APPROXIMATE MODELS OF JOB SHOPS

Alexandros Diamantidis B Sc
M Sc in Computer Applications

Dublın City Unıversity

Supervisor Dr Micheal O'hEigeartaigh

August 1999

August 1999

Declaration

I hereby certify that this material, which I now submit for assessment on the programme of study leading to the award of M.Sc. is entirely my own work and has not been taken from the work of others save and to the extent that such work has been cited and acknowledged within the text of my work. Date: $7 / 8 / 1999$

TABLE OF CONTENTS

CHAPTER 1
Introduction
10 A brief history of scheduling problems Page 1
11 Importance of scheduling problems Page 3
12 Outhne of the thesis Page 4
CHAPTER 2
Literature Review on Scheduling Theory
20 Introduction Page 5
21 Job shop models Page 7
22 Routing Page 9
23 Input Page 10
24 Dispatch policies Page 11
25 General assumptions Page 13
26 Problem classification Page 17
27 Study of dynamic job shop systems and related models Page 20
271 Disjunctive graph formulation Page 21
272 Mixed integer programming formulation Page 22
273 Job grouping Page 23
274 Branch and Bound methods Page 25
275 Simulated Annealing Page 27
276 Tabu Search technıques Page 28
277 Truncated Branch and Bound methods Page 29
CHAPTER 3
Model Descritpion
30 Description of our Model Page 31
31 Previous studies on related models Page 34
311 The E/T model Page 35
312 Minımızing total deviation from a common due-date Page 36
313 Parallel machine models Page 38
314 Different earliness and tardıness penalties Page 39
315 Additional penalties Page 40
316 Non-linear penalties Page 41
317 Job dependent earlıness and tardiness penalties Page 43
318 Due date tolerances Page 44
319 The minimal criterion Page 48
3110 Distinct due dates Page 48
3111 Job deadlines Page 49
CHAPTER 4
A mixed Integer Piogrammıng Formulation of Scheduling Problems
40 Sciconic Page 50
41 Mixed Integer Programmıng (MIP) formulation Page 54
42 An example of the MIP formulation Page 55
43 Conclusions Page 60
CHAPTER 5
An Algorithm for Schedulıng Groups of Jobs on a sıngle machine
50 Introduction Page 62
51 Scheduling groups of jobs on a single machine Page 62
511 The optımal due date Page 65
512 The optımal sequence Page 68
513 Numerical example for a set of independent jobs Page 70
52 Job Grouping Algorithm (JGA) Page 72
521 Numerıcal example Page 76
53 Conclusions Page 78
CHAPTER 6
An algorithm for The Due-Date Determination an Sequencing Problem
60 Introduction Page 79
61 Cheng's Algorithm Page 79
62 Numerical example Page 83
63 Conclusions Page 85
CHAPTER 7
Performance and Evaluation
70 Introduction Page 86
71 Description of the data base of test problems Page 86
72 Conclusions Page 87
73 Further research Page 90
Appendix A Output from (JGA) Algorthm Page 92
Appendix B. Output from Cheng's Algonthm Page 103
Appendix C MPS format and SCICONIC results Page 108
Appendix D Input Data for both algorithms Page 111
References Page 120

LIST OF FIGURES

Figure $1 \quad$ Job Shop System Page 7
Figure2 Classficalons of Job Shops and Scheduling Systems Page 12
Figure3 Discontmuous Penalty Function Page 45
Figure4 Comimuous Penalty Function Page 46
Figure5 Ganti Chait for Lemma l Page 65

LIST OF TABLES

Table \quad Complete enumeration of the set job Page 70

Table 2	Piocessing ames and weighting factors of the mumerical example	Page 83

Table3 Optımal Sohtuon Page 84

ACKNOLEDGEMENTS

I would like to extend my heartfelt gratitude to my supervisor Dr Micheal O'hEigeartaigh for all his help and guidance throughout the period of my research Without his assistance I would not have been able to reach this stage

My sincere gratitude to Prof E O'Kelly for his invaluable suggestions and contınuous support I would like also to thank Assistant Prof Chr Papadopoulos for his invaluable suggestions and quidance, which started six years ago when I was a student at Department of Mathematics in University of Aegean and continued until now

I would like to thank also Prof Michael Ryan and the School of Computer Applications in general for providing me with the opportunity and the necessary funding to undertake this research

I would like also to thank my colleague Theodore Stamoulakatos for his suggestions on C++ coding Finally a great thank deserve to all the postgraduate students of the School of Computer Applications for makıng my research life excitıng

Abstract

Scheduling can be described as "the allocation of scarce resources over time to perform a collection of tasks" They anse in many practical applications in manufacturing, marketıng, service industries and within the operatıng systems of computers

Scheduling problems are frequently encountered in various activities of every day life

They exist whenever there is a choice of the order in which a number of tasks can be performed Some examples are scheduling of classes in academic institutions, jobs in manufacturing plants, patients on test facilities in health institutions and programs to be run at a computing centre The desire to perform the tasks in a special order to achieve some objective is what makes scheduling problems important

In this thesis we will use the machine shop terminology, even though the actual situations that give rise to scheduling problems are wide and varied

Since a complete description of a real machine shop would be too detarled to serve as a conceptual basis for any meaningful analysis, we will adopt a simplified model consisting of a job shop and a despatch area through which jobs are received from outside and then passed to the job shop

Such a model can adequately reflect the aspects of real machine shops that are ımportant for predıctıng performance

The performance of such a job shop system models is normally measured by ether the production capacity or mean tardiness or the mean number in the system, in the job shop and in the despatch area

Scheduling problems differ in

- input, the manner in which the jobs arrive at the system
- despatch policy, the policy by which the jobs are despatched to the shop, and
- routing, the order in which the jobs go from one machine centre to the other in the job shop

CHAPTER 1

INTRODUCTION

10 A brief history of scheduling theory

Scheduling theory is concerned with the practical problem of allocating (scarce) resources over tıme to perform a collection of tasks, with a view to mimimising an evaluation function [B74]

This rather general definition of the term does convey two different meanings that are important to understand the necessity of scheduling in our hives First, scheduling is a decision-making function In this sense the process of determining a schedule and much of what we learn about scheduling can apply to other kinds of decision making and therefore has general practical value Second, scheduling is a body ot theory it is a collection of principles, models, techniques, and logical conclusions that provide insight into the scheduling function In this sense, much of what we learn about scheduling can apply to other theories and therefore has general conceptual value

The problem being investigated is normally cast in terms of a mathematical model Seminal work [K76] in developing a categorisation of scheduling problems has enabled researchers in combinatorial optımisation co-ordinate their efforts in the design of good algorithms A large range of problems of practical interest has been wholly or partly solved to date

However, as new problem classes are identified, there is a necessity to develop new models and solution techniques on a contınual basis

The theoretical perspective is predominantly a quantitative approach, one that attempts to capture problem structure in concise mathematical form In particular, this quantitative approach begins with a translation of decision-making goals into an explicit objective function and decision-making restrictions into constraints Ideally, the objective function should consist of all costs in the system that depends on scheduling decisions In practice, however, such costs are often difficult to measure, or even to identify completely

The most important elements in scheduling models are resources and tasks Tasks compete for resources A task is described by its resource requirement, its duration, the time at which it may be started and the time at which it is due to be completed

Because many of the early developments in the field of scheduling were motivated by problems arising in manufacturing, the vocabulary of manufacturing is still employed when describing scheduling problems Thus resources are usually called "machnes" and basic task modules are called "Jobs" Jobs may consist of several elementary tasks that are interrelated by precedence restrictions, such elementary tasks are referred to as "operations"

11 Importance of sclieduling problems

Scheduling problems are encountered in various activities of everyday life They exist whenever there is a choice of the order in which a number of tasks can be performed Some examples are scheduling of classes in academic institutions, jobs in manufacturing plants, patients on test facilities in health institutions and programs to be run at a computer centre The desire to perform the tasks in a special order to achieve some objective is what makes scheduling problems important [S79]

Scheduling problems are also important because the scheduling field has become a focal point for the development, application and evaluation of combinatorial procedures, sımulation techniques, network methods and heuristic solution approaches

The selection of an appiopriate technique depends on the complexity of the problem, the nature of the model and the choice of the criterion, as well as other factors, in many cases it is appropriate to consider several alternative techniques For this reason, scheduling theory is perhaps as much the study of methodologies as it is the study of models

Because scheduling is a body of a theory (a collection of principles, models, techniques, and logical conclusions) much of what we learn about scheduling can apply to other theories and therefore has general conceptual value

12 Outline of the thesis

The thesis is made up of seven chapters The second chapter the literature review is presented along with the classification of scheduling problems

In chapter 3 the description of our model is presented as well as previous studies on relative models In chapter 4 the Mixed Integer Programming (MIP) formulation is described, whereas in chapter 5 we describe the algorithm that we developed for scheduling groups of jobs on a single machine (JGA)

In chapter 6 we describe an algorithm that is used for scheduling a set of jobs on a single machine, whereas in chapter 7 we evaluate the performance of both algorithms and we make some suggestions for further research

CHAPTER 2

LITERATURE REVIEW ON SCHEDULING THEORY

Review of scheduling theory

Scheduling can be described as "the allocation of scarce resources over time to perform a collection of tasks" They arise in many practical applications in manufacturing, marketing, service industries and within the operating systems of computers

Scheduing tasks are characterised by the

- Environment in which they are defined (eg single or multiple machine context)
- Job characterıstics (e g presence of deadlınes, release dates)
- Optımality criteria (e g Cmax, Lmax)

In this paper we present a literature review of recent advances in scheduling theory

$20 \quad$ Introduction

Scheduling has been described as "the allocation of resources over time to perform a collection of tasks"([B74], p2) As the definition implies, scheduling theory arises within the realm of Combinatonal Optımisation (CO) and is closely related to partitioning and packing problems

Scheduling theory is concerned primarily with mathematical models that relate to the scheduling function This area has been researched very heavily since 1950 and many excellent review artıcles chart progress within the domain over that time The research direction has been driven by practical applications and scheduling problems are classified by the

- Environment in which they are defined (eg single or multiple machine context)
- Job characterıstics (e g presence of deadlınes, release dates)
- Optımality criterion, which is to be minımısed (eg Cmax, Lmax)

Ideally, the optımality criterion should consist of all costs in the system that depends on the scheduling decisions In practice, however such costs are often difficult to measure, or even to identify completely According to [B74] three types of decision-making goals are prevalent in scheduling

- Efficient utilisation of resources
- Rapid response to demands
- Close conformance to prescribed deadlines

By virtue of the classification scheme used to describe them, scheduling problems are easy to describe However, they include many NP-hard problems and the field has become a focal point for the development, application, and evaluation of combinatorial procedures, simulation techniques, network methods, and heuristic solution approaches

21 Job shop models

Since a complete description of a real machine shop would be too detanled to serve as a conceptual basis for any meaningful analysis, we will adopt a simplified model consıstıng of a Job Shop and a dispatch area Jobs are received through dispatch area from outside and then passed to the job shop

Figure 1 Job shop system

Such a model can adequately reflect the aspects of real machine shops that are important for predıctıng performance The performances of such Job Shop system models is normally measured by etther the production capacity or mean tardiness or the mean number of jobs in the system in the Job Shop and in the despatch area However occasionally other system measures, which will be discussed later, are also used [S79]

Problem Variables

- N The number of jobs to be scheduled
- M The number of machines (each job is assumed to visit each machine once)
- d_{1} Deadlıne for job 1 (job i must be completed by date d_{1})
- d_{1} Due date of job 1 (it is desirable that job a be completed before the date d_{1})
- r_{1} Release date for job 1 (job 1 can not be started before date r_{1})
- p_{11} Setup and processing time of job 1 on machine J

Pre-emption (pmtn) is the ability to start or stop the processing of a job arbitrarily often It is a watershed in scheduling problems if it is allowed, it tends to make scheduling easy it is a characteristic of computer related problems, such as the scheduling of tasks within an operating system, it is rarely present in workshop problems

Solution-Dependent Measures

- C_{4} Time at which job i is completed
- F_{1} The length of time job 1 is in the shop (flow time)
- L_{1} Lateness ($\mathrm{C}_{1}-\mathrm{d}_{1}$)
- T_{1} Tardiness ($\max \left\{0, L_{1}\right\}, 1$ e positive lateness values)

In general we assume that all jobs are in the shop and ready for processing at tıme 0 , and hence flow time and completion time are the same

Description of a Shop

In a shop-scheduling problem we are given a set of jobs $\mathrm{J}=\left\{\mathrm{J}_{1}, \mathrm{~J}_{2}, \quad, \mathrm{~J}_{n}\right\}$ a set of machines $M=\left\{M_{1}, M_{2}, \quad, M_{m}\right\}$ and a set of operations $O=\left\{O_{1}, \quad, O_{1}\right\}$ each operation $\mathrm{O}_{\mathrm{k}} \in \mathrm{O}$ belongs to a specific job $\mathrm{J}_{\mathrm{J}} \in \mathrm{J}$ and must be processed on a specific machine $M_{1} \in M$ for a given amount of tıme p_{k}, which is a non-negative integer At any time, at most one operation can be processed on each machine, and at most one operation of each job can be processed [K76]

Accordıng to [S79], scheduling problems differ in

- Routing - the order prescribed for jobs on the machines in the shop
- Input - the manner in which the jobs arrive at the system
- Dispatch policy - the manner in which the jobs are dispatched to the shop

22 Routing

A shop could be characterised by the following broad divisions

- Open Shop - jobs can be processed on the machines in any order
- Job Shop - individual jobs have a prespecified machine sequence
- Flow Shop - all jobs follow the same prespecified machıne sequence

23 Input

In [S79], scheduling problems are classıfied as static and dynamic, depending on the job arrival pattern In a Static Job Shop, a certain number of jobs arrive simultaneously to a system that is idle and is immediately available for work No additional jobs will be assigned to the system until they are dispatched to the shop This prescheduling of jobs before dispatching may be carried out taking into account the storage capacity of the Job Shop, the processing times of the operations, due dates and so on

This preschedule stage can be used to obtain a dispatch schedule and assign priorities for each job on each machine If no conflict arises in the shop with respect to the priorities and dispatch schedules, the whole operation can be carried out according to the preschedule However if conflicts arise due, inter alia, to machine breakdowns, server vacations or uncertain processing tımes, it may become necessary to practise shop level scheduling (that is, prionty assignments are made by the machine operator or shop floor supervisor)

The shop level scheduling can be classified into two categones local and global Local scheduling rules assign proonties to jobs at a machine based on the immediate status of the jobs at that machine, global scheduling rules require information about the status of some aspects of the system beyond the local boundaries of that machine

In a Dynamic Job Shop system, jobs arrive intermittently at tumes that are predictable only in a statistical sense The jobs may belong to one or more classes

24 Dispatch policies

In a Pseudo-Static Job Shop, the dynamic scheduling problem is converted into a sequence of static problems At review tumes all jobs in the Job Shop and dispatch area are prescheduled using static rules All these jobs are treated as a new batch, in the same way as those in a static scheduling problem Any job entering the system after a review time must wait in the dispatch area untıl the next review time No shop level scheduling is permitted unless it is required to resolve conflicts due to prescheduling priorities

In a Pure Dynamic Job Shop, each job on arrival to the system enters the shop immediately and only shop level scheduling is permitted When jobs in a pure dynamic Job Shop are processed in the order of their arrival to the machines, the system is typically treated as the classical Jackson type queuing network model In order to improve the performance of the Job Shop, jobs may be scheduled at each machine according to some priority rules such as shortest processing time (SPT)

Pseudo-Dynamic Job Shop models represent systems where jobs can be held at the dispatch area and control exercised at the prescheduling and shop levels, depending on the type of information available

Figure 2 Classıfication of job shops and scheduling systems

25 General assumptions

Following [S79], [K76] and [AS93], the following assumptions will be made

Job Based Assumptions

- The set of jobs J is known and fixed
- Jobs arriving in the system go directly to the dispatcher and each job is released to the shop as soon as it enters the dispatch area
- All jobs are available at the same instant and independent
- Each job consists of specified operations, each of which is performed by only one machıne at a tıme
- Each job requires a finte process tıme for each operation The processing tımes of all jobs at a machine are identically and independently distributed
- Each job can be in each one of three states
- Wating for the next machine
- Being operated by a machine
- Having passed its last machine
- Each job is processed by all the machines assigned to it
- All jobs are equally important
- All jobs remain avaılable during an unlımited period

Machine Based Assumptıns

- The set of machines M is known and fixed
- Each machine is contınuously avaılable for processing jobs and there are no interruptions due to breakdowns, maintenance or other such cases
- All machines remain available during an unlımited period
- Each machine in the shop operates independently of the other machines and thus is capable of operating at its own maximum output rate
- Each machine can be in each one of three states
- Watting for the next job
- Operatıng on a job
- Having finished its last job
- All machınes are equally ımportant
- Each machine processes all the jobs assigned to it
- Each machine processes one job at a tıme

Operating Policies

- Each job is considered as an indivisible entity even though it may be composed of a number of individual units
- Each operation once started must be completed without interruption (If preemption is allowed, this assumption will be altered)
- All processing times are fixed and sequence-mdependent
- The processing order per job is known and fixed
- Each job once accepted, is processed to completion, without cancellation
- Each machine is fully allocated to the jobs under consideration

Scheduling Policies

- SPT (Shortest Processing Time) Select a job with mınımum processing tıme
- EDD (Earliest Due Date). Select a job due first
- FCFS (First Come, First Served). Select a job that has been in the workstation's queue the longest
- FISFS (First In System, First Served). Select a job that has been on the shop floor the longest
- S/RO (Slack per Remaming Operation). Select a job with the smallest ratıo of slack to operations remaining to be performed
- Covert Order jobs based on ratio of slack-based priority to processing tıme
- LTWK (Least Total Work) Select a job with smallest total processing tıme
- LWKR (Least Work Remaining) Select a job with smallest total processing time for unfinished operations
- MOPNR (Most Operations Remaining) Select a job with the most operations remaining in its processing sequence
- MWKR (Most Work Remaining). Select a job with the most total processing tıme remaining
- RANDOM (Random) Select a job at random
- WINQ (Work In Next Queue) Select a job whose subsequent machine currently has the shortest queue
- SPTT (Truncated Shortest Processing Time). In SPTT scheduling discipline, jobs are divided by the controller into two classes such that jobs with processing time less than or equal to α belong to class land the rest to class 2 Here α is the boundary point Hugher proorty is given to class 1 However within class 1 jobs are selected accordıng to SPT and within class 2 according to FCFS
- \quad 2C-NP $\}$ (Two Class Non-Preemptive Prionty). In $2 \mathrm{C}-\mathrm{NP}$, jobs are divided by the controller into two classes as in SPTT However within each class jobs are selected according to FCFS
- 2L-SPT (Two Level Shortest Processing Time) In 2L-SPT, jobs are divided by the controller into two classes A job is randomly assigned to class 1 with probability f and to class 2 with probability l-f Class 1 jobs are given higher prionty and within each class SPT discipline is used

26 Problem classıfication

In [DLR81], scheduling problems are classified using three characteristics $\alpha|\beta| \gamma$, where α is the machine environment, β defines the job characteristics and γ is the optimality criterion that is to be minimised

Machine Environment

We describe here the first field $\alpha=\alpha_{1} \alpha_{2}$ which specifies the machine environment

Let o denote the empty symbol If $\alpha_{1} \in\{0, P, Q, R\}$, each $j 0 b J_{j}$ consists of a single operation that can be processed on any machıne M_{4}, the processing time of J_{j} on M_{1} being $p_{1 J}$

There are four cases to consider

- $\alpha_{1}=0$ Single machine, $p_{1_{j}}=p_{J}$
- $\alpha_{1}=P \quad$ Identical parallel machines, $p_{y j}=p_{J}(1=1, \quad, m)$
- $\alpha_{1}=Q$ Uniform parallel machines, $p_{y}=p_{j} / q_{1}$ for a given speed q_{1} of M_{1} $(1=1, \quad, m)$
- $\alpha_{1}=\mathrm{R}$ Unrelated parallel machines

If $\alpha_{1}=O$ we have an open shop, in which each J_{J} consists of a set of operations $\left\{\mathrm{O}_{1 \mathrm{l}}, \quad, \mathrm{O}_{\mathrm{mj}}\right\} \quad \mathrm{O}_{1 \mathrm{l}}$ has to be processed on M_{1} dunng $\mathrm{p}_{1 \mathrm{l}}$ time units However, the order in which the operations are executed is immaterial

If $\alpha_{1} \in\{F, J\}$, an ordering is imposed on he set of operations corresponding to each job If $\alpha_{1}=F$, we have a Flow Shop and if $\alpha_{1}=J$, we have a Job Shop If α_{2} is a positive integer, then m is a constant and equal to α_{2} If $\alpha_{2}=0$ then m is assumed to be vartable

Job Characteristics

The second field $\beta \in\left\{\beta_{1}, \quad, \beta_{5}\right\}$ defines the job characteristics

- $\beta_{1} \in\{$ pmtn,o $\}$
$\beta_{1}=$ pmtn Preemption (job splitting) is allowed the processing of any operation may be interrupted and resumed at a later time

$$
\beta_{1}=0 \quad \text { No preemption is allowed }
$$

- $\beta_{2} \in\{$ prec,tree, 0$\}$
$\beta_{2}=\operatorname{prec} A$ precedence relation \rightarrow between the jobs is specified $\mathrm{J}_{\mathrm{J}} \rightarrow \mathrm{J}_{\mathrm{k}}$ requires that J_{J} be completed before J_{k} can start $\beta_{2}=$ tree G is a rooted tree with outdegree at most one for each vertex $\beta_{2}=0 \quad$ No precedence relation is specified
- $\beta_{3} \in\left\{\mathrm{r}_{\mathrm{j}}, \mathrm{o}\right\}$

$$
\begin{array}{ll}
\beta_{3}=r_{\mathrm{J}} & \text { Release dates that may differ per job are specified } \\
\beta_{3}=0 & \text { All } r_{\mathrm{J}}=0
\end{array}
$$

- $\beta_{4} \in\left\{m_{j}<m, o\right\}$
$\beta_{4}=m_{j}<m \quad$ A constant upper bound on m_{\jmath} is specified (only if $\alpha_{1}=J$)
$\beta_{4}=0 \quad$ All m_{1} are arbitrary integers (Where $\left\{\mathrm{O}_{1 \mathrm{l}}, \quad, \mathrm{O}_{\mathrm{m}\}}\right\}$ is a set of
operations that each J_{j} is consisted of) $\mathrm{O}_{1 j}$ has to be processed on M_{t} during $p_{y j}$ time units
- $\beta_{5} \in\left\{\mathrm{p}_{15}=1,0\right)$
$\beta_{5}=p_{13}=1 \quad$ Each operation has unit processing time (If $\alpha_{1} \in\{0, P, Q\}$, we wnte $P_{3}=1$ and if $\alpha_{1}=R, p_{13}=1$ will not occur)

$$
\beta_{\mathrm{S}}=0 \quad \text { All } \mathrm{p}_{\mathrm{y}}\left(\mathrm{p}_{\mathrm{j}}\right) \text { are arbitrary integers }
$$

Optımality Criterıa

The third field $\gamma \in\left\{f_{\text {max }}, \Sigma f_{j}\right\}$ refers to the optimality criterion which is to be minımised The optımality criteria most commonly chosen in the literature are

- $\mathrm{f}_{\text {max }} \in\left\{\mathrm{C}_{\text {max }}, \mathrm{L}_{\max }\right\}$, where $f_{\text {max }}=\max _{j}\left(f_{1}\left(C_{1}\right)\right)$ with $f_{j}\left(C_{j}\right)=C_{j}, L_{j}$ respectively
- $\Sigma \mathrm{f}_{\mathrm{j}} \in\left\{\Sigma \mathrm{C}_{\mathrm{j}}, \Sigma \mathrm{T}_{\mathrm{j}}, \Sigma \mathrm{U}_{\mathrm{j}}, \Sigma \mathrm{w}_{\mathrm{j}} \mathrm{C}_{\mathrm{j}}, \Sigma \mathrm{w}_{\mathrm{j}} \mathrm{T}_{\mathrm{j}}, \Sigma \mathrm{w}_{\mathrm{j}} \mathrm{U}_{\mathrm{j}}\right\}$, where $\sum \mathrm{f}_{\mathrm{j}}=\sum \mathrm{f}_{\mathrm{j}}\left(\mathrm{C}_{\mathrm{J}}\right)$ with $\mathrm{f}_{\mathrm{J}}\left(\mathrm{C}_{\mathrm{J}}\right)=\mathrm{C}_{\mathrm{j}}, \mathrm{T}_{\mathrm{J}}, \mathrm{U}_{\mathrm{J}}, \mathrm{w}_{\mathrm{J}} \mathrm{C}_{\mathrm{J}}, \mathrm{w}_{\mathrm{J}} \mathrm{T}_{\mathrm{J}}, \mathrm{w}_{\mathrm{J}} \mathrm{U}_{\mathrm{J}}$, respectively (all these factors will be defined in the next section)

For example $R|p m t n| \Sigma C_{1}$ Minımise total completion time on a variable number of unrelated parallel machines, allowing preemption The complexity of this problem is unknown

Other objectıves are mınımısing

- Average flow time, $\mathrm{F}=\left(\mathrm{F}_{1}+\mathrm{F}_{2}+\quad+\mathrm{F}_{\mathrm{N}}\right) / \mathrm{N}(\mathrm{N}=$ total number of jobs$)$
- Time required to complete all jobs ($\mathrm{C}_{\text {max }}$, also referred as makespan)
- Average tardiness, $T=\left(T_{1}+T_{2}+\quad+T_{N}\right) / N$
- Maxımum tardıness ($\mathrm{T}_{\mathrm{max}}$)
- Number of tardy jobs, $\mathrm{U}_{1}+\mathrm{U}_{2}+\quad+\mathrm{U}_{\mathrm{N}}$, where U_{1} is 1 if $\mathrm{T}_{1}>0$ and 0 otherwise
- Weighted sum of \jmath ob completion times, $w_{1} C_{1}+w_{2} C_{2}+\quad+w_{N} C_{N}$ where each job has a specified weight w_{1}
- Total tardıness, $\mathrm{T}_{1}+\mathrm{T}_{2}+\quad+\mathrm{T}_{\mathrm{N}}$
- Sum of Cost Functions, $f_{1}\left(C_{1}\right)+f_{2}\left(C_{2}\right)+\quad+f_{N}\left(C_{N}\right)$, where for each job j there is specified a cost function f_{j}

27 Studies of dynamic ıob shop systems and related models

Most methods proposed for solving the job shop scheduling problem are of an enumerative type, and use a disjunctive graph formulation proposed by [RS64] Nevertheless, other approaches have been tested most of them based on an active schedule generation or mixed integer programming (MIP) formulation In this section we will expose some ideas, of some researchers about the job shop scheduling problem These ideas are taken from articles in magazines that have been published the last four years

271 Disjunctive graph formulation

The model can be modelled by a disjunctive graph $\mathrm{K}=(\mathrm{G}, \mathrm{D})$, where $\mathrm{G}=(\mathrm{X}, \mathrm{U})$ is a comjunctive graph associated with the job sequences Most methods proposed for solving the job shop-scheduling problem are of an enumerative type, and use a disjunctive graph formulation proposed by [RS64] Nevertheless, other approaches have been tested most of them based on an active schedule generation or mixed integer programming (MIP) formulation

- X is the set of vertices which represent the tasks to be performed, including the fictitious start and fimsh tasks,
- $\quad \mathrm{U}$ is the set of conjunctive arcs representing the order in which the tasks belonging to the same jobs should be performed
- Dis the set of disjunctive arcs, and more precisely the set of pairs of opposite directed lines (1 e arcs) which represent the possible precedence constraints among tasks belonging to different jobs but performed on the same machıne

Two operations 1 and j, executed by the same machine, can not be simultaneously processed So we associate with them a parr of disjunctive arcs or disjunction $[1],]=\{(1,1),(1,1)\}$

Usually o and * denote two dummy operations associated with the beginning and the end of the schedule In the following p_{1} denotes the processing tume of
operation 1 A schedule on a disjunctive graph $K=(G, D)$ is a set of starting times $T=\left\{t_{1} 1 \in X\right\}$ such that

