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Derek Doran (94970777) Dr John Waldron
Computer Apphcations M Sc Thesis Abstract
Dublin City University March 15th 1996

Object-oriented MMURTL:
The migration of a microkernel operating system
to an object-oriented paradigm

Operating System design has moved from monolithic systems such as UNIX, where all
system services are mmplemented m a smgle kemnel, to microkemel designs where the
majority of system services are conducted mn user space A recent trend m operatng
system design has been to use architectural models based upon the object-onented
paradigms This approach promotes the modelling of system resources and resource
management as an orgamzed collection of objects in such a way that the mechanisms,
pohcies, algonthms, and data representations of the operating system are surtably
encapsulated by the objects

Much of the research m this area to date has concentrated on the uses and benefits of
object-onented operatmg systems m the distributed systems arena Similarly, almost all
of these systems have been designed from the ground-up

I beheve that the progression towards object-omnented operating systems 1s likely to
mvolve current operating systems mcorporatmg and assimilating object-omented
features mto therr existing designs m a gradual manner, rather than an overmght switch
to a new technology

In this hight, the purpose of my thesis 1s to take an existmg operating system and to
propose a design which would mugrate the ongmal operatmg systems' facilities and
features to an object-onented paradigm. This thesis also evaluates the advantages and
disadvantages of such a design over the existing one Fmally, future enhancements and
directions are proposed based on the new operating system design



Chapter 1 Introduction

Chapter 1

Introduction

1.1 Overview

This chapter bnefly describes the progression of operating system research from
monolithic to object-oniented systems This 1s followed by a description of the aims and
mtentions of this thesis An mtroduction to object-onented concepts follows This 1s
given as a precursor to a discussion of the object-omented approach to operating
system design and implementation Finally, a bnef of summary of each of the remaming
chapters of this thesis 1s presented

1.2 Operating System Research Trends

Operatmng system design has moved from monolithic systems such as UNIX [Ritchie
75] where all system services are mmplemented m a smgle kernel, to microkernel
designs such as Mach [Rashid 86], where the majority of system services are
conducted m user space

Microkemel architectures are designed to 1solate the most essential functions of an
operatmg system to a small core of code that runs m privileged mode The remamder
of the system 1s supported as a set of apphcations that run m user space, 1solated from
the kemel by a set of well defined mterfaces Such systems have been found to be
easier to mamtam, more extensible and more scalable than monohthic designs One of
the major problems with such microkemel systems, however, 1s the lgh overhead
caused by cross domam mterprocess communication (IPC) calls This raises further
questions as to which services should be situated mside the kernel and which should
remam outside This 1s a design decision which 1s dependent on indvidual system
mplementations [Campbell 95]
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Chapter 1 Introduction

Despite advances m these technologies; current operating systems still suffer from

problems which have erther been mhernted from previous generations, or else which

have appeared as a result of the rapid advancement of hardware technologies [Mitchell

93] These mclude

 the cost of mamtammg and evolving the system, mncluding both the kernel and non-
kernel code

o the lack of system support for software reuse

o the difficulty of building distributed, multi-threaded apphcations and services

o the difficulty of supporting time-critical media (eg audio and video), especially m a

networked environment

A recent trend m operating system design has been to use architectural models based
upon object-onented paradigms This approach promotes the modellng of system
resources and resource management as an organized collection of objects m such a
way that the mechanisms, pohcies, algorthms, and data representations of the
operating system are suitably encapsulated by the objects [Campbell 91]

The movement to object-omented operatmg systems 1s driven by two mam motivations
Furstly, there 1s a deswre to create systems whose design enables easier and faster
development and modification of systém components Secondly, there 1s a movement
towards operatng systems where the distmction between system components and
third-party apphcations 1s reduced m such a manner that additional components can
become linked to the operating system with ease [Hamulton 93]

1.3 Research Aims

I beheve that the progression towards object-onented operatmg systems will be more a
mugratory movement than a revolutionary one That 1s to say, mstead of switching
directly to new operating systems with radically different designs and technologies,
existmg operating systems will mstead begm to mcorporate and assimlate object-
onented features mto their existing designs m a gradual manner Ths 1s based upon the
behef that unless users are presented with a bridge between old and new technologies,
the movement to operating systems with radically new designs will be a slow and
problematic one A possible example of this m action has been the disappointing
markets performance of the NextStep operating system, a system which has received
much critical acclaim for both its design and implementation
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Chapter 1 Introduction

Most research m the area of object-onented operating systems to date, however, has
centred on creating brand new operating systems which have been designed from
scratch with relatively Iittle emphasis placed upon existing systems Object-onented
operating systems designed m this manner tend not to have solved the problems found
m previous generations of operating systems, but mstead have placed them to one side
and started agam This 1s perfectly acceptable when designing a state-of-the-art system,
however a gap remams m attempting to discover a suitable mugration from existmg
technologies to object-oriented operating systems

In this hght, the purpose of this thesis 1s to present a study of the mugration of an
existing non-object-onented operating system and proposing a design which rephcates
1ts ongmal facilities and features usmg an object-onented paradigm.

The emphasis of this thesis is placed on the identification of the problems which were
encountered, the architectures which were mvestigated and the solutions which were
provided durmng the course of the mugration to the object-onented paradigm. In
addition a companson 1s made between the ongmal system and its new, object-
oriented, mcarnation

In order to do this, this thesis concentrates on providing an object-oriented
architectural design which as much possible duphcates the capabilities, though not the
mplementation, of the ongmal operating system. Although 1t would have been possible
to mmprove MMURTL's capabilities as a result of the mtroduction of the object-
onented paradigm, this would not have allowed a farr comparison between the ongmal
system and the newly designed one

The mugration of an existing operatmg system to the object-onented paradigm 1s an
mmportant step, however it 1s only the first of many This thesis also discusses the state
of the new Object-Onented MMURTL (OO-MMURTL) as 1t stands In addition a
proposal as to future enhancements and directions wihich can be undertaken based
upon, and as a direct result of, the new operating system design 1s presented The most
obvious of these bemg a distributed implementation of MMURTL which embraces
objects at the core of its design
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1.4 Object-oriented concepts

This section presents an introduction to the concepts of object-orientation. Features
relating specifically to object-oriented operating systems are dealt with later in this
chapter. There are many different interpretations of the object-oriented concepts. This
is probably highlighted by the terms Object and Class whose definitions may vary from
one system to another. The definitions presented below are based upon those given by
[Weiner 90], and are used throughout this thesis.

1.4.1 Objects and Classes

An object is an encapsulated entity including code and data. Each object is fully
described by a combination of its data, referred to as attributes, and its functions,
referred to as methods. Objects can be dynamically created and deleted. An instance of
an object is the realisation of is interface.

A class defines a collection of objects which exhibit identical behaviour. Objects ofthe
same class share common code, but each instance ofthe class, i.e. each object, retains
its own set of data. A class allows a taxonomy of objects to be built based upon an

abstract or conceptual entity, whereas an object defines the specific state of each
particular entity.

1.4.2 Encapsulation and Information Hiding

By storing both a set of code and data together in an object, the designer is stating that
the information held in the attributes and the actions performed by its methods which
may be performed upon them are conceptually related, and it makes sense to store
them together. This is known as Encapsulation. The essence of encapsulation is to
enable a programmer to view a set of related items as a conceptual unit.

An object may have public or private methods. Its private methods may only be
invoked from within the object, while its public methods describe the methods which
may be called from inside or outside ofthe class. Hence the public methods and public
attributes are often referred to as the interface of an object. The principle whereby
certain elements of a class remain private is known as Information Hiding.
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Information ludmg allows a class to pubhcly declare what actions 1t 1s capable of
performmg, without drvulgmg how these actions are performed This prowvides two
mportant benefits Fustly, mformation hiding allows both the designer and
programmer to take a more abstract view of objects Secondly, the mtemal
representation of an object may be developed m the future without affecting the pubhc
mterface, and therefore apphcation programs which mvoke the object

1.4.3 Abstract Classes

An abstract class 1s a template for other classes Similar to ordmary classes, 1t 1s
described by a set of attributes and methods, however at least one of its methods 1s not
fully described It 1s mstead defined without bemng mmplemented Such methods are
known as virtual methods

Smce they are not fully described, abstract classes may not be mstantiated Instead,
other classes will mhent from an abstract class, implementmg theirr own versions of 1ts
virtual methods Such classes are known as concrete classes They can be mstantiated
In this fashion, abstract classes can be used as templates to describe partial behaviour
of concrete classes

1.4.4 Class Huerarchies

A set of classes can be luerarchically orgamised m order to further describe their reuse
and evolution A class hierarchy 1s an architectural design for describmg an
object-onented system. Class hierarchies provide mfrastructural and architectural
guidance while designmg the mterrelationships between component objects of a
system.

Class lerarchy diagrams depict the relationships between objects and the mterface
mherntance between them. By usmg class lierarchies, system objects can be classified
mto categomies The root leaf of a lierarchy 1s often represented by an abstract class
By presenting mformation about object classification m this way, a detailed yet high
level description of the system may be achieved
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In further levels of the luerarchy, concrete implementations of classes will replace
abstract classes, thus speciahisimg and further describmg the behaviour of the system
objects bemg documented

A system described by a class hierarchy 1s, at its highest level, a smgle framework
which guides the design of subframeworks The framework for a system prowvides
generahsed components and constramts to wiuch specialised subframeworks must
conform.

The root of the class hierarchy 1s shown at the top of the diagram. Specialisations of
classes are represented m a top-to-bottom manner In Figure 1 1, SubClassOfA 1s a
subclass of ClassA.

ClassA

SubClassOfA

Figure 1 1 A simple class luerarchy

Several classes can mhent from the same class Object-Onented MMURTL does not

require, and therefore does not support multiple mhertance, hence each class may
mhent from only one parent class

Abstract classes are shown m bold type This 1s demonstrated m Figure 12 which
shows the class hierarchy for the Process subsection of the Chorus operating system,

which 15 described m further detail m Chapter 3 Object-Oriented Operating
Systems
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Process

| l Bl |

ApplicationProcess SystemProcess InterruptProcess Gang

PreemptableSystemProcess

Figure 1 2 A class hierarchy featuring abstract classes

In Fagure 1 2, Process 1s the highest level class in the luerarchy It 1s an abstract class
It serves as a template for all further process objects m the operating system. It defines
the default behaviour of a process in terms of its methods along with its default
attributes

The virtual methods of the Process class must be defined m 1ts subclasses In this way,
each of the subclasses will become a speciabised version of the default Process object,
retammg the behaviour of the ongmal class, while at the same time mtroducmg new
behavioural nuances specific to the subclass

In Fagure 12, the behaviour of a Process is further defined and speciahsed m the
subclasses ApplicationProcess, SystemProcess, and InterruptProcess In tum,
PreemptableSystemProcess 1s a specialisation of SystemProcess This demonstrates the

ability to provide a more specific subclass implementation at each level of the class
hierarchy

A Gang 1s a speciahisation of Process however 1t too 1s an abstract class Therefore 1t 1s
mpossible to create an mstance of a Gang object Instead, system developers or
apphcation programmers must create a new subclass of the Gang class, providing
mplementations of 1ts abstract methods, so that the new subclass is a concrete class
and may therefore be mstantiated
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1.5 What is an Object Oriented Operating System?

In its purest form, an object-oriented operating system is one in which all system
components, mechanisms and resources are modelled as objects. Object-oriented
techniques such as abstraction, encapsulation and inheritance are used to perform the
modelling.

The system developers design a set of objects which will serve as generic system
components. These are then customized through object-oriented interfaces and
specialization to suit the needs of each individual component of the system In this
way, inheritance encourages the reduction of the implementation of different system
services to a small number of classes that can be specialized and combined to achieve a
desired result [Campbell 93a], This approach supplements the microkernel,
client/server operating system organizations used in systems like Mach [Rashid 86], V
[Cheriton 88], and Amoeba [Tannenbaum 90] to introduce more flexibility for
application support.

The object-oriented approach to operating system design and implementation also
serves to provide a distinct boundary between the various system components, thus
easing their development, maintenance and extension.

There are two non-exclusive approaches to incorporating objects in the architecture of
an operating system [Krakowiak 93], Each of these is described below, with example
implementations of each system given.

1.5.1 Object-Based Operating Systems

These operating systems provide support for objects. This usually takes the form of
additional structures above the basic layers of the operating system which will support
objects. The level at which object support is provided varies from one implementation
to another.

Guedes [Guedes 92] presents an implementation of the Mach 3.0 multi-server system
which supports objects. The operating system is decomposed between a microkernel, a
set of system servers running in user-mode, and an emulation library executing in the
address space of applications.
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In this implementation of ObjectMach [Julin 89], all of the mterfaces provided by the
system servers are object-oriented and all of the services provided by them are defined
m terms of system objects, such as files, directories, devices etc In addition, both the
servers and the emulation library are written m an object-onented language

1.5.2 Object-Oriented Operating Systems

In this architecture, the entire operating system 1is mplemented as a set of objects
Object-Omnented Operating Systems encourage custommsation of not only the
mterfaces, but also the operating system itself through the use of object-onented
techniques such as mheritance

Choaces 1s a fully object-onented operatmg system which also provides support for the
object-based architecture It 1s described m detail m Chapter 3 Object-Oriented
Operating Systems

1.6 Thesis Overview

Thus 15 a bnief summary of each of the chapters m this thesis, with the exception of thas
mtroduction chapter

Chapter 2 The MMURTL Operating System Ths chapter describes the basic
architecture of the onmginal MMURTL operatmg system. This 1s presented as a
precursor to later chapters which, while describmg the new mmplementation of OO-
MMURTL, allude to MMURTL's origmnal design as a pomt of reference

Chapter 3 Object-Oriented Operating Systems This chapter introduces practical
examples of the design of existing object-omented operatng systems This wall
demonstrate the wade vanety of possible implementations when objects are mtroduced
to the design of an operating system. The operating systems presented 1 this chapter
range from those developed by professional developers to those developed by
academic mstitutions, and from object-based operating systems to completely object-
orniented systems
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Chapter 4 Object-Oriented MMURTL This chapter mtroduces the basic design and
mplementation of OO-MMURTL The 'exphc1t mplementation of each component of
the operating system 1s described m detaill m subsequent chapters Operating system
concepts and entities which are common to most or all of OO-MMURTL's system
components are mtroduced here This mcludes the use of objects and the design of
object storage contamers

Chapter 5 The Process Management Model This chapter describes m detail the
design and mmplementation of the OO-MMURTL process management model,
mcluding the class hierarchy and component classes which support this area of the
operatmg system.

Chapter 6 The Messaging Model As m 1ts ongmal implementation, messaging is at
the core of much of OO-MMURTL's system behaviour This chapter describes m
detail the design and implementation of the OO-MMURTL messaging model,
mcludmg the class hierarchy and component classes which support this area of the
operating system.

Chapter 7 The Memory Model This chapter mitially describes the advanced memory
concepts mvolved m MMURTL's ongmal memory model. Followmg this, the design
and mmplementation of the OO-MMURTL memory model, mcluding the class

hierarchy and component classes which support this area of the operatmg system, are
presented

Chapter 8 Additional Classes This chapter mtroduces additional classes which are
mtegral to OO-MMURTL and support the classes presented m previous classes, while
not belongmg to the subsystem m questton The design and implementation of the
vanious class hierarchies and classes which support OO-MMURTL's ready queue,
mterrupts and timer are described m detail here

Chapter 9 Design Testing This chapter bnefly describes my expenences durmg the
design and testmg of OO-MMURTL

10
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Chapter 10 Conclusions This chapter describes the state of OO-MMURTL as
presented n this thesis In addition, possible future enhancements to the new design
are offered, along with suggestions as to the new dwrections which can be undertaken
based upon the new operating system design

1.7 Summary

This chapter discussed recent research trends m the area of object-onented operating
systems Problems with the area of mugration to object-oniented operating systems
were lughlighted Followmg this, the mtent of this thesis, 1e to redesign an existing
operatmg system architecture usmng an object-oniented paradigm and document the
resulting observations, was set out A brief explanation of object-onented concepts and
terms was given, before the general area of object-oriented operatmg systems was
mtroduced Finally, a brief overview of each of the remaming chapters m this thesis
was given

11
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Chapter 2

The MMURTL Operating System

2.1 Overview

This chapter mtroduces the ongms, ntentions, architecture and design of the
MMURTL operating system [Burgess 95] In addition, an mtroduction 1s made to the
three components which form the core of MMURTL 1ts task model, messagmg
model, and memory model Each of these descriptions will provide a basic overview of
the component m question, while further details of each are presented m later chapters,
which deal with OO-MMURTL's redesign of the three primary system components

2.2 MMURTL

MMURTL has been under development by Richard Burgess smce 1991 It was
designed to run on most 32-bit ISA PC compatibles However, despite its
mcompatibilities with other operatmg systems, MMURTL remams an extremely
powerful operatmmg system.

MMURTL 1s a 32-bit message based, multrtasking, real-time operating system
designed around the Intel 80386 and 80486 processors on the PC Industry Standard
Architecture (ISA) platforms The name 1s an acronym for Message based
MUIltitasking, Real-Time, kernel

MMURTL has been designed from the ground up, resulting m its mcompatibility with
other popular operating systems Its file system however, 1s FAT compatible, allowing
MMURTL to reside on a DOS formatted hard drive m the same partition as DOS
itself.

12
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Chapter 2 The MMURTL Operaning System

Although DOS 1s requred to run before MMURTL 1s invoked, DOS 1s not powerful
enough to accommodate MMURTL's mechanisms As such, MMURTL merely makes
use of DOS as a boot program. Once the MMURTL loader 1s executed, the operating
system executive gams control of the hardware and all traces of DOS are removed

from memory

2.3 Reasons for using MMURTL

Burgess recommends the use of MMURTL as a leammmg and reference tool for
programmers working m 32 bt environments In the field of education, MMURTL can
be used to teach mtroductory multitasking theory, paged memory operation and
management, hardware and software task management, and real-time message based
operatmg systems ;

Although MMURTL 1s essentially a hittle known operating system, there were several
motivations for the use of MMURTL as the basis of this thesis

o Code Availability - A major factor which dictated the choice of operating system
was the essential need to have access to the complete source code of the system.
The mmportance of this requirement dictated by the need and desire to achieve a
complete understandmg of the mner mechamsms and workmgs of the operating

system bemg studied, so that an accurate model of its behaviour, both mternally
and extemally, could be made

» Documentation - This requirement 1s related to the previous pomt In order to
completely understand the system's mechamsms and pohcies, an operating system
was sought which provided a set of documentation which was sufficiently detailed
and accurately documented

e Programming - The operating system was requred to provide a well-defined
apphcation programmmg mterface which would allow both system developers and
apphcation programmers to hamess its power and capabilities while at the same
time ensurmg ease of use In addition, the possibility of 1ll behaved programs
causmg damage to the rest of the operating system must be minimsed

13
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o Platform - The vast majonty of work m the area of object-onented operatmg
systems research takes place on workstation platforms In order to present a
diverse view of an object-oniented operating system, a system which was based on
an IBM PC compatible format was sought With this m mmd, a further
specification with regards to power had to be made Due to the advanced nature
and slower processmg of object-onented operatng systems, the Inte] based
operatng system had to have been designed exphcitly to gam advantage of the
advanced capabilities of later generation chips such as the 80386, 80486 and
Pentium.

MMURTL 1s a 32-bit message based, multitasking, real-time operating system,
designed explicitly for use on Intel 80386 and 80486 platforms It makes use of
processor specific structures to provide more advanced facilities through the operating
system. An example of this 1s the use of the 386/486 memory pagmg mechanisms to
dispense with the segmented memory model as used by DOS and to replace 1t by a
simpler yet more powerful flat 32-bit virtual memory model.

The entwre MMURTL source code 1s available at the Dr Dobbs Journal FTP? site on
the Internet, and also on a CD-ROM available inside Richard Burgess' recently
pubhshed book entitled "Developing Your Own 32-bit Operating System” [Burgess
95], which uses MMURTL as the bass for 1ts case study of a practical, modem, 32-bit
operating system.

In addition, Burgess provides clear and concise documentation of MMURTL along
with plentiful use of comments throughout his source code Fmallyy MMURTL's
system calls are well designed and clearly defined providing ease of use m the C
programmmg language

The only specification which MMURTL failed to satisfy was that of providing a
sufficiently safe programmmg and operating environment m which to program both
apphcations and the system. Although a debugger forms an mtegral part of MMURTL,
httle language or run-time support 1s provided by the operating system. MMURTL
provides no mbult mechamsms to reduce the possibility of errant programs bringmg
down the entire operatmng system.

Mftp dobbs com 1n directory /pub/source/MMURTL
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Chapter 2 The MMURTL Operanng System

Although this 1s a senious omission m a modern operating system, it was acceptable i
the circumstances, gven that C++ as a language, and object-onentation as a design
techmique, both provide mechamsms (such as C++ exception handling), which can
enhance the possibility of implementing a safe operatmg environment System
protection could be mtroduced as an mtegral feature of a future implementation of
OO-MMURTL without having to redesign or reengmeer the new system.

In summary, almost all of the mitial operating system specifications required for this
thesis were met with by MMURTL, and m some cases they were surpassed

2.4 Design goals of the MMURTL project

Smce its ongmal mception, MMURTL has extended from a simple operating
environment undertaken as an exercise m system programming and design, to a
powerful though raw operating system. Burgess defined the followmg as the ongmal
design goals of the MMURTL project

o True Muintasking - Given the capabilities of systems such as UNIX and Mach to
provide true multitasking, implementmg a non-multitasking environment would
have served merely to mimic DOS' failngs on the same platform. For this reason,
the ability of a smgle program to create several threads of execution that could
commumcate and synchromse with each other while carrying out mdividual tasks
was seen as an essential feature

e Real-Time operation - The ability to react to outside events m real-ttme would be
an additional feature which would extend the possible uses of the MMURTL

operating environment This goal provided the mpetus that MMURTL be a
message-based system.

o Chent/Server design - The ability to share services with multiple chient apphcations
on the same machme or across the network provides MMURTL with a valuable
model which could lend itself easily to future expansion, m particular as a
distributed operating system. MMURTL's message-based design provides the
mechanisms to accommodate this

15



.
Pyt )
O Py

Chapter 2 The MMURTL Operating System

o Flat 32-bit Virtual Memory Model - MMURTL uses the memory pagmg
capabilities of 386/486 processors to provide an easy 32 bit flat address space for
all apphcations running on the system.

2.5 The Task Model

MMURTL has a real-time prionitised tasking model The currently executmg task m
MMURTL 1s always the one with the highest priority which 1s not 1 a wazt state

In order to conduct the pnoritising of ready tasks, each task 1s assigned a prionity value
when 1t 1s created MMURTL has 32 pnionty levels with 0 bemg the highest and 31 the
lowest General purpose applications (editors, compilers, word processors etc ) should
all run at a pnority of 25 This leaves 0 through 24 for more important things, and only
26 through 31 for less mmportant things (spoolers etc )

In MMURTL, a task may be in one of three states Firstly, when a task 1s matially
created, 1t 1s presumably ready to run Secondly the task with the lughest priority m the
system 1s executng If there 1s more than one task with the highest prionty, then
execution 1s shared between them m a time-shced manner Finally, a task can be m a
wait state, waiting for a commumcation from another task, from a hardware
notification, or from an external source It will not be able to contmue executing until
the event they are waiting upon occurs

Tasks that are ready to run are placed m the system priontised ready queue This 1s
actually mplemented as an array of thirty-two queues, each holding a set of tasks
whuch are ready to run, of the same priority Thus the zeroth queue m the array holds
the ready tasks with a prionity of zero, the first queue m the array holds the ready tasks
with a prionity of one, and so on The task which 1s at the top of the ready queue, 1s the
one at the top of the first non-empty queue m the array of thirty-two queues

If more than one task 1s on the ighest prionty non-empty queue, then time-shcing
occurs, otherwise the task with the highest priority executes until 1t relmqushes the

processor because it has entered a wart state or has run to completion This 1s
described m detail below
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Chapter 2 : The MMURTL Operating System

Tasks that are waiting upon a message or another task, remain at an exchange (see
Section 2.6 Messaging subsystem). When they receive a notification at the exchange
they will move to the ready queue, or if they have a priority higher than the currently
running task they will become the running task and the previous running task will be
returned to the ready queue.

MMURTL does perform some time-slicing but this is only between tasks with equal
priorities. Ifthe priority ofthe currently running task is 25, the Task Manager will slice
time between that task and any others in the ready queue which have an equal priority.
Note that tasks waiting at an exchange with the same priority will not be time sliced
since upon becoming the running task they would merely be capable of performing a
busy wait.

MMURTL switches between tasks in response to the following events:

1 An outside event caused a message to be sent to an awaiting task which has an
equal or higher priority than the currently running task.

2. The currently running task can't continue because it needs more information from
the outside world. In this case it sends a request and goes into a wait state and
control is passed to the task with the next highest priority.

3. The operating system has detected that there is a process with a priority on the
ready queue with the same or higher priority as the task that is currently running,
and a predetermined amount oftime has lapsed.

Running Task )

Il 2 4\

/ \

Waiting Tasks 3 i Tasks Ready To Run

Exchanges Ready Queue

Figure 2.1. MMURTL's Task Switching Model
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Chapter 2 The MMURTL Operating System

Figure 2 1 shows the movement of tasks as performed by the system Task Manager
This shows that a Running Task which needs a communication from another task,
hardware, or an external source, will move mto a wait state at an Exchange (2) When
the notification 1s recerved by the waiting task, it will be placed on the Ready Queue
(3) unless it is has a mgher prionty than the currently executmg task, m which case it
becomes the Runnmng Task (1) If the Running Task has completed, or if the Runnmng
Task's time shce has expired (4) and there are other tasks with an equal or hugher
priornty, then the next highest priomty task m the Ready Queue becomes the Running
Task (5)

2.6 The Messaging Subsystem

MMURTL 1s capable of both synchronous and asynchronmous messagmg Tasks
exchange mformation with each other by sendmg messages There are two basic forms
of messaging m MMURTL The first type is a Request for services which should
recerve a Respond message m response The second type 1s a non-specific message
which doesn't expect a response The Request/Respond mechanism is a key component
of MMURTL's chent/server model.

