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A bstract

Scheduling can be described as “the allocation of scarce resources over time to 

perform a collection o f tasks” They arise in many practical applications in 

manufacturing, marketing, service industries and within the operating systems of 

computers

Scheduling problems are frequently encountered in various activities of every day 

life

They exist whenever there is a choice o f the order in which a number o f tasks can 

be performed Some examples are scheduling o f classes in academic institutions, 

jobs in manufacturing plants, patients on test facilities in health institutions and 

programs to be run at a computing centre The desire to perfoim the tasks in a 

special order to achieve some objective is what makes scheduling problems 

important

In this thesis we will use the machine shop terminology, even though the actual 

situations that give rise to scheduling problems are wide and varied

Since a complete description o f a real machine shop would be too detailed to 

serve as a conceptual basis for any meaningful analysis, we will adopt a 

simplified model consisting o f a job shop and a despatch area through which jobs 

are received from outside and then passed to the job shop



Such a model can adequately reflect the aspects of real machine shops that are 

important for predicting performance

The performance of such a job shop system models is normally measured by 

either the production capacity or mean tardiness or the mean number in the 

system, m the job shop and in the despatch area 

Scheduling problems differ in

• input, the manner in which the jobs arrive at the system

• despatch policy, the policy by which the jobs are despatched to the

shop, and

• routing, the order in which the jobs go from one machine centre to the

other in the job shop



CHAPTER 1 

INTRODUCTION

1 0  A brief history of scheduling theory

Scheduling theory is concerned with the practical problem o f allocating (scarce) 

resources over time to perform a collection of tasks, with a view to minimising an 

evaluation function [B74]

This rather general definition o f the term does convey two different meanings that 

are important to understand the necessity o f scheduling in our lives 

First, scheduling is a decision-making function In this sense the process o f 

determining a schedule and much of what we learn about scheduling can apply to 

other kinds o f decision making and therefore has general practical value 

Second, scheduling is a body of theory it is a collection o f principles, models, 

techniques, and logical conclusions that provide insight into the scheduling 

function In this sense, much of what we learn about scheduling can apply to other 

theories and therefore has general conceptual value

The problem being investigated is normally cast in terms of a mathematical 

model Seminal work [K76] in developing a categorisation o f scheduling 

problems has enabled researchers in combinatorial optimisation co-ordinate their 

efforts in the design o f good algorithms A large range of problems of practical 

interest has been wholly or partly solved to date



However, as new problem classes are identified, there is a necessity to develop 

new models and solution techniques on a continual basis

The theoretical perspective is predominantly a quantitative approach, one that 

attempts to capture problem structure in concise mathematical form In particular, 

this quantitative approach begins with a translation o f decision-making goals into 

an explicit objective function and decision-making restrictions into constraints 

Ideally, the objective function should consist o f all costs in the system that 

depends on scheduling decisions In practice, however, such costs are often 

difficult to measure, or even to identify completely

The most important elements in scheduling models are resources and tasks 

Tasks compete for resources A task is described by its resource requirement, its 

duration, the time at which it may be started and the time at which it is due to be 

completed

Because many of the early developments in the field o f scheduling were 

motivated by problems arising in manufacturing, the vocabulary o f manufacturing 

is still employed when describing scheduling problems Thus resources are 

usually called “machines” and basic task modules are called “jobs” Jobs may 

consist o f several elementary tasks that are interrelated by precedence restrictions, 

such elementary tasks are referred to as “operations”

2



1 1 Importance of scheduling problems

Scheduling problems are encountered in various activities o f everyday life They 

exist whenever there is a choice o f the order in which a number o f tasks can be 

performed Some examples are scheduling o f classes in academic institutions, 

jobs in manufacturing plants, patients on test facilities in health institutions and 

programs to be run at a computer centre The desire to perform the tasks in a 

special order to achieve some objective is what makes scheduling problems 

important [S79]

Scheduling problems are also important because the scheduling field has become 

a focal point for the development, application and evaluation o f combinatorial 

procedures, simulation techniques, network methods and heuristic solution 

approaches

The selection o f an appiopnate technique depends on the complexity o f the 

problem, the nature o f the model and the choice o f the criterion, as well as other 

factors, in many cases it is appropriate to consider several alternative techniques 

For this reason, scheduling theory is perhaps as much the study of methodologies 

as it is the study of models

Because scheduling is a body of a theory (a collection o f principles, models, 

techniques, and logical conclusions) much of what we learn about scheduling can 

apply to other theories and therefore has general conceptual value

3



The thesis is made up o f seven chapters The second chapter the literature review 

is presented along with the classification of scheduling problems 

In chapter 3 the description o f our model is presented as well as previous studies 

on relative models In chapter 4 the Mixed Integer Programming (MIP) 

formulation is described, whereas in chapter 5 we describe the algorithm that we 

developed for scheduling groups o f jobs on a single machine (JGA)

In chapter 6 we describe an algorithm that is used for scheduling a set of jobs on a 

single machine, whereas in chapter 7 we evaluate the performance of both 

algorithms and we make some suggestions for further research

1 2 Outline of the thesis
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LITERATURE REVIEW ON SCHEDULING THEORY

CHAPTER 2

Review of scheduling theory

Scheduling can be described as “the allocation o f scarce resources over time to 

perform a collection o f tasks” They arise in many practical applications in 

manufacturing, marketing, service industries and within the operating systems of 

computers

Scheduling tasks are characterised by the

• Environment in which they are defined ( e g  single or multiple machine

context)

• Job characteristics (e g presence o f deadlines, release dates)

• Optimality criteria (e g Cmax, Lmax)

In this paper we present a literature review of recent advances in scheduling 

theory

2 0 Introduction

Scheduling has been described as “the allocation o f resources over time to 

perform a collection o f tasks”([B74], p2) As the definition implies, scheduling 

theory arises within the realm of Combinatorial Optimisation (CO) and is closely 

related to partitioning and packing problems



Scheduling theory is concerned primarily with mathematical models that relate to 

the scheduling function This area has been researched very heavily since 1950 

and many excellent review articles chart progress within the domain over that 

time The research direction has been driven by practical applications and 

scheduling problems are classified by the

• Environment in which they are defined ( e g  single or multiple machine

context)

• Job characteristics (e g presence of deadlines, release dates)

• Optimality criterion, which is to be minimised (e g Cmax, Lmax)

Ideally, the optimality criterion should consist o f all costs in the system that 

depends on the scheduling decisions In practice, however such costs are often 

difficult to measure, or even to identify completely According to [B74] three 

types of decision-making goals are prevalent in scheduling

• Efficient utilisation o f resources 

o Rapid response to demands

• Close conformance to prescribed deadlines

By virtue o f the classification scheme used to describe them, scheduling problems 

are easy to describe However, they include many NP-hard problems and the field 

has become a focal point for the development, application, and evaluation of 

combinatorial procedures, simulation techniques, network methods, and heuristic 

solution approaches

« ;
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2 1 Job shop models

Since a complete description o f a real machine shop would be too detailed to 

serve as a conceptual basis for any meaningful analysis, we will adopt a 

simplified model consisting o f a Job Shop and a dispatch area Jobs are received 

through dispatch area from outside and then passed to the job shop

Job
Shop

Figure 1 Job shop system

Such a model can adequately reflect the aspects o f real machine shops that are 

important for predicting performance The performances of such Job Shop system 

models is normally measured by either the production capacity or mean tardiness 

or the mean number o f jobs in the system in the Job Shop and in the despatch 

area However occasionally other system measures, which will be discussed later, 

are also used [S79]
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Problem Variables

• N The number of jobs to be scheduled

• M The number o f machines (each job is assumed to visit each machine once)

• d, Deadline for job 1 (job i must be completed by date )

• d, Due date o f job 1 (it is desirable that job 1 be completed before the date d ,)

• r, Release date for job  1 ( jo b  1 can not be started before date rt)

• p,, Setup and processing time of job 1 on machine j

Pre-emption ( pmtn ) is the ability to start or stop the processing of a job 

arbitrarily often It is a watershed in scheduling problems if it is allowed, it tends 

to make scheduling easy It is a characteristic o f computer related problems, such 

as the scheduling o f tasks within an operating system, it is rarely present in 

workshop problems

Solution-Dependent Measures

• C, Time at which job 1 is completed

• F! The length of time job 1 is in the shop (flow time)

• L, Lateness (C,-d,)

• T, Tardiness (max{0,L,}, 1 e positive lateness values)

In general we assume that all jobs are in the shop and ready for processing at time 

0, and hence flow time and completion time are the same

8



In a shop-scheduling problem we are given a set o f jobs J={Ji,J2, ,Jn} a set of 

machines M={Mi,M2, ,Mm} and a set o f operations 0 ={0 i, ,Ot} each 

operation Ok^O belongs to a specific job JjGJ and must be processed on a specific 

machine M ,eM  for a given amount o f time pk, which is a non-negative integer At 

any time, at most one operation can be processed on each machine, and at most 

one operation o f each job can be processed [K76]

According to [S79], scheduling problems differ in

• Routing - the order prescribed for jobs on the machines in the shop

• Input - the manner in which the jobs arrive at the system

• Dispatch policy - the manner m which the jobs are dispatched to the shop

2 2 Routing

A shop could be characterised by the following broad divisions

• Open Shop - jobs can be processed on the machines in any order

• Job Shop - individual jobs have a prespecified machine sequence

• Flow Shop - all jobs follow the same prespecified machine sequence

Description of a Shop

I ♦ r t
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2 3 Input

In [S79J, scheduling problems are classified as static and dynamic, depending on 

the job arrival pattern In a Static Job Shop, a certain number of jobs arrive 

simultaneously to a system that is idle and is immediately available for work No 

additional jobs will be assigned to the system until they are dispatched to the 

shop This prescheduling of jobs before dispatching may be carried out taking into 

account the storage capacity of the Job Shop, the processing times o f the 

operations , due dates and so on

This preschedule stage can be used to obtain a dispatch schedule and assign 

priorities for each job on each machine If  no conflict arises in the shop with 

respect to the priorities and dispatch schedules, the whole operation can be carried 

out according to the preschedule However if conflicts arise due, inter alia, to 

machine breakdowns, server vacations or uncertain processing times, it may 

become necessary to practise shop level scheduling (that is, priority assignments 

are made by the machine operator or shop floor supervisor)

The shop level scheduling can be classified into two categories local and global 

Local scheduling rules assign priorities to jobs at a machine based on the 

immediate status o f the jobs at that machine, global scheduling rules require 

information about the status o f some aspects o f the system beyond the local 

boundaries of that machine

10



In a Dynamic Job Shop system, jobs arrive intermittently at times that are 

predictable only in a statistical sense The jobs may belong to one or more classes

2 4 Dispatch policies

In a Pseudo-Static Job Shop, the dynamic scheduling problem is converted into 

a sequence of static problems At review times all jobs in the Job Shop and 

dispatch area are prescheduled using static rules All these jobs are treated as a 

new batch, in the same way as those in a static scheduling problem Any job 

entering the system after a review time must wait in the dispatch area until the 

next review time No shop level scheduling is permitted unless it is required to 

resolve conflicts due to prescheduling priorities

In a Pure Dynamic Job Shop, each job on arrival to the system enters the shop 

immediately and only shop level scheduling is permitted When jobs m a pure 

dynamic Job Shop are processed in the order o f their arrival to the machines, the 

system is typically treated as the classical Jackson type queuing network model 

In order to improve the performance o f the Job Shop, jobs may be scheduled at 

each machine according to some priority rules such as shortest processing time 

(SPT)

Pseudo-Dynamic Job Shop models represent systems where jobs can be held at 

the dispatch area and control exercised at the prescheduhng and shop levels, 

depending on the type of information available

11



Figure 2 Classification o f job shops and scheduling systems
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2 5 General assumptions

Following [S79], [K76] and [AS93], the following assumptions will be made

Job Based Assumptions

• The set o f jobs J is known and fixed

• Jobs arriving in the system go directly to the dispatcher and each job is 

released to the shop as soon as it enters the dispatch area

• All jobs are available at the same instant and independent

• Each job consists of specified operations, each o f which is performed by only 

one machine at a time

• Each job requires a finite process time for each operation The processing 

times o f all jobs at a machine are identically and independently distributed

• Each job can be in each one of three states

• Waiting for the next machine

• Being operated by a machine

• Having passed its last machine

• Each job is processed by all the machines assigned to it

• All jobs are equally important

• All jobs remain available during an unlimited period

13



Machine Based Assumptions

• The set o f machines M is known and fixed

• Each machine is continuously available for processing jobs and there are no 

interruptions due to breakdowns, maintenance or other such cases

• All machines remain available during an unlimited period

• Each machine in the shop operates independently o f the other machines and 

thus is capable of operating at its own maximum output rate

• Each machine can be in each one of three states

• Waiting for the next job

• Operating on a job

• Having finished its last job

• All machines are equally important

• Each machine processes all the jobs assigned to it

• Each machine processes one job at a time

Operating Policies

• Each job is considered as an indivisible entity even though it may be 

composed o f a number o f individual units

• Each operation once started must be completed without interruption 

(If preemption is allowed, this assumption will be altered )

• AJ1 processing times are fixed and sequence-independent

• The processing order per job is known and fixed

• Each job once accepted, is processed to completion, without cancellation

14



• Each machine is fully allocated to the jobs under consideration

Scheduling Policies

• SPT (Shortest Processing Time) Select a job with minimum processing 

time

• EDD (Earliest Due Date). Select a job due first

• FCFS ( First Come, First Served). Select a job that has been in the

workstation’s queue the longest

• FISFS ( First In System, First Served). Select a job that has been on the 

shop floor the longest

• S/RO (Slack per Remaining Operation). Select a job with the smallest 

ratio of slack to operations remaining to be performed

• Covert Order jobs based on ratio o f slack-based priority to processing

time

• LTWK (Least Total Work) Select a job with smallest total processing 

time

•  LWKR (Least Work Remaining) Select a job with smallest total

processing time for unfinished operations

• MOPNR (Most Operations Remaining) Select a job with the most

operations remaining in its processing sequence

• MWKR (Most Work Remaining). Select a job with the most total

processing time remaining

• RANDOM (Random) Select a job at random

15



o WINQ (Work In Next Queue) Select a job whose subsequent machine

currently has the shortest queue

• SPTT (Truncated Shortest Processing Time). In SPTT scheduling 

discipline, jobs are divided by the controller into two classes such that jobs 

with processing time less than or equal to a  belong to class land the rest 

to class 2 Here a  is the boundary point Higher priority is given to 

class 1 However within class 1 jobs are selected according to SPT and 

within class 2 according to FCFS

• {2C-NP} (Two Class Non-Preemptive Priority). In 2C-NP, jobs are 

divided by the controller into two classes as in SPTT However within 

each class jobs are selected according to FCFS

• 2L-SPT (Two Level Shortest Processing Time) In 2L-SPT, jobs are 

divided by the controller into two classes A job is randomly assigned to 

class 1 with probability f  and to class 2 with probability 1-f Class 1 jobs 

are given higher priority and within each class SPT discipline is used

16



2 6 Problem classification

In [DLR81], scheduling problems are classified using three characteristics a|P|y, 

where a  is the machine environment, (3 defines the job characteristics and y is the 

optimality criterion that is to be minimised

Machine Environment

We describe here the first field a  = ai(X2 which specifies the machine 

environment

Let o denote the empty symbol I f  a i  e  {o, P, Q, R}, each job Jj consists o f a 

single operation that can be processed on any machine M,, the processing time of 

Jj on M, being py

There are four cases to consider

• a j = o Single machine, pij = p,

© a i = P  Identical parallel machines, pu = p, ( i= 1, ,m )

• a i “  Q Uniform parallel machines, p(J = p, / qt for a given speed q, o f M,

( i = l ,  , m)

• a i = R Unrelated parallel machines

If a j = O we have an open shop, in which each Jj consists o f a set o f operations 

{Oij, , Om,} 0,j has to be processed on M, during ptJ time units However, the 

order in which the operations are executed is immaterial

17



If a i e {F, J}, an ordering is imposed on he set o f operations corresponding to 

each job If a t  = F, we have a Flow Shop and if a i  = J, we have a Job Shop If a 2 

is a positive integer, then m is a constant and equal to (X2 If (X2 = o then m is 

assumed to be variable

Job Characteristics

The second field P e  {Pi, ,p5} defines the job characteristics

• Pi e  {pmtn,o}

Pi = pmtn Preemption ( job splitting) is allowed the processing of

any operation may be interrupted and resumed at a later time 

Pi = o No preemption is allowed

• P2 e {prec,tree,o}

p2 -  prec A precedence relation -»  between the jobs is specified

Jj—>Jk requires that Jj be completed before Jk can start 

P2 = tree G is a rooted tree with outdegree at most one for each vertex

p2 = 0 No precedence relation is specified

• e {rj,o}

P3 = rj Release dates that may differ per job are specified

P3 = o All rj = 0

• p4 e  {mj<m,o}

p4 = mj<m A constant upper bound on nrij is specified (only if a i = J) 

p4= o All m, are arbitrary integers (Where {Oij5 5Omj} is a set o f



operations that each J3 is consisted of) 0,j has to be processed on 

M, during py time units

• p3 e { p 0=l ,o)

p5 -  pu = 1 Each operation has unit processing time

(if a i e  {o,P,Q}, we write Pj=l and if ai=R , pg= l will not occur)

Ps = o All p,j (pj) are arbitrary integers

Optimality Criteria

The third field y e  {fmax,Zfj) refers to the optimality criterion which is to be 

minimised The optimality criteria most commonly chosen m the literature are

•  fmax *= {Cniax, E max) ?

where fmax = maxj (f, (C ,)) with fj (C j) = CJ? L, respectively

• 2fj e {ZCJ,ZTJ,ZUJ,Z:wJCJ,ZwJTJ,ZwJUJ},

where Zf) = Zfj(Cj) with fJ(Cj) ^  Cj,Tj,Uj,WjCjOVjTj,WjUj, respectively 

(all these factors will be defined in the next section)

For example R|pmtn[ZC, Minimise total completion time on a variable number 

of unrelated parallel machines, allowing preemption The complexity o f this 

problem is unknown

19



Other objectives are minimising

• Average flow time, F = (F1+F2+ +Fn) / N (N = total number o f jobs)

• Time required to complete all jobs ( Cmax, also referred as m akespan)

• Average tardiness, T = (T1+T2+ +Tn) / N

• Maximum tardiness (Tmax)

© Number o f tardy jobs, U i+ IM  +Un, where U, is 1 if T, >0 and 0 otherwise

© Weighted sum of job completion times, W1C1+W2C2+ +wnCn

where each job has a specified weight

• Total tardiness, T]+T2+ +TN

• Sum of Cost Functions, fi(Ci)+f2(C2)+ +fN(Cw), where for each job j there is 

specified a cost function fj

2 7 Studies of dynamic 10b shop systems and related models

Most methods proposed for solving the job shop scheduling problem are o f an 

enumerative type, and use a disjunctive graph formulation proposed by [RS64] 

Nevertheless, other approaches have been tested most o f them based on an active 

schedule generation or mixed integer programming (MIP) formulation 

In this section we will expose some ideas, o f some researchers about the job shop 

scheduling problem These ideas are taken from articles m magazines that have 

been published the last four years

20



2 7 1 Disjunctive graph formulation

The model can be modelled by a disjunctive graph K=(G,D), where G=(X,U) is a 

conjunctive graph associated with the job sequences Most methods proposed for 

solving the job shop-scheduling problem are of an enumerative type, and use a 

disjunctive graph formulation proposed by [RS64] Nevertheless, other 

approaches have been tested most of them based on an active schedule generation 

or mixed integer programming (MIP) formulation

• X is the set o f vertices which represent the tasks to be performed,

including the fictitious start and finish  tasks,

• U is the set of conjunctive arcs representing the order in which the tasks

belonging to the same jobs should be performed

• D is the set o f disjunctive arcs, and more precisely the set of pairs o f

opposite directed lines (1 e arcs) which represent the possible precedence 

constraints among tasks belonging to different jobs but performed on the 

same machine

Two operations 1 and j, executed by the same machine, can not be simultaneously 

processed So we associate with them a pair o f disjunctive arcs or disjunction

[y]= {(y), 0,0)

Usually o and * denote two dummy operations associated with the beginning and 

the end o f the schedule In the following p, denotes the processing time of



operation 1 A schedule on a disjunctive graph K= (G,D) is a set o f starting times 

T= { t, 1 e  X } such that

• The conjunctive constraints are satisfied

tj-t, > p. V (y )  e  U

• The disjunctive constraints are satisfied

tr t! > p, or t,-tj> ft V (y )  e  D

To built a schedule, we have to replace each disjunctive arc [i,j] by either (i,j) or 

(j,i), and thus to choose an operating sequence for each machine

2.7 2 Mixed integer programming formulation

A large number o f MIP formulations have been proposed by a number of authors 

[F82] A new MIP formulation that has been recently used by [AC91] is presented 

here Keeping the notation defined above, the problem can be formulated as 

follows

Minimize Cmax

Subject to V i € X, t, > 0,

V 1 G X, Cmax— tj+Pi

V (l,j) G U, tj> t, +p!