- The conjunctive constrants are satısfied

$$
\mathrm{t}_{\mathrm{J}}-\mathrm{t}_{1} \geq \mathrm{p}_{1} \quad \forall\left(\mathrm{t}_{\mathrm{r}} \mathrm{~J}\right) \in \mathrm{U}
$$

- The disjunctive constraints are satisfied

$$
t_{1}-t_{1} \geq p_{1} \text { or } t_{1}-t_{\jmath} \geq p_{3} \quad \forall(1, \jmath) \in D
$$

To built a schedule, we have to replace each disjunctive arc $[1, y]$ by etther $(1, j)$ or $(1,1)$, and thus to choose an operatıng sequence for each machine

2.72 Mixed integer programming formulation

A large number of MIP formulations have been proposed by a number of authors [F82] A new MIP formulation that has been recently used by [AC91] is presented here Keeping the notation defined above, the problem can be formulated as follows

Minimize $\quad \mathrm{C}_{\text {max }}$

Subject to $\quad \forall 1 \in X, \mathrm{t}_{1} \geq 0$,

$$
\begin{aligned}
& \forall 1 \in X, \quad C_{m a x} \geq t_{1}+p_{1} \\
& \forall\left(\mathrm{t}_{1}\right) \in \mathrm{U}, \mathrm{t}_{\mathrm{l}} \geq \mathrm{t}_{1}+\mathrm{p}_{1} \\
& \forall[\mathrm{l}, \mathrm{~J}] \in \mathrm{D}, \mathrm{t}_{1} \geq \mathrm{t}_{1}+\mathrm{p}_{1} \text { or } \mathrm{t}_{1} \geq \mathrm{t}_{1}+\mathrm{p}_{1}
\end{aligned}
$$

This disjunctive programming problem leads to the following MIP formulation by mintroducing a binary variable y_{y} and setting the new constrants

$$
\left.\forall\left[1_{1}\right]\right] \in D, t_{1} \geq t_{1}+p_{1}-K y_{1 j}, t_{j} \geq t_{1}+p_{1}-K\left(1-y_{11}\right)
$$

$$
\forall[1, j] \in D, y_{y} \in\{0,1\},
$$

where K is some large constant, and $y_{11}=1$ if and only if 1 is scheduled before J , and 0 otherwise

273 Job grouping

Economies of scale are fundamental to manufacturing systems With respect to scheduling this phenomenon manifests itself in efficiencies gained from grouping sımıla jobs together Job grouping [WB95], [AW97] are techniques that have been tested on the job shop scheduling problem In both cases jobs are grouped into families where jobs in the same family share a setup (a job does not need a setup when following another job from the same famıly) but a known "family setup tume" is required when a job follows a member of some other family

In [WB95] an overview of research results for scheduling groups of jobs on a single machine is presented These results fell into three categories, according to the scheduling model

- Family scheduling with item avarlability
- Family scheduling with batch availability
- Batch processing

In the first model a job becomes avallable for delivery to the next stage as soon as it completes processing A simplifying assumption for family scheduling is that precisely f setups in the schedule are needed, one for each family (f is the number of families) This assumption is called GT assumption

The authors show that the F_{w} problem and the $\mathrm{L}_{\text {max }}$ problem are easy to solve when the GT assumption holds, otherwise, the F_{w} is open and the $L_{\text {max }}$ problem is known to be NP-hard One useful direction for further research would be to resolve the complexity of the F_{w} problem if it is NP-hard, then another researchable area would be the development of algorithms for either problem Some sufficient conditions for the optımality of the GT solution are also presented

Next they reviewed the major results for the family scheduling model with batch avalability, which characterize the solution of the F problem when there is one famuly Chey applied the same principles to develop a solution to the $\mathrm{L}_{\text {max }}$
problem when there is one family The generalization to multiple families is a challenging area for future work, as is the one-famıly problem with the F_{w} objectıve

They also highlighted several results for the batch processing model which has received attention only recently in the scheduling hiterature They focused on models involving dynamic job arrivals, in light of the fact that the static version of the batch processing problem is often trivial Two broad areas for future work appear fertile One involves relaxing the assumption of a single machine and the other area involves criteria other F_{w} and $\mathrm{L}_{\text {max }}$

274 Branch and Bound methods

Branch and bound techniques have been tested on the job shop scheduling problem [AW97] analyses a model of a single machine scheduling problem with famıly setup tımes, arbıtrary earlıness and tardıness job penalty rates, and an unrestricted common due date is analysed to minimize total weighted earliness and tardıness cost These rates are assessed on a per-period basis when the completion time deviates from its due date

The interesting point of this work is that it combines the features of family setup tımes (job grouping) with earliness / tardiness cost They have generalized properties from the literature [HP91] that help characterize the form of optımal schedules and they have defined an efficient method for calculating a lower bound
on the optımum The properties and lower bounding methods are incorporated into a branch and bound and a beam search procedure

Each node in the tree (with the exception of the bottom-level) corresponds to a partial schedule When an unsequenced job is added to a partial schedule S, it is added to ether the beginning of E or the end of T (where E and T are the ordered set of jobs that complete no later than time d and after time d respectıvely)

The branch and bound algorithm employs a depth-first strategy A node in $r^{\text {th }}$ level of the branch and bound tree corresponds to a partial sequence with r jobs For each node at level r, there are two nodes emanatıng for each unsequenced job one for the first avalable early position and one for the first available tardy positton The nodes that can not be fathomed by some dominance conditions are listed in nondecreasing order of lower bounds The node at the top of the list is selected for branching

Beam search is a heuristic branch and bound procedure that does not necessarily evaluate the complete branch and bound tree Thus, the approach sacrifices a guarantee of optımality for gains in speed and reduced memory requirements At each level only a limited number of nodes are selected for branching, the rest are permanently discarded The number of nodes selected for branching is called the beam width

275 Simulated Annealing

Simulated Annealing [LAL92] is one of the most important local search technıques that have been tested on the job shop scheduling problem In [LAL92] an approximation algorithm is presented for the problem of finding the minimum makespan in a job shop The algorithm is based on simulated annealing, a generalization of the well known iterative improvement approach to combinatorial optımization problems and is a more general approach based on the easily implementable simulated annealing algorithm [KGV83]

The innovation of the algorithm involves the acceptance of cost-increasing transitions with a nonzero probability to avoid getting stuck in local minıma That probabilistic element of the algonithm makes simulated annealing a significantly better approach than the classical iterative improvement method on which is based The neighborhood structure is based on critical path rearrangement

A transition is generated by reversing the sequencing order of two critical operations
[LAL92] establishes the asymptotic convergence in probability to a global minimal solution of a simulated annealing procedure using the first neighborhood mentioned above In comparison with other heuristic methods, simulated annealing yields consistently good solutions Simulated annealing has the disadvantage of large running tımes which can be compensated for by the simplicity of the algorithm, by its ease of implementation, by the fact that it
requires no deep insight into the combinatorial structure of the problem, and, of course, by the high quality of solutions it returns

276 Tabu Search techmques

Other local search techniques that have been tested on the job shop scheduling problem are Tabu Search techniques [DT93] In [FS] a new heuristic method based on the Tabu Search technique for solving the n-job m-machine job shop scheduling problem to mınımize the makespan is presented

The authors start from an mitial solution by sequencing randomly the jobs to the machines Given a sequence s, they define $\mathrm{N}(\mathrm{s})$ as being the set of all feasible sequences which can be obtained from s by applying a method which firstly constructs a prionty list of jobs, secondly selects the job on the first position of the priority list and then assigns this job to the machine on the first position of the job's operations sequence

After that a job on the second position is selected and assigned to the machine on the first position of the job's operations sequence, and so on Because the objective function is the makespan, the best neighbour is selected as the sequence that mınımizes the makespan all over sequences in $N(s)$ and which does not lead to tabu moves

The algorithm is sometimes simplified by examining neighbours and taking the first one that improves the current solution If there is no move that improves the solution (or if all improving solutions are tabu) then the whole set of neighbours is examined If all the generared neighbors do not improve the solution or all the improving neighbors are tabu, all neighbours are examined

The procedure is stopped when Nmax iterations have been performed without improving the current solution (where Nmax is a parameter of the algorithm and can be set by experimentation) It was observed that the better the initial solution, the better the results and also the smaller the number of iterations Thus a an idea for future work may be to find better ways of generating a neighbour, testing for the best parameter settings, and finding a better starting solution In comparison with other heuristic algorithms, tabu search yields quite good solutions and is less time-consuming than simulated annealing

277 Truncated Branch and Bound methods

One of the most efficient approximate methods proposed so far is probably the Shifting Bottleneck Procedure presented in [ABZ88] Starting with the initial job shop scheduling problem, the authors optımally sequence one by one the machines, using Carlier's (1982) [C82] algorithm for the one machine problem At each optımızation step, heads and tails adjustments are computed The order in which the machines are sequenced depends on a bottleneck measure associated
with them Each time a new machme is sequenced, they attempt to improve the operatıng sequence of all previously scheduled machınes in a reoptımızation step This procedure is embedded in a second heuristic of an enumerative type, for which each node of the search tree corresponds to a subset of sequenced machınes

CHAPTER 3

MODEL DESCRIPTION

30 Description of our model

We consider a model that is based on single-machine scheduling models that incorporate benefits from job grouping

In some settings, the grouping of jobs is a desirable or necessary tactic because of some technological feature of the processing capability The motivation for grouping sometımes relates to the existence of changeover times, or set-up times on the machine

Suppose that jobs each belong to a partıcular famıly, where jobs in a family tend to be similar in some way, such as their required tooling or their contaner size As a result of this similarity, a job does not need a set-up when following another job from the same family, but a known "family set-up time" is required when a job follows a member of some other family This is called family scheduling model

In the family scheduling model, a machine is assumed capable of processing at most one job at a tıme We use the pair $(1, j)$ to refer to job j of famuly 1 We let f denote the number of families, n the number of jobs, and n_{1} the number of jobs belonging to family 1

In addition $\mathrm{p}_{1 \sqrt{ }}$ and $\mathrm{w}_{1, \mathrm{~J}}$ denotes the processing time and weight of job ($1, \mathrm{~J}$) Thus $n_{1}+n_{2}+\quad+n_{f}=n \ln$ addition, s_{1} denotes the setup time required to process a job in family 1 following a job in some other family In principle any family scheduling model can be viewed as a single-machine model with sequence dependent setup times If a job follows a member of the same family, then its setup time is zero otherwise its setup time is s_{1}, the family setup time

We know that sequence-dependent set-up tımes tend to make solutions difficult to find However, by exploting the special structure of family scheduling, we can sometımes avoid the enumerative techniques that would ordınarily be required A simplifying assumption for family scheduling is the requirement of precisely f set-ups in the schedule, one for each family Such a requirement may reflect the fact that the set-ups are much longer than the job processing times, or it may result from a desire to mınımize the time spent on set-up in situations where capacity is scarce It may also be imposed simply to make the problem more tractable We refer to this assumption as the GT assumption

Each family is treated as a single entity, or composite job with processing time

$$
p_{1}=\sum_{j=1}^{n} p_{1,} \text { and weight } w_{1}=\sum_{j=1}^{n} w_{1 j}
$$

We consider the problem of assigning due-dates and sequencing a given set of jobs on a sıngle machine There will be penalttes for completıng jobs etther ahead or behind their scheduled dates The objective is to minimize a function of missed due dates

We are concerned with the optimal sequencing of a set of jobs to minimise a penalty of deviation from the desired due-dates it is coupled with the optimal assignment of due-dates to the set of jobs to be processed by a single machine Given a set of families of jobs with deterministic processing times and the same ready tımes, the problem ss to find the optımal common flow allowance k *and the optımal job sequence σ^{*} to mınımıze a penalty function of missed due dates It is assumed that penalty will not occur if the deviation of job completion from the due-date is sufficienlty small

Scheduling aganst due-dates has been a popular research topic in the scheduling hiterature for many years [BS90], [BGG88], [B87], [HP89] lt attracts the attention of both Operational Research researchers and practitioners for two reasons The combinatonal nature of the due-date scheduling problem poses a great theoretical challenge to researchers who are trying to develop tıme-efficient algorithms to solve the problem in an elegant manner

The results of due-date scheduling research have significant practical value in the real world It is evident that the failure of completing a job on its promised delivery date gives rise to various penalty costs Completing a job early means having to bear the costs of holding unnecessary inventories while finishing a job late results in contractual penalty and loss of customer goodwill

31 Previous studies on related models

The study of earliness and tardiness penalties in scheduling models is a relatively recent area of inquiry For many years, scheduling research focused on single performance measures, referred to as regular measures that are nondecreasing in job completion times

Most of the literature deals with such regular measures as mean flowtime, mean lateness, percentage of jobs tardy, and mean tardiness

The mean tardiness criterion, in particular, has been a standard way of measuring conformance to due dates, although it ignores the consequences of jobs completıng early

However, this emphasis has changed with the current interest in Just-In Time (JIT) production, which espouses the notion that earlıness, as well as tardiness, should be discouraged [BS90]

In a JIT scheduling environment, jobs that complete early must be held in finished goods inventory untal their due date, while jobs that complete after their due dates may cause a customer to shut down operations Therefore, an ideal schedule is one in which all jobs finish exactly on their assigned due dates This can be translated to a scheduling objective in several ways

JIT encompasses a much broader set of principles than just those relating to due dates, but schedulıng models with both earhness and tardiness penalties do much to capture the scheduling dimension of a JIT approach

The concept of penalising both earliness and tardiness has spawned a new and rapidly developing line of research in scheduling theory Because the use of both carliness and tardiness penalties gives rise to a nonregular performance measure, It has led to new methodological issues in the design of solution procedures

311 The E/T model

Virtually all the literature on E / T (earliness and tardiness) problems deals with static scheduling ln other words, the set of jobs to be scheduled is known in advance and is available to all schedulers in a multiple machine environment The vast majority of the artıcles [GK87], [BS90], [C88], [C87], [HP89], [HP91] on E / T problems only deals with single machine models although some single machine results have been extended to parallel machines Let E_{j} and T_{j} represent the earliness and tardiness, respectively of job j

Assocsated with each job is a unit earhness penalty $a_{\jmath}>0$ and a unit tardiness penalty $\beta_{\mathrm{J}}>0$ Job J is also described by a processing time p_{J} and a due date d_{J} The basic E / T objective function for a schedule S can be written as $f(S)$ where

$$
\mathrm{f}(\mathrm{~S})=\sum_{j=1}^{n}\left(\alpha_{j} E_{j}+\beta_{j} T_{j}\right)
$$

In some formulations of E / T problems the due dates are given while in others they are derived from the optımality function In the sımplest models, all jobs have a common due date Prescribing a common due date might represent a situation
where several items constitute a single customer's order, or it might reflect an assembly environment in which the components should all be ready at the same time to avoid staging delays

A more general model allows distınct due dates, but in these cases due dates appear to be intrinsically different from solutions to problems with a common due date

Treatıng due dates as decision variables reflects the practice in some shops of setting due dates internally, as targets to guide the progress of shop floor activities

3.12 Mimimizing total deviation from a common due date

An important special case in the family of E / T problems involves mınımısing the sum of absolute deviations of the job completion times from a common due date [K81a], [SH84], [H86], [BCS87] In particular, the objective function can be written as

$$
\mathrm{f}(\mathrm{~S})=\sum_{j=1}^{n}\left|C_{j}-d\right|=\sum_{j=1}^{n}\left(E_{j}+T_{j}\right)
$$

with the understanding that $\mathrm{d}_{\mathrm{j}}=\mathrm{d}$

When we write the objective function in this form, it is clear that earliness and tardiness are both penalized at the same rate for all jobs \ln these cases it is desirable to construct the schedule so that the due date is, in some sense, in the middle of the jobs If d is too small, then it will not be possible to fit enough jobs in front of d, because of the restriction that no job can start before tıme zero Thus for a given job set we might discover that d is too small, this gives rise to the restricted version of the problem

It can be shown that there exists an optimal solution to the unrestricted problem with the following properties [BS90]

I There is no inserted idie time in the schedule (If job j immediately follows job in the schedule the $\mathrm{C}_{\mathrm{J}}=\mathrm{C}_{1}+\mathrm{p}_{\mathrm{j}}$)

II The optımal schedule is V-shaped (Jobs for which $\mathrm{C}_{\mathrm{J}} \leq \mathrm{d}$ are sequenced in nonincreasing order of processing tıme, jobs for which $\mathrm{C}_{\mathrm{j}}>\mathrm{d}$ are sequenced in nondecreasing order of processing time)

III One job completes precisely at the due date ($\mathrm{C}_{\mathrm{j}}=\mathrm{d}$ for some J)
IV In an optımal schedule, the bth job in sequence completes at time d, where b is the smallest integer greater than or equal to $\mathrm{n} / 2$ In other words, $\mathrm{b}=\mathrm{n} / 2$ if n is even, and $\mathrm{b}=(\mathrm{n}+1) / 2$ if n is odd

313 Parallel machıne models

The basic analysis of the unrestricted version has been extended to models involving m parallel machines The multımachıne procedure assigns the m longest jobs to different machines Thereafter, the jobs are treated in nonincreasing order of processing tımes and assigned 2 m at a tume among the machines After all the jobs are assigned an algorithm is used to sequence the job on each machine

In addition the four key properties apply to the optimal solution of the multımachme model in the form [SA84], [H86]

I On each machine, there is no inserted idle time
II On each machine, the optimal schedule is V-shaped
IIl On each machine, one job completes at time d
IV The number of jobs assigned to each of the m machines is etther $[\mathrm{n} / \mathrm{m}]$ or $[\mathrm{n} / \mathrm{m}]+1$ (where $[\mathrm{x}]$ denotes the integer portion of x) Let this number be denoted q Then, on each machine, the bth job in sequence completes at tume d, where b is the smallest integer greater than or equal to $q / 2$

314 Different earliness and tardıness penalties

A generalization of the basic model derives from the notion that earlmess and tardiness should be penalized at different rates As noted earlier, α may represent a holding cost whule β represents a tardiness penalty These are likely to be different, especially because α tends to be endogenous, while β tends to be exogenous In particular, let

$$
\mathrm{f}(\mathrm{~S})=\sum_{j=1}^{n}\left(\alpha E_{j}+\beta T_{j}\right)
$$

Again there are restricted as well as unrestricted versions of the problem In the unrestricted version an optımal solution has these properties [BCS87]

I There is no inserted idle time
II The optımal schedule is V-shaped
III One job completes at tıme d
IV In an optımal schedule the $b^{\text {th }}$ job in sequence completes at tıme d, where is the smallest integer greater than or equal to $n \beta /(\alpha+\beta)$

315 Additional penalties

One way to extend the E/T criterion is to include other performance criteria in which penalties might be incorporated Two such criteria, namely due-date penalty and flowtıme penalty, are introduced by Panwalkar, Smith and Seidmann [PSS82] Their model takes the common due date as a decision variable, but their formulation also provides a disincentive for setting a late due date This structure makes practical sense For example, a firm might offer a due date to its customer during sales negotiations, but have to offer a price reduction if the due date is set too late

Suppose that there is a given parameter d_{0} that represents a maximally acceptable due date Consider the following objective function

$$
\mathrm{f}(\mathrm{~S})=\sum_{j=1}^{n}\left[\alpha E_{j}+\beta \Gamma_{J}+\gamma\left(d-d_{0}\right)^{+}\right]
$$

Here, a penalty γ is assessed (for each job) on the difference between the due date selected and d_{0}, when d is later This penalty provides a disincentive for setting due dates later than the maxımally acceptable value Panwalkar, Smith and Seidmann [PSS82] indicate that this problem cannot be solved except by enumerative techniques An exception in the special case $\mathrm{d}_{0}=0$

In addition properties I, II, and III (p39), hold for this problem
Property IV generalizes as follows
IV In an optimal schedule the bth job in sequence completes at time d , where b is the smallest integer greater than or equal to $n(\beta-\gamma) /(\alpha+\beta)$

For a different extension of the E / T model, with d as a decision variable, consider the following objective function

$$
\mathrm{f}(\mathrm{~S})=\sum_{j=1}^{n}\left[\alpha E_{\mathrm{j}}+\beta \eta_{j}+\theta C_{J}\right]
$$

Here a penalty is assessed on the completion time (equivalently, the flow tıme) of job j, thus providing an incentive to turn around orders rapidly The model contans an additional trade off because the flowtıme penalty tends to induce shortest first sequencing whereas the earhness cost induces the reverse sequencing, at the start of the schedule

316 Nonlmear penalties

In some cases, large deviations from the due date are hughly undesirable, and it might be more appropriate to use squared deviations form the common due date as the performance measure Thus, consider the objective function

$$
\mathrm{f}(\mathrm{~S})=\sum_{j=1}^{n}\left(d-C_{j}\right)^{2}=\sum_{j=1}^{n}\left(E_{j}^{2}+\Gamma_{j}^{2}\right)
$$

This is the quadratic analogue of total absolute deviation Bagchi, Sullivan and Chang [BSC86] show that the unrestricted version of this problem is equivaient to the completion variance problem studıed by Eilon and Chowdhury [EC77], Kanet [K81b] and Vanı and Raghavacharı [VR87]

Eilon and Chowdhury [EC77] propose the first heuristic algorithm for solving the quadratic problem, using adjacent parwise interchanges of jobs to improve the solution

Kanet [K81b] shows that the problem is equivalent to minımızing the sum of squared differences in job completion tumes He adapts an algorithm for the absolute deviation problem as a heuristic for the quadratic objective and improves on the Ellon-Chowdhury [EC77] results

Vanı and Raghavacharı [VR87] investigate the use of all parrwise interchanges, and they obtain improved solutions over the other heuristics at the cost of increased computational time

Bagchı, Chang and Suliıvan [BCS87] also examıne the general case in which earliness and tardiness penalties differ

$$
\mathrm{f}(\mathrm{~s})=\sum_{\jmath=1}^{n}\left(\alpha E_{\jmath}^{2}+\beta \Gamma_{\jmath}^{2}\right)
$$

They develop dominance properties and incorporate them into a search procedure to solve the problem, however their approach remains essentially an enumerative one

317 Job dependent earimess and tardmess penalties

An obvious direction for generalization is to permit each job to have its own penalties α_{1} and β_{j} Specifically the objective function takes the form

$$
\mathrm{f}(\mathrm{~S})=\sum_{j=1}^{n}\left(\alpha, E_{j}+\beta_{J} T_{j}\right)
$$

When $\alpha_{j}=\beta_{\mathrm{j}}$, the tardiness penalty matches the earlıness penalty for any particular job, but the penalties may differ among jobs The unrestricted version of thıs problem has been examıned by Bagchı [B85], Cheng [C87], Quaddus [Q87], Bector, Gupta and Gupta [BGG88], and Hall and Posner [HP89]

Bagchı [B85] considers the case in which $\mathrm{a}_{\mathrm{j}}=\mathrm{a} \mathrm{p}_{\mathrm{J}}$ He proves some dominance properties that might accelerate a solution procedure Bector, Gupta and Gupta [BGG88] present a linear programming perspective on these same results Hall and Posner [HP89] prove some dominance propertes that provide necessary conditions for an optimal sequence Their most significant result is a proof that the unrestricted version of he problem is NP-complete

They proceed to develop a dynamic programming algorithm, which they show to be pseudopolynomial

Furthermore, they demonstrate the computational effectiveness of their algorithm by attackıng problems that contain hundreds of jobs and by obtaining optımal solutions with modest run times

Quaddus [Q88] considers the general case in which $\alpha_{1} \neq \beta_{\mathrm{j}}$ and also includes a due date penalty γ_{j} but deals only with the selection of a due date

However it is easy to show that Property I (p39) holds, and Property II (p39) takes the form

II The optımal schedule is V-shaped jobs in B are sequenced in non-mereasing order of the ratıo p_{1} / α_{1} and jobs in A are sequenced in non-decreasing order of the ratio p_{3} / β_{J}

In addition Property III (p39) holds and the general form of Property IV specifies a necessary condition for b as

IV In an optımal schedule the bth job in sequence completes at tıme d, where b is the smallest integer satisfying the inequality

$$
\sum_{j=1}^{b}\left(\alpha_{j}+\beta_{j}\right) \geq \sum_{j=1}^{n}\left(\beta_{j}-\gamma_{j}\right)
$$

where the subscript j denotes the jth job in sequence

318 Due date tolerances

A more general representation allows the penalty to be zero if the completion time is close enough to the due date, where close enough is specified by a given
tolerance For job j to avord penalties, its completion time must fall in the interval from $d-u_{j}$ to $d+v_{j}$ This interval could be interpreted as the length of a time bucket in an MRP system Cheng [C88] analyzes a special case in which the criterion is total absolute deviation and all u_{j} and v_{j} are identical He imposes an unusual assumption

Although the model prescribes no penalty on a job that completes within th tolerance interval around the due date, other jobs have earliness and tardiness calculated from the due date rather than from the end of the tolerance interval This gives rise to the discontınuous penalty function shown below

Figure 3 Discontinuous penalty function
Consider the more conventional, and consistent assumption that, for job j, earliness or tardiness is measured only from the end of the tolerance interval
and

$$
\begin{aligned}
& \mathrm{E}_{j}=\left(\mathrm{d}-\mathrm{C}_{j}-\mathrm{u}_{j}\right)^{+} \\
& \mathrm{T}_{\mathrm{l}}=\left(\mathrm{C}_{j}-\mathrm{d}-\mathrm{v}_{j}\right) \\
& \mathrm{f}(\mathrm{~S})=\sum_{j=1}^{n}\left(\alpha_{j} E_{j}+\beta_{j} T_{j}\right)
\end{aligned}
$$

This gives rise to the contrnuous penalty function shown below

Figure 4 Continuous penalty function
The tolerance is also assumed to be relatively small compared to the processing times in the job set Formally, the requirement is that at most one job can avoid penalty costs or $p_{\mathrm{J}}-\mathrm{v}_{\mathrm{j}}-\mathrm{u}_{\mathrm{j}}>0$ for all parrs of jobs $(1, \mathrm{j})$

Notice that the models previously discussed can be viewed as the special case in which $u_{j}=v_{j}=0$

In the tolerance model, Properties I and II (p39) contınue to hold The generalization of Property IIl states that there will be one job that incurs no penalty in the optımal solution, we shall treat this as job b The generalization of Property IV provides a necessary condition for b in an optimal sequence

Property III (generalized)

In an optımal schedule some job j completes etther at $d-u_{j}$ or at $d+v_{j}$

Property IV (generalized)

In an optımal schedule let b denote the number of jobs that incur no tardiness penalty Then the completion time of job j satisfies the conditions

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{b}}=\mathrm{d}-\mathrm{u}_{\mathrm{b}} \quad \text { if } \quad \sum_{1<b} \alpha_{i}<\sum_{i \geq b} \beta_{1} \quad \text { and } \quad \sum_{1<b} \alpha_{t} \geq \sum_{1>b} \beta_{1} \\
& \mathrm{C}_{\mathrm{b}}=\mathrm{d}+\mathrm{u}_{\mathrm{b}} \quad \text { if } \quad \sum_{\ll b} \alpha_{1}<\sum_{i>b} \beta_{i} \quad \text { and } \quad \sum_{i \leq b} \alpha_{1} \geq \sum_{\gg b} \beta_{i}
\end{aligned}
$$

Thus, for the tolerance model

- Properties I and II (p39) apply
- In the unrestricted version of the problem Properties III(generalized) and IV (generalized) apply
- Determining whether a given problem is restricted requires solving the unrestricted version, with the due date as a decision
- Constructing the optimal solution requires a matching of coefficients and processing times when $\alpha_{\mathrm{J}}=\alpha$ and $\beta_{\mathrm{J}}=\beta$ and the problem is unrestricted

Otherwise the solution requires an enumeration of V-shaped sequences, alded to Property IV(generalızed) which identifies those V-shaped sequences that are candidates for optımality

319 The mummax criterion

One other tolerance model that consists of mınımizing the maximum penalty, where penalties are assessed on eatiness or tardiness has been studied In other words the objective function is [S77]

$$
f(S)=\min ,\left\{\max \left[\alpha\left(\mathrm{E}_{\jmath}\right), \beta\left(\mathrm{T}_{\mathrm{j}}\right)\right]\right\}
$$

where $\alpha(\mathrm{X})$ and $\beta(\mathrm{X})$ are convex functions of earlıness and tardıness, and distınct due dates are permitted