Central to the messaging subsystem 1s the concept of an Exchange An exchange 1s the
place at which a message is left for a task, and so 1t 1s the place to which tasks look
when seeking or awaitmg messages In order to send a message m MMURTL, a task
must first have an exchange to which it can address the message Exchanges are
allocated by the AllocExch function

Sending a message m 1ts simplest form requires a SendMsg call which sends a given
message to a specified exchange At this pomt one of two things may happen

Fustly, a task may be expecting the message and therefore it would wait at the
exchange for 1t to armve This 1s done by caling the WaitMisg function Once a
message arrives at the exchange at which a task 1s waiting, the task may contmue

running An exchange 1s one of only two places a task may watt The other 1s the ready
queue
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Chapter 2 The MMURTL Operating System

Secondly, the message will arrive at the exchange at which there 1s no waiting task In
this case the message will wait at the exchange until a task looks there usmng the
CheckMsg function to detect if a message 1s waiting

2.6.1 Request and Respond

The Request and Respond messaging primitives are designed so that a system service
which provides shared processmg for all apphcations on the system can be mstalled
The processmg 1s carried out by the system service m response to a Request The
results and perhaps data are retuned via the Respond primrtive to the requester

Message based services provide shared processmg functions that are not time critical.
The service 1s provided to all apphcations Example uses of system services mclude file
systems, keyboard mput, printing services, and Email services

Each service 1s given a name upon imstallaton The name must be umque on the
machme This name 1s registered with the operatmg system Name Registry The
registration takes place only the first time the service 1s installed At the same tune the
service name 1s assigned an exchange number In this way, the service can be referred
to m future by its name, such as 'KEYBOARD', as opposed to its exchange number
The exchange may change each time the machme is booted but the service name
remams the same It 1s not unusual for up to thirty system services to be mstalled at a
given time

A Service Code 1s associated with each service Each of the possible 65,533 service
codes may represent a function provided by that system service The Service Code 1s
transparent to the operatmg system as 1t 1s uniform across all system services

2.6.1.1 Request

A Request for a system service 1s more complex than a simple SendMsg and as such 1t
requires more mformation Each request must mclude a Service Name which 1dentifies
the service bemg requested and a Service Code which specifies the exact service
function bemg requested Two pomters to memory m the address space of the
requester are sent which may contain data required by the service This data could
pomt to a text string, a array or a structure of data, dependmg on the service
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Chapter 2 The MMURTL Operanng System

Each request must also be accompamed by the number of an exchange which has been
previously allocated by the requestmg task This exchange will be used by the service
to respond to the request

2.6.1.2 Respond

The Respond primitive 1s less complicated than the Request It merely requires as
parameters the handle to the request block which 1s bemg responded to and a status or
error code bemg returned by 1t

2.6.2 Example of the Request-Respond Mechanism

The followmng steps illustrate a possible commumcation from an apphcation to a
service and the resultmg response usmg the Request/Respond mechamsm.

1 A task calls Request and asks a specific service to perform a certamn function
The request arrives at the exchange m the form of an 8 byte message

3 The requestmg task calls WaitMsg on the exchange specified m the Request call
and sits at the exchange wartng for a reply

4 The request 1s noticed by the system service and serviced

5 I the service 1s performed successfully, the resultng data is placed into the
memory address area of the requesting task The Respond primutive 1s called which
notifies the task warting at the exchange that the request has been carned out

2.7 Memory Management

MMURTL uses 386/486 hardware based paging for memory allocation and
management As a result MMURTL dispenses with segmented programming (which 1s
normally associated with DOS) In MMURTL there 1s only one memory model, which
has two segments One 1s for code, the other for data and stack Each segment can be
as large as physical memory
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Chapter 2 The MMURTL Operating System

MMURTL doesn't provide memory management m the sense that compilers and
language systems provide a Heap or an area that 1s managed and cleaned up for the
caller Instead, MMURTL 1s a paged memory system. Each page 1s four Kilobytes of
contiguous memory

Pages are allocated m response to a request by an application or system service and are
returned to the pool of free memory pages when they are deallocated MMURTL
manages all the memory m the processor's address space as pages

MMURTL uses almost no segmentation The operating system and every apphcation
share only four segments

e The OS Code Segment
e The OS Data Segment
o The User Code Segment
o The User Data Segment

MMURTL makes use of 1ts own code segment to provide additional protection for
system programmung and for protection within the OS pages of memory

This memory management scheme allows MMURTL to use 32 bit data pomters

exclusively This sumplifies system and apphcation programmmg and speeds up code
execution.

2.7.1 Paging

MMURTL's use of paging simplifies 1ts memory management mechanism by usmg
tables to manage both physical and hnear memory addresses These tables are used by
hardware to translate physical memory addresses to lmear memory addresses

The tables that hold these translations are called Page Tables (PTs) Each entry m a
Page Table 1s referred to as a Page Table Entry (PTE) Each Page Table Entry
represents one four kilobyte page There are 1,024 Page Table Entnes, each usmg four
bytes, m each Page Table Therefore one four kilobyte Page Table can represent four
megabytes of memory.
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In order to locate the appropnate Page Table, the memory management system makes
use of Page Directonies (PDs) Each task 1s assigned a Page Directory In tum each
entry m a Page Directory Entry (PDE) Each Page Directory Entry holds the physical
address of a Page Table Once agam each entry requires four bytes and represents a
smgle Page Table which represents four megabytes of memory Smce each Page
Directory has 1,024 entries, each task can access 4 gigabytes of hnear address space

2.8 Summary

This chapter mtroduced the MMURTL operatmg system. The criteria for finding an
approprnate system on which to base this thesis were laid out mitially, followed by a
brief summary of the aims of the MMURTL operating system. Next, each of the three
prmary components of MMURTL were described - the task model, the messagmg
subsystem, and the memory model. Each of these systems will be described in further
details m later chapters which concentrate on the redesign of each of these components
m OO-MMURTL
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Chapter 3

Object-Oriented Operating Systems

3.1 Overview

This chapter provides a bnief exammation of several object-onented and object-based
operatmg systems This serves to demonstrate the wide vanety of possible
mmplementations when objects are mtroduced m the design of an operating system. The
operatmg systems presented m this chapter range from those developed by professional
developers, such as Sun Microsystems' Spring [Mitchell 93] system, to those
developed by academic mstitutions such as the University of Grenoble's Guide [Balter
91] system. They also range from object-based operating systems such as Camegie
Mellon University's Mach [Juln 89] to completely object-oniented systems such as
Chorces [Campbell 93b], whuch was developed by the University of Ilimois

3.2 Spring

Spring 1s a laghly modular, distributed, object-onented operatmg system, which 1s
currently under development by Sun Microsystems Inc A commercial release has yet
to appear

The design of Spring concentrates on the notion of an object-onented operating system
with a strong and exphcit architecture, particularly with reference to the mterfaces
between 1ts software components By stating strength of mterface as an important
design factor, Spring's system designers imply that a well defined definition of what
each software component does 1s given, while at the same time very little about how
the component 1s implemented is given

This summary of the Spring system presents its use of an Interface Definition

Language, a discussion of Objects m Spring, a brief examination of Spring's structure,
and finally a look at the Spring Nucleus
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3.2.1 Interface Definition Language

In order to acheve thus strength of mterface, the Spring designers developed an
Interface Definition Language (IDL) which 1s based upon the IDL adopted by the
Object Management Group as a standard for definng distributed, object-oriented
software components

Typically, an IDL compiler 1s used to produce three pieces of source code m a chosen
target language, for example C++ or Smalltalk The first piece of source code which 1s
produced 1s, m the case of C++ for example, a header file with the defimtions of the
methods, constants, types and classes which were defined m the IDL Secondly, chent
side stub code 1s produced This stub code 1s dynammcally lmked mto a chent's program
to access an object which 1s mmplemented i a different address space Fmally, the
server side stub code 1s dynanucally inked mto an object manager m order to translate
mcoming requests for object mvocation mto the run-time environment of the object's
mmplementation

Several compilers are provided to support the Ii)L, for example, Sprmg could provide
an IDL-to-C and an IDL-to-C++ compiler allowmg a chent written in C and a server
written in C++ to use the same IDL The use of thus IDL helps Sprmg to achieve
strong interfaces between software components while remaming a flexible, extensible
and open design, thanks to 1ts language independence and capacity for dynammc Imking

3.2.2 Spring Objects

Almost all of Spring 1s implemented as a suite of object managers, for example the file
system which provides file objects etc In addition, object managers are themselves
objects As a consequence It 1s as easy to add new system functionality as 1t 1s to write

a new apphcation m Spring, and all such functionality 1s mherently part of a distributed
System.

The combmation of object-omentation and strong mterfaces endows Spring with an

open, distributed, extensible and secure computmg environment, m addition to
uniformity of access to objects and location transparency
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The users of a Spring object mvoke operations upon it based upon the operations
defined mn 1ts mterface As a result of its distributed nature, how and where the
operation 18 actually performed 1s transparent to the application performmg the object
mvocation

There are two forms of objects m Spring, server-based objects and serverless objects
Server-based objects are implemented m servers that reside m different address spaces
from therr chents Support 1s provided for these objects 1s given through the generation
of stubs by the IDL These stubs take the arguments for the mvocations, dispenses
them for transmussion to the server, and retnieves any results before returning them to
the chient apphcation This form of transmussion makes use of the Spring subcontract
mechanism which allows control over object runtime operations such as how object
mvocation 1s implemented and how object references are transmutted between address
spaces

Serverless objects always exist m the address space of the chent When a serverless
object 1s passed between address spaces, 1ts state 1s copied to the new address space
Both server-based and serverless object mvocation are shown m Figure 3 1

client server
apphcation apphcation
.................... ) iDL |
e A AN A T R R R et %t
Interface
chent stubs server stubs
subcontract — subcontract

A call on a server-based object

chent
application

R R s e e R et

, IDL
Interface

implementation

A call on a serverless ohject

Figure 3 1 Object Invocation m Spring
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3.2.3 The Spring Nucleus

The nucleus 1s Spring's microkemel It supports three basic abstractions domains,
threads, and doors A domam 1s analogous to a UNIX process or a Mach task It
provides an address space for an apphcation to run m and acts as a contamer for
various kinds of apphcation resources such as threads and doors Threads execute m
domams Each thread executes a smgle portion of a domam, usually while other
threads are executing concurrently withim the same apphcation Doors support object-
onented calls between domams A door represents an entry pomt to a domam,

represented by both a chent computer and a umique value nommated by the domam

3.3 Chorus

Choices 1s a parallel object-onented operatmg system designed as a collection of
mterconnected frameworks It was developed at the Department of Computer Science
at the University of Illmois Chorus 1s an ongmal operating system, designed from 1ts
conception as an object-onented operatmg system implemented m C++ It supports
distributed and shared memory multiprocessor apphcations and virtual memory

3.3.1 Frameworks

The design of Chorus 1s based upon the design of and mterrelationships between
frameworks and subframeworks A framework 1s an architectural design for object-
onented operating systems and are used to describe the components of such a system
and the way they mteract The mteractions m Chorus are defined m terms of classes,

mstances, constramts, inheritance, polymorphism and rules of composttion

The Chorus operatmg system 1s implemented as a framework, which guides the design
of the subframeworks of 1ts subsystems Each subframework refines the general

operatmg system framework accordmg to the requirements of the particular
subsystem which 1t represents
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The frameworks for the system provide generalised components and constramts to
which further specialised subframeworks must conform. Each subframework
mtroduces additional components and constramts to the components of its framework

Subframeworks may be recursively refined m order to provide further specialisations

In this manner, frameworks assist the mitial operating system and Chorus' extensibility
by providmg an architectural design that has common components and mteractions
throughout the entire network of subsystems A framework augments the traditional
layered design of operating systems [Campbell 92] A layer represents an abstract
machme that hides machme dependencies and provides new services, while a
framework mtroduces classes of components that encapsulate machmme dependencies

and define new services

3.3.2 Classes

The Choices framework consists of three abstract classes A MemoryQObject 1s used to

store data A Process represents a thread of control which executes a sequential

algorithm. A Domain 1s an environment that binds the names processed by the threads

of control to storage locations The cardmality of their mterrelationships are as

follows

o Each process must have one and only one domam - Each thread may only operate
m a smgle execution environment

o Several processes may share the same domam - Several threads may perform
concurrently m the same execution environment

o Each domam may be have several memory objects - An execution environment
may consist of several blocks of memory, m which code and data are stored

» [Each memory object may be associated with several domams - Each block of

memory may be shared between co-operating execution environments

Each of the three abstract classes described above must be speciahsed through
subclasses before they can be mvoked The constramts, such as the cardmalty
relationships, between classes remaim true between subclasses They can, however, be
further defined and speciahsed
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3.3.3 Process Management

As an example of a Chorus framework m action, a bnief mtroduction to the Chorus
Process Management framework 1s given here Almost all of Chorus' frameworks
consist of related or commumcating components The process management framework
has five such components, each of which 1s described below

o Process - This 1s a path of execution through a group of C++ objects There are
three specialisations of a Process A SysfemProcess executes m the kernel and 1s
non-preemptable An ApplicationProcess runs m user and kernel space, while an
InterruptProcess 1s used to handle the occurrence of an mterrupt Note that
context switching 1s hight-weight between Processes in the same domam and 1s
heavy-weight between Processes m different domams

o ProcessorContext - This 1s responsible for saving and restormg the machme
dependent state of a Process Every Process has exactly one ProcessorContext and
each ProcessorContext belongs to a single Processor

o Processor - This encapsulates the processor dependent details of the central
processing umt This mcludes the hardware CPU identification numbers and the
state of the hardware mechanism.

e Gang - This 1s a group of Processes that should be gang scheduled (run
simultaneously) on the processors of a multiprocessor machine The Gang allows
the collection of Processes to be manipulated as a smgle unit

e ProcessContainer - This component 1s responsible for implementmng schedulng m
Choices Subclasses of ProcessContamer mherit the scheduling mterface and are
responsible for mplementmg different schedulng pohcies as requured by the
operating system. For example, m order to implement a multilevel feedback queue
schedulng pohcy, the ProcessContamer msertion and removal methods must be
speciahsed m a subclass of ProcessContamer Processes are executed by mserting
them mto mstances of ProcessContamer, the Processor then removes the Process
from 1ts ready queue before dispatching it An example class hierarchy of the
ProcessContamer class 1s shown m Figure 3 2

28



Chapter 3 Object-Onented Operaning Systems

ProcessorContainer

SystemScheduler FIFOScheduler |

RRScheduler

Figure 3 2 An Example Chorus Class Framework

3.3.4 MacroChoices

The most recent version of the Choices operating system 1s called MicroChoices The
most important development m this version 1s the sphitting of the kemel mto two
dastinct portions, resultng m the removal of machme dependent code from the majority
of the operating system.

The low-level portion of the newly designed kernel 1s the nanokernel This provades
hardware dependent support for the remamder of the operating system. It 1s built as a
framework of classes that captures the essential properties of the low-level hardware,
presenting a useful mterface to the higher levels of the kernel m a2 machme-mmdependent
manner The nano-kernel is a smgle modular subsystem that provides the mechanisms
for mmplementing higher-level abstractions, such as processes, timers, and wvirtual
memory The framework of abstract classes which the nano-kernel 1s composed of are
speciahsed for particular hardware umplementations through the creation of
subframeworks The remamder of the kemel, the mucrokernel, and the operating
system as a whole can now benefit from enhanced portabiity The nanokernel design
has now reduced the task of porting MicroChoices to a matter of sumply providing new
machme spectfic subframework of the nano-kernel

The MicroChoices model describes an 1dealised machme architecture at the lowest
level supporting a machine mdependent micro-kemnel mterface to the remamder of the
operating system. Guidelines for the intermediate levels of the system are provided
through the use of object-onented frameworks
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3.4 Guide

The Guide system was developed at the University of Grenoble, France It 1s a fully
object-oniented distnbuted operating system for the development and operation of
distributed apphcations Every resource or abstract entity m the system 1s an object,
and communication between processes takes place through shared objects

The GUIDE [Krakowiak 93] model views the system as a distributed shared universe
orgamsed as a set of objects Guide objects are passive, that 1s to say that processes or
threads are defined imdependently from the objects they operate on In addition,
GUIDE objects are capable of persistence, therr life can extend beyond that of the
process or thread which created them.

The design of GUIDE 1s based on the tenet that an object support layer 1s provided by
a lower level kemel, such as a mmcrokemel, whose object support remams mdependent
of the object model which 1t supports Thus a smgle object support microkemel 1s
capable of supporting different object models

The development of GUIDE has occurred m two phases, each of which 1s described
below

3.4.1 Guide-1

The first phase of Guide, Gude-1, was a smgle-language, UNIX-based system. Its
primary amm was to mvestigate the use of objects as a unifying structuring mechanism
m an operating system. A new programmmg language was composed m order to
provide the required freedom of design required by the project The operating system
was fine-tuned to the performance of this language, and vice versa

Guide-1's execution model was organised mto 7asks A Guide Task 1s a virtual address
space m which objects are mapped Concurrent activities run mside Tasks Both tasks
and activities may be distributed

The object memory was mternally organised as a two-level store, as shown m Figure
33, although ths dmsion was hidden from apphcations Both levels were
transparently distributed
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Multiprocess Multiprocess
Task execution _ _ _ _| execution

address
space

address
space

VOM [Obje‘:ts which are buuﬂ Virtual memory of nodes

in at least one task |

Atomic copy actions

Fersistent support
SS L for objectzp ] Secondary storage of nodes

Figure 3 3 Gude's Internal Object Memory Organisation

The Virtnal Object Memory provided support for executng methods on shared,
synchromised objects, while the Secondary Storage provided permanent storage space
for objects The Virtual Object Memory acted as a cache for the Secondary Storage
Garbage collection was performed at the Secondary Storage level. Each Gude Task
was associated with a distributed address space The Virtual Object Memory consisted
of the address space of all active Tasks

In order to be used by the activities of a Task, an object must be present in the address
space of that Task This was done by mappmg the object mto the Task's address space,
and subsequently loading the object through the underlymg paging mechanmsm.

3.4.2 Guide-2

Whereas the ongmal Guide-1 system was a UNIX-based system, Gude-2 was
designed based upon a mucrokemel-based architecture Simularly whereas Guide-1 was
a smgle-language system, Guide-2 ammed to provide gemenc support for object-
onented languages which conformed to certam criteria, namely that the language 1s
class based, where the classes are orgamised m a herarchy by the is-a-subclass-of
relationship, and that objects are named by universal references
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Chapter 3 Object-Oriented Operanng Systems

The Gude virtual machine provides three basic abstractions m its object model for
buillding complex structures Instance-objects, class-objects, and code-libraries The
relationship of these objects 1s shown m Figure 3 4

Instance-object

Class-abject

method1
method?Z

Figure 3 4 Object Relationships m Gude

3.5 Mach

Mach 1s one of the most popular microkemel systems today, bemg the basis for
commercial operatmng systems such as NeXT, OS/2 and Wmdows NT Mach 3 0 was
designed to provide core system functions required m order to support higher system
levels It 1s ntended to be a foundation on which operating systems can be built

The Mach mucrokemel performs a small set of operations i order to reduce the size of
code running m both kernel space and user space The operations performed by the
mucrokernel fall nto five categones - Virtual Memory Management, tasks and threads
management, imterprocess commumcation, /O support and hardware management,
and both host and processor services These components define the abstract processmg
environments for application programs
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Chapter 3 Object-Onented Operating Systems

The Mach 3 0 multi-server system makes use of two object-oriented techmques m its
operatmg system construction Firstly, an object-oriented model 1s defined for all
mteractions between chents of the operatmg system and the system 1tself and secondly,

object-oriented techmques are used to structure those mteractions

The functionality of the operating system 1s provided by a three-layer architecture At
its lowest level hes the Mach 3 0 microkemel which provides the basic Mach
abstractions, such as virtual memory management, task management and device
handhng The next level 1s comprised of a set of mostly generic system servers These
execute as tasks m user mode, implementmng all of the high level functionality required
by a complete operating system, such as file management and networking Fmally, the
third and highest level consists of a collection of emulation Libraries executing m the
address space of the user tasks, which provide access to the generic services supported
by the services

The mteractions between system components are defined usmg an object-onented
model, and the system 1tself 1s implemented usmg an object-onented language All of
the services prowvided by the vanous servers are defined m terms of operating system
objects such as files, directornies, devices, etc Although each server 1s an abstraction of
an entire operating system component, as a result of its object-onented nature only a
subset of its operations may be mvoked This gwves the system service programmer
more flexibiity m the mmplementation of the server, which may be sphit, combined, or

optimuised, through the use of mhentance and polymorplhism, without affecting the
manner 1 which the chents mteract with 1t

IBM 15 currently workmng with Tahgent on a version of its Workplace OS, usmg Mach
as 1ts basis, which will provide object-onented abstractions from the microkernel to the
system service level, supporting object-onented services such as IBM's System Object
Model, Distnibuted System Object Model, and Tahgent's frameworks

3.6 Summary

Thus chapter mtroduced four different implementations of object-oriented operating
systems Spring, Choices, Guide and Mach The four were chosen based upon the

diversity of their design and mmplementation, and the nature of the mstitutions which
developed them.
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Although there were several common conceptualisations between the four operating
systems, the number and varnety of differences between them, m terms of both their
design and implementation was apparent This exemplifies the lack of consensus
among designers and implementors of object-onented operating systems In tumn,
perhaps this serves to demonstrate that research m the area of object-onented
operating systems has yet to approach matunty In a smular fashion, OO-MMURTL

shares some commonalities with these operatmng systems, but also displays some
diversities too
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Chapter 4

Object-Oriented MMURTL

4.1 Overview

This chapter mtroduces Object-Oriented MMURTL (OO-MMURTL) In particular,
new entities which have been added to the operatmg system are focused upon In
subsequent chapters each component of the operating system 1s exammed, such as the
process management subsystem and the memory management subsystem, and their
object-onented designs will be described m detail The strength of each of their
designs, however, 1s rellant upon the concepts mtroduced m this chapter

When object-orientation 1s used as the basis for the design and implementation of an
operating system, 1t 1s mevitable that new entities will be mtroduced at vanious stages
of 1ts realisation Previous chapters have provided definitions of the concepts which
underhie object-onented technology However, the strength of an object-onented
operatmg system comes as a direct result of the strength of the basic components from
which the remamder of the system 1s mhented If the mitial bmlding blocks lack a firm
foundation, the underlymg weaknesses will have a heavier effect on each subsequent
sublevel of the system design The two basic entities whuch form the basis of OO-
MMURTL are described below

4.2 Object-Oriented Entities in OO-MMURTL

The level of activity m the area of object-onented operating systems, particularly m the
distnbuted systems area, suggests that object-oriented technologies can provide
powerful new tools at the hands of the system and apphcation developer As with any
other technology however, the importance and value of object-onientation lies not m its
suggestion, but m maximsing 1ts effect on the performance and capabilities of the

operating system nself. Object-orientation 1s realised m QO-MMURTL by identifymg
and mtroducmg two primary concepts - objects and object stores
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4.2.1 Objects

Objects are the most basic entity m the OO-MMURTL operating system. The first step
undertaken m the pmgration of MMURTL to an object-oriented design was the
1dent:ification of the core components of the orignal system. Within these components,
entities which would be better implemented as objects m the new operating system
design are 1identified Subsequently, a class hierarchy 1s designed m order to
encapsulate the bebhaviour of each set of related objects which belong to a specific
component of the operating system.

4.2.2 Object Stores

The second way m which object-onentation 1s realised m OO-MMURTL 1s through
the mtroduction and use of object stores As was previously mentioned, the
mtroduction of objects 1s not sufficient m itself to reap the rewards of object-
onientation The behaviour of the objects has to be supported by a suitable
mfrastructure withm the operating system. In OO-MMURTL ths role 1s performed by
the Object Managers, which are described m detail later m this chapter

4.2.3 Documentation of Objects and Object Stores

Subsequent chapters discuss each of the mam components of the OO-MMURTL

operating system which have been redesigned usmg the object-onented paradigm,
namely

e Process management

o The messaging subsystem
 Memory management

o The ready queue

o The mterrupt mechanism

e The timer
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Each of these chapters follows a set pattern
1 The behaviour of the relevant Object Manager 1s descnibed
2 The class hierarchy which encapsulates the components behaviour 1s mtroduced
3 The mdmvidual classes are described
4 The mmphcations of object-orientation on the component m question are
discussed

Additional concepts and functionality which have been mtroduced to support a given

component are mtroduced during the course of the relevant chapter

4.3 Storage Containers

Every operatng system must store a wide range of mformation concerning the
processes and resources which 1t supports This information ranges from the address
and size of a data segment belonging to a specific task, to the contents of a message
which 1s bemg transported between two tasks The mdividual system developer must
decide how best to orgamise this data while remammg faithful to the goals and
constramts of the system design

MMURTL makes use of tables to store its system mformation Fixed-sized structures
are defined for each resource Each of these structures 1s padded so that the default
MMURTL page size 1s a multiple of the structure size Figure 4 1 shows a table which
represents examples of these structures, along with therr size, and the amount of

structures which could be allocated to an operating system memory page (1024 bytes)

Structire Size {bytes) | Per Page
Job Control Block (TCB) 512 2
Task State Segment (TSS) 512 2
Exchange (EXCH) 16 32
Request Block (RQB) 64 8

Figure 4 1 MMURTL Table Structures
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4.3.1 Advantages of Tables

The decision to use tables m the mmplementation of MMURTL was due to the

followmng factors

Fast access - Ths 1s perhaps the smgle most important benefit of tables Speed of
access 1s paramount m the mmd of a system designer at every stage of
development Because the system data stores are used so frequently by most
system operations, fractions of a second delay m retneving or modifymg the
mformation could result m a needless reduction m productivity This 1s
compounded m the case of tables that must be accessed m a mutually exclusive
manner In these cases, other tasks could be blocked while the runnmg task
accesses the data, causmng a further waste of CPU cycles

Stmplicity of their implementation - Tables are one of the simplest structures m
which to store and mamtamm data They are easily accessed and mamtamed,
substantially sumpler than a structure such as a hnked hist, whose pomters must be
fastidiously guarded at all times

Easily Managed - MMURTL makes use of static tables That 1s, each table 1s
allocated a predetermmed amount of operating system memory pages at boot time
From this pomt on, a sumple hist or bitmap 1s used to track free table entnes from
entries which are m use When a task 1s allocated a table-based resource, 1t 1s given
a umique number which represents the resource m question For example, each JCB
has a umque Job Number This number will serve not only to identify the relevant
job but can also be used to ndex the table directly, since' each identifier also
doubles as a table entry number

4.3.2 Disadvantages of Tables

Despite the advantages mentioned above, m my opiuon tables are an mherently himited
form of mformation storage for certam entities m an operatmg system, m particular an

object-onented operatmng system, for the followmg reasons
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o Distributed management - In order to facilitate speed of access, there are no
specific functions whose responsibility it is to maintain the system tables. Instead,
each function which accesses, and in particular modifies, a system table must repeat
the same actions as every other task which performs the same function. This lack
of accountability towards system tables is directly related to the next problem

* Inadequate protection - MMURTL uses two of Intel's four possible protection
levels - user and system. As a result, any system task can access any other part of
the system without restriction. A task may easily, yet inadvertently, corrupt a
system table therefore compromising system integrity with possibly disastrous
effects on other tasks.

