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ABSTRACT

The work described m this thesis 1s based on a detailed analysis of the classical and quantum
non hinear dynamucs of a kicked oscillator This system belongs to a class of kicked physical
systems (time dependent Hamiltomans) whose dynamics have umversal properties We
begin the analysis by considering the classical mapping (recursive relationship) derived
from the parent system equations The analysis covers the system’s phase space and
1ts evolution as parameters are changed The detailed orbit structure 1s obtained and the
break-up of this orbit structure in the phase space, influenced by presence of penodic orbits,
1s examined thoroughly We also show the existence of two types of orbital diffusion (normal
diffusion and a resonance enhanced diffusion) The results from this classical analysis are
then compared with the quantum mapping The complexity of this quantum mapping 1s
considerable but, with some necessary numerncal considerations, we have used 1t to generate
the time evolution of the quantum probabihty amphtudes of the system’s eigenfunctions
These amphtudes permit the calculation of the system’s energy as time progresses and
enable us to compare the quasi-phase space given by the Wigner distrubution with the
classical mamfold structure to check for scarring of the quantum wavefunctions The
quantum mapping we denive has not been defined in any of the hterature so that all the
results obtained 1n the quantum regime are oniginal In the classical regime our work on
pentodic orbits and resonance enhanced diffusion 1s also original We have adopted some
techmques and methods from other kicked systems and modified them for our system to

complete the investigation of the kicked oscillator
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OVERVIEW OF THESIS LAYOUT & CONTENTS

The work presented mm this thesis 1s mn two parts, the classical regime of the
kicked harmonic oscillator and the corresponding quantum regime The classical regime
15 presented first and the results from the detailed analysis are presented in chapters 3 &
4 We then proceed to the more abstract fully quantum regime and compare the results
obtained, in chapters 6 & 7, with those in the earher chapters from the classical regime
Our intention 1s to relate the dynamics & phase space structures in the classical regime
to the evolution of wavefunctions, energies & qausi-phase space distributions 1n the fully
quantum regime Consequently, we will 1llustrate how remnants of the classical regime are

visible 1n the fully quantum regime without us having to explore such hmits as & — 0

The principle reasons for our choosing the kicked harmomic oscillator are that
this system 1s physically real (and not mathematically motivated} and classically chaotic
Furthermore, 1t has been postulated by Berman et al (1991) that the kicked rotator,
which 1s known to have suppression of chaos in the quantum regime, 1s not a generc
kicked system They argue that the presence of an extra time scale 1n the kicked oscillator
can give nse to wavefunction de-locahsation and hence non suppression of chaos 1n the
quantum regime .

In chapter 1 we review the area of Hamiltoman chaos which 1s pertinent to the
research carrnied out by us The chapter also introduces the physical sigmificance of the
system we examine (Chermkov et al (1987)) and shows how the equations governing the
system are obtained Some defimitions are included at the end of the chapter of the more
immportant expressions and terms used 1n the later analysis

Chapter 2 consists solely of the derivation of the classical mapping from the Hamul-
toman describing the kicked harmonic oscillator We proceed by expressing the Hamil-
toman in terms of the systems annihilation & creation operators with no speafic kick
potential 1s given Qur reason for this 1s to show the generic nature of the mapping thus
obtamned through comparnson with that obtained Goggin et al (1990) for their formulation
of the quantum logistic map We then proceed with a speaific potential so that the system
corresponds to the physical system presented in section 1 3 of this chapter (Chermkov et
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al (1987)) Once the final expression 1s arnived at, the mapping 1s transposed to from a
quantum operator regime to a classical scalar regime and the final classical mapping 1s
presented once the real and complex terms of the expression are separated The special
case of a resonant kicking, 1 ¢ when the kick penod 1s commensurate with the natural
penod of osallation of the free harmonic oscillator, 1s lughhghted specifically as this 1s the
case we are pnimanly considering Some phase space portraits are also included for the

purpose of 1llustrating the diversity of dynamic behaviour present

The analysis of the derived classical mapping takes place mn chapters 3 & 4 In
chapter 3 we examine the structure of the phase space and use the subsequent results to
highhght the mechamsms of orbit travel in the diffuse stohcastic layer within this phase
space We also obtain an expression which allows us to predict the orders of periodic
pomnts existing on the layer boundary and show using the K AM theorem how these
affect the break up of stable orbits in the invanant cells 1n the phase space which define
the stable motion of the system Due to the fundamental importance of the stochastic
layer 1n defining the non-hnear properties of our kicked system, we examine the layer
itself speaifically 1ts waidth vamation as a function of the kick strength and the diffusion of
orbits within the layer itself This latter examination 1s presented 1n chapter 4 where we
undertake an analysis similar to that of Rechester & White (1890) We examune the effect
of correlations, between 1terates, on the diffusion of orbits and we modify the approach of
Rechester & White so that 1t can successfully model the behaviour of our kicked system
We also highhght how strong correlations between iterates can lead to a resonance effect
which manifests itself as spikes on the diffusion curve A comparnson 1s made between
our expressions for this enhancement and the predictions of Ishizak: et al (1989) for their
investigation of a similar phenomenon for the kicked rotator

The denvation of the quantum mapping sigmifies the beginming of the quantum
analysis of our kicked oscillator The approach we take 1s similar to Fox et al ((1990),
(1994)) which maps the probability amphtudes of the undnven oscllator’s exgenfunctions
from kick to kaick This allows us to construct wavefunctions, energy evolutions, phase
space distributions and quasi-energy levels The approach uses a fixed evolution matrix

which multiphes a vector, consisting of the amphtude strengths of one {ime step, to give
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a vector consisting of the amphtudes at the subsequent time step This approach allows
all the analysis to be carried out, for a given set of parameter values, by just calculating
a single matrix However, for each parameter change, a new matrix must be evaluated
The denvation proper and the numerical short-cuts we considered when computing these
evolution matrices are included 1n chapter 5

The results from our quantum mapping are analysed 1n chapter 6 & 7 We take a
three-tiered approach to the analysis, namely a neghgble kick strength input, a moderate
kick strength input and a large kick strength input Our reasons for this are made clear
in chapter 6 The vast choice of imtial distributions of probability amplitude strengths 1s
overcome by considering two types a pure state of the undriven oscillator and a mixed
state consisting of a weighted distrbution of the undriven oscillator’s eigenfunctions These
plus our three-tiered approach constitute the scope of our quantum analysis inputs In
chapter 6 we examine the amplhtude distribution as it evolves 1n time for our three kick
strengths, the energy evolution for the corresponding cases and the relevant wavefunction
evolution We examine the diffusion of orbits which exhibit a linear energy increase and
also the quasi-energy levels manifested 1n some of the results as steady state levels 1n the
energy evolution curves The conclusions drawn are compared with the quasi-phase space
portraits presented in chapter 7

Chapter 7 represents the final stage 1n our analysis We present, imitially, a denva-
tion of the Wigner distribution (Wigner (1932)) based on the equations given 1n the review
by Hillery et al (1984) The resultant expression 1s also shown to be real valued despite
the appearance of complex terms The latter half of the chapter 1s devoted to several pairs
of figures, each consisting of an 1mage of the wigner distmbutton above the corresponding
contour plot of the same distribution Qur intention 1s to illustrate how the system evolves
temporally 1n 1ts position-momentum space and compare 1t to the classical results The
results of this are as starthng as they are beautiful Our main conclusions are summarised

in chapter 8 where inter-comparisons are made and future paths, along which research

could proceed, highlighted



CHAPTER 1
HAMILTONIAN CHAOS

The purswit of an understanding of the mechamsms behind previously indeterminable
processes has been made possible with the development of fast, rehable, cost efficient sohd
state electronic computers Today, through the use of computers, both the scientific and
engineering commumties are benefiting from the research into controling the non-hnear
behaviour of critical systems, the onset of turbulence and chaos This chapter will attempt
to review briefly the main developments in non-hnear dynamcs which are relevant to the
work being presented 1n this thesis Many books exist which will give the reader a much
more detailed picture of this whole area of science (Cvitanovic (1989), Bergé et al (1987),
Devaney (1989), Ott (1993))

1 1 Introduction

Historically, scientists, mathematicians and, more recently, engineers have at-
tempted to 1mpose a simphfied picture on our perceptions of the world about us For
hundreds of years the nature of everything about us has been explained away as mod:-
fications on a theme of hnearity mn everything from maths to astronomy It was using
Euchdian geometry that astronomers & philosophers back in antiquity tried unsuccess-
fully to model the Universe with the earth at 1ts center using a series of concentric circular
orbits for the moon, planets & sun (Ptolemaic System) Even the most complex of systems
have had attempts made on them to be reined in by this predilection to hneanty and to
be brushed off as impossible when proved unsuccessful Yet even despite thys blinkenng
there were some observant enough to see something hidden 1n the nature of these systems,
a complexity which defied the simple, artificial rules that were used to explain them and
flaunting a rich beauty beyond the realms of the mediocnty of stmple hnearity Leonardo
Da Vina himself sketched the flow of water coming from a fountain 1n Florence in the 16th
century and was observant enough to include the small structure eddy currents within the

larger ones as he sketched the water spewing out This structure within structure 1s what

makes everything around us so interesting  the fact that something could be there which
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we’ve overlooked Non-lineanty 1s the nature of our being and chaos the theory behind

that nature

In classical systems chaos 1s considered present if the system exhibits a sens:-
twe dependence on initial conditions What this means 1s that any two mmitial conditions
separated by even by an infimtesimal amount diverge exponentially with time It was
Hadamard (1898) who discovered this exponential divergence of nearby trajectories for
a particle flow over a surface of negative curvature Not long after, Duhem (1906) and
Poincaré (1908) determined that such a property in any system precludes the making of
long term predictions about nature of the system’s dynamics The scene was thus set for
chaos All that was required was the proper impetus to bring this work out of the abstract
realm of mathematics and to a wider audience (Heffernan et al (1992) & the references

quoted therein)

It was not until the invention of the electronic computer in the 1950s and, more
importantly, the further developement of these into the sohd state transistorised computers
of today that numencal analysis and modelling took off in a big way Many researchers then
looked to using these number crunchers as means of evaluating the complex differential
equations and 1terative mappings It was Lorenz (1963) who, while modelhing flmd flow
in a simphfied atmospheric model, found the sensitive dependence on initial conditions
Smale (1967) showed that this complex nonhnear behaviour existed 1n a number of systems
IHowever, 1t was with the advent of such people as Feigenbaum (1978,1979) and lus scaling
numbers (to explain the structure in a simple iterative mapping on the umit interval),
Mandelbrot (1982) and his fractals and Ruelle & Takens (1971) with their strange attractors
that this area of research rapidly took off with the Litany of chaoticians including such
prominent others as Pomeau, Vidal, Manneville, Ott, York, Greobogi, Proccacia, Jensen
and so on The vast number of pubhcations on this subject over the past decade and a half
1s as starthng as the area 1s encompassing The whole dynamicism of nature itself seems
contained within the influence of chaos, everything from the fluid dynamics (Libchaber and
Maurer (1982)) to organic cardiac cells (Guevara et al (1981)), from non linear electromc
arcuts (Testa et al (1982)) to optical systems (Arrechs et al(1982)) and chemical reactions
(Hudson and Mankin (1981)) All of the above systems are, of course, classical and easily
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observable in expenments In fact the experiments are so vanied that the time-scales and
length scales of many of the chaotic systems analysed in the classical hmit vary over many
orders of magmtudes, from minutes for the Libchaber & Maurer experiment to tens of
miacro-seconds for the Testa et al experiment Classical systems were the obvious choice for
examimng chaos as these apply directly to the world about us and are in the same ballpark
when 1t comes to our normally observable lives yet there were those who wondered about
the quantum hmit and the classical-quantum correspondence and this led some to ask
What happens on the quantum level when the classical system 1s chaotic or turbulent? It
was this thought about the quantum himit and how classical chaos might manifest 1tself 1n

this hmit that led to the birth of what 1s now referred to as Quantum Chaology

1 2 Conservative Systems & Chaos

The area of quantum chaos 1s quite different to most of the systems mentioned
above because quantum systems are described by within the Hamailtonians framework and
their phase spaces are area-conserved This property forces any analysis of such systems
along different routes to the dissipative systems discussed 1n section 1 The previous sys-
tems were considered dissipative because structures in their phase spaces tend to contract
and tend to be atiracted to time invanant hmghly complex structures called strange at-
tractors These are usually fractal with the dynamics of the systems being confined to the
region of phase space where these attractors restde In our conservative Hamiltoman sys-
tems we do not have such dissipation or strange attractors present Any structure retains
1ts area 1n the multi-dimensional phase space of the system We will restrict our arguments
to the 1D case as we will only be dealing with a 1 Dimensional oscillator 1n what 1s to
follow 1n later chapters

As we have a.lrea.d;l' mentioned, the system’s dynamics are determined by 1ts Harml-
toman, H(p,q,t) The p describes the momentum and q describes position and both are
normally vectors of the same dimensionality as the number of degrees of freedom 1n the

system, N As N = 1 for our system the the vectors p & q will be replaced by the scalars
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p & q¢ The time evolution of p and ¢ 1s described by Hamilton’s equations which relates
the trgjectory p(t) & g(t) trace out m the 2D phase space of our system

dp _ _8H(p,g1)

p7i 8q (121)
dg _ 3H(p,q,1)
i 5p (122)
If we form a vector x from the p & g (Ott (1993)) 1€
% = (P)
q
we can wnte the two Hamilton equations as one vector equation
dx -
dt = (x!t) (123)

The advantage of this 1s not just the ease of use of one equation but that we can, by taking
the divergence of F, show how Hamilton’s equations predict the conservation of area in

our 2D phase space,

0 0 on 0 0H
e F = — —_ —— —_— — —_——— —

Oz Op 0q + 0q Op 0 (124)
Furthermore, 1t can be shown (Ott (1993)) that for any closed curve in the 2D phase space,
S,, the time evolved curve 5; encompasses the same area as does §, This follows from

differentiating w rt time the area integral and showing 1t to be zero

d dx 0
—_ d’x = = ds = F dS = e 2% _
dt/sl fs = 7{5 s= [ g Eex=0 (125)

This property of having a phase space incompressibihity, Liouvilies Theorem, means that
attractors do not exist for Hamiltonian systems in the same sense they do for dissipative
classical systems with phase space contraction We have dehberately laboured this pont
so that this difference 1s clear Despite the area conservation of the phase space, complex
structures can (and do) exist there We will show later that, using the K A M theorem,
the break up of orbits in our 2D phase space can become very complex, even fractal, :n
that the structure has detailed structure even at arbitranly small length scales

The absence of strange attractors with infimitely complex structures, caused by

successive foldings and stretchings of the phase space, 1n classically conservative systems
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requires the existence of another mechanism to give nse to the highly non-hnear behaviour
that 1s expected from a system which 1s classicallly chaotic The incompressibihity of the
phase space also allows the system to occupy the whole of the phase space This prompts
the question can some orbits diffuse around some (or all) of the whole phase space and
ezhibit sensitive dependence on initial conditions in a manner analogous to the behaviour
of orbits on a dissipative strange attractor? The answer 1s yes 1if the system has a surface
layer which spreads out over part of the phase space and if this layer permits orbits to
diffuse over 1t The existence of this layer gives rise to what we now term Hemaltonian or
Conservative Chaos In fig 11 we llustrate such a layer which exists 1n the phase space of
our drniven harmonic oscillator The layer 1s called stochastsc because of the diffuse nature
of the orbits within 1t One can see from the figure that the layer occupies the space
between islands of bounded motion 1n the phase space Any orbits within these islands
cannot leave them and are thus bounded in energy, momentum and position The orbits
present 1n the stochastic layer are not so bounded and can diffuse freely over the entire 2D
phase space since the web like layer connects all inter-1sland spaces 1n the phase space (a

more quantitative explanation is presented in chapter 3)

The parameters used 1n fig 11 are explained 1n later chapters and the figure 1s
used here for qualitative purposes only, the quantitative analysis will be undertaken 1n
chapters 3 & 4 for the classical mapping So for classical conservative systems the exis-
tence of this layer permits complex non-hnear dyanamics to exist The quantum regime
15 so different from the classical that methods are used which for the most part do not
resemble those 1n the classical regime Energy 1s a big factor in determiming how diffuse an
orbit 1s becoming and so, as energy levels exist m the quantum, 1t makes sense for energy
and energy levels to be scrutimsed in depth Some, such as Berry & Robmk (1984) and
Lewenkopf (1991), have analysed the energy level statistics of time independent Hamulto-
man systems to check for a possible phase change when the corresponding classical hmat
1s going from regular to chaotic motion Others, Israeilev (1990), tend to construct quasi-
energy levels for kicked systems and analyse these levels with a hope to uncovering some
of the mystery surrounding quantum chaos. Both are, to date, inconclusive, Lewenkopf

(1991) proved that exceptions can exist to the change m energy level statistics proposed
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Fig 11 Plot of the diffuse (or stochastic) layer for the kicked harmomc osallator
for poy =65, K =01 & f = 7 The meaning of the above parameters

1s explained 1n chapters 2 & 3

as a mechanism for highhghting chaos, but work 1s continuing The evolution of energy
time (in time dependent Hamltomans) and the subsequent comparison with the classical
limit 1s also used Ths techmque was apphed to the kicked rotor (Casat: et al (1979))
and shown to have a natural saturation 1n the energy Though indicative of suppression
of quantum chaos 1n the kicked rotator, this type of energy saturation 1s not umversal
in quantum systems In fact Berman et al (1991) have postulated that the presence of
an extra time scale (o In(k™!)) n the quantum regime of the kicked harmonic oscillator
mught allow for the non suppression of chaos and that a quantum analogue of the classical
crystaline phase space structure might allow for the delocalisation of wavefunctions allow-
ing the kicked harmonic oscillator to be chaotic in the quantum regime (Daly & Heffernan
(1994)) In chapter 6 of this thesis we present results which appear to show the energy
increasing hnearly without saturation indicating non-suppression of chaos Our matnx
size and the hmit of computing power available hmit our time evolution but the evidence

points to no suppression of chaos 1n the quantum hmt

For quantum systems trajectories do not exist in the manner that we are accus-
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tomed to dealing with 1n the classical regime because of the uncertainty principle There-
fore a phase space as such cannot be constructed because of the uncertainty in trajectornes
We can however construct a quasi-phase space using the distrbution introduced by Wigner
(1932) and further developed by Cohen (Hillery et al (1984)) This Wigner distribution
sets up a probabihity measure over the momentum-postion space allowing contour hnes to
be drawn joimming regions of equal probabiity Thus one can construct a picture of the
probability distribution in the Q-P plane and thus a quasi-phase space for these quantum
systems (Hannay & Berry (1980)) To more readily compare the quantum and classical
phase spaces the Husim: distmbution (Husimi (1940)) 1s often invoked This distribution
1s a coherent state representation of the Wigner distirbution (c f chapter 7 and the re-
view article by Hillery et al (1984)) As the coherent state has the least uncertainty of
any wavefunction the hope 1s to more closely compare the two phase spaces This 1s the

more common distribution encountered in the hiterature (Balazs (1990), Radons & Prange

(1990), Scharf & Sundaram (1991), Kus et al (1991) and Scharf & Sundaram (1992))

The discrete nature of the kick used in periodically kicked systems permuts the
construction of mappings relating the system’s behaviour from one kick period to the next
For some of the more simple systems, the kicked quantum rotor (Scharf & Sundaram
(1991)) or the Baker’s map (Balazs (1990)), the methods used appear simple enough
because of the simplicity of the eigenfunctions of the systems However for the more
complex systems, such as our kicked harmonic oscillator, the more direct method of relating
probability ampltudes, of the undmven eigenfunctions, from kick to kick (Fox & Lan
(1990), Fox & Elston (1994)) 1s used with success We consider this latter techmque more
reahstic as 1t relates physical quantities (the probabihty amphtudes of the eigenfunctions of
the undriven harmonic oscillator) to the time evolution of the kicked system It will become
apparent from the results in chapters 6 & 7 that from just the evolution of the amplitudes
we can calculate the energy evolution, the quasi-energy levels & the Wigner distribution
all as functions of time The usefulness of this techmque depends greatly, however, on
the eigenfunction of the system itself and the existence of anlaytical solutions to integrals
mvolving such functions (¢ f chapter 5 eq (51 26)) We end with the comment that each

system has 1ts own characteristics and 1t 1s by fundamentally understanding these that the
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right method for quantising the Hamultoman can be found

The last few paragraphs were intended to highlight the differences between the
quantum regime and the more familiar classical regime The conceptual difficulties asso-
ciated with quantum phenomena are not eased by the complex non-hnear nature of these
systems but we hope that we have answered more questions 1n this very bref discussion of
quantum chaos More detailed discussions (ones which do the subject more justice than
could be attempted here) can be found m such books as Quantum Chkaeos edited by Cerdeira,
Ramaswamy, Gutzwiller & Casat: and Edward Ott’s Chaos in Dynamical Systems We
complete this introductory chapter with a brief outhne of some of the nomenclature used

i this work and how they are defined 1n the context of this work

1 3 The System Proper & Some Definitions

The kicked harmonic oscillator, 1n the form we present 1ts Hamiltonian 1n chapters
2 & 5, can be motivated from physical systems Chermkov et al (1987) chose that of
particle motion 1n an external magnetic field B, with a disturbing plane wave packet
present which propagates orthogonally to the magnetic field (which propagates along the

z axis) The plane wave packet contains a very large number of plane waves

d2

F: + wlsin(z) = %Eo g sin(kmz — wnt) (131)
where w, = eB,/mc 1s the cyclotron frequency By setting k,, = const = k, and w,, =
nlAw with Aw equal to the frequency separation of neighbouring modes and n = 0, +1,

we find that, as the number of modes m tends to infimty, the summation term can be spht

to give

> 2nnt

Zszn(kmz ~ wmt) = sin(k,z) Z cos( T ) (132)

m n=—oo

The summation over n of the cosines gives a perniodic train of delta pulse so thateq (13 1)

becomes a more famihiar equation

& Z°°
—‘-1723 + wgz = iEoszn(koz) 6(t - nT) (1'3 3)
m

n=—oo



From this point 1t 1s qute stanightforward to reconstruct the system Hamiltoman Noting
that dg/dt = —p/m and that d?q/dt> = —( L )dp/dt we find that by replacing = with ¢ we

obtain the time evolution equations of p and ¢

dp n =

= = WoT — eE,sin(k,z) n}_oo&(t - aT) (13 4a)
dg _ _»
prinie (1 3 4b)

where, upon invoking Hamilton’s equations (1 2 1) & (1 2 2) we end up with the hamilto-
man we requre for our analysis and that which 1s used from now on when referring to this
system

9 o

1 ek,
H(p,q,t) = 2?_m + Emwgq2 + E cos(k,z) Z §(t — nT) (135)

n=-—0oo

Some of the more commonly used expressions and words in any area of research
can very rapidly become almost colloquial so that their onginal intended defimtion or
function takes on a much broader term or in some case 1s used to refer to something only
vaguely related to the onginal meaming To prevent any misunderstanding here we will
make a few loose definitions to essentially highlight the meaning we 1ntend 1n this thesis

for the following terms

Integrability When we refer to integrability in this system, the kicked harmonic oscillator,
we mean that the Hamiltoman, H(p, q), can be expressed, by means of a canomcal change
of vanables (p,q) — (J,8), solely in terms of one of the variables 1n our system the
introduction of the action-angle variables means the undriven harmonic oscillator can be
expressed solely interms of J (the action variable) and 1s therefore integrable The kicked
system cannot be so expressed and 1s therefore non-integrable The analysis involving

integrability 1s carned out in chapter 3

K.A M. Theorem As we understand this very complex theorem, the tor1 (1n our 2D phase
space these are just orbits) in the phase space are subject to distortion and eventually break
up if the rotation number of the orbit on this torus is sufficiently commensurate with the

perodicity of the perturbing term This 1s how we apply this theorem to our system In

