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Ye nymphs that reign o fer sewers and sinks, 
The river Rhine, it is well known,
Doth wash your city o f Cologne,
But tell me, nymphs, what power divine 
Shall henceforth wash the river Rhine7

Samuel Taylor Coleridge 
(1772-1834)



ABSTRACT

Plant -  derived biosorbents for metal removal

The bio sorption capacities o f milled peat and a marine biomass, Laminar ¡a 
digitata (a species of kelp), were investigated for removal o f metal ions from solution and 
for the treatment of industrial wastewaters Because industrial solutions generally contain 
a mixture of more than one component, mixed metal solutions were also investigated In 
particular, adsorption of cationic Cr(III) and anionic Cr(VI) was studied as these two 
species often occur together in wastewater

Peat and kelp adsorbed chromium, copper, cadmium, calcium, magnesium and 
strontium from aqueous solution between pH2 and pH7 Biosorption by acid- and 
calcium-treated L digitata and peat is also reported Kelp was chosen as an inexpensive 
and readily available biomass as it is common in shallow coastal waters in the 
northwestern Atlantic Its bio sorption characteristics are compared to peat which is 
recognised for its bio sorptive properties L digitata was consequently used to treat 
tannery effluent
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Untreated kelp outperformed peat and pre-treated kelp as a biosorbent Uptake of 
Cr(IIl) by L digitata at pH4 was significantly higher (1 12mmol/g biomass dry weight) 
than with other biomass as reported in the literature High uptake levels were also seen 
for Cr(VI) and copper Kelp can reduce Cr(Vl) to Cr(lH) at low pH These findings 
outline the suitability of L digitata as a biosorbent for industrial chromium solutions
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CH APTER 1: IN TRO DUCTIO N  

1 01 Charged species in metal pollution

In aqueous systems, both cations and anions play an integral part in chemical and 

physical reactions In industrial wastewater streams, metal anions, as well as the more 

publicised cations, such as Hg, Pb, and Cd, pose the threat of environmental 

contamination Often, the anion is an essential nutnent in the ecosystem (Volesky, 1989) 

and only becomes hazardous at higher concentrations For example, in biological systems 

compounds of molybdenum have been shown to be essential, both in nitrogen fixation and, 

in conjunction with the enzyme, nitrate reductase (Sakaguchi et a t , 1981) Chromium, in 

the tnvalent state (Cr(III)), is recognised as essential to mammals for the maintenance of 

an effective glucose, lipid, and protein metabolism (Huheey et a f , 1993) but in the anionic 

hexavalent state (Cr(VI), chromate), it can diffuse through cell membranes resulting in 

damage to the cell Cr(III) may be oxidised (Bartlett and Kimble, 1976) and then bound to 

other biological molecules with toxic results If an anion is not native to the environment 

however, it can be toxic at low concentrations It is not entirely possible to equate amon- 
exchangeable chromium with Cr(VI) species or cation-exchangeable chromium with 
Cr(III), since chromium can exist in various forms of different charge in solution and 
(Huheey et a l , 1993) for example, Cr(OH) 4 is an anionic form of Cr(III)
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1 02 Sources of Metal Pollution

Anions of molybdenum, antimony and vanadium occur along with nickel and 

manganese in wastewaters from the manufacturing of durable metal goods for household 

use (Wase and Forster, 1997) The manufacture of paints and varnishes is based on the use 

o f pigments, which generally consist of metal oxides, sulphides and chromates These 

pigments are subjected to washings and nnsings m the manufacturing process resulting in 

high concentrations of metal compounds in the wastewater (Volesky, 1989) Chromium 

compounds, generally in the form of chromate, are found with cadmium, copper, zinc and 

lead in fertilisers and lubricants (Cary, 1982) Selenium, which forms anionic selenates, is 
used extensively as an additive m poultry and animal feeds Most of the arsenic used each 

year goes into organic pesticides, as arsenates, that are applied on agricultural land where 

the potential for seepage and leaching to groundwater is high (Onken and Hossner, 1996) 

Platinum also forms anions which are found in dilute concentrations in effluents resulting 

from catalysis processes (Guibal e ta l,  1998)

Waste produced by the plating and metal finishing mdustnes arises from spent 

plating-bath solutions, acid and alkaline cleanings and rinse waters Approximately 90% of 

this effluent is rinse water, used to remove drag-outs from the metal surfaces Metals 
involved in electroplating include cadmium, chromium, zinc, nickel, lead, copper, tin and 
iron Various chromium compounds are corrosive to flesh and carcinogenic (Ajmal et a l , 
1996) The acid waste stream generally contains chromium, copper, and nickel from
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plating This discharge is usually mixed with alkaline effluent and lime is added to 
precipitate the metals as hydroxides for removal as sludge (Schoeman et a l , 1992)

Metals are found in the atmosphere as a result of emissions from the burning of 

fossil fuels (Mahuli et a l , 1997) Power plants and domestic, commercial and industrial 

burners are the mam sources of atmospheric chromate, arsenate, thallium, antimony and 
manganese (Nnagu and Pacyna, 1988) Oil combustion is one of the largest sources of 

vanadium and nickel Molybdenum (Sakaguchi et a l , 1981), cadmium (Holan et a l , 

1993), arsenic, copper and zinc emissions are also attributed to the non-ferrous metal 

industry and combustion of gasoline is a major contributor to lead emissions (Nnagu and 
Pacyna, 1988) The iron and steel industry contribute chromium and manganese to the 

atmosphere (Palmer and Wittbrodt, 1991) This release of metals is in addition to the 

natural chemical cycling of these elements (Loring, 1979) For example, a major source of 

atmosphenc selenium is from manne biogenic ongin (Maiers et a l , 1988)

1 03 Metals in Soils

All soils contain vanous metals in trace amounts The type and amount depends on 
the parent rock from which the soil was formed and the processes involved in its 
formation Metals m soils may be present at elevated levels due to the addition of
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substances such as pesticides (As), swine manure (Cu) and some effluent sludges used as 
fertiliser (various metals)

Soils generally have an overall negative charge that facilitates cation adsorption 

Anion adsorption on soils can involve electrostatic forces but the process is generally 

characterised by bond formation between the anion and the soil particles Adsorption of 

chromate by some soils has been linked to positive charges on mineral coatings of iron 

oxides within these soils (Bartlett and James, 1979) Molybdate in soil can also bind to 
certain Fe or A1 oxides (Parfitt, 1978) Elements undergo changes in oxidation state under 

the range of redox conditions found m soils Selenium may exist as selemde (Se2+), 
elemental selenium, selenite (SeO?2) as Se44* and selenate (Se(>42) as Se6"~ in soils and 

sediments (Calderone ei a l , 1990)

Human activities can readily cause local conditions of elevated metal (or 

metalloid) concentrations in soil as seen in agricultural use of arsenic (Onken and Hossner, 

1996) and selenium (Calderone et a! , 1990) Selenate has a much higher bioavailabihty 

than the more reduced forms of Se Problems associated with Se contamination in soils 
include toxicity in livestock and wildlife (selenosis) and these occur frequently in areas of 
selemferous sedimentary rocks Coal mining may also bring Se compounds to the surface 

Livestock can be susceptible to molybdenosis, a molybdate-tnduced copper deficiency 
Overabundance of trace elements and/or their substitution by non-essential ones (i e 
selenium for sulphur) can lead to serious disruption of normal physiological processes and 
may result in toxicity and death The effects of soil pH on bioavailabihty of oxyamons are
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variable As, Mo, Se and Cr become more available as pH increases but to different 

extents (Thompson-Eagle and Frankenberger, 1991)

Chromium may be present in soils in levels ranging from traces up to extremes of 

ISOOppm of total chromium (Cary, 1982) The majority is generally in insoluble form and 

only a minor fraction, (0 006 - 0 28%) of the total chromium is available to plants (Desmet 

et a l , 1975) When Cr reaches the soil from an external (industrial) source, it will either be 

in solution, adsorbed or precipitated on sediment particles or complexed with organic 

matter The pH of Cr-contaimng soils normally lies between 4 and 8, with lower or higher 

values bemg exceptional (Cary, 1982) At very low pH, Cr may be present as Cr(III) while 

a combination of high pH and high redox potential will lead to the presence of chromate 

anions (Bartlett and James, 1979) As the Cr(HI) cation will be strongly adsorbed on the 

cation exchange sites and complexed by organic matter, in most soils it will be the 

chromate anion that will stay in the soil solution i e the moisture surrounding each soil 

particle This may pose a toxicity problem for plants or the chromium may migrate down 

soil profile to the ground water table (Desmet et a l , 1975) In acid solution, Cr2  ̂
(chromous), Cr3+ (chromic) and C r^ (dichromate) in Cr20 7 2 are present while in basic 

solution Cr(OH)2, Cr02 (chromite) and CrC>42 (chromate) are the dominant species (Cary 

et a l , 1977b) The chromous ion is rapidly oxidised to Crv by air and slowly by H f The 
most common natural source of chromium in soils is the mineral chromite and elemental 
Cr is not found m nature Cr(VI) is relatively stable and mobile in soils that are sandy or 
contain low organic matter concentrations In subsoil washed with dilute NaOH Cr(VT)
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sorption increases with decreasing pH A small amount of Cr(III) in soil may be oxidised 

to Cr(VI) and become mobile This chromium will either be sorbed, reduced or leached 
into ground or drainage water Naturally occurring Cr concentrations in water arise from 

mineral weathering processes, soluble organic Cr, sediment load and precipitation (Cary, 

1982)

1.04 Metals and Plants

Plants may be used as indicators of trace element bioavailability They may also 

respond to trace elements in soils as accumulators or excluders Accumulators are plants 
that actively take up an element, out of necessity or with no apparent need, and which can 

tolerate high concentrations of the element without suffering any ill effects Legumes can 

accumulate Mo even though their metabolic requirements for Mo are quite low 

(Pierzynski et a l , 1993) Species of Astragalus are Se accumulators, and their presence 

can be used to identify Se-nch soils Indicators are species that take up an element in 
proportion to the amount present in the soil (until phytotoxicity occurs) but do not 
necessarily require it for their growth Excluders actively exclude elements such that the 

concentration of the trace element in the plant will remain relatively low and constant at 
varying soil trace elemental levels (Pierzynski et a l , 1993)

Although the chromium content of plants is generally low (0 01-0 lppm) (Lyon et 
a l , 1969), some species can accumulate an appreciable amount without presenting

22



apparent toxic effects Among proposed mechanisms of tolerance is the formation of 
organic Cr complexes (Lyon et a l , 1969) At low concentrations, Cr is considered to be 

an essential microelement and to have a stimulating effect either directly on the growth 

and the yield of the plants or indirectly by enhancing the assimilation of the nutrient 
elements A continuous flow of chromium into apples occurs throughout their growth 

