 0,
Z ■ pt[23 + t*dim[23, 
if ((Z <» 1 0) it (Z >» 0 0)) 
return 1,

>
return 0,

>
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/• OPTIHIZIBG FUICTIOIS HODJLE
a s s s s n s a s a B s i s f i s s s a s s s s s a s :

This module contains the functions used to implement the 
pixelbuffer, sortlist, extent and grid optimizations

Utility Functions

t r ansf ormvolume
projectvolume
getnode
compare
calczdepth

Optimizing Functions

calcextent 
sortlst 
makegrid 

* rendervolume

• contained in PGA dependent module PGADPEVD C

3XSS839SSS*

•include <stdio h>
#include <malloc h>
tinclude "global h" /* global parameters, flags t  variables */
•include "function hM /* function prototype declarations */

/* UTILITY FUICTIOIS 

transf ormvolume 

project volume 

getnode 

compare

calczdepth

Apply transform matrix of an instance of a 
primitive to its bounding volume

Project transformed bounding volume onto 
viewing plane

Return pointer to allocated space for a 
structure of type IQDE

Used by the sortlst function in sorting the 
list of objects Compares two objects, A and 
B on the basis of the value of their 
respective znear fields

Used to calculate the nearest A furthest z  
coords of transformed bounding volumes

void transfoxmvolume(m,v,r) 
MATRIX m,
POIIT vCSj.rCS],
/*
I Takes specified local bounding volume, v, and applies specified I 
I transform matrix, m, returning transformed volume in r (each I
I volume is defined as array of eight 3D vertices) |

*/
•Cint i,j,k,

for (i*0, i<8, i++) /* revert ex ** v_ vertex * m */
for (j*0, j<3, j++)
{ r[i]£j] ■ 0, 
for (k=0, k<3, k++) 
r[i]Cj] ♦= vCi] [k] * m W  [j] 

rWCj] m[3] [j] ,
> /* implied rCi][4] of 1 */

>
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▼Old pro3ectvolume(v)
POIIT v[8] ,
/*
I Takes specified (transformed) bounding volume and overwrites it I 
I with its projectection onto the viewing plane |

*/
{int i,j,
double sx,sy,sz, /* I and Y scale factors ♦/

if (PERSPECTIVE »» OFF)
{
if (projection[2] '* 0)
{si * pro3ection[0]/projection[2], 
sy * projection[l3/projection[2],
>

else
{ sx B IIFIIITY, /* parallel projection along the */
sy ■ IIFIIITY, /* direction D(xd,yd,zd) of a ♦/

/* point P(x,y,z) to P>(xv,yv,zv) */
> /* on the plane Z=zv is - * /

/* ♦/
for (i=0, i<8, 1++) /* xv ® x + xd*(zv-z)/zd */
{ /* yr a y + yd*(zv-z)/zd */
v£i] [0] +» (viewplanedist-v[i] [2]) * sx, 
v[i][l] (viewplanedist-vCi] [2]) * sy, 
v[i][2] » viewplanedist,
>

>
else
- { sz ** viewplanedist - viewpoint [2] f —

for (i*0, i<8, 1++)
{sx * sy » v[i][2] - viewpoint[2], 
if (sx '» 0)
iv[i][0] » viewpoint[0] + (v[i][0]-viewpoint[0])*sz/sx, 
v[i][l] ■ viewpoint [1] + (v[i] [1]-viewpoint Cl])*sz/sx,
>

else v[i] [0] = v[i][l] = IIFIIITY, 
v[i][2] * viewplanedist,
>

>

I0DE *getnode(i,3) 
iat i.j,
/•
I Used by the makegrid function to allocate space for nodes |

*/
{BODE *p,
return (I0DE *) malloc(sizeof(I0DE)),

>

int compare(a,b) 
OBJECT *a,*b,
/♦
I Compares two objects, a and b, on the basis of their znear I 
I fields (the nearest Z coordinate of the objects transformed | 
I bounding volume) Used by the sortlst function to sort the list | 
i of ob3ects into increasing distance from the viewer I
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{
if (a->znear =* b->znear) return 0; 
if (a->znear < b->znear) return 1; 
return -1;