V [ i ,j ] € D, tj>  t, +p, or t,> tj+P j

22



This disjunctive programming problem leads to the following MIP formulation by 

introducing a binary variable y,3 and setting the new constraints

V [i j ] e  D, t,> tj+Pj-Ky,j, tj> t,+pl-K (l-y>J)

V [y ] e  D, yu e{0 ,l} ,

where K is some large constant, and y,j=l if and only if  1 is scheduled before j, 

and 0 otherwise

2 7 3 Job grouping

Economies o f scale are fundamental to manufacturing systems With respect to 

scheduling this phenomenon manifests itself in efficiencies gained from grouping 

similai jobs together Job grouping [WB95], [AW97] are techniques that have 

been tested on the job shop scheduling problem In both cases jobs are grouped 

into families where jobs in the same family share a setup ( a job does not need a 

setup when following another job from the same family) but a known “family 

setup time” is required when a job follows a member o f some other family

23



In [WB95] an overview o f research results for scheduling groups o f jobs on a 

single machine is presented These results fell into three categories, according to 

the scheduling model

• Family scheduling with item availability

© Family scheduling with batch availability

• Batch processing

in the first model a job becomes available for delivery to the next stage as soon as 

it completes processing A simplifying assumption for family scheduling is that 

precisely f  setups in the schedule are needed, one for each family (f is the number 

of families) This assumption is called GT assumption

The authors show that the Fw problem and the Lmax problem are easy to solve 

when the GT assumption holds, otherwise, the Fw is open and the Lmax problem is 

known to be NP-hard One useful direction for further research would be to 

resolve the complexity o f the Fw problem If  it is NP-hard, then another 

researchable area would be the development o f algorithms for either problem 

Some sufficient conditions for the optimality o f the GT solution are also 

presented

Next they reviewed the major results for the family scheduling model with batch 

availability, which characterize the solution o f the F problem when there is one 

family They applied the same principles to develop a solution to the Lmax
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problem when there is one family The generalization to multiple families is a 

challenging area for future work, as is the one-family problem with the Fw 

objective

They also highlighted several results for the batch processing model which has 

received attention only recently in the scheduling literature They focused on 

models involving dynamic job arrivals, in light o f the fact that the static version of 

the batch processing problem is often trivial Two broad areas for future work 

appear fertile One involves relaxing the assumption of a single machine and the 

other area involves criteria other Fw and Lmax

2 7 4 Branch and Bound methods

Branch and bound techniques have been tested on the job shop scheduling 

problem [AW97] analyses a model o f a single machine scheduling problem with 

family setup times, arbitrary earliness and tardiness job penalty rates, and an 

unrestricted common due date is analysed to minimize total weighted earliness 

and tardiness cost These rates are assessed on a per-penod basis when the 

completion time deviates from its due date

The interesting point o f this work is that it combines the features o f family setup 

times (job grouping) with earliness / tardiness cost They have generalized 

properties from the literature [HP91] that help characterize the form o f optimal 

schedules and they have defined an efficient method for calculating a lower bound
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on the optimum The properties and lower bounding methods are incorporated 

into a branch and bound and a beam search procedure

Each node in the tree (with the exception o f the bottom-level) corresponds to a 

partial schedule When an unsequenced job is added to a partial schedule S, it is 

added to either the beginning of E or the end of T (where E and T are the ordered 

set o f jobs that complete no later than time d and after time d respectively)

The branch and bound algorithm employs a depth-first strategy A node in r̂ 1 

level o f the branch and bound tree corresponds to a partial sequence with r jobs 

For each node at level r, there are two nodes emanating for each unsequenced job 

one for the first available early position and one for the first available tardy 

position The nodes that can not be fathomed by some dominance conditions are 

listed in nondecreasing order o f lower bounds The node at the top o f the list is 

selected for branching

Beam search is a heuristic branch and bound procedure that does not necessarily 

evaluate the complete branch and bound tree Thus, the approach sacrifices a 

guarantee o f optimality for gains in speed and reduced memory requirements At 

each level only a limited number o f nodes are selected for branching, the rest are 

permanently discarded The number of nodes selected for branching is called the 

beam width
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2 7 5 Simulated Annealing

Simulated Annealing [LAL92] is one o f the most important local search 

techniques that have been tested on the job shop scheduling problem In [LAL92] 

an approximation algorithm is presented for the problem o f finding the minimum 

makespan in a job shop The algorithm is based on simulated annealing, a 

generalization of the well known iterative improvement approach to 

combinatorial optimization problems and is a more general approach based on 

the easily implementable simulated annealing algorithm [KGV83]

The innovation o f the algorithm involves the acceptance of cost-increasing 

transitions with a nonzero probability to avoid getting stuck in local minima That 

probabilistic element of the algorithm makes simulated annealing a significantly 

better approach than the classical iterative improvement method on which is 

based The neighborhood structure is based on critical path rearrangement

A transition is generated by reversing the sequencing order o f two cntical 

operations

[LAL92] establishes the asymptotic convergence in probability to a global 

minimal solution of a simulated annealing procedure using the first neighborhood 

mentioned above In comparison with other heuristic methods, simulated 

annealing yields consistently good solutions Simulated annealing has the 

disadvantage of large running times which can be compensated for by the 

simplicity o f the algorithm, by its ease of implementation, by the fact that it
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requires no deep insight into the combinatorial structure o f the problem, and, of 

course, by the high quality o f solutions it returns

2 7 6 Tabu Scarch techniques

Other local search techniques that have been tested on the job shop scheduling 

problem are Tabu Search techniques [DT93] In [FS] a new heuristic method 

based on the Tabu Search technique for solving the n-job m-machine job shop 

scheduling problem to minimize the makespan is presented

The authors start from an initial solution by sequencing randomly the jobs to the 

machines Given a sequence s, they define N(s) as being the set of all feasible 

sequences which can be obtained from s by applying a method which firstly 

constructs a priority list o f jobs, secondly selects the job on the first position of 

the priority list and then assigns this job to the machine on the first position of the 

job ’s operations sequence

After that a job on the second position is selected and assigned to the machine on 

the first position o f the job’s operations sequence, and so on Because the 

objective function is the makespan, the best neighbour is selected as the sequence 

that minimizes the makespan all over sequences in N(s) and which does not lead 

to tabu moves
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The algorithm is sometimes simplified by examining neighbours and taking the 

first one that improves the current solution If there is no move that improves the 

solution ( or if all improving solutions are tabu ) then the whole set o f neighbours 

is examined If all the generared neighbors do not improve the solution or all the 

improving neighbors are tabu, all neighbours are examined

The procedure is stopped when Nmax iterations have been performed without 

improving the current solution (where Nmax is a parameter of the algorithm and 

can be set by experimentation) It was observed that the better the initial solution, 

the better the results and also the smaller the number o f iterations Thus a an idea 

for future work may be to find better ways of generating a neighbour, testing for 

the best parameter settings, and finding a better starting solution In comparison 

with other heuristic algorithms, tabu search yields quite good solutions and is less 

time-consuming than simulated annealing

2 7 7 Truncated Branch and Bound methods

One of the most efficient approximate methods proposed so far is probably the 

Shifting Bottleneck Procedure presented in [ABZ88] Starting with the initial job 

shop scheduling problem, the authors optimally sequence one by one the 

machines, using Carlier’s (1982) [C82] algorithm for the one machine problem 

At each optimization step, heads and tails adjustments are computed The order in 

which the machines are sequenced depends on a bottleneck measure associated

29



1

with them Each time a new machine is sequenced, they attempt to improve the 

operating sequence o f all previously scheduled machines in a reoptimization step 

This procedure is embedded in a second heuristic o f an enumerative type, for 

which each node of the search tree corresponds to a subset o f sequenced 

machines
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CHAPTER 3 

MODEL DESCRIPTION

3 0 Description of our model

We consider a model that is based on single-machine scheduling models that 

incorporate benefits from job grouping

In some settings, the grouping of jobs is a desirable or necessary tactic because of 

some technological feature o f the processing capability The motivation for 

grouping sometimes relates to the existence o f changeover times, or set-up times 

on the machine

Suppose that jobs each belong to a particular family, where jobs in a family tend 

to be similar in some way, such as their required tooling or their container size 

As a result of this similarity, a job does not need a set-up when following another 

job from the same family, but a known “family set-up time” is required when a 

job follows a member o f some other family This is called family scheduling 

model

In the family scheduling model, a machine is assumed capable o f processing at 

most one job at a time We use the pair (i,j) to refer to job j o f family i We let f  

denote the number o f families, n the number o f jobs, and n, the number o f jobs 

belonging to family l
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In addition pg and w,j denotes the processing time and weight o f job (i,j) 

Thus ni + i\2 + + nf = n In addition, s, denotes the setup time required to process 

a job in family 1 following a job in some other family In principle any family 

scheduling model can be viewed as a single-machine model with sequence 

dependent setup times If  a job follows a member o f the same family, then its 

setup time is zero otherwise its setup time is sb the family setup time

We know that sequence-dependent set-up times tend to make solutions difficult to 

find However, by exploiting the special structure o f family scheduling, we can 

sometimes avoid the enumerative techniques that would ordinarily be required 

A simplifying assumption for family scheduling is the requirement o f precisely f  

set-ups in the schedule, one for each family Such a requirement may reflect the 

fact that the set-ups are much longer than the job processing times, or it may 

result from a desire to minimize the time spent on set-up in situations where 

capacity is scarce It may also be imposed simply to make the problem more 

tractable We refer to this assumption as the G T assumption 

Each family is treated as a single entity, or composite job with processing time

n n
P, = Z  P>J and wel8ht W, = Z  y

7=1 J = 1

We consider the problem o f assigning due-dates and sequencing a given set of 

jobs on a single machine There will be penalties for completing jobs either ahead 

or behind their scheduled dates The objective is to minimize a function o f missed 

due dates
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We are concerned with the optimal sequencing of a set of jobs to minimise a 

penalty of deviation from the desired due-dates It is coupled with the optimal 

assignment of due-dates to the set o f jobs to be processed by a single machine 

Given a set of families of jobs with deterministic processing times and the same 

ready times, the problem is to find the optimal common flow allowance k* and the 

optimal job sequence o* to minimize a penalty function of missed due dates 

It is assumed that penalty will not occur if the deviation o f job completion from 

the due-date is sufficienlty small

Scheduling against due-dates has been a popular research topic in the scheduling 

literature for many years [BS90], [BGG88], [B87], [HP89] It attracts the 

attention o f both Operational Research researchers and practitioners for two 

reasons The combinatorial nature o f the due-date scheduling problem poses a 

great theoretical challenge to researchers who are trying to develop time-efficient 

algorithms to solve the problem in an elegant manner

The results of due-date scheduling research have significant practical value in the 

real world It is evident that the failure o f completing a job on its promised 

delivery date gives rise to various penalty costs Completing a job early means 

having to bear the costs o f holding unnecessary inventories while finishing a job 

late results in contractual penalty and loss o f customer goodwill
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3 1 Previous studies on related models

The study of earhness and tardiness penalties in scheduling models is a relatively 

recent area o f inquiry For many years, scheduling research focused on single 

performance measures, referred to as regular measures that are nondecreasing in 

job completion times

Most of the literature deals with such regular measures as mean flowtime, mean 

lateness, percentage o f jobs tardy, and mean tardiness

The mean tardiness criterion, m particular, has been a standard way o f measuring 

conformance to due dates, although it ignores the consequences o f jobs 

completing early

However, this emphasis has changed with the current interest in Just-In Time 

(JIT) production, which espouses the notion that earhness, as well as tardiness, 

should be discouraged [BS90]

In a JIT scheduling environment, jobs that complete early must be held in finished 

goods inventory until their due date, while jobs that complete after their due dates 

may cause a customer to shut down operations Therefore, an ideal schedule is 

one in which all jobs finish exactly on their assigned due dates This can be 

translated to a scheduling objective in several ways

JIT encompasses a much broader set o f principles than just those relating to due 

dates, but scheduling models with both earhness and tardiness penalties do much 

to capture the scheduling dimension of a JIT approach
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The concept o f penalising both earhness and tardiness has spawned a new and 

rapidly developing line o f research in scheduling theory Because the use o f both 

earhness and tardiness penalties gives rise to a nonregular performance measure, 

it has led to new methodological issues in the design of solution procedures

3 11 The E/T model

Virtually all the literature on E/T (earhness and tardiness) problems deals with 

static scheduling In other words, the set o f jobs to be scheduled is known in 

advance and is available to all schedulers in a multiple machine environment The 

vast majority o f the articles [GK87], [BS90], [C88], [C87], [HP89], [HP91] on 

E/T problems only deals with single machine models although some single 

machine results have been extended to parallel machines Let Ej and Tj represent 

the earhness and tardiness, respectively o f job j

Associated with each job is a unit earhness penalty aj > 0 and a unit tardiness 

penalty 3j > 0 Job j is also described by a processing time Pj and a due date dj 

The basic E/T objective function for a schedule S can be written as f(S) where

f(S ) = £ ( a JE j + P JTJ)
1

In some formulations o f E/T problems the due dates are given while in others they 

are derived from the optimality function In the simplest models, all jobs have a 

common due date Prescribing a common due date might represent a situation
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where several items constitute a single customer’s order, or it might reflect an 

assembly environment in which the components should all be ready at the same 

time to avoid staging delays

A more general model allows distinct due dates, but in these cases due dates 

appear to be intrinsically different from solutions to problems with a common due 

date

Treating due dates as decision variables reflects the practice in some shops of 

setting due dates internally, as targets to guide the progress of shop floor 

activities

3,1 2 Minimizing total deviation from a common due date

An important special case in the family o f E/T problems involves minimising the 

sum of absolute deviations o f the job completion times from a common due date 

[K81a], [SH84], [H86], [BCS87] In particular, the objective function can be

written as

n n

with the understanding that dj=d

/
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When we write the objective function in this form, it is clear that earhness and 

tardiness are both penalized at the same rate for all jobs In these cases it is 

desirable to construct the schedule so that the due date is, in some sense, in the 

middle o f the jobs If d is too small, then it will not be possible to fit enough jobs 

in front o f d, because o f the restriction that no job can start before time zero Thus 

for a given job set we might discover that d is too small, this gives rise to the 

restricted version of the problem

It can be shown that there exists an optimal solution to the unrestricted problem 

with the following properties [BS90]

I There is no inserted idle time in the schedule

(If job j immediately follows job i in the schedule the Cj=C,+pj)

II The optimal schedule is V-shaped (Jobs for which C,<d are sequenced in 

nonincreasing order o f processing time, jobs for which C,>d are 

sequenced in nondecreasing order o f processing tim e)

III One job completes precisely at the due date (Cj=d for some j )

IV In an optimal schedule, the bth job in sequence completes at time d, where 

b is the smallest integer greater than or equal to n/2 In other words,

b = n/2 if n is even, and b = (n+ l)/2 if n is odd
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The basic analysis o f the unrestricted version has been extended to models 

involving m parallel machines The multimachme procedure assigns the m longest 

jobs to different machines Thereafter, the jobs are treated in nonincreasing order 

o f processing times and assigned 2m at a time among the machines After all the 

jobs are assigned an algorithm is used to sequence the job on each machine

In addition the four key properties apply to the optimal solution of the 

multimachme model in the form [SA84], [H86]

I On each machine, there is no inserted idle time

II On each machine, the optimal schedule is V-shaped

III On each machine, one job completes at time d

IV The number o f jobs assigned to each o f the m machines is either [n/m] or 

[n/m]+l (where [x] denotes the integer portion of x) Let this number be 

denoted q Then, on each machine, the bth job m sequence completes at 

time d, where b is the smallest integer greater than or equal to q/2

3 1 3  Parallel machine models
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3 14  Different earlmess and tardiness penalties

A generalization of the basic model derives from the notion that earlmess and 

tardiness should be penalized at different rates As noted earlier, a  may represent 

a holding cost while p represents a tardiness penalty These are likely to be 

different, especially because a  tends to be endogenous, while P tends to be 

exogenous In particular, let

f(S)=£(a/;,+/?7;)
j=i

Again there are restricted as well as unrestricted versions o f the problem In the 

unrestricted version an optimal solution has these properties [BCS87]

I There is no inserted idle time

II The optimal schedule is V-shaped

III One job completes at time d

IV In an optimal schedule the bth job in sequence completes at time d, where

is the smallest integer greater than or equal to np/(a+p)
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One way to extend the E/T criterion is to include other performance criteria in 

which penalties might be incorporated Two such criteria, namely due-date 

penalty and flowtime penalty, are introduced by Panwalkar, Smith and Seidmann 

[PSS82] Their model takes the common due date as a decision variable, but their 

formulation also provides a disincentive for setting a late due date 

This structure makes practical sense For example, a firm might offer a due date to 

its customer during sales negotiations, but have to offer a price reduction if the 

due date is set too late

Suppose that there is a given parameter do that represents a maximally acceptable 

due date Consider the following objective function

f(S ) = f \ a E 1 + p r } + Y { d - d <ir ]
J=l

Here, a penalty y is assessed (for each job) on the difference between the due date 

selected and do, when d is later This penalty provides a disincentive for setting 

due dates later than the maximally acceptable value Panwalkar, Smith and 

Seidmann [PSS82] indicate that this problem cannot be solved except by 

enumerative techniques An exception in the special case do=0

3 15  Additional penalties
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In addition properties I, II, and 111 (p39), hold for this problem 

Property IV generalizes as follows

IV In an optimal schedule the bth job in sequence completes at time d, where 

b is the smallest integer greater than or equal to n(p-y)/(a+p)

For a different extension of the E/T model, with d as a decision variable, consider 

the following objective function

Here a penalty is assessed on the completion time (equivalently, the flow time) of 

job j, thus providing an incentive to turn around orders rapidly 

The model contains an additional trade off because the flowtime penalty tends to 

induce shortest first sequencing whereas the earliness cost induces the reverse 

sequencing, at the start o f the schedule

3 1 6  Nonlinear penalties

In some cases, large deviations from the due date are highly undesirable, and it 

might be more appropriate to use squared deviations form the common due date 

as the performance measure Thus, consider the objective function
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This is the quadratic analogue of total absolute deviation Bagchi, Sullivan and 

Chang [BSC86] show that the unrestricted version o f this problem is equivalent to 

the completion variance problem studied by Eilon and Chowdhury [EC77], Kanet 

[K81b] and Vam and Raghavachan [VR87]

Eilon and Chowdhury [EC77] propose the first heuristic algorithm for solving the 

quadratic problem, using adjacent pairwise interchanges o f jobs to improve the 

solution

Kanet [K81b] shows that the problem is equivalent to minimizing the sum of 

squared differences in job completion times He adapts an algorithm for the 

absolute deviation problem as a heuristic for the quadratic objective and 

improves on the Eilon-Chowdhury [EC77] results

Vam and Raghavachan [VR87] investigate the use o f all pairwise interchanges, 

and they obtain improved solutions over the other heuristics at the cost o f 

increased computational time

Bagchi, Chang and Sullivan [BCS87] also examine the general case in which 

earliness and tardiness penalties differ

fi(s ) =  ¿ ( a  £,2 + / ? / / )
J =  1
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They develop dominance properties and incorporate them into a search procedure 

to solve the problem, however their approach remains essentially an enumerative 

one

3 17  Job dependent eariiness and tardiness penalties

An obvious direction for generalization is to permit each job to have its own 

penalties ctj and J3j Specifically the objective function takes the form

f(S )=i(aJEJ+fiJTJ)
J =1

When ccj = PJ? the tardiness penalty matches the earlmcss penalty for any 

particular job, but the penalties may differ among jobs The unrestricted version 

of this problem has been examined by Bagchi [B85], Cheng [C87], Quaddus 

[Q87], Bector, Gupta and Gupta [BGG88],and Hall and Posner [HP89]

Bagchi [B85] considers the case in which aj = a pj He proves some dominance 

properties that might accelerate a solution procedure Bector, Gupta and Gupta 

[BGG88] present a linear programming perspective on these same results Hall 

and Posner [HP89] prove some dominance properties that provide necessary 

conditions for an optimal sequence Their most significant result is a proof that 

the unrestricted version of he problem is NP-complete

They proceed to develop a dynamic programming algorithm, which they show to 

be pseudopolynomial
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Furthermore, they demonstrate the computational effectiveness o f their algorithm 

by attacking problems that contain hundreds o f jobs and by obtaining optimal 

solutions with modest run times

Quaddus [Q88] considers the general case in which a} *  Pj and also includes a due 

date penalty Yj but deals only with the selection o f a due date

However it is easy to show that Property I (p39) holds, and Property II (p39) takes 

the form

II The optimal schedule is V-shaped jobs in B are sequenced in

non-increasing order of the ratio Pj / otj and jobs in A are sequenced in 

non-decreasing order o f the ratio p, / Pj

In addition Property III (p39) holds and the general form of Property IV specifies 

a necessary condition for b as

IV In an optimal schedule the bth job in sequence completes at time d, where

b is the smallest integer satisfying the inequality

£<a,+/>,)*£</>r r )
7=1 7=1

where the subscript j denotes thejth job in sequence

3 1 8  Due date tolerances

A more general representation allows the penalty to be zero if the completion time 

is close enough to the due date, where close enough is specified by a given



tolerance For job j to avoid penalties, its completion time must fall in the interval 

from d-u, to d+Vj This interval could be interpreted as the length o f a time bucket 

in an MRP system Cheng [C88] analyzes a special case in which the criterion is 

total absolute deviation and all u, and v, are identical He imposes an unusual 

assumption

Although the model prescribes no penalty on a job that completes within its 

tolerance interval around the due date, other jobs have earhness and tardiness 

calculated from the due date rather than from the end o f the tolerance interval 

This gives rise to the discontinuous penalty function shown below

  Completion time

d-u d d+v

Figure 3 Discontinuous penalty function 

Consider the more conventional, and consistent assumption that, for job j, 

earliness or tardiness is measured only from the end o f the tolerance interval

E, =  (d-Cj-Uj)+

T , =  (C j-d -v j)

and f(S ) = ' £ ( a J E J +f iJ TJ)
j =i
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This gives rise to the continuous penalty function shown below

