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Abstract

This thesis deals with the Boyd-Barratt paradigm for feedback controller design. The
Boyd-Barratt approach combines the Youla parameterization with convex optimiza-
tion. In this thesis, their paradigm is accepted in its entirety, but a completely
different numerical approach is adopted. An algorithm due to Akilov and Rubinov,
which is in essence an abstract rendition of one of the famous algorithms of Remez,
is used instead. This completely circumvents the need to compute derivatives or sub-
differentials, which can be a difficult task. Instead, certain linear functionals must
be computed, and this is generally quite straightforward. An attractive feature of
the approach is that the code is much shorter and more elegant. The Boyd-Barratt
paradigm has the disadvantage that an infinite dimensional Banach space must be
truncated to a finite dimensional subspace prior to optimizing. This thesis also applies
certain primal-dual techniques from functional analysis to study the implications of
this truncation. Primal-dual theory is used to show that the true optimal solution
lies within the solution of two semi-infinite linear programming problems, namely the
dual problem with finitely many variables and the primal problem with finitely many
variables. Also, it is shown that the alignment property is closely related to the cost

of truncation. These results provide an analysis of the effect of truncation.
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Chapter 1

Introduction

The design of linear time-invariant (LTI) controllers for LTI plant models which meet
given specifications is still a major challenge for control theorists and practitioners.

In the single-input single-output (SISO) case this can usually be done very effec-
tively by using various traditional techniques. These techniques include the root locus
method, and methods based around Nyquist, Nichols and Bode plots. The design of
controllers for multi-input multi-output (MIMQO) systems is quite another matter.

Analytical methods (such as LQG, H optimal controller design) use an objective
functional which when minimized can be used to find a controller. Major disadvan-
tages of analytical techniques are the limited specifications which can be handled,
and the difficulty in choosing weights.

The use of parameter optimization techniques, to determine a controller (which
is dependent on one or more variable parameters) is one possible approach. A good
controller will stabilise the plant and meet certain performance specifications. Opti-
mization methods can handle a much wider range of specifications. However there are
serious difficulties with this approach because of the absence of convexity. Boyd and
Barratt used the Youla parameterisation to write specifications in a convex format.
Through this technique their method could deal with a wide range of specifications.

Unfortunately Boyd and Barratt’s technique has two main disadvantages. The
first is that it requires a huge software undertaking. The second is that a certain
infinite dimensional vector space must be truncated to a finite dimensional subspace,

in order to obtain a finite dimensional optimization problem.



This thesis is an effort to improve on their work by tackling both these issues.
An alternative numerical approach is proposed. This approach will be shown to
require simpler and more standard software. The second disadvantage is analysed
using functional analysis techniques. Specifically a qualitative and a quantitative
evaluation of the truncation issue is presented.

Chapter 2 describes the Boyd and Barratt paradigm, its range of applicability,
and its advantages and disadvantages. Chapter 3 shows how several typical control
system specifications can be cast as infinite linear programs. It discusses truncations
of the infinite linear programs. Chapter 4 describes in detail an algorithm due to
Akilov and Rubinov. Its convergence, mathematical properties and limitations are
presented. Chapter 5 describes the author’s implementation of the algorithm as well
as its performance and validation procedures adopted. Chapter 6 deals with the
duality theory of linear programming. Bounds interrelating various infinite, semi-
infinite and finite linear programs are established and discussed. Chapter 7 uses
techniques from functional analysis to tackle the primary shortcoming of the Boyd
and Barratt approach, namely the truncation issue. A qualitative and quantitative
assessment of this issue is developed.

Chapters 3, 5 and 7 contain the original contributions of the author, while most

of the remainder is based on the literature at large.



Chapter 2

The Boyd and Barratt Paradigm

This chapter deals with the various components of the Boyd and Barratt Paradigm
[4,5,6]. The fundamental concept of convexity is outlined. The essential contribution
of Boyd and Barratt over previous optimization approaches is described. The breadth

of applicability of the approach is described.

2.1 Optimization and Convexity

We begin with two definitions.

A real valued function F is convex if, for all a £ (0,1)
F{axi + (1 —oi)x2) < aF{x1) + (1 —a)F(x2)
A set A is convex if, for all a £ (0,1)
E\,22£A = ocad'F(l1- QD2E A

Convexity implies that a local minimum is a global minimum [22,23]. Non-convex
problems may have a minimum (or minima) which is a local minimum, but is not a
global minimum. There are methods (such as steepest descent) which are guaranteed
to converge to a local minimum [22]. Combining the fact that a localminimum is a
global minimum for a convex problem with the fact that there aremethods to find

a local minimum, it follows that a convex problem can be solved with the solution



converging to a global minimum. This effectively means that convex problems can

be reliably solved numerically, while (most) non-convex problems cannot.

2.2 Direct Controller Optimization

Direct controller optimization techniques are methods to choose the controller, where
the controller has some free parameters. For instance direct controller optimization

techniques could be used in the case of a PID controller with transfer function given

by
I<(s) = av+ ads + ?’

or perhaps a controller with a transfer function of

K( ) 0f] S + a 2
S =
a3:s2+ ads 4-ors5

This method then uses numerical optimization software to seek the best values of the
a’s. The specifications are combined into an objective function to be minimized.
Direct controller optimization has the advantage that it can directly handle a wide
range of specifications. There are however a few difficulties with these techniques.
The solution obtained in this way may be a local minimum as opposed to a global
minimum. It can be quite complicated to code such procedures. Also, in order for
the procedure to be practical the controller must only have finitely many parameters.
Consider the system shown below in Figure 2.1. Here G(S) is the plant to be

controlled, and K(s) is the controller. The following relationships are obtained

7N 1 (+KG)-1 -(/+KG)-K
e2 G(l +KG)-1 (I + GK)-1
- G(I +KG)-1 -Gl + KG)-1
vy f  KG(I+KG)-1 K(I+GK)-1

It can clearly be seen that all closed loop transfer functions are non-linear in K.
Also, all closed looop transfer functions are non-convex in K.

All controller designs must have closed loop stability as a constraint. The sta-



Figure 2.1: A standard feedback system

bility property is non-convex in K and hence cannot always be solved effectively
by numerical techniques. As well as the stability property it is also necessary to
impose performance specifications. These performance specifications are generally
non-convex in the controller K. Thus, this is a serious problem with direct controller

optimization.

2.3 Convexity and the Youla parameterisation

Boyd and Barratt’s paradigm overcame this problem of direct controller optimization
by transforming the problem. The reason the transformed problem is easier to solve
is because it is convex. The transformation involved is called the Youla parameteri-
sation, and sometimes the YBJ or YBJK parameterisation, after [28,29]

The Youla Parameterization is an elegant closed form expresssion for all LTI
stabilizing controllers. Work done by Youla et al. gave the following theorem.

Theorem Let H® denote the set of all stable transfer functions. Let

G =D~'N = NrD~x



where N, D, Nr,Dr C H°°. The above identity is a stable coprime factorisation for
the plant. Let

K =Y~IX X, Y € H°°

be any one stabilizing controller. Then, all stabilizing controllers are given by

K= (Y-QN)~\X + QD)

as Q ranges over H°° |
An alternative arid equivalent statement is as follows.

Theorem Let fl°° denote the set of all stable transfer functions. Let

G =D~'N = NtD;'

where N, D, Nr,Dr 6 H°°. The above identity is a stable coprime factorisation for

the plant. Then, all linear time-invariant stabilising controllers are given by

K=Y~'X
where

X =U+QD

Y -V - QN

as Q ranges over all H°°, and where U, V 6 H°° obey

UN + VD =1

The equation UN + VD = 1 is known as the Bezout identity.

This theorem means that if Q is viewed as the design variable, then stability is
automatically guaranteed. Another crucial observation here is that the behaviour
of the closed loop system depends on Q in a much simpler way than it did on K.
For example, for the system shown above in Figure 1, the following relationships are

obtained.



ei / dtfy - gn) -AtA'+ gD)x

e2 wr(F-giv) /-~(x + gi))

% Nr(Y-QN)  -JVr(X + gZ))
vy I-D r(Y-QN) Dr(X + QD)

It can clearly be seen that the closed loop transfer functions which were non-linear
and non-convex in the controller are affine and convex in the Youla parameter. The
main consequence of this is that a wide range of interesting controller optimization
problems can be reliably solved numerically, i.e. those of the form:

Minimize a convex objective function subject to (i) closed loop stability, and (ii)
convex constraints.

Some examples of the wide range of specifications which can be treated by this

approach are given in the next section.

2.4 Convex Specifications

Any specification which can be cast in a form which is convex in Q(s), the Youla
parameter, can in theory be solved numerically by the Boyd-Barratt approach. Hence
any specification which is convex is a legitimate specification as far as this approach
is concerned.

Specifically, the following are convex constraints and hence can be used in the
proposed method. Combinations of these specifications can also be treated by this

approach.

Sensitivity reduction : The specification

Hwi"lL <

is a convex constraint. Here, S'(s) is the sensitivity function and reducing it
results in reducing the effect of plant uncertainty on the overall closed loop

transfer function as well as giving disturbance attenuation.



Complementary sensitivity reduction : The specification

IHVTIL < A

is also a convex constraint. Reducing the complementary sensitivity has the
effect of reducing the effect of measurement noise on the output, as well as

improving stability robustnesss.

Asymptotic tracking and regulation : Examples of asymptotic tracking spec-

ifications are as follows.

The step response from some command input to some regulated variable must
converge to one. This constraint can be expressed as a single linear equality
constraint and is a convex constraint. Asymptotic tracking specifications for
multivariable systems can be handled as two or more linear equality constraints.
Asymptotic regulation and asymptotic decoupling are similar constraints. It
may be required, for instance, that a regulated variable asymptotically reject

constant inputs.

Closed loop decoupling : It may be required that certain (usually off-diagonal)
entries of a closed loop transfer function are to be zero, so that certain inputs

have no effect on certain outputs. This constraint is convex.

Overshoot, undershoot and settling time : It may be required to keep the
step response between specified limits. A specification of this form can be
expressed as a collection of linear inequalities. These constraints are convex

and therefore of the desired form.

Bounds on closed loop signal peaks : It may be required that each regulated
variable be bounded by some given maximum. This requirement could arise
from the requirement not to saturate an actuator or sensor or exceed some
internal variable force, torque or current limit. Again the constraint for this is

a convex constraint.



Robust disturbance attenuation problem : The robust disturbance attenua-

tion problem is

JRINWSI + IVrilU

This type of problem, while more difficult than the sensitivity reduction problem

above can be tackled by convex optimization.

Two disk problem :  Another problem is where one wants to limit or minimize

Again this a convex specification.

Slew rate limitation : A slew rate limitation on the step response can also be

cast as a convex constraint.

2.5 Non-Convex Specifications

Some well-known and desirable specifications in control are non-convex. Therefore, it
is not possible using this approach to directly optimize such specifications. A general
rule of thumb is that specifications on open loop transfer functions cannot be handled

using this approach.

Single-loop gain margin and phase margin : The phase margin and gain mar-
gin are not convex constraints. Therefore it is not possible using this approach
to directly optimize the gain or phase margin. Although it is not possible to do
so directly, it is possible to specify them indirectly using M-circle specifications

which are convex .

Open loop decoupling : The constraint that K be a 2 x 2 diagonal matrix is

non-convex in Q.

Loop integrity : The constraint that K be a stable transfer function itself, i.e.

K £ H°°, is non-convex in Q.



Controller Complexity : The constraint that K be, for example, a controller
with fewer than seven poles is non-convex in Q. Also, for example, PID design

cannot be dealt with using this approach.

It has been shown that there are a wide range of specifications which can be
effectively treated by the approach of Boyd and Barratt. These specifications can be

in both the time domain and the frequency domain.