9



Unperturbed

Fig 1 2 Unperturbed circular orbits of a typical integrable system The dashed
orbits are the two mentioned which have rotational number of 3 & 4
and are among the first orbits to break up under K AM From Chaos 1n
Dynamacal Systems by E Ott, Chapter 7

Perturbed

Fig 1§ The perturbed orbits corresponding to fig 12 The two commensurate
orbits have broken into hyperbolic & elliptic points of the order of the ro-

tational number From Chaos in Dynamaical Systems by E Ott, Chapter
7
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X

n ‘ + 0
XD - //-; [/ |2n
Elliptic points
/_—\

Fig 14 The two different types of fixed points shown here 1n the phase plot of the
pendulum, X = —sin(z) The separatrx is the line separating bound mo-
tion (oscillation) and unbound (rotation) From ”Self-Generated Chaotic
Behaviour in Nonlhnear Mechanics” by R H G Helleman in Universality

in Chaos edited by P Cuvitanovic

fig 1 2 we show the arcular type orbits for an integrable system (as a surface of section of
a torus) and this can be compared to the case in fig 21 for our system with no kicking
(1 e integrable) In fig 13 we show how some orbits of rotation numbers 3 & 4 have
broken up 1nto two sets of four points (one set hyperbolc, the other elhptic) The elliptic
points of these broken up orbits have a circular structure similar to the original integrable
system and these too expenence break up in a stmular manner resulting 1n a lughly complex

structure for large kicking This 1s discussed 1n detail in chapter 3

Periodic Fixed Points What we want to discuss here 1s the two types of penodic fixed
points encountered in the type of conservative system we’re considering The first 1s the
elhptic fixed pomnt This 1s distinguished by 1ts complex eigenvalues and by the fact that
nearby points are rotated by the presence of this point into ellipses (or circles) Therefore
the presence of circular concentric orbits in our phase space hghlights the presence of an
elhptic fixed point at the centre of these concentric orbits Hyperbolic fixed points have
rea} exgenvalues and are distinguishable by the fact that orbits near them can be attracted

11



towards them along their stable directions (given by the eigenvalue less than one) and
repelled along the unstable directions (given by the eigenvalue greater than one) Orbits
also generally have the shape of hyperbolae near such fixed pomnts A schematic of the two
types 1s given m fig 14

This mtroductory chapter is just a brief review of the areas relevent to the work in
this thesis and a more in depth 1introduction can be found 1n the reference books previously
mentioned We will now discuss m detail the physics of the non-hnearly kicked harmomnic

oscillator

12



CHAPTER 2
THE CLASSICAL MAPPING

This chapter 1s intended as an introduction to the classical mapping which we
obtained from the quantum mechamcal equations describing the kicked harmomic oscillator
The 1deas and methods by which we obtain the final form for the mapping are outlined
along with a brief description of the the derivation itself To illustrate the complexity of
the resultant mapping, we include some phase space portraits along with a plot obtamned

from the differential equations of the system for companson

2 1 The Classical Derivation

As the title of this section suggests, our purpose here 1s to derive the classical
mapping from the quantum operator equations The complete derivation 1s quite long and
tedious so only those steps that are necessary for cohesion will be presented Furthermore,
as the undriven system 1s a standard under-graduate problem, we will assume the reader 1s
famihar with the operators, ¢ & a"', and with the basic properties of the undriven system
A more complete introduction can be found 1n any standard quantum mechanics book such
as that by Messiah (1976) It 1s the classical map, resulting from this derivation, which
we will use extensively 1n the classical analysis of the kicked quantum harmonic osaillator
undertaken in chapters three and four

In order for us to proceed with this derivation 1t 1s necessary to explain briefly
how we intend, here, to transpose from the quantum to the classical In quantum space
the existence of wavefunctions necessitates the existence of operators to operate on these
wavefunctions and obtain measurable quantities (once the expectation value 1s sought) In
classical space these operators become sumple scalars or, using a more formal notation, we
simply take the ¢ number representation for any operators used If some operator function,
f(a,,at), represents the system 1n the quantum Lt then a scalar function f(a,a*) can
be defined to represent the system m the classical hmit where the a & af are operators
and form a Hermitian conjugate pair with the o & o* being scalar and forming a complex

conjugate pair It 1s by this transformation that the Hermitian conjugate operators become

13



simple complex conjugate numbers and hence how a classical system can be formed from
a given quantum system (Lowsell (1965))

Let us now introduce the system to be analysed It consists of a quantum harmonc
oscillator, of mass M and natural frequency w,, which 1s driven by a potential V(p, ¢) whose
temporally discrete nature 1s brought about by i1ts product with a penodic delta function
Thus the Hamiltoman, Hr, for this system 1s the sum of the Hamiltoman for the undnven
harmonic oscillator, H,, and the driving (or kicking) potential term H; The form of the
potential , V(p, ), 1s cntical for the overall system’s behaviour and 1ts exact form will be
given later so as to keep the following denivation as generic as possible

The Hamiltoman, H,(t), for the 1solated quantum harmomc oscillator 1s given
below in eq (211)

p(t)

Bo(t) = 2M

+ = M 2q(2)? (211)

where p(t) sigmfies momentum and g(t) position and both are functions of time, ¢ (Messiah,
1976) As we will demonstrate in chapter 3, this system 1s integrable

To account for the kicking, the driving term, denoted H,(t), 1s added to H,(t),
forming the hamltoman Ht for the complete system, and the form that this kicking takes
1s given 1n eq (21 2)

Hy(t)=V(p,q) 3. 6(t—nr) (212)

As can be seen from the equation above, H;(t) 1s the product of a continuous potential
V(p,q) with a periodic train of discrete delta pulses The addition of H;(t) not only makes
an integrable system, H,(t), non-integrable but also allow highly complex dynamics to
exist 1 the system even when H,(t) 1s more of a perturbation than a dominant term It
1s this property that makes this class of system particularly interesting

To obtain the classical mapping for this system 1t 1s necessary, and preferred, to
express the above equations in terms of a set of anmhilation and creation operators, given
by a(t) and af (t) respectively Those famihar with the isolated harmonic osallator will
be aware that this substitution of e(t) and aT(t) for p(t) and g(t) makes the hamiltomian

H,(t) much more manageable and this property 1s apphed to the compound hamiltonian
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Hr(t) to simphfy 1t  As an intermediate step mn the substitution the operators, P(t) &
@(t), are defined by

) = POVHRa,  alt) = Q0 3 (213)

By then defimng the creation & anmhilation operators as

a(t) = \—}_E(Q(t) +uP@) () = fﬁ(Q(t) — uP(t)) (214)

the Hamiltoman, H,(t), for the 1solated oscillator, and the Hamiltoman H,(t) for the

driving term become

Ho(t) = "2 (a(t)al (1) + ol ()a(v) (2150)
and
Hi(t) = V(a{t),a (t)) Y 8(t ~n7) (21 5b)

respectively with the complete system Hamltoman, H7(t), being just the sum of eq
(215a) mitheq (215b),1€

(af(®)a(t) + a(t)al (1)) + V(a(t),al (1) ¥ 6(t —nr) (216)

n=-—0oo

hw
Hr(t) = —
r(t) =
With the system hamiltomian thus expressed we will now proceed to examine the time
evolution of the operators, a(t) & aT(t), so that a recursive mapping can be obtained The

time evolution of any operator, ¥, can be described by the equation

ov L
o _t(w,m) (217)

where ¥ = ¥(i) 1s time dependent The brackets, { ), denote the commutation of any
operators contained theremn As 1t 1s necessary to commute operators to obtain their
time evolution then 1t 1s appropnate to review some commutation rules which are used to

great advantage 1n the simplification of the equations resulting from the apphcation of eq

(217)

1 (a,a)=0 (any operator commuted with 1tself 1s zero) (21 8a)
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2 (aaf)=1  (al,a)=-1 (21 8b)
3 (abc)=(ab)c+(a,c)b (21 8c)
4 (a,b) =356 (a,b)b ! (21 8d)

The a and af 1n the four equations above are of course functions of time, ¢ = a(t) and
af = aT(t) For a(t) & at(t), eq (21 8d) simplfies to nb?"~! because the commutation
of a(t) with at(t), and vice versa, 1s scalar, ¢ f eq (21 8b)

The time evolution of the operator a(t) 1s, using rules 1 — 4 1 eqs (21 8a) to
(218d)andeq (217)

a‘;(tt) —waft) - ; (a(t), V(a(t),at(2))) n_z_wa(t —nr) (219)
For aT(t) a similar equation 1s obtained
at L >
9 at(t) = wal(t) - 5 (at(t),V(a(t),al () D, 6(t—n7) (2110)

As the exphat form for the drniving potential has not yet been revealed, then for convemence
—F (a(t),V(a(t),aT (t))) shall be wntten as f(a, at) and fT(a,a,f) for the corresponding
a! commutation Putting b = w, and by integrating the equation over one kick cycle from
just before the N to just before the (N+1) kick (t = N7 —€ tot = (N + 1)7 — €) then, (as
we let € — 0),

a(N + 1)e®NTDT) = g(N)elN™) 4 f(a(N), ol (N))eN ™) (2111)
Dividing across by el®N+1)7) 4o 1solate the a(N + 1) term on the left hand side, the
resulting equation 1s

o(N +1) = a(N)e=) 4 f(a(N),al (N))el=t7) (2112q)

with the equation for the af(t) operator similar 1n form to the above except for the sub-

stitution of a(t) for aT(t) and a few sign changes
at (N +1) = af(W)e® + #l(a(N), ol (W))e®? (21 126)

Defiming 3 to be equal to br, the final generic forms for the anmhilation and creation

operators, a & af, can now be written These two equations are called generic because
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they hold true for any temporally discrete potential of the form given 1n eq (212) The
equations below are remarkably similar to those of Goggin et Al (1990) in his formula-
tion of the quantum logistic map This form 1s quite general and can be applied to any
driven oscillator system regardless of the kick term as well as other kicked systems where
an anmhilation - creation type operator set exists and where this set exhibits the same

properties as those for our system

a(N +1) = [a(N) + f(a(N),af (N))] e7* (2113q)

ol (N +1) = [af(W) + H(a(),at ()] (21135)

Despite having obtained such a set of generic maps 1t 1s impossible to predict the system's
behaviour until a specific form for the potential 1s given The form of the potential we

have chosen 1s

V(p,q) = pqcos(kq) (2114)

after Berman et al (1991) In thus choice of potential the parameter p, 1s the quantum
kick strength and k 1s a characteristic length scale The importance of writing the potential
like this 1s to enable a direct comparison to be made between the classical parameters m
our current analysis and the quantum parameters in the forthcoming quantum analysis 1n
chapters 5 and 6 This choice 1s also in keeping with the physcial sigmficance of the system
as explained in chapter 1 Upon substituting the operators a and al for g, our equation

for the potential becomes
V(a,al) = p, cos (K(al(t) + a())) (2115)

where for convenience K 1s defined to be k/h/(2Mw,) Using the trigonometric identaty
Cos(A+ B) = Cos(A)Cos(B) - Sin(A)Sin(B) with the properties of the operators, a and at,
and the series expansions of the sine and cosine functions, the operator functions f(a, at)

and f't(a, aT) both take on the same form

f(a,al) = f1(a,a!) = tepcrsm [K(at(2) + a(2))] (2116)

where . 1s the classical kuck strength and 1s defined to be pyK/h A detailed step by step
derivation of how we obtain eq (21 16) from eq (21 15) 1s included 1n Appendix A
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It 1s now possible to construct the quantum operator mapping for a and al for
the chosen potential These two mappings are 1dentical 1n form to the generic ones defined
by eqs (21 13a — b) but they are specific 1n the sense that the general functions f(e, aT)
& j"]L (a,aT) have been replaced by therr specific form as given by eq (21 16) The final

operator maps are

oN +1) = o(N)e™” + spersm [ K(al (N) + o(N)) ] e° (21 17a)

a,t(N +1) = a.Jf(N)e’ﬁi — Ljber SIn [K(a,T(N) + a(N))] e? (2117b)

It should be pointed out here that the a(N) & a.f(N ) constitute a Hermitian conjugate
pair In order to transpose to the classical regime we multiply a(N), aT(N ) & pa by
a parameter Ko(= ko \/Ww—o) defined to be equal to one Also K 1s divided by K,
for consistency in the sine argument Thus no parameters or vanables have any exphait
dependence on & We can now transpose to the classical It 1s possible to express a(N)
in the ¢ number representation as a(n) and aT(N ) as a*(n) where the a's constitute a
complex conjugate pair and are not operators As the a(n)'s and a*(n)'s are just numbers
then we can, quite justifiably, write a(n) as z(n) + ty(n) and a*(n) as z(n) — 1y(n)
Therefore eqs (21 17a) and (21 17b) become

z(n+1) + wy(n + 1) = [2(n) + wy(n) + tpc sn(2Kz(n)) | e~# (21 18a)
for the transposition of the a(N) operator mapping and
z(n+1) —wy(n +1) = [2(n) — wy(n) — tpq sin(2Kz(n)) ] et? (21 18b)

for the aT(N ) operator mapping

It 1s interesting to note that the real and i1maginary parts of the two above equa-
tions are i1dentical We now spht the real and imaginary parts to yield a mapping for
z(n)(the real part) and y(n)(the corresponding imaginary part) The two equations we
obtain are, for the real parts of eqs (21 18a)&(2 1 18b)

z(n + 1) = z(n) cos(w,T) + y(n)sm(w,T) + por s1n [ 2K z(n) | sin(w,T') (21 19a)

and for the imaginary parts
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y(n+ 1y=y(n) cos(u>T) - x(n)sm(ulT) + ficism[2Kx(n)]cos(u0T) (2.1.1%)

where we have replaced the parameter 3 with 1u0T and simplified the equations. These
are the equations which constitute our classical mapping as derived from the quantum
mechanical operator equations. Their form is different from that normally observed in the
literature such as the articles by Chernikov et al. (1989), Israilev (1990), Berman et al.
(1991) and others (Schmera et al 1992, Zaslavsky and Filonenko, 1968). The reason for
this is our inclusion explicitly of the K in the sine argument whereas most others re-scale
their x(n)'s and y(n)'s such that this term is excluded. Our mapping is equivalent to that
in the literature when K = 0.5. Our inclusion of K allows us to expand the phase space
as the system’s periodicity is directly proportional to the parameter K. This ability to
expand the phase space allows detailed analyses to be made of the small scale structures
without necessarily having to worry about computer precision. The trade off, however, is
the complexity of an extra parameter.

These equations are also dimensionless as the a &  operators are themselves
dimensionless from their definitions in egs. (2.1.3) & (2.1.4) and the transposition to the
classical representation adds no dimension to the variables a and a*. Attention should
also be brought to the fact that the x in the classical mappings can be traced directly back
to the Q operator in quantum space and likewise the y to the P i.e. from eq. (2.1.4) and
the definitions of a and a*

0= -=(Q+iP)->a = (x+iy) = =(Q-iP) e = (x- )
50 that

Q- : .
V2>X & yﬁ)»y

with —signifying here the classical transposition.
Taking egs. (2.1.19a) & (2.1.196) a much simplified mapping is found for u0T = |
which is the specific form chosen in the subsequent analysis as this form despite being more
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manageable has one less parameter to deal with This form 1s given below 1n eqs (2 1 20)
and (21 21) and will henceforth be referred to as the Resonant Kicked Oscillator Map
(RKOM)

z(n+1)=y(n) + pasm[2Kz(n)] (2120)

y(n +1) = —z(n) (2121)

To test whether the above mappings did 1n fact describe the behaviour of the ong-
inal Hamiltoman, eqs (211) & (21 2) were modelled using the time evolution approach
for the p & g operators, not the a & o as before The Hamiltoman Hr(t) given by the
sum of eqs (21 1) and (21 2) gives the time evolution equations below for the P & Q
operators (defined by eq (21 3))

%—?=—i(P,HT)=w3Q+pC,sm(KQ)';5(t—n‘r) (2122)
and
%z_%(Q,HT)=—P (2123)

These were 1ntegrated numernically and the results were i1n agreement with the mappings
above Therefore we can confidently state that the dynamics present in the classical
mapping are representative of the continuous system

Some phase space plots, from the mappings 1n eqs (21 20) & (21 21) and from
the continuous system 1n eqs (21 22) & (21 23), are shown in the proceeding section to
illustrate how complex the phase space for this system can be and how the mapping 1s

equivalent to the system’s differential equations

2 2 Some Phase-Space Portraits

This section 1s solely dedicated to illustrating the phase space of the classical
mapping derived 1n the preceding section and as such we do not intend here to analyse

the phase space This section 1s solely demonstrative The portraits chosen are considered
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Fig 2 1 Phase space plot for 8 = -(-ﬁ;/ﬁ,ff =01and g =0,1e no kicking

representative of the system at large and show how the parameters affect the structure
and, subsequently, the dynamics of the kicked oscllator

Figure 2 1 shows the undriven oscillator phase space with the circular orbits char-
actenstic of the energy levels for the isolated system The energy levels of the undriven

system are given by (Messiah,1976)
E,=(n+1/2hw, =7, (221)

As the z and y are essentially the position and momentum respectively, then the energy
of the system at any given point (z,y) 1n the phase space 1s directly proportional to the

sum of the squares of z and y
E xz? +9° (222)
For the undriven system the energy of any orbit, n, 1s constant (= 7,,), fromeq (22 1), s0
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the relation between the energy and z & y 1s a circle hence the circular orbits The phase

space properties are examined further in chapter 3

40 T T T

T

-20

—40...|JJ.1...|...
-40 =20 0 20 40

Fig 2 / Phase space plot for g = @I,K =01and g,y =65 This s the off

resonance case

Figs 22 & 2 3 show the phase spaces for two values of the kicking when the system 1s on
resonance,ie (3 = 1q37r where p & q € Z As evident from these two figures, the higher the
kicking, the wider the diffuse layer between cells A quantitative analysis of this layer 1s
undertaken 1in chapters 3 & 4

The final pair of diagrams illustrate the system for non-resonant kicking, 8 not
equal to §7r Vp,q € Z, and the system as modelled by the differential equations (21 22) &
(2123) The lack of symmetry in the former 1s stnking with the diffuse layer spreading
over the whole plane as the dniving 1s increased The latter illustrates just how well the

mapping represents the system and how, using some straight-forward identities, the system
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Fig 25 Phase space plot for the differential equations proper

can be described totally by a simple set of recursive mappings instead of a set of coupled
differential equations It’s these mappings, not the differential equations, that allow the
following analysis to be carried out

The five phase space portraits shown in this section are only illustrative whereas,
for any true characterisation to be undertaken, 1t 1s necessary to quantitatively analyse the
components of the system’s phase space This 1s the task we undertake in the following

two chapters
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CHAPTER 3
ANALYSIS OF THE PHASE SPACE

The phase space of the system may at first ghmpse appear to be just nice pictures
and little else However buried in these nice picturesis the essence of the system’s behaviour
and evolution both as a function of its parameters and time Therefore the principle
diagnostic tool available 1s this phase space and 1ts analysis 1s tantamount to understanding
the system’s behaviour

In this chapter we analyse the phase space of the classical mapping denved 1n
chapter 2 and charactenise 1t by considering 1ts symmetry, by using the K A M theory, by
looking at the effect of peniodic points on invanant orbits (Cleary, 1990) and by examining
the stochastic web’s width and structure Through the adaptation of these well estabhshed
techniques and by developing new ones 1t 1s our intention to obtain a greater understanding

of the system proper using 1ts principal diagnostic tool the phase space

3 1 The Symmetry Of The Phase Space

The symmetry of the system’s phase space depends solely on the parameter 3
which relates the natural frequency of the undriven oscillator, w,, to the periodic time,
7, of the dirac delta function From the phase portraits in the last chapter 1t 1s possible
to see just what an effect S has on the phase space A striking example 1s the difference
between the phase spaces in figs 23 & 2 4 which show the system for # = 7 and 1—'1'-23@
respectively The former clearly shows a four fold symmetry which we attribute to the

1dentity

2
& 4w, = -:-(s w1) (311)

16=on=

oA

with the ratio of w, to w; being4 1 The latter figure (fig 2 4) shows no obvious symmetry
primarily because the relationship between w, and w; 1s incommensurate The advantage
of using a resonance driving 1s that the phase space 1s easier to analyse using periodic orbuts
with their associated stabilities and mamfolds However 1t 1s possible to successfully apply

some of the results of the resonance case to the non-resonance case as has been done for
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diffusion m the stochastic layer (Chirkov (1979), Lichtenberg and Wood (1989), Schmera
et al (1992)) Our task here 1s to use return maps as a techmique for analysing the four
fold symmetry in the resonance case we are considering This techmque 1s hmited 1n that
1t 1s only apphcable to a subset of all resonance cases

The return map 1s one of the prinaple methods for quantitatively examining and
llustrating the symmetry of the system at a particular resonance value of § This technique
has been widely used to analyse classically chaotic low dimensional mappings (May (1976),
Feigenbaum (1980)) However, this method 1s restricted in that only positive integer ratios
of w, tow; (1e = % where ¢ € Z7) can have comparable return maps Therefore 1if the

th

ratio between w, and w; 1s n then the »n'" return map 1s required which exists only if n 1s
a positive nteger [, 1n most of the analysis to follow, 1s fixed at /2 This requires us to
obtain an expression for the fourth return map

The fourth return map1s that version of the classical mapping which relates y(n+1)
to y(n — 3) and similarly z(n + 1) to z(n —3) Thus we can exphatly relate every fourth
pomt The second and third return maps, denoted (2 R M ) and (3 R M) respectively, must
be formulated as steps to getting an exphcit form for the fourth return map (4 RM ) To
obtain these maps 1t 15 necessary to recall the defimtion of the RKOM defined 1n egs
(2120) & (2121) Taking these equations for the mapping and expressing z(n + 1) and

y(n+1) 1n terms of z(n — 1) and y(n — 1) respectively our expression for the second return

map (2R M )1s

z(n+1)=—z(n—1)+ pa sm(2Ky(n - 1)+ 2Kp s1n(2K:v(n — 1))) (31 2a)

y(n+1)=—y(n—1) — pysin (2K:c(n - 1)) (312b)

It follows that those points of the form 77 constitute steady state solutions of the above

equations because period two fixed points have, from their very defimtion, the property
that y(n — 1) = y(n + 1) and z(n — 1) = z(n + 1) By steady state we refer to those
solutions of any return map such that £, = z,_; where k 1s the order of the return
map and 1s an integer In what 1s to follow these solutions are those which set all the

sine terms to zero The penod one fixed points, of which they 1s but one the ongin,
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are also steady state solutions of the above as they are for all the return maps because
z(n+1)=z(n)=2z(n-1) = = z(0)

The thurd return map (3 R M ) 1s obtained in a manner similar for that of 2 R M
where this time y(n + 1) 1s related to y(n — 2) and z{n + 1) to z(n — 2) However as this
return map 1s not required for the present analysis 1ts form 1s not presented exphaitly The

fourth return map (4 R M ) 1s given below
z(n+1)=2a(n-3)~ pa sm((2Ky(n -3)+2Kpcsin(2Kz(n — 3) )))

— i SID (2Ky(n - 3) +2Kpqsm(2Kz(n — 3)) + 2K pcisin <2K:c(n -3)-

2Kp. sm(2Ky(n ~3)+2Kpsin(2Kz(n — 3) )))) (313a)

y(n+1)=y(n —3) + pasm(2Kz(n — 3))

+fci 510 (2K:n(n —3)~2Kpsin (2Ky(n -3)+2Kpasin(2Kz(n - 3)))) (31 3b)

The penod four fixed points are those points satisfying the 1dentities
gn+1)=z(n-3) yn+1)=y(n-3) (314)