3110 Distinct due dates

The general E / T model has different due dates in the job set This feature tends to make it more difficult to determine a minımum cost schedule than in the problems discussed so far However, if the due dates are treated as decision variables, the problem turns out to be relatively simple The objective function has the form

$$
\mathrm{f}(\mathrm{~S})=\sum_{J=1}^{n}\left[\alpha E_{J}+\beta I_{J}+\gamma\left(d-d_{0}\right)^{+}\right]
$$

In this model, Properties I and II (p39) do not hold, the optımal sequence may not be V-shaped, and inserted idle time may be desirable The search for an optimal schedule can, however, be decomposed into two subproblems finding a good job sequence and scheduling inserted idle time

3111 Job deadines

A related model introduces deadlines rather than due dates [B87] Whereas due dates may be violated at the cost of tardness, deadlines must be met and cannot be violated Thus for example, if the makespan exceeds the maximum allowable deadline, then the problem is considered infeasible However we can also view such models as E / T models with infinite β_{J}, and thus special cases of the problem considered above A more general objective is to minımize total weighted earlıness

The objective function can be stated formally as

$$
\operatorname{Minf}(\mathrm{D}, \sigma)=\sum_{j} n_{j} \theta_{j} C_{j}+\sum_{j} \sum_{j}\left(\alpha_{j} E_{1 j}+\beta_{j} T_{1 j}\right)
$$

where

$$
\begin{aligned}
& n_{j}=\text { number of } j o b s \text { in customer order } J \\
& \theta_{j}=\text { lead-tıme penalty per unit tume for each job in customer order } J \\
& C_{3}=\text { completıon time of the last job in customer order } J \\
& T_{13}=\text { tardiness of } j o b \text { in customer order } J \\
& E_{y j}=\text { eariness of job i in customer order } j \\
& \alpha_{3}=\text { unit eariness penalty for customer order } J \\
& \beta_{1}=\text { unit tardıness penalty for customer order } J
\end{aligned}
$$

and $\quad D$ is the vector of the due dates for the customer orders

CHAPTER 4

A MIXED INTEGER PROGRAMMING FORMULATION OF SCHEDULING PROBLEMS

$40 \quad$ Sciconic

In this section we are going to present the MIP (Mixed Integer Programming) formulation of our problem along with the results that we obtained for a specific instance of our model, using SCICONIC an algorithmically advanced Mathematical Programming package developed by SCICON Its purpose is to provide both technical and non-technical users with a convenient and costeffective way to solve linear, integer and non-linear programming problems Mathematical programming (MP) is a rapidly advancing field, and SCICONIC has been designed around advanced algorithms and techniques Further developments are contınually beıng made, especially in robustness and the speed of solution for large linear and mixed integer problems

Mathematical programming (MP) has a wide variety of applications in the petroleum, chemical and manufacturing industries, transport agriculture and many more It can be used for a variety of purposes, from providing an optımum solution to an established problem to providing a frame work for collecting and evaluating all of the relevant data and their consequences Completely new models can be built in order to gain greater understanding of a hypothetical
situation, while established models can be run routinely many tımes a day to guide the operation of a manufacturing process

In general terms, Mathematical Programming is concerned with the best way to allocate scarce resources to alternative activities [W78] lists applications under the following headings

- The Petrolcum Industry
- The Chemical Industry
- Manufacturing
- Transport
- Finance
- Agriculture
- Health
- Mining
- Manpower Plannıng
- Food
- Energy
- Pulp and Paper
- Advertising
- Defence
- Other applications

It is important to realise why mathematical programming applications have been successful Firstly they give true optimum solutions to a well-defined problem Secondly, the concepts of Mathematical programming - the quantification of the objectives and the set of all possible ways of achieving these objectives - provide
a framework for thinking about all the relevant data, an occasion for collecting them and the ability to compute the consequences of these data Often the only way to achieve a realistic set of data is to show the people who collected them the consequences of their initial estımates of the data values

It is useful to distinguish between established and new mathematical programming models An established model is run from time to time with updated input data as part of some operational decision - making routıne The purpose is then to suggest a specific course of action to management, and the suggestion will usually be accepted A new model may also be used in this way, but is more often used to gain greater understanding of the situation The model may be run under a vaniety of assumptions that lead to different conclusions, and the model itself will not suggest which set of assumptions is most appropriate

During the model development and data gathering phase, one must therefore be piepared to make many optimisation calculations which the analyst will show to management and say "This is what the model now recommends Does it look senstble, and if not why not ${ }^{"}$ Netther the analyst nor the manager should accept the recommendations unless they can be explaned qualitatively as the natural consequences of physical and economic assumptions This can be paraphrased by saying that one should only trust the model if the results are obvious This may suggest that the model is of no real use but this is not so, because many things are
obvious once someone has pointed them out, when they were not at all obvious beforehand

One difficulty with large-scale mathematical programming models is that the detals of the formulation can become obscure, and changes are then hazardous So we need a systematic approach to documentation It is natural to base this on compactness of an algebraic formulation

Two important points that have to be mentioned are the following
l Practical linear programming formulations can all too easily require hundreds of constraints and thousands of variables, while

2 The algebrac formulation is precise and often compact

Mathematically, MP is about finding the maximum or minımum value of a function of several variables given that the variables have to satisfy a number of constraints, which are limits on the values of functions of the variables

The stages involved running mathematıcal programming models are

- Express the problem as an MP matrix
- Find the optimum solution
- Interpret the solution

An MP code such as SCICONIC will do the second stage It takes the matrix in standard (MPS) format (the MPS code and the output that we get using SCICONIC can be found in Appendix C), finds the optımal solution and writes it out to a solution file

SCICONIC expects a problem to be presented in the form of an industry- standard MPS format matrix file Creatıng an MPS matrix by hand in an editor is a slow and error prone task, even for very small problems

41 Mixed Integer Programming (MIP) formulation

A large number of MIP formulations have been proposed by a number of authors [F82] A new MIP formulation that has been recently used by [AC91] is presented here Keeping the notation defined above, the problem can be formulated as follows

Minımize $\quad \mathrm{C}_{\text {max }}$

Subject to

$$
\begin{aligned}
& \forall 1 \in X, t_{1} \geq 0, \\
& \forall 1 \in X, C_{\max } \geq t_{1}+p_{1} \\
& \forall(1, j) \in U, t_{1} \geq t_{1}+p_{1} \\
& \forall[1, J] \in D, t_{\mathrm{J}} \geq t_{1}+p_{1} \text { or } t_{1} \geq t_{1}+p_{J}
\end{aligned}
$$

This disjunctive programming problem leads to the following MIP formulation by introducing a binary variable $y_{y \prime}$ and setting the new constraints

$$
\begin{aligned}
& \forall[1, \mathrm{~J}] \in \mathrm{D}, \mathrm{t}_{1} \geq \mathrm{t}_{1}+\mathrm{p}_{1}-K y_{y_{1}}, \mathrm{t}_{\mathrm{t}} \geq \mathrm{t}_{1}+p_{1}-K\left(1-y_{41}\right) \\
& \left.\forall\left[1_{2},\right]\right] \in D, y_{\mathrm{y}} \in\{0,1\},
\end{aligned}
$$

where K is some large constant, and $y_{y}=1$ if and only if 1 is scheduled before J, and 0 otherwise

42 An example of the (MIP) formulation

Three jobs A, B and C are to be processed on a single machune Job A is processed on the machine for p_{A} hours, $j o b ~ B$ is processed on the machine for p_{B} hours and finally job C is processed on the machine for p_{C} hours The machine can work only one job at a time and no preemption is allowed We also assume that we have two job families ($f=2$) which are defined as follows famılyl $\mathrm{f}_{1}=\{\mathrm{A}, \mathrm{C}\}$ famuly $2 \mathrm{f}_{2}=\{\mathrm{B}\}$

While $\mathrm{s}_{1}, \mathrm{r}=1,2$ denotes the setup time required in order to process a job in family 1, following a job in some other family No setup is required between jobs from the same famuly

All jobs require the same due-date that is denoted d that means that is desirable to finısh jobs in no more than d hours

Formulation

Let X_{A} denote the time (measured from zero datum) when the processing of job A is started on the machine Similarly X_{B} and X_{C} arc defined The first set of pertinent constraints is the non-interference constraints, which guarantee that machine work on no more than one job at a time For instance the machine can work on etther job A or B , or C at any given tıme This is equivalent to the statement that either job A precedes job B on the machine or vice versa

Thus we have an "erther-or" type constraint for non-interference on the machine given by

$$
\mathrm{X}_{\mathrm{A}}+\mathrm{p}_{\mathrm{A}}+\mathrm{S}_{2} \leq \mathrm{X}_{\mathrm{B}}
$$

or

$$
\mathrm{X}_{\mathrm{B}}+\mathrm{p}_{\mathrm{B}}+\mathrm{S}_{1} \leq \mathrm{X}_{\mathrm{A}}
$$

With the help of a binary integer variable, the "etther-or" constraint can be reduced to the following two constrants

$$
\begin{align*}
& X_{A}+p_{A}+s_{2}-X_{B} \leq M \delta_{1} \tag{1}\\
& X_{B}+p_{B}+s_{1}-X_{A} \leq M\left(1-\delta_{1}\right) \tag{2}
\end{align*}
$$

where $0 \leq \delta_{1} \leq 1, \delta_{1}$ is integer, and M is a large positive number Note that when $\delta_{1}=1$, the first constraint becomes $X_{A}+p_{A}+s_{2}-X_{B} \leq M$ and is inactive, while the second constraint reduces to $\mathrm{X}_{\mathrm{B}}+\mathrm{p}_{\mathrm{B}}+\mathrm{s}_{1}-\mathrm{X}_{\mathrm{A}} \leq 0$ implying job B precedes job A on the machine On the other hand, when $\delta_{1}=0$, the first constraint becomes
$\mathrm{X}_{\mathrm{A}}+\mathrm{p}_{\mathrm{A}}+\mathrm{s}_{2}-\mathrm{X}_{\mathrm{B}} \leq 0$ implying that job A precedes job B , while the second constrant becomes $X_{B}+p_{B}+s_{1}-X_{A} \leq M$ and is inactive

Thus with the help of the binary integer variable both possibilities are simultaneously included in the problem

Because the single machine can process any of the three jobs A, B and C at any tıme we obtan

$$
X_{A}+p_{A} \leq X_{C}
$$

or

$$
X_{C}+p_{\mathrm{p}} \leq X_{A}
$$

(the factor s_{1} is missing because jobs A and C belong to the same family f_{l}) With the help of the binary integer variable δ_{2} we obtan

$$
\begin{equation*}
\mathrm{X}_{\mathrm{A}}+\mathrm{p}_{\mathrm{A}}-\mathrm{X}_{\mathrm{C}} \leq \mathrm{M} \delta_{2} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
X_{C}+p_{C}-X_{A} \leq M\left(1-\delta_{2}\right) \tag{4}
\end{equation*}
$$

$$
\mathrm{X}_{\mathrm{B}}+\mathrm{p}_{\mathrm{B}}+\mathrm{s}_{1} \leq \mathrm{X}_{\mathrm{C}}
$$

or

$$
\mathrm{X}_{\mathrm{C}^{+}+\mathrm{p}_{\mathrm{C}}+\mathrm{s}_{2} \leq \mathrm{X}_{\mathrm{B}}}
$$

With the help of the binary integer variable δ_{3} we obtain

$$
\begin{align*}
& \mathrm{X}_{\mathrm{B}}+\mathrm{p}_{\mathrm{B}}+\mathrm{s}_{1}-\mathrm{X}_{\mathrm{C}} \leq \mathrm{M} \delta_{3} \tag{5}\\
& \mathrm{X}_{\mathrm{C}}+\mathrm{p}_{\mathrm{C}}+\mathrm{s}_{2}-\mathrm{X}_{\mathrm{B}} \leq \mathrm{M}\left(1-\delta_{3}\right) \tag{6}
\end{align*}
$$

Where $0 \leq \delta_{1} \leq 1,0 \leq \delta_{2} \leq 1,0 \leq \delta_{3} \leq 1, \delta_{1}, \delta_{2}$ and δ_{3} are integers
Because of using due-date tolerances which means that we allow the penalty to be zero if the completion time of job j falls in the interval $\left(\mathrm{d}-\mathrm{u}_{\mathrm{j}}, \mathrm{d}+\mathrm{v}_{\mathrm{j}}\right)$ the due-date constraints for jobs A, B and C become

$$
\begin{align*}
& d-u_{A} \leq X_{A}+p_{A} \leq d+v_{A} \tag{7}\\
& d-u_{B} \leq X_{B}+p_{B} \leq d+v_{B} \tag{8}\\
& d-u_{C} \leq X_{C}+p_{C} \leq d+v_{C} \tag{9}
\end{align*}
$$

Constraints (7), (8), (9) mean that jobs A, B and C are allowed to be completed in the intervals
$\left(d-u_{1}, d+v_{1}\right)$, where $1=A, B, C$ respectively
We know in general that for job J earliness is defined as $\mathrm{E}_{\mathrm{J}}=\max \left\{0, \mathrm{~d}-\mathrm{C}_{\mathrm{J}}-\mathrm{u}_{\mathrm{J}}\right\}$ (where $\mathrm{C}_{\mathrm{\jmath}}$ is the completion time of job J)

Equivalently in our problem for job A we obtain $E_{A}=\max \left\{0, d-\left(X_{A}+p_{A}\right)-u_{A}\right\}$

This function is equivalent to the following constraints

$$
\begin{align*}
& E_{A} \geq 0 \tag{10}\\
& E_{A} \geq d-X_{A}-p_{A}-u_{A} \tag{11}
\end{align*}
$$

Sımılarly for jobs B and C we obtaın

$$
\begin{align*}
& E_{B} \geq 0 \tag{12}\\
& E_{B} \geq d-X_{B}-p_{B}-u_{B} \tag{13}\\
& E_{C} \geq 0 \tag{14}\\
& E_{C} \geq d-X_{C}-p_{C}-u_{C} \tag{15}
\end{align*}
$$

In general for job j tardiness is defined as $\mathrm{T}_{1}=\max \left\{0, \mathrm{C}_{1}-\mathrm{d}-\mathrm{v}_{3}\right\}$
Equivalently for job A we obtain $\mathrm{T}_{\mathrm{A}}=\max \left\{0,\left(\mathrm{X}_{\mathrm{A}}+\mathrm{p}_{\mathrm{A}}\right)-\mathrm{d}-\mathrm{v}_{\mathrm{A}}\right\}$
This function is equivalent to the following constraints

$$
\begin{align*}
& \mathrm{T}_{\mathrm{A}} \geq 0 \tag{16}\\
& \mathrm{~T}_{\mathrm{A}} \geq \mathrm{X}_{\mathrm{A}}+\mathrm{p}_{\mathrm{A}}-\mathrm{d}-\mathrm{v}_{\mathrm{A}} \tag{17}
\end{align*}
$$

Similarly for jobs B and C we obtain,

$$
\begin{align*}
& \mathrm{T}_{\mathrm{B}} \geq 0 \tag{18}\\
& \mathrm{~T}_{\mathrm{B}} \geq \mathrm{X}_{\mathrm{B}_{3}}+\mathrm{p}_{\mathrm{B}}-\mathrm{d}-\mathrm{v}_{\mathrm{B}} \tag{19}
\end{align*}
$$

$$
\begin{align*}
& \mathrm{T}_{\mathrm{c}} \geq 0 \tag{20}\\
& \mathrm{~T}_{\mathrm{C}} \geq \mathrm{X}_{\mathrm{C}}+\mathrm{p}_{\mathrm{c}}-\mathrm{d}-\mathrm{u}_{\mathrm{c}} \tag{21}
\end{align*}
$$

The objective is to find S^{*} satisfying

$$
\mathrm{F}\left(\mathrm{~S}^{*}\right)=\min \mathrm{S} \in \Pi\{\mathrm{~F}(\mathrm{~S})\}
$$

where

$$
F(S)=\sum_{j=1}^{n}\left[a_{j} E_{j}(S)+\beta_{j} \Gamma_{j}(S)\right]
$$

and Π denotes the set of all feasible schedules

43 Conclusions

In this chapter we present the MIP (Mixed Integer Programming) formulation of our model along with an example of the MIP formulation, considering three jobs that belong to two families

In Appendıx C we present the results that we obtaned using SCICONIC, for a specific case instance considering a set of four independent jobs with processing times $t_{1}=1, t_{2}=3, t_{3}=6$, and $t_{4}=10$ for jobs $1,2,3,4$ respectively (the same example as in paragraph 513)

We can notice in Appendix C that the solution that we get from SCICONIC is equal to the optimal solution that we can get using full enumeration SCICONIC might have been used to provide tight bounds on the quality of heuristic solutions that will be presented

Unfortunately because SCICONIC expects a problem to be presented in the form of an industry standard MPS format matrix file Creating an MPS matrix by hand in an editor is a slow and error prone task, even for very small problems and therefore we could not use SCICONIC in order to provide tught bounds on the quality of the solutions that will be presented

CHAPTER 5

AN ALGORITHM FOR SCHEDULING GROUPS OF JOBS ON A SINGLE MACHINE

5.0. Introduction

In this chapter we develop an algorithm (JGA) for scheduling groups of jobs on single machine in order to minımıse an objective function

We also illustrate the operation of the algorithm using a specific example Three Lemmas are presented to illustrate the use of the results to determine the optımal solution to the due-date determination and sequencing problem

51 Scheduling independent jobs on a single machine

Although we are concerned with the optimal sequencing of a set of group of jobs, to minimise a penalty of deviation from the desired due-dates, (a problem which is coupled with the optımal assignment of due-dates to the set of jobs to be processed by a single machine), in this section we consider the case where the jobs are independent (they do not belong to any famıly) [C88]

Let N be the set of n independent jobs to be processed on a single machine Each job requires t_{1} tume units of processing on the machine, $\forall 1 \in N$

The common due-date assignment method is employed to assign due-dates to jobs

Thus, each job 1 is assigned a due-date $d_{1}=r_{1}+k$ where r_{1} is the ready time of job 1 and k is a common flow allowance, $\forall 1 \in \mathrm{~N}$

While it is true that that there will be penalties for failing to complete a job on its due-date, in practice such a penalty will not occur if the deviation of job completion time form the due-date is sufficiently small

Thus the jobs are given a completion time deviation allowance α such that there will be no penalties if the completion time of job 1 is within the time interval $\left(d_{1}-\alpha, d_{1}+\alpha\right), \forall 1 \in N$

The basic assumptions about the problem model are as follows

- The job processing tımes $\mathrm{t}_{1} \forall 1 \in \mathrm{~N}$ are known and determinıstic
- The jobs are avalable for processing at the same tıme, ie $r_{1}=0 \forall 1 \in N$
- There is a single machıne available, which can only process the jobs one at a tıme
- Job splitting and preemption are not allowed
- The completion time deviation allowance α is sufficiently small and satisfies the condition $2 \alpha<\min \left\{\mathrm{t}_{1}\right\} \forall 1 \in \mathrm{~N}$

We define
$\mathrm{E}_{[\mathrm{j}]}=\max \left\{0, \mathrm{C}_{[\mathrm{lj}}-\mathrm{k}\right\}$
$\mathrm{T}_{[\mathrm{l}]}=\max \left\{0, \mathrm{k}-\mathrm{C}_{[\mathrm{il}}\right\}$
$C_{[1]}=\sum_{j=1}^{1} t_{j}$

Let Π be the set of all possible job sequences and σ be an arbitrary sequence Let the subscript [1] denote the job in position 1 of σ

Let t_{1} denote the processing time of job_{1} and $t_{[1]}$ denote the processing time of job in 1 -th position of a sequence σ

Let $\mathrm{E}_{[1]}, \mathrm{T}_{[1]}$ and $\mathrm{C}_{[1]}$ be the earhness, tardiness and completion time of the th job in σ respectively, then the objective is to minimise a penalty function of missing due-dates expressed as
$f(k, \sigma)=\sum_{i=1}^{n}\left\{E_{[t]} U\left(E_{[1]}-\alpha\right)+\Gamma_{[t]} U\left(T_{[1]}-\alpha\right)\right\}$

Here $U(x-c)$ is the unit step function defined as

$$
U(x-c)=\left\{\begin{array}{ll}
0 \text { if } & x \leq c \\
1 \text { if } & x>c
\end{array}\right\}
$$

511 The optimal due-date

In this section we present two lemmas [C88] which are used to help determine the optımal value of the common flow allowance k *

Lemma 1. For a given job sequence σ the optımal due-date must equal one of the job completion time minus the completion time deviation allowance α $1 \mathrm{ek}=\mathrm{C}_{11}-\alpha, \exists[1] \in \mathrm{N}$

Proof of Lemma 1

Let k be an arbitrary chosen common due-date (1 e $\mathrm{C}_{[11]}<\mathrm{k}<\mathrm{C}_{[1]}, \mathrm{l}=1,2$,, $\mathrm{n}-1$) which does not have the property as stated in Lemma 1 Then in the form of a Gantt-chart, k will be like the following

Figure5 Gantt Chart for Lemma 1

Now shifting k to the night side so that it equals $\mathrm{C}_{[1]^{-}}-\alpha$ causes the following change in penalty

$$
\begin{equation*}
\Delta \mathrm{P}_{\mathrm{R}}=(1-1)\left(\mathrm{t}_{[1]}-\mathrm{y}-\alpha\right)-(\mathrm{n}-1+1)\left(\mathrm{t}_{[1]}-\mathrm{y}-\alpha\right)=(21-\mathrm{n}-2)\left(\mathrm{t}_{[1]}-\mathrm{y}-\alpha\right) \tag{2}
\end{equation*}
$$

Similarly, shifting k to the left side so that it equals $C_{[1]^{-}} \alpha$ gives rise to the following change in penalty

$$
\begin{equation*}
\Delta \mathbf{P}_{\mathrm{I}}=(\mathrm{n}-1+1)(\mathrm{y}+\alpha)-(1-1)(\mathrm{y}+\alpha)=(\mathrm{n}-2 \mathrm{l}+2)(\mathrm{y}+\alpha) \tag{3}
\end{equation*}
$$

It is evident from (2) and (3) that

$$
\begin{array}{ll}
\Delta \mathrm{P}_{\mathrm{R}} & \leq 0 \text { if } t \leq \frac{n}{2}+1 \\
\Delta \mathrm{P}_{\mathrm{L}} & \leq 0 \text { if } \mathrm{l} \geq \frac{n}{2}+1
\end{array}
$$

Thus for any given k , we can perform an appropriate left or right shift depending on the value of k so that a reduced or equal penalty value can be achreved It follows that the optımal due-date must satisfy the condition that $k^{*}=C_{[J]}-\alpha, \exists$ $[1] \in N$

Lemma 2 For a given job sequence σ, the optımal due-date is $k^{*}=C_{[r]}-\alpha$ where r is such that

$$
r= \begin{cases}(n+1) / 2 & \text { if } n \text { is odd } \\ n / 2+1 & \text { if } n \text { is even }\end{cases}
$$

Proof of Lemma 2

From Lemma I we know that the optımal due-date is $\mathrm{k}^{*}=\mathrm{C}_{[\mathrm{r}]}-\alpha, \exists[\mathrm{r}] \in \mathrm{N}$ Let $\mathrm{k}^{+}=\mathrm{C}_{[r+1]}-\alpha$ and $\mathrm{k}=\mathrm{C}_{[r-1]}-\alpha$ Since k^{*} is optimal the following conditions must be satisfied

$$
\begin{equation*}
f\left(k^{*}, \sigma\right)-f\left(k^{+}, \sigma\right) \leq 0 \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
f\left(k^{*}, \sigma\right)-f\left(k^{-}, \sigma\right) \leq 0 \tag{5}
\end{equation*}
$$

Clearly

$$
\begin{align*}
& f\left(k^{*}, \sigma\right)=\sum_{t=1}^{r-1}\left(C_{[r]}-\alpha-C_{[t]}\right)+\sum_{i=r+1}^{n}\left(C_{[i]}-C_{[r]}+\alpha\right) \tag{6}\\
& f\left(k^{+}, \sigma\right)=\sum_{i=1}^{r}\left(C_{[r+1]}-\alpha-C_{[i]}\right)+\sum_{t=r+2}^{n}\left(C_{[t]}-C_{[r+1]}+\alpha\right) \tag{7}
\end{align*}
$$

Substitutıng (6) and (7) into (4), we obtaın

$$
(r-1) t_{[r+1]}+\left(t_{[r+1]}-\alpha\right)-\left(t_{[r+1]}+\alpha\right)-\left[(n-r-1) t_{[r+1]}\right] \geq 0
$$

or

$$
\begin{equation*}
r \geq n / 2+\alpha / t_{[r+1]} \tag{8}
\end{equation*}
$$

Also

$$
\begin{equation*}
f\left(k^{-}, \sigma\right)=\sum_{t=1}^{r-2}\left(C_{[r-1]}-\alpha-C_{[t]}\right)+\sum_{t=r}^{n}\left(C_{[t]}-C_{[r-1]}+\alpha\right) \tag{9}
\end{equation*}
$$

Sımılarly, substituting (6) and (9) into (5), we obtain

$$
\left.-(\mathrm{r}-2) \mathrm{t}_{[\mathrm{r}]}-\mathrm{t}_{[\mathrm{rr}}+\alpha\right)+\left(\mathrm{t}_{[\mathrm{r}]}-\alpha\right)+(\mathrm{n}-\mathrm{r}) \mathrm{t}_{[\mathrm{r}]} \geq 0
$$

or

$$
\begin{equation*}
\mathrm{r} \leq \mathrm{n} / 2+1+\alpha / \mathrm{t}_{[\mathrm{r}]} \tag{10}
\end{equation*}
$$

Since it has been assumed that $2 \alpha \leq \min \left\{\mathrm{t}_{1}\right\} \forall 1 \in \mathrm{~N}$ and r must be non-negative integer, it is clear from (8) and (10) that

$$
r= \begin{cases}(n+1) / 2 & \text { if } n i s \text { odd } \\ n / 2+1 & \text { if } n \text { is even }\end{cases}
$$

and the proof is complete
It is interesting to note from Lemma 2 that for a set of jobs, the optımal due-date is an explicit function of the size of the job-set n and can be uniquely determined for a given job sequence

512 The optumal sequence

Once the optımal due-date value k^{*} is determined, we can use the following lemma [C88] to find the optımal job sequence σ^{*}

Lemma 3 For a given optımal due-date $\mathrm{k}^{*}=\mathrm{C}_{[r]}-\alpha$ as determined from Lemma 2, there exists an optımal job sequence that has the property $\mathrm{t}_{[\mid]} \geq \mathrm{t}_{[\mathrm{n}+1 \mathrm{~J}]} \geq \mathrm{t}_{\mathrm{l}+1-1, \mathrm{~J}}=1,2, \quad, \mathrm{r}-1$

Proof of Lemma 3

Let σ_{1} be an optımal job sequence that does not have the property described above

There must exist a pair of jobs p and q in position m and $n-m+1, m \leq r-1$, respectively that $t_{p}<t_{q}$ Now we construct a new sequence σ_{2} in which p and q are interchanged in position while all other jobs are in the same position as in σ_{1} It follows from Lemma 2 that

$$
\begin{align*}
& k_{i}^{*}=C_{[m-1]}+t_{p}+\sum_{i=m+1}^{r} t_{[1]}-\alpha \tag{11}\\
& k_{2}^{*}=C_{[m-1]}+t_{q}+\sum_{i=m+1}^{r} t_{[t]}-\alpha \tag{12}
\end{align*}
$$

