
R a y T r a c in g U n d e r
T h e M i c r o c o m p u t e r

A bstract

Author Eugene Curran

The history of computer graphics is as old, almost, as the history of computing it
self Until recently however, it had tended to be confined to the realm of the “aris
tocracy” of computer machines because of its requirement of their high power and
speed as well as the additional cost of expensive graphics hardware In the last
number of years however, a significant reduction m the price/performance ratio
of both graphics and microprocessor technology has brought computer graphics
within the grasp of the of the ordinary “working class” PC (Personal Computer)
The nett result of this has been an increase m the number of users of computer
graphics and its areas of apphcation

One of these areas, tha t of the of generation of realistic three-dimensional images,
is the subject m atter of this work More specifically, this work is concerned with
a particular method of generation of such images, known as Raytracmg , which
has produced some of the most realistic computer generated images to date
Unfortunately, because of a large appetite for numeric calculation, ray tracing has
tended to be restricted to mainframe computers The motivation behind this
research has been to implement a raytracmg algorithm on a microcomputer and
investigate its performance

4

Chapter one gives a general introduction to the area of computer graphics, while
chapter two outlines a description of the raytracmg algorithm, its advantages,
limitations and optimizing techniques Chapter three then goes on to discuss the
apphcation of raytracmg to the area of solid modelling and sets the context for
the description of the research in chapter four, which discusses the design, im
plementation and performance of Micro Trace, a microcomputer based ray tracer
Finally, Chapter five discusses conclusions from the research and possible future
enhancements to the work

R ay Tracing U nder
T he M icrocom puter

A THESIS SUBM ITTED BY E U G EN E CU RRA N
f o r TH E DEG REE OF M a s t e r o f Science

A u g u s t 1989

Ray Tracing Under
The M icrocom puter

A Thesis by E u g e n e C u r r a n B A I
Supervisor D r M SCOTT P h D

Submitted to
D u b l i n C i t y U n i v e r s i t y
C o m p u t e r A p p l i c a t i o n s

for the degree of
M a s te r o f Science

August 1989

D eclaration No portion of this work has been submitted m support of an
application for another degree or qualification in the Dublin City University or
any other University or Institute of Learning

Acknowledgem ent

To my parents, for the chance to pursue these studies, and to Dr Scott,
for his advice and guidance along the way

C ontents

1 A n In tro d u c t io n To C o m p u te r G ra p h ic s 1

1 1 M otivation 1

1 2 W hat Is Computer Graphics 7 2

1 3 Display Devices 2

13 1 Vector Devices 3

13 2 Raster Devices 4

14 Two Dimensional Graphics 5

1 4 1 Windows And Viewports ~ — 5

1 4 2 2D M atrix Transformations 8

1 5 The Third Dimension 12

15 1 3D M atrix Transformations 13

1 5 2 3D Geometric Projections 14

1 6 Object Representation 20

16 1 Polygon Mesh Representation 20

16 2 Constructive Solid Geometry (CSG) 21

1 7 Adding Realism 23

1 7 1 Hidden Surface Removal 23

1 7 2 Shading 24

i

A

1 7 3 Shadows and Texture 28

A n In tro d u c t io n To R a y T rac in g - 29

2 1 The Ray Tracing Approach 29

2 2 The Basic Algorithm 30

2 3 Adding To The Algorithm 34

2 3 1 Shadows 34

2 3 2 Reflection and Refraction 35

2 3 3 AntiAhasmg 37

2 4 Speeding Things Up 39
2 4 1 Bounding Volumes 40

2 4 2 Space Subdivision - 46

2 4 3 Coherence 49
2 4 4 Parallel Algorithms 49

2 4 5 Other Speedups 51
£

2 5 Other Ray Tracing Algorithms 53

2 5 1 Distributed Ray Tracing 53
2 5 2 Beam Tracing 54
2 5 3 Cone/Pencil Tracing 54
2 5 4 Other Variations 55

R a y T rac in g an d C S G 57
3 1 Solid Modelling 57

3 2 An Introduction to CSG 58

3 2 1 CSG Representation 59

3 3 Roths CSG Ray Tracing Algorithm 61

3 3 1 Three algorithms in one 61

3 3 2 Primitives And Coordinate Systems 63

3 3 3 Ray Intersection And Classification 64

3 3 4 Combining Classifications 65

3 3 5 Com putational Cost 65

3 3 6 Box Enclosures — An Optim ization 68

3 3 7 Circumstance Classification 70

3 4 Further Optimizations 71

3 4 1 Enclosures And Tree Rearrangement 71

3 4 2 Scan-Line Enclosures And Active Trees 72

3 4 3 Bounding Ray Depth 74

3 4 4 Temporary Object Trees 74

3 4 5 Space Subdivision 77

4 M ic ro T ra ce 80

41 Hardware , 80

4 11 Professional Graphics Adaptor 81

4 2 M cro Trace — The Inner Workings 83

4 2 1 A Brief Overview 83

111

4 2 2 PGA Mode 84

4 2 3 RGB Mode 87

4 2 4 Calaulating Pixel Intensities 87

4 2 5 The Object Structure 90

4 3 Ray Generation 91

4 4 Transforming The Ray 94

4 5 Ray Intersection 94

4 5 1 Cube Intersection 96
4 5 2 Sphere Intersection 97
4 5 3 Cylinder Intersection 99
4 5 4 Cone Intersection 100

4 6 Shadow Rays 101
4 7 Optimizations 102

4 7 1 Bounding Volumes 103
4 7 2 ̂ Pixelbuffer 104
4 7 3 Extents 106
4 7 4 Grid 108
4 7 5 Sorthst 110

4 8 Presentation of Results 111
4 8 1 The Test Images 112
4 8 2 Explamation Of Terms 112
4 8 3 Discussion Of Results 115

4 8 4 Results For Other Machines 119

5 C o n c lu s io n s & F u r th e r W o rk 121

5 1 Conclusions 121

5 2 Future Work 121

5 2 1 Enhancing M cro Trace 122

5 2 2 Extending Micro Trace 124

5 3 Ray Tracing — The Future 125

A P P E N D IX A — S o u rce C ode

B IB L IO G R A P H Y

i

v

List o f figures

1 1 Vector Display 3

1 2 Raster Display 4

1 3 Window - Viewport Mapping 6

1 4 Window - Viewport Equation 7

1 5 Window Clipping 8

1 6 Translation, Rotation & Scaling Transformations 10

1 7 Right & Left Handed Coordinate Syatems 12

1 8 Multiple Coordinate Systems 15

1 9 Parallel Projection 16

1 10 Projector equation For Parallel Projection 17

1 11 Perspective Projection 18

1 12 Projector Equation For Perapective Projection 19

1 13 Object Ambiguity 21

1 14 Union, Difference & Intersection OF Solids 22

1 15 Diffuse Reflection 26

1 16 Specular Reflection 26

2 1 Tracing A Ray 31

2 2 Ray Equation For Parallel View 31

vi

r

2 3 Ray Equation For Perspective View 32

2 4 Ray-Object Intersections^ 33

2 5 Tracing Shadow Rays 35

2 6 Transparency 36

2 7 Shade Tree 37

2 8 Cause Of Abasing 38

2 9 Antialiasing 39

2 10 Bounding Volumes 41

2 11 Bounding Volume Selection 43

2 12 Calculation Of Extents 44

2 13 Bounding Volume Hierarchy 45

2 14 Space Subdivision Schemes 47

2 15 Ray Coherence 50

2 16 Cone Tracing 55

3 1 CSG Boolean Operations 60

3 2 Binary tree & DAG representation of Solids 60

3 3 RAYCAST In /O u t Ray Classifications 61

3 4 Volume Calculation 63

3 5 Combining Ray Classifications 66

3 6 Three Stage Combine Process 66

3 7 Combining Box Enclosures 69

3 8 Composition Tree Rearrangement 72

Vll

~3

3 9 Scan-Line Enclosures 73

3 10 Quadtree Adm inistration Of Temporary Tiees 76

3 11 Cell Connectivity Pointers 78

3 12 Creation Of 3D Cell Structure 79

4 1 Schematic Latout Of IBM AT & PGA 81

4 2 PGA Look-Up-Table 82

4 3 Schematic Layout Of MicroTrace 84

4 4 PGA Mode Color Interpretion 88

4 5 PGA Mode Color Calculation 89

4 6 The Four Primitive Solids Of MicroTrace 91

4 7 The Four Primitive Bounding Volumes 104

4 8 Screen Extent Void Areas 108

4 9 Implementation Of Grid Structure 109

4 10 Znear & Zfar coordinates 110

4 11 Use Of Znear & Zfar Coordinates 111

4 12 Snooker Balls Scene 113

4 13 Lattice Structure Scene 114
j

4 14 Snooker Scene Grid & Extents 116

4 15 Lattice Scene Grid & Extents 117

vm

R a y T r a c i n g U n d e r
T h e M i c r o c o m p u t e r

A b stract

Author Eugene Curran

The history of computer graphics is as old, almost, as the history of computing i t
self Until recently however, it had tended to be confined to the realm of the “aris
tocracy” of computer machines because of its requirement of their high power and
speed as well as the additional cost of expensive graphics hardware In the last
number of years however, a significant reduction in the price/perform ance ratio
of both graphics and microprocessor technology has brought computer graphics
within the grasp of the of the ordinary “working class” PC (Personal Computer)
The nett result of this has been an increase m the number of users of computer
graphics and its areas of application

One of these areas, th a t of the of generation of realistic three-dimensional images,
is the subject m atter of this work More specifically, this work is concerned with
a particular m ethod of generation of such images, known as Raytracmg , which
has produced some of the most realistic computer generated images to date
Unfortunately, because of a large appetite for numeric calculation, raytracm g has
tended to be restricted to mainframe computers The motivation behind this
research has been to implement a raytracmg algorithm on a microcomputer and
investigate its performance

Chapter one gives a general introduction to the area of computer graphics, while
chapter two outlines a description of the raytracm g algorithm, its advantages,
lim itations and optimizing techniques Chapter three then goes on to discuss the
apphcation of raytracmg to the area of solid modelling and sets the context for
the description of the research m chapter four, which discusses the design, im
plem entation and performance of MicroTrace, a microcomputer based raytracer
Finally, Chapter five discusses conclusions from the research and possible future
enhancements to the work

Chapter 1
A n Introduction To C om puter
Graphics

1.1 M otivation
One of the principle advantages of Computer Graphics is its ability to present
information in a visual form — a form which allows our well developed eye-bram
pattern recognition mechanism to perceive and process the information more
rapidly In this respect, the most frequent use of graphics today is probably to
draw histograms, pie-charts, and two-dimensional or three-dimensional graphs of
various m athem atical and economic functions

However, Computer Graphics does play an essential role m many other
widely varying fields, such as computer simulation, anim ation, exploration maps
for drilling and mining, computer aided design and manufacture, a rt advertising
and a profusion of others

The application of Computer Graphics to some of these areas, particu
larly flight simulation and animation, requires images capable of incorporating
shadows, reflection/refraction of light, removal of hidden surfaces and shading m
order to make them as true to life as possible Raytracing is the most successful
m ethod to date of incorporating all of these features into a graphics image and
is the topic of subsequent chapters The concern of this chapter is to introduce,
to the newcomer to computer graphics, the basic ideas and concepts involved
m the generation of graphics pictures, which will enhance the understanding of
subsequent chapters and facilitate a comparison raytracing with more traditional

1

CHAPTER 1 A N INTRODUCTION TO COMPUTER GRAPHICS 2

graphics techniques

1.2 W hat Is Com puter Graphics ?
Computer Graphics involves the generation of an image of an object from an ap
propriately defined description of the object It is this emphasis on the synthesis
of pictures of real or imaginary objects th a t distinguishes Computer Graphics
from the related field of im age/picture processing The latter, which is im por
tan t m areas such as satellite photograph enhancement and chromosome scans,
is primarily concerned with the analysis of a picture and reconstruction of 2D or
3D objects from their pictures — the converse process of computer graphics

Since pictures generated using Computer Graphics will ultim ately be seen
on some sort of display device, before looking at the means by which such pictures
are generated, some knowledge of the different display technologies will prove
useful

1.3 D isplay D evices
The most common device for display of graphic output is the Cathode Ray Tube
(CRT) The basic principle behind a CRT is th a t when a beam of electrons strikes
a phosphor coated screen light is em itted The em itted light, however, decays
exponentially with time so the process must be repeated many times per second
(30 to 60) m order that the light appears unfhckering to the viewer

The two principle categories of Cathode Ray Tube devices used in computer
graphics are -

• Vector devices
• Raster devices

1.3.1 V ector D ev ices
CHAPTER 1 A N INTRODUCTION TO COMPUTER GRAPHICS 3

As illustrated in fig 1 a vector device consists of a cathode ray tube, a display
processor and a refresh buffer containing commands for plotting points, lines
and characters These commands are interpreted by a display processor which
converts the digital values into analog voltages which are used to electrostaticly
displace the electron beam along the desired path , striking the phosphor and
emitting light in the process

SCREBJ

figure 11 A vector display device

Since the em itted light decays in something of the order of several hundred
microseconds, the picture must be continually re-drawn using the commands in
the refresh buffer (at least 30 times per second) m order th a t the picture does not
appear to flicker to the viewer The time taken to re-draw the picture however is
proportional to the number of lines in it so, where a picture has many lines that
cannot be draw in less than ~ tt of a second, flicker becomes unavoidable

Vector devices have the advantage of having very high resolution, typically
4096 screen dots horizontally by 4096 vertically, and a relatively small refresh
buffer requirement (2K - 30K) Their principle drawbacks however are th a t they
cannot display solid areas on screen and have only a very limited capability for
displaying colour They are also expensive m comparison to raster devices and
are not suitable for raytracing, as will become clear in chapter two

CHAPTER 1 AN INTRODUCTION TO COMPUTER GRAPHICS 4

1.3.2 R aster D evices

The arrival, in the mid-seventies, of cheap raster graphics devices based on tele
vision technology and having a good capability for colour contributed greatly to
the development of Computer Graphics and today, raster technology is the one
most commonly found m graphics display devices

As fig 1 2 illustrates, an image on a raster device consists of a rectangular
m atrix of points called pixels (short for picture element) Unlike the refresh
buffer of a vector device which stores screen coordinates, a raster refresh buffer
stores the intensity of each individual screen pixel The image is then drawn by
sequentially scanning out each horizontal line of the buffer from left to light, top
to bottom , to the screen The intensity for each pixel is determined by converting
the value for the pixel stored in the buffer into an analog voltage th a t controls
the intensity of the electron beam at th a t point on the screen

REFRESH BUFFER SCPE&i

figure 1 2 A fast©'' display device

In contrast to a vector device, where a line is stored as two screen coordinate
values m the refresh buffer, a line is drawn on a raster device by calculating all
screen pixels th a t the line will cross when drawn on the screen, and setting those
pixel values accordingly in the refresh buffer There exists a number of efficient
scan-line algorithms for performing this task not just for lines but for circles and
other primitives as well (see [FOLE84])

In the simplest raster devices, the refresh buffer uses one binary bit per
pixel to represent its intensity (1 = 0 N , 0=O FF) Using more bits per pixel will
perm it a greater range of intensities m the screen image, at the expense of a

CHAPTER 1 AN INTRODUCTION TO COMPUTER GRAPHICS 5

larger refresh buffer requirement

C O L O U R In colour raster devices each pixel is actually composed of three
phosphor dots, called a triad One of the dots emits red light when excited by
an electron beam, the second green and the th ird blue These three colours,
known as the primary colours, are used because almost any colour from the
visible spectrum can be obtained from a suitable combination of them Three
electron guns, arranged in the same triangular pattern as the triads, are used
to synchronously excite the three phosphor colours so th a t when viewed from
a distance, the triad will appear as a single dot whose colour is a m ixture of
the three dots For such devices three intensity values per pixel must be stored,
corresponding to the intensity of each of the red, green and blue components of
the pixel For example, storing two bits per prim ary (6 bits per pixel) allows 4
intensities per primary, giving a to tal of 64 colours

The principle advantages of a raster over a vector device are th a t it is less
expensive, has a good capability for displaying colour and can display sohd areas
on screen On the other hand, raster devices do not yet have the same resolution
as vector ones, 1284 x 1024 being considered high for raster, and have a much
greater refresh buffer requirement, particularly for colour devices e g a colour
raster display with 512 x 512 resolution and 64 colours per pixel requires a refresh
buffer of 196608 bytes (512 x 512 x 6 bits) However, with the ever decreasing
cost of memory, this drawback becomes less significant

1.4 Two D im ensional Graphics
Two dimensional objects exist m a completely flattened world The^ have length
and width (and consequently area), but no thickness or volume, and are usually
defined to the graphics system in terms lines, polygons, planar curves etc Yet,
despite the limitation of two dimensions, this area of graphics is still very useful,
both in its own right and as a stepping stone towards an understanding of the
discussion of three dimensional graphics in section 1 5

1.4.1 W indow s A nd V iew p orts

As will be seen from the following sections, several diffeient coordinate systems
axe used in computer graphics The most basic one perhaps is the screen coordi
nate system This is a 2D integer coordinate system whose values m the X and

CHAPTER 1 AN INTRODUCTION TO COMPUTER GRAPHICS 6

Y directions range from zero to the horizontal and vertical screen resolution size
respectively, each coordinate pair directly corresponding to an actual pixel on the
screen The position of the origin (0,0) can vary from one device to another
but is usually one of, the upper left corner, lower right corner, or centre, of the
screen

It would be far too restrictive to use this coordinate system to directly define
elements of a graphics picture as, not only would the definition have to be altered
in order to be displayed on a device with different resolution, but the coordinate
range would be inappropriate for many applications The solution to the problem
is to use a coordinate system th a t is independent of screen coordinates, called a
world (or virtual) coordinate system The Cartesian X Y coordinate system is
normally used as this virtual coordinate system

The approach is to use this virtual coordinate system to define objects
and then “m ap” the the virtual coordinates onto screen coordinates Thus, the
object definition remains independent of the display device and only the m ap
ping changes from one device to another Mapping the entire virtual space onto
the screen however would mean that only very large objects would be visible
A rectangular area called a window, defined by four virtual coordinate values
(*<
ordinate space to map onto the screen

mm? X max, Ymin ̂Ymax), is therefore used to specify a section of the virtual co-

Similarly, instead of always mapping the window onto the entire screen, a
greater degree of flexibility in displaying the picture is possible if the window
can be mapped onto a specified sub-region of the screen This would allow, for
example, several windows to be displayed simultaneously on different areas of the
screen A viewport is therefore used to define a rectangular area of the screen
onto which the window is to be mapped As illustrated m fig 1 5, this window-
viewport combination allows any section of the virtual coordinate space to be
displayed on any area of the screen

viewport

9CREEN

figure 1 3 Window to viewport mapping

I

M A P P IN G From fig 1 4 , it can be seen that the equations which map a point
(W x, W y) inside the window onto a point (K , Vy) mside the viewport are given
by -

CHAPTER 1 AN INTRODUCTION TO COMPUTER GRAPHICS 7

V - Vy — (w - W)——ar---- xmin - 4- Vv x — \ vv x t i t ~ Y x m t n
yy rrmnri * * Tm.in

V = (W - W _Tymax_r_i™n. i yy V \ v v y v v y m x n) l A r T V y m t nW — wvv y m a x r r j/m m
(i i)

where the window is defined by {Wxmm, W xmax, Wymtn, W ymax) and the viewport
by (V̂rmm

Wi_min
W y_m «* WINDOW Wy” m«x

V»_n
Vy_n VIEWPORT

pixel
.V *d ^ (V i Vy)

Vyd

V«_m*x
Vy_fnm

W y_rrtn W y jrm

preservation of

horizontal ratios
r > Wxd Vxd

Wx_max Wx min Vx max Vx

=> Wx Wx Vx Vx mln

Wx max Wx mtn Vxm ax Vx min

- > Vx = (Wx W x_mln) _.Vx-™ ax Vx_mtn + V x _ m in

Similarity

Vy

Wx m « i Wx m in

.... , t Vy_m*x Vy mln(Wy Wy_mln) -------------------------—-------- + Vy_mlnWy_max Wy_mln

figure 1 4 Window to viewport mapping equation

This defines the mapping function for the window to the viewport In ap-

CHAPTER 1 AN INTRODUCTION TO COMPUTER GRAPHICS 8

plying the function however, it must be ensured th a t points outside the window
are not mapped, as such points would be m apped onto non-existent screen coor
dinates, resulting in a “wrap-around” effect whereby points m apped beyond the
right of the screen are “wrapped around” and appear on the left of it A tech
nique known as window clipping, which clips off those parts of the object outside
the window from the mapping function, is therefore applied As illustrated m
fig 1 5, there are three possible cases when clipping a line It can he -

• Entirely outside the window (line A)
• Entirely mside the window (line B)
• Partially inside the window (line C)

w indow

Clipped window

which is mapped

to viewport

figure 1 5 Window clipping

Only the third case poses any difficulties since the window clipping opera
tion must determine the intersection of the line with the edge of the window For a
detailed discussion on window clipping algorithms, such as the Cohen-Sunaerland
algorithm, see Foley & Van Dam [FOLE84]

1.4.2 2D M atrix T ransform ations

As mentioned in the previous section, there are good reasons for defining objects
using a virtual coordinate system instead of directly using screen coordinates
Having defined the object in such a coordinate space, many graphics applications

CHAPTER 1 AN INTRODUCTION TO COMPUTER GRAPHICS 9

require that the object can be moved around the virtual space or have its orienta
tion changed, in much the same way as an object m the real world Fortunately,
there are m athem atical transformations which provide a means of of translating
(repositioning) and rotating (reorientating) objects In addition to these two op
erations, there exists a scaling transformation th a t can be applied to make an
object larger or smaller, something which cannot be done with real objects From
the following discussion of the m athem atics of these three transform ations, it can
be seen that the use of homogeneous coordinates allows each transform ation to
be represented as a 3 x 3 m atrix — a result which proves very useful and which
is discussed at the end of this section

Homogeneous coordinates are coordinates th a t were developed in geometry
by Maxwell [MAXW46], and later applied to computer graphics by Blinn &
Newell [NEWE78] A 2D Cartesian point P (x ,y) is represented m homogeneous
coordinates as P [x\V,yW, W) where W is some non-zero scale factor So, given
a homogeneous coordinate point P (X , K, W) , its 2D Cartesian representation
P (x , y) is given by a; = ■£, y = £

P (X, Y, W) = = P{*,V)

Similanly, for three dimensions

P(X,Y,Z,W) = P (^ , L 1 .)= p {XtytZ) (12)

Since W = 1 throughout this section there is no need to perform the
division It is only in the perspective transformation m atrix m section 1 5 2 tha t
a value other than 1 is obtained and a division by W has to be performed

T R A N S L A T IO N A point P (x , y) is translated to new point P '(x V) by
the addition of a displacement D x units parallel to the rr-axis and D y units
parallel to the y-axis, fig 1 6a This can be expressed in vector form as

[x',y'] = [x,y) + [Dx , D v] (1 3)

Rewriting this m homogeneous coordinates means the translation can be rep
resented as a 3 x 3 m atrix (the reason for using this form will become clear
later)

CHAPTER 1 AN INTRODUCTION TO COMPUTER GRAPHICS 10

[x',y',l] = [z,y,l]
1 0 0
0 1 0

D x D y 1
(] 4)

Y

Y

Y

<•> TRANSLATE

(b) ROTATE

(c) SCALE

Translation Rotation and Scaling transform ations

figure 1 6

R O T A T IO N Fig 1 6b illustrates the anti-clockwise rotation, by alpha degrees,
of a point P (z, y) about the origin to a new point P* (x \ y f) From the diagram
it can be seen that -

X = r cos b
y = r sin b (15)

and
X 1 = r cos (a + b) = r cos b cos a — r sin b sin a

CHAPTER 1 AN INTRODUCTION TO COMPUTER GRAPHICSt 11

y' — r sin(o + b) = r cos b sin a — r sin b cos a (1 6)

Substituting (1 5) into (1 6) gives
X = X cos a - j / s i n a
y f = x s m a + y cos a (17)

Using homogeneous coordinates, the rotation can be represented as a 3 x 3
m atrix, and (17) can be written as

[x ',y ',l] = [x,y, 1]
cos a sin a 0

— sin a cos a 0
0 0 1

(18)

For this derivation, positive angles were measured in an anti-clockwise di
rection By substituting the identities co s(-a) = cos(a) and sm (—a) = —sin(a)
into (17) and (18), positive angles can be measured in a clockwise direction

S C A L IN G A point P (x , y) can be scaled by Sx along the x-axis and Sy
along the y -axis, with respect to the origin, to a new point P '(x ' , 2/'), by the
following multiplication, fig 1 6c

X — xSx

y' = ySy (1 9)

The scaling can be represented as a 3 x 3 m atrix by writing the coordinates
in homogeneous form

[x ',j/ ',l] = [x, y, 1]
S x 0 0
0 Sy 0
0 0 1

(1 10)

C O M P O U N D T R A N S F O R M A T IO N S It will often be the case th a t more
than one of these transformations will want to be performed on an object For
example, rotating an object about a point other than the origin, say R (x 1y))
involves translating R to the origin, rotating about the origin, then translating
back again Each of these three transformations must be performed on each point

CHAPTER 1 A N INTRODUCTION TO COMPUTER GRAPHICS 12

on the object If however, each transformation is represented as a 3 x 3 m atrix, the
three operations can be compounded into one by multiplying the three matrices
together, resulting m a new 3 x 3 m atrix th a t represents the compound operation
Multiplying each point on the object by this new m atrix applies the compound
transformation in one operation, with a resultant com putational saving

1.5 The Third D im ension
The addition of a Z-axis to the X Y virtual space of 2D graphics allows objects
to take on depth and volume, but brings with it the complication of trying to
display a three dimensional entity on a two dimensional screen, in addition to the
th a t of trying to determine if one object m a scene obscures all or part of another
— two complications which are discussed in sections 1 5 2 and 1 7 1 respectively

However, it is comforting to know th a t the translation, rotation, and scaling
transformations of the previous section can still be represented in m atrix form
when extended to three dimensions Before discussing each of these transfor
mations, it is first worth noting from fig 1 7 th a t there are m fact two possible
directions m which the positive Z-axis can be faced, giving rise to two different
coordinate systems The right handed system has the Z-axis pointing m the
direction of the vector cross product of the X-axis with the Y-axis i e out of
the page, and is the system used throughout this text, while the left handed one
has it pointing m the opposite direction

L e ft - H a n d e d

figure 1 7 Right and Left Handed Coordinate System s

CHAPTER 1 AN INTRODUCTION TO COMPUTER GRAPHICS 13

1.5*1 3D M atrix T ransform ations

Section 14 2 illustrated how each of the two dimensional translation, rotation
and scaling transformations could be represented as a 3 x 3 m atrix The following
section outlines their extension to three dimensions, where it can be seen that
each can be defined by a 4 x 4 m atrix

T R A N S L A T IO N Using homogeneous coordinates, the translation of a point
P (x, y, z) to another point P f (a/, y z ') by displacements of D x, D yj D z parallel
to the X , F , and Z axes can be represented by the 4 x 4 m atrix m the following
equation

[x',y' ,z' , 1] = [x , y , z , 1]
1 0 0 0
0 1 0 0
0 0 1 0

„ D X Dy D z 1
(111)

R O T A T IO N In three dimensional graphics, three different rotations (one about
each of the three principle axes) can be performed, each with their own foim of
4 x 4 m atrix The positive direction of rotation about an axis is defined as that
which is anti-clockwise when looking down the positive part of the axis toward
the origin The 4 x 4 m atrix representation for the rotation of a point P (x, y, z)
by an angle a to a new point P ' (x ',y ',z ') is given for each type of rotation in
equations 1 12 to 1 14 below

R O T X

[x' ,y',z' , 1] = [x,y, z, 1]
1 0 0 0
0 co sa s in a 0
0 —sin a co sa 0
0 0 0 1

(1 12)

R O T Y

cos a 0 — sin a 0
0 1 0 0

sm a 0 cos a 0
0 0 0 1

(1 13)

CHAPTER 1. AN INTRODUCTION TO COMPUTER GRAPHICS 14

R O T Z

[x ' ,y ' , z ' , l] = [x ,t/,2 , l]
cos a sin a 0 0 '

— sin a co sa 0 0
0 0 1 0
0 0 0 1

(1.14)

S C A L IN G Equation 1.15 below gives the 4 x 4 m atrix for scaling a point
P (x , y , z) about the origin by factors of Sx, Sy, parallel to the X , Y , and Z
axes, to a new point P' (x', y \ z ') . Scaling a point about a point other than the
origin, say i?(a,.&, c) is done by translating the point by (—a , —6 ,—c), scaling
it, then translating the scaled point by (a, 6, c).

[x ' ,y ' , z ' , l] = [x , y , z , l]
S x 0 0 0
0 S y 0 0
0 0 S z 0
0 0 0 1

(1.15)

C O M P O U N D T R A N S F O R M A T IO N S As with 2D transformations, mul
tiple transformations can be performed on a point by the multiplication of a
single 4 x 4 matrix representing the compound transformations — the la tter
being formed by multiplying together the transform ation m atrix for each of the
transformations comprising the compound one. It should be noted however, tha t
such compound transformations are not generally commutative i.e. the order in
which rotation, scaling and translation is performed is significant.

Such compound transformations allow objects to be defined in their own
local coordinate system and then transformed into the world (or some other
intermediate) coordinate system. For example, the car wheels in fig 1.8 are each
defined in their own local coordinate systems which are then transformed into
appropriate locations of the car coordinate system, which in tu rn is transformed
into the world coordinate system.

1.5.2 3D G eom etric P rojection s

Viewing an object in 2D simply involves specifying a window on the virtual 2D
view-plane, a viewport on the screen and directly mapping one onto the other
(section 1.4-4)- The 3D viewing process however is inherently more complex by

CHAPTER 1 A N INTRODUCTION TO COMPUTER GRAPHICSt 15

f i g u r e 1 8 Multiple coordinate system s

virtue of the fact that it involves the display of three dimensional objects on a
two dimensional display device

This difficulty is overcome by the use of planar geometric projections This
firstly involves projecting the 3D objects onto a 2D projection plane, then m ap
ping this plane onto the screen m the same way as the virtual plane of 2D graphics
(figs 1 9 and 1 1 1 give examples of two different types of projection) Just as ob
jects in 2D graphics are clipped against a window before being m apped onto the
viewport, objects in 3D are clipped against a view volume before being projected
onto the projection plane The projection onto the projection plane of the view
volume itself then serves as a window to map onto the viewport While in the
most general case, the projection plane can be any arbitrary plane, the X Y plane
is used throughout the following discussion since this leads to a simplification of
the m athem atics of the two main categories of projection outlined The more
general case is discussed in [FOLE84]

Many different types of projection can be used in projecting an object onto
a 2D projection plane The type of projection used will determine what the
object finally looks like when it is seen on the screen The types of projection
most commonly used in 3D graphics can be divided into the following two general
catagones -

[] Parallel projections
[] Perspective projections

P A R A L L E L P R O J E C T IO N S In this type of projection, fig 1 P, the lines

CHAPTER 1 AN INTRODUCTION TO COMPUTER GRAPHICS 16

of projection are parallel to each other i e the centre of projection is at infinite
distance from the projection plane The projection is defined by a direction of
projection, and is classified as orthographic or obhque depending on whether or
not this direction is orthogonal to the projection plane Common orthographic
projections are the front (elevation), plan (top), and side (elevation) projections,
which project onto the X Y , X Z , and Y Z planes respectively and mathematiclly,
are the simplest projections to perform e g orthographic projection of a point
P (x , y , z) onto the X Y plane simply involves “chopping off” the Z coordinate,
giving P f (x, y) as the projection plane coordinate of the point

figure 1 9 PARALLEL PROJECTION

Two common oblique projections are the cavalier and cabinet projections,
where the direction of projection makes an angle of 45 degrees and arctan |
respectively with the projection plane The m athem atics for an obhque projection
onto the X Y plane specified by a direction vector D (a, 6, c) is given below -

The param etric equation of a line with a direction of D (p, #, r) and containing a
point P (X q , Yq, Zq) is given by the following equation (where t takes on values
from minus infinity to plus infinity) [ANT081] -

X — Xq + tp
Y = Yo + tq
Z ~ Zq -f” tv (116)

Hence, from fig 1 10, the equation of the projector through P (X p, Yp, Zp) is given

CHAPTER 1 A N INTRODUCTION TO COMPUTER GRAPHICS 17

b y

X = X p + tA
Y = Yp + t B
Z — Zp -(" tC

which intersects the X Y plane (Z = 0 plane) at t = _2 e

(1 17)

figure 1 10 Projector equation for a parallel projection

So, P* (X V1YV), which is the parallel projection of P (X PiYPiZp) onto the X Y
plane m the direction of D (a, 6, c) is given by -

X . = X „ - Z n-

Yv = (1 18)

Using homogeneous coordinates, the projection can be expressed as a 4 x 4
m atrix -

[Xv,Y v, Z v, l } = {Xp,Yp, Z p, l]
• 1 0 0 0 '

0 1 0 0
__a

r c 0 0

i— o « 0 0 1
(119)

NOTE Z v = 0

This format proves very useful since it means th a t the projection can be incorpo
rated into the transformation m atrix for an object by multiplying the two 4 x 4
matrices

CHAPTER 1 AN INTRODUCTION TO COMPUTER GRAPHICS 18

P E R S P E C T IV E P R O J E C T IO N S Perspective projections, fz g 1 11, have
a centre of projection th a t is a finite distance from the projection plane Unlike
parallel projections however, perspective projections produce a perspective fore
shortening effect (objects further from the centre of projection appear smaller)
and hence produce a greater degree of realism, since this effect is also experienced
by the human visual system

f i g u r e 1 1 1 PERSPECTIVE PROJECTION

The mathematics for a perspective projection onto the X Y plane specified
by a centre of projection on the positive Z-axis, a distance d from the origin, is
outlined below -

From fig 1 12 the equation of the projector is that of a line containing P (0,0, d)
and having a direction of -

(X p, Yp, Zp) - (0,0, d) = (X p, Yp, Z p - d) (1 20)

So, from (1 16), the equation of the projector is given by

X = t X p
Y = tYp
Z = d + t (Z p ~ d) (121)

and the projector intersects the X Y plane at Z = 0 i.e at t - —K -

CHAPTER 1 A N INTRODUCTION TO COMPUTER GRAPHICS 19

projector

Projector equation for a perspective projection

figure 1 12
Therefore, P' { X v, Y x), the perspective projection of P (Xp, Yp, Zp) onto the X Y
plane, is given by -

X, =

Y„ = (122)

As with the parallel projection, using homogeneous coordinates allows this
perspective projection to be specified as a 4 x 4 m atrix, which means th a t the
projection of an object can be incorporated into its transform ation m atrix

[X , Y , Z , W] = [XP,YP, Z P, 1]
r i o o o

0 1 0 0
0 0 0 -Ì
0 0 0 1

(1 23)

where [X, Y, Z, W] = [Xpt Yp, 0,1 - f]

However, to return [X, Y, Z, W] to the form [X„, Yv> Zv , 1] a division by W is
required (see equation 1 2)

1.6 O bject R epresentation
CHAPTER 1 AN INTRODUCTION TO COMPUTER GRAPHICS 20

There are two types of situation in which the need to represent 3D shapes arises
The first case is when an existing object such as a car, house or m ountain is to be
represented as a 3D graphic object, and the second, which frequently occurs in
computer aided design, is where a designer interactively builds up an imaginary
3D object on computer from some preliminary sketches of what the object should
finally look like In the first case, the computer representation of the object should
try to m atch as closely as possible the exact shape of the real object, and in the
second, should allow the designer to easily m anipulate the object so th a t it can
be molded into the desired form

While the previous sections have looked, in some detail, at the means by
which objects defined in a virtual coordinate system can be scaled, rotated, and
translated, and then m apped onto screen coordinates to form a final screen image,
little has been said about the means by which such objects can be defined to the
graphics system The remainder of this section looks at two contrasting object
representation schemes commonly used m 3D computer graphics, polygon mesh
and Constructive Solid Geometry (CSG) representations The first represents
sohd objects as closed surfaces which are defined as a collection of polygons while
the second, the one used in this research, represents them directly as solids formed
from by the addition and subtraction of basic solids (called primitive solids) such
as spheres, cubes, cones and cylinders

1.6.1 P olygon M esh R epresen tation

Representing an object as a collection of lines means th a t only a line display of
the object can be generated In addition, weight or volume calculations cannot
be performed on the object The reason for this is th a t lines alone do not define
surfaces (see fig 1 13), and it is surfaces that are required to perform hidden
surface removal, volume calculations, etc

A polygon however can define a bounded planar surface, and a group of
such polygons, called a polygon mesh, can be used to define the surfaces of some
object Polygons provide a good means of representing objects that are composed
of many flat surfaces, such as buildings, tables, desks etc They can also be used
to represent objects with curved surfaces by approximating the curved part as a
collection of small polygons, but this gives only an approximate representation
The error of approximation can however, be made arbitrarily small by using larger

1

CHAPTER 1 A N INTRODUCTION TO COMPUTER GRAPHICS 21

/

/ /

(a) (b) (c) (d)

The sam e set of 12 lines in (a) can represent any of the three

objects in (b) (c) or (d) A higher level primitive a surface

is therefore required to unambiguously represent 3D objects

figure 1 13

numbers of smaller polygons to represent the object, bu t this will increase both
the storage space requirements of the object representation, and the execution
time of any algorithms that process it

1.6.2 C onstructive Solid G eom etry (C SG)

In the polygon mesh representation scheme a solid object is modelled, not as a
sohd, but as a closed surface The CSG representation scheme however models
solid objects as compositions of primitive solids that are combined using boolean
set operators The advantages of such a representation are -

[] The model represents a true solid with volume
[] Solids are bounded by both curves and planar

surfaces
[] Mechanical parts can be particularly well rep

resented

The following three boolean set operators, illustrated m fig 1 14, are used to
combine primitive (and intermediate) solids -

C H A P T E R 1 A N IN T R O D U C T IO N TO C O M P U T E R G RAPH ICS)
22

t Union
• Intersection
• Difference

Two objects a cylinder

and a cone

« 5

DIFFERENCE INTERSECTION

and intersection operations on two solids

figure 1 14

U n io n The space occupied by a solid defined as the union of two other solids,
A and B , is the space occupied by solid A plus the space occupied by solid B

In te rs e c tio n The space occupied by a sohd defined as the intersection of two
other solids, A and B , is the space occupied by solid A th a t is also occupied by
sohd B

D ifference The space occupied by a solid defined as the difference of two other
sohds, A and B1 is the space occupied by solid A, less any part of th a t space th a t
is also occupied by sohd B

The primitive solids normally used are blocks/cubes, spheres, cones, and
cylinders but others, such as superquadric surfaces [EDWA82] can be used Sohds

Union difference

CHAPTER 1 A N INTRODUCTION TO COMPUTER GRAPHICS 23

formed as a result of the combination of two such primitives can themselves be
combined, and in this way, representation of more complex solids can be built
up m the form of a binary tree where the leaf/end nodes are primitive solids,
the root node represents the entire solid, and the interm ediate -nodes represent
interm ediate solids (see section 3 2 1)

1.7 A dding R ealism
As mentioned at the start of this chapter, there are some areas where the ap
plication of computer graphics does not not simply require a screen image of
an object, but an image that looks as real to the viewer as possible Adding
this realism to the picture involves such techniques as removing hidden surfaces,
shading objects, incorporating shadows, and adding texture to surfaces

1.7.1 H idden Surface R em oval

Hidden surface removal involves determining which objects in a picture are vis
ible to the viewer and which are obscured by other objects, given a particular
viewing point, projection type, projection plane etc Although the idea sounds
quite simple, the reality is th a t its implementation requires such large effort of
computation th a t many carefully considered algorithms have been developed
Sutherland, Sproull and Schumacker [SUTH74] survey ten such algorithms and
provide a good introduction to the topic The details of any particular algorithm
will depend of course on the object representation scheme in use That is to say,
an algorithm for removing hidden surfaces from a polygon mesh representation
will be quite different from one that assumes say, a param etric bicubic patch
object representation Some of the more commonly used algorithms are outlined
below

D E P T H S O R T The approach of this algorithm, which was developed by
Newell, Newell and Sancha, is straightforward and simple The general idea is
to draw all polygons in the scene, but to sort them beforehand so th a t polygons
furthest from the viewer are drawn first In this way, if a polygon is obscured
from the viewer by another polygon, the obscured polygon (being further from
the viewer) will have been drawn first and will be overwritten by the obscuring
one The three general steps of the algorithm are outlined below For a more
detailed discussion see [NEWE72]

CHAPTER î A N INTROD UCTION TO COMP UTER GRAPHICS 24

• Sort all polygons in the scene according to the
largest z-coordmate of each

• Resolve any ambiguities th a t may arise from any
overlapping polygons

• Scan-convert each polygon into the refresh buffer
in descending order of largest z-coordmate

Z -B U F F E R The z-Buffer algorithm, see [FOLE84], adopts a similar approach
to the Depth Sort one, except that polygons can be scan converted into the
refresh buffer m any order through the use of an additional buffer, called a z-
buffer, which stores for each pixel, the Z value of the point on the polygon that
currently covers th a t pixel Only if the Z value of the point on a subsequent
polygon which also covers th a t pixel is less than the value stored m the z-buffer,
is the pixel updated and the z-buffer value for that pixel changed to the new Z
value

Other algorithms, developed by Bouknight [BOUK70] and W atkins
[WATK70], also deal with removing hidden surfaces from objects defined by
polygons While these algorithms, like the two above, can be applied to ob
jects defined by curved surfaces by first approximating the surfaces with many
small polygons, algorithms for dealing directly with curved surfaces have also
been developed These include algorithms developed by Weiss [WEIS66], Mahl
[MAHL72] and Levin [LEVI76] for dealing with objects defined by quadric sur
faces, and algorithms by Catmull [CATM80] and Blmn [BLIN80] for parametriclly
defined surfaces

1,7.2 Shading

Having removed hidden surfaces through the use of one of the above algorithms,
the visible surfaces (particularly curved surfaces) must be correctly shaded in or
der to give any sort of real effect For example, a sphere drawn without shading
would appear as a flat circle on the screen In shading an object, the shading '
calculation should take into account such param eters as the position and orien
tation of both the light source(s) and the surface to be shaded, as well as surface
characteristics (flat, smooth etc) and, in the case where specular reflection is

CHAPTER 1 AN INTRODUCTION TO COMPUTER GRAPHICS 25

taken into consideration, the position of the viewer The light source can be ei
ther a point source, such as an incandescent bulb, or a distributed source, such as
a bank of fluorescent lights Point sources however, are normally used since they
result m the calculation of only a single vector from a point on a surface to the
light source, whereas several are required to approximate a distributed source
The exact details of the calculation will of course depend on the complexity of
the lighting model, which can incorporate an;y or all of the following basic light
components -

• Ambient light
• Diffusely reflected hght
• Specularly reflected light

A M B IE N T L IG H T Ambient light is a light of uniform brightness found m
most real environments as a result of the multiple reflections of light from the
m an) surfaces normally found m such environments, and is the simplest of the
three components to model The amount of ambient light, /¿ , reaching a viewer
from a surface is given by -

Ia = hKa (1 2 5)

where Ia is the intensity of the ambient light, and Ka is the fraction of ambient
light reflected by the surface

D IF F U S E R E F L E C T IO N This is the type of reflection exhibited by dull
m atte surfaces Such surfaces scatter light equally m all directions and conse
quently appear to have the same brightness from all viewing angles The intensity
of diffusely reflected hght, from a point on such a surface can be determined
from Lam bert’s cosme law and is dependent on the cosme of the angle between
the normal to the surface, N , and the vector in the direction of the hght source
L , fig 1 15 -

Id = IpKd c o s a (1 2 6)

where Ip is the intensity of the light source and Kd is a number between 0 and
1 called the diffuse reflection coefficient for the surface, which varies from one

surface to another If N and L are normalized, (1 16) can be rewritten using
the vector dot product -

ID = IpK d(L N) (1 27)

CHAPTER 1 A N INTRODUCTION TO COMPUTER GRAPHICS 26

Diffuse reflection intensity is proportional to angle a

figure 1 15

SPECU LA R REFLECTION Look at any shiny surface and you will see a
highlighted area i e an area that is significantly brighter than the rest of the
object and emitting hght that is nearer to the colour of the light source (usually
white) than the colour of the object itself The highlight is a result of specular
reflection and is due to the fact tha t shiny surfaces reflect light unequally m
different directions The intensity of specularly reflected light em itted from such
a surface rapidly falls off as angle b in fig 1 16 increases

surface

normal

fig U T C 1 16 S pecular reflection

Phong Bui-Tuong approximated this rapid fall off as cosn b [BUIT75], where
n is typically between 1 and 200, depending on the smoothness of the surface
(the higher the value, the shiner the surface) The approximation, which is quite
accurate, is based on an empirical observation rather th a t any theoretical deriva
tion In contrast, the Torrence-Sparrow shading model [TORR66], developed by

CHAPTER 1 AN INTRODUCTION TO COMPUTER GRAPHICS 27

illumination engineers, is a theoretically based one, adapted to computer graph
ics by Blinn and compared with the Phong model in [BLIN77] The amount of
light th a t is specularly reflected from a surface is also a function of the angle of
incidence (angle a in fig 1 16) If this function is represented as F (a), then,
using the Phong model, the intensity of specularly reflected light, 75, reaching a
viewer from a surface is approximated by -

Is = IpF (a)cosn b (128)

where Ip is the intensity of incident light To reduce com putation of I s , F(a)
is often set to a constant K 3y which is selected by trial and error to give the best
results If R and V in fig 1 16 are normalized, equation (1 28) can be w ritten
as -

Is = IpI<3(R V) n (1 29)

Combining ambient, diffuse and specular components, the intensity of light
reaching a viewer from a surface / , is the sum of the three components which,
from (1 25), (1 27) and (1 29), can be written as -

I = IaK a + Ip [K d{L Ñ) + K . { R V y (130)

Even with the incorporation of all three light components (ambient, diffuse
and specular), the above lighting model has certain limitations For example, the
model does not take account of global illumination information, i e m calculating
the light reflected from a point on a surface, it does not take account of hght
reflected from or refracted through other objects m the scene th a t may be incident
on the surface Consequently, the reflection of one object m another object or the
visibility of one object through a transparent object, will not be emulated m the
final screen image Both W hitted [WHIT80] and Greenberg [GREE79] however,
have implemented models that resolve this shortcoming W hitted7s approach
(which is a raytracmg one) is computationally more expensive than Kay’s (but is
more general) and is based on an earlier raytracmg algorithm by Appel [APPE68]
W hitted’s model is outlined m section 2 3 2 of the next chapter, which deals with
raytracmg