10



Chapter 3

Recasting Control Problems as

Linear Programs

The Boyd-Barratt paradigm requires that problems are expressed as convex specifica-
tions. In this chapter some of the convex specifications listed in the previous chapter
are reformulated. They are expressed as infinite linear programs. Truncation of these

linear programs is considered.

3.1 Infinite Linear Programs

An infinite linear program is the problem of minimizing a linear cost function

subject to an infinite set of linear inequalities
Ax < b

where the vector X has infinitely many entries.

So in the case of an infinite linear program there are infinitely many variables and
infinitely many constraints. So the matrix A is an 00 X 00 matrix.

A semi-infinite linear program can arise by taking a finite number of variables or a

finite number of constraints. If the infinite problem is truncated so that only finitely

1



many variables (FMV) are taken the problem becomes semi-infinite. It has infinitely
many constraints but only finitely many variables. In such a case the A matrix is an
00 X n matrix, where n is the finite number of variables selected.

If the infinite problem is truncated so that only finitely many constraints (FMC)
are taken the problem becomes semi-infinite. It has infinitely many variables but only
finitely many constraints. In such a case the A matrix is an m x oo matrix, where m
is the finite number of constraints selected.

If either of the semi-infinite problems were truncated further so that only a finite
number of variables and constraints were taken, the resulting problem would be a

finite linear program. In this case the A matrix is an m x n matrix.

3.2 IMW\S1” Specification

Consider the problem of minimizing the weighted sensitivity function,

A= fly&. I1M1L <3-»

This is the original form of the problem and what follows in this subsection is several
successive refomulations of this problem. First, the Youla Parameterisation is used to
reformulate this problem. The Youla parameterisation makes it possible to convert
this problem into a form which is convex in Q, where Q is the Youla parameter. It is
necessary to be able to convert the specification into a form which is convex, so that
the Boyd-Barratt paradigm can then be applied to it. Before the work done by Youla
et al. it would not have been possible to treat this specification. This is because the
specification is non-convex in the controller K but is convex in Q.

Using the Youla parameterisation as stated in the previous chapter the following

expression is obtained for the sensitivity function

S =D(QN +V)

12



Substituting the above into (3.1) gives

A=gm | [WD(QN + V)\L= WWDQN + WDV|L

Of course, minimizing the weighted sensitivity is not the only problem and

there are others of interest.
This problem is now of the form: find a vector m belonging to a subspace M

which best approximates another given vector xq,

A= el 1™ - *olL G2)

Here, M = WDNH®°° and Xg= —WDYV. This is the secondreformulation of the
problem. Note that M is an infinite dimensional subspace.
Next, it is shown this problem is an infinite linear program,in infinitely many

variables, with infinitely many constraints. Now,

ML < a

i=H|1ViIWV + K)L,<A

*=> WDQN(jw) + WDV(jw)} < A Vu
-=~ Re{e”” (WDQN(jw) + WDV (jui))} < A »» ,(

Let {zi,i £ 7} be a basis for H°®. This set has infinitely many elements. Letting

Q:ISeia& SIVES

£ a{Re {ejeWDNZi(juj)} < A-Re {ejeWDV(juj)} Vw,6 (3.3)
iei

Clearly, the above constraints are linear in the c”’s and there are infinitely many of

them, one for each (cv, 8), where £ R, and 9 £ [0,27r). This is the third formulation

of the problem,

inf A subject to

13



X > (Re {€jOWDNXxi(ju)} < A- Re {ejoWDV{ju)} Vvw,0 (3.4)
iel

So (3.4) is an infinite linear program, as expected.
This problem is an infinite linear program. The next reformulation involves trun-
cating H°°. By truncating 1100, one obtains a semi-infinite linear program. That

is, replace the infinite dimensional space I1°° by a finite dimensional subspace, as

follows.
Take Q to be
(G
where
Vi=- — i=1,...,n
9 (s+wo)
Then m is given by
m =WDNQ

so substituting for Q in the expression for m gives

m=WDN dib - "2 oiiWDNyi
1=1 1

Now letting Xi = WDNyi = WDN gives

So taking m in this form and substituting into the original problem gives,

II"s|] L<a

V'Ckk xo <A
k=i 00

IWS| < A Vw

Re e AWSiju)} < A Vw,i



< A+  |ejfloW)} Vw,S

~  atkRe |e3ZfcGw)| < A+ /22 {ejox0(Fa>)j Vw,O0
k=1

So the problem now is

inf A subject to
aefi”

N alc/iejV fR2fc(jw)} < A+ Tie je-"iEofju;)} Vo« i (3.5)
*=1
as w and 0 range through 0 < u»< 0o and 0 < 0 < 2tt respectively.
There are finitely many variables A ,ai,a?2, , and the above equation in-
volves infinitely many constraints. So this is a semi-infinite linear program.
Consider next taking only finitely many constraints. Taking only finitely many

constraints leads to a finite linear program. This reformulation gives,

inf Asubject to
a€Rn

vroc2Re{e36ixj {jui)} <\ + Re {e3*'x0(u)i)} i=1,2, .p (3.6)
3=1

Each constraint, say the ith, corresponds to a certain U and 0, namely (u>,,0,).

Let bi — Re |ejfl,x00'w«)} ant™a*i = -Re {e”~’ajj”™'w,)}, so then eqn.(3.6) becomes

n
oijCiii < A+ 67 1 =1,2,...,p (3.7)
i=i

<a,a>< A4b

Note that this problem is of the traditional linear programming type. It is usually

written as

min cTX subject to AX < b

15



Here the A, band c matrices are given by,

Re{e3'xi(juji)} Re{e~a~CM)} ... Re[&6Ixn(jul)r -1

Re”t-x*jujp)} Refe~Xiijup)} ... Re{e?axn{juv)} -1

where p is the number of constraints.

1 Re~"xoijoji)} »

Re {e}®2Xu(joj2)}

Re {e”xoijujp)}

X = (ai a2 ... an

2- (0 ... 00 1)

(3.8)

(3.9)

(3.10)

(3.11)

Note that A isa px (n + 1) matrix, bisa px 1 matrix, X is a (n + 1) X 1 matrix and

cisa (n-fD) x 1lmatrix. The matrix A is generally tall. By this it is meant that it

has more constraints than variables.

3.3 WWXTW" Specification

The problem of minimizing the weighted complementary sensitivity function is quite

similar to the previous case. Hence, it is described here only very briefly. The problem

is the following.

As in the previous case this can be formulated as an infinite linear program.

HHATIU < A
Using the Youla parameterisation gives

|HJA(-3i>+ tO|L<A

16

Indeed,



J2 aiRe{e?+W2NDzi(ju)} < A-Re {ej*W2NU(ju)} Vw, $
iei

The problem is to minimize the least upper bound of

Re {ejdW2NU{ju)} + £ onRe {ej*W2ND Zi{juj)} Vw, fover § a izi E H°°
ifl i€l
This can be reduced to a semi-infinite linear program by replacing the infinite dimen-
sional space H°° by a finite dimensional subspace. It can then be reduced to a finite
linear program by taking only a finite number of constraints. The constraints for the

semi-infinite problem are obtained as follows. Let

X@=-W2NU
and as in the previous case take Q to be Q = Ya-i aiyi{s) where t/4= . So in
this case m is given by

m = WZ2DNQ

S0 substituting for Q gives

m= W2DN £ aiVi = J2 o0aW2D Nyi
=i 1
Now letting Xi = WDNyi = WDN gives
n
m = -
'izla'XI

So taking m in this form and substituting into the original problem gives,

min Asubiect to

(XkRe {e"efAjw)} < A+ Re {epx2@(Giog)} U, &
k=1

Each individual constraint, say the ith, corresponds to a certain U>and < namely

In the case of the semi-infinite problem there will be infinitely many of these

17



constraints. Keeping only finitely many constraints gives,

akRe {"X kiO'wj)} < A+ Re % 1,2,....,p
1

3.4 |||[Wi5| + iIVATIHoo Specification

This problem is called the robust disturbance attenuation problem. Once again this
problem is an infinite linear program.

The problem at hand is

A -~11I M + IlwirilL
Again using the fact that
S=D{QN+ vyand T =N(-QD + U)
gives
A=JInf, WWMXD(QN + V)\ + W2N (-QD + t/)]|IL
= ini_ HWXDQN + W, DV |+ |- W2NQD + wW2/W ||].,
This problem is an infinite linear program, in infinitely many variables, with infinitely
many constraints. To show this, note that

Iwi5] + |vr]|L<A

«=p» HWXD{QN + V)\ + IW7N(-QD + tf)]IL < A
IWIiDQN{jw) + WIiDV{jw)\ + |- W2NQD(jw) + W2NU(jw)\ \< A Vv w
<=> Re [eiB(WXDQN{jw) + WiDVijw))}

+Re{e’* (~W2NQD(jw) + W2NU(jw))} < A V u6,<f>



Again, let {zi,i £ 1} be a basis for H°°. Letting

:Y’
Q 5

gives

<=> J2 aiRe {¢{ 6WXDNzi(juj) - Y, (*iRe {ejtW2NDzi{juj)}
iel &/

< A-Re {&*W2NU(ju)} - Re {eiOWxDV{ju)) Vw M

and this is an infinite linear program. This gives another but equivalent formulation

of the problem,
anfe A

subject to

53 ctiRe {e?°W\DNZ{(w)} - a{Re {ej*W2NDzi(ju)} (3.12)
«E/ i€l

< A-Re {{('WiDViju)} - Re{ej*W2NU(joj)} Vw, 0 ,$

So this is an infinite linear program, as expected. Truncating H°° changes it from an

infinite linear program to a semi-infinite linear program as follows. First, note that

I AWxS\ + \WtT\ |L <A

I\WxD (QN + V)\ + \W2N (-QD + U\ IL < A
I mi -Xi\ +\m2- x2\IL < A

where

mxe WxDNQ x0L=-W XDV
m2e - W2DNQ x02= - W2NU

Next, truncate H°°. That is, replace the infinite dimensional space H°° by a finite

dimensional subspace, as follows Take Q to be Q = ]JC=L aiyi(s) where yt =
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Then

Letting

gives

and

and letting

gives

Hence,

mi = WXDNAT® atiyi= Y WiDNaiyi

5t
x{L = W\DNyi = WiDN
(s + we)n

mx= Y1aiil
i=i

m2=-W2DN £ aiVi=J2-W 2DNcciyi

RS
i2= W2DNy{= H/2Z)yVv
Xi y{ )y G+ won

I\Wws\+W2N\il~a

n i
I E y ; akxk2 —~021 <A
fcel Y=l
« IW'xSijw)! + \W2T (ju)\ <AV w

«=p» i7e {e"W .SCH} + Re {e>*W2T (juj} < A
a*xliiw) * *oi(;w)| + Re | er (X | <KX(jv) ~ @@20w))| < A
4=» /2c|c i + Nejer* N a®r( )]
< A+ Re {ei%0i(jw)} + Re {~**02(jw)} Vu ,0<>
<=>  otkRe [e3XiKi(i"W) + eJOxTAiw)}

=]

< A+ /2e|c~x0i(jCi;)} + /2e {eiox@(iw)} Vo>0<>
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So the problem now is

subject to
n

) akRe{eoexkl{ju) + e3txk2{ju))
=0

< A+ Re \ePXQ{ju)} + Reje~rx02(i*")} Vu ,0 ¢
as 4,6 and <4range through O<u;<00,0<0<27r and 0 < (< 21t
Again there are finitely many variables A «1,0:2, ........ , &0 and the above equation

involves infinitely many constraints. So this is a semi-infinite linear program.

Taking only finitely many constraints leads to a finite linear program.

