RAYy TRACING UNDER
THE MICROCOMPUTER

Abstract

Author Eugene Curran

The history of computer graphics 1s as old, almost, as the history of computing 1t-
self Until recently however, 1t had tended to be confined to the realm of the “aris-
tocracy” of computer machines because of 1ts requirement of their high power and
speed as well as the additional cost of expensive graphics hardware In the last
number of years however, a significant reduction in the price/performance ratio
of both graphics and mucroprocessor technology has brought computer graphics
within the grasp of the of the ordinary “working class” PC (Personal Computer)

The nett result of this has been an increase in the number of users of computer
graphics and its areas of application

One of these areas, that of the of generation of realistic three-dimensional images,
1s the subject matter of this work More specifically, this work 1s concerned with
a particular method of generation of such images, known as Raytracing, which
has produced some of the most realistic computer generated images to date

Unfortunately, because of a large appetite for numeric calculation, raytracing has
tended to be restricted to mainframe computers The motivation behind this
research has been to implement a raytracing algorithm on a microcomputer and
mvestigate 1ts performance

Chapter one gives a general introduction to the area of computer graphics, while
chapter two outlines a description of the raytracing algorithm, its advantages,
himitations and optimizing techniques Chapter three then goes on to discuss the
apphcation of raytracmg to the area of sohd modelling and sets the context for
the description of the research in chapter four, which discusses the design, im-
plementation and performance of MicroTrace, a microcomputer based raytracer

Finally, Chapter }‘ive discusses conclusions from the research and possible future
enhancements to the work

Ray Tracing Under
The Microcomputer

A THESIS SUBMITTED BY EUGENE CURRAN
FOR THE DEGREE OF Master of Science
AuGusT 1989

Ray Tracing Under
The Microcomputer

A Thesis by EUGENE CURRAN B Al
Supervisor DR M ScoTT PHD

Submitted to
DuBLIN CiTY UNIVERSITY
COMPUTER APPLICATIONS

for the degree of
Master of Science
August 1989

Declaration No portion of this work has been submitted in support of an
apphcation for another degree or quaklfication in the Dublin City University or
any other University or Institute of Learning

Acknowledgement

To my parents, for the chance to pursue these studies, and to Dr Scott,
for his advice and guidance along the way

Contents

An Introduction To Computer Graphics
11 Motivation
12 What Is Computer Graphics ?
13 Daisplay Devices
131 Vector Devices
132 Raster Devices
14 Two Dimensional Graphics
141 Windows And Viewports
142 2D Matnx Transformations
15 The Third Dimension
151 3D Matrix Transformations
152 3D Geometric Projections
16 Object Representation
161 Polygon Mesh Representation
162 Constructive Solid Geometry (CSG)
17 Adding Realism
171 Hidden Surface Removal

172 Shading

12

13

14

20

20

21

23

23

173 Shadows and Texture

2 An Introduction To Ray Tracing

21

22

23

24

25

The Ray Tracing Approach

The Basic Algonthm

Adding To The Algorithm

231 Shadows

232 Reflection and Refraction
233 AntiAhasing

Speeding Things Up

241 Bounding Volumes

_ 242 Space Subdivision

243 Coherence
244 Parallel Algorithms

245 Other Speedups

Other Ray Tracing Algonthms

251 Distributed Ray Tracing
252 Beam Tracing
253 Cone/Penal Tracing

254 Other Vanations

3 Ray Tracing and CSG

31

Solid Modelling

11

28

29

29

30

34

34

35

37

39

40

46

49

49

53

53

54

34

57

37

32 An Introduction to CSG

321

CSG Representation

33 Roths CSG Ray Tracing Algorithm

331

332

333

334

335

336

337

Three algorithms in one

Primitives And Coordinate Systems
Ray Intersection And Classification
Combining Classifications
Computational Cost

Box Enclosures — An Optimization

Circumstance Classification

34 Further Optimizations

341

342

343

344

345

Enclosures And Tree R;arrangement
Scan-Line Enclosures And Active Trees
Bounding Ray Depth

Temporary Object Trees

Space Subdivision

4 MicroTrace

41 Hardware

411

Professional Graphics Adaptor

42 MicroTrace — The Inner Workings

421

A Brief Overview

111

58

99

61

61

63

64

65

65

68

70

71

71

72

74

74

7

80

80

81

83

83

43

44

45

46

47

438

422 PGA Mode

423 RGB Mode

424 Calaulating Pixel Intensities

425 The Object Structure
Ray Generation
Transforming The Ray

Ray Intersection

451 Cube Intersection
452 Sphere Intersection
453 Cylinder Intersection
454 Cone Intersection
Shadow Rays

Optimuzations

471 Bounding Volumes

472k

Pixelbuffer

473 Extents

474 Gnd

475 Sorthst

Presentation of Results

481 The Test Images

482 Explaination Of Terms

4 83 Discussion Of Results

v

34

87

87

90

91

94

94

96

97

99

100

101

102

103

104

106

108

110

111

112

112

115

484 Results For Other Machines 119

5 Conclusions & Further Work 121
51 Conclusions 121
52 Future Work 121

521 Enhancing MicroTrace 122
522 Extending Micro Trace 124
53 Ray Tracing — The Future 125

APPENDIX A — Source Code

BIBLIOGRAPHY

List of figures

11

12

13

14

15

16

17

138

19

110

111

112

113

114

115

116

21

22

Vector Display

Raster Display

Window - Viewport Mapping

Window ~ Viewport Equation

Window Clipping

Translation, Rotation & Scaling Transformations
Raght & Left Handed Coordinate Syatems
Multiple Coordinate Systems

Parallel Pr:)Jecutxon “ #
Projector equation For Parallel Projection
Perspective Projection

Projector Equation For Perapective Projection
Object Ambiguity

Union, Difference & Intersection OF Solids
Diffuse Reflection

Specular Reflection

Tracing A Ray

Ray Equation For Parallel View

Vi

10

12

15

16

17

18

19

21

22

26

26

31

31

23

24

25

26

27

28

29

210

211

212

213

214

215

216

31

32

33

34

339

36

37

38

Ray Equation For Perspective View
Ray-Object Intersections .

Tracing Shadow Rays
Transparency

Shade Tree

Cause Of Aliasing

Antialiasing

Bounding Volumes

Bounding Volume Selection
Calculation Of Extents

Bounding Volume Hierarchy

Space Subdivision Schemes

Ray Coherence

Cone Tracing

CSG Boolean Operations

Binary tree & DAG representation of Solids
RAYCAST In/Out Ray Classifications
Volume Calculation

Combining Ray Classifications
Three Stage Combine Process
Combining Box Enclosures

Composition Tree Rearrangement

vil

32

33

35

36

37

38

39

4]

43

44

45

47

30

35

60

60

61

63

66

66

69

72

39 Scan-Line Enclosures 73

310 Quadtree Admnistration Of Temporary Tiees 76
3 11 Cell Connectivity Pointers 78
3 12 Creation Of 3D Cell Structure 79
41 Schematic Latout Of IBM AT & PGA 81
42 PGA Look-Up-Table 82
43 Schematic Layout Of MicroTrace 84
44 PGA Mode Color Interpretion 88
45 PGA Mode Color Calculation 89
46 The Four Primitive Solids Of MicroTrace 91
47 The Four Primitive Bounding Volumes 104
48 Screen Extent Vt;ld Areas_— _ 108
49 Implementation Of Grid Structure 109
410 Znear & Zfar coordinates 110
4 11 Use Of Znear & Zfar Coordinates 111
4 12 Snooker Balls Scene 113
4 13 Lattice Structure Scene 114
414 Snook;r Scene Grid & Extents 116

4 15 Lattice Scene Grid & Extents 117

vl

RAy TRACING UNDER
THE MICROCOMPUTER

Abstract

Author Eugene Curran

The history of computer graphics 1s as old, almost, as the history of computing 1t-
self Until recently however, 1t had tended to be confined to the realm of the “aris-
tocracy” of computer machines because of its requirement of their high power and
speed as well as the additional cost of expensive graphics hardware In the last
number of years however, a significant reduction 1n the price/performance ratio
of both graphics and mucroprocessor technology has brought computer graphics
within the grasp of the of the ordinary “working class” PC (Personal Computer)
The nett result of this has been an increase in the number of users of computer
graphics and 1its areas of application

One of these areas, that of the of generation of realistic three-dimensional mages,
1s the subject matter of this work More specifically, this work 1s concerned with
a particular method of generation of such 1mages, known as Raytracing, which
has produced some of the most realistic computer generated images to date
Unfortunately, because of a large appetite for numeric calculation, raytracing has
tended to be restricted to mainframe computers The motivation behind this
research has been to implement a raytracing algorithm on a microcomputer and
investigate 1ts performance

Chapter one gives a general introduction to the area of computer graphics, while
chapter two outhnes a description of the raytracing algorithm, 1ts advantages,
limitations and optimizing techniques Chapter three then goes on to discuss the
application of raytracing to the area of solid modelling and sets the context for
the description of the research m chapter four, which discusses the design, im-
plementation and performance of MicroTrace, a microcomputer based raytracer
Finally, Chapter five discusses conclusions from the research and possible future
enhancements to the work

Chapter 1

An Introduction To Computer
Graphics

1.1 Motivation

One of the principle advantages of Computer Graphics 1s 1ts ability to present
information 1n a msual form — a form which allows our well developed eye-brain
pattern recogmtion mechanism to perceirve and process the information more
rapidly In this respect, the most frequent use of graphics today 1s probably to
draw histograms, pie-charts, and two-dimensional or three-dimensional graphs of
various mathematical and economic functions

However, Computer Graphics does play an essentia! role 1n many other
widely varying fields, such as computer simulation, animation, exploration maps

for dnlhing and mining, computer aided design and manufacture, art advertising
and a profusion of others

The application of Computer Graphics to some of these areas, particu-
larly flight simulation and animation, requires images capable of incorporating
shadows, reflection/refraction of hight, removal of hidden surfaces and shading in
order to make them as true to life as possible Raytracing 1s the most successful
method to date of incorporating all of these features into a graphics image and
1s the topic of subsequent chapters The concern of this chapter 1s to mntroduce,
to the newcomer to computer graphics, the basic 1deas and concepts involved
in the generation of graphics pictures, which will enhance the understanding of
subsequent chapters and facihitate a comparison raytracing with more traditional

CHAPTER 1 AN INTRODUCTION TO COMPUTER GRAPHICS 2

graphics techniques

1.2 What Is Computer Graphics ?

Computer Graphics involves the generation of an image of an object from an ap-
propriately defined description of the object It 1s this emphasis on the synthes:s
of pictures of real or imaginary objects that distingumishes Computer Graphics
from the related field of image/picture processing The latter, which is impor-
tant in areas such as satellite photograph enhancement and chromosome scans,
1s primarnily concerned with the analys:s of a picture and reconstruction of 2D or
3D objects from their pictures — the converse process of computer graphics

Since pictures generated using Computer Graphics will ultimately be seen
on some sort of display device, before looking at the means by which such pictures
are generated, some knowledge of the different display technologies will prove
useful

1.3 Display Devices S

The most common device for display of graphic output 1s the Cathode Ray Tube
(CRT) The basic principle behind a CRT 1s that when a beam of electrons strikes
a phosphor coated screen light 1s emtted The emitted lLight, however, decays
exponentially with time so the process must be repeated many times per second
(30 to 60) 1n order that the light appears unflickering to the viewer

The two principle categories of Cathode Ray Tube devices used 1n computer
graphics are -

o Vector devices

o Raster devices

CHAPTER 1 AN INTRODUCTION TO COMPUTER GRAPHICS 3

1.3.1 Vector Devices

-

As illustrated 1n fig I 1, a vector device consists of a cathode ray tube, a display

processor and a refresh buffer containing commands for plotting points, lines

and characters These commands are interpreted by a display processor which

converts the digital values into analog voltages which are used to electrostaticly

displace the electron beam along the desired path, striking the phosphor and
circle

erutting hight 1n the process
Commands from
host computer
move 200 100

draw 200 200 —> display
draw %00 200 processor
draw 300 100

dmw'zoowo
]
I 1

Jump

move 250 150 46«1

SCREEN

figure 11 A vector dsplay device

Since the emitted light decays 1n something of the order of several hundred
microseconds, the picture must be continually re-drawn using the commands 1n
the refresh buffer (at least 30 times per second) in order that the picture does not
appear to flicker to the viewer The time taken to re-draw the picture however 1s
proportional to the number of lines 1n 1t so, where a picture has many lines that

cannot be draw in less than g of a second, flicker becomes unavoidable

Vector devices have the advantage of having very high resolution, typically
4096 screen dots horizontally by 4096 vertically, and a relatively small refresh
buffer requirement (2K - 30K) Their principle drawbacks however are that they
cannot display solid areas on screen and have only a very limited capability for
displaying colour They are also expensive in comparison to raster devices and
are not switable for raytracing, as will become clear in chapter two

CHAPTER 1 AN INTRODUCTION TO COMPUTER GRAPHICS 4

1.3.2 Raster Devices

The arnival, in the mud-seventies, of cheap raster graphics devices based on tele-
vision technology and having a good capability for colour contnbuted greatly to
the development of Computer Graphics and today, raster technology is the one
most commonly found in graphics display devices

As fig 1 2 1llustrates, an 1mage on a raster device consists of a rectangular
matrix of points called pixels (short for picture element) Unlke the refresh
buffer of a vector device which stores screen coordinates, a raster refresh buffer
stores the intensity of each individual screen pixel The image 1s then drawn by
sequentially scanning out each horizontal hine of the buffer from left to 11ght, top
to bottom, to the screen The intensity for each pixel 1s determined by converting
the value for the pixel stored in the buffer into an analog voltage that controls
the intensity of the electron beam at that point on the screen

0000000000000000000

Commands from
host computer
0000000000008000000

00C000001 1000000000 P SR U—— dispisy

006000004 11100000000 processor
000000131 ¢110000000
000001111111 D0000D
000001111011 P000CO
006001111811 POODOCO

0000000000000000000
0000000000000000000
0000000000000000000

000001 111111860000
0000011119111 000000
0000000000000000000
0000000000006000000

REFRESH BUFFER

ﬁgure 12 A rasler display device

In contrast to a vector device, where a line 1s stored as two screen coordinate
values 1n the refresh buffer, a line 1s drawn on a raster device by calculating all
screen pixels that the line will cross when drawn on the screen, and setting those
pixel values accordingly in the refresh buffer There exists a number of efficient
scan-line algorithms for performing this task not just for ines but for circles and
other primutives as well (see [FOLE84])

In the simplest raster devices, the refresh buffer uses one binary bit per
pixel to represent 1ts intensity (1=ON, 0=0FF) Using more bits per pixel will
permut a greater range of intensities 1n the screen image, at the expense of a

CHAPTER 1 AN INTRODUCTION TO COMPUTER GRAPHICS)

larger refresh buffer requirement

COLOUR In colour raster devices each pixel 1s actually composed of three
phosphor dots, called a triad One of the dots emuts red light when excited by
an electron beam, the second green and the third blue These three colours,
known as the primary colours, are used because almost any colour from the
visible spectrum can be obtained from a suitable combination of them Three
electron guns, arranged 1n the same triangular pattern as the triads, are used
to synchronously excite the three phosphor colours so that when viewed from
a distance, the triad will appear as a single dot whose colour 1s a mixture of
the three dots For such devices three intensity values per pixel must be stored,
corresponding to the intensity of each of the red, green and blue components of
the pixel For example, storing two bits per primary (6 bits per pixel) allows 4
intensities per primary, giving a total of 64 colours

The principle advantages of a raster over a vector device are that 1t 1s less
expensive, has a good capability for displaying colour and can display sohd areas
on screen On the other hand, raster devices do not yet have the same resolution
as vector ones, 1284 x 1024 being considered high for raster, and have a much
greater refresh buffer requirement, particularly for colour devices e g a colour
raster display with 512 x 512 resolution and 64 colours per pixel requires a refresh
buffer of 196608 bytes (512 x 512 x 6 bsts) However, with the ever decreasing
cost of memory, this drawback becomes less significant

1.4 Two Dimensional Graphics

Two dimensional objects exist 1n a completely flattened world They have length
and width (and consequently area), but no thickness or volume, and are usually
defined to the graphics system 1n terms hnes, polygons, planar curves etc Yet,
despite the limutation of two dimensions, this area of graphics 1s still very useful,
both 1n 1ts own right and as a stepping stone towards an understanding of the
discussion of three dimensional graphics m section 1§

1.4.1 Windows And Viewports

As will be seen from the following sections, several different coordinate systems
are used in computer graphics The most basic one perhaps 1s the screen coordi-
nate system This s a 2D integer coordinate system whose values mn the X and

CHAPTER 1 AN INTRODUCTION TO COMPUTER GRAPHICS 6

Y directions range from zero to the horizontal and vertical screen resolution size
respectively, each coordinate pair directly corresponding to an actual pixel on the
screen The position of the origin (0,0) can vary from one device to another
but 1s usually one of, the upper left corner, lower right corner, or centre, of the
screen

It would be far too restrictive to use this coordinate system to directly define
elements of a graphics picture as, not only would the definition have to be altered
1n order to be displayed on a device with different resolution, but the coordinate
range would be inappropriate for many apphications The solution to the problem
1s to use a coordinate system that 1s independent of screen coordinates, called a
world (or virtual) coordinate system The Cartesian XY coordinate system 1s
normally used as this virtual coordinate system

The approach 1s to use this virtual coordinate system to define objects
and then “map” the the virtual coordinates onto screen coordinates Thus, the
object definition remains independent of the display device and only the map-
ping changes from one device to another Mapping the entire virtual space onto
the screen however would mean that only very large objects would be wisible
A rectangular area called a window, defined by four virtual coordinate values
(Xmin, Xmazy Ymins Ymaz), 15 therefore used to speafy a section of the virtual co-
ordinate space to map onto the screen e

Simularly, instead of always mapping the window onto the entire screen, a
greater degree of flexibility in displaying the picture 1s possible if the window
can be mapped onto a specified sub-region of the screen This would allow, for
example, several windows to be displayed simultaneously on different areas of the
screen A viewport 1s therefore used to define a rectangular area of the screen
onto which the window 1s to be mapped As illustrated 1n fig 1 3, this window-
viewport combination allows any section of the virtual coordinate space to be
displayed on any area of the screen

viewport
mndow/ SCREEN

WORLD COORDINATE SPACE

ﬁgurc 13 Window to viewport mapping

CHAPTER 1 AN INTRODUCTION TO COMPUTER GRAPHICS 7

1

MAPPING From fig 1 4,1t can be seen that the equations which map a point
(W,, W,) mside the window onto a pomnt (V,,V,) nside the viewport are given
by -

+ Vzmm

Vrmar - V;cmm
Vz = (Wx - W:r:mm)W _ W

Vymaa: - Vymm

Wyma:z: - Wymm

Yy + Vymen (11)

I

(Wy - Wymm)

where the window 1s defined by (Wemun, Wemaz, Wymin, Wymaz) and the viewport
by (Va:mm, yxmaza %mmy Vyma:r:)

Wa_mn Wyx_max
Wy_max WINDOW Wy_max
Vr_man Vx_max
Vy_max VIEWPORT Vy_max
point
Wxd (Wx Wy} pixel
F _ Vid _ (vr vy)
wyd kad
¢ Vx_min Vz_max
Vy_min Yy_rmn
Wi_min Wi_mas
Wy_min Wy_min
preservation of - Wxd Vxd
horizontal ratios Wi_max Wemin Vimax Vi_min
> Wx Wx_min = Vx Vx_min
- Wx_max Wx_min Vx_max Vx_min
= Vx = (Wx Wx_min) Vx_max Vy_min + VYr_min
Wx_max Wx_min
Sumilanjy
Yy_max Vy_min
Vy = (Wy Wy_min) Y L2 + Vy_min

Wy_max Wy_min

P—

ﬁgure 14 Windew to wviewport mapping equation

-

This defines the mapping function for the window to the viewport In ap-

CHAPTER1 AN INTRODUCTION TO COMPUTER GRAPHICS 8

plying the function however, 1t must be ensured that points outside the window
are not mapped, as such pomnts would be mapped onto non-existent screen coor-
dinates, resulting 1n a “wrap-around” effect whereby points mapped beyond the
nght of the screen are “wrapped around” and appear on the left of it A tech-
nique known as window clipping, which chips off those parts of the object outside
the window from the mapping function, 1s therefore applied As illustrated in
fig 15, there are three possible cases when clipping a line It can le -

e Entirely outside the window (line A)
o Entirely inside the window (line B)

o Partially inside the window (line C)

window

8
L]
A Clipped window

which 18 mapped
World coordinate space to wviewport

ﬂgurc 15 Window clipping

Only the third case poses any difficulties since the window chpping opera-
tion must determune the intersection of the hine with the edge of the window For a

detailed discussion on window clipping algorithms, such as the Cohen-Sunderland
algorithm, see Foley & Van Dam [FOLES34]

1.4.2 2D Matrix Transformations

As mentioned 1n the previous section, there are good reasons for defining objects
using a virtual coordinate system instead of directly using screen coordinates
Having defined the object in such a coordinate space, many graphics applications

CHAPTER 1 AN INTRODUCTION TO COMPUTER GRAPHICS 9

require that the object can be moved around the virtual space or have 1ts orienta-
tion changed, in much the same way as an object in the real world Fortunately,
there are mathematical transformations which provide a means of of translating
(repositioning) and rotating (reorientating) objects In addition to these two op-
erations, there exists a scaling transformation that can be applied to make an
object larger or smaller, something which cannot be done with real objects From
the following discusston of the mathematics of these three transformations, 1t can
be seen that the use of homogeneous coordinates allows each transformation to
be represented as a 3 x 3 matrix — a result which proves very useful and which
1s discussed at the end of this section

Homogeneous coordinates are coordinates that were developed 1n geometry
by Maxwell [MAXW46], and later apphed to computer graphics by Blinn &
Newell NEWET78| A 2D Cartestan pomnt P (z,y) 1s represented in homogeneous
coordinates as P (zW,yW, W) where W 1s some non-zero scale factor So, given
a homogeneous coordinate pomnt P(X,Y, W), its 2D Cartesian representation
P(z,y) sgvenby 2=, y= &

XY
P(XaY»W) = P(Waﬁ;) - P((L‘,y)
Similarly, for three dimensions
XY 2
P = —_— — ——} == z
(XY,2W) = P(o) = Play?) (12)

Since W =1 throughout this section there 1s no need to perform the
division It 1s only 1n the perspective transformation matrix in section 1 § 2 that
a value other than 1 1s obtained and a division by W has to be performed

TRANSLATION A pomnt P(z,y) 1s translated to new point P’ (z'y’) by
the addition of a displacement D, umts parallel to the z-axis and D, units
parallel to the y-axis, fig I 6a This can be expressed 1n vector form as

[, y] = [z,y] + [De, Dy] (13)

Rewrniting this m homogeneous coordinates means the translation can be rep-

resented as a 3 X 3 matnx (the reason for using this form will become clear
later)

CHAPTER 1 AN INTRODUCTION TO COMPUTER GRAPHICS

1 0 0
I
=",y 1) =]z,9,1]] 0 1 0
D, D, 1
Y
(x, ¥)
el (8) TRANSLATE
{x y) Dx
X
Y
X y)
{b) ROTATE
- (x v
b | X
94— rcos{a+b) —
< r cos{p) 2!
Y
(x. v}
y Sy (e) SCALE
(x y) x Sx
X

Translation Rotation and Scaling transformations

figure 16

10

ROTATION Fug I 6b1llustrates the anti-clochwise rotation, by alpha degrees,
of a pomnt P (z,y) about the origin to a new pont P’(z’,y’) From the diagram

i1t can be seen that -

T =rcosb

y=rsmb

and
' =rcos(a+b) =rcosbcosa — rsmnbsina

(15)

CHAPTER 1 AN INTRODUCTION TO COMPUTER GRAPHICS 11

y =rsin(a+b) =rcosbsina —rsmbcosa (16)

Substituting (1 5) mto (1 6) gives

' = zcosa—ysina

!

y' = zsma+ycosa (17)

Using homogeneous coordinates, the rotation can be represented as a 3 x 3
matnx, and (1 7) can be written as

(18)

cosa sma 0
0 0 1

[«',y',1) = [z,y,1] [—sma cosa 0

For this derivation, positive angles were measured 1n an anti-clockwise di-
rection By substituting the 1dentities cos(—a) = cos(a) and sin(—a) = —sin(a)
ito (1 7) and (1 8), positive angles can be measured 1n a clockwise direction

SCALING A pomt P(z,y) can be scaled by S, along the z-axis and S,
along the y-axis, with respect to the ongin, to a new point P’(z',y'), by the
following multiphication, fig I 6c

¥ =yS, (19)

The scaling can be represented as a 3 x 3 matrix by writing the coordinates
1n homogeneous form

Sz 0 0
[,y 1] =[z,9,1]] 0 Sy 0 (110)
0 0 1

COMPOUND TRANSFORMATIONS It will often be the case that more
than one of these transformations will want to be performed on an object For
example, rotating an object about a point other than the ongn, say R(z,y),
involves translating R to the origin, rotating about the origin, then translating
back again Each of these three transformations must be performed on each point

CHAPTER 1 AN INTRODUCTION TO COMPUTER GRAPHICS 12

on the object If however, each transformation 1s represented as a 3 X3 matnx, the
three operations can be compounded 1nto one by multiplying the three matrices
together, resulting 1n a new 3 x 3 matrnix that represents the compound operation
Multiplying each point on the object by this new matrix applies the compound
transformation 1n one operation, with a resultant computational saving

1.5 The Third Dimension

The addition of a Z-axis to the XY wirtual space of 2D graphics allows objects
to take on depth and volume, but brings with 1t the complcation of trying to
display a three dimensional entity on a two dimensional screen, 1n addition to the
that of trying to determine 1f one object 1n a scene obscures all or part of another
— two complications which are discussed n sections 1 5 2 and 1 7 I respectively

However, 1t 1s comforting to know that the translation, rotation, and scaling
transformations of the previous section can still be represented in matrix form
when extended to three dimensions Before discussing each of these transfor-
mations, 1t 1s first worth noting from fig 7 7 that there are in fact two possible
directions 1n which the positive Z-axis can be faced, giving rise to two different
coordinate systems The right handed system has the Z-axis pointing 1n the
direction of the vector cross product of the X-axis with the Y-axis 1 e out of
the page, and 1s the system used throughout this text, while the left handed one
has 1t pointing 1n the opposite direction

y4 X X

Right - Handed Left - Handed -

ﬁgurc 17 Right and Left Manded Coordinate Systems

CHAPTER 1 AN INTRODUCTION TO COMPUTER GRAPHICS 13

1.5.1 3D Matrix Transformations

Section 1 4 2 1illustrated how each of the two dimensional translation, rotation
and scaling transformations could be represented as a 3 X3 matrix The following
section outlines theirr extension to three dimensions, where 1t can be seen that
each can be defined by a 4 x 4 matrix

TRANSLATION Using homogeneous coordinates, the translation of a point
P (z,y,z) to another pomnt P’ (z',y',z") by displacements of D,, D,, D, parallel
to the X, Y, and Z axes can be represented by the 4 x4 matrix in the following
equation

[y, 2", 1] = [z,y,2,1] (111)

—Oo O O

0 0
1 0
0 1
D, D

T v z

boor—a

ROTATION In three dimensional graphics, three different rotations (one about
each of the three principle axes) can be performed, each with their own form of
4 x 4 matnx The positive direction of rotation about an axis 1s defined as that
which 1s anti-clockwise when looking down the positive part of the axis toward
the origin The 4 X 4 matrix representation for the rotation of a pomnt P (z,y,z)

by an angle o to a new pomnt P’(z',y’,2’) 1s given for each type of rotation in
equations 1 12 to 1 14 below

ROTX
1 0 0 0
oo 0 cosa sma 0
.9, 1] = [z,9,2,1] 0 —smna cosa O (112)
0 0 0 1
ROTY
cosa 0 —sma 0
A R . 0 1 0 0
=y 2] =y 2,1 sinae 0 cosa 0 (113)
0 0 0 1

CHAPTER 1. AN INTRODUCTION TO COMPUTER GRAPHICS 14

ROTZ
cosa sina 0 0
Xy = [t] e cosa 8 (114
0 0 01

SCALING Equation 1.15 below gives the 4x4 matrix for scaling a point
P (x,y,z) about the origin by factors of Sx, Sy, ~ parallel to the X, Y, and Z
axes, to a new point P*(x',y\z). Scaling a point about a point other than the
om};m, say 1?(a,&, c) is done by.translatmg the point by F—a,—6,—e), scaling

it, then translating the scaled point by (&, 6,¢).
Sx 0 0 0
yd= pyall 5oy 2! (1.15)
0 0 01

COMPOUND TRANSFORMATIONS As with 2D transformations, mul-
tiple transformations can be performed on a point by the multiplication of a
single 4x4 matrix representing the compound transformations — the latter
being formed by multiplying together the transformation matrix for each of the
transformations comprising the compound one. It should be noted however, that
such compound transformations are not generally commutative i.e. the order in
which rotation, scaling and translation is performed is significant,

Such compound transformations allow objects to be defined in their own
local coordinate system and then transformed into the world (or some other
intermediate) coordinate system. For example, the car wheels in fig 1.8 are each
defined in their own local coordinate systems which are then transformed into
appropriate locations of the car coordinate system, which in turn is transformed
into the world coordinate system.

15.2 3D Geometric Projections

Viewing an object in 2D simply involves specifying a window on the virtual 2D
view-plane, a viewport on the screen and directly mapping one onto the other
(section 1.4-4)- The 3D viewing process however is inherently more complex by

CHAPTER 1 AN INTRODUCTION TO COMPUTER GRAPHICS 15

world coordinate
system
.

car
coordinate
system

whesl coordinate
systoms

ﬁgure 1 8 Multiple coordinate sysiems

virtue of the fact that 1t involves the display of three dimensional objects on a
two dimensional display device

This difficulty 1s overcome by the use of planar geometric projections This
firstly involves projecting the 3D objects onto a 2D projection plane, then map-
ping this plane onto the screen in the same way as the virtual plane of 2D graphics
(figs 1 9 and 1 11 give examples of two different types of projection) Just as ob-
jects 1n 2D graphics are clipped against a window before being mapped onto the
viewport, objects 1n 3D are clipped against a nzew volume before being projected
onto the projection plane The projection onto the projection plane of the view
volume 1itself then serves as a window to map onto the viewport While in the
most general case, the projection plane can be any arbitrary plane, the XY plane
1s used throughout the following discussion since this leads to a simplhfication of

the mathematics of the two main categories of projection outlined The more
general case 1s discussed in [FOLES4]

Many different types of projection can be used in projecting an object onto
a 2D projection plane The type of projection used will determine what the
object finally looks hike when 1t 1s seen on the screen The types of projection
most commonly used 1n 3D graphics can be divided 1nto the following two general
catagories -

[] Parallel projections

[] Perspective projections

PARALLEL PROJECTIONS In this type of projection, fig 1 9, the hnes

CHAPTER 1 AN INTRODUCTION TO COMPUTER GRAPHICS 16

of projection are parallel to each other : e the centre of projection 1s at nfinite
distance from the projection plane The projection 1s defined by a direction of
projection, and 1s classified as orthographic or oblique depending on whether or
not this direction 1s orthogonal to the projection plane Common orthographic
projections are the front (elevation), plan (top), and side (elevation) projections,
which project onto the XY, XZ, and Y Z planes respectively and mathematiclly,
are the simplest projections to perform e g orthographic projection of a point
P (z,y,z) onto the XY plane simply involves “chopping off” the Z coordinate,
gwving P’ (z,y) as the projection plane coordinate of the point

Actlon ol
projaction

pro@ction of

- tube onio plane

projecton plane

figure 19 PARALLEL PROUECTION

Two common oblique projections are the cavaler and cabinet projections,
where the direction of projection makes an angle of 45 degrees and arctan g
respectively with the projection plane The mathematics for an oblique projection
onto the XY plane specified by a direction vector D (a,b,c) 1s given below -

The parametric equation of a line with a direction of D (p,q,r) and containing a

pomt P (Xo,Ys, Zg) 1s given by the following equation (where ¢ takes on values
from minus infinity to plus nfimty) [ANTOS81] -

Y = Yo+1ig

Hence, from fig 1 10, the equation of the projector through P (X,,Y,, Z,) 1s given

CHAPTER 1 AN INTRODUCTION TO COMPUTER GRAPHICS 17

by -
Xp-f-tA
= Y, +tB
= Zp+tC (1 17)

N <

which intersects the XY plane (Z =0 plane) at ¢ = _an

projector X a Xp s tA
view plane projection direction YeYp+18
2.0 B O Ze2p +1C

ﬁgurc 110 Projector equation for a paralle! projeciion

So, P'(X,,Y,), which 1s the parallel projection of P (X,,Y;, Zp) onto the XY
plane m the direction of D (a,b,c) 1s given by -

a
X, = Xp‘Zp;

b
Y, = Yp—sz (118)

Using homogeneous coordinates, the projection can be expressed as a 4 x 4
matrix -

1 0 0090
0 1 00

(X, Yo, 20, 1] = [X5, Y5, Zp, 1] e b g (119)
0 0 01

NOTE Zv =0

This format proves very useful since 1t means that the projection can be incorpo-
rated into the transformation matrix for an object by multiplying the two 4 x 4
matrices

CHAPTER 1 AN INTRODUCTION TO COMPUTER GRAPHICS 18

PERSPECTIVE PROJECTIONS Perspective projections, fig 1 11, have
a centre of projection that 1s a finite distance from the projection plane Unlike
parallel projections however, perspective projections produce a perspective fore-
shortening effect (objects further from the centre of projection appear smaller)
and hence produce a greater degree of realism, since this effect 1s also experienced
by the human visual system

projection of projecton
ore onto plare / plane
point

figure 1 11 PERSPECTIVE PROJECTION

The mathematics for a perspective projection onto the XY plane specified
by a centre of projection on the positive Z-axis, a distance d from the origin, 1s
outlined below -

From fig 1 12 the equation of the projector 1s that of a line contamning P (0,0, d)
and having a direction of -

(XPa }/m ZP) - (Oa Oa d) = (Xpa Ym ZP - d) (1 20)

So, from (1 16), the equation of the projector 1s given by

X = tX,
Y = tY,
Z = d+t(Z,-d) (121)

and the projector intersects the XY planeat Z =0 we at t = 1—]-5
T

CHAPTER 1 AN INTRODUCTION TO COMPUTER GRAPHICS 19

—

projector
projector chirection

P(Xp Yp Zp)
XpYp2pd)

) Projector Equation
O/ .

eye point
(0ad) Y-t¥p
view plane Zed«t{Zp d)

2.0

/

Projector equation for a perspective projection

figure 112

Therefore, P’ (X,, Y z), the perspective projection of P (X,,Y,, Z,) onto the XY
plane, 1s given by -

X, = X"Z
1-3
Y,
Y, = 1_”& (122)
d

As with the parallel projection, using homogeneous coordinates allows this
perspective projection to be specified as a 4 x 4 matrnx, which means that the
projection of an object can be incorporated nto its transformation matrix

100 0
X,Y,Z,W]=[X,,Y,,Z,1]| 0} O O (1 23)
000 -1
000 1

where [X,Y,Z,W] =(X,,Y,,0,1 — Z]

However, to return [X,Y,Z, W] to the form [X,,Y,,Z,,1] a division by W 1s
required (see equation I 2)

XY z 1 X, Y,
[W’W,W,l] - [‘XU,)/U,ZU,].]— |: 9 ,0,1} (1 24)

CHAPTER 1 AN INTRODUCTION TO COMPUTER GRAPHICS 20

1.6 Object Representation

There are two types of situation 1n which the need to represent 3D shapes arises
The first case 1s when an existing object such as a car, house or mountain is to be
represented as a 3D graphic object, and the second, which frequently occurs 1n
computer aided design, 1s where a designer interactively builds up an mmaginary
3D object on computer from some prelimunary shetches of what the object should
finally look like In the first case, the computer representation of the object should
try to match as closely as possible the exact shape of the real object, and 1n the
second, should allow the designer to easily manipulate the object so that it can
be molded into the desired form

While the previous sections have looked, 1n some detail, at the means by
which objects defined 1n a virtual coordinate system can be scaled, rotated, and
translated, and then mapped onto screen coordinates to form a final screen image,
little has been said about the means by which such objects can be defined to the
graphics system The remainder of this section looks at two contrasting object
representation schemes commonly used 1n 3D computer graphics, polygon mesh
and Constructive Sohd Geometry (CSG) representations The first represents
sohd objects as closed surfaces which are defined as a collection of polygons while
the second, the one used 1n this research, represents them directly as solids formed
from by the addition and subtraction of basic solids (called primitive sohds) such
as spheres, cubes, cones and cylinders

1.6.1 Polygon Mesh Representation

Representing an object as a collection of hnes means that only a line display of
the object can be generated In addition, weight or volume calculations cannot
be performed on the object The reason for this 1s that lines alone do not define
surfaces (see fig 1 18), and 1t 1s surfaces that are required to perform hidden
surface removal, volume calculations, eic

A polygon however can define a bounded planar surface, and a group of
such polygons, called a polygon mesh, can be used to define the surfaces of some
object Polygons provide a good means of representing objects that are composed
of many flat surfaces, such as buildings, tables, desks etc They can also be used
to represent objects with curved surfaces by approximating the curved part as a
collection of small polygons, but this gives only an approximate representation
The error of approximation can however, be made arbitranly small by using larger

CHAPTER 1 AN INTRODUCTION TO COMPUTER GRAPHICS 21

-
M
,.v>>,4

e

oS

(a) (b) (¢) (d)

The same set of 12 hnes in (a) can represent any ol the three
objects in (b) (¢c) or (d) A higher level primitive a surace
15 therefore requred to unambiguously represent 3D objects

figure 113

numbers of smaller polygons to represent the object, but this will increase both
the storage space requirements of the object representation, and the execution
time of any algorithms that process 1t

1.6.2 Constructive Solid Geometry (CSG)

In the polygon mesh representation scheme a solid object 1s modelled, not as a
sohd, but as a closed surface The CSG representation scheme however models
solid objects as compositions of primitive solids that are combined using boolean
set operators The advantages of such a representation are -

[] The model represents a true solid with volume

[] Sohds are bounded by both curves and planar
surfaces

[] Mechanical parts can be particularly well rep-
resented

The following three boolean set operators, illustrated 1in fig I 14, are used to
combine primutive (and intermediate) sohds -

CHAPTER 1J AN INTRODUCTION TO COMPUTER GRAPHICS 22

e Union
o Intersection

o Difference

Two objects a cylinder
and a cone

D o

INTERSECTION

Union difference and intersection operations on two solids

figure 114

Union The space occupied by a solid defined as the umon of two other solids,
A and B, 1s the space occupied by solid A4 plus the space occupied by sohd B

Intersection The space occupied by a solid defined as the intersection of two

other solids, A and B, 1s the space occupied by solid A that 1s also occupied b)
sohd B

Difference The space occupied by a sohd defined as the difference of two other
sohds, 4 and B, 1s the space occupied by solid A, less any part of that space that
15 also occupied by sohd B

The primitive sohds normally used are blocks/cubes, spheres, cones, and
cylinders but others, such as superquadric surfaces [EDWAS2] can be used Solids

CHAPTER 1 AN INTRODUCTION TO COMPUTER GRAPHICS 23

formed as a result of the combination of two such primitives can themselves be
combined, and m this way, representation of more complex solids can be built
up 1 the form of a binary tree where the leaf/end nodes are primutive solids,
the root node represents the entire solid, and the intermediate-nodes represent
intermediate solids (see section 3 2 1)

1.7 Adding Realism

As mentioned at the start of this chapter, there are some areas where the ap-
plication of computer graphics does not not simply require a screen image of
an object, but an 1mage that looks as real to the viewer as possible Adding
this realism to the picture mnvolves such techniques as removing hidden surfaces,
shading objects, incorporating shadows, and adding texture to surfaces