As the quest for greater visual realism continues, even more complex light
ing models are being developed, such as those by Cook [COOK81] [COOK88],
Nishita and Nakamae [NISH86] for shading objects illuminated by natural sun
light, Max [MAX86] for dealing with atmospheric illumination, and Cohen and
Greenberg’s radiosity method [COHE85] of catering for diffuse leflection m com
plex environments

C H A P T E R 1 A N IN T R O D U C T IO N TO C O M P U T E R GRAPH ICSt 28

1.7.3 Shadow s and T exture

While previous sections have looked at the problems of removing hidden surfaces
from a scene, and the correct shading of objects, no mention has been made of
the inclusion of shadows in a scene W ith the exception of the case where the
view-point and the light source are in the same same location, the viewer of a
scene will observe shadows cast by the objects Since the surfaces th a t he m
shadow are the ones th a t are visible from the viewpoint but not from the light
source, some rendering systems calculate shadows by invoking the hidden surface
algorithm twice, once for the viewpoint and a second time for the light source

Crow examines several ways of generating shadows for polygonal objects,
[CROW77A], while Lance [LANC78] addresses the generation of curved shadows
on curved objects In a variation of one of Crows algorithms, Greenberg, Atherton
& Weiler [GREE78] incorporate shadows for polygonal objects by associating with
each polygon that is either completely or partly visible from the light source, a
secondary coplanar polygon th a t marks the area of the first one that is visible
from the light source These secondary polygons are then used to indicate to the
shading algorithm which parts of the mam polygons lie m shadow (namely the
area of the polygon minus that covered by the secondary polygon)

TEXTU RE The shading algorithm described m section 1 7 2, when applied to
either planar or curved surfaces, produces very smooth and uniform surfaces This
is because there are actually two types of surface detail, colour and texture, and
it is the la tter one which gives a surface the roughened look charactenstic of most
of the surfaces of the real world Since it would be impractical to use potygons
to a ttem pt to model very fine levels of texture, Catmull [CATM74] pioneered
a technique of mapping a digitized photograph of the texture of a real surface
onto a computer generated surface, a technique which was later refined by Bhnn
and Newell [BLIN76] The technique involves mapping a pattern array, which
represents the digitized texture photograph, onto a planar or curved surface, by
a means similar to that used for pattern filling polygons (see [FOLE84])

A more recent technique applied by Carpenter [CARP82] and M andelbrot
[MAND82], uses a class of irregular shapes, called fractals, which are proba
bilistically defined and can accurately model natural shapes such as coastlines,
mountains, snowflakes, tree branches etc

Chapter 2

A n Introduction To R ay Tracing

Ray tracing is a very powerful yet simple approach to image synthesis which
has generated some of the most realistic computer images to date It is capable
of incorporating multiple reflections and refractions from multiple objects m a
scene, can deal with multiple light sources, and can model effects such as penum
bras, motion blur and other fuzzy phenomena th a t would prove difficult, if not
impossible, with other image generation techniques

The technique was first suggested by Appel [APPE67] and was later used
by Goldstein and Nagel [NAGE71] as a solution to the hidden surface problem
But it wasn’t until the late 1970’s that it was implemented by Kay h Greenberg
[GREE79] and by W hitted [WHIT80] to render complete images

2.1 The Ray Tracing Approach
From the discussion of computer graphics m the last chapter, it can be seen that
the conventional approach to three dimensional graphics is to define a viewing
point, a projection plane and a view volume, then project objects inside the view
volume onto the projection plane in accordance with a perspective/parallel pro
jection and map the projected coordinates onto screen coordinates The final
image produced by such a process is an unrealistic wireframe view of the ob
ject/scene However, as outlined m section 1 7, greater realism can be added by
incorporating hidden surface removal, shading and shadow algorithms at appro
priate stages of the operation

29

CHAPTER 2 A N INTRODUCTION TO R A Y TRACING 30

In contrast to this conventional approach, which starts with an object m
the scene and tries to determine which pixels the object covers when projected
onto the screen, ray tracing adopts the reverse methodology by starting with a
pixel and trying to determine which object that pixel maps onto m the scene
Thus, it could be said could be said th a t conventional approaches map objects
onto pixels, while ray tracing maps pixels onto objects

In its simplest form, ray tracing involves casting an imaginary ray (repre
senting a ray of light) through each screen pixel into the scene If the ray fails to
strike any object m the scene, the pixel is given the background colour O ther
wise, the colour of the pixel is determined from the characteristics of the nearest
object struck by the ray, in accordance with the lighting model being used

The generation of realistic graphics images is not however the only appli
cation of the technique of ray tracing since, the ray could equally well represent
say, an x-ray, an acoustical path or the path of a light beam through an optical
system For example, ray tracing has been used by Roberts [ROBE72] to predict
acoustical ray paths m the atmosphere, by Maxwell [MAXW86] to calculate the
radiation configuration factor between two surfaces, and by Higdon [HIGD74] to
determine the path of a light beam through a system of reflecting and refracting
optical elements, as an aid m the design of such systems

2.2 The B asic A lgorithm
Fig 2 1 illustrates the basic idea behind lay tracing an image of some scene For
each pixel, a ray is cast through the pixel and into the scene The first object
struck by the ray while “tracing” along it is the visible one for that pixel The
surface normal at the ray-surface intersection point is then calculated which, along
with the position of the light source, is used to calculate the colour of the pixel
The process can be subdivided into three distinct operations, ray generation, ray
intersection and shading

R A Y G E N E R A T IO N The ray can be conveniently represented as a line in 3D
space, usually defined m param etric form as a point { X Q, Y0, Z0), and a direction
vector (£)x, Z>y, D z) Given this form, the points on the line are ordered and
accessed via a param eter, t Each value of t gives rise to a point (X j Y , Z) on the
line given by -

CHAPTER 2 AN INTRODUCTION TO R A Y TRACING 31

X = X 0 + t D x
Y = Y0 + t D y
Z = Z0 + t D z (2 1)

Tracing a ray through a scene of objects

figure 2 1

Positive, increasing values of t give points on the ray that are increasingly
further from the point (X q,Y q, Z q) m the direction of the ray, while decreasing
negative values give points that are increasingly further from it m the opposite
direction

For a parallel view defined by a direction vector (D X1 D y, D z), the equation
of a ray through a pixel (Xv,y v) is defined by the point (X V,Y V, 0) and the
direction (D x, D y, D z), fig 2 2

Rav ecu at ion

x - Xv ♦ tDx

Y - Yv ♦ toy

2 - 0 ♦ tDz

figure 2 2 Ray equation for a parallel view

CHAPTER 2 AN INTRODUCTION TO R A Y TRACING 32

Similarly, for a perspective \iew defined by a viewing point at (Vx , Vz),
the equation of a ray is derived from the point (X V1YV, 0) and the direction
(X - V x l Y ~ V y, - V x)y fig 2 3

Rav equation

X - Vx + t(Xv Vx)

Y - Vy + L(Yv Vy)

Z - (1 t)Vz

f i g u r e 2 3 Ray equation lor a perspective view

Once in this form (a point and a direction) the ray is then passed to the ray
intersection stage where the closest object of intersection with the ray (if any) is
determined

R A Y IN T E R S E C T IO N Finding the closest object of intersection with a
ray involves checking the ray for intersection with every object in the scene by
determining if there is a value of t for which (X , Y, Z) m equation 2 1 lies on
the object In trying to find a solution for t, there are three possible outcomes,
which are outlined m table 2 1 below and illustrated m fig 2 4 -

O U T C O M E I N T E R P R E T A T I O N E X A M P L E

n o s o l u t i o n f o r t n o i n t e r s e c t i o n w i t h
o b j e c t

o b j e c t A i n
f x g l 4

t i s n e g a t i v e / z e r o i n t e r s e c t i o n b e h i n d / a t
t h e p o m t (X 0 , Y 0)Z 0)

o b j e c t B i n
f i g 2 4

t i s p o s i t i v e i n t e r s e c t i o n m r a y
d i r e c t i o n

o b j e c t C i n
f i g 2 4

T A B L E 2 1

CHAPTER 2 A N INTRODUCTION TO R A Y TRACING 33

Three possible outcom es of a ray- object intersection test,

represented by objects A B and C

figure 2 4

Having solved for t for each object m the scene, the object with the lowest
positive value of t is the first object struck by the ray, since t is a measure of the
distance of the point of intersection from the ray origin (X 0j 1q, Zq) Substituting
this value for t into equation 2 1 gives the actual point of intersection between
the ray and the object, which can then be used to calculate the surface normal
at th a t point for use m the shading calculation

The m athem atics of the intersection test will depend on the object repre
sentation scheme in use To date, algorithms have been developed for a large
variety of object representations such as polygonal objects [HECK84], algebraic
surfaces [HANR83], param etric patches [KAJI83B], sterner patches [SEDE84],
param etric surfaces [TOTH85], objects defined by sweeping a sphere [VANW84],
superquadric sohds [EDWA82], fractals [KAJI83A] & [BOUV85] and volume den
sities [KAJI84], as well as objects defined using a CSG (Constructive Soild Ge
ometry) representation, [ROTH82] [YOUS86] and [ARNA87]

Since the determ ination of the closest object of intersection with a ray is
based on a uniform test (a value for t in equation 2 1), regardless of object rep
resentation, different object representation schemes can be mixed m the same
scene All th a t is required is that an appropriate intersection algorithm be incor
porated into the raytracer for each different object lepresentauon scheme The
ray m tersector then proceeds through the list of objects in the scene calling the
appropriate intersection algorithm for each object (which will return a value of t
for the object) and selects the object with the smallest positive t value as ou t
lined above The other components of the rayt racer, the ray generator and the
shader remain unaffected since the former merely fires rays into the scene while
the la tter simply requires a point of intersection, a surface norm al and surface
details such as colour, to determine the shade of a pixel

T H E S H A D E R The shader makes use of the surface normal and the char

CHAPTER 2 AN INTRODUCTION TO R A Y TRACING 34

acteristics of the intersected object (such as colour) to determine the colour and
intensity of the pixel, in accordance with the lighting model being used If several
light sources are in use, the shading calculation is performed separately for each
one to determine its contribution to the overall intensity If required, the inten
sity of the light reaching the point of intersection can be attenuated in proportion
to its distance from the light source However, if the ray did not intersect any
object, or if all intersections were behind the the ray origin (X 0 lYQ, Z0), (i e
only negative values of t were found) the pixel is set to some background colour
i

2.3 A dding To The A lgorithm
The ray tracing algorithm as outlined above will manage to produce screen images
containing objects that have hidden surfaces removed and th a t are locally shaded
(z e the shade of any point on the object depends solely on the orientation of
the surface normal at tha t point with respect to the viewer and the light source,
and is independent of the overall context of the object in the scene) A much
greater degree of realism can be achieved however, by adding to the algorithm the
capability to calculate shadows, to deal with reflecting and /o r refracting objects
and to perform antialiasing The first two are incorporated by generating what
are called secondary rays, while the third calls for the generation of additional
primary rays1

2.3.1 Shadows

A point on an object is said to lie in shadow with respect to a light source if
the point can be seen from the viewpoint but not from the light source Having
calculated the point of intersection of a primary ray with an object, it is possible
to determine if the point lies in shadow by casting a ray from the point to the
light source (if there is more than one source, a ray is cast from the intersection
point to each one) If this ray intersects any opaque object m the scene, then the
point lies m shadow with respect to the light source, otherwise it does not

In testing this “shadow” ray for intersection with objects it is possible to
take advantage of the fact th a t we are not interested in finding the closest object of
intersection with the ray, only if the ray strikes any opaque object Consequently,
as soon as the ray intersects an object which is not transparent, no further objects

* A p r i m a r y r a y i s o n e t h a t o r i g i n a t e s a t t h e v i e w p o i n t a n d p a s s e s t h r o u g h a p i x e l o n t h e
s c r e e n , w h i l e a s e c o n d a r y r a y i s o n e t h a t o r i g i n a t e s f r o m s o m e p o i n t o n a n o b j e c t i n t h e s c e n e

CHAPTER 2. AN INTRODUCTION TO R A Y TRACING 35

need be tested since the point then lies in shadow. If the ray strikes a transparent
object however, the test must proceed, though the intensity of the light from the
source can be reduced, if desired, to take account of the attenuating effect of the
object on the light intensity.

In tracing the shadow ray back to the light source, the ray is not refracted
as it passes through a transparent object (section 2.3.2 discusses refraction), the
reason being that it is not possible to directly calculate the equation of the ray
from the light source which, when refracted will pass through the intersection
point of object A in fig 2.5. Instead the shadow ray equation must be taken to be
a straight line between the point and.the light source, which as the figure shows,
can sometimes give erroneous results.

2.3.2 R eflection and R efraction

Just as surfaces exhibit specular and diffuse reflection of light (section 1 .7 .2), so
too can they exhibit specular and diffuse transmittance. Specular transm ittance
occurs in transparent materials such as glass, where light can pass through the
m aterial but is usually refracted, while diffuse transm ittance occurs in translucent
materials such as frosted glass where, although the light can pass through, it gets
“scrambled” by the rough surface, with the result th a t objects seen through such
a material are blurred.

Conventional hidden surface algorithms model transparent objects by ig
noring refraction and shading them as a weighted sum of the individual shades
calculated for the object itself and the object behind it. However, from fig 2.6

CHAPTER 2 A N INTRODUCTION TO R A Y TRACING 36

it can be seen th a t this can sometimes lead to the wrong object being shown
through the transparent one

object B -

Failure to account for refraction m eans that object A instead

of B is seen through the transparent object

figure 2 6

Turner W hitted [WHIT80] introduced a lighting model based on earlier
ray tracing work by Appel [APPE68] that models refraction of light rather than
attem pt to simulate its effects The model also incorporates global illumination
information in shading an object, i e it takes account of the effects of objects
acting as secondary light sources and of objects being reflected in other objects

The model proposes that on striking an object a ray be spht up into its
specularly reflected and transm itted rays Each of these two component rays are
then traced through the scene If either ray strikes another object, it in tu rn
is subdivided into its two component rays, which are then traced In this way,
a binary tree is recursively generated which contains a record of the light rays
reflected from and refracted through other objects which contribute to the colour
of the light reaching the viewer along the direction of the original primary ray,
fig 2 7

In creating the tree, the ray intersection algorithm is called recursively until
either all branches in the tree aie term inated, or the tree reaches some predefined
maximum depth The latter case is to safeguard against a situation where two
objects may be aligned such that the tree has infinite depth Alternatively, the
tree can be dynamically pruned by taking account of the attenuating effect of
distance and of transparent objects on light, and stopping when it is such that
the intensity has been reduced to a level where it is too low to make a notable
contribution

Once created, the tree is passed to the shader which, starting with the leaf
nodes calculates the contribution of each to the colour and intensity of the parent

CHAPTER 2 A N INTROD UCTION TO R A Y TRACING 37

figure 2 7 Shade tree grown from a single primary ray

node, ending with the root node, which represents the colour of the pixel

2.3.3 A nt i A lias ing

Aliasing is a “noise” effect th a t manifests itself in graphics images as a result
of attem pting to display an object, which is continuous, on a screen which is

- n o t '— it consists of a grid of points/pixels The problem of aliasing m com
puter shaded images is addressed by Crow m [CROW77B], and a comparison of
antialiasing techniques (methods of removmg/reducmg aliasing effects) can be
found in [CR0W81] Ray tracing, being essentially a point sampling technique,
is quite prone to the effects of aliasing but, as discussed below, the ray tracing al
gorithm can be adjusted to incorporate techniques th a t will reduce its damaging
effect on picture quality

T h e P ro b le m Ray tracing has a tendency to suffer from aliasing by virtue of
the fact th a t it produces an image of a 3D model by sampling the model (through
the use of rays) only at a specific number of points (the pixels on the screen) For
each pixel, a ray is cast through the pixel into the scene to determine a colour
for the pixel Part of the problem of aliasing, fig 2 8, lies in the fact that the ray,
being represented as a m athem atical line, has no thickness or area whereas the
pixel does have a physical (though very small) area on the screen

Thus, a ray only allows us to sample one point of a pixel and there is no
way of calculating what else is visible in the area of j>he pixel around this point
Consequently, the pixel in fig 2 8 would be shaded red by virtue of the fact th a t
the ray, when fired through the centre of the pixel, strikes the red object This
is despite the fact th a t the blue object covers as much of the pixel area as the

CHAPTER 2. AN INTRODUCTION TO R A Y TRACING 38

Tracing just a single ray per pixel can result in aliasing

in the final image.

figure 2.8

red one. To avoid the aliasing produced by such a situation, the pixel should
be shaded as the sum of the two object colours, weighted by the area of the
pixel which each covers, a process known as area sampling a pixel. Despite the
fact th a t ray tracing is essentially a point sampling technique, area sampling can
be approximated by sampling the scene at more than one point on a pixel, as
outlined below.

T h e S o lu tio n One solution is to use a technique known as oversampling,
whereby more than one ray is cast through each pixel, allowing more than just a
single point on the pixel to be sampled. The colour for the pixel is then calculated
as the average colour of the values obtained for all the rays cast through the pixel.
However, for a screen resolution of 500 x 500 pixels, casting N rays per pixel
instead of one requires generating (N — 1) x 250000 extra rays which, while
reducing the effects of aliasing increases the cost, computationally, of generating
the image.

A more economical approach however, fig 2.9 , is to approximate a pixel
as a rectangular area on the screen and to cast rays through the corners of the
pixels instead of the centre. Then, since every pixel shares several of its rays
with neighboring pixels, only (500 -f 1) x (500 + 1) rays are required to fire four
rays through each pixel, which amounts to casting 1001 additional rays instead
of 750,000.

If the intensities calculated at the four points have nearly equal values, then
it is reasonable to assume th a t the average of the four values represents a good
approximation to the intensity over the entire pixel region. If however the inten
sities differ by more than some threshold percentage, the pixel area is subdivided
and new rays generated to probe the subregions of the pixel. This process is
recursively repeated until a satisfactory degree of detail has been discovered for

CHAPTER 2 AN INTRODUCTION TO R A Y TRACING 39

Tractng rays through th e corners of pixels m eans that

adjacent pixels can sh are information

figure 2 9

the pixel, [WHIT80] The intensity of the pixel is then calculated as sum of the
intensities calculated for each of the subregions, weighted by their area

Even with this la tter approach, aliasing can still manifest itself m certain sit
uations According to Mitchell [MITC87] however, non-uniform sampling yields
aliasing th a t is less conspicuous to the viewer than th a t yielded by uniform sam
pling (such as the method above) He therefore presents an algorithm for fast
generation of non-uniform sampling patterns th a t are optim al in some sense
Another method, called distributed ray tracing and outlined by Cook, Porter
and Carpenter [PORT84], also distributes the rays non-uniformly over the pixel,
thereby overcoming the aliasing of uniform sampling As outlined m section 2 5 1,
this technique also has the added advantage of distributing the rays m such a
way as to be able to model such effects as motion blur, depth of field, penumbras
and fuzzy reflections

In another approach by Amanatides, [AMAN84], the concept of Cone Trac
ing is outlined, whereby the definition of a ray is extended into a cone by including
information on the spread angle and virtual origin of the ray Unhke a ray, a cone
has thickness and consequently does not intersect an object at a point, bu t over
an area, allowing area sampling of a pixel to be performed, (see section 2 5 3 for
a further discussion)

2.4 Speeding Things Up
The major drawback of ray tracing is tha t due to the large com putational cost
of generating images, rendering times are usually measured m hours rather than
minutes According to W hit ted [WHIT80] 75% of the time taken to render lm-

CHAPTER 2 AN INTRODUCTION TO R A Y TRACING 40

ages is taken up with calculating the intersection of rays with objects This figure
can rise to 95% and higher for complex scenes The reason for this is the sheer
quantity of rays involved, together with the fact tha t each ray is tested for in
tersection with every object m the scene For example generating a 512 X 512
resolution image of a scene consisting of say 100 polygons, with ju st a single ray
per pixel, requires 262144 rays and over 26 million ray polygon intersection tests
If shadows, multiple light sources and reflection/refraction are also incorporated,
the number of rays can go up by an order of m agnitude Given th a t a scene of
even m oderate complexity would contain seveial thousand polygons, it is clear
th a t there is a great need for optimization

One approach to the problem is to try to reduce the number of lay-object
intersection tests, by selecting from the entire set of objects m the scene, a small
subset of high probability candidates against which to test the ray for intersection
This can be achieved through the use of any of the following techniques, which
are discussed m the sections below -

[] Object bounding volumes
[] Space subdivision
[] Exploiting image coherence

2.4.1 B ounding V olum es

The use of bounding volumes aims at reducing the number of computationally
expensive ray-object intersection calculations by enclosing each object in a vol
ume, called a bounding volume (e g a sphere), which is less expensive to test
for intersection than the object, fig 2 10 Then, only if the ray intersects the
bounding volume, is it tested for intersection with the object inside

T y p e s To date, several different types of bounding volume have been used,
with cylinders, spheres, and rectangular parallelepipes being the most common
However, various other types have also been used For example, Kay [KAY84]
bounds objects with parallelopipeds constructed of planes, Kajiya [KAJI83A]
uses probabilistic extents to surround procedurally defined fractals and Bouville
[BOUV85] compares ellipsoids, spherical triangles (the volume defined by the
intersection of a sphere and a triangle) and triangular prisms as bounding volumes
m tracing fractals

CHAPTER 2 AN INTRODUCTION TO R A Y TRACING 41
»

y
£ :>&■ wn.
X I

Object with rectangular and circular bounding volumes

figure 2 10

C h a ra c te r is tic s In order to to get maximum benefit from bounding volumes,
it is im portant th a t they should tightly enclose the object (z e there should be
as little empty space between the object and the bounding volume as possible)
since, the tighter the fit, the greater the percentage of rays that do not intersect
the object will fail the bounding volume intersection test

However, the computational cost of testing a ray for intersection with a
bounding volume is also another im portant factor in their use, since it would be
pointless to have a tight fit if the intersection test were as costly as the object
intersection test itself It is often the case that a more complex bounding volume
will enclose an object more tightly than a simple one, but will be moie expensive
to test for intersection Since some objects in a scene will be more expensive to
test for intersection than others, this may prove an acceptable trade off for those
objects, as the relative cost of the bounding volume intersection test is less

The to tal cost function for an object is given by Weghorst [WEGH84] as -

C = b B + i I

where

C is the to tal cost

b is the number of times the bounding vol
ume is tested for intersection

B is the cost of testing the bounding volume
for intersection

CHAPTER 2 A N INTRODUCTION TO R A Y TRACING 42

1 is the number of times the object is tested
for intersection

I is the cost of testing the object for inter
section

The idea is to minimize this function for all objects m the scene For any
given item with a given view, b and / are constant However, by selecting a less
complex bounding volume, B can be reduced Unfortunately, this is likely to
lead to an increase in i Similarly, increasing the complexity decreases i bu t is
likely to lead to an increase m B Neither approach is guaranteed to decrease the
overall cost function C, though there will usually be some optim al solution

The tightness of fit of a bounding volume is often a function of direction
i e it will not enclose the object tightly on all sides, or, pu t another way, the
projected void area2 will vary for diffeient directions The result of this is th a t a
bounding volume which results in a small void area for one direction may not do
so for all directions This can make the choice of the optim al bounding volume
difficult at times, as can be seen from fig 2 11a , where the void area between the
spherical bounding volume and the object (a wheel) is zero, while th a t of the
rectangular one and the same object is not For a different direction however,
fig 2 lib., the situation is reversed Thus, the sphere provides a better fitting
bounding volume for rays coming from one direction, while the rectangular block
provides a better fit for rays coming from a different direction

S elec tion As mentioned earlier, the two principle criteria of bounding volume
selection are tightness of fit (which can be measured as the projected void area
and can vary for different ray directions) and simplicity of intersection testing
Unfortunately, the two are generally m conflict with each other m the sense that
a gam m one is usually achieved at the expense of the other This conflict can
make the optim al choice of bounding volume for a particular object quite difficult
at times At one end of the scale, the selection can be based primarily on the
tightness of fit (withm the bounds of the intersection test expense not exceeding
that of the object it encloses) For example, Kay and Kajiya [KAY84] have
implemented a bounding volume that can be made to fit convex hulls arbitrarily
tightly, at the expense of a more costly intersection test At the other end of the
scale, the selection can be based mainly on the simplicity of the intersection test
without worrying about a tight fit Such is the case in W hitted [WHIT80] who

2The projected void area for a particular direction is the difference m the projected areas of
the bounding volume and the object when orthogonally projected onto a plane perpendicular
to the direction m question

CHAPTER 2 AN INTROD UCTION TO R A Y TR ACING 43

rectangular and spherical

(a)

(b)

Wheel with rectangular and spherical bounding volumes from two

different viewing angles (a) and (b)

figure 211

uses spheres to bound all objects, since the complexity of the intersection test is
relatively low and is uniform for all ray directions

Weghorst et al [WEGH84] however, adopts an interm ediate approach The
bounding volume for each object is optimally selected from a set of three differ
ently shaped volumes, a sphere, a rectangular parallelepiped and a cylinder, each
of which has associated with it a factor th a t is indicative of the relative com
plexity of its own intersection test compared to th a t of the other two (the sphere
has the lowest factor and the cylinder the highest) For each object, a bounding
volume of each type is generated that encloses the object, and the one with the
least product of volume and complexity factor is selected An interactive program
allows the selected bounding volume to be manually overridden to compensate
for the fact th a t the cost of the object intersection test is not taken into account
m the selection process Weghorst gives tabulated results of image generation
times of several test images using these selected bounding volumes, comparing
them with those taken to generate the same images using only spherical bounding
volumes (times for other combinations of speedup techniques are also given) In

spherical 8 V
fits exactly
no void area

rectangular B V
contain« void area.

rectangular and spherical
bounding volumes from

CHAPTER 2 A N INTRODUCTION TO R A Y TRACING 44

each case, the generation times for the selected bounding volumes are less than
those using only the spherical bounding volumes, with the time saving varying
from 49% to 10%, depending on the image

E X T E N T S An extent could be loosely defined as a two dimensional bounding
volume in screen space (as opposed to object space) For example, if all bounding
volumes are projected onto the screen using the same viewing param eters as for
the ray tracing, the “ray intersects bounding volume test” can be reduced to a
point in rectangle test i e to test if a prim ary ray intersects an objects bound
ing volume, we simply check if the pixel spawning the ray lies inside the screen
rectangle enclosing the projection of the bounding volume on the screen, fig 2 12
Despite this less costly mtersecrion test, extents have the lim itation th a t they
cannot be applied to secondary rays, since these rays are not constrained to pass
through the screen However, they are relatively simple and inexpensive to im
plement and have been used successfully by Roth [ROTH82] m ray tracing objects
defined by a CSG (Constructive Soild Geometry) representation, section 3 3

Calculation of an o b jects sereen extent from its projected

bounding volume

figure 2 12

H IE R A R C H Y Having enclosed each object in a scene in a bounding volume of
some sort, finding the object of closest intersection with a ray still involves having
to test each bounding volume for intersection with the ray (and if it intersects,
with the object mside) However, enclosing several bounding volumes inside a
larger bounding volume means that the ray can first be tested for intersection
with the outer bounding volume Then, if the ray misses this bounding volume,
it does not have to be tested with any of the bounding volumes inside In turn,
several of these outer bounding volumes can be enclosed in a still larger bounding
volume and so on In this way, a hierarchy of bounding volumes can be built

CHAPTER 2 A N INTRODUCTION TO R A Y TRACING 45

up in the form of a tree, where the leaf nodes consist of the object bounding
volumes and the interm ediate nodes consist of bounding volumes th a t enclose
the bounding volumes of of their respective subtrees, fig 2 13 The root node
then consists of a volume th a t encloses the entire scene and, finding the object of
closest intersection with a ray involves descending the tree structure from the root
node, recursively processing the subtrees of any node whose bounding volume is
intersected At each level, those branches not intersected by the ray are pruned
from the search Additionally, if an object is intersected, those branches of the
tree whose bounding volumes he behind the point of intersection can also be
pruned, a process known as dynamic tree pruning

A bounding volume hierarchy and its tree structured representation

figure 2 13

In the limit, as advocated by Rubm and W hitted [RUBI80], the leaf nodes
themselves can be bounding volumes, m which case the scene can be represented
entirely by bounding volumes, with no other form of representation The bound
ing volumes used by Rubm consist of parallelepipeds orientated to minimize their
size Such a structure allows any surface to be rendered since, m the limit, the
bounding volumes make up a point representation of the object The visibility
calculations then consist only of a search through the structure to determine the
correspondence between the terminal level bounding volumes and the current
pixel The mam advantage of such a representation is tha t the viewing process
has only a single operation (the search through the structure) and a single prim
itive type (a bounding volume), which allows the search to be highly optimized
and makes it a suitable candidate for a hardware implementation

Extents can also be built up into a hierarchy Roth [ROTH82] for example
uses a hierarchy of extents to enclose objects defined using a CSG representation,
where the extents are embedded m the object definition tree itself and are used
to prune non-intersected branches from the intersection test, section 3 3 6

CHAPTER 2 A N INTRODUCTION TO R A Y TRACING 46

The creation of a bounding volume hierarchy is a non-tnvial operation,
-since overlapping of object bounding volumes m space should be minimal and the
tree should be balanced and organized in such a way as to reflect the geometric
distribution m space of the objects in the scene [JANS85] A poorly structured
tree will probably take less effort to construct than a well structured one, but
is also likely to result m a longer rendering time for the image For this reason,
Rubin and W hitted [RUBI80] use a program th a t allows a user to interactively
built up a hierarchy for a scene, though they also make several proposals for
autom ating the process Weghorst [WEGH84] also uses a hierarchy, defined by
the user during modelling, and produces tabulated generation times for several
test images using various combinations of spherical bounding volumes, selected
bounding volumes, hierarchy, and a visible surface preprocess (see section 2 ^ 5)
In each case, the use of a hierarchical structure reduces the time required to
render an image, with improvements varying from 14% to 21%, depending on the
image However, the structure of manually generated hierarchies can sometimes
be poor, hence Goldsmith and Salmon [GOLD86] have proposed a method for
the autom atic creation of such hierarchies

2.4.2 Space Subdivision

In contrast to the above bounding volume approach to reducing ray object in
tersection tests, which is an object orientated approach, the space subdivision
approach, as the name might suggest, is space orientated The general idea is
tha t the 3D space m which the objects are contained is divided into a number
of 3D cells Associated with each cell is a hst of all objects either completely
or partly contained in the cell Then, given th a t a ray enters a particular cell,
only the objects contained m the object hst for that cell need to be tested for
intersection Assuming that the cells are checked in the order m which the ray
will enter them, the search can be term inated as soon as the closest object of
intersection has been found for the first cell m which an intersection occurs In
contrast to a hierarchical bounding volume scheme, which functions better when
objects can be grouped into close clusters, the above scheme is better suited to a
situation where all objects are uniformly distributed over the entire object space

Cells in a space subdivision scheme differ from bounding volumes m th a t a
cell may sometimes contain only part of an object, which can lead to a particular
object being associated with more than one cell In contrast to this, an object is
never only partly enclosed by a bounding volume Another significant difference
is the fact tha t the total sum of the volumes of all of the cells represents the
entire 3D space enclosing the scene without duplication, whereas, the sum of the

CHAPTER 2 A N INTRODUCTION TO R A Y TRACING 47

volumes of all of the object enclosing bounding volumes does not

In subdividing the object space into cells, several different techniques can be
used, the principle ones of which are listed below m order of increasing complexity
and illustrated m fig 2 14

[] Uniform subdivision
[] fixed adaptive subdivision
[] unequal adaptive subdivision

Uniform

(a)

Fixed adaptive

(b)
Unequal adaptive

(c)

figure 2 14 S pace subdivision techniques

U N IF O R M S U B D IV IS IO N This is the simplest type of cell structure, m
which the space is divided into a three dimensional rectangular grid of cells of
equal size, fig 2 Ha, and is best suited to a situation where the objects are fairly
uniformly scattered through the scene A ray can be propagated from one cell
to the next by extending the Digital Differential Analyzer [NEWM79] (a method
for generating lmes on a 2D raster grid) to three dimensions, a technique used
by Fujimoto [FUJI86]

An im portant param eter of the division is the number of cells to use If too
few are used, the technique degenerates to the basic tracing algorithm since the
size of the cells will be large, as will the number of objects associated with each
If on the other hand, too many cells are used then too much time will be wasted
propagating the ray through a large number of mostly empty cells Measure
ments by Fujimoto indicate that for most scenes, the num ber of ray intersection
calculations decreases quadratically as the number of cells m a uniform subdi
vision increases Since the time taken to propagate the rays increases linearly,
optim al performance should occur where the sum of these two curves is rmn-

CHAPTER 2 A N INTRODUCTION TO R A Y TRACING 48

lmised However, this optimal number is also heavily dependent on the extent
and distribution of objects withm the scene

F IX E D A D A P T IV E S U B D IV IS IO N The uniform subdivision technique
has the disadvantage that in a situation where the objects in a scene are unequally
distributed throughout the scene, some cells will have a large number of objects
associated with them, resulting m a costly ray propagation through those cells
Fixed adaptive subdivision, fig 2 14b, attem pts to overcome this drawback by

'defining a maximum number of objects that can be contained m a single cell If
this maximum is exceeded for any cell, the cell is subdivided into a fixed number
of smaller equally sized cells, and the objects redistributed among them The
cost of this optimization however, is th a t it is more costly to propagate a ray
from one cell to the next for this scheme than for uniform division

A common m ethod of implementing a fixed adaptive subdivsion scheme is to
use an octree structure to represent the cells since, an obvious way to subdivide a
cell is to divide it equally m two along each of the Y and Z axes, giving rise to
eight equal subcells The ray can then be then be propagated from one cell to the
next by by traversing the octree structure, with the object data being accessed
via the leaves of the tree An alternative means of propagation is by a directory
index method whereby, an address computation is performed on the basis of the
coordinates of a particular point and followed by a lookup in a directory table
called a spatial index

U N E Q U A L A D A P T IV E S U B D IV IS IO N In the fixed adaptive subdivi
sion scheme outlined above, a cell which exceeds the allowed maximum number
of objects, is subdivided by placing a partition m the middle of each of the X ,
Y and Z axes, giving rise to eight equal subcells The unequal adaptive subdi
vision scheme however provides a more flexible subdivision, by allowing multiple
partitions at arbitrary positions along any of the three axes, fig 2 14c Due to
this flexibility of partitioning, less space is required to represent an object, since
the partitions can be placed so as to minimize the number of subcells This is
achieved however at the cost of an even more expensive ray propagation scheme
than for fixed adaptive subdivision

Dippe and Swensen [DIPP84] have implemented such a subdivision scheme
by using a fixed number of arbitrarily shaped tetrahedral cells, each adapted
in size to contain an equal distribution of objects over all of the cells This
structure is then used to distribute the ray tracing load over a fixed number of
parallel processors A similar scheme is also employed by Nemoto [NEM086],
using orthogonal parallelepipeds for cells

CHAPTER 2 A N INTRODUCTION TO R A Y TRACING 49

2.4 .3 C oherence

Another approach to reducing the time taken to ray trace a scene is to exploit the
similarity of the intersection trees generated by successive rays Such similarity,
or coherence (the extent to which a scene or a picture of it is locally constant) has
often been used m traditional rendering algorithms W ith regard to ray tracing,
it has been noted by Heckbert [HECK84] that in many scenes, groups of rays
follow virtually the same path from the eye Therefore, instead of discarding the
ray intersection tree for a pixel (section 2 3 2) as soon as the shader has used it
to calculate the intensity of the pixel, the tree is retained and used to predict the
ray paths for the next pixel

Verroust [VERR85] for example, takes into account the coherence of an
image to reduce the number of rays fired as part of a hidden surface removal
algorithm th a t produces wire frame pictures of CSG models In ray tracing para
metric surface patches, Joy [JOY86] also utilizes coherence by using numerical
information from adjoining rays as initial approximations to a quasi-Newton it
eration employed to solve ray-surface intersections As a result, a significant
number of ray-surface intersections can be found using much fewer iterations,
resulting in a significant computational saving PORTRAY, an image synthesis
system that uses ray tracing to produce realistic images [PEAC86], also employs
coherence by means of a technique of exploiting bounding volume coherence

Speer [SPEE85] examines the theoretical and empirical performance of a
coherent ray tracing algorithm that exploits the similarity of the intersection
trees generated by successive rays However, his results show that the overhead
of ensuring the validity of ray-object intersections prevents any significant com
putational savings, even in a scene where there is a large degree of coherence
The need for such validation can be seen from fig 2 15, where the current ray
intersects the closest object intersected by the previous ray, but also intersects a
closer intervening object missed by the previous ray As a result of such cases,
when a ray intersects the same object as a previous ray, it cannot be safely as
sumed th a t this is also the closest object of intersection for the ray Consequently,
some of the benefits of coherence are lost in checking to see if a closer object is
intersected, tha t was not intersected by the previous ray

2.4 .4 Parallel A lgorithm s

As mentioned earlier, the majority of the time taken to ray trace most images is
taken up with ray-object intersection testing Most of the optimizing techniques

CHAPTER 2 AN INTRODUCTION TO R A Y TRACING 50

Current ray intersects object hit by previous ray but also stnkes

an interveamng object

figure 2 15

outlined above address the problem by trying to reduce the number of objects
against which a ray must be tested Another approach however, is to reahze that
most of these calculations can be carried out independently of each other and
hence can be performed simultaneously on different processors

Perhaps the simplest and most extravagant approach to parallel ray tracing
would be to independently run the ray tracer on several machines, with each
machine calculating a different part of the final screen image The image files
generated on each machine could then be collected and amalgamated to form a
final image The reduction m the time taken to ray trace an image would then be
directly proportional to the number of machines available This approach how
ever, while simple and effective, is extremely wasteful of the available resources,
since each machine must have its own copy of the ray tracer and scene, resulting
in multiple duplication of information

Another approach is to perform the ray-object intersection tests in parallel
by dividing the list of objects against which a ray must be tested among the avail
able processors This is the approach used by Nemoto who presents an adaptive
subdivision algorithm for fast ray tracing which has been implemented on a par
allel architecture consisting of a three dimensional computer array, [NEM086]
The algorithm involves dividing the object space into as many subregions as there
axe computers and adaptively sliding the boundary surfaces of the subregions so
that processor loads are uniformly distributed, thereby overcoming the problem
of load concentration on a particular processor

A different parallel algorithm, developed and implemented by Deguchi on a
distributed parallel processing system, uses a hierarchical tree structured archi
tecture instead of the 3D array architecture used by Nemoto The hierarchical
tree-structured image generation system and its parallel processing mechanisms,

CHAPTER 2. AN INTRODUCTION TO R A Y TRACING 51

such as da ta transfer and hierarchical load distribution schemes are outlined in
[DEGU86].

Cleary [CLEA83] outlines a multiprocessor algorithm for ray tracing and
analyses its performance for a cubic and a square array of processors with only
local communication between near neighbors. Theoretical expressions for the
speedup of the system for both configurations are supported by simulations for
several scenes and indicate th a t a square array of processors generally performs
better than a cubic one.

In contrast to the above algorithms, which use multiple processors to achieve
parallelism, Plunket [PLUN85] implements a vectorized ray tracing algorithm
th a t takes advantage of the full power of the CYBER 205 supercomputer to trace
rays in parallel on a single processor. Instead of tracing each ray immediately, the
ray is placed in a ray queue. When this queue becomes full, the vector processor
of the CYBER 205 fires all rays in the queue at once. The ray tracing program
then goes back and uses the results where they were originally requested. This
retooling of the algorithm results in significant speed increases in ray tracing
times.

2.4.5 O ther Speedups

H a rd w a re In addition to the various strategies outlined above, several other
“miscellaneous” approaches that do not easily fit into any of the above categories
have also been developed. One such approach is th a t by Pulleyblank [PULL87],
who examines the feasibility of a VLSI chip for calculating the intersection of
a ray with a bicubic patch to a specified level of accuracy. Estim ates indicate
th a t such a chip could compute ray-patch intersections at a rate of one every
15 ms. Images drawn using a software version of the intersection algorithm are
also presented.

P re p ro c e s s An optimization th a t does not rely on hardware is tha t by Weghorst
[WEGH84] who uses a visible surface preprocess to the raytracing algorithm to
reduce rendering time. The preprocess involves projecting all objects onto the
image plane (using the same viewing parameters as for the ray tracing) and cre
ating an object list for each pixel, containing all objects that projected onto all or
part of the pixel. Finding the closest object of intersection for a prim ary ray (one
that passes through a pixel) simply involves testing the objects in the associated
list for the pixel concerned. The idea, can be taken a stage further by applying a
conventional hidden surface algorithm as part of the preprocess (Weghorst uses

CHAPTER 2 A N INTROD UCTION TO R A Y TRACING 52

a modification of the z-buffer algorithm, section 1 7 1) to determine, and store
in an item buffer, the closest object for each pixel The ray tracing process can
then replace the ray-object intersection test for pum ary rays with an index into
the item buffer, while using the usual ray tracing m ethod for secondary rays
The technique is aimed at reducing the cost of the intersection for prim ary rays
only, and so may not work as well for very reflective/refractive scenes where the
proportion of secondary rays is higher

S tep w ise R e fin e m e n t A different approach by Bronsvoort [BRON84] uses
a m ethod of stepwise refinement of the image by subdivision and aims at re
ducing the cost of rendering an image by reducing the number of pixels whose
intensities have to be explicitly calculated The algorithm is based on ideas from
Roth [ROTH82] for sparce sampling of images and from W hitted [WHIT80] for
antialiasing images It starts by dividing the screen into squares consisting of
groups of pixels (e g 8 x 8 pixels) Rays are then traced through pixels in
the lower corners of the squares in the usual manner, with all other pixels m
a square being set to the intensity calculated for the corner pixel The image
obtained is a coarse approximation to the final image The image is then refined
by subdividing the squares into 4 equal subsquares and repeating the process for
selected subsquares, depending on whether or not the intensity differences with
surrounding ones are above some threshold value This subdivision process is
repeated until a final user specified resolution is reached If required the process
can be continued to sub-pixel level, resulting m an antialiased image The image
is thus stepwise refined as the user watches on the display

Depending on the coherence of the image, the number of pixels whose in
tensities have to be explicitly calculated with a call to the ray tracing procedure
can be significantly less than the total number of pixels, resulting in a com puta
tional saving Additional savings can be obtained by dynamically increasing the
initial threshold value as the resolution of the image is stepwise refined, so that
at higher resolutions, only areas with a large variance are refined

The optimization has the disadvantage however, th a t silvers may occasion
ally be lost from the final image, due to the fact that many pixel intensities are
not explicitly calculated, but based on the values of neighboring pixels The per
formance of the algorithm in recovering such detail from a scene is dependent on
the initial square size and threshold values, which are specified by the user Thus,
for any image, the user can favor generation time over quahty (or vice versa) by
appropriately selecting these values

CHAPTER 2 A N INTRODUCTION TO R A Y TRACING 53

2.5 Other Ray Tracing A lgorithm s
To date, several different variations of the basic ray tracing algorithm outlined
in the previous sections have been implemented These include distributed ray
tracing [PORT84], which has been used to model effects such as fuzzy shadows,
motion blur and depth of field, as well as variations th a t trace more than one ray
at a time, such as beam tracing [HECK84], cone tracing [AMAN84] and pencil
tracing [SHIN87] Each of these variations are briefly outlined below

2.5.1 D istr ib u ted R ay Tracing

One of the limitations of conventional ray tracing is that ray directions are de
termined precisely from geometry, which results in sharp shadows and sharp
reflections/refractions m the final image However, by distributing the directions
of the rays according to the analytic function which they sample, ray tracing can
incorporate fuzzy phenomena, providing correct and easy solutions to previously
unsolved or partially problems such as motion blur, depth of field, penumbras,
translucency and fuzzy reflections This form of ray tracing is known as dis
tributed ray tracing, a phrase coined by Porter, Cook and Carpenter [PORT84]

The analytic function will vary depending on which of the effects is being
modelled For example,

• sampling the reflected ray according to the spec
ular distribution function produces gloss (blurred
reflection)

• sampling the transm itted ray produces translu
cency (blurred transparency)

• sampling the solid angle of the light sources pro
duces penumbras

• sampling the camera lens area produces depth of
field

• sampling in time produces motion blur

For example, distributed ray tracing produces penumbras (fuzzy shadows)

CHAPTER 2. AN INTRODUCTION TO R A Y TRACING 54

by distributing illumination rays according to an illumination function, L, rather
than toward a single light direction. Similarly, fuzzy or hazy reflections are
produced by distributing reflected rays according to a reflectance function R ,
rather than in a single mirror direction. The shade to be displayed at any pixel
is then a weighted integral of L and R. However, since this integral may be too
complex to solve analytically, its value is approximated by firing several rays
through the pixel, distributed so as to sample the integral at various points. Lee
[LEE85] derives a relationship between the number of sample rays fired and the
quality of the estim ate of the integral.

While this distributed form of ray tracing requires th a t several rays be fired
for each pixel, it is argued by Porter [PORT84] th a t the expense is not much
greater than the oversampling required for antialiasing images (section 2.3.3), and
th a t distributing the rays instead offers substantial benefits at little additional
cost.

2.5.2 B eam Tracing

In conventional ray tracing, infinitesimally thin rays of light are traced through
the scene. However, in a different approach used by Heckbert and Hanrahan
[HECK84], areas are swept through a scene to form beams, hence the term beam
tracing. The scenes used by the authors consist of planar polygons since, unlike
the general case of a beam reflecting from a curved surface, the reflected beam
from a planar one can be approximated by a pyramidal cone, which reduces the
complexity of the calculations.

The algorithm is similar in principle to a technique developed by Dadoun,
Kirkpatrick and Walsh [DAD082] to trace sound beams from audio sources to a
receiver, and can take advantage of the coherence of polygonal scenes by tracing
coherent rays (rays that follow similar paths) in parallel as a single beam.

