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A b stract

This thesis deals with the Boyd-Barratt paradigm  for feedback controller design. The 

Boyd-Barratt approach combines the Youla param eterization with convex optimiza

tion. In this thesis, their paradigm  is accepted in its entirety, but a completely 

different numerical approach is adopted. An algorithm  due to Akilov and Rubinov, 

which is in essence an abstract rendition of one of the famous algorithms of Remez, 

is used instead. This completely circumvents the  need to compute derivatives or sub

differentials, which can be a difficult task. Instead, certain linear functionals must 

be computed, and this is generally quite straightforward. An attractive feature of 

the approach is th a t the  code is much shorter and more elegant. The Boyd-Barratt 

paradigm  has the disadvantage th a t an infinite dimensional Banach space must be 

truncated to a finite dimensional subspace prior to optimizing. This thesis also applies 

certain primal-dual techniques from functional analysis to  study the implications of 

this truncation. Prim al-dual theory is used to  show th a t the  true  optim al solution 

lies within the solution of two semi-infinite linear programming problems, namely the 

dual problem with finitely many variables and the prim al problem with finitely many 

variables. Also, it is shown th a t the alignment property is closely related to the cost 

of truncation. These results provide an analysis of the  effect of truncation.
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Chapter 1

Introduction

The design of linear tim e-invariant (LTI) controllers for LTI plant models which meet 

given specifications is still a m ajor challenge for control theorists and practitioners.

In the single-input single-output (SISO) case this can usually be done very effec

tively by using various traditional techniques. These techniques include the root locus 

method, and m ethods based around Nyquist, Nichols and Bode plots. The design of 

controllers for m ulti-input m ulti-output (MIMO) systems is quite another m atter.

Analytical methods (such as LQG, H optim al controller design) use an objective 

functional which when minimized can be used to  find a controller. M ajor disadvan

tages of analytical techniques are the  lim ited specifications which can be handled, 

and the difficulty in choosing weights.

The use of param eter optimization techniques, to  determine a controller (which 

is dependent on one or more variable param eters) is one possible approach. A good 

controller will stabilise the  plant and meet certain performance specifications. Opti

mization methods can handle a much wider range of specifications. However there are 

serious difficulties with this approach because of the absence of convexity. Boyd and 

B arratt used the Youla param eterisation to  w rite specifications in a convex format. 

Through this technique their m ethod could deal with a wide range of specifications.

Unfortunately Boyd and B arra tt’s technique has two main disadvantages. The 

first is th a t it requires a huge software undertaking. The second is th a t a certain 

infinite dimensional vector space must be truncated  to  a finite dimensional subspace, 

in order to obtain a finite dimensional optim ization problem.
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This thesis is an effort to  improve on their work by tackling both  these issues. 

An alternative numerical approach is proposed. This approach will be shown to  

require simpler and more standard  software. The second disadvantage is analysed 

using functional analysis techniques. Specifically a qualitative and a quantitative 

evaluation of the truncation issue is presented.

Chapter 2 describes the  Boyd and B arratt paradigm , its range of applicability, 

and its advantages and disadvantages. Chapter 3 shows how several typical control 

system specifications can be cast as infinite linear programs. It discusses truncations 

of the  infinite linear programs. Chapter 4 describes in detail an algorithm due to 

Akilov and Rubinov. Its convergence, m athem atical properties and limitations are 

presented. Chapter 5 describes the  au thor’s im plem entation of the algorithm  as well 

as its performance and validation procedures adopted. C hapter 6 deals with the 

duality theory of linear programming. Bounds interrelating various infinite, semi

infinite and finite linear programs are established and discussed. Chapter 7 uses 

techniques from functional analysis to tackle the  prim ary shortcoming of the  Boyd 

and B arratt approach, namely the  truncation issue. A qualitative and quantitative 

assessment of this issue is developed.

Chapters 3, 5 and 7 contain the original contributions of the author, while most 

of the remainder is based on the  literature at large.
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C hapter 2 

The Boyd and B arratt Paradigm

This chapter deals with the various components of the Boyd and B arratt Paradigm  

[4,5,6]. The fundam ental concept of convexity is outlined. The essential contribution 

of Boyd and B arra tt over previous optim ization approaches is described. The breadth 

of applicability of the  approach is described.

2.1 O p tim iza tion  and C on vex ity

We begin with two definitions.

A real valued function F  is convex if, for all a £ (0,1)

F{axi  +  (1 — oi)x2) <  aF{x1) +  (1 — a)F(x2)

A set A  is convex if, for all a  £ (0,1)

&\, a2 £ A  =r* cxa-i "I- (1 — Qi)fl2 £ A

Convexity implies th a t a local minimum is a global minimum [22,23]. Non-convex 

problems may have a minimum (or minima) which is a local minimum, but is not a 

global minimum. There are m ethods (such as steepest descent) which are guaranteed 

to converge to  a local minimum [22]. Combining the fact th a t a local minimum is a

global minimum for a convex problem w ith the fact th a t there are methods to  find

a local minimum, it follows th a t a convex problem can be solved with the solution
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converging to a global minimum. This effectively means th a t convex problems can 

be reliably solved numerically, while (most) non-convex problems cannot.

2.2 D irect C ontroller  O p tim iza tio n

Direct controller optim ization techniques are m ethods to choose the controller, where 

the controller has some free param eters. For instance direct controller optim ization 

techniques could be used in the case of a PID controller w ith transfer function given

by
(y.'

I<(s) = av +  a ds +  -j- 

or perhaps a controller with a transfer function of

K(s)  =
O f ]  S  +  a 2

a 3;s2 +  a 4s 4 - or5

This method then uses numerical optim ization software to  seek the best values of the 

a ’s. The specifications are combined into an objective function to be minimized.

Direct controller optimization has the  advantage th a t it can directly handle a wide 

range of specifications. There are however a few difficulties with these techniques. 

The solution obtained in this way may be a local minimum as opposed to  a global 

minimum. It can be quite complicated to code such procedures. Also, in order for 

the procedure to be practical the controller m ust only have finitely many param eters.

Consider the system shown below in Figure 2.1. Here G(s) is the plant to be 

controlled, and K(s)  is the controller. The following relationships are obtained

/ \ei

e2 

2/i

v y* f

/  ( /  +  K G ) - 1

G(I + K G ) - 1 

G(I + K G )-1 

K G (I  + K G ) - 1

- ( /  +  K G ) - 1 K  

(I + G K ) - 1 

-G{I +  K G ) - 1 

K ( I  + G K ) - 1

It can clearly be seen th a t all closed loop transfer functions are non-linear in K.  

Also, all closed looop transfer functions are non-convex in K.

All controller designs must have closed loop stability as a constraint. The sta-
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Figure 2.1: A standard  feedback system

bility property is non-convex in K  and hence cannot always be solved effectively 

by numerical techniques. As well as the  stability  property it is also necessary to 

impose performance specifications. These performance specifications are generally 

non-convex in the controller K.  Thus, this is a serious problem with direct controller 

optimization.

2.3 C on vex ity  and th e  Y ou la  p a ra m eter isa tio n

Boyd and B arra tt’s paradigm  overcame this problem  of direct controller optim ization 

by transforming the problem. The reason the  transform ed problem is easier to  solve 

is because it is convex. The transform ation involved is called the  Youla param eteri

sation, and sometimes the  YBJ or YBJK param eterisation, after [28,29]

The Youla Param eterization is an elegant closed form expresssion for all LTI 

stabilizing controllers. Work done by Youla et al. gave the  following theorem. 

T h e o r e m  Let H 00 denote the set of all stable transfer functions. Let

G = D ~ 'N  = NrD~x
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w here N, D, N r, D r Ç. H°°.  T h e  above identity is a  stab le  coprim e factorisation for 

the plant. Let

K  = Y ~ lX  X ,  Y  € H°° 

be any one stabilizing controller. T h en , all stab ilizin g  controllers are given by

K  = ( Y  - Q N ) ~ \ X  + QD)

as Q ranges over H°°  □

A n a ltern ative  arid equivalent statem ent is as follows.

T h e o r e m  Let fl°° denote the set of all stab le transfer functions. Let

G = D ~ ' N  =  N tD ; '

where N, D, N r , Dr 6  H°°.  T h e  above identity is a  stab le  coprim e factorisation for 

the plant. T hen, all linear tim e-invariant stab ilisin g  controllers are given by

K  = Y ~ ' X

where

X  = U + QD  

Y  - V  -  Q N

as Q ranges over all H°°, and w here U, V  6  H°° ob ey

U N  +  V D  = I

T h e  equation U N  + V D  = 1 is known as the B ezout identity.

T h is theorem  m eans th a t if Q is viewed as the design variable, then stab ility  is 

au tom atically  guaranteed. A n other crucial observation here is th at the behaviour 

of the closed loop system  depends on Q in a  much sim pler w ay than it did on K.  

For exam ple, for th e system  shown above in F igure 1, the following relationships are 

obtained.

6



/ \ ei

e2 

2/i

V 2/2 /

/  d t{y - q n ) - A . tA ' +  g D ) x

ivr(F-giv) / - ^ ( x  +  gi)) 

Nr( Y - Q N ) -JVr (X  +  gZ))

I - D r( Y - Q N )  Dr(X  + QD)

It can clearly be seen th a t the closed loop transfer functions which were non-linear 

and non-convex in the controller are affine and convex in the  Youla param eter. The 

main consequence of this is th a t a wide range of interesting controller optimization 

problems can be reliably solved numerically, i.e. those of the  form:

Minimize a convex objective function subject to (i) closed loop stability, and (ii) 

convex constraints.

Some examples of the wide range of specifications which can be treated  by this 

approach are given in the next section.

2.4  C on vex  S p ecifica tion s

Any specification which can be cast in a form which is convex in Q (s), the Youla 

param eter, can in theory be solved numerically by the Boyd-Barratt approach. Hence 

any specification which is convex is a legitim ate specification as far as this approach 

is concerned.

Specifically, the following are convex constraints and hence can be used in the  

proposed method. Combinations of these specifications can also be treated  by this 

approach.

S e n s i t i v i t y  r e d u c t io n  : The specification

llw'i'IL <  ̂

is a convex constraint. Here, S'(s) is the  sensitivity function and reducing it 

results in reducing the  effect of plant uncertainty on the  overall closed loop 

transfer function as well as giving disturbance attenuation.
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C o m p le m e n ta ry  s e n s itiv ity  re d u c tio n  : The specification

I I V T I L  <  A

is also a convex constraint. Reducing the complementary sensitivity has the 

effect of reducing the effect of measurement noise on the  output, as well as 

improving stability robustnesss.

A s y m p t o t ic  t r a c k in g  a n d  r e g u la t io n  : Examples of asym ptotic tracking spec

ifications are as follows.

The step response from some command input to some regulated variable must 

converge to  one. This constraint can be expressed as a single linear equality 

constraint and is a convex constraint. Asym ptotic tracking specifications for 

multivariable systems can be handled as two or more linear equality constraints. 

Asymptotic regulation and asym ptotic decoupling are similar constraints. It 

may be required, for instance, th a t a regulated variable asymptotically reject 

constant inputs.

C lo s e d  lo o p  d e c o u p lin g  : It may be required th a t certain (usually off-diagonal)

entries of a closed loop transfer function are to  be zero, so th a t certain inputs 

have no effect on certain outputs. This constraint is convex.

O v e r s h o o t ,  u n d e r s h o o t  a n d  s e t t l in g  t im e  : It may be required to keep the

step response between specified limits. A specification of this form can be 

expressed as a collection of linear inequalities. These constraints are convex 

and therefore of the  desired form.

B o u n d s  o n  c lo s e d  lo o p  s ig n a l p e a k s  : It m ay be required th a t each regulated

variable be bounded by some given maximum. This requirement could arise 

from the requirement not to  sa tu rate  an actuator or sensor or exceed some 

internal variable force, torque or current limit. Again the constraint for this is 

a convex constraint.

8



R o b u s t  d is t u r b a n c e  a t t e n u a t io n  p r o b le m  : The robust disturbance attenua

tion problem is

¿nfJIIW'SI + IVrilU

This type of problem, while more difficult than  the  sensitivity reduction problem 

above can be tackled by convex optimization.

T w o  d is k  p r o b le m  : Another problem is where one wants to  limit or minimize

Again this a convex specification.

S le w  r a t e  l im it a t io n  : A slew rate  lim itation on the  step response can also be

cast as a convex constraint.

2.5 N o n -C o n v ex  S p ecifica tion s

Some well-known and desirable specifications in control are non-convex. Therefore, it 

is not possible using this approach to  directly optimize such specifications. A general 

rule of thumb is th a t specifications on open loop transfer functions cannot be handled 

using this approach.

S in g le - lo o p  g a in  m a r g in  a n d  p h a s e  m a r g in  : The phase margin and gain m ar

gin are not convex constraints. Therefore it is not possible using this approach 

to  directly optimize th e  gain or phase margin. Although it is not possible to  do 

so directly, it is possible to specify them  indirectly using M-circle specifications 

which are convex .

O p e n  lo o p  d e c o u p l in g  : The constraint th a t K  be a 2 X 2 diagonal m atrix is

non-convex in Q.

L o o p  i n t e g r i t y  : The constraint th a t K  be a stable transfer function itself, i.e.

K  £ H°°, is non-convex in Q.

9



C o n tro lle r  C o m p le x ity  : The constraint th a t K  be, for example, a controller

with fewer than seven poles is non-convex in Q. Also, for example, PID design 

cannot be dealt with using this approach.