So the steady state solutions of the above two are the fixed points of period four, two or
one Any multipher of four 1s a hypothetical steady state solution of the 4 R M hence the
inclusion of fixed points of period two and one For a solution of the form z(n+1) = z(n—3)
etc to occur all terms after the first on the right hand side of eqns (31 3a) & (3 1 3b)
must go to zero This means that all the sine arguments must all go to zero and so the

penod four fixed points must satisfy

2Kz(n +1) =2Kz(n — 3) = 2Kz = 2mnr (315)

2Ky(n+1) =2Ky(n — 3) = 2Ky = 2nx (316)

As K has been chosen to be 01 for most of the analysis then 1t follows that the period
four fixed points are given by

z=>5mnr  y=bnw (317
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where n,m € Z As the multiplers, n and m, can take on any integer value then the period
four fixed points exist as a umform grid over the entire 2D plane of the phase space Ths
has far reaching consequences for 1t allows the unbounded transport of certain phase space
orbits and also allows a diffuse layer to exist over the entire phase space Both of these
consequences will be studied in detal 1n proceeding sections and chapters but suffice to
say that this grnid 1s essential for the stochastic behaviour m the system

Now that the existence of this grid of points has been estabhshed i1t remains for
us to consider whether these fixed points are hyperbohc or eliptic The reason for this
consideration 1s to determine 1n which regions of the phase space the unstable directions of
the hyperbohc points exist as these determine the unbounded, diffuse behaviour previously
mentioned Why this is so will become clear later The behaviour of orbits in the vicmty
of elliptic and hyperbolic points determines how the phase space itself evolves both as a
function of time and as a function of any of the three parameters, p.;, K and 8 In order
for us to determune whether a periodic fixed point 1s eliptic or hyperbolic 1t 1s necessary

to find the fixed point’s eigenvalues as given by the equation
|J—AI|=0 (318)

where , 1n this 2D mapping, A 1s a 2D vector contaimng the eigenvalues, (A, A2), J 1s the

Jacobian of the nth

return map (where n 1s the peniodiaty of the fixed point) and 1s a
(2 x 2) matrix with I being just the (2 x 2) 1dentity matrix The eigenvalues of an elliptical
point are in the form a complex conjugate pair such that the matrix M, containing the
real and 1maginary parts of the eigenvalue solutions of eq (3 1 8) for this specific fixed
point, 1s a rotation matnx about the point itself (Bergé et al (1987)) For the 2D system
M 1s of the form

- (0 ) 519

For these elhptic fixed points the complex eigenviaues can be expressed in terms of two

real numbers a & 3 such that,

A =a+8 (3 1 10a)
=X =a—i8 (31 10b)
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vicimty

Al = el = XA =a® +8* =1 (3110¢)

Furthermore the angle v 15 cos~!(a), or ssn™!(8) Thus any pont (z,y) m the
of these eliptic points would be rotated through an angle ¥ at every iteration

thus forming circular orbits From table 3 1 the dependence of the angle v on yu.; 1s shown

clearly 1llustrating that the exgenvalues he on a umit complex circle about which they rotate

anti1-clockwise with increasing p.;

el A Az ¥ Type
(@ +¢B) (a —:8) cos™}(a) or san"l(ﬂ)
10| 09208 +.:.03900 09208 — .0 3900 23°4 4 Elliptic
20| 06928+:07211 06928 — 0 7211 46°8 9’ »
30| 03448-+.:09387 03448 — .0 9387 69°49 8 ”
40| —00752+ 09972 —00752 — .0 9972 94°18 8’ »
50 | —0 5000 + .0 8660 —0 5000 — <0 8660 120° ”
60| —08432 +:0 5376 —0 8432 — .0 5376 147°28 8’ »
70| —09992 + :0 0399 —0 9992 — .0 0399 177°42 5 ”
80 | —08432—.05376 —0 8432 + 0 5376 212°31 2’ »
90| —02312—:09729 —0 2312 + .0 9729 256°34 8 »
10 1 0000 1 0000 360° Hyperbolic
Table 3 1 The dependence of A;,A;and v on the kick strength p.; The larger

pet the faster an orbit can complete a full circuit around the fixed point
once puq < 100 At this value of p.; the pomnt becomes hyperbohc and the
eigenvalues satisfy eg (3 1 11) rather than eqns (3 1 10a — ¢)

For a hyperbolic point its eigenvalues are not complex but real with the ratio

between them such that their product 1s 1
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A =1/ (3111)

In order for eq (31 11) to be satisfied one eigenvalue must be greater than 1 with the
other less than 1 Whichever eigenvalue 1s greater than 1 describes the unstable direction
whereas the eigenvalue less than 1 describes the stable direction

The eigenvalue equation for the period four fixed points 1s desired as this period-
ity 1s the fundamental symmetry of the system To proceed further it 1s necessary to
substitute, from eq (3 1 7), the values of the period four fixed points in order to ehminate
the sin terms 1n the expressions for the 4 R M This substitution makes for a much simpler
set of equations than those m eqs (31 3) and (314) The Jacobian’s elements, J,, where
1<1,3,<2and3,7 €Z,are

Ji = g-z-g—i“g =1-4K*p%(-1)"*t™ (31 11a)

Ji2 = gzg: h ;; = 4K pa(=1)" — 8K3 3 (~1)2m+m (3112b)

Jo = Z%EZ—*:% = —4Kpa(-1)™ 2" 8K ud (~1) (3112¢)

Jaa gﬁzi 3 =1—12K2p%(-1)™F" + 16K *pt (=1)2(7+™) (31 12d)

The exgenvalue equation given previously, 1n eg (3 1 8), boils down, now, to

(1= X = 4K2p2(=1)™+" ) x (1= X = 12K23 (=17 4 16Kl (~1)20m+m))

— (4K pa(~1)" — BKp3(—1)27+™ )« ( ~4K poi(—1)™ + BKpd(~1)2m+7) = 0 (3113)

This equation 1s solved on a computer using the formula for obtaining the roots of a
quadratic equation to give the eigenvalues A\; & A, for any penod four fixed pont (5mm ,
5nr) at specified values of 1 & K Remember that 315 fixed now at 7 It has been seen
from results obtained numerically that for p.; > 0 the period four fixed points with n+m
odd are hyperbolic with unstable and stable directions given by A4 and A_ respectively

Furthermore for two adjacent period four hyperbohic points A & B, with A = (5m, 5nr)
and B = (5(m + 1)x,5(n + 1)), the terms J; & Jap for A are equal to —J21 & —J22
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Fig 81 The prinaple directions of travel along the stochastic layer for py =
65K =01and 8 =7/2 The arrows indicate the directions transport
takes place in Arrows ponting away from a crossover (hyperbohc fixed
point) indicate unstable directions while stable point towards the fixed

pomnt

repsectively for B The result of this 1s to cause the unstable direction of A, given by A4,
to comncide with the stable direction of B, given by A2, and vice versa A plot showing
this 1s given 1n fig 31 From this one 1s able to deduce that orbits in the vicimty of the
unstable mamfold of any hyperbolhc period four fixed point, denoted P1, can be shoved
away from 1t to one of two of 1ts neighbours, P2 & P2’, because their stable directions are
comncident with the unstable directions of P1 Once 1n the vicnity of P2 or P2’ the orbit
1s then pushed away along their unstable mamfolds to one of two of their nesghbours and
so the process can continue until the orbit has visited all the penod four hyperbohc fixed
points 1n the 2D plane of the phase space (Lowenstein, (1991), Radons & Prange (1990))
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Fig 3 2 This phase plot shows the dumb bell type separatrix about the newly
formed hyperbolic points in the cells’ centers for uq = 110,K = 01
and 8 = w/2 The cell eventually breaks into two pieces whose centers
correspond to the centers of the loops These smaller cells eventually

break up in a similar way

As the peniod four fixed points with n + m odd are hyperbohc then naturally it 1s safe
to presume those with n + m even are eliptic This 1s m fact the case up to the value of
o equal to 10 At this value and for values above these elliptic points become hyperbohc
with their mamifolds taking on a dumb bell shape as evident from fig 3 2 The imphcation
of this dumb bell shape 1s that the unstable mamfolds of these points comncide with the
stable manifolds at the extreme of each loop with the result that orbits near the unstable
mamfold get repelled only to be attracted along the stable manifold further on Ths
causes the orbits to remain localised waithin the cell. Eventually, as the kicking strength 1s

increased, the outer orbits of the cell break up and the locahised orbits become de-localised
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and diffuse Furthermore, as will be shown later in the chapters relating to the quantum
mapping, this dumbbell type structure and the subsequent break-up of the period four
imnvanant cells into two smaller cells 1s very fortunate for us This property allows us to
analyse the quantum behaviour at the onigin {using low order eigenfunctions) knowing that
1t will become unstable and that this stabihty can be measured by examiming the evolution
of energy and the probabiity amphtudes This 1s done 1n detail 1n chapter 6, sections 6 1
and 6 2

Also apparent are other separatrices bordering the diffuse region These separa-
trices are imtially sharply defined but as the kick strength 1s increased they become diffuse
and eventually indistinguishable from the surrounding layer At this point all that remains
are the small 1sland cells 1n the layer These cells contain an elliptic point at their cen-
ter with mnvanant orbits surrounding them As the kick strength 1s further increased the
measure of the cells reduces due to orbit breakup at the cell boundary with the stochastic
layer As the kick strength increases further separatrices form in some of the orbits with
small cells surrounding higher order elhptic fixed points As before these separatrices be-
come diffuse and the small cells break away from the larger mother cell which 1s getting
smaller Eventually the eliptic points in the center of these cells become hyperbolic and
all invanant cells tend to measure zero with the stochastic layer occupying the whole of
the 2D phase space except for the locations of the periodic points which have measure zero

(Helleman (1980)) These break-ups can be best described by the following diagram

Elhptic points Hyperbolic points Separatrix
at center of — p. — with well defined — y, — becomes —>—
the cells separatrix diffuse
Y
Measure of cells break to form
these cells ——p —— smaller cells as — fLeo #
reduces diffusive orbits spread

where u.; denotes increasing p,; This form of break up 1s predicted by the Kolmogorov
Arnold Moser (K A M ) theorem which 1s used 1n the following section to analyse the phase

space 1n a more quantitative manner
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32 Of Action-Angles & KA M

Recall how, 1n chapter 2, we showed how circular orbits should anse naturally in
the phase space of the undriven harmomnic oscillator As these circular orbits hint at an
underlying circular symmetry 1t 1s prudent for us to consider expressing the a & ol operator
variables 1n terms of a set of aircularly symmetric operators variables These variables are
referred to as Action-Angle (4 — 4) vanables denoted J(action) and #(angle) Once J and
6 are defined with respect to @ and ol they can be substituted into the onginal system
Hamiltoman, Hr The advantage of this change of vanables 1s to readily allow us check
the influence of the non-integrability of the kick term on the onginal integrable undriven
system Our defimtion of integrability 1s that if the hamiltoman can be expressed as a
function of J only then it 1s integrable We proceed by defining J and 6 according to

a=vJxexp(td) and al = V7« exp(—16) (321)

The action-angle vanables can be expressed directly in terms of the P and @ operators
with the purpose for this being our abihty to directly compare the classical z and y to the

classical equivalent of the action-angle variables
Q=+vJxcos(8) and P =+/Jxsm(f) (322)

When the Hamiltoman for the undriven oscillator, H,, given 1n eg (2 1 5a) 1s expressed m

this new set of variables 1t becomes independent of 6 and 1s a function of J only
H,(J,0)=H,(J)=Jhw, (323)

such that the energy of the system 1s related directly to the variable J not § This 1s
essentially a canonical form of the original H, The variables J and 8 are also dimensionless
as 1s apparent from eqs (32 1) and (3 23) When this Hamiltoman 1s transposed to the

classical representation we define a new set of vanables such that the following 1dentities

holds
z = p * cos(@) and  y = p=*smn(¢) (324)

where p and ¢ are our classical equivalents of J and @ so that our transposition takes 1/J/2

to p and # to ¢ We can now directly 1dentafy the circular orbits 1in the classical space to
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these new vaniables As has been previously pointed out, the phase space of Hy consists

of concentric circular orbits which, 1n the p, ¢ representation, are given by
p? simn?(8) + p? cos*(6) = p* (325)

where p 1s essentially the radius of the orbits The larger the value of p the larger the circle
and the higher the energy of the orbit

Such a system as that represented by the Harmltoman 1n eq (3 2 3) 1s considered
mtegrable because the Hamltoman can be wrntten as a function of J solely and has no
direct dependence on # A non-integrable system can be considered to be one where the
hamiltoman cannot be so wnitten

Our interest here 1s 1n the kicked system so let us now proceed by expressing the

complete system Hamiltoman, Hr, defined m eq (21 6) m terms of J and 6
Hr(J,0)=H,(J)+p,Hi(J,0) (326)

This shows H7 to consist of an integrable term, H,, and a non-integrable term H; The in-
tegrable term 1s that for the undriven system as described above whereas the non-integrable
term 1s that for the dnving term We have for clanity removed the kick strength vanable,
g, from the hamiltoman H; so that the proceeding analysis will be easier to understand
The classical equivalent of eq (3 2 6) would be the corresponding energy equation which
depends on p and ¢

ET(pa¢) = Eo(p) + F’clEl (Pa ¢) (3 2 7)

where Er, Ey and E; are the corresponding classical terms to Hr, Hy and H; respectively
The remainder of this section is devoted to explaining what effect ., has on the integrabihity
of Hy and by consequence p; on E The K A M theorem 1s also invoked to help explain
why some orbits 1n the classical phase space break up quicker than others

For large values of kicking potential, u.E), the system 1s certainly non- mtegrable
due to a domination by this term over the E, term The fundamental question, however,
1s  To what level 1s the system non-integrable for small non- zero values of the kicking
potential and how does this level of non-integrability affect the invariant orbits in the phase

space?
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This 1s the question that the K A M theorem addresses According to this theorem
if the non-integrable term 1s sufficiently small to behave more as a perturbation on the
mtegrable term than as a major contributory term then the invanant orbits remain if
the orbits have sufficiently incommensurate frequencies w, Those with commensurate
frequencies or frequencies nearly commensurate do not remain and are distorted to a lesser
or greater extent with some even being destroyed

For small . we can see from the phase space portrait in fig 3 3(a) that the
majority of the orbits are circular 1n shape and are thus largely unaffected by the kicking
term Subsequent enlargements (figs 3 3(b), (c)&(d)) about the hyperbolic fixed point at
(0,57) show that the stochastic layer 1s very small indeed being confined very tightly to the
manifold structure resulting from the hyperbolic fixed points of pertod four (¢ f fig 3 1)
The only orbits with any noticeable distortion are those whose non-integrable contribution
1s comparable, or greater, to their mtegrable term As p. 1s small then those orbits
with large E (p,#) can have non-mtegrable contributions which can not be considered
as vanishingly small Indeed it 1s only these orbits which have some level of discernible
distortion Therefore we can conclude that for small . the level of non-integrabihity in
the system as a whole 1s so small as to be neghgible

Having addressed the problem for small y. we now concentrate on the problem
for o finite and beyond the perturbation realm We would expect that if E,(p,¢) was
of a sufficient size to be capable of distorting phase space orbits when u. was small, and
merely perturbing the system, then as p; 1s increased the distortion would increase and
orbital (toral in higher dimensions) breakup would anse probably through an overlapping
of higher resonance separatrices This will be examined 1n detail 1n the next section

It 1s worth noting that as E;(p, $) 1s not constant then 1t can negate, or even re-
verse, the effect of an increasing p; if 1t 1s sufficiently small In this case the non-integrable
term becomes more of a perturbation and the orbits remain essentially undistorted as we
can see around the elhptic point at the ortgin In conclusion, the lgher E; ( p,¢ ) for any
lel, the greater the distortion and the sooner the break up of the orbits For our system
we will show that the magmitude of E; (p,¢) determines how many terms 1n the senes

expansion of 1ts cosine term are needed to accurately describe the behaviour. More terms
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Fig 83 The phase space of the kicked oscillator for § = 7, K =01 & pey =05
The enlargements 1n parts (b), (c) & (d) about the hyperbolic fixed point
at (0,57) show how confined the stochastic layer 1s but that 1t does exast

nevertheless

allow for higher order periodic points and hence an earher break up of the orbits than for
orbits with less terms and hence a smaller E; ( p,¢) In the above analysis the classical

terms, Ej,p. and Ej, were used However their effects on the system can be related di-
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rectly back to their quantum counterparts and the arguments presented above could quite
easily have been presented i terms of H;, u, and Hy This inter-relating of quantum and

classical 1s important to the analysis using the quantum mapping in chapters 6 & 7

3 3 Periodic Orbital Analysis

It 1s our intention here to quantitatively analyse what was stated in the previous
section To accomplish this we mntend to construct a form of the non- mtegrable term
which will allow us to predict which orbits should be present given the type of potential
we are using to drive the system

Let us start by examining the dniving term H ( J, 8} expressed as a function of the

Action-Angle variables J & 8

Hy(J,0) = cos (/2 emn(6) ) 3 6(t = ) (331)

n=0

We have dehberately substituted K for its constituents as defined in chapter 2 as this
will permit us to exphatly equate the w, term to the driving frequency w;(= 27/7) The

cosine term 1s now replaced by 1its series expansion to give

where w, has been replaced by rw;, and r 1s the ratio between w, and w; The above can

now be expressed 1n the more readable form

Hi(J,0)=Y (-1)" fm (58,01) Y gmn(w1,r) (333)

m=0 n=-—o0c0

The classical equivalent for the above 1s 1dentical m form but has of course the classical
equivalents of the quantum operators and vanables The classical form 1s the one we shall
use 1n the following analysis as this analysis requires comparnsons between the predicting
equation and results obtained from numencal simualtions 1n the classical phase space Our

classical form 1s

El(ps¢)= Z(_l)m?m(p’¢awl) E ?mn(wl"r) (334)

m=0 n=-0co
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To analyse the behaviour of this system we need to consider the relationship between w,

and w; Remember that § = 7 , that 1s » = 1/4 Therefore we have, 1n the function
gmn (w1,7), 2 way of describing the affect the relationship between w, and w, has on the
existence of resonances in the complete system It 1s evident from eq (33 1) that not
only 1s the cosine term sampled by the delta function at a frequency w; but also that
this term has an infimte set of intrinsic frequenaes, w™(= r™w™), and that the ratio
between these frequencies and w; allows the various resonances to exist We can use these
resonances to predict the periodic points m the system’s phase space Thus, depending on
the values chosen for m, the resonances allowed can be various and not just multiples of
four It 1s these resonances that cause the breakup of orbits in the phase space because

only those orbits which are sufficiently mncommensurate will survive an increase in the

non-integrability of the system (as predicted by K A M theory)

How sufficient 1s sufficient® This condition of sufficiency may become more ap-
parent by examining the resonances at some low values of m Table 3 2 shows how for
a given value of m, the number of expected resonaces i1s dependent on the number of
factors of ™ Furthermore, the statement *maybe all factors which almost divide evenly
into 256° imphes that while there are multiples of 4 which do divide into 1ts hugher powers
evenly there can nevertheless exist periodic orbits which have a penodicity close enough
to a divisor of 256, or any power of 4™ Vm € Z, with a small remainder These consti-
tute the quasi-commensurate orbits which accelerate the destruction of orbits with small
E, whose resonances otherwise would be of insufficient number to break up the orbits
at the same value of y,; The periodic points actually seen in the system to date have
been 1,3,4,5,6,7,8,12,16,21,24,32,48,72 The 1nherent difficulty of locating, numencally,
fixed points of a specific penodicity 1s well known especially 1f the points have small lya-
punov exponents as this results 1n slow convergence to the points themselves (Auerbach et
al (1987)) Therefore the hst presented above i1s as complete as permitted by the hmit on

computing time and by the resolution of the search grid used to locate the points

The non-integrable cosine term, E;, 1n the system equation can only be described
by its first few senes terms when 1its argument (x psin(¢)) 1s small As the p can be

considered, 1n the undriven osaliator, to be analogous to the radii of orbits then in the
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m resonances ™= wy fw™

0 1—1 w)
1 1-4&1-1 4
2 1-16,1-8,1-4,1-1 16

maybe a 1-5 & 1-8

3 1-64,1-32,1-16,1-8,1-4,1—1 64
maybe 1-81,1-13,1-12,1-9,1-7,1-5,1-8

4 all multiple of 4 up to 256 256
maybe all factors whick almost dinide into
256 with small remainders

Table 3 2 The first few terms 1n the expansion of the driving term 1n eq (3 3 3)
showing what resonances would be expected to be present Those res-
onances shown in italics are those which nearly divide into the number

given v

driven case, for those orbits near the origin, we can make a similar identification As
the phase space has a defimte four-fold symmetry then all invanant cells centred about a
penod four eliptic point satisfying the condition 1n Eq (3 1 7) can be transformed to the
ongin Therefore we can presume that the contribution from the non-integrable term E,
about each of these elhiptic fixed ponts 15 small So psin(¢) tends to zero in the vicimity of
the elhptic points of period four The number of possible resonances 1n this region 1s small
because of the small number of terms, 1n the cosine expansion of E;, needed to adequately
describe the system’s behaviour (see table 3 2) Thus the possibility of orbital breakup
1s small for small values of the parameter u.;, but becomes increasingly more probable as
the kick strength p.; 1s increased The system 1s essentially integrable in these regions for
small

However the further out we go from the elhptic fixed points at each invariant cell’s

centre then the more terms we require to satisfactorily describe the system’s behaviour and
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hence the greater the number of possible resonances. There is a constant multiplier (K) in
the E\ term which takes on the value 0.1 in the case being considered here. As a conse-
quence of this the x's and y's have prominent fixed points every 5ir (as in Eq. (3.1.7)) with
hyperbolic fixed points of period four at specific multiples of 57r (as previously explained
in section 1 of this chapter). The regions of the orhits nearest these hyperbolic points have
largest non-integrability and hence require the most terms in the cosine expansion of Ei.
The most terms implies the greatest resonance overlap and for large fici their contributions
can be very significant,

25

20
> 15

10

5
-10 -9 0 D 10

Fig.5.4 The region of phase space surrouxnding the hyperbolic fixed point at
(0,57) for 2= %,K = 0.1 & Hi = 6.5. Fixed points (both hyperbolic
and elliptic) of various periodicities axe shown: period 4 are denoted by
squares, period 16 by diamonds & period 24 by triangles
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So the break up of the orbits occur in the region most non-integrable (that 1s
regions where Kpsin(¢) 1s not small) For small p.; the driving term (regardless of how
many terms are 1n the cosine factor) i1s small and the system follows the scenario of com-
mensurate orbital breakdown as described by the K A M theorem As p.; 1s increased
the regions following this scenano contract about the elliptic fixed points described earlier
The outer regions for these large u.; have many overlapping separatrices from each of the
boundaries of the resonances These overlapping separatrices break up and form stochastic
regions around the unbroken, albeit distorted, orbits The width of the stochastic region
increases with increasing u.; due to the contraction of the K A M regions about the elliptic
fixed points These are enident from the phase portraits shown m fig 3 3

We should expect even for very small u.; the existence of a stochastic region around
the hyperbolic points as these regions are the most non-integrable for any value of p.; It
may occur that a stochastic region doesn’t exist below a particular value of p. due to
the small nature of the the kicking However as this region contains the greatest number
of possible resonances (due to the large p value) 1t follows that separatrix break-up into
stochastic layers 1s very probable at small p.; values The width of such a layer would be
extremely thin and consequently would be very hard to locate numerically as the boundary
would be quite sharp requuining high numencal precision

Fig 3 4 shows an enlargement of the phase space about the hyperbohc fixed point
at [0,57) for K =01,u = 65 and 8 = /2 The stochastic layer 1s clear in the figure
as are some small invariant cells within the mother cells of the period four elliptic fixed
points Supernnmposed on this phase space are varnious opaque geometrical objects at the
positions of the period 4 hyperbolic fixed point, the period 16 fixed points and the period
24 fixed points The points on the layer boundary are the period 24 pomts whose separatrix
surrounding the invanant cells are now diffuse leaving an 1sland chain of cells with period

24 elhiptic pomts at their centers

3 4 The Stochastic Layer

One of the important features of the phase space 1n this classical mapping 1s the
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existence of a layer between elliptical cells which allows the unbounded growth of energy in
the system In this stochastic layer (so named because of 1ts diffusive nature) the successive
iterates of the mapping can wander around the whole of phase space with the effect that
the energy of the diffuse orbit can increase without any hmut This aspect of the layer
1s examned 1n detail in chapter four What we are going to analyse here 1s the width of
the stochastic layer and also to compare the largest Lyapunov exponent to the stabihty of
nearby periodic points

So let us proceed with a detailed examination of the varmation of the stochastic
layer wadth as a function of the kick parameter, u.; Generally 1t 1s accepted that for small
values of the driving parameter the width increases 1n an exponential manner (Zaslavsky
and Filonenko (1968), Zaslavsky et al (1986) and Chermkov et al (1989)) To illustrate
this we present four phase plots of the layer for different values of u (10,3 0,50,70)
showing both the increasing size and complexity of the layer boundary This increase in
boundary complexity caused problems with the program used to measure the width as wall

be explained later

To measure the width, a program was written which sampled points on the main
z = 0 axis through the hyperbohc fixed point (0,57) about which the layer exists The
mmitial guess was to see if before IV iterations of the mapping the mmtial condition caused
the nt2 iterate (where n < N Vn € Z) to leave the region of the bounded orbits and wander
about the phase space If so then the distance from this point to the fixed point at (0, 57)
was measured and this was the measure of the layer width The previous four plots show
how, at the boundary layer, periodic points of increasing order, with their elhptic 1slands
about elliptic points and separatrices through hyperbohc points, abound at high values of
et but are noticeably absent for low values Obwiously the dniving term H, (J,60) has a
lesser degree of influence at low values whereas at higher values the resonance overlaps and
potential for orbital break-up by said resonances bring about this prevelence of periodic
1slands 1n the layer These 1slands greatly affect the layer width measurement and give nise

to noticeable dips in the layer wadth curve
The width vanation, for u.; increasing from 1 0 to 3 0 inclusively, 1s shown 1n fig

36 The general trend seems to indicate an exponential increase with the data from the

43



18 ! T T 18F T . r

. p
13b . USTOTNTTUOTIUTTONON: 13 N s i
-2 -1 0 1 2 -2 -1 0 1 2
X X
Fig 8 5 Four plots of the stochastic layer about a hyperbohc fixed pownt for g =
2,K = 01 & four different kick strengths In (a) py = 05, m (b)
pea=15m(c)pa=45&1mn(d) pa =50
stmulation fitting an exponential curve of the form
811'3 2
AW = —exp (—v5L) (341)

Hel

This form agrees exactly with that analytically predicted (for kucking strengths < 1) by
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Fig.3.6 The stochastic layer width vs. the kick strength, fici. The line corre-
sponds to the theoretical curve while the points correspond to the mea-
sured width. The agreement is very good considering the time it takes
for each measurement to converge. For values higher then /zc/ = 3.0 we
measured dips in the measured width attributed to the growth of islands
on the stochastic layer boundary.

