
Migration of an Operating System to an
Object-Oriented Paradigm

Derek Doran B.Sc.

Submitted for the award of Master of Science

Supervisor:
Dr. John Waldron

School of Computer Applications
DCU

Month of Submission : January 1996

I hereby certify that the material which I now submit for assessment on the
program of study leading to the award of Master of Science is entirely my
own work and has not been taken from the work of others save and to the
extent that such work has been cited and acknowledged within the text of
my work

Signed

Acknowledgements

Acknowledgements

This thesis is dedicated to my parents, John and Aileen Doran, whose endless
support and faith m my abilities have made it impossible for me to foul up, however
hard I have tried

I am extremely grateful to my supervisor and fnend, Dr John Waldron He has
guided this thesis from a convoluted idea to its current state At every stage of its
development he was generous with his time, his comments, and his criticisms John
helped keep the thesis (and me) on the straight and narrow and it would have been a
much inferior piece of work without his involvement

Finally a big thank-you to my fnend and co-conspirator Sinead Masterson. Her
understanding of my popcorn addiction, help with the Crossaire, and love of movies
were an integral part of this thesis The experience will inspire me to great things
some day, I’m sure

Derek Doran

Table o f Contenis

Table o f Contents

1.0 Introduction.. 1
1 1 Overview 1
1 2 Operating System Trends 1
1 3 Research Aims 2
1 4 Object-Oriented Concepts 4

14 1 Objects and Classes 4
14 2 Encapsulation and Information Hiding 4
1 4 3 Abstract Classes 5
14 4 Class Hierarchies . 5

1 5 What is an Object-Onented Operatmg System? 8
15 1 Object-Based Operatmg Systems 8
15 2 Object-Onented Operatmg Systems 9

1 6 Thesis Overview 9
17 Summary . 11

2.0 The MMURTL Operating System .. 12
2 1 Overview 12
2 2 MMURTL 12
2 3 Reasons for Using MMURTL 13
2 4 Design Goals o f the MMURTL Project 15
2 5 The Task Model 16
2 6 The Messaging Subsystem 18

2 6 1 Request and Respond 19
2 6 11 Request 19
2 6 12 Respond 20

2 6 2 Example of the Request-Respond Mechanism 20
2 7 Memory Management 20

2 7 1 Paging 21
2 8 Summary .. 22

i. « - I * ,

Table o f Contents

3.0 Object-Oriented Operating Systems........... 1..........
3 1 Overview 23

3 2 Spring 23
3 2 1 Interface Definition Language 24
3 2 2 Spring Objects 24
3 2 3 The Spring Nucleus 26

3 3 Chorus 26
3 3 1 Frameworks 26

3 3 2 Classes 27

3 3 3 Process Management 28
3 3 4 MicroChoices 29

3 4 Guide 30
3 4 1 Guide-1 30
3 4 2 Guide-2 31

3 5 Mach 32
3 6 Summary 33

4.0 Object-Oriented MMURTL... 35
4 1 Overview . > 35
4 2 Object-Oriented Entities m OO-MMURTL 35

4 2 1 Objects 36
4 2 2 Object Stores 36
4 2 3 Documentation of Objects and Object Stores 36

43 Storage Containers 37
4 3 1 Advantages o f Tables 38
4 3 2 Disadvantages of Tables 38

4 4 New Container Cntena . 39
4 4 1 Object Managers 41

4 5 Object manager Hierarchy 42
4 6 An Example Object Manager Transaction 43

4 6 1 Advantages Demonstrated by the Example Transaction 45
4 7 Summary 45

u

Table o f Contents

5.0 The Process M anagement Model.. 46
5.1 Overview... 46
5.2 MMURTL's Tasking M odel.. 46
5.3 Process Management Model Definitions... 47
5.4 The Process Manager.. 48
5.5 The Process Management Class Hierarchy.. 49
5.6 The CProcessManager class... 51

5.6.1 Public Methods of the CProcess Manager Class............................... 51
5.6.1.1 Process Retrieval Methods... 52
5.6.1.2 Privileged Process Management Methods.......................... 53
5.6.1.3 Attribute Setting and Retrieval Methods............................ 54

5.7 The CProcess Class... 54
5.7.1 Public Methods of the CProcess Class.. 55

5.8 The CSystemService Class... 58
5.9 The CJob Class... 62
5.10 The CUserJob Class.. 62
5.11 The CSystemJob Class... 64
5.12 Device Drivers.. 64
5.13 The CDeviceDriver Class.. 66
5.14 The CNonReentrantDeviceDriver Class.. 67
5.15 The CReentrantDeviceDriver Class.. 69
5.16 Summary.. 69

6.0 The Messaging M odel... 71
6.1 Overview.. 71
6.2 Messaging in MMURTL.. 71
6.3 The CExchangeManager Class... 73

6.3.1 Resp onsibilities of the CExchangeManager Class.............................. 73
6.4 The Exchange Hierarchy.. 74
6.5 The CExchange Class... 75

6.5.1 Queue Management Methods... 77
6.5.2 Pa cket Retrieval Methods.. 78
6.5.3 Packet Routing Methods... 81

6.6 The CServiceExchange Class... 81
6.7 The CMessageExchange Class.. 86

6.8 Conclusions... 88

i i i

7.0

. . •« i

The Memory Model.................... i.................. ;:.i....................

Table o f Content,

...................... 89
7 1 Overview 89
7 2 MMURTL's Memory Model 89
73 Memory Model Advanced Concepts 90

7 3 1 Shadow Memory 90
7 3 2 Memory Aliasing 92

7 4 Design Decisions 93
7 4 1 Object-Oriented Programming Interface 93
7 4 2 Complete Object-Oriented Class Framework 94

7 5 OO-MMURTL Memory Subsystem Architecture 95
7 6 The CMemoryManager Class 96

7 6 1 Memory Allocation Methods 97
7 6 2 Memory Deallocation Methods 98
7 6 3 Memory Aliasing Methods 100

7 7 Conclusions 102

8.0 Additional Classes...
8 1 Overview 104
8 2 The CReadyQueue Class 105
83 The CPnontisedReadyQueue Class 106
84 The CFIFOReadyQueue Class 111
85 The CInterrupt Class 112
86 The CTimer Class 115
87 Conclusions 120

9.0 Design Testing...
9 1 Overview 121
9 2 Development o f MMURTL 121
93 Development of OO-MMURTL 122
9 4 Testing the OO-MMURTL Class Frameworks 123

9 4 1 The MMURTL Debugger 124
9 5 The OO-MMURTL Simulator 125

9 5 1 Activity of the OO-MMURTL Simulator 125
9 5 2 Strengths o f the OO-MMURTL Simulator 126
9 5 3 Weaknesses of the OO-MMURTL Simulator 127

9 6 Outstanding Issues . . . 127
97 Summary 127

IV

Table o f Contents

10.0 Conclusions.................................. 125
10 1 Overview 125
10 2 Benefits o f the Migration to Object-Onentation 125

10 2 1 Introduction of Object Managers . . . 125
10 2 2 Improved Classification of System Entities 126
10 2 3 Simpler Programming Interface 127
10 2 4 Multiple Personalities 128
10 2 5 Extensible Frameworks 128

10 3 Problems Encountered During Migration 129
10 4 Future Directions 130

Bibliography.. 134

Appendix.. A1

v

Table o f Figures

Table o f Figures

11 A Simple Class Hierarchy 6

1 2 A Class Hierarchy Featuring Abstract Classes 7
2 1 MMURTL's Task Switching Model 17
3 1 Object Invocation in Spring 25
3 2 An Example Chorus Class Framework 29
3 3 Guide's Internal Object Memory Organisation 31
3 4 Object Relationships in Guide 32
4 1 MMURTL Table Structures 37
4 2 The CManager Framework. 43
43 Message From a Task to an Exchange (Steps) 44
4 4 Message From a Task to an Exchange (Control Flow Diagram) 44
5 1 CProcess Class Hierarchy 49
5 2 CDeviceDnver Class Framework . 50
5 3 Example Use of CProcessManager GetProcess() Method 52
5 4 SetUserNameQ and GetUserName() Methods 55
5 5 The CProcess Constructor . 56
5 6 The CPnnterDumpProcess Class 57
5 7 The CProcess FreeResources() Method 59
5 8 The CSystemService constructor and destructor 60
5 9 The CSystemService Service() Method 61
5 10 A Sample CSystemService subclass 61
5 11 The CJob, CUserJob and CSystemJob class definitions 63
5 12 Job Allocation Methods 64
5 13 The CDeviceDnver Constructors 66
5 14 The CNonReentrantDeviceDnver Class Implementation 68
5 15 The CReentrantDeviceDnver Class 69

Table o f Figures

6 1 The CExchange Class Framework 75
6 2 The TPacket Structure 76
6 3 Messaging Structures 76
6 4 CExchange's enQueueTSS() and deQueueTSS() methods 77
6 5 The CExchange CheckPacket() Method 78
6 6 The CExchange WaitPacket() Method 79
6 7 The CExchange SendPacket() Method 82
6 8 The CServiceExchange RequestQ Method 83
6 9 The CServiceExchange Respond() Method 84
6 10 The CMessageExchange SendMsg() Method 86
6 11 The CMessageExchange ISendMsg() Method 86
7 1 The MMURTL Memory Map 91
7 2 Shadow Memory in Practice 92
7 3 The CMemoryManager AUocOSPage() Method 98
7 4 The CMemoryManager AllocPage() Method 99
7 5 The CMemoryManager DeAllocPage() Method 100
7 6 The CMemoryManager AhasMem() Method 101
7 7 The CMemoryManager DeAhasMem() Method 102
8 1 A Possible CReadyQueue Framework > 106
8 2 The CPnontisedReadyQueue enQueueRdy() Method 107
8 3 The CPnontisedReadyQueue deQueueRdy() Method 108
8 4 The CPnontisedReadyQueue ChkRdyQQ Method 107
8 5 The CPnontisedReadyQueue RemoveRdyProc() Method 107
8 6 The CFIFOReadyQueue Class Implementation 111
8 7 The CInterrupt Constructor 113
8 8 The CInterrupt ISR() Method 114
8 9 Additional CInterrupt Methods 115
8 10 The CTimer Constructor 116
8 11 The CTimer Service() Method 117
8 12 The CTimer Sleep() Method 118
8 13 The CTimer AlarmQ Method 119

vu

M Sc Thesis Abstract

Derek Doran (94970777)
Computer Applications
Dublin City University

Dr John Waldron
M Sc Thesis Abstract
March 15th 1996

Object-oriented MMURTL:
The migration of a microkernel operating system

to an object-oriented paradigm

Operating System design has moved from monolithic systems such as UNIX, where all
system services are implemented in a single kernel, to microkernel designs where the
majority of system services are conducted in user space A recent trend m operating
system design has been to use architectural models based upon the object-oriented
paradigms This approach promotes the modelling of system resources and resource
management as an organized collection of objects in such a way that the mechanisms ̂
pohcies, algorithms, and data representations of the operating system are suitably
encapsulated by the objects

Much of the research in this area to date has concentrated on the uses and benefits o f
object-oriented operating systems m the distributed systems arena Similarly, almost all
of these systems have been designed from the ground-up

I beheve that the progression towards object-oriented operating systems is likely to
involve current operating systems incorporating and assimilating object-oriented
features into their existing designs in a gradual manner, rather than an overnight switch
to a new technology

In this light, the purpose of my thesis is to take an existing operating system and to
propose a design which would migrate the original operating systems' facilities and
features to an object-oriented paradigm This thesis also evaluates the advantages and
disadvantages of such a design over the existing one Finally, future enhancements and
directions are proposed based on the new operating system design

Chapter 1 Introduction

Chapter 1

Introduction

1.1 Overview

This chapter briefly describes the progression of operating system research from
monolithic to object-oriented systems This is followed by a description o f the aims and
intentions of this thesis An introduction to object-onented concepts follows This is
given as a precursor to a discussion of the object-onented approach to operating
system design and implementation Finally, a bnef of summary of each of the remaining
chapters of this thesis is presented

1.2 Operating System Research Trends

Operating system design has moved from monolithic systems such as UNIX [Ritchie
75] where all system services are implemented in a single kernel, to microkernel
designs such as Mach [Rashid 86], where the majority of system services are
conducted in user space

Microkernel architectures are designed to isolate the most essential functions of an
operating system to a small core o f code that runs in privileged mode The remainder
of the system is supported as a set of applications that run m user space, isolated from
the kernel by a set o f well defined interfeces Such systems have been found to be
easier to maintain, more extensible and more scalable than monolithic designs One of
the major problems with such microkernel systems, however, is the high overhead
caused by cross domain interprocess communication (IPC) calls This raises further
questions as to which services should be situated mside the kernel and which should
remain outside This is a design decision which is dependent on individual system
implementations [Campbell 95]

l

Despite advances in these technologies; current operating systems still suffer from

problems which have either been inherited from previous generations, or else which
have appeared as a result o f the rapid advancement of hardware technologies [Mitchell
93] These include
• the cost o f maintaining and evolving the system, including both the kernel and non-

kernel code
• the lack of system support for software reuse
• the difficulty o f building distributed, multi-threaded apphcations and services
• the difficulty o f supporting time-cntical media (eg audio and video), especially in a

networked environment

A recent trend in operating system design has been to use architectural models based
upon object-oriented paradigms This approach promotes the modelling o f system
resources and resource management as an organized collection of objects in such a
way that the mechanisms, pohcies, algorithms, and data representations o f the
operating system are suitably encapsulated by the objects [Campbell 91]

The movement to object-oriented operating systems is driven by two mam motivations
Firstly, there is a desire to create systems whose design enables easier and fester
development and modification of system components Secondly, there is a movement
towards operating systems where the distinction between system components and
third-party apphcations is reduced in such a manner that additional components can
become linked to the operating system with ease [Hamilton 93]

Chapter 1 Introduction

1.3 Research Aims

I beheve that the progression towards object-onented operating systems will be more a
migratory movement than a revolutionary one That is to say, mstead of switching
directly to new operating systems with radically different designs and technologies,
existing operating systems will mstead begin to incorporate and assimilate object-
oriented features mto their existing designs m a gradual manner This is based upon the
behef that unless users are presented with a bridge between old and new technologies,
the movement to operating systems with radically new designs will be a slow and
problematic one A possible example o f this in action has been the disappointing
markets performance o f the NextStep operating system, a system which has received
much critical acclaim for both its design and implementation

2

Most research in the area o f object-oriented operating systems to date, however, has
centred on creating brand new operating systems which have been designed from
scratch with relatively little emphasis placed upon existing systems Object-onented
operating systems designed in this manner tend not to have solved the problems found
in previous generations o f operating systems, but instead have placed them to one side
and started again This is perfectly acceptable when designing a state-of-the-art system,
however a gap remains in attempting to discover a suitable migration from existing
technologies to object-oriented operating systems

In this light, the purpose of this thesis is to present a study of the migration of an
existing non-object-onented operating system and proposing a design which rephcates
its onginal facilities and features using an object-onented paradigm

The emphasis o f this thesis is placed on the identification of the problems which were
encountered, the architectures which were investigated and the solutions which were
provided during the course o f the migration to the object-onented paradigm In
addition a comparison is made between the onginal system and its new, object-
oriented, incarnation

In order to do this, this thesis concentrates on providing an object-oriented
architectural design which as much possible duphcates the capabilities, though not the
implementation, of the onginal operating system Although it would have been possible
to improve MMURTL's capabilities as a result o f the introduction of the object-
onented paradigm, this would not have allowed a fair companson between the onginal
system and the newly designed one

The migration of an existing operating system to the object-onented paradigm is an
important step, however it is only the first of many This thesis also discusses the state
of the new Object-Onented MMURTL (OO-MMURTL) as it stands In addition a
proposal as to future enhancements and directions which can be undertaken based
upon, and as a direct result ofj the new operating system design is presented The most
obvious of these being a distributed implementation of MMURTL which embraces
objects at the core o f its design

'<■ '> 1 i

Chapter 1 Introduction

3

Chapter 1 : Introduction

This section presents an introduction to the concepts of object-orientation. Features
relating specifically to object-oriented operating systems are dealt with later in this
chapter. There are many different interpretations of the object-oriented concepts. This
is probably highlighted by the terms Object and Class whose definitions may vary from
one system to another. The definitions presented below are based upon those given by
[Weiner 90], and are used throughout this thesis.

1.4 Object-oriented concepts

1.4.1 Objects and Classes

An object is an encapsulated entity including code and data. Each object is fully
described by a combination of its data, referred to as attributes, and its functions,
referred to as methods. Objects can be dynamically created and deleted. An instance of
an object is the realisation of is interface.

A class defines a collection of objects which exhibit identical behaviour. Objects of the
same class share common code, but each instance of the class, i.e. each object, retains
its own set of data. A class allows a taxonomy of objects to be built based upon an
abstract or conceptual entity, whereas an object defines the specific state of each
particular entity.

1.4.2 Encapsulation and Information Hiding

By storing both a set of code and data together in an object, the designer is stating that
the information held in the attributes and the actions performed by its methods which
may be performed upon them are conceptually related, and it makes sense to store
them together. This is known as Encapsulation. The essence of encapsulation is to
enable a programmer to view a set of related items as a conceptual unit.

An object may have public or private methods. Its private methods may only be
invoked from within the object, while its public methods describe the methods which
may be called from inside or outside of the class. Hence the public methods and public

attributes are often referred to as the interface of an object. The principle whereby
certain elements o f a class remain private is known as Information Hiding.

4

Chapter 1 Introduction

Information hiding allows a class to publicly declare what actions it is capable of
performing, without divulging how these actions are performed This provides two
important benefits Firstly, information hiding allows both the designer and
programmer to take a more abstract view of objects Secondly, the internal
representation of an object may be developed in the future without affecting the pubhc
interface, and therefore application programs which invoke the object

1.4.3 Abstract Classes

An abstract class is a template for other classes Similar to ordinary classes, it is
described by a set of attributes and methods, however at least one o f its methods is not
fully described It is instead defined without being implemented Such methods are
known as virtual methods

Since they are not fully described, abstract classes may not be instantiated Instead,
other classes will inherit from an abstract class, implementing their own versions of its
virtual methods Such classes are known as concrete classes They can be instantiated
In this fashion, abstract classes can be used as templates to describe partial behaviour
of concrete classes

1.4.4 Class Hierarchies

A set of classes can be hierarchically organised in order to further describe their reuse
and evolution A class hierarchy is an architectural design for describing an
object-oriented system Class hierarchies provide infrastructural and architectural
guidance while designing the interrelationships between component objects of a
system

Class hierarchy diagrams depict the relationships between objects and the interface
inheritance between them By usmg class hierarchies, system objects can be classified
into categories The root leaf o f a hierarchy is often represented by an abstract class

By presenting information about object classification in this way, a detailed yet high
level description of the system may be achieved

5

Chapter 1 Introduction

In further levels of the hierarchy, concrete implementations of classes will replace
abstract classes, thus specialising and further describing the behaviour of the system
objects being documented

A system described by a class hierarchy is, at its highest level, a single framework
which guides the design of subframeworks The framework for a system provides
generalised components and constraints to which specialised subframeworks must
conform.

The root of the class hierarchy is shown at the top of the diagram. Specialisations of
classes are represented in a top-to-bottom manner In Figure 1 1, SubClassOfA is a
subclass of ClassA.

Figure 1 1 A simple class hierarchy

Several classes can inherit from the same class Object-Oriented MMURTL does not
require, and therefore does not support multiple inheritance, hence each class may
inherit from only one parent class

Abstract classes are shown in bold type This is demonstrated m Figure 1 2 which
shows the class hierarchy for the Process subsection of the Chorus operating system,
which is described in further detail in Chapter 3 Object-Oriented Operating
Systems

6

Chapter 1 Introduction

Figure 1 2 A class hierarchy featuring abstract classes

In Figure 1 2, Process is the highest level class in the hierarchy It is an abstract class
It serves as a template for all further process objects in the operating system. It defines
the default behaviour of a process in terms of its methods along with its default
attributes

The virtual methods of the Process class must be defined in its subclasses In this way,
each o f the subclasses will become a specialised version of the default Process object,
retaining the behaviour of the original class, while at the same time introducing new
behavioural nuances specific to the subclass

In Figure 1 2, the behaviour o f a Process is further defined and specialised in the
subclasses ApphcationProcess, SystemProcess, and InterruptProcess In turn,
PreemptableSystemProcess is a specialisation of SystemProcess This demonstrates the
ability to provide a more specific subclass implementation at each level o f the class
hierarchy

A Gang is a specialisation of Process however it too is an abstract class Therefore it is
impossible to create an instance o f a Gang object Instead, system developers or
apphcation programmers must create a new subclass o f the Gang class, providing
implementations o f its abstract methods, so that the new subclass is a concrete class
and may therefore be instantiated

7

Chapter 1 : Introduction

In its purest form, an object-oriented operating system is one in which all system
components, mechanisms and resources are modelled as objects. Object-oriented
techniques such as abstraction, encapsulation and inheritance are used to perform the
modelling.

The system developers design a set of objects which will serve as generic system
components. These are then customized through object-oriented interfaces and
specialization to suit the needs of each individual component of the system In this
way, inheritance encourages the reduction of the implementation of different system
services to a small number of classes that can be specialized and combined to achieve a
desired result [Campbell 93a], This approach supplements the microkernel,
client/server operating system organizations used in systems like Mach [Rashid 86], V
[Cheriton 88], and Amoeba [Tannenbaum 90] to introduce more flexibility for
application support.

The object-oriented approach to operating system design and implementation also
serves to provide a distinct boundary between the various system components, thus
easing their development, maintenance and extension.

There are two non-exclusive approaches to incorporating objects in the architecture of
an operating system [Krakowiak 93], Each of these is described below, with example
implementations of each system given.

1.5 What is an Object Oriented Operating System?

1.5.1 Object-Based Operating Systems

These operating systems provide support for objects. This usually takes the form of
additional structures above the basic layers of the operating system which will support
objects. The level at which object support is provided varies from one implementation
to another.

Guedes [Guedes 92] presents an implementation of the Mach 3.0 multi-server system
which supports objects. The operating system is decomposed between a microkernel, a
set of system servers running in user-mode, and an emulation library executing in the
address space of applications.

8

Chapter 1 Introduction

In this implementation of ObjectMach [Juhn 89], all o f the interfaces provided by the
system servers are object-oriented and all of the services provided by them are defined
in terms of system objects, such as files, directories, devices etc In addition, both the
servers and the emulation library are written in an object-onented language

1.5.2 Object-Oriented Operating Systems

In this architecture, the entire operating system is implemented as a set o f objects
Object-Oriented Operating Systems encourage customisation of not only the
interfaces, but also the operating system itself through the use of object-oriented
techniques such as inheritance

Choices is a fully object-oriented operating system which also provides support for the
object-based architecture It is described in detail in Chapter 3 Object-Oriented
Operating Systems

1.6 Thesis Overview

This is a bnef summary of each o f the chapters m this thesis, with the exception of this
introduction chapter

Chapter 2 The MMURTL Operating System Hus chapter describes the basic
architecture o f the original MMURTL operating system This is presented as a
precursor to later chapters which, while describing the new implementation of 0 0 -
MMURTL, allude to MMURTL's original design as a point of reference

Chapter 3 Object-Oriented Operating Systems This chapter introduces practical
examples of the design of existing object-onented operatmg systems This will
demonstrate the wide variety o f possible implementations when objects are introduced
to the design of an operating system The operatmg systems presented m this chapter
range from those developed by professional developers to those developed by
academic institutions, and from object-based operatmg systems to completely object-
oriented systems

9

»*‘ i

j

Chapter 4 Object-Oriented MMURTL This chapter introduces the basic design and
implementation of OO-MMURTL The exphcit implementation of each component of
the operating system is described in detail in subsequent chapters Operating system
concepts and entities which are common to most or all of OO-MMURTL's system
components are introduced here This includes the use o f objects and the design o f
object storage containers

Chapter 5 The Process Management Model This chapter describes in detail the
design and implementation of the OO-MMURTL process management model,
including the class hierarchy and component classes which support this area of the
operating system

Chapter 6 The Messaging Model As in its original implementation, messaging is at
the core of much of OO-MMURTL's system behaviour This chapter describes m
detail the design and implementation of the OO-MMURTL messaging model,
including the class hierarchy and component classes which support this area o f the
operating system

Chapter 7 The Memory Model This chapter initially describes the advanced memory
concepts involved in MMURTL's original memory model. Following this, the design
and implementation o f the OO-MMURTL memory model, including the class
hierarchy and component classes which support this area of the operating system, are
presented

Chapter 8 Additional Classes Hus chapter introduces additional classes which are
integral to OO-MMURTL and support the classes presented in previous classes, while
not belonging to the subsystem in question The design and implementation o f the
various class hierarchies and classes which support OO-MMURTL's ready queue,
interrupts and timer are described in detail here

Chapter 9 Design Testing This chapter briefly describes my experiences during the
design and testing of OO-MMURTL

Chapter 1 Introduction

10

Chapter 1 Introduction

Chapter 10 Conclusions This chapter describes the state of OO-MMURTL as
presented in this thesis In addition, possible fixture enhancements to the new design
are offered, along with suggestions as to the new directions which can be undertaken
based upon the new operating system design

1.7 Summary

This chapter discussed recent research trends in the area of object-oriented operating
systems Problems with the area of migration to object-oriented operating systems
were highlighted Following this, the mtent of this thesis, i e to redesign an existing
operating system architecture using an object-oriented paradigm and document the
resulting observations, was set out A brief explanation of object-oriented concepts and
terms was given, before the general area of object-oriented operating systems was
introduced Finally, a bnef overview of each of the remaining chapters in this thesis
was given

11

Chapter 2 The MMURTL Operating System

Chapter 2

The MMURTL Operating System

2.1 Overview

This chapter introduces the origins, intentions, architecture and design o f the
MMURTL operating system [Burgess 95] In addition, an introduction is made to the
three components which form the core of MMURTL its task model, messaging
model, and memory model. Each of these descriptions will provide a basic overview of
the component m question, while further details of each are presented m later chapters,
which deal with OO-MMURTL's redesign of the three primary system components

2.2 MMURTL

MMURTL has been under development by Richard Burgess since 1991 It was
designed to run on most 32-bit ISA PC compatibles However, despite its
incompatibilities with other operating systems, MMURTL remains an extremely
powerful operating system.

MMURTL is a 32-bit message based, multitasking, real-time operating system
designed around the Intel 80386 and 80486 processors on the PC Industry Standard
Architecture (ISA) platforms The name is an acronym for Message based
Multitasking, Real-Time, kemeL

MMURTL has been designed from the ground up, resulting in its incompatibility with
other popular operating systems Its file system however, is FAT compatible, allowing
MMURTL to reside on a DOS formatted hard drive in the same partition as DOS
itself

12

i- *

Although DOS is required to run before MMURTL is invoked, DOS is not powerful
enough to accommodate MMURTL1 s mechanisms As such, MMURTL merely makes
use of DOS as a boot program Once the MMURTL loader is executed, the operating
system executive gams control of the hardware and all traces o f DOS are removed
from memory

Chapter 2 The MMURTL Operating System

2.3 Reasons for using MMURTL

Burgess recommends the use o f MMURTL as a learning and reference tool for
programmers working m 32 bit environments In the field of education, MMURTL can
be used to teach introductory multitasking theory, paged memory operation and
management, hardware and software task management, and real-time message based
operating systems

Although MMURTL is essentially a little known operatmg system, there were several
motivations for the use of MMURTL as the basis of this thesis

• Code Availability - A major factor which dictated the choice of operating system
was the essential need to have access to the complete source code of the system.
The importance of this requirement dictated by the need and desire to achieve a
complete understanding o f the inner mechanisms and workings of the operatmg
system bemg studied, so that an accurate model of its behaviour, both internally
and externally, could be made

• Documentation - This requirement is related to the previous pomt In order to
completely understand the system's mechanisms and pohcies, an operating system
was sought which provided a set of documentation which was sufficiently detailed
and accurately documented

• Programming - The operatmg system was required to provide a well-defined
application programming interface which would allow both system developers and
apphcation programmers to harness its power and capabilities while at the same

time ensuring ease o f use In addition, the possibility of ill behaved programs

causing damage to the rest o f the operating system must be minimised

13

• Platform - The vast majority of work in the area of object-oriented operating
systems research takes place on workstation platforms In order to present a
diverse view of an object-oriented operating system, a system which was based on
an IBM PC compatible format was sought With this in mind, a further
specification with regards to power had to be made Due to the advanced nature
and slower processing o f object-oriented operating systems, the Intel based
operating system had to have been designed explicitly to gain advantage of the
advanced capabilities of later generation chips such as the 80386, 80486 and
Pentium

MMURTL is a 32-bit message based, multitasking, real-time operating system,
designed explicitly for use on Intel 80386 and 80486 platforms It makes use of
processor specific structures to provide more advanced facilities through the operating
system An example o f this is the use o f the 386/486 memory pagmg mechanisms to
dispense with the segmented memoiy model as used by DOS and to replace it by a
simpler yet more powerful flat 32-bit virtual memory model

The entire MMURTL source code is available at the Dr Dobbs Journal FTP1 site on
the Internet, and also on a CD-ROM available inside Richard Burgess' recently
published book entitled "Developing Your Own 32-bit Operating System" [Burgess
95], which uses MMURTL as the basis for its case study of a practical, modem, 32-bit
operating system

In addition, Burgess provides clear and concise documentation of MMURTL along
with plentiful use o f comments throughout his source code Finally, MMURTL's
system calls are well designed and clearly defined providing ease of use in the C
programming language

The only specification which MMURTL failed to satisfy was that of providing a
sufficiently safe programming and operating environment in which to program both
apphcations and the system Although a debugger forms an integral part of MMURTL,
little language or run-time support is provided by the operating system MMURTL
provides no inbuilt mechanisms to reduce the possibility of errant programs bringing
down the entire operating system

Chapter 2 The MMVRTL Operating System

:ftp dobbs com in directory /pub/source/MMURTL

14

[

i ft,*

Although this is a senous omission in a modem operating system, it was acceptable in
the circumstances, given that C++ as a language, and object-onentation as a design
technique, both provide mechanisms (such as C++ exception handling), which can
enhance the possibility of implementing a safe operating environment System
protection could be introduced as an integral feature of a future implementation of
OO-MMURTL without having to redesign or reengineer the new system

In summary, almost all o f the initial operating system specifications required for this
thesis were met with by MMURTL, and in some cases they were surpassed

Chapter 2 The MMURTL Operating System

2.4 Design goals of the MMURTL project

Since its original inception, MMURTL has extended from a simple operating
environment undertaken as an exercise in system programming and design, to a
powerful though raw operating system. Burgess defined the following as the original

design goals o f the MMURTL project

• True Multitasking - Given the capabilities of systems such as UNIX and Mach to
provide true multitasking, implementing a non-multitaskmg environment would
have served merely to mimic DOS' failings on the same platform For this reason,
the ability o f a single program to create several threads o f execution that could
communicate and synchronise with each other while carrying out individual tasks
was seen as an essential feature

• Real-Time operation - The ability to react to outside events in real-time would be
an additional feature which would extend the possible uses o f the MMURTL
operating environment This goal provided the impetus that MMURTL be a
message-based system.

• Client/Server design - The ability to share services with multiple chent apphcations
on the same machine or across the network provides MMURTL with a valuable
model which could lend itself easily to future expansion, in particular as a
distributed operating system MMURTL's message-based design provides the
mechanisms to accommodate this

15

• Flat 32-bit Virtual Memory Model - MMURTL uses the memory paging
capabilities o f 386/486 processors to provide an easy 32 bit flat address space for
all applications running on the system

2.5 The Task Model

MMURTL has a real-time prioritised tasking model The currently executing task in
MMURTL is always the one with the highest priority which is not in a wait state

In order to conduct the prioritising of ready tasks, each task is assigned a priority value
when it is created MMURTL has 32 priority levels with 0 being the highest and 31 the
lowest General purpose applications (editors, compilers, word processors etc) should
all run at a pnonty o f 25 This leaves 0 through 24 for more important things, and only
26 through 31 for less important things (spoolers etc)

In MMURTL, a task may be in one of three states Firstly, when a task is initially
created, it is presumably ready to run Secondly the task with the highest pnonty m the
system is executing If there is more than one task with the highest pnonty, then
execution is shared between them in a time-sliced manner Finally, a task can be in a
wait state, waiting for a communication from another task, from a hardware
notification, or from an external source It will not be able to continue executing until
the event they are waiting upon occurs

Tasks that are ready to run are placed in the system pnontised ready queue This is
actually implemented as an array of thirty-two queues, each holding a set o f tasks
which are ready to run, of the same pnonty Thus the zeroth queue in the anay holds
the ready tasks with a pnonty of zero, the first queue in the anay holds the ready tasks
with a pnonty of one, and so on The task which is at the top o f the ready queue, is the
one at the top o f the first non-empty queue in the array of thirty-two queues

If more than one task is on the highest pnonty non-empty queue, then time-shcing
occurs, otherwise the task with the highest pnonty executes until it relinquishes the
processor because it has entered a wait state or has run to completion This is
descnbed in detail below

‘ V '¡ ‘ ‘ *

Chapter 2 The MMJJRTL Operating System

16

Chapter 2 : The MMURTL Operating System

Tasks that are waiting upon a message or another task, remain at an exchange (see
Section 2.6 Messaging subsystem). When they receive a notification at the exchange
they will move to the ready queue, or if they have a priority higher than the currently
running task they will become the running task and the previous running task will be
returned to the ready queue.