It has been shown th a t there are a wide range of specifications which can be 

effectively treated by the approach of Boyd and B arratt. These specifications can be 

in both the tim e domain and the  frequency domain.

10



Chapter 3

R ecasting C ontrol P roblem s as 

Linear Program s

The Boyd-Barratt paradigm  requires th a t problems are expressed as convex specifica

tions. In this chapter some of the convex specifications listed in the previous chapter 

are reformulated. They are expressed as infinite linear programs. Truncation of these 

linear programs is considered.

3.1 In fin ite  L inear P rogram s

An infinite linear program is the problem of minimizing a linear cost function

subject to an infinite set of linear inequalities

Ax  <  b

where the vector x has infinitely many entries.

So in the case of an infinite linear program  there are infinitely m any variables and 

infinitely many constraints. So the m atrix A  is an oo X oo m atrix.

A semi-infinite linear program can arise by taking a finite num ber of variables or a 

finite number of constraints. If the infinite problem is truncated  so th a t only finitely

11



many variables (FMV) are taken the  problem becomes semi-infinite. It has infinitely 

many constraints but only finitely many variables. In such a case the A  m atrix is an 

oo X n  m atrix, where n  is the  finite number of variables selected.

If the infinite problem is truncated  so th a t only finitely many constraints (FMC) 

are taken the problem becomes semi-infinite. It has infinitely many variables but only 

finitely many constraints. In such a case the A m atrix is an m  X oo m atrix, where m  

is the finite number of constraints selected.

If either of the semi-infinite problems were truncated  further so th a t only a finite 

number of variables and constraints were taken, the resulting problem would be a 

finite linear program. In this case the A m atrix is an m  x n matrix.

3.2 11W\S11  ̂ S p ecifica tion

Consider the problem of minimizing the weighted sensitivity function,

A =  fly& . I I ^ I L  <3-»

This is the original form of the  problem and w hat follows in this subsection is several 

successive refomulations of this problem. First, the  Youla Param eterisation is used to 

reformulate this problem. The Youla param eterisation makes it possible to convert 

this problem into a form which is convex in Q , where Q is the  Youla param eter. It is 

necessary to be able to convert the specification into a form which is convex, so tha t 

the Boyd-Barratt paradigm can then be applied to  it. Before the work done by Youla 

et al. it would not have been possible to trea t this specification. This is because the 

specification is non-convex in the  controller K  bu t is convex in Q.

Using the Youla param eterisation as stated  in the  previous chapter the following 

expression is obtained for the  sensitivity function

S  = D(QN + V)
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Substituting the  above into (3.1) gives

A =  g m l  ||W D (Q N  +  V)\L = \\WDQN  +  W D V |L

Of course, minimizing the  weighted sensitivity is not the only problem and 

there are others of interest.

This problem is now of the  form: find a vector m  belonging to a subspace M  

which best approximates another given vector xq,

A =  ^tll™ -  *olL (3-2)rn€.M

Here, M  =  WDNH°°  and Xq =  —WDV.  This is the second reformulation of the

problem. Note th a t M  is an infinite dimensional subspace.

Next, it is shown this problem is an infinite linear program, in infinitely many

variables, with infinitely m any constraints. Now,

I I ^ I L  <  a 

-i= H |1 V iW V  +  K ) L , < A

-*=> |WDQN(jw)  +  WDV(jw)}  <  A V u  

-= ^  R e{e’’ (WDQN(jw)  +  WDV(jui))} < A » » , (

Let {zi,i £ 7} be a basis for H°°. This set has infinitely m any elements. Letting

Q = S  a&  sives
iei

£  a{Re {ejeW D N Zi(juj)} <  A - R e  {ejeWDV(juj)}  V w, 6 (3.3)
i ei

Clearly, the above constraints are linear in the  c^’s and there are infinitely many of 

them , one for each (cv, 8), where u> £ R, and 9 £ [0,27r). This is the th ird  formulation 

of the problem,

inf A subject to
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X > (JRe {ej0W D N x i ( j u ) }  < A -  Re {e j0W D V { j u ) }  V w ,0  (3.4) 
iel

So (3.4) is an infinite linear program , as expected.

T h is problem  is an infinite linear program . T h e  next reform ulation involves tru n

catin g  H°°. B y  tru n catin g  I I00, one obtains a sem i-infinite linear program . T h a t 

is, replace the infinite dim ensional space II°° by a  finite dim ensional subspace, as 

follows.

T ake Q to be

(=i
w here

T hen m  is given by

Vi =  - — i =  l,...,n
9 ( s + w c)«

m  = W D N Q  

so sub stitutin g for Q in the expression for m  gives

m = WDN otiDi - ^2 oiiWDNyi 
1=1 1

Now letting Xi =  WDNyi  = W D N  gives

n

So taking m  in this form and su b stitu tin g  into th e  original problem  gives,

II^s | L < a

<  A
oo

|W S | <  A Vw

'y' (*kXk xo
k=i

R e ^ e ^ W S i j u ) }  <  A V w , i



k= 1
So th e problem  now is

< A + |ejfl;c00'u))} Vw,S

^  atkRe |e3<?Zfc(jw)| < A +  /2e {ej9x0(ja>) j Vw,0

in f A su b ject to 
aefi"

^  a/c/ie j V ff2 fc(jw)} <  A +  Tie je-^iEofju;)} V « , i  (3.5)
*=1

as w and 0 range through 0 <  u> <  oo and 0 <  0 <  2tt respectively.

T h ere  are fin itely  m any variables A , a i , a 2,  , and th e above equation in

volves infin itely m any constraints. So this is a  sem i-infinite linear program .

Consider next taking only fin itely  m any constraints. T ak in g  only fin itely  m any 

constraints leads to a fin ite  linear program . T h is reform ulation gives,

inf A su b ject to 
a€Rn

Y^oc2R e { e 36ix j { ju i )} < \  + Re {e3°'x0(ju)i)} i =  1 , 2 ,  ,p  (3.6)
3=1

Each constraint, say  the i th, corresponds to a  certain u  and 0, nam ely (u>,',0,). 

Let bi — Re  | e jfl,x 0O'w«)} ant  ̂ a *'i =  -Re { e ^ ’ ajj^ 'w ,)}, so then eqn.(3.6) becom es

n
oijCiii <  A +  6,- i =  1 , 2 , ..... , p (3.7)

i=i

< a, a, > <  A -I- bi

N ote th a t this problem  is o f th e  traditional linear program m ing typ e. It is usually 

w ritten as

min cTx  sub ject to  A x  <  b

15



Here the A, b and c matrices are given by,

A =

R e { e 3e'x i ( ju j i ) }  Re  { e ^ a ^ C M ) }  . . .  Re [&’6lx n( j u 1)^  - 1  

R e ^ t - x ^ j u j p ) }  R e f e ^ X i i j u p ) }  . . .  Re  {e?6rxn{ ju v)}  - 1

(3.8)

w here p is the num ber o f constraints.

b =

x

1 Re^'xoijoji)}  ̂

Re {e}92 Xu(joj2)}

Re {e^xoijujp)}

=  ( a i a2 ... an 

'? -  ( 0 ... 0 0 1 )

(3.9)

(3.10)

(3.11)

N ote that A is a  p x  (n +  1) m atrix , b is a p x  1 m atrix , x  is a  (n +  1) X 1 m atrix  and 

c is a (n -f 1) x  .1. m atrix. T h e  m atrix A is generally  tall. B y  this it is m eant th a t it 

has more constraints than variables.

3.3 WŴ TŴ  S p ecifica tion

T h e  problem  o f m inim izing the w eighted com plem entary sensitiv ity  function is qu ite  

sim ilar to  the previous case. Hence, it is described here on ly very briefly. T h e  problem  

is the following.

As in the previous case this can be form ulated as an infinite linear program . Indeed,

I I ^ T I U  <  A 

Using the Y ou la  param eterisation gives

||H',JAr(-<3i> + tO|L<A

16



J2  aiRe{e?+W2NDzi( ju)}  <  A - R e  {ej*W2N U(ju)}  V w, $
iei

The problem is to minimize the  least upper bound of

Re {ej4,W2NU{ju)}  +  £  onRe {ej*W2N D Zi{juj)} V w, </> over y£ a izi E H°°
i£l i€l

This can be reduced to  a semi-infinite linear program by replacing the  infinite dimen

sional space H°° by a finite dimensional subspace. It can then be reduced to a finite 

linear program by taking only a finite number of constraints. The constraints for the 

semi-infinite problem are obtained as follows. Let

x02 = - W 2NU

and as in the previous case take Q to  be Q =  Ya- i aiyi{s ) where t/4- =  . So in

this case m  is given by

m = W2DNQ

so substituting for Q gives

m  =  W2D N  £  aiVi =  J2 oaW2D N yi
t=i ¿=1

Now letting Xi = WDNyi =  WDN  gives

n
a'Xii=1

So taking m  in this form and substituting into the original problem gives,

m  =
i= 1

min A sub iect to  

(XkRe {e^æ fc2(jw )} <  A + Re {ej4,x02(jio)} Vu>, <t>
k=l

Each individual constraint, say the  ith, corresponds to  a certain u> and <f>, namely 

In the case of the semi-infinite problem there will be infinitely many of these

17



constraints. K eeping only fin itely  m any constraints gives,

a kRe { ^ X k i O 'w j)} <  A + Re % -  1 , 2 , ...... ,p
1

3.4  |||W i5| +  iV^TlHoo S p ecifica tion

T h is  problem  is called the robust disturbance atten u atio n  problem . O nce again this 

problem  is an infinite linear program .

T h e  problem  at hand is

A - ^ I I M  +  lw i r i l L

A gain  using the fact that

S  =  D {Q N  +  V") and T  = N ( - Q D  +  U)

gives

A =  J n f ,  \\\WXD (Q N  +  V)\  +  |W2N ( - Q D  +  t/ )||L

=  ini_ HIWXD Q N  +  W , D V | +  | -  W 2N Q D  +  W 2/ W |||„

T his problem  is an infinite linear program , in infin itely m any variables, w ith  infinitely 

m any constraints. T o show this, note th a t

ll|wi5| +  |vr||L<A

«=► HIW XD { Q N  +  V)\  +  IW 7N ( - Q D  +  t f ) | I L  <  A 

IW iD Q N { jw )  +  WiDV{ jw) \  +  | -  W 2N Q D ( jw )  + W 2N U (jw ) \  \ < A V w 

<=> Re [e iB ( W xD Q N { j w ) +  W i D V i j w ) ) }  

+ R e { e ’* ( ~ W 2N Q D ( j w )  +  W 2N U ( jw ) ) }  <  A V u,6,<f>

18



Again, let {zi,i £ 1} be a basis for H°°. Letting

Q  =  Y,
¿e/

gives

<=> J 2  a iRe  { ¿ 6W xD N z i ( j u j )  -  Y ,  (*iRe {ej<t,W 2NDzi{juj)}  
iei «6/

<  A - R e  {e’*W2N U ( j u ) }  -  Re {ei0W xD V { j u ) )  V w , M

and this is an infinite linear program. This gives another but equivalent formulation 

of the problem,

in f A
aeR"

subject to

53 ctiRe {e?°W\DNZ{(jw )}  -  a{Re {ej*W2N D zi(ju )}  (3.12)
«€/ i€l

<  A - R e  { ¿ ' W i D V i j u ) }  -  Re {ej*W2NU(jo j)}  V w , 0 , <j>

So this is an infinite linear program, as expected. Truncating H°° changes it from an 

infinite linear program to a semi-infinite linear program as follows. First, note tha t

II \WxS\ + \Wt T\  | L < A

II \WxD ( Q N  + V)\ + \W2N ( - Q D  + U)\ I L  <  A 

II |mi - X i \  + \m2 -  x 2\ I L  <  A

where

m x e  W xD N Q  x 01 =  - W XD V  

m 2 e -  W2D N Q  x02 =  -  W 2N U

Next, truncate  H°°. T hat is, replace the infinite dimensional space H°° by a finite 

dimensional subspace, as follows Take Q to be Q =  ]C”=1 a iyi(s ) where yt =  .

19



T hen

L ettin g

gives

and

and letting

gives

Hence,

mi =  WxDN^T' atiyi =  Y  WiDNaiyi

„t-i
x{1 = W\DNyi  =  W iD N

m x =  Y1 aixi l
i=i

(s +  wc)n

m 2 =  - W 2D N  £  a iVi =  J 2 - W 2DNcciyi

_«-i
x i2 =  W2D N y { =  H/2Z)yV

m 2 =  Yl a»'I*2i'=i

(s +  wc)n

<  A

II \w,s\ + \w2T\ i l ^ a  
n 71

I E  y ;  a kx k2 — ^021
fc=l )t=l

«  IW 'xSijw)! +  \W2T ( ju ) \  < A V w  

«=► i?e { e ^ W .S C H }  +  Re {e>*W2T ( j u j }  < A

a **-*!i(iw ) “  * o i( ;w ) |  +  Re  | e^ ( X j  <*kXk2( j v )  ~  ®020’w ) ) |  <  A

4=» /2c|c,‘i +  ̂ e jeí* ^ afĉ *2(.̂ ‘')j

<  A +  Re {e i9x 0i(jw)}  +  Re  { ^ * * 02( jw )}  V u  ,0,<f>

<=> otkRe [e3°Xiki(j'w) +  eJ0xfc2(iw)}
fc=i

<  A +  /2e | c ^ x 0i(jCi;)}  +  /2e {e i 0x O2( iw )}  V o > ,0,<f>
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So the  problem now is

min A
a£Rn

subject to
n

akR e{eoexkl{ju) +  e3<t>xk2{ju))
k=0

<  A +  Re \eP9xQ1{ju)}  +  Re | e ^ x 02( i^ )}  V u  , 0, (f>

as uj, 6 and <f> range through O < u ; < o o , O < 0 < 2 7 r  and 0 < (j> < 2-tt

Again there are finitely many variables A, « 1 , 0 :2 , ........ , &n and the  above equation

involves infinitely m any constraints. So this is a semi-infinite linear program.