Chernikov et al. ((1989),(1987)). (Note that the y/b in the argument of the exponential
arises from our explicit inclusion of K in our initial definition of /;c/. See chapter two for
our justification of this.)

For values of jicl greater than 3.4, dips occur in the curve probably due to the
presence of the periodic islands growing about high order periodic points on the boundary
where orbital break up occurs due to resonance overlap. These islands are evident only
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at values of p. greater than 3 0 and are considered by me to be the cause of the dips
How a dip occurs could be as follows as the hne along which the imtial points for each
set of 1terations passes from the bounded orbital region to the stochastic region, 1t may
encounter separatrices and periodic 1slands 1n 1ts way The separatrices may mmitially be
bounded and hence non-stochastic but at some value p.; become stochastic giving rise to
a jump 1n the width curve However the 1slands may also increase in size pinching these
regions and causing a dip with respect to the previous value if the program takes imtial
points that skip this region The only way to measure the layer for the higher values 1s
to plot the phase space, enlarge the boundary region and manually measure the region’s

width

The chaos 1n such a conservative system as this (conservative because the Jacobian 1s
1 always) 1s attributed to this layer’s existence This 1s true because mn this layer nearby
points separate exponentially and have a positive Lyapunov exponent In fig 37 we
show this sensivity to imitial conditions by measuring the separation between two points
mitially close to one another The imtial points taken were (z1,y1) = (1 0,15 707963) and
(z2,y2) = (1 000001,15 707964) 1e an addition of 0 000001 to both z; and ¥ As can
be seen from the plot 1n fig 3 7 the separation varies widely and this with the previously
mentioned positive Lyapunov exponent confirms the presence of chaos (1n the classical

sense) 1 this layer

Furthermore we can trace the exponential divergence of nearby orbits back to the
manifolds for the period four fixed points (see fig 3 1 and the discussion following 1t) along
which orbits can diffuse over the whole phase space Furthermore depending on how near
to, or on which side of, an unstable manifold an orbit 1s, determines on which unstable
manifold 1t moves along at the next period four hyperbohc point Thus nearby orbits can
separate exponentially along this mamfold structure We have found that the calculated
positive Lyapunov exponent (for a specific orbit in the stochastic layer) vs p. follows a
weighted average of the exgenvalues of the hyperbohc fixed points the orbits visits The
weighting depends on which point 1s visited and on which unstable mamfold 1t leaves For
large p.; the complexity of the layer and the probferation of higher order hyperbohc fixed

points (brought about by invanant orbit break up by overlapping resonances) brings about
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Fig 8 7 The separation of two nearby trajectories in the stochastic layer Imitially
very close together, they diverge very rapidly showing clearly the sensstive

dependence on initial conditions, the hallmark of classical chaos

a vanance 1n the above relationship between the Lyapunov exponent and the eigenvalues
of the hyperbolic points This vanance i1s put down to the increased number of unstable
manifolds from these higher order hyperbolic fixed points bringing about a more complex
motion in the layer than before To our knowledge most of the analytical approaches to

date have not taken into account these compexities
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CHAPTER 4
DIFFUSION IN THE STOCHASTIC LAYER

The stochastic layer has been shown in the last chapter to hold the key to the
non-hnear charactenstics of the system Therefore this layer 1s the focus of much of the
preceding and proceeding analysis The unbounded nature of phase space orbits withun
the layer proper points to the abihity of unbounded energy growth in these orbits as shown
in the last chapter Furthermore as these orbits are unbounded the method of diffusion of
collections of orbits 1s important as 1n any physical system 1t 1s more usual to experience
the ensemble properties rather than an individual In this chapter the diffusion of a large
number of orbits 1s examined and some analytical arguments presented whose results fit

the numencally obtained data remarkably well

4 1 Green’s Function & Diffusion

The following approach 1s based on the analysis done by Rechester and White
(1980) which led to an analytical form for the diffusion 1n the stochastic layer of the
Chirikov-Taylor system (Chinkov et al, 1979) Therr analysis was based on the use of
a Green’s function solution to the Vlasov equation for turbulent system with an added
diffusion term The approach taken here 1s similar 1n form We will show how the extra
potential term for the kicked oscillator doesn’t affect the analysis for the strength of kicking
we are considering To justify any approximations we are going to make 1t 1s necessary to
consider the contmbution of the stable orbits to the system at large over a range of kick
strengths, p.

We have already shown by illustration how the stochastic layer increases exponen-
tially with increasing kick strength, p.;, and how the invamant cells break up by resonant
overlap according to the K A M theorem (see chapter 3) We would therefore expect the
area occupied i the phase space by the invanant (stable) cells to dimmsh as p 1s 1n-
creased tending to zero as p; tends to mmfimty In fact as this hmut 1s approached the cells
contract about any remaining eliptic fixed points until they become measure zero As will

be shown later, this hmmt also tends to obliterate any correlations between any iterates of

48



the mapping (Clunkov, (1987)) and a random phase approximation can be used for the
system

We do not have to go to such extremes to neglect the contributions of the stable
orbits, however We can define a critical kick strength, uC, above which the stable orbits’
contributions are ignored as the area of phase space occupied by them has diminished below
a set level (say 10%) (Ths choice 1s arbitrary once the dominant term 1s the unstable kick
term ) The periodicity of the phase space (7/K) imphes that the dynarmmcal information
contained 1n any region of side 7/K centred on an invariant cell of order four (or one
for the ongin} 1s indicative of the system at large Therefore we may restrict ¢ and p to
+7/(2K) Then the normahsed momentum, P, evolving according to eq (21 22) can be
modified to

oo

%? = w?Q + posn(2KQ) ¥ 6(t — n7) 2 o sm(2KQ) ; S(t—n7t)  (411)

n=1
which 1s vahd only when g > ¢ This can then be simphfied, by normalsing the time
between kicks to 1, to the following

AP = posin(2KQ) (412)
which 1s a vital 1dentity for the calculation of the diffusion coefficient D.; which 1s defined
according to (Chinkov (1987))

2
D, x hm i(ﬂz

¢ m 2 (413)

where <> 15 an ensemble average and ¢ 1s the time (for the mapping ¢ = n the iteration
counter) So what value of ji; 1s the critical value for the above to be valid? To see this we
mclude a table of the area occupied by both the invanant cells and the stochastic layer as
a function of p.; (Refer back to chapter 2 when we defined p; for eq (21 16) to recall
1ts exphait dependence on K )

From table 4 1 we can guess at a value for 4© which for our constramnt (occupation
< 10%) would place 1t close to 14 for K =01, 70 for K = 02 and so on We will show
how this dependence on K affects the diffusion curves later We will now begin the analysis

proper
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Pl el Bei % area occupied | % area occupied
(K=01) |[(K=02) | (K=K_}) | (invanant cells) (stochastic)

00 00 00 100 0

20 10 20k 99 96 004

40 20 40=xk 9210 790

60 30 60xk 73 61 26 39

80 40 80k 32 85 67 15

100 50 100k 23 23 76 77

120 60 120k 15 89 8411

1—5_0 7—5 15;; k 6_15- ;3"8_\;)

200 100 200k 05-1 99 -995

Table 4§ 1 Occupied area of the phase space vs the kick strength for the invariant
cells and the stochastic layer when 8 = 7/2 k above 1s just (01/K )
allowing us to express the kick strength at arbitrary K(K, ) mn terms
of K = 01 The dashed hne represents the cut-off below which we can
neglect the stable component of the motion for the acceleration (dP/dt)
equation Beyond pc = 20 0 « k we can consider the system’s phase space

to be completely stochastic

The main thrust 1s to obtain an expression for the probabihty which satisfies the
Vlasov equation and then to use this to form an expression for the diffusion coefficient,

D.; We begin by considering the Vlasov Equation with diffusion added

oP OP dvdP o d*P
‘5?4“0@4‘2;‘6;—56%@—0 (414)

where the probability distribution function 1s P(Q,v,t) Noting that the time i1s quantised

because of the periodic delta function then the system evolves across a kick as
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P(Q,v,nt+0)={ P(Q,v+w’Q + {pasm(Q),nT — 0) (415)
@=Qi=n~

where we have re-cast the @ to ehminate the 2K before 1t 1n the sine term This has

the effect of changing the kick strength to £uc where £ = K/Kowith Ko = 05 Ths

re-casting also has the affect of changing the system’s periodicity from =/ K to 27 allowing

mportant identities to be made later 1n this analysis Between kicks the system evolves

by the formula

e} 2T
P(Q,v,t)::/ d’v]/ dQlG(Q—Ql,v,'v],t—tl)P(Ql,vl,tl) (416)
—oo 0
where the function G(Q — @1,v,v;,t — ;) 1s a Green’s function and satisfies the equation

trv—=— - =b(z — z,)6(t — 1)6(v — v1) (417)

The Green’s function 1s used as an evolution operator between kicks and because the
veloaty changes only across a kick (see eq (41 2) for dP/dt) the dv/dt 1s zero between
kicks Hence the Vlasov equation 1n eq (414) becomes that 1n eq (41 7) between
kicks The solution to the above can be found 1n books on partial differential equations
with boundary conditions This specific solution can be found by considering the Green’s
function solution to the diffusion equation u; —u;, = 6(z —§£)8(t — ) (Kervorkian (1990))

Our solution 1s of the form

0t —t))o(v — v > — O —v(t— )2
G(Q - Q1,v,v5,t — 1)) = ( 27‘2“( t)l) z exp[-(Q Q‘ZUE:_:)H'Z ) ] (418)
-t

n=-—00
The 1mtial value chosen for the probability function P(Q,v,1) 1s
P(Q,v,0) = 8(v ~ v,)

The veloaity integral 1s non-contnbutory and 1s omtted from now on The position

vanable Q has a constant denvative between kicks as the velocity 1s constant and varnes
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only across a kick The integral over a kick just gives us the next @ position 1n terms of
the previous one so that the probability at a time T for a position @7, where Q7 1s the
value of Q at a time T, 1s the product of the probabilities at each time step so that

oo oo T-1 ,on 1
Pun= > X II[ d@g=bo-v-5n)
=—0o¢ 1=0

nr=—0o0 nj=—
€xXp [2201‘ ET:](QJ —Qm1 v =51+ 2"17")2] (419)
where
J
S, =Y w'Qp + & sm(Qy) (4110)
p=0

The diffusion rate 1s calculated from the formula

oo 2m
Dy= bhm (27! /_ . /0 (v — v0)2 P(Q,v,T)dQdv (4111)

Note the similanity to eq (4 1 3) which 1s that equation used by Chinkov (1987) Noting
that the system has a stochastic component which 1s dominant at the values of u.; we are
considering and that the system 1s formed by gaussians (brought about by the Green’s
function solution to the diffusion equation (Kervorkian (1990))) then the process can be

considered gaussian with the following density function

1
V2ro

exp [ (y+2m)* ] (4112a)

20

and characteristic function
exp [vm(y + 2n7) — Im?a) (4112b)

with the identity

1 s 2 1
exp | yt2nm® Y — exp [vm(y + 2n7) — imlo 4112c
\/2‘”—” nzz_oo P [ 20 ] 27!' m=Z_oo P [ (y ) 2 ] ( )

This changes the above diffusion expression to
oo

e T /7 4Q. o
Dc, - Tli-lzlm (2T) mT;oo Z H)'/O. —é;ST

—_ mi=—00
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exp [E;r:l Smio +um,(Q, — Q,—1 — v, — SJ__l)] (4113)

We now make the approximation that, for the turbulent diffusion to occur, the kick term
has to be such that it dominates over the stable term Remember that the phase space has
less than 1% occupied by stable orbits at gy = 20k Thus S,_; can now be considered to
be a summation over just the sine terms The number, n, of m)s used 1n any calculation
determines the correlation C(n) of the diffusion For all the m s at zero we have the
effective quasi-linear diffusion denoted Dg; and, by Rechester & White (1980), the S%
can be approximated by an integral over 2m (the effective periodicity of the system) which

gives £2u2,/2 then the quasi-hnear diffusion 1s

1
Dor = € ke (4114)

If we set the problem up so that just one m, 1s not zero we find that the integral term 1s

27
dQ.
exp | —%mza- —tm,vp ]/ ———23 exp[tm, Q] =0 (4115)
0

So the correlation term C(1) 1s zero as predicted by Chirikov for the standard mapping
(Chirikov (1987))

In formulating the higher correlations we must remember that any expression
for the diffusion coefficient D.; has to be independent of the veloaity used as the imitial
probabiity distmibution function In order for this to be satisfied the sum of all m}s for
the vp term must come to zero Furthermore as the sum of the square of the m)s times o

tend to zero very quickly then we have chosen to keep the m;s within the bounds £2 If

!
7

calculating the C(2) correlation (Chinkov (1987)) For this correlation we choose m, = 1

we set two consecutive m's not equal to zero and all the rest zero then we are effectively

and m,4; = —m,) Ourintegral in the diffusion equation can now be re-arranged to remove

all terms independent of the Q’s

2m th
28 Y [_ Z,T=1(%m§0 + "vaO)] . 27 St exp [E?:] imy(Q; — Q-1 — SJ—I)]
(4116)

The integral now becomes
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exp | —,%,(mf_k1 +m?)o — u(m, + mp1)vo — (M, + My11)S,—1 ]

27rd .
0 2§ exp [1(my =~ ms1)Q: — musr s0(Q.)] (4117)

From the definition of m,and m,,;we can determine that m,+m,,; =0, m?+m? = 2 and
m, —m,+1 = 2m, Therefore the diffusion term for thuis C{2) approximation 1s independent

of vy, as we wanted it to be

27 dQ,

1
D¢y = Tlgnoo T sexp|—0o] ES%CXP [+4(-2Q. + s1n(Q.)) ]

2

27 th
0o 2m

+ 5% exp [+4(2Q, — sin(Q,))] (4118)

The integral can now be replaced by the second order Integer Bessel Function, J(2) (see

Gradshteyn and Ryzhik (1965) eq 8 411(1)) So our diffusion term becomes

1 -0
Dy = _‘z'ézl"zl'k(fﬂcl )e (4119)

This term 1s added to the quasi-hnear term 1n eq (41 14)

1
Dg=Dgr + D¢e) = 252#31 [1-2J2 (€par)] (4120)

It 1s also possible to equate m,_, with m, (effectively a C(3) correlation) We again set
m,~» = 1 and m, = —m,—2 This has the effect of squaring a sum of two identical

integrals

1 2w d .
Dg()a) = Tli—inoo - Eexp[—a] /0 %S%exp[-i-b(—Qz +smn(Q,)) ]

2r 2
-I-/ %?r_! S%exp [+4(Q, — smn{Q.))] (41.21)
0
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The superscript on the D denotes 1t 1s the first part of the C(3) correlation Agaimn using
the 1dentity from Gradshteyn and Ryzhik (1965) we can substitute integer order Bessel
functions of the first kind for these integrals The result 1s a J? term

1 1 e
Diloy = —5¢ kardT (per) e (4122)

Again the above 1s in agreement with half of the C(3) correlation term put forward by
Chirikov (1987), the other half we will obtain now by considering a wider range of m/s
This second half of the C(3) correlation relates not two iterates but three such that m,

1s correlated to both m,-; and m,_s, unhke the previous term where m,was related to

!

;8 small as the Emga term tends to zero very

just m,_, Again we need to keep the m
quickly Accounting for the vy constramnt (¥m, = 0) we follow the example of Rechester
and White (1980) and choose the following values for the m}s m, = £1,m,4; = —2m,
and m,;; = m, One can see immediately that ¥m, 1s indeed zero satisfying our v,
independence constraint The Emf 1s six giving an exp(—3¢) weighting for this term

Furthermore the integrals obtained from the substitution of these m's are of a similar

form to the previous correlation terms but yield a J; term 1e

2T d
D= pim pexpl-3018 [ GEShexp[+i(-30.+sn(Q))]
2m dQ 2
+ [ 52 Shexp[+:30. - am(@)] (412

which gives using the integral 1dentity
(2 1 —30
DC()3) = 552#3113 (épa)e™ (4124)
The complete diffusion term 1s now the sum of all the correlation terms thus obtained
— (1) (2 _
Do =Dgr + Dcy) + DC(3) + DC(B) =

262#31 (1272 (Eper)e™ — 207 (bper) €77 + 275 (Eper ) €737 ) (4125)
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This equation accounts for the correlations up to and including C(3) We can add part
of another correlation, C(4), which has been shown by Chinkov (1987) to tend to zero
slower than the C(3) correlation To obtamn this term we use choose values for the m/s
satisfying our constraints for ¢ and v The values chosen are m, = m,43 = +1 and
M4 = Mg = —m, As before Em; = 0 and Em? = 4 We end up with a product of
two sets of integrals 1dentical to eq (41 18) (except in the multipher before the o term)

This C(4) term gives us

1 —2a
Do) = €% kards (§pa)e™ (4126)

Our diffusion equation now takes on the form

Du = Dqi + Deay + Dy + Difsy + Doe) =

1
262#’31 [1-2Jy(épa)e™ =207 (Eper ) e™7 + 275 (€par ) €737 +2JF (bpr) e727]
(4127)

Chinkov has shown (Chirikov (1987)) that the the C(3) component decays as |£uqi| ™2
whereas the C(4) component decays as |£u.;|~ Thus for large £u.; the diffusion equation
1s best described by

Dut = 78041~ 20 (€ser) + 273 ()] (4128)

where we can neglect the o term decay due to the fact that o 1s usually kept very small
(the value chosen by Rechester and White (1980) being just 1 x 10™*) Thus 1s exactly the
form given by Chirikov (1987) using his simphfied argument based on correlations and by
Israeilev (1990)

We will now show how remarkably well the above fits that data obtained from nu-
merical simulations To numerncally evaluate the diffusion coefficient we use the expression
meq (413) To accomphsh this we calculate the mean energy for an ensemble of points
in the stochastic layer The results showed us that the growth m energy 1s increasing
linearly with increasing n (n being the iteration counter and hence time) and so can be

written as

En(pe1yn) = B(pa)n = B(pa)T (4129)
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Fig 4 1 Four plots of the diffusion coefficient, D.i(p.i1), vs the kick strength, g
for various values of the parameter K K =011n (a), 025m (b),051n
(c) and 075 (d) The sohd hne 15 the theoretical curve predicted by
eq (41 28) and the asterisks are the calculated points The fit 1s very
good except for small values of Kpu.; as can be seen from (a) where the
fit 1s the worst It was the deviations 1n (a) which led us to discover the

anomalous diffusion peaks discussed later

Care was taken 1n the above calculation to avoid using periodic points or quasi- periodic

points as these points’ non-diffuse behaviour would affect the result These points were
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numencally filtered out The next step was to obtain the best fit hne to this lnear graph
of energy vs time (1e 1ts denvative) This denvative 1s equal to twice the diffusion
coefficient Why twice? The reason for this 1s that we calculated the energy of the system
with time not the change in momentum squared The energy depends on p and ¢ (or z
and y for the mapping) and as one can show very easily that ¢ and y can be interchanged
without compromuse then the energy is twice that value of the change in momentum So
the theoretical sohd curve shown 1n each of the figures in fig 4 1(a) — (d) 1s twice that of
the diffusion coefficient expressed in eq (4128) To alleniate problems associated with
individual orbits and not the global nature of the system a set of 60000 1mtial points were
taken 1n the stochastic region close to one of the hyperbolic period four fixed points All
points were tested for quasi-penodicity and filtered out if found to be such The resultant
set was 1terated for 20000 time steps The four figures 1n fig 41 show the diffusion
coefficient, D, as a function of the kick strength, p., for a range of the parameter K
The fit 1s remarkable except at small values of u.; where the stable component of the
motion affects the assumptions made in denving eq (4 1 28)

