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ABSTRACT 

APPLICATION OF AN EQUILIBRIUM COASTLINE POSITION 
PREDICTION TECHNIQUE

Brendan Dollard, M1EI

Coastal erosion is of significant interest in Ireland where reliable prediction of erosion 
patterns would facilitate planning for development o f coastal regions. In the past, 
uncertainty about erosion trends has led to decisions which had costly, and 
environmentally detrimental, effects. The modem approach is to try to accommodate 
erosion rather than to prevent it. One of the ways to limit the economic cost of 
surrendering land to the sea is to restrict developments in areas which are under threat. 
This approach however requires a reliable forecast of future erosion trends. Erosion is a 
complex process, involving interacting factors such as wind climate, wave 
transformation, current effects, sea level changes, etc. which contribute to sediment 
transport rates. Simulation models of the process are therefore very difficult to develop, 
and the unavailability or expense of collecting detailed input data required for such 
models often prohibit their use.

Empirical models are easier to apply, and in the current research one such recently 
developed model, the parabolic curve technique, is applied to investigate the stability of 
coastline position, and vulnerability to coastal erosion. It is the first application of the 
technique specifically to Irish sites, and considers three bays on the east coast in Co. 
Wexford. Use of the technique required the gathering of data on the dominant wave 
approach angle, and the location of bay headlands. The study has simplified the 
application of the technique by the use of standard spreadsheet and graphing software. 
Difficulties associated with locating control points are discussed. Two different 
methods are used to determine the dominant wave direction, one based on the current 
planform or shape of the bay, and the other based on wave energy calculations.

Results show that the present coastlines in two of the three bays do not follow the 
‘natural’ curvature prescribed by present climatic and geographic conditions. All three 
bays will suffer significant further erosion before reaching a state of ‘static’ 
equilibrium. The technique is used to consider future evolution of the coast, by testing 
the effect of changes in current wind / wave climate brought about by global warming. 
Erosion is seen to increase, however as bays reorient themselves toward more easterly 
waves, the lee of headlands will become less vulnerable to erosion. The thesis 
concludes with remarks on the applicability of the methods, the usefulness of 
predictions, and makes recommendations for future investigations.
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1. INTRODUCTION AND LITERATURE SURVEY

1.1 Introduction

Coastal erosion is a natural process where land is eaten away by the sea. It is as natural 

as the weathering of mountains or the tectonic activity that created them. The driving 

force behind it is the sun’s energy as it unevenly heats the earth creating the winds that 

drive the sea waves. The vast amount of energy stored in these waves is dissipated on 

the coast causing sands and gravel to move and land to be eroded. It has, historically, 

always been regarded as a personal insult to mankind and ingenious methods have been 

devised to counteract it. Only in the latter half of this century have efforts been made to 

understand it.

Coastal erosion in Ireland is widespread with natural erosion rates on the increase due 

to rising sea levels which are caused, in part at least, by global warming. In areas where 

waves approach the coast predominantly from a particular direction there is as a

consequence a movement of sediment in that direction. These areas are most

susceptible to erosion as the rate of this longshore drift of sediment can fluctuate. 

When the supply of sediment decreases, soft coast such as beaches and backing dunes 

or clay cliffs erode. This is the case along much of the east coast of Ireland and is a 

more serious problem than the more common in-out movement of sediment associated 

with storms on the more indented western and southern coasts.

Dealing with this problem by coastal protection measures is an expensive enterprise. 

Along the eastern seaboard the 7 county councils and city boroughs estimate that of the
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total coastline length of 593 km almost 440 km is at risk of erosion with over 218 km 

requiring immediate attention [1], The cost of the immediate measures was estimated 

at £45m in 1992. Any technique that could reduce these costs would be extremely 

valuable to the country and one of the methods currently being employed is to restrict 

developments in areas which are likely to erode. This is known as the ‘set-back line’ 

technique which is where a line is drawn on a map seaward of which new developments 

are either restricted or not permitted. This will reduce the need for coastal protection 

measures in the future.

The decision of where to draw this line is, at present, not scientifically based. In some 

counties it is the nearest road or railway in the belief that if a road or railway is 

threatened then the problem is, at least in part, a national one and central government 

funds are easier to acquire. In others the line is set at a specific distance from the sea. 

In some cases this is based on the local erosion rate and the typical life expectancy of 

developments in the area.

Both of these methods are open to criticism. In some cases the lines drawn are overly 

conservative and developments which the sea would not reach in hundreds of years are 

denied permission. In others the set back lines are too near the sea and could be 

reached in 20 or 30 years.

Essentially there have been two approaches to resolving the problem of predicting 

erosion. With the advent of computers one approach has been to attempt to simulate in 

a computer model the myriad of interacting coastal processes such as local wind 

climate effects, wave transformation, current effects, sediment movement, sea level
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changes, etc. The aim of this is to calculate the long term sediment transport rates 

which will determine whether a coast recedes or advances seaward. With accurate and 

detailed input data these models can provide an accurate picture of the future evolution 

of the coast. Unfortunately, in Ireland as with most countries, there is a lack of such 

data and the cost of collecting it, in many cases, would make the investigation into the 

problem, let alone any solution, uneconomical.

The other approach is to use empirical formulae derived from wave tank experiments 

where waves were run up on an originally straight sandy shore [2], As the coastline 

evolved between two artificial headlands the bay coastline position was noted. The 

final evolved position, known as the static equilibrium position (SEP) because there 

was no sediment entering or leaving the bay, was plotted for various wave approach 

angles and bay lengths. This data led to the development of a formula and set of curves 

which can be used to predict the SEP for any bay once the dominant wave approach 

angle and bay headlands (control points) are known. It can also be used to indicate 

whether the curvature of bays which are in a state of dynamic equilibrium (where 

sediment is passing through the bay) is following a ‘natural’ relatively stable curve.

This thesis examines the application of a recently developed parabolic curve technique 

which seeks to predict the limit of erosion within a bay. Here, it has been applied to 

three bays on the east coast of Ireland each of which suffers from severe marine erosion 

with localised erosion rates of up to 0.75m/year over the past 70 years.
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1.2 Coastal engineering

Coastal Engineering as a term used to define a specific field of engineering has its 

origin in a meeting held in Long Beach, California in 1950 entitled ‘The First 

Conference in Coastal Engineering’. The concept of trying to control the sea, however 

dates from much earlier. Inman [3] when examining harbour construction in the 

Mediterranean Sea as early as 1000-2000 BC commented on the ‘very superior lay 

understanding’ that these untutored developers showed in working with the natural 

forces of waves and tides. Brunn [4] discussed some of the early coastal erosion control 

methods used in England, Holland and Denmark starting in the 10th century. In the 11th 

century, the Danish King of England, King Canute, is reputed to have used the 

disobedient flowing tide as evidence of the limitation of his mortal powers.

Coastal Engineering is primarily a branch of Civil Engineering which involves the 

sciences of oceanography, meteorology, fluid mechanics, structural mechanics, geology 

and geomorphology. A good practical understanding of mathematics and statistics as 

well as computer modelling techniques is also required. Coastal Engineering covers a 

number of activities such as;

• nearshore wave climate analysis

• design of coastal protection works

• harbour design

• prediction of water levels

• stabilisation of tidal entrances by dredging and/or training walls

• control and collection of oil spills

4



Equilibrium Coastline Position Prediction

• navigation channel dredging

• control of marine erosion

Of these it is the latter activity which mainly concerns this research.

The coast is where water, land and air meet. It is where vast amounts of energy are 

dissipated on the shore through a series of complex coastal processes. Consequently, 

the coastal environment is one of the most changeable environments on the earth’s 

surface and one which is also the most susceptible to damage from interference by man. 

Indeed it is this interference, through harbour developments and, ironically, coastal 

protection works, that have led to increased erosion rates at many points around Ireland

Coastal protection measures attempt to prevent erosion of the land using either ‘hard 

engineering’ techniques such as seawalls and revetments (rock mounds) or by ‘soft 

engineering’ techniques such as beach nourishment (dredging offshore sediment and 

placing it on the shore), marram grass planting and sand trap fencing. Seawalls and 

revetments reflect and absorb wave energy thus protecting the coast. Soft engineering 

techniques try to emulate and speed up natural processes such as the creation of sand 

dunes by trapping wind blown sand, or by directly placing dredged sand on a beach in 

order to build up the coastal mass and better enable it to withstand storms. These 

measures also help sandy coastlines to self repair in the aftermath of damaging storms.

With the advent of a better understanding of coastal processes and the rise of 

enviromnental concerns management of the coastal zone has become much more
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important. The primary objectives of Coastal Zone Management (CZM) is that all 

developments (including coastal protection measures) should be sustainable [5], This 

requires that developments should be, as far as possible, compatible with the immediate 

environment. On eroding coast this management will include soft engineering 

techniques (with perhaps a minimum of hard engineering in the form of revetments and 

groynes) but mainly involves the control of man’s interference through land use 

restrictions and planning controls. The overriding principal is that it is neither 

economic nor possible to hold the line everywhere against the sea.

1.3 Coastal erosion and sediment transport

Probably the most important question in eroding coastal areas is, will the erosion 

eventually stop if left alone, and if so where ? If this question could be accurately 

answered then the decision coastal engineers face on whether to adopt coastal 

protection measures could be taken against a background of knowing what the 

consequences of not doing so would be. In areas of low development it may prove far 

more economic to surrender land to the sea and to compensate the owner than to try to 

protect the coast. Indeed prevention of erosion in many instances may deprive areas 

downcoast of much needed sediment. These areas may be more economically valuable.

In dealing with the problem of coastal erosion it is convenient to divide the coast into 

‘coastal cells’. Over the past 20 years attempts have been made to ‘compartmentalise’ 

the coast in order to put a practical limit on the area to be studied. The main concern is 

the transport of sediment. A coastal cell can be defined as ‘the area in which sediment
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transport is confined’ (Fig. 1.1). This is relatively easy on indented coasts, where 

prominent headlands prevent sediment moving along the coast but on open coast such 

as the east coast of Ireland the problem is far more difficult [6],

By far, the most dominant force in shaping coastlines is wave energy. Waves cause 

sediment to move about the coast (Fig. 1.2). The direction of this movement is mainly 

from the beach to the nearshore in response to storms. This material is usually returned 

during calm periods. During winter, sediment is drawn down from the beach and sand 

dunes by storms to be deposited just offshore in the form of sand bars. These bars limit 

the amount of wave energy which impinges on the coast by causing waves to break 

further from the shore. During summer, the calmer seas move the sediment onshore to 

form beach berms (a raised area of beach) and much of this may be blown into the dune 

systems behind.

A more problematic form of sediment transport is longshore or littoral drift where 

sediment is moved along the coast. The direction and rate of littoral drift are directly
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related to the amount of nearshore wave energy and particularly to the angle at which 

the waves strike the coast. This determines the longshore wave energy component of a 

wave field and this predominantly decides the speed and direction of the longshore 

current. The consequent movement of sediment alongshore, ultimately determines the 

shape of the coast. When this wave energy component is greater than zero, sediment 

will be moved along the coast until it reaches an area where the beach is more closely 

aligned to the waves. Here the longshore energy component drops to zero and the 

transport stops.

O nshore/O flshore  
tra n s p o r t

Ofifehore Onshore
movement during movement during 

si omis fair weather

O

o
Longshore
Transport

0

0

* Q
Storni Windbomc Transport

lirowon and wjwhovei

T ran sp o rt from  D itn e /Q iff

Fig. 1.2 - Sediment transport within a coastal cell [6],

As waves approach the coast the direction of their advance and the height of the waves 

is altered by wave refraction and, in the vicinity of headlands, wave diffraction.
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Refraction is caused by the reduction in water depths as the wave moves shorewards. 

The velocity of the wave is reduced through the influence of the seabed on the orbital 

motion of the water particles within the wave. In Fig. 1.3 a simple illustration of wave 

refraction is given. The wave crest Ao-Bo is entering shallower water. The water depth 

at point B0 is greater than that at point A0 and, from linear wave theory, the wave 

velocity is found to be greater at point B0 than at point Ao. Thus the wave at A0 is 

slower moving than at B0. The result of this difference is to bend the wave towards the 

bathymetric contours. It can also be seen from the diagram that the wave rays, i.e. lines 

drawn at right angles to wave crests , are diverging as the wave crest moves shorewards. 

This divergence of the rays results in a spreading of wave energy leading to a reduction 

in wave height with the height of the wave crest A,-Bi being lower than Ao-B0.

Wave diffraction is a result of the diffusion of wave energy into areas behind headlands, 

breakwaters, etc. When part of a wave front is blocked by a barrier, wave energy will
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spill laterally along the wave crests into the shadow area created by the obstruction. As 

seen in Fig. 1.4 when waves pass a barrier, i.e. the jetty in this example, wave energy 

will dissipate laterally along the wave crest into the area behind the obstruction. Due to 

this spreading of wave energy the resultant wave height of the diffracted waves are 

lower than that of the incident wave.

Fig. 1.4- Wave diffraction

The relationship between sediment transport and longshore wave energy is described by 

the CERC (Coastal Engineering Research Centre, a division of the US Army Corps of 

Engineers) [7] as the equation shown in Fig. 1.5. This equation emerged from 

fundamental research on sediment drift rates and wave energy carried out on the 

Californian coast between 1950 and 1970. Although widely used, it has been criticised 

by Carter [6] and others for not making allowances for sediment size and texture and for 

not considering beach slope. These are potentially very important in accurately 

determining sediment transport rates.
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Efforts to improve the situation have resulted in a number of variations of the CERC 

formula. Kamphuis et al [8] and Van Hijum and Pilarcyzk [9] included the effects of 

different grain size and beach slope. However, the complex nature of the processes 

involved, the number of feed back mechanisms that exist and the difficulty of obtaining 

accurate wave and nearshore bathymetric data means the formula gives, at best, only an 

order-of-magnitude estimate of volumetric transport rates. Calibration of the formula 

against site measurements helps to reduce the uncertainty.

The CERC formula relates the potential longshore sediment transport rate with the longshore component 
of the incident wave energy.

The immersed weight potential longshore sediment transport rate (I) can be calculated using;

/ = — i= P .* W s > n ( 2 0 t )
'6  y}Yhr

where K  = empirical coefficient of proportionality (for typical 
sandy beaches, if wave height used is Hnils then this 
value is 0.77, if Hs then the value is 0.32) 

pw = fluid density (kg/m3)
g = gravitational acceJeration (m/s2)
Hb = breaking wave height (m)
db = breaking wave angle (deg)
Ybr = Hblhb where hb is the water depth at breaking

The volumetric longshore sediment transport rate is calculated using;

/
0  = { s - \ ) p „ g d

where s = specific density of sediment relative to density of fluid medium (usually
taken as 2.65)

O' = ratio o f solid volume to total volume of sediment (usually taken as 0.6)

Fig. 1.5 - The Coastal Engineering Research Centre formula on longshore drift rates

Coastal cells come in many forms. Carter [6] cited three main types, the embayment, 

the spit and lake cell. This thesis deals with embayment cells which are possibly the 

most common type of coastal cell in Ireland. May and Tanner [10] designated key 

points within the cell with the letters A to E each identifying areas of particular
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morphology such as the start of the erosion cell, the area of maximum erosion, 

equilibrium area, etc. Lowry and Carter [11] defined two types of cell boundaries, a 

fixed, and a free comprising of three different configurations (Fig. 1.6) each formed by 

variations in wave direction or wave energy:

1. Sediment transported away from boundary, upcoast and downcoast (divide)

2. Sediment transported towards boundary from both directions (meet)

3. Sediment transported up to boundary at a different rate than the rate that 

sediment leaves the boundary (pulse).

Fig. 1.6 - Classifications of coastal cell boundaries [6]

The fixed boundaries are usually headlands or structures on the coast, the free 

boundaries are however much harder to locate as their position depends on the wave 

field being experienced at a particular time , Using wave refraction models, Johnson
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[12] showed that the location of coastal cells on the east Wexford coast changed with 

altering wave direction (Fig. 1.7).

The position of the coastline within a cell is also influenced by the texture of the 

sediment, Davies [13], Harlow [14], McCave [15]. Depending on its size and texture, 

sediment moves at different rates within the cell. This means that the sediment 

becomes sorted, reflecting variations in the transport processes. Because of this it is 

possible to identify cells and their boundaries from sediment patterns on the beach, 

rather than by the more complex and error prone method of wave refraction. Stapor and 

May [16] used both wave refraction methods and sediment sampling to identify cell 

positions along the east coast of Florida. It was the sediment sampling that gave the 

truer picture of cell positions. This may be explained by the fact that the location of
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sediment types within a cell is the practical result of a sorting process which is affected 

by each and every wave, whereas wave refraction by necessity can only deal with 

summarised wave statistics.