MMURTL does perform some time-slicing but this is only between tasks with equal
priorities. If the priority of the currently running task is 25, the Task Manager will slice
time between that task and any others in the ready queue which have an equal priority.
Note that tasks waiting at an exchange with the same priority will not be time sliced
since upon becoming the running task they would merely be capable of performing a
busy wait.

MMURTL switches between tasks in response to the following events:

1. An outside event caused a message to be sent to an awaiting task which has an
equal or higher priority than the currently running task.

2. The currently running task can't continue because it needs more information from
the outside world. In this case it sends a request and goes into a wait state and
control is passed to the task with the next highest priority.

3. The operating system has detected that there is a process with a priority on the
ready queue with the same or higher priority as the task that is currently running,
and a predetermined amount of time has lapsed.

Running Task)

1 / /
5

/ / 2 4 \

Waiting Tasks
3 Ì

/ \
Tasks Ready To Run

Exchanges Ready Queue

Figure 2.1. MMURTL's Task Switching Model

17

Chapter 2 The MMURTL Operating System

Figure 2 1 shows the movement of tasks as performed by the system Task Manager
This shows that a Running Task which needs a communication from another task,
hardware, or an external source, will move into a wait state at an Exchange (2) When
the notification is received by the waiting task, it will be placed on the Ready Queue
(3) unless it is has a higher priority than the currently executing task, in which case it
becomes the Running Task (1) If the Running Task has completed, or if the Running
Task's time shce has expired (4) and there are other tasks with an equal or higher
priority, then the next highest priority task in the Ready Queue becomes the Running
Task (5)

2.6 The Messaging Subsystem

MMURTL is capable of both synchronous and asynchronous messaging Tasks
exchange information with each other by sending messages There are two basic forms
of messaging in MMURTL The first type is a Request for services which should
receive a Respond message in response The second type is a non-specific message
which doesn't expect a response The Request/Respond mechanism is a key component
of MMURTL's client/server model

Central to the messaging subsystem is the concept of an Exchange An exchange is the
place at which a message is left for a task, and so it is the place to which tasks look
when seeking or awaiting messages In order to send a message in MMURTL, a task
must first have an exchange to which it can address the message Exchanges are
allocated by the AllocExch function

Sending a message in its simplest form requires a SendMsg call which sends a given
message to a specified exchange At this point one of two things may happen

Firstly, a task may be expecting the message and therefore it would wait at the
exchange for it to amve This is done by calling the WaitMsg function Once a
message arrives at the exchange at which a task is waiting, the task may continue

running An exchange is one of only two places a task may wait The other is the ready
queue

‘ f y. '

Secondly, the message will arrwe at the exchange at which there is no waiting task In
this case the message will wait at the exchange until a task looks there using the
CheckMsg function to detect if a message is waitmg

2.6.1 Request and Respond

The Request and Respond messaging primitives are designed so that a system service
which provides shared processing for all apphcations on the system can be installed
The processing is earned out by the system service in response to a Request The
results and perhaps data are returned via the Respond primitive to the requester

Message based services provide shared processing functions that are not time cnticaL
The service is provided to all apphcations Example uses o f system services include file
systems, keyboard input, printing services, and Email services

Each service is given a name upon installation Hie name must be unique on the
machine This name is registered with the operating system Name Registry The
registration takes place only the first time the service is installed At the same time the
service name is assigned an exchange number In this way, the service can be refened
to in future by its name, such as 'KEYBOARD1, as opposed to its exchange number
The exchange may change each tune the machine is booted but the service name
remains the same It is not unusual for up to thirty system services to be installed at a
given time

A Service Code is associated with each service Each of the possible 65,533 service
codes may represent a function provided by that system service The Service Code is
transparent to the operating system as it is uniform across all system services

2.6.1.1 Request

A Request for a system service is more complex than a simple SendMsg and as such it
requires more information Each request must mclude a Service Name which identifies
the service being requested and a Service Code which specifies the exact service
function being requested Two pointers to memory in the address space o f the
requester are sent which may contain data required by the service This data could
point to a text string, a array or a structure of data, depending on the service

Chapter 2 The MMURTL Operating System

19

Each request must also be accompanied by the number of an exchange which has been
previously allocated by the requesting task This exchange will be used by the service
to respond to the request

2.6.1.2 Respond

The Respond primitive is less complicated than the Request It merely requires as
parameters the handle to the request block which is being responded to and a status or
error code being returned by it

2.6.2 Example of the Request-Respond Mechanism

The following steps illustrate a possible communication from an application to a
service and the resulting response using the Request/Respond mechanism.

1 A task calls Request and asks a specific service to perform a certain function
2 The request arrives at the exchange in the form of an 8 byte message
3 The requesting task calls WaitMsg on the exchange specified m the Request call

and sits at the exchange waiting for a reply
4 The request is noticed by the system service and serviced
5 If the service is performed successfully, the resulting data is placed into the

memory address area of the requesting task The Respond primitive is called which
notifies the task waiting at the exchange that the request has been earned out

Chapter 2 The MMURTL Operating System

2.7 Memory Management

MMURTL uses 386/486 hardware based paging for memory allocation and
management As a result MMURTL dispenses with segmented programming (which is
normally associated with DOS) In MMURTL there is only one memoiy model, which
has two segments One is for code, the other for data and stack Each segment can be
as large as physical memory

20

Chapter 2 The MMURTL Operating System

MMURTL doesn't provide memory management m the sense that compilers and
language systems provide a Heap or an area that is managed and cleaned up for the
caller Instead, MMURTL is a paged memory system Each page is four Kilobytes o f
contiguous memory

Pages are allocated in response to a request by an application or system service and are
returned to the pool of free memory pages when they are deallocated MMURTL
manages all the memory in the processor's address space as pages

MMURTL uses almost no segmentation The operating system and every apphcation
share only four segments

• The OS Code Segment
• The OS Data Segment
• The User Code Segment
• The User Data Segment

MMURTL makes use of its own code segment to provide additional protection for
system programming and for protection within the OS pages of memory

This memory management scheme allows MMURTL to use 32 bit data pointers
exclusively This simplifies system and apphcation programming and speeds up code
execution.

2.7.1 Paging

MMURTL's use o f paging simplifies its memory management mechanism by using
tables to manage both physical and linear memory addresses These tables are used by
hardware to translate physical memory addresses to linear memory addresses

The tables that hold these translations are called Page Tables (PTs) Each entry in a
Page Table is referred to as a Page Table Entry (PTE) Each Page Table Entry
represents one four kilobyte page There are 1,024 Page Table Entnes, each using four
bytes, in each Page Table Therefore one four kilobyte Page Table can represent four
megabytes o f memory.

21

In order to locate the appropriate Page Table, the memory management system makes
use of Page Directories (PDs) Each task is assigned a Page Directory In turn each
entry in a Page Directory Entry (PDE) Each Page Directory Entry holds the physical
address o f a Page Table Once again each entry requires four bytes and represents a
smgle Page Table which represents four megabytes o f memory Since each Page
Directory has 1,024 entries, each task can access 4 gigabytes o f linear address space

Chapter 2 The MMURIL Operating System

2.8 Summary

This chapter introduced the MMURTL operating system The cntena for finding an
appropriate system on which to base this thesis were laid out initially, followed by a
bnef summary of the aims of the MMURTL operating system Next, each of the three
primary components of MMURTL were described - the task model, the messaging
subsystem, and the memory model Each of these systems will be described in further
details in later chapters which concentrate on the redesign of each of these components
in OO-MMURTL

22

Chapter 3 Object-Oriented Operating Systems

Chapter 3

Object-Oriented Operating Systems

3.1 Overview

This chapter provides a brief examination of several object-oriented and object-based
operating systems This serves to demonstrate the wide variety of possible
implementations when objects are introduced m the design of an operating system. The
operating systems presented in this chapter range from those developed by professional
developers, such as Sun Microsystems' Spring [Mitchell 93] system, to those
developed by academic institutions such as the University of Grenoble's Guide [Balter
91] system They also range from object-based operating systems such as Carnegie
Mellon University's Mach [Juhn 89] to completely object-oriented systems such as
Choices [Campbell 93b], which was developed by the University of Illinois

3.2 Spring

Spring is a highly modular, distributed, object-oriented operating system, which is
currently under development by Sun Microsystems Inc A commercial release has yet
to appear

The design of Spnng concentrates on the notion of an object-oriented operating system
with a strong and exphcit architecture, particularly with reference to the interfaces
between its software components By stating strength of interface as an important
design factor, Spring's system designers imply that a well defined definition of what
each software component does is given, while at the same time very little about how
the component is implemented is given

This summary of the Spring system presents its use o f an Interface Definition
Language, a discussion of Objects in Spnng, a bnef examination of Spring's structure,
and finally a look at the Spring Nucleus

23

Chapter 3 Object-Oriented Operating Systems

In order to achieve this strength of interface, the Spring designers developed an
Interface Definition Language (IDL) which is based upon the IDL adopted by the
Object Management Group as a standard for defining distributed, object-oriented
software components

Typically, an IDL compiler is used to produce three pieces of source code m a chosen
target language, for example C - h - or Smalltalk The first piece of source code which is
produced is, in the case of C++ for example, a header file with the definitions of the
methods, constants, types and classes which were defined in the IDL Secondly, chent
side stub code is produced This stub code is dynamically linked into a client's program
to access an object which is implemented in a different address space Finally, the
server side stub code is dynamically linked into an object manager in order to translate
incoming requests for object invocation into the run-time environment of the object's
implementation

Several compilers are provided to support the IDL, for example, Spring could provide
an IDL-to-C and an IDL~to-C++ compiler allowing a chent written in C and a server
written in C++ to use the same IDL The use of this IDL helps Spnng to achieve
strong interfaces between software components while remaining a flexible, extensible
and open design, thanks to its language independence and capacity for dynamic linking

3.2.1 Interface Definition Language

3.2.2 Spring Objects

Almost all of Spnng is implemented as a suite of object managers, for example the file
system which provides file objects etc In addition, object managers are themselves
objects As a consequence it is as easy to add new system functionality as it is to wnte
a new apphcation in Spnng, and all such functionality is inherently part o f a distributed
system

The combination of object-onentation and strong interfeces endows Spnng with an
open, distributed, extensible and secure computing environment, in addition to
uniformity of access to objects and location transparency

24

The users of a Spring object invoke operations upon it based upon the operations
defined in its interface As a result of its distributed nature, how and where the
operation is actually performed is transparent to the application performing the object
invocation

There are two forms of objects in Spring, server-based objects and serverless objects
Server-based objects are implemented in servers that reside in different address spaces
from their chents Support is provided for these objects is given through the generation
of stubs by the IDL These stubs take the arguments for the invocations, dispenses
them for transmission to the server, and retrieves any results before returning them to
the client apphcation This form of transmission makes use of the Spring subcontract
mechanism which allows control over object runtime operations such as how object
invocation is implemented and how object references are transmitted between address
spaces

Serverless objects always exist in the address space of the client When a serverless
object is passed between address spaces, its state is copied to the new address space
Both server-based and serverless object invocation are shown in Figure 3 1

Chapter 3 Object-Oriented Operating Systems

client
application

client stubs

subcontract

IDL
Interface

5

setver
application

setver stubs

subcontract

A call on a server-based object

client
application

object ,
implementation

r

IDL

Interface

A call on a serverless object

Figure 3 1 Object Invocation in Spring

25

Chapter 3 Object-Oriented Operating Systems

The nucleus is Spring's microkernel It supports three basic abstractions domains,
threads, and doors A domain is analogous to a UNIX process or a Mach task It
provides an address space for an apphcation to run in and acts as a container for
various kinds of apphcation resources such as threads and doors Threads execute in
domains Each thread executes a single portion of a domain, usually while other
threads are executing concurrently within the same apphcation Doors support object-
oriented calls between domains A door represents an entry point to a domain,
represented by both a chent computer and a unique value nominated by the domain

3.2.3 The Spring Nucleus

3.3 Chorus

Choices is a parallel object-oriented operating system designed as a collection of
interconnected frameworks It was developed at the Department of Computer Science
at the University of Illinois Chorus is an original operating system, designed from its
conception as an object-oriented operating system implemented in C++ It supports
distributed and shared memory multiprocessor apphcations and virtual memory

3.3.1 Frameworks

The design of Chorus is based upon the design of and interrelationships between
frameworks and subframeworks A framework is an architectural design for object-
oriented operatmg systems and are used to describe the components of such a system
and the way they interact The mteractions m Chorus are defined in terms of classes,
instances, constraints, inheritance, polymorphism and rules of composition

The Chorus operatmg system is implemented as a framework, which guides the design
of the subframeworks of its subsystems Each subframework refines the general
operatmg system framework according to the requirements of the particular
subsystem which it represents

26

. ^ <■

The frameworks for the system provide generalised components and constraints to
which further specialised subframeworks must conform Each subframework
introduces additional components and constraints to the components of its framework
Subframeworks may be recursively refined in order to provide further specialisations

In this manner, frameworks assist the initial operating system and Chorus' extensibility
by providing an architectural design that has common components and interactions
throughout the entire network of subsystems A framework augments the traditional
layered design of operatmg systems [Campbell 92] A layer represents an abstract
machine that hides machine dependencies and provides new services, while a
framework introduces classes of components that encapsulate machine dependencies
and define new services

Chapter 3 Object-Oriented Operating Systems

3.3.2 Classes

The Choices framework consists of three abstract classes A MemoryObject is used to
store data A Process represents a thread of control which executes a sequential
algorithm. A Domain is an environment that binds the names processed by the threads
of control to storage locations The cardinality of their interrelationships are as
follows
• Each process must have one and only one domain - Each thread may only operate

in a single execution environment
• Several processes may share the same domain - Several threads may perform

concurrently in the same execution environm ent

• Each domain may be have several memory objects - An execution environment
may consist of several blocks of memory, in which code and data are stored

• Each memory object may be associated with several domains - Each block of
memory may be shared between co-operating execution environments

Each of the three abstract classes described above must be speciahsed through
subclasses before they can be invoked The constraints, such as the cardinality
relationships, between classes remain true between subclasses They can, however, be
further defined and speciahsed

27

Chapter 3 Object-Oriented Operating Systems

As an example of a Chorus framework in action, a brief introduction to the Chorus
Process Management framework is given here Almost all of Chorus' frameworks
consist of related or communicating components The process management framework
has five such components, each of which is described below

• Process - This is a path of execution through a group of C++ objects There are
three specialisations of a Process A SystemProcess executes in the kernel and is
non-preemptable An ApplicationProcess runs in user and kernel space, while an
InterruptProcess is used to handle the occurrence of an interrupt Note that
context switching is light-weight between Processes in the same domain and is
heavy-weight between Processes in different domains

• ProcessorContext - This is responsible for saving and restoring the machine
dependent state of a Process Every Process has exactly one ProcessorContext and
each ProcessorContext belongs to a single Processor

• Processor - This encapsulates the processor dependent details of the central
processing unit This includes the hardware CPU identification numbers and the
state of the hardware mechanism.

• Gang - This is a group of Processes that should be gang scheduled (run
simultaneously) on the processors of a multiprocessor machine The Gang allows
the collection of Processes to be manipulated as a single unit

• ProcessContamer - This component is responsible for implementing scheduling in
Choices Subclasses of ProcessContamer inherit the scheduling interface and are
responsible for implementing different scheduling pohcies as required by the
operatmg system For example, m order to implement a multilevel feedback queue
scheduling pohcy, the ProcessContamer insertion and removal methods must be
speciahsed m a subclass of ProcessContamer Processes are executed by inserting
them mto instances of ProcessContamer, the Processor then removes the Process
from its ready queue before dispatching it An example class hierarchy of the
ProcessContamer class is shown m Figure 3 2

3.3.3 Process Management

28

Chapter 3 Object-Oriented Operating Systems

P ro cesso rCo nta I n e r

FIFOSc:heduler

RRScheduler

Figure 3 2 An Example Chorus Class Framework

3.3.4 MicroChoices

The most recent version of the Choices operating system is called MicroChoices The
most important development in this version is the splitting of the kernel into two
distinct portions, resulting in the removal of machine dependent code from the majority
of the operating system

The low-level portion of the newly designed kernel is the nanokernel This provides
hardware dependent support for the remainder of the operating system. It is built as a
framework of classes that captures the essential properties of the low-level hardware,
presenting a usefiil interface to the higher levels of the kernel in a machine-independent
manner The nano-kernel is a single modular subsystem that provides the mechanisms
for implementing higher-level abstractions, such as processes, timers, and virtual
memory The framework of abstract classes which the nano-kernel is composed of are
speciahsed for particular hardware implementations through the creation of
subframeworks The remainder o f the kernel, the microkernel, and the operating
system as a whole can now benefit from enhanced portability The nanokemel design
has now reduced the task of porting MicroChoices to a matter of simply providing new
machine specific subframework of the nano-kernel

The MicroChoices model describes an idealised machine architecture at the lowest
level supporting a machine independent micro-kernel interface to the remainder of the
operating system. Guidelines for the intermediate levels of the system are provided
through the use of object-oriented frameworks

29

Chapter 3 Object-Oriented Operating Systems

The Guide system was developed at the University of Grenoble, France It is a fully
object-oriented distributed operating system for the development and operation of
distributed applications Every resource or abstract entity in the system is an object,
and communication between processes takes place through shared objects

The GUIDE [Krakowiak 93] model views the system as a distributed shared universe
organised as a set of objects Guide objects are passive, that is to say that processes or
threads are defined independently from the objects they operate on In addition,
GUIDE objects are capable of persistence, their life can extend beyond that of the
process or thread which created them.

The design of GUIDE is based on the tenet that an object support layer is provided by
a lower level kernel, such as a microkernel, whose object support remains independent
of the object model which it supports Thus a single object support microkernel is
capable of supporting different object models

The development of GUIDE has occurred in two phases, each of which is described
below

3.4.1 Guide-1

The first phase of Guide, Guide-1, was a single-language, UNIX-based system. Its
primary aim was to investigate the use of objects as a unifying structuring mechanism
in an operating system. A new programming language was composed in order to
provide the required freedom of design required by the project The operating system
was fine-tuned to the performance of this language, and vice versa

Guide- l's execution model was organised into Tasks A Guide Task is a virtual address
space in which objects are mapped Concurrent activities run inside Tasks Both tasks
and activities may be distributed

The object memory was internally organised as a two-level store, as shown in Figure
3 3, although this division was hidden from apphcations Both levels were
transparently distributed

3.4 Guide

30

Chapter 3 Object-Oriented Operating Systems

Task

M ultiprocess
execution
address
space

Multiprocess
execution
address
space

VOM

SS

Objects which are bound

in at least one task

Persistent support
for objects

Virtual memory of nodes

■ Atom ic copy actions

1
Secondary storage of noctes

Figure 3 3 Guide's Internal Object Memory Organisation

The Virtual Object Memory provided support for executing methods on shared,
synchronised objects, while the Secondary Storage provided permanent storage space
for objects The Virtual Object Memory acted as a cache for the Secondary Storage
Garbage collection was performed at the Secondary Storage leveL Each Guide Task
was associated with a distributed address space The Virtual Object Memory consisted
of the address space of all active Tasks

In order to be used by the activities of a Task, an object must be present in the address
space of that Task Hus was done by mapping the object into the Task's address space,
and subsequently loading the object through the underlying paging mechanism

3.4.2 Guide-2

Whereas the original Guide-1 system was a UNIX-based system, Guide-2 was
designed based upon a microkernel-based architecture Similarly whereas Guide-1 was
a single-language system, Guide-2 aimed to provide generic support for object-
oriented languages which conformed to certain criteria, namely that the language is
class based, where the classes are organised in a hierarchy by the is-a-subclass-of
relationship, and that objects are named by universal references

31

The Guide virtual machine provides three basic abstractions in its object model for
building complex structures Instance-objects, class-objects. and code-hbranes The

relationship of these objects is shown in Figure 3 4

Chapter 3 Object-Oriented Operating Systems

Figure 3 4 Object Relationships in Guide

3.5 Mach

Mach is one of the most popular microkernel systems today, being the basis for
commercial operating systems such as NeXT, OS/2 and Windows NT Mach 3 0 was
designed to provide core system functions required in order to support higher system
levels It is intended to be a foundation on which operating systems can be built

The Mach microkernel performs a small set of operations in order to reduce the size of
code running in both kernel space and user space The operations performed by the
microkernel fall into five categories - Virtual Memory Management, tasks and threads
management, interprocess communication, I/O support and hardware management,
and both host and processor services These components define the abstract processing
environments for application programs

32

J “ .*■ !* - ' Í ' í ¡ Í

The Mach 3 0 multi-server system makes use of two object-oriented techniques in its

operating system construction Firstly, an object-onented model is defined for all
interactions between chents of the operating system and the system itself and secondly,
object-oriented techniques are used to structure those interactions

The functionality of the operating system is provided by a three-layer architecture At
its lowest level hes the Mach 3 0 microkernel which provides the basic Mach
abstractions, such as virtual memory management, task management and device
handling The next level is comprised of a set of mostly generic system servers These
execute as tasks in user mode, implementing all of the high level functionality required
by a complete operating system, such as file management and networking Finally, the
third and highest level consists of a collection of emulation libraries executing in the
address space of the user tasks, which provide access to the generic services supported
by the services

The interactions between system components are defined using an object-oriented
model, and the system itself is implemented using an object-oriented language All of
the services provided by the various servers are defined in terms of operating system
objects such as files, directories, devices, etc Although each server is an abstraction of
an entire operating system component, as a result of its object-oriented nature only a
subset of its operations may be invoked This grves the system service programmer
more flexibility in the implementation of the server, which may be split, combined, or
optimised, through the use of inheritance and polymorphism, without affecting the
manner in which the chents interact with it

IBM is currently working with Tahgent on a version of its Workplace OS, using Mach
as its basis, which will provide object-onented abstractions from the microkernel to the
system service level, supporting object-onented services such as IBM's System Object
Model, Distnbuted System Object Model, and Tahgent's frameworks

3.6 Summary

This chapter introduced four different implementations of object-onented operating
systems Spring, Choices, Guide and Mach The four were chosen based upon the
diversity of their design and implementation, and the nature of the institutions which
developed them

Chapter 3 Object-Oriented Operating Systems

33

Chapter 3 Object-Oriented Operating Systems

Although there were several common conceptualisations between the four operating
systems, the number and variety of differences between them, in terms of both then
design and implementation was apparent This exemplifies the lack of consensus
among designers and implementors of object-oriented operating systems In turn,
perhaps this serves to demonstrate that research in the area of object-onented
operating systems has yet to approach maturity In a similar fashion, OO-MMURTL
shares some commonalities with these operating systems, but also displays some
diversities too

34

Chapter 4 Object-Oriented MMURTL

Chapter 4

Object-Oriented MMURTL

4.1 Overview

This chapter introduces Object-Oriented MMURTL (OO-MMURTL) In particular,
new entities which have been added to the operating system are focused upon In
subsequent chapters each component of the operating system is examined, such as the
process management subsystem and the memory management subsystem, and their
object-oriented designs will be described in detail The strength of each of then
designs, however, is reliant upon the concepts introduced in this chapter

When object-orientation is used as the basis for the design and implementation of an
operating system, it is inevitable that new entities will be introduced at various stages
of its realisation Previous chapters have provided definitions of the concepts which
underlie object-oriented technology However, the strength of an object-oriented
operating system comes as a direct result of the strength of the basic components from
which the remainder of the system is inherited If the initial building blocks lack a firm
foundation, the underlying weaknesses will have a heavier effect on each subsequent
sublevel of the system design The two basic entities which form the basis of OO-
MMURTL are described below

4.2 Object-Oriented Entities in OO-MMURTL

The level of activity in the area of object-oriented operatmg systems, particularly in the
distributed systems area, suggests that object-oriented technologies can provide
powerful new tools at the hands of the system and apphcation developer As with any
other technology however, the importance and value of object-onentation lies not in its

suggestion, but in maximising its effect on the performance and capabilities o f the
operating system itself Object-orientation is realised m OO-MMURTL by identifying
and introducing two primary concepts - objects and object stores

35

Chapter 4 Object-Oriented MMURTL

Objects are the most basic entity in the OO-MMURTL operating system The first step
undertaken in the migration of MMURTL to an object-oriented design was the
identification of the core components of the original system Within these components,
entities which would be better implemented as objects in the new operatmg system
design are identified Subsequently, a class hierarchy is designed in order to
encapsulate the behaviour of each set of related objects which belong to a specific
component o f the operatmg system

4.2.1 Objects

4.2.2 Object Stores

The second way m which object-orientation is realised m OO-MMURTL is through
the introduction and use of object stores As was previously mentioned, the
mtroduction of objects is not sufficient m itself to reap the rewards of object-
onentation The behaviour of the objects has to be supported by a suitable
infrastructure within the operatmg system In OO-MMURTL this role is performed by
the Object Managers, which are described m detail later m this chapter

4.2.3 Documentation of Objects and Object Stores

Subsequent chapters discuss each of the mam components of the OO-MMURTL
operatmg system which have been redesigned using the object-oriented paradigm,
namely

Process management
The messaging subsystem
Memory management
The ready queue
The interrupt mechanism
The timer

36

Chapter 4 Object-Oriented MMURTL

Each of these chapters follows a set pattern
1 The behaviour of the relevant Object Manager is described
2 The class hierarchy which encapsulates the components behaviour is introduced
3 The individual classes are described
4 The implications o f object-orientation on the component in question are

discussed

Additional concepts and functionality which have been introduced to support a given
component are introduced during the course of the relevant chapter

4.3 Storage Containers

Every operating system must store a wide range of information concerning the
processes and resources which it supports This information ranges from the address
and size of a data segment belonging to a specific task, to the contents of a message
which is being transported between two tasks The individual system developer must
decide how best to organise this data while remaining faithful to the goals and
constraints of the system design

MMURTL makes use of tables to store its system information Fixed-sized structures
are defined for each resource Each of these structures is padded so that the default
MMURTL page size is a multiple of the structure size Figure 4 1 shows a table which
represents examples of these structures, along with their size, and the amount of
structures which could be allocated to an operating system memory page (1024 bytes)

Structure Size (bytes) Per Page
Job Control Block (JCB) 512 2

Task State Segment (TSS) 512 2

Exchange (EXCH) 16 32

Request Block (RQB) 64 8

Figure 4 1 MMURTL Table Structures

37

Chapter 4 Object-Oriented MMURTL

4.3.1 Advantages of Tables

The decision to use tables m the implementation of MMURTL was due to the
following factors

• Fast access - This is perhaps the single most important benefit of tables Speed of
access is paramount in the mind of a system designer at every stage of
development Because the system data stores are used so frequently by most
system operations, fractions of a second delay in retrieving or modifying the
information could result in a needless reduction in productivity This is
compounded in the case of tables that must be accessed in a mutually exclusive
manner In these cases, other tasks could be blocked while the running task
accesses the data, causing a further waste of CPU cycles

• Simplicity> o f their implementation - Tables are one of the simplest structures in
which to store and maintain data They are easily accessed and maintained,
substantially simpler than a structure such as a linked list, whose pointers must be
fastidiously guarded at all times

• Easily Managed - MMURTL makes use of static tables That is, each table is
allocated a predetermined amount of operating system memory pages at boot time
From this point on, a simple list or bitmap is used to track free table entries from
entries which are in use When a task is allocated a table-based resource, it is given
a unique number which represents the resource in question For example, each JCB
has a unique Job Number This number will serve not only to identify the relevant
job but can also be used to index the table directly, since each identifier also
doubles as a table entry number

4.3.2 Disadvantages of Tables

Despite the advantages mentioned above, in my opinion tables are an inherently limited
form of information storage for certain entities in an operating system, in particular an
object-oriented operating system, for the following reasons

38

Chapter 4 : Object-Oriented MMURTL

• Distributed management - In order to facilitate speed of access, there are no
specific functions whose responsibility it is to maintain the system tables. Instead,
each function which accesses, and in particular modifies, a system table must repeat
the same actions as every other task which performs the same function. This lack
of accountability towards system tables is directly related to the next problem

• Inadequate protection - MMURTL uses two of Intel's four possible protection
levels - user and system. As a result, any system task can access any other part of
the system without restriction. A task may easily, yet inadvertently, corrupt a
system table therefore compromising system integrity with possibly disastrous
effects on other tasks.

• Static allocation - Although this problem does not apply to all operating system
implementations of tables, it does apply to them as they exist in MMURTL. The
static allocation undoubtedly facilitates easier management of tables, however, it
also leads to two potential problems :

1. At boot-time, memory pages are allocated to each table, for example sixty-
four TSSs are immediately allocated, using thirty-two kilobytes. As the
memory available to operating systems increase, this may be regarded as a
minor problem. At the same time any waste of system resources must be
carefully monitored, and so this possible waste cannot be disregarded
either.

2. Of more concern is the inability for additional table entries to be allocated
following boot-up. This could lead to the anomaly whereby a task requests
that a new resource be allocated to it, there are enough resources available
to satisfy the request, but there are no free structures left to represent the
resource, hence the request fails.

4.4 New Container Criteria

Taking the deficiencies of the current storage system under consideration, the
following criteria were set in order to determine a design for an adequate storage
medium for OO-MMURTL:

39

Chapter 4 : Object-Oriented MMURTL

• Centralised processing - In keeping with the object-oriented paradigm, the new
storage system had to have centralised processing. In other words, the functions
which could access and modify the tables ought to be grouped together. Updates
to tables could no longer be performed anywhere in the operating system simply
because it was possible. Each storage container must be responsible for all accesses
to the information it contained. To do this, a set of clearly defined access methods
must be made available by each container in order to facilitate every type of access
and update that may be required, where permissible by user or system tasks.

• Protection - Since access to the system data stores will be through a centralised
processing area, an integral component of the new container should be that it offers
protection to the information it contains. No task should be allowed to gain access
to a data object, or perform an action on one, without full error checking having
been performed first. Examples of the checks that should be asked of a request
include:

- Is the object identifier valid?
- If it is valid, does the object it refers to exist?
- If it exists, have all of the resources required by the operation been allocated?

Only when the container is satisfied that the task requesting access to the data can
perform the desired action without causing a system error, will the container allow
the task to proceed.

• Intelligence - This means that each container has some specific knowledge of the
nature of the data it holds. Tables are generic by nature. They provide an area of
data to store multiple entries of a given size. The only information that a function
requires to access the relevant record is the offset of the table, the index of the
entry, and each entry size. Although this calculation is both simple and rapid, it
does not provide optimum support for either the data or for the tasks which are
attempting to access it. Take a container which stores exchanges as an example of
an intelligent container. Such a store should be able to receive a communication
from a task and detect whether it is a message or a request. Having verified the
correctness of the communication, the container will then forward it to the
exchange belonging to the intended destination's task if it's a message, or in the
case of a request then the intended system service will be looked up, before the
communication is forwarded to it.