Despite our success with the expression above for the diffusion coefficient we nevertheless
found this coefficient to diverge from the predicted value at certain regularly spaced values
of the kick strength, u. These divergences mamfested themselves in the form of delta
function hke spikes on the normal turbulent diffusion predicted above with the values of
the kick strength corresponding to a positive integer times the system’s periodicity This
discovery led to a revision of the system’s behaviour when the kick strength corresponded
to these periodicity related values We dubbed these spikes in the diffusion coefficient
Resonant Enhanced Diffusion We now present our argument to explain these periodic

spikes

4 2 Resonance Enhanced Diffusion

To proceed any further with our argument for the resonant enhanced diffusion we
need to consider the nature of the effect of the system’s penodicity on the dynamucs of the

system
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We have already pointed out at the beginming of the last section that the p and ¢
can be effectively restricted to region of £7/(2K) This can be clearly illustrated as follows
In showing why the stable component of the motion can be ignored 1n the preceding section
we stated that when p.; 1s much greater than the stable component then the turbulent
analysis of Rechester and White (1980) can be used However as p and g effectively wvisit
the whole phase space then they can, for a fixed value of i, take on any value 1n the whole
2D real plane seemingly negating our argument of the previous section This would imply
that the previous argument would not describe the diffusion correctly This would be true
if the dynamics 1n one region were umique to that region and no other However we have
shown that the system 1s periodic and the dynamics 1n any periodic cell 1s representative of
the system at large Therefore the effective values of p and q are restncted to the bounds
imposed by the system’s periodicity Thus a pont (¢',p’) in the phase space related to
(q,p) by the relation p' = p+nw/K and ¢’ = g+mn/K will have 1dentical dynamucs to the
points (g, p) except 1ts energy will be greater by an amount dependent on the nn/K and
mm/K As a result of this, there 15 a strong dynamic correlation between the points (g, p)
and (¢',p') Ths reasoning 1s the very heart of the argument we present here We will
use the correlations between sets of (¢',p’) to show how they give nse to these anomalous
peaks in the diffusion coeflicient and why these peaks correspond to a kick strength equal
to a positive integer times the system’s periodicity

We have shown 1n the previous section how the turbulent diffusion {which 1s that
when the stable component 1s neghgible) 1s derived by considering correlations between
iterates at different times and relating them to the iterate we are interested in Here we
will show, using the observation in the previous paragraph, how large summations over
dentical arguments give rise to the anomalous diffusion

Let us recall our equation for the diffusion coeflicient, D

[ o]

o0 T-1
D = Th_l? (21)™ Z Z H

mr=—00 mi=—00 1=0

Qﬂd ,
cxp[—z:;r:l(%mza—i-zm]vo)]/o _Q—ST P{Ej—l i, (Q; — QJ-I’SJ—I)] (421)

59



Now if we have strong dynamic correlations the term Sr, which 1s a summation up to T
of the épc sin(KQ,), will consist of a summation of the same value again and agan, 1 e

if the @, are related by the expression
Q =Qo+ym/K (422)

(where 0 < |3| < |1, € Z) then the summation gives us T(§uasin{KQ,))? We would
expect this summation to tend to infimty quicker than the summation over random Q,
Ths 15 indeed the case as we found by taking the summations of the §2 term for various
values of the kick strength Once properly scaled, the result followed the numencally
evaluated result remarkably well so we conclude that strong correlations of the @, bring
about the enhanced diffusion at the observed values of the kick strength Furthermore,
the rapidity at which the coefficient D.; would tend to infinity could also depend on the

behaviour of the other terms in the expression in eq (4 21) For the Dgy 1n the previous

!

section the m )

s are all zero so we have no e~ terms to worry about This term we would
expect to tend quickest to infinity whereas the D¢(,), D3y and the D¢(y) terms would
tend to infimity slower due to the presence of non zero m)s in the o term As the number
of non-zero m)s 1s increased (while still accounting for the restriction, £m, = 0 for the v,
term to be omitted) infimty 1s approached slower but we see no reason why 1t would not
be acheived eventually So the overall result 1s that if points in the phase space ezist so
that they are highly dynamaically correlated then we would expect their contribution to the
diffusion coefficient to be such that D, would tend to infimty

We have seen this anomalous diffusion to anse when the kick strength 1s very close
or equal to a positive integer times the system’s periodicity This type of diffusion has been
known to exist for this type of system since the work of Carey et al (1981a & 1981b)
on periodic area preserving maps and Karney et al (1982) on the effect of noise on the
standard map We will here refer to a more recent analysis by Ishizak et al (1989) which
deals with the specific case of the kicked rotator In this paper they refer to accelerator
modes 1slands which they found to exist 1n the stochastic layer of the kicked rotator The
crux of their argument 1s that these 1slands impart an integer number of 27 (their system

had a pennodicity of 27 ) to the momentum of stochastic layer orbits which reside close to
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Fig 4 2 The resonance enhanced diffusion for (a) K =01 and (b) K =025 The
spikes can be seen to occur at positive integer multiples of the system’s

penodiaty (107 for k =01 & 4x for K = 0 25)

these 1slands This increase of 27 translates points (g,p) to theirr corresponding cousins
(¢',p') whose dynamics are 1dentical Furthermore these accelerator 1slands were found
by Ishizak: et al (1989) to be of the same periodicity as the system This results in some
orbital points (g,p) being highly dynamuically correlated to each other and to have a much

higher overall mean energy than other un-accelerated orbits The stability of these islands
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15 crucial to the accelaration and Ishizaki et al (1989) found them to be stable for a small
range of kick strengths very close to a positive integer times the system’s penodicity

Their results are apphcable here because of the periodicity of our phase space and
because hke the kicked rotator the dynamics of one periodic cell are i1dentical to that of
another Furthermore by varying K we can change our phase space periodicity and hence
show that any kicked system which has a periodic phase space will have this anomalous
diffusion when the kick strength 1s 1n the vicimity of the system’s penodiaty

We end our analysis of the system’s diffusion here wmith the point that this resonant
enhanced diffusion has, to our knowledge after searching the relevant hterature, not been
reported at all for any system outside the kicked rotator This fact, despite exhaustive
studies of this system by many distinguished researchers (Israllev, Berman, Chernikov etc),

highlights that our present knowledge of this system 1s still very much incomplete
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CHAPTER 5
THE QUANTUM MAPPING

Having described the classical hmit of the Hariltomian we now proceed to analyse
the fully quantum hmit, 1e when k 1s fimte and non-zero Our system Hamiltoman
1s time-dependent and therefore the approach taken will be different from that for time
independent systems such as the quantum bilhards problem (Berry et al (1986)) and others
(Robnik et al (1986), Tomsovic et al (1993)) The quantum mapping derived 1n thuis chapter
1s obtained using an approach similar to that of Fox et al (Fox & Lan (1990), Fox & Elston
(1994)) 1n their analysis of the kuicked rotator This 1s, to our knowledge, the first time this
has been done for the kicked harmonic oscillator and the resultant mapping 1s therefore

unique 1n this regard

5 1 Denivation Of The Quantum Mapping

This section essentially deals with the derivation of the Fully quantum mapping
from the system hamltomian The general approach here 1s very similar to Fox & Lan
(1990) in their denivation for the kicked rotator but the added potential in our problem
results 1n a much more complex system and final mapping Imitially we will examine the
undnven harmomnic osallator and look at 1ts eigenfunctions and their properties because
these will be needed for the dnven harmonic oscillator As such we call on much of the
information contamned m chapter 12 of Quantum Mechanics Volume 1 by Messiah (1976)

Again we start off with the Hamiltoman of the Quantum Harmomc Oscllator
driven (or Kicked) by a temporally discrete potential

2

1 (oo}
Hr(p,q) = gor + 5 Mwlq +uyCos(kq) Y 6(t —n) (511)
n=1

We need to recall from chapter 2 our defimtion of the integrable hamiltoman H, ( p,q) for
the undriven system
2

P 1
Ho(P,q)=§"M'+5Mw§q2 (612)
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Our task now 1s to find a function 9 (g, ) which satisfies the time dependent Schrodinger
wave equation Through this equation we can obtain a form for the wavefunctions of the

system The equation 15 given below

H(f‘qaqw(q,t)mﬁ%(q,t) (513)

The functions which solve the above are many and varied but we are interested n a sub-
class of these solutions which have the property that H,3, = E,%, where E,, 1s the energy

of the system’s nth

energy level These functions %, are called the esgenfunctions of the
hamiltoman H, and will be denoted henceforth as ¢, (g) It should also be observed that
the ¢, (g) are hnearly independent and form a complete basis for the system Thus any
other function 1 ( g,t) satisfying eq (51 3) 1s made up of a superposition of the ¢,(q)

with coefficients 4, (t) as multiphers and can be written

P(g,t)=Y A(t)¢a(q) (514)

where the modulus of the A,,’s gives the probabihty amphtudes for the ¢,, 1n the function ¢
This way we can solve for the eigenfunctions, ¢,, and use them to find any other function,
1, which satisfies the wave equation So our first hurdle 1s to obtain an expression for the
eigenfunctions To do this 1t 1s necessary to recall some of the defimtions from chapter 2,

namely those of eq (21 3),1¢e

0=0 M’; & p= P/ Mo, (515)

We now express the momentum operator as a function of @ as per its defimtion The

normal p operator 1s defined as p = %diq which allows us, employing the defimtions 1n

eq (515), to express P as %% Furthermore we can now to introduce a new set of

eigenfunctions u, ( Q) defined to be §/ 'M%,,‘ﬁﬂ ( q) where the fourth root term s to allow
@ to be substituted for ¢ (Messiah (1976)) The effect of introduang this latter set of

eigenfunctions 1s to change our expression of H, to

Ho(%,Q)un(Q)=%(Qz—j—;)un(Q)nwFEnu,,(Q) (516)
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Our next step 1s necessary for our formulation of the undnven system’s eigenfunctions
Our previous defimtions (in chapter 2) of the anmhilation and creation operators, a and

a,T, are extended to include the exphat form of P in terms of Q

L

a(P,Q)=ﬁ(Q+LP)= (#6+@) (51 7a)

1
V2
and

=1

V2

The form we have chosen for aT, the creation operator, 1s such that when af operates on the

o (P.Q)= Z5(Q-1P)= (0~ i) (5176)

nth eigenfunction (with the system thus being solely in the nth state) 1t raises the system

to the (n+1) th level with the (n + l)th eigenfunction being that wavefunction describing

the system now, 1 e aT In >= v/n+1|(n+ 1) > Thus 1t creates a state and hence the
name creation operator The anmhilation operator, a, does the opposite 1n that it lowers
the state of the system from the nth level to the (n— 1)ﬂl level,1e ajn >= /n|(n—1) >

Like the creation operator, the designation annihilation operator for a murrors its affect
on the system’s state The justification for the above properties 1s given in Appendix B
where we also show that (g, ol ) =1 when operating on any pure eigenstate n Therefore
the state remains unchanged It also follows that a|0 >= 0 (you can’t go lower than the
zeroth level or ground state) and |n >, the nth level, 1s given by the recursion relationship
#(aT)nm > These are two definitive results that we will use to obtain the form of the

eigenfunctions From the action of the anmhilation operator on the zeroth level we get

a|0>EL—1\/—§(;%+Q)uO(Q)=0 (51 8a)
or equivalently
(5+Q)u(Q)=0 (51 8b)

The solution of eq (518b) 15 uo(Q) = C *exp( — $Q*) with the constant C beng
evaluated using the property < ug,uo >=1 and that the solution to the integral f0°° exp(—
QR%)dQ = 3@ C 1s found to be ;,\1/—; Sou,{Q) = 417 exp( — Q%) We now substitute
this solution 1nto our recursion relationship to obtain the general solution for all u, (@),

ie
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LTl

2 /()

where we find, after replacing uo ( @ ) with exphat 1ts form, u,, ( Q ) takes the form

(@-35) %(Q)=u.(Q) (519)

Ln

2n /()

We can now indentafy part of the above expression with a type of orthogonal polynomial

(@—25) exp(—1Q?) =1, (Q) (51 10)

called Hermite Polynomials, H, (Q) We can do this because of the following recursion
relationships (Gradshteyn & Ryzhik (1965))

1 E) _ong, (2)

2 H,i1(z)=22H,(z)—-2nH,_;(z)

Combiming these two 1dentities gives

3 Huwi(z)=(2 - £)Ha(2)

with  the one we seek being the continued substitution of H,,_; (z ) down to H,(z)

4 Hua(e)=(2-3) H(2)=(2-£)

because H,(z) =1 It 1s easy to show that the Hermite polynomials, H,, can be formed
not just by (2z — £ )" H,(z) but also by the relationship (@ ~ % )n exp (—5Q?) (see
eq 8950 1n Table of Integrals, Series and Products by Gradshteyn and Ryzhik (1965) and
section III in Appendix B of Quantum Mechanics Volume 1 by Messiah (1976) We can

thus substitute the hermite polynomials, H,, ( @ ), 1nto our equation for the exgenfunctions

Ln

2ny/m(n')

This completes our expression for the eigenfunctions of the undriven integrable harmlto-

« Ho(Q)exp(~3Q%) =ua(Q) (5111)

mian QOur task now 1s to see how the eigenfunction probability amplitudes vary in time for
the complete non-integrable hamiltomian We are going to formulate the problem 1n such a
way as to keep the eigenfunctions for the undriven osillator but generate a mapping which
relates the probability amphtudes for these eigenfunction from one kick to the next
Between kicks the system hammltoman 1s essentially the integrable hamiltoman

described above Thus any wavefunction 7 (g,2) can be wnitten as a superposition of the
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un (Q) or ¢ (g) depending on the phase space being considered The wave equation for

dniven (kicked) harmomic oscillator 1s

500 (at) = —2 Ly (g,) + EMZe?y (gt
¥ o M 5g7 (B1)+ g Mw ¥ (g t)+
peCos(kog) D &(t—nr)b(g,t) (5112)

As the delta kick1s of infimtesimal duration the integrable part of the hamiltoman changes
by a neglhgible amount and can be neglected over a kick duration Therefore the 9 ( g,1)
change discontinuously across the delta kicks by the amount u,Cos(k,q)

¥(q, (N7)T) = 9¥(g,(N7)7) exp (1psgCos(koq) ) (5113)

The wavefunction between kicks 1s just that of the undniven oscillator and can be wntten
in the form given by eq (514) Thus from just before the N th kick, when time t = Nv7,

to just after 1t, when time £ = N7¥, we have

P(g,(N7)* Z p(¢)exp (1pqCos(koq)) (5114)

The exponential term above can be substituted for an equivalent expression which includes
a summation over bessel functions of integer order This 1dentity, exp (tp,Cos(k,g)) =
3 o t®Js (g ) exp (tskoq), can be found in Table of Integrals, Sertes and Products

by Gradshteyn and Ryzhik (1965) as eq 8 511(4) Our expression for the wavefunction

changes to

(e o)

P(q(NT)T) =D A, (N7) " ¢p(q) Y "Jo(ptq)exp(eskoq) (5115)

p=1 =00

The time evolution from (N 1)*to ((N +1)7) 1s that of the evolution of the harmonic oscil-
lator itself Because each eigenfunction gives its corresponding energystate when operated

on by H,, H,¢,, = Ep¢,, then the evolution between the kicks 1s given by

Y(g,t) =Y Ay (1) $a(g)exp(—1E2t) (5116)

r=1
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where t 15 restricted to Nt¥to (N + 1)7"and N 1s an integer Furthermore E, =
(n+ % Yhw, The evolution from just before the N th ek to just before the (N + 1)th
kick of the wavefuntion % (g,t) can now be formally expressed It 1s the product of the
eq (5116) (the evolution from the N'B kick to just before the next) with eq (51 15)
(the change over a kick) Thus we have

Yo, (N +1)r)7) =

ZA (N7) ¢,(q) Z s (g )exp(eskog)exp(—t(p+ 3 Ywor) (5117)

§=—00

However, we should also point out that we can express the wavefuntion ¥ ( g,t) just before

the (N + l)th kick 1n terms of the ¢, ( ¢) and the probabihty amphtudes at this later time

$(g, (N +1)r ZA (N +1)7) )¢ (q) (5118)

Thus last equation allows us to express the probabiity amplitude coefficients at time ((N +
1)7)~ as a function of the amplitude coefficients at time (N7)~ Thus

Yore1 Ar(((N +1)7)7)6r (g) =

S A, (N7) dp(a) 3 *0e(ng)exp (tskog)exp(—u(p+4)war)  (5119)

The problem with this expression 1s that i1t gives the relationship between the summa-
tion over all the probability amphtudes times the eigenfunctions and does not give any
information about individual probability amplhitudes To rectify this we are going to take
the expectation value of the above with each eigenfunction 1n turn This has the effect of
giving us an exphcit relationship between the amphtudes at time ((N + 1)7) " to those at
time Nv~ We know that the expectation value of ¢,, wmith ¢, < ¢u|¢n >, 15 6y After
taking the expectation value of the left hand side with an arbitrary eigenfunction ¢,,we

get

Y AN +1)7)7) < m(9) 167 (g) >= Am(((N +1)7)7) (5120)

r=1
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The nght hand side does not simphfy so easily when taking 1ts expectation value with ¢,
All terms which are functions of g have to be brought together in the correct order inside

the Bra-Ket symbohsing the expectation value
S Ap (NT)" X2 o bg)

exp(—lp+ 5)wor) < b (4) 165 () explishog) > (5121)

As you can see from this expression the expectation 1s not between two othogonal eigen-
functions but between more compound expressions This renders void the §,,,, property
used for the left hand side of eq (5119) So by combining egs (51 20) and (51 21)
we can now obtain the expression we require to relate the ampltude coefficients at time

(N + 1)r"to those at time £t = N7~
AN +1)7)7) = T3y 4y (V)T 52 et (1)
exp(—i(p + 5)wo7) < b (4) 15 (a) exp(sskot) > (5122)

The question now 1s What does the ezpression < ¢m (q)|¢p (q)exp(isk.q) > m (51 22)
break down to and how does it affect the summation over p in (5 1 22)7 To answer this we
need to refer back to eq (51 11) and express the eigenfunctions’ exphait form for v, ( Q)

in terms of ¢, (g), 1€
e 1.2,2
¢ (q) = W*Hp(vq)em(—av q)
and with this exphat form we are going to evaluate the expectation values by integrating
the wavefunctions over the whole of space thay occupy This space 1s effectively from

g = —oc to ¢ = +oo Remember that ¢ = real and that any polynomual in g with real

coefficients 1s also real With this in mind we can wnte H; as just H,

< ¢m(q)|dp(g)exp(Lsk.q) >=

™ 1 1
Ampt +”/ Hn (vg)exp( - 57°0")Hy (vg)exp (- 57" ) exp (sakog)dg  (5123)

th

where H,, (vq) 1s the m'" order Hermite polynomal and A, = 1 The

V/®2mEP (ph)(m!)
additional term of exp (¢skoq) can be accommodated into the other terms by multiplying
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the equation by exp (—~s2k?/4v?) exp (s°k?/44?) with the result that the sk,q term and the
vq term can be grouped as a single perfect square The next step 1s to wnite z = yg — o
where £ = %",7“‘ and 1s made up of system constants except for the summation counter s
Hence the Hermite polynomals H, (vg) go to H,(z + ¢£) whose argument 1s still real

but 1s now expressed as a complex number Using this notation, the integral term becomes

o d
Amme+"exp(~.92k2/472)/ H;(2+L§)Hp(z+tf)exp(—z2)-;z— (5124)
-0
What 1s the solution to this integral® How does the exponential term affect the orthogonality
of the hermite polynomaals in ntegral term? The answer to these questions can be found
in Gradshteyn and Ryzhik’s book Table of Integrals, Series and Products, eqn (7 377) The
form of the integral given 1s almost 1dentical

/wo exp(—2?)Hp (z+y)Ho(z+2)de = 2"/a(m")z""™L™ (-2yz) (5125)

— 00

(m < p) We found that if y and z are replaced by :{ and = by z then we get the solution
foreq (5124)

/00 exp(—22)Hp (z+ ) Hy (2 +e€)dz = 2P/m(m!) (£)""™ LE ™ (2¢2) (51 26)

— 00

(m < p) where L™ (z ) 1s the Laguerre polynomal defined as 3. (—1)" (:f(r”—m) ) i—:
In order to be completely confident with this solution we had to evaluate numerncally the
integral above for sets of parameters and then substitute these parameters into the ana-
lytical form given This was done because we have a complex argument 1n the exponential
and Gradshteyn and Ryzhik’s solution does not specfy if the solution holds for this We

found, using Mathematica for the numencal simulations, that the solution 1s indeed vahd

for our integral'! Furthermore 1f we stick with our onginal form, namely

/_oo H;, (vq)Hy(vq)exp(—(vg—1£)*)dg

we can use another identity from Gradshteyn and Ryzhik namely eq (7 374(7)) which 1s
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/oo exp(—(c—y)* ) Hm(z) Ha(z)dz =2"/m(my""™L2 ™ (-242) (5127)

—o0

(m < p) where by replacing z by vq and y by ¢£ we get

/°° exp (= (7g— &) ) Hm (v9) Hy (v9) dg = 2/m(m1) (£ )P~™ LP-™ (2€2) (51 28)

— o0

(m < p) which 1s the exactly the same result as from that in eq (5 126) However these
solutions are only defined for m < p So our equation for 4,,((n + 1)7~) now takes on a

more complete form
An((N+1)7)7) =22 4p (N1)” X2 o t®Js (g ) exp(—c(p+ 5 )wor )

Piiars
T () ()

Some of the terms above cancel and others simphfy for example the inner summation

exp (—s’k*/477)2P/m(m") (1552 )P 7" LE ™ (sPk2/2%) (5129

-

over s can be halved to contain just the positive integers because ¢ 7*J_, ( pq ) 15 equal to
t*J, (pq ) (the s = 0 term 1s zero hence 1ts exclusion) Furthermore only one other term 1n
this summation depends on an odd power of s (all the others depend on s? and are thus

independent of the sign of s) With these ssmphfications the final form 1s

An(((N+1)r)7) = Z Ap(N7)~ ((L:,'T)ZL’“PJs(uq)exp(—t(M%)wof)
xexp (—s2k2 /4y L2 ™(s%k? /272){(5%';)"*'" + (—ji;%)?*m} (51 30)

which holds only for m < p hence the lower himit on the outer summation with p now only
summed from m < p < co The complex conjugate of A,, denoted A* 1s expected to be of
a ssmilar form but with the signs before the ¢ opposite to those above

To obtain the energy level spectrum as a function of time 1t 1s necessary to find
the norm of the probabiity amplhitudes as these are the multiphers in the summation over

the energy levels of the undniven system Hence the energy of any ¥ ( ¢,t ), where ¥ ( g,t)
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o0

was defined mm eq (51 4),1s given by Y, [|4- (¢ )II> E, As the E, are the energy levels

of the undriven system then the energy evolves as

Ey(N7~) = i l A,(NT)‘H2 (r+ %)hwo (51 31)

and as we can explicitly evaluate the A, over any kick we can calculate the energy of the
system at any time for any set of parameters

We should bring the reader’s attention to some remarkable coincidences between
this mapping and the classical Firstly the presence of w,” which 1s just 8 1n the classical
mapping (see chapter 2) Secondly we defined v to be the factor between ¢ and Q such
that 1/4 = \/h/—M;(; Therefore k,/7 1s just our classical K Thirdly we can relate p, to
the classical uo; via the relationship defined in chapter 2 We can make comparisons quite
easily now between our classical mapping and our fully quantum mapping above This we

will do 1n the following two chapters

5 2 Numernical Considerations

Our purpose here 1s to highlight the approach taken when numencally evaluating
the mapping in eq (5130) Such an evaluation 1s necessary when one considers the
compexity of the mapping itself Futhermore by considering how functions within the
mapping behave and interact with each other we intend to justify certain assumptions
made Let us begin by descnbing the technique we use to iterate the mapping forward n
time

If you examine closely the form of the mappingin eq (51 30) then you can see that
only the A, on the nght hand side 1s time dependent All other terms are time invanant
and this useful observation will drastically reduce computing time 1n the evaluation of the

mapping We can re-formulate the mapping as follows

An(((N+1)7)7) =Y Unpdp(NT)~ (521)

where Upmp ts the mp element of an infimte time-independent square matnx, U, which

performs the task of stepping the system forward in time However we have a problem in
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that only those elements of the matnx for p > m are defined (from the identity used 1n
Gradshteyn and Ryzhik (1965) n eq (51 24) and (51 26)) To overcome this we present
an argument to define those missing elements of the matnx U