>
▼oid calczdepth(v,o) 
POIIT v[8];
OBJECT *o;
/*
I Takes specified transformed bounding volume, ▼, and calculates | 
I its nearest ft furthest z coordinates, placing them in the znear | 
I and zfar fields respectively, of the object, o. Differs from | 
I calcextent function in that volumes are not projected onto the | 
I vie« plane and that values calculated are in «orld coords | 
I (double) rather than screen coords (int) . I

if (zl > 0) zl 1; 
o->znear * (int)(zl); 
if (z2 < 0) z2 -* 1; 
o->zfar * (int)(z2);
>

/♦ EXTEITS 0PTIMIZ1TI0I

I The extents optimization «orks by calculating for each bject, a 
I minimal rectangular area on the screen «hich encloses the 
I objects transformed and projected bounding volume. The ray 
I intersects bounding volume test then reduces to a point in 
I rectangle test, namely that the current pixel lies inside the 
I objects screen rectangle/extent. If it does not lie inside the 
I ray spavned by the pixel need not be tested for intersection 
I vith the object.

I Takes specified (projected) bounding volume, v, and calculates I
I its minimal enclosing screen rectangle, defined by tvo IY screen |
I coordinates (zmin,ymin) ft (xmax,ymax) , the upper right and |
I lover left corners, and places it in the xmin, xmax, ymin and I

*/
{double zl,z2; 
int i;

/* current near ft far values */

zl * z2 * v[0] [2] ; /• near * far * first vertex */

for (i*l; i<8; i++)
if (v[i][2] < z2) z2 - v[i] [2] ; 
else if (v[i][2] > zl) zl * v[i] [2] ;

/• check remaining 7 
/* vertices.

•/
*/

I calcextent : calculates minimal rectangle on screen 
enclosing projected bounding volume.

♦/

void calcextent(v,o) 
POIIT v[8];
OBJECT *o;
/*

J ya&x fields of the specified object structure, o.

*/
{double xl,x2,yl,y2,zl,z2; 
int i;

/* current max ft min X and Y values */
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xl » x2 a v[0][0], /♦ max * min = firet vertex ♦/
yl = y2 » v[0][l],

lor (i«l, i<8, i++>
{ if Cv[i][0] < xl) xl ■ v[i][0], /* check remaining 7 */
else if (v[i][0] > x2) x2 » v[i] [0], /* vertices */
if CvCiKO < yl) yl * ▼CilCU,
else if Cv[i] [1] > y2) y2 = v[i] [1] ,
>

if (xl < »xl) xl ** »xl, /* clip rectangle to edge of * /
if (x2 > 0x2) x2 B vx2, /* window if it exceeds same */
if (yl < wyl) yl » wyl, 
if (y2 > wy2) y2 ■ wy2,

o->xmin ■ (xl - wxl) * xfacwv + vxl, /* map rectangle to screen */
o->xmax 3 (x2 - wxl) * xfacwv + vxl,
o->ymin = (yl - wyl) * yfacwv + vyl,
o->ymax ■ (y2 - wyl) * yfacwv + vyl,

>

/♦ PIXEL BUFFER OPTIMIZATIOI

The pixel buffer optimization works by taking the transformed 
and projected bounding volumes for all objects and drawing them 
as filled polygons on the screen, all filled with the same 
color By setting all screen pixels to a different color before 
performing this operation, any pixel which is not of the fill 
color can be instantly identified as one which does not
intersect any object at all and can be set to the background
color without even generating a ray equation for it Since the 
function uses PGA specific function calls to draw and fill the
polygons, it can be found in the PGA module

rendervolume render projected bounding volume on screen
in fillcolor (SEE PGA MODULE)

J* SORTLIST OPTIMIZATIOI

The sortlist optimization works by taking the linked list of | 
objects (which defines the scene) and sorting it in order of | 
increasing bounding volume distance from the viewer in the | 
direction of projection ie the closer an objects bounding | 
volume to the viewer (when transformed into world coordinates) | 
the nearer the front of the list that object is placed in the | 
sorted list Then, when testing a ray for intersection with the | 
list of objects, all objects whose closest bounding volume face | 
lies further from the viewer than the intersection point cannot | 
possibly intersect the ray at a closer point, and can be omitted I
from the test And, since the list is in sorted order, as soon I
as one such object is encountered, the test can be ended as all I 
further objects in the list must lie even further from the | 
viewer |