Penalty

Figure 4 Continuous penalty function 

The tolerance is also assumed to be relatively small compared to the processing 

times in the job set Formally, the requirement is that at most one job can avoid 

penalty costs or

Pj -  Vj -  Uj > 0 for all pairs o f jobs (i,j)

Notice that the models previously discussed can be viewed as the special case in 

which Uj = V, = 0

In the tolerance model, Properties I and II (p39) continue to hold The 

generalization o f Property III states that there will be one job that incurs no 

penalty in the optimal solution, we shall treat this as job b The generalization of 

Property IV provides a necessary condition for b in an optimal sequence
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Property III (generalized)

In an optimal schedule some job j completes either at d-Uj or at d+Vj 

Property IV (generalized)

In an optimal schedule let b denote the number o f jobs that incur no tardiness 

penalty Then the completion time of job j satisfies the conditions

Cb = d-ub if £>- <Z# and
i<b t>b i<b i>b

Cb = d+Ub if Z a. <ZA and Z«. -Z #
i<b i >b i^ b  i>b

Thus, for the tolerance model

• Properties I and II (p39) apply

• In the unrestricted version o f the problem Properties lll(generalized) and

IV (generalized) apply

• Determining whether a given problem is restricted requires solving the

unrestricted version, with the due date as a decision

• Constructing the optimal solution requires a matching o f coefficients and

processing times when otj = a  and Pj = P and the problem is unrestricted

Otherwise the solution requires an enumeration o f V-shaped sequences, aided to 

Property IV(generalized) which identifies those V-shaped sequences that are 

candidates for optimality
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3 19  The minima* criterion

One other tolerance model that consists o f minimizing the maximum penalty, 

where penalties are assessed on eai liness or tardiness has been studied In other 

words the objective function is [S77]

f(S) = mirij {max[a(Ej),P(Tj)]}

where a(X ) and p(X) are convex functions o f earliness and tardiness, and distinct 

due dates are permitted

3 110 Distinct due dates

The general E/T model has different due dates in the job set This feature tends to 

make it more difficult to determine a minimum cost schedule than in the problems 

discussed so far However, if the due dates are treated as decision variables, the 

problem turns out to be relatively simple The objective function has the form

f(S )=fj\zEJ+pi]+y{d-d<)y\
J =  1

In this model, Properties I and II (p39) do not hold, the optimal sequence may not 

be V-shaped, and inserted idle time may be desirable The search for an optimal 

schedule can, however, be decomposed into two subproblems finding a good job 

sequence and scheduling inserted idle time
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3 111 Job deadlines

A related model introduces deadlines rather than due dates [B87] Whereas due 

dates may be violated at the cost of tardiness, deadlines must be met and cannot

be violated Thus for example, if the makespan exceeds the maximum allowable

deadline, then the problem is considered infeasible However we can also view 

such models as E/T models with infinite Pj, and thus special cases o f the problem 

considered above A more general objective is to minimize total weighted 

earl in ess

The objective function can be stated formally as

Mm f  (D,o) = 2 > A C , + I X ( « A  + / * / . , )
J  J  J

where

n, = number o f jobs in customer order j

03 = lead-time penalty per unit time for each job in customer order j 

C, = completion time of the last job in customer order j 

T,j = tardiness o f job i in customer order j 

E,j = earhness o f job 1 in customer order j 

ctj = unit earliness penalty for customer order j 

P, = unit tardiness penalty for customer order j 

and D is the vector o f the due dates for the customer orders
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CHAPTER 4

A MIXED INTEGER PROGRAMMING FORMULATION OF 

SCHEDULING PROBLEMS

4 0 Sciconic

In this section we are going to present the M1P (Mixed Integer Programming) 

formulation of our problem along with the results that we obtained for a specific 

instance of our model, using SCICONIC an algorithmically advanced 

Mathematical Programming package developed by SCICON Its purpose is to 

provide both technical and non-technical users with a convenient and cost- 

effective way to solve linear, integer and non-linear programming problems 

Mathematical programming (MP) is a rapidly advancing field, and SCICONIC 

has been designed around advanced algorithms and techniques Further 

developments are continually being made, especially in robustness and the speed 

of solution for large linear and mixed integer problems

Mathematical programming (MP) has a wide variety o f applications in the 

petroleum, chemical and manufacturing industries, transport agriculture and many 

more It can be used for a variety o f purposes, from providing an optimum 

solution to an established problem to providing a frame work for collecting and 

evaluating all o f the relevant data and their consequences Completely new 

models can be built in order to gain greater understanding of a hypothetical
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situation, while established models can be run routinely many times a day to 

guide the operation o f a manufacturing process

In general terms, Mathematical Programming is concerned with the best way to 

allocate scarce resources to alternative activities [W78] lists applications under 

the following headings

• The Petroleum Industry

• The Chemical Industry

• Manufacturing

• Transport

• Finance

• Agriculture

• Health

• Mining

• Manpower Planning

• Food

• Energy

• Pulp and Paper

o Advertising

• Defence

• Other applications

It is important to realise why mathematical programming applications have been 

successful Firstly they give true optimum solutions to a well-defined problem 

Secondly, the concepts o f Mathematical programming -  the quantification o f the 

objectives and the set o f all possible ways of achieving these objectives -  provide

1
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a framework for thinking about all the relevant data, an occasion for collecting 

them and the ability to compute the consequences o f these data Often the only 

way to achieve a realistic set of data is to show the people who collected them the 

consequences o f their initial estimates of the data values

It is useful to distinguish between established and new mathematical 

programming models An established model is run from time to time with updated 

input data as part o f some operational decision -  making routine The purpose is 

then to suggest a specific course o f action to management, and the suggestion will 

usually be accepted A new model may also be used in this way, but is more often 

used to gain greater understanding of the situation The model may be run under a 

variety of assumptions that lead to different conclusions, and the model itself will 

not suggest which set o f assumptions is most appropriate

During the model development and data gathering phase, one must therefore be 

piepared to make many optimisation calculations which the analyst will show to 

management and say “This is what the model now recommends Does it look 

sensible, and i f  not why not Neither the analyst nor the manager should accept 

the recommendations unless they can be explained qualitatively as the natural 

consequences o f physical and economic assumptions This can be paraphrased by 

saying that one should only trust the model if the results are obvious This may 

suggest that the model is o f no real use but this is not so, because many things are
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obvious once someone has pointed them out, when they were not at all obvious 

beforehand

One difficulty with large-scale mathematical programming models is that the 

details o f the formulation can become obscure, and changes are then hazardous 

So we need a systematic approach to documentation It is natural to base this on 

compactness o f an algebraic formulation

Two important points that have to be mentioned are the following

1 Practical linear programming formulations can all too easily require 

hundreds o f constraints and thousands o f variables, while

2 The algebraic formulation is precise and often compact

Mathematically, MP is about finding the maximum or minimum value o f a 

function of several variables given that the variables have to satisfy a number o f 

constraints, which are limits on the values o f functions o f the variables

The stages involved running mathematical programming models are

• Express the problem as an MP matrix

• Find the optimum solution

• Interpret the solution
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An MP code such as SCICONIC will do the second stage It takes the matrix in 

standard (MPS) format ( the MPS code and the output that we get using 

SCICONIC can be found in Appendix C), finds the optimal solution and writes it 

out to a solution file

SCICONIC expects a problem to be presented in the form of an industry- standard 

MPS format matrix file Creating an MPS matrix by hand in an editor is a slow 

and error prone task, even for very small problems

4 1 Mixed Integer Programming (MIP) formulation

A large number o f MIP formulations have been proposed by a number o f authors 

[F82] A new MIP formulation that has been recently used by [AC91] is presented 

here Keeping the notation defined above, the problem can be formulated as 

follows

Minimize Cmax

Subject to V i € X, tt > 0,

V i e X, Cmax— ti+Pi

V (y )  e U, tj> t, +p,

V [i j ]  € D, tj> t, +p, or t,> tj+p,

This disjunctive programming problem leads to the following MIP formulation by 

introducing a binary variable y,j and setting the new constraints
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V [i,j] g D, t,> tj+pj-Kyu, tj> t,+prK(l-y„)

V[y]eD, y,j e{0,l}, 

where K is some large constant, and y ^ l  if  and only if  1 is scheduled before j, 

and 0 otherwise

4 2 An example of the (M IP) formulation

Three jobs A,B and C are to be processed on a single machine 

Job A is processed on the machine for Pa hours, job B is processed on the 

machine for pa hours and finally job C is processed on the machine for pc hours 

The machine can work only one job at a time and no preemption is allowed We 

also assume that we have two job families (f=2) which are defined as 

follows family 1 ft={A,C} family2 fi={B}

While s , , i=l,2 denotes the setup time required in order to process a job in family 

i, following a job in some other family No setup is required between jobs from 

the same family

All jobs require the same due-date that is denoted d that means that is desirable to 

finish jobs in no more than d hours
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Formulation

Let XA denote the time (measured from zero datum) when the processing o f job A

is started on the machine Similarly XB and Xc arc defined

The first set o f pertinent constraints is the non-interference constraints, which

guarantee that machine work on no more than one job at a time

For instance the machine can work on either job A or B, or C at any given time

This is equivalent to the statement that either job A precedes job B on the

machine or vice versa

Thus we have an “either-or” type constraint for non-interference on the machine 

given by

X a+Pa+ S2< X b

or

X b+Pb+sî  X a

With the help of a binary integer variable, the “either-or” constraint can be 

reduced to the following two constraints

XA+p a+S2-Xb< M5 i ( 1 )

Xb+pit+Sì-XaSMO-Si) (2) 

where 0< 5i< 1, 8i is integer, and M is a large positive number Note that when 

8i= l, the first constraint becomes X a+ P a^ -X b ^  M and is inactive, while the 

second constraint reduces to Xb+Pb+si-Xa< 0 implying job B precedes job A on 

the machine On the other hand, when 5i=0, the first constraint becomes
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X a+Pa+ s2-X b< 0 implying that job A precedes job B, while the second constraint 

becomes Xb+Pb+Si-Xa^ M and is inactive

Thus with the help of the binary integer variable both possibilities are 

simultaneously included m the problem

Because the single machine can process any o f the three jobs A,B and C at any 

time we obtain

X a+ P a ^  X c

or

Xc+pc^ X a

(the factor s, is missing because jobs A and C belong to the same family fi)

With the help o f the binary integer variable 62 we obtain

X a+Pa-X c< M 8 2 (3)

Xc+pc-XA< M (l-5 2) (4)

or

X b+Pb+S}< X c

Xc+pc+S2^ XB



With the help of the binary integer variable 83 we obtain

X b + P b + s i- X c <  M 83 ( 5 )

X c + P c + s2-X b <  M (  1 - 83) ( 6)

Where 0< 81 <\, 0< 82 <1, 0< 81 <1, 81, 82 and 83 are integers 

Because of using due-date tolerances which means that we allow the penalty to be 

zero if the completion time o f job j falls in the interval (d-u, 7 d+v,) the due-date 

constraints for jobs A, B and C become

d-uA< X Ai-pA<d+vA (7) 

d-UB^ X b+Pb ^  d+VB (B)

d-uc< Xc+pc ^  d+vc (9)

Constraints (7), (8), (9) mean that jobs A, B and C are allowed to be completed in 

the intervals

(d-u ,, d+Vj), where i=A, B, C respectively

We know in general that for job j earliness is defined as E^m ax^d-Cj-U j} 

(where C, is the completion time of job j)

Equivalently in our problem for job A we obtain EA:=max{0,d-(XA+pA)-tiA}
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This function is equivalent to the following constraints

Ea>0 (10)

EA>d-XA-pA-uA (11)

Similarly for jobs B and C we obtain

Eb>0 ( 12)

Ed^<1-Xb-Pb-ub (13)

Ec>0 (14)

Ec>d-Xc-pc-uc (15)

In general for job j tardiness is defined as Tj=max{0, C,-d-y,} 

Equivalently for job A we obtain TA=max{0,(XA+pA)-d-vA} 

This function is equivalent to the following constraints

TA>0 (16)

TA>XA+pA-d-vA (17)

Similarly for jobs B and C we obtain,

Tb>0 (18)

Tu>XB+pB-d-vB (19)
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Tc>Xc+pc-d-uc (21)

Tc>0 (20)

1  he objective is to find S* satisfying

F(S*)=min s E n {F(S)}

where

F( S)  = f j [aJEJ(S) + f i]r j (S)]
/=1

and n  denotes the set o f all feasible schedules 

4 3 Conclusions

In this chapter we present the MIP (Mixed Integer Programming) formulation of 

our model along with an example o f the MIP formulation, considering three jobs 

that belong to two families

In Appendix C we present the results that we obtained using SCICONIC, for a 

specific case instance considering a set o f four independent jobs with processing 

times ti =1, t2 = 3, t3 = 6, and U = 10 for jobs 1,2,3,4 respectively (the same 

example as in paragraph 5 1 3)

We can notice in Appendix C that the solution that we get from SCICONIC is 

equal to the optimal solution that we can get using full enumeration 

SCICONIC might have been used to provide tight bounds on the quality o f 

heuristic solutions that will be presented
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Unfortunately because SCICON1C expects a problem to be presented in the form 

of an industry standard MPS format matrix file Creating an MPS matrix by hand 

in an editor is a slow and error prone task, even for very small problems and 

therefore we could not use SCICONIC in order to provide tight bounds on the 

quality o f the solutions that will be presented
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AN ALGORITHM FOR SCHEDULING GROUPS OF JOBS ON A

SINGLE MACHINE

5.0 Introduction

In this chapter we develop an algorithm (JGA) for scheduling groups of jobs on 

single machine in order to minimise an objective function 

We also illustrate the operation o f the algorithm using a specific example 

Three Lemmas are presented to illustrate the use o f the results to determine the 

optimal solution to the due-date determination and sequencing problem

5 1 Scheduling independent lobs on a single machine

Although we are concerned with the optimal sequencing of a set o f group of jobs, 

to minimise a penalty o f deviation from the desired due-dates, (a problem which 

is coupled with the optimal assignment o f due-dates to the set o f jobs to be 

processed by a single machine), in this section we consider the case where the 

jobs are independent (they do not belong to any family) [C88]

Let N be the set o f n independent jobs to be processed on a single machine 

Each job requires t, time units o f processing on the machine, V ì e N

The common due-date assignment method is employed to assign due-dates to 

jobs

CHAPTER 5
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Thus, each job 1 is assigned a due-date d, = r, + k where r, is the ready time of job 

1 and k is a common flow allowance, V i e N

While it is true that that there will be penalties for failing to complete a job on its 

due-date, in practice such a penalty will not occur if the deviation of job 

completion time form the due-date is sufficiently small

Thus the jobs are given a completion time deviation allowance a  such that there 

will be no penalties if the completion time o f job 1 is within the time interval 

(d, -a  , d, +a), V 1 e N

The basic assumptions about the problem model are as follows

• The job processing times U V 1 e  N are known and deterministic

• The jobs are available for processing at the same time, 1 e r, =0 V 1 e  N

• There is a single machine available, which can only process the jobs one at 

a time

• Job splitting and preemption are not allowed

• The completion time deviation allowance a  is sufficiently small and 

satisfies the condition 2 a  < min {U } V i e  N
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W e define

EhJ= m a x ^ C , . , ^ }

Tn -  max jO ,k - C M }

Let n  be the set of all possible job sequences and a  be an arbitrary sequence 

Let the subscript [1] denote the job in position 1 o f a

Let t, denote the processing time of job i and t[,j denote the processing time o f job 

in l-th position of a sequence a

Let E[,j, T[,j and C[,j be the earhness, tardiness and completion time of the ith job 

in o  respectively, then the objective is to minimise a penalty function of missing 

due-dates expressed as

n

f { k , a ) =  X  {£„, U{E[lX -  a) +  rit] U(T[t] -  a)} (1)i=l

Here U(x-c) is the unit step function defined as
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In this section we present two lemmas [C88] which are used to help determine the 

optimal value o f the common flow allowance k*

Lemma L  For a given job sequence a  the optimal due-date must equal one o f the 

job completion time minus the completion time deviation allowance a  

l e k* = Cj,] -a , 3 [i] e N

Proof of Lemma 1

Let k be an arbitrary chosen common due-date 0 e C[i i] c  k < C[!j, i - l , 2, ,n-l)

which does not have the property as stated in Lemma 1 Then in the form of a 

Gantt-chart, k will be like the following

5 1 1 The optimal due-datc

C[i-1] k C[i]

a y a

[1-1] to f'+l]

FigureS Gantt Chart for Lemma 1
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Now shifting k to the right side so that it equals Cj.j-a causes the following 

change in penalty

APr = (1-1 )(t|,j-y-a)-(n-i+ l)(t[,j-y-a) = (2 i-n-2)(tliry-a) (2)

Similarly, shifting k to the left side so that it equals ij- a  gives rise to the 

following change in penalty

APi = (n-i+l)(y+a) -  (i-l)(y+a)= (n-2i+2)(y+a) (3)

It is evident from (2) and (3) that

APr < 0 if  / < ^  +1

APL < 0  i f  l>~>r  1

Thus for any given k, we can perform an appropriate left or right shift depending

on the value of k so that a reduced or equal penalty value can be achieved

It follows that the optimal due-date must satisfy the condition that k*= C^j -a , 3 

[i]eN

Lemma 2 For a given job sequence a , the optimal due-date is k* = C[rj - a

where r is such that

J(/7 +1) / 2 i f  n is odd  

{w / 2 + 1  i f  n is even
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From Lemma 1 we know that the optimal due-date is k* = C[r] - a , 3 [r] e N Let 

k^ = C[r+11 - a  and k = C[r-i] - a  Since k* is optimal the following conditions 

must be satisfied

f ( k * , a ) - f ( k \ a ) < 0  (4)

Proof of Lemma 2

and

(5)

Clearly

/(A * ,a )  = £ ( C lrl - a - C l„ )+  £ ( C tll - C ,rl + a )  (6)
t=1 i=r+l

/ ( *  V )  = Z ( C ,r+1) -  « -  C,II) + ^ ( C I1] - C ,r+1] + a )  (7)
j=1 i~r4-2

Substituting (6) and (7) into (4), we obtain

(r-1) tjr+jj + (tjrfi] - a )  -  (tfrfi]+a) -  [(n-r-l)t[r+i]] > 0

or

r> n / 2+ a / t [ rni (8)

Also

r-1

/ ( * '  ,<r) = £ (C|r-n - « - c (.i) + Z < c m - +  « )  (9)
1=1
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Similarly, substituting (6) and (9) into (5), we obtain

-(r-2)tlrJ-(t|r]+a)+(t[rra)+(n-r)tlr] > 0

or

r < n/2  +1 + a/t[rj ( 10)

Since it has been assumed that 2 a  < min {t,} V i g N  and r must be non-negative 

integer, it is clear from (8) and ( 10) that

f(« + 1) /2  i f  n is odd 

l / j /2  + 1 i f  m s  even

and the proof is complete

It is interesting to note from Lemma 2 that for a set o f jobs, the optimal due-date 

is an explicit function o f the size o f the job-set n and can be uniquely determined 

' for a given job sequence

5 1 2  The optimal sequence

Once the optimal due-date value k* is determined, we can use the following 

lemma [C88] to find the optimal job sequence a*

Lemma 3 For a given optimal due-date k* = C [rj - a  as determined from 

Lemma 2, there exists an optimal job sequence that has the property 

tül — tin * 1 j) — t[, i-i ]? J = 1,2, ,r-l
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Let Gi be an optimal job sequence that does not have the property described 

above

There must exist a pair o f jobs p and q in position m and n-m +l5 m< r-1, 

respectively that tp < tq Now we construct a new sequence 0 2  m which p and q are 

interchanged in position while all other jobs are in the same position as in a i It 

follows from Lemma 2 that

r
K - C[*-i 1+ + Z h’) ~a 0 !)

i=m+]

2̂ = ̂ \m -1] + ̂  + ̂ *[i] ~ a  0^)
i=m+l

Observe that k / -  k2*= tq- tp> 0 (13)

