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data and the corresponding pixels that were identi�ed by 
the proposed algorithm. To allow for a compact presen-
tation of the experimental results, the calculated errors 
are reported in Fig. 8 using box plots [28]. Each box plot 
depicts the minimum and maximum value of the errors, 
the range between the 25th and the 75th percentile, and 
the median error value. To complement the experimen-
tal results shown in Fig. 8, we also calculated the overall 

mean error ± standard deviation for the LI (LI Mean_Error 
= 0.06 mm ± 0.03) and MA (MA Mean_Error 0.08 mm ± 
0.04) interfaces. The interquartile range (IQR; i.e., the dif-
ference between the 75th and 25th percentile) for the box 
plot corresponding to the LI interface is 0.03 mm, whereas 
the calculated IQR for the MA interface is 0.042 mm.

The second set of tests was conducted to calculate sta-
tistics related to the mean IMT values that are deter-

Fig. 7. First frame intima media complex (IMC) segmentation results obtained using the algorithm described in Section II-C-1 for 12 carotid ultra-
sound sequences. The intima media thickness (IMT) mean value determined by the proposed algorithm is displayed for each corresponding image.
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mined by the proposed automatic method and those mea-
sured from the manually annotated ground truth data. 
Fig. 9 depicts the box plots of the mean IMT values cal-
culated for all 40 ultrasound sequences for both automati-
cally segmented (IMT_Mean_Seg) and ground truth data 
(IMT_Mean_GT). The overall mean IMT value ± stan-
dard deviation calculated for the automatically segmented 
data is 0.60 mm ± 0.10, whereas the mean IMT value ± 
standard deviation calculated for the ground truth data 
is 0.60 mm ± 0.11. As an additional statistical measure, 
Fig. 9 also reports the IMT mode values which are the 
most frequent IMT values encountered in each data set in 
the segmented (IMT_Mode_Seg) and in the ground truth 
(IMT_Mode_GT) data. The overall mean ± standard 
deviation values of the IMT mode are 0.59 mm ± 0.115 
and 0.59 mm ± 0.11 for the automatically segmented and 
ground truth data, respectively.

Fig. 10 reports additional statistics calculated from the 
IMT values (IMT Max, IMT Min , and IMT Median values) for 
both ground truth data and the automatically segmented 
data.

To evaluate the level of dispersion between the IMT 
values within the automatically segmented and ground 
truth data, in Fig. 11 we report the coe�cient of variation 
(CV%) ([10], [25]), which is de�ned as CV% = 
( )σ IMT Mean/ /IMT2  × 100. The average value of the CV 
calculated for all 40 data sets is 2.05% for the automati-
cally segmented data and 5.6% for the ground truth data. 
The results reported in Fig. 11 indicate a higher variation 
in the IMT values for ground truth data, which illustrates 
that the manual annotation process can be easily biased 
by the subjectivity of the human operator (the problems 
associated with the manual annotation process are par-
ticularly visible in sections of the ultrasound images where 
the contrast between the MA interface and the surround-
ing tissue is very low).

To provide a more detailed measurement that quanti-
�es the performance of the algorithm proposed in this 
paper, we analyzed the IMTmean agreement for all 772 
frames between the automatically estimated IMT values 
with respect to ground truth annotations using Bland–
Altman ([43], [44]) and linear regression plots [41].

Fig. 12 illustrates the Bland–Altman plot of the aver-
age versus the di�erence in the mean IMT values between 
the automatic and manual measurements, where the lim-
its of agreements are (�0.007) mm ± 0.176. Fig. 13 de-
picts the regression plot (the scatter diagram) between 
the IMT mean values calculated from the ground truth 
data with respect to the automatically segmented results 
for all frames of the 40 data sets (772 frames) that were 
used in our study. As indicated in Fig. 13, the correlation 
coe�cient (corr_coe�) is 0.7, which indicates a good �t 
between the automatically segmented and manually an-
notated data. To evaluate the nonparametric signi�cance 
test between the automatic and manually determined 
IMT values, we employed the Wilcoxon rank sum test [45] 
which was calculated for all 772 frames. The calculated 

Fig. 8. The overall border displacement errors between the manually 
segmented lumen intima (LI) and media adventitia (MA) interfaces and 
the automatically segmented LI and MA interfaces. The overall mean 
errors are: LIMean_Error = 0.06 mm ± 0.03 and MA Mean_Error 0.08 mm ± 
0.04. The calculated interquartile range is: IQRLI_Interface = 0.03 mm and 
IQRMA_Interface  = 0.042 mm.