»  Static allocation - Although this problem does not apply to all operating system
implementations of tables, it does apply to them as they exist in MMURTL. The
static allocation undoubtedly facilitates easier management of tables, however, it
also leads to two potential problems :

1 At boot-time, memory pages are allocated to each table, for example sixty-
four TSSs are immediately allocated, using thirty-two Kilobytes. As the
memory available to operating systems increase, this may be regarded as a
minor problem. At the same time any waste of system resources must be
carefully monitored, and so this possible waste cannot be disregarded
either.

2. Ofmore concern is the inability for additional table entries to be allocated
following boot-up. This could lead to the anomaly whereby a task requests
that a new resource be allocated to it, there are enough resources available
to satisfy the request, but there are no free structures left to represent the
resource, hence the request fails.

4.4 New Container Criteria

Taking the deficiencies of the current storage system under consideration, the

following criteria were set in order to determine a design for an adequate storage
medium for OO-MMURTL.:
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Centralised processing - In keeping with the object-oriented paradigm, the new
storage system had to have centralised processing. In other words, the functions
which could access and modify the tables ought to be grouped together. Updates
to tables could no longer be performed anywhere in the operating system simply
because it was possible. Each storage container must be responsible for all accesses
to the information it contained. To do this, a set of clearly defined access methods
must be made available by each container in order to facilitate every type of access
and update that may be required, where permissible by user or system tasks.

Protection - Since access to the system data stores will be through a centralised
processing area, an integral component of the new container should be that it offers
protection to the information it contains. No task should be allowed to gain access
to a data object, or perform an action on one, without full error checking having
been performed first. Examples of the checks that should be asked of a request
include:

- Is the object identifier valid?
- Ifitis valid, does the object it refers to exist?
- Ifit exists, have all of the resources required by the operation been allocated?

Only when the container is satisfied that the task requesting access to the data can
perform the desired action without causing a system error, will the container allow
the task to proceed.

Intelligence - This means that each container has some specific knowledge of the
nature of the data it holds. Tables are generic by nature. They provide an area of
data to store multiple entries of a given size. The only information that a function
requires to access the relevant record is the offset of the table, the index of the
entry, and each entry size. Although this calculation is both simple and rapid, it
does not provide optimum support for either the data or for the tasks which are
attempting to access it. Take a container which stores exchanges as an example of
an intelligent container. Such a store should be able to receive a communication
from a task and detect whether it is a message or a request. Having verified the
correctness of the communication, the container will then forward it to the
exchange belonging to the intended destination’s task if it's a message, or in the
case of a request then the intended system service will be looked up, before the
communication is forwarded to it.
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o Future expansion - The new contamer should also be capable of growth and
expansion Tables cannot mature m this fashion The contamer must be as flexible
as the data 1t holds If at some stage m the future OO-MMURTL was to become a
distributed operating system, 1t would be necessary for each object contamer to
provide additional fundamental behaviour by each of the objects 1t represents This
could mclude the need for object persistence and location transparency Although
this functionality would be provided by new aspects of the operating system, the
existing constructs, m particular the object contamers, would have to be capable of
supporting the new behaviour Given that the new contamer was obviously gomng
to be an object-oriented construct, the criterion of expansion becomes the easiest

to satisfy as a result of object-onented features, m particular that of mhentance

Taking the sum of these needs as a specification, a new construct has been mtroduced
to the OO-MMURTL operating system to fill the gap m its facilities This construct 1s
descnibed below

4.4.1 Object Managers

Every object-oniented operating system has some form of repository for objects Some
choose to group objects 1 related categones, others store objects m a global (withm a
particular system node) store There are as many names for such stores as there are

differmg implementations - contamers, collections, bags etc

The term Object Manager was chosen because 1t best describes the function performed
by the new construct It does more than contam or collect objects, equally 1t doesn't

Just store 1ts objects m bags Each of OO-MMURTL's Object Manager's performs the
following tasks

» Stores objects
e Venlfies the vahdity of all accesses to objects

» Mamtams responsibility for allocating and freemg memory used by objects and
the resources allocated to them

» Prowvides a complete set of pubhc access methods to the objects
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4.5 Object Manager Hierarchy

Having defined the facilities which had to be provided by an object manager, the next
step was to consider possible implementation strategies As was previously stated, the
approach taken was to provide a speciahsed object manager for each major component
of the operating system which mamtamed a number of objects under 1ts supervision
There would be a Process Manager, an Exchange Manager, a Memory Manager and so
on The reasonmg behind this was to ensure each manager had a strict, well-defined
realm of control

Each of these managers would be responsible for the key area 1t represents, and this
vanied widely between one manager and the next, for example process objects behave
differently and have a different life cycle than exchange objects, and so on Having said
that, the basic functionality to store and retrieve a memory or an exchange object
remain closely related

As a result, 1t became apparent that each Object Manager would have two sides to 1ts
behaviour Firstly, all of the managers shared the need to store their objects m a simular
fasmon On the other hand, the support provided by each manager for access to the
objects they stored varied

The solution to satisfymg both aspects of the behaviour of each Object Manager 1s
provided by the followmg two-step mmplementation strategy

Step One A root CManager class 1s defined whose purpose 1t 1s to' provide storage and
retnieval functionality Thas class would manage the pointers to the objects 1t stored, 1t
would allocate and deallocate memory appropnately m order to facilitate the storage of
the objects. and 1t would provide methods which could be used by mherited classes to
manipulate the data 1t stored

Step Two Subclasses of CManager are created for each component of the operatmg
system. These subclasses would mhent all of CManager's functionality m order to
manage the objects they contamed In addition each implementation of a CManager
subclass must provide methods which deal exphcitly with the types of object they
store These methods would define the public mterface of each particular
implementation of an Object Manager
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These two steps combme to provide a set of private methods hudden from the user
which store and mamtam the objects, and a set of pubhc methods which provide the
functionality to perform tasks specific to each component of the system.

The CManager class lnerarchy m OO-MMURTL 1s flat m nature, as shown m Figure
4 2 It 1s possible, however, to implement further subclasses of a CManager subclass 1if
necessary, although such a need does not currently anse m OO-MMURTL

CManager

CProcessManager| |CExchangeManager| =see==s=- CMemoryManager

Figure 4 2 The CManager Framework

In order to exemphfy their relationships, the followmg section describes an example
transaction between a task, an Object Manager and an object represented by the
manager

4.6 An Example Object Manager Transaction

The scenano which forms the basis for this example 1s that of a task sending a request
to an exchange The steps which compnse this action in OO-MMURTL are shown m
Figure 4 3 The bold bracketed numbers m the nght column refer to the control flow
diagram which 1s shown 1 Figure 4 4

Note that the Object Manager m question - the CExchangeManager - 1s described m

detaill m Chapter 6 along with the class luerarchy which represents the entire messagmg
system (mncluding the CExchange class which also features m the example)
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Step | Description

1 Task sends request message to CExchangeManager

2 CExchangeManager attempts to retrieve pomter to
requested CExchange

3 CExchangeManager venfies existence of CExchange

4 CExchangeManager vernifies vahdity of request

5 CExchangeManager creates a TRequest record

6 CExchangeManager sends the TRequest record to the
relevant CExchange

7 CExchange attempts to remove a warting task from 1its
own task queue

8a If no task was waitng, the request 1s queued (goto step

11)
8b If a task was waiting, the request 1s gven to 1t and the

task 1s placed on the ready queue

9 The ready queue 1s re-evaluated

10 A switch 1s made to the lughest priority task
11 Control retumns to the CExchangeManager

Figure 4 3 Message from a task to an exchange (Steps)

TaskQueue

e

%

A

TR
&

AT
3554

TR
2
Lelatetstetetatatyryd
e
RS

2
SRS
%

Exchange

: Exchange
Manager &5

R SE MsgQueue

57
2

2
%

!
bt

2
5

o
o

5
¥

‘:
%

tiet

2
3

ﬁ,
R
R8s

RS

R

e

)
R
K

0
whetetates

.
%
o

2
XX
SRS

2
s
£
RS
pooss
L3258
s
2
5%
R
22e%s
R
%

o

2%
¢
2

25
pes
B

'}
't

(5
[

B
'

[Ready@ueue‘}

Figure 4 4 Message from a task to an exchange (Control Flow Diagram)

44



oy

Chapter 4 Object-Oniented MMURTL

The control flow diagram depicted above shows the flow of control between the
vanous entities m the messagmg subsystem and the ready queue m response to a
request for an exchange Control enters the system at the En#ry node and leaves at the
Exit node A thm arrowed lme represents a transfer of control which does not
mmediately return, while a thick arrowed lme shows a flow of control which does
return

4.6.1 Advantages Demonstrated by the Example Object Manager Transaction

The followmg features of the previous example demonstrate the improvements which

have been provided by the new Object Manager entity m object access transactions

o The message which 1s mtended for the CExchange object, 1s mitially sent to the
CExchangeManager This allows the CExchangeManager to vet and possibly reject
the request

» Further resources are only committed once the request has been vahdated

o The CExchange object 1s only made aware of vahd, correctly formatted requests

o CExchangeManager retams control of the CExchange object at all times

4.7 Summary

This chapter mtroduced Object-Onented MMURTL In particular, the use of two
primary object-onented entities which form the foundation of OO-MMURTL were
described, namely objects and object stores The responsibilities of the new system's
object stores were identified, subsequently a new operatmg system component called
an Object Manager was described which would handle these responsibilities Finally, an

example transaction was given which made use of an Object Manager, lughlightmg the
advantages of the new mechanism.
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Chapter 5

The Process Management Model

5.1 Overview

This chapter describes OO-MMURTL's process management model A bref
description of the improvements which result from the use of object-onentation m the
design of the model 1s given Followmg this, defintions are provided for the new
concepts which are mtroduced m the design of the new model. Next, the object
manager which 1s responsible for this subsystem, the Process Manager 1s described At
this pomt the hierarchy of component classes of the process management model are
presented, before each of the classes 1s described m detail Finally, a summary 1s made
of the advantages which have ansen as a result of the model's implementation

5.2 MMURTL's Tasking Model

MMURTL's tasking model 1s based upon the notion of jobs Each piece of executing
code 1s treated as a job, regardless of whether 1t 1s a user program, a system program,
or a system service Each job 1s represented by a Job Control Block (JCB) which
contams mformation pertaming to 1t, such as its name, the address of 1ts Page

Directory, and the address and size of its code, data and stack segments

OO-MMURTL mproves upon this in two ways

e A class model 1s provided which differentiates the various types of executing
entities within the operatmg system. A basic pattern of behaviour 1s defined for
each one By domg this, the new design enables the operatmg system to distinguish
the mtrnsic behavioural differences between each type of process

» Secondly, a specialised component bas been mtroduced whose sole aim 1s to
manage the behaviour of processes of all types, and to ensure that process requests
are correctly stated and switably behaved This component, which 1s called the
Process Manager replaces the static table which previously held job mformation
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5.3 Process Management Model Definitions

In light of the changes to the Process Model, it 1s necessary to define and clanfy the
concepts mvolved, before proceedmg with a discussion of OO-MMURTL's new
model

A Process 1s a control path through a group of C++ objects Each process 1s composed
of one or more threads of execution Each thread 1s referred to as a 7ask Information
concernmng tasks 1s mamtamed m a Task State Segment (TSS) structure A TSS 1s a
construct defined by the Intel processor The processor uses the TSS to manage its
tasks

One of the advantages of usmg the TSS 1s 1ts capacity for expansion The processor
allows the operatmg system to append additional fields to the TSS One of the fields
which 1s added to the TSS by OO-MMURTL 1s the address of the task's corresponding
Process object In this way the operating system can use the TSS to directly access the
Process for a grven task, thus enabling actions (such as task switching, spawnmg new
tasks etc ) to be performed on 1t

Three basic entities can be 1dentified m the OO-MMURTL Process Model

e A Job 1s an executmg program whose hfe cycle consists of bemg loaded mto the
operating system, striving for system resources m order that it can complete its
purpose, before exiting It aim 1s to run to completion with mmimum delay A Job
can be performed m privileged (OS) or non-privileged (User) mode

o A System Service 1s a Process which 1s usually loaded at boot time, but may also be
dynamically loaded later, and which remams dormant for much of its existence Its
purpose 1S to await requests from a Job or another System Service, requirng a
speciahsed action to be performed When the action 1s performed, the service
returns to a dormant state until another request 1s recerved Usually a System
Service will be removed from memory when the operating system 1tself termimates
The Keyboard module and File System are examples of modules which provide
System Services
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o The final operating system entity which can gam control of an execution thread 1s a
Device Driver These are speciahsed pieces of code whose purpose 1s to control or
emulate hardware on the system. They are low level entities which abstract the
mner workmgs of hardware devices to simplify access to them by Jobs and System
Services

5.4 The Process Manager

In MMURTL, Task Management 1s performed by two components
o The processor manages TSS structures

o The operating system manages Job Control Blocks

Each TSS pomts to a corresponding JCB which contams data required by the
operating system about each job Job Control Blocks are structures of static length
(512 bytes) which are stored m a table and referenced by an mdex mto that table The
operatmng system provided no smgle component to manage the JCB table Instead any
job with system privileges would access the JCBs directly

The central component of the OO-MMURTL Process Management Model 1s the
Process Manager, which replaces the JCB table The processor still manages TSS
structures as before, with the exception that each TSS now pomts to a process object
as opposed to a JCB structure

The Process Manager was mtroduced to overcome the followmg problems which were
mherent m MMURTL's task model

» Because no smgle component was responsible for the management of the JCB
table, any system task could access and amend, or even destroy 1t For this reason,
the mtegnity of the table could be easily compromsed
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o Jobs were responsible for performing privileged operations upon themselves This
led the system developer to perform tricks through Assembly language to
overcome the paradoxes which resulted One example of when this occurred was
when a program termmated itself and specified another program which was to run
next What happens m this case 1s that the program to be termunated calls the
ExitJob() function where 1ts resources are freed Now, however there 1s no
program to return to, it has been termunated Instead the ExitJob() function
mampulates the callmg stack so that the operatmmg system returns control to the
program specified to run next This 1s an unorthodox operation which can cause
system crashes with ease 1f the shghtest mistake 1s made

5.5 The Process Management Class Hierarchy

The purpose of the OO-MMURTL Process Management hierarchy, as with any other
object-oriented framework, 1s to prowvide well-defined mechamisms that allow
developers to extend and leverage the functionality provided, m order to icrease
system productivity and mtegration [Tahgent '93]

The process management hierarchy has two separate components, which represent the

different types of executing entities possible m: OO-MMURTL The first and most
common of these 1s the CProcess lierarchy

Figure 5 1 depicts the base class CProcess and its subclasses, CSystemService and
ClJob Clob's subclasses CUserJob and CSystemJob are also represented

CProcess

| —

CSystemService Clob

CUserJob CSystemdob

Figure 51 CProcess class hierarchy
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CProcess, CSystemService and CJob are abstract classes They are msufficient m
themselves to be mvoked Their purpose it to define a template for the entities which
they represent A programmer must derrve a new class and write the abstract methods

which are required i order to create a concrete class

CUserJob and CSystemJob are both concrete classes Classes of both of these types
can be mstantiated without need for a new mherited class This 1s because they have
been sufficiently refined through the base class CProcess, its subclass CJob, and the
relevant subclass CUserJob or CSystemJob

The second component of the process management hierarchy relates to device drivers
They are not processes i theirr own night As such, their behaviour requured them to be
distinguished by a separate erarchy Thus 1s shown m Figure 5 2

CDeviceDriver

|

CReentrantDewviceDriver CHonReentrantDewiceDriver

Figure 5 2 CDeviceDriver class framework

The reason the CDeviceDriver hierarchy 1s distmct from the remamder of the process
management framework 1s because device drivers are not regarded by the operating
system as mdependent executions CDeviceDrivers do not retam therr own threads of
control, mstead control 1s passed from tasks belongmg to CProcess objects A

CDeviceDriver object 1s mvoked and upon completion, control 1s returned to the
calling CProcess

As depicted m Figure 5 2, CNonReentrantDeviceDriver, CReentrantDeviceDriver and
CDewviceDriver are abstract classes The actual code which interacts with the hardware

that each device driver controls must be mserted by the device driver programmer for
each particular device
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5.6 The CProcessManager class

In order to solve the mherent problems of the old JCB, the new Process Manager

performs two basic functions

« It acts as a contamer to store and manage the process objects

o It acts as a gateway through which calls to processes are vetted before bemg
allowed to be performed

In order to fully satisfy these requirements, the Process Manager 1s responsible for the

followig actrvities

o Creation of new Jobs, System Services and Device Drivers m response to requests
from the operating system or existing Processes / Device Drivers

o Directing messages and method calls from the operating system or user programs
to the appropnate Process / Device Driver

+ Responding to messages and methods which have been dealt with by the
appropnate Process / Device Driver

« Ensurng the safe closure of a Process / Device Driver, venifying that its resources
have been freed and that any subsequent jobs which must be created are started

5.6.1 Public Methods of the CProcessManager class

Certam functionalty 1s allowed to be performed directly on a CProcess object An
example of this would be to set the name of the process which 1s to be executed upon
completion of the current process This would be performed by usmg the SezEx:tProc()
method. However, m order for the operating system or a program to have access to a
CProcess 1t must first request the pomter from the Process Manager Only when the
request has been vahdated, will the program be able to perform actions on the
CProcess Thus 1s demonstrated in the example portion of code m Figure 5 3

51



Chapter 5 The Process Management Model

void ReturnToCLI ()
j/ Select an arbitrary process number

unsigned long ProcNo = 3,

// Declare a poainter to a CProcess

CProcess *pAProcess,

// Retrieve a pointer to the process

pAProcess = ProcessManager->GetProcess (ProcNo),
// Check success of operation

1f (pAProcess==NULL)

xprintf ("Process Manager reports no such process"),
else

pAProcess->SetExitProc ("c \\mmurtl\\cla run"),
}

Figure 5 3

Other functions, however, may only be performed by the Process Manager An
example of this 1s when a process termmates This cannot be done manually - 1t may
only be performed through the Process Manager A request 1s submitted to the Process
Manager which, having been vahidated, deals with the request and the CProcess object
directly Control only reverts to the program which mvoked the recently completed
process once the object representing that process has been deleted

Other public methods belongmg to the Process Manager deal with settng and

retrieving 1ts attributes In summary, there are three categories of methods mvocable
on the Process Manager, they are

1 Process retneval methods

2 Privileged process management methods

3 Attnbute setting and retrieval methods

The methods belonging to each of these categones are described below

5.6.1.1 Process retrieval methods
CProcess *GetProcess(unsigned int ProcNo)

This method, havmg venified the vahdity of the ProcNo parameter, will return a pomter
to the corresponding process object to the calling program.
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CProcess *GetCurrentProcess()

This method will return a pomter to the currently executing process to the callng
program. The mdex of the currently executmg process 1s a kemel vanable which 1s
retnieved by the call GetCurrProc() There will always be at least one executing
process (the OS Monztor)

5.6.1.2 Privileged Process Management Methods

long LoadProc(unsigned int ProcNo, long fhRunFile)

This method 1s responsible for loading a program mto an existing Process object This
operation 1s requested primanly by the Chain() method, however 1t may also be called
by the ExizProc() method 1if a process to run followmng the completion of the current
process 1s specified ExitProc() and Chain() are each responsible for opening and
vahdatmg the run file! and settng up the run file vanables The first step of the
LoadProc() method 1s to allocate user memory for the new process' stack, code and
data If this 1s completed successfully, the code and data are loaded from the run file

long LoadNewProc(char *pFileName, long *pProcNumRet)

This creates and loads a new process LoadNewProc() 1s responsible for reading and
vahdatmg the run file It must 1dentify the size of the code, data and stack segments
required by the program and allocate these segments LoadNewProc() then loads the
new process into the newly allocated segments It must also create a new CProcess
object and add 1t to the exsting collection of CProcess objects If the new process 1s
successfully loaded and created, LoadNewProc() returns ErcOK and the new process
number 1s stored m pProcNumRet, otherwise an error 1s returned

long Chain(unsigned int ProcNo, char *pFileName)

The purpose of this method 1s to allow a process or a service to termmate 1tself and
replace 1tself by another process or service Chain() termumates all of the tasks
belongimg to the process which calls it and frees system resources which will not be
used m the new process

1 A run file 15 a file with the extension RUN - This represents an executable file analagous to a DOS
EXE file
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The location of the process which 1s to replace the current one 1s stored m the
ExitRunFile attribute This field 1s set by the SetExitProc() method and retneved by
the GetExitProc() method The ExitRunFile field of every new process 1s mitially
empty One mmportant aspect of the Chain() function 1s that the second process runs m
the context of the first In other words, the second job uses the CProcess object which
was previously home to the first process In this way, the Page Directory remams the

same

void ExitProcess()

This 15 called from a user process or system service Thas cleans up all of the resources
that the termmatmg process was allocated ExitProcess() also checks for an exit run
file to load 1if one 1s specified If no exit run file 1s specified the process 1s completely
terminated, and, 1if the video and keyboard were assigned to 1t, they are reassigned to
the Monitor

5.6.1.3 Attribute Setting and Retrieval Methods

long GetProcessCount ()

This function returns the current number of processes held m the CProcessManager
contamer It 1s primanly used for admmistration and statistical purposes

5.7 The CProcess class

The primary purpose of the CProcess class 1s to define the basic attributes of a process
m OO-MMURTL CProcess 1s an abstract class from which CJob and CSystemService
are mhented, both of which are also abstract Note that application programmers will
create process mstances of either of these two subclasses, rather than of the base class
CProcess, which will be mhented from when new types of executing entities are
mtroduced to OO-MMURTL

CProcess 1s a genenc class which defines the abstract behaviour of all subsequent

subclasses of CProcess Further attributes which are specific to speciahsations of
CProcess are defined m the subclasses
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5.7.1 Public Methods of the CProcess class

Many of the methods belonging to the CProcess class concentrate on settng and
retnieving 1ts data attributes Most of these are trvial such as the SetExitJob() /
GetExitJob() pair whose code appears m Figure 5 4

voi1d CProcess SetUserName(char *pUserRet)

{
}

strcpy (sbUserName, pUserRet) ,

void CProcess GetUserName (char *pUserRet)

{
}

strcpy (pUserRet , sbUserName) ,

Figure 5 4 SetUserName() and GetUserName() methods

Due to the simphcity of thewr operation I will onut discussion of CProcess' more basic
methods and mstead concentrate on those which directly affect the operation of the
OO-MMURTL Process Management Model. These are the constructor, destructor,
and the FreeResource() method

CProcess() - [Constructor]

The CProcess constructor 1s only called from the Process Manager's LoadNew.Job()
method This 1s necessary m order that the new process request 1s first vahdated, the
run file 1s then checked before code, data and stack segments are allocated and loaded
Then the CProcessor constructor 1s mvoked to create an object for the new process
Fmally the newly created CProcess object 1s added to the collection of CProcess
objects mamtamed by the Process Manager If any other object tnes to create a

CProcess object, vital stages m its construction could be missed which could lead to
erTors
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The CProcess constructor performs three basic tasks

1 It mtiahses attributes whose mitial values are recerved through parameters to the
constructor, for example process name, user name and process path
It sets the standard mput to keyboard and the standard output to video

3 It sets the default values of the remammg vanables which will always carry the
same mitial values for each task, for example cursor type, mit1al cursor position etc

The code for the CProcess constructor 1s shown m Figure 5 5

CProcess CProcess(long Num, char *Name, char *User,
char *Path, char *CmdLaine,
char *VidMem, char *vVirtvid)’

/* Initialise variables as per parameters */
ProcNum = Num,

strcpy (sbProcName, Name) ,

strcpy (sbUserName, User) ,

strcpy (sbPath, Path) ,

strcpy (ProcCmdLine, CmdLine) ;

pvVidMem = VidMem,

pvirtvid = VirtVvag,

/* Set system input for this process to keyboard */
strcpy (SysIn, "KBD"),

/* Set system output for this process to video */
strcpy (SysOut, "VID"),

ExitError = @,

CrntX = CrntY = 0, /* Initial cursor pos (0,0) */
fCursOn = 1, /* Cursor 1is on */

fCursType = 1 /* Block cursor */

ScrollCount = 0,

Normvid = 7, /* White on Black */

strcpy (EX1tRF,""), /* No ExitRunFile initially */

Figure 55 CProcess constructor

An mportant pomt to note 1s that for each process, the default system mput 1s always

the keyboard and the default system output 1s always the monitor This may not always

be the desire of the systems programmer For example m the case where a process

must dump 1ts entire output to a prmter In such a case the programmer has two

options

1 Reset the default system mput value usmg the CProcess->SetSysIn() method Ths
would have to be mvoked immediately after the CProcess constructor to ensure
that no output 1s missed
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2 Derve a new subclass from the CProcess class The new class, called for example
CPrinterDumpProcess, would have to create a new constructor, as shown i Figure
56 Now, the process will send 1ts system output directly to the prmnter
mmediately following the call to its constructor creation This example, though
trvial, shows how the CProcess hierarchy can be adapted to change the default

behaviour of a set of processes

/* Class Definaitaion */

/* Only a single method i1s rewratten the remainder are
inherited from the CProcess class along with CProcess'
attributes */

class CPrinterDumpProcess public CProcess {
publaic.
CPrinterDumpProcess (long Num, char *Name, char *User,
char *Path, char *CmdLaine,
char *VidMem,char *Vairtvad),

} ’
/* Class Code */

CPrainterDumpProcess CPrinterDumpProcess (long Num,
char *Name, char *User, char *Path,
char *CmdLine, char *VidMem, char *Virtvid)
CProcess (Num, Name, User, Path, CmdLine, VidMem, Vairtvaid)

{

/* Set system output for this process to printer */
strcpy (SysOut, "PRN") ,

}

Figure 5 6 The CPrmterDumpProcess class

~CProcess() - [Destructor]

The CProcess destructor 1s responsible for freemg any additional memory which was
allocated by mstantiations of the CProcess object Note that the underlymg system
resources used by the process - exchanges, page directones etc - should have been
previously freed by the Process Manager by callng the CProcess method
FreeResources()
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FreeResources()

The purpose of the FreeResources() method 1s to deallocate all of the previously

allocated system resources belongmg to a process This mvolves

o Invoking the abstract method FreeCurrentResources() so that subclasses of
CProcess may deallocate any additronal system resources which they may have
previously allocated

o Emptymg the ReadyQueue of any tasks belonging to this CProcess object

» Freemg any exchanges used by this CProcess object

Tn this way, when control returns to the calling method, such as CProcessorManager's
Chamn() or ExitJob() methods, 1t can safely termnate thus process knowmg that all of
its resources have been freed The FreeResources() method 1s shown m Figure 5 7

5.8 The CSystemService class

A system service 1s an mstallable program which provide system-wide message-based
services for apphcation programs and other services Each service 1s associated with an
exchange Whenever a program wants a system service to perform an action, 1t sends a

Request message to the appropnate exchange The service cammes out any necessary
actions before replymg with a Respond message

In MMURTL, each system service 1s given an eight character name by which 1t 1s
uniquely 1dentified Examples of service names m OO-MMURTL mclude
"FILESYSM" for the file service and "KEYBOARD" for the keyboard service

A service 15 only recogmised by the system when 1t has called the function

RegisterSVC() The followmg 1s the full set of steps required m order to set up a

service

1 Allocate and mitiahse any resources required, mcluding the mam service exchange,
additional exchanges, and additional memory

2 The function RegisterSVC() 1s called The name of the new service and the address
of the function which will service the requests are passed as parameters

L)

Wait for messages, service them, and respond
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long CProcess FreeResources()
{
CExchange *pExch, *pCurrExch,
long ercE, 1E, ExchProc, CurrProc,

// Allow subclasses to free additional system resources
// which they may have allocated

FreeSystemResources (),

// Remove ALL tasks for this job that are at the ReadyQueue
// This task won't be removed because it's Running!