énel'pnASUbJeCt to

n

J2 akRe{eixkI(jui) + eMx Clw,-)}
k=0

< A+ Re {e30ix0l(ju>i)} + Re {era”"CM)} i=1,2, ,N

Each constraint, say the ith, corresponds to a certain U3 6 and € namely (g;’, G,
So by letting
hi - Re {e,9x01(j(jji)} + Re {e”xo02(jw,-)}

and
dij = Re [e3'xkI(tOi) + e,~*fe2(ja;1)}
the equation becomes
n

A QRdij A AR T 1,2, 0P
3=0

3.5 max{||Wi5|loo , HW”™Hoo} Specification

This two-disc specification is quite similar to the previous case. This problem is the
following,

A= Qmnfoomax{|[W15'||®, I 1~ U
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As in the previous cases this can be formulated as an infinite linear program. Indeed,
[IW1S'||00< A

«=* Y,aiRe{ejOW,DNzi{ju)} < A- Re[eiOWXDV{juj) Vw.0 (3.13)
«6/

and
IIMlloo < A
N J2 ctiRe {e~ - W2NDzi(ju)} < A-Re {ej*W2NU{juj)} Vv w, ¥
ifl

The problem is to minimize

max { aiKe {eiOWxDNzi{ju>)} + Re [ejOWXDV (ju))
Ue/

Re{j+WzNU{ju})} + Y /aiRe{ejtW2NDzi(ju)}\ Vo or 3over ~ wa- 6 Hc
i€l J el

This can be reduced to a semi-infinite linear program by replacing the infinite dimen-

sional space H°° by a finite dimensional subspace.

xn = -\VXOV xg2=-W2NU

Xxn = WiDNyi = WXON -
G+ @n

xi2= WtDNyi = W2DN- ° °
(s -f We)n

and the semi-infinite linear program is

min A subject to
aeR"

J2 (XkRz {e30ixki(M )} ~ A+ Re {eff'®i(M)} Vw,i, £
k=1

and

a~e {e~"'x~"CM)} < A+ Re{e~SoaiM)} Vu.fl, (®
k=\
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Each individual constraint, say the ith, corresponds to a certain loand either 6 or €

namely (a;-, Ot or fa).

3.6 Time Domain Specification

The approach of Boyd and Barratt can deal effectively with time domain specifica-
tions, as well as frequency domain specifications. For the purposes of illustration the
details for a time domain specification will be given in this section. The problem con-
sidered below is to minimize the maximum weighted error between the actual and the
desired step response. Once again this problem is an infinite linear program. It is sig-
nificant that the present method deals successsfully with time domain specifications
as well as frequency domain specifications.

Thus consider the problem
A= inf e O hosiTed,)

= Q,'ewio sup eTt(h —hdesired)

where the designer selects the parameter r and the desired step response. Now the

step response h(t) is given by
1,
ht) =L [ where T = N(—QD + U)
S

and

hoksiredit) |_‘I M Tgesireq  fOr given Tdesired
S

which leads to the following

_ 1 .
A= Qmo< L—1.S(—NQD + NU — Tdesired)

A= inf eK[L-1 -—NQD H— NU — —Tdsired)
S S S

This problem is of the form of finding a vector m belonging to subspace M which
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best approximates the vector xq,

X=A Im" *o|ll<

where M = —DNH?®° is infinite dimensional. This is a norm in the space H°°.
This problem is an infinite linear program, in infinitely many variables, with in-

finitely many constraints. Indeed,

eT\h - /desired)||] < A

e (h ~Ncsid) <A VE>0
max i- I--NOD +-NU - =T < A
(i Is Q S ) sam

Let {})i,i £ 7} be a basis for H°°. This set has infinitely many elements.

It --NQD+-NU - -Tdesired <A Vt>0
S S S
Letting
Q=]L
el
gives
-A < eTt - hO(t) - hdesiredit)» < A Vt>0
where
hit) = L7 — NDyi
and

hott) = —L 7 -NU
LS

and this is linear in the a;’s.
This leads to another formulation of the problem,

A subject to

inf
agii
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Cdlife Ti/i, ()] - A< eT{hO{t) + hdesired(t)} V't

iei
and
- {eT% (i)} - A< eTt{-hO{t) - hdesired(t)} WVt (3.14)
iei
So this is an infinite linear program, as expected.
Truncating H°° changes it from an infinite linear program to a semi-infinite linear
program. That is, replace the infinite dimensional space H°°® by a finite dimensional
subspace, as follows Take Q to be Q = aiVi(s) where yi = . So the

problem becomes

inf A subject to
aeRn

53 ak e rifif(i)} - A< eTt{hQt) 4 hdsiTed(t)} and

k=1
-+ a k{eTthk(t)} - A< -eTt{hQ(t) + hdeaired(t)} Vt >0 (3.15)
=i
There are finitely many variables A,a!,a2, ,an and the above equation in-

vloves infinitely many constraints. So this is a semi-infinite linear program.

Taking only finitely many constraints leads to a finite linear program.

inf Asubject to
aeRn

n A< e + Vdesired(j'i)"\ and
k=1

n

—~Y 1 ak {eTtihk(ti)} —A < —en%{ho(ti) + ydesired(ti)}
h-\

Each constraint, say the ith, corresponds to a certain t, say t{. So by letting
bi = efﬂ {hO{ti) + hdesired (U)} and

oN-= JeTw (i)} ¢= 1,2, ,p
the inequalities become

53 ajaij < A+ bf
i=0
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~ ~djgij ~ A

3=0

3.7 Discussion

One possible approach to controller design would be to solve the finite linear programs
developed above. It would be necessary to have some restrictions on the size of the
linear programming problems solved in order to keep them practical. The switch
from an infinite linear program to a finite linear program by (i) the use of a subspace
of H°° and (ii) by having a limit on the number of frequency or time values means
that the resulting linear programs have solutions which can be practically evaluated.
By reducing the problem to a finite linear program in this way it becomes a problem
which can be solved using known practical techniques.

It was shown how the problems could be truncated to finite linear programs.
The above development suggests one possible approach to solving these (and similar)
problems. One could solve a single large finite linear program. The finite linear
programs generated above always have a solution for Alarge enough. However there
is no guarantee on the accuracy of results obtained in this way. There seems to be no
reason to be optimistic that the controller produced by this approach will be close to
the true optimal controller. Also, there is the difficulty of deciding how large a linear
program to select, and how to choose the subset of constraints to be retained. This
suggests seeking a more sophisticated approach. Nonetheless, the details worked out

above will be used later.
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Chapter 4

The Akilov and Rubinov
Algorithm

The Akilov and Rubinov algorithm is described in detail. The proof of convergence
is given. The mathematical properties of the algorithm are described. The algorithm
has two limitations which are explained. The first limitation is settled in this chapter,

while the second limitation will be discussed in detail in later chapters.

4.1 Statement of the Algorithm

We begin by defining some notation.

Let X denote a normed linear space. Let M denote a finite dimensional normed
linear subspace, with the norm induced by the norm on X . Let xOdenote an element
of X that is not in M. Let X0 denote the finite dimensional normed linear space
spanned by M and xq, with the norm induced by the norm on X.

In the Akilov and Rubinov algorithm the idea is to approximate one function by
another function. Thus, suppose that X is a function space, i.e. a vector space of
functions equipped with some norm.

The problem considered is that of finding a vector (i.e. a function) in M which is

closest to some given function Xn. That is,

il - %I\W\\m_XO\
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The idea is to approximate the given function xq as well as possible with a function

m fro

functi

m a subspace M. A function m which gives the minimum value [, is called a

on of best approximation for xQand the number fi is called the optimal error

of approximation.

Note that a bounded linear functional is defined as a mapping

where

and /

</, x> s finite V X

is linear.

The algorithm for determining the function of best approximation consists of the

successive solution of a number of auxiliary problems as follows.

Step

Step

1 (initialisation) Choose n linear functionals /1?.....,fn such that

det \fij)\» 0 i,j=1,...., n (4.1)

Then an “interpolating function” mn G M exists which is determined by

fifmn-x0 =0 Vvi=1,..,n (4.2)

This step gives rise to a set of linear equations which when solved gives a first

guess mn for the function. Let i = n.

2 (worst case error) Given rrii, find /,+1 so that

M = - s0)l = IImi~xon, i=n,n+1,. (4.3)

This amounts to finding a linear functional which achieves the norm of m; —xa.
This means thata new constraint fi+l is determined at the previousstep and
is added to the old constraints to give a larger set of constraints. If the norm is

a max norm, this step involves finding the maximum of |m{ —xQ.

28



Step 3 (add constraints to linear program and solve) Given/i,..... , /*+i, solve

min max Iftim —xn)|
meMk<i+11 7 n

Let 1 denoting the solution and then
Ai+i = min max |tk{m - x0)] = max |/fc(mi+l - x0)| (4.4)
m£EM k<i+1

This step can be cast as a finite linear program. The linear program is then

solved to give the new value for the approximating function, mi+1.

Step 4 (check) If —Ai+i < e stop, otherwise, increment i and go to step 2.

This step checks to see if the approximating function is close enough to the

actual function and if so it stops and if not it continues.

The way that this algorithm works is that from each nrij it works out a #j and from
this fj it obtains the next rrij+L £ M, and so on. If this mJ+1 £ M is close enough
to the desired Xo the program stops and if it is not close enough then the next fj+
must be evaluated. The algorithm produces a sequence of finite linear programs. At

each iteration, one extra constraint is added to the linear program.

4.2 Proof of Convergence

W hat follows is the proof that the algorithm converges, giving a function of best
approximation, m, corresponding to the minimum value of //.

Recall that the subproblem of Step 2 was as follows.
H = - x0)\ = \Wrrii — xO|1

Hence, on each iteration Step 2 produces a new additional linear functional obeying

the above equation. Obviously,



as otherwise
iimi - £0jl=0 => mi = => s0£ M
Lemma 4.1 An < An+i < An+2 < ...

Proof
Clearly,

rr(léx\fk(m - as0)] < @ﬁ%l\fk(m - x0)|
mmépl rp(g%( [fk{m - x0)| < nr]r%lu max [fk(m - s0)]
Recall that Step 3 was
Ai+i = min max |Aim — xO0)
giving
Al = nr]nelp| r?«a.lx |/7*(m - x0)| < I£n<%>_§_ |[/fc(mt+1 - x0)] = Ai+,
So (egn. 4.6) implies that
A; < Ai+l

Hence the A,’s form a non-decreasing sequence.

Lemma 4.2 Am< ft <

Proof
Now

Ai+i = ngnglhrﬂl max \fk{m - xa)
Define,

(m - ®)]li+1 = max \fk(m ~ sO0)|
Since

max [fk{m — x0)] < max |/jtfm —x0)] = U2 —x0]] V m 6 M
fe<t+l all}

it is clear that

Am< (i

Next, it is shown that // < Since



and

Hi = |Im; - Soil

then

K< m (4.8)

So combining (4.7) and (4.8) gives

Am ~ ft A~ P-m

as claimed. (0]

Lemma 4.3 |[|x|lp+l is a norm, where p denotes the iteration number.

Pi‘oof

By definition
IMUI = ™ 4 \fk(X)\

It, must be shown that

0) IMU =MIMU

00 I+ »IUi*IMLi+IMUI

(iii) X = 0 <=» ||X|lp+t1 = O

By definition

kllp+i = max \fk{x)\
M 1 P+i= \fk@x \
\ax WP+i = 1°/*(*)I

since fk is a linear functional

=* IMIp+i = max \a\\fk{x)\

M IP+i = M max \fk(x)\

M IFIIP+

= ||a*1Vi
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This proves (i).