2.5.3 C o n e /P en c il Tracing

The problem of conventional ray tracing is th at, being a point sampling technique,
it is prone to abasing. However, as outlined in section 2.3.3, the effects of aliasing
can be reduced by sampling a pixel at more than one point. Unfortunately, tracing
additional rays for each pixel adds to the already high com putational cost of ray
tracing an image. One way around this problem is to incorporate the idea that
a pixel represents an area, into the definition of a ray. A ray then becomes a

CHAPTER 2 AN INTRODUCTION TO R A Y TRACING 55

pyramid, fig 2 16, with the apex at the eye and the base defined by the four
planes th a t cut the border of the pixel The intersection calculation between
such a ray an an object, in addition to determining if there is an intersection,
calculates the area of intersection with the ray This information can then be
used as a basis for performing simple area antialiasing

A ray pyramid and its approximation a s a cone

figure 2 16

Given this extended definition of a ray, only a single ray need be cast for
each pixel However, the intersection calculation between an object and such
a ray can be quite complex In addition, as the ray is reflected of refracted
by a curved surface, it can become very distorted, furthering the complexity of
the intersection calculations Amanatides [AMAN84] addresses this problem by
approximating the pyramid as a cone Although the intersection calculations can
still be quite complex, the advantage of such an approximation is that, when
reflected or refracted, a cone will still represent a good approximation to the
reflected/refracted components of the original cone

In addition to providing a better means of antialiasing, cone tracing can
also be used to calculate fuzzy shadows and dull reflections, as well provide as
a means of calculating the correct level of detail in a texture map Shinya,
Takahashi and Naito [SHIN87] describe a similar approach, called pencil tracing
which uses paraxial approximation theory to trace a pencil of rays (rays that
are near to a given axial ray are called paraxial and said to form a pencil), and
describes an error analysis m ethod to ensure its accuracy

2.5 ,4 O ther V ariations

R a d io s ity Another variation used by Wallace, Cohen and Greenberg [WALL87]
uses a two pass solution to the rendering equation which is a synthesis of radiosity

CHAPTER 2 A N INTRODUCTION TO R A Y TRACING 56

and ray tracing methods As mentioned in section 1 7 2, the intensity of hght
reaching a viewer is composed of diffusely reflected/transm it ted hght and spec
ularly reflected/transm itted light In most ray tracing applications however, the
diffusely reflected/transm itted contribution from other surfaces in a scene is too
costly to accurately model and is therefore usually approximated by an ambient
term The specularly reflected/transm itted component on the other hand, can
be approximated using W hitted’s lighting model [WHIT80]

The radiosity m ethod on the other hand, provides a comprehensive method
of calculating object to object diffuse reflections within complex environments
containing hidden surfaces and shadows [COHE85] [RUSH86] [SHA088], but
does not as easily handle the specularly reflected/transm itted component — a
problem addressed by Rushmeier, [RUSH86] In addition, it has the advantage
th a t the calculations are independent of the viewpoint, so unlike ray tracing, the
image does not have to be entirely recalculated if the view-pomt is changed

Combining the two methods should therefore give a more accurate model
of the lighting effects withm a scene and hence a greater degree of realism in the
final image The m ethod employed by Wallace involves two passes The first
is view independent and based on the radiosity algorithm, with extensions to
include the effects of diffuse transmission The second, which is view dependent
and based on an alternative-to distributed ray tracing, is used to sample the
intensities contributing to the specularly reflected or transm itted intensity

In te r re f le c tio n Rubinstein and Clear [WARD88] outline a raytracing algorithm
th a t incorporates diffuse interreflection between surfaces with both diffuse and
specular components A Monte Carlo technique is employed to calculate indirect
contributions to illuminance a t various locations These indirect illuminance
values are then averaged over surfaces and used in place of the constant “am bient”
lighting term

R a y C la ss ifica tio n This approach to ray tracing, by Arvo and Kirk [ARV087],
reduces the number of ray-object and ray-bounds intersection calculations by
means of 5-dimensional space subdivision Collections of rays originating from
a common 3D rectangular volume and directed through a 2D solid angle are
represented as hypercubes in 5-space A 5D volume enclosing the ray space is
then dynamically subdivided into hypercubes Associated with each hypercube
is a set of objects which are candidates for intersection Rays are then classified
into unique hypercubes and tested for intersection with the associated candidate
set

Chapter 3

R ay Tracing and CSG

While chapter 2 discussed ray tracing m a general context, outlining the general
algorithm, with its different enhancements, variations and optimization tech
niques, the discussion did not focus in any great detail on any one object rep
resentation scheme This chapter discusses ray tracing in the specific context
of solid modelling, or more precisely, in the context of a Constructive Solid Ge
ometry (CSG) representation scheme and provides a background setting for the
research discussion in chapter 4

3.1 Solid M odelling
Solid modelling was born of the need for complete and accessible object-geometry
information, such as that required for the integration of the design, simulation
and manufacture phases of engineering products (e g an engine part, or even
a complete engine) Such integration requires th a t any object-geometry infor
m ation (e g volume, weight, centre of gravity etc) required for the simulation
of the operation of the product, as well as for the m anufacturing process (e g
determ ination of machine tool paths), can be extracted from the original object
representation interactively built up during the design stage

Wire frame, and even polygon representation schemes (section 1 6 2), are
inherently ambiguous and consequently, im portant geometric properties of the
objects they attem pt to represent cannot be calculated On the other hand,
solid modelling systems provide unambiguous and informationally complete rep
resentations of rigid solid objects (see [REQU80], [VOEL77] for an introduction)

57

CHAPTER 3 R A Y TRACING AND CSG 58

Some of the more common schemes in use to date are outlined below -

P r im itiv e In s ta n c in g This scheme provides families of basic objects such as
blocks, spheres, cyhnders and cones An object is then represented by its family
name and param eters specifying its dimensions, orientation and position Such
a scheme has the advantage of being concise, simple and effective, but is limited
m the range of objects it can represent

S p a tia l E n u m e ra tio n In this scheme, an object is represented by a list of
fixed-sized cubes occupied by the object The smaller the size of the cubes, the
greater the accuracy with which a given object can be represented but, the larger
the storage requirement to represent the object However, the use of an octree
structure, where the object is represented as a hierarchical collection of variable
sized cubes, can reduce the storage requirements and speed up object processing

Sw eep O p e ra tio n A sweep operational scheme represents an object by means
of a primitive object and a trajectory path The object is defined as the volume
swept out by moving the primitive along the path Translational and rotational
sweeps, used in conjunction with a spherical or cyhnderical primitive are among
the most commonly used

C o n s tru c tiv e Solid G e o m e try As outlined in section 1 6 2, a CSG scheme
represents an object m terms of compositions of primitive solids th a t are combined
using boolean set operators (union, intersection and difference) The primitives
usually used are the block, sphere, cylinder, cone and torus A CSG scheme, com
bined with a primitive instancing scheme to represent primitive objects, provides
a very elegant and efficient method for representing solid objects

3.2 A n Introduction to CSG
Constructive solid geometry is becoming the m ethod of choice for a wide range
of apphcations of engineering design This is in part due to the fact tha t the
way in which objects are built up using a CSG system, namely through boolean
operations on primitive and interm ediate solids, reflects the way m which many
engineering products are actually manufactured For example, the CSG urnon
and difference operators are the equivalent of the physical operations of welding
and cutting respectively In addition to this, CSG can be used to provide a means
of representing solids th a t inherently describes their properties as solids, allowing
the extraction of information such as contained volumes, masses, m aterial costs,
and on a more complex scale, changes of shape due to distorting forces and

CHAPTER 3 R A Y TRACING AND CSG 59

machine tool paths for manufacturing purposes

Descriptions of CSG systems are given by Boyse & Gilchrist [BOYS82], who
describe GMSolid, an interactive modeller for the design and analysis of solids,
and by Brown [BROW82], who gives a technical summary of a system called
PADL-2 Requicha & Voelcker [REQU82] present a more general discussion of
the area however, outlining an historical summary and contem porary assessment
of solid modelhng, while Myers [M \ER82] views the area from an industrial
perspective

3.2.1 CSG R epresen tation
As outhned in section 1 6 2, an object is described in CSG as combinations of
union, difference and intersection operations on primitive and interm ediate solids,
fig 3 1 The two most common structures for representing objects defined in such
a way are a binary tree and a directed acyclic graph (DAG), fig 3 2 In the
binary tree structure, the leaf nodes represent primitive solids and interm ediate
nodes represent the interm ediate solids formed by applying the specified operator
to the left and right subnodes, with the root node representing the final solid
In the DAG structure, each vertex of the graph represents either a primitive
sohd or an interm ediate solid, with a specified vertex representing the final solid
The DAG structure can, m some cases be more compact than the binary tree
one, by virtue of the fact tha t the same sub-object can be used many times in
a description without duplication by having several vertices point to it In the
binary structure however, a sub-object can be pointed to by only one node (the
parent one), which means having to duplicate the sub-object

However, both binary tree and DAG structures provide only a means of de
scribing an object In order to render an image of the object, or to extract useful
information from the structure, most systems convert the structure into a more
conventional description such as a polygon mesh or boundary patch representa
tion GMSolid (see [BOYS82]) is one such example Roth however, [ROTH82],
developed a ray tracing technique for rendering objects directly from a binary tree
structure, w ithout the need to convert to a different representation While there
has since been several other algorithms developed th a t can do hkewise [YOTJS86]
[ARNA87], including some based on R oth’s work, [BRON84] [GERV86], all are
based on a ray tracing approach, which remains to date the only m ethod of
rendering an image directly from a CSG binary tree or DAG structure

C H A P T E R 3 R A Y T R A C ING A N D CSG

CA

in te rse c tio n

\ /

Application of union difference

and intersection operations

block and cylinder

p rim itiv e s figure 3 1

(3) A compound o b |d d represented by a binary Iree

(b) A compound object represented by a DAG The sam e

cylinder is subtracted and subsequently with a

different size and orientation

figure 3 2 CSG and DAG representstions of solids

3.3 R oths CSG Ray Tracing A lgorithm
The general idea behind the technique developed by Roth is essentially the same
as the ray tracing algorithm outlined in section 2 2 in th a t rays, represented as
line equations m param etric form, are cast through each screen pixel in order to
determine the closest object struck by the ray and subsequently, a colour for the
pixel The difficulty however hes m extracting from the binary tree representation
of an object, the point of intersection between a ray and the object

In the system developed by Roth, this task is performed by RAYCAST, a
procedure whose input is a ray and whose output is information about how the
ray intersects the scene This output takes the form of two hsts, a list of t values
(see section 2 2, equation 2 1) th a t specify the points at which the ray enters and
exits the solid as it “passes through” it, and a list of surface pointers th a t point
to the corresponding surfaces through which the ray passes, fig 3 3

CHAPTER 3 R A Y TRACING AND CSG 61

enter/exit t(1) t (2) 1(3) 1(4)
Information

figure 3 3 in/om classification of a ray by RAYCAST

3.3.1 T hree a lgorithm s in one

Given the information contained m the two hsts, the algorithm can be modified
to produce -

CHAPTER 3 R A Y TRACING AND CSG 62

[] A line drawing of a solid
[] A shaded image of a solid
[] Calculate the volume of a sohd

L IN E D R A W IN G In producing a line drawing of a sohd, we are only m terseted
in knowing if the surface struck by the ray for a given pixel is different to that
struck by the ray for the pixel immediately to the left or above it We do not
therefore need to know the exact point at which the ray intersects the surface
Consequently, m producing a visible edge drawing of a sohd, the algorithm uses
only the surface list output by RAYCAST This firstly involves comparing the
nearest surface struck by a ray cast through pixel (x ,y) (the first pointer m the
surface list) with th a t returned for pixel (x — l,y) If the surface is a different
one, a vertical line one pixel long is displayed a t (x — 0 5, y) The pointer is then
compared with th a t returned for pixel (x ,y — 1) If it is different, a horizontal
line one pixel long is displayed at (x, y — 0 5) In order for these comparisons to
take place, a record must be kept of the pointers returned for all pixels processed
so far on the current line, as well as for all pixels from the previous line

S H A D E D IM A G E The shaded image algorithm makes use of both the pa
ram eter hst and the surface list output by RAYCAST It uses the first value in
the param eter list to calculate the exact point of intersection of the ray with
the closest surface struck (the first surface pointer m the surface hst) m order to
calculate the surface normal at that point This information is then used in the
shading calculation to determine a colour for the pixel (section 1 7 2)

V O L U M E C A L A U L A T IO N The volume of a solid can be approximated
by specifying a parallel view (section 1 5 2) so th a t all traced rays are paral
lel to a given direction The traced rays then divide the solid into rectangular
parallelepipeds whose volumes can be individually calculated and summed to ap
proximate the total volume, fig 3 4 Two of the dimensions of each parallelepiped
are determined by the horizontal and vertical spacing of the rays on the screen -
and are consequently known and the same for each parallelepiped The th ird
dimension, the to tal length of the parallelepiped contained by the sohd can be
calculated from the in /ou t param eter list Given that the horizontal and vertical
spacing of the pixels is H and V respectively, the volume for each ray is then
calculated as

volume = H x V x (t2 - ti + t4 - h + tn - t n_i) x L (3 1)

CHAPTER 3 R A Y TRACING AND CSG 63

The volume of a n ob/ed can b e approximated by summing the
volumes of the rectangular paralleptpeds cut out by parallel rays

figure 3 4

where L is the length of the direction vector of the ray which, if specified as a
unit vector, can be omitted from the calculation The error of approximation can
be made arbitrarily small by using larger quantities of smaller parallelepipeds,
but this is at the expense of a having to generate more rays, increasing the cost
of the calculation

Central to all three variations of the algorithm is the means by which RAY-
CAST calculates the list of m /ou t intersection points Before moving on to this
discussion m sections 3 3 3 and 3 3 4, a description of the primitive solids and
coordinate systems used is outlined m the next section Then, having covered
both of these areas, the remainder of the discussion focuses on the computational
cost of rendering an image using the algorithm, and ways m which it can be
reduced

3.3.2 P rim itives A nd C oordinate S ystem s
As outlined earlier, an object is defined in CSG m terms of boolean operations
performed on a set of primitive solid types and can be conveniently represented as
a binary tree However, regardless of the complexity of the final solid (represented
by the root of the tree) a ray must always enter and leave the sohd through a
surface of one of the prirruti ve solids from which it is composed Consequently, it is
im portant th a t ray-primitive intersection tests be simplified as much as possible
It is for this reason th a t several different coordinate systems are employed m
Roths ray tracing system, namely the screen, primitive and global (or world)
coordinate systems The user of the ray tracing system however, should be aware
of only the world coordinate system

CHAPTER 3 R A Y TRACING AND CSG 64

The screen coordinate system, as outlined in section 1 4 I, is a 2D integer
system used for referencing screen pixels The primitive coordinate systems stem
from the fact th a t each of the primitive solid types is defined m its own local 3D
coordinate system, and can be transformed into the world coordinate system m
any size, orientation and position by applying the appropriate 3D m atrix trans
formations outlined m section 1 5 1 Thus, every instance of a primitive sohd
type used to define an object, has associated with it a 4 x 4 transform ation
m atrix which defines the appropriate scahng, rotation and translation operations
to transform th a t instance of the primitive into the world coordinate system

The reason for using a local coordinate system m the first place is th a t the
ray-primitive intersection calculations (section 4 5) can be greatly simplified by
using the inverse of the object’s transformation m atrix to transform the ray from
the world coordinate system back into the primitives local coordinate system
The intersection test can then be conducted in the local system where the com
putational cost is greatly reduced, by virtue of the fact th a t we are then dealing
with a unit sphere centered about the origin, a unit cube positioned along the
positive X Y Z axes e t c , rather than an arbitrarily sized sphere or block cen
tered about an arbitrary point m an arbitrary orientation This simplification
results from the fact th a t the value calculated for t (the ray param eter) for the
intersection of the transformed ray with the primitive, is the same as th a t for the
intersection of the untransformed ray with the object, but is computationally less
expensive to calculate

3.3.3 R ay In tersection A nd C lassification

In the previous discussion of ray-object intersection in section 2 2, despite the fact
tha t a ray may enter and leave a complex object a t several successive points along
the ray, only the closest point of intersection of a ray with the object was required
This point could then be compared with the closest points of intersection for
all other objects in the scene to determine the first object struck by the ray
However, the situation with an object defined by a CSG representation is quite
different since, the final sohd is formed from addition, subtraction, or intersection
of interm ediate sohds (called composite solids), which are in tu rn formed from
similar operations on other composite solids Consequently, m order to know
where a ray intersects a solid formed from say, the intersection of two other
sohds, A and B , we need to know where the ray enters and leaves sohd A , and
where it enters and leaves sohd B For this reason, a ray is classified with a sohd
by a h§t of t (ray param eter) values that correspond to the points on the ray at
which it enters and leaves the solid

CHAPTER 3 R A Y TRACING AND CSG 65

So, given a ray and a binary tree defining a solid composition, the ray is
tested for intersection with the solid by recursively descending the composition
tree (m postorder) from the top down to the leaf nodes, classifying the ray as m or
out with respect to ,the primitive sohds they represent, and then returning back
up the tree, forming the classifications for the the composite (intermediate) sohds
by combining the classifications of left and right sub-trees The classification for
the root then represents the m /ou t classification for the final sohd with respect
to the ray

3,3 .4 C om bining C lassifications

Figure 3 5 illustrates how to combine left and right classifications for each of the
intersection, union and difference operators (denoted by the symbols —
respectively) by using solid lines to represent segments of a ray that are mside a
sohd and dashed lines for segments that are not As illustrated for the intersection
operator in fig 3 6, the combination process is performed m three stages -

• The intersection points from the left and right rays are
_ merged and sorted into ascending order to form a seg

mented composite ray
• Segments of this composite ray axe classified as in or out

in accordance with the combine operator and the classi
fications of the left and right rays (see table 3 1)

• Adjacent segments of the composite ray with the same
classification are merged for simplification

3.3 .5 C om p u tation al C ost

The algorithm as it stands, is something of a brute force m ethod m th a t it tests all
branches of the tree for intersection with the ray To appreciate the com putational
cost of such a scheme, consider an example using a sohd composed of 100 primitive
sohds, displayed on a raster device of 500 x 500 resolution For such a resolution,
firing one ray per pixel requires th a t 250,000 rays be generated, each of which
must be tested for intersection and m /ou t classification with the sohd Since the
sohd is composed of 100 primitive sohds, its binary tree representation contains
100 leaf nodes, and therefore 99 internal nodes (say 100 for simplicity), giving

CHAPTER 3 R A Y TRACING AND CSG

Left Node Right Node

I n t e r s e c t i o n l 5 J , „__
out in out

f i g u r e 3 5 Combining ray classifications

L*lt » » n

Right » 4

(1) merged - • - ~ • » « „ +
(2) classified --------- t r , _________T ,

(3) simplified - • ■" « T ,

Three stage combine process for intersection

figure 3 6

CHAPTER 3 R A Y TRACING AND CSG 67

O PER A TO R LEFT R IG H T C O M PO SITE

intersection (&) OUT OUT OUT
OUT IN OUT

IN OUT OUT
IN IN IN

difference (-) OUT OUT OUT
OUT IN OUT

IN OUT IN
IN IN OUT

union (+) OUT OUT OUT
OUT IN IN

IN OUT IN
IN IN IN

Table 3 1 Ray Classifications

it a total of 200 nodes The four m ajor areas of cost m rendering an image
of such an object, namely the cost of recursive procedure calls, the cost of ray
in /o u t classification, the cost of ray transformations, and the cost of ray primitive
intersection testing, are itemised below -

• 2 0 0 x 2 5 0 , 0 0 0 = 5 0 , 0 0 0 , 0 0 0 r e c u r s i v e p r o c e d u r e c a l l s
E a c h o f t h e 2 5 0 , 0 0 0 r a y s v i s i t s e a c h o f t h e 2 0 0 n o d e s m t h e s o l i d c o m
p o s i t i o n t r e e v i a r e c u r s i o n , r e q u i r i n g 5 0 mi l l i o n r e c u r s i v e p r o c e d u r e
c a l l s

• 1 0 0 x 2 5 0 , 0 0 0 = 2 5 , 0 0 0 , 0 0 0 r a y i n / o u t c l a s s i f i c a t i o n s
A t e a c h o f t h e 1 0 0 i n t e r n a l n o d e s , c l a s s i f i c a t i o n s o f t h e l e f t a n d r i g h t
b r a n c h e s m u s t b e p e r f o r m e d , a t a t o t a l c o s t o f 2 5 m i l l i o n r a y c l a s s i
f i c a t i o n s

• 1 0 0 x 2 5 0 , 0 0 0 = 2 5 , 0 0 0 , 0 0 0 r a y t r a n s f o r m a t i o n s
F o r e a c h o f t h e 1 0 0 p r i m i t i v e s o h d s , t h e r a y m u s t b e t r a n s f o r m e d
i n t o i t s l o c a l c o o r d i n a t e s y s t e m , r e q u i r i n g a t o t a l o f 2 5 m i l l i o n r a y
t r a n s f o r m a t i o n s

CHAPTER 3 R A Y TRACING AND CSG 68

• 100 x 3 x 250,000 = 75,000,000 ray in tersection te s ts
Testing a ray for intersection with each of the 100 primitive sohds
requires testing it with each surface of the primitive Allowing for an
average of three surfaces per primitive solid (the sphere has 1, the
cylinder 3, the block 6 etc) , this represents a cost of 75 million ray
surface intersection tests

T O T A L - 50 million recursive procedure calls
25 million ray in /ou t classifications
25 million ray transformations
75 million ray-surface intersection tests

It it clear from these figures that there is a great need for some form of
optim ization The method chosen by Roth and described m the section below, is
th a t of box enclosures

3.3 .6 B ox E nclosures — A n O ptim ization ____

The use of box enclosures around the primitive and composite solids can provide
a means by which non-contributing branches of the tree can be pruned from
testing with the ray, thereby speeding up the intersection calculations

The scheme works by enclosing each primitive solid in a minimal bound
ing volume as it lies m its own local coordinate system (section 2 4 1 discusses
bounding volumes) Any transformations that are subsequently applied to an
instance of the primitive solid are then also applied to its bounding volume so
th at, when transformed into the world coordinate system, the primitive is still
enclosed by the transformed bounding volume

Box enclosures are then formed from these transformed bounding volumes
by projecting them onto the screen and finding the minimum and maximum
values of the projected X and Y coordinates (see section 2 4 h fig % 1%)
The minimum and maximum values of the unprojected Z coordinates are also
determined for use m situations where rays may be bounded in depth A box
enclosure is then defined by these two X Y Z coordinate pairs, (xm%n, ymtn, zmtn)
a n d (x maar> "Umax) ¿ m a x)

CHAPTER 3 R A Y TRACING AND CSG 69

Box enclosures are then calculated for the interm ediate nodes m the tree
by ascending the tree and combining the enclosures of the left and right sub
trees, in accordance with the boolean operator of the node Figure 3 1 illustrates
the calculation of the minimum and maximum X values of the combined box
enclosure for each of the three boolean operators The minimum and maximum
Y and Z values are calculated in a similar way Note th a t m the case of the
intersection operator, the combined enclosure can be smaller than either of the
enclosures from which it is formed

Enclosure ol
A union B

Enclosure of
A minus B

minX « L^mlnX

maxX » L_maxX

□
Enclosure of

A intersection B

minX - maximum (L_minX R_minX)

maxX - minimum (L_maxX, R_m&xX)

figure 3 7 Combining box enclosures

The reason for using screen projected box enclosures, rather than the origi
nal transformed bounding volumes, is that the the ray-enclosure intersection test
is essentially a point m rectangle test, namely th a t the pixel spawning the ray
lies within the rectangular screen enclosure of the projected bounding volume

By storing each box enclosure in its associated node, the solid composition
tree not only contains a representation of the solid, but also a hierarchical rep
resentation of the space th a t the solid occupies So, at any node of the tree, if
a ray fails to intersect the node’s box enclosure, the sub-trees of that node can
be eliminated from further processing Thus, the search for ray intersections re
sembles something of a binary search through the object space, ra ther than the
exhaustive search required without the box enclosures

CHAPTER 3 R A Y TRACING AND CSG 70

The savings provided by the use of enclosures is dependent both on the
spatial distribution of the primitives and the organization of the solid composition
tree, though according to Roth, the former is the more im portant of the two The
ideal conditions for maximum effect would be th a t no primitive enclosures overlap
m space and th a t the composition tree be balanced and organized m such a way
th a t composite sohds close to each other in space are also close to each other in
the tree The worst situation on the other hand, would be where all primitive
enclosures overlap each other

However, a situation where large numbers (or possibly all) of the box en
closures of the primitive solids mutually overlap is most likely to occur where a
user is attem pting to approximate a surface type not provided directly by the
set of available primitive solid surfaces Such a situation can be more practically
dealt with by adding a new primitive with the required surface type to the hst
of available ones

The use of box enclosures, while providing a good means of optim ization,
has the limitation that it only optimizes for prim ary rays This is because of
the fact tha t the enclosures are specifically constructed in such a way as to take
advantage of the fact th a t all primary rays originate at screen pixels Secondary
rays however, such as shadow or reflected/refracted rays (section 2 3), originate
at object intersection points, so their direction cannot be determined in advance
For such cases, Roth suggests the use of spherical enclosures The main reasons
for choosing spheres is th a t they are compactly defined by two values (a centre
and radius) and have a relatively inexpensive ray intersection test — if the per
pendicular distance from the ray to the centre of the sphere is less than the radius
of the sphere, the ray intersects, otherwise it does not

3 .3 .7 C ircum stance C lassification

Even m cases where a ray does pass through the box enclosure of a node, it
can still sometimes be possible to avoid unnecessary ray classifications under
certain circumstances For example, if the operator at the node is either an
intersection or a difference operator, and the ray classifies as being out of the left
sub-solid (i e no intersection), the ray will classify as being out of th a t composite
sohd regardless of its classification with respect to the right sub-solid There is
therefore no need to examine the right sub-sohd In the case of the union operator
however, the right sub-solid must still be processed

CHAPTER 3 R A Y TRACING AND CSG 71

3.4 Further O ptim izations
As outlined m section 2 4, the m ajor part of the time taken to ray trace an image is
taken up with testing rays for intersection with objects m the scene Optim ization
techniques therefore aim at trying to reduce the number of ray intersection tests
that have to be carried out by employing hierarchical bounding volume, space
subdivision and image coherence techniques Optim ization techniques for objects
defined by a CSG representation can be broadly placed into the same categories
However, because of the nature of object definition in CSG, there are differences
between the corresponding techniques for a CSG representation

For example, the box enclosure m ethod outlined above could be described
as a hierarchical bounding volume technique yet it differs from those outlined in
section 2 4 1 by virtue of the fact tha t the hierarchical structure is embedded
into the object definition structure itself, namely the object composition tree

3.4.1 E nclosures A nd Tree R earrangem ent

The box enclosures implemented by Roth and outlined above are a specialized
form of bounding volume, and have the lim itation th a t they can only be used
for primary rays Gervautz [GERV86], uses spherical enclosures as advocated
by Roth, as well as rectangular enclosures whose planes he parallel to the X Z ,
Y Z and X Y planes These rectangular enclosures differ from Roths box en
closures in th a t the la tter are calculated by projecting the transformed primitive
bounding volumes onto the screen before taking minimum and maximum X and
Y coordinate values, whereas the former are calculated by taking minimum and
maximum values without first projecting As a result, the Gervautz enclosures
can be apphed to both primary and secondary rays, but have a more costly in
tersection test than Roths Like Roth however, Gervautz forms enclosures for
interm ediate nodes by combining enclosures for the left and right sub-trees in
accordance with the nodes boolean operator

Gervautz also employs the commutative and distributive properties of the
union operator to rearrange sub-trees containing only union operations The
reasons for rearranging the tree in such manner are twofold -

• The tree can be made more symmetrical, resulting m
fewer recursive calls to the intersection procedure

CHAPTER 3 R A Y TRACING AND CSG 72

• Rearrangement can result m smaller enclosures m the
internal nodes, resulting m fewer unnecessary ray inter-
section tests with the sub-trees of those nodes, fig 3 8

/ \
/ \

A C

/ \
/ \

A B

/ \
+ A

/ \
B C

Three possible tree arrangem ents for the three objects

A, B and C The centre one (a best since it results in the

sm allest enclosure for the left subtree

figure 3 8

3.4.2 Scan-Line Enclosures A nd A ctive Trees

From figure 3 7, it can be seen that the union operator is the only one of the
three operators which results m a box enclosure th a t is larger than either of the
left or right enclosures from which it is composed — for the intersection operator
it is smaller than either left or right enclosures while for the difference operator
it is the same size as the left enclosure In addition, from fig 3 9 it can be seen
th a t an object formed from the union of two sub-objects can often have a box
enclosure th a t contains large volumes of empty space The damaging effect of
such a situation on the efficiency of enclosures can be even greater if it occurs near
the leaf nodes of the solid composition tree, since it can then have a cumulative
effect on enclosures at other union nodes higher up in the tree

S C A N -L IN E E N C L O S U R E S Broonsvoort [BRON84], overcomes this prob
lem of box enclosures by using interval enclosures instead Interval enclosures are
very similar to box enclosures, except th a t the la tter refer to rectangular areas on
the screen while the former refer to intervals along the current scan line of pixels
So, instead of storing minimum and maximum X and Y values at each node,
defining a rectangular area on the screen enclosing the primitive or composite
solid represented by the node, only a minimum and maximum X value is stored,

CHAPTER 3 R A Y TRACING AND CSG 73

f ig U T C 3 9 ®ox an<* scan- line interval enclosures

corresponding to the section of the current scan line m which the primitive or
composite solid represented by the node is contained, fig 3 9 The generation of
the interval enclosures is also similar to the that of box enclosures m that they
are first explicitly calculated for the primitive solids and then calculated for com
posite solids by applying the corresponding operator to the interval enclosures of
the left and right sub-trees

Unlike box enclosures however, which remain constant throughout the entire
rendering process, interval enclosures for composite solids can vary from one scan
line to another and so have to be recalculated To avoid unnecessary recalculation,
box enclosures are initially computed for the primitive solids The minimum and
maximum X values of each box are then collected and stored in the corresponding
leaf nodes and the interval enclosures for composite nodes calculated as above
Then the minimum and maximum Y values of each box are collected and sorted
into ascending order m an array At the transition from one scan line to the next,
the array is checked to see if a maximum or minimum Y value has been crossed
If one hasn’t, then the interval enclosures are the same for the new scan line as
for the previous one, otherwise they have to be recalculated

By recalculating interval enclosures at the appropriate times, Broonsvoort
manages to bypass non-contributing nodes of the CSG tree during each traversal
For this purpose an active CSG tree, which omits these non-contributing nodes,
is generated each time interval enclosures are recalculated This active CSG tree
is implemented through the use of additional pointers in each composite node of
the sohd composition tree, th a t point to the left and right active sub-trees

CHAPTER 3 R A Y TRACING AND CSG
i

74

3.4 .3 B ounding R ay D ep th

A different optim ization implemented by Gervautz [GERV86] which can be used
independently of the enclosures outlined previously m section 3 41, is tha t of
only testing for intersection along certain sections of a ray, called a bounded ray
As outhned m section 2 2, a ray is conveniently expressed by a line equation
m param etric form, where points on the line/ray are ordered and accessed via
a param eter which can m athem atically take on values of minus infinity to
infinity However, in some circumstances (outlined below), it makes sense to
exclude certain sections of this infinite ray from intersection testing by limiting
the value of t

U se r L im it In some situations, a user may only want an image of objects
that are near to the viewer i e objects that are far to the back of the scene are
to be om itted from the image This can be achieved by the user specifying the
distance behind which objects are to be excluded This distance value can then
be used to lim it/bound the ray in depth so th a t objects in the excluded zone are
not tested for intersection Even m cases where no bound is specified, since it
is unlikely th a t the user wants to see objects behind the view-point, the ray can
still be bounded by limiting t to positive values only

S hadow R ay s Testing if a point on a surface lies m shadow with respect to
a light source involves casting a ray from the point to the light source Since
objects beyond the light source with respect to the direction of the ray cannot
cast a shadow on the surface, the ray can be bounded to the section from the
point on the surface to the hght source

D y n a m ic a l B o u n d in g For intersection and difference operators, only those
parts of the right sub-tree that overlap the left sub-tree are of interest Conse
quently, only th a t section of the ray which intersects the left sub-tree need be
tested for intersection with the right sub-tree

3.4 .4 Tem porary O bject Trees

As seen earlier, the use of box enclosures embedded into the nodes of the solid
composition tree can reduce the computational cost of rendering an image of the
sohd by providing a means by which non-contributing sub-trees can be bypassed
in the search for ray-solid intersections A sub-tree can only be bypassed however,
if the ray misses the box enclosure of the sub-tree, which can only be determined
by testing the ray for intersection with the box enclosure

CHAPTER 3 R A Y TRACING AND CSG 75

If on the other hand, there were a means of knowing m advance th a t partic
ular sub-trees would not be intersected by the ray, a new tem porary solid compo
sition tree could be generated for the ray, which excluded any non-contributing
sub-trees The ray could be intersected with this tem porary tree more rapidly
and efficiently by virtue of the fact th a t it would have fewer nodes and possibly
shallower depth, resulting in fewer recursive calls and intersection tests Unfortu
nately, the cost of generating such a tem porary tree for each ray would probably
far outweigh any computational savings it provided However, if large groups of
rays could be found that shared a common tem porary tree, then savings would
be possible The tem porary tree for a particular ray could then be found by de
termining the group to which the ray belongs and using its associated tem porary
tree

Gervautz [GERV86] outlines a m ethod for generating such tem porary trees
and the groups of rays th a t share a common one To a certain degree, the method
resembles something of a 2D space subdivision m screen space, in th a t the screen
is partitioned into a number of rectangular regions, each of which has associated
with it a tem porary tree containing only those primitive and composite solids
whose box enclosures project onto the specified region A quadtree structure is
used to administer the tem porary trees, with the image being rendered rectangle
by rectangle, by traversing the quadtree and rendering all pixels associated with
the rectangular region represented by each node Rectangles th a t do not contain
any primitive or composite solids will have an empty tree associated with them
and thus can be trivially processed by setting all of their pixels to the background
colour

The rectangles are generated by first projecting a primitive solid enclosure
(section 3 4 1) onto the image plane The minimum and maximum X and Y
values of the projected enclosure then define four halfplanes, x > xmax1 x <
x m%n, y>Vmax , y < ymm> and the projection of all primitive sohd enclosures in
such a fashion produces an irregular rectangular grid pattern on the screen For
each rectangular grid region, a tem porary composition tree is formed from the
original one, containing only those primitive solids whose enclosure projections
mapped partly or completely into the region, fig 3 10

Using the rules of table 3 2, it is possible to eliminate both non-contributing
internal and primitive nodes from the original solid composition tree (E represents
the node to be eliminated, A represents the other node) -

Because of the fact th a t the primitive solid enclosures were projected onto
the viewing plane, the rectangles and temporary trees discussed above can only
be applied to prim ary rays However, by projecting them onto a plane th a t

CHAPTER 3 R A Y TRACING AND CSG 76

f ig U T C 3 10 Q uadtree administration of tempory object trees

lies between the light source and the scene, a similar quadtree structure can be
generated which can be used to optimize the tracing of secondary rays to the
light source Tracing for example, a shadow ray to the light source would simply
involve determining the rectangle through which the ray passes and intersecting
it with the associated tem porary tree of that rectangle

The case for reflected and refracted rays however is a little more complex
than th a t for primary and shadow rays While all prim ary rays are constrained
to pass through the viewing point, and all shadow rays are constrained to pass
through the light source, there is no single point through which reflected and
refracted rays are constrained to pass Consequently, there is no single 2D rect
angular grid that can be generated which is relevant to all reflected/refracted rays
in the same sense that there is for primary and shadow rays Therefore, to opti
mize for such rays, a 3D grid of cells administered through an octree structure has
to be generated m place of a 2D grid of rectangles and quadtree structure The
three dimensional cells and their associated tem porary trees are generated using
the planes of the primitive solid enclosures (which, as outlined in section 3 4 1,
lie parallel to the X Z , Y Z and X Y planes) m similar fashion to the way m
which the 2D projections of the enclosures are used to generate the 2D grid and
tem porary trees

CHAPTER 3 R A Y TRACING AND CSG 77

O p e r a t i o n A c t i o n

U N I O N (A + E) e l i m i n a t e n o d e A

D I F F E R E N C E (A - E) e l i m i n a t e n o d e A

D I F F E R E N C E (E - A) e l i m i n a t e n o d e A a n d m i
n u s n o d e

I N T E R S E C T I O N A k E) e l i m i n a t e i n t e r n a l i n t e r
s e c t i o n n o d e

Table 3 2 Eliminating of non-contnbutm g nodes

3.4 .5 Space Subdivision

Arnaldi [ARNA87] outlines a method of dividing space into 3D cells, into which
a solid composition tree can be distributed such th a t each cell contains a mini
mal CSG tree consisting only of those primitives from the original tree th a t are
relevant to the cell Intersecting the ray with the original solid then involves
propagating the ray from one cell to the next (along the ray direction), and test
ing it with the cells associated CSG tree Since the 3D space is divided in such
a way th a t the cells fit as closely as possible the primitive solids, the associated
composition tree for each cell should be significantly smaller and hence, faster to
intersect tha t the original tree

In order to provide fast and efficient ray propagation from one cell to the
next, each cell, in addition to its minimal composition tree, has an associated set
of connectivity information th a t takes the form of a list of pointers to neighboring
cells Initially, each face of every cell had an associated hst of pointers containing
a pointer to every cell adjacent to the face The drawbacks associated with this
m ethod however were firstly, given the non-umformity of the cell sizes, some
faces of some cells required longer lists that others, which meant that face lists
had to be dynamically allocated in size Other problems were that in order to
ensure complete connectivity, many cells contained redundant pointers and that

CHAPTER 3 R A Y TRACING AND CSG 78

propagation of a ray through a face of a cell m\olved an inefficient linear search
through its associated pointer list

Arnaldi overcame these difficulties by adopting a com er stitching technique
used in the design of 2D VLSI layouts and extending it to three dimensions
Using this m ethod, each cell has a fixed number of pointers (10) associated with
it th a t connect cells together through their corners, Jig 3 11a Thus, while all
cells adjacent to a given cell face are not directly connected by these pointers, it
is still possible to get to any one of them by taking an indirect “corner route”
through the appropriate cells, fig 3 11b

(a) Cell connectivity
pointer»

* 1 ^ - = pointers effectively in use

L = other pointers

figure 3 11

(b) 2D projection of cell structure showing

a ray passing successively through
ceils P t P2, P3 and P4

The cells themselves are formed by a two stage process, 2D subdivision of a
projection plane, followed by its extension to 3D, fig 3 12 The 2D subdivision is
similar to th a t performed by Gervautz [GERV86] outlined m the previous section
Firstly, a minimal bounding volume associated with each primitive is projected
onto the viewing plane, producing a set of rectangles on the plane Each rectangle
is then decomposed into four segments which are used as the basis for a binary
space partitioning process that results m a 2D partitioning of the viewing plane,
whose extension along the Z-axis gives rise to 3D cells, called supercells Each
supercell is then subdivided into smaller cells along the front and back planes of
any primitive solid bounding volumes enclosed in the cell

M A IL B O X As outlined m section 2 4 2 , the general idea behind space subdi
vision schemes is to divide space up into cells and associate with each cell a list
of all objects either completely or partly enclosed in the cell As the ray passes
from one cell to the next, it need only be tested for intersection with the list
of objects associated with the cell Consider however, the case where an object
is partly enclosed by several different cells Each of these cells will then have

CHAPTER 3 R A Y TRACING AND CSG 79

Creation of 3D cell structure by extending 2D screen

partitions to three dimensions

figure 3 12

the object in their associated hst Since it is quite possible th a t a ray may pass
through several of these cells, the object will be tested for intersection more than
once with the same ray, which is both unnecessary and wasteful

Arnaldi overcomes this problem, which is common to all space subdivision
schemes, by associating a “mailbox” with each primitive and a unique number
with each ray The mailbox structure then stores the intersection point (if any)
and ray number of the last ray that was tested for intersection with the primitive
Then, before testing the primitive with a particular ray, a test is made to see if
the ray number m the mailbox is the same as the one for the current ray If
it is, this primitive has already been tested with this ray and the result can be
read directly from the mailbox If the number is different, the intersection test
goes ahead and the ray number and intersection information m the mailbox are
updated

Chapter 4

M icroTrace

Ray tracing, despite its elegant approach to image synthesis and its realistic image
generation capabilities, has tended to be confined to the realms of large mainframe
computers by virtue of its large appetite for com putation This chapter however,
discusses m detail an implementation of a ray tracer called M cro Trace which has
been designed, written and developed on a microcomputer A presentation of its
results and an evaluation of its performance is presented in section 4 8

Before taking a detailed look at the ray tracer m section 4 2, the following
section gives a brief description of the microcomputer and display device on which
the research was carried out However, despite having been implemented on a
specific type of microcomputer with a specific type of display device, the ray
tracer has been designed with portability m mind Machine independence has
been facilitated by writing source code that complies with the ANSI C standard,
while display device independence has been enhanced by providing an option of
tracing an image to a file, m a format that can be customized for any sort of
raster device

4.1 Hardware
The microcomputer consists of an IBM AT with a Professional Graphics Display
and the following specifications -

80

i

CHAPTER 4 MICROTRACE 81

• In te l 80286 p ro cesso r ru n n in g a t 6 MHz
• In te l 80287 m a th s cop rocesso r

• 640K of m a in m em o ry

• 20 Mb d isk s to ra g e

4.1.1 Professional Graphics Adapter
T h e P ro fe ss io n a l G rap h ic s D isp lay is a h igh q u a lity co lo u r r a s te r d isp lay w ith a
re so lu tio n of 640 x 480 p ixels (h o riz o n ta l x v e rtic a l) I t uses fo u r b its p e r p r im a ry
for d isp lay in g co lours, g iv ing i t a c a p a b ility o f d is tin g u ish in g 4096 d iffe ren t co lours
(section 1 3 2) T h e d isp lay is co n tro lled by a P ro fe ss io n a l G ra p h ic s A d a p te r
(P G A), a V L S I c a rd w hich co n ta in s th e re fresh bu ffer a n d a h o s t of b u il t in
g rap h ic s fu n c tio n s , to w hich en d it c o n ta in s its ow n 8-bit p ro cesso r, a n In te l
8088 F ro m th e sch em a tic lay o u t o f th e a d a p te r m fig 4 A i t c an b e seen t h a t th e
m ic ro c o m p u te r c o m m u n ica te s w ith th e a d a p te r v ia "a n in p u t /o u tp u t b u ffe r It
c an a lso b e seen fro m th e d ia g ra m th a t th e d isp lay re fresh bu ffer is co n ta in e d on
th e a d a p te r c a rd a n d does n o t fo rm p a r t of th e A T ’s a d d re ss sp ace C o n seq u en tly ,
th e A T c a n n o t d ire c tly ad d ress th is m em o ry a n d in s te a d m u st re a d a n d se t p ixel
va lues by issu ing th e a p p ro p r ia te co m m an d s to th e a d a p te r v ia th e in p u t buffer,
re a d in g re su lts b ack fro m th e o u tp u t buffer

PGA adapter

figure 4 1 Schematic layout 0# IBM AT and PGA

A s m e n tio n e d ea rlie r , th e P G A co n ta in s a n u m b e r o f b u ilt m g ra p h ic s fu n c
tio n s fo r d raw in g lines, circles po ly g o n s e tc w h ich ag a in a re e x e c u te d by sen d in g
th e a p p ro p r ia te co m m a n d a n d p a ra m e te rs (in a p red efin ed h ex a d e c im a l fo rm a t)
to th e in p u t buffer In a d d itio n to th ese 2D c o m m an d s , th e a d a p te r also h a s a

CHAPTER 4 MICROTRACE 82

n u m b e r of 3D g rap h ics co m m an d s th a t a u to m a tic a lly ap p ly c lip p in g a n d p ro je c
tio n to 3D lines a n d po lygons In im p lem en tin g th e ra y t r a c e r how ever, th is 3D
c a p a b ility of th e P G A h as b een d e lib e ra te ly avo id ed a n d o n ly th o se cap a b ilitie s
u su a lly av a ilab le fo r m o st o th e r d isp lay devices** su ch as re a d in g /w r i t in g p ixel
values a n d 2D lin e d raw in g , h av e b een used

L O O K - U P T A B L E As m e n tio n e d above, th e P ro fe ss io n a l G ra p h ic s D isp lay
h as a re so lu tio n o f 640 x 480 pixels w ith 4 bits/primary (o r 12 bits/pixel) In s te a d
of s to rin g each p ix e l ex p lic itly as 12-bits, w hich w ould re q u ire a re fresh buffer of
4 5OK (640 X 480 x 12 bits) th e a d a p te r s to res each p ix e l as a sing le b y te w hich
is th e n u sed as a n offset in to a 256 e lem en t lo o k -u p ta b le c o n ta in in g th e 12 -6 ^
R G B value fo r th e p ixel, fig 4 2 W h ile th is a r ra n g e m e n t red u ces th e re fre sh
buffer re q u ire m e n t to 300K , it m ean s th a t on ly 256 of th e 4096 p o ssib le co lours
can b e d isp lay ed on sc reen a t an y one tim e T h e u se r can se lec t an y 256 o f th e
4096 co lours b y a p p ro p r ia te ly lo ad in g values in to th e lo o k -u p ta b le v ia c o m m an d s
se n t to th e a d a p te r in p u t buffer C o lours of lines, p o ly g o n s etc a re th e n specified
as values in th e ran g e 0 255 w ith th e a c tu a l co lou r b e in g d e te rm in e d fro m th e
va lue m th e lo o k -u p ta b le

3 5 6 4

3 3 3 4

3 3 3 4

5 S S »

PGA Refresh Butler

RED GREB'J BLUE
0011

0101

1 1 1 f

0 0 0 0
1111

1101

1111

1111

0 0 0 0
0 0 0 0

1110

0 0 0 0
0101
1111

o o o o

2 5 5 |oooo ,1011 i loop
Look Up Table

Look Up Table contents delenmne color displayed

figure 4 2

P G A L I B R A R Y As a p re lim in a ry s te p m b u ild in g th e ra y t ra c e r , a C fu n c tio n
w as w r it te n for each P G A c o m m an d , w hich packages th e a p p ro p r ia te p a ra m e te rs
m th e co rrec t p red efin ed P G A h ex ad ec im a l fo rm a t, p laces th e m m th e a d a p te r
in p u t buffer a long w ith th e a p p ro p r ia te co m m an d code, a n d re p o r ts r e s u l ts /e r ro r s

CHAPTER 4 MICROTRACE 83

p laced by th e a d a p te r m th e o u tp u t buffer T h e se fu n c tio n s w ere th e n p laced m
a p ro g ra m lib ra ry , allow ing P G A co m m an d s to b e easily in c o rp o ra te d in to any
C p ro g ra m s im p ly by ca lling th e co rresp o n d in g C fu n c tio n

4.2 McroTirace — The Inner W orkings
W h ile , as m e n tio n e d e a rh e r, a rea so n a b le deg ree o f m ach in e a n d d isp lay dev ice
in d e p e n d e n c e w ere co n sid e ra tio n s m th e design o f Micro T race, as w as easy in
c o rp o ra tio n o f c e r ta in fu tu re e n h a n c e m e n ts to th e ray t r a c e r (section 5 2, th e
p r im a ry a im w as to e x am in e th e p ra c tic a lity a n d feas ib ility o f m ic ro c o m p u te r
ra y tra c in g , a q u e s tio n w hich is ad d re ssed m th e follow ing c h a p te r T h e co n cern
o f th is c h a p te r is to d esc rib e m d e ta il th e vario u s fu n c tio n a l m o d u les a n d th e
o v era ll desig n a n d im p le m e n ta tio n of M c ro T race A lth o u g h th e ra y t ra c e r h a s
b een w r i t te n m C (Microsoft C version 5 1), a know ledge of th e lan g u ag e is n o t
a p re re q u is ite for an u n d e rs ta n d in g of th e follow ing sec tio n s