/ ( * > , ) = ! > ; -c„,)+ + < „ )

Proof of Lemma 3

»=1 i=r+\ i-I
r-1 f t 1

+ I  *, ( C \ m - \ \ + l p +  Z /[J])[ +  Z ] ( <-'["'-lJ+ , p + Z W
j=mht j=m+1 J i=r+ll j=m+l

n

f ( k 2 , a 2 ) - ^ ( k 2 Ct,j)+ ¿(Cj,] ^2) “ ¿(^2 [̂1]) 2̂
1=1

r-1
i=r+l i=l

n-m I
+ Z  T 2 (^[m-l] +  +  /<7 +  ^

i=m+l  ̂ j-m+1 J i=r+l j - m + l

+ Zcc[(] -*;) ( 15)
i= n -m + l
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Subtracting (15) from (14) and simplifying using (13) we obtain

f i K  ,<rt) -  f{k*2 =

Thus the interchange of p and q reduces the penalty value Therefore any

sequence that does not have the property > t^+i j] ^  ty+i], J “  1,2, ,r-l can be 

improved by such an interchange of pairs o f p and q It follows that the sequence 

having the property itself must be optimal

5 13 Numerical example for a set of independent lobs

A set o f four mdpendent jobs is given with ti= l, t2= 3, t3“  6, and t4= 10 The 

completion time deviation allowance is a=0 45 

According to Lemma 2 we know that

thus r=3, so k* = Cp] - a  and the optimal sequence a* can be constructed using

the Lemma 3 as follows

We know that tu > t [n+i jj > V u , j = 1,2, ,r-l

in our case r=3 therefore we have that t^j > t^+i-j] > %+\], J = 1,2

Thus

t( i ] > t I4] > t[2j (for j = 1) (a) and t[2] > tpj > t [3] (for j=2) (b)

Combining (a) and (b) we get the following formula tjij > t[4j > tpj ^  tpj 

That means that the job with the biggest processing time is going to be processed

(// + 1)/2 i f  n is odd 
n i l  -v 1 i f  n is even
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first Afterwards the job with the second biggest processing time is going to be 

processed in the fourth place, then the job with the third processing time is going 

to be processed in the second place and finally the job with the smallest 

processing time is going to be processed last

Therefore the order in which the jobs are going to be processed is the following 

4-2-1 -3, k* -  Cpj-a = 13 55 and the minimum penalty value is 10 55 

For this problem there are 4 ,=24 possible different sequences and the details of 

each individual sequence is shown in table 1

Tablel Complete enumeration of the set job

a R k*=C|ri-a
1-2-3-4 3 9.55 24.55
1-2-4-3 3 13.55 28.55
1-3-2-4 3 9.55 21.55
1-3-4-2 3 16.55 28.55
1-4-2-3 3 13.55 21.55
1-4-3-2 3. 9.55 24.55
2-1-3-4 3 9.55 22.55
2-1-4-3 3 13.55 26.55
2-3-1-4 3 9.55 17.55
2-3-4-1 3 18 55 26.55
2-4-1-3 3. 9.55 16 55
2-4-3-1 3 18.55 22.55

_3-1-2-4 3 9.55. 1655
.3-1-4-2 3 16.55 23.55
± 2 -1 -4 3 9.55 14.55
3-2=4-1 3_ 18.55 23.55
.3-4-1-2 3 16.55 14.55
3-4-2-1 3 18 55 16.55
A.-1-2-3 3 13.55 12.55
.4-1-3-2 3 16.55 15.55
4-2-1-3 3 13.55 in  s s 4
4-2-3-1 3 18.55 15.55
4 -3 -1-2 3 16.55 10 55*
4-3-2-1 3 18.55 . 12.55

♦ Optimal Sequence a
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5 2 Job Grouping Algorithm

In this section we present the Job Grouping Algorithm (JGA) that we developed 

in order to schedule a number o f families (where each family consists o f a number 

o f jobs) on a single machine

Our algorithm considers a f-families, n-job, single machine scheduling problem 

with common due-dates

Suppose that jobs each belong to a particular family, where jobs in a family tend 

to be similar in some way, such as their required tooling or their container size 

As a result o f this similarity, a job does not need a set-up when following another 

job from the same family, but a known “family set-up time” is required when a 

job follows a member o f some other family This is called family scheduling 

model

In the family scheduling model, a machine is assumed capable o f processing at 

most one job at a time We use the pair (i,j) to refer to job j o f family 1 

We let f  denote the number o f families, n the number o f jobs, and n, the number of 

jobs belonging to family 1

In addition ttJ and w,j denotes the processing time and weight o f job (i,j) 

Thus ni + n2 + + n f = n  In addition, s, denotes the setup time required to process 

a job m family 1 following a job in some other family

If a job follows a member o f the same family, then its setup time is zero otherwise 

its setup time is s,, the family setup time
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The jobs are given a completion time deviation allowance a  such that there will 

be no penalties if the completion time of job 1 is within the time interval 

(d, - a , d, +a), V i e N

A simplifying assumption for family scheduling is the requirement o f precisely f  

setups in the schedule one for each family (GT assumption)

Each family is treated as a single entity, or composite job with processing time

n n

P, = X 1. j and weight w, = J , and wtJ = 1 V 1, j
j=i j=i

In addition let 1, = (s, + p ,) / w, = (s, +p,) / denote the family factor o f family 1 

Let 1, denote the family factor o f family 1 and l[,j denote the family factor o f family 

in l-th position o f a schedule o

This factor is the basis o f the proposed algorithm, and actually shows the 

“importance” o f each family Therefore if 1, > lj and i *  j then we can say that 

family i is more “important” m a way than family j (that does not mean that 

family i is necessarily going to be scheduled earlier than family j)

Applying the proposed algorithm we observe that the family with the largest 

family factor is always scheduled first in the optimal schedule o*
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The basic assumptions about the problem model are as follows

• The job processing times t,j (for all y ) are known and deterministic

o The jobs are available for processing at the same time, i e rld =0 (for all 1 j )

© There is a single machine available, which can only process the jobs one at

a time

• Job splitting and preemption are not allowed

• The completion time deviation allowance a  is sufficiently small and 

satisfies the condition 2a  < min {t^ } for all y

The input data for this algorithm are the following

• The number o f families that have to be scheduled on the single machine

• The number o f jobs in each family

• The processing time for each job in each family

• The completion time deviation allowance a

• The setup time st for family 1
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JGA ALGORITHM

STEP 1 

STEP 2*

STEP 3:

STEP 4

STEP 5 

STEP 6.

Compute the family factor 1, = (s, + p ,) / w, = (s, +p,) / n, 

(because w,d = 1 for all i,j) for each family l l = 1,2 , ,f

Compute the value of m where

f ( /  + l) /2  i f  f i s  odd 

I /  /2  + 1 i f  f  is even

Compute the value of r where

\{n + 1) /2  i f  n is odd 

l/z/2  + 1 i f  n is even

Find the optimal sequence o f families o  using the following property 

lb] ^  V i -j ] -  *ü+i]> J = U2, ,m-l

The optimal due date k* is determined as k* = C[r] - a  

The value of the objective function is f ( k* , a*)
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5 2 1 Numerical example

In this section we present a numerical example o f our algorithm for a specific case

in this example we have f = 2 families which we denote by FI and F2 

Each family consists of two jobs (therefore n = 4, ni = 2, n2 = 2) and the

processing time for each job is ti i = 1, ti 2 = 3, t2,i = 6 and t2>2 = 10 The setup

times are Sj = 0 5 and s2 = 0 1 respectively 

Thus FI = {(1,1), (1,2)} and F2 = {(2,1),(2,2)}

Applying the first step o f our algorithm we must first compute the family factors 

1. = (s,+Pi) / w ,, i = 1,2

Therefore li = (st+pi) / ni = (0 5+4) 1 2 - 2 2 5  and 

h = (s2+p2) / 2 = (0 1+16) / 2 = 8 05

Applying the second step of our algorithm we compute the value o f m where m

thus r=3, so k* = Cpj - a  and the optimal sequence a* can be constructed using 

the fourth step o f our algorithm as follows 

We know that 1  ̂> l[r+i jj ^  V u , J = 1,2, ,m-l

instance

( /  + 1) /2  i f  f t s o d d  

/  / 2 + 1 i f  f  is even

thus m = 2

Applying the th ird step of our algorithm we know that

r =
(/? + l) /2  i f  m s  odd  
n l  2 + 1 i f  n is even
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In our case m = 2 therefore we have that l ĵ > l[f+i j] > ly+i j, j = 1 

Thus

l[i]> 1|2] > 1|2] (for j= l)

That means that the family with the largest family factor is going to be processed 

first in the optimal sequence a*

Therefore the order m which the groups of jobs are going to be processed is the 

following

F2-F1

This sequence of the groups o f jobs is the same with the following sequence of 

jobs (2, 1) - ( 2,2) - ( 1 , 1) - ( 1,2)

k* = C|3j-a = Ci i-a  = 16 55 (fifth step) and the minimum penalty value is 14 55 

(sixth step)

Another possible sequence o f the groups o f jobs could be FI - F2 and the 

sequence of the jobs would be ( 1 , 1) - ( 1,2) - (2, 1) - (2 ,2) respectively 

For this case k* = Cpj -a  = C2 1 = 9 55 and the penalty value would be 24 55 

We notice that applying our algorithm we achieved penalty value 14 55 < 24 55, 

which means that the schedule we obtain applying our algorithm is “better” 

because we obtain smaller penalty value (14 55 < 24 55)
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In this chapter we presented an algorithm for scheduling groups of jobs on a 

single machine

Three Lemmas were presented and a numerical example was provided in order to 

illustrate the use o f the results to determine the optimal solution to the due-date 

determination and sequencing problem

While it is fully appreciated that in practice penalty costs for earhness and 

tardiness are rarely the same, we imposed the restriction that weights wM = 1 V i,j 

were restricted to be 1

The reason is that the objective function that is used places emphasis on missing 

job due-dates Although it seems that this restriction has the disadvantage that it 

limits comparisons between the proposed algorithm and the main competitor, we 

can overcome this disadvantage by performing the “competing” algorithm 

considering a “hypothetical” case where the weight for each job is restricted to be 

1

In order to evaluate the performance o f this algorithm, the algorithm was coded in

C++

The results that are obtained from this algorithm can be found in Appendix A

5 3 Conclusions
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AN ALGORITHM FOR THE DUE-DATE DETERMINATION AND 

SEQUENCING PROBLEM

6 0 Introduction

In this chapter we present an algorithm for the due-date determination and 

sequencing problem

This algorithm was developed in 1987 by Cheng [C87] and will be used in order 

to compare the results with the (JGA) algorithm

Because to our knowledge there is no published work that combines the features 

of family setup times with earhness / tardiness cost two features that are 

fundamental to many problems in practice we use this algorithm because its 

objective function is more relevant to our problem

6 1 Cheng’s Algorithm

This Algorithm [C87] considers the problem o f assigning due-dates and 

sequencing a given set o f jobs on a single machine There will be penalties for 

completing jobs either ahead or behind their scheduled dates 

The objective is to minimize a function of missing the job due-dates An 

algorithm is presented for determining the optimal due-dates and optimal job 

sequence simultaneously

Actually the objective is to determine the optimal constant flow allowance k* and 

the optimal job sequence o* to minimize the weighted average of missed due- 

dates

CHAPTER 6
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Due date determination has been a popular research topic (for the single family 

case) and plentiful fruitful results have been obtained over the years 

The popularity o f scheduling research is due to the fact that the problem itself is 

theoretically challenging and the results are of practical usefulness This is 

because missing job due dates are entails such penalties as accumulating 

unnecessary stocks and/  or loss of production efficiency and customer goodwill

This algorithm considers an n-job, single machine scheduling problem with 

common due-dates

Let N denote the set o f n independent jobs to be processed The jobs have the 

same starting times Job 1 requires t, time units for processing and has a weighting 

factor w, (0<w, < 1) and = l , V i e N
iGiV

The common due-date assignment method is employed to assign due-dates to 

jobs

• The job processing times t, V 1 e  N are known and deterministic

• The jobs are available for processing at the same time, 1 e r, =0 V 1 e  N

• There is a single machine available, which can only process the jobs one at

a time

• Job splitting and preemption are not allowed

Let n  be the set o f all possible job sequences and a  be an arbitrary sequence Let 

the subscript [1] denote the job in position 1 o f a  Let Ew> t ih and Ctl] be the 

earhness, tardiness and completion time o f the ith job in c  respectively
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Whenever a job is not completed exactly on its due-date costs will be incurred, 

regardless o f its being early or late, it is reasonable to minimize an objective 

function which is related to the average amount of missed due-dates 

For this purpose we adopt, the weighted average of the absolute value of job 

lateness as the objective function to be minimized

While it is appreciated that, in practice, penalty costs for earhness and tardiness 

are not often the same, the use o f the weighted average o f absolute job lateness as 

the objective function places emphasis on missed job due-dates 

For a given job sequence a , let [1] denote the job in position 1 o f a  

In addition let t},j ,W[,j , L[,j and d|,j denote the the processing time, weighting 

factor, lateness, and due-date, respectively o f job [1]

The objective function is expressed as

/<*.»>=2 > , „ M  = -‘U=i>,.,|c,„-*| (1);=1 i=l i=l
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CHENG’S ALGORITHM

Let n(X) denote the number o f elements in a set X The algorithm systematically 

searches for the optimal solution as follows

STEP 1

STEP 2

STEP 3»

STEP 4

STEPS

STEP 6

Let r=l 

Let k—C[r]

Construct a set A where

A = {.V, I S A c  N , n(SA) = / - , £ > , <  1 /2  a n d ^ w ,  > 1 / 2}

Construct a set B corresponding to A where 

B = f S B c  N , n(SB) = ( / i - r ) ,  S B = N - S A9 V S A e >1}

Arrange jobs in Sa, V SA e A, in nonmcreasing order of t[,] / w^, 

V i e  Sa, to form a sequence a  a and arrange jobs in Sb, V Sb e  B, 

in nondecreasing order t^  / wyj, V j e  SB, to form a sequence a B 

Combine a A and a B to form a full sequence o  o f n jobs, 

i e a  = cta+ctb Calculate the value o f f(k, o) and record k, a  

and f^k, a ) for later evaluation

Let r = r+1 If  r < n then go to Step2 else go to Step7
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STEP 7 Identify f  *(k, a ) = min (f(k, a)}

Set k* = k of f  *(k, a ) and o* = a  o f f  *(k, a)

END OF THE ALGORITHM 

6 2 Numerical example

To illustrate the operation of the algorithm, consider the following example 

There are five jobs with processing times and weighting factors given in Table 2 

Table 3 shows the results obtained from performing the algorithm on the above 

given job-set

The algorithm has generated o f 41 feasible sequences for consideration This 

feasible set of sequences is considerably smaller than the full set o f all 51 = 120 

possible sequences

Thus, substantial saving in computations from employing the algorithm to search 

for the optimal solution

Table 2 Processing times and weighting factors o f the numerical example

Job 1 Job 2 _ Job 3 Jo b  4 Job 5
_ t, _ 1 ... . 2 3 _ _ 4 ... ..........5  . _
w. 0.1 0.1 0.1 . 0.1 0.6

tl/Wx .  . 10 .  . _  -2 D  . . 3Q . 40- . m n .  .
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Table 3 Optimal solution

SA Sn O—0A+0B f(k,a) k
5 1-2-3-4 5-1-2-3-4 2.0 5

5-1 2-3-4 1-5-2-3-4 2.1 6
5-2 1-3-4 2-5-1-3-4 1.8 7
5-3 1-2-4 3-5-1-2-4 1.6 8
5-4 1-2-3 4-5-1-2-3 1.5 Q *

5-1-2 3-4 2-1-5-3-4 2 .1____ 8
5-1-3 2-4 3-1-5-2-4 1.9 9
5-1-4 2-3 4-1-5-2-3 1.8 10
5-2-1 3-4 2-1-5-3-4 2 . 1 ____ 8
5-2-3 1-4 3-2-5-1-4 1.8 11
5-2-4 1-3 4-2-5-1-3 1.7 12
5-3-1 2-4 3-1-5-2-4 1.9 9
5-3-2 1-4 3-2-5-1-4 1.8 11
5-3-4 1-2 4-3-5-1-2 1.7 13
5-4-1 2-3 4-1-5-2-3 _ 1.8 10

_  5-4-2 1-3 . 4-2-5-1-3 1.7 12
5-4-3 1-2 4-3-5-1-2 1.7 13

5-1-2-3 4 3-2-1-5-4 2.3 11
5-1-2-4 3 4-2-1-5-3 2.2 12
5-1-3-2 4 4-2-1-5-3 2.3 11
5-1-3-4 2 4-3-1-5-2 2.2 13
5-1-4-2 ______ 3 4-2-1-5-3 2.2 12
5-1-4-3 2 4-3-1-5-2 2.2 13
5-2-1-3 _ 4 3-2-1-5-4 2.3 11
5-2-1-4 . 3 . 4-2.-1-5-3 2.2 12

... 5-2-3-1 4 4-2-1-5-3 2.3 11
5-2-3-4 1 .... 4-3-2-5-1 2.3 14
5-2-4-1 ____  3 4-2-1-5-3 ... 2.2 12
5-2-4-3 1 4-3-2-5-1 2.3 14
5-3-1-2 4 3-2-1-5-4 2.3 11
5-3-1-4 2 4-3-1-5-2 2.2 13
5-3-2-1 4 3-2-1-5-4 2.3 11
5-3-2-4 1 4-3-2-5-1 2.3 14
5-3-4-1 2 4-3-1-5-2 2.2 13

_5-3-4-2 1 4-3-2-5-1 2.3 14
__5-4rl-2 3 4-2-1-5-3 2.2 12
__5-4-JL-3 2 4-3-1-5-2 2.2 13

5-4=2-1 3 4-2-1-5-3 2.2 12
5-4-2-3 1 4-3-2-5-1 2.3 14
5-4-3-1 2 4-3-1-5-2 2.2 13
5-4=3-2 1 4-3-2-5-1 2.3 14

It is clear that the minimum value of f  (k,o) is f  (k,a) = 1 5 and thus k * = 1 5 and 

c =  (4,5,1,2,3)
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In this chapter we described an algorithm for the due-date determination and 

sequencing problem An example was presented to illustrate the performance of 

the algorithm to determine an optimal solution

In order to evaluate the performance of this algorithm, the algorithm was coded in

C++

The results that are obtained from this algorithm can be found in Appendix B

6 3 Conclusions
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CHAPTER 7 

PERFORM ANCE AND EVALUATION

In this Chapter we present the description of the data base o f the test problems 

that we used in order to test our algorithm (JGA) in comparison with Cheng’s

algorithm In the last section of this chapter the conclusions after performing both

algorithms, on the data base that we created are discussed and some ideas for 

further research are presented

The results we obtain from both algorithms are presented in Appendices A and B 

7 I Description of the database of test problems

In order to test both algorithms (JGA) and Cheng’s algorithm we generated a 

database o f test examples at random

The naming convention used for random test problems in the database is best 

explained by reference to some examples

N05G0Ex07 is the seventh example in the set o f test problems with characteristics

• 5 jobs

• 0 families

7 0 Introduction
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N06G2N j3N23Ex10 is the tenth example in the set o f  test problems with 

characteristics

• 6 jobs

•  2 families 

o ni =3

• n2 = 3

The processing time for each job in a specific example is the same for both (JGA) 

and Cheng’s algorithm

7 2 Conclusions

In this thesis an algorithm for scheduling groups of jobs on a single machine is 

presented

Our model differs from past models in the literature in that we consider an 

earliness / tardiness model with family set-up times We also incorporate a factor 

called completion time deviation allowance such that there will be no penalties if 

the completion time of job i is within the time interval (d, -a , d, +a) V i g N  

To our knowledge, there is no published work on a family scheduling model with 

earlmess and tardiness costs ( in our model wUI =1 V i , j )

Our consideration o f multiple families and a non regular performance measure, 

two features receiving increasing attention in the research community [BS90], 

[WB95], is motivated by real-world elements o f practical scheduling problems
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We have tested our algorithm on many examples, where the number o f jobs varies 

from N=3 to N=50 and the number o f families varies from G=0 to G=7 

Unfortunately, because Cheng’s algorithm is not performing at all for more than 

7, jobs due to the enormous amount o f computations that must be executed, we 

just present the results that we obtain from our algorithm for more than 7 jobs

Because Cheng’s algorithm does not consider the feature o f groups of jobs and 

family setup times, we perform the proposed algorithm (JGA) for the first 225 

examples i e

N3 GOExO 1-N3 G0Ex4 5,

N4GOExO 1 -N4G0Ex45,

N5G0Ex01-N5G0Ex45,

N 6GOExO 1 -N6GOEx45,

N7GOExC)l-N7GOEx45 

assuming that the number of groups is zero (G=0) (i e we have a set of 

independent jobs) in order to compare the output from both algorithms under 

similar input data

The output we obtain from (JGA) algorithm and Cheng’s algorithm is presented 

in appendices A and B

For example performing both algorithms for the problem instance N3GC)Ex02 we 

obtain c* = 1-3-2, k*=6 65, and the value o f the objective function is 3 0,(a= 0 35 

for this case) while from Cheng’s algorithm we obtain a* = 1-3-2, k*= 6, and the 

value o f the objective function is 0 8
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Although it seems that Cheng’s algorithm is performing better than (JGA) 

algorithm, this is not valid, because the weights for jobs 1,2,3 are restricted to be 