Using the definition again gives
I* + J/IUi = max l/fc(* + V)l

which from tlie linearity property of linear functionals gives

I1* + V\\p+i = ftk(x) + ™M |
which from the triangle inequality gives,
Bt yi|pH < mex ()| + [FV))

=* ||* + V|p+1 < max |/b(*)] + max \fk(y)\

= IN+ JMIpd~ 1 NU + iMIp+i

proving (ii). Next it will be shown that X = 0 => ||x||ptl = 0. By definition with

X = 0,

[*1U i= l°lp+i
since each fkis linear,

== [I0IU, = max [

A NIpHL = 0

as required. Next consider the converse of the above, ||X||ptl = 0 => x = 0. Step 1
states that

det |/i(xj)l ~ 0 i,j = 1,...n

and that

filmn-x0) =0 Vi=1,...n
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These facts imply that there exists cti,..., om such that

fn (*1) w fn(*«) j

/ \ fn (*0)

y IMiji @) — fi @) *— i>*eN
3=1

and since each /e is linear,

fi (Y]ajxi J—i @) 11—,
U=1

=> fi a3Xi - *oj =0

Suppose now that ||®||p+tl = 0. Then by definition

i = 1, n

max I/*(as)] = 0

K<p-f1l

A =1 V 1=

m\VIX)=e v 1

1, n

(4.9)

(4.10)

(4.11)

Since X £ Xo, and since Xu is a finite dimensional normed linear space spanned by

X0, X1,X2, we may write

n

Xx = —bx0+ 53 °iXi f°r some
i=1

Rewriting and letting ¢, = ba; —a- gives,

X ——bx0+ 53 ("a“ —

=i

and from equation (4.11)

fk ~bx0+ 53 (6a>—adxi) =
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a*) Xi

o™ k=1, N

(4.12)

(4.13)



Now using (4.9), gives

Hi (53 aixi - ]=0 i=1, n
U=i
1=1
\/ai\ M
/ \°n)

but this contradicts the fact that det |/,(xj)| » 0 unless (rzi, an) = 0. Hence,

and so substituting into (4.12) givas

X = —pb~"x0—53 aix?j for some 6,cj, S,MW€R

which when substituted into eqn. (4.13) implies

I*(*) =0 VK
Since x is here any element of spari{x0,xi, ...,xn} then /* —0 contradicting eqn. (4.5)
unless x = 0. So ||x]||p+i = 0 x = 0, as required O

It has been shown that at each iteration \'m < // < jim and it will now be shown

that these bounds converge to the optimal solution.

Lemma 4.4 The algorithm produces a subsequence rn:it £ M for which fif. — fi

and Atj — A

Proof

From the properties of norms on finite dimensional spaces, it is known that

3 k> 0 such that ||x|| < &[x||p+i V x € X0
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Now,

Hi = |Imt- xO|

o)
=> /¢l < K |Imi- - XOllp+i
Hi < k max [fkirrii —Xo)] 1> p
k<p+l
But
A = min max \fk{m - x0)|
=m < 8A,—
Using Lemma 4.2
Mi < K} (4.14)

and hence /i; is bounded. Since A is finite dimensional the sequence must have a
convergent subsequence mr

It can also be shown that m- is bounded. Indeed, using the triangle inequality

Imtf| < fjm* - xOf + [0

But,
H = |m- - xO|

and so

™l < Hi+ [0

which from equation (4.14) gives,

Im*|| < kfi + Hxoll

Again the sequence m,- must therefore have a convergent subsequence m,v.

Using these subsequences,

[*e> = |/«>+i (mtj ~ *0)| = “ - %o
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=Hij < rnpx |fk (mi}- *o0) I

= jH>< max |a (mi}* - a0)| + max [fk(mi]H - m.J |

= seue -

since m.; is a Cauchy sequence,
Mij A N+ +
From equations (4.7), (4.8), and (4.15),
Aff A M—MJ —"+1 A
and since is a Cauchy sequence, we have

c—»0 as j —o00

giving
AN > AN < h (4.16)
fii, —ft n< ms (4.17)
which completes the proof O

4.3 Properties of the Akilov and Rubinov Algo-
rithm

This section describes certain properties of the algorithm.

Convergence

. The algorithm is guaranteed to converge. It converges to a global optimum.

. The A-s converge to the optimal value /i from below. The A™s form a non-

decreasing monotonic sequence.
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. The s converge to h from above. However the convergence is not necessarily

in a monotonic fashion. A subsequence of the /Vs converge to H

. The A;’s and s converge towards some final answer hmAt no stage do A and
H cross over each other. So at all stages A- < Hii and equality holds if and only
if mi is exactly the optimal solution. This important property of the Akilov and
Rubinov algorithm means that at each stage an upper and lower bound on h is
obtained. In practice this is very useful because it means that at each iteration

one can see how close one is to the optimal answer, //.
Increasing n

. If the proposed algorithm is executed an upper and lower bound will be obtained
for each iteration and hence at termination. The optimal h lies within these
bounds. Suppose now that the number of terms in the subspace of H< spanned
by X is increased by increasing n then the new range can not be further from
the true optimal solution. The interval in which h lies may have a larger upper
limit for a larger n, but this is not in contradiction with the algorithm provided

there is still a range in which h may lie and not do worse for a larger n.

. Having said the above, it is expected that for most cases that increasing the
subspace of H&D spanned by X{ it should give a range containing h which is in

fact closer to the optimal solution. It can never do worse.

4.4 Applicability to Boyd and Barratt

The Akilov and Rubinov algorithm as stated previously does provide guarantees.
Firstly, it is guaranteed to converge. However, there are two requirements needed
for application of the algorithm. It is required that (i) the subspace X0 be finite
dimensional and that (ii) the problem can be expressed as a norm. In what follows
the norm restriction will be treated. As stated, it is necessary for the algorithm that
specifications can be written as a norm. Consider the robust disturbance attenuation
problem,

infFlHM™1 + 12"THL
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Define

/ \

mi

\U2i w

00X00

It is claimed that, this is a norm in the space T = 11°° x H®°. It is a straightforward
matter to show that the space T = H°° x H°° is a vector space. Indeed, the direct

sum of two vector spaces is a vector space. It is necessary to show that

«1

00X00

is indeed a norm. In order to prove this the following must be shown

i
) >0
«2
00X00
Cut | |
(i) =0 ifandonlyif u=20
y U2 00X00
(in) - cC where ¢ is some scalar
\uUu21J «?2 /
ogX oo 00X00

(iv) IJu + Hiooxoo < IMWxoo + |[[t>]|joox<

where u —(mi,m2) and v = (~1,~2) are elements of the space T = H°° x //c

Now,

Ml
= lljad] + IU2II|00=Sl?gltt1I+ Ie2]

00x00

but both
|ujl > 0and |t/21> O0Vju) E jR

and so the sum

id] + M >0

Hence,

sup [ifij+ M21> O
JR
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Since the supremum over a set of non-negative real values is necessarily non-negative,
I lboXoo ~ O

as required.

Next, consider property (ii) above. Letting Uj = 0 and u2 = 0 in IMlooxoo = O the

following is obtained

= et + 10ppL = SWPfr+ 101 = supO = 0
iR iR
00)00)

Conversely, letting = 0 gives the following,

(«1 \

KU2/00X00
=HIM +M IL=o0

=> sup |«i|] -f Ju2]= 0
JR
==> U] = 0and W =0

Next consider (iii). Letting u = (tt|,ti2) gives
Tew oo xo0 = lllcuil + Jcu2||L
= IMM + |c]|«al|L
HIMKM + M IL
= lcllIM + MIL,

“ £ oo

Finally, consider (iv), which is

|li.f -(- "yllooxoj, ~ 11*1o0Xoo 4" ||v|U xo00
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Now,

lIU+ HlooXoo = Ul + U| + lu2+ Vallloo = sup |[«1 + «i| + \u2+v2\
iR

Using the triangle inequality for complex numbers

< sup |ui| + Mil+ |u2|+ |u2|
iR

< sup |ux| + \u2\+ sup |ui| + |u2]|
iR iR

[Im][ooXOO “H IlI*llooxoo

since the sum of the suprema of two parts separately is greater than the supremum

of the sum of the two parts at once. Thus, the desired expression is obtained,

[[m “I” A|J]ooXoo0o — [|*||]ooXco "4" |[|[*|[l]ooX oo

Thus it has been shown that HuHooxoo is indeed a norm. It has therefore been shown
that the robust disturbance attenuation problem can be expressed as a norm. It could

similarly be shown for the two-disc problem.

4.5 Limitations of the Algorithm

The algorithm suffers from two important restrictions

Firstly, it is necessary that the specifications can be written in the form of a norm.
It was shown that the specifications could be written in the form of linear constraints.
This is enough to attempt to solve the problem as a large finite linear program, but
as was stated previously there are no guarantees about the solution obtained in this
way. In order to use the Akilov and Rubinov approach, which does provide some
guarantees it is necessary to format the specifications as norms. Thus it is necessary
that it be shown that |jmijc0x00, €tC are in fact norms.

Secondly, in order to apply the Akilov and Rubinov algorithm it is necessary
that H°° be truncated. The algorithm gives no indication of how far the truncated

solution is from the true optimum. For example, take the ||Wr<s||0 specification and
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let M denote the finite dimensional subspace of H°® that is used in the semi-infinite

linear program. Letting

and

then since M is a subspace of HQ

Ago < AM

An important issue is the gap between A” and Am. How much does the truncation
cost? Similar remarks apply to the other specifications.

This is an issue which will be returned to in later chapters.

4.6 Comments

In this chapter a detailed description was given of the Akilov and Rubinov algorithm.
A proof of its convergence was given. The properties of the algorithm were then
described. Finally some restrictions and limitations of the algorithm were given. It
was established that the norm property applies to the robust disturbance attenuation
problem, as required by the algorithm. The effects of the latter limitation will be

analysed below.
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Chapter 5

Software Development and

Experience

In this chapter, the choice of the Akilov and Rubinov algorithm within the context
of optimal robust controller design is explained. The algorithm as described in the

previous chapters has been coded in Matlab 5.2 for the following problems.

AL < a
WiTWA < A
Hw,s| + [w2r|][, < a
nwWIMLJIWVTU~?™A
A= inf. €Tt ‘desited)l
®I Q) STTed)

This chapter discusses the author’s implementation of these specifications. How the

software was validated is described.

5.1 Why use the Akilov and Rubinov Algorithm?

The optimization approach of Boyd and Barratt can handle a wide range of speci-
fications. They used the Youla parameterisation to write specifications in a convex

format, and then used parameter optimization techniques. This thesis proposes us-

42



ing instead an algorithm by Akilov and Rubinov which solves convex problems. The
reasons for this choice is outlined here by giving some of the advantages of the Akilov

and Rubinov algorithm.

Compatibility The proposed method retains the advantages of the Boyd-Barratt
approach. Thus, a wide range of specifications can be treated, and convergence

to a global optimum is guaranteed.

Bounds The algorithm has the attractive property that it gives a lower and an upper

bound at each iteration.

Convergence Monitoring Using the upper and lower bounds mentioned above it
is possible to see how quickly the algorithm is converging. It also makes it
easier to decide when to stop, i.e. to decide when all specifications are met to a

sufficiently high level. This is less than obvious with descent methods.
Speed It is faster because the code is shorter.

Standard Sub-problems The algorithm requires a linear equation solver and a

linear program solver, which are standard numerical problems.

Computional Ease It has the advantage over differential descent methods that it
eliminates the need to compute complicated gradients (derivatives, descent di-
rections, etc.). Instead, it requires certain linear functionals which are much

easier to determine.

5.2 The Algorithm’s Performance

This section contains data obtained from the author’s coding of this approach.

As an example, consider the following simple model of a servo,

1

s(s+ 0.0D)

Consider the following specification,

M + IWAIIL < A
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where

Wi= o5t5+ 30)2
(s + 1)?