40

• Future expansion - The new container should also be capable of growth and
expansion Tables cannot mature in this fashion The container must be as flexible
as the data it holds If at some stage m the future OO-MMURTL was to become a
distributed operating system, it would be necessary for each object contamer to
provide additional fundamental behaviour by each of the objects it represents This
could include the need for object persistence and location transparency Although
this functionality would be provided by new aspects of the operating system, the
existing constructs, in particular the object containers, would have to be capable of
supporting the new behaviour Gwen that the new container was obviously going
to be an object-oriented construct, the criterion of expansion becomes the easiest
to satisfy as a result of object-oriented features, in particular that of inheritance

Taking the sum of these needs as a specification, a new construct has been introduced
to the OO-MMURTL operating system to fill the gap in its facilities This construct is
described below

Chapter 4 Object-Oriented MMURTL

4.4.1 Object Managers

Every object-oriented operating system has some form of repository for objects Some
choose to group objects in related categories, others store objects in a global (within a
particular system node) store There are as many names for such stores as there are
differing implementations - containers, collections, bags etc

The term Object Manager was chosen because it best describes the function performed
by the new construct It does more than contain or collect objects, equally it doesn't
just store its objects in bags Each of OO-MMURTL's Object Manager's performs the
following tasks

• Stores objects
• Verifies the validity of all accesses to objects
• Maintains responsibility for allocating and freeing memory used by objects and

the resources allocated to them
• Provides a complete set of pubhc access methods to the objects

41

t
J

Having defined the facilities which had to be provided by an object manager, the next
step was to consider possible implementation strategies As was previously stated, the
approach taken was to provide a speciahsed object manager for each major component
of the operating system which maintained a number of objects under its supervision
There would be a Process Manager, an Exchange Manager, a Memory Manager and so
on The reasoning behind this was to ensure each manager had a strict, well-defined
realm of control

Each of these managers would be responsible for the key area it represents, and this
varied widely between one manager and the next, for example process objects behave
differently and have a different life cycle than exchange objects, and so on Having said
that, the basic functionality to store and retrieve a memory or an exchange object
remain closely related

As a result, it became apparent that each Object Manager would have two sides to its
behaviour Firstly, all o f the managers shared the need to store their objects in a similar
fashion On the other hand, the support provided by each manager for access to the
objects they stored vaned

The solution to satisfying both aspects of the behaviour of each Object Manager is
provided by the following two-step implementation strategy

Step One A root CManager class is defined whose purpose it is to'provide storage and
retneval functionality This class would manage the pomters to the objects it stored, it
would allocate and deallocate memory appropnately in order to facilitate the storage of
the objects, and it would provide methods which could be used by inherited classes to
manipulate the data it stored

Step Two Subclasses of CManager are created for each component of the operating
system These subclasses would inherit all of CManager's functionality in order to
manage the objects they contamed In addition each implementation of a CManager
subclass must provide methods which deal explicitly with the types of object they
store These methods would define the public interface of each particular
implementation of an Object Manager

Chapter 4 Object-Oriented MMURTL

4.5 Object Manager Hierarchy

42

Chapter 4 Object-Oriented MMURTL

These two steps combine to provide a set of private methods hidden from the user
which store and maintain the objects, and a set of pubhc methods which provide the
functionality to perform tasks specific to each component of the system

The CManager class hierarchy in OO-MMURTL is flat in nature, as shown in Figure
4 2 It is possible, however, to implement further subclasses of a CManager subclass if
necessary, although such a need does not currently arise in OO-MMURTL

Figure 4 2 The CManager Framework

In order to exemplify their relationships, the following section descnbes an example
transaction between a task, an Object Manager and an object represented by the
manager

4.6 An Example Object Manager Transaction

The scenario which forms the basis for this example is that of a task sending a request
to an exchange The steps which comprise this action m OO-MMURTL are shown in
Figure 4 3 The bold bracketed numbers in the nght column refer to the control flow
diagram which is shown in Figure 4 4

Note that the Object Manager in question - the CExchangeManager - is described in
detail in Chapter 6 along with the class hierarchy which represents the entire messaging
system (including the CExchange class which also features in the example)

43

Chapter 4 Object-Oriented MMURTL

Step Description

1 Task sends request message to CExchangeManager

2 CExchangeManager attempts to retrieve pointer to
requested CExchange

-> CExchangeManager verifies existence of CExchange
4 CExchangeManager verifies validity of request
5 CExchangeManager creates a TRequest record
6 CExchangeManager sends the TRequest record to the

relevant CExchange
7 CExchange attempts to remove a waiting task from its

own task queue

8a If no task was waiting, the request is queued (goto step

11)
8b If a task was waiting, the request is given to it and the

task is placed on the ready queue

9 The ready queue is re-evaluated
10 A switch is made to the highest priority task
11 Control returns to the CExchangeManager

Figure 4 3 Message from a task to an exchange (Steps)

Figure 4 4 Message from a task to an exchange (Control Flow Diagram)

4 4

Chapter 4 Object-Oriented MMURTL

The control flow diagram depicted above shows the flow of control between the
various entities in the messaging subsystem and the ready queue in response to a
request for an exchange Control enters the system at the Entry node and leaves at the
Exit node A thin arrowed line represents a transfer of control which does not
immediately return, while a thick arrowed line shows a flow of control which does
return

4.6.1 Advantages Demonstrated by the Example Object Manager Transaction

The following features of the previous example demonstrate the improvements which
have been provided by the new Object Manager entity in object access transactions
• The message which is intended for the CExchange object, is initially sent to the

CExchangeManager This allows the CExchangeManager to vet and possibly reject
the request

• Further resources are only committed once the request has been vahdated
• The CExchange object is only made aware of vahd, correctly formatted requests
• CExchangeManager retains control of the CExchange object at all times

4.7 Summary

This chapter introduced Object-Oriented MMURTL In particular, the use of two
primary object-oriented entities which form the foundation of OO-MMURTL were
described, namely objects and object stores The responsibilities of the new system's
object stores were identified, subsequently a new operating system component called
an Object Manager was described which would handle these responsibilities Finally, an
example transaction was given which made use of an Object Manager, highlighting the
advantages o f the new mechanism

45

Chapter 5 The Process Management Model

Chapter 5

The Process Management Model

5.1 Overview

This chapter describes OO-MMURTL's process management model A bnef
description of the improvements which result from the use of object-onentation in the
design of the model is given Following this, definitions are provided for the new
concepts which are introduced in the design of the new model. Next, the object
manager which is responsible for this subsystem, the Process Manager is described At
this point the hierarchy of component classes of the process management model are
presented, before each of the classes is described m detail Finally, a summary is made
of the advantages which have arisen as a result of the model's implementation

5.2 MMURTL's Tasking Model

MMURTL's tasking model is based upon the notion of jobs Each piece of executing
code is treated as a job, regardless of whether it is a user program, a system program
or a system service Each job is represented by a Job Control Block (JCB) which
contains information pertaining to it, such as its name, the address of its Page
Directory, and the address and size of its code, data and stack segments

OO-MMURTL improves upon this in two ways
• A class model is provided which differentiates the various types of executing

entities within the operating system A basic pattern of behaviour is defined for
each one By doing this, the new design enables the operating system to distinguish
the intrinsic behavioural differences between each type of process

• Secondly, a speciahsed component has been introduced whose sole aim is to
manage the behaviour of processes of all types, and to ensure that process requests
are correctly stated and suitably behaved This component, which is called the
Process Manager replaces the static table which previously held job information

46

Chapter 5 The Process Management Model

In light o f the changes to the Process Model, it is necessary to define and clarify the
concepts involved, before proceeding with a discussion of OO-MMURTL's new

model

A Process is a control path through a group of C++ objects Each process is composed
of one or more threads of execution Each thread is referred to as a Task Information
concerning tasks is maintained in a Task State Segment (TSS) structure A TSS is a
construct defined by the Intel processor The processor uses the TSS to manage its
tasks

One of the advantages of using the TSS is its capacity for expansion The processor
allows the operating system to append additional fields to the TSS One of the fields
which is added to the TSS by OO-MMURTL is the address of the task's corresponding
Process object In this way the operating system can use the TSS to directly access the
Process for a given task, thus enabling actions (such as task switching, spawning new
tasks e tc) to be performed on it

Three basic entities can be identified in the OO-MMURTL Process Model

• A Job is an executing program whose life cycle consists of being loaded mto the
operating system, striving for system resources in order that it can complete its
prnpose, before exiting It aim is to run to completion with minimum delay A Job
can be performed in privileged (OS) or non-pnvileged (User) mode

• A System Service is a Process which is usually loaded at boot tune, but may also be
dynamically loaded later, and which remains dormant for much of its existence Its
purpose is to await requests from a Job or another System Service, requiring a
speciahsed action to be performed When the action is performed, the service
returns to a dormant state until another request is received Usually a System
Service will be removed from memory when the operating system itself terminates
The Keyboard module and File System are examples of modules which provide
System Services

5.3 Process Management Model Definitions

47

Chapter 5 The Process Management Model

• The final operating system entity which can gain control of an execution thread is a
Device Driver These are speciahsed pieces of code whose purpose is to control or
emulate hardware on the system They are low level entities which abstract the
inner workings of hardware devices to simplify access to them by Jobs and System
Services

5.4 The Process Manager

In MMURTL, Task Management is performed by two components
• The processor manages TSS structures
• The operatmg system manages Job Control Blocks

Each TSS pomts to a corresponding JCB which contams data required by the
operatmg system about each job Job Control Blocks are structures of static length
(512 bytes) which are stored m a table and referenced by an mdex mto that table The
operatmg system provided no single component to manage the JCB table Instead any
job with system privileges would access the JCBs directly

The central component of the OO-MMURTL Process Management Model is the
Process Manager, which replaces the JCB table The processor still manages TSS
structures as before, with the exception that each TSS now pomts to a process object
as opposed to a JCB structure

The Process Manager was mtroduced to overcome the following problems which were
inherent in MMURTL's task model

• Because no single component was responsible for the management of the JCB
table, any system task could access and amend, or even destroy it For this reason,
the integrity of the table could be easily compromised

48

Chapter 5 The Process Management Model

• Jobs were responsible for performing privileged operations upon themselves This
led the system developer to perform tncks through Assembly language to
overcome the paradoxes which resulted One example of when this occurred was
when a program terminated itself and specified another program which was to run
next What happens in this case is that the program to be terminated calls the
ExrtJobQ function where its resources are freed Now, however there is no
program to return to, it has been terminated Instead the ExitJobO function
manipulates the calling stack so that the operating system returns control to the
program specified to run next This is an unorthodox operation which can cause
system crashes with ease if the slightest mistake is made

5.5 The Process Management Class Hierarchy

The purpose of the OO-MMURTL Process Management hierarchy, as with any other
object-oriented framework, is to provide well-defined mechanisms that allow
developers to extend and leverage the functionality provided, in order to increase
system productivity and integration [Tahgent '93]

The process management hierarchy has two separate components, which represent the
different types of executing entities possible in OO-MMURTL The first and most
common of these is the CProcess hierarchy

Figure 5 1 depicts the base class CProcess and its subclasses, C SystemService and
CJob CJob's subclasses CUserJob and CSystemJob are also represented

Figure 5 1 CProcess class hierarchy

4 9

Chapter 5 The Process Management Model

CProcess, CSystemService and CJob are abstract classes They are insufficient in
themselves to be invoked Their purpose it to define a template for the entities which
they represent A programmer must derive a new class and write the abstract methods
which are required m order to create a concrete class

CUserJob and CSystemJob are both concrete classes Classes of both of these types
can be instantiated without need for a new inherited class This is because they have
been sufficiently refined through the base class CProcess, its subclass CJob, and the
relevant subclass CUserJob or CSystemJob

The second component of the process management hierarchy relates to device drivers
They are not processes in then own nght As such, then behaviour requned them to be
distinguished by a separate hierarchy This is shown in Figure 5 2

Figure 5 2 CDeviceDnver class framework

The reason the CDeviceDnver hierarchy is distinct from the remainder of the process
management framework is because device drivers are not regarded by the operating
system as independent executions CDeviceDnvers do not retain then own threads of
control, instead control is passed from tasks belonging to CProcess objects A
CDeviceDnver object is invoked and upon completion, control is returned to the
calling CProcess

As depicted in Figure 5 2, CNonReentrantDeviceDnver, CReentrantDeviceDnver and
CDeviceDnver are abstract classes The actual code which mteracts with the hardware
that each device driver controls must be inserted by the device driver programmer for
each particular device

50

Chapter 5 The Process Management Model

In order to solve the inherent problems of the old JCB, the new Process Manager
performs two basic functions
• It acts as a container to store and manage the process objects
• It acts as a gateway through which calls to processes are vetted before being

allowed to be performed

In order to fully satisfy these requirements, the Process Manager is responsible for the
following activities
• Creation of new Jobs, System Services and Device Drivers in response to requests

from the operating system or existing Processes / Device Drivers
• Directing messages and method calls from the operating system or user programs

to the appropriate Process / Device Driver
• Responding to messages and methods which have been dealt with by the

appropriate Process / Device Driver
• Ensuring the safe closure of a Process / Device Driver, verifying that its resources

have been freed and that any subsequent jobs which must be created are started

5.6.1 Public Methods of the CProcessManager class

Certain functionality is allowed to be performed directly on a CProcess object An
example of this would be to set the name of the process which is to be executed upon
completion of the current process This would be performed by using the SetExitProcQ
method. However, in order for the operating system or a program to have access to a
CProcess it must first request the pointer from the Process Manager Only when the
request has been validated, will the program be able to perform actions on the
CProcess This is demonstrated in the example portion of code in Figure 5 3

5.6 The CProcessManager class

51

Chapter 5 The Process Management Model

void ReturnToCLI()
{
// Select an arbitrary process number

unsigned long ProcNo = 3,

// Declare a pointer to a CProcess

CProcess *pAProcess,

// Retrieve a pointer to the process

pAProcess = ProcessManager->GetProcess(ProcNo),

// Check success of operation

if (pAProcess==NULL)
x p n n t f (" Process Manager reports no such process"),

else
pAProcess->SetExitProc("c \\mmurtl\\cli run"),

}

Figure 5 3

Other functions, however, may only be performed by the Process Manager An
example of this is when a process terminates This cannot be done manually - it may
only be performed through the Process Manager A request is submitted to the Process
Manager which, having been vahdated, deals with the request and the CProcess object
directly Control only reverts to the program which invoked the recently completed
process once the object representing that process has been deleted

Other pubhc methods belonging to the Process Manager deal with setting and
retrieving its attributes In summary, there are three categories of methods invocable
on the Process Manager, they are

1 Process retrieval methods
2 Privileged process management methods
3 Attribute setting and retrieval methods

The methods belonging to each of these categories are described below

5.6.1.1 Process retrieval methods

CProcess *GetProcess(unsigned int ProcNo)

This method, having verified the validity of the ProcNo parameter, will return a pointer
to the corresponding process object to the calling program

52

Chapter 5 The Process Management Model

CProcess *GetCurrentProcessQ
This method will return a pointer to the currently executmg process to the calling
program. The index of the currently executmg process is a kernel variable which is
retrieved by the call GetCurrProcQ There will always be at least one executing
process (the OS Monitor)

5.6.1.2 Privileged Process Management Methods

long LoadProc(unsigned intProcNo, longfhRunFile)
This method is responsible for loading a program into an existing Process object This
operation is requested primarily by the ChainQ method, however it may also be called
by the ExitProcQ method if a process to run following the completion of the current
process is specified ExitProcQ and ChainQ are each responsible for opening and
vahdatmg the run file1 and setting up the run file variables The first step of the
LoadProcQ method is to allocate user memory for the new process' stack, code and
data If this is completed successfully, the code and data are loaded from the run file

Jong LoadNewProc(char *pFileName, long *pProcNumRet)
Hus creates and loads a new process LoadNewProcQ is responsible for reading and
vahdatmg the run file It must identify the size of the code, data and stack segments
required by the program and allocate these segments LoadNewProcQ then loads the
new process into the newly allocated segments It must also create a new CProcess
object and add it to the existing collection of CProcess objects If the new process is
successfully loaded and created, LoadNewProcQ returns ErcOK and the new process
number is stored in pProcNumRet, otherwise an error is returned

long Chain(unsignedintProcNo, char *pFileName)
The purpose of this method is to allow a process or a service to terminate itself and
replace itself by another process or service ChainQ terminates all of the tasks
belonging to the process which calls it and frees system resources which will not be
used in the new process

1 A run file is a file with the extension RUN - This represents an executable file analagous to a DOS
EXE file

53

Chapter 5 The Process Management Model

The location of the process which is to replace the current one is stored in the
ExitRunFile attribute This field is set by the SetExitProcQ method and retrieved by
the GetExitProcQ method The ExitRunFile field of every new process is initially
empty One important aspect of the ChainQ function is that the second process runs m
the context o f the first In other words, the second job uses the CProcess object which
was previously home to the first process In this way, the Page Directory remains the
same

void ExitProcessO
This is called from a user process or system service This cleans up all of the resources
that the terminating process was allocated ExitProcessO also checks for an exit run
file to load if one is specified If no exit run file is specified the process is completely
terminated, and, if the video and keyboard were assigned to it, they are reassigned to
the Monitor

5.6.1.3 Attribute Setting and Retrieval Methods

long GetProcessCountQ
This function returns the current number of processes held m the CProcessManager
container It is primarily used for administration and statistical purposes

5.7 The CProcess class

The primary purpose of the CProcess class is to define the basic attributes of a process
in OO-MMURTL CProcess is an abstract class from which CJob and CSystemService
are inherited, both of which are also abstract Note that application programmers will
create process instances of either of these two subclasses, rather than of the base class
CProcess, which will be inherited from when new types of executing entities are
introduced to OO-MMURTL

CProcess is a generic class which defines the abstract behaviour of all subsequent
subclasses o f CProcess Further attributes which are specific to speciahsations of
CProcess are defined in the subclasses

54

Chapter 5 The Process Management Model

Many of the methods belonging to the CProcess class concentrate on setting and
retrieving its data attributes Most o f these are trivial such as the SetExitJobQ /
GetExitJobQ pair whose code appears in Figure 5 4

5.7.1 Pubhc Methods of the CProcess class

void CProcess SetUserName(char *pUserRet)
{

strcpy(sbUserName,pUserRet) ,
}

void CProcess GetUserName(char *pUserRet)
{

strcpy(pUserRet,sbUserName) ,
}

Figure 5 4 SetUserName() and GetUserName() methods

Due to the simplicity of their operation I will omit discussion of CProcess' more basic
methods and instead concentrate on those which directly affect the operation of the
OO-MMURTL Process Management ModeL These are the constructor, destructor,
and the FreeResourceQ method

CProcess 0 - [Constructor]
The CProcess constructor is only called from the Process Manager's LoadNewJobQ
method This is necessary in order that the new process request is first vahdated, the
run file is then checked before code, data and stack segments are allocated and loaded
Then the CProcessor constructor is invoked to create an object for the new process
Finally the newly created CProcess object is added to the collection of CProcess
objects maintained by the Process Manager If any other object tries to create a
CProcess object, vital stages in its construction could be missed which could lead to
errors

55

Chapter 5 The Process Management Model

The CProcess constructor performs three basic tasks
1 It initialises attributes whose initial values are received through parameters to the

constructor, for example process name, user name and process path
2 It sets the standard input to keyboard and the standard output to video
3 It sets the default values of the remaining variables which will always carry the

same initial values for each task, for example cursor type, initial cursor position etc

The code for the CProcess constructor is shown m Figure 5 5

CProcess CProcess(long Num, char *Name, char *User,
char *Path, char *CmdLine,
char *VidMem, char *VirtVid)’

{
/* Initialise variables as per parameters */
ProcNum = Num,
strcpy(sbProcName,Name) ,
strcpy(sbUserName,User),
strcpy(sbPath,Path),
strcpy (ProcCmdLme, CmdLine) ,-
pVidMem = VidMem,
pVirtVid = VirtVid,

/* Set system input for this process to keyboard */
strcpy(Sysln,"KBD"),

/* Set system output for this process to video */
strcpy(SysOut,"VID"),

ExitError = 0,
CrntX = CrntY = 0,
fCursOn = 1,
fCursType = 1
ScrollCount = 0,
NormVid = 7,
strcpy(ExitRF,""),

/* Initial cursor pos (0,0) */
/* Cursor is on */
/* Block cursor */

/* White on Black */
/* No ExitRunFile initially */

Figure 5 5 CProcess constructor

An important point to note is that for each process, the default system input is always
the keyboard and the default system output is always the monitor This may not always
be the desire of the systems programmer For example m the case where a process
must dump its entire output to a printer In such a case the programmer has two
options

1 Reset the default system input value usmg the CProcess->SetSysIn0 method This
would have to be invoked immediately after the CProcess constructor to ensure
that no output is missed

56

Chapter 5 The Process Management Model

2 Derive a new subclass from the CProcess class The new class, called for example
CPnnterDumpProcess, would have to create a new constructor, as shown in Figure
5 6 Now, the process will send its system output directly to the printer
immediately following the call to its constructor creation This example, though
trivial, shows how the CProcess hierarchy can be adapted to change the default
behaviour of a set of processes

/* Class Definition */
/* Only a single method is rewritten the remainder are

inherited from the CProcess class along with CProcess'
attributes */

class CPnnterDumpProcess public CProcess {
public.

CPnnterDumpProcess (long Num, char *Name, char *User,
char *Path, char *CmdLme,
char *VidMem,char *VirtVid),

K

/* Class Code */

CPnnterDumpProcess CPnnterDumpProcess (long Num,
char *Name, char *User, char *Path,
char *CmdLme, char *VidMem,char *VirtVid)

CProcess (Num, Name, User, Path, CmdLme, VidMem, VirtVid)

{
/* Set system output for this process to printer */
strcpy(SysOut,"PRN"),

}___

Figure 5 6 The CPnnterDumpProcess class

-CProcess () - [Destructor]
The CProcess destructor is responsible for freeing any additional memory which was
allocated by instantiations of the CProcess object Note that the underlying system
resources used by the process - exchanges, page directories etc - should have been
previously freed by the Process Manager by calling the CProcess method
FreeResources Q

57

Chapter 5 The Process Management Model

FreeResourcesQ
The purpose of the FreeResourcesQ method is to deallocate all of the previously
allocated system resources belonging to a process This involves
• Invoking the abstract method FreeCurrentResourcesO so that subclasses of

CProcess may deallocate any additional system resources which they may have
previously allocated

• Emptying the ReadyQueue of any tasks belonging to this CProcess object
• Freeing any exchanges used by this CProcess object

In this way, when control returns to the calling method, such as CProcessorManager’s
ChainQ or ExitJobQ methods, it can safely terminate this process knowing that all of
its resources have been freed The FreeResourcesQ method is shown in Figure 5 7

5.8 The CSystemService class

A system service is an installable program which provide system-wide message-based
services for application programs and other services Each service is associated with an
exchange Whenever a program wants a system service to perform an action, it sends a
Request message to the appropriate exchange The service carries out any necessary
actions before replying with a Respond message

In MMURTL, each system service is given an eight character name by which it is
uniquely identified Examples of service names in OO-MMURTL include
"FILESYSM" for the file service and "KEYBOARD" for the keyboard service

A service is only recognised by the system when it has called the function
RegisterSVCQ The following is the full set of steps required in order to set up a
service
1 Allocate and initialise any resources required, including the main service exchange,

additional exchanges, and additional memory
2 The function RegisterSVCQ is called The name of the new service and the address

of the function which will service the requests are passed as parameters
3 Wait for messages, service them, and respond

58

Chapter 5 The Process Management Model

long CProcess FreeResources()
{

CExchange *pExch, *pCurrExch,
long ercE, xE, ExchProc, CurrProc,

// Allow subclasses to free addxtional system resources
// whxch they may have allocated

FreeSystemResources 0,

// Remove ALL tasks for thxs job that are at the ReadyQueue
// Thxs task won't be removed because xt's Running'

ReadyQueue->RemoveRdyProc(),

/* Deallocate all exchanges for thxs process except the one
belonging to current TSS The Dealloc Exchange call will
invalidate all TSSs found at exchanges belonging to this
user, and will also free up RQBs and Link Blocks The
30b will not be able to initiate requests or send messages
after this */

// Find out current TSS exchange so it isn't deallocated

pExch = GetTSSExch(),
CurrProc = GetCurrProcNum(),
ercE = 0,
1E = 0,

// Loop through Exchanges, removing resources

while (ercE '= ErcOutOfRange) {
ExchProc = ExchangeManager->GetOwner(1E),
pCurrExch = ExchangeManager->GetExchange(1E),
if (('ercE) && (ExchProc == CurrProc)&& (pCurrExch'= pExch))

ercE = ExchangeManager->RemoveExch(1E) ,
1E + + ,
}

/* Now that the user can't make anymore requests, Send Abort
messages to all services This closes all files that were
opened by the Job and frees up any other resources held
for this 30b by any services */

SendAbort(),

// Clear the exchange of abort responses (ignore them)

TPacket *pPkt= pExch->CheckPacket(),
while(pPkt==NULL)

pPkt= pExch->CheckPacket(),
Q___

Figure 5 7 The CProcess FreeResourcesQ method

59

Chapter 5 The Process Management Model

The CSystemService class automates this behaviour in order to simplify the task of
writing a system service and also to reduce the capacity for errors during the settmg up
of the service and the servicing of its requests

Each CSystemService class has two basic attributes - a mam exchange, which will be
used to route the requests, and a service name This remains the same as MMURTL
In OO-MMURTL however, the creation and initialisation of the mam exchange is
automatically performed by the CSystemService constructor

In addition, the CSystemService class provides a specific abstract method,
ServiceRequestO, which is used to service requests The private method, Service Q, will
momtor the system service's exchange, and call this function whenever a request is
made The code for CSystemService's constructor and destructor are shown in Figure
5 8, while the code for its Service 0 method is shown in Figure 5 9

CSystemService CSystemService(long Num, char *Name,
char *User, char *Path, char *CmdLme,
char *VidMem, char *VirtVid)

. CProcess(Num,Name,User,Path,CmdLine,VidMem,VirtVid),
{

SvcExch = CreateExchange0,
strcpy (pSvcName,Name) ,-
RegisterService(pSvcName,SvcExch);

}

CSystemService -CSystemService()
{

SvcExch->Remove();
SvcExch->DeAllocate(), // Free memory used by SvcExch

}

Figure 5 8 The CSystemService constructor and destructor

The CSystemService class has greatly simplified the process of writing a service The
allocation of the service's exchange, the deallocation of its exchange, and the routmg of
its requests, are all performed by the class framework To create a new system service
a programmer need only derive a new subclass of CSystemService and overwrite the
ServiceRequestQ message

60

Chapter 5 The Process Management Model

void CSystemService Service()
{
unsigned long ErrorToUser,
unsigned long Message[2],
TRequest *pReqBlk

while(1) {
TPacket *pPkt = SvcExch->WaitPacket(),

if CpPkt'=NULL) {
pReqBlk = pPkt->Req,
ErrorToUser = ServiceRequest(pReqBlk),
Respond(pReqBlk,ErrorToUser) ,
}

}
}

Figure 5 9 The CSystemService Service() method

To demonstrate the simplicity of creating a system service, a trivial example is shown
in Figure 5 10 The sole purpose of this service is to return unique ascending numbers
in response to each Request The example device driver essentially consists o f two lmes
of code One to initialise the counter, the other to assign the next value

class CNumbersService public CSystemService {
unsigned long NextNumber;

public•
CNumbersService(long Num, char *Name, char *User,

char *Path, char *CmdLme, char *VidMem,
char *VirtVid),

virtual unsigned long ServiceRequest(CReqBlock *pReqBlk);
}

CNumbersService CNumbersService(long Num, "NUMBERS ",
char *User, char *Path, char *CmdLine,
char *VidMem, char *VirtVid)

CSystemService(Num,"NUMBERS ", User, Path, CmdLine,
VidMem,VirtVid),

{
NextNumber = 0,

}

unsigned long
CNumbersService- ServiceRequest(CReqBlock *pReqBlk)
{

*pReqBlk pDatal = NextNumber++,
return 0 ,

}

Figure 5 10 A sample CSystemService subclass

61

Chapter 5 The Process Management Model

This class forms the basis for future user applications and system programs It is an
abstract class, which defines attributes and methods which are common to its
subclasses, CUserJob and CSystemJob This common behaviour, which is abstracted m
the CJob class, must be sufficiently generic so that it will also support further, currently
unknown, types of jobs In other words, CJob should not be altered simply with
CUserJob and CSystemJob in mind

Because the purpose of this design of OO-MMURTL is to rephcate the existing
behaviour of MMURTL, the CJob subframework is simple in its design Its sole

purpose is to deal with the allocation of memory to the job in question The method
AllocPage is an abstract one, which is implemented in concrete subclasses of CJob, in
this case, CUserJob and CSystemJob

The class definitions for these three classes are presented in Figure 5 11

Future developments of OO-MMURTL can benefit from this class hierarchy in two
ways, namely
1 Additional executmg entities can be supplemented to the hierarchy, thus enabling

them to inherit the basic behavioural traits from the existing classes, without
affecting those classes or the programs which use them

2 The existing classes can be augmented so that they provide further support for OO-
MMURTL jobs

5.9 The CJob Class

5.10 The CUserJob Class

This concrete class is a subclass of CJob Its role is to provide concrete
implementations of CJob's abstract methods Currently, this involves providing an
AllocPage0 function which will allocate memory in an appropriate manner to a user
job This becomes a simple matter of calling the CMemoryManager method
AllocPageQ (see Chapter 7 The Memory Model), which will attempt to allocate a
specified amount of memory pages in user space, to the currently executing process

62

Chapter 5 The Process Management Model

CJob Class Definition *
****★**★*★★***★★★★**■★★★***★*★★★**★*■★★**★★★***★*★★* j

class CJob : public CProcess {
public

CJob(long Num, char *Name, char *User, char *Path,
char *CmdLine, char *VidMem, char *VirtVid)

CProcess (Num, Name, User, Path, CmdLme, VidMem,
VirtVid) {}0,

virtual unsigned long AllocPage(unsigned long nPages,
CPage *ppMemRet) = 0,

CUserJob Class Definition *

class CUserJob : public CJob {
public -

CUserJob(long Num, char *Name, char *User, char *Path,
char ‘CmdLme, char *VidMem, char *VirtVid)

CJob (Num,Name,User, Path, CmdLme, VidMem, VirtVid) {},

virtual unsigned char * AllocPage(unsigned long nPages),
};

/**
CSystemJob Class Definition *

class CSystemJob . public CJob {
public•

CSystemJob(long Num, char *Name, char *User,
char *Path, char *CmdLme, char *VidMem,
char *VirtVid)

CJob (Num,Name,User, Path, CmdLme, VidMem, VirtVid) {},

virtual unsigned char *AllocPage(unsigned long nPages),
};

Figure 5 11 The CJob, CUserJob, and CSystemJob class definitions

63

Chapter 5 The Process Management Model

In the current implementation of OO-MMURTL, CSystemJob behaves m a similar
manner to CUserJob This is reflected in the operation of system and user jobs by the
operating system. The only difference between the two bemg that while CUserJob
allocates pages from user memory, CSystemJob allocates pages from system memory
As a result, CSystemJob's AllocPageQ invokes the CMemoryManager method
AllocOSPageO (see Chapter 7 The Memory Model), which will attempt to allocate a
specified amount o f memory pages in operating system space, to the currently
executing process

The code for both of these implementations is shown m Figure 5 12

5.11 The CSystemJob Class

* CUserJob Implementation *

unsigned char *CUserJob :.AllocPage(unsigned long nPages)
{

return MemoryManager->AllocPage(nPages) ,
}

* CSystemJob Implementation *
* j

unsigned char *CSystemJob: AllocPage(unsigned long nPages)
{

return MemoryManager->AllocOSPage(nPages) ,
}__

Figure 5 12 Job allocation methods

5.12 Device Drivers

Device drivers can be loaded into the system dunng or following boot tune As its

position as a subclass of CProcess denotes, device drivers are programs in their own
nght They behave differently, however, from a conventional system or user program.

64

Chapter 5 The Process Management Model

In MMURTL, in order for a device driver to be recognised by the system it has to
perform the following steps

1 Allocate and initialise any system resources which are required
2 Allocate additional memory, if required
3 Allocate exchanges, if required
4 Set up interrupt service routmes, if required
5 Check and initialise device
6 Initialise the DeviceControlBlock (DCB) structure
7 Enable any hardware interrupts which are being serviced
8 Call ImiDevDrQ, passing the DCB as a parameter

At this point the device driver task terminates but its code remains resident From this
point on, the device driver is available to external applications The device driver must
provide the following three pubhc functions which will respond to calls from the
operating system with device-specific actions

1 DevicelmtQ - This function is called to initialise a device or reset one following
a crash

2 DeviceOpO - This is used by services and programs to carry out operations
pertinent to the device For example, a floppy disk driver's operations would
include Read and Write operations Each device has a table o f possible
operations One of the parameters to the DeviceOpO function would specify
which operation is to be performed while another would hold a pointer to data
required by the operation

3 DeviceStatO - This function returns the status of the device controlled by the
driver The value of the status is particular to each device When a device
doesn't keep a status a zero should be returned to indicate there are no
problems

There are two different types o f device driver - sequential and random A sequential
driver deals with devices which handles data in fixed-size blocks A random device
driver deals with variable sized data Device drivers can also be classified by their
facility for re-entrancy Certain devices are capable of dealing with several programs
at a time, others operate exclusively for a single program

65

Chapter 5 The Process Management Model

In order for a device driver to operate m non-reentrant mode, its programmer must
include code which will guarantee mutual exclusion within each of the drivers three
pubhc functions

OO-MMURTL provides three classes to describe its device drivers facilities They are
CDeviceDriver, CNonReentrantDeviceDnver and CReentrantDeviceDnver

5.13 The CDeviceDriver class

This is a base class which defines the attributes which are held by each object The
CDeviceDriver class also provides a pair of constructors One initialises the class
attributes as a sequential device dnver, the other for a random one The code for each
of these is shown in Figure 5 13

CDeviceDriver CDeviceDriver(char *DevName, unsigned int BPB,
m t Blocks, m t SingleUser)

{
strcpy(Name,DevName);
nBPB = BPB, // Bytes per block
nBlocks = Blocks,
fSmgleUser = SingleUser, // Is device assignable’

Type = 2 , // Sequential device driver

LastDevErc = 0,
wJob = 0 ,

}

CDeviceDriver CDeviceDriver(char *DevName, int SingleUser)
{

strcpy(Name,DevName),
fSmgleUser = SingleUser, // Is device assignable-5

Type = 1 , // Random device driver
nBPB = 0 , // Does not apply
nBlocks = 0 , // Does not apply

LastDevErc = 0,
wJob = 0,

}

Figure 5 13 The CDeviceDriver constructors

66

Chapter 5 The Process Management Model

CDeviceDnver also defines three pubhc abstract classes and three abstract private
classes The three pubhc functions are

• Operation()
• Status()
• Initialise()

Each of these corresponds to the original DevicelmtQ, DeviceOpO and DeviceStatO
functions When an operation is requested by a program or service, the message is sent
to the Device Driver Manager This in turn forwards the message to the appropriate
CDeviceDnver object

Each of CDeviceDnver's three abstract pubhc functions also have a corresponding
abstract private function

• DevOperation()
• DevStatusQ
• Devlnitiahse()

Although this may seem like unnecessary redundancy, the purpose of these mirror
functions becomes clear in further subclasses of CDeviceDnver

5.14 The CNonReentrantDeviceDriver class

This class provides intrinsic mutual exclusion in order to ensure non-reentrancy The
reason for providing two functions for each action now becomes clear The pubhc
methods act as wrappers providing protection in order to ensure mutual exclusion
exists Once mutual exclusion has been granted, the corresponding private method is
invoked The private methods remain abstract in this class This should be obvious
since the initialisation, operation, and status code must be wntten by the device driver
programmer

Mutual exclusion is achieved by usmg an exchange as a semaphore Each non-reentrant
device driver must initialise an exchange in its constructor Before entering each
cntical section, the object performs a WaitMsg on the exchange I f there is already

another process in the device driver's cntical section, the others will wait until a
dummy message is sent to the exchange

67

Chapter 5 The Process Management Model

The code for the three public CDeviceDnver methods are presented in Figure 5 14

long CNonReentrantDeviceDnver Operation (unsigned long dOpNum,
unsigned long dLBA,unsigned long dnBlocks,
unsigned char *pData)

{
long ere,

TPacket *pSemPkt = SemExch->WaitPacket() , // Wait for MutEx

/* Mutual exclusion has been achieved, perforin operation */
ere = DevOperation (dOpNum, dLBA, dnBlocks ,pData) ,

SemExch->SendDummyPacket(); // Signal

return ere,
}

long CNonReentrantDeviceDnver Status (char *pStatRet,
unsigned long dStatusMax,
unsigned long *pdSatusRet)

{
long ere,

TPacket *pSemPkt = SemExch->WaitPacket () ,-

/* Mutual exclusion has been achieved, retrieve status */
ere = DevStatus(pStatRet,dStatusMax,pdStatusRet),

SemExch->SendDummyPacket(), // Signal

return ere,
}

long CNonReentrantDeviceDnver.. Initialise (char *pInitData,
unsigned long sdlnitData)

{
long ere,

TPacket *pSemPkt = SemExch->WaitPacket() ,

/* Mutual exclusion has been achieved, initialise */
ere = Devlnit(plnitData,sdlnitData) ,

SemExch->SendDummyPacket() ,

return ere,
}

Figure 5 14 The CNonReentrantDeviceDnver class implementation

6 8

Chapter 5 The Process Management Model

This class is similar to, but simpler than, its sibling, CNonReentrantClass The reason
for this is that mutual exclusion is not required by the device driver, hence the three
pubhc functions become tnviaL they are presented m Figure 5 15

5.15 The CReentrantDeviceDriver Class

long CReentrantDeviceDriver Operation(unsigned long dOpNum,
unsigned long dLBA, unsigned long dnBlocks,
unsigned char *pData)

{
return DevOperation(dOpNum,dLBA,dnBlocks,pData),

}

long CReentrantDeviceDriver Status(char *pStatRet,
unsigned long dStatusMax,
unsigned long *pdStatusRet)

{
return DevStatus(pStatRet, dStatusMax,pdStatusRet),

}

long CReentrantDeviceDriver Initialise(char *pInitData,
unsigned long sdlnitData)

{
return Devlnit(plnitData,sdlnitData) ,

)__

Figure 5 15 The CReentrantDeviceDriver class

5.16 Summary

This chapter introduced the OO-MMURTL process management frameworks This
involved abstracting the entire functionality of MMURTL's original job management
model, and encapsulating that behaviour into a set of classes The classes that were
introduced in this chapter are CProcessManager, CProcess, CSystemService, CJob,
CUserJob, CSystemJob, CDeviceDnver, CNonReentrantDeviceDnver and
CReentrantDeviceDriver

The most important advantage gamed from implementing the process management
class hierarchy was in providing a framework which facilitates enhancements and
further specialisations of the current model.

