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Abstract

Scheduling can be described as “the allocation of scarce resources over time to
perform a collection of tasks” They arise in many practical applications n
manufacturing, marketing, service industries and within the operating systems of
computers

Scheduling problems are frequently encountered 1n various activities of every day
life

They exist whenever there 15 a choice of the order in which a number of tasks can
be performed Some examples are scheduling of classes 1n academic institutions,
jobs 1n manufacturing plants, patients on test facilities in health nstitutions and
programs to be run at a computing centre The desire to perform the tasks in a
special order to achieve some objective 1s what makes scheduling problems
important

In this thests we will use the machine shop terminology, even though the actual

situations that give rise to scheduling problems are wide and varied

Since a complete description of a real machine shop would be too detailed to
serve as a conceptual basis for any meaningful analysis, we will adopt a
simplified model consisting of a job shop and a despatch area through which jobs

are recetved from outside and then passed to the job shop
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Such a model can adequately reflect the aspects of real machine shops that are
important for predicting performance

The performance of such a job shop system models ts normally measured by
either the production capacity or mean tardiness or the mean number in the
system, 1n the job shop and 1n the despatch area

Scheduling problems differ in

) input, the manner in which the jobs arrive at the system

. despatch policy, the policy by which the jobs are despatched to the
shop, and

. routing, the order in which the jobs go from one machine centre to the

other 1n the job shop
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CHAPTER 1

INTRODUCTION

10 A brief history of scheduling theory

Scheduling theory 1s concerned with the practical problem of allocating (scarce)
resources over time to perform a collection of tasks, with a view to minimising an

evaluation function [B74]

This rather general definition of the term does convey two different meanings that
are 1mportant to understand the necessity of scheduling i our lives

First, scheduling 1s a decision-making function In this sense the process of
determining a schedule and much of what we learn about scheduling can apply to
other kinds of decision making and therefore has general practical value

Second, scheduling 1s a body of theory 1t 1s a collection of principles, models,
techniques, and logical conclusions that provide msight into the scheduling
function In this sense, much of what we learn about scheduling can apply to other

theories and therefore has general conceptual value

The problem being investigated is normally cast in terms of a mathematical
model Seminal work [K76] in developing a categonisation of scheduling
problems has enabled researchers in combinatonal optimisation co-ordinate their
efforts 1n the design of good algonthms A large range of problems of practical

interest has been wholly or partly solved to date



However, as new problem classes arc identified, there 1s a necessity to develop

new models and solution techniques on a continual basis

The theoretical perspective 1s predominantly a quantitative approach, one that
attempts to capture problem structure in concise mathematical form In particular,
this quantitative approach begins with a translation of decision-making goals 1nto
an explicit objective function and decision-making restrictions into constraints
Ideally, the objective function should consist of all costs in the system that
depends on scheduling decisions In practice, however, such costs are often

difficult to measure, or even to identify completely

The most important elements 1n scheduling models are resources and tasks
Tasks compete for resources A task 1s described by its resource requirement, its
duration, the time at which it may be started and the time at which 1t 1s due to be

completed

Because many of the early developments in the field of scheduling were
motivated by problems arising 1n manufacturing, the vocabulary of manufacturing
1s still employed when describing scheduling problems Thus resources are
usually called “machines” and basic task modules are called “jobs” Jobs may
consist of several elementary tasks that are mterrelated by precedence restrctions,

such elementary tasks are referred to as “operations”



11 Importance of scheduling problems

Scheduling problems are encountered 1n various activities of everyday life They
exist whenever there 1s a choice of the order in which a number of tasks can be
performed Some examples are scheduling of classes in academic institutions,
jobs 1n manufacturing plants, patients on test facilities in health institutions and
programs to be run at a computer centre The desire to perform the tasks in a
special order to achieve some objective 1s what makes scheduling problems

important [S79]

Scheduling problems are also important because the scheduling field has become
a focal point for the development, application and evaluation of combinatonal
procedures, simulation techniques, network methods and heuristic solution
approaches

The selection of an appiopnate technique depends on the complexity of the
problem, the nature of the model and the choice of the criterion, as well as other
factors, 1n many cases 1t 1s appropnate to consider several alternative techniques
For this reason, scheduling theory 1s perhaps as much the study of methodologies
as 1t ts the study of models

Because scheduling 1s a body of a theory (a collection of principles, models,
techniques, and logical conclustons) much of what we learn about scheduling can

apply to other theories and therefore has general conceptual value



12 Quthne of the thesis

The thesis 1s made up of seven chapters The second chapter the hterature review
1s presented along with the classification of scheduling problems

In chapter 3 the description of our model 1s presented as well as previous studies
on relative models In chapter 4 the Mixed Integer Programming (MIP)
formulation 1s described, whereas in chapter 5 we describe the algorithm that we
developed for scheduling groups of jobs on a single machine (JGA)

In chapter 6 we descnbe an algonthm that 1s used for scheduling a set of jobs on a
single machine, whereas in chapter 7 we evaluate the performance of both

algorithms and we make some suggestions for further research



CHAPTER 2

LITERATURE REVIEW ON SCHEDULING THEORY

Review of scheduling theory

Scheduling can be described as “the allocation of scarce resources over time to
perform a collection of tasks” They arise in many practical applications tn
manufacturing, marketing, service industries and within the operating systems of

computers

Scheduling tasks are characterised by the

o Environment 1n which they are defined ( e g single or multiple machine
context)

] Job characteristics (e g presence of deadlines, release dates)

° Optimality critenia (e g Cmax, Lmax)

In this paper we present a literature review of recent advances in scheduling

theory

20 Introduction

Scheduling has been described as “the allocation of resources over time to
perform a collection of tasks”([B74], p2) As the definition mmplies, scheduling
theory arises within the realm of Combinatonal Optimisation (CO) and 1s closely

related to partitioning and packing problems



Scheduling theory 1s concerned primarily with mathematical models that relate to
the scheduling function This area has been researched very heavily since 1950
and many excellent review articles chart progress within the domain over that
time The research direction has been driven by practical applications and

scheduling problems are classified by the

) Environment in which they are defined ( e g single or multiple machine
context)

. Job characteristics (e g presence of deadlines, release dates)

. Optimality criterton, which is to be minimised (e g Cmax, Lmax)

Ideally, the optimality criterion should consist of all costs 1n the system that
depends on the scheduling decisions In practice, however such costs are often
difficult to measure, or even to identify completely According to [B74] three
types of decision-making goals are prevalent 1n scheduling

¢ Efficient utihsation of resources

o Rapid response to demands

¢ Close conformance to prescribed deadlines

By virtue of the classification scheme used to describe them, scheduling problems
are easy to describe However, they include many NP-hard problems and the field
has become a focal point for the development, application, and evaluation of
combinatoral procedures, simulation techniques, network methods, and heuristic

solution approaches



21 Job shop models

Since a complete description of a real machine shop would be too detailed to
serve as a conceptual basis for any meaningful analysis, we will adopt a
stmplified model consisting of a Job Shop and a dispatch area Jobs are recetved

through dispatch area from outside and then passed to the job shop

Dispatch
Area

Job
Shop

Figure | Job shop system

Such a model can adequately reflect the aspects of real machine shops that are
important for predicting performance The performances of such Job Shop system
models 1s normally measured by either the production capacity or mean tardiness
or the mean number of jobs 1n the system in the Job Shop and in the despatch

area However occasionally other system measures, which will be discussed later,

are also used [S79]




Problem Variables

e N The number of jobs to be scheduled

M The number of machines (each job 1s assumed to visit each machine once)

e d, Deadline for job 1 (Job 1 must be completed by date d, )
e d, Due date of job 1 (1t 1s desirable that job 1 be completed before the date d, )
e 1, Release date for job 1 ( job 1 can not be started before date r,)

e p, Setup and processing time of job 1 on machine |

Pre-emption ( pmtn ) 1s the ability to start or stop the processing of a job
arbitrarily often It 1s a watershed 1n scheduling problems 1f 1t 1s allowed, 1t tends
to make scheduling easy 1t 1s a characteristic of computer related problems, such
as the scheduling of tasks within an operating system, 1t is rarely present 1n

workshop problems

Solution-Dependent Measures

e C, Time at which job 1 1s completed

e F, The length of time job 1 1s 1n the shop (flow time)

e L, Lateness (C,-d,)

e T, Tardiness (max{0,L,}, 1 e positive lateness values)

In general we assume that all jobs are 1n the shop and ready for processing at time

0, and hence flow time and completion time are the same



Description of a Shop

In a shop-scheduling problem we are given a set of jobs J={J;,J2, ,Jn} a set of
machines M={M;,M,, M,;} and a set of operations O={0;, ,0) each
operation OxeO belongs to a specific job J;eJ and must be processed on a specific
machine M,eM for a given amount of time px, which 1s a non-negative integer At
any time, at most one operation can be processed on each machine, and at most

one operation of each job can be processed [K76]

According to [S79], scheduling problems differ in
e Routing - the order prescribed for jobs on the machines in the shop
e Input - the manner 1n which the jobs arrive at the system

e Duispatch policy - the manner in which the jobs are dispatched to the shop

22 Routing

A shop could be characterised by the following broad divisions
e Open Shop - Jobs can be processed on the machines in any order
e Job Shop - individual jobs have a prespecified machine sequence

e Flow Shop - all jobs follow the same prespecified machine sequence



23 Input

In [S79], scheduling problems are classified as static and dynamic, depending on
the job arrival pattern In a Static Job Shop, a certain number of jobs arrive
stmultaneously to a system that 1s idle and 1s immediately available for work No
additional jobs will be assigned to the system until they are dispatched to the
shop This prescheduling of jobs before dispatching may be carried out taking into
account the storage capacity of the Job Shop, the processing times of the

3

operations , due dates and so on

This preschedule stage can be used to obtain a dispatch schedule and assign
prionities for each job on each machine If no conflict arises 1n the shop with
respect to the prionties and dispatch schedules, the whole operation can be carried
out according to the preschedule However if conflicts arise due, inter aha, to
machine breakdowns, server vacations or uncertain processing times, it may
become necessary to practise shop level scheduhing (that 1s, prionty assignments

are made by the machine operator or shop floor supervisor)

The shop level scheduling can be classified into two categones local and global

Local scheduling rules assign prionties to jobs at a machine based on the
immediate status of the jobs at that machine, global scheduling rules require
information about the status of some aspects of the system beyond the local

boundaries of that machine

10



In a Dynamic Job Shop system, jobs arrive intermittently at times that are

predictable only 1n a statistical sense The jobs may belong to one or more classes

24 Dispatch policies

In a Pseudo-Static Job Shop, the dynamic scheduling problem 1s converted into
a sequence of static problems At review times all jobs in the Job Shop and
dispatch area are prescheduled using static rules All these jobs are treated as a
new batch, 1n the same way as those in a static scheduling problem Any job
entering the system after a review time must wart in the dispatch area until the
next review time No shop level scheduling 1s permitted unless 1t i1s required to
resolve conflicts due to prescheduling priorities

In a Pure Dynamic Job Shop, each job on arnival to the system enters the shop
immediately and only shop level scheduling is permitted When jobs in a pure
dynamic Job Shop are processed in the order of their arrival to the machines, the
system 1s typically treated as the classical Jackson type queuing network model
In order to improve the performance of the Job Shop, jobs may be scheduled at

each machine according to some priority rules such as shortest processing time

(SPT)

Pseudo-Dynamic Job Shop models represent systems where jobs can be held at
the dispatch area and control exercised at the prescheduling and shop levels,

depending on the type of information available

11




JOB SHOP SYSTEMS

FLOW SHOP JOB SHOP OPEN SHOP
l v l
STATIC JOB DYNAMIC JOB
SHOP SHOP
v v v
PSEUDO PURE PSEUDO
STATIC DYNAMIC DYNAMIC
JOB SHOP JOB SHOP JOB SHOP

Figure 2 Classification of job shops and scheduling systems

12




25 General assumptions

Following [S79], [K76] and [AS93], the following assumptions will be made

Job Based Assumptions

e The set of jobs J 1s known and fixed

Jobs arriving in the system go directly to the dispatcher and each job 1s

released to the shop as soon as it enters the dispatch area

o All jobs are available at the same 1nstant and independent

o Each job consists of specified operations, each of which 1s performed by only
one machine at a time

e Each job requires a finite process time for each operation The processing

times of all jobs at a machine are 1dentically and independently distributed

e Each job can be 1n each one of three states

. Waiting for the next machine
J Being operated by a machine
o Having passed 1ts last machine

e Each job s processed by all the machines assigned to it
e All jobs are equally important

e All jobs remain available during an unlimited period

13
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Machine Based Assumptions

o The set of machines M is known and fixed

o Each machine 1s continuously available for processing jobs and there are no
iterruptions due to breakdowns, maintenance or other such cases

e All machines remain available during an unlimited period

o Each machine 1n the shop operates independently of the other machines and
thus 1s capable of operating at its own maximum output rate

¢ Each machine can be 1n each one of three states

° Waiting for the next job
J Operating on a job
. Having finished 1ts last job

o All machines are equally important
e Each machine processes ali the jobs assigned to 1t

o Each machine processes one job at a time

Operating Policies

e Each job 1s considered as an indivisible entity even though it may be

composed of a number of individual units

Each operation once started must be completed without interruption

(If preemption 1s allowed, this assumption will be altered )

All processing times are fixed and sequence-independent

The processing order per job 1s known and fixed

Each job once accepted, 1s processed to completion, without cancellation

14



Each machine 1s fully allocated to the jobs under consideration

Scheduling Policies

SPT (Shortest Processing Time) Select a job with mimimum processing
time

EDD (Earhest Due Date). Select a job due first

FCFS ( First Come, First Served). Select a job that has been in the
workstation’s queue the longest

FISFS ( First In System, First Served). Select a job that has been on the
shop floor the longest

S/RO (Slack per Remaiming Operation). Select a job with the smallest
ratio of slack to operations remaining to be performed

Covert Order jobs based on ratio of slack-based priority to processing
time

LTWK (Least Total Work) Select a job with smallest total processing
time

LWKR (Least Work Remaiming) Select a job with smallest total
processing time for unfimshed operations

MOPNR (Most Operations Remaming) Select a job with the most
operations remaining in 1ts processing sequence

MWKR (Most Work Remamning). Select a job with the most total
processing time remaining

RANDOM (Random) Select a job at random

15



WINQ (Work In Next Queue) Select a job whose subsequent machine
currently has the shortest queue

SPTT (Truncated Shortest Processing Time). In SPTT scheduling

discipline, jobs are divided by the controlter into two classes such that jobs

with processing time less than or equal to o belong to class land the rest
to class 2 Here o 1s the boundary point Higher priority ts given to

class 1 However within class 1 jobs are selected according to SPT and

within class 2 according to FCFS

{2C-NP} (Two Class Non-Preemptive Priority). In 2C-NP, jobs are
divided by the controller into two classes as in SPTT However within
each class jobs are selected according to FCFS

2L-SPT (Two Level Shortest Processing Time) In 2L-SPT, jobs are
divided by the controller into two classes A job 1s randomly assigned to
class 1 with probability f and to class 2 with probability 1-f Class 1 jobs

are given higher priority and within each class SPT discipline 1s used

16



26 Problem classification

In [DLR81], scheduling problems are classified using three characterstics /By,

where « 1s the machine environment,  defines the job charactenistics and y 1s the

optimality criterion that 1s to be mmnimised

Machine Environment

We describe here the first field o = ooz which specifies the machine
environment

Let o denote the empty symbol If a; € {o, P, Q, R}, each job J; consists of a

single operation that can be processed on any machine M,, the processing time of

J, on M, being p,

There are four cases to consider
e o; =0 Single machine, p;;=p,
o o =P Identical parallel machines, p,=p, (=1, ,m)

e o) =Q Uniform paraliel machines, p, = p,/ q, for a given speed q, of M,
(=1, ,m)