1 in the proposed algorithm, while the weights for jobs 1,2,3, in Cheng’s 

algorithm are w i=0 6, w2=0 2 and W3-O 2 (the sum of all weights must be 

2 > , = 1 , V i 6 N)
fG N

Therefore because the objective function of Cheng’s algorithm is

f (k ,cr)  = X  ¿ N| = Z ^ l q . j  - d [t]| = 1 > [(]|C1(]
1=] ;=1 f=l

and w, < 1 V 1 g {1,2,3} we obtain the value 0 8

Although it seems that this restriction (that weights w,j = 1 V i,j are restricted to 

be 1) has the disadvantage that it limits comparisons between the proposed 

algorithm and the main competitor, we can overcome this disadvantage by 

performing the “competing” algorithm considering a “hypothetical” case where 

the weight for each job is restricted to be 1 

We applied this “hypothetical” case for the following examples 

N3 GOExO 1-N3 G0Ex45,

N4G0Ex01 -N4G0Ex45,

N 5 GOExO 1 -N5G0Ex45,

N6G0Ex01 -N6G0Ex45,

N7G0Ex01-N7G0Ex45
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For all these 225 examples we did not find an example where the (hypothetical) 

value for the objective function o f Cheng’s algorithm, is less than the value for 

the objective function o f (JGA) algorithm

The (hypothetical) value for the objective function o f Cheng’s algorithm was 

either equal or greater than the value of the objective function of (JGA) algorithm 

for all 225 examples

Considering that fact, we can say that the results that we obtain from (JGA) 

algorithm are reasonably good

The main advantage o f our algorithm is that it performs for many jobs while 

Cheng’s algorithm can not perform for more than 7 jobs

For up to 7 jobs (JGA) algorithm produces results in considerably less time than 

Cheng’s algorithm

We have performed our algorithm for up to 50 jobs and we observe that the CPU 

time was actually negligible and the results are reasonably good 

In summary, the proposed algorithm appears to perform quite well when 

compared to Cheng’s algorithm

7 3 F u rth er Research

The basic features o f the model we have studied represent a growth area in the 

scheduling literature and, consequently there are many opportunities for further 

research



The present problem can readily be generalized by introducing different penalties

for earhness and tardiness as well as adding a penalty for assigning long due

dates

Out model could also be generalized by not considering the GT assumption (i e 

the requirement o f precisely f  setups in the schedule one for each family, where f  

is the number o f families)

Other significant generalizations to the model include

(a) Multiple machines (1 e Groups o f jobs can be scheduled on multiple

machines that are placed together in a serial order)

(b) Parallel Machines (1 e Groups o f jobs can be scheduled on parallel

machines)

(c) Dynamic job arrivals

Considering our model, a certain number o f jobs arrive simultaneously to a 

system that is idle and is immediately available for work 

A significant generalization to our model include Dynamic job arrivals 

Therefore jobs arrive intermittently at times that are predictable only in a 

statistical sense

(d) Job splitting and preemption

A significant generalization to our model could include the allowance of job 

splitting and preemption Therefore the processing o f each job may be 

interrupted and resumed at a later time
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APPENDIX A

OUTPUT FROM JGA ALGORITHM

JGfA*
o k* fik ,o ) CPU time

N3G0F.x01 2-3-1 ..... 7 .6 5 ......... 7 0.0
N3G0Ex02 1-3-2 ... 6.65. 3 0.0
N3G0Ex03 3-2-1 12.65_ 9 _ _ _ 0.0
N3G0Ex04 3-2-1 11.65 _ 11  . 0.0
N3G0F.x05 2-1-3 9.65 6 0.0
N3G0Ex06 3-1-2 5.65 3 0.0
N3G0Ex07 1-2-3 _ ... 5.65 5 0.0
N3G0Ex08 3-1-2 5.65 5 _ 0.0
N3G0Ex09 2-1-3 5 65 5 0.0
N3GOExlO 3-1-2 7.65 4 0.0
N3GOExl 1 3-2-1 6.75 5 00
N3G0Exl2 3-2-1 . 9.75 . 9 0.0

_ N3GOExl3 1-2-3 5.75 4 0.0__ _ ___
N3G0Exl4 3-2-1 8.75 5 0.0
N3G0Exl5 2-1-3 .... 18.75 17 ___ ........0.0
N3G0Exl6 2-1-3 7.75 6 .. 0.0
N3G0Exl7 1-2-3 13.75 13 0.0
N3G0Exl8 3-2-1 14.75 13 0.0
N3G0Exl9 3-2-1 9.75 8 0.0
N3G0Ex20 1-2-3 14.75 11 0.0
N3G0Ex21 3-2-1 ....  5.85 5 0.0
N3G0Ex22 3-1-2 8.85 8 _ 0.0

..._N3G0Ex23 1-3-2 5.85 4 0.0
_N3G0Ex24 3-1-2 4.55 3 00
N3G0Ex25 2-1-3 ......  3.55 3 0.0
N3G0Ex26 3-2-1 ...... 5.55 3 00
N3G0Ex27 3-1-2 __ .. 2.55 3 0.0
N3G0Ex28 3-2-1 2.55 3 0.0

... M3G0Ex29 3-1-2 3.55 3 0.0
N3G0Ex30 1-3-2 3.55 3 0.0
N3G0Ex31 2-1-3 10.7 9 0.0
N3G0Ex32 2-3-1 10.7 9 0.0
N3G0Ex33 1-2-3 10.7 9 0.0
N3G0Ex34 2-1-3 6.7 4 00

. N3G0Ex35 3-2-1 11.7 10 0.0
3-2-1 5.7 6 0.0

N3G0Ex37 2-1-3 6.7 5 00
_ ..N3G0Ex38 1-2-3 ..... 7.8 6 0.0

N3G0Ex39 2-3-1 5.8 5 0.0
N3G0Fx40 1-2-3 5.8 4 00
N3G0Ex41 2-1-3

OO 4 0.0
1-3-2 5.8 4 0.0

N3G0Ex43 2-3-1 _ 14.8 13 00
N3GOEx44 3-2-1 8.8 8 00

.N3G0EX45 1-3-2 . 5.S 5 0.0
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JC¡A _____*
O k* f ( k V ) CPU time

N4G0Ex01 2-4-1-3 4.55 4.55 00
N4G0Ex02 4-1-2-3 9.55 ........ 10.55 0.0
N4G0Ex03 2-3-4-1 .. 7.55 6.55..... _ 0.0
N4G0Ex04 2-3-1-4 . 8.55 8.55 0.0
N4G0Ex05 1-2-4-3 8.55 8.55 0.0
N4G0Ex06 2-4-3-1 5.55 5.55 00
N4G0Ex07 4-2-1-3 6.7 6.7 00
N4G0Ex08 4-1-2-3 6.7 5.7 0.0
N4G0Ex09 4-3-1-2 8.7 9.7 0.0
N4G0Exl0 4-1-3-2 9.7 10.7 0.0
N4G0Exl 1 3-4-2-1 4.7 4.7 00
N4G0Exl2 3-1-2-4 8.7 8.7 0.0
N4G0Exl3 4-1-2-3 6.7 6.7 0.0
N4G0Exl4 4-2-1-3 13.8 10.8 0.0
N4G0Exl5 2-3-1-4 16.8 15.8 0.0

... N4G0Exl6 1-4-3-2 19.8 20.8 0.0
....N4G0Exl7 4-2-1-3 15.8 12.8 00

N4G0Exl8 3-1-4-2 . 14.8 9.8 0.0
....N4G0Exl9 1-3-4-2 12.8 10.8 0.0

N4GOEx20 2-4-3-1 12.8

00oo 0.0
N4G0Ex21 4-2-1-3 16.9 159 00
N4G0Ex22 3-2-1-4 14.9 11.9 00
N4G0Ex23 4-1-2-3 16.9 149 00

_ N4G0Ex24 3-1-4-2 109 10.9 00
N4G0Ex25 __ 4-3-2-1 8 9 7 9 00
N4G0Ex26 . 4-3-1-2 8 9 6.9 0.0

__ N4G0Ex27 4-3-1-2 15.9 13.9 0.0
N4G0Ex28 4-2-1-3 __9.65 965 00

3-4-1-2 14.65 14.65 0.0
N4G0Ex30 ...4-2-3-1 8.65 8.65 00
N4G0Ex31 3-1-2-4 16.65 16 65 00
N4G0Ex32 . 2-4-3-1 13.65 14.65 00

...N4G0Ex33 ... 2-3-4-1 10.65 12.65 00
N4G0Ex34 4-1-3-2 10.65 10.65 0.0

.N4G0Ex35 .1-2-4-3 18.75 22.75 00
N4G0Ex36 2-1-3-4 11.75 1275 00

___ N4G0Ex37 _. .1-3-2-4 16.75 18.75 0.0
N4GOEx38 1-3-4-2 11.75 10.75 00
N4G0Ex39 2-3-1-4 9.75 9.75 00

.... N4G0Ex40 ... 3-4-1-2 13.75 1475 00

.... N4G0Ex41 1-4-3-2 12.75 1475 00
N4G0Ex42 4-2-3-1 17.75 18.75 0.0

_ N 4G 0E x43 4-1-3-2 14.75 16.75 0.0
N4G0Ex44 _. 1-2-4-3 19.75 23.75 0.0
N4G0EX45 1-3-4-2 13.75 14.75 _ 0.0
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JOÍA .........  .....*
a K* f(k ,o ) CPU time

N5G0F.X01 4-2-1-5-3 13.55_____ 15 0.0
N5G0Ex02 5-1-4-3-2- 9.55 13 00
N5G0Ex03 4-2-5-1-3 12.55 15 0.0
N5G0Ex04 3-2-1-4-5 10.55 15 0.0
N5G0Ex05 1-2-4-3-5 9.55 _ 14 00
N5G0F.X06 5-3-2-1-4 14.55 16 00
N5G0F.X07 5-3-1-2-4 8.7 13 0.0
N5G0F.X08 5-2-4-1-3 14.7 15 0.0
N5G0Ex09 5-1-4-2-3 12.7 16 0.0
N5GOExlO 2-5-1-3-4 11.7 21 0.0
N5G0Exl 1 5-2-1-3-4 15.7 20 0.0
N5G0Exl2 4-5-2-1-3 11.7 16______ 00
N5GOExl3 5-2-1-3-4 _ 9.8 14 0.0
N5G0Exl4 1-5-3-2-4 6.8 11 0.0
N5GOExl5 5-2-1-3-4 13.8 18 00
N5G0Exl6 5-2-4-1-3 13.8 17 0.0
N5G0Exl7 4-2-1-3-5 9.8 13 _ _ 00
N5GOExl8 5-4-2-3-1 11.8 16 0.0
N5G0Exl9 4-5-1-2-3 14.9 . 25 0.0
N5G0Ex20 ... 5-2-4-1-3 13.9 20 0.0
N5G0Ex21 5-3-4-2-1 13.9 16 0.0
N5G0Ex22 4-2-3-1-5 109 15 00
N5G0Ex23 5-1-3-2-4 12.9 15 00
N5G0Ex24 5-3-2-1-4 12.9 16 0.0
N5G0Ex25 4-1-3-5-2 8.85 13 0.0
N5G0Ex26 4-5-3-1-2 985 13 0.0
N5G0Ex27 5-1-3-2-4 10.85 15 00

5-2-4-1-3 10.85 15 00
N5G0Ex29 2-4-1-3-5 19.85 32 0.0
N5G0Ex30 1-3-5-2-4 _ 19.85 34 0.0
N5GOEx31 1-2-3-4-5 9.65 13 0.0
N5G0Ex32 5-1-2-4-3 10.65 15 0.0
N5G0Ex33 3-5-4-1-2 __ 24.65 41 00
N5G0Ex34 ___ 4-3-2-1-5 15.65 22 00
N5G0Ex35 4-2-1-5-3 . 24.65 43 00
N5GQEx36 2-4-5-1-3 17.65 31 0.0

__ N5.G.QEx37 5-3-4-1-2 11.75 19 0.0
. N5GQEx38 5-1-2-3-4 18.75 32 0.0

. N5G0EX39 5-1-2-3-4 19.75 35 00
N5G0Ex40 4-1-3-2-5 14.75 23 00

__ N5_GOEx4l 3-4-1-5-2 18.75 32 00
... N5G0Ex42 4-1-2-5-3 1975 32 00

N5G0Ex43 4-5-2-1-3 15.9 25 00
N5G0EX44 3-2-4-1-5 _ 13.9 23 00

. N5GOEx4i.. 3-5-4-1-2 ... 14.9 23 0.0
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JGÍA . . ...*
o k ' f T k , a ) CPU time

NóGOExOl 4-6-5-3-2-1 10.55 19.55 0.0 .
N6G0Ex02 5-4-3-2-6-1 14.55 21.55 . ...........o.o ........................

N6G0Ex03 6-4-2-1-3-5 12.55 2L55 ._ 0.0 ..
N6G0F.X04 1-2-3-4-5-6 14.55 20.55 0.0
N6G0Ex05 6-3-2-5-1-4 17.55 .... 25.55 0.0 _
N6G0F.x06 3-6-4-5-1-2 12.6 21.6 0.0
N6G0Ex07 5-2-1-3-6-4 14.6 . 21.6 0.0
N6G0Ex08 4-3-6-5-1-2 . 12.6 27.6 _ 0.0
N6G0Ex09 6-1-3-5-2-4 16.6 23.6 0.0
N6G0Exl0 6-1-3-5-2-4 14.6 21.65 . 0 0
N6G0F.X 11 5-2-4-3-1-6 12.65 21.65 0.0 .
N6G0F.X12 5-1-2-3-4-6 12.65 21.65 0.0
N6G0Exl3 5-1-6-4-2-3 13.65 21.65 0.0 .

N6G0Ex14 6-5-1-2-3-4 17.65 27.65 0.0
N6G0F.X15 6-l-5-3-2^4 12.65 . 21.65 0.0
N6G0F.X16 6-2-5-3-1-4 13 75 22.75 0.0
N6G0F.X17 6-1-4-3-5-2 14.75 2L75 _ 0.0 . . .

N6GOEx18 ' 4-6-3-5-2-1 12.75 21.75 0.0....
N6G0Exl9 6-5-2-3-1-4 13.75.... 21.75 0.0
N6G0F.X20 6-1-3-4-2-5 12.75 21.75 0.0
N6G0F.X21 6-4-2-3-1.5 17.8 28.8 0.0
N6G0Ex22 6-2-5-4-1-3 19.8 34.8 0.0
N6G0F.X23 2-1-5-4-3-6 178 30.8 0.0 . . .

N6G0F.x24 6-5-4-3-2-1 11.8 19.8 0.0
N6G0F.X25 6-1-2-5-3.-4 14.8 23.8 0.0
N6G0F.X26 6-3-4-5-2-1 12.7 2L7 0.0
N6G0Ex27 6-5-2-4-1-3 18.7 33.7 0.0
N6G0Ex28 6-3-2-4-1-5 22.7 33.7 0.0
N6G0Ex29 5-6-1 -3-1-4 24.7 35.7 0.0
N6G0Ex30 6-4-1-2-3-5 20.7 34.7 0.0
N6GOEx31 6-5-3,2^4-1 16.55 3.QJ5 ... 0.0
N6G.QEx32 6-3-2-5-4-1 17.55 31.55 0.0
N6G0Ex33 3-5-4-1-2-6 15.55 27.55 0.0 .

N6GOEx34 2-1-4-6-5.-3 18.55 34.55 0.0
N6G0Ex35 6-3-4-2-1-5 12.55 21.55 0.0
N6GOEx36 2-3-6-5-4-1 12.7 21.7 00
N6G0Ex37 2-4-3-5-6-1 197 36.7 00
N6G0Ex38 5-3-4-2-1-6 15.7 26.7 0.0
N6GOEx39 6-5-2-4-1-3 15.7 23.7 0.0.
N6G0Ex40 5-4-3-1-6-2 19.7 37.7 0.0
N6G0Ex41 5-6-3-4-2-1 168 25.8 0.0
N6G0Ex42 _ 4-1-5-2J-6 10 8 168 00
N6G0Ex43 6-4-5-1-2-3 18.8 32.8 0.0
N6G0Ex44 6-3-5-1-4-2 16.8 30.8 00
N6GOEx45 5- 6 - 2- 1- 3-4 13.8 22.8 ... . 0.0
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J_G¡A . ...*
o k* fïk . a ) CPU time

N7G0Ex01 6-4-5-1-7-2-3 12.55 25 0.0 ..............
N7G 0Ex02 5-6-4-7-1-2-3 13.55 32 0.0
N7G 0Ex03 7-4-5-2-3-1-6 16.55 34 0,0.
N7G 0Ex04 7-6-5-4-1-3-2 15,55 34 0.0.
WGOExOS 7-3-5-4-1-2-6 1 7 5 5 35 _ _ 0.0 ... .
N7 G0Ex06 6-4 -3 -2 -1-7-5 20.6 45 ... . 0..0 .

2 O o m X o 7 -3-1-2-4-5-6 18.6 42 0.0
N7G0F.x08 3-2-1-5-7-6-4 18.6 42 0.0
N7C.0F.x09 7-5-3-2-1-4-6 1 8 6 37 _ . .. 0JL  ..
N7G0F.X 10 4-3-5-2-7-1-6 15.6 36 0.0
N7G0F.xl 1 6-5-1-3-2-4-7 19.65 . . . 46 0.0
N 7G 0E xl2 2-5-1-4-3-6-7 14.65 33 0.0_ .........
N7G 0Ex13 Ô -7-4-2-1-3-5 18.65 44 0.0
N 7G 0Ex14 6-3-4-1-2-7-5 17.65 _ 42 QJL ..
N 7G 0E xl5 5-2-3-7-6-1-4 15.65 34 0.0 _
N7G 0Ex16 5-4-1-6-3-7-2 13J7 30 0.0_
N7G0Ex17 7-4-2-5-1-3-6 19.7 41 0 .0 .
N 7G 0E xl8 5-4-3-2-7-1-6 1 6 7 35_ 0.0
N7G 0Ex19 7-4-5-Ó-1-2-3 ... 16.7 ... 34 0 . 0 ____
N7G0F.x20 5-2-1-6-3-7-4 17.7 42 0.0

7 -6 -3 -2 -1-4-5 13.75 . 32 0 .0 .
N7C.0F.x22 Ó -7-4-5-1-3-2 13.75 .32 0 0

4-5-3-1-7-2-6 17.75 .3.7 ._ 0.0 ._
N7G 0Ex24 6-5-3-1-2-7-4 15.75 37 0.0
N7C.0Ex25 6-5-3-1-4-2-7 18.75 43 0.0
N7G 0Ex26 2-7-5-6-4-1-3 13.8 _32 0.0
N7G 0Ex27 5-4-7-6-2-3-1 14.8 30 0.0
N7G0F.X28 4-6-5-2-3-7-1 . 15.8 J  4 . 0.0 _  ...
N 7G 0Ex29 3-5 -2 -7 -1-4-6 16.8 34 0 .0 .
N7G 0Ex30 6-5-2-4-3-1-7 18.8 43 0.0
N7G0Ex31 7-2-1-6-3-5-4 .16.85 34 0.0

7-6 -5 -4 -1-2-3 31.85 82 0.0
N7G 0Ex33 3-2-6-7-1-5-4 28.85 66 0.0
N7G 0Ex34 7-4-2-3-5-1-6 33.85 76 0.0
N7G 0Ex35 6-3-2-5-1-4-7 27.85 64 0.0
N7G 0Ex36 5-1-7-6-2-3-4 21.9 48 0.0
N7C.0F.x37 4-3-7-5-2-6-1 20.9 50 0 0
N7G 0Ex38 4-6-5-7-2-3-1 21.9 47 0.0
N7G 0Ex39 _ 4-3-6-1-2-5-7 28.9 73 0.0
N7G0F.X40 4-3-2_-7-l-6-5 26.9 J 6 0.0 .
N7G0Ex41 7-4-6-5-2-3-1 15.9 34 0.0
N7G 0Ex42 7-1-4-5-6-2-3 . 19.9 46 0 0
N7G0Ex43 1-6-4-5-7-3-2 17.9 34 0.0
N7G 0Ex44 1-2-7-6-3-4-5 16.9 34 0.0.
N7G 0Ex45 ... 1-4-2-5-3-7-6 15.9 34 .  -  .QJL. . ..
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JGA*
a K f ( k V ) CPU time