1.4 Coastal cell equilibrium

Cell equilibrium can be either static or dynamic [6], Dynamic equilibrium applies to a 

coastal cell in which there is a constant throughput of sediment. These cells exhibit an 

imbalance between the forces acting on them and the resisting structure of the coast. 

This imbalance is countered by sediment moving through the cell either to and from 

adjacent cells or from a sediment source, such as a river, within the cell.

Static equilibrium is where the coastline has reached an equilibrium state without any 

influx of sediment. Carter [6] identified three forms of static equilibrium (Fig. 1.8);

a) Graded: Here the refracted dominant wave direction is at an angle to the 

coast and there is a positive longshore component of wave power. This is, 

however, countered by a natural sorting of sediment on the coast so that, in 

all places, the sediment size is such that the longshore energy is unable to 

move it.

b) Current: The refracted dominant wave is at an angle to the coast but the 

longshore energy component is reduced to zero by a counteracting current

14
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caused, for example, by a strong wave height gradient or by an intersection 

of wave trains.

c) Swash alignment: Here the dominant wave is refracted so that the beach is at 

all times and, in all places, parallel to the approaching wave crests [17].

Swash Alignment

Longshore wave 
energy component = 0 
Longshore current = 0

Current Alignment

Longshore wave 
energy component > 0 
Longshore current = 0

Graded Alignment

Longshore wave 
energy component > 0 
Longshore current > 0 
(longshore current below 
sediment motion threshold)

Fig. 1.8 - Types of static equilibrium [6]

In many cases equilibrium may be reached by a combination of two or all three of these 

options however Carter [6] states that.....

‘It may be prudent to consider the swash alignment model as the ultimate 

expression of cell development as in this mode, somewhat paradoxically, the 

cell vanishes’.

15
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He adds that the graded form is simply an ‘arrested form of equilibrium’. Johnson [12], 

showed that all three types are common along the north west coast of Ireland with 

swash alignment the most prevalent.

The concept that swash alignment is the ultimate aim of coastline development has its 

origins in the work of Lewis [18], This was elaborated on by Jennings [19] without full 

knowledge of wave transformation. Davis [20] later realised the importance of wave 

refraction in swash alignment.

1.5 Predicting the position of the coastline

Many attempts have been made to use longshore wave energy equations such as the 

CERC formula [7] and wave refraction/diffraction to predict the shape of the shore. 

Komar [21] developed an analytical technique in which the rate of change of beach 

width was related to the rate of change of sediment transport. He calculated the 

susceptibility of segments of coast to longshore energy input and using a computer 

model, these were subjected to typical waves. As the segments displayed differing 

transport rates over a time unit, the beach width was reduced by a proportional amount 

and the model adjusted the coastline. The resultant beach shape was fed back into the 

model to enable changes through time to be simulated and eventually a swash aligned, 

stable coastline emerged. This method, although mathematically proving the 

relationship between waves and bay shapes, proved impractical to use as it relies 

heavily on accurate wave data, sediment data and bathymetric measurements.

16
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Simple models dealing with the evolution of a ‘nearly straight’ coast were developed in 

the early 1970’s. These were called ‘one line models’ and predicted the change in a 

single representative beach contour (Fig. 1.9). Improvements were made to these over 

the years and the model developed by Hanson and Kraus [22] was able to allow for the 

effects of structures such as groynes and breakwaters.

The main problem with applying this technique lies with the representative depth, This 

is known as the ‘closure depth’ and should ideally be the depth within which all beach

17
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and nearshore slope changes occur (the nearshore active zone). This is difficult to 

determine accurately.

More sophisticated models able to predict the changes in more than one contour were 

also developed. These 2-line and multi-line models [23, 24] provide not only 

information on beach plan but also on beach profile. However, these models are 

limited to straight coasts and although they provide data on changes to a number of 

nearshore contours, the core calculations remained the same as the original One-Line 

models.

Currently ‘Coastal Area’ models which calculate wave, current and sediment transport 

parameters at grid points are being developed. These simulate changes in two 

dimensions using constituents from a number of modules describing various sediment 

transport components, such as complex current fields, tidal variations in water levels, 

offshore sand bar movement, etc. They contain a multitude of non-linear elements 

which when combined lead to instability in the numerical computation. These models 

although undoubtedly heralding the future of coastal engineering, require more 

sophisticated input data (e.g. waves, tides, sediment, bathymetry) than the earlier 

simpler models.

It is this complexity of processes that makes the accurate quantification of sediment 

transportation rates very difficult, especially on open coasts. It is somewhat analogous 

to long term weather forecasting in that at the micro scale a subtle change in one 

variable can have a dramatic effect. Empirical curve fitting models of cell equilibrium

18
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on the other hand takes a simpler view, letting the shape of the bay show the result of 

the interactions of waves, tides, currents, storm surges, etc.

Three types of empirical models used to predict the evolution of beach plan shape exist

• the Spanish pocket beach model

• the log spiral model

• the parabolic curve model

The Spanish pocket beach model developed by Berenguer and Enriques [25] provides a 

set of design equations which predict the stable position of the shoreline in the lee of 

offshore breakwaters. These breakwaters have been used in many coastal resorts and 

have created many fine amenity beaches in areas previously suffering from erosion. 

The equations are limited to pocket beaches in their application and the tidal range for 

the location must be less than one metre.

1.6 The log spiral bay shape

Where bays are subjected to a dominant wave direction at an angle to the coast, the 

resultant shape of the coastline is characterised by an upcoast hook which passes 

laterally through a tangential section of coastline to the downcoast headland (Fig. 1.10). 

These bays have been variously described as a crenellate, spiral, zeta, half heart or 

headland-bays. They are especially common around Ireland where there is a
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preponderance of south-westerly to westerly winds and consequently waves from these 

directions.

Krumbein [26] examined beach processes on a single beach near San Francisco, 

California, and suggested the approximation of the log spiral shape (Fig. 1.11). 

Silvester, Ho, Tsuchiya and Shibano [2, 27] carried out physical tests in a wave basin 

using obliquely approaching waves on a straight sandy beach with a number of hard 

points (headlands). After a number of hours the coastline had adopted the log spiral 

curve shape. He also observed that the coastlines in the model tests had three distinct 

curvature zones, a purely circular section in the lee of the upcoast headland, a curved 

mid section and a tangential section connecting this with the downcoast headland.

Cross-scclion profile

Fig. 1.10- Log spiral curve bay for obliquely approaching dominant wave
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Yasso [28] analysed this shape and approximated the form of the curved upcoast section 

to that of a log spiral. Carter [6] and Yasso [28] identified sand spit cells as being the 

inverse of the log spiral curve. Silvester and Ho [2] derived values for the spiral 

constant for equilibrium bays given the approaching wave direction. This work was 

based on comparisons between varying spiral constants for crennelate curve bays which 

were known to be in static equilibrium. This was presented by Silvester [29] as a tool 

by which the stability of a bay could be judged.

The log spiral is given by the equation;

Ri & R2 = Radii from an origin 
0 = Angle between R l & R2 (rads)
a  = Spiral constant (rads)

Fig. 1.11 Definition sketch of the log spiral

In practice, however, the technique proved unwieldy because of difficulties in 

identifying the centre point of the spiral and drawing the spiral itself. In order to try to 

rectify this, Sylvester, Tsuchiya and Shibano [27] produced a simplified version which 

utilised an ‘indentation ratio’ which was extracted from the spiral curves. Graphs were

^2 _ g9cota

where
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presented from which this ratio could be read for a particular wave approach angle. 

This allowed the user to predict the maximum indentation distance measured from a 

straight line between the upcoast and downcoast headlands for a bay in static 

equilibrium. This test of stability proved much easier to use but difficulties remained. 

The single value of indentation meant that the coastline had to be drawn by hand to the 

half-heart planform and while the upcoast headland was easily identified, locating the 

downcoast headland was more difficult. Silvester and Hsu tackled these problems in a 

later book [30] on equilibrium bay shapes.

At least four different mathematical/physical models have been derived to explain the 

log spiral configuration. Rea and Komar [31] presented a numerical simulation of the 

evolution of a beach in the lee of a headland and, by an appropriate choice of the form 

of wave energy flux, succeeded in generating beach configurations which closely 

approximated the log spiral. Walton [32] also used changes in wave energy caused by 

wave diffraction to create the log spiral.

LeBlond [33] presented a detailed explanation for the log spiral plan form. By 

combining basic rules of wave refraction and diffraction along with empirical formulae 

on the relationship between wave energy, grain size and beach slope, he derived curves 

which closely matched both the natural planform of a number of sample equilibrium 

bays and curves produced by the log spiral method. The conclusion from this work is 

that the log spiral coastline shape is mainly the result of the effect of nearshore wave 

transformation (refraction from the seabed and diffraction from the headland). This 

effect is further refined by the reaction of beach slope (flatter near the headland) and 

sediment sorting (finer sediment near headland) caused by the resultant variance in the
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longshore wave energy component along the coast. Later LeBlond [34] suggested

that....

‘....what is thus significant about the shape of headland-bay beaches is the 

gradual decrease in curvature away from the headland, reflecting the decreasing 

influence of protection from wave action, and not the logarithmic spiral shape as 

such, which is merely a quantitative parameterisation of the qualitative 

behaviour. ’

He further added that any model in which the effect of the headland on wave energy 

decreases with distance is bound to produce shapes of decreasing curvature which may 

be approximated by the log spiral. He concluded that the true test of a headland-bay 

model is whether it reproduces not only the log spiral planform but also the 

morphological and sedimentary characteristics (i.e. beach slope changes and sediment 

sorting).

Phillips [35] argued however, that from his studies using sediment/slope data collected 

at a small eroding area in the lee of the terminal of a seawall, there was no evidence of 

a systematic influence of the headland on wave energy. He suggested that the log spiral 

bay shape was the result of a variety of distance-decay functions (exponential or log) 

with the headland simply acting as the cell boundary. He concluded that wave energy 

was but one of these. Others might include:

• offshore bathymetry not-influenced by the headland

• decreased sediment supply to the area in the lee of the headland
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• decreasing land height from the upcoast headland

• terrestrial environmental gradients (rainfall, vegetation type, etc.)

According to Carter, this concept agreed, to some extent, with the formation of sand 

spits [6],

1.7 The parabolic curve model

One of the many problems with applying the log-spiral curve method to predict the 

static equilibrium position of the coastline was that it gave only the curved portion of 

the bay. This had then to be connected to the downcoast headland or control point via 

the bay tangential section. This problem would not arise if a formula could be devised 

which would predict the entire bay shape.

Mishima’s [36] bow shaped parabola uses the standard parabolic expression: y  = p x 2 — b

The constants p and b are as per the sketch below and are solved by iteration of the location of the centre 
of the parabola and solving the equation using the upcoast and downcoast fixed points. The true parabola 
was the one which most closely matched the present coastline.

Fig. 1.12- Parabolic formula used to predict bay shape
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Mashima [36], noted that a close relationship existed between wind and wave energy 

roses (which were semi-elliptical in shape) and the planform of the bay. He used a 

simple parabolic formula to determine bay shape (Fig. 1.12). However there were 

complications with finding the centre of the parabola and the technique did not take 

into account the effects of wave diffraction or the wave obliquity.

Silvester and Hsu [30] progressed the idea of developing a simple technique of 

predicting the entire bay coastline by reanalysing the data from previous model tests 

carried out by Ho [37], They plotted the dimensionless radii ratio (R/Ro) against 

varying wave approach angles (P) for a range of radii angles (0), Fig. 1.13. This 

resulted in a series of curves which could be used directly to determine the final static 

equilibrium shape of the bay. To make the technique easier to use, Hsu and Evans [38] 

developed a quadratic polynomial equation from these curves by a process of curve 

fitting. When applied, this formula predicted a coastline which closely matched the 

model test results. This formula was also applied to a number of log spiral bays around 

the world, some of which were known to be in static equilibrium, others not so. The 

results were very encouraging and the authors confidently presented the method as a 

validated technique in their book [30],

They did however acknowledge that here were still difficulties with its application 

although they addressed many of these. Firstly, the technique is dependent on the 

measurement of the angle between the direction of approach of the dominant waves and 

a line joining the headlands at the bay extremities. Secondly, it also requires 

measurement of the distance between the controlling headlands or points. It is with the 

accurate measurement of these that the difficulties lie.
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The curves developed by Ho [37] from physical model test data related the coastline shape to wave 
approach angle. They were computerised by Hsu and Evans[38] to derive a polynomial in the form of;

- = c° +< f M f ) 2

R, R0, /?and <?are shown in the sketch below. The coefficients Cft Cj and C2 vary with p. Although this 
formula is strictly a quadratic because of the linear term of ¡3/6 it is usually referred to as parabolic.

Fig. 1.13 - New ‘parabolic’ formula

From their model tests, Silvester [29] noted that the straight section of coastline 

adjacent to the upcoast headland achieved relative stability long before the hooked end 

of the bay. The angle this adopted was at 90° to the incident wave. He concluded that 

this was also true in reality and that this could be used as an indicator of the persistent 

or dominant swell wave direction, especially in bays at, or approaching, static 

equilibrium. He suggested that....

‘....prior to this [the equilibrium state] the angle so measured may be smaller 

than actual, due to changing orientation of this section with time.’

2 6



Even in these cases he maintained that this section of the bay would give a good 

indication of the closeness to full stability. In order to help confirm the angle 

measurements made, he suggested that.....

.assistance in this respect can be had by noting the tangential alignments of 

several adjacent bays. If the headlands are more or less aligned and the 

nearshore bathymetry relatively uniform then the dominant swell direction 

should be the same for each bay. ’

The distance between controlling headlands or points proved difficult to measure 

because of the problem in identifying the downcoast control point. The upcoast 

headland is usually a prominent headland, with the hooked part of the bay to leeward. 

However, the downcoast headland is more difficult to locate especially on long bays. 

Often the control point is not the downcoast headland but may be some point along the 

tangential curve of the bay. In their book Silvester and Hsu [30] devote an entire 

section to this problem arguing that selecting different control points along this 

tangential section does not dramatically change the predicted static equilibrium shape 

of the bay. This is because with each change in the length of the control line between 

the upcoast headland and the downcoast control point there is a commensurate increase 

in the angle between the tangential section and the control line.

As this technique is relatively new (1993) there has not been any published feedback on 

its application to existing coastal erosion problems. If it is as successful as the log 

spiral method, despite its difficulties, then it is to be expected that the parabolic curve 

method will receive widespread use, particularly as a realistic method of determining

E quilibrium Coastline Position P re d ic t io n    _____ ____________________________________
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the location of coastal setback lines. These are lines drawn inland of the shoreline 

which predict the possible future position of the coastline. They are used by local 

authorities to restrict or prevent developments taking place in areas sensitive to coastal 

erosion. In Ireland, at the moment, in the few counties where these lines are used, they 

are arbitrarily drawn at a standard distance from the shore (typically 50m for soft coast), 

or along the nearest public road or railway to the coast.
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2. AIMS OF THE PRESENT STUDY AND WORK PROGRAMME

2.1 Aims

The aims of the present work were to investigate the application of a recently developed 

technique which predicts the eventual static equilibrium position of the coastline. The 

effect of alternatives methods to obtain the input parameters for this technique was also 

examined.

The detailed objectives were:

1. To examine different methods of determining the dominant wave direction and 

control points for a number of bays on the east coast of Ireland.

2. To use this data in the application of the new parabolic curve technique to predict 

the current natural curvature of the bays along with the eventual static equilibrium 

position of the coastline

3. To investigate the implications of climate change and coastal protection measures 

on coastline evolution

2.2 Work Programme

For this study a work programme was drawn up which can be divided into a number of 

distinct stages.
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Stage 1 -

Stage 2 -

Stage 3 -

The new parabolic curve technique of predicting coastline position is 

reliant on the identification of the dominant wave approach angle. In the 

case of bays where their is little longshore drift of sediment this is 

accurately indicated by the orientation of the tangential section of the

bay.

As the bays being studied experience a substantial longshore drift of 

sediment a more appropriate method of obtaining the dominant wave 

direction is to analyse a time history of nearshore wave data. This, 

however, required a considerable amount of effort involving water depth 

digitising, wave refraction / diffraction computer simulation and data 

analysis. This formed a substantial part of this study.

Applying the technique and drawing the equilibrium coastline position 

entailed the scanning of maps and aerial photographs, photograph 

rectification and digitising coastlines. Drawing the equilibrium coastline 

involved digitising and extrapolating curves and coding a graphing 

spreadsheet.