¢ o, =R Unrelated parallel machines

If a; = O we have an open shop, 1n which each J; consists of a set of operations

{0y, , Om} O, has to be processed on M, dunng p, time units However, the

order 1n which the operations are executed 1s immaterial

17



If ay € {F, I}, an ordenng 1s imposed on he set of operations corresponding to
each job If o, = F, we have a Flow Shop and if a; = J, we have a Job Shop If a;
1s a positive integer, then m 1s a constant and equal to a; If a; = o then m 1s

assumed to be variable

Job Charactenstics
I'he second field p € {B1, ,Bs} defines the job charactenstics
e B, € {pmtn,o}
B1= pmtn Preemption ( job splitting ) 1s allowed the processing of
any operation may be interrupted and resumed at a later time
Bi=o No preemption 1s allowed
e [, € {prec,tree,0}
B2 = prec A precedence relation — between the jobs 1s specified
J>J requires that J; be completed before Jx can start
B, = tree G is a rooted tree with outdegree at most one for each vertex
B2=o0 No precedence relation is specified
* B3 e {n0}
Bi=r, Release dates that may differ per job are specified
Bi=o Allr=0
o Pse {m<m,o}
Bs = m<m A constant upper bound on m, 1s specified (only iIf oy = J)

Bi=o All m, are arbitrary integers (Where {Oy), ,On} 1s aset of

18



operations that each J; 1s consisted of) O, has to be processed on
M, during p, time units
* Pse{py=10)
Bs=p,=1 Each operation has unit processing time
(f oy € {0,P,Q}, we wnte P=1 and if =R, p,=1 will not occur)

Bs=o0 All p, (p,) are arbitrary integers

Optimality Critenia
The third field y € {fyna,2f)) refers to the optimalty criterion which is to be
minimised The optimality criteria most commonly chosen in the literature are
*  fmax € {Cmax, Lmax},
where finax = max, (f{ (C)) ) with £ (C, } = C,, L, respectively
o Xf e {2C,XT,2U,2Zw,C,.2wT, 2w},
where 2f, = X£(C)) with £,(C)) = C, T,,U,w,C,,w,T,,wjU,, respectively

(all these factors will be defined 1n the next section)

For example R[pmtn[2C, Minimise total completion time on a variable number

of unrelated parallel machines, allowing preemption The complexity of this

problem is unknown

19



Other objectives are mmnimising

27

Average flow time, F = (F+F;+  +Fy) /N (N = total number of jobs)

Time required to complete all jobs ( Cpax, also referred as makespan )

Average tardiness, T = (T|+Tz+ +Tn)/N

Maximum tardiness (Tmax)

Number of tardy jobs, U;+U,+ +Un, where U, 1s 1 1f T,>0 and 0 otherwise
Weighted sum of job completion times, w;Ci+wyCat+  +wnCn

where each job has a specified weight w,

Total tardiness, T;+T2+ +Tn

Sum of Cost Functions, fi(C))+f2(C2)+ +fx(Cn), where for each job j there 1s

specified a cost function f,

Studies of dynamic job shop systems and related models

Most methods proposed for solving the job shop scheduling problem are of an

enumerative type, and use a disjunctive graph formulation proposed by [RS64]

Nevertheless, other approaches have been tested most of them based on an active

schedule generation or mixed integer programming (MIP) formulation

In this section we will expose some 1deas, of some researchers about the job shop

scheduling problem These ideas are taken from articles in magazines that have

been published the last four years

20
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271 Disjunctive graph formulation

The model can be modelled by a disjunctive graph K=(G,D), where G=(X,U) 1s a
comunctive graph associated with the job sequences Most methods proposed for
solving the job shop-scheduling problem are of an enumerative type, and use a
disjunctive graph formulation proposed by [RS64] Nevertheless, other
approaches have been tested most of them based on an active schedule generation

or mixed integer programming (MIP) formulation

. X 1s the set of vertices which represent the tasks to be performed,
including the fictitious start and fimsh tasks,

. U 1s the set of comjunctive arcs representing the order 1n which the tasks
belonging to the same jobs should be performed

. D 15 the set of disjunctive arcs, and more precisely the set of pairs of
opposite directed lines (1 e arcs) which represent the possible precedence
constraints among tasks belonging to different jobs but performed on the
same machine

Two operations 1 and j, executed by the same machine, can not be simultaneously

processed So we associate with them a pair of disjunctive arcs or disjunction

()= {(L), 6.1}

Usually o and * denote two dummy operations associated with the beginning and

the end of the schedule In the following p, denotes the processing time of

21
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operation 1 A schedule on a disjunctive graph K= (G,D) 1s a set of starting times
T={t, 1 € X} such that
¢ The conjunctive constraints are satisfied
t-t,2p V() eU
¢ The disjunctive constraints are satisfied

t-t.>p ortet>p V(@) eD

To built a schedule, we have to replace each disjunctive arc [i,4] by either (1) or

(),1), and thus to choose an operating sequence for each machine

2.7 2 Mixed integer programming formulation

A large number of MIP formulations have been proposed by a number of authors
[F82] A new MIP formulation that has been recently used by [AC91] is presented
here Keeping the notation defined above, the problem can be formulated as

follows

Minimize Cinax

Subject to VieX, t,=>0,
Vie X, Cmax..>_ t,+pl
Y (,3) e U txt, +p,

V [1,)] € D, t>t, +p, or t> t;+p,

22



This disjunctive programming problem leads to the following MIP formulation by

troducing a binary variable y, and setting the new constraints

V [1,)] € D, t= ty+p-Kyy, t> ttp-K(1-yy)

v [1>J] € D’ yl} € {071}3

where K 1s some large constant, and y,=1 if and only if 1 1s scheduled before ),

and O otherwise

273 Job grouping

Economies of scale are fundamental to manufacturing systems With respect to
scheduling this phenomenon manifests itself 1n efficiencies gamned from grouping
similar jobs together Job grouping [WB95], [AW97] are techmques that have
been tested on the job shop scheduling problem In both cases jobs are grouped
into families where jobs 1n the same family share a setup ( a job does not need a
setup when following another job from the same family) but a known “famuly

setup time” 1s required when a job follows a member of some other family

23



In [WB95] an overview of research results for scheduling groups of jobs on a
single machine 1s presented These results fell into three categories, according to

the scheduling model

. Family scheduling with item availability
° Family scheduling with batch availability
o Batch processing

In the first model a job becomes available for delivery to the next stage as soon as
it completes processing A simplifying assumption for family scheduling s that
precisely f setups in the schedule are needed, one for each family (f 1s the number

of families) This assumption 1s called GT assumption

The authors show that the F,, problem and the L,., problem are easy to solve
when the GT assumption holds, otherwise, the F,, 1s open and the Ly,.x problem 1s
known to be NP-hard One useful direction for further research would be to
resolve the complexity of the F, problem If it 1s NP-hard, then another
researchable area would be the development of algonthms for either problem
Some sufficient conditions for the optimality of the GT solution are also

presented
Next they reviewed the major results for the family scheduling model with batch

availability, which characterize the solution of the F problem when there 1s one

family They applied the same principles to develop a solution to the Lpax

24



problem when there 1s one family The generalization to multiple families 1s a
challenging area for future work, as 1s the one-family problem with the Fy

objective

They also highlighted several results for the batch processing model which has
recetved attention only recently in the scheduling literature They focused on
models involving dynamic job arrivals, 1n light of the fact that the static version of
the batch processing problem 1s often trivial Two broad areas for future work
appear fertile One involves relaxing the assumption of a single machine and the

other area involves criteria other Fy, and Luax

274 Branch and Bound methods

Branch and bound techniques have been tested on the job shop scheduling
problem [AW97] analyses a model of a single machine scheduling problem with
family setup times, arbitrary earliness and tardiness job penalty rates, and an
unrestricted common due date 1s analysed to minimize total weighted earliness
and tardiness cost These rates are assessed on a per-period basis when the

completion time deviates from its due date

The 1nteresting point of this work 1s that 1t combines the features of family setup
times (Jjob grouping) with earliness / tardiness cost They have generalized
properties from the hterature {HP91] that help characterize the form of optimal

schedules and they have defined an efficient method for calculating a lower bound
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on the optimum The properties and lower bounding methods are incorporated
into a branch and bound and a beam search procedure

Each node 1n the tree (with the exception of the bottom-level) corresponds to a
partial schedule When an unsequenced job 1s added to a partial schedule S, it 1s
added to erther the beginning of E or the end of T (where E and T are the ordered

set of jobs that complete no later than time d and after time d respectively)

The branch and bound algonthm employs a depth-first strategy A node in r*
level of the branch and bound tree corresponds to a partial sequence with r jobs
For each node at level r, there are two nodes emanating for each unsequenced job
one for the first available early position and one for the first available tardy
positton The nodes that can not be fathomed by some dominance conditions are
listed 1n nondecreasing order of lower bounds The node at the top of the list 1s

selected for branching

Beam search 1s a heuristic branch and bound procedure that does not necessarily
evaluate the complete branch and bound tree Thus, the approach sacrifices a
guarantee of optimality for gains in speed and reduced memory requirements At
each level only a limited number of nodes are selected for branching, the rest are
permanently discarded The number of nodes selected for branching 1s called the

beam width
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275 Sunulated Annealing

Simulated Annealing [LAL92] 1s one of the most important local search
techniques that have been tested on the job shop scheduling problem In {LAL92]
an approximation algorithm 1s presented for the problem of finding the minimum
makespan n a job shop The algorithm 1s based on simulated annealing, a
generalization of the well known 1terative improvement approach to
combinatonal optimization problems and 1s a more general approach based on
the easily implementable simulated annealing algonthm [KGV83]

The 1nnovation of the algornthm involves the acceptance of cost-increasing
transitions with a nonzero probability to avoid getting stuck 1n local minima That
probabilistic element of the algonthm makes simulated annealing a sigmificantly
better approach than the classical iterative improvement method on which 1s

based The neighborhood structure 1s based on critical path rearrangement

A transition 1s generated by reversing the sequencing order of two critical
operations

[LAL92] establishes the asymptotic convergence tn probability to a global
minimal solution of a simulated annealing procedure using the first neighborhood
mentioned above In comparison with other heuristic methods, simulated
annealing yields consistently good solutions Simulated annealing has the
disadvantage of large runming times which can be compensated for by the

simplicity of the algorithm, by its ease of smplementation, by the fact that 1t
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requires no deep msight into the combinatoral structure of the problem, and, of

course, by the high quality of solutions 1t returns

276 Tabu Search techmques

Other local search techniques that have been tested on the job shop scheduling
problem are Tabu Search techniques [DT93] In [FS] a new heunistic method
based on the Tabu Search techmque for solving the n-job m-machine job shop

scheduling problem to minimize the makespan is presented

The authors start from an nitial solution by sequencing randomly the jobs to the
machines Given a sequence s, they define N(s) as being the set of all feasible
sequences which can be obtained from s by applying a method which firstly
constructs a priority list of jobs, secondly selects the job on the first position of
the priority hst and then assigns this job to the machine on the first position of the

Job’s operations sequence

After that a job on the second position 15 selected and assigned to the machine on
the first position of the job’s operations sequence, and so on Because the
objective function 1s the makespan, the best neighbour s selected as the sequence
that minimizes the makespan all over sequences in N(s) and which does not lead

to tabu moves
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The algorithm 1s sometimes simplified by examining neighbours and taking the
first one that improves the current solution If there 1s no move that improves the
solution ( or if all improving solutions are tabu ) then the whole set of neighbours
1s examined If all the generared neighbors do not improve the solution or all the

improving neighbors are tabu, all neighbours are examined

The procedure 1s stopped when Nmax iterations have been performed without
improving the current solution (where Nmax 1s a parameter of the algorthm and
can be set by experimentation) It was observed that the better the initial solution,
the better the results and also the smaller the number of iterations Thus a an 1dea
for future work may be to find better ways of generating a neighbour, testing for
the best parameter settings, and finding a better starting solution In comparison
with other heunistic algorithms, tabu search yields quite good solutions and 1s less

time-consuming than simulated annealing

277 Truncated Branch and Bound methods

One of the most efficient approximate methods proposed so far 1s probably the
Shifting Bottleneck Procedure presented in [ABZ88] Starting with the imitial job
shop scheduling problem, the authors optimally sequence one by one the
machines, using Carlier’s (1982) [C82] algonithm for the one machine problem
At each optimization step, heads and tails adjustments are computed The order in

which the machines are sequenced depends on a bottleneck measure associated
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with them Each time a new machme 1s sequenced, they attempt to improve the
operating sequence of all previously scheduled machines 1n a reoptimization step
This procedure 1s embedded 1n a second heurnistic of an enumerative type, for

which each node of the search tree corresponds to a subset of sequenced

machines
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CHAPTER 3

MODEL DESCRIPTION

30 Description of our model

We consider a model that 1s based on single-machine scheduling models that
incorporate benefits from job grouping

In some settings, the grouping of jobs 1s a desirable or necessary tactic because of
some technological feature of the processing capability The motivation for
grouping sometimes relates to the existence of changeover times, or set-up times

on the machine

Suppose that jobs each belong to a particular family, where jobs 1n a famuly tend
to be stmilar i some way, such as their required tooling or their container size
As a result of this simslarity, a job does not need a set-up when following another
job from the same famuly, but a known “family set-up time” 1s required when a
job follows a member of some other family This 1s called family scheduling

model

In the family scheduling model, a machine 1s assumed capable of processing at
most one job at a time We use the pair (1,3) to refer to job j of family 1 We let f
denote the number of families, n the number of jobs, and n, the number of jobs

belonging to fanuly 1
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In addition p,, and w,; denotes the processing time and weight of job (i)
Thus ny + n;+ + ng=n In addition, s, denotes the setup time required to process
a job 1n family 1 following a job in some other family In principle any family
scheduling model can be viewed as a single-machine model with sequence
dependent setup times If a job follows a member of the same family, then its

setup time 1s zero otherwise 1ts setup time 1s s,, the famuly setup time

We know that sequence-dependent set-up times tend to make solutions difficult to
find However, by exploiting the special structure of family scheduling, we can
sometimes avoid the enumerative techmques that would ordinarily be required
A simplifying assumption for family scheduling 1s the requirement of precisely
set-ups in the schedule, one for each family Such a requirement may reflect the
fact that the set-ups are much longer than the job processing times, or it may
result from a desire to minimize the time spent on set-up n situations where
capacity 1s scarce It may also be imposed simply to make the problem more
tractable We refer to this assumption as the GT assumption

Each famuly 1s treated as a single entity, or composite job with processing time

p = Z":p,j and weightw, = jn_:wu

= =
We consider the problem of assigning due-dates and sequencing a given set of
Jobs on a single machine There will be penalties for completing jobs either ahead
or behind their scheduled dates The objective 1s to minimize a function of missed

due dates
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We are concerned with the optimal sequencing of a set of jobs to minimise a
penalty of deviation from the desired due-dates It 1s coupled with the optimal
assignment of due-dates to the set of jobs to be processed by a single machine
Given a set of families of jobs with deterministic processing times and the same
ready times, the problem is to find the optimal common flow allowance k" and the
optimal job sequence G to minimize a penalty function of missed due dates

It 15 assumed that penalty will not occur if the deviation of job completion from

the due-date is sufficienlty small

Scheduling agamnst due-dates has been a popular research topic n the scheduling
hiterature for many years [BS90], [BGG88], [B87], [HP89] It attracts the
attention of both Operational Research researchers and practitioners for two
reasons The combinatonial nature of the due-date scheduling problem poses a
great theoretical challenge to researchers who are trying to develop time-efficient

algorithms to solve the problem 1n an elegant manner

The results of due-date scheduling research have significant practical value in the
real world It ts evident that the failure of completing a job on its promised
delivery date gives rise to various penalty costs Completing a job early means
having to bear the costs of holding unnecessary inventories while finishing a job

late results in contractual penalty and loss of customer goodwill

33



31 Previous studies on related models

The study of earliness and tardiness penalties 1n scheduling models 15 a relatively
recent area of inquiry For many years, scheduling research focused on single
performance measures, referred to as regular measures that are nondecreasing in
job completion times

Most of the hterature deals with such regular measures as mean flowtime, mean
lateness, percentage of jobs tardy, and mean tardiness

The mean tardiness criterion, in particular, has been a standard way of measuring
conformance to due dates, although 1t ignores the consequences of jobs
completing early