Observe that $k_{1}{ }^{*}-k_{2}{ }^{*}=t_{q}-t_{p}>0$

$$
\begin{align*}
f\left(k_{1}^{*}, \sigma_{1}\right)= & \sum_{i=1}^{r-1}\left(k_{1}^{*}-C_{[t]}\right)+\sum_{i=r+1}^{n}\left(C_{[i]}-k_{\mathrm{i}}^{*}\right)=\sum_{i=1}^{m 1}\left(k_{1}^{*}-C_{[1]}\right)+k_{1}^{*}-\left(C_{[m-1]}+t_{p}\right) \tag{13}\\
& +\sum_{i=m+1}^{r-1}\left\{k_{1}^{*}-\left(C_{[m-1]}+t_{p}+\sum_{j=m+1}^{i} t_{[j]}\right)\right\}+\sum_{i=r+1}^{n-m}\left\{\left(C_{[m-1]}+t_{p}+\sum_{j=m+1}^{\prime} t_{[j]}\right)-k_{1}^{*}\right\} \\
& +\sum_{i=n-m+1}^{n}\left(C_{[t]}-k_{t}^{*}\right) \tag{14}
\end{align*}
$$

$$
\begin{align*}
f\left(k_{2}^{*}, \sigma_{2}\right)= & \sum_{i=1}^{r-1}\left(k_{2}^{*}-C_{[t]}\right)+\sum_{i=r+1}^{n}\left(C_{[1]}-k_{2}^{*}\right)=\sum_{i=1}^{m-1}\left(k_{2}^{*}-C_{[t]}\right)-k_{2}^{*}-\left(C_{[m-1]}+t_{q}\right) \\
& +\sum_{i=m+1}^{r-1}\left\{k_{2}^{*}-\left(C_{[m-1]}+t_{q}+\sum_{j=m+1}^{1} t_{[j]}\right)\right\}+\sum_{i=r+1}^{n-m}\left\{\left(C_{[m-1]}+t_{q}+\sum_{j=m+1}^{1} t_{[J]}\right)-k_{2}^{*}\right\} \\
& +\sum_{i=n-m+1}^{n}\left(C_{[i]}-k_{2}^{*}\right) \tag{15}
\end{align*}
$$

Subtracting (15) from (14) and sımplifying using (13) we obtain

$$
f\left(k_{1}^{*}, \sigma_{1}\right)-f\left(k_{2}^{*}, \sigma_{21}\right)=t_{q}-t_{p}>0
$$

Thus the interchange of p and q reduces the penalty value Therefore any sequence that does not have the property $\mathrm{t}_{\mathrm{J}]} \geq \mathrm{t}_{[\mathrm{n}+1} \mathrm{J} \geq \mathrm{t}_{\mathrm{j}+1 \mathrm{l}, \mathrm{J}}=1,2, \quad, \mathrm{r}-1$ can be improved by such an interchange of pairs of p and q It follows that the sequence having the property itself must be optımal

513 Numerical example for a set of independent oobs

A set of four indpendent jobs is given with $t_{1}=1, t_{2}=3, t_{3}=6$, and $t_{4}=10$ The completion time deviation allowance is $\alpha=045$

According to Lemma 2 we know that

$$
r= \begin{cases}(n+1) / 2 & \text { if } n \text { is odd } \\ n / 2+1 & \text { if } n \text { is even }\end{cases}
$$

thus $\mathrm{r}=3$, so $\mathrm{k}^{*}=\mathrm{C}_{[3]}-\alpha$ and the optımal sequence σ^{*} can be constructed using the Lemma 3 as follows

We know that $t_{[b]} \geq t_{[n+1, j]} \geq t_{[1+1]}, \mathfrak{l}=1,2, \quad, r-1$
In our case $r=3$ therefore we have that $t_{\mathrm{J}]} \geq \mathrm{t}_{[n+1-\mathrm{j}]} \geq \mathrm{t}_{[\mathrm{l}+1]}, \mathrm{J}=1,2$
Thus
$t_{[1]} \geq t_{[4]} \geq t_{[2]}($ for $\mathrm{J}=1)$ (a) and $\mathrm{t}_{[2]} \geq \mathrm{t}_{[3]} \geq \mathrm{t}_{[3]}($ for $\mathrm{j}=2)$

Combining (a) and (b) we get the following formula $t_{[1]} \geq t_{[4]} \geq t_{[2]} \geq t_{[3]}$ That means that the job with the biggest processing time is going to be processed
first Afterwards the job with the second biggest processing time is going to be processed in the fourth place, then the job with the third processing time is going to be processed in the second place and finally the job with the smallest processing time is going to be processed last

Therefore the order in which the jobs are going to be processed is the following $4-2-1-3, \mathrm{k}^{*}=\mathrm{C}_{|3|}-\alpha=1355$ and the minımum penalty value is 1055

For this problem there are $41=24$ possible different sequences and the details of each individual sequence is shown in table 1

Table1 Complete enumeration of the set job

σ	R	$\mathrm{k}^{*}=\mathrm{C}_{[\mathrm{rl}}-\alpha$	$\mathrm{f}\left(\mathrm{k}^{*}, \sigma\right)$
1-2-3-4	3	9.55	24.55
1-2-4-3	3	13.55	28.55
1-3-2-4	3	9.55	21.55
1-3-4-2	3	16.55	28.55
1-4-2-3	3	13.55	21.55
1-4-3-2	3	2.55	24.55
2-1-3-4	3	9.55	22.55
2-1-4-3	3	13.55	26.55
2-3-1-4	3	9.55	17.55
2-3-4-1	3	18.55	26.55
2-4-1-3	3	9.55	16.55
2-4-3-1	3	18.55	22.55
3-1-2-4	3	9.55	16.55
3-1-4-2	3	16.55	23.55
3-2-1-4	3	9.55	14.55
3-2-4-1	3	18.55	23.55
3-4-1-2	3	16.55	14.55
3-4-2-1	3	18.55	16.55
4-1-2-3	3	13.55	12.55
4-1-3-2	3	16.55	15.55
4-2-1-3	3	13.55	10.55°
4-2-3-1	3	18.55	15.55
4-3-1-2	3	16.55	10.55^{*}
4-3-2-1	3	18.55	12.55

52 Job Grouping Algorithm

In this section we present the Job Grouping Algorithm (JGA) that we developed in order to schedule a number of families (where each family consists of a number of jobs) on a single machine

Our algorithm considers a f-famılies, n -job, single machıne scheduling problem with common due-dates

Suppose that jobs each belong to a particular family, where jobs in a family tend to be sımılar in some way, such as their required tooling or their container size As a result of this similarity, a job does not need a set-up when following another job from the same famıly, but a known "famıly set-up time" is required when a job follows a member of some other family This is called family scheduling model

In the family scheduling model, a machine is assumed capable of processing at most one job at a time We use the pair $(1, j)$ to refer to job j of family 1

We let f denote the number of familes, n the number of jobs, and n_{1} the number of jobs belonging to family 1

In addition $t_{4,1}$ and $w_{1, \sqrt{2}}$ denotes the processing time and weight of $\mathrm{job}(1, \mathrm{~J})$ Thus $n_{1}+n_{2}+\quad+n_{f}=n$ In addition, s_{1} denotes the setup time required to process a job in family 1 following a job in some other family

If a job follows a member of the same family, then its setup time is zero otherwise its setup time is s_{1}, the family setup time

The jobs are given a completion time deviation allowance α such that there will be no penalties if the completion time of job 1 is within the time interval $\left(d_{1}-\alpha, d_{1}+\alpha\right), \forall 1 \in N$

A simplifying assumption for family scheduling is the requirement of precisely f setups in the schedule one for each family (GT assumption)

Each family is treated as a single entity, or composite job with processing time

$$
p_{1}=\sum_{j=1}^{n} t_{1, ~} \text { and weight } w_{t}=\sum_{j=1}^{n} w_{1,} \text {, and } w_{i, j}=1 \forall 1, j
$$

In addition let $\mathrm{l}_{1}=\left(\mathrm{s}_{1}+\mathrm{p}_{1}\right) / \mathrm{w}_{1}=\left(\mathrm{s}_{1}+\mathrm{p}_{1}\right) / \mathrm{n}_{1}$ denote the family factor of family 1 Let l_{1} denote the family factor of famuly 1 and $l_{[1]}$ denote the family factor of family in 1-th position of a schedule σ

This factor is the basis of the proposed algorithm, and actually shows the "importance" of each famıly Therefore if $l_{1}>l_{j}$ and $1 \neq \mathrm{j}$ then we can say that family 1 is more "important" in a way than family f (that does not mean that family it necessarily going to be scheduled earlier than family j)

Applying the proposed algorithm we observe that the family with the largest family factor is always scheduled first in the optımal schedule σ^{*}

The basic assumptions about the problem model are as follows

- The job processing tımes $t_{1, j}$ (for all $1, \mathrm{j}$) are known and determınıstic
- The jobs are available for processing at the same time, ie $\mathrm{r}_{1 \mathrm{l}}=0$ (for all $1, \mathrm{~J}$)
- There is a single machine available, which can only process the jobs one at a tume
- Job splitting and preemption are not allowed
- The completion time deviation allowance α is sufficiently small and satisfies the condition $2 \alpha<\operatorname{mın}\left\{t_{1, j}\right\}$ for all 1,$\}$

The input data for this algorithm are the following

- The number of families that have to be scheduled on the single machine
- The number of jobs in each family
- The processing time for each job in each family
- The completion time deviation allowance α
- The setup time s_{1} for famıly 1

JGA ALGORITHM

STEP 1 Compute the family factor $l_{1}=\left(s_{1}+p_{1}\right) / w_{1}=\left(s_{1}+p_{1}\right) / n_{3}$ (because $w_{1, \mathrm{~J}}=1$ for all $1, \mathrm{~J}$) for each famıly $11=1,2, \quad, \mathrm{f}$

STEP 2. Compute the value of m where

$$
m= \begin{cases}(f+1) / 2 & \text { if } f \text { is odd } \\ f / 2+1 & \text { if } f \text { is even }\end{cases}
$$

STEP 3: Compute the value of r where

$$
\prime= \begin{cases}(n+1) / 2 & \text { if } n \text { is odd } \\ n / 2+1 & \text { if } n \text { is even }\end{cases}
$$

STEP 4 Find the optımal sequence of families σ^{*} using the following property

$$
l_{[f]} \geq 1_{[f+1-1]} \geq l_{(\mathrm{b}+1]}, \mathrm{J}=1,2, \quad, \mathrm{~m}-1
$$

STEP 5 The optımal due date k^{*} is determined as $\mathrm{k}^{*}=\mathrm{C}_{[r]}-\alpha$

STEP 6. The value of the objective function is $f\left(k^{*}, \sigma^{*}\right)$

521 Numerical example

In this section we present a numerical example of our algorithm for a specific case instance

In this example we have $f=2$ families which we denote by F1 and F2
Each famuly consists of two jobs (therefore $n=4, n_{1}=2, n_{2}=2$) and the processing time for each job is $t_{11}=1, t_{12}=3, t_{2,1}=6$ and $t_{2,2}=10$ The setup tımes are $\mathrm{s}_{1}=05$ and $\mathrm{s}_{2}=01$ respectively

Thus $\mathrm{F} 1=\{(1,1),(1,2)\}$ and $\mathrm{F} 2=\{(2,1),(2,2)\}$
Applying the first step of our algorithm we must first compute the family factors $\mathrm{l}_{1}=\left(\mathrm{s}_{1}+\mathrm{p}_{1}\right) / \mathrm{w}_{1}, 1=1,2$

Therefore $l_{1}=\left(s_{1}+p_{1}\right) / n_{1}=(05+4) / 2=225$ and
$\mathrm{l}_{2}=\left(\mathrm{s}_{2}+\mathrm{p}_{2}\right) / 2=(0 \mathrm{I}+16) / 2=805$
Applying the second step of our algorithm we compute the value of m where m

$$
m= \begin{cases}(f+1) / 2 & \text { if } f \text { is odd } \\ f / 2+1 & \text { if } f \text { is even }\end{cases}
$$

thus $\mathrm{m}=2$
Applying the third step of our algorthm we know that

$$
r= \begin{cases}(n+1) / 2 & \text { if } n \text { is odd } \\ n / 2+1 & \text { if } n \text { is even }\end{cases}
$$

thus $\mathrm{r}=3$, so $\mathrm{k}^{*}=\mathrm{C}_{[3]}-\alpha$ and the optımal sequence σ^{*} can be constructed using the fourth step of our algorithm as follows

We know that $l_{[l \mid} \geq l_{\left[{ }^{[+1}\right]} \geq l_{[+1]}, \mathrm{J}=1,2, \quad, \mathrm{~m}-1$

In our case $m=2$ therefore we have that $\mathrm{I}_{[\mid]} \geq \mathrm{I}_{[\mathrm{[}+1 \mathrm{~J} \mid} \geq \mathrm{I}_{[\mathrm{U}+1 \mathrm{l}, \mathrm{J}}=1$
Thus

$$
l_{[1]} \geq l_{[2]} \geq l_{[2]}(\text { for } \mathrm{j}=1)
$$

That means that the family with the largest family factor is going to be processed first in the optımal sequence σ^{*}

Therefore the order in which the groups of jobs are going to be processed is the following

F2-Fl

This sequence of the groups of jobs is the same with the following sequence of jobs $(2,1)-(2,2)-(1,1)-(1,2)$
$\mathrm{k}^{*}=\mathrm{C}_{[3]^{-}}-\alpha=\mathrm{C}_{11}-\alpha=1655$ (fifth step) and the minımum penalty value is 1455 (sixth step)

Another possible sequence of the groups of jobs could be F1-F2 and the sequence of the jobs would be $(1,1)-(1,2)-(2,1)-(2,2)$ respectively For this case $\mathrm{k}^{*}=\mathrm{C}_{[3]}-\alpha=\mathrm{C}_{21}=955$ and the penalty value would be 2455 We notice that applying our algorithm we achieved penalty value $1455<2455$, which means that the schedule we obtain applying our algorithm is "better" because we obtain smaller penalty value ($1455<2455$)

53 Conclusions

In this chapter we presented an algorithm for scheduling groups of jobs on a single machine

Three Lemmas were presented and a numerical example was provided in order to allustrate the use of the results to determine the optimal solution to the due-date determination and sequencing problem

While it is fully appreciated that in practice penalty costs for earliness and tardiness are rarely the same, we imposed the restriction that weights $w_{1, \mathrm{~s}}=1 \forall \mathrm{l}, \mathrm{J}$ were restricted to be 1

The reason is that the objective function that is used places emphasis on missing job due-dates Although it seems that this restriction has the disadvantage that it limits comparisons between the proposed algorithm and the main competitor, we can overcome this disadvantage by performing the "competing" algorithm considering a "hypothetical" case where the weight for each job is restricted to be 1

In order to evaluate the performance of this algortthm, the algonthm was coded in C++

The results that are obtained from this algorithm can be found in Appendix A

CHAPTER 6

AN ALGORITHM FOR THE DUE-DATE DETERMINATION AND SEQUENCING PROBLEM

$60 \quad$ Introduction

In this chapter we present an algorithm for the due-date determination and sequencing problem

This algorithm was developed in 1987 by Cheng [C87] and will be used in order to compare the results with the (JGA) algorithm

Because to our knowledge there is no published work that combines the features of famıly setup times with earliness / tardiness cost two features that are fundamental to many problems in practice we use this algonthm because its objective function is more relevant to our problem

61 Cheng's Algorithm

This Algorithm [C87] considers the problem of assigning due-dates and sequencing a given set of jobs on a single machine There will be penalties for completing jobs either ahead or behind their scheduled dates

The objective is to minımize a function of missing the job due-dates An algorithm is presented for determining the optımal due-dates and optımal job sequence simultaneously

Actually the objective is to determine the optımal constant flow allowance k^{*} and the optumal job sequence σ^{*} to mınımıze the weighted average of missed duedates

Due date determination has been a popular research topic (for the single family case) and plentiful frutful results have been obtaned over the years

The popularity of scheduling research is due to the fact that the problem itself is theoretically challenging and the results are of practical usefulness This is because missing job due dates are entals such penalties as accumulating unnecessary stocks and/ or loss of production efficiency and customer goodwill

This algorithm considers an n-job, single machine scheduling problem with common due-dates

Let N denote the set of n independent jobs to be processed The jobs have the same starting tımes Job 1 requires t, time units for processing and has a weighting factor $w_{1}\left(0<w_{1}<1\right)$ and $\sum_{i \in N} w_{i}=1, \forall 1 \in N$

The common due-date assignment method is employed to assign due-dates to jobs

- The job processing tımes $t_{1} \forall 1 \in N$ are known and determınıstic
- The jobs are available for processing at the same time, ie $r_{1}=0 \forall 1 \in N$
- There is a single machine available, which can only process the jobs one at a tıme
- Job splitung and preemption are not allowed

Let Π be the set of all possible job sequences and σ be an arbitrary sequence Let the subscript [1] denote the job in position 1 of σ Let $E_{[1]}, T_{[1]}$ and $C_{[1]}$ be the earliness, tardiness and completion time of the ith job in σ respectively

Whenever a job is not completed exactly on its due-date costs will be incurred, regardless of its being early or late, it is reasonable to minimize an objective function which is related to the average amount of missed due-dates For this purpose we adopt, the werghted average of the absolute value of job lateness as the objective function to be minımized

While it is appreciated that, in practice, penalty costs for earhness and tardiness are not often the same, the use of the weighted average of absolute job lateness as the objective function places emphasis on missed job due-dates

For a given job sequence σ, let $[1]$ denote the job in position 1 of σ In addition let $\mathrm{t}_{[4]}, \mathrm{w}_{[1]}, \mathrm{L}_{[\mid]}$and $\mathrm{d}_{[\mid]}$denote the the processing time, weighting factor, lateness, and due-date, respectively of job [1]

The objective function is expressed as

$$
\begin{equation*}
f(k, \sigma)=\sum_{i=1}^{n} w_{[i, 1}\left|L_{[i, 1}\right|=\sum_{i=1}^{n} w_{[1,3}\left|C_{[i]}-d_{[i]}\right|=\sum_{i=1}^{n} w_{[1,]}\left|C_{[i, 1}-k\right| \tag{1}
\end{equation*}
$$

CHENG'S ALGORITHM

Let $n(X)$ denote the number of elements in a set X The algorithm systematically searches for the optimal solution as follows

STEP 1 Let $r=1$

STEP2 Let $\mathrm{k}=\mathrm{C}_{[\mathrm{r}]}$

STEP 3- Construct a set A where

$$
A=\left\{S_{A} / S_{A} \subset N, n\left(S_{A}\right)=r, \sum_{\substack{i \in S_{A}-(1) \\ \epsilon \in S_{A}^{\prime}}} w_{1} \leq 1 / 2 \text { and } \sum_{r \in S_{A}} w_{1} \geq 1 / 2\right\}
$$

STEP 4 Construct a set B corresponding to A where

$$
B=\left\{S_{B} / S_{B} \subset N, n\left(S_{B}\right)=(n-r), S_{B}=N-S_{A}, \forall S_{A} \in A\right\}
$$

STEP 5 Arrange jobs in $S_{A}, \forall S_{\Lambda} \in A$, in nonincreasing order of $t_{[i]} / W_{[1]}$, $\forall 1 \in \mathrm{~S}_{\mathrm{A}}$, to form a sequence σ_{A} and arrange jobs in $\mathrm{S}_{\mathrm{B}}, \forall \mathrm{S}_{\mathrm{B}} \in \mathrm{B}$, in nondecreasing order $t_{\mathrm{UI}} / \mathrm{w}_{\mathrm{UJ}}, \forall \mathrm{J} \in \mathrm{S}_{\mathrm{B}}$, to form a sequence σ_{B} Combine σ_{A} and σ_{B} to form a full sequence σ of n jobs, 1e $\sigma=\sigma_{A}+\sigma_{B}$ Calculate the value of $f(k, \sigma)$ and record k, σ and $f(k, \sigma)$ for later evaluation

STEP6 Let $r=r+1$ If $r<n$ then go to Step2 else go to Step7

STEP 7 Identıfy $f^{*}(k, \sigma)=\min \{f(k, \sigma)\}$

$$
\text { Set } k^{*}=k \text { of } f^{*}(k, \sigma) \text { and } \sigma^{*}=\sigma \text { of } f^{*}(k, \sigma)
$$

END OF THE ALGORITHM

62 Numerical example

To illustrate the operation of the algorithm, consider the following example There are five jobs with processing times and weighting factors given in Table 2 Table 3 shows the results obtaned from performing the algorithm on the above given job-set

The algorthm has generated of 41 feasible sequences for consideration This feasible set of sequences is considerably smaller than the full set of all $51=120$ possible sequences

Thus, substantial saving in computations from employing the algorithm to search for the optımal solution

Table 2 Processing times and weighting factors of the numerical example

	Job 1	Job 2	Job 3	Job 4	Job 5
t_{t}	1	2	3	-4	5
w_{L}	0.1	0.1	0.1	0.1	0.6
$\mathrm{t}^{2} / \mathrm{w}$	10	20	30	40	$8+1 / 3$

Table 3 Optımal solution

S_{\wedge}	S_{B}	$\sigma=\sigma_{A}+\sigma_{B}$	$\mathrm{f}(\mathrm{k}, \sigma)$	k
5	1-2-3-4	5-1-2-3-4	2.0	5
5-1	2-3-4	1-5-2-3-4	2.1	6
5-2	1-3-4	2-5-1-3-4	1.8	7
5-3	1-2-4	3-5-1-2-4	1.6	8
5-4	1-2-3	4-5-1-2-3	1.5	9 *
5-1-2	3-4	2-1-5-3-4	2.1	8
5-1-3	2-4	3-1-5-2-4	1.9	9
5-1-4	2-3	4-1-5-2-3	1.8	10
5-2-1	3-4	2-1-5-3-4	2.1	8
5-2-3	1-4	3-2-5-1-4	1.8	11
5-2-4	1-3	4-2-5-1-3	1.7	12
5-3-1	2-4	3-1-5-2-4	19	9
5-3-2	1-4	3-2-5-1-4	1.8	11
5-3-4	$1-2$	4-3-5-1-2	1.7	13
5-4-1	2-3	4-1-5-2-3	1.8	10
5-4-2	1-3	4-2-5-1-3	1.7	12
5-4-3	1-2	4-3-5-1-2	1.7	13
5-1-2-3	4	3-2-1-5-4	2.3	11
5-1-2-4	3	4-2-1-5-3	2.2	12
5-1-3-2	4	4-2-1-5-3	2.3	11
5-1-3-4	2	4-3-1-5-2	2.2	13
5-1-4-2	3	4-2-1-5-3	2.2	12
5-1-4-3	2	4-3-1-5-2	2.2	13
5-2-1-3	4	3-2-1-5-4	2.3	11
5-2-1-4	3	4-2-1-5-3	2.2	12
5-2-3-1	4	4-2-1-5-3	2.3	11
5-2-3-4	1	4-3-2-5-1	2.3	14
5-2-4-1	3	4-2-1-5-3	2.2	12
5-2-4-3	1.	4-3-2-5-1	2.3	14
5-3-1-2	4	3-2-1-5-4	2.3	11
5-3-1-4	2	4-3-1-5-2	2.2	13
5-3-2-1	4	3-2-1-5-4	2.3	11
5-3-2-4	1	4-3-2-5-1	2.3	14
5-3-4-1	2	4-3-1-5-2	2.2	13
5-3-4-2	1	4-3-2-5-1	2.3	14
5-4-1-2	3	4-2-1-5-3	2.2	12
5-4-1-3	2	4-3-1-5-2	2.2	13
5-4-2-1	3	4-2-1-5-3	2.2	12
5-4-2-3	1	4-3-2-5-1	2.3	14
5-4-3-1	2	4-3-1-5-2	2.2	13
5-4-3-2	1	4-3-2-5-1	2.3	14

It is clear that the mınmum value of $f(k, \sigma)$ is $f(k, \sigma)=15$ and thus $k *=15$ and $\sigma^{*}=(4,5,1,2,3)$

63 Conclusions

In this chapter we described an algorithm for the due-date determination and sequencing problem An example was presented to illustrate the performance of the algorithm to determine an optımal solution

In order to evaluate the performance of this algorithm, the algorithm was coded in C++

The results that are obtained from this algorithm can be found in Appendix B

CHAPTER 7

PERFORMANCE AND EVALUATION

$70 \quad$ Introduction

In this Chapter we present the description of the data base of the test problems that we used in order to test our algorithm (JGA) in comparison with Cheng's algorithm In the last section of this chapter the conclusions after performing both algorithms, on the data base that we created are discussed and some tdeas for further research are presented The results we obtain from both algorithms are presented in Appendices A and B

71 Description of the database of test problems

In order to test both algorithms (JGA) and Cheng's algorithm we generated a database of test examples at random

The naming convention used for random test problems in the database is best explained by reference to some examples

N05G0Ex07 is the seventh example in the set of test problems with characteristics

- 5 jobs
- 0 families
$\mathrm{N} 06 \mathrm{G}_{2} \mathrm{~N}_{\mathrm{I}} 3 \mathrm{~N}_{2} 3 \mathrm{Exl0}$ is the tenth example in the set of test problems with characterıstics
- 6 jobs
- 2 families
- $\mathrm{n}_{1}=3$
- $\mathrm{n}_{2}=3$

The processing time for each job in a specific example is the same for both (JGA) and Cheng's algonthm

72 Conclusions

In this thesis an algorithm for scheduling groups of jobs on a single machine is presented

Our model differs from past models in the literature in that we consider an earliness / tardiness model with famıly set-up times We also incorporate a factor called completion time deviation allowance such that there will be no penalties if the completion time of job 1 is within the time interval $\left(d_{1}-\alpha, d_{1}+\alpha\right) \forall 1 \in N$ To our knowledge, there is no published work on a family scheduling model with earliness and tardiness costs (in our model $\mathrm{w}_{1 \mathrm{l}, \mathrm{l}}=1 \quad \forall 1, \mathrm{~J}$)

Our consideration of multiple families and a non regular performance measure, two features receiving increasing attention in the research community [BS90], [WB95], is motivated by real-world elements of practical scheduling problems

We have tested our algorithm on many examples, where the number of jobs varies from $\mathrm{N}=3$ to $\mathrm{N}=50$ and the number of families varies from $\mathrm{G}=0$ to $\mathrm{G}=7$

Unfortunately, because Cheng's algorithm is not performing at all for more than 7, jobs due to the enormous amount of computations that must be executed, we just present the results that we obtain from our algorithm for more than 7 jobs

Because Cheng's algorithm does not consider the feature of groups of jobs and family setup tumes, we perform the proposed algorithm (JGA) for the first 225 examples 1 e

> N3G0Ex01-N3G0Ex45,
> N4G0Ex01-N4G0Ex45, N5G0Ex01-N5G0Ex45, N6G0Ex01-N6G0Ex45, N7G0Ex01-N7G0Ex45
assuming that the number of groups is zero ($G=0$) (1 e we have a set of independent jobs) in order to compare the output from both algonthms under similar input data

The output we obtain from (JGA) algorthm and Cheng's algorithm is presented in appendices A and B

For example performing both algonthms for the problem instance N3G0Ex02 we obtain $\sigma^{*}=1-3-2, \mathrm{k}^{*}=665$, and the value of the objective function is $30,(\alpha=035$ for this case) while from Cheng's algorithm we obtan $\sigma^{*}=1-3-2, \mathrm{k}^{*}=6$, and the value of the objective function is 08

Although it seems that Cheng's algorithm is performing better than (JGA) algorithm, this is not valid, because the weights for jobs $1,2,3$ are restricted to be 1 in the proposed algorthm, whule the weights for jobs $1,2,3$, in Cheng's algorithm are $w_{1}=06, w_{2}=02$ and $w_{3}=02$ (the sum of all weights must be $\left.\sum_{r \in N} w_{t}=1, \forall 1 \in \mathrm{~N}\right)$

Therefore because the objective function of Cheng's algorithm is
$f(k, \sigma)=\sum_{i=1}^{n} w_{[t, 1}\left|L_{[t]}\right|=\sum_{i=1}^{n} w_{[t]}\left|C_{[t]}-d_{[t, 1}\right|=\sum_{t=1}^{n} w_{[t, 1}\left|C_{[t]}-k\right|$
and $w_{1}<1 \forall 1 \in\{1,2,3\}$ we obtain the value 08
Although it seems that this restriction (that weights $w_{1, \mathrm{~J}}=1 \forall 1, \mathrm{~J}$ are restricted to be 1) has the disadvantage that it limits comparisons between the proposed algorithm and the main competitor, we can overcome this disadvantage by performing the "competıng" algorithm considering a "hypothetical" case where the werght for each job is restricted to be 1