Taking only finitely many constraints leads to  a finite linear program.

min A subject to
aeRn

n

J2  a kR e{e39ixkl(jui) +  e^'x^C/w,-)}
k=0

< A +  Re {e30ix01(ju>i)} +  Re { e ^ a ^ C M ) }  i = 1 ,2 ,  , N

Each constraint, say the ith, corresponds to  a certain u>, 6 and <f>, namely (a;,', Oi,

So by letting

hi -  Re {e,9ix01(j(jji)} +  Re { e ^ x o 2(jw,-)}

and

dij = Re [e3e'xkl(jtOi) +  e, ^*fe2(ja;1-)}

the equation becomes

n

^  ' Qifcciij ^  A —J— fe* i 1 ,2 ,  iP
3=0

3.5 max{||Wi5||oo , HW^Hoo} S p ecifica tion

This two-disc specification is quite similar to  the previous case. This problem is the  

following,

A =  Qmfoom ax{||W 15'||0o ,  I I ^ U

21



A s in the previous cases this can be form ulated as an infinite linear program . Indeed,

||W1S'||00< A

« = *  Y , a i R e { e j0W ,D N z i { j u ) }  <  A -  R e [ e i0W xD V { j u j )  V w ,0  (3.13) 
«6/

and

l l ^ l l o o  <  A

^  J 2  ctiRe { e ^  -  W 2N D z i ( j u )}  <  A - R e  {ej*W2NU{ju j)}  V  w, <f> 
i£l

T h e problem  is to m inim ize

m ax {  a iKe { ei0W xD N zi{ ju >)} +  Re [ej0W xD V ( j u ) )  ,
Ue/

R e { j+ W zN U { ju } ) }  + Y / a iR e { e j ‘t,W 2N D z i ( j u ) } \  V o o r  <}> over ^  cv.-a;,- 6  H c
i€i J iei

T his can be reduced to a sem i-infinite linear program  by replacing th e infinite dim en

sional space H°°  by a  fin ite dim ensional subspace.

x n  = - \ V XD V  xq2 = - W 2N U

5 I_1
xn  =  W iD N y i  =  W XD N (s +  (Jjc)n

xi2 = WtDNyi = W2DN-
5* 1

(s -f Wc)n

and the sem i-infinite linear program  is

min A su b ject to  
a  e R "

J 2  (XkRz {e30ix ki ( M ) }  ^  A + Re  { e ,tf,'®0i ( M ) }  V w , i ,  <f>
k=l

and

a ^ e  { e ^ 'x ^ C M ) }  <  A +  Re  { e ^ S o a i M ) }  V u . f l ,  (¡>
k—\

2 2



Each individual constraint, say the ith, corresponds to a certain lo and either 6 or <f>, 

namely (a;,-, 0t or fa).

3.6 T im e D o m a in  S p ecifica tion

The approach of Boyd and B arratt can deal effectively with tim e domain specifica

tions, as well as frequency domain specifications. For the purposes of illustration the 

details for a tim e domain specification will be given in this section. The problem con

sidered below is to  minimize the  maximum weighted error between the  actual and the 

desired step response. Once again this problem is an infinite linear program. It is sig

nificant th a t the  present m ethod deals successsfully with tim e domain specifications 

as well as frequency domain specifications.

Thus consider the problem

A =  inf
QeHo

e (J% hdesiTed,)

=  inf sup eTt(h — hdesired)
QeH°° t

where the designer selects the  param eter r  and the  desired step response. Now the 

step response h(t) is given by

h(t) = L-l 1,
L s

where T  =  N ( —QD + U)

and

hdesiredî t) L

which leads to  the following

-l n-Td esired
S

for given Tdesired

A =  inf
Q£H°<

L-1
1

.s
(—NQD  +  NU — Tdesired)

A =  inf -—NQD  H— NU  — —Tdesired) 
s s s

eT< [ L - 1

This problem is of the form of finding a vector m  belonging to  subspace M  which
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best approxim ates the vector xq,

x = Ä l|m "  *o|l<

w here M  =  —D N H °°  is infinite dim ensional. T h is is a norm in th e space H°°.

T h is problem  is an infinite linear program , in infin itely m any variables, w ith  in

finitely m any constraints. Indeed,

eT\ h  -  /desired)|| <  A

e ( h -̂desired) <  A V  t > 0

max ( i - l- - N Q D  + - N U ) -  - T a m
i s  s s

<  A

Let {})i,i £ 7} be a basis for H°°. T h is set has infin itely m any elem ents.

,rt - - N Q D + - N U  -  - T desired)
s s  s

<  A V t > 0

L ettin g

gives

where

and

Q = ]L
iei

- A  <  eTt -  h 0(t) -  hdesiredit)^ <  A V t > 0

hi(t) = L -I — N D yi
s

h0(t) = —L -l - N U
LS

and this is linear in th e a ; ’s.

T h is leads to  another form ulation of th e problem ,

inf A su b ject toagii"
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oti | e Ti/ i ,( i ) | -  A <  eTt {h0{t) +  hdesired(t)} V t

and

-  {eT% (i)}  -  A <  eTt { - h0{t) -  hdesired(t)} V t (3.14)
ie i

So this is an infinite linear program, as expected.

Truncating H°° changes it from an infinite linear program  to  a semi-infinite linear 

program. T hat is, replace the  infinite dimensional space H°° by a finite dimensional 

subspace, as follows Take Q to be Q = aiVi(s) where yi =  . So the

problem becomes

inf A subject to  
aeRn

n

5 3  Oik | e r i /ifc(i)} -  A <  eTt {hQ(t) 4- hdesiTed(t)} and
k=l

- ± a k {eTthk(t)} -  A <  - e Tt {h0(t) + hdeaired(t)} V t > 0 (3.15)

iei

k=i

There are finitely many variables A ,a ! ,a 2,  , a n and the  above equation in-

vloves infinitely many constraints. So this is a semi-infinite linear program.

Taking only finitely m any constraints leads to a finite linear program.

inf A subject to 
aeRn

n
^  A  <  e  +  V d es ired (j'i ')^ \  a n d

k = 1

n
~~ Y l  ak { eTtihk(ti)} — A <  —ert% {ho(ti) +  ydesired(ti)}
h—\

Each constraint, say the  ith, corresponds to  a certain t, say t{. So by letting

bi = ertl {h0{ti) +  hdesired (U)} and 

o^-=  |eT%(i)} ¿ =  1,2, ,p

the inequalities become

5 3  aj aij <  A + b{ 
i=o
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^ ̂ dj &ij ̂  A
3 = 0

3 .7  D iscu ssio n

One possible approach to  controller design would be to  solve the  finite linear programs 

developed above. It would be necessary to have some restrictions on the size of the 

linear programming problems solved in order to  keep them  practical. The switch 

from an infinite linear program  to  a finite linear program  by (i) the use of a subspace 

of H°° and (ii) by having a limit on the number of frequency or tim e values means 

th a t the resulting linear programs have solutions which can be practically evaluated. 

By reducing the  problem to  a finite linear program in this way it becomes a problem 

which can be solved using known practical techniques.

It was shown how the problems could be truncated  to  finite linear programs. 

The above development suggests one possible approach to  solving these (and similar) 

problems. One could solve a single large finite linear program. The finite linear 

programs generated above always have a solution for A large enough. However there 

is no guarantee on the  accuracy of results obtained in this way. There seems to  be no 

reason to be optimistic th a t the  controller produced by this approach will be close to 

the true optimal controller. Also, there is the difficulty of deciding how large a linear 

program to select, and how to choose the subset of constraints to be retained. This 

suggests seeking a more sophisticated approach. Nonetheless, the details worked out 

above will be used later.
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C hapter 4 

T he A kilov and R ubinov  

A lgorithm

The Akilov and Rubinov algorithm  is described in detail. The proof of convergence 

is given. The m athem atical properties of the  algorithm are described. The algorithm 

has two lim itations which are explained. The first lim itation is settled in this chapter, 

while the second lim itation will be discussed in detail in later chapters.

4.1 S ta tem en t o f  th e  A lgorith m

We begin by defining some notation.

Let X  denote a normed linear space. Let M  denote a finite dimensional normed 

linear subspace, with the norm induced by the  norm on X . Let x 0 denote an element 

of X  th a t is not in M.  Let X 0 denote the  finite dimensional normed linear space 

spanned by M  and xq, with the norm  induced by the norm  on X.

In the Akilov and Rubinov algorithm  the  idea is to  approxim ate one function by 

another function. Thus, suppose th a t X  is a function space, i.e. a vector space of 

functions equipped with some norm.

The problem considered is th a t of finding a vector (i.e. a function) in M  which is 

closest to  some given function xn. T hat is,

¡i - nun\\m-x0\\771 GM
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The idea is to  approxim ate the given function xq as well as possible w ith a function 

m  from a subspace M . A function m  which gives the  minimum value pt, is called a 

function of best approximation for xQ and the  num ber fi is called the optim al error 

of approximation.

Note th a t a bounded linear functional is defined as a mapping

f : X ^ R

where

<  / ,  x >  is finite V x

and /  is linear.

The algorithm  for determining the function of best approximation consists of the 

successive solution of a number of auxiliary problems as follows.

S te p  1  ( in it ia l is a t io n )  Choose n linear functionals / 1?..... , f n such th a t

det \fi(xj)\ ^  0 i,j =  l,....,n (4.1)

Then an “interpolating function” m n G M  exists which is determined by

fi{mn - x 0) =  0 V i =  1 , ....., n (4.2)

This step gives rise to  a set of linear equations which when solved gives a first 

guess mn for the function. Let i = n.

S te p  2 ( w o r s t  c a s e  e r r o r )  Given rrii, find / ,+1 so th a t

Mi =  -  so)I =  IImi ~  x o \ \ , i = n ,n  + 1,... (4.3)

This amounts to  finding a linear functional which achieves the norm of m; — xa.

This means th a t a new constraint f i+1 is determined at the previous step and

is added to  the old constraints to  give a larger set of constraints. If the  norm  is 

a max norm, this step involves finding the  maximum of |m{ — xQ\.
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S te p  3 (a d d  c o n s t r a in t s  t o  l in e a r  p r o g r a m  a n d  s o lv e )  G iven/ i , ....., /*+i, solve

min max I f t i m — xn)| 
m e M k < i + 1 1  ̂ n

Let 1 denoting the solution and then

Ai+i =  min max | f k { m  -  x0)| =  max |/fc(mi+1 -  x0)| (4.4)
m £ M  k < i+ 1

This step can be cast as a finite linear program. The linear program  is then 

solved to  give the  new value for the  approxim ating function, m i+1.

S te p  4 (c h e c k )  If — Ai+i <  e stop, otherwise, increment i and go to step 2.

This step checks to see if the approxim ating function is close enough to the  

actual function and if so it stops and if not it continues.

The way th a t this algorithm  works is th a t from each n r i j it works out a f j  and from 

this f j  it obtains the  next rrij+1 £ M , and so on. If this m J+1 £ M  is close enough 

to the desired Xo the program  stops and if it is not close enough then the next f j +\ 

must be evaluated. The algorithm  produces a sequence of finite linear programs. At 

each iteration, one extra constraint is added to  the  linear program.

4.2 P r o o f o f  C on vergence

W hat follows is the proof th a t the algorithm  converges, giving a function of best 

approximation, m, corresponding to  the minimum value of //.

Recall th a t the subproblem of Step 2 was as follows.

H  =  -  x 0)\ =  \\rrii —  x0||

Hence, on each iteration Step 2 produces a new additional linear functional obeying 

the above equation. Obviously,



as otherwise

¡¡mi -  £0j| =  0 = >  mi  =  = >  s 0 £ M

L e m m a  4 .1  An <  An+i <  An+2 < . . .

P r o o f

C learly,

m a x \ fk (m  -  a s 0 ) |  <  m ax \ fk(m  -  x 0)|«<1 K<i-f 1

min max |f k{m  -  x 0)| < min max |f k(m  -  s 0)|
m€M k<t m€M

Recall th at Step 3 was

Ai+i =  min m ax | A im  — x 0)

giving

Ai =  min m ax |/*(m  -  x 0)| <  m ax |/fc(mt+1 -  x 0)| =  Ai+,
meM k<i k<t+1

So (eqn. 4.6) implies th at

A; <  Ai+1

Hence the A,’s form a non-decreasing sequence.

L e m m a  4 .2  Am <  ft <

Proof

Now

Ai+i =  min m ax \ f k{m -  x a) m € M  Ar<t+1

Define,

Since

(m -  ®0)||i+1 =  m ax  \ fk(m  ~  s 0)|

m ax |fk {m  — x 0)| <  m ax |/jt{m — x 0)| =  11rr?. — x 0|| V  m  6  Mfc<t+l all}

it is clear th at

A ,■ < (i

N ext, it  is shown th at // <  Since



and

H i =  ||m; -  Soil

then

/x <  m  (4.8)

So com bining (4.7) and (4.8) gives

A m  ^  ft  ^  P-m

as claim ed. O

Lemma 4.3 ||x||p+1 is a norm, where p denotes the iteration number.