ReadyQueue- >RemoveRdyProc (),

/* Deallocate all exchanges for this process except the one
belonging to current TSS The Dealloc Exchange call will
invalidate all TSSs found at exchanges belonging to this
user, and will also free up RQBs and Link Blocks The
Job will not be able to i1nitiate requests or send messages
after thas */

// Find out current TSS exchange so 1t isn't deallocated

pExch = GetTSSExch(),
CurrProc = GetCurrProcNum(),
erck 0,

1E 0,

// Loop through Exchanges, removing resources

while (ercE '= ErcOutOfRange) {
ExchProc = ExchangeManager->GetOwner (1E),
pCurrExch = ExchangeManager->GetExchange (1E),
1f (('ercE) && (ExchProc == CurrProc)&& (pCurrExch'= pExch))
ercE = ExchangeManager->RemoveExch(1E),
1E++,

}

/* Now that the user can't make anymore requests, Send Abort
messages to all services This closes all files that were
opened by the Job and frees up any other resources held
for this job by any services */

Sendabort (),

// Clear the exchange of abort responses (ignore them)

TPacket *pPkt= pExch->CheckPacket (),
while (pPkt==NULL)
pPkt= pExch->CheckPacket (),

Figure 5 7 The CProcess FreeResources() method
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The CSystemService class automates this behaviour m order to simphfy the task of
writing a system service and also to reduce the capacity for errors during the settmg up
of the service and the servicmg of its requests

Each CSystemService class has two basic attributes - a mam exchange, which will be
used to route the requests, and a service name This remams the same as MMURTL
In OO-MMURTL however, the creation and mitiahsation of the mam exchange 1s
automatically performed by the CSystemService constructor

In addition, the CSystemService class prowvides a specific abstract method,
ServiceRequest(), which 1s used to service requests The private method, Service(), will
monrtor the system service's exchange, and call this function whenever a request is
made The code for CSystemService's constructor and destructor are shown m Figure
5 8, while the code for its Service() method 1s shown m Figure 5 9

CSystemService CSystemService(long Num, char *Name,
char *User, char *Path, char *CmdLine,
char *VidMem, char *Virtvad)
. CProcess (Num,Name, User, Path,CmdLine, VidMem, Virtvad) ,
{
SvcExch = CreateExchange (),
strcpy (pSvcName, Name) ;
RegisterService (pSvcName, SvCcExch) ;

}

CSystemService ~CSystemService ()

{

SvcExch->Remove () ;
SvcExch->DeAllocate(), // Free memory used by SvcExch

}

Figure 5 8 The CSystemService constructor and destructor

The CSystemService class has greatly simphfied the process of writing a service The
allocation of the service's exchange, the deallocation of its exchange, and the routing of
1ts requests, are all performed by the class framework To create a new system service

a programmer need only derive a new subclass of CSystemService and overwrite the
ServiceRequest() message

60



Chapter 5 The Process Management Model

void CSystemService Service()

{

unsaigned long ErrorToUser,
unsigned long Message[2],
TRequest *pRegBlk

while (1) {
TPacket *pPkt = SvcExch->WaitPacket (),

1f ('pPkt'=NULL) {
pRegBlk = pPkt->Req,
ErrorToUser = ServiceRequest (pRegBlk),
Respond (pRegBlk, ErrorToUser) ,
}
}

Figure 5 9 The CSystemService Service() method

To demonstrate the simplicity of creating a system service, a trivial example 1s shown
m Figure 5 10 The sole purpose of this service 1s to return unique ascending numbers
m response to each Request The example device driver essentially consists of two lmes
of code One to mitialise the counter, the other to assign the next value

class CNumbersService public CSystemService {
unsigned long NextNumber;

publaic-
CNumbersService{long Num, char *Name, char *User,
char *Path, char *CmdLine, char *VidMem,
char *Virtvad),
virtual unsigned long ServiceRequest (CRegBlock *pRegBlk) ;

}

CNumbersService CNumbersService(long Num, "NUMBERS ",
char *User, char *Path, char *CmdLine,
char *VidMem, char *VirtVvaid)
CSystemService (Num, "NUMBERS ", User, Path, CmdLine,
VidMem, Virtvad),

{
}

NextNumber = 0,

unsigned long

CNumbersService- ServiceRequest (CRegBlock *pRegBlk)

{
*pRegBlk pDatal = NextNumber++,
return O,

}

Figure 5 10 A sample CSystemService subclass
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5.9 The CJob Class

This class forms the basis for future user applications and system programs It 1s an
abstract class, which defines attributes and methods which are common to 1ts
subclasses, CUserJob and CSystemJob This common behaviour, which 1s abstracted m
the CJob class, must be sufficiently generic so that 1t will also support further, currently
unknown, types of jobs In other words, CJob should not be altered simply with
CUserJob and CSystemJob m mind

Because the purpose of this design of OO-MMURTL 1s to rephcate the existing
behaviour of MMURTL, the CJob subframework 1s simple m 1ts design Its sole
purpose 1s to deal with the allocation of memory to the job m question The method
AllocPage 1s an abstract one, which 1s mmplemented m concrete subclasses of CJob, m
this case, CUserJob and CSystemJob

The class definitions for these three classes are presented in Fagure 5 11

Future developments of OO-MMURTL can benefit from this class hierarchy in two

ways, namely

1 Additional executing entities can be supplemented to the hierarchy, thus enabling
them to mhert the basic behavioural trats from the existing classes, without
affecting those classes or the programs which use them.

2 The existing classes can be augmented so that they provide further support for OO-
MMURTL jobs

5.10 The CUserJob Class

This concrete class 1s a subclass of CJob Its role is to provide concrete
mplementations of Clob's abstract methods Currently, this mvolves providing an
AllocPage() function which will allocate memory m an approprnate manner to a user
job This becomes a simple matter of caling the CMemoryManager method
AllocPage() (see Chapter 7 The Memory Model), which will attempt to allocate a
specified amount of memory pages m user space, to the currently executmg process
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/**************************************************

* CJob Class Definition *

**************************************************/

class CJob : public CProcess
public
CJob (long Num, char *Name, char *User, char *Path,
char *CmdLine, char *VidMem, char *VirtVaid)
CProcess (Num, Name, User, Path, CmdLine, VidMem,
vairtvid) {}o0,

virtual unsigned long AllocPage (unsigned long nPages,
CPage *ppMemRet) = 0,

b

/**************************************************

* CUserJob Class Definition *
**************************************************/

class CUserJob : public CJob
public-
CUserJdob (long Num, char *Name, char *User, char *Path,
char *CmdLine, char *VidMem, char *VirtVvad)
CJob (Num, Name, User, Path, CmdLine,VidMem, Vartvad) {},

virtual unsigned char *AllocPage {unsigned long nPages),

/**************************************************

* CSystemJob Class Definition *
**************************************************/

class CSystemJob . public CJob {
public-
CSystemJob (long Num, char *Name, char *User,
char *Path, char *CmdLine, char *VidMem,
char *Virtvaid)
CJob (Num, Name, User, Path, CmdLine, VidMem, Vartvad) {},

virtual unsigned char *AllocPage (unsigned long nPages),

Figure 5 11 The CJob, CUserJob, and CSystemJob class definitions
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5.11 The CSystemJob Class

In the current implementation of OO-MMURTL, CSystemJob behaves m a simmlar
manner to CUserJob Ths 1s reflected m the operation of system and user jobs by the
operating system. The only difference between the two bemg that while CUserJob
allocates pages from user memory, CSystemJob allocates pages from system memory
As a result, CSystemJob's AllocPage() mvokes the CMemoryManager method
AllocOSPage() (see Chapter 7 The Memory Model), which will attempt to allocate a

specified amount of memory pages m operatmg system space, to the currently
executmg process

The code for both of these implementations 1s shown m Figure 5 12

/**************************************************

* CUserJob Implementation *

**************************************************/

unsigned char *CUserJob:.AllocPage(unsaigned long nPages)

{
}

return MemoryManager->AllocPage (nPages),

/**************************************************

* CSystemJob Implementation *
**************************************************/

unsigned char *CSystemJob: AllocPage (unsigned long nPages)

{
}

return MemoryManager->AllocOSPage (nPages),

Figure 5 12 Job allocation methods

5.12 Device Drivers

Device drivers can be loaded mto the system during or followmg boot time As its
position as a subclass of CProcess denotes, device drivers are programs m their own

nght They behave differently, however, from a conventional system or user program.
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In MMURTL, m order for a device driver to be recogmised by the system 1t has to
perform the followmg steps

Allocate and mitialise any system resources which are required
Allocate additional memory, if required

Allocate exchanges, if required

Set up mterrupt service routmes, if required

Check and mitialise device

Initialise the DeviceControlBlock (DCB) structure

Enable any hardware mterrupts which are bemg serviced

00 1 O\ Wi AW

Call JmitDevDr(), passimg the DCB as a parameter

At this pomt the device driver task termunates but its code remams resident From this
pomt on, the device driver 1s available to external apphcations The device driver must
provide the followmg three pubhc functions which will respond to calls from the
operatmg system with device-specific actions

1 Devicelmit() - This function 1s called to mitiahse a device or reset one followmg
a crash

2 DeviceOp() - This 1s used by services and programs to carry out operations
pertment to the device For example, a floppy disk driver's operations would
mclude Read and Write operations Each dewvice has a table of possible
operations One of the parameters to the DeviceOp() function would specify
which operation 1s to be performed while another would hold a pomter to data
required by the operation

3 DeviceStat() - This function returns the status of the device controlled by the
driver The value of the status 1s particular to each device When a device

doesn't keep a status a zero should be returned to mdicate there are no
problems

There are two different types of device driver - sequential and random. A sequential
driver deals with devices which handles data m fixed-size blocks A random device
driver deals with vanable sized data Device drivers can also be classified by therr
facility for re-entrancy Certam devices are capable of dealing with several programs
at a tune, others operate exclusively for a single program.
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In order for a device driver to operate m non-reentrant mode, 1ts programmer must
mclude code which will guarantee mutual exclusion within each of the drvers three
public functions

OO-MMURTL prowvides three classes to describe 1ts device drivers facilities They are
CDewviceDriver, CNonReentrantDeviceDriver and CReentrantDeviceDriver

5.13 The CDeviceDriver class

This 1s a base class which defines the attributes which are held by each object The
CDeviceDriver class also provides a parr of constructors One mitialises the class
attributes as a sequential device driver, the other for a random one The code for each
of these 1s shown m Figure 5 13

CDeviceDriver CDeviceDriver (char *DevName, unsigned int BPR,

int Blocks, int SingleUser)
{
strcpy (Name, DevName) ; .
nBPE = BPB, // Bytes per block
nBlocks = Blocks,
fSingleUser = SingleUser, // Is device assignable®
Type = 2, // Sequential device driver

LastDevErc = 0,
wJob = 0,

CDheviceDriver CDeviceDraver (char *DevName, int SingleUser)

{

strcpy (Name, DevName) ,

fSingleUser = SingleUser, // Is device assignable®
Type = 1, // Random device driver
nBPB = 0, // Does not apply
nBlocks = 0, // Does not apply

LastDevErc = 0,
wJob = 0,

Figure 5 13 The CDeviceDriver constructors
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CDeviceDniver also defines three pubhc abstract classes and three abstract private
classes The three pubhc functions are

o Operation()

o Status()

o Initialise()

Each of these corresponds to the ongmal Devicelnit(), DeviceOp() and DeviceStat()
functions When an operation 1s requested by a program or service, the message 1s sent
to the Device Driver Manager This m turn forwards the message to the appropnate
CDeviceDriver object

Each of CDeviceDriver's three abstract pubhc functions also have a correspondmng
abstract private function

e DevOperation()

o DevStatus()

o DevInitiahse()

Although this may seem hke unnecessary redundancy, the purpose of these murror
functions becomes clear m further subclasses of CDeviceDriver

5.14 The CNonReentrantDeviceDriver class

This class provides mtrmsic mutual exclusion m order to ensure non-reentrancy The
reason for providing two functions for each action now becomes clear The pubhc
methods act as wrappers providing protection in order to ensure mutual exclusion
exists Once mutual exclusion has been granted, the correspondmng private method 1s
mvoked The private methods remam abstract m this class This should be obvious
since the mitialisation, operation, and status code must be written by the device driver
programmer

Mutual exclusion 1s achieved by using an exchange as a semaphore Each non-reentrant
device driver must mitialise an exchange m 1ts constructor Before entermg each
critical section, the object performs a WaitMsg on the exchange If there 1s already
another process m the device driver's critical section, the others will wart until a
dummy message 1s sent to the exchange
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The code for the three pubhc CDeviceDriver methods are presented m Figure 5 14

long CNonReentrantDeviceDraiver Operation(unsigned long dOpNum,
unsigned long dLRA,unsigned long dnBlocks,
unsigned char *pData)
long erc,

TPacket *pSemPkt = SemExch-s>WaitPacket (), // Wait for MutEx

/* Mutual exclusion has been achieved, perform operation */
erc = DevOperation (dOpNum,dLBA,dnBlocks,pData),

SemExch->SendDummyPacket {); // Signal

return erc,

}

long CNonReentrantDeviceDriver Status(char *pStatRet,
unsigned long dStatusMax,
unsigned long *pdSatusRet)

long erc,

TPacket *pSemPkt = SemExch-s>WaitPacket ();

/* Mutual exclusion has been achieved, retrieve status */
erc = DevStatus (pStatRet,dStatusMax,pdStatusRet),

SemExch->SendbDummyPacket (), // Signal

return erc,

}

long CNonReentrantDeviceDriver..Initialise(char *pInitData,
unsigned long sdInitData)
{

long erc,
TPacket *pSemPkt = SemExch->WaitPacket(),

/* Mutual exclusion has been achieved, initialise */
erc = DevInit (pInitData,sdInitData),

SemExch->SendDummyPacket (),

return erc,

Figure 5 14 The CNonReentrantDeviceDriver class implementation
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5.15 The CReentrantDeviceDriver Class

Thas class 1s similar to, but simpler than, its sibing, CNonReentrantClass The reason
for this 1s that mutual exclusion 1s not required by the device driver, hence the three
public functions become trivial. they are presented m Figure 5 15

long CReentrantDeviceDriver Operation(unsigned long dOpNum,
unsigned long dLBA, unsigned long dnBlocks,
unsigned char *pData)

{
}

return DevOperation (d0pNum, dLB2, dnBlocks,pData),

long CReentrantDeviceDriver Status(char *pStatRet,
unsigned long dStatusMax,
unsigned long *pdStatusRet)

{
}

long CReentrantDeviceDriver Initialise(char *pInitData,
unsigned long sdInitData)
{

}

return DevStatus (pStatRet, dStatusMax,pdStatusRet),

return DevInit (pInitData,sdInitData),

Figure 5 15 The CReentrantDeviceDriver class

5.16 Summary

This chapter mtroduced the OO-MMURTL process management frameworks This
mvolved abstracting the entire functionality of MMURTL's ongmal job management
model, and encapsulating that behaviour mto a set of classes The classes that were
mtroduced m this chapter are CProcessManager, CProcess, CSystemService, CJob,
CUserJob, CSystemJob, CDewviceDriver, CNonReentrantDeviceDriver  and
CReentrantDeviceDriver

The most mportant advantage gamed from mmplementmg the process management

class lierarchy was m providing a framework which facilitates enhancements and
further specialisations of the current model.
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The mam disadvantage which results from using the newly implemented process
management model is caused by the mtroduction of the Object Manager Since tables
have been disposed of, speed of access to processes has slowed, although not by a
significant amount This, however, has been counterbalanced by the advantages
provided through the use of the CProcessManager class, prumanly that secure access
has at last been mtroduced to the process model In addition, the CProcessManager 1s
capable of mtroducmg advanced process management mechanisms and pohcies which
would have been difficult to mmplement under the previous table-based process
management system m MMURTL Also, because the operation of this subsystem has
been centralised around a smgle component, the process manager, MMURTL's
fragmentation of code which manipulated the job tables has been elimmated

With reference to the subframeworks withmn OO-MMURTL's process management
system, there have been similar advantages provided as a result of object-orientation
Taking the CDeviceDriver framework as an example, the device driver programmer
need no longer deal with problems regardmg re-entrancy Mutual exclusion can be
easily achieved through the use of a CNonReentrantDeviceDriver mstead of a
CReentrantDeviceDriver Other than the pomt at which the device driver programmer
creates an instance of CNonReentrantDeviceDriver, the mechanmism which provides
non-reentrancy 1s hidden from the programmer

In summary, the process management framework m this chapter provides several
promusmg advantages over the origmal implementation m mm There remams
however, much scope for development (see Chapter 10 Conclusions) The
opportunity for this development 1s facilitated by the object-onented herarchy which
has been designed with future enhancements m mmd
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Chapter 6

The Messaging Model

6.1 Overview

This chapter mtroduces the OO-MMURTL messagmg model Firstly, the
mplementation of messagmng m the ongmal MMURTL operating system 1s explamed
Following this the class which 1s central to the messagmg model, the
CExchangeManager class, 1s mtroduced and explamed Fmally, each of the three
classes which compnise the OO-MMURTL message model are described - CExchange,
CServiceExchange, and CMessageExchange

6.2 Messaging in MMURTL

MMURTL is a message-based operatng system. Messages are an mtegral part of
many operatmg system functions They form the basis for mterprocess communication,
process synchromisation, and for commumcating requests to system services In
addition, they can be used for transferring data between processes

An mtegral part of MMURTL's messaging system 1s the concept of an Exchange
Messages are never sent directly from one process to another This would requure prior
knowledge of the exastence and address of the recerving process Instead, messages are
sent to an exchange which behaves hike a vartual post office box where a message 1s
sent until a process retrieves 1t

In order for a task to use an exchange, 1t must request from the operating system that

one be allocated to it. It is the responsibility of this task to make sure that the exchange
15 returned to the operating system to be deallocated when it has fimished with it
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To ensure optimum flexibility, few assumptions are made m the messagmg system.
When a message 1s sent to an exchange, a process may or may not be expecting it
Similarly, 1t 1s possible that an unretrieved message 1s already at an exchange when
another one 1s sent It 1s also feasible for a process to be warting for a message which
has yet to be sent

Each exchange has two queues associated with 1t - a message queue and a task queue
Both operate under the first come first served principle If a message arrives at an
exchange and there are no waitmng tasks, 1t 1s placed on the message queue If another
message arrives, 1t 1s placed behind 1t on the queue The reverse 1s true for tasks If a
task arrves at an exchange and no messages are there, the task 1s placed m the task
queue Items can be on erther the message queue, the task queue or nerther quene It
would be contradictory, and therefore 1s impossible, for rtems to be on both queues

There are two different message types m MMURTL The smallest and most common
form 1s simply known as a Message A message 1s comprnised of two double-word (32
bytes) sized vanables The usage of these fields 1s defined by the tasks which are
communicatmg with 1t Messages are sent and receved usmg the SendMsg() /
WaitMsg() function pair

The second form of a message 1s a Request A request 1s only used when a task or
system service conumumcates with another system service Specifically, requests are
made when a service 1s required to be performed by the system service on behalf of the
callmg process Requests are comprnised of mformation requred by the system service,
such as the address of an exchange where 1t 1s to post its response, a service code
defining which service 1s to be performed, along with six fields which hold data whose
usage is defined by the service m question and the operation to be performed

Commumcation with system services 1s performed usmg the Request() / Respond()

parr To avoid confusion, a commumcation m OO-MMURTL, that 1s either a basic
message or a request, 1s referred to as a packet
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6.3 The CExchangeManager Class

As with OO-MMURTL's other Object Managers, the CExchangeManager 1s a subclass
of CObjectManager, mhertng all of the methods and attributes which are required to
store and access the objects under 1ts protection

In addition to its role as an object contamer, the purpose of the CExchangeManager
class 1s to manage OO-MMURTL's message processmg system. Due to the nature of
messaging, this can at tumes prove to be a more comphcated task than is performed by
other Object Managers The nature of this complexaty 1s apparent when 1t 1s considered
that OO-MMURTL's messagmg component 1s one of only two places i the operating
system which performs task switchmg (the other bemg the tuner management
component)

6.3.1 Responsibilities of the CExchangeManager Class

The actvities of the CExchangeManager can be as complex as they are diverse The
followmg 1s a hst of actions for which the CExchangeManager 1s responsible

Maintaiming Exchanges - As Exchange Manager, the CExchangeManager class must
allocate exchanges to processes upon receipt of correctly formatted requests In OO-
MMURTL, exchanges are always owned by the Exchange Manager, never by the task
which requested their allocation or by any other tasks which may use them. Thas is for
security reasons The alternative scenario involves the Exchange Manager returning a
pomter to each newly allocated exchange to the requesting process Each task which
wants to retneve (or send) messages to the exchange would need to be given a copy of
this pomter In a common situation where several different tasks require access to a
given exchange, the Exchange Manager has no control over use, and more importantly
misuse, of the many copies of the exchange pomter Instead the Exchange Manager
retams all copies of pomters to CExchange objects When a new Exchange 1s allocated,
a unique Exchange Key is retumed to the task which requested its allocation All
requests to Exchanges must be made through the CExchangeManager class, quotmg
the relevant Exchange Key In this way possible misbehaviour can be momtored by the
Exchange Manager and repercussions kept to a mmimum.
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Routing Packets - As packets are recerved by the Exchange Manager, the destination
CExchange object must be determmed and the message forwarded to it Because the
data contamned withm the packet 1s defined by the commumnicatmg tasks, the Exchange
Manager cannot venfy the comrectness of its contents This must be done by the

receiving Exchange

Looking-up services - Much of the time, several of the Exchanges will be allocated to
system service tasks Each of these will expect Request type messages, mstead of the
more basic message type It 1s the respomsibiity of the Exchange Manager to
differentiate messages from requests, and route messages to the appropnate
CExchange object based upon the Exchange Key Due to the dynamic nature of system
services, the same service will most hkely be allocated different Exchange Keys each
time the system 1s started For this reason, the use of keys proves madequate m
locating their exchanges Instead, the Exchange Manager 1s responsible for managmg
the System Service Nammg Directory Each service 1s given a unique eight character
name by its system programmer This name remains constant It is used by apphcation
programmes to access the system service's exchange m order to send a request to it
Each time a system service 1s added to the operatmg system, the Exchange Manager
will associate its name with the appropnate exchange in the Name Directory Upon
receipt of a request, the Exchange Manager will then look up the Name Directory,
before forwarding the request