This movement of chromium is similar to that of essential trace elements such as boron, 

zinc, iron, copper and manganese, into apples (Coahran et a/ ,  1973) Toxicity of 

chromium is explained in relation to its chemical form and concentration as well as the 
presence of other metals It may interfere with the uptake of such necessary elements as 

calcium and iron, phosphorus or sulphur resulting m plant deficiencies Potassium 

chromate is more toxic to the growth of barley than chromic chloride, though apparent 

uptake of the latter is much faster Inhibitor studies demonstrated that C r042 uptake is 
active while Cr3+uptake is passive (Skeffington et a f , 1976) Cr-EDTA is less absorbed 

and metabolised by the roots of nee plants than C 1O 4 2 or Cr3+ but its translocation rate is 

higher Chromium taken up by plants may be chelated by root proteins, and to a certain 

extent, its uptake is dependent on metabolism When chromium penetrates as chromate, it 
is reduced to the chromic state in the cytoplasm and organelles When it is present in the 

root environment as Cr(IIl) or CrC>42' absorbed chromium is mainly accumulated in the 
root system and only spanngly translocated to the aenal parts However, hexavalent 
organo-chromium compounds and even free chromate 10ns have been detected in the 
xylem of Leptospermum scopanum (Lyon et a1, 1969)
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Phytotoxicity poses major problems for food production The productivity of 

cropland may be reduced due to the presence of excessive amounts of metals Cadmium- 
ennched nee caused itai-itar disease and renal dysfunction in Japanese farmers The nee 

had been grown m paddies contaminated by lead and zinc mining and smelting activities 

Due to the geochemical link between cadmium and zinc, zinc-polluted sites often have 

high cadmium concentrations as well (Pierzynski et a l , 1993)

1 05 M ethods for T reating M etal-bearing E ffluents

Removal of metals from wastewaters depends on the chemistry of the metals 

involved (Palmer and Wittbrodt, 1991) Treatments include flotation, coagulation and 
flocculation, precipitation as either hydroxides or sulphides (Volesky, 1989), ion exchange 

(Holan et a l , 1993), oxidation and reduction (Von Gunten and Oliveras, 1998), 

membrane technology and adsorption (Mahuli et a l , 1997)

Traditional treatment of chromium-containing wastewater involves the reduction 

of Cr(VT) to Cr(III), precipitation of Cr(ITI) as Cr(OH)3 above pH5 5, collection of the 

precipitate and disposal of the dewatered sludge The problems with this method include 
sludge disposal and incomplete reduction of Cr(VT) (Kratochvil et a l , 1998) Membrane 
filtration has been utilised in the treatment of tannery wastewater In conjunction with 
precipitation, membrane filtration can reduce Cr content in the effluent and improve the
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purity of recovered chromium Organic components, metals and other impurities are 

reduced or eliminated from the recycled Cr solution (Cassano et a l , 1996)

Ion exchange has been used to treat iron and manganese in groundwater 

Membrane processes such as electrodialysis and reverse osmosis are presently used for 

desalination of large volumes of water (Wase and Forster, 1997) Chemical addition (to 

cause oxidation and reduction, for example) must be controlled in these processes to 

prevent excessive sludge production This sludge then has to be disposed of, usually to 

landfill sites This can lead to run-off and leaching to groundwater and nearby rivers (Wase 

and Forster, 1997) The volumes and charactenstics of the sludge will vary between 

different industries and metals These methods for removing metals from wastewater are 

often costly and less efficient at lower metal concentrations or higher solution volumes 

These factors and problems associated with resulting sludge have forced industries to 

investigate other treatment options

Reverse osmosis has potential as a method for treating chromium-containing rinse 

waters It is claimed to have a lower operating cost than ion exchange or conventional 

evaporation for chemical recovery Chromium was concentrated by a factor of 13 3 for 
recycling by this process while water recovery was 91% (Schoeman et a l , 1992)

Electrodialysis, normally used for desalination, can be utilised for the treatment of 
electroplating effluent The introduction of packed ion-exchange resms into the
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electrodialysis chamber results in higher ion recovery, utilising both adsorption and 

electrodialysis (Grebenyuk ei a l , 1998)

1 06 Chromium Tanning Wastewater

The use of chromium salts in leather tanning began in 1858 (Thorstensen, 1976) 

In 1985, 32% of the total world trade in chromium compounds was used in leather tanning 

(Walsh and O’Halloran, 1996a) Approximately 40 million cubic meters of Cr-contaimng 

tannery effluent is disposed of into watercourses worldwide each year (Macchi et a l ,

1991) Successful treatment of tanning effluent should result in reuse, in the tanning 

process, of recovered chromium and water without affecting the product quality 

(Landgrave, 1995)

The tanning process begins (see Table 1 01) with ‘salting7 where the fresh hides 

are treated with sodium chloride (Ronan Group Ltd Co Tipperary, personal 

communication) This is followed by fleshing before the hides are soaked in a sodium 

sulphide and lime solution This ‘liming’ hydrolyses and dissolves globular proteins and 
hair Bating and pickling acidifies the hides, prepanng them for tanning using chromium 

'Wet blue1 is the name given to chromed leather The hides are treated with a Cr(IIl) 
solution between pH3-4 in rotating drums Cr(III) forms crosslinks between the collagen 
fibres This crosshnking is responsible for the durable finish of leather and prevents rotting 
of the skins (Walsh and O’Halloran, 1996a)
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Tanning wastewater is characterised by three primary streams the chrome and 

sulphide streams and the final effluent (Landgrave, 1995) The sulphide stream contains 

dissolved protein, high BOD, salt and sulphide at pH greater than 11 The chrome stream 

mainly consists of Cr salts and fungicide at pH 4 - 5 Generally, the streams are mixed to 

neutralise the chrome stream and precipitate the Cr as hydroxides This final effluent is 

usually released with or without further treatment depending on the tannery (Walsh and 

O’Halloran, 1996b)

1 07 U se o f  V arious B iom ass in M etal R em oval

An alternative to the conventional methods of metal removal is biosorption, the 

passive uptake of metal ions by natural materials of biological origin Biosorbent materials 

commonly include fungal biomass and yeast (Krauter et a l , 1996, Blackwell et a1, 1995), 

freshwater algae (Crist et a l , 1990, Sandau et al t 1996), bacteria (Moore and Kaplan,

1992) and peat (Ho et a l , 1994)

A desirable biosorbent must be cheap, readily available and easy to handle as well 

as having good uptake characteristics Metal binding to various types of biomass can 
occur by surface adsorption (biosorption) to viable and non-viable biomass or intracellular
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Table 1 01 Chrome Tanning Process adapted from  Cabeza et a l , (1998)
Chemicals in Wastewater Solid Waste

Brine Cured
Hides

i
Tnmimng and -> Trimnnngs

Sorting
i

Water Wetting -> Soaking -> Salt Dirt Blood
agents

4.
Fleshing Fleshings

I
Water Lime -> Unhainng -> Dissolved hair Lime

Sodium Alkaline trimmings
sulphide solution

4-
Water - > Bating Unwanted hide

Ammonium constituents
sulphate Alkaline
Enzymes solution

4-
Water Sodium —> Pickling

cliloride Acidification
Sulphuric Acid of hides

4
Basic Tanning -> Non-e\haustcd

chronuum chromium
sulphate Other salts
Sodium

bicarbonate
I

Wringing —y Non-e\hausted
chromium
Other salts

1
Splitting and -> Splits

Shaving Shavings
4

Different -> Retanmng -» Non-evhausted
chemicals Colouring and chronuum and

depending on Fathqonng chcnucals
end use

i
Crust Leather
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accumulation by viable biomass only (bioaccumulation) The extent of binding mainly 

depends on the chemistry of the metal ion (Brady and Tobin, 1995)

The use of microorganisms as cationic metal biosorbents has been reviewed 
extensively (Hutchins et a l , 1986, McHale and McHale, 1994) Their potential in the 

removal of anionic metals has also been demonstrated (Korenevsky and Karavaiko, 1990, 

G am ham eia/, 1993, Lloyd-Jones et a l , 1994) Bacterial species may exhibit anionic and 

cationic metal tolerance and uptake mechanisms in their natural environment and can be 
exploited for wastewater treatment (Lloyd-Jones et a l , 1994, Macy et a l , 1996, Moore 

and Kaplan, 1992, Wase and Forster, 1997) Thaaera selenatis is a selenate-respinng 

bacterium which reduced the selenium oxyamon content of wastewater (230-640 g/1) in 

the San Joaquin Valley in California (Cantafio et a l , 1996) Significant amounts of 
elemental selenium were recovered from the bacterium after contact while the selenium 

oxyamon content m the wastewater was reduced by 98% to an average of 12 ± 9 |ig/l 

Rhodobacter sphaeroides has high level resistance to tellurite, selenite and at least fifteen 

other rare-earth oxides and oxyamons (Moore and Kaplan, 1992) This resistance enables 

the organism to accumulate high metal concentrations without deleterious effects Other 

members of the class Proteobactena also exhibit arsenate, molybdate and tungstate 
resistance (Moore and Kaplan, 1992) Bacteria have also been utilised as a biosorbent for 
chromate from wastewaters (Wang and Shen, 1995) Enterobacter cloacae reduced 
Cr(VI) to the less toxic form of Cr(IIi) with complete reduction of as much as 2 mM
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chromate occurring within 24h (Komon et a t , 1990) Pseudomonas putida also reduced 

chromate and the chromate reductase activity was associated with soluble protein rather 

than the membrane fractions of the cells (Ishibashi etal ,  1990)

Fungi have metal sequestering properties and potential use in wastewater 

remediation Metals such as Ni, Mn, Co, Cu and Zn are actually micro-nutnents essential 

for growth in yeast and fungi Other metals such as Cd, Ag and Au are taken up even 

though they are not essential to the organism (Wase and Forster, 1997) Saccharomyces 

terevisiae has been used in the removal of chromate from groundwater (Krauter et a l ,
1996) and in the treatment of other metals in wastewater (Volesky and May-Philhps, 

1995) Molybdenum biosorption using Candida scotti and Rhizopus arrhizus biomass 

attained maximum adsorption capacities of 173 2 mg/g and 188 2 mg/g dry weight 

respectively (Korenevsky and Karavaiko, 1990) The influence of amons on cation uptake 

by R arrhizus varied between inhibition of uptake to no effect at all (Tobin et a l , 1987)

Immobilised Saccharomyces cerevisiae removed 6 63 mg/g chromate from 

chrome-plating wastewater which initially contained 30 mg/1 Cr(VI) at pH 7 1 (Zhao and 

Duncan, 1998) The final chromium concentration after successive treatment was 4 mg/1, 

which was still too high for discharge and contained predominantly Cr(III)

Algal biomass is also a potential biosorbent Metal interactions with algae range 
from relatively weak electrostatic bonding exhibited by alkali and alkaline earth metals to 
stronger coordination bonding for certain transition metals with oxygen, nitrogen and 
sulphur ligands (Crist et a l , 1988) The accumulation of molybdenum by the green
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microalgae, ChioreUci regular is, increased with higher Mo concentrations but decreased 

with increasing algal concentration Maximum uptake was 132 mg/g dry weight 

(Sakaguchi et a l , 1981) ChJorella vttlgans, adsorbed gold, silver and mercury ions 