Pi'oof

B y  definition

I M U l  =  ™ +X, \ fk(X)\

It, must be shown that

0) I M U  =  M I M U  

00 ll* +  » IU i ^  I M L i  + IM U i

(iii) x  =  0 <=► ||x||p+1 =  0

B y definition

kllp+ i =  m ax \fk{x)\

M I P+i =  \fk(ax)\

\a x \\P+i =  l°/*(*)l

since fk  is a  linear functional

=* I M Ip + i =  m ax \ a \ \ f k{x)\

M I P+i =  M  m ax \ f k(x)\

=> ||a*IUi =  M  lFllP+i
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This proves (i).

Using th e  definition again gives

II* + J/IUi = max l/fc(* +  V)I

which from tlie linearity property  of linear functionals gives

II* + V\\p+i =  If k ( x ) + f M I

which from  the triangle inequality gives,

=► II® + y||p+i < max (!/*(*)| + |/*(y)|)

=* ||* +  V||p+1 <  max |/b(*)| +  max \ f k(y)\

=*• IN +  J/llp+1 ̂  I N U  +  iMlp+i

proving (ii). N ext it will be  shown th at x  =  0 = >  ||x ||p+1 =  0. B y  definition w ith 

x = 0,

l l * I U i=  II°IIp+i =

since each f k is linear,

=*• IIOIU, =  max |0|

^  ll l̂lp+1 =  0

as required. N ext consider the converse of the above, ||x ||p+1 =  0 = >  x =  0. Step  1 

states th at

det |/i(xj)| ^  0 i , j  =  1 , ....n

and th at

f i ( m n - x o) = 0 V i =  1 , ....., n
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These facts imply tha t there exists ct i , . . . ,  orn such th a t

fn (*1) ■ ■ • f n (*«) j i/ \ / \ f n  (*o)

y I Mjji (®j) —  fi (®o) * —  i> ***•>
3=1

n

and since each /,• is linear,

fi ( y ] oi jXj J — fi  (a’o) i — 1,
U=1

= >  f i  a 3X i  -  * o j  =  0  i  =  1, 

Suppose now th a t ||®||p+1 =  0. Then by definition

n (4.9)

m ax  I/*(as)| =  0
K < p - f  1

IA(*)I = 1  V 1 =

■ Mx) = • v 1 =  1 , n

(4.10)

(4.11)

Since x £ Xo, and since Xu is a  finite dimensional normed linear space spanned by 

x0, x i , x 2,  we may write

n
x = —bx0 +  53  °iXi f°r some b, C l, , Cn £ H

i = 1

Rewriting and letting c, =  ba; — a,- gives,

x — —bx0 +  53  (^a ‘ — a*) x i (4.12)
t=i

and from equation (4.11)

fk ~bx0 +  5 3  (6 a> ~~ a«‘) x i ) =  0 ^  k = I ,  , n (4.13)
i=i
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Now using (4.9), gives

H i ( 53 ai xi  -  ] =  0 i = 1,
U=i

n

1=1

\ / \ 
ai M

/ \ °n )
but this contradicts the fact th a t det |/ ,(x j) | ^  0 unless (rzi, an) =  0. Hence,

= >  Ci =  boii

and so substituting into (4.12) givas

x =  — b ^x0 — 5 3  aix^j f°r some 6, c j ,  , Cn € R

which when substituted into eqn. (4.13) implies

/*(*) =  0 V k

Since x is here any element of spari{x0,x i ,  . ..,x n} then /*  — 0 contradicting eqn. (4.5)

unless x =  0. So ||x ||p+i =  0 x =  0, as required □

It has been shown th a t a t each iteration \ m < // <  ¡im and it will now be shown

that these bounds converge to the optim al solution.

L em m a  4.4 The algorithm produces a subsequence rn:t £ M  for which fif. —> fi

and Atj —> A.

Proof

From the properties of norms on finite dimensional spaces, it is known th a t

3 k >  0 such th a t ||x|| <  &[|x||p+i V x € X 0
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Now,

Hi =  ||m t- -  x0||

so

=> /¿i < k  ||m,- -  x 0||

But

p+i

Hi <  k max | fkirrii — Xo)|  i >  p
k < p+1

A =  min max \fk{m -  x0)|m6M k< i

Using Lemma 4.2

=> m  < &A,-

Mi <  k}i (4.14)

and hence /i; is bounded. Since A"0 is finite dimensional the sequence must have a 

convergent subsequence mr

It can also be shown th a t m,- is bounded. Indeed, using the triangle inequality

But,

and so

|mt || <  ||m* -  x0|| +  ||x0||

Hi =  ||m,- -  x0||

|™;|| <  Hi +  ||x0||

which from equation (4.14) gives,

||m*|| <  kfi + Hxoll

Again the sequence m,- must therefore have a convergent subsequence m,v. 

Using these subsequences,

/*•> =  |/«>+i (mtj ~  * o ) | =  || -  *o
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=> Hij < rnpx | fk (m i} -  *o) I 

=> ¡H> < max | a (  mi}^  -  ar0) | +  m ax | f k (mi]+l -  m .J  |

=> S  ̂ *>+1 +  ||m ij+i —  m *'j |
since m.; is a Cauchy sequence,

Mij ̂  ̂ ij+1 +  c

From equations (4.7), (4.8), and (4.15),

Afj ^  M — M«J — "̂ 4J+1 ^

and since is a  Cauchy sequence, we have

c —» 0 as j  —> oo

giving

Â . -> /i A^ <  h (4.16)

fii, —> ft n <  ms (4.17)

which completes the proof □

4.3 P ro p er tie s  o f  th e  A k ilov  and R u b in ov  A lg o 

rith m

This section describes certain properties of the  algorithm.

Convergence

• The algorithm is guaranteed to  converge. It converges to a global optimum.

• The A,-’s converge to the optimal value /.i from below. The Â ’s form a  non

decreasing monotonic sequence.
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• The s converge to  h from above. However the  convergence is not necessarily 

in a monotonic fashion. A subsequence of the /V s converge to  H-

• The A;’s and s converge towards some final answer h■ At no stage do A; and 

Hi cross over each other. So at all stages A,- <  Hii and equality holds if and only 

if rrii is exactly the optim al solution. This im portant property of the Akilov and 

Rubinov algorithm means th a t at each stage an upper and lower bound on h is 

obtained. In practice th is is very useful because it means th a t at each iteration 

one can see how close one is to  the  optimal answer, //.

Increasing n

• If the  proposed algorithm is executed an upper and lower bound will be obtained

for each iteration and hence at term ination. The optim al h lies within these 

bounds. Suppose now th a t the  number of term s in the subspace of H<*, spanned 

by Xi is increased by increasing n then the new range can not be further from 

the true optimal solution. The interval in which h lies may have a larger upper 

limit for a larger n, but this is not in contradiction w ith the algorithm provided 

there is still a range in which h may lie and not do worse for a larger n.

• Having said the above, it is expected th a t for most cases th a t increasing the 

subspace of Ha0 spanned by X{ it should give a range containing h which is in 

fact closer to the optim al solution. It can never do worse.

4 .4  A p p lica b ility  to  B oyd  and B arra tt

The Akilov and Rubinov algorithm  as stated previously does provide guarantees. 

Firstly, it is guaranteed to  converge. However, there are two requirements needed 

for application of the algorithm. It is required th a t (i) the  subspace X 0 be finite 

dimensional and th a t (ii) the  problem can be expressed as a norm. In what follows 

the norm restriction will be treated . As stated, it is necessary for the algorithm th a t 

specifications can be w ritten as a norm. Consider the robust disturbance attenuation 

problem,

inflH^^I +  I ^ T H L  
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Define
/ \ Ml

\ U 2 i
=  I I M  +  M I L  =  sup M  +  M

jw
0 0 X 0 0

It is claimed th a t, this is a norm in the space T  =  II°° x H°°. It is a straightforward 

m atter to show th a t the space T =  H°° x  H°° is a vector space. Indeed, the  direct 

sum of two vector spaces is a vector space. It is necessary to  show that

«1

u2
0 0 X 0 0

is indeed a norm. In order to prove this the following must be shown

( i )

tti

«2
> 0

ooxoo

(in)

(ii)
(
U1

y U2
= 0 if and only if u =  0

0 0 X 0 0

\ U 2 J
—  c

o g X o o
« 2  /

where c is some scalar

0 0 X 0 0

(iv) I|u +  H l o o x o o  <  I M W x o o  +  ||t>||oox<

where u — (mi,m2) and v =  (^1 ,^ 2) are elements of the  space T  =  H°° x / / c 

Now,

Ml

m2 y

\
=  |||ttl| +  |tt2|||00=sup|tt1| +  |t*2| 

jR
00x00

but both

and so the sum

Hence,

|uj |  >  0 and |t/2 1 >  0 V ju) E j R

¡«i| +  M  > 0

sup |ifi| +  I M21 >  0 
jR
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Since the suprem um  over a  set o f non-negative real values is necessarily  non-negative,

||m ||ooXoo ̂  0

as required.

N ext, consider property (ii) above. L ettin g  Uj =  0 and u2 =  0 in IMIooxoo =  0 the 

follow ing is obtained

=  l l l ° l  +  |0| | L  =  SUP f ° l  +  l ° l  =  supO =  0
j R  j R

0OXOO

Conversely, letting =  0 gives th e  following,

( \ «1 \ =  0
K U2 / 0 0 X 0 0

= H I M  +  M I L = o

= >  sup |«i| -f |u2| =  0 
jR

==> U] =  0 and U\ =  0 

N ext consider (iii). L ettin g  u  =  (tt| ,ti2) gives

11C W 11oo X oo  =  lllcuil +  |cu2||L

= IMM + |c||«a||L

H IM K M  +  M I L  

=  !cl I IM  +  M IL ,

“  lcl ll̂ ||ooXoo

Finally, consider (iv), which is

||i.f -(- "yllooxoj, ^  11^11ooXoo 4" | |v |U x o o
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Now,

llU +  HlooXoo =  lllUl +  Ul| +  lu2 +  Vallloo =  sup |«1 +  «i| +  \u2 + v 2\
j R

Using the triangle inequality for complex numbers

<  sup |u i| +  I Vi I +  |u2| +  |u2| 
j R

< sup |ux| +  \u2\ +  sup |ui| +  |u2| 
j R  j R

—  | | m | | o o X O O  “ H  l l ^ l l o o x o o

since the sum of the suprem a of two parts separately is greater than  the supremum 

of the sum of the two parts at once. Thus, the desired expression is obtained,

| | m  “ I”  ^ | | o o X o o  —  | | ^ | | o o X c o  "4" | | ^ | | o o X o o

Thus it has been shown th a t HuHooxoo is indeed a norm. It has therefore been shown 

th a t the robust disturbance attenuation problem can be expressed as a norm. It could 

similarly be shown for the  two-disc problem.

4.5 L im ita tion s o f  th e  A lg o r ith m

The algorithm suffers from two im portant restrictions

Firstly, it is necessary th a t the  specifications can be w ritten in the form of a norm. 

It was shown th a t the specifications could be w ritten  in the  form of linear constraints. 

This is enough to a ttem pt to  solve the  problem as a large finite linear program, but 

as was stated previously there are no guarantees about the solution obtained in this 

way. In order to  use the  Akilov and Rubinov approach, which does provide some 

guarantees it is necessary to  format the  specifications as norms. Thus it is necessary 

th a t it be shown th a t | | m | | o o x o o ,  etc are in fact norms.

Secondly, in order to  apply the Akilov and Rubinov algorithm  it is necessary 

th a t H°° be truncated. The algorithm gives no indication of how far the  truncated 

solution is from the  true optimum. For example, take the  ||Wr<S,||00 specification and
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let M denote the finite dim ensional subspace of H°° th a t  is used in the sem i-infinite 

linear program . L ettin g

and

then since M is a subspace o f H 00

Aqo <  AM

An im portant issue is the gap  between A^ and Am . How much does th e  truncation 

cost? Sim ilar rem arks ap p ly  to  the other specifications.

This is an issue which will be returned to in later chapters.

4.6  C om m en ts

In this chapter a detailed description was given of the A k ilo v  and R ubinov algorithm . 

A  proof o f its convergence was given. T h e  properties o f the algorithm  were then 

described. F in ally  som e restrictions and lim itations of th e  algorithm  were given. It 

was established that the norm property applies to the robust disturbance attenuation  

problem , as required by th e algorithm . T h e  effects o f th e  la tter lim itation will be 

analysed below.
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Chapter 5 

Software D evelopm ent and  

E xperience

In this chapter, the  choice of the Akilov and Rubinov algorithm  within the  context 

of optimal robust controller design is explained. The algorithm  as described in the 

previous chapters has been coded in M atlab 5.2 for the following problems.

I I ^ I L  <  a

W iT W ^  <  A

ll |w ,s | +  |w 2r | | | „  <  a

n W I M L J W V T U ^ A

A =  infQeJ/“ eTt(h d̂esî’red) I

This chapter discusses the au thor’s im plem entation of these specifications. How the 

software was validated is described.

5.1 W h y use th e  A k ilov  and  R u b in ov  A lgorithm ?

The optimization approach of Boyd and B arra tt can handle a wide range of speci

fications. They used the  Youla param eterisation to  write specifications in a convex 

format, and then used param eter optim ization techniques. This thesis proposes us-
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ing instead an algorithm by Akilov and Rubinov which solves convex problems. The

reasons for this choice is outlined here by giving some of the  advantages of the  Akilov

and Rubinov algorithm.