As the coastal environment is continually being altered by man it was 

decided to investigate how two specific impacts, climate change and 

hard coastal protection measures, might affect the future evolution of the 

coast. This work involved redrawing the equilibrium coastline position 

for altered wave conditions and examining the implications of artificially 

hardening an inherently unstable coastline.
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Stage 4 - The suitability of the technique as an overall predictor of coastline 

stability was examined and commented on. This involved studying the 

historical evolution of the coastline, noting the difficulties encountered 

with the technique and making recommendations for further 

investigations.

These stages are shown in Fig. 2.1 and are further detailed in Chapter 3 - Methodology

Stage 1

OFFSHORE WAVE DATA ANALYSIS
1. Obtain offshore wave data
2. Create Hs / Tz scatter plots 
REFRACT/DIFFRACT OFFSHORE WAVE
1. Create bathymetric grid file and control file as 

required
2. Run refraction /  diffraction computer model
3. Extract & format inshore wave data
4. Draw vector plot energy
5. Note dominant wave direction

Stage 2
EQUILIBRIUM COASTLINE PREDICTION
1. Obtain dominant wave direction from bay planforms
2. Identify the control points for each bays
3. Draw the static equilibrium position for both dominant

wave directions
4. Compare equilibrium position with present position of the

coastline

Stage 3

EXAMINE IMPACT OF CHANGE
1 Translate global warming predictions into wave climate

change
2. Redraw equilibrium coastline position
3. Examine impact of hard coastal protection measures

Stage 4

EXAMINE SUITABILITY OF TECHNIQUE
1. Obtain historical coastline data
2. Plot historical coastline positions & compare with present &

equilibrium positions
3. Identify difficulties with the technique
4. Make recommendations on suitability and further study

Fig. 2 .1 - Study work programme
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3. METHODOLOGY

3.1 Introduction

This study seeks to test the validity of the new parabolic curve method developed by 

Hsu and Evans [38] to predict the static equilibrium position of the coastline of 

headland controlled bays. It is applied to three bays on the east coast of Ireland. These 

bays are not in static equilibrium as there is evidence that sediment is passing along the 

coast [39], However the exercise of predicting the static equilibrium position (SEP) of 

the coastline is very important as the rate of longshore drift is known to fluctuate [39], 

The SEP of the coastline would represent the worse case condition as it would indicate 

the future position of the coastline should this longshore drift of sediment cease

completely. The SEP is the result of gradual evolution over thousands of years. There

will be many changes in erosion rate during this time as stormy periods give way to 

calmer intervals and sediment drift rates fluctuate.

The section of the coastline selected for study is a 6 km stretch between Duffcarrick 

Rocks and Pollshone Head on the east coast of County Wexford which consists of three 

bays and a number of headlands (Fig. 3.1). The bays in this region, Courtown North 

Beach, Ardamine and Pollshone, all exhibit the crenellate curve. This area has suffered 

and continues to suffer from erosion which may be in response to anthropogenic factors 

such as harbour development or removal of beach sediment but is more likely the result 

of changes in sediment supply rates [39, 40],
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Pollshone

Pollshone Head

Study area extracted from aerial 
photography taken by the Ordnance 

Survey in 1973

Scale of photograph 
1:30000 approx

Location point for 
offshore wave data

Courtown Harbour

Ardamine

Duffcarrick Rocks

Fig. 3.1 - Location map of study areas
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The methodology adopted to testing the application of the new parabolic curve method 

were to:

• Ascertain the domination wave direction. Two methods were used to determining 

this critical parameter. Firstly, the wave direction was determined from offshore 

wave data. Secondly this direction was independently obtained from the orientation 

(planform) of each bay. The results of both methods were compared and 

commented on.

• Plot the predicted static equilibrium position for the coastline of each bay. The 

SEP was plotted for the two dominant wave directions obtained. Differences 

between the coastlines are commented on.

• Consider the effect of climate change and the impact of coastal protection 

measures. The effect of changes in the dominant wave direction brought about by 

changes in the wind climate were examined. The impact of the current policy of 

installing rock revetments to prevent erosion the coast were also examined.

3.2 Ascertaining the dominant wave direction

This section examines one of the main problems identified by Silvester and Hsu [30] in 

applying either the old or new parabolic curve techniques: the accurate determination of 

the dominant wave direction. Two methods to solve this problem were investigated. It
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should be noted that this is not, in fact, a direction of a single wave or wave train but the 

result of the effect of the total wave climate within the bay.

Firstly, the dominant wave direction was obtained from vectorised plots of the incident 

wave energy at each of the three bays. Since there have not been any wave recordings 

made in the area, the most appropriate source of information is offshore wave data 

generated by computer models using wind field information. These waves may then be 

propagated inshore using a computer wave refraction / diffraction model [41]. This is a 

complex method but has the potential to be very accurate.

The second method uses the simplified approach suggested by Silvester and Hsu [30], 

This requires the measurement of the angle between the tangential end of the bay and a 

control line drawn between the upcoast and downcoast control points. This, he 

maintains, provides practical evidence of the persistent or dominant swell wave 

direction. Swell waves are long period waves which, along with containing the most 

wave energy, are most efficient at transporting sediment. These he considers most 

important in determining the overall shape or ‘planform’ of the bay. The swell waves 

which occur in the immediate aftermath of a storm are particularly important as much 

of the sediment disturbed is still in a state of flux and is available for transport to new 

(or recently vacated) locations.

Both these methods are detailed below and comparison of the results should give an 

indication of the overall stability of the bays by showing how much further the bay 

needs to adjust to align itself with the oncoming waves (i.e. swash alignment).
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3.2.1 Dominant wave direction from wave data

The offshore wave data used was obtained from the British Meteorological Office fine 

mesh wave model (BMO model) [42], Contemporary ocean wave prediction models 

use the wind field as the input to a spectral energy balance equation where the energy 

balance of the wave field is described as a function of frequency, direction, position and 

time combined with the wave field velocity in deep water. This energy is balanced by a 

source function (S) which represents the physical processes that transfer energy to and 

from the wave spectrum. It can be symbolically written as:

S = S „ + S „ ,+ S ^  (1)

where Sin = energy input to the wave field from the atmosphere 

(linear and exponential growth terms)

Sni = transfer of energy associated with non linear wave 

interactions

Sds = energy dissipation in both deep and shallow water

The BMO wave model is a second generation model and is classed as a Coupled 

Discrete (CD) model [43], ‘Discrete’ refers to the fact that it represents the directional 

energy spectrum by a discrete number of finite bandwidth spectral components 

travelling in a specified number of directions. This provides detailed sea-state 

information at a given location in terms of a two-dimensional (frequency-direction) 

spectrum. From research of wave energy spectrums carried out on wave recordings 

made in the North Sea it was found that the spectra could be more accurately described
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using parameters derived from the recorded spectra shape. Although this parametric 

wave model was a significant advance in wave modelling techniques because it allows 

the non-linear wave-wave interactions to be easily computed it had limited 

applicability. In view of this, combined parametric-discrete models were developed 

and these have been classified as Coupled Hybrid and Coupled Discrete models [43],

The BMO wave model is routinely verified against wave measurements at oil company 

platforms, fixed data buoys and weather ships. Winds from the atmospheric models 

used as the input data are also verified in the same way [42], The model was also one 

of ten examined under the Sea Wave Modelling Project (SWAMP) [44] carried out by 

nine wave modelling groups from Europe, the United States and Japan. In this study it 

showed close agreement with the other models for typical wind conditions. While more 

complex and more accurate third generation models, where no ad hoc assumptions on 

wave spectral shape are made, are now available, most notably the WAM model [45], 

these currently operate on grid points which are spatially further apart. This limits their 

effectiveness especially in areas where land masses play an important role in 

determining sea state.

Data was obtained from the BMO model for the years 1994 and 1995 and the data 

format is shown in Fig. 3.2. The location point for this data is shown in Fig. 3.1.
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Time Location Depth Wind Result. Wave Wind Wave Swell Wave
Hr Date Lat Long d Sp Dir Hs Tz Dir Hs Tz Dir Hs Tz Dir
00 10 04 1994 5 2 . 5 0 N 6.  0 6W 2 45 1 27 327 2 . 4 5 . 9 305 2 . 4 6 . 0 305 0 . 5 1 1 . 1 225
03 10 04 1994 5 2 . 5 0 N 6.  0 6W 2 45 1 26 343 2 . 3 5 . 8 343 2 . 3 5 . 9 343 0 . 4 1 1 . 1 187
06 10 04 1994 5 2 . 50N 6. 06W 2 45 1 17 349 1 . 9 5 . 3 057 1 . 7 5 . 5 002 0 . 9 9 . 1 057
09 10 04 1994 5 2 . 5 0 N 6 . 06W 2 45 1 15 006 1 . 5 5 . 1 034 1 . 4 4 . 6 034 0 . 6 9 . 3 070
12 10 04 1994 5 2 . 5 0 N 6.  06W 2 45 1 13 018 1 . 2 4 . 7 033 1 . 1 4 . 0 036 0 . 6 7 . 9 033
15 10 04 1994 5 2 . 50N 6.  0 6W 2 45 1 12 026 1 . 1 4 . 4 036 1 . 0 3 . 7 036 0 . 4 8 . 6 033
18 10 04 1994 5 2 . 5 0 N 6.  0 6W 2 45 1 6 019 0 . 9 4 . 3 034 0 . 4 0 . 1 029 0 . 8 4 . 9 034
21 10 04 1994 5 2 . 50N 6. 06W 2 45 1 5 045 0 . 7 4 . 2 040 0 . 3 0 . 1 036 0 . 6 4 . 7 040
00 11 04 1994 5 2 . 5 0 N 6.  06W 2 45 1 3 159 0 . 6 4 . 2 039 0 . 0 0 . 0 000 0 . 6 4 . 2 039
03 11 04 1994 5 2 . 50N 6 . 06W 2 45 1 5 199 0 . 5 4 . 3 036 0 . 0 0 . 0 000 0 . 5 4 . 3 036
06 11 04 1994 5 2 . 50N 6 . 06W 2 45 1 9 194 0 . 5 4 . 3 188 0 . 3 2 . 0 189 0 . 4 5 . 3 188
09 11 04 1994 5 2 . 5 0 N 6.  06W 2 45 1 8 190 0 . 5 4 . 4 143 0 . 3 2 . 2 185 0 . 4 6 . 1 143
12 11 04 1994 5 2 . 5 0 N 6.  0 6W 2 45 1 10 190 0 . 6 4 . 3 144 0 . 4 2 . 3 185 0 . 4 7 . 1 144
15 11 04 1994 5 2 . 5 0 N 6.  0 6W 2 45 1 10 210 0 . 6 4 . 2 142 0 . 4 2 . 6 205 0 . 4 7 . 7 142
18 11 04 1994 5 2 . 5 0 N 6 . 0  6W 2 45 1 13 217 0 . 7 3 . 7 142 0 . 5 2 . 9 212 0 . 4 9 . 2 142
21 11 04 1994 5 2 . 5 0 N 6 . 0  6W 2 45 1 10 223 0 . 6 3 . 9 217 0 . 5 3 . 0 217 0 . 3 8 . 9 139
00 12 04 1994 5 2 . 5 0 N 6.  0 6W 2 45 1 9 233 0 . 6 3 . 8 223 0 . 5 2 . 8 223 0 . 3 7 . 8 156
03 12 04 1994 5 2 . 50N 6.  06W 2 45 1 11 299 0 . 6 4 . 1 153 0 . 3 2 . 1 270 0 . 5 5 . 0 153
06 12 04 1994 5 2 . 50N 6.  06W 2 45 1 14 334 0 . 6 3 . 9 152 0 . 5 2 . 7 329 0 . 4 7 . 3 152
09 12 04 1994 5 2 . 5 0 N 6.  0 6W 2 45 1 13 331 0 . 6 3 . 6 333 0 . 5 2 . 9 333 0 . 3 8 . 2 147
12 12 04 1994 5 2 . 5 ON 6.  0 6W 2 45 1 14 341 0 . 6 3 . 5 342 0 . 6 2 . 9 342 0 . 2 9 . 5 150
15 12 04 1994 5 2 . 5 0 N 6 . 06W 2 45 1 13 339 0 . 6 3 . 7 341 0 . 6 3 . 0 341 0 . 3 1 0 . 3 147
18 12 04 1994 5 2 . 50N 6.  0 6W 2 45 1 14 342 0 . 7 3 . 8 342 0 . 6 3 . 0 342 0 . 3 1 1 . 7 147
21 12 04 1994 5 2 . 50N 6.  06W 2 45 1 12 353 0 . 6 3 . 9 159 0 . 5 2 . 9 353 0 . 3 1 0 . 1 159
00 13 04 1994 5 2 . 50N 6 . 0  6W 2 45 1 16 347 0 . 7 4 . 0 160 0 . 6 3 . 0 353 0 . 4 8 . 0 160
03 13 04 1994 5 2 . 5 0 N 6.  06W 2 45 1 18 352 1 . 0 4 . 2 003 1 . 0 3 . 8 003 0 . 3 1 1 . 8 157
06 13 04 1994 5 2 . 5 0 N 6.  06W 2 45 1 15 356 1 . 1 4 . 4 019 1 . 0 4 . 1 019 0 . 3 1 0 . 4 160
09 13 04 1994 5 2 . 50N 6.  0 6W 2 45 1 15 004 1 . 1 4 . 4 019 1 . 0 4 . 1 019 0 . 4 9 . 3 158
12 13 04 1994 5 2 . 5 0 N 6.  06W 2 45 1 17 011 1 . 1 4 . 4 023 1 . 1 4 . 1 023 0 . 3 9 . 6 162
15 13 04 1994 5 2 . 5 ON 6 . 0  6W 2 45 1 15 007 1 . 1 4 . 4 023 1 . 0 4 . 1 023 0 . 3 1 0 . 8 159
18 13 04 1994 5 2 . 50N 6.06W 2 45 1 14 019 1 . 0 4 . 3 022 0 . 9 3 . 9 022 0 . 4 1 1 . 4 158

Hr = hour; Lat = Latitude; Long = Longitude; d = depth (m); Sp = Wind Speed (m/s); Dir = Direction (degrees); Hs = Significant wave height (m); Tz = Wave period (sec)

Fig 3.2 - Offshore wave data format 
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In order to ascertain the dominant wave direction at each bay it was necessary to 

examine the effects of nearshore bathymetry and headlands by propagating these 

offshore waves shorewards using a wave refraction/diffraction computer model. The 

model used was RCPWAVE, originally developed by the US Corps of Engineers [41]. 

This was modified by Murphy and Walsh [46] who added a Graphic User Interface and 

named the new package ROWAVE. The model propagates linear, monochromatic 

waves using formulae based on a numerical solution to an elliptic equation which 

approximates the complete wave transformation process over bathymetry constrained 

only to have ‘mild’ bottom slopes (as computational refractive methods fail in regions 

of complex bathymetry). The main formulae used are the ‘mild slope equation’, 

originally developed by Smith and Sprinks [47] and Snell’s Law [48], The model also 

includes an algorithm which estimates wave conditions inside the surf zone (shoreward 

of the breaking waves).

RCPWAVE requires two input files, the control file and the bathymetric grid file. The 

control file contains information on both the bathymetric grid (number of grid points, 

distance between points, etc.) and on the input wave (wave height, period and 

direction). The bathymetric file contains the water depth data (Fig. 3.3). Water depths 

for an area 19.5km by 27.7km were digitised from Admiralty Chart no. 1727. The area 

close to shore (down to -6m water depth) is particularly important and accurate 

bathymetry for this area was obtained from measurements taken by the EROPRO 

project [49], This file contains a total of 21,875 water depth measurements.

It was not practical to propagate every offshore wave ashore so scatter tables of the 

offshore wave (resultant) was firstly created using customised software. This
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summarised the waves into usable blocks based on their wave direction, height and 

period. Each block was then brought ashore to obtain the altered wave at location 

points within each of the three bays.

Fig 3.3- Bathymetric grid of study area

These blocks of inshore wave data were then converted to directional wave energy 

using Airy theory [50], This employs first order functions resulting in a linear 

approach. Unfortunately, since many non-linear processes exist in shallow waters this 

method is not particularly suited for nearshore work. More complex higher order 

theories such as Stokes II, HI or IV, Cnoidal or Solitary would be more appropriate but 

these have the disadvantage of increased computational requirements and more detailed 

input data. For practical reasons and because of the fact that accurate information was 

not available on the non-linear nearshore processes it was decided to use the Airy wave 

approach,
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The Airy wave energy formula is:

I P 2E = 0.5 pgL\— \ (2)

Where E  = Energy per wavelength for each metre of wave crest (Joules)

¡ea

g = Gravity (m/s2)

p  = Density of sea water (kg/m3)

L  = Wave length (m) = T(gd)2 5 Where T = Wave period (s)

d = Water depth (m)

H  = Wave height (m)

The directional wave energy for each point was summated and plotted as a vector 

diagram. From this the resultant wave energy and direction was established. This 

direction was assumed to represent the dominant wave direction.