Securing Task Switches - This relates to the security prowvided by the Exchange
Manager Because task switches can be performed as a result of messages recerving a
message or tasks warting for one, security 1s an 1ssue of particular importance m the
Exchange Manager Although not every transaction can be fully vetted, such as the

contents of a message, the Exchange Manager must ensure to the best of its abilities
that a secure operating environment exists at all times

6.4 The Exchange Hierarchy

In order to accommodate both message types, basic and request, the OO-MMURTL
exchange hierarchy provides two exchange classes - CServiceExchange and
CMessageExchange The basic behaviour of each of these 1s defined by the CExchange
class The hierarchy is displayed m Figure 6 1
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CExchange

! |

CSenvice Exchange CMessageExchange

Figure 6 1 The CExchange class framework

The CExchange class can encapsulate the functionality to control the two queues
which belong to each Exchange - one for waiting tasks, the other for waitmg
messages It also serves to receive messages from erther type of exchange and to check
if requests exast at an exchange Due to the different nature of messages and requests,
however, the generic CExchange class is msufficient to send messages to an exchange
- the SendMsg() method 1s inherently different from the Request() method Each of the
classes m the hierarchy are described below

6.5 The CExchange Class

This class is the base class m the exchange hierarchy It 1s also an abstract class

CExchange has three roles Firstly, it must provide functions to manage the task and
message queues for the exchange object These functions are private to the CExchange
class They may only be accessed by CExchange objects and mstantiations of
subclasses of CExchange This is an important security feature The four functions
which access the queues - deQueueTSS(), enQueueTSS(), deQueueMsg() and
enQueueMsg() - are capable of modifying them. Modifying erther queue however,
could result m a task switch Therefore 1t 1s essential that none of the methods be
mterrupted mudway through processmg The code to clear the mterrupt flag (prevent
mterrupts) does not he within any of these methods Instead the responsibility belongs
to the methods which call them. For this reason, the four queue methods are private

They are called by public methods of the CExchange class and its subclasses

The second role of the CExchange class 1s to provide functionahity so that processes
can check to see 1f a message 1s at an exchange and also to wait until a message 1s at an
exchange These two operations make use of the nk block construct The code for
this simple structure 1s shown in Fagure 6 2
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struct TPacket {
struct TRequest *Req,
struct TMessage *Msg,

struct TPacket *next,

}s

Figure 6 2

In essence 1t consists of two data pomters One points to a request structure, the other
to a message structure These are shown m figure 6 3 A TPacket record will store
ether a ponter to a request or a pointer to a message, but not both The definition of a
packet enables CExchanges to deal with packets of mformation, without having to
unnecessanly deternune 1if the packet 1s a message or a request Although by definition,
this means that one pomter belongmg to each packet will always be wasted, the
advantage comes from mcreased processmg speed Only when the packet reaches its
final destmation will a check to determune the nature of its contents have to be made

The third field m a packet 1s a pointer to another packet for use when packets are
stored on queues

struct TRequest
CExchange *RespExch, // Exchange to respond to

long RgOwnerProc, // JobNum of Owner

int ServiceCode, // Sys Service Command Number
long dbhata0, // Srvc Defined (No Poanters)
long dDhatal; // Srvc Defined (No Pointers)
long dbataz, // Srvc Defined (No Pointers)
char *pDatal, // Srvc Defined

long cbbhatal, // Length of data in pDatal
char *pData2, // Srvc Defined

long cbDhata2, // Length of data in pData2

struct TReguest *next,

b

struct TMessage(
long dDatal,
long dbata2,

b

, Data field 1
, Data field 2

Figure 6 3 Messagmg structures
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The final role of the CExchange class 1s to send packets of data to 1ts exchange The
SendPacket() method 1s only called by subclasses of CExchange It may only be called
once a packet has been created and formatted For this reason, SendPacket() 1s only
called by Request() m the CServiceExchange class and by SendMsg() m the
CMessageExchange subclass

The methods belongmg to each of these groups are described below

6.5.1 Queue Management Methods

To support the queue management methods, CExchange has four attnbutes, two for
each queue The attributes are pomters to the head and tail of each queue They are -
pPacketQueueHead, pPacketQueueTail, pTSSQueueHead, and pTSSQueueTail

1TSS *deQueueTSS()
This method returns a pomter to the task at the top of the queue If no task 1s present a
NULL 1s returned The code for thuis method 1s shown m Figure 6 4

void enQueueTSS(TTSS *pTSS)

This method adds a pomter to a task to the task quene The code for this method 1s
also shown m Figure 6 4

TTSS *CExchange deQueueTSS ()

{

TTSS *pTSS,

pTSS = pTSSQueueHead,
pTSSQueueHead = pTSSQueueHead-s>next;

return pTSS,

}

void CExchange enQueueTSS(TTSS *pTSS)
{
1f (pTSSQueueHead == NULL) ({
pTSSQueueHead = pTSSQueueTail = pTSS;
pTSSQueueHead->next = NULL,
}
else {
pTSSQueueTaxrl->next = pTSS,
pTSSQueueTail = pTSS,

}

}
Figure 6 4 CExchange's enQueueTSS() and deQueueTSS() methods
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TPacket *deQueuePacket()
Thas 1s similar to the deQueueTSS method described above It returns a pomter to the
packet at the top of the queue Ifno packet 1s present a NULL 1s returned

void enQueuePacket(TPacket *pPacket)
Agam, this method 1s similar to enQueueTSS It adds a packet pomter to the packet
queue

6.5.2 Packet Retrieval Methods

OO-MMURTL provides two functions with which to access packets at an exchange -
CheckPacket() and WaitPacket() They differ in one respect - CheckPacket() 1s a non-
blocking function, while WaitPacket() performs blocking This 1s described m detail
below

TPacket *CheckPacket()

Thus 1s the simpler of the packet retneval methods CheckPacket() checks to see if a
packet 1s warting at an exchange If there 1s a waiting packet, 1t 1s removed and
returned to the task which mvoked thé method If no packet 1s waiting, the calling task

1s notified and 1t contmues processmg The code for CheckPacket() 1s shown m Figure
65

TPacket *CExchange- CheckPacket ()

{

TPacket *pPacket,

// Disable interrupts
#asm

CLI

#endasm

pPacket = deQueuePacket ();
// Reenable interrupts
#asm

STI

#endasm

return pLB,

Figure 6 5 The CExchange CheckPacket() method
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TPacket *WaitPacket()

Like CheckPacket(), this method also checks to see 1f there are any warting packets at
the exchange queue As before, 1f a packet 1s found, 1t 1s returned to the calling task
and 1t continues running However, if no packet 1s found, then the current task 1s
queued at the exchange The task with the highest prnionity m the Ready Queue 1s
removed If there are no tasks on the Ready Queue, then mterrupts are enabled and the
processor 1s halted The processor will be restarted automatically when an mterrupt 1s
caused Imterrupts will then be disabled and a check 1s made to see if there 1s a task on
the Ready Queue as a result of the mterrupt bemg serviced Only when a task 1s
retrieved from the Ready Queue will the WaitPacket() method continue At this stage a
task has been 1dentified that can continue runnmg If this task was the same as the
ongmal task which called WaitPacket(), then mterrupts are reenabled and control
returns to it from the method If the task 1s different from the origmal one, then a task

switch is performed before contmumg The code 1s shown in Figure 6 6a and Figure
6 6b

TPacket *CExchange. WaitPacket ()

{

TpPacket *pPacket;
TTSS *pRunTSS, *pPriorityTSS,

#asm
CLI
#endasm

pPacket = deQueuePacket (),

1f (pPacket==NULL) {
// Add the current task to the TSSQueue of this exchange
PRUnTSS = GetpRunTSS (),
pRunTSS->next = NULL,
enQueueTSS (pRuUnTSS) ;

// Get the next TSS to run (1f there 1s one)
pPPriorityTSS = ReadyQueue->deQueueRdy (),

Figure 6 6a The CExchange WartMsg() method
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// If none were ready, loop until one 1is
while (pPriorityTSS == NULL) {

#asm

STI

HLT

CLI

#endasm

pPriorityTSS = ReadyQueue->deQueueRdy (),

}

1f (pPriorityTSS != pRunTSS)
// Tasks are switched by performing a 386 task switch
#asm
MOV EAX, [pPriorityTSS)
MOV BX, [EAX.Tad]
MOV TSS_Sel,BX
JMP FWORD PTR [TSS]
#endasm
}
}

// A task has finished "Waiting" Now 1in the new task

}

/* we have either switched tasks and are delaiveraing a
packet to the new task, or there was a packet waiting
at the exch of the first caller and we are delivering
it */

#asm
STI

#endasm

return pPacket,

Figure 6 6b The CExchange WairtMsg() method
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6.5.3 Packet Routing Methods

The CExchange class has a single packet routing method It 1s a private method which
1s only mvoked by subclasses of CExchange

void SendPacket(TPacket *pPacket)

The purpose of this method 1s to forward a packet to an exchange Ifno task 1s warting
at the exchange, the packet 1s queued If a task 1s waiting, the packet 1s given to that
task and the current task 1s placed on the Ready Queue The Ready Queue 1s then re-
evaluated and the highest prionty task 1s removed from 1t The reason this occurs 1s
because 1t 1s possible that a task with a lngher priority than the current one was waiting
for the packet that was delvered If this 1s so then the current task 1s queued and the
highest prionty task on the Ready Queue regams control of the processor The code
for thus method 1s shown m Figure 6 7 Note that mterrupts must be disabled before a
call 1s made to this method

6.6 The CServiceExchange Class

This class is a subclass of CExchange Instantiations of the CServiceExchange class
may only be created by system services CServiceExchanges are designed to process
requests for action by the system service which owns it System services may also own
non-service exchanges, but not to process requests CServiceExchange has three
request-specific methods The Request() method 1s called by tasks which require a
service to be performed, the Service() method 1s used to respond to such a request,
and the MoveRequest() method 1s used by system services to move a request from one
of 1its exchanges to another Each of these 1s described m turn below
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vord CExchange SendPacket (TPacket *pPacket)

{

TTSS *pWaitTSS, *pPriorityTSSs,

// Remove task from the exchange's queue
pWaitTSS = deQueueTSS (),

// If no task 1is waiting, queue the packet
1f (pWaitTSS==NULL) {

enQueuePacket (pPacket) ,

return,

}

// If a task was waiting notify 1t of the received packet
pWaitTSS->pLBRet = pPacket,

// Reevaluate the Ready Queue 1n case a higher
// priority task 1s available
ReadyQueue->enQueueRdy (pWa1tTSS) ,

pPriorityTSS = ReadyQueue->deQueueRdy (),

// If the highest priority task i1s the current one,
// no task switch 1is required
1f (pPriorityTSS == pWaitTSS)

return;

/* Perform a 386 processor task switch */
f#asm

MOV EBX,pPriorityTSS

MOV BX, [EAX Tad]

MOV TSS_Sel,BX

INC _nSwitches

JMP FWORD PTR [TSS]

#endasm

Figure 6 7 The CExchange SendPacket() method

void Request(int code, CExchange *respexch, long data0, long datal, long data2,
char *pdatal, long cbdatal, char *pdata2, long chdata2)

This method creates a TRequest record and assigns 1ts data based on the parameters
which have been passed to it The request 1s then placed mto a TPacket structure
Interrupts are disabled before the SendPacket() method 1s called This method 1s
mhenited from CServiceExchange's base class, CExchange Upon return from
SendPacket(), wterrupts are enabled before returning from the method The code for
this method 1s shown m Figure 6 8
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void CServiceExchange- Request (int code, CExchange *respexch,
long data0, long datal, long data2, char *pdatal,
long cbdatal, char *pdata2, long cbdata2)

TPacket *pPacket,
TRequest *pReq,

/* Create request structure */
pReg = new TRequest,

pPReg->ServiceCode code,
pPReqg->RespondExch = respexch,
pReg->RgOwnerProc = GetCrntProcNum(),

pReqg->dbatal = dataO,
pReqg->dbDatal = datal,
pReg->dData2 = dataz,
pReg->pDhatal = pdataZl,

pReg->cbDatal = cbdatal,
PReg->pDhata2 = pdataz2,
pPReqg->cbData2 = cbdata2,

/* Create the packet */
pPacket = new TPacket,
pPacket->Req = pReq,
pPacket->Msg = NULL,

/* Disable interrupts */
#asm

CLI

#endasm

SendPacket (pPacket}),

/* Reenable interrupts */
#asm

STI

#endasm

Figure 6 8 The CServiceExchange Request() method

void Respond(TRequest *pReq)

This method 1s used by a system service to notify the task which requested a service

that the task has completed (or that the service was unable to be completed) The full

steps m the Request/Respond process are as follows

1 A task sends a request to a system service The request 1s composed of a service
code, data which may be required to perform the service, and an exchange owned
by the calling task at which 1t wall wait for a response
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2 The system service retrieves the request from its queue and deals with it

3 Upon completion, the system service mvokes the Respond() method of the
exchange object whose pomter was passed as a parameter to the Request()
method Tt places the ongmal Request structure that, which has been modified to
reflect function performed by the service and a status reflecting the success of its
action

4 The caling task will either wait or else penodically check the respond exchange,
for the reply by the system service

The first task performed by this method 1s to deahas the memory pomters m the
TRequest structure if the current process 1s different from the process which created
the TRequest This 1s necessary otherwise the pomters would pomt to the wrong
segment, albert at the correct address The deahasmg 1s performed by the
DeAhasMem() kemnel primitive As before, the exchange 1s checked for waitmg tasks,
if there are none, the request structure 1s queued Otherwise, the current task 1s placed
on the ReadyQueue The highest prionty task 1s then removed from the Ready Queue
If the two tasks are different, a processor task switch 1s performed The code for this
method 1s shown m Figure 6 9a and Figure 6 9b

void CServiceExchange. :Respond (TRequest *pReq)

{
long dCurrProc, dRegProc;
TTSS *pTSS, *pPriorityTSs,
TPacket *pPacket;

dCurrProc = GetCurrProcNum(),
dRegProc = pReqg->RgOwnerProc,

/* Perform memory aliasing i1f required */
1f (dRegProc'=dCurrProc) {
1f (pReqg->cbDatal > 0) && (pReg->pDatal '= NULL)
DeAliasMem (pReg->pDatal, pReq->cbDatal,dCurrProc) ,

1f (pReg->cbData2 > 0) && (pReg->pData2 !'= NULL)
DeAliasMem (pReg->pData2, pReqg->cbData2,dCurrProc),

}

/* Disable interrupts */
#asm

CLI

#endasm

Figure 6 9a The CServiceExchange Respond() method
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/*Create packet structure */
pPacket = new TPacket,
pPacket->Req = pReq;
pPacket->Msg = NULL;
pPacket->next = NULL,

/* Remove waiting task (if any) */
pTSS = deQueueTSS(),
1f (pTSS == NULL) {

enQueuePacket (pPacket) ,

#asm

STI

#endasm

return,

}

/* Store request in the dequeued task */
pTSS->pLBRet = pPacket,

/* Reevaluate the ready queue */
ReadyQueue->enQueueRdy (pTSS) ,
pPriorityTSS = ReadyQueue->deQueueRdy () ;

/* If the highest priority task 1s the same as the
original task, return */
1f (pPriorityTSS == pTSS) {
#asm
STI
#tendasm
return,

}

/* Switch task 1f the highest priority task is

not the origainal task */
#asm

MOV EAX,pPriorityTSS

MOV BX, [EAX.Tid]

MOV TSS_Sel,BX

INC _nSwitches

JMP FWORD PTR [TSS]

STI
#endasm

Figure 6 9 The CServiceExchange Respond() method
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6.7 The CMessageExchange Class

This class 1s a subclass of CExchange Any active task may request the creation of a
CMessageExchange class This class, combmed with the methods mhemnted from
CExchange, 1s designed to assist mterprocess communication, data transfer, and task
synchromsation CMessageExchange provides two methods to facilitate sending
messages to exchanges They are SendMsg and ISendMsg(), each of which 1s described
below

void SendMsg(long dMsgDatal, long dMsgData2)

This method accepts two doubleword parameters, both of which hold genernic data
The nature of each vanable 1s determmed by the commumicating processes Using this
data, SendMsg() creates a TMessage structure This message 1s then stored m a
TPacket structure before mterrupts are disabled and the SendPacket() method which
was described above 1s called. Upon returning, SendMsg() reenables mterrupts before
exitmg The code 1s shown m Figure 6 10

void CMessageExchange:.SendMsg(long dMsgDatal, long dMsgDataZ2)
{
TPacket *pPacket,
TMessage *pNewMsg,

/* Create & fi1ll the TMessage structure */
pNewMsg = new TMessage;

pNewMsg->dDatal = dMsgDatal,
pNewMsg->dData2 = dMsgDataz2,

/* Create & fi1ll the TPacket structure */
pPacket = new TPacket,

pPacket->Req = NULL,

pPacket->Msg = pNewMsg,

pPacket->next = NULL;

/* Disable interrupts */
#asm

CLI

#endasm

SendPacket (pPacket),

/* Reenable interrupts */
#asm

STI

#endasm

Figure 6 10 The CMessageExchange SendMsg() method
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void ISendMsg(long dMsgDatal, long dMsgData2)

This method 1s extremely smmilar to SendMsg() It duffers in that ISendMsg() 1s
designed to be called from withm an mterrupt service routine For this reason no task
switch 1s performed and mterrupts remam cleared The ISendMsg() method, having
created a TMessage structure and stored 1t m a TPacket, checks to see if a task 1s
warting at the exchange If so, the packet 1s assigned to the task and 1t 1s returned to
the Ready Queue Otherwise, the packet 1s simply added to the packet queue at the

exchange

void CMessageExchange ISendMsg(long dMsgDatal, long dMsgData2)
{
TPacket *pPacket;
TMessage *pNewMsg, *pMessage,
TTSS *pWaitTSsS,

/* Disable interrupts */
#asm

CLI

#endasm

/* Create the message structure */
pMessage = new TMessage;
pMessage->dDatal = dMsgDatal,
pMessage->dData2 = dMsgData2,

/* Create the packet */
pPacket = new TPacket,
pPacket->Msg = pMessage,
pPacket->Reqg = NULL;
pPacket->next = NULL,

pWaitTSS = deQueueTSS();

1f (pWaitTSS==NULL) {
enQueuePacket (pPacket) ;

else {
pWaitTSS->pLBRet = pPacket,
ReadyQueue->enQueueRdy (pWaitTSS) ,

}

Figure 6 11 The CMessageExchange ISendMsg() method
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6.8 Conclusions

This chapter mtroduced the OO-MMURTL messagmg model The role of the class
CExchangeManager was described m detail This 1s the central component of the
messagmg model, which itself 1s an mtegral part of object-oniented MMURTL,
providng a means of mterprocess communication, process synchronisation, and
system Service messaging

The classes which encapsulate the behaviour of the messaging system were also
mtroduced, CExchange, CServiceExchange, and CMessageExchange Further
concrete subclasses of the abstract CExchange class could be provided by the system
programmer, allowmg a more diverse implementation of messagmg m MMURTL

The messaging component of the ongmal MMURTL system was a suitable candidate

for mmgration to object-omnentation, thanks to the modular nature of its design. Thas 1s
not always the case as 1s demonstrated m the next chapter
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Chapter 7

The Memory Model

7.1 Overview

Thus chapter mtroduces the design of OO-MMURTL's memory model Before this 1s
detailed, however, an mtroduction to some of the advanced, concepts found m
MMURTL's ongmal memory model 1s provided These are explamed m order to
provided a clearer depiction of their role m the design of the new model further into
the chapter Next, the reasoning underlymg the design of the new memory model is
provided as an mtroduction to the detailed description of the CMemoryManager class
Fmally, the conclusions drawn from the work m this chapter are presented

7.2 MMURTL's Memory Model

MMURTL is a paged memory operating system. It makes use of the Intel hardware-
based paging facilities for memory allocation and management The design and
mmplementation of the memory model 1s quite complex, however this complexity at the
system design level alleviates the burden on applcation and system programmers, by
ensuring that the memory programmmg mterface 1s as simple as possible

The basic concepts of the MMURTL memory model have been discussed previously m
Chapter 2 The MMURTL Operating System This chapter explams the operation of
the MMURTL memory model m further detail This mcludes the discussion of
advanced topics such as memory ahasmng and shadow memory

The complexity of the memory model provoked a difficult decision m the design of

OO-MMURTL, the design options, along with the chosen design of the new memory
model are also presented in this chapter
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Followmg this, the implementation of the OO-MMURTL memory model 1s presented

This mcludes descriptions of the memory model classes, methods, attributes and
behaviour

Fmally, possible future developments of the OO-MMURTL memory model are
offered These developments are presented m hght of the design decisions described

earlier m the chapter and further possibilities for development of the memory model m
hght of this decision

7.3 Memory Model Advanced Concepts

Before discussmg the design of the OO-MMURTL memory model, 1t 1s necessary to
descnbe an important underlymg concept of OO-MMURTL's low-level memory
operations, Shadow Memory In addition, the use of Memory Ahasmg m MMURTL
1s also described in this section

7.3.1 Shadow Memory

Each MMURTL process has a single page directory This page directory holds 1024
page dwrectory entries, each of which 1s four bytes long, which pomts to a page table

In tumn, each page table also contams 1024 entnes, each of which pomts to a page of
hnear memory Each page 1s four kilobytes m size Thus

Total size of addressable linear memory by a MMURTL process
= 1024 (Page Directory Entnes) x 1024 (Page Table Entnies) x 4Kb (Pages)
= 4,294,967,296 (4Gb)

The operating system code and data are mapped mto the bottom of every process's
address space As a result, each process's own memory actually begins at the 1Gb
Iinear memory mark
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The memory schema for every process 1s shown m Figure 7 1

i T
Linear Top 4Gb - 1 byte
,
"Dead"” Memory Dead Address Space
{2 Gb)
N
2Gb
User Memory . Data
(1 Gb) Code
N 1Gb
/
0S Memory 0S Allocated Memory
(1 Gb)
\ 0S Memory 0Ghb
Linear Base

Figure 71 The MMURTL memory map

At first appearance, 1t seems that the upper 2Gb 1s wasted, however the purpose of this
area of memory will soon become clear The problem confronted by MMURTL's
designers was as follows Each process refers to its memory space m terms of lmear
memory Before carrymg out its mstructions, it 1s necessary for the operating system to
map the memory addresses from the process's lmear address space to the processor's
physical address space In order to do this, the operating system accesses the page
tables for the relevant process and retnieves the physical offset for the page m question

Each Imear memory address 1s 32 bits long The operating system uses the upper ten
bits to reference the page directory of the appropnate process m order to retnieve the
physical address of the relevant page table (The physical address of the process' page
directory 1s stored by the operating system upon creation of the process and thus may
be easily retnieved) The next lower ten bits in the hnear address are used as an index
mto the page table m order to retneve the physical address of the page bemg
referenced Fmally, the remaming twelve bits combmed with the address of the page
offset combine to produce the relevant physical address
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A problem anses when the operatmg system needs to amend or delete a page table
entry The operatmg system has no special privileges as far as addressing physical
memory goes, so it must make use of limear address space m the same way that each
application program does So the question becomes, how does the operating system
find the lmear address of each page table ?

The solution chosen by MMURTL's developers was to make use of only half of each
page table to store the physical addresses of the page tables The upper two kilobytes
of each page duectory 1s a shadow of the lower two kilobytes The shadow area,
contams the limear address of the correspondmg physical address from the lower half of
the page directory

In this way, Page Directory Entry 512 holds the linear address of the Page Table
whose physical address 1s held in Page Directory Entry 0 This example 1s shown m
Figure 7 2

To ensure that shadow memory 1s not accidentally appropnated, the relevant Page
Directory entries are marked as bemg non-existent
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Figure 72 Shadow memory m practice

7.3.2 Memory Aliasing
MMURTL allows two processes to share some or all of their memory address space

This is most commonly used as a result of mterprocess communication such as a
Request / Respond transaction between an application and a system service
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As with all memory activities, the transaction umit of shared memory 1s a page In order
to share a page, the operating system must copy the relevant Page Table Entry from
the Page Table belonging to the process which onigmally owned the page, to the Page
Table belonging to the process which 1s seeking to sharing the page This 1s known as
Memory Ahasmg

The process which is sharmg the memory doesn't realise that 1t 1s not the page's owner
Thus 1s due to the fact that the page now appears m 1ts own hnear address space An
ahased Page Table Entry 1s marked as such and can't be deallocated or swapped until
the ahas 1s dissolved

7.4 Design Decisions

Because the MMURTL memory model reles to such a large extent on Intel processor
memory management support, i particular Intel's hardware-based pagmg, 1ts current
mplementation does not endear itself easily to the object-onented paradigm. As a
result, there were two possible directions to take m the design of the OO-MMURTL
memory model - implementmg an object-omented programmmg mterface, and
mplementing a complete object-onented class framework Each of these 1s described
below, before a description of the actual design 1s given

7.4.1 Object-Oriented Programming Interface

This design option leaves much of the ongmal architecture unchanged The system
designer retams the ongmal memory management functionality, however an object-
onented class 1s mtroduced which will encapsulate the system m question, 1e the

memory system, and provide an object-onented programmmg mterface to be used by
the apphcation programmer

The new class will hide much of the underlymg low-level functionality from the

programmer, making available only the essential high-level calls which are required to
manage the memory of a grven apphication
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~

The use of this option provides sevérél advantages to the implementation of OO-

MMURTL

» Speed 1s an essential factor m the design of the memory subsystem of any operating
system, particularly a system such as MMURTL which uses a virtual paged
memory model Each imear memory address must be checked m a Page Directory,
then a Page Table, to retrieve the physical address of the page m question Smce
the majority of the memory system 1s still written m assembly language, the speed
of the ongmal model 1s retammed

« The object-onented class serves to lade the low-level code of the memory model.
To allocate several pages of memory requires only a smgle call to the memory
manager class Mutual exclusion, searching for a free Page Tables and free Page
Table Entries and other necessary actions are performed by the memory manager
class

o The memory manager class provides an additional level of protection to the system
tables, by ensurmg that errant apphcation programs will be unable to gam access to
restricted areas of memory

There are however, mherent disadvantages to this type of implementation

« When a complete operatmg system module, such as the memory subsystem 1s
represented by a smngle class, it 1s unlikely that the operating system 1s usmg the
optimal object-onented class hierarchy

» The primary role of the memory model class is to provide a seemmgly cosmetic
apphcation mterface

7.4.2 Complete Object-Oriented Class Framework

The second design option 1s to completely redesign the memory model so that 1t
faciltates a complete object onented class framework In such a design, each Page
Directory would be an mstantiation of a CPageDirectory class which encapsulated the
behaviour of the directory Similarly each Page Table would be an mstantiation of a
CPageTable class which encapsulated the behaviour of a Page Table A new class
would be mtroduced to manage the various table objects this class would also be
responsible for the allotment of Page Table Entries, and the allocation and deallocation
of memory pages
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The advantages of this type of implementation are _

o The memory subsystem 1s designed to be a completely object-onented component
of the operating system. As a result, the memory subsystem can reap the
advantages of an object-onented design and implementation

o The memory subsystem may be optimally redesigned from the bottom-up, without
bemg restricted by the previous implementation of the memory subsystem.

e Usmg a complete object-onented hierarchy also provides the additional protection
and lding of low-level functionality described among the advantages of providing
just an object-onented programming mterface

The mamn disadvantage of usmg a complete object-oniented class framework 1s that the
additional overhead can lead to a reduction m processmg speed m the operating
system.