C om p atib ility  The proposed m ethod retains the  advantages of the  Boyd-Barratt 

approach. Thus, a wide range of specifications can be treated , and convergence 

to a global optimum is guaranteed.

B ound s The algorithm has the  attractive property th a t it gives a lower and an upper 

bound at each iteration.

C onvergence M on itorin g  Using the  upper and lower bounds mentioned above it 

is possible to  see how quickly the algorithm is converging. It also makes it 

easier to decide when to stop, i.e. to decide when all specifications are met to a 

sufficiently high level. This is less than  obvious with descent methods.

Speed It is faster because the  code is shorter.

Standard Sub-problem s The algorithm requires a linear equation solver and a 

linear program solver, which are standard numerical problems.

C om pu tion al E ase It has the advantage over differential descent methods th a t it 

eliminates the need to  compute complicated gradients (derivatives, descent di

rections, etc.). Instead, it requires certain linear functionals which are much 

easier to determine.

5.2 T h e A lg o r ith m ’s P erform an ce

This section contains data obtained from the au thor’s coding of this approach.

As an example, consider the  following simple model of a servo,

c _  1

s(s +  0.01)

Consider the following specification,

I I M  +  IW ^ IIL  <  A 
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where
W i =  o 5 t( 5 +  3 0 ) 2

(s +  1)2

Wi =  i k ± l l
(s +  30)2

The results obtained are given in Table 5.1. Graphs of this da ta  are given in Fig

ures 5.1 to 5.5.
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Case of n =  3
e A* A iterations flops

0.01 0.20117 0.19486 10 288443
0.001 0.19795 0.19744 15 1184685
0.0001 0.19784 0.19775 20 3476658
le-005 0.1978 0.19779 25 8485807

For case of n =  4
e A iterations flops

0.01 0.10275 0.095658 12 8999276
0.001 0.098425 0.097436 17 10454698

0.0001 0.097737 0.097685 22 13937398
le-005 0.097709 0.097701 24 18696825

Case of n =  5
e A iterations flops

0.01 0.070089 0.06208 14 19504019
0.001 0.066318 0.06556 20 21960987
0.0001 0.065674 0.065617 24 26596113
le-005 0.065653 0.065643 30 37043487

Case of n =  6
e A iterations flops

0.01 0.069226 0.061167 16 38340366
0.001 0.06421 0.063216 21 41570336

0.0001 0.063721 0.063643 27 49425768
le-005 0.063654 0.063648 31 62665109

Case of n =  7
e A iterations flops

0.01 0.067056 0.060693 19 65017302
0.001 0.063971 0.062999 24 70334913

0.0001 0.063472 0.063422 32 85386242
le-005 0.063439 0.063432 37 111594020

Case of n =  8
e A iterations flops

0.01 0.069996 0.060533 20 114502413
0.001 0.063961 0.063032 28 124217802

0.0001 0.063395 0.06331 35 146004155
le-005 0.063338 0.063329 42 189812870

Table 5.1: Results for the robust disturbance attenuation problem applied to  a servo 
motor.
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Using the same model and weighting functions, results were also obtained for the 

two-disc problem,

m a x U l i y . S I L J W V T I U

The results obtained are given in Table 5.2. Graphs of this data  are given in 

Figures 5.6 to  5.9.
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Figure 5.1: fi and  A values vs. iteration  num ber for e =  0.001 and n  -  4 for RDAP
example
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Figure 5.2: fi and A values vs. n, e =  0.001 for RDAP example
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Figure 5.3: flops vs. n , e =  0.001 for RDAP example
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Figure 5.5: flops vs. n =  4 for RDAP exam ple
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Case of n =  3
e I1 A iterations flops

0.01 0.18985 0.18645 13 199028361
0.001 0.18809 0.18737 15 199812504
0.0001 0.18768 0.18763 20 201997225
le-005 0.18765 0.18764 23 205639596

Case of n =  4
e V- A iterations flops

0.01 0.091027 0.084775 12 206036193
0.001 0.089441 0.088596 15 206852388

0.0001 0.088972 0.088879 19 208693539
le-005 0.088932 0.088925 24 212935877

Case of n =  5
e A iterations flops

0.01 0.061263 0.056445 14 213640368
0.001 0.060165 0.059226 18 215278072

0.0001 0.059531 0.059475 23 219151704
le-005 0.059496 0.059491 28 227654033

Case of n =  6
e A iterations flops

0.01 0.064125 0.05442 17 229134925
0.001 0.058069 0.057255 23 233458051

0.0001 0.05774 0.057671 28 242337686
le-005 0.057713 0.057708 33 259183073

Case of n =  7
e I1 A iterations flops

0.01 0.061914 0.05544 19 261427005
0.001 0.057855 0.057128 24 266573234

0.0001 0.057523 0.057438 30 278277863
le-005 0.057472 0.057469 37 304953375

Case of n =  8
e A iterations flops

0.01 0.06444 0.054938 19 307313600
0.001 0.05777 0.056787 27 315560404

0.0001 0.057445 0.057364 33 332771686
le-005 0.05738 0.057375 41 372040579

Table 5.2: Results for the two-disc problem applied to  a servo motor.
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The paradigm  was also tested on the tim e domain specification

A =  inf
QtHx 6 (h d̂esired)

The results obtained are given in Table 5.3. Graphs of this data  are given in Fig

ures 5.10 to 5.12.
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Figure 5.6: fJ, and A values vs. itera tion  num ber for e -  0.001 and n  — 4 for Two 

Disc example
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Figure 5.7: fi and A values vs. n, e =  0.001 for Two Disc example
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Figure 5.8: flops vs. n, e =  0.001 for Two Disc example
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Figure 5.9: logw (f>op°) vs. n, c =  0.001 for Two Disc example
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Case of n =  3
e A iterations flops

0.01 0.014803 0.014803 12 395713619
0.001 0.014803 0.014803 12 396227045

0.0001 0.014803 0.014803 12 396740471
le-005 0.014803 0.014803 12 397253897

Case of n =  4
e A iterations flops

0.01 0.014803 0.014803 12 397767323
0.001 0.014803 0.014803 12 398280749

0.0001 0.014803 0.014803 12 398794175
le-005 0.014803 0.014803 12 399307601

Case of n =  5
e A iterations flops

0.01 0.014803 0.014803 12 399821027
0.001 0.014803 0.014803 12 400334453

0.0001 0.014803 0.014803 12 400847879
le-005 0.014803 0.014803 12 401361305

Case of n =  6
e A iterations flops

0.01 0.014803 0.014803 12 401874731
0.001 0.014803 0.014803 12 402388157

0.0001 0.014803 0.014803 12 402901583
le-005 0.014803 0.014803 12 403415009

Case of n =  7
e I1 A iterations flops

0.01 0.014803 0.014803 12 403928435
0.001 0.014803 0.014803 12 404441861

0.0001 0.014803 0.014803 12 404955287
le-005 0.014803 0.014803 12 405468713

Case of n =  8
e V- A iterations flops

0.01 0.014803 0.014803 12 405982139
0.001 0.014803 0.014803 12 406495565

0.0001 0.014803 0.014803 12 407008991
le-005 0.014803 0.014803 12 407522417

Table 5.3: Results for the  tim e domain problem applied to  a servo motor.
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The algorithm  was applied to  the  specification

IIIw . s h l  < a

For this problem there are known analytical solutions. This is useful for the  purposes 

of software validation. W ith

a =  “ s  +  3

and

Wx =

—s +  4 

5 +  12
5 +  1

the optim al solution is 26.25. The results obtained are given in Table 5.4. A plot of 

this data  is given in Figure 5.13.
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Figure 5.10: and A values vs. iteration  num ber for e =  0.001 for tim e response
example
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Figure 5.11: Desired step response for tim e response example
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Figure 5.12: A ctual step response for tim e response exam ple
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Case of n =  3
e /* A iterations flops
2 41.6243 39.7263 8 6371788

1.5 40.4912 40.0502 9 6617334
1 40.4912 40.0502 9 6862876

0.5 40.4912 40.0502 9 7108422

Case of n =  4
e A iterations flops
2 35.9766 35.1194 12 7833520

1.5 35.9766 35.1194 12 8558622
1 35.9766 35.1194 12 9283720

0.5 35.5709 35.3187 14 10584521

Table 5.4: Results for th e  weighted sensitivity function specification.
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5.3 Softw are V alid ation

From the results obtained for the various examples given in the previous section it 

will be shown here th a t the  coded algorithm did in fact display properties given in 

the previous chapter.

C onvergence verification

• Looking at th e  plots of the tabulated  da ta  it can clearly be seen th a t the 

A/s converge to  the  optimal value of ¡x from below. This is shown for various 

example problems as seen in Figures 5.1, 5.6, 5.10 and 5.13. It can also been 

seen from these plots th a t the A/s form a non-decreasing monotonic sequence.

• It can also be seen from these plots th a t the  ^¿’s converge to /j, from above. 

This convergence to  the  optim al answer is not necessarily monotonic. In the 

tim e response example (Figure 5.10) and the  ||W.S'||0O example (Figure 5.13) 

Hi decreases w ith each iteration, but in the  robust disturbance attenuation 

problem (Figure 5.1) and the two-disc problem (Figure 5.6) Hi is n° t monotonic 

decreasing.

• In all the examples with plots of the  A/s and ¡i% s against iteration num ber it can

be seen th a t the  algorithm converges, as required. At no stage do they  cross 

over each other. So at all stages At- <  Hi-, and equality would hold if and only if 

the exact optim al solution is obtained.

Speed  o f convergence

• It must be said th a t from a practical point of view the algorithm  did in fact 

converge very quickly. In fact, in all the  examples given, convergence needed 

less th an  two minutes. It can be seen from the  tables th a t the number of flops 

was increasing, bu t still a very short tim e was required.

Increasing n

• It can be seen from the example results in the tables and plots th a t the algorithm

behaves as expected for varying n.
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•  Looking at the robust disturbance attenuation problem (Figure 5.2) and the 

two-disc problem (Figure 5.7) it is clear th a t for different values of n the bounds

do not contradict. If for a particular value of n a range of values is found which

contains the best approxim ation solution then if we increase n we should find

a range which is no further from the optimal solution. The interval in which fi 

lies may have a larger upper limit for a larger n, bu t th is is not in contradiction 

with the algorithm provided there is still a range in which ¡j, may lie and not do 

worse for a larger n.

A n aly tica l exam ple

• The algorithm was applied to  the specification

llw.'S'IL <  a

and the results are given in Table 4. This is an example with a known analytical 

solution.

• It can clearly be seen from the  table values for increasing n th a t the algorithm

is moving closer to the  known optim um  of 26.25. By increasing the  number of 

terms n in the  expression for m  the obtained solution is moving closer to the 

known solution.

• It can also be seen from the table th a t by decreasing the allowed difference e for 

term ination in step 4 (and hence possibly increasing th e  number of iterations 

before reaching the term ination condition) it is seen th a t th e  solution approaches 

the known analytical solution.

• Although not shown here in the  table it was seen th a t by an effective choice of

poles for m  £ M, the  algorithm  achieved a value close to  the  optimal solution. 

By an effective choice it is m eant th a t the  poles are selected at the locations of 

the known solution. Any alternative choice of poles did not give an improved 

result.
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5.4 A n o th er  E xam p le

This additional RDAP example has been included in order to dem onstrate th a t rea

sonable controllers are obtained from the  software.

Specifically, consider finding the controller which minimizes

inf II |W i S'| +  |W2T |

where, as usual,

1 +L*  1 + L

L is the loop gain, and W\ and W2 are weighting functions. The minimization is over 

all feedback controllers which stabilize the closed loop system. This problem is again 

an instance of the  robust disturbance a ttenuation problem (RDAP). The plant is

G =  \  sz

and the weights are

^ = (1 0 s + 1 >-
100(5 +  I )2’ 100(s +  l ) 2

Applying the algorithm to it yields the  controller

_ 0.591 Is3 +  0.5556s2 +  0.5734s +  0.1147 
'  ”  0.114753 +  0.5734s2 +  0.55565 +  0.5911 

+  °-3489 +  0.8242*)(s +  0.3489 -  0.8242i)(.s +  0.2422) 
-  5 - 1 5 4 9 (5 +  0.4355 +  1.0290i)(5 +  0.4355 -  1.0290i)(s +  4.1289)

The corresponding |S'(jcj)| and \T(juj)\ are shown in Figure 5.14, while th e  loop gain’s 

Bode diagrams are shown in Figure 5.15. From a robust control perspective, this is 

a good design. It is an intriguing design from a classical loop shaping perspective.
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5.5 C o m p u ta tion a l E x p er ien ce

The following are some items of advice on how to  implement a coding of the  algorithm, 

derived from experience.

Choice of a ’s

The first item  is a likely pitfall. At each iteration the  algorithm finds a new 

set of a ’s. The a ’s are obtained from the  solution of the linear constraints 

(except for the first iteration in which case the  a ’s used are those obtained from 

the initialisation step). The a ’s are used in the  calculation of bo th  Xp and fj,p. 

The Ap and ¡ip values for each iteration are the  upper and lower bounds which 

converge to  the  optimal solution and which are used to  provide term ination of 

the algorithm. The program is term inated once the upper and lower bounds 

are within a preset distance of each other. Once this condition has been met a 

solution has been obtained. The problem lies in the  non-monotonic nature of 

the fiv values. While a subsequence of the  nP values converges to the  optim al 

answer, /x, the  final \iv which was used in term ination may not have been the 

minimum fip to  date. The minimum Up to date was obtained from the  a ’s which 

gave,

min IIm v — x0\\P

Therefore it is the  a ’s which gave the lowest f.ip ra ther than  the most recent ¡xp 

which should be used in the solution.