However, this emphasis has changed with the current interest in Just-In Time
(JIT) production, which espouses the notion that earliness, as well as tardiness,

should be discouraged [BS90]

In a JIT scheduling environment, jobs that complete early must be held 1n finished
goods inventory until their due date, while jobs that complete after their due dates
may cause a customer to shut down operations Therefore, an ideal schedule is
one 1n which all jobs finish exactly on their assigned due dates This can be
translated to a scheduling objective 1n several ways

JIT encompasses a much broader set of principles than just those relating to due
dates, but scheduling models with both earhness and tardiness penalties do much

to capture the scheduling dimension of a JIT approach
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The concept of penalising both earliness and tardiness has spawned a new and
rapidly developing line of research in scheduling theory Because the use of both
carliness and tardiness penalties gives rise to a nonregular performance measure,

it has led to new methodological i1ssues in the design of solution procedures

311 The E/T model

Virtually alt the literature on E/T (earliness and tardiness) problems deals with
static scheduling In other words, the set of jobs to be scheduled is known in
advance and is available to all schedulers in a multiple machine environment The
vast majority of the articles [GK87], [BS90], [C88], [C87], [HP89], [HPI1] on
E/T problems only deals with single machine models although some single
machine results have been extended to parallel machines Let E, and T, represent

the earliness and tardiness, respectively of job )

Assocsated with each job 1s a umt earhness penalty a, > 0 and a unit tardiness
penalty B, > 0 Job j 1s also described by a processing time p, and a due date d,

The basic E/T objective function for a schedule S can be written as f{S) where

RS)= Y(a,E, +8,T,)

In some formulations of E/T problems the due dates are given while 1n others they
are derived from the optimahty function In the simplest models, all jobs have a

common due date Prescribing a common due date might represent a situation
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where several items constitute a single customer’s order, or 1t might reflect an
assembly environment in which the components should all be ready at the same

time to avoid staging delays

A more general model allows distinct due dates, but 1n these cases due dates
appear to be mtrinsically different from solutions to problems with a common due

date

Treating due dates as decision variables reflects the practice in some shops of

setting due dates Internally, as targets to guide the progress of shop floor

activities

3.1 2 Minimzing total deviation from a common due date

An important special case in the family of E/T problems involves minimising the
sum of absolute deviations of the job completion times from a common due date

[K81a), [SH84], [H86], [BCS87] In particular, the objective function can be

written as
f(8) = ZICJ _d‘ = Z(EJ +T))
7=l =1

with the understanding that d,=d
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When we write the objective function in this form, it 1s clear that earliness and
tardiness are both penalized at the same rate for all jobs In these cases 1t 1s
desirable to construct the schedule so that the due date 1s, 1n some sense, in the
middle of the jobs If d 1s too small, then it will not be possible to fit enough jobs
in front of d, because of the restriction that no job can start before time zero Thus
for a given job set we might discover that d 1s too small, this gives rise to the

restricted verston of the problem

It can be shown that there exists an optimal solution to the unrestricted problem

with the following properties [BS90]

I There 1s no inserted 1die time 1n the schedule
(If yob j immediately follows job 1 in the schedule the C=C+p,)

11 The optimal schedule 1s V-shaped (Jobs for which C <d are sequenced 1n
nonincreasing order of processing time, jobs for which C>d are
sequenced 1n nondecreasing order of processing time )

111 One job completes precisely at the due date (C=d for some j )

v In an optimal schedule, the bth job 1n sequence completes at time d, where

b 1s the smallest integer greater than or equal to n/2 In other words,

b=n/21f n1s even, and b = (n+1)/2 1f n 15 odd
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3 13 Parallel machine models

The basic analysis of the unrestricted version has been extended to models
mvolving m parallel machines The multimachine procedure assigns the m longest
jobs to different machines Thereafter, the jobs are treated 1n nonincreasing order
of processing times and assigned 2m at a ime among the machines After all the

jobs are assigned an algorithm 1s used to sequence the job on each machine

In addition the four key properties apply to the optimal solution of the

multimachme model 1n the form [SA84], [H86]

1 On each machine, there 1s no inserted 1dle time

I On each machine, the optimal schedule 1s V-shaped

111 On each machine, one job completes at time d

v The number of jobs assigned to each of the m machines 1s either [n/m] or
[n/m]+1 (where [x] denotes the integer portion of x) Let this number be
denoted q Then, on each machine, the bth job in sequence completes at

time d, where b 1s the smallest integer greater than or equal to /2
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314 Different earhness and tardmess penalties

A generalization of the basic model derives from the notion that earlmess and
tardiness should be penalized at different rates As noted earlier, o may represent
a holding cost while B represents a tardiness penalty These are likely to be
different, especially because « tends to be endogenous, while § tends to be

exogenous In particular, let
fS)=> (@l +f 1)
J=1

Again there are restricted as well as unrestricted versions of the problem In the

unrestricted version an optimal solution has these properties [BCS87]

| There 1s no inserted 1dle time

1 The optimal schedule 1s V-shaped

111 One job completes at time d

v In an optimal schedule the b job n sequence completes at ime d, where

1s the smallest integer greater than or equal to nf3/(a+f3)
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315 Addibonal penalties

One way to extend the E/T cniterion is to tnclude other performance criteria 1n
which penalties might be incorporated Two such criteria, namely due-date
penalty and flowtime penalty, are introduced by Panwalkar, Smith and Seidmann
[PSS82] Their model takes the common due date as a deciston vanable, but their
formulation also provides a disincentive for setting a late due date

This structure makes practical sense For example, a firm mught offer a due date to
its customer during sales negotiations, but have to offer a price reduction if the

due date 1s set too late

Suppose that there 1s a given parameter dg that represents a maximally acceptable

due date Consider the following objective function

(S)= e E, +81 +yd-d,)]

Here, a penalty v 15 assessed (for each job) on the difference between the due date
selected and do, when d 1s later This penalty provides a disincentive for setting
due dates later than the maximally acceptable value Panwalkar, Smith and
Seiddmann [PSS82] indicate that this problem cannot be solved except by

enumerative techniques An exception in the special case do=0
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In addition properties I, 11, and 111 (p39), hold for this problem
Property IV generalizes as follows
v In an optimal schedule the bth job 1 sequence completes at time d, where

b 1s the smallest integer greater than or equal to n(B-y)/(a+f)

For a different extension of the E/T model, with d as a decision variable, consider

the following objective function

&)=Y lak, +p1,+0C ]

J=l

Here a penalty 1s assessed on the completion time (equivalently, the flow time) of
job J, thus providing an incentive to turn around orders rapidly

The model contains an additional trade off because the flowtime penalty tends to
induce shortest first sequencing whereas the earliness cost induces the reverse

sequencing, at the start of the schedule

316 Nonhnear penalties

In some cases, large deviations from the due date are highly undesirable, and 1t
might be more approprnate to use squared deviations form the common due date
as the performance measure Thus, consider the objective function

n

fS)=Y@-C,) =3 (B +1%)

)=l
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This 1s the quadratic analogue of total absolute deviation Bagchi, Sullivan and
Chang [BSC86] show that the unrestricted version of this problem 1s equivalent to
the completion varance problem studied by Eilon and Chowdhury [EC77], Kanet

[K81b] and Vani and Raghavachari [VR87}

Eilon and Chowdhury [EC77] propose the first heuristic algorithm for solving the
quadratic problem, using adjacent pairwise interchanges of jobs to improve the
solution

Kanet [K81b] shows that the problem 1s equivalent to minimizing the sum of
squared differences 1n job completion times He adapts an algonthm for the
absolute dewviation problem as a heurnistic for the quadratic objective and

improves on the Eillon-Chowdhury [EC77] results

Vani and Raghavacharn [VR87] investigate the use of all pairwise interchanges,
and they obtain improved solutions over the other heuristics at the cost of

increased computational time

Bagchi, Chang and Sullivan [BCS87] also examine the general case in which

earliness and tardiness penalties differ

fls)= Y (@ E? + B I7)
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They develop dominance properties and incorporate them 1nto a search procedure
to solve the problem, however their approach remains essentially an enumerative
one

317 Job dependent earhiness and tardiness penalties

An obvious direction for generalization 1s to permut each job to have its own

penalties o, and B, Specifically the objective function takes the form
)= 3 @, E,+4, 7))
1=1

When o, = B, the tardiness penalty matches the earliness penalty for any
particular job, but the penalties may differ among jobs The unrestricted version
of this problem has been examined by Bagchi [B85], Cheng [C87], Quaddus

[Q87], Bector, Gupta and Gupta [BGG88],and Hall and Posner [HP89]

Bagchi [B85] considers the case in which a, = a p; He proves some dominance
properties that might accelerate a solution procedure Bector, Gupta and Gupta
[BGG88] present a linear programming perspective on these same results Hall
and Posner [HP89] prove some dominance properties that provide necessary
conditions for an optimal sequence Their most significant result is a proof that

the unrestricted verston of he problem 1s NP-complete

They proceed to develop a dynamic programming algorithm, which they show to

be pseudopolynomial
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Furthermore, they demonstrate the computational effectiveness of their algorithm
by attacking problems that contain hundreds of jobs and by obtaining optimal
solutions with modest run times

Quaddus [Q88] considers the general case in which o, # B, and also includes a due

date penalty y, but deals only with the selection of a due date

However it 1s easy to show that Property I (p39) holds, and Property II (p39) takes

the form

Il The optimal schedule 1s V-shaped jobs in B are sequenced 1n
non-increasing order of the ratio p, / @, and jobs in A are sequenced 1n

non-decreasing order of the ratio p, / B,

In addition Property 111 (p39) holds and the general form of Property 1V specifies

a necessary condition for b as

[V Inan optimal schedule the bth job 1n sequence completes at time d, where

b 1s the smallest integer satisfying the inequality
b n
ICRYPDNCASS

where the subscript j denotes the jth job 1n sequence

318 Due date tolerances

A more general representation allows the penalty to be zero if the completion time

ts close enough to the due date, where close enough 1s specified by a given
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tolerance For job ) to avoid penalties, its completion time must fall in the interval
from d-u, to d+v, This interval could be interpreted as the length of a time bucket
in an MRP system Cheng [C88] analyzes a special case in which the criterion 1s
total absolute deviation and all u, and v, are 1dentical He imposes an unusual

assumption

Although the model prescribes no penalty on a job that completes within its
tolerance 1nterval around the due date, other jobs have earliness and tardiness
calculated from the due date rather than from the end of the tolerance interval

This gives rise to the discontinuous penalty function shown below

l } Completion time
d-u d d+v
Figure 3 Discontinuous penalty function
Consider the more conventional, and consistent assumption that, for job j,

earliness or tardiness 1s measured only from the end of the tolerance interval

E, = (d-Cj-u)"

T, = (C-d-v))

and )= @ E,+5,T,)
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This gives rmise to the continuous penalty function shown below

Penalty

Completion time
d-u d d+v
Figure 4 Continuous penalty function
The tolerance 1s also assumed to be relatively small compared to the processing
times 1n the job set Formally, the requirement is that at most one job can avoid
penalty costs or

p, — v, — u; > 0 for all pairs of jobs (1))

Notice that the models previously discussed can be viewed as the special case in

whichuy =v,=0

In the tolerance model, Properties I and II (p39) continue to hold The
generalization of Property IIl states that there will be one job that incurs no
penalty 1n the optimal solution, we shall treat this as job b The generalization of

Property 1V provides a necessary condition for b 1n an optimal sequence
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Property 111 (generahzed)

In an optimal schedule some job j completes either at d-u, or at d+v,

Property 1V (generahzed)
In an optimal schedule let b denote the number of jobs that incur no tardiness

penalty Then the completion time of job j satisfies the conditions

Co=d-uy of DY a, <D B ad Y a2y p

1<h >b 1<b >b

Cp=d+uy If Za,<Zﬂ, and Za,ZZﬂ,

i<b 1>b 1sh 1>

Thus, for the tolerance model

. Properties [ and I (p39) apply

. In the unrestricted verston of the problem Properties 111(generalized) and

IV (generalized) apply

. Determining whether a given problem 1s restricted requires solving the

unrestricted version, with the due date as a decision

o Constructing the optimal solution requires a matching of coefficients and

processing times when o, = a and 3, = § and the problem 1s unrestricted

Otherwise the solution requires an enumeratton of V-shaped sequences, aided to

Property 1V(generalized) which identifies those V-shaped sequences that are

candidates for optimality
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319 The mmmax criterion

One other tolerance model that consists of minimizing the maximum penalty,
where penalties are assessed on eailiness or tardiness has been studied In other

words the objective function 1s [S77]

f(8) = min){max[a(E,),B(T))]}

where a(X) and B(X) are convex functions of earliness and tardiness, and distinct

due datcs are permitted

3110 Distinct due dates

The general E/T model has different due dates 1n the job set This feature tends to
make 1t more difficult to determine a mintmum cost schedule than in the problems
discussed so far However, if the due dates are treated as decision variables, the

problem turns out to be relatively simple The objective function has the form
08)=SekE,+p1 +y@d-dy)]
2=1

In this model, Properties I and 11 (p39) do not hold, the optimal sequence may not
be V-shaped, and 1inserted 1dle time may be desirable The search for an optimal
schedule can, however, be decomposed into two subproblems finding a good job

sequence and scheduling inserted idle time
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3111 Job deadlines

A related model introduces deadlines rather than due dates [B87] Whereas due
dates may be violated at the cost of tardiness, deadlines must be met and cannot
be violated Thus for example, 1f the makespan exceeds the maximum allowable
deadline, then the problem 1s considered infeasible However we can also view
such models as E/T models with infinite B,, and thus special cases of the problem

considered above A more general objective 1s to mummize total weighted

earliness

The objective function can be stated formally as

Minf(D,0)= > n0C +> > (aE +B7T))
J J J

where
n, = number of jobs i1n customer order j
0, = lead-time penalty per unit time for each job 1n customer order
C, = completion time of the last job 1n customer order }
T, = tardiness of job 1 1n customer order )
E, = earltness of job 1 1n customer order |
o, = umit earliness penalty for customer order j
f3, = umt tardiness penalty for customer order j

and D 1s the vector of the due dates for the customer orders
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CHAPTER 4

A MIXED INTEGER PROGRAMMING FORMULATION OF

SCHEDULING PROBLEMS

40  Sciconic

In this section we are going to present the MIP (Mixed Integer Programming)
formulation of our problem along with the results that we obtained for a specific
instance of our model, using SCICONIC an algonthmically advanced
Mathematical Programming package developed by SCICON Its purpose s to
provide both technical and non-technical users with a convenient and cost-
effective way to solve linear, integer and non-linear programming problems
Mathematical programming (MP) 1s a rapidly advancing field, and SCICONIC
has been designed around advanced algonthms and techniques Further
developments are continually being made, especially in robustness and the speed

of solution for large linear and mixed integer problems

Mathematical programming (MP) has a wide vanety of applications in the
petroleum, chemical and manufacturing industries, transport agriculture and many
more It can be used for a varety of purposes, from providing an optimum
solution to an established problem to providing a frame work for collecting and
evaluating all of the relevant data and their consequences Completely new

models can be built in order to gain greater understanding of a hypothetical
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situation, while established models can be run routinely many times a day to

guide the operation of a manufacturing process

In general terms, Mathematical Programming is concerned with the best way to
allocate scarce resources to alternative activities [W78] lists applications under

the following headings

. The Petrolcum Industry

o The Chemical Industry

o Manufacturing

. Transport

J Finance

° Agriculture

. Health

. Mining

° Manpower Planning
o Food

. Energy

o Pulp and Paper

° Advertising

o Defence

. Other applications

It 1s important to realise why mathematical programming applications have been
successful Firstly they give true optimum solutions to a well-defined problem
Secondly, the concepts of Mathematical programming — the quantification of the

objectives and the set of all possible ways of achieving these objectives — provide
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a framework for thinking about all the relevant data, an occasion for collecting
them and the ability to compute the consequences of these data Often the only
way to achieve a realistic set of data 1s to show the people who collected them the

consequences of their imitial estimates of the data values

It 1s useful to distinguish between established and new mathematical
programming models An established model 1s run from time to time with updated
input data as part of some operational decision — making routine The purpose 1s
then to suggest a specific course of action to management, and the suggestion will
usually be accepted A new model may also be used 1n this way, but 1s more often
uscd to gain greater understanding of the situation The model may be run under a
variety of assumptions that lead to different conclusions, and the model itself will

not suggest which set of assumptions 1s most appropriate

During the model development and data gathering phase, one must therefore be
ptepared to make many optimisation calculations which the analyst will show to
management and say “This 1s what the model now recommends Does 1t look
senstble, and if not why not 7 Neither the analyst nor the manager should accept
the recommendations unless they can be explained qualitatively as the natural
consequences of physical and economic assumptions This can be paraphrased by
saying that one should only trust the model if the results are obvious This may

suggest that the model 1s of no real use but this 1s not so, because many things are
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obvious once someone has pointed them out, when they were not at all obvious

beforehand

One difficulty with large-scale mathematical programming models s that the
details of the formulation can become obscure, and changes are then hazardous
So we need a systematic approach to documentation It 1s natural to base this on

compactness of an algebraic formulation

Two important points that have to be mentioned are the following
| Practical linear programming formulations can all too easily require
hundreds of constraints and thousands of variables, while