7.5 O0O-MMURTL Memory Subsystem Architecture

OO-MMURTL makes use of the former option, that 1s, an object-onented class 1s

designed which provides an application programming mterface m order to encapsulate
the functionality of the memory subsystem.

Although this may not be the most desirable option in a completely object-oriented
operation system, the basic critena of this thesis 1s to mugrate MMURTL's existing
functionality to an object-oriented paradigm. This dictated that a complete redesign of
the memory model was not an option

OO-MMURTL mtroduces a single class, CMemoryManager, whose pnimary purpose
18 to provide an object-onented programmimg mterface to the operating system's
underlymg low-level memory functionality This class has been designed as genencally

as possible so that future development and redesign of the memory model can take
place

In other words, by accessmg CMemoryManager's AllocPage(), the operatmg system
currently performs several error checks, before enforcing mutual exclusion on the
memory subsystem critical section and calling a kernel function which will perform the
actual allocation
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In the future, OO-MMURTL's underlying memory model could be redesigned usmg
object-oniented techmques If tlis happens, although CMemoryManager's
mmplementation will change, 1ts mterface should not Its method A/locPage() will stil
allocate memory pages, but by mteracting with CPageDirectory and CPageTable
classes Programs which currently call
MemoryManager->AllocPage( ..)

will still continue to do so Other calls will similarly be re-implemented without
affecting the mterface

Section 74 of ths chapter suggests a possible class hierarchy which could be
mtroduced m future revisions of OO-MMURTL to fully encapsulate the memory
subsystem m an object-onented framework

7.6 The CMemoryManager Class

The purpose of the CMemoryManager class is to provide a programmmg mterface to
the underlymg low-level code which controls the management of memory m the
operatng system. Unhke many of the manager classes m OO-MMURTL, the
CMemoryManager class does not own the data it provides access to (1e the Page
Directories, Page Tables etc) Instead, 1t acts as a buffer between apphcation
programs, and the kernel functions which access this data

The CMemoryManager class therefore owns just a single attribute, an exchange Ths
1s used by the memory manager to provide mmtual exclusion to certam kemnel

functions, m particular those which modify the Page Directory or Page Tables Ths
exchange 1s mitiahsed m the CMemoryManager constructor

The remammg CMemoryManager methods fall mto three categones, each of whach 1s
described below

1 Allocation of memory
2 Deallocation of memory
3 Ahasmg of memory
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7.6.1 Memory Allocation Methods

There are two different types of methods capable of allocatng memory pages
AllocOSPage() and AllocPage() Each of these represents one of the types of
memory recogmsed by OO-MMURTL, namely operating system memory and user

memory

char *AllocOSPage(long nPages),

This method attempts to allocate nPages of contiguous operatmg system lmear
memory to the user If the operation succeeds, a pomter to the memory 1s returned If
the operation fails, a NULL pomter 1s returned

AllocOSPage() searches through the page tables for the current process, attempting to
find enough contiguous Page Table Entnes to satisfy the request If the current Page
Table doesn't have enough contiguous entnes, additional Page Tables are added to the
operatmg system Page Directory (if possible), until ether enough page tables are
avallable to satisfy the request or the request fails The allocation may span several
Page Tables The code for A/locOSPage() 1s shown m Figure 7 3

char *AllocPage(long nPages),

This method 1s very similar to the precedmg one, with the exception that AllocPage
attempts to allocate pages of application memory to the callng process If the
operation succeeds, a pomter to the memory 1s returned If the operation fails, a NULL
pomter 1s returned The code for AllocPage() 1s shown m Figure 7 4

Note that both AllocPage() and AllocOSPage() make use of CMemoryManager's
exchange to ensure mutual exclusion If this is not enforced, 1t would be possible that
while one process 1s creating additional Page Tables to accommodate a large
allocation, another process could step m and madvertently allocate pages which have
been mcluded by the first process m 1ts tally of contignous pages, thus causmg a
reduced number of pages to be allocated to the callmg process
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char *CMemoryManager AllocOSPage{lond nPages)

{

char *RunPages, “

// 1) See 1f we have enough physical memory (check nPagesFree)
// 2) Find a contiguous run of linear pages to allocate (PTEs)
// 3) Allocate each physical page placing i1t in the run of PTEs

// Must request > 0 pages for allocation
1f (nPages<=0)
return NULL,

// Ensure mutual exclusion
TPacket *pPacket = MemExch-sWaitPacket (),

// Verify sufficient pages exist to satisfy request
1f (nPages> nPagesFree)
return NULL;

// Find contiguous run of 0S PTEs in current PT
RunPages = FindRun(OS_BASE,nPages) ;

// Allocate further PTs until request 1s satisfied
While (RunPages==NULL) {
1f (AAQOSPT() '=0)
return NULL, ,
RunPages = FindRun (OS_BASE,nPages) ;

}

// Mark these pages as allocated
AddRun (RunPages, nPages) ;

// Leave critical section
MemExch->SendDummyMsg () ,

return RunPages,

Figure 73 The CMemoryManager AllocOSPage() method

7.6.2 Memory Deallocation Methods

A smgle method 1s provided to deallocate memory previously allocated by eirther
AllocOSPage() and AllocPage() This 1s because m deallocatmg both types of memory,
the same transaction occurs, namely that the relevant Page Table Entries are removed
and the relevant bits in the Page Allocation Map are cleared Ths 1s performed in the

UnMarkPTEs() kernel function.
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char *CMemoryManager- AllocPage(long nPages)

{

char *RunPages,

// Steps

JZAREEEEE

// 1) See 1f we have enough physical memory (check nPagesFree)
// 2) Find a contiguous run of linear pages to allocate (PTEs)
// 3) Allocate each physical page placing 1t in the run of PTEs

// Must request > 0 pages for allocation
1f (nPages<=0)
return NULL,

// Ensure mutual exclusion
TPacket *pPacket = MemExch->WaitPacket (),

// Verify sufficient pages exist to satisfy request
1f (nPages> nPagesFree)
return NULL,

// Find contiguous run of user PTEs in current PT
RunPages = FindRun(USER_BASE,nPages) ;

// Allocate further PTs until request 1s satisfied
While (RunPages==NULL) {
1f (AddUserPT () '=0)
return NULL,
RunPages = FindRun(USER_BASE,nPages) ;

}

// Mark these pages as allocated
AddrRun (RunPages, nPages) ,

// Leave cratical section
MemExch->SendDummyMsg () ,

return RunPages,

Figure 74 The CMemoryManager AllocPage() method

int DeAllocPage(unsigned char pOrigMem, int nPages),

Before mutual exclusion 1s enforced, DeAllocPage() drops unnecessary bits from the
linear address of the memory to be deallocated Only the upper twenty bits are
required, smce memory 1s deallocated in blocks of Pages, four kilobytes m size Mutual

exclusion 1s enforced around the critical section of the call to the kemel function
UnMarkPTEs()
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void CMemoryManager DeAllocPage(unsigned char pOragMem,
int nPages)
{

int ProcNum,

// Discard unnecessary bits
pOrigMem = (pOrigMem % 4096),

ProcNum = GetCrntProcNum(),

// Enforce mutual exclustion
TPacket *pPacket = MemExch->WaitPacket (),

UnMarkPTEs (ProcNum, pOrigMem, nPages) ,

// Leave critical section
MemExch->SendDummyPacket (),

Figure 75 The CMemoryManager DeAllocPage() method

7.6.3 Memory Aliasing Methods

There are two co-operating methods dealmg with memory ahasing One to perform the
ahasmg, the other to perform the deaﬁﬁ%mg These are described below

unsigned char *AliasMem(unsigned char *pMem, unsigned long dcbMem,

unsigned long dJobNum)
This method aliases pages m the current process' Page Directory / Page Tables,
providing 1ts Page Directory 1s different to the Page Directory belongng to the job
specified m the parameter dJobNum In such cases no ahasmg 1s needed as both
processes belong to the one program, and are therefore operating m the same lmear
address space

Note that eéven 1f the length of the memory to be aliased 1s only two bytes, 1f 1t crosses

page boundanes, both pages must be ahased The code for AliasMem() is shown m
Figure 7 6
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unsigned char *CMemoryManager AliasMem(unsigned char *pMem,
unsigned long dcbMem, unsigned long dProcNum)
{

char *RunPages,
unsigned int base,
unsigned long CurrProc = GetCurrProcNum(),

// Check Page Directories (1e Processes)
1f (CurrProc==dProcNum) return ,

// Ensure mutual exclusion
TPacket *pPacket = MemExch->WaitPacket (),

// Calculate number of pages required

pMem = pMem % 4096,

dcbMem += pMem,

unsigned long nPages = GetAliasRegSize (pMem, dcbMem) ,

1f (CurrProc == OP_SYSTEM) base = OS_BASE;
else base = USER_BASE,

// Find contiguous run of PTEs in current PT
RunPages = FindRun(base,nPages),

// Allocate further PTs until request i1s sataisfied
while (RunPages==NULL) ({
1f (CurrProc == OP_SYSTEM)
1f (AddOSPT() ==NULL) return;
else
1f (AddUserPT()==NULL) return,
RunPages = FindRun(base,nPages) ;
}
// Perform aliasing
AddAliasRun (pMem, RunPages, nPages, dProcNum) ;

// Leave critical section
MemExch->SendDummyMsg () ,
return RunPages,

Figure 7 6 The CMemoryManager AhasMem() method

There are essentially four steps to the AlzasMem() method

1 Check to see if the current Page Directory 1s the same as the Page Directory for the
specified process In such a case ahasmng 1s not requred This 1s analogous to
checking to see if the current process 1s the same as the specified process
The number of pages which need to be ahased 1s calculated

3 A check 1s made to see if there are sufficient Page Table Entnes to satisfy the
request If not, further Page Tables are allocated until either the request 1s satisfied
or else no more Page Tables are available, in which case the alias fails

4 The Page Table Entries are aliased
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unsigned int DeAliasMem(unsigned char *pAliasMem, unsigned long dcbAliasMem,
unsigned long JobNum)

This method deahases memory which was previously ahased usmg the AliasMem()

method pAliasMem 1s the lmear address which was previously passed as a parameter

to the AliasMem() method There 1s no need to use a semaphore smce Page Tables are

bemg deahased one at a time This would not mterfere with any concurrent memory

allocation routmes

The behaviour of DeAliasMem() 1s much simpler than 1ts companion AhasMem() It
consists of only two steps
1 Calculate number of pages which need to be dealiased

2 Call the system kemel RemoveAliasRun() to deahas the necessary Page Table
Entnes

The code for DeAliasMem() 1s shown m Figure 7 7

unsigned int CMemoryManager- DeAliasMem(unsigned char *pAliasMem,
unsigned long dcbAliasMem)
{

// Calculate number of pages to be dealiased
unsigned long nPages = GetAliasReqgSize (pAliasMem, dcbAliasMem) ;

// Retrieve 1d number of current process
unsigned long CurrProc = GetCurrProcNum(),

// Perform call to kernel function to perform dealiasing
return RemoveAliasRun{pAliasMem,nPages, CurrProc),

Figure 77 The CMemoryManager DeAlilasMem() method

7.7 Conclusions

This chapter described m detail the design of the OO-MMURTL memory model. The
design served to highhght a significant problem m the migration of MMURTL to OO-
MMURTL, namely that some components of the onginal MMURTL operatmg system
cannot be easily encapsulated by an object-onented framework The cause of this 1s

due to either the ongmal design, and possibly the ongmal implementation, of the
component m question
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Instead of providing a complete class framework which would have meant redesigning
the entre memory model, OO-MMURTL encapsulates the mterface between user
apphcations and MMURTL's ongmal memory model. This still provided some
advantages over the ongmal model, but 1t 1s not an optumal design when the
capabilites of the object-onented paradigm are taken into account Future
development should mvolve a complete redesign of the OO-MMURTL memory
subsystem so that the entire subsystem 1s modelled as a set of object-ornented classes
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Chapter 8

Additional Classes

8.1 Overview

This chapter mtroduces three additional classes m OO-MMURTL These classes are
responsible for encapsulating the behaviour of the Ready Queue, system mterrupts, and
the system timer, which itself 1s an interrupt

The Ready Queue

As described in previous chapters, MMURTL uses a prioritised queue to manage the
execution of tasks Task switchmg occurs only between processes of the same priority
In fact, MMURTL mmplements the Ready Queue as an array of thirty-two queue
structures Each of these structures holds a queue of the runnmg tasks of a smgle
priority In this way, each of the thirty-two queues represents each of the thirty-two
possible priorities m the operating system.

Thus results mn a small overhead m terms of stormg the Ready Queue, however ths 1s
acceptable when the reduction m the duration of a task switch 1s considered Whenever
a timer mterrupt occurs, notifying the operatmg system that the time shce of the

current executmg task has elapsed, the operating system can go directly to the relevant
queue without having to evaluate tasks of a differing pnority

Interrupts

The Intel processor design allows two types of mterrupt - one which executes as an
mdependent task, or one which executes within the context of the task that 1s
mterrupted MMURTL uses the latter due to its speed, the former requuring a context
switch each time an mterrupt occurs and each time an mterrupt completes The
execution of mterrupts m the context of the mterrupted task 1s easily facilitated by the
MMURTL architecture which dictates that the operatmg system is mapped into the
lower gigabyte of linear memory of every process
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Timer Interrupts

As with most time-slicing operating systems, the timer interrupt plays a special role in
MMURTL. Every ten milliseconds, the timer interrupt fires. When atask is running for
thirty milliseconds, the Ready Queue is re-evaluated to check if another task of the
same or higher priority is waiting to run. If so, the current task is placed on the Ready
Queue and the next task is given control.

8.2 The CReadyQueue Class

This class encapsulates the operating system's Ready Queue mechanism It is an
entirely abstract class, however. The purpose of the CReadyQueue class is to define a
template for fixture implementations of ready queues in OO-MMURTL. To this end,
CReadyQueue defines four basic methods which may be performed on all ready
queues, regardless oftheir implementation. They are:

* void enQueueRdy(TTSS *pTSS)
This method adds atask to the Ready Queue.

e TTSS *deQueueRdyO
This method removes atask from the Ready Queue.

TTSS *ChkRdyQO
This method returns the task at the top ofthe Ready Queue, without removing it.

* voidRemoveRdyProc(CProcess *pProc)
This method removes all tasks belonging to a given process from the ready queue.

OO-MMURTL provides a single implementation of the Ready Queue,
CPrioritisedReadyQueue, which mimics the original thirty-two queue implementation
of MMURTL. The importance of the role of object-oriented techniques in 00-
MMURTL's CReadyQueue class framework lies in the ability ofthe system designer to
completely redesign the implementation of the Ready Queue, without altering the
public interface ofthe class. Figure 8.1 presents a simple class hierarchy of the Ready
Queue framework as it stands in OO-MMURTL, along with another possible different
implementation CFIFOReadyQueue, which is discussed later.
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A

CReadyQueue

- = = =

1
CPnortisedReadyQueue | ICFIFOReadyQueueJ

Figure 8 1 A possible CReadyQueue framework

Note that the dashed line m the above diagram represents the possible introduction of
the CFIFOReadyQueue class Although the implementation of this class 1s discussed
below, 1t 1s not currently implemented m OO-MMURTL Its use m the class hierarchy
above 1s merely to show further possible implementations of the CReadyQueue

8.3 The CPrioritisedReadyQueue Class

CPrniontisedReadyQueue 1s a concrete subclass of the abstract CReadyQueue class It
overrides CReadyQueue's four abstract methods with 1ts own methods which duphcate
the functionality of MMURTL's ongmal Ready Queue implementation

CPnoritisedReadyQueue has a smgle attribute, an array of thirty-two queues, each of
which contams a head and a tail pomter to a task structure Each of these task
structures contains a pomter to another task structure, and 1t 1s through these hnks that
the queue 1s threaded

The mmplementation of each of the CPriontisedReadyQueue methods 1s described
below

void enQueueRdy(TTSS *pTSS)

The enQueueRdy() method retneves the promty of the currently runnmg process
which owns the task m question Thus prionity represents the mdex of the priortised
queue to which the task should be added The remaming step 1s to adjust the relevant
queue's pomters so that the task structure 1s added to 1ts tail The code for this method

1s shown in Figure 8 2
Note that the actual task switchmg does not occur in any descendants of the

CReadyQueue class Their sole responsibility is the management of the Ready Queue
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void CPrioritisedReadyQueue: :enQueueRdy(TTSS *pTSS)

// Verify the task structure pointer is valid
if (pTSS==NULL)
return;

// Retrieve the priority of the current process
unsigned long dPriority = GetCurrentPriority(Q;

pTSS->next = NULL;

// 1f the queue is empty, this TSS becomes head and tail
if (ReadyQ[dPriority].Head == NULL) {
ReadyQ[dPriority].Head = pTSS;
ReadyQ[dPriority].Tail = pTSS;

}

else { // Otherwise adjust the tail of the queue
(ReadyQ[dPriority].Tail)->next = pTSS;
ReadyQ[dPriority].-Tail = pTSS;

}

Figure 8.2. The CPrioritisesdReadyQueue: :enQueueRdy() method

TTSS *deQueueRdyO

This method must find, remove and return the highest priority task on the Ready
Queue. In terms of the implementation of the CPrioritisedReadyQueue class, this
involves going to the highest priority queue, and removing the task at its head. If this
gueue is empty, then deQueueRdyQ goes to the queue with the next lowest priority,
and checks to see ifthere are any tasks waiting with that priority. This continues until a
task is found on one of the queues or else all of the ready queues are found to be

empty.

Upon finding the highest priority task, this method returns a pointer to the task
structure to the calling program Ifno tasks are found on the Ready Queue, a NULL
pointer is returned.

This method demonstrates one of the disadvantages of the prioritised queue
implementation of the ReadyQueue as used by MMURTL. Few tasks actually execute
at the highest priority. This means that almost all of the calls to the deQueueRdyO
method result in stepping through each of the queues looking for a waiting task. The

further down the array of queues the highest priority task exists, the bigger the delay
before a task-switch is made.
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In the case of usmg a FIFO 1mp1emenﬁtat10n as shown later, the deQueueRdy() method
need only check a smngle queue to ﬁndqthe highest pnonity task This results m a faster
execution, which 1s of importance particularly durmg the course of a context switch
MMURTL sacrifices this speed m return for providing a more mtelbgent ready queue
The code for the deQueueRdy() method 1s shown m Figure 8 3

TTSS *CPrioritisedReadyQueue. deQueueRdy ()

{

TTSS *cHighPra,

// Loop through all of the queues, starting with the
// queue with the highest priority, until a waiting
// task 1s found. When one 1s found, adjust the gqueue
// and return a pointer to it

for (int 1=0, 1<PRIORITYCOUNT, 1++) {

1f (ReadyQ[1] '= NULL) {
pHighPri = ReadyQ[1] Head,
ReadyQ[1] .Head = (ReadyQl[1] Head) ->next;

return pHighPrai,

}
}

// If no waiting task is found, a NULL pointer 1s returned
return NULL,

Figure 8 3 The CPriontisedReadyQuéue deQueueRdy() method

TTSS *ChkRdyQ()
This purpose of this method is related to that of the deQueueRdy() method which 1s

described above ChkRdy(Q() also attempts to retrieve the lghest prionty task on the
Ready Queue, but mstead of removing 1t once 1t has been found, ChkRdyQ() leaves the
highest prionity task where 1t 1s As m deQueueRdy(), ChkRdy(Q() returns a pomter to
the lughest prionty task 1t finds, or a NULL pomter if none were found

Because of the similarties between the behaviour of the two methods, the operation of
ChkRdyQ() 1s almost 1dentical to deQueueRdy() It first goes to the lghest prority
queue, and attempts to remove the task at 1ts head If there 1s no task there, then
ChkRdy(Q() goes to the quene with the next lowest priority, and checks to see 1f there
are any tasks waiting there This continues until a task 1s found on one of the queues or
else all of the ready queues are found to be empty

The code for this method 1s shown m Figure 8 4
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TTSS *CPrioritisedReadyQueue: :ChkRdyQ()

{
TTSS *cHighPri;
// Loop through all of the queues, starting with the
// queue with the highest priority, until a waiting
// task is found
for (int 1=0; i<PRIORITYCOUNT; i++) {
if (ReadyQ[i]-Head !I= NULL) {
pHighPri = ReadyQ[i]-Head;
return pHighPri;
}
// 1f no waiting task is found, a NULL pointer is returned
return NULL;
}

Figure 8.4. The CPrioritisedReadyQueue::ChkRdyQ () method

void RemoveRdyProc(CProcess *pProcess)

The purpose of this method is to remove all of the tasks belonging to a given process
from the Ready Queue. In terms of the prioritised Ready Queue implementation of
OO-MMURTL, this involves removing all of the process' tasks on all of the queues
which comprise the Ready Queue. This method is called from the methods ChainQ and
ExitJobO belonging to the CProcess class (see Chapter 5 : The Process Management
Model). It is used to remove any remaining tasks belonging to a process which is about

to be exited.

The RemoveRdyProcO method begins at the queue with the highest priority and loops
through every queue. This is necessary since each process may have multiple tasks,
possibly with the same priority. For this reason every node on every queue must be
checked. Even if atask belonging to the current process is found on a given queue, the

remainder ofthe nodes must be checked.

