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4.1 General Introduction

It has been shown previously that BrdU induces differentiation in the poorly 

differentiated lung carcinoma cell line, DLKP, and in the lung adenocarcinoma cell line, 

A549 (McBride et al., 1999; P. Meleady, PhD. Thesis, 1997; F. O’ Sullivan, PhD. 

Thesis, 1999; D. Walsh, PhD. Thesis, 1999). Associated with this alteration in 

differentiation status o f the cell lines was an alteration in expression levels o f various 

proteins. Protein expression o f the cytokeratins K8 and K18, the eukaryotic initiation 

factors eIF-4E and 2 a  and the transcription factors Yin-Yang 1 (YY1) and c-Mycl was 

increased in both cell lines when induced to differentiate by BrdU. BrdU-induced 

differentiation o f the DLKP cell line also resulted in increased protein expression of a 2 

and Pi integrins, the cytokeratin K19 and the cell-adhesion proteins, Ep-CAM, a-actinin 

and a-catenin. The mRNA expression levels o f these genes, with the exception o f the a 2 

integrin, remained unaffected following BrdU treatment. As a result, regulation of 

expression o f these genes (with the exception a 2 integrin) appeared to be at the 

translational level in these cell lines.

BrdU (a thymidine analogue) integrates into the DNA of the target cells prior to 

inducing the differentiation o f those cells (Ashman and Davidson, 1980). As such, it 

was expected that BrdU would exert its effects primarily via a transcriptional 

mechanism. The speculation that the poorly differentiated DLKP cell line (Law et al.,

1992) may represent a stem cell-like population o f the lung provided a unique 

opportunity to study the possible transcriptional mechanisms regulating early lung 

development and differentiation in vitro.
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4.2 BrdU-induced differentiation in epithelial lung cell lines

Studies were carried out on DLKP and the diffuse, glandular adenocarcinoma lung cell 

line, A549 (Smith, 1977), both exposed to the differentiating agent, BrdU. It was 

decided to examine whether BrdU was capable o f inducing effects in these cell lines 

which were exerted at the transcriptional level. To this end, RT-PCR and DNA 

microarray analyses were employed to identify genes whose expression was capable of 

being transcriptionally-regulated by BrdU.

While RT-PCR analysis remained the primary method of examination, due to its 

reliability and reproducibility, the DNA microarray method (which only became 

available during the later stages o f the thesis) was included to highlight gene expression 

changes in groups of genes which would not necessarily have been considered for 

analysis. It was felt that the RT-PCR results, which were repeated threefold, were more 

reliable than those obtained for the DNA microarray analysis. However, the DNA 

microarray results are also valuable, as they may highlight future areas o f research of 

BrdU-regulated genes.

4.2.1 RT-PCR analysis reveals that BrdU induces gene expression changes

predominantly in the DLKP cell line

RT-PCR analysis o f the DLKP cell line revealed low levels o f expression o f most of the 

twenty-five genes studied. Immunocytochemical analysis o f DLKP had already 

determined that the cell line lacked several expression markers for differentiation, 

including the major keratins (Daly et al., 1998).

RT-PCR analysis o f the BrdU-exposed DLKP cell line revealed increased expression of 

a number o f genes not previously examined in differentiation studies. In general, 

expression changes were felt to be o f significance if  they exceeded a two-fold increase 

or decrease. Significant increases in expression o f the MRP1, MRP3, COX-2, eIF-2a, 

BAXa, and MRIT genes were observed. Less significant increases in expression were 

also observed for the MRP2, BCRP, a-catenin and E-cadherin genes. The anti-apoptotic
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Survivin gene was the only gene surveyed by RT-PCR which showed decreased 

expression in DLKP following BrdU treatment.

The RT-PCR results profile obtained for the BrdU-treated A549 cells was distinctly 

different. The A549 cell line appears much more differentiated than DLKP and in the 

normal state expressed many o f the genes surveyed here in the RT-PCR analysis, and at 

a much higher level o f expression. Following exposure to BrdU, only two genes out of 

the twenty-five studied, MRP1 and BCRP, showed increased expression in this cell line. 

Three genes, MRP2, MRP4 and mdr-1, decreased in expression in A549 following 

BrdU treatment. Only the MRP4 and mdr-1 expression decreases were felt to be of 

significance.

It is important to note that the expression changes observed here have not been analysed 

in terms of mRNA stability in the differentiating cells. It is therefore possible that these 

alterations in mRNA may be due to posttrancriptional mechanisms. Paine et al. (1992) 

has previously demonstrated using nuclear run-ons that alterations in mRNA expression 

in differentiating rat anaplastic carcinomas was due to posttranscriptional (although 

pretranslational) downregulation. In the absence o f such tests being carried out here to 

confirm or deny this hypothesis, this possibility cannot be discounted.

4.2.1.1 BrdU induces expression o f MDR-related genes in DLKP and A549

The MRP1, MRP2, MRP3 and BCRP genes have been associated with the multidrug- 

resistance phenotype in various cell systems (Section 1.8). RT-PCR analysis 

demonstrated that all four o f these genes were observed to be significantly upregulated 

in expression at the mRNA level in DLKP cells following exposure to the 

differentiating agent BrdU. The most significant increases were observed for the MRP1 

and MRP3 genes. In the A549 cell line, increased expression of MRP 1 and BCRP was 

observed following BrdU treatment, although the increases were less dramatic than 

those obtained in the DLKP cell line. In addition, A549 registered significant decreases 

in expression o f the MDR-related MRP4 and mdr-1 genes as well as a slight decrease in 

MRP2 gene expression. Apart from mdr-1, none o f these MDR-related genes had 

previously been associated with altered expression levels in differentiating cells.
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4.2.1.1.1 Previous reports o f MDR-related gene expression changes associated 

with differentiation

The majority o f studies carried out on the effect o f differentiation on the multidrug- 

resistance phenotype and genotype have focussed on the activity and expression of mdr- 

1/Pgp. Increased expression o f Pgp in humans has been correlated with the 

differentiation status o f murine oesteoblastic sarcomas (Takeshita et al., 2000), and oral 

and maxillofacial tumours (Xie et al., 2000). Increased mdr-1 gene expression has also 

been correlated with increased differentiation status in human gastric and colorectal 

cancers (Motoo et al., 1998), in the colon carcinoma cell line LS180 (Herzog et al.,

1993) and in non-small cell lung carcinoma (NSCLC) (Bosch et al., 1997). While the 

prognostic implications o f mdr-1 gene and protein expression have already been 

reviewed for a host o f clinical settings (see Section 1.8.1), Tokunaga et al. (2001) have 

correlated the increased Pgp phenotype in well-differentiated colorectal cancer with 

resistance to cancer chemotherapy and poor clinical prognosis. Expression o f the mdr-1 

gene has also been correlated with expression of other differentiation-specific markers. 

Gamelin et al. (1999) observed that mdr-1 gene expression correlated with cytokeratin-8 

(K8) protein expression levels in renal cell carcinoma. As already outlined, cytokeratin- 

8 has previously been identified in this laboratory as a possible differentiation marker in 

BrdU-differentiated DLKP cells (McBride et al., 1999). Pgp has also been proposed as a 

differentiation marker in chronic myeloid leukaemia (CML) (Turkina et al., 1999).

The effect o f the process of differentiation on the expression o f other MDR-related gene 

and protein markers has not been extensively studied. Studies attempting to correlate 

differentiation and expression of MRP 1 have met with mixed results. Sugawara et al. 

(1995) observed higher levels o f MRP1 protein expression in well-differentiated 

adenocarcinoma o f the lung than for poorly differentiated tumours. However, further 

studies on differentiated tumours (Nooter et al., 1998) and cell lines (Schippers et al.,

1997) have revealed no significant correlation o f MRP 1 expression and differentiation 

status.

4.2.1.1.2 Increased expression of MDR genes does not necessarily confer MDR 

phenotype
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DLKP cells induced to differentiate by BrdU were examined at each previously selected 

time frame o f the differentiation process (day 2, day 5, etc.) using in vitro drug toxicity 

assays. The cells were exposed to adriamycin, cisplatin, taxol and VP16 in an attempt to 

correlate the increased MDR gene expression profile o f the cells with any change in 

their multidrug resistance profile. It was observed from these assays that the cells did 

not display any significantly altered drug resistance phenotype to the normal, 

undifferentiated DLKP (Section 3.1.2). It is important to note here that the increases 

observed in mRNA expression in BrdU-treated DLKP may not necessarily have been 

translated into protein expression in those cells.

In a number o f previous studies, increased differentiation has resulted in an increase in 

the MDR phenotype (Ho et al., 1994; Su et al., 1994). Thus far, the increase in the 

MDR phenotype has largely only been correlated with expression o f mdr-l/Pgp, 

although the role o f some other MDR-specific markers have also been tentatively 

examined (Scheper et al., 1993; Kitazono et al., 2001). However, several studies have 

also noted induction o f MDR gene expression does not tally with the induction of an 

MDR phenotype. Mickley et al. (1989) correlated mdr-1 gene expression with the 

degree o f induced differentiation in SW-620 and HCT-15 cells, but observed that in 

neither case was the MDR phenotype induced. Exposure o f breast, ovarian and colon 

carcinoma cell lines to the differentiation-inducing aromatic fatty acids phenylacetate 

and phenylbutryate also resulted in increased mdr-1 gene expression (Shack et al.,

1996) without the induction of the multidrug resistance phenotype.

In this study, it also was noted that, after seven days exposure to BrdU, a marked 

decrease in normal cell growth was observed. This facilitated the elimination o f the cells 

at a far lower drug concentration than that previously determined by toxicity analysis. 

This result was observed to be identical over the four structurally and functionally 

different drugs studied. This indicates the possibility that one or several genes or 

proteins responsible for essential cell function in these cells are adversely affected by 

exposure to the agent. This effect is not due simply to the inherent toxicity or anti­

tumour effects o f BrdU (see Section 1.4.3.6) as cell viability returned to near normal 

patterns o f growth after fifteen days exposure to BrdU. This indicates that this is a 

specifically targetted effect o f BrdU which disrupts normal cell growth and division and
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peaks at seven days o f exposure. This was an interesting observation and one which has 

obvious implications for the future analysis o f BrdU effects in cell lines using DNA 

microarray analysis (see Section 4.2.3).

4.2.1.1.3 Why are MDR-specific markers increased in expression during

differentiation?

The functional significance, if  any, for the increase in expression o f MDR markers in 

differentiation is currently unclear. It is possible that expression of MDR-related genes, 

such as mdr-1, may fulfill some as yet unidentified role in the developing cell. Mylona 

et al. (1996) observed expression o f the mdr-1 gene at all stages o f development and 

differentiation in human placenta and increased expression o f Pgp was also observed in 

differentiating megakaryocytes (Sato et al., 1995). These two studies indicate that mdr-1 

expression may have some function in the normal process o f development o f a non­

carcinoma cell, and that its upregulation during differentiation may not necessarily be 

connected with multidrug resistance. In fact, there is evidence that the availability of 

transcriptionally active forms of MDR-related genes may actually be a requirement for 

successful differentiation. Shannon and Iacopetta (2001) observed that methylation of 

the mdr-1 gene correlated with a poor histological differentiation status in colorectal 

carcinoma.

4.2.1.1.3.1 Pgp and MRP 1 as possible transporters o f differentiating-inducing agents

Pgp has been postulated as a possible efflux pump for the well-characterised 

differentiating agent, Retinoic acid (RA) in RA-resistant human myeloid leukaemic 

HL60 and APL cell lines (Matsushita et al., 1998). It has also been suggested that Pgp 

may also be capable o f transporting polyamines, low molecular weight organic cations 

that are essential for cell growth and differentiation (Aziz et al., 1996).

Scala et al. (1995) noted increased differentiation in human MCF-7 breast cancer cells 

accompanied by decreased Pgp activity induced by the Pgp antagonist, 8-Cl-cAMP. The 

NSAID indomethacin, a known MRP1 inhibitor (Duffy et al., 1998) has been observed
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to induce differentiation in adipocyte precursors (Ye and Serrero, 1998) and in 

fibroblasts (Williams and Polakis, 1977), although it was observed to inhibit 

differentiation in mouse leukaemia cells (Honma et al., 1979).

However, in studies carried out in mouse lymphoma cells (Molnar et al., 1998) and 

human colon carcinomas (Herzog et al., 1993), reversal o f Pgp activity by the use of 

Pgp antagonists has not been correlated with increased differentiation. Additionally, 

work carried out in this laboratory has indicated that BrdU may be an “irreversible” 

inducer o f differentiation o f DLKP cells (D. Walsh, PhD. Thesis, 1999) (Section 

1.4.3.7). In this case, the proposed model o f induced transcription in response to 

perceived toxic threat posed by BrdU does not seem viable.

4.2.1.2 BrdU induces expression o f  elf-2cc in DLKP cells

A significant increase in gene expression o f the eukaryotic translation initiation factor 

eIF-2a in DLKP cells was observed following exposure to BrdU. No significant effect 

on expression o f the gene was observed in the BrdU exposed A549 cell line. RT-PCR 

analysis did not reveal any significant effect on expression o f the eIF-4E gene in either 

cell line following BrdU exposure.

Preliminary western blotting carried out in this laboratory on the DLKP cell line 

(Walsh, PhD. Thesis, 1999) had identified increased protein expression o f eIF-2a 

following BrdU treatment. At the time, RT-PCR analysis on eIF-2a mRNA levels was 

not carried out, and it was assumed that the elf-2a protein was translationally 

upregulated in DLKP by the action o f the c-Myc 1 protein.

However, it was also postulated that the c-myc gene may transcriptionally increase 

levels o f elf-2a. An interesting observation is that the 3 ’UTR o f differentiation-related 

mRNAs, such as tropomyosin, activate PKR (Protein Kinase RNA-activated) activity 

(Davis and Watson, 1996). Active PKR phosphorylates eIF2a leading to a decrease in 

translational efficiency (Rastinejad et al., 1993) and an induction o f differentiation 

(Rastinejad and Blau, 1993). Phosphorylation o f elf-2a has previously been observed in

3 7 4



PC12 cells induced to differentiate with nerve growth factor (Munoz et al., 2001). In 

this scenario, the transcription factor c-myc would provide PKR with its substrate by 

transcriptionally increasing the levels o f elf-2a mRNA.

It is not clear whether or not the increase in eIF-2a is due to the action o f c-myc. 

However, no significant change in c-myc gene expression was observed here in either 

A549 or DLKP cells following BrdU treatment using RT-PCR. DNA microarray 

analysis did however, indicate a significant decrease in c-myc gene expression in DLKP 

after seven days exposure to BrdU (Section 4.2.2). BrdU has previously been reported 

to induce differentiation o f the leukaemic cell line, HL60 (Yen and Forbes, 1990) and 

melanoma cells (Valyi-Nagy et al., 1993) associated with decreased levels o f the c-myc 

mRNA transcript. It is therefore possible that the gene is transcriptionally regulating 

differentiation in DLKP through transcriptional expression o f elf-2a.

It would therefore be o f  interest to examine further the possible influence o f increased 

elf-2a protein expression, either in the active or inactive phosphorylated form, during 

differentiation. elf-2a protein levels and activity are thought to regulate global 

translation (Kimball et al., 1998), and may therefore play a role in regulating the overall 

protein synthesis and growth rates during differentiation. elf-2a has also previously 

been implicated in translational regulation in differentiating myeloid leukaemia HL60 

cells (Konno et al., 1986) and has been implicated in the regulation of haemoglobin 

synthesis in differentiating erythroid cells (Crosby et al., 2000). Also, the induction of 

elf-2a protein expression by both the differentiating agent thiazolidinedione (Palakurthi 

et al., 2001) and interferon, a product o f cell growth (Petryshyn et al., 1996) indicates a 

regulatory mechanism for this protein in cellular differentiation. It would appear from 

research carried out here that expression o f elf-2a during BrdU-induced differentiation 

may be regulated at both transcriptional and translational levels in the DLKP cell 

system.

4.2.1.3 BrdU increases expression of BA Xa and MRIT and reduces Survivin

expression in DLKP
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A total o f eight apoptotic gene markers were examined for expression in BrdU- 

differentiated DLKP and A549 cells. Significant increases in expression o f the pro- 

apoptotic BA Xa and MRIT genes were observed in DLKP following exposure to BrdU. 

No change in expression o f the pro-apoptotic BAP and Bcl-xs genes was observed in 

these cells. Decreased gene and protein expression o f anti-apoptotic Survivin were also 

observed in the BrdU-treated DLKP. No change in expression o f the anti-apoptotic Bcl- 

2a , B c 1 - x l  and BAG genes was observed in DLKP. Exposure to the differentiating 

agent was not observed to have an effect on the expression of any of the apoptotic genes 

studied in the A549 cell line.

The role o f apoptotic genes in the process o f cellular differentiation remains to be 

elucidated. In general terms, explanations for apoptotic gene and protein expression in 

this process may be inferred from an overview o f tumour progression. The growth of a 

tumour is a general term indicating an alteration in size o f a cell mass and is the end 

result o f several interrelated influences, such as proliferation, differentiation and cell 

death, as well as cell contacts and blood supply. In patients, changes in cell number 

represent a balance between proliferation and death so alteration o f any of these 

parameters can influence the size o f a tumour mass. Thus, in a normal tissue, cell 

number remains constant because of a balance between proliferation, death and 

differentiation. In abnormal situations, increased cell number can result from either 

blocked death and/or differentiation or increased proliferation with no changes in the 

other two properties. Each o f these routes is used in carcinogenesis. It is apparent, 

therefore, that apoptosis may play a role in regulating cell number in differentiating cell 

populations. If  this were the case, the expression o f apoptotic-specific markers in cells 

undergoing differentiation would be expected.

4.2.1.3.1 Cell types undergoing apoptosis and differentiation concomitantly
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A number o f studies have been carried out correlating the causes and effect o f apoptotic 

behaviour in cells with their differentative capacity. Apoptosis has been induced in 

human leukaemia cell lines (Benito et al., 1996; Elstner et al., 1997) and endocrine cells 

(Eerola et al., 1999) undergoing differentiation. Maruoka et al. (1997) observed 

apoptosis in terminal differentiation o f keratinocytes and concluded that terminal 

differentiation was a pathway to apoptosis in this cell system. A putative model for this 

synergistic combination of apoptosis and differentiation in tumours was provided 

recently in ameloblastomas by Sandra et al. (2001). Ameloblastomas are malignant jaw 

tumours which stem from ameloblasts, cells which form tooth enamel. The authors 

proposed an anti-apoptotic proliferating site in the outer peripheral layer o f the tumour, 

and an inner pro-apoptotic differentiating layer at the centre. This model was devised by 

the specific locational identification o f various pro- and anti-apoptotic proteins in 

several tissue sections o f  ameloblastomas.

Apoptosis has also previously been induced by several agents known to induce 

differentiation. Dual induction o f both differentiation and apoptosis by the 

differentiating agent vitamin D3 has been observed in acute promyelocytic leukaemia 

(Elstner et al., 1997). Apoptosis has also been induced in colorectal carcinomas by this 

agent (Diaz et al., 2000), and by Retinoic acid (RA) in acute promyelocytic leukaemia 

(Gianni et al., 2000) and cultured keratinocytes (Islam et al., 2000). Further studies have 

indicated the effect o f the DIF-1 differentiating inducing factor from Dicytostelium 

discoideum to induce apoptosis in human insulin-secreting INS-1 cells (Fujimaki et al., 

2001).

These studies indicate that DLKP and A549 induced to differentiate by BrdU may also 

spontaneously undergo apoptosis. In this scenario, the expression o f pro-apoptotic 

markers might be expected to increase in differentiating cells, possibly accompanied by 

a decrease in anti-apoptotic markers. In the DLKP cell line, this is what was observed at 

the mRNA level. It is therefore relevant to examine the role these markers may play in 

the induced differentiation o f lung cell lines.

4.2.1.3.2 The effect o f differentiation on the expression o f apoptotic genes and

proteins
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Little is known o f the expression o f MRIT in cellular differentiation. No comparative 

studies have been carried out on expression of the MRIT gene or protein, although 

MRIT is known to interact with Bc1-Xl in mediating cell death. Expression of Bc1-xl 

protein has been observed to be upregulated following differentiation o f promyelocytic 

leukaemia cells (Chatteijee et al., 1997), liver carcinoma cells (Wakabayashi et al.,

2000), neuronal cells (Guillemain et al., 2000), and primary macrophages (Sevilla et al.,

2001).

