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Abstract—Coastal and estuarine zones contain vital and in-
creasingly exploited resources. Traditional uses in these areas
(transport, fishing, tourism) now sit alongside more recent activ-
ities (mineral extraction, wind farms). However, protecting the
resource base upon which these marine-related economic and
social activities depend requires access to reliable and timely data.
This requires both acquisition of background (baseline) data and
monitoring impacts of resource exploitation on aquatic processes
and the environment. Management decisions must be based
on analysis of collected data to reduce negative impacts while
supporting resource-efficient, environmentally sustainable uses.
Multi-modal sensing and data fusion offer attractive possibilities
for providing such data in a resource efficient and robust manner.
In this paper, we report the results of integrating multiple sens-
ing technologies, including autonomous multi-parameter aquatic
sensors with visual sensing systems. By focussing on salinity
measurements, water level and freshwater influx into an estuarine
system; we demonstrate the potential of modelling and data
mining techniques in allowing deployment of fewer sensors, with
greater network robustness. Using the estuary of the River Liffey
in Dublin, Ireland, as an example, we present the outputs and
benefits resulting from fusion of multi-modal sensing technologies
to predict and understand freshwater input into estuarine systems
and discuss the potential of multi-modal datasets for informed
management decisions.

Keywords—multi-modal sensing, sensor networks, salinity, estu-
arine, data fusion, prediction and modelling.

I. INTRODUCTION

Environmental sensing technologies such as autonomous
sensors and wireless sensor networks (WSNs) are tools that
provide an opportunity to meet the challenges of monitoring
large geographical areas with high temporal frequency[1][13].
Such technologies are now reaching a stage in development
where technology maturation (including high performance and
reduced initial costs) enable collection of large datasets with
high temporal frequency[6][17]. However, there are substantial
challenges to widespread deployment of devices to collect data
on large spatial scales, and such goals are not yet achievable
in a cost-effective manner, particularly in aquatic monitoring
programmes. High installation and operating costs of deploy-
ment infrastructure coupled with sensor unreliability stemming
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from factors such as sensor drift and biofouling result in
inadequate spatial coverage of most aquatic zones[5][8]. Thus,
combining multiple technologies and sensing modalities in
environmental monitoring programmes can provide not only
advantages of redundancy and robustness for sensing systems,
but also enhanced understanding of environmental processes. A
vision of the form that such an integrated multi-modal sensing
system might take is illustrated in Figure 1. However, many
technical and economic hurdles still exist to seamless integra-
tion of sensing technologies in a cost-efficient manner in such
a system. Nevertheless, considerable advances can be made if
robust sensing technology can be combined with sophisticated
methods of data analysis, modelling and prediction.
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Fig. 1. An overview of the general strategy for integrating multiple data
streams from environmental sensing technologies in order to provide enhanced
outputs and decision making capabilities.

Ideally a multi-modal sensing system would integrate as
many sensing modalities as possible, i.e. remote sensing data
(e.g. satellite, radar), in-situ aquatic sensors (measuring dis-
solved oxygen levels, turbidity, current profiles etc.), visual
sensing (cameras), meteorological data and any other relevant
data. Access to such data sources can provide much greater un-



derstanding of a system than any one modality alone[10][11].
In this paper, we demonstrate, using in-situ measurements,
rainfall and tidal data sources as an example, how multi-modal
systems that combine visual sensing technologies with in-situ
multi-parameter aquatic sensing systems can be utilised to
provide enhanced environmental understanding and predictive
capability in an estuarine environment. This data can then be
utilised to provide information leading to improved manage-
ment decisions.