F requency  response

It is most effective to compute the frequency response of each X{ once at the  

start and then sum responses to evaluate m  ra ther than  evaluate the frequency 

response of the  new m^+1 due to  the newly obtained a ’s. This would require 

evaluating a new frequency response for each iteration.

L inear p ro g ram  solvers

The linear program  solvers tried were w ritten as separate functions which just 

required the  matrices of constraints and objective function as input. This was 

effective as it meant the solver was not problem  specific and could be used for all
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the examples. It also meant that it was possible to use different linear program 

solvers and compare their computing times.

5.6 D iscu ss io n

The reasons for selecting the Akilov and Rubinov algorithm were outlined. Through 

an examination of the algorithm’s performance the faith in the procedure was justified. 

The software validation of the paradigm using the Akilov and Rubinov algorithm 

obeyed all the properties expected and clearly demonstrated the advantages of this 

approach. Some computational experience was given as advice. It has been shown in 

this chapter tha t this is a very useful and practical algorithm and that it is a good 

choice for the purposes of this project.
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Chapter 6

D uality  T heory o f Linear 

P rogram m ing

Given a particular optim ization problem, it is generally possible to  associate another 

optimization problem with it. The first and original problem is called the  prim al, while 

the second and derivative problem is called the  dual problem. The two problems are 

intim ately related. Duality techniques are a powerful research tool in the  theory of 

optimization. This chapter develops the  duality theory of linear programming.

6.1 R e la tio n sh ip s b e tw een  D u a l and  P r im a l P ro b 

lem s

As is well known, the situation with finite linear programs is as follows. The standard  

(finite) linear programming problem may be w ritten as

m incTa; subject to

Ax  =  b, and x > 0

This problem is known as the prim al problem. Suppose th a t A is m  X n. It is 

formulated in the vector space V  =  Rn, so x £ R n.

The corresponding problem in the dual space V* = R m is known as the dual 

problem. For the  prim al problem above the  dual problem is the  following, where z is
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a vector in the dual space z G R m,

max z b subject to

ztA <  cT

Next, the relationship between the above two problems is developed.

P ro p e r ty  1 The value of the objective function in the primal problem is greater 

than or equal to the value in the dual problem, provided the x and z  vectors in their 

respective spaces are feasible.

P roof:

The objective function for the dual problem is given by z Tb. If a; is a feasible solution 

then Ax = b and so

zTb = zTAx  (6.1)

If z  is a feasible solution then z TA < cT. Since x > 0 multiplication by x  does not

change the sense of the inequalities, so that

z r Ax < cTx

Combining gives

zTb < cTx  (6.2)

as claimed □

This property applies to the infinite case.

P ro p e rty  2 The primal problem has an optimal solution if and only if the dual 

problem has an optimal solution. The objective functions in the primal and dual 

problems then have the same optimal value.
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Proof:

The primal problem is given by the equations

Ax = b, x  > 0,

Define 

This can be rewritten as

crx — zx — 0

This provides the starting point for the Simplex Method

/ A 0 \ x \ _  b

or - 1  / [ Zx I 1 0
(6.3)

Since the original problem had n variables and m constraints and if the basic variables 

are the first m variables of the x vector then the A matrix can be rewritten as

 ̂  ̂ ■'̂ fcasic -̂ Tionfcasic ^

Write

(
* 6 a  sic  

■^nonba.iic

Then xnonbasic =  0 for a basic solution.

Since Ata9JC is an m  X m  full rank matrix the solution set of Ax  =  b can be written

‘ ^' l ^  ^  A b a s ic A n o n l,asic  ^

( \  
•̂ basic

— Abasic^basic +  Anonf>ai,jcXnonf)asic
 ̂ Xnonbasic y

Xbasic "4" AhasicAnoni,asicXn(inba3¡c — ^b a s ic ^

X  basic =  A b a s ic ^  ^ b a s ic A n o n b a s ic ^ n o n b a s ic
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Also

Zx  =  C X =  C ^ ^ X b a s ic  "H ('nonbasic^nonbasir.

and substituting for xjastc gives

=  Cbasic (^fcastc^ ^fca,;,c^non6as«c£?um6asic) "f ^oniaatc^oniast'c

— ^tiMic^basic^ ci)u sic ̂  haaicAnonbasic nonba sic H” Cnon&a«tc*nonf>astcJT /(-I T

Hence,

z x  — Zbasic "H f 'b a s ic '^ n o J ib a s i c

where

^basic ^basicAbasic^

is the current objective function value, and

 ̂basic ’ ^n o n b a sic  ^b a sic  A  be* sir. A  r ia l basic

is the relative cost vector.

Therefore (6.3) can be reformatted as follows

A  0 )

\
X

h )

y z * }

A b  asic A nonfja$ic 0

C1\  basic ^nonbasic ^

( \
basic

%nonbasic

2*
\ 0 /

Multiplying on the left by
( 4 - 1  n

A basic u 

0 1
gives

I  A-basic An07ibasic 0
r T  

\  L-basic
T

^nonba sie - 1

/  \
* 6asic

3'nonbasic
‘  A - 1 b Xbasic 

0
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Multiplying on the left by ^ —c[asic 1 and using the result as the last row, gives

/ \^ AbasicAnonbasie 0

^  *'nonbasi<: ^ b a s ic A b a s ic A n o n b a s ic  1 J

/  ... \  
basic

•^nonbasic

Z~
y Z basic

(6.4)

With the problem formatted as in (6.4) the relative cost vector is given by

 ̂basic ^ no n b asic  ^‘ba sic A  bn sic A  71 onb as ic

If the present basic feasible solution is optimal, then

rLsic > 0

Hence,

n o n b asic  ^ b a s ic  ^ b a s i c  A n o n b a s ic  ^  0

giving,

rT > r7' . A'1. A , -n&nbaaic —  basic basic nonbastc (6.5)

Let z be defined by
„T —  _T A-1
"■ ''/»/I 6 i)/' * * li/3 <basic basic

Then

 ̂  ̂ Z  - -^ ta s ic  "  ^ n o î iè o s i c  ^

SO

and from (6.5)

so

A  Cbasic ^basicAbasicA-nonbasic ^

- < (
A < cL.... c l 0  =

c • c J — cbasic ''n o n b a s ic  J

z TA < cT

and hence z  is a feasible solution of the dual problem. This shows that if the primal
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problem has a finite optimal solution then the dual problem is feasible. Since

ZT _  T a -  1
b a s i c  b a s i c

the following is also true,

7Th =  rT . A~x ■ h
b a s i c  b a s i c

and using the fact tha t xnon\)ttSi-c =  0 for a basic solution, A ^ sicb can be replaced by 

X b a s i c ,  giving
T l T T

Z  °  =  C b a s i c X b a s i c  =  C X

Combining this with property 1 shows th a t the  prim al and dual optim al costs are 

equal, and therefore this z is the optim al solution of the dual problem.

This shows th a t given an optim al solution, x , of the  prim al problem, an optim al 

solution z of the  dual problem exists and the  values of the  objective functions are 

equal. The fact th a t an optim al x exists given an optim al z follows by viewing the 

dual problem as a primal problem. □

This property applies to the finite case.

P r o p e r ty  3 If either the primal or dual problem has an unbounded optimal so

lution then the other problem has an em pty feasible solution set.

P roof:

Suppose th a t the primal problem has unbounded feasible solutions and the  dual prob

lem has a feasible solution, z /easi6ie- The dual objective function is zJeasMeb. Since 

the primal problem has unbounded solutions it is possible to  find a feasible x which 

gives cTx < z jeasiileb. This contradicts Property  1 and so if the  prim al problem has 

unbounded feasible solutions then the  dual feasible set is empty.

The same arguement could be m ade if the  dual problem has unbounded feasible 

solutions and the  prim al problem has a feasible solution, Xfeasibie. So if the  dual 

problem has unbounded feasible solutions then  the  primal feasible set is empty. □
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Property i is very useful because any feasible solution of the dual problem is a 

lower bound on the primal solution. Properties 1 and 3 hold in the infinite and semi

infinite cases. However, Property 2 holds for the finite case only. Thus the duality 

theory for semi-infinite and infinite linear programs is more subtle than the finite 

case.

6.2 F orm attin g  in  S tandard  Form

In the context of this thesis, the convex specifications provide inequality constraints 

involving sign free variables. Such linear programs are a  little different from the 

formulation discussed above. In such a case the primal linear programming problem 

is given by

min cTx subject to

Ax < b, a:,-’s are sign free variables

This problem may be w ritten equivalently as

mm ( c
X

- C 1 0

( \x+

\ y }

subject to the constraints

( A  - A  I )

/  \*+

2_

\ y /

b, rc+ > 0 ,  .t_ >  0, y > 0
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Letting,

=  (  cT - c T 0 )  , x =

/  \
*+
x_

v y )

, A  =  (  A - A  I  J , x >

The problem is now in the form,

_ aT a t 
min c x subject to

Ax = 6, and x > 0

This is the format discussed earlier in this chapter. For the primal problem above the 

dual problem is then the following, where z is a vector in the dual space

max zr b subject to

< c

which when written fully becomes,

max z Tb

subject to the constraints
( AT N /  \c

- A T ^ < —c

, 1 , > 0 ,

Writing the constraints out fully gives,

A t z < c,

—A t z  <  —c,

Iz <  0,
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These three constraints can be reduced to the following two constraints,

ATz = c,

* <  0,

So now we have the  dual of our original problem with the  inequality constraints and 

the sign free variables x. The dual problem is

max z Tb subject to

At z = c, and z  <  0

6.3 B ou n d s on  S em i-in fin ite  L inear P rogram s

This section develops some bounds for the  semi-infinite linear programming problems 

[12].

Consider an infinite dimensional linear program  of the  form

Xt =  m incTx subject to

Ax <  b, Xj’s are sign free variables,

Here A  will be an oo x oo m atrix and x will be oo x 1. Let the  optim al cost, if it 

exists, be Af, where p stands for “prim al” and t stands for “true” .

Suppose th a t this infinite prim al problem is truncated  so th a t only finitely many 

variables (FMV) are taken. The problem then  becomes a semi-infinite problem. In 

this case A  will be a oo x n m atrix and x will be n X 1. Let the  optim al cost, if it 

exists, be denoted by A£. If this problem can be solved then its optim al solution xv 

is feasible for the optimal infinite problem and A£ is clearly an upper bound for Aj.

K  >  A? (6.6)

Now suppose th a t the  infinite problem is truncated  by taking only finitely many
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constraints (FMC), but all infinitely many variables are retained. Again the  problem 

becomes a semi-infinite problem, but in this case A  will be a n x oo m atrix  and x will 

be oo x 1. Let the  optimal cost, if it exists, be denoted by \ vc. If this problem can be 

solved \ pc is clearly a lower bound for Af, giving

A? <  A? (6.7)

In this case, the FMC optim al solution xc may or may not be feasible for the  original 

infinite problem.

If the solutions exist combining (6.6) and (6.7) gives

K < ^ <  K  (6-8)

As the  number of variables and constraints retained increases A£ and \ pv may move 

closer to each other. For practical purposes they may or may not get to  be close 

enough to the optimal Af.

Consider the FMV semi-infinite problem as described above. In such a case A  will 

be a oo x  n m atrix, x will be n x 1 and b will be a oo x  1 m atrix. Recall th a t the 

optimal cost is denoted by A .̂

Suppose th a t the number of constraints in this semi-infinite primal problem are

truncated. The problem is now a finite problem. If the  optim al cost of this finite

problem is denoted by Â c then  using the idea as in the FMC case above A£c <  A£. 

Therefore the finite case provides a lower bound on the semi-infinite case. However, 

xvc may not be feasible.

As shown in the  previous section the  dual problem of the  finite primal problem 

above is given by

m a x / i  subject to

ATz  =  c, z < 0

with AT being n x m  , z  being r a x  1 and c being n x l .

Suppose th a t the formal dual of the above infinite prim al problem has an optim al 

solution. Denote it by A ,̂ with the  subscript d to  denote “dual ” . In this case rows in
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AT correspond to  variables in the  prim al and columns in AT correspond to  constraints 

in the primal. Note th a t the  dual problem is a m axim ization rather a minimization 

problem.

Again suppose th a t this infinite dual problem is truncated  so th a t only finitely 

many variables (FMV) are taken. The problem then becomes a semi-infinite problem. 

Let the optimal cost, if it exists, be denoted by Af. If this problem can be solved then 

its optimal solution zv is feasible for the  optim al infinite problem and Â  is a lower 

bound for Af.

K  <  ^  (6.9)

Now suppose th a t the  infinite dual problem is again truncated, but now only 

finitely many constraints (FMC) are taken, bu t all infinitely many variables are re

tained. Again the problem becomes a semi-infinite problem. Let the optim al cost, if 

it exists, be denoted by Af. If this problem can be solved Af is an upper bound for 

A?, givirg

A? <  Af (6.10)

In this case, the FMC optim al solution xc may or may not be feasible for the original

infinite problem.

If the  solutions exist combining (6.9) and (6.10) gives

K  <  A? <  Ai  (6.11)

So looking at the  infinite problem and finitely many variables semi-infinite problems

there are two inequalities for the solutions to  these problems

A£>A? 

a; < a?