1.7.1 Hidden Surface Removal

Hidden surface removal involves determining which objects m a picture are vis-
ible to the viewer and which are obscured by other objects, given a particular
viewing point, projection type, projection plane etc Although the 1dea sounds
quite simple, the reality 1s that its implementation requires such large effort of
computation that many carefully considered algorithms have been developed
Sutherland, Sproull and Schumacker [SUTH74]| survey ten such algorithms and
provide a good mtroduction to the topic The details of any particular algorithm
will depend of course on the object representation scheme 1in use That 1s to say,
an algorithm for removing hidden surfaces from a polygon mesh representation
will be quite different from one that assumes say, a parametric bicubic patch

object representation Some of the more commonly used algorithms are outlined
below

DEPTH SORT The approach of this algorithm, which was developed by
Newell, Newell and Sancha, 1s straightforward and simple The general 1dea 1s
to draw all polygons 1n the scene, but to sort them beforehand so that polygons
furthest from the viewer are drawn first In this way, if a polygon 1s obscured
from the viewer by another polygon, the obscured polygon (being further from
the viewer) will have been drawn first and will be overwritten by the obscuring

one The three general steps of the algorithm are outhined below For a more
detailed discussion see [NEWE72]

CHAPTER 1 AN INTRODUCTION TO COMPUTER GRAPHICS 24

o Sort all polygons in the scene according to the
largest z-coordinate of each

¢ Resolve any ambiguities that may arise from any
overlapping polygons

o Scan-convert each polygon into the refresh buffer
in descending order of largest z-coordinate

Z-BUFFER The z-Buffer algorithm, see [FOLE84], adopts a simular approach
to the Depth Sort one, except that polygons can be scan converted into the
refresh buffer 1n any order through the use of an additional buffer, called a z-
buffer, which stores for each pixel, the Z value of the point on the polygon that
currently covers that pixel Only if the Z value of the pont on a subsequent
polygon which also covers that pixel 1s less than the value stored in the z-buffer,
1s the plxei updated and the z-buffer value for that pixel changed to the new Z
value

Other algorthms, developed by Boukmght [BOUKT70] and Wathins
[WATK70], also deal with removing hidden surfaces from objects defined by
polygons While these algorithms, like the two above, can be applied to ob-
jects defined by curved surfaces by first approximating the surfaces with many
small polygons, algorithms for dealing directly with curved surfaces have also
been developed These include algorithms developed by Weiss [WEIS66], Mahl
[MAHL72] and Levin [LEVI76] for dealing with objects defined by quadric sur-
faces, and algorithms by Catmull [CATM80] and Blinn [BLIN80] for parametriclly
defined surfaces

1.7.2 Shading

Having removed hidden surfaces through the use of one of the above algorithms,
the visible surfaces (particularly curved surfaces) must be correctly shaded 1n or-
der to give any sort of real effect For example, a sphere drawn without shading
would appear as a flat circle on the screen In shading an object, the shading
calculation should take into account such parameters as the position and orien-
tation of both the light source(s) and the surface to be shaded, as well as surface
characteristics (flat, smooth etc) and, in the case where specular reflection 1s

p——

CHAPTER 1 AN INTRODUCTION TO COMPUTER GRAPHICS 25

taken nto consideration, the position of the viewer The Light source can be er-
ther a point source, such as an incandescent bulb, or a distributed source, such as
a bank of fluorescent Lights Point sources however, are normally used since they
result 1o the calculation of only a sigle vector from a point on a surface to the
light source, whereas several are required to approximate a distributed source
The exact details of the calculation will of course depend on the complexity of
the lighting model, which can incorporate any or all of the following basic light
components -

e Ambient light
e Diffusely reflected hght

¢ Specularly reflected light

AMBIENT LIGHT Ambient hght 1s a hight of umform brightness found 1n
most real environments as a result of the multiple reflections of light from the
many surfaces normally found in such environments, and 1s the simplest of the
three components to model The amount of ambient hight, 4, reaching a viewer
from a surface 1s given by -

I =1,K, (125)

where I, 1s the intensity of the ambient light, and K, 1s the fraction of ambient
light reflected by the surface

DIFFUSE REFLECTION This 1s the type of reflection exhibited by dull
matte surfaces Such surfaces scatter light equally 1n all directions and conse-
quently appear to have the same brightness from all viewing angles The intensity
of diffusely reflected Light, Ip, from a point on such a surface can be determined
from Lambert’s cosine law and 1s dependent on the cosine of the angle between

the normal to the surface, N, and the vector m the direction of the hght source
L fig115 -

Ip = I,K;cosa (126)

where I, 1s the intensity of the hight source and K, 1s a number between 0 and
1 called the diffuse reflectron coefficient for the surface, which varies from one

CHAPTER I AN INTRODUCTION TO COMPUTER GRAPHICS 26

surface to another If N and I are normalized, (1 16) can be rewritten using
the vector dot product -

Ip = LK,(L N) (127)

Hght surtace
source normal

surtace

Diffuse reflection intensity is proportional to angle a

figure 115

SPECULAR REFLECTION Look at any shiny surface and you will see a
highlighted area 1 e an area that is significantly brighter than the rest of the
object and emutting hght that 1s nearer to the colour of the light source (usually
white) than the colour of the object itself The highhght 1s a result of specular
reflection and 1s due to the fact that shiny surfaces reflect light unequally in
different directions The intensity of specularly reflected light emitted from such
a surface rapidly falls off as angle b 1n fig / 16 increases

surface
normal
to
light direction of
source raflection

]
viewpoint

suriace

figure 116 Specular reflection

Phong Bui-Tuong approximated this rapid fall off as cos™ b [BUIT75], where
n 1s typically between 1 and 200, depending on the smoothness of the surface
(the higher the value, the shiner the surface) The approximation, which 1s quite
accurate, 1s based on an empirical observation rather that any theoretical deriva-
tion In contrast, the Torrence-Sparrow shading model [TORR66], developed by

CHAPTER 1 AN INTRODUCTION TO COMPUTER GRAPHICS 27

illumination engineers, 1s a theoretically based one, adapted to computer graph-
1cs by Blinn and compared with the Phong model in [BLIN77] The amount of
light that 1s specularly reflected from a surface 1s also a function of the angle of
incidence (angle a m fig 1 16) If this function 1s represented as F(a), then,
using the Phong model, the intensity of specularly reflected hight, Is, reaching a
viewer from a surface 1s approximated by -

Is = I,F(a)cos™ b (128)

where I, 1s the intensity of incident light To reduce computation of Ig, F(a)
1s often set to a constant K, which 1s selected by trial and error to give the best
results If R and V 1n fig 1 16 are normalized, equation (1 28) can be written
as -

Is= LK, (RV)" (129)

Combining ambient, diffuse and specular components, the intensity of light
reaching a viewer from a surface I, 1s the sum of the three components which,

from (1 25), (1 27) and (1 29), can be wntten as -

I=LK,+1, [KoL Ny + K(RV)"] (1 30)

Even with the incorporation of all three hght components (ambient, diffuse
and specular), the above hghting model has certain hmitations For example, the
model does not take account of global illumination information, z ¢ 1n calculating
the hight reflected from a pomt on a surface, 1t does not take account of Light
reflected from or refracted through other objects 1n the scene that may be mcident
on the surface Consequently, the reflection of one object 1n another object or the
visibility of one object through a transparent object, will not be emulated 1n the
final screen 1mage Both Whitted [WHIT80] and Greenberg [GREE79] however,
have 1mplemented models that resolve this shortcoming Whitted’s approach
(which 1s a raytracing one) 1s computationally more expensive than Kay’s (but 1s
more general) and 1s based on an earlier raytracing algorithm by Appel [APPE68]
Whitted’s model 1s outlined in section 2 & 2 of the next chapter, which deals with
raytracing

As the quest for greater visual realism continues, even more complex light-
ing models are being developed, such as those by Cook [COOKS81]} [COOKS8S],
Nishita and Nakamae [NISH86] for shading objects illuminated by natural sun-
light, Max [MAX86] for dealing with atmospheric illumination, and Cohen and
Greenberg’s radiosity method [COHESS] of catering for diffuse 1eflection 1n com-
plex environments

CHAPTER1 AN INTRODUCTION TO COMPUTER GRAPHICS 28

1.7.3 Shadows and Texture

While previous sections have looked at the problems of removing hidden surfaces
from a scene, and the correct shading of objects, no mention has been made of
the inclusion of shadows 1n a scene With the exception of the case where the
view-point and the hight source are 1n the same same location, the viewer of a
scene will observe shadows cast by the objects Since the surfaces that he n
shadow are the ones that are visible from the viewpomnt but not from the lhight
source, some rendering systems calculate shadows by invoking the hidden surface
algorithm twice, once for the viewpoint and a second time for the hight source

Crow examunes several ways of generating shadows for polygonal objects,
[CROWTTA], while Lance [LANCT78] addresses the generation of curved shadows
on curved objects In a variation of one of Crows algorithms, Greenberg, Atherton
& Weiler [GREET78] incorporate shadows for polygonal objects by associating with
each polygon that is either completely or partly visible from the Light source, a
secondary coplanar polygon that marks the area of the first one that is visible
from the hight source These secondary polygons are then used to indicate to the
shading algorithm which parts of the main polygons lie 1n shadow (namely the
area of the polygon minus that covered by the secondary polygon)

TEXTURE The shading algorithm described 1n section 1 7 2, when applied to
either planar or curved surfaces, produces very smooth and uniform surfaces This
1s because there are actually two types of surface detail, colour and tezture, and
1t 1s the latter one which gives a surface the roughened look charactetistic of most
of the surfaces of the real world Since 1t would be impractical to use polygons
to attempt to model very fine levels of texture, Catmull [CATM74] pioneered
a technique of mapping a digitized photograph of the texture of a real surface
onto a computer generated surface, a technique which was later refined by Blinn
and Newell [BLIN76] The technique involves mapping a pattern array, which
represents the digitized texture photograph, onto a planar or curved surface, by
a means sumular to that used for pattern filling polygons (see [FOLE84])

A more recent techmque apphed by Carpenter [CARP82] and Mandelbrot
[MANDS82], uses a class of wregular shapes, called fractals, which are proba-
bilistically defined and can accurately model natural shapes such as coastlines,
mountains, snowflakes, tree branches etc

Chapter 2

An Introduction To Ray Tracing

Ray tracing 1s a very powerful yet simple approach to image synthesis which
has generated some of the most realistic computer 1mages to date It 1s capable
of incorporating multiple reflections and refractions from multiple objects mn a
scene, can deal with multiple light sources, and can model effects such as penum-
bras, motion blur and other fuzzy phenomena that would prove difficult, if not
impossible, with other image generation techniques

The technique was first suggested by Appel [APPEG7] and was later used
by Goldstein and Nagel [NAGET71] as a solution to the hidden surface problem
But 1t wasn’t until the late 1970’s that 1t was implemented by Kay & Greenberg
[GREET79] and by Whitted [WHITS80] to render complete images

2.1 The Ray Tracing Approach

From the discussion of computer graphics in the last chapter, it can be seen that
the conventional approach to three dimensional graphics 1s to define a viewing
point, a projection plane and a view volume, then project objects inside the view
volume onto the projection plane 1n accordance with a perspective/parallel pro-
jection and map the projected coordinates onto screen coordinates The final
mmage produced by such a process 1s an unreahstic wireframe view of the ob-
ject/scene However, as outlined 1n section I 7, greater realism can be added by
mcorporating hidden surface removal, shading and shadow algorithms at appro-
priate stages of the operation

29

CHAPTER 2 AN INTRODUCTION TO RAY TRACING 30

In contrast to this conventional approach, which starts with an object in
the scene and tries to deterrmne which pixels the object covers when projected
onto the screen, ray tracing adopts the reverse methodology by starting with a
pixel and trymng to determine which object that pixel maps onto 1n the scene
Thus, 1t could be said could be said that conventional approaches map objects
onto pixels, while ray tracing maps pixels onto objects

In 1ts simplest form, ray tracing involves casting an mmaginary ray (repre-
senting a ray of light) through each screen pixel into the scene If the ray fails to
strike any object 1n the scene, the pixel 1s given the background colour Other-
wise, the colour of the pixel 1s determined from the characteristics of the nearest
object struck by the ray, in accordance with the hghting model being used

The generation of realistic graphics 1mages 1s not however the only appli-
cation of the technique of ray tracing since, the ray could equally well represent
say, an z-ray, an acoustical path or the path of a light beam through an optical
system For example, ray tracing has been used by Roberts [ROBE72] to predict
acoustical ray paths in the atmosphere, by Maxwell [MAXW86] to calculate the
radiation configuration factor between two surfaces, and by Higdon [HIGD74] to
determine the path of a ight beam through a system of reflecting and refracting
optical elements, as an aid in the design of such systems

2.2 The Basic Algorithm

Fig 2 1 1llustrates the basic 1dea behind 1ay tracing an 1mage of some scene For
each pixel, a ray 1s cast through the pixel and into the scene The first object
struck by the ray while “tracing” along 1t 1s the visible one for that pixel The
surface normal at the ray-surface intersection point 1s then calculated which, along
with the position of the hght source, 1s used to calculate the colour of the pixel
The process can be subdivided into three distinct operations, ray generation, ray
mtersection and shading

RAY GENERATION The ray can be conveniently represented as a line in 3D
space, usually defined in parametric form as a point (Xy, Y5, Z5), and a direction
vector (D;,D,,D,) Given this form, the pomnts on the line are ordered and
accessed via a parameter, ¢ Each value of t gives rise to a pomnt (X,Y, Z) on the
line given by -

CHAPTER 2 AN INTRODUCTION TO RAY TRACING

X = Xo ’1"' tDI
Y =Y +1tD,
Z = Zo + tDz
light
SO@ shadow roﬂraac.;(ed

ay

pixal .~
/ Object

primary
aye \

point Image plane

refracted
fay

Tracing a ray through a scene of objecls

figure 21

31

(21)

Positive, increasing values of ¢ give points on the ray that are increasmgly
further from the pomnt (X, Yo, Zo) 1n the direction of the ray, while decreasing
negative values give points that are increasingly further from it 1n the opposite

direction

For a parallel view defined by a direction vector (D,, Dy, D,), the equation
of a ray through a pixel (X,,Y,) 1s defined by the pomnt (X,,Y,,0) and the

direction (D.,D,,D,), fig 2 2

Ray. equation

{Xv Y¥) / X = Xv & tDx
/D/ Y = Yv 4+ tDy
Pt Z-04102

/

projection drection

/

view plane
Za0 {Dx Dy D2)

ﬁgure 22 Ray equation for a pamllel view

CHAPTER 2 AN INTRODUCTION TO RAY TRACING 32

Simularly, for a perspective view defined by a viewing pont at (V,V,, V),
the equation of a ray i1s derived from the pomnt (X,,Y,,0) and the direction

(X"'V:NY_‘/ya—V;)) .ﬁg 23

—

ray direction

(Xv Vx Yv Vy Vz) \/‘7

Xy Yv)
/°/ Bay eguation
OV X » VX s t{Xv W)

Y = V LY
eye point Yy o+ LYY Vy)
(Vx Vy Vz)

Z -0 vz

/

view Dplane
Z=0

ﬁgure 23 Ray equation for a perspective view

Once 1n this form (a point and a direction) the ray 1s then passed to the ray
intersection stage where the closest object of intersection with the ray (if any) 1s
determuned

RAY INTERSECTION Finding the closest object of intersection with a
ray mvolves checking the ray for intersection with every object in the scene by
determining if there 1s a value of t for which (X,Y,Z) n equation 2 I les on
the object In trying to find a solution for ¢, there are three possible outcomes,
which are outlined 1n table 2 I below and illustrated 1n fig 2 4 -

OUTCOME | INTERPRETATION | EXAMPLE

no solution for ¢ no mtersection with object A n
object fig24

t 18 negative/zero | 1ntersection behind/at object B n
the pomnt (Xy,Ys, Zo) fig24

t 15 positive ntersection mn ray object C 1n
direction fig2 4

TABLE 21

CHAPTER 2 AN INTRODUCTION TO RAY TRACING 33

—

RAY.
/’(Xo Yo Zo)
{eye point) \
object A

view plane

Three possible outcomes of a ray- object intersection test,
represented by objects A B and C

figure 24

Having solved for ¢ for each object in the scene, the object with the lowest
positive value of ¢ 1s the first object struck by the ray, since ¢ 1s a measure of the
distance of the point of intersection from the ray origin (Xo, Yo, Zo) Substituting
this value for ¢ into equation 2 1 gives the actual point of intersection between
the ray and the object, which can then be used to calculate the surface normal
at that point for use in the shading calculation

The mathematics of the intersection test will depend on the object repre-
sentation scheme in use To date, algorithms have been developed for a large
vanety of object representations such as polygonal objects [HECK84], algebraic
surfaces [HANRS3], parametric patches [KAJI83B], steiner patches [SEDE84],
parametric surfaces [TOTHS85], objects defined by sweeping a sphere [VANW84],
superquadric solids [EDWAS82), fractals [KAJI83A] & [BOUV85] and volume den-
sities [KAJI84], as well as objects defined using a CSG (Constructive Soild Ge-
ometry) representation, [ROTH82] [YOUS86] and [ARNAS87)

Since the determunation of the closest object of intersection with a ray 1s
based on a uniform test (a value for ¢ 1n equation 2 1), regardless of object rep-
resentation, different object representation schemes can be mixed in the same
scene All that 1s required 1s that an appropriate intersection algorithm be ncor-
porated into the raytracer for each different object 1epresentation scheme The
ray intersector then proceeds through the hist of objects in the scene calling the
appropriate intersection algorithm for each object (which will return a value of ¢
for the object) and selects the object with the smallest positive ¢ value as out-
lined above The other components of the raytracer, the ray generator and the
shader remain unaffected since the former merely fires rays into the scene while
the latter simply requires a pont of intersection, a surface normal and surface
details such as colour, to determne the shade of a pixel

THE SHADER The shader makes use of the surface normal and the char-

CHAPTER 2 AN INTRODUCTION TO RAY TRACING 34

acteristics of the intersected object (such as colour) to determine the colour and
intensity of the pixel, in accordance with the highting model being used If several
light sources are 1n use, the shading calculation 1s performed separately for each
one to determine its contribution to the overall intensity If required, the inten-
sity of the light reaching the point of intersection can be attenuated 1n proportion
to 1ts distance from the light source However, if the ray did not intersect any
object, or if all intersections were behind the the ray origin (X, Yo, Zo), (2 €
only negative values of ¢ were found) the pixel is set to some background colour

t

2.3 Adding To The Algorithm

The ray tracing algorithm as outlined above will manage to produce screen images
containing objects that have hidden surfaces removed and that are locally shaded
(2 e the shade of any point on the object depends solely on the orientation of
the surface normal at that point with respect to the viewer and the light source,
and 1s independent of the overall context of the object in the scene) A much
greater degree of realism can be achieved however, by adding to the algorithm the
capability to calculate shadows, to deal with reflecting and/or refracting objects
and to perform antialiasing The first two are incorporated by generating what
are called secondary rays, while the third calls for the generation of additional
primary rays!

2.3.1 Shadows

A poimnt on an object 1s said to lie 1n shadow with respect to a light source if
the point can be seen from the viewpoint but not from the hght source Having
calculated the point of intersection of a primary ray with an object, 1t 1s possible
to determune 1if the point hies in shadow by casting a ray from the point to the
light source (if there 1s more than one source, a ray 1s cast from the intersection
point to each one) If this ray intersects any opaque object 1n the scene, then the
pomt hes 1n shadow with respect to the hght source, otherwise it does not

In testing this “shadow” ray for intersection with objects 1t 1s possible to
take advantage of the fact that we are not interested in finding the closest object of
intersection with the ray, only if the ray strikes any opaque object Consequently,
as soon as the ray intersects an object which 1s not transparent, no further objects

'A prnimary ray is one that originates at the viewpomt and passes through a pixel on the
screen, while a secondary ray 1s one that originates from some pomnt on an object in the scene

CHAPTER 2. AN INTRODUCTION TO RAY TRACING 35

need be tested since the point then lies in shadow. If the ray strikes a transparent
object however, the test must proceed, though the intensity of the light from the
source can be reduced, if desired, to take account of the attenuating effect of the
object on the light intensity.

_In tracing the shadow ray back to the light source, the ray is not refracted
as it passes through a transparent object (section 2.3.2 discusses refraction), the
reason being that it is not possible to directly calculate the equation of the ray
from the light source which, when refracted will pass through the intersection
point of object A infig 2.5. Instead the shadow ray equation must be taken to be
a straight line between the point and.the light source, which as the figure shows,
can sometimes give erroneous results.

2.3.2 Reflection and Refraction

Just as surfaces exhibit specular and diffuse reflection of light (section 1.7.2), so
too can they exhibit specular and diffuse transmittance. Specular transmittance
occurs in transparent materials such as_&lass, where light can pass throu%h the
material but is usually refracted, while diffuse transmittance occurs in translucent
materials such as frosted glass where, although the light can pass through, it gets
“scrambled” by the rough surface, with the result that objects seen through such
a material are blurred.

~ Conventional hidden surface algorithms model transparent objects by ig-
norm? refraction and_shadmgi them as a weighted sum of the individual shades
calculated for the object itself and the object behind it. However, from fig 2.6

CHAPTER 2 AN INTRODUCTION TO RAY TRACING 36

1t can be seen that this can sometimes lead to the wrong object being shown
through the transparent one

object B -

C

object C
(transparent)

object A

bject A shown
inslead of B

Failure 1o account for refraction means that object A instead
of B is seen through the lransparenl object

figure 26

Turner Whitted [WHIT80] introduced a Lighting model based on earher
ray tracing work by Appel [APPE68] that models refraction of hight rather than
attempt to simulate its effects The model also incorporates global illumination
information 1n shading an object, 1 e 1t takes account of the effects of objects
acting as secondary hght sources and of objects being reflected 1n other objects

The model proposes that on striking an object a ray be spht up 1nto its
specularly reflected and transmitted rays Each of these two component rays are
then traced through the scene If either ray strikes another object, 1t 1n turn
1s subdivided 1nto its two component rays, which are then traced In this way,
a binary tree 1s recursively generated which contains a record of the light rays
reflected from and refracted through other objects which contribute to the colour
of the light reaching the viewer along the direction of the original primary ray,

fig 27

In creating the tree, the ray intersection algorithm is called recursively until
either all branches in the tree aie terminated, or the tree reaches some predefined
maximum depth The latter case 1s to safeguard against a situation where two
objects may be aligned such that the tree has infinite depth Alteinatively, the
tree can be dynamically pruned by taking account of the attenuating effect of
distance and of transparent objects on light, and stopping when 1t 1s such that
the intensity has been reduced to a level where 1t 1s too low to make a notable
contribution

Once created, the tree 1s passed to the shader which, starting with the leaf
nodes calculates the contribution of each to the colour and intensity of the parent

CHAPTER 2 AN INTRODUCTION TO RAY TRACING 37

viewpoint

figure 27 Sshade tree grown from a single primary ray

node, ending with the root node, which represents the colour of the pixel

2.3.3 AntiAliasing

Ahasing 15 a “noise” effect that manifests itself in graphics 1mages as a result
of attempting to display an object, which 1s continuous, on a screen which 1s

- - not-— 1t consists of a grid of points/pixels The problem of aliasing 1n com-
puter shaded 1mages 1s addressed by Crow in [CROWT77B], and a comparison of
antialiasing techniques (methods of removing/reducing ahasmg effects) can be
found 1n [CROWS1] Ray tracing, being essentially a point sampling technique,
1s quite prone to the effects of ahiasing but, as discussed below, the ray tracing al-
gorithm can be adjusted to incorporate techniques that will reduce its damaging
effect on picture quality

The Problem Ray tracing has a tendency to suffer from aliasing by virtue of
the fact that 1t produces an 1mage of a 3D model by sampling the model (through
the use of rays) only at a specific number of points (the pixels on the screen) For
each pixel, a ray 1s cast through the pixel into the scene to determine a colour
for the pixel Part of the problem of ahasing, fig 2 8, lies 1n the fact that the ray,
being represented as a mathematical line, has no thickness or area whereas the
pixel does have a physical (though very small) area on the screen

Thus, a ray only allows us to sample one point of a pixel and there 1s no
way of calculating what else 1s visible 1n the area of the pixel around this point
Consequently, the pixel in fig 2 8 would be shaded red by virtue of the fact that
the ray, when fired through the centre of the pixel, strikes the red object This
1s despite the fact that the blue object covers as much of the pixel area as the

CHAPTER 2 AN INTRODUCTION TO RAY TRACING 38

Tracing just a single ray per pixel can result in aliasing
in the final image.

figure 2.8

red one. To avoid the aliasing produced by such a situation, the pixel should
be shaded as the sum of the two object colours, weqhted by the area of the
P|xel which each covers, a process known as area sam% ing a pixel. Deane the
act that ray tracing is esse_ntlaIIK a point sampling technique, area sampling can
be approximated by sampling the scene at more than one point on a pixel, as
outlined below.

The Solution One solution is to use a technique known as oversampling,
whereby more than one ray is cast through each pixel, allowln?.more than just a
single point on the pixel to be sampled. The colour for the pixel is then calculated
as the average colour of the values obtained for all the rays cast through the pixel.
However, for a screen resolution of 500 x 500 pixels, casting N rays per pixel
instead of one requires generating (N —1) x 250000 extra rays which, while
{ﬁdu_cmg the effects of aliasing increases the cost, computationally, of generating
e image.

A more economical approach however, fig 2.9, is to approximate a ?ixel
as a rectangular area on the screen and to cast rays through the corners of the
pixels instead of the centre. Then, since every inxel shares several of its rays
with neighboring pixels, only (500 -f 1) x (500 + 1) rays are required to fire four
r%y7356h688gh each pixel, which amounts to casting 1001 additional rays instead
of 750,000,

~Ifthe intensities calculated at the four points have nearly equal values, then
it is reasonable to assume that the average of the four values represents a good
approximation to the intensity over the entire pixel re%mn.. If however the inten-
sities differ by more than some threshold percentage, the pixel area is subdivided
and new rays generated to probe the subregions of the pixel. This process is
recursively repeated until a satisfactory degree of detail has been discovered for

CHAPTER 2 AN INTRODUCTION TO RAY TRACING 39

e)

pizel | pixet }pixel \
rays fired
praet |phast {phxat | oo through shared

pixel corners

L SCREEN y

Tracing rays through the corners of pixels means that
adjacent pixels can share information

figure 29

the pixel, [WHIT80] The intensity of the pixel 1s then calculated as sum of the
intensities calculated for each of the subregions, weighted by their area

Even with this latter approach, aliasing can still manifest 1tself in certain sit-
uations According to Mitchell [MITC87] however, non-uniform sampling yields
aliasing that 1s less conspicuous to the viewer than that yielded by uniform sam-
pling (such as the method above) He therefore presents an algorithm for fast
generation of non-uniform sampling patterns that are optimal in some sense
Another method, called distrnibuted ray tracing and outhned by Cook, Porter
and Carpenter [PORT84], also distributes the rays non-umiformly over the pixel,
thereby overcoming the aliasing of uniform sampling As outlined in section 2 § 1,
this technique also has the added advantage of distributing the rays n such a
way as to be able to model such effects as motion blur, depth of field, penumbras
and fuzzy reflections

In another approach by Amanatides, [AMANS84], the concept of Cone Trac-
ing 15 outhned, whereby the defimtion of a ray 1s extended into a cone by including
information on the spread angle and virtual origin of the ray Unhke a ray, a cone
has thickness and consequently does not intersect an object at a point, but over
an area, allowing area sampling of a pixel to be performed, (see sectron 2 5 3 for
a further discussion)

2.4 Speeding Things Up

The major drawback of ray tracing 1s that due to the large computational cost
of generating images, rendering times are usually measured 1n hours rather than
minutes According to Whitted [WHIT80] 75% of the time taken to render im-

CHAPTER 2 AN INTRODUCTION TO RAY TRACING 40

ages 1s taken up with calculating the intersection of rays with objects This figure
can rise to 95% and higher for complex scenes The reason for this 1s the sheer
quantity of rays involved, together with the fact that each ray is tested for in-
tersection with every object 1n the scene For example generating a 512 x 512
resolution 1mage of a scene consisting of say 100 polygons, with just a single ray
per pixel, requires 262144 rays and over 26 mullion ray polygon intersection tests
If shadows, multiple hght sources and reflection/refraction are also incorporated,
the number of rays can go up by an order of magmtude Given that a scene of
even moderate complexity would contain several thousand polygons, 1t 1s clear
that there 1s a great need for optimzation

One approach to the problem 1s to try to reduce the number of 1ay-object
intersection tests, by selecting from the entire set of objects in the scene, a small
subset of high probability candidates against which to test the ray for intersection
This can be achieved through the use of any of the following techniques, which
are discussed 1n the sections below -

[] Object bounding volumes
[] Space subdivision

[] Exploiting image coherence

2.4.1 Bounding Volumes

The use of bounding volumes aims at reducing the number of computationally
expensive ray-object intersection calculations by enclosing each object 1n a vol-
ume, called a bounding volume (e g a sphere), which 15 less expensive to test
for intersection than the object, fig 2 10 Then, only if the ray intersects the
bounding volume, 1s 1t tested for intersection with the object inside

Types To date, several different types of bounding volume have been used,
with cyhinders, spheres, and rectangular parallelepipes being the most common
However, various other types have also been used For example, Kay [KAYS84]
bounds objects with parallelopipeds constructed of planes, Kajiya [KAJIS3A]
uses probabilistic extents to surround procedurally defined fractals and Bouville
[BOUVSE5] compares ellipsoids, spherical triangles (the volume defined by the

intersection of a sphere and a triangle) and triangular prisms as bounding volumes
mn tracing fractals

CHAPTER 2 AN INTRODUCTION TO RAY TRACING 41

Object with rectangular and cwcular bounding volumes
figure 2 10
Characteristics In order to to get maximum benefit from bounding volumes,
1t 15 1mportant that they should tightly enclose the object (¢ e there should be
as httle empty space between the object and the bounding volume as possible)
since, the tighter the fit, the greater the percentage of rays that do not intersect
the object will fail the bounding volume intersection test

However, the computational cost of testing a ray for intersection with a
bounding volume 1s also another important factor in their use, since 1t would be
pointless to have a tight fit if the intersection test were as costly as the object
intersection test itself It 1s often the case that a more complex bounding volume
will enclose an object more tightly than a simple one, but will be moie expensive
to test for intersection Since some objects in a scene will be more expensive to
test for intersection than others, this may prove an acceptable trade off for those
objects, as the relative cost of the bounding volume intersection test 1s less

The total cost function for an object 1s given by Weghorst [WEGH84] as -

C=tB+11
where

C 1s the total cost

b 1s the number of times the bounding vol-
ume 1s tested for intersection

B 1s the cost of testing the bounding volume
for wntersection

CHAPTER 2 AN INTRODUCTION TO RAY TRACING 42

1 15 the number of times the object 1s tested
for intersection

I 1s the cost of testing the object for inter-
section

The 1dea 1s to mimimize this function for all objects 1n the scene For any
given 1tem with a given view, b and [are constant However, by selecting a less
complex bounding volume, B can be reduced Unfortunately, this 1s likely to
lead to an increase in z Similarly, increasing the complexity decreases @ but 1s
likely to lead to an increase in B Neither approach 1s guaranteed to decrease the
overall cost function C, though there will usually be some optimal solution

The tightness of fit of a bounding volume 1s often a function of direction
1 e 1t will not enclose the object tightly on all sides, or, put another way, the
projected void area® will vary for different directions The result of this 1s that a
bounding volume which results in a small void area for one direction may not do
so for all directions This can make the choice of the optimal bounding volume
difficult at times, as can be seen from fig 2 11a, where the void area between the
spherical bounding volume and the object {(a wheel) 1s zero, while that of the
rectangular one and the same object 1s not For a different direction however,
fig 2 11b, the situation 1s reversed Thus, the sphere provides a better fitting
bounding volume for rays coming from one direction, while the rectangular block
provides a better fit for rays coming from a different direction

Selection As mentioned earlier, the two principle criteria of bounding volume
selection are tightness of fit (which can be measured as the projected void area
and can vary for different ray directions) and simplicity of intersection testing
Unfortunately, the two are generally in conflict with each other in the sense that
a gam 1n one 1s usually achieved at the expense of the other This conflict can
make the optimal choice of bounding volume for a particular object quite difficult
at times At one end of the scale, the selection can be based primarly on the
tightness of fit (within the bounds of the intersection test expense not exceeding
that of the object 1t encloses) For example, Kay and Kajiya [KAY84] have
implemented a bounding volume that can be made to fit convex hulls arbitranly
tightly, at the expense of a more costly intérsection test At the other end of the
scale, the selection can be based mainly on the simplcity of the intersection test
without worrying about a tight fit Such 1s the case in Whitted [WHIT80] who

2The projected void area for a particular direction 1s the difference 1 the projected areas of
the bounding volume and the object when orthogonally projected onto a plane perpendicular
to the direction 1 question

CHAPTER 2 AN INTRODUCTION TO RAY TRACING 43

ractangular and spherical
bounding volumes

spherical BV
fits exactly
no void area
rectangular BV
comams void area (a)
ectangular and spherical
baunding volumes from
ditferent _dlrection
rectangular BY
tn actl
. —— whetca 6V
cortains vold area. (b)

Wheel wih rectangular and spherical bounding veolumes from two
different viewing angles (a) and (b)

figure 211

uses spheres to bound all objects, since the complexity of the intersection test 1s
relatively low and 1s uniform for all ray directions

Weghorst et al [WEGH84] however, adopts an mntermediate approach The
bounding volume for each object 1s optimally selected from a set of three differ-
ently shaped volumes, a sphere, a rectangular parallelepiped and a cylinder, each
of which has associated with 1t a factor that 1s indicative of the relative com-
plexity of 1ts own intersection test compared to that of the other two (the sphere
has the lowest factor and the cyhnder the highest) For each object, a bounding
volume of each type 1s generated that encloses the object, and the one with the
least product of volume and complexity factor is selected An interactive program
allows the selected bounding volume to be manually overridden to compensate
for the fact that the cost of the object intersection test 1s not taken into account
mn the selection process Weghorst gives tabulated results of image generation
times of several test images using these selected bounding volumes, comparing
them with those taken to generate the same images using only spherical bounding
volumes (times for other combinations of speedup techniques are also given) In

CHAPTER 2 AN INTRODUCTION TO RAY TRACING 44

each case, the generation times for the selected bounding volumes are less than
those using only the spherical bounding volumes, with the time saving varying
from 49% to 10%, depending on the image

EXTENTS An ezxtent could be loosely defined as a two dimensional bounding
volume 1n screen space (as opposed to object space) For example, if all bounding
volumes are projected onto the screen using the same viewing parameters as for
the ray tracing, the “ray intersects bounding volume test” can be reduced to a
pomnt 1n rectangle test 1 e to test if a primary ray mtersects an objects bound-
ing volume, we sumply check if the pixel spawning the ray lies inside the screen
rectangle enclosing the projection of the bounding volume on the screen, fig 2 12
Despite this less costly intersecrion test, extents have the limitation that they
cannot be applied to secondary rays, since these rays are not constrained to pass
through the screen However, they are relatively simple and mexpensive to im-
plement and have been used successfully by Roth [ROTHS82] in raytracing objects
defined by a CSG (Constructive Soild Geometry) representation, section 3 &

object
bounding
volume

profection of
baunding volume

object extent

Calculation of an objects sereen extent lrom s projected
bounding volume

figure 212

HIERARCHY Having enclosed each object in a scene 1n a bounding volume of
some sort, finding the object of closest intersection with a ray still involves having
to test each bounding volume for intersection with the ray (and if 1t intersects,
with the object mnside) However, enclosing several bounding volumes inside a
larger bounding volume means that the ray can first be tested for intersection
with the outer bounding volume Then, if the ray msses this bounding volume,
1t does not have to be tested with any of the bounding volumes inside In turn,
several of these outer bounding volumes can be enclosed 1n a still larger bounding
volume and so on In this way, a hierarchy of bounding volumes can be built

CHAPTER 2 AN INTRODUCTION TO RAY TRACING 45

up m the form of a tree, where the leaf nodes consist of the object bounding
volumes and the intermediate nodes consist of bounding volumes that enclose
the bounding volumes of of their respective subtrees, fig 2 13 The root node
then consists of a volume that encloses the entire scene and, finding the object of
closest intersection with a ray involves descending the tree structure from the root
node, recursively processing the subtrees of any node whose bounding volume 1s
intersected At each level, those branches not intersected by the ray are pruned
from the search Additionally, if an object 1s intersected, those branches of the
tree whose bounding volumes lie behind the point of intersection can also be
pruned, a process known as dynemaic tree pruning

%

Hirearchy of bounding volumes

Tree siructure

A bo~undmg volume hierarchy and its tree structured representation

figtire 213

In the hmut, as advocated by Rubin and Whitted [RUBI80], the leaf nodes
themselves can be bounding volumes, 1n which case the scene can be represented
entirely by bounding volumes, with no other form of representation The bound-
ing volumes used by Rubin consist of parallelepipeds orientated to mimimize their
size Such a structure allows any surface to be rendered since, in the hmut, the
bounding volumes make up a point representation of the object The wvisibility
calculations then consist only of a search through the structure to determine the
correspondence between the terminal level bounding volumes and the current
pixel The mam advantage of such a representation 1s that the viewing process
has only a single operation (the search through the structure) and a single prim-
1tive type (a bounding volume), which allows the search to be highly optimized
and mahes 1t a suitable candidate for a hardware implementation

Extents can also be built up into a hierarchy Roth [ROTHS82] for example
uses a hierarchy of extents to enclose objects defined using a CSG representation,
where the extents are embedded 1n the object definition tree 1itself and are used
to prune non-intersected branches from the intersection test, section 3 3 6

CHAPTER 2 AN INTRODUCTION TO RAY TRACING 46

The creation of a bounding volume hierarchy 1s a non-trivial operation,
,since overlapping of object bounding volumes 1n space should be minimal and the
tree should be balanced and organized in such a way as to reflect the geometric
distribution 1n space of the objects 1n the scene [JANS85] A poorly structured
tree will probably take less effort to construct than a well structured one, but
1s also likely to result in a longer rendering time for the image For this reason,
Rubin and Whitted [RUBI80] use a program that allows a user to interactively
built up a hierarchy for a scene, though they also make several proposals for
automating the process Weghorst [WEGHS84] also uses a hierarchy, defined by
the user during modelling, and produces tabulated generation times for several
test 1mages using various combmations of spherical bounding volumes, selected
bounding volumes, hierarchy, and a visible surface preprocess (see section 2 4 5)
In each case, the use of a hierarchical structure reduces the time required to
render an image, with improvements varying from 14% to 21%, depending on the
image However, the structure of manually generated hierarchies can sometimes
be poor, hence Goldsmuth and Salmon [GOLDS86] have proposed a method for

the automatic creation of such hierarchies

2.4.2 Space Subdivision

In contrast to the above bounding volume approach to reducing ray object 1n-
tersection tests, which 1s an object orientated approach, the space subdivision
approach, as the name might suggest, 1s space orientated The general 1dea 1s
that the 3D space in which the objects are contained 1s divided into a number
of 3D cells Associated with each cell 1s a hst of all objects either completely
or partly contained in the cell Then, given that a ray enters a particular cell,
only the objects contained in the object hst for that cell need to be tested for
mtersection Assuming that the cells are checked in the order 1n which the ray
will enter them, the search can be termmated as soon as the closest object of
intersection has been found for the first cell in which an intersection occurs In
contrast to a hierarchical bounding volume scheme, which functions better when
objects can be grouped nto close clusters, the above scheme 1s better suited to a
situation where all objects are uniformly distributed over the entire object space

Cells 1n a space subdivision scheme differ from bounding volumes 1n that a
cell may sometimes contain only part of an object, which can lead to a particular
object bemng associated with more than one cell In contrast to this, an object 1s
never only partly enclosed by a bounding volume Another sigmificant difference
1s the fact that the total sum of the volumes of all of the cells represents the
entire 3D space enclosing the scene without duplication, whereas, the sum of the

CHAPTER 2 AN INTRODUCTION TO RAY TRACING 47

volumes of all of the object enclosing bounding volumes does not

In subdividing the object space nto cells, several different techniques can be
used, the principle ones of which are histed below 1n order of increasing complexity
and 1llustrated 1 fig 2 14