4.2.1 A B rief Overview
M c ro T ra c e is e ssen tia lly a p rim itiv e in s ta n c e re n d e rin g sy s te m (section 3 1)
sch em a tica lly re p re se n te d in fig 4 3 , w hose se t o f p rim itiv e s co n sis ts o f a cu b e , a
sp h ere , a cy lin d e r a n d a cone A “scen e” to be re n d e re d is p re se n te d to th e ra y
t ra c e r as a h n k ed list o f o b je c ts , b u ilt u p by th e u se r th ro u g h th e a p p h c a tio n of
sca ling , t r a n s la t io n a n d ro ta t io n o p e ra tio n s o n th e p rim itiv e ty p e s T h e se o p e r
a tio n s a re p e rfo rm e d by fu n c tio n s p ro v id ed m th e u se r in te rfa c e m o d u le , w hich
a lso p rov ides various o th e r se ts o f fu n c tio n s fo r defin ing scene en v iro n m e n t e le
m en ts su ch as p a ra lle l /p e rs p e c tiv e view , ligh t so u rce p o s itio n a n d in ten s ity , view
p la n e etc a n d for defin ing im age o u t p u t / f o r m a t , o p tim iz a tio n o p tio n s etc

A n im ag e of th e scene can b e g e n e ra te d in e ith e r a p e rsp e c tiv e o r p a ra lle l
v iew (section 1 5 2) on an y v iew ing p la n e p e rp e n d ic u la r to th e Z -axis S hadow s
can also b e in c o rp o ra te d in to th e im ag e A t p re se n t, o n ly a s ing le h g h t sou rce
can b e specified , b u t i t can b e specified to be e ith e r a d ire c tio n a l h g h t so u rce (a ll
lig h t ray s a re p a ra lle l to th e specified d irec tio n) o r a p o in t h g h t so u rce p o s itio n e d
a t a specific X Y Z c o o rd in a te in th e scene T h e c u rre n t lig h tin g m o d e l (P h o n g ’s
m o d el, section 1 7 2), does n o t in c o rp o ra te tr a n s p a re n t o b je c ts b u t 'd o e s a c co u n t
for a m b ien t, d iffuse a n d sp e c u la r lig h tin g co m p o n en ts

T h e ra y tra c e r fu n c tio n s m on e of two m odes, e i th e r P G A o r R G B m o d e

CHAPTER 4 MICROTRACE 84

M IcroT race

figure 4 3 Schematic diagram ol MicroTrace

T h e P G A or P ro fessio n a l G ra p h ic s A d a p te r m o d e allow s b o th file a n d sc reen
im ag e o u tp u t o p tio n s a n d g e n e ra te s im ages in a fo rm a t su ita b le for d isp lay on a
P G A d isp lay T h e R G B o r R ed G reen B lue m o d e on th e o th e r h a n d h as o n ly a
file o u tp u t o p tio n a n d p ro d u ces im ages in a file fo rm a t t h a t can b e cu s to m ized
fo r d isp lay on any ty p e o f R G B d isp lay

4.2.2 PG A M ode
T h is is th e d e fa u lt m o d e fo r M c ro T race a n d allow s th e o p tio n of d isp lay in g
th e im age on a P ro fess io n a l G rap h ic s D isp lay (if o n e is ava ilab le) as i t is be in g
g e n e ra te d a n d /o r o f w ritin g th e im ag e to a file in a fo rm a t t h a t c an la te r be
d ire c tly d isp lay ed on one T h e d e fa u lt se ttin g s of th is m o d e a ssu m e th a t a P G A
c a rd an d d isp lay is a t ta c h e d an d g e n e ra te o n ly a screen im ag e H ow ever, th e se
se ttin g s can easily b e ch an g ed , using fu n c tio n s in th e u se r in te rface m o d u le , to
an y c o m b in a tio n of file a n d d isp lay o p tio n s T h a t is to say, it is p o ssib le to have

[1] screen b u t no file o u tp u t (d e fa u lt)
[2] file b u t no screen o u tp u t
[3] screen an d file o u tp u t
[4] no o u tp u t a t all

CHAPTER 4 MICROTRACE 85

O p tio n [2] p rov ides fo r th e g e n e ra tio n of P G A im ages on a m ach in e w hich
does n o t h av e a P G A c a rd a n d d isp lay a t ta c h e d to i t , w h ile o p tio n [4] is u sed to
avoid d isc rep an c ies t h a t cou ld re su lt fro m d iiferences m d is k /d is p la y sp eed s on
d ifferen t m ach in es w hen c o m p arin g im ag e g e n e ra tio n tim e s

In P G A m o d e tw o o u tp u t file fo rm a ts a re av a ilab le , co m p ressed fo rm a t
a n d u n co m p ressed fo rm a t (co m p ressed is th e d e fa u lt) In co m p ressed fo rm a t
th e im ag e is co m p ressed u sin g a P G A ru n le n g th en co d in g m e th o d th a t c an
s u b s ta n tia lly re d u c e th e size o f th e im ag e file, w hile in u n co m p ressed fo rm a t th e
im age is e ssen tia lly s to re d as on e b y te p e r p ixel

U n c o m p r e s s e d F i l e If th e u n co m p ressed fo rm a t is se lec ted , th e im ag e file
g e n e ra te d w ill n o t b e ru n le n g th en co d ed b u t w ill h ave th e fo llow ing fo rm a t -

F F x l x2 y l y2 D A TA

T h e firs t b y te of th e o u tp u t file, h ex F F is s im p ly an id e n tif ic a tio n b y te to in d ic a te
th a t th e file is in u n co m p ressed fo rm T h e re th e n follow s 8 b y te s w hich re p re se n t
th e x mm, armox, ymtn a n d yma3: sc reen c o o rd in a te s re sp ec tiv e ly o f th e v iew p o rt
specified fo r th e im age E ach of th e fo u r c o o rd in a te s is s to re d as a tw o b y te
in teg e r m b ack w o rd fo rm a t (le a s t s ign ifican t b y te f irs t1) T h e n follow s th e d a ta
m th e fo rm o f one b y te p e r p ix e l m v ie w p o rt left to r ig h t, to p to b o t to m o rd e r,
w h ich re p re se n ts th e P G A co lou r o f th e p ixel (section 4 2 3 o u tlin e s how th e se
in te n s itie s a re c a lc u la ted)

As o u tlin e d m section 4 1 2 , w h en th e file im ag e is d isp lay ed , th e a c tu a l
co lo u r fo r each p ixel w ill b e d e te rm in e d fro m th e co rre sp o n d in g Yl-bit R G B e n try
of th e 256 e lem en t look u p ta b le T h is ta b le is s to re d m a s e p a ra te file co n sis tin g
of 256 tw o b y te in teg ers (s to re d least s ign ifican t b y te firs t) w hich c o n ta in th e
R G B values in th e fo rm show n below (bits 12,13,14 a n d 15 a re “d o n ’t ca re s”) -

C O L O U R B I T S
red 11 10 9 8

g reen 7 6 5 4
b lu e 3 2 1 0

W h ile i t m ay b e p o ssib le to d isp lay th e image contained m such a file o n a
d isp lay o th e r th a n a P G A disp lay , by using th e look u p ta b le in c o n ju n c tio n w ith

*If t h e m a c h i n e o n w h i c h t h e i m a g e is g e n e r a t e d d o e s n o t u s e b a c k w o r d s t o r a g e f o r m a t , t h e y will b e s t o r e d n o r m a l l y i e m o s t signifi ca nt b y t e first

CHAPTER 4 MICROTRACE 86
rth e im ag e file to access a n d m o d ify p ixel R G B values, a m o re re a d ily a d a p ta b le

fo rm a t can b e p ro d u c e d by se ttin g A/icro T race in to R G B m o d e w h ere R G B values
a re e x p lic itly s to re d fo r each p ixel in th e im age file

C o m p r e s s e d F i l e If th e co m p ressed file fo rm a t is specified (d e fa u lt) in P G A
m o d e , a ru n le n g th en co d in g sy s tem is u sed to re d u c e th e size o f th e im ag e file
re su ltin g in th e follow ing file fo rm a t -

L ine H ead er D a ta L ine H ead e r D a ta

T h e line h e a d e r w hich p reced es each se t o f d a ta , h a s th e fo rm -

D 9 line # s ta r t X en d X

T h e D9 is th e h ex ad ec im a l P G A code c o m m a n d code fo r “w rite en co d ed
line of p ix e ls” T h e n follows th re e in teg e r n u m b e rs , each s to re d as tw o b y te s (least
sig n ifican t b y te f irs t) , re p re se n tin g th e v e rtica l line n u m b e r a n d th e h o riz o n ta l
screen c o o rd in a te s w here th is lin e beg ins a n d en d s N o te t h a t th e re is no ex p lic it
id b y te o r v iew p o rt a t th e b eg in m g of th e file since, m th is fo rm a t th e firs t b y te
w ill a lw ays b e D 9 a n d th e v iew p o rt is en co d ed as p a r t o f th e im age d a ta for each
line

T h e d a ta for each line co n sists of a series of p ack e ts , of w hich th e re a re tw o
k in d s -

[i] C O U N T P E L

[2] C O U N T PELO P E L I P E L 2

C O U N T 0 127

C O U N T 128 255

If th e co u n t is m th e ran g e 0 127 th e n th e b y te th a t follow s is th e co lou r of
th e n e x t C O U N T + 1 p ixels A lte rn a tiv e ly , if th e c o u n t is in th e ra n g e 128 255
th e n th e n ex t C O U N T -127 b y te s th a t follow a re th e co lou rs o f th e n e x t C O U N T -
127 p ixels As in u n co m p ressed fo rm a t, th e se p ixe l values re p re se n t P G A colours
in th e ran g e 0 255 (section 4 2 4 o u tlin e s how th e se in te n s itie s a re c a lc u la ted)
T h e a c tu a l co lours a re d e te rm in e d , as befo re , fro m th e look u p ta b le en trie s ,
w hich a re s to re d in a s e p a ra te file

CHAPTER 4 MICROTRACE
t

87

C o m p r e s s e d Vs U n c o m p r e s s e d In m o s t cases, co m p ressed fo rm is p re fe rab le
to u n co m p ressed fo rm for tw o reaso n s F irs tly , a n im ag e file m u n co m p ressed
fo rm a t is q u ite likely to b e s u b s ta n tia lly la rg e r th a n i ts co rre sp o n d in g co m p ressed
c o u n te rp a r t S econdly , d isp lay in g a n im ag e fro m an u n c o m p re sse d file tak es
longer by v ir tu e of th e fa c t th a t th e P G A o n ly a c c e p ts a line o f p ixel values m
co m p ressed fo rm a t H ence, each lin e o f p ixels re a d fro m th e u n co m p ressed file
h as to b e ru n le n g th en co d ed by M c ro T race b e fo re b e in g sen t to th e P G A in p u t
buffer (section \ 1 2) w h ereas th e co m p ressed file c an b e s im p ly re a d a n d sen t
d irec tly th e re ,

H ow ever, u n co m p ressed fo rm a t can so m etim es b e usefu l in m o d ify in g a file
im age w ith o u t firs t d isp lay in g i t , since th e e x a c t offset of a s ing le p ixel v a lu e in th e
file can b e easily c a lc u la ted , w hereas in co m p ressed fo rm a t, fin d in g a p a r t ic u la r
p ixel involves read in g a n d in te rp re tin g th e ru n le n g th en co d in g

4.2.3 RGB M ode
R G B m o d e p rov ides o n ly a file o u tp u t o p tio n (no o u tp u t can also b e specified)
T h e no o u tp u t o p tio n , as fo r th e P G A m o d e , is u sed to avo id d isc rep an c ies th a t
cou ld re su lt fro m differences in d isk speeds o n d ifferen t m ach in es w hen c o m p arin g ~
im ag e g e n e ra tio n tim es

W h e n a file o u tp u t is specified , th e o u tp u t file fo rm a t is th e sam e as th a t
fo r th e u n co m p ressed P G A fo rm a t d esc rib ed above, e x c e p t th a t th e id e n tif ic a tio n
b y te is hex 00 , an d th e d a ta co n sis ts o f th re e b y te s p e r p ixel in s te a d of o n e T h e
th re e b y te s re p re se n t th e re d g reen an d b lu e in te n s itie s for th e p ixe l, each of w hich
is a va lue m th e ra n g e 0 255, g iv ing a co lou r p a la te o f 16 million co lours T h ese
red g reen a n d b lu e in te n s itie s , as o u tlin e d m th e fo llow ing sec tio n , a re c a lc u la te d
m q u ite a d ifferen t w ay to p ixel in ten s itie s c a lc u la ted m P G A m o d e

4.2.4 Calculating P ixel Intensities
Sections 4 ^ 2 a n d 4 ^ 3 ab o v e h av e o u tlin e d th e tw o d iffe ren t o p e ra tin g m odes
o f M c ro T race B o th m o d es a re e ssen tia lly th e sam e m th e re sp e c t t h a t in e ith e r
m o d e , th e sam e ray tra c in g fu n c tio n s a re u sed to d e te rm in e th e closest o b je c t of
in te rse c tio n fo r each p ixel a n d th e sam e lig h tin g m o d el is u sed to d e te rm in e p ixel
co lour an d in te n s ity H ow ever, even th o u g h th e sam e lig h tin g e q u a tio n is ap p lied
m b o th m o d es, th e w ay m w hich it is ap p lied an d in te rp re te d m th e tw o m odes
differs s ign ifican tly

CHAPTER 4 MICROTRACE 88

B efore loo k in g a t how th e e q u a tio n is a p p lie d m P G A a n d R G B m o d es ho w
ever, th e e q u a tio n is firs t su m m a riz e d below fo r re fe ren ce A d e ta ile d e x p la n a tio n
o f th e te rm s a n d c o n s ta n ts o f th e e q u a tio n can b e fo u n d m section 1 7 2 , w hich
d iscusses th e P h o n g lig h tin g m o d el m d e ta il T h e in te n s ity o f lig h t / , e m itte d
fro m a p o in t on a su rface w ith a m b ie n t, d iffuse a n d sp e c u la r c o n s ta n ts o f K a ,
Kd a n d K a respective ly , is -

I = IJ<a + IdKd + I sK s

w h ere Ia is th e c o n s ta n t a m b ie n t lig h t in te n s ity a n d Id a n d I s a re th e c a lc u la te d
diffuse a n d sp e c u la r in te n s itie s a t th e p o in t

P G A M O D E In P G A m o d e , th e look u p ta b le is lo ad ed w ith 16 d ifferen t
sh ad es o f 16 d ifferen t co lours, fig 4 4 T h e co lo u r o f a n o b je c t , w hich is c o n ta in e d
in th e clr field of th e s tru c tu re for th e o b je c t (table 4 1), is th e n specified as an
in teg e r va lue in th e ra n g e 0 15, co rresp o n d in g to one o f th e 16 co lou r g ro u p s m
th e look u p ta b le C a lc u la tin g th e co lou r o f th e lig h t e m it te d fro m a p a r t ic u la r
p o in t on a su rface involves a p p ly in g th e ab o v e lig h tin g e q u a tio n to g e n e ra te an
in te n s ity value in th e ra n g e 0 1 for th e p o in t T h is v a lu e is th e n co n v e rte d in to
a n in te g e r va lue in th e ra n g e 0 15 a n d used as an offset in to th e co lo u r g ro u p
of th e o b je c t, re su ltin g in a co lou r m th e ra n g e 0 255

15
14

1 2
11

1
0

MicroTrace color schem e

{ is colon asch PQA Look Up Table
with 15 shade«)

[40 141 !4* 264 2*4 2S9

224 •26 M 234 2 » 239

«2 U 01 202 20« 207

IT* 77 «ft IM 1*0 191

!I

1* 17 25 2« 30 31

0 1 • 10 14 IS

In PGA mode objects are shaded using the 16 shades of whichever
of the 16 colors they have been assigned

fig u re 4 4

CHAPTER 4 MICROTRACE 89

Exam ple see jig 4 4

o b je c t co lou r — ► 12
c a lc u la ted in te n s ity — > 0 6 la K a + Id K d + Is K s
co n v e rted in te n s ity — ► 9 15 x 0 6
fina l co lo u r — ► 201 16 x 12 -f* 9

T h e sh ad es for a g iven co lou r g ro u p a re lo ad ed b y th e u se r b e fo re ra y tra c in g
com m ences, th ro u g h on e o f th e fu n c tio n s p ro v id ed m th e u se r in te rfa c e m o d u le
F or each of th e 16 co lou r g ro u p s , th e u se r specifies to th e fu n c tio n a sing le R G B
value , fro m w hich th e fu n c tio n g en e ra te s 16 sh ad es fo r th e co lou r g ro u p T h is is
ach ieved by in te rp re tin g th e su p p lied R G B value as th e X Y Z lo c a tio n of a cell
m a n im a g in a ry c u b e co n sis tin g of 4096 (16 x 16 x 16) su ch cells, fig 4 5, a n d
follow ing a lin e fro m th e o rig in th ro u g h th is cell (a n d b e y o n d if n ecessa ry) u n ti l i t
h as p assed th ro u g h 16 cells o f th e cu b e T h e X Y Z c o o rd in a te s o f th e se 16 cells
fo rm th e R G B values of th e 16 sh ad es fo r th e specified co lou r g ro u p A lte rn a tiv e ly ,
a d iffe ren t fu n c tio n can b e used w hich , in s te a d o f fo llow ing a line fro m th e o rig in
u p w ard s , follows it fro m th e d iag o n a lly o p p o s ite co rn e r, d o w n w ard s T h u s , th e
sh ad es fo r a p a r t ic u la r co lour g ro u p can b e fo rced to in c lu d e e i th e r w h ite as th e
h ig h e s t in te n s ity o r b lack as th e low est (on ly a co lo u r g ro u p specified by a cell o f
eq u a l X y Y an d Z co o rd in a te s co n ta in s b o th)

Each of the 4096 possible PGA colors can be viewed as a subcell
of a 16x16x16 cube rested on red, green and blue axes

figure 4 5

R G B M O D E In R G B m o d e , th e red , g reen a n d b lu e co m p o n e n ts of th e lig h t
e m itte d fro m a p a r tic u la r p o in t on an o b je c t a re c a lc u la te d by firs t c a lc u la tin g
i t ’s cyan , m a g e n ta a n d yellow (C M Y) c o m p o n en ts a n d co n v ertin g th e m to R G B
T h e re aso n fo r u sin g th e s u b tra c tiv e p r im a ry co lou rs, C M Y , is th a t re flec tio n
o f lig h t is e ssen tia lly a s u b tra c tiv e p rocess So, in th e sam e w ay th a t th e R G B

CHAPTER 4 MICROTRACE 90

in te n s itie s for an y co lou r can be in te rp re te d as th e re sp e c tiv e in te n s itie s o f red ,
g reen a n d b lu e lig h t w hich , w hen a d d e d to b lack give th e specified co lou r, th e
C M Y in te n s itie s o f th e co lou r a re th e re sp e c tiv e in te n s itie s o f cy an , m a g e n ta an d
yellow , w h ich , w hen s u b tra c te d fro m w h ite lig h t, give th e sa m e co lour

T h e se C M Y in te n s itie s a re ca lc u la ted for a p o in t on a su rface by a p p ly in g
th e lig h tin g e q u a tio n th re e tim es , once fo r each of cy an , m a g e n ta a n d yellow , to
give an in te n s ity for each m th e ra n g e 0 1 T h e se in te n s itie s a re th e n co n v e rted
to R G B in te n s itie s , each o n e a n in teg e r in th e ra n g e 0 255

Example

red = 255 x (1 - IaK a + IdI<c + I 3K S)
green = 255 x (1 - IaI<a + h K m + I SK S)
b lu e = 255 x (1 - IaI (a + IdI<v + ISK S)

4.2-5 The Object Structure
M c ro T ra c e im p lem en ts a se t of fo u r b asic p rim itiv e ty p e s , fig 4 each one
d efined m its ow n local c o o rd in a te sy s te m as follow s -

C Y L IN D E R cy lin d er of u n it ra d iu s a n d le n g th c en te red h o r i
zo n ta lly a long th e Z-axis

S P H E R E sp h e re of u n it ra d iu s , cen te red a b o u t th e o rig in

C U B E u n it c u b e s ta n d in g on p o s itiv e X Y Z axes

C O N E cone of u n it h e ig h t w ith b a se of u n it ra d iu s , cen
te re d h o riz o n ta lly a long th e Z -axis, w ith its ap ex
a t th e orig in

A n o b je c t, w hich is a n in s ta n c e of one o f th e se b as ic p rim itiv e ty p e s , co n
sis ts s im p ly o f a basic p rim itiv e n am e , a n d a 4 x 4 tra n s fo rm a tio n m a tr ix w hich
describ es th e tr a n s la tio n , ro ta tio n a n d sca ling o p e ra tio n s th a t t ra n s fo rm th e p r im
itiv e fro m its ow n loca l c o o rd in a te sy s te m in to th e w orld c o o rd in a te sy s te m

T h e 4 x 4 tra n s fo rm a tio n m a tr ix , a long w ith th e b as ic p r im itiv e ty p e n a m e

CHAPTER 4 MICROTRACE 91

(a) cube (b) sp h ere (c) cone (d) cylinder

figure 4 6 The tour primitive solids of MicroTrace

a re s to re d m a C s t ru c tu re , w ith th e u ser in te rface m o d u le p ro v id in g fu n c tio n s for
a llo c a tin g sp ace fo r su ch an o b je c t s t ru c tu re , a n d for b u ild in g u p th e tra n s fo rm a
tio n m a tr ix A scene co n sis tin g of an y n u m b e r of su ch o b je c ts is th e n p re se n te d
to be ray t ra c e d as a linked lis t o f th ese s tru c tu re s

In a d d itio n to s to rin g a p rim itiv e ty p e n a m e a n d tra n s fo rm a tio n m a tr ix , th e
s t ru c tu re h as severa l o th e r fields, som e o f w hich a re filled m by th e ra y tra c e r
T h e se fields c o n ta in vario u s o th e r ite m s of in fo rm a tio n a b o u t th e o b je c t req u ire d
b y th e ra y tra c e r a n d th e sh a d e r e g its co lou r A c o m p le te lis t a n d d e sc rip tio n of
th e fields of th e o b je c t s t ru c tu re is g iven m table 4 1 below , th o u g h th e fu n c tio n
of som e of th e m m ay n o t b e a p p a re n t u n til th e a reas o f ra y -o b je c t in te rse c tio n
an d o p tim iz a tio n s have b een covered in sections 4 5 a n d 4 6 re sp ec tiv e ly

4.3 Ray G eneration
As m e n tio n e d in section 2 2, a ray can be co n v en ien tly re p re se n te d as a lin e in
p a ra m e tr ic fo rm , defined by a p o in t P (x 0, yo, z0), a d ire c tio n v e c to r D (D x , D y, Dz)
an d a p a ra m e te r t A ll p o in ts on th e h n e a re th e n o rd e re d a n d accessed v ia t
w ith each p o in t (x ,y , z) on th e line g iven by -

X — X q + tD x
Y = YQ + tD y
Z — Zq -f* tD z

P o sitiv e in c reasin g values of t g ive p o in ts on th e line t h a t a re in c reas in g ly fu r th e r
a long th e h n e fro m {X q,Y q, Z o) in th e d ire c tio n (Dx , D y, D 2), w hile n eg a tiv e

CHAPTER 4 MICROTRACE

Field N am e D escription

primitive name of the primitive type from which the object is de
rived

transform 4 x 4 transformation matrix

inverse 4 x 4 inverse transformation matrix

xmin xmax
ymm ymax

screen rectangle (extent) enclosing the object’s projected
bounding volume

zneax zfar nearest & furthest Z coordinates of object’s transformed
B V from primary ray origin

clr object’s PGA colour group (0 15)

rnd roughness of the object’s surface (used as a coarse approx
imation of a textured surface)

ka kd ks object’s ambient, diffuse and specular reflection constants

pwr object’s specular power constant

cmy object’s cyan, magenta and yellow reflection ratios

next pointer to next object in list

T ab le 4 1 T h e O b je c t S tru c tu re

CHAPTER 4 MICROTRACE 93

d ecreasin g values g ive p o in ts t h a t a re fu r th e r in th e o p p o s ite d ire c tio n F or th is
rea so n , th e p o in t (X 0, ^o, Z 0) 1S o ften re fe rred to as th e ra y o rig in

A n im age is th e n ra y tra c e d by c a s tin g a ra y th ro u g h each p ix e l m th e screen ,
d e te rm in in g th e closest o b je c t s tru c k by th e ra y a n d c a lc u la tin g th e sh a d e of th e
o b je c t a t th e p o in t o f in te rse c tio n , w hich th e n b ecom es th e co lou r fo r th e p ixel

In M c ro T race, th e ray eq u a tio n fo r a g iven p ixel is d e te rm in e d fro m th e
p e rs p e c tiv e /p a ra lle l v iew ing p a ra m e te rs , th e v ie w p o rt, th e w indow a n d th e view
p la n e T h e firs t s tag e in d e te rm in in g th e ra y e q u a tio n fo r a p ix e l is to m a p th e
p ixel o n to th e v iew p lan e , w h ere th e view p la n e c an b e an y p la n e p a ra lle l to th e
X Y p lan e , i e Z = dis t , (w h ere dist is th e d is ta n c e o f th e p la n e fro m th e
o rig in) So, g iven th e fo llow ing v iew p lan e , w indow , a n d v ie w p o rt -

v iew p lan e — ► Z = d is t
v iew p o rt — ► vxl vx2 vyl vy2
w indow — ► wxX wx2 wyi wy2

a p ixel (X v, Yv) on th e screen m ap s o n to th e p o in t (X W1 Yw, dist) o n th e w indow
w h ere -

\ r _ , / y \ ^ x 2 ^ x lX\u — UJxl (-'Mi ^xX)
VX2 - Vxl

Yw = wyl + (Yv - vyl) - ^ ~ Wyl (4 2)
v y2 ^ y l

T h is m a p p e d p o in t (X w, Yw,dist) fo rm s o n e h a lf o f th e ra y e q u a tio n , th e
ra y o rig in T h e second p a r t , th e ray d irec tio n is d e te rm in e d fro m th e p a ra l
le l /p e rs p e c tiv e v iew ing p a ra m e te rs If th e view is defined to b e a p a ra lle l p ro je c
tio n ty p e view i e th e v iew er is p o sitio n ed a t in fin ity a lo n g a specified d ire c tio n
th e n all p r im a ry rays a re p a ra lle l to th e g iven d ire c tio n (Px ,P y,P z) O n th e
o th e r h a n d , if i t is a p e rsp e c tiv e p ro je c tio n ty p e view th e n th e v iew er is a t a
g iven p o in t (-Yv, Y^, Zv) a n d a ll p r im a ry rays w ill h av e a s lig h tly d ifferen t d irec
tio n , see section 2 2 T h e ray d ire c tio n (Dx, D y, D z) can th e n b e d e te rm in e d for
a p e rsp e c tiv e o r p a ra lle l view by -

p e rsp e c tiv e (Dx, D y, Dz) = (X w - X t1 Yw - Yv, dist - Zv)

p a ra lle l (Dx1D y, D z) = (Px ,P y,P z)

CHAPTER 4 MICROTRACE 94

T h is ra y e q u a tio n , defined by th e p o in t (X w, Yw, dist) a n d th e d ire c tio n (Z>x , Dy, D z),
is th e n te s te d for in te rse c tio n w ith th e lis t o f o b je c ts in o rd e r to d e te rm in e th e
closest o b je c t (if an y) s tru c k by th e ray

4.4 Transforming The Ray
In te s t in g an o b je c t for in te rse c tio n , it is m u ch s im p le r to te s t th e p rim itiv e ty p e
fro m w hich th e o b je c t is d eriv ed th a n to te s t th e o b je c t itse lf T h is is b ecau se th e
p rim itiv e lies u n ifo rm ly sized an d p o s itio n e d in its ow n local c o o rd in a te sy s tem ,
w h ereas th e o b je c t lies a rb itra r i ly sized a n d o r ie n ta te d m w orld c o o rd in a te sp ace

P ro v id e d th a t th e ra y is c o rrec tly tra n sfo rm e d fro m w orld c o o rd in a te s to
th e local c o o rd in a te sy s te m o f th e p rim itiv e ty p e fro m w hich th e o b je c t is deriv ed ,
th e value for t fo u n d fro m in te rse c tin g th e tra n s fo rm e d ra y w ith th e p rim itiv e is
th e sam e as t h a t fo u n d b y in te rse c tin g th e u n tra n s fo rm e d ra y w ith th e o b je c t,
b u t is c o m p u ta tio n a lly less ex p en siv e to c a lc u la te T h e co rre c t tra n s fo rm a tio n is
fo u n d by u sin g th e inverse of th e o b je c ts 4 x 4 tra n s fo rm a tio n m a tr ix to tra n s fo rm
th e ra y fro m w orld to p rim itiv e c o o rd in a te s In M c ro T race , th is inverse m a tr ix is
c a lc u la ted for each o b je c t befo re ray tra c in g com m ences a n d s to re d m th e inverse
field of th e o b je c t s t ru c tu re (table 4 I)

F or a g iven o b je c t, tra n s fo rm in g th e ray involves tra n s fo rm in g b o th its o ri
g in a n d d ire c tio n by m u ltip ly in g th e m by th e o b je c t’s 4 x 4 inverse tra n s fo rm a tio n
m a tr ix , A /7 , as follows -

tra n s fo rm e d ra y o rig in = [Xo, Yq, Z 0, 1] M I
tra n s fo rm e d ra y d irec tio n = [.Dx , Dy iD z ̂0] M I

4.5 R ay Intersection
In its s im p lest form , th e closest o b je c t s tru c k by a g iven ra y is d e te rm in e d by
te s tin g th e ray for in te rse c tio n w ith every o b je c t m th e lis t a n d se lec tin g th e
one th a t gives th e low est value o f t for an in te rse c tio n (re m e m b e r i is a m e a
su re of th e d is ta n c e o f th e in te rse c tio n p o in t fro m th e ra y o rig in) Section 4 6
how ever, d iscusses severa l o p tim iz a tio n tech n iq u es th a t h av e b een im p le m e n te d
w hich sig n ifican tly red u ce th e set o f o b je c ts t h a t h av e to b e te s te d to som e su b se t
c o n sis tin g o n ly o f th o se o b je c ts w ith a h igh p ro b a b ility o f b e in g in te rse c te d by

CHAPTER 4 MICROTRACE 95

th e ray, re su ltin g in a s u b s ta n tia lly red u ced im age g e n e ra tio n t im e T h e re are
fo u r ray -p rim itiv e in te rse c tio n te s tin g fu n c tio n s in M c ro T race, on e for each of
th e fou r p rim itiv e ty p e s F or each p rim itiv e ty p e , th is te s t g en e ra lly involves -

[1] checking if th e re is a va lue of t fo r th e ra y w hich
gives a p o te n tia l in te rse c tio n p o in t w ith an y of th e
p r im itiv e ’s su rfaces

[2] s u b s ti tu tin g th is va lue fo r t (if on e is fo u n d) in to
th e ray e q u a tio n

[3] check ing if th e re s u l ta n t p o in t lies on th e co rre
sp o n d in g su rface of th e p rim itiv e (a n d c a lc u la tin g
th e su rface n o rm a l a t t h a t p o in t if it does)

H ow ever, g iven t h a t we a re on ly in te re s te d m th e closest p o in t o f in te rse c tio n
o f th e ra y w ith any o b je c t, un less th e t value fro m s ta g e [1] is less th a n th a t for th e
closest in te rse c tio n fo u n d m p ro cessin g th e lis t o f o b je c ts so fa r, i t c a n ’t p o ssib ly
p ro d u c e a c loser in te rse c tio n so it is p o in tle ss to p ro ceed w ith s tag es [2] a n d [3]

C o n seq u en tly , each of th e fou r ra y -p rim itiv e in te rse c tio n fu n c tio n s o u tlin e d
in sections 4 5 1 to 4 $ 4 below , in a d d itio n to b e in g g iven a ra y to te s t for
in te rse c tio n , is a lso g iven th e low est in te rse c tio n value o f t fo r th e ra y w ith any
o b je c t m th e lis t te s te d so fa r (th is value is in itia lly se t to som e very h ig h value)
a n d th e su rface n o rm a l a t th e c o rre sp o n d in g in te rse c tio n p o in t E a c h tim e a closer
in te rse c tio n is fo u n d , th e value a n d su rface n o rm a l a re u p d a te d to reflec t th e new
in te rse c tio n T h ese th re e e n titie s , th e ra y to b e te s te d , th e closest in te rse c tio n
so fa r an d th e su rface n o rm a l a t th a t in te rse c tio n a re re fe ren ced m th e fo llow ing
sec tio n s as -

E N T I T Y D E S C R IP T IO N

(x 0 îy0,Zo) ray origin

(D X , D y , D z) ray direction

nearest t value of closest object
intersection so far

normal surface norm al a t closest
intersection so far

4.5.1 Cube Intersection
T h e c u b e p rim itiv e is a u n it c u b e defined by six su rfaces, each on e p a ra lle l to one
o f th e X Y Z axes -

CHAPTER 4 MICROTRACE 96

surface equations bounds test surface normal

X = 0 0 < = Y , Z < = 1 (- 1, 0, 0)
X = 1 0 < = Y , Z <=1 (1, 0, 0)
Y = 0 0 < = <= 1 (0 , -1 , 0)
Y = 1 0 < = X , Z < = 1 (0, 1, 0)
Z = 0 0 < = X , Y < = 1 (0, 0 , - 1)
Z = 1 0 < = X,Y < = 1 (0, 0, 1)

F in d in g th e closest p o in t o f in te rse c tio n o f th e c u b e w ith a tra n s fo rm e d ra y
involves te s tin g each su rface for in te rse c tio n w ith th e ra y For each su rface , th is
involves find ing th e v a lu e o f t (if an y) fo r w hich th e ray in te rse c ts th e c o rre sp o n d
ing p la n e If th is va lue is less th a n “n e a re s t” (see section 4 5 above) th e n th e
e x a c t p o in t o f in te rse c tio n is d e te rm in e d a n d te s te d to see if i t com plies w ith th e
b o u n d s te s ts fo r th e su rface If it com plies, th e n an in te rse c tio n h a s b een fo und
T h e te s t for th e Z = 0 su rface is o u tlin e d m p seu d o -co d e below , th e te s ts for
th e re m a in in g su rfaces b e in g very s im ila r

I n t e r s e c t i o n T e s t F o r Z — 0 S u r f a c e

F in d t for w hich ray in te rse c ts Z = 0 p la n e -

2 =

=> Zo -f tD z =
=> t = Dz

0

(4 3)

CHAPTER 4 MICROTRACE 97

P s e u d o C o d e

i f (Dz i s n o t 0) / * D z = 0 r a y p a r a l l e l t o p l a n e * /
b e g i n *1qIII

i f (t < ne arest) a n d (t > 0)
b e g i n

X = X o + 1 D x / * c a l c u l a t e p o i n t o f i n t e r s e c t i o n * /
Y = Y 0 + 1 Dy
i f (X < = 1) a n d (X > = 0) a n d (Y < = 1) a n d (Y > = 0)

b e g i n
n e a r e s t = t

n o r m a l — (— 1 , 0 , 0)
e n d

e n d
e n d

4.5,2 Sphere Intersection - -
T h e sp h e re p rim itiv e is defined as a u n it sp h e re c e n te re d a t th e o rig in w ith th e
fo llow ing su rface e q u a tio n -

s u r f a c e e q u a t i o n b o u n d s t e s t s u r f a c e n o r m a l

X 2 + Y 2 + Z 2 = 1 N O N E (X ,Y ,Z)

O ne w ay of te s t in g if th e ray in te rse c ts th e sp h e re is to te s t if th e p e rp e n d ic
u la r d is ta n c e b e tw een th e ray a n d th e o rig in (th e ce n tre o f th e sp h e re) is less th a n
one (th e ra d iu s) T h is sim p le te s t w ill n o t how ever g ive th e p o in t o f in te rse c tio n
b e tw een th e ra y a n d th e sp h e re (w hich is re q u ire d fo r c a lc u la tin g th e su rface
n o rm a l) A lte rn a tiv e ly , s u b s ti tu tin g th e ra y e q u a tio n in to th e su rface e q u a tio n
for th e sp h e re p ro d u ces a q u a d ra tic e q u a tio n m t w hich can b e so lved using a
q u a d ra tic fo rm u la S u b s ti tu t in g th e solved v a lu e for t b a c k in to th e ray e q u a tio n
th e n gives th e e x a c t p o in t of in te rse c tio n b e tw een th e ray a n d th e sp h e re T h is
la t te r a p p ro a c h is th e one o u tlin e d below -

CHAPTER 4 MICROTRACE 98

S u b s t i tu t in g th e ray e q u a tio n

X = X 0 + W x
Y = Y0 + tD y
Z = Zq + tD z

(4 4)

in to th e sp h e re e q u a tio n '

X 2 + Y 2 + Z 2 = 1

gives

(Xo + tD xf + (F 0 + tD y)2 + (Zq + tD zf = 1

E x p a n d in g a n d re a rra n g in g gives a q u a d ra tic m t w hich c an b e so lved w ith th e
fo rm u la

_ B ± y /B 2 - A C
A

w here

>1 = D\ + D\ + D]
B = D xX o + D yYo + D zZ0
C = X l + Y 2 + Z t - 1

(4 5)

T h e in te rse c tio n te s t is th e n b ased on th e sq u a re ro o t te rm , w ith th e follow ing
in te rp re ta tio n s -

CHAPTER 4 MICROTRACE 99

V a lu e o f N u m b e r o f I n t e r p r e t a t i o n
B 2 - A C in te r s e c t io n s o f r e s u l t

zero 1 ray tan gen ta i - no in tersection
negative 0 com plex solution - no in tersection
positive 2 two intersections - take closest

4.5.3 Cylinder Intersection
T h e cy lin d e r p r im itiv e co n sists o f a cy lin d er of u n i t ra d iu s a n d le n g th , defined by
th e fo llow ing th re e su rfaces -

s u r f a c e e q u a t io n b o u n d s t e s t s u r f a c e n o r m a l

X 2 + Y 2 = 1
Z = 0
Z = 1

0 < = Z < = 1
X 2 + Y 2 < = 1
X 2 + Y 2 < = 1

(X ,Y , 0)
(0 ,0 , - 1)
(0 ,0 , 1)

I n t e r s e c t i o n T e s t F o r X 2 + Y 2 - 1 S u r f a c e

T h e te s t for th is su rface is d eriv ed m th e sam e w ay as t h a t fo r th e sp h e re , b y su b
s t i tu t in g th e ray e q u a tio n in to th e su rface e q u a tio n , w ith th e re s u lta n t e q u a tio n

(X q + tD x)2 + (io + tDy)2 = 1

E x p a n d in g a n d re a rra n g in g gives a q u a d ra tic m t w hich ag a in can be solved w ith
th e fo rm u la

t = B ± yJB2 - A C

w here

CHAPTER 4 MICROTRACE 100

A = D l + D]

B = D xX 0 + D yY0
C = X 20 + Y02 - 1

(4 6)

A s for th e sp h e re , th e in te rse c tio n te s t is b a sed on th e sq u a re ro o t te rm , w ith th e
sam e in te rp re ta tio n s

I n t e r s e c t i o n T e s t F o r O t h e r S u r f a c e s

T h e in te rse c tio n te s t fo r th e o th e r tw o cy lin d er su rfaces is v ery s im ila r to
th a t o f th e Z = 0 su rface for th e c u b e i l lu s tra te d above , w ith th e ex c e p tio n th a t
th e b o u n d s te s t is s lig h tly d ifferen t i e h av in g c a lc u la te d a v a lu e X a n d Y } th e
p o in t a t w hich th e ray in te rse c ts th e p la n e in q u e s tio n , th e te s t

(X < = 1) a n d (X > = 0) a n d (Y < = 1) a n d (Y > = 0)

is rep laced by

(X 2 + Y 2) < = 1

4.5.4 Cone Intersection
T h e cone p rim itiv e co n sists o f a cone of u n it h e ig h t a n d ra d iu s , w ith th e a p e x a t
th e o rig in , a n d is defined by th e follow ing tw o su rfaces -

surface equation bounds te st surface norm al
X 2 + Y 2 - Z 2 = 0

Z = 1
0 < = Z < = 1
X 2 + Y 2 < = 1

(X,Y,0)
(X , Y , x / l - Z 2)

I n t e r s e c t i o n T e s t F o r X 2 + Y 2 — Z 2 = 0 S u r f a c e

T h e in te rse c tio n te s t for th is su rface , like th e sp h e re , is d e riv ed b y s u b s ti
tu t in g th e ray e q u a tio n in to th e su rface e q u a tio n , p ro d u c in g -

CHAPTER 4 MICROTRACE 101

(X 0 + tDx)2 + (F0 + tDy)2 - (Z0 + tD2f = 0

A g a in , e x p a n d in g a n d re a rra n g in g gives a q u a d ra t ic in t w h ich as befo re ,
c an b e solved w ith th e fo rm u la

J B ± V B 2 - A C
A

w h ere

A = D 2x + D 2y - D l
B — D xX o + DyYo — D , Z 0
C = X 2 + Y 2 - Z 2

(4 7)

T h e in te rse c tio n te s t for th e o th e r su rface is- id e n tic a l to th a t o f th e Z — 1
cy lin d er su rface

4.6 Shadow Rays
Section 2 3 1 d e sc rib ed how it was p ossib le to d e te rm in e if a p o in t w as in shadow
w ith re sp e c t to a lig h t so u rce by tra c in g a ray, ca lled a shadow ray, fro m th e p o in t
to th e lig h t so u rce If th e ra y h its an y o p aq u e o b je c t, th e p o in t lies in shadow
M c ro T race uses a d ifferen t se t o f ray -p rim itiv e in te rse c tio n fu n c tio n s fo r te s t in g
sh ad o w rays in o rd e r to ta k e a d v a n ta g e of th e fac t t h a t th e o n ly co n cern is w h e th e r
o r n o t th e ra y s trik es an y su rface be tw een its o rig in a n d th e lig h t so u rce T h e
fu n c tio n s a re very s im ila r to th e ones o u tlin e d ab o v e a n d differ o n ly in th e re sp e c t
th a t as soon as th e ra y is fo u n d to s tr ik e an y su rface o f an y o b je c t , no fu r th e r
su rfaces o f t h a t o b je c t a re te s te d , no su rface n o rm a l o r p o in t o f in te rse c tio n a re
ca lc u la ted , an d n o fu r th e r o b je c ts a re te s te d

CHAPTER 4. MICROTRACE 102

4.7 O ptim izations
As o u tlin e d in section 2.4, 75% of th e tim e ta k e n to ra y tra c e a n im ag e is ta k e n u p
w ith ca lc u la tin g th e in te rse c tio n of rays w ith o b je c ts . G iven th a t th e ra y -o b je c t
in te rse c tio n ca lcu la tio n s h av e b een o p tim iz e d as fa r as p o ssib le , th e o n ly w ay of
red u c in g th is figure is to a t te m p t to red u ce th e n u m b e r o f ra y -o b je c t in te rse c tio n
te s ts . O ne w ay of do ing th is is to t r y to d e te rm in e , befo re te s tin g th e ra y w ith
th e lis t o f o b je c ts , th o se o b je c ts t h a t th e ra y h a s n o ch an ce o f h it t in g . T h ese
m issed o b je c ts can th e n b e ex c lu d ed from th e te s t , so t h a t th e ra y is te s te d for
in te rse c tio n w ith o n ly a sm all su b se t o f o b je c ts t h a t h av e a h ig h p ro b a b ility of
b e in g h it . T h e d ifficu lty of such a schem e how ever, lies in fin d in g a m ean s of
easily id en tify in g as m a n y of th e se m issed o b je c ts as p o ssib le , w hich w ill b a la n c e
th e n u m b e r o f such o b je c ts d e te c te d a g a in s t th e c o m p u ta tio n a l cost o f d e te c tin g
th e m .

T h e fo llow ing sec tio n s o u tlin e fou r o p tim iz a tio n s em ployed by M c ro T race
w hich p ro v id e d ifferen t m e th o d s o f red u c in g th e n u m b e r of o b je c ts a g a in s t w hich
a ra y m u st b e te s te d , a n d h ave b een called

• P ix e lb u ffe r

• E x te n ts

• G rid

• S o rtlis t

T h e o p tim iz a tio n s have b een im p le m e n te d in such a m a n n e r as to b e co m
p le te ly in d e p e n d e n t fro m one a n o th e r . T h a t is to say, th e y can b e u sed e ith e r
in d iv id u a lly , o r in an y co m b in a tio n . E ach one is co n tro lled by its ow n flag v a ri
ab le , w hich if se t m ean s th a t th e o p tim iz a tio n is to b e em ployed . T h e flags in
tu r n a re se t by calling th e a p p ro p r ia te fu n c tio n s fro m th e u se r in te rface m o d u le
(M c ro T ra c e se ts all fo u r o p tim iz a tio n s on by d e fa u lt) .