We applied this "hypothetical" case for the following examples

> N3G0Ex01-N3G0Ex45, N4G0Ex01-N4G0Ex45, N5G0Ex01-N5G0Ex45, N6G0Ex01-N6G0Ex45, N7G0Ex01-N7G0Ex45

For all these 225 examples we did not find an example where the (hypothetical) value for the objective function of Cheng's algorithm, is less than the value for the objective function of (JGA) algorithm

The (hypothetical) value for the objective function of Cheng's algortthm was etther equal or greater than the value of the objective function of (JGA) algorithm for all 225 examples

Considering that fact, we can say that the results that we obtain from (JGA) algorithm are reasonably good

The main advantage of our algorithm is that it performs for many jobs while Cheng's algorithm can not perform for more than 7 jobs

For up to 7 jobs (JGA) algorithm produces results in considerably less time than Cheng's algorithm

We have performed our algorithm for up to 50 jobs and we observe that the CPU tıme was actually negligible and the results are reasonably good In summary, the proposed algorithm appears to perform quite well when compared to Cheng's algorithm

73 Further Research

The basic features of the model we have studied represent a growth area in the scheduling literature and, consequently there are many opportunities for further research

The present problem can readily be generalized by introducıng different penalties for earliness and tardıness as well as addıng a penalty for assigning long due dates

Out model could also be generalized by not considering the GT assumption (ie the requirement of precisely f setups in the schedule one for each famıly, where f is the number of families)

Other significant generalizations to the model include
(a) Multiple machines (i e Groups of jobs can be scheduled on multiple machines that are placed together in a serial order)
(b) Parallel Machines (1 e Groups of jobs can be scheduled on parallel machines)
(c) Dynamic job arrivals

Considerıng our model, a certain number of jobs arrive simultaneously to a system that is idle and is immediately available for work

A significant generalization to our model include Dynamic job arrivals Therefore jobs arrive intermittently at times that are predictable only in a statıstıcal sense
(d) Job splitting and preemption

A significant generalization to our model could include the allowance of job splitting and preemption Therefore the processing of each job may be interrupted and resumed at a later time

APPENDIX A

OUTPUT FROM JGA ALGORITHM

	JGA			
	σ	${ }^{*}$	$\mathrm{f}\left(\mathrm{k}, \sigma^{*}\right)$	CPU time
N3G0Ex01	2-3-1	7.65	7	0.0
N3G0Ex02	1-3-2	6.65	3	0.0
N3G0Ex03	3-2-1	12.65	9	0.0
N3G0Ex04	3-2-1	11.65	11	0.0
N3G0Ex05	2-1-3	9.65	6	0.0
N3G0Ex06	3-1-2	5.65	3	0.0
N3G0Ex07	1-2-3	5.65	5	0.0
N3G0Ex08	3-1-2	5.65	5	0.0
N3G0Ex09.	2-1-3	5.65	5	0.0
N3GOExi0	3-1-2	7.65	4	0.0
N3G0Exl1	3-2-1	6.75	5	0.0
N3G0Ex 12	3-2-1	9.75	9	0.0
N3G0Ex 13	1-2-3	5.75	4	0.0
N3G0Ex 14	3-2-1	8.75	5	0.0
N3G0Ex15	2-1-3	18.75	17	0.0
N3G0Ex16	2-1-3	7.75	6	0.0
N3G0Ex 17	1-2-3	13.75	13	0.0
N3G0Ex 18	3-2-1	14.75	13	0.0
N3G0Ex19	3-2-1	9.75	8	0.0
N3G0Ex 20	1-2-3	14.75	11	0.0
N3G0Ex 21	3-2-1	5.85	5	0.0
N3G0Ex 22	3-1-2	8.85	8	0.0
N3G0Ex23	1-3-2	5.85	4	0.0
N3G0Ex24	3-1-2	4.55	3	0.0
N3G0Ex 25	2-1-3	3.55	3	0.0
N3G0Ex 26	3-2-1	5.55	3	0.0
N3G0Ex 27	3-1-2	2.55	3	0.0
N3G0Ex 28	3-2-1	2.55	3	0.0
N3G0Ex 29	3-1-2	3.55	3	0.0
N3G0Ex 30	1-3-2	3.55	3	0.0
N3G0Ex31	2-1-3	10.7	9	0.0
N3G0Ex 32	2-3-1	107	9	0.0
N3G0Ex33	1-2-3	10.7	9	0.0
N3G0Ex 34	2-1-3	6.7	4	0.0
N3G0Ex 35	3-2-1	11.7	10	0.0
N3G0Ex36	3-2-1	5.7	6	0.0
N3G0Ex 37	2-1-3	6.7	5	0.0
N3G0Ex 38	1-2-3	7.8	6	0.0
N3G0Ex39	2-3-1	5.8	5	0.0
N3G0Ex40	1-2-3	5.8	4	0.0
N3G0Ex41	2-1-3	7.8	4	0.0
N3G0Ex42	1-3-2	5.8	4	0.0
N3G0Ex43	2-3-1	14.8	13	0.0
N3G0Ex44	3-2-1	8.8	8	0.0
N3G0Ex45	1-3-2	5.8	5	0.0

	JGA			
	${ }^{*}$	${ }^{*}$	$\mathrm{f}\left(\mathrm{k}^{*}, \sigma^{*}\right)$	CPU time
N4G0Ex01	2-4-1-3	4.55	4.55	0.0
N4G0Ex02	4-1-2-3	9.55	10.55	0.0
N4G0Ex03	2-3-4-1	7.55	6.55	0.0
N4G0Ex04	2-3-1-4	8.55	8.55	0.0
N4G0Ex05	1-2-4-3	8.55	8.55	0.0
N4G0Ex06	2-4-3-1	5.55	5.55	0.0
N4G0Ex07	4-2-1-3	6.7	6.7	0.0
N4G0Ex08	4-1-2-3	6.7	5.7	0.0
N4G0Ex09	4-3-1-2	8.7	97	0.0
N4G0Ex10	4-1-3-2	9.7	10.7	0.0
N4G0Exll	3-4-2-1	4.7	4.7	0.0
N4G0Ex 12	3-1-2-4	8.7	8.7	0.0
N4G0Exl3	4-1-2-3	6.7	6.7	0.0
N4G0Ex 14	4-2-1-3	13.8	10.8	0.0
N4G0Ex 15	2-3-1-4	16.8	15.8	0.0
N4G0Ex16	1-4-3-2	19.8	20.8	0.0
N4G0Exl7	4-2-1-3	15.8	12.8	0.0
N4G0Ex 18	3-1-4-2	14.8	9.8	0.0
N4G0Ex19	1-3-4-2	12.8	10.8	0.0
N4G0Ex 20	2-4-3-1	12.8	8.8	0.0
N4G0Ex 21	4-2-1-3	16.9	15.9	0.0
N4G0Ex 22	3-2-1-4	14.9	11.9	0.0
N4G0Ex23	4-1-2-3	16.9	14.9	0.0
N4G0Ex24	3-1-4-2	10.9	109	0.0
N4G0Ex 25	4-3-2-1	8.9	7.9	0.0
N4G0Ex 26	4-3-1-2	8.9	6.9	0.0
N4G0Ex 27	4-3-1-2	15.9	13.9	0.0
N4G0Ex 28	4-2-1-3	9.65	9.65	0.0
N4G0Ex 29	3-4-1-2	14.65	14.65	0.0
N4G0Ex 30	4-2-3-1	8.65	8.65	0.0
N4G0Ex 31	3-1-2-4	16.65	16.65	0.0
N4G0Ex32	2-4-3-1	13.65	14.65	00
N4G0Ex33	2-3-4-1	10.65	12.65	0.0
N4G0Ex 34	4-1-3-2	10.65	10.65	0.0
N4G0Ex 35	1-2-4-3	18.75	22.75	0.0
N4G0Ex 36	2-1-3-4	11.75	12.75	0.0
N4G0Ex 37	1-3-2-4	16.75	18.75	0.0
N4G0Ex 38	1-3-4-2	11.75	10.75	0.0
N4G0Ex 39	2-3-1-4	9.75	9.75	0.0
N4G0Ex40	3-4-1-2	13.75	14.75	0.0
N4G0Ex41	1-4-3-2	12.75	14.75	0.0
N4G0Ex42	4-2-3-1	17.75	18.75	0.0
N4G0Ex43	4-1-3-2	14.75	16.75	0.0
N4G0Ex44	1-2-4-3	19.75	23.75	0.0
N4G0Ex45	1-3-4-2	13.75	14.75	0.0

	JGA			
	σ^{*}	K	$\mathrm{f}\left(\mathrm{k}^{*}, \sigma^{*}\right)$	CPU tıme
NSG0Ex01	4-2-1-5-3	13.55	15	0.0
N5G0Ex02	5-1-4-3-2-	2.55	13	0.0
N5G0Ex03	4-2-5-1-3	12.55	15	0.0
N5G0Ex04	3-2-1-4-5	10.55	15	0.0
N5G0Ex05	1-2-4-3-5	9.55	14	0.0
N5G0Ex06	5-3-2-1-4	14.55	16	0.0
N5G0Ex07	5-3-1-2-4	8.7	13	0.0
N5G0Ex08	5-2-4-1-3	14.7	15	0.0
N5G0Ex09	5-1-4-2-3	12.7	16	0.0
N5G0Ex10	2-5-1-3-4	11.7	21	0.0
N5G0Exll	5-2-1-3-4	15.7	20	0.0
N5G0Ex 12	4-5-2-1-3	1.7	16	0.0
N5G0Ex 13	5-2-1-3-4	9.8	14	0.0
N5G0Ex 14	1-5-3-2-4	6.8	11	0.0
N5G0Ex15	5-2-1-3-4	13.8	18	0.0
N5G0Ex16	5-2-4-1-3	13.8	17	0.0
N5G0Ex17	4-2-1-3-5	9.8	13	0.0
N5G0Ex 18	5-4-2-3-1	11.8	16	0.0
N5G0Ex19	4-5-1-2-3	14.9	25	0.0
N5G0Ex20	5-2-4-1-3	13.9	20	0.0
N5G0Ex21.	5-3-4-2-1	13.9	16	0.0
N5G0Ex22	4-2-3-1-5	10.9	15	0.0
N5G0Ex23	5-1-3-2-4	12.9	15	0.0
N5G0Ex24	5-3-2-1-4	12.9	16	0.0
N5G0Ex25	4-1-3-5-2	8.85	13	0.0
N5G0Ex 26	4-5-3-1-2	9.85	13	0.0
N5G0Ex 27	5-1-3-2-4	10.85	15	0.0
N5G0Ex 28	5-2-4-1-3	10.85	15	0.0
N5G0Ex22	2-4-1-3-5	12.85	32	0.0
N5G0Ex30	1-3-5-2-4	19.85	34	0.0
N5G0Ex31	1-2-3-4-5	9.65	13	0.0
N5G0Ex32	5-1-2-4-3	10.65	15	0.0
N5G0Ex 33	3-5-4-1-2	24.65	41	0.0
N5G0Ex 34	4-3-2-1-5	15.65	22	0.0
N5G0Ex 35	4-2-1-5-3	24.65	43	0.0
N5G0Ex36	2-4-5-1-3	17.65	31	0.0
N5G0Ex 37	5-3-4-1-2	11.75	19	0.0
N5G0Ex 38	5-1-2-3-4	18.75	32	0.0
N5G0Ex 39	5-1-2-3-4	19.75	35	0.0
N5G0Ex40	4-1-3-2-5	14.75	23	0.0
N5G0Ex41	3-4-1-5-2	18.75	32	0.0
N5G0Ex42	4-1-2-5-3	19.75	32	0.0
N5G0Ex43	4-5-2-1-3	15.9	25	0.0
N5G0Ex44	3-2-4-1-5	13.9	23	0.0
N5G0Ex45	3-5-4-1-2	14.9	23	0.0

	JGA			
	σ *	k	$\mathrm{f}\left(\mathrm{k}^{*}, \sigma^{*}\right)$	CPU tıme
N6G0Ex01	4-6-5-3-2-1	10.55	19.55	0.0
N6G0Ex02	5-4-3-2-6-1	14.55	21.55	0.0
N6G0Ex03	6-4-2-1-3-5	12.55	21.55	0.0
N6G0Ex04	1-2-3-4-5-6	14.55	20.55	0.0
N6G0Ex05	6-3-2-5-1-4	17.55	25.55	0.0
N6G0Ex06	3-6-4-5-1-2	12.6	21.6	0.0
N6G0Ex07	5-2-1-3-6-4	14.6	21.6	0.0
N6G0Ex08	4-3-6-5-1-2	12.6	27.6	0.0
N6G0Ex09	6-1-3-5-2-4	16.6	23.6	0.0
N6G0Ex10	6-1-3-5-2-4	14.6	21.65	0.0
N6G0Ex 11	5-2-4-3-1-6	12.65	21.65	0.0
N6G0Ex 12	5-1-2-3-4-6	12.65	21.65	0.0
N6G0Ex13	5-1-6-4-2-3	13.65	21.65	0.0
N6G0Ex 14	6-5-1-2-3-4	17.65	27.65	0.0
N6G0Ex 15	6-1-5-3-2-4	12.65	21.65	0.0
N6G0Ex16	6-2-5-3-1-4	13.75	22.75	0.0
N6G0Ex 17	6-1-4-3-5-2	14.75	21.75	0.0
N6G0Ex18	4-6-3-5-2-1	12.75	21.75	0.0
N6G0Ex 19	6-5-2-3-1-4	13.75	21.75	0.0
N6G0Ex 20	6-1-3-4-2-5	12.75	21.75	0.0
N6G0Ex21	6-4-2-3-1-5	17.8	28.8	0.0
N6G0Ex22	6-2-5-4-1-3	19.8	34.8	0.0
N6G0Ex 23	2-1-5-4-3-6	17.8	30.8	0.0
N6G0Ex 24	6-5-4-3-2-1	11.8	19.8	0.0
N6G0Ex 25	6-1-2-5-3-4	14.8	23.8	0.0
N6G0Ex 26	6-3-4-5-2-1	12.7	21.7	0.0
N6G0Ex27	6-5-2-4-1-3	18.7	33.7	0.0
N6G0Ex28	6-3-2-4-1-5	22.7	33.7	0.0
N6G0Ex29	5-6-1-3-2-4	24.7	35.7	0.0
N6G0Ex 30	6-4-1-2-3-5	20.7	34.7	0.0
N6G0Ex 31	6-5-3-2-4-1	16.55	30.55	0.0
N6G0Ex32	6-3-2-5-4-1	17.55	31.55	0.0
N6G0Ex33	3-5-4-1-2-6	15.55	27.55	0.0
N6G0Ex34	2-1-4-6-5-3	18.55	34.55	0.0
N6G0Ex 35	6-3-4-2-1-5	12.55	21.55	0.0
N6G0Ex 36	2-3-6-5-4-1	12.7	21.7	0.0
N6G0Ex 37	2-4-3-5-6-1	19.7	36.7	0.0
N6G0Ex38	5-3-4-2-1-6	15.7	26.7	0.0
N6G0Ex 39	6-5-2-4-1-3	15.7	23.7	0.0
N6G0Ex40	5-4-3-1-6-2	19.7	377	0.0
N6G0Ex41	5-6-3-4-2-1	16.8	25.8	0.0
N6G0Ex42	4-1-5-2-3-6	10.8	16.8	0.0
N6G0Ex43	6-4-5-1-2-3	18.8	32.8	0.0
N6G0Ex44	6-3-5-1-4-2	16.8	30.8	0.0
N6G0Ex45	5-6-2-1-3-4	13.8	22.8	0.0

	JGA			
	${ }^{*}$	k	$\mathrm{f}\left(\mathrm{k}^{*}, \sigma^{*}\right)$	CPU tıme
N7G0Ex01	6-4-5-1-7-2-3	12.55	25	0.0
N7G0Ex02	5-6-4-7-1-2-3	13.55	32	0.0
N7G0Ex03	7-4-5-2-3-1-6	16.55	34	0.0
N7G0Ex04	7-6-5-4-1-3-2	15.55	34	0.0
N7G0Ex05	7-3-5-4-1-2-6	17.55	35	0.0
N7G0Ex06	6-4-3-2-1-7-5	20.6	45	0.0
N7G0Ex07	7-3-1-2-4-5-6	18.6	42	0.0
N7G0Ex08	3-2-1-5-7-6-4	18.6	42	0.0
N7G0Ex09	7-5-3-2-1-4-6	18.6	37	0.0
N7GOEx10	4-3-5-2-7-1-6	15.6	36	0.0
N7G0Ex 11	6-5-1-3-2-4-7	19.65	46	0.0
N7G0Ex 12	2-5-1-4-3-6-7	14.65	33	0.0
N7G0Ex 13	6-7-4-2-1-3-5	18.65	44	0.0
N7G0Ex 14	6-3-4-1-2-7-5	17.65	42	0.0
N7G0Exl5	5-2-3-7-6-1-4	15.65	34	0.0
N7G0Ex16	5-4-1-6-3-7-2	13.7	30	0.0
N7G0Ex 17	7-4-2-5-1-3-6	197	41	0.0
N7G0Ex18	5-4-3-2-7-1-6	16.7	35	0.0
N7G0Ex19	7-4-5-6-1-2-3	167	34	0.0
N7G0Ex 20	5-2-1-6-3-7-4	17.7	42	0.0
N7G0Ex 21	7-6-3-2-1-4-5	13.75	32	0.0
N7G0Ex 22	6-7-4-5-1-3-2	13.75	32	0.0
N7G0Ex 23	4-5-3-1-7-2-6	17.75	37	0.0
N7G0Ex24	6-5-3-1-2-7-4	15.75	37	0.0
N7G0Ex25	6-5-3-1-4-2-7	18.75	43	0.0
N7G0Ex26	2-7-5-6-4-1-3	13.8	32	0.0
N7G0Ex 27	5-4-7-6-2-3-1	14.8	30	0.0
N7G0Ex 28	4-6-5-2-3-7-1	15.8	34	0.0
N7G0Ex 29	3-5-2-7-1-4-6	16.8	34	0.0
N7G0Ex 30	6-5-2-4-3-1-7	18.8	43	0.0
N7G0Ex 31	7-2-1-6-3-5-4	16.85	34	0.0
N7G0Ex32	7-6-5-4-1-2-3	31.85	82	0.0
N7G0Ex 33	3-2-6-7-1-5-4	28.85	66	0.0
N7G0Ex 34	7-4-2-3-5-1-6	33.85	76	0.0
N7G0Ex 35	6-3-2-5-1-4-7	27.85	64	0.0
N7G0Ex 36	5-1-7-6-2-3-4	21.9	48	0.0
N7G0Ex37	4-3-7-5-2-6-1	20.9	50	0.0
N7G0Ex 38	4-6-5-7-2-3-1	21.9	47	0.0
N7G0Ex 39	4-3-6-1-2-5-7	28.9	73	0.0
NZG0Ex40	4-3-2-7-1-6-5	26.9	56	0.0
N7G0Ex41	7-4-6-5-2-3-1	15.9	34	0.0
N7G0Ex42	7-1-4-5-6-2-3	19.9	46	0.0
N7G0Ex43	1-6-4-5-7-3-2	179	34	0.0
N7G0Ex44	1-2-7-6-3-4-5	16.9	34	0.0
N7G0Ex45	1-4-2-5-3-7-6	15.9	34	0.0

	JGA			
	${ }^{*}$	K*	f(k****)	CPU time
N4G2 $\mathrm{N}_{1} 1 \mathrm{~N}_{2} 3 \mathrm{Ex} 01$	F1-F2	1255	1555	01
N4G2N, $2 \mathrm{~N}_{2} 2 \mathrm{Ex} 02$	F2-F1	1455	1755	01
N4G2N, $3 \mathrm{~N}_{2} 1 \mathrm{Ex} 03$	F2-F1	1155	1455	01
N5G2N, $1 \mathrm{~N}_{2} 4 \mathrm{Ex} 01$	F1-F2	1255	22	01
N5G2N, $2 \mathrm{~N}_{2} 3 \mathrm{Ex} 02$	F1-F2	1255	22	01
N5G2N, $3 \mathrm{~N}_{2} 2 \mathrm{Ex} 03$	F1-F2	1255	22	01
N $5 \mathrm{G} 2 \mathrm{~N}_{1} 4 \mathrm{~N}_{2} 1 \mathrm{Ex} 04$	F1-F2	1255	22	01
N6G2N, $1 \mathrm{~N}_{2} 5 \mathrm{Ex} 01$	F1-F2	167	287	01
N6G2N, $2 \mathrm{~N}_{2} 4 \mathrm{Ex} 02$	F1-F2	167	287	01
N6G2N13N23 Ex03	F1-F2	167	287	01
N6G2N, $4 \mathrm{~N}_{2} 2 \mathrm{Ex} 04$	F1-F2	167	287	01
N6G2N, $5 \mathrm{~N}_{2} 1 \mathrm{Ex} 05$	F1-F2	167	287	01
N7G2N, $6 \mathrm{~N}_{2} 1$ Ex01	F1-F2	1265	35	01
N7G2N, $5 \mathrm{~N}_{2} 2 \mathrm{Ex} 02$	F1-F2	1265	35	01
N7G2N, $4 \mathrm{~N}_{2} 3 \mathrm{Ex} 03$	F1-F2	1265	35	01
N7G2N ${ }^{3} \mathrm{~N}_{2} 4 \mathrm{Ex} 04$	F1-F2	1265	35	01
N7G2N, $2 \mathrm{~N}_{2} 5 \mathrm{Ex} 05$	F2-F1	1265	22	01
N7G2N ${ }^{1} \mathrm{~N}_{2} 6 \mathrm{Ex} 06$	F2-F1	1265	29	01
	F2-F1	1675	4775	01
N8G2N, $6 \mathrm{~N}_{2} 2 \mathrm{Ex} 02$	F2-F1	1475	5175	01
N8G2N, $5 \mathrm{~N}_{2} 3 \mathrm{Ex} 03$	F1-F2	1475	4375	01
N8G2N ${ }^{4} \mathrm{~N}_{2} 4 \mathrm{Ex} 04$	F1-F2	1475	4375	01
N8G2N, $3 \mathrm{~N}_{2} 5 \mathrm{Ex} 05$	F1-F2	1475	4375	01
N8G2N $\mathrm{N}_{2} \mathrm{~N}_{2} 6 \mathrm{Ex} 06$	F2-F1	1475	3575	01
N8G2N $\mathrm{l}^{1} \mathrm{~N}_{2} 7 \mathrm{Ex} 07$	F2-F1	1375	3975	01
N9G2N, $8 \mathrm{~N}_{2} 1 \mathrm{Ex} 01$	F2-F1	1985	57	01
$\mathrm{N} 9 \mathrm{G} 2 \mathrm{~N}_{1} 7 \mathrm{~N}_{2} 2 \mathrm{Ex} 02$	F2-F1	1985	64	01
N9G2 $\mathrm{N}_{2} 6 \mathrm{~N}_{2} 3 \mathrm{Ex} 03$	F2-F1	1585	69	01
N9G2N15N24 Ex04	F2-F1	1585	71	01
N9G2N14N25 Ex05	F1-F2	1485	58	01
N9G2 $\mathrm{N}_{3} 3 \mathrm{~N}_{2} 6 \mathrm{Ex} 06$	F2-F1	1285	68	01
N9G2N, $2 \mathrm{~N}_{2} 7 \mathrm{Ex} 07$	F2-F1	1485	61	01
N9G2N1 $\mathrm{N}_{2} 8 \mathrm{Ex} 08$	F2-F1	1385	60	01
N10G2N19 ${ }_{2} 1$ Ex01	F1-F2	198	798	01
N10G2N18 ${ }_{2} 2$ Ex02	F1-F2	198	798	01
N10G2N, ${ }^{1} \mathrm{~N}_{2} 3$ Ex03	F2-F1	278	868	01
N10G2N, $6 \mathrm{~N}_{2} 4 \mathrm{Ex} 04$	F2-F1	248	958	01
N10G2N 5 N ${ }_{2} 5$ Ex05	F1-F2	198	798	01
N10G2N $4 \mathrm{~N}_{2} 6$ Ex06	F1-F2	198	798	01
N10G2N, $3 \mathrm{~N}_{2} 7 \mathrm{Ex} 07$	F1-F2	198	798	01
N10G2N, $2 \mathrm{~N}_{2} 8 \mathrm{Ex} 08$	F1-F2	198	798	01
N10G2 $\mathrm{N}_{1} 1 \mathrm{~N}_{2} 9 \mathrm{Ex} 09$	F1-F2	198	798	01

	JGA			
	σ^{*}	k*	f(k***)	CPU time
N11G3 $\mathrm{N}_{1} 1 \mathrm{~N}_{2} \mathrm{~N}_{3} 9 \mathrm{Ex01}$	F3-F2-F1	186	107	02
N11G3N12N ${ }_{2} \mathrm{~N}_{3} 8 \mathrm{Ex} 02$	F2-F1-F3	156	89	02
N11G3 $\mathrm{N}_{1} 2 \mathrm{~N}_{2} 2 \mathrm{~N}_{3} 7 \mathrm{Ex} 03$	F2-F1-F3	156	84	02
N11G3N12N ${ }^{3} \mathrm{~N}_{3} 6 \mathrm{Ex} 04$	F2-F1-F3	156	83	02
N11G3N13N $3 \mathrm{~N}_{3} 5 \mathrm{Ex} 05$	F3-F2-F1	246	93	02
N11G3N13N ${ }^{4} 4 \mathrm{~N}_{3} 4 \mathrm{Ex} 06$	F3-F2-F1	246	79	02
N11G3N14N $4 \mathrm{~N}_{3} 3 \mathrm{Ex} 07$	F3-F2-F1	276	94	02
NI1G3N14N ${ }_{2} \mathrm{~N}_{3} 4 \mathrm{Ex} 08$	F3-F2-F1	216	76	02
N11G3N14N ${ }^{5} \mathrm{~N}_{3} 2 \mathrm{Ex} 09$	F3-F2-F1	166	100	02
NIIG3N14N $2 \mathrm{~N}_{3} 5 \mathrm{Ex} 10$	F3-F2-F1	226	87	02
N11G3N ${ }^{2} \mathrm{~N}_{2} 4 \mathrm{~N}_{3} 5 \mathrm{Ex} 11$	F3-F2-F1	226	101	02
N12G3N1 $\mathrm{IN}_{2} 1 \mathrm{~N}_{3} 10 \mathrm{ExO1}$	F3-F2-F1	256	1276	02
$\mathrm{N} 12 \mathrm{G} 3 \mathrm{~N}_{1} 2 \mathrm{~N}_{2} 2 \mathrm{~N}_{3} 8 \mathrm{Ex} 02$	F2-F1-F3	176	1066	02
N12G3N12N ${ }^{3} \mathrm{~N}_{3} 7 \mathrm{Ex} 03$	F2-F1-F3	176	1056	02
N12G3N13N ${ }^{3} \mathrm{~N}_{3} 6 \mathrm{Ex} 04$	F3-F2-F1	266	1066	02
N12G3N14N $3 \mathrm{~N}_{3} 5 \mathrm{Ex} 05$	F3-F2-F1	236	866	02
N12G3N14N ${ }^{4} \mathrm{~N}_{3} 4 \mathrm{Ex} 06$	F3-F2-Fl	216	886	02
N12G3N, $5 \mathrm{~N}_{2} 4 \mathrm{~N}_{3} 3 \mathrm{Ex} 07$	F2-F1-F3	226	1306	02
N12G3N, $4 \mathrm{~N}_{2} 5 \mathrm{~N}_{3} 3$ Ex 08	F3-F2-F1	186	1126	02
N12G3N16N ${ }_{2} \mathrm{~N}_{3} 3 \mathrm{Ex} 09$	F2-F1-F3	256	1186	02
N12G3N13N ${ }_{2} 6 \mathrm{~N}_{3} 3$ Ex10	F3-F1-F2	226	1056	02
N12G3N $2 \mathrm{~N}_{2} 6 \mathrm{~N}_{3} 4 \mathrm{Ex} 11$	F3-F1-F2	256	1046	02
$\mathrm{N} 12 \mathrm{G} 3 \mathrm{~N}_{1} 2 \mathrm{~N}_{2} 5 \mathrm{~N}_{3} 5 \mathrm{Ex} 12$	F3-F1-F2	236	1056	02
N12G3N13N2 ${ }^{2} \mathrm{~N}_{3} 4 \mathrm{Ex} 13$	F3-F2-F1	236	886	02
N12G3N15N2 $\mathrm{SN}_{3} 2 \mathrm{Ex} 14$	F2-F3-F1	236	1196	02
N13G3N ${ }_{1} \mathrm{IN}_{2} \mathrm{IN}_{3} 11$ Ex01	F3-F2-F1	259	153	02
N13G3N $2 \mathrm{~N}_{2} 2 \mathrm{~N}_{3} 9 \mathrm{Ex} 02$	F2-F1-F3	179	133	02
$\mathrm{N} 13 \mathrm{G} 3 \mathrm{~N}_{1} 3 \mathrm{~N}_{2} 3 \mathrm{~N}_{3} 7 \mathrm{Ex} 03$	F3-F2-F1	279	137	02
N13G3N $3 \mathrm{~N}_{2} 4 \mathrm{~N}_{3} 6 \mathrm{Ex} 04$	F3-F2-F1	299	122	02
N13G3N $3 \mathrm{~N}_{2} 5 \mathrm{~N}_{3} 5 \mathrm{Ex} 05$	F3-F2-F1	279	115	02
N13G3N14N ${ }^{4} \mathrm{~N}_{3} 5 \mathrm{Ex} 06$	F3-F2-F1	249	112	02
N13G3N15N ${ }^{4} \mathrm{~N}_{3} 4 \mathrm{Ex} 07$	F3-F1-F2	239	130	02
N13G3N14N ${ }_{2} 6 \mathrm{~N}_{3} 3 \mathrm{Ex} 08$	F2-F1-F3	229	152	02
N13G3N, $5 \mathrm{~N}_{2} 5 \mathrm{~N}_{3} 3 \mathrm{Ex} 09$	F2-F1-F3	219	149	02
N13G3N,4N ${ }_{2} 5 \mathrm{~N}_{3} 4 \mathrm{Ex} 10$	F3-F2-F1	199	133	02
N13G3N15N ${ }^{6} \mathrm{~N}_{3} 2 \mathrm{Ex} 11$	F2-F1-F3	239	145	02
N13G3 ${ }_{1} 6 \mathrm{~N}_{2} 5 \mathrm{~N}_{3} 2 \mathrm{Ex} 12$	F2-F1-F3	239	137	02
N13G3N ${ }_{1} \mathrm{~N}_{2} 2 \mathrm{~N}_{3} 4 \mathrm{Ex} 13$	F2-F1-F3	259	124	02
N13G3N13N ${ }_{2} 7 \mathrm{~N}_{3} 3$ Ex14	F2-F1-F3	249	150	02
N13G3N14N ${ }_{2} 6 \mathrm{~N}_{3} 3 \mathrm{Ex} 15$	F2-F1-F3	229	152	02