Wi=ik = 11
(s + 30)2

The results obtained are given in Table 5.1. Graphs of this data are given in Fig-

ures 5.1 to 5.5.
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Case of n = 3

e A A iterations flops
0.01 0.20117 0.19486 10 288443
0.001 0.19795 0.19744 15 1184685
0.0001 0.19784 0.19775 20 3476658
le-005 0.1978 0.19779 25 8485807

For case of n = 4

e A iterations flops
0.01 0.10275  0.095658 12 8999276
0.001 0.098425 0.097436 17 10454698
0.0001 0.097737 0.097685 22 13937398
le-005 0.097709 0.097701 24 18696825
Case of n = 5
e A iterations flops
0.01 0.070089  0.06208 14 19504019
0.001 0.066318  0.06556 20 21960987
0.0001 0.065674 0.065617 24 26596113
le-005 0.065653 0.065643 30 37043487
Case ofn = 6
e A iterations flops
0.01 0.069226 0.061167 16 38340366
0.001 0.06421 0.063216 21 41570336
0.0001 0.063721 0.063643 27 49425768
le-005 0.063654 0.063648 31 62665109
Case of n = 7
e A iterations flops
0.01 0.067056 0.060693 19 65017302
0.001 0.063971 0.062999 24 70334913
0.0001 0.063472 0.063422 32 85386242
le-005 0.063439 0.063432 37 111594020
Case of n = 8
e A iterations flops
0.01 0.069996 0.060533 20 114502413
0.001 0.063961 0.063032 28 124217802
0.0001 0.063395 0.06331 35 146004155
le-005 0.063338 0.063329 42 189812870

Table 5.1: Results for the robust disturbance attenuation problem applied to a servo
motor.
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Using the same model and weighting functions, results were also obtained for the
two-disc problem,

maxUliy.SILIJWVTIU

The results obtained are given in Table 5.2. Graphs of this data are given in

Figures 5.6 to 5.9.
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mu ad lambda values

Figure 5.1: fiand A values vs. iteration number for e = 0.001 and n - 4 for RDAP

example
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mu ad lambda values

Figure 5.2: fi and Avalues vs. n, e= 0.001 for RDAP example
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flops

Figure 5.3: flops vs. n, e = 0.001 for RDAP example
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log10(flops)

Figure 5.4: log-wMlops) vs. n, e= 0.001 for RDAP

example



flops

x107

Figure 5.5: flops vs.

n = 4 for RDAP example
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Case ofn=3

e
0.01
0.001
0.0001
le-005

Case of n =

e
0.01
0.001
0.0001
le-005

Case of n = 5

e
0.01
0.001
0.0001
le-005

Case of n =

e
0.01
0.001
0.0001
le-005

Case of n = 7

e
0.01
0.001
0.0001
le-005

Case of n =

€
0.01
0.001
0.0001
le-005

11
0.18985

0.18809
0.18768
0.18765

\L
0.091027

0.089441
0.088972
0.088932

0.061263
0.060165
0.059531
0.059496

0.064125
0.058069
0.05774
0.057713

11
0.061914

0.057855
0.057523
0.057472

0.06444
0.05777
0.057445
0.05738

A
0.18645
0.18737
0.18763
0.18764

A
0.084775
0.088596
0.088879
0.088925

A
0.056445
0.059226
0.059475
0.059491

A
0.05442
0.057255
0.057671
0.057708

A
0.05544
0.057128
0.057438
0.057469

A
0.054938
0.056787
0.057364
0.057375
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iterations
13
15
20
23

iterations
12
15
19
24

iterations
14
18
23
28

iterations
17
23
28
33

iterations
19
24
30
37

iterations
19
27
33
41

flops
199028361
199812504
201997225
205639596

flops
206036193
206852388
208693539
212935877

flops
213640368
215278072
219151704
227654033

flops
229134925
233458051
242337686
259183073

flops
261427005
266573234
278277863
304953375

flops
307313600
315560404
332771686
372040579

Table 5.2: Results for the two-disc problem applied to a servo motor.



The paradigm was also tested on the time domain specification
A= le-fx 6 (h “desired)

The results obtained are given in Table 5.3. Graphs of this data are given in Fig-

ures 5.10 to 5.12.
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mu ad lambda values

Figure 5.6: f] and A values vs. iteration number for e -

Disc example
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0.001 and n —4 for Two



Figure 5.7: fi and Avalues vs. n, e = 0.001 for Two Disc example



flops

Figure 5.8: flops vs. n, e= 0.001 for Two Disc example
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log10(flops)

Figure 5.9: logw (f>o0p°®) vs. n, c¢= 0.001 for Two Disc example
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Case of n = 3
e
0.01
0.001
0.0001
le-005

Case ofn = 4
e
0.01
0.001
0.0001
le-005

Case ofn = 5
e
0.01
0.001
0.0001
le-005

Case of n = 6
e
0.01
0.001
0.0001
le-005

Case of n = 7
e
0.01
0.001
0.0001
le-005

Case of n = 8
e
0.01
0.001
0.0001
le-005

0.014803
0.014803
0.014803
0.014803

0.014803
0.014803
0.014803
0.014803

0.014803
0.014803
0.014803
0.014803

0.014803
0.014803
0.014803
0.014803

11
0.014803

0.014803
0.014803
0.014803

\A
0.014803

0.014803
0.014803
0.014803

A
0.014803
0.014803
0.014803
0.014803

A
0.014803
0.014803
0.014803
0.014803

A
0.014803
0.014803
0.014803
0.014803

A
0.014803
0.014803
0.014803
0.014803

A
0.014803
0.014803
0.014803
0.014803

A
0.014803
0.014803
0.014803
0.014803
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iterations
12
12
12
12

iterations
12
12
12
12

iterations
12
12
12
12

iterations
12
12
12
12

iterations
12
12
12
12

iterations
12
12
12
12

flops
395713619
396227045
396740471
397253897

flops
397767323
398280749
398794175
399307601

flops
399821027
400334453
400847879
401361305

flops
401874731
402388157
402901583
403415009

flops
403928435
404441861
404955287
405468713

flops
405982139
406495565
407008991
407522417

Table 5.3: Results for the time domain problem applied to a servo motor.



The algorithm was applied to the specification

llw.shl < a

For this problem there are known analytical solutions. This is useful for the purposes

of software validation. With

and
5+ 12

Wx =
5+ 1

the optimal solution is 26.25. The results obtained are given in Table 5.4. A plot of

this data is given in Figure 5.13.
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mu ad lambda values

Figure 5.10:
example

and A values vs.

iteration number for e = 0.001 for time response
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h desired

time [seconds]

Figure 5.11: Desired step response for time response example
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h actual

Figure 5.12: Actual step response for time response example
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Caseof n=3

e P

2 41.6243
15 40.4912

1 40.4912
0.5 40.4912

Caseofn =4
e

2 35.9766
15 35.9766
1 35.9766
0.5 35.5709

A
39.7263
40.0502
40.0502
40.0502

A
35.1194
35.1194
35.1194
35.3187

iterations
8

9
9
9

iterations
12
12
12
14

flops
6371788
6617334
6862876
7108422

flops
7833520
8558622
9283720
10584521

Table 5.4: Results for the weighted sensitivity function specification.
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5.3 Software Validation

From the results obtained for the various examples given in the previous section it
will be shown here that the coded algorithm did in fact display properties given in

the previous chapter.

Convergence verification

. Looking at the plots of the tabulated data it can clearly be seen that the
Als converge to the optimal value of X from below. This is shown for various
example problems as seen in Figures 5.1, 5.6, 5.10 and 5.13. It can also been

seen from these plots that the A/s form a non-decreasing monotonic sequence.

. It can also be seen from these plots that the ~;’s converge to /j, from above.
This convergence to the optimal answer is not necessarily monotonic. In the
time response example (Figure 5.10) and the |[|W.S'||0 example (Figure 5.13)
H decreases with each iteration, but in the robust disturbance attenuation
problem (Figure 5.1) and the two-disc problem (Figure 5.6) H is n°t monotonic

decreasing.

. In all the examples with plots of the A/s and ji%s against iteration number it can
be seen that the algorithm converges, as required. At no stage do they cross
over each other. So at all stages At < H- and equality would hold if and only if

the exact optimal solution is obtained.
Speed of convergence

. It must be said that from a practical point of view the algorithm did in fact
converge very quickly. In fact, in all the examples given, convergence needed
less than two minutes. It can be seen from the tables that the number of flops

was increasing, but still a very short time was required.
Increasing n

. It can be seen from the example results in the tables and plots that the algorithm

behaves as expected for varying n.
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mu ad lambda values

Figure 5.13: Hand A values vs. iteration number for e —1 and n —4 for ||W'5'||0
example with known analytical solution
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. Looking at the robust disturbance attenuation problem (Figure 5.2) and the
two-disc problem (Figure 5.7) it is clear that for different values of n the bounds
do not contradict. If for a particular value of n a range of values is found which
contains the best approximation solution then if we increase n we should find
a range which is no further from the optimal solution. The interval in which fi
lies may have a larger upper limit for a larger n, but this is not in contradiction
with the algorithm provided there is still a range in which j, may lie and not do

worse for a larger n.
Analytical example

. The algorithm was applied to the specification

llw.'S'IL < a

and the results are given in Table 4. This is an example with a known analytical

solution.

. It can clearly be seen from the table values for increasing n that the algorithm
is moving closer to the known optimum of 26.25. By increasing the number of
terms n in the expression for m the obtained solution is moving closer to the

known solution.

. It can also be seen from the table that by decreasing the allowed difference e for
termination in step 4 (and hence possibly increasing the number of iterations
before reaching the termination condition) it is seen that the solution approaches

the known analytical solution.

. Although not shown here in the table it was seen that by an effective choice of
poles for m £ M, the algorithm achieved a value close to the optimal solution.
By an effective choice it is meant that the poles are selected at the locations of
the known solution. Any alternative choice of poles did not give an improved

result.
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5.4 Another Example

This additional RDAP example has been included in order to demonstrate that rea-
sonable controllers are obtained from the software.

Specifically, consider finding the controller which minimizes
inf I (WiS|+ |[W2T|

where, as usual,

1+L* 1+L
L is the loop gain, and W\ and W2 are weighting functions. The minimization is over
all feedback controllers which stabilize the closed loop system. This problem is again

an instance of the robust disturbance attenuation problem (RDAP). The plant is

G=1\;

and the weights are

Nz 0s+1>-
100(5 + 1)2° 100(s +1)2

Applying the algorithm to it yields the controller

_ 0.591 Is3 + 0.5556s2 + 0.5734s + 0.1147
"7 0.114753 + 0.5734s2 + 0.55565 + 0.5911

+ °-3489 + 0.8242%)(s + 0.3489 - 0.8242i)(.s + 0.2422)
- 5-1549(5 + 0.4355 + 1.0290i)(5 + 0.4355 - 1.0290i)(s + 4.1289)
The corresponding |S'(jcj)| and \T(juj)\ are shown in Figure 5.14, while the loop gain’s

Bode diagrams are shown in Figure 5.15. From a robust control perspective, this is

a good design. It is an intriguing design from a classical loop shaping perspective.
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55 Computational Experience

The following are some items of advice on how to implement a coding of the algorithm,

derived from experience.

Choice of a’s

The first item is a likely pitfall. At each iteration the algorithm finds a new
set of a’s. The a’s are obtained from the solution of the linear constraints
(except for the first iteration in which case the a ’s used are those obtained from
the initialisation step). The a’s are used in the calculation of both Xp and fjp.
The Ap and jip values for each iteration are the upper and lower bounds which
converge to the optimal solution and which are used to provide termination of
the algorithm. The program is terminated once the upper and lower bounds
are within a preset distance of each other. Once this condition has been met a
solution has been obtained. The problem lies in the non-monotonic nature of
the fiv values. While a subsequence of the nP values converges to the optimal
answer, /X, the final \iv which was used in termination may not have been the
minimum fipto date. The minimum W to date was obtained from the a’s which
gave,

mlgn lImv —x O\

Therefore it is the a’s which gave the lowest fip rather than the most recent pp

which should be used in the solution.