I
sortlst Takes a linked list and a pointer to a function for I

comparing two nodes, and sorts the list in |
ascending order, returning a pointer to the new t
sorted list |

OBJECT «sortlst(p,compare)
OBJECT *p,
int («compare)(),
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{int base, 
unsigned int block, 
struct tap« {

OBJECT first,«last, 
unsigned int count,
> tape [4],

tape[03 count « 0, tape[0] last » fttape[0] first,
tap«[1] count ■ 0, tape[l] last » ttape[l] first,

for Cbase=0, p1“HULL, p=p->nert, base~=l)
{tape[base] last = tape[base] last->n«xt * p, 
tape[base] count++,
>

for (base=0, block®l, tape[base+l] count'=0, base *a2, block <<=1) 
{int dost, 
struct tape «tapeO, «tapel, 
tap«0 “ tape + base, 
tap«l ■ tap« + base + 1, 
dost ® base"2,
tape[dost] count « 0, tape[dost] last * fttape[dest] first, 
tape[dest+l] count * 0, tape[dest+l] last » ttape[dest+l] first,

for (, tapeO->count'»0, dest~al)
{unsigned int nO,nl, 
struct tape «output.tape, 
output.tape » tape + dest, 
nO ■ al » block, 
while Cl)
{OBJECT «chosen.item, 
struct tap« •chosen.tape, 
if (n0**”0 11 tape0*'>count=0)
{if (nl«=0 |{ tapel->count»=0) break,
chosen.tape » tapel, 
nl~,
>

else if (nl^O 11 tapel->count*=0)
{chosen.tape » tapeO, 
nO— ,
>

•Is« if ((«compare)(tapeO->first next,tapel->firat next) > 0) 
{chosen.tape = tapel, 
nl— ,
>

else
{chosen.tape ® tapeO, 
nO— ,
>

chosen.tape->count— ,
chosen_item * chosen_tape->first next,
chosen.tape->first next * chosen_item->next,
output.tape->last = output _t ape-> last **>next 3 chosen.item,
output _t ape->count ++,
>

>
>

tape[base] last->next = IULL, 
return tape[base] first next,
>
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/• GRID 0PT1HXZATI01

The grid optimization works by dividing the screen up into a 
fixed number of rectangles and associating with each a pointer 
to list of those objects whose screen extents overlap the
rectangle Testing a ray for intersection with the scene then
involves determining in which rectangle the pixel spawning the 
ray lies and testing the ray only with the objects in the 
rectangles associated list The grid is implemented as a global 
2 dimensional array of pointers Each pointer points to a linked 
list whose nodes consist of two fields, a pointer to the next 
node of the linked list and a pointer an object in the list of 
objects whose extent has overlapped the rectangle

aakegrid Takes a pointer to a list of objects and creates for
each pointer element of a global 2d array a linked 
liBt of pointers to objects whose screen extents 
overlap the associated rectangle of the array 
pointer element

void makegrid(scene)
OBJECT «scene,

{int 1,j,szx,szy,
OBJECT *p,
IODE *gp,

szx » (vx2-vxl)/GRIDC0L + 1, 
szy ® (vy2-vyl)/GRIDR0V + 1,

for (i»0, i<GRIDR0V, i++) 
for (j«0, j<GRIDCOL, j++) 
grid[i][j] « TOLL,

for (i*0, i<GRIDR0W, i++) 
for (j*0, j<GRIDC0L, j++) 
for (psscene, p*®IULL, p**p->next)
if ((p->xmin < (j+l)*szx+vxl) ft* (p->ymin <* vy2-i*szy) ftft

(p->zmax >= j*szx+vxl) ** (p->ymax > vy2-(i+l)*szy))
{if (grid[i]tj] =» HULL)

gridCi] [j] ■ gp ** getnodeCi,j) , 
else
{gp->next ■ getnode(i,j), 
gp 53 gp->next,
>

if (gp '■ VULL)
{gp->ptr » p, 
gp->next *» VULL,
>
else
{printf("\n\nOut of Space1 node %d Xd,,Ji,j), 
exit(0),
>

>
>
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/» SHADIIG NODULE

I This module contains the shading functions used by the
I raytracer Although the pgashade function is geared to
I calculating a color in the PGA range 0 255, it does not call
I any pga library functions and so is omitted from the PGA
I dependent module PGADPEHD C
I
I Functions - 
| pgashade
I rgbshade
I