All fou r o p tim iz a tio n s o p e ra te on ly for p r im a ry ray s a n d , w ith th e e x cep tio n
of th e th ird , th e P ixe lbu ffe r, can o p e ra te w hen e ith e r a file a n d /o r a d isp lay im age
o u tp u t h as b een re q u e s te d — th e P ix e lb u ffe r can o n ly b e u sed w ith a d isp lay
o u tp u t since it relies on re a d in g p ixel values in ad v a n c e of tra c in g to d e te rm in e
w h e th e r o r n o t a ray sh o u ld b e c a s t for a g iven p ixel. T h e effectiveness o f th e
o p tim iz a tio n s a t red u c in g re n d e rin g tim e is ex am in ed in section 4-8, w h ere im age
g e n e ra tio n tim es for various co m b in a tio n s of th e fou r a re ta b u la te d for severa l

CHAPTER 4 MICROTRACE 103

te s t im ages

Sm ce all o f th e o p tim iz a tio n s , w ith th e e x cep tio n o f S o rtlis t re ly o n th e
e x is ten ce of a b o u n d in g vo lum e fo r each o f th e fou r p r im itiv e o b je c t ty p e s , befo re
lo ok ing a t each o f th e o p tim iz a tio n s in d e ta il, a b r ie f d e sc rip tio n of th e b o u n d in g
vo lum es used m ay p rove useful

4.7.1 Bounding Volumes
As o u th n e d in section 2 4, th e m a jo r ity o f o p tim iz a tio n tech n iq u es c u rre n tly
em ployed in ra y tra c in g can b e b ro a d ly classified as e ith e r sp ace su b d iv is io n o r
b o u n d in g v o lu m e te ch n iq u es O ne of th e reaso n s fo r se lec tin g b o u n d in g vo lum es
over sp ace su b d iv is io n as th e basis o f m o st o f th e M c ro T races o p tim iz a tio n s was
th a t sp ace su b d iv is io n tech n iq u es h ave a te n d e n c y to re q u ire q u ite la rg e a m o u n ts
o f m em o ry a n d , g iven a m em o ry “b u d g e t” of 640K it was felt th a t b o u n d in g
vo lum es w ould give a b e t te r s p a c e /p e rfo rm a n c e ra t io — reg ard less of th e n u m b e r
of o b je c ts in a scene, M c ro T race sto res a to ta l o f o n ly fou r b o u n d in g vo lum es
(one fo r each of th e fo u r p r im itiv e o b je c t ty p e s)

Section 2 4 ¿ .d iscu ssed m som e d e ta il th e issue o f b o u n d in g vo lum es w here
th e g en e ra l id e a is to su rro u n d each o b je c t in a vo lum e th a t is less co stly to te s t
for in te rse c tio n th a n th e o b je c t i t encloses T h e n , o n ly if th e ray in te rse c ts th e
b o u n d in g vo lum e, is i t te s te d for in te rse c tio n w ith th e o b je c t in side

In M c ro T race how ever, each o b je c t is n o t ex p lic itly su rro u n d e d in its ow n
b o u n d in g vo lu m e In s te a d , o n ly fou r b o u n d in g vo lum es e x is t, one for each of
th e fou r p rim itiv e ty p es , fig 4 7 U nlike th e p rim itiv e ty p e s , w hose sh a p e a n d
p o s itio n a re n o t ex p lic itly defined an y w h ere m th e ray t ra c e r (th e y a re im p lic itly
defined in th e ir re sp ec tiv e ra y -p rim itiv e in te rse c tio n fu n c tio n s) , th e fou r b o u n d in g
volum es a re ex p lic itly s to re d in an a rray , each as a se t of e ig h t X Y Z co o rd in a te s
T h e b o u n d in g v o lum e for a p a r t ic u la r o b je c t can th e n b e c a lc u la te d w hen n eed ed
s im p ly by ap p ly in g its tra n s fo rm a tio n m a tr ix to th e e ig h t v ertices o f th e v o lu m e
of th e p rim itiv e fro m w hich th e o b je c t is d erived

T h e rea so n for c a lc u la tin g r a th e r th a n s to rin g th e o b je c t b o u n d in g vo lum es
is th a t s to rin g th e b o u n d in g v o lu m e m th e o b je c t s tru c tu re w ould in c rease th e
sp ace re q u ire d to s to re a n o b je c t by a b o u t 50% In a d d itio n , all o f th e o p tim iz a
tio n s below m ak e use of o b je c t b o u n d in g vo lum es o n ly to e x tra c t som e in itia l
in fo rm a tio n a b o u t an o b je c t O nce th is in fo rm a tio n has b een e x tra c te d a n d
s to re d m th e o b je c t s t ru c tu re , th e re is no fu r th e r need for th e b o u n d in g vo lum e.

CHAPTER 4 MICROTRACE 104

(a) c u b e

&

(C) CONE

HI J
(d) CYU4DER

fig u re 4 7 The four primitive bounding volumes

C o n seq u en tly , b o u n d in g vo lum es a re c a lc u la ted one a t a tim e fo r each o b je c t
befo re ra y tra c in g com m ences a n d a re passed to an y a c tiv e o p tim iz a tio n s w hich
in tu r n e x tra c t a n d s to re an y in fo rm a tio n th e y req u ire , a n d a re th e n d isc a rd e d

I t can b e seen fro m fig 4 7 th a t th e b o u n d in g vo lu m e fo r each o f th e sp h ere ,
cy lin d er a n d cu b e , co n sis ts o f a e ith e r a cu b ic o r re c ta n g u la r b lock defined by
e ig h t c o o rd in a te s , w h ich fo rm th e e ig h t co rn ers o f th e b lock In th e case of th e
cone how ever, th e b o u n d in g vo lum e is a p y ra m id , re q u ir in g o n ly five v e rtices for
d e fin itio n For th e sake o f co n sis ten cy how ever, th is b o u n d in g v o lum e is s to re d
as e ig h t v ertices by d u p lic a tin g th e a p ex c o o rd in a te th re e tim e s T h is p re v e n ts
h av in g to t r e a t th is vo lum e as a specia l case a n d m ean s th a t all fu n c tio n s w hich
p rocess b o u n d in g vo lum es n eed b e p re se n te d w ith n o th in g m o re th a n a list of
e ig h t v e rtices , reg a rd less of th e p rim itiv e ty p e to w hich th e b o u n d in g v o lum e
be longs

4.7.2 Pixelbuffer
For m a n y scenes, a la rg e p e rc e n ta g e of p ixel values w ill b e se t to th e b ac k g ro u n d
co lou r it th e rays w hich th e y spaw n do n o t in te rse c t an y o b je c ts a t all T h e
id ea b e h in d th is o rig in a l o p tim iz a tio n , w hich is re fe rred to m M c ro T race as
P ix e lb u ffe r, is to p ro v id e an easy m ean s of d e te c tin g such p ixe ls , so t h a t th e y can
th e n b e a u to m a tic a lly se t to th e b a c k g ro u n d co lour w ith o u t h av in g to g e n e ra te
a n d tra c e a ray fo r th e m

F irs tly , all p ixels o n th e screen a re se t to a g iven co lo u r T h e n , one by one
th e b o u n d in g v o lum e for each o b je c t is ca lc u la ted a n d d ra w n o n th e screen as

CHAPTER 4 MICROTRACE 105

six p o ly g o n s, filled in g iven co lou r W h en all o b je c ts h av e b e e n p ro cessed m th is
way, th e re su lt is a screen co n sis tin g of p ixels th a t h av e one of tw o co lours — th e
in it ia l co lour a n d th e co lour u sed to fill th e p o ly g o n s T h e fo rm er a re th e ones
w hose ray s d efin ite ly m iss all o b je c ts

W h e n ray tra c in g co m m ences, b e fo re c a s tin g a ra y th ro u g h a p ix e l, th e
co lou r o f th e p ix e l is ex am in ed to see if i t is th e sam e co lou r as th a t u sed to fill
th e p ro je c te d b o u n d in g vo lum es If i t is n ’t , th e n th e p ix e l is im m e d ia te ly se t to
th e b a c k g ro u n d co lou r a n d th e n e x t p ixel p ro cessed

E ven th o u g h th is schem e d e te c ts a la rg e p e rc e n ta g e of all p ixels w hose ray s
do n o t in te rse c t an y o b je c t, it c a n n o t alw ays d e te c t all o f th e m since, w ith th e
e x cep tio n of th e cu b e , all o f th e b o u n d in g vo lum es w ill c o n ta in som e void sp ace
(te som e e m p ty sp ace b e tw een th e o b je c t a n d th e b o u n d in g vo lum e) w hich m ay
p ro je c t o n to p ixels t h a t a re n o t o th e rw ise covered by a n o n -v o id p a r t o f som e
o th e r vo lum e T h e p e rc e n ta g e o f p ixels fa lh n g in to th is c a te g o ry how ever w ould
n o rm a lly b e q u ite low, b u t cou ld b e fu r th e r re d u ced by th e use of t ig h te r b o u n d in g
vo lum es T h is how ever w ould b e a t th e cost o f in c reasin g th e o v erh ead of s to rin g ,
tra n s fo rm in g a n d re n d e rin g th e b o u n d in g vo lum es, a cost w hich is u n like ly to p ay
fo r itse lf in te rm s o f in c reased p e rfo rm a n c e of th e o p tim iz a tio n

C O S T A N D P E R F O R M A N C E T h e co st o f im p le m e n tin g P ix e lb u ffe r con
sists en tire ly of th e cost o f re a d in g each p ixel once, w hich is c o n s ta n t fo r a g iven
v iew p o rt size, a n d th e cost o f g e n e ra tin g a n d re n d e rin g th e b o u n d in g vo lum es,
w hich is p ro p o rtio n a l to th e n u m b e r o b je c ts m th e scene T h e sav ings o b ta in e d
fro m P ix e lb u ffe r on th e o th e r h a n d a re d ire c tly p ro p o r tio n a l to th e n u m b e r of
e m p ty p ixels (ones w hich do n o t have th e fillco lour a f te r all b o u n d in g vo lum es
h av e b e e n re n d e re d) a n d is in d e p e n d e n t of th e n u m b e r of o b je c ts in th e scene
since, g iven -

pixels = N
fillcolour p ixels = F
o b je c ts = n

th e sav ings a re ca lc u la ted as

(N - F) n F - , ,savings = jV n = 1 - j j (4 8)

W h ile P ix e lb u ffe r p rov ides a m ean s of easily d e te c tin g th o se p ixels w hose ray s will
n o t in te rse c t an y o b je c t , it h as th e lim ita tio n th a t pixels fa iling to fall in to th is

CHAPTER 4 MICROTRACE 106

ca te g o ry m u s t h av e th e ir ray s te s te d fo r in te rse c tio n w ith a ll o b je c ts m th e scene
I t does how ever h av e th e a d v a n ta g e o f b e in g re a so n a b ly effective a n d easy to
im p le m e n t a n d does n o t in c u r e ith e r a la rg e c o m p u ta tio n a l o r s to ra g e o v e rh ead

4.7.3 Extents
As o u tlin e d in section 2 4 1, a sso c ia tin g a n o b je c t w ith a b o u n d in g vo lu m e w hich
tig h tly encloses th e o b je c t, b u t is c o m p u ta tio n a lly less ex p en siv e to te s t for in te r
sec tio n w ith a ray, can red u c e th e co st o f ray tra c in g a n im ag e T es tin g th e ray
fo r in te rse c tio n w ith th e b o u n d in g vo lum e how ever, s ti l l re q u ire s th e use o f ex
p en siv e flo a tin g p o in t a r i th m e tic since i t is p e rfo rm e d in w orld c o o rd in a te sp ace
In a d d itio n to th is , th e b o u n d in g vo lum e w ould h av e to b e s to re d w ith th e o b je c t
w hich , as m e n tio n e d ea rlie r , w ould in c rease th e sp ace re q u ire d to s to re a sing le
o b je c t by a b o u t 50%

E x te n ts , w hich is b ased on R o th ’s u se of b o x en c lo su res [R O TH 82] (see
section 3 3 5), overcom es th e se tw o p ro b lem s how ever b y u sin g a 2D “b o u n d in g
v o lu m e” ca lled a n e x te n t, w hich is e ssen tia lly a re c ta n g le in sc reen sp ace th a t
encloses th e o b je c t, section 2 4 1 T h e firs t p ro b lem , th a t o f h av in g to use flo a tin g
p o in t a r i th m e tic , is th u s overcom e since te s t in g of e x te n ts is d o n e in in te g e r sc reen
sp ace a n d th e second , th a t o f s to rag e , by v ir tu e of th e fa c t t h a t an e x te n t req u ires
s to ra g e fo r ju s t fo u r in teg ers , w hich co m p ares v ery fa v o rab ly w ith th e tw en ty
fo u r flo a tin g p o in t n u m b ers re q u ired for a b o u n d in g vo lu m e In fa c t, in Microsoft
C version 5 1, w here a n in te g e r occupies 2 b y te s , a n d a long flo a t 8, an e x te n t
req u ires o n ly 4% o f th e s to ra g e re q u ire d for a b o u n d in g vo lu m e (8 b y te s co m p a re d
to 192)

O b je c t e x te n ts a re c a lc u la ted for each o b je c t b e fo re ra y tra c in g com m ences
by g e n e ra tin g a b o u n d in g vo lu m e for each o b je c t a n d find ing i ts m in im u m a n d
m a x im u m X a n d Y c o o rd in a te s , w hich a re th e n p ro je c te d o n to screen co o r
d in a te s a n d s to re d as fo u r in teg ers m th e xmm, xmax, ymin , a n d ymax fields
re sp ec tiv e ly o f th e s t ru c tu re for th e o b je c t (table 4 1) T h e se in te g e r co o rd in a te s
(x m i n , y m m) a n d (xmax, ymax) fo rm th e low er left a n d u p p e r r ig h t co rn e rs of
th e sc reen e x te n t o f th e o b je c t

W h en ra y tra c in g , befo re te s tin g a ra y fo r in te rse c tio n w ith a p a r t ic u la r
o b je c t, th e p ixel th a t sp aw n ed th e ray is te s te d a g a in s t th e o b je c t ’s sc reen e x te n t
O n ly if th e p ixel lies in sid e th e e x te n t, is th e ray te s te d fo r in te rse c tio n w ith th e
o b je c t

CHAPTER 4. MICROTRACE 107

C O S T A N D P E R F O R M A N C E T h e cost o f u sin g E x te n ts a m o u n ts to th e
cost o f g e n e ra tin g th e e x te n t for each o b je c t, p lu s th e cost o f te s t in g a p ixel
a g a in s t th e e x te n t each tim e th e o b je c t is te s te d for in te rse c tio n w ith a ray. T h e
fo rm er co n sists o f th e cost o f g e n e ra tin g th e b o u n d in g v o lu m e fo r each o b je c t
(w hich is d iv id ed am o n g a ll a c tiv e o p tim iz a tio n schem es) as w ell as th e cost of
find ing a n d p ro je c tin g th e m in im u m a n d m a x im u m X a n d Y c o o rd in a te s . T h e
te s t to see if a p ixel (x , y) lies in s id e an e x te n t req u ire s , in th e w o rst case, 4
in teg er co m p ariso n s (since all o f th e fo u r co n d itio n s a re wa n d ” c o n d itio n s , as soon
as one fa ils, th e overa ll co n d itio n fails)

(x ^ — x mor) a n d (x > = x mtn) a n d (y ymax) a n d (y > = ymin)

In th e w o rst p o ssib le case , w h ere th e p ixel for every ra y lies in sid e th e e x te n t
for every o b je c t, e x te n ts b eco m e a lia b ility r a th e r th a n a n a sse t since te s tin g th e
p ixel w ith a n o b je c ts e x te n t becom es su p erflu o u s a n d m ere ly ad d s to th e co st of
te s tin g th e ray w ith th e o b je c t. E ven in such ra re cases how ever, th e lia b ility
w ould b e m in im a l since th e cost o f th e p ix e l-e x te n t te s t is neg lig ib le in co m p ariso n
to th a t o f th e ra y -o b je c t te s t . O p tim a l sav ings on th e o th e r h a n d , w ould o ccu r for
a scene c o n ta in in g a la rg e n u m b e r o f o b je c ts w ith as l i t t le o v erlap p in g o f e x te n ts
as possib le . In th e b e s t p o ssib le case, w here th e re is no o v erlap p in g a t all, each
p r im a ry ra y w ould th e n h av e to b e in te rse c te d w ith (a t m o s t) a sing le o b je c t fro m
th e e n tire list.

W h ile th e “ray in te rse c ts e x te n t” te s t is m uch c h e a p e r to p e rfo rm , b o th fro m
a c o m p u ta tio n a l a n d a s to ra g e p o in t o f view , th a n th e “ra y in te rse c ts b o u n d in g
vo lu m e” te s t , th e fac t th a t it is p e rfo rm ed in sc reen sp ace m ean s th a t i t c an on ly
b e ap p lied to p r im a ry ray s, since th e se a re th e o n ly ray s th a t a re c o n s tra in e d
to pass th ro u g h th e screen . T h e b o u n d in g vo lum e te s t o n th e o th e r h a n d , is
p e rfo rm e d in o b je c t sp ace an d h en ce can b e ap p lied to b o th p r im a ry a n d sec
o n d a ry rays. H ow ever, th e re is n o th in g to p re v e n t b o th schem es b e in g em ployed
s im u ltan eo u sly it. to use screen sp ace e x te n ts fo r te s tin g p r im a ry ray s, a n d to
u se o b je c t sp ace b o u n d in g vo lum es for seco n d ary ray s — a p o ss ib ility o u tlin e d
in stction 5.2.1.

T h e l im ita tio n on th e use of e x te n ts to p r im a ry rays is n o t o f m a jo r sig
n ificance to M icro T race a t p re se n t since, by v ir tu e o f th e fa c t t h a t i t c u rre n tly
in c o rp o ra te s ju s t a sing le lig h t sou rce , a n d th a t th e o n ly se c o n d a ry ray s tra c e d
axe shadow ray s, th e n u m b e r of p r im a ry rays c a s t w ill a lw ays b e g re a te r th a n
th e n u m b e r of seco n d a ry rays (ex cep t in th e ra re case w here all p r im a ry ray s
in te rse c t a n o b je c t, w hen th e tw o will b e e q u a l) . H ow ever, sh o u ld M c ro T race,
a t som e p o in t in th e fu tu re , b e u p g ra d e d to in c o rp o ra te m u ltip le lig h t sources
a n d /o r tr a n s p a re n t o b je c ts , it is q u ite likely th a t th e n u m b e r of se c o n d a ry rays

CHAPTER 4 MICROTRACE 108

will exceed th a t o f p r im a ry ones a n d seco n d ary ray o p tim iz a tio n s w ould th e n b e
a s ig n ifican t fa c to r in its p e rfo rm a n c e Such u p g ra d e s a n d se c o n d a ry ra y o p ti
m iz a tio n s axe d iscu ssed m section 5 2

A n o th e r lim ita tio n on th e usefu lness o f e x te n ts is th a t , d e p e n d in g o n th e
sh a p e a n d o r ie n ta tio n o f th e o b je c t, th e y can so m etim es c o n ta in la rg e vo id a reas ,
w hich red u ces th e ir effectiveness, fig 4 8 O ne w ay o f re d u c in g th is vo id a re a
w ould b e to u se a p o ly g o n a l e x te n t in s te a d of a re c ta n g u la r on e S uch an e x te n t
cou ld enclose th e p ro je c te d vo lum es w ith o u t any vo id a re a since a ll fou r b o u n d in g
v o lum es m M c ro T race co n sist of po ly g o n s a n d so w ill a lw ays fo rm a p o ly g o n w h en
p ro je c te d o n to th e screen T h e co st o f g e n e ra tin g p o ly g o n a l e x te n ts how ever
w ould b e g re a te r th a n th a t for re c ta n g u la r ones, as w ould th e cost o f s to ra g e a n d
te s tin g

Screen extents can sometimes contain large void areas
figure 4 8

4.7.4 Grid
W h ile th e E x te n ts o p tim iz a tio n o u tlin e d in th e p rev io u s sec tio n p rov ides a qu ick
a n d easy te s t to see if a p r im a ry ray s ta n d s a go o d ch an ce of h it t in g an o b je c t,
th e co m p le te list o f o b je c ts is s till p ro cessed for every ra y T h e G rid o p tim iz a tio n
on th e o th e r h a n d p ro v id es a m ean s o f su p p ly in g a lis t o f o b je c ts for each ray
th a t is a su b se t o f th e e n tire lis t o f o b je c ts , co n sis tin g o n ly o f th o se o b je c ts w ith
a h igh p ro b a b ility o f b e in g in te rse c te d T h e o p tim iz a tio n is b ased o n ideas by
G e rv a u tz [GERV86] for p a r t i t io n in g screen sp ace in o rd e r to c re a te te m p o ra ry
o b je c t tre e s (section 3 4 4) an d by A rn a ld i [A RN A 87] fo r g e n e ra tin g 3D cells for
sp ace su b d iv is io n (section 3 4 5)

T h e o p tim iz a tio n resem bles so m e th in g o f a sp ace su b d iv is io n te c h n iq u e (sec
tion 2 4 2) in tw o d im en sio n a l screen sp ace as o p p o sed to th re e d im en sio n a l o b

CHAPTER 4 MICROTRACE 109

je c t sp ace T h e id ea is to im p o se a re c ta n g u la r g rid o n th e sc reen a n d to a sso c ia te
w ith each re c ta n g le a h s t o f o b je c ts t h a t a re p a r t ia l ly /c o m p le te ly c o n ta in e d m
th a t re c ta n g le T estin g a ra y for in te rse c tio n w ith th e scen e th e n involves d e te r
m in in g th e re c ta n g le to w hich th e p ixel sp aw n in g th e ra y b e lo n g s, a n d te s t in g th e
ra y for in te rse c tio n w ith th e asso c ia ted h s t o f o b je c ts fo r th a t re c ta n g le S ince,
as m e n tio n e d ea rlie r , a ll fo u r o p tim iz a tio n s can b e u sed e ith e r to g e th e r o r in d e
p e n d e n tly , an y o f th e o th e r o p tim iz a tio n s c an b e u sed to sp eed u p th e te s t in g of
th e ra y w ith th is a b b re v ia te d list

M c ro T race uses a fixed g rid size o f 20 cells h o riz o n ta lly b y 20 cells v e rtica lly
reg a rd less of th e size of th e screen C onsequen tly , th e la rg e r th e sc reen , th e g re a te r
th e n u m b e r o f p ixels a sso c ia ted w ith each cell T h e g rid is im p le m e n te d as a 20x20
a rra y o f p o in te rs to linked lis ts , w ith each e lem en t of a lin k ed lis t c o n ta in in g a
s ing le p o in te r to a n o b je c t w hose e x te n t overlaps th e cell, fig 4 9 W h ile s to r in g
th e g n d as an a r ra y m ean s th a t th e n u m b e r of cells is fixed (ch an g in g th e n u m b e r
req u ire s re -defin ing th e a rra y d im ensions m th e so u rce code a n d reco m p ilin g) it
does h av e th e a d v a n ta g e of p ro v id in g fa s t a n d easy access to th e o b je c t p o in te r list
for a g iven p ixe l, w hich sim p ly involves u sin g th e p ixels c o o rd in a te s as an in d ex
in to th e a rra y A lte rn a tiv e s tru c tu re s w hich p ro v id e a m o re flex ib le a p p ro a c h for
im p lem en tin g th e g rid a re d iscussed m section 5 2 1

Implementation of GRID using array of pointers to linked lists

figure 4 9

T h e g rid is g e n e ra te d by scan n in g th e lis t o f o b je c ts o nce for each cell,
g e n e ra tin g th e linked lis t o f p o in te rs , a n d th e n se tt in g th e co rre sp o n d in g a r ra y
e n try to p o in t to th e h s t C ells th a t do n o t c o n ta in an y o b je c ts h av e a NULL
p o in te r in th e ir co rresp o n d in g a rra y e n try In d e te rm in in g w h e th e r o r n o t an
o b jec tro v e rlap s a cell, th e o b je c ts screen e x te n t is used in s te a d of i ts b o u n d in g
v o lum e A lth o u g h th is will so m etim es give a less a c c u ra te a p p ro x im a tio n as
to w h e th e r a n o b je c t o verlaps a cell th a n if th e th e o b je c ts screen p ro je c te d

CHAPTER 4 MICROTRACE 110

b o u n d in g vo lu m e w ere used (e x te n ts g en era lly c o n ta in a la rg e r p e rc e n ta g e of
void sp a c e), th e fo rm er is a less ex p en siv e te s t to p e rfo rm In a d d itio n , since
th e G rid o p tim iz a tio n w ould n o rm a lly b e u sed m c o n ju n c tio n w ith th e E x te n ts
o p tim iz a tio n , th e c o m p u ta tio n a l ex p en se of g e n e ra tin g th e g rid is fu r th e r red u ced
as o b je c t e x te n ts w ill a lre a d y h ave b een g e n e ra te d

4.7.5 Sortlist
S u p p o se th a t , in s te a d of h av in g to te s t a ra y fo r in te rse c tio n w ith w ith a h s t
o f o b je c ts in ra n d o m o rd e r , th e o b je c ts in th e lis t w ere p re se n te d in th e sam e
o rd e r in w hich th e y a re e n c o u n te re d by th e ra y T h e first in te rse c tio n o f th e ra y
w ith su ch a lis t w ou ld th e n b e g u a ra n te e d to b e th e closest one , so as soon as an
in te rse c tio n is fo u n d , th e re m a in in g o b je c ts in th e lis t n eed n o t b e te s te d T h is is
th e g en era l id e a b e h in d a n o th e r o rig in a l o p tim iz a tio n em ployed by M c ro T race,
ca lled S o rth s t

B efore ray tra c in g com m ences, b o u n d in g vo lum es a re c a lc u la te d for each
o b je c t T h e closest a n d fu r th e s t Z c o o rd in a te s of each fro m th e o rig in o f th e ray,
a re c a lc u la te d a n d s to re d m th e znear a n d zfar fields re sp ec tiv e ly o f th e o b je c t
s t ru c tu re (see table 4 1) T h e te rm s closest a n d fu r th e s t a re u sed in p lace of
m in im u m an d m a x im u m since, fro m fig 4 10, d e p e n d in g on th e d ire c tio n of th e
p r im a ry ray , Z mtn co u ld b e e ith e r th e c losest o r th e fu r th e s t from th e ra y o rig in

A case where Znear is equal to Zmax instead of Zmm

fig u re 4 10

T h e linked h s t o f o b je c ts p re se n te d to M c ro T race is th e n s o r te d in to a s
cend ing o rd e r of znear c o o rd in a te s by re a rran g in g th e links in th e lis t, a fu n c tio n
w hich is p e rfo rm ed by an efficient so rtin g a lg o r ith m for linked lis ts th a t req u ires
o f th e o rd e r of N log N co m p ariso n s (w here N is th e n u m b e r of o b je c ts m th e
h s t) [ER D E89]

CHAPTER 4 MICROTRACE 111

Since th is lis t rep re se n ts on ly an a p p ro x im a tio n to th e o rd e r in w hich a ray
w ill e n c o u n te r th e o b je c ts , as i l lu s tra te d in fig 4 Hy ^ is u n sa fe to cease te s tin g
o b je c ts m th e lis t as soon as a n in te rse c tio n is fo u n d H ow ever, g iven Z c, th e
Z —c o o rd in a te o f th e closest in te rse c tio n fo u n d in p ro cessin g th e lis t so fa r, it is
a lw ays safe to cease te s tin g as soon as an o b je c t is e n c o u n te re d w hose znear
c o o rd in a te lies fu r th e r fro m th e ray o rig in th a n Z c

Even though object B ties closer to the ray origin than A
the ray intersects object A at a closer point

fig u re 4 11

C O S T A N D P E R F O R M A N C E T h e cost o f im p le m e n tin g th e so r tin g o p ti
m iz a tio n co n sists o f th e cost o f in itia lly g e n e ra tin g th e so r te d lis t o f o b je c ts , p lu s
th e cost p e r ray of te s tin g th e znear o f each o b je c t w ith Z c T h is l a t te r co st in
tu rn will d ep en d on how soon a safe ex it p o in t is reach ed in th e lis t o f o b je c ts
T h e co n d itio n s for o p tim a l p e rfo rm a n c e o f S o rtlis t w ou ld b e a scene w here th e re
is h t t le o r n o o v erlap p in g of o b je c ts a lo n g th e Z —axis (o v erlap p in g on X a n d Y
axes w ould h av e no effect) T h is is in c o n tra s t to th e E x te n ts o p tim iz a tio n , w here
o v erlap p in g a long th e Z —axis h as no affect on p e rfo rm a n c e b u t o v e rlap p in g on
th e X a n d Y axes does

4.8 Presentation o f R esults
T h is sec tio n e v a lu a te s th e p e rfo rm an ce of each of th e fo u r o p tim iz a tio n s o u tlin e d
above by p re se n tin g a n d a n a ly s in g tra c in g tim es a n d o th e r s ta t is t ic s for tw o te s t
im ages g e n e ra te d b y M c ro T ra c e P h o to g ra p h s o f th e tw o im ages, a scene of
sn o o k er b a lls a n d a chem ical la ttic e , a re show n in figs 4 12 a n d 4 13, a lo n g w ith
co lou red d ia g ra m s i l lu s tra tin g th e g rid cells a n d o b je c t e x te n ts (figs 4 H a n d
4 1 5)

CHAPTER 4 MICROTRACE 112

4.8.1 The Test Images
S n o o k e r B a l l s Figure 4 12 show s an im ag e of a se t o f sn o o k er b a lls w ith th e
v iew er s i tu a te d b e h in d a n d above th e p ack of fe d b a lls , loo k in g dow n th e ta b le
T h e scene co n sists o f 253,440 p ixels a n d c o n ta in s 21 o b je c ts , each one a sp h ere
T h e deg ree to w h ich o b je c t e x te n ts overlap each o th e r as w ell as th e ir d is tr ib u tio n
am o n g th e g rid cells (tw o fa c to rs w hich affect th e efficiency of th e E x te n t a n d
G rid o p tim iz a tio n s) can b e seen fro m fig 4 14a, w h ich il lu s tra te s th e cells of
th e g rid a n d th e o b je c t screen e x te n ts 2 as th e y w ould a p p e a r to M c ro T race In
ad d itio n , th e deg ree o f o v erlap p in g o f th e znear a n d zfar c o o rd in a te s of th e o b je c t
b o u n d in g vo lum es, a fa c to r w hich affects th e efficiency o f S o rtlis t, is i l lu s tra te d
in fig 4 14b, w h ich show s th e b o u n d in g vo lum es w h en o r th o g ra p h ic a lly p ro je c te d
o n to th e xz-p la n e te w hen view ed fro m above

L a t t i c e Figure 4 13 show s th e la t t ic e scene, w hich co n sis ts of 54 o b je c ts —
27 sp h eres a n d 27 cy h n d e rs T h e n u m b e r of p ixels for th is scene (223 ,680) is
d ifferen t from th a t o f th e sn o o k er b a lls b y v ir tu e o f th e fa c t th a t th e p ro g ra m
w hich g e n e ra te d th e scene a u to m a tic a lly ca lcu la tes a w indow o n th e v iew p la n e
t h a t is ju s t sufficient to enclose th e scene an d a d ju s ts th e specified v ie w p o rt to
m a in ta in th e co rrec t w in d o w /v ie w p o rt ra t io A s fo r th e sn o o k er scene, fig 4 15a
i l lu s tra te s th e g rid cells a n d o b je c t e x te n ts a n d fig 4 15b show s a p la n view of th e
scene

4.8.2 Explaination Of Terms
T h e re su lts o f tables 4 3 an d 4 4 w ere g a th e re d by tra c in g each o f th e la t t ic e
a n d snooker im ages six tim e s — once w ith no o p tim iz a tio n s ac tiv e , o nce w ith all
o p tim iz a tio n s a c tiv e a n d once w ith on e o f each o f th e fo u r o p tim iz a tio n s a c tiv e
T h e d e riv a tio n a n d m e a n in g o f each s ta t is t ic is o u th n e d in table 4 2

T h e firs t tw o s ta tis t ic s o f each ta b le , “rays t r a c e d ” a n d “rays in te rs e c te d ”
a re re a lly o n ly re lev an t to cases w here th e P ix e lb u ffe r o p tim iz a tio n is a c tiv e
T h e value of “ray s g e n e ra te d ” w ould re p re sen t th e n u m b e r of p ixe ls th a t h a d th e
fillcolour a f te r th e P ix e lb u ffe r p rep ro cess (section 4 ? 2), w h ile “ra y s in te rse c te d ”
w ould re p re se n t th e p e rc e n ta g e of th o se p ixels w hose rays in te rse c te d a n o b je c t
an d th e re fo re p ro v id es an in d ic a tio n of th e void sp ace c o n ta in e d in th e p ro je c te d
b o u n d in g volum es — th e higher th e p e rc e n ta g e , th e lower th e a m o u n t o f void
space

2 T h e e x t e n t s a r e o u t l i n e d m r e d a n d f i l l e d m y e l l o w f o r c l a r i t y

F ig u re 4.12: S nooker scene g e n e ra te d by M icro T race

CHAPTER
4.

MICROTRACE

F ig u re 4.13: L a t t ic e scen e g e n e ra te d b y M ic ro T ra c e

CHAPTER
4.

MICROTRACE

CHAPTER 4 MICROTRACE 115

STATISTIC D E SC R IPT IO N

rays traced
rays intersected
R -0 Tests -

per ray-
total

% reduction

Time -
preprocess
Total

• % of pixels for which a ray was generated
• % of generated rays which intersected some object

• Average no of ray-object tests per ray
• Total no of ray-object tests m millions
• Reduction m required no of ray-object tests as a % of

that required to test every ray with every object

• Time to calculate inverse transformation matrices, sort ob~
ject list, calculate extents etc

• Ray tracing time + preprocess time (hh mm ss)

% N 0 time • Total time as a % of non-optimized time

T ab le 4 2 D e sc rip tio n of re su lts te rm s

In re la tio n to ra y -o b je c ts te s ts , th e te s ts p e r ray , to ta l te s ts a n d p e rc e n ta g e
re d u c tio n , i l lu s tra te from d ifferen t p e rsp e c tiv e s , th e o v era ll effectiveness of th e
a c tiv e o p t im iz a t io n s) m red u c in g th e n u m b e r o f re q u ire d ra y -o b je c ts te s ts w hich ,
as can b e seen fro m th e ta b le s , h a s th e g re a te s t b e a r in g on sp eed in g u p tra c in g
tim e s A lso in re la tio n to ra y -o b je c t te s ts , th e p e rc e n ta g e o f te s ts re su ltin g in
an in te rse c tio n , “% h its ” , gives a n in d ic a tio n o f th e efficiency o f th e E x te n ts a n d
G rid o p tim iz a tio n s (sections 4 7 3 a n d 4 7 4) a t lim itin g ra y in te rse c tio n te s ts to
o b je c ts w ith a h igh p ro b a b ility o f b e in g h it , a n d of th e effectiveness o f th e so rtin g
of th e S o rtlis t o p tim iz a tio n (section 4 7 5)

4.8.3 Discussion Of Results
F ro m a g lan ce a t tables 4 2 an d 4 w hich h s t th e s ta tic t ic s fo r each o p tim iz a
tio n in o rd e r of decreasin g re n d e rin g tim e , it is c lear t h a t E x te n ts p ro v id es th e
g re a te s t tim e sav ings fo r b o th im ages a n d th a t no o p tim iz a tio n is slow er th a n th e
u n o p tim iz e d tim e N o te how ever t h a t th e o rd e r of o p tim iz a tio n s m b o th ta b le s
is d ifferen t — G rid is th e second slow est o p tim iz a tio n fo r th e la t t ic e w h ereas

CHAPTER 4. MICROTRACE 116

Grid & Extents (left) and plan view (right) for SNOOKER image
Figure 4.14 (a) and (b)

SNOOKER BALLS — >• 21 objects, 253440 pixels

Optimizations
STATISTIC none SI Pb Gd Ex All
rays traced
rays intersected

100.00%
36.99%

100.00%
36.99%

49.57%
74.62%

100.00%
36.99%

100.00%
36.99%

49.57%
74.62%

R -0 Tests
per ray
% hits
total
% reduction

21.00
10.17%
5.30 M
0.00%

16.85
9.18%

4.27 M
19.76%

21.00
5.66%

2.64 M
50.43%

8.77
13.56%
2.22 M
58.24%

0.98
60.13%
0.25 M
95.34%

1.27
58.83%
0.16 M
97.01%

Time
preprocess
Total

0 sec
4:35:06

1 sec
3:48:18

7 sec
2:22:26

2 sec
2:02:55

0 sec
00:30:51

7 sec
00:22:04

% N.O. time 100.00% 82.99% 51.76% 44.68% 11.21% 8.02%

Table 4.3: Snooker Scene Statistics.

CHAPTER 4. MICROTRACE

Grid k Extents (left) and plan view (right) for LATTICE image
Figure 4.15 (a) and (b)

LATTICE — ► 54 objects, 223680 pixels

Optimizations
STATISTIC none SI Gd Pb Ex All
rays traced
rays intersected

100.00%
41.58%

100.00%
41.58%

100.00%
41.58%

63.52%
65.46%

100.00%
41.58%

63.53%
65.46%

R O Tests
per ray
% hits
total
% reduction

54.00
4.54%

12.07 M
0.00%

44.99
4.03%

10.06 M
16.69%

35.07
3.76%

7.84 M
35.06%

54.00
1.86%

7.67 M
36.48%

2.09
30.52%
0.47 M
96.13%

2.43
34.98%
0.34 M
97.14%

Time
preprocess
Total

1 sec
12:35:16

2 sec
10:53:38

2 sec
8:07:39

16 sec
7:59:17

2 sec
00:55:43

17 sec
00:41:50

% N.O. time 100.00% 86.54% 64.57% 63.46% 7.37% 5.53%

Table 4.4: Lattice Scene Statistics.

CHAPTER 4 MICROTRACE 118

P ix e lb u ffe r is for th e sn o o k er b a lls In b o th cases how ever, S o rt lis t is th e slow est
o p tim iz a tio n , th o u g h i t gives a g re a te r sav ing for th e sn o o k er b a lls th a n fo r th e
la t t ic e T h ese a n d o th e r in te re s tin g a sp e c ts of th e le s u lts a re fu r th e r an a ly z e d
below u n d e r th e h ead in g s of th e ir re sp ec tiv e o p tim iz a tio n s

E x t e n t s F ro m b o th re su lts ta b le s i t is c lea r t h a t E x te n ts gives a fa r g re a te r
re d u c tio n in tra c in g tim e th a n an y sing le o th e r o p tim iz a tio n — th e tim e fo r th e
sn o o k er balls b e in g red u ced to ju s t over 11% o f th e u n o p tim iz e d tim e a n d th a t of
th e la t t ic e to ju s t over 7% It can also b e seen th a t th e “% h i ts ” fo r th e sn o o k er
b a lls , a t 60 13%, is a lm o st tw ice th a t fo r th e la t t ic e , 30 52% T h e low er fig u re for
th e la t t ic e is p ro b a b ly a re su lt o f th e size a n d o r ie n ta tio n of th e cy lin d ers , w hich
causes th e ir e x te n ts to c o n ta in a la rg e r am o u n t o f vo id sp ace a n d c o n seq u en tly
re su lts in a g re a te r n u m b e r o f n o n -in te rse c tin g rays h av in g to b e te s te d for th e se
e x te n ts

I t is in te re s tin g to n o te how ever th a t in sp ite of th is fa c t, a n d th e fac t th a t
th e re is g re a te r o v erlap p in g of e x te n ts (c o m p are fig 4 w ith 4 15a), E x te n ts
p ro d u ces a g re a te r sav ing m re n d e rin g tim e fo r th e la t t ic e scene T h is is p ro b a b ly
d u e to th e slig h tly la rg e r re d u c tio n in ra y -o b je c ts te s ts for th is scene, 96 13%
co m p a re d to 95 34% , a n d th e la rg e r n u m b e r o f o b je c ts (54 a g a in s t 21) th o u g h
th e issue is c lo u d ed so m ew h a t by th e fac t th a t th e cy lin d ers m la t t ic e scene h ave
a m o re expensive ray -in te rse c t ion te s t th a n th e sp h eres so figures for re d u c tio n s
in ra y -o b je c t te s ts a re n o t as s tra ig h t fo rw ard as for th e sn o o k er scene, w h ere all
o b jec ts have th e sam e te s t cost

P ix e lb u f F e r In section 4 7 2 it w as o u tlin e d how th e sav in g fro m P ix e lb u ffe r is
re la te d on ly to th e n u m b e r of fillcolour pixels an d is in d e p e n d e n t o f th e n u m b e r
of o b je c ts in th e scene T h is fac t is confirm ed fro m th e figures in th e re su lts
ta b le s w here , for b o th im ages, th e su m of th e “ray s tra c e d ” p e rc e n ta g e a n d “%
re d u c tio n ” is 100, in d ic a tin g th e re la tio n sh ip o f equation 48 In a d d itio n , th e
re n d e rin g tim e , ex p ressed as a p e rc e n ta g e o f th e u n o p tim iz e d re n d e rin g tim e , is
a lm o st p ro p o rtio n a l to th e “rays tra c e d ” figure w hich , as o u tlin e d above , in d ic a te s
th e p e rc e n ta g e o f pixels th a t h a d th e fillcolour a f te r th e P ix e lb u ffe r p rep ro cess
A co m p ariso n o f th e “ray s in te rse c te d ” s ta t is t ic for b o th im ages show s th a t a
h ig h er p e rc e n ta g e of ray s w ere in te rse c te d m th e sn o o k er scene, in d ic a tin g th a t
th e p ro je c te d void a re a (on th e view p lan e) o f th e b o u n d in g vo lum es fo r th is scene
w ere, on av erage , less th a n th o se in th e la t t ic e scene N o te th a t th e s ig n ifican tly
longer p rep ro cess tim e s for th is o p tim iz a tio n is, m b o th im ag es, a re s u lt o f th e
tim e ta k e n to d raw th e filled po ly g o n s o f th e b o u n d in g vo lum es o n sc reen

G r i d T h e p e rfo rm an ce of th e G rid o p tim iz a tio n can b e seen from th e ta b le s
to be b e t te r for th e snooker th a n for th e la ttic e scene A look & fig 4 14a a n ^

CHAPTER 4 MICROTRACE 119

4 15a show s th a t th e rea so n is p ro b a b ly d u e to th e g re a te r deg ree o f o v erlap p in g
in th e o b je c t e x te n ts fo r th e la t t ic e scene, re su ltin g in a la rg e r n u m b e r o f o b je c ts
b e in g a sso c ia te d w ith m an y cells In a d d it io n th is scen e h as a m u ch sm alle r
p e rc e n ta g e of e m p ty cells I t can b e seen fro m th e ta b le s to o , t h a t th e n u m b e r
of ra y -o b je c t in te rse c tio n te s ts p e r ra y is g re a te r , as a p e rc e n ta g e of th e n u m b e r
o f o b je c ts in th e scene, for th e la t t ic e im age — ag a in , th is is p ro b a b ly a re su lt of
th e g re a te r o v erlap p in g a n d d isp e rs io n , over th e g rid a re a , o f th e o b je c t e x te n ts
T h ese o b se rv a tio n s , to g e th e r w ith th e fa c t th a t th e p e rc e n ta g e o f ra y -o b je c t te s ts
th a t p ro v e p o sitiv e (“% h i ts ”) is sign ifican tly low er fo r th e la t t ic e seem s to su g g est
th a t sm alle r cells, o r a d is tr ib u tio n o f o b je c ts over som e so r t o f h ie ra rc h ica l cell
s t ru c tu re (section 5 2 1) m ig h t p rove m o re benefica l fo r th e la t t ic e scene

S o r t l i s t In b o th im ages, S o rtlis t p ro d u ces th e least re d u c tio n s m re n d e r in g
tim e s of an y o f th e o p tim iz a tio n s b u t, in sp ite o f th is , s till m an ag es to re n d e r th e
sn o o k er im ag e in ju s t u n d e r h a lf th e u n o p tim iz e d tim e , w ith a figure of ju s t over
86% for th e la t t ic e A look a t fig 4 14& show s th a t th e re is h t t le o v e rlap p in g of
znear a n d zfar co o rd in a te s fo r th e snooker scene In e x am in in g fig 4 15b how ever,
w hich a p p e a rs to show h t t le o v erlap p in g , i t m u st b e re m e m b e red th a t th e re a re
in fa c t tw o s im ila r tie rs o f o b je c ts d ire c tly below th e v isib le o n e show n So, w hile
o v erlap p in g within th e th re e h o riz o n ta l tie rs is sm all, for th e scene as a w hole it
is sig n ifican tly g re a te r th a n for th e sn o o k er scene — a fa c t in d ic a te d n o t o n ly by
a co m p ariso n o f p e rc e n ta g e ren d e rin g tim es b u t also by a low er p e rc e n ta g e o f ray
h its a n d a lower p e rc e n ta g e re d u c tio n of ray o b je c t in te rse c tio n te s ts

O v e r a l l F ro m th e ta b le s , it is ce lar th a t th e fo u r o p tim iz a tio n s , w hen em ployed
s im u ltan eo u sly , sig n ifican tly red u c e re n d e rin g tim es fo r b o th im ages — th e la t t ic e
scene tak es on ly 5 53% of th e u n o p tim iz e d re n d e rin g t im e a n d th e sn o o k er scene
ju s t 8 02% A look a t th e “% h i ts ” s ta t is t ic how ever, w h ich is 34 4% for th e
la t t ic e a n d 58 83% for th e snooker b a lls , com bined w ith th e fa c t t h a t over 90%
of th e ab o v e re d u c tio n s m ren d e rin g tim es re su lts fro m th e E x te n ts o p tim iz a tio n ,
reveals th a t th e re is ro o m fo r y e t fu r th e r o p tim iz a tio n , p a r t i c u la r ly in th e o th e r
th re e o p tim iz a tio n s W ays m w hich th is can b e ach ieved , a lo n g w ith su g g estio n s
for a d d itio n a l o p tim iz a tio n s , a re o u tlin e d in section 5 2 1

4,8.4 Results For Other M achines
D u rin g th e co u rse of th is re sea rch , m ic ro c o m p u te rs w ith m u ch g re a te r c a lcu
la tin g c ap ab ilitie s b ecam e av a ilab le F ro m th e ray tra c in g tim e s3 a n d te ch n ica l

3The times given are tracing times for both images using the Grid, Extents and Sortlist
optimizations, with no screen of file output

CHAPTER 4 MICROTRACE 120

sp ec ifica tio n s fo r th e se m ach ines (table 4 5) it can b e seen th a t u p to a ten-fold
sp eed in c rease on th e A T w as ach ieved by som e T h is can o n ly lead one to im ag
in e w h ere ra y tra c in g w ill lead in th e fu tu re , as y e t m o re p ow erfu l a n d fa s te r
m ach in es b eco m e av a ilab le — a p ro sp e c t d iscu ssed m section 5 3

M a c h i n e S p e c i f i c a t i o n
T r a c i n g T i m e

S n o o k e r L a t t i c e
P r o c e s s o r c o - p r o c e s s o r m i n s e c m i n s e c

I B M A T 8 0 2 8 6 m H z 8 0 2 8 7 2 2 1 0 4 1 5 5
I B M P S - 2 8 0 3 8 6 16 M H z 8 0 3 8 7 3 4 6 6 3 1
S u n 3 8 6 i 8 0 3 8 6 2 5 M H z 8 0 3 8 7 2 2 0 4 0 8
O l i v e t t i 3 8 6 8 0 3 8 6 2 5 M H z 8 0 3 8 7 2 0 4 3 3 4