Frequency response
It is most effective to compute the frequency response of each X once at the
start and then sum responses to evaluate m rather than evaluate the frequency
response of the new m™+1 due to the newly obtained a’s. This would require

evaluating a new frequency response for each iteration.

Linear program solvers
The linear program solvers tried were written as separate functions which just
required the matrices of constraints and objective function as input. This was

effective as it meant the solver was not problem specific and could be used for all
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omega

Figure 5.14: |5’ and |T| for second RDAP problem
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Phase (deg); Magnitude (dB)

Frequency (rad/sec)

Figure 5.15: Loop gain’s Bode diagram for second RDAP problem
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the examples. It also meant that it was possible to use different linear program

solvers and compare their computing times.

5.6 Discussion

The reasons for selecting the Akilov and Rubinov algorithm were outlined. Through
an examination of the algorithm’s performance the faith in the procedure was justified.
The software validation of the paradigm using the Akilov and Rubinov algorithm
obeyed all the properties expected and clearly demonstrated the advantages of this
approach. Some computational experience was given as advice. It has been shown in
this chapter that this is a very useful and practical algorithm and that it is a good

choice for the purposes of this project.
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Chapter 6

Duality Theory of Linear

Programming

Given a particular optimization problem, it is generally possible to associate another
optimization problem with it. The first and original problem is called the primal, while
the second and derivative problem is called the dual problem. The two problems are
intimately related. Duality techniques are a powerful research tool in the theory of

optimization. This chapter develops the duality theory of linear programming.

6.1 Relationships between Dual and Primal Prob-
lems

As is well known, the situation with finite linear programs is as follows. The standard

(finite) linear programming problem may be written as
mincTa subject to

Ax = b and X>0

This problem is known as the primal problem. Suppose that Ais m x n. It is
formulated in the vector space V = Rn, so x £ Rn.
The corresponding problem in the dual space V* = Rm is known as the dual

problem. For the primal problem above the dual problem is the following, where z is

72



a vector in the dual space z GRm,

maxz b  subject to

ztA < cT

Next, the relationship between the above two problems is developed.

Property 1 The value of the objective function in the primal problem is greater
than or equal to the value in the dual problem, provided the x and z vectors in their
respective spaces are feasible.
Proof:
The objective function for the dual problem is given by zTh. If g is a feasible solution
then Ax = b and so

zTh = zTAX (6.1)

If z isa feasible solution then zTA< cT. Since x > 0 multiplication by x does not

change the sense of the inequalities, so that

ZrAx < cTx

Combining gives

zTb < cTx (6.2)

as claimed O

This property applies to the infinite case.

Property 2 The primal problem has an optimal solution if and only if the dual

problem has an optimal solution. The objective functions in the primal and dual

problems then have the same optimal value.
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Proof:

The primal problem is given by the equations

Define

This can be rewritten as

crx —zx —0
This provides the starting point for the Simplex Method

A 0y x\_ b

(6.3)
or -1 /x|l 10

Since the original problem had n variables and m constraints and if the basic variables

are the first m variables of the x vector then the A matrix can be rewritten as

N Neac  Mionfeasic N

Write

6asic

mnonba.iic

Then xnonbesic = 0 for a basic solution.

Since At@ICis an m x m full rank matrix the solution set of Ax = bcan be written

o\

( “oesic ) _ . _

‘N A A Abasic A nonlasic » — Abasic™basic + A nonfd,jcXnoniasic
~ Xnonbasic y

Xbasic ‘4" AhasicAnoni,asicXn(inta3jc — *basic”

Xbasic = Abasic? AbasicAnonbasicnonbasic
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Also

Zx = C X = C~™"Xbasic "H('nonbasic*nonbasir.

and substituting for xjastc gives
= Chasic (“Mcastc™  ~Mca,;,cAnon6as«cE?uméasic) ''f “oniaatc”oniast'c

— MiMic”basic™ %-Busic/‘(ﬁlaaicAnonbasic nonbasic H’ Ghon&a«tc*nonf>astc

Hence,

zXx — Zbasic "Hfbasic"noJibasic

where
Nasic  “basicAbasic?

is the current objective function value, and

~Abasic ° “nonbasic Abasic A be*sir.A rialbasic

is the relative cost vector.

Therefore (6.3) can be reformatted as follows

X
A 0 ) h)
yz*}
\
basic
Abasic A nonfja$ic 0
qa %nonbasic
\ sic  “nonbasic A \ 0/
*
/f\lblasic lr}
Multiplying on the left by gives
1
/ \
* gasic .
| AbasicAnO7ibesic O Apgalich X
3nonbasic
rT . T i -1 0
\ L:-basic “nonbasie
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Multiplying on the left by » —c[asic 1  and using the result as the last row, gives

/. \
/ ) ) \ basic
A AbasicAnonbasie 0
*Anonbasic (6-4)
A *nonbasi<: "basicAbasicAnonbasic 1 7 y  Zbasic

With the problem formatted as in (6.4) the relative cost vector is given by

basic Anonbasic "basic A bnsicA 7onbasic

If the present basic feasible solution is optimal, then

rLsic > 0

Hence,

nonbasic "basic *basic Anonbasic * 0

giving,
rI‘\—&nbaaic Ed rZz;sicAk;a%icAnonk?astE (65)
Let z be defined by

T— T Ag
W masiw**b%c

Then

Z --“tasic " “nofiéosic
SO

A (basic  “basicAbasicA-nonbasic

and from (6.5)
A _<<( Cl!asi.'c 0":nlonbasiQJ‘]:_C

SO

ZTA <cT

and hence z is a feasible solution of the dual problem. This shows that if the primal
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problem has a finite optimal solution then the dual problem is feasible. Since

ZT T a-1

basic basic

the following is also true,

7Th= rT .A~xmh

basiC = basic

and using the fact that xnon\tSc = 0 for a basic solution, A”sich can be replaced by

Xbasic, glVlng

TI T T
Z ° = CbasicX basic = C X

Combining this with property 1 shows that the primal and dual optimal costs are
equal, and therefore this z is the optimal solution of the dual problem.

This shows that given an optimal solution, X, of the primal problem, an optimal
solution z of the dual problem exists and the values of the objective functions are
equal. The fact that an optimal X exists given an optimal z follows by viewing the

dual problem as a primal problem. O

This property applies to the finite case.

Property 3 If either the primal or dual problem has an unbounded optimal so-
lution then the other problem has an empty feasible solution set.
Proof:
Suppose that the primal problem has unbounded feasible solutions and the dual prob-
lem has a feasible solution, z/easiGie- The dual objective function is zJeasMeb. Since
the primal problem has unbounded solutions it is possible to find a feasible X which
gives CTx < zjeasiileh This contradicts Property 1 and so if the primal problem has
unbounded feasible solutions then the dual feasible set is empty.

The same arguement could be made if the dual problem has unbounded feasible
solutions and the primal problem has a feasible solution, Xfeasibie. So if the dual

problem has unbounded feasible solutions then the primal feasible set is empty. O
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Property i is very useful because any feasible solution of the dual problem is a
lower bound on the primal solution. Properties 1 and 3 hold in the infinite and semi-
infinite cases. However, Property 2 holds for the finite case only. Thus the duality
theory for semi-infinite and infinite linear programs is more subtle than the finite

case.

6.2 Formatting in Standard Form

In the context of this thesis, the convex specifications provide inequality constraints
involving sign free variables. Such linear programs are a little different from the
formulation discussed above. In such a case the primal linear programming problem
is given by

min cTX  subject to

Ax < b, a,’s are sign free variables

This problem may be written equivalently as

(x+\
mxm(c C1 0
Vy o}
subject to the constraints
/*+\
(A -A 1) 2 b, c+ >0, t >0, y>0
\y [/
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Letting,

= (cT -¢cT 0), X

I
S
I

A= (A -A 1J, x>

The problem is now in the form,
t
minc x  subject to

Ax =6, and x >0

This is the format discussed earlier in this chapter. For the primal problem above the

dual problem is then the following, where z is a vector in the dual space

max zrb  subject to

which when written fully becomes,

max zThb

subject to the constraints

Writing the constraints out fully gives,
Atz < (,

—Atz < —c,

1z < 0,
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These three constraints can be reduced to the following two constraints,
ATz =,

*<0

So now we have the dual of our original problem with the inequality constraints and

the sign free variables X. The dual problem is
maxzTh subject to

Atz=c, and z< 0

6.3 Bounds on Semi-infinite Linear Programs

This section develops some bounds for the semi-infinite linear programming problems
[12].

Consider an infinite dimensional linear program of the form
Xt = mincTx subject to

Ax < b, Xj’s are sign free variables,

Here A will be an oo x oo matrix and X will be oo x 1. Let the optimal cost, if it
exists, be Af, where p stands for “primal” and t stands for “true”.

Suppose that this infinite primal problem is truncated so that only finitely many
variables (FMV) are taken. The problem then becomes a semi-infinite problem. In
this case A will be a oo x n matrix and x will be n X 1. Let the optimal cost, if it
exists, be denoted by AE. If this problem can be solved then its optimal solution Xxv

is feasible for the optimal infinite problem and AE is clearly an upper bound for Aj.
K > A (6.6)

Now suppose that the infinite problem is truncated by taking only finitely many
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constraints (FMC), but all infinitely many variables are retained. Again the problem
becomes a semi-infinite problem, but in this case A will be a n x oo matrix and X will
be oo x 1. Let the optimal cost, if it exists, be denoted by \¢. If this problem can be

solved \ pis clearly a lower bound for Af, giving

A? < A? (6.7)

In this case, the FMC optimal solution xcmay or may not be feasible for the original
infinite problem.

If the solutions exist combining (6.6) and (6.7) gives

K<nr< K (6-8)

As the number of variables and constraints retained increases AE and \@ may move
closer to each other. For practical purposes they may or may not get to be close
enough to the optimal Af.

Consider the FMV semi-infinite problem as described above. In such a case A will
be a 0o x n matrix, x will be n x 1 and bwill be a oo x 1 matrix. Recall that the
optimal cost is denoted by AN

Suppose that thenumber of constraints in this semi-infiniteprimalproblem are
truncated. Theproblem isnow a finite problem. If theoptimal cost of this finite
problem is denoted by A’c then using the idea as in the FMC case above Afc < AL
Therefore the finite case provides a lower bound on the semi-infinite case. However,
XVC may not be feasible.

As shown in the previous section the dual problem of the finite primal problem
above is given by

m ax/i subject to
ATz=¢ <0

with AT being n x m , z being rax 1and c being nx1.
Suppose that the formal dual of the above infinite primal problem has an optimal

solution. Denote it by A" with the subscript d to denote “dual ”. In this case rows in
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AT correspond to variables in the primal and columns in AT correspond to constraints
in the primal. Note that the dual problem is a maximization rather a minimization
problem.

Again suppose that this infinite dual problem is truncated so that only finitely
many variables (FMV) are taken. The problem then becomes a semi-infinite problem.
Let the optimal cost, if it exists, be denoted by Af. If this problem can be solved then
its optimal solution zv is feasible for the optimal infinite problem and A™is a lower

bound for Af.

K <~ (6.9)

Now suppose that the infinite dual problem is again truncated, but now only
finitely many constraints (FMC) are taken, but all infinitely many variables are re-
tained. Again the problem becomes a semi-infinite problem. Let the optimal cost, if
it exists, be denoted by Af. If this problem can be solved Af is an upper bound for
A?, givirg

A? < Af (6.10)

In this case, the FMC optimalsolution XC may or maynot be feasible for the original
infinite problem.

If the solutions exist combining (6.9) and (6.10) gives

K < A< A (6.11)

So looking at theinfinite problemand finitely manyvariablessemi-infinite problems

there are two inequalities for the solutions to these problems

AE>A?

a, < a?