2 The algebraic formulation 1s precise and often compact
Mathematically, MP 1s about finding the maximum or minimum value of a
function of several variables given that the variables have to satisfy a number of

constraints, which are limits on the values of functions of the variables

The stages involved running mathematical programming models are

o Express the problem as an MP matnix
. Find the optimum solution
o Interpret the solution
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An MP code such as SCICONIC will do the second stage It takes the matrix 1n
standard (MPS) format ( the MPS code and the output that we get using
SCICONIC can be found 1n Appendix C), finds the optimal solution and writes it
out to a solution file

SCICONIC expects a problem to be presented in the form of an industry- standard
MPS format matrix file Creating an MPS matrix by hand n an editor 1s a slow

and error prone task, even for very small problems

41 Mixed Integer Programming (MIP) formulation

A large number of MIP formulations have been proposed by a number of authors
[F82] A new MIP formulation that has been recently used by {AC91] 1s presented
here Keeping the notation defined above, the problem can be formulated as

follows

Minimize Cinax

Subject to YieX, 20,
V 1€ X, Cmax->- t|+p1
V(1)) € U, t=t, +p,

V [1,4] € D, t> t, +p, or t> t,+p,

This disjunctive programming problem leads to the following MIP formulation by

introducing a binary variable y,, and setting the new constraints

54



v [13] € D, t= 4+p-Kyy, t2 t+pi-K(1-y,)

v [lz]] € D, yU G{O:vl}’
where K 1s some large constant, and y,=1 1f and only if 1 1s scheduled before J,

and 0 otherwise

42  Anexample of the (MIP) formulation

Three jobs A,B and C are to be processed on a single machine

Job A 1s processed on the machine for ps hours, job B 1s processed on the
machine for pg hours and finally job C 1s processed on the machine for pc hours
The machine can work only one job at a time and no preemption 1s allowed We
also assume that we have two job families (f=2) which are defined as
follows familyl fi={A,C} family2 f,={B}

While s, , 1=1,2 denotes the setup time required 1n order to process a job in famuly
1, following a job 1n some other family No setup 1s required between jobs from

the same family
All jobs require the same due-date that 1s denoted d that means that 1s desirable to

finish jobs 1n no more than d hours
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Formulation
Let XA denote the time (measured from zero datum) when the processing of job A
i1s started on the machine Similarly X and X¢ arc defined
The first set of pertinent constraints is the non-interference constraints, which
guarantee that machine work on no more than one job at a time
For instance the machine can work on either job A or B, or C at any given time
This 1s equivalent to the statement that either job A precedes job B on the
machine or vice versa
Thus we have an “either-or” type constraint for non-interference on the machine
given by

Xatpatsi< Xp
or

Xptpptsis< Xa
With the help of a binary integer variable, the “either-or” constraint can be
reduced to the following two constraints

XA+pA+Sz-XBS Mé; ( 1 )

Xptpetsi-Xas M(1-81)  (2)
where 0< 8;< 1, &; 1s integer, and M 1s a large positive number Note that when
81=1, the first constraint becomes Xa+pa+s2-Xp< M and 1s active, while the
second constraint reduces to Xp+pp+si-Xa< 0 implying job B precedes job A on

the machine On the other hand, when 8,=0, the first constraint becomes
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Xatpa+tsy-Xp< 0 umplying that job A precedes job B, while the second constraint
becomes Xp+pptsi-Xa< M and is inactive

Thus with the help of the binary integer varable both possibilities are
simultaneously included tn the problem

Because the single machine can process any of the three jobs A,B and C at any
time we obtain

Xatpa< Xc
or

Xctpes Xa

(the factor s, 1s missing because jobs A and C belong to the same family f;)

With the help of the binary integer variable &; we obtain

XA+p A-Xc< M8, (3)

Xctpe-Xas M(1-92) 4)

Xptpptsi< Xc

or

Xctpets:< Xp
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With the help of the binary integer variable ; we obtan

Xptpptsi-Xc< Md; (5)

X(,+p(,+Sz-XuS M( i -53) (6)

Where 0< 8, <1, 0< 3, <1, 0< 83 £1, 81, &, and 03 are integers
Because of using due-date tolerances which means that we allow the penalty to be
zero if the completion time of job j falls 1n the interval (d-u, , d+v,) the due-date

constraints for jobs A, B and C become

d-ua< Xa Fpa <d+va (7

d-ug< Xptps = d+tvp (8)

d-uc< Xctpe < d+ve  (9)

Constraints (7), (8), (9) mean that jobs A, B and C are allowed to be completed in

the intervals

(d-u, , d+v,) , where 1=A, B, C respectively

We know in general that for job j earliness 1s defined as E~max{0,d-C,-u;}
(where C, 1s the completion time of job j)

Equivalently in our problem for job A we obtain Ex=max{0,d-(Xa+pa)-ua)
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This function 1s equivalent to the following constraints

Ex>0 (10)

EAZd-XA-pA-UA (11 )

Similarly for jobs B and C we obtain

Ep>0 (12)
Ep>d-Xp-ps-us (13)
Ec20 (14)
Ec2d-Xc-pe-uc (15)

In general for job ) tardiness 1s defined as T,=max{0, C,-d-v,}
Equivalently for job A we obtain Ta=max{0,(Xat+pa)-d-va}

This function 1s equivalent to the following constraints

Ta20 (16)

Ta=Xatpa-d-va (17)

Similarly for jobs B and C we obtain,

Ti20 (18)

TBZXB+pB-d-VB (19)
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Te20 (20)

TCzXL‘*‘p(,-d-UC (21)
The objective s to find S satisfying

F(Sy=min s c 1 {F(S)}

where
F(S)=Y[a,E,(S)+ B,1,(S)]

and IT denotes the set of all feasible schedules

43 Conclusions

In this chapter we present the MIP (Mixed Integer Programming) formulation of
our model along with an example of the MIP formulation, considering three jobs
that belong to two families

In Appendix C we present the results that we obtained using SCICONIC, for a
specific case instance considering a set of four independent jobs with processing
times t; =1, 12=3,t3 = 6, and t4 = 10 for jobs 1,2,3,4 respectively (the same
example as 1n paragraph 5 1 3)

We can notice in Appendix C that the solution that we get from SCICONIC s
equal to the optimal solution that we can get using full enumeration

SCICONIC mught have been used to provide tight bounds on the quality of

heuristic solutions that will be presented
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Unfortunately because SCICONIC expects a problem to be presented in the form
of an industry standard MPS format matrix file Creating an MPS matnix by hand
in an editor 1s a slow and error prone task, even for very small problems and
therefore we could not use SCICONIC 1n order to provide tight bounds on the

quality of the solutions that will be presented
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CHAPTER 5
AN ALGORITHM FOR SCHEDULING GROUPS OF JOBS ON A

SINGLE MACHINE

5.0 Introduction

In this chapter we develop an algorithm (JGA) for scheduling groups of jobs on
single machine 1n order to mimmise an objective function

We also illustrate the operation of the algorithm using a specific example
Three Lemmas are presented to illustrate the use of the results to determine the

optimal solution to the due-date determination and sequencing problem

51 Scheduling independent jobs on a single machine

Although we are concerned with the optimal sequencing of a set of group of jobs,
to mimimise a penalty of deviation from the desired due-dates, (a problem which
1s coupled with the optimal assignment of due-dates to the set of jobs to be
processed by a single machine), 1n this section we consider the case where the

jobs are independent (they do not belong to any family) [C88]

Let N be the set of n independent jobs to be processed on a single machine

Each job requires t, ime units of processing on the machine, V1 e N

The common due-date assignment method 1s employed to assign due-dates to

jobs
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Thus, each job 11s assigned a due-date d, =1, + k where r, 1s the ready time of job

1 and k 1s a common flow allowance, V1 € N

While it is true that that there will be penalties for failing to complete a job on 1ts
due-date, 1n practice such a penalty will not occur if the deviation of job
completion time form the due-date 1s sufficiently smali

Thus the jobs are given a completion time deviation allowance o such that there
will be no penalties if the completion time of job 11s within the time interval
(d-a,d +a),V1eN

The basic assumptions about the problem model are as follows

The job processing times t, ¥ 1 € N are known and deterministic

° The jobs are available for processing at the same time,1er,=0 V1 e N

. There 15 a single machine available, which can only process the jobs one at
a time

. Job sphitting and preemption are not allowed

° The completion time deviation allowance o 1s sufficiently small and

satisfies the condition 2o <min {t,} Vie N
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We define

E, = max {0,C, -k}

Ty = max {0,k-Cy,}

1

Cll] = Z tJ

J=

Let IT be the set of all possible job sequences and ¢ be an arbitrary sequence
Let the subscript [1] denote the job 1n position 1 of o

Let t, denote the processing time of job 1 and t;,; denote the processing time of job
1n 1-th position of a sequence ¢

Let Ey,), Ty, and Cy;) be the earhness, tardiness and completion time of the ith job
in ¢ respectively, then the objective 1s to mimimise a penalty function of missing

due-dates expressed as

1=1
Here U(x-c) 1s the unit step function defined as

T
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511 The optimal due-date

In this section we present two lemmas [C88] which are used to help determine the

optimal value of the common flow allowance k”

Lemma 1. For a given job sequence ¢ the optimal due-date must equal one of the

job completion time minus the completion time deviation allowance .

tek =Cpy-o, 3] e N

Proof of Lemma 1

Let k be an arbitrary chosen common due-date (1€ C,1; <k < (), =1,2, ,n-1)
which does not have the property as stated in Lemma 1 Then in the form of a

Gantt-chart, k will be like the following

Ch-1] k C[1]

[1-1] [1] [1+1]

Figure5 Gantt Chart for Lemma 1
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Now shifting k to the nght side so that it cquals Cj,-a causes the following

change 1n penalty

APr = (-1)(ty-y-0)-(n-1+1)(ty-y-a) = (21-n-2)(tpy-y-o) (2)

Simularly, shifting k to the left side so that it equals Cy, ;- o gives rise to the
following change in penalty

AP = (n-r+l)(y+a) — (-1)(y+to)= (n-21+2)(y+o) 3)

It 1s evident from (2) and (3) that

APz <0 if 1S121+1

AP, <0 i zz’—2’+1

Thus for any given k, we can perform an appropriate left or right shift depending
on the value of k so that a reduced or equal penalty value can be achieved
It follows that the optimal due-date must satisfy the condition that k'= Cy; -at, 3

[1] e N

Lemma 2 For a given job sequence o, the optimal due-date 1s k* = Cg -

where r 1s such that

(n+1)/2 if nisodd
y =
nl2+1 if niseven
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Proof of Lemma 2

From Lemma | we know that the optimal due-date 1s k* = Cyj - o, 3 [r] € N Let
k" =Cj1)-atandk = Cy.qy- o Since k* 1s optimal the following conditions

must be satisfied

S*0)-f(k",0)<0  (4)

and

f#* o) - flk",0)<0 (5

Clearly

S4,0)=3 (-2 -C)+ 3 (Cy-Cy+@)  ©)

=r+l

F,0)= X (Cpun =2 =) + 2 (Cy =y +@) (1)

1=r+

Substituting (6) and (7) into (4), we obtain
(t-1) tieesy + (tgray - ©) = Qreayter) — [(-r- Dty ] 2 0
or

12n0/2+ /Yy (®)

Also

S 0)=3(Cy-a=C)+3(Cy ~Cpy +0) )
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Simularly, substituting (6) and (9) 1nto (5), we obtain

(-2 (tyrro) (o) H(n-rityy > 0
or
r<n/2 +1+ oty (10)
Since 1t has been assumed that 2o < mun {t,} ¥ 1 € N and r must be non-negative

integer, 1t 1s clear from (8) and (10) that

(n+1)/2 if nisodd
=
n/2+1  if niseven

and the proof is complete
It 1s interesting to note from Lemma 2 that for a set of jobs, the optimal due-date

1s an explictt function of the size of the job-set n and can be uniquely determined

- for a given job sequence

512 The optimal sequence

Once the optimal due-date value k* 1s determined, we can use the following

lemma [C88] to find the optimal job sequence c*

Lemma 3 For a given optimal due-date k* = Cyy - a as determined from
Lemma 2, there exists an optimal job sequence that has the property

ty =ty = tya, ) =12, -1

2
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Proof of Lemma 3

Let o, be an optimal job sequence that does not have the property described
above

There must exist a patr of jobs p and q 1n position m and n-m+1, m< r-1,
respectively that t, <t, Now we construct a new sequence o, 1n which p and q are
interchanged 1n position while all other jobs are in the same position as in o; It

follows from Lemma 2 that

kM =Cppy+t,+ > ty—a (1)

1=m+1

ky = Cpuy tt,+ D ty—a  (12)

1=n+l

Observe that k;"- ky'=1t,t,> 0 (13)

F0) =3 (6 ~Co)+ 3 (Coy =k =S (! =Cop) k7 = (Copy +1,)

1=r+l

r-1 i n—m i
+ 2 {k, ~(Cppy +1, Z’m)}”r Z{(C[m—u 4+ Ztm)'kl‘}

i=ml Jj=m+l 1=r+1 J=m+l

+ i(cm ~k) (14)

1=n-m+l
. r-1 . n N m-1 .
f(kzsoz) = Z(kz _C[,|)+ Z(C[.] ‘kz) = Z(kz ”‘C,])“‘kz _(C{m—l] +tq)
1=] 1=r+l 1=1

1=m+1 J=m+l 1=r+l J=m+i

+ {kz ~(Clpy +, + Ztln)}* Z{(Clm—ll +,+ Z’m)*k;}

b 3(C kD) 19)

t=n—m+1
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Subtracting (15) from (14) and simplifying using (13) we obtain

[k, o)~ f(k;,05)=1,-1,>0
Thus the interchange of p and q reduces the penalty value Therefore any
sequence that does not have the property t) = tps1 ) = tya), ) = 1,2, ,r-1 can be
improved by such an mterchange of pairs of p and q It follows that the sequence

having the property 1tself must be optimal

S13 Numerical example for a set of independent jobs

A set of four indpendent jobs 1s given with t,=1, to= 3, t3= 6, and t;= 10 The
completion time deviation allowance 1s a=0 45

According to Lemma 2 we know that

_J+1)/2 if nisodd
n/2+1  if niseven

thus r=3, so k* = Cj3; - o and the optimal sequence o* can be constructed using
the Lemma 3 as follows
We know that ty > tnir ) 2 tyen, ) = 1,2, ,r-1

1n our case r=3 therefore we have that ty; 2 tjn+14) = tye1), ] = 1,2
Thus

t)2 tia) 2 tig) (for j=1) (a) and tp) 2ty 2 ty3) (for j=2)  (b)