The expression o f the anti-apoptotic Survivin protein has also been correlated with 

differentiation in human and mouse fetal tissue (Adida et al., 1998). However, studies 

relating expression o f Survivin gene or protein with regard to differentiation are limited.

As stated previously, the BA Xa gene codes for the 21kDa BAX protein product. 

Studies examining the expression of the BAXa gene in differentiating cells have been 

limited. However, expression of BAX protein has previously been correlated with 

differential regulation in tumours o f the central and peripheral nervous system 

(Krajewski et al., 1997). The significance o f BAX protein expression in the process of 

cellular differentiation has been outlined in a study by Feuerhake et al. (2000). The 

group observed different staining patterns o f BAX and Bcl-2 proteins in specific 

glandular epithelial cells which appeared to reflect particular cell differentiation states 

in human mammary gland epithelium. The different patterns also suggested that there 

are also different grades o f susceptibility towards apoptotic stimuli in individual 

glandular epithelial cells. Additional studies utilising the differentiating agent Retinoic 

Acid (RA) have identified a possible role for the BAX protein during differentiation. 

Sermadiras et al. (1997) observed increased expression o f BAX protein in cultured 

human melanocytes, but not keratinocytes, which were induced to differentiate. A 

further study by Sano et al. (2001) found increased BAX protein expression in human 

embryonal carcinoma cells following differentiation and apoptosis. However, studies 

comparing induced differentiation and apoptotic proteins in HL60 myeloid leukaemia 

cells (Manfredini et al., 1998) and neuronal cells (Guillemain et al., 2000) found no 

significant correlation with expression o f the BAX protein.
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It is becoming apparent that to carry out a comprehensive analysis o f pro- and anti- 

apoptotic genes in any cell system requires analysis o f all known apoptotic genes in 

order to ascertain the extent o f possible interactions between them. To date, little is 

understood o f the roles these apoptotic genes play at the transcriptional level of 

differentiation.

4.2.1.4 BrdU-induced expression o f genes involved in tumour progression

A significant increase in COX-2 mRNA expression was observed in DLKP cells 

induced to differentiate following exposure to BrdU. No significant effect on expression 

o f the gene was observed in the BrdU-exposed A549 cell line. The expression of the 

COX-1 gene was not significantly affected in either cell line following BrdU-induced 

differentiation.

COX-2 protein expression has previously been implicated in the differentiation of 

human keratinocytes (Leong et al., 1996), endometrial stromal cells (Han et al., 1996) 

and osteoblast-like cells (Koide et al., 1999). Expression o f COX-2 protein has also 

been associated with abnormal differentiation o f mouse epidermis, which has been 

found to be characteristic o f epithelial tumours, including squamous cell carcinomas of 

the skin (Neufang et al., 2001). Investigations into the effects o f COX-2 inhibitors on 

differentiation have met with varying results; Nakanishi et al. (2001) found that 

inhibitors o f cyclooxygenase-2 were able to suppress differentiation o f human 

leukaemia cell lines, while a COX-2 selective NSAID was observed to enhance the 

differentative properties o f sodium butyrate on colorectal carcinomas (Crew et al.,

2000).

It is currently unknown why expression of COX-2 should be upregulated during 

differentiation, or indeed what effect the gene/protein may have in the process. However, a 

study by Takiguchi et al. (1999) revealed that Prostaglandin E2 , exerts a biphasic effect on 

differentiation in osteoblast cells. Additionally, COX-2 expression can be increased 

dramatically in fibroblasts, vascular smooth muscle or endothelial cells to growth factors, 

hypoxia, phorbol esters or cytokines and in monocytes/macrophages by 

lipopolysaccharides (LPS) (Bolten, 1998; Vane et al., 1996). In light o f these studies, the
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inducible response o f COX-2 gene expression in response to BrdU is not wholly 

surprising, if  not fully understood.

4.2.1.5 BrdU induces mRNA expression o f E-cadherin and a-catenin in DLKP

RT-PCR analysis was carried out to examine expression o f genes involved in cell 

adhesion in BrdU-exposed DLKP and A549 cells. Three genes were chosen for 

analysis; E-cadherin, a-catenin and P-catenin. Expression of E-cadherin and a-catenin 

was increased in the BrdU-treated DLKP cells. It must be noted that these increases, 

while significant, were lower than those obtained for any o f the other genes studied. No 

change was observed in P-catenin expression in BrdU-treated DLKP. The slight 

increase in a-catenin (two-fold) was duplicated in the DNA microarray analysis 

(Section 4.2.2). No changes in expression o f any of the three genes studied was 

observed in the BrdU-exposed A549 cells.

Previous work in this laboratory (F. O’Sullivan, PhD. Thesis, 1999) had identified the 

induction o f the Ca dependent cell-cell adhesion molecule in BrdU-treated DLKP 

cells. Litvinov et al. (1997) had proposed a model in which Ep-CAM-mediated 

disruption o f adherens junctions was due to a redistribution o f E-cadherin on the cell 

surface, rather than a downregulation. This redistribution o f E-cadherin, and hence 

disruption o f its function, by Ep-CAM was via alterations in the focal adhesion proteins 

(specifically a-catenin and a-actinin) involved in binding E-cadherin to the 

cytoskeleton. O ’Sullivan (PhD. Thesis, 1999) subsequently observed significant 

downregulation o f a-catenin and a-actinin protein in BrdU-treated A549 and DLKP 

cell lines. The effect o f BrdU on E-cadherin expression was not examined in this study.

Cadherins are the “glue” by which adjacent epithelial cells are attached to each other; 

they are important in determining the pattern o f cells in a tissue and function as Ca - 

dependent homophilic cell-cell binding proteins (Nose et al., 1990). They are believed 

to modulate differentiation by co-signalling with other cell adhesion molecules (Section 

1.7.4.1). It is obvious therefore, that a change in expression o f any o f these
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genes/proteins may have a knock-on effect on expression of some or all of the other 

genes.

While disruption to E-cadherin binding is often seen as a prelude to metastatic events in 

cellular physiology, its downregulation is also considered a normal event during 

development and differentiation (Christofori and Semb, 1999). It is possible, however, 

that decreased expression o f these proteins may lead to a decrease in cell adhesion with 

an attendant increase in invasiveness phenotype. Down-regulation o f the E- 

cadherin/catenin complex has been implicated in oesophageal cancer (Kadowaki et ah, 

1994), gastric cancer (Streit et al., 1996, Shun et ah, 2001) and colon cancer 

(Vermeulen et ah, 1995; Ghadimi et ah, 1999). At present, little is known about 

cadherin expression in SCLC (Shimoyama et ah, 1989), although decreased a-catenin 

expression has been correlated with high cell proliferation and levels o f metastasis in 

NSCLC (Kimura et ah, 2000; Pirinen et ah, 2001).

It is apparent, therefore, that low levels o f expression o f the cadherin/catenin proteins 

may be associated with a poorly differentiated phenotype (Kimura et ah, 2000; Shun et 

ah, 2001). Increased gene expression o f both E-cadherin and a-catenin has been 

previously observed in differentiating pancreatic ductal carcinoma (Yonemasu et ah,

2001), while increased protein expression has been observed in well-differentiated 

hepatic bile duct carcinomas (Mikami et ah, 2001). Induction o f expression of E- 

cadherin and a-catenin protein has also been observed in response to the differentiating 

agent 1,25 dihydroxyvitamin D3 in human keratinocytes (Gniadecki et ah, 1997).

It is apparent from these studies that increased in E-cadherin and a-catenin gene 

expression associated with increased differentiation is not an isolated phenomenon. 

Indeed, the altered expression o f these two genes may provide further evidence o f a 

differentiated phenotype in lung carcinomas. Evidence has also been presented here that 

may correlate increased expression o f these genes with a reduced level o f cellular 

invasiveness. However, further work would be necessary to confirm this phenotype.

4.2.2 DNA microarray analysis reveals BrdU-induced gene expression changes after 

seven days exposure in the DLKP cell line
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Using DNA microarray analysis (Section 3.5), a total o f  597 genes were assayed for 

changes in expression in the DLKP cell line following seven days exposure to BrdU. 

This preliminary experiment was carried out both to examine the power and versatility 

o f this method in examining the effects o f various agents, including BrdU, on different 

cell systems. The seven-day BrdU DLKP sample was chosen for analysis for two 

reasons;

1. Most o f the gene expression changes already detected were in the DLKP, not the 

A549, cell line.

2. Most o f the genes which had increased expression in DLKP following BrdU 

exposure had already been significantly increased by this time point o f the 

experiment (Section 3.1.1).

3. At seven days BrdU exposure, a specific decrease in cell viability was observed 

which facilitated the death o f the cells at a significantly lowered concentration of 

drug relative to normal cells (Sections 3.1.2 and 4.2.1.1.2).

Following DNA microarray analysis, the expression of eighty-one genes was altered in 

the DLKP cells following BrdU exposure. However, many o f these increases or 

decreases were not felt to be o f significance (less than two-fold). As a result, a total of 

only thirty-eight genes were considered significantly affected in the cell line. Genes 

which were detected increased using this assay are summarised in table 3.5.2, genes 

displaying decreased expression are listed in table 3.5.3. Only the more significant 

expression changes will be discussed in detail here.

Sixteen genes (Table 3.5.2) were substantially increased in expression following BrdU 

treatment in DLKP. The largest increase was in the transcription factor ETR103, whose 

expression increased eleven-fold after seven days exposure to BrdU. ETR103 

expression has previously been detected to be increased in HeLa cells exposed to the 

gene-inducing agent (see Section 1.5.4.5) benzo[a]pyrene diol epoxide (BPDE) (Yu et 

al., 2000). Other highly significant increases were observed for p55CDC and Inil (both 

eight-fold) and for the Nuclease-sensitive element DNA-binding protein (NSEP) and 

EB1 protein (both seven-fold). p55CDC is a regulatory cell cycle protein (Weinstein,

1997) which is transcriptionally upregulated in HeLa and NIH3T3 cells following taxol 

exposure (Makino et al., 2001). Inil has been postulated as a potential tumour 

suppressor gene (Biegel et al., 1999). The EB1 family o f proteins have recently been
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implicated in microtubule assembly in mammalian cells (Bu and Su, 2001), while 

NSEP-1 has been postulated as a transcription factor which may recognise DNA with 

unusual secondary structure (Kolluri et al., 1992).

There were also a number o f gene expression increases which were deemed interesting 

although small in size. Expression o f the glutathione-S-transferase gene (GSTP1) was 

also increased two-fold in this sample. The MRP1 protein has previously been 

demonstrated to transport glutathione (GSH) conjugates o f drugs (Leier et al., 1994; 

Jedlitschly et al., 1994), while expression o f the gene was significantly increased in 

BrdU-treated DLKP (Sections 3.1.1 and 4.2.1.1). Whether or not the increased 

expression of both genes are connected in this system remains to be elucidated. 

Additionally, expression o f the a-catenin gene was increased two-fold after seven days 

exposure to BrdU. RT-PCR analysis had also detected a slightly smaller increase in 

expression o f this gene following BrdU treatment in DLKP (Section 3.1.1). Less 

significant increases in expression were observed for the DNA binding proteins ID-1 

and GNAS, the heat shock proteins HSPA1 and HSP27, ribosomal protein S I9, the 

fibronectin receptor P subunit (FNRB), mitogen-activated protein kinase p38, the DNA- 

damage-inducible GADD153 gene and the hepatoma-derived growth factor (HDGF).

A  total o f twenty genes were substantially decreased in expression in the BrdU-treated 

DLKP. H alf o f these downregulated genes, including the two largest decreases, coded 

for transcription factors. The largest decreases were in cAMP-response element binding 

protein (CREB2) and the c-myc oncogene (both seven-fold) after seven days exposure 

to BrdU. The c-myc oncogene has already been discussed (Section 1.7.4). CREB2 has 

previously been identified as essential for differentiation o f murine lens fibres (Tanaka 

et al., 1998). Other significant decreases were the 60S ribosomal protein L6 (RPL6) 

(five-fold) and Transcription initiation factor IID (four-fold). Little is known o f human 

RPL6, as the gene has only recently been mapped and sequenced (Kenmochi, et al.,

2000). TFTTD is the only general transcription factor (GTF) capable o f binding core 

promoter DNA both independently and specifically. The other GTFs bind DNA weakly 

on their own and it is the network of cooperative protein-protein interactions with 

TFIID and each other that allows them to form stable, specific DNA interactions (Carey 

and Smale, 2000). The functional implications o f downregulation o f transcription
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factors during differentiation are currently unclear. Decreased expression o f the CNBP, 

HIP116, GABP-P2, oct-2, STST6, COUP, Activator 1 and CACCC-box binding 

transcription factors was also observed. Additionally, human SPL6 ribosomal protein, 

SOD1 protein, N-ras, DNA-dependant protein kinase, VEGF, GPI, the EGF receptor 

and acyl-CoA-binding protein (ACBP) were also decreased in DLKP cells following 

seven days BrdU treatment. A two-fold decrease o f the glutathione-S-transferase gene 

M l polymorphism (GSTM1) was also observed. This result stands in marked contrast to 

the increase in expression of the GSTP1 polymorphism mentioned earlier.

Also, DNA microarray analysis indicated that the housekeeping genes Ubiquitin and 

Cytoplasmic p-actin were increased three- and two-fold respectively following BrdU 

exposure in DLKP cells. BrdU has also previously been shown to upregulate expression 

of the actin gene in B16 melanoma cells (Gomez et ah, 1995). The expression o f the 

other housekeeping genes was not affected, indicating that the amount o f RNA sample 

examined was not significantly greater than for the control sample. This result would 

indicate that BrdU upregulated expression o f these genes specifically.

This has important implications for the RT-PCR analysis o f RNA samples from BrdU- 

treated cells. Expression of P-actin was used as the internal control for all RT-PCRs 

outlined in this thesis. If  BrdU were to upregulate P-actin expression in DLKP or A549 

cells, this would have the affect o f decreasing the impact o f gene expression changes in 

the examined cells. However, as can be seen from Figs. 3 .1 .1 -3 .1 .13 , expression of the 

P-actin gene as detected by RT-PCR was not increased significantly in the BrdU-treated 

cells. Additionally, it may be accepted that the significant results detailed herein remain 

significant, as a lowered expression profile for P-actin in these cells would have the 

effect o f accentuating rather than decreasing the expression changes. It would be 

preferable, however, that all future RT-PCRs on BrdU-treated RNA samples utilise 

another, or additional internal control, such as GAPDH.

Very little overlap was observed between the genes examined by RT-PCR and those 

examined by DNA microarray. Gene overlap only occurred in five cases; the apoptotic 

genes BAX, Bcl-x and Bcl-2, a-catenin and c-myc. As already mentioned, the RT-PCR 

expression changes detected for a-catenin closely resemble those obtained by DNA
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microarray. Expression levels o f the Bcl-x and Bcl-2 genes remained unaffected in the 

seventh-day day sample, whether these levels were determined by DNA microarray or 

RT-PCR. However, a number o f discrepancies have arisen with comparison of the two 

techniques. Significantly, c-myc gene expression was decreased seven-fold following 

BrdU treatment. As mentioned previously (Section 4.2.1.2), BrdU-induced 

differentiation has been associated with decreased levels o f the c-myc mRNA transcript 

(Yen and Forbes, 1990; Valyi-Nagy et al., 1993). c-myc mRNA levels were also 

decreased following adriamycin-induced differentiation in MCF-7 cells (Fomari et al., 

1994). RT-PCR analysis, however, failed to detect any significant change in c-myc 

mRNA expression levels. In addition, expression o f the BAX gene remained unaffected 

by BrdU exposure in DLKP cells when examined by DNA microarray analysis, but is 

increased six-fold when analysed by RT-PCR (Section 3.1.1.9).

These comparisons show that out o f five overlapping genes assayed for expression 

between the two techniques, three express the same amount no matter which technique 

is used, while two, c-myc and BAX, are different. Additionally, the unexpected 

increased levels o f P-actin expression observed using DNA microarray analysis was not 

replicated in the RT-PCR technique. This poses the obvious question; which of the 

techniques used give is more accurate? Due to the fact that the RT-PCR results were 

repeated at least twice before confirmation of a significant increase or decrease was 

made, the results obtained via the RT-PCR technique must be considered the more 

accurate. However, this result, especially when coupled with the effects o f BrdU on the 

housekeeping gene expression levels detailed above, would tend to cast a dubious light 

on the expression levels detected by DNA microarray analysis. As a result, this method 

would warrant additional repeats to confirm the results already obtained.

However, this method has demonstrated the ability o f DNA microarrays to examine 

expression levels o f a larger number o f genes quickly and, when compared to RT-PCR, 

relatively effortlessly. Use of this method has already identified a number o f genes 

significantly affected by BrdU in DLKP cells, which may form the basis o f future 

studies into BrdU-related effects in this cell system.
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4.2.3 Gene expression in differentiated DLKP: The identification o f new 

transcriptional differentiation-specific markers?

The bulk o f the changes in gene expression observed here in response to BrdU exposure 

were observed in the DLKP cell line. As DLKP is a poorly differentiated cell line o f the 

lung (Law et ah, 1992) and BrdU had induced differentiation in this cell line, it is 

possible that these gene expression changes mimic those which would be observed 

during normal cellular differentiation in the lung. A number o f protein differentiation- 

specific markers for lung cell lines have already been identified, including fibroblast 

growth factor (Park et ah, 1998) and cytokines o f the IL-6 group (McCormick and 

Freshney, 2000). Work carried out in this laboratory has also identified the K8, K18 and 

K19 cytokeratins as differentiation-specific markers in lung cell lines in response to 

BrdU (McBride et ah, 1999; Meleady and Clynes, 2001). Previous studies have also 

identified the ribosomal protein L35A (Siavoshian et ah, 1999) and the cytochrome 

P450 gene CYP26 (Kim et ah, 2000) as differentiation-specific markers at the 

transcriptional level in lung cell lines. However, little is known of gene induction in 

response to differentiation in lung. It is possible, therefore, that these genes may 

constitute novel differentiation-specific markers in lung epithelial cell lines.
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4.3 Exposure to chemotherapeutic drugs induces gene expression but no change in 

drug resistance in DLKP cells

Expression changes in various genes studied here were divided up into those cells which 

were transiently-exposed to drug (Section 3.2) and the drug- selected cell lines (Section 

3.3). Cisplatin significantly induced gene expression o f MRP1, MRP2 and BCRP in the 

transiently-exposed DLKP, while selection in cisplatin resulted in increased MRP4 and 

MRP5 gene expression. Short-term exposure to VP 16 significantly increased gene 

expression o f MRP1, MRP2 and a-catenin, while selection in VP 16 resulted in 

increased MRP1 and MRP5 gene expression. Taxol significantly induced gene 

expression of MRP2, a-catenin and E-cadherin in DLKP. This drug was not used as a 

selection agent in DLKP.

DLKP cells were exposed to a variety o f chemotherapeutic drugs in order to ascertain 

the gene induction profiles for the treated cells. The benefits o f this study are threefold:

1. An examination o f genes induced by the drugs in DLKP would yield an accurate 

gene induction profile for each chemotherapeutic agent. It would then be possible to 

compare expression levels for each drug in order to build up an accurate picture of 

the types o f genes induced, and hence, a picture o f the expected phenotype o f the 

treated cells.

2. I f  the profile o f gene induction for any given drug was observed to be similar to that 

obtained for BrdU-treated DLKP, it could be inferred from this result that part o f the 

anti-tumour chemotherapeutic effect o f that drug might involve inducing a 

differentiated phenotype in the cancer cells.

3. A comparison between transiently-exposed (Section 3.2) and drug-selected (Section 

3.3) cells could also be made, in order to identify differences in expression incurred 

by the different treatment methods.

The results from the cisplatin- and VP16-selected DLKP will be discussed here together 

with the short-term, or transient exposures, while the results for the other drug 

selections will also be discussed separately.
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DLKP cells were exposed to three chemotherapeutic drugs routinely used in treating 

lung cancer, namely: cisplatin, taxol and VP 16. The modes o f action o f these drugs have 

previously been described (Section 1.5). The DLKP cells were exposed to the drugs 

over the same time frame as that examined for the BrdU-treated cells. DLKP cells were 

also selected in ten chemotherapeutic agents and their gene expression profiles 

elucidated.