69

Chapter 5 The Process Management Model

The mam disadvantage which results from using the newly implemented process
management model is caused by the introduction of the Object Manager Smce tables
have been disposed o£ speed of access to processes has slowed, although not by a
significant amount This, however, has been counterbalanced by the advantages
provided through the use of the CProcessManager class, primarily that secure access
has at last been introduced to the process model In addition, the CProcessManager is
capable o f introducing advanced process management mechanisms and policies which
would have been difficult to implement under the previous table-based process
management system m MMURTL Also, because the operation of this subsystem has
been centralised around a single component, the process manager, MMURTL's
fragmentation of code which manipulated the job tables has been eliminated

With reference to the subframeworks within OO-MMURTL's process management
system, there have been similar advantages provided as a result of object-onentation
Taking the CDeviceDnver framework as an example, the device driver programmer
need no longer deal with problems regarding re-entrancy Mutual exclusion can be
easily achieved through the use of a CNonReentrantDeviceDnver instead of a
CReentrantDeviceDnver Other than the pomt at which the device driver programmer
creates an instance of CNonReentrantDeviceDnver, the mechanism which provides
non-reentrancy is hidden from the programmer

In summary, the process management framework m this chapter provides several
I

promising advantages over the ongmal implementation m MMURTL There remains
however, much scope for development (see Chapter JO Conclusions) The
opportunity for this development is facilitated by the object-onented hierarchy which
has been designed with future enhancements m mind

70

Chapter 6 The Messaging Model

Chapter 6

The Messaging Model

6.1 Overview

This chapter introduces the OO-MMURTL messaging model Firstly, the
implementation of messaging in the original MMURTL operating system is explained
Following this the class which is central to the messaging model, the
CExchangeManager class, is introduced and explained Finally, each of the three
classes which comprise the OO-MMURTL message model are described - CExchange,
CServiceExchange, and CMessageExchange

6.2 Messaging in MMURTL

MMURTL is a message-based operating system Messages are an integral part of
many operating system functions They form the basis for interprocess communication,
process synchronisation, and for communicating requests to system services In
addition, they can be used for transferring data between processes

An integral part of MMURTL's messaging system is the concept of an Exchange
Messages are never sent directly from one process to another This would require pnor
knowledge of the existence and address of the receiving process Instead, messages are
sent to an exchange which behaves like a virtual post office box where a message is
sent until a process retrieves it

In order for a task to use an exchange, it must request from the operating system that
one be allocated to it. It is the responsibility of this task to make sure that the exchange
is returned to the operating system to be deallocated when it has finished with it

71

Chapter 6 The Messaging Model

To ensure optimum flexibility, few assumptions are made m the messaging system
When a message is sent to an exchange, a process may or may not be expecting it
Similarly, it is possible that an unretneved message is already at an exchange when
another one is sent It is also feasible for a process to be waiting for a message which
has yet to be sent

Each exchange has two queues associated with it - a message queue and a task queue
Both operate under the first come first served principle If a message arrives at an
exchange and there are no waiting tasks, it is placed on the message queue If another
message arrives, it is placed behind it on the queue The reverse is true for tasks If a
task arrives at an exchange and no messages are there, the task is placed in the task
queue Items can be on either the message queue, the task queue or neither queue It
would be contradictory, and therefore is impossible, for items to be on both queues

There are two different message types in MMURTL The smallest and most common
form is simply known as a Message A message is comprised of two double-word (32
bytes) sized variables The usage of these fields is defined by the tasks which are
communicating with it Messages are sent and received using the SendMsgQ /
WaitMsgO function pan

The second form of a message is a Request A request is only used when a task or
system service communicates with another system service Specifically, requests are
made when a service is required to be performed by the system service on behalf of the
calling process Requests are comprised of information required by the system service,
such as the address of an exchange where it is to post its response, a service code
defining which service is to be performed, along with six fields which hold data whose
usage is defined by the service in question and the operation to be performed

Communication with system services is performed using the RequestQ / RespondQ
pair To avoid confusion, a communication in OO-MMURTL, that is either a basic
message or a request, is referred to as a packet

72

Chapter 6 The Messaging Model

As with OO-MMURTL's other Object Managers, the CExchangeManager is a subclass
of CObjectManager, inheriting all of the methods and attributes which are required to
store and access the objects under its protection

In addition to its role as an object container, the purpose of the CExchangeManager
class is to manage OO-MMURTL's message processing system Due to the nature of
messaging, this can at times prove to be a more complicated task than is performed by
other Object Managers The nature of this complexity is apparent when it is considered
that OO-MMURTL's messaging component is one of only two places in the operating
system which performs task switching (the other bemg the timer management
component)

6.3.1 Responsibilities of the CExchangeManager Class

The activities of the CExchangeManager can be as complex as they are diverse The
following is a list of actions for which the CExchangeManager is responsible

Maintaining Exchanges - As Exchange Manager, the CExchangeManager class must
allocate exchanges to processes upon receipt of correctly formatted requests In 0 0 -
MMURTL, exchanges are always owned by the Exchange Manager, never by the task
which requested their allocation or by any other tasks which may use them This is for
security reasons The alternative scenario involves the Exchange Manager returning a
pomter to each newly allocated exchange to the requesting process Each task which
wants to retrieve (or send) messages to the exchange would need to be given a copy of
this pomter In a common situation where several different tasks require access to a
given exchange, the Exchange Manager has no control over use, and more importantly
misuse, of the many copies of the exchange pomter Instead the Exchange Manager
retains all copies o f pomters to CExchange objects When a new Exchange is allocated,
a unique Exchange Key is returned to the task which requested its allocation All
requests to Exchanges must be made through the CExchangeManager class, quotmg
the relevant Exchange Key In this way possible misbehaviour can be momtored by the
Exchange Manager and repercussions kept to a minimum

6.3 The CExchangeManager Class

73

Routing Packets - As packets are received by the Exchange Manager, the destination
CExchange object must be determined and the message forwarded to it Because the
data contained within the packet is defined by the communicating tasks, the Exchange
Manager cannot verify the correctness of its contents Hus must be done by the
receiving Exchange

Loolang-up services - Much of the time, several of the Exchanges will be allocated to
system service tasks Each of these will expect Request type messages, instead of the
more basic message type It is the responsibility of the Exchange Manager to
differentiate messages from requests, and route messages to the appropriate
CExchange object based upon the Exchange Key Due to the dynamic nature of system
services, the same service will most likely be allocated different Exchange Keys each
time the system is started For this reason, the use of keys proves inadequate in
locating their exchanges Instead, the Exchange Manager is responsible for managing
the System Service Naming Directory Each service is given a unique eight character
name by its system programmer This name remains constant It is used by application
programmes to access the system service's exchange in order to send a request to it
Each time a system service is added to the operating system, the Exchange Manager
will associate its name with the appropriate exchange in the Name Directory Upon
receipt of a request, the Exchange Manager will then look up the Name Directory,
before forwarding the request

Securing Task Switches - This relates to the security provided by the Exchange
Manager Because task switches can be performed as a result o f messages receiving a
message or tasks waiting for one, security is an issue of particular importance in the
Exchange Manager Although not every transaction can be fully vetted, such as the
contents o f a message, the Exchange Manager must ensure to the best o f its abilities
that a secure operating environment exists at all times

Chapter 6 The Messaging Model

6.4 The Exchange Hierarchy

In order to accommodate both message types, basic and request, the OO-MMURTL
exchange hierarchy provides two exchange classes - CServiceExchange and
CMessageExchange The basic behaviour of each of these is defined by the CExchange
class The hierarchy is displayed m Figure 6 1

74

Chapter 6 The Messaging Model

Figure 6 1 The CExchange class framework

The CExchange class can encapsulate the functionality to control the two queues
which belong to each Exchange - one for waiting tasks, the other for waiting
messages It also serves to receive messages from either type of exchange and to check
if requests exist at an exchange Due to the different nature of messages and requests,
however, the generic CExchange class is insufficient to send messages to an exchange
- the SendMsgO method is inherently different from the RequestQ method Each of the
classes in the hierarchy are described below

6.5 The CExchange Class

This class is the base class in the exchange hierarchy It is also an abstract class
CExchange has three roles Firstly, it must provide functions to manage the task and
message queues for the exchange object These functions are private to the CExchange
class They may only be accessed by CExchange objects and instantiations of
subclasses o f CExchange This is an important security feature The four functions
which access the queues - deQueueTSSO, enQueueTSSQ, deQueueMsgQ and
enQueueMsgO ~ 316 capable o f modifying them Modifying either queue however,
could result in a task switch Therefore it is essential that none of the methods be
interrupted midway through processing The code to clear the interrupt flag (prevent
interrupts) does not he within any of these methods Instead the responsibility belongs
to the methods which call them. For this reason, the four queue methods are private
They are called by pubhc methods of the CExchange class and its subclasses

The second role o f the CExchange class is to provide functionality so that processes
can check to see if a message is at an exchange and also to wait until a message is at an
exchange These two operations make use of the link block construct The code for
this simple structure is shown in Figure 6 2

75

Chapter 6 The Messaging Model

struct TPacket {
struct TRequest *Req,
struct TMessage *Msg,

struct TPacket *next,

Figure 6 2

In essence it consists o f two data pointers One points to a request structure, the other
to a message structure These are shown in figure 6 3 A TPacket record will store
either a pointer to a request or a pointer to a message, but not both The definition of a
packet enables CExchanges to deal with packets of information, without having to
unnecessarily determine if the packet is a message or a request Although by definition,
this means that one pointer belonging to each packet will always be wasted, the
advantage comes from increased processing speed Only when the packet reaches its
final destination will a check to determine the nature of its contents have to be made
The third field in a packet is a pointer to another packet for use when packets are
stored on queues

struct TRequest {
CExchange *RespExch, //
long RqOwnerProc, //
int ServiceCode, //
long dDataO, //
long dDatal; //
long dData2, //
char *pDatal, //
long cbDatal, //
char *pData2, //
long cbData2, //

struct TRequest *next,
}<

struct TMessage{
long dDatal,
long dData2,

Exchange to respond to
JobNum of Owner
Sys Service Command Number
Srvc Defined (No Pointers)
Srvc Defined (No Pointers)
Srvc Defined (No Pointers)
Srvc Defined
Length of data m pDatal
Srvc Defined
Length of data m pData2

, Data field 1
, Data field 2

Figure 6 3 Messaging structures

76

Chapter 6 The Messaging Model

The final role of the CExchange class is to send packets of data to its exchange The
SendPacketO method is only called by subclasses of CExchange It may only be called
once a packet has been created and formatted For this reason, SendPacketO is only
called by Request0 in the CServiceExchange class and by SendMsgO in the
CMessageExchange subclass

The methods belonging to each of these groups are described below

6.5.1 Queue Management Methods

To support the queue management methods, CExchange has four attributes, two for
each queue The attributes are pomters to the head and tail of each queue They are -
pPacketQueueHead, pPacketQueueTail, pTSSQueueHead, andpTSSQueueTail

TTSS *deQueueTSSO
This method returns a pointer to the task at the top of the queue If no task is present a
NULL is returned The code for this method is shown in Figure 6 4

void enQueueTSS(TTSS *pTSS)
This method adds a pointer to a task to the task queue The code for this method is
also shown in Figure 6 4

TTSS * CExchange deQueueTSSO
{

TTSS *pTSS,

pTSS = pTSSQueueHead,
pTSSQueueHead = pTSSQueueHead->next;

return pTSS,
}

void CExchange enQueueTSS(TTSS *pTSS)
{

if (pTSSQueueHead == NULL) {
pTSSQueueHead = pTSSQueueTail = pTSS;
pTSSQueueHead->next = NULL,
}

else {
pTSSQueueTail->next = pTSS,
pTSSQueueTail = pTSS,
}

)__________

Figure 6 4 CExchange's enQueueTSSQ and deQueueTSSQ methods

77

TPacket *deQueuePacketQ
This is similar to the deQueueTSS method described above It returns a pointer to the
packet at the top of the queue If no packet is present a NULL is returned

void enQueuePacket(TPacket *pPacket)
Again, this method is similar to enQueueTSS It adds a packet pointer to the packet
queue

6.5.2 Packet Retrieval Methods

OO-MMURTL provides two functions with which to access packets at an exchange -
CheckPacketQ and WaitPacketO They differ in one respect - CheckPacketQ is a non-
blocking function, while WaitPacketO performs blocking This is described in detail
below

TPacket ^CheckPacketO
This is the simpler of the packet retrieval methods CheckPacketO checks to see if a
packet is waiting at an exchange If there is a waiting packet, it is removed and
returned to the task which invoked the method If no packet is waiting, the calling task
is notified and it continues processing The code for CheckPacketO is shown m Figure
6 5

TPacket *CExchange- CheckPacketO
{

TPacket *pPacket,

// Disable interrupts
#asm
CLI
#endasm

pPacket = deQueuePacket() ;

// Reenable interrupts
#asm
STI
#endasm

return pLB,
J_________________________________

Figure 6 5 The CExchange CheckPacketO method

Chapter 6 The Messaging Model

78

Chapter 6 The Messaging Model

TPacket *WaitPacketQ
Like CheckPacketQ, this method also checks to see if there are any waiting packets at
the exchange queue As before, if a packet is found, it is returned to the calling task
and it continues running However, if no packet is found, then the current task is
queued at the exchange The task with the highest priority in the Ready Queue is
removed If there are no tasks on the Ready Queue, then interrupts are enabled and the
processor is halted The processor will be restarted automatically when an interrupt is
caused Interrupts will then be disabled and a check is made to see if there is a task on
the Ready Queue as a result of the interrupt being serviced Only when a task is
retrieved from the Ready Queue will the WaitPacketQ method continue At this stage a
task has been identified that can continue running If this task was the same as the

original task which called WaitPacket(), then interrupts are reenabled and control
returns to it from the method If the task is different from the original one, then a task
switch is performed before continuing The code is shown in Figure 6 6a and Figure
6 6b

TPacket *CExchange. WaitPacketO
{

TPacket *pPacket;
TTSS *pRunTSS, *pPriontyTSS,

#asm
CLI
#endasm

pPacket = deQueuePacket(),

if (pPacket==NULL) {
// Add the current task to the TSSQueue of this exchange
pRunTSS = GetpRunTSS() ,
pRunTSS->next = NULL,
enQueueTSS (pRunTSS) ,-

// Get the next TSS to run (if there is one)
p P n o n t y T S S = ReadyQueue->deQueueRdy () ,

Figure 6 6a The CExchange WaitMsgQ method

79

Chapter 6 The Messaging Model

// If none were ready, loop until one is
while (pPnontyTSS == NULL) {

#asm
STI
HLT
CL I
#endasm

p P n o n t y T S S = ReadyQueue->deQueueRdy () ,
}

if (pPnontyTSS != pRunTSS) {
// Tasks are switched by performing a 386 task switch
#asm
MOV EAX, [pPnontyTSS]
MOV BX,[EAX.Tid]
MOV TSS_Sel,BX
JMP FWORD PTR [TSS]
#endasm
}

}
// A task has finished "Waiting" Now m the new task

}

/* we have either switched tasks and are delivering a
packet to the new task, or there was a packet waiting
at the exch of the first caller and we are delivering
it */

#asm
STI
#endasm

return pPacket,
}

Figure 6 6b The CExchange WaitMsgQ method

Chapter 6 The Messaging Model

The CExchange class has a single packet routing method It is a private method which
is only invoked by subclasses of CExchange

void SendPacket(TPackei *pPacket)
The purpose of this method is to forward a packet to an exchange If no task is waiting
at the exchange, the packet is queued If a task is waiting, the packet is given to that
task and the current task is placed on the Ready Queue The Ready Queue is then re
evaluated and the highest priority task is removed from it The reason this occurs is
because it is possible that a task with a higher priority than the current one was waiting
for the packet that was delivered If this is so then the current task is queued and the
highest priority task on the Ready Queue regains control of the processor The code
for this method is shown m Figure 6 7 Note that interrupts must be disabled before a
call is made to this method

6.5.3 Packet Routing Methods

6.6 The CServiceExchange Class

This class is a subclass o f CExchange Instantiations of the CServiceExchange class
may only be created by system services CServiceExchanges are designed to process
requests for action by the system service which owns it System services may also own
non-service exchanges, but not to process requests CServiceExchange has three
request-specific methods The RequestQ method is called by tasks which require a
service to be performed, the ServiceO method is used to respond to such a request,
and the MoveRequestQ method is used by system services to move a request from one
of its exchanges to another Each of these is described m turn below

81

* ‘ li

Chapter 6 The Messaging Model

void CExchange SendPacket(TPacket *pPacket)
{

TTSS *pWaitTSS, * p P n o n t y T S S ,

// Remove task from the exchange's queue
pWaitTSS = deQueueTSS(),

// If no task is waiting, queue the packet
if (pWaitTSS==NULL) {

enQueuePacket(pPacket),
return,
}

// If a task was waiting notify it of the received packet
pWaitTSS->pLBRet = pPacket,

// Reevaluate the Ready Queue m case a higher
// priority task is available
ReadyQueue->enQueueRdy(pWaitTSS),
pPriontyTSS = ReadyQueue->deQueueRdy 0 ,

// If the highest priority task is the current one,
// no task switch is required
if (pPriontyTSS == pWaitTSS)

return ,-

/* Perform a 386 processor task switch */
#asm
MOV EAX, pPriontyTSS
MOV BX,[EAX Tid]
MOV TSS_Sel,BX
INC _nSwitches
JMP FWORD PTR [TSSJ
#endasm

}

Figure 6 7 The CExchange SendPacketQ method

void Request(int code, CExchange *respexch, long dataO, long datal, long data2,
char *pdatal, long cbdatal, char *pdata2, long cbdata2)

This method creates a TRequest record and assigns its data based on the parameters
which have been passed to it The request is then placed into a TPacket structure
Interrupts are disabled before the SendPacketQ method is called This method is
inherited from CServiceExchange's base class, CExchange Upon return from
SendPacketQ, interrupts are enabled before returning from the method The code for
this method is shown in Figure 6 8

82

Chapter 6 The Messaging Model

void CServiceExchange■ Request(mt code, CExchange *respexch,
long dataO, long datal, long data2, char *pdatal,
long cbdatal, char *pdata2, long cbdata2)

{
TPacket *pPacket,
TRequest *pReq,

/* Create request structure */
pReq = new TRequest,

pReq->ServiceCode = code,
pReq->RespondExch = respexch,
pReq->RqOwnerProc = GetCrntProcNum(),
pReq->dDataO = dataO,
pReq->dDatal = datal,
pReq->dData2 = data2,
pReq->pDatal = pdata2,
pReq->cbDatal = cbdatal,
pReq->pData2 = pdata2,
pReq->cbData2 = cbdata2,

/* Create the packet */
pPacket = new TPacket,
pPacket->Req = pReq,
pPacket->Msg = NULL,

/* Disable interrupts */
#asm
CL I
#endasm

SendPacket(pPacket),

/* Reenable interrupts */
#asm
STI
#endasm

} __

Figure 6 8 The CServiceExchange Request() method

void Respond(TRequest *pReq)
This method is used by a system service to notify the task which requested a service
that the task has completed (or that the service was unable to be completed) The full
steps in the Request/Respond process are as follows
1 A task sends a request to a system service The request is composed of a service

code, data winch may be required to perform the service, and an exchange owned
by the calling task at which it will wait for a response

83

2 The system service retrieves the request from its queue and deals with it
3 Upon completion, the system service invokes the RespondQ method o f the

exchange object whose pointer was passed as a parameter to the RequestQ
method It places the original Request structure that, which has been modified to
reflect function performed by the service and a status reflecting the success o f its
action

4 The calling task will either wait or else periodically check the respond exchange,
for the reply by the system service

The first task performed by this method is to dealias the memory pointers m the
TRequest structure if the current process is different from the process which created
the TRequest This is necessary otherwise the pointers would point to the wrong
segment, albeit at the correct address The deahasing is performed by the
DeAliasMemO kernel primitive As before, the exchange is checked for waiting tasks,
if there are none, the request structure is queued Otherwise, the current task is placed
on the ReadyQueue The highest priority task is then removed from the Ready Queue
If the two tasks are different, a processor task switch is performed The code for this
method is shown in Figure 6 9a and Figure 6 9b

. i ’’- ; Si

Chapter 6 The Messaging Model

void CServiceExchangeRespond(TRequest *pReq)
{

long dCurrProc, dReqProc
TTSS *pTSS,*pPriorltyTSS,
TPacket *pPacket;

dCurrProc = GetCurrProcNum() ,
dReqProc = pReq->RqOwnerProc,

/* Perform memory aliasing if required */
if (dReqProc'=dCurrProc) {

if (pReq->cbDatal >0) && (pReq->pDatal '= NULL)
DeAliasMem(pReq->pDatal,pReq->cbDatal,dCurrProc),

if (pReq->cbData2 > 0) && (pReq->pData2 '= NULL)
DeAliasMem(pReq->pData2,pReq->cbData2,dCurrProc),

}

/* Disable interrupts */
#asm
CL I
#endasm

Figure 6 9a The CServiceExchange RespondQ method

84

Chapter 6 The Messaging Model

/♦Create packet structure */
pPacket = new TPacket,
pPacket->Req = pReq,-
pPacket->Msg = NULL;
pPacket->next = NULL,

/* Remove waiting task (if any) */
pTSS = deQueueTSS(),
if (pTSS == NULL) {

enQueuePacket(pPacket),
#asm
STI
#endasm
return,
}

/* Store request m the dequeued task */
pTSS->pLBRet = pPacket,

/* Reevaluate the ready queue */
ReadyQueue->enQueueRdy(pTSS) ,
pPriontyTSS = ReadyQueue->deQueueRdy () ,-

/* If the highest priority task is the same as the
original task, return */

if (pPriontyTSS == pTSS) {
#asm
STI
#endasm
return,
}

/* Switch task if the highest priority task is
not the original task */

#asm
MOV EAX, pPriontyTSS
MOV BX,[EAX.Tid]
MOV TSS_Sel,BX
INC _nSwitches
JMP FWORD PTR [TSS]
STI

#endasm
}

Figure 6 9 The CServiceExchange Respond() method

85

Chapter 6 The Messaging Model

Hus class is a subclass o f CExchange Any active task may request the creation o f a
CMessageExchange class This class, combined with the methods inherited from
CExchange, is designed to assist interprocess communication, data transfer, and task
synchronisation CMessageExchange provides two methods to facilitate sending
messages to exchanges They are SendMsg and ISendMsgQ, each o f which is described
below

void SendMsg(long dMsgDatal, long dMsgData2)
This method accepts two doubleword parameters, both of which hold generic data
The nature o f each variable is determined by the communicating processes Using this
data, SendMsgO creates a TMessage structure This message is then stored m a
TPacket structure before interrupts are disabled and the SendPacketQ method winch
was described above is called. Upon returning, SendMsgO reenables interrupts before
exiting The code is shown in Figure 6 10

6.7 The CMessageExchange Class

void CMessageExchangeSendMsg(long dMsgDatal, long dMsgData2)
{

TPacket *pPacket,
TMessage *pNewMsg,

/* Create & fill the TMessage structure */
pNewMsg = new TMessage
pNewMsg->dDatal = dMsgDatal,
pNewMsg->dData2 = dMsgData2,

/* Create & fill the TPacket structure */
pPacket = new TPacket,
pPacket->Req = NULL,
pPacket->Msg = pNewMsg,
pPacket->next = NULL;

/* Disable interrupts */
#asm
CLI
#endasm

SendPacket(pPacket),

/* Reenable interrupts */
#asm
STI
#endasm

)___

Figure 6 10 The CMessageExchange SendMsgQ method

86

i

void ISendMsg(long dMsgDatal, long dMsgData2)
This method is extremely similar to SendMsgQ It differs in that ISendMsgQ is
designed to be called from within an interrupt service routine For this reason no task
switch is performed and interrupts remain cleared The ISendMsgQ method, having
created a TMessage structure and stored it in a TPacket, checks to see if a task is
waiting at the exchange If so, the packet is assigned to the task and it is returned to
the Ready Queue Otherwise, the packet is simply added to the packet queue at the
exchange

Chapter 6 The Messaging Model

void CMessageExchange ISendMsg(long dMsgDatal, long dMsgData2)
{

TPacket *pPacket;
TMessage *pNewMsg,*pMessage,
TTSS *pWaitTSS,

/* Disable interrupts */
#asm
CLI
#endasm

/* Create the message structure */
pMessage = new TMessage;
pMessage->dDatal = dMsgDatal,
pMessage->dData2 = dMsgData2,

/* Create the packet */
pPacket = new TPacket,
pPacket->Msg = pMessage,
pPacket->Reg = NULL;
pPacket->next = NULL,

pWaitTSS = deQueueTSS();
if (pWaitTSS==NULL) {

enQueuePacket(pPacket);
else {

pWaitTSS->pLBRet = pPacket,
ReadyQueue->enQueueRdy(pWaitTSS) ,
}

Figure 6 11 The CMessageExchange ISendMsgQ method

87

Chapter 6 The Messaging Model

This chapter introduced the OO-MMURTL messaging model The role o f the class
CExchangeManager was described in detail This is the central component of the
messaging model, which itself is an integral part o f object-oriented MMURTL,
providing a means o f interprocess communication, process synchronisation, and
system service messaging

The classes which encapsulate the behaviour of the messaging system were also
introduced, CExchange, CServiceExchange, and CMessageExchange Further
concrete subclasses of the abstract CExchange class could be provided by the system
programmer, allowing a more diverse implementation o f messaging in MMURTL

The messaging component of the original MMURTL system was a suitable candidate
for migration to object-onentation, thanks to the modular nature of its design. This is
not always the case as is demonstrated m the next chapter

6.8 Conclusions

88

Chapter 7 The Memory Model

Chapter 7

The Memory Model

7.1 Overview

This chapter introduces the design of OO-MMURTL's memory model Before this is
detailed, however, an introduction to some of the advanced concepts found in
MMURTL's original memory model is provided These are explained in order to
provided a clearer depiction of their role in the design o f the new model further into
the chapter Next, the reasoning underlying the design o f the new memory model is
provided as an introduction to the detailed description of the CMemoryManager class
Finally, the conclusions drawn from the work in this chapter are presented

7.2 MMURTL's Memory Model

MMURTL is a paged memory operating system It makes use of the Intel hardware-
based paging facilities for memory allocation and management The design and
implementation of the memory model is quite complex, however this complexity at the
system design level alleviates the burden on application and system programmers, by
ensuring that the memory programming interface is as simple as possible

The basic concepts o f the MMURTL memory model have been discussed previously in
Chapter 2 The MMURTL Operating System This chapter explains the operation of
the MMURTL memory model in further detail This includes the discussion of
advanced topics such as memory aha sing and shadow memory

The complexity of the memory model provoked a difficult decision in the design of
OO-MMURTL, the design options, along with the chosen design o f the new memory
model are also presented in this chapter

89

Chapter 7 The Memory Model

Following this, the implementation of the OO-MMURTL memory model is presented
This includes descriptions of the memory model classes, methods, attributes and
behaviour

Finally, possible future developments of the OO-MMURTL memory model are
offered These developments are presented m light o f the design decisions described
earlier in the chapter and further possibilities for development of the memory model in
light of this decision

7.3 Memory Model Advanced Concepts

Before discussing the design of the OO-MMURTL memory model, it is necessary to
describe an important underlying concept of OO-MMURTL1 s low-level memory
operations, Shadow Memory In addition, the use o f Memory Aliasing in MMURTL
is also described in this section

7.3.1 Shadow Memory

Each MMURTL process has a single page directory This page directory holds 1024
page directory entries, each o f which is four bytes long, which points to a page table
In turn, each page table also contains 1024 entries, each of which pomts to a page of
linear memory Each page is four kilobytes m size Thus

Total size of addressable linear memory by a MMURTL process
= 1024 (Page Directory Entries) x 1024 (Page Table Entries) x 4Kb (Pages)
= 4,294,967,296 (4Gb)

The operating system code and data are mapped into the bottom of every process's
address space As a result, each process's own memory actually begins at the 1Gb
linear memory mark

90

Chapter 7 The Memory Model

The memory schema for every process is shown in Figure 7 1

"Dead" Memory
[2 Gb]

User Memory
(1 Gb]

OS Memory
11 Gb)

\
✓

Linear Top

Dead Address Space

| Job Allocated Memory

Data
Code

¡Initial Stack

OS Allocated Memory

OS Memory

Linear Base

4Gb -1 byte

2Gb

1Gb

0Gb

Figure 7 1 The MMURTL memory map

At first appearance, it seems that the upper 2Gb is wasted, however the purpose o f this
area of memory will soon become clear The problem confronted by MMURTL1 s
designers was as follows Each process refers to its memory space in terms o f linear
memory Before carrying out its instructions, it is necessary for the operating system to
map the memory addresses from the process's linear address space to the processor's
physical address space In order to do this, the operating system accesses the page
tables for the relevant process and retrieves the physical offset for the page in question

Each linear memory address is 32 bits long The operating system uses the upper ten
bits to reference the page directory of the appropriate process in order to retrieve the
physical address of the relevant page table (The physical address of the process' page
directory is stored by the operatmg system upon creation of the process and thus may
be easily retrieved) The next lower ten bits in the linear address are used as an index
into the page table in order to retrieve the physical address o f the page bemg
referenced Finally, the remaining twelve bits combined with the address of the page
offset combine to produce the relevant physical address

91

Chapter 7 The Memory Model

A problem arises when the operating system needs to amend or delete a page table
entry The operating system has no special privileges as far as addressing physical
memory goes, so it must make use of linear address space in the same way that each
apphcation program does So the question becomes, how does the operating system
find the linear address o f each page table

The solution chosen by MMURTL's developers was to make use o f only half of each
page table to store the physical addresses of the page tables The upper two kilobytes
of each page directory is a shadow of the lower two kilobytes The shadow area,
contains the linear address o f the corresponding physical address from the lower half of
the page directory

In this way, Page Directory Entry 512 holds the linear address of the Page Table
whose physical address is held in Page Directory Entry 0 This example is shown in
Figure 7 2

To ensure that shadow memory is not accidentally appropriated, the relevant Page
Directory entries are marked as being non-existent

0

511
512

1023

Figure 7 2 Shadow memory in practice

7.3.2 Memory Aliasing

MMURTL allows two processes to share some or all of their memory address space
Hus is most commonly used as a result of interprocess communication such as a

Request / Respond transaction between an apphcation and a system service

Page Directory
Physical Address

Page Table

v3^5viv>vJ>*Ä',5>+5viv*^>vvv5v++v+vi**v>vi

C+ä +ä v 5w Sw ä '& *ä Ä +3& w w ä *a *ä +Jv ä * ?£+A*.t.4A.+ . iK ifc .£ K n * .* & t t t t+.+.+.4.4.+M.+.üfoï*Tiïite

KHiK*X',Â 'iv Â ‘iv3vÂ *ïvÂ *ïv ivÂ ‘,* v îv îv ïv î'

92

Chapter 7 The Memory Model

As with all memory activities, the transaction unit of shared memory is a page In order
to share a page, the operating system must copy the relevant Page Table Entiy from
the Page Table belonging to the process which originally owned the page, to the Page
Table belonging to the process which is seeking to sharing the page This is known as
Memory Aliasing

The process which is sharing the memoiy doesn't realise that it is not the page's owner
This is due to the fact that the page now appears in its own linear address space An
ahased Page Table Entry is marked as such and can't be deallocated or swapped until
the alias is dissolved

7.4 Design Decisions

Because the MMURTL memory model relies to such a large extent on Intel processor
memory management support, in particular Intel's hardware-based paging, its current
implementation does not endear itself easily to the object-oriented paradigm As a

result, there were two possible directions to take in the design of the OO-MMURTL
memory model - implementing an object-oriented programming interface, and
implementing a complete object-onented class framework Each of these is described
below, before a description o f the actual design is given

7.4.1 Object-Oriented Programming Interface

This design option leaves much o f the original architecture unchanged The system
designer retains the original memory management functionality, however an object-
oriented class is introduced which will encapsulate the system in question, i e the
memory system, and provide an object-onented programming interface to be used by
the application programmer

The new class will hide much of the underlying low-level functionality from the
programmer, making available only the essential high-level calls which are required to
manage the memory of a given application

93

Chapter 7 The Memory Model

The use o f this option provides several advantages to the implementation o f 0 0 -

MMURTL
• Speed is an essential factor m the design of the memory subsystem of any operating

system, particularly a system such as MMURTL which uses a virtual paged
memory model Each linear memory address must be checked in a Page Directory,
then a Page Table, to retneve the physical address o f the page in question Since
the majority of the memory system is still written in assembly language, the speed

o f the original model is retained
• The object-oriented class serves to hide the low-level code of the memory model

To allocate several pages of memoiy requires only a single call to the memory
manager class Mutual exclusion, searching for a free Page Tables and free Page
Table Entries and other necessary actions are performed by the memory manager
class

• The memory manager class provides an additional level o f protection to the system

tables, by ensuring that errant apphcation programs will be unable to gam access to
restricted areas of memory

There are however, inherent disadvantages to this type o f implementation
• When a complete operating system module, such as the memory subsystem is

represented by a single class, it is unlikely that the operating system is using the
optimal object-oriented class hierarchy

• The primary role o f the memory model class is to provide a seemingly cosmetic
apphcation interface

7.4.2 Complete Object-Oriented Class Framework

The second design option is to completely redesign the memory model so that it
facilitates a complete object oriented class framework In such a design, each Page
Directory would be an instantiation of a CPageDirectory class which encapsulated the
behaviour o f the directory Similarly each Page Table would be an instantiation o f a
CPageTable class which encapsulated the behaviour of a Page Table A new class
would be mtroduced to manage the various table objects this class would also be
responsible for the allotment of Page Table Entries, and the allocation and deallocation
of memory pages

94

The advantages o f this type of implementation are ,
• The memory subsystem is designed to be a completely object-oriented component

of the operating system As a result, the memory subsystem can reap the
advantages of an object-oriented design and implementation

• The memory subsystem may be optimally redesigned from the bottom-up, without
being restricted by the previous implementation of the memory subsystem.