Fig. 9. The mean intima media thickness (IMT) and IMT mode val-
ues calculated over the entire database of 40 cardiac sequences for 
the automatically segmented (Seg) and the ground truth (GT) data. 
The calculated interquartile range is: IQR IMT_Mean_Seg = 0.156 mm,  
IQRIMT_Mean_GT  = 0.15 mm, IQR IMT_Mode_Seg = 0.147 mm, and 
IQRIMT_Mode_GT  = 0.141 mm.

Fig. 10. Additional intima media thickness (IMT) statistics calculated 
for the 40 ultrasound video data sets used in the experimental study.
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p-value is 0.25, which indicates a nonsigni�cant di�erence 
between the two sets of measurements (any value of p > 
0.05 indicates a nonsigni�cant di�erence between the two 
sets of measurements).

The IMC tracking results also provide information 
about the dynamic properties of the arterial far wall and 
examples for four di�erent subjects are illustrated in Fig. 
14. Figs. 14(a1) to 14(d1) show the changes in the IMT 
mean values that are calculated for every frame of the 
analyzed 0.5 s of the cardiac cycle. In these graphs, the 
origin (time = 0) corresponds to the end of the diastolic 
phase of the cardiac cycle, a situation in which the IMT 
has a maximum value and the arterial diameter reach-
es its minimal value. During the systolic expansion, the 
pulse pressure that passes through the carotid causes the 
compression of the IMC and its decreasing value is illus-
trated in the plots depicted in Figs. 14 (a1) to (d1). The 
peak systole of the cardiac cycle can be observed in these 
graphs at the moment where the IMT records the minimal 
value and the arterial diameter is at its maximum value. 
These graphs provide additional proof that the proposed 
algorithm works correctly from end-diastolic to the peak 
systolic phase of the cardiac cycle, and the IMC deforma-
tion patterns depicted in Fig. 14 are in agreement with the 
clinical studies reported in [16] and [46].

B. Computational Complexity of the Proposed Method

The computational time required to segment the �rst 
frame in the video sequence (using the method in Section 
II-C-1) is in the range of 6 to 14 s; the time necessary to 
track the IMC in the subsequent frames covering the 0.5 s 
of the cardiac cycle ranges from 1.0 to 2.5 s per frame, 
depending on the length of the LI and MA interfaces. 
As an example, for the ultrasound sequence (covering the 
0.5 s of the cardiac cycle) depicted in Fig. 14(d), the total 
computational overhead is 31 s (7 s are required to seg-
ment the IMC in the �rst frame and 24 s are required 
to track the LI and MA interfaces in the subsequent 19 
frames). For the 40 video sequences that were used in 

our experimental study, the highest overall computational 
time was attained for the video sequence whose �rst frame 
is shown in Fig. 14(b), for which the total segmentation 
and tracking time was 80 s (8 s to segment the IMC in 
the �rst frame and an additional 72 s to track the LI and 
MA interfaces in the subsequent 28 frames). The compu-
tational complexity associated with the IMC segmenta-
tion and tracking scheme proposed in this paper is very 
low when compared with the computational times that 

Fig. 11. Box plots of the coe�cient of variation (CV%) of the intima 
media thickness (IMT) mean values calculated for all 40 video sequenc-
es for both automatically segmented (CV_Seg) and ground truth data 
(CV_GT).

Fig. 12. Bland–Altman plot of the average versus the di�erence in the 
intima media thickness (IMT) mean values calculated for all 772 frames 
contained in the 40 data sets (automatic segmentation with respect to 
the ground truth data). The middle line represents the mean di�erence; 
the upper and lower lines represent the limits of agreement between the 
two analyzed methods (automatic versus manual), which are de�ned as 
the mean ± 2 standard deviation (SD) of the di�erence.

Fig. 13. Regression plot for the mean intima media thickness (IMT) val-
ues calculated for all 772 frames representing the 40 data sets contained 
in the database using the proposed algorithm with respect to the ground 
truth data. There are three data sets with an IMT value higher than 0.8 
mm (which generate 57 stars out of the 772 stars that are plotted for 
all frames).
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were reported for other published algorithms ([16], [17]; 
more details are provided in the next section), a fact that 
further recommends the use of the proposed algorithm in 
the development of a clinical CAD application. The ex-
periments have been conducted using a 2.4-GHz AMD X2 
4600 PC (Advanced Micro Devices Inc., Sunnyvale, CA) 
running Windows XP (Microsoft Corp., Redmond, W A).