T ab le 4 3 T rac in g T im es For V arious M ach ines

C hapter 5

C onclusions & Further W ork

5.1 Conclusions
I t is c lea r fro m th e re su lts of section 4 8 t h a t c u rre n t m ic ro c o m p u te rs a re well
c a p a b le of h a n d lin g th e m assive c o m p u ta tio n involved in g e n e ra tin g ray tra c e d
im ages w hich , on ly a few years ea rlie r, w ould h av e b een th e sole d o m a in o f m a in -
fram e a n d su p e r c o m p u te rs T h e ever in c reasin g sp eed a n d pow er of th e se m ic ro
c o m p u te rs (in th e d u ra tio n of th is re sea rch , a ten-fold sp eed in crease o c cu rred ,
table 4 5) w ill allow m o re com plex a n d re a lis tic im ages to b e g e n e ra te d , w hile
th e ir d ec reasin g co st w ill en su re a w ider b ase o f use a n d a p p lic a tio n of th e a re a
rea lis tic im ag e sy n th es is , a n d co n seq u en tly of ray tra c in g W h ile i t is d ifficu lt to
m ak e fu tu re p re d ic tio n s re g a rd in g an a re a as ra p id ly e x p a n d in g a n d develop ing
as c o m p u te r g rap h ic s , it does n o t seem u n re a so n a b le to ex p e c t th a t in th e fo re
seeab le fu tu re , th e g e n e ra tio n o f rea lis tic im ages will be as av a ilab le an d s ta n d a rd
a u se for m ic ro c o m p u te rs as d e sk to p p u b lish in g is to d a y

5.2 Future Work
T h e follow ing sec tions o u tlin e th e in c o rp o ra tio n o f severa l a d d itio n a l fea tu re s
to M c r o 7 r a c e th a t w ill fu r th e r en h a n c e a n d e x te n d its re n d e rin g a n d trace -
sp eed c ap ab ilitie s T h e e n h a n c e m e n ts a re d iscussed e ith e r in section 5 2 1 01

section 5 2 2, d e p en d in g on w h e th e r or n o t th e ir im p le m e n ta tio n w ould re q u ire
m o d ifica tio n o f th e ray tra c in g a lg o r ith m on w hich th e ra y tra c e r is b a se d

121

CHAPTER 5 CONCLUSIONS & FURTHER WORK 122

5.2.1 Enhancing McroTVace
T h is sec tio n o u tlin e s severa l rec o m m e n d a tio n s fo r fu r th e r e n h a n c in g th e sp eed
a n d p e rfo rm an ce of M icro T race, w hich do n o t re q u ire m o d ifica tio n of i ts ra y
tra c in g a lg o r ith m o r a l te r i ts n a tu re as a p rim itiv e in s ta n c in g re n d e rin g sy s te m

O P T I M I Z I N G T H E O P T I M I Z A T I O N S W h ile i t is c lea r fro m section 4 8
th a t th e fo u r o p tim iz a tio n s em ployed by M icro T race , Pixelbuffer, Extents, Grid
an d Sorthst , sign ifican tly im p ro v e re n d e rin g tim es , fu r th e r o p tim iz a tio n sh o u ld
s till b e p o ssib le from finer tu n in g of fou r, as w ell as fro m th e a d d itio n o f new
o p tim iz a tio n s

E x t e n t s T h e E x te n ts o p tim iz a tio n (section ^ 7 5) , w hich a t p re se n t s to re s each
o b je c t’s e x te n t in th e o b je c t s t ru c tu re itself, cou ld b e m o d ified to in c o rp o ra te
h ie ra rc h ica l e x te n t in fo rm a tio n e ith e r in a s e p a ra te s t ru c tu re o r in a m od ified
o b je c t lis t s t ru c tu re T h e a d d itio n of a second p o in te r field to th e o b je c t s t ru c tu re
of table 4 1 w ould allow for a tw o d im en sio n a lly s tru c tu re d o b je c t lis t w hich cou ld
b e fash io n ed in to som e fo rm of h ie ra rch y e ith e r by th e u se r o r a u to m a tic a lly , as
a p rep ro cess to tra c in g

P i x e l b u f f e r T h e P ix e lb u ffer o p tim iz a tio n (section 4 ^ 2) w h ich a t p re se n t
fills each o b je c t b o u n d in g vo lum e m a sing le “fill” co lou r, cou ld b e m od ified
to a sim plified ite m b uffe r o f th e k in d im p le m e n te d b y W eg h o rs t [W EG H 84]
(section 2 4 5) by filling each vo lum e in a u n iq u e co lo u r If, as in th e S o r th s t
o p tim iz a tio n , th e b o u n d in g volum es w ere so r te d on th e b asis of th e ir znear co
o rd in a te s befo re b e in g filled, b o u n d in g volum es fu r th e r fro m th e ray w ould b e
o v e rw ritte n by closer o b scu rin g ones If each b o u n d in g vo lum e cou ld th e n b e
filled in a u n iq u e co lour, th e co lour of a p ixel w ould b e a d ire c t in d ic a tio n of th e
b o u n d in g vo lum e closest to th e ray o rig in for th a t p ixel

W h ile th e re is s till n o g u a ra n te e th a t th e o b je c t enclosed m th is b o u n d in g
vo lu m e is th e closest one in te rse c te d by th e ray, som e o b je c ts c an s till b e elim -

- m a te d fro m th e search , since on ly th o se b e h in d th e b o u n d in g vo lum e m a p p e d
o n to th e p ix e l h ave to b e te s te d In a case w h ere th e re w ere m o re th a n 255
p rim itiv es how ever, b o u n d in g volum es w ould h ave to sh a re co lours so , each p ixel
co lour, in s te a d o f co rresp o n d in g to a sing le b o u n d in g vo lum e, w ould co rre sp o n d
to th e g ro u p asso c ia ted w ith th a t co lou r Such a g ro u p co lo u r schem e cou ld be
used m co n ju n c tio n w ith th e h ie ra rch y schem e ab o v e to d ire c tly id en tify v ario u s
g ro u p s o f th e h ie ra rc h y w ith o u t h av in g to search th e h ie ra rc h ica l s t ru c tu re

G r i d In c reased p e rfo rm a n c e from th e G rid o p tim iz a tio n (section 4 ^ 4) cou ld
p ro b a b ly b e ach ieved by u sin g a m o re flexible s t ru c tu re th a n th e rig id ly im p o sed

CHAPTER 5 CONCLUSIONS k FURTHER WORK 123

20 x 20 cell a r ra y s t ru c tu re c u rre n tly im p le m e n te d T h is co u ld involve e ith e r
a llow ing a d y n a m ic a lly d e te rm in e d n u m b e r o f cells h o riz o n ta lly a n d v e rtic a lly by
im p le m e n tin g th e g rid as a tw o -d im en sio n a l lin k ed lis t s t ru c tu re , o r m o re flexib le
s till, a q u a d tre e s tru c tu re g e n e ra te d a long th e lines of t h a t u sed by G e rv a u tz
[G ERV 86] to g e n e ra te te m p o ra ry o b je c t tre e s (section 3 4 4)

A D D I T I O N A L P R I M I T I V E S T h e se t o f fo u r p r im itiv e ty p e s c u rre n tly
im p le m e n te d by M c ro T race (cu b e , sp h e re , cy lin d er, cone) co u ld b e a u g m e n te d
by th e a d d itio n o f severa l new p rim itiv e ty p e s T h e a d d itio n of a new p rim itiv e
ty p e req u ires m in o r code m o d ifica tio n a n d p r im a rily involves th e in c lu sio n of
a fu n c tio n th a t will te s t a ray for in te rse c tio n w ith th e p rim itiv e , re tu rn in g a t
v alu e a n d su rface n o rm a l if i t does T h e a d d itio n o f a torus p r im itiv e for ex am p le ,
defined by -

s u r f a c e e q u a t i o n b o u n d s t e s t

(X 2 + Y 2 + Z 2 + 1 - r 2)2
- 4 (* 2 + r 2) = 0

N O N E

w ould involve th e in c lu sio n of a fu n c tio n th a t cou ld solve th e fo u r th o rd e r e q u a tio n
in t p ro d u c e d by s u b s ti tu tin g th e ray e q u a tio n in to th e ab o v e su rface e q u a tio n ,
a lo n g w ith tw o m in o r m o d ifica tio n s — th e in c lu sio n o f th e new p rim itiv e ty p e ’s
n a m e m th e lis t o f av a ilab le p rim itiv e s , a n d a s ta te m e n t in th e ra y in te rse c tio n
fu n c tio n to call th e new ly a d d e d ra y - to ru s in te rse c tio n fu n c tio n w h en ev er a to ru s
is e n c o u n te re d in th e o b je c t list

A N T I A L I A S I N G As o u tlin e d in section 2 3 3, a lia s in g is a “n o ise” effect th a t
c an o ften m a n ife s t itse lf in g rap h ic s im ages a n d h av e a d eg ra d in g affect on im age
q u a lity W h ile th e in c o rp o ra tio n of an y of th e a n tia lia s in g tec h n iq u e s d e sc rib ed in
t h a t sec tio n w ould p ro v id e M c ro T race w ith som e m e a su re o f p ro te c tio n a g a in s t
th e d am ag in g effects o f ab asin g , g iven th e m ic ro c o m p u te r e n v iro n m e n t a n d m em
o ry lim ita tio n o n w hich M c ro T race c u rre n tly ru n s , th e m e th o d d e sc rib ed by fig
ure 2 9 w ou ld seem th e m o st a p p ro p r ia te , since th e a d d it io n a l a n tia lia s in g rays
a re sh a re d am o n g a d ja c e n t p ixels

N E W O P T I M I Z A T I O N S A t p re se n t, all fou r o p tim iz a tio n s em p lo y ed by
M c ro T race a re con figu red to o p tim ize for p r im a ry ray s since, a t p re se n t, th e
o n ly seco n d ary ray s tra c e d a re shadow rays H ow ever, th e in c lu sio n of som e fo rm
of o p tim iz a tio n th a t w ould be ap p licab le to seco n d ary rays w ould b en e fit tra c in g
tim e s fo r im ages w here a u se r has specified th e in c o rp o ra tio n o f shadow s in to th e

CHAPTER 5 CONCLUSIONS & FURTHER WORK 124

im age O n e m e th o d w ould be to ex p lic itly s to re each o b je c t ’s b o u n d in g v o lum e
in th e o b je c t s t ru c tu re , a llow ing seco n d ary ray s to b e d ire c tly te s te d ag a in s t
th e b o u n d in g vo lu m e to d e te rm in e if th e o b je c t in sid e n eed s to b e te s te d As
o u tlin e d m section 4 ^ 1 how ever, s to rin g th e b o u n d in g vo lu m e in th e o b je c t
s t ru c tu re w ould re su lt in a 50% in c rease its size

A m o re econom ica l m e th o d w ould b e to s to re a 3 -d im en sio n a l re c ta n g u la r
p a ra lle lp ip e d th a t encloses th e b o u n d in g vo lum e T h is w ould req u ire s to ra g e for
ju s t tw o X Y Z c o o rd in a te s , as o p p o sed to e ig h t for th e b o u n d in g v o lum e, b u t
w ould c o n ta in a g re a te r vo id a rea , re su ltin g in a la rg e r p e rc e n ta g e o f rays th a t
do n o t in te rse c t th e o b je c t, in te rse c tin g th e b o u n d in g v o lu m e A lte rn a tiv e ly ,
sp h e rica l b o u n d in g vo lum es cou ld b e used a n d s to re d as ju s t tw o f lo a tin g p o in t
values, a c e n te r a n d ra d iu s A n o th e r a lte rn a tiv e w ould b e th e im p le m e n ta tio n of
a sp ace su b d iv is io n schem e a lo n g th e h n es of section 2 4 2 — a u n ifo rm sp ace
su b d iv is io n w ould p ro b a b ly b e th e m o s t s tra ig h t fo rw ard

5.2.2 Extending M cro Trace
T h is sec tio n o u tlin es tw o ex ten sio n s to M c ro T race th a t w ould re q u ire som e m o d
ifica tio n o f th e ray tra c in g a lg o rith m fo r th e ir im p le m e n ta tio n T h e firs t, th e
in c o rp o ra tio n of re flec tion a n d re fra c tio n m screen im ages w ould fu r th e r im p ro v e
th e rea lism of scenes tra c e d by M c ro T race, w hile th e second , th e e x te n s io n of
th e o b je c t re p re se n ta tio n schem e from a p rim itiv e in s ta n c in g to a C SG re p re se n
ta tio n , w ould en la rg e th e ra n g e a n d co m p lex ity o f so lids th a t cou ld b e h a n d le d

R E F L E C T I O N &; R E F R A C T I O N T h e m e th o d c u rre n tly em ployed by
M c ro T race to c a lc u la te th e co lo u r a n d in te n s ity of a p ixel, is to fire a sing le ray
th ro u g h th e p ixel in to th e scene a n d ap p ly P h o n g ’s lig h tin g e q u a tio n [BU IT75]
o f section 1 7 2 &t th e in te rse c tio n p o in t o f th e c lo sest ra y -o b je c t in te rse c tio n
W h ile acc o u n tin g , to a rea so n a b ly a c c u ra te deg ree , for th e a m b ie n t, diffuse an d
sp e c u la r re flec tio n fro m th e specified p o in t on th e o b je c t , th e e q u a tio n is a p p lied
devoid of th e o b je c ts c o n te x t m th e o v era ll scene C o n seq u en tly , th e re flec tio n
o f one o b je c t in a n o th e r , o r th e in c o rp o ra tio n of t r a n s p a re n t o b je c ts c a n n o t b e
m o d elled m th e final screen im age W h i t te d ’s e x te n d e d lig h tin g m odel [W H IT80]
how ever p rov ides a m e th o d o f a c c u m u la tin g th e g lo b a l i llu m in a tio n in fo rm a tio n
n ecessa ry to acco u n t for th e se effects As o u tlin e d m section 2 3 2 , th e m o d e l
p ro p o ses th a t on s tr ik in g an o b je c t, a ray be d iv id ed in to i ts sp e c u la rly re flec ted
an d t r a n s m it te d rays T h e se rays in tu rn a re recu rs iv e ly tra c e d to see if th e y
s trik e an y o b je c ts , a llow ing th e illu m in a tio n in fo rm a tio n for th e o rig in a l ra y to
be b u ilt u p in th e fo rm of a b in a ry tree

CHAPTER 5. CONCLUSIONS & FURTHER WORK 125

T h e in c o rp o ra tio n of th is m o d el in to M c ro T race w ould p r im a rily involve
m ak in g th e ray -scen e in te rse c tio n fu n c tio n recu rsiv e (th e ra y -p r im itiv e in te rse c
t io n fu n c tio n s w ould rem a in u n a lte re d) so th a t on s tr ik in g a n o b je c t th e re flec ted
a n d re fra c te d ray s a re recu rsive ly tra c e d a n d th e in te rse c tio n in fo rm a tio n p laced
in an a p p ro p r ia te b in a ry tre e s tru c tu re . T h e co lou r a n d in te n s ity of a p ix e l w ould
th e n b e d e te rm in e d by ap p ly in g P h o n g ’s lig h tin g e q u a tio n to each n o d e o f th e
tre e , s ta r t in g w ith th e lea f n odes a n d w ork ing recu rsiv e ly u p to th e ro o t n o d e ,
w hich w ould rep re se n t th e fina l co lour of th e pixel. T h e a d d itio n o f a transmis
sion coefficient a n d a refractive index field to th e o b je c t s t ru c tu re w ould a lso be
re q u ired for c a lc u la tio n of th e d ire c tio n of a re fra c te d ray th ro u g h a t r a n s p a re n t
o b je c t.

C S G R E P R E S E N T A T I O N A t p re se n t, M c ro T ra c e p ro v id es a se t o f four
p r im itiv e o b je c t ty p e s w ith w hich a u ser can b u ild u p a scene th ro u g h th e a p p li
ca tio n o f sca ling , ro ta tio n a l an d tra n s la tio n a l o p e ra tio n s on th e p rim itiv e ty p e s ,
u sing th e m a tr ix tra n s fo rm a tio n o p e ra tio n s in th e u se r in te rfa c e m o d u le . W h ile
th e se tra n s fo rm a tio n s p ro v id e a m ean s of g e n e ra tin g a v a rie ty o f sh a p e s fro m ju s t
fo u r b asic ones (e.g. a re c ta n g u la r b lock of a rb i tr a ry d im en sio n s can b e g e n e ra te d
by a p p ro p r ia te ly sca ling th e cu b e p rim itiv e) , th e a b ility to co m b in e solids u sin g
th e u n io n , d ifference an d in te rsec tio n b o o lean o p e ra tio n s of section 3.2.1 w ou ld
sign ifican tly in crease th e ra n g e an d co m p lex ity o f so lids th a t cou ld b e g e n e ra te d .

E x te n d in g th e c u rre n t p rim itiv e in s ta n c in g re p re se n ta tio n schem e to a C S G
re p re se n ta tio n w ould req u ire e ith e r a b in a ry tre e o r D A G solid d e sc rip tio n schem e
in p lace o f th e c u rre n t linked list d esc rip tio n . In a d d itio n , th e ray -so lid in te rse c
tio n fu n c tio n , w hich a t p re se n t involves a lin ea r search th ro u g h th e lin k ed lis t,
w ould h ave to recu rsiv e ly search th e b in a ry tre e (o r D A G) d e sc rip tio n , s ta r t in g
w ith th e leaf nodes a n d w ork ing recu rsive ly u p to th e ro o t n o d e (section 3.3),
com bin ing th e ray c lassifica tions a t each n o d e as o u tlin e d in section 3.3.4• I*1
o rd e r th a t th e c lassifica tions cou ld be co rrec tly co m b in ed , th e ra y -p rim itiv e in
te rse c tio n fu n c tio n s w ould also have to b e m odified to r e tu rn a lis t o f all values
of t fo r w hich th e ray in te rse c ts th e p rim itiv e — th e y c u rre n tly r e tu rn o n ly th e
c losest in te rse c tio n p o in t.

5.3 Ray Tracing — The Future
R ay tra c in g , d e sp ite its la rg e c o m p u ta tio n a l o v erh ead , a n d its lab e llin g by som e as
a b ru te force m e th o d , looks se t to co n tin u e as th e d o m in a n t force in th e sy n th es is
of realistic computer images. A t th e same time, th e g e n e ra tio n o f p h o to re a lis tic
c o m p u te r im ages is no lo n g er o f p u re ly academ ic in te re s t b u t is g ra d u a lly m oving

CHAPTER 5 CONCLUSIONS & FURTHER WORK 126

o u t in to th e ev ery d ay w orld , a fa c t th a t is e m p h asized by th e re c e n t a n n o u n c e m e n t
of Renderman b y P ix a r In c w hich is a new p ro p o se d s ta n d a rd in te rfa c e b e tw een
th re e -d im e n s io n a l g e o m etric m o d ellin g sy s tem s a n d p h o to re a lis tic re n d e r in g sys
te m s [A PO D 89] T h e se p a ra tio n o f th ese tra d it io n a lly in te g ra te d m o d e llin g a n d
re n d e rin g o p e ra tio n s , to g e th e r w ith a s ta n d a id in te rface b e tw een th e tw o, sh o u ld
m ean th a t in th e fu tu re i t w ill b e p o ssib le to in d e p e n d e n tly se lec t m o d e llin g a n d
re n d e rin g sy s tem s th e re b y m ak in g it s im p ler to u p g ra d e a sy s te m as m o re re a lis tic
Tenderers b ecom e av ailab le

R ay tra c in g is p ro b a b ly cap a b le o f d ea lin g w ith m o re of th e m a n y issues
o f re a h s tic im age sy n th esis in c o rp o ra te d in to Renderman , such as m o tio n b lu rr ,
a n tia lia s in g , shadow s, te x tu re m a p p in g a n d p ro g ra m m a b le sh a d in g lan g u ag es ,
th a n an y o th e r ad v an ced re n d e rin g sy s te m c u rre n tly av a ilab le In fa c t, a v a r ia tio n
o f ray tra c in g , know n as d is tr ib u te d ray tra c in g a n d o u th n e d in section 2 5 1, h a s
a lre a d y b e e n d eveloped a n d used by P o r te r [PO R T 84] to g e n e ra te on e o f th e firs t
c o m p u te r im ages to pass as a p h o to g ra p h

W ith th e m a jo r ad vances in th e sp eed a n d co m p lex ity of g rap h ics a n d m ic ro
p ro cesso r h a rd w a re in th e p a s t d ecad e , th is s ta te o f th e a r t in c o m p u te r g ra p h ic s
re sea rch is no longer th e confine of th o se fo r tu n a te en o u g h to h ave access to la rg e ,
ex p en siv e m ain fram es b u t is ra p id ly b eco m in g m o re w idely av a ilab le to th e la rg e
b ase of m ic ro c o m p u te r users — a fa c t th a t is re in fo rced by th e recen t a p p e a ra n c e
o f ray tra c in g packages fo r m ic ro c o m p u te rs such as th e A corn Archimedes a n d
th e C o m m o d o re Amiga

A lready , th e c a lc u la tin g pow er o f m an y m ic ro c o m p u te rs is a p p ro a c h in g a n d
even exceed ing th a t o f v as tly m ore ex p en siv e m a in fram es a n d seem s se t to in
c rease s till fu r th e r in th e n e a r fu tu re In te l fo r e x am p le h av e recen tly a n n o u n c e d
th e 80860 40 MHz R IS C p ro cesso r (R ed u ced In s tru c tio n S e t C o m p u te r) w ith a
b u ilt in m a th s cop rocesso r c ap ab le o f 17 million f lo a tin g p o in t o p e ra tio n s p e r
second , g iv ing it a b o u t 40 tim es th e c o m p u tin g pow er of th e m ach in e o n w hich
th is re sea rch was c a rried o u t [H EN N 89] A t th e sam e tim e , g rap h ic s d isp lay s
w ith reso lu tio n s o f 800 x 600 p ixels th a t can d isp lay u p to 256 s im u lta n e o u s
co lours fro m a p a le t t of over 16 million a re b e in g f i t te d as s ta n d a rd to th e se
in creasin g ly pow erfu l m ach ines T h e se tw o d ev e lo p m en ts sh o u ld see th e ad v en t
of b e t te r , fa s te r a n d m o re w idely ava ilab le ray tra c in g p ro g ram s in th e fu tu re ,
th e re b y g iv ing it a w ider b a se of a p p lic a tio n In fa c t i t w ould n o t b e over a m b i
tio u s to say th a t packages for th e sy n th esis of re a lis tic im ages will b e as av a ilab le
an d v aried on fu tu re m ic ro c o m p u te rs as th o se for desk to p p u b h sh in g a re to d a y

In p a ra lle l w ith th e se h a rd w a re d ev e lo p m en ts , re c e n t ray tra c in g resea rch
h as re su lte d in a lg o rith m s c a p a b le o f ta k in g full a d v a n ta g e of th e pow erfu l m ic ro

CHAPTER 5 CONCLUSIONS & FURTHER WORK 127

c o m p u te rs of th e fu tu re For ex am p le , th e recen t a d v e n t of m ic ro c o m p u te rs such
as th e A ta ri A B A Q , w hich h a s n o t ju s t one, b u t u p to 12, p ow erfu l t r a n s p u te r
p ro cesso rs ex e c u tin g in p a ra lle l, p re se n ts ex c itin g p o ss ib ilitie s fo r th e im p le m e n
ta t io n o f som e o f th e p a ra lle l ray tra c in g a lg o rith m s o u th n e d in section 2 4 4
a n d seem s to b e a p ro m is in g avenue m th e u l t im a te q u e s t fo r rea l- tim e , o r n e a r
re a l- tim e ray tra c in g

A n o th e r in te re s tin g p o ss ib ility is th a t o f a h a rd w a re im p le m e n ta tio n o f ray -
o b je c t in te rse c tio n te s ts P u lle y b la n k ex am in es ju s t su ch a p o ss ib ility in h is p a p e r
on th e feas ib ility o f a V L S I ch ip fo r ra y - tra c in g b icu b ic p a tc h e s H is e s tim a te s
in d ic a te th a t su ch a ch ip cou ld c a lc u la te ra y -p a tc h in te rse c tio n s a t a r a te o f on e
every 15m s, o r a b o u t 67 p e r second G iven th e fa c t t h a t ray s can b e tra c e d
in d e p e n d e n tly o f each o th e r , severa l o f th ese ch ips o p e ra tin g in p a ra lle l w ould
c o n s t i tu te a very pow erfu l ra y - tra c in g eng ine In fac t, ju d g in g b y th e c u rre n t
t r e n d in h a rd w a re im p le m e n ta tio n of “co n v en tio n a l” g rap h ic s a lg o rith m s su ch
as lin e d raw in g , p o ly g o n sh a d in g a n d z -bufferm g, g rap h ic s ca rd s w ith in b u ilt
h a rd w a re fac ilities for ray tra c in g w ould n o t seem to o m u ch o f a n im p o ss ib ility
m th e fu tu re

A ppendix A

Source Code

/« FUHCTIOH HEADER FILE

This file contains the function prototype declarations for all
the functions of the raytracer, from the following modules -

RTRACE C
RAYIITER C
OPTIMIZE C
USERFACE C

SHADE C
PGADPEHD
BUILD C

/ «

\
« /

▼oid

RTRACE C MODULE

transformvector
transf ormpo ut
raycast
testray

generateray
preprocess
raytrace
rgbtrace
normalize

(double (*m) [4].double «vec,double «mvvec) ,
(double (*m)[4].double *pt.double *invpt),
(struct OBJOT «scene.mt x.int y.char *c),
(struct OBJCT «o.double *pt.double «dim,
double *nrml,double *dst).
(int x.int y»double *p,double *d),
(struct OBJCT * «scene),
(struct OBJCT * «scene).
(struct OBJCT «scene),
(double «▼)

int
linecompress

inshado»

(unsigned char *bufin,unsigned char «bufout,
int y.int xl, int x2),
(struct OBJCT «scene,struct OBJCT «obj,
double «pt,double «dim,double tl) ,

struct OBJCT *
nextobject (struct OBJCT *o,struct nde * «n),

/ *

I

* /

▼oid

RAYIITER C MODULE

m t

tracecube (double ♦pt,double •dim, double ♦nrn.
double «nearest),

tr&cesphere (double ♦pt.double «dim, double ♦nrm.
double ♦nearest),

txacecylinder (double •pt,double «dim, double *nrm
double «nearest).

tracecone (double •pt.double «dim, double «nrn,
double «nearest).

stracecube (double •pt»double •dim .double tl).
stracesphere (double ♦pt.double ♦dim double tl).
stracecylinder (double «pt,double *dim,donble tl).
stracecone (double ♦pt,double ♦dim .double tl)

FUNCTION H

is a s ss» gasa eaa a a s s s

OPTIMIZE C MODULE

* /

▼oíd
transf ormToltune (double («m)[4]»double (*▼) [3} »double (*r)[3]>
calczdepth (double (*▼)[3}»struct OBJCT »o)»
calcextent (double (*▼)[3]»struct OBJCT *o),
makegrid (struct OBJCT «scene)»
project7olume (double (*t)[3]),

int
compare (struct OBJCT *a,struct OBJCT *b)

struct nde *
getnode (int i,mt j),

struct OBJCT •
sortlst (struct OBJCT *p,int (cdecl ♦compare)()),

* /

▼oid

* /

SHADE C MODULE

pgashade (unsigned char *c,struct OBJCT *obj,double *ray,
double *lght»double *nnnl,int x»int y»int shad)

rgbshade (unsigned char *c,struct OBJCT »obj,double +ray,
double *lght»double *nrml»int x,int y,mt shad)

PGADPEID C MODULE

▼oid

int

/ *
S3

I

* /

▼Old

pgatrace (struct OBJCT «scene)»
generatergbup (int c,int r»int g»int b)»
generatergbdovn (int c»int r»int g»int b),
rendervolume (double (*▼)[3], int c),
loadpgafxle (char *str),
initpga (void)»
qaitpga (void),

readcolors (char *str)»
savecolors (char *str),

BUILD C MODULE

oatscale (double (+m)[4] double si double sy double sa)
mattranslate (double («m)[43»double tx,double ty,double tz)
ptscale (double *p,double sx,double sy»double sz),
pttranslate (double *p»double tx,double ty,double tz),
matrotx (double (*m)[4].double deg)
matroty (double (*m)[4]»double deg),

FUNCTION H i

1

matrotz
ptrotx
ptroty
ptrotz

(double (*m) [4]»double deg)
(double *p»double a),
(double *p,double a)»
(double *p»double a)»

int
inversematrix (double (*c)[4]»double (*b)[4])f

struct OBJCT ♦
getobject (void),

int
setwindow

setviewport
setlightsource
setprojectiondirection
setlighttype
setprojection
setformat
setvievplanedistance
setambientlight
setfileoutput
setcompression
setscreen
setbackgxoundcolor
setfillcolor
setshadows
setdither
setpixolbuffer
setsortlist
setextents
setgrld

(double x l,d o u b le x2»double y l
double y 2),

(i n t x l , i n t x2»m t y l» m t y 2),
(double x ,do ub le y»double z),
(double x»double y ,do ub le z)»
(enum l ig h t ty p e l g h t) ,
(enum p ro jty p e p r o j) »
(enum form at f rm) ,
(double d is t) »
(double amb)»
(ch a r * s t r) ,
(i n t cmp),
(in t s c r) ,
(i n t co l)»
(in t c o l) »
(i n t s h d)»
(m t d t h) ,
(in t b u f) »
(in t a r t) ,
(i n t e x tn) ,
(in t g r d) ,

readvievport (int *xl,iat *x2,mt *yl,int
readproj ectiondirection (double *x,double *y,double 1
readlightsource (double *x,double *y,double 1
readsindow (double **1,double *x2,

double *yl,double *y2)»
readlighttype (enum lighttype *lght).
readprojection (enum projtype ♦proj),
re adf ile output (struct _iobuf *fp),
readformat (enum format *frm) ,
readriewplanedistance (double *dist),
readambieut1lght (double *amb)»
readcompression (int • cmp),
readextents (int *extn),
readscreen (int *acr),
r eadbackgroundcol or (int «col),
readfillcolor (int *col),
readshadovs (mt *shd)»
readdither (int *dth)»
readpixelbuffer (int *buf) »
reads ort list (unt *srt)»
readgrid (int *grd),

TYPED EFH

I This file contains the "typedef" declarations that define I
} the various enumerative and structure types |

*1

•define
•define
•define
•define
•define

IÏFIÏITY
GRIDROV
GRIDCOL
0 1 1
OFF 0

100000000 0
20
20

/* TYPEDEF DECLARATIOIS

The following global types are defined -

lightytype — > enumerative type for defining point or
directional light source

projtype — > enumerative type for defining parallel or
perspective projection

format — > enumertive type for defining ray tracing mode
i e red green blue (rgb) or Professional
Graphics Adaptor (pga) mode

OBJECTTYPE enumerative type for primitive solid names

VECTOR 1x3 double array for vector XfY,Z coordinates

POUT 1x3 double array for point X,Y,Z coordinates

MATRIX 4x4 double array for matrix transforms

I0DE structure type used for forming linked list
of pointers to objects (see grid optimization)

next — > pointer to next node
ptr — > pointer to primitive

OBJECT structure type for primitive definition -

fields next — >
primitive — >
transform — >
inverse — >
c l r —>
xmin, aa>
ymin, ymax
znear.zfar — >

ka, kd, ks —

parr — >
rad — >
any — >

pointer to next primitive
type of primitive
transformation matrix
inverBe transformation matrix
primitive color (0 IS)
screen rectangle enclosing
projected bounding volume
nearest k furthest Z coords of
transformed bounding volume,
v r t primary ray origin

> ambient, diffuse and specular
reflection constants (should
add up to one)
specular pover constant
roughness (0 2)
cyan, magenta k yellow
reflection ratios

TYPE D EFH 5

enum lighttype
enum projtype
emun format

{ lightdirection, lightpoint >,
{ parallel, perspective
< rgb, pga >,

typedef enum {cube.sphere,cylinder,cone) OBJECTTYPE,

typedef double VECTOR[3],
typedef double P0IIT[3],
typedef double MATRIX[4][4],

typedef struct OBJCT {
struct OBJCT * next,
OBJECTTYPE primitive,
MATRIX
int

double

> OBJECT,

transform,inverse,
clr,
xmin, xmax, ym in, ymax,
zne&r, z f a r ,
k a ,k d ,k s ,p » r ,
rn d ,
any [3] ,

typedef struct nde
struct nde • next,
OBJECT * ptr,

> BODE,

GLOBAL H 6

; S S S 5 5 8 S S S 8 3 = :

I This file contains declarations of the various global flags, I
I parameters and variables used bty the raytracer I

♦include "typedef h"

/*
8 S 3 S S S S

I

*/

extern lut

extern double

extern POUT

a a g a g a g a a a B s s a a s s s x j a a B f f n a a s s s a a s s g s g a s s a s a s s s s

GLOBAL PARAMETER DECLARAT!OBS |

fillcolor,
background,
vxl,vx2,vyl,vy2,

ambient,
wxl, wx2, wyl, wy2,
viewplanedist,

viewpoint,
light,

/* fill color */
/* background color */
/* viewport */

/* ambient light intensity */
/* window on viewplane */
/♦ viewplane distance from */

/ * perspective viewpoint */
/* light source */

extern VECTOR

extern FILE *

projection,

outflie,

/* projection direction */

/* output file for image */

/ ♦

I

• /

extern int

GLOBAL FLAGS

PERSPECTIVE, / *
SHADOWS, / *
DITHER, / *
fileout, / *
PGA, / ♦
COMPRESS, / *
SCREE1, / *
POIITSOURCE, / *

/ *

EITEITS, / *
SORTLIST, / •
PIXELBUFFER, / *
GRID, / •

i> parallel projection *
io shadows *
lo dither on pixels *

output image to screen *
light interpreted as a *
vector and not a point *

Use extents *
Sort scene list *
Use pixel buffer *
Use grid *

/ *

GLOBAL VARIABLES
: s s s = s a

GLOBAL H

extern char ♦
nameof[4], /* string names of primitives */

extern int
dither4[4][4], /* 4x4 dither matrix */

extern double
xfacvw, yfacvw, /♦ viewport -> window X-ratio */
xfacwv, yfacwv, /♦ window -> viewport Y-ratio */

extern IQDE *
gxid[GRIDROW][GRIDCOL], /* pointers to linked lists*/

extern POUT
volume [4] [8] , /* 8 vertex bounding volume */

/* for each primitive type ♦/

BUILD C

/* TUISFOHHATIOI MATRIX FUJCTIOBS MODULE
sa a sa a s s a s s s a s B a a s s s s s 3sa s s s a s s si s s a »cases s s s s a a s s s s s a s r a s s a : s s = :

This module contains functions for modifying a 4x4
transformation matrix to incorporate a translation, rotation or
scaling operation, in addition to functions for translating,
rotating or scaling an individual point

Functions -
inversematnx
mat translate
matscale
mat rot x
matroty
matrotz

getobject
pttranslate
ptscale
ptrotx
ptroty
ptrotz

* /

♦include
♦include
♦include
♦include
♦include

<stdio h>
<malloc h>
<math h>
"typedef h"
"function hu

/* structure and other typedef definitions«/
/♦ function prototype declarations */

/ * MATRIX FUHCTIOHS

The following functions are used to build up a transform matrix
for a primitive, comprising of translation, rotation and scaling
operations which will transform it from its own local coordinate
system into the world coordinate system, with a different
position, size and orientation

matrotx alter matrix to take in rotation about X axis
matroty " " " " " " Y axis
matrotz " " ” *' " " 2 axis

matscale alter matrix to take in scaling along X,Y,Z axes

mattranslate alter matrix to take in translation along X,Y,Z

inverBematrix Calculate inverse of a 4x4 matrix

I0TE Since rotations are not commutative le the
order in which they are carried out is
significant, there is a seperate function for
each axis

void matrotx (m,deg)
MATRIX m, /♦ transform matrix */
double deg, /* degrees to rotate */

I Modifies specified transform matrix, m, to take in a rotation by I
I deg degrees about the X axis (result returned in m) |

{double c,s,rad,t[4],
int i,

for (i=0, K4, i++)
tfi] » m[i] Cl] i

/* used to help optamize the */
/• matrix multiplication */

BUILD C

rad » deg/57 295779, /* convert degrees to radians */
c ■ cos(rad),
s ** sin(rad),

for (i*0, i<4, i++)
{ m[i3[l3 ■ t[i]*c - m[i][2]*s, /* modify matrix to take in */
m[i3 [23 a m[i][23*c + t[i3*s, /* the rotation Optimize the */
> /* multiplication by omitting */

/* columns of zeros */

void aatroty (m.deg)
MATRIX a,
double deg,
/*

i Modifies specified transform matrix, a, to take in a rotation by I
I deg degrees about the Y axis (result returned in m) I

{double c,8,rad, t [4],
int i,

for (i=0, i<4, i++)
t[i] - m[i] [0] ,

rad - deg/57 295779,
c * cos(rad),
8 » sin (rad),
for (i«0, i<4, i++)
{ m[i][0] * t[i]*c + m[i][2]*s,
m[i][2] ■ m[i][2]*c - t[i]*s,

>

void matrotz (a,deg) /* similar to matrotx function above */
MATRIX a,
double deg,
/ *

(Modifies specified transform matrix, m, to take in a rotation by |
I deg degrees about the Z axis (result returned in m) |

{double c,s frad ft[4],
int if

for (i®0, i<4, i++)
t[i] ■ m[i] [0] ,

rad » deg/57 295779,
c ■ cos(rad),
s = sin(rad),
for (i**0, i<4, i++)
{ n[i][0] a t[i]*c - m[i][l]*s,
n[ij[l3 * m[i][l]*c + t[i]*s,

>

void aat8cale(m,sx,sy,sz)
MATRIX m, /* transformation matrix */
double sx,sy sz /• scaling values for X Y Z axes •/

BUILD C

I Modifies specified transform matrix, m, to take in scaling I
I (w r t the origin) by factors of sx, sy and sz along the I, Y, I
I and Z axes respectively (result returned in m) {

•tint i,

for (i=0, i<4, i++)
{ m[iHO] sx,
m[i][l3 *** sy,
m[i][2] *» sz,

>

/• modify matrix to take in ♦/
/* scaling operations */
/* Order of performing the */
/* scaling operations unimportant */

void mattranslate(m,tx,ty,tz)
MATRIX m,
double tx,ty,tz.

/* transformation matrix
/* translation values for X, Y Z axes

* /
* /

/*
» g a a a a sa eas

I Modifies specified transform matrix, m, to take in translation I
I (w r t the origin) of tx, ty and tz units along the X, Y and Z I
I axes respectively (result returned in m) I

* /

{int i,

for (i«0, i<4, i++)
im[i] [0] +« m[i][3]*tx,
m[i] Cl3 ♦* nCi]C33*tyf
m[ij[2] «■» m[i][3]*tz,
>

/* modify matrix to take in ♦/
/• translation operations •/
/* Order of carrying out the */
/• translations doesn’t matter */

int inversematrix(c,b)
MATRIX c,b,

/ •
aaanaaaaoitaBBUaBuaascassgBgsaasaBsagasBaaaBBaagBaagaaaaassaaagaBa
I Returns in b, the inverse of the 4x4 transform matrix specified I
I in c (which remains unchanged) The inverse is calculated by I
I performing on an identity matrix, the same elementary row I
I operations required to reduce matrix c to the identity matrix I

* /

{double d,
MATRIX a,
int i,j,row,found,
double tmp,

for (i«0, i<4, i++) /* don’t want to alter matrix c */
for (j=0, j<4, j++) /* so copy to local matrix, a */
atiHj] » ctiHj],

for (i=0, i<4, i++) /* initialize b to identity */
for (3*0, j<4, 3++) /* matrix */
if (1 j) b[i3Cj] * 1 0 ,
else b[i] [j] » 0 0

BUILD C 11

f o r (r ow *0, r o w < 4 , ro w + +) { i f (a[row] [row] '*»1 0) { if (a C r o w] t r o w] '« 0 0)

{d ® 1 0/aCrow]Crow],
for (i=»0, i<4, i++)
{ a [row] Ci] *3 d,
b[row][i] *= d,
>

>e l s e
{
found “ 0, i 11 row+1,
while (('found) kk (i
{
if (aEi]Crow] '» 0)
{found * 1,
d ** 1 0/a[i] [row] ,

/* d i a g o n a l e n t r y n o t a 1 ** *//* if n o t t h e n , if e n t r y n o t a */ /♦ ze ro , m u l t i p l y r o w t>y it s *//* r e c i p r o c a l to m a k e a o n e */

/* if e n t r y a zo r o , t h e n */ /* s e a r c h i n c o l u m n b e l o w * / /* f o r n o n - z e r o e n t r y */< 4))

f o r (j«0, j<4, j++) { a [r ow] Cj] + * d b [ro w] Cj] + = d
>

> i + * 1,
>(' found) r e t u r n

/* found one T */
/* Then take reciprocal, */
/• d, and add d times */
/* this row to the one */
/* above, to get a one in*/

* a [i] C j], / * the required diagonal*/
* bCi] [j],

>
>f o r

{
(i*r ow+ l, i<4, i++)

i f (a C O C r o w] 0 0)d * -a[i] [row] , f o r (j*0, j<4, J++){ aCi] [j] + » d • aCro w] [3] , b C i] Cj] + * d * b [r o w] Cj] >
>

>

/* no non-zero entry in */
/* column below =*> matrix */
/* not invertible */

/* have a one in diagonal */
/•so set all entries in */
/* col below to zero ♦/

>

f o r (i*r ow- l, i>»0, i —)
{ if (a Ci][r ow] •= 0 0){ d ■ - a [i] C r o w] , f o r (3*0, j<4, j++){ a Ci] C3] d • aCrow] C3]» b C i] [j] + ■ d * b [r o w] C3] *

>
>

>

/* now set all entries */
/• m col above to zero */

>

return 1, /* indicate success */

/* PÛIBT MAIIPULATIOI FUICTIOHS

I The following functions can be used to rotate, translate or I
I scale an individual point with respect to the origin |
I I
I ptrotx rotate point about X axis |
I ptrcty • * Y axis I
I ptrotx • z axis |
I ptscale scale point w r t origin |
I pttranslate translate point w r t origin |

BUILD C

▼old ptrotx (p,a)
POIIT p,
double a,

{double c,s,rad,t[3],
int i,

for (i»0, i<3, i++)
t[i] » p[i3,

rad ■ (double)a/57 2975,
c ■ cos (rad),
s * sin(rad),

pCl] ■ t[l]*c - t[23*s,
p[23 ■ t[2]*c + t[l3*s,

>

void ptroty (p,a)
POIHT p,
double a,

{double c,s,rad,t[3],
int i,

for (i*0, i<3, i++)
t[i] - p[i],

rad » (double)a/57 2975,
c ® cos(rad),
s » a in (rad) ,

p C o] » t [o 3 * c ♦ t C 2 3 * a ,
p [2] ■ t [2] * c - t [0 3 * s ,

>

▼oid ptrotz (p,a)
POIIT p,
double a,

{double c,s,rad,tt3],
int i,

for (i**0, i<3, i++)
t[i] B pEi3,

rad » (double)a/57 2975,
c » cos(rad),
a = sin(rad),
pC03 ■ tC03*c - t[l3*s,
p[i3 * t[i3*c + tCo3*s,

>

▼Old ptscale(p,sx,ay,sz)
POIIT p,
double 8 X ,sy ,sz ,
{
p[03 *• sx, p[l3 •* sy, p[2] *« sz,

>

BUILD C

void pttranslate(p,tx,ty,tz)
POIIT p,
doable tx,ty,tz,

{
p[0] +» tx,
p[l] +» ty,
p[2] +» tz,

>

/* OBJECT FUHCTIOHS

I zzgetobjectzzz zzzzzuses malloc to get space for new OBJECT I
I structure and return pointer to it |

* /

OBJECT *getobject()
/ ♦

I Returns a pointer to space allocated for nev OBJECT structure I
I The transformation matrix is initialized to the identity matrix I
I and the next pointer field to HULL |

* /
{int i,j,
OBJECT *p,

p - (OBJECT *)malloc(sizeof(OBJECT)),
for (i*0, i<4, i++)
for (3«0, 3<4, 3++)
if (i ™ j) p->transform[i] [3] » 1 0,
else p->transform[i] [j] = 0 0,

p->next » IULL,
p->prisitive » sphere,
p->ka » 1 0,
p->kd »0 4,
p->ks * 0 6,
p->rnd » 0 8,
p->pwr ■ 20,
p->clx « 0,
p->cmy[0] » p->cmy[1] = p->aay[2] « 0 3,
return p,

USERFACE C

/« USER IHTERFACE HODULE

The functions contained in this module provide the user with a
means to read and change the various viewing parameters,
optimizations and output options of the raj tracer

Parameter Setting Functions

setprojectiondirection
setviewplanedistanc e
setbackgroundcolor
setambientlight
setlightsource
setfileoutput
setfillcolor
setviewport
setwindow

Parameter Heading Functions

readproj ectlondirection
r e adv ie «plane dist ance
readbackgroundcolor
readaabientlight
readlightsource
readìileoutput
readfillcolor
readviewport
readwindov

* Other functions

Flag Setting Functions

setprojection
setlighttype
setshadows
setdither
setformat
setscreen
setcompression
setpixelbuffer
setertents
setsortlist
setgrid

Flag Reading Functions

readprojection
readlighttype
readahadows
readdither
readformat
readscreen
readpixelbuffer
readsortlist
readertents
readgrid

generatergbdown
loadpgafilecom
generatergbup
loadpgafile
readcolors
savecolors
initpga
quitpga

* All of these functions interact directly with the PGA card
and are contained in the PGADPEHD C module

* /

♦include
♦include
♦include

<stdio h>
"global h"
"function h"

/* global parameters flags k variables +/
/* function prototype declarations */

/ * PARAMETER SETTIIG FUHCTIOIS

The following functions each set one or more of the raytracer
viewing and lighting parameters -

Function Parameters Set

setprojectiondirection
setviewplanedistance
setbackgroundcolor
setambientlight
setlightsource
setfileoutput
setfillcolor
setviewport
setwindow

parallel projection direction
view plane distance from origin
background color
ambient light intensity
light source position or direction
output image to file
fillcolor for bounding volumes
viewport
window on viewplane

USERFACE C

int setprojectiondirection(x,y,z)
double x,y,z,
/*
t Sets the direction for parallel projection to the specified XYZ I
I direction through the global variable projection The default is I
t the direction (0,0,-1) ie orthographic projection I

*/
{
projectionCO] » x,
projection[1] * y,
projection[2] = z ,

>

int setviewplanedistance(dist)
double dist,
/*
I Default viewplane is the Z30 plane This function changes it to (
I Z*dist plane by setting the global variable viewplanedist I

*/
{
viewplanedist « dist,

>
int setbackgroundcolor(col)
int col,
/*
t The global variablê background is the color to which all pixels I
I that do not intersect any object are set (defaults 13) |

*/
{
background ■ col,

>

int setambientlight(amb)
double amb,
/*

I Set ambient light intensity through global variable ambient |
I Default a 0 2 I