(Damall et a l , 1986) while the estuanne microalga, Chlorelfa salma, adsorbed cobalt 

(Garnham et a l , 1991) The use of algal biomass has several attractive features with 

regard to the recovery and disposal of bound metals These include (1) the bound metals 

can often be eluted and the biomass reused for several cycles, (2) the metal-laden biomass 

can be greatly reduced in volume by an inexpensive drying step, and (3) the metal-laden 

biomass is more suitable for incineration than metal-laden precipitates or ion exchange 

resins derived from conventional metal removal processes (Wilde and Benemann, 1993)

Larger plants such as water ferns (Zhao and Duncan, 1997) and seaweed 

(Schiewer and Volesky, 1997) are potential biosorbents Three species of seaweed, 
Sargassum natans, Fucus vesiculosus and Ascophyllum nodosum have high cadmium 

biosorptive capacities (Holan et a l , 1992) A nodosum accumulated the highest amount 

of cadmium, exceeding 100 mg/g, outperforming a commercial ion exchange resin, 

DUOLITE GT-73 Equilibrium metal uptake of cadmium, cobalt, nickel, lead and zinc by 
Ascophyllum nodosum and Sargassum fluitans ranged from 369 mg Pb/g to 77 mg/g for 

Zn and Ni by S fluitans and from 287 mg Pb/g to 73 mg Zn/g for A nodosum (Leusch et 
a l , 1996) The maximum adsorption capacity for chromate uptake by the water fern, 
Azolla flhculoides, was between 70 6 mg/g and 120 2 mg/g, at pH 2 (Zhao and Duncan,
1997)
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Aquatic macrophytes, such as waterfems and duckweed, have potential in the 

treatment of chrome-laden tanning waste Abundant and easily cultivated aquatic plants 

provide an economic and convenient source of biomass Although successful at low 

concentrations, a problem still arises in the disposal of the contaminated plant matter 

(Vajpayee et a l , 1995) Seaweed has traditionally been used as a fuel and fertiliser so 

consequently, this may be a possible mechanism of disposal

1 08 Peat as a Biosorbent of Metals

Peat is partially decayed plant matter formed in predominantly anaerobic 

conditions where the accumulation of plant matenal exceeds the decomposition rate It is 

usually formed m areas where water saturates the dead plant matenal Water restricts the 

action of aerobic bacteria and consequently inhibits the rate of decay of the plant matter 

(Wase and Forster, 1997), (Figure 1 01) Major components include cellulose and hgnin 

(Figure 1 02) which bear polar functional groups such as aldehydes, ketones, alcohols, 

acids and phenolic hydroxides that can be mvolved in chemical bonding (Coupal and 

Lalancette, 1976)

Peat has a high adsorption capacity for polar organic molecules and transition 
metals (Couillard, 1992) This polar nature and its ion exchange capacity has led to 
investigation of its potential for the treatment of metal-contaminated wastewaters (Bloom
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and McBride, 1979, Chen et a t , 1990, Couillard, 1994) The ability to adsorb metals is 

dependent on the solution pH Below pH 3, most metals will be leached from peat and 

above pH 8-8 5, the peat itself is not stable and will degrade (Coupal and Lalancette, 

1976) The optimum pH for uptake of most metals can be found within this range

Ligrnn, one of the main components of peat, consists of aromatic nngs with 3- 

carbon side chains and is structurally stable (Figure 1 02) Peat, by its nature, is 

compressed and has lost many of the lignin side chains resultmg in the presence of charged 

groups which give rise to chelation properties (Wase and Forster, 1997)

Peat is a highly porous substance (Couillard, 1992) Partially decomposed peat has 

a specific area of 200m2/g and a porosity of approximately 95% (Couillard, 1994) It can 

be considered as an organic soil with a capacity for cation exchange It adsorbs basic dye 
cations due to the negatively charged functional groups in its fulvic and humic acids and to 
exchange with hydrogen ions (Allen et a! , 1988) Repulsion between anions and the 

negatively charged groups means that although cation exchange capacity of peat is high, 

anion exchange capacity is generally low (Valentin, 1986)
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Figure 1 01 Structure of Peat
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Environmental characteristics during formation and the extent of its decomposition 

determine most of the properties of natural raw peat These properties can also be affected 

by the manner of harvesting of the peat The distribution and concentration of Ca, Fe, Al, 
and Cu, Cd, Cr, and Sr, if present, vary with depth in the peat bed (Parkannen et a l , 
1981)
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Figure 1 02 Structure of Lignin
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Peat that is partially decomposed has good adsorptive and hydraulic characteristics 
and is more fibrous Sphagnum peat, of low to moderate degree of decomposition, is 
acidic and porous, has a large surface area and provides a favourable environment for the 
growth of microscopic fungi It is capable of holding large quantities of water as it has a
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high pore volume (Van Quach et a t , 1971) All water-borne particles larger than the 

interstitial channels within the peat are filtered out while other contaminants are removed 

by ion exchange and chelation (Bloom and McBride, 1979) The peat fibres can be teased 

apart by drying and this can increase surface area for adsorption (Couillard, 1992) Peat 

has been used as a biosorbent for different types of contaminants and effluents from oil to 

animal waste Since peat is polar, it can adsorb large amounts of metals (Chaney and 

Hundemann, 1979) Although most research has focused on cationic metal species, work 

with acidic dyes (overall negative charge) shows that peat could possibly be used to treat a 
range of contaminating metal anions (Allen et a l , 1988)

The ash content of peat is very small so the combustion of the spent biomass will 
result in the formation and easy recuperation of metal oxides (Couillard, 1994)

1.09 Pre-treatment of Peat for Biosorption

While raw peat can be successfully used in adsorption applications to remove 

various components (metals, organic compounds, dyes e tc ) (Dubuc et a l , 1986), 
efficiency may be restricted by a number of factors including chemical instability, 
shrinkage or swelling of the peat due to permeability and low mechanical strength (Chen et 
a l , 1990) Consequently, peat is generally treated before use The most common
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treatment is sieving and washing followed by drying, usually at high temperatures 

Chemical treatment of the peat with phosphonc or sulphuric acids enhances its cation 

exchange capabilities, while addition of amines and ethylenediamine to previously acid- 

treated peat increases the anion exchange capacities (Smith et a l , 1977) In some cases 

peat (in filter beds) has been used in conjunction with other treatments mechanism such as 

flocculation or precipitation to treat metal contaminated water (Coupal and Lalancette, 
1976) For example, chromate-containmg water required special treatment involving the 

addition of feme chloride and sodium sulphide in the range of pH 5-7 This resulted in a 

2 5 6 molar ratio of Cr(VT), feme chloride and sodium sulphide in the effluent, which 

precipitated chromium in the tnvalent form Chromate was reduced by the sulphide ion 
and coprecipitated as hydroxide with iron The supernatant was then contacted with a bed 

of peat and the Cr(VI) concentration in the final effluent was below detectable limits 

(Coupal and Lalancette, 1976) Effluent containing the cyanide anion has also been treated 

using this method A ferro-cyanide was formed by the addition of ferrous sulphate 

resulting in precipitation The treated water was then contacted with peat and the cyanide 

concentration reduced to below Ippm

Peat is a potential biosorbent for a range of effluents Septic tank effluent was 
treated with peat (Brooks et a l , 1983) as was beef extract and alkyl benzene sulphonate 
solution (Van Quach et al f 1971) Sphagnum peat adsorbed 1229 mg/1 copper from 
wastewater (Ho et a l , 1994) and cadmium, from an initial concentration of 560 ng/1 to 3
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jag/1 (Chaney and Hundemann 1979) The removal of various metals, phosphates and 
organic matter (oil, detergents and dyes) by peat has been investigated (Bloom and 

McBride, 1979, Pakarmen et a l , 1981, Coupal and Lalancette, 1976) The adsorption of 

K*, Na", Ba2\  and Ca2'~ on peat was faster than uptake of trivalent metallic ions 

(Tummavuori and Aho, 1980a) This was attributed to the difference m ionic radii of the 

metals The equilibrium time can also vary with the type of peat used, as peat from 

different areas will have distinct characteristics and biosorption properties When chromate 

was adsorbed on sphagnum peat it took several hundred hours to reach equilibrium 

(Couillard, 1992) However, adsorption equilibrium was attained in about 30 minutes with 

a chromium-containing wastewater (Van Quach et a l , 1971)

1 10 Biosorption Mechanisms of Peat

The mechanism of uptake can vary with the type of peat used Ion exchange alone 

may account for metal sorption by sphagnum peat, i e that two H4 ions are exchanged
with one divalent metal ion (Aho and Tummavuori, 1984), although the occurrence of 

both complexation and ion exchange has been reported (Bloom and McBride, 1979) No
anion release was observed no matter what type of peat was used dunng copper fixation 
by raw peat (Chen et a l , 1990) The fixation of metal ions by untreated peat most likely 
involves cation exchange with H , Ca2" and Mg2"' contained within the peat, and
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adsorption-complexation, 1 e uptake and fixation of the same equivalent of cations and 

anions
Assessing hydrogen ion release is insufficient to study the process of ion exchange 

since the peat may have adsorbed other metal cations in its natural environment This is 

especially true when using untreated peat (Chen et a l , 1990) Raw peat possesses 

significant cation-exchange capacity due primarily to the carboxyl groups of its humic acid 

constituents The cation-exchange capacity of peat is increased by sulphuric acid treatment 

(Smith et a l , 1976) Various types of peat were less effective in removing metals at pH 2- 

3 than at pH 4-8, reflecting the effects of hydrogen ion competition for exchange sites 

Peat-based anion-exchangers (prepared from sulphunc acid treated peat by refluxing with 
EDTA) have generally had small exchange capacities when compared to cation 

exchangers A total effective chloride capacity 25-50% of that o f commercial anion 

exchangers with free amine groups was attained Peat anion-exchangers also have the 

economic disadvantage of requiring multistep preparations, using more than one reagent 
(Smith et a l , 1977)

Peat behaves very much like synthetic cross-linked polycarboxylic acids in terms of 

metal ion adsorption Localisation of ions at carboxylate sites has been suggested (Bloom 

and McBride, 1979) Soil organic matter in the pH range of most soils (pH less than 8) 
can be considered a polycarboxylic acid The carboxylic acid groups participate in ion 
exchange reactions by binding metal ions with the release of Vt ions (Bloom and McBride, 
1979)
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The sorption mechanism of peat may be explained as either a chemical reaction in 

which the surface functional groups form organic metal complexes or a cation exchange 
reaction For both processes, the diffusion of the ion from the aqueous medium to the peat 

particle is necessary The overall process is governed by diffusion because both reactions 

are considered instantaneous
There are essentially four stages in the adsorption process using porous peat 