*/
•include <math h>
•include "typedef h" /* structure ft other typedef definitions*/
•include "function h" /* function prototype declarations */

extern double ambient»

extern int DITHER, dither4 [4] [4], dither8[8][8]

/* SHADIHG FUICTIOHS

These functions use the following vectors to calculate the shade 
for a given pixel, using Phongs lighting equation (all vectors 
specified in relation to intersection point of ray with 
primitive object and are assumed to be unit vectors) -

ray — > vector in direction of viewer/ray 
Ight — > vector in direction of light source 
nnal — > surface normal

Other information is accessed via a pointer to the intersected 
object» obj Pixel coordinates are passed through x and y in 
case a dither matrix operation is specified through the global 
flag »DITHER*

*/

void pgashade(c,obj,ray,Ight,nrml,x,y,shad) 
unsigned char *c,
OBJECT *obj»
VECTOR ray,Ight,nrml, 
int x,y,shad,
/*
I This function calculates the shade of a pixel as an intensity I 
I value in the range 0 1 This is then converted to an int value I
I in the range 0 IS Since the raytracer loads the PGA 256 entry |
I color table with 16 different shades for each of 16 base colors, ]
I this value is added to the offset of the base color in the table |
I to give a value in the range 0 255 I

*/
{VECTOR rflec, /* direction of reflected ray */
double spec,pspecf /* specular reflection values */

diff, /* diffuse reflection value */
intens, /• final calculated intensity */
rad,
dther, /* used in dither matrix operation */
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if (! shad)
{
difí - nrml[0]*lght[0] ♦ 

nrml[l]*lght[l] ♦ 
nrml[2]*lght[2] ;

if (diff < 0.0) diff * 0.0;

rflec[0] ■ Ight[0]-ray[0]; 
rfl«c[l] * Ight[1]-ray[1]; 
rflec[2] * Ight[2]-ray[2];

normalize(rflec);

if (diff *» 0.0) pspec * 0.0; 
•la«
{spec * nrml[0]*rflec[0] + 

nml[l]*rfl«c[l] + 
nrml [2] *rflec [2] ; 

pspec * pow(spec,obj->pwr); 
>

/* point not in shadow */

/• diffuse intensity * */
/• rector dot product of */ 
/* normal and light vectors */

/* negative *> angle >90 */

/* calculate direction of */ 
/• reflected ray for use in */ 
/* specular calculation. */

/* must be unit vector */

/• angle > 90 => no specular */

/* specular * dot product of */ 
/• normal and reflected ray...*/

/* ... raised to power pwr. */

intens * 15.0 * ( obj->ks*pspec ♦ 
obj->kd*diff ♦

/* calculate Phong intensity */ 
/* (0..1) and convert to the */ 

obj->ka*ambient) + /* range 0..15 for PGA use. */ 
obj->rnd*rand()/32768.0;

>
else /* shad=l *> point in shadow */

intens * 15.O*obj->ka*ambient + obj->rnd*rand()/32768.0;

if (intens < 0.0) intens * 0.0; 
else
if (intens > 14.9) intens ■ 14.9;

/* chop out of range values */

if (DITHER ”  01) /* dither flag set ? */

/* take fractional part. */ 
/* Use dither do decide */ 
/•to round up or down. */

{dther ■ intens - (int)intens; 
if ( (int)(15.0*dther+0.5) > 

dither4[xX4][y%4] ) 
intens ♦* 1.0;

>
else

intens +*0.5; /* no dither, round to nearest integer */

*c * (char)(16*obj->clr + (int)intens);
/• 0..255 color value */

void rgbshade(c,obj,ray,Ight,nrml,x,y,shad) 
unsigned char *c;
OBJECT *obj;
VECTOR ray,Ight,nrml; 
int x,y,shad;

I This function calculates the shade of a pixel as three intensity | 
I values in the range 0..255, one for each of the red green and | 
I blue intensities, by applying the shading equation three times - i 
I one« for «ach intensity. The respective ratios with which an I 
I object reflects each of the three primaries is obtained from the | 
I object structure itself. |

{VECTOR rflec; 
int i;