A. Importance of Salinity in Estuarine Systems

Intertidal environments in estuaries represent critical ex-
change environments for both marine and freshwater systems.
Salinity is the key tracer of freshwater input into coastal
zones and directly contributes to seawater density and circula-
tion patterns. However for environments like estuaries, where
large salinity changes can occur on a daily and/or seasonal
basis, prediction of levels is difficult. By their very nature
at the interface of marine and freshwater systems, estuaries
also exhibit considerable spatial and temporal heterogeneity
in environmental parameters, which complicates study and
understanding of transport processes. Characterisation of this
heterogeneity through isolated point samples is commonly
time-consuming, expensive and often unrepresentative. Ad-
ditionally, estuarine environments are dynamic and complex
systems where biotic and abiotic factors are often difficult to
model and predict[12][14]. Estuaries are therefore attractive
locations for integration of multi-modal sensing platforms[7].
Practical considerations such as ease of access to near-shore
infrastructure, readily available power supplies and commu-
nications mean that such zones are generally convenient for
testing and prototyping of novel systems.

A key requirement of estuarine and marine monitoring sys-
tems is the ability to predict water levels and changing freshwa-
ter inputs into any given system. Key goals include identifying
relationships between catchment rainfall and runoff in an estu-
ary, including the dominant forcing mechanisms affecting the
transport of stormwater within the estuary, estimating volumes
of storm water associated with high-precipitation events and
predicting residence times of storm water within the system
following monitored high-precipitation events. Understanding
effects of flow rates and salinity gradients within estuarine
systems are important when considering the effects of such
forces on both natural and anthropogenic systems[3][4]. For
example, large variations in freshwater influx into a system
can profoundly affect phytoplankton dynamics (perhaps related
to nutrient transport or stratification-destratification events),
or can significantly affect the probability of a flood event
occurring. The ability to continuously monitor salinity for
prediction and understanding of riverine discharge rates are
thus crucial to many environmental phenomena occurring in
otherwise complex estuarine systems. Unfortunately deployed
in-situ sensors are prone to failure and data losses are al-
most inevitable in monitoring programmes due to imposed
sensor downtime. Building redundancy into in-situ systems
by integration of external multi-modal sensing systems into
a complete and complementary sensing system can provide
advantages in system redundancy and data reliability.

II. SITE DESCRIPTION AND DATA COLLECTION
METHODS

A. Site Location and Characteristics

The River Liffey, flowing through Dublin City centre, is a
highly commercialised zone, critical in both connecting Dublin
and the island of Ireland to international maritime trade and
for numerous commercial and recreational activities. Poolbeg
Marina (latitude: 53°20°39”, longitude: -6°12’59”) is located
on the lower Liffey Estuary in a busy port environment (See
Figure 2). The estuary hosts a diverse ecosystem including
benthic communities, fish and shellfish, seabird populations
and marine mammals[16][18]. The area is also a zone of
passage for salmon and sea trout migrating to and from feeding
and spawning areas[2]. The topography of the estuary has
been greatly modified, and is constrained by walls along its
whole length and is regularly dredged to remove accumulated
sediments. The working site is located in the upper part of the
Estuary, where the ship traffic is less intensive. Average water
depth in the area is approximately 8m and the width of the
channel is approximately 260m. Due to the large amount of
activity at the site and its importance from an environmental
and ecological perspective, the site was equipped with a multi-
parameter in-situ sensor along with a visual sensing system.
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Fig. 2. Location of Poolbeg marina in the estuary of the Liffey River
catchment showing the location of both camera and the in-situ multi-parameter
sensor suite.

B. In-Situ Sensors

A multi-parameter sonde (YSI 6600EDS V2-2), equipped
to measure turbidity (NTU), optical dissolved oxygen
(mgL~'/%saturation),  temperature  (°C),  conductivity
(mSem™1), depth (m) and telemetry system (EcoNet) was
purchased from YSI Hydrodata UK. The sonde was deployed
at a depth of 2.5m from the water surface from the marina
at Poolbeg, and data was collected since st of Aug 2012
with a sampling interval of 15mins. The pontoon of the
marina at Poolbeg is a floating structure and therefore rises
and drops in agreement with water level fluctuations. Thus
the depth of the sensor remains constant with respect to the
surface but varies in depth with respect to the river bed at
this location. Thus, due to the fact the freshwater overlies the
saline marine waters, derived salinity readings from the sensor
reflect the relationship between the tidal state at any given