(i) transport from the bulk of solution to the extenor surface of the peat 

(u) movement of contaminant across the interface and adsorption onto external surface 

sites
(in) migration of molecules within the pores of the peat, and

( i v )  interaction of molecules with the available sites on the intenor surfaces of the pore 

and capillary spaces of the peat (Couillard, 1994)

The affinity of peat for basic dyes (Basic yellow 21, also known as Astrazon 

yellow 7GL, has an overall positive charge) is not unexpected since the phenolic, hydroxyl 

and carboxyl groups in humic acid, fulvic acid and lignin will attract ionic dyes (Allen et 
a l , 1988, 1989) Many dyes ionise in solution to give coloured cationic or anionic groups, 

which may then be attracted to the peat On the basis of charge, a basic dye will have a 
strong adsorption affinity (Couillard, 1994)
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I l l  Biosorption by Marine Macrophytes

For economic reasons, biosorbents which are abundant, either generated as a waste 

by-product of large-scale industrial fermentations or naturally found in large quantities in 

the environment, are of particular interest Among the diversity of biomass available, 

marine algae have already proved to be promising for metal adsorption and recovery 

(Kratochvil and Volesky, 1998) Brown seaweeds of the genus Sargassum adsorbed Cd, 

Ni, Cu, Pb and Zn cations up to 20% of the biosorbent dry weight (Leusch et aJ, 1995) 

while Ascophyllum nodosum accumulated more than 65mg Cd/g biomass (Volesky and 

Prasetyo, 1994) Most of the seaweed biomass found on Irish coasts consists of a 
relatively small number of species of which one of the most common are the kelps, 

Lammctna and its relatives (genera Phaeophyta)

1.12 Characteristics of Lanunana digitata

Kelps are confined mainly to the subtidai zone of the shore In general, on the east 

coast of Ireland, kelps occur to depths of a maximum of 8m whereas in the optically 

clearer waters of the northwestern, western, and southwestern coasts, they may occur to 
25m and, exceptionally, to 32m Kelp biomass in the subtidai zone consists o f three 
species of Lammaria The most important is Lammana hyperborea, the cast stipes of 
which are currently collected, dried and exported for alginate production The other two
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species are gathered in small quantities as food All three kelps occur right around the 

coast, in large quantities L digitata is the kelp commonly seen at low water, whereas L 

hyperborea occurs in deeper water Laminaria saccharma occurs sporadically amongst L 

digitata but often becomes the dominant species on wave-sheltered shores (Guiry, 1997)

Classification of seaweeds is primarily based on morphology, generally of the 

reproductive system Further division into classes depends on the photosynthetic pigments 

Ail marine algae contain chlorophyll a but in the phaeophyta it is masked by the 

xanthophyll, fucoxanthm A general feature of seaweeds is the presence of at least one 

polysaccharide linked with sulphate ester groups These substances resemble complex 

sulphated polysacchandes in animal tissues but are absent in land plants Most brown algae 

contain the (-1, 3- linked) glucan, laminaran The polyuronide, algimc acid, is also present 

(Bold et af t 1980)

1 1 3  T axonom y o f L digitata

Kelp, which can grow up to 2m in length, is a fast-growing marine macroalgae Its 
structure composes of a claw-like holdfast, a smooth flexible stipe, and a laminate blade to 
1 5 m long dividing into finger-like segments The brownish shades of the plant reflect the 
abundant presence m the plastids of the xanthophyll, fucoxanthm, which is dominant over 

chlorophylls a  and c, the other xanthophylls, and P-carotene No starch occurs in 

Phaeophyta Instead the excess photosynthate accumulates as a carbohydrate, lammarin,
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as manmtol, or in the form of fat droplets The protoplast is bounded by a primary wall 

and middle lamella composed of a gummy substance, alginic acid This may represent 10- 

25% dry weight Alginic acid is a polymer of D-mannuromc and L-guluromc acids 

(Kaplan, 1988)
Growth of L digitata occurs in the menstematic cells at the junction of the stipe 

and the blade Growth is rapid for the first half of the year and very slow for the 

remainder The dry matter content of Laminaria is at a maximum in autumn and a 

minimum in spring Manmtol content is at a minimum during spring and laminann is 
absent Alginic acid and proteins are at a spnng maximum These changes reflect the fast 

and slow growth periods Laminann and manmtol are the two photosynthetic products 

charactenstic of the phaeophyta Alginic acid occurs in the cell membrane In brown 

seaweeds, the roles of manmtol and lamann are analogous to that of sugar and starch in 

higher plants Alginic acid and cellulose are cell wall constituents (Bold et a l , 1980)

Other metabolism products include fats, proteins and sterols lodoamino acids are 

charactenstic of Phaeophyta while the fatty acids are similar to those of higher plants and 

animals Fucosterol is the common sterol Fucosan vesicles are found in menstematic, 
reproductive and assimilatory cells of Phaeophytes and are comparable to tannins iodine 

metabolism fluctuates seasonally in brown algae and lodo-volatihsation occurs on 
exposure to air Iodine, present in the form of iodide, is liberated by enzyme action when 
surface layers become damaged
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The functional groups of components such as alginic acid, manmtol and lamannm 

in the seaweed may provide the binding sites for the biosorption of metal ions These 

include amine, carboxyl, phenol, ester and hydroxyl functional groups

1 1 4  L  digitata as a b iosorbent for m etals

Brown seaweeds in general have been shown to be successful biosorbents of metal 

ions from solution (Volesky and Prasetyo, 1994, Leusch et a l , 1995, 1996) The 

biosorption properties of L digitata have remained largely undiscovered as it has rarely 

been used in metal remediation As L digitata is a novel biomass, it is compared with 

peat, a biosorbent that has been characterised m detail (Coupal and Lalancette, 1976, Ho 

et a l , 1994, Couillard, 1994) This work is a comparative study of the capacities of L 

digitata and peat biomass to adsorb metals from a range of single-metal solutions and 

from mdustnal wastewaters
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MATERIALS AND METHODS
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CHAPTER 2: MATERIALS & METHODS

2 01 L (hgitata biom ass

Lammaria digitata blade sections were harvested under water from a rocky 

coastline at Portrane, Co Dublin The kelp was washed extensively with tap water 

followed by distilled water and dried for two days at 60°C Kelp dry weight was 
determined by drying lg wet samples to a constant weight at 60°C The kelp was size- 

fractionated using a mechanical sieve shaker Size fractions in the ranges of 2-4 mm, 1 4-2 

mm and 1-14 mm were used

2 02 M illed P eat biom ass

Milled peat supplied by Bord na Mona was sieved using a mechanical sieve shaker 

to remove fines and large particles Particles in the range 2-4 mm were used in this work 
Pretreatment of the biomass was the same as that used for kelp (see section 2 07)

2 03 M etal solutions

Metal stock solutions (lOOOppm) were made, of Cr(VI) (K2C r04 ACS Reagent, 
Sigma chemicals), Cr(III) (Cr(N03)3 9H20 , Riedel de Haen), copper (Cu(NOj)2 3H20), 

cadmium (Cd(N03)2 4H20  Riedel de Haen), calcium (Ca(N03)2 4H20  Riedel de Haen),

46



magnesium (Mg(NO^)2 Riedei de Haen), sodium (NaN03 Riedel de Haen) and strontium 

(Sr(N03)2 Riedel de Haen) with distilled water

2.04 Industrial E ffluents

Industrial tanning effluent was provided by Ronan Group L td , Clonmel, Co 

Tipperary The tanning waste was gravity-filtered through Whatman No 1 filter paper to 

remove excess hair and solid waste The filtered solution was extracted with isohexane (50 
ml tanning waste to 100 ml hexane, mixing for 10 minutes in a separation funnel) to 

determine the presence, if any, of organically-bound chromium This organic filtrate was 

analysed for the presence of chromium by atomic absorption spectroscopy (see section 

2 06)

The initial pH and chromium and sodium chloride concentrations of the inorganic 

filtrate were determined The solution was analysed for the presence of Cr(VI) by the 

diphenyl carabazide method (see section 2 06)

The pH of the tanning effluent was raised to pH 11 (with 1 M KOH) to precipitate 

most of the Cr(III) This simulated industrial conditions where the chrome wastewater is 

neutralised by the sulphate waste stream resulting in precipitation The final supernatant 
was filtered and the remaining chromium and sodium concentrations determined before 
contacting with biomass
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2 05 Metal Uptake Experiments

Quantities of 0 1 g kelp and peat were contacted overnight, on an orbital shaker, 

with 100 ml volumes of a range of concentrations (up to 8 7 mM, equivalent to 10-200 

ppm) of each metal or industnal solution The pH was adjusted to 2, 4, or 7 as required, 

with 1 M H2S 0 4 and 1 M NaOH (or KOH when measunng sodium), before the addition 

of the biomass Uptake of chromate was the only species investigated at pH 7 due to 

solubility restraints of metal cations above pH 5 Metal-free and biomass-free solutions 

were utilised as controls Following centrifugation, the metal concentration of the 

supernatant after contact was determined

2 06 M etal A nalysis

Copper, cadmium, strontium, chromium, calcium, sodium and magnesium 

concentrations were measured using a "Perkin Elmer 31005 Atomic Absorption 

Spectrophotometer (A A S ) Cr(VI) concentration was determined by uv/vis 

spectrophotometry at 540 nm after colormetric reaction with 1,2-diphenylcarbazide 
(Greenberg et at 1992) The final pH was noted

Uptake values, in mmol/g biomass, were calculated from the change in solution 

concentration using the equation
q = V(C0 - Cf) / M

where q is the uptake, Co and Cf are initial and final concentrations respectively, V is the 

volume of solution and M is the weight of biomass used
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MINEQL, a chemical speciation program (Schecher and McAvoy, 1994) was used 

to predict the speciation in the metal solutions and the results were compared with the 

uptake results from the contacting experiments

2.07 Pretreatm ent o f  the biom ass

For acid-treated kelp, the L chgitata fractions were contacted with 1 M H2S 04 for 

5 minutes and nnsed 3 times with distilled water before drying overnight at 60°C 

Calcium-treatment of the kelp involved soaking the acid-treated biomass in 2 5 M calcium 

hydroxide for 10 minutes before rinsing and drying Untreated kelp was also contacted 

with a range of copper concentrations (see sections 2 03 and 2 05) before later contact 

with Cr(VI) This loading was performed in the same way as the uptake experiments, but 

after equilibrium had been reached, the copper-laden kelp was washed with distilled water 

adjusted to the experimental pH before subsequent contacting with chromium

2 08 Statistical analysis o f  experim ental errors

Duplicate experiments were performed in all cases, and the results were found to 
agree to within limits of 5%

Eight replicate Cu2i and Cr64- uptake experiments, at an initial pH of 4 and 2 
respectively, were performed for the purpose of statistical analysis Both A A S and the 

carbazide method were examined The standard deviation was found to be less than 4% 

These values are consistent with previously reported error analysis (Tobin et a l , 1990)
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CHAPTER 3: RESULTS

3.01 U ptake o f  m etal cations

Metal cation uptake by both types of biomass was greater at pH 4 than at pH 2 

Biosorption at pH 7 was not investigated due to solubility constraints of cations above pH 
5 L digitata proved to be a superior biomass for the adsorption of most metals (Figure 
3 01) Uptake levels are quoted as experimental maxi mums but in many cases, saturation 
had not been reached Higher sorption values may be attained using higher initial 
concentrations

T able 3.01 U ptake o f  m etal cations by various biom ass at pH  4.