Combining (a) and (b) we get the following formula ty) 2 tig 2 ty > tp

That means that the job with the biggest processing time 1s going to be processed
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first Afterwards the job with the second biggest processing time 1s going to be
processed 1n the fourth place, then the job with the third processing time 1s going
to be processed n the second place and finally the job with the smallest

processing time 1s going to be processed last

Therefore the order in which the jobs are going to be processed 1s the following
4-2-1-3, k* = Cp3-a. = 13 55 and the mimimum penalty value 1s 10 55

For this problem there are 4!=24 possible different sequences and the details of

each individual sequence 1s shown 1n tabie 1

Tablel Complete enumeration of the set job

g R k*=Cm-a f(k*,O')
1-2-3-4 3 9.55 24.55
1-2-4-3 3 13.55 28.55
1-3-2-4 3 9.55 21.55
1-3-4-2 3 16.55 28.55
-4-2-3 3 13.55 21.55
1-4-3-2 3 9.55 24.55
2-1-3-4 3 9.55 22.55

2-1-4-3 3 13.55 26.55

2-3-1-4 3 9.55 17.55
2-3-4-1 18.55 26.55
2-4-1-3 3 9.55 16.55

2-4-3-1 3 18.55 22.55
3-1-2-4 3 9.55 16.55
3-1-4-2 3 16.55 23.55

3-2-1-4 3 9.55 14.55
3-2-4-1 3 18.55 23.55
3-4-1-2 16.55 14.55
| 3-4-2-1 18.55 16.55
-1-2-3 3 13.55 12.55
4-1-3-2 16.55 15.55

1 4-2-1-3 3 13.55 10 55*
4-2-3-1 3 18.55 15.55

4-3-1-2 3 16.55 10 55
4-3-2-1 18.55 12.55

¢ Optimal Sequence ¢
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52 Job Grouping Algorithm

In this section we present the Job Grouping Algorithm (JGA) that we developed

in order to schedule a number of families (where each family consists of a number
of jobs) on a single machine

Our algorithm considers a f-families, n-job, single machine scheduling problem
with common due-dates

Suppose that jobs each belong to a particular family, where jobs in a family tend
to be similar in some way, such as their required tooling or their container size
As a result of this similarity, a job does not need a set-up when following another
job from the same family, but a known “family set-up time” 1s required when a
job follows a member of some other family Thts is called family scheduling

model

In the family scheduling model, a machine 1s assumed capable of processing at
most one job at a time We use the pair (1,5) to refer to job j of family 1
We let f denote the number of families, n the number of jobs, and n, the number of

Jobs belonging to family 1

In addition t,; and w,; denotes the processing time and weight of job (1))
Thus n; + n;+ +ng=n In addition, s, denotes the setup time required to process
a job 1n family 1 following a job 1n some other family

If a job follows a member of the same famuily, then its setup time 1s zero otherwise

its setup time 1s s,, the family setup time
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The jobs are given a completion time deviation allowance o such that there will
be no penalties 1f the completion time of job 1 is within the time interval

(d-a,d +a),V1ieN

A simplifying assumption for family scheduling 1s the requirement of precisely f

setups tn the schedule one for each family (GT assumption)

Each family 1s treated as a single entity, or composite job with processing time

p,=2.t,, andweightw, => w ,andw,=1V 1,

e =
In addition let |, = (s, +p, ) / w, = (s, +p,) / n, denote the family factor of family 1
Let I, denote the family factor of famuly 1 and Ij,; denote the family factor of family
in 1-th position of a schedule ¢

Ths factor 1s the basis of the proposed algorithm, and actually shows the
“importance” of each family Therefore if |, > |, and 1+ j then we can say that
family 11s more “important” in a way than family j (that does not mean that
famuly 115 necessarily going to be scheduled earlier than famuly )

Applying the proposed algornthm we observe that the famuly with the largest

famly factor 1s always scheduled first in the optimal schedule ™
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The basic assumptions about the problem model are as follows

° The job processing times t,; (for all 1,j) are known and deterministic

° The jobs are available for processing at the same time, i e r,; =0 (for all 1,3)

° There 1s a single machine available, which can only process the jobs one at
a time

J Job splitting and preemption are not allowed

° The completion time deviation allowance a 1s sufficiently small and

satisfies the condition 2ct <mun {t,; } for all 1§

The input data for this algorithm are the following

The number of families that have to be scheduled on the single machine
e The number of jobs in each family

e The processing time for each job 1n each family

¢ The completion time deviation allowance o

e The setup time s, for family 1
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JGA ALGORITHM

STEP 1 Compute the family factor I, = (s, +p, ) / w, = (s, +p.) / n,

(because w,; = 1 for all 1,j) for each family 1 1=1,2, f

STEP 2 Compute the value of m where

D)2 if fisodd
“\f/241  if fiseven

STEP 3: Compute the value of r where

(n+1)/2 1f nis odd
} =
n/2+1  if niseven

STEP 4 Find the optimal sequence of families 6 using the following property

lm > l[fH.J] > IU+1],J =12 ,m-l

STEP S The optimal due date k” 1s determined as k’ = Cyy -

STEP 6. The value of the objective functions f(k',o")
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5§21 Numerical example

In this section we present a numerical example of our algorithm for a specific case
1nstance

In this example we have f= 2 families which we denote by F1 and F2

Each family consists of two jobs (therefore n = 4, n; = 2, n; = 2) and the
processing time for each job1s t;j1 =1, t;2 =3, t3; = 6 and t, = 10 The setup
times are s; = 0 5 and s; = 0 1 respectively

Thus F1 = {(1,1), (1,2)} and F2 = {(2,1),(2,2)}

Applying the first step of our algorithm we must first compute the famuly factors
L=(s*p)/w,,1=12

Therefore l; = (sy+p1) /ny = (0 5+4) /2 =2 25 and
L=(2tp2)/2=(01+16)/2=805

Applying the second step of our algonthm we compute the value of m where m

D2 of fisodd
"= f12+1  if fiseven

thus m=2

Applying the third step of our algorithm we know that

r_{(n+])/2 if nisodd

n/2+1 if niseven
thus =3, so k* = Cp3; - a and the optimal sequence o* can be constructed using
the fourth step of our algorithm as follows

We know that lm 2 l[r+1 312 lbﬂlaj =1,2 m-1

> 2

76



In our case m = 2 therefore we have that lj;; = lipy 2 sy, 1= 1
Thus
Ih12 lizy 2 Iy (for 3=1)
That means that the family with the largest family factor is going to be processed

first 1n the optimal sequence

Therefore the order in which the groups of jobs are going to be processed 1s the
following

F2-F1
This sequence of the groups of jobs 1s the same with the following sequence of
jobs (2,1) - (2,2) - (1,1) - (1,2)
k* = Cizj-ae = Cy1-a0 = 16 55 (fifth step) and the minimum penalty value 1s 14 55
(sixth step)
Another possible sequence of the groups of jobs could be F1 - F2 and the
sequence of the jobs would be (1,1) - (1,2) - (2,1) - (2,2) respectively
For this case k= Cpyj-ot = Cz; = 9 55 and the penalty value would be 24 55
We notice that applying our algorithm we achieved penalty value 14 55 < 24 55,

which means that the schedule we obtain applying our algorithm 1s “better”

because we obtain smaller penalty value (14 55 <24 55)
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53 Conclusions

In this chapter we presented an algorithm for scheduling groups of jobs on a
single machine

Three Lemmas were presented and a numerical example was provided in order to
illustrate the use of the results to determine the optimal solution to the due-date
determination and sequencing problem

While 1t 1s fully apprectated that in practice penalty costs for earliness and
tardiness are rarely the same, we imposed the restriction that weights w,; =1V 1
were restricted to be 1

The reason 1s that the objective function that 1s used places emphasis on missing
job due-dates Although 1t seems that this restriction has the disadvantage that 1t
limits comparisons between the proposed algorithm and the main competitor, we
can overcome this disadvantage by performing the “competing” algorithm
considering a “hypothetical” case where the weight for each job s restricted to be
1

In order to evaluate the performance of this algorithm, the algonithm was coded 1n
C++

The results that are obtained from this algorithm can be found in Appendix A
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CHAPTER 6
AN ALGORITHM FOR THE DUE-DATE DETERMINATION AND
SEQUENCING PROBLEM

60 Introduction

In this chapter we present an algorithm for the due-date determination and
sequencing problem

This algorithm was developed 1n 1987 by Cheng [C87] and will be used 1n order
to compare the results with the (JGA) algorithm

Because to our knowledge there 1s no published work that combines the features
of family setup times with earliness / tardiness cost two features that are
fundamental to many problems in practice we use this algonthm because its

objecttve function 1s more relevant to our problem

61 Cheng’s Algorithm

This Algorithm [C87] considers the problem of assigning due-dates and
sequencing a given set of jobs on a single machine There will be penalties for
completing jobs erther ahead or behind their scheduled dates

The objective 1s to mumimize a function of missing the job due-dates An
algorithm 1s presented for determining the optimal due-dates and optimal job
sequence simultaneously

Actually the objective 1s to determine the optimal constant flow allowance k™ and
the optimal job sequence ¢ to mimimize the weighted average of missed due-

dates
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Due date determination has been a popular research topic (for the single family
case) and plentiful fruitful results have been obtained over the years

The popularity of scheduling research 1s due to the fact that the problem itself 1s
theoretically challenging and the results are of practical usefulness This 1s
because mussing job due dates are entals such penalties as accumulating

unnecessary stocks and/ or loss of production efficiency and customer goodwill

This algorithm considers an n-job, single machine scheduling problem with
common due-dates
Let N denote the set of n independent jobs to be processed The jobs have the

same starting times Job 1 requires t, time umts for processing and has a weighting

factor w, (O<w, <1) and Zw, =1,VieN

N

The common due-date assignment method i1s employed to assign due-dates to

jJobs

o The job processing times t, ¥V 1 € N are known and deterministic

o The jobs are available for processing at the same time,1er,=0 V1€ N

o There 1s a single machine available, which can only process the jobs one at
atime

. Job splitting and preemption are not allowed

Let I1 be the set of all possible job sequences and ¢ be an arbitrary sequence Let
the subscript [1] denote the job in position 1 of 6 Let Ej, T(; and Cyy be the

earliness, tardiness and completion time of the 1th job in ¢ respectively
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Whenever a job i1s not completed exactly on its due-date costs will be incurred,
regardless of its being early or late, 1t is reasonable to minimize an objective
function which 1s related to the average amount of missed due-dates

For this purpose we adopt, the weighted average of the absolute value of job
lateness as the objective function to be mmimized

While 1t 1s appreciated that, i practice, penalty costs for earhness and tardiness
are not often the same, the use of the weighted average of absolute job lateness as
the objective function places emphasis on missed job due-dates

For a given job sequence o, let [1] denote the job in position 1 of ©
In addition let ty; ,wpy , Ly, and d,; denote the the processing time, weighting
factor, lateness, and due-date, respectively of job [1]

The objective function 1s expressed as

fk,0)= 'Z;:W[.Jllml = ?;:wmlcl:l - dml = gwmlcl:l = k| ()
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CHENG’S ALGORITHM

Let n(X) denote the number of elements in a set X The algorithm systematically

searches for the optimal solution as follows

STEP 1

STEP 2

STEP 3-

STEP 4

STEPS

STEP 6

Let r=1

Let kZC[r]

Construct a set A where

A={S, /S, cN, n(S)=r, D w <1/2 and Yy w, 21/2}

€8 ,-{J} €8,
JES,

Construct a set B corresponding to A where

B={S,/8, <N, n($;)=(n—-r),S, =N-8,,VS, € 4}

Arrange jobs 1n S5, V Sa € A, 1n nonincreasing order of ty; / wyy,
V' 1 € S,, to form a sequence G4 and arrange jobs in Sg, V Sg € B,
in nondecreasing order ty/ wy, V j € Sg, to form a sequence 63
Combine 6o and op to form a full sequence ¢ of n jobs,

1e ¢ = oaxtop Calculate the value of f(k, o) and record k, o

and fk, o) for later evaluation

Let r=r+1 Ifr <nthen go to Step2 else go to Step7
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STEP 7 Identify f'(k, o) = mn {f(k, 6)}
Set k' =k of f'(k, 0) and " = ¢ of f (k, O)
END OF THE ALGORITHM

62 Numerical example

To illustrate the operation of the algorithm, consider the following example
There are five jobs with processing times and weighting factors given 1n Table 2
Table 3 shows the results obtained from performing the algorithm on the above
given job-set

The algorithm has generated of 41 feasible sequences for consideration This
feasible set of sequences 1s considerably smaller than the full set of all 5! = 120
possible sequences

Thus, substantial saving 1n computations from employing the algorithm to search
for the optimal solution

Table 2 Processing times and weighting factors of the numerical example

Job 1 Job 2 Job 3 Iob 4 Job 5
t, 1 2 3 4 )
A 0.1 0.1 0.1 0.1 06
| t/w, 10 20 _30 490 8+1/3
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Table 3 Optimal solution

*
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*

It 15 clear that the minimum value of f (k,6) 1s f(k,6) = 1 5 and thus k=1 5 and

6
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63 Conclusions

In this chapter we described an algorithm for the due-date determination and

sequencing problem An example was presented to illustrate the performance of

the algorithm to determine an optimal solution

In order to evaluate the performance of this algorithm, the algorithm was coded in

CH++

The results that are obtained from this algorithm can be found in Appendix B
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CHAPTER 7

PERFORMANCE AND EVALUATION

70 Introduction

In this Chapter we present the description of the data base of the test problems
that we used 1n order to test our algorithm (JGA) in comparison with Cheng’s
algorithm In the last section of this chapter the conclusions after performing both
algorithms, on the data base that we created are discussed and some 1deas for
further research are presented

The results we obtain from both algorithms are presented in Appendices A and B

71 Description of the database of test problems

In order to test both algorithms (JGA) and Cheng’s algorithm we generated a

database of test examples at random

The naming convention used for random test problems in the database 1s best

explained by reference to some examples
NO5GOEX07 1s the seventh example 1n the set of test problems with characteristics
e 5)0bs

o 0 families
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NO6G2N;3N23Ex10 1s the tenth example in the set of test problems with
characteristics

* 0jobs

o 2 families

o ;=3

e N;=3
The processing tume for each job in a specific example 1s the same for both (JGA)

and Cheng’s algonthm

72 Conclusions

In this thesis an algorithm for scheduling groups of jobs on a single machine 1s
presented

Our model differs from past models in the literature in that we consider an
earliness / tardiness model with family set-up times We also incorporate a factor
called completion time deviation allowance such that there will be no penalties 1f
the completion time of job 1 1s within the time interval (d, -o, d, ta) V1 € N

To our knowledge, there 1s no published work on a family scheduling model with
earliness and tardiness costs ( 1n our model w,; =1 V1)

Our consideration of multiple families and a non regular performance measure,
two features receiving increasing attention in the research community [BS90],

[WB95], 1s motivated by real-world elements of practical scheduling problems

87



We have tested our algorithm on many examples, where the number of jobs varies
from N=3 to N=50 and the number of families varies from G=0 to G=7

Unfortunately, because Cheng’s algorithm 1s not performing at all for more than
7, jobs due to the enormous amount of computations that must be executed, we

just present the results that we obtain from our algorithm for more than 7 jobs

Because Cheng’s algorithm does not consider the feature of groups of jobs and
family setup times, we perform the proposed algorithm (JGA) for the first 225
examples1e