time and the amount of freshwater entering the estuary from
upstream. Temperature, dissolved oxygen and derived salinity
values were confirmed periodically using a ProPlus handheld
multi-parameter instrument (YSI Hydrodata UK) and turbidity
was validated using a portable turbidity meter Turb'> 430 IR
(VWR Ireland). Both hand held instruments were calibrated
in the laboratory prior to site visits as per manufacturer’s
protocols. Site visits were undertaken fortnightly in winter
and weekly in spring. Copper tape and mechanical wipers
(for the optical oxygen and turbidity sensors) were used to
control biofouling of sensor systems.

C. Visual Sensor

Along with the in-situ multi-parameter sonde, an [P66-Rated
outdoor network camera was also deployed at the site. This was
mounted on a pole at a height of 4.36m above the ground and
approximately 20m from bank wall. This position is suitable
for monitoring the shipping traffic while also being close to the
location of the sonde (See Figure 2 which shows the position
of the sonde and the camera at the marina). The visual sensor
continuously sends images back to a cloud server through 3G
mobile broadband at relatively low frame rate (approximately
1 frame every 10 seconds). However, due to an unreliable
network connection, this frame rate is not guaranteed.

III. EXPERIMENTS AND RESULTS

A. Salinity Prediction

1) Variability in Salinity Values as Measured by In-Situ
Sensors: Salinity values from the YSI 6600 EDS multi-
parameter sonde are reported as parts per thousand (ppt) and
the sensor electronics automatically reports derived salinity
values as ppt based on conductivity and temperature readings at
the time of measurement. Collected data revealed fluctuations
in these readings that reflected both tidal states (ebb versus
flood tide, neap versus spring tide) and freshwater runoff
volumes (rainfall or snowmelt) from stations in the Liffey
catchment area upstream (Figure 3). There was typically an
inverse pattern between stream flow and salinity at 2.5m depth.

Due to the fact that the in-situ sensor was positioned at
a mean depth of 2.5m below the water surface, independent
of tidal state and water height, the salinity readings obtained
were indicative of the depth of freshwater floating on top of a
denser high salinity (mean ~ 31.8ppt) layer. Thus, significant
increase in the freshwater input into the system at any point
in the catchment upstream resulted in an increase in the depth
of the freshwater layer at the sensor site that was indicated
by a corresponding decrease in the salinity values (< 30ppt)
measured by the in-situ sensor. The detection of such events
by the in-situ sensor is shown in Figure 4.
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Fig. 3. Profile data as recorded by CTD of salinity and temperature variation
with depth (top) (data from April 2011) and frequency distribution of salinity
values (n = 4000 data points) on-site at Poolbeg(bottom), during stable
conditions of low freshwater input, demonstrating the range of salinities values
with a mean of approximately 31.8ppt at 2.5m.
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Fig. 4. Graph of salinity data over one week, demonstrating decreases in de-
rived salinity values, indicative of an increase in the volume of freshwater and
the extension of the freshwater plume into the estuary following precipitation.



2) Methodology for Prediction of Salinity Values: A form
of non-linear regression and a meta-classification approach is
applied to develop the models. The output of a number of
regression trees are combined in order to produce the model
output. A regression tree[15] is a decision tree with linear
regression functions at the leaves. One of the limitations of the
regression tree approach is that it may be strongly influenced
by outliers. To overcome this issue, the technique of “bagging”
is adopted. This stands for “bootstrap aggregation” and it is
a type of ensemble learning. In this approach many bootstrap
replicas are generated from the dataset and decision trees are
grown on these replicas. The output of such an approach
for the predicted response is an average over predictions
from individual trees. The experiments are carried out using
WEKA! data mining software. A decision tree method known
as REPTree within WEKA is selected to build the prediction
model. REPTree is a fast decision tree learner, it builds a
regression (or decision) tree using information gain/variance
reductions. Unlike other regression tree algorithms such as
Random Tree, REPTree uses pruning to reduce error. In
the following experiments, the default parameters of bagging
REPTree in WEKA were used.