/• direction of reflected ray. */
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doable spec,pspec, 
diff, 
intens, 
dther,

if ('shad)
{
dxff ■ nrml[0]*lght[0] + 

nnnl[l] tight [1] + 
nrml[2] *lght [2],

/* specular reflection values */
/* diffuse reflection value ♦/
/* final calculated intensity */
/* used in dither matrix operation */

/* diffuse intensity * ♦/
/♦ vector dot product of */ 
/+ normal and light vectors •/

if (diff <0 0) diff =0 0,

rflecCO] ■ lghtCO]-ray[0], 
rflec[l] » lght[l3-rayCl]( 
rflec[2] » lght[2]-ray[2], 
normalize(rflec),

/* negative => angle >90 */

/* calculate direction of */
/♦ reflected ray for use in */
/* specular calculation */
/* must be unit vector */

if (diff » 0  0) pspec ®0 0, 
else
{spec ** nrml[0]*rflec[0] + 

nrml[l]*rflec[l] + 
nrml [2] *rf lec [2] , 

pspec ■ pow(spec,obj->pwr), 
>

/* angle > 90 ■> no specular */

/* specular * dot product of * 
/* normal and reflected ray

/* raised to power pwr

*/
*/
*/

for (i=0, i<3, i++)
{
if (shad)
intens ® 255 0 * (1 0 - obj->ka*ambient), 
else
intens ■ 255 0 *

(1 0 - ( obj->ka*ambient + 
obj->ks*pspec + 
obj->cmy[i]*diff + 
ob3~>cmy[i]*ambient)),

/* Phong intensity */

if (intens <0 0) intens = 0 0, 
else
if (intens > 254 9) intens “ 254 9,

/• chop out of range values •/

/ * dither flag set 7 */

/* take fractional part */ 
/* Use dither do decide */ 
/♦to round up or down */

if (DITHER *= 01)
{
dther « intens - (int)intens, 
if ( (int)(15 0*dther+0 5) > 

dither4 [xX4][yX4] ) 
intens +=10,

>
else
intens +"0 5, /* no dither, round to nearest integer */

*(c+i) » (char)(1 6*ob3~>clr + (int)intens),
>
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/. PGi DEPEIDEHT MODULE

The raytracer functions in this module axe all PGA dependent in 
that they all call one or more functions from the set of PGA 
library routines which were written prior to the raytracer 
implementation and which provide access to various line/curve 
drawing capabilities of the Professional Graphics adapter card

Function PGA functions called

rendervolume poly
pzmfil
color

— > 
— > 
— >

draws polygon from of points ] 
fills polygons in current color I 
sets current color I

pgatrace rline
wline

— > 
— >

1
reads line of pixels from screen I 
writes line of pixels to screen I1

loadpgafile wline
Gscreen — >

l
1

sends byte stream directly to I 
PGA memory mapped I/O buffer 1

i
savecolors lutrd — >

1
reads look up table value |I

readcolors lut — >
1

sets look up table value |I
generatergbup lut

1
1l

generat ergbdown lut 1I
initpga mit

vwport
window

— >

— > 
— >

1
initializes the PGA card and I 
switches monitor to PGA mode I 
defines screen viewport | 
defines viewplane window I -

flood — > floods viewport in given color

qnitpga endgraphic — > switches monitor from PGA back 
to normal mode

*/
•include 
•include 
•include 
•include 
•include

<stdio h> 
<malloc h>
"pga V
"global h" 
"function h"

/• pga library functions header file */
/* global parameters, flags Jk variables */
/* function prototype declarations */

extern int fillcolor.

void rendervolume(v,c) 
POIIT vC8], 
int c, /* bounding volume fill color •/

I Takes specified bounding volume (transformed and projected) and I 
I renders it on the screen (using PGA library functions) as six ] 
I filled polygons, filled in color c I