• Using a complete object-oriented hierarchy also provides the additional protection
and hiding o f low-level functionality described among the advantages of providing
just an object-oriented programming interface

The main disadvantage of using a complete object-oriented class framework is that the
additional overhead can lead to a reduction in processing speed in the operating
system

Chapter 7 The Memory Model

7.5 OO-MMURTL Memory Subsystem Architecture

OO-MMURTL makes use o f the former option, that is, an object-oriented class is
designed which provides an application programming interface in order to encapsulate
the functionality of the memory subsystem

Although this may not be the most desirable option in a completely object-oriented
operation system, the basic criteria o f this thesis is to migrate MMURTL's existing
functionality to an object-oriented paradigm This dictated that a complete redesign of
the memory model was not an option

OO-MMURTL introduces a single class, CMemoryManager, whose primary purpose
is to provide an object-oriented programming interface to the operating system's
underlying low-level memory functionality This class has been designed as genencally
as possible so that future development and redesign of the memory model can take
place

In other words, by accessmg CMemoryManager's AllocPageQ, the operating system
currently performs several error checks, before enforcing mutual exclusion on the
memory subsystem critical section and calling a kernel function which will perform the
actual allocation

95

Chapter 7 The Memory Model

In the future, OO-MMURTL's underlying memory model could be redesigned using
object-oriented techniques If this happens, although CMemoryManager's
implementation will change, its interface should not Its method AllocPageQ will still
allocate memory pages, but by interacting with CPageDirectory and CPageTable

classes Programs which currently call
MemoryManager->AllocPage(..)

will still continue to do so Other calls will similarly be re-implemented without
affecting the interface

Section 7 4 of this chapter suggests a possible class hierarchy which could be
introduced in future revisions o f OO-MMURTL to fully encapsulate the memory
subsystem m an object-oriented framework

7.6 The CMemoryManager Class

The purpose of the CMemoryManager class is to provide a programming interface to
the underlying low-level code which controls the management o f memory in the
operating system. Unhke many o f the manager classes m OO-MMURTL, the
CMemoryManager class does not own the data it provides access to (l e the Page
Directories, Page Tables e tc) Instead, it acts as a buffer between application
programs, and the kernel functions which access this data

The CMemoryManager class therefore owns just a single attribute, an exchange This
is used by the memory manager to provide mutual exclusion to certain kernel
functions, in particular those which modify the Page Directory or Page Tables This
exchange is initialised m the CMemoryManager constructor

The remaining CMemoryManager methods fell mto three categories, each of which is
described below

1 Allocation o f memory
2 Deallocation o f memory
3 Aliasing of memory

96

Chapter 7 The Memory Model

There are two different types o f methods capable of allocating memory pages
AllocOSPageQ and AllocPageQ Each of these represents one of the types of
memory recognised by OO-MMURTL, namely operating system memory and user

memory

char *AllocOSPage(long nPages),
This method attempts to allocate nPages o f contiguous operating system linear
memory to the user If the operation succeeds, a pointer to the memory is returned If
the operation fails, a NULL pointer is returned

AllocOSPageQ searches through the page tables for the current process, attempting to
find enough contiguous Page Table Entries to satisfy the request If the current Page
Table doesn't have enough contiguous entries, additional Page Tables are added to the
operating system Page Directory (if possible), until either enough page tables are
available to satisfy the request or the request fails The allocation may span several
Page Tables The code for AllocOSPageQ is shown in Figure 7 3

char *AllocPage(long nPages),
This method is very similar to the preceding one, with the exception that AllocPage
attempts to allocate pages o f application memory to the calling process If the
operation succeeds, a pointer to the memory is returned If the operation fails, a NULL
pointer is returned The code for AllocPageQ is shown m Figure 7 4

Note that both AllocPageQ and AllocOSPageQ make use of CMemoryManager's
exchange to ensure mutual exclusion If this is not enforced, it would be possible that
while one process is creating additional Page Tables to accommodate a large
allocation, another process could step in and inadvertently allocate pages which have
been included by the first process in its tally o f contiguous pages, thus causing a
reduced number o f pages to be allocated to the calling process

7.6.1 Memory Allocation Methods

97

Chapter 7 The Memory Model

char *CMemoryManager AllocOSPage(long nPages)
{

char *RunPages,

// Steps
/ / ----------
// 1) See if we have enough physical memory (check nPagesFree)
// 2) Find a contiguous run of linear pages to allocate (PTEs)
// 3) Allocate each physical page placing it in the run of PTEs

// Must request > 0 pages for allocation
if (nPages<=0)

return NULL,

// Ensure mutual exclusion
TPacket *pPacket = MemExch->WaitPacket(),

// Verify sufficient pages exist to satisfy request
if (nPages> nPagesFree)

return NULL;

// Find contiguous run of OS PTEs in current PT
RunPages = FindRun(OS_BASE,nPages);

// Allocate further PTs until request is satisfied
While(RunPages==NULL) {

if (AddOSPTO'=0)
return NULL,

RunPages = FindRun(OS_BASE,nPages) ;
}

// Mark these pages as allocated
AddRun(RunPages,nPages);

// Leave critical section
MemExch->SendDummyMsg(),

return RunPages,
}

Figure 7 3 The CMemoryManager AllocOSPage() method

7.6.2 Memory Deallocation Methods

A single method is provided to deallocate memory previously allocated by either
AllocOSPageQ and AllocPageQ Hus is because in deallocating both types o f memory,
the same transaction occurs, namely that the relevant Page Table Entries are removed
and the relevant bits in the Page Allocation Map are cleared This is performed in the
UnMarkPTEsQ kernel function.

98

Chapter 7 The Memory Model

char *CMemoryManager• AllocPage(long nPages)
{

char *RunPages,

// Steps
/ / ----------
// 1) See if we have enough physical memory (check nPagesFree)
// 2) Find a contiguous run of linear pages to allocate (PTEs)
// 3) Allocate each physical page placing it in the run of PTEs

// Must request > 0 pages for allocation
if (nPages<=0)

return NULL,

// Ensure mutual exclusion
TPacket *pPacket = MemExch->WaitPacket() ,

// Verify sufficient pages exist to satisfy request
if (nPages> nPagesFree)

return NULL,

// Find contiguous run of user PTEs m current PT
RunPages = FindRun(USER_BASE,nPages) ;

// Allocate further PTs until request is satisfied
While(RunPages==NULL) {

if (AddUserPTO '=0)
return NULL,

RunPages = FindRun(USER_BASE,nPages) ;
}

// Mark these pages as allocated
AddRun(RunPages,nPages),

// Leave critical section
MemExch->SendDummyMsg(),

return RunPages,
}

Figure 7 4 The CMemoryManager AllocPageQ method

int DeAllocPage (unsigned char pOrigMem, int nPages),
Before mutual exclusion is enforced, DeAllocPage() drops unnecessary bits from the
hnear address of the memory to be deallocated Only the upper twenty bits are
required, since memory is deallocated in blocks of Pages, four kilobytes in size Mutual
exclusion is enforced around the critical section of the call to the kernel function
UnMarkPTEsQ

99

{

Chapter 7 The Memory Model

void CMemoryManager DeAllocPage (unsigned char pOngMem,
int nPages)

{
int ProcNum,

// Discard unnecessary bits
p O n g M e m = (pOngMem % 4 096) ,

ProcNum = GetCrntProcNum(),

// Enforce mutual exclustion
TPacket *pPacket = MemExch->WaitPacket(),

UnMarkPTEs(ProcNum,pOrigMem,nPages) ,

// Leave critical section
MemExch->SendDummyPacket 0,

)__

Figure 7 5 The CMemoryManager DeAUocPage() method

7.6.3 Memory Aliasing Methods

There are two co-operating methods dealing with memory aliasing One to perform the
aliasing, the other to perform the dealiasing These are described below

unsigned char *A liasMem (unsigned char *pMem, unsigned long dcbMem,
unsigned long dJobNum)

This method aliases pages m the current process' Page Directory / Page Tables,
providing its Page Directory is different to the Page Directory belonging to the job
specified m the parameter dJobNum In such cases no aliasing is needed as both
processes belong to the one program, and are therefore operating in the same linear
address space

Note that even if the length of the memory to be aliased is only two bytes, if it crosses
page boundaries, both pages must be aliased The code for AliasMemO is shown in
Figure 7 6

100

Chapter 7 The Memory Model

unsigned char *CMemoryManager AliasMem(unsigned char *pMem,
unsigned long dcbMem, unsigned long dProcNum)

{
char *RunPages,
unsigned int base,
unsigned long CurrProc = GetCurrProcNum(),

// Check Page Directories (le Processes)
if (CurrProc==dProcNum) return ,

// Ensure mutual exclusion
TPacket *pPacket = MemExch->WaitPacket(),

// Calculate number of pages required
pMem = pMem % 4096,
dcbMem += pMem,
unsigned long nPages = GetAliasReqSize(pMem,dcbMem),

if (CurrProc == OP_SYSTEM) base = OS_BASE;
else base = USER_BASE,

// Find contiguous run of PTEs m current PT
RunPages = Fmd R u n (base,nPages) ,

// Allocate further PTs until request is satisfied
while (RunPages==NULL) {

if (CurrProc == OP_SYSTEM)
if (AddOSPTO ==NULL) return;

else
if (AddUserPTO ==NULL) return,

RunPages = FmdRun (base, nPages) ,-
}

// Perform aliasing
AddAliasRun(pMem, RunPages, nPages, dProcNum);

// Leave critical section
MemExch->SendDummyMsg() ,
return RunPages,

} ___

Figure 7 6 The CMemoryManager AliasMemQ method

There are essentially four steps to the AliasMemQ method
1 Check to see if the current Page Directory is the same as the Page Directory for the

specified process In such a case aliasing is not required This is analogous to
checking to see if the current process is the same as the specified process

2 The number of pages which need to be aliased is calculated

3 A check is made to see if there are sufficient Page Table Entries to satisfy the
request If not, further Page Tables are allocated until either the request is satisfied
or else no more Page Tables are available, in which case the alias fails

4 The Page Table Entries are aliased

101

I

unsigned int DeAliasMem(unsigned char *pAhasMem, unsigned long dcbAliasMem,

unsigned longJobNum)

This method dealiases memory which was previously aliased usmg the AliasMemQ

method pAliasMem is the linear address which was previously passed as a parameter
to the AliasMemQ method There is no need to use a semaphore smce Page Tables are
bemg deahased one at a time This would not interfere with any concurrent memory
allocation routines

The behaviour of DeAhasMemQ is much simpler than its companion AhasMem() It
consists of only two steps
1 Calculate number of pages which need to be deahased
2 Call the system kernel RemoveAhasRunQ to deahas the necessary Page Table

Entries

The code for DeAhasMemQ is shown in Figure 7 7

Chapter 7 The Memory Model

unsigned int CMemoryManager• DeAliasMem(unsigned char *pAliasMem,
unsigned long dcbAliasMem)

{
// Calculate number of pages to be dealiased
unsigned long nPages = GetAliasReqSize (pAliasMem, dcbAliasMem)

// Retrieve id number of current process
unsigned long CurrProc = GetCurrProcNum(),

// Perform call to kernel function to perform dealiasmg
return RemoveAliasRun(pAliasMem,nPages,CurrProc),

J__

Figure 7 7 The CMemoryManager DeAhasMemQ method

7.7 Conclusions

This chapter described in detail the design of the OO-MMURTL memory model The
design served to highlight a significant problem in the migration o f MMURTL to OO-
MMURTL, namely that some components of the original MMURTL operatmg system
cannot be easily encapsulated by an object-oriented framework The cause of this is
due to either the original design, and possibly the original implementation, o f the
component in question

102

Chapter 7 The Memory Model

Instead o f providing a complete class framework which would have meant redesigning
the entire memory model, OO-MMURTL encapsulates the interface between user
applications and MMURTL's ongmal memory model. This still provided some
advantages over the original model, but it is not an optimal design when the
capabilities o f the object-oriented paradigm are taken into account Future
development should involve a complete redesign of the OO-MMURTL memory
subsystem so that the entire subsystem is modelled as a set o f object-onented classes

103

Chapter 8 Additional Classes

Chapter 8

Additional Classes

8.1 Overview

This chapter introduces three additional classes m OO-MMURTL These classes are
responsible for encapsulating the behaviour of the Ready Queue, system interrupts, and
the system timer, which itself is an interrupt

The Ready Queue
As described in previous chapters, MMURTL uses a prioritised queue to manage the
execution o f tasks Task switching occurs only between processes of the same priority
In fact, MMURTL implements the Ready Queue as an array of thirty-two queue
structures Each of these structures holds a queue of the running tasks o f a single
priority In this way, each of the thirty-two queues represents each of the thirty-two
possible priorities m the operating system

This results in a small overhead in terms of storing the Ready Queue, however this is
acceptable when the reduction in the duration of a task switch is considered Whenever
a timer interrupt occurs, notifying the operating system that the time shce of the
current executing task has elapsed, the operating system can go directly to the relevant
queue without having to evaluate tasks of a differing priority

Interrupts
The Intel processor design allows two types of interrupt - one which executes as an
independent task, or one which executes within the context of the task that is
interrupted MMURTL uses the latter due to its speed, the former requiring a context
switch each time an interrupt occurs and each time an interrupt completes The
execution of interrupts in the context of the interrupted task is easily facilitated by the
MMURTL architecture which dictates that the operating system is mapped into the
lower gigabyte of linear memory of every process

104

Chapter 8 : Additional Classes

Timer Interrupts
As with most time-slicing operating systems, the timer interrupt plays a special role in
MMURTL. Every ten milliseconds, the timer interrupt fires. When a task is running for
thirty milliseconds, the Ready Queue is re-evaluated to check if another task of the
same or higher priority is waiting to run. If so, the current task is placed on the Ready
Queue and the next task is given control.

8.2 The CReadyQueue Class

This class encapsulates the operating system's Ready Queue mechanism It is an
entirely abstract class, however. The purpose of the CReadyQueue class is to define a
template for fixture implementations of ready queues in OO-MMURTL. To this end,
CReadyQueue defines four basic methods which may be performed on all ready
queues, regardless of their implementation. They are:

• void enQueueRdy(TTSS * pTSS)
This method adds a task to the Ready Queue.

• TTSS *deQueueRdyO
This method removes a task from the Ready Queue.

. TTSS *ChkRdyQ0
This method returns the task at the top of the Ready Queue, without removing it.

• void RemoveRdyProc(CProcess *pProc)
This method removes all tasks belonging to a given process from the ready queue.

OO-MMURTL provides a single implementation of the Ready Queue,
CPrioritisedReadyQueue, which mimics the original thirty-two queue implementation
of MMURTL. The importance of the role of object-oriented techniques in 0 0 -
MMURTL's CReadyQueue class framework lies in the ability of the system designer to
completely redesign the implementation of the Ready Queue, without altering the
public interface of the class. Figure 8.1 presents a simple class hierarchy of the Ready
Queue framework as it stands in OO-MMURTL, along with another possible different
implementation CFIFOReadyQueue, which is discussed later.

105

Chapter 8 Additional Classes

CReac lyQ ueue

— 1
1
1

CPrioritised ReadyQueue CFIFO ReadyQ ueue

Figure 8 1 A possible CReadyQueue framework

Note that the dashed line m the above diagram represents the possible introduction of
the CFIFOReadyQueue class Although the implementation of this class is discussed
below, it is not currently implemented in OO-MMURTL Its use m the class hierarchy
above is merely to show further possible implementations of the CReadyQueue

8.3 The CPrioritisedReadyQueue Class

CPnontisedReadyQueue is a concrete subclass of the abstract CReadyQueue class It
overrides CReadyQueue's four abstract methods with its own methods which duphcate
the functionality o f MMURTL's original Ready Queue implementation

CPnontisedReadyQueue has a single attribute, an array of thirty-two queues, each of
which contains a head and a tail pointer to a task structure Each o f these task
structures contains a pointer to another task structure, and it is through these links that
the queue is threaded

The implementation of each of the CPnontisedReadyQueue methods is described
below

void enQueueRdy(TTSS *pTSS)
The enQueueRdyQ method retneves the pnonty of the currently running process
which owns the task in question This pnonty represents the index o f the pnontised
queue to which the task should be added The remaining step is to adjust the relevant
queue's pointers so that the task structure is added to its tail The code for this method
is shown in Figure 8 2

Note that the actual task switching does not occur in any descendants o f the
CReadyQueue class Their sole responsibility is the management o f the Ready Queue

106

Chapter 8 : Additional Classes

void CPrioritisedReadyQueue: :enQueueRdy(TTSS *pTSS)
{

// Verify the task structure pointer is valid
if (pTSS==NULL)

return;

// Retrieve the priority of the current process
unsigned long dPriority = GetCurrentPriority();

pTSS->next = NULL;

// If the queue is empty, this TSS becomes head and tail
if (ReadyQ[dPriority].Head == NULL) {

ReadyQ[dPriority].Head = pTSS;
ReadyQ[dPriority].Tail = pTSS;
}

else { // Otherwise adjust the tail of the queue
(ReadyQ[dPriority].Tail)->next = pTSS;
ReadyQ[dPriority].Tail = pTSS;
}

)__

Figure 8.2. The CPrioritisedReadyQueue: :enQueueRdy() method

TTSS *deQueueRdyO
This method must find, remove and return the highest priority task on the Ready
Queue. In terms of the implementation of the CPrioritisedReadyQueue class, this
involves going to the highest priority queue, and removing the task at its head. If this
queue is empty, then deQueueRdyQ goes to the queue with the next lowest priority,
and checks to see if there are any tasks waiting with that priority. This continues until a
task is found on one of the queues or else all of the ready queues are found to be
empty.

Upon finding the highest priority task, this method returns a pointer to the task
structure to the calling program If no tasks are found on the Ready Queue, a NULL
pointer is returned.

This method demonstrates one of the disadvantages of the prioritised queue
implementation of the ReadyQueue as used by MMURTL. Few tasks actually execute

at the highest priority. This means that almost all of the calls to the deQueueRdyO
method result in stepping through each of the queues looking for a waiting task. The
further down the array of queues the highest priority task exists, the bigger the delay
before a task-switch is made.

107

Chapter 8 Additional Classes

In the case of using a FIFO implementation as shown later, the deQueueRdyQ method
need only check a single queue to find the highest pnonty task This results m a faster
execution, which is o f importance particularly during the course of a context switch
MMURTL sacrifices this speed m return for providing a more intelligent ready queue
The code for the deQueueRdyQ method is shown in Figure 8 3

TTSS *CPnontisedReadyQueue. deQueueRdyO
{

TTSS *cHighPri,

// Loop through all of the queues, starting with the
// queue with the highest priority, until a waiting
// task is found. When one is found, adjust the queue
// and return a pointer to it
for (int i = 0, k PRIORITYCOUNT, i++) {

if (ReadyQ[l] '= NULL) {
pHighPri = ReadyQ[i] Head,
ReadyQ[i].Head = (ReadyQ[i] Head)->next;
return pHighPri,
}

}

// If no waiting task is found, a NULL pointer is returned
return NULL,

J ___
Figure 8 3 The CPnontisedReadyQueue deQueueRdy() method

TTSS *ChkRdyQQ
This purpose of this method is related to that of the deQueueRdyQ method winch is
described above ChkRdyQQ also attempts to retrieve the highest priority task on the
Ready Queue, but instead o f removing it once it has been found, ChkRdyQQ leaves the
highest priority task where it is As m deQueueRdyQ, ChkRdyQQ returns a pointer to
the highest priority task it finds, or a NULL pointer if none were found

Because o f the similarities between the behaviour of the two methods, the operation of
ChkRdyQQ is almost identical to deQueueRdyQ It first goes to the highest priority
queue, and attempts to remove the task at its head If there is no task there, then
ChkRdyQQ goes to the queue with the next lowest pnonty, and checks to see if there
are any tasks waiting there This continues until a task is found on one of the queues or
else all o f the ready queues are found to be empty

The code for this method is shown m Figure 8 4

108

Chapter 8 : Additional Classes

TTSS *CPrioritisedReadyQueue::ChkRdyQ()
{

TTSS *cHighPri;

// Loop through all of the queues, starting with the
// queue with the highest priority, until a waiting
// task is found
for (int i=0; i<PRIORITYCOUNT; i++) {

if (ReadyQ[i].Head != NULL) {
pHighPri = ReadyQ[i].Head;
return pHighPri,-
}

}
// If no waiting task is found, a NULL pointer is returned
return NULL;

}

Figure 8.4. The CPrioritisedReadyQ ueue::ChkRdyQ() method

void RemoveRdyProc(CProcess *pProcess)
The purpose o f this method is to rem ove all o f the tasks belonging to a given process

from the R eady Queue. In terms o f the prioritised R eady Queue implementation o f

O O -M M U R T L , this involves rem oving all o f the process' tasks on all o f the queues

which comprise the R eady Queue. This method is called from the m ethods ChainQ and

ExitJobO belonging to the CProcess class (see Chapter 5 : The P rocess Management

M odel). It is used to rem ove any remaining tasks belonging to a process w hich is about

to be exited.

The RemoveRdyProcO method begins at the queue with the highest priority and loops

through every queue. This is necessary since each process m ay have multiple tasks,

possibly w ith the same priority. For this reason every node on every queue must be

checked. E ven i f a task belonging to the current process is found on a given queue, the

remainder o f the nodes must be checked.

Providing the head o f each queue is not N U L L , RemoveRdyProcO checks to see i f that

node belongs to the parameter pProcess. I f it does, the task in question is removed.

The next node in the queue is then evaluated and rem oved i f it belongs to the process

pProcess. This continues until the end o f the queue, when a N U L L pointer is reached.

W hen a task is rem oved from one o f the queues, the queue's pointers must be updated,

the task structure must be added to the system heap o f free task structures, and the

system statistics must be updated to reflect the freeing o f the task.

109

Chapter 8 Additional Classes

void CPnontisedReadyQueue RemoveRdyProc (CProcess *pProcess)
{
TTSS *pTSS,*pQueue,*pQueuePrev,

// pQueuePrev is used to point to the node traversed
// immediately prior to the current one It is
// required when a task is deleted from the middle of
// a queue
pQueuePrev = NULL,

// Check every queue
for (m t 1 = 0, kPRIORITYCOUNT, i++) {

pQueue = ReadyQ[i] Head,

// If the queue is not empty, check every task within
// the queue
while(pQueue1=NULL) {

// If the the current node represents a task which
// belongs to the process pProcess, it must be
// removed from the Ready Queue and its former links
// must be updated
if (pQueue->pProc==pProcess) {

pTSS = pQueue,

if(pPrevQueue==NULL)
ReadyQueue [i] .Head = pQueue->next

else
pPrevQueue->next = pQueue->next,

// The task structure is replaced on the heap of free
// task structures and the system statistics are
// updated
pTSS->next = pFreeTSS,
pFreeTSS = pTSS,
pTSS->pProc = NULL,
nTSSLeft++,
}

pPrevQueue = pQueue,
pQueue = pQueue->next,
}

}
J ___

Figure 8 5 The CPnontisedReadyQueue RemoveRdyProcO method

The code for the RemoveRdyProcQ method is shown in Figure 8 5

110

Chapter 8 Additional Classes

8.4 The CFIFOReadyQueue Class

In this section the entire code for a different implementation of the Ready Queue is
presented This class is not implemented in OO-MMURTL, however it does show how
a different subclass o f the abstract CReadyQueue class can be implemented resulting in
a different Ready Queue mechanism. This serves to highlight the flexibility o f the
Ready Queue object-oriented framework and its capacity for future development The
complete code for this class is shown in Figures 8 6a and 8 6b

CFIFOReadyQueue. CFIFOReadyQueue()
{

ReadyQ.Head = NULL,
ReadyQ.Tail = NULL,

}

void CFIFOReadyQueue .enQueueRdy(TTSS *pTSS)
{

if (pTSS==NULL)
return,

pTSS->next = NULL,

if (ReadyQ Head == NULL) {
ReadyQ Head = pTSS;
ReadyQ Tail = pTSS,
}

else {
(ReadyQ Tail)->next = pTSS,
ReadyQ Tail = pTSS,
}

}

TTSS ‘CFIFOReadyQueue. deQueueRdyO
{

TTSS *pHighPn,

if (ReadyQ[l] Head '= NULL) {
p Hig h P n = ReadyQ [i] Head,
ReadyQ[i] Head = (ReadyQ[i] Head)->next,
return pHighPn,
}

return NULL,
}

TTSS ‘CFIFOReadyQueue .ChkRdyQO
{

if (ReadyQ.Head 1 = NULL) return ReadyQ.Head,
return NULL,

}

Figure 8 6a The CFIFOReadyQueue class implementation

i l l

Chapter 8 Additional Classes

void CFIFOReadyQueue RemoveRdyProc(CProcess *pProcess)
{

TTSS *pTSS,*pQueue,*pQueuePrev,

pQueuePrev = NULL,

pQueue = ReadyQ[i] Head,

while(pQueue1=NULL) {

if (pQueue->pProc==pProcess) {
pTSS = pQueue,

if(pPrevQueue==NULL)
ReadyQueue Head = pQueue->next,

else
pPrevQueue->next = pQueue->next,

pTSS->next = pFreeTSS,
pFreeTSS = pTSS,
pTSS->pProc = NULL,
nTSSLeft--,
}

pPrevQueue = pQueue,
pQueue = pQueue->next,
}

J___
Figure 8 6b The CFIFOReadyQueue class implementation

8.5 The CInterrupt Class

The CInterrupt class is a simple encapsulation of the basic functionality required to
write an interrupt service routine in OO-MMURTL CInterrupt is an abstract class
which performs the default behaviour of an interrupt To create a new interrupt, a
programmer need only create a subclass o f the CInterrupt class, overriding the
Service 0 method with the appropriate interrupt service routine

This greatly simplifies the writing of an interrupt service routine, which now becomes a
two-step process

1 Create a subclass o f the CInterrupt class, overriding the abstract ServiceQ method
with the interrupt service code

2 Create an instance of the class

When the new class is instantiated, the operating system will be notified and will insert
an interrupt vector into the operating system's Interrupt Descriptor Table

112

Chapter 8 Additional Classes

This approach to writing interrupt service routines has several advantages
• The number o f steps to creating an ISR is reduced, thus simplifying the creation

process
• Previously it was possible for an apphcation to place an errant vector address into

the Interrupt Descriptor Table The effect o f this was to cause a system crash as
soon as the interrupt was first called Now, unless a vahd Service Q method is
provided to create a concrete subclass of dntenupt, the compiler will not allow
instantiations o f the subclass (because without overriding the Service (I method
they remain abstract classes)

• Another frequent error which previously occurred was the accidental omission by
the interrupt service routine programmer to call the EndoflRQQ kernel function,
resulting in further system misbehaviour The new CInterrupt class includes this
behaviour by default, removing the onus, and therefore the opportunity to make
mistakes, from the programmer

The CInterrupt class presented here is simple m idea and implementation, however it
still provides several advantages over the non object-oriented implementation In
addition, further subclassing o f the CInterrupt class will provide the system designer
with a more specialised interrupt mechanism Each of CInterrupts methods are
described below

CInterruptQ
CInterrupt's constructor serves two purposes Firstly it assigns the IRQ number to the
class attribute IRQNum In addition, the Constructor calls the kernel primitive
SetlRQVectorQ This creates a vector to represent the new interrupt and adds the
vector to the Interrupt Descriptor Table The SetlRQVectorO call requires as a
parameter the address o f the routine which will service the interrupt This routme
ISRO, which is described below, is responsible for ensuring that the users mtenupt
service routme is called The CInterrupt code is shown m Figure 8 7

Figure 8 7 The CInterrupt constructor

CInterrupt CInterrupt(unsigned long Num)
{

IRQNum = Num,
.-SetlRQVector(IRQNum,&ISR),

}

113

Chapter 8 : Additional Classes

void interrupt ISRQ
The address of this method is placed into the Interrupt Descriptor Table when this
interrupt object is first invoked. It serves two purposes. Firstly it must call the abstract
method Service 0 which must be written by the user to ensure that the interrupt
subclass is a concrete one. Secondly, the kernel primitive EndOflRQO is called, which
notifies the Programmable Interrupt Controller Units that the interrupt service routine

has completed.

void interrupt CInterrupt::ISR()
{

if (Service())
EndOfIRQ(IRQNum);

)__

Figure 8.8. The CInterrupt: :ISR() method

void GetIRQVector(char *pVectorRet)
This method calls the kernel primitive GetlRQVectorQ. This returns the address of the
interrupt service routine which is currently serving the interrupt represented by this
class. Note that this is a 32-bit offset address in the operating system address space.
The code for this method is shown in Figure 8.9.

void MasklRQO
This method calls the kernel primitive MasklRQO. This masks the hardware interrupt
request represented by this class. Once masked, the CPU will not be interrupted by this
interrupt, even if interrupts are enabled. The code for this method is shown in Figure
8.9.

void UnMasklRQO
This method reverses the effect of the MasklRQO method. Interrupts representing this
class will now be serviced again by the operating system, unless interrupts as a whole
are disabled. The code for this method is shown in Figure 8.9.

114

Chapter 8 : Additional Classes

void CInterrupt::GetlRQVector(char *pVectorRet)
{

::GetlRQVector(IRQNum, pVictorRet);
}

void CInterrupt::MaskIRQ()
{

::MaskIRQ(IRQNum);
}

void CInterrupt::UnMaskIRQ()
{

::UnMaskIRQ(IRQNum);
} __

Figure 8.9. Additional CInterrupt methods

8.6 The CTimer Class

The timer plays an important role in most operating systems, particularly those which
operate using some form of time slicing technique. In MMURTL the timer class fires
every 10 milliseconds. It is the responsibility of the timer to check if any alarms must
be triggered, or if the current task has been running for 30ms or more. If so, the Ready
Queue is checked to see if a task of equal or higher priority is awaiting execution.

Because the timer is a form of interrupt, we must derive a concrete subclass from the
abstract CInterrupt class. The new class, CTimer, must provide a Service 0 method in
order that timer interrupts will be serviced and that the class will become a concrete
one.