The in-situ data used for the following experiments were
measured by the multi-parameter sonde between Aug 21,
2012 and Nov 30, 2012 with sampling rate of 15mins. Tide
level data (sampling rate 15mins) was provided by the Irish
Marine Institute? and daily rainfall data was supplied by Met
Eireann®. Current sensor depth, dissolved oxygen, turbidity
were supplied as in-situ features to the model. This was
supplemented with a mixture of current tidal level and up
to five previous daily rainfall measurements (preO to pre4).
Rainfall data from three weather stations near the test site
were added to the model. 70% of the data entries from Aug
21, 2012 and Nov 23 2012 were chosen to train the model, the
remaining 30% of the data were reserved for future parameter
optimisation and data samples between Nov 24 2012 and Nov
30 2012 were used for testing. To avoid over fitting, all the
models were built using 10 fold cross validation.

In order to evaluate how multi-modal data sources can
enhance salinity prediction the following experiments have
been carried out to predict salinity using:

e in-situ and tidal data (dual-modality).
e in-situ, tidal and rainfall data (multi-modality).

To compare the results, we assume the prediction accuracy
is higher if the correlation coefficient (CC) value is closer
to 1 and the mean absolute error (MAE) is closer to O.
The correlation coefficient is a measure of the correlation
between two data sets. It is normally used to measure the linear
dependence between two variables. The formulas for CC and
MAE were

Y (Xi - X) (Vi -Y)
VY (X - %), (- X)

Uhttp://www.cs.waikato.ac.nz/ml/weka/
Zhttp://www.marine.ie
3http://www.met.ie

cC =
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where X; are the predicted values and Y; are measured values.

3) Prediction of Salinity Values from In-Situ Sensors Rainfall
and Tidal Data: Incorporating contextual data sources into
the model and using multi-modal data sources achieved better
prediction accuracy. Furthermore, the results demonstrate that
in-situ data combined with tide level and the preceding four
days rainfall data achieved the best performance (CC:0.9727,
MAE:0.2659), however, the results appear to signify that the
previous 2, 3 and 4 days rainfall have very little effect on the
salinity prediction accuracy. Figure 8 shows the comparison
between real salinity values and predicted values. The error
is small when salinity is stable and is slightly bigger when
salinity is changing rapidly but the outputs from the predictor
show a very similar trend to the real sensor readings.

Figures 5 and 6 demonstrate the correlation of the predicted
salinity values with the values measured by the in-situ sensors.
It can be seen that predictive values that use tidal and rainfall
data from two days prior to the measured in-situ data give a
correlation coefficient of over 0.97 with the measured salinity
values. There is no clear advantage to using rainfall and tidal
data from subsequent days, as this does not increase prediction
accuracy (Figure 5). However, the MAE values indicate that a
marginal reduction in the prediction error is obtained by using
the prior 4 days of rainfall and tidal data combined with in-
situ measurements (Figure 6). The distribution of the prediction
error associated with the predicted values using the previous 4
days of tidal and rainfall data is also shown in Figure 6 (inset).
Figure 7 visually displays the fit of the predicted data with the
recorded in-situ data, showing the ability of the method to
predict trends and events in the recorded salinity time series.
Figure 8 plots the predicted values against the measured values
and a linear model is fitted to the resulting data showing
good correlation between the two variables at high salinity
(> 27ppt). However at lower salinities there appears to be
more variability between the two variables.
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Fig. 5. Correlation coefficient values for salinity estimation using tide and
up to five previous days rainfall.
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Fig. 6. Mean absolute errors (MAE) for salinity estimation using tide and
up to five previous days.

Measured vs. Predicted of Salinity Values

T o
A

30

N
@

N
3

|

N
N

Salinity (ppt)
N
PN
—

N
°

Measured
— Predicted
2

oY
\,\7_%\1
K

5

2 2 2 2
3\1QX A\\’LDx c,\'lox 6\7‘0\ 1\10\'
RN 0 s !