We have already shown 1n the previous section that the Hermite polynomials are
real as g itself 1s real Therefore we substituted H for H* mn eq (51 23) because of the
real valuedness of these polynomials As the integral in eq (51 23) 1s a product of two
polynomuals then we can swap these polynomials around in the integral to give us the
solution for p <m We checked, using Mathematica, the correctness of the above and

found the numencally that the two are identical Furthermore one can easily check that
Ump = Upm (522)

This symmetry allows us to calculate just one half of the matrx greatly reducing computer
run time

Our task numencally 1s to evaluate this matrx for a fimte size and then use the
relation 1n eq (5 2 1) to obtain the probabihty amphtudes at each time step As both the
amphtudes, 4,,(t), and the evolution matrix, U, are complex then we have to spht the
matrix into two parts (real and complex) and simularly for the amphtudes Then we spht
the evolution 1n eq (52 1) into the real and 1maginary parts

Are (N +1)7)7) = (Umpr Ap, (NT) = Ump,Ap,,, (N7)7) (52 3a)
for the real
A (N 41)7)7) = Y. UnpeoAps (7)™ 4 U A (N7)") (5238)

for the imaginary parts with, naturally, the sum being the complete complex probabihity
amphtude at the specific kick

An((N +1)7)7) = Am (N + 1)7)7) + t4m, (N + 1)7)7) (52 3¢)

The real and imagmnary U matrices are calculated first using a C code program with a

software hnk to Mathematica allowing high order Laguerre Polynomials to be evaluated
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whereas a set of amphtude programs calculate the time evolution using the expressions in
eqs (52 3a) and (5 2 3b) The complex conjugate of A, 1s then that of 4,, with the sign
of ¢ changed We can then calculate the energy of the system at a specific time knowing

that

E(N+1)r7) =3 { AL (VN + 1))+ AL (N +1)r)7) Hn+1/2)hw, (524)

n=0
This energy calculation 1s fundamental to understanding the system’s evolution and the
possible existence of chaos

The numerical evaluation of the evolution matrx, U, 1s hampered by the infimite
summation over s (see eq (51 30)) Therefore we need to approximate this by a truncated
sum (if possible) It 1s well known (Isralev (1990)) that Integer Order Bessel functions
(Jn(2)) tend to zero if the order of the function 1s greater than twice the argument There-
fore for any fixed argument, z, there exists a cutoff for the Bessel functions at 2z Our
inner summation over s could be given upper and lower hmuts of 2u,; and —2u; respec-
tively 1f no other functions exited in the summation which depended on s However we do
have others which we need to consider The magmtude of the complex term could, if s got
large enough, hypothetically dominate but as J,(z) tend to zero if |s| > z quicker than
the complex term tends to co then their product would not diverge at large s That still
leaves us with a guess at the upper bound on s The answer comes from the exponential
term with the —s? argument This term dominates at large |s| even over the Laguerre
polynomuals to the extent that the summation over s can be truncated after about 20 to
30 terms (well within the scope of any computer) These properties were examined using
Mathematica and we found that after 15 terms the decrease :n magmtude was between 8
to 20 orders depending on the orders of the functions

All these precautions went into the numerical programmng to ensure that the
results obtained would accurately mirror the matnx itself Further precautions will be

outhned as necessary during the detailed analysis undertaken in the next chapter
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CHAPTER 6
ANALYSIS OF THE QUANTUM MAPPING

This chapter 1s one of the more interesting for us 1n that i1t covers the results
we obtained from our quantum mapping As this mapping has been denved using an
approach never adopted for this system we presume the following analysis to be both novel
and unique In this chapter we present the results obtained from the mapping obtained in
chapter 5 and compare 1ts results with those from the classical mappingin chapters 2,3 and
4 The results presented are the time evolution of the probabihty amplitudes, the energy
of the system for various kick strengths, u., and the corresponding wavefunctions These
results will be used along with those for the Wigner distribution 1n the following chapter

to develop a correspondence between the quantum mapping and the classical mapping

6 1 Probability Amphtudes In Time

The quantum mapping 1n chapter 5 relates the probabihty amplitudes from one
time step to the next Consequently, as the probabihty amphtudes consist the primary
data from the approach we’re taking, then it 1s appropniate to begin our quantum analysts
by examining how they vary in time As previously discussed in chapter 5 section 2 (under
Numernical Considerations) we have set the problem up so that the evolution matnx 1s time
invanant and the size of this square matrix sets a hmit on the order of the lughest prob-
abihty amphtude (and hence eigenfuncton) we can consider This will become important
when 1terating the quantum mapping over time

The diversity of our approach becomes clear when choosing which time evolutions
to present as typical of the system’s behaviour in this section We could, for example,
choose a pure (1n the sense of the undniven oscillator) even party or odd panty eigenstate
to begin with and examine its time evolution However, we have chosen a mixed state
with a gaussian profile across the probability amphtudes centred on a low order undnven
oscillator exgenstate,1e m = 10 Our reasons for venturing so low were dniven by practical
considerations concerning the fimte size of our evolution matnx, U We restricted U to a

350 x 350 matnx, for computational feasibihity, with the result that, if the initial state
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Fig 6 1 The probabiity amplitudes for the mixed parity state of a gaussian cen-
tred on m=10 with g, = 000005 Each of the successive plots (b)-(f)
shows the system 300 time steps later The system remains essentially

unchanged regardless of the kicking

spreads, or diffuses, so that the amphtudes near the m = 350 boundary are becomng
increasingly sigmficant, there 1s an artifieal time hmit imposed beyond which the results

are boundary influenced and therefore untrustworthy

We would expect that if the kick strength, u,, was so small as to be neghgible then
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1ts 1nfluence would be correspondingly weak In this case the spread over the amplitudes
would be very small if at all noticeable and the energy of the system would be constant
This 15 the case for p, = 0 00005 where the gaussian profile 1s retained for the duration
of the time sample (2000 iterations) We present 1 figs 6 1(a) — (f) the probability
amphtudes every 300 time steps The vanation from the orginal 1s shght and, as will be
shown later, 1ts energy varies httle from the imitial state’s energy This 1s what we see
classically for those orbits near the ongin at low, near neghgible, kick strengths (refer to
fig 22 1n chapter 2) Classically, those orbits would remain arrcular in shape and vary
httle from the unkicked state

If, however, the kicking 1s modest but not dominant, we would expect, classically,
that those orbits very close to the ongin to remamn essentially undisturbed forming an
1sland which 1s invanant (the invanant cells of chapter 3) but that the orbits further out
would become increasing disturbed and distorted (re Chapter 3) In the quantum case
we find that the system’s probabihty amphtudes settle down to specific patterns after a
period of time The setthng down time being dependent on the kick strength and how far
away from the steady state distribution of amphtudes the imtial state was We show such
a case 1n figs 6 2(a)— (f) for gy =05 Again the intervals between (a),(b), ,(f) 15 300
iterations The stable configuration 1s clear 1n figs 6 1(d),(e)&(f) We will show 1n the
next section how this configuration affects the energy and how similar steady configurations
give nise to quass-energy levels, levels whose periodicity matches that of the kick period
and thus appear constant to the mapping (Israeilev (1990))

Lastly we present the amphtudes’ evolution when the kick strength 1s such that
1t dominates the system’s behaviour We saw in Chapter3 (fig 3 2 and table 3 1) how the
elhiptic fixed points of order four and the ongin become hyperbohc at p = 10 0 Thus very
fortunate result means that the origin can become unstable and that orbits 1n 1ts vicimty
can become diffuse as they spread into the stochastic layer In the quantum case we would
expect this to manifest 1tself as a continual spreading over all the orders of the probabihty
amphtudes and a subsequent linear increase in energy For our third figure we present six
snapshots of the evolution for g, = 15 The spreading out 1s evident and so rapid that

after forty, or so, mterations we had to stop the calculations as the upper boundary on the
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Fig 6 2 The probabihty amplitudes for the same state in fig 6 1 except this time

ptq = 05 The interval between each plot 1s as before and 1t 1s worthwhile

ponting out that the distmbutions mn (d)-(f) are quite similar, 1¢ the

system 1s saturating naturally and the state 1s becoming locahsed

probabihty amphtudes had been reached The energy increase was hinear and also without
saturation (within this time sample) The probabiity amphtudes are presented in figs

6 3(a) - (f)

It can sometimes be difficult to compare successive 1terations of the amplitudes
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Fig 6 8 The amphtude spectrum for the same imtial state in fig 61 but with

pg =15 and the time between successive plots being 4 time steps The
spread over the states 1s apparent and boundary saturation occurs soon

after (f) at around 40 time steps

and see obvious differences as some changes from 1iteration to iteration can be very subtle
but nevertheless important It 1s clearer to examine the energy of the system as a function
of the 1terations to see just how substantial a change can occur a fixed time interval We

perform this task in the next section with an examination of the wavefunctions’ structures
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as well

6 2 Energy, Quasi-Energy Levels & Wavefunction Evolution

As with any quantum system, once you know the probability amphtudes and you
have a complete set of exgenfunctions, then obtaiming such quantities as the energy, wave-
function probabihities 1n space and constructing quasi-phase spaces 1n relatively straight-
forward In this section, the energy as a function of the time steps 1s examined and the
wavefunctions at each step calculated We will also show that stable energy levels exist, for
moderate kick strengths Depending on the imitial state of the system, one of these levels
1s approached by the energy of the system We will try, within the bound speafied by the
fimite size of U 1e 350 eigenfunctions, to calculate some energy level statistics as 1s done
for most of the tlme-lndiapendent non-hnear quantum system examined in the journals
(Berry at al (1986), Robmik et al (1986), Lewenkopf (1990) Tanner et al (1991))

For neghghbly small kicking the effect on the system’s energy 1s very small if at all
noticeable In the previous section figs 6 1(a) — (f) showed how the imitial state changed
almost adiabatically with httle discermible change in its profile We present in fig 64
the energy corresponding to the amphtudes 1n fig 6 1 showing how httle the change in
energy 1s over the time interval The kick strength for this case 1s u; = 0 00005 Tlus case
corresponds to the hmut as pz, — 0 and 1s 1ncluded as a test to confirm that the system 1s
behaving properly or to put 1t succintly to check that the numerics are correct

Artificial boundary effects, caused by the imposition of the finite exgenfunction set,
can be seen clearly 1n those energy curves where p, 1s large enough to diffuse the imtial state
sufficiently so that 1t collides with the boundary of 350 eigenfunctions These boundary
effects mamfest themselves as bend overs in the energy curves, for both the off and on
resonance cases, and all observed energy saturations have to be checked and thoroughly
examined to exclude any such artificial effects The primary reason for this scrutiny, also
the reason why we don’t employ a blanket masking out of all observed saturations, 1s that
1t has been hypothesised (Chunkov et al (1981)) that energy saturations are an indication

of a suppression of quantum chaos, as has been observed in the kicked rotator system
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Fig 6 4 The energy evolution for the quantum system corresponding to the prob-
abihty amplhtudes 1n fig 61 The near constant energy confirms the
almost perturbative effect the kicking 1s having on the system at y, =
0 00005

(Casat1 et al (1979)), bistable systems (Ray (1990)) and simple linearly quantised systems
(Scharf & Sundaram (1991)) Ths 1s still a subject for contention with some (Berman et
al 1991) arguing that these systems are non-physical and that the mnclusion of an extra
time scale (such as 1n our kicked oscillator) 1s sufficient to counter the suppression seen 1n
these other systems (Shepelyansly (1983) & Adachi et al (1988)) The kicked harmon:c
osallator model, on the other hand, 1s a realistic system and thus any saturation, and
related locahsation, 1n energy could be considered indicative of chaos suppression
Unfortunately as with everything in hife there 1s a catch, namely we need to increase
the size of our matnx to ehminate the possibihty of saturation Strictly speaking the
size should be infimte to be absolutely positive that no saturation occurs and this 1s
numerically impossible To date with a test matrix of 450 x 450 (we couldn’t and wouldn’t
trust MathLink for orders any higher than 450 due to its mabihity to handle some of the

numbers Mathematica was sending 1t) we found no evidence of saturation In fig 6 5 we
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Fig 6 5 Five energy curves for the mixed state at m=10 The curves correspond
to (from top to bottom) p, =17,16,1514& 13 Though not perfect
for calculating the quantum diffusion coefficient, D,, we will fit straight
lines to them to estimate D, at each of the values The result in shown

m fig 66

give a composite plot of five different kick strengths over a specified ttme We omit some
of the energy points at higher kick strengths due to boundary saturation of the energy at
these higher levels

The hnear nature of these energy curves, we found the energy to scale as
E(pq,n) = B(pg)n (621)

suggest 1t might be possible to evaluate a quantum diffusion coefficient, Dy(py) The
problems associated with this exercise are, the small time interval over which the energy
doesn’t saturate by impinging on the boundary, the requirement to calculate a new evo-
lution matnx for each value of the kick strength and the need to average over a set of
states which 1s further himited by the finite size of the umtary matrices However we do

have a number of matrices of size 350 x 350 calculated and for these matrices with linear
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energy increases we attempted to calculate a quantum diffusion coefficient, Dy(p,) where
we define this diffusion coefficient to be the partial derivative of the energy with respect
to time for a fixed kick strength

OE(pq,1)
Dyf,) = e (622)
Be=ig,
4 T T T f:
: * ]
; 1
3r 1
a 2} ;
*
LF ;
0 1 s L ! " L " | L L » L
12 14 16 18 20
Hq
Fig 6 6 The quantum diffusion coefticient, D, = a};gt) , Vs pg The increase 1s cer-

tainly non-hnear and found generally to increase as A( p,q)b where A=0 2
and b=4 68 The sohd hne 1s the fit associated with A & b above and
fits the data very well The bump 1s not a ghtch and was found to occur

at =15

The result 1s presented in fig 66 We found a ghtch to occur at p, = 15 and at finer
resolution we found the neighbouring points to be well behaved (in the sense they followed
the general trend of the curve) but the slope of the energy at p, = 1 5 took a defimte jump
This occurance at close to 7 cannot be discarded and may be a kind of enhancement sumular

to the Resonantly Enhanced Diffusion in Chapter 4 One of the methods this ghtch will
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be examined 1n the future 1s to examine the elements of the evolution matnx at speafic
kick strengths, their hmits, as the matrix size tends to infimty, and their influence on the
momentum (and hence diffusion) It should be possible to do this hand in hand with the
future analysis proposed for the quasi-energy levels described later

This fimshes our examining of those diffuse states with apparently boundless en-
ergy mcrease Such states may exist the kind of hypersensitivity referred to by Schack
& Caves {1993) as these states are responsible to the extended structure we shall see in
the the Wigner distbutions 1n Chapter 7 These states are (over our hmited range of
scrutiny) de- localised and do not give us any information on possible stable energy levels
within our kicked system To do this we need to examine localised states

The final set of energy curves dealt with those which saturate naturally (those
which don’t impinge on the finite boundary dicatated by the numerics) and saturate at
different levels for different imtial conditions These levels are steady state solutions for the
quantum mapping at a specific value of p; They are also reffered to as Quasi- Energy levels
because the wavefunctions are periodic wrt the kick duration Therefore at each kick
the wavefunction returns to its value at the previous kick and the energy stays constant
The wavefunction has become localised 1n terms of the kicks Israilev (1990) introduces
such levels 1n the kicked rotator where he refers to the quasi-energies first introduced by
Zeldovich (Israulev (1990)) and Ratus (Isralev (1990)) back in 1966 We use his notation

here We introduce a set of quasi-energies € determined by the relationships

Ye(q,t) = 7T g (q,1) (623)

where

be(g,t + T) = ¢e(g,1) (624)

In this sense the ¢.(g,t) are eigenfunctions of the evolution operator matrix U for the
speafic value of y,we are dealing with The diagonalisation of the evolution matnx U for
any kicked system should present us with a complete set of these eigenfunctions {Berry
et al (1986)) but as U 1s an infimte square matrix we need to be sure that the decay of
off diagonal terms to zero is rapid enough so that their contribution to the calculation of

the eigenvalues of U 1s neghgible On examination of the necessary matnx data files for
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the real and 1maginary components at g, = 05 and 8 = (v/5 + 1)/2, which 15 the case we
considered, we found that the off diagonal terms decay to more 15 orders of magmtude
less than the principle diagonal terms within 170 terms of the principle diagonal If we set
this it to 10 orders less then the hmit 1s 100 terms to the diagonal and reduces to 50
if the limit 1s set at 5 orders below the principle diagonal term So the question 1s what
accuracy do we require to determine the cut-off for the off-diagonal terms? This cut-off
will also determine how many eigenvalues we can calculate from a fixed 350 x 350 matrix
This 1s only one of several considerations necessary for the solving of the matrix, U To
date we have not yet attempted this beyond a brief tral using the routines in Mathematica
(which crashed) yet despite this the 1dea does provide an interesting direction 1n which thus
research can proceed in the near future such as obtaining the energy level statistics (Berry
et al (1986), Lewenkopf (1991)) However, as shown by Lewenkopf (1991), these statistics
are not conclusive evidence of chaos We continue now with the quasi-energy levels which

we obtained from the evolution matrices

When 1nvestigating the existence of steady state levels (quasi-energy levels) we
found that not all mtial states give umque steady state levels and so we have degeneracy
present We found these steady state levels to exist in the system at a kick strength of
sy = 05 for an off resonance case (8 = (v/5 +1)/2) From the plot of the results, in
fig 67, one can see quite clearly the three levels attained by the four starting states
The lowest state (that of a gaussian distribution of probability amphtudes centered on the
lowset state m = 0) evolved to the same steady state level as that for a state with gaussian
distmbution centred on m = 11 This was included to illustrate the degeneracy present
and also to highhght that this steady state level 1s probably the lowest level 1n the system
We can see that the levels do not appear to be equally spaced but, with the matrix size
available to us, we do not have enough levels present to construct a relationship between
them With the future diagonahsation of the evolution matnx, U, we should be capable

of relating levels (or groups of levels) together

Our final discussion 1n this section 1s centered about the structure of the wave-
functions themselves and how the probabihity i @ 1s related to the diffuse or locahsed
nature of the system at the values of the kick strength being considered
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Fig 67 The three lowest levels obtained for u, = 0 5 and (8 = (vV5+1)/2) The

leveling off 1s obvious and indicative of a stable solution of the evolution

matrix These levels are the quasi-energy levels discussed 1n the text

Any wavefunction whick satisfies Schrodinger’s wave equation (eq (51 3)) for the
undnven system, whose Hamiltoman 1s given by eq (51 2), can be expressed as a linear
combination of the exgenfunctions of that system, ¢ f eq (514) For the kicked system
(eq (511)) the wavefunctions are related to the undriven system’s eigenfunctions with
time dependent amphtudes given by the relationship 1n eq (51 30) So once we have
the amphtudes we can calculate what the wavefunction would look hke at each time step
The 1mportance of examiming the wavefunctions 1s principally to see how the evolution
of system affects the existence probabihties of the system at different ¢} values As the
eigenfunctions themselves have an exp(—%QQ) term present they will tend to zero as Q
tends to infimty The higher the order of the exgenfunction, the further out along the +Q
axes the wavfunction will exist for Thus for a fimte set of amphtudes (as we have here with
our 350 x 350 matnx) the wavefunctions will tend to zero as Q increases beyond a critical
value dependent on the highest eigenfunction order present 1n the evolution matrix with

non-zero probabiity amphtude Therefore we expect that, for those states which diffuse
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Fig 6 8 The wavefunction, %(Q), for the system when the kick strength, u,, 1s
so small as to be neghgible The system 1s on resonance and 8 = 7
The time 1nterval between plots 1s 300 iterations The wavefunction 1s

symmetric about the origin (Q = 0) so only the positive half 1s shown

rapidly up through the orders of the eigenfunctions, the wavefunctions would be the most
spread out (diffuse) 1n a given time scale Those which saturate naturally at a given
energy above their imtial state would be less spread out whereas those whose energy stays
approximately constant and equal to their imtial state would have hittle or no spreading
at all The degree of spreading out over the eigenfunctions orders would also determine
the degree of diffusivity and lack of structure present in the wavefunction To illustrate

these three cases we present the wavefunctions for the three cases considered so far for the
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Fig 6 9 The wavefunction, ¥(Q), for when the kick strength, 4, =05 and 8 =
Ng%” The time i1nterval between plots 1s 300 iterations The system
has saturated naturally and the wavefunction can be seen to be time

independent 1n the final 3 plots supporting this natural saturation, ¢ f
fig 67

energy evolution and the probability amplhitude evolution

The mtial state we choose for the following set of three figures i1s the mixed
state consisting of a gaussian distmbution of probabihty amphtudes centred on the m = 10
eigenstate The figures 6 8—6 10 show [(Q, pq,1)|> vs Q at speaified times of the system’s
evolution The wavefunction 1s defined according to eq 51 4 and the dependence of the

probabihty amphtudes on time and p, 15 given by the evolution equation, eq (51 30)

88



The figures show just the positive half of the @ axis but due to the property that H_,(Q)

= (—1)"H,(Q), and as we’re plotting {¥(Q, g, t)|?, the resultant figures are symmetric
about the ongin because ( H_,(Q) )2 = (Hn(Q) )2
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Fig 6 10 The wavefunction, %(Q), for when the kick strength, u; =15and = 7
The parameter values correspond to the unbounded growth we discussed
and presented 1n fig 6 5 The time between each plot 1s 6 time steps of
the mapping Even over such a short pertod of time the spread over Q
and the increasing lack of structure indicates a sigmficant diffusion for

this state

As before we begin with the case where the kick strength 1s so small as to be a

perturbation of the undriven system We use this case as a test to ensure that 1n the limit
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pg — 0 the system reverts to the undniven case This 1s what figs 61 & 6 4 illustrate
for the probabiity amphtudes and energy respectively The corresponding figure for the
wavefunction 1itself 1s shown 1s fig 6 8 The change 1s neghgible, if at all, and the system
1s behaving like the undniven oscillator as we would expect This hmt 1s important as 1t
ensures a continuity from the undriven to the driven systems and, as the undniven oscillator

has been well studied, 1t serves as a test to ebsure the numencs are functioming properly

The plots presented in fig 6 9 are those for the wavefuntion evolution when the

kick strength 1s 0 5 and the system 1s off resonance, 2e § = MS—'ZL)"

This corresponds
to the system 1n fig 6 7 where we illustrated the natural saturation of the system and
the existence of quasi-energy levels The imtial state chosen for the wavefunctions 1n fig
6 9 corresponds to the lowest energy level in fig 67 The temporal penodicity of the
wavefunction, (@), which ensures its steady state behaviour at each time step makes
this wavefunction a eigenfunction of the driven system The energy corresponding to this
eigenfunction would constitute one of the qausi-energy levels we discussed previously One
of the more interesting observations that can be made of the probability distributions mn
fig 69 1s the structure which exists 1n the wavefunction in the last three plots The peaks
near the origin 1n the second plot (300 time iterations after the start) remain nght through
the time evolution up to 2000 iterations These, plus the smaller and less prominent peaks,
indicate that certain eigenfunction are preferred over others and these preferential eigen-
functions are those with the greatest overlap with the peaks seen Such stable structures n
the wavefunction 1s important as 1t 1s proof that the wavefunction 1s not going to spread out
over the complete basis of eigenfunctions but will remain essentially restricted to a subset
of the basis Thus the evidence of stable structure 1n the wavefunction can be used as a
method for determunming the diffusiveness of an imtial state for a given set of parameters
The unbounded Lke spread in the probabihty amphtudes in fig 6 3 and the corre-
sponding unsaturating energy increases 1n fig 6 5 suggest that the wavefunction for such a
class of state would diffuse from the imtial bounded (1n @) state and tend to a state which
was spread out near umformly over the whole @ axis This tendency to spread out over §
would necessitate the inclusion of higher (and higher) order exgenfunctions, u,(Q), of the

undniven oscillator as these eigenfunctions are themselves bounded m a fimte section of the
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@ axis for a fimite order Thus to spread over the full axis (or even tend to such a spreading)
the mmtial state would have to diffuse over all the eigenfunctions of the undnven system
which would subsequently lead to an unbounded increase in the wavieunction’s energy We
present, in fig 6 10, the closest we can come to such an unbounded diffuse state Our size
of matrx (350 x 350) hmts our analysis and the number of 1terations we can perform on
the state before the state reaches the hmt 1mposed by our fimite matrix and our results
become meaningless Therefore the time duration of our analysis of such diffuse states 1s,
on average, about 40 1iterations (depending on the kick strength and whether we’re on or
off resonance) The wavefunction evolution shown in fig 6 10 1s of such a diffuse state
with an interval of 6 time steps between each plot, 1t 1s trivial for one to work out the total
evolution 1llustrated encompasses 30 interations The kick strength, pg, 1s set equal to 1 5,
about mid-way along the curves shown n fig 6 5, and the system 1s on resonance with
B = I The plots show how, after a short time, the mtial well-structured state becomes
more diffuse and spreads out over Q with increasing time and how the wavefunction itself
1s losing any structure and tending to a flat distrbution across the Q axis The onigin has
a still somewhat high probability but even this 1s decreasing with increasing time and we

would expect, on this enidence and trend, for the probability, [1(Q)/?, to tend to become
independent of Q (z e a flat distribution)
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CHAPTER 7
THE WIGNER DISTRIBUTION
OF THE QUANTUM MAPPING