N4G2Ni1N73 ExOl F1-F2 12 55 15 55 0 1
N4G2N,2N22 Ex02 F2-F1 14 55 17 55 0 1
N4G2N,3N71 Ex03 F2-F1 11 55 14 55 0 1
N5G2NilN?4 ExOl F1-F2 12 55 22 01
N5G2Ni2N23 Ex02 F1-F2 12 55 22 0 Ì
N5G2Ni3N?2 Ex03 F1-F2 12 55 22 0 1
N5G2Ni4N7.1 Ex04 F1-F2 12 55 22 0 1
N6G2N,1N,5 ExOl F1-F2 167 28 7 0 1
N6G2N,2N?4 Ex02 F1-F2 167 28 7 0 1
N6G2Ni3N73 Ex03 F1-F2 167 28 7 0 1
N6G2Ni4N22 Ex04 F1-F2 16 7 28 7 0 1
N6G2N,5N21 Ex05 F1-F2 16 7 28 7 01
N7G2Ni6N21 ExOl F1-F2 12 65 35 0 1
N7G2Ni5N72 Ex02 F1-F2 12 65 35 0 1
N7G2Ni4N23 Ex03 F1-F2 12 65 35 0 1
N7G2Ni3Na4 Ex04 F1-F2 12 65 35 0 1
N7G2N,2N25 Ex05 F2-F1 12 65 22 0 1
N7G2NiIN,.6 Ex06 F2-F1 12 65 29 0 1
N8G2Ni7N21 ExOl F2-F1 16 75 47 75 0 1
N8G2N,6N72 Ex02 F2-F1 14 75 51 75 0 1
N8G2N,5N23 Ex03 F1-F2 14 75 43 75 0 1
N8G2Ni4N74 Ex04 F1-F2 14 75 43 75 0 1
N8G2N,3N75 Ex05 F1-F2 14 75 43 75 0 1
N8G2N,2N26 Ex 06 F2-F1 14 75 35 75 0 1
N8G2N,1N27 E x07 F2-F1 13 75 39 75 0 1
N9G2N,8N,1 ExOl F2-F1 19 85 57 0 1
N9G2Ni7N72 Ex02 F2-F1 19 85 64 0 1
N9G2N,6N23 Ex03 F2-F1 15 85 69 0 1
N9G2N,5N24 Ex04 F2-F1 15 85 71 0 1
N9G2Ni4N25 Ex05 F1-F2 14 85 58 0 1
N9G2N,3N26 Ex06 F2-F1 12 85 68 0 1
N9G2Ni2N27 Ex07 F2-F1 14 85 61 0 1
N9G2Ni1N28 Ex08 F2-F1 13 85 60 0 1

N10G2Ni9N21 ExOl F1-F2 198 79 8 0 1
N10G2Ni8N22 Ex02 F1-F2 19 8 79 8 0 1
N10G2N,7N23 E x03 F2-F1 27 8 86 8 0 1
N10G2Ni6N24 Ex04 F2-F1 24 8 95 8 0 1
N10G2Ni5N25 Ex05 F1-F2 19 8 79 8 0 1
N10G2N,4N26 Ex06 F1-F2 19 8 79 8 0 1
N10G2N,3N27Ex07 F1-F2 19 8 79 8 0 1
N10G2N,2N28 Ex08 F1-F2 19 8 79 8 0 1
N10G2N, IN29 Ex09 F1-F2 198 79 8 0 1
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jg a*
a

_  * *.
f(k , a ) CPU time

N11G3N,1N21N39 ExOl F3-F2-F1 186 107 0 2

N11G3N,2N21N18 E x02 F2-F1-F3 15 6 89 0 2
N11G3Ni2N22N37 E x03 F2-F1-F3 15 6 84 0 2
NI 1G3Ni2N23N36 Ex04 F2-F1-F3 15 6 83 0 2
N11G3N,3N23N35 Ex05 F3-F2-F1 24 6 93 0 2
N11G3N,3N24N^4 Ex06 F3-F2-F1 24 6 79 0 2
N11G3N14N24N33 E x07 F3-F2-F1 27 6 94 0 2
N 11G3Nj4N23N34 Ex08 F3-F2-F1 21 6 76 0 2
N11G3Ni4N25N32 Ex09 F3-F2-F1 16 6 100 0 2
N11G3Ni4N22N35 ExlO F3-F2-F1 22 6 87 0 2
N11G3N,2N24N35 E x il F3-F2-F1 22 6 101 0 2

N12G3N,1N21N310 ExOl F3-F2-F1 25 6 127 6 0 2
N 12G3N12N22N38 Ex02 F2-FI-F3 17 6 106 6 0 2
N12G3N,2Nz3N37 Ex03 F2-F1-F3 17 6 105 6 0 2
N12G3N,3N23N36 Ex04 F3-F2-F1 26 6 106 6 0 2
N12G3Ni4N23N35 Ex05 F3-F2-FI 23 6 86 6 0 2
N12G3Ni4N24N34 Ex06 F3-F2-F1 21 6 88 6 0 2
N12G3N,5N24N33 Ex07 F2-F1-F3 22 6 1306 0 2
NJ2G3N,4N25N*3 Ex08 F3-F2-F1 186 1126 0 2
N12G3N,6N23N33 Ex09 F2-F1-F3 25 6 1186 0 2
N12G3N,3N26N33 ExlO F3-F1-F2 22 6 105 6 0 2
N12G3N]2N26N34 E x il F3-F1-F2 25 6 104 6 0 2
N12G3N,2N25N35 Exl2 F3-F1-F2 23 6 105 6 0 2
N12G3Ni3N25N34 Exl3 F3-F2-F1 23 6 88 6 0 2
N12G3N,5N25N32 Ex 14 F2-F3-F1 23 6 1196 0 2

N13G3NilN2lN 3l 1 ExOl F3-F2-F1 25 9 153 0 2
N13G3N,2N22N39Ex02 F2-F1-F3 17 9 133 0 2
N13G3Ni3N23N37 Ex03 F3-F2-F1 27 9 137 0 2
N13G3N,3N24N36 Ex04 F3-F2-F1 29 9 122 0 2
N13G3N,3N25N35 Ex05 F3-F2-F1 27 9 115 0 2
N13G3N,4N24N35 Ex06 F3-F2-F1 24 9 112 0 2
N13G3N,5N24N34 Ex07 F3-F1-F2 23 9 130 0 2
N13G3N,4N26N,3 Ex08 F2-F1-F3 22 9 152 0 2
N13G3N,5N25N33 Ex09 F2-F1-F3 21 9 149 0 2
N13G3Nj4N25N34 ExlO F3-F2-F1 199 133 0 2
N13G3N,5N26N32 E x il F2-F1-F3 23 9 145 0 2
N13G3N,6N25 N ¿  Ex 12 F2-F1-F3 23 9 137 0 2
N ] 3G3N]7N22N34 Ex13 F2-F1-F3 25 9 124 0 2
N13G3N,3N27N33 E x14 F2-F1-F3 24 9 150 0 2
N13G3N,4N26N33 Ex15 F2-FÎ-F3 22 9 152 0 2
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JGA
♦

CT k’ f lfc V ) CPU time
N14G3N,1N21N312Ex01 F3-F2-F1 30 9 170 9 0 4

N14G3N,2N2?N310Ex02 F2-F1-F3 21 9 159 9 0 3
N14G3N!3N25N36 Ex03 F3-F2-F1 28 9 125 9 0 3
N14G3N,3N26N35 Ex04 F2-F1-F3 22 9 169 9 0 3
N14G3N,4N25N35 Ex05 F1-F3-F2 27 9 147 9 0 3
N14G3N!4N24N36 Ex06 F3-F2-F1 25 9 1199 0 3
N14G3N!5N24N35 Ex07 F2-F1-F3 26 9 173 9 0 3
N14G3N!5N25N34 Ex08 F2-F3-F1 28 9 160 9 0 3
N14G3Ni6N24N34 Ex09 F2-F1-F3 30 9 155 9 0 3
N14G3Ni7N23N34 Ex 10 F2-F1-F3 30 9 139 9 0 3
N14G3N|5N26N33 E xil F2-F3-F1 28 9 160 9 0 3
N14G3N,7N25N32 Ex 12 F2-F1-F3 29 9 146 9 0 3
N14G3N!6N26N32 Ex13 F2-F1-F3 25 9 151 9 0 3

JGA (a  = 0 3)
k* f lfc V ) CPU time

N20G4N!5N25N35N45Ex01 44 7 389 7 0 5

N20G4N, 10N23N33N44Ex02 48 7 375 7 0 5
N20G4N,9N23N35N43Ex03 44 7 379 7 0 5

N20G4N, 2N28N35N45Ex04 48 7 388 7 0 5
N20G4N,3N27N35N45Ex05 47 7 375 7 0 5
N20G4Nj5N28N 32N45 Ex06 46 7 397 7 0 5

N20G4N,2N23N31 0N45Ex07 47 7 427 7 0 5

N20G4N]7N23N35N45Ex08 46 7 366 7 0 5

N20G4N,8N22N35N45Ex09 44 7 371 7 0 5

N20G4N,4N26N35N45Ex10 45 7 372 7 0 5

a
N20G4N15N25N35N45Ex01 F3-F4-F2-F1

N20G4N, 1 0N23N33N44Ex02 F3-F4-F1-F2
N20G4N ,9N23N 35N43Ex03 F2-F4-F1-F3
N20G4N,2N28N35N45Ex04 F3-F4-F2-F1
N20G4N13N27N35N45Ex05 F3-F4-F2-F1
N20G4N,5N28N32N45Ex06 F3-F4-F2-F1
N20G4N ,2N23N31 0N45Ex07 F3-F4-F2-F1
N20G4N i7N23N35N45Ex08 F2-F4-F1-F3
N20G4N,8N22N35N45Ex09 F3-F1-F2-F4
N20G4N14N26N15N45Ex10 F3-F4-F2-F1
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JGA (a  = 0.2)
k* f ( k V ) CPU time

N30G5Ni5N25N,5N410Nv5Ex01 63 8 829 8 0 7
N30G5N, 1 ON 25N 34N45N 56Ex02 64 8 834 8 0 7
N30G5Ni5N26N36N46N57Ex03 61 8 883 8 0 7
N30G5Ni3N26N35N47N59Ex04 60 8 824 8 0 7
N30G5Nt6N25N34N48N57Ex05 65 8 805 8 0 7

N30G5N,10N25N34N4lN 310Ex06 62 8 827 8 0 7
N30G5Ni5N26N36N47N56Ex07 59 8 825 8 0 7
N30G5N,6N23N,5N47N,9Ex08 60 8 793 8 0 7

N30G5N,3N27N35N410N,5Ex09 66 8 906 8 0 7
N30G5N16N23N 39N42N 51 OExI 0 65 8 783 8 0 7

*
a

N30G5Nt5N25N35N410N55Ex01 F3-F2-F4-F5-F1
N30G5N, 10N25N34N45N56Ex02 F2-F3-F5-F1-F4
N30G5N j5N26N36N46N 57Ex03 F3-F1-F5-F4-F2
N30G5Ni3N26N35N47N59Ex04 F1-F4-F2-F5-F3
N30G5NÌ6N25N34N48N57EX05 F3-F4-F1-F5-F2

N30G5N! 10N25N34N41N510Ex06 F2-F3-F5-F1-F4
N30G5N,5N26N36N47N36Ex07 F3-F2-F5-F1-F4
N30G5N,6N23N35N47N59Ex08 F2-F4-F1-F5-F3

N 3 0G5N13N27N 35N41 ON 55 Ex09 F3-F5-F2-F4-F1
N30G5N,6N23N,9N42N,10Exl0 F4-F3-F1-F5-F2
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......... JGA fa -  0.35)
k' f ( k V ) CPU time

N40G6N i5N25N35N45N 510N61 OExO 1 80 65 1439 65 1

N40G6N, 3N24N38N4 1 ON 58N67Ex02 88 65 1454 65 1
N40G6Ni6N26N36N46N58N68Ex03 81 65 1431 65 1
N40G6Nf7N27N37N45N55N69Ex04 85 65 1407 65 1

N40G6Ni5N25N35N41 0N55N61 0Ex05 82 65 1450 65 1
N40G6N,8N23N38N410N58N67Ex06 83 65 1518 65 1
N40G6N]6N26N36N48Ns6N68Ex07 85 65 1447 65 1
N40G6N,7N27N35N47N55N69Ex08 90 65 1475 65 I
W 0G 6N,3N29N36N48N56N68Ex09 81 65 1519 65 1
N40G6N,2N212N35N47N,5N69Ex10 8165 1489 65 1

*
a

N40G6N j5N25N 35N45N 510N61 OExO 1 F3-F1-F2-F5-F4-F6

N40G6N!3N24N38N410N38N67Ex02 F3 -F 6-F4-F2-F5-F1

N40G6Ni6N26N36N46N58Ne8Ex03 F2-F6-F1-F5-F3-F4
N40G6N,7N27N37N45N35N69Ex04 F2-F3-F4-F1-F5-F6

N40G6N ]5N25N35N41 0N55N61 0Ex05 F3-F1-F5-F4-F2-F6

N40G6N18N23N38N410N58N67Ex06 F3-F5-F6-F4-F1-F2

N40GóN,óN26N3óN48N56N68Ex07 F2-F3-F4-F1-F5-F6
N40G6N,7N27N35N47N,5N69Ex08 F2-F6-F4-F1-F5-F3-

N40G6N13N29N36N48N56N68Ex09 F1-F2-F5-F4-F3-F6

N40G6N12N212N35N47N ̂ 5N69Ex 10 F3-F6-F5-F4-F2-F1
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I

JGA fa = 0.3Ì
k* f ( k V ) CPU time

N50G7N,10N25N35N45N310N610N75 ExOl 97 7 2246 7 1 1
N50G7N,10N25N,5N410N55N610N75 Ex02 96 7 2243 7 1 1
N50G7Ni 10N25N35N45N510N65N710 Ex03 99 7 2253 7 1 1
N5 0G7N15N21 ON 35N45N 310N610N75 Ex04 99 7 2274 7 1 1
N50G7N,10N25N35N47N33N610N710 Ex05 102 7 2285 7 1 1
N50G7N, 10N25N35N45N,1 0N65N71 0 Ex06 100 7 2254 7 1 1
N50G7N, 1 0N23N32N410N310N610N75 Ex07 102 7 2273 7 1 1
N50G7N,10N25N35N48N,2N610N710E x08 102 7 2276 7 1 1
N50G7N) 10N25N315N45N310N65N75 Ex09 99 7 2233 7 1 1
N50G7N,10N25N35N410N35N610N75 ExlO 96 7 2243 7 1 1

+
a

N50G7N110N25N35N45N510N610N75 ExOl F2-F3 -F 5 -F7-F 4-F1 -F 6

NSOGTN^ONiSNsSKtlONsSNftlON^ Ex02 F2-F3-F5-F7-F4-F1-F6

N50G7N110N25N,5N45N,10N65N710E x03 F2-F3-F5-F4-F7-F1-F6
N50G7N15N210N35N45N510N610N75 Ex04 F2-F1-F5-F7-F4-F3-F6

N50G7Nj 10N25N35N47N33N6 1 ON, 10 Ex05 F2-F6-F1-F4-F7-F4-F5

N50G7N,10N210N35N45N35N65N710 Ex06 F2-F1-F4-F3-F7-F5-F6

N50G7N, 10N23N32N41 ON,! ùnsi 0N75Ex07 F3-F6-F5-F7-F4-F1-F2-
N 5 OG 7N11 ON 25N 35N48N 32N6 1 ON 710 Ex08 F2-F6-F1-F4-F7-F3-F5
N50G7N,10N25N315N45N35N65N75 Ex09 F2-F6-F3-F7-F4-F1-F5

N50G7N,10N25N35N410N35N610N75 ExlO F2-F3-F5-F7-F4-F1-F6
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APPENDIX B 

OUTPUT FROM CHENG’S ALGORITHM

CHENG’S ALGOR1THM
*

a k* f ( k V ) CPU time

N3G0Ex01 2-3-1 8 1.7 0.1
N3G0F.x02 1-3-2 6 0.8 0.1
N3G0Ex03 1-3-2 14 1.3 0.1
N3G0Ex04 1-3-2 _JL3_ 2.9 0.1
N3G0Ex05 2-1-3 10 1.4 0.1
N3G0Ex06 3-1-2 6 0.7 0.1
N3G0Ex07 1-3-2 7 1.1 0.1
N3G0F.x08 2-1-3 __5_ 0.7 0.1
N3G0Ex09 2-3-1 ........  1 1.2 0.1
N3G0Exl0 3-1-2 8_ 0.4 0.1
N3G0Exl 1 3-1-2 8 1.1 0.1
N3G0Exl2 1-2-3 9 2.2 0.1
N3G0Exl3 1-3-2 _ 8_ 0.8 0.1
N3GOExl4 3-1-2 10 0.7 _  0 J __________

N3G0Exl5 2-1-3 19 1.7 0.1
N3G0Exl6 2-1-3 8 1.2 0.1__
N3G0Exl7 1-2-3 14 2.3 0.1 __
N3G0Exl8 3-2-1 15 1.9 0.1
N3G0Exl9 1-3-2 12 1.3 ... 0.1
N3G0Ex20 JL-2-3 15 1.1 .0.1_____
N3G0Ex21 1-2-3 5 0.8 0.1
N3G0Ex22 3-1-2 9 1 ... 0.1
N3G0Ex23 1-3-2 5. 0.5 0.1
N3G0Ex24 3-1-2 4 0.8 0.1
N3G0Ex25 2-3-1 5 0.8 0.1
N3G0Ex26 3-1-2 7 0.7 0 1
N3G0Ex27 3-1-2 3 0.6 0 1
N3G0Ex28 3-1-2 4 0.7 0 1
N3G0Ex29 3-1-2 4 0.5 0.1
N3G0Ex30 3-1-2 4 1.1 0.1
N3G0£x31 2-1-3 11 2.1 0.1
N3G0Ex32_ 3-2-1 11 2.7 0.1
N3GOEx33 .3-1-2 12 1.9 0.1
N3G0Ex34_ 2-3-1 9 0.8 0.1
N3G0Ex35. 3-1-2 14 2.2 0.1
N3G0Ex36 3-1-2 __ 8 1.2 0.1
N3G0Ex37 2-3-1 8 1.3 0.1
N3G0Ex38 3-1-2 10 2.2 0.1
N3G0Ex39 2-1-3 9 0.7 0.1
N3G0Ex40 1-2-3 6 0.7 0.1
N3G0Ex41 2-1-3 8 10 0.1

.. .JCG0Ex42... 1-3-2 —5 1.3 0.1
N3G0Ex43 3-2-1 15 4 2 0.1
N3G0Ex44_ 3-1-2 _11 1.1 0.1
N3G0Ex45 J -2 -3 7 1.1 0.1

103



CHENG’S ALGORITHM*
a k ' f ( k V ) CPU time

N4GOExO 1 2-3-4-1 5 0.9 0.2
N4G0F.x02 4-1-2-3 8 1.5.... 0.2
N4C.0Ex03 2-1-4-3 8 0.9 0.2
N4G0Ex04 4-2-1-3 .... 8 1.5.... 0.1
N4G0Ex05 3-1-4-2 9 1.1.. 0.2
N4G0F.x06 2-4-3-1 6 0.6 0.2
N4G0Ex07 3-4-1-2 7 1.2 0.1
N4G0Ex08 4-1-2-3 6 0.8 _ 0.2
N4G0Ex09 4-2-1-3 __ 11 1.4 0.2
N4G0F.X 10 4-2-1-3 .._ 12 1.8 0.2
N4G0Exl 1 3-1-2-4 5 0 7 0 2
N4G0F.x12 4-3-2-1 9 1.6 0.1
N4G0Exl3 4-3-1-2 9 1.2 0.2
N4G0Exl4 2-4-1-3 13 1 2 0.2
N4G0Ex15 2-4-1-3 19 22.. 0.2
N4G0Exl6 . 1-2-3-4 17 3.2 0.2
N4G0F.xl7 4-1-2-3 15 1.8 0.2
N4G0F.x18 3-2-4-1 18 1.9 0.2
N4_G0Exl9.__ 2-1-4-3 14 1.6 0.2
N4G0F.x20 2-1-3-4 16 1.6 0.2

4-3-1-2 19 2.2 _ 0.1
N4G0F.x22 4-3-1-2 16 1.8 0 1
N4G0Ex23 4-3-2-1 15 2.1 0.1
N4.G0Ex24 2-3-4-1 13 1.9 0 1
N4G0Ex25 4-3-2-1 9 0.9 0 1

4-3-1-2 8 1.1 0.1
N4G0Ex27 2-4-3-1 16 3.8 . 0.1

4-3-1-2 11 2J3 . 0.1
N4G0Ex29 2-3-1-4 14 1.9 0 1
N4G0Ex30 4-1-3-2 __ 9 1.3 0.1
N4G0Ex31 3-1-2-4 17 2.1 0.2
N4G0Ex32 1-2-3-4 12 1.7 0.2
N4G0Ex33 2-3-4-1 9 1.3 0.2
N4G0Ex34 4-2-3-1 12 L 2_ 0.2
N4G0Ex35 1-2-4-3 19 P 0.2