7 7 7 7
o o
9 o o S
o o o o o

W e

Fig. 7. Graph of measured in-situ salinity values and predicted salinity values
over 7 days, showing the ability of the method to detect reduced salinity events.
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Fig. 8. Graph of the fit of the predicted salinity values against measured
in-situ salinity data, a linear model has been fitted to the data showing the
agreement between the two variables.

B. Tide Level Prediction Using Visual Sensing

A key factor in the deployment of in-situ sensors at Poolbeg
is the effect of a floating deployment platform on sensor

readings. To validate the effects of water level on the height
of the floating dock relative to the riverbed and thus effects
on in-situ sensor values, a visual sensing system was utilised
on-shore to evaluate whether the location of the floating dock
was an effective predictor of tidal height.

1) Methodology: In [9], O’Connor indicated that river wa-
ter level can be estimated using water-land boundary visual
features, such as the appearance of rock on the riverside and
water line marks on the bank wall. Based on these visual
features, water level can be classified into five classes from
high water level to low water level. In this research, another
novel method was proposed, complementary to O’Connor’s
work where such visual features do not appear or are not clear
at the site. Poolbeg has very different site characteristics, the
bank wall is over 250meters away from our visual sensor
node which means a boundary between water surface and wall
is very difficult to differentiate. Also, due to items, such as tree
branches floating on the edge of the rock at the near side, it is
very difficult to distinguish rock from water surface as well.
In order to predict tidal level at Poolbeg, the use of more
global image features is investigated. As illustrated in Figure
9, when tidal level is high, the position of the dock, indeed the
position of the corners of the dock, will be relatively high in the
image and relatively low otherwise. Firstly, a corner detector is
applied to the image and the corner points of the floating dock
are then extracted from the image. Then the average height of
these corner points is computed and mapped to real tidal level
values using linear regression. When a best fit linear function
is defined, the tidal level can be predicted by simply fitting the
position of the dock within the new incoming image. Vibration
of the dock caused by wind and waves leads to inaccurate
predictions. This effect was limited by averaging the position
of the dock over a short time interval (5 minutes).

Fig. 9. A series of images demonstrating the positioning of the floating
dock system at various tide levels. These positions were detected to provide
predictive tide data.

2) Evaluation and Results: Three days image data from 19
Jul 2012 to 21 Jul 2012 was used to build a linear model and
two days image data from 22 Jul 2012 to 23 Jul 2012 was
used to evaluate the model. Due to the different characteristics
of the image during night and day, this experiment was limited
to day time images only (between 09:00 to 18:00). Figure 9
shows the relationship between the tide level and the position
of the dock.

Figure 10 shows the fit between the tidal height as predicted
from analysis of images acquired by the in-situ camera and
those recorded by the Dublin Port tide gauge. Figure 11 shows
a comparison of real tide level and predicted tide level from
image feature. It can be seen from the graph that the predictor
performs very well during the first day (first 108 data samples)
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Fig. 10. Tide level as predicted from image analysis of images acquired by
the visual sensing system as plotted against values measured by the in-situ
tide gauge.
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Fig. 11. Fit of the predicted tidal levels against measured in-situ tidal data
from the tidal gauge over two tidal cycles, demonstrating the ability of the
method to predict tidal heights during daylight hours.

but over predicts in the second day. This is due to small boats
docking at the upper side of the dock (see Figure 9) which
shift up the center location when extracting image features.