{] Uniform subdivision
[] fixed adaptive subdivision

[] unequal adaptive subdivision

-

-\

Uniform Fixed adaptive Unequal adaptive
(a) (v) (c)

figure 2 14 Space subdmsion techniques

UNIFORM SUBDIVISION This is the simplest type of cell structure, 1n
which the space 1s divided into a three dimensional rectangular grid of cells of
equal size, fig 2 14{a, and 1s best swited to a situation where the objects are fairly
uniformly scattered through the scene A ray can be propagated from one cell
to the next by extending the Digital Differential Analyzer [NEWM79] (a method
for generating lines on a 2D raster grid) to three dimensions, a technique used

by Fujimoto [FUJISE]

An important parameter of the division 1s the number of cells to use If too
few are used, the technique degenerates to the basic tracing algorithm since the
size of the cells will be large, as will the number of objects associated with each
If on the other hand, too many cells are used then too much time will be wasted
propagating the ray through a large number of mostly empty cells Measure-
ments by Fujimoto indicate that for most scenes, the number of ray intersection
calculations decreases quadratically as the number of cells 1n a uniform subdi-
vision 1ncreases Since the time taken to propagate the rays increases hnearly,
optimal performance should occur where the sum of these two curves 15 min-

CHAPTER 2 AN INTRODUCTION TO RAY TRACING 48

imused However, this optimal number 1s also heavily dependent on the extent
and distribution of objects within the scene

FIXED ADAPTIVE SUBDIVISION The uniform subdivision technique
has the disadvantage that in a situation where the objects 1n a scene are unequally
distributed throughout the scene, some cells will have a large number of objects
associated with them, resulting in a costly ray propagation through those cells
Fixed adaptive subdivision, fig 2 14b, attempts to overcome this drawback by
'defining a maximum number of objects that can be contained in a single cell If
this maximum 1s exceeded for any cell, the cell 1s subdivided nto a fixed number
of smaller equally sized cells, and the objects redistributed among them The
cost of this optimization however, 1s that 1t 1s more costly to propagate a ray
from one cell to the next for this scheme than for uniform division

A common method of implementing a fixed adaptive subdivsion scheme 1s to
use an octree structure to represent the cells since, an obvious way to subdivide a
cell 1s to divide 1t equally 1n two along each of the X, Y and Z axes, giving rise to
eight equal subcells The ray can then be then be propagated from one cell to the
next by by traversing the octree structure, with the object data being accessed
via the leaves of the tree An alternative means of propagation is by a directory
index method whereby, an address computation 1s performed on the basis of the
coordinates of a particular point and followed by a lookup 1n a directory table
called a spatial indez

UNEQUAL ADAPTIVE SUBDIVISION In the fixed adaptive subdivi-
sion scheme outlined above, a cell which exceeds the allowed maximum number
of objects, 1s subdivided by placing a partition n the muddle of each of the X,
Y and Z axes, giving rise to eight equal subcells The unequal adaptive subdi-
vision scheme however provides a more flexible subdivision, by allowing multiple
partitions at arbitrary positions along any of the three axes, fig 2 1{c Due to
this flexibility of partitioning, less space 1s required to represent an object, since
the partitions can be placed so as to mimimize the number of subcells This 1s
achieved however at the cost of an even more expensive ray propagation scheme
than for fixed adaptive subdivision

Dippe and Swensen [DIPP84] have implemented such a subdivision scheme
by using a fixed number of arbitrarily shaped tetrahedral cells, each adapted
1 si1ze to contain an equal distribution of objects over all of the cells This
structure 1s then used to distribute the ray tracing load over a fixed number of
parallel processors A simular scheme 1s also employed by Nemoto [NEMOS6],
using orthogonal parallelepipeds for cells

CHAPTER 2 AN INTRODUCTION TO RAY TRACING 49

2.4.3 Coherence

Another approach to reducing the time taken to ray trace a scene 1s to exploit the
similanty of the intersection trees generated by successive rays Such simularnty,
or coherence (the extent to which a scene or a picture of 1t 1s locally constant) has
often been used 1n traditional rendering algorithms With regard to ray tracing,
1t has been noted by Heckbert [HECKS84] that mn many scenes, groups of rays
follow virtually the same path from the eye Therefore, instead of discarding the
ray intersection tree for a pixel (section 2 3 2) as soon as the shader has used 1t
to calculate the intensity of the pixel, the tree 1s retained and used to predict the
ray paths for the next pixel

Verroust [VERRS85] for example, takes into account the coherence of an
image to reduce the number of rays fired as part of a hidden surface removal
algonthm that produces wire frame pictures of CSG models In ray tracing para-
metric surface patches, Joy [JOY86] also utihzes coherence by using numerical
information from adjoining rays as imitial approximations to a quasi-Newton 1t-
eration employed to solve ray-surface intersections As a result, a significant
number of ray-surface intersections can be found using much fewer iterations,
resulting 1n a significant computational saving PORTRAY, an 1mage synthesis
system that uses ray tracing to produce realistic images [PEAC86], also employs
coherence by means of a technique of exploiting bounding volume coherence

Speer [SPEES5] examunes the theoretical and empirical performance of a
coherent ray tracing algorithm that exploits the simlarity of the intersection
trees generated by successive rays However, his results show that the overhead
of ensuring the valhidity of ray-object intersections prevents any significant com-
putational savings, even in a scene where there 1s a large degree of coherence
The need for such validation can be seen from fig 2 15, where the current ray
mntersects the closest object intersected by the previous ray, but also intersects a
closer intervening object missed by the previous ray As a result of such cases,
when a ray intersects the same object as a previous ray, 1t cannot be safely as-
sumed that this is also the closest object of intersection for the ray Consequently,
some of the benefits of coherence are lost 1n checking to see if a closer object 1s
intersected, that was not intersected by the previous ray

2.4.4 Parallel Algorithms -

As mentioned earlier, the majority of the time taken to ray trace most images 1s
taken up with ray-object intersection testing Most of the optimzing techniques

CHAPTER 2 AN INTRODUCTION TO RAY TRACING 50

previous ray cumem ray

view
point

Current ray Intersects object ht by previous ray but also stnkes
an nlerveaning object

figure 215

outhned above address the problem by trymg to reduce the number of objects
agamnst which a ray must be tested Another approach however, 1s to reahze that
most of these calculations can be carned out independently of each other and
hence can be performed simultaneously on different processors

Perhaps the simplest and most extravagant approach to parallel ray tracing
would be to independently run the ray tracer on several machines, with each
machine calculating a different part of the final screen 1mage The image files
generated on each machine could then be collected and amalgamated to form a
final image The reduction 1n the time taken to ray trace an image would then be
directly proportional to the number of machines available This approach how-
ever, while simple and effective, 1s extremely wasteful of the available resources,
since each machine must have 1ts own copy of the ray tracer and scene, resulting
1n multiple duplication of information

Another approach 1s to perform the ray-object intersection tests in parallel
by dividing the hist of objects against which a ray must be tested among the avail-
able processors This 1s the approach used by Nemoto who presents an adaptive
subdivision algorithm for fast ray tracing which has been implemented on a par-
allel architecture consisting of a three dimensional computer array, [NEMOS6)
The algorithm involves dividing the object space into as many subregions as there
are computers and adaptively shiding the boundary surfaces of the subregions so
that processor loads are uniformly distributed, thereby overcoming the problem
of load concentration on a particular processor

A different parallel algorithm, developed and implemented by Deguchi on a
distributed parallel processing system, uses a hierarchical tree structured archi-
tecture 1nstead of the 3D array architecture used by Nemoto The hierarchical
tree-structured 1mage generation system and 1ts parallel processing mechanisms,

CHAPTER 2. AN INTRODUCTION TO RAY TRACING 51

such as data transfer and hierarchical load distribution schemes are outlined in
[DEGUSG).

Cleary [CLEA83] outlines a multiprocessor algorithm for ray tracing and
analrses its performance for a cubic and a square array of processors with only
local communication between near neighbors. Theoretical expressions for the
speedup of the system for hoth configurations are supported by simulations for
several scenes and indicate that a square array of processors generally performs
better than a cubic one.

In contrast to the above algorithms, which use multiple processors to achieve
parallelism, Plunket [PLUN85I] implements a vectorized ray tracing algorithm
that takes advantage of the full power of the CYBER 205 supercomputer to trace
rays in parallel on a single processor. Instead of tracing each ray immediately, the
ray is placed in a ray queue. When this queue becomes full, the vector processor
of the CYBER 205 fires all rays in the queue at once. The ray tracing program
then goes back and uses the results where they were originally requested. This
{_etoollng of the algorithm results in significant speed increases in ray tracing
imes.

2.45 Other Speedups

Hardware In addition to the various str.ate?_ie.s outlined above, several other
“miscellaneous” approaches that do not easily fit into any of the above categories
have also been developed. One such agi)roa_ch IS that by PuIIeKqunk [PULLST],
who examines the feasibility of a VLSI chip for calculating the intersection of
a ray with a bicubic patch to a specified level of accuracy. Estimates indicate
that such a chg) could compute ray-patch intersections at a rate of one every

15ms. Ima?eds rawn using a software version of the intersection algorithm are
ed.

PreEprocess An optimization that does not rely on hardware is that b?/ Wleghorst
[WEGH84] who uses a visible surface preprocess to the raytracing algorithm to
reduce rendering time. The preprocess involves progectmg all objects onto the
image plane (using the same viewing parameters as for the ray tracing) and cre-
ating an object list for each pixel, containing all objects that projected onto all or
part of the pixel. Finding the closest object of intersection for a primary ray (one
that passes through a pixel) 3|mp_l(¥ involves testing the objects in the associated
list for the pixel concerned. The idea, can be taken a stage further\k)/y applying a
conventional hidden surface algorithm as part of the preprocess (Weghorst uses

also presen

CHAPTER 2 AN INTRODUCTION TO RAY TRACING 52

a modification of the z-buffer algorithm, sectzon 1 7 1) to determune, and store
1n an item buffer, the closest object for each pixel The ray tracing process can
then replace the ray-object intersection test for pirimary rays with an index into
the item buffer, while using the usual ray tracing method for secondary rays
The technique 1s aimed at reducing the cost of the intersection for primary rays
only, and so may not work as well for very reflective/refractive scenes where the
proportion of secondary rays 1s higher

Stepwise Refinement A different approach by Bronsvoort [BRON84] uses
a method of stepwise refinement of the image by subdivision and aims at re-
ducing the cost of rendering an 1mage by reducing the number of pixels whose
intensities have to be exphcitly calculated The algorithm 1s based on 1deas from
Roth [ROTHS82] for sparce sampling of images and from Whitted [WHIT80] for
antialiasing 1mages It starts by dividing the screen mnto squares consisting of
groups of pixels (e g 8 x 8 pixels) Rays are then traced through pixels in
the lower corners of the squares in the usual manner, with all other pixels in
a square being set to the intensity calculated for the corner pixel The image
obtained 1s a coarse approximation to the final image The image 1s then refined
by subdividing the squares into 4 equal subsquares and repeating the process for
selected subsquares, depending on whether or not the intensity differences with
surrounding ones are above some threshold value This subdivision process 1s
repeated until a final user specified resolution 1s reached If required the process
can be continued to sub-pixel level, resulting in an antiahased image The image
1s thus stepwise refined as the user watches on the display

Depending on the coherence of the image, the number of pixels whose 1n-
tensities have to be explicitly calculated with a call to the ray tracing procedure
can be significantly less than the total number of pixels, resulting 1n a computa-
tional saving Additional savings can be obtained by dynamically increasing the
mnitial threshold value as the resolution of the image 1s stepwise refined, so that
at higher resolutions, only areas with a large variance are refined

The optimization has the disadvantage however, that silvers may occasion-
ally be lost from the final image, due to the fact that many pixel intensities are
not expliaitly calculated, but based on the values of neighboring pixels The per-
formance of the algorithm 1n recovering such detail from a scene 1s dependent on
the in1tial square size and threshold values, which are specified by the user Thus,
for any image, the user can favor generation time over quahty (or vice versa) by
appropriately selecting these values

CHAPTER 2 AN INTRODUCTION TO RAY TRACING 93

2.5 Other Ray Tracing Algorithms

To date, several different variations of the basic raytracing algorithm outlined
1n the previous sections have been implemented These include distributed ray
tracing [PORT84], which has been used to model effects such as fuzzy shadows,
motion blur and depth of field, as well as variations that trace more than one ray
at a time, such as beam tracing [HECK84], cone tracing [AMANS84] and pencil
tracing [SHIN87] Each of these variations are briefly outlined below

2.5.1 Distributed Ray Tracing

One of the limitations of conventional ray tracing 1s that ray directions are de-
termined precisely from geometry, which results in sharp shadows and sharp
reflections/refractions 1n the final image However, by distributing the directions
of the rays according to the analytic function which they sample, ray tracing can
mcorporate fuzzy phenomena, providing correct and easy solutions to previously
unsolved or partially problems such as motion blur, depth of field, penumbras,
translucency and fuzzy reflections This form of ray tracing 1s known as dis-
tributed ray tracing, a phrase coined by Porter, Cook and Carpenter [PORT84]

The analytic function will vary depending on which of the effects 1s being
modelled For example,

o sampling the reflected ray according to the spec-
ular distribution function produces gloss (blurred
reflection)

e sampling the transmutted ray produces translu-
cency (blurred transparency)

o sampling the sohd angle of the light sources pro-
duces penumbras

¢ sampling the camera lens area produces depth of

field

o sampling 1n time produces motion blur e

For example, distributed ray tracing produces penumbras (fuzzy shadows)

CHAPTER 2. AN INTRODUCTION TO RAY TRACING o4

by distributing illumination rays according to an illumination function, L, rather
than toward a_sm%le light direction. Similarly, fuzzy or hazy reflections are
produced by distributing reflected rays according to a reflectance function R,
rather than in a single mirror direction. The shade to be displayed at any pixel
is then a weighted integral of L and R. However, since this integral may be too
complex to solve analytically, its value is approximated by firing several rays
through the pixel, distributed so as to sample the integral at various points. Lee
[LEESS] derives a relationship between the number of sample rays fired and the
quality of the estimate of the integral.

While this distributed form of ray tracinggrequires that several rays be fired
for each pixel, it is argued by Porter T[PORT_ 4] that the expense is not much
greater than the oversampling required for antialiasing |ma?_es section 2.3.3), and
that distributing the rays instead offers substantial henefits at little additional
cost.

2.5.2 Beam Tracing

In conventional ray tracing, infinitesimally thin rays of light are traced through
the scene. However, in a different approach used by Heckbert and Hanrahan
[HECKSL%], areas are swept through a scene to form beams, hence the term beam
tracing. The scenes used by the authors consist of planar polygons since, unlike
the general case of a beam reflecting from a curved surface, the reflected beam
from a planar one can be approximated by a pyramidal cone, which reduces the
complexity of the calculations.

~ The algorithm s similar in principle to a technique developed by Dadoun,
Kirkpatrick and Walsh [DADOStho trace sound beams from audio sources to a
receiver, and can take advantage of the coherence of Folygonal_scenes by tracing
coherent rays (rays that follow similar paths) in parallel as a single beam.

2.5.3 Cone/Pencil Tracing

The problem of conventional ray tracinF Is that, being a point samPIing technique,
It is prone to abasing. However, as outlined in section 2.3.3, the effects of aliasing
can be reduced by sampling a pixel at more than one point. Unfortunately, tracing
additional rays for each pixel adds to the already high computational cost of ray
tracmgi an image. One way around this problem is to incorporate the idea that
a pixel represents an area, into the definition of a ray. A ray then becomes a

CHAPTER 2 AN INTRODUCTION TO RAY TRACING 53

pyramud, fig 2 16, with the apex at the eye and the base defined by the four
planes that cut the border of the pixel The intersection calculation between
such a ray an an object, 1n addition to determining if there 1s an intersection,
calculates the area of intersection with the ray This information can then be
used as a basis for performing simple area antialiasing

SCREEN

A ray pyramid and s approxmation as a cone

figure 216

Given this extended definition of a ray, only a single ray need be cast for
each pixel However, the mntersection calculation between an object and such
a ray can be quite complex In addition, as the ray is reflected of refracted
by a curved surface, 1t can become very distorted, furthering the complexaty of
the 1ntersection calculations Amanatides [AMAN84] addresses this problem by
approximating the pyramud as a cone Although the intersection calculations can
still be quite complex, the advantage of such an approximation 1s that, when
reflected or refracted, a cone will still represent a good approximation to the
reflected /refracted components of the original cone

In addition to providing a better means of antiahasing, cone tracing can
also be used to calculate fuzzy shadows and dull reflections, as well provide as
a means of calculating the correct level of detail in a texture map Shinya,
Takahashi and Naito [SHINS7] describe a similar approach, called pencil tracing
which uses paraxial approximation theory to trace a pencil of rays (rays that
are near to a given axial ray are called paraxial and said to form a pencil), and
describes an error analysis method to ensure 1ts accuracy

2.5.4 Other Variations

Radiosity Another variation used by Wallace, Cohen and Greenberg [WALLS7]
uses a two pass solution to the rendering equation which 1s a synthesis of radiosity

CHAPTER 2 AN INTRODUCTION TO RAY TRACING 56

and ray tracing methods As mentioned 1n section I 7 2, the intensity of hght
reaching a viewer 1s composed of diffusely reflected/transmitted hght and spec-
ularly reflected/transmtted hght In most ray tracing applications however, the
diffusely reflected /transmtted contribution from other surfaces in a scene 1s too
costly to accurately model and 1s therefore usually approximated by an ambient
term The specularly reflected/transmtted component on the other hand, can
be approximated using Whitted’s lighting model [WHIT80]

The radiosity method on the other hand, provides a comprehensive method
of calculating object to object diffuse reflections within complex environments
containing hidden surfaces and shadows [COHES85] [RUSHS86] [SHAO88], but
does not as easily handle the specularly reflected/transmtted component — a
problem addressed by Rushmeier, [RUSH86] In addition, 1t has the advantage
that the calculations are independent of the viewpoint, so unlike ray tracing, the
1mage does not have to be entirely recalculated if the view-point 1s changed

Combining the two methods should therefore give a more accurate model
of the lighting effects within a scene and hence a greater degree of realism 1n the
final image The method employed by Wallace involves two passes The first
1s view 1ndependent and based on the radiosity algorithm, with extensions to
include the effects of diffuse transmission The second, which 1s view dependent
and based on an alternative-to distributed ray tracing, 1s used to sample the
intensities contributing to the specularly reflected or transmtted intensity

Interreflection Rubinstemn and Clear [WARDSS] outline a raytracing algorithm
that incorporates diffuse interreflection between surfaces with both diffuse and
specular components A Monte Carlo technique 1s employed to calculate indirect
contributions to illuminance at various locations These indirect illuminance
values are then averaged over surfaces and used 1n place of the constant “ambient”
lighting term

Ray Classification This approach to ray tracing, by Arvo and Kirk [ARVQ87],
reduces the number of ray-object and ray-bounds intersection calculations by
means of 5-dimensional space subdivision Collections of rays originating from
a common 3D rectangular volume and directed through a 2D sohd angle are
represented as hypercubes n 5-space A 5D volume enclosing the ray space 1s
then dynamcally subdivided into hypercubes Associated with each hypercube
1s a set of objects which are candidates for intersection Rays are then classified
into unique hypercubes and tested for intersection with the associated candidate
set

Chapter 3

Ray Tracing and CSG

While chapter 2 discussed ray tracing m a general context, outhning the general
algorithm, with 1its different enhancements, variations and optimization tech-
niques, the discussion did not focus in any great detail on any one object rep-
resentation scheme This chapter discusses ray tracing in the specific context
of solid modelling, or more precisely, 1n the context of a Constructive Sohid Ge-
ometry (CSG) representation scheme and provides a background setting for the
research discussion 1n chapter 4

3.1 Solid Modelling

Sohid modelling was born of the need for complete and accessible object-geometry
information, such as that required for the integration of the design, simulation
and manufacture phases of engineering products (e ¢ an engine part, or even
a complete engine) Such integration requires that any object-geometry infor-
mation (e g volume, weight, centre of gravity etc) required for the simulation
of the operation of the product, as well as for the manufacturing process (e g
determination of machine tool paths), can be extracted from the original object
representation interactively built up during the design stage

Wire frame, and even polygon representation schemes (section 1 6 2), are
imherently ambiguous and consequently, important geometric properties of the
objects they attempt to represent cannot be calculated On the other hand,
solid modelling systems provide unambiguous and informationally complete rep-
resentations of rigid solid objects (see [REQUS0], [VOEL77] for an introduction)

37

CHAPTER 3 RAY TRACING AND CSG 38

Some of the more common schemes in use to date are outhned below -

Primtive Instancing This scheme provides families of basic objects such as
blocks, spheres, cyhnders and cones An object 1s then represented by 1ts famuly
name and parameters specifying its dimensions, orientation and position Such
a scheme has the advantage of being concise, simple and effective, but 1s hmuted
mn the range of objects 1t can represent

Spatial Enumeration In this scheme, an object 1s represented by a list of
fixed-s1zed cubes occupied by the object The smaller the size of the cubes, the
greater the accuracy with which a given object can be represented but, the larger
the storage requirement to represent the object However, the use of an octree
structure, where the object 1s represented as a hierarchical collection of vanable
s1ized cubes, can reduce the storage requirements and speed up object processing

Sweep Operation A sweep operational scheme represents an object by means
of a primitive object and a trajectory path The object 1s defined as the volume
swept out by moving the primitive along the path Translational and rotational
sweeps, used 1n conjunction with a spherical or cylinderical primutive are among
the most commonly used

Constructive Solid Geometry As outlined 1n section 1 6 2, a CSG scheme
represents an object 1n terms of compositions of primitive sohids that are combined
using boolean set operators (union, intersection and difference) The primitives
usually used are the block, sphere, cylinder, cone and torus A CSG scheme, com-
bined with a primitive nstancing scheme to represent primitive objects, provides
a very elegant and efficient method for representing solid objects

3.2 An Introduction to CSG

Constructive sohid geometry 1s becoming the method of choice for a wide range
of applications of engineering design This 1s 1n part due to the fact that the
way 1n which objects are built up using a CSG system, namely through boolean
operations on primutive and intermediate solids, reflects the way in which many
engineering products are actually manufactured For example, the CSG un.on
and difference operators are the equivalent of the physical operations of welding
and cutting respectively In addition to this, CSG can be used to provide a means
of representing solids that inherently describes their properties as solids, allowing
the extraction of information such as contained volumes, masses, material costs,
and on a more complex scale, changes of shape due to distorting forces and

CHAPTER 3 RAY TRACING AND CSG 39

machine tool paths for manufacturing purposes

Descriptions of CSG systems are given by Boyse & Gilchnist [BOYS82}, who
describe GMSolid, an mteractive modeller for the design and analysis of solids,
and by Brown [BROWS2|, who gives a technical summary of a system called
PADL-2 Requicha & Voelcker [REQU82| present a more general discussion of
the area however, outlining an historical summary and contemporary assessment
of solid modelling, while Myers [MYERS82] views the area from an industrial
perspective

3.2.1 CSG Representation

As outhned in section I 6 2, an object 1s described in CSG as combinations of
union, difference and intersection operations on prirutive and intermediate solhids,
fig 3 1 The two most common structures for representing objects defined n such
a way are a binary tree and a directed acyclic graph (DAG), fig 32 In the
binary tree structure, the leaf nodes represent primitive solids and intermediate
nodes represent the intermediate solids formed by applying the specified operator
to the left and right subnodes, with the root node representing the final solid
In the DAG structure, each vertex of the graph represents either a primitive
sohd or an intermediate solid, with a specified vertex representing the final solid
The DAG structure can, 1n some cases be more compact than the binary tree
one, by virtue of the fact that the same sub-object can be used many times 1n
a description without duplication by having several vertices pomnt to 1t In the
binary structure however, a sub-object can be pointed to by only one node (the
parent one), which means having to duplicate the sub-object

However, both binary tree and DAG structures provide only a means of de-
scribing an object In order to render an image of the object, or to extract useful
information from the structure, most systems convert the structure into a more
conventional description such as a polygon mesh or boundary patch representa-
tion GMSold (see [BOYS82)) is one such example Roth however, [ROTHS82],
developed a ray tracing technique for rendering objects directly from a binary tree
structure, without the need to convert to a different representation While there
has since been several other algorithms developed that can do likewise [YOUS86]
[ARNAS87], including some based on Roth’s work, [BRON84] [GERV86), all are
based on a ray tracing approach, which remamns to date the only method of
rendening an 1mage directly from a CSG binary tree or DAG structure

CHAPTER 3 RAY TRACING AND CSG

3 | 0

difference infersection

@ Application of union didierence

and Intersection operations

block and cylinder
primitives ﬁgure 31

(a) A compound object represemted by a binary tree

A compound object represented by a DAG The same
(b) cylinder 18 subtracted and subsequently with a
different size and orienlation

ﬁgure 32 CSG and DAG representstions of solds

60

CHAPTER 3 RAY TRACING AND CSG 61

3.3 Roths CSG Ray Tracing Algorithm

The general 1dea behind the technique developed by Roth 1s essentially the same
as the ray tracing algorithm outlined 1n section 2 2 1n that rays, represented as
line equations 1n parametric form, are cast through each screen pixel in order to
determine the closest object struck by the ray and subsequently, a colour for the
pixel The difficulty however hes 1n extracting from the binary tree representation
of an object, the point of intersection between a ray and the object

In the system developed by Roth, this task 1s performed by RAYCAST, a
procedure whose input 1s a ray and whose output 1s information about how the
ray intersects the scene This output takes the form of two hsts, a list of ¢ values
(see section 2 2, equation 2 1) that speafy the points at which the ray enters and
exits the sohd as 1t “passes through” 1t, and a list of surface pointers that point
to the corresponding surfaces through which the ray passes, fig 3 3

object
Rakw ‘ .
out In out In out
enter/exit (1) 1(2) t(3) t(4)
information
figure 3 3 In/Qut classification of a ray by RAYCAST

3.3.1 Three algorithms in one

Given the information contained i the two lists, the algorithm can be modified
to produce -

CHAPTER 3 RAY TRACING AND CSG 62

[] A line drawing of a solid
[] A shaded image of a solid

[] Calculate the volume of a sohid

LINE DRAWING In producing a line drawing of a solid, we are only interseted
in knowing 1if the surface struck by the ray for a given pixel 1s different to that
struck by the ray for the pixel immediately to the left or above it We do not
therefore need to know the exact point at which the ray intersects the surface
Consequently, 1n producing a visible edge drawing of a sold, the algorithm uses
only the surface list output by RAYCAST This firstly involves comparing the
nearest surface struck by a ray cast through pixel (z,y) (the first pointer in the
surface list) with that returned for pixel {z — 1,y) If the surface 1s a different
one, a vertical line one pixel long 1s displayed at (z —0 5,y) The pointer 1s then
compared with that returned for pixel (x,y — 1) If it 1s different, a horizontal
line one pixel long 1s displayed at (z,y —05) In order for these comparisons to
take place, a record must be kept of the pointers returned for all pixels processed
so far on the current line, as well as for all pixels from the previous line

SHADED IMAGE The shaded image algorithm makes use of both the pa-
rameter list and the surface list output by RAYCAST It uses the first value in
the parameter list to calculate the exact point of intersection of the ray with
the closest surface struck (the first surface pointer in the surface list) 1n order to
calculate the surface normal at that point This information 1s then used in the
shading calculation to deternune a colour for the pixel (section 1 7 2)

VOLUME CALAULATION The volume of a sohd can be approximated
by specifying a parallel view (section 15 2) so that all traced rays are paral-
lel to a given direction The traced rays then divide the solid mto rectangular
parallelepipeds whose volumes can be individually calculated and summed to ap-
proximate the total volume, fig 3 4 Two of the dimensions of each parallelepiped
are determined by the horizontal and vertical spacing of the rays on the screen -
and are consequently known and the same for each parallelepiped The third
dimension, the total length of the parallelepiped contamned by the solid can be
calculated from the in/out parameter list Given that the horizontal and vertical
spacing of the pixels ts H and V respectively, the volume for each ray 1s then
calculated as

volume=H><V><(t2—t1+t4—t3+ tn—tn_l)XL (31)

CHAPTER 3 RAY TRACING AND CSG 63

four parallel rays
cutling out a ractangular
parallelspiped In the ablect

view plane

The volume of an object can be approximated by summing the
volumes of the rectangular parallepipeds cut out by parsallel rays

figure 34

where L 1s the length of the direction vector of the ray which, if specified as a
umt vector, can be omitted from the calculation The error of approximation can
be made arbitrarily small by using larger quantities of smaller parallelepipeds,
but this 1s at the expense of a having to generate more rays, increasing the cost
of the calculation

Central to all three variations of the algorithm 1s the means by which RAY-
CAST calculates the hist of in/out intersection points Before moving on to this
discussion 1 sections 3 3 3 and 3 3 4, a description of the primitive solhids and
coordinate systems used 1s outhned in the next section Then, having covered
both of these areas, the remainder of the discussion focuses on the computational
cost of rendering an image using the algornithm, and ways in which 1t can be
reduced

3.3.2 Primitives And Coordinate Systems

As outhned earlier, an object 1s defined in CSG 1n terms of boolean operations
performed on a set of primitive solid types and can be conveniently represented as
a binary tree However, regardless of the complexity of the final solid (represented
by the root of the tree) a ray must always enter and leave the sohd through a
surface of one of the priritive solids from which it 1s composed Consequently, it 1s
important that ray-prinutive intersection tests be simplified as much as possible
It 1s for this reason that several different coordinate systems are employed 1n
Roths ray tracing system, namely the screen, primitive and global (or world)
coordinate systems The user of the ray tracing system however, should be aware
of only the world coordinate system

CHAPTER 3 RAY TRACING AND CSG 64

The screen coordinate system, as outlined 1n section 1 4 1,1s a 2D 1integer
system used for referencing screen pixels The primitive coordinate systems stem
from the fact that each of the primitive sohd types 1s defined 1n 1ts own local 3D
coordinate system, and can be transformed into the world coordinate system 1n
any size, orientation and position by applying the appropnate 3D matnx trans-
formations outhined in section 1 51 Thus, every instance of a primitive sohd
type used to define an object, has associated with 1t a 4 x 4 transformation
matrix which defines the appropriate scaling, rotation and translation operations
to transform that instance of the primitive into the world coordinate system

The reason for using a local coordinate system in the first place 1s that the
ray-primitive intersection calculations (section 4 5) can be greatly simplified by
using the inverse of the object’s transformation matrix to transform the ray from
the world coordinate system back into the primitives local coordinate system
The mtersection test can then be conducted in the local system where the com-
putational cost 1s greatly reduced, by virtue of the fact that we are then dealing
with a umt sphere centered about the origin, a umit cube positioned along the
positive XY Z axes etc, rather than an arbitranly sized sphere or block cen-
tered about an arbitrary point in an arbitrary orientation This simplification
results from the fact that the value calculated for ¢ (the ray parameter) for the
intersection of the transformed ray with the primitive, 1s the same as that for the
intersection of the untransformed ray with the object, but 1s computationally less
expensive to calculate

3.3.3 Ray Intersection And Classification

In the previous discussion of ray-object intersection 1n section 2 2, despite the fact
that a ray may enter and leave a complex object at several successive points along
the ray, only the closest point of intersection of a ray with the object was required
This point could then be compared with the closest points of intersection for
all other objects 1n the scene to determmune the first object struck by the ray
However, the situation with an object defined by a CSG representation 1s quite
dafferent since, the final solid 1s formed from addition, subtraction, or intersection
of intermediate sohds (called composite solids), which are in turn formed from
similar operations on other composite solids Consequently, 1n order to know
where a ray intersects a solid formed from say, the intersection of two other
solids, A and B, we need to know where the ray enters and leaves solid A, and
where 1t enters and leaves solid B For this reason, a ray 1s classified with a solid
by a hst of ¢ (ray parameter) values that correspond to the points on the ray at
which it enters and leaves the sohd

CHAPTER 3 RAY TRACING AND CSG 65

So, given a ray and a binary tree defining a solid composition, the ray is
tested for intersection with the solid by recursively descending the composition
tree (1n postorder) from the top down to the leaf nodes, classifying the ray as in or
out with respect to_the primitive solids they represent, and then returning back
up the tree, forming the classifications for the the composite (intermediate) solids
by combining the classifications of left and right sub-trees The classification for
the root then represents the imn/out classification for the final sohid with respect
to the ray

3.3.4 Combining Classifications

Figure 3 5 1llustrates how to combine left and right classifications for each of the
intersection, umon and difference operators {denoted by the symbols &, +, —
respectively) by using solid lines to represent segments of a ray that are inside a
sohd and dashed hines for segments that are not Asillustrated for the intersection
operator 1n fig & 6, the combination process 1s performed in three stages -

e The intersection points from the left and right rays are
_ merged and sorted into ascending order to form a seg-
mented composite ray

e Segments of this composite ray are classified as 1n or out
i accordance with the combine operator and the classi-
fications of the left and right rays (see table 8 1)

e Adjacent segments of the composite ray with the same
classification are merged for simplhfication

3.3.5 Computational Cost

The algorithm as 1t stands, 1s something of a brute force method in that 1t tests all
branches of the tree for intersection with the ray To appreciate the computational
cost of such a scheme, consider an example using a solid composed of 100 primitive
sohds, displayed on a raster device of 500 x 500 resolution For such a resolution,
firing one ray per pixel requires that 250,000 rays be generated, each of which
must be tested for intersection and in/out classification with the sohd Since the
solid 13 composed of 100 primitive sohds, 1ts binary tree representation contains
100 leaf nodes, and therefore 99 internal nodes (say 100 for simplicity), giving

CHAPTER 3 RAY TRACING AND CSG

Left Node ‘ Right Node

r I
\@\
_) L y

Left out in out e out
Right aut in out
—~—— L+R aut in out in out
Unlen
Lo o™ In out in out
Right out in out
L R ————— —————
out in out n out
Ditterence
ten o4 in out n out
tl ; Ri
aht out n out
Intersection —
L&A out in out
figure 35 Combining ray classifications
Left P ————n P
Right D e
{1} merged - @~ o~ S..@ ® . -
{2) daasitied - - @
(3) simpiitied - - > *>— -

Three stage combine process for Intersection

figure 36

66

CHAPTER 3 RAY TRACING AND CSG

OPERATOR | LEFT | RIGHT | COMPOSITE
ntersection (&) | OUT ouT ouT
ouT IN ouT
IN ouT ouT
IN IN IN
difference (-) ouT ouT ouT
ouT IN ouT
IN ouT IN
IN IN ouT
union (+) ouT ouT ouT
ouT IN IN
IN ouT IN
IN IN IN

Table 31 Ray Classifications

67

1t a total of 200 nodes The four major areas of cost in rendering an 1mage
of such an object, namely the cost of recursive procedure calls, the cost of ray
mn/out classification, the cost of ray transformations, and the cost of ray primitive
intersection testing, are itemised below -

e 200 x 250,000 = 50,000,000 recursive procedure calls
Each of the 250,000 rays visits each of the 200 nodes in the sohd com-
position tree via recursion, requiring 50 million recursive procedure

calls

¢ 100 x 250,000 = 25,000,000 ray in/out classifications
At each of the 100 internal nodes, classifications of the left and nght
branches must be performed, at a total cost of 25 mullion ray classi-

fications

+« 100 x 250,000 = 25,000,000 ray transformations

For each of the 100 primitive solids, the ray must be transformed
into 1ts local coordinate system, requiring a total of 25 million ray

transformations

CHAPTER 3 RAY TRACING AND CSG 68

e 100 x 3 x 250,000 = 75,000,000 ray intersection tests
Testing a ray for intersection with each of the 100 primitive solhds
requires testing it with each surface of the primitive Allowing for an
average of three surfaces per primitive solid (the sphere has 1, the
cylinder 3, the block 6 etc), this represents a cost of 75 mullion ray
surface intersection tests

TOTAL - 50 miuhon recursive procedure calls
25 millhon ray infout classifications
25 milhon ray transformations
75 mallhion ray-surface intersection tests

It 1t clear from these figures that there 1s a great need for some form of
optimization The method chosen by Roth and described 1n the section below, 1s
that of box enclosures

3.3.6 Box Enclosures — An Optimization

The use of box enclosures around the primitive and composite solids can provide
a means by which non-contributing branches of the tree can be pruned from
testing with the ray, thereby speeding up the intersection calculations

The scheme works by enclosing each primitive sohd 1n a mmmimal bound-
ing volume as 1t lies 1n 1ts own local coordinate system (section 2 { 1 discusses
bounding volumes) Any transformations that are subsequently applied to an
instance of the primitive sohd are then also applied to 1ts bounding volume so
that, when transformed into the world coordinate system, the primitive 1s stiil
enclosed by the transformed bounding volume

Box enclosures are then formed from these transformed bounding volumes
by projecting them onto the screen and finding the minimum and maximum
values of the projected X and Y coordinates (see section 24 1, fig 2 12)
The mimmum and maximum values of the unprojected Z coordinates are also
determined for use 1n situations where rays may be bounded in depth A box
enclosure 1s then defined by these two XY Z coordinate pairs, (Zmin, Ymins Zmin)
and (l'mazy Ymaz, zma:::)

CHAPTER 3 RAY TRACING AND CSG 69

Box enclosures are then calculated for the intermediate nodes in the tree
by ascending the tree and combining the enclosures of the left and right sub-
trees, 1n accordance with the boolean operator of the node Figure 3 7 illustrates
the calculation of the mimmum and maximum X values of the combined box
enclosure for each of the three boolean operators The mimimum and maximum
Y and Z values are calculated 1n a simular way Note that in the case of the
intersection operator, the combined enclosure can be smaller than either of the
enclosures from which 1t 1s formed

Two box enclosures

:y A and B
A

box enclosurs A
minX » miimum (L_mirX R_minX)
maxX « maximum (L_maxX R_maxX)
Enclosure of
A union B
minX « L_minX
maxX = L_maxX
Enciosure of
A minus B

mnX = maximum (L_minX R_minX)
maxX « minimum (L_maxX, R_maxX}

Enclosure of
A intersaction B

ﬁgure 37 Combining box enclosures

The reason for using screen projected box enclosures, rather than the ongi-
nal transformed bounding volumes, 1s that the the ray-enclosure intersection test
1s essentially a point in rectangle test, namely that the pixel spawning the ray
lies within the rectangular screen enclosure of the projected bounding volume

By storing each box enclosure 1n 1ts associated node, the sohd composition
tree not only contains a representation of the solid, but also a hierarchical rep-
resentation of the space that the solid occupies So, at any node of the tree, if
a ray fails to intersect the node’s box enclosure, the sub-trees of that node can
be elimnated from further processing Thus, the search for ray intersections re-
sembles something of a binary search through the object space, rather than the
exhaustive search required without the box enclosures

CHAPTER 3 RAY TRACING AND CSG 70

The savings provided by the use of enclosures 1s dependent both on the
spatial distribution of the primitives and the organization of the solid composition
tree, though according to Roth, the former is the more important of the two The
1deal conditions for maximum effect would be that no primitive enclosures overlap
mn space and that the composition tree be balanced and organized in such a way
that composite solids close to each other 1n space are also close to each other 1n
the tree The worst situation on the other hand, would be where all primitive
enclosures overlap each other

However, a situation where large numbers (or possibly all) of the box en-
closures of the primitive solids mutually overlap 1s most likely to occur where a
user 1s attempting to approximate a surface type not provided directly by the
set of available primitive solid surfaces Such a situation can be more practically
dealt with by adding a new primitive with the required surface type to the st
of available ones

The use of box enclosures, while providing a good means of optimization,
has the limitation that it only optimuzes for primary rays This 1s because of
the fact that the enclosures are specifically constructed in such a way as to tahe
advantage of the fact that all primary rays originate at screen pixels Secondary
rays however, such as shadow or reflected/refracted rays (section 2 3), oniginate
at object intersection points, so their direction cannot be determined 1n advance
For such cases, Roth suggests the use of spherical enclosures The main reasons
for choosing spheres 1s that they are compactly defined by two values (a centre
and radius) and have a relatively inexpensive ray intersection test — if the per-
pendicular distance from the ray to the centre of the sphere 1s less than the radius
of the sphere, the ray intersects, otherwise it does not

3.3.7 Circumstance Classification

Even m cases where a ray does pass through the box enclosure of a node, 1t
can still sometimes be possible to avoid unnecessary ray classifications under
certain circumstances For example, if the operator at the node 1s either an
intersection or a difference operator, and the ray classifies as being out of the left
sub-solid (2 e no intersection), the ray will classify as being out of that composite
sohd regardless of 1ts classification with respect to the right sub-sohd There 1s
therefore no need to examine the right sub-sohd In the case of the union operator
however, the nght sub-solid must still be processed