4.3.1 Morphology: An indication that differentiation is induced by exposure to 

chemotherapeutic drugs in DLKP?

The morphological effects of BrdU-induced differentiation have already studied in this 

laboratory (P. Meleady, PhD. Thesis, 1997; D. Walsh, PhD. Thesis, 1999; F. 

O’Sullivan, PhD. Thesis, 1999). The principal alterations in morphology of A549 and 

DLKP cells exposed to BrdU include cell flattening and enlargement, accompanied by a 

decreased growth rate.

When the poorly differentiated DLKP cell line was exposed to chemotherapeutic drugs 

(Section 3.2.1), induction o f a differentiated phenotype was evidenced by significant 

changes in morphology. The cells became enlarged and assumed a flattened, elongated 

shape. These changes in cell size and shape were also accompanied by a decreased 

growth rate o f the cells.

Exposure to chemotherapeutic drugs other than those examined here has previously 

been shown to induce differentiation in human and animal cell lines (see Section 1.5.3). 

Taxol has been reported to induce differentiation in human choriocarcinoma cells 

(Marth et ah, 1995), leukaemia cells (Olah et ah, 1996) and in colon adenocarcinoma 

cells (Cohen et ah, 1999). Cisplatin induced a differentiated phenotype in 

oesteosarcoma cells (Tsuchiya et ah, 1993). The DNA topoisomerase II poison VP16 

also elicited a differentative effect in U937 promonocytic cells (Perez et ah, 1994; Perez 

et ah, 1997), as well as in human HL60 cells (Yung, 1994).

It was therefore apparent that in the DLKP cell system, exposure to the 

chemotherapeutic drugs cisplatin, taxol and VP 16 could induce a differentiated
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phenotype in those cells, similar to that induced by BrdU. It was therefore considered to 

be o f interest to compare gene expression profiles o f cells induced to differentiate by 

these separate agents.

4.3.2 Induced differentiation in DLKP results in gene induction o f specific genes

Previous instances o f gene induction following exposure to cisplatin, taxol and VP 16 

has already been reviewed (see Section 1.5.3.1). Here, the implications o f the induced 

genes in DLKP shall be discussed.

4.3.2.1 Gene induction response to cisplatin in DLKP

Cisplatin was observed to significantly induce gene expression o f MRP1, MRP2 and 

BCRP in the transiently-exposed DLKP. Selection o f DLKP cell lines in cisplatin 

resulted in increased MRP4 and MRP5 gene expression.

The method o f action o f cisplatin has been outlined in Section 1.5.2.2. MRP1 gene 

induction in response to exposure to cisplatin has previously been observed in human 

lung cancer specimens (Oguri et al., 1998) and in human leukaemic HL60 cells 

(Ishikawa et al., 1996). Expression levels in the HL60 cells could be induced to rise 

within 30hrs o f exposure to the drug. MRP2 gene induction has also previously been 

observed in human colorectal carcinomas (Hinoshita et al., 2000) in response to 

cisplatin exposure. There is no evidence in the literature o f increased BCRP expression 

following exposure to cisplatin.

MRP1 is thought to cause multidrug resistance by decreasing the intracellular 

concentration o f cytotoxic drugs, and although most MRP 1-expressing cell lines show a 

defect in accumulation (Gaj et al., 1998; Zaman et al., 1993; Krishnamachary et al., 

1993; Zaman et al., 1994), others do not (Gaj et al., 1998). Also, despite the expression 

o f MRP1/2 in cisplatin-resistant cell lines (Oguri et al., 1998), there is no evidence that 

any o f the MRP homologues or BCRP actively transport cisplatin. Decreased 

intracellular accumulation o f cisplatin and carboplatin has been associated with
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resistance to these chemotherapeutic drugs (Shen et al., 2000). The mechanism(s) by 

which cisplatin enters the cell, and by which decreased accumulation occurs in resistant 

cells have yet to be determined. It has generally been believed that cisplatin enters cells 

largely through passive diffusion, however, evidence provided by Shen et al. (2000), 

suggest the involvement o f a novel active transport process in the uptake o f cisplatin 

and carboplatin in to the human liver carcinoma cell line, BEL-7404. This uptake was 

significantly reduced in the cisplatin-resistant derivative 7404-CP20. Shen et al. (2000), 

demonstrated decreased MRP1 and MRP2 protein expression in this cisplatin resistant 

cell line making it highly unlikely that MRP1 or cMOAT are involved in reducing 

cisplatin or carboplatin influx or efflux in this particular cell line.

Selection in cisplatin appears to have induced a rather different expression profile to 

that observed for the short-term exposures. MRP4 expression increased two-fold in 

cisplatin-selected DLKP. MRP4 expression has previously been associated with high- 

level resistance to a number o f anti-human immunodeficiency virus drugs (reviewed in 

Borst et al., 2000). However, this is the first instance in the literature linking MRP4 

overexpression and cisplatin resistance. In contrast, MRP5 gene overexpression has 

been previously observed in lung cell lines exposed to cisplatin (Oguri et al., 2000). The 

authors observed that MRP5 expression was not rapidly induced by cisplatin over 24 

hrs. This result may explain the lack of MRP5 gene induction in the transiently-exposed 

samples.

4.3.2.2 Gene induction response to taxol (Paclitaxel) in DLKP

Taxol significantly induced gene expression o f MRP2, a-catenin and E-cadherin in the 

DLKP cell line. Taxol was not used as a selection agent in DLKP.

The mode o f action o f this drug has been outlined in Section 1.5.2.3. To date, many of 

the studies examining the effect o f taxol on gene induction have focussed on mdr-1. 

Dumontet et al. (1996) found that taxol exposure resulted in activation o f expression of 

the mdr-1 gene in the human MES-SA sarcoma cell line. Induction o f expression of 

mdr-1 mRNA was also observed in a number o f human ovarian cell lines by Yamamoto

3 9 0



et al. (2000), following exposure o f the cell lines to taxol. Work in this laboratory 

(Liang et al., 2001) revealed an increase in MRP1, MRP2 and MRP3 protein expression 

in human RPMI cells selected in taxol. Previous studies had also revealed increased 

expression o f MRP 1 protein in taxol-selected epitheloid sarcoma cell lines (Reinecke et 

al., 2000) and in colorectal carcinoma (Uchiyama-Kokubu et al., 2001). However, the 

authors concluded that this increased expression was not deemed sufficient to confer the 

observed resistance levels to the drug. Additional studies involving the characterisation 

o f MRP 1-overexpressing cell lines with a number o f chemotherapeutic drugs have 

demonstrated that these cell lines do not show increased resistance to taxol (Zaman et 

al., 1994; Breuninger et al., 1995; Doyle et al., 1995; Binaschi et al., 1995; Huang et 

al., 1997). There is no mention in the literature o f MRP2 gene induction in response to 

taxol exposure.

Taxol exposure decreased expression o f (3-catenin protein in human NSCLC cell lines 

without affecting a-catenin protein expression (Ling et al., 2001). The drug also 

decreased cytosolic E-cadherin in nasophamgeal carcinoma cells (Lou et al., 2000). 

Docetaxel (“taxotere”), a taxol analogue, was also found to enhance the expression of 

E-cadherin in human colon cancer cell lines (Eckert et al., 1997).

4.3.2.3 Gene induction response to VP16 in DLKP

VP 16 significantly induced gene expression o f MRP1, MRP2 and a-catenin in the 

poorly differentiated DLKP cell line. Selection in VP 16 resulted in increased MRP1 and 

MRP5 gene expression.

The method of action o f VP16 has been outlined in Section 1.5.2.5. Increased MRP1 

expression has previously been observed in VP16-exposed A549 cells (Trussardi et al.,

1998). VP16-resistant lung (Doyle et al., 1995) and bladder (Hasegawa et al., 1995) cell 

lines also overexpress MRP1. Additionally, Cui et al. (1999) reported a five-fold 

resistance to the drug in canine cells overexpressing MRP2 protein, although Kawabe et 

al. (1999) and Chen et al. (1999) both concluded that MRP2 gene overexpression did
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not confer resistance to VP 16. No correlations between a-catenin or MRP5 gene or 

protein expression and VP16 treatment have been found in the literature.

4.3.3 Induction o f gene expression does not affect the drug resistance profile of DLKP

The resistance profile o f the drug exposed DLKP cells to adriamycin, cisplatin, taxol 

and VP 16 was examined using in vitro toxicity assays. No change in the drug resistance 

profile o f the DLKP was observed following exposure o f the cells to the 

chemotherapeutic agents cisplatin, taxol and VP16 (Section 3.2.2).

This was observed despite the induction o f gene expression in genes thought to be 

associated with mediating multidrug resistance and apoptosis in the DLKP cells. This 

phenomenon has also been observed in previous studies (Licht et al., 1991). It would 

appear from this result that the induction o f expression o f these genes may not translate 

into active, functioning proteins. The functional implications o f the induction o f these 

genes remain to be elucidated. However, as described in Section 4.4, the induction of 

these genes may be related less to their functionality and more to the type of 

transcriptional machinery they utilise.

A significant fact to note is that short-term exposure to, and long-term selection in, 

VP 16 results in increased expression o f the MRP1 gene in DLKP. However, the latter 

treatment results in increased resistance to the drug, while the former situation does not. 

It is apparent, therefore, that additional elements must be functioning in the drug- 

selected cell line which may combine to confer the resistant phenotype.

4.3.4 Examination o f drug-selected cell lines and their correlation with transiently- 

exposed cells

As has been shown in the previous sections, selection of a cell line in a particular agent 

tends to confer a dissimilar gene expression response to that o f transient exposure. 

Transient exposure to cisplatin induced expression of MRP 1, MRP2 and BCRP, while
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selection in the drug significantly increased expression of MRP4 and MRP5 only. 

Short-term exposure to VP 16 significantly increased gene expression o f MRP 1, MRP2 

and a-catenin, while selection in VP 16 resulted in increased MRP1 and MRP 5 

expression. Comparisons between selection in Taxol and transient exposure to the drug 

could not be made as Taxol was not used as a selection agent in DLKP.

These results indicate that not only do separate drugs elicit differing gene expression 

profiles in the same cell system, but that these profiles are also subject to the method of 

exposure to that drug. This result has implications for the treatment o f cancer in the 

clinical setting as it indicates that the profiles o f genes expressed in tumours may vary 

over, as well as a result o f the chemotherapeutic regimen employed. However, further 

work would be necessary to confirm this hypothesis.

4.3.5 Examination o f drug-selected cell lines not correlated with transiently-exposed 

cells

The DLKP cell line was also selected out in a number o f chemotherapeutic agents not 

examined under transient exposure. A total o f eight extra drugs were used; these drugs 

and the gene expression changes which were elicited are summarised in Table 3.3.1.

All o f the observed changes were increases in gene expression, as observed for the 

transiently exposed DLKP. The most significant expression increases were for mdr-1 

expression in the taxotere-selected line (3 5-fold) and BCRP in the mitoxantrone- 

selected DLKP. Increased Pgp protein expression has previously been associated with 

resistance to taxotere in pancreatic carcinomas (Liu et al., 2001), while the drug has also 

been demonstrated to interact with Pgp (Shirakawa et al., 1999). BCRP expression has 

previously been observed in cell lines following exposure to mitoxantrone (Maliepaard 

et al., 1999; Ross et al., 1999), and indeed the BCRP gene is sometimes referred to as 

the Mitoxantrone resistance gene (MXR).
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4.4 BrdU- and drug-mediated induction of gene expression

It has been demonstrated in this study that the thymidine analogue BrdU was capable of 

inducing differentiation and gene expression in the poorly differentiated DLKP cell line 

and the adenocarcinoma A549 cell line. This induced differentiation was accompanied 

by significant increases and decreases in mRNA expression o f a number o f genes 

(Section 3.1.1). The particular gene expression profile observed for each cell line 

differed markedly, indicating that gene induction profiles may be dependant on the type 

o f cell system under scrutiny, as well as on the differentiation status o f the cell line.

Further work demonstrated that a number o f chemotherapeutic drugs were also capable 

of inducing a similar differentiated phenotype in the DLKP cell line. Short-term 

exposures (up to two weeks) to cisplatin, taxol and VP 16 induced differentiation which 

was indicated both by morphological changes and the induction o f different gene 

expression profiles (Section 3.2.1). The profiles o f genes induced by the drugs differed 

from those induced by BrdU. In addition, the induced gene expression profiles differed 

depending on which type of drug was used and also on whether the exposures were 

short-term or if  the cells were selected in drug over a longer period.

Increased expression o f these genes in the various systems described did not confer the 

expected phenotype in the cell systems studied. For instance, significant gene 

expression increases in DLKP cells o f MRPs 1, 2, 3 and BCRP, genes thought to be 

associated with conferring multidrug resistance, following exposure to BrdU did not 

increase the drug resistance o f those cells (Section 3.1.2). Similar results were observed 

for the drug-treated DLKP (Section 3.2.2). In marked contrast, DLKP cells which were 

selected for resistance to cisplatin and VP 16 displayed different gene expression 

profiles to those which were exposed to the drugs in the short-term (Section 3.3). 

Additionally, the existence o f certain similarities in gene induction between drug- 

exposed and drug-selected cells (i.e.) were not sufficient to significantly alter the 

phenotype of the drug-exposed cells. For example, the VP 16 drug-exposed DLKP cells 

expressed higher levels o f MRP 1 but did not show an increase in VP 16 resistance. In 

contrast, the DLKP cells selected for resistance to the drug also revealed elevated 

expression levels o f MRP1 (Section 4.3.3).
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It was clear, therefore, that the type of genes expressed in drug- and BrdU-treated cells 

depended on a number o f criteria which were not apparently linked to a functional 

occupation in those cells.

4.4.1 BrdU-upregulated genes in DLKP share common potential transcription factors

Transfac™ sequence analysis o f the 5’ promoter sequences o f nine o f the ten genes 

upregulated by BrdU identified one hundred and forty-seven potential transcription 

factor recognition sites when all the possible recognition motifs were collated. The 5’ 

promoter sequence o f the BAXa gene, although upregulated in BrdU-exposed DLKP 

cells, was not examined in this study as BLAST™ searches failed to identify the correct 

sequence data. Analysis o f these factors by hand, however, detected that only seven of 

these factors were shared between all nine genes. It was therefore possible that BrdU 

was upregulating expression of the genes via activation o f one (or all) o f the factors.

In order to attempt to explain the different gene induction profiles observed for the 

different inducing agents, a transcriptional model o f BrdU- and drug-induced 

differentiation was proposed. In this model, the up- or down-regulation in mRNA 

expression o f each o f the different genes could be explained by the utilisation of 

different transcription factors by the different agents studied. It would be presumed 

from this model that the genes induced to increase by a particular agent, for example 

BrdU, would share a common transcription factor which would be utilised to mediate 

upregulation o f the mRNA.

The gene induction effect o f BrdU was chosen as the first set o f results to analyse, as the 

greatest number o f gene expression changes were observed in this cell line in response 

to differentiation induced by this agent. To simplify the analysis o f the BrdU effect in 

DLKP, it was decided to examine only those genes which were upregulated in the cell 

line. In this manner, the action o f BrdU could be broadly said to have a similar effect: 

the increase in expression of the examined genes. In this way, it could be hypothesised 

that any putative transcription factors discovered could be expected to affect expression 

o f their prescribed genes in a positive regulatory fashion.
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A total o f one hundred and forty-seven potential transcription factors were identified 

which could bind to the promoter sequences o f nine o f the ten genes whose expression 

was upregulated in DLKP by BrdU (MRP1, MRP2, MRP3, BCRP, MRIT, COX-2, elF- 

2a , a-catenin and E-cadherin). The reduction in transcription factor number from one 

hundred and forty seven potential factors displayed by all nine genes to just seven 

factors potentially expressed in all nine also greatly simplified matters.

4.4.1.1 Classification of the common transcription factors

Despite the fact that the 147 factors were drawn roughly equally from all four 

Superclasses, the seven common potential factors were drawn largely from one 

Superclass; the Zinc-coordinating DNA-binding domains. Transcription factors are 

divided into four distinct domain Superclasses; based on different motifs used to bind 

DNA; Basic Domains, Zinc-coordinating DNA-binding domains, helix-tum-helix and 

(3-scaffold factors with minor groove contacts. These Superclasses are also sub-divided 

into Classes, Families, and Subfamilies, in descending order.

The Zinc-coordinating DNA binding domain Superclass includes the zinc finger motif 

Class o f factors. These were originally recognised in Factor TFIIA, which is required 

for RNA Pol III to transcribe 5S rRNA genes (Lewin, 1997). Zinc fingers take their 

name from their structure in which a small group o f conserved amino acids binds a zinc 

ion, and forms a relatively independent domain in the protein. They are a common motif 

in DNA-binding proteins, and are usually organised as a single series o f tandem repeats; 

for instance the Spl general transcription factor has a DNA-binding domain that 

consists o f three zinc-fingers (Desjarlais and Berg, 1992). Two Classes o f factors are of 

relevance within this Superclass; these are the diverse Cys4 zinc fingers and the 

Cys2His2 zinc finger domains. The diverse Cys4 zinc fingers contain the GATA Family 

of transcription factors, o f which three (out o f the seven) are represented as being 

potential common factors between the ten BrdU-upregulated genes. Ik-2 (or Ikaros) and 

MZF1 are from the second Class, the Cys2His2 zinc fmger domains. The remaining two 

common transcription factors are CdxA, from the helix-tum-helix Superclass of 

transcription factors, and AML-1 a, which is one o f the P-scaffold factors. This
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classification o f the seven transcription factors obtained from BrdU-induced expression 

was carried out with the aid o f the Transfac™ Transcription factor classification system 

(http ://transfac. gbf.de/TRANSFAC/cl/cl.htm).

From this perspective, it is apparent that the Zinc-finger superfamily o f transcription 

factors may play a disproportionate role in the BrdU-mediated increase in gene 

expression in human lung epithelial cells. An examination o f the other transcription 

factors contained within this Superclass tends to fortify this theory.

O f the seven common potential factors, five (>70%) o f these factors are contained 

within two Classes o f this Superclass of transcription factors. Other members o f this 

Superclass include the Retinoic acid receptor factors, which have already been 

postulated as being important in RA-mediated differentiation (Brand et ah, 1990) and 

the Vitamin D receptor, which may be o f importance in Vitamin D 3-mediated 

differentiation (Lazarova et ah, 2001). Other potentially relevant transcription factors in 

this Superclass include the Spl transcription factor, which has been postulated as a 

potential transcriptional regulator of MRP 1 (Zhu and Center, 1994) and YY1, which has 

been suggested in this laboratory to be a potential transcriptional regulator involved in 

BrdU-mediated differentiation o f DLKP cells (D. Walsh, PhD. Thesis 1999). Both Spl 

and YY1 are members o f the same Class as Ik-2 and MZF1, but they belong to the 

Ubiquitous Factor Family, whereas Ik-2 and MZF1 are from the Cell Cycle Regulator 

Family.

Additional transcription factors have previously been described as associated with 

differentiation in human cells. These factors include the AP-1 (Activating Protein-1) 

transcription factor, the c-fos and c-jun proto-oncogenes o f AP-1, c-myc and the Yin- 

Yang 1 (YY1) transcription factor. Pankov et al. (1994) discovered that RA-induced 

differentiation o f EC (Embryonal Carcinoma) and ES (Embryonal Stem) cells resulted 

in increased AP-1 expression, implying a possible role for AP-1 in the positive 

regulation of differentiation. Expression of c-fos and c-jun may also be induced 

throughout the cell cycle in both quiescent and differentiating cells (Curran, 1988). As 

described previously, downregulation o f the c-myc transcription factor expression has 

been demonstrated during differentiation o f human leukaemic and melanoma cell lines 

(Yen and Forbes, 1990; Valyi-Nagy et al., 1993). Also, treatment o f myoblasts with
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BrdU results in inhibition o f myogenesis, associated with an increase in expression of 

YY1 (Leeetal., 1992).

4.4.1.2 Identification of transcriptional elements already associated with genes

induced by BrdU and chemotherapeutic drugs

4.4.1.2.1 Transcriptional elements associated with BrdU-affected genes

Several previous studies have identified transcription factors which may be involved in 

transcriptionally regulating the expression o f genes upregulated here in DLKP by BrdU.