N3GOEx01-N3GOEx45,

N4GOEx01-N4GOEx45,

N5GOEx01-N5GOEx45,

N6GOEx01-N6GOEx45,

N7GOEx01-N7GOEx45
assuming that the number of groups i1s zero (G=0) (1e we have a set of
independent jobs) 1n order to compare the output from both algonthms under
similar input data
The output we obtain from (JGA) algonthm and Cheng’s algorithm 1s presented
in appendices A and B
For example performing both algonithms for the problem instance N3GOEx02 we

obtain 6" = 1-3-2, k'=6 65, and the value of the objective function 1s 3 0,(ci= 0 35

for this case) while from Cheng’s algorithm we obtain ¢° = 1-3-2, k'= 6, and the

value of the objective function1s 0 8
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Although 1t seems that Cheng’s algonthm 1s performing better than (JGA)
algonthm, this 1s not valid, because the weights for jobs 1,2,3 are restricted to be
1 in the proposed algorithm, while the weights for jobs 1,2,3, in Cheng’s

algorithm are w;=06, w,=02 and w;=02 (the sum of all weights must be

d>w, =1,VieN)

reN

Therefore because the objective function of Cheng’s algorithm is

Sk,o)= ’Z:l:w[.]ll‘[n]‘ = Z;:w[r] C[.] - kl

n
Ciy- dml = Zl:wm
1=

and w, <1V1e {1,2,3} we obtain the value 0 8
Although 1t seems that this restriction (that weights w,; = 1 V 1) are restnicted to
be 1) has the disadvantage that it limits comparisons between the proposed
algorithm and the main competitor, we can overcome this disadvantage by
performing the “competing” algonthm considering a “hypothetical” case where
the weight for each job 1s restricted to be 1
We applied this “hypothetical” case for the following examples

N3GOEx01-N3GOEx45,

N4GOEx01-N4GOEx45,

NS5GOEx01-N5GOEx45,

N6GOEx01-N6GOEx45,

N7GOEx01-N7GOEx45
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For all these 225 examples we did not find an example where the (hypothetical)
value for the objective function of Cheng’s algorithm, 1s less than the value for
the objective function of (JGA) algorithm

The (hypothetical) value for the objective function of Cheng’s algorithm was
erther equal or greater than the value of the objective function of (JGA) algornthm
for all 225 examples

Considering that fact, we can say that the results that we obtain from (JGA)

algorithm are reasonably good

The main advantage of our algorithm s that it performs for many jobs while

Cheng’s algorithm can not perform for more than 7 jobs

For up to 7 jobs (JGA) algonithm produces results in considerably less time than
Cheng’s algorithm

We have performed our algonthm for up to 50 jobs and we observe that the CPU
time was actually negligible and the results are reasonably good

In summary, the proposed algorithm appears to perform quite well when

compared to Cheng’s algorithm

73 Further Research

The basic features of the model we have studied represent a growth area in the

scheduling literature and, consequently there are many opportunities for further

research
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The present problem can readily be generalized by introducing different penalties
for earliness and tardiness as well as adding a penalty for assigning long due
dates
Out model could also be generahzed by not considering the GT assumption (1€
the requirement of precisely f setups in the schedule one for each family, where f
1s the number of families)
Other sigmficant generalizations to the model include
(a) Multiple machines (1e Groups of jobs can be scheduled on multiple
machines that are placed together 1n a serial order)
(b) Parallel Machines (1e Groups of jobs can be scheduled on parallel
machines)
(c) Dynamic job arrivals
Considering our model, a certain number of jobs arrive simultaneously to a
system that 1s idle and 1s immediately available for work
A sigmficant generalization to our model include Dynamic job arrivals
Therefore jobs arrive intermuttently at times that are predictable only in a
statistical sense
(d) Job sphitting and preemption
A sigmficant generalization to our model could include the allowance of job
sphtting and preemption Therefore the processing of each job may be

interrupted and resumed at a later time
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APPENDIX A

OUTPUT FROM JGA ALGORITHM

—16A ‘
o k fik',o") CPU time

N3GOExO01 2-3-1 7.65 7 0.0
N3GOEx02 1-3-2 6.65 3 0.0
N3GOEx03 3-2-1 12,65 9 0.0
N3IGOEx04 3-2-1 11.65 11 0.0
N3GOEx05 2-1-3 9.65 6 0.0
N3GOEX06 3-1-2 5.65 3 0.0
N3GOEX07 1-2-3 5.65 5 0.0
N3GOEx08 3-1-2 565 5 0.0
N3GOEx09 2-1-3 5.65 5 0.0
N3GOEXx10 3-1-2 7.65 4 0.0
N3GOEx11 3-2-1 6.75 S 0.0
N3GOEx12 3-2-1 9.75 9 Q.0
N3GOEx13 1-2-3 5.75 4 0.0
N3GOEx14 3-2-1 8.75 5 0.0
N3GOEx15 2-1-3 18,75 17 Q.0
N3GOEx16 2-1-3 175 6 0.0
N3GOEx17 1-2-3 13.75 13 0.9
N3IGOEx18 3-2-1 14.75 13 0.0
N3GOEx19 3-2-1 9.75 8 0.0
N3GOEx20 1-2-3 14.75 11 0.0
N3GOEx21 3-2-1 5.85 3 0,0
N3GOEx22 3-1-2 8.85 8 0.0
N3GOEx23 ]-3-2 5.85 4 0.0
N3IGOEx24 3-1-2 4.55 3 0.0
N3GOEX25 2-1-3 3.55 3 0.0
NIGOEX26 3-2-1 5.55 3 0.0
N3GOEx27 3-1-2 2.55 3 0.0
N3GOEX28 3-2-1_ 2.55 3 0.0
N3GOEx29 3-1-2 3.55 3 0.0
N3IGOEX30 1-3-2 3.55 3 0.0
N3GOEx31 2-1-3 10.7 9 0.0
N3GOEx32 2-3-1 10.7 9 0.0
N3GOEX33 1-2-3 10.7 9 0.0
N3GOEx34 2-1-3 6.7 4 0.0
N3GOEx35 3-2-1 11.7 10 0.0
N3IGOEx36 3-2-1 5.7 6 0.0
N3GOEx37 2-1-3 6.7 5 Q.0
N3GOEx38 1-2-3 1.8 6 0.0
N3GOEX39 2-3-1 S8 b) 0.0
N3GOEx40 1-2-3 5.8 4 0.0
N3GOEx41 2-1-3 18 4 0.0
N3GOEx42 1-3-2 5.8 4 0.0
N3GOEx43 2-3-1 _ 148 13 0.0
N3GOEx44 3-2-1 8.8 8 0.0
N3GOEx45 1-3-2 2.8 b} 0.0
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»

o k flk',0) CPU time
N4GOEXx01 2-4-1-3 4,55 455 0.0
NAGOEX02 4-1-2-3 9.55 10.55 0.0
N4GOEX03 2-3-4-1 155 6.55 0.0
N4GOEx04 2-3-1-4 8.55 8.55 0.0
N4GOEX05 1-2-4-3 8.55 835 0.0
N4GOEX06 2-4-3-1 3.55 3.55 0.0
N4GOEx07 4-2-1-3 6.7 6.7 0.0
N4GOEXx08 4-1-2-3 6.7 5.7 0.0
N4GOEx09 4-3-1-2 8.7 9.7 0.0
N4GOEXx10 4-1-3-2 9.7 10.7 Q.0
N4GOEXx11 3-4-2-1 47 47 0.0
NAGQOEx12 3-1-2-4 8.7 8.7 Q.0
N4GQEXx13 4-1-2-3 6.7 6.7 0.0
NAGOEx14 4-2-1-3 13.8 10.8 0.0
N4GOEX15 2-3-14 16.8 15.8 0.0
NAGOEx16 1-4-3-2 19.8 20.8 Q.0
N4GOEXx17 4-2-1-3 15.8 12.8 0.0
NAGOEX18 3-1-4-2 14.8 98 0.0
N4GOEx]19 1-3-4-2 12.8 10.8 0.0
N4GOEx20 2-4-3-1 12.8 8.8 0.0
N4GOEXx2] 4-2-1-3 16.9 15.9 0.0
N4GOEx22 3-2-1-4 14.9 1.9 0.0
NAGOEXx23 4-1-2-3 16.9 14.9 0.0
N4GOEx24 3-1-4-2 10.9 10.9 Q.0
N4GOEX25 4-3-2-1 89 1.9 Q.0
N4GOEX26 4-3-1-2 8.9 6.9 0.0
N4GOEx27 4-3-1-2 159 13.9 0.0
N4GOEx28 4-2-1-3 9.65 9.65 0.0
N4GOEX29 3-4-1-2 14.65 14.65 0.0
NAGOEX30 4-2-3-1 _ 865 865 0.0
N4GOEx31 3-1-2-4 16.65 16.65 0.0
N4GOEx32 2-4-3-1 13.65 14.65 Q.0
N4GOEXx33 2-3-4-1 10.65 12.65 0.0
N4GOEx34 4-1-3-2 _10.65 10.65 0.0
N4GOEX35 1-2-4-3 18.75 22.75 0.0
NAGOEX36 2-1-3-4 11.75 12.75 0.0
NA4GOEX37 1-3-2-4 16,75 18.75 0.0
NAGOEX38 1-3-4-2, 11.75 10.75 0.0
N4GOEX39 2-3-1-4 9715 9.75 0.0
NAGOEx40 3-4-1-2 13.75 14.75 0.0
N4GOEx41 1-4-3-2 12.75 14.75 0.9
N4GOEx42 4-2-3-1 _172.75 18.75 0.0
NAGOEx43 4-1-3-2 14.75 16.75 0.0
N4GOEXx44 1-2-4-3 19.75 23.75 0.0
N4GOEX45 1-3-4-2 13.75 14.75 0.0




G K fik'.o) CPU time
NSGOEXO01 4-2-1-5-3 13.55 15 0.0
NSGOEx02 5-1-4-3-2- 9.55 13 0.0
NSGOEx03 4-2-5-1-3 12.55 15 0.0
NSGOEX04 3-2-1-4-5 10.55 15 0.0
NSGOEx05 1-2-4-3-5 955 14 0.0
N5GOEX06 5-3-2-1-4 14.55 16 0.0
N5GOEx07 5-3-1-2-4 8.7 13 0.0
NSGOEX08 5-2-4-1-3 14.7 15 0.9
N5GOEx09 5-1-4-2-3 12.7 16 0.0
N5GOEx10 2-5-1-3-4 11.7 21 0.0
N5GOEx11 5-2-1-3-4 15.7 20 0.0
N5SGOEXx12 4-5-2-1-3 1.7 16 0.0
N5GOEx13 5-2-1-3-4 9.8 14 0.0
N5GOEx14 1-5-3-2-4 6.8 11 00
N5GOQEXx15 5-2-1-3-4 13.8 i8 0.0
N5GOEx16 5-2-4-1-3 13.8 17 00
NSGOEx17 4-2-1-3-5 9.8 13 0.0
NSGOEx18 5-4-2-3-1 11.8 16 0.0
N5GOEx19 4-5-1-2-3 14.9 25 0.0
N5GOEx20 5-2-4-1-3 13.9 20 0.0
N5GOEx21 5-3-4-2-1 13.9 16 0.0
NSGOEx22 4-2-3-1-5 109 15 0.0
NSGOEx23 5-1-3-2-4 12.9 15 0.0
NSGOEx24 5-3-2-1-4 12.9 16 0.0
N5GOEx25 4-1-3-5-2 8.85 13 0.0
NSGOExX26 4-5-3-1-2 9385 13 0.0
N5SGOEXx27 5-1-3-2-4 10.85 15 0.0
NSGOEx28 5-2-4-1-3 10.85 15 0.0
NSGOEXx29 2-4-1-3-5 19.85 32 0.0
N5SGOEX30 1-3-5-2-4 19.85 34 0.0
NSGOEx31 1-2-3-4-5 9.65 13 0.0
NSGOEx32 5-1-2-4-3 10.65 15 0.0
NSGOEx33 3-5-4-1-2 24.65 41 0.0
N5GOEx34 4-3-2-1-5 15.65 22 0.0
N5GOEX35 4-2-1-5-3 24.65 43 0.0
N5GOEX36 2-4-5-1-3 17.65 31 0.0
NSGOEx37 5-3-4-1-2 11.75 19 0.0
N5GOEx38 5-1-2-3-4 18.75 32 0.0
N5GOEx39 5-1-2-3-4 19.75 35 0.0
N5GOEx40 4-1-3-2-5 14.75 23 0.0
N5GOEx41 3-4-1-5-2 18.75 32 0.0
N5GOEx42 4-1-2-5-3 19.75 32 0.0
NSGOEx43 4-5-2-1-3 159 25 0.0
N5GOEx44 3-2-4-1-5 13.9 23 0.0
N5SGOEx45 3-5-4-1-2 14.9 23 0.0
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o k fik,0) CPU time
N6GOEx01 4-6-5-3-2-1 10.55 19.33 0.0
NO6GOEX02 5-4-3-2-6-1 14.55 21.53 0.0
N6GOEx03 6-4-2-1-3-5 _12.55 2155 0.0
No6GQEx04 1-2-3-4-5-6 14.55 20,35 0.0
N6GOEx05 6-3-2-5-1-4 _17.55 23,55 0.0
N6GOEX06 3-6-4-5-1-2 12.6 21.6 0.0
N6GOEx07 5-2-1-3-6-4 14.6 21.6 0.0
N6GOEx08 4-3-6-5-1-2 12.6 27.6 0.0
N6GOEX09 6-1-3-5-2-4 16,6 23.6 0.0
N6GOEX1Q 6-1-3-5-2-4 14.6 21.65 0.0
NoGOEx11 5-2-4-3-1-6 12.65 21.65 0.0
NO6GOEx12 5-1-2-3-4-6 12.65 21.65 0.0
N6GOEx13 5-1-6-4-2-3 13.65 21.65 0.0
N6GOEx14 6-5-1-2-3-4 17.65 21.65 0.0
N6GOEXx15 6-1-5-3-2-4 12.65 21.65 0.0
N6GOEX16 6-2-5-3-1-4 _13.75 22.75 0.0
_N6GOEx17 6-1-4-3-5-2 1475 21.75 0.0
N6GOEx18 4-6-3-5-2-1 12.75 21.75 0.0
N6GOEx19 6-5-2-3-1-4 13.75 21.75 0.0
N6GOEX20 6-1-3-4-2-5 12.75 21.75 0.0
N6GOEx21 6-4-2-3-1-5 17.8 28.8 0.0
N6GOEx22 6-2-5-4-1-3 19.8 34.8 0.0
_N6GOEx23 2-1-5-4-3-6 17.8 30.8 0.0
N6GOEXx24 6-5-4-3-2-1 11.8 19.8 0.0
N6GOEX25 6-1-2-5-3-4 14.8 23.8 0.0
NOGOEX26 6-3-4-5-2-1 12.7 21.7 0.0
N6GOEX27 6-5-2-4-1-3 18.7 33.7 0.0
NO6GOEx28 6-3-2-4-1-5 22.7 337 0.0
N6GOEX29 5-6-1-3-2-4 24.7 35.7 0.0
N6GOEx30 6-4-1-2-3-5 20.7 347 Q.0
NO6GOEX3 1 6-5-3-2-4-1 16.55 30.55 0.0
__N6GOEx32 6-3-2-5-4-1 17.55 31.55 0.0
N6GOEx33 3-5-4-1-2-6 15.55 27.55 0.0
N6GOEXx34 2-1-4-6-5-3 18,55 34.55 0.0
NOGOEX35 6-3-4-2-1-5 12.55 21.55 0.0
NO6GOEX36 2-3-6-5-4-1 12.7 21.7 0.0
N6GOEx37 2-4-3-5-6-1 19.7 367 0.0
NOGOEX38 5-3-4-2-1-6 15.7 26.7 0.0
N6GQOEx39 0-5-2-4-1-3 15.7 237 0.0
__N6GOEx40 5-4-3-1-6-2 19.7 377 0.0
N6GOEx41 5-6-3-4-2-1 16.8 258 Q.0
NO6GOEx42 4-1-5-2-3-6 10.8 16.8 0.0
N6GOEx43 6-4-5-1-2-3 18.8 32.8 0.0
_N6GOEx44 6-3-5-1-4-2 16.8 30.8 0.0
NO6GOEx45 5-6-2-1-3-4 13.8 22.8 0.0
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CPU time
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JGA