CHAPTER 3 RAY TRACING AND CSG 71

3.4 Further Optimizations

As outlined 1n section 2 4, the major part of the time taken to ray trace an image s
taken up with testing rays for intersection with objects in the scene Optimzation
techniques therefore aim at trying to reduce the number of ray intersection tests
that have to be carried out by employing hierarchical bounding volume, space
subdivision and 1mage coherence techniques Optimization techniques for objects
defined by a CSG representation can be broadly placed into the same categories
However, because of the nature of object definition in CSG, there are differences
between the corresponding techmques for a CSG representation

For example, the box enclosure method outhined above could be described
as a hierarchical bounding volume techmque yet 1t differs from those outlined 1n
section 2 4 1 by virtue of the fact that the hierarchical structure 1s embedded
into the object defimition structure itself, namely the object composition tree

3.4.1 Enclosures And Tree Rearrangement

The box enclosures implemented by Roth and outlined above are a specialized
form of bounding volume, and have the himitation that they can only be used
for primary rays Gervautz [GERV86), uses spherical enclosures as advocated
by Roth, as well as rectangular enclosures whose planes lie parallel to the XZ,
YZ and XY planes These rectangular enclosures differ from Roths box en-
closures 1n that the latter are calculated by projecting the transformed primitive
bounding volumes onto the screen before taking minimum and maximum X and
Y coordinate values, whereas the former are calculated by taking minimum and
maximum values without first projecting As a result, the Gervautz enclosures
can be apphed to both primary and secondary rays, but have a more costly in-
tersection test than Roths Like Roth however, Gervautz forms enclosures for
intermediate nodes by combining enclosures for the left and right sub-trees in
accordance with the nodes boolean operator

Gervautz also employs the commutative and distributive properties of the
union operator to rearrange sub-trees containing only union operations The
reasons for rearranging the tree in such manner are twofold -

o The tree can be made more symmetrical, resulting in
fewer recursive calls to the intersection procedure

CHAPTER 3 RAY TRACING AND C5G 72

¢ Rearrangement can result in smaller enclosures 1n the
internal nodes, resulting in fewer unnecessary ray inter-
section tests with the sub-trees of those nodes, fig 3 &

.@@

/\ /\
/\ /N B/\c

Three possible tree arangements for the three objects
A,Band C The cenire oneis best since & results In the
smallest enclosure for the left subtree

: figure 38

3.4.2 Scan-Line Enclosures_And Active Trees

From figure 8 7, 1t can be seen that the union operator 1s the only one of the
three operators which results 1n a box enclosure that 1s larger than either of the
left or right enclosures from which 1t 1s composed — for the intersection operator
1t 1s smaller than either left or night enclosures while for the difference operator
1t 1s the same size as the left enclosure In addition, from fig 8 9 1t can be seen
that an object formed from the union of two sub-objects can often have a box
enclosure that contains large volumes of empty space The damaging effect of
such a situation on the efficiency of enclosures can be even greater if 1t occurs near
the leaf nodes of the sohd composition tree, since it can then have a cumulative
effect on enclosures at other union nodes higher up in the tree

SCAN-LINE ENCLOSURES Broonsvoort [BRON84], overcomes this prob-
lem of box enclosures by using interval enclosures instead Interval enclosures are
very simular to box enclosures, except that the latter refer to rectangular areas on
the screen while the former refer to intervals along the current scan line of pixels
So, 1nstead of storing minimum and maximum X and Y values at each node,
defining a rectangular area on the screen enclosing the primitive or composite
sohd represented by the node, only a mnimum and maximum X value 1s stored,

CHAPTER 3 RAY TRACING AND CSG 73

(B
enclosure Scan line Intervals for

A} 4/77 A+ B at diferent lines

. / of the screen
————————————

enclosure

/ scresN

Enclosurs tor
A+8

f'igure 39 Box and scan- kne interval enclosures

corresponding to the section of the current scan hne i which the primitive or
composite solid represented by the node 1s contained, fig 3 9 The generation of
the interval enclosures 1s also sumular to the that of box enclosures in that they
are first explicitly calculated for the primitive solids and then calculated for com-
posite solids by applying the corresponding operator to the interval enclosures of
the left and right sub-trees

Unlike box enclosures however, which remain constant throughout the entire
rendering process, interval enclosures for composite solids can vary from one scan
line to another and so have to be recalculated To avoid unnecessary recalculation,
box enclosures are mitially computed for the primitive solids The munmimum and
maximum X values of each box are then collected and stored 1n the corresponding
leaf nodes and the imterval enclosures for composite nodes calculated as above
Then the minimum and maximum Y values of each box are collected and sorted
mto ascending order 1n an array At the transition from one scan line to the next,
the array 1s checked to see if a maximum or minimum Y value has been crossed
If one hasn’t, then the interval enclosures are the same for the new scan line as
for the previous one, otherwise they have to be recalculated

By recalculating interval enclosures at the appropriate times, Broonsvoort
manages to bypass non-contributing nodes of the CSG tree during each traversal
For this purpose an active CSG tree, which omits these non-contributing nodes,
1s generated each time interval enclosures are recalculated This active CSG tree
1s implemented through the use of additional pointers in each composite node of
the solid composition tree, that pomnt to the left and right active sub-trees

CHAPTER 3 RAY TRACING AND CSG ' 74

3.4.3 Bounding Ray Depth

A different optimzation implemented by Gervautz [GERV86] which can be used
independently of the enclosures outlined previously in sectzon 3 4 1, 1s that of
only testing for intersection along certain sections of a ray, called a bounded ray
As outhined 1n section 2 2, a ray 1s conveniently expressed by a line equation
in parametric form, where points on the line/ray are ordered and accessed via
a parameter {, which can mathematically tahe on values of minus infinity to
mfimty However, 1n some circumstances (outhned below), 1t makes sense to
exclude certain sections of this infinite ray from intersection testing by hmiting
the value of ¢

User Limit In some situations, a user may only want an image of objects
that are near to the viewer : ¢ objects that are far to the back of the scene are
to be omutted from the image This can be achieved by the user speafying the
distance behind which objects are to be excluded This distance value can then
be used to limit/bound the ray in depth so that objects in the excluded zone are
not tested for intersection Even in cases where no bound 1s specified, since it
1s unlikely that the user wants to see objects behind the view-point, the ray can
still be bounded by limuting ¢ to positive values only

Shadow Rays Testing if a pont on a surface lies n shadow with respect to
a light source involves casting a ray from the point to the light source Since
objects beyond the light source with respect to the direction of the ray cannot
cast a shadow on the surface, the ray can be bounded to the section from the
point on the surface to the light source

Dynamical Bounding For intersection and difference operators, only those
parts of the right sub-tree that overlap the left sub-tree are of interest Conse-
quently, only that section of the ray which intersects the left sub-tree need be
tested for intersection with the nght sub-tree

3.4.4 Temporary Object Trees

As seen earher, the use of box enclosures embedded into the nodes of the solid
composition tree can reduce the computational cost of rendering an image of the
sohid by providing a means by which non-contributing sub-trees can be bypassed
m the search for ray-solid intersections A sub-tree can only be bypassed however,
f the ray musses the box enclosure of the sub-tree, which can only be determined
by testing the ray for intersection with the box enclosure

CHAPTER 3 RAY TRACING AND CSG 75

If on the other hand, there were a means of knowing in advance that partic-
ular sub-trees would not be intersected by the ray, a new temporary solid compo-
sition tree could be generated for the ray, which excluded any non-contributing
sub-trees The ray could be intersected with this temporary tree more rapidly
and efficiently by virtue of the fact that it would have fewer nodes and possibly
shallower depth, resulting 1n fewer recursive calls and intersection tests Unfortu-
nately, the cost of generating such a temporary tree for each ray would probably
far outweigh any computational savings 1t provided However, if large groups of
rays could be found that shared a common temporary tree, then savings would
be possible The temporary tree for a particular ray could then be found by de-
termuining the group to which the ray belongs and using 1ts associated temporary
tree

Gervautz [GERV86] outlines a method for generating such temporary trees
and the groups of rays that share a common one To a certain degree, the method
resembles something of a 2D space subdivision in screen space, 1n that the screen
1s partitioned 1nto a number of rectangular regions, each of which has associated
with 1t a temporary tree containing only those primitive and composite solids
whose box enclosures project onto the specified region A quadtree structure 1s
used to admunister the temporary trees, with the image being rendered rectangle
by rectangle, by traversing the quadtree and rendering all pixels associated with
the rectangular region represented by each node Rectangles that do not contain
any primitive or composite solids will have an empty tree associated with them
and thus can be trivially processed by setting all of their pixels to the background
colour

The rectangles are generated by first projecting a primitive solid enclosure
(sectzon 3 4 1) onto the image plane The mimimum and maximum X and Y
values of the projected enclosure then define four halfplanes, = > zmer, z <
Tminy ¥ > Ymazs ¥ <¥mwn, and the projection of all primutive solid enclosures 1n
such a fashion produces an irregular rectangular grid pattern on the screen For
each rectangular grid region, a temporary composition tree 1s formed from the
original one, contamning only those primitive solids whose enclosure projections
mapped partly or completely 1nto the region, fig 3 10

Using the rules of table 3 2, 1t 1s possible to ehminate both non-contributing
internal and primitive nodes from the original sohd composition tree (£ represents
the node to be ehmmnated, A represents the other node) -

Because of the fact that the primitive solid enclosures were projected onto
the viewing plane, the rectangles and temporary trees discussed above can only
be apphed to primary rays However, by projecting them onto a plane that

CHAPTER 3 RAY TRACING AND CSG 76

A A A
AB B B B © = empty node
yd AS /
figure 310 Quadtree administiation of tempory ocbject trees

lies between the light source and the scene, a similar quadtree structure can be
generated which can be used to optimize the tracing of secondary rays to the
light source Tracing for example, a shadow ray to the light source would sumply
involve determining the rectangle through which the ray passes and intersecting
1t with the associated temporary tree of that rectangle

The case for reflected and refracted rays however 1s a hittle more complex
than that for primary and shadow rays While all primary rays are constrained
to pass through the viewing point, and all shadow rays are constrained to pass
through the hight source, there 1s no single point through which reflected and
refracted rays are constrained to pass Consequently, there 1s no single 2D rect-
angular grid that can be generated which 1s relevant to all reflected/refracted rays
in the same sense that there 1s for primary and shadow rays Therefore, to opti-
muze for such rays, a 3D gnid of cells administered through an octree structure has
to be generated 1n place of a 2D gnid of rectangles and quadtree structure The
three dimensional cells and their associated temporary trees are generated using
the planes of the primitive solid enclosures (which, as outhined in section 3 4 1,
lie parallel to the XZ, YZ and XY planes) in similar fashion to the way 1n
which the 2D projections of the enclosures are used to generate the 2D grid and
temporary trees

CHAPTER 3 RAY TRACING AND CSG (4

Operation Action

UNION (A +E) elimimate node A

DIFFERENCE (A - E) elimnate node A

DIFFERENCE (E- A) ehminate node A and mi-
nus node

INTERSECTION A & E) | ehminate mternal inter-
section node

Table 3 2 Elminating of non-contributing nodes

3.4.5 Space Subdivision

Arnaldi [ARNAB8T] outlines a method of dividing space into 3D cells, into which
a sohd composition tree can be distributed such that each cell contains a mini-
mal CSG tree consisting only of those primitives from the original tree that are
relevant to the cell Intersecting the ray with the original solid then 1nvolves
propagating the ray from one cell to the next (along the ray direction), and test-
ing 1t with the cells associated CSG tree Since the 3D space 1s divided 1n such
a way that the cells fit as closely as possible the primitive solids, the associated
composition tree for each cell should be significantly smaller and hence, faster to
intersect that the original tree

In order to provide fast and efficient ray propagation from one cell to the
next, each cell, in addition to 1ts minimal composition tree, has an associated set
of connectivity information that takes the form of a list of pointers to neighboring
cells Imitially, each face of every cell had an associated list of pointers containing
a pointer to every cell adjacent to the face The drawbacks associated with this
method however were firstly, given the non-uniformity of the cell sizes, some
faces of some cells required longer hsts that others, which meant that face lists
had to be dynamucally allocated in size Other problems were that in order to
ensure complete connectivity, many cells contained redundant pointers and that

CHAPTER 3 RAY TRACING AND CSG 78

propagation of a ray through a face of a cell involved an 1nefficient linear search
through 1ts associated pointer list

Arnaldi overcame these difficulties by adopting a corner stitching technique
used 1 the design of 2D VLSI layouts and extending 1t to three dimensions
Using this method, each cell has a fixed number of pointers (10) associated with
it that connect cells together through their corners, fig 3 11a Thus, while all
cells adjacent to a given cell face are not directly connected by these pointers, 1t
18 st1ll possible to get to any one of them by taking an indirect “corner route”
through the appropnate cells, fig 3 11b

Ray w

Xe T |
Pa
left w1} D 2

P1

o
(-]
[ed
>
v
F-
1

front B P2

A
e
Iﬂj -+ -4 ‘L‘l orgi
deWn | 1 T

L =pointers effectively in use

(a) Cell connectivity
pointers L =other pointers

\ (®) 2D projection of cell structure showing
8 ray passing successively through
figure 3 11 cels Pt P2, P3 and P4

The cells themselves are formed by a two stage process, 2D subdivision of a
projection plane, followed by its extension to 3D, fig & 12 The 2D subdivision 1s
simular to that performed by Gervautz [GERV86] outlined 1n the previous section
Firstly, a mimimal bounding volume associated with each primutive 1s projected
onto the viewing plane, producing a set of rectangles on the plane Each rectangle
1s then decomposed 1nto four segments which are used as the basis for a binary
space partitioning process that results mn a 2D partitioning of the viewing plane,
whose extension along the Z-axis gives rise to 3D cells, called supercells Each
supercell is then subdivided into smaller cells along the front and back planes of
any primitive solid bounding volumes enclosed 1n the cell

MAILBOX As outhined in section 2 / 2, the general 1dea behind space subdi-
vision schemes 1s to divide space up nto cells and associate wath each cell a hist
of all objects either completely or partly enclosed mn the cell As the ray passes
from one cell to the next, 1t need only be tested for intersection with the hst
of objects associated with the cell Consider however, the case where an object
1s partly enclosed by several different cells Each of these cells will then have

CHAPTER 3 RAY TRACING AND CSG 79

super cells

pixel areas

/

Projectlon plane

Creation of 3D cell structure by extending 2D screen
paritions to three dimensions

figure 312

the object 1n their associated hist Since 1t 1s quite possible that a ray may pass
through several of these cells, the object will be tested for intersection more than
once with the same ray, which 1s both unnecessary and wasteful

Arnaldi overcomes this problem, which 1s common to all space subdivision
schemes, by associating a “mailbox” with each primitive and a umique number
with each ray The mailbox structure then stores the intersection point (if any)
and ray number of the last ray that was tested for intersection with the primutive
Then, before testing the primitive with a particular ray, a test 1s made to see if
the ray number 1in the mailbox 1s the same as the one for the current ray If
1t 15, this primitive has already been tested with this ray and the result can be
read directly from the mailbox If the number 1s different, the intersection test
goes ahead and the ray number and intersection information 1n the mailbox are
updated

Chapter 4

MicroTrace

Ray tracing, despite 1its elegant approach to image synthesis and 1ts realistic image
generation capabihties, has tended to be confined to the realms of large mainframe
computers by virtue of 1ts large appetite for computation This chapter however,
discusses 1 detail an 1mplementation of a ray tracer called MicroTrace which has
been designed, written and developed on a microcomputer A presentation of 1ts
results and an evaluation of its performance 1s presented 1n section 4 8 -

Before taking a detailed look at the ray tracer in section 4 2, the following
section gives a brief description of the microcomputer and display device on which
the research was carried out However, despite having been implemented on a
specific type of microcomputer with a specific type of display device, the ray
tracer has been designed with portability in mind Machine independence has
been facihitated by writing source code that complies with the ANSI C standard,
while display device independence has been enhanced by providing an option of
tracing an image to a file, in a format that can be custormzed for any sort of
raster device

4.1 Hardware

The microcomputer consists of an IBM AT with a Professional Graphics Display
and the following specifications -

80

CHAPTER 4 MICROTRACE 81

Inte] 80286 processor running at 6 MHz

Intel 80287 maths coprocessor

640K of main memory

o 20 Mb disk storage

4.1.1 Professional Graphics Adapter

The Professional Graphics Display 1s a high quahty colour raster display with a
resolution of 640 x 480 pixels (horizontal z vertical) It uses four bits per primary
for displaying colours, giving 1t a capability of distinguishing 4096 different colours
(section 1 32) The display 1s controlled by a Professional Graphics Adapter
(PGA), a VLSI card which contamns the refresh buffer and a host of bwlt 1n
graphics functions, to which end 1t contains its own 8-bit processor, an Intel
8088 From the schematic layout of the adapter in fig 4 1, 1t can be seen that the
mucrocomputer communicates with the adapter viaan nput/output buffer It
can also be seen from the diagram that the display refresh buffer 1s contained on
the adapter card and does not form part of the AT’s address space Consequently,
the AT cannot directly address this memory and nstead must read and set pixel
values by 1ssuing the appropriate commands to the adapter via the input buffer,
reading results back from the output buffer

AT so2te [@ ’l vS sutter ["_>

processoe

PGA adapter

I x
[}
w
w
w
[« S
w
2
w o
«

figure 4 1 Schematic layout of IBM AT and PGA

As mentioned earher, the PGA contains a number of built 1n graphics func-
tions for drawing lines, circles polygons etc which again are executed by sending
the appropriate command and parameters (in a predefined hexadecimal format)
to the mnput buffer In addition to these 2D commands, the adapter also has a

CHAPTER 4 MICROTRACE 82

number of 3D graphics commands that automatically apply chpping and projec-
tion to 3D lines and polygons In implementing the ray tracer however, this 3D
capabihity of the PGA has been deliberately avoided and only those capabilities
usually available for most other display devices, such as reading/writing pixel
values and 2D line drawing, have been used

LOOK-UP TABLE As mentioned above, the Professional Graphics Display
has a resolution of 640 x 480 pixels with 4 bits/primary (or 12 bits/pirel) Instead
of storing each pixel expliaitly as 12-buts, which would require a refresh buffer of
450K (640 x 480 x 12 buts) the adapter stores each pixel as a single byte which
1s then used as an offset into a 256 element look-up table containing the 12-5:t
RGB value for the pixel, fig 4 2 While this arrangement reduces the refresh
buffer requirement to 300K, 1t means that only 256 of the 4096 possible colours
can be displayed on screen at any one time The user can select any 256 of the
4096 colours by appropriately loading values into the look-up table via commands
sent to the adapter input buffer Colours of lines, polygons etc are then specified

as values 1n the range 0 255 with the actual colour being determined from the
value 1n the look-up table

RED GREEN BLUE
L | 0 Joo1t j1101 | 1110

e | g R . ‘ - 1- l1t11 {1111 | cooo

- - - - - - -

010t 1111 0101

2
3 0000 |0000 1111
4

1111 0000 gooo0

)
\
\
\
\
\
t
}
L]
\

L v e = - -
N

255 0000 1011

PGA Relresh Buffer Loock Up Table

1000

Look Up Table contenis detenmne color displayed

figure 42

PGA LIBRARY As a preliminary step m building the ray tracer, a C function
was written for each PGA command, which packages the appropriate parameters
m the correct predefined PGA hexadecimal format, places them 1n the adapter
input buffer along with the appropriate command code, and reports results/errors

CHAPTER 4 MICROTRACE 83

placed by the adapter in the output buffer These functions were then placed 1n
a program hibrary, allowing PGA commands to be easily incorporated mto any
C program simply by calling the corresponding C' function

4.2 MicroTrace — The Inner Workings

While, as mentioned earlier, a reasonable degree of machine and display device
independence were considerations in the design of MicroTrace, as was easy in-
corporation of certain future enhancements to the ray tracer (section 5 2, the
primary aim was to examune the practicahity and feasibility of microcomputer
ray tracing, a question which 1s addressed 1 the following chapter The concern
of this chapter 1s to describe 1n detail the various functional modules and the
overall design and implementation of MicroTrace Although the ray tracer has
been wrnitten in C' (Microsoft C version 5 1), a knowledge of the language 1s not
a prerequisite for an understanding of the following sections

4.2.1 A Brief Overview

MicroTrace 15 essentially a primitive instance rendering system (section 3 1)
schematically represented 1n fig 4 &, whose set of primitives consists of a cube, a
sphere, a cyhinder and a cone A “scene” to be rendered 1s presented to the ray
tracer as a hinked list of objects, built up by the user through the apphcation of
scaling, translation and rotation operations on the primitive types These oper-
ations are performed by functions provided in the user interface module, which
also provides various other sets of functions for defining scene environment ele-
ments such as parallel/perspective view, hght source position and ntensity, view
plane etc and for defining image output/format, optimization options etc

An image of the scene can be generated in either a perspective or parallel
view (section 1 5 2) on any viewing plane perpendicular to the Z-axis Shadows
can also be incorporated into the image At present, only a single light source
can be specified, but 1t can be specified to be either a directional light source (all
hght rays are parallel to the specified direction) or a point hight source positioned
at a specific XYZ coordinate 1n the scene The current hghting model (Phong’s
model, section 1 7 2), does not incorporate transparent objects but-does account
for ambient, diffuse and specular lighting components

The ray tracer functions 1in one of two modes, either PGA or RGB mode

CHAPTER ¢ MICROTRACE 84

MlicroTrace
b — tile
scorm oot
bldeg moda L screen
user * Ray
program - Tracer
setting
functiors PGA
mode
ﬁ e tite
» Scene
ﬁgure 43 Schematic diagram of MicroTrace

The PGA or Professional Graphics Adapter mode allows both file and screen
1mage output options and generates images in a format suitable for display on a
PGA display The RGB or Red Green Blue mode on the other hand has only a
file output option and produces images 1n a file format that can be customized
for display on any type of RGB display

4.2.2 PGA Mode

This 1s the default mode for MicroTrace and allows the option of displaying
the 1mage on a Professional Graphics Display (if one 1s available) as 1t 1s being
generated and/or of wniting the image to a file 1n a format that can later be
directly displayed on one The default settings of this mode assume that a PGA
card and display 1s attached and generate only a screen :mage However, these
settings can easily be changed, using functions 1n the user interface module, to
any combination of file and display options That 1s to say, 1t 1s possible to have

[1] screen but no file output (default)
[2] file but no screen output

[3] screen and file cutput

[4] no output at all

CHAPTER 4 MICROTRACE 85

Option [2] provides for the generation of PGA 1mages on a machine which
does not have a PGA card and display attached to 1t, while option [4] 1s used to
avord discrepancies that could result from differences in disk/display speeds on
different machines when comparing 1mage generation times

In PGA mode two output file formats are available, compressed format
and uncompressed format (compressed 1s the default) In compressed format
the 1mage 1s compressed using a PGA run length encoding method that can
substantially reduce the size of the image file, while in uncompressed format the
umage 1s essentially stored as one byte per pixel

Uncompressed File If the uncompressed format 1s selected, the image file
generated will not be run length encoded but will have the following format -

[FFixl x2 yl y2|DATA]

The first byte of the output file, hex FF 1s simply an 1dentification byte to indicate
that the file 1s 1n uncompressed form There then follows 8 bytes which represent
the Zmin, Tmazs Ymin aDA Ymae screen coordinates respectively of the viewport
specified for the image Each of the four coordinates 1s stored as a two byte
integer 1n backword format (least sigmficant byte first) Then follows the data
in the form of one byte per pixel in viewport left to right, top to bottom order,
which represents the PGA colour of the pixel (section { 2 3 outhnes how these
mntensities are calculated)

As outhned m section 4 1 2, when the file image 1s displayed, the actual
colour for each pixel will be determined from the corresponding 12-5:1¢ RGB entry
of the 256 element look up table This table 1s stored 1n a separate file consisting
of 256 two byte integers (stored least significant byte first) which contamn the
RGB values 1n the form shown below (bits 12,13,14 and 15 are “don’t cares”) -

COLOUR BITS
red 11 10 9 8
green 7 65 4
blue 3 2110

While it may be possible to display the image contained 1n such a file on a
display other than a PGA display, by using the look up table in conjunction with

UIf the machine on which the image 1s generated does not use back word storage format,
they will be stored normally : ¢ most significant byte first

CHAPTER 4 MICROTRACE 86

the image file t(’) access and modify pixel RGB values, a more readily adaptable
format can be produced by setting Micro Trace into RGB mode where RGB values
are explicitly stored for each pixel in the image file

Compressed File If the compressed file format 1s specified (default) in PGA
mode, a run length encoding system 1s used to reduce the size of the image file
resulting in the following file format -

| Line Header | Data | | Line Header | Data |

The line header which precedes each set of data, has the form -

[D9 | line # | start X | end X'|

The D9 1s the hexadecimal PGA code command code for “write encoded
line of pixels” Then follows three integer numbers, each stored as two bytes (least
significant byte first), representing the vertical line number and the horizontal
screen coordinates where this line begins and ends Note that there 1s no explat

“1d byte or viewport at the begining of the file since, 1n this format the first byte

will always be D9 and the viewport 1s encoded as part of the image data for each
line

The data for each line consists of a series of packets, of which there are two

kinds -

[1] [COUNT]|PEL | COUNT 0 127

[2] |COUNT|[PELO|[PEL1|[PEL2] COUNT 128 255

If the count 15 1n the range 0 127 then the byte that follows 1s the colour of
the next COUNT+1 pixels Alternatively, if the count 1s 1n the range 128 255
then the next COUNT-127 bytes that follow are the colours of the next COUNT-
127 pixels As n uncompressed format, these pixel values represent PGA colours
n the range 0 255 (section 4 2 4 outlines how these intensities are calculated)

The actual colours are deterrmned, as before, from the look up table entries,
which are stored 1n a separate file

CHAPTER 4 MICROTRACE 87

Compressed Vs Uncompressed In most cases, compressed form 1s preferable
to uncompressed form for two reasons Firstly, an image file in uncompressed
format 15 quite likely to be substantially larger than its corresponding compressed
counterpart Secondly, displaying an image from an uncompressed file takes
longer by virtue of the fact that the PGA only accepts a line of pixel values 1n
compressed format Hence, each line of pixels read from the uncompressed file
has to be run length encoded by MicroTrace before being sent to the PGA input
buffer (section 4 1 2) whereas the compressed file can be simply read and sent
directly there)

However, uncompressed format can sometimes be useful in modifying a file
image without first displaying 1t, since the exact offset of a single pixel value in the
file can be easily calculated, whereas in compressed format, finding a particular
pixel involves reading and interpreting the run length encoding

4.2.3 RGB Mode

RGB mode provides only a file output option (no output can also be specified)
The no output option, as for the PGA mode, 1s used to avoid discrepancies that
could result from differences 1n disk speeds on different machines when comparing
1mage generation times

When a file output 1s specified, the output file format 1s the same as that
for the uncompressed PGA format described above, except that the identification
byte 1s hex 00, and the data consists of three bytes per pixel instead of one The
three bytes represent the red green and blue intensities for the pixel, each of which
1s a value in the range 0 255, giving a colour palate of 16 mullion colours These
red green and blue intensities, as outlined 1n the following section, are calculated
mn quite a different way to pixel intensities calculated in PGA mode

4.2.4 Calculating Pixel Intensities

Sections 4 2 2 and 4 2 & above have outlined the two different operating modes
of MicroTrace Both modes are essentially the same 1n the respect that in either
mode, the same ray tracing functions are used to determine the closest object of
intersection for each pixel and the same lighting model 1s used to determine pixel
colour and intensity However, even though the same lighting equation 1s apphed
in both modes, the way in which 1t 1s applied and interpreted 1n the two modes
differs significantly

CHAPTER 4 MICROTRACE 88

Before looking at how the equation 1s applied in PGA and RGB modes how-
ever, the equation 1s first summarized below for reference A detailed explanation
of the terms and constants of the equation can be found n section [7 2, which
discusses the Phong Lighting model in detall The intensity of hight I, emtted
from a point on a surface with ambient, diffuse and specular constants of K,,
K; and K, respectively, 1s -

I=LK, +1L;Kq+ LK,

where /, is the constant ainbient light 1ntensity and I; and I, are the calculated
diffuse and specular intensities at the point

PGA MODE In PGA mode, the look up table 1s loaded with 16 different
shades of 16 different colours, fig 4 4 The colour of an object, which 1s contamed
1n the clr field of the structure for the object (table 4 1), 1s then specified as an
integer value in therange 0 15, corresponding to one of the 16 colour groups in
the look up table Calculating the colour of the light emtted froin a particular
point on a surface mvolves applying the above lighting equation to generate an
intensity value in the range 0 1 for the point This value 1s then converted 1nto
an nteger value 1n the range 0 15 and used as an offset into the colour group
of the object, resulting 1n a colour 1n the range 0 255

18 o {1 ® 10 4 118 40 pad 49 RSO R84 PSS

4 o | 9 Do 14 |18 24 p2s 33 R34 Fas 3

group 12
shade 9

12 011 rﬂw10 14 118 q 97219 20? ROS RO7

10 14 {18 = color 201 nyn 88 flee 90 191

il €

o |1 9 ho I m 17 RS 12¢ a0 (3

o o {1 9 1o 14 |15 o |1 9 Jw

MicroTrace color scheme
(15 colors sach PGA Look Up Table
with 15 shades)

In PGA mode objects are shaded using the 16 shades of whichever
of the 16 colors they have been assigned

figure 44

CHAPTER 4 MICROTRACE 89

Example see fig { 4

object colour — 12

calculated intensity — 06 laKa 4+ Id Kd + Is Ks
converted mtensity -— 9 15x06

final colour — 201 16x12+9

The shades for a given colour group are loaded by the user before ray tracing
commences, through one of the functions provided in the user interface module
For each of the 16 colour groups, the user specifies to the function a single RGB
value, from which the function generates 16 shades for the colour group This 1s
achieved by interpreting the supplied RGB value as the XY Z location of a cell
1 an 1magmary cube consisting of 4096 (16 x 16 x 16) such cells, fig 4 5, and
following a line from the origin through this cell (and beyond if necessary) until 1t
has passed through 16 cells of the cube The XY Z coordinates of these 16 cells
form the RGB values of the 16 shades for the specified colour group Alternatively,
a different function can be used which, instead of following a Line from the origin
upwards, follows 1t from the diagonally opposite corner, downwards Thus, the
shades for a particular colour group can be forced to include either white as the
highest intensity or black as the lowest (only a colour group specified by a cell of
equal X,"Y and Z coordinates contains both)

“* RED
BLUE 4

Each of the 4096 possible PGA colors can be viewed as a subcell
of a 16x16x16 cube rested on red, green and blue axes

figure 45

RGB MODE In RGB mode, the red, green and blue components of the hght
emitted from a particular pomnt on an object are calculated by first calculating
it’s cyan, magenta and yellow (CMY) components and converting them to RGB
The reason for using the subtractive primary colours, CMY, 1s that reflection
of light 1s essentially a subtractive process So, in the same way that the RGB

CHAPTER 4 MICROTRACE 90

intensities for any colour can be interpreted as the respective intensities of red,
green and blue light which, when added to black give the specified colour, the
CMY intensities of the colour are the respective intensities of cyan, magenta and
yellow, which, when subtracted from white light, give the same colour

These CMY 1ntensities are calculated for a point on a surface by applying
the highting equation three times, once for each of cyan, magenta and yellow, to
give an wtensity for each mn therange 0 1 These intensities are then converted
to RGB intensities, each one an nteger in the range 0 255

Example
red 255 x (1 - LK, + I,K. + I,K,)

green = 255x (1 -ILK,+ LK.+ IK,)
blue 255 x (1 - LK, + LK, + LLK,)

4.2.5 The Object Structure

Micro Trace implements a set of four basic primitive types, fig { 6, each one
defined 1n 1ts own local coordinate system as follows -

CYLINDER cylinder of unit radius and length centered hori-
zontally along the Z-axis

SPHERE sphere of umt radius, centered about the origin
CUBE umt cube standing on positive XYZ axes
CONE cone of umt height with base of unit radus, cen-

tered horizontally along the Z-axis, with its apex
at the ongin

An object, which 1s an mstance of one of these basic primitive types, con-
sists simply of a basic primitive name, and a 4 X 4 transformation matrix which
describes the translation, rotation and scaling operations that transform the prim-
itive from 1ts own local coordinate system into the world coordinate system

The 4 x 4 transformation matrix, along with the basic primitive type name

CHAPTER ¢ MICROTRACE 91

g b, el 8

(a) cube (b) sphere {c) cone (d) cylhnder

figure 46 The four pnmive solids of MicroTrace

are stored 1n a C structure, with the user interface module providing functions for
allocating space for such an object structure, and for building up the transforma-
tion matrix A scene consisting of any number of such objects 1s then presented
to be ray traced as a linked hst of these structures

In addition to storing a primitive type name and transformation matrix, the
structure has several other fields, some of which are filled in by the ray tracer
These fields contain various other items of information about the object required
by the ray tracer and the shader e ¢ 1ts colour A complete hst and description of
the fields of the object structure 1s given 1n table 4 1 below, though the function
of some of them may not be apparent until the areas of ray-object intersection
and optimuzations have been covered 1n sections 4 5§ and { 6 respectively

4.3 Ray Generation

As mentioned 1n section 2 2, a ray can be conveniently represented as a line 1n
parametric form, defined by a point P (g, o, 20), a direction vector D (D,, D,, D)
and a parameter ¢ All points on the hine are then ordered and accessed via ¢
with each pomnt (z,y,z) on the line given by -

X = Xo+tD,;
Y = Y,+1tD,
Z = Zo+tDz

(41)

Positive increasing values of ¢ give points on the line that are increasingly further
along the hine from (Xo,Ys,Z) 1n the direction (D., D,,D.), while negative

CHAPTER 4 MICROTRACE

Field Name Description
primitive | name of the primitive type from which the object 1s de-
rived
transform | 4 x 4 transformation matrix
mverse | 4 x 4 inverse transformation matnix
xmin xmax | screen rectangle (extent) enclosing the object’s projected
ymin ymax | bounding volume
znear zfar | nearest & furthest Z coordinates of object’s transformed
B V from primary ray origin
clr | object’s PGA colour group (¢ 15)
rnd | roughness of the object’s surface (used as a coarse approx-
imation of a textured surface)
ka kd ks | object’s ambient, diffuse and specular reflection constants
pwr | object’s specular power constant
cmy | object’s cyan, magenta and yellow reflection ratios
next | pointer to next object in list

Table 4 1 The Object Structure

92

CHAPTER 4 MICROTRACE 93

decreasing values give points that are further in the opposite direction For this
reason, the pomnt (Xo,Ys, Zy) 15 often referred to as the ray origin

An 1mage 18 then ray traced by casting a ray through each pixel 1n the screen,
determining the closest object struck by the ray and calculating the shade of the
object at the point of intersection, which then becomes the colour for the pixel

In MicroTrace, the ray equation for a given pixel 1s determined from the
perspective/parallel viewing parameters, the viewport, the window and the view
plane The first stage in determining the ray equation for a pixel 1s to map the
pixel onto the view plane, where the view plane can be any plane parallel to the
XY plane, 1 e Z = dist, (where dist 1s the distance of the plane from the
origin) So, given the following viewplane, window, and viewport -

viewplane — Z=dist
viewport — Uz Uzz Vy1 Uy
window — Wg Wiy Wy Wy

a pixel (X,,Y,) on the screen maps onto the pont (X, Y, drst) on the window
where -

Xw = Wz + (X'u - U:t:l)

Wre — W

Vz2 — Uzl

Wy — wyl

Y, =wn + (Yo —vn) (42)

Uy2 = Uy

This mapped pomnt (X,,Y,,dist) forms one half of the ray equation, the
ray origin The second part, the ray direction 1s determined from the paral-
lel/perspective viewing parameters If the view 1s defined to be a parallel projec-
tion type view 1 e the viewer 1s positioned at infinity along a specified direction
then all primary rays are parallel to the given direction (P, P,,P,) On the
other hand, if 1t 1s a perspective projection type view then the viewer 1s at a
given pomt (X,,Y,,Z,) and all primary rays will have a slightly different direc-
tion, see section 2 2 The ray direction (D;,D,,D,) can then be determined for
a perspective or parallel view by -

perspective (D.,D,,D,) = (X,-X.,,Y, -Y,, dist - Z,)

parallel (0:.,0,,D,) = (F,P,P,)

CHAPTER 4 MICROTRACE 94

This ray equation, defined by the point (X, Y, dist) and the direction (D,, D,, D),

1s then tested for intersection with the list of objects in order to determune the
closest object (if any) struck by the ray

4.4 Transforming The Ray

In testing an object for intersection, 1t 1s much simpler to test the primitive type
from which the object 1s derived than to test the object itself This 1s because the
primitive lies uniformly sized and positioned 1n its own local coordinate system,
whereas the object lies arbitrarily sized and orientated in world coordinate space

Provided that the ray 1s correctly transformed from world coordinates to
the local coordinate system of the primitive type from which the object 1s derived,
the value for t found from intersecting the transformed ray with the primitive 1s
the same as that found by intersecting the untransformed ray with the object,
but 1s computationally less expensive to calculate The correct transformation 1s
found by using the inverse of the objects 4 x4 transformation matrix to transform
the ray from world to primitive coordinates In Micro Trace, this inverse matrix 1s
_calculated for each object before ray tracing commences and stored m the inverse
field of the object structure (table 4 1)

For a given object, transforming the ray involves transforming both 1ts ori-
gin and direction by multiplying them by the object’s 4 x4 mnverse transformation
matrix, M1, as follows -

transformed ray origin = [Xo, Yo, 20, 1 MI

transformed ray direction = [D;, Dy, D,,0) M1

4.5 Ray Intersection

In its simplest form, the closest object struck by a given ray 1s determined by
testing the ray for intersection with every object n the list and selecting the
one that gives the lowest value of ¢ for an intersection (remember ¢ 1s a mea-
sure of the distance of the intersection point from the ray ongin) Section 4 6
however, discusses several optimization techniques that have been implemented
which significantly reduce the set of objects that have to be tested to some subset
consisting only of those objects with a high probability of being intersected by

CHAPTER 4 MICROTRACE 95

the ray, resulting 1n a substantially reduced 1mage generation time There are
four ray-primitive intersection testing functions in Micro Trace, one for each of
the four primutive types For each primitive type, this test generally involves -

-

[1] checking if there 1s a value of ¢ for the ray which
gives a potential intersection pont with any of the
primutive’s surfaces

[2] substituting this value for ¢ (af one 1s found) into
the ray equation

[3] checking if the resultant point hes on the corre-
sponding surface of the primitive (and calculating
the surface normal at that pomnt if 1t does)

However, given that we are only interested in the closest point of intersection
of the ray with any object, unless the ¢ value from stage (1] 1s less than that for the
closest intersection found 1n processing the list of objects so far, 1t can’t possibly
produce a closer intersection so 1t 1s pointless to proceed with stages [2] and {3]

Consequently, each of the four ray-primitive intersection functions outlined
m sectzons 451 to 4 54 below, in addition to bemng given a ray to test for
mntersection, 1s also given the lowest intersection value of t for the ray with any
object 1n the hist tested so far (this value 1s imtially set to some very high value)
and the surface normal at the corresponding intersection point Each time a closer
intersection 1s found, the value and surface normal are updated to reflect the new
intersection These three entities, the ray to be tested, the closest intersection
so far and the surface normal at that intersection are referenced in the following
sections as -

ENTITY DESCRIPTION

(X0,Y0,2Z0) | ray ongmn

(Dang) D:) ray direction

nearest t value of closest object
intersection so far

normal surface normal at closest
intersection so far

CHAPTER 4 MICROTRACE 96

4.5.1 Cube Intersection

\

The cube primitive 1s a unit cube defined by six surfaces, each one parallel to one
of the XY Z axes -

surface equations bounds test surface normal
X=0 0<=Y,Z2<=1 (-1, 0, 0)
X=1 0<=Y,Z<=1 (1, 0, 0
Y=0 0<=X,Z<=1 (0,-1, 0)
Y =1 0<=X,Z2<=1 (0 1, 0)
Z=0 0<=X,Y <=1 (0, 0,~1)
Z=1 0<=X,Y<=1 (0,0 1)

Finding the closest point of intersection of the cube with a transformed ray
mvolves testing each surface for intersection with the ray For each surface, this
involves finding the value of ¢ (if any) for which the ray intersects the correspond-
ing plane If this value 1s less than “nearest” (see section 4 5 above) then the
exact pomnt of intersection 1s determuned and tested to see if 1t complies with the
bounds tests for the surface If it comphes, then an intersection has been found
The test for the Z = 0 surface 1s outhned in pseudo-code below, the tests for
the remaining surfaces being very similar

Intersection Test For Z =0 Surface

Find t for which ray intersects Z = 0 plane -

Z =0

= Zo+tDz = 0
ot = -2
= -3

(43)

CHAPTER ¢ MICROTRACE 97

Pseudo Code

if (D, 18 not 0) /* D, =0 = ray parallel to plane */
begin
= —-gﬂ-
if (2 < r:earest) and (t > 0)
begin
X =Xo+tD, [* calculate point of intersection */
Y=Y+t D,
if (X <=1) and (X >=0) and (Y <=1) and (Y >=10)
begin
negrest =t

normal = (-1,0,0)
end
end
end

4.5.2 Sphere Intersection - -

The sphere pnimutive 1s defined as a umit sphere centered at the ongin with the
following surface equation -

surface equation | bounds test | surface normal

X?4Y24+22=1 NONE (X,Y,Z)

One way of testing 1if the ray intersects the sphere 1s to test if the perpendic-
ular distance between the ray and the origin (the centre of the sphere) 1s less than
one (the radius) This simple test will not however give the point of intersection
between the ray and the sphere (which 1s required for calculating the surface
normal) Alternatively, substituting the ray equation into the surface equation
for the sphere produces a quadratic equation m ¢t which can be solved using a
quadratic formula Substituting the solved value for ¢ back into the ray equation
then gives the exact point of intersection between the ray and the sphere This
latter approach 1s the one outlined below -

CHAPTER 4 MICROTRACE 98

Substituting the ray equation

X = Xo+tD$
" Y = Yy+tD,
Z = Z0+tDz

(44)
into the sphere equation’
X +Y*4+ 2% =1
gives

(Xo+tD;)* + (Yo+tD,)* + (%0 +tD.)* =11

Expanding and rearranging gives a quadratic 1n ¢ which can be solved with the
formula

where

A = Di+D!+D:
D.Xo+ D,Yo + D, Z,
C = X3+Y2+22-1

vyl
I

(45)

The intersection test 1s then based on the square root term, with the following
interpretations -

CHAPTER 4 MICROTRACE 99

Value of | Number of Interpretation
B? — AC | intersections of result
Zero 1 ray tangental — no intersection .
negative 0 complex solution — no mtersection
positive 2 two intersections — take closest

4.5.3 Cylinder Intersection

The cylinder primitive consists of a cylinder of unit radius and length, defined by
the following three surfaces -

surface equation | bounds test surface normal

X?2+Y%2=1 0<=2Z<=1 (X,Y, 0)
Z=0 X?+Y?<=1| (0,0,-1)
Z=1 X*+Yi<=1| (0,0, 1)

Intersection Test For X%+ Y? =1 Surface

The test for this surface 1s derived 1n the same way as that for the sphere, by sub-
stituting the ray equation into the surface equation, with the resultant equation

(Xo+tD:)* + (Yo +1tD,)? =1

Expanding and rearranging gives a quadratic in ¢ which again can be solved with
the formula

B ++vB?- AC

where

CHAPTER 4 MICROTRACE 100

N
|

D+ D}
D.Xo+ DY,
C = X2+Yi-1

v
i

(46)

As for the sphere, the intersection test 1s based on the square root term, with the
same interpretations

Intersection Test For Other Surfaces

The 1intersection test for the other two cylinder surfaces 1s very similar to
that of the Z = 0 surface for the cube illustrated above, with the exception that
the bounds test 1s shghtly different ¢ ¢ having calculated a value X and Y, the
pomnt at which the ray intersects the plane 1n question, the test

(X <=1)and (X >=0) and (Y <=1) and (Y >=0)

1s replaced by

P -— - —

(X*+YH <=1

4.5.4 Cone Intersection

The cone primitive consists of a cone of unit height and radius, with the apex at
the origin, and 1s defined by the following two surfaces -

surface equation | bounds test | surface normal

X 4+Y2-22=0|0<=2<=1 (X,Y,0)
Z=1 X*+Y%?<=1| (X,Y,V1-2?)