Metal L digitata Milled Peat

pH 2 pH 4 pH 2 pH 4

Chromium* 0 37 mmol/g 1 12 mmol/g 0 08 mmol/g 0 27 mmol/g
Copper 0 13 mmol/g 0 97 mmol/g 0 11 mmol/g 0 32 mmol/g
Cadmium 0 12 mmol/g 0 65 mmol/g 0 07 mmol/g 0 27 mmol/g
Strontium 0 08 mmol/g 0 46 mmol/g 0 05 mmol/g 0 26 mmol/g
Calcium — 0 62 mmol/g — 0 29 mmol/g
Magnesium — 1 10 mmol/g — 1 33 mmol/g
*Cr(in)
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Maximum uptake of copper was 0 97 mmol/g kelp at pH 4 from an initial 
concentration of 3 14 mM (Figure 3 01) while at pH 2 (Figure 3 02) the maximum level 
was 0 13 mmol/g kelp from the same initial concentration (Figure 3 02) Cadmium 
uptake was lower than copper at pH 4 (0 65 mmol/g kelp) but similar at pH 2 with 0 12 
mmol/g kelp (initial concentration 1 8 mM) Uptake of strontium from 2 3 mM was 0 46 
mmol/g kelp, the lowest uptake value o f cations at pH 4 (Figure 3 01)

Both calcium and magnesium are found in seaweed biomass as they are present in 
seawater at typical concentrations of ca 400 mg/1 and ca 1300 mg/1 respectively The 
maximum uptake of calcium by L digitata was 0 62 mmol/g at pH 4 (initial 
concentration 5 mM) while that of magnesium (initial concentration 8 2 mM) was 1 10 
mmol/g (Figure 3 01) These uptake levels differed considerably for acid-treated biomass 
(see section 3 06)

At pH 4, uptake of cadmium was 0 27 mmol/g for milled peat while copper was 
adsorbed to 0 32 mmol/g Milled peat adsorbed strontium to a maximum of 0 27 mmol/g 
(Figure 3 03a)

Maximum calcium uptake by peat at pH 4, was 0 29 mmol/g biomass (Figure 
3 03b) This is within the range o f the adsorption levels o f other cationic species, with the 
exception of magnesium, by peat (Figure 3 03a) but lower than uptake by kelp 
Conversely, magnesium uptake by peat was greater than by L digitatci (133 mmol/g peat 
compared to 1 10 mmol/g kelp, Figure 3 01 and Figure 3 03b)
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3 02 Biosorption of Cr(IH)

The uptake of Cr(III) by untreated kelp biomass increased with increasing 
concentration at all experimental pHs Maximum uptake of Cr(III) by untreated L 
chgitata occurred at pH 4 to a level of 1 12 mmol/g kelp from 3 84 mM (Figure 3 01) 
This was the highest uptake value recorded for any Cr species by kelp At pH 2, for 
Cr(IH), 0 36 mmol/g dry weight kelp was the maximum uptake by kelp recorded (Figure 
3 02) At pH 7, Cr(lll) precipitated out of solution and consequently biosorption levels 
could not be determined

Uptake of Cr(IIl) by peat increased with increasing solution concentrations until 
onset of saturation at concentrations o f approximately 2 mM and 3 mM at pH 2 and pH 4 
respectively Maximum uptake at pH 4 was 0 27 mmol/g (Figure 3 03a) while uptake at 

pH 2 was 0 08mmol/g (Table 3 01)

3 03 U ptake o f  C r(V I) by L  digitata

Maximum adsorption of Cr(VI) by kelp decreased with increasing pH from pH 2 
over a range of concentrations from 0 19 - 3 84 mM (Figure 3 04) Maximum biosorption 
occurred at pH 2 at 0 82 mmol/g dry weight while appreciable uptake of 0 46 mmol/g 
was observed at pH 4 The lowest adsorption levels for Cr(VI) by L digitata occurred at 
pH 7 to a level of 0 06 mmol/g

Uptake of Cr(VI) by milled peat increased markedly with decreasing solution pH 
(Figure 3 05) Highest uptake at pH 2 was found to be 0 58 mmol/g at a final
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concentration of approximately 3mM At pH 4 and 7, corresponding uptake values 
dropped to 0 15 mmol/g and 0 09 mmol/g respectively (Table 3 02)

T able 3 02 U ptake o f  chrom ate by various biom ass

L  d ig ita ta Milled Peat

pH 2 0 82 mmol/g 0 58 mmol/g

pH 4 0 46 mmol/g 0 15 mmol/g

pH 7 0 06 mmol/g 0 09 mmol/g
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Figure 3 02 Uptake of cations by kelp at pH 2
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Figure 3 03a Uptake of cations by milled peat at pH 4
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Figure 3 04 Uptake of Cr(VI) by kelp
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Figure 3 05 Uptake of Cr(VI) by milled peat 

(Symbols •  pH 2, ■ pH 4, T  pH 7)

Final C r(V I) Concentration (mM)
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3 04 Cr(III) Speciation  as predicted by M IN E Q L

According to MINEQL predictions (Figure 3 06), at pH 2 the predominant Cr(III) 

species present in solution was Cr3+ for all concentrations whereas at pH 4 approximately 

49% is Cr3+ and 49% is Cr(OH)2+ with less than 2% present as Cr(OH)2+ Cr(OH)2+ is the 

mam species at pH 7, at 55% with 42% Cr(OH)3 and less than 2% Cr(OH)24

3 05 C r(V I) Speciation  as predicted by M IN E Q L

The predominant species at both pH 2 and pH 4 is H Q O 4 but the concentration 

of Cr2072 increases with increasing concentration from less than 2% to 19% (Figure 

3 07) At pH 7 CrC>42 accounts for approximately 76% of total chromium while 24% is 

HCr04

3.06 U ptake o f  chrom ium (III) by pretreated biom ass

Both peat and Lammana biomass were subjected to a variety of pretreatments in 

an attempt to enhance and select certain types of binding sites These included acid, 

calcium and copper treatments Overall results show that these pretreatments reduced 

uptake as compared to untreated biomass

Biosorption of Cr(III) by acid-treated kelp followed the same trend with 

increasing pH as untreated kelp (Figure 3 08) The maximum uptake of Cr(III) by acid- 

treated L  digitata occurred at pH 4 to a level of 0 45 mmol/g for a 3 3 m M  final solution
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Uptake at pH 2 (0 39 mmol/g) by acid-treated kelp was similar to that of untreated kelp at 

the same pH (Figure 3 08)

The highest uptake of Cr(III) by acid-treated peat, occurred at pH 4, to a level of 

0 24 mmol/g (Figure 3 09) At pH 2, the maximum uptake of Cr(IH) was 0 06 mmol/g 

This compares to 0 45 mmol/g and 0 39 mmol/g acid-treated kelp at pH 4 and pH 2 

respectively (Table 3 03)

The maximum biosorption of Cr(III) by calcium-treated kelp biomass at pH 4, 

was 0 75 mmol/g (Figure 3 10) This adsorption exceeded the uptake level of acid-treated 

kelp but was lower than the maximum uptake by untreated biomass (Table 3 03)

T able 3 03 U ptake o f  chrom ium (III) by pretreated biom ass

pH 2 0 27 0 14 0 39 0 06 0 55 0 15
mmol/g mmol/g mmol/g mmol/g mmol/g mmol/g

pH 4 1 12 0 27 0 45 0 24 0 75 0 27
mmol/g mmol/g mmol/g mmol/g mmol/g mmol/g

At pH 2, the highest uptake of Cr(VI) by acid treated kelp was 0 68 mmol/g 

biomass (Figure 3 11) Maximum adsorption at pH 4 occurred to a level of 0 16 mmol/g 

while 0 07 mmol/g uptake was recorded at pH 7 (Table 3 04) This is consistent with the

Untreated
biomass

Acid-treated
biomass

Calcium-treated
biomass

kelp peat kelp peat kelp peat
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Maximum adsorption of chromate by acid-treated peat occurred at pH 2 to 0 53 

mmol/g (Figure 3 12) This was lower than the uptake attained by untreated biomass At 

pH 4, uptake was 0 30 mmol/g while at pH 1, 0 19 mmol/g was the maximum uptake
r

achieved (Table 3 04)

T able 3 04 U ptake o f  chrom ium (V I) by pretreated biom ass

trend of decreasing uptake from pH 2, with increasing pH, observed with untreated
biomass

Untreated biomass Acid-treated biomass

kelp peat kelp peat

pH 2 0 82 mmol/g 0 58 mmol/g 0 68 mmol/g 0 53 mmol/g
pH 4 0 46 mmol/g 0 15 mmol/g 0 16 mmol/g 0 30 mmol/g
pH 7 0 06 mmol/g 0 09 mmol/g 0 07 mmol/g 0 19 mmol/g

Uptake of calcium by acid-treated kelp was 1 05 mmol/g This value was higher 

than the uptake achieved by the untreated biomass (0 62 mmol/g) Conversely, 

magnesium was adsorbed to 0 36 mmol/g by the acid-treated biomass compared to 1 10 

mmol/g by the untreated kelp (Table 3 05)
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Table 3.05 Uptake of calcium and magnesium at pH 4 by treated biomass

Untreated biomass Acid-treated biomass

Calcium 0 62 mmol/g 1 05 mmol/g

Magnesium 1 10 mmol/g 0 36 mmol/g

>
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Figure 3 06 Cr(III) speciation as predicted by MINEQL
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Figure 3 08 Uptake of Cr(III) by acid-treated kelp at pH 2 and 4

(Symbols ■ pH 4, •  pH 2)

Final Cr(III) Concentration (mM)
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Figure 3 09 Uptake of Cr(III) by acid-treated peat 

(Symbols •  pH 4, O pH 2)

Final Cr(III) Concentration (raM)
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Figure 3 10 Uptake of Cr(III) by treated and untreated kelp at pH 4

(Symbols •  Untreated biomass, ■ Calcium-treated biomass,

▼ Acid-treated biomass)

Final Cr(III) Concentration (mM)
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Figure 3 11 Uptake of chromate by acid-treated L digitata

(Symbols •  pH 2, ■ pH 4, ▼ pH 7)
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Final Concentration (mM)
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Figure 3 12 Uptake of chromate by acid-treated peat

(Symbols •  pH 2, ■ pH 4, ▼ pH 7)

Final Concentration (mM)
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3.07 The presence of counter-ions during biosorption