3.2.2 Dominant wave direction from coastal planform

This technique adopts the methodology proposed by Silvester and Hsu [30], They 

suggest that the dominant wave direction is indicated by the tangent to the coastline 

drawn at the downcoast extremity of the bay. The angle this makes with the control line 

(the line joining the two control points) is designated J3 (Fig. 3.4).

The problems associated with this technique are the difficulty in identifying the 

downcoast control point, and the fact that the bays are not in a static equilibrium 

condition due to the longshore drift of sediment.
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Tangent to coastline

//
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ff Downcoast
control point

/tL Angle equal to dominant 
wave approach direction

Control Line

Headland /

.Upcoast 
control point

Fig. 3.4 - Sketch showing dominant wave approach angle as indicated by a bay in static equilibrium

3.2.2.1 The downcoast tangential section

This section of the bay is adjacent to the downcoast control point. The downcoast 

control point in small crenellate bays is usually located at a headland or rock outcrop. 

However, this point is more difficult to locate in longer bays as the controlling point 

may be reached before the downcoast headland. In this case the point will exist 

somewhere along the coastline within the bay and may not have any identifying 

features. Because of its length and the acute dominant wave approach angle one of the 

bays, Courtown North, was found to have this problem. It is only possible to solve this 

difficulty by selecting a number of control points within the bay and plotting the 

resultant SEP’s. The tangent itself, however, is usually constant for all possible 

downcoast control point locations. Measuring the angle in relation to the 360° compass 

(with true north at 0°) gives the dominant wave direction.
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3.2.2.2 Crenellate Bays not in Static Equilibrium

Silvester and Hsu [30] suggested that when any reasonable length of coastline is being 

considered, the direction of the dominant wave should be sensibly constant, even when 

refracted across the continental shelf to the beach. If the headlands were aligned, the 

wave orthogonals would be parallel and hence the downcoast tangents of successive 

bays would be similarly oriented. Unfortunately however, this is not the case with the 

study area and as the three bays are not aligned and the angle measured would be 

expected to be different for each bay. They also observed that for a coastline curving 

away from the sea (3 would increase as one moved farther along the curve [30], This 

means that the indentation of bays along it would also increase. Conversely, when the 

coast curves towards the sea the angle and the indentation should decrease. This is the 

case for the studied site.

The fact that the bays are not in static equilibrium leads to a smaller p being measured 

than would be the case had the longshore drift of sediment ceased. From laboratory 

tests carried out by Ho [37] it was noted that the downcoast tangential section of the bay 

reached a state of quasi-equilibrium long before the bay had eroded to its SEP. The 

technique is therefore usable on evolving bays although the final angle p may be larger 

for the final swash aligned beach.

A further point raised by Silvester and Hsu [30] in relation to p is if this angle is 

measured for a bay that exhibits a planform or shape that closely match the static 

equilibrium position then p for this bay is the true dominant wave angle for the area 

including nearby bays which may not be in static equilibrium. This wave angle can
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then be refracted back into deep water to determine the dominant offshore wave 

approach angle. This can then be refracted shorewards into other bays to find the true 

dominant wave angle for these. This has implications for the present study as one of the 

bays, Poll shone, appears to be close to static equilibrium. It is postulated that this is 

because longshore drift is bypassing this small bay due to the prominence of the 

headland to the south (Fig. 3.1). This is further discussed in Chapter 4.

3.2.3 Comparison of the two techniques

The dominant wave angle obtained by the two techniques were compared and the 

differences for each bay noted. This comparison has a number of purposes. Firstly, 

differences between the two should indicate how far from static equilibrium is the 

current coastline. Secondly, they could also indicate a possible change in wave angle 

caused by changes in wind climate and thirdly, if  the difference between angles varies 

between bays this could mean that the rate of longshore drift also varies from bay to 

bay.

3.3 Plotting the static equilibrium coastline

In order to plot the static equilibrium position of the coastline using the new parabolic 

curve method two input variables are required. The wave approach angle has been 

detailed above. The second variable is the control line.
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The control line or Ro is the line joining the upcoast and downcoast control points (Fig. 

3.5). As discussed in section 3.1.2, in the case of small pocket bays, the downcoast 

control point is usually a headland or rock outcrop. However, for longer bays, the point 

may be located within the tangential section of the bay.

Fig. 3.5 - Definition sketch of the new parabolic curve method and graph showing Co, Ci and C2

coefficients
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Silvester and Hsu [30] examined the sensitivity of the bay shape to changes in location 

of the downcoast control point and the consequent changes in the length of the control 

line (Fig. 3.5). Even though this length was varied by ±15% there was little change in 

the static equilibrium position of the coastline mainly because the change in the control 

line caused a commensurate change in the angle p (by ±5°). This technique was 

adopted for Courtown North and Ardamine where, by comparing a number of SEP’s 

against the existing coastline, it was possible to determine the location of the downcoast 

control point with reasonable accuracy.

There is generally little difficulty in locating the upcoast control point as it is the point 

where wave diffraction takes place. This is usually at a headland, pier, reef or rocks. It 

is, however, unreliable identifying such a point from maps as they may not show rock 

outcrops or submerged reefs. For this study, aerial photographs showing wave crests 

were used to find this point for each of the studied bays. The photographs were from a 

series taken by the Ordnance Survey in 1990. The scale of the photographs is 1:10,000.

A complication arose in the case of Courtown North beach. The remains of an artificial 

breakwater constructed at the beginning of the 18th century extends from a headland to 

the south giving two possible diffraction points. A third exists at the end of the harbour 

entrance walls. This problem of multiple upcoast control points had been discussed by 

Silvester and Hsu [30] who detailed a technique for plotting a coastline created by a 

number of upcoast control points. As shown in Fig. 3.6, the coastline is first plotted for 

the outermost control point using the measured values of the length of the control line 

AD and the wave approach angle p1.
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Fig. 3.6 - Bays formed by multiple headlands

The static equilibrium position for this situation is as shown in the figure up to the point 

where the wave orthogonal from A to C is diffracted. From this point to the lee of the 

pier there will be further diffraction causing greater curvature than is shown. If 

however the pier is extended to point B the original wave orthogonal will intersect both 

A and B so the line BD will become the new control line and the wave approach angle 

will have changed to (3. The new beach will be as shown up to the point where the 

orthogonal from A to B is diffracted where there will, again, be additional curvature 

from here to the lee of the pier.

This technique was applied to the case of Courtown North where the harbour entrance 

walls were found to have the dominant effect on the bay shape.
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3.3.2 Drawing the SEP

Having determined both the dominant wave approach angle and the control line it was 

then possible to draw the static equilibrium position for each of the three bays. The task 

itself is simply a matter of applying the polynomial developed by Hsu and Evans [38]

An outline of the bay was traced from the aerial photographs of the area. This was then 

marked with the control points and the control line. The distance R was calculated for

each of these lines were drawn on the trace. The endpoint of each of these lines marked 

the position of the coastline in static equilibrium conditions i.e. a swash aligned beach 

with zero transport of sediment into or out of the bay.

As this task was to be repeated many times it was decided to automate the process to 

some degree. Values for the coefficients were extracted from the curves given in Fig.

3.5 and were inputted into a standard spreadsheet computer package. The formula for 

calculating R was inserted into the programme and a graphing routine was developed 

which automatically created a radial plot of entered values of Ro and 0 (Fig. 3.7). This 

was then pasted into a standard 2D drafting computer package where it was properly 

scaled and fitted as an overlay on the bay outline trace

(3)

where; R, Ro, (3, 0 are as shown in Fig. 3.5

C0, Ci and C2 are variables which change with (3 and are graphed 

in Fig. 3.5

a number of selected values of 0 (Silvester and Hsu [30] recommends steps of 15°) and



Equilibrium Coastline Position Prediction

Fig. 3.7 - Display from spreadsheet used to draw radial plots
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The SEP’s for the three bays being studied were thus drawn for various control points 

and for the two wave approach angles as determined by the wave data and the bay 

planform methods.

3.2.3 Comparison of differing SEP’s

The SEP’s as drawn using the two wave approach angles were compared for each of the 

three bays by overlaying one on the other. Differences between the SEP’s and the 

existing coastline were commented on and possible reasons for the variations were 

suggested.

3.3 Climate change and coastal protection measures

3.3.1 Climate change

Long term coastal change is primarily driven by changes in the climate. Global 

warming as a result of increasing levels of greenhouse gases in the atmosphere will 

have two major effects on the coast. It is anticipated that sea levels will rise by 

approximately 0.2m by the year 2030 [51] with the current rate of rise of about 1 to 

2mm per year rising to 5mm per year [52], The effect of this will be an increase in the 

erosion rate and recession of the coastline. However, the overall response of the coast 

to sea level rise is currently not fully understood with feedback mechanisms such as the 

development of offshore bars expected to play a major part. There is as yet little
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evidence of this accelerated rise having started. Because of these uncertainties the 

effect of sea level rise on the coast is not investigated in this study.

The other effect of global warming is changes in storm patterns. There is strong 

evidence that this is presently underway with storm intensity, and consequently wave 

activity, on the increase since the 1950’s [53, 54], This has the potential to increase the 

amount of wave energy impinging on the coast and could change the direction of 

approach of the waves. If this happens all bays will be forced to adjust as beaches try to 

maintain swash alignment. It is this reaction that is investigated here.

The dominant wave approach direction P was varied to represent changes in storm 

pattern. It is considered more likely that there will be an increase in easterly winds 

which will cause P to decrease for the three bays and indeed all bays facing east. Step 

increases of two degree up to a maximum of 6 degrees were investigated and the 

realigned static equilibrium position coastlines are drawn for each.

3.3.2 Coastal protection measures

Man’s development of the coastal zone has been a primary factor in increasing erosion 

rates [6], Structures which interfere with the longshore drift of sediment such as piers, 

channel training walls, etc., have been a major factor as coastal areas downdrift have 

been starved of sediment. This effect is now well understood and developers of such 

structures in the future will be required to carry out an environmental impact 

assessment.
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Coastal protection measures can, paradoxically, contribute to increased erosion rates. 

For example, waves impinging on the vertical face of a seawall are reflected back to 

sea. These can carry large amounts of sediment seaward, ultimately being deposited 

downdrift. The beach levels in front of these walls fall and remedial measures are 

required to prevent the walls being undermined. Because of this and their prohibitive 

cost, seawalls are now rarely built as coastal protection structures.

More common nowadays are coastal protection rock revetments. In the study area two 

have already been built, one is currently being extended and another is at the planning 

stage. Rock revetments provide a bulwark against the sea. Usually they are built at or 

above the high water mark and face wave attack only during storms or very high water 

levels. Their highly broken surface absorbs most of the wave energy with little being 

reflected back to the sea.

The problem with revetments is that they often try to maintain a coastline that is not in 

equilibrium with the forces of the sea. In the short term, it is the terminal points of the 

revetment that are problematic. Re-entries is a form of erosion where the soft coast at 

the end of the revetment is eroded into the crenellate curve, in effect a smaller version 

of the bay curve. This was investigated for each of the existing, extended and planned 

revetments within the study area.

In the long term, the artificial hardening of an unstable coastline will, without constant 

maintenance, eventually fail as structures become undermined. In areas which have 

little longshore sediment transport this can happen within a number of years. The study 

area is, however, fortunate to have a longshore transport rates of between 50,000 and
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100,000 m3 per year [39], Therefore, it is likely that undermining of the revetment will 

be relatively slow even though the coastline is inherently unstable.
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4. ANALYSIS AND DISCUSSION OF RESULTS

4.1 Ascertaining the Dominant Wave Direction

4.1.1 Dominant wave direction from wave data

Having obtained offshore hindcast wave data from the British Meteorological Office 

computer model for the selected point in the south Irish sea (Fig. 3.1), the first step was 

to group the two years of ‘resultant wave’ data into blocks which could be brought 

inshore using the wave refraction/diffraction computer model. This model requires 

input wave descriptors such as, wave height, wave period and wave direction. The 

wave data was analysed and tables created based on these parameters allowing the 

number of occurrences of each type of wave to be counted. As the entire data set 

contains 5840 lines of data each containing 20 variables, the only possible way of 

carrying out such analysis was by using a computer program. A customised program 

was written in BASIC and the listing is given in the Appendix.

4.1.1.1 Creation of scatter tables

The generated tables are called ‘directional scatter tables’ and have the wave period on 

the x-axis with wave height on the y-axis (plots 4.1 to 4.8). The term ‘Zero Up-crossing 

Period’ refers to the time taken for the wave to pass a fixed point. Each of the plots 

presented below cover a wave direction span of 22.5° starting at 0° and ending at 180°. 

Waves approaching from the west are ignored as their contribution to inshore wave 

energy would be very difficult to ascertain and in any event is likely to be small.
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Each value in the plots represent a period of 3 hours. Thus a value of 8 for a wave 

period of 6 seconds and a wave height of between 1.5 to 2m means that these waves 

occurred for a total duration of 24 hours over the years 1994-95. Since one such wave 

occurs every 6 seconds the total number of individual waves occurring over the 24 

hours is 14,400.

SCATTER TABLE FOR WAVE DIRECTION BETWEEN 0 - 22.5 DEG. Total

SIG. 14 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0

WAVE 13.5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0

HEIGHT 13 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0

(metres) 12.5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0
12 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0

11.5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0

10.5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0

10 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0

9. 5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0

9 *  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0

8 5  * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0

8 *  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0

7. 5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0

7 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0
6 5  * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0

6 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0
5. 5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0

5 *  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0

4. 5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0

4 *  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0

3. 5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0

3 *  0 0 0 0 0 0 1 0 0 0 0 0 0 0 0  1

2. 5 * 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0  2

2 *  0 0 0 0 0 2 0 0 0 0 0 0 0 0 0  2
15 * 0 0 0 0 1  8 0 0 0 0 0 0 0 0 0  9

1 *  0 0 0 0  27 0 0 0 0 0 0 0 0 0 0  27

0. 5 * 0 0 0  21 14 0 0 0 0 0 0 0 0 0 0  35

0 *  0 0 0  29 0 0 0 0 0 0 0 0 0 0 0  29

1 2 3 4 5 6 7 8 “5 10 11 12 13 14 15

ZERO UP-CROSSING PERIOD (seconds)

Table 4.1 - Directional scatter table for waves between 0° - 22.5°
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SCATTER TABLE FOR WAVE DIRECTION BETWEEN 22.6- 46 DEG. ____________   Total

SIG. 14 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
WAVE 13.5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
HEIGHT 13 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(metres) 12.5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11.5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10.5 ‘ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9.5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8.5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7.5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6.5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5.5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4.5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3.5 * 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 2

3 * 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 2
2.5 * 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 3

2 * 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 11
1.5 * 0 0 0 0 17 35 1 0 0 0 0 0 0 0 0 53

1 * 0 0 0 0 55 5 0 0 0 0 0 0 0 0 0 60
0.5 * 0 0 0 39 38 4 0 0 0 0 0 0 0 0 0 81

0 * 0 0 0 21 2 0 0 0 0 0 0 0 0 0 0 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ZERO UP-CROSSING PERIOD (seconds)

Table 4.2 - Directional scatter table for waves between 22.5° - 45°

SCATTER TABLE FOR WAVE DIRECTION BETWEEN 45 - 67.5 DEO. Total

SIG. 14 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
WAVE 13.5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
HEIGHT 13 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(metres) 12.5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11.5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10.5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9.5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8.5 ‘ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7.5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6.5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5.5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4.5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3.5 - 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 2

3 * 0 0 0 0 0 0 4 2 0 0 0 0 0 0 0 6
2.5 * 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 11

2 * 0 0 0 0 0 25 2 0 0 0 0 0 0 0 0 27
1.5 * 0 0 0 0 13 35 0 0 0 0 0 0 0 0 0 48

1 ‘ 0 0 0 0 37 0 0 0 0 0 0 0 0 0 0 37
0.5 * 0 0 0 22 8 0 0 0 0 0 0 0 0 0 0 30

0 * 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ZERO UP-CROSSING PERIOD (seconds)

Table 4.3 - Directional table plot for waves between 45° - 67.5°
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SCATTER TABLE FOR WAVE DIRECTION BETWEEN 67.5 - 90 DEQ. ____________________  Total

SIG. 14 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0
WAVE 13.5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0
HEIGHT 13 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0
(metres) 12.5 " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0