IV. D���������

The experimental data reported in the previous section 
indicate that the proposed automatic IMC segmentation 
and tracking technique returns correct results when ap-
plied to the identi�cation and measurement of the IMC in 
ultrasound B-Mode sequences of longitudinal sections of 
the common carotid artery. Among many issues related to 
the segmentation and tracking processes, the movement 
artifacts induced by breathing, inter-patient variation 
with respect to the structure and mechanical properties 
of the arterial wall, speckle noise, intra- and inter-frame 
intensity inconsistencies associated with the LI and MA 
interfaces that are caused by the non-optimal orientation 
of the ultrasound probe during image acquisition, and the 
overall low image contrast proved the most di�cult to ad-
dress during the development of the proposed algorithm. 
To address these issues, which are common in the analysis 
of CCA ultrasound data, we have adopted a two-stage un-
supervised IMC segmentation and tracking strategy. The 
�rst stage deals with the robust identi�cation of the LI 

and MA interfaces in the �rst frame of the video sequence 
(using a new method that entails the �tting of a multi-
resolution spatially continuous vascular model in the ana-
lyzed image data), and the second stage involves the ap-
plication of a novel tracking procedure to track the LI 
and MA interfaces in the subsequent frames of the CCA 
ultrasound sequence. The proposed tracking strategy has 
been speci�cally designed to accommodate situations in 
which the LI and MA interfaces exhibit noticeable incon-
sistencies in the frames that encompass the cardiac cycle.

To allow for a targeted discussion that samples the key 
aspects related to the analysis of CCA ultrasound image 
data, in the remainder of this section, we will analyze the 
most relevant published techniques that addressed this 
�eld of research with respect to their performances and 
the technical aspects associated with the methodology 
employed to identify/track the IMC in video image data. 
To emphasize the most apparent advantages associated 
with the proposed segmentation and tracking scheme, in 
this discussion, the analysis of the algorithms that were 
designed to identify the IMC in video (2-D + time) CCA 
image sequences will be prevalent. This analysis centers 
on the information collated in Table II, which summarizes 
the performances obtained by the state-of-the-art IMC 
segmentation algorithms. Table II provides information 
regarding the names of the researchers who authored each 
paper, year of publication, whether the method was de-
veloped for the segmentation of still or video ultrasound 
data, details of the data used in the experimental activity, 
and performance indicators.

Fig. 14. Dynamic behavior of the IMT_mean during the analyzed 0.5 s of cardiac cycles from four di�erent subjects using the proposed automatic 
segmentation method. (a), (b), (c), and (d): Regions of interest (ROIs) of the �rst frames in the cardiac cycles segmented using the method described 
in Section II-C-1. (a1), (b1), (c1), and (d1): Graphical results illustrating the changes in IMT_mean (calculated for each frame). It can be observed 
that the IMT_mean values follow a trend; it starts with a slightly higher value at the beginning of the cycle, while during the systolic expansion the 
intima media thickness (IMT) is compressed, which translates into a decrease in the IMT_mean value. The statistics calculated over the cardiac cy-
cles corresponding to each of these examples are as follows: (a) IMTMean = 0.72 mm, IMT Max = 0.76 mm, IMT Min  = 0.70 mm, and IMT Median = 0.73 
mm; (b) IMT Mean = 0.52 mm, IMT Max = 0.54 mm, IMT Min  = 0.50 mm, and IMT Median = 0.52 mm; (c) IMT Mean = 0.86 mm, IMT Max = 0.95 mm, 
IMT Min  = 0.79 mm, and IMT Median = 0.85 mm; (d) IMT Mean = 0.76 mm, IMT Max = 0.81 mm, IMT Min  = 0.71 mm, and IMT Median = 0.74 mm.  