	JGA			
	σ	k*	$\mathrm{f}\left(\mathrm{k}^{*}, \sigma^{*}\right)$	CPU time
N14G3N ${ }_{1} 1 \mathrm{~N}_{2} 1 \mathrm{~N}_{3} 12 \mathrm{Ex} 01$	F3-F2-F1	309	1709	04
N14G3N ${ }_{1} \mathrm{~N}_{2} 2 \mathrm{~N}_{3} 10 \mathrm{Ex} 02$	F2-F1-F3	219	1599	03
N14G3N ${ }_{1} 3 \mathrm{~N}_{2} 5 \mathrm{~N}_{3} 6 \mathrm{Ex} 03$	F3-F2-F1	289	1259	03
N14G3N13N ${ }^{6} \mathrm{~N}_{3} 5 \mathrm{Ex} 04$	F2-F1-F3	229	1699	03
N14G3N, $4 \mathrm{~N}_{2} 5 \mathrm{~N}_{3} 5$ Ex05	F1-F3-F2	279	1479	03
N14G3N ${ }_{1} 4 \mathrm{~N}_{2} 4 \mathrm{~N}_{3} 6$ Ex06	F3-F2-F1	259	1199	03
N14G3N15N2 $\mathrm{N}_{3} 5$ Ex07	F2-F1-F3	269	1739	03
N14G3N ${ }_{1} 5 \mathrm{~N}_{2} 5 \mathrm{~N}_{3} 4 \mathrm{Ex} 08$	F2-F3-F1	289	1609	03
N14G3N $\mathrm{N}_{1} \mathrm{~N}_{2} 4 \mathrm{~N}_{3} 4$ Ex09	F2-F1-F3	309	1559	03
NI4G3N, $7 \mathrm{~N}_{2} 3 \mathrm{~N}_{3} 4$ Exl0	F2-F1-F3	309	1399	03
N/4G3N, $5 \mathrm{~N}_{2} 6 \mathrm{~N}_{3} 3 \mathrm{Ex} 11$	F2-F3-F1	289	1609	03
N14G3N ${ }_{1} 7 \mathrm{~N}_{2} 5 \mathrm{~N}_{3} 2 \mathrm{ExI2}$	F2-F1-F3	299	1469	03
N14G3N, $6 \mathrm{~N}_{2} 6 \mathrm{~N}_{3} 2 \mathrm{Ex} 13$	F2-F1-F3	259	1519	03

	JGA ($\alpha=03$)		
	k*	$\mathrm{f}\left(\mathrm{k}^{*}, \sigma^{*}\right)$	CPU tume
$\mathrm{N} 20 \mathrm{G} 4 \mathrm{~N}_{1} 5 \mathrm{~N}_{2} 5 \mathrm{~N}_{3} 5 \mathrm{~N}_{4} 5 \mathrm{Ex} 01$	447	3897	05
N20G4N ${ }_{1} 10 \mathrm{~N}_{2} 3 \mathrm{~N}_{3} 3 \mathrm{~N}_{4} 4 \mathrm{Ex} 02$	487	3757	05
N20G4N19N ${ }_{2} 3 \mathrm{~N}_{3} 5 \mathrm{~N}_{4} 3 \mathrm{Ex} 03$	447	3797	05
N20G4N, $2 \mathrm{~N}_{2} 8 \mathrm{~N}_{3} 5 \mathrm{~N}_{4} 5 \mathrm{Ex} 04$	487	3887	05
$\mathrm{N} 20 \mathrm{G} 4 \mathrm{~N}_{1} 3 \mathrm{~N}_{2} 7 \mathrm{~N}_{3} 5 \mathrm{~N}_{4} 5 \mathrm{Ex} 05$	477	3757	05
N20G4N, $5 \mathrm{~N}_{2} 8 \mathrm{~N}_{3} 2 \mathrm{~N}_{4} 5 \mathrm{Ex} 06$	467	3977	05
N20G4N, $2 \mathrm{~N}_{2} 3 \mathrm{~N}_{3} 10 \mathrm{~N}_{4} 5 \mathrm{Ex} 07$	477	4277	05
N20G4N, $7 \mathrm{~N}_{2} 3 \mathrm{~N}_{3} 5 \mathrm{~N}_{4} 5 \mathrm{Ex} 08$	467	3667	05
N20G4N, $8 \mathrm{~N}_{2} 2 \mathrm{~N}_{3} 5 \mathrm{~N}_{4} 5 \mathrm{Ex} 09$	447	3717	05
$\mathrm{N} 20 \mathrm{G} 4 \mathrm{~N}_{1} 4 \mathrm{~N}_{2} 6 \mathrm{~N}_{3} 5 \mathrm{~N}_{4} 5 \mathrm{Ex} 10$	457	3727	05

	σ^{*}
$\mathrm{N} 20 \mathrm{G} 4 \mathrm{~N}_{1} \mathrm{SN}_{2} 5 \mathrm{~N}_{3} 5 \mathrm{~N}_{4} 5 \mathrm{Ex} 01$	F3-F4-F2-F1
$\mathrm{N} 20 \mathrm{G} 4 \mathrm{~N}_{1} 10 \mathrm{~N}_{2} 3 \mathrm{~N}_{3} 3 \mathrm{~N}_{4} 4 \mathrm{Ex} 02$	F3-F4-F1-F2
N20G4N19N $3 \mathrm{~N}_{3} 5 \mathrm{~N}_{4} 3 \mathrm{Ex} 03$	F2-F4-F1-F3
$\mathrm{N} 20 \mathrm{G} 4 \mathrm{~N}_{1} 2 \mathrm{~N}_{2} 8 \mathrm{~N}_{3} 5 \mathrm{~N}_{4} 5 \mathrm{Ex} 04$	F3-F4-F2-F1
$\mathrm{N} 20 \mathrm{G} 4 \mathrm{~N}_{1} 3 \mathrm{~N}_{2} 7 \mathrm{~N}_{3} 5 \mathrm{~N}_{4} 5 \mathrm{Ex} 05$	F3-F4-F2-F1
$\mathrm{N} 20 \mathrm{G} 4 \mathrm{~N}_{1} 5 \mathrm{~N}_{2} 8 \mathrm{~N}_{3} 2 \mathrm{~N}_{4} 5 \mathrm{Ex} 06$	F3-F4-F2-F1
N20G4N ${ }_{1} 2 \mathrm{~N}_{2} 3 \mathrm{~N}_{3} 10 \mathrm{~N}_{4} 5 \mathrm{Ex} 07$	F3-F4-F2-F1
N20G4N ${ }_{1} \mathrm{~N}_{2} 3 \mathrm{~N}_{3} 5 \mathrm{~N}_{4} 5 \mathrm{Ex} 08$	F2-F4-F1-F3
$\mathrm{N} 20 \mathrm{G} 4 \mathrm{~N}_{1} 8 \mathrm{~N}_{2} 2 \mathrm{~N}_{3} \mathrm{SN}_{4} 5 \mathrm{Ex} 09$	F3-F1-F2-F4
$\mathrm{N} 20 \mathrm{G} 4 \mathrm{~N}_{1} 4 \mathrm{~N}_{2} 6 \mathrm{~N}_{3} 5 \mathrm{~N}_{4} 5 \mathrm{Exl0}$	F3-F4-F2-Fl

	$\mathrm{JGA}(\alpha=0,2)$		
	k	$\mathrm{f}\left(\mathrm{k}, \sigma^{*}\right)$	CPU tıme
N30G5N $\mathrm{S}_{1} \mathrm{~N}_{2} 5 \mathrm{~N}_{3} 5 \mathrm{~N}_{4} 10 \mathrm{~N}_{4} 5 \mathrm{Ex} 01$	638	8298	07
$\mathrm{N} 30 \mathrm{G} 5 \mathrm{~N}_{1} 10 \mathrm{~N}_{2} 5 \mathrm{~N}_{3} 4 \mathrm{~N}_{4} 5 \mathrm{~N}_{3} 6 \mathrm{Ex} 02$	648	8348	07
N30G5N, $5 \mathrm{~N}_{2} 6 \mathrm{~N}_{3} 6 \mathrm{~N}_{4} 6 \mathrm{~N}_{5} 7 \mathrm{Ex} \times 3$	618	8838	07
N30G5N ${ }_{1} 3 \mathrm{~N}_{2} 6 \mathrm{~N}_{3} 5 \mathrm{~N}_{4} 7 \mathrm{~N}_{5} 9 \mathrm{Ex} 04$	608	8248	07
N30G5N $\mathrm{N}_{1} 6 \mathrm{~N}_{2} 5 \mathrm{~N}_{3} 4 \mathrm{~N}_{4} 8 \mathrm{~N}_{5} 7 \mathrm{Ex} 05$	658	8058	07
N30G5N ${ }_{1} 10 \mathrm{~N}_{2} 5 \mathrm{~N}_{3} 4 \mathrm{~N}_{4} 1 \mathrm{~N}_{5} 10 \mathrm{Ex} 06$	628	8278	07
$\mathrm{N} 30 \mathrm{G} 5 \mathrm{~N}_{1} 5 \mathrm{~N}_{2} 6 \mathrm{~N}_{3} 6 \mathrm{~N}_{4} 7 \mathrm{~N}_{5} 6 \mathrm{Ex} 07$	598	8258	07
$\mathrm{N} 30 \mathrm{G} 5 \mathrm{~N}_{1} 6 \mathrm{~N}_{2} 3 \mathrm{~N}_{3} 5 \mathrm{~N}_{4} 7 \mathrm{~N}_{5} 9 \mathrm{Ex} 08$	608	7938	07
$\mathrm{N} 30 \mathrm{G} 5 \mathrm{~N}_{3} 3 \mathrm{~N}_{2} 7 \mathrm{~N}_{3} 5 \mathrm{~N}_{4} 10 \mathrm{~N}_{5} 5 \mathrm{Ex} 09$	668	9068	07
N $30 \mathrm{G} 5 \mathrm{~N}_{1} 6 \mathrm{~N}_{2} 3 \mathrm{~N}_{3} 9 \mathrm{~N}_{4} 2 \mathrm{~N}_{5} 10 \mathrm{Ex} 10$	658	7838	07

	σ *
N30G5N $5 \mathrm{~N}_{2} 5 \mathrm{~N}_{3} 5 \mathrm{~N}_{4} 10 \mathrm{~N}_{5} 5 \mathrm{Ex01}$	F3-F2-F4-F5-F1
N30G5N, $10 \mathrm{~N}_{2} 5 \mathrm{~N}_{3} 4 \mathrm{~N}_{4} 5 \mathrm{~N}_{6} 6 \mathrm{Ex} 02$	F2-F3-F5-F1-F4
N30G5N, $5 \mathrm{~N}_{2} 6 \mathrm{~N}_{3} 6 \mathrm{~N}_{4} 6 \mathrm{~N}_{5} 7 \mathrm{Ex} 03$	F3-F1-F5-F4-F2
N30G5N ${ }_{1} 3 \mathrm{~N}_{2} 6 \mathrm{~N}_{3} 5 \mathrm{~N}_{4} 7 \mathrm{~N}_{5} 9 \mathrm{Ex} 04$	F1-F4-F2-F5-F3
N30G5N ${ }_{1} 6 \mathrm{~N}_{2} 5 \mathrm{~N}_{3} 4 \mathrm{~N}_{4} 8 \mathrm{~N}_{5} 7 \mathrm{Ex} 05$	F3-F4-F1-F5-F2
N30G5N $10 \mathrm{~N}_{2} 5 \mathrm{~N}_{3} 4 \mathrm{~N}_{4} 1 \mathrm{~N}_{5} 10 \mathrm{Ex} 06$	F2-F3-F5-F1-F4
N30G5N, $5 \mathrm{~N}_{2} 6 \mathrm{~N}_{3} 6 \mathrm{~N}_{4} 7 \mathrm{~N}_{5} 6 \mathrm{Ex} 07$	F3-F2-F5-F1-F4
$\mathrm{N} 30 \mathrm{G} 5 \mathrm{~N}_{1} 6 \mathrm{~N}_{2} 3 \mathrm{~N}_{3} 5 \mathrm{~N}_{4} 7 \mathrm{~N}, 9 \mathrm{Ex} 08$	F2-F4-F1-F5-F3
N30G5N, $3 \mathrm{~N}_{2} 7 \mathrm{~N}_{3} 5 \mathrm{~N}_{4} 10 \mathrm{~N}_{5} 5 \mathrm{Ex} 09$	F3-F5-F2-F4-F1
N30G5 ${ }_{1} 6 \mathrm{~N}_{2} 3 \mathrm{~N}_{3} 9 \mathrm{~N}_{4} 2 \mathrm{~N}, 10 \mathrm{Ex} 10$	F4-F3-F1-F5-F2

	JGA ($\alpha=0.35$)		
	k	f(k, ${ }^{*}$ *	CPU tıme
$\mathrm{N} 40 \mathrm{G} 6 \mathrm{~N}_{1} 5 \mathrm{~N}_{2} 5 \mathrm{~N}_{3} 5 \mathrm{~N}_{4} 5 \mathrm{~N}_{5} 10 \mathrm{~N}_{6} 10 \mathrm{Ex} 01$	8065	143965	1
N40G6N ${ }^{3} \mathrm{~N}_{2} 4 \mathrm{~N}_{3} 8 \mathrm{~N}_{4} 10 \mathrm{~N}_{5} 8 \mathrm{~N}_{6} 7 \mathrm{Ex} 02$	8865	145465	,
$\mathrm{N} 40 \mathrm{G} 6 \mathrm{~N}_{1} 6 \mathrm{~N}_{2} 6 \mathrm{~N}_{3} 6 \mathrm{~N}_{4} 6 \mathrm{~N}_{5} 8 \mathrm{~N}_{6} 8 \mathrm{Ex} 03$	8165	143165	1
$\mathrm{N} 40 \mathrm{G} 6 \mathrm{~N}_{7} 7 \mathrm{~N}_{2} 7 \mathrm{~N}_{3} 7 \mathrm{~N}_{4} 5 \mathrm{~N}_{5} 5 \mathrm{~N}_{6} 9 \mathrm{Ex} 04$	8565	140765	1
N40G6N $\mathrm{N}_{1} \mathrm{~N}_{2} 5 \mathrm{~N}_{3} 5 \mathrm{~N}_{4} 10 \mathrm{~N}_{5} 5 \mathrm{~N}_{6} 10 \mathrm{Ex} 05$	8265	145065	1
$\mathrm{N} 40 \mathrm{G} 6 \mathrm{~N}_{1} 8 \mathrm{~N}_{2} 3 \mathrm{~N}_{3} 8 \mathrm{~N}_{4} 10 \mathrm{~N}_{5} 8 \mathrm{~N}_{6} 7 \mathrm{Ex} 06$	8365	151865	1
$\mathrm{N} 40 \mathrm{G} 6 \mathrm{~N}_{1} 6 \mathrm{~N}_{2} 6 \mathrm{~N}_{3} 6 \mathrm{~N}_{4} 8 \mathrm{~N}_{5} 6 \mathrm{~N}_{6} 8 \mathrm{Ex} 07$	8565	144765	1
N40G6N $7 \mathrm{~N}_{2} 7 \mathrm{~N}_{3} 5 \mathrm{~N}_{4} 7 \mathrm{~N}_{5} 5 \mathrm{~N}_{6} 9 \mathrm{Ex} 08$	9065	147565	1
$\mathrm{N} 40 \mathrm{G} 6 \mathrm{~N}_{1} 3 \mathrm{~N}_{2} 9 \mathrm{~N}_{3} 6 \mathrm{~N}_{4} 8 \mathrm{~N}_{5} 6 \mathrm{~N}_{6} 8 \mathrm{Ex} 09$	8165	151965	1
$\mathrm{N} 40 \mathrm{G} 6 \mathrm{~N}_{1} 2 \mathrm{~N}_{2} 12 \mathrm{~N}_{3} 5 \mathrm{~N}_{4} 7 \mathrm{~N}, 5 \mathrm{~N}_{6} 9 \mathrm{Ex10}$	8165	148965	1

	σ^{*}
$\mathrm{N} 40 \mathrm{G} 6 \mathrm{~N}, 5 \mathrm{~N}_{2} 5 \mathrm{~N}_{3} 5 \mathrm{~N}_{4} 5 \mathrm{~N}, 10 \mathrm{~N}_{6} 10 \mathrm{Ex} 01$	F3-F1-F2-F5-F4-F6
$\mathrm{N} 40 \mathrm{G} 6 \mathrm{~N}_{1} 3 \mathrm{~N}_{2} 4 \mathrm{~N}_{3} 8 \mathrm{~N}_{4} 10 \mathrm{~N}_{5} 8 \mathrm{~N}_{6} 7 \mathrm{Ex} 02$	F3-F6-F4-F2-F5-F1
N40G6N $6 \mathrm{~N}_{2} 6 \mathrm{~N}_{3} 6 \mathrm{~N}_{4} 6 \mathrm{~N}_{5} 8 \mathrm{~N}_{6} 8 \mathrm{Ex} 03$	F2-F6-F1-F5-F3-F4
$\mathrm{N} 40 \mathrm{G} 6 \mathrm{~N}_{1} 7 \mathrm{~N}_{2} 7 \mathrm{~N}_{3} 7 \mathrm{~N}_{4} 5 \mathrm{~N}_{5} 5 \mathrm{~N}_{6} 9 \mathrm{Ex} 04$	F2-F3-F4-F1-F5-F6
N40G6N ${ }_{1} 5 \mathrm{~N}_{2} 5 \mathrm{~N}_{3} 5 \mathrm{~N}_{4} 10 \mathrm{~N}_{5} 5 \mathrm{~N}_{6} 10 \mathrm{Ex} 05$	F3-F1-F5-F4-F2-F6
$\mathrm{N} 40 \mathrm{G} 6 \mathrm{~N}_{1} 8 \mathrm{~N}_{2} 3 \mathrm{~N}_{3} 8 \mathrm{~N}_{4} 10 \mathrm{~N}_{5} 8 \mathrm{~N}_{6} 7 \mathrm{Ex} 06$	F3-F5-F6-F4-F1-F2
$\mathrm{N} 40 \mathrm{G} 6 \mathrm{~N}_{1} 6 \mathrm{~N}_{2} 6 \mathrm{~N}_{3} 6 \mathrm{~N}_{4} 8 \mathrm{~N}_{5} 6 \mathrm{~N}_{6} 8 \mathrm{Ex} 07$	F2-F3-F4-F1-F5-F6
$\mathrm{N} 40 \mathrm{G} 6 \mathrm{~N}_{1} 7 \mathrm{~N}_{2} 7 \mathrm{~N}_{3} 5 \mathrm{~N}_{4} 7 \mathrm{~N}_{5} 5 \mathrm{~N}_{6} 9 \mathrm{Ex} 08$	F2-F6-F4-F1-F5-F3-
$\mathrm{N} 40 \mathrm{G} 6 \mathrm{~N}_{1} 3 \mathrm{~N}_{2} 9 \mathrm{~N}_{3} 6 \mathrm{~N}_{4} 8 \mathrm{~N}_{5} 6 \mathrm{~N}_{6} 8 \mathrm{Ex} 09$	F1-F2-F5-F4-F3-F6
$\mathrm{N} 40 \mathrm{G} 6 \mathrm{~N}_{1} 2 \mathrm{~N}_{2} 12 \mathrm{~N}_{3} 5 \mathrm{~N}_{4} 7 \mathrm{~N}_{5} 5 \mathrm{~N}_{6} 9 \mathrm{Ex} 10$	F3-F6-F5-F4-F2-F1

	JGA ($\alpha=0.3)$		
	k	$\mathrm{f}\left(\mathrm{k}^{*}, \mathrm{\sigma}^{*}\right)$	CPU tıme
$\mathrm{N} 50 \mathrm{G} 7 \mathrm{~N}_{1} 10 \mathrm{~N}_{2} 5 \mathrm{~N}_{3} 5 \mathrm{~N}_{4} 5 \mathrm{~N}_{5} 10 \mathrm{~N}_{6} 10 \mathrm{~N}_{7} 5 \mathrm{Ex01}$	977	22467	11
N50G7N, $10 \mathrm{~N}_{2} 5 \mathrm{~N}_{3} 5 \mathrm{~N}_{4} 10 \mathrm{~N}_{5} 5 \mathrm{~N}_{6} 10 \mathrm{~N}_{7} 5 \mathrm{Ex} 02$	967	22437	11
$\mathrm{N} 50 \mathrm{G} 7 \mathrm{~N}_{1} 10 \mathrm{~N}_{2} 5 \mathrm{~N}_{3} 5 \mathrm{~N}_{4} 5 \mathrm{~N}_{5} 10 \mathrm{~N}_{6} 5 \mathrm{~N}_{7} 10 \mathrm{Ex} 03$	997	22537	11
N $50 \mathrm{G} 7 \mathrm{~N}_{1} 5 \mathrm{~N}_{2} 10 \mathrm{~N}_{3} 5 \mathrm{~N}_{4} 5 \mathrm{~N}_{3} 10 \mathrm{~N}_{6} 10 \mathrm{~N}_{7} 5 \mathrm{Ex} 04$	997	22747	11
N $50 \mathrm{G} 7 \mathrm{~N}_{1} 10 \mathrm{~N}_{2} 5 \mathrm{~N}_{3} 5 \mathrm{~N}_{4} 7 \mathrm{~N}_{5} 3 \mathrm{~N}_{6} 10 \mathrm{~N}_{7} 10 \mathrm{Ex} 05$	1027	22857	11
N50G7N ${ }_{1} 10 \mathrm{~N}_{2} 5 \mathrm{~N}_{3} 5 \mathrm{~N}_{4} 5 \mathrm{~N}_{5} 10 \mathrm{~N}_{6} 5 \mathrm{~N}_{7} 10$ Ex06	1007	22547	11
N50G7N $10 \mathrm{~N}_{2} 3 \mathrm{~N}_{3} 2 \mathrm{~N}_{4} 10 \mathrm{~N}_{5} 10 \mathrm{~N}_{6} 10 \mathrm{~N}_{7} 5 \mathrm{Ex} 07$	1027	22737	11
N50G7N ${ }_{1} 10 \mathrm{~N}_{2} 5 \mathrm{~N}_{3} 5 \mathrm{~N}_{4} 8 \mathrm{~N}_{4} 2 \mathrm{~N}_{6} 10 \mathrm{~N}_{7} 10$ Ex 08	1027	22767	11
$\mathrm{N} 50 \mathrm{G} 7 \mathrm{~N}_{1} 10 \mathrm{~N}_{2} 5 \mathrm{~N}_{3} 15 \mathrm{~N}_{4} 5 \mathrm{~N}_{5} 10 \mathrm{~N}_{6} 5 \mathrm{~N}_{7} 5 \mathrm{Ex} 09$	997	22337	11
$\mathrm{N} 50 \mathrm{G} 7 \mathrm{~N}_{1} 10 \mathrm{~N}_{2} 5 \mathrm{~N}_{3} 5 \mathrm{~N}_{4} 10 \mathrm{~N}_{5} 5 \mathrm{~N}_{6} 10 \mathrm{~N}_{7} 5 \mathrm{Ex} 10$	967	22437	11

	σ^{*}
N50G7N ${ }_{1} 10 \mathrm{~N}_{2} 5 \mathrm{~N}_{3} 5 \mathrm{~N}_{4} 5 \mathrm{~N}_{5} 10 \mathrm{~N}_{6} 10 \mathrm{~N}_{7} 5 \mathrm{Ex01}$	F2-F3-F5-F7-F4-F1-F6
$\mathrm{N} 50 \mathrm{G} 7 \mathrm{~N}_{1} 10 \mathrm{~N}_{2} 5 \mathrm{~N}_{3} 5 \mathrm{~N}_{4} 10 \mathrm{~N}_{5} 5 \mathrm{~N}_{6} 10 \mathrm{~N}_{7} 5 \mathrm{Ex} 02$	F2-F3-F5-F7-F4-F1-F6
$\mathrm{N} 50 \mathrm{G} 7 \mathrm{~N}_{1} 10 \mathrm{~N}_{2} 5 \mathrm{~N}_{3} 5 \mathrm{~N}_{4} 5 \mathrm{~N}_{5} 10 \mathrm{~N}_{6} 5 \mathrm{~N}_{7} 10 \mathrm{Ex} 03$	F2-F3-F5-F4-F7-F1-F6
N $50 \mathrm{G} 7 \mathrm{~N}_{1} 5 \mathrm{~N}_{2} 10 \mathrm{~N}_{3} 5 \mathrm{~N}_{4} 5 \mathrm{~N}_{5} 10 \mathrm{~N}_{6} 10 \mathrm{~N}_{7} 5 \mathrm{Ex} 04$	F2-F1-F5-F7-F4-F3-F6
${\mathrm{N} 50 \mathrm{G} 7 \mathrm{~N}_{1} 10 \mathrm{~N}_{2} 5 \mathrm{~N}_{3} 5 \mathrm{~N}_{4} 7 \mathrm{~N}_{5} 3 \mathrm{~N}_{6} 10 \mathrm{~N}_{7} 10 \mathrm{Ex} 05}$	F2-F6-F1-F4-F7-F4-F5
N $50 \mathrm{G} 7 \mathrm{~N}_{1} 10 \mathrm{~N}_{2} 10 \mathrm{~N}_{3} 5 \mathrm{~N}_{4} 5 \mathrm{~N}_{5} 5 \mathrm{~N}_{6} 5 \mathrm{~N}_{7} 10 \mathrm{Ex} 06$	F2-F1-F4-F3-F7-F5-F6
N50G7N ${ }_{1} 10 \mathrm{~N}_{2} 3 \mathrm{~N}_{3} 2 \mathrm{~N}_{4} 10 \mathrm{~N}_{5} 10 \mathrm{~N}_{6} 10 \mathrm{~N}_{5} 5 \mathrm{Ex} 07$	F3-F6-F5-F7-F4-F1-F2-
$\mathrm{N} 50 \mathrm{G} 7 \mathrm{~N}_{1} 10 \mathrm{~N}_{2} 5 \mathrm{~N}_{3} 5 \mathrm{~N}_{4} 8 \mathrm{~N}_{5} 2 \mathrm{~N}_{6} 610 \mathrm{~N}_{7} 10 \mathrm{Ex} 08$	F2-F6-F1-F4-F7-F3-F5
N50G7N1 $10 \mathrm{~N}_{2} 5 \mathrm{~N}_{3} 15 \mathrm{~N}_{4} 5 \mathrm{~N}_{5} 5 \mathrm{~N}_{6} 5 \mathrm{~N}_{7} 5 \mathrm{Ex} 09$	F2-F6-F3-F7-F4-F1-F5
N $50 \mathrm{G} 7 \mathrm{~N}_{1} 10 \mathrm{~N}_{2} 5 \mathrm{~N}_{3} 5 \mathrm{~N}_{4} 10 \mathrm{~N}_{5} 5 \mathrm{~N}_{6} 10 \mathrm{~N}_{7} 5 \mathrm{Ex10}$	F2-F3-F5-F7-F4-F1-F6