12 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0
11.5 *  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0
11 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0

10.5 *  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0
10 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0

9. 5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0
9 *  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0

8. 5 *  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0
8 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0

7. 5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0
7 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0

6. 5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0
6 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0

5 ,5 " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0
5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0

4. 5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0
4 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0

3. 5 *  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0
3 * 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0  1

2. 5 *  0 0 0 0 0 0 1 0 0 0 0 0 0 0 0  1
2 * 0 0 0 0 0 8 1 0 0 0 0 0 0 0 0  9

1. 5 *  0 0 0 0 2 6 0 0 0 0 0 0 0 0 0  8
1* 0 0 0 1  20 1 0 0 0 0 0 0 0 0 0  22

0. 5 *  0  0 0  28  10 0 0  0  0  0  0  0 0  0  0  38
0 * 0 0 0 11 0 0 0 0 0 0 0 0 0 0  0 11

1 2 3  4 5  6 7 8 9  10 11 12 13  14 15
ZERO UP-CROSSING PERIOD (seconds)

Table 4.4 - Directional scatter table for waves between 67.5° - 90°

SCATTER TABLE FOR WAVE DIRECTION BETWEEN 90-112.5 DEG.  Total

SIG. 14 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0
WAVE 13.5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0
HEIGHT 13 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0
(metres) 12.5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0

12 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0
11.5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0

1 1 '  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0
10.5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0

10 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0
9. 5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0

9 *  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0
8. 5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0

8 *  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0
7. 5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0

7 *  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0
6. 5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0

6 *  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0
5 .5 "  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0

5 *  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0
4. 5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0

4 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0
3. 5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0

3 *  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0
2. 5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0

2 *  0 0 0 0 0 3 0 0 0 0 0 0 0 0 0  3
1. 5 * 0 0 0 0 2 1  0 0 0 0 0 0 0 0 0  3

1 *  0 0 0 0  18 0 0 0 0 0 0 0 0 0 0  18
0. 5 * 0 0 0  12 8 0 0 0 0 0 0 0 0 0 0  20

0 *  0 0 0  11 0 0 0 0 0 0 0 0 0 0 0  11
1 2 3 4 5 6 7 8 9 10 T? 12 13 14 15

ZERO UP-CROSSING PERIOD (seconds)

Table 4.5 - Directional scatter table for waves between 90° - 112.5°
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SCATTER TABLE FOR WAVE DIRECTION BETWEEN 112.6 -136 DEG. Total

SIG. 14 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

WAVE 13.5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

HEIGHT 13 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(metres) 12.5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11.5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 ‘ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9.5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8.5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7.5 ‘ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6.5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5.5 * 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
5 * 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

4.5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3.5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 41 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 3

2.5 * 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 2
2 * 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 2

1.5 * 0 0 0 0 3 4 0 0 0 0 0 0 0 0 0 7
1 * 0 0 0 2 16 0 0 0 0 0 0 0 0 0 0 18

0.5 * 0 0 0 7 7 0 1 0 0 0 0 0 0 0 0 15

0 * 0 0 0 7 0 1 2 0 0 0 0 0 0 0 0 10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ZERO UP-CROSSING PERIOD (seconds)

Table 4.6 - Directional scatter table for waves between 112.5° - 135°

SCATTER TABLE FOR WAVE DIRECTION BETWEEN 135 -157.6 DEG. Total

SIG. 14 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

WAVE 13.5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
HEIGHT 13 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(metres) 12.5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11.5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10.5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9.5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

IO00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7.5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 * 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
6.5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 * 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 3

5.5 ‘ 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 3

5 * 0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 4

4.5 * 0 0 0 0 0 0 0 4 8 1 0 0 0 0 0 13
4 * 0 0 0 0 0 0 0 9 10 1 0 0 0 0 0 20

3.5 * 0 0 0 0 0 0 1 15 7 2 0 0 0 0 0 25
3 * 0 0 0 0 0 0 8 29 7 0 0 0 0 0 0 44

2.5 * 0 0 0 0 0 0 37 24 5 0 0 0 0 0 0 66

2 * 0 0 0 0 0 28 38 12 9 6 0 0 0 0 0 93

1.5 * 0 0 0 0 11 59 25 11 4 2 0 0 0 0 0 112

1 * 0 0 0 7 92 47 10 9 4 2 1 0 0 0 0 172

0.5 * 0 0 0 75 218 95 51 16 9 5 2 0 0 0 0 471
0 * 0 0 0 53 67 26 10 4 3 0 0 0 0 0 0 163

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ZERO UP-CROSSING PERIOD (seconds)

Table 4.7 - Directional scatter table for waves between 135° -157.5°
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SCATTER TABLE FOR WAVE DIRECTION BETWEEN 157.5 - 180 DEO. Total

SIG. 14 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

WAVE 13.5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

HEIGHT 13 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(metres) 12.5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11.5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9.5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.5 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7.5 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6.5 * 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

6 * 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 2

5.5 * 0 0 0 0 0 0 0 0 7 1 0 0 0 0 0 8

5 * 0 0 0 0 0 0 0 0 11 1 0 0 0 0 0 12

4.5 * 0 0 0 0 0 0 0 5 17 0 0 0 0 0 0 22

4 * 0 0 0 0 0 0 3 29 2 0 0 0 0 0 0 34

3.5 * 0 0 0 0 0 0 1 21 2 0 0 0 0 0 0 24

3 * 0 0 0 0 0 0 43 23 3 0 0 0 0 0 0 69

2.5 * 0 0 0 0 0 4 76 26 2 0 0 0 0 0 0 108

2 * 0 0 0 0 1 54 59 14 6 1 0 0 0 0 0 135

1.5 * 0 0 0 1 22 85 26 14 6 0 0 0 0 0 0 154

1 * 0 0 0 12 83 60 23 11 1 1 0 0 0 0 0 191

0.5 * 0 0 0 48 121 77 27 4 1 0 0 0 0 0 0 278

0 * 0 0 0 62 51 33 7 2 0 0 0 0 0 0 0 155

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ZERO UP-CROSSING PERIOD (seconds)

Table 4.8 - Directional scatter table for waves between 157.5° - 190°

From these tables it was possible to create an offshore ‘wave rose’ which graphically 

demonstrates the dominance of the southerly swell in the south Irish sea. This is shown 

in Fig. 4.1.

4.1.1.2 Bringing the offshore wave inshore

The wave refraction/diffraction computer model used was ROWAVE [46], This 

required two input files, the bathymetric file for the area, called the GRID FILE and the 

CONTROL FILE. The CONTROL FILE contained details on the bathymetric grid 

(number of grid points, dimensions of grid, addition to water level, etc.) and details of 

the input wave such as the wave height, period and direction.
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Fig. 4.1 - Wave rose for offshore grid point 52.5N - 6.06W

An individual CONTROL FILE had to be created for each of the wave types in the 

scatter plots, a total of 181 files. A sample file is given in Fig. 4.2.

The GRID FILE contains the bathymetry for the area and it was created from a 

bathymetric chart (Admiralty Chart no. 1727) by manually inputting water depths. An 

additional depth of 0.6m was added to simulate mean water level conditions.
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Distance (m) between 
grid points on x-axis

Distance (m) 
between grid points 
on y-axis

No. of grid points on 
y-axis

No. of grid points 
on x-axis

t

Gravity acceleration constant 
(used to determine whether 
input & output variabled are 
imperial or SI units)

175 158.000 125 156.000 
3.2500 7.0000 11.0000 
1 175 1 1 125

9.80000 0.000 1

Input wave details, height, period 
and direction in relation to the grid

Instructions to output entire grid 
to output files

0.600

\
dition toA(

water level (m)
Angle between bathymetric contours 
and the y axis (if regular this speeds 
up the calculation)

No. of test waves 
(set to 1)

Fig. 4.2 - Control File for wave refraction / diffraction model RCPWAVE
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This data was then edited to include nearshore measurements taken during the autumn 

of 1995 as part of the ECOPRO project [48], The editing was carried out within the 

ROWAVE package. The grid covered an area 19.5km x 27.6km and was oriented with 

the longer x-axis running due north. Fig. 4.3 shows a depth contour map of the grid.

120.00 

100,00 

80.00 

60.00

40.00

20.00

20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00

Fig 4.3 - Depth contour map of bathymetric grid

The location of the grid points used to obtain the details of the nearshore wave at each 

of the three bays is also shown in Fig. 4.2. The water depth at each is approximately 

7.9m (including additional 0.6m).

A complication arose when waves of a strongly oblique angle were used as input waves 

to the model. ROWAVE and the original RCPWAVE along with other wave 

refraction/diffraction models have difficulty computing wave angles as they approach 

90° to the grid. To avoid this problem it was necessary to create new grids angled
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sufficiently so that the wave angle was always significantly less than 90° at all points on 

the grid. The process of manually inputting water depth data is time consuming so, a 

BASIC computer program was written which automatically created the new grids. The 

new grids were angled at 45° to the original grid and were resized and shifted to ensure 

that the new grid edges did not project beyond the original grid dimensions. The 

outline of the two altered grids is shown in Fig. 4.4 and the BASIC program is listed in 

the Appendix.

Fig. 4.4 - New bathymetric grids required for northerly and southerly waves 

4.1.1.3 Obtaining inshore wave energy data.

With the appropriate CONTROL & GRID FILES each type of offshore wave was

propagated towards the shore using the ROWAVE package (Figs. 4.5 to 4.8). The

resultant nearshore waves were extracted at points close to the three bays (Fig. 4.3).
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Table 4.9 is an example of the tabulated nearshore wave data for offshore waves 

approaching from 124°. This represents the effect the bathymetry has on all the wave 

types tabulated. Similar tables were created for the seven other approach directions. 

The wave number (£) referred to in these tables is a function of the wave length which 

is in turn related to the wave period as follows;

I kWaveNumber(k) = - j - (4)

sT 2 (2  L = Wavelength = ^ — tanh^—̂ (5)

where T = Wave period (sec)

d = Water depth (m)

With L on both sides of the wave length formula it is difficult extracting the wave 

period. However this remains almost constant as the wave propagates shorewards. 

Using the wave number (k) makes the subsequent wave energy calculations easier.

Substituting k into the wave energy formula (2) allows wave energy for an individual 

wave (per metre of wave crest) to be calculated as follows;

ngfjH s)' 
4 k

(6)

where E  = Energy per metre of wave crest (J)
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Fig 4.5 - Wave ray diagram for approaching wave of height 5.75m, period 9sec and direction 124°.
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Fig 4.6 - Wave height contour map for approaching wave of height 5.75m, period 9sec and direction 124 .
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Fig 4.7 - Wave ray diagram for approaching wave of height 3.25m, period 7sec and direction 56 .
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Fig 4.8 - Wave height contour map for approaching wave of height 3.25m, period 7sec and direction 56°.
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REFRACTION/DIFFRACTION OF WAVES FROM 112.5 -135  PEG.

INPUT WAVE GRID OUTPUT WAVE
HS (m) TZ (sec) DIR (grid) X Y DEPTH (m) HS (m) DIR (grid) k (xIO-3)

C.NORTH 5.75 9 -34 97 39 -7.9 5.6 -28 85
ARDAMINE 5.75 9 87 39 -7.7 5.1 -20 86

POLLSHONE 5.75 9 84 40 -7.7 4.4 -21 85
C.NORTH 5.25 8 -34 97 39 -7.9 4.7 -27 98

ARDAMINE 5.25 8 87 39 -7.7 4.4 -21 98
POLLSHONE 5.25 8 84 40 -7.7 4.1 -23 98

C.NORTH 3.25 7 -34 97 39 -7.9 2.8 -31 115
ARDAMINE 3.25 7 87 39 -7.7 2.7 -23 116

POLLSHONE 3.25 7 84 40 -7.7 2.6 -24 115

C.NORTH 2.75 7 -34 97 39 -7.9 2.4 -31 115

ARDAMINE 2.75 7 87 39 -7.7 2.3 -23 116

POLLSHONE 2.75 7 84 40 -7.7 2.2 -24 115
C.NORTH 0.75 7 -34 97 39 -7.9 0.7 -31 115

ARDAMINE 0.75 7 87 39 -7.7 0.6 -23 116

POLLSHONE 0.75 7 84 40 -7.7 0.6 -24 115

C.NORTH 0.25 7 -34 97 39 -7.9 0.2 -31 115

ARDAMINE 0.25 7 87 39 -7.7 0.2 -23 116

POLLSHONE 0.25 7 84 40 -7.7 0.2 -24 115
C.NORTH 2.25 6 -34 97 39 -7.9 1.9 -32 140

ARDAMINE 2.25 6 87 39 -7.7 1.9 -25 141

POLLSHONE 2.25 6 84 40 -7.7 1.8 -26 140

C.NORTH 1.75 6 -34 97 39 -7.9 1.5 -32 140

ARDAMINE 1.75 6 87 39 -7.7 1.5 -25 141

POLLSHONE 1.75 6 84 40 -7.7 1.4 -26 140
C.NORTH 0.25 6 -34 97 39 -7.9 0.2 -32 140

ARDAMINE 0.25 6 87 39 -7.7 0.2 -25 141

POLLSHONE 0.25 6 84 40 -7.7 0.2 -26 140

C.NORTH 1.75 5 -34 97 39 -7.9 1.6 -33 181

ARDAMINE 1.75 5 87 39 -7.7 1.5 -28 182

POLLSHONE 1.75 5 84 40 -7.7 1.5 -29 182

C.NORTH 1.25 5 -34 97 39 -7.9 1.1 -33 181

ARDAMINE 1.25 5 87 39 -7.7 1.1 -28 182

POLLSHONE 1.25 5 84 40 -7.7 1.1 -29 182

C.NORTH 0.75 5 -34 97 39 -7.9 0.7 -33 181

ARDAMINE 0.75 5 87 39 -7.7 0.7 -28 182
POLLSHONE 0.75 5 84 40 -7.7 0.6 -29 182
C.NORTH 1.25 4 -34 97 39 -7.9 1.2 -34 260

ARDAMINE 1.25 4 87 39 -7.7 1.2 -32 261
POLLSHONE 1.25 4 84 40 -7.7 1.2 -32 261

C.NORTH 0.75 4 -34 97 39 -7.9 0.7 -34 260

ARDAMINE 0.75 4 87 39 -7.7 0.7 -32 261
POLLSHONE 0.75 4 84 40 -7.7 0.7 -32 261

C.NORTH 0.25 4 -34 97 39 -7.9 0.2 -34 260

ARDAMINE 0.25 4 87 39 -7.7 0.2 -32 261

POLLSHONE 0.25 4 84 40 -7.7 0.2 -32 261

Table 4.9 - Refraction/diffraction results for waves approaching Grid 1 

at an angle of -34° (124° from true North)
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Using this equation (6) and the known number of waves of a particular type and 

direction it is possible to calculate the total wave power. This is presented in Table 

4.10 for waves approaching from 124°.

Equilibrium Coastline Position Prediction____________________________________________________________________________________

NEARSHORE WAVE ENERGY FOR WAVES FROM 112.5 - 135 PEG.

OUTPUT WAVE ENERGY
HS (m) DIR (qrid) k (x io 3) (KJ/m crest) EVENTS TOTALiMJ/m crest)

C.NORTH 5.6 -28 85 2911 1 3493
ARDAMINE 5.1 -20 86 2386 1 2864
POLLSHONE 4.4 -21 85 1797 1 2157
C.NORTH 4.7 -27 98 1779 1 2401
ARDAMINE 4.4 -21 98 1559 1 2104
POLLSHONE 4.1 -23 98 1353 1 1827
C.NORTH 2.8 -31 115 538 3 2490
ARDAMINE 2.7 -23 116 496 3 2295
POLLSHONE 2.6 -24 115 464 3 2147
C.NORTH 2.4 -31 115 395 2 1220
ARDAMINE 2.3 -23 116 360 2 1110
POLLSHONE 2.2 -24 115 332 2 1025
C.NORTH 0.7 -31 115 34 1 52
ARDAMINE 0.6 -23 116 24 1 38
POLLSHONE 0.6 -24 115 25 1 38
C.NORTH 0.2 -31 115 3 2 8
ARDAMINE 0.2 -23 116 3 2 8
POLLSHONE 0.2 -24 115 3 2 8
C.NORTH 1.9 -32 140 203 2 732
ARDAMINE 1.9 -25 141 202 2 727
POLLSHONE 1.8 -26 140 183 2 657
C.NORTH 1.5 -32 140 127 4 913
ARDAMINE 1.5 -25 141 126 4 907
POLLSHONE 1.4 -26 140 110 4 795
C.NORTH 0.2 -32 140 2 1 4
ARDAMINE 0.2 -25 141 2 1 4
POLLSHONE 0.2 -26 140 2 1 4
C.NORTH 1.6 -33 181 112 3 723
ARDAMINE 1.5 -28 182 98 3 632
POLLSHONE 1.5 -29 182 98 3 632
C.NORTH 1.1 -33 181 53 16 1823
ARDAMINE 1.1 -28 182 52 16 1813
POLLSHONE 1.1 -29 182 52 16 1813
C NORTH 0.7 -33 181 21 7 323
ARDAMINE 0.7 -28 182 21 7 321
POLLSHONE 0.6 -29 182 16 7 236
C.NORTH 1.2 -34 260 44 2 236
ARDAMINE 1.2 -32 261 44 2 235
POLLSHONE 1.2 -32 261 44 2 235
C NORTH 0.7 -34 260 15 7 281
ARDAMINE 0.7 -32 261 15 7 280
POLLSHONE 0.7 -32 261 15 7 280
C.NORTH 0.2 -34 260 1 7 23
ARDAMINE 0.2 -32 261 1 7 23
POLLSHONE 0.2 -32 261 1 7 23

39963

Table 4.10- Nearshore wave energy results for waves approaching Grid 1 

at an angle o f -34° (124° from true North)
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To create vector plots of the nearshore wave energy for the three sites both the energy 

input and its direction are needed. These are tabulated in Table 4.11 for a specified 

wave approach direction for each of the three sites. The resultant values are also given.