If there was no duality gap (i.e. the solutions to  the  prim al and dual infinite problems
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AJ >  Af =  Af >  A; (6.12)

It is worth noting th a t if there is a duality gap and the  prim al and dual infinite 

problems are not equal then Property 1 provides an inequality. This property applies 

to the infinite problems. It must first be noted th a t the variables and constraints for 

the linear program obtained from the  Akilov and Rubinov algorithm  are the form 

of the dual problem as stated  at the  s ta rt of this chapter. The variables are sign 

free and the constraints are inequalities. The property states th a t the value of the 

objective function in the prim al problem is greater than  or equal to the  value in the 

dual problem, provided the  x and z vectors in their respective spaces are feasible. But 

taking th a t the fact th a t the  prim al problem given in this section has i t ’s inequalities 

and variables in the dual form of this property the following inequality holds if there 

is a duality gap

A? <  Adt ( 6 .1 3 )

The Akilov and Rubinov algorithm can be used to  get solutions for A£ and as such 

gives an upper bound on the true  infinite case optim al A .̂ It would be useful to  have 

a m ethod of solving the semi-infinite finitely many variables dual problem to  obtain 

a value for A .̂ The true  optim al would be between these values and so an effective 

evaluation could be made of the cost of the H°° truncation used in proposed algorithm. 

There are a number of possible difficulties w ith this approach for evaluating the 

issue of H°° truncation. U nfortunately the  semi-infinite finitely many variables dual 

problem is very complicated. There are difficulties arising from the  fact th a t the 

semi-infinite problem may not be feasible or bounded. If a solution does exist it will 

be convex but formulating it as a norm (for use in the  Akilov and Rubinov algorithm) 

has further difficulties. The inequality (6.12) also requires th a t there is no duality 

gap which is not straightforward to  show for all problems. A brief example is given 

in the next chapter.

were equal) then inequalities could be combined giving,
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Therefore a more sophisticated approach is required to determ ine the  difference 

between the optim al Xvt and the Akilov and Rubinov obtained solution A£. This will 

be discussed in the next chapter.

6.4  A n  E xam p le  ||'Wri<S'||00

This section shows how to formulate the  prim al problem using a subspace of H00 to 

obtain a finitely many variables problem. The constraints are added for each iteration 

of the Akilov and Rubinov algorithm. The equivalent dual is then  given.

This example uses the ||Wi»S'||00 specification to  give the problems involved, but 

it could be applied to  any specification for which the  algorithm is applicable.

As was shown in C hapter 3 the specification ||W i5'||00 <  A can be reduced to a 

standard linear programming problem. The prim al linear programming formulation 

gives inequality constraints and sign free variables, i.e.

min cTx
X

subject to

Ax  <  b

This is obtained by taking only finitely m any constraints, where each constraint, say 

the iih, corresponds to  a certain u  and 9, namely (oj,-, 0,-). Thus,

inf A subject to 
a tR n

5 3  {e>9iâ ( M ) }  <  A +  Re {eJ<?,x 0(jwt-)} ¿ =  1 ,2 , ...... , N  (6.14)
j =i

Let bi = R e{e i0ixo(ju)i)} and a^ =  R e{e i9iXj(jwi)}, so the  above equation becomes

5 3  <Xjaij < A +  bi i = 1 ,2 ,  ,N  (6.15)
i= i

or < a,di > < X + bi where a = ( a ^ a ^ ,  )T•> ai = (an , ...... ,^ n ) T- Now
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subtracting A from botli sides, gives

5 3  ocjdij -  A <  +  bi i  =  1 , 2 , ...... , N
3=1

(6.16)

This equation is of the primal linear programming format i.e. Ax < b . In the 

primal linear programming format with inequality constraints, i.e. min^ c7 x  subject 

to Ax < b, the A matrix becomes,

A =

Re  { e ^ a r i f j w , ) }  R e { e ;iBlX2(ju>i)}  . . .  Re {e i6lz n(ju>i)} - 1  

R e ^ r x i i j u j , ) }  R c ^ e l0Px2{ju}p)^ . . .  Re  | e jtfPxn(jo;p)} - 1

(6.17)

where p is the number of constraints so far. The matrix A  is a p x (n +  1) matrix.

b =

^ R e { e j0120(jw i)}  ̂

R e { e j02xo(ju2)}

Re | e J^x’o(jwp)}

The vector 6 is a p X 1 matrix.

xT =  (  cti a 2 . . .  a n A j

The vector x  is a (n -f 1) X 1 matrix.

- ( 0 . . .  0 0 1

The vector c is a (n -f I) X 1 matrix.

So as worked out above the dual of this problem is

max z Tb

(6.18)

(6.19)

(6.20)

subject to the constraints

A z  =  c,
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z  <  0,

with A, b and c as given above. So

A 1 =

( Re- e -^ Z ilM ) }  . . Re [ej0pz i ( ju p)} >

Re ej9lx2(ju  i)}  . . Re ^ 36px2(jup) j

Re- e36lxn(ju)X)} . . Re e3dPxn(jujp)j

\ - 1 • - 1 >

(6 .21)

and b and c are given as in expressions (6.18) and (6.20) as before. W riting this dual 

problem in full form gives,

/  .R e je ^ o C M )}  ^

Re { e^ 2x0(jcj2)}
max I z0 z\ z<2 . . .  zv

Re {e3dpx0(ju>p)}

subject to

'  Re- . Re- cj0pXi(jujp)} N /  \
Zq ' 0 N

Re [e38lx2{ju> i)}  . . Re- ej0px2(jup)} Zl

Z-l — 0

Re e3hxn(ju  i)}  . . Re- e30pxn(jtop)} \ 0

\ - 1 • - 1 J \ ZP ) K1 )

z  <  0,

6.5 C on clu sion s

This chapter contained some relationships between prim al and dual problems. These 

relationships were proved. Formulating the  inequality contraints and variables from 

the  convex problems in this thesis into prim al and dual problems was shown. Bounds 

on the true optimal solution were obtained from the  semi-infinite linear programs, but 

this lead to  the need for an alternative approach to  analyse the cost of truncation. 

This alternative approach will be outlined in the next chapter.
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C hapter 7

A nalysis o f th e  Issue o f Truncation

Functional analysis techniques are used to  give a qualitative evaluation and a quan

tita tive  measurement of the  cost of truncation. These results follow over to the 

Boyd-Barratt numerical approach.

7.1 H°° D u a lity  T h eory

This section describes the application of H°° duality theory to the  ||WiS'||00 example 

problem [16,17,21,26].

We begin w ith some definitions [23]. Let X  denote a normed linear space. Let M  

denote a finite dimensional normed linear subspace, with the  norm induced by the 

norm on X .  Let X* be the set of bounded linear functionals on the  vector space X ,  

called the  dual space of X .  The set of all linear functionals y £ X* for which

<  m ,y  > =  0 V m  £ M

is called the  annihilator of M , w ritten  M x . The complex conjugates of the elements 

of M  is denoted by M . The prefix B  before M  denotes the  set of elements of M  with 

norm  less than  or equal to one, B M .  The norm  of a linear functional is defined to  be



It may be shown that

|x ||x  =  sup I < x ,n  >
n<zBX•

Using this notation the primal problem can be written as follows

J i L 1 1 1 0  -  m  l u

In this case the equivalent dual problem is

max <  .To,™ >

where M x is a subspace of X*. By the Hahn-Banach theorem

inf II x0 — m  |Ly= max | < x 0, n > |  (7.1)m<=M 11 U neBM± ' ' V ’

The Hahn-Banach theorem also gives the relation

min || ac0 — m ||x =  sup | <  x0,n  >  | (7.2)
meM-L rvgSM

Note that the existence of an element that achieves the optimum is assured in the 

dual space, but not necessarily in the primal space.

Consider the problem of finding the stabilizing controller which minimizes the 

weighted sensitivity function in the infinity-norm sense, namely

inf || W S  ||o oQg//«, I' I'00

It is shown next that this problem has the structure of (7.1) and (7.2). As before 

by Youla parameterisation the following is obtained,

S  = D (Q N  + V)

Substituting for S  gives,

g f .  || W D {Q N  +  10IL  =  gig£. IIW D Q N  +  W D V  |L  (7.3)
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Note that any biproper transfer function can be separated into its inner and outer 

factors. This means a transfer function F(s) can be written as

F  — F F1 —  1 op1 I p

where op stands for “outer part” and ip stands for “inner part” . Let,

where zt- are all the right half plane (RIIP) zeros of F.  Then Fip is called a Blaschke 

product. This gives

f - [n { = £ * ) ] op

Now by expressing N  and D in terms of their inner and outer factorisations

N  = NopNip

D = D op Dip

and substituting into (7.3) gives,

inf \ \WDopD ipQNopNip +  W D ovD,vV\l

It is easily verified that

|A P0 ’w)l =  1 =  M pCMI v  w

So,

\WS(ju) \  = \D-p1N - 'W S ( j u J)\

giving

Q£Hrinf IIW 5IL =  inf W D 0pN0pQ +  W D opV N 1- l
»p
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Writing this problem in the form of the primal problem above gives,

inf || xQ -  m  ||oo= min || W D opN opQ + W D ovVNfJ- ||oo
m £ M  QeH00 y

W ith X =  Co, xq = - W D opVNTv and M  = A™ so that X* =  N B V  and M ± = 1 ^  

yields [16,17,21,26]

inf || xQ — m  ||oo= max | <  x0, n >  |
m eM  n d B M 1

- inf || W D opVN ^1 +  m ||oo= max_ | <  W DopVN^1, n > \ 
m ^ AS° n £ B m

- max [  W D 0p V N ~lndu)
n e B H 1 J

- max f W D opV N ^ lhdu) 
h e B H 1 J  P

= inf II W D opV N ~ l +  W D opN opQ 11^= max | < W D opV N ~ l ,h  > | (7.4)
h £B H

and the existence of a maximizing h £ H 1, (h0 say), is assured. Since (7.4) is true 

there is no duality gap.

The above analysis will be exploited below.

7.2 D u a lity  T h eory  in  A p p ro x im a tio n  T h eory

This section gives an approach for assessing how far the obtained solution is from the 

optimal solution.

Next the important concept of alignment is defined. Taking x  £ X  where X  is a

vector space and /  £ X* , where X*  is the dual of X  then x and /  are said to be

aligned if

< f , x  > =  IMIx ||/ lk *

Any system with the following property of constant magnitude at all frequencies is 

termed all pass

\P(ju)\  =  k  V u> where k is a constant

It is known that alignment holds if a solution is optimal [23]. If X  is taken to be
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H°°, the  set of all stable transfer functions, then alignment effectively means all pass. 

Using this it could be observed from the Bode plot if the optim al solution has been 

obtained. If there is a gap between the  optimal solution and the solution obtained 

from the Akilov and Rubinov algorithm  there will not be alignment. If the  optim al 

solution is not obtained a m ethod for determining how far it is from the optim al and 

hence the cost of truncation would be valuable information.

It has been shown in work by R. C. Buck [8,9,10] th a t closeness to alignment is 

a necessary and sufficient condition for closeness to  optimality. This was shown as 

follows.

Let X  denote a (real) linear space w ith norm || ||. Take X*  to be the  dual space 

of continuous linear functionals. It is a Banach space w ith norm

ll/ll =  sup I <  f , x  > I where /  £ X*
IMI<i

Again, let M  denote a subspace of X .  Let B X  be the unit sphere in X  and B X *  be 

the unit sphere in X*. Let B M L be the  unit ball in M 1 .

Define three sets A , B  and C as follows. The set A  is almost aligned to  within e. 

The set B  is almost optimal to  within e. The set C is almost aligned to  within 2e.

Specifically,

A  =  ja?o — m] ll^o — m\\ — e < <  / ,  xq — m  >  some /  £ B M ^ j

B  =  {x0 -  ra; ||x0 -  m\\ < Pm (xq) +  e}

C =  {xo — m; ||x0 — m\\ — 2e < <  f , x Q — m > some /  £ B M x |  

where Pm (xo) is defined as follows,

Pm (xq) = inf ||x0 -  rn\\m Gm

T h eo rem  For the sets A, B  and C  as defined above, the following holds

x0 — m  E A => x0 — m  £ B  => x 0 — m  £ C
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□
This can be expressed informally in words as,

Almost Aligned O- Almost Optimal

P ro o f :

Taking x 0 — m  E A,

x 0 — m  E A  =$> 3 f  E B M ± such tha t < f , x 0 — m  >> ||x0 — w | 

Also by definition,

P m { x o) =  inf ||x0 - m | |m6M

From the Hahn-Banach theorem

inf ||x0 — mil =  max I < / ,  x0 >

So,

P m ( x o )  =  max | < f , x Q >

and

< f , x 0 — m  >< max | <  / ,  x0 > \ = p m (%o) 

Combining this with the definition of set A  gives,

=> ||x0 -  m|| < <  / ,  x0 — m  > -fe <  pM(x0) +  e

=$> xq — m  E B

x0 — m  E  A => x0 — m  E  B

Now taking x0 — m  E  B,

Xq — m  E  B  =>- ||x0 — m\\ < Pm (%o) +  e
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/  E B M 1' such th a t <  / ,  x0 — m >> pm (xo) — e 

Combining this with the  definition of set 5  gives,

=> ||Xo — m|| < <  f , x 0 — m > +2e 

Xo — m E C

x0 — m E B =$> x0 — m  E C (7-6)

Combining both results (7.5) and (7.6) gives

Xo — m £ A =$> xo — m E B =$> xo — m E C 

as claimed. □

This establishes th a t closeness to  alignment is a necessary and sufficient condition 

for closeness to optimality. This is a global result rather th an  a local result, meaning 

th a t e does not have to be small. This result can be used in an analysis of the cost of 

truncation. By using this result it is possible to  qualitatively assess the  cost of H°° 

truncation. In order for this to  be a quantitative approach it would be necessary to 

find a way to compute suitable / ’s. The next section will give a result which can be 

used to  obtain a quantitative evaluation of the cost of H°° truncation.