Zhu and Center (1994, 1996) identified the Spl transcription factor as the major 

transcription factor for MRP1 in a number o f human cell lines. The human Y-box 

binding protein YB-1 has previously been linked with the MDR phenotype in cells 

(Ohga et al., 1996) and was recently associated with expression o f MRP1 in human 

colon carcinoma cells (Stein et al., 2001). Additional studies have identified the AP-1 

binding site in the MRP1 promoter as important for gene expression (Kurz et al., 2001). 

It has also been proposed that transcriptional expression o f the MRP1 gene may be 

suppressed by wild-type p53 tumour suppressor gene expression (Wang and Beck,

1998). Subsequent studies have shown MRP1 protein expression to be associated with 

aberrant p53 expression in colorectal carcinoma (Fukushima et al., 1999) and prostate 

cancer (Sullivan et al., 2000).

Expression of the MRP2 gene has been associated with the expression o f retinoic acid 

receptors (Denson et al., 2000) and with the transcription factor C/EBPp (Tanaka et al.,

1999) in human hepatic cells. The retinoic acid receptor family has already been 

mentioned, C/EBPp belongs to the Basic Domain Superclass o f transcription factors.

The alpha-1 fetoprotein transcription factor (FTF) is the only transcription factor 

currently associated with regulation o f MRP3 (Inokuchi et al., 2001). This study
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correlated expression o f the factor in response to stimulation by bile salts in the 

enterohepatic circulation system.

Expression of the pro-apoptotic BAX and MRIT genes have also been associated with 

transcriptional control. MRIT has previously associated with expression of the NF- 

kappaB transcription factor (Chaudhary et al., 1999; Chaudhary et al., 2000). 

Expression of BAX has been demonstrated to be linked with expression o f the E2F-1 

transcription factor in gastric carcinoma (Atienza et al., 2000) and cortical neurons 

(Giovanni et al., 2000). It has also been postulated that transcriptional expression of this 

gene may, like MRP1, be under p53 control (Fortin et al., 2001).

Expression of a number o f transcription factors has also been associated with 

transcriptional regulation of the eukaryotic initiation factor gene eIF-2a. These include 

NF-kappaB (Srivastava et al., 1998) and the Nuclear Respiratory binding Factor 1 

(NRF-1) together with p3A2 and ewg (Efiok et al., 1994), poly-A binding protein 

(PABP) (Hensold et al., 1996), CCAAT/enhancer-binding protein (3 (Raught et al., 

1996) and a-pal (Jacob et al., 1989; Bassey et al., 1994; Efiok and Safer, 2000).

Expression o f COX-2 has been associated with the transcription factors NF-kappaB 

(Inoue and Tanabe et al., 1998), C/EBPp (Yuan et al., 2000) and AP-1 (Guo et al.,

2001).

The cell-cell adhesion protein E-cadherin has also been associated with expression of 

transcription factors. E-cadherin expression has recently been correlated with expression 

o f transcription factors AP-2 (Baldi et al., 2001), the vitamin D receptors (Palmer et al.,

2001) and the lymphoid enhancer-binding factor-1 (LEF-1) (Kobeliak et al., 2001). a - 

catenin expression has also been correlated with expression of the TNF-alpha gene 

(Lapteva et al., 2001).
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4.4.2 Expression o f GATA-2 and GATA-3 is upregulated in BrdU-treated

DLKP but not in A549 cells

RT-PCR analysis using primers designed for the seven transcription factors revealed 

increased expression o f the GATA-2 and GATA-3 genes in BrdU-treated DLKP cells. 

Neither GATA-2 nor GATA-3 gene expression was significantly altered in the BrdU- 

treated A549 cells. Furthermore, expression of the other transcription factors could not 

be assayed in these samples as the PCR optimisations had failed for these factors. It is 

therefore possible that a number o f the other factors may also be utilised by BrdU in 

mediating the gene expression increases observed. Further work, incorporating the 

design o f more successful primers for these (and other) factors is necessary.

The increase in GATA-2 and GATA-3 gene expression following BrdU treatment raises 

the distinct possibility that one (or both) o f these factors is involved in mediating BrdU- 

induced upregulation o f gene expression in the DLKP cell line.

4.4.2.1 GATA-2, but not GATA-3, is upregulated in VP16-treated DLKP cells

Expression o f GATA-2 was observed to be significantly increased in the drug-exposed 

DLKP cells. However, expression o f the gene was increased only in response to VP 16 

exposure in DLKP, whereas exposure to cisplatin and taxol had no effect on expression 

o f the gene. Also, expression o f GATA-3 was unaltered in any significant fashion 

following exposure to cisplatin, taxol and VP 16 in DLKP.

It appears from this result that cisplatin and taxol may not utilise expression of the 

GATA-2 or GATA-3 transcription factors in mediating gene expression. Some other, 

alternative factor(s) may be important in mediating gene upregulation from these agents. 

It is clear from the lists of potential factors compiled for these drugs that there are an 

additional number o f potential factors which may be utilised in mediating transcription 

o f the selected genes. The cisplatin induced genes share twenty-three common potential 

factors, the taxol genes eighteen and the VP16-induced genes have a total o f twenty- 

seven factors potentially in common (Section 3.4.5). Further work on these factors
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would be necessary to determine a potential transcription factor involved in mediating 

gene upregulation in response to these agents.

4.4.2.2 VP16: A similar mode of action to BrdU?

The observation that in DLKP, expression of the GATA-2 gene is increased following 

exposure to both VP 16 and BrdU indicates that gene upregulation mediated by the drug 

may mimic that mediated by the differentiating agent, BrdU.

This result also demonstrates a distinct difference between BrdU and VP 16 in mediating 

gene expression; BrdU may utilise both GATA factors whereas VP 16 appears to only 

utilise GATA-2. The reasons for this are currently unclear although it would appear that 

BrdU-mediated gene expression may recruit a wider number o f factors than that utilised 

by VP16.

Little is known of the role the GATA-2 and GATA-3 factors may play in lung cell 

differentiation. However, it is hoped that this finding may lead to further research 

elucidating the pathways these factors may take in mediating gene expression during 

lung cell differentiation.

4.4.2.3 In vitro examination of the effects of BrdU and chemotherapy on the

promoter regions of the MRP1 gene

Previous studies (Wang and Beck, 1998; Fukushima et al., 1999; Turzanski et al., 1999) 

identified a correlation with expression of MRP1 and aberrant p53 expression. The 

indication that this gene was transcriptionally controlled presented an opportunity to 

examine the role of the gene in vitro. As has been shown here, MRP1 gene expression 

has also been induced in the DLKP and A549 cell lines following differentiation with 

BrdU and in DLKP cells exposed to cisplatin and VP 16. It was considered interesting to 

examine in vitro the effects of these agents on the relative activity of various regions of 

the MRP1 gene promoter. It was hoped that exposure of truncated regions of the MRP1

401



promoter to these agents would result in the identification of the location of action of 

these agents on the 5’ UTR of the gene.

4.4.2.3.1 Sp 1 may be an important promoter of MRP 1 in untreated DLKP cells

Previous work by Zhu and Center (1994) in human leukaemic HL60 cells identified the 

major promoter region of the MRP1 gene as residing in bases -91 to +103 relative to 

the transcriptional start site of the gene. This area of the promoter is highly GC-rich and 

does not contain a TATA box for directing site-specific transcriptional initiation. This is 

similar to that found for the promoter region of the mdr-1 gene (Ueda et al., 1987). In 

the absence of a TATA box, alternate recognition sequences must be important in the 

recognition process. The authors observed that this area of the promoter contains 

recognition sequences exclusively for the Spl transcription factor (Zhu and Center,

1994). It would be expected from this that these multiple Spl sites would participate in 

Sp-1 factor binding and the modulation of transcription activity. Additional evidence for 

this model of MRP 1 transcription comes from further study by Zhu and Center (1996), 

in which site-directed mutagenesis of the Spl sequences resulted in decreased reporter 

gene activity in a number of plasmid-transfected cell lines.

In the present study, an identical fragment of the MRP1 promoter (bases -91 to +103) 

was observed to contain the area of most concentrated activity in the DLKP cell line. 

This result concurs with the findings of Zhu and Center (1994, 1996) that transcriptional 

MRP1 gene activity is controlled mainly from this area of the gene promoter and most 

likely involves the binding of the Spl transcription factor.

4.4.2.3.2 Exposure to BrdU alters the transcriptional activity of MRP1 promoter 

fragments

BrdU exposure of DLKP cells transfected with reporter plasmids attached to the MRP1 

promoter had the effect of shifting the transcriptional activity of the gene upstream, to 

the —411 to -91 base fragment. Luciferase activity based on this area of the promoter 

was increased four-fold on addition of BrdU to that of untreated cells. Transfac™
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analysis of this sequence revealed a potential binding site for GATA-2, as well as for 

the other common transcription factors, AML-la and CdxA.

Transcriptional activity on either side of this fragment of the promoter was decreased, 

the -91 to +103 base fragment yielding less than a third of normal activity. This may 

indicate the presence of a BrdU-repressive element in this section of the promoter. 

Activity remains low further upstream, in the -660 to —411 fragment, which also may 

indicate the presence of a BrdU-repressive element. It must be noted that basal 

luciferase activity for the fragment containing the full 2kb of MRP 1 promoter sequence 

was not affected by BrdU exposure in DLKP. This result suggests that the major 

promoter for BrdU-mediated upregulation of the MRP1 gene may lie outside of, 

(possibly upstream of) this 2kb region of the promoter.

4.4.2.3.3 Exposure to VP16, but not cisplatin or taxol, alters the transcriptional

activity of the MRP1 promoter fragments

Exposure to cisplatin and taxol was not observed to alter MRP1 promoter activity in 

DLKP. However, in both cases, luciferase activity was significantly lowered in the -91 

to +103 base fragment, the area of the promoter which would normally be the most 

active at a basal level in DLKP cells. This result may indicate the presence of cisplatin- 

and taxol-repressor elements in this area of the MRP1 promoter. The result obtained for 

the cisplatin-treated cells was surprising, as cisplatin increased MRP1 gene expression 

in DLKP. However, it is possible that, as for BrdU, a cisplatin-responsive element may 

be located further upstream than the 2kb of promoter sequence analysed here. In 

general, the levels of promoter activity in the presence of both drugs were slightly less 

than for normal or BrdU-exposed cells.

Exposure to VP 16, on the other hand, induced a similar response in MRP1 promoter 

activity as that obtained for BrdU. Luciferase production shifted upstream, to the —411 

to -91 base fragment, increasing four-fold. Transcriptional activity was again decreased 

on either side of this fragment, the -91 to +103 base fragment yielding less than half 

that of normal activity. However, in the -660 to —411 fragment, luciferase is double that 

of normal untreated cells, which indicates a partial response to the agent. Again, it must
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be noted that basal luciferase activity for the fragment containing the full 2kb of MRP 1 

promoter sequence was not affected by VP 16 exposure in DLKP. This result indicates 

that the major promoter for VP16-mediated upregulation of the MRP1 gene lies outside 

this 2kb region of the promoter.

4.4.2A Role of the zinc finger binding proteins GATA-2 and GATA-3 in

cellular transcription

The GATA family of transcription factors bind DNA at a GATA-consensus motif 

((T/A)GATA(A/G)) through a highly conserved C-terminal C4 zinc finger binding 

domain (Yamamoto et al., 1990). The family comprises six vertebrate members, two of 

which, GATA-1 and GATA-2, are expressed in various hematopoietic lineages (Tsai et 

al., 1989; Leonard et al., 1993). GATA-3 expression is abundant in the developing 

central nervous system, adrenal gland and kidney (Oosterwegel et al., 1992; Nardelli et 

al., 1999; Van Esch and Devriendt, 2001). Vital and non-redundant roles for the GATA 

family of transcription factors have already been demonstrated for normal embryonic 

development (Tsai et al., 1994; Pandolfi et al., 1995).

GATA-2 was one of the original proteins to define the GATA factors as a related family 

(Yamamoto et al., 1990). It was originally cloned from a chicken embryo erythroid 

cDNA library but later shown to be expressed in a broad spectrum of different tissues 

and cell types (Yamamoto et al., 1990). Early attention focussed on the role of GATA-2 

in haematopoiesis. Numerous studies demonstrated that expression of GATA-2 is not 

only closely associated with the proliferation of hematopoietic progenitor cells, but also 

with lineage specification (Leonard et al., 1993). Murine embryos bearing an 

inactivating targetted deletion of gata2 in the germline die at around 10 days post coitus 

(dpc) from pan-haematopoietic failure (Tsai et al., 1994). Little is known about the 

requirements for GATA-2 in developmental processes of cells outside the 

haematopoietic system because of the early embryonic lethality exhibited by the gata2 

germline mutants. When this developmental block was overcome by complementing the 

germline mutation with a gata2 YAC transgene, a second critical role for GATA-2 in 

urogenital development was revealed (Zhou et al., 1998). More recently, Zhou et al.

(2000) determined that GATA-2 is expressed in the ventral spinal cord in newly
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generated V2 intemeurons. This finding is in accordance with their earlier suggestion 

that expression of GATA-2 may be involved in the determination of specific central 

nervous system (CNS) cell lineages (Zhou et al., 1998). It would thus appear likely that 

GATA-2 acts very early in stem cell growth and/or differentiation (Jordan and Zant, 

1998). Expression of GATA-2 and Spl have been shown to be necessary for basal 

transcription in bovine endothelial cells (Zhang et al., 1995).

GATA-3 was originally identified as a protein that binds to the T cell receptor (TCR) 

gene enhancer (Ho et al., 1991). Within the hematopoietic system GATA-3 expression 

is confined to T lymphocytes and NK cells (Ho et al., 1991). GATA-3 is expressed in 

early steps of mouse hematopoietic development, in the intraembryonic regions known 

to give rise to hematopoietic precursors (Manaia et al., 2000). Antisense GATA-3 

oligonucleotides inhibited T cell development from fetal liver precursors in fetal thymic 

organ cultures (FTOC), indicating the critical importance of GATA-3 for early T cell 

development (Hattori et al., 1996). Taken together, these findings demonstrate an 

essential role for GATA-3 in T cell commitment (Staal et al., 2001). GATA-3-deficient 

mice, produced by gene targetting, die at 10-11.5 dpc and exhibit severe defects in 

hematopoiesis, abdominal haemorrhaging, retardation of the lower jaw, abnormal 

morphology of the central nervous system (CNS) (Pandolfi et al., 1995) and a block of 

T-lymphocyte differentiation (Ting et al., 1996; Hendriks et al., 1999). A role of 

GATA-3 in the expression of a Th2 cytokine gene was first established by Siegel et al. 

(1995). Alternatively, GATA-3 might be involved in the induction of cellular 

proliferation after the successful completion of TCR rearrangments. This hypothesis 

would be supported by findings that GATA-3 is markedly upregulated in differentiating 

Th2 cells (Zhang et al., 1997). Altogether, these findings suggest that GATA-3 is 

involved in multiple, even unrelated, functions during development.

4.4.2.5 A role for the GATA-2 and GATA-3 transcription factors in mediating

gene induction in response to BrdU and chemotherapy

The results outlined here imply that gene induction is an entirely subjective process to 

the agents of induction. Differing expression profiles have been observed in the DLKP 

cells line following not only exposure to BrdU and the three chemotherapeutic agents
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cisplatin, taxol and VP 16, but also depending on the length of exposure to that agent. 

Expression levels of the different genes increased by BrdU vary according to the length 

of time the differentiating agent has been applied to the cells. This phenomenon is also 

observed for the chemotherapeutic drugs. As well, selection in a chemotherapeutic drug 

frequently elicits a different expression profile than does transient exposure to that drug 

(Section 4.3.4).

This evidence, together with the finding that induction of expression of specific genes 

may not affect the phenotype of the cell pose an interesting question. What are the 

reasons for induction of such specific genes in response to these elements?

A transcriptional model of gene induction in response to BrdU and chemotherapy in the 

DLKP cell line is presented here. The first step of the induction pathway involves the 

induction of GATA-2 and GATA-3 transcription factor gene expression by BrdU. The 

method by which BrdU achieves increased expression of these factors is currently 

unclear, although its interaction with the actin cytoskeleton of the cells may be 

important (Section 4.2.2.1.6).

Induction of gene expression of MRPs 1-3, BCRP, 
BAX, MRIT, COX-2, eIF-2, alpha-catenin & E-cadherin

Following activation of GATA-2 and GATA-3 expression, the transcription factors 

interact with their constituent cofactors and the DNA of the DLKP cells to upregulate 

expression of the various genes expressed following BrdU treatment. Unfortunately, not 

enough is known of the co-factors recruited by these transcription factors in mediating 

transcription, nor of the role played by GATA-2 and GATA-3 in lung development and

406



differentiation. GATA-2 may also be a target for the gene induction effect of the DNA 

topo II poison VP 16, although it would appear that GATA-3 is not recruited by the 

drug. This result may suggest that the VP16-induced genes; namely MRP1, MRP2 and 

a-catenin, may be upregulated via the action of GATA-2 solely. This may help explain 

the differences observed in gene induction profiles between BrdU and VP 16, despite a 

potentially similar method of gene activation (Section 4.3.2.4).
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4.5 Analysis o f  the clinical study results

The clinical study was set up to investigate if a reliable method of analysis could be 

obtained using basic laboratory collection and analytical procedures. It was found that 

accurate and reliable results could be obtained from human tissue samples. The study 

also demonstrated the versatility of the results obtainable from such a study; RNA 

isolated from these tumours may be used to examine the expression of any gene for 

which PCR primers are available.

As outlined previously, only the Lung Primary tumour tissue samples constitute a study 

group of sufficient size from which conclusions may be drawn with any accuracy. The 

dearth of primary Breast and Oesophageal samples available for analysis render their 

analysis statistically unviable. The gene expression results for the lung primary samples 

will therefore be the only results discussed here.

4.5.1 Expression of MDR-related genes in Lung Primary carcinomas

One of the major problems in the cure of advanced NSCLC is the insensitivity to 

cytotoxic drug treatment of both primary tumours and the metastases. In-vitro studies 

have revealed different mechanisms of cytotoxic drug resistance in lung cancer cells 

(Clynes, 1993), however there is conflicting evidence as to whether these mechanisms 

play a significant enough role in the multiple-drug resistance profile of some tumours.

4.5.1.1 Expression of MDR-related genes in cancer

The clinical relevance of MRP 1 overexpression is uncertain but studies have indicated 

that MRP1 is commonly found in cells derived from solid tumours (Kruh et al., 1995; 

Izquierdo et al., 1996). High levels of MRP1 protein have been found in some cell lines 

derived from tumours that characteristically respond poorly to chemotherapy, e.g. lung 

cancer and melanoma, and patients with tumours expressing high levels of MRP 1 have 

significantly decreased survival times following chemotherapy (Ota et al., 1995). Two 

separate studies by Nooter et al. (1995; 1996), identified high expression levels of the
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MRP1 protein in chronic lymphocytic leukaemia (CLL) and prolymphocytic leukaemia 

(PLL), medium expression in oesophagus squamous cell carcinoma (ESCC), acute 

myeloid leukaemia (AML) and non-small cell lung cancer (NSCLC) and low expression 

in Wilm’s tumour, melanoma, acute lymphocytic leukaemia (ALL), chronic myelotic 

leukaemia (CML), hairy cell leukaemia (HCL), multiple myeloma (MM), soft tissue 

sarcoma (STS) and non-Hodgkin’s lymphoma (NHL). Low levels o f expression were 

also observed in cancers of the breast, bladder, colon, ovary, testis, head and neck, 

prostate and kidney. Expression of MRP1 protein in head and neck squamous cell 

carcinomas has also been observed (Tsuzuki et al., 1998). MRP1 mRNA expression has 

been observed in high-grade transitional bladder cell carcinomas (Clifford et al., 1996).

Filipits et al. (1996) found expression of MRP1 mRNA in all of 134 primary breast 

carcinoma specimens by RT-PCR. mdr-1 mRNA was also observed in 60% of the 

samples. Nooter et al. (1997a) showed MRP1 is frequently overexpressed in primary 

breast cancer and could be of prognostic significance in patients with small tumours. 