APPENDIX B

OUTPUT FROM CHENG'S ALGORITHM

	CHENG'S ALGORITHM			
	σ^{*}	k	$\mathrm{f}\left(\mathrm{k}^{*}, \sigma^{*}\right)$	CPU time
N3G0Ex01	2-3-1	8	17	0.1
N3G0Ex02	1-3-2	6	0.8	0.1
N3G0Ex03	1-3-2	14	1.3	0.1
N3G0Ex04	1-3-2	13	2.9	0.1
N3G0Ex05	2-1-3	10	1.4	0.1
N3G0Ex06	3-1-2	6	0.7	0.1
N3G0Ex07	1-3-2	7	1.1	0.1
N3G0Ex08	2-1-3	5	0.7	0.1
N3G0Ex09	2-3-1	7	1.2	01
N3G0Ex10	3-1-2	8	0.4	0.1
N3G0Ex11	3-1-2	8	1.1	0.1
N3G0Ex 12	1-2-3	9	2.2	0.1
N3G0Ex13	1-3-2	8	0.8	0.1
N3G0Ex14	3-1-2	10	0.7	01
N3G0Ex15	2-1-3	19	1.7	0.1
N3G0Ex 16	2-1-3	8	1.2	0.1
N3G0Ex17	1-2-3	14	2.3	0.1
N3G0Ex18	3-2-1	15	1.9	0.1
N3G0Ex19	1-3-2	12	1.3	0.1
N3G0Ex 20	1-2-3	15	1.1	0.1
N3G0Ex21	1-2-3	5	0.8	0.1
N3G0Ex22	3-1-2	9	1	0.1
N3G0Ex 23	1-3-2	5	0.5	0.1
N3G0Ex 24	3-1-2	4	0.8	0.1
N3G0Ex 25	2-3-1	5	0.8	0.1
N3G0Ex 26	3-1-2	7	0.7	0.1
N3G0Ex27	3-1-2	3	0.6	0.1
N3G0Ex 28	3-1-2	4	0.7	0.1
N3G0Ex 29	3-1-2	4	0.5	0.1
N3G0Ex 30	3-1-2	4	1.1	0.1
N3GOEx 31	2-1-3	11	21	0.1
N3G0Ex 32	3-2-1	11	2.7	0.1
N3G0Ex 33	3-1-2	12	1.9	0.1
N3G0Ex 34	2-3-1	9	0.8	0.1
N3G0Ex 35	3-1-2	14	2.2	0.1
N3G0Ex 36	3-1-2	8	1.2	0.1
N3G0Ex 37	2-3-1	8	1.3	0.1
N3G0Ex 38	3-1-2	10	2.2	0.1
N3G0Ex 39	2-1-3	9	0.7	0.1
N3G0Ex40	1-2-3	6	0.7	0.1
N3G0Ex41	2-1-3	8	1.0	0.1
N3G0Ex42	1-3-2	5	1.3	0.1
N3G0Ex 43	3-2-1	15	4.2	0.1
N3G0Ex44	3-1-2	11	1.1	0.1
N3G0Ex45	1-2-3	7	1.1	0.1

	CHENG'S ALGORITHM			
	σ *	k	$\mathrm{f}\left(\mathrm{k}^{*}, \sigma^{*}\right)$	CPU time
N4G0Ex01	2-3-4-1	5	0.9	0.2
N4G0Ex02	4-1-2-3	8	1.5	0.2
N4G0Ex03	2-1-4-3	8	0.9	0.2
N4G0Ex04	4-2-1-3	8.	1.5	0.1
N4G0Ex05	3-1-4-2	9	1.1	0.2
N4G0Ex06	2-4-3-1	6	0.6	0.2
N4G0Ex07	3-4-1-2	7	1.2	0.1
N4G0Ex08	4-1-2-3	6	0.8	0.2
N4G0Ex09	4-2-1-3	11	14	0.2
N4G0Ex10	4-2-1-3	12	1.8	0.2
N4G0Ex11	3-1-2-4	5	0.7	0.2
N4G0Ex12	4-3-2-1	9	1.6	0.1
N4G0Exl3	4-3-1-2	9	1.2	02
N4G0Ex14	2-4-1-3	13	3.2	0.2
N4G0Ex15	2-4-1-3	19	2.2	0.2
N4G0Ex16	1-2-3-4	17	3.2	0.2
N4G0Ex17.	4-1-2-3	15	1.8	0.2
N4G0Ex 18	3-2-4-1	18	1.9	0.2
N4G0Ex19	2-1-4-3	14	1.6	0.2
N4G0Ex20	2-1-3-4	16	1.6	0.2
N4G0Ex21.	4-3-1-2	19	2.2	0.1
N4G0Ex22	4-3-1-2	16	1.8	0.1
N4G0Ex 23	4-3-2-1	15	21	0.1
N4G0Ex 24	2-3-4-1	13	1.9	01
N4G0Ex 25	4-3-2-1	9	0.9	0.1
N4G0Ex 26	4-3-1-2	8	1.1	0.1
N4G0Ex27	2-4-3-1	16	3.8	0.1
N4G0Ex28	4-3-1-2	11	20	0.1
N4G0Ex 29	2-3-1-4	14	1.9	0.1
N4G0Ex 30	4-1-3-2	9	1.3	0.1
N4G0Ex31	3-1-2-4	17	2.1	0.2
N4G0Ex 32	1-2-3-4	12	1.7	0.2
N4G0Ex 33	2-3-4-1	9	1.3	0.2
N4G0Ex 34	4-2-3-1	12	12	0.2
N4G0Ex 35	1-2-4-3	19	3.3	0.2
N4G0Ex 36	2-4-3-1	11	1.3	0.2
N4G0Ex 37	4-3-2-1	13	2.5	0.2
N4G0Ex 38	1-2-3-4	11	1.5	0.2
N4G0Ex 39	2-4-1-3	11	1.2	0.2
N4G0Ex40	3-4-1-2	14	1.2	0.2
N4G0Ex41	1-4-3-2	10	2.1	02
N4G0Ex42	4-1-3-2	19	2.3	0.2
N4G0Ex43	2-4-3-1	15	1.8	0.2
N4G0Ex44	1-2-4-3	15	2.4	0.2
N4G0Ex45	1-2-4-3	13	17	0.2

	CHENG'S ALGORITHM			
	σ	k	$\mathrm{f}\left(\mathrm{k}^{*}, \sigma^{*}\right)$	CPU time
N 5 G 0 Ex 01	3-4-5-1-2	9	2.3	0.3
N5G0Ex02	5-1-4-3-2	9	1.7	0.3
N5G0Ex03	4-3-1-5-2	15	1.7	0.3
N5G0Ex04	5-3-1-4-2	11	2.3	0.2
N5G0Ex05	1-5-3-4-2	13	1.6	0.2
N5G0Ex06	4-5-2-1-3	7	2.2	0.2
N5G0Ex07	5-4-3-1-2	13	1.4	0.2
N5G0Ex08	5-2-4-1-3	17	2.9	0.3
N5G0Ex09	5-1-4-2-3	12	1.7	0.3
N5G0Ex10	2-5-4-1-3	10	2.7	0.3
N5G0Ex 11	5-4-3-1-2	18	3	0.3
N5G0Ex12	4-3-2-1-5	13	1.8	0.2
N5G0Ex13	5-4-1-3-2	11	1.5	0.2
N5G0Ex14	1-4-5-3-2	9	1.1	0.2
N5G0Ex15	5-3-4-2-1	20	2.8	0.2
N5G0Ex16	3-5-4-1-2	14	2	0.3
N5G0Ex17	4-2-1-3-5	10	1.3	0.2
N5G0Ex 18	5-4-2-3-1	11	17	0.2
N5G0Ex19	4-5-2-1-3	20	2.5	0.2
NSG0Ex 20	5-3-4-1-2	14	2.2	0.2
NSG0Ex 21	5-3-4-2-1	16	1.6	0.3
N5G0Ex 22	4-2-3-1-5	13	2.5	0.3
N5G0Ex 23	5-1-2-3-4	14	1.7	0.3
NSG0Ex 24	5-4-1-2-3	17	1.6	0.3
N5G0Ex 25	2-4-3-5-1	9	2	0.3
N5G0Ex 26	4-5-1-3-2	12	1.5	0.3
N5G0Ex 27	5-4-2-3-1	14	1.5	0.3
N5G0Ex 28	3-5-4-1-2	11	2	0.3
N5G0Ex 29	2-5-1-3-4	22	3.6	0.3
N5G0Ex30	4-1-5-2-3	10	3.8	0.3
N5G0Ex31	1-5-2-3-4	13	1.4	0.3
N5G0Ex 32	5-3-2-4-1	11	1.7	0.3
N5G0Ex 33	3-5-1-4-2	26	4.1	0.3
N5G0Ex 34	4-3-2-1-5	14	2.8	0.3
NSG0Ex 35	4-3-5-1-2	27	4.3	0.3
N5G0Ex 36	4-2-3-5-1	14	4.2	0.3
N5G0Ex37	5-3-1-4-2	13	19	03
N5G0Ex38	5-4-1-2-3	27	3.3	0.3
N5G0Ex39	5-4-3-2-1	27	3.9	03
N5G0Ex40	4-5-2-3-1	20	2.7	0.3
N5G0Ex41	3-4-1-5-2	19	3.2	03
N5G0Ex42	4-1-5-2-3	21	3.7	0.3
N5G0Ex43	3-4-2-1-5	9	3	0.3
N5G0Ex44	3-2-4-1-5	14	2.5	0.3
N5G0Ex45	3-2-5-4-1	22	2.4	0.3

	CHENG'S ALGORITHM			
	σ	k	$\mathrm{f}\left(\mathrm{k}^{*}, \sigma^{*}\right)$	CPU tıme
N6G0Ex01	4-6-1-3-5-2	12	2.1	0.3
N6G0Ex02	5-1-6-2-3-4	17	2.2	0.3
N6G0Ex03	6-5-3-1-2-4	14	2.2	0.3
N6G0Ex04	1-2-3-4-5-6	15.	2.1	0.4
N6G0Ex05	6-4-3-5-2-1	21	2.7	0.3
N6G0Ex06	3-2-6-5-4-1	15	2.3	0.3
N6G0Ex07	5-4-1-3-6-2	15	2.2	0.3
N6G0Ex08	4-2-3-5-6-1	15	2.3	0.4
N6G0Ex09	6-4-3-5-2-1	17	2.8	0.4
N6G0Ex10	6-4-3-5-2-1	15	3.6	0.4
N6G0Ex 11	5-6-4-3-1-2	13	2.2	0.4
N6G0Ex12	5-6-4-3-2-1.	14	2.2	0.4
N6G0Ex13	5-2-3-4-6-1	10	2.4	0.4
N6G0Ex14	4-6-2-1-3-5	15	3.5	0.4
N6G0Ex 15	4-2-6-3-5-1	14	2.6	0.4
N6G0Ex 16	4-6-3-5-1-2	13	2.7	0.4
N6G0Ex17	2-6-3-4-5-1	13	2.8	0.4
N6G0Ex 18	4-6-2-5-3-1	13	2.2	0.4
N6G0Ex19	6-5-2-3-1-4	13	22	0.4
N6G0Ex 20	6-5-3-4-2-1	13	2.2	0.4
N6G0Ex21	6-5-4-3-2-1	21	3	0.4
N6G0Ex22	6-2-1-4-5-3	24	3.5	0.4
N6G0Ex 23	2-6-3-4-5-1	12	3.1	0.4
N6G0Ex 24	6-5-4-3-2-1	11	2	0.4
N6G0Ex 25	6-4-1-5-2-3	18	2.6	0.4
N6G0Ex26	6-2-3-5-4-1	13	2.3	0.4
N6G0Ex27	6-5-3-4-2-1	21	3.6	0.4
N6G0Ex 28	6-5-2-4-1-3	25	3.4	0.5
N6G0Ex 29	4-5-3-1-2-6	22	4.2	0.5
N6G0Ex 30	5-3-6-2-1-4	23	4.2	0.5
N6G0Ex31	1-4-6-2-3-5	17	3.5	0.5
N6G0Ex 32	6-1-4-5-2-3	19	3.2	0.4
N6G0Ex 33	3-6-2-1-4-5	18	2.8	0.4
N6G0Ex 34	2-1-5-6-4-3	21	3.5	0.4
N6G0Ex 35	6-3-5-2-4-1	15	2.4	0.4
N6G0Ex 36	2-3-6-5-4-1	12	2.2	0.4
N6G0Ex 37	2-4-1-5-3-6	21	3.9	0.4
N6G0Ex38	5-6-1-2-4-3	20	2.7	0.4
N6G0Ex39	6-5-1-4-2-3	17	2.4	0.4
N6G0Ex40	2-6-5-3-1-4	20	42	0.4
N6G0Ex41	5-1-6-4-3-2	21	2.9	0.4
N6G0Ex42	6-1-3-5-2-4	10	1.8	0.4
N6G0Ex43	6-3-2-1-5-4	23	3.3	0.4
N6G0Ex44	2-4-6-1-5-3	17	3.5	0.4
N6G0Ex45	5-6-4-1-2-3	17	2.6	0.4

	CHENG'S ALGORITHM			
	σ *	k	$\mathrm{f}\left(\mathrm{k}^{*}, \sigma^{*}\right)$	CPU tıme
N7G0Ex01	6-3-2-1-7-5-4	15	2.0	0.8
N7G0Ex02	5-3-2-7-1-4-6	15	2.75	0.8
N7G0Ex03	7-1-4-2-3-5-6	17	2.55	0.8
N7G0Ex04	7-2-6-4-1-3-5	18	3.15	0.8
N7G0Ex05	7-6-3-4-5-1-2	21	3	0.8
N7G0Ex06	6-5-4-3-2-1-7	27.	3.45	0.8
N7G0Ex07	7-3-6-4-5-2-1	19	3.9	0.8
N7G0Ex08	3-2-4-7-5-1-6	19	3.8	0.8
N7G0Ex09	7-6-5-2-4-1-3	23	3.45	0.8
N7G0Ex10	4-6-7-5-2-1-3	16	2.65	0.8
N7G0Ex11	6-5-4-3-2-1-7	26	3.25	0.8
N7G0Ex 12	7-2-1-4-3-5-6	15	2.45	0.8
N7G0Ex13	6-5-4-1-2-7-3	21	3.7	0.8
N7G0Ex14	6-5-2-3-1-4-7	16	3.3	0.8
N7G0Ex15	4-1-5-7-3-6-2	18	3.65	0.8
N7G0Ex16	5-4-2-6-3-7-1	15	2.8	0.8
N7G0Ex17	7-4-6-5-1-2-3	23	3.75	0.8
N7G0Ex18	6-4-5-2-3-7-1	20	3.25	0.8
N7G0Ex19	7-3-4-6-5-1-2	19	2.9	0.8
N7G0Ex 20	4-5-7-6-3-2-1	19	3.15	0.8
N7G0Ex 21	7-5-6-2-4-1-3	15	2.75	0.8
N7G0Ex 22	6-2-4-5-3-1-7	14	2.6	0.8
N7G0Ex23	4-6-5-1-7-3-2	21	3.1	0.8
N7G0Ex 24	6-4-5-2-1-7-3	18	3.15	0.8
N7G0Ex 25	5-6-7-1-4-2-3	21	3.5	0.8
N7G0Ex 26	2-3-5-4-6-1-7	16	2.7	0.8
N7G0Ex 27	5-4-2-6-7-3-1	14	2.2	0.8
N7G0Ex 28	1-6-4-2-3-5-7	18	2.8	0.8
N7G0Ex29	3-5-2-7-1-4-6	16	2.5	0.8
N7G0Ex 30	6-7-1-3-4-2-5	23	3.5	0.8
N7G0Ex 31	7-2-1-6-3-5-4	15	2.8	0.8
N7G0Ex 32	3-6-7-4-5-1-2	30	10.3	0.8
N7G0Ex 33	3-4-2-7-1-6-5	31	5.05	0.8
N7G0Ex 34	7-6-2-1-3-4-5	40	5.95	0.8
N7G0Ex 35	5-7-4-5-2-3-1	27	6.1	0.8
N7G0Ex 36	5-4-3-6-7-2-1	22	3.85	0.8
N7G0Ex37	4-1-2-3-5-7-6	27	3.85	0.8
N7G0Ex38	1-6-4-2-7-5-3	24	4.65	0.8
N7G0Ex 39	7-4-3-1-2-6-5	30	5.55	0.8
N7G0Ex40	4-3-6-1-7-2-5	29	3.85	0.8
N7G0Ex41	7-4-3-5-6-2-1	16	2.7	0.8
N7G0Ex42	7-2-1-6-5-4-3	19	3.95	0.8
N7G0Ex43	1-6-2-7-5-4-3	20	3.15	0.8
N7G0Ex44	1-2-4-6-7-3-5	17	2.7	0.8
N7G0Ex45	1-6-7-3-5-4-2	19	3.1	0.8

APPENDIX C

MPS FORMAT

NAME	NEOMIP		MINIMISE	
ROWS				
N COST				
G LIMl				
G LIM2				
G LIM3				
G LIM4				
G LIM5				
G LIM6				
G LIM7				
G LIM8				
G LIM9				
G LIM10				
G LIMll				
G LIM12				
G LIM13				
L LIM14				
L LIM15				
L LIM16				
G LIM17				
E LIM18				
E LIM19				
COLUMNS				
El	LIM1	10	COST	10
E2	LIM2	10	COST	10
E3	LIM3	10	COST	10
E4	LIM4	10	COST	10
T1	LIM5	10	COST	10
T2	LIM6	10	COST	10
T3	LIM7	10	COST	10
T4	LIM8	10	COST	10
PI1	LIM9	10	LIM10	10
PI1	LIM11	10	LIM12	10
PI3	LIM13	10	LIM14	10
PI3	LIM15	10	LIM16	10
P13	LIMl	-10	LIM2	-10
PI3	LIM5	10	LIM6	10

PI4	LIM17	10	LIM4	10
PI4	LIM8	-10	LIM18	10
PI2	LIM17	-10	LIM1	-10
P12	LIM5	10		LIM19
P1	LIM9	-10	LIM13	-10
P2	LIM10	-10	LIM14	-10
P2	LIM19	10		
P3	LIM11	-10	LIM15	-10
P3	LIM18	-10		
P4	LIM12	-10	LIM16	-10
RHS				
RHS1	LIM1	-045	LIM2	-045
RHS1	LIM3	-045	LIM4	-045
RHS1	LIM5	045	LIM6	045
RHS1	LIM7	-045	LIM8	045
RHS1	LIM9	00		
RHS1	LIM10	00	LIM11	00
RHS1	LIM12	00	LIM13	00
RHS1	LIM14	00	LIM15	00
RHS1	LIM16	00	LIM17	00
RHS1	LIM18	00	LIM19	00
BOUNDS				
FXBOUND1	P1	10		
FXBOUND1	P4	100		
FX BOUND1	P2	30		
FXBOUND1	P3	60		
ENDATA				

OUTPUT FROM SCICONIC PACKAGE

APPENDIX D
InPUT DATA FOR TEST EXAMPLES FOR BOTH ALGORITHMS

	t_{1}	t_{2}	t_{3}	w_{1}	W_{2}	w_{3}
N3G0Ex01	4	5	3	0.2	0.3	0.5
N3G0Ex02	6	2	1	0.6	0.2	0.2
N3G0Ex03	5	4	9	0.1	0.1	0.8
N3G0Ex04	6	5	7	0.2	0.3	0.5
N3G0Ex05	2	8	4	0.4	0.5	0.1
N3G0Ex06	1	2	5	0.6	0.3	0.1
N3G0Ex07	4	2	3	0.3	0.1	0.6
N3G0Ex08	1	4	5	0.7	0.2	0.1
N3G0Ex09	2	4	3	0.3	0.2	0.5
N3G0Ex10	2	2	6	0.8	0.1	0.1
N3G0Ex11	3	2	5	0.6	0.1	0.3
N3G0Ex12	5	4	6	0.4	0.5	0.1
N3G0Ex 13	5	1	3	02	0.2	0.6
N3G0Ex14	3	2	7	0.7	0.2	0.1
N3G0Ex15	8	11	9	0.8	0.1	0.1
N3G0Ex16	2	6	4	0.5	0.4	0.1
N3G0Ex17	9	5	8	0.3	0.6	0.1
N3G0Ex18	7	6	9	0.1	0.7	0.2
N3G0Ex19	5	3	7	0.1	02	0.7
N3G0Ex20	11	4	7	0.1	0.8	0.1
N3G0Ex21	4	1	5	0.3	0.6	0.1
N3G0Ex22	2	6	7	0.7	0.1	0.2
N3G0Ex 23	5	3	1	0.8	0.1	0.1
N3G0Ex 24	1	2	4	0.2	0.2	0.6
N3G0Ex 25	1	3	2	0.2	0.3	0.5
N3G0Ex 26	2	1	5	0.5	0.3	0.2
N3G0Ex27	1	2	2	0.6	0.2	0.2
N3G0Ex 28	2	1	2	0.5	0.3	0.2
N3G0Ex 29	1	2	3	0.6	0.1	0.3
N3G0Ex 30	3	2	1	0.5	0.4	0.1
N3G0Ex 31	4	7	5	0.5	0.4	0.1
N3G0Ex 32	5	7	4	0.4	0.5	0.1
N3G0Ex 33	7	4	5	0.6	03	0.1
N3G0Ex34	1	6	3	0.2	0.2	0.6
N3G0Ex 35	6	4	8	0.5	0.4	0.1
N3G0Ex 36	4	2	4	0.5	0.4	0.1
N3G0Ex37	2	5	3	0.2	0.3	0.5
N3G0Ex 38	6	2	4	0.5	0.2	0.3
N3G0Ex 39	4	5	1	0.6	0.1	0.3
N3G0Ex40	5	1	3	0.4	0.5	0.1
N3G0Ex41	2	6	2	0.5	0.4	0.1
N3G0Ex42	5	3	1	0.6	0.3	0.1
N3G0Ex43	8	10	5	0.4	0.5	0.1
N3G0Ex44	5	3	6	0.7	0.2	0.1
N3G0Ex45	4	3	2	0.2	0.7	0.1

	t_{1}	t_{2}	t_{3}	t_{4}
N4G0Ex01	1	2.	3	1
N4G0Ex02	3	2	4	5
N4G0Ex03	3	2	5	1
N4G0Ex04	2	5	2	3
N4G0Ex05	5	3	4	1
N4G0Ex06	3	4	1	1
N4G0Ex07	1	2	3	4
N4G0Ex08	2	1	2	4
N4G0Ex09	2	4	2	5
N4G0Ex10	3	4	2	5
N4G0Ex 11	2	1	3	1
N4G0Ex 12	3	1	5	4
N4GQEx 13	2	1.	3	4
N4G0Ex14	1	3	6	10
N4G0Ex 15	3	10	4	6
N4G0Ex16	1	7	4	6
N4G0Ex 17	1	4	7	11
N4G0Ex18	2	6	12	1
N4G0Ex19	8	5	4	1
N4G0Ex 20	5	10	1	2
N4G0Ex 21	3	4	6	10
N4G0Ex 22	1	4	10	6
N4G0Ex23	4	3	5	10
N4G0Ex24	3	6	7	1
N4G0Ex25	4	1	2	6
N4G0Ex 26	1	3	2	6
N4G0Ex 27	2	6	4	1
N4G0Ex28	1	3	5	6
N4G0Ex 29	2	6	8	5
N4G0Ex 30	4	3	1	5
N4G0Ex 31	6	2	9	7
N4G0Ex 32	5	7	3	4
N4G0Ex33	6	6	3	2
N4G0Ex 34	4	5	1	6
N4G0Ex35	8	6	7	5
N4G0Ex 36	4	6	2	5
N4G0Ex 37	9	3.	5	8
N4G0Ex38	7	4	3	2
N4G0Ex39	1	6	3	5
N4G0Ex40	2	7	8	4
N4G0Ex41	6	5	3	4
N4G0Ex42	6	5	4	9
N4G0Ex43	4	7	3	8
N4G0Ex44	9	6	8	5
N4G0Ex45	7	6	5	2

	w_{1}	W_{2}	W_{3}	w_{4}
N4G0Ex01	0.1	0.3	0.5	0.1
N4G0Ex02	0.3	0.5	0.1	0.1
N4G0Ex03	0.5	0.1	0.1	0.3
N4G0Ex04	0.3	0.5	0.1	0.1
N4G0Ex05	0.6	0.1	0.1	0.2
N4G0Ex06	0.1	0.1	0.7	0.1
N4G0Ex07	0.1	0.1	0.2	0.6
N4G0Ex08	0.6	0.1	0.1	0.2
N4G0Ex09	0.5	0.3	0.1	0.1
N4G0Ex10	0.5	03	0.1	0.1
N4G0Ex 11	0.5	0.3	0.1	0.1
N4G0Ex 12	0.1	0.2	0.5	0.2
N4G0Ex13	0.5	0.1	0.3	0.1
N4G0Ex14	0.1	0.1	0.3	0.5
N4G0Ex 15	0.5	0.1	0.1	0.3
N4G0Ex 16	0.2	0.5	0.2	0.1
N4G0Ex 17	0.5	0.1	0.1	0.3
N4G0Ex18	0.2	0.5	0.2	0.1
N4G0Ex 19	0.3	0.1	0.1	0.5
N4G0Ex 20	0.2	0.2	0.5	0.1
N4G0Ex 21	0.5	0.1	0.3	0.1
N4G0Ex22	0.3	0.1	0.5	Q. 1
N4G0Ex 23	0.1	0.3	0.5	0.1
N4G0Ex24	0.1	0.2	0.6	0.1
N4G0Ex25	0.1	0.6	0.2	0.1
N4G0Ex 26	0.1	0.1	0.5	0.3
N4G0Ex 27	0.1	0.2	0.3	0.5
N4G0Ex 28	0.1	0.1	0.5	0.3
N4G0Ex 29	0.2	0.1	0.6	0.1
N4G0Ex 30	0.6	0.1	0.1	0.2
N4G0Ex31	0.3	0.5	0.1	0.1
N4G0Ex 32	0.1	0.7	0.1	0.1
N4G0Ex 33	0.1	0.1	0.7	0.1
N4G0Ex 34	0.1	0.2	0.6	0.1
N4G0Ex 35	0.1	03	0.1	0.5
N4G0Ex 36	0.1	0.1	0.1	0.7
N4G0Ex 37	0.1	0.1	0.6	0.2
N4G0Ex38	0.1	0.6	0.2	0.1
N4G0Ex 39	0.3	0.1	0.1	0.5
N4G0Ex40	0.5	0.1	0.1	0.3
N4G0Ex41	0.1	0.1	0.3	0.5
N4G0Ex42	0.2	0.1	0.6	0.1
N4G0Ex43	0.1	0.1	0.1	0.7
N4G0Ex44	0.1	0.7	0.1	0.1
N4G0Ex45	0.1	-0.6	0.1	0.2