The CTimer class makes thirty-two timer blocks available. Each of these blocks may
be used to trigger an alarm A timer block consists of a flag indicating whether the
block is in use or not, a pointer to an exchange, and a count indicating how many timer
ticks remain before the alarm will trigger. A block is created by calling the method
Alarm0 , which takes two parameters. Firstly an exchange must be provided at which
the CTimer class will send a notification when the alarm is triggered. The exact time at
which the alarm is triggered is decided by the second parameter. Alarms can be
removed using the KillAlarmQ method or temporarily postponed using the SleepO
method. The MicroDelayQ method provides the facility for small-value timing delays

in increments o f 15 microseconds. Each of CTimer's methods are described below in
detail.

115

Chapter 8 : Additional Classes

CTimer(unsigned long Num., unsigned int TickCount)
The CTimer constructor is responsible for two things. Firstly, it must immediately call
the CInterrupt constructor, which sets up the timer as a valid interrupt in the Interrupt
Descriptor Table. Secondly, the TimerTick attribute is initialised. This measures the
number of timer ticks which have elapsed since the timer was created. The code for

this method is shown in Figure 8.10.

C T i m e r C T i m e r (unsigned long Num) : CInterrupt (Num)
{

TimerTick = 0; nTmrBlocksUsed = 0;
J__

Figure 8.10. The CTimer constructor

virtual unsigned int Service Q
This method is called by the CInterrupt interrupt method ISRQ. It is responsible for
servicing the timer interrupt. If no timer blocks have been created then the sole action
the timer interrupt need take is to increment the count of ticks which have elapsed
since the system started. If this is the case, Service 0 returns the value
ENDOFIRQ_NOTPERFORMED. This tells the IRQ() method to perform the

EndO/IRQO method itself This is the default behaviour for most interrupts.

If, however, there are timer blocks set up, ServiceO must attend to them Before it
does this, Service() calls MasldRQO to ensure that no further timer interrupts occur.
Next it calls EndOJIRQO, before setting the interrupt flag. The net effect o f this is to
allow other (non-timer) interrupts to perform an interrupt during the servicing of the
timer.

The CTimer class only retains a single variable, nBlocksUsed, to indicate whether any
of the blocks are being used or not. If the value of this variable is above zero, the
ServiceO method must check the JInUse flag of each of the thirty-two timer blocks in
the timer array in order to discover which of the timer blocks are in use.

If a timer block is in use one of two things will happen. If the value of the timer block's
Tick variable has reached zero, the timer has elapsed and the process which set up the
timer must be notified. This is done by sending a dummy message to the exchange
pointed to by the timer block. If the Tick count has not reached zero, it is reduced by
one. Finally, the ServiceO method clears the interrupt flag before unmasking its
interrupt. The code for this method is shown in Figure 8.11.

116

Chapter 8 : Additional Classes

void CTimer: : Service()
{

// Increase the count of elapsed ticks since the
// timer was created
TimerTick++;

// Return if no timer blocks are in use, reporting
// that the EndOflRQO primitive was not called
if (nBlocksUsed==0) return ENDOFIRQ_NOTPERFORMED;

// Enable all interrupts except the Timer interrupt
MaskIRQ();
EndOflRQO ;

#asm
STI
#endasm

// Check every timer block, notifying the appropriate
// processes through the use of an exchange if an
// alarm has elapsed, otherwise decrement the timer
// block tick
for(int i=0; icnTMRBLKS; i++) {

if (TmrBlks[i].fInUse) {
if (TmrBlks[i].Tick == 0) {

(TmrBlks[i].RespondExch)->ISendDummyPacket();
TmrBlks[i].flnUse = FALSE;
}

else
TmrBlks[i].Tick--;

}
}

#asm
CL I
#endasm

// Reenable timer interrupts
UnMasklRQ() ;

// Signal that primitive has already been performed
return ENDOFIRQ_PERFORMED;

} ___

Figure 8.11. The CTimer: :Service() method

void Sleep (unsigned long nDelay)
This method results in the suspension of the process which called it for nDelay ticks of
the timer. Having verified that the required delay is greater than zero, SleepQ searches
the timer block array searching for a free array. If none are found, the method returns,
reporting a failure to perform the delay.

117

Chapter 8 : Additional Classes

If an empty timer block is found, all interrupts are disabled while its variables are set.
The flnUse flag is set to true, and its Tick is set to the value of nDelay. The exchange
used by the timer block is the calling task's default exchange which is held in its TTSS
structure. Next, the number of timer blocks in use is incremented before interrupts are
reenabled. Finally the task waits for a message to arrive at its exchange before
continuing. This message is a dummy message which will be sent by the CTimer
object's ServiceO method when the task's timer block ticks have been reduced to zero.
Once the current task receives the dummy message, the nDelay delay will have elapsed
and it will continue processing. The code for SleepQ is shown in Figure 8.12.

unsigned int CTimer::Sleep(unsigned long Delay)
{

if (Delay==0)
return FAIL;

// Find an empty timer block
int i=0 ;
while ((i<nTMRBLKS)& & (TmrBlks[i].fInUse))

i++ ;

// Return if there are no free timer blocks
if (i > =nTMRBLKS)

return FAIL;

#asm
CL I
#endasm

// Setup the timer block structure, using the tasks
// default exchange as the timer block's exchange
TmrBlks[i].Tick = AlarmDelay;
TmrBlks[i].flnUse = TRUE;
nTmrBlksUsed++;
TmrBlks[i].RespondExch = GetTSSExch() ;

#asm
STI
#endasm

// Wait here until the dummy message is received from
// Service, notifying that the delay has elapsed
TLinkBlock *lb = (TmrBlks[i].RespondExch)->WaitMsg();

// Continue processing once the delay has elapsed
return SUCCESS;

)__

Figure 8.12. The CTimer: : SleepQ method

118

Chapter 8 Additional Classes

void Alarm(CExchange *AlarmExch, unsigned long AlarmDelay)
Along with the DelcryO method, This is the only other method which results in a timer
block being set up However, AlarmQ differs in that it allows the user to specify an
exchange to which the dummy message will be sent as soon as the alarm is triggered
An example o f the advantage of this is exemplified m the implementation o f a hardware
controller which must detect if a given hardware event has occurred in a specified
amount of time The controller can set up an alarm to be sent to the same exchange as
used by the hardware device itself Whichever message comes first, the alarm or the
message from the hardware, will show whether the action was earned out successfully

or whether a time-out error has occurred

Another difference between the two methods is that the AlarmO method will not wait
until the alarm is triggered As a result of these similarities, the code for the AlarmQ
method is veiy similar to that o f DelayQ, the mam difference being that AlarmQ
returns to the calling task as soon as the timer block has been set up The code for this
method is shown in Figure 8 13

unsigned int CTimer. Alarm(CExchange *AlarmExch,
unsigned long AlarmDelay)

{
if (AlarmDelay==0) return FAIL;

// Find an empty timer block
int 1=0 ,
while ((lcnTMRBLKS)& & (TmrBlks[l] fInUse))

i++,

// Return if there are no free timer blocks
if (i>=nTMRBLKS) return FAIL;

#asm
CL I
#endasm

// Setup the timer block structure, using the tasks
// default exchange as the timer block's exchange
TmrBlks[i] Tick = Delay,
TmrBlks[i] flnUse = TRUE,
nTmrBlksUsed++,
TmrBlks[i] RespondExch = AlarmExch,

#asm
STI
#endasm

return SUCCESS,
LI__

Figure 8 13 The CTimer Alarm() method

119

Chapter 8 Additional Classes

void MicroDelciy (unsigned long dDelay)
This method is used for creating very bnef delays, in multiples of fifteen microseconds
The timing for this delay is based on the toggle o f the refresh bit from the System
Status port The toggle is approximately fifteen microseconds This means this call
will not be very accurate for values less than three or four dDelay units

unsigned long GetTickQ
This method returns the number of timer ticks which have occurred smce the timer was
created (at system boot time)

8.7 Conclusions

This chapter introduced additional object-oriented classes which are required by the
mam components o f OO-MMURTL The CReadyQueue is an abstract class winch
provides a template for implementations of the ready queue Its design makes no
presumptions about the scheduling pohcy of the operating system This allows system
developers to easily derive a concrete subclass of CReadyQueue which implements
specific scheduling pohcies

The dnterrupt class provides a simple mechanism for programmers to set up a
hardware interrupt in the operating system. To create an interrupt, a programmer need

only create a subclass of dnterrupt, providing a single method to service the interrupt,
and then instantiate the object to incorporate the interrupt into the operating system
This greatly simplifies the steps previously required by MMURTL

Finally, the CTimer class, which is a concrete subclass o f CInterrupt, was described
This provides a flexible timer and alarm mechanism which can be easily manipulated by
the apphcation programmer

120

Chapter 9 Design Testing

Chapter 9

Design Testing

9.1 Overview

This chapter briefly describes my experiences m designing and testing OO-MMURTL,
As an introduction, the steps taken by MMURTL's original developers are discussed
This is followed by a description of the problems I encountered and the solutions I
implemented

In addition, an overview is presented of the OO-MMURTL Simulator This is an MS-
DOS based program which I developed to provide further testing capabilities o f the
OO-MMURTL source code which is presented m this thesis Finally, a bnef
description o f the shortcomings o f the testing which I have conducted is presented,
along with proposed solutions to overcome these shortcomings

9.2 Development of MMURTL

As with any other operating system, MMURTL required a suitable programming
environment from an early stage Initially the designers sought to use tools written by
third-party developers However as MMURTL evolved, the need for a custom made
set of tools became apparent

Dunng the initial development o f MMURTL, the Microsoft Assembler (MASM) v5 1
was used Subsequently the team changed to Borland's Turbo Assembler (TASM),
before the need for a custom assembler became necessary The developers designed
and implemented a new assembler, DASM, which was custom written for the
MMURTL operating system

121

Chapter 9 Design Testing

The next logical step was to write a high level language which could produce assembly
compatible with the DASM assembler MMURTL's designers selected the C language
as the most appropriate and wrote a MMURTL-specific implementation o f the
language which they called C Minus 32 This 32-bit compiler does not support the
entire set o f features o f the C language (hence the "minus"), but those that are
supported are ANSI-C compliant The assembly language code produced by C Minus
32 is compatible with both DASM and TASM

9.3 Development of OO-MMIIRTL

The intention o f my research was to suggest an appropriate design for an object-
oriented version o f the MMURTL operating system This did not include an
implementation of the design, which would necessitate a research project in itself
However, during the course o f my research it was desirable to validate my proposed
implementation of the OO-MMURTL class frameworks which are presented in this
thesis

The primary purpose o f this section is to describe the approach I took in testing my
proposed object-oriented designs and frameworks Due to the low-level nature of
much o f the functionality of OO-MMURTL, and also due to the movement from a
conventional to an object-oriented paradigm, the testing and debugging of the code
was a non-trivial task This section will document the problems which I encountered
during the testing and debugging phase, along with the solutions which I developed to
overcome them In addition, this section provides a summary of the outstanding testing
and debugging issues which must be dealt with at a later stage o f OO-MMURTL's
implementation

There are two aspects to the testing phase of the OO-MMURTL operating system
proposed in this thesis Firstly, there is the unit testing of the code underlying each
distinct framework, for example the Messaging Model, or the Process Management
ModeL Secondly, a DOS-based program was written which would act as a simulator
o f the OO-MMURTL microkernel, allowing further testing o f the behaviour and
interactions between the vanous frameworks to take place Each o f these are described
below in further detail

122

T 1* - s > 1

The first and most obvious problem which presented itself was the lack of a C++
compiler The only high level language which is currently supported by the MMURTL
development kit is C This problem was further compounded by the feet that
MMURTL's C compiler, C Minus 32, was released as freeware, not pubhc domain
This resulted in a decision by the MMURTL's designers not to distribute the compiler's
sources

In late 1995 the source code of the latest version of C Minus 32 was made available on
the CD-ROM which accompanies Richard Burgess' book Developing Your Own 32-Bit
Operating System [Burgess 95] However, these sources arrived too late to have a
reasonable impact on my research

Since the possible use or adaptation of C Minus 32 proved to be unfeasible, due to the
lack o f source code availability the only remaining choice was to make use o f a third-
party C++ compiler, as MMURTL's designers had originally done In domg this, I
chose to use Borland's C++ compiler v4 0 The main reason for selecting this compiler
was so that I could remain as faithful as possible to the current MMURTL
development process Similarly to C Minus 32, Borland C++ v4 0 compiles TASM
compatible assembly language

Given this solution, it became possible to compile both the C++ code and the assembly
code suggested in my research Although the resulting output is neither MMURTL
specific nor compatible, the solution allowed me to fulfil the goal o f verifying the
syntactic and semantic structure o f OO-MMURTL's class designs It was worth noting
that additional work had to be performed in order to overcome some of the
incompatibilities between the C Minus 32 and Borland's C++ compiler For example
there are minor syntactic differences between the way assembly code may be integrated
into programs by both compilers

This, however, has only guaranteed semantic and syntactic correctness of the class
frameworks The behavioural correctness of the classes has yet to be verified This
proves to be a difficult task, given that the executable code provided by Borland C++

was incompatible with the C Minus 32 executables, and thus could not be integrated
with the rest o f the operating system.

Chapter 9 Design Testing

9.4 Testing the OO-MMURTL Class Frameworks

123

Chapter 9 Design Testing

In order to provide a compromised solution to this problem, I attempted to simulate
the behaviour of the classes by integrating them with an existing MMURTL program. I
achieved this by redesigning the program, MMURTL's user-interface module, using
the new class frameworks However, in order to execute the program I replaced the
object-oriented method invocations with non-object-onented function calls, creating
global variables to replace the object's pubhc and private variables Although this
proved to be an incomplete and crude test, it did serve to show that it remained
possible to integrate the new frameworks with an existing MMURTL program.

In summary, I have attempted to verify the syntactic, semantic, and behavioural
correctness of the proposed OO-MMURTL class frameworks While I succeeded in
asserting the first two, a full investigation of the behavioural correctness of the
frameworks will not be possible until an executable implementation, integrated with the
rest o f the operating system, is achieved

9.4.1 The MMURTL Debugger

During the course o f my research it was necessary for me to experiment with, and
delve deeper into, the low-level workings of the MMURTL operating system. In order
to do this m any operating environment requires the use of a low-level tool which
executes close to the system kemeL

Fortunately, MMURTL could provide this facility through its debugger which is an
integral component o f the operating system. The availability o f a debugging tool
provided two advantages to my research presented in this thesis Firstly, the
MMURTL debugger allowed me to perform step-through debugging into the low-level
components o f the new operating system. Secondly, it allowed me to investigate in
detail the behaviour o f the low-level behaviour of the original operating system.

Problems arose, however, in attempting to trace and test system behaviour during

boot-up MMURTL's debugger could only be invoked when all o f the system
constructs and modules required by it had been initialised This occurred quite late in
the boot cycle As a result it was not possible to use the debugger to trace through the

system boot-up The only solution available to me was to study in detail the system
sources prior to the point at which the debugger could be invoked

124

Chapter 9 Design Testing

9.5 The OO-MMURTL Simulator

The methods described thus far have enabled me to test and debug OO-MMURTL's
object-oriented code and frameworks on a syntactic and semantic level I have been
able to verify the correctness o f the code through the use of a non-natrve C++
compiler I have also been able to trace through the low-level code using a debugger

Although these methods served to provide an increased level o f confidence in my
designs, there remained a question mark over the actual behaviour of the OO-
MMURTL's framework in an active environment Because the OO-MMURTL sources
had been compiled in a non-system-compatible compiler, they could not be integrated
with the remainder of the system for complete behavioural and system testing

Hus led to the need for the implementation of a new environment where OO-
MMURTL's object-oriented class frameworks could be tested I have called the
resulting environment simply 'The OO-MMURTL Simulator1 The simulator is a DOS-
based executable program compiled with Borland C++ The purpose o f this simulator
was not to perform MMURTL's operating system activities, but to provide an
environment m which it was possible to test and validate the behaviour o f the class
frameworks

9.5.1 Activity of the OO-MMURTL Simulator

Perhaps the most important aspect of the performance of the OO-MMURTL simulator
is that it attempts to simulate the behaviour of both the user and the system kemeL In
attempting to simulate the kernel, OO-MMURTL makes the subset o f the kernel API
used by the class frameworks available Because the simulator is merely attempting to
simulate the operating system behaviour, and not replace it, this subset o f API
functions have been rewritten So instead of actually allocating a contiguous block of
memory, for example, the simulator will report the request (on the screen, for

example), and simulate the allocation by updating the internal system variables which
keep track o f memory availability Thus although no memory has actually been
allocated, the Memory Manager object does not realise this Similarly, the simulator's
internal variables reflect that the memory has been allocated.

125

•'■SK i

In addition to simulating the behaviour of the operating system kernel, the simulator
also performs the role of system user In this way, the simulator program can make a
set of calls and requests to the various class frameworks, thus simulating actual user
requests upon these objects An example of this would be to invoke the Memory
Manager object and to request a contiguous block of memory from it

The purpose o f this role o f the simulator is not in the calling of the OO-MMURTL
class frameworks alone, but m the observation of the sequence of calls which occur in
the class frameworks in response to the request Thus, by simulating a user request
upon the class frameworks, and then observing the resulting kernel API calls, and the
mter-framework calls, it is possible to adjudge the correctness of the class framework
behaviour Thus, the simulator has succeeded in providing an additional layer of
system testing

Chapter 9 Design Testing

9.5.2 Strengths of the OO-MMURTL Simulator

• The simulator complements the previous testing and debugging by providing an
additional level of syntactic checking of tie OO-MMURIL class framework
source code

• The introduction of the simulator has provided the first opportunity to examine and
test the class frameworks communicating together and operating within a single
executmg environment Previous testing concentrated upon testing the individual
class frameworks, for example the Memory framework, distinct from the rest of
the frameworks

• The simulator provides the ability to observe the interactions between the class
frameworks and the system kernel This allowed comparisons to be performed
between the expected kernel interactions and the actual ones

• The simulator is capable of monitoring the behaviour of the class frameworks in
response to the simulation o f a user request, allowing the system designer to verify
the response is appropriate to the request

126

Chapter 9 Design Testing

• Because o f its nature, the Simulator remains a step away from a system test It is
merely an extension of the unit testing phase A complete system test will not be
possible until the class frameworks have been fully integrated with the native
MMURTL kemeL

• Similarly, it is impossible to judge the system performance based upon the
behaviour of the simulator

• Because the simulator abstracts the behaviour of the kernel, it is impossible to
examine how the OO-MMTJRTL operating system will manage its resources in
response to the object-oriented entities, for example the Memory Manager, whose
responsibility they are

9.5.3 Weaknesses of the OO-MMTJRTL Simulator

9.6 Outstanding Issues

My research presents a possible design of an object-oriented implementation of
MMURTL Before OO-MMURTL can be implemented, however, the developers must
first provide an object-oriented derivative of the C Minus 32 programming language
This implementation must be MMURTL-specific and DASM-compatible Once this
object-oriented programming environment has been provided, system developers can
begin to integrate the class frameworks presented here with the current MMURTL
system. Only at that stage will a full system test be possible

9.7 Conclusions

This chapter presented the methods I used in validating the syntactic and semantic
correctness o f the object-oriented frameworks proposed dunng my research The
methods used to test the behaviour of the classes were also presented, although a true
test will only be possible once the class designs have been implemented and integrated
with the operating system. Finally, a bnef summary of outstanding issues was
presented

127

Chapter 10 Conclusions

Chapter 10

Conclusions

10.1 Overview

The purpose of this thesis was to attempt to migrate a conventional operatmg system
to an object-oriented design and to observe the problems and benefits o f such a
migration This chapter recaps the main points which were observed, in addition to
suggesting future directions which may be taken by Object-Oriented MMURTL

10.2 Benefits of the Migration to Object-Orientation

10.2.1 Introduction of Object Managers.

The concept o f using an object manager (see section 4 4) in which to store objects
provided many benefits to the new operatmg system. Each of the major system
components, such as process management, memory management, and messaging, rely
on a specialisation of the base object manager class

All object-oriented operatmg system must keep a repository of the objects which
comprise it However, MMURTL's object managers perform a much greater role The
behaviour o f each of these speciahsed object managers has been designed m order to
provide maximum support to the objects within each particular subsystem. The
advantages o f using object managers are summarised below

Centralised Processing - All processmg of the objects belonging to each subsystem
becomes the responsibility of a single entity, the object manager As a result, the
behaviour o f each subsystem, and all accesses to the components o f that subsystem,
may be regulated by the object manager This results in a stronger system design with
tighter controls on privileged objects and operations

128

P i <■ *!#>* '■*»

Protection - This is related to the previous point Since access to each subsystem's
objects are through a centralised processing area, better protection is offered to the
store of objects No task is allowed to gam access to an object, or perform an action
on one, without full error checking having been performed in advance by the object
manager in question Only when the object manager is satisfied, will each requested
access be allowed

Intelligence - This is possibly the biggest difference between MMURTL's object
managers and normal object repositories Each object manager has some specific
knowledge of the nature of the data it holds and the operations they perform. For
example, the exchange manager (see Section 6 3) can receive a communication from a
task and detect whether it is a message or a request Having verified the correctness o f
the communication, the exchange manager will then forward it to the exchange
belonging to the intended destination's task if it's a message, or in the case of a request
then the intended system service will be looked up, before the communication is
forwarded to it

Dynamic Allocation - This feature ensures that system resource usage is optimised
Subsystem objects are created upon request by object managers and deallocated upon
completion All o f the objects which are allocated at any given time are in use by some
component of the operating system.

Extensibility - The flexibility o f the object-oriented paradigm in conjunction with the
design o f the object managers ensure their flexibility, thus rendering them capable of
growth and expansion

10.2.2 Improved Classification of System Entities

The design o f Object-Oriented MMURTL, as presented in this thesis, uses a hierarchy
of objects to encapsulate the behaviour of each subsystem. By definition, each object-
oriented hierarchy must adequately classify the vanous entities within the subsystem it
represents This ensures the components of every object-oriented subsystem in 0 0 -
MMURTL are fully represented in, and classified by, a class hierarchy Taking the
process management subsystem as an example (see Section 5 5), the components o f
this subsystem are represented by two hierarchies The base o f the first class is the
abstract CProcess class, while the base o f the second is the CDeviceDriver class

Chapter 10 Conclusions

129

Chapter 10 Conclusions

Immediately every executing entity in the operating system must be classified by one of
these categories Each of these base classes are inherited by subclasses and so on,
resulting in five leaf nodes between the two hierarchies, namely CSystemService,
CUserJob, CSystemJob, CReentrantDeviceDnver, and CNonReentrantDeviceDnver
Now, each object in the process management subsystem must be classified as being

one of these objects

IThis detailed classification of system entities allows the system designer to present a
different set o f behaviour, by designing a unique set of attributes and methods, for each
of these classes This facility is not present in MMURTL, where the same code is
responsible for dealing with entities of a different nature

10.2.3 Simpler Programming Interface

Object-oriented programming provides several advantages over conventional
programming languages, these advantages are universal and are much documented
This section deals with the advantages resulting from the design o f 0 0 -MMURTL m
particular This is shown by taking examples from different areas o f the operating
system.

Programming Interrupts - Thanks to the CInterrupt class, much o f the low-level work
involved m setting up an interrupt has been encapsulated, and therefore hidden from
the programmer (see Section 8 5) OO-MMURTL does this by abstracting the default
behaviour required by every interrupt, namely, setting up an interrupt vector,
responding to an interrupt call, and by ensuring that the operating system is signalled
with an end o f interrupt message To create an interrupt in OO-MMURTL, the system
programmer need only denve a subclass o f CInterrupt and m doing so, provide a
method which will service the interrupt Immediately this class is instantiated, the
interrupt will be added to the Interrupt Descriptor Table and will be ready to perform.

Programming System Services - Similar to programming interrupts, the
CSystemService class encapsulates much of the default behaviour which is performed
by every system service, this even extends to creating the exchange through which the
system service will receive its requests In addition, subclasses o f the CSystemService
class provide more specialised system services while still hiding the code from the
service programmer

130

Chapter 10 Conclusions

In this way, the programmer need only decide whether to derive a subclass of
CReentrantDeviceDnver or CNonReentrantDeviceDnver If the latter is chosen
mutual exclusion, and thus non-reentrancy, will be enforced without any extra
programming required by the developer

10.2.4 Multiple Personalities

The use of object-oriented class hierarchies enables the system designer to create
abstract classes which define the default behaviour of classes which implement system
policy decisions This is exemplified by the abstract CReadyQueue class (see Section
8 2) In this case, the default behaviour of this class indicates that the CReadyQueue
class must be capable of adding items to the queue, removing items from the queue,
and checking what the item at the top of the queue is No details are given, however,
describing how the queue should be implemented

This mechanism allows the system developer to provide multiple differing
implementations of the ready queue, each enforcing a different scheduling pohcy, for
example a prioritised queue and a FIFO queue (see Sections 8 3 and 8 4 respectively)
It would then be possible to create different installations of the same operating system,
whose pohcies are customised for the installation in question, without affecting the rest
of the system.

10.2.5 Extensible Frameworks

The OO-MMURTL class hierarchies have been designed to be as generic as necessary
at the base level, and specialised in further levels This provides for an extensible
operating system which may be easily augmented or enhanced at a later date For
example, the messaging hierarchy provides for two type of exchange, and two types of
messages Future development o f MMURTL could necessitate the introduction of a
new form o f exchange or a new type o f message In this case, the existing hierarchy
need only be extended at an appropriate level, depending on the nature of the new
class

131

Chapter 10 Conclusions

Several problems were encountered dunng the migration of MMURTL to an object-
oriented paradigm. These should serve to warn future migrations, particularly those
involving more complex operating systems, of the problems which may be

encountered

Inappropriate Implementations - The single most worrying problem arose in the
redesign of the memory subsystem as an object-oriented component of 0 0 -
MMURTL Unlike the rest o f the object-oriented components in OO-MMURTL, the
memory subsystem did not adapt easily to the new paradigm. These difficulties are
described in detail previously (see Section 7 4) In summary, the only reasonable

option was to provide a single class which encapsulated the low-level code, thus
providing an object-oriented programming interface which provided at least some
advantages over the original implementation

Trivial Class Behaviour - Other subsystems of MMURTL proved less troublesome to
migrate to object-onentation In the process management subsystem, for example,
many different entity classifications were easily identified, as was mentioned earlier m
this chapter This did allow the behaviour of classes to be differentiated and classified
in detail, however, due to the original implementation of MMURTL, the object-
oriented implementation of some o f these entities proved to be close to trivial.

This is best exemplified by the CUserJob / CSystemJob pair Both o f these are
subclasses o f CJob, however their only behavioural differences are in terms of their
memory allocation routines1 If OO-MMURTL had been designed from bottom-up as
an object-onented operating system, a more diverse set o f behaviour for each class
would have been expected Another reason for this triviality lies m the fact that much
of the low-level task management routines remain in the kernel, thus reducing the
amount o f functionality performed by the CJob subclasses

10.3 Problems Encountered During Migration

1 Note that matters such as loading the jobs into the appropriate address space, le user or system, and

the setting of the appropriate system protection level, again either user or system, is the responsibility

of the process manager class when it loads new jobs

132

Chapter 10 Conclusions

Widespread Hardware Dependencies - MMURTL was designed explicitly with the
Intel 386/486 architecture m mmd In designing MMURTL, its creators attempted to
streamline the system m terms of speed as much as possible This was often done by
taking advantage of low-level code Unfortunately, this resulted in a microkernel
whose implementation was hardware dependent to a big extent This caused problems
in designing OO-MMURTL smce these hardware-dependent routines had to remain
within the microkernel Again if OO-MMURTL had been designed from the bottom-
up, the hardware dependent code would be minimised and centrahsed thus allowing the
remainder of the operating system to reap the full rewards of object-orientation

10.4 Future Directions

There are many possible directions in which Object-Oriented MMURTL can be
extended The most obvious of these would be to create a machine-independent
version of the operating system by reducmg the hardware-dependent components to a
minimum level within a single area of the microkernel This could then allow a future
development o f OO-MMURTL to become a distributed operating system. (Migrating a
single machine object-oriented operatmg system to a distributed operating system
could prove to be a very interesting thesis) Naturally, a project such as this would
introduce a wide range o f new factors to the operating system design Naming,
persistency, distributed object-mvocation and distributed linking are but the tip of the
iceberg

The most important move for OO-MMURTL now would be a re-implementation of

the components which did not migrate easily, in particular the memory management
system. This would involve redesigning the memory model, probably away from its
non-object-onented origins, and providing a class hierarchy o f component objects Due
to the current design o f the OO-MMURTL memory model, this should not affect
existing components This is because the interface of the memory manager will remain
the same in that it will continue to allocate and manage pages of memory The
underlying implementation of the memoiy manager need only be re-implemented to
support the new design This, once again, highlights the advantages of the design of
Object-Oriented MMURTL

133

Bibliography

[Balter 91]

[Burgess 95]

[Campbell 95]

[Campbell 91]

[Campbell 92]

[Campbell 93 a]

Bibliography

R Balter, J Bemadat, D Découchant, A. Duda, A. Freyssmet, S
Krakowiak, M Meysembourg, P Le Dot, FL Nguyen Van, E Paire,
M Riveill, C Roisin, X Rousset de Pma, R Scioville, G Vandome
Architecture and Implementation o f Guide, an Object-Oriented
Distributed System, Computing Systems, 1991

Richard Burgess Developing Your Own 32-bit Operating System
Sams Publishing, 1995

Roy FL Campbell and See-Mong Tan p.Choices An Object-
Oriented Multimedia Operating System IEEE Computer Society
Fifth Workshop on Hot Topics m Operating Systems, Oreas Island,
Washington, May 1995

Roy H Campbell, Nayeem Islam, Ralph Johnson, Panos Kougiouns
and Peter Madany Choices, Frameworks and Refinement
Proceedings International Workshop on Object Orientation in
Operating Systems, October 17-18 1991

Roy H Campbell and Nayeem Islam. A Technique fo r Documenting
the Framework o f an Object-Oriented System Proceedings Second
International Workshop on Object-Onentation in operating Systems

Roy H Campbell, Nayeem Islam, David Raila, Peter Madany
Experiences designing and implementing an object-oriented system
in C++ University of Illinois 93

134

Bibliography

[Campbell 93b]

[Cheriton 88]

[Deutsch 87]

[Deutsch 89]

[Quedes 92]

[Hamilton 93]

[Juhn 89]

[Krakowiak 93]

[Mitchell 93]

[Ritchie 75]

Roy H. Campbell and Nayeem Islam. Choices A Parallel Object-
Oriented Operating System Research Directions in Concurrent
Object-Oriented Programming, MIT Press, 1993

David Chenton The V Distributed System Communications o f the

ACM, pg 314-334, 1988

Peter Deutsch Levels o f Reuse in the Smalltalk 80 Programming
System IEEE Computer Society Press, Cambodge, Mass , 1987

Peter Deutsch Design Reuse and Frameworks in the Smalltalk-80
Programming System ACM Press, Cambridge, M ass, 1989

Paolo Guedes and Daniel P Juhn Object-Oriented Interfaces in the
Mach 3 0 Multi-Server System Proceedings Second International
Workshop on Object-Onentation in operating Systems

Graham Hamilton and Panos Kougiouns The Spring nucleus A
microkernel fo r objects Proceedings o f the 1993 Summer Usenix
Conference, June 1993

D Julin and R Rashid MachObjects Internal document, Mach
project, Carnegie Mellon University, 1989

S Krakowiak Issues in Object-Oriented Distributed Systems 1993
Guide Project, University of Grenoble, France

James G Mitchell, Jonathon J Gibbons, Graham Hamilton, Peter B
Kessler, Yousef A. Khahdi, Panos Kougiouris, Peter W Madany,
Michael N Nelson, Michael L Powell, and Sanjay R Radia An
Overview o f the Spring System Sun Microsystems, 1993

Dennis M Ritchie and Kenneth Thompson The UNIX Time-Sharing
System AT&T Bell Laboratories Technical Journal, 57(6) 1905,
1975

135

Bibliography

[Rashid 86] Richard Rashid Threads o f a New System Unix Review, 1986

[Tannenbaum 90] Andrew S Tannenbaum, Robbert van Renesse, Hans van Staveren,
Gergory J Sharp, Sape J Mullender, Jack Jensen, and Guide van
Rossum Experiences with the Amoeba distributed operating system
Communications of the ACM 33(12), December 1990

[Talligent 93] Leveraging object-orientedframeworks Tahgent Inc white paper,
1993

[Werner 90] L Weiner, B Wilkinson, R Wirfs-Brock Designing Object-
Oriented Software, Prentice-Hall, 1990

136

Appendix

Appendix

C++ Implementations of OO-MMURTL Classes

A1

Appendix

Process Definitions

// CProcess Class
//---------------------------

class CProcess {
private

long ProcNum,
char sbProcName[14] , //
unsigned char *pPD, //

char sbUserName[30] , //
char sbPath[70] , //
char ExitRF[80] , //
char ProcCmdLme [80] , //
char Sysln[50] , //
char SysOut[5 0] , //

long ExitError , //
char *pVidMem, //
char *pVirtVid; //
long CrntX, //
long CrntY;
long NormVid, //

char fCursOn, //
char fCursType, //
long ScrlCnt, //
char fVidPause, //

public

First byte is length
i of Job's PD (0=unused)

// User Name for Job

// Standard output

= WhiteOnBlack ,

= Cursor is visible
= Underline, 1 = Block

CProcess(long Num, char *Name, char *User, char *Path,
char *CmdLine, char *VidMem, char *VirtVid) ,-

void Cham(char *pFileName, long dExitError) ,-
void ExitProc(long dError),
void FreeResources(),
virtual long FreeSystemResources() = 0;
long GetProcNum(),

void SetUserName (char *pUser) ,-
void GetUserName(char *pUserRet),
void GetCmdLme (char *pCmdRet) ,
void GetPath(long JobNum, char *pPathRet);

void SetExitJob(char *pRunFile),
void GetExitJob(char *pRunRet),
void SetSysIn(char *pFile);
void GetSysIn(char *pFileRet),
void SetSysOut(char *pFile),
void GetSysOut(char *pFileRet),

void KillTask(},

A2

Appendix

I I CJob Class
//-------------------

class CJob • public CProcess {
public

CJob(long Num, char *Name, char *User, char *Path, char *CmdLine,
char *VidMem,char *VirtVid)
CProcess (Num,Name,User, Path, CmdLme,VidMem,VirtVid) {} ,-

unsigned long AllocPage(unsigned long nPages,CPage *ppMemRet) = 0;

// CUserJob Class
//---------------------------

class CUserJob public CJob {
public

CUserJob (long Num, char *Name,char *User,char *Path, char *CmdLme,
char *VidMem,char *VirtVid)

: CJob (Num,Name,User, Path, CmdLme, VidMem, VirtVid) {};

virtual unsigned char * AllocPage(unsigned long nPages),

// CSystemJob Class
//------------------------------

class CSystemJob : public CJob {
public

CSystemJob(long Num, char *Name, char *User, char *Path,
char *CmdLine, char *VidMem, char *VirtVid)

: CJob(Num, Name, User, Path, CmdLme, VidMem, VirtVid) {};

virtual unsigned char * AllocPage(unsigned long nPages);
b

// CSystemService Class
//--------------------------------------

class CSystemService public CProcess{
private

char SvcName[l2],
CExchange *pSvcExch,

public
CSystemService(long Num, char *Name, char *User, char *Path,

char *CmdLine,char *VidMem,char *VirtVid),
void Service () ,-
virtual unsigned long ServiceRequest(TRequest *pReqBlk) = 0;

}.