Further studies on recurrent breast cancer (Nooter et al., 1997b) which focussed on 

patients who were treated with chemotherapy as first-line systemic therapy for 

recurrence, and primary breast cancer patients (Ito et al., 1998), concluded that MRP1 is 

an important predictor o f poor prognosis. Dexter et al. (1998) found very low levels of 

MRP1 and mdr-1 expression in primary breast carcinomas, and while mdr-1 appeared to 

correlate well with age and histological parameters, MRP1 expression was independent 

of all other clinical parameters.

Decreased MRP2 expression has been correlated with cholestatic liver disease (Oswald 

et al., 2001; Zollner et al., 2001), while increased expression has been suggested to be 

of significance in renal cell carcinomas (Schuab et al., 1999) and colorectal carcinomas 

(Hinoshita et al., 2000). Mutations in this gene has also been associated with Dubin- 

Johnson syndrome (Toh et al., 1999; Tsujii et al., 1999; Mor-Cohen et al., 2001).

4.5.1.2 MRP4 and MRP5 are overexpressed in Primary Lung tumour tissue

RT-PCR analysis examined the expression of eight genes which may be associated with 

multidrug-resistance in cancer cells (MRPs 1 - 6 ,  mdr-1, BCRP) and an additional gene,
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known not to be involved in MDR, mdr-3. The study found that expression of MRP4 

and MRP5 may be linked with tumour progression in lung cancer. The expression of 

both genes was observed in the majority of unpaired tumour samples, as well as in a 

significantly higher number of tumour samples relative to their normal controls. 

Expression of the other genes could not be correlated with tumour progression in this 

sample study group. However, low levels of expression of the MRP1 and MRP2 genes 

was observed over most of the tissues analysed. The gene expression levels of MRP3, 

MRP6, BCRP, mdr-1 and mdr-3 were not felt to be significant.

Currently, no evidence exists for the association of either MRP4 or MRP5 in mediating 

tumour progression in any cell system. MRP4 has been reported to be expressed in a 

wide range of tissues (Lee et al., 1998), and may display a basic structure sufficient for 

GS-X pump activity (Bakos et al., 1998). Kool et al. (1997), screened a large number of 

human cell lines derived from various tissues and their resistant sublines selected with a 

number of chemotherapeutic agents. They reported that MRP4 was expressed only at 

low or very low levels in the cells lines they analysed and no overexpression of MRP4 

was detected in resistant sublines. Schuetz et al. (1999), discovered that the 

overexpression and amplification of the MRP4 gene could be correlated with the efflux 

of nucleoside-based antiviral drugs from mammalian cells. Still less is known about 

MRP5 (Borst et al., 1995). Kool et al. (1997), reported that MRP5 was expressed in a 

number of cell lines analysed, but was not highly overexpressed in any resistant 

sublines. Wijnholds et al. (1999), reported a possible connection between MRP5 and 

resistance to thio-purines although this remains to be substantiated by drug 

accumulation and vesicular transport studies (Borst et al., 1999). However, recently 

Carter et al. (2001) reported high levels of expression of MRP4 and MRP5 mRNA in 

patients with chronic myelogenous leukaemia (CML), so it is possible that these genes 

may play a prognostic role in expression of human cancers.

4.5.2 Expression of COX genes in Primary Lung carcinomas

The expression of both COX-1 and COX-2 was examined in the Primary Lung Tumour 

sample set. Expression of the COX-1 gene was not felt to be of significance in any of 

the samples, although this may also be due to the poor quality of the PCRs obtained for
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this gene. COX-2, on the other hand, was significantly upregulated in tumour tissue 

relative to the normal counterparts. COX-2 was overexpressed in 75% of the tumour 

samples that expressed the gene relative to the normal controls.

COX-2 overexpression has previously been associated with carcinogenesis in NSCLC 

(Ochiai et ah, 1999) and in primary lung adenocarcinomas (Achiwa et ah, 1999). 

Expression has also been correlated with poor patient prognosis in NSCLC (Khuri et ah, 

2001), while the COX-2 inhibitor, nimesulide, has been demonstrated to enhance 

cytotoxicity of various chemotherapeutic drugs in lung cancer cell lines (Hida et ah,

2000). Expression of the gene has also been observed in gastric gliomas (Shono et ah,

2001), bladder carcinoma (Komhoff et al., 2000; Shirama et ah, 2001), colon carcinoma 

(Chen et ah, 2001), colorectal carcinoma (Hull et ah, 2000; Masunaga et ah, 2000), 

pancreatic carcinoma (Merati et ah, 2001), cervical cancer (Ryu et ah, 2000), prostate 

(Yosimura et ah, 2000; Uotila et ah, 2001) and hepatic cancer (Kondo et ah, 1999; 

Rahman et ah, 2001). Successful inhibition of COX-2 usually results in potentiation of 

an attendant chemotherapeutic effect (Reddy et ah, 2000; Chen et al., 2001; Kokawa et 

ah, 2001).

4.5.3 Expression of apoptotic genes in Primary Lung carcinomas

RT-PCR analysis examined the expression of eight genes which are involved in 

apoptosis. Four genes, BAP, BAX, MRIT and Bcl-xs are pro-apoptotic genes, while 

four anti-apoptotic genes, B c1-x l , Bcl-2, BAG and Survivin were also included. The 

study found that the altered expression levels of the MRIT, B c1-x l  and Bcl-2 genes were 

significant in the lung tissue samples. The gene expression levels of BAP, BAX, Bcl-xs, 

BAG and Survivin were not felt to be of significance.

MRIT is pro-apoptotic, and is observed to interact with B c1-x l  in mediating apoptosis 

(Han et ah, 1997). As such, it would be expected that expression of the gene would be 

higher in normal tissue relative to tumour tissue. The gene was observed overexpressed 

in the majority (80%) of normal samples relative to the tumour equivalent in the Lung 

Primary sample group. This study is the first to suggest a possible link between 

expression of this gene and cancer development in a clinical setting.
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Expression of the anti-apoptotic B c1-x l  (Boise et al., 1 9 9 3 )  and Bcl-2 (Hunter and 

Parslow, 1 9 9 6 )  genes was also observed to be significantly correlated with tumour 

survival in the Lung Primary sample study. Bcl-xL was overexpressed in > 6 0 %  of 

tumours in tumour/normal sample pairs that expressed the gene, as well as in over 8 0 %  

of the unpaired tumour samples. No clinical correlations have yet been made for 

expression of B c1-x l  in lung cancer, although the gene has been suggested to be a 

prognostic marker for carcinomas of the pancreas (Friess et al., 1 9 9 8 ) ,  ovary (Liu et al., 

1 9 9 8 ) ,  head and neck (Pena et al., 1 9 9 9 )  and breast (Moore et al., 2 0 0 0 ) ,  as well as in 

B-cell lymphoma (Bairey et al., 1 9 9 9 ) ,  neuroepithelial tumours (Prayson et al., 2 0 0 0 ) ,  

neoplastic edometrium (Marone et al., 2 0 0 0 ) ,  ameloblastoma (Sandra et al., 2 0 0 1 )  and 

colorectal cancer (Biroccio et al., 2 0 0 1 ) .  Recent studies have also shown that B c1-Xl 

may mediate tumour resistance to chemotherapy (Nita et al., 2 0 0 0 )  and radiotherapy 

(Aebersold et al., 2 0 0 1 ) .

Bcl-2 was overexpressed in exactly 60% of tumours from the paired samples, as well as 

in all ten unpaired tumour samples. Bcl-2 has previously been postulated as a prognostic 

marker in NSCLC (Ohsaki et al., 1996; Higashiyama et al., 1997) and SCLC (Kaiser et 

al., 1996). Expression of the gene has also been correlated with progression of several 

other cancers, including eosphageal cell carcinoma (Takayama et al., 2001), pancreatic 

cancer (Campnai et al., 2001), colorectal carcinoma (Elkablawy et al., 2001), bladder 

carcinoma (Wolf et al., 2001) and prostate cancer (Van Brussel et al., 2001).

4.5.4 Expression of translation initiation genes in Primary Lung carcinomas

High levels of gene expression of eukaryotic initiation factor 2 (eIF-2), as characterised 

by expression of the eIF-2a subunit was observed in the majority of paired tumour 

samples (70%) and all unpaired tumour sample. From this result, it would appear that 

there may be a correlation between tumour proliferation and expression of a gene which 

is known to be essential for protein translation (Colhurst et al, 1987; Altman and 

Trachsel, 1993). No correlations were observed between expression of eIF4E in the 

tumour samples.
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Relatively few clinical studies have focussed on the role of eIF-2 in human tumour 

tissue specimens. Lobo et al. (2000) reported that eIF-2a protein expression was 

implicated in gastrointestinal cancer. However, there is no evidence in the literature of 

eIF2a gene expression. This finding may indicate a possible role for translation 

regulation in lung cancer progression.

4.5.6 Relevance of clinical data to gene expression results

Unfortunately, the lack of reliable clinical data available on most of the tumour samples 

supplied rendered accurate prognosis based on gene expression profiles redundant. 

However, a number of interesting correlations were drawn from the limited information 

available. The most interesting of these was that MRP1 gene expression was 

predominantly observed in tumours from male patients. This is the first case in the 

literature indicating that expression of this gene in the clinical setting may be sex- 

linked. Another interesting observation was that the median age of male patients was 

eight years older than female patients.

Gene expression results obtained from the clinical study demonstrated the high level of 

expression of the MRP1 and MRP2 genes in most of the tissues analysed. The potential 

clinical relevance of the following genes; MRP4, MRP5, COX-2, MRIT, B c1-x l , Bcl-2a 

and eIF-2a , was also demonstrated.
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4.6 U se o f  gene therapy to downregulate expression o f  the MRP1 gene

The Combination in vitro toxicity assay and IOV LtC4 transport studies outlined in 

Section 3.7 demonstrated the expression of a functioning MRP1 protein in the DLKP- 

SQ cell line. It was also shown here that MRP1 could be inhibited by the use of known 

MRP1 NSAID activity antagonists (Duffy et ah, 1998). It was therefore considered to 

attempt to downregulate expression of MRP1 expression using novel gene therapy 

mechanisms.

There is hope that selective anticancer drugs, with fewer cytotoxic side effects than 

conventional cancer chemotherapy, will be developed. This optimism is based on the 

identification of new cancer-associated molecular sites, which could allow the selective 

targetting of cancer cells, while sparing normal cells. Gene expression may also be 

altered at the transcriptional stage by use o f oligonucleotides that cause the formation of 

triple helixes without stable integration of genetic material into the genome. An 

alternative strategy is to use single-stranded oligonucleotides to modify gene expression 

at the translational step.

4.6.1 Use of Ribozyme Technology

4.6.1.1 Introduction to ribozymes and their usage

The word “ribozyme” is derived from the words ribonucleic acid (RNA) and enzyme, 

and it denotes an RNA molecule with catalytic properties (Kashani-Sabet and Scanlon, 

1995). The first ribozyme was described by Cech et al. (1981); an intervening sequence 

in the pre-rRNA of Tetrahymena thermophila which catalysed its own excision, in a 

process called “self-splicing”. The first truly catalytic ribozyme that could cleave other 

molecules with multiple turnover, was the 400-nucleotide RNA component of bacterial 

RnaseP (Guerrier-Takada et ah, 1983). To date, a number of naturally occurring 

ribozymes have been identified and can be classified into 6 groups :
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1. Ribozymes derived from self-splicing tetrahymena group I introns (Cech et. al,. 

1981; Kruger et ah, 1982);

2. RNA components of RNase P (Guerrier-Takada et al., 1983);

3. Hammerhead ribozymes (Uhlenbech, 1987)

4. Hairpin ribozymes (Buzayan et al., 1986);

5. Genomic and anti-genomic RNase of hepatitis 8 virus (Perotta and Been, 1992);

6. RNA transcripts of mitochondrial DNA plasmid of Neurospora (Symons, 1994).

The MRP1 ribozyme used in this study was a hammerhead ribozyme. As a result, only 

the hammerhead group of ribozymes will be discussed in detail.

4.6.1.2 Introduction to Hammerhead ribozymes

The name “hammerhead” derives from the predicted shape of the ribozymes secondary 

structure and describes the smallest of the six classes (Kashani-Sabet and Scanlon,

1995). Naturally occurring hammerhead ribozymes were found within RNA viruses and 

they act in cis during viral replication by the rolling circle mechanism (Bratty et al, 

1993). Through genetic engineering, the hammerhead was manipulated to enable it to 

cleave its target in trans and act in a truly catalytic manner (Uhlenbeck, 1987). Using in 

vitro mutagenesis studies of the plus strand of satellite RNA of tobacco ringspot virus 

(sTobRVO), the consensus sequences required to maintain catalytic cleavage by the 

ribozyme were defined (Haseloff and Gerlach, 1987). It is this information that allows 

the design o f ribozymes to target any gene of interest once the sequence is known.

In terms of secondary structure, the trans-acting hammerhead ribozyme developed by 

Haseloff and Gerlach (1987), is composed of the catalytic core (or hammerhead 

domain) region and three hybridising helices or stems (Fig. 3.9.2). Stems I and III 

hybridise to the flanking sequences of the cleavage site and act as an antisense, and the 

stem loop II is usually composed of eight complementary ribonucleotides in the loop 

structure (Kashani-Sabet and Scanlon, 1995). In terms of the substrate, the mutational 

analysis revealed the requirement of XUN sequences, with X being any nucleotide and 

N being A, C or U (Haseloff and Gerlach, 1988; Ruffner et a l, 1990). It is the
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likelihood of finding an appropriate target within a given gene sequence that makes 

hammerhead ribozymes such a potentially useful tool.

The basic reaction scheme of a ribozyme cleaving its target is as follows (Ohkawa et al.,

1995): First the substrate (together with Mg2+ ions) binds to the ribozyme via the 

formation of base pairs with stems I and III. Then, a specific phosphodiester bond in the 

bound substrate is cleaved by the action of the Mg2+ ions (the ribozyme functions as a 

metalloenzyme as it requires the presence of magnesium. Recent research has also 

identified zinc-dependant ribozymes (Li et al., 2000)). This cleavage generates products 

with 2’, 3’-cyclic phosphate and 5’-hydroxyl groups. Finally the cleaved fragments 

dissociate from the ribozyme and the liberated ribozyme is now available for a new 

series of catalytic events. With respect to the ribozyme itself, several requirements must 

be met for the development of an effective catalytic RNA. Several groups have probed 

the actual requirements within the catalytic core, which are almost exclusively 

composed of RNA (Perreault et al., 1990, 1991; Yang et al., 1992). An all DNA 

ribozyme was shown to be devoid of catalytic activity (Perreault et al., 1990). Further 

studies using DNA at specific sites established that the minimum ribonucleotide 

requirement is that at bases A15, A9, G5 and G8 (Perreault et al., 1990, 1991; Yang et al., 

1992).

It has been suggested that 12 bases may represent the optimal length of flanking 

sequence (Bertrand et al., 1994). In addition, substrate sequences flanking the cleavage 

site rich in A or U were favoured over GC rich sequences to enhance discrimination 

(Herschlag, 1991).

Transportation of the ribozyme into the cells has been achieved by using either 

exogenous delivery (using naked ribozymes complexed with cationic liposomes) or 

vector-based systems to promote ribozyme expression (endogenous delivery). In the 

case of exogenous delivery, the susceptibility of RNA oligonucleotides (including 

ribozymes) to ribonuclease attack intracellularly or in the serum, required the search for 

modifications to enhance ribozyme stability while maintaining cleavage capability. To 

this end, a number of chemical modifications of the nucleotides have been made. 

(Paolella et al., 1992). In contrast to exogenous delivery, many studies utilise the 

cellular machinery to express the ribozyme. Here, the ribozyme gene is cloned into an
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available vector (expression plasmid or retroviral vector) and delivered to the cells by 

transfection of the plasmid or by retroviral infection. Other delivery systems, such as 

cationic liposomes, adenoviruses and adeno-associated viruses (AAV), are being 

studied in order to optimize ribozyme activity (Kashani-Sabet and Scanlon, 1995). The

choice of delivery system can depend heavily on the disease type and type of promoter

used.

Once the ribozyme has been successfully introduced intracellularly, demonstration of 

ribozyme activity is required. Expression of the ribozyme itself can be detected by 

reverse-transcriptase-polymerase chain reaction (RT-PCR) or Northern blot analysis. 

Proof of efficacy of the ribozyme is reliant on a demonstration of inhibition of the target 

gene expression (at RNA and/or protein level) and any downstream phenotypic effects 

such as decreased tumor growth, viral replication or drug resistance. As the ribozyme 

has the potential to act as antisense, it is desirable to demonstrate that the ribozyme 

retains the ability to cleave. Kashani-Sabet et al. (1992) have designed an in vitro assay 

system for assessing ribozyme efficacy at cleaving the target sequence. Researchers 

have also shown that cellular extracts of ribozyme expressing cells cleave target RNA in 

vitro (Chang et al., 1990; Scanlon et al., 1991; Kashani-Sabet et al., 1992), suggesting 

that the ribozyme expressed intracellularly retains the ability to cleave its target. 

However, detection of the cleavage products has been elusive in many studies, due, 

most likely, to the rapid degradation of short RNAs. Some studies have detected such 

products by PCR analysis (Kashani-Sabet et al., 1992; Cantor et al., 1993). Detection of 

the cleaved fragment of mdr-1 RNA was reported by Northern analysis in human 

ovarian carcinoma cells (Scanlon et al., 1994).

4.6.1.3 Use of ribozymes in the study of MDR

Several groups have demonstrated ribozyme-mediated modulation of MDR in human 

cancer cells. Scanlon et al. (1994) reported the reversal of the MDR phenotype in 

human ovarian carcinoma cells using both an mdr-1 ribozyme and a fos  ribozyme. The 

mdr-1 ribozyme has also been shown to be effective in a number of other MDR cell 

types. Holm et al. (1994) subsequently reported the reversal of daunorubicin resistance
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in resistant human pancreatic carcinoma cells. Previous work in this laboratory 

identified a similar effect for the ribozyme in two lung cell lines; transfected DLKP- 

A2B and SKMES-1ADR were found to be more sensitive to adriamycin, vincristine and 

VP-16 (Daly et al., 1996). The anti-mdr-1 ribozyme does not result in complete reversal 

of resistance to the level of the sensitive parent. Possibly the level of mdr-1 mRNA 

remaining in the mdr-1 ribozyme transfectants is capable of mediating drug resistance 

and/or other mechanism of resistance may be present in these lines.

Ribozyme studies can also be used in functional assays of multi-drug resistance. 

Eijdems and co-workers report the down-regulation of mdr-1 mRNA using an mdr-1 

ribozyme targeted at codon 196 (Kobayashi et al., 1994; Eijdems et al., 1995) in a 

human non-small cell lung cancer cell line SW-1573 selected in a low concentration of 

doxorubicin. In a clone having reduced mdr-1 mRNA level there was no detectable 

change in sensitivity to drug which suggests that mdr-1 does not contribute to drug- 

resistance in these cells. These authors have concluded that resistance in this cell line is 

associated with the presence of an altered form of MRP1. Hatanaka et al. (2001) 

recently used a hammerhead anti-MRP 1 ribozyme to inactivate MRP1 function in a 

multidrug resistant cancer cell line, KB8-5. Expression of the ribozyme was P-actin 

promoter-driven, and was targetted to bases 1162-1176 of the MRP1 coding sequence, 

an area which has previously been shown to be essential for protein activity (Kast et al., 

1997). This is also the same ribozyme which was used to downregulate MRP1 

expression in DLKP-SQ cells in this study. The group observed decreased MRP1 

mRNA expression in the transfected cells but no significant decrease in the multidrug 

resistance profile. Further work in that laboratory (Nagata et al., 2001) recorded reversal 

of the multidrug resistance phenotype in human colon cancer cells using a ribozyme to 

gamma-Glutamylcysteine (gamma-GCS). Gamma-GCS is a key enzyme in glutathione 

(GSH) synthesis (reviewed in Griffith and Mulcahy, 1999), which may be utilised by 

MRP1 in mediating multidrug resistance (Leier et al., 1994; Jedlitschly et al., 1994).
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4.6.1.4 The MRP1 ribozyme was not capable of downregulating MRP1 protein

or mRNA in DLKP-SQ cells

Expression of the pHP plasmid containing the MRP1 ribozyme was detected in 

transfected cells DLKP-SQ clones using pHp expression primers listed in Appendix A 

(Table 7.1 A) (Ng et al., 1985). These primers bind to the P-act in promoter sequence 

and at the polylinker site of the plasmid, yielding an RT-PCR product of 118bp. 