Intersection Test For X2+ Y?— 72 =(Surface

The 1ntersection test for this surface, like the sphere, 1s derived by substi-
tuting the ray equation into the surface equation, producing -

CHAPTER ¢ MICROTRACE 101

(Xo +tD.)* + (Yo +tD,)* - (Zo+tD.)* =0

Again, expanding and rearranging gives a quadratic in ¢ which as before,
can be solved with the formula

Bt+VB?- AC

where

A = D;+D,-D;
= -DrXO+DyY;J—DzZO
X +Ye-2Z¢

Q W
I

(47)

-

The 1ntersection test for the other surface 1s 1dentical to that of the Z = 1
cylinder surface

4.6 Shadow Rays

Section 2 3 1 described how 1t was possible to determine if a point was 1n shadow
with respect to a light source by tracing a ray, called a shadow ray, from the pomnt
to the light source If the ray hits any opaque object, the point lies in shadow
MicroTrace uses a different set of ray-primitive intersection functions for testing
shadow rays n order to take advantage of the fact that the only concern 1s whether
or not the ray strikes any surface between 1ts origin and the hight source The
functions are very similar to the ones outlined above and differ only 1n the respect
that as soon as the ray 1s found to strike any surface of any object, no further
surfaces of that object are tested, no surface normal or point of 1ntersection are
calculated, and no further objects are tested

CHAPTER 4. MICROTRACE 102
4.7 Optimizations

As outlined in section 2.4, 75% of the time taken to ray trace an image is taken up
with calculating the intersection of rays with objects. Given that the ray-object
intersection calculations have been optimized as far as possible, the only way of
reducing this figure is to attempt to reduce the number of ray-object intersection
tests. One way of doing this is to try to determine, hefore testing the ray with
the list of objects, those objects that the ray has no chance of hitting. These
missed objects can then be excluded from the test, so that the ray is tested for
intersection with only a small subset of objects that have a high probability of
being hit. The difficulty of such a scheme however, lies in finding a means of
easily identifying as many of these missed objects as possible, which will balance
the number of such objects detected against the computational cost of detecting
them,

The following sections outline four optimizations employed by Mcro Trace
which provide different methods of reducing the number of objects against which
a ray must be tested, and have been called
Pixelbuffer
Extents
 Grid
Sortlist

The optimizations have heen implemented in such a manner as to be com-
pletely independent from one another. That is to say, they can be used either
individually, or in any combination. Each one is controlled by its own flag vari-
able, which if set means that the optimization is to be employed. The flags in
turn are set by calling the appropriate functions from the user interface module
(McroTrace sets all four optimizations on by default).

All four optimizations operate only for primary rays and, with the exception
of the third, the Pixelbuffer, can operate when either a file and/or a display image
output has been requested — the Pixelbuffer can only be used with a display
output since it relies on reading pixel values in advance of tracing to determine
whether or not a ray should be cast for a given pixel. The effectiveness of the
optimizations at reducing rendering time is examined in section 4-8, where image
generation times for various combinations of the four are tabulated for several

CHAPTER 4 MICROTRACE ' 103

test 1mages

Since all of the optimuzations, with the exception of Sorthst rely on the
existence of a bounding volume for each of the four primitive object types, before
looking at each of the optimizations in detail, a brief description of the bounding
volumes used may prove useful

4.7.1 Bounding Volumes

As outhined 1 section 24, the majority of optimization technmiques currently
employed 1n ray tracing can be broadly classified as either space subdivision or
bounding volume techniques One of the reasons for selecting bounding volumes
over space subdivision as the basis of most of the Micro Traces optimizations was
that space subdivision techniques have a tendency to require quite large amounts
of memory and, given a memory “budget” of 640K 1t was felt that bounding
volumes would give a better space/performance ratio — regardless of the number
of objects 1n a scene, MicroTrace stores a total of only four bounding volumes
(one for each of the four primitive object types)

Section 2 4 1_discussed 1n some detail the 1ssue of bounding volumes where
the general 1dea 1s to surround each object 1n a volume that 1s less costly to test
for intersection than the object 1t encloses Then, only if the ray intersects the
bounding volume, 1s 1t tested for intersection with the object mside

In Micro Trace however, each object 1s not explicitly surrounded 1n its own
bounding volume Instead, only four bounding volumes exist, one for each of
the four primitive types, fig 4 7 Unlike the primitive types, whose shape and
position are not exphcitly defined anywhere in the ray tracer (they are imphaitly
defined 1n their respective ray-primitive ntersection functions), the four bounding
volumes are explicitly stored 1n an array, each as a set of eight XY Z coordinates
The bounding volume for a particular object can then be calculated when needed
sumply by applying 1ts transformation matrix to the eight vertices of the volume
of the primitive from which the object 1s derived

The reason for calculating rather than storing the object bounding volumes
1s that storing the bounding volume 1n the object structure would increase the
space required to store an object by about 50% In addition, all of the optimiza-
tions below make use of object bounding volumes only to extract some initial
information about an object Once this information has been extracted and
stored 1n the object structure, there 1s no further need for the bounding volume.

CHAPTER 4 MICROTRACE 104

(a) cuse (b) SPHERE

(c) oconE (d) CVNDER

ﬁg‘ul’e 47 The four pnmtive bounding volumes

Consequently, bounding volumes are calculated one at a time for each object
before ray tracing commences and are passed to any active optimizations which
1n turn extract and store any information they require, and are then discarded

It can be seen from fig 4 7 that the bounding volume for each of the sphere,
cylinder and cube, consists of a either a cubic or rectangular block defined by
eight coordinates, which form the eight corners of the block In the case of the
cone however, the bounding volume 1s a pyramid, requiring only five vertices for
defimtion For the sake of consistency however, this bounding volume 1s stored
as eight vertices by duplicating the apex coordinate three times This prevents
having to treat this volume as a special case and means that all functions which
process bounding volumes need be presented with nothing more than a hst of
eight vertices, regardless of the primitive type to which the bounding volume
belongs

4.7.2 Pixelbuffer

For many scenes, a large percentage of pixel values will be set to the background
colour e the rays which they spawn do not intersect any objects at all The
idea behind this original optimization, which 1s referred to i MicroTrace as
Pixelbuffer, 1s to provide an easy means of detecting such pixels, so that they can
then be automatically set to the background colour without having to generate
and trace a ray for them ’

Firstly, all pixels on the screen are set to a given colour Then, one by one
the bounding volume for each object 1s calculated and drawn on the screen as

CHAPTER 4 MICROTRACE 105

s1x polygons, filled in given colour When all objects have been processed in this
way, the result 1s a screen consisting of pixels that have one of two colours — the
mtial colour and the colour used to fill the polygons The former are the ones
whose rays defimtely muss all objects

When ray tracing commences, before casting a ray through a pixel, the
colour of the pixel 1s examined to see if 1t 1s the same colour as that used to fill
the projected bounding volumes If it 1sn’t, then the pixel 1s immediately set to
the background colour and the next pixel processed

Even though this scheme detects a large percentage of all pixels whose rays
do not intersect any object, 1t cannot always detect all of them since, with the
exception of the cube, all of the bounding volumes will contain some void space
(1e some empty space between the object and the bounding volume) which may
project onto pixels that are not otherwise covered by a non-void part of some
other volume The percentage of pixels falling into this category however would
normally be quite low, but could be further reduced by the use of tighter bounding
volumes This however would be at the cost of increasing the overhead of storing,
transforming and rendering the bounding volumes, a cost which is unlikely to pay
for 1tself in terms of increased performance of the optimization

COST AND PERFORMANCE The cost of implementing Pixelbuffer con-
sists entirely of the cost of reading each pixel once, which 1s constant for a given
viewport size, and the cost of generating and rendering the bounding volumes,
which 1s proportional to the number objects in the scene The savings obtained
from Pixelbuffer on the other hand are directly proportional to the number of
empty pixels (ones which do not have the fillcolour after all bounding volumes
have been rendered) and 1s independent of the number of objects in the scene
since, given -

pixels = N
fillcolour pixels = F
objects = n
the savings are calculated as
_(N=-F)n _ F .
savings = " = 1 N (4 8)

While Pixelbuffer provides a means of easily detecting those pixels whose rays will
not intersect any object, 1t has the hmtation that pixels failing to fall mto this

CHAPTER 4 MICROTRACE 106

category must have their rays tested for intersection with all objects 1n the scene
It does however have the advantage of being reasonably effective and easy to
implement and does not incur either a large computational or storage overhead

4.7.3 Extents

As outlined 1n section 2 4 1, associating an object with a bounding volume which
tightly encloses the object, but 1s computationally less expensive to test for inter-
section with a ray, can reduce the cost of ray tracing an 1mage Testing the ray
for intersection with the bounding volume however, still requires the use of ex-
pensive floating point arithmetic since 1t 1s performed 1n world coordinate space
In addition to this, the bounding volume would have to be stored with the object
which, as mentioned earher, would increase the space required to store a single
object by about 50%

Extents, which 1s based on Roth’s use of box enclosures [ROTHS82] (see
section 8 3 5), overcomes these two problems however by using a 2D “bounding
volume” called an extent, which 1s essentially a rectangle in screen space that
encloses the object, section 2 4 I The first problem, that of having to use floating
point arithmetic, 1s thus overcome since testing of extents 1s done in integer screen
space and the second, that of storage, by virtue of the fact that an extent requires
storage for just four integers, which compares very favorably with the twenty
four floating point numbers required for a bounding volume In fact, in Microsoft
C version 5 I, where an integer occupies 2 bytes, and a long float 8, an extent

requires only 4% of the storage required for a bounding volume (8 bytes compared
to 192)

Object extents are calculated for each object before ray tracing commences
by generating a bounding volume for each object and finding 1ts mmimum and
maximum X and Y coordinates, which are then projected onto screen coor-
dinates and stored as four integers in the zmin, zmaz, ymin, and ymaz fields
respectively of the structure for the object (table 4 1) These integer coordinates

(zman,ymun) and (zmaz,ymaz) form the lower left and upper right corners of
the screen extent of the object

When ray tracing, before testing a ray for intersection with a particular
object, the pixel that spawned the ray 1s tested agamst the object’s screen extent

Only if the pixel lies mside the extent, 1s the ray tested for intersection with the
object

CHAPTER 4 MICROTRACE 107

COST AND PERFORMANCE The cost of using Extents amounts to the
cost of generating the extent for each object, plus the cost of testing a pixel
against the extent each time the object is tested for intersection with a ray. The
former consists of the cost of generating the bounding volume for each object
(which is divided among all active optimization schemes) as well as the cost of
finding and projecting the minimum and maximum X and Y coordinates. The
test to see if a pixel (x,y) lies inside an extent requires, in the worst case, 4
integer comparisons (since all of the four conditions are wand” conditions, as soon
as one fails, the overall condition fails)

(x *—xmor) and (x >= xmtn) and (y ~ ymax) and (y >= ymin)

In the worst possible case, where the pixel for every ray lies inside the extent
for every object, extents become a liability rather than an asset since testing the
pixel with an objects extent becomes superfluous and merely adds to the cost of
testing the ray with the object. Even in such rare cases however, the liability
would be minimal since the cost of the pixel-extent test is negligible in comparison
to that of the ray-object test. Optimal savings on the other hand, would occur for
a scene containing a large number of objects with as little overlappmg of extents
as possible. In the best possible case, where there is no overlapping at all, each
phrim ary ra%/_ would then have to be intersected with (at most) a single object from
the entire list.

While the “ray intersects extent” test is much cheaper to perform, both from
a computational and a storage point of view, than the “ray intersects bounding
volume” test, the fact that it is performed in screen space means that it can only
be applied to primary rays, since these are the only rays that are constrained
to pass through the screen. The bounding volume test on the other hand, is
performed in object space and hence can be applied to both primary and sec-
ondary rays. However, there is nothing to prevent both schemes heing employed
simultaneously it. to use screen space extents for testing primary rays, and to

use object space bounding volumes for secondary rays — a possibility outlined
in stction 5.2.1.

The limitation on the use of extents to primary rays is not of major sig-
nificance to Micro Trace at present since, by virtue of the fact that it currently
incorporates just a single light source, and that the only secondary rays traced
axe shadow rays, the number of primary rays cast will always be greater than
the number of secondary rays (except in the rare case where all primary rays
intersect an object, when the two will be equal). However, should Mcro Trace,
at some point in the future, be upgraded to incorporate multiple light sources
and/or transparent objects, it is quite likely that the number of secondary rays

CHAPTER 4 MICROTRACE 108

will exceed that of primary ones and secondary ray optimizations would then be
a significant factor in 1ts performance Such upgrades and secondary ray opti-
mizations are discussed 1n section § 2

Another limitation on the usefulness of extents 1s that, depending on the
shape and orientation of the object, they can sometimes contain large void areas,
which reduces their effectiveness, fig 4 8 One way of reducing this void area
would be to use a polygonal extent instead of a rectangular one Such an extent
could enclose the projected volumes without any void area since all four bounding
volumes 1n Micro Trace consist of polygons and so will always form a polygon when
projected onto the screen The cost of generating polygonal extents however
would be greater than that for rectangular ones, as would the cost of storage and
testing

projected
bounding
volume

Screen extents can somelumes contan large vod arcas

figure 48

4.7.4 Grid

While the Extents optimization outlined 1n the previous section provides a quick
and easy test to see if a primary ray stands a good chance of hitting an object,
the complete list of objects 1s still processed for every ray The Grid optimization
on the other hand provides a means of supplying a hst of objects for each ray
that 1s a subset of the entire list of objects, consisting only of those objects with
a high probability of being intersected The optimization i1s based on 1deas by
Gervautz [GERV86] for partitioming screen space m order to create temporary
object trees (section 3 4 {) and by Arnaldi [ARNAST] for generating 3D cells for
space subdivision (section 3 4 5)

The optimization resembles something of a space subdivision techn.que (sec-
tion 2 4 2) in two dimensional screen space as opposed to three dimensional ob-

CHAPTER 4 MICROTRACE 109

ject space The 1dea 1s to impose a rectangular grid on the screen and to associate
with each rectangle a hst of objects that are partially/completely contained 1n
that rectangle Testing a ray for intersection with the scene then involves deter-
mining the rectangle to which the pixel spawning the ray belongs, and testing the
ray for intersection with the associated hst of objects for that rectangle Since,
as mentioned earlier, all four optimizations can be used either together or inde-
pendently, any of the other optimizations can be used to speed up the testing of
the ray with this abbreviated list

Micro Trace uses a fixed grid size of 20 cells horizontally by 20 cells vertically
regardless of the size of the screen Consequently, the larger the screen, the greater
the number of pixels associated with each cell The grid 1s implemented as a 20220
array of pointers to linked hists, with each element of a linked hst containing a
single pointer to an object whose extent overlaps the cell, fig 4 9 While storing
the gnd as an array means that the number of cells 1s fixed (changing the number
requires re-defining the array dimensions in the source code and recompiling) 1t
does have the advantage of providing fast and easy access to the object pointer hst
for a given pixel, which simply involves using the pixels coordinates as an index
into the array Alternative structures which provide a more flexible approach for
implementing the grid are discussed i section § 2 1

A
abject
Hiat

grid element
pointer list

grid amay of
pointers

Implementation of GRID using array of pointers to linked lists

figure 49

The grid 1s generated by scanning the list of objects once for each cell,
generating the linked list of pointers, and then setting the corresponding array
entry to pomt to the list Cells that do not contain any objects have a NULL
pomter 1n their corresponding array entry In determiming whether or not an
object overlaps a cell, the objects screen extent 1s used instead of its bounding
volume Although this will sometimes give a less accurate approximation as
to whether an object overlaps a cell than if the the objects screen projected

CHAPTER 4 MICROTRACE 110

bounding volume were used (extents generally contain a larger percentage of
void space), the former 1s a less expensive test to perform In addition, since
the Grid optimization would normally be used 1n conjunction with the Extents
optimzation, the computational expense of generating the grid 1s further reduced
as object extents will already have been generated

4.7.5 Sortlist

Suppose that, instead of having to test a ray for intersection with with a lst
of objects in random order, the objects in the list were presented in the same
order 1n which they are encountered by the ray The first intersection of the ray
with such a hist would then be guaranteed to be the closest one, so as soon as an
intersection 1s found, the remaining objects in the list need not be tested This 1s
the general 1dea behind another original optimization employed by Micro Trace,
called Sorthst

Before ray tracing commences, bounding volumes are calculated for each
object The closest and furthest Z coordinates of each from the onigin of the ray,
are calculated and stored in the znear and zfar fields respectively of the object
structure (see table 4 1) The terms closest and furthest are used n place of
mmmum and maximum since, from fig 4 10, depending on the direction of the
primary ray, Z,,, could be either the closest or the furthest from the ray origin

//’]
Ray Oirection

bounding volume

Zmax Zmin

—
2Znear 2tar Y
View Plane z
X

(ray origin)

A case where Znear is equal {o Zmax instead of Zmin

figure 410

The hinhed hst of objects presented to MicroTrace is then sorted into as-
cending order of znear coordinates by rearranging the links in the list, a function
which 1s performed by an efficient sorting algorithm for linked lists that requires

of the order of Nlog N comparnisons (where N 1s the number of objects 1n the
list) [ERDES9]

CHAPTER 4 MICROTRACE 111

Since this list represents only an approximation to the order in which a ray
will encounter the objects, as illustrated 1n fig 4 11, 1t 1s unsafe to cease testing
objects 1n the list as soon as an intersection 1s found However, given Z, the
Z—coordinate of the closest intersection found 1n processing the list so far, 1t 1s
always safe to cease testing as soon as an object 1s encountered whose znear
coordinate lies further from the ray origin than Z,

SCV Znear zlar

A

Al (ey £ AR A
3

&3
ﬁf

Znear 2tar

ray
origln

Ray

® § A Araa

Even though object B lhes closer to the ray ongin than A
the ray intersects object A at a closer point

figure 411

COST AND PERFORMANCE The cost of implementing the sorting opti-
mization consists of the cost of initially generating the sorted hist of objects, plus
the cost per ray of testing the znear of each object with Z, This latter cost 1n
turn will depend on how soon a safe exit point 1s reached 1n the list of objects
The conditions for optimal performance of Sortlist would be a scene where there
1s hittle or no overlapping of objects along the Z—axis (overlappingon X and Y
axes would have no effect) This 1s 1n contrast to the Extents optimzation, where

overlapping along the Z-—axis has no affect on performance but overlapping on
the X and Y axes does

4.8 Presentation of Results

This section evaluates the performance of each of the four optimizations outlined
above by presenting and analysing tracing times and other statistics for two test
images generated by MicroTrace Photographs of the two images, a scene of
snooker balls and a chemucal lattice, are shown mn figs 4 12 and 4 13, along with
coloured diagrams illustrating the grid cells and object extents (figs 4 14 and

415) :

CHAPTER 4 MICROTRACE 112

4.8.1 The Test Images

Snooker Balls Figure 4 12 shows an image of a set of snooker balls with the
viewer situated behind and above the pack of fed balls, looking down the table
The scene consists of 253,440 pixels and contains 21 objects, each one a sphere
The degree to which object extents overlap each other as well as their distribution
among the gnid cells (two factors which affect the efficiency of the Extent and
Grid optimizations) can be seen from fig 4 14a, which illustrates the cells of
the grid and the object screen extents? as they would appear to MicroTrace In
addition, the degree of overlapping of the znear and zfar coordinates of the object
bounding volumes, a factor which affects the efficiency of Sortlist, 1s illustrated
n fig 4 145, which shows the bounding volumes when orthographically projected
onto the z2-plane ¢ when viewed from above

Lattice Figure { 13 shows the lattice scene, which consists of 54 objects —
27 spheres and 27 cyhnders The number of pixels for this scene (223,680) is
different from that of the snooker balls by virtue of the fact that the program
which generated the scene automatically calculates a window on the view plane
that 1s just sufficient to enclose the scene and adjusts the specafied viewport to
maintain the correct window/viewport ratio As for the snooker scene, fig 4 15a
lustrates the gnd cells and object extents and fig 4 15b shows a plan view of the
scene

4.8.2 Explaination Of Terms

The results of tables 4 3 and { { were gathered by tracing each of the lattice
and snooker 1mages six times — once with no optimizations active, once with all
optimizations active and once with one of each of the four optimizations active
The derivation and meaning of each statistic 1s outhned 1n table 4 2

The first two statistics of each table, “rays traced” and “rays intersected”
are really only relevant to cases where the Pixelbuffer optimization 1s active
The value of “rays generated” would represent the number of pixels that had the
fillcolour after the Pixelbuffer preprocess (section 4 7 2), while “rays intersected”
would represent the percentage of those pixels whose rays intersected an object
and therefore provides an indication of the void space contained in the projected
bounding volumes — the higher the percentage, the lower the amount of void
space

2The extents are outlined in red and filled 1n yellow for clanty

Figure 4.12: Snooker scene generated by MicroTrace

JOVYL04OIN ¥ Y31dVHI

Figure 4.13: Lattice scene generated by MicroTrace

JIVYLOUOIN ¥ 431dVHO

CHAPTER 4 MICROTRACE 115

STATISTIC DESCRIPTION

rays traced o % of pixels for which a ray was generated
rays intersected | @ % of generated rays which intersected some object

R-O Tests -
per ray e Average no of ray-object tests per ray
total e Total no of ray-object tests m milfions

% reduction | ¢ Reduction in required no of ray-object tests as a % of
that required to test every ray with every object

Time -
preprocess e Time to calculate nverse transformation matrices, sort ob-
ject list, calculate extents eic
Total e Ray tracing time 4+ preprocess time (hh mm ss)
% N O time o Total time as a % of non-optimized time

Table 4 2 Description of results terms

In relation to ray-objects tests, the tests per ray, total tests and percentage
reduction, 1illustrate from different perspectives, the overall effectiveness of the
active optimization(s) 1n reducing the number of required ray-objects tests which,
as can be seen from the tables, has the greatest bearing on speeding up tracing
times Also 1n relation to ray-object tests, the percentage of tests resulting in
an 1ntersection, “% hits”, gives an indication of the efficiency of the Extents and
Grid optimizations (sections 4 73 and 4 7 4) at limiting ray ntersection tests to
objects with a high probability of being hit, and of the effectiveness of the sorting
of the Sorthist optimuzation (section 4 7 5)

4.8.3 Discussion Of Results

From a glance at tables 4 2 and 4 2, which hst the statictics for each optimiza-
tion 1 order of decreasing rendering time, 1t 1s clear that Extents provides the
greatest time savings for both 1mages and that no optimuzation 1s slower than the
unoptimized time Note however that the order of optimizations 1n both tables
1s different — Grid 1s the second slowest optimization for the lattice whereas

CHAPTER 4 MICROTRACE 116

Grid & Extents (left) and plan view (right) for SNOOKER image
Figure 4.14 (a) and ()

SNOOKER BALLS — » 21 objects, 253440 pixels

Ogtimizations
STATISTIC none Sl b Gd Ex All

rays traced 100.00% 100.00% 4957% 100.00% 100.00% 49.57%
rays intersected 36.99% 36.99% 74.62% 3699% 36.99% 74.62%

R-0 Tests
Ber ray 21.00 16.85 21.00 8.77 0.98 127
o hits 1017% 9.18% 566% 1356% 60.13% 58.83%
total 530M 42TM 264M 222M 025M 016 M
% reduction 000% 1976% 5043% 5824% 95.34% 97.01%
Time
prreprocess 0 sec lsec 7sec 2 SeC 0 sec 7 SeC
otal 4:35:06 3:48:18 2:22:26 2:02:55 00:30:51 00:22:04

%N.0. time 100.00% 8299% 5176% 4468% 1121% 8.02%

Table 4.3: Snooker Scene Statistics.

CHAPTER 4. MICROTRACE

Grid k Extents (left) and plan view (right) for LATTICE image
Figure 4.15 (a) and (b)

LATTICE — »54 objects, 223680 pixels
Ogtimizations
STATISTIC none d Pb Ex Al

rays traced 100.00% 100.00% 100.00% 6352% 100.00% 63.53%
rays intersected 41.58% 4158% 4158% 6546% 4158% 65.46%

RO Tests
per ray 5400 44.99 3507 54.00 2.09 2.43
o hits 450% 403% 376% 186% 3052% 34.98%
total 12200M 1006 M 784M T767TM 04TM 034 M
% reduction 000% 1669% 3506% 3648% 96.13% 97.14%
Time
reprocess 1 sec 2 SeC 2sec 16 sec 2sec 17 sec
otal 12:35:16 10:53:38 8:07:39 7:59:17 00:55:43 00:41:50

%N.0. time 100.00% 86.54% 6457% 6346% 7.31% 553%

Table 4.4: Lattice Scene Statistics.

CHAPTER ¢ MICROTRACE 118

Pixelbuffer 1s for the snooker balls In both cases however, Sortlist 1s the slowest
optimization, though 1t gives a greater saving for the snooker balls than for the
lattice These and other interesting aspects of the tesults are further analyzed
below under the headings of their respective optimzations

Extents From both results tables it 1s clear that Extents gives a far greater
reduction 1n tracing time than any single other optimization — the time for the
snooker balls being reduced to just over 11% of the unoptimized time and that of
the lattice to just over 7% It can also be seen that the “% hits” for the snooker
balls, at 60 13%, 1s almost twice that for the lattice, 30 52% The lower figure for
the lattice 1s probably a result of the size and orientation of the cylinders, which
causes their extents to contain a larger amount of void space and consequently
results 1n a greater number of non-ntersecting rays having to be tested for these
extents

It 1s interesting to note however that 1n spite of this fact, and the fact that
there 1s greater overlapping of extents (compare fig 4 14a with 4 15a), Extents
produces a greater saving 1n rendering time for the lattice scene This 1s probably
due to the shghtly larger reduction i ray-objects tests for this scene, 96 13%
compared to 95 34%, and the larger number of objects {54 aganst 21) though
the 1ssue 1s clouded somewhat by the fact that the cylinders 1n lattice scene have
a more expensive ray-intersection test than the spheres so figures for reductions
1n ray-object tests are not as straight forward as for the snooker scene, where all
objects have the same test cost

Pixelbuffer In section 4 7 2 1t was outlined how the saving from Pixelbuffer 1s
related only to the number of fillcolour pixels and 1s independent of the number
of objects 1n the scene This fact 1s confirmed from the figures in the results
tables where, for both 1mages, the sum of the “rays traced” percentage and “%
reduction” 1s 100, indicating the relationship of equation { 8 In addition, the
rendening time, expressed as a percentage of the unoptimized rendering time, 1s
almost proportional to the “rays traced” figure which, as outhned above, indicates
the percentage of pixels that had the fillcolour after the Pixelbuffer preprocess
A comparison of the “rays intersected” statistic for both images shows that a
higher percentage of rays were intersected mn the snooker scene, indicating that
the projected void area (on the view plane) of the bounding volumes for this scene
were, on average, less than those in the lattice scene Note that the significantly
longer preprocess times for this optimization 1s, in both 1mages, a result of the
time taken to draw the filled polygons of the bounding volumes on screen

Grid The performance of the Grid optimization can be seen from the tables
to be better for the snooker than for the lattice scene A look a fig 4 I14a and

CHAPTER 4 MICROTRACE 119

4 15a shows that the reason 1s probably due to the greater degree of overlapping
in the object extents for the lattice scene, resulting 1n a larger number of objects
being associated with many cells In addition this scene has a much smaller
percentage of empty cells It can be seen from the tables too, that the number
of ray-object intersection tests per ray 1s greater, as a percentage of the number
of objects 1n the scene, for the lattice image — again, this 1s probably a result of
the greater overlapping and dispersion, over the grid area, of the object extents
These observations, together with the fact that the percentage of ray-object tests
that prove positive (“% hits”) 1s significantly lower for the lattice seems to suggest
that smaller cells, or a distmibution of objects over some sort of hierarchical cell
structure (section 5 2 1) mught prove more benefical for the lattice scene

Sorthst In both images, Sorthist produces the least reductions in rendering
times of any of the optimizations but, 1n spite of this, still manages to render the
snooker 1mage 1n just under half the unoptimzed time, with a figure of just over
86% for the lattice A look at fig 4 14b shows that there 1s little overlapping of
znear and zfar coordinates for the snooker scene In examuning fig 4 156 however,
which appears to show httle overlapping, 1t must be remembered that there are
1n fact two simular tiers of objects directly below the visible one shown So, while
overlapping within the three horizontal tiers 1s small, for the scene as a whole 1t
1s significantly greater than for the snooker scene — a fact indicated not only by
a comparison of percentage rendering tiumes but also by a lower percentage of ray
hits and a lower percentage reduction of ray object intersection tests

Overall From the tables, 1t 1s celar that the four optimizations, when employed
simultaneously, significantly reduce rendering times for both images — the lattice
scene takes only 5 53% of the unoptimized rendering time and the snooker scene
just 802% A look at the “% hits” statistic however, which 1s 34 4% for the
lattice and 58 83% for the snooker balls, combined with the fact that over 90%
of the above reductions in rendering times results from the Extents optimization,
reveals that there 1s room for yet further optimization, particularily in the other
three optimizations Ways 1n which this can be achieved, along with suggestions
for additional optimizations, are outlined mn section 5 2 1

4.8.4 Results For Other Machines

During the course of this research, microcomputers with much greater calcu-
lating capabilities became available From the ray tracing times® and technical

3The times given are tracing times for both 1mages using the Grid, Extents and Sortlist
optimuzations, with no screen of file output

CHAPTER 4 MICROTRACE

specifications for these machines (table 4 5) 1t can be seen that up to a ten-fold
speed increase on the AT was achieved by some This can only lead one to imag-
ine where ray tracing will lead 1n the future, as yet more powerful and faster

machines become available — a prospect discussed 1n section 5 3

Tracing Time
Machine Specification Snooker | Lattice
Processor co-processor | min sec | min sec
IBM AT 80286 6MH:z 80287 2210 41 55
IBM PS-2 80386 16 MH:z 80387 346 631
Sun 3861 80386 25 MHz 80387 220 408
Ohwvett: 386 || 80386 25MHz 80387 204 334

Table 43 Tracing Times For Various Machines

Chapter 5

Conclusions & Further Work

5.1 Conclusions

It 1s clear from the results of section 4 8 that current microcomputers are well
capable of handling the massive computation involved 1n generating ray traced
images which, only a few years earlier, would have been the sole domain of main-
frame and super computers The ever increasing speed and power of these micro-
computers (1n the duration of this research, a ten-fold speed increase occurred,
table 4 5) will allow more complex and realistic umages to be generated, while
their decreasing cost will ensure a wider base of use and application of the area
realistic 1mage synthesis, and consequently of ray tracing While 1t 1s difficult to
make future predictions regarding an area as rapidly expanding and developing
as computer graphics, 1t does not seem unreasonable to expect that in the fore-
seeable future, the generation of reabstic images will be as available and standard
a use for microcomputers as desktop publishing 1s today

5.2 Future Work

The following sections outline the incorporation of several additional features
to MicroTrace that will further enhance and extend its rendering and trace-
speed capabilities The enhancements are discussed either in section 521 o1
section 5 2 2, depending on whether or not their implementation would require
modification of the ray tracing algorithm on which the raytracer 1s based

121

v

CHAPTER 5 CONCLUSIONS & FURTHER WORK 122

5.2.1 Enhancing Micro Trace

This section outlines several recommendations for further enhancing the speed
and performance of MicroTrace, which do not require modification of 1its ray
tracing algorithm or alter its nature as a primutive instancing rendering system

OPTIMIZING THE OPTIMIZATIONS While it 1s clear from section 4 8§
that the four optimzations employed by Micro Trace, Pwelbuffer, Eztents, Grid
and Sorthst, signmficantly improve rendering times, further optimzation should
still be possible from finer tuning of four, as well as from the addition of new
optimizations

Extents The Extents optimuzation (section 4 7 3), which at present stores each
object’s extent 1n the object structure itself, could be modified to incorporate
hierarchical extent information either in a separate structure or in a modified
object list structure The addition of a second pointer field to the object structure
of table 4 1 would allow for a two dimensionally structured object list which could
be fashioned into some form of hierarchy either by the user or automatically, as
a preprocess to tracing

Pixelbuffer The Pixelbuffer optimuzation (section 4 72) which at present
fills each object bounding volume 1n a single “fill” colour, could be modified
to a simphfied item buffer of the kind implemented by Weghorst [WEGHS84]
(section 2 4 §) by filling each volume 1n a unique colour If, as in the Sorthst
optimzation, the bounding volumes were sorted on the basis of theirr znear co-
ordinates before being filled, bounding volumes further from the ray would be
overwritten by closer obscuring ones If each bounding volume could then be
filled 1n a umque colour, the colour of a pixel would be a direct indication of the
bounding volume closest to the ray origin for that pixel

While there 1s still no guarantee that the object enclosed 1n this bounding
volume 1is the closest one intersected by the ray, some objects can still be elim-
mated from the search, since only those behind the bounding volume mapped
onto the pixel have to be tested In a case where there were more than 255
primutives however, bounding volumes would have to share colours so, each pixel
colour, mnstead of corresponding to a smgle bounding volume, would correspond
to the group associated with that colour Such a group colour scheme could be
used 1n conjunction with the hierarchy scheme above to directly 1dentify various
groups of the hierarchy without having to search the hierarchical structure

Grid Increased performance from the Gnid optimzation (section 4 7 4) could
probably be achieved by using a more. flexible structure than the rigidly imposed

CHAPTER 5 CONCLUSIONS & FURTHER WORK 123

20 x 20 cell array structure currently implemented This could involve either
allowing a dynamucally determined number of cells horizontally and vertically by
implementing the grid as a two-dimensional linked list structure, or more flexible
still, a quadtree structure generated along the lines of that used by Gervautz
[GERV86] to generate temporary object trees (section 3 £ 4)

ADDITIONAL PRIMITIVES The set of four primitive types currently
implemented by MicroTrace (cube, sphere, cylinder, cone) could be augmented
by the addition of several new primitive types The addition of a new primutive
type requires munor code modification and primarily involves the inclusion of
a function that will test a ray for intersection with the primitive, returning a ¢
value and surface normal if it does The addition of a torus primtive for example,

defined by -

surface equation bounds test

(X2+Y?+22°+1-r2?| NONE
—4(X?+Y?) =0

would involve the inclusion of a function that could solve the fourth order equation
1in ¢ produced by substituting the ray equation into the above surface equation,
along with two minor modifications — the inclusion of the new primitive type’s
name 1n the list of available primitives, and a statement 1n the ray intersection
function to call the newly added ray-torus intersection function whenever a torus
1s encountered 1n the object lList

ANTIALIASING As outlined 1n section 2 8 3, ahasing 1s a “noise” effect that
can often manifest 1tself in graphics images and have a degrading affect on 1mage
quality While the incorporation of any of the antialiasing techniques described 1n
that section would provide MicroTrace with some measure of protection against
the damaging effects of aliasing, given the microcomputer environment and mem-
ory hmitation on which Micro Trace currently runs, the method described by fig-
ure 2 9 would seem the most appropriate, since the additional antialiasing rays
are shared among adjacent pixels

NEW OPTIMIZATIONS At present, all four optimizations employed by
Micro Trace are configured to optimize for primary rays since, at present, the
only secondary rays traced are shadow rays However, the inclusion of some form
of optimization that would be applhcable to secondary rays would benefit tracing
times for images where a user has speafied the incorporation of shadows into the

CHAPTER 5 CONCLUSIONS & FURTHER WORK 124

image One method would be to explicitly store each object’s bounding volume
1in the object structure, allowing secondary rays to be directly tested against
the bounding volume to determune if the object 1nside needs to be tested As
outhned 1n section 4 7 1 however, storing the bounding volume 1n the object
structure would result mn a 50% increase 1ts size

A more economical method would be to store a 3-dimensional rectangular
parallelpiped that encloses the bounding volume This would require storage for
just two XYZ coordinates, as opposed to eight for the bounding volume, but
would contain a greater void area, resulting 1n a larger percentage of rays that
do not intersect the object, intersecting the bounding volume Alternatively,
spherical bounding volumes could be used and stored as just two floating point
values, a center and radius Another alternative would be the implementation of
a space subdivision scheme along the hnes of section 2 4 2 — a umiform space
subdivision would probably be the most straight forward

5.2.2 Extending MicroTrace

This section outhnes two extensions to Micro Trace that would require some mod-
ification of the ray tracing algorithm for their implementation The first, the
incorporation of reflection and refraction 1n screen 1mages would further improve
the realism of scenes traced by MicroTrace, while the second, the extension of
the object representation scheme from a primitive instancing to a CSG represen-
tation, would enlarge the range and complexity of solids that could be handled

REFLECTION & REFRACTION The method currently employed by
MicroTrace to calculate the colour and intensity of a pixel, 1s to fire a single ray
through the pixel into the scene and apply Phong’s highting equation [BUIT75]
of section 1 72 at the intersection point of the closest ray-object intersection
While accounting, to a reasonably accurate degree, for the ambient, diffuse and
specular reflection from the specified point on the object, the equation 1s apphed
devoid of the objects context mn the overall scene Consequently, the reflection
of one object 1n another, or the incorporation of transparent objects cannot be
modelled 1n the final screen image Whitted’s extended lighting model [WHITS80]
however provides a method of accumulating the global illumination 1nformation
necessary to account for these effects As outlined in section 2 8 2, the model
proposes that on striking an object, a ray be divided into 1ts specularly reflected
and transmutted rays These rays in turn are recursively traced to see if they
strike any objects, allowing the illumination information for the original ray to
be built up in the form of a binary tree

CHAPTER 5. CONCLUSIONS & FURTHER WORK 125

The incorporation of this model into Mcro Trace would primarily involve
making the ray-scene intersection function recursive (the ray-primitive intersec-
tion functions would remain unaltered) so that on striking an object the reflected
and refracted rays are recursively traced and the intersection information placed
in an appropriate binary tree structure. The colour and intensity of a pixel would
then be determined by applying Phong’s lighting equation to each node of the
tree, starting with the leaf nodes and working recursively up to the root node,
which would represent the final colour of the pixel. The addition of a transmis-
sion coefficient and a refractive index field to the object structure would also he
required for calculation of the direction of a refracted ray through a transparent
object.