Choose

7.3 A lign m en t w ith  A k ilov  and  R u b in o v  for W S  

exam p le

The previous section has shown th a t closeness to  alignment is a necessary and suf

ficient condition for closeness to  optimality. While this is a very useful result it 

unfortunately doesn’t give a lower bound on the tru e  optim al solution. This section
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was m otivated by the  result from R. C. Buck th a t closeness to  alignment gives some 

measure of optimality.

The Akilov and Rubinov algorithm  uses a truncated subspace of H<*,. This means 

th a t the  solution obtained is an upper bound for the  true  optim um  as it is a finitely 

many variables problem. The following is a m ethod of obtaining a lower bound on 

the true  optimum. It is applied here to the  | | -S ' (Q) | | oo problem. A similar approach 

could be used for any of the  other specifications in order to obtain a lower bound 

on the  true optimum. The result obtained in this section means th a t bounds on the 

optim um  can be obtained. This result can be used to  effectively evaluate the issue of 

truncation of H°°.

First, alignment in the context of this example is shown. If W / i 5 ' ( ( 5 i )  where

Qi £ H°° and hi £ H l are aligned then  the following relationship holds

/  W xS{Qx)hxdu = ||W iS(Q i)||oo ||M i

= »  J  \W\S{Q\)h\\du) =  | | W i . S ' ( £ 2 i ) | | o o | | h 1 | | i  

=* / \W1S(Q1)h1\du= \\W 1S{Q1)\\00J  |hx\du (7.7)

Since Q\ £ H°° and h\ £ H 1 are aligned it follows th a t both  are optimal. The general

relationship which applies even if not aligned is

J  ¡WiSWhldu < WWiSWWco J  \ht\du

This above inequality is called Holder’s inequality.

Equation (7.7) can only be true  if W\S{Q ) is all pass. Strictly speaking it is W^S 

th a t is aligned with h\, but W \S  is aligned for a particular Q. As stated previously, 

aligned effectively means all pass (constant m agnitude for all frequencies).

Now, suppose th a t the true optim um  A is given by

A =  sup i  W\S{Q\)hdu> = j  W\S{Q\)h-ydoj
h eB H 1 J  J

In the  above expression hi £ B H l is the optim al h £ B H l . Let Qar be the  result for
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A >  j  W,S{QAR)h2du V h2 € B H 1

Suppose that Qar ¡s optimal for some weight, say W2. Then W2S(Q ar ) is aligned 

for some /i, say /t3. Since they are aligned the following holds

J  W,S(QAli)h3cL, = j  |lV2S(Qar)I,3\<1u = IIHWiQ^IUIHsll,

By the all pass property it may be taken that

the Youla param eter obtained from the Akilov and Rubinov algorithm. This gives

W2 =
Sop(Qar)

Next choose

giving

¿2 -  7rm
Wah*_ 

w ,  ' * 3 I I 1

_  W t  , 1 , 3

A3ll

A >
! \ W 2S(QAR)h3\du

WfMIl

3 1

l $ M l

Using the fact that H ^ ^ l l i  <  ll||^l|oo||M|i» gives

| | ^ 25 ( Q ^ ) | |cA >
i f t l L

(7.8)

A
Wo
Wi

Wo

A

Wx

1

>  1

> 1
W1S(Qa r )

=> A > m in |^ 5 (g A K )l
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This gives a lower bound for X. So this means th a t the  following inequality holds

Xakrub ^  XfTue ^  I All) |

This means th a t the  optim al solution is contained between the  minimum and m ax

imum of |Wi S'((5>ir )|- This is an intuitively pleasing result because it means th a t 

the closer the minimum and maximum values the  smaller the  range by which the 

optimum differs from the Akilov and Rubinov obtained solution. This is intuitive as 

it effectively means th a t the closer the solution is to all pass the  closer the obtained 

solution is to the  optimum.

7.4 B asis  S e lec tio n

This section states techniques used for selection of basis functions and discusses the  

issue.

There are two main issues involved in selecting the basis for the  subspace of H°°.

P ole  selection  One of the  observations to  make would be th a t a peak at a particular 

frequency means th a t a basis function with a pole a t this frequency may result 

in a solution which is closer to the true optimum. The approach of Sections 7.2 

and 7.3 may provide a useful addition to  the basis selection procedure.

N u m b er o f term s By observing how close to  the  optim um  the  obtained solution 

lies will give a strong indication of the  number of term s required in the  basis 

functions.

Boyd et al. [5] suggested th a t a good choice for the structure of Q(s) is a linear 

combination of simple stable transfer functions qi(s) of the  form

n

Q ( s ) =  X )
i —1

Boyd et al. [7] on the  two-disk problem employed a second m ethod for selecting their 

basis functions. Using the bilinear transform ation



they m apped the solution space to discrete time. He then  assumed th a t the optimal 

param eter Q(z) is closely approxim ated by a finite impulse response (FIR) filter with 

20 taps. It was found th a t increasing the number of taps did not significantly improve 

the solution having found a 20-tap Q which satisfies the  constraints.

In work done by Webers and Engell [27] they  outline th a t the choice of base 

functions for the series expansion of the Youla param eter is crucial for its success.

In the  present au thor’s numerical work, the  basis functions were chosen as follows

i=l
Q(s) = X) aiVi

where
s '1 1

Vi = 7 r - i = l . . . . ,ny {s + u c)n ’ ’

This can be interpreted as a Taylor series expansion about u  — u c. Here u>c is the 

target crossover frequency, which is the crucial region for a design.

7.5 E xam p les

In this section the bounds described above on the optim al solution are obtained for 

two problems. The first problem has a known analytical solution and the second is 

an analytically unsolved problem. The first problem was given in C hapter 5 as part 

of the  software validation, but is used here to  confirm the  procedure adopted in the 

quantitative analysis of truncation.

Specifically, consider finding the controller which minimizes

inf || |WiS] ||oo

where, as usual,

1 + £ ’ 1 + L

L is the loop gain, and W\ is a weighting function. The minimization is over all 

feedback controllers which stabilize the closed loop system.
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G = Z l ± 7  —s +  4

and the weight is

w  5  + 1 2W 1 = - — T- 3 + 1

Applying the algorithm to this problem yields the results given below in Table 7.1 

and Figures 7.1 to 7.5.

The plant is

n max min
2 43.7 9.7
3 31.7 14.8
4 28.7 17.9
5 27.5 20.7
6 26.9 23.0
7 26.6 24.4
8 26.4 24.9
9 26.37 25.5
10 26.33 26.03
11 26.32 26.06
12 26.29 26.2

Table 7.1: max |WiS'| and min |W/i5'| for various n ’s.
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To illustrate the utility of the results the method is applied to a problem with no 

known analytical solution.

Specifically, consider finding the controller which minimizes

inf II \w xs \ + \w 2t \ Iloo

The plant is

- s  +  4

and the weights are

W' =  ~ X T  m  = 13 + 1
Applying the algorithm to this problem yields the results given below in Table 7.2 

and Figures 7.6 to 7.9.

n max min
5 35.0 32.8
10 34.6 34.52
15 34.59 34.55

Table 7.2: max \WXS\ + \W2T\ and min |W xS\ +  \W2T\ for various n ’s.
U) OJ
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Figure 7.1: |VF<5'| for n =  6, truncation  issue, example 1
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log(freq)

Figure 7.2: for n  =  8, truncation  issue, exam ple 1
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SI

Figure 7.3: |VK5'| for n  =  10, truncation  issue, exam ple 1
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SI

I1

Figure 7.4: IW.S'I, for various n ’s,truncation issue, example 1
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Figure 7.5: 
example 1

n

m ax|W S'|, [i0pt and min|W.S'| for various n ’s, truncation issue,
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From the data  it can be seen th a t as the  num ber of term s in the  basis increases 

the problem gives a solution which is closer to  all-pass. Using R. C. Buck’s result this 

shows th a t the quality of the  obtained solution is approaching optimality. This gives 

a qualitative evaluation of the  result.

In addition to this a quantitative measure of how close the obtained solution \ akrub 

(from the truncated  vector space) is to the  true  optim um  XtTue (from the infinite 

dimensional vector space). For each of the examples with differing numbers of terms 

in the basis an upper and a lower bound on the  tru e  optim um  is given. In general, 

one would expect th a t tighter bounds are obtained as the  number of terms increases. 

In both examples this is in fact the  case.

For the problem where the true  optim um  is given by

Atrue =  j g J W i S ( Q ) U

the following bounds apply

Aahrub ^  ^true > min I W ^ Q a r ) !

The bounds approached the known analytical solution as the  number of basis elements 

increased. This is as expected.

For the problem where the  true  optim um  is given by

A«™. = „ g f , I I  |W iS (0)| +  \W 2T ( Q ) \  11«,

the following bounds apply

Kkrub > Kue > min IW i^Q aji)! +  \W2T{Qa r)\

It can clearly be seen th a t the  bounds approached a specific value as the number 

of basis elements increased. Again, this is as expected. This suggests th a t the true 

optimal solution for th is problem is Airue =  34.57 ±  0.02.

These examples illustrate the usefulness of these bounds.
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Figure 7.6: |W i5'| +  | f o r  n  =  5, truncation  issue, example 2
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Figure 7.7: IWiSI +  \W2T\ for n =  10, truncation  issue, example 2
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Figure 7.8: |VKiaS| +  for n  =  15, truncation  issue, example 2
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n

Figure 7.9: max |W i5| +  \W2T\  and min |W iS| +  \W2T\ for various n ’s, truncation 
issue, example 2
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7.6 R em ark s

Using the result outlined in the previous sections the gap between the optimal solution 

of the infinite problem, A£, and the solution obtained using the Akilov and Rubinov 

algorithm can be measured. By plotting |x0 — against u> and observing how close 

it is to alignment (all pass) a measure of the difference between it and the optimum 

can be obtained.

The duality theory approach to obtain a lower bound and a measure of closeness to 

optimality is applied to the ||W/rS ||00 problem. This example was used to demonstrate 

a possible evaluation of the cost of truncation. The analysis proposed here applies 

equally well to the robust disturbance attenuation problem and the two disc problem 

because the all pass property applies [19,20]. Note that these problems have not been 

solved analytically. This provides a qualitative and quantitative analysis of the issue 

of truncating H°°.
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C hapter 8

C onclusions

In this thesis, improvements were made on the  Boyd-Barratt paradigm  for feedback 

controller design. An alternative numerical approach with a number of advantages was 

adopted. Also, a qualitative and quantitative evaluation of the  largest disadvantage 

of the Boyd-Barratt paradigm, namely the required truncation of H°°, was given.

The thesis began by outlining the Boyd-Barratt paradigm  for feedback controller 

design. It was outlined how this approach combines the Youla param eterization with 

convex optimization. A completely different numerical approach was adopted, but 

otherwise their paradigm  is accepted in its entirety.

It was shown how control problems can be recast as linear programs by use of 

Youla param eterisation. It was shown how problems which are non-convex in the 

controller become convex problems via use of the  Youla param eter. However there is 

no guarantee on the  accuracy of results obtained from these finite linear programs. 

There seems to  be no reason to be optim istic th a t the  controller produced by this 

approach will be close to  the true optim al controller. Also, there is the  difficulty 

of deciding how large a linear program to select, and how to  choose the subset of 

constraints to be retained. This suggested seeking a more sophisticated approach.

The new numerical scheme adopted involved using an algorithm  due to Akilov 

and Rubinov. This completely circumvented the  need to  compute derivatives or 

subdifferentials, which can be a difficult task. Instead, certain linear functionals were 

computed, and this is generally quite straightforward. The algorithm  made use of 

a linear equation solver and a linear program  solver, which are standard  numerical
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problems. This resulted in code which is easier to  implement, much shorter and 

more elegant than  th a t required to  compute complicated gradients. The coding of 

the algorithm  gave very promising computing times and it is felt th a t this justifies 

the approach. The approach also has the  attractive feature of giving bounds at each 

iteration, which assist in convergence monitoring.

The Boyd-Barratt paradigm  has the disadvantage th a t an infinite dimensional 

Banach space must be truncated  to  a finite dimensional subspace prior to  optimizing. 

This thesis also applies certain prim al-dual techniques from  functional analysis to 

study the implications of this truncation. Prim al-dual theory is used to  show th a t 

the true optim al solution lies within the  solution of two semi-infinite linear program

ming problems, namely the dual problem with finitely many variables and the primal 

problem with finitely many variables.

Also, results due to  R. C. Buck have been used to  show th a t nearness to  alignment 

gives a qualitative indication of nearness to  optimality. A quantitative indication 

has also been developed. The analysis proposed here applies equally well to  the 

robust disturbance attenuation problem and the two disc problem. The results were 

illustrated with examples.

In conclusion, the  use of the  Akilov and Rubinov algorithm  is an improvement 

on the previous numerical approach used by Boyd-Barratt. In addition, the thesis 

gave an effective analysis of the  truncation to a finite dimensional subspace prior 

to optimizing, which is the largest shortcoming of the Boyd-Barratt approach. The 

thesis dem onstrates how to  obtain a qualitative and quantitative indication of the 

cost of this truncation.
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