Expression of this PCR product would thus imply expression of the ribozyme, as this 

section is located just before the cloned MRP1 ribozyme sequence. RT-PCR was not 

carried out on the ribozyme RNA sequence due to both the small size of the fragment 

(42 bases) and the fact that most of the sequence would be inaccessible for primer 

binding.

However, expression of the MRP1 ribozyme in the low-MRPl-expressing DLKP-SQ 

cells did not result in downregulation of MRP 1 mRNA. A decrease in MRP1 protein 

expression in a small number of ribozyme-expressing clones was observed, although in 

the majority o f clones expression of the protein was not affected. This decrease in 

protein expression was not accompanied by any change in the drug-resistance profiles 

of the transfected cells, as measured by vincristine resistance. As a result, it must be 

concluded that the MRP1 ribozyme, while achieving decreased MRP1 protein 

expression in a small number of clones, did not succeed in modulating the drug 

resistance profile of the DLKP-SQ cells.

An in vitro cleavage assay carried out on the MRP1 ribozyme as described by Kashani- 

Sabet et al. (1992) demonstrated that the purified ribozyme was capable of cleaving the 

target sequence in vitro. Cell extract isolated from clones also demonstrated cleavage of 

the target, suggesting that the ribozyme expressed intracellularly retains the ability to 

cleave its target, and that this process was time dependant, significant cleavage only 

being observed over 24hrs. Such in vitro selection of ribozymes is now currently being 

utilised for a range of target genes to identify catalytic ribozymes capable of efficient 

cleavage (reviewed in Pan, 1997). Once a designed ribozyme has been determined as 

functional, exogenous or endogenous delivery of the ribozyme to the target cells and its 

subsequent assessment in vivo will be carried out. Ribozymes directed against the
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multidrag-associated genes MRP2 (Matema et al., 2001) and BCRP (Kowalski et al.,

2001) have been designed using this method. However, as outlined here, previous 

studies have indicated that the efficacy of ribozyme-mediated cleavage in vitro may not 

always translate into similar efficiency in vivo (Kato et al., 2001).

4.6.1.5 Was the MRP1 ribozyme capable of targetting a-catenin expression?

In order to investigate if  the chosen MRP1 was complementary to other human genes, a 

BLAST™ search (http://www.ncbi.nlm.nih. r o v :8 0 /B  LAST) examining “short nearly 

exact matches” was carried out on the ribozyme target sequence. The results are 

summarised on Table 3.9.1. As can be seen, the MRP1 ribozyme target sequence shared 

roughly 8 5 %  sequence similarity with the human a-catenin coding sequence, among 

others. It was therefore possible that a catalytically active ribozyme would downregulate 

expression of this gene as well as MRP1 in the DLKP-SQ cells.

However, it was certain that this would not affect detection of changes in MRP1 gene 

and protein expression. An identical BLAST™ search was carried out on the MRP1 RT- 

PCR primers, which demonstrated that these primers shared no sequence homology at 

all with a-catenin. Similarly, the detection of MRP 1 protein would not be affected as 

the size of MRP 1 (190kDa) was significantly different to that of a-catenin (102 kDa) 

(Ozawa et al., 1989). As well, there is no indication that the MRP1 R1 antibody, 

specific for MRP1, should detect a-catenin protein expression. Additionally, the 

functional assays carried out in Section 3.7 (combination assay, IOV assay) indicate the 

expression of a functioning MRP1 protein in the DLKP-SQ cell line, and the ability to 

impair that function through known MRP1 inhibitory mechanisms (NSAIDs).

It was, therefore, feasible to proceed with the attempted specific downregulation of the 

MRP1 gene using the ribozyme. Unfortunately, in this study, the ribozyme was not 

observed to significantly affect expression of either the MRP1 gene or protein or affect 

drug resistance, despite being demonstrated to be catalytically active in vivo. As a result, 

it was deemed unnecessary to examine the expression levels of the a-catenin gene in the 

transfected cells.
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In conclusion, while attempts to modulate MDR with the use of mdr-1 ribozymes have 

met with some success, efficient downregulation of the MRP1 mRNA using this method 

remains elusive. It is hoped that further research in this area, combined with the 

knowledge gained from MRP1 antisense research (Section 4.7) may yield more 

appropriate targets.

4.6.2 Use of Antisense Technology

4.6.2.1 Introduction to antisense and their usage

Antisense oligonucleotides are unmodified or chemically modified single-stranded 

DNA molecules. They are typically 13-25 nucleotides long and are specifically 

designed to hybridise to corresponding RNA by Watson-Crick binding. This 

corresponding RNA strand is termed the ‘sense’ strand. Affinity between the antisense 

oligonucleotide and target polynucleotide increases as the length of the antisense 

molecule increases, due to the increased hydrogen bonding between bases (Crooke and 

Bennett, 1996). Theoretically, at least, this allows for the design of drugs to attack any 

unwanted or mutated form of a gene, and leave the normal copy of the gene untouched, 

even if the two forms differ by only a single base pair or nucleotide (Crooke and 

Bennett, 1996).

Antisense molecules can consist of relatively short synthetic oligonucleotides 

introduced into cellular systems by various means (Scanlon et al., 1995; Crooke and 

Bennett, 1996). Alternatively, antisense molecules can consist of a whole gene, or a 

specific fragment of a gene, cloned into an expression vector in a reverse orientation 

and transfected into a cell, where it is expressed as antisense RNA either endogenously 

or upon stimulation (Scanlon et al., 1995; Branch, 1996; Tolume et al., 1996; Zhang, 

1996; Sczakiel, 1997).

There are a large number of antisense clinical trials in humans and animals worldwide, 

including the target genes Bcl-2, Survivin, B c1-x l , c-myc, RAS and BCR-ABL 

(reviewed in Tamm et al., 2001).
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4.6.2.2 M echanism s o f  antisense action

The mechanisms by which interactions of antisense oligonucleotides with nucleic acids 

may induce biological effects are quite complex. The most basic mode of action of 

antisense is an occupancy-only one (Crooke and Bennett, 1996). The antisense acts as a 

classic competitive antagonist by binding to specific sequences, inhibiting the 

interaction of the RNA or DNA with proteins, other nucleic acids or factors required for 

the essential steps in the intermediary metabolism of the RNA or its utilisation by the 

cell. Another mechanism is the inhibition of excision of introns or ‘splicing’, which is a 

key step in the intermediary metabolism of most mRNA molecules (Crooke and 

Bennett, 1996). The mechanism for which the majority o f oligonucleotides have been 

designed to date is to cause translational arrest by binding to the translation initiation 

codon or alternatively to bind to areas in the coding region to attempt steric hindrance of 

ribosome progression along the mRNA (Brysch and Schilingensiepen, 1994; Crooke 

and Bennett, 1996; Bouffard et al., 1996; Probst and Skutella, 1996). Although the 

ribosomal machinery is quite powerful and tends to sweep away most obstacles in its 

path, targeting the AUG initiation codon where the ribosomes first begin translation has 

been shown to be a very effective target (Jaroszewski et al., 1990; Rivoltini et al., 1990; 

Clynes et al., 1992; Thierry et al., 1993; Alahari et al., 1996; Stewart et al., 1996).

One of the most important mechanisms of action of DNA based-antisense targeted to 

RNA is the activation of ribonuclease H (RNase H) (Crooke and Bennett, 1996; 

Bouffard et al., 1996; Giles et al., 1995; Branch, 1996). RNase H is an ubiquitous 

enzyme that selectively cleaves the RNA component of RNA-DNA duplexes. Other 

mechanisms of inhibition of translation include interference with secondary structures, 

such as stem loops, (Ecker et al., 1992; Thierry et al., 1993; Crooke and Bennett, 1996), 

inhibition of 5’ capping (Alahari et al., 1996; Stewart et al., 1996; Crooke and Bennett,

1996) and interference with 3’ polyadenylation (Chiang et a l, 1991; Alahari et al., 

1996; Stewart et al., 1996). Oligonucleotides conjugated to alkylating and 

photoactivable alkylating species have been synthesised. These can then inhibit the 

target DNA by covalently modifying them, rendering them non-functional (Crooke and 

Bennett, 1996). Activation of mRNA breakdown is not universal, however; Probst and 

Skatella (1996) found elevation of specific mRNAs by antisense, but not by sense 

treatments.
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Numerous chemical modifications have been made to the oligonucleotide backbones 

and sugar bases to render them more nuclease resistant and give them greater affinity to 

their targets. The earliest modifications involved substituting the non-bridging oxygen 

atoms in the intemucleotide bonds with either a methyl or a sulphur group to give 

methylphosphonate and phosphorothioate oligodeoxynucleotides respectively (Marcus- 

Sekura et al., 1987; Matsukura et al., 1987). This made the oligonucleotides more 

resistant to nuclease degradation, which was a problem for natural phosphodiester 

oligonucleotides (Wickstrom, 1986), thus extending the half-life of the oligonucleotides 

and improving their efficacy. Phosphorothioates retain the ability to activate RNaseH 

(Gao et al., 1992). As a result, phosphorothioate oligos remain the most widely used 

base analogue, and are currently being tested in a number o f clinical trials (reviewed in 

Tamm et al., 2001).

The Second Generation™ chimera oligonucleotides (see Section 2.4.4.1) used in this 

study were commercially available oligonucleotides which had previously been used 

successfully in studies on the intracellular adhesion molecule 1 (Chiang et al., 1991) 

and against Ha-ras (Harvey-Ras) mRNA (Monia et al., 1992). The structure of these 

patented oligonucleotides was a combination of phosphorothioate and 

methylphosphonate. They were designed to incorporate the benefits of both oligo types; 

increased resistance to nuclease degradation conferred by a phosphorothioate backbone, 

while also remaining non-toxic to the target cells (methylphosphonate). The oligos were 

also capable of recruiting RNaseH for cleavage.

The ubiquitous enzyme RNaseH can cause unspecific side effects. It can cleave DNA- 

RNA duplexes which are as short as 4 bp in vitro and lObp in vivo (Nakamura et al., 

1991). As a result, it is probably not possible to obtain cleavage of an intended RNA 

target without causing at least partial degradation of many nontargeted RNAs. It is 

therefore prudent to screen potential antisense oligonucleotides against gene databases 

to identify and select those expected to knock out the fewest essential genes.

It is clear that there is a requirement, when designing antisense experiments, for strict 

and rigorous control measures, to allow the clear and unambiguous demonstration of an 

antisense effect. There are now a number of generally accepted guidelines for the design 

and evaluation of antisense experiments (Wagner, 1995; Branch, 1996).
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1. There should be a clear demonstration of a decrease in the levels of the target 

protein. Showing a decrease in the mRNA levels of a target gene is not a prerequisite, 

as it requires that the oligonucleotide in question being able to activate RNaseH, and 

implies that blockade of the ribosomal readthrough is irrelevant. If, however, the 

measurement of target protein levels is omitted for whatever reason, additional controls 

should be included that demonstrate a lack of effect on cell lines that do not have the 

target sequence.

2. The choice of target sequence must be made carefully. Many investigators have 

chosen to target the translation initiation site of a mRNA on the assumption that this 

region is important and accessible. However, most regions are now thought to be 

accessible (Dean et al. 1994), with the relative efficacy of different sites depending on 

secondary structures and the chemistry of the oligo modification (Fenster et al. 1994). 

To avoid biasing the outcome of an experiment by the choice of target sequence 

selection, it is important to show that the same effect is produced by more than one 

antisense sequence.

3. The choice of control sequences is a critical element in the design of any antisense 

experiment. There are four types of control oligos that should be considered; Sense, 

Scrambled, Mismatch and Mismatch Target. Ideally, the control should differ from the 

antisense sequence no more than is necessary to prevent specific hybridisation. There is 

no scientifically correct number o f controls to employ in a certain experiment. The more 

control oligos that are used, however, the more likely that the observed end point has 

resulted from a true antisense mechanism.

4.6 .2.3 Use of antisense to modulate MDR

Jaroszewski et al. (1990), designed five different phosphorothioate oligos which were 

used to down regulate mdr-1 in the human adriamycin-resistant breast cancer cell line 

MCF-7 ADR. Of the five oligos tested the most effective was the one targeted at 

nucleotide +18 to +32 in relation to the first base in the mRNA sequence which caused 

a 4-fold increase in Adriamycin toxicity. Rivoltini et al. (1990) used a 12 bp 

phosphodiester oligo targeted to bases -6 to +6 of mdr-1 mRNA to reduce Pgp 

expression levels in human colorectal adenocarcinoma cells LoVo/Dx. This was 

accompanied by a 100-fold reduction in the cell line’s resistance to adriamycin. Clynes
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et al. (1992) found that antisense, but not sense, oligodeoxynucleotides corresponding to 

the first 18 bases of the human mdr-1 sequence caused an increase in adriamycin 

sensitivity in the human lung squamous cell PGP-overexpressing MDR line DLKP-A, 

and also, perhaps surprisingly in view of some sequence difference between the species, 

in the hamster MDR line CHrC5.

Alahari et al. (1996) conducted an extensive study, analysing 32 different 

phosphorothioate oligonucleotides spanning almost every region of the mdr-1 mRNA 

including the 5’ Untranslated, AUG codon, Coding (splice junction), open reading 

frame (ORF), and stop codon, 3’ untranslated and 5’ Cap. The cells used were mouse 

NIH3T3 fibroblasts, which had been transfected with an expression plasmid containing 

the human mdr-1 cDNA (pSKl MDR-1). One oligonucleotide which stood out from the 

others was one overlapping the AUG start codon (AS 5995), as it caused a substantial 

reduction in the mdr-1 message levels as measured by Northern blots. This 

oligonucleotide was thus chosen to optimise the RNaseH in vitro cleavage assay in this 

study. The other sequences tested were largely ineffective, including two other 

oligonucleotides that also overlapped the AUG codon. Maximum specific reduction on 

mdr-1 mRNA was observed after 24h treatment of the cells with AS 5995 (Alahari et al.

1996) but reduction occurred only with the use of serum-free media and cationic 

liposomes. Multiple treatments with the AS 5995 did not cause any greater specific 

reduction in the mdr-1 messenger levels than a single treatment, whereas greater 

cytotoxicity was observed. The reduction in the mRNA expression was found to be 

readily reversible after the 24h exposure to AS 5995, with normal levels returning after 

24 h if the cells were returned to complete culture medium.

The first report of the use of antisense oligonucleotides for the reduction of MRP1 

expression came from Stewart et al. (1996). This group identified two oligonucleotides, 

(ISIS 7597 and 7598) from sixteen designed oligonucleotides (15 phosphorothioate and 

one 2’-O-methyl derivative) which were effective at downregulating MRP1 protein and 

mRNA in HeLa cells. Subsequent experimentation was discontinued on ISIS 7598 

because of its complementarity to a region highly conserved among the ABC transporter 

superfamily which could potentially affect the expression of other proteins, making it 

less specific. A 2’-modified ISIS 7597 oligonucleotide was again observed to decrease 

MRP1 mRNA and protein levels in the HeLa cell line in a subsequent study (Canitrot et 

al., 1996). The authors also demonstrated the role of RNaseH in the reduction of MRP1
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mRNA levels. By using two DNA probes for Northern blots corresponding to regions in 

the 5’ and 3’ coding ends of the mRNA, they were able to detect the oligonucleotide 

induced cleavage fragments of MRP 1 mRNA in whole cells.

Stewart et al. (1996), also proposed that variations in secondary structure at different 

sites within the MRP1 mRNA may have been the cause of differences in efficacy of the 

various oligonucleotides tested. The AUG start site, as seen above, has been targeted in 

many studies because of the proposed accessibility of this sequence. However, this 

group found that oligos complementary to the coding region to be the most effective. 

These results indicate the importance of evaluating the activity o f a number of 

oligonucleotides complementary to different regions of a given mRNA target rather 

than testing oligonucleotides directed against a single site.

Further studies on the ability of antisense to modulate the activity of MRP1 have 

involved the endogenous delivery of a full-length MRP1 antisense sequence to 

doxorubicin-selected, multidrug-resistant GAOK cells (Gao et al., 1997). The authors 

observed almost complete inhibition of expression of the MRP1 protein in the 

transfected cells. Additional successful studies have included the transfection of MRP 1 

and Bcl-2 oligonucleotides into A549 cell lines (Wang et al., 2000) and the use of 

hairpin loop antisense (Niewiarowski et al., manuscript submitted).

4.6.2.4 Selected MRP1 antisense do not affect MRP1 gene expression or drug

resistance in DLKP-SQ cells

The oligonucleotide identified by Stewart el al. (1996) and Canitrot et al. (1996), ISIS 

7597, was chosen to be used to downregulate expression of the MRPl gene in the 

DLKP-SQ cell line. Unfortunately, several transfections of the antisense including a 

sense control oligonucleotide into the DLKP-SQ cell line failed to induce any 

significant decrease in expression of either the MRPl mRNA or protein or effect on the 

resistance to the MRPl substrate chemotherapeutic drug, vincristine. Subsequent 

discussion on the subject of this oligonucleotide with external colleagues revealed that 

the molecule was not as efficient at downregulating the MRPl mRNA as had been 

previously assumed (Dr. Finbarr Cotter, Personal communication).
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Several additional antisense were designed to target different regions of the MRP1 gene 

and mRNA coding strand as outlined in Section 3.10.2. The reasons chosen for each 

target area of the coding strand are as outlined in Section 3.10.2.1.

Unfortunately, MRP1 gene expression was in the main increased following transfection 

with many of the selected antisense. In addition, the drug resistance profiles of the 

transfected cells were not altered in an MRP 1-specific fashion.

However, a number of interesting results were observed from the antisense experiment. 

The two oligonucleotides which were observed to be the most toxic to the cells 

(particularly at 1.5(im concentrations) were MAs 14 and 19. MAI4 was targetted against 

the Walker A motif in the NBD1 region of the MRP1 gene, which is one of the shared 

homology regions between the various MRP genes (MRPs 1 -  6). It is possible 

therefore, that the toxicity of this oligonucleotide may be related to the fact that it is 

interfering with the functioning of this common, and therefore essential, sequence. The 

possibility that this interference may have led to the downregulation of another, 

unidentified gene cannot be discounted.

All of the designed oligos except M A\9  were targetted to the coding mRNA strand of 

the MRP1 gene, while M AI 9 was targetted to the gene itself. MAX9 would be classified 

as an “antigene”, or antisense targetted to the MRP1 DNA sequence. Such antigenes 

bind to the DNA, forming stable triple-stranded structures and are sometimes effective 

in downregulating expression of the targetted gene. MA19 was targetted to the 

transcriptional start site of the MRP1 gene, in which there are three Spl transcription 

factor recognition sites clustered together. This region of the MRPl promoter sequence 

has previously been demonstrated to be important in regulation of the gene (Zhu and 

Center 1994 and 1996; Wang and Beck, 1998), while the importance of the Spl 

promoter in regulating MRPl gene expression has also previously been determined 

(Zhu and Center, 1994). The importance of this area of the MRPl promoter has also 

been demonstrated in the DLKP cell line in this study. It is therefore possible that MA19 

may be exerting an inhibitory effect on MRPl in DLKP-SQ, but that the targetting of 

the Spl promoter may be exerting additional inhibitory effects on Spl-controlled 

essential factors.
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4.6.2.5 Designed MRP1 antisense do not downregulate target sequences in vitro

The optimisation of an RNaseH cleavage assay for the antisense oligonucleotides 

established a reliable method of identifying the mRNA inhibitory properties of 

phosphorothioate oligos in vitro. However, when the designed Second Generation™ 

oligos were included for analysis in this assay, an incomprehensible banding pattern 

was observed. Despite the fact that this design of oligo has been demonstrated to recruit 

RNaseH to mediate cleavage, this has not been demonstrated here. It thus remains to be 

demonstrated whether or not these antisense oligos are capable of mediating gene 

inhibition in the manner described.

4.6.2.6 In conclusion: The results of gene therapy targetted against MRP1

The results from the various authors cited above demonstrate clearly the potential 

usefulness of using antisense oligonucleotides, whether modified or chimeric, to 

effectively down-regulate the expression of MDR-related genes.