CSG REPRESENTATION At present, McroTrace provides a set of four
primitive object types with which a user can build up a scene through the appli-
cation of scaling, rotational and translational operations on the primitive types,
using the matrix transformation operations in the user interface module. While
these transformations provide a means of generating a variety of shapes from just
four basic ones (e.0. a rectangular block of arbitrary dimensions can be generated
by appropriately scaling the cube primitive), the ability to combine solids using
the union, difference and intersection hoolean operations of section 3.2.1 would
significantly increase the range and complexity of solids that could be generated.

Extending the current primitive instancing representation scheme to a CSG
representation would require either a binary tree or DAG solid description scheme
in place of the current linked list description. In addition, the ray-solid intersec-
tion function, which at present involves a linear search through the linked list,
would have to recursively search the binary tree (or DAG) description, starting
with the leaf nodes and working recursively up to the root node (section 3.3),
combining the ray classifications at each node as outlined in section 3.3.4 I*1
order that the classifications could be correctly combined, the ray-primitive in-
tersection functions would also have to be modified to return a list of all values
of t for which the ray intersects the primitive — they currently return only the
closest intersection point,

5.3 Ray Tracing — The Future

Ray tracing, despite its large computational overhead, and its labelling by some as
a brute force method, looks set to continue as the dominant force in the synthesis
of realistic computer images. At the same time, the generation of photorealistic
computer images is no longer of purely academic interest but is gradually moving

CHAPTER 5 CONCLUSIONS & FURTHER WORK 126

out 1nto the everyday world, a fact that 1s emphasized by the recent announcement
of Renderman by Pixar Inc which 1s a new proposed standard interface between
three-dimensional geometric modelling systems and photorealistic rendering sys-
tems [APOD89] The separation of these traditionally integrated modelling and
rendening operations, together with a standaid interface between the two, should
mean that 1n the future 1t will be possible to independently select modelling and
rendenng systems thereby making 1t simpler to upgrade a system as more realistic
renderers become available

Ray tracing 1s probably capable of dealing with more of the many 1ssues
of reahstic image synthesis incorporated into Renderman, such as motion blurr,
antialiasing, shadows, texture mapping and programmable shading languages,
than any other advanced rendering system currently available In fact, a vanation
of ray tracing, known as distributed ray tracing and outlined 1n section 2 5 1, has
already been developed and used by Porter [PORT84] to generate one of the first
computer 1mages to pass as a photograph

With the major advances 1n the speed and complexity of graphics and micro-
processor hardware 1n the past decade, this state of the art in computer graphics
research 1s no longer the confine of those fortunate enough to have access to large,
expensive mainframes but 1s rapidly becoming more widely available to the large
base of microcomputer users — a fact that 1s reinforced by the recent appearance
of ray tracing packages for microcomputers such as the Acorn Archimedes and
the Commodore Amzga

Already, the calculating power of many microcomputers 1s approaching and
even exceeding that of vastly more expensive mainframes and seems set to in-
crease still further 1n the near future Intel for example have recently announced
the 80860 40 MHz RISC processor (Reduced Instruction Set Computer) with a
built 1n maths coprocessor capable of 17 mullion floating point operations per
second, giving 1t about 40 times the computing power of the machine on which
this research was carried out [HENN89] At the same time, graphics displays
with resolutions of 800 x 600 pixels that can display up to 256 simultaneous
colours from a palett of over 16 maillion are being fitted as standard to these
increasingly powerful machines These two developments should see the advent
of better, faster and more widely available ray tracing programs in the future,
thereby giving 1t a wider base of application In fact 1t would not be over ambi-
tious to say that packages for the synthesis of realistic images will be as available
and varied on future microcomputers as those for desk top publishing are today

In parallel with these hardware developments, recent ray tracing research
has resulted 1n algonthms capable of taking full advantage of the powerful micro-

CHAPTER 5 CONCLUSIONS & FURTHER WORK 127

computers of the future For example, the recent advent of microcomputers such
as the Atar1 ABAQ, which has not just one, but up to 12, powerful transputer
processors executing in parallel, presents exciting possibilities for the implemen-
tation of some of the parallel ray tracing algorithms outhned in section 2 4 4
and seems to be a promusing avenue in the ultimate quest for real-time, or near
real-time ray tracing

Another interesting possibility 1s that of a hardware implementation of ray-
object intersection tests Pulleyblank examines just such a possibility 1n his paper
on the feasibility of a VLSI chip for ray-tracing bicubic patches His estimates
mndicate that such a chip could calculate ray-patch intersections at a rate of one
every 15ms, or about 67 per second Given the fact that rays can be traced
independently of each other, several of these chips operating in parallel would
constitute a very powerful ray-tracing engine In fact, judging by the current
trend 1n hardware implementation of “conventional” graphics algorithms such
as line drawing, polygon shading and z-buffering, graphics cards with in built
hardware facilities for ray tracing would not seem too much of an impossibility
1n the future

Appendix A

Source Code

/= FUNCTION HEADER FILE

This file contains the function prototype declarations for all
the functions of the raytracer, from the following modules -

RTRACE C SHADE C
RAYINTER C PGADPEED C
OPTIMIZE C BUILD C
USERFACE C

o/
/e
} RTRACE C MODULE

./

void
transformvector (double (*m)[4],double »vec,double sinvvec),
transformpoint (double (*m){4],double ®pt,double *invpt),
raycast (struct DBICT *scene,int x,int y,char *c),
testray (struct 0BJCT #0,double #pt,double +dirm,

double #nrml,double *dst),

generateray (int x,int y,doudle sp,double =d),
pPreprocess (struct OBICT » #scene),
raytrace (stract OBJCT = sscene),

- rgbtrace (struct OBICT #scene),
normalize (double sv)

int

linecompress (unsigned char #bufin,unsigned char sbufout,
int y,int x1, int x2),

inshadow (struct OBJCT escene,struct OBJCT #obj,
doubls #pt,double »dirn,double tl),

struct OBICT +
nextobject (struct OBJCT so,struct nde * #*n),

/e

| RAYINTER C NODULE

o/

void

tracecube (double ¢pt,doudble *dirn,double *nrm,
double *nearest),

tracesphere (double *pt,doudble #dirn,double *nrm,
double snearest),

tracecylinder {(double »pt,double *dirn,double *nrm,
double #nearest),

tracecone (double *pt,double *dirn,doudble *nrm,
double *nearest),

ant
stracecunbe (doudble *pt,doudble *dirn,double tl),
stracesphere (double *pt,double sdirm double tl),
stracecylinder (double *pt,double #dirn,dounble tl),
stracecone (double *pt,double sdirn,double tl)

FUNCTION H

/*

OPTIMIZE C MODULE

./

void

transformvolume
calczdepth
calcextent
makegrid
projectvolume

cowpare

struct nde *

getnode

struct 0BJCT »

(double (sm)[4] ,double
(double (sv){3],struct
(double (»v)[3],struct
(struct OBJCT #scemne),

(double (ev)[3]),

(»v)(3],double (»x}[31),
DBICT #o),
OBICT o),

(struct DBICT #a,struct OBJCT *b),

(ant 1,1nt 3),

sortlst (struct OBICT #p,int (cdecl scompare)()),
/*
| SHADE C NMODULE
./
voxd
pgashade (unsigned char sc,atruct OBICT *obj,doudbla *ray,
double #lght,double ®nyml,int x,int y,int shad),
rgbshade (unsigned char #c,struct UBJCT #ob),double #ray,
double *lght,double *nrml,int x,int y,int shad),
/e
! PGADPEND C MODULE
74
void
pgatrace (struct OBJCT #scene),
generatergbup {ant c,int r,int g,int b),
generatergbdown (ant c,int r,int g,int b),
rendervolume (doudble (»v)([31,int c),
loadpgafile {char *stx),
initpga (void),
quitpga {void),
int
readcolors {char *str),
savecolors (char #str),
/e
| BUILD C MODULE
of
void
matscale (double (+m) (4] double sx double sy double s2)
mattranslate (double (sm){4],doudblse tx,double ty,double tz),
ptscale (double *p,doudble sx,double sy,double sz),
pttranslate (double #p,double tx,double ty,double tz),
matrotx (double (*m)(4],double deg)
matroty {doudble (+m)[4],doudble deg),

FUNCTION H

matrotz (double

ptrotx (double

ptroty (double

ptrotz (double
int

inversematrix (double

struct O0BICT =

(*m) (4] ,doudble deg),
*p,doudble a),
*p,doudble al,
sp,double a),

(sc) [4] ,double (sb}[4]),

getobject (vo1d),
/e
{ USERFACE C MODULE
./
int
setvindow (double x1,double x2,double yi,
double y2),
setviewport (1nt x1,int x2,ant yi,int y2),
setlightsounrce (double x,double y,double z),
setprojectiondirection (double x,double y,double z),
setlighttype (enum lighttype 1lght),
setprojection (enum projtype proj),
setformat (enum format frm),
setviewplanedistance (double dist),
setambientlight (double amb),
setfilecutput (char estr),
setcompression (1nt cmp),
setscreen (1nt scr),
setbackgroundcolor (int col),
setfillcolor (int col),
setshadous (int shd),
getdither (int dth),
setpixelbuffer (int buf),
setsortlist (int srt),
setextents (int extm),
setgrid (int grd),
int
readvievport (int sx1,1nt *x2,1nt *y1,int *y2),
readprojectiondirection (double *x,doudble *y,double *z),
readlightgource (double #x,donble #y,double sz),
readwindow (double *x1,double *x2,
double »y1,double *y2),
readlighttype (enum lighttype slght),
readprojection (enum projtype *proj),
readfileoutput (struct _iobuf »fp),
readformat (enum format sfmrm),
readviewplanedistance (double #dist),
readambrentlight (double *amb),
readcompression (1nt * cmp),
readextents (int sextn),
readscreen (1nt eacr),
readbackgroundcolor (1t ecol),
readfillcolor (int scol),
readshadous (1nt sshd),
readdither (int edth),
readpixelbuffer (1nt sbaf),
readsortlist (1nt ssrt),
readgrad (ant sgrd),

TYPEDEF H

/e

| This file contains the "typedef" declarations that define
| the various enumerative and structure types

s/

#define
#define
#define
$define
8defaine

/* TYPEDEF

INFIRITY 100000000 O
GRIDROW 20

GRIDCOL 20

om 1

OFF ©

DECLARATIOES

| The following global types are defined -

| lightytype --> enumerative type for defining point or

format

e . —— = Ams e =t e E— — - S — — G — - G- — — —— ——— — A W} Mmis Gmes M mmu wre S

directaonal light source

projtype --> enumerative type for defining parallel or

perspective projection

=-> enumertive type for definming ray tracing mode
i e red green blue (rgb) or Professional
Graphics Adaptor (pga) mode

OBJECTTYPE enumerative type for pramitive solid names

VECTOR 1x3 double array for vector I,Y,Z coordinates

POINT 1x3 double array for point I,Y,Z coordinates
MATRIX 4x4 double array for matrix transforms
EODE structure type used for forming linked list

of pointers to objects (see grid optimization)

next ==-> pointer to next node
ptr ==> polnter to primitive
0BJECT structure type for primitive definition ~
fields next =~=> pointer to next primitive

pPrimitive --> type of primitive
transform <~--> transformation matrix

inverse ==> ainverse transformation matrix
clr --> primitive color (0 15)

min, xmax ==> screen rectangle enclosing
ymin, ymax projected bounding volume

znear,zfar --> npearest & furthest Z coords of
transformed bounding volume,
v r t primary ray origin

ka, kd, ks --> ambient, diffuse and specular
reflection constants (should
add up to one)

per ~-> specular power constant

rnd --> roughness (0 2)

cuy ~--> c¢yan, magenta & yellow
reflaction ratios

./

TYPEDEF H

enum lighttype
enum projtype
enum format
typedef
typedef
typedef
typedef

typedef

typedef

{ laghtdirection, laghtpoint },

{ parallel, perspective },

{ xgb, pga },

enum {cube,sphere,cylinder,cone} OBJECTTYPE,

double
double
double

struct 0BJ

struct ande

VECTOR[3],
POINT(3],
MATRIX[4] (4],

cT {

{

struct O0BJCT #* next,

OBJECTTYPE
MATRIX
int

double

} O0BJECT,

pramitive,
transform,inverse,
clr,
Imin,Imax,ymin,ymax,
znear, zfar,

ka, kd, ks ,per,

nd,

cmy(3l,

struct nde * next,

OBJECT » ptr,

} HODE,

GLOBAL H

/s
| This file contains declarations of the various global flage, |
| parameters and variables used bty the raytracer |
s/
#include “typedef h”"
/s
} GLOBAL PARAMETER DECLARATIONS |
s/
extern int
fillcolor, /= £i1l color ./
background, /* background color */
vxl,vx2,vyl,vy2, /% viewport */
extern double
ambient, /% ambient light intensity »/
wxl, wx2, wyl, wy2, /* windov on viewplane =/
viewplanedast, /% viewplane distance from */
extern POINET
viewpoint, /% perspective viewpoint ¥/
light, /* light source o/
extern VECTOR - - -
projection, /* projection direction */
extern FILE »
outfile, /* output file for image s/
/e
| GLOBAL FLAGS |
./
extern int
PERSPECTIVE, /# => parallel projection »/
SHADDWS, /* ¥o shadows s/
DITHER, /% ¥o dither on pixels s/
FILEOUT, /¢ Yo output file generateds/
PGA, /* Generate PGA image =/
COMPRESS, /* Compreas PGA file formats/
SCREEX, /+ Cutput image to screen s/
POINTSQURCE, /* light interpreted as a =/
/* vector and not a point s/
EITENTS, /% Use extents ./
SORTLIST, /¢ Sort sceme list */
PIXELBUFFER, /* Use pixel buffer ./
GRID, /* Use grid ./
/*

GLOBAL VARIABLES)

*/

GLOBAL H

extern char

extern int

extern double

extern NODE »

extern POINT

nameof[4],

datherd[4][4],

xfacve, yfacvw,
xfacwv, yfacwov,

/*

/*

I/
/*

grid [GRIDROW] [GRIDGOL],

volume[4] (8],

/%
/*

string names of primitives */

4x4 dither matrix s/

viewport -> window I-ratio */
window -> vievport Y-ratio */

/* pointers to linked lists»/

8 vertex bounding volume &/
for each primitive type s/

BUILD C

/+ TRANSFURMATION MATRIX FUNCTIONS MODULE

This module contains functions for modifying a 4x4
transformation matrix to incorporate a translation, rotation or
scaling operation, 1in addition to functions <for translatang,
rotating or scaling an indivadual point

Functions -
inversematrix getobject
mattranslate pttranslate
matacale ptscale
matrotx ptrotx
matroty ptroty .
matrotz ptrotz

*/

#include <stdio h>

#include <malloc h>

#include <math h>

#include “typedef h" /#» structure and other typedef definitions+/
#include “functaon h" /¢ function prototype declarations ./

/+* MATRIX FUNCTIOES

The following functions are used to build up a transform matrix
for a primitive, comprising of tramslatior, rotation and scaling
operations which will transform it from 1ts own local coordinate

| |
| |
| |
| system into the world coordinate system, with a different |
| position, size and orientation |
t - {
| matrotx alter matrix to take in rotation about X aris |
‘ mtroty w 1] " [" « Y axis I
I matrotz " " " w " " z axis l
I }
| matscale alter matrix to take in scaling along X,Y,Z axes |
] |
| mattranslate alter matrix to take in translataon along X,Y,Z2 |
| i
| inversematrix Calculate inverse of a 4x4 matrix {
|)
| FOTE Since rotations are not commutative 21e the |
t order in which they are carried out ais |
| significant, there is a seperate <function for |}
] each aris {

s/

void matrotx (m,deg)

MATRIX m, /% transform matrix s/

double deg, /% degrees to rotate */

/e
| Modifies specified transform matrix, m, to take 1n a rotation by |
| deg degrees about the X axis (result returred in m)]

v/

{doudle c,s,rad,t[4],

t 21,

for (1=0, 1<4, 1++) /* used to help optamize the /

t[1] = m[1][1], /* matrix mmltiplication -/

BUILD C

rad = deg/S7 295779, /* convert degrees to radians =/
c = cos{rad),
s = sin(rad),

for (i=0, i<4, i+)

{ m[2101] = t[1]*c - m[1]1[2]es, /* modify matrix to take in #/
m(i)[2] = m[i1[2]sc + t[1]es, /% the rotation Optimize the */
} /+ multiplication by omitting */
/* columms of zeros */

void matroty (m,deg)
MATRII m,

donble deg,

/e

| Modifies specified transform matrix, m, to take in a rotation by |
| deg degrees about the Y axis (result returmed in m) |

./

{double ¢,s,rad,t[4],
nt i,

for (i=0, i<4, 1++)
t[i] = m[11(0],

rad = deg/57 295779,
¢ = cos(rad),
s = gin(rad),
for (i=0, 1<4, 1++)
{ n[1][0] = t[1)ec + m[1][2]*s, - -
m[i][2] = m[2](2]*c - t[1]es,
}

void matrotz (m,deg) /* similar to matrotx function above %/
MATRIX m,

double deg,
/*

{ Modifies specified transform matrix, m, to take 1n a rotation by |
| deg degrees about the Z axis (result returned in m) |

»/

{double c,s,rad,t[4],
int i,

for (i=0, i<4, i++)
t[i] = m[2][0],

rad = deg/S7 295779,
¢ = cos{rad),
8 = sin(rad),
for (im0, i<4, i++)
{ n(2]J[0] = t[1)*c - m{1][1]*s=,
n(1] (1] = m[2]{1]+c + t{1]es,
}

void matscale(m,sx,sy,sz)
MATRIX m, /* transformation matrix ./
double sx,sy sz /¢ scaling values for I Y Z axes =/

BUILD C

/*

| Modifies specified tramsform matrix, m, to take in scaling |
| (@ rt the origin) by factors of sx, sy and sz along the X, Y, |

| and Z axes respectively (result returned in m) {
./
{int 1,

for (i=0, 1<4, i++)

{ =[2][0] #= sx, /* modify matrix to take 1n */
m[iJ {1} = sy, /* scaling operations */
mn[11[2) »*= sz, /+ Order of performing the o/

} /* scaling operations unimportant */

void mattranslate(m,tx,ty,tz)

MATRIX m, /* transformation matrix s/
double tx,ty,tz, /+ translation values for X, Y Z axes #/
/e

| Modifies specified transform matrix, m, to take in translation |
| (wx t the origin) of tx, ty and tz units along the X, Y and Z |
| axes respectively (result returned in m) |

»/
{ant i,

for (i=0, i<4, i++) - .. e e .

{m(i1[0] += m[i][3]e*tx, /* modify matrix to take in */
n(11{1] += m(1][3]sty, /# translation operations s/
n(1][2] += m[i](3])stz, /* Drder of carrying out the +/
} /% translations doesn’t matter */

int inversematrix(c,b)
MATRIX ¢,b,

/*

| Returns in b, the inverse of the 4x4 transform matrix specified |
| in ¢ (vhich remains unchanged) The inverse is calcnlated by |
| performing on an 1dentity matrix, the same elementary ros |
| operations required to reduce matrix c to the 1dentity matrix |

o/

{double 4,

MATRIX a,

mt 1,j,row,found,
double tmp,

for (120, i<4, at+) /*» don’t want to alter matrix c =/
for (j=0, j<4, j)++) /* 80 copy to local matrix, a */
af2]{3] = cl1][j],

for (220, 1<4, 1++) /* anitialize b to 1dentity »/
for (3=0, j<4, j++) /* matrix s/
if (1 == j) b[11(j] =1 o,
else b{1}[3] =0 0

BUILD C

for (row=0, rou<4, row++)
{1¢ (a[rovw][row] '= 1 0)
{ if (alrow][row] '= 0 0)

{d = 1 0/alrov]row],

/*
/s
/*
/e

diagonal entry mot a 1 ? */
if not then, if entry not a s/
Zero, mltiply row by its &/
reciprocal to make a ome «/

for (i=0, i<4, i++)
{ alrowl[a] =4,
blrow][1] »= 4,

}
}
else /% if entry a zoro, then %/
{ /¢ search 1n colum belows/
found = 0, 1 = row+i, /¢ for non-zero entry s/
while (('found) 2k (1 < 4))
{
if (afal[xow] '=2 0) /* found one 7 »/
{found = 1, /¢ Then take reciprocal, */
d =1 0/al1])[xow], /* d, and add d times s/
/* this row to the one =/
for (3=0, <4, j++) /* above, to get a one in¢/
{afrow][j] += a4 » a[1][j], /¢ the required diagonale/
blrow] [j] += 4 » b[11[3],
}
}
i+e=1,
}
af (‘found) returm O, /* no non-zero entry in */
} /* column below => matrix »/
} /* not invertaible ./
for (imrow+i, i<4, i++)
{
if (al1][row] '= 0 0) /+ have a one 1n diagonal @/
- {d= -a[1][rov¥], /% 80 set all entries in s/
for (j=0, j<4, j++) /¢ col below to zero */
{ ali)[j] +=d » a[rowii;l,
b{i1[j] += 4 = d[rowl(j],
}
}
}
for (1=row-1, 1>=0, i--)
{
if (a[i]l[row]l *= 0 0) /% now set all entries ¢/

{d = -af1){xov],
for (=0, j<4, j++)
{ alil[] += 4 » a[roe](;],
b[21[3] += d « b[row] (3],

/* POIBT MAYIPULATION FUNCTIGNS

/e

/=

in col above to zero =/

indiacate success %/

The following functions can be used to

rotate, translate or

scale an individual point with reapect to the origin

!
|
i
ptrotx rotate point about X aris 1
ptrety , * Y axis I
ptrots . ' * Z ans t
ptscale scale point w r t origin |
pttranslate translate point v r t origin I

s/

11

BUILD C

void ptrotx (p,a)
POINT p,
double a,

{doudble c,s,rad,t{3],
int i,

for (i=0, i<3, i++)
t[i] = plal,

rad = (double)a/57 2975,
¢ = cos(rad),
s = sin(rad),

pl{1] = t[1]sc - t[2]es,
pl2] = t{2]sc + t[1]ss,

void ptroty (p,a)
POINT p,

double a,

{double c¢,s,rad,t(3],
int 1,

for (i=0, i<3, i++)
t[i] = p[a],

rad = (double)a/S7T 2975,
¢ = cos(rad),
.- 8 = sin(rad), -
plo] = t[0lsc + t[2]es,
p(2] = t(2]+c - t[0]es,

voad ptrotz (p,a)
POINT p,
double a,

{double ¢,s,xrad,t{3],
int 4,

for (120, i<3, i++)
ta] = p[al,

rad = {double)a/57 2975,
¢ = cos(rad),
s = ain(rad),
plo]l = t{0l*c - t[1]es,
pli]l = t(1)sc + t(0]ws,

voad ptscale(p,sx,sy,sz)
POINT p,
double sx,sy,sz,

{
PO *= sx, pli] s= sy, p[2] *= sz,
}

BUILD C

voad pttranslate(p,tx,ty,tz)
POINT p,
double tx,ty,tz,

{
plo] += tx,
pl1] += ¢y,
pl2] += tz,
}

/* OBJECT FUBCTIONS

| zzgetobjectzzz zzzzzuses malloc to get space for new OBJECT |
J structure and return poanter to 1t |

o/

OBJECT #getobject()
/e

| Returns a pointer to space allocated for new OBJECT structuxe |
| The transformation matrix 18 initialized to the identity matrix |
] and the mnext pointer field to BKULL |

./
{int i,j,
OBJECT »p,

p = (OBJECT #)malloc(sizeof(OBJECT)),
for (i=0, 1<q, 14+)
for (3=0, 3<4, j++)
iz (i == j) p~>transform(1]{3] =1 0,
else p->transform[i][{] = 0 0,
p->next = NULL,
p->pramitive ¥ sphere,
p->ka =1 0,
p>kd =0 4,
p->ks =08,
p->rnd = 0 8,
pP->psr = 20,
p=>clx = 0,
p->cuy (0] = p->emy[i] = p->amy[2] = 0 3,
return p,

}

13

USERFACE C

/% USER INTERFACE MODULE

| The functions contained in this module provide the user with a |
| means to read and change the various viewing parameters,
| optimizations and output options of the ray tracer

Parameter Setting Functions Flag

setprojectaondirection

setviewplanedistance

setbackgroundcolor
setambientlight
setlightasource
setfileoutput
setfillcolor
setviewport
setwindow

Parameter Reading Functions Flag

readprojectiondirection
readvievwplanedistance

readbackgroundcolor

readlightsource
readfileoutput
readfillcolor
readvievport
readwindow

¢ Other functions -~

generatergbdown
loadpgafilecom
generatergbup
loadpgafile
readcolers
savecolors
anitpga
quitpga

Setting Functiecns

setprojection
setlighttype
setshadows
setdither
setformat
setscreen
setcompression
setpixelbuffer
setextents
setsortlist
setgrid

Reading Functions

readprojection
readlighttype
readshadows
readdither
readformat
readscreen
readpixelbuffer
readsortlist
readextents
readgrid

* All of these functions interact directly with the PGA card
and are contained in the PGADPEND C module

]
|
|
|
|
|
|
I
|
|
|
|
|
i
|
|
|
|
|
|
| readambientlaight
|
|
1
!
|
!
l
|
|
|
|
]
|
|
|
|
!
|

s/

#1include <stdio h>
#1nclude "global A"
#1include “functaion h"

/% global parameters flags & variables #/
/* function prototype declarations »/

/+ PARANETER SETTIEG FUNCTIONS

Fanction

setprojectiondarection
sotvievplanedistance
setbackgroundcolor
setambientlight
setlightsource
setfileoutput
setfillcolor
setvievport

setwindow

The following functions each set one or more of the raytracer
viewing and lighting parameters -

Parameters Set

parallel projection direction
view plane distance from origin

background

color

ambient light 1ntensity

light source position or direction
output image to file

f1llcolor for bounding volumesa

vievport

vindow on viewplane

|
|
|
{
{
|
|
]
|
!
|
l
|
|
|
|
|
]
!
|
|
|
|
|
|
|
|
|
|
l
|
|
|
|
|
|
!
|
|
|
|

1
|
]
!
{
1
|
I
{
|
!
!
|
|

*/

14

USERFACE C

int setprojectiondirection(x,y,z)
double x,y,z,
/e

| Sets the direction for parallel projection to the specified IXYZ |
| darection through the global variable projection The default 1s |
| the direction (0,0,-1) ie orthographic projection i

s/

{
projection[0] = x,
projection[i] = y,
projection[2] = z,

}

int setviewplanedistance(dast)
double dist,
/e

| Default vievplane is the Z=0 plane This function changes 1t to |
| Z=dist plane by setting the global variable vievplanedist)

»/
{
viewplanedist = dast,

}

int setbackgroundcolor(col)
int col,
/*

| The global variable background 1s the color to which all pixels |
| that do not intersect any cbject are set (default=113) I

./
{

background = col,
}

int setambientlight (amb)
double anmb,
/

| Set ambient light intensity through global variable sambient |
| Default = 0 2 |

»/
{

ambient = amd,
}

ant setlightsource(x,y,z)
double x,y,z,
/*

| Sets the elements of the global variable light, which can be |
| interpreted as a point or a vector (see setlighttype below) |
| Default 1s (0,0,1) !

*/

{
light[ol = x,
light[1] = y,
laght[2] = 2z,

}

15

USERFACE C 16

int setfileoutput(str)
char satr,
/e

| Specifies that the raytraced image be sent to a file vhose name |
| is specified in str (default 18 no file output) |

*/

{
outfile = fopen(str,"ub"),
FILEOUT = ON,

}

int setfillcolor{col)
ant col,

/*

Fillcolor is tha color in whiach the transformed bounding volumes |
of the primitives are filled when using the paxelbuffer |
optimizataon It can be any color other than the background |
color (Defanlt is color 112) |

*/
{
fi1llcelor = col,

}

int setviewport(x1,x2,y1,y2)
int x1,x2,y1,y2,
/e - - - - -

| Screen viewport defined by the global variables (vxi,vyi) and |
| (vx2,vy2) the lower left and upper right coordinates Default 1s |
| (0,0) and (639,479), PGA maximum resolution |

./

{
vx] = x1, wvx2 = x2,
vyl = yi, vy2 =2 y2,

int setwindow(x1,x2,y1,y2)
double x1,y1,x2,y2,
/e

| window on viewing plane defined by the global variables |
| (wx1,vyl) and (vx2,9y2) the lower 1left and upper raght |
| coordinates respectively Default is (-100 100) & (-100,100) |

*/
{
wxl = x1, wx2 = x2,
vyl = y1, wy2 = y2,
}

USERFACE C

/* FLAG SETTING FUNCTIDES

The following functions

flags that control optimization, shadows etc¢

Function

|

|

]

|

|

| setcompression
| setprojection
| setlighttype
| setshadows

| setdither

| setformat

| setscreen

l

|

!

|

|

setpixelbuffer
setsortlist
setextonts
setgrid

Flag affected

perspective or parallel projection
pexspective or parallel projection
point or directional laght
1nclude/exclude shadovs

do/don’t apply dither matrix to pixels
salect PGA or RGB format

display generated image on screen

pixel buffer optimization on/off
do/don’t sort primitive list

extents optimization on/off
rectangular grid optimization on/off

each set cne of the raytracers global

./

1nt setcompression(cmp)

int cmp,
/=

encoding the original

method used can be found 1in the function runencode
raytracing module RTRACE C

If the COMPRESS flag 1s set and the output file 18 set to PGA |
format, a compressed image file 1s generated by run length |
image A description of the run encoding |
in the |

|

v/
{

COMPRESS = cmp,
}

int setproject:on(pro))
enum projtype proj,
/»

| Defines a perspective or parallel projection by appropiately |

| setting the global variable PERSPECTIVE to OF (1) or OFF (0)
parallel projection

| The defanlt is OFF 2ie

1
|

./
{
1f (proj == perspactive)
PERSPECTIVE = 0¥,
else
PERSPECTIVE = OFF,

int setlighttype(lght)

enum lighttype lght,
/e

lattezr as slightly leoss
since all light rays

The IYZ elements of the global variable light can be interpreted |
coordinates of a light source at the point (I,Y,Z), or as
vector in the direction of a light source at infinity

The |

expennsive, computationally, to medel |
are then paraliel Default is direction |

interpretion ie POINTSOURCE=0FF

./

17

USERFACE C

{

1f (1ght == laghtpoint)

}

POINTSQURCE = 08N,

else POINTSOURCE s OFF,

int setshadows(shd)
int

/s

./

int
int

/=

int setformat(frm)

shd,

If the global variable SHADOWS 1s set, shadows will be
incorporated 1into the raytraced image (This greatly increases
the time taken to render an image and so 1s OFF by default)

SHADOWS = shd,

setdither(dth)
dth,

If the global variable DITHER 1s set, a a 4x4 dither matrix 1is
applied to calculated pixel intensities (Default 1s OFF)

DITHER = dth,

enum format frm,

/»

./
{

}

Selects either PGA or RGB format for image In PGA format, the
image is displayed on the Professional Graphichs Display The
RGB mode does not generate a screen image but 1s used to affect
the output file format -

Output file format can be either rgh or pga (default 1s pga)

Pga zzzzBach pixel stored as onme byte representing a color 1m
the range O 255 which 1s used by the pga card a= an
index into a color table containing a 12-bit entry
whach determines the color actually displayed on the
screen

rgb 2zzzzEach pixel stored as three bytes, one for each of 1ts
red, green anrd blue intensities

if (frm == pga)

PGA = OB,

else

PGA = (FF,

int getscreen(scr)
int scr,

/»

|
i

| I£ the global variable SCREEN 1s set, the raytraced image w11l |

be displayed 1line by line on screen as it 18 generated
Default as OF

|
|

*/

18

USERFACE C

{
SCREEN = scr,
}
int setpixelbuffer(buf)
int buf,
/»
| If the global variable PIXELBUFFER 1s set, primitive bounding |
| volumes are rendered rendered on screem, filled 1in fillcoler |
| (another global variable), to reduce rendering time |
| Default s OF !
s/
{
PIIELBUFFER = buf,
}
int setsortlist(srt)
int srt,
/*
| I£ the global variable SORTIEG 18 mset, the list of primitives |
| passed to the raytracer is sorted in order of increasing |
| distance from the ray to reduce rendering time |
| Defanlt i=s 0N |
./
{
SORTLIST = srt,
}
int setextents(extn)
int extn,
/®
| I£ the global variable EXTENTS 1s set (=1), screen extents are |
| generated for each primitive to reduce rendering time |
| Default is OF |
+/
{
EXTERTS = extn,
}
int setgrid(grd)
int gxd,
/e
| If GRID, a global variable, 18 set, the screen 1s partitioned |
| into a set number of rectangles each of shich has associated |
| with it a set of pointers to primitives in the scene list whose |
| screen enclosures cross the rectangle |
| Default is OX |
./
{

GRID = gxd,

USERFACE C

/+ PARAMETER READIEG FUBCTIOES

The following functions are used to read the current values
the viewing and lighting parameters of the raytracer -
Function Parameters Returned

|

|

|

|

|

| readprojectiondirection
| readvievplanedistance

| readbackgroundcolor background color
| readambientlight
| readlightsource
|

I

|

)

readfileoutput

readviewport viewport
readvindow vindov on viewvplane

parallel projection direction
viev plane distance from origin

ambient light inteasity
laght source position/direction
output file for image
readfillcolor fillcolor for bounding volumes

of

*/

int readprojectiondirection(x,y,z)
double *x,¢y,sz,
{
ex = projection[0],
sy = projection(i],
*z ® projection(2],
}

int readvievplanedistance(dist)
double *dist,
{
sdist = viewplanedist,
}

ant readbackgronndcolor(col)
int ecol,
{
scol = background,
}

int readambientlight (amb)
double *amb,
{
samb @ ambient,
}

int readlightsource(x,y,z)
double »x,sy,ez,
{
*xy = llght [°] >
sy = laght[1],
sz = light[2],
}

int readfileoutput(fp)
FILE +fp,
{
fp = outfale,
}

1nt readfillcolor{col)
int #col,
{

#col = fillcolor,

}

20

USERFACE C

int readviewport(x1i,x2,y1,y2)

ant

{

sx1 = vx1, $x2 = vx2,
syl » vyl, #32 = vy2,

*x1,032,%y1 052,

int readwindow(x1,x2,y1,y2)

double *x1,+y1,»x2,»y2,

{

*x1 = gxi,
eyl = gy1,

/e FLAG READIBG FUECTIOES

./

mt
int

{

*x2 = wx2,
*y2 = wy2,

The following functions return the current settings for the
various global flags used by the raytracer -

Function Flag Returned
readcompression perspective or parallel projection
readprojection perspectave or parallel projection
readformat PGA or RGB image format
Teadscreen screen 1mage on/off
readlighttype point or directional light
readshadows include/exclude shadows
readdither do/don’t apply dither matrix to pixels
readpixelbuffer pixel buffer optimization on/off
readsortlist do/don’t sort primitive list
readextents extents optimazation on/off
readgrid rectangular grid optimization on/off

readcompression(cup)
scmp ,

scmp = COMPRESS,

int readprojection(proj)
enum projtype

mt readlighttype{lght)
enum lighttype +lght,
{

1f (POINTSOURCE = ON)
*lght = lightpoint,
else
*1lght = lightdirection,

if (PERSPECTIVE == QF)
*pro] © perspective,
else
sproj = parallel,

sproj,

—as v s v —— — — o m— - — — —

21

USERFACE C

1nt readshadows(shd)
ant #shd,

#shd o SHADOWS,

int readdither(dth)
int *dth,

sdth = DITHER,

int readformat(scr)
enum format #scr,
{
if (PGA == OX)
*sCr = pga,
else
sscr = rgd,

}

int readscreen(scr)
int @»scr,
{
escr » SCREEN,
}

int readpixelbuffer(buf)
int *buf,
{

sbuf = PIXELBUFFER,
}

int readsortlist(srt)
int *srt,

*srt = SORTLIST,

int readextents{extn)
int eextn,

sextn = EXTENTS,

int readgrid(grd)
int egrd,

egrd = GRID,

22

RTRACEC

/* RAYTRACING MODULE RTRACE C

| This module contains the raytracing functions themselves, namely |
vhich coordinate the overall raytracing |

| raytrace and raycast,
| operation

Raytracing Functions

raytrace
* pgatrace

inshadow
raycast
testray

Utility Functions

nextobject
transformvector
transformpoint
generateray
preprocess
normalize

s function uses PGA library function calls, code so
contained in PGA dependent module PGADPEND C

|
|
|
l
l
| rgbtrace
|
|
]
|
|
]

»/

$include <stdio h>
#anclude <malloc h>
#1include <math h>

#include “typedef h" /* typedef definitions for POINT etc »/
#include "function h" /¢ function prototype declarations ./

/+ DEFAULT PARAMETER VALUES

Define default values for various global parameters such as
window, viewport etc Values defined below can be accessed by
the user through the approp:ate function calls described in the
user interface module USERFACE C

*/
int
f£illcolor = 112,
backgroond = 113,
vxi = 0, vx2 = 639,
vyl = 0, vy2 = 479,
double
ambient = 0 2,
viewplanedist = 500 O,
vxl =2 =100 0, wx2 = 100 O,
vyl = -100 0, wy2 = 100 O,
POIBT
viewpoant = { 0, 0, 0 },
light ={1,1, 1},
VECTOR
projection = { 0, 0, -1 },
FILE »

outfile = FULL,

/+ £111 coloer
/+ background color
/* viewport

/* ambient light intemsity
/* viewplane distance from
/* origin (along Z axis)
/* window on viewplane

/* perspective viewpoint
/* laght source

/% projection direction

/+ output file for image

s/
./
*/

*/
s/
sf
*/

s/
./

*/

23

RTRACE C

/* GLOBAL FLAGS

Define default values for various global flags that define
vhether various options such as shadows, optimizations etc are
definad below Each flag can be either ON or OFF The default
values defined below can be accessed and set O or OFF by the
user through the appropiate function calls described in the user
interface module USERFACE C