Equilibrium Coastline Position Prediction       _ _

C.NORTH (112.5-135) ARDAMINE(112.5 - 135) POLLSHONE(112.5 - 135)

ANG ENERGY X Y ANG ENERGY X Y ANG ENERGY X Y

298 3493 -3085 1640 290 2864 -2691 979 291 2157 -2013 773

297 2401 -5224 2730 291 2104 -4656 1734 293 1827 -3695 1487

301 2490 -7358 4013 293 2295 -6768 2630 294 2147 -5657 2360

301 1220 -8404 4641 293 1110 -7791 3064 294 1025 -6593 2777

301 52 -8448 4667 293 38 -7825 3079 294 38 -6628 2792

301 8 -8455 4672 293 8 -7833 3082 294 8 -6635 2796

302 732 -9076 5060 295 727 -8492 3390 296 657 -7226 3084

302 913 -9851 5544 295 907 -9314 3773 296 795 -7941 3433

302 4 -9854 5546 295 4 -9318 3775 296 4 -7945 3434

303 723 -10461 5940 298 632 -9876 4071 299 632 -8498 3741

303 1823 -11990 6933 298 1813 -11476 4922 299 1813 -10083 4620

303 323 -12261 7109 298 321 -11760 5073 299 236 -10290 4734

304 236 -12456 7241 302 235 -11959 5198 302 235 -10489 4859

304 281 -12689 7398 302 280 -12197 5346 302 280 -10727 5007

304 23 -12708 7411 302 23 -12216 5358 302 23 -10746 5019

RES ANG 295

RES ENERGY 11860

RES ANG 294

RES ENERGY 13340

RES ANG 300

RES ENERGY 14711

Table 4.11- Nearshore wave energy results and resultant angles for waves approaching Grid 1 

at an angle of -34° (124° from true North)

The wave energy vector diagrams were created using this resultant energy and angle 

data. A summation of all the results from the three sites is given in Table 4.12. The 

overall resultant values shown at the bottom of each ‘Resultant Angle’ column 

represent the dominant wave direction as indicated by the two years of offshore wave 

data. The total amount of wave power available is equivalent to a constant wave power 

input per linear meter of wave crest of 8.4kw, 7.5kw and 7.2kw for the nearshore sites

69



Equilibrium Coastline Position Prediction

at Courtown North, Ardamine and Pollshone respectively. This compares with a typical 

value of 70kw for the offshore area off the west coast of Ireland.

Courtown North Ardamine Pollshone

Approach wave 

direction

Res. Angle Res. Energy 

(MJ)

Res. Angle Res. Energy 

(MJ)

Res. Angle Res. Energy 

(MJ)

0-22.5 228 3141 228 3141 228 3141

22.5-45 236 15357 232 13745 232 17349

45-67.5 252 40813 246 34125 247 31703

67.5-90 268 10318 260 11717 262 13460

90-112.5 283 5576 278 5380 281 4879

112.5-135 300 14711 294 13340 295 11860

135-157.5 312 264675 300 254912 309 186298

157.5-180 320 177597 307 139119 315 182046

Resultant 307 493816 295 447974 303 413961

Table 4 .12- Nearshore wave energy results

The vector diagrams of wave energy are shown in Fig 4.9 to Fig. 4.11. The similarity 

between the wave energy plots and the shape of the bays has been highlighted by 

Mashima [36] who noted a similar relationship between the wave energy rose for a site 

and the bay shape.

Energy vector plot for Courtown North

Resultant energy = 493,816 M.T

.300000

.250000

200000

r 150000 00

.100000

I----------I---------- 1---------- 1---------- 1----------1-------
400000 350000 300000 250000 200000 150000

Energy (M J) Resultant angle =307°

Fig 4.9 - Wave energy vector plot for point off Courtown North
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Fig 4.10- Wave energy vector plot for point off Ardamine

Fig 4.11 - Wave energy vector plot for point offPollshone

The resultant angle from these plots indicates the dominant wave direction (Fig 4.12).

The variation of 13° between the lowest and highest value is significant and is primarily

due to the difference in the bathymetric profiles between the -20m and -10m contour

lines. In the case of Pollshone the relatively deep water close to shore allows the
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southerly waves to maintain their path until they are quite near to the shore. The short 

distance that remains means that the waves do not veer westward as much as they do at 

Ardamine. The lower energy values at Pollshone may be attributed to the effect of the 

headlands to the south.

The nearshore bathymetry off Courtown North beach runs almost parallel to the coast. 

As the contours veer eastward the southerly waves intercept these lines at a less oblique 

angle. The turning effect on these waves is therefore less, and the dominant wave angle 

here is more southerly than either Pollshone or Ardamine.

Ardamine;
Dominant wave angle 295°

Pollshone;
Dominant wave angle 303°

Courtown North; 
Dominant wave angle 307°

Fig 4.12 - Dominant wave angle as calculated from offshore wave data
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4.1.2 Dominant wave direction from coastline planform

This technique is to measure the angle of the coastline at the tangential section of the 

bay close to the downcoast control point (Fig. 3.4). In order to make accurate angular 

measurements of the coastline, acetates were laid over the aerial photographs of the 

area and the coastline was sketched. The photographs used were black and white 

images taken in 1988 by the Ordnance Survey Office from a flying height of 10,000 

feet. In the case of Pollshone it was possible to use photographs taken from 5,000 feet 

in 1989. A line was drawn along the tangential section of the bay and the angle this 

makes with the line of true North was measured. The line indicating true North was 

extracted from the 6 inch Ordnance Survey maps of the area.

4.1.2.1 The tangential section of Courtown North Beach

As the tangential section of this bay is very long and straight the downcoast control 

point must exist somewhere within the bay rather than at the downcoast headland, 

Duffcarrick Rocks. This headland is 2.7km from the upcoast control point and is too 

remote to exert any controlling influence on the bay shape [30], As discussed in section

3.2.2.1, finding the location of this point is only possible by selecting a number of 

possible points and drawing the SEP’s for each. The angle P between the tangential 

section of the bay and the control line will change slightly.

Because of the straightness of the tangential section, the selection of various downcoast 

control points within the bay will not affect the angle the tangential section makes with 

the line of true North. Fig. 4.13, which was made from a composite of two aerial
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photographs, shows this tangential section with a line drawn along it. The angle this 

line makes with the line of true North was measured at 24°. This gives a wave approach 

angle of 294°. The coastline is remarkably straight along this part of the bay with the 

only deviations due to the presence of river and stream outlets.

Line parallel to 
tangential section 
of bay

Fig. 4.13 - The tangential section of Courtown North Beach.
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Since the line along the tangential section of the bay is drawn manually there exists a 

possible source of error. However, because of the straightness of this section the error 

is considered small as lines drawn with a deviation of ±1° are obviously inaccurate.

4.1.2.2 The tangential section of Ardamine Beach

The downcoast control point for Ardamine is clearly evident as a rock outcrop at the 

northern end of the bay. The tangential section is largely straight except for a deviation 

along the section adjacent to the large caravan parks at the northern end. Here, because 

of recreational use, the sand dune system has been damaged and much of it denuded of 

vegetation. This will affect its ability to repair itself in the aftermath of damaging 

storms. There is surprisingly little curvature in the coastline at the southern end of the 

bay.

Fig. 4.14 shows the bay and the tangential section line for Ardamine Beach. The angle 

this makes with the line of true North was found to be 9° giving an approaching wave 

direction of 279°.

Two distinct tangential lines can be drawn in the vicinity of the downcoast control 

point. Apart from the line shown, a line at an angle of 19° may be drawn along the 

short length of coastline adjacent to the downcoast control point. It is difficult to 

determine which of these two lines is the true indicator of dominant wave direction 

especially since much of this bay’s coastline has been artificially hardened over the 

years. However, the 9° line is preferred as it is representative of the larger portion of 

the tangential section. In addition, the glacial clay cliff along the smaller 19° line is

much higher than the clay cliff and sand dunes along the major part of the bay so its
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lateral erosion rate would be much slower than the rest of the bay. This would distort 

the coastline at this location.

Fig. 4.14 - The angle o f the tangential section of Ardamine.

4.1.2.3 The tangential section of Pollshone

This is the smallest of the three bays and both the upcoast and downcoast control points 

are clearly evident from the aerial photographs. The tangential section of the bay is also 

obvious. Because of the proximity of houses to the sea, much of the bay has been 

artificially hardened with rock. This would be expected to cause a distortion in the



Equilibrium Coastline Position Prediction

planform of the bay though it is likely that the placement of rock in the late 1980’s 

followed the natural curvature of the bay. While the narrow beach along the tangential 

section suggests that the bay curve is not quite in equilibrium, the low historical erosion 

rates for Pollshone indicate that the bay is reasonably stable. It is assumed, therefore 

that the present planform is primarily the result of sculpting by the sea.

The angle between the tangential section line and the line of true North, shown in Fig. 

4.15, was found to be -13°. This gives an dominant wave direction of 257°.

Line of 
true North

Dominant wave 
approach 
angle = 257°

Upcoast control 
point

Fig. 4.15 - The angle of the tangential section of Pollshone.
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4.1.3 Comparison of the two techniques for determining the dominant wave 

direction

The dominant wave directions as calculated and measured for each of the three bays are 

listed in Table 4.13.

Bay Dominant wave direction

Using refracted offshore wave Using bay planform

Courtown North 307° 294°

Ardamine 295° 279°

Pollshone 303° 257°

Table 4.13- Dominant wave directions for the three bays

There is a considerable difference between the results of the two techniques. A number 

of possible reasons for these are given below.

1. There may be some under estimation of the effect of nearshore bathymetry on 

wave refraction. More accurate modelling of this effect would require much 

more detailed bathymetric measurements. Within this nearshore zone sand bars 

develop, move and disappear over time so their effect on wave transformation 

would be very difficult if not impossible to ascertain. In addition, the non-linear 

wave transformation processes involved in this wave breaking zone are currently 

poorly understood.
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The variation in the difference between the results for the three bays would 

seem to confirm this assumption as the margin of difference is much less for 

Courtown North. From the wave model results, refraction was least for this bay. 

It seems that the model was unable to replicate the true amount of refraction 

particularly for the two more southern bays where refraction tended to be higher.

2. There is the possibility that the bay planform is the result of the effect of a select 

type of wave rather than the accumulative result of the effect of all waves. 

Perhaps bays are shaped more by waves that occur over the longest duration 

rather that by the sudden high energy storm events or possibly the waves in the 

immediate aftermath of storms are of more importance. A weighting system 

might be more appropriate when analysing the effect of waves rather than the 

straightforward energy calculation method used.

3. It is known that the bays are not in a state of static equilibrium as sediment is 

passing alongshore. This drift of sediment suspends the evolution of the 

coastline and the existing coastline position is dependant on the influx of 

sediment for its stability.

The result of this comparison highlights the problems commonly associated with 

modelling natural processes. The initial conditions are not fully known and the 

processes involved are extremely complex. Errors or lack of detail in the initial 

conditions (i.e. offshore & nearshore bathymetry and input waves) are compounded by 

the inaccuracies in the model itself.
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As the prediction of the SEP using the Silvester & Hsu [30] method depends on just two 

variables, the dominant wave direction and the location of the control point, it is critical 

to accurately determine both of these. The dominant wave direction as indicated by the 

bay planform is considered the most accurate because of the reasons given above but 

there are sources of error primarily the fact that the bays are in a state of dynamic and 

not static equilibrium due to the passing sediment.

4.2 Plotting the Static Equilibrium Position of the Coastline

4.2.1 Determining the Control Points and drawing the Static Equilibrium 

Position of the Coastline

Along with the approaching wave direction, the upcoast and downcoast control points 

determine the overall shape of the bay. The upcoast point is usually a hard point, either 

natural or manmade, where wave diffraction occurs. The downcoast point may also be 

a hard point although in longer bays this control point may exist somewhere within the 

soft coast of the bay. The Control Line joins these two points (Fig. 3.4).

4.2.1.1 The Control Points for Courtown North

There are three possible upcoast control points for this bay, the southernmost headland 

(Breanoge Head), the remains of the 19th century breakwater extending from this 

headland and the harbour piers constructed in the mid 19th century. The method used to

8 0
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determine which of the three controls the shape of the bay has been detailed in Section

3.3.1.

Using the bay planform dominant wave direction, Fig. 4.16 shows that the harbour pier 

has the major effect on the bay with the approaching waves being diffracted about this 

point.

Upcoast Control 
Point

Remains of 
breakwater

Fig. 4.16 - Upcoast control point for Courtown North
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The beach south of the harbour should also exhibit the crenellate curve shape however 

the partially submerged remains of the breakwater has altered the nearshore wave 

climate here and so distorted the bay shape.

The downcoast control point for Courtown North exists within the bay as the hard point 

to the north, Duffcarrick Rocks, is too far distant to exert any controlling influence. 

According to Silvester and Hsu [30] the only way to determine where this point is 

located is by plotting the SEP for various points and by comparing these with the 

existing coastline configuration, an accurate location can be achieved.

The points selected are shown in Fig. 4.17. The southernmost point was located at a 

point where the largely straight tangential section begins to curve. From here, two 

more points, equally-spaced along the tangential section were chosen. The final precise 

location of the downcoast control point was based on the fine tuning of the SEP’s for 

these initial points.

4.2.1.3 The Static Equilibrium Position for Courtown North

A Microsoft EXCEL® spreadsheet was created which solves the polynomial expression 

developed by Hsu and Evans [38]. This uses a table of values for each of the three 

coefficient curves employed in the formula (Fig 3.6). These were obtained from data 

given by Hsu and Evans and from digitising the curves. The SEP was drawn using the 

XY Radial plot function within EXCEL®.
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Fig. 4.17- Initial Downcoast Control Points and Control Lines for Courtown North

The SEP’s were drawn for each of the three control lines initially selected and for both 

dominant wave approach directions as calculated using the offshore wave refraction and 

bay planform methods. For higher accuracy, the angle P (Fig. 3.6) between the control 

line and the tangential section line was measured using the aerial photograph acetate 

overlays. The values of p for each case are given in Table 4.14.
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Measured values of P

Dominant wave direction using 
refracted offshore waves

Dominant wave direction using 
bay planform

Control line for downcoast 
control point A 38° 25°

Control line for downcoast 
control point B

©o

17°

Control line for downcoast 
control point C 25.5° 12.5°

Table 4.14- Values of P for different control lines and wave directions for Courtown North

The SEP’s for each control line and dominant wave direction is shown in Fig. 4.18. It is 

obvious that the SEP’s for the dominant wave direction calculated using the wave 

refraction method do not represent the current evolutionary state of the coastline. This 

is most likely due to inaccuracies in the technique and the fact that the longshore drift 

of sediment is maintaining the coastline in a state of dis-equilibrium. This is discussed 

further in Section 4.2.2.

The SEP’s for the three points drawn using the bay planform method are much closer to 

the current coastline position and all follow roughly the same bay curve. As observed 

by Silvester and Hsu [30], this effect is due to the angle (3 undergoing a compensatory 

change as the control line varies. After further investigation a control line connecting a 

point close to point B to the upcoast control point was found to give an SEP which most 

accurately follow the general curvature of the bay.