Providing the head of each queue is not NULL, RemoveRdyProcO checks to see if that
node belongs to the parameter pProcess. If it does, the task in question is removed.
The next node in the queue is then evaluated and removed if it belongs to the process

pProcess. This continues until the end ofthe queue, when aNULL pointer is reached.
When a task is removed from one ofthe queues, the queue's pointers must be updated,

the task structure must be added to the system heap of free task structures, and the

system statistics must be updated to reflect the freeing ofthe task.
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void CPrioritisedReadyQueue RemoveRdyProc (CProcess *pProcess)

{

TTSS *pTSS, *pQueue, *pQueuePrev,

// pQueuePrev 1s used to point to the node traversed
// immediately prior to the current one It 1is

// required when a task 1s deleted from the middle of
// a queue

pQueuePrev = NULL,

// Check every queue
for (int 2=0, 1<PRIORITYCOUNT, 1++) {
pQueue = ReadyQ[i1] Head,

// If the gueue 1s not empty, check every task within
// the queue
while (pQueue!=NULL)

// If the the current node represents a task which
// belongs to the process pProcess, 1t must be
// removed from the Ready Queue and 1ts former links
// must be updated
1f (pQueue->pProc==pProcess) {

PTSS = pQueue,

1t (pPrevQueue==NULL)
ReadyQueue [1] .Head = pQueue->next;
else
pPrevQueue->next = pQueue-s>next,

// The task structure 1s replaced on the heap of free
// task structures and the system statistics are

// updated

pPTSS->next = pFreeTSS,

pFreeTSS = pTSS,

pPTSS->pProc = NULL,

nTSSLeft++,

}

pPrevQueue = pQueue,
pQueue = pQueue->next,

}

Figure 8 5 The CPnontisedReadyQueue RemoveRdyProc() method

The code for the RemoveRdyProc() method 1s shown m Figure 8 5
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8.4 The CFIFOReadyQueue Class

In this section the entire code for a different implementation of the Ready Queue 1s
presented Ths class 1s not implemented m OO-MMURTL, however it does show how
a different subclass of the abstract CReadyQueue class can be implemented resulting m
a different Ready Queue mechamism. This serves to highhight the flexibility of the
Ready Queue object-oniented framework and 1its capacity for future development The
complete code for this class 1s shown m Figures 8 6a and 8 6b

CFIFOReadyQueue. CFIFOReadyQueue ()

{

ReadyQ.Head
ReadyQ.Tail

NULL,
NULL,

}

void CFIFOReadyQueue .enQueueRdy (TTSS *pTSS)
{
1f (pTSS==NULL)
return,
pTSS->next = NULL,

1f (ReadyQ Head == NULL) {
ReadyQ Head pTSS;
ReadyQ Ta1l pTSS,
}

else {
(ReadyQ Tail) ->next = pTSS,
ReadyQ Tail = pTSS,

}

}

TTSS *CFIFOReadyQueue. deQueueRdy ()

{

TTSS *pHighPra,

1f (ReadyQ[1] Head '= NULL) ({
pPHighPri = ReadyQ{i] Head,
ReadyQ[1] Head = (ReadyQ{i] Head) ->next,
return pHighPri,

}

return NULL,

}

TTSS *CFIFOReadyQueue .ChkRdAyQ()

{
1f (ReadyQ.Head '= NULL) return ReadyQ.Head,
return NULL,

}

Figure 8 6a The CFIFOReadyQueue class implementation
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void CFIFOReadyQueue RemoveRdyProc (CProcess *pProcess)

{

TTSS *pTSS, *pQueue, *pQueuePrev,
pQueuePrev = NULL,

pQueue = ReadyQ[i1] Head,

while (pQueue!'=NULL) {

1f (pQueue->pProc==pProcess)
pTSS = pQueue,

1f (pPrevQueue==NULL)

ReadyQueue Head = pQueue->next,
else

pPrevQueue->next = pQueue->next,

pTSS->next = pFreeTSS,
pFreeTSS = pTSS,
pTSS->pProc = NULL,
nTSSLeft--,

}

pPrevQueue = pQueue,
pQueue = pQueue->next,

}

Fagure 8 6b The CFIFOReadyQueue class implementation

8.5 The ClInterrupt Class

The Clnterrupt class 1s a simple encapsulation of the basic functionality required to
write an mterrupt service routme m OO-MMURTL Clnterrupt 1s an abstract class
which performs the default behaviour of an mterrupt To create a new interrupt, a
programmer need only create a subclass of the Clnterrupt class, overndmg the
Service() method with the appropriate mterrupt service routine

This greatly simplifies the writng of an mterrupt service routme, which now becomes a
two-step process

1 Create a subclass of the CInterrupt class, overnding the abstract Service() method
with the mterrupt service code
2 Create an mstance of the class

When the new class 1s mstantiated, the operating system will be notified and will msert
an mterrupt vector into the operatmg system's Interrupt Descriptor Table
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This approach to writmg interrupt service routmes has several advantages

¢ The number of steps to creating an ISR 1s reduced, thus simphfying the creation
process

e Previously 1t was possible for an apphcation to place an errant vector address mto
the Interrupt Descriptor Table The effect of this was to cause a system crash as
soon as the mterrupt was first called Now, unless a vahd Service() method is
provided to create a concrete subclass of CInterrupt, the compiler will not allow
mstantiations of the subclass (because without overndmg the Service() method
they remam abstract classes)

o Another frequent error which previously occurred was the accidental omission by
the mterrupt service routme programmer to call the EndofIRQ() kernel function,
resulting m further system misbehaviour The new Clnterrupt class mcludes this
behaviour by default, removing the onus, and therefore the opportumity to make
mustakes, from the programmer

The Clnterrupt class presented here is simple 1 1dea and implementation, however 1t
still provides several advantages over the mon object-oriented implementation In
addition, further subclassmg of the Clnterrupt class will provide the system designer

with a more speciahsed mterrupt mechamsm. Each of Clnterrupts methods are
described below

Clnterrupt()

Clnterrupt's constructor serves two purposes Firstly it assigns the IRQ number to the
class attribute JRONum In addition, the Constructor calls the kemel primitive
SetIRQVector() This creates a vector to represent the new mterrupt and adds the
vector to the Interrupt Descriptor Table The Set/RQVector() call requires as a
parameter the address of the routine which will service the mterrupt This routine
ISR(), which is described below, 1s responsible for ensurmg that the users mterrupt
service routme 1s called The Clnferrupt code 1s shown m Figure 8 7

Fagure 8 7 The Clnterrupt constructor

CInterrupt CInterrupt (unsigned long Num)

{
IRQNum = Num,
. -SetIRQVector (IRQNum, &ISR),

}
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void interrupt ISRQ

The address of this method is placed into the Interrupt Descriptor Table when this
interrupt object is first invoked. It serves two purposes. Firstly it must call the abstract
method ServiceO which must be written by the user to ensure that the interrupt
subclass is a concrete one. Secondly, the kernel primitive EndOfIRQO is called, which
notifies the Programmable Interrupt Controller Units that the interrupt service routine
has completed.

void interrupt Clnterrupt::I1SRQ

if (Service(Q)
EndOFIRQ(CIRQNuUm) ;

Figure 8.8. The Cinterrupt: :ISR() method

void GetlRQVector(char *pVectorRet)

This method calls the kernel primitive GetlRQVectorQ. This returns the address of the
interrupt service routine which is currently serving the interrupt represented by this
class. Note that this is a 32-bit offset address in the operating system address space.
The code for this method is shown in Figure 8.9.

void MaskIRQO
This method calls the kernel primitive MaskIRQO. This masks the hardware interrupt
request represented by this class. Once masked, the CPU will not be interrupted by this

interrupt, even if interrupts are enabled. The code for this method is shown in Figure
8.9.

void UnMaskIRQO

This method reverses the effect of the MaskIRQO method. Interrupts representing this
class will now be serviced again by the operating system, unless interrupts as a whole
are disabled. The code for this method is shown in Figure 8.9.
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void Clnterrupt::GetlRQVector(char *pVectorRet)

::GetlRQVector(1RQNum, pVictorRet);

}

void Clnterrupt::MaskIRQQ

::MasklRQ(IRQNum) ;

}

void Clnterrupt::UnMaskIRQQ

::UnMaskIRQCIRQNum) ;

Figure 8.9. Additional Clnterrupt methods

8.6 The CTimer Class

The timer plays an important role in most operating systems, particularly those which
operate using some form of time slicing technique. In MMURTL the timer class fires
every 10 milliseconds. It is the responsibility of the timer to check if any alarms must
be triggered, or ifthe current task has been running for 30ms or more. If so, the Ready
Queue is checked to see if atask of equal or higher priority is awaiting execution.

Because the timer is a form of interrupt, we must derive a concrete subclass from the
abstract Clnterrupt class. The new class, CTimer, must provide a Service0 method in
order that timer interrupts will be serviced and that the class will become a concrete
one.

The CTimer class makes thirty-two timer blocks available. Each of these blocks may
be used to trigger an alarm A timer block consists of a flag indicating whether the
block is in use or not, a pointer to an exchange, and a count indicating how many timer
ticks remain before the alarm will trigger. A block is created by calling the method
AlarmO, which takes two parameters. Firstly an exchange must be provided at which
the CTimer class will send a notification when the alarm is triggered. The exact time at
which the alarm is triggered is decided by the second parameter. Alarms can be
removed using the KillAlarmQ method or temporarily postponed using the SleepO
method. The MicroDelayQ method provides the facility for small-value timing delays

in increments of 15 microseconds. Each of CTimer's methods are described below in
detail.
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CTimer(unsigned long Num., unsigned int TickCount)

The CTimer constructor is responsible for two things. Firstly, it must immediately call
the Cinterrupt constructor, which sets up the timer as avalid interrupt in the Interrupt
Descriptor Table. Secondly, the TimerTick attribute is initialised. This measures the
number of timer ticks which have elapsed since the timer was created. The code for
this method is shown in Figure 8.10.

CTimerCTimer (unsigned long Num) =: Clnterrupt (Num)

TimerTick = O; nTmrBlocksUsed = O;

Figure 8.10. The CTimer constructor

virtual unsigned int ServiceQ

This method is called by the Cinterrupt interrupt method ISRQ. It is responsible for
servicing the timer interrupt. 1fno timer blocks have been created then the sole action
the timer interrupt need take is to increment the count of ticks which have elapsed
since the system started. If this is the case, ServiceO returns the value
ENDOFIRQ_NOTPERFORMED. This tells the IRQ() method to perform the
EndO/IRQO method itself This is the default behaviour for most interrupts.

If, however, there are timer blocks set up, ServiceO must attend to them Before it
does this, Service() calls MasldRQO to ensure that no further timer interrupts occur.
Next it calls EndOJIRQO, before setting the interrupt flag. The net effect of this is to
allow other (non-timer) interrupts to perform an interrupt during the servicing of the
timer.

The CTimer class only retains a single variable, nBlocksUsed, to indicate whether any
of the blocks are being used or not. If the value of this variable is above zero, the
ServiceO method must check theJInUse flag of each of the thirty-two timer blocks in
the timer array in order to discover which of the timer blocks are in use.

Ifatimer block is in use one oftwo things will happen. Ifthe value of the timer block's
Tick variable has reached zero, the timer has elapsed and the process which set up the
timer must be notified. This is done by sending a dummy message to the exchange
pointed to by the timer block. Ifthe Tick count has not reached zero, it is reduced by
one. Finally, the ServiceO method clears the interrupt flag before unmasking its
interrupt. The code for this method is shown in Figure 8.11.
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void CTimer::Service(
// Increase the count of elapsed ticks since the
// timer was created
TimerTick++;

// Return if no timer blocks are in use, reporting
// that the EndOFfIRQO primitive was not called
if (nBlocksUsed==0) return ENDOFIRQ_NOTPERFORMED;

// Enable all interrupts except the Timer interrupt
Mask1RQQ:;
EndOFfIRQO ;

#asm
STI
#endasm

// Check every timer block, notifying the appropriate
// processes through the use of an exchange if an
// alarm has elapsed, otherwise decrement the timer
// block tick
for(int 1=0; IcnTMRBLKS; i++) {
if (TmrBlks[i]-flnUse) {
if (TmrBlks[i].-Tick == 0) {
(TmrBlks[i]-RespondExch)->1SendDummyPacket();
TmrBlks[i]-fInUse = FALSE;
elge
TmrBlks[i]-Tick--;

}
}

#asm
CcL1
#endasm

// Reenable timer interrupts
UnMaskIRQQ ;

// Signal that primitive has already been performed
return ENDOFIRQ_PERFORMED;

Figure 8.11. The CTimer: :Service() method

void Sleep (unsigned long nDelay)

This method results in the suspension of the process which called it for nDelay ticks of
the timer. Having verified that the required delay is greater than zero, SleepQ searches
the timer block array searching for a free array. 1fnone are found, the method returns,
reporting a failure to perform the delay.
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If an empty timer block is found, all interrupts are disabled while its variables are set.
TheflnUse flag is set to true, and its Tick is set to the value of nDelay. The exchange
used by the timer block is the calling task's default exchange which is held in its TTSS
structure. Next, the number of timer blocks in use is incremented before interrupts are
reenabled. Finally the task waits for a message to arrive at its exchange before
continuing. This message is a dummy message which will be sent by the CTimer
object's ServiceO method when the task's timer block ticks have been reduced to zero.
Once the current task receives the dummy message, the nDelay delay will have elapsed
and it will continue processing. The code for SleepQ is shown in Figure 8.12.

unsigned int CTimer::Sleep(unsigned long Delay)
it (Delay==0)
return FAIL;

// Find an empty timer block
int 1=0;
while ((i<nTMRBLKS)&& (TmrBlks[i]-fInUse))
i++ ;
// Return if there are no free timer blocks
if (i>=nTMRBLKS)
return FAIL;

#asm
CL1
#endasm

// Setup the timer block structure, using the tasks
// default exchange as the timer block®s exchange
TmrBlks[i]-Tick = AlarmDelay;

TmrBlks[i]-flnUse = TRUE;

nTmrBlksUsed++;

TmrBlks[i]-RespondExch = GetTSSExchQ ;

#asm
STI
#endasm

// Wait here until the dummy message is received from
// Service, notifying that the delay has elapsed
TLinkBlock *Ib = (TmrBlks[i]-RespondExch)->WaitMsgQ;

// Continue processing once the delay has elapsed
return SUCCESS;

Figure 8.12. The CTimer: :SleepQ method
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void Alarm(CExchange *AlarmExch, unsigned long AlarmDelay)

Along with the Delay() method, Ths 1s the only other method which results m a timer
block bemg set up However, Alarm() differs m that 1t allows the user to specify an
exchange to which the dummy message will be sent as soon as the alarm 1s tnggered
An example of the advantage of this 1s exemplfied m the implementation of a hardware
controller which must detect 1f a given hardware event has occurred m a specified
amount of time The controller can set up an alarm to be sent to the same exchange as
used by the hardware device itself Whichever message comes first, the alarm or the
message from the hardware, will show whether the action was carned out successfully
or whether a time-out error has occurred

Another difference between the two methods 1s that the Alarm() method will not wart
until the alarm 1s tnggered As a result of these simlarities, the code for the Alarm()
method 1s very sumilar to that of Delay(), the mam difference bemg that Alarm()
returns to the calling task as soon as the timer block has been set up The code for this
method 1s shown in Figure 8 13

unsigned int CTimer. Alarm(CExchange *AlarmExch,
unsigned long AlarmDelay)
{

1f (AlarmDelay==0) return FAIL;

// Find an empty timer block

int 1=0,

while ((1<nTMRBLKS) && (TmrBlks[1] fInUse))
14+,

// Return 1f there are no free timer blocks
1f (1>=nTMRBLKS) return FAIL;

#asm
CLI
#endasm

// Setup the timer block structure, using the tasks
// default exchange as the timer block's exchange
TmrBlks [1] Tick = Delay,

TmrBlks[1]) fInUse = TRUE,

nTmrBlksUsed++,

TmrBlks [1] RespondExch = AlarmExch,

#asm
STI

#endasm

return SUCCESS,

Figure 8 13 The CTimer Alarm() method
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void MicroDelay(unsigned long dDelay)

This method 1s used for creating very bnef delays, m multiples of fifteen microseconds
The timmg for thus delay 1s based on the toggle of the refresh bit from the System
Status port The toggle 1s approximately fifteen microseconds This means this call
will not be very accurate for values less than three or four dDelay units

unsigned long GetTick()
This method returns the number of timer ticks which have occurred smce the timer was
created (at system boot time)

8.7 Conclusions

This chapter mtroduced additional object-orented classes which are required by the
mam components of OO-MMURTL The CReadyQueue 1s an abstract class which
provides a template for mmplementations of the ready queue Its design makes no
presumptions about the scheduling pohcy of the operatmmg system. This allows system
developers to easily derrve a concrete subclass of CReadyQueue which implements
spectfic scheduling policies

The Clnterrupt class provides a simple mechamism for programmers to set up a
hardware mterrupt m the operating system. To create an mterrupt, a programmer need
only create a subclass of CInterrupt, providing a smgle method to service the interrupt,
and then mstantiate the object to mcorporate the mterrupt mto the operatmg system.
This greatly simphfies the steps previously required by MMURTL

Fally, the CTimer class, which 1s a concrete subclass of Clnterrupt, was described
This provides a flexible timer and alarm mechanism which can be easity mampulated by
the apphcation programmer
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Chapter 9

Design Testing

9.1 Overview

This chapter briefly describes my experiences m designing and testmg OO-MMURTL,
As an mtroduction, the steps taken by MMURTL's orignal developers are discussed
Ths 1s followed by a description of the problems I encountered and the solutions I
mmplemented

In addition, an overview 1s presented of the OO-MMURTL Smmulator Thas 1s an MS-
DOS based program which I developed to provide further testing capabilities of the
OO-MMURTL source code which 1s presented m this thesis Finally, a bref
description of the shortcommgs of the testmg which I have conducted 1s presented,
along with proposed solutions to overcome these shortcommngs

9.2 Development of MMURTL

As with any other operatmg system, MMURTL required a suitable programming
environment from an early stage Imtially the designers sought to use tools written by
third-party developers However as MMURTL evolved, the need for a custom made
set of tools became apparent

During the mitial development of MMURTL, the Microsoft Assembler (MASM) v5 1
was used Subsequently the team changed to Borland's Turbo Assembler (TASM),
before the need for a custom assembler became necessary The developers designed

and implemented a new assembler, DASM, which was custom wrtten for the
MMURTL operating system.
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The next logical step was to write a high level languagé which could produce assembly
compatible with the DASM assembler MMURTL's designers selected the C language
as the most appropmate and wrote a MMURTL-specific implementation of the
language which they called C Mimnus 32 This 32-bit compiler does not support the
entire set of features of the C language (hence the "mmus"), but those that are
supported are ANSI-C comphant The assembly language code produced by C Minus
32 1s compatible with both DASM and TASM

9.3 Development of OO-MMURTL

The mtention of my research was to suggest an appropnate design for an object-
onented version of the MMURTL operatng system. This did not mclude an
implementation of the design, which would necessitate a research project in tself.
However, during the course of my research it was desirable to vahdate my proposed
mplementation of the OO-MMURTL class frameworks which are presented m this
thesis

The primary purpose of this section is to describe the approach I took in testmg my
proposed object-omented designs and frameworks Due to the low-level nature of
much of the functionality of OO-MMURTL, and also due to the movement from a
conventional to an object-omented paradigm, the testing and debuggmg of the code
was a non-trivial task This section will document the problems which I encountered
durmg the testing and debugging phase, along with the solutions which I developed to
overcome them. In addition, this section provides a summary of the outstanding testing
and debuggmg 1ssues which must be dealt with at a later stage of OO-MMURTL's
mmplementation

There are two aspects to the testng phase of the OO-MMURTL operating system
proposed m this thesis Firstly, there 1s the umt testing of the code underlymg each
distmct framework, for example the Messagmg Model, or the Process Management
Model. Secondly, a DOS-based program was written which would act as a simulator
of the OO-MMURTL muicrokernel, allowing further testmg of the behaviour and
mteractions between the vanous frameworks to take place Each of these are described
below m further detail
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9.4 Testing the OO-MMURTL Class Frameworks

The first and most obvious problem which presented itself was the lack of a C++
compiler The only high level language which 1s currently supported by the MMURTL
development kit 1s C This problem was further compounded by the fact that
MMURTL's C compiler, C Mmus 32, was released as freeware, not pubhic domam
Thas resulted m a decision by the MMURTL's designers not to distribute the compiler's

sources

In late 1995 the source code of the latest version of C Mmus 32 was made available on
the CD-ROM which accompames Richard Burgess' book Developing Your Own 32-Bit
Operating System [Burgess 95] However, these sources arrved too late to have a

reasonable impact on my research

Smce the possible use or adaptation of C Minus 32 proved to be unfeasible, due to the
lack of source code availability the only remaming choice was to make use of a third-
party C++ compiler, as MMURTL's designers had origmally done In domg this, I
chose to use Borland's C++ compiler v4 0 The main reason for selectmg this compiler
was so that I could remam as faithful as possible to the current MMURTL
development process Similarly to C Mmus 32, Borland C++ v4 0 compiles TASM
compatible assembly language

Given this solution, 1t became possible to compile both the C++ code and the assembly
code suggested m my research Although the resulting output 1s netther MMURTL
specific nor compatible, the solution allowed me to fulfil the goal of verfymg the
syntactic and semantic structure of OO-MMURTL's class designs It was worth notmg
that additional work had to be performed m order to overcome some of the
mcompatibilities between the C Mimnus 32 and Borland's C++ compiler For example
there are mmor syntactic differences between the way assembly code may be mtegrated
mto programs by both compilers

This, however, has only guaranteed semantic and syntactic correctness of the class
frameworks The behavioural correctness of the classes has yet to be venfied Ths
proves to be a difficult task, given that the executable code provided by Borland C++
was mcompatible with the C Minus 32 executables, and thus could not be mtegrated
with the rest of the operating system.
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In order to provide a compronused solution to this problem, I attempted to simulate
the behaviour of the classes by integrating them wiath an existing MMURTL program. I
achieved this by redesigning the program, MMURTL's user-mterface module, using
the new class frameworks However, m order to execute the program I replaced the
object-oniented method mvocations with non-object-onented function calls, creatmg
global vanables to replace the object's pubhc and private vamables Although this
proved to be an mcomplete and crude test, it did serve to show that 1t remamed
possible to mtegrate the new frameworks with an existing MMURTL program.

In summary, I have attempted to venfy the syntactic, semantic, and behavioural
correctness of the proposed OO-MMURTL class frameworks While I succeeded m
asserting the first two, a full mvestigation of the behavioural correctness of the
frameworks will not be possible until an executable implementation, integrated with the
rest of the operating system, 1s achieved

9.4.1 The MMURTL Debugger

During the course of my research 1t was necessary for me to experiment with, and
delve deeper mto, the low-level workings of the MMURTL operatmg system. In order
to do this m any operating environment requires the use of a low-level tool which
executes close to the system kernel.

Fortunately, MMURTL could provide tlus facility through its debugger which 1s an
mtegral component of the operatmg system. The availability of a debuggmg tool
provided two advantages to my research presented m this thesis Firstly, the
MMURTL debugger allowed me to perform step-through debugging mto the low-level
components of the new operating system. Secondly, 1t allowed me to mvestigate m
detail the behaviour of the low-level behaviour of the origmal operating system.

Problems arose, however, m attempting to trace and test system behaviour durmg
boot-up MMURTL's debugger could only be mvoked when all of the system
constructs and modules required by 1t had been mitiahsed This occurred quite late m
the boot cycle As a result 1t was not possible to use the debugger to trace through the
system boot-up The only solution available to me was to study in detail the system
sources prior to the point at which the debugger could be invoked
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9.5 The OO-MMURTL Simulator

The methods described thus far have enabled me to test and debug OO-MMURTL's
object-oriented code and frameworks on a syntactic and semantic level I have been
able to venfy the correctness of the code through the use of a non-native C++
compiler Ihave also been able to trace through the low-level code using a debugger

Although these methods served to provide an mcreased level of confidence m my
designs, there remamed a question mark over the actual behaviour of the OO-
MMURTL's framework 1n an active environment Because the OO-MMURTL sources
had been compiled m a non-system-compatible compiler, they could not be mtegrated
with the remainder of the system for complete behavioural and system testing

This led to the need for the implementation of a new environment where OO-
MMURTL's object-onented class frameworks could be tested I have called the
resulting environment simply 'The OO-MMURTL Simulator' The simulator 1s a DOS-
based executable program compiled with Borland C++ The purpose of this simulator
was not to perform MMURTL's operating system activities, but to provide an
environment m which it was possible to test and vahdate the behaviour of the class
frameworks

9.5.1 Activity of the OO-MMURTL Simulator

Perhaps the most important aspect of the performance of the OO-MMURTL simulator
1s that 1t attempts to simulate the behaviour of both the user and the system kemel In
attempting to simulate the kemel, OO-MMURTL makes the subset of the kemel API
used by the class frameworks available Because the simulator 1s merely attemptmg to
simulate the operating system behaviour, and not replace it, this subset of API
functions have been rewntten So mstead of actually allocating a contiguous block of
memory, for example, the simulator will report the request (on the screen, for
example), and simulate the allocation by updating the mternal system vanables which
keep track of memory avalability Thus although no memory has actually been
allocated, the Memory Manager object does not realise this Similarly, the simulator's
mternal vanables reflect that the memory has been allocated.
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In addition to simulating the behaviour of the operating system kemel, the simulator
also performs the role of system user In this way, the sitmulator program can make a
set of calls and requests to the various class frameworks, thus simulatmg actual user
requests upon these objects An example of this would be to mvoke the Memory
Manager object and to request a contiguous block of memory from 1t

The purpose of this role of the simulator is not m the caling of the OO-MMURTL
class frameworks alone, but m the observation of the sequence of calls which occur m
the class frameworks m response to the request Thus, by simulating a user request
upon the class frameworks, and then observing the resulting kernel API calls, and the
mter-framework calls, 1t 1s possible to adjudge the correctness of the class framework
behaviour Thus, the smulator has succeeded in providing an additional layer of
system testing

9.5.2 Strengths of the OO-MMURTL Simulator

e The simulator complements the previous testing and debugging by providng an
additional level of syntactic checking of the OO-MMURTL class framework
source code

o The mtroduction of the simulator has provided the first opportunity to examme and
test the class frameworks communicating together and operatmg withm a single
executing environment Previous testng concentrated upon testmg the mndividual
class frameworks, for example the Memory framework, distinct from the rest of
the frameworks

o The simulator prowvides the ability to observe the mteractions between the class
frameworks and the system kernel. This allowed compansons to be performed
between the expected kernel mteractions and the actual ones

e The simulator 1s capable of monitormg the behaviour of the class frameworks m
response to the simulation of a user request, allowing the system designer to verify
the response 1s appropmnate to the request
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9.5.3 Weaknesses of the OO-MMURTL Simulator

o Because of 1ts nature, the Simulator remams a step away from a system test It 1s
merely an extension of the unit testing phase A complete system test will not be
possible until the class frameworks have been fully mtegrated with the native
MMURTL kermnel.

o Simlarly, 1t 1s mmpossible to judge the system performance based upon the
behaviour of the simulator

o Because the simulator abstracts the behaviour of the kernel, 1t 1s 1mpossible to
examme how the OO-MMURTL operatmg system will manage its resources m
response to the object-onented entities, for example the Memory Manager, whose
responsibility they are

9.6 Outstanding Issues

My research presents a possible design of an object-orented implementation of
MMURTL Before OO-MMURTL can be implemented, however, the developers must
first provide an object-onented derivative of the C Mimus 32 programming language

This 1mplementation must be MMURTL-specific and DASM-compatible Once this
object-oriented programmmg environment has been provided, system developers can
begin to mtegrate the class frameworks presented here with the current MMURTL
system. Only at that stage will a full system test be possible

9.7 Conclusions

This chapter presented the methods I used in validatmg the syntactic and semantic
correctness of the object-onented frameworks proposed during my research The
methods used to test the behaviour of the classes were also presented, although a true
test will only be possible once the class designs have been implemented and mtegrated
with the operatng system. Fmally, a bnef summary of outstanding issues was
presented
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Chapter 10

Conclusions

10.1 Overview

The purpose of this thesis was to attempt to mmgrate a conventional operatmg system
to an object-oriented design and to observe the problems and benefits of such a
mugration This chapter recaps the mam pomts which were observed, m addition to
suggesting future directions which may be taken by Object-Onented MMURTL

10.2 Benefits of the Migration to Object-Orientation

10.2.1 Introduction of Object Managers.

The concept of using an object manager (see section 4 4) m which to store objects
provided many benefits to the new operating system. Each of the major system
components, such as process management, memory management, and messagmg, rely
on a speciahsation of the base object manager class

All object-onented operatmg system must keep a repository of the objects which
compnse 1t However, MMURTL's object managers perform a much greater role The
behaviour of each of these speciahsed object managers has been designed m order to
provide maximum support to the objects within each particular subsystem. The
advantages of usmg object managers are summansed below

Centralised Processing - All processmg of the objects belonging to each subsystem
becomes the responsibility of a single entity, the object manager As a result, the
behaviour of each subsystem, and all accesses to the components of that subsystem,
may be regulated by the object manager This results in a stronger system design with
tighter controls on privileged objpcts and operations
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Protection - Thus 1s related to the previous pomt Smce access to each subsystem's
objects are through a centralised processmg area, better protection 1s offered to the
store of objects No task 1s allowed to gam access to an object, or perform an action
on one, without full error checking having been performed m advance by the object
manager in question Only when the object manager 1s satisfied, will each requested
access be allowed

Intelligence - This 1s possibly the biggest difference between MMURTL's object
managers and normal object repositories Each object manager has some specific
knowledge of the nature of the data it holds and the operations they perform. For
example, the exchange manager (see Section 6 3) can recerve a communication from a
task and detect whether 1t 1s a message or a request Having verified the correctness of
the commumication, the exchange manager will then forward 1t to the exchange
belongmg to the mtended destination's task 1f it's a message, or m the case of a request
then the mtended system service will be looked up, before the communication is
forwarded to 1t

Dynamic Allocation - This feature ensures that system resource usage 1s optumsed
Subsystem objects are created upon request by object managers and deallocated upon
completion All of the objects which are allocated at any given time are m use by some
component of the operating system.