http://dx.doi.org/10.1109/TUFFC.2013.2547/mm2
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Based on the underlying approach employed by the 
published works to identify the IMC in CCA ultrasound 
data, the algorithms in Table II can be broadly categorized 
as edge-based [16], [18], [19]–[21], [24], [47], [48], active 
contours [23], [25]–[27], [29], [49], dynamic programming 
[11], [28], [50], and probabilistic IMC segmentation meth-
ods [17]. An initial categorization of the �eld of research 
focused on the IMC segmentation has been detailed in [51] 
and in this section we aim to complement that study by 
providing an additional analysis of the methods that were 
developed for the IMC detection/tracking in 2-D + time 
ultrasound image sequences. As illustrated in Table II, 
many algorithms have been proposed for the segmentation 
of still ultrasound frames, and only limited research has 
been published on the problem of tracking the IMC in vid-
eo ultrasound sequences. As indicated in the introductory 
section of this paper, the application of single-frame IMC 
segmentation in a serial manner, although theoretically 
feasible, it is impractical because it requires user interven-
tion to accommodate the substantial level of inter-frame 
variation in imaging conditions, which is a prominent char-
acteristic of the ultrasound image acquisition process. We 
have conducted a thorough literature search and we were 
able to �nd only two papers that explicitly addressed IMC 
segmentation in video sequences ([16], [17]). In [16], Selzer 
et al. employed an edge detection algorithm to identify 
the IMC and the vessel diameter over the cardiac cycle. 
The algorithm detailed in [16] starts with a user-driven 
annotation procedure in the �rst frame of the sequence, 
in which the clinician is required to identify and mark a 
number of points that belong to the LI and MA interfaces. 
Next, the authors applied the PROSOUND method [18] 
to construct the arterial wall interfaces from the manually 
annotated points. The IMC detected in the �rst frame is 
used as input for the PROSOUND method that was also 
applied to identify the LI and MA interfaces in the subse-
quent frames of the sequence. During the tracking process, 
the user is required to correct the errors that may occur in 
the identi�cation of the IMC (the authors indicated that 
most errors occur during the systolic expansion and are 
caused by problems related to the errors in the initializa-
tion of the PROSOUND algorithm). The minimum and 
maximum IMT values were recorded for 24 CCA video 
sequences and the results reported by the authors are pro-
vided in Table II.

A more recent semi-automatic algorithm that addressed 
the IMC segmentation in sequences of B-mode ultrasound 
images was proposed by Destrempes et al. [17]. Their al-
gorithm relies on the assumption that the echogenicity of 
the region of interest that encompasses the IMC can be 
accurately modeled using a mixture of three Nakagami 
distributions and in their approach they estimated the 
parameters of these distributions using an expectation-
maximization (EM) algorithm. Similar to the approach 
detailed in [16], the �rst stage of the algorithm proposed 
by Destrempes et al. [17] involves a user-driven process 
that is applied to select a set of points that are used to 
initialize the IMC interfaces in the �rst frame of the se-

quence. From this manual initialization, their algorithm 
searches for piecewise segments located 2 mm above and 
below the manually marked IMC points that maximize 
the posterior distributions using an exploration selection 
(ES) optimization algorithm. Once the process associated 
with the identi�cation of the IMC is completed, the algo-
rithm commences the tracking in the subsequent frames. 
In this regard, the IMC interfaces located in the previous 
frames are used as initial solutions in the current frame 
and the algorithm searches for piecewise segments within 
1 mm toward the lumen and 1 mm toward the adventi-
tia using the same approach that has been employed to 
identify the IMC in the �rst frame of the video sequence. 
Destrempes et al. [17] reported a mean distance error for 
data annotated by two experts as follows: 0.21 mm ± 0.13 
for the LI interface and 0.16 mm ± 0.07 for the MA inter-
face for Expert 1 and 0.18 mm ± 0.11 for the LI interface 
and 0.15 mm ± 0.1 for the MA interface for Expert 2 (see 
Table II).

By analyzing the algorithmic solutions and perfor-
mance indicators associated with [16] and [17], we can 
observe several issues that illustrate the superiority of our 
algorithm. First, our method does not require any level of 
user intervention during the IMC segmentation or during 
the LI and MA tracking process. Second, the performance 
returned by our method with respect to the identi�ca-
tion of the IMC in video ultrasound CCA data is supe-
rior to those o�ered by both state-of-the-art algorithms. 
The mean errors recorded by our method are as follows: 
0.06 mm ± 0.03 for the LI interface and 0.08 mm ± 0.04 
for the MA interface. In addition, the proposed method 
outperforms the approaches detailed in [16] and [17] with 
respect to the computational time. For the method de-
tailed in [16], the reported computational time required 
to track the IMC in a video sequence that consists of 
80 frames is 8.2 minutes (this translates into a processing 
time of 6.15 seconds per frame), whereas the computation-
al overhead associated with the method proposed by Des-
trempes et al. [17] is 14 hours and 41 minutes to identify 
the IMC in 30 video sequences (the average computational 
time is 24 seconds per frame). The method detailed in our 
paper is faster, requiring a computational time between 
1.0 and 2.5 s to process one frame.