In the process of biosorption, uptake can occur by ion exchange This may 

involve hydrogen ions or other species already on the biomass L  digitata is a marine 

macrophyte that, unlike many seaweeds, remains continuously submerged with the 

possible exception of the low spring tides Seawater is an ionic solution of dissolved 

substances including calcium, magnesium, potassium and sodium When L  digitata was 

contacted with distilled water at pH 4, it releases ions until equilibrium is reached 

between the ions in solution and the ions on the biomass When L  digitata was contacted 

with 100 ml of distilled water, sodium was released to a level of 1 8 mmol/g, calcium to 

0 017 mmol/g, magnesium to 0 056 mmol/g and potassium to 0 079 mmol/g

Peat, under the same conditions, released 0 007 mmol/g magnesium and 0 004 

mmol/g calcium

3 08 U ptake o f  chrom ium (V I) by m etal-pretreated b iom ass

L  digitata biomass was contacted with various concentrations of copper at pH 2 

and pH 4 The biomass was then contacted with a range of concentrations of chromate 

The uptake of chromate was conducted at the same pH as the adsorption of copper to 

avoid metal displacement by pH effects

The uptake of copper by untreated kelp biomass at pH 4 reached a maximum 

value of 0 97 mmol/g from a 3 13 m M  initial concentration At this pH, the maximum 

chromate uptake was 0 46 mmol/g At pH 4, the presence of copper decreased the uptake
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of chromate with increasing copper concentration (Figure 3 13a) The maximum 

chromate uptake was 0 29mmol/g with biomass treated with 0 15mmol copper (Table 

3 06)

The optimum pH for chromate biosorption with untreated biomass was pH 2, 

where uptake was 0 82 mmol/g At pH 2, maximum copper uptake was 0 12 mmol/g 

from a 3 13 mmol initial solution Maximum adsorption of chromate by copper-treated 

kelp at pH 2 was 0 4 mmol/g (Figure 3 13b)

T able 3 06 U ptake o f  C r(V I) by copper treated kelp

Cr(VI) uptake Cu uptake Cr(Vl) uptake

untreated biomass untreated biomass Cu-treated biomass

pH 2 0 82 mmol/g 0 97 mmol/g 0 29 mmol/g

pH 4 0 46 mmol/g 0 12 mmol/g 0 40 mmol/g
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Figure 3 13(a) Uptake of chromate by copper-treated kelp at pH 4

(Symbols •  0 mMCu, ■ 015m M Cu, ▼ 1 5 mM Cu,♦  3 14 mM Cu)
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Figure 3 13(b) Uptake of chromate by copper treated kelp at pH 2

(Symbols ®  OmMCu, *  0 15 mM Cu,V 0 78mMCu,

♦ 1 5 mM Cu, A  3 14 mM Cu)

Final Concentration (mM)
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3 09 Metal competition

M ixed metal solutions consisting o f  a range o f  copper and chromate 

concentrations were contacted with untreated kelp to investigate the order o f  uptake at pH 

2 and pH 4 (Table 3 07)

Uptake o f  chromate at pH 2 (0 82 mmol/g untreated biom ass) decreased with  

increasing copper concentration The maximum uptake w as 0 25 mmol/g in the presence 

o f  0 15 mM copper (Figure 3 14) Conversely, the presence o f  chromate had little effect 

on the uptake o f  copper at this pH

Copper uptake, by untreated biomass at pH 2, w as 0 12 mmol/g In the presence 

o f  0 19 mM chromate, copper adsorption reached a level o f  0 085 m m ol/g Lower 

chromate concentrations resulted in 0 045 m m ol/g copper uptake (Figure 3 15)

A lso at pH 4, the presence o f  chromate had little effect on the uptake o f  copper 

Maximum adsorption ranged from 0 93 m m ol/g in the presence o f  0 19 mM chromate to 

0 78 m m ol/g for 3 84 mM chromate This compares to the maximum value for the 

biosorption o f  copper by untreated kelp o f  0 97 m m ol/g (Figure 3 16)

The biosorption o f  chromate at pH 4 decreased with the presence o f  increasing 

copper concentrations The uptake ranged from 0 40 m m ol/g for 0 15 mM copper to 0 17 

m m ol/g with 3 13 mM copper Maximum uptake o f  chromate at this pH by untreated 

biomass was 0 47  m m ol/g (Figure 3 17)
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Table 3 07 Competition of uptake for copper and chromium(VI)

pH 2 Cu conc
Cr(Vl)
uptake

0 mM  
0 82 
mm ol/g

0 15 mM  
0  25 
m m ol/g

0 78 mM  
0 20  
m m ol/g

1 5 mM  
0 14 
m mol/g

3 14 mM  
0 08 
m m ol/g

pH 2 Cr(VI)
conc

0 mM 0 19 Mm 0 96 mM 1 9 mM 3 84 mM

Cu uptake 0 12 
mmol/g

0 085 
mmol/g

0 073 
m m ol/g

0 062  
m m ol/g

0 045 
mmol/g

pH 4 Cu conc 0 mM 0 15m M 0 78 mM 1 5 mM 3 14 mM
Cr(VI) 0 47 0 40 0 35 0 26 0 17
uptake m m ol/g m m ol/g m m ol/g m m ol/g mmol/g

pH 4 Cr(VI)
conc

0 mM 0 19 Mm 0 96 mM 1 9 mM 3 84 mM

Cu uptake 0 97 
mmol/g

0 93 
mmol/g

0 86 
m m ol/g

0 80 
mmol/g

0 78 
mmol/g
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Figure 3 14 Uptake of chromate from a mixed solution
of copper and chromate by kelp at pH 2

(Symbols ®  No Copper, ®  Cu 0 15 inM ,^ Cu0 78mM,

♦ Cu 1 5 mM, A  Cu 3 14 mM)

0 1 2 3 4 5
Final Concentration (mM)
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Figure 3 15 Uptake of copper from a mixed solution
of copper and chromate by kelp at pH 2

(Symbols •  No chromate, ®  Cr 0 19 mM, ▼ Cr0 98mM,

♦ Cr 1 9 mM, A  Cr 3 84 mM)

0 150 

0 125 

0 100 

0 075 

0 050 

0 025 

0 000
0 1 2  3

Final Concentration (mM)

79



Up
tak

e 
(m

m
ol

/g
)

Figure 3 16 Uptake of copper by kelp at pH 4

Competition with Chromate

(Symbols ®  No chromate, ®  0 19 mM Chromate, ▼ 0 98 mM Chromate,

♦ 19 mM Chromate, ®  3 84 mM Chromate)

Final Concentration (mM)
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competition with copper

Figure 3 17 Uptake of chromate by kelp at pH 4

(Symbols •  OmMCu, •  0 15mMCu, ^  0 78m MCu,
■ 15m M Cu, ♦ 3 14 mM Cu)

1 2 3

Final Concentration (mM)
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3 10 Competition with sodium

The presence of sodium inhibits the uptake of Cr(IH) by kelp biomass The maximum 

uptake of chromium in the presence of sodium was 0 87 mmol/g for the lowest concentration of 

sodium at pH 4 This result was lower than uptake of Cr(III) by untreated biomass The 

biosorption decreased with increasing sodium concentration to 0 44 mmol/g for a solution 

containing 8 70 m M  sodium The inhibitory effect is more pronounced at higher chromium and 

sodium concentrations (Figure 3 18)

3  11 R eduction o f  chrom ate at p H l by L digitata and peat

At pH 1, 3 24 m M  Cr(VT), from an initial concentration of 3 84 mM, was reduced to 

Cr(IIl) by contact with L  digitata or peat biomass On visual inspection, the initial solution of 

only Cr(VI) was yellow while the final solution was blue indicating the presence of Cr(lII) 

Reduction did not occur in biomass-free controls and so is dependent on the presence of kelp or 

peat The graph shows the same solutions measured for total chromium and for chromate for 

both biomass types (Figure 3 19) The initial solutions contained only hexavalent chromate 

whereas the final solutions contain predominantly Cr(IIi) after reduction Conditions at pH 1 did 

not favour biosorption because of competition with excess hydrogen ions (Table 3 08)
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Figure 3 18 Cr(III) uptake in the presence of sodium

(Symbol •  Om MNa, ■ 0 43m M N a,T 2 17mMNa,

♦ 4 35 m M N a,A  8 70m MNa)

Final Concentration (mM)
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Figure 3 19 Chromate reduction at pH 1

(Symbols •  Kelp (chromate), O Total Cr Kelp,

■ M illed Peat (chromate), □ Total Cr M illed Peat)

Fmal Concentration (mM)



Table 3 08 Reduction of chromium(VI) at pH 1

Chromium (VI) Chromium(III)

Initial concentration 3 84 m M 0 m M

Concentration after contact 
with kelp
Concentration after contact 
with kelp
Biomass-free control

0 60 m M

0 65 m M

3 84 m M

3 24 m M

3 19 m M

0 m M

3 1 2  Purification and uptake o f chrom ium  from  tanning w aste

After filtration, the pH of the effluent was pH 3 75 The initial concentration of 

chromium(III) m the tanning effluent was determined to be ca 117 m M  (6100 ppm) The tanning 

effluent contained no chromium(VI) On gravity filtration and extraction with hexane, the 

chromium concentration in the aqueous layer did not change nor was there any chromium 

detected m the organic fraction Above pH 4 5, an insoluble precipitate settled out of solution 

The remaining clear solution contained 0 170 mmol (8 8 ppm) chromium On adjusting the pH to 

3 75 again, the precipitate did not redissolve but remained as a gel in the bottom of the flask The 

sodium concentration of the filtered tanning waste was 16815 m M  (386420 ppm) while the 

remaining solution after precipitation had a sodium concentration of 1502 m M  (34516 ppm) 

Chromium uptake at pH 4 from the supernatant was 0 032 mmol/g while the sodium 

concentration was 925 5 m M  in the remaining solution The kelp removed 577 3 mmol/g sodium
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from the original supernatant Corresponding results with peat showed less chromium uptake 

(0 008 m mol/g) and also lower sodium uptake (189 5 m m ol/g) (Figure 3 20)
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Figure 3 20 Uptake of C r(III) from tanning waste 

(Symbols, •  L digitata, O  Peat)

Final Concentration (mM)



3 1 3  M eta! uptake by kelp and ionic radii

Metal cations were adsorbed by L  digitata in the order of increasing ionic radii 1 e the 

smallest ionic radius corresponded to the highest metal uptake at pH 4 (Table 3 09 and Figure 

3 21) and pH 2 (Table 3 01 and 3 09)

T able 3 09 Ion ic  radii o f cation ic m etals

Metal Cation Ionic Radius (pm) Uptake (mmol/g) pH 4

Magnesium 68 00 1 10 ± 0 04 mmol/g

Chromium 62 00 1 12 ± 0 05 mmol/g

Copper 73 00 0 97 ± 0 03 mmol/g

Cadmium 95 00 0 65 ± 0 03 mmol/g

Calcium 100 00 0 62 ± 0 03 mmol/g

Strontium 113 00 0 46 ± 0 02 mmol/g
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Figure 3 21 The relationship between metal uptake by kelp
and ionic radii