In this chapter we derive a form for the Wigner distribution (Wigner (1932), Hillery
et al (1984)) and use 1t to comstruct a quasi-phase space for the quantum mapping By
using this Wigner distmbution we hope to compare hke with hke (the observed structures
mn the quantum quasi-phase space with those in the classical phase space) The principle
aim here 1s to develop a correspondence between the quantum and the classical structures

with the intention of using this correspondence to argue the existence of quantum chaos

7 1 The Wigner Distribution

The effect of classical orbits scarring the quantum wavefunctions can be best
examined using those distributions which generate a quasi phase space for the system
When we use the term scar, we refer to the correspondence 1n the quantum eigenfunctions
and quasi-phase space of a classical periodic orbit (Heller (1989)) By quasi we refer to
the fact that trajectones as we understand them m the classical regime have no meaning
mn the corresponding quantum regime Therefore we use a specific form of distribution
whose task 1s to represent the quantum wavefunction 1n a momentum and position space
(P & Q 1in our case) The most widely used of this type of distribution 1s that attributed

to Wigner (1932) He proposed a distibution, denoted Pw (p,q) whose form 1s given by

(e <]

1 )
Pw(q,p) = — dy < q—ylplg+y > exp(2:py/k) (711)
Th J_ o

which for a pure state, 9, becomes (Hillery et al (1984))

o0

Pwle,p)= o [ dyb*(a+ubla —)exp (2pu/h) (112)

To proceed with this denvation we follow the steps that Hillery et al usein their calculation
of the Wigner distribution for a pure eigenstate of the harmomec oscillator (Hillery et al
(1984)) The eigenstates of the harmomic oscillator are given by
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6a(a) = ()4 (52 )" exp (—02q?/2) Ha(oq) (713)

where a = y/mw,/h Therefore any time-dependent wavefunction can be expressed as a

hnear combination of the eigenstates

¥(g,t) = Y an(t)dnlg) (714)

The Wigner distribution of this mixed state 1s thus

Pw(q,p)=/_°° dyexp (:2py/h)¥* (g+9)% (g —) (115)

Expanding ¥(q,t) (wnting a},(t) as just e}, and sumularly for an(t)) we get

oo (= o)
P)‘:Z_; z=: 2"2mn'm'7r @ am

/ dyexp (12py/h)exp(—a®(¢’ +3°)) Ha(a(g+9)) Hm(a(g—y))  (716)
where we have replaced the exp(—a?(g—1y)?/2) xexp(—a?(g+y)?/2) term ansmng from the
exp(—a*q?/2) part of the eigenfunctions, U,(ag), by the more compact exp(—a?(g® +y?))
Removing all terms not dependent on y from the integral, we obtamn

n=0m=0

/°° dyexp (12py/h) exp (—ay? ) Ha (e(g +)) Hm (a(g - 9)) (717)

-0
To be consistent with the other derivations we have for the Harmonic Oscillator problem

we now replace p & ¢ with their dimensionless cousins P & () where

Q=aq
P = p/(ah)

and we replace y with a dimensionless form Y = ay so that dY/a = dy Our expression
for Pw(q,p) changes to Pw(Q, P) given by

Pr@ =3 % e,

n=0 m=0
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[w dY exp (:2PY Jexp(-Y?)H,(Q+Y )Hn (Q-Y) (718)

Noting that exp(:2PY — Y?) can be wntten as exp(—(Y — ¢P)?)exp(—P?) we find that
the expression for Pw(Q, P) takes the form

man-£E =L

n=0m=0

/_°° dY exp(~ (Y — P ) Ho(Q+Y ) Hn (Q—Y) (119)

We now define the new variable z =Y — 1P so that the dz = dY The arguments inside
the Hermite polynomials become @ + z + ¢P mstead of Q + Y and Q — z — ¢P instead of
@ — Y The argument for the H,, 1s thus depending negatively on the vanable z so we
use the identity that Hp,(—2z) = (—=1)"Hmnm(z) With these two changes, noted Py (P, Q)
becomes

ran =3 5 L e

o0

dzexp(~z?)H,(2+tP+Q)Hn(2+P-Q) (71 10)

—o0
We now invoke that well used (by us anyhow) identity 1n Gradshteyn and Ryzhik (1965)
(eq 7377 pg 838) which gives an analytical solution for the integral above with a certan
restriction, namely 1t exists for n <m However (as will be shown later) the order in the
integral can be swapped keeping the arguments the same (the order they appear in
the integral changes but the arguments of H,, and H,are the same as above) so we can
obtain a solution for the case m <n Using the identity from Gradshteyn and Ryzhik
(1965) we obtan the following solutions for the case n < m

= & exp(—(@2 + PY) .
W@P) =3 3 S e ot

(-1)"2" Vanl(lP — Q)" LT (2(Q? + P?)) (7111)

This simpifies to

Pw(Q, P) = exp(—(Q" + P*))
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1/ aam( 1) (P — Q)™ L™ (2(Q? + P?)) (7112)

n_0 m—O

which of course has the restriction that n <m For the case m < n we swap the order 1n

the integral for H,, and H,, 1€
/ dzexp(—2°)Hp,(z2+1P+Q)Hn(z+:P-Q) =

/oo dzexp(—z2)Hpm(2+P - Q)H,(z+ P+ Q)

i our case the above holds but 1n general the swapping of functions within an integral
hike the above depends on the individual properties of the functions (or operators) being

considered In this case the expression takes on the shghtly different form

Pw(Q, P) = exp(—(Q* + P?))
2nm!
27n!

aham(=1)"(tP + Q)" "L ™ (2(Q% + P?)) (7113)

(e o]
whach can be changed to a more comparable form for the case of n < m by noting that the

(=1)™(¢P+Q)"~™ can be replaced by (—1)"(—¢P—@)"~™ Grouping all real components

uMS

together and separating out and grouping those elements containing both real and complex

parts we get for Py (Q, P)
Pw(Q,P) = exp(~(@" + P?))
S o)L (AQ + P)) {Gen(-Q+ P n<m (T114)

m

NE

0

3
Il
=
o

Pw(Q, P) = exp(—(Q* + P?))

Y Y o I T (2@ + P)) {ahan(-@ — P} mSn (7119

It 1s quite straightforward to see that when m = n the two expressions are the same All

terms outside the {} brackets on the R HS 1n both cases are equal in value when m 1n
the first equals n 1n the second If we think of each element outside the {} (and exclusive

of the summations) as a matrix element A,,, of some matrix A, 1e

Zmn.

Ant1mi1(@ P) = exp(—(@® + PO = a ()" LR~ (A@ + PY))  (T116)
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then what we're stating here 1s that 4,; = 4,, or that A7 = A where T signifies transpose
What follows from this 1s that if the pairs of elements 4,, and A,; are summed together
first, and then all these pairs added for the complete sum, then the terms in the {}
brackets (for each of these pair additions) are complex conjugates of each other and the
complex parts subsequently cancel leaving a real valued distmbution which 1s one of the
more 1mportant properties of Wigner distmibutions A proof of how these terms give nse
to complex conjugates can be found in Appendix C as well as how the P and @ values 1n
each of the four quadrants in the 2D position-momentum plane are related

It 1s also worth adding here that as the matrix A 1s equal to 1ts transpose then we
only have to calculate all of the elements A,, on one side of the principle diagonal Thus
the equation for the Wigner distribution 1s

Pw(Q,P) =

2 Z Z An+1,m+l(Q’P)*(a(Q’P) *7(Q7P)- b(Q,P)*&(Q,P)) (7 1 17)

m=0 n=m

where we have used eq (C 3) obtamned 1n Appendix C 1n substituting for the complex

terms This 1s the expression we numerically evaluate to obtain the Wigner distribution
Most of the hterature today quote using the Husimu distribution as the source

of their quasi-phase space portraits (Radons & Prange (1990), Balazs (1990), Scharf &

Sundaram (1991), Kus et al (1991)) The Husim distribution (Husimi (1940)) 1s a special

case of the scheme proposed by Cohen (Hillery et al (1984)) for generating distribution

functions Cohen proposed the use of the expression

Py(g,p) = / dg' / dp'g(q—¢,p— P )Pw(d,p) (7118)

for calculating distributions other than the Wigner distribution One can see from the
above expression that the distribution function Pw 1s simply smeared by the function g
(Hillery et al (1984)) The Husirm distribution 1s such that this smearing function g has a
form similar to the coherent state representation used by investigators analysing systems

with E-M radiation playing a major role (lasers etc ) The exphat form of g 1s

i(ap,0) = — exp( ~g*/a ) exp( ~ap?/h?) (7119)
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which leads to a distmbution Py (H for Husimi) which 1s positive for all p and ¢ The

corresponding smearing function, §, for P and @ 1s

§9(Q,P) = % exp (—Q% )exp (—P?) (7120)

so that the Husimi distribution becomes

Py(Q,P) = %/_“’ dQ’ [-°° dP'exp(—(Q — Q")? )exp(—(P - P'V*) Pw(Q', P')

(71 21)
This 1s all very nice on paper but implementing the above 1s another matter Our exact
analytical expression for Py (Q, P) allows us to choose any pomnt (Q,,P,) on the phase
space and calculate its Py at that point For the Husimu distribution, however, we have
a problem Following a search of as many textbooks as we could find on the subject,
we couldn’t come up with an analytical form for eq (7 1 21) and 1ts integrals contained
within Therefore the calculation of Py rests solely on approximating the double integral
over the phase space by a crude summation over the Py for the points we considered
This 1s acceptable if the number of calculated Py values 1s quite large but our calculated
Py consisted of a 64 x 64 gnd over a square of side 25 Q & P umts centered on (0,0) So
we, with the time available and the computing power at our disposal, decided to use the
Wigner distribution as our guide to the quantum phase space
Now that we have our expression for Py we will now present some of the results
obtained by numerically evaluating the expression for Py 1n eq (7117) We would hope
for a correspondance to exist between the regions of high probability m the quantum space
and those of high densities in the classical space This scarring of the quantum quasi-
phase space by classical orbits is considered by many to be the signature of a quantum

correspondance to classical chaos

7 2 The Quasi-Phase Space

The almost overwhelming diversity of choice for the imtial conditions for the quan-

tum mapping presented us with many dilemmas up to now but this was no preparation for
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the problems we faced here in evaluating the wigner distributions for the quantum phase
space Each 64 x 64 gnd of distmbution values for one time step for a speafic set of pa-
rameters took 20 hours computing time' To examine even crudely the system’s behaviour
at various parameter values, at specific times and for various imtial states we had to make
some decisions regarding the extent of our examination at vartous parameter values, times
etc In the following sets of figures we present seven pairs of phase spaces with each pair
consisting of an smage of the phase space with the corresponding contour below 1t The
times, parameter values and intial states are given when approprnate and the reasons for
their choices also explained

Our first pair of figures show the wigner distbution, Pw(Q, P) for the chosen
mtial pure state By pure we refer to a state which 1s made up of a single exgenfunction of
the undriven system The state chosen 1s the 10" eigenfunction (m=10) of the harmonic
oscillator, 1 e

LlO

21%y/m(10)

where the subscript : for the 9 indicates that 1ts corresponds to the imtial state of the

(¥(Q)), = u10(Q) = * H10(Q)exp( — %Q2) (721)

system The image shown 1n fig 7 1 shows the circularly symmetnc property of a pure
eigenstate of the undriven system It 1s interesting to compare this figure (and 1ts pro-
ceeding compamon contour plot 1n fig (7 2)) with the phase space for the corresponding
classical system when there 1s an absence of the dniving potential, ¢ f fig (21) The
arcular orbits of the classical system are strikingly similar to the pure eigenstates of the
undnven system as we would expect The Husim distribution for a 400 x 400 grid over
the phase space of the Wigner distribution, which can be obtained because a pure state
Wigner distribution requires many times less calculations then a mixed state distribution,
shows a single smeared orbit circhng a peak at the ongin  Thas 1s even more hke a classical
orbit which 1s normally a single circular orbit centered on the origin whose radius is the
measure of 1ts energy (c f chapter 2 section 2 and chapter 3 section 2)

So as expected we have a direct correspondence between the quantum and classical
system’s for the undriven harmonic oscillator The question remains as to the extent of the

correspondence between the two when the kicking 1s present and beyond a perturbation
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Fig 71 Image of Py(Q, P) for the imtial system state corresponding to the 10**
eigenfunction of the undriven system One can clearly see the circular
symmetry for this pure state and how this symmetry will be seen to

contrast with the distributions for later times
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Fig 72 The corresponding contour plot of Pw(Q, P) for the system as described
for the i1mage plot 1n fig (7 1) above
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We make the note here that the scale used on the ) & P axes of all the following figures
(both 1mages and contours) 1s the same so compansons can be made Furthermore each
Wigner distnibution 1s calculated at a specific time after the imtial state The distribution
1s time dependent due to the time dependence of the probabihity amplitudes, a (), 1n
constructing the wavefunctions, ¥(@,t), refer to eq (51 4) for the exphat defimition
Therefore the distmibution will change in time, whether by a substantial amount or by
a neghghble amount depends on the system parameters and imtial state Some change
drastically such as the case for the on-resonance scenario with an intial pure state (compare
fig (71)tofig (73)) Others change very httle with the imtial state’s quasi-phase space
being quite stable even after sigmficant time penods (compare fig (7 11) with fig (7 13))
So we can expect the comparison of quantum to classical to be difficult but possible once

the time dependence of these distributions 1s considered

The 1mage and accompanying contour plot 1n figs 73 & 7 4 illustrate how the
phase space has evolved from the intial state 1n figs 71 & 72 after a time lapse of 38
iterations of the quantum mapping for g; =2 0 In the natural time scale of the harmomnic
oscillator, 7, where 7, = %f, this would correspond to 9 5 full period oscillations of the
undnven oscillator This 1s so because for this resonance case the value of 8 = 7 which
by eq (31 1) makes the period between the kicks, 7, to be one-quarter the natural time
period of the undniven system, 7, The spread over first 110 eigenfunctions, (out of 350
for the matrix) used for calculating the Wigner distribution, from the imtial single pure
eigenstate 1s represented by the spreading out over the phase space and the obwvious four-
fold symmetry from the figures The dark regions represent higher probability areas while
the hght represent less probable zones There are four obvious slends surrounding the
origin at 90 degree intervals which can be related back to the mvanant islands of the
classical phase space The regions joiming such islands are probably related to the classical
stochastic layer and exhibit a stmking hne type structure within them This could be a
mamfestation of the graphics package (I D L ) joiming regions of hke probabihity as the
number of calculated points for each of the figures presented in this chapter (except figs
71 & 72)1s 6400 (an 80 x 80 gnd) Whatever the answer 1s the symmetry 1s authentic

and not a product of I D L ’s management of the data
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Fig 78 Image of Pw(Q,P) for system 38 time steps after the 1mitial state shown
mn figs (71) & (72) The system 1s on resonance with § = I and
pg = 20 The spreading out and 4—fold structure scarring the mmtial

state 1s very evident
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Fig 74 The corresponding contour plot of Py (@, P) for the system as described
for the 1mage plot 1n fig (7 3) above
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There 1s one obvious difference between the Wigner distmbution illustrated 1n figs
73 & 74 and the resonant classical phase spaces 1n chapters 2 & 3 and that 1s the 45
degree orientation of the two wrt each other One possible reason why this could be 1s
that the imtial choice of @ and af 1n chapter 2 relate the onginal basis (P & @) to a new
basis (a & aT) which 1s onientated 45 degrees to the onginal This could be just comncidence
or, maybe, a factor in the orentation differences

The energy growth for the system with p; = 2 0 and on resonance (8 = %) 1s of
a linear type increase similar to those shown in fig 6 5 Within a short time (around 40
interations) the spread of the immitial state 1s such that the boundary of 350 eigenfunctions
1s hit and the energy curve saturates and bends over (refer to Chapter 6 sections 1 & 2)
The rate of spreading can be related to the rate of increase 1n the energy curve with time
(our quantum diffusion coefficient) and turns out to be lugher than the rates plotted in fig
6 If the matrnx was infimty large and we could iterate the mapping for an infinitely long
time then we would expect the spread (from the trends given for the smaller matrnx) to
continue over all the eigenfunctions and the quasi-phase space for this case would extend
over the whole 2D @, P plane

Another method of checking the dynamics of the phase space, at specific points,
would be to construct an asymmetric wavefunction in the @, P plane and iterate 1t forward
in time and examune 1ts evolution By asymmetric, we mean a wavefunction which 1s not
symmetric about the phase space ongin hke the harmonic oscillator’s eigenfunctions but
which 1s located at some point (@, P) 1n the phase space and occupies some space about
this point Unfortunately, to accomphsh this, we would need to know the probability
amphtudes for this wavefunction and a fourier type expansion of the wavefunction 1n
terms of a basis of the harmonic oscillator’s eigenfunctions 1s required and to date we have
not been able to obtain an analytical expression for the probabihity amplitudes of such a
asymmetric wavefunction, if any exist This 1s one shortcoming of our techmque but one
which 1s outweighed by the importance and necessity of relating the probability amphtudes
from one 1teration to the next

The next pair of figures (figs 73 & 7 4) show the system for an off-resonance
kicking The kack strength, p,, 15 kept constant at 2 0 and the number of 1terations of the
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Fig 75 Image of Pw(Q, P) for system 38 time steps after the imtial state shown
in figs (71) & (72) The system 1s off resonance this time with § =

(V5+1)m \/5_;"1)” and gy =20 It 1s clear that the dominant symmetry 1s circular

as we would expect (cf fig 2 4)
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Fig 76 The corresponding contour plot of Py (Q, P) for the system as described
for the 1mage plot 1n fig (7 5) above
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mapping 15 also the same as that for the previous pair of diagrams Ths 1s to facilitate
comparnisons between the off and on resonance cases For this pair the parameter 8 1s

(V5+1)m
set equal to ~———

which will exclude any commensurate resonance between 7, the kick
period, and 7,, the natural time period of the oscillator The differences between the Wigner
distnbution for this case and the distribution for the previous case 1 quite starthng The
symmetry of the distmibution 1s defimtely circular (except at the very omgin which has
a dumb-bell type shape) which makes 1t very hke the off resonance classical phase space
portrait 1n fig 24 The spread over the 2D plane 1s a lot less and an energy plot for this
set of parameters would reveal 1t to saturate naturally i1n a manner similar to the cases

shown in fig 67 This saturation occurs quite rapidly and the final time independent
distribution 1s 1dentical to that in the figure

From the last two pairs of figures the following conclusions can be made concerning
the evolution of the quantum system with a pure imtial state Firstly, the resonance
case shows conclusively that the spreading over the eigenfunctions 1s significantly greater
than the off resonance case The result 1s of this 1s that, secondly, the energy increase 1s
correspondingly greater giving rise to a high diffusion coefficient for the resonance case
(The off resonance case has a zero diffusion coefficient when 1t reaches saturation ) Thirdly,
the general symmetries of the quantum distributions correspond to the general forms of the
classical phase space for both cases We conclude from this that correspondence between
the quantum mapping and the classical one 1s very good and, further, that the observed
energy increase on resonance, with the imited matrix size, points to possible unbounded
growth in energy as we would expect 1n a classical phase space ensemble which includes

some orbits 1n the stochastic layer

The success with the pure imtial state prompted a further analysis with a mixed
mtial state The mixed state chosen 1s made up of a gaussian distribution of pure eigen-
states and includes both even and odd parities As already mentioned previously in chapter
5 there 1s no interaction between odd parnty states and even panty states While we ex-
pect this we have, up to now, only investigated an even pure eigenstate as our imtial state
so 1t could be argued that, without evidence to the contrary, the results for the Wigner

distributions to date could be charactenstic of the even states This 1s the reason why a
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Fig 77 Image of Pw(Q,P) for the mmtial state corresponding to the a gaussian
distribution of the probability amphtudes centered on the 10* exgenfunc-

tion of the undniven system Note the differences between this and fig

(71)
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Fig 78 The corresponding contour plot of Py (@, P) for the system as described
for the 1mage plot 1n fig (7 7) above
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mixed state 15 now considered to allay these fears The evolution of this mixed state in
time can be seen from the results presented in chapter 6 for the probability amphtudes,
the energy evolution and the wavefunction evolution The 1mtial state 1s 1dentical to that
chosen for the mixed state used in the chapter 6, a gaussian distmmbution of probabihty
amplitudes centered on the 10** eigenfunction The distribution of this mitial state 1s
Ulustrated 1n figs 77 & 78 The differences between 1t and the pure state 1n figs 71 &
7 2 are immediately apparent There 1s no obvious circular symmetry, except for the outer
rim caused by the fimite set of eigenfunctions, and the inner pattern 1s almost flower hke n
1its form The only observable symmetry from these figures 1s 4—fold but the fine detail of
the distribution 1s absent due to the restrictions placed on the size the grnid of calculated
pomnts in this phase space can take In the analysis presented here all but the first pair
of figures have a 80 x 80 gnd of calculated distribution points spread over the same size
section of phase space centered on the origin As a result, some of the smaller structures

are absent because the grid’s resolution is too course to pick them out

The result of iterating forward m time this mixed imtial state when the kick
strength, ., 1s 1 5 and the parameter § i1s 7 can be seen 1 figs 79 & 710 The time
interval from 1nitial state to the state shown 1s 20 1terations of the mapping (equivalent to
5 full periods of oscillation of the undriven osallator as 3, with 1ts present value, gives a
1 4 ratio between 7, and 7 The sumilanty to the on resonance case for a pure even 1mtial
state 15 obvious with the four islands being more prominent than for the previous case
in fig 73 Furthermore, as we shall highlight later in fig 7 13, there 1s evidence 1n fig
7 9 that four more 1slands could be present each situated on the corners of the sides the
promunent 1slands make up Only half of these new 1slands exist but their presence would
point to a possible continued (or extended) 4—fold structure in this quantum distribution
The contour plot, in fig 7 10, too shows a half 1sland type structure but 1t 1s not as clear as
the image plot 1n fig 79 Thus we have some evidence to suggest a quantum periodic tiled
structure existing 1n the Wigner distribution of the system of the order of the resonance

we're considering

The absolute test would be to construct a very large evolution matnx (say 5000 x

5000) and check to see how far with this matrix this extended structure continues into the
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Fig 79 Image of Pw(Q, P) for system 20 time steps after the imtial state shown
i figs (75) & (76) The system 1s on resonance with § = 7 and
pg =15 Some of the structure seen 1n figs 73 & 7 415 not as clear but

the dominant 4—{old symmetry 1s still very evident
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Fig 7 10 The corresponding contour plot of Py/(@Q, P) for the system as described
for the 1mage plot 1n fig (7 9) above
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quantum quas: phase space At present this 1s beyond the computing and software hmits
available to us but with more powerful computers and a more efficient hnk to Mathematica
to generate the Laguerre polynomials we should be capable of exploring the phase space
more thoroughly and probing this apparent 4—fold structure