At this point, we emphasize the predominantly super-
vised nature of the approaches listed in Table II. Follow-
ing a detailed analysis of the published works on IMC 
segmentation listed in Table II, it is important to mention 
that they were built on the assumption that the adventitia 
is characterized by pixels de�ned by maximum intensity 
values. Consequently, this information was used to con-
struct salient intensity pro�les that were applied to local-
ize the arterial layers in the ultrasound data. Two major 
drawbacks are worth mentioning: The �rst drawback is 
related to the fact that in ultrasound clinical data the ad-
ventitia is not always characterized by maximum intensity 
values and as a result these approaches will fail to return 
the expected results. The second drawback is given by 
the potential risk of confusing the carotid artery with the 
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jugular vein and in this case the region of interest (ROI) 
will be erroneously selected. To address these problems, 
in this paper, we introduced an algorithm that is able to 
identify the IMC interfaces in an unsupervised manner, 
where the proposed solution is not adversely in�uenced 
by the changes in morphological properties of the carotid 
that are patient-characteristic. Although the user inter-
vention proved opportune because it reduced, to a large 
extent, the errors in the IMC ROI detection, there is little 
doubt that this solution is far from optimal when applied 
to large ultrasound image sequences. To remove the re-
liance on the user interaction (which is a characteristic 
of the majority of algorithms listed in Table II), in our 
implementation, we have maximized the use of the ana-
tomic knowledge in the process required to locate the far 
wall of the carotid artery in ultrasound data. The precise 
identi�cation of the far wall interface opened the oppor-
tunity to develop an e�cient model-based IMC segmenta-
tion strategy that primarily consists of a multi-resolution 
edge reconstruction process.

The second important point we want to make in this 
discussion relates to the strategies employed for the seg-
mentation of the IMC in still and video CCA data. Be-
cause of the large spectrum of practical advantages that 
are achieved by enforcing spatial continuity constraints 
in the process of IMC segmentation, the snake-based ap-
proaches were popular among many researchers. Despite 
their initial enthusiasm, many studies [23], [25]–[27], [29], 
[49] emphasized several practical and theoretical limita-
tions associated with the snake-based approaches when 
applied to the IMC segmentation. The most obvious ones 
are related to the complexity of the contour initialization 
process and the poor contrast between the MA interface 
and the surrounding arterial tissues. The latter problem 
proved more challenging and to alleviate the occurrence of 
errors during the energy minimization process, researchers 
have adopted various custom-designed solutions to imple-
ment advection forces ([25], [26]) that prevent the MA 
and LI interfaces from settling on incorrect arterial struc-
tures. Dynamic programming algorithms were proposed 
as a computationally e�cient alternative to the standard 
heuristic contour search methods, and because of their 
intrinsic properties, they proved an attractive approach 
for IMC segmentation [11], [28], [50]. However, these ap-
proaches have several limitations, including their inabil-
ity to capture deep concavities and sharp saliencies [11], 
and their rigid architecture is not particularly well suited 
to address the problems generated by the inconsistent LI 
and MA gradient pro�les that are often encountered in 
clinical CCA ultrasound data. All issues associated with 
the inconsistencies of the LI and MA interfaces are sub-
stantially exacerbated when the algorithms are applied 
to video (2-D + time) CCA data and this motivates the 
development of more targeted strategies, such as that de-
tailed in this paper.

The last issue that we would like to address in this dis-
cussion relates to the quantitative evaluation of the pro-

posed method that was detailed in Section II. As indicated 
in Section III, the performance in terms of the identi�ca-
tion of the LI and MA interfaces proved very encourag-
ing, and this study allowed the identi�cation of several 
clinical needs that can be addressed by the proposed IMC 
segmentation and tracking algorithm. By analyzing the 
mean IMT values obtained for each video sequence used in 
our experimental study, we found that the patients’ demo-
graphics were mirrored in the numerical results. Because 
the study was conducted on healthy and asymptomatic 
patients (some patients had clinical conditions that could 
put them at risk of early cardiovascular diseases, as dis-
cussed in Section II-A.), the obtained IMT mean value 
was low (0.6 mm ± 0.1). Three patients were identi�ed to 
be at a higher risk of developing atherosclerosis, having a 
high mean IMT, and this was in accordance to their clini-
cal condition. For patients D5 (48-year-old smoker) and 
D18 (37-year-old male with high cholesterol levels), the 
automatically measured IMT mean was 0.81 mm, and for 
the patient D21 (31-year-old female with high cholesterol 
levels) the IMT mean was 0.86 mm.