*/

it

PEBSPECTIVE = OFF, /* => parallel projection #/

POINTSOURCE = QFF, /¢ light interpreted as a #*/

/* vector and not a point =/
SHADOWS = OFF, /+ Ho shadous 74
DITHER = (OFF, /* To dither on pixels »/
FILEOUT s OFF, /+ Ho output file generated*/
COMPRESS = 0N, /* Compress PGA file format+/
SCREEN = om, /* Display screen image »/
PGA a 1) 8 /* Generate PGA format s/

/*optimizations =/

EXTEBTS = 0N, /* Use extents «/
SORTLIST = (OFF, /* Sort sceme list s/
PIXELBUFFER = 0OF, /+ Use pixel buffer «/
GRID = [F, /¢ Use grid =/

/% GLOBAL VARIABLES

e e - G A e —— At e w— S — S G — —— e G —— N — — — - — e — d—

The Following global variables and are used exclusively by the
raytracer

nameof <~-> array of pointers to string names of primitives
dither4 --> 4x4 dither matrax

xfacve =-> vievsport to window X ratio
yfacve -~=> viewport to window Y ratio

xfacey =--> window to viewport X ratio
yfacwy =--> window to viewport Y ratio

grid =-> GRIDRO¥ x GRIDCOL 2D array of pointers to a linked
list of pointers to objects

volume --> contains bounding volume for each of the four
primitive types in local unit coordinates -~

cylinder rectangular box, back face centered at origin
IYZ dimensions = 2 x 2 x 1

sphere rectangular box, <centered at origin XYZ
dimensions = 2 x 2 x 2

cone pyramid, apex at originm
longth = 1, base =1 x 1

cube unit cube along I, Y, and Z axes (bounding volume
for cube is itself a cube)

— e . —— - eem —— v v S — —— e = —— A —— e A . m—— - —— o —— — —

./

24

RTRACE C

doudle

NODE »

POINT

nameof (4]

ditherd(4][4] = {
0, 8,
12, 4,
3, 11,
15, 7,
)’

dathers(s][8] = {

0, 32,
48, 16,
12, 44,
60, 28,
3, 35,
51, 19,
15, 47,
63, 31,

xfacve, yfacww,
xfacwv, yfacwv

gr1d [GRIDROW] [GRIDCOL],

volume[4][8] = {

-1,-1,
1,1,

1, 1,
}

/¢ UTILITY FURCTIOSS

8,
56,
4,
52,
11,
59,
7,
55,

-

O r O

1,-

1,

1,-1
1,-1
-1, 1,
1, 1

-

OO
OO

-

i,

,=

= {“cube","sphere”,"cylinder","cone"” } ,

42,
26,
38,
22,
41,
25,
a7,
21},

/® viewport -> vindow */
/% vindow -> viewport */

/¢ cube

/* s8phere

/* cylinde

/% cone

./

+/

T */

«/

preprocess

transformvector
transformpoint

generateray

calcnlating inverse matrices, extents etc

maps given pixel

arn

generates ray equation

to

applies a transform matrix to vector

applies a transform matrix to point

window

process -lrst of objects prior to raytracing,

and

A e = —— b ———

|
| nextobject used by raycast to determine the next object
| to be tested for 1intersection
|
| normalize converts a vector to unat form
]
| linecompress compresses 1mage file size
)
*/

void preprocess(scene)
OBJECT » ®*scene,

{0BJECT #* o,
POINT vol(8],

1f (POINTSOURCE == OFF) normalize(light),

xfacev = (double) (vx2-vx1)/(wx2-wxl),
if (xfacov < 0 0) xfacwy = -xfacvw,
yfacwy = (double) (vy2-vy1)/(wy2-wyl),
1f (yfacwv < 0 0) yfacwy = -yfacuv,

xfacvy = 1 O/xfacwv,
yfacve = 1 O/yfacuv,

for (omsscene, o'aRULL, o=o->next)
{inversematrix(o=>transform,o=>1nverse),
if ((EXTENTS == 0N) || (SORTLIST == 0N) ||
(GRID == ON) Il (PIXELBUFFER == 0X))

{transformvolume(o->transform,volume((1nt)o->primitive],vol),

if (SORTLIST == QON) calczdepth(vol,o),

if ((PIXELBUFFER == 01) || (EXTENTS == 0X) }| (GRID == QH))
projectvolume{vol),

it ((PIXELBUFFER == ON) &k (PGA == ON) && (SCREEF == QN))
rendervolume(vol,fillcolorx),

if (EXTEBTS == ON) calcextent(vol,o),

}
}
1f (SORTLIST == OR) sscene = sortlst(sscene,compare),
af (GRID == ON) makegrid(sscens),
}

void transformvector(m,vec,invvec)
MATRIX m,
VECTOR vec,ainvvec,

/*

| Applies transformation matrix specified in m, to specified |

| vector, vec, returning result in invec, the transformed vector

./

{
invvec[0]) = vec[0l*m[0)[0) + vec{t]lsm[1][0] + vec[2)wm[2][0] ,
invvec[1] = vec[01em({01[1] + vec{1lem[11{1] + vec[2]sm[2][1] ,
invvec[2] = vec(0]1m[0][2]) + vec[1lsm[1][2]} + vec[2]*m[2][2] ,

}

void transformpoint(m,pt,invpt)
MATRIX m,
POIET pt,invpt,

26

RTRACE C 27

/s

| Applies transformation matrix specified in m, to specified |
) point, pt, returning result in invpt, the transformed point |

./

{
invpt[0] = pt[0]=m[0][0] + pt[1)*m[1][0] + pt[2)em[2][0] + m[3]{0],
invpt[1] = pt[0]#m(0][1] + pt[1]em[11(1] + pt[2]en[2][1] + m(3]1(1],
invpt[2] = pt[0]sm[0][2] + pt[1]}=m[1][2] + pt{2]Jem{2][2] + m[3][2],

}

void generateray(x,y,p,d)

it x,y, /* pixel screen coordinates */
POINT p, /* calculated ray origin »/
VECTOR d, /* calculated ray direction */
/=

| Generates the equation of a ray through the specified pixel, |
| (x,y), as a point, p, and direction vector, 4 |

74
{

pl0]l = (x - vx1) » xfacvw + wxl, /% map pixel to window 1n %/

pl1] = (y - vy1) » yfacve + wyl, /* IY plana ./

pl2] = viewplanedast,

if (PERSPECTIVE == OFF) /* zero => parallel view */

{

d[0] = projection[0], /* parallel view ==> read */
- d[1] = projectien(1], /* specified direction ./ - - - -

d[2] » projection{2],

else /+ defined => perspective view ./
{
d{0] = p[0]) - viewpoint[0], /+ perspective viev =2> calculate ¢/
dl1] = p{1) - viewpoint[1], /# direction from view point and */
d[2) » p[2) - viewpoint[2], /# mapped pixel point on window */

pl0]) = viewpoant[0],
p[1] = viewpoint[1],
pl2] = viewpoant[2],
}

void normalize(v)

VECTOR v, /* vector to be normalized */
/e

| Takes vector of arbitrary length, v, and overwrites it with the |
{ calculated unit vector in the same direction [

«/
{double modl,
modl = sqrt{vi0]+v[0] + v[1lev[1] + v[2)#¢[2)), /#¢ vector length %/

v[0] /= modl, +v([1] /= modl, v[2] /= modl, /% unit vector ¢/
}

RTRACE C 28

DBJECT * nextobject(o,n)

0BJECT »o,
NODE ##n,
/*

| This function 18 used by raycast to determine the next object to
| test for intersection If the grid optimization 1s in use, the
| next object is found from the linked list of pointers for the
| grid, othervise the next object 1s simply the next one 1in the
| object list

»/

if (GRID == OFF) return o->next,
if ((sn) == NULL) returm WULL,

sn © (#n)-dnext,
return (¢n)->ptr,

int linecompress{bufin,bufout,y,xl,x2)

unsigned char bufin(], /* line to be encoded »/
bufout(], /* encoded line s/
int y,x1,x2, /* screen line number and »/

/% start & end pixel numbers */
FA

This function compresses a line of pixels using a run length
encoding system compatible with that of the PGA Each line of
the image is preceeded by the hexadecimal code L9, which is the
PGA code for ’write encoded line of pixels’ Then follows three
integer numbers, each stored as two bytes (least significant
byte first), representing the line number and the pixel numbers
where this line begins and ends 1e ~

D9 line $# start x end x data
Using this format, the image file can be sent directly to the
PGA without any processing vwhenever the image needs to be
displayed from the file

The data consists of packets, of which there are two kinds -

[1] cousT PEL {cousTr o 127}
(2] COUNT PELO PEL1 PEL2 { COUNT 128 1255}

If the count is in the range O 127 then the byte that follows
is the color of the next COUNT+1 pixels

If the count 1s in the range 128 255 (1e¢ MSB = 1) them the
next COUNT~127 bytes that <follow are the colors of the next
COUNT-127 pixels

——— o ——— —— —— —— —— — —— —— ————— e —— A — —— —

o/
{unsigned char ep,*t,count,
int ptr=0,len,

len = x2 - x1 + ¢,

P ™ bufan,

bufout {ptr++] = 0xd9, /* PGA code ./
bufout [ptr++] = y & Oxff, /* lane # LSB s/
dufout [ptr++] = (y & Oxf£00) >> 8, /* line 8 MSB */
bufout(ptr++] = x1 & Oxff, /* start pixel LSB */
bufout [ptr++] = (x1 & Ox££00) >> 8, /* start pixel MSB */

RTRACE C

bufout [ptr++] = x2 & Oxff, /% end pixel LSB
bufout [ptr++] = (x2 & 0xff00) >> 8, /% end pixel KSB

vhile (len > 1)
{count = O,

if (sp == s(p+1)) /¢ run of same color

{comnt += 1,
len -= 2,
p += 2,

vhile ((ler > 0) && (count < 127) &t (sp == +{p-1)))

{count++,
len-~,
pH

}

bufout [ptx++] = count,
bufout (ptx++] = #(p-1),

}

else

{t = p,
count += 1,
len == 3,
p =2,

*/
*/

*/

/¢ run of different color »/

vhile {({len > 0) 2& (count < 127) ki
(»p '3 #(p-1)) &k (sp *'= #(p+1)))

{len--,
count++,
P+,

}

bufout[ptr++] = count + 128,
for (, t<p, t++)
bufout [ptr++] = s=t,

}
}
if (len > 0)

{butout{ptr++] = 0,
dbufout (ptr++] = sp,

}

return ptr,
}

/+* RAYTRACER

inshadow

testray

raycast

* pgatrace

rgbtrace

raytrace

)
|
!
|
|
|
|
|
|
l
{
|
!
1
|
|
|
{
I
i
|
1
]
|
[

The following are the principal functions of the ray tracer -

Checks if a given point lies an shadow

Tests a specified object for intersection with a
giver ray

Casts a ray through a specified pixel into the
scene of objects, tests for intersectior and
returns the appropiate color foxr the pixel

Passes pixels in top to bottom, left to raght
fashion to raycast and collects/coordinates tha
returned pixel intensity values to buald up a
screen and/or file 1image for the PGA adapter
monitor

Same as pgatrace except that pixels are
calculated as three seperate intenzities (red,
green & blue) Produces only a file output

initializes the raytracer and calls either
pgatrace or rgbtrace to generate the image

¢ function code in PGADPEED C module

— e . et e e v - e e — — ———— — o —

*/

29

RTRACE C

'

ant inshadow(scene,obj,pt,d1rn,tl)

OBJECT ¢obj,*scene, /% 1ist of objects »/
POIAT pt, /¢ pt & dirn ~-> ray equation %/
VECTOR dairm,

double t1, /+ upper limt for t */
/e

| Checks if a point on an object lies in shadow by testing the
| given shadow ray, specified by pt & darn and originating at a
] point on the object pointed to by obj, for intersection with the
| 1ist of objects pointed to by scene An upper limit for t is
| specified in t1l, since objects beyond the light source need not
| be tested

s/

{0BJECT »o,

POINT invpt,

VECTOR invdirm,

ant shadow=0, /* break as soon as any intersection found %/

for (o=scene, ({o'=NULL) && (shadow'=1)), o=o->next)
1t (o '= obj) /* don’t want to test intersected object s/
{
transtormpoint (o->inverse,pt,invpt), /* transform ray s/
transformvector{o~->inverse,dirn,invdirn),

suitch (o->primative) { /* test for intersection s/
case cube shadov = stracecube{invpt,invdirn,tl),
break,
case sphere shadov = stracesphere(invpt,invdirn,tl),
break,

case cylinder shadow = stracecylinder(invpt,invdirm,tl),

break,
case cone shadow = stracecone({invpt,invdirn,tl),
break,
}
}
return shadow, /¢ shadow=1 1f intersection with any object ¢/

void testray(o,pt,dirn,nrml,dst)

OBJECT #o, /* pointer to object to test s/
POINT pt, /* pt & dirn --> ray equation ./
YECTOR dairn,nrml, /% prml returned surface normal s/
double sdst, /* minimm t value */
/e

Tests the given ray, specified in pt & dirn, for intersection |
vith the object pointer to by o If an intersection is found, |
vhich is closer than the t value specified in dst, the surface |
normal at the point of intersection 1is returned in nrml, and dst |
is updated |

./
{POINT invpt, invdarm,

transformpoint (o->1nverse,pt,invpt), /* transform ray s/
transformvector{o->inverse,dirn,invdirn)

30

RTRACEC 31

switch (o->primitive) {

case cube tracecube(invpt,invdirn,nrml,dst),
break,

case sphere tracesphere(invpt,invdirn,nrml,dst),
break,

case cylinder tracecylinder(invpt,invdirn,nrml,dst),

break,
case cone tracecone(1invpt,invdirn,nrml ,dst),
break,
}
}
vo1d raycast(scene,x,y,c)
0BJECT escene, /* pointer to list of objects ./
int x,5, /* current pixel */
char ¢ ¢, /% returned pixel color */
{double dst=INFIBITY,tl,
nearest=IEFINITY,
zn‘
DBJECT #closest=NULL,*o,
int row,col,shad=0,
HODE #n,
POIST pt,dim,
nrml, invarml,
1ght,interst, - -
generateray(x,y,pt,dirn)}, /* gonerate ray equation for pixel s/

if (SORTLIST == ON)
Zn = pt[2] + nearestsdirn[2], /* Z coord of nearest intersection */

if (GRID == ON)

{ /* calculate rectangle in
rovw = (vy2-y)/((vy2-vy1)/GRIDROW+1), /* whach pixel lies */
col = (x-vx1)/((vx2-vxi)/GRIDCOL+1),
it ((a=grid[ros]lcol]) == BULL) /% any objects 1n this the =/

{¢c = background, /* rectangle ? =/
o = FULL,
}
else o = n->ptr,
}
else o0 = scene,
while (o '= BULL) /¢ test list of objects +/
{

1f ((EXTEETS == OF) &k
((x>o->xmax) || (x<o->xman) || (y>o=->ymax) || (y<o->ymin)))
{0 = nextobject(o,kn),

continue, /* pixel outside extent of current s/
} /* object, so skip object */
1f ((SORTLIST == OF) && (o->znear < Zn))
break,

testray(o,pt,dirn,ntml,kdst),
it (dst < nearest)
{nearest = dst /* closer intarsection */
closest = o,
if (SORTLIST == QN)
Zn = pt[2] + nearest+dirn[2],

RTRACE C

o = nextobject(o,fn),
}

if (closest '= KULL)

{
transformvector{closest~>transform,nrml,invorml),
if ((POINTSOURCE == 0N) || (SHADOWS == ON))

{interst[0] = pt[0] + nearest¢dirn[0],
interst (1] = pt(1] + nearestedirn[1],
interst[2] = pt[2] + nearestedarn(2],
}

normalize(1nvnmml),
normalize(dirn),

it (POIXTSOURCE == OH)
{1ght[0] = 1light[0] - interst(0],
1ght[1] = 1ight[1] - interst[1],
1ght[2] = 1ight{2] - interst([2],
normalaze(1ght},
12 (SHADOWS == D)
{ 1t (ght(0] '= 0) t1 = (laght[0] -~ 1nterst[0])/1ght(0],

else
1f (1ght[1] '= 0) t1l = (light[1] - interst{1])/1ght(1],
else
it (1ght[2] '= 0) t1 = (QQight[2] - interst[2])/1ght(2],
}
}
else

{ 1ght[0] = 1ight[0],
1ght([1] = laght(1],
1ght[2] = light[2],
if (SEADOWS == ON) tl = INFINITY,
3} . e —_— -

1f (SHADOWS a= QR)
shad = inshadow(scene,closest,interst,lght,tl),

if (PGA == OE) pgashade(c,closest,dirn,lght,invnrml,x,y,shad),
else rgbshade(c,closest ,darn,lght,invnrml,x,y,shad),
}
else sc = background,
}

void rgbtrace(scene)
QBJECT sscene,

{char sbf, *ptr, 1d,
int x,y,

bf = malloc((3»vx2-vxi+1)),

1f (FILEOUT == 0ON)
{1d = 0x00, /* write 1d byte to indicate RGB format /
furite((char ¢)&id,1,1,outfile),
furite((char ¢)2vxi,sizeof{int),1,outfile), /¢ write viewport »/
fwrite((char *)&vx2,s1zeof(int),1,outfile),
furite((char #)dvyl, si1zeof(int),1,outf1ile),
furite({char ¢)&vy2,s1zeof(ant),1,outfile),
}

for (y=vy2, y>=vyl, y--)
{ptr = bt
for (x=vxl, x<=vx2, x++,ptr+s3)
raycast(scene,x,y,ptr),
1f (FILEOUT a= OF)
furita(bf,3,vx2-vxi1+1,0utfile),
}

32

RTRACE C

free(bf),
fclose(outfile),
}

void raytrace(scene)
OBJECT s #scene,

{

preprocess(scene),
if (PGA) pgatrace(escene),
else rgbtrace(#acene),

}

33

RAYINTER C

/»
1

RAY INTERSECTION MODULE

This module contains the ray-primitive 1intersection test

| fonctions There are two sets of functions for each of the four |

*/

primitive types, the first set for testing primary rays and the
second for testing shadow rays

Primary Ray Functions Secondary Ray Functions

tracecylinder stracecylinder
tracesphere stracesphere
tracecube stracecube
tracecone stracecone

#include <math h>

#include "typedef h" /+ structure and other typedef definitions*/

#include “function h" /+ function prototype declarations */

#define EPSILON 0 00001

/e

»/

RAY PRIMITIVE INTERSECTION FUBCTIOES --- PRIMARY RAYS

The folloving four <functions are used to test a ray for
intersection with one of the four primitive types implemented

Each one takes a ray as input, along waith the lowest t value
found in processing the list of primitives to date, and modifies
the value if the ray intersects the primitive at a closer point

If such is the case, the normal to the surface at the point of
intersection is returned by modifying the vector nrm, and the
Closest point of intersection, nearest, is updated

void tracecube(pt,dirn,nrm,nearest)

POI

IT pt,

VECTOR dirn, nrm,
double *nearest,

[»

{
|
|
l

Tests given ray, specified by a point, pt, and a direction
vector, dirm, for intersection with a unit cube defined by 6
planes -~

I=0 X=31 Y=0 Y=l Z=20 Z=1

*/
{doudble IX,Y,Z,t,
if (dirn[0] *= 0) /* ray on x=0 plane ? */
{ t = -ptl0]/darm(0], /¢ 1t ray intersects X=0 s/
1t ((t < snearest) && (t > 0)) /¢ plane at positive t #/
{Y = pt{1] + tedirn[1], /* value lower than the #/
Z = pt(2] + tedarn(2], /* current closest one, #/
if ((Y<=10) 22 (Y>=00) 2& /* then check to see 1f #/
(Z <=1 0) &% (2 >= 0 0)) /* 1t intersects face 0 */
{snearost = t /* of cube */

am[0] = -1 O,
nrm{1] = 0 0,
nm{2} = 0 0,
}

34

RAYINTER C

t = (1 0-pt[0])/darm(0],
if ((t < snearest) && (t > 0))
{Y = pt{1] + tsdarm[1],

Z = pt[2] + tedarn[2],

}

if ((Y <= 1 0) & (Y >=

i

(Z <= 1 0) && (Z >= 0 0))
snearest = t,
nm(0] = 1 0,
arm[1} = 0 0,
nm({2] = 0 0,

}
}

if (dirm[1] *= 0)
{ t = -pt[1]/d1rm(1],
if ({t < snearest) &k (t > 0))
{I = pt[0] + tedim[0],
Z = pt[2] + tedarm[2],

}

if ((X <= 1 0) a8 (X >=

if ((X <= 1 0) &k (X >=

{

(Z <=1 0) &k (Z > 0 0))
snearest = t,
nmf0] = 0 O,
armf1] = -1 O,
arm{2] = 0 0,

}
}
t = (1 o-ptl1])/daira[1],
if ((t < snearest) && (t > 0))
{1 = pt(0] + tsdimm(o],

Z = pt[2] + tedarn[2],

-(Z <2 1 0) &k (Z >= 0 0))

{

snearest = t,
nm{0] = 0 O,
nm(1) =2 1 0,
nm(2] = 0 0,

}
}

it (dairm[2] '= 0)

{ t » -pt{2]/dam(2],
1f ((t < #nearest) &k {t > 0))
{Y = pt[1] + tedarm[1],

X = pt[0] + ted1rn[0],

if ((Y <= 1 0) 2k (Y >= 0 0)

}

{

(X <=1 0) 2 (I >= 0 0))
snearest = t,
nm(0] = 0 O,
nm(1] = 0 0,
am{2] = -1 0,

}

t = (1 0-pt2])/dam[2],

1f ((t < snearest) k& (t > 0))
{Y = pt(1] + t+dim[1],
X = pt[0) + t*darn[0],
it (Y <= 1 0) && (Y >= 0 0)

}

}

{

}

(X <=1 0) &k (X >= 0 0))
snearest = t,
nrm(0] = 0 0,
nmf1] = 0 0O
nrm[2] = ¢t O,

00) 2

00) &

00 &k

2k

39

/% test I=1 plane ¢/

/% test Y=0 plane +/

/¢ test Y=1 plane ¢/

/¢ test =0 plane */

/* test Z=1 plane =/

RAYINTER C

voxd tracesphere(pt,d1rn,nrm,nearest)
POINT pt,

VECTOR darn, nrm,

double *nearest,

/»

| Tests ray specified by pt and dirn for intersection with a cube |
| of unit radius, centered about origin, by solving a quadratic |
| equation for t, obtained by substituting ray equation 1iato |
| sphere equation Equation 18 solved using the formula -~ |
! |
| t = (<B +/~ 8qrt(BsB - 4+4sC))/(2%4) |

./
{double 4,B,B_2,C,AC,BAC,t,

A s dirn[0]#*dirn[0] + darn[1)*dirn[1] + dirn{2]*dirn[2],
B = dirn[0]*pt[0] + dam{1]+pt[1] + darn[2]+pt[2],
C = pt{0]spt(0] + pt(1])spt[1] + pt(2]spt(2] - 1 O,

B_2 = BB,

AC = isC,

BAC ®» B_2 - AC,

1f (BAC > 0 0) /* BAC < 0 ==> complex roots =/
{ /% BAC = 0 ==> ray 1s tangent */

t = (-B - sqrt(BAC)) /A,
if ((t < snearest) &t (t > 0))
{snearest = t,
nrm[0] = pt{0] + t«darn{0],
nrm{1] = pt[1] + tedira(1],
arm{2] = pt{2] + tedarn(2],
}
} - - -

voad tracecylinder(pt,dirn,nrm,nearest)
POINT pt,

VECTOR dirn,nmm,

double snearest,

/» |

A ray, specified by pt and dirn, 1s tested for 1ntersection a |
cylinder of unit length and unit radius, centered along the |
positive z axas, with its back face centered about the origin |
Three seperate tests are performed, one for each of -~

the front face unat circle on Z=1 plane, centre at (0,0,1)

|
|
the back face unit circle on Z=0 plane, centre at (0,0,0) |
|
the main body tube of unit radins centered along Z axas |

./
{double 4,B,B.2,C,AC,BAC,t,X,Y,Z,

1t (darn[2] *= 0 0) /* test back face =/
{ ¢t » -pt[2)/daxn([2],
if ((t < snearest) &k (t > 0)) /# closer intersection with */

{ /* 720 plane * s/
X = pt(0] + tedirn(0], /+ 1f yes, calculate point */
Y = pt{1) + tedarn[1], /% of intersection */
if ((XoX + YoY) <= 1 0) /% Does point lie on back face #/

{ *nearest = t,
amf(0]l = 0 o0,
nm([i] = 00,
nrm[2] = -1 O,
}

RAYINTER C

t = (1 0-pt[2])/dirn[2], /% test front face in same way */
1f ((t < enearest) &k (t > 0))
{
I = pt[0] + tedirm(0],
Y = pt{1] + t+dim(1],
if ((XsX + YoY) <= 1 0)
{ snearest = t,
arm{0] = 0 O,
am{1] =0 0,
nmel2] =10,

}
}
}

4 = dirn[0]+dirn(0] + dirn[1]edirm{1], /* test main body by »/
B = dirn[0]spt(0] + darn{1]spt[1], /* solving a quadratic »/
C = pt[0]ept[0] + pt1)ept(1] - 1 0, /% equation for t ./
B_2 = BsB,
AC B AsC,
BAC = B_2 - AC,
if ((BAC > 0 0) &k (A '= 0 0)) /* BAC < 0 => complex root %/
{ /* BAC = 0 => ray tangent =/

t = (-B - sqrt(BAC))/A,
if ((t < snearest) &k (t > 0))
{Z = pt(2] + tedarn[2],
A ((Z<=10) &k (Z >=00))
{ snearest = t,
nrm[0] = pt[0] + tedirm(0],
nrm[1] = pt[1] + t»darm[1],
arm[2] = O,
}
}

}

void tracecone(pt,dirn,nrm,nearest)
POINT pt,

VECTOR dirm, nrm,

double *nearest,

/s

| Specafied ray, defined by pt and dirn, is tested for |
| intersection with a cone of unit length, apex at origin, and |
| base of unit radius, centre (0,0,1) Tvo seperate tests are |
| performed, ons for the base and one for the main body I

*/
{double 4,8,B_2,C,AC,BAC,t,X,Y,Z,

A = dirn(0]edirn[0] + darnf1)edarn{1] - darm[2]+darm{2],
B = dirn[0)*pt[0] + darn[1]+pt{1] - pt[2]edarn[2]
C = pt[0)spt[0] + pt[1]lsptl1] - pt{2])+pt[2],

B.2 = BsB,

AC = AsC, /* test uith main body by &/
BAC = B_2 - AC, /#+ solving quadratic fot t */
af ((BAC > 0 0) &2 (2 '= 0 0))

{

t = (-B - sqrt(BAC))/A,
if ((t < snearest) &% (t > 0))
{Z = pt{2] + t»darmn[2],
if ((Z <= 1 0) &% (Z >= 0 0))
{snearest = t,
arm(0] = pt[0] + tw«darn[0],
nrmf1] = pe1] + seduxn(t],
nm{2) = sqrt(1 O - Z+Z),
}
}

37

RAYINTER C

1f (dirn[2] '= 0 0)
{ t = (1 0-pt[2])/darnl[2],

}

/% test base, same test as
/* front face of cylander
1f ((t < snearest) & (¢ > 0))
{X = pt[0] + tsdarn[0],
Y = pt[1] + tedara[1],
if ((XsX + Y»Y) <2 1 0)
{ *nearest = t,
nral0] = 0 0,
nrm(1] = ¢ 0O,
nm{2] =10,
}

}

/% RAY~PRINITIVE INTERSECTION FUNCTIONS -- SHADOW RAYS

./

*/
s/

These four functions below are used to test shadow rays ie

rays traced from a point on an object to the light source, for
intersection with one of the four primitive solid types The
functions are very simalar to the primary ray intersection
functions above but differ in the respect that they do not need
to determine the closest surface of a primitive struck by the
ray, only if the ray strikes any surface betveen the ray origin
and the light source ie 0 < t < tl where tl is the upper limit
determined from the distance of the ray origin to the light
source The return value is O if there was no intersection, 1 1f
there vas

int stracecube(pt,dirn,tl)
POIBT pt,

VECTOR daxn,

double tl1,

{double X,Y,Z,t,

1f (darn(0] *= 0)

if (dirm[1] '= 0)

/» test X+0 plane ¢/
{ t = -pt[0]/darn(0],
it ((t > EPSILOF) && (< t1)) /* allow for roundoff error *
{Y = pt[1] + tsdarn[1],
Z = pt{2] + t=darn(2],
1f ((Y <=10) a2 (Y >=200) 2k
(Z<=10) &k (Z > 00))
return 1,
)

t = (1 0-pt[0])/d1m[0],
it ((t > EPSILON) &k (t < t1))
{Y = pt[1] + tsdarn[1],
Z = ptf2] + tedirn(2],
if {((Y<=10) 22 (Y >=00) k&
(Z <= 1 0) &k (Z >= 0 0))
return 1,
}
}

/* test I=1 plane */

/% test Y=0 plane %/
{ t = -pt[1]/d2m(1],
af ((t > EPSILON) 28 (t < t1))

{1 = pr(0] + tedirnfo]

Z = pt{2] + tedarn[2],

22 ((X <= 10) 2 (I>00) 2k

(Z <=1 0) &k (Z >= 0 0))
return 1,
}

/

RAYINTER C

t = (1 0-ptl1])/dira{1], /+ test Y=1 plane */
if ((t > EPSILON) &k (t < t1))
{x = pt[0] + t+dirn[0],
2 = pt[2] + tedirn(2],
if ((X <= 1 0) &k (X >= 0 0) &k
(Z <=10) 2k (Z >= 0 0))
roturn 1,
}
}

1f (dirn(2] '= 0) /+ test Z=0 plane */
{ t = -pt[2]/dam([2],
if ((t > EPSILON) &k (t < tl))
{Y = pt[1] + t+darn[1],
X = pt[0] + tedirn[0],
if ((Y<=10) 22 (Y>=00) &
(X <= 10) & (X >= 0 0))
return 1,
}
t = (1 o~-pt[2])/dim[2], /% test Z=1 plane s/
if ((t > EPSILON) &k (t < tl1))
{Y = pt[1] + t«dirn[1],
I = pt[0] + tedirn(0],
if ({(Y<=10) & (Y >=00) &k
(I <= 10) &2 (X >= 0 0})
return 1,
}
}
return O,

}

int stracesphere(pt,dirnm,tl)
POINT pt,

VECTOR dirm,

double tl,

{doudble 2,B,B_2,C,AC,BAC,¢t,

A = dirn[0]*daxrn[0] + darn[1]*dirn[1] + dirn[2])*d1rn[2],
B = dirn[0}+pt[0] + dirn{1]sptl1]) + darn[2]spt{2],

C = pt[0]ept[0] + ptl1]ept{1] + pt(2]ept[2] - 1 O,

B_2 = BsB,

AC = AsC,

BAC = B_2 - AC,

it (BAC > 0 0)

{
t = (-B - sqrt(BAC))/A,
if ((x+ > EPSILON) &k (t < tl)) returm 1,
}
return O,

}

int stracecylinder(pt,dirn,tl)
POIBT pt,

VECTOR dimm,

double tl,

{double 4,B,B_2,C,AC,BAC,t X,Y,Z,

1¥ {(dixrnf2] *'= 0 0) /* test back face ¢/
{ t = -pt(2]/daxn(2],
if ((t > EPSILOB) ax (t < t1))
{x = pt(0] + tedirm[0],
Y = ps[1] + tedarn(1],
1f ((XeX + YsY) <= 1 0) rxoturn 1,
}

39

RAYINTER C

}

A

t = (1 o~pt[2])/darn[2],
if {((t > EPSILON) 2& (t < tl))
{1 = pt{0] + tedarn(0],
Y = pt[1] + tedarn[1],
if ((XeX + YoY) <= 1 O0) return 1,
}
}

= dirn[0]#dirn[0] + darn[1]edamn(1],

B = dirn[0J+pt[0] + dirm[1]+pt[1],
C = pt[o]+pt[0] + pt(1lept[1] - 1 0,
B_2 = BB,

AC = AsC,

BAC = B_2 - AC,

bL 4
{

((BAC > 0 0) && (4 '= 0 O))

t = (-B - sqrt(BAC))/A4,

1f ((¢ <= 0) || (t >= t1)) return O,

Z = pt[2] + tedirn[2],

if ((Z <=1 0) &k (Z >= 0 0)) returm 1,
}

return O,

int stracecone(pt,dirn,tl)
POINT pt,

VECTOR dirm,

double t1,

{double A,B,B_2,C,AC,BAC,t,X,Y,Z, - -

}

1f (dirn[2] '= 0 0)
{ t = (1 0-pt[2])/dxrn(2],

if ((t > EPSILON) && (¢t < tl))
{x = pt[0] + tedim[o0],
Y = ptt] + tedirn[1],
if ((X¢X + YY) <=1 0) return 1,
}
}

/% test front face »/

/* test main body s/

/* test base */

A = darn[0]+d1m[0] + dirn(1)sdirn[1] - darm[2]1*d1rn(2],
B = darn[0]ept[0] + dirn(1]ept[1] - pt([2)edarn[2],

C = pt[0]l»pt[0] + pt(1]ept{1] - pt[2]spt[2],
B_.2 = B*B,

AC = AsC,

BAC = B_2 - AC,

af
{

((BAC > 0 0) && (4 '= 0 0))

t = (-B = =qrt(BiAC))/A,

¥ ((t <= 0) || {(t >= t1)) return O,
Z = pt(2] + tedarn[2],

1f ((Z <= 1 0) &% (Z >= 0 0))
return 1,

}

return O,

/* test main body =/

40

OPTIMIZE C

/+ DPTINIZING FUNCTIONS MODJULE

| This m

odule contains the functions used to aimplement the

| pizelbuffer, sortlist, extent and grid optimizations

I
(
| |
| Utility Functions Optimizing Functions l
| |
l transformvolume calcextent |
| projectvolume sortlst |
| getnode makegrid |
| compare * rendervolume |
{ calczdepth |
| (
| * contained in PGA dependent module PGADPEND C |
o/
#include <stdio h>
#include <malloc h>
#include "global h" /* global parameters, flags & variables =/
#include “function k" /» function prototype declarations ./
/+ UTILITY FUNCTIONS
| i
| transformvolume Apply transform matrix of an instance of a |
| primitive to its bounding volume |
i !
| projectvolume Project transformed bounding volume onto |
1 viewing plane |
| i
| getnode Return pointer to allocated space for a |
| structure of type JODE |
| [
{ compare Used by the sortlst function 1n sorting the |
| liat of objects Compares two objects, A and |
| B on the basis of the value of their |
| respective znear fields 1
|]
| calczdepth Used to calculate the nearest & furthest z |
| coords of transformed bounding volumes |
| i
./

void transf
MATRII m,

ormvolume(m,v,r)

POINT v[a],r([2],

/e

| Takes specified local bounding volume, ¥, and applies specified |
| transform matrix, m, returming transformed volume in r (each |

{ volume

is defined as array of eight 3D vertices) |

./
{int 2,],k,

for (i=0,
for {30

1<8, i++) /% r_vertex = v_vertex * m ./
s J€3, %)

{ r[1)[y] = o,
for (k=0, k<3, k++)

rli]

(2] [j] += =m(3]103],
}

{31 += v(11(x] * m[x]1[;]

/% implied rfi](4] of 1 »/

41

OPTIMIZE C

voad projectvolume(v)
POINT v(8],
/e

| Takes specified (transformed) bounding volume and overwrites 1t |
| with its projectection onto the viewing plane J

s/
{ant 1,j,
double sx,sy,sz, /¢ T and Y scale factors s/

if (PERSPECTIVE == QOFF)
{
if (projection(2] '= 0)
{ sx = projection{0}/projectionf2],
sy = projection[1]/projection[2],

else
{ sx = INFINITY, /+ parallel projection along the =/
sy = INFINITY, /* direction D(xd,yd,zd) of a */
/% point P(x,y,z) to P’(xv,yv,zv) */
} /% on the plane Z=zv 18 - »/
- /* */
for (1=0, 1<8, 1++) /* xv = x + xde(z2v-z)/zd »/
{ /e yv = y + yde(zv-2)/zd s/

v[1][0] += (viewplaredist-v[1][2]) + sx,
v[i] 1] += (vievplanedist-v[1]1([2]) ¢ sy,
v[1][2] = viewplanedist,
}
}
else
—— - { 8z = viewplanedist - viewpoint[2], - -
for (i=0, 1<8, 1++)
{sx = sy = v[1][2] - viewpoint[2],
if (sx '= 0)
{v[i1[0] = viewpoint[0] + (v[1]([0]-viewpoint[0])esz/sx,
v[i][1) = viewpont[1] + (v[i][1]-viewpoant{1])*sz/sx,
}
else v{1][0] = v[2]1[1] = INFINITY,
v[iJ[2) = viewplanedast,
}
}

T0DE sgetnode(a,))
int ibji
/e

| Used by the makegrid function to allocate space for nodes |

«f
{¥ODE p,

return (NODE) malloc(sizeaf(EODE)),
}

int compare(a,b)
OBJECT *a,sb, -
/%

| Compares two objects, a and b, on the basis of their znear |
| f26lds (the nearest Z coordinate of the objects tranaformed |
| bounding volume) Used by the sortlst function to sort the last |
| of objects into increasing distance from the viemer 1

»/

OPTIMIZE.C

if (@a>znear =* b->znear) retumn O;
if (@>znear < b->znear) retum 1;
retum -1;

>

void calczdepth(v,0)
POIIT v[8];

OBJECT *o;

Vel

1 Takes specified transformed bounding volure, v, and calculates
1 its nearest ft furthest z coordinates, placing them in the znear
1 and zfar fields respectively, of the object, o. Differs from
I calcextent function in that volumes are not projected onto the
I vie« plane and that values calculated are in «orld coords
I (double) rather than screen coords (int) .

*

{double zl,z2; /* current near ftfar values */

int i;

zl * 22 * v[0] I2] ; /= near * far * first vertex */

for (i*l; i8; i+)
if VII21 <2) 2 - V[il [; /= check remaining 7 e/
else 1f (VI1[2Z] > zD z1 * V1] [2] ; /* vertices. ¥

if @ >0 zl 1;

o->znear * (inH)(zl);
if@2<0 22 =~ 1;
o—>zfar * (int)(z2);
>

/¢ EXTEITS OPTIMIZATIOIN

1 The extents optimization «orks by calculating for each bject, a
minimal rectangular area on the screen «hich encloses the
objects transformed and projected bounding wolume. The ray
intersects bounding volume test then reduces to a point in
rectangle test, namely that the current pixel lies inside the
objects screen rectangle/extent. If it does not lie inside the
ray spavned by the pixel need not be tested for intersection
vith the object.

calcextent : calculates minimal rectangle on screen
enclosing projected bounding volume.

4

wvoid calcextent(v,0)
POIINT v[8];

OBJECT *0;

Vel

1 Takes specified (projected) bounding wvolure, v,and calculates |1
1 its minimal enclosing screen rectangle, defined by tvo 1Y screen |
1 coordinates (zmin,ymin) f QOmax,ymax) , the upper right and |
I lover left comers, and places it in the xmin, Xmax, ymin and I
Jya&x Fields of the specified object structure, o.