However, it is also apparent that a large amount of work remains to be carried out in this 

area. In almost all of the studies carried out above, as well as the work carried out in this 

thesis, full reversion of multiple drug resistance was not achieved. In many cases, this is 

due to the MDR phenomenon being multifactorial, with a combination of proteins 

causing increased cytotoxic drug resistance, so that reducing the expression of any one 

individual gene will not eliminate the MDR phenotype.
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5.1 Conclusions

A major objective of the work undertaken for this thesis was to contribute to the 

understanding of the molecular mechanisms by which BrdU alters the differentiation 

status of the epithelial lung cell lines DLKP (derived from a poorly differentiated 

carcinoma of the lung), and A549 (derived from an adenocarcinoma of the lung). The 

following points summarise the main findings of the study.

RT-PCR analysis carried out on the poorly differentiated cell line DLKP demonstrated 

dramatic effects on the gene expression profile at the mRNA level of the cell line 

following exposure to the differentiating agent, BrdU. Significant increases in 

expression of the multidrug resistance-associated gene (MRP1) and its MRP3 

homologue, the breast cancer resistance protein (BCRP) gene, the pro-apoptotic genes 

BAXa and MRIT, an isoform of the cyclooxygenase gene (COX-2) and the eukaryotic 

initiation factor 2a  (eIF-2a) genes were observed. These large increases were 

accompanied by less significant increases in mRNA expression for another MRP1 

homologue, MRP2, and for a-catenin and E-cadherin. Expression of the anti-apoptotic 

Survivin gene was observed decreased in DLKP following BrdU-treatment, while 

preliminary Western blotting analysis indicated that expression of the Survivin protein 

may be decreased also.

DNA microarray analysis of BrdU-treated DLKP also detected increased gene 

expression of the transcription factors ETR103 and NSEP, the cell cycle protein 

p55CDC, the Inil tumour suppressor gene, the cell adhesion protein EB1, the RPS19 

ribosomal protein and the activation antigen, FNRB. Decreased gene expression of 

transcription factors CREB2, c-myc, TBP, CNBP, HIP 116 and GABP-P2 and of the 

ribosomal protein, RPL6, were also detected in BrdU-treated DLKP cells using DNA 

microarray analysis.
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DLKP may resemble a stem cell line of the lung. The exposure of DLKP to the 

differentiating agent BrdU induces that cell line to differentiate. As such, the gene and 

protein expression changes observed here in response to that agent may represent 

expression changes accompanying differentiation in lung cells in vivo.

By contrast, exposure of the adenocarcinoma cell line, A549, to BrdU induced far fewer 

changes in gene expression when compared with DLKP. RT-PCR analysis detected 

increased gene expression of MRP 1 and BCRP, as well as decreased MRP2, MRP4 and 

mdr-1 gene expression in this cell line following induced differentiation by BrdU. As 

the number of affected genes in BrdU-treated A549 was observed to be much lower, 

DNA microarray analysis was not carried out on BrdU-treated A549 cells.

Exposure of DLKP cells to the chemotherapeutic drugs cisplatin, taxol and VP 16 also 

resulted in induction of gene expression. RT-PCR analysis of the DLKP cells identified 

significantly increased expression of the MRP1, MRP2 and BCRP genes following 

exposure to cisplatin, of MRP2, a-catenin and E-cadherin following exposure to taxol 

and of MRP1, MRP2 and a-catenin following exposure to VP 16. These results 

suggested that the gene induction pattern obtained following exposure to an inducing 

agent is specific both for that type of agent and the length of exposure. Also, the 

morphological response of the cells to the different drugs was similar, and bore many of 

the same characteristics of differentiated cells. It is therefore possible that the process of 

differentiation in cells resembles in part the response of those cells to certain types of 

chemotherapy.

Selection of DLKP cell lines in a number of chemotherapeutic drugs also elicited a 

diverse profile of gene expression. It was observed that the gene expression profile for 

each drug differed significantly. Among the drugs used for selection were cisplatin and 

VP 16; the selection process was observed to induce a different expression profile from 

that induced by the transient exposures detailed earlier. It is apparent from these results 

that gene induction is dependent not only on the type of inducing agent used, but also 

the length of time and schedule used for drug exposure.

It was considered likely that BrdU (in view of its structure and known metabolism), and 

possibly some of the chemotherapeutic drugs tested, may transcriptionally upregulate
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gene and protein expression in the DLKP cell line. If this were the case, it is possible 

that these agents may mediate transcriptional upregulation of these genes using a 

common transcription factor, or set of factors.

Transfac™ transcription factor analysis of the 5’ promoter regions of MRPs 1-3, BCRP, 

MRIT, COX-2, eEF-2a, a-catenin and E-cadherin identified seven transcription factors 

which may be shared by all nine genes. As all nine genes were upregulated in DLKP 

following induced differentiation by BrdU, it is possible that one, or more of these 

factors may have been utilised by BrdU in upregulating transcription of the genes. The 

seven factors identified in common were GATA-1, GATA-2, GATA-3, MZF1, Ik-2, 

CdxA and AML-la. RT-PCR analysis using primers for each of these factors revealed 

increased GATA-2 and GATA-3 expression in BrdU-treated DLKP. The expression of 

the other factors was not detected by RT-PCR. No significant change was observed in 

BrdU-treated A549 cells. It is possible therefore, that BrdU upregulates the expression 

of some or all of the genes observed affected in DLKP at least in part, by inducing 

expression of one or both GATA-2 and GATA-3 transcription factors.

RT-PCR analysis on the drug-exposed DLKP cells revealed increased GATA-2 

expression in VP16-treated DLKP. No change was observed in expression of GATA-2 

in response to cisplatin or taxol. Expression of GATA-3 in DLKP cells was not 

significantly affected by exposure to any of the three chemotherapeutic drugs. This 

result indicates that VP 16 may mediate some or all of its gene inducing effects in DLKP 

by inducing increased GATA-2 expression. However, VP 16 does not appear to induce 

expression of the GATA-3 transcription factor. This result is connected with the 

difference in gene expression profiles induced in the DLKP cell line by the different 

agents. It is also apparent that in this cell system, the chemotherapeutic drugs cisplatin 

and taxol may mediate gene induction via alternate transcription pathways than those 

examined here.

Luciferase reporter plasmids attached to truncated regions of the MRP1 5’ promoter 

region identified a fragment of the promoter as the major positive regulatory region in 

normal DLKP cells. This region comprised the positions -91 to +103 bases relative to 

the transcriptional start. This region has also previously been determined as the major
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regulatory region of MRP 1 in other cell systems (Zhu and Center, 1994). When the 

transfected DLKP cells were treated with BrdU, luciferase expression is highest further 

upstream of this region, between -91 and -411 bases relative to the transcriptional start. 

It is apparent from this result that exposure of DLKP cells to BrdU shifts the bulk of 

transcriptional activity to another area of the promoter sequence. This region of the 

MRP1 promoter contains a single GATA-2 transcription factor recognition sequence. 

However, luciferase expression levels over the whole 2kb fragment were not altered 

significantly between treated and untreated cells, indicating that the major regulatory 

target for BrdU lies outside this area.

Exposure to VP 16 was observed to elicit a similar result in the luciferase promoter- 

transfected cells. Exposure of the transfected cells to the agent induced most luciferase 

production in the -91 and -411 bases fragment relative to the transcriptional start. It is 

important to note here that only VP 16 increased GATA-2 expression in the drug-treated 

DLKP, and that this fragment contains a potential GATA-2 recognition site. Also, the 

expression levels for the plasmid containing the whole gene did not vary significantly if 

VP 16 was added, indicating that, like BrdU, its major regulatory target also lies outside 

this area. Exposure of the transfected cells to cisplatin and taxol did not elicit any 

significant effect. This result was surprising, as cisplatin has been shown to induce 

MRP1 expression. It is apparent from this result that the major target for cisplatin- 

mediated MRP1 upregulation also lies outside 2kb from the transcriptional start site of 

the gene.

RT-PCR analysis on a number of human lung, breast and oesophageal tumour samples 

was carried out to examine the expression of MRPs 1-6, BCRP, mdr-1, mdr-3, COX-1, 

COX-2, MRIT, BAXa, Bc1-xl, Bcl-xs, Bcl-2a, Survivin, BAG, BAP, eIF-4E, eIF-2a 

and c-myc. This clinical tumour sample study demonstrated the ability to extract high 

quality, reproducible expression results from human tissue, using a basic sample 

collection procedure. Only the results from the primary lung tissue sample group were 

felt to be of significance due to the small sample sizes for the other two groups. Gene 

expression results obtained from the clinical study demonstrated the high level of 

expression of the MRP1 and MRP2 genes in most of the tissues analysed. The potential 

clinical relevance of the following genes; MRP4, MRP5, COX-2, MRIT, Bc1-xl, Bcl-2a
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and eIF-2a in primary lung tumour samples was also demonstrated. However, 

additional tissue samples are required to confirm these preliminary results. MRP1 gene 

expression was observed to be generally higher in tumour samples from male patients.

Expression of the MRP1 gene has been demonstrated to be of importance in the BrdU- 

mediated differentiation of both DLKP and A549 cells, in the drug-treated and drug- 

selected cell lines and in clinical tissue. A novel ribozyme to MRP1 was designed and 

was observed to cleave its intended target in an in vitro cleavage assay. The ribozyme 

was successfully transfected into MRP 1-expressing DLKP-SQ cells. However, the 

transfections did not result in significant downregulation of MRP 1 RNA or protein or 

significant changes in the drug resistance profiles of the cells.

RNaseH activity assays for antisense oligonucleotides analyses were also successfully 

set up using an mdr-1 antisense. However, the identification of effective MRP1 

antisense oligonucleotides was not made by either in vitro or in vivo studies.
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5.2 Future Work

The work described in this thesis has identified a number of key genes and proteins 

which may constitute novel differentiation-specific markers in lung epithelial cell lines. 

Comparisons with gene induction profiles from chemotherapeutic agents have identified 

that different agents may induce different responses in the same cell system. 

Transcription factor analysis of induced genes has indicated that these genes may be 

transcriptionally upregulated via a number of key transcription factors.

Further work on this area would include the following:

1. Examination by Nuclear run-on analysis of the stability of mRNA levels in cells 

induced to differentiate by BrdU. This would indicate if  the change in mRNA levels 

observed by RT-PCR is due to increased gene expression, rather than mRNA 

instability.

2. Additional MRP1 promoter pGL2 Luciferase expression plasmids could be 

manufactured which concentrate more heavily on the promoter regions of interest 

determined by this study. These would include the regions between -91 and -660 

bases from the transcriptional start and also further upstream than the 2kb sequence 

examined here. For instance, a number of extra plasmids could be generated with 

various lengths of the promoter sequence attached to the luc gene. DLKP cells 

transfected with these extra plasmids would then be exposed to BrdU and the 

chemotherapeutic agents already outlined to pinpoint the target promoter region.

3. Point mutation analysis of the postulated transcription factor binding sites already 

identified to determine more specifically if these sites are responsible for binding 

and hence, gene upregulation. Mutational analysis could be carried out on the 

additional PGL2 plasmids already mentioned, followed by transfection of these 

mutated plasmids into DLKP and subsequent exposure to BrdU and 

chemotherapeutic agents.
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4. Transfection of expression plasmids coding for GATA-2 and GATA-3 cDNAs 

could also be carried out in DLKP cells, and their subsequent effect on gene 

expression monitored.

5. The targetting of additional ribozyme and antisense sequences directed against the 

mRNAs of the identified transcription factors GATA-2 and GATA-3 could also be 

attempted. The resultant effect on gene induction in response to BrdU could then be 

monitored.

6. The ability of other differentiating agents to induce differentiation and the 

consequent gene/protein upregulation could also be examined. The effect on the 

drug resistance profile of the differentiated cells could also be examined. Suggested 

differentiating agents would include Retinoic acid (RA), CdU, 5,5’-FdU and 5-Bur.

7. The ability of other chemotherapeutic drugs to induce gene/protein expression could 

also be examined. It would also be relevant to examine the effect on the drug 

resistance profile of the treated cells. Suggested drugs would include Taxotere, 

Carboplatin, Vinblastine, etc.

8. Expression of the protein product of each gene observed to be upregulated could 

also be examined.
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Section 7.0

Appendices



7.1 Appendix A: Antisense/Primer sequences & conditions used in study

7.1.1 Primers used for RT-PCR gene expression analysis

Table 7.1A L is t o f gene expression RT-PCR primers and conditions
Gene Length

(bases)
T m
(°C)

Size
(bp)

Sequence

(3-Actin 2 9 5 5 3 8 3 GAA ATC GTG CGT GAC ATT AAG GAG
(large)

2 2
AAG
TCA

CT
GGA GGA GCA ATG ATC TTG A

P-Actin 2 3 5 5 1 4 2 TGG ACA TCC GCA AAG ACC TGT AC

(small) TCA GGA GGA GCA ATG ATC TTG A
2 2

mdr-1 2 0 5 1 1 5 7 GTT CAA ACT TCT GCT CCT GA
2 0 CCC ATC ATT GCA ATA GCA GG

mdr-3 2 4 5 5 3 2 1 ATT AGC AGT TGT TCC AAT TAT TGC
2 4 TGT CCA TTC AGA ATG AGA TAT GCA

MRP1 2 1 5 5 2 0 2 GTA CAT TAA CAT GAT CTG GTC
2 1 CGT TCA TCA GCT TGA TCC GAT

MRP2 2 0 5 3 2 4 1 CTG CCT CTT CAG AAT CTT AG
1 9 CCC AAG TTG CAG GCT GGC C

MRP3 1 9 6 3 2 6 2 GAT ACG CTC GCC ACA GTC C
2 1 CAG TTG GCC GTG ATG TGG CTG

MRP4 1 9 4 2 2 3 9 CCA TTG AAG ATC TTC CTG G
1 8 GGT GTT CAA TCT GTG TGC

MRP5 1 8 4 9 3 8 1 GGA TAA CTT CTC AGT GGG
2 0 GGA ATG GCA ATG CTC TAA AG

MRP6 2 1 6 8 3 2 4 ACA CCC ATT GGT CAC CTG CTA
2 4 GGT CAC CTG GAG GGC AGC AGA GAC

BCRP 2 0 63 1 1 1 3 AGA CTT ATG TTC CAC GGG CC
2 0 CAA GGC CAC GTG ATT CTT CC

COX-1 2 4 5 7 952 TGC CCA GCT CCT GGC CCG CCG CTT
2 4 GTG CAT CAA CAC AGG CGC CTC TTC

COX-2 2 4 6 1 5 6 9 GGT CTG GTG CCT GGT CTG ATG ATG
2 2 GTC CTT TCA AGG AGA ATG GTG C

ii



Table 7.1A Cont’d.
Gene Length

(bases)
T m

(°C)
Size
(bp)

Sequence

BAG 2 0 5 2 2 5 1 TCC AGC TGG TTA GCT ATC TT
2 0 AGC AGT GAA CCA GTT GTC CA

BAXct 2 1 5 0 2 3 0 GAC GAA CTG GAC AGT AAC ATG
2 0 AGG AAG TCC AAT GTC CAG CC

BAP 2 0 5 0 3 3 8 ACC AAG GAG TAC GAC CGC TT
2 0 CCG GAC TAC AAC TAA CTC GT

MRIT 2 0 5 7 3 1 4 GAG TGC TGA TGG CAG AGA TT
2 0 TTG AAG GAT CCT TGA GAC TC

Bcl-XL 2 0 5 0 3 9 6 CAC AGC AGC AGT TTG GAT GC
1 9 CTC GGC TGC TGC ATT GTT C

Bcl-Xs 2 0 5 0 2 0 7 CAC AGC AGC AGT TTG GAT GC
1 9 CTC GGC TGC TGC ATT GTT C

Bcl-2a 2 2 5 0 3 0 6 TCA TGT GTG TGG AGA GCG TCA A
2 4 CTA CTG CTT TAG TGA ACC TTT TGC

Survivin 1 9 5 4 6 4 7 AGA ACA AAA TTG CAA AGG A
2 1 ACA CAC AAG TCA TGC ATC TAC

eIF-2a 2 4 6 7 2 8 2 AGA AGG CGT ATC CGT TCT ATC AAC
2 4 TCC AGG TCT CTT GTA CTT GTC ATC

eIF-4E 2 1 5 5 3 2 3 GAT CAG ATC GAT CTA AGA TGG
2 1 CCA CAT AGG CTC AAT ACC ATC

c -myc 2 0 5 4 3 3 6 GAC GGC TTC GAG GAT CAG AT
2 1 ACC ACA TGG TGA CCG AGA ACT

a- 2 1 5 7 300 GTC ATT CAC GTA GTC ACC TCA
catenin 2 3 TTC TGA CAT CAA AAT CCT CTG TC

P- 2 0 5 5 668 AAG GTC TGA GGA GCA GCT TC
catenin 2 0 TGG ACC ATA ACT GCA GCC TT

E- 1 8 5 5 653 AGC CAT GGG CCC TTG GAG
cadherin 2 0 CCA GAG GCT CTG TCA CCT TC

pHpRz 1 9 5 0 118 AGC ACA GAG CCT CGC CTT T
exp. 1 7 TCT GGA TCC CTC GAA GC

iii



7.1.2 Primers used for transcription factor RT-PCR

Table 7.2A L is t o f transcription factor RT-PCR primers and conditions
Gene Length

(bases)
Tm

(°C)
Size Sequence

GATA-2 2 1 63 395 ccc TAA GCA GCG CAG CAA GAC
2 1 GAT GAG TGG TCG GTG CTG GCC

GATA-3 2 1 63 260 GTA CAG CTC CGG ACT CTT CCC
2 1 CTG CTC TCC TGG CTG CAG ACA

GATA-1 1 8 — - ACA TCG GTC TTA AGA CCT
18 TTA GCC ACC TCA TGC CTT

MZF1 2 0 — TTG CGC ATG CGC TTC TGC TC
2 1 GCC ACA TAC ATC GCA ACG GCC

Ik-2 2 4 _ _ TAT GGA TGC TGA CGA GGG TCA AGA
2 4 ACA GGC ACG CCC ATT CTC TTC ATC

CdxA 2 0 — _ ACA GCC GTT ACA TCA CAA TC
2 0 GCT ATG GCA GAA ACT CCT CT

AML-la 2 0 — — GTT GAG AGT CGA CTG GAA AG
2 0 GAG GGA AAA GCT TCA CTC GA

iv



7.1.3 Primers used for MRP1 Ribozyme in vitro cleavage (JVC) assay

The novel MRP1 primer sequences used to amplify that segment of the MRP1 gene 

(MRP1 RT-PCR) containing the ribozyme cleavage site are listed in Table 7.2A. The 

primer sequences used to amplify the MRP1 ribozyme DNA (Ribozyme 1 & 2) are also 

included in Table 1.2A.

Table 7.3A Prim er sequences used fo r in vitro cleavage (IV C ) assay
Prim er Length

(bases)
Tm

(°C)
Size
(bp)

Sequence

MRP1
RT-PCR

2 1
2 1

5 5 4 7 7  TGC 
CGT

TCA
TCA

TCA
TCA

AGT
GCT

TCG
TGA

TGA
TCC

ATG
GAT

Ribozyme
1

40 50 TAA
GAG

TAC
CCA

GAC
CTC

TCA
TGA

CTA
TGA

TAG
GTC

GGA
C

Ribozyme
2

32 50 TGC
ACT

TTC
CAT

GTT
CAG

TCG
AG

TCC TCA CGG

7.1.4 Primers used to optimise mdr-1 RNase H assay

Table 7.4A Prim er pa ir used in amplification o f mdr-1 target D NA
Gene Sequence No. o f bases

RNaseH 1 TAA TAC 
CGA GGT

GAC TCA CTA TAG 
CGG G

GGC GAA GGA GCG 40

RNaseH2 TCC CCT 
CGC

TCA AGA TCC ATC CCG ACC TCG 30

7.1.5 Phosphorothioate Antisense/Sense oligonucleotide sequences

This table shows the oligonucleotide sequences selected from the literature. They 

include the mdr-1 antisense used to optimise the RNaseH assay (Alahari et al., 1996), as 

well as the MRP1 antisense and sense oligonucleotides (Stewart et al., 1996; Canitrot et 

al., 1996).