A3

Appendix

Process Class Implementations

CProcess -CProcess(long Num, char *Name, char *User,
char *Path, char *CmdLme,
char *VidMem, char *VirtVid)

{
/* Initialise variables as per parameters */
ProcNum = Num,
strcpy(sbProcName,Name),
strcpy(sbUserName,User),
strcpy(sbPath,Path),
strcpy (ProcCmdLme, CmdLme) ,
pVidMem = VidMem,
pVirtVid = VirtVid,

/* Set system input for this process to keyboard */
strcpy(Sysln,"KBD"),

/* Set system output for this process to video */
strcpy(SysOut,"VID");

ExitError = 0,
CrntX = CrntY = 0,
fCursOn = 1,
fCursType = 1
ScrollCount = 0,
NormVid = 7;
strcpy(ExitRF,""),

}

/* Initial cursor pos (0,0) */
/* Cursor is on */
/* Block cursor */

/* White on Black */
/* No ExitRunFile initially */

A4

f

Appendix

void CProcess. Chain(char *pFileName, long dExitError)
{

CExchange *pExch, *pCurrExch,
long ercE, iE, ExchProc, CurrProc, ExitError,

ercE = GetRunFile(pFileName, cbFileName, &;job_fhE) ,
if (ercE)

return(ercE),

ExitError = dExitError,

// Remove ALL tasks for this 30b that are at the ReadyQue
// This task won't be removed because its RUNNING1

RemoveRdyJob(),

/* Deallocate all exchanges for this 30b except the one belonging to
current TSS 1 The Dealloc Exchange call will invalidate all TSSs
found at exchanges belonging to this user, and will also free up
its resources The 30b will not be able to initiate requests or
send messages after this unless it is done with the
TSSExchange because it will get a kernel error */

// Find out TSS exchange so it isn't deallocated */

pExch = GetTSSExch(),
CurrProc = GetCurrProcNum(),

ercE = 0,
iE = 0;
while (ercE '= ErcOutOfRange) {

ExchProc = ExchangeManager->GetOwner (iE) ,-
pCurrExch = ExchangeManager->GetExchange(iE),
if (('ercE) && (ExchProc == CurrProc) && (pCurrExch1= pExch))

ercE = ExchangeManager->RemoveExch(iE),
1E++;
}

/* Now that the user can't make anymore requests, Send Abort messages
to all services. This closes all files that were opened by the Job
and frees up any other resources held for this 30b by any
services */

SendAbort () ,

TPacket *pPacket = pExch->CheckPacket() ,
while(pPacket '= NULL) // clear the exchange of abort responses

pPacket = pExch->CheckPacket() ,
}

A5

Appendix

void CProcess ExitProc(long dError)
{

CExchange *pExch, *pCurrExch,
long ercE, iE, ExchProc, CurrProc, ExitError,

ExitError = dError;

// Remove ALL tasks for this 30b that are at the ReadyQue.
// The task we are in won't be removed because its RUNNING'

ReadyQueue->RemoveRdyProc(ProcNum),

/* Deallocate all exchanges for this 30b except the one belonging to
current TSS 1 The Dealloc Exchange call will invalidate all TSSs
found at exchanges belonging to this user, and will also free up
its resources The 30b will not be able to initiate requests or
send messages after this unless it is done with the
TSSExchange because it will get a kernel error */

// Find out TSS exchange so it isn't deallocated */

pExch = GetTSSExch();
CurrProc = GetCurrProcNum () ,-

ercE = 0;
iE = 0,
while (ercE '= ErcOutOfRange) {

ExchProc = ExchangeManager->GetOwner (iE)
pCurrExch = ExchangeManager->GetExchange(iE),
if ((’ercE) && (ExchProc == CurrProc) && (pCurrExch'= pExch))

ercE = ExchangeManager->RemoveExch(iE),
1E++;
}

/* Now that the user can’t make anymore requests, Send Abort messages
to all services. This closes all files that were opened by the Job
and frees up any other resources held for this 30b by any
services. */

SendAbort(),

TPacket *pPacket = pExch->CheckPacket() ;
while(pPacket '= NULL) // clear the exchange of abort responses

pPacket = pExch->CheckPacket(),
}

A6

Appendix

CExchange *pExch, *pCurrExch,
long ercE, lE, ExchProc, CurrProc,

// Allow subclasses to free additional system resources
// which they may have allocated

FreeSystemResources();

// Remove ALL tasks for this 30b that are at the ReadyQueue.
// This task won't be removed because its Running'

ReadyQueue->RemoveRdyProc(),

/* Deallocate all exchanges for this process except the one
belonging to current TSS The Dealloc Exchange call will
invalidate all TSSs found at exchanges belonging to this
user, and will also free up RQBs and Link Blocks The
30b will not be able to initiate requests or send messages
after this */

// Find out current TSS exchange so it isn’t deallocated

pExch = GetTSSExch(),
CurrProc = GetCurrProcNum(),

ercE = 0 ,-
1E = 0,
while (ercE != ErcOutOfRange) {

ExchProc = ExchangeManager->GetOwner(1E) ,
pCurrExch = ExchangeManager->GetExchange(lE),
if ((!ercE) && (ExchProc == CurrProc) && (pCurrExch'= pExch))

ercE = ExchangeManager->RemoveExch(1E),
1E++,
}

/* Now that the user can't make anymore requests, Send Abort
messages to all services This closes all files that were
opened by the Job and frees up any other resources held
for this 30b by any services.*/

SendAbort(),

// Clear the exchange of abort responses (ignore them)

TPacket *pPacket = pExch->CheckPacket();
while(pPkt==NULL)

pPacket= pExch->CheckPacket(),
}

void CProcess FreeResources()
{

A7

Appendix

CExchange *pExch,

FreeResources() ,

pExch = GetTSSExch(),

pPacket = NULL,
while(pPacket == NULL)

pPacket = pExch->CheckPacket(),

pExch->ISendPacket(ErcOpCancel,ErcOpCancel),
ProcessManager->SetPnonty (ProcNum, 31) ,
TPacket *pPacket = WaitPacket(),

while(1), /* m case we get scheduled again */
}

long CProcess- GetProcNumO
{

return ProcNum,
}

void CProcess SetUserName(char *pUserRet)
{

strcpy (sbUserName,pUserRet) ,-
}

void CProcess GetUserName(char *pUserRet)
{

strcpy(pUserRet,sbUserName);
}

void CProcess- GetCmdLme (char *pCmdRet)
{

strcpy(pCmdRet,JobCmdLine),
}

void CProcess GetPath(char *pPathRet)
{

strcpy(pPathRet,sbPath),
}

void CProcess SetExitJob(char *pRunFile)
{

strcpy(JcbExitRF,pRunFile);

void CProcess KillTask (void)
{

A8

Appendix

strcpy(pRunRet,JcbExitRF),
}

void CProcess: SetSysIn(char *pSysIn)
{

strcpy(JcbSysIn,pSysIn);
}

void CProcess GetSysIn(char *pSysInRet)
{

strcpy(pSysInRet,JcbSysIn)(
}

void CProcess SetSysOut(char *pSysOut)
{

strcpy(JcbSysOut,pSysOut),
}

void CProcess GetSysOut(char *pSysOutRet)
{

strcpy(pSysOutRet,JcbSysOut),

void CProcess GetExitJob(char *pRunRet)
{

A9

Appendix

u n s i g n e d c h a r * C U s e r J o b A l l o c P a g e (u n s i g n e d l o n g n P a g e s)

{
r e t u r n M e m o r y M a n a g e r - > A l l o c P a g e (n P a g e s) ,

}

/ / C D s e r J o b C l a s s

/ / C S y s t e m J o b C l a s s

u n s i g n e d c h a r * C S y s t e m J o b - A l l o c P a g e (u n s i g n e d l o n g n P a g e s)

{
r e t u r n M e m o r y M a n a g e r - > A l l o c O S P a g e (n P a g e s) ,

}

A10

Appendix

C S y s t e m S e r v i c e C S y s t e m S e r v i c e (l o n g Num , c h a r * N a m e , c h a r * U s e r ,
c h a r * P a t h , c h a r * C m d L m e ,
c h a r * V i d M e m , c h a r * V i r t V i d)

. C P r o c e s s (N u m , N a m e , U s e r , P a t h , C m d L m e , V i d M e m , V i r t V i d) ,

{
S v c E x c h = C r e a t e E x c h a n g e () ,
s t r c p y (p S v c N a m e , N a m e) ;
R e g i s t e r S e r v i c e (p S v c N a m e , S v c E x c h) ,

}

C S y s t e m S e r v i c e - C S y s t e m S e r v i c e ()

{
S v c E x c h - > R e m o v e () ,
S v c E x c h - > D e A l l o c a t e () ,- / / F r e e m e m o r y u s e d b y S v c E x c h

}

v o i d C S y s t e m S e r v i c e S e r v i c e 0

{
u n s i g n e d l o n g E r r o r T o U s e r ,
u n s i g n e d l o n g M e s s a g e [2] ,-
T R e q u e s t * p R e q B l k

w h i l e (l) {
T P a c k e t * p P k t = S v c E x c h - > W a i t P a c k e t 0 ;

i f (p P k t ' =NULL) {
p R e q B l k = M e s s a g e [0] ,

E r r o r T o U s e r = S e r v i c e R e q u e s t (p R e q B l k) ,-

S v c E x c h - > R e s p o n d (p R e q B l k , E r r o r T o U s e r) ,

}
}

}

A l l

Appendix

Device Driver Definitions

c l a s s C D e v i c e D n v e r {
p r i v a t e .

c h a r N a m e [1 2] ,
u n s i g n e d i n t T y p e ,
u n s i g n e d i n t n B P B ,
l o n g L a s t D e v E r c , -
m t n B l o c k s , -
i n t f S i n g l e U s e r ,
l o n g w J o b ,

/ / 0 = N o D e v i c e , l = R a n d o m , 2 = S e q u e n t i a l
/ / S e q u e n t i a l B y t e s p e r b l o c k (1 - 6 5 5 3 5)
/ / L a s t o p e r a t i o n e r r o r c o d e
/ / N u m b e r o f b l o c k s m d e v i c e
/ / I s d e v i c e a s s i g n a b l e ’
/ / I f a s s i g n a b l e , i s i t a s s i g n e d ’

v i r t u a l l o n g D e v O p e r a t i o n (u n s i g n e d l o n g dO p N u m ,
u n s i g n e d l o n g d L B A ,
u n s i g n e d l o n g d n B l o c k s ,
u n s i g n e d c h a r * p D a t a) = 0 ,

v i r t u a l l o n g D e v S t a t u s (c h a r * p S t a t R e t ,
u n s i g n e d l o n g d S t a t u s M a x ,
u n s i g n e d l o n g * p d S a t u s R e t) = 0 ;

v i r t u a l l o n g D e v l n i t i a l i s e (c h a r * p I n i t D a t a ,

p u b l i c
/ / C o n s t r u c t o r f o r s e q u e n t i a l d e v i c e d r i v e r
C D e v i c e D n v e r (c h a r * D e v N a m e , u n s i g n e d i n t B P B , i n t B l o c k s ,

i n t S i n g l e U s e r) ;

/ / C o n s t r u c t o r f o r n o n - s e q u e n t i a l d e v i c e d r i v e r
C D e v i c e D n v e r (c h a r * D e v N a m e , i n t S i n g l e U s e r) ;

v i r t u a l l o n g O p e r a t i o n (u n s i g n e d l o n g dO p N u m ,

u n s i g n e d l o n g s d l n i t D a t a) = 0 ;

u n s i g n e d l o n g d L B A ,
u n s i g n e d l o n g d n B l o c k s ,
u n s i g n e d c h a r * p D a t a) = 0 ,

v i r t u a l l o n g S t a t u s (c h a r * p S t a t R e t ,
u n s i g n e d l o n g d S t a t u s M a x ,
u n s i g n e d l o n g * p d S a t u s R e t) = 0 ,

v i r t u a l l o n g I n i t i a l i s e (c h a r * p I n i t D a t a ,
u n s i g n e d l o n g s d l n i t D a t a) = 0 ;

A12

Appendix

c l a s s C R e e n t r a n t D e v i c e D n v e r {
p r i v a t e

v i r t u a l l o n g D e v O p e r a t i o n (u n s i g n e d l o n g d O p N u m , u n s i g n e d l o n g dLBA,
u n s i g n e d l o n g d n B l o c k s ,
u n s i g n e d c h a r * p D a t a) = 0 ,

v i r t u a l l o n g D e v S t a t u s (c h a r * p S t a t R e t , u n s i g n e d l o n g d S t a t u s M a x ,
u n s i g n e d l o n g * p d S t a t u s R e t) = 0 ,

v i r t u a l l o n g D e v l n i t i a l i s e (c h a r * p I n i t D a t a ,
u n s i g n e d l o n g s d l n i t D a t a) = 0 ,

p u b l i c
/ / C o n s t r u c t o r f o r s e q u e n t i a l d e v i c e d r i v e r
C R e e n t r a n t D e v i c e D n v e r (c h a r * D e v N a m e , u n s i g n e d i n t B P B ,

i n t B l o c k s , m t S i n g l e U s e r)
: C D e v i c e D n v e r (D e v N a m e , B P B , B l o c k s , S i n g l e U s e r) {} ;

/ / C o n s t r u c t o r f o r n o n - s e q u e n t i a l d e v i c e d r i v e r
C R e e n t r a n t D e v i c e D n v e r (c h a r * D e v N a m e , i n t S i n g l e U s e r)

: C D e v i c e D n v e r (D e v N a m e , S i n g l e U s e r) {} ;

v i r t u a l l o n g O p e r a t i o n (u n s i g n e d l o n g d O p N u m , u n s i g n e d l o n g d L B A ,
u n s i g n e d l o n g d n B l o c k s ,
u n s i g n e d c h a r * p D a t a) ,

v i r t u a l l o n g S t a t u s (u n s i g n e d l o n g d D e v i c e , c h a r * p S t a t R e t ,
u n s i g n e d l o n g d S t a t u s M a x ,
u n s i g n e d l o n g * p d S a t u s R e t) ,

v i r t u a l l o n g I n i t i a l i s e (u n s i g n e d l o n g d D e v N u m , c h a r * p I n i t D a t a ,
u n s i g n e d l o n g s d l n i t D a t a) ,

A13

Appendix

c l a s s C N o n R e e n t r a n t D e v i c e D n v e r {
p r i v a t e

C E x c h a n g e * S e m E x c h , / / E x c h a n g e f o r d e v i c e s e m a p h o r e
C M e s s a g e *Se mM sg , - / / CMsg h o l d e r f o r WAITS f r o m q u e u e d

C T a s k s

v i r t u a l l o n g D e v O p e r a t i o n (u n s i g n e d l o n g d O p N u m , u n s i g n e d l o n g d L B A ,
u n s i g n e d l o n g d n B l o c k s ,
u n s i g n e d c h a r * p D a t a) = 0 ,

v i r t u a l l o n g D e v S t a t u s (c h a r * p S t a t R e t , u n s i g n e d l o n g d S t a t u s M a x ,
u n s i g n e d l o n g * p d S t a t u s R e t) = 0 ,

v i r t u a l l o n g D e v l n i t i a l i s e (c h a r * p I n i t D a t a ,
u n s i g n e d l o n g s d l n i t D a t a) = 0 ,

p u b l i c
/ / C o n s t r u c t o r f o r s e q u e n t i a l d e v i c e d r i v e r
C N o n R e e n t r a n t D e v i c e D n v e r (c h a r * D e v N a m e , u n s i g n e d i n t B P B ,

m t B l o c k s , i n t S m g l e U s e r)
C D e v i c e D n v e r (D e v N a m e , B P B , B l o c k s , S m g l e U s e r) {} ;

/ / C o n s t r u c t o r f o r n o n - s e q u e n t i a l d e v i c e d r i v e r
C N o n R e e n t r a n t D e v i c e D n v e r (c h a r * D e v N a m e , m t S m g l e U s e r)

: C D e v i c e D n v e r (D e v N a m e , S m g l e U s e r) {}

v i r t u a l l o n g O p e r a t i o n (u n s i g n e d l o n g d O p N u m , u n s i g n e d l o n g d L B A ,
u n s i g n e d l o n g d n B l o c k s ,
u n s i g n e d c h a r * p D a t a) ,

v i r t u a l l o n g S t a t u s (u n s i g n e d l o n g d D e v i c e , c h a r * p S t a t R e t ,
u n s i g n e d l o n g d S t a t u s M a x ,
u n s i g n e d l o n g * p d S a t u s R e t) ;

v i r t u a l l o n g I n i t i a l i s e (u n s i g n e d l o n g d D e v N u m , c h a r * p I n i t D a t a ,
u n s i g n e d l o n g s d l n i t D a t a) ,

A14

Appendix

C D e v i c e D r i v e r C D e v i c e D n v e r (c h a r * D e v N a m e , u n s i g n e d m t B P B ,
i n t B l o c k s , m t S m g l e ü s e r)

{
s t r c p y (N a m e , D e v N a m e) ,
n B P B = B P B , / / B y t e s p e r b l o c k
n B l o c k s = B l o c k s ,
f S m g l e ü s e r = S m g l e ü s e r , / / I s d e v i c e a s s i g n a b l e ’

T y p e = 2 , / / S e q u e n t i a l d e v i c e d r i v e r

L a s t D e v E r c = 0 ,
w J o b = 0 ,

}

CDeviceDriverClass Implementation

C D e v i c e D r i v e r : C D e v i c e D n v e r (c h a r * D e v N a m e , m t S m g l e U s e r)

{
s t r c p y (N a m e , D e v N a m e) ;
f S m g l e D s e r = S m g l e U s e r , / / I s d e v i c e a s s i g n a b l e ’

T y p e = 1 , / / R a n d o m d e v i c e d r i v e r
n B P B = 0,- / / D o e s n o t a p p l y
n B l o c k s = 0 ; / / D o e s n o t a p p l y

L a s t D e v E r c = 0 ,
w J o b = 0 ,

}

A15

Appendix

CReentrantDeviceDriver Gass Implementation

l o n g C R e e n t r a n t D e v i c e D r i v e r - O p e r a t i o n (u n s i g n e d l o n g d O p N u m ,
u n s i g n e d l o n g dL BA , u n s i g n e d l o n g d n B l o c k s ,
u n s i g n e d c h a r * p D a t a)

{
r e t u r n D e v O p e r a t i o n (d O p N u m , d L B A , d n B l o c k s , p D a t a) ,

}

l o n g C R e e n t r a n t D e v i c e D r i v e r . S t a t u s (c h a r * p S t a t R e t ,
u n s i g n e d l o n g d S t a t u s M a x ,
u n s i g n e d l o n g * p d S t a t u s R e t)

{
r e t u r n D e v S t a t u s (p S t a t R e t , d S t a t u s M a x , p d S t a t u s R e t) ,

}

l o n g C R e e n t r a n t D e v i c e D r i v e r I n i t i a l i s e (c h a r * p I n i t D a t a ,
u n s i g n e d l o n g s d l n i t D a t a)

{
r e t u r n D e v l n i t (p l n i t D a t a , s d l n i t D a t a) ,

}

A16

Appendix

l o n g C N o n R e e n t r a n t D e v i c e D r i v e r O p e r a t i o n (u n s i g n e d l o n g d O p N u m ,
u n s i g n e d l o n g d L B A , u n s i g n e d l o n g d n B l o c k s ,
u n s i g n e d c h a r * p D a t a)

{
l o n g e r e ,

T P a c k e t * p S e m P k t = S e m E x c h - > W a i t P a c k e t () , / / W a i t f o r M u t E x

/ * M u t u a l e x c l u s i o n h a s b e e n a c h i e v e d , p e r f o r m o p e r a t i o n * /
e r e = D e v O p e r a t i o n (d O p N u m , d L B A , d n B l o c k s , p D a t a) ,

S e m E x c h - > S e n d D u m m y P a c k e t () , / / S i g n a l

r e t u r n e r e ,

}

l o n g C N o n R e e n t r a n t D e v i c e D r i v e r : : S t a t u s (c h a r * p S t a t R e t ,
u n s i g n e d l o n g d S t a t u s M a x ,
u n s i g n e d l o n g * p d S t a t u s R e t)

{
l o n g e r e ,

T P a c k e t * p S e m P k t = S e m E x c h - > W a i t P a c k e t () ,-

/ * M u t u a l e x c l u s i o n h a s b e e n a c h i e v e d , r e t r i e v e s t a t u s * /
e r e = D e v S t a t u s (p S t a t R e t , d S t a t u s M a x , p d S t a t u s R e t) ,

S e m E x c h - > S e n d D u m m y P a c k e t () ; / / S i g n a l

r e t u r n e r e ,

}

l o n g C N o n R e e n t r a n t D e v i c e D r i v e r I n i t i a l i s e (c h a r * p I n i t D a t a ,
u n s i g n e d l o n g s d l n i t D a t a)

{
l o n g e r e ;

T P a c k e t * p S e m P k t = S e m E x c h - > W a i t P a c k e t () ;

/ * M u t u a l e x c l u s i o n h a s b e e n a c h i e v e d , i n i t i a l i s e * /
e r e = D e v l n i t (p l m t D a t a , s d l n i t D a t a) ,

S e m E x c h - > S e n d D u m m y P a c k e t () ,

r e t u r n e r e ,

CNonReentrantDeviceDriver Class Implementation

A17

Appendix

/ / T T S S S t r u c t u r e
/ / ----------------------

s t r u c t T T S S {
C P r o c e s s * p P r o c ,
T P a c k e t * p L B R e t ,

s t r u c t T T S S * n e x t (

Messaging Definitions - Structures

/ / T R e q u e s t S t r u c t u r e

// ------------------------------

s t r u c t T R e q u e s t {
C E x c h a n g e * R e s p E x c h ;
l o n g R q O w n e r P r o c ;
m t S e r v i c e C o d e , -
l o n g d D a t a O ;
l o n g d D a t a l ,
l o n g d D a t a 2 ;
c h a r * p D a t a l , -
l o n g c b D a t a l ;
c h a r * p D a t a 2 ,
l o n g c b D a t a 2 (

/ / E x c h a n g e t o r e s p o n d t o
/ / J o b N u m o f O w n e r o f t h e C R e q u e s t B l o c k
/ / S y s t e m S e r v i c e C o m m a n d N u m b e r
/ / U s e r f i l l / S r v c D e f i n e d (No P o i n t e r s
/ / U s e r f i l l / S r v c D e f i n e d
/ / U s e r f i l l / S r v c D e f i n e d
/ / U s e r f i l l / S r v c D e f i n e d
/ / L e n g t h o f d a t a m p D a t a l
/ / U s e r f i l l / S r v c D e f i n e d
/ / L e n g t h o f d a t a i n p D a t a 2

(No P o i n t e r s)
(No P o i n t e r s)

s t r u c t T R e q u e s t * n e x t ;

/ / T M e s s a g e S t r u c t u r e
/ / -----------------------------

s t r u c t T M e s s a g e {
l o n g d D a t a l , / / D a t a f i e l d 1
l o n g d D a t a 2 ; / / D a t a f i e l d 2

s t r u c t T M e s s a g e * n e x t ,

}<

/ / T P a c k e t S t r u c t u r e
/ / ---------------------------

s t r u c t T P a c k e t {
s t r u c t T R e q u e s t * R e q ,
s t r u c t T M e s s a g e * M s g , - '

s t r u c t T P a c k e t * n e x t ,

} ;

A18

Appendix

/ / C E x c h a n g e C l a s s
/ / ------------------------

c l a s s C E x c h a n g e {
T P a c k e t * p P k t Q u e u e H e a d , * p P k t Q u e u e T a i l ,
T T S S * p T S S Q u e u e H e a d , * p T S S Q u e u e T a i l ;
C P r o c e s s * p O w n e r P r o c ;

p u b l i c
C E x c h a n g e () ,

C P r o c e s s * G e t O w n e r () { r e t u r n p O w n e r P r o c , } ,

T T S S * d e Q u e u e T S S () ,
v o i d e n Q u e u e T S S (T T S S * p T S S) ;
T P a c k e t * d e Q u e u e P a c k e t () ,
v o i d e n Q u e u e P a c k e t (T P a c k e t * N e w P a c k e t) ;
T P a c k e t * W a i t P a c k e t () ,
v o i d S e n d P a c k e t (T P a c k e t * p P a c k e t) ;
v o i d S e n d D u m m y P a c k e t () ,
v o i d I S e n d D u m m y P a c k e t () ;
T P a c k e t * C h e c k P a c k e t () ;

Messaging Definitions - Classes

/ / C S e r v i c e E x c h a n g e C l a s s
/ / -----------------------------------

c l a s s C S e r v i c e E x c h a n g e • p u b l i c C E x c h a n g e {
p u b l i c .

C S e r v i c e E x c h a n g e () C E x c h a n g e () { } ,

v o i d M o v e R e q u e s t (T R e q u e s t * p R e q , C E x c h a n g e * p E x c h) ;
v o i d R e s p o n d (T R e q u e s t * p R e q) ,
v o i d R e q u e s t (m t c o d e , C E x c h a n g e * r e s p e x c h , l o n g d a t a O , l o n g d a t a l ,

l o n g d a t a 2 , c h a r * p d a t a l , l o n g c b d a t a l , c h a r * p d a t a 2 ,
l o n g c b d a t a 2) ,

}-

/ / C M e s s a g e E x c h a n g e C l a s s
/ / -----------------------------------

c l a s s C M e s s a g e E x c h a n g e p u b l i c C E x c h a n g e {
p u b l i c .

C M e s s a g e E x c h a n g e () : C E x c h a n g e () { } ;

v o i d S e n d M s g (l o n g d M s g D a t a l , l o n g d M s g D a t a 2) ;
v o i d I S e n d M s g (l o n g d M s g D a t a l , l o n g d M s g D a t a 2) ,

};

A19

Appendix

CExchange Class

C E x c h a n g e : . C E x c h a n g e ()

{
p P k t Q u e u e H e a d = p P k t Q u e u e T a i l = NULL,
p T S S Q u e u e H e a d = p T S S Q u e u e T a i l = NULL,
p O w n e r P r o c = G e t p R u n P r o c () ,

}

T P a c k e t * C E x c h a n g e d e Q u e u e P a c k e t ()

{
T P a c k e t * p P a c k e t ,

p P a c k e t = p P k t Q u e u e H e a d ,
p P k t Q u e u e H e a d = p P k t Q u e u e H e a d - > n e x t ;

r e t u r n p P a c k e t ;

}

v o i d C E x c h a n g e e n Q u e u e P a c k e t (T P a c k e t * p P K T)

{
i f (p P k t Q u e u e H e a d == NULL) {

p P k t Q u e u e H e a d = p P K T Q u e u e T a i l = p P K T ,
p P K T Q u e u e H e a d - > n e x t = NULL,

}
e l s e {

p P K T Q u e u e T a i l - > n e x t = p P K T ,
p P K T Q u e u e T a i l = p P K T ,

}
}

T T S S * C E x c h a n g e . . d e Q u e u e T S S ()

{
T T S S * p T S S ,

p T S S = p T S S Q u e u e H e a d ,
p T S S Q u e u e H e a d = p T S S Q u e u e H e a d - > n e x t ;

r e t u r n p T S S ,

}

A20

Appendix

v o i d C E x c h a n g e : e n Q u e u e T S S (T T S S * p T S S)

{
i f (p T S S Q u e u e H e a d == NULL) {

p T S S Q u e u e H e a d = p T S S Q u e u e T a i l = p T S S ,
p T S S Q u e u e H e a d - > n e x t = NULL;

}
e l s e {

p T S S Q u e u e T a i l - > n e x t = p T S S ,
p T S S Q u e u e T a i l = p T S S ,

}

v o i d C E x c h a n g e S e n d P a c k e t (T P a c k e t * p P a c k e t)

{
T T S S * p W a i t T S S , * p P n o n t y T S S ;

/ / R e m o v e t a s k f r o m t h e e x c h a n g e ' s q u e u e
p W a i t T S S = d e Q u e u e T S S () ;

/ / I f n o t a s k i s w a i t i n g , q u e u e t h e p a c k e t
i f (p W a i t T S S = = N U L L) {

e n Q u e u e P a c k e t (p P a c k e t) ,
r e t u r n ,

}

/ / I f a t a s k w a s w a i t i n g n o t i f y i t o f t h e r e c e i v e d p a c k e t
p W a i t T S S - > p L B R e t = p P a c k e t ,

/ / R e e v a l u a t e t h e R e a d y Q u e u e m c a s e a h i g h e r
/ / p r i o r i t y t a s k i s a v a i l a b l e
R e a d y Q u e u e - > e n Q u e u e R d y (p W a i t T S S) ,
p P n o n t y T S S = R e a d y Q u e u e - > d e Q u e u e R d y () ,

/ / I f t h e h i g h e s t p r i o r i t y t a s k i s t h e c u r r e n t o n e ,
/ / n o t a s k s w i t c h i s r e q u i r e d
i f (p P r i o r i t y T S S == p W a i t T S S)

r e t u r n ,

/ * P e r f o r m a 3 8 6 p r o c e s s o r t a s k s w i t c h * /
a s m
MOV E A X , p P r i o r i t y T S S
MOV B X , [E A X T i d]
MOV T S S _ S e l , BX
IN C _ n S w i t c h e s
JMP FWORD PTR [T SS]
e n d a s m

}

A21

Appendix

T P a c k e t * C E x c h a n g e - W a i t P a c k e t O

{
T P a c k e t * p P a c k e t ,
T T S S * p R u n T S S , * p P n o n t y T S S ,

a s m
C L I
e n d a s m

p P a c k e t = d e Q u e u e P a c k e t () ,

i f (p P a c k e t = = N U L L) {
/ / A d d t h e c u r r e n t t a s k t o t h e T S S Q u e u e o f t h i s e x c h a n g e
p R u n T S S = G e t p R u n T S S () ,
p R u n T S S - > n e x t = NULL,
e n Q u e u e T S S (p R u n T S S) ;

/ / G e t t h e n e x t T S S t o r u n (i f t h e r e i s o n e)
p P n o n t y T S S = R e a d y Q u e u e - > d e Q u e u e R d y () ;

/ / I f n o n e w e r e r e a d y , l o o p u n t i l o n e i s
w h i l e (p P n o n t y T S S == NULL) {

a s m
S T I
HLT
C L I
e n d a s m

p P n o n t y T S S = R e a d y Q u e u e - > d e Q u e u e R d y () ,

}

i f (p P n o n t y T S S ! = p R u n T S S) {
/ / T a s k s a r e n o w s w i t c h e d b y p e r f o r m i n g a 3 8 6 t a s k s w i t c h
a s m
MOV EAX, [p P n o n t y T S S]
MOV BX , [E A X . T i d]
MOV T S S _ S e l , B X
JM P FWORD PTR [T S S]
e n d a s m

}
}
/ / A t a s k h a s j u s t f i n i s h e d " W a i t i n g " Now m t h e n e w t a s k

}

/ * we h a v e e i t h e r s w i t c h e d t a s k s a n d we a r e d e l i v e r i n g a p a c k e t t o
t h e n e w t a s k , o r t h e r e w a s a p a c k e t w a i t i n g a t t h e e x c h o f t h e
f i r s t c a l l e r a n d we a r e d e l i v e r i n g i t * /

a s m
S T I
e n d a s m

r e t u r n p P a c k e t ;