3

o K fik,o) CPU time
N4G2N,1IN,;3 Ex01 Fi-F2 12 55 15 55 01
N4G2N,2N,2 Ex02 F2-Fl 14 55 17 55 01
N4G2N;3N,1 Ex03 F2-Fl 1155 14 55 01
N5G2N;1N,4 Ex01 F1-F2 12 55 22 01
N5G2N;2N,3 Ex02 F1-F2 12 55 22 01
N5G2N;3N,;2 Ex03 F1-F2 12 55 22 01
N5G2N4N;1 Ex04 F1-F2 1255 22 01
N6G2N;1IN;5 Ex01 F1-F2 167 287 01
N6G2N,2N,4 Ex02 F1-F2 167 287 01
N6G2N,;3N,3 Ex03 F1-F2 16 7 2817 01
N6G2N;4N,;2 Ex04 F1-F2 167 2817 01
N6G2N,;5N;1 Ex05 F1-F2 16 7 287 01
N7G2N,;6N;1 Ex01 F1-F2 12 65 35 01
N7G2N;5N,2 Ex02 F1-F2 12 65 35 01
N7G2N;4N;3 Ex03 F1-F2 12 65 35 01
N7G2N;3N.4 Ex04 F1-F2 12 65 35 01
N7G2N;2N,5 Ex05 F2-F1 12 65 22 01
N7G2N, IN,6 Ex06 F2-F1 12 65 29 01
N8G2N;7N;1 Ex01 F2-F1 16 75 47175 01
N8G2N;6N,2 Ex02 F2-F1 14 75 5175 01
N8G2N,;5N,3 Ex03 Fi-F2 1475 43 75 01
N8G2N,4N4 Ex04 FI1-F2 14 75 43 75 01
N8G2N,3N,5 Ex05 F1-F2 14 75 4375 01
N8G2N;2N,6 Ex06 F2-F1 14 75 3575 01
N8G2N,1N,;7 Ex07 F2-F1 1375 39175 01
NI9G2N,;8N,1 Ex01 F2-F1 19 85 57 01
NIG2N,7N,2 Ex02 F2-F1 19 85 64 01
NIG2N;6N,3 Ex03 F2-F1 1585 69 01
NOG2N,;5N,4 Ex04 F2-F1 15 85 71 01
NI9G2N,4N,5 Ex05 F1-F2 14 85 58 01
NOG2N;3N,6 Ex06 F2-F1 12 85 68 01
NOG2N,;2N,7 Ex07 F2-F1 14 85 61 01
NIG2N,1IN,8 Ex08 F2-F1 13 85 60 01
N10G2N;9N,1 Ex01 F1-F2 198 79 8 01
N10G2N;8N,2 Ex02 F1-F2 198 798 01
N10G2N;7N,3 Ex03 F2-F1 278 868 01
NI10G2N;6N,4 Ex04 F2-F1 248 958 01
N10G2N;5N,5 Ex05 F1-F2 198 798 01
NI10G2N;4N,6 Ex06 F1-F2 198 798 01
NI10G2N;3N,7 Ex07 F1-F2 193 798 01
NI0G2N,;2N,8 Ex08 F1-F2 198 798 01
NI10G2N,; IN,9 Ex09 F1-F2 198 798 01
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JIGA

G kK [fk'c) | CPUtime
NI1G3N;IN,IN;9 Ex01 F3-F2-Fl 186 107 02
N11G3N;2N,1IN,8 Ex02 F2-F1-F3 156 89 02
N11G3N;2N,2N;7 Ex03 F2-F1-F3 156 84 02
N11G3N;2N;3N36 Ex04 F2-F1-F3 156 83 02
N11G3N,3N,3N;5 Ex05 F3-F2-Fi 24 6 93 02
N11G3N,;3N,4N:4 Ex06 F3-F2-F1] 24 6 79 02
N11G3N,;4N;4N;3 Ex07 F3-F2-F1 276 94 02
N11G3N,;4N;3N;34 Ex08 F3-F2-F1 21 6 76 02
N11G3N;4N;5N;2 Ex09 F3-F2-F1 16 6 100 02
NI1G3N,4N,;2N;5 Ex10 F3-F2-F1 226 87 02
N11G3N;2N,4N,5 Ex11 F3-F2-F1 226 101 02
NI12G3N;1N,;1N;310 Ex01 F3-F2-Fl 256 1276 02
N12G3N;2N;2N,18 Ex02 F2-FI-F3 176 106 6 02
N12G3N,2N,;3N;7 Ex03 F2-F1-F3 176 105 6 02
N12G3N;3N;3N;6 Ex04 F3-F2-F1 266 106 6 02
N12G3N4N,3N;35 Ex05 F3-F2-F1 236 86 6 02
N12G3N,4N,4N,4 Ex06 F3-F2-F1 216 886 02
NI12G3N,5N,4N;33 Ex07 F2-F1-F3 226 130 6 02
N12G3N;4N;5N;3 Ex08 F3-F2-F1 18 6 1126 02
N12G3N;6N,3N33 Ex09 F2-F1-F3 256 1186 02
N12G3N,3N,;6N,33 Ex10 F3-F1-F2 226 105 6 02
N12G3N;2N,6N34 Ex11 F3-Fi-F2 256 104 6 02
N12G3N;2N,5N;5 Ex12 F3-F1-F2 236 105 6 02
N12G3N,;3N,5N;4 Ex13 F3-F2-F1 236 886 02
N12G3N;5N,5N;2 Ex14 F2-F3-F1 236 1196 02
NI13G3N;IN;IN311 Ex01 F3-F2-F1 259 153 02
N13G3N,2N,2N+9 Ex02 F2-F1-F3 179 133 02
N13G3N,3N3N,7 Ex03 F3-F2-FI 279 | 137 02
N13G3N,3N,4N16 Ex04 F3-F2-F1 299 122 02
NI13G3N;3N,5N,5 Ex05 F3-F2-F1 279 115 02
N13G3N,4N,4N55 Ex06 F3-FZ-F1 249 | 112 2
N13G3N;5N,4N-4 Ex07 F3-F1-F2 239 130 02
N13G3N;4N,6N,3 Ex08 F2-F1-F3 229 152 02
NI13G3N,5N,5N;3 Ex09 F2-F1-F3 219 149 02
N13G3N,4N,5N.4 Ex10 F3-F2-FI 199 | 133 02
N13G3N,;5N,6N;2 Ex11 F2-F1-F3 239 145 02
N13G3N;6N,5N;2 Ex12 F2-F1-F3 239 137 02
NI3G3N;7N,2N;34 Ex13 F2-F1-F3 259 124 02
N13G3N,;3N,7N;3 Ex14 F2-F1-F3 249 150 02
N13G3N,4N,6N,3 Ex15 F2-F1-F3 229 152 02
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JGA

-«

&

o k fik',c") | CPU time
N14G3N,IN;1IN;12 Ex01 F3-F2-F1 309 1709 04
N14G3N,;2N,;2N;10 Ex02 F2-FI-F3 219 1599 03
NI14G3N,3N;5N;6 Ex03 F3-F2-F1 289 1259 03
N14G3N,3N,6N;5 Ex04 F2-F1-F3 229 169 9 03
N14G3N;4N,5N;5 Ex05 F1-F3-F2 279 1479 03
N14G3N4N4N;6 Ex06 F3-F2-F1 259 1199 03
N14G3N,5N4AN;5 Ex07 F2-F1-F3 269 1739 03
N14G3N;5N;5N;4 Ex08 F2-F3-F1l 289 160 9 03
N14G3N,6N,;4N,4 Ex09 F2-F1-F3 309 1559 03
N14G3N,7N;3N+4 Ex10 F2-F1-F3 309 1399 03
N14G3N;5N,6N;3 Ex11 F2-F3-F1 289 1609 03
NI14G3N,7N,5N+2 Ex12 F2-F1-F3 299 146 9 03
N14G3N,6N,6N;2 Ex13 F2-F1-F3 259 1519 03
JGA (a=03)
kK ko) CPU time
N20G4N;5N,5N;5N,5Ex01 447 3897 05
N20G4N,10N,3N;3N4Ex02 487 3757 05
N20G4N,9N,3N;5N,3Ex03 447 37917 05
N20G4N,;2N,8N;5N,5Ex04 487 3887 05
N20G4N,3N,7N;5N,5Ex05 477 3757 05
N20G4N,;5N;8N;2N,5Ex06 46 7 3977 05
N20G4N;2N;3N;10N,SEx07 477 42717 05
N20G4N,7N;3N;5N,5Ex08 46 7 3667 05
N20G4N,8N;2N;5N,5Ex09 447 3717 05
N20G4N,4N,6N;5N,5Ex 10 457 3727 05
e
N20G4N;5N;5N;35N,SEx01 F3-F4-F2-F1
N20G4N,10N;3N33N4Ex02 F3-F4-F1-F2
N20G4N9N,3N,5N,3Ex03 F2-F4-F1-F3
N20G4N,2N,8N;5N,SEx04 F3-F4-F2-F1
N20G4N,;3N,7N35N,5Ex05 F3-F4-F2-F1
N20G4N,5N,8N32N,SEx06 F3-F4-F2-F1
N20G4N,2N,3N;10N,SEx07 F3-F4-F2-Fi
N20G4N,7N,3N;5N,5Ex08 F2-F4-F1-F3
N20G4N,8N,2N;5N,S5Ex09 F3-F1-F2-F4
N20G4N,4N,6N:5N,SEx 10 F3-F4-F2-F1
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. IGA(@=02)
k flk ,0) CPU time
N30G5N;5N;5N 5N, 10NSEX01 638 8298 07
N30G5N;10N;5N34N,5N6Ex02 64 8 8348 07
N30G5N;5N;6N;6N,6Ns7Ex03 6138 8838 07
N30G5N,3N;6N:5N,7N9Ex04 608 824 8 07
N30GS5N{6N;5N;4N,8N7Ex05 658 8058 07
N30GS5N,10N,;5N:4N,1Ns10Ex06 628 8278 07
N30G5N;5N,6N36N,7Ns6Ex07 598 8258 07
N30GS5N;6N,3N35N,7N9Ex08 608 793 8 017
N30G5N;3N;7N35N,10N5SEx09 66 8 906 8 07
N30G5N;6N,3N;9N42NsI10Ex10 658 783 8 07
.
N30G5N;5N;5N3;5N410NS5Ex01 F3-F2-F4-F5-F1
N30GS5N; 10N,5N:4N,5N6Ex02 F2-F3-F5-F1-F4
N30GSN,;5N,6N;6N,6N7Ex03 F3-F1-F5-F4-F2
N30G5N;3N,6N;5N,7NOEx04 F1-F4-F2-F5-F3
N30G5N,6N,5N;4N,8N7Ex05 F3-F4-F1-F5-F2
N30GS5N;10N,;5N34N,INs10Ex06 F2-F3-F5-F1-F4
N30G5N,;5N;6N36N,7N6Ex07 F3-F2-F5-F1-F4
N30G5N,6N,3N:5N,7N;9Ex08 F2-F4-F1-F5-F3
N30G5N;3N,;7N;5N410NSEx09 F3-F5-F2-F4-F1
N30G5N;6N,3N,9N,2N10Ex10 F4-F3-F1-F5-F2

100




, JGA (o= 035)
k fik,o) CPU time
N40G6N;5N;5N;5N4SN3s10Ng10Ex01 80 65 1439 65 1
N40G6N;6N,6N;6N,6N;8N8Ex03 81 65 1431 65 1
N40G6N;7N;7N;7N45NsSNOEx04 85 65 1407 65 1
N40GO6N;5N,5N;5N,10N 5N 10Ex05 82 65 1450 65 1
N40G6N,;8N;3N;8N,10N8N7Ex06 83 65 1518 65 1
N40G6N;6N,6N,6N,8N6N8Ex07 85 65 1447 65 1
N40GON,7N,7N;5N,7NsSNIEx08 90 65 1475 65 1
N40G6N3N,;9N;6N,8N6N8Ex09 81 65 1519 65 1
N40G6N12N212N35N,7N5NIEx 10 8165 1489 65 1
0.
N40G6N,5N>5N35N,5Ns10Ng10Ex01 F3-F1-F2-F5-F4-F6
N40G6N;3N4N38N,10Ns8N47Ex02 F3-F6-F4-F2-F5-F1
N40G6N;6N,6N36N,6N;8N¢8Ex03 F2-F6-F1-F5-F3-F4
N40G6N,TN;7N;7N,SNSNEx04 F2-F3-F4-F1-F5-F6
N40G6N5N;5N35N,10NSN¢10Ex0S F3-F1-F5-F4-F2-F6
N40G6N,8N,3N,8N,;10N8N7Ex06 F3-F5-F6-F4-F1-F2
N40GON,6N,6N;6N8N6N8Ex07 F2-F3-F4-F1-F5-F6
N40G6N,7N,7N;5N,7TN5SNGIEX08 F2-F6-F4-F1-F5-F3-
N40G6N;3N,;9N;6N,8N6N8Ex09 F1-F2-F5-F4-F3-F6
N40GO6N, 2N, 12N;5N47NsSNg9Ex 10 F3-F6-F5-F4-F2-F1
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JGA (@ =0.3)

k filk,o) CPU time
N50G7N{10N;5N-5N4SNsI0N10N,5 Ex01 977 2246 7 11
NSOGTN, 10N,5N35N410NSNg10N,5 Ex02 9617 2243 7 i1
N50G7N,; 10N,5N;5N,5Ns 10NgSN,10 Ex03 99 7 22537 11
N50G7N;5N;10N35N,5Ns10Ng10N,5 Ex04 997 2274 7 11
N50G7TN;10N,5N35N,7N3Ng10N;10 Ex05 102 7 22857 11
N50G7N,;10N;5N35N45NsT10N5N,10 Ex06 100 7 2254 7 11
N50G7N;10N;3N32N,10N5s10Ng10N;5 Ex07 102 7 227317 11
N50G7N; 10N,5N55N48N2Ng10N,10 Ex08 1027 2276 7 11
NSOGTN; 10N,5N315N4SNs10NgSN55 Ex09 99 7 22337 11
NS50G7N,10N,5N;35N410N5Ng10N;5 Ex10 96 7 2243 7 11

*

NSOG7N; 10N;5N;5N,5Ns10Ng1ON55 Ex01

a
F2-F3-F5-F7-F4-F1-F6

N5SOG7N; 10N,5N;35N410N 55N 10N-5 Ex02

F2-F3-F5-F7-F4-F1-F6

NSOG7N;10N,;5N;5N,5N<10Ns5N,10 Ex03

F2-F3-F5-F4-F7-F1-F6

N50G7N;5N;10N35N,5N510Ns 10N-5 Ex04

F2-F1-F5-F7-F4-F3-F6

N50G7N;10N;5N35N,7Ns3Ns10N,10 Ex05

F2-F6-F1-F4-F7-F4-F5

N50G7N1 1 ONzl ON35N45N55N65N71 0 EXO6

F2-F1-F4-F3-F7-F5-F6

N50G7N;10N;3N;2N410Ns10N10N,5Ex07

F3-F6-F5-F7-F4-F1-F2-

NSOGTN] ] ON25N35N48N52N61 ON']] 0 Ex08

F2-F6-F1-F4-F7-F3-F5

N50G7N,;10N;5N;15N,5NsSN¢5SN-5 Ex09

F2-F6-F3-F7-F4-F1-F5

N50G7N,10N,;5N;5N;10N35Ns10N-5 Ex10

F2-F3-F5-F71-F4-F1-F6
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APPENDIX B