	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}
N5G0Ex01	1	3	6	10	2
N5G0Ex02	3	4	2	1	6
N5G0Ex03	2	4	5	8	1
N5G0Ex04	1.	4	6	2	5
N5G0Ex05	6	3	2	1	5
N5G0Ex06	2	1	4	6	10
N5G0Ex07	1	2	3.	4	5
N5G0Ex08	2	4	5	1	10
N5G0Ex09	4	2	6	1	8
N5G0Ex10	2	6	4	5	4
NSGOEx11	2	4	2	8	10
N5G0Ex12	2	1	6	7	4
N5G0Ex13	1	3	2	5	6
N5G0Ex14	4	2	1	3	2
N5G0Ex15	2	4	2	6	8
N5G0Ex16	2	5	6	1	8
N5G0Ex17	1	3	2	6	4
N5G0Ex18	6	1	2	4.	7
N5G0Ex19	1	5	7	8	6
N5G0Ex20	3	4	6	2	8
N5G0Ex21	6.	2	4	1	9
N5G0Ex22	2	4	1	6	5
N5G0Ex23	3	2	1	6	9
N5G0Ex24	2	1	4	6	8
N5G0Ex25	3	4	1	5	2
N5G0Ex26	2	4	1	6	3
N5G0Ex27	4	2	1	5	6
N5G0Ex28	2	4	5	1.	6
N5G0Ex29	4	10	5	6	8
N5G0Ex30	10	6	7	9	3
N5G0Ex31	6	3	1	2	4
N5G0Ex32	4	1	5	2	6
N5G0Ex33	6	10	11	5	9
N5G0Ex34	3	2	4	10	8
N5G0Ex35	6	8	9	11	7
N5G0Ex36	5	8	7	6	4
N5G0Ex 37	3	5	4	2	6
N5G0Ex 38	6	4	5	8	9
N5G0Ex39	7	4	6	8	9
N5G0Ex40	6	4	1	8	7
N5G0Ex41	4	8	9	6	5
N5G0Ex42	6.	4	8	10	5
N5G0Ex43	4	3	6	8	5
_N5G0Ex44	4	5	7	2	6
N5G0Ex45	4	8	9	1	5

	w_{1}	w_{2}	WJ	W_{4}	Ws
N5G0Ex01	0.1	0.1	0.1	0.5	0.2
N5G0Ex02	0.5	0.1	0.1	0.1	0.2
N5G0Ex03	0.5	0.1	0.2	0.1	0.1
N5G0Ex04	0.1	0.1	0.5	0.1	0.2
N5G0Ex05	0.1	0.1	0.5	0.1	0.2
N5G0Ex06	0.1	0.2	0.1	0.1	0.5
N5G0Ex07	0.1	0.6	0.1	0.1	0.1
N5G0Ex08	0.1	0.6	0.1	0.1	0.1
N5G0Ex09	0.6	0.1	0.1	0.1	0.1
N5G0Ex10	0.1	0.1	0.1	0.5	0.2
N5G0Ex 11	0.1	0.1	0.1	0.5	0.2
N5G0Ex12	0.1	02	0.5	0.1	0.1
N5G0Ex13	0.1	0.1	0.1	0.6	0.1
N5G0Ex14	0.1	0.1	0.1	0.1	0.6
N5G0Ex15	0.1	02	0.1	0.5	0.1
N5G0Ex16	0.1	0.1	0.1	0.1	0.6
N5G0Ex17	0.6	0.1	0.1	0.1	0.1
N5G0Ex 18	0.1	0.1	0.1	0.6	0.1
N5G0Ex19	0.1	0.6	0.1	0.1	0.1
N5G0Ex20	0.1	0.1	0.6	0.1	0.1
N5G0Ex21	0.	0.1	0.1	0.6	0.1
N5G0Ex22	0.1	0.6	0.1	0.1	0.1
N5G0Ex23	0.2	0.5	0.1	0.1	0.1
N5G0Ex 24	0.6	0.1	0.1	0.1	0.1
N5G0Ex 25	0.1	0.2	0.1	0.5	0.1
N5G0Ex 26	0.2	0.1	0.5	0.1	0.1
N5G0Ex 27	0.1	0.6	0.1	0.1	0.1
N5G0Ex 28	0.2	0.1	0.1	0.1	0.5
N5G0Ex 29	0.5	0.1	0.1	0.1	0.2
N5G0Ex30	0.6	0.1	0.1	0.1	0.1
N5G0Ex31	0.1	0.6	0.1	0.1	0.1
N5G0Ex 32	0.1	0.2	0.5	0.1	01
N5G0Ex33	0.6	0.1	0.1	0.1	0.1
NSG0Ex 34	0.1	0.1	0.5	0.2	0.1
N5G0Ex35	0.1	01	0.1	0.1	0.6
N5G0Ex 36	0.2	0.5	0.1	01	0.1
N5G0Ex37	0.6	01	0.1	0.1	0.1
N5G0Ex 38	0.6	0.1	0.1	0.1	0.1
N5G0Ex 39	0.1	0.2	0.5	0.1	0.1
N5G0Ex40	0.1	0.5	0.1	0.1	02
N5G0Ex41	0.6	0.1	0.1	01	0.1
N5G0Ex42	0.2	0.1	0.1	0.1	0.5
N5G0Ex43	0.1	0.1	0.1	0.6	0.1
N5G0Ex44	0.1	0.2	0.1	0.5	0.1
N5G0Ex45	0.1	0.1	0.1	0.1	0.6

	t_{1}	t_{2}	t_{3}	t_{4}	ts	t_{6}
N6G0Ex01	4	3	1	5	2	3
N6G0Ex02	5	1	2	4	8	3
N6G0Ex03	1	2	3	4	5	6
N6G0Ex04	8	4	2	1.	3	4
N6G0Ex05	4	2	5	6	1	10
N6G0Ex06	3	5	6	2	1	4.
N6G0Ex07	2	4	1	5	8	3
N6G0Ex08	3	5	4	6	1	2
N6G0Ex09	6	4	2	7	1	8
N6G0Ex10	5	3	2	6	1	7
N6G0Ex11	3	4	1	2	6	5
N6G0Ex12	4	2	1.	3	6	5
N6G0Ex13	4	3	5	1	7	2
N6G0Ex14	3	1	4	6	5	9
N6G0Ex15	4	3	1	5	2	6
N6G0Ex16	3	4	1	6	2	7
N6G0Ex17	4.	5	1	2	3	8
N6G0Ex18	5	3	2	6	1	4
N6G0Ex19	3	2.	1	5	4	7
N6G0Ex 20	4	3	2	1	5	6
N6G0Ex2l	4	3	1	5	7	9
N6G0Ex22	6	7	9	1	2	10
N6G0Ex 23	5	8	4	2	3	6
N6G0Ex 24	4	3	1	2	3	6
N6G0Ex 25	5	2	3	6	1	7
N6G0Ex26	5	3	4	2	1	6
N6G0Ex27	5	4	7	1	6	8
N6G0Ex28	4.	3	7	1	10	12
N6G0Ex 29	3	4	1	10	12	9
N6G0Ex 30	4	1	5	6	8	10
N6G0Ex31	6	2	3	4	5	7
N6G0Ex 32	7	3	5	4	2	8
N6G0Ex 33	1	4	7	3	5	6
N6G0Ex 34	6	8	7	3	5	2
N6G0Ex35	3	1	4	2	5	6
N6G0Ex 36	5	6	4	3	1	2
N6G0Ex 37	7	8.	4	6	2	5
N6G0Ex38	4	1	5	2	8	7
N6G0Ex39	3	2	6	1	5	8
N6G0Ex40	3	7	3	6	8	5
N6G0Ex41	7	3	2	1	8	6
N6G0Ex42	3	1	2	6	1	5
N6G0Ex43	2	4	8	5	3	9
N6G0Ex44	2	6	5	4	3	7
N6G0Ex45	1	2	3	6	7	4

	w_{1}	w_{2}	w_{3}	w_{4}	Ws	W6
N6G0Ex01	0.5	0.1	0.1	0.1	0.1	0.1
N6G0Ex02	0.1	0.5	0.1	0.1	0.1	0.1
N6G0Ex03	0.1	0.1	0.5	0.1	0.1	0.1
N6G0Ex04	0.1	0.1	0.1	0.5	0.1	0.1
N6G0Ex05	0.1	0.1	0.5	0.1	0.1	0.1
N6G0Ex06	0.1	0.1	0.1	01	0.1	0.5
N6G0Ex07	0.5	0.1	0.1	01	0.1	0.1
N6G0Ex08	0.1	0.1	0.5	01	0.1	0.1
N6G0Ex09	0.1	0.1	0.5	0.1	0.1	0.1
N6G0Ex10	0.1	0.1	0.5	0.1	0.1	0.1
N6G0Ex11	0.1	0.1	0.1	0.5	0.1	0.1
N6G0Ex12	0.1	0.1	0.1	0.5	0.1	0.1
N6G0Ex13	0.1	0.1	0.5	0.1	0.1	0.1
N6G0Ex14	0.1	0.1	0.1	0.1	0.1	0.5
N6G0Ex15	0.1	0.1	0.1	0.1	0.1	0.5
N6G0Ex16	0.1	0.1	0.1	0.1	0.1	0.5
N6G0Ex17	0.1	0.1	0.1	0.1	0.1	0.5
N6G0Ex18	0.1	0.5	0.1	0.1	0.1	0.1
N6G0Ex19	0.1	0.5	0.1	0.1	0.1	0.1
N6G0Ex20	0.1	0.1	0.5	0.1	0.1	01
N6G0Ex21	0.1	01	0.1	0.5	0.1	0.1
N6G0Ex22	0.1	0.1	0.1	0.5	0.1	0.1
N6G0Ex23	0.1	0.1	0.5	0.1	0.1	0.1
N6G0Ex 24	0.1	0.1	0.1	0.5	0.1	0.1
N6G0Ex25	0.5	0.1	0.1	0.1	0.1	0.1
N6G0Ex26	0.1	0.1	0.5	0.1	0.1	0.1
N6G0Ex 27	0.1	0.1	0.5	0.1	0.1	0.1
N6G0Ex 28	0.1	0.5	0.1	0.1	01	0.1
N6G0Ex29	0.1	0.1	01	0.1	0.5	0.1
N6G0Ex30	0.1	0.1	0.1	0.1	0.1	0.5
N6G0Ex31	0.1	0.1	0.1	0.1	0.1	0.5
N6G0Ex32	0.1	0.1	0.1	0.5	0.1	01
N6G0Ex 33	0.5	01	0.1	0.1	0.1	0.1
N6G0Ex 34	0.1	0.1	0.1	0.1	0.1	0.5
N6G0Ex35	0.1	0.1	0.1	0.1	0.5	0.1
N6G0Ex36	0.1	01	0.1	0.1	0.1	0.5
N6G0Ex 37	0.5	0.1	0.1	0.1	0.1	0.1
N6G0Ex38	0.1	0.5	0.1	0.1	0.1	0.1
N6G0Ex 39	0.1	0.1	0.1	0.5	0.1	0.1
N6G0Ex40	0.1	0.1	0.1	0.1	0.5	0.1
N6G0Ex41	0.1	0.1	0.1	0.1	0.1	0.5
N6G0Ex42	0.1	0.1	0.5	0.1	0.1	0.1
N6G0Ex43	0.5	0.1	0.1	0.1	0.1	0.1
N6G0Ex44	0.1	0.1	0.1	0.1	0.1	0.5
N6G0Ex45	0.1	0.1	0.1	0.5	0.1	0.1

	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}
N7G0Ex01	1	3	5	4	2	6	1
N7G0Ex02	2	4	5	3	6	4	1
N7G0Ex03	4	1.	2	5	3	6	8
N7GQEx04	2	6	4	1.	3	5	7
N7G0Ex05	2	4	5	1	3	7	9
N7G0Ex06	3	2	4	6	8	9	4
N7G0Ex07	4	2	5	3	4	6	8
N7G0Ex08	4	5	8	6	2	4	3
N7G0Ex09	2	1	3	4.	6	8	9
N7G0Ex10	4	2	5	6	3	5	2
N7G0Exll	4	3	2	5	6	8	7
N7G0Ex12	3	6	2	1	5	4	5
N7G0Ex13	3	2	5	4	6	8	5
N7G0Ex14	2	3	5	4	6	7	4
N7G0Ex15	4	5	3	6	7	2	1
N7G0Ex16.	3	5	2	4	6	1	3
N7G0Ex17	2	4	5	6	1	8	9
N7G0Ex18	4	1	3	5	8	7	2
N7G0Ex19	2	4	6	5	3	1	8
N7G0Ex 20	4	5	3	6	7	2	4
N7G0Ex 21	1	3	4	5	4	6	
N7G0Ex 22	2	5	4	3	1	6	4
N7G0Ex23	2	4	3	8	5	6	2
N7G0Ex 24	1	2	3	6	5	7	4
N7G0Ex25	1	5	4	3	6	8	7
N7G0Ex 26	4	6	5	2	3	1	4
N7G0Ex27	6	2	3	5	7	1	2
N7G0Ex 28	6	1	2	7	3	5	4
N7G0Ex29	2	3	8	4	5	6	1
N7G0Ex 30	5	4	3	1	6	8.	7
N7G0Ex 31	3	5	2	6	4	1	8
N7G0Ex32	6	8	10	5	7	9	11
N7G0Ex 33	4	9	12	10	8	5	3
N7G0Ex34	8	7	3	9	6	10	15
N7G0Ex 35	4	6	8	7	3	11	9
N7G0Ex 36	7	3	5	8	9	2	4
N7GOEx 37	8	4	6	9.	2	5	4
N7G0Ex 38	8	3	5	10	4	6	2
N7G0Ex39	2	6	9	11	08	7	10
N7G0Ex40	3	5	9	11	10	6	2
N7G0Ex41	6.	2	4	5	1	3	7
N7G0Ex42	6	5	7	4	2	3	8
N7G0Ex43	9	6	4	3	1	5	2
N7G0Ex44	8	5	2	4	6	1	3
N7G0Ex45	7	3	2	5	1	6	4

	w_{1}	W_{2}	w_{3}	w_{4}	ws	w_{6}	w_{7}
N7G0Ex01	0.5	0.1	0.1	0.1	0.1	0.05	0.05
N7G0Ex02	0.1	0.5	0.1	0.1	0.1	0.05	0.05
N7G0Ex03	0.1	0.1	0.1	0.5	0.1	0.05	0.05
N7G0Ex04	0.1	0.1	0.1	0.05	0.05	0.5	0.1
N7G0Ex05	0.05	0.05	0.5	0.1	0.1	0.1	0.1
N7G0Ex06	0.1	0.1	0.5	0.1	0.1	0.05	0.05
N7G0Ex07	0.05	0.05	0.1	0.1	0.1	0.5	0.1
N7G0Ex08	0.1	0.1	0.1	0.5	0.05	0.05	0.1
N7G0Ex09	0.05	0.1	0.05	0.1	0.5	0.1	0.1
N7G0Exl0	0.1	0.1	0.05	0.05	0.5	0.1	0.1
N7G0Exll	0.1	0.1	0.5	0.1	0.1	0.05	0.05
N7G0Ex 12	01	0.1	0.1	0.5	0.1	0.05	0.05
N7G0Ex13	0.5	0.05	0.05	0.1	0.1	0.1	0.1
N7G0Ex14	0.1	0.1	0.5	0.1	0.1	0.05	0.05
N7G0Ex15	0.1	0.1	0.1	0.1	0.5	0.05	0.05
N7G0Ex16	0.1	0.1	0.5	0.1	0.1	0.05	0.05
N7G0Ex17	0.05	0.05	0.1	0.1	0.1	0.5	0.1
N7G0Ex18	0.1	0.1	0.1	0.5	0.05	0.05	0.1
N7G0Ex19	0.05	0.1	0.05	0.1	0.5	0.1	0.1
N7G0Ex 20	0.1	0.1	0.05	0.05	0.5	0.1	0.1
N7G0Ex21	0.1	0.1	0.5	0.1	0.1	0.05	0.05
N7G0Ex22	0.1	0.1	0.1	0.5	0.1	0.05	0.05
N7G0Ex23	0.5	0.05	0.05	0.1	0.1	0.1	0.1
N7G0Ex24	0.1	0.1	0.5	0.1	0.1	0.05	0.05
N7G0Ex 25	0.1	0.1	0.1	0.1	0.5	0.05	0.05
N7G0Ex26	0.05	0.5	0.1	0.1	0.1	0.05	0.1
N7G0Ex27	0.1	0.1	0.1	0.1	0.05	0.5	0.05
N7G0Ex28	0.1	0.1	0.1	0.1	0.5	0.05	0.05
N7G0Ex29	0.05	0.05	0.5	0.5	0.1	0.1	0.1
N7G0Ex30	0.05	0.1	0.1	0.05	0.1	0.5	0.1
N7G0Ex31	0.05	0.1	0.05	0.1	0.1	0.5	0.1
N7G0Ex32	0.05	0.1	0.1	0.5	0.1	0.1	0.05
N7G0Ex33	0.5	0.05	0.05	0.1	0.1	0.1	0.1
N7G0Ex34	0.05	0.1	0.05	0.1.	0.5	0.1	0.1
N7G0Ex35	0.1	0.1	0.05	0.1	0.05	0.1	0.5
N7G0Ex 36	0.1	0.1	0.1	0.5	0.1	0.05	0.05
N7G0Ex 37	0.05	0.5	0.05	0.1	0.1	0.1	0.1
N7G0Ex 38	0.05	0.1	0.1	0.5	0.1	0.1	0.05
N7G0Ex39	0.1	0.5	0.1	0.05	0.1	0.05	0.1
N7G0Ex40	0.1	0.1	0.5	0.05	0.1	0.05	0.1
N7G0Ex41	0.5	0.1	0.1	0.05	01	0.05	0.1
N7G0Ex42	0.05	0.05	0.1	0.1	0.1	0.1	0.5
N7G0Ex43	0.1	0.5	0.05	0.1	0.05	0.1	0.1
N7G0Ex44	0.5	0.1	0.1	0.1	0.05	0.1	0.05
N7G0Ex45	0.05	0.1	0.1	0.5	0.05	0.1	0.1

References

[A96]
Mauro Dell'Amico(1996)
"Shop problems with two machines and time lags"
Operatıons Research Vol 44, No 5
September-October 1996
[ABZ88] Joseph Adams, Egon Balas and Daniel Zawack
"I he shifting bottleneck procedure for job shop
Scheduling"
[AC91] Applegate D and Cook W (1991) "A computatonal study of job shop scheduling" ORSA J Comput , 3, 149-156

Management Science Vol 34, No 3, March 1988

Printed in U S A

A Aokı, H Lıma, N Sannomıya and Y Kobayashı
"Application of genetic algorthm to a job shop problem with a unversal machme"

Proc Of $23^{\text {rd }}$ SICE Intelligent System Symp, pp91-96
Ronald G Askın, Charles R Standridge (1993)
"Modelling and analysis of manufacturing systems"
John Wiley\&Sons, New York
[AW97]
[B69]
E Balas "Machine sequencing via disjunctive graphs An implicit enumeration algorthm" Oper Res, 17(1969), 941-957

Baker, Kenneth R (1974)
"Introduction to sequencing and scheduling" John Wiley\&Sons, New York

Bagchi, U 1985 "Scheduling to minmize earliness and tardmess penaltes with a common due date" Workıng paper, Department of Management, Unıversity of Texas, Austın
M Azizoglu and S Webster (1997)
"Scheduling Job familles about an unrestricted common due date on a single machine " International Journal of Production Research, 1997, Vol 35, No 5, p 1331-1348

Bagchi, U 1985 "Due-date or deadline assignment to multt-job orders to minmmze total penalty in the one machine scheduling problem" Presented at the ORSA/TIMS Joint National Conference St Lous

Bagchı U , Y Chang and R Sullivan 1987 "Minimizing absolute and squared deviations of completion times with different earliness and tardiness penalties and a common due date" Naval Res Logist Quart 34, 739-751
[BD90]
J E Bregel and J J Davern
" Genetic algorithms and job shop scheduling "
Computers \& Industrial Engıneerıng, 19, pp 81-91
[BGG88] Bector, C , Y , Gupta and M, Gupta 1988 "Determination of an optimal common due date and optimal sequence in a single machine Job Shop" Int J Prod Res 26, 613-618
[BS90] K R Baker, G D Scudder "Sequencing with earliness and tardinesss penaltues A review" Operations Research 1990 p 22-36
[BSC86] Bagchı, U , R Sullivan and Y Chang 1986 "Minumizing mean absolute deviation of completion times about a common due-date"

Naval Res Logist Quart 33, 227-240
[CAT87] Chrıstofides Nicos, Alvarez-Valdes R, Tamarit J M
"Project scheduling with resource constraints A branch and bound approach"

European Journal of Operational Research 29 262-273
[C82]
J Carher, "The one-machine sequencing problem"
European J Oper Res, 11 (1982), 42-47
[C87]
T C E Cheng " An algoruhm for the CON due date determination and sequencing problem"

Comput Opns Res Vol 14, No 6, pp 537-542, 1987 completion time deviation" Comput Opns Res Vol 15, No 2, pp 91-96, 1988 P Chrettenne 1989, "A polynomal algorithm to optımally schedule tasks on a virtual distributed system under tree-like precedence constrants " Eur J Opnl Res 43, 225-230

Dell' Amico M and Trubıan M (1993) "Applying taboo search to the job shop scheduling problem" Ann Oper Research, 41, 231-252

M A H Dempster, J K Lenstra, A H G Rinnooy Kan
"Deterministic and stochastic schedulıng" Proceedings of the NATO Advanced Study and Research Institute on Theoretical Approaches to Scheduling Problems held in Durham, England, July 6-17, 1981

D Reidel Publishıng Company
[EC77]
Eilon, S and I Chowdhury, 1977 "Minimizing waiting time variance in the single machme problem"

Mgmt Scı 23, 567-575
[FMT92]
[F82]
French S"Sequencing and scheduling An introduction to the mathematics of the job shop"

Wiley, Chichester
S Gupta and J Kyparisis 1987, "Single machine scheduling research" Omega 15, 207-227

Hall, N 1986 "Single and multt-processor models for minımizing completion time varıance" Naval Res Logist Quart 33, 49-54
Matteo Fischettı, Silvano Martello and Paolo Toth " Approximation alyorthms for fixed job schedule problems "

Operations Research Vol 40, Supp No 1
January-February 1992
M A Al-Fawzan and K S Al-Sultan
" A tabu search algorithm for minimizing the makespan in a job shop scheduling "

Institute of Industrial Engıneers, $5^{\text {th }}$ Industrial Engıneerıng Research Conference Proceedings Hall, N, and M Posner 1989 "Weighted devation of completion ttmes about a common due-date" Working Paper 89-15, College of Buisness, The Ohio State University, Columbus

Hall, N and Posner, M, 1991 "Earliness-tardiness scheduling problems I weighted deviation of completion times about a common due date" Operations Research , 39, 836-846

[GLL79]	U I Gupta, D T Lee and J Y -T Leung
	"An optimal solution for the chanmel assignment problem"
	IEEE Trans Comput C-28, 807-810
[J56]	J R Jackson, " An extension of Johnson's results on the
	job lot scheduling " Naval Res Logist Quart 3, 201-203
[K76]	A H G Rinnooy Kan 1976
	"Machine scheduling problem",
	Classification, complexity and computations
	Martınus Nijhoff, The Hague
[K81a]	Kanet, J 1981 "Mmmuzing the average devation of job
	completton times about a common due-date"
	Naval Res Logıst Quart 28, 643-651
[K81b]	Kanet, J 1981 "Minimizing variation of flow time in single
	machme systems" Mgmt Sci 27, 1453-1459
[KPW94]	M Y Kovyalyov, C N Potts and L N Van Wassenhove
	"A fully polynomial approximatton scheme for scheduling a
	single machine to mmumze total weighted late work"
	Mathematics of Operations Research,
	Vol 19, No 1, February 1994
[KGV83]	S Kırkpatrıck, C D Gelatt, JR and M R Vecchı 1983
	"Optımization by simulated annealing" Science 220, p 671-680

[L92]
J B Lasserre, " An integrated model for job-shop planning and scheduling "Management Science, 38, 8, pp 1201-1211
[LAL92]
Peter J M Van Laarhoven, Emile H L Aarts, Jan Karel Lenstra "Job shop scheduling by simulated annealing" Operatıons Research Vol 40, No 1, January-February 1992

C Y Lee, S Pıramuthu and Y K Tsaı
"Job shop scheduling with a genetic algortthm and machine learning "

International Journal of Production Research 1997
Vol 35, No 4, 1171-1191
[LKSK97] H Lima, R Kudo, N Sannomıya, Y Kobayashı
"An autonomous decentralized scheduling algorithm for a job shop process with a multi-function machine in parallel" IEEE 1997

E L Lawler, C U Martel "Preemptive scheduling of two unuform machines to minimize the number of late jobs" Operatıons Research Vol 37, No 2, March-April 1989
[MF75]
G McMahon and M Florian,
" On scheduling with ready times and due-dates to minimize maximum lateness "

Oper Res, 23 (1975), 475-482
[MSS88]
[NHL82]
[PS82]
[PSS82]
H Matsuo, C J Suh and R S Sullivan
" A controlled search simulated annealing method for the general job shop sceduling problem "

Working paper 03-04-88, Department of Management, The University of Texas at Austin
" Complexty results for scheduling tasks in fixed mtervals on two types of machines "

SIAM J Comput 11, 512-520
C H Papadimitriou and K Steıglitz
" Combinatorial optimization algorithms and complexity" Prentice-Hall, Englewood Cliffs, N J

Panwalkar, S , M Smith and A Seldmann, 1982 "Common due date assignment to mummze total penalty for the one machme scheduling problem" Opns Res 30, 391-399
[PW92]

C N Potts and L W Van Wassenhove
" Integrating scheduling with batching and lot-sizing A review of algorithms and complexity

J Opnl Res Soc 43, 395-406
[Q87]
Quaddus, M 1987 "A generalized model of optımal due-date assignment by linear programming" J Opnl Res Soc 38, 353-359
[RS64]
[S77]
[S79]
[SM85]
C Santos and M Magazıne
"Batching in single operation manufacturing systems"
O R Letts 4, 99-103

[VR87]	Van, V and M Raghavachari 1987 "Determinstic and random suggle machine scheduling with variance minimization"
	Opns Res 35, 111-120
[W78]	HP Williams "Model building min mathematical programming"
	Wiley Chichester, New York, Brısbane, Toronto 1978
[WB95]	Scott Webster, Kenneth R Baker (1995) "Scheduling groups
	of jobs on a single machine" Operations Research
	Vol 43, No 4, July-August 1995
[WH96]	Tohru Watanabe and Yasunorı Hashımoto
	" Job shop scheduling forecasting margins to due-dates
	based-on a neural network"
	Advances in Production Management Systems 1996 IFIP
[WTH93a]	T Watanabe, H Tokumaru and Y Hashımoto
	" Job shop scheduling using neural networks "
	Proceedings of IFAC World Congress (Ed G C Goodwin
	And R J Evans), pp 485-488 Pergamon Press, New York
[WTH93b]	T Watanabe, H Tokumaru and Y Hashımoto
	" Job shop scheduling using neural networks "
	Journal of Control Engıneerıng Practice, Vol 1, No 6, pp 957-961, IFAC

[WTHH92] T Watanabe, H Tokumaru, Y Hashımoto and Y Hirose
" Job shop scheduling based on the estimation of margins to due-dates by using a neural network "

Proceedings of Pacific Conference on Manufacturing, pp 516-522