*/
ambient * amb,

>

int setlightsource(x,y,z)
double x,y,zf
/*
I Sets the elements of the global variable light, which can be |
I interpreted as a point or a vector (see setlighttype below) |
I Default is (0,0,1) |

*/
{
light CO] » x,
light Cl] * y,
light C2] =» z ,>

USERFACE Ci 16

int setfileoutput(str)
char *str,
/*
I Specifies that the raytraced image be sent to a file «hose name 1
I iB specified in str (default is no file output) |
S B B B a a a g g 8 a a a a B m m a 3 S 3 3 = g s a a a t i J - a s a B s s s s a a g = s s s s s B S = = s g s s s s a a = 5 s

*/
{
outfile = iopen(str,"wb"),
FILEDUT » 01,

>

int setfillcolor(col)
int col,
/*
} FiUcolor is the color in which the transformed bounding volumes I
I of the primitives are filled when using the pixelbuffer |
I optimization It can be any color other than the background I
I color (Default is color 112) I

int setviewport(xl,x2,yl,y2)
int xl,x2,yl,y2,/• -
I Screen viewport defined by the global variables (vxl,vyl) and |
I (vx2,vy2) the lower left and upper right coordinates Default is |
I (0,0) and (639,479), PGA maximum resolution I

*/
{
vxl » xl, vx2 = x2,
vyl » yl, vy2 3 y2,

>

int 8etwindow(xl,x2,yl,y2)
double xl,yl,x2,y2,
/*
i window on viewing plane defined by the global variables i
I (wxl.wyl) and (wx2,wy2) the lower left and upper right |
I coordinates respectively Default is (-100 100) k (-100,100) |

*/
{
wxl * xl, wx2 » x2,
wyl » yl, wy2 = y2,

>

USERFACE C 17

/» FUG SETTIHG FUHCTIOHS

I The following functions each set one of the raytracers global
I flags that control optimization, shadows etc

Function Flag affected

setcompression perspective or parallel projection
setprojection perspective or parallel projection
setlighttype point or directional light
setshadows include/exclude shadows
setdither do/don’t apply dither matrix to pixels
setformat select PGA or RGB format
setscreen display generated image on screen

setpixelbuffer pixel buffer optimization on/off
setsortlist do/don’t sort primitive list
setextents extents optimization on/off
setgrid rectangular grid optimization on/off

int setcompression(cmp)
int anp,
/*

s a a r . a s m s a B B a a a a s a s a B a s a a s a a a a a u a a a s s B a a a a a T iB T iB a s s s s B S s a a a a a s s s a a
I If the COMPRESS flag is set and the output file is set to PGA |
I format, a compressed image file is generated by run length |
I encoding the original image A description of the run encoding |
i method used can be found in the function runencode in the I
I raytracing module RTRACE C |

s a a a a s a s s a s a a a a s s s a s a a a a a a n s a a a a a a n a a a a a a a a a a a a a a a

cmp,

int setprojection(proj)
enum projtype proj,
/*
I Defines a perspective or parallel projection by approplately |
I setting the global variable PERSPECTIVE to 01 (1) or OFF (0) |
I The default is OFF le parallel projection |

*/
{

if (proj perspective)
PERSPECTIVE ° 01,

else
PERSPECTIVE » OFF,

>

int setlighttype(lght)
enum lighttype Ight,
/*
I The XYZ elements of the global variable light can be interpreted |
I coordinates of a light source at the point (X,Y,Z), or as a |
I vector in the direction of a light source at infinity The |
I latter is slightly loss oxpensivo, computationally, to model I
I since all light rays are then parallel Default is direction I
I interpretion le P0IITS0URCEs0FF |

USERFACE C 18

if (lght =n lightpoint)
POIITSOURCE ■ OB,
else POIITSOURCE « OFF,

int setshadows(&hd)
int shd,
/*
I If the global variable SHADOWS is set, shadows will be |
I incorporated auto the raytraced image (This greatly increases |
I the time taken to render an image and so is OFF by default) |

*/
{

SHADOWS » shd,
>
int setdither(dth)
int dth,
/*
I If the global variable DITHER is set, a a 4x4 dither matrix is (
I applied to calculated pixel intensities (Default is OFF) |

*/
{

DITHER ■ dth,
>

int setformat (fra)
enum format frm,
/*

Selects either PGA or RGB format for image In PGA format, the
image is displayed on the Professional Graphichs Display The
RGB mode does not generate a screen image but is used to affect
the output file format -

Output file format can be either rgb or pga (default is pga)

pga zzzzEach pixel stored as one byte representing a color in
the range 0 255 which is used by the pga card as an
index into a color table containing a 12-bit entry
which determines the color actually displayed on the
screen

rgb zzzzEach pixel stored as three bytes, one for each of its
red, green and blue intensities

int setscreen(scr)
int scr,
/♦
I If the global variable SCREEI is set, the raytraced image will I
I be displayed line by line on screen as it is generated |
i Default is 01 |

USERFACE C 19

{
SCREES ** acr,

>

int setpixelbufferCbuf)
int buf,
/*
t If the global variable PIZELBUFFER is set, primitive bounding I
i volumes are rendered rendered on screen, filled in fillcolor I
] (another global variable), to reduce rendering tine I
I Default is 01 I

*/
PIZELBUFFER = buf,

>
int setsortlist(srt)
int srt,
/*
I If the global variable SORTIHG is set, the list of primitives I
I passed to the raytracer is sorted in order of increasing I
I distance from the ray to reduce rendering time |
) Default is 01 I

*/
i

SORTLIST - srt,

int aetextents(ertn)
int extn,
/*
I If the global variable EXTEHTS is set (=1), screen extents are I
I generated for each primitive to reduce rendering time]
I Default is 01 I

int setgrid(grd)
int grd,
/*
I If GRID, a global variable, is set, the screen is partitioned 1
I into a set number of rectangles each of which has associated I
I with it a set of pointers to primitives in the scene list whose I
I screen enclosures cross the rectangle I
I Default is 01 j

*/
GRID * grd,

>

USERFACE C

/• PARAMETER READIIG FUICTIOÏS
883SCSBS3SB8333SSS8S

I The following functions are used to read the current values of
I the viewing and lighting parameters of the raytracer -

Function Parameters Returned

I readprojectiondirection
I readviewplanedistance
I readbackgroundcolor
I readambientlxght
I readlightsource
I readfileoutput
I readfillcolor
I readviewport
t readwindow

parallel projection direction
view plane distance from origin
background color
ambient light intensity
light source position/direction
output file for image
fillcolor for bounding volumes
viewport
window on viewplane

*/
int readprojectiondirection(x,y,z)
double *x,*y,*z,

•x * projection[03,
*y a projection[1],
*z ** projectionC2],

>
int readviewplanedistance(dist)
double »dist,

♦diBt » viewplanedist,
>

int readbackgroundcolor(col)
int *col,

♦col * background,
>

int readambientlight(amb)
double ♦amb,

•amb ™ ambient,
>

int readlightsource(x,y,z)
double *x,*y,*z,
{
♦x » light CO],
*y « light Cl],
♦z *» light C2],

>
int readfileoutput(fp)
FILE *fp,

fp » outflie,
>

int readfillcolor(col)
int *col,
i
♦col a fillcolor,>

USERFACE C

int readviewport(xl,x2,yl,y2)
int *xl,*x2f*yl,*y2>
{
*xl = vxl, *x2 = vx2,
*yl ® vyl, *y2 = vy2,

>

int readwindow(xl,x2,yl,y2)
double *xl,*yi,*x2,*y2,

*xl » wxl, *x2 *» wx2,
*yl ° wyl, *y2 * wy2f

>

/• FLAG READIIG FUICTIONS

The following functions return the current settings for the
various global flags used by the raytracer -

Function Flag Returned

readcompreBsion perspective or parallel projection
readprojection perspective or parallel projection
readformat PGA or RGB image format
readscreen screen image on/off
readlighttype point or directional light
readshadows include/exclude shadows
readdither do/don’t apply dither matrix to pixels

readpixelbuffer pixel buffer optimization on/off
readsortlist do/don’t sort primitive list
readextents extents optimization on/off
readgrid rectangular grid optimization on/off

int readcompression(cap)
int *anp,

*aap » COMPRESS,
>

int readprojection(proj)
enum projtype *proj,

if (PERSPECTIVE « 01)
•proj ® perspective,

else
•proj a parallel,

>

int readlighttype(Ight)
enum lighttype *lght,
{
if (POIITSOÜRCE =* 01)
•lght « lightpoint,
else
•lght a lightdirection,>

USERFACE C 22

int readshadows(shd)
int *8hd,

•shd a SHADOWS,
>

int readdither(dth)
int *dth,
{

•dth. - DITHER,
>
int readf ormat (scr)
enna format *scr,
{
if (PGA *» 01)
♦scr * pga,
elsa
*»cr *» rgb,

>

int readscreen(scr)
int *scr t
{
•scr * SCREEI,

>
int readpixelbTiffer(buf)
int *buf,
{

•buf » PHETJBUFFER,
>

int readsortlist(srt)
int *srt,
{

•srt a SORTLIST,
>

int readextents(extn)
int «axtn,
{

•ortn * EXTESTS,
>

int readgrid(grd)
int *grd,
{

•grd » GRID,
>

/• RAYTRACIIG MODULE RTRACE C

R T R A C E C

This nodule contains the raytracing functions themselves, namely
raytrace and raycast, which coordinate the overall raytracing
operation

Raytracing Functions Utility Functions

raytrace nextobject
• pgatrace transformvector
rgbtrace transfompoint
inshadow generateray
raycast preprocess
testray normalize

• function uses PGA library function calls, code so
contained in PGA dependent module PGADPEHD C

s a s s B a a a a i j a a a s a a a g a g a s s s a g a a s s s s s a a c s s s s s s s s

#include
♦include
♦include
♦include
♦include

<stdio h>
<malloc h>
<math h>
•’typedef h"
"function h"

/* typedef definitions for POIIT etc * /
/* function prototype declarations */

/* DEFAULT PARAMETER VALUES

I Define default values for various global parameters such as I
i window» viewport etc Values defined below can be accessed by I
I the user through the appropiate function calls described in the I
I user interface module USERFACE C]

*/
int

fillcolor » 112» /* fill color */
background a 113, /* background color */
vxl » 0, vx2 « 639, /* viewport */
vyl a o, vy2 = 479,

double
ambient »0 2,
viewplanedist 500 0,

W X l a -100 0, wx2 a 100 0,
wyl a -100 0, wy2 a 100 0,

/* ambient light intensity */
/* viewplane distance from */
/* origin (along Z axis) */
/* window on viewplane */

POIHT
viewpoint a { o, 0, 0 }, /* perspective viewpoint */
light { 1, 1, 1 }, /• light source */

VECTOR
projection 3 { o, 0, -1 }, /* projection direction */

FILE *
outfile » IULL, /* output file for image */

R T R A C E C 24

/• GLOBAL FLAGS

Define default values for various global flags that define
whether various options such as shadows, optimizations etc are
defined below Each flag can be either OV or OFF The default
values defined below can be accessed and set 01 or OFF by the
user through the appropiate function calls described in the user
interface module USERFACE C

int
PERSPECTIVE a OFF, / ♦ a> parallel projection ♦/
POUTS OURCE a OFF, /* light interpreted as a */

/♦ vector and not a point * /

SHADOWS a OFF, / * Ho shadows * /

DITHER ■ OFF, / * Vo dither on pixels ♦ /

FILEOUT s OFF, / * Ho output file generated*/
COMPRESS a OH, / * Compress PGA file format*/
SCREEH » 0 1 , /* Display screen image ♦/
PGA a OH, / * Generate PGA format * /

tions * /

EXTEITS a OH, / * Use extents * /

SORTLIST = OFF, /* Sort scene list * /

PIXELBUFFER a 0 1 , / * Use pixel buffer * /

GRID a 0 1 , /+ Use grid * /

/* GLOBAL VARIABLES

The Following global variables and are used exclusively by the
raytracer

nameof — >

dither4 — >

xfacTw — >
yfacvw — >

xfacwv
yfacwv

grid

volume

cylinder

sphere

cube

array of pointers to string names of primitives

4x4 dither matrix

viewport to window X ratio
viewport to window Y ratio

window to viewport X ratio
window to viewport Y ratio

GRIDROV x GRIDCOL 2D array of pointers to a linked
list of pointers to objects

contains bounding volume for each of the four
primitive types in local unit coordinates -

rectangular box, back face centered at origin
XYZ dimensions => 2 x 2 x 1

rectangular box, centered at origin XYZ
dimensions 3 2 x 2 x 2

pyramid, apex at origin
length “ 1, base “ 1 x 1

unit cube along X, Y, and Z axes (bounding volume
for cube is itself a cube)

R T R A C E C

char *
name of [4] {"cube'V’sphere" /‘cylinder" ,"cone" > ,

int
dither4[4][4]

dit her 8 [8] [8] =» {

0, 3, 2, 10,
12, 4, 14, 6,
3, 11, 1, 9,

15, 7. 13, 5
>,

o, 32, 8, 40, 2, 34, 10, 42,
48, 16, 56, 24, 50, 18, 58, 26,
12, 44, 4, 36, 14, 46, 6, 38,
60, 28, 52, 20, 62, 30, cn 22,

3, 35, 11, 43, 1, 33, 9, 41,
51, 19. 59, 27, 49, 17. 57, 25,
i s , 47, 7, 39, 13, 45, s . 37,
63, 31, 55, 23, 61, 29, 53, 21 >

double

IODE

xfacvw, yfacvw,
xfacwv, yfacwv

grid [GRIDROV] [GRIDCOL] ,

/* viewport -> window */
/* window -> viewport */

POIIT
volume [4] [8]

0, 0, 0, 1, 0, 0 ,
1, 1, 0, 0, 1, 0,
0, 0, X, 1, 0, 1,
1, 1, 1, 0, 1, 1,

-1, -1, -1, l.-l.-l,
I, 1,-1, *1, 1,-1, -1, -1, 1. 1, -1, 1,
1, 1, 1, -1, 1, l,

-1, -1, 0, 1, -1, 0,
1, 1, 0, -1, 1, 0,
-1,-1, 1, 1,-1, 1, 1, 1, 1, -1, 1, 1,
0 , 0 , 0, 0 , 0, 0,
0 , 0, 0, 0, 0, 0 ,-1, -1, 1, 1, -1, 1,
1, 1, 1, -1, 1, 1

/* cube * /

/* sphere */

/* cylinder */

/* cone */

/* UTILITY FU1CTI08S

preprocess

transiormvector

transforopoint

generateray

a a s s s s a s s a s a s n s s a s :

process “tiBt of objects prior to raytracing,
calculating inverse matrices, extents etc

applies a transform matrix to vector

applies a transform matrix to point

maps given pixel (I Y) to window and
generates ray equation

R T R A C E C

I
I nextobject used by raycast to determine the next object
| to be tested for intersection
I
I normalize converts a vector to unit form
I
I linecompre8S compresses image file size
I

*/
void preprocess(scene)
OBJECT * «scene,

{OBJECT * o,
POIIT vol[83,

if (POUTS OURCE »» OFF) normalize(light),

xfacwv = (double)(vx2-vxl)/(wx2-wxl),
if (xfacvv <0 0) xfacwv =» -xfacvw,
yfacwv » (double)(vy2-vyl)/(wy2-wyl),
if (yfacwv <0 0) yfacwv = -yfacwv,

xfacvw ■ 1 0/xfacwv,
yfacvw » 1 0/yfacwv,

for (oB*scene, o'=HULL, o=o->next)
{inversematrix(o->transform ,o->inverse),
if ((EXTEHTS OH) II (SORTLIST 01) 11

(GRID 01) || (PIIELBUFFER ==» 01))
{tranBformvolume(o->transform,volnmfl[(int)o->primitive3 ,vol),
if (SORTLIST — 01) calczdepth(vol,o),
if ((PIIELBUFFER » OS) I I (ElTESTS » 01) 11 (GRID » OH))
projectvolume(vol),

if ((PIIELBUFFER » 01) Aft (PGA »» OH) t t (SCREEI » 01))
rendervolume(voi,fillcolor),

if (EXTE1TS OH) calcextent(vol,o),
>

if (SORTLIST 01) «scene ■ sort1st(«scene»compare),
if (GRID **= OH) makegrid(*scene),
>

void tran8formvector(m,vec,inwec)
MATRIX m,
VECTOR vec,invvec,
/♦
I Applies transformation matrix specified in m, to specified I
I vector, vec, returning result in invec, the transformed vector I

*/
{
inwectO] * vec[0]*m[0] [0] + vec[l]*m[l] [0] + vec[2]«m[2] [0] ,
inwec [1] a vec[0]*m[0Hl] + vec[l3*m[l3 [1] + vec[2]*m[2] [l] ,
inwec[23 * vec[0] «m[0] [2] + vec[l]«m[l] [2] + vec [2] *m[23 [2] ,

>

void transformpoint(m,pt,mvpt)
MATRIX m,
POUT ptfinvpt,

R T R A C E C

I Applies transformation matrix specified in m, to specified I
I point, pt, returning result in invpt, the transformed point I

*/
{
invpt [0] * pt[0]*m[0] [0] + pt[l]*m[l] [0] + pt [2]*m[2] [0] + m[3] [0] ,
invpt [1] ■ pt [0] *m[0] [1] pt[l]*m[l] [1] + pt [2]*m[2] [1] + m[3] [1] ,
invpt [2] a pt [0]*m[0] [2] + pt [1] *m[l3 [2] + pt[2]*m[2] [2] + m[33 [23,

>

void generateray(x,y,p,d)
mt x,y,
POIIT p,
VECTOR d,
/*

/* pixel screen coordinates */
/♦ calculated ray origin */
/* calculated ray direction */

I Generates the equation of a ray through the specified pixel4
I (x,y), as a point, p, and direction vector, d

sgsssgasssssssas:
*/
{
pCO] *» (x - vxl) * xfacvw + wxl.
pCl] * (y ** vyl) * yfacvw + wyl,
p[2] a vieoplanedist,

/* map pixel to window in */
/* IY plana */

if (PERSPECTIVE
{

OFF)

d[0]
- d[l]
d[2]
>

else
{
d[03
d[l]
d[2]
pCO]
p[l]
pC2]
>

■ projection[0],
a projection[13,
» projection[2],

a p[03 - viewpoint[0],
* p[l] - viewpointtl],
■ p[2] - viewpoint[2],
* viewpoint [0] ,
* viewpoint [1] ,
“ viewpoint [2],

/* zero »> parallel view */

/* parallel view ==> read */
/* specified direction */

/* defined «> perspective view */

/* perspective view »»> calculate */
/* direction from view point and */
/* mapped pixel point on window •/

void normalize(v)
VECTOR v, /* vector to be normalized */
/*
I Takes vector of arbitrary length, v, and overwrites it with the I
I calculated unit vector in the same direction |

{double modi,

modi a sqrt(v[0]*v[03 + v[l3*v[l3 + v[23*v[23), /* vector length */
v[03 /a modi, v[l3 /a modi, v[23 /a modi, /* unit vector */
>

R T R A C E C

OBJECT * nextobject(o,n)
OBJECT *o,
IODE **n,
/*
I This function, is used by raycast to determine the next object to I
I test for intersection If the grid optimization is in use, the I
I next object is found from the linked list of pointers for the 1
I grid, otherwise the next object is simply the next one in the I
I object list I

*/
i
if (GRID M OFF) return o->next,
if ((*n) » IULL) return FULL,

*n » (*n)->next,
return (*n)->ptr,

>

int linecompress(bufin,bufout,y,xl,x2)
unsigned char bufin[], /* line to be encoded •/

buf out [3, /• encoded line */
int y,xl,x2, /* screen line number and */

/* start ft end pixel numbers ♦/

This function compresses a line of pixels nsing a run length
encoding system compatible with that of the PGA Each line of
the image is proceeded by the hexadecimal code D9, which is the
PGA code for ’write encoded line of pixels1 Then follows three
integer numbers, each stored as two bytes (least significant
byte first), representing the line number and the pixel numbers
where this line begins and ends le

D9 line • start x end x data

Using this foimat, the image file can be sent directly to the
PGA without any processing whenever the image needs to be
displayed from the file

The data consists of packets, of which there are two kinds -

[1] COUIT PEL { COUIT 0 127 >
[2] C0U1T PELO PEL! PEL2 { COUIT 128 255 >

If the count is in the range 0 127 then the byte that follows
is the color of the next COUIT+1 pixels

If the count is in the range 128 255 (le MSB = 1) then the
next COUIT-127 bytes that follow are the colors of the next
COUIT-127 pixels

*/
{unsigned char *p,*t,count
int ptr“0,len,

len ■ x2 - xl + 1,
p ■ buf m,
bufouttptr++] a 0xd9, /* PGA code ♦/
bufoutCptr++] » y ft Oxff, /* line t LSB */
bufout[ptr++] = (y ft OxffOO) >> 8, /* line t MSB */
bufout[ptr++] = xl ft Oxff, /* start pixel LSB */
buf out [ptr++] ** (xl ft OxffOO) » 8, /* start pixel MSB */

R T R A C E C

bufout[ptr++3 ° i2 I Oxfl, /* end pixel LSB */
bufout[ptr++3 * (x2 ft OxffOO) » 8 , /* end pixel MSB ♦/

while (len > 1)
{count ■ 0,
if (*p » *(p+l)) /* m of same color */
{count +» 1,
len -» 2,
p +» 2,
while ((len > 0) ft* (count <127) ft* (*p « «(p-1)))
{count++,
len— ,
P++.
}

bufout[ptr++] = count,
bufoutCptr++3 « *(p-l),
}

else
{t » p, /♦ run of different color */
count +** 1,
len -** 2,
p +■ 2,
while ((len > 0) ft* (count < 127) ftft

(*p * (p - D) f t « (* p . = *(p+l)))
{len— ,
count++,

>
bufout[ptr++3 a count + 128,
for (, t<p, t++)
bufout[ptr++3 ** *t,
>

if (len > 0)
{bufoutCptr++] = 0,
bufout[ptr++3 = *p,
>

return ptr,
>
/* E1YTB1CEE

The following are the principal functions of the ray tracer -

inshadow Checks if a given point lies in shadow

testray Tests a specified object for intersection with a
given ray

raycast Casts a ray through a specified pixel into the
scene of objects, tests for intersection and
returns the appropiate color for the pixel

* pgatrace Passes pixels in top to bottom, left to right
fashion to raycast and collects/coordinates the
returned pixel intensity values to build up a
screen and/or file image for the PGA adapter
monitor

rgbtrace Same as pgatrace except that pixels are
calculated as three seperate intensities (red,
green ft blue) Produces only a file output

raytrace initializes the raytracer and calls either
pgatrace or rgbtrace to generate the mage

* function code in PGADPEBD C module

R T R A C E C

int inshadow (scene,obj,pt,dira,tl)
OBJECT «obj,«scene, /♦ list of objects */
POIBT pt, /• pt ft dim — > ray equation */
VECTOR dim,
double tl, /♦ upper limit for t */
/*

a i a s a n g a n g a s s a a s s s a a a s s a a a s a t s s s a s s s a a s s a s s a a s a a a s s s s a a s a s s a a s s a a a a

I Checks if a point on an object lies in shadow by testing the I
I given shadow ray, specified by pt ft dim and originating at a I
I point on the object pointed to by obj, for intersection with the I
I list of objects pointed to by scene An upper limit for t is 1
I specified in tl, since objects beyond the light source need not I
I be tested I

*/

{OBJECT *o,
POIIT invpt,
VECTOR invdira,
mt shadoŵ O, /* break as soon as any intersection found +/

for (obscene, ((o^IULL) ftft (shadowlBl)), o=o->next)
if (o ,B obj) /* don’t want to test intersected object */
{
transformpoint(o->inverse,pt,invpt), /* transfoxm ray */
transformvector (o->inverse,dim, invdim),

switch (o**>primitive) { /* test for intersection */

case cube shadow ** stracecube(invpt,invdim,tl) ,
break,

case sphere shadow » stracesphere(invpt,invdim,tl) ,
break,

case cylinder shadow » stracecylinder(invpt,invdim,tl),
break,

case cone shadow 53 stracecone(invpt, invdim,tl) ,
break,

>
return shadow, /* shadow=l if intersection with any object */

void testray(o,pt, dim, nrml, dst)
OBJECT *o, /* pointer to object to test */
POIIT pt, /* pt ft dim — > ray equation */
VECTOR dim,nrml, /* nrml returned surface normal */
double *dst, /* minimum t value */
/*
I Tests the given ray, specified in pt ft dim, for intersection I
I with the object pointer to by o If an intersection is found, |
I which is closer than the t value specified in dst, the surface I
I normal at the point of intersection is returned in nrml, wnd dst |
I is updated |

•/
{POIIT invpt, invdim,

transformpoint(o->inverse,pt,invpt), /* transform ray */
transf ormvector (o->inverse ,dira, invdim)

R T R A C E C

switch (o->prunitive) {

case cube tracecubeCinypt ,invdirn,nxml,dst) ,
break,

case sphere tracesphere(invpt,inTdirn,nrml,dst),
break,

case cylinder trace cylinder (invpt, mvdirn ,nrml ,dst),
break,

case cone tracecone(invpt, invdinwnrml.dBt),
break,

>

void raycast(scene,x,y,c)
OBJECT »scene, /* pointer to list of objects */
int x,y, /* current pixel */
char • c, /♦ returned pixel color */

{double dst»IIFIHITY,tl,
nearest»IHFIIITY,
Zn,

OBJECT *closestsVULL»*o,
int row,col,shadsO,
IODE *n,

POUT pt ,dim,
nnal, invnrml,
lght, interst,

generateray(x,y,pt,dim), /* generate ray equation for pixel */

if (SORTLIST » 01)
Zn ■ pt[2] + nearest »dim [23, /* Z coord of nearest intersection * /

if (GRID « 01)
{ /* calculate rectangle in ♦/
row =• (vy2-y) /((vy2-vyl) /GRIDR0V+1) , /* which pixel lies */
col « (x-vxl)/((vx2-vxl)/GRIDC0L+l),

if ((n»grid[row3[col3> M IULL) /* any objects in this the */
{*c ■ background, /* rectangle * * /
o B IULL,
>
else o » n->ptr,
>
else o 9 scene,

while (o 'a IULL) /* test list of objects */
{
if ((EZTEITS » Of) t t

((x>o->xxtax) II (x<o->min) II (y>o->ymax) I I (y<o->ymin)))
{o a nextobject(o,kn),
continue, /* pixel outside extent of current */
} /* object, so skip object */

if ((SORTLIST a» oi) U (o->znear < Zn))
break,
testray(o,pt .dir̂ nrmljfcdst),
i f (dst < nearest)
{nearest a ¿at /* closer intersection */
closest “ o,
if (SORTLIST aa oi)
Zn “ pt[23 + nearest*dim[23 ,>

R TR A C E C

o * nextobject(o,fcn),
>

if (closest IULL)
{
transformvector(clo8est->tr&nsform,nxml,invnrml),
if ((POIUSQURCE == OH) || (SHADOWS *= OH))

{interst[03 * pt[03 + nearest*dim[03 ,
interst[13 * pt[l3 + nearest*dim[l3,
interst[2] * pt[2] + nearest*dirn[2],
>

normalize(invnrml),
normalize (dim),

if (POIITSOURCE » OH)
{lght [0] » light [0] - interst [0] ,
lght[l3 « light [1] - interst [13 ,
lght[23 8 light[23 ~ interst[2],
normalize(lght),
if (SHADOWS an OH)
{ if (lght [03 ,s 0) tl « (light [03 - interst[03)/Ight[03,

else
if (lght[l3 ,a 0) tl a (lightCl3 - interst[13)/lght[l3,
else
if (lght[23 ' a 0) tl a (light[23 - interst[23)/lght[23,

}
>

else
{ lght[03 a light[0],
lght[13 a light[13,
lght[23 “ light[23,
if (SHADOWS « 01) tl a IHFIHITY,> - - - -

if (SHADOWS »» oi)
shad a inshadow(scene,closest,interst,lght,tl),

if (PGA a» oi) pgashade(c,closest,dim,lght,invnrml,x,y,shad) ,
else rgbshade (c f closest (dim, lght, invnrml ,x, y, shad) ,
>

else *c a background,

▼oid rgbtrace(scene)
-OBJECT «scene,

{char *bf, *ptr, id,
int x,y,

bf a malloc((3*vx2-vxl+l)),

if (FILEOUT «a 01)
{id a OxOO, /* write id byte to
fwrite((char outille),
fwrite((char *)*vxl,sizeof(int),1,outfile),
fwrite((char *)tvx2,sizeof(int),l,outfile),
fwrite((ehar *)Avyl,sizeof(int),l,outfile),
fwrite((char *)fcvy2,sizeof(int),l,outfile),
>

for (y»vy2, y>avyl, y—)
{ptr ® bf
for (xarxl, x<=vx2, x++,ptr+»3)
raycast(scene,x,y,ptr),

if (FILEOUT Of)
fwrite(bf ,3,vx2-vxl+l ,outf ile) ,>

indicate RGB format */

/* write viewport */

R T R A C E C

free(bf),
fclose(ontfile),

>

▼old raytrace(scene)
OBJECT * «scene,

preprocesB(scene),
if (PGA) pgatrace(«scene),
else rgbtrace(«scene),

>

RAYINTER C 34

/• RAT IITEBSECTIOI MODULE

This nodule contains the ray-primitive intersection test
functions There are two sets of functions for each of the four
primitive types, the first set for testing primary rays and the
second for testing shadow rays

Primary Ray Functions

tracecylinder
tracesphere
tracecube
tracecone

Secondary Ray Functions

stracecylinder
stracesphere
stracecube
stracecone

«/

tinclude <math h>
«include "typedef h" /* structure and other typedef definitions*/
tinclude "function h" /* function prototype declarations */

tdefine EPS1L0I 0 00001

/« RAY PRIMITIVE IITERSECTIOI FUHCTIOHS -- PRIMARY RAYS

I The following four functions are used to test a ray for
I intersection with one of the four primitive types implemented
I Each one takes a ray as input, along with the lowest t value
I found in processing the list of primitives to date, and modifies
I the value if the ray intersects the primitive at a closer point
I If such is the case, the normal to the surface at the point of
I intersection is returned by modifying the vector nrm. and the
I closest point of intersection, nearest, is updated

«/

void tracecube(pt.dim.nrm,nearest)
POUT pt,
VECTOR dim. nrm.
double «nearest.
f *
I Tests given ray. specified by a pout. pt. and a direction I
I vector, dim. for intersection with a unit cube defined by 6 I
I planes -)
I 1 * 0 X » 1 Y = 0 Y « 1 2 = 0 Z = 1 |

*/
{double X.Y.Z.t.

if (dim CO] '■ 0) /* ray on x=0 plane “* */
i t » -pt [0] /dim CO] , /« if ray intersects X=0 */
if (Ct < «nearest) ftft (t > 0)) /* plane at positive t */
{Y ■ ptCl] + t«dim Cl] , /* value lower than the */
Z » pt C2] ♦ t*diraC2], /* current closest one, */
if ((Y <- 1 0) k k (Y >»0 0) k k /* then check to see if */

(Z <■ 1 0) ft* (Z >» 0 0)) /* it intersects face 0 */
{«nearoat h t /•of cub« */
nrmCO] =-10,
nrmCl] » 0 0,
nrmC2] =» 0 0,
>>

RAYINTER C 35

t » (1 0-pt[0])/dxm[0],
if ((t < «nearest) ft* (t > 0))
{Y ■ pt[l] + t«dxra£l3 ,
Z » pt[23 + t «dim [23 ,
if (CY <a 1 0) k k (Y >#0 0) kk

(Z <- 1 0) k k (Z >« 0 0))
{ «nearest a t,
nrm[03 8 1 0,
nrm[l3 a o 0,
nm[2] a o 0,
>

>
>

if Cdim[l3 •» o)
{ t a -pt£l3/dxra£l3,
if C(t < «nearest) it (t > 0))
{X a pt[0] + t*dirn[0] ,
Z a pt[2] + t*dirn[2] ,
if ((X <» 1 0) kk (X >a o 0) kk

(Z <" 1 0) k k CZ >a 0 0))
{ «nearest ° t,
nrm[0] = 0 0,
nrm[l3 8 -1 0,
arm[2] = 0 0,
>

>
t a (t 0-pt[l])/dirn[l],
if ((t < «nearest) Jfc* (t > 0))
{I a pt[0] + t«dira[0],
Z a pt[2] + t«dxm[2] ,
if (CX <a 1 o) k k (X >a o 0) kk

-t(Z <a 1 o) k k (Z >a o 0))
{ «nearest = t,
nrm[03 »0 0,
nxm[l3 « 1 0 ,
nna[2] a o 0,
>

>
>

if (dimC2] »* 0)
i t a -pt £23/dxm [23 ,
if ((t < «nearest) kk (t >0))
{Y a pt[l3 + t«dxm[l3,
X a pt£03 + t«dxm[03,
if ((Y <■ 1 0) k k (Y >» 0 0) kk

(X <*10 } k k (I >= 0 0))
{ «nearest a t,
nrm[03 * 0 0,
nrm[l3 * 0 0,
nun [23 a -t 0,
>

>
t a (1 0-pt[23)/dim[23,
xf ((t < «nearest) it (t > 0))
{Y a pt [13 + t«dim[l3 ,
X a pt[03 + t «dim £03,
if ((Y <- 1 0) k k (Y >a 0 0) kk

(X <■ 1 0) k k (X >» 0 0))
{ «nearest » t,
nrm£03 »0 0,
nrn[l3 » 0 0
nxm[2] « 1 0,>>>>

/* test X=1 plane */

/« test Y=0 plane «/

/* test Yal plane «/

/« test Z-0 plane «/

/* test Z»l plane «/

RAYINTER C

▼oid tracesphere(pt,dim,nrm »nearest)
POIIT pt,
VECTOR dim, nrm,
double «nearest,
/*
I Tests ray specified by pt and dim for intersection with a cube I
I of unit radius, centered about origin, by solving a quadratic I
| equation for t, obtained by substituting ray equation into I
(sphere equation Equation is solved using the formula ~ I
t I
I t » (-B +/- sqrt(B«B - 4«A*C))/<2«A) I

«/
{double A,B,B_2,C,AC,BAC,t,

A « dim[0}«dim[0] + dira[l]«dim[l] + dira[2]*dim[2] ,
B ■ dim[0]«pt[0] + dim[l]«pt[l] + dim[2]«pt[2],
C * pt[0]«pt[0] + ptCl]*ptCl] + ptC2]*pt[2] - 1 0,
B_2 » B*B,
AC * A«C,
BAC » B.2 - AC,
if (BAC >0 0) /« BAC < 0 **=> complex roots «/
{ /• BAC * 0 ==> ray is tangent «/

t » (-B - sqrt(BAC))/A,
if ((t < «nearest) t k (t > 0))
{«nearest m t,
nrm[0] ■ pt[03 + t«dim[03,
nrm[l] » pt[l] + t«dim[l],
nrm[23 » pt[2] + t«dira[2],
>

} - -

void tracecylinder(pt,dim,nrm,nearest)
POIHT pt,
VECTOR dim,nrm,
double «nearest,
/*
I A ray, specified by pt and dim, is tested for intersection a
I cylinder of unit length and unit radius, centered along the
I positive z axis, with its back face centered about the origin
I Three asperate tests are performed, one for each of -
I
I the back face unit circle on Z=0 plane, centre at (0,0,0)
I the front face unit circle on Z=1 plane, centre at (0,0,1)
I the main body tube of unit radius centered along Z axis

*/
{double A,B,B_2,C,AC,BAC,t,X,Y,Z,

if (dim[2] '= 0 0)
{ t » -pt [23 /dim [2]
if ((t < «nearest) k t (t > 0))
{
X a pt[0] ♦ t*dira[0],
Y * pt£l] + t*dira[l],
if ((X«X ♦ Y«Y) <* 1 0)
{ «nearest « t,
nzm[0} " 0 0,
nim[l] = 0 0,
nrm[2] »-10,
>

/• test back face */

/« closer intersection with */
/* Z=0 plane “* */
/* xf yes, calculate point */
/• of intersection */
/* Does point lie on back face «/

RAYINTER C 37

t = (1 0-pt[2])/dira[2], /* test front face in sane way «/
if ((t < «nearest) it (t > 0))
{
X ** pt[0] + t«dim[0] ,
Y *» ptCl] ♦ t*dim[ll,
if ((1*1 + Y*Y) <» 1 0)
{ «nearest =* t,
nrmCO] «0 0,
nrm[l] »0 0,
nrm [2] »10,
>

>
>

1 * dim[0]*dimE0] +■ dirn[l]*dirn[l] , /* test nain body by */
B - dira[0]*pt[0] + dira[l]«ptEl], /* solving a quadratic */
C ** pt[0]«pt[0] + pt[l]*pt[l] - 1 0, /• equation for t */
B.2 » B*B,
AC » A*C,
BAC - B_2 - AC,

if ((BAC > 0 0) tk (1 » 0 0)) /* BAC < 0 »> complex root */
{ /* BAC = 0 »> ray tangent */

t «* (-B - sqrt (BAC)) /A,
if ((t < «nearest) At (t > 0))
{Z * pt [2] + t*dirn[2],
if ((Z <» 1 0) U (Z >» 0 0))
{ «nearest =* t,
nrm[0] *» pt[0] + t*dirn[0],
nrm[l] » pt El] + t*dimEl],
nrm [2] * 0,
>

>
> “ -

▼oid tracecone(pt,dim,nrm,nearest)
POIIT pt,
VECTOR dirn, nrm,
double «nearest,
/«
I Specified ray, defined by pt and dim, is tested for |
I intersection with a cone of unit length, apex at origin, and I
I base of unit radius, centre (0,0,1) Two seperate tests are |
I performed, one for the base and one for the main body I

*/
{ d o u b l e A , 8 , B _ 2 , C , A C , B A C ,t, X , Y , Z ,

A * dim[0]*dim[0] + diraEl]*dimEl] " dim[2]«dim[2] ,
B « dim [0] «pt [0] + dim[l]*ptCl] “ pt[23*dimE2]
C « pt[0]*pt[0] + pt[l]*pt[l5 - pt[2]*ptE2],
B_2 = B*B,
AC * A*C, /* test with main body by */
BAC « B_2 - AC, /« solving quadratic fot t */
if ((BAC >00)tt (A •» 0 0))
{

t ■ (-B - sqrt(BAC))/A,
if ((t < «nearest) tt (t > 0))
{Z “ ptE2] + t«dimE2],
if ((Z <a 1 0) tt (Z >» 0 0))
{«nearest = t,

* P*[0] + t*dim[0]J
nrm[l] » pt[l] + t*dim[l] ,
nrm[2] » sqrt(l 0 - Z « Z),>>>

RAYINTER C 38

if (dirn[2] '** 0 0) /♦ test base» same test as */
{ t ■ (1 0-pt[2])/dirn[2], /* front face of cylinder */
if ((t < «nearest) ftft (t >0))
{X = pt[0] ♦ t*dim[0],
Y * pt[l] + t«dira[l],
if (<I«X + Y*Y) <» 1 0)
{ «nearest = t,

nxm[0] «0 0,
arm Cl] »0 0,
nzm[2] ■ 1 0,

>

/♦ RAY-PRIHITIVE ISTERSECTIOI FUICTIOIS — SHADOW RAYS

These four functions below are used to test shadow rays le I
rays traced from a point on an object to the light source, for I
intersection with one of the four primitive solid types The I
functions are very similar to the primary ray intersection I
functions above but differ in the respect that they do not need I
to determine the closest surface of a primitive struck by the I
ray, only if the ray strikes any surface between the ray origin t
and the light source ie 0 < t < tl where tl is the upper limit I
determined from the distance of the ray origin to the light I
source The return value is 0 if there was no intersection, 1 if |
there was I

int stracecubeCpt,dirn,tl)
POIIT ptf
VECTOR dim,
double tl,
{double X,Y,Z,t,

if (dim CO] '* 0)
{ t ■ -pt CO]/dim CO] ,
if ((t > EPSILOI) ftft (t< tl))
{Y ■ ptCl] + t«dimCl],
Z ■ pt[2] + t*dimC2],
if ((Y <= 1 0) kk (Y >= 0 0)

(2 <» 1 0) ft* (Z >» 0 0))
return 1,

}
t » (1 0-ptCO])/diraCO], /« test I**l plane */
if ((t > EPSILOI) kk (t < tl))
{Y » ptCl] + t«dimCl],
Z * ptC2] + t«dimC2] ,
if ((Y <»10) ft* (Y >- 0 0) ftft

(Z <■ 1 0) ft* (Z >* 0 0))
return 1,
>
}

if (dimCl] ,a* 0) /* test Y=0 plane */
{ t * -ptCl]/dimCl] i
if ((t > EPSILOI) ft* (t < tl))
{I ■ ptCO] ♦ t«diraC0]
Z » ptC2] + t*dimC2],
i f ((I < » 1 0) f t * (I > ■ 0 0) ftft

(Z <» 1 0) ftft (Z >» 0 0))
return 1,>

/« test X+O plane */

/* allow for roundoff error */

ftft

RAYINTER C

t « (1 0**pt[l])/dim[l], /* teat Y»1 plane */
if ((t > EPSILOI) ftft (t < tl))
{X ■ pt[0] ♦ t*dim[0] ,
Z * pt[2] + t*dira[2],
if ((X <«* 1 0) ft* (X >« 0 0) ftft

(Z <» 1 0) ftft (Z >» 0 0))
return 1,

}
>

if (dim[2] 0) /♦ test Z=0 plane */
{ t ■ -pt[2]/dirn[2],
if (Ct > EPSILOI) ftft (t < tl))
{Y « pt[l] + t*dirn[l],
X * pt[0] + t*dim[0],
if (CY <= 1 0) ft* (Y >= 0 0) ftft

(X <» 1 0) ft* (X >* 0 0))
return 1,

>
t » (1 O-pt[2])/dira[2], /* test Z=1 plane */
if ((t > EPSILOI) ftft (t < tl))
{Y » pt[l] ♦ t*dim[l],
I a pt[0] + t*dira[0],
if ((Y <» 1 0) ft* (Y >« 0 0) **

(I <a 1 0) ** (X >« 0 0))
return 1,

>
}

return 0,
>

int stracesphere(pt,dim,tl)
POIIT pt,
VECTOR dim,
double tl,
{double A,B>B_2,C,AC,BAC,t,

A » dim [0] «dim [0] + dira[l]*dim[l] + dim[2]*dim[2] ,
B a dira[0]«pt[0] ♦ dim[l]*pt[l] + dira[2]*pt[2j ,
C a pt[0]*pt[0] + pt[l]*pt[l] + pt[2]*pt[2] - 1 0,
B_2 - B*B,
AC * A*C,
BAC a b.2 - AC,
if (BAC >0 0)
{

t - (-B - sqrt(BAC))/A,
if ((t > EPSILOI) ftft (t < tl» return 1,
>

return 0,
>

int straeecylinder(pt,dim,tl)
POIIT pt,
VECTOR dim,
double tl,

{double A,B,B.2,C,AC,BAC,t,X,Y,Z,

if (dim[2] '« 0 0) /* teat back face */
{ t = -pt[2]/dira[2] ,
if ((t > EPSILOI) ft* (t < tl))
{I « pt[0] ♦ t*dim[0] ,
Y a pt[l] + t*dirn[l] ,
if ((I*X + Y*Y) <» 1 0) return 1,
>

RAYINTER C 40

t ■ (1 O-pt[2])/dirn[2], /* test front face */
if ((t > EPSIL01) It Ct < tl))
{X * ptCO] + t*dirnCO] ,
T ® pt[l3 ♦ t*dim[l3,
if (CI*X + Y*Y) <= 1 0) return 1,
>

>
A * dira [03* dira [03 + dxra[l]*dirn[l] , /* test main body */
B *» dirn[03*pt[03 + dira[l3*pt [1],
C ■ pt[0]*pt[0] + pt[l3*pt[l3 - 1 0,
B_2 - B*B,
AC * A*C,
BAC ■ B_2 - AC,

if ((BAC > 0 0) it (A ’= 0 0))
{

t « (-B - sqrt(BAC))/A,
if ((t <» 0) tl (t >=* tl)) return 0,
Z * pt [2] + t*dim[23,
if ((Z <= 1 0) tt (Z >= 0 0)) return 1,
>

return 0,
>

int stracecone(pt,dira,tl)
POIIT pt,
VECTOR dim,
double tl,

{double A,B,B_2,C,AC,BAC,t,I,Y,Z, ~ — — -------

if (dim[23 ** 0 0) /* test base * /
{ t ■ <1 0-pt[23)/dira[23,
if ((t > EPSILOI) it (t < tl))
{X » pt[03 + t*dira[03,
T » pt [13 + t*dim[l3,
if ((I*X + Y*Y) <= 1 0) return 1,
>

>
A ■ dira[03*dim[03 + dira[l3*dira[l3 - dira[23*dira[23 ,
B « dira[03*pt[03 + dim[l3*pt[l3 - pt[23*dim[23,
C ■ pt[03*pt[03 + pt[i3*pt[i3 - pt[23*pt[23,
B_2 * B*B,
AC - A*C,
BAC » B_2 - AC, /* teat main body */
if ((BAC > 0 0) it (A 0 0))
{

t * (-B - aqrt(BAC))/A,
if ((t <■ 0) II (t >* tl)) return 0,
Z ■ pt[23 + t*dim[23,
if ((Z <» 1 0) it (Z >» 0 0))
return 1,

>
return 0,

>

OPTIMIZE C 41

/• OPTIHIZIBG FUICTIOIS HODJLE
a s s s s n s a s a B s i s f i s s s a s s s s s a s :

This module contains the functions used to implement the
pixelbuffer, sortlist, extent and grid optimizations

Utility Functions

t r ansf ormvolume
projectvolume
getnode
compare
calczdepth

Optimizing Functions

calcextent
sortlst
makegrid

* rendervolume

• contained in PGA dependent module PGADPEVD C

3XSS839SSS*

•include <stdio h>
#include <malloc h>
tinclude "global h" /* global parameters, flags t variables */
•include "function hM /* function prototype declarations */

/* UTILITY FUICTIOIS

transf ormvolume

project volume

getnode

compare

calczdepth

Apply transform matrix of an instance of a
primitive to its bounding volume

Project transformed bounding volume onto
viewing plane

Return pointer to allocated space for a
structure of type IQDE

Used by the sortlst function in sorting the
list of objects Compares two objects, A and
B on the basis of the value of their
respective znear fields

Used to calculate the nearest A furthest z
coords of transformed bounding volumes

void transfoxmvolume(m,v,r)
MATRIX m,
POIIT vCSj.rCS],
/*
I Takes specified local bounding volume, v, and applies specified I
I transform matrix, m, returning transformed volume in r (each I
I volume is defined as array of eight 3D vertices) |

*/
•Cint i,j,k,

for (i*0, i<8, i++) /* revert ex ** v_ vertex * m */
for (j*0, j<3, j++)
{ r[i]£j] ■ 0,
for (k=0, k<3, k++)
r[i]Cj] ♦= vCi] [k] * m W [j]

rWCj] m[3] [j] ,
> /* implied rCi][4] of 1 */

>

OPTIMIZE C 42

▼Old pro3ectvolume(v)
POIIT v[8] ,
/*
I Takes specified (transformed) bounding volume and overwrites it I
I with its projectection onto the viewing plane |

*/
{int i,j,
double sx,sy,sz, /* I and Y scale factors ♦/

if (PERSPECTIVE »» OFF)
{
if (projection[2] '* 0)
{si * pro3ection[0]/projection[2],
sy * projection[l3/projection[2],
>

else
{ sx B IIFIIITY, /* parallel projection along the */
sy ■ IIFIIITY, /* direction D(xd,yd,zd) of a ♦/

/* point P(x,y,z) to P>(xv,yv,zv) */
> /* on the plane Z=zv is - * /

/* ♦/
for (i=0, i<8, 1++) /* xv ® x + xd*(zv-z)/zd */
{ /* yr a y + yd*(zv-z)/zd */
v£i] [0] +» (viewplanedist-v[i] [2]) * sx,
v[i][l] (viewplanedist-vCi] [2]) * sy,
v[i][2] » viewplanedist,
>

>
else
- { sz ** viewplanedist - viewpoint [2] f —

for (i*0, i<8, 1++)
{sx * sy » v[i][2] - viewpoint[2],
if (sx '» 0)
iv[i][0] » viewpoint[0] + (v[i][0]-viewpoint[0])*sz/sx,
v[i][l] ■ viewpoint [1] + (v[i] [1]-viewpoint Cl])*sz/sx,
>

else v[i] [0] = v[i][l] = IIFIIITY,
v[i][2] * viewplanedist,
>

>

I0DE *getnode(i,3)
iat i.j,
/•
I Used by the makegrid function to allocate space for nodes |

*/
{BODE *p,
return (I0DE *) malloc(sizeof(I0DE)),

>

int compare(a,b)
OBJECT *a,*b,
/♦
I Compares two objects, a and b, on the basis of their znear I
I fields (the nearest Z coordinate of the objects transformed |
I bounding volume) Used by the sortlst function to sort the list |
i of ob3ects into increasing distance from the viewer I

OPTIMIZE. C

{
if (a->znear =* b->znear) return 0;
if (a->znear < b->znear) return 1;
return -1;

>
▼oid calczdepth(v,o)
POIIT v[8];
OBJECT *o;
/*
I Takes specified transformed bounding volume, ▼, and calculates |
I its nearest ft furthest z coordinates, placing them in the znear |
I and zfar fields respectively, of the object, o. Differs from |
I calcextent function in that volumes are not projected onto the |
I vie« plane and that values calculated are in «orld coords |
I (double) rather than screen coords (int) . I

if (zl > 0) zl 1;
o->znear * (int)(zl);
if (z2 < 0) z2 -* 1;
o->zfar * (int)(z2);
>

/♦ EXTEITS 0PTIMIZ1TI0I

I The extents optimization «orks by calculating for each bject, a
I minimal rectangular area on the screen «hich encloses the
I objects transformed and projected bounding volume. The ray
I intersects bounding volume test then reduces to a point in
I rectangle test, namely that the current pixel lies inside the
I objects screen rectangle/extent. If it does not lie inside the
I ray spavned by the pixel need not be tested for intersection
I vith the object.