OUTPUT FROM CHENG’S ALGORITHM

CHENG’S ALGORITHM
vl k fik',0") CPU time
N3GOEx01 2-3-1 8 L7 0.1
N3GOEx02 1-3-2 6 0.8 0.1
N3GOEx03 1-3-2 14 13 0.1
N3GOEx04 1:3-2 13 2.9 0.1
N3GOEx05 2-1-3 10 1.4 0.1
N3GOEx06 3-1-2 6 0.7 0.1
N3GOEx07 1-3-2 7 11 0.1
N3GOEx08 2-1-3 5 0.7 0.1
N3GOEXQ9 2-3-] 7 1.2 0.1
N3GOEx10 3-1-2 8 0.4 0.1
N3GOEx11 3-1-2 8 1.1 Q.1
N3GOEx12 1-2-3 9 22 0.1
N3GOEx13 1322 8 0.8 0.1
N3GOEx14 3-1-2 10 0.7 0.1
N3GOEx15 2-1-3 19 1.7 0.1
N3GOEx16 2-1-3 8 1.2 0.1
N3GOEx17 _1-2-3 14 2.3 0.1
N3GOEx]8 3-2-1 15 1.9 0.1
N3GOEx19 1-3-2 12 1.3 0.1
N3GOEx20 1-2-3 15 1.1 0.1
N3GOEx21 1-2-3 5 0.8 0.1
N3GOEx22 3-1-2 9 1 Q0.1
N3GOEx23 1-3-2 5 0.5 0.1
N3GOEx24 3-1-2 4 08 0.1
N3GOEx25 2-3-1 5 0.8 0.1
N3GOEx26 3-12 7 0.7 01
N3GOEx27 3-1-2 3 0.6 0.1
N3GOEx28 3-1-2 4 0.7 0.1
N3GOEx29 3-1-2 4 0.5 0.1
N3GOEx30 312 4 1.1 0.1
N3GOEx31 2-1-3 11 21 0.1
N3GOEx32 3-2-] 11 2.7 0.1
N3GOEx33 3-1-2 12 1.9 0.1
N3GOEx34 2-3-] 9 0.8 0.1
N3GOEx35 3-12 14 22 0.1
N3GOEx36 3-12 8 12 0.1
N3GOEx37 2-3-1 8 1.3 0.1
N3GOEx38 3-1-2 10 2.2 0.1
N3GOEx39 2-1-3 9 0.7 0.1
N3GOEx40 1-2-3 6 Q.7 0.1
N3GOEx41 2-1-3 8 1.0 0.1
N3GOEx42 1322 5 1.3 0.1
N3GOFx43 3-2-1 15 42 0.1
N3GOEx44 3-1-2 11 L1 0.1
N3GOEx45 _1-2-3 7 1.1 0.1
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CHENG’S ALGORITHM
k fix’,c) CPU time
N4GOEx01 2-3-4-1 5 0.9 0.2
N4GOEx02 4-1-2-3 8 L5 0.2
NAGOEx03 2-1-4-3 8 Q.9 0.2
N4GOEx04 4-2-1-3 8 L5 0.1
NAGOEx03 3-1-4-2 9 1.1 0.2
NAGOEx06 2-4-3-1 6 0.6 0.2
N4GOEX07 3-4-1-2 7 1.2 0.1
N4GOEXx08 4-1-2-3 6 0.8 0.2
N4GOEX09 4-2-1-3 11 14 0.2
N4GOEx10 4-2-1-3 12 1.8 Q0.2
NAGOEXx1], 3-1-2-4 5 0.7 0.2
NAGOEx12 4-3-2-1 9 1.6 0.1
N4GOEXx13 4-3-1-2 9 1.2 0.2
N4GOEx14 2-4-1-3 13 32 0.2
N4GOEX15 2 3 19 2.2 0.2
N4GOEx16 | 4 17 3.2 0.2
N4GOEx17 4 3 135 1.8 0.2
NAGOEXx18 3-2-4-] 18 1.9 0.2
N4GOEx19 2 3 14 L6 0.2
NAGOEX20 2 4 16 1.6 0.2
N4GOEX21 4-3-1-2 19 2.2 0.1
N4GOEXx22 4-3-1-2 16 1.8 01
NAGOEx23 4 1 15 2.1 0.1
NAGOEx24 2-3-4-1 13 1.9 0.1
NAGOEX25 4-3-2-1 9 0.9 0.1
N4AGOEX26 4-3-1-2 8 1] 0.1
N4GOEx27 2-4-3-1 16 3.8 0.1
N4AGOEx28 4-3-1-2 11 2.0 0.1
N4GOEX29 2 4 14 1.9 0.1
N4GOEx30 4-1-3-2 9 1.3 0.1
N4GOEx31 3 4 17 2.1 0.2
NA4GOEx32 1 4 12 1.7 0.2
N4GOEx33 2 i 9 1.3 0.2
NAGOEx34 4 1 12 1.2 02
N4GOEx35 1 3 19 33 0.2
NAGOEx36 2 1 11 1.3 0.2
NAGOEx37 4 | 13 2.5 0.2
N4GOEx38 1 4 11 L5 0.2
N4GOEXx39 2 3 11 1.2 0.2
NAGOEx40 3 2 14 1.9 0.2
NAGOEx41 1 2 10 2.1 0.2
N4GOEx42 4 2 19 23 0.2
N4GOEXx43 1 15 1.8 0.2
N4GOEx44 1 3 15 24 0.2
NAGOEXx45 1 3 13 17 0.2




CHENG’S ALGORITHM
k CPU time
NSGOEx01 3- 9 03
N5SGOEx02 5 9 0.3
NSGOEx03 4 15 1.7 03
N5SGOEx04 5 11 23 0.2
NSGOEx05 1 13 1.6 0.2
NSGOEx06 4 1 2.2 02
N5GOEx07 5 13 1.4 0.2
NS5SGOEx08 5 17 2.9 0.3
N5SGOEX09 5 12 1.7 0.3
NSGOEx10 2 10 2.7 0.3
N5SGOEx11 5 18 3 0.3
NSGOEx12 4 13 1.8 0.2
NSGOEx13 S 11 1.5 0.2
NSGOEx14 1 9 1.1 02
NS5SGOEx15 5 20 2.8 02
NSGOEx16 3 14 2 0.3
NSGOEx17 4 10 1.3 0.2
NSGOEXx18 5 1l 1.7 0.2
NSGOEx19 4 20 2.5 0.2
NSGOEx20 5 14 _ 2.2 0.2
NSGOEx21 5 16 16 03
NSGOEx22 4 13 2.5 0.3
N5GOEx23 5 14 1.7 03
NSGOEx24 h) 17 1.6 03
NSGOEx25 2 9 2 0.3
NSGOEx26 4 12 LS 0.3
NSGOEx27 5 14 1.5 03
NSGOEx28 3 11 2 03
NSGOEXx29 2 22 3.6 0.3
NSGOEx30 4 -3 10 38 03
NSGOEx31 1 -4 13 14 03
NSGOEx32 5 1 11 1.7 0.3
N5SGOEx33 3 2 26 4.1 03
N5SGOEx34 4 5 14_. 2.8 0.3
NSGOEx35 4 2 27 43 03
NSGOEx36 4 1 14 42 0.3
NSGOEx37 5 2 13 1.9 03
N5GOEx38 5 3 27 33 0.3
NSGOEx39 S 1 27 39 03
NSGOEx40 4 1 20 2.7 0.3
NSGOEx41 3 2 19 3.2 0.3
NSGOEx42 4 3 21 37 0.3
N5GOEx43 3 5 9 3 0.3
N5GOEx44 3 5 14 2.5 0.3
N5GOEx45 3 1 22 24 0.3




GORITHM

CHENG'S
k

o fik',o) CPU time
N6GOEx01 4-6-1-3-5-2 12 2.1 0.3
N6GOEXx02 5-1-6-2-3-4 17 2.2 0.3
N6GOEX03 6-5-3-1-2-4 14 2.2 0.3
N6GOEx04 1-2-3-4-5-6 15 2.1 0.4
NO6GOEX05 6-4-3-5-2-1 21 2.1 0.3
N6GOEx06 3-2-6-5-4-1 15 2.3 0.3
N6GOEx07 5-4-1-3:6-2 15 2.2 0.3
N6GOEx08 4-2-3-5-6-1 15 2.3 04
N6GOEx09 6-4-3-5-2-1 17 2.8 0.4
N6GOEX10 6-4-3-5-2-1 15 3.6 04
N6GOEx11 5-6-4-3-1-2 13 2.2 0.4
NOGOEx12 5-6-4-3-2-1 14 2.2 0.4
N6GOEx13 3-2-3-4-6-1 10 2.4 0.4
N6GOEx14 4-6-2-1-3-5 15 3.5 04
N6GOEx15 4-2-6-3-5-1 14 2.6 0.4
N6GOEX16 4-6-3-5-1-2 13 2.7 0.4
N6GOEx17 2-6-3-4-5-1 13 2.8 0.4
N6GOEX 18 4-6-2-5-3-1 13 2.2 0.4
N6GOEx19 6-5-2-3-1-4 13 2.2 0.4
N6GOEx20 6-5-3-4-2-1 13 2.2 0.4
N6GOEx2] 6-5-4-3-2-1 21 3 04
N6GOEx22 6-2-1-4-5-3 24 3.5 04
N6GOEx23 2-6-3-4-5-1 . 12 3.1 0.4
N6GOEXx24 6-5-4-3-2-1 11 2 04
N6GOEX25 6-4-1-5-2-3 18 2.6 0.4
N6GOEx26 6-2-3-5-4-1 13 2.3 0.4
N6GOEX27 6-5-3-4-2-1 21 3.6 0.4
N6GOEx28 6-5-2-4-1-3 25 3.4 0.5
N6GOEx29 4-5-3-1-2-6 22 4.2 Q.5
N6GOEX30 5-3-6-2-1-4 23 4.2 0.5
N6GOEx31 1-4-6-2-3-5 17 35 05
N6GOEX32 6-1-4-5-2-3 19 32 04
N6GOEXx33 3-6-2-1-4-5 18 2.8 0.4
N6GOEx34 2-1-5-6-4-3 21 3.5 0.4
N6GOEx35 6-3-5-2-4-1 15 2.4 0.4
N6GOEx36 2-3-6-5-4-1 12 2.2 0.4
N6GOEx37 2-4-1-5-3-6 21 3.9 0.4
N6GOEX38 5-6-1-2-4-3 20 2.7 0.4
N6GOEX39 6-5-1-4-2-3 17 2.4 0.4
N6GOEx40 2-6-5-3-1-4 20 4.2 0.4
N6GOEx41 5-1-6-4-3-2 21 2.9 0.4
N6GOEx42 6-1-3-5-2-4 10 1.8 0.4
N6GOEx43 6-3-2-1-5-4 23 33 04
N6GOEx44 2-4-6-1-5-3 17 3.5 0.4
N6GOEx45 3-6-4-1-2-3 17 2.6 04
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MPS FORMAT

NAME
ROWS

N COST
G LIMI1
G LIM2
G LIM3
G LIM4
G LIMS5
G LIM6
G LIM7
G LIM8
G LIMS
G LIMI0
G LIMI1
G LIMI2
G LIM13
L LIM14
L LIMI5
L LIMI16
G LIM17
E LIMI18
E LIMI19
COLUMNS

NEOMIP

APPENDIX C

El
E2
E3
E4
T1
T2
T3
T4
P11
P11
PI3
PI3
PI3
P13

LIMI 10
LIM2 10
LIM3 10
LIM4 10
LIM5 10
LIM6 10
LIM7 10
LIM8 10
LIM9 10
LIMI1 10
LIM13 10
LIM15S 10
LML -10
LIMS5 10

MINIMISE
COST 160
COST 10
COST 10
COST 10
COST 10
COST 10
COST 10
COST 10
LMI0O 10
LiMI2 10
LIMi4 10
LIMI6 10
LIM2 -10
LIM6 10
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Pl4 LIM17 10

Pl4 LIM8 ~-10

P12 LIMI7 -10

PI2 LIM5 10

Pl LIMO -10

P2 LIMIO -10

P2 LIMI9 10

P3 LiMll -10

P3 LIMi8 -10

P4 LIM12 -10
RHS

RHST LIMI  -045
RHS1 LIM3  -045

RHS1 LIM5 045

RHSI LIM7 -045

RHST LIM9 00

RHS1 LIMI0O 00

RHS! LIMI2 00

RHS1 LIMI4 00

RHS1 LIMi6 00

RHST LIMI8 00
BOUNDS
FX BOUND1 PI 10
FXBOUND] P4 100
FX BOUND1 P2 30
FX BOUND1 P3 60

ENDATA

LIM4
LIM18
LIM1
LIM19
LIM13
LIM14

LIMI5

LIMI16

LIM2
LIM4
LIM6
LIM8

LIM11
LIM13
LIM15
LIM17
LIM19
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10
-10

10

-10
-10

-10

-0 45
-0 45
045
045

00
00
00
00
00



OUTPUT FROM SCICONIC PACKAGE

ITERATIONS OBJECTIVE INFEASIBILITIES

002
003

0 0000000  31350000( 10)
7 10550000 0000000 0)
SOLUTION IS OPTIMAL
NAME ACTIVITY  DEFINED AS
FUNCTIONAL 10 550000 COST
RESTRAINTS RHSI
BOUNDS BOUNDI
ROW AT  ACTIVITY
N COST  BS 10 550000
G LMl LL -0 450000
G LIM2 LL -0 450000
G LIM4  BS 6 000000
G LIM5  BS 4 000000
G LIM6  BS 1 000000
G LIM8 LL 0 450000
G LIM9 BS 9 000000
G LIMIO BS 7 000000
G LIMI1 BS 4 000000
L LIMI4 BS -2 000000
L LIMI5 BS -5 000000
L LIM16 BS -9 000000
G LIM17 BS 3 000000
*+x END OF ROWS ***
COLUMN AT  ACTIVITY
El BS 3 550000
E2  BS 0 550000
T4  BS 6 450000
Pl BS 10 000000
PI3  BS 1 000000
P4  BS 6 000000
P2 BS 3 000000
P LL 1 000000
P2 LL 3 000000
P3  LL 6 000000
P4 LL 10 000000

*** END OF COLUMNS ***
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APPENDIX D
INPUT DATA FOR TEST EXAMPLES FOR BOTH ALGORITHMS

t © B Wi W2 W3
N3GOEX01 4 5 3 02 _oJL 1 05
N3GOEX02 6 2 1 6 0.2 0.2
N3GOEX03 5 4 9 QL .o0L_ 08
N3GOEx04 6 5 7 0.2 0J 0.5
N3GOEX05 2 8 4 0,4 0.5 0.1

1 2 5 a6 0J 0.1
N3GOEX07 4 2 3 as _ 0J 0.6
N3GOEX08 1 4 5 0.7 0.2 0.1
N3GOEx09 2 4 3, 03 0.2 0.5
N3GOEx10 2 2 6 0.8 0.1 01
N3GOExI 1 3 2 0.6 0.1 0.3
N3GOEx12 5 4 6 0.4 QJ o.L
N3GOEx13 5 1 3 .02 _ 02 0.6
N3GOEx14 3 2 7 0.7 02 _.QIL
N3GOEx15 8 n 9 as . 01 0
N3GOEX16 2 6 4 05 0.4. 0 X
N3GOEx1 7 9 5 8 L.gj_ 06 .oO.L.
N3GOEx18 7 6 9 01 0.7 0.2
N3GOEx19 5 3 7 oJ . 02 0.7
N3GOEx20 1 4 7 01 0.8 0.1
N3GOEx21 4 1 5 0J 0.6 0.1
N3GOEx22 2 6 7 0.7 0.1 0.2
N3GOEX23 5 3 1 08 0J 0.1
N3GOEx24 1 2 4 0.2 0.2 0.6
N3GOEx25 1 3 2 0.2 0.3 0.5
N3GOEX26 2 1 5 0.5 0.3 0.2
N3GOEXx27 1 2 .2 0j5 0.2 0.2
N3GOEx28 2 1 2 0.5 0J 0.2
N3GOEx29 1 2 3 0.6 0.1 0.3
N3GOEx30 3. 2 1 0.5 0.4 0.1
N3GOEx31 4 7 5 0.5 0.4 0.1
N3GOEX32 5 7 4 0.4 0.5 0.1
N3GOEX33 7 4 5 0.6 0.3 0.1
N3GOEx34 1 6 3 0.2 0.2 0.6
N3GOEX35 6 4 8 0.5 0.4 0.1
N3GOEx36 4 2 4 QJ 0.4 0.1
N3GOEX37 2 5 3 0.2 0.3 0.5
N3GOEx38 6 2 4 05 0.2 0.3
N3GOEx39 4 5 1 0.6 0.1 0.3
N3GOEXx40 5 1 3 0.4 0.5 0.1
N3GOEx41 2 6 2 05 0.4 0.1
N3GOEx42 5 3 1 0.6 0.3 0J
N3GOEx43 8 10 5 0.4 05 0.1
N3GOEx44 5 3 6 QJ 02 0.1
_N3GOEx45 4 .3 2 02. _0Q0J _DJ
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