If there was no duality gap (i.e. the solutions to the primal and dual infinite problems
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were equal) then inequalities could be combined giving,

Al > Af = Af > A; (6.12)

It is worth noting that if there is a duality gap and the primal and dual infinite
problems are not equal then Property 1 provides an inequality. This property applies
to the infinite problems. It must first be noted that the variables and constraints for
the linear program obtained from the Akilov and Rubinov algorithm are the form
of the dual problem as stated at the start of this chapter. The variables are sign
free and the constraints are inequalities. The property states that the value of the
objective function in the primal problem is greater than or equal to the value in the
dual problem, provided the x and z vectors in their respective spaces are feasible. But
taking that the fact that the primal problem given in this section has it’s inequalities
and variables in the dual form of this property the following inequality holds if there
is a duality gap

A? < Al (6.13)

The Akilov and Rubinov algorithm can be used to get solutions for A£ and as such
gives an upper bound on the true infinite case optimal A™ It would be useful to have
a method of solving the semi-infinite finitely many variables dual problem to obtain
a value for A The true optimal would be between these values and so an effective
evaluation could be made of the cost of the H°° truncation used in proposed algorithm.
There are a number of possible difficulties with this approach for evaluating the
issue of H°° truncation. Unfortunately the semi-infinite finitely many variables dual
problem is very complicated. There are difficulties arising from the fact that the
semi-infinite problem may not be feasible or bounded. If a solution does exist it will
be convex but formulating it as a norm (for use in the Akilov and Rubinov algorithm)
has further difficulties. The inequality (6.12) also requires that there is no duality
gap which is not straightforward to show for all problems. A brief example is given

in the next chapter.
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Therefore a more sophisticated approach is required to determine the difference
between the optimal X¥ and the Akilov and Rubinov obtained solution AE. This will

be discussed in the next chapter.

6.4 An Example [|'WA<S/||(D

This section shows how to formulate the primal problem using a subspace of HQ to
obtain a finitely many variables problem. The constraints are added for each iteration
of the Akilov and Rubinov algorithm. The equivalent dual is then given.

This example uses the ||Wi»S||00 specification to give the problems involved, but
it could be applied to any specification for which the algorithm is applicable.

As was shown in Chapter 3 the specification ||[Wi5'|00 < A can be reduced to a
standard linear programming problem. The primal linear programming formulation

gives inequality constraints and sign free variables, i.e.
min CcTX
X

subject to

AXx < b

This is obtained by taking only finitely many constraints, where each constraint, say

the 1ih, corresponds to a certain u and 9, namely (0j-, 0). Thus,
inf A subject to
atRn
53 {9 (M)} < A+ Re {exx0(jwt)} ¢=1,2,....,N (6.14)

j=i

Let b = Re{eilixo(ju)i)} and a® = Re{eiiXj(jwi)}, so the above equation becomes
53 Aaij < A+ b i=1,2, ,N (6.15)
i=i

or < adi > < X+ h where a = (a%a”, )Te ai = (an,...., n)T- Now
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subtracting Afrom botli sides, gives
53 ocjdij - A< +bi  i=1,2,..,N (6.16)
3=1

This equation is of the primal linear programming format i.e. Ax < b . In the
primal linear programming format with inequality constraints, i.e. min” c7x subject

to Ax < b, the A matrix becomes,

Re {e~arifjw,)} Re{e;iBX2(ju=i)} ... Re {eiblzn(ju=i)} -1
A= (6.17)

Re~rxiijuj,)} Rc”eloPx2{ju}p) ... Re |ejttPxn(jo;p)} -1
where p is the number of constraints so far. The matrix A isap x (n + 1) matrix.

N Re{ejo120(jwi)} ~
Re{ej02xo(ju2)}

b= (6.18)
Re |e *x’o(jwp)}
The vector 6is a p X 1 matrix.
XxT= (cti a2 ... an Aj (6.19)
The vector x isa (n -f 1) X 1 matrix.
0 ... 001 (6.20)

- (
The vector cisa (n -f 1) X 1 matrix.

So as worked out above the dual of this problem is

max zTh

subject to the constraints
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with A, band c as given above. So

( Re- e-~ZilM)} . . Re [e0pzi(jup)} >
N Re ¢9Ix2(jui)} . . Re "3x2(jup)j (6.21)
Re- e36Ixn(ju)X} . . Re e3Pxn(jujp)j
\ -1 : -1 >

and band c are given as in expressions (6.18) and (6.20) as before. Writing this dual

problem in full form gives,

/| .Reje”oCM)} 7
Re {e”2x0(jcj2)}

max | z0 z\ ze ... zv
Re {e3dx0(u>n)}
subject to
' Re- . Re- copXiGuip} N za' 'O N
Re [e38Ix2fju>)} . . Re- ej0px2(jup)} zI
zi 0
Re e3hxn(jui)} . . Re- exn(jtop)} \ 0
\ 1 ‘ -1 J\ZP) K1)
z<0,

6.5 Conclusions

This chapter contained some relationships between primal and dual problems. These
relationships were proved. Formulating the inequality contraints and variables from
the convex problems in this thesis into primal and dual problems was shown. Bounds
on the true optimal solution were obtained from the semi-infinite linear programs, but
this lead to the need for an alternative approach to analyse the cost of truncation.

This alternative approach will be outlined in the next chapter.
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Chapter 7

Analysis of the Issue of Truncation

Functional analysis techniques are used to give a qualitative evaluation and a quan-
titative measurement of the cost of truncation. These results follow over to the

Boyd-Barratt numerical approach.

7.1 H°° Duality Theory

This section describes the application of H°® duality theory to the ||WiS'||00 example
problem [16,17,21,26].

We begin with some definitions [23]. Let X denote a normed linear space. Let M
denote a finite dimensional normed linear subspace, with the norm induced by the
norm on X. Let X* be the set of bounded linear functionals on the vector space X,

called the dual space of X. The set of all linear functionals y £ X* for which
<my>=0VmEM

is called the annihilator of M, written M x. The complex conjugates of the elements
of M is denoted by M. The prefix B before M denotes the set of elements of M with

norm less than or equal to one, BM. The norm of a linear functional is defined to be



It may be shown that

[X[[x = sup I< x,n >
n<zBXe

Using this notation the primal problem can be written as follows
In this case the equivalent dual problem is
max < .To™>
where M x is a subspace of X*. By the Hahn-Banach theorem

A B = g 15X 000> ¢

The Hahn-Banach theorem also gives the relation

min ad—m |[|x= su < x0,n > 7.2
min | = sug| | (7.2)

Note that the existence of an element that achieves the optimum is assured in the
dual space, but not necessarily in the primal space.
Consider the problem of finding the stabilizing controller which minimizes the

weighted sensitivity function in the infinity-norm sense, namely

of, t WS e

It is shown next that this problem has the structure of (7.1) and (7.2). As before

by Youla parameterisation the following is obtained,
S=D(QN + V)
Substituting for S gives,

gf. [WD{QN + 10IL = gigf. IWDQN + WDV|L (7.3)
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Note that any biproper transfer function can be separated into its inner and outer

factors. This means a transfer function F(s) can be written as

l: —_Eopflp

where op stands for “outer part” and ip stands for “inner part”. Let,

where zt are all the right half plane (RI11P) zeros of F. Then Fip is called a Blaschke

product. This gives
f-[Ng=2-) =

Now by expressing N and D in terms of their inner and outer factorisations
N = NopNip

D =DmDip

and substituting into (7.3) gives,
inf \\WDopDipQNopNip+ WD ovD,vV\I
It is easily verified that

IAPOW) = 1= M pCMI v w

So,
\WS(ju)\ = \D-pIN-"WS(juJ\

giving
gl IWSIL = inf  WDONORQ + WD opVN ]
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Writing this problem in the form of the primal problem above gives,
ml% | XQ- m ||oo= Qném]) | WD opNopQ + WDovVNf\g/- loo

With X = Co, xg = - WDopVNTv and M = A™ so that X* = NBV and M+ =17
yields [16,17,21,26]

inf || xQ—m [joo= max | < x0,n > |
meM ndBM1

- inf | WDopVN”1+ m |joo= max_| < WDopVN”"Ln >\
m~rAS° nEBm

- max [ WD @VN-~Indu)
neBH1J

- max fWDopVN"Ihdu)
heBH1J P

= inf EWDoVN~I+WDopNopQ 11"= max |< WDoVN~I,h >|  (74)

and the existence of a maximizing h £ H1, (hO say), is assured. Since (7.4) is true
there is no duality gap.

The above analysis will be exploited below.

7.2 Duality Theory in Approximation Theory

This section gives an approach for assessing how far the obtained solution is from the
optimal solution.

Next the important concept of alignment is defined. Takingx £ X where X is a
vector space and / £ X* , where X* is the dual of X then x and / are said to be
aligned if

< f,x>= IMIx ||[/Ik*

Any system with the following property of constant magnitude at all frequencies is

termed all pass

\P(ju)\ = k V > where k is a constant

It is known thatalignment holds if a solution is optimal [23]. If X is taken to be
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H°°, the set of all stable transfer functions, then alignment effectively means all pass.
Using this it could be observed from the Bode plot if the optimal solution has been
obtained. If there is a gap between the optimal solution and the solution obtained
from the Akilov and Rubinov algorithm there will not be alignment. If the optimal
solution is not obtained a method for determining how far it is from the optimal and
hence the cost of truncation would be valuable information.

It has been shown in work by R. C. Buck [8,9,10] that closeness to alignment is
a necessary and sufficient condition for closeness to optimality. This was shown as
follows.

Let X denote a (real) linear space with norm | ||. Take X* to be the dual space

of continuouslinear functionals. It is a Banach space with norm

I/ = sup I<f,x >1 where / £ X*
IMI<i

Again, let M denote a subspace of X. Let BX be the unit sphere in X and BX™* be
the unit sphere in X*. Let BM L be the unit ball in M 1.

Define three sets A, B and C as follows. The set A is almost aligned to within e.
The set B is almost optimal to within e. The set C is almost aligned to within 2e.

Specifically,
A =ja20—m] "o —m\\ —e<< /, xg—m > some / £ BM"]j

B = {x0- ra;|[x0- m\\ < Pm(xq) + €}
C = {xo —m; |[x0—m\\ —2e << f,XxQ—m > some / £ BMx|

where Pm (x0) is defined as follows,

Pm(xq) = d@n [[x0 - mi\
Theorem For the sets A, B and C as defined above, the following holds

X0O—m EA = x0—m £B = x0—m £C
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This can be expressed informally in words as,
Almost Aligned O- Almost Optimal

Proof :

Taking x0O—m E A,
x0—m EA %3 f EBM= such that <f,x0—m >> ||x0—w| —e

Also by definition,
Pm{xO) = n%l(/l ||x0-m ||

From the Hahn-Banach theorem
inf [|x0—mil = max 1</, x0>

So,

Pm(xo0) = maXx |<f,xQ>

and

<f,x0—m ><max | </, x0>\= pm((%0)

Combining this with the definition of set A gives,
= [|x0- m| <</, x0—m > -fe < pM(x0) + e

$xg—m EB

x0—m e A =x0—m E B (7.5)

Now taking xO—m E B,

X—m e B = ||[x0—m\\ < Pm (%0) + e
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Choose

/ EBMZI such that </, x0—m >> pm(x0) —e

Combining this with the definition of set 5 gives,
= |[Xo —m|| << f,x0—m > +2e¢

Xo—m EC

X0—m EB %$x0—m EC (7-6)

Combining both results (7.5) and (7.6) gives
Xo—m£A $x0—mEB #$x0—mEC

as claimed. O

This establishes that closeness to alignment is a necessary and sufficient condition
for closeness to optimality. This is a global result rather than a local result, meaning
that e does not have to be small. This result can be used in an analysis of the cost of
truncation. By using this result it is possible to qualitatively assess the cost of H°°
truncation. In order for this to be a quantitative approach it would be necessary to
find a way to compute suitable / ’s. The next section will give a result which can be

used to obtain a quantitative evaluation of the cost of H°® truncation.