Another interesting issue emerging from our study is 
associated with the box plots depicted in Fig. 11 that 
display the coe�cient of variation (CV %) of the IMT mean 
values recorded for automatic and manual IMT measure-
ments. The experimental results show that in 39 out of 40 
datasets, the CV is higher for manually annotated data, 
which emphasizes that the manual measurements are 
more dispersed within the same dataset when compared 
to the automatic segmentation results. This �nding raises 
an important issue that illustrates the potential bias that 
can be inserted during the manual annotation process 
and motivates the use of CAD solutions as a second read-
er. Fig. 14 brings to surface an additional research topic 
that received limited attention in previous studies—i.e., 
the variation of the IMT from the end diastolic phase to 
the peak systolic phase of the cardiac cycle. The change 
in the IMT over the cardiac cycle has the potential to 
complement the results that relate to the elastic proper-
ties of the arterial wall, because these measurements may 
have clinical use in the evaluation of the arterial sti�-
ness [46]. The reader can refer to [16], [46], and [52]–[55], 
where additional studies were conducted to evaluate the 
relation between the change in the IMT and the arterial 
sti�ness. Among these, the clinical study by Meinders et 
al. [46] is the most relevant, in which the authors evalu-
ated in detail the dynamic behavior of the IMC to assess 
the local structural and mechanical changes in the arte-
rial walls in the presence of arterial lesions. We conclude 
that the changes in the IMT over the cardiac cycle may 
have pathophysiological relevance, because the thicken-
ing of the intimal and medial layers is caused by muscle 
hypertrophy, in�ammatory cell in�ltration, deposition of 
lipids, and/or calci�cation. All of these factors are likely 
to induce di�erent deformation patterns, whose identi-
�cation may allow a more accurate prediction of future 
cardiovascular events.
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A distinct characteristic of the majority of the pub-
lished works that addressed the IMC segmentation is the 
substantial level of supervision that is required to com-
pensate for the errors that are generated by the challeng-
ing imaging conditions that are present in the CCA video 
ultrasound data. The major objective of this paper was to 
introduce a new automatic methodology for the segmenta-
tion and tracking of the two IMC interfaces in longitudinal 
carotid B-mode video ultrasound sequences that is able to 
identify in an unsupervised manner the IMT changes and 
the LI and MA displacements during the cardiac cycle. 
The proposed algorithm entails a multi-stage ultrasound 
data analysis. In the �rst stage, an unsupervised method 
for the segmentation of the IMC in the �rst frame of the 
sequence was proposed. A particular novelty associated 
with the proposed IMC segmentation algorithm is the ap-
plication of a suite of geometric and anatomic constraints 
to ensure that the IMC interfaces do not converge on erro-
neous vascular structures. The next phase of the algorithm 
involves the application of a novel tracking procedure that 
is referred to as ANC, which is employed for the detection 
of the MA and LI interfaces in the subsequent frames of 
the 2-D + time video sequence. An important advantage 
of the proposed ANC algorithm is its ability to accom-
modate the inconsistencies in the structure of the IMC in 
consecutive images that encompass the cardiac cycle. The 
quantitative evaluation that was used to assess the perfor-
mance of the developed algorithm indicates a good corre-
lation between the results returned by the proposed IMC 
segmentation and tracking algorithm and those calculated 
from the manually annotated ground truth data. Our ex-
perimental study revealed several interesting issues in re-
lation to the assessment of the IMT in video ultrasound 
data. First, the recorded IMT results indicate that the 
proposed automatic technique returns consistent results 
and its performance recommends its use in clinical studies 
as a second reader. Second, the evaluation of the IMT over 
the cardiac cycle allows the extraction of additional indi-
cators that can be used in the assessment of the arterial 
dynamics, which may allow a more accurate prediction 
of future cardiovascular events. Currently, the proposed 
algorithm is being evaluated in clinical trials in Beaumont 
Hospital, Dublin, Ireland. This research is ongoing and 
the future clinical studies will focus on the evaluation of 
patients that are a�ected by advanced cardiovascular con-
ditions, such as focal thickening and arterial plaques.
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