__ N4G0Ex36 2-4-3-1 11 1.3 0.2
N4G0Ex37 4-3-2-1 13 2.5. 0.2
N4G0Ex38 1-2-3-4 11 1.5 0.2
N4G0Ex39 2-4-1-3 11 1.2 0.2
N4G0Ex40 3-4-1-2 14 1.9 0.2
N4G0Ex41 1-4-3-2 10 2.1 0.2
N4G0Ex42 . 4-1-3-2 19 2.3.... 0.2
N4G0Ex43 _2=_4-3-l _. 15 1.8 0.2
N4G0Ex44 ._ 1-2-4-3 ._ 15 2.4 0 2

_N4G.0£x45. .. .1-2-4-3 13 1.7 0.2 ..
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CHENG’S ALGORITHM*
a f(k V ) CPU time

N5G0F.x01 3-4-5-1-2 9 __ 2.3 0.3
N5G0Ex02 5-1-4-3-2 9 1.7 0.3
N5G0Ex03 4-3-1-5-2 15 1.7 0 3
N5G0F.x04 5-3-1-4-2 11 2.3 0.2
N5G0Ex05 1-5-3-4-2 13 1.6 0.2
N5G0Ex06 4-5-2-1-3 7 2.2 0.2
N5G0Ex07 5-4-3-1-2 13 1.4 _ 0.2
N5G0F.x08 5-2-4-1-3 17 _ 2.9 0 .3 ....... .
N5G0Ex09 5-1-4-2-3 12 1.7 03
N5G0F.xl0 2-5-4-1-3 10 ... 2.7 0 3
N5G0F.xll 5-4-3-1-2 18 3 0.3 . ...
N5G0Exl2 4-3-2-1-5 13 1.8 0.2
N5GOEx13 5-4-1-3-2 11_ 1.5 0.2
N5G0F.x14 1-4-5-3-2 9 1.1 0.2
N5GOF.xl5 5-3-4-2-I 20 2.8 0.2
N5G0Exl6 3-5-4-1-2 14 2 0.3
N5G0Ex17 4-2-1-3-5 10 1.3 0 2
N5G0Exl8 5-4-2-3-1 11 1.7 0.2
N5_G0Exl9 ... 4-5-2-1-3 20 2.5 0.2
N5G0Ex20 5-3-4-1-2 14 2.2 0.2
N5GOEx21 5-3-4-2-1 16 1.6 0.3
N5C.0Ex22 4-2-3-1-5 13 2.5 0.3
N5_GOEx23 5-1-2-3-4 14 1.7 0 3
N5G0Ex24 5-4-1-2-3 17 1.6 03
N5G0Ex25 2-4-3-5-1 9 2 0 3
N5G0Ex26 4-5-1-3-2 12 1.5 0.3
N5G0Ex27 5-4^2-3-1 14 1.5 0 3
N5G0Ex28 3-5-4-1-2 11 2 03

2-5-1-3-4 22 __ 3 6 03
N5G0Ex30 4-1-5-2-3 10 3.8 0 3
N5G0Ex31 1-5-2-3-4 13 1.4 0.3
N5G0Ex32 5-3-2-4-1 11 1.7 0.3
N5G0Ex33 3-5-1-4-2 26 4 1 0.3
N5G0Ex34 4-3-2-1-5 14 2.8 0.3

. ...N5G.QEx3.5 4-3-5-1-2 27 4.3 _ 0.3
NlG0Ex36 . 4-2-3-5-1 14 4.2 0.3
N5G0Ex37 5-3-1-4-2 13 1.9 0.3
N5G0Ex38 ... 5-4-1-2-3 27 3.3 0.3
N5G0Ex39 5-4-3-2-1 27... 3.9 0.3
Ji5G0JEx40 4-5-2-3-1 20 2.7 0.3
N5G0Ex41 3-4-J-5-2 19 3.2 0 3

... N5G0Ex42.... 4-1-5-2-3 21 3 7 03
NiG0Ex43 3-4-2-1-5 ______ 9 _ 3 0.3
N5G0EM4 3-2-4-1-5 14 2.5 0 3
NiG0Ex45 3-2-J-4-1 . ........ 22 _. . 2.4 __ 0.3
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CHENG’S ALGORITHM*
a k* f ( k V ) CPU time

N6G0Ex01 4-6-1-3-5-2 12 2.1 0.3
N6G0F.x02 5-1-6-2-3-4 17 2.2 0 3
N6G0Ex03 6-5-3-1-2-4 14 2.2 .. 0.3
N6G0Ex04 1-2-3-4-5-6 15 2.1 0.4
N6G0F.x05 6-4-3-5-2-1 21. 2.7 0.3
N6G0Ex06 3-2-6-5-4-1 _ 15 __ 2.3 0.3
N6G0Ex07 5-4-1-3-6-2 15 _ 2.2 0.3
N6G0Fx08 4-2-3-5-6-1 15 2.3 0.4
N6G0Ex09 6-4-3-5-2-1 17 2.8 0.4
N6G0Exl0 6-4-3-5-2-1 15 3.6 0.4
N6G0Exl 1 5-6-4-3-1-2 13 2.2 0.4
N6G0F.x12 5-6-4-3-2-1 14 ... 2.2 _ 0.4
N6G0Exl3 5-2-3-4-6-1 10 2.4 0.4
N6G0Exl4 4-6-2-1-3-5 15 3.5 _ 0.4
N6G0Ex15 4-2-6-3-5-1 14 2.6 __ 0.4
N6G0Exl6 4-6-3-5-1-2 13 2.7 0.4
N6G0Exl7 2-6-3-4-5-1 13 2.8 0.4
N6G0Exl8 4-6-2-5-3-1 13 2.2 0.4 __
N6G0F.X 19 6-5-2-3-1-4 13 2.2 0.4
N6G0Ex20 6-5-3-4-2-1 13 2.2 0.4
N6G0Ex21 6-5-4-3-2-1 21 3 0.4
N6G0Ex22 6-2-1-4-5-3 24 3 5 0.4
N6G0F.X23 2-6-3-4-5-1 . 12 3.1 0.4
N6G0Ex24 6-5-4-3-2-1 11 2 0.4
N6G0Ex25 ... 6-4-1-3-2-3 18 2.6 0.4
N6G0Ex26 6-2-3-5-4-1 13 2.3 0 4
N6G0Ex27 6-5-3-4-2-1 21 3.6 0 4
N6G0Ex28 6-5-2-4-1-3 25 3.4 0 5
N6G0Ex29 4-5-3-1-2-6 22 4.2 0 5
N6G0Ex30 5-3-6-2-1-4 23 4.2 0.5
N6G0Ex31 1-4-6-2-3-5 17 3.5 0 5
N6G0Ex32 6-1-4-5-2-3 19 3.2 0.4
N6G0Ex33 3-6-2-1-4-5 18 2.8 0.4
N6GOEx34 2-1-5-6-4-3 21 3.5 0.4
N6GOEx35 6-3-5-2-4-1 15 2.4 0.4
N6G0Ex36 2-3-6-5-4-1 12 2.2 0.4
N6G0Ex37 2-4-1-5-3-6 21 3.9 0 4
N6G0Ex38 5-6-1-2-4-3 20 2.7 0 4

__ N6G0Ex39 6-5-1-4-2-3 17 2.4 0 4
__ N6G0Ex40 2 -6 -5 -3 -1-4 20. 4.2 0.4

N6G0Ex41 5-1-6-4-3-2 21 2.9 0.4
N6G0Ex42 6 -L ^ 5 -2 -4 10 1.8 0 4
N'6G0Ex43 6-3-2-1-5-4 23 3.3 0.4
N6G0F.x44 2-4-6-1-5-3 17 3.5 0.4
N6G0Ex45 5-6-4-1-2-3 17 2.6 .. 0.4 . ..
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CHENG’S ALGORITHM*a k* CPU time

N7G0Ex01 6-3-2-1-7-5-4 15 2.0 0.8
N7G0Ex02 5-3-2-7-1-4-6 15 2.75

00o

N7G0Ex03 7-1-4-2-3-5-6 17 2.55 0 8
N7G0Ex04 7-2-6-4-1-3-5 18 3.15 0 8
N7G0Ex05 7-6-3-4-5-1-2 21 3 0.8
N7G0Ex06 6-5-4-3-2-1-7 27 3.45 0.8
N7G0Ex07 7-3-6-4-5-2-1 19 3.9 0.8
N7G0Ex08 3-2-4-7-5-1-6 19 3 8 0.8
N7G0Ex09 7-6-5-2-4-1-3 23 3.45 0.8
N7G0Ex10 4-6-7-5-2-1-3 16 2.65 0.8
N7G0Ex1 1 6-5-4-3-2-1-7 26 3.25 0.8
N7G0Ex12 7-2-1-4-3-5-6 15 2.45 0.8
N7G0Ex13 6-5-4-1-2-7-3 21 3.7 0.8
N7G0Exl4 6-5-2-3-1-4-7 16 3.3 0.8
N7G0Exl5 4-1-5-7-3-6-2 18 3.65 0.8
N7G0Ex16 5-4-2-6-3-7-1 15 2 8 0.8...
N7G0Exl7 7-4-6-5-1-2-3 23 3.75 0.8
N7G0Exl8 6-4-5-2-3-7-1 20 3.25 0.8
N7G0Ex19 7-3-4-6-5-1-2 19 2.9 0.8
N7G0Ex20 4-5-7-6-3-2-1 19 3.15 0.8
N7GQEx21 7-5-6-2-4-1-3 15 2.75 0.8
N7G0Ex22 6-2-4-5-3-1-7 14 2.6 0 8
N7G0Ex23 4-6-5-1-7-3-2 21 3.1 0 8
N7GOEx24 6-4-5-2-1-7-3 18 3.15 0.8
N7G0Ex25 5-6-7-1-4-2-3 21 3.5 0.8
N7G0Ex26 2-3-5-4 6-1-7 16 2.7 0.8
N7G0Ex27 5-4-2-6-7-3-1 14 2.2 0.8

1-6-4-2-3-5-7 18 2 8 0.8
N7GOEx29 3-5-2-7-1-4-6 16 2 5 0.8
N7G.QJEx30 6-7-I-3-4-2-5 23 3.5 0.8

....N7GQEx3) 7-2-1-6-3-5-4 15 . 2.8 0.8
N7GQEx32 3-6-7-4-5-1-2 30 10.3 0.8

_N_7GQEx33___ 3-4-2-7-1-6-5 31. 5.05 0.8
.N7.GflEx34 7-6-2-1-3-4-5 40 5.95 0.8
N7GQEx35 6-7-4-5-2-3-1 27. 6 1 0.8
N7G0Ex36 5-4-3-6-7-2-1 22 3 85 0.8

.._..N7GQEx37 4J-2-3-5-7-6 . 27 3 85 0 8
_N7GQEx38. ... 1-6-4-2-7-5-3 24 4.65 0.8

. N7GQEx39 7-4-3-1-2-6-5 30 5.55 0.8
N7G0Ex40 4-3-6-1-7-2-5 29 3.85 0 8
N7G0Ex41 7-4-3-5-6-2-1 16 2.7 0.8
_N.7_G0£x42.. . 7-2-1-6-5-4-3 19 395 0.8

... N7GQEx43 1-6-2-7-5-4-3 20 3.15 0.8
N7GQEx44 1-2-4-6-7-3-5 17 2.7 0.8
N7G0F.x45 1.-6-7-3-5-4-2 . 19 3.1 00O
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APPENDIX C
MPS FORMAT

NAME NEOMIP 
ROWS 
N COST 
G LIM1 
G LIM2 
G LIM3 
G LIM4 
G LIM5 
G LIM6 
G LIM7 
G LIM8 
G LIM9 
G LIM10 
G LIM11 
G LIM12 
G LIM13 
L LIM14 
L LIM15 
L LIM16 
G L1M17 
E LIM18 
E LIM19 
COLUMNS

El LIM1 1 0
E2 LIM2 1 0
E3 LIM3 1 0
E4 LIM4 1 0
T1 LIM5 1 0
T2 LIM6 1 0
T3 LIM7 1 0
T4 LIM8 1 0
PI1 LIM9 1 0
PI1 LIM11 1 0
PI3 LIM13 1 0
PI3 LIM15 1 0
PI3 LIM1 -1 0
PI3 LIM5 1 0

MINIMISE

COST 10 
COST 1 0 
COST 1 0 
COST 1 0 
COST 10 
COST 1 0 
COST 10 
COST 1 0 
LIM10 1 0 
LIM12 1 0 
LIM14 10  
LIM16 1 0 
LIM2 -1 0 
LIM6 10
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P14 L1M17 1 0 LIM4 1 0
PI4 LIM8 -1 0 LIMI 8 1 0
PI2 LIM 17 -1 0 LIMI -1 0
PI2 LEM5 1 0 LIMI 9 1 0
PI LIM9 -1 0 LIMI 3 -1 0
P2 LIMI0 ■-1 0 LIM14 -1 0
P2 LIM19 1 0
P3 LIM11 -1 0 LIMI 5 -1 0
P3 LIM 18 -1 0
P4 LIM12 -1 0 LIM16 -1 0

RHS
RHS1 LIMI -0 45 LIM2 -0 45

RHS1 LEM3 -0 45 LIM4 -0 45
RHS1 L1M5 0 45 LIM6 0 45
RHS I LIM 7 -0 45 LIM8 0 45
RHS1 L1M9 00
RHS1 L1M10 00 LIM11 00
RHS1 LIM12 00 LIMI 3 00
RHS1 LIM14 00 LIMI 5 00
RHS1 LIMI 6 00 LIMI 7 00
RHSI LIM 18 00 LIMI 9 00

BOUNDS
FX BOUND 1 PI 1 0 
FX BOUND 1 P4 10 0
FX BOUND 1 P2 3 0
FX BOUND1 P3 6 0
ENDATA
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OUTPUT FROM SCICONIC PACKAGE

ITERATIONS OBJECTIVE INFEASIBILITIES 
0 0 000000 31 350000( 10) 0 02
7 10 550000 0 000000( 0) 0 03

SOLUTION IS OPTIMAL 
NAME ACTIVITY DEFINED AS

FUNCTIONAL 10 550000 COST
RESTRAINTS RHS1
BOUNDS BOUND 1

ROW AT ACTIVITY
N COST BS 10 550000
G LIMI LL -0 450000
G LIM2 LL -0 450000
G LIM4 BS 6 000000
G LIM5 BS 4 000000
G LIM6 BS 1 000000
G LIM8 LL 0 450000
G LIM9 BS 9 000000
G LIM10 BS 7 000000
G LIM11 BS 4 000000
L LIMI 4 BS -2 000000
L LIMI 5 BS -5 000000
L LIM16 BS -9 000000
G LIMI 7 BS 3 000000
*** END OF ROWS ***
COLUMN AT ACTIVITY

El BS 3 550000
E2 BS 0 550000
T4 BS 6 450000
PII BS 10 000000
PI3 BS 1 000000
PI4 BS 6 000000
PI2 BS 3 000000
PI LL 1 000000
P2 LL 3 000000
P3 LL 6 000000
P4 LL 10 000000

*** END OF COLUMNS ***
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APPENDIX D
INPUT DATA FOR TEST EXAMPLES FOR BOTH ALGORITHMS

ti t2 t3 Wi W 2 W 3

N3G0Ex01 4 5 3 0.2 ... OJL I 0.5
N3G0Ex02 6 2 1 . (16 0.2 0.2
N3G0Ex03 5 4 9 QJL . __0JL _ 0.8
N3G0Ex04 6 5 7 0.2 0J 0.5
N3G0Ex05 2 8 4 0,4 0.5 0.1_

1 2 5 CL6 0J 0.1
N3G0Ex07 4 2 3 CL3 _ 0J 0.6
N3G0Ex08 1 4 5 0.7 0.2 0.1
N3G0Ex09 2 4 3 „ QJ 0.2 0.5
N3G0Exl0 2 2 6 0.8 0.1 0.1 _
N3G0Exl 1 3 2 0.6 0.1 0.3
N3G0Exl2 5 4 6 0.4 QJ O.L_
N3GOExl3 5 „ J 3 . 0J2 _ 0 2 0.6
N3G0Exl4 3 2 7 0.7 0,2 ..QJL...
N3G0Exl5 8 11 _____ 9 CL8 . 0.1 0
N3G0Ex16 2 6 4 05 0.4. O X
N3G0Exl 7 9 5 8 L._qj_ 0.6 . O.L .
N3G0Exl8 7 6 9 0 1 0.7 0.2
N3G0Exl9 5 3 7 OJ . 0.2 0.7
N3G0Ex20 11 4 7 0 1 0.8 0.1
N3G0Ex21 4 1 5 0 J 0.6 0.1
N3G0Ex22 2 6 7 0.7 0.1 0.2
N3G0Ex23 5 3 1 08 0 J 0.1
N3G0Ex24 1 2 4 0.2 0.2 0.6
N3G0Ex25 1 3 _ 2 0.2 0.3 0.5
N3G0Ex26 2 1 5 0.5 0.3 0.2
N3G0Ex27 1 2 ... . 2 0j5 0.2 0.2
N3G0Ex28 2 1 2 0.5 OJ 0.2
N3G0Ex29 1 2 3 0.6 0.1 0.3
N3G0Ex30 3 _ _ 2 1 0.5 0.4 0.1
N3GOEx31 4 7 5 0.5 0.4 0.1
N3G0Ex32 5 7 4 0.4 0.5 0.1
N3GOEx33 7 4 5 0.6 0.3 0.1
N3G0Ex34 1 6 3 0.2 0.2 0.6
N3GOEx35 6 4 8 0.5 0.4 0.1
N3G0Ex36 4 2 _  4 QJ 0.4 0.1
N3G0Ex37 2 5 3 0.2 0.3 0.5
N3G0Ex38 6 2 4 05 0.2 0.3
N3G0Ex39 4 5 1 0.6 0.1 0.3
N3G0Ex40 5 1 3 0.4 0.5 0.1
N3G0Ex41 2 6 2 05 0.4 0.1
N3G0Ex42 ___ 5 3 1 0.6 0.3 OJ
N3G0Ex43 8 10 5 0.4 05 0.1
N3G0Ex44 5 3 6 QJ 02 0.1

..N3G0Ex45 4 __ . 3 2_ 0.2. .. QJ _ D J
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ti Í2 t3 U
N4C.0F.x01 1 2 3 1
N4C.0F.x02 3 2 4 ... 5
N4G0F.x03 3 2 .... 5 1
N4G0F.x04 2 5 2 . 3 _
N4C.0F.x05 5 3 4 1
N4GOF.X06 3 4 1 1
N4G0F.X07 1 ..............2 3 4 .
N4G0Ex08 2 1 2 4
N4G0F.XÛ9 2 4 2 5
N4C.0F.xl0 3 4 2 5
N 4G 0Exll 2 1 3 1
N4G0F.X12 3 1 5 4
N4GOExl3 2 1 3 4
N4C.0F.xl4 1 3 6 10
N4C.0F.xl 5 3 10 4 6
N4C.0F.xl6 1 7 4 . 6
N4C.0Exl7 1 4 7 11
N4GOF.X18 2 6 12 1
N4G0Exl9 8 5 4 1
N4G0Ex20 5 10 1 ..... 2 ...
N4G0Ex21 3 4 6 10
N4C.0F.x22 1 4 10 6
N4G0Ex23 4 3 5 10
N4G0Ex24 3 6 7 1
N4G0Ex25 4 1 2 6
N4C.0F.x26 1 3 2 6
N4C.OF.x27 2 6 4 1
N4G0Ex28 1 3 5 6
N4G0Ex29 2 .6 8 _ 5
N4G0Ex30 4 ____3 1 5 _
N4G0Ex31 6 2 9 7
N4G0Ex32 5 7 3 4
N4G0Ex33 6 6 3 2
N4G0Ex34 4 .............  5 1 6
N4G0Ex35 8 _  .......__6 7 5
N4G0Ex36 4 6 2 .... 5
N4G0Ex37 9 3. 5 8
N4G0Ex38 7 4 3 2
N4G0Ex39 1 _  _ ....6 3 5

. N4G0Ex40 2 7 8 _  4
N4G0Ex41 6 5 3 4
N4G0Ex42 _  6 5 4 9
N4G0Ex43 4 7 3 8
N4G0Ex4_4 9 6 8 5
N4G0Ex45 ... 7 . .....  6 5 2
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Wi w: W3 W4
N4G0Ex01 0.1 0.3 0.5 0.JL ..
N4G0Ex02 0.3 0.5 _ 0.1 _ _ o.l
N4G0Ex03 0.5 0.1 ... 0.1 „0.3
N4G0Ex04 0.3 0.5 ... 0.1 0.1
N4G0Ex05 0 6 0.1 0.1 0.2.
N4G0Ex06 0.1 0.1 0.7 0.1
N4G0Ex07 0.1 0.1 0 2 .... 0.6. .
N4G0Ex08 0.6 0 1 0.1 ... 0.2.
N4G0Ex09 0.5 0.3 0.1___ .. 0 .1  .
N4G0ExI0 0.5 0.3 0.1 0 .1 ............
N4G0Ex11 0.5 0.3 0.1 0.1
N4G0Exl2 0.1 0.2 0.5 0.2
N4G0Exl3 0.5 0.1 0.3 0.1
N4G0Exl4 0.1 0.1 0.3_ 0.5
N4G0Exl5 0.5 0.1 0.1 0.3
N4G0Ex16 0.2 0.5 0.2 0.1
N4G0Ex17 0 5 0.1 0.1 0.3
N4G0Ex18 0.2 0.5 0.2L 0.1
N4G0Exl9 0.3 0.1 0.1 0.5
N4G0Ex20 0.2 0.2 0.5 0.1
N4G0Ex21 0.5 0.1 0.3 0.1
N4G0Ex22 0.3 0.1 0.5 0.1
N4G0Ex23 0.1 0.3 0.5 0.1