}

A l l

Appendix

T P a c k e t * C E x c h a n g e C h e c k P a c k e t ()

{
T P a c k e t * p P a c k e t ,

/ / D i s a b l e i n t e r r u p t s
a s m
CL I
e n d a s m

p P a c k e t = d e Q u e u e P a c k e t () ,

/ / R e e n a b l e i n t e r r u p t s
f a s m
S T I
e n d a s m

r e t u r n p L B ,

}

A23

Appendix

CServiceExchange Class

v o i d C S e r v i c e E x c h a n g e M o v e R e q u e s t (T R e q u e s t * p R e q , C E x c h a n g e * p E x c h)

T P a c k e t * p P a c k e t ;
T T S S * p T S S , * p P r l o r l t y T S S ,

p P a c k e t = (T P a c k e t *) m a l l o c (s i z e o f (T P a c k e t)) ,
p P a c k e t - > R e q = p R e q , -
p P a c k e t - > M s g = NULL,
p P a c k e t - > n e x t = NULL,

a s m
CL I
e n d a s m

p T S S = p E x c h - > d e Q u e u e T S S () ;
i f (p T S S = = N U L L) {

p E x c h - > e n Q u e u e P a c k e t (p P a c k e t) ,
a s m
S T I
e n d a s m

/ / S t o r e l i n k b l o c k m d e q u e u e d t a s k
p T S S - > p L B R e t = p P a c k e t ,

R e a d y Q u e u e - > e n Q u e u e R d y (p T S S) ;
p P n o r i t y T S S = R e a d y Q u e u e - > d e Q u e u e R d y () ,

i f (p P n o n t y T S S == p T S S) {
a s m
S T I
e n d a s m
r e t u r n ,

a s m
MOV EAX, p P n o r i t y T S S
MOV B X , [E A X T i d]
MOV T S S _ S e l , BX
JMP FWORD PTR [T S S]
S T I
e n d a s m

,- M a k e t h e T S S m EAX t h e R u n n i n g T S S
, G e t t h e t a s k I d (TR)
,- P u t i t i n t h e J u m p A d d r
, JMP TS S

A24

Appendix

v o i d C S e r v i c e E x c h a n g e . R e q u e s t (x n t c o d e , C E x c h a n g e * r e s p e x c h ,
l o n g d a t a O , l o n g d a t a i , l o n g d a t a 2 , c h a r * p d a t a l ,
l o n g c b d a t a l , c h a r * p d a t a 2 , l o n g c b d a t a 2)

{
T P a c k e t * p P a c k e t ,
T R e q u e s t * p R e q ,

/ / C r e a t e r e q u e s t s t r u c t u r e
p R e q = n e w T R e q u e s t ,

p R e q - > S e r v i c e C o d e = c o d e ,
p R e q - > R e s p o n d E x c h = r e s p e x c h ,
p R e q - > R q O w n e r P r o c = G e t C r n t J o b N u m () ,
p R e q - > d D a t a O = d a t a O ,
p R e q - > d D a t a l = d a t a i ,
p R e q - > d D a t a 2 = d a t a 2 ,
p R e q - > p D a t a l = p d a t a 2 ;
p R e q - > c b D a t a l = c b d a t a l ,-
p R e q - > p D a t a 2 = p d a t a 2 ,
p R e q - > c b D a t a 2 = c b d a t a 2 ,

/ / C r e a t e t h e p a c k e t
p P a c k e t = n e w T P a c k e t ,-
p P a c k e t - > R e q = p R e q ,
p P a c k e t - > M s g = NUL L;

/ / D i s a b l e i n t e r r u p t s
a s m
C L I
e n d a s m

S e n d P a c k e t (p P a c k e t) ;

/ / R e e n a b l e i n t e r r u p t s
a s m
S T I
e n d a s m

}

v o i d C S e r v i c e E x c h a n g e • . R e s p o n d (T R e q u e s t * p R e q)

{
l o n g d C u r r P r o c , d R e q P r o c ,
T T S S * p T S S , * p P r i o n t y T S S ,
T P a c k e t * p P a c k e t ,

d C u r r P r o c = G e t C u r r P r o c N u m () ,
d R e q P r o c = p R e q - > R q O w n e r P r o c ;

A25

Appendix

/ / P e r f o r m m e m o r y a l i a s i n g i f r e q u i r e d
i f (d R e q P r o c ! = d C u r r P r o c) {

i f (p R e q - > c b D a t a l > 0) && (p R e q - > p D a t a l ' = NULL)
D e A l i a s M e m (p R e q - > p D a t a l , p R e q - > c b D a t a l , d C u r r P r o c) ,

i f (p R e q - > c b D a t a 2 > 0) && (p R e q - > p D a t a 2 ' = NULL)
D e A l i a s M e m (p R e q - > p D a t a 2 , p R e q - > c b D a t a 2 , d C u r r P r o c) ,

}

/ / D i s a b l e i n t e r r u p t s
a s m
CL I
e n d a s m

p P a c k e t = n e w T P a c k e t ,
p P a c k e t - > R e q = p R e q ,
p P a c k e t - > M s g = NULL,
p P a c k e t - > n e x t = NULL,

/ / R e m o v e w a i t i n g t a s k (i f a n y)
p T S S = d e Q u e u e T S S () ,
i f (p T S S == NULL) {

e n Q u e u e P a c k e t (p P a c k e t) ,
a s m
S T I
e n d a s m
r e t u r n ;

}

/ / S t o r e r e q u e s t i n t h e d e q u e u e d t a s k
p T S S - > p L B R e t = p P a c k e t ,

/ / R e e v a l u a t e t h e r e a d y q u e u e
R e a d y Q u e u e - > e n Q u e u e R d y (p T S S) ;
p P n o n t y T S S = R e a d y Q u e u e - > d e Q u e u e R d y () ,

/ / I f t h e h i g h e s t p r i o r i t y t a s k i s t h e s a m e a s t h e o r i g i n a l , r e t u r n
i f (p P n o n t y T S S == p T S S) {

a s m
S T I
e n d a s m
r e t u r n ,

}

/ / S w i t c h t a s k i f t h e h i g h e s t p r i o r i t y t a s k i s n o t t h e o r i g i n a l o n e
a s m

MOV E A X , [p P r i o r i t y T S S]
MOV B X , [E A X T i d]
MOV T S S _ S e l , BX
IN C _ n S w i t c h e s
JMP FWORD PTR [T S S]
S T I

e n d a s m

}

A26

Appendix

v o i d C M e s s a g e E x c h a n g e S e n d M s g d o n g d M s g D a t a l , l o n g d M s g D a t a 2)

{
T P a c k e t * p P a c k e t ,
T M e s s a g e * p N e w M s g ;

/ * C r e a t e & f i l l t h e T M e s s a g e s t r u c t u r e * /
p N e w M s g = n e w T M e s s a g e ,
p N e w M s g - > d D a t a l = d M s g D a t a l ,
p N e w M s g - > d D a t a 2 = d M s g D a t a 2 ,

/ * C r e a t e & f i l l t h e T P a c k e t s t r u c t u r e * /
p P a c k e t = n e w T P a c k e t ,
p P a c k e t - > R e q = NULL,
p P a c k e t - > M s g = p N e w M s g ,
p P a c k e t - > n e x t = NULL,

/ * D i s a b l e i n t e r r u p t s * /
a s m
CL I
e n d a s m

S e n d P a c k e t (p P a c k e t) ,

/ * R e e n a b l e i n t e r r u p t s * /
a s m
S T I
e n d a s m

}

CMessageExchange Class

A27

Appendix

v o i d C M e s s a g e E x c h a n g e I S e n d M s g (l o n g d M s g D a t a l , l o n g d M s g D a t a 2)

{
T P a c k e t * p P a c k e t ,
T M e s s a g e * p N e w M s g ,
T T S S * p W a i t T S S ,

/ * D i s a b l e i n t e r r u p t s * /
a s m
C L I
e n d a s m

/ * C r e a t e t h e m e s s a g e s t r u c t u r e * /
p M e s s a g e = n e w T M e s s a g e ,
p M e s s a g e - > d D a t a l = d M s g D a t a l ,
p M e s s a g e - > d D a t a 2 = d M s g D a t a 2 ,

/ * C r e a t e t h e p a c k e t * /
p P a c k e t = n e w T P a c k e t ,
p P a c k e t - > M s g = p M e s s a g e ,
p P a c k e t - > R e q = NULL,
p P a c k e t - > n e x t = NULL,

p W a i t T S S = d e Q u e u e T S S () ,
i f (p W a i t T S S = = N U L L) {

e n Q u e u e P a c k e t (p P a c k e t) ,
e l s e {

p W a i t T S S - > p L B R e t = p P a c k e t ,
R e a d y Q u e u e - > e n Q u e u e R d y (p W a i t T S S) ,

}
}

A28

Appendix

c l a s s C M e m o r y M a n a g e r {
C E x c h a n g e * M e m E x c h ,
u n s i g n e d i n t n P a g e s F r e e ,

p u b l i c
C M e m o r y M a n a g e r () ,

u n s i g n e d c h a r * A l l o c P a g e (l o n g n P a g e s) ,
u n s i g n e d c h a r * A l l o c O S P a g e (l o n g n P a g e s) ,
v o i d D e A l l o c P a g e (u n s i g n e d c h a r * p O n g M e m , m t n P a g e s) ,

u n s i g n e d c h a r * A l i a s M e m (u n s i g n e d c h a r *p Me m , u n s i g n e d l o n g d c b M e m ,
u n s i g n e d l o n g d P r o c N u m) ,-

u n s i g n e d i n t D e A l i a s M e m (u n s i g n e d c h a r * p A l i a s M e m ,
u n s i g n e d l o n g d c b A l i a s M e m) ,

u n s i g n e d i n t Q u e r y M e m P a g e s () { r e t u r n n P a g e s F r e e , } ,

K

Memory Manager Definitions

A29

Appendix

u n s i g n e d c h a r * C M e m o r y M a n a g e r A l l o c O S P a g e (l o n g n P a g e s)

{
c h a r * R u n P a g e s ,

/ / S t e p s -
/ / ---------
/ / 1) S e e i f we h a v e e n o u g h p h y s i c a l m e m o r y (c h e c k n P a g e s F r e e)
/ / 2) F i n d a c o n t i g u o u s r u n o f l i n e a r p a g e s t o a l l o c a t e (P T E s)
/ / 3) A l l o c a t e e a c h p h y s i c a l p a g e p l a c i n g i t m t h e r u n o f P T E s

CMemoryManager Implementation

/ / M u s t r e q u e s t > 0 p a g e s f o r a l l o c a t i o n
i f (n P a g e s < = 0)

r e t u r n NULL,

/ / E n s u r e m u t u a l e x c l u s i o n
T P a c k e t * p P k t = M e m E x c h - > W a i t P a c k e t ()

/ / V e r i f y s u f f i c i e n t p a g e s e x i s t t o s a t i s f y r e q u e s t
i f (n P a g e s > n P a g e s F r e e)

r e t u r n NULL,

/ / F i n d c o n t i g u o u s r u n o f OS P T E s m c u r r e n t PT
R u n P a g e s = F m d R u n (O S _ B A S E , n P a g e s) ,

/ / A l l o c a t e f u r t h e r P T s u n t i l r e q u e s t i s s a t i s f i e d
W h i l e (R u n P a g e s = = N U L L) {

i f (A d d O S P T O ' = 0)
r e t u r n NULL,

R u n P a g e s = F m d R u n (0 S _ B A S E , n P a g e s) ,

}

/ / M a r k t h e s e p a g e s a s a l l o c a t e d
A d d R u n (R u n P a g e s , n P a g e s) ;

/ / L e a v e c r i t i c a l s e c t i o n
M e m E x c h - > S e n d D u m m y M s g () ,

r e t u r n R u n P a g e s ,

}

A30

Appendix

u n s i g n e d c h a r * C M e m o r y M a n a g e r A l l o c P a g e (l o n g n P a g e s)

{
c h a r * R u n P a g e s ,

/ / S t e p s
/ / ---------
/ / l) S e e i f w e h a v e e n o u g h p h y s i c a l m e m o r y (c h e c k n P a g e s F r e e)
/ / 2) F i n d a c o n t i g u o u s r u n o f l i n e a r p a g e s t o a l l o c a t e (P T E s)
/ / 3) A l l o c a t e e a c h p h y s i c a l p a g e p l a c i n g i t m t h e r u n o f P T E s

/ / M u s t r e q u e s t > 0 p a g e s f o r a l l o c a t i o n
i f (n P a g e s < = 0)

r e t u r n NULL,

/ / E n s u r e m u t u a l e x c l u s i o n
T P a c k e t * p P k t = M e m E x c h - > W a i t P a c k e t ()

/ / V e r i f y s u f f i c i e n t p a g e s e x i s t t o s a t i s f y r e q u e s t
i f (n P a g e s > n P a g e s F r e e)

r e t u r n NULL,

/ / F i n d c o n t i g u o u s r u n o f u s e r P T E s m c u r r e n t PT
R u n P a g e s = F i n d R u n (U S E R _ B A S E , n P a g e s) ,-

/ / A l l o c a t e f u r t h e r P T s u n t i l r e q u e s t i s s a t i s f i e d
W h i l e (R u n P a g e s = = N U L L) {

i f (A d d U s e r P T O ' = 0)
r e t u r n NU LL ,

R u n P a g e s = F i n d R u n (U S E R _ B A S E , n P a g e s) ,-

}

/ / M a r k t h e s e p a g e s a s a l l o c a t e d
A d d R u n (R u n P a g e s , n P a g e s) ,

/ / L e a v e c r i t i c a l s e c t i o n
M e m E x c h - > S e n d D u m m y M s g () ;

r e t u r n R u n P a g e s ,

}

v o i d C M e m o r y M a n a g e r : D e A l l o c P a g e (u n s i g n e d c h a r p O r i g M e m ,
m t n P a g e s)

{
i n t P r o c N u m ,

/ / D i s c a r d u n n e c e s s a r y b i t s
p O r i g M e m = (p O r i g M e m % 4 0 9 6) ;
P r o c N u m = G e t C u r r P r o c N u m () ,

/ / E n f o r c e m u t u a l e x c l u s t i o n
T P a c k e t * p P k t = M e m E x c h - > W a i t P a c k e t ()
U n M a r k P T E s (P r o c N u m , p O r i g M e m , n P a g e s) ,

/ / L e a v e c r i t i c a l s e c t i o n
M e m E x c h - > S e n d D u m m y P a c k e t () ,

}

A31

Appendix

u n s i g n e d c h a r * C M e m o r y M a n a g e r A l i a s M e m (u n s i g n e d c h a r * pM em ,
u n s i g n e d l o n g d c b M e m , u n s i g n e d l o n g d P r o c N u m)

{
c h a r * R u n P a g e s ,
u n s i g n e d i n t b a s e ,
u n s i g n e d l o n g C u r r P r o c = G e t C u r r P r o c N u m () ,

/ / C h e c k P a g e D i r e c t o r i e s (l e P r o c e s s e s)
i f (C u r r P r o c = = d P r o c N u m)

r e t u r n ,

/ / E n s u r e m u t u a l e x c l u s i o n
T P a c k e t * p P a c k e t = M e m E x c h - > W a i t P a c k e t ()

/ / C a l c u l a t e n u m b e r o f p a g e s r e q u i r e d
pMem = pMem % 4 0 9 6 ,
d c b M e m += pMem ,
u n s i g n e d l o n g n P a g e s = G e t A l i a s R e q S i z e (p M e m , d c b M e m) ,

i f (C u r r P r o c == 0 P _ S Y S T E M)
b a s e = 0 S _ B A S E ,

e l s e
b a s e = U S E R _ B A S E ,

/ / F i n d c o n t i g u o u s r u n o f P T E s i n c u r r e n t PT
R u n P a g e s = F i n d R u n (b a s e , n P a g e s) ,

/ / A l l o c a t e f u r t h e r P T s u n t i l r e q u e s t i s s a t i s f i e d
w h i l e (R u n P a g e s = = N U L L) {

i f (C u r r P r o c == OP_SYSTEM)
i f (A d d O S P T O ==NULL) r e t u r n NULL;

e l s e
i f (A d d U s e r P T O = = N U L L) r e t u r n NULL,

R u n P a g e s = F i n d R u n (b a s e , n P a g e s) ,

}

/ / P e r f o r m a l i a s i n g
A d d A l i a s R u n (p M e m , R u n P a g e s , n P a g e s , d P r o c N u m) ,

/ / L e a v e c r i t i c a l s e c t i o n
M e m E x c h - > S e n d D u m m y M s g () ,

r e t u r n R u n P a g e s ,

}

u n s i g n e d i n t C M e m o r y M a n a g e r D e A l i a s M e m (u n s i g n e d c h a r * p A l i a s M e m ,
u n s i g n e d l o n g d c b A l i a s M e m)

{
/ / C a l c u l a t e n u m b e r o f p a g e s t o b e d e a l i a s e d
u n s i g n e d l o n g n P a g e s = G e t A l i a s R e q S i z e (p A l i a s M e m , d c b A l i a s M e m) ,

/ / R e t r i e v e i d n u m b e r o f c u r r e n t p r o c e s s
u n s i g n e d l o n g C u r r P r o c = G e t C u r r P r o c N u m () , -

/ / P e r f o r m c a l l t o k e r n e l f u n c t i o n t o p e r f o r m d e a l i a s m g
r e t u r n R e m o v e A l i a s R u n (p A l i a s M e m , n P a g e s , C u r r P r o c) ,

}

A32

Appendix

Ready Queue Definitions

d e f i n e P R IO R I T Y C O U N T 3 2

/ / T T a s k Q u e u e S t r u c t u r e
/ / --------------------------------

s t r u c t T T a s k Q u e u e {
T T S S * H e a d ,
C P r o c e s s * p P r o c e s s ,
T T S S * T a i l ,

}.

/ / C R e a d y Q u e u e A b s t r a c t C l a s s
/ / --

c l a s s C R e a d y Q u e u e {
T T a s k Q u e u e * R e a d y Q [3 2] ,

p u b l i c
C R e a d y Q u e u e () { } ,
v i r t u a l v o i d e n Q u e u e R d y (T T S S * p T S S) = 0 ,
v i r t u a l T T S S * d e Q u e u e R d y () = 0 ,
v i r t u a l T T S S * C h k R d y Q () = 0 ,
v i r t u a l v o i d R e m o v e R d y P r o c (C P r o c e s s * p P r o c e s s) = 0 ,

};

/ / C P n o n t i s e d R e a d y Q u e u e C o n c r e t e C l a s s
/ / --

c l a s s C P n o n t i s e d R e a d y Q u e u e : p u b l i c C R e a d y Q u e u e {
T T a s k Q u e u e R e a d y Q [P R I O R I T Y C O U N T] ;

p u b l i c
C P n o n t i s e d R e a d y Q u e u e () ,
v i r t u a l v o i d e n Q u e u e R d y (T T S S * p T S S) ,
v i r t u a l T T S S * d e Q u e u e R d y () ,
v i r t u a l T T S S * C h k R d y Q () ,
v i r t u a l v o i d R e m o v e R d y P r o c (C P r o c e s s * p P r o c e s s) ,

K

A33

Appendix

CReadyQueue Class Implementation

C P n o n t i s e d R e a d y Q u e u e C P n o n t i s e d R e a d y Q u e u e ()

{
f o r (m t 1 = 0 , k P R I O R I T Y C O U N T , i + +) {

R e a d y Q [i] H e a d = NULL,
R e a d y Q [i] T a i l = NULL,

}

v o i d C P n o n t i s e d R e a d y Q u e u e e n Q u e u e R d y (T T S S * p T S S)

{
/ / V e r i f y t h e t a s k s t r u c t u r e p o i n t e r i s v a l i d
i f (p T S S = = N U L L)

r e t u r n ,

/ / R e t r i e v e t h e p r i o r i t y o f t h e c u r r e n t p r o c e s s
u n s i g n e d l o n g d P n o n t y = G e t C u r r e n t P n o n t y () ;

p T S S - > n e x t = NULL,

/ / I f t h e q u e u e i s e m p t y , t h i s T S S b e c o m e s h e a d a n d t a i l
i f (R e a d y Q [d P n o n t y] H e a d == NULL) {

R e a d y Q [d P n o n t y] H e a d = p T S S ;
R e a d y Q [d P n o n t y] . T a i l = p T S S ,

}
e l s e { / / O t h e r w i s e a d j u s t t h e t a i l o f t h e q u e u e

(R e a d y Q [d P n o n t y] . T a i l) - > n e x t = p T S S ,
R e a d y Q [d P n o n t y] T a i l = p T S S ,

}
}

T T S S * C P n o n t i s e d R e a d y Q u e u e • d e Q u e u e R d y ()

{
T T S S * c H i g h P r i ;

/ / L o o p t h r o u g h a l l o f t h e q u e u e s , s t a r t i n g w i t h t h e
/ / q u e u e w i t h t h e h i g h e s t p r i o r i t y , u n t i l a w a i t i n g
/ / t a s k i s f o u n d W h e n o n e i s f o u n d , a d j u s t t h e q u e u e
/ / a n d r e t u r n a p o i n t e r t o i t
f o r (m t 1 = 0 , k P R I O R I T Y C O U N T , i + +) {

i f (R e a d y Q [1] H e a d ' = NULL) {
p H i g h P n = R e a d y Q [1] H e a d ,
R e a d y Q [1] H e a d = (R e a d y Q [1] H e a d) - > n e x t ,
r e t u r n p H i g h P n ,

}
}

/ / I f n o w a i t i n g t a s k i s f o u n d , a NULL p o i n t e r i s r e t u r n e d
r e t u r n NU LL ;

}

A34

Appendix

T T S S * C P n o n t i s e d R e a d y Q u e u e C h k R d y Q O

{
T T S S * c H i g h P n ,

/ / L o o p t h r o u g h a l l o f t h e q u e u e s , s t a r t i n g w i t h t h e
/ / q u e u e w i t h t h e h i g h e s t p r i o r i t y , u n t i l a w a i t i n g
/ / t a s k i s f o u n d
f o r (i n t 1 = 0 , k P R I O R I T Y C O U N T , i + +) {

i f (R e a d y Q [1] H e a d ' = NULL) {
p H i g h P r i = R e a d y Q [1] H e a d ,
r e t u r n p H i g h P r i ,

}
}

/ / I f n o w a i t i n g t a s k i s f o u n d , a NULL p o i n t e r i s r e t u r n e d
r e t u r n NULL,

}

v o i d C P n o n t i s e d R e a d y Q u e u e R e m o v e R d y P r o c (C P r o c e s s * p P r o c e s s)

{
T T S S * p T S S , * p Q u e u e , * p Q u e u e P r e v ;

/ / p Q u e u e P r e v i s u s e d t o p o i n t t o t h e n o d e t r a v e r s e d
/ / i m m e d i a t e l y p r i o r t o t h e c u r r e n t o n e . I t i s
/ / r e q u i r e d w h e n a t a s k i s d e l e t e d f r o m t h e m i d d l e o f
/ / a q u e u e
p Q u e u e P r e v = NULL,

f o r (i n t 1 = 0 , k P R I O R I T Y C O U N T ; i + +) {
p Q u e u e = R e a d y Q [1] H e a d ,

/ / I f t h e q u e u e i s n o t e m p t y , c h e c k e v e r y t a s k w i t h i n
/ / t h e q u e u e
w h i l e (p Q u e u e 1 =NULL) {

/ / I f t h e t h e c u r r e n t n o d e r e p r e s e n t s a t a s k w h i c h
/ / b e l o n g s t o t h e p r o c e s s p P r o c e s s , i t m u s t b e
/ / r e m o v e d f r o m t h e R e a d y Q u e u e a n d i t s f o r m e r l i n k s
/ / m u s t b e u p d a t e d
i f (p Q u e u e - > p P r o c = = p P r o c e s s) {

p T S S = p Q u e u e ;

i f (p P r e v Q u e u e = = N U L L)
R e a d y Q u e u e [i] H e a d = p Q u e u e - > n e x t ,

e l s e
p P r e v Q u e u e - > n e x t = p Q u e u e - > n e x t ,

/ / T h e t a s k s t r u c t u r e i s r e p l a c e d o n t h e h e a p o f f r e e
/ / t a s k s t r u c t u r e s a n d t h e s y s t e m s t a t i s t i c s a r e
/ / u p d a t e d
p T S S - > n e x t = p F r e e T S S ,
p F r e e T S S = p T S S ,
p T S S - > p P r o c = NULL,
n T S S L e f t + + ,

}
p P r e v Q u e u e = p Q u e u e ,-
p Q u e u e = p Q u e u e - > n e x t ;

}

}
}

A35

Appendix

Interrupt Definitions

d e f m e END OFI RQ_PERFORME D 0
d e f m e ENDOFIRQ_NOTPERFORMED 1

/ / C I n t e r r u p t A b s t r a c t C l a s s
/ / ---

c l a s s C I n t e r r u p t {
u n s i g n e d l o n g I R Q N u m ,

p u b l i c
C I n t e r r u p t (u n s i g n e d l o n g Num) ,
v o i d G e t I R Q V e c t o r (c h a r * p V e c t o r R e t) ,
v o i d M a s k l R Q O ;
v o i d U n M a s k l R Q O ,
v o i d E n d O f l R Q O ,

v i r t u a l v o i d i n t e r r u p t I S R () ,
v i r t u a l u n s i g n e d m t S e r v i c e () = 0 ,

A36

Appendix

C I n t e r r u p t C l n t e r r u p t (u n s i g n e d l o n g Num)

{
IR QNu m = Num,

S e t l R Q V e c t o r (I R Q N u m , & I S R) ,

}

v o i d i n t e r r u p t C l n t e r r u p t I S R ()

{
i f (S e r v i c e ())

E n d O f l R Q t I R Q N u m) ,

}

v o i d C l n t e r r u p t E n d O f l R Q O

{
E n d O f l R Q t I R Q N u m) ,

}

v o i d C l n t e r r u p t G e t I R Q V e c t o r (c h a r * p V e c t o r R e t)

{
G e t I R Q V e c t o r (IR Q N u m , p V i c t o r R e t) ,

}

v o i d C l n t e r r u p t M a s k l R Q O

{
M a s k l R Q (I R Q N u m) ,

}

v o i d C l n t e r r u p t : U n M a s k l R Q Q

{
U n M a s k l R Q (I R Q N u m) ,

Clnterrupt Class Implementation

A37

Appendix

Timer Definitions

d e f m e nTMRBLKS 32
d e f i n e ENDOFIRQ_NOTPERFORMED 1
d e f m e ENDOFIRQ_PERFORMED 0

/ / T T i m e r B l o c k S t r u c t u r e
/ / ----------------------------------

s t r u c t T T i m e r B l o c k {
m t f I n U s e ,
C E x c h a n g e * R e s p o n d E x c h ,
u n s i g n e d l o n g T i c k ,

h

/ / C T i m e r C o n c r e t e C l a s s
/ / ----------------------------------

c l a s s C T i m e r p u b l i c C I n t e r r u p t {
s t r u c t T T i m e r B l o c k T m r B l k s [n T M R B L K S] ,
u n s i g n e d m t n T m r B l o c k s U s e d , T i m e r T i c k ,

p u b l i c
C T i m e r (u n s i g n e d l o n g N u m) ,

v i r t u a l u n s i g n e d m t S e r v i c e () ,
u n s i g n e d m t S l e e p (u n s i g n e d l o n g D e l a y) ;
u n s i g n e d m t A l a r m (C E x c h a n g e * A l a r m E x c h , u n s i g n e d l o n g A l a r m D e l a y) ,
v o i d K i l l A l a r m (C E x c h a n g e * p E x c h) ,
v o i d M i c r o D e l a y (u n s i g n e d l o n g d D e l a y) { : M i c r o D e l a y (d D e l a y) , } ,
v o i d G e t T i c k O { r e t u r n T i m e r T i c k , } ,

} .

A38

Appendix

CTimer Class Implementation

C T i m e r C T i m e r (u n s i g n e d l o n g Num) C I n t e r r u p t (N u m)

{
T i m e r T i c k = 0 ,
n T m r B l o c k s U s e d = 0 ,

}

u n s i g n e d m t C T i m e r : S e r v i c e ()

{
/ / I n c r e a s e t h e c o u n t o f e l a p s e d t i c k s s i n c e t h e
/ / t i m e r w a s c r e a t e d
T i m e r T i c k + + ,

/ / R e t u r n i f n o t i m e r b l o c k s a r e m u s e , r e p o r t i n g
/ / t h a t t h e E n d O f l R Q O p r i m i t i v e w a s n o t c a l l e d
i f (n T m r B l o c k s U s e d = = 0)

r e t u r n ENDOFIRQ_NOTPERFORMED,

/ / E n a b l e a l l i n t e r r u p t s e x c e p t t h e T i m e r i n t e r r u p t
M a s k l R Q () ,
E n d O f l R Q O ,-

a s m
S T I
e n d a s m

/ / C h e c k e v e r y t i m e r b l o c k , n o t i f y i n g t h e a p p r o p r i a t e
/ / p r o c e s s e s t h r o u g h t h e u s e o f a n e x c h a n g e i f a n
/ / a l a r m h a s e l a p s e d , o t h e r w i s e d e c r e m e n t t h e t i m e r
/ / b l o c k t i c k
f o r (m t 1 = 0 ; l c n T M R B L K S ; l + +) {

i f (T m r B l k s [l] f I n U s e) {
i f (T m r B l k s [l] . T i c k == 0) {

(T m r B l k s [l] . R e s p o n d E x c h) - > I S e n d D u m m y P a c k e t () ;
T m r B l k s [l] f l n U s e = F A L S E ,

}
e l s e

T m r B l k s [l] . T i c k - - ,

}
}

a s m
CL I
e n d a s m

/ / R e e n a b l e t i m e r i n t e r r u p t
U n M a s k l R Q () ,

/ / S i g n a l t h a t t h e E n d o f l R Q p r i m i t i v e h a s a l r e a d y b e e n
/ / p e r f o r m e d
r e t u r n E N D 0 F I R Q _ P E R F 0 R M E D ;

}

A39

Appendix

u n s i g n e d i n t C T i m e r S l e e p (u n s i g n e d l o n g D e l a y)

{
i f (D e l a y = = 0)

r e t u r n F A I L ,

/ / F i n d a n e m p t y t i m e r b l o c k ,
i n t i = 0 ,
w h i l e ((i < n T M R B L K S) &&(T m r B l k s [1] f l n U s e))

i+ + ,

/ / R e t u r n i f t h e r e a r e n o f r e e t i m e r b l o c k s
i f (i > = n T M R B L K S)

r e t u r n F A I L ,

a s m
CL I
e n d a s m

/ / S e t u p t h e t i m e r b l o c k s t r u c t u r e , u s i n g t h e t a s k s
/ / d e f a u l t e x c h a n g e a s t h e t i m e r b l o c k ' s e x c h a n g e
T m r B l k s [1] T i c k = D e l a y ,
T m r B l k s [i] . f l n U s e = TRU E,
n T m r B l k s U s e d + + ,-

_ T m r B l k s [1] R e s p o n d E x c h = G e t T S S E x c h () ,-

a s m
S T I
e n d a s m

/ / W a i t h e r e u n t i l t h e d um m y m e s s a g e i s r e c e i v e d f r o m
/ / S e r v i c e , n o t i f y i n g t h a t t h e d e l a y h a s e l a p s e d
T P a c k e t * p P k t = (T m r B l k s [1] . R e s p o n d E x c h) - > W a i t P a c k e t () ,

/ / C o n t i n u e p r o c e s s i n g o n c e t h e d e l a y h a s e l a p s e d
r e t u r n S U C C E S S ,

}

u n s i g n e d i n t C T i m e r A l a r m (C E x c h a n g e * A l a r m E x c h ,
u n s i g n e d l o n g A l a r m D e l a y)

{
i f (A l a r m D e l a y = = 0)

r e t u r n F A I L ,

/ / F i n d a n e m p t y t i m e r b l o c k
i n t i = 0 ;
w h i l e ((l c n T M R B L K S) &&(T m r B l k s [i] f l n U s e))

i + + ,

/ / R e t u r n i f t h e r e a r e n o f r e e t i m e r b l o c k s
i f (i > = n T M R B L K S)

r e t u r n F A I L ;

a s m
CL I
e n d a s m

A40

Appendix

/ / S e t u p t h e t i m e r b l o c k s t r u c t u r e , u s i n g t h e t a s k s
/ / d e f a u l t e x c h a n g e a s t h e t i m e r b l o c k ' s e x c h a n g e
T m r B l k s [i] T i c k = A l a r m D e l a y ,
T m r B l k s [1] f l n U s e = TRU E;
n T m r B l k s U s e d + + ,
T m r B l k s [1] R e s p o n d E x c h = A l a r m E x c h ,

a s m
S T I
e n d a s m

r e t u r n S U C C E S S ,

}

v o i d C T i m e r : . K i l l A l a r m (C E x c h a n g e * p E x c h)

{
i f (n T m r B l k s U s e d = = 0)

r e t u r n ,-

a s m
C L I
e n d a s m

f o r (m t 1 = 0 ; K n T M R B L K S ; i + +)
i f (T m r B l k s [1] f l n U s e)

i f (T m r B l k s [1] R e s p o n d E x c h = = p E x c h) {
T m r B l k s [1] f l n U s e = F A LS E ,
n T m r B l k s U s e d - - ;

}

a s m
S T I
e n d a s m

}

A41