7.3 Alignment with Akilov and Rubinov for WS
example

The previous section has shown that closeness to alignment is a necessary and suf-
ficient condition for closeness to optimality. While this is a very useful result it

unfortunately doesn’t give a lower bound on the true optimal solution. This section
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was motivated by the result from R. C. Buck that closeness to alignment gives some
measure of optimality.

The Akilov and Rubinov algorithm uses a truncated subspace of H<. This means
that the solution obtained is an upper bound for the true optimum as it is a finitely
many variables problem. The following is a method of obtaining a lower bound on
the true optimum. It is applied here to the [|-S'(Q)||oo problem. A similar approach
could be used for any of the other specifications in order to obtain a lower bound
on the true optimum. The result obtained in this section means that bounds on the
optimum can be obtained. This result can be used to effectively evaluate the issue of
truncation of H°°.

First, alignment in the context of this example is shown. If wris'((5i) where

Qi £ H°° and hi £ HI are aligned then the following relationship holds
I WxS{Qx)hxdu = [|WiS(Qi)|loo]||Mi

=» J \WAS{Q\)h\\du) = jjwi.s'(e2i)joon1]i
=*/ \W1S(QL1)hN\du=\W1S{Q1)\00J |hx\du (7.7)
Since Q\ £ H°? and h\ £ H1are aligned it follows that both are optimal. Thegeneral
relationship which applies even if not aligned is

J iWiSWhldu < WWiSWWco J \ht\du

This above inequality is called Holder’s inequality.

Equation (7.7) can only be true if W\S{Q) is all pass. Strictly speaking it is WAS
that is aligned with h\, but W\S is aligned for a particular Q. As stated previously,
aligned effectively means all pass (constant magnitude for all frequencies).

Now, suppose that the true optimum A's given by
A= sup i WAS{Q\)hdu> = j WAS{Q\)h-ydoj
J

heBH1J

In the above expression hi £ BHI is the optimal h £ BHI. Let Qar be the result for
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the Youla parameter obtained from the Akilov and Rubinov algorithm. This gives
A> | W,S{QAR)h2du Vh2€ BH1

Suppose that Qar js optimal for some weight, say W2. Then W2S(Qar) is aligned

for some /i, say /t3. Since they are aligned the following holds
J W,S(QAI)h3cL, =] [IVZS(Qar)l,3<u = IIHWIQ/MUIHSII,

By the all pass property it may be taken that

Next choose

giving
S NW 2S(QAR)h3\du
WMl

A (7.8)

I$M |

Using the fact that H~~ 11T < 1l||*|oo||[M]i» gives

as 1825(Q")le
iftiL

Wo
Wi

Wo
Wx

1
A W1S(Qar)

= A>min|"5(gAK)I
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This gives a lower bound for X So this means that the following inequality holds

Xekb A XfTe ~ | All) |

This means that the optimal solution is contained between the minimum and max-
imum of |WiS((5>ir)]- This is an intuitively pleasing result because it means that
the closer the minimum and maximum values the smaller the range by which the
optimum differs from the Akilov and Rubinov obtained solution. This is intuitive as
it effectively means that the closer the solution is to all pass the closer the obtained

solution is to the optimum.

7.4 Basis Selection

This section states techniques used for selection of basis functions and discusses the
issue.

There are two main issues involved in selecting the basis for the subspace of H°°.

Pole selection One ofthe observations to make would be that a peak at a particular
frequency means that a basis function with a pole at this frequency may result
in a solution which is closer to the true optimum. The approach of Sections 7.2

and 7.3 may provide a useful addition to the basis selection procedure.

Number of terms By observing how close to the optimum the obtained solution
lies will give a strong indication of the number of terms required in the basis

functions.

Boyd et al. [5] suggested that a good choice for the structure of Q(S) is a linear
combination of simple stable transfer functions gi(s) of the form

n

Q(s) = X)

i—1

Boyd et al. [7] on the two-disk problem employed a second method for selecting their

basis functions. Using the bilinear transformation



they mapped the solution space to discrete time. He then assumed that the optimal
parameter Q(z) is closely approximated by a finite impulse response (FIR) filter with
20 taps. It was found that increasing the number of taps did not significantly improve
the solution having found a 20-tap Q which satisfies the constraints.

In work done by Webers and Engell [27] they outline that the choice of base
functions for the series expansion of the Youla parameter is crucial for its success.

In the present author’s numerical work, the basis functions were chosen as follows

Q(s) = Q aivi

where

;/A:7{S+UC5I'] |:|.,...,,n

This can be interpreted as a Taylor series expansion about u —uc. Here W is the

target crossover frequency, which is the crucial region for a design.

7.5 Examples

In this section the bounds described above on the optimal solution are obtained for
two problems. The first problem has a known analytical solution and the second is
an analytically unsolved problem. The first problem was given in Chapter 5 as part
of the software validation, but is used here to confirm the procedure adopted in the
guantitative analysis of truncation.

Specifically, consider finding the controller which minimizes
inf || |WIiS] Joo

where, as usual,

1+ £° 1+ L
L is the loop gain, and W\ is a weighting function. The minimization is over all

feedback controllers which stabilize the closed loop system.
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The plant is
G=24%7
and the weight is
Wi=:'xT
Applying the algorithm to this problem yields the results given below in Table 7.1
and Figures 7.1 to 7.5.

n  max min

2 437 9.7

3 317 1438
4 287 179
5 275 207
6 269 230
7 266 244
8 264 249
9 2637 255
10 26.33 26.03
11 26.32 26.06
12 26.29 26.2

Table 7.1: max |WiS'| and min |Wi5'| for various n’s.
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To illustrate the utility of the results the method is applied to a problem with no

known analytical solution.
Specifically, consider finding the controller which minimizes

inf I \wxs\+ \w2c\ lloo

The plant is

-s +4

and the weights are

W' = 34T m =1
Applying the algorithm to this problem yields the results given below in Table 7.2

and Figures 7.6 to 7.9.

n  max min
5 350 328
10 346 3452
15 3459 3455

Table 7.2: m&x \WXS\ + \W2T\ and moi]n |[WxS\ + \W2T\ for various n’s.
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IWSI

Figure 7.1: V5| for n = 6, truncation issue, example 1
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IWSI

Figure 7.2:

log(freq)

for n = 8, truncation issue, example 1
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IWSI

Figure 7.3: |VK5| for n = 10, truncation issue, example 1
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IWSI

Figure 7.4: IW.SI, for various n’s,truncation issue, example 1
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Figure 7.5. max|WS’'|, [iQgt and min|W.S'| for various n’s, truncation issue,
example 1
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From the data it can be seen that as the number of terms in the basis increases
the problem gives a solution which is closer to all-pass. Using R. C. Buck’s result this
shows that the quality of the obtained solution is approaching optimality. This gives
a qualitative evaluation of the result.

In addition to this a quantitative measure of how close the obtained solution \ akrub
(from the truncated vector space) is to the true optimum XtTue (from the infinite
dimensional vector space). For each of the examples with differing numbers of terms
in the basis an upper and a lower bound on the true optimum is given. In general,
one would expect that tighter bounds are obtained as the number of terms increases.
In both examples this is in fact the case.

For the problem where the true optimum is given by

Arue = jgJW iS(Q)U

the following bounds apply

Aahrub A “rue > min IW ~Q ar)!

The bounds approached the known analytical solution as the number of basis elements
increased. This is as expected.

For the problem where the true optimum is given by

A = gf, 11 [WiS(0)] + \W2T(Q)\ Ik

the following bounds apply

Kkrub > Kue > min IWirQaji)! + \W2T{Qar)\

It can clearly be seen that the bounds approached a specific value as the number
of basis elements increased. Again, this is as expected. This suggests that the true
optimal solution for this problem is Airue = 34.57 £ 0.02.

These examples illustrate the usefulness of these bounds.

105



iWSl + IW2TI

Figure 7.6: |Wi5'|+ | f o r

n = 5, truncation issue, example 2
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IWSI + IW2TI

Figure 7.7: IWiSI + \w2T1\ for n
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10, truncation issue, example 2



IWSI + IW2TI

Figure 7.8: |WKiaS +

for n = 15, truncation issue, example 2
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Figure 7.9: max |Wi5|+ \W2T\ and min |WiS| + \WZ2T\ for various n’s, truncation
issue, example 2
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7.6 Remarks

Using the result outlined in the previous sections the gap between the optimal solution
of the infinite problem, A£, and the solution obtained using the Akilov and Rubinov
algorithm can be measured. By plotting [x0—  against u>and observing how close
it is to alignment (all pass) a measure of the difference between it and the optimum
can be obtained.

The duality theory approach to obtain a lower bound and a measure of closeness to
optimality is applied to the |WIS||Q problem. This example was used to demonstrate
a possible evaluation of the cost of truncation. The analysis proposed here applies
equally well to the robust disturbance attenuation problem and the two disc problem
because the all pass property applies [19,20]. Note that these problems have not been
solved analytically. This provides a qualitative and quantitative analysis of the issue

of truncating H°°.
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Chapter 8

Conclusions

In this thesis, improvements were made on the Boyd-Barratt paradigm for feedback
controller design. An alternative numerical approach with a number of advantages was
adopted. Also, a qualitative and quantitative evaluation of the largest disadvantage
of the Boyd-Barratt paradigm, namely the required truncation of H°°, was given.

The thesis began by outlining the Boyd-Barratt paradigm for feedback controller
design. It was outlined how this approach combines the Youla parameterization with
convex optimization. A completely different numerical approach was adopted, but
otherwise their paradigm is accepted in its entirety.

It was shown how control problems can be recast as linear programs by use of
Youla parameterisation. It was shown how problems which are non-convex in the
controller become convex problems via use of the Youla parameter. However there is
no guarantee on the accuracy of results obtained from these finite linear programs.
There seems to be no reason to be optimistic that the controller produced by this
approach will be close to the true optimal controller. Also, there is the difficulty
of deciding how large a linear program to select, and how to choose the subset of
constraints to be retained. This suggested seeking a more sophisticated approach.

The new numerical scheme adopted involved using an algorithm due to Akilov
and Rubinov. This completely circumvented the need to compute derivatives or
subdifferentials, which can be a difficult task. Instead, certain linear functionals were
computed, and this is generally quite straightforward. The algorithm made use of

a linear equation solver and a linear program solver, which are standard numerical
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problems. This resulted in code which is easier to implement, much shorter and
more elegant than that required to compute complicated gradients. The coding of
the algorithm gave very promising computing times and it is felt that this justifies
the approach. The approach also has the attractive feature of giving bounds at each
iteration, which assist in convergence monitoring.

The Boyd-Barratt paradigm has the disadvantage that an infinite dimensional
Banach space must be truncated to a finite dimensional subspace prior to optimizing.
This thesis also applies certain primal-dual techniques from functional analysis to
study the implications of this truncation. Primal-dual theory is used to show that
the true optimal solution lies within the solution of two semi-infinite linear program-
ming problems, namely the dual problem with finitely many variables and the primal
problem with finitely many variables.

Also, results due to R. C. Buck have been used to show that nearness to alignment
gives a qualitative indication of nearness to optimality. A quantitative indication
has also been developed. The analysis proposed here applies equally well to the
robust disturbance attenuation problem and the two disc problem. The results were
illustrated with examples.

In conclusion, the use of the Akilov and Rubinov algorithm is an improvement
on the previous numerical approach used by Boyd-Barratt. In addition, the thesis
gave an effective analysis of the truncation to a finite dimensional subspace prior
to optimizing, which is the largest shortcoming of the Boyd-Barratt approach. The
thesis demonstrates how to obtain a qualitative and quantitative indication of the

cost of this truncation.
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