0.1 0.2 0.6 0.1
N4G0Ex25 0.1 0.6 0.2 0.1
N4G0Ex26 0.1 0.1 0.5 0.3
N4G0Ex27 0.1 0.2 0 3 0.5
N4G0Ex28 0.1 0.1 0.5 0.3
N4G0Ex29 0.2 0.1 0.6 0.1
N4G0Ex30 0.6 0.1 0.1 0.2
N4G0Ex31 0.3 0.5 0 1 0.1
N4GOEx32 0 1 0.7 0.1 0.1
N4G0Ex33 0.1 0.1 0.7 0.1
N4G0Ex34 0.1 0.2 0.6 0.1
N4G0Ex35 0.1 0.3 0.1 0.5
N4G0Ex36 0.1 0.1 0.1 0.7
N4G0Ex37 0.1 0.1 0.6 0.2
N4G0Ex38 0.1 0.6 0.2 0.1
N4G0Ex39 0.3 0.1 0 .L 0.5
N4G0Ex40 0.5 0.1 0 1 0.3
N4G0Ex41 0.1 0 1 0 3 0 5
N4G0Ex42 0.2 0.1 0 6 0.1
N4GQEx43 0.1 0.1 0.1 0.7
N4G0Ex44 0.1 0.7 0.1 . 0 . 1

N4G0Ex45 0.1 „0.6 0.1 . .... 0.2 ..
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ti h t3 Í4 t5
NSGOExOl 1 3 6 10 2
N5G0Ex02 3 4 2 1 6
N5G0Ex03 2 4 5 8 1
N5G0Ex04 1 4 6 2 5
N5G0Ex05 6 3 2 1 5
N5G0Ex06 2 1 4 6 10
N5G0Ex07 1 2 3 4 5
N5G0Ex08 2 4 5 1 10
N5G0Ex09 4 2 6 1 8
NSGOExlO 2 6 4 5 4
NSGOExll 2 4 2 8 _ 10
N5GOExl2 2. __ 1 6 7 4
N5GOExl3 1 3 2 5 6
N5GOExl4 4 2 1 3 _ 2 .
N5GOExl5 2 .... 4 2 6 8
N5G0Exl6 2 5 6 1 8
N5GOExl7 1___ _ 3 2 6 4
N5GOExl8 6 1__ 2 4 7
N5GOExl9 1 5 7 8 6
N5G0Ex20 3 4 6 2 8
N5GOEx21 6 2 4 1 9
N5G0Ex22 2. 4 1 6 5
N5GOEx23... 3 2_ 1 6 9
N5G0Ex24 _ 2 ... 1_ 4 6 8

.. N5G0Ex25 3 4 1 5 2
2 4 I 6 3

N5G0Ex27 4 2 1 5 6
N5GOEx28 2 4 5 1 6
N5G0Ex29 4 10 5 6 8
N5G0Ex30 10 6 7 9 3
N5G0Ex31 6 3 1 2 4
N5GOEx32 4 1 5 2 6

_ N5_G0Ex33 6 1Q_ 11 5 9
_ N5GOEx34 . 3 2 4 10 8

N5GOEx35 6 8 9 11 7
N5GOEx36 5 8 7 6 4

_ N5G0Ex37 3 5 4 2 6
_ N5GOEX38 6 4 5 8 9
_..N5GOEx39 7 4 6 8 9
_ N5G0Ex40 6 4 _ 1 8 7

N5G0Ex41 4 8 9 6 5
. N5G0Ex42 _6 4 8 10 5

N5GOEx43 4 3 6 8 5
N5G0Ex44 _4__. 5 7 2 6

Ji5_GQEx4.5 .4 8 9 1 5
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W] w2 w3 W4 w5
N5G0Ex01 0.1 0.1 0.1 0.5 0.2
N5G0EXÛ2 0.5 0.1 0.1 0.1 0.2
N5G0Ex0î 0.5 0.1 0.2 0.1 0.1

. N5G0Ex04 0.1 0.1 0.5 0.1 0.2

. N5G0ExQ5 0.1 0.1 0.5 0.1 0.2

. N5G0Ex06 0.1 0.2 0.1 0.1 0.5
N5G0EXÛ7 0.1 0.6 0 1 0.1 0 1

. N5G0Ex08 JDJL 0.6 0 1 0.1 0.1
N5G0Ex09 0.6 0.1 0.1 0.1 0 1
N5GOExlO 0.1.. _  - 0.1 . _  _0.1 0.5 0.2

. N5G0ExH... 0.1 0.1 0.1 ... 0.5 0.2
M5_G.QExl2 0.1 0.2 0 5 0 1 0 1
N5GOExl3 0.1 0.1 0 1 _ 0.6 0.1
N5.G.QEX14 0.1 0.1 0 1 0.1 0.6

_JN5G£>Exl5 0.1 0.2 0 1 0.5 0 1
N5G0Exl6 0.1 0.1 0.1 0.1 0 6
N5G0ExU. 0.6 0.1 0.1 0.1 0 1
N5G0ExL8 0.1 0.1 ____ 0.1 0.6 0.1

..N 5G 0Exl9 0.1 0.6 0 1 0.1 0.1
_hL5G0Ex2_0 -0.L ____ 0,1 0 6 0 1 0.1

N5G0Ex2J. 0A_ 0.1 0.1 0.6 0.1
N5G0Ex22 0.1 0 6 0 1 0 1 0.1

...N5G0Ex23. 0.2 0 5 0 1 0.1 0 1
_.N5.G0Ex2_4 . 0.6 0.1 _ 0.1 . 0.1 0 1

,N5.G0Ex25.. 0.1 0.2 0.1 0 5 0.1
N5..G.0Ex26... 0.2 0.1 . 0.5 0.1 0 1
N5G0Ex27 . 0.1. 0.6 0.1 0.1 0.1

...N5G0Ex28 0.2 0.1 0.1 0 1 0.5
N5G0Ex29 0.5 0.1 0.1 0.1 0.2
N5GOEx3£) JX6 0.1 0 1 0 1 0 1

_N5GQEx31 0.1 0 6 0.1 0 1 0.1
_N5.G.0Ex32 0.1 0.2 0.5 0.1 0 1
_N5.G.QEx33 0.6 ____ 0.1 0.1 0.1 0 1
_M5G.0Exl4. 0.1 ____ 0.1 0.5 0.2 0 1
...N5GOEx35 0.1 0.1 0.1 0.1 0 6

N5GOEx3_6 0.2 0.5 0.1 0.1 0 1
N5G0EX.3J .0.6 0.1 0.1 0.1 0.1
JM5.G.QEx38 0.6 0.1 0.1 0.1 0.1
N5G0Ex39 0.1 0.2 ... 0.5 0.1 0 1

_N5G.QEx4D 0.1 0 5 0.1 0 1 0 2
N5G0F.x41 0.6 0.1 0 1 0.1 0 1

„N5G0EX42 .0.2 _ _ 0.1 0.1 0.1 0.5
...N5G0Ex43 0.1 0.1 0.1 0.6 0 1
_N5G0Ex44 0.1 0.2 0.1 0.5 0.1
_R5G0Ex45 0.1 0.1 0.1 0.1 ____ 0.6

115



ti h t3 Í4 t5 te
NóGOExOl 4 3 1 5 2 3 _  _
N6G0Ex02 5 1 2 4 8 3 ... _
N6G0Ex03 1 2 3 _ _ 4 5 6
N6G0Rx04 8 4 2 1 3 4
N6G0Ex05 4 2 5 6 1 10
N6G0Ex06 3 5 6 2 .... 1 4
N6G0Ex07 2 4 1 _ 5 8 3
N6G0Ex08 3 5 4 6 1 2 _
N6G0Ex09 6 4 2 7 1 8
NóGOExlO 5 ... 3.. 2 6 1 7
N6GOExll 3 .. 4 1 2 6 5
N6G0Exl2 4 2 1....... . 3 6 5 ...
N6G0Ex 13 4 3 5 1 7 2
N6G0Exl4 3 . ... 1 4 6 5 9
N6GOExl5 4 3 1 5 2 ___.. 6
N6G0Exl6 3 4 1 6 2 ... 7
N6G0Exl7 4 5 1 _ 2 3 8
N6GOExl8 5 3 2 6 1 _4 _
N6G0Exl9 3 .2 . 1 5 4 7
N6G0Ex20 4 3 2 1 5 6 _

4 3 1 5 7 9
N6G0Ex22 6 7 9 1 2 10_ _

5 8 4 2 3 6 _
N6G0Ex24 4 3 1 2 3 6
N6G0Ex25 5 2 3 6 1 7
N6G0Ex26 5 3 4 .. 2 1 6 ......
N6G0Ex27 5 4 7 1 6 8
N6G0Ex28 4 3 7 1 IO 12
N6G0Ex29 3 4 1 IO 12 9
N6G0Ex30 4 1 5 6 8 10
N6G0Ex31 6 2 3 4 5 7
N6GOEx32 7 3 5 4 2 8
N6GOEx33 1 4 7 3 5 6
N6G0Ex34 6 8 7 3 5 2
N6G0Ex35 3 1 4 2 5 6
N6G0Ex36 5 6 4 3 1 2

_N6_G_0Ex37 8 4 6 2 5
N6GOEx38 4 _ 1 5 2 8 7
N6G0Ex39 3 2 6 1 5 8
N6G0Ex40 3 7 3 6 8 5
N6G0Ex41 7 3 2 1 8 6
N6G0Ex42 3 1 2 6 1 5
M6G0Ex43 2 . . . . 4 8 5 3 9

LN6G0Ex44 2 6 5 4 3 7
N6G0Ex45 .....  1 2 - 3 6 7„. 4____
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Wi W2 W3 W4 w5 W6

NóGOExOl 0.5 0.1 0.1 0.1 0.1 0.1
N6G0Ex02 _ QA 0.5 0.1 0.1 0.1 0.1
N6G0EXÛ3 0.1 0.1 0.5 0.1 0.1 0.1
N6G0Ex04 0.1 0.1 _ 0.1 0.5 0.1 0.1
N6GOEx05 0.1 0.1 0.5 0.1 0.1 0.1
N6G0Ex06 0,1 0.1 0.1 0.1 0.1 0.5
N6G0Ex07 0.5 0.1 0.1 0.1 0.1 0.1
N6G0Ex08 0.1 0.1 0.5 0.1 0.1 0.1
N6G0Ex09 0.1 0.1 0.5 0.1 0.1 0 1
NóGOExlO 0.1 0.1 0.5 0.1 0.1 0.1
N6G0Exl 1 0.1 0.1 _ 0.1 0.5 0.1 0.1
N6G0Exl2 0.1 0.1 0.1 0.5 0.1 0.1
N6G0Exl3 0.1 0.1 0.5 0.1 0.1 0 1
N6G0Exl4 0.1 0.1 0.1 0.1 0.1 0.5
N6GOExl5 0.1 0.1 0.1 0.1 0.1 0.5
N6G0Exl6 0.1 0.1 __ 0.1 0.1 0.1 0.5
N6G0Exl7 0.1 0.1 0.1 0.1 0.1 0.5
N6G0Exl8 CL1 0.5 0.1 0.1 0.1 0.1
N6G0Exl9 0.1 0.5 0.1 0.1 0.1 0.1
N6G0Ex20 QJ 0.1 0.5 0.1 0.1 0.1
N6G0Ex21 0.1 0.1 _ _0.1 0.5 0.1 0.1
N6G0Ex22 0.1 0.1 0.1 0 5 0.1 0.1
N6G0Ex23 A l 0.1 0.5 0.1 0.1 0.1
N6G0Ex24 0.1 0.1 0.1 0.5 0.1 0.1
N6G0Ex25 0.5 0.1 0.1 0.1 0.1 0.1
N6G0Ex26 0.1 0.1 0.5 0.1 0.1 0.1

_m3_QEx21 0.1 0.1 0.5 0.1 0.1 0 1
N6G0Ex28 .0,1 0.5 0.1 0.1 0.1 0.1
N6G0Ex29 0.1 0.1 0.1 0 1 0.5 0.1
N6G0Ex30 QA 0.1 0.1 0.1 0.1 0 5
N6GOEx31 0.1 0.1 0.1 0.1 0.1 0.5
N6GOEx32 0 1 0.1 0.1 0.5 0.1 0.1
N6GOEx33 0.5 0.1 0.1 0.1 0 1 0.1
N6GOEx34 0.1 0.1 0.1 0 1 0.1 0.5
N6GOEx35 0.1 0.1 0.1 0.1 0.5 0.1
N6G0Ex36 0.1 0.1 0.1 0.1 0.1 0.5
N6GOEx37 0.5 0.1 0.1 0.1 0.1 0.1
N6GOEx38 0.1 0.5 0.1 0.1 0.1 0.1
N6GOEx39 0.1 0.1 0.1 0.5 0 1 0.1
N6G0Ex40 0.1 _0.1 0.1 0.1 0.5 0.1
R6.G0Ex4l 0.1 0.1 0.1 0.1 0.1 0.5
N6G0Ex42 0.1 . _ 0.1 0 5 0.1 0.1 0.1
N6G0Ex43 0.5 0.1 0.1 0.1 0.1 0.1
N6G0Ex44 . 0,1 0.1 0.1 0.1 0.1 0.5
N6G0Ex45 0.1 0.1 0.1 0.5 0.1 0.1
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ti t2 t3 Í4 t5 U t7

N7G0Ex01 1 3 . 5 4 . . 2 6 1
N7G0Ex02 2 4 5 3 6 4 ____ ]____________

N7G0Ex03 4 1 2 5 3 __ 6 8
N7G0Ex04 2 6 4 1 3 5 _ 7
N7G0Ex05 2 4 _5_ 1 3 7 9
N7G0Ex06 3 2 4_ 6 8 9 4
N7G0Ex07 4 2 5 3 4 6 8
N7G0Ex08 4 5 8 6 2 4 3
N7G0Ex09 2 1 3 4 6 8 9
N7G0Exl0 4 2 6 3 5 - - 2 -_

M7G0Ex11 4 3 2 5 6 8 7
N7G0Exl2 3 6 ___ 2_ L __5_ _4 _ 5
N7G0Exl3 3 2 5 4 6 8 5
N7G0Exl4 2 3 _ i 4 _6 7
N7G0Exl5 4 5 3 6 7 2 1
N7G0Exl6 3 5 2 4 6 1 __ 3
N7G0Exl7 2 4 5 6 8_ 9
N7G0Ex18 4 1 3 5 8 7 2
N7G0Exl9 2 4 ß 5 3 1 8
N7G0Ex20 4 5 3 6 7 2_ 4
N7G0Ex21 1 3 4 5 4 6_ _

N7G0Ex22 2 5 4 3 1 6 _ 4_
N7G0Ex23 ___2 . .4 3 8 5 6 2
N7G0Ex24 1 2 3 6 5 7 4
N7G0Ex25 1 5 4 3 6 8 7
N7G0Ex26 4 6 5. 2 3 _ _1 4
N7G0Ex27 6 2 ___ 3 5 7 __ L 2
N7G0Ex28 6 1 ...2 7 3 5 4
N7G0£x29 2 3 8 4 5 6 1
N7G0Ex30 5 4 3 1 6 8 7
N7G0Ex31 3 5 2 6 4 _J 8
N7G0Ex32 6 8 LO 5 7 9 11
N7G0Ex33 __ 4 9 ___J2 10 8 5 3
M7GQEx34 8 7 3 9 6 10 15
N7G0Ex35 _ 4 6 8 7 3 11 9
N7G0Ex36 . ...... 7 3 5 8 9 2 4
N7_G_0Ex37 8 4 6 9 2 5 4

__N_7GOEx38 .8 3 5 10 4 6 2
N7G0Ex39 2 6 9 1.1 08 7 10
N7G..0Ex40 3 5 9 11 10 6 2
N7GQEx41 6 2 4 5 1 3 7
N7G0Ex42 6 5 7 4 2 3 8
N7.G0EX43 9 6 ... _4 3 1 5 2

,.N7G.QEx44 8 5 2 4 6 1 3
N7G0Ex45 7 .......3 _ 2 5 1 6 - 4
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Wl W2 W3 w4 W5 w6 W7

N7G0Ex01 0.5 0.1 . 0.1 0.1 0.1 0.05 0.05
N7G0Ex02 0.1 0.5 0.1 0.1 0.1 0.05 005
N7G0F.X03 0.1 0.1 0.1 0.5 0.1 005 0.05
N7G0Ex04 0.1 0.1 0.1 0.05 0.05 0 5 0.1
N7G0Ex05 0.05 0.05 0.5 0.1 0 1 _0.1 0.1
N7G0Ex06 0.1 0.1 . 0.5 0.1 0.1 0.05 0.05
N7G0Ex07 0.05 0.05. 0.1 0.1 0.1 0.5 0.1
N7G0Ex08 0.1 0.1 0.1 0.5 0.05 0.05 0 1
N7G0Ex09 0.05 0.1 0.05 0.1 0.5 0.1 ... 0.1
N7G0Exl0 0.1 0.1.. 0.05 0.05 0.5 0.1 0.1
N7G0Ex11 0 1 0.1 0.5 0.1 0.1 0.05 0.05
N7G0Exl2 0.1 0.1 0 1 0.5 0.1 0.05 005
N7G0Exl3 0.5__ 0.05 0.05 0.1 0.1..... 0.1 0.1
N7G0Exl4 0.1 0.1 0.5 0.1 0.1 0.05 0.05
N7GOExl5 0. 1. _ 0.1 0.1 0.1 0.5 0.05 0.05
N7G0Exl6 0.1... 0.1 0.5 0.1 0.1 . 0.05 0.05
N7G0Exl7 0.05_ 0.05 0.1 0.1 0.1 0 5 0.1
N7G0Exl8 0.1 0.1 0.1 0.5 0.Q5 0.05 0.1
N7G0Exl9 005 0.1 0.05 0.1 0.5 0.1 0.1
N7GOEx2Q 0.1 0 1 005 005 0.5 0 1 0.1
N7G0Ex21 0.1 0.1 0.5 0.1 0.1 0.05 0.05
N7G0Ex22 0.1 0.1 0.1 0.5 0.1 0.05 0.05
N7G0Ex23 0.5 0.05 0.05 0.1 0.1 0.1 0.1
N7G0Ex24 0.1... 0.1 0.5 0.1 0.1 0.05 0.05
N7G0Ex25 0.1 0 1 0 1 0.1 0.5 005 005
N7G0Ex26 .0,0.5 0.5 0 1 0.1 0 1 0.05 0 1
N7G0Ex27 0.1 0.1 0 1 0 1 0.05 0.5 0.05
N7G0Ex28 0.1 0.1 0.1 0.1 0.5 005 0.05
N7G0Ex29 ..0.05 0.05 0 5 0.5 0 1 0.1 0.1
N7G0Ex30 0.05 . 0.1 0.1 0.05 0.1 0 5 0.1
N7G0Ex31 0.05._ 0.1 0.05 0.1 0.1 0.5 0.1
N7G0Ex32 0.05 0.1 0.1 0.5 0.1 0.1 0.05
R7G0Ex3.3_ 0 .5 .. . 0.05 0.05 0.1 0.1 0.1 0 1

JS2G0Ex3.4 0 .0 5 .. 0.1 0.05 0.1 0.5 0 1 0.1
N7G0Ex35 0.1.._ 0.1 0.05 0 1 005 0.1 0 5

. JN7G0Ex3_6 .0.1 0.1 0.1 0.5 0 J 0.05 0.05
N7G0Ex37 0.05 0.5 0.05 0.1 0.1 0.1 0.1

. N7G0Ex38 0.05. 0.1 0.1 0.5 0.1 0.1 0.05
_M GQ Ex29 „ 0.1 .... 0.5 0.1 0.05 0 1 0.05 0.1
.. N7G0EX.4.Q 0.1 . 0.1 0.5 0.05 0.1 0.05 0.1
. N7G0EX41 0 .5 ... 0.1 0.1 0.05 0.1 0.05 0.1

N7G0Ex42.. 0.05 0.05 0.1 0.1 0.1 0.1 0.5
_._N2GQEx43 0.1. 0 5 0.05 0.1 0.05 0 1 0 1

N7G0Ex44 0.5 0.1 0.1 0.1 0.05 0 1 0.05
...N.lG0Ex45 _ 0.05 0.1 .0.1 . 0.5 0.05 0.1 0.1
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