Ionic radii (pm)
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CHAPTER 4: DISCUSSION

4 01 U ptake o f  m etal cations

Untreated L  d/gitata adsorbed cations at pH 4 in the order o f  maximum

uptake, Cr3T > M g2+ > Cu2+ > Cd2+ > Ca2+ > Sr21, from 1 12 mmol/g for Cr3+ to 0 46

m m ol/g for Sr2’ (see section 3 12) For each cation, the maximum uptake was higher

than the corresponding values at pH 2, or adsorbed by milled peat, with the exception

o f  magnesium (1 33 m m ol/g compared to 1 10 mmol/g for peat) At pH 7, the metals

precipitated out o f  solution L  digitata adsorbed cations in order o f  increasing ionic

radii, at pH 2 and pH 4 (Table 3 01), smallest first (Table 3 09) This may indicate the

importance o f  stenc effects m the binding o f  metals to kelp as the larger the ion, the

less it binds This finding is in contrast with R  arrhizus biomass, where uptake levels

were in order o f  decreasing ionic radii (Tobin et a l , 1984)

Peat adsorbed cations at pH 4 m the order o f  M g2+ > Cu2+ > Cr^+ > Ca2+ >

Cd2+ > Sr2* This follow s no trend o f  ionic radii, electronegativity or charge Uptake

o f  M g w as the highest (1 33 m m ol/g) while all other cations were adsorbed to a level

o f  0 26 -  0 32 m m ol/g) This pattern may be a consequence o f  the small mass o f  M g

compared to the other cations It is possible that mass may be a limiting factor in the

biosorption o f  metal ions by peat

The difference in the order o f  maximum uptake o f  metal ions may be due to

the individual nature o f  each biomass and the different types o f  binding sites on each

Peat forms in an acidic environment, while kelp grows immersed in seawater -  an
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ionic solution at approximately pH 8 The presence of excess tT on the peat may 

hinder cation uptake by this biomass, more so than by kelp, as fT will compete with 

metal cations for binding sites

Kelp, being native to a marine environment, has cations such as Ca2+ and Mg2+ 

already present in quantity on its surface while peat has substantially less (section

3 07) This may partially explain the high uptake of Mg2+ by milled peat, but uptake 

by kelp is also high The affinity of both biomass types for Mg2+ may be due to its 

small size and hence, its charge to mass ratio

Ca2\ which would be expected to follow the same trend of high uptake by 

peat, does not This ion has a larger ionic radius than Mg2+ so, although peat may 

have a high affinity for Ca2+, its size may cause stenc effects and restrict binding

4 02 B iosorption o f  Cr(ITI)

Maximum uptake of Cr(III), 1 12 mmol/g biomass, by untreated L  d/gitata 

occurred at pH 4 from a 3 84 m M  (200 ppm) solution This uptake value greatly 

exceeds uptake of Cr(III) by milled peat to a level of 0 30 mmol/g under the same 

experimental conditions (Dean and Tobm, 1999) Biosorption of Cr(III) by a brown 

seaweed, Sargassum, at pH 4 attained a maximum value of 0 63 mmol/g for the same 

initial concentration (Kratochvil et a/, 1998) while maximum adsorption by Mucor 

biomass was approximately 0 35 mmol/g (Tobin and Roux, 1998) Rhizopus arrhizus 

adsorbed 0 59 mmol/g of Cr(IlI) from the same concentration at a final pH of 3 7 

(Tobin et a t, 1984) while approximately 0 2 mmol/g uptake occurred at pH 4 by 

Azof la fihcirfoides (Zhao and Duncan, 1997)
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Metal ions are adsorbed by brown seaweeds into the outer celi perimeters, 

lodging m the cell wall or extracellular polymers, which are mainly polysaccharide 

substances (Madgwick, 1994) The uptake of metals by members of the Phaeophyta is 

predominantly a consequence of the ion exchange behaviour of low solubility cell 

wall and cell-solid alginates (Madgwick, 1994)

Seaweed metal-binding capacities of L  japonica, S  flmtam, A nodostim and 

F  vesicidosis were directly proportional to their respective total carboxyl group 

content and related to the electronegativity of the sorbed metal (Fourest and Volesky,

1996) The carboxyl groups of alginate play a major role in the complexation of lead 

and cadmium by S  ffuitam biomass Alginates are linear polysaccharides containing 

1,4-hnked P-D-mannuromc and a-L-guluromc acid residues The linear arrangement 

of the uromc acid residues varies among algal species (Fourest and Volesky, 1996) 

The surface functional groups of the brown algae are potentially superior binding sites 

for some metal ions compared to other biomass such as fungus and plants The 

different uptake capacities of members of the Phaeophyta may de due to the wide 

variation in cell wall composition of eukaryotic algae Only cellulose is common to all 

(Bold el a J, 1980) Alginic acid is a major source of binding sites in brown seaweed 

There are many different forms of alginate, depending on the size and order of the 

mannuronic and guluronic fragment blocks This varies with species and may account 

for the preference m order and uptake ability of some seaweeds for particular metals 

(Table 4 01)
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4.03 Uptake ofCr(VI)

In the present work, maximum uptake of Cr(VI) by L  digitafa occurred at pH 

2, to a level of 0 82 mmol/g compared to 0 67 mmol/g by Sargassum as reported by 

Kratochvil et al 1998, under the same conditions Adsorption levels of chromate by 

kelp were appreciably in excess of uptake levels by milled peat (0 58 mmol/g) (Dean 

and Tobin, 1999) They also exceeded molybdate and vanadate uptake values for 

Rhizopus arrfazus (Tobin et at, 1984) where maximum uptake of 0 38 and 0 45 

mmol/g respectively was reported at pH 4 5 Anion uptake by R  arrhizus did not 

occur at pH 5 5, at which pH value it was suggested that the balance of positively and 

negatively charged species became unfavourable for anion binding (Tobin et a l, 

1984) In the present work, this effect was not observed although uptake diminished 

markedly at higher pHs At pH 4, the binding levels are significantly higher than 

corresponding values recently reported for chromate uptake by the water fern Azolla 

fihculoides (ca 0 34 mmol/g) at the same initial concentration (Zhao and Duncan,

1997)

Uptake of chromate by kelp may involve cell wall components, such as alginic 

acid or alginates, absent from peat and other biomass such as Azolla and Rhizopus 

This would explain the higher metal uptake by seaweed over these biomass The 

variation in alginate forms between species may account for the different uptake 

levels, of the same metal, by each seaweed
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4.04 Cr(III) speciation predicted by M IN E Q L

As described in section 3 04, MINEQL predicted that, at pH 2, the 

predominant Cr(IH) species present in solution was Cr3̂ for all concentrations 

whereas at pH 4 approximately 49% is Cr3+ and 49% is Cr(OH)2+ with less than 2% 

present as Cr(OH)2+(Figure 3 06) Cr(OH)2+ is the mam species at pH 7, at 55%, with 

42% Cr(OH)3 and less than 2% Cr(OH)2 In the case of 3 84 m M  (200 ppm), there is 

55% Cr(OH)i and 42% Cr(OH)2+ The increased Cr(IH) uptake at pH 4, as compared 

to pH 2, reflects diminished H+ competition for binding sites However, it is 

interesting that the altered speciation and decrease in Cr3+ concentration does not 

appear to affect uptake

4 05 C r(V I) speciation predicted by M IN E Q L

The predominant species at both pH 2 and pH 4 is HC1O4 but the

concentration of Cr2C>72 increases with increasing concentration from less than 2%  to

19% At pH 7, C1O42 accounts for approximately 76% of total chromium while the

remainder is primarily, HCrC>4

Biosorption of chromium(VI) is likely speciation-dependent as well as pH-

dependent Uptake may be due to binding of HCr04 ions (the mam species at pH 2 as

predicted by MINEQL) to protonated sites on the kelp While chromium speciation at

pH 4 is identical, lower but appreciable uptake of 0 46 mmol/g reflects the decrease in

H + 10ns and consequent decrease in availability of protonated sites Lowest uptake

occurred at pH 7 where the chromate anion is the predominant species This may

represent stenc hindrance to binding of this molecule as well as the expected
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exponential decrease in positively charged sites The trend o f  highest uptake at pH 2 

and lowest at pH 7 is duplicated by milled peat

4 06 U ptake o f  C r(IIl) by pretreated biom ass

Acid-treated L  digitata adsorbed 0 57 m m ol/g at pH 4 compared with 0 62 

m m ol/g by Sargasmm fluitans (Kratochvil ei a t , 1998) The kelp had been treated 

with 1M H2SO4 while 0 2M  H2SO4 was used in the treatment o f  S  fluitans When the 

treatment o f  L  digitata involved 0 2 M  acid, maximum uptake was 0 66 m m ol/g  

indicating that adsorption may be dependent on the level o f  protonation

At both pH 2 and pH 4, the solution pH increased after contact with the 

biomass The trend o f  pH increase at pH 4 w as inversely proportional to concentration 

with no pH change occurring at 3 8 mM initial concentration

Uptake o f  Cr(III) was higher with untreated L  digitata than with calcium or 

acid-treated biomass Hence protonation and subsequent contact with calcium is 

deleterious to metal uptake This may be due to modification o f  the binding sites so 

that ion exchange cannot occur to the same extent Maximum uptake was 1 12 

m m ol/g by untreated compared to 0 75 m m ol/g calcium-treated and 0 57 mmol/g  

acid-treated biomass These uptake levels exceed maximum values o f  0 3 mmol/g 

Cr(III) using milled peat at pH 4 and 0 2 m m ol/g Azolta fit icy taides (Zhao and 

Duncan, 1997) Maximum uptake by Rhizopus arrhizus w as 0 59 m m ol/g at a final 

pH o f  3 7 (Tobm ei a t , 1984) Maximum biosorption by Ca-treated kelp (0 75 

m m ol/g) was similar to the maximum uptake o f  Cr(III) by Sargas sum biomass o f  

0 77 m m ol/g (Kratochvil et a t , 1998) Hence, it can be assumed that these
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pretreatments affect various species o f  brown algae in the same way, possibly due to a 

conformational change o f  binding sites or components com m on to all species

4.07 T he presence o f  counter-ions during biosorption

The adsorption by peat o f  one divalent metal cation was coupled with the 

release o f  tw o HP ions (Bunzl et a l  1976) All three ions, H \  Ca2+and M g2-", are 

involved in biosorption by L digitata This w as illustrated by the highest uptake level 

o f  Cr(III), w hich was adsorbed by untreated kelp biomass, compared to calcium and 

acid-treated biomass The acid-treatment removed Ca2+ and M g2+, as evidenced by the 

release o f  low  levels o f  these ions by acid-treated biomass This type o f  biom ass 

adsorbed the lowest amount o f  chromium Metal uptake by acid-treated S fluitans 
was also less than the uptake by the untreated biomass (Schiewer and Volesky, 1997) 