Serendipity 1 science 1s quite common and indeed we found something by acaident
which highlights the extended structure we have just mentioned The ongnal distributions
we obtained had a beautiful tiled structure up to the hmit of the eigenfunctions extent in
the phase space This structure was taken by us to be the proof we needed of a quantum
hke tiled phase space until we discovered the wrong file was used by the program The
stunmng simlarity between these results and the classical phase space plagued us so much
that we decided to incorporate the tiled structure as an imitial condition and iterate the
map forward, properly this time, and observe the evolution of the structure The next
two pairs of figures show the imtial state and then the result after 2000 iterations of the
mapping The stability of the pattern is starthng and leads us to beheve that the preferred
distribution 1s close to that in the imagesin figs 711 & 7 13 So the mistake made imtially
has paid dividends 1n that 1t has highlighted the existence of an extended tiled structure,

which appears quite stable, 1n the quantum quasi-phase space

We end our examination of the quantum phase space by hughhghting the correspon-
dence between the qgauntum and classical and by briefly mentionung further improvements
and research directions The correspondence can be considered quite strong between the
quantum system and the classical The on resonance and off resonance cases yield phase
spaces 1n both regimes which are defimitely related The only minus 1s the rotation factor
mentioned but a change of basis negates this The possible existence and stability of the
extended tiled structure in the Wigner distnibution for the resonance case when g = 7
suggests that such a structure 1s a preferred by the system over others and that if the
matrix was larger than its current 350 x 350 then we could possibly explore this more
thoroughly As for future directions, a more detailed look at the finer structure of the
Wigner distnbution to check for further correspondences between the classical and quan-
tum cases and an attempt to confirm, using large evolution matnces, the unboundedness

of certain on resonance scenanos These results, though important, are only idluminating
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Fig 7 11 Image of Pw(Q, P) for the imtial state corresponding to the diffuse dis-

tnbution of the probability amplhtudes as discussed 1n the text Note the

distinctive tiled structure and the close relationship between this type of

pattern and the classical phase space tiled structure
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Fig 7 12 The corresponding contour plot of Py/(Q, P) for the system as described

for the image plot 1n fig (7 11) above
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Fig 7 13 Image of Py/(Q, P) for system 2000 time steps after the imtial state shown
m figs (711) The system 1s on resonance with # = 7 and p, =15
The stabihity of the tiled pattern 1s evident from this 1mages and contour

plot below
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Fig 7 14 The corresponding contour plot of Pw(Q, P) for the system as described
for the 1mage plot 1n fig (7 13) above.
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a very small region of what could turn out to be a very rich and beautiful area of quantum

mechanics
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CHAPTER 8
CONCLUSIONS

The conclusions that can be drawn from the work presented 1n this thesis are many
as are the number of routes further work can be persued The Harmomic Oscillator was
chosen primarily because 1t 1s one of the most fundamental physical systems and not a
mathematically-inspired mapping, such as the piecewise-hnear standard map of Scharf &
Sundaram (1991) Though some conclusions can be drawn from such unphysical systems
they cannot be attmbuted as purely physical phenomena as such systems are physically
unreal The harmonic oscillator 1s not and as such 1s an 1deal candidate for analysis

In our classical analysis of the system’s phase space we showed how the stochastic
layer 1s the principle mechamsm behind the diffuse transport and unbounded energy growth
of certamn orbits which he within the layer itsef The principle directions of transport
llustrated in fig 3 1 show the diffusing of orbits along the (stable and unstable) manifolds
of the period four hyperbolic points whose separatrix net 1s the layer 1itself for infimtesimal
kicking We have have found for the kicked oscillator, at resonance, that the exastence of
penodic orbits 1n or around the stochastic layer influences the breakup of the invariant
orbits as would be expected from the K A M theorem As a result of this breakup, the
boundary of the layer becomes increasingly comphcated as the kick strength 1s increased
Our analysis allows us to predict which resonances and hence which periodic orbits should
be present in the system’s phase space by means of a function obtained via a polynormal
expansion of the kicking term The correlation between prediction and numerical results
was found to be very good despite the practical problems in numerically locatmg complete
sets of periodic orbits We further showed that the elliptic fixed points of period four at the
center of the main invanant 1slands become hyperbolic for a kick strength of 10 0 causing
these 1slands to break 1n two for kick strengths above 10 0 (¢ f table 31 & fig 32) Tlus
result holds the key to our quantum analysis, that being the ongin becoming unstable
above a certain kick strength allowing diffuse orbits to exist close to it for reasonable kick
strengths Therefore we can analyse the quantum mapping using low order eigenfunctions

knowing that 1if there 1s a correspondence between the quantum and classical we should be
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able to observe diffuse type wavefunctions for reasonable kicking We do 1n fact see this

and therefore can conclude the two hmits do have a direct correspondence

The detailed study of the evolution of the stochastic layer as the kick strength 1s
increased 1s of fundamental importance as 1t enables us to see the effect of increasing non-
integrabihty on the system at large The most stnking change 1n the layer 1s 1ts vanation
in width with kick strength, which we studied 1n detail and compared to that predicted
by perturbative analytical arguments (Chermkov et al 1989) We found that the wadth
of the layer as a function of the kicking strength follows an exponential variation of the
form ue™", where u = 1/(kick strength) This 1s the form predicted by Chermkov et al
(1989) for kick strengths < 1 We find that this result 1s true for a range of kick strengths
considerably 1n excess of the theoretical prediction This vahdity 1s surpnising when one
considers the increased complexity of the layer itself and the overall increase m structure

at the layer boundary with increased kicking

The diffusion 1n the classical regime, analysed in chapter 4 based on the argument
of Rechester & White (1980), was found to correspond exactly with that for the kicked
rotator and this correspondence was put down to the dominance of the turbulent motion
over the invanant penodic & restricted motion 1n the cells (refer to table 4 1 in chapter
4) Ths 1s important because such similanity, when the turbulent motion 1s dominant,
1s evidently generic of all one-dimensional hamiltoman systems when the kicking term
1s cosinusoidal Furthermore, the lower asymptotic hmit was found to be identical to
that found by Lichtenberg and Wood (1989) who constructed an approximate theory of
diffusion on the stochastic web which 1s valid in the small g, region Our results on
the Resonance Enhanced Diffusion are umque 1n that no-one has yet shown the spikes in
the diffusion coefficient to exist for the kicked harmonic oscillator (Ishizak: et al (1989)
showed this diffusion to exist for the kicked rotator) or exphaitly shown them to vary as the
phase space’s periodicity changes Qur argument for this anomalous diffusion 1s based on
strong correlations between successive points and follows on logically from the arguments
of Rechester & White The main conclusion to be drawn from this diffusion analysis
1s that correlations do exist for reasonable kick strengths but normally die off when the

kick strength tends to infimty However the anomalous diffusion has strong correlations
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regardless of how strong the kick stength 1s once 1t equals a positive integer times the

system’s phase space

The quantum mapping we denived has not been, to our knowledge, used before
Furthermore the approach we use, to obtain tlus mapping, based on the approach of Fox et
al (1990 & 1994) has not been apphed to this system either The approach 1s qute simple
and was chosen for its directness, that of relating the probabiity amplitudes for successive
kicks The success of this approach can be gauged from our ability to calculate energies,
quasi-energy levels as well as wavefunctions and Wigner distributions From our analysis
of the system we have been able to make some interesting conclusions about the quantum
system We have seen certain states naturally saturate giving nise to quas: energy levels
(Isranlev 1990) 1n the kicked system The corresponding locahsation 1n the wavefunction
has also been examined and promunent peaks found to exist in these local states For
larger kick strengths the wavefunctions spread out with an increasing rapidity with kick
strength and their energy increase was found to be quite hinear (up to the point they hit the
boundary imposed by the fimte matrix size) We used this hnearity to calculate a quantum
diffusion coefficient and found it to have a definite non hnear form In fact we found the
power-law to be of the form 0 2(,)* " The wavefunctions for these kick strengths were
found to be quite diffuse with httle structure on them except for a gradual fall off Q tends
to oo (caused by the finite number of eigenfunctions used) We conclude from these latter
results that the energy saturation 1s defimtely artificial (caused by the fimte matnx size)
and that the energy was increasing hnearly in a seemingly unbounded fashion and not
following the nature of the suppresion of chaos in the kicked rotator

The Wigner distribution for the quantum phase space can be seen to have a definite
four-fold symmetry when the system 1s on resonance (8 = 7) and, for a sumilar imtial state
and kick strength, the resonance case 1s more spread out and defimtely of higher energy
than 1ts off resonance cousin The off resonance case also has a more circularly symmetric
nature about 1t than the resonance case These point to a definite correspondence between
the classical case (the off resonant & resonant phase space structures visible 1n chapter 2)

and the quantum case (the Wigner distnbutions 1n chapter 7) Furthermore we observed

from an mixed imtial state, at a kick sirength of 1 5, that the resonant structure formed
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15 very close to the tiled structure we used to test for the existence of a stable extended
tiled structure (re figs 711 — 714) We found that this mixed initial state, at that
kick strength, became diffuse as time evoloved (as shown in chapter 6) This, coupled
with the similanty to the extended tiled structure, 1s indicative of continuing diffusion of
this wavefunction over the phase space Qur reasoning 1s quite simple, such an extended
structure bears a striking resemblence to the classical tiled phase space structure and, as
the wavefunction 1s spreading out without any indication of saturation, we conclude that
this 1s proof that the system 1s behaving as if it has a quantum analog to the classical
stochastic layer Therefore we conclude the existence of quantum chaos 1n this system as
the quantum regime has wavefunctions which, from the results presented in chapters 6 & 7,
mumic classical ensembles which have elements in the stochastic layer It 1s using ensembles
hke this that the classical phase space 1s constructed and to have quantum wavefunctions
construct a tiled structure so close 1s proof that some correspondence exists between the
dynamics of both hmuts

We have accomphshed our main objective, that of showing the existence of quan-
tum chaos 1n the kicked harmonic oscillator The research undertaken here has brought
to hight many unknowns about the system itself and we have also highlighted some of the
ways 1n which future research on this system can proceed The kicked harmonic oscillator
1s a truly physical system, one whose properties should more fully increase our knowledge

on this fledghng area of quantum chaos
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APPENDIX A
EXPLICIT FORMULATION OF THE POTENTIAL TERM

The form of the equation that we have chosen for the potential is V(p,q) =
fio(cos (kq)) (after Berman et al. (Berman et al. (1989)). This term is in effect the
non-linearity in the system Hamiltonian and as such makes the integrable oscillator equa-
tions non-integrable. The degree of non-linearity depends on how many terms in the series
expansion of cos(x) are required to accurately describe the potential term. As is well
known, the larger the argument present in the cosine then the higher the number of terms
needed to be accurate. Using the cosine series expansion we will show how the potential
term in eq. (2.1.15) is arrived at. From the definitions in egs. (2.1.3) and (2.1.4), for the
operators a(t) and at(<), we have for q(t)

9(<) = TV 2] £ (at(<)_a(<)) {AA)
So our equation for the potential becomes
V(a, at) = nq(cos (*v/ft/(2Afw0)(at(t) - a(f)))) (A.2)

For convenience we define K to be (ky/h/(2Muo)). We show in chapter 2 how the h
dependence is removed from K. Thus eq.(A.2) is simplified to

V(a, at) = fig(cos (£ (at(f) _a(<)))) (A.3)

To proceed further we have to change the compound argument of the cosine into simpler
arguments of cosines and sine. This we accomplish using the well known trigonometric

identity: Cos{A - B) = Cos(A)Cos(E)+Sin(A)Sin(B)

Eq.(A.3) now becomes:
V(a,at) = fig(cos (f at(<)) cos{*a(t) )+ sin(f at(t))sin( *a(i))) {AA)

We do not have any explicit rules for the commutation of a and atwith trigonometric
functions whose arguments are either a or at. To allow the commutation to proceed we
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find 1t necessary to express the sines and cosines 1n terms of their series expansions These
series expansions, for the sine and cosine functions, are well known and for our arguments
break down to

[o 7] 2n
. -1)"(K/.) 2n
X _v
cos ( TaT(t)) = Z (2n)' (aT(t) ) (A 5a)

n=0

1YY K/. 2n+1 2n41
SRR (et

sin ( %at(t)) = (A 5b)

ANGE

0

So when expressed m this series form eq (A 6) takes on the formudable but more useful

appearance

= (-1)"(K/e 2n -1 KL 2n
vaah) - {; P Z( SICD }

2 1 1\n )2t n1°° —1\n L)2ntl
+#q{ Z( 1()275-1-('-/1))' (a-l-(t))Z + Z( 1()215'}:/1))' (a(t))2n+l } (A 6)

n=
The next task 1s to commute this with a(t) for the explhct form of —L(Q,V(a,at))
Egs (2 1 8a — d) will be put to good use here to simphfy the equations immensely For the

cosine terms we have a commutation of the form

(a(t), 2 (af ()" Z(am)“)

= (a(t), Sio (al(0)) 2 (alt))™ + (a0), Tilo (1)) ™) Y )™ (47)

using the relation in eq (21 8¢) Taking the summation after the commutation makes no

difference so for the first half of the nght hand side 1n eq (4 7) we have

(a(t), T o2, (af(t) )“)Z (1) 2"52 (a(t), (at@®)) ) ) (a(®))*™  (48)
whereas for the latter half we get
(a(t), S5, (alt)) 2")2 (at@))’ Z(am(a(t))“@(am)f" (4.9)
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The parts to be commuted with a() consist now of an operator to the power of 2n There
1s one problem, however, and that 1s the n = 0 term of the summation This gives (a(2),1)
which 1s zero So the summation should be performed from n = 1 to n = oo with the
n = 0 term separate Noting that, usingeq (218d), (A4,B?")=2n(A,B)B?""! we get
foreq (A48)

(a(t) Tozo (at(®) ™) D (al®)™ =3 20 (af($))™ 7 Y (a())™  (410)

foreq (A 9) the story s different because a(t) commutes with itself so that ( a(t), ( a(t) )*" )
= 2n(a(t),a(t) }a(t)>""! = 2nx0%a(t)*"~! =0 So substituting these 1dentities nto eq
(AT) we get

oo 8
(a0 70 (al(9) ™+ Eo(alt)) ) = Lo 20 (el (@)™ L (el (411)

n=0

So the complete cosine term from eq (A 6) becomes

Z( D (K/L) 2n (a¥(2))™"" Z( = 2,5,/L)"( a(t))*" (A12)

n=0
The summation from 1 to co presents no problem as by introducing a new dummy variable

u=n—1 we get

o0 - 0o )2t .
Z (2(,51/ 2n (at(1))™"” IL(Z( lzuIi/l (at@)™"  (413)

which 1s just —Asm(—_aT(t ) So the cos( & (aT t)))cos( & K (a(t))) term becomes
—% s (£ = (a,f(f,)) cos( £ (a(t))) following the commutation with a(t)
For the sine terms we have a simialar argument with the commutation being of

the form given below 1n eq (14)

(a(t), 5% (at (1)) * £52, (aft) ) 27*1) =

(a(t), 252, (at(2)) ") Y (a(t) )™ + (a(t), Tz, (alt)) 2"“)2 (2)) "

(414)
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Taking the approach we used for the cosine terms we get

(a(e), £7Zo (af(1)"™"" * Tilo (a1)) 1) = (20 + 1) (al() Z( y2nt

(A 15)
The term modified (aT(t)) by the commutation with a(t) affects the total sine sum as

follows

© ¢ 13\n L2n+l n > (-1)" L2n 2n
> IR o) ah)" = 5 RGP ()™ ca

n=0 n=0

which 1s just = cos( A f(t)) Thus the term, s ( KT (aT(t)) )sm(
K cos( & (aT(t)) )stn (& (a(t))) after the commutation

(a(t)) ), becomes

[

So we have now obtained expressions for both the cosine product term and the sine
product term after commuting with a(¢) What remains now 1s to combine these results
to obtain an expression for the potential after commutation (1e the term f(a, aT)) We

find that, 1n 1ts final form , the potential term satisfies

—(a(t),V (a(t),af(t)))
= pg {Ksm( 2 (al(t)) )cos( & (a(t))) - Kcos( 2 (af(t)))om( 2 (a(t)))}

or more succintly

Fa(®),al (9)) = —+(a(2),V (a(t),al(t))) = mo { K (s (& (af(t) —a())))} (417)

Thus 1s the substitution we make for f(a, aT) i chapter 2
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APPENDIX B
THE ANNIHILATION & CREATION OPERATORS

In eqs (51 7) and (5 1 8) we defined the a & at operators 1n terms of @ and

a4
aQ

techmque, previously, by exphatly solving the differential equation with trial solutions

(= P) The eigenfunctions of the hamiltoman can be found without using the operator

This way the solutions found are identical to those found using the more direct operator

approach The eigenfunctions found u, ( Q) have the form
1 " .
un(Q)=W(Q—%) exp(—3Q?) (B1)
where u, (Q ) = \/Iﬁexp(—%Qz)a.ndul(Q) = 712’(Q_ %)uo(Q)EaTuo(Q) Like-

wise 1t can be shown that for any n

U1 (Q) =

1
27 Ja((n + 1))

thus

d

(Q- E)n+lexp(—%Q2)= —'——',(-T%-lﬁ(Q—d_d@)un(Q) (B2)

1

un+1(Q)smaTun(Q) o Vatlu.n(Q)=alu.(Q) (B3

The anmhilation operator a = 715 ( % + Q) does the opposite of the ol operator by taking
a polynomual of order n down to a polynomual of order n — 1 with a \/n coeffictent How

this comes about 1s by looking at the commutation properties of a and at, 1e
(a,aT) —adt —afe=1
so that if we operate on u, then
(a,at) un(Q) = aaun (@) — alaun (Q) = ua (Q) (B 4)

Hence vn+ 1 * aunt1(Q) — ataun (Q) = un(Q) Assuming the operator a changes
(@) to v/n + 1usyp( Q) then we have that
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\/n+1\/n+1+1‘un+p+1(0,)—\/n+r\/n+P+1un+p+l(Q):un(Q) (B5)

As the u, (@) form an othogonal basis then n + p4+ 1 =n & p = —1 Furthermore
Vatlyn+l+r-—yn+ryn+p+l =1 n+p+1l=nsovyn+tlyn+l+r-—
Vatryn=1%r =0 Thus au,(Q) = v/nun-;(Q) as stated earher n this sec-

tion

This ends our brief justification of the a & al defimtions Though not very ele-
gant, this justification serves for me as a way to visuahse how these operators mamipulate

eigenfunctions of the quantum system
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APPENDIX C
SIMPLIFICATION OF THE COMPLEX TERM IN P, (Q,P)

Here we want to ssmphfy the complex terms contained within the {} brackets in
egs (6 2 14-15) so that we can show the Wigner distmbution, Pw(@, P), to be real valued
(f not always positive) To do this we shall spht the complex term into two parts the
first will be the product a},a,, while the second will deal with the (—@Q + ¢:P)™"" term

Let the complex probabihty amplhitude ax = ay) + Lai'm) then the expression for

a,a, becomes
anam = (aﬁl’)aﬁ,? + aﬁ,‘m)aﬁ:“)) +1 (aﬁf)aﬁg‘“) —S:“’) a,s,:)a) =a+8 (C1)

For the case when m and n are interchanged we get a — ¢ Furthermore for any complex
number z taken to the power m we find that 1t still has a complex conjugate relationship
to 1ts complex conjugate taken to the same power

(2 +w)" =

n n
2" +inz" 'Y+ (e)? (2 ) 2"y + ()P (2 ) 22y 2+ ()" 'nzy" ! +(y)" (C 2a)

and

(z—ey)" =

2" — ann—ly + (—L)2 ( n )z"'2y2 + + (_L)n-2 ( n ) m2yn—2 + (_L)n—lnzyn—l + (_Ly)n
(C 2b)

As (1)®™ 15 equal to (—t)*™ Vm € Z and (¢)*™*! = —(—.)?™*! agan for m € Z then
the above two equations give a real part which 1s identical but 1maginary parts which
are the negative of each other thus making (z — ty)" the complex conjugate of (z + ty)"

Therefore (—Q + ¢P)™ ™ 1s complex conjugate to (—@Q — ¢P)™~" or, 1n our case when m
and n are interchanged, (—Q — ¢P)*~™ Therfore we have the sum of the product of two
complex number with the product of their complex conjugates below a}a,, 1s denoted
(¢ + ¢b) and (—Q + tP)™™™ 1s replaced by (¥ + 6) so that the complete complex term,
ayam{—Q +tP)" ", 1s
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Gham(~Q + )" = (a + b)(c + ud) ©3)

(a + b)(y + 8) = (ay — b6) + o(by + ab)
(a — tb)(vy — t6) = (ay — b6) — ¢(by + ab)

which when summed gives a real number, 2(ay — 86) Thus the distnibution 1s real

To numerically evaluate the equation(s) leading to the Wigner distribution would require
an immense amount of computing power so any tricks to reduce this cost 1n time would be
welcome The phase space of P & Q 1s spht into four quadrants but here we shall restrict
our argument to just two of them (1 and 3) and then apply the results to the other two (we
can do this because any point (a,b) in the quadrant 1 1s just (—1)(a,b) 1n 3 and hkewse
for 2 and 4)

Schematic of the four quadrants constituting the phase space

The distnibutions for the respective quadrants are

Q’P) ZEAn+lm+l{a a-m( Q+LP)m n} n<m (C4a)

m=0n=0

P(Q.P) =Y Awpimu{aiam(-Q-¢P)* ™} m<n (C 4b)

n=0m=0

for quadrant 1 (note the superscript 1 on Py (Q, P) and

Py(@,P)= Y Y (-1)" " Appimir {aham(-Q+P)" "} n<m  (C4e)

m=0 n=0

Pi(@,P)= > Y (-1)" ™duprmir {aham(-Q = tP)*"™} m<n  (C4d)

n=0m=0
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for quadrant 3 where we have defined A, 41 m+1 to be the matnx element

exp(—(Q7 + PO)-1)™ | om L= (AQF + PY))  m<m

or
exp(—(@ + P g L™ (AQ+ PY)  m<m

It 1s clear from eqns (C 4 a — d) that for m — n (r < m) even, the terms 1n the third
quadrant equal that in the first whereas for m — n odd the terms are of equal magmtude
but opposite signs The same 1s true for n — m when m < n To illustrate things lets

restrict m and n to values less than 4 The matrices would be as follows

An Ay Ap Ay A —Ap A —-Ay
Ay Az Az Ay —A1s A -4y Ay
A1z Az Asz Az Az —Az,  Asz  —Ai
Ay Ay Az Ay —-Ay Ay —Azy Agg

for quadrant 1 for quadrant 3

In general these two matrices are very different however we will now show that if we
restrict the imtial condition to a PURE eigenstate then the matrices for both quandrants
one and three are the same To see this refer back to chapter 5 where we derive the
quantum mapping In eq (51 31), we show that there 1s included 1n the expression for
An((N +1)7), a term contained within {} which forces the expression to zero if p —m1s
odd Therefore if the imitial state 1s a pure odd numbered state then, m order for p — m
to be even, only odd states exist in the resulting system (simularly if we begin with a pure
even numbered state) Thus we end up 1n eqs (C 4c — d) with the same expression for Py
as we have 1n eqs (C 4a —b) The importance of this 1s to allow us to cut down on time
when calculating the phase space itself by obtainming two quandrants while only calculating

one
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