4
{double xI,x2,yl,y2,z1,22; /* current max ftmin X and Y values */
int i;

OPTIMIZE C

x1 = x2 = v[0][0],

/% max ® min = firet vertexr */

yi = y2 = v[0][1],

for (i=1, i<8, i++)

{

if (x1 < wxl) x1 =
if (x2 > wx2) x2 =
if (y1 < wy1) y1 ® @y1,
if (y2 > wy2) y2 =

if (v[i][0] < x1) x1 = v[1][0], /* check remaining 7 ¢/
else 3f (v[i][0] > x2) x2 = v[1][0], /% vertices */
if (v[11(1] < y1) y1 = v[il[1],

else if (v[11{1] > y2) y2 = v[i][1],

}

vxl, /% clip rectangle to edge of */
wx2, /¢ window 2f it exceeds same ¥/

®y2,

o->xmin = (x1 - wxl) » xfacwv + vxl, /* map rectangle to screen
o=->xmax = (x2 - wxl) = xfacwvy + vxi,
o->ymin = (yl - wyl) s yfacwv + vyi,
o->ymax = (y2 - wyl) & yfacuv + vyl,

/* PIXEL BUFFER OPTIMIZATION

»/

s/

The pixel buffer optimization works by taking the transformed
and projected bounding volumes for all objects and drawing them
as filled polygons om the screen, all filled with the same
color By setting all screen pixels to a different color before
performing this operation, any pixel which 18 not of the fill
color can be instantly identified as one which does not
intersect any object at all and can be set to the background
color without even generating a ray equation for it Since the
function uses PGA specific function calls to drav and f11l the
polygons, it can be found an the PGA module

rendervolume render projected bounding volume on screen
in fillcolor (SEE PGA MODULE)

/+ SCRTLIST OPTIMIZATION

./

The sortlist optimization works by taking the linked list of
objects (which defines the sceme) and sorting it im order of
increasing bounding volume distance from the viewer 1in the
direction of projection ie the closer an objects bounding
volume to the viewer (when transformed into world coordinates)
the nearer the front of the 1list that object is placed in the
sorted list Then, when testing a ray for intersection with the
1xst of objects, all objects vhose closest bounding volume face
lies further from the viever than the i1ntersection point cannot
possibly intersect the ray at a closer point, and can be omitted
from the test And, since the list 18 in sorted order, as scon
ag one such object is encountered, the test can be ended as all
further objects in the 1list mmst lie even further from the
viever

sortlst Takes a linked last and a pointer to a function for
comparing twvo nodes, and sorts the list 1n
ascending order, returning a pointer to the new
sorted list

OBJECT #sortlst(p,compare)
OBJECT ep,

int

(scompare) (),

——— o — —— . —— — = —— A —— . —— —

44

OPTIMIZE C 45

{1nt base,
unsigned int block,
struct tape {

OBJECT farst,*last,
unsigned int count,
} tapel4],

tape[0] count = 0, tape[0] last = ktape[0] farst,
tape[1] count = 0, tape[1] last = ktape[1] first,

for (base=0, p'=NULL, p=p->next, base~=1)
{tape[base] last = tape[base] last->next = p,
tape[base] count++,

}

for (base=0, block=1, tapel[base+i] count'=0, base “=2, block <<=1)
{int dest,
struct tape *tape0, stapel,
tape0 = tape + base,
tapel = tape + base + 1,
dest
tape[dest] count = O, tape[dest] last = gtape{dest] farst,
tapa(dest+1] count = 0, tape[dest+1] last = Rtape[dest+1] farst,

s base"2,

for (, tape0->count'n0, dest*ai)

}

st
ou
n0
vh

{

{unsigned int 2a0,nt,

ruct tape #output_tape,
tput_tape = tape + dest,
= n] = block,
1le (1)
OBJECT echosen_item,
struct tape #chosen_taps, -
it (n0==0 || tapeO->count==0)
{2f (a1==0 || tapei->count==0) break,
chosen_tape = tapel,

nl--,
} °
else if (n1==0 || tapel->count==0)
{chosen_tape = tape0,
no--,
}

else if ((+compare)(tapeO->first next,tapel->farst mext) > 0)
{chosen_tape = tapel,
ni--,
}
slse
{chosen_tape = tapeO,
no--,
}
chosen_tape->count~-,
chosen_item = chosen_tape->first next,
chosen_tape->first next = choasen_item->next,
output_tape->last = output_tape->last->next = chosen_.item,
eutput_tape=>count++,
}
}
}

tape[base] last->next = NULL,
return tape[base] first next,

OPTIMIZE C

/* GRID DPTIMIZATIOE

s/

The grid optamization works by dividing the screen up 1into a
fixed number of rectangles and associating with each a pointer
to list of those objects whose screen eaxtents overlap the
rectangle Testing a ray for intersection with the scene then
involves determining in which rectangle the pixel spawning the
ray lies and testaing the ray only with the objects 1in the
rectangles associated list The grid 1s implemented as a global
2 dimensional array of pointers Each pointer points to a linked
list vwhose nodes consist of two fields, a pointer to the next
node of the linked 11st and a pointer an object in the 1list of
objects whose extent has overlapped the rectangle

makegrid Takes a poxnter to a list of objects and creates for
each pointer element of a global 2d array a linked
list of pointers to objects vwhose screen extents
overlap the associated zrectangle of the array
pointer element

void makegrid(scene)
OBJECT #scene,

{int 1,j,s8zx,s2y,
OUBJECT p,
NODE egp,

8zx = (vx2-vx1)/GRIDCOL + 1,
szy = (vy2-vy1)/GRIDROW + 1,

for (i=0, i<GRIDROW, i++) -
for (3=0, J<GRIDCOL, j++)

grid(i1[j] = BULL,

for (1=0, i<GRIDROW, 1++)
for (3=0, j<GRIDCOL, j++)

for (psscene, p'=NULL, p=p->next)
if ((p~>xman < (j+1)vszx+vxl) &k (p->ymin <= vy2-1eszy) &k
(p->xmax >= jeszx+vxl) &2 (p->ymax > vy2-{1+1)e¢szy))
{iz (grida(il[3] == WULL)
grid[1][j] = gp = getnode(i,j),
else
{gp->next = getnode(i,y),
&P ® gp-’next,
}

it (gp '= FULL)

{gp->ptr = p,

gp->next = NULL,

}

else

{printf£("\n\nOut of Space!' node %d %d“,1,j),
ex1t(0),
}

. ——— —— A W ———— L e — ——— —

46

SHADE C

/+ SHADING MODULE

This module contains the shading functions used by the
raytracer Although the pgashade function 1s geared to
calculating a color in the PGA range 0 255, 1t does not call
any pga library functions and so is omitted from the PGA
dependent module PGADPENED C

Fanctions -~
pgashade
rgbshade
*/
#include <math h>
#$include "“typedef h" /* structure & other typedef definitionss/
#include “function h" /# function prototype declarations s/

extern double amblent,

extern int DITHER, dather4[4][4], dithers[8][8],

/+ SHADIEG FUNCTIOES

These functions use the following vectors to calculate the shade
for a given pixel, using Phongs lighting equation (all vectors
specified 1n relation to intersection point of ray with
primitive object and are assumed to be unit vectors) -

ray -=> vector in direction of viewer/ray

1ght =-=> vector in direction of light source

nrml ~--> surface normal

Dther information is accessed via a pointer to the intersected
object, obj Pixel coordinates are passed through x and y in
case a dither matrix operation is specified through the global
flag *DITHER?

«/

voird pgashade(c,obj,ray,lght,nrml,x,y,shad)
unsigned char »c,

OBJECT *ob),

VECTOR ray,lght,nrml,

ant x,y,shad,

/.

Thas function calculates the shade of a pixel as an 1intensity
value in the range O 1 This 18 then converted to an int value
in the range 0 15 Since the raytracer loads the PGA 256 entry
color table with 16 different shades for each of 16 base colors,
this value 1s added to the offset of the base color in the table
to give a valune in the range 0 255

————— ——

*/

{VECTOR rflec, /* direction of reflected ray s/

double spec,pspec, /* specular reflection values */
dirf, /% diffuse reflection valna */
1nteng, /¢ £inal calculated intensity *f
™md,

dther, /* used 1n dither matrix operation =/

47

SHADE.C

if (Ishad)
difi - nmi[0]*Ight[0] ¢
nmi[1]*Ight[1]
nml[2]*Ight[2] ;
if (diff <0.0) diff * 0.0;

rflec[0] = Ight[O]-ray[Ol;
rfl«c[1] * Ight[1]-ray[1];
rflec[2] * Ight[Z]-ray[Z];

nomalize(rflec);

if (diff * 0.0) pspec * 0.0;

ela«

{spec * nml[0]*rflec[0] +
nmI[I]*rfl«c[1] +
nml [Z]*rflec [2] ;

pspec * pow(spec,obj->pwr);

>

intens * 15.0 * (obj—>ks*pspec ¢
obj—>kd*diff e

/* point not in shadow

/= diffuse intensity *

/= rector dot product of
/* normal and light vectors
/* negative *> angle >90
/* calculate direction of
/= reflected ray for use in
/* specular calculation.

/* must be unit vector

/= angle > 90 => no specular

/* specular * dot product of

/= normal and reflected ray..

/* ... raised to power pwr.

/* calculate Phong intensity
/* (0..1) and convert to the

obj—>ka*ambient) + /* range 0..15 for PGA use.
obj->md*rand()/32768.0;

>

else

/* shad=l *> point in shadow

intens * 15_0*obj—>ka*ambient + obj—>rnd*rand()/32768.0;

if (intens < 0.0) intens * 0.0;

else

/* chop out of range values

if (intens > 14.9) intens m 14.9;

if QITHER ” 0D

{dther m intens - (int)intens;
if ((iInH(@5.0*dther+0.5) >
ditherdpDX41y4])

intens ¢* 1.0;
>
else
intens +*0.5;

/* dither flag set ? */

/* take fractional part. */
/* Use dither do decide */
/=to round up or dowmn. */

*c * (char)(16*obj—>clr + (int)intens);

*
*
*/
*
*
*/
*/
*/
*/

*/

R4

*

*

*

*

*

/* no dither, round to nearest integer */

/= 0..255 color value */

void rgbshade(c,obj,ray, Ight,nmml,x,y ,shad)

unsigned char *c;
OBJECT *obj;

VECTOR ray, Ighthml;
int x,y,shad;

1 This function calculates the shade of a pixel as three intensity
I values in the range 0..255, one for each of the red green and
1 blue intensities, by applying the shading equation three times -
I one« for «ach intensity. The respective ratios with which an
I object reflects each of the three primaries is obtained from the

I object structure itself.

{VECTOR rflec;
int i;

/= direction of reflected ray.

*/

SHADE C

d

ouble spec,pspec,
difsf,
intens,
dther,

if (‘*shad)

{

diff = nrm1[0)*1ght[0] +
nrml[1]+1ght[1] +
arml[2]e1ght[2],

if (diff < 0 0) daff = 0 O,

rflecf{0] = 1ght[0]l-raylo],
rflec[1] = 1ght[1]-ray[1],
rflec[2] = 1ght[2]-ray[2],
normalize(rflec),

if (diff == 0 0) pspec = 0 O,
else
{spec = nrml[0]*rflec{0] +
nrml[1]erflec[1] +
nxml [2] #rflec[2],
pspec = pow(spec,ob)->pur),
}
}

for (i=0, 1<3, i++)

{

}

af (shad)

/e
/*
/*
/e

specular reflection values
diffuse reflection value
final calculated intensity

used 1n dither matrix operation

/e
/*
/*

/»

/e
/s
/s
/»

/% angle > 90 => no specular

/* specular = dot product of

diffuse intensity =
vector dot product of

normal and light vectors

negative => angle > 90

calculate direction of

reflected ray for use in

specular calculation
mst be unit vector

/* normal and reflected ray

/*

raised to pover pwr

intens = 256 0 ¢ (1 0 - obj->katambient),

else
intens » 255 0 s

(1 0 - (obj->ka*ambient +

obj->ksspspec +
obj->cmy[i]edift +
obj~>amyi]*ambiant)),

1if (intens < 0 0) intens = 0 O,

else

I/

if (intens > 264 9) 1intens = 264 9,

1f (DITHER == QN)
{

dther = intens - (int)intens,

if ((int)(15 O+dther+0 §)

dather4 [x¥%4] [y%4])

intens 4= 1 O,
}
else
intens += 0 §,

>

/*

/*
/s
I

chop out of range valu

dither flag set 7 =/

take fractional part
Use dither do decide
to round up or down

#(c+1i) = (char)(16%0bj->clr + (int)intens),

}

+/
*/
s/

»/
*/
*/
»/

*/
»/
»/

o/
o
o/
o/
o/

*/

o/
*/

s/

/# Phong intensity »/

*/

/* no dither, round to nearest integer ¢/

49

PGADPEND C

/+ PGA DEPEFDENT MODULE

The zxaytracer functions in this module are all PGA dependent in
that they all call one or more functions from the set of PGA
library routines which were written prior to the raytracer
implementation and which provide access to various line/curve
draving capabilities of the Professional Graphics adapter card

] f
) |
] |
| |
| |
| |
| Function PGA functions called |
! |
} rendervolume poly ~--> draws polygon from of points |
i prmfil --> fills polygons 1n current color |
(color --> sets current color |
| |
| pgatrace rline --> reads line of pixels from screem |
i vline --> writes line of pixels to screen |
{ |
| loadpgafile wline |
| Gscreen --> sends byte stream directly to [
| PGA memory mapped I/0 buffer |
| |
| savecolors lutzd --> reads look up table value |
{ |
| readcolors lut ~-> sgets look up table value |
t |
| generatergbup lut |
i |
| generatergbdown lut {
| |
| initpga it --> initializes the PGA card and]
) switches monitor to PGA mode |
| veport --> defines screen viewport |
t vindow --> defines vievplane window | -
t “flood” --~> floods viewport in given color |
| |
| quitpga endgraphic =-> switches monitor from PGA back |
| to normal mode |
*/

#include <stdio h>

$include <malloc h>

#$anclude “pga h /* pga library functions header file */

$include 'global h" /+ global parameters, flags & variables =/

$include "function h" /» function prototype declarations */

extern int fillcolor,

void rendervolume(v,c)

POINT (3],

int c, /* bounding volume fill color e/

/*
| Takes specified bounding volume (transformed and projected) and |
| renders it on the screen (using PGA library functions) as six |
| filled polygons, filled 1n color c |

*/

{ant dummy[3],
prmfil(on), /* ploygon £111 on »/
colox(c), /¢ current color = c ¢/

/* render six polygon faces of bounding volume on screen,
f11led wath fillcolor (volume for come really only has
five, 6th one consists of a single point - the apex »/

poly(4,v[0][0],v[0][1] v[1]{0] v[1][1],v(2]{0],v[2]1[1],v(3]1[0],v(3][1]),
poly(4,vi0][0],v[0][1],v{41[0],v[4][1],v[5][0),v[51(1],v[1]2(0],v[12[1])
poly(4,v[0][0],v[0](1],v{3]1(0],v[3][1],v(7](0],v(7](1],v[4] (0], v[4][1]),
poly(4,v(6]{0],v[61[1],v(51(0],v(S[1],v(1100],v(1]01],v{2](0],v(21(1D),

PGADPEND C 51

poly(4,v[6l(0],v[61{1],v(71[0],v(7]1[1],v[41[0] v[4]1[11,v[s]00],vI5101]),
poly(4,v[61[0],v[6](1],v[2)10],v[2][1],v(3]100],v[3](1],v[7100),+(71(1D),
1lutrd(25,dummy),

prmfil(off), /% polygon fill off +/

void pgatrace(scene)

OBJECT w%scene,

{unsigned char sbf,*fbuf,sptr,1d,
int x,y,cnt,

bf = (unsigned char *)malloc(vx2-vxi+l),
if (FILEOUT == ON)
{if (COMPRESS == 0ON)
fbuf = (unsigned char *)malloc(2#(vx2-vxi+l)),
else
{id = oxrr, /* wvrite 1d byte to indicate uncompressed format */
furite((char »)&1d,1,1,outfile),
furite((char *)Avxi,sizeof(int),1,outfile), /¢ write viewport */
furite{(char *)&vx2,sizeof(ant),1,outfale),
fwrite((char s)&vyl,sizeof(int),1,outfaile),
furite((char *)kvy2,sizeof(ant),1,outfile),
}
}
for (y=vy2, y>=vyl, y--)
{ ptr = df,
1f ((PIIELBUFFER == 0N) && (SCREE¥ == QX))
{rline(y,vx1,vx2,bf),
for (x=vxi, x<=vx2, x++,ptr++)
if (sptr == fillcolor) raycast(scene,x,y,ptr),
else *ptr = background,
} — =
else
for (x=vxl, x<m=vx2, x++,ptr++)
raycast(scene,x,y,ptr),

if (SCREER == (N)
9line(y,vx1,vx2,bf),

if (FILEOUT == 0OE)

{if (COMPRESS == 0F)
{ent = linecompress(bf,fbuf,y,vxl,vx2),
furite(fbuf,i,cnt,outfale),

}
else
furate(bf,1,vx2-vxi+1,outfile),
}
}
frae(bt),

1f (FILEQUT == QON)
{ fclose(outfale),
if (COMPRESS == ON)
free(fbuf),
}
}

int readcolors{str)
char str, -
/*

| This function loads the active look up table of the PGA with the |
| 256 red, green, & blue stored as integers in the file astr The |
| integer stores the valunes as -~ 1
|

| red --> bats 11 109 8
| green ~~> bits 7 6 5 4
| 210

|
{
|
blue --> bits 3 |

s/

PGADPEND.C

{FILE *fp;
int i,r,g,b,*bf;

if ((PGA * OFF) || (SCREEI = OFF)) return O;
if ((fp * fopen(str,"rb'™)) ** IUL) retumn -1;

bf * (int *)malloc(256*sizeof(int));
fread((char *)bf,sizeof(int),256,1p);
fclose(fp);

for (iI-0; 1I<56;)

{r - (@ffiJt OOf0) » 8;
g - @ik 0x00f0) » 4;
b - bffi]lk Ox000F;
lut(i,r,g,b);
>

return 1;

int 8&Yecolors(str)
char *8tr;

1 This function performs the reverse process of readcolors ie. it
1 saves each of the 256 12-bit entries of the current PGA lookup
1 table as 256 integers stored in the file str.

{FILE *fp;
int i,rgb[3],*bf;

if ((PGA «* OFF) || (SCREEI OFF)) retumn O;
if ((fp * fopen(str,"wb'™)) ** IUL) returmn -1;
bf * (int *)malloc(256*sizeof(int));

for (i"0; I<X6; i+)

{lutrd(i,rgb);

bffi] = (rgb[0] « 8 | (rgp[l] « 4 | rgb[2];
>

fvrite((char *)bf,sizeof(int),256,1p);
fclose(fp);

retum 1;

>

void generatergbup(c,r,g,b)
int c,r,g,b;
Vel

1 Given a colorgroup (0..15) and a red, green t bluecolor, this
I function generates a setof 16 shades of the given color,
I starting vith black (rgb * 000). The shades are calculated by
I following a line through an imaginary RGB cube, consisting of
1 4096 subcubes (16x16x16) each of which corresponds to one of the
1 4096 PGA red, green k blue combinations. The lineis folloned
I from erigia (lener left C9n«r) through th« c«ll specified by
1r,g, ad b.

PGADPEND C

{int 14,
doudle x,y,Z,max,

if (SCREEE == QON)

{

i ((x>0) || (g>0) |l (»>0))
{max = r,

}
}

if (g >= max) max =g,
if (b >= max) max = b,
x = r/max,
y = g/marx,
zZ= b/m’

for (i=0, 1<16, 1++)
lut{16ec+i, (1nt) (1#x+0 5),(int) (isy+0 5), (int) (1sz+0 5)),
}

void generatergbdown(c,r,g,b)
mt c,r,g,b,

/»

*/

| Lixe generatergbup, this function generates 16 shades of a color
| by following a line through an 1maginary RGB cube In this case
| hovever, the line 18 followed from the upper right corner of the
| cube {rgb = 111) down through the cell specified by r, g, and b

{int 1,
doudble x,y,z,max,

it (SCREEN == 0N)

{

it (x>0 11 (g>0) |} (b>0)

}
}

vo.

{max = r,
if (g >» max) max = g,
it (b >= max) max = b,
X 3 r/max,
y = g/max,
z = b/max,
for (i=0, 1i<16, 1++)
lut(16¢c+i, (ant) (15 5-1¢x),(1nt) (15 S-1+y),(1nt) (15 5~-1sz)),
}

1d loadpgafile(str)

char * str,

/*

Displays an image or screen, read from a file 1n PGA format
First determines if the file 1s in compressed or uncompressed
format by looking at the first byte -

D9 33> compressed
FF =a3 uncompressed

see linecompress function in RTRACE C module for descraption
of compressed & uncompressed formats

|
!
!
|
|
|
I
|
|

o/

53

PGADPEND C

{char #lne,

uns:igned char id,

ant 1i»25,fh,x1,x2,y1,y2,y,1en,
long length,

FILE »fp,

if (((fp = fopen(str,“"rb")) '= NULL))
{
froad(21d,1,1,2p),
1f (id == 0xD9)
{ 1lne = malloc(1),
fh = fileno{fp),
length = filelength(fh) ,
fseek(fp, (1ong)0,SEEK_SET),
while (length > (long)i)

/e

/*

{fread(lne,1,i,fp), /*
Gacreen(lne,i), /*
length -= (longli,

}

fread(lne,1,(int)length,fp),
Gscreen(lne, (int)length),

fclose(fp),
free(lne),
}
else
it (44 == OxFF) /*
{ /*
fread((char *)&x1,sizeof(int),1,fp),

fread({char *)&x2,s1zeof(int),1,fp),
fread{(char *)&yl,sizeof(int),1,fp),
fread((char *)&y2,s1zeof(ant),1,fp),
len = x2-x1+1,
1lne = malloc(len), -
for (y=y2, y>=y1, y--)
{fread(lne,1,len,fp),
wline(y,x1,x2,1ne),
}
frea(lne),
fclose(fp),
}
}

void initpgald
{

1f (SCREEN == (OF)

{
init (),
vuport(vxl,vx2,vyl,vy2),
vindow(wxl,wx2,uyl,wy2),
flood(fillcolox~Oxffef),
}

}

void quitpga()
{

1f (SCREEX == DOF)
endgraphic(),

54

first byte D9 or FF s/
D9 ==> compressed o/
put byte back - its data ¢/
read file in blocks of i /
and send directly to PGA =/
FF ==> uncompressed »/
NOTE FF not part of data */

/* read viewport */

/% read line & dasplay it »/

Bibliography

AMANS84 Amantatides, J , Ray Tracing With Cones, CoMPUTER GRAPHICS 1984

ANTOS1

APOD89

APPE67

APPEG68

ARNAST

ARVOS8T

BLINT6

BLINT7

BLINS8O

BOUKT70

BOUVSs

BOYS82

BRONGS84

BROWS2

voL 18 #3 Jury PP 129-135
Anton, H , Elementary Linear Algebra, Joun WILEY & Sons Inc 1981

Apodaca, T , The Renderman Interface, BYTE 1985 voL 14 #4 APRIL
PP 267-276

Appel, A, The Notion Of Quantitative Innisihility And The Machine Ren-
dertng Of Sohds, Proc ACM nNaTIONAL CONFERENCE (0CT) NEW
York 1967 ACM NEw YoRK PP 387-393

Appel, A, Some Techniques For Shading Machine Renderings Of Solds,
THoMPSON Books WasHINGTON D C 1968 pp 37-45

Arnaldi, B, Thierry P and Bouatouch K , A New Space Subdivision Method
For Ray Tracing CSG Modelled Scenes, VisUuAL COMPUTING GERMANY,
SPRINGER VERLAG 1987 voL 3 #2 AuGgusT PP 98-108

Arvo,J and Kirk, D, Fast Ray Tracing By Ray Classification, COMPUTER
GRAPHICS 1987 voL 21 #4 JuLy PP 55-64

Blinn, FJ and Newell, M E, Texture And Reflection In Computer Gen-
erated Images, COMMUNICATIONS OF THE ACM 1976 voL 18 #10
OCTOBER PP 542-547

Blinn, J F, Models Of Light Reflection For Computer Synthesized Pictures,
CoMPUTER GRAPHICS 1977 vorL 11 #2pp 192-198 -

Blinn, J F, Carpenter, J and Whitted, T, Scan Line Methods For Dis-
playing Parametrically Defined Surfaces, CoMMUNICATIONS OF THE ACM
1980 voL 23 #1 JANUARY PP 23-34

Bouknight, WJ, A Procedure For Generation Of Three-Dimensional

Halftoned Computer Graphics Representations, COMMUNICATIONS OF THE
ACM 1970 voL 13 #9 SEPTEMBER PP 527-536

Bouville, C, Bounding Elkpsoids For Ray-Fractal Intersection, COMPUTER
GRAPHICS 1985 voL 19 #3

Boyse J W and Gilchrist J E , GMsolsid Interactive Modelling For Design
And Analysis Of Solids, IEEE COMPUTER GRAPHICS AND APPLICATIONS
1982 voL 2 #2 MARcH PP 86-97

Bronsvoort, WF , Van Wyk, JJ and Jansen, F W, Two Methods For
Improving The Efficiency Of Ray Casting In Soltd Modelling, COMPUTER
AIDED DESIGN 1984 vor 16 #1 JANUARY PP 51-55

Brown CM, PADL-2 A Technical Summary, IEEE CoMPUTER GRAPH-
1cs AND APPLICATIONS 1982 voL 2 #2 MaARCH PP 69-84

BIBLIOGRAPHY

BUIT75

CARPS82

CATMT74

CATMS0

CLEAS3

COHESS5

COOKS1

COOKSS

Bui-Tuong, Phong , Illumination For Computer Generaled Images, CoM~
MUNICATIONS OF THE ACM 1975 voL 18 pp 311-317

Carpenter L , Fournier A and Fussel D , Computer Rendering Of Stochastic
Models, CommunicaTions OF THE ACM 1982 voL 25 #7 JUNE PP
371-384

Catmull E, A Subdivision Algorithm For Computer Display Of Curved
Surfaces, UNIv UTAH COMPUTER ScCICNCE DEPT 1974 DECEMBER
UTEC-CSC-74-133

Catmull, E , Computer Display Of Curved Surfaces, TUTORIAL AND SE-
LECTED READINGS IN INTERACTIVE COMPUTER GRAPHICS 1980 IEEE
pp 309-315 (H FREEMAN ED)

Cleary, J G, Wyvill, G M, Vatti, R and Birtwistle G M, Multiprocessor
Ray Tracing, TECH REPORT DEPT COMPUTER SCIENCE CALGARY
UNIVERSITY 1983 REPORT # 83/128/17 OCTOBER

Cohen, M F and Greenberg, D P, The Hemai-Cube A Radiosity Solution
For Complez Enviornments, COMPUTER GRAPHICS 1985 voL 19 #3 pp
31-41

Cook, R L and Torrance, K , A Reflectance Model For Computer Graphics,
CoMPUTER GRAPHICS SIGGRAPH ’81 1981 VoL 15 #3 AUGUST PP
307-316

Cook, RL, A Reflection Model For Realzs;zc }mage Synthests, MASTERS
THESIS CORNELL UNIVERSITY ITHACA NY DECEMBER ’88

CROWT77a Crow, FC, Shadow Algorithms For Computer Graphics, COMPUTER

GRAPHICS 1977 voL 11 #3 JuLy pp 242-248

CROW?77b Crow, F C, The Ahasing Problem In Computer Shaded Images, CoMMU-

CROWS1

DADOS82

DEGUS86

DIPP84

NICATIONS OF THE ACM 1977 vor. 20 #11 pp 40-48

Crow, F C, A Comparison Of Antiahasing Techniques, IEEE COMPUTER
GRraPrHICS & APPLICATIONS 1981 voL 1 #1 JANUARY

Dadoun, N, Kirkpatnick, D and Walsh J , Hierarchical Approaches To Hid-
den Surface Intersection Testing, PROCEEDINGS OF GRAPHICS INTERFACE
82 1982 May PP 49-56

Deguchi, H , Shirakawa, I and Omura, K , A Tree-Structured Parallel Pro-
cessing System For Image Generation By Ray Tracing, SYSTEMS AND
CoMPUTING (USA) 1986 voL 17 #12 DECEMBER PP 51-62

Dippe, M and Swensen, J , An Adaptive Subdimnsion Algortthm And Paral-
lel Architecture For Realistic Image Synthests, COMPUTER GRAPHICS 1984
voL 18 #3 Jury PP 149-158

BIBLIOGRAPHY

EDWARB2

ERDES89

FOLES84

FUJI86

GERVS86

GOLDS86

GREETS

GREET9

HANRS3

HECKS84

HENNS89

HIGD74

JANSS85

JOYS86

KAJI83a

Edwards, B E, Implementation Of A Ray Tracing Algorithm For Rendertng
Superquadric Solids, MASTERS THESIS RENSSELAER POLYTECHNIC INST ,
TroY, NEW YORK 1982 DECEMBER

Erdelsky, Philip, J, An Efficient Sorting Algorithm For Sorting Linked

Lists, THE C USERrs JOURNAL 1989 voL 7 # 4 May pp 89-91
Foley, J D and Van Dam, A, Fundamentals Of Interactive Computer

Graphics, ADDISON-WELSEY SYSTEMS PROGRAMMING SERIES 1984
ISBN 0-201-14468-9

Fuypmoto, A, ARTS Accelerated Ray Tracing System, IEEE COMPUTER
GRAPHICS & APPLICATIONS 1986 APRIL PP 16-26

Gervautz, M , Three Improvements Of The Ray Tracing Algorithm For CSG
Trees, CoMPUTING & GRAPHICS (GB) 1986 voL 10 #4 pp 333-339

Goldsmith, J and Salmon, J , Automatic Creation Of Object Hierarchaes,
IEEE CoMPUTER GRAPHICS AND APPLICATIONS 1986 voL 7 #5 pP
14-20

Greenberg, D P, Atherton, PR and Weiler, K J , Polygon Shadow Gener-
ation, COMPUTER GRAPHICS 1978 voL 12 #3 pp 275-281

Greenberg, D P and Kay, DS, Transparency For Computer Synthesized
Pictures, COMPUTER GRAPHICS SIGGRAPH ’79 1979 vor 13 #2
AvuGusT PP 158-164

Hanrahan, P, Ray Tracing Algebrazch Surfaces, COMPUTER: GR.APHIC;
1983 voL 17 #3 JuLy PP 83-90

Heckbert, PS and Hanrahan, P, Beam Tracing Polygonal QObjects, CoM-
PUTER GRAPHICS 1984 voL 18 #3 pp 119-127 JuLy

Hennmg, E , Intel’s Risc Revolution Of The ’90s, PC User 1989 #103
29 MARcH PP 40-52

Higdon, C E , An Optical Ray Tracing Program, NAvAL ORDNANCE LAB
WHITE Osak MD USA 1974 REPORT # NOLTR-74-70

Jansen, F W | Daia Structures For Ray Tracing, COMPUTER GENERATED
IMAGES (PRoC GRAPHICS INTERFACE ’85) 1985 May 27-31 PP 57-73

Joy, KI and Bhetanabhotla, M N, Ray Tracing Parametric Surface
Patches Utilizing Numerical Techniques And Ray Coherence, COMPUTER
GRraPpHICs 1986 SIGGRAPH ’86 AugusT PP 18-22

Kajyya, J T, New Techniques For Ray Tracing Procedurelly Defined Ob-
Jects, COMPUTER GRAPHICS 1983 voL 17 #3 JuLy pP 91-102

BIBLIOGRAPHY

KAJI83b

KAJI84

KAYS84

LANCT7S8

LEES85

LEVI76

MAHL72

MANDS2

MAXS86

MAXW46

MAXWS6

MITCS87

MYERS2

NAGET1

NEMOS86

Kanya, J T, Ray Tracing Parametric Paiches, COMPUTER GRAPHICS
1983 voL 17 #3 prp 91-102

Kaynya, J T and Von Hersen, B P, Ray Tracing Volume Densities, CoM-
PUTER GRAPHICS 1984 voL 18 #3 JuLy pp 165-174

Kay, TL and Kapya, J T, Ray Tracing Complez Scenes, COMPUTER
GraPHICS 1984 voL 20 #4 pp 269-278

Lance, W, Casting Curved Shadows On Curved Surfaces, COMPUTER
GRrapHICs 1978 voL 12 #3 August PP 270-274

Lee, M , Redned, R A and Uselton, S,P, Statistically Optimized Sampling
For Distmbuted Ray Tracing, COMPUTER GRAPHICS 1985 voL 19 #3
Jury pp 61-67

Levin, J , A Parameiric Algorithm For Drawing Pictures Of Solid Objects
Composed Of Quadric Surfaces, CoMMUNICATIONS OF THE ACM 1976
voL 19 #10 OcCTOBER PP 555-563

Mahl, R, Visible Surface Algorithm For Q-uadmc Patches, IEEE TRaNs-
ACTIONS ON CoMPUTERS 1972 C-21 JANUARY PP 1-4

Mandelbrot B B, The Fractal Geometry Of Nature, FREEMAN SAN FRAN-
cisco 1982

Max, N L , Atmospheric Hllumination And Skadows, COMPUTER GRAPHICS
SIGGRAPH ’86 DaLLas 1986.voL 20 #4 AucusT PP 117-124

Maxwell, E A, Methods Of Plane Projective Geometry Based On The Use
Of General Homogenoug Coordinates, CAMBRIDGE UNIVERSITY PRESS
1951 CAMBRIDGE

Maxwell, G M, Calculations Of The Radiation Configuration Using Ray
Casting, COMPUTER AIDED DESIGN (GB) 1986 voL 18 #7 SEPTEMBER
PP 371-379

Mitchell, D P, Generating Antialiased Images At Low Samphing Densities,
CoMPUTER GRAPHICS 1987 voL 21 #4 JuLy PP 65-T1

Myers W, An Industrial Perspective On Solid Modelling, IEEE CoM-
PUTER GRAPHICS AND APPLICATIONS 1982 voL 2 #2 MARCH PP
86-97

Nagel, R and Goldstem, R A, 3-D Visual Stmulation, SIMULATION 1971
JANUARY PP 25-31

Nemoto, K and Omachi, T , An Adaptive Subdivision By Shding Boundary
Surfaces For Fast Ray Tracing, PRoc OF GRAPHICS INTERFACE 86 &
VIsSION INTERFACE '86 1986 May WEIN, M aND Kipp, E M (EDs) -

BIBLIOGRAPHY

NEWET2

NEWET78

NEWMT79

NISHS86

PEACS6

PLUNS5

PORTS84

PULLS87

REQUS0

REQUS2

ROBET2

ROTHS2

RUBI80

RUSHS86

Newell, M E, Newell, RG and Sancha, TL, A New Approach To The
Shaded Picture Problem, PROCEEDINGS ACM NATIONAL CONFERENCE
1972 PP 443

Blinn, J F and Newell, M E, Clipping Using Homogenous Coordinates,
CoMmpUTER GRAPHICS SIGGRAPH ’78 1978 voL 12 #3 AUGUST PP
245-251

Newman W,M and Sproul RF, Principles Of Interactive Computer
Graphics, Mc GrRAw HiLL 28D EpiTION 1979

Nishita, T and Nakamae, E, Continous Tone Representation Of Three-
Dimenstonal Objects Illuminated By Sky Light, COMPUTER GRAPHICS
SIGGRAPH ’86 DaLLas 1986 voL 20 #4 AuGusT PP 125-132

Peachey, D R, PORTRAY-An Image Synthesis System, PROC GRAPHICS
INTERFACE ’86 & VISION INTERFACE, VANCOUVER 1986 26-30 May
PP 37-42 WEIN, M anD Kipp, E (EDs)

Plunkett, DJ and Baley, M J, The Vectorization Of A Ray Tracing Al-
gorithm For Improved Ezecution Speed, IEEE CoMPUTER GRAPHICS &
APPLICATIONS 1985 voL 3 #8 AuGusT PP 52-60

Porter, T, Cook, R L. and Carpenter, L , Distributed Ray Tracing, CoMm-
PUTER GRAPHICS 1984 vor 18 #3 JuLy PP 137-145

Pulleyblank, R W, The Feastbility Of A VLSI Chip For Ray Tracing Bicu-
bic Patches, IEEE CoMPUTER GRAPHICS & APPLICATIONS 1987 voL 7
#3 MARcH PP 33-44

Requicha A |, Representations For Rigid Solids Theory, Methods And Sys-
tems, COMPUTING SURVEYS 1980 voL 12 #4 DECEMBER PP 437-464

Requicha A and Voelcker H B, Solid Modelbng A Historical Summary
And Contemporary Assessment, IEEE COMPUTER GRAPHICS AND AP-
PLICATIONS 1982 voL 2 #2 MARCH PP 9-24

Roberts, BC jr and Bebbs, E H, Atmospheric Ray Tracing, PROGRAM
OF 84TH MEETING OF ACouUsTICAL SocieTy OF AMERIcA 1972 P 68
NovEMBER ’72 Miami LiNDsaY, R (ED)

Roth, S D, Ray Casting For Modelling Solids, COMPUTER GRAPHICS AND
IMAGE ProcEessING 1982 voL 18 pp 109-144

Rubin, SM and Whitted, T, A 3-Dimensional Representation For Fast

Rendering Of Complezx Scenes, COMPUTER GRAPHICS 1980 voL 14 #3
Jury PP 110-116

Rushmeier, H E, Ertending The Radiosity Method To Transmatting And

Specularly Reflecting Surfaces, MASTERS THESIS CORNELL UNIVERSITY
ITHACA NY 1986

BIBLIOGRAPHY

SEDES84

SHAOS88

SHINS7

SPEESS

SUTHT74

TORRG66

TOTHS5

VANWS84

VERRS5

VOEL77

WALLS7

WARDSS

WATK70

Sederberg, TW and Anderson, D C, Ray Tracing Of Steiner Palches,
CoMpPUTER GRAPHICS 1984 voL 18 #3 pp 159-164

Shao Min-Zhi, Peng Qun-Sheng and Liang You-Dong, A New Radiosity
Approach By Procedural Refinements For Realistic Image Synthesis, CoM-
PUTER GRrRAPHICS SIGGRAPH ’88 1988 voL 22 #4 pp 93-102

Shinya, M , Takahashi, T and Nato, S, Principles And Applications Of
Pencil Tracing, COMPUTER GRAPHICS 1987 voL 21 #4 JuLy PP 45-54

Speer, L, Derose TD and Barsky, BA, A Theoretical And Empirt-
cal Analysis Of Coherent Ray Tracing, COMPUTER GENERATED IMAGES
{PrRoc GRAPHICS INTERFACE ’85) 1985 May 27-31 pp 11-25

Sutherland, I E, Sproull, R F and Schumacker, R A, A Characterization
Of Ten Hidden Surface Removal Algorithms, COMPUTING SURVEYS 1974
voL 6 #1 MARCH PP 1-55

Torrance, K E and Sparrow, E M , Polarzation, Direction, Disirtbution &
Off-Specular Peak Phenomena In Light Reflected From Roughened Surfaces,
JournaL Or THE OpTicaL SocCiETY OF AMERICA 1966 voL 57 #7
JuLy PP 916-925

Toth, DL, On Ray Tracing Parametric Surfaces, COMPUTER GRAPHICS
1985 voL 19 #3 JuLy PP 171-179

Van Wyk, J J |, Ray Tracing Objects Defined By Sweeping A Sphere, PROC
EurRoGRAPHICS 84 1984 (Bo, K aND TUcker, H A (EDs) PP 73-82

Verroust, A , Visualisation Method For Constructive Sohd Geometry Using
Polygon Chpping,

Voelcker H B and Requicha A G, Geometric Modelling Of Mechanical
Parts And Processes, COMPUTER 1977 voL 10 #12 DECEMBER PP 48-
57

Wallace, J R, Greenberg, D P and Cohen, M F, A Two Pass Solution
To The Rendering Equation A Synthesss Of Ray Tracing And Radiosity
Methods, COMPUTER GRAPHICS 1987 voL 21 #4 JuLy pp 311-320

Ward GJ, Rubmstetn FM and Clear RD, A Ray Tracing Solution
For Diffuse Interreflection, CoMPUTER GrAPHICS SIGGRAPH ’88 1988
VoL 22 #4 pp 85-92

Watkins, G S, A Real Time Visible Surface Algorithm, UN1 UTan Comp
ScienceE DepT NTIS AD-762 004 1970 June UTEC-CSC-70-101

BIBLIOGRAPHY

WEGHS84 Weghorst, H, Hooper, G and Greenberg, D P, Improved Computational
Methods For Ray Tracing, ACM TRANSACTIONS ON GRAPHICS 1984 voL
3 pP 52-69

WEIS66 Wewss, R A, A Package Of Programs To Draw Orthographic Views Of Com-
binations Of Planes & Quadric Surfaces, JOURNAL OF THE ACM 1966
VoL 13 #2 APRIL PP 194

WHIT80 Whitted, T, An Improved Illumination Model For Shaded Display, Com-
MUNICATIONS OF THE ACM 1980 voL 23 #6 JUNE PP 343-349

YOUS86 Youssef, Saul, A New Algorithm For Object Orientated Ray Tracing, CoM-
PUTER VISION, GRAPHICS, AND IMAGE PROCESSING 1986 voL 34 pp
125-137