Table 7.5A Selected Antisense/Sense oligo sequences
Gene Length Sequence

(bases)
Mdr-1

Antisense
20 CCA TCC CGA CCT CGC GCT CC

MRP1
Antisense

20 TGC TGT TCG TGC CCC CGC CG

MRP1
Sense

20 CGG CGG GGG CAC GAA CAG CA

7.1.6 Primers used in Second Generation chimera™ RNaseH assay

These primers were used to amplify individual DNA fragments which were then used as 

templates for production of the RNA target for the designed MRP1 antisense 

oligonucleotides. Tms in all cases were 50°C and the sequences are listed in Table 7.6A.



Table 7.6A Primers used in RNaseH assay for \1RP1 antisense oligos
MRP1 Length Sequence

Antisense ( b a s e s ) _________________________
MAX 3 5 TAA

GGG
TAC
TGC

GAC
CTT

TCA
GT

CTA TAG GGC GAT

3 0 CGG
AAA

AAC
GGG

AAA AAT GGA GAC CCG GAC

MA?> 3 5 TAA
AAC

TAC
TTC

GAC
TGG

TCA
TG

CTA TAG GGC GAC

3 0 AGA
AGG

CCA
CCC

CCT AGT GTC CCA ACT AAC

MA5 3 5 TAA
GAA

TAC
AAC

GAC
ATC

TCA
CT

CTA TAG GGC GAA

3 0 TGT
TCC

AGG
TTG

AAA AAC CTA CAG TCG ACC

MA8 3 5 TAA
TTC

TAC
GAG

GAC
CCT

TCA
TC

CTA TAG GGC GAA

3 0 TCG
GTA

GAA
GGT

GCT CCT CGT CCT CCG GAA

MA9 3 5 TAA
CAG

TAC
CTG

GAC
GAG

TCA
AG

CTA TAG GGC GAT

3 0 ACC
GAA

TCT
GTC

CTC CTC TCC CTC AAG TCA

MAIO 3 5 TAA
GCC

TAC
AGA

GAC
AAA

TCA
TC

CTA TAG GGC GAA

3 0 CTT
AAC

TTA
AGT

GGA GGT GCC AGC CCC TCT

MAY2 3 5 TAA
AAG

TAC
GTG

GAC
CTG

TCA
GC

CTA TAG GGC GAC

3 0 ACG
ACT

ACC
TCC

GGT AGT CCG TCC TCC TCG

MA13 3 5 TAA
GGA

TAC
AGA

GAC
CGA

TCA
AG

CTA TAG GGC GAA

3 0 CGT
CCG

CTT
GTG

CTA GGA ACA CAA CCT ACT

MAM 3 5 TAA
AAG

TAC
TTG

GAC
TCC

TCA
CT

CTA TAG GGC GAA

3 0 ACA
GAC

GGG
TCT

ACG AGA GTC GGG AGA ACC

vii



7.2 Appendix B: Clinical study gene expression levels and clinical data

This appendix contains all the gene expression data for the clinical study group, 

outlined in Section 3.6.1. It also contains the Clinical Data Questionnaire.



Table 7.1 B: RT-PCR gene expression results for Primary Lung tumour tissue
Sample no. MRP1 MRP2 MRP3 MRP4 MRP5 MRP6 MDR1 BCRP MDR3 COX-1 COX-2
1 T LOW LOW LOW LOW 0 HIGH LOW MED 0 MED 0
2 T MED 0 LOW MED HIGH LOW HIGH MED 0 0 MED
3 T 0 LOW LOW LOW HIGH LOW LOW HIGH 0 LOW 0
12 T LOW LOW LOW MED LOW HIGH LOW HIGH 0 0 0
16 T MED+ 0 LOW LOW+ LOW LOW LOW HIGH 0 HIGH MED
16 N MED LOW MED LOW MED LOW MED LOW 0 MED MED+
17 T MED+ LOW LOW LOW HIGH LOW LOW 0 0 0 LOW
17 N MED LOW 0 LOW+ MED LOW+ LOW LOW 0 LOW 0
18 T MED LOW+ MED LOW HIGH LOW 0 MED 0 MED MED
18 N LOW LOW LOW 0 MED LOW+ MED MED 0 LOW MED+
19 T MED LOW+ MED LOW+ MED LOW LOW HIGH 0 0 MED
19 N LOW LOW LOW LOW LOW MED 0 MED 0 MED LOW
21 T MED LOW LOW 0 LOW MED 0 MED 0 0 HIGH+
21 N MED+ LOW LOW+ HIGH LOW LOW HIGH HIGH 0 0 HIGH
22 T MED LOW+ MED MED MED LOW MED HIGH 0 0 LOW
22 N MED+ LOW LOW 0 LOW 0 HIGH HIGH 0 0 0
23 T MED MED LOW HIGH 0 0 HIGH 0 0 0 MED
23 N MED LOW LOW LOW LOW HIGH LOW 0 0 0 LOW
25 T HIGH LOW LOW 0 HIGH 0 LOW LOW 0 HIGH HIGH
25 N MED MED HIGH 0 LOW LOW MED LOW+ 0 0 0
B5T LOW 0 MED 0 LOW LOW LOW 0 0 0 0
B5N MED LOW MED 0 LOW+ MED LOW LOW 0 0 0
B6T 0 0 LOW 0 MED MED MED MED 0 0 0
B6N MED 0 LOW 0 LOW HIGH LOW LOW 0 0 0



Table 7.1 B: Cont'd.
Sample no. BAP
1 T MED
2T HIGH
3 T MED
12 T HIGH
16 T HIGH+
16 N HIGH
17 T HIGH+
17 N HIGH
18 T MED
18 N HIGH
19 T HIGH
19 N MED
21 T MED
21 N MED+
22 T MED
22 N MED+
23 T MED+
23 N MED
25 T MED
25 N LOW
B5T MED
B5N HIGH
B6T MED
B6N MED

BAX MRIT
MED LOW
HIGH LOW
HIGH HIGH
MED MED

HIGH+ HIGH
HIGH LOW
MED LOW
HIGH LOW+

HIGH+ LOW
HIGH MED

HIGH+ LOW
HIGH MED
HIGH 0

HIGH+ LOW
HIGH+ LOW
MED MED
HIGH LOW
MED MED
HIGH LOW+
LOW LOW
LOW LOW
MED MED
HIGH LOW
HIGH+ MED

Bcl-xs Bcl-xl
MED HIGH
MED MED
HIGH HIGH
MED HIGH
MED MED
LOW LOW
LOW HIGH
MED LOW
LOW MED
HIGH MED
HIGH HIGH+
LOW HIGH
HIGH HIGH
LOW MED
MED MED

0 LOW
MED MED
MED HIGH
HIGH LOW
MED LOW+

0 0
0 0
0 0
0 0



-2 BAG Survivin elF 4E elF 2 c-myc
LOW MED LOW MED HIGH 0
LOW HIGH HIGH HIGH MED LOW
HIGH HIGH HIGH HIGH MED 0
HIGH MED MED HIGH MED LOW
MED+ HIGH LOW HIGH LOW+ 0
MED MED LOW+ 0 LOW 0
LOW MED LOW+ 0 LOW 0
LOW HIGH LOW 0 MED 0

LOW+ LOW LOW MED MED+ 0
LOW MED 0 MED+ MED 0
MED HIGH 0 LOW HIGH+ 0
LOW MED LOW HIGH HIGH 0
LOW LOW LOW+ LOW MED 0
LOW LOW+ LOW LOW+ LOW LOW
MED MED LOW LOW MED LOW
LOW MED+ LOW LOW LOW 0
LOW MED LOW LOW HIGH LOW
LOW MED LOW+ MED HIGH+ LOW
HIGH LOW LOW MED MED LOW
MED 0 0 HIGH LOW 0
LOW LOW LOW+ HIGH LOW LOW
MED HIGH LOW MED MED MED
HIGH LOW LOW LOW MED+ MED
LOW MED LOW+ MED MED MED+



Table 7.2B: Gene expression results for Primary Breast tissue 
Sample no. MRP1 MRP2 MRP3 MRP4 MRP5 MRP6
B1 T LOW LOW MED 0 LOW LOW
B2 T LOW LOW MED 0 LOW LOW

Table 7.2B: Cont'd.
Sample no. BAP BAX MRIT Bcl-xs Bcl-xl Bcl-2
B1 T HIGH MED HIGH 0 0 MED
B2 T HIGH HIGH MED 0 0 HIGH



MDR1 BCRP MDR3 COX-1
MED MED O O
LOW MED 0 O

BAG Survivin elF 4E elF 2
HIGH HIGH HIGH HIGH
HIGH MED HIGH HIGH

COX-2
0
0

c-myc
MED
HIGH



Table 7.3B: RT-PCR gene expression results for Oesophageal Primary tissue
Sample no,
9 0  
13 0

MRP1
LOW
LOW

MRP2
HIGH
LOW

MRP3
MED
LOW

MRP4
LOW
LOW

MRP5
LOW
LOW

MRP6
LOW
LOW

MDR1
HIGH
MED

BCRP
MED
HIGH

0
0

MDR3
LOW

0

COX-1

Table 7.3B: Cont'd.
Sample no. BAP BAX MRU Bcl-xs Bcl-xf Bcl-2 BAG Survivin elF 4E elF 2 
9 O HIGH MED LOW HIGH MED LOW MED MED MED LOW
13 0  MED MED HIGH HIGH MED MED MED LOW MED MED

0
0

COX-2

c-myc
LOW
LOW



Table 7.4B: RT-PCR gene expression results for Metastatic tissue
Sample no. MRP1 MRP2 MRP3 MRP4 MRP5 MRP6 MDR1
4 T MED LOW LOW MED LOW HIGH HIGH
5 T MED LOW LOW LOW MED HIGH LOW

6 T LOW LOW LOW LOW MED HIGH LOW
7 T LOW LOW LOW LOW LOW MED HIGH
8 T MED HIGH HIGH MED LOW LOW MED
10 T MED LOW MED HIGH HIGH LOW HIGH
B4T HIGH 0 MED 0 MED LOW LOW
14 LN MED LOW LOW HIGH HIGH 0 HIGH
15 LN LOW LOW LOW LOW LOW 0 MED
15 T MED LOW+ LOW MED MED LOW LOW
15 N LOW LOW MED LOW 0 MED 0
24 T HIGH MED 0 LOW 0 LOW LOW
24 N 0 MED 0 HIGH 0 MED 0
27 T MED LOW LOW 0 LOW 0 0
27 N 0 LOW MED 0 LOW LOW LOW
B7T MED LOW LOW 0 LOW LOW+ LOW
B7N MED 0 HIGH 0 LOW LOW 0



BCRP MDR3
MED O
LOW O
MED O
O O

LOW O
HIGH O
LOW O
HIGH O
O O
O O

LOW O
O o

LOW O
O o
o o

LOW O
MED 0

COX-1 COX-2
LOW LOW
MED MED
LOW LOW
MED 0

0 LOW
HIGH 0

0 0
LOW 0
LOW LOW
MED MED

MED+ MED+
MED LOW

0 MED
LOW 0

0 0
0 0
0 0
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Table 7.4B: Cont'd. 
Sample no. BAP BAX MRIT Bcl-xs Bcl-xl
4 T MED HIGH LOW MED MED
5 T MED HIGH MED MED LOW

6 T HIGH MED HIGH LOW HIGH
7 T MED LOW LOW MED LOW
8 T HIGH MED HIGH LOW MED
10 T 0 HIGH MED HIGH HIGH
B4T HIGH HIGH LOW 0 0
14 LN MED HIGH HIGH HIGH MED
15 LN HIGH LOW LOW MED HIGH
15 T MED HIGH LOW HIGH MED
15 N LOW 0 0 HIGH+ HIGH
24 T LOW LOW 0 HIGH 0
24 N LOW MED LOW 0 LOW
27 T MED HIGH LOW+ 0 LOW+
27 N LOW 0 LOW 0 LOW
B7T HIGH MED MED 0 0
B7N MED MED MED 0 0



cl-2 BAG Survivin elF 4E elF 2 c-myc
LOW HIGH LOW LOW MED LOW
MED MED LOW MED HIGH LOW
MED LOW MED HIGH MED 0
HIGH LOW LOW HIGH LOW 0
LOW HIGH LOW HIGH LOW LOW
HIGH MED HIGH HIGH MED HIGH
MED MED LOW LOW MED MED
HIGH MED HIGH MED LOW 0
MED LOW LOW HIGH LOW 0
HIGH MED HIGH LOW LOW+ 0

0 LOW LOW LOW LOW 0
0 MED 0 0 0 0

MED LOW 0 0 LOW 0
MED LOW LOW 0 LOW LOW

0 0 LOW+ MED 0 0
LOW MED LOW 0 MED MED

LOW+ MED+ 0 LOW MED LOW



V
ili

Table 7.5B: RT-PCR gene expression results for non-carcinoma tissue
Sample no. MRP1 MRP2 MRP3 MRP4 MRP5 MRP6 MDR1 BCRP MDR3 COX-1 COX-2
11 E LOW LOW 0 0 LOW MED LOW 0 0 0 LOW
20 T 0 LOW LOW 0 0 LOW 0 LOW 0 HIGH LOW
B3 D MED LOW MED 0 LOW LOW MED MED 0 0 0

26 T LOW LOW MED 0 0 LOW 0 0 0 0 0
26 N MED LOW LOW 0 LOW 0 LOW 0 0 0 LOW

Table 7.5B: Cont'd.
Sample no. BAP BAX MRIT Bcl-xs Bcl-xl Bcl-2 BAG Survivin elF 4E elF 2 c-myc
11 E MED LOW LOW LOW MED MED LOW 0 HIGH LOW 0
20 T HIGH HIGH LOW HIGH HIGH LOW MED HIGH LOW MED 0
B3D HIGH HIGH HIGH 0 0 MED HIGH MED HIGH HIGH HIGH
26 T LOW LOW 0 HIGH LOW 0 0 0 LOW LOW 0
26 N MED HIGH HIGH LOW HIGH LOW MED LOW MED LOW+ LOW



Table 7.6B: Clinical data for Primary Lung tumour tissue 
Sample nc C. Type Radiation LN Status Different Recurrenc Add. Info
1 T
2 T
3 T SCLC
12 T Carb, vp16 SCLC
16T/N Neg. Moderate Colonic

17T/N No NO Poor Nil

18T/N Moderate

19T/N No N1 Well Nil

21 T/N 0/4 Moderate Bladder

22 T/N No NO Nil Prostrate

23 T/N No 12-Feb Nil

25 T/N No Three/12 Moderate

B5T/N N2 Moderate M.SCLC

B6T/N Moderate NSCLC



Description
Left upper lobe mass. Bloodstained smears present 
Poorly differentiated squamous bronchogenic carcinoma 
Left lung, upper lobectomy
Small-cell undifferentiated carcinoma; extensive necrosis 
Moderately differentiated adenocarcinoma

Right upper lobectomy, difficult dissection

Moderately differentiated adenocarcinoma with necrosis

Left lower lobectomy, benign carcinoid

Moderately differentiated adenocarcinoma

Papillary adenoma of type II pneumocytes

Carcinoid tumour, multiple adhesions

Non-small cell tumour, right pneumonectomy

Invasive moderately differentiated suamous cell carcinoma

High-grade malignant neoplasm



Table 7.6B: Cont'd.
Sample no. Spec. Type Gender Age
1 T Lung M
2 T Lung F
3 T Lung F
12 T Lung M
16T/N Lung M

17T/N Lung M

18T/N Lung M

19T/N Lung F

21 T/N Lung F

22T/N Lung M

23 T/N Lung F

25 T/N Lung M

B5T/N Lung F

B6T/N Lung F

Size (cm) Metastasis Primary
70 2.2 P
62 7.5 MO P
47 2.5 P
48 0.3 P
56 2.5 MO P

61 3 MO P

67 1.2 MO P

41 3.5 MO P

54 2.5 P

71 3.5 MO P

54 5 P

65 1.8 M1 P

53 4 P

71 13 P



Smoker Menopaus Last seen Stage

Yes
Yes RIP
Yes

RIP 28/4/9! T3

Pre 12/12/00

T2

22/12/00 

28/11/00 

RIP 7/4/00 T4 

08/05/99 T2 

07/04/99

Yes

No

No

No

No

No

Chemo



Table 7.7B: Clinical data for Primary Breast tissue
Sample no. Age (yrs) Size (cm) Metastasis Menop Last seen Stage Endocrine LN Status Different Recurrence Oestrogen Progest.
B1 T 52 0.5 MO 03/11/99 Pos Poor Nil Pos
B2 T 76 2.2 MO Post May-99 T2 Yes-Tamox NO Nil Pos Pos

Table 7.7B: Cont'd.
Sample no. Description
B1 T Left masectomy for breast, bronchial tumour visible, nodes positive, 90% staining show strong positive for oestrogen
B2 T Modified radical masectomy left breast



Table 7.8B: Clinical data for Oesophageal Primary tissue 
Sample nc Spec. Typi Gender Age Size (cm) Different Description
9 o Oesoph m  79 3 Poor Multiple fragments of oesophageal adenocarcinoma
13 0  Oesoph M 74 0,8 Poor Poorly differentiated adenocarcinoma



Sample no. Spec. Type
4 T Lung
5 T Lung

6 T Lung
7 T Lung
8 T Lung
10 T Breast
B4T Breast
14 LN
15 LN/T/N LN
24T/N
27T/N Lung
B7T/N Breast

Gender Age
M 54
F 79
F 69
M 71
M 82
F 44
F 64

M 80

M 59
F 45

Metastasis Primary
Multiple Unknown

MO

1.8 soft tissue sarcoma
5.5 MO

3.5 MO 

5

Table 7.9B: Clinical data for Metastatic tissue
Size (cm)

1.8



Smoker Menopausal Last seen Stage Chemo

Post 18/2/01 T3/T4 Yes

Yes
06/06/00 T1 Yes

Post 28/02/00 T3 No

RIP 26/2/0 T2 No

06/04/99



Table 7.9B: Cont'd. 
Sample no. C. Type
4 T
5 T
6 T
7 T 
8 T  
10 T 
B4T
14 LN
15 LN/T/N 
24T/N 
27T/N 
B7 T/N

Radiation LN Status Different Oestrogen Recurrence Add. Info

Carb, VP16 Yes N1 Undiff.

Dexam
CMF, Tamox Yes 0/29
tamoxifen Yes N1

No Moderate

Pos.
Pos.+Prog.

Nil

Nil

History 
No history

13/2/01

Description
Multiple metastatic lung disease, unknown primary

Small cell carcinoma with neuroendocrine features
Unknown tissue, previous reactive anthracotic LNs
Secondry lung carcinoma
Nodal deposit of ductal carcinoma
Modified radical masectomy left breast
Mediastenial lymph node
Mediastinoscopy of squamous cell carcinoma

Left lower lobe tumour, left pneumonectomy



Table 7.10B: Clinical data results for non-carcinoma tissue
Sample nc Spec. Typi Gender Age (yrs) Size (cm) Smoker Last seen Description

Empyema strip decortication, no evidence of neoplasm 
21/12/00 Bronchial resection margin 

15/04/99 Duodenal biopsy

11 E ESD M 47 1.5 Yes
20 T Lung? F 53 1.5 Yes
B3D Duodenum F 47 0.4

26 T/N Lung? M 77 5 Lobe of lung, no evidence of malignancy



CLINICAL SURVEY SAMPLE SHEET DATE:____
Hospital Patient No.: __________________________ Male I I Female
1. DOB o f Patient: ________________________________
2. Date o f diagnosis: ________________________________
3. Date o f operation: ________________________________
4. Menopausal status o f patient: ________________________________
5. Last seen alive: ________________________________
6. Tumour size: ________________________________
T. Operation details:

8. Diagnosis:

9. Histological grade of tumour:
10. Metastatic grade o f tumour:
11. Tumour stage:_____________
12. Pre-operation Chemotherapy:

13. Post-operation Chemotherapy:

14. Other therapy (e.g. Radiation)

15. Oestrogen Receptor:

16. Progesterone Receptor:

17. Lymph Node status:
18. Endocrine therapy:

19. Differentiation grade o f tumour:
20. Adjuvant treatment:

21, Recurrence:

22. Additional information:

POS.□
a

NEG.□
NEG.□

xvi