As much of the coastline adjacent to the harbour has been artificially hardened with a 

seawall and rock revetments, this area can no longer erode over the short term and will 

be in a continued state of dis-equilibrium. Only the soft coast, sand dunes, etc., will be 

able to adopt the SEP. This is shown in Fig. 4.18 and the curved connecting line
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between the end of the revetment and the SEP has been drawn manually sympathetic 

with the general nature of the crenellate curve, The dashed lines represent the SEP that 

the coastline would adopt if all the bay coastline was soft.

Fig. 4.19 shows the historical evolution of the southern portion of the bay. There was 

very little erosion in the area northwards. The base map is the Ordnance Survey map of 

1921 and the coastlines for 1950, 1988 and 1990 were obtained by tracing the 

vegetation line from aerial photographs of the area. There are inaccuracies in the 

survey map, the aerial photographs (they have not been rectified) and in the manual 

tracing of the vegetation line, however, the trend and general degree of erosion is 

considered sufficiently accurate for this application.

Using the vegetation line as an indicator of the coastline position is preferred to using 

the high water mark as the exact condition of the tide at the time of the aerial 

photographs is not known. In any event the meteorological situation at the time can 

also play a significant role as water levels are higher when the barometric pressure is 

low (10mm rise per IhPa fall in pressure) and onshore winds will also raise water 

levels. The vegetation line is, nevertheless, affected by forces other than marine 

erosion. Recreational users of the beach and grazing by animals can severely damage 

the dune vegetation leading to bare sand areas which can then suffer from wind erosion. 

Because of the popularity of Courtown and Ardamine as seaside resorts it is likely that 

much of the recession of the vegetation line is due to recreational pressure, particularly 

in areas of heavy usage such as access routes. This has been taken into account when 

estimating the true amount of marine erosion.

85



Equilibrium Coastline Position Prediction
i

Fig. 4.18 - The SEP’s for Courtown North Beach.
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Fig. 4.19 - Historical position of coastline and vegetation lines for Courtown North Beach.
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Between the years 1921 and 1950 there was considerable recession of the vegetation 

line along the southern portion of the bay. This was concentrated in areas where 

pedestrian access routes funnelled people to the beach. There was, also, considerable 

marine erosion particularly adjacent to the harbour area. This prompted the placement 

of concrete blocks on the beach in an attempt to protect this area. This was successful 

up to the 1980’s when they became undermined and were subsequently replaced with a 

rock revetment. The coastline of 1950 also shows vegetation line recession at the 

northern end of this section of coast. It is considered that this is entirely due to 

recreational pressure as, at this time, this area consisted of sand dunes, easily accessible 

from an approach track to the rear. In later years a thorny shrub, sea buckthorn, spread 

to this area and the thorny bushes made the site unusable.

The coastline of the late ’80 shows much of this northern section has been revegetated 

with buckthorn and trees. The coastal defences in the southern section near the harbour 

had recovered much of the land loss evident in the 1950 photograph. There was, 

however, continued recession of the vegetation line around the mid portion of the bay 

which by now has become the most vulnerable section as it is the area of soft coastline 

furthest from the equilibrium position predicted by the SEP.

Between 1988 and 1990 there was extensive recession of the vegetation line along this 

mid section. This period was characterised by one of the stormiest periods this century, 

the winter of ‘89/’90. Most of the recession was due to marine erosion with many 

frontal sand dunes slumping onto the beach. It is interesting to note that the northern 

section remained largely unaffected by these storms and that the 1990 coastline has 

begun to adopt the curvature of the predicted SEP. Since 1990 the protection works
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near the harbour have been extended making the unprotected area further north more 

vulnerable to erosion.

4.2.1.4 The Control Points for Ardamine

The upcoast and downcoast control points for Ardamine are shown in Fig. 4.20 and are 

connected by the control line. The upcoast point is a rock outcrop and, from aerial 

photographs, wave diffraction can be seen to be taking place about this point.

Fig. 4.20 - Control Points and Control Line for Ardamine.
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The downcoast point is taken as the point where the coastline begins to deviate from the 

relatively straight tangential section at the point where the coastal cliff begins to rise. 

Selecting a downcoast control point further north, at the end of the bay, would not have 

greatly altered the position of the SEP, however, it is felt that the point chosen is more 

accurate as the higher glacial clay cliff would distort the lateral movement of the 

coastline.

4.2.1.5 The Static Equilibrium Coastline for Ardamine

Again, the SEP’s were drawn for both calculated and measured dominant wave 

directions using the EXCEL® XY radial plot function. The values of (3 are given in 

Table 4.15 and an acetate overlay on the aerial photograph was used to measure J3.

Measured values of P

Dominant wave direction using 
refracted offshore waves

Dominant wave direction using 
bay planform

Control line for downcoast 
control point Ardamine 31° 15°

Table 4.15 - Values of ß for Ardamine

The SEP’s are shown in Fig. 4.21 and the difference between the curves drawn using 

the different values of (3 is immediately obvious. The comments made on the similar 

disparity between Courtown North SEP’s is also valid here and is discussed further in 

Section 4.2.2. The SEP drawn using the dominant wave angle as exhibited by the bay 

planform is considered more representative of the current evolutionary condition of the 

bay.
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As much of the bay has been artificially hardened by coastal protection works (mainly 

rock revetments), the bay is restricted in adopting the SEP. By 1990 the areas most 

vulnerable to marine erosion, as indicated by the distance of the coastline from the SEP, 

had been hardened, Indeed, since then, the rock revetments have been greatly extended 

and it is likely that the entire bay will be protected by rock in the near future.

Fig. 4.21 shows the 1988 situation. The connecting line between the hardened coastline 

and the SEP has been drawn manually. The position of the SEP shows that the bay is 

quite close to equilibrium as determined using the bay planform method. As the 

hardened coastline is extended northward the areas vulnerable to erosion will be pushed 

further north. However, the SEP indicates that their vulnerability will become less as 

the line of the revetment begins to approach and eventually follow the line o f the SEP.

The historical evolution of the bay is shown in Fig. 4.22. Again, the coastlines 

extracted from the aerial photographs are, in fact, the vegetation line. However, 

because much of the area behind the beach is in private ownership, the vegetation line 

is regarded as a true indicator of marine erosion since degradation of vegetation from 

recreational users is restricted to the small number of beach access routes.

The period between 1921 and 1950 appears to account for most of the recession of the 

coastline. There may be some inaccuracies in the original ordnance survey map and the 

lines extracted from the aerial photographs but the overall level of erosion is considered 

correct. From the indented nature of the 1950 vegetation line it would appear that the 

beach was more popular with visitors during this period and that more access routes and 

recreational areas in the sand dunes were available to the public.

91



Equilibrium Coaüilnic Position Prediction

The 1988 and 1990 vegetation line shows the impact of the coastal protection works in 

the southern portion of the bay. The bulge, one third of the way up from the southern 

headland, marks a projecting rock revetment and the terminus of the coastal protection 

works at that time. Subsequently, the rock revetment was extended.

Fig. 4.21 - The SEP’s for Ardamine
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Fig. 4.22 - Historical position of the coastline and vegetation lines at Ardamine
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4.2.X.6 The Control Points for Pollshone

Fig. 4.23 shows the control points and control line for Pollshone, This bay exhibits the 

classic characteristics of a relatively stable crenellate curve bay. This stability is 

highlighted by the close proximity of buildings to the beach. Unfortunately this 

proximity means that no fluctuation o f the coastline can be tolerated and has resulted in 

the construction of coastal defences.

The upcoast control point is situated on a out crop of rock at the southernmost headland 

and wave diffraction about this point can be seen in aerial photographs. The downcoast 

point is located at the point where the soft coast meets the emerging rock at the northern 

end.

Fig. 4.23 - The Control Points and Control Line for Pollshone
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4.2.1.7 The Static Equilibrium Coastline for Pollshone

The SEP’s were drawn for both calculated and measured dominant wave directions 

using the EXCEL® XY radial plot function and the values of P are given in Table 4.16. 

Again, an acetate overlay on the aerial photograph was used to measure p.

Measured values of P

Dominant wave direction using 
refracted offshore waves

Dominant wave direction using 
bay planform

Control line for downcoast 
control point Ardamine 75° 29°

Table 4.16 - Values of ß for Pollshone

The SEP’s are shown in Fig. 4.24 and, as with the other two bays, there is a large 

difference between the SEP’s for the two values of p. The difference here is even more 

pronounced because of the 46° variation in the two wave approach angles. This 

difference is discussed further in Section 4.2.2. Almost all of the bay had been 

protected with rock revetments by the time this photograph was taken in 1989 and it is 

only a small portion close to the downcoast control point that remains soft. Fortunately, 

the line chosen for the protection works follows closely the bay planform SEP for much 

of it’s path but begins to deviate from the mid point of the bay. This area will be the 

most vulnerable to undermining of the rock and to erosion in the future.

The coastal cliff in Pollshone is high and uniform with a steep slope down to the beach. 

This may have contributed to the rather uniform erosion rate along the bay with the

95



Equilibrium Coastline Position Prediction

coastline following the planform SEP. This would explain why the rock revetment, 

which was placed at the base of the bluff, lies along the SEP.

Fig. 4.25 shows the historical evolution of the bay. The extracted vegetation line from 

the aerial photograph taken in 1973 should closely follow the position of the coastline 

as recreational damage of the vegetation is not considered a factor here due to the 

steepness of the coastal cliff. The line extracted from the 1989 photograph mainly 

follows the rock revetment coastal defence.

Fig. 4.24 - The SEP’s for Pollshone
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The vegetation line obtained from the 1973 photograph indicates that there was 

considerable accretion in the bay since the ordnance survey of 1921 particularly at the 

northern end. Although it is likely that there was some accretion the amount indicated 

in Fig. 4.25 may be exaggerated because of inaccuracies in the original ordnance survey 

map and in the manual tracing of the line from the aerial photograph. The 1973 line 

does, however, show erosion occurring around the middle of the bay with a number of 

houses and a road being threatened. It was this that prompted the construction of the 

first rock revetment.
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The 1989 vegetation line shows the coastline after the construction of the coastal 

defences in the 1980’s. It follows closely the SEP up to the mid point of the bay and it 

is also very close to the original Ordnance Survey coastline from 1921.

4.2.2 Comparing the different SEP’s

The difference between the values of the dominant wave approach angle P as calculated 

and measured using the two techniques results in widely different predictions for the 

SEP’s of the three bays. The angle measured from the existing bay planforms indicate 

that the dominant waves come from a more easterly direction than was calculated using 

the refracted offshore waves method. The possible reasons for this discrepancy have 

been discussed in Section 4.1.3

The SEP’s for the more southerly calculated wave direction cause the coastline to be 

more indented as the tangential section of the bay attempts to align itself normal to the 

approaching wave crests. In nature, however, there is usually not enough sediment to 

completely fill an indented bay and the coast retreats to a point where the bay is able to 

maintain a coastline position that is determined by waves which are diffracted about a 

prominent headland. These pocket bays are common on the higher energy western and 

southern coastlines of Ireland.

It should be noted that the downcoast control points selected for Courtown North were 

chosen on the basis of the present plan of the bay. This point would be located further 

north, probably at the northern headland, had the much altered bay, as predicted by the 

calculated wave direction, been used. The maximum indentation of this bay would
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have been slightly greater than that indicated by the SEP drawn for downcoast control 

point B (Fig. 4.18).

The SEP’s from the calculated wave values may indicate the extreme limit of coastal 

recession in the event of a complete cessation of longshore drift of sediment and in this 

regard it has it’s use as a possible limit line for future developments. This scenario is, 

thankfully, far into the future and when it finally occurs the eastern seaboard will look 

more like the indented and headland controlled southern and western coasts.

For the shorter and medium term the SEP’s based on the measured values of P are 

much more useful. They indicate the natural curvature of the bay, if nature is allowed 

to take it’s course. The placement of rock revetments along lines that are inherently in 

dis-equilibrium cause their eventual failure as the beach in front narrows and the 

revetments become undermined. Continual maintenance and repair will be necessary to 

keep them effective.

4.3 The Effect of Climate Change and Coastal Protection Measures

4.3.1 Climate change

This section examines the effect of changes in the dominant wave direction caused by 

changes in storm pattern. From the wave rose (Fig. 4.1) and the wave energy plots 

(Figs. 4.9, 4.10, 4.11) it is clear that the coastline is dominated by waves from the south. 

The planform of the bays agree, with the control line of each bay being intercepted by a 

dominant wave direction from the south.
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From the analysis of recent wind data there has been an increase in the number of 

severe storms and general storminess over the North Atlantic [52, 53], With global 

warming, this is likely to continue. It is also possible that the tracks storms take will 

also alter. If the storms take a more southerly route then the anti-clockwise rotation of 

winds associated with these depressions will result in more south, south-easterly and 

easterly gales hitting the east coast [48],

However, the dominant swell in the south Irish sea will still enter along the St. George’s 

Channel although the local winds will tend to turn it towards the west. This will result 

in the dominant wave direction shifting more towards the east then it would otherwise. 

Figs. 4.20, 4.21 and 4.22 show the effect this will have in the three bays.

The realignment of the coastline at Courtown North, shown in Fig. 4.20, indicates that 

the vulnerability to erosion of the southerly section of the bay will lessen as the 

dominant wave direction swings eastward and the angle p decreases from 17° to 13°.

It is likely that the sediment required to realise this realignment will be obtained from 

the longshore drift as there will be a localised reversal of the predominant northward 

drift of sediment. This process will, however, take many years to complete. Indeed, 

over one hundred years have passed since the bay was thrown into dis-equilibrium by 

the construction of the harbour and the present coastline has not yet reached a balanced 

state. Admittedly, coastal protection measures have suspended the process somewhat.
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— “ 1990 Coastline

------------- SEP (17°)

-------------- SEP (15°)

-------------- SEP (13°)

Base map - Ordnance Survey Map 
Sheet No. XII.7 [Map No. 2 of 4], 1921

Scale

250m

Fig. 4.26 - Realignment of Courtown North caused by changing dominant wave direction
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The realignment will not be a steady one-directional process and it is likely that there 

will be continued events of storm erosion from time to time but averaged over a number 

of decades the coastline will first stabilise about a norm and gradually, in halted steps, 

advance seaward at the southern section.

Eventually, there will be less pressure on the coastal defences north of Courtown 

Harbour but areas in the extreme north of the bay may recede if they are seaward of the 

new SEP. Realignment of this tangential section will be the first evidence of a change 

in the dominant wave direction and this could be used as an indicator that change is 

occurring.

Fig. 4.27 shows a similar situation for Ardamine. As with Courtown North the 

downcoast control point may move northwards but this will be restricted by the nearby 

headland. Again the result of an easterly shift in the dominant wave direction will be 

the lessening of the vulnerability to erosion of the middle to southern sections of the

Fig. 4.28 shows the situation for Pollshone. Here, because of the original more easterly 

approach of waves the effect of a further swing to the east is less pronounced. The 

difference between the maximum indentation of the coastline between the SEP for 

6=29° and 13=25° is less than 10m. This will, however, lessen the vulnerability to 

erosion of the middle and southern sections of the bay.
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-------------- SEP (15°)
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Base map:
1921 Ordnance Survey Map 
Sheet No. XII. 11
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250m
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Fig. 4.27 - Realignment of Ardamine caused by changing dominant wave direction
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Fig. 4.28 - Realignment of Pollshone caused by changing dominant wave direction 

4.3.2 Coastal protection measures

The impact of humans on the erosion patterns in the three bays is already evident 

particularly in Courtown North where the shift in the position of the upcoast control 

point caused by the building of the harbour walls has caused the coastline to realign



Equilibrium Coastline Position Prediction

itself. In Ardamine, the placement of rock revetments along a line that is inherently in 

dis-equilibrium with present day forces may have accelerated the erosion rate of 

unprotected downcoast areas.

The current policy of the local authority to continue to chase the erosion problem 

downcoast will eventually mean that all o f the soft coast within the bays will be 

protected with rock. If the line adopted is seaward of the predicted SEP then the beach 

in front will narrow and the rock will be in danger of being undermined. The example 

set by the coastal protection works in Pollshone should be followed as the line chosen 

follows closely the present day SEP.

The other major effect of humans is from recreational usage of the sand dune areas and 

the heavier usage of access routes. Areas denuded of vegetation are vulnerable to wind 

erosion which, by blowing sand inland, reduces the amount available to act as a buffer 

against the sea. This sand is extremely effective at remaining within the coastal system 

as it has been sorted over the millennia to be the optimum grain size for the local wave 

energy field. As such it is the ideal medium to move between sand bar, beach and dune. 

Vegetation, particularly marram grass, collects the sand blown from the beach and 

builds firstly, embryo dunes and eventually full sand dune systems.