IV. DISCUSSION

Understanding the conditions that result in either well-mixed
or stratified systems, under a variety of rainfall conditions
are crucial in understanding the transport of sediments, nu-
trients and particulates on dissolved contaminants, as well as
prediction of storm surge events. Generally, spring tides and
up-estuary winds are thought to contribute to mixing while
neap tides and down-estuary winds enhance stratification at
the Poolbeg estuary site. Analysis of continuous in-situ salinity
data and CTD profiles at the Poolbeg estuary site indicate that
fresh water in the system initially travels down-estuary via
a surface-water layer independent of the underlying marine
waters occupying the water column at this site. Analysis of the
variation in salinity values at a depth of 2.5m from the surface
over a year-long time period indicate periods of decreased
salinity associated with high freshwater input into the system.
When the runoff volume related to rainfall increases upstream,

there is a corresponding increase in the depth of the surface
freshwater layer at Poolbeg, which may ultimately contribute
to increased water levels upstream in the event of a storm
surge. Therefore, it is vital to be able to model and predict
salinity levels and thus the extension of the freshwater plume
into the estuary. Deployment of a multi-parameter in-situ
aquatic sensing system in combination with a visual sensing
system with access to external tidal and rainfall data has
provided an enhanced picture of the interactions between water
level and freshwater distribution in the lower Liffey Estuary.
The use of a multi-modal sensing system can be used to model
and predict the effect of tide level and rainfall on salinity levels
at this site. It has also been shown that visual sensing to detect
tidal height. The goal is to combine these capabilities in order
to gain a greater understanding of estuarine dynamics and to
build a complete multi-modal sensing platform. The eventual
goal would be to replace the tidal data provided by in-situ
sensors with the predictive data provided by the visual sensing
system. By doing so, it would be possible to increase the
robustness of the total sensing system, since the visual sensing
system is less prone to the unreliability associated with the
in-situ systems. Other advantages of incorporating the visual
sensing system include ground truthing of data from in-situ
sensors and providing an events catalogue from the system
[9][19]. Indeed incorporation of a visual sensing node into the
sensing platform provides access to other sources of data and
the possibility for detection of events such as shipping and
security related issues.

A. Improved decision making

The ultimate aim of deployment of such a multi-modal sys-
tem would be to provide enhanced tools that supply improved
data for analysis and decision-making in regard to the estuary
and the surrounding coastal zone as a whole. Despite rainfall
being intuitively considered an important factor in coastal and
estuarine flood prediction, few storm surge modelling studies
or operational forecasting systems incorporate the “estuary
effects” of freshwater flows and water density stratification
and variation [7]. Some processes are routinely incorporated
in surge modelling (e.g., atmospheric pressure, remote forcing)
and some others are nearly always ignored (e.g., water density
variations and storm-driven freshwater inputs). The worst
storm surges often result from storms that also bring heavy
precipitation. Many population centers are located on estuaries
where freshwater flow and storm tides merge. The city of
Dublin is no exception to this and susceptibility to extreme
events has increased in the last decade, whereby a number
of flooding events have occurred due to pluvial, coastal and
infrastructure failures, resulting in excess freshwater input into
the catchment beyond the capacity of flood defences to protect
regions of the city. Prediction of salinity values downstream
at in a port environment such as Dublin Port (and Poolbeg
Marina) allow indication of the amount of freshwater in the
system, and thus is one component of an integrated system
that can provide the basis of a flood management program.



V. CONCLUSIONS

By prediction of in-situ salinity values from other in-situ pa-
rameters, tide level and rainfall, it has been have demonstrated
that both redundancy and enhanced prediction capability can
be achieved through use of multi-modal sensing systems. The
results demonstrate that trends in environmental parameters
such as salinity could potentially be estimated accurately. Fur-
thermore, this may reduce the need for multiple sophisticated
in-situ sensors on site; or provide intelligence that indicates
when a sample needs to taken. This provides the opportunity
to create a data driven self-adapting marine monitoring sensor
network. Integration of the visual sensing system provides a
low-cost sensor modality that produces contextual information
of the scene, which may then be used to enhance abnor-
mal event detection and water quality parameter prediction.
Accurate and timely information, leading to improved and
timely management decisions are the overarching drivers of
monitoring projects in areas such as estuaries. Ultimately, the
outputs of environmental projects such as these must include
the ability to predict significant events such as the occurrence
of harmful algal blooms (HABS), elevated levels of microbial
contaminants such as E. coli or times of high probability of
flood events occurring. The successful future development of
systems
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