Untreated kelp released higher levels o f  Ca2+ and M g2+ ions than calcium or acid- 

treated biomass Ca-treated kelp released less calcium than untreated biomass This 

indicated that when ions were removed (including calcium) during the acid wash o f  

the first stage in biomass preparation, they were replaced by a lesser amount o f  Ca2+ 

in the Ca(OH)2 wash Ca-treated biomass released the least amount o f  magnesium  

ions indicating that most o f  the native magnesium w as removed and not replaced 

during the treatment Although this lowered its biosorption potential, uptake o f  Cr(IlI) 

by Ca-treated biomass exceeded that o f  H-treated biomass This w as most likely due 

to the presence o f  Ca2 on the biomass and suggests that Ca2+ may be more important 

for ion exchange than Y t  and M g2t The brown seaweed, Eckloma maxima, also 

demonstrated a corresponding calcium release on adsorption o f  nickel ions (W illiam s 

and Edyvean, 1997)
97



Vauchena species of freshwater algae released Ca2+ and Mg2+ on adsorption 

of Sr2+ indicating that biosorption of alkali and alkaline-earth metals occurred by ion 

exchange and was based on electrostatic interactions Copper adsorption by this 

biomass also caused a release of IT ions and may have demonstrated additional 

covalent bonding for this transition metal (Crist et a l, 1990)

4.08 M etal pretreatm ent o f  the biomass* copper

Biosorption of chromate by L  digitcita at pH 2 and 4 was reduced by the 

presence of previously bound copper on the biomass At the optimum pH for copper 

adsorption, pH 4, copper uptake reached a maximum value of 0 97 mmol/g 

Subsequent chromate adsorption was 0 32 mmol/g m comparison to 0 45 mmol/g 

uptake of chromate by untreated biomass at this pH The predominant chromate 

species at both pH 2 and pH 4 is the anion HCrC>4 Chromate uptake by untreated 

biomass is relatively low (0 45 mmol/g) at pH 4, because anion uptake is favoured at 

lower pH The chromate biosorption level of 0 32 mmol/g by copper-treated biomass 

shows that the presence of copper has a negative influence on uptake at this pH

Conversely, at pH 2, which is the optimum pH for the uptake of chromate 

(0 82 mmol/g), only 0 12 mmol/g of copper was adsorbed Corresponding chromate 

adsorption was 0 4 mmol/g, less than 50% of that taken up by untreated kelp This is 

probably due to stenc hindrances caused by the already bound copper Copper and 

chromate should not compete for the same binding site because of the different 

respective charges The binding of copper may also cause a conformational change in 

the surface of the kelp resulting in loss of chromate binding sites (Table 3 06)
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4 09 Metal competition

The presence o f  chromate had little effect on the uptake o f  copper at pH 2 and 

4 Biosorption o f  copper by untreated kelp at pH 4 was 0 92 m m ol/g Uptake ranged 

between 0 8 m m ol/g and 1 0 mmol/g in the presence o f  decreasing chromate 

concentration At pH 2, maximum adsorption o f  copper was 0 13 mmol/g by 

untreated biomass compared to 0 14 mmol/g m the presence o f  chromate This 

illustrates a preference o f  the biomass for copper The copper cation is smaller than 

the chromate ion resulting in less steric effects to inhibit binding Kelp predominantly 

contains amonic polysaccharides on its surface, providing cationic rather than anionic 

binding sites (Bold e/af ,  1980)

The presence o f  copper was deleterious to chromate uptake Maximum  

chromate uptake at pH 2 was 0 25 m m ol/g m the presence o f  0 15 m m ol/g copper 

compared to 0  82 m m ol/g by untreated biomass At both pH 2 and 4, chromate uptake 

decreased with increasing copper concentration although less so at pH 4 where 

conditions are unfavourable for anion binding As with previously bound copper, the 

presence o f  copper m solution may cause stenc effects, m this case, by binding 

preferentially to the biomass (Table 3 07)

4.10 C om petition  w ith sodium

The presence o f  metal ions can influence biosorption by humic and fulvic

acids as w ell as by alginate (Gamham et a l , 1991, Schiewer and Volesky, 1997) In

the present work, the adsorption o f  Cr(III) by L chgitata biomass decreased with

increasing concentration o f  sodium The presence o f  sodium may balance the
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negatively charged binding sites on the surface of the kelp preventing the binding of 

chromium This effect was also discerned in the biosorption of zinc by Saigassum  

fluitans (Leusch et a l, 1995) and m the uptake of cobalt by Chlorella sahna 

(Garnham et a t, 1991) where the presence of 0 5 M  sodium reduced uptake by 60% 

and 1 M  sodium inhibited biosorption altogether

4 1 1  R eduction  o f  chrom ate at pH  1

Cr(VT) was reduced to the tnvalent form on contact with both kelp and peat 

biomass at pH 1 The degree of reduction was greater with L  chgitata than with peat 

Reduction at pH 1 also occurred with S  fluitans biomass (Kratochvil et a l, 1998) 

This reduction has implications in the remediation of electroplating waste which is 

predominantly Cr(VI)

4.12 Purification and uptake o f  chrom ium  from  tan n in g w aste

The biosorption of chromium from tanning waste was lower than the uptake of

Cr from single-metal solutions of the same pH This is attributable to the high

concentration of sodium (1500 mM) which inhibits metal uptake by seaweed biomass

This finding confirms the results of the effect of sodium on uptake of chromium by

kelp, from single-metal solutions and agrees with other reports (Leusch et a l, 1995,

Garnham et a l  ̂1991) However, kelp removed high concentrations of sodium from

the tanning solution Excess salinity in soils or freshwater systems presents a real

environmental concern for agriculture and fisheries (Pierzynski et a l, 1993) The

removal of sodium by kelp was m contrast with work involving Rhizopus arrhizus
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biom ass Sodium and the other alkali metals were not adsorbed by R arrhizus, as this 

group o f  metals does not form com plexes with most ligands This agreed with the 

proposed mechanism o f  uptake by this biomass (Tobin et a l , 1984) The biosorption 

o f  sodium by kelp may not involve com plexes but ion exchange and may be dictated 

by its ionic radius (ca 102 pm, similar to that o f  calcium) Peat also adsorbed sodium  

from the tanning waste but to a lesser extent It may be that fungal biomass is unique 

in its binding sites and mechanisms and can be used as a selective biosorbent Kelp, 

on the other hand, may be more applicable to solutions containing a mix o f  

contaminants
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T able 4.01 C om parison o f  adsorption levels (m m ol/g) by various biom ass.

Biomass type Cu2 Cd2+ S ? + M g " Cr',r Cr5̂  ReferenceCa

l  digitata 

Milled peat

0 97  0 65 0 4 6  0 62  1 10 1 12 0 82" Present work

E radiata

FCAN

0 36 0 27 0 21 0 29 1 33 0 30

0 97 0 90M'

0 50* 0 39*

0 58" Present work 
(also Dean and 
Tobm 1999) 

Matfieickat
(1994) 

deCarvalho
(1995)

FCAN2 0 90* 0 70* Chong (1995)

R arrhizus 0 40 0 25 0 18 Brady (1994)

R arrhizus 0 25 0 27 0 59" Tobin (1984)

\ 'an chen a sp 0 20* Crist (1990)

S  jluitans 091* 0 63 0 6T Fouresi (1996)

Sargassum sp 0 76 0 76> Kratochvil
(1998)

A nodosum VOO 0 90^ Leusch (1996)

F  vesiculosis 0 57" Holan (1993)

Sphagnum 0 23 Ho (1994)

Mucor 0 35 Tobin (1998)

A fihculoides 0 20 0 34" Zhao (1997)

pH 2, pH 3 5, pH 3 7, * pH 4 5, w pH 5, 0 formaldehyde cross-linked 

A scophyllum nodosum Unless otherwise indicated, values are shown for pH 4
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C h a p te r s  C onclusions

5 01 C oncluding rem arks

The kelp, Lammaria digitata, is a good biosorbent with considerable metal 

adsorbing abilities Uptake of both hexavalent and Cr(III) was higher than the 

corresponding biosorption levels achieved by a range of biomass types recently reported 

(Table 4 01) These high adsorption capacities show that this biomass has potential for 

use in industries such as electroplating and leather tanning, where the removal of Cr(III) 

can reduce the volume of toxic sludge to be disposed of The ability of kelp to reduce 

Cr(Vl) to the less toxic Cr(IIi) can be utilised to replace FeCl2 in conventional reduction 

processes When chromate is adsorbed onto kelp, the metal is reduced and the biomass is 

oxidised, thus removing and reducing the toxic chromate m one treatment Kelp can also 

be applied as a polishing treatment for wastewater and is particularly suitable for use with 

high volume, low concentration solutions

The application of kelp biosorption to the treatment of tanning effluent is, 

however, influenced by the high concentrations of sodium as well as chromium in 

solution This results in diminished chromium biosorption levels Nevertheless, high 

levels of sodium removal are obtained This has clear environmental implications as the 

disposal of high sodium effluent is an ongoing problem for many industries including 

leather tanneries

There is potential for the application of biosorption by kelp m the remediation of 

industrial metal-bearing wastewaters containing metal cations other than chromium
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Uptake levels o f  copper, cadmium and strontium by kelp were among the highest 

achieved by any biomass reported (Table 4 01) The biosorption o f  copper is not notably 

inhibited by the presence o f  chromate, possibly as a result o f  the lomc radii difference 

between the cation and anion This may have potential in the remediation o f  mixed metal 

solutions such as electroplating wastewater

Kelp is a cheap and readily available source o f  biomass in most coastal areas but 

as o f  yet, is under-utilised Wild kelp forests can be managed and farmed or the seaweed  

can be grown artificially Depending on the characteristics o f  the spent biomass, kelp can 

be used as an agricultural fertiliser or incinerated as a fuel

Peat as a biosorbent w as not as successful as kelp as it did not reach the same high 

uptake levels Biosorption o f  metal ions by peat was lower than uptake by other algal 

biomass (Table 4 01) Uptake levels were comparable, however, with fungal biomass 

such as R arrhizus and the plant biomass Azolla fihculoides Reduction o f  chromate by 

peat occurred to a lesser extent than with kelp

5,01 D irection for future w ork

For the successful application o f  biosorption to metal removal from wastewater, 

there is a need for the potential reuse o f  the biomass Reuse helps to reduce costs o f  

materials, transport and disposal o f  spent biomass This is particularly important when  

using algal biomass such as kelp, as the biomass is oxidised on adsorption o f  the metal 

ions This oxidation can modify the surface components and may effect future
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biosorption performance The effects o f  this biomass oxidation need to be investigated as 

does the potential for reuse o f  the biosorbent over consecutive cycles

The ability to recover metals from spent kelp biomass can aid reuse and recycling 

o f  materials in industrial processes The quality and quantity o f  the recovered metals need 

to be determined before reuse so as not to compromise the final product standard If  

removal o f  the metals from the spent kelp is not viable, the characteristics o f  the spent 

biom ass need to be investigated before deciding on the method o f  disposal
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