Courtown North exhibits the effect of recreational pressure with the heavily used 

southern section of the bay showing the greatest vegetation line retreat. As the sand 

from these areas has been blown inland the inherent instability in the present coastline 

position has been exploited by the sea and the coastline has retreated. The ability of 

these areas to self repair in the aftermath of storms where dislodged clumps of marram

105



Equilibrium Coastline Position Prediction

would restart the building of the dunes is severely curtailed by the dearth of vegetation. 

Although coastal recession in this area is inevitable the rate of erosion has probably 

been accelerated as a result.

The species of vegetation is also a factor in the rate of coastal erosion. Marram and 

other grasses are the only vegetation capable of building dunes. A thorny shrub, sea 

buckthorn, was introduce to this area at the beginning of this century and has spread 

extensively in Courtown North. While this plant prevents people from using the dunes 

thus protecting the area from trampling, it is incapable of trapping sand and creating 

dunes. Therefore, when an area is eroded by the sea there is little chance of it being 

naturally rebuilt. These plants have also concentrated people onto the few access routes 

remaining and the effect of this can be seen in the bare sand areas of Courtown North 

(Fig. 4.16) and Ardamine (Fig. 4.20).

4.4 General Discussion

The parabolic curve method of predicting the equilibrium position of the coastline 

tested in this study is essentially the result of a curve fitting statistical exercise applied 

to data obtained under laboratory conditions. The resultant formula, although 

potentially very useful to coastal engineers, is limited in its application because of the 

governing condition that there should be no longshore drift of sediment and that the bay 

is in a state of static equilibrium. Dynamic equilibrium bays where there is a longshore 

drift will have a coastline seaward of the predicted SEP but, to date, there is no method 

by which the amount of longshore drift can be used to indicate the amount of
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dislocation of the coastline position. Nor, conversely, can the dislocation be used to 

estimate longshore drift although, in theory, both should be possible.

Applying the technique to conditions for which it was not designed leads to difficulties 

in identifying what is the true cause of discrepancies in the results. The wave approach 

angles as indicated by the planforms for each bay differ from one another to a much 

greater degree than can be explained by wave refraction. This is probably due to 

variations in longshore drift rate in the bays or the sediment may be by-passing sections 

of the bays. The presence of offshore bars, particularly in Courtown north and 

Ardamine, created by the longshore drift further complicates the problem.

If the planform of the bay cannot be used as a true indication of wave approach angle 

because of these problems, the question arises as to whether the offshore wave analysis 

method is a more accurate technique. This method has as many if  not more 

complications. It firstly relies heavily on the accuracy of the wave data itself. Hindcast 

wave data generated by a computer is only as accurate as the original input data and the 

computational process will allow. The timespan covered may not include significant 

storm events which often alter the coastline to such a degree that their effect can still be 

observed decades later. Bringing the offshore data inshore is another potential source 

of error. Wave refraction analysis, especially in nearshore and surf zone areas requires 

accurate bathymetric data which often does not exist or is out of date. Sand bars, for 

example usually migrate about the bay.

As mentioned previously, there is also the possibility that bays are shaped more by 

waves that occur over long periods rather than the high energy storm. This would have
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the effect of swinging the calculate wave direction towards the east which would more 

closely match the values obtained from the bay planforms. Further investigation of 

various weighting systems applied to the wave energy analysis might help to answer 

these questions.

This problem of the true wave approach angle lies at the heart of a successful 

application of the technique. In zero longshore drift bays, the planform wave angle can 

be relied upon. However in longshore drift coastlines there is no precise method 

currently available. If the bay planform method is used ( and it seems the most accurate 

at present) then there will be an underestimation of how far a bay will erode in the event 

of cyclical changes in the longshore drift rate. The wave energy method, tested here, 

does not seem to give valid results, although with further research it should be possible 

to refine the technique.

It remains to assess the value of the new parabolic curve method in longshore drift 

coastlines. Firstly it is a simple method of determining whether a bay is following a 

contemporary ‘natural’ curve. As has been demonstrated in the present study, the bay 

curves, predicted by the formula, are easily created using the devised spreadsheet 

formula and graph. The location of the control points is more difficult but with practice 

problems can be overcome. Comparing the present coastline position with the 

predicted coastline allows the current vulnerability of coast to erosion to be gauged by 

noting the degree of deviation of the present coastline from the predicted ‘natural’ 

curve. The reasons why a bay’s coastline does not follow its ‘natural’ curve can be both 

man-made (structures intruding into the bay such as harbours and training walls or an

108



Equilibrium Coastline Position Prediction

inherently unstable coastline position may have been hardened with rock armour or 

gabions) or natural rock outcrops within the bay.

Secondly the technique can be used to accurately predict the effect structures will have 

on the coastline. This could be especially useful when considering new harbour 

developments, harbour extensions or river training walls. As the method has shown, 

small changes in the location of the upcoast control point can have dramatic 

implications on the position of the coastline.

Thirdly it can be used to gauge the impact of changes in wave approach angle caused by 

changes in wind climate. As shown in this study, an increase in easterly storms will 

make the southern portion of the bays less vulnerable to erosion as the ‘natural’ curve in 

this area will advance seaward. However, the resultant increased wave energy now 

arriving at this end of the bay means that the ‘natural’ curve line should be attained 

more quickly.
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5. CONCLUSIONS

5.1 Conclusions

• The new parabolic curve technique used to predict the eventual stable position of the 

coastline examined in this study is limited in its application because of the governing 

condition that there should be no longshore drift of sediment into or out of the bay.

• If this condition is satisfied then the technique can be used successfully to examine 

how future changes within the bay will effect the position of the coastline. Such 

changes may be the construction of coastal protection works or changes in the wind 

and wave climate.

• In open coastal areas where there is a longshore drift of sediment the technique may 

be used to predict the ‘natural’ curvature of a bay created by the existing conditions. 

This coastline is likely to be unstable in the long term and would be dependent on 

the continuation of the present supply of sediment to the bay. Deviations from this 

curve may indicate areas that are vulnerable to erosion.

• The technique is easier to apply than earlier coastline prediction methods and should 

see more widespread use. It is particularly suitable for determining coastal set back 

lines and, being based on physical model tests, it is a more scientific approach than 

the arbitrary selection process used heretofore.
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5.2 Recommendations

Although created primarily for crenellate shaped bays the new parabolic curve 

technique has the potential, at least in theory, to be applicable to all headland controlled 

bays. This would allow the examination of many of the recessed pocket beaches on the 

west coast of Ireland and bays enclosing a sand spit formation. Since most of these 

should be in a static equilibrium condition the curves drawn should accurately predict 

the present day coastline position. Situations where there is a deviation from this line 

could be examined and causes investigated. The degree of dislocation from the natural 

curve could be used to prioritise expenditure on coastal protection works or to 

determine development control set back lines.

It would be interesting to apply the technique to as many and as varied a number of bays 

as possible and to document the findings. This, along with the mapping of the historical 

evolution of the coastline and vegetation line should give a clear insight into the nature 

of the problem or perceived problem of coastal erosion.

In bays which are in a state of dynamic equilibrium the technique is still valid in 

determining the current ‘natural’ curve of the bay. However if  the method could be 

refined to use wave data to determine the true dominant wave direction then the 

predicted SEP for these bays would be very useful. Dynamic equilibrium bays are 

much more susceptible to erosion as longshore drift rates fluctuate or stop altogether. 

Knowing where the coastline will eventually settle down would be an extremely 

valuable piece of information to coastal engineers and local authority planners alike. 

Further research into this problem using weighting schemes or filters on the wave data
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might be the way forward and is something that could be completed within a relatively 

short time. It may not, however, be possible to create a generic formula for all bay 

types although with an ‘expert’ computer system to assist, a multi-formula method 

could be made user friendly.
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SCATTER Programme - Creates Hs-Tz scatter tables from wave data

01 I***********************************************************************
!*** CALCULATION OF HSVTZ SCATTER TABLES USING DIRECTION ***
!*** PERIOD AND SIG. WAVE HEIGHT ***
I***********************************************************************
I***********************************************************************

!*** INITIALISE ***
I*******)1!***************************************************************

DIM HS(8000) VDIM TZ(8000) \DIM DIR(8000)
DIM HS1(8000) \DIM TZ1(8000) \DIM D1R1(8000)
DIM SC(30,30)
ON ERROR GOTO 10000

I***********************************************************************
!*** INPUTS ***
I**************!*!************************!***#****************************

PRINT ESC;"[2J"
FOR AST=1 TO 80 \PRINT \NEXT AST

FOR AST=1 TO 80 \PRINT \NEXT AST
PRINT\PRINT\PRINT

! INPUT FILENAME ';FILE$
FILE$="C09394.PRN"
INPUT RANGE OF WAVE DIRECTION TO BE ANALYSED (FROM)';DIRl
INPUT' (TO INCL.)';DIR2
PRINT
FOR AST=1 TO 80 \PRINT \NEXT AST

! * * * OPEN AND DIMENSION FILE * * *

M=1 \Z=1
OPEN FILES FOR INPUT AS FILE #1%

21 LINPUT #1%,TXT$
! print txt$

HS(M)=VAL(SEG$(TXT$,1,8))
TZ(M)=VAL(SEG$(TXT$,9,17))
DIR(M)=VAL(SEG$(TXT$,18,25))

! PRINT HS(M),TZ(M),DIR(M)
N=M \M=M+1

22 GOTO 21

!*** CREATE HS & TZ ARRAYS FOR SPECIFIC DIRECTION ****

M=1
FOR NO=l TO N

IF DIR(NO)=0 THEN GOTO 40 \END IF 
IF DIR(NO)>DIRl AND DIR(NO)<=DIR2 THEN 
TZl(M)=TZ(NO) \HS 1 (M)=HS(NO) VDIRl(M)=DIR(NO)
TOT=M \ M=M+1 VEND IF 

40 NEXT NO 
50 !FOR Z=1 TO TOT

! PRINT DIR1 (Z),TZ1 (Z),HS1 (Z)
!NEXT Z

! * * * CALCULATE HS - TZ SCATTER * * * *
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X=1

FOR X=1 TO TOT
FOR T=0 TO 28

IF HSl(X)>=(T/2) AND HSl(X)<((T/2)+0.5) THEN 110 
ELSE 150 

110 FOR W=1 TO 28
IF TZ1(X)=>(W-1) AND TZ1(X)<(W)
THEN SC(T,W)=SC(T,W)+1 
END IF 

NEXT W 
150 NEXT T 

NEXT X

!*** PRINT HEADER ****

! INPUT 'SET PRINTER TO TOP OF FORM';RET$ \SLEEP 3%
PRINT\PRINT\PRINT
FOR AST=1 TO 80 \PRINT \NEXT AST \PRINT
PRINT TAB(5);'SCATTER DIAGRAM - FOR WAVE DIR. BETWEEN ';DIR1;' & ’;DIR 

2;’ DEGREES'
FOR AST=1 TO 80 \PRINT \NEXT AST \PRINT 
PRINT 'SIG.';TAB(6);'*'
PRINT 'WAVE';TAB(6);'*'
P=0
FOR T=28 TOO STEP-1 

PRINT T/2;TAB(6);'*';
FOR W=1 TO 15

PRINT TAB(P+10);SC(T,W);
P=P+4 

NEXT W 
P=0 
PRINT 

NEXT T
FOR AST=1 TO 80 \PRINT \NEXT AST \PRINT 
PRINT TAB(ll);'l';
FOR W=1 TO 14

PRINT TAB(P+14);(W+1);
P=P+4 

NEXT W

PRINT\PRINT TAB(26);'ZERO UP-CROSSING PERIOD'
550 PRINT\PRINT\PRINT

FOR AST=1 TO 80 \PRINT \NEXT AST \PRINT
PRINT TAB(5);’SCATTER DIAGRAM - FOR WAVE DIR. BETWEEN';DIR1;'& ’;DIR 

2;' DEGREES'
FOR AST=1 TO 80 \PRINT \NEXT AST VPRINT 
PRINT SIG.',TAB(6); *'
PRINT 'WAVE';TAB(6);'*'
P=0
FOR T=28 TOO STEP -1 

PRINT T/2;TAB(6);'*';
FOR W=15 TO 28

PRINT TAB(P+10);SC(T,W);
P=P+4 

NEXT W 
P=0 
PRINT 

NEXT T
FOR AST=1 TO 80 \PRINT \NEXT AST \PRINT 
PRINT TAB(11);'15';
FOR W=15 TO 27

PRINT TAB(P+14);(W+1);
P=P+4 

NEXT W
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PRINT\PRINT TAB(26);'ZERO UP-CROSSING PERIOD'
PRINT\PRINT\PRINT 'TOTAL NUMBER OF WAVES FROM THIS DIRECTION.......

TOT
pRINT\PRINT ’TOTAL NUMBER OF WAVES IN DATASET ’;N

600 GOTO 10010
10000 I*********************************************************************** 

I*** ERROR HANDLER ***
J************A**********************************************************

IF ERR=11 AND ERL=21 THEN M=1 \RESUME 30 
END IF
PRINT ERT$(ERR);’AT LINE ’,ERL

10010 t*********************************************************************** 
!*** PROGRAMME END ***
t********************************************** *************************

END
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ALTER Programme - Creates new bathymetry grid from existing grid.

10 ON ERROR GOTO 10000
REM REM THIS PROGRAM PROVIDES A METHOD FOR INTERPOLATING BATHYMETRY 
REM REM FROM ONE GRID TO ANOTHER FOR FULL INSTRUCTIONS SEE RCPWAV 
REM REM OPERATING MANUAL.
REM REM
REM REM ************************************************************
15 DIM REAL OLD(300,300)

DIM REAL NEW(300,300)

20 INPUT "OLD GRID X VALUES"; M
21 INPUT "OLD GRID Y VALUES"; N
22 INPUT "NEW GRID X VALUES"; M2
23 INPUT "NEW GRID Y VALUES"; N2
24 INPUT "ANGLE OF ROTATION (+ COUNTERCLOCK)"; ANG
25 INPUT "XSHIFT"; XSHIFT
26 INPUT "YSHIFT"; YSHIFT
27 INPUT "OLD GRID CELL SIZE - X DIRECTION"; DX
28 INPUT "OLD GRID CELL SIZE - Y DIRECTION"; DY
29 INPUT "NEW GRID CELL SIZE - X DIRECTION"; DX2
30 INPUT "NEW GRID CELL SIZE - Y DIRECTION"; DY2

ANG=(ANG/180)*PI

100 INPUT "FILENAME FOR INPUT..."; FILINS
120 INPUT "FILENAME FOR OUTPUT.."; FILOUTS
130 OPEN FILINS FOR INPUT AS #1
140 OPEN FILOUTS FOR OUTPUT AS #2
rem map (lin)
rem line$=80%
REM 141 OPEN "FILTEST.DAT" FOR OUTPUT AS #3

142 G=N/10

149 FORT = 1 TON
150 LINPUT#1, LINOS
151 C = 1
152 FORI = 1 TO 20
155 LINPUT #1, LINS
156 P = 1
160 FORH = 1 TO 10
170 OLD(C,T)=VAL(MIDS(LIN$J>,8))

IF C=M THEN 200 
END IF

C = C+1 
P = P + 8

NEXTH 
180 NEXT I
200 NEXT T

REM 201 FORT = 1 TON
REM FOR C = 1 TO M
REM PRINT #3, OLD(C,T)
REM NEXT C
REM 202 NEXT T

REM ******************************
REM CREATE NEW XY GRID IN RELATION TO OLD XY GRID
REM^ ******************************

300 S=0
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350

351

400

500

550
600

610

10000

20000

FOR T=1 TO N2
FOR G=2 TO M2

IF S=0 THEN X2=XSHIFT
Y2=YSHIFT
NEW (1 ,l)=OLD(X2,Y2)
S=1
END IF
X2=X2+COS(ANG)
Y2=Y2-SIN(ANG)
NEW(G,T)=OLD(INT(X2),INT(Y2))

NEXTG
X2=XSHIFT + (SIN(ANG)*(T+1)>
Y2=YSHIFT + (COS(ANG)*(T+l)) 
NEW(l,(T+l))=OLD(INT(X2)JNT(Y2))

NEXTT

MARGIN #2%. 80%

FORT=l TON2
PRINT #2%
C=1
FOR G=1 TO 20

FORH=l TO 10
PRINT #2% using ’#####.##';NEW(C,T); 
IF C=M2 THEN GOTO 600 
END IF 
C=C+1

NEXTH
NEXTG 
print #2%

NEXTT

PRINT 'OK'
GOTO 20000

print 'error AT'^ERL 
RESUME 20000
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