{int dummy[3], 
prmfil(on), 
color(c),

/* ploygon fill on 
/* current color ■

♦/
c */

/* render six polygon faces of bounding volume on screen, 
filled with fillcolor (volume for cone really only has 
five» 6th one consists of & single point - the apex ♦/

poly(4,v[0] [0] ,v[0] [1] vCl] [0] v[l] [1] ,v[2] [0] ,v[2] [1} ,v[3] [0] ,v[3] [1]) , 
poly(4,vC0] [0] ,v[0] i l l ,v[4] [0] ,v[4] Cl] ,vC5] [0] ,v[5] [1] ,v{l] [0] ,v[l] [1]) 
poly(4,v[0] [0] ,v[0] [1] ,v[3] CO] ,vC3] Cl] ,vC7] CO] ,v[7] Cl] ,v[4] CO] ,vC4] Cl]) , 
poly(4,rC6l COl .r[6Kl] .»[5] [0] .»[5] [1] ,,[!] M  ,w[l] Cl] ,»C2] [0] ,tCS] [1]) ,



P G A D P E N D C 51

p o ly (4 ,v [6 ]  [0] ,v [6 ] [1] ,v [7 ] [0] ,v [7] [ l ]  ,v [4] [0] i M  [1] ,» [5 ] [0] ,» [5 ] [1 ]) , 
p o l j ( 4 ,* M  [0] ,» [6 ] [1] ,y [2 ] [0] .» [2] [1] ,y [3 ] [0] .» [3 ] [1] , t [7] [0] , t [7] [1 ])  , 
lutrd(2S»dummy),
prnfil(off), /* polygon fill off * /

>

▼oid pgatrace(scene)
OBJECT «scene,
{unsigned char *bf,*fbuf,«ptr,id, 
int x,y,cnt,

bf ■ (unsigned char *)malloc(vx2-vxl+l), 
if (FILEOUT 01)
{if (COMPRESS *» 01)

fbnf ■ (unsigned char *)malloc(2*(vx2-vxl+l)), 
else
{id » Oxff, /• write id byte to indicate uncompressed format */
fwrite((char *)fcid,l,l,outflie),
fwrite((char *)ftvxl ,sizeof(int) ,1, out file) , /* write viewport */
fwrite((char *)tvx2,sizeof(int),1,outfile), 
fwrite((char *)*vyl,sizeof(int),l,outfile), 
fwrite((char *)Jkvy2,sizeof (int) ,l,outf lie) ,
>
>

for (yavy2, y>®vyl, y— )
{ ptr ■ bf,
xl ((PIXELBUFFER »  01) ti (SCREE! »  OH))
{rline(y,vxl,vx2,bf), 
for (x«vxl, x<=vx2, x++,ptr++)
if (*ptr M  fillcolor) raycast(scene,x,y,ptr), 
else *ptr » background,

>
else
for (x=vxl, x<»vx2, r++,ptr++) 
raycast(scene,x,y,ptr),

if (SCREE1 “= 01) 
wline(y,vxl,vx2,bf),

if (FILEOUT *» OH)
{if (COMPRESS w  OH)
{cnt ** linecompress(bf,fbuf,y,vxl,vx2), 
fwrite(fbuf,l,cnt»outfile),
>
else
fwrite(bf,1,vx2-vxl+lfoutfile),
>

>
free(bf), 
if (FILEOUT «* OH)
{ fclose(outflie), 
if (COMPRESS =  OH) 
free(fbuf),

>
>
int readcolors(str) 
char *str,

I This function loads the active look up table of the PGi with the I
I 256 red, green, t  blue stored as integers in the file str The I
I integer stores the values as - |
i I
I red — > bits 11 10 d d j
I green — > bits 7 6 5 4 |
I blue — > bits 3 2 10 |
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{FILE *fp; 
int i,r,g,b,*bf;

if ((PGA ** OFF) || (SCREEI =  OFF)) return 0;

if ((fp * fopen(str,"rb")) ** IULL) return -1;

bf * (int *)malloc(256*sizeof(int)); 
fread((char *)bf,sizeof(int),256,fp); 
fclose(fp);

for (i-0; i<256; i++)
{r - (bf[i] t OxOfOO) »  8;
g - (bf[i] k OxOOfO) »  4;
b - bf[i] k OxOOOf;
lut(i,r,g,b);
>

return 1;

int 8&Yecolors(str) 
char *8tr;

I This function performs the reverse process of readcolors ie. it |
! saves each of the 256 12-bit entries of the current PGA look up |
I table as 256 integers stored in the file str. |