I Takes specified (projected) bounding volume, v, and calculates I
I its minimal enclosing screen rectangle, defined by tvo IY screen |
I coordinates (zmin,ymin) ft (xmax,ymax) , the upper right and |
I lover left corners, and places it in the xmin, xmax, ymin and I

*/
{double zl,z2;
int i;

/* current near ft far values */

zl * z2 * v[0] [2] ; /• near * far * first vertex */

for (i*l; i<8; i++)
if (v[i][2] < z2) z2 - v[i] [2] ;
else if (v[i][2] > zl) zl * v[i] [2] ;

/• check remaining 7
/* vertices.

•/
*/

I calcextent : calculates minimal rectangle on screen
enclosing projected bounding volume.

♦/

void calcextent(v,o)
POIIT v[8];
OBJECT *o;
/*

J ya&x fields of the specified object structure, o.

*/
{double xl,x2,yl,y2,zl,z2;
int i;

/* current max ft min X and Y values */

OPTIMIZE C

xl » x2 a v[0][0], /♦ max * min = firet vertex ♦/
yl = y2 » v[0][l],

lor (i«l, i<8, i++>
{ if Cv[i][0] < xl) xl ■ v[i][0], /* check remaining 7 */
else if (v[i][0] > x2) x2 » v[i] [0], /* vertices */
if CvCiKO < yl) yl * ▼CilCU,
else if Cv[i] [1] > y2) y2 = v[i] [1] ,
>

if (xl < »xl) xl ** »xl, /* clip rectangle to edge of * /
if (x2 > 0x2) x2 B vx2, /* window if it exceeds same */
if (yl < wyl) yl » wyl,
if (y2 > wy2) y2 ■ wy2,

o->xmin ■ (xl - wxl) * xfacwv + vxl, /* map rectangle to screen */
o->xmax 3 (x2 - wxl) * xfacwv + vxl,
o->ymin = (yl - wyl) * yfacwv + vyl,
o->ymax ■ (y2 - wyl) * yfacwv + vyl,

>

/♦ PIXEL BUFFER OPTIMIZATIOI

The pixel buffer optimization works by taking the transformed
and projected bounding volumes for all objects and drawing them
as filled polygons on the screen, all filled with the same
color By setting all screen pixels to a different color before
performing this operation, any pixel which is not of the fill
color can be instantly identified as one which does not
intersect any object at all and can be set to the background
color without even generating a ray equation for it Since the
function uses PGA specific function calls to draw and fill the
polygons, it can be found in the PGA module

rendervolume render projected bounding volume on screen
in fillcolor (SEE PGA MODULE)

J* SORTLIST OPTIMIZATIOI

The sortlist optimization works by taking the linked list of |
objects (which defines the scene) and sorting it in order of |
increasing bounding volume distance from the viewer in the |
direction of projection ie the closer an objects bounding |
volume to the viewer (when transformed into world coordinates) |
the nearer the front of the list that object is placed in the |
sorted list Then, when testing a ray for intersection with the |
list of objects, all objects whose closest bounding volume face |
lies further from the viewer than the intersection point cannot |
possibly intersect the ray at a closer point, and can be omitted I
from the test And, since the list is in sorted order, as soon I
as one such object is encountered, the test can be ended as all I
further objects in the list must lie even further from the |
viewer |

I
sortlst Takes a linked list and a pointer to a function for I

comparing two nodes, and sorts the list in |
ascending order, returning a pointer to the new t
sorted list |

OBJECT «sortlst(p,compare)
OBJECT *p,
int («compare)(),

OPTIMIZE C

{int base,
unsigned int block,
struct tap« {

OBJECT first,«last,
unsigned int count,
> tape [4],

tape[03 count « 0, tape[0] last » fttape[0] first,
tap«[1] count ■ 0, tape[l] last » ttape[l] first,

for Cbase=0, p1“HULL, p=p->nert, base~=l)
{tape[base] last = tape[base] last->n«xt * p,
tape[base] count++,
>

for (base=0, block®l, tape[base+l] count'=0, base *a2, block <<=1)
{int dost,
struct tape «tapeO, «tapel,
tap«0 “ tape + base,
tap«l ■ tap« + base + 1,
dost ® base"2,
tape[dost] count « 0, tape[dost] last * fttape[dest] first,
tape[dest+l] count * 0, tape[dest+l] last » ttape[dest+l] first,

for (, tapeO->count'»0, dest~al)
{unsigned int nO,nl,
struct tape «output.tape,
output.tape » tape + dest,
nO ■ al » block,
while Cl)
{OBJECT «chosen.item,
struct tap« •chosen.tape,
if (n0**”0 11 tape0*'>count=0)
{if (nl«=0 |{ tapel->count»=0) break,
chosen.tape » tapel,
nl~,
>

else if (nl^O 11 tapel->count*=0)
{chosen.tape » tapeO,
nO— ,
>

•Is« if ((«compare)(tapeO->first next,tapel->firat next) > 0)
{chosen.tape = tapel,
nl— ,
>

else
{chosen.tape ® tapeO,
nO— ,
>

chosen.tape->count— ,
chosen_item * chosen_tape->first next,
chosen.tape->first next * chosen_item->next,
output.tape->last = output _t ape-> last **>next 3 chosen.item,
output _t ape->count ++,
>

>
>

tape[base] last->next = IULL,
return tape[base] first next,
>

OPTIMIZE C

/• GRID 0PT1HXZATI01

The grid optimization works by dividing the screen up into a
fixed number of rectangles and associating with each a pointer
to list of those objects whose screen extents overlap the
rectangle Testing a ray for intersection with the scene then
involves determining in which rectangle the pixel spawning the
ray lies and testing the ray only with the objects in the
rectangles associated list The grid is implemented as a global
2 dimensional array of pointers Each pointer points to a linked
list whose nodes consist of two fields, a pointer to the next
node of the linked list and a pointer an object in the list of
objects whose extent has overlapped the rectangle

aakegrid Takes a pointer to a list of objects and creates for
each pointer element of a global 2d array a linked
liBt of pointers to objects whose screen extents
overlap the associated rectangle of the array
pointer element

void makegrid(scene)
OBJECT «scene,

{int 1,j,szx,szy,
OBJECT *p,
IODE *gp,

szx » (vx2-vxl)/GRIDC0L + 1,
szy ® (vy2-vyl)/GRIDR0V + 1,

for (i»0, i<GRIDR0V, i++)
for (j«0, j<GRIDCOL, j++)
grid[i][j] « TOLL,

for (i*0, i<GRIDR0W, i++)
for (j*0, j<GRIDC0L, j++)
for (psscene, p*®IULL, p**p->next)
if ((p->xmin < (j+l)*szx+vxl) ft* (p->ymin <* vy2-i*szy) ftft

(p->zmax >= j*szx+vxl) ** (p->ymax > vy2-(i+l)*szy))
{if (grid[i]tj] =» HULL)

gridCi] [j] ■ gp ** getnodeCi,j) ,
else
{gp->next ■ getnode(i,j),
gp 53 gp->next,
>

if (gp '■ VULL)
{gp->ptr » p,
gp->next *» VULL,
>
else
{printf("\n\nOut of Space1 node %d Xd,,Ji,j),
exit(0),
>

>
>

SH A D E C

/» SHADIIG NODULE

I This module contains the shading functions used by the
I raytracer Although the pgashade function is geared to
I calculating a color in the PGA range 0 255, it does not call
I any pga library functions and so is omitted from the PGA
I dependent module PGADPEHD C
I
I Functions -
| pgashade
I rgbshade
I

*/
•include <math h>
•include "typedef h" /* structure ft other typedef definitions*/
•include "function h" /* function prototype declarations */

extern double ambient»

extern int DITHER, dither4 [4] [4], dither8[8][8]

/* SHADIHG FUICTIOHS

These functions use the following vectors to calculate the shade
for a given pixel, using Phongs lighting equation (all vectors
specified in relation to intersection point of ray with
primitive object and are assumed to be unit vectors) -

ray — > vector in direction of viewer/ray
Ight — > vector in direction of light source
nnal — > surface normal

Other information is accessed via a pointer to the intersected
object» obj Pixel coordinates are passed through x and y in
case a dither matrix operation is specified through the global
flag »DITHER*

*/

void pgashade(c,obj,ray,Ight,nrml,x,y,shad)
unsigned char *c,
OBJECT *obj»
VECTOR ray,Ight,nrml,
int x,y,shad,
/*
I This function calculates the shade of a pixel as an intensity I
I value in the range 0 1 This is then converted to an int value I
I in the range 0 IS Since the raytracer loads the PGA 256 entry |
I color table with 16 different shades for each of 16 base colors,]
I this value is added to the offset of the base color in the table |
I to give a value in the range 0 255 I

*/
{VECTOR rflec, /* direction of reflected ray */
double spec,pspecf /* specular reflection values */

diff, /* diffuse reflection value */
intens, /• final calculated intensity */
rad,
dther, /* used in dither matrix operation */

SHADE.C

if (! shad)
{
difí - nrml[0]*lght[0] ♦

nrml[l]*lght[l] ♦
nrml[2]*lght[2] ;

if (diff < 0.0) diff * 0.0;

rflec[0] ■ Ight[0]-ray[0];
rfl«c[l] * Ight[1]-ray[1];
rflec[2] * Ight[2]-ray[2];

normalize(rflec);

if (diff *» 0.0) pspec * 0.0;
•la«
{spec * nrml[0]*rflec[0] +

nml[l]*rfl«c[l] +
nrml [2] *rflec [2] ;

pspec * pow(spec,obj->pwr);
>

/* point not in shadow */

/• diffuse intensity * */
/• rector dot product of */
/* normal and light vectors */

/* negative *> angle >90 */

/* calculate direction of */
/• reflected ray for use in */
/* specular calculation. */

/* must be unit vector */

/• angle > 90 => no specular */

/* specular * dot product of */
/• normal and reflected ray...*/

/* ... raised to power pwr. */

intens * 15.0 * (obj->ks*pspec ♦
obj->kd*diff ♦

/* calculate Phong intensity */
/* (0..1) and convert to the */

obj->ka*ambient) + /* range 0..15 for PGA use. */
obj->rnd*rand()/32768.0;

>
else /* shad=l *> point in shadow */

intens * 15.O*obj->ka*ambient + obj->rnd*rand()/32768.0;

if (intens < 0.0) intens * 0.0;
else
if (intens > 14.9) intens ■ 14.9;

/* chop out of range values */

if (DITHER ” 01) /* dither flag set ? */

/* take fractional part. */
/* Use dither do decide */
/•to round up or down. */

{dther ■ intens - (int)intens;
if ((int)(15.0*dther+0.5) >

dither4[xX4][y%4])
intens ♦* 1.0;

>
else

intens +*0.5; /* no dither, round to nearest integer */

*c * (char)(16*obj->clr + (int)intens);
/• 0..255 color value */

void rgbshade(c,obj,ray,Ight,nrml,x,y,shad)
unsigned char *c;
OBJECT *obj;
VECTOR ray,Ight,nrml;
int x,y,shad;

I This function calculates the shade of a pixel as three intensity |
I values in the range 0..255, one for each of the red green and |
I blue intensities, by applying the shading equation three times - i
I one« for «ach intensity. The respective ratios with which an I
I object reflects each of the three primaries is obtained from the |
I object structure itself. |

{VECTOR rflec;
int i;

/• direction of reflected ray. */

SH A D E C 49

doable spec,pspec,
diff,
intens,
dther,

if ('shad)
{
dxff ■ nrml[0]*lght[0] +

nnnl[l] tight [1] +
nrml[2] *lght [2],

/* specular reflection values */
/* diffuse reflection value ♦/
/* final calculated intensity */
/* used in dither matrix operation */

/* diffuse intensity * ♦/
/♦ vector dot product of */
/+ normal and light vectors •/

if (diff <0 0) diff =0 0,

rflecCO] ■ lghtCO]-ray[0],
rflec[l] » lght[l3-rayCl](
rflec[2] » lght[2]-ray[2],
normalize(rflec),

/* negative => angle >90 */

/* calculate direction of */
/♦ reflected ray for use in */
/* specular calculation */
/* must be unit vector */

if (diff » 0 0) pspec ®0 0,
else
{spec ** nrml[0]*rflec[0] +

nrml[l]*rflec[l] +
nrml [2] *rf lec [2] ,

pspec ■ pow(spec,obj->pwr),
>

/* angle > 90 ■> no specular */

/* specular * dot product of *
/* normal and reflected ray

/* raised to power pwr

*/
*/
*/

for (i=0, i<3, i++)
{
if (shad)
intens ® 255 0 * (1 0 - obj->ka*ambient),
else
intens ■ 255 0 *

(1 0 - (obj->ka*ambient +
obj->ks*pspec +
obj->cmy[i]*diff +
ob3~>cmy[i]*ambient)),

/* Phong intensity */

if (intens <0 0) intens = 0 0,
else
if (intens > 254 9) intens “ 254 9,

/• chop out of range values •/

/ * dither flag set 7 */

/* take fractional part */
/* Use dither do decide */
/♦to round up or down */

if (DITHER *= 01)
{
dther « intens - (int)intens,
if ((int)(15 0*dther+0 5) >

dither4 [xX4][yX4])
intens +=10,

>
else
intens +"0 5, /* no dither, round to nearest integer */

*(c+i) » (char)(1 6*ob3~>clr + (int)intens),
>

PG A D PE N D C

/. PGi DEPEIDEHT MODULE

The raytracer functions in this module axe all PGA dependent in
that they all call one or more functions from the set of PGA
library routines which were written prior to the raytracer
implementation and which provide access to various line/curve
drawing capabilities of the Professional Graphics adapter card

Function PGA functions called

rendervolume poly
pzmfil
color

— >
— >
— >

draws polygon from of points]
fills polygons in current color I
sets current color I

pgatrace rline
wline

— >
— >

1
reads line of pixels from screen I
writes line of pixels to screen I1

loadpgafile wline
Gscreen — >

l
1

sends byte stream directly to I
PGA memory mapped I/O buffer 1

i
savecolors lutrd — >

1
reads look up table value |I

readcolors lut — >
1

sets look up table value |I
generatergbup lut

1
1l

generat ergbdown lut 1I
initpga mit

vwport
window

— >

— >
— >

1
initializes the PGA card and I
switches monitor to PGA mode I
defines screen viewport |
defines viewplane window I -

flood — > floods viewport in given color

qnitpga endgraphic — > switches monitor from PGA back
to normal mode

*/
•include
•include
•include
•include
•include

<stdio h>
<malloc h>
"pga V
"global h"
"function h"

/• pga library functions header file */
/* global parameters, flags Jk variables */
/* function prototype declarations */

extern int fillcolor.

void rendervolume(v,c)
POIIT vC8],
int c, /* bounding volume fill color •/

I Takes specified bounding volume (transformed and projected) and I
I renders it on the screen (using PGA library functions) as six]
I filled polygons, filled in color c I

{int dummy[3],
prmfil(on),
color(c),

/* ploygon fill on
/* current color ■

♦/
c */

/* render six polygon faces of bounding volume on screen,
filled with fillcolor (volume for cone really only has
five» 6th one consists of & single point - the apex ♦/

poly(4,v[0] [0] ,v[0] [1] vCl] [0] v[l] [1] ,v[2] [0] ,v[2] [1} ,v[3] [0] ,v[3] [1]) ,
poly(4,vC0] [0] ,v[0] i l l ,v[4] [0] ,v[4] Cl] ,vC5] [0] ,v[5] [1] ,v{l] [0] ,v[l] [1])
poly(4,v[0] [0] ,v[0] [1] ,v[3] CO] ,vC3] Cl] ,vC7] CO] ,v[7] Cl] ,v[4] CO] ,vC4] Cl]) ,
poly(4,rC6l COl .r[6Kl] .»[5] [0] .»[5] [1] ,,[!] M ,w[l] Cl] ,»C2] [0] ,tCS] [1]) ,

P G A D P E N D C 51

p o ly (4 ,v [6] [0] ,v [6] [1] ,v [7] [0] ,v [7] [l] ,v [4] [0] i M [1] ,» [5] [0] ,» [5] [1]) ,
p o l j (4 ,* M [0] ,» [6] [1] ,y [2] [0] .» [2] [1] ,y [3] [0] .» [3] [1] , t [7] [0] , t [7] [1]) ,
lutrd(2S»dummy),
prnfil(off), /* polygon fill off * /

>

▼oid pgatrace(scene)
OBJECT «scene,
{unsigned char *bf,*fbuf,«ptr,id,
int x,y,cnt,

bf ■ (unsigned char *)malloc(vx2-vxl+l),
if (FILEOUT 01)
{if (COMPRESS *» 01)

fbnf ■ (unsigned char *)malloc(2*(vx2-vxl+l)),
else
{id » Oxff, /• write id byte to indicate uncompressed format */
fwrite((char *)fcid,l,l,outflie),
fwrite((char *)ftvxl ,sizeof(int) ,1, out file) , /* write viewport */
fwrite((char *)tvx2,sizeof(int),1,outfile),
fwrite((char *)*vyl,sizeof(int),l,outfile),
fwrite((char *)Jkvy2,sizeof (int) ,l,outf lie) ,
>
>

for (yavy2, y>®vyl, y—)
{ ptr ■ bf,
xl ((PIXELBUFFER » 01) ti (SCREE! » OH))
{rline(y,vxl,vx2,bf),
for (x«vxl, x<=vx2, x++,ptr++)
if (*ptr M fillcolor) raycast(scene,x,y,ptr),
else *ptr » background,

>
else
for (x=vxl, x<»vx2, r++,ptr++)
raycast(scene,x,y,ptr),

if (SCREE1 “= 01)
wline(y,vxl,vx2,bf),

if (FILEOUT *» OH)
{if (COMPRESS w OH)
{cnt ** linecompress(bf,fbuf,y,vxl,vx2),
fwrite(fbuf,l,cnt»outfile),
>
else
fwrite(bf,1,vx2-vxl+lfoutfile),
>

>
free(bf),
if (FILEOUT «* OH)
{ fclose(outflie),
if (COMPRESS = OH)
free(fbuf),

>
>
int readcolors(str)
char *str,

I This function loads the active look up table of the PGi with the I
I 256 red, green, t blue stored as integers in the file str The I
I integer stores the values as - |
i I
I red — > bits 11 10 d d j
I green — > bits 7 6 5 4 |
I blue — > bits 3 2 10 |

PGADPEND.C 52

{FILE *fp;
int i,r,g,b,*bf;

if ((PGA ** OFF) || (SCREEI = OFF)) return 0;

if ((fp * fopen(str,"rb")) ** IULL) return -1;

bf * (int *)malloc(256*sizeof(int));
fread((char *)bf,sizeof(int),256,fp);
fclose(fp);

for (i-0; i<256; i++)
{r - (bf[i] t OxOfOO) » 8;
g - (bf[i] k OxOOfO) » 4;
b - bf[i] k OxOOOf;
lut(i,r,g,b);
>

return 1;

int 8&Yecolors(str)
char *8tr;

I This function performs the reverse process of readcolors ie. it |
! saves each of the 256 12-bit entries of the current PGA look up |
I table as 256 integers stored in the file str. |

{FILE *fp;
int i,rgb[3],*bf;

if ((PGA «* OFF) || (SCREEI OFF)) return 0;

if ((fp * fopen(str,"wb")) ** IULL) return -1;

bf * (int *)malloc(256*sizeof(int));

for (i*0; i<256; i++)
{lutrd(i,rgb);
bf[i] ■ (rgb[0] « 8) | (rgb[l] « 4) | rgb[2];
>

fvrite((char *)bf,sizeof(int),256,fp);
fclose(fp);
return 1;
>

void generatergbup(c,r,g,b)
int c,r,g,b;
/*
I Given a color group (0..15) and a red, green t blue color, this
I function generates a set of 16 shades of the given color,
I starting vith black (rgb * 000). The shades are calculated by
I following a line through an imaginary RGB cube, consisting of
I 4096 subcubes (16x16x16) each of which corresponds to one of the
I 4096 PGA red, green k blue combinations. The line is followed
I from erigia (lewer left C9n«r) through th« c«ll specified by
I r,g, and b.

•/

PG A D PE N D C

{int i,
double x,y,z,max,

if (SCREES » 01)
{
if ((x > 0) II (g > O) II (b > 0))
{max * r,
if (g >- max) max 3 g,
if (b >= max) max ■ b,
x » r/max,
y ® g/max,
z “ b/max,

for (i^O, i<16, i++)
lut(16*c+i,(int)(i*x+0 5),(int)(i*y+0 5),(int)(i*z+0 5)),
>

>

▼oid generatorgbdown(c,r,g,b)
int c,r,g,b,
/*
I Like generatergbup, this function generates 16 shades of a color I
I by following a line through an imaginary RGB cube In this case I
I however, the line is followed from the upper right corner of the I
I cube (rgb » 111) down through the cell specified by r, g, and b |

*/
{int i,
double x,y,z,max,

if (SCREES ™ OS)
{
if ((r > 0) 11 (g > 0) || (b > 0))
{max * r,
if (g >■ max) max » g,
if (b >» max) max = b,
x 9 r/max,
y *» g/max,
z * b/max,
for (i=0, i<16, i++)
lut(16*c+i,(int)(15 5-i*x),(int)(15 5-i*y),(int)(15 5-iez)),
>

>
>

void loadpgafile(str)
char * str,
/•
I Displays an image on screen, read from a file in PGA format
I First determines if the file is in compressed or uncompressed
I format by looking at the first byte -
I
I D9 «> compressed
| FF ■“* uneomprafis«<i
I
I see linecompress function in RTRACE C module for description
I of compressed k uncompressed formats

PG A D PE N D C

{char »lne,
unsigned char id,
int i»25,fh,xl,x2,yl,y2,y,len,
long length,
FILE *fp,

if (C(fp » fopenCstr,"rb")) •* IULL))
{
fread(ftid,l,1,fp),
if (id «* 0x09)
{ lne “ malloc(i),
fh * fileno(fp),
length » filelength(fh) ,
fseek(fp,(long)O,5EEX.SET),
while (length > (long)i)
{fread(lne,1, i,f p),
Gscreen(lne,i),
length -■ (long)i,
>

fread(lne,1,(int)length,fp),
Gscreen(lne, (int) length),
fclose(fp),
free(lne),
>

else
if (id ** OxFF)
{

/* first byte D9 or FF */

/* D9 *»> compressed */

/* pnt byte back - its data */

/* read file in blocks of i */
/* and send directly to PGA */

/* FF uncompressed */
/♦ I0TE FF not part of data */

/* read viewport */fread((char *)ftxl,sizeof(int),l,fp),
fread((char *)ftx2,sizeof(int),l,fp),
f read ((char *)ftyl,sizeof (mt) ,1 ,fp) ,
fread((char *)Ay2,sizeof(int),1,fp),
len * x2-xl+l,
lne ■ malloc(len),

for (y®y2, y>«yl, y--)
{fread(lne,1,len,fp), /♦ read line ft display it */
wline(y,xl,x2,lne),
>

free(lne),
fdose(fp),
}

>
>

void initpgaO
{
if (SCREE! » 01)
{
initO,
vwport(vxl,vx2,vyl,vy2),
window(wxl,wx2,wyl,wy2),
flood(fillcolor“Oxffff),
>

void quitpgaO
{
if (SCREE! 0!)
endgraphicO,

>

Bibliography

/

AMAN84

A N T 081
APOD89

APPE67

APPE68

ARNA87

ARV087

BLIN76

BLIN77

BLIN80

BOUK70

BOUV85

BOYS82

BRON84

BROW82

A m a n ta tid e s , J , Ray Tracing With Cones, C o m p u t e r G r a p h ic s 1984
v o l 18 # 3 J uly p p 129-135
Anton, H , Elementary Linear Algebra, J o h n W iLEY & S o n s In c 1981
A p o daca , T , The Renierman Interface, B Y T E 1989 VOL 14 # 4 APRIL
PP 267-276
Appel, A , The Notion Of Quantitative Invisibility And The Machine Ren
dering Of Solids, P r o c ACM n a t io n a l C o n f e r e n c e (o c t) N e w
Y o r k 1967 ACM N e w Y o r k p p 387-393
A ppel, A , Some Techniques For Shading Machine Renderings Of Sohds,
T h o m p s o n B o o k s W a s h in g t o n D C 1968 p p 37-45
A rn a ld i, B , Thierry P an d Bouatouch K , A New Space Subdivision Method
For Ray Tracing CSG Modelled Scenes, V is u a l C o m p u t in g G e r m a n y ,
S p r in g e r V e r l a g 1987 v o l 3 # 2 A u g u s t p p 98-108
Arvo, J and Kirk, D , Fast Ray Tracing By Ray Classification, C o m p u t e r
G r a p h ic s 1987 v o l 21 # 4 J uly p p 55-64
B linn , F J a n d Newell, M E , Texture And Reflection In Computer Gen
erated Images, C o m m u n ic a t io n s O f T h e ACM 1976 v o l 18 # 1 0
O c t o b e r p p 542-547
Blinn, J F , Models Of Light Reflection For Computer Synthesized Pictures,
C o m p u t e r G r a p h ic s 1977 v o l 11 # 2 p p 192-198
Blinn, J F , Carpenter, J and W hitted, T , Scan Line Methods For Dis
playing Parametrically Defined Surfaces, C o m m u n ic a t io n s O f T h e ACM
1980 v o l 23 # 1 J a n u a r y p p 23-34
Bouknight, W J , A Procedure For Generation Of Three-Dimensional
Halftoned Computer Graphics Representations, C o m m u n ic a t io n s O f T h e
ACM 1970 v o l 13 # 9 Se p t e m b e r p p 527-536
B ouville, C , Bounding Ellipsoids For Ray-Fractal Intersection, COMPUTER
G r a p h ic s 1985 v o l 19 # 3
Boyse J W and G ilch ris t J E , GMsoltd Interactive Modelling For Design
And Analysis Of Solids, IE E E C o m p u t e r G r a p h ic s A n d A p p l ic a t io n s
1982 v o l 2 # 2 M a r c h p p 86-97
Bronsvoort, W F , Van Wyk, J J and Jansen, F W , Two Methods For
Improving The Efficiency Of Ray Casting In Solid Modelling, C o m p u t e r
A id e d D e s ig n 1984 v o l 16 # 1 J a n u a r y p p 51-55
B row n C M , PADL-2 A Technical Summary, IE E E C o m p u t e r G r a p h
ic s A n d A p p l ic a t io n s 1982 v o l 2 # 2 M a r c h p p 69-84

BIBLIOGRAPHY

BUITT5

CARP82

CATM74

CATM80

CLEA83

COHE85

COOK81

COOK88

CROW77a

CROW 77b

CROW81

D A D 082

DEGU86

DIPP84

Bui-Tuong, Phong , Illumination For Computer Generated Images, COM
MUNICATIONS O f T h e ACM 1975 v o l 18 pp 311-317
Carpenter L , Fournier A and Fussel D , Computer Rendering Of Stochastic
Models, C o m m u n ic a t io n s O f T h e ACM 1982 v o l 25 # 7 J u n e p p
371-384
Catmull E , A Subdivision Algorithm For Computer Display Of Curved
Surfaces, U n iv U t a h C o m p u t e r S c ie n c e D e p t 1974 D e c e m b e r
U T E C -C SC -74-133
C atm u ll, E , Computer Display Of Curved Surfaces, T u t o r ia l A n d Se
l e c t e d R e a d in g s In In t e r a c t iv e C o m p u t e r G r a p h ic s 1980 IEEE
p p 309-315 (H F r e e m a n e d)

Cleary, J G , Wyvill, G M , Vatti, R and Birtwistle G M , Multiprocessor
Ray Tracing, T e c h R e p o r t D e p t C o m p u t e r S c ie n c e C a l g a r y
U n iv e r s it y 1983 r e p o r t # 8 3 /1 2 8 /1 7 O c t o b e r

Cohen, M F and Greenberg, D P , The Hemt-Cube A Radiosity Solution
For Complex Enviomments, C o m p u t e r G r a p h ic s 1985 v o l 19 # 3 p p
31-41
Cook, R L and Torrance, K , A Reflectance Model For Computer Graphics,
C o m p u t e r G r a p h ic s SIG G R A PH ’81 1981 V ol 15 # 3 A u g u s t p p
307-316
C ook, R L , A Reflection Model For Realistic Image Synthesis, M a s t e r s
T h e s is C o r n e l l U n iv e r s it y It h a c a NY D e c e m b e r ’88
C row , F C , Shadow Algorithms For Computer Graphics, COMPLTER
G r a p h ic s 1977 v o l 11 # 3 J uly p p 242-248
Crow, F C , The Aliasing Problem In Computer Shaded Images, COMMU
NICATIONS O f T h e ACM 1977 v o l 20 # 1 1 p p 40-48
Crow, F C , A Comparison Of Antialiasing Techniques, IEEE COMPUTER
G r a p h ic s & A p p l ic a t io n s 1981 v o l 1 # 1 J a n u a r y

Dadoun, N , Kirkpatrick, D and Walsh J , Hierarchical Approaches To Hid
den Surface Intersection Testing, P r o c e e d in g s O f G r a p h ic s In t e r f a c e
’82 1982 M ay p p 49-56
D eguchi, H , Sh irakaw a, I an d O m u ra , K , A Tree-Structured Parallel Pro
cessing System For Image Generation By Ray Tracing, Sy s t e m s A nd
C o m p u t in g (U SA) 1986 v o l 17 # 1 2 D e c e m b e r p p 51-62
Dippe, M and Swensen, J , An Adaptive Subdivision Algorithm And Paral
lel Architecture For Realistic Image Synthesis, C o m p u t e r G r a p h ic s 1984
v o l 18 # 3 J uly p p 149-158

BIBLIOGRAPHY

ED WA 82

ERDE89
FOLE84

FUJI86

GERV86

GOLD86

GREET8

GREE79

HANR83

HECK84

HENN89

HIGD74

J A N S 8 5

JOY86

KAJI83a

Edwards, B E , Implementation Of A Ray Tracing Algorithm For Rendering
Superquadnc Sohds, M a s t e r s T h e sis R e n s s e l a e r P o l y t e c h n ic In s t ,
T r o y , N e w Y o r k 1982 D e c e m b e r

Erdelsky, P h ilip , J , An Efficient Sorting Algorithm For Sorting Linked
Lists, T h e C U se r s J o u r n a l 1989 v o l 7 # 4 M ay p p 89-91
Foley, J D and Van Dam, A , Fundamentals Of Interactive Computer
Graphics, A d d is o n -W e l s e y Sy s t e m s P r o g r a m m in g Se r ie s 1984
ISBN 0-201-14468-9
Fujimoto, A , ARTS Accelerated Ray Tracing System, IEEE C o m p u t e r
G r a p h ic s k A p p l ic a t io n s 1986 A p r il p p 16-26
G erv au tz , M , Three Improvements Of The Ray Tracing Algorithm For CSG
Trees, C o m p u t in g k G r a p h ic s (G B) 1986 v o l 10 # 4 pp 333-339
Goldsmith, J and Salmon, J , Automatic Creation Of Object Hierarchies,
IEEE C o m p u t e r G r a p h ic s A nd A p p l ic a t io n s 1986 v o l 7 # 5 p p
14-20
Greenberg, D P , Atherton, P R and Weiler, K J , Polygon Shadow Gener
ation, C o m p u t e r G r a p h ic s 1978 v o l 12 # 3 p p 275-281
Greenberg, D P and Kay, D S , Transparency For Computer Synthesized
Pictures, C o m p u t e r G r a p h ic s SIG G R A P H *79 1979 v o l 13 # 2
A u g u s t p p 158-164
H a n ra h a n , P , Ray Tracing Algebraic Surfaces, C o m p u t e r G r a p h ic s
1983 v o l 17 # 3 J uly p p 83-90
H eckbert, P S an d H a n ra h a n , P , Beam Tracing Polygonal Objects, COM
PUTER G r a p h ic s 1984 v o l 18 # 3 p p 119-127 ju l y

H enning , E , Intel’s Rise Revolution Of The ’90s, PC U s e r 1989 # 1 0 3
29 M a r c h p p 40-52
Higdon, C E , An Optical Ray Tracing Program, N aval O r d n a n c e L a b
W h it e O a k MD U SA 1974 R e p o r t # NO LT R -74-70
Ja n se n , F W , Data Structures For Ray Tracing, C o m p u t e r G e n e r a t e d
Im a g e s (P r o c G r a p h ic s In t e r f a c e ’85) 1985 M ay 27-31 p p 57-73
Joy, K I and Bhetanabhotla, M N , Ray Tracing Parametric Surface
Patches Utilizing Numerical Techniques And Ray Coherence, COMPUTER
G r a p h ic s 1986 SIG G R A PH ’86 A u g u s t p p 18-22
K ajiy a , J T , New Techniques For Ray Tracing Procedurally Defined Ob
jects, C o m p u t e r G r a p h ic s 1983 v o l 17 # 3 J uly p p 91-102

BIBLIOGRAPHY

KAJI83b Kajiya, J T , Ray Tracing Parametric Patches, C o m p u t e r G r a p h ic s
1983 v o l 17 # 3 p p 91-102

KA JI84 Kajiya, J T and Von Hersen, B P , Ray Tracing Volume Densities, C o m
p u t e r G r a p h i c s 1984 v o l 18 # 3 J u l y p p 1 6 5 -1 7 4

KAY84 Kay, T L and Kajiya, J T , Ray Tracing Complex Scenes, COMPUTER
G r a p h ic s 1984 v o l 20 # 4 p p 269-278

LANC78 L ance, W , Casting Curved Shadows On Curved Surfaces, C o m p u t e r
G r a p h ic s 1978 vo l 12 # 3 A u g u s t p p 270-274

LEE85 Lee, M , Redned, R A and Uselton, S,P , Statistically Optimized Sampling
For Distributed Ray Tracing, C o m p u t e r G r a p h ic s 1985 v o l 19 # 3
J uly p p 61-67

LEVI76 Levin, J , A Parametric Algorithm For Drawing Pictures Of Solid Objects
Composed Of Quadnc Surfaces, C o m m u n ic a t io n s O f T h e ACM 1976
v o l 19 #10 O c t o b e r p p 555-563

MAHL72 Mahl, R , Visible Surface Algorithm For Quadnc Patches, IEEE T r a n s
a c t io n s O n C o m p u t e r s 1972 C-21 J a n u a r y p p 1-4

MAND82 M an d e lb ro t B B , The Fractal Geometry Of Nature, F r e e m a n S a n F r a n
c is c o 1982

MAX86 Max, N L , Atmospheric Illumination And Shadows, COMPUTER G r a p h ic s
SIGGRAPH ’86 D a l la s 1 9 8 6 „ v o l 20 # 4 A u g u s t p p 1 1 7 - 1 2 4

MAXW46 Maxwell, E A , Methods Of Plane Projective Geometry Based On The Use
Of General Homogenoug Coordinates, C a m b r id g e U n iv e r s it y P r es s
1951 C a m b r id g e

MAXW86 Maxwell, G M , Calculations Of The Radiation Configuration Using Ray
Casting, C o m p u t e r A id e d D e s ig n (GB) 1986 v o l 18 # 7 S e p t e m b e r
p p 371-379

MITC87 Mitchell, D P , Generating Antiahased Images At Low Sampling Densities,
C o m p u t e r G r a p h ic s 1987 v o l 21 # 4 J u l y p p 65-71

MYER82 Myers W , An Industrial Perspective On Solid Modelling, IEEE C o m
p u t e r G r a p h ic s A nd A p p l ic a t io n s 1982 v o l 2 # 2 M a r c h p p
86-97

NAGE71 Nagel, R and Goldstern, R A , 3-D Visual Simulation, S im u l a t io n 1971
J a n u a r y p p 25-31

NEM 086 N em oto , K an d O m ach i, T , An Adaptive Subdivision By Sliding Boundary
Surfaces For Fast Ray Tracing, P r o c O f G r a p h ic s In t e r f a c e ’86 &
V is io n In t e r f a c e ’86 1986 M ay W e i n , M a n d K i d d , E M (e d s) -

BIBLIOGRAPHY

NEWE72

NEWE78

NEWM79

NISH86

PEAC86

PLUN85

PORT84

PULL87

REQU80

REQU82

ROBE72

ROTH82

RUBI80

RUSH86

Newell, M E , Newell, R G and Sancha, T L , A New Approach To The
Shaded Picture Problem, P r o c e e d i n g s ACM N a t i o n a l C o n f e r e n c e
1972 pp 443
Blinn, J F and Newell, M E , Clipping Using Homogenous Coordinates,
C o m p u t e r G r a p h ic s S I G G R A P H ’78 1978 vol 12 # 3 A u g u s t p p
245-25 1
Newman W,M and Sproul R F , Principles Of Interactive Computer
Graphics, M e G r a w H ill 2 nd E d it io n 1979

Nishita, T and Nakamae, E , ConUnous Tone Representation Of Three-
Dimensional Objects Illuminated By Sky Light, C o m p u t e r G r a p h ic s
SIG G R A PH ’86 D a l l a s 1986 v o l 20 # 4 A u g u s t p p 1 2 5 -1 3 2

Peachey, D R , PORTRAY-An Image Synthesis System, P r o c G r a p h ic s
In t e r f a c e ’86 & V is io n In t e r f a c e , Va n c o u v e r 1 9 86 2 6 -3 0 M ay
p p 3 7 -4 2 W e i n , M a n d K i d d , E (e d s)

Plunkett, D J and Bailey, M J , The Vectonzatton Of A Ray Tracing Al
gorithm For Improved Execution Speed, IEEE C o m p u t e r G r a p h i c s &
A p p l i c a t i o n s 19 85 v o l 5 # 8 A u g u s t pp 5 2 -6 0

Porter, T , Cook, R L and Carpenter, L , Distributed Ray Tracing, Com
p u t e r G r a p h i c s 1984 v o l 18 # 3 J u l y p p 1 3 7 -14 5

P u lley b lan k , R W , The Feasibility Of A VLSI Chip For Ray Tracing Bicu
bic Patches, IEEE C o m p u t e r G r a p h ic s & A p p l ic a t io n s 1987 v o l 7
3 M a r c h p p 3 3 -4 4

Requicha A , Representations For Rigid Solids Theory, Methods And Sys
tems, C o m p u t in g S u r v e y s 1980 v o l 12 # 4 D e c e m b e r p p 4 3 7 -4 6 4

Requicha A and Voelcker H B , Solid Modelling A Historical Summary
And Contemporary Assessment, IEEE C o m p u t e r G r a p h ic s A n d A p
p l ic a t io n s 1982 v o l 2 # 2 M a r c h p p 9 -2 4

Roberts, B C jr and Bebbs, E H , Atmospheric Ray Tracing, PROGRAM
O f 8 4 t h M e e t i n g O f A c o u s t i c a l S o c i e t y O f A m e r i c a 1972 P 68
N o v e m b e r 7 2 M ia m i L in d s a y , R (e d)

Roth, S D , Ray Casting For Modelling Solids, C o m p u t e r G r a p h i c s A n d
I m a g e P r o c e s s i n g 1982 v o l 18 pp 1 0 9 -1 4 4
Rubm, S M and W hitted, T , A 3-Dimensional Representation For Fast
Rendering Of Complex Scenes, C o m p u t e r G r a p h ic s 1980 v o l 14 # 3
J uly p p 1 1 0 -11 6
Rushmeier, H E , Extending The Radiosity Method To Transmitting And
Specularly Reflecting Surfaces, M a s t e r s T h e s is C o r n e l l U n iv e r s it y
It h a c a N Y 1986

BIBLIOGRAPHY

S E D E 8 4

S H A O 8 8

S H IN 8 7

S P E E 8 5

S U T H 7 4

T O R R 6 6

T O T H 8 5

V A N W 8 4

V E R R 8 5

V O E L 7 7

W A L L 87

W A R D 88

Sederberg, T W and Anderson, D C , Ray Tracing Of Steiner Patches,
C o m p u t e r G r a p h i c s 1984 v o l 18 # 3 pp 159-164
Shao Min-Zhi, Peng Qun-Sheng and Liang You-Dong, A New Radiosity
Approach By Procedural Refinements For Realistic Image Synthesis, COM
PUTER G r a p h i c s S IG G R A P H ’88 1988 v o l 22 # 4 pp 93-102
Shinya, M , Takahashi, T and Naito, S , Principles And Applications Of
Pencil Tracing, COMPUTER G r a p h i c s 1987 v o l 21 # 4 JULY PP 45-54
Speer, L , Derose T D and Barsky, B A , ^ Theoretical And Empiri
cal Analysis Of Coherent Ray Tracing, COMPUTER GENERATED IMAGES
(P r o c G r a p h i c s I n t e r f a c e ’85) 1985 M a y 27-31 pp 11-25
Sutherland, I E , Sproull, R F and Schumacker, R A , A Characterization
Of Ten Hidden Surface Removal Algorithms, C o m p u t i n g S u r v e y s 1974
v o l 6 # 1 M a r c h pp 1-55
Torrance, K E and Sparrow, E M , Polarization, Direction, Distribution &
Off-Specular Peak Phenomena In Light Reflected From Roughened Surfaces,
J o u r n a l O f T h e O p t i c a l S o c i e t y O f A m e r i c a 1966 v o l 57 # 7
JULY pp 916-925
Toth, D L , On Ray Tracing Parametric Surfaces, COMPUTER G r a p h i c s
1985 v o l 19 # 3 J u l y pp 171-179

Van W ijk, J J , Ray Tracing Objects Defined By Sweeping A Sphere, P r o c
E u r o g r a p h i c s ’84 1984 (B o , K a n d T u c k e r , H A (e d s) pp 73-82

Verroust, A , Visualisation Method For Constructive Solid Geometry Using
Polygon Clipping,

Voelcker H B and Requicha A G , Geometric Modelling Of Mechanical
Parts And Processes, COMPUTER 1977 VOL 10 # 1 2 DECEMBER PP 48-
57
W allace, J R , G reenberg , D P a n d Cohen , M F , A Two Pass Solution
To The Rendering Equation A Synthesis Of Ray Tracing And Radiosity
Methods, C o m p u t e r G r a p h i c s 1987 v o l 21 # 4 J u l y pp 311-320
W ard G J , Rubinstein F M and C lear R D , A Ray Tracing Solution
For Diffuse Interreflection, C o m p u t e r G r a p h i c s S IG G R A P H ’88 1988
v o l 22 # 4 pp 8 5 -9 2

W A T K 7 0 W atkins, G S , A Real Time Visible Surface Algorithm, U n i U t a h C o m p
S c i e n c e D e p t N T IS A D -762 004 1970 J u n e U T E C -C S C -70 -1 01

BIBLIOGRAPHY

WEGH84

WEIS66

WHIT80

Y O U S 8 6

Weghorst, H , Hooper, G and Greenberg, D P , Improved Computational
Methods For Ray Tracing, ACM T r a n s a c t i o n s O n G r a p h i c s 1984 VOL
3 PP 52-69
Weiss, R A , i Package Of Programs To Draw Orthographic Views Of Com-
binations Of Planes & Quadnc Surfaces, J o u r n a l O f T h e ACM 1966
v o l 13 # 2 A p r i l pp 194
W hitted, T , An Improved Illumination Model For Shaded Display, C o m
m u n i c a t i o n s O f T h e ACM 1980 v o l 23 # 6 J u n e pp 343-349
Youssef, Saul, A New Algorithm For Object Orientated Ray Tracing, C o m
p u t e r V i s io n , G r a p h i c s , A n d I m a g e P r o c e s s i n g 1986 v o l 34 pp
125-137