{FILE *fp;
int i,rgb[3],*bf;

if ((PGA «* OFF) || (SCREEI OFF)) return 0;

if ((fp * fopen(str,"wb")) ** IULL) return -1;

bf * (int *)malloc(256*sizeof(int));

for (i*0; i<256; i++)
{lutrd(i,rgb);
bf[i] ■ (rgb[0] «  8) | (rgb[l] «  4) | rgb[2];
>

fvrite((char *)bf,sizeof(int),256,fp); 
fclose(fp); 
return 1;
>

void generatergbup(c,r,g,b) 
int c,r,g,b;
/*
I Given a color group (0..15) and a red, green t blue color, this
I function generates a set of 16 shades of the given color,
I starting vith black (rgb * 000). The shades are calculated by 
I following a line through an imaginary RGB cube, consisting of 
I 4096 subcubes (16x16x16) each of which corresponds to one of the 
I 4096 PGA red, green k blue combinations. The line is followed
I from erigia (lewer left C9n«r) through th« c«ll specified by
I r,g, and b.

•/
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{int i,
double x,y,z,max,

if (SCREES »  01)
{
if ((x > 0) II (g > O) II (b > 0))
{max * r, 
if (g >- max) max 3 g, 
if (b >= max) max ■ b, 
x » r/max, 
y ® g/max, 
z “ b/max,

for (i^O, i<16, i++) 
lut(16*c+i,(int)(i*x+0 5),(int)(i*y+0 5),(int)(i*z+0 5)),
>

>

▼oid generatorgbdown(c,r,g,b) 
int c,r,g,b,
/*
I Like generatergbup, this function generates 16 shades of a color I 
I by following a line through an imaginary RGB cube In this case I 
I however, the line is followed from the upper right corner of the I 
I cube (rgb » 111) down through the cell specified by r, g, and b |

*/
{int i,
double x,y,z,max,

if (SCREES ™  OS)
{
if ((r > 0) 11 (g > 0) || (b > 0))
{max * r, 
if (g >■ max) max » g, 
if (b >» max) max = b, 
x 9 r/max, 
y *» g/max, 
z * b/max,
for (i=0, i<16, i++) 
lut(16*c+i,(int)(15 5-i*x),(int)(15 5-i*y),(int)(15 5-iez)),
>

>
>

void loadpgafile(str) 
char * str,
/•
I Displays an image on screen, read from a file in PGA format
I First determines if the file is in compressed or uncompressed
I format by looking at the first byte -
I
I D9 «> compressed
| FF ■“* uneomprafis«<i
I
I see linecompress function in RTRACE C module for description
I of compressed k uncompressed formats
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{char »lne, 
unsigned char id, 
int i»25,fh,xl,x2,yl,y2,y,len, 
long length,
FILE *fp,

if (C(fp » fopenCstr,"rb")) •* IULL)) 
{
fread(ftid,l,1,fp), 
if (id «* 0x09)
{ lne “ malloc(i), 
fh * fileno(fp), 
length » filelength(fh) , 
fseek(fp,(long)O,5EEX.SET), 
while (length > (long)i)
{fread(lne,1, i,f p), 
Gscreen(lne,i), 
length -■ (long)i,
>

fread(lne,1,(int)length,fp), 
Gscreen(lne, (int) length), 
fclose(fp), 
free(lne),
>

else 
if (id ** OxFF)
{

/* first byte D9 or FF */

/* D9 *»> compressed */

/* pnt byte back - its data */

/* read file in blocks of i */
/* and send directly to PGA */

/* FF uncompressed */
/♦ I0TE FF not part of data */ 

/* read viewport */fread((char *)ftxl,sizeof(int),l,fp), 
fread((char *)ftx2,sizeof(int),l,fp), 
f read ((char *)ftyl,sizeof (mt) ,1 ,fp) , 
fread((char *)Ay2,sizeof(int),1,fp), 
len * x2-xl+l, 
lne ■ malloc(len),

for (y®y2, y>«yl, y--)
{fread(lne,1,len,fp), /♦ read line ft display it */
wline(y,xl,x2,lne),
>

free(lne), 
fdose(fp),
}

>
>

void initpgaO 
{
if (SCREE! »  01)
{
initO,
vwport(vxl,vx2,vyl,vy2), 
window(wxl,wx2,wyl,wy2), 
flood(fillcolor“Oxffff),
>

void quitpgaO 
{
if (SCREE! 0!) 
endgraphicO,

>
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