Extensibility - The flexibility of the object-onented paradigm m conjunction with the
design of the object managers ensure therr flexibility, thus rendermg them capable of
growth and expansion

10.2.2 Improved Classification of System Entities

The design of Object-Onented MMURTL, as presented n this thesis, uses a hierarchy
of objects to encapsulate the behaviour of each subsystem. By definition, each object-
oniented lerarchy must adequately classify the various entities within the subsystem 1t
represents This ensures the components of every object-onented subsystem m OO-
MMURTL are fully represented m, and classified by, a class lierarchy Taking the
process management subsystem as an example (see Section 5 5), the components of
this subsystem are represented by two hierarchies The base of the first class is the
abstract CProcess class, while the base of the second is the CDeviceDriver class
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Immediately every executing entity m the operating system must be classified by one of
these categories Each of these base classes are mhented by subclasses and so on,
resultmg m five leaf nodes between the two hierarchies, namely CSystemService,
CUserJob, CSystemJob, CReentrantDeviceDriver, and CNonReentrantDeviceDriver
Now, each object m the process management subsystem must be classified as bemng
one of these objects

This detailed classification of system entities allows the system designer to present a
dufferent set of behaviour, by designing a unique set of attributes and methods, for each
of these classes This facility 1s not present m MMURTL, where the same code 1s
responsible for dealing with entities of a different nature

10.2.3 Simpler Programming Interface

Object-oriented programmmg provides several advantages over conventional
programming languages, these advantages are universal and are much documented
This section deals with the advantages resultng from the design of OO-MMURTL m
particular This is shown by taking examples from different areas of the operating
system.

Programming Interrupts - Thanks to the Clnterrupt class, much of the low-level work
mvolved m settng up an mterrupt has been encapsulated, and therefore hidden from
the programmer (see Section 8 5) OO-MMURTL does this by abstractmng the default
behaviour required by every mterrupt, namely, settmg up an mterrupt vector,
respondmg to an interrupt call, and by ensuring that the operating system 1s signalled
with an end of mterrupt message To create an mterrupt m OO-MMURTL, the system
programmer need only derive a subclass of Clnterrupt and m domg so, provide a
method which will service the mterrupt Immediately this class 1s mstantiated, the
mterrupt will be added to the Interrupt Descriptor Table and will be ready to perform.

Programming System Services - Sumilar to programmmg mterrupts, the
CSystemService class encapsulates much of the default behaviour which 1s performed
by every system service, this even extends to creating the exchange through which the
system service will recerve 1ts requests In addition, subclasses of the CSystemService
class provide more speciabised system services while still hiding the code from the
service programmer
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In thuis way, the programmer need only decide whether to derive a subclass of
CReentrantDeviceDriver or CNonReentrantDeviceDriver If the latter 1s chosen
mutual exclusion, and thus non-reentrancy, will be enforced without any extra
programming required by the developer

10.2.4 Multiple Personalities

The use of object-onented class hierarchies enables the system designer to create
abstract classes which define the default behaviour of classes which mmplement system
policy decisions Ths 1s exemplified by the abstract CReadyQueue class (see Section
8 2) In this case, the default behaviour of this class mdicates that the CReadyQueue
class must be capable of adding items to the queue, removing items from the queue,
and checking what the item at the top of the queue is No details are given, however,
describmg how the queue should be implemented

This mechamsm allows the system developer to provide multiple differmg
mplementations of the ready queue, each enforcing a different scheduling pohcy, for
example a priorttised queue and a FIFO queue (see Sections 8 3 and 8 4 respectively)
It would then be possible to create different mstallations of the same operatmg system,
whose pohcies are customused for the mstallation in question, without affectmg the rest
of the system.

10.2.5 Extensible Frameworks

The OO-MMURTL class hierarchies have been designed to be as genenc as necessary
at the base level, and speciabised m further levels This prowvides for an extensible
operatmg system which may be easily augmented or enhanced at a later date For
example, the messagmg hierarchy provides for two type of exchange, and two types of
messages Future development of MMURTL could necessitate the mtroduction of a
new form of exchange or a new type of message In this case, the existing hierarchy
need only be extended at an appropriate level, depending on the nature of the new
class
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10.3 Problems Encountered During Migration

Several problems were encountered durmg the mgration of MMURTL to an object-
onented paradigm. These should serve to wam future mugrations, particularly those
mvolving more complex operatmg systems, of the problems which may be
encountered

Inappropriate Implementations - The smgle most worrymg problem arose m the
redesign of the memory subsystem as an object-onented component of OO-
MMURTL Unlike the rest of the object-oniented components m OO-MMURTL, the
memory subsystem did not adapt easily to the new paradigm. These difficulties are
described m detail previously (see Section 74) In summary, the only reasonable
option was to provide a smgle class which encapsulated the low-level code, thus
providing an object-oniented programmung mterface which provided at least some
advantages over the original implementation

Trivial Class Behaviour - Other subsystems of MMURTL proved less troublesome to
migrate to object-onentation In the process management subsystem, for example,
many different entity classifications were easily 1dentified, as was mentioned earlier m
this chapter This did allow the behaviour of classes to be differentiated and classified
m detail, however, due to the origmal implementation of MMURTL, the object-
oniented mmplementation of some of these entities proved to be close to trivial.

This 1s best exemplfied by the CUserJob / CSystemJob parr Both of these are
subclasses of CJob, however their only behavioural differences are m terms of their
memory allocation routines! If OO-MMURTL had been designed from bottom-up as
an object-onented operating system, a more diverse set of behaviour for each class
would have been expected Another reason for this triviality hes m the fact that much
of the low-level task management routines remam m the kemel, thus reducing the
amount of functionality performed by the CJob subclasses

1 Note that matters such as loading the jobs into the appropriate address space, 1e user or system, and
the setting of the appropnate system protection level, again either user or system, 1s the responsibility
of the process manager class when 1t loads new jobs
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Widespread Hardware Dependencies = MMURTL was designed exphcitly with the
Intel 386/486 architecture m mmd In designmg MMURTL, 1ts creators attempted to
streamlme the system n terms of speed as much as possible This was often done by
taking advantage of low-level code Unfortunately, this resulted m a microkemel
whose implementation was hardware dependent to a big extent This caused problems
m designing OO-MMURTL smce these hardware-dependent routmes had to remam
within the microkernel. Agam if OO-MMURTL had been designed from the bottom-
up, the hardware dependent code would be mmmmsed and centrahsed thus allowing the

remamder of the operating system to reap the full rewards of object-orientation

10.4 Future Directions

There are many possible directions m which Object-Orniented MMURTL can be
extended The most obvious of these would be to create a machme-mdependent
version of the operating system by reducing the hardware-dependent components to a
mimmum level withm a sigle area of the microkemel. This could then allow a future
development of OO-MMURTL to become a distributed operating system. (Migrating a
single machme object-oriented operatng system to a distributed operating system
could prove to be a very mterestmg thesis) Naturally, a project such as this would
mtroduce a wide range of new factors to the operating system design Naming,

persistency, distributed object-mvocation and distributed linkmg are but the tip of the
1ceberg

The most mportant move for OO-MMURTL now would be a re-implementation of
the components which did not mugrate easily, m particular the memory management
system. This would mvolve redesigning the memory model, probably away from 1ts
non-object-onented ongms, and providing a class hierarchy of component objects Due
to the current design of the OO-MMURTL memory model, this should not affect
existmg components This 1s because the mterface of the memory manager will remam
the same m that it will continue to allocate and manage pages of memory The
underlymng mmplementation of the memory manager need only be re-implemented to
support the new design This, once agam, lighhghts the advantages of the design of
Object-Onented MMURTL
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// CProcess Class

class CProcess {

private

long
char

ProcNum,
sbProcName [14],

unsigned char *pPD,

char
char
char
char
char
char

long
char
Cchar
long
long
long

char
char
long
char

public:

sbUserName [30],
sbPath[70],
Ex1tRF[80],
ProcCmdLine [80],
SysIn(50],
SysoOut [50],

ExitError,
*pVidMem,
*pvirtVvaid;
CrntX,
CrntY;
Normvaid,

fCursOn,
fCursType,
ScrliCnt,
fvidPause,

Appendix

Process Definitions

13 bytes First byte i1s length
Linear add of Job's PD (0=unused)

User Name for Job
Path name

Exit Run file (1f any)
Command Line string
Standard input
Standard output

Error Set by ExitJob

pointer to crnt wvideo buffer
Virtual Vaideo Buffer Address
Current cursor position

7 = WhiteOnBlack
1 = Cursor 1s visible
0 = Underlaine, 1 = Rlock

Count since last pause
Full screen pause (Text mode)

CProcess{(long Num, char *Name, char *User, char *Path,
char *CmdLine,char *VidMem,char *Vairtvad);

void Chain(char *pFileName, long dExitError);
void ExitProc(long dError),

void FreeResources (),
virtual long FreeSystemResources() = 0;
long GetProcNum(),

void
void
void
void

void
void
void
void
void
void

voaid KillTask({),

SetUserName (char *pUser) ;

GetUserName (char *pUserRet),
GetCmdLine (char *pCmdRet),
GetPath(long JobNum, char *pPathRet) ;

SetExitJob {(char *pRunFile),
GetExitJob (char *pRunRet),
SetSysIn(char *pFile);
GetSysIn(char *pFileRet),
SetSysOut (char *pFile),
GetSysOut (char *pFileRet),
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// CJob Class

class CJob - publac CProcess (
publaic
CJob (long Num, char *Name, char *User, char *Path, char *CmdLine,
char *VidMem, char *Virtvaid)
CProcess (Num, Name, User, Path, CmdLine,VidMem,Vairtvad) {};

unsigned long AllocPage (unsigned long nPages,CPage *ppMemRet) = 0;

b

// CUserJob Class

class CUserdob public CJob {
public
CUserJdob (long Num, char *Name,char *User,char *Path, char *CmdLine,
char *VidMem, char *Vairtvad)
CJob (Num, Name , User, Path, CmdLine,VidMem, Virtvad) {};

virtual unsigned char *AllocPage (unsigned long nPages),

b

// CSystemJob Class

class CSystemJob : public CJob {
public
CSystemJob (long Num, char *Name, char *User, char *Path,
char *CmdLine, char *VidMem, char *Virtvaid)
CJob (Num, Name, User, Path, CmdLine, VidMem, VirtVad) {};:

virtual unsaigned char *AllocPage (unsigned long nPages);

b

// CSystemService Class

class CSystemService public CProcess({
private
char SvcName [12],
CExchange *pSvcExch,
public
CSystemService (long Num, char *Name, char *User, char *Path,
char *CmdLine,char *VidMem,char *Virtvid),
void Service();
virtual unsigned long ServiceRequest (TRequest *pRegBlk) = 0;

b,



Process Class Implementations

CProcess -CProcess(long Num, char *Name, char *User,
char *Path, char *CmdLine,
char *VidMem, char *Virtvaid)

/* Initialise variables as per parameters */
ProcNum = Num,

strcpy (sbProcName, Name) ,

strcpy (sbUserName, User) ,

strcpy (sbPath, Path) ,

strcpy (ProcCmdLine, CmdLaine) ,

pvVidMem = VidMem,

pvirtvid = Virtvad,

/* Set system input for this process to keyboard */
strcpy (SysIn, "KBD") ,

/* Set system output for this process to video */
strcpy (SysOut, "VID") ;

ExitError = 0,

CrntX = CrntY = 0, /* Initial cursor pos (0,0) */
fCursOn = 1, /* Cursor 1s on */

fCursType = 1 /* Block cursor */

ScrollCount = 0,

Normvid = 7; /* White on Black */

strcpy (Ex1tRF,""), /* No ExitRunFile initially */
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vo1d CProcess. Chain(char *pFiléName, long dExitError)

{

CExchange *pExch, *pCurrkxch,
long ercE, 1E, ExchProc, CurrProc, ExitError,

ercE = GetRunFile(pFileName, cbFileName, &job_fhE),
1f (erck)
return(erck),

ExitError = dExitError,

// Remove ALL tasks for this job that are at the ReadyQue
// This task won't be removed because 1ts RUNNING!

RemoveRdyJob (),

/* Deallocate all exchanges for this job except the one belonging to

current TSS'!' The Dealloc Exchange call will invalidate all TSSs
found at exchanges belonging to this user, and will also free up
1ts resources The job will not be able to i1nitiate requests or
send messages after this unless 1t 1s done with the

TSSExchange because 1t will get a kernel error */

// Find out TSS exchange so it isn't deallocated */

/*

pExch = GetTSSExch(),
CurrProc = GetCurrProcNum(),

ercg = 0,
1E = 0;
while (ercE '= ErcOutOfRange) {

ExchProc = ExchangeManager->GetOwner (1E) ;
pCurrkExch = ExchangeManager->GetExchange (1E),

1f (('ercE) && (ExchProc == CurrProc) && (pCurrExch'= pExch))
ercE = ExchangeManager->RemoveExch(1iE),

1E++;

}

Now that the user can't make anymore requests, Send Abort messages
to all services. This closes all files that were opened by the Job

and frees up any other resources held for this job by any
services */

Sendabort (),

TPacket *pPacket = pExch->CheckPacket (),

while (pPacket '= NULL) // clear the exchange of abort responses
pPacket = pExch-s>CheckPacket ()},



£
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void CProcess ExitProc(long dError)

{

CExchange *pExch, *pCurrExch,
long ercEk, 1E, ExchProc, CurrProc, ExitError,

ExitError = dError;

// Remove ALL tasks for this job that are at the ReadyQue.
// The task we are in won't be removed because 1ts RUNNING!

ReadyQueue->RemoveRdyProc (ProcNum) ,

/* Deallocate all exchanges for this job except the one belonging to

current TSS'!' The Dealloc Exchange call will invalidate all TSSs
found at exchanges belonging to this user, and will also free up
1ts resources The job will not be able to initiate requests or
send messages after this unless i1t 1s done with the

TSSExchange because 1t will get a kernel error */

// Find out TSS exchange so 1t isn't deallocated */

/*

pExch = GetTSSExch();
CurrProc = GetCurrProcNum() ;

ercE = 0;
1E = 0,
while (ercE '= ErcOutOfRange) {

ExchProc = ExchangeManager->GetOwner (1E) ;
pCurrExch = ExchangeManager->GetExchange (1E),

1f ((lercE) && (ExchProc == CurrProc) && (pCurrExch'= pExch))
erckE = ExchangeManager->RemoveExch(1E),

1E++;

}

Now that the user can't make anymore requests, Send Abort messages
to all services. This closes all files that were opened by the Job
and frees up any other resources held for this job by any

services. */

Sendabort (),

TPacket *pPacket = pExch->CheckPacket ();

while (pPacket '= NULL) // clear the exchange of abort responses
pPacket = pExch->CheckPacket (),
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vo1d CProcess FreeResources()

{

CExchange *pExch, *pCurrExch,
long ercE, 1E, ExchProc, CurrProc,

// Allow subclasses to free additional system resources
// which they may have allocated

FreeSystemResources () ;

// Remove ALL tasks for this job that are at the ReadyQueue.
// This task won't be removed because its Running'!

ReadyQueue->RemoveRdyProc () ,

/* Deallocate all exchanges for this process except the one
belonging to current TSS The Dealloc Exchange call will
invalidate all TSSs found at exchanges belonging to this
user, and will also free up RQBs and Link Blocks The
Job will not be able to 1nitiate requests or send messages

after thas */

// Find out current TSS exchange so i1t isn't deallocated

pExch = GetTSSExch(),
CurrProc = GetCurrProcNum(),

erckE = 0;
1E = 0,
while (ercE != ErcOutOfRange) {

ExchProc = ExchangeManager->GetOwner (1E),
pCurrExch = ExchangeManager->GetExchange (1E),

1f ((l!ercE) && (ExchProc == CurrProc) && (pCurrExch'= pExch))
ercE = ExchangeManager->RemoveExch (1E),

1E++,

}

/* Now that the user can't make anymore requests, Send Abort
messages to all services This closes all failes that were

opened by the Job and frees up any other resources held
for this job by any services.*/

Sendabort (),
// Clear the exchange of abort responses (ignore them)
TPacket *pPacket = pExch->CheckPacket () ;

while (pPkt==NULL)
pPacket= pExch->CheckPacket (),
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void CProcess KillTask(void)
{
CExchange *pExch,
FreeResources (),
pExch = GetTSSExch(),
pPacket = NULL,
while (pPacket == NULL)
pPacket = pExch->CheckPacket (),
pExch->ISendPacket (ErcOpCancel, ErcOpCancel) ,
ProcessManager->SetPriority (ProcNum, 31),

TPacket *pPacket = WaitPacket (),

while (1), /* in case we get scheduled again */

long CProcess- GetProcNum/()

{
}

return ProcNum,

void CProcess SetUserName (char *pUserRet)

{
}

strcpy (sbUserName, pUserRet) ;

vord CProcess GetUserName (char *pUserRet)

{
}

strcpy (pUserRet, sbUserName) ;

void CProcess: GetCmdLaine (char *pCmdRet)

{
}

strcpy (pCmdRet , JobCmdLaine) ,

void CProcess GetPath(char *pPathRet)

{
}

strcpy (pPathRet, sbPath) ,

void CProcess SetExitJob(char *pRunFile)

{
}

strcpy (JcbEx1tRF, pRunFile) ;
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void CProcess GetExitJob{(char *pRunRet)

{

strcpy (pRunRet , JCbExX1tRF) ,

}

vo1d CProcess: SetSysIn(char *pSysIn)

{

strcpy (JcbSysIn, pSysIn) ;

}

voi1d CProcess GetSysIn(char *pSysInRet)

{

strcpy (pSysInRet, JcbSysIn),

}

void CProcess SetSysOut(char *pSysOut)

{

strcpy (JcbSysOut , pSysQut) ,

}

void CProcess GetSysOut (char *pSysOutRet)

{

strcpy (pSysOutRet, JcbSysOut) ,

}
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// CUserJob Class

unsigned char *CUserJob AllocPage(unsigned long nPages)

{
}

return MemoryManager->AllocPage (nPages),

// CSystemJob Class

unsigned char *CSystemJob -AllocPage(unsigned long nPages)

{
}

return MemoryManager->AllocOSPage (nPages),
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CSystemService CSystemService{long Num, char *Name, char *User,
char *Path, char *CmdLine,
char *VidMem, char *Vairtvaid)
CProcess (Num, Name, User, Path, CmdLine, VidMem, Virtvad) ,

{
SvcExch = CreateExchange(),
strcpy (pSvcName , Name) ;
RegisterService (pSvcName, SvcExch) ,

}

CSystemService ~CSystemService ()

{

SvcExch->Remove () ,
SvcExch->DeAllocate(); // Free memory used by SvcExch

}

void CSystemService Servicel()

{
unsagned long ErrorToUser,
unsigned long Message[2];
TRequest *pRegBlk

while (1) {
TPacket *pPkt = SvcExch-s>WaitPacket () ;

1f (pPkt '=NULL) {
pRegBlk = Message[0],

ErrorToUser = ServiceRequest (pRegBlk) ;

SvcExch->Respond (pRegBlk, ErrorToUser) ,

}
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Device Driver Definitions

class CDeviceDriver

private.
char Name (1217,
unsaigned int Type, // 0 = No Device, 1l=Random, 2=Sequential
unsigned int nBPB, // Sequential Bytes per block (1-65535)
long LastDevErc; // Last operation error code
int nBlocks; // Number of blocks in device
int f£SingleUser, // Is device assignable®
long wJob, // 1f assignable, 1s 1t assigned®

virtual long DevOperation(unsigned long dOpNum,
unsigned long dLBA,
unsigned long dnBlocks,
unsigned char *pData) = 0,

virtual long DevStatus (char *pStatRet,
unsigned long dStatusMax,
unsigned long *pdSatusRet) = 0;

virtual long DevInitialise(char *pInatData,
unsigned long sdInitData) = 0;

publac
// Constructor for sequential device draver
CDheviceDriver (char *DevName, unsigned int BPB, int Blocks,
int SingleUser);

// Constructor for non-sequential device draver
CDeviceDraiver (char *DevName, int SingleUser);

virtual long Operation(unsigned long dOpNum,
unsaigned long dLBA,
unsigned long dnBlocks,
unsigned char *pData) = 0,

virtual long Status (char *pStatRet,
unsigned long dStatusMax,
unsigned long *pdSatusRet) = 0,

virtual long Initialise(char *pInitData,
unsigned long sdInitData) = 0;
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class CReentrantDeviceDriver ({

private
virtual long DevOperation{unsigned long dOpNum, unsigned long 4dLBA,
unsigned long dnBlocks,
unsigned char *pDhata) = 0,

virtual long DevStatus (char *pStatRet, unsigned long dStatusMax,
unsigned long *pdStatusRet) = 0,

virtual long DevInitialise(char *pInitData,
unsigned long sdInitData) = 0,

public

// Constructor for sequential device driver

CReentrantDeviceDriver (char *DevName, unsigned int BPB,

int Blocks, int SingleUser)
: CDeviceDraiver (DevName, BPB, Blocks, SingleUser) {} ;
// Constructor for non-seguential device driver
CReentrantDeviceDraver (char *DevName, int SingleUser)
: CDeviceDraiver (DevName, SingleUser) {} ;

virtual long Operation(unsigned long dOpNum, unsigned long dLBA,
unsigned long dnBlocks,
unsigned char *pData),

virtual long Status(unsigned long dDevice, char *pStatRet,
unsigned long dStatusMax,
unsigned long *pdSatusRet),

virtual long Initialise(unsigned long dDevNum, char *pInitData,
unsigned long sdInatData),
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class CNonReentrantDeviceDriver {

private
CExchange *SemExch, // Exchange for device semaphore
CMessage *SemMsg; // CMsg holder for WAITs from gueued
CTasks

virtual long DevOperation{unsigned long dOpNum, unsigned long dLBA,
unsigned long dnBlocks,
unsigned char *pData) = 0,

virtual long DevStatus (char *pStatRet, unsigned long dStatusMax,
unsigned long *pdStatusRet) = 0,

virtual long DevInatialise(char *pInitData,
unsagned long sdInitData) = O,

public
// Constructor for sequential device draver
CNonReentrantDeviceDraver (char *DevName, unsigned int BPR,
int Blocks, int SingleUser)
CDeviceDriver (DevName, BPB, Blocks, SingleUser) {} :

// Constructor for non-sequential device driver
CNonReentrantDeviceDraiver (char *DevName, int SingleUser)
CDeviceDriver (DevName, SingleUser) {} ;

virtual long Operation{(unsigned long dOpNum, unsigned long dLBA,
unsigned long dnBlocks,
unsigned char *pData),

virtual long Status(unsigned long dDevice, char *pStatRet,
unsigned long dStatusMax,

unsigned long *pdSatusRet) ;

virtual long Initialise(unsigned long dDevNum, char *pInitData,
unsigned long sdInitData),
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CDheviceDriver

{

strcpy (Name,D
nBPB = BPB,

nBlocks = Blo
fSingleUser =

Type = 2,

LastDevErc =
wJob = 0,

CDheviceDraiver :

{

strcpy (Name, D
fSingleUser =

Type = 1,
nBPB = 0;
nBlocks = 0;

LastDevErc =
wJob = 0,

CDeviceDriverClass Implementation
CDheviceDriver (char *DevName, unsigned int BPB,
int Blocks, int SingleUser)
evName) ,
// Bytes per block
cks,
SingleUser, // 1s device assignable?

// Sequential device driver

0,

CDeviceDraiver (char *DevName, int SingleUser)

evName) ;
SingleUser, // Is device assignable?

// Random device draiver
// Does not apply
// Does not apply

Ol
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CReentrantDeviceDriver Class Implementation

long CReentrantDeviceDriver- Operation(unsigned long dOpNum,
unsigned long dLBA, unsigned long dnBlocks,
unsigned char *pData)

{
}

long CReentrantDeviceDriver .Status(char *pStatRet,
unsigned long dStatusMax,
unsigned long *pdStatusRet)

return DevOperation (dOpNum,dLBA,dnBRlocks,pData),

{
}

return DevStatus (pStatRet, dStatusMax,pdStatusRet),

long CReentrantDeviceDriver Initialise(char *pInitData,
unsigned long sdInitData)
{

}

return DevInit (pInitData,sdInitData),

Al6




Appendix

CNonReentrantDeviceDriver Class Implementation

long CNonReentrantDeviceDraiver. :Operation(unsigned long dOpNum,
unsigned long dLBA,unsigned long dnBlocks,
unsigned char *pData)
long erc,

TPacket *pSemPkt = SemExch->WaitPacket(), // Wait for MutEx

/* Mutual exclusion has been achieved, perform operation */
erc = DevOperation (dOpNum, dLBA,dnBlocks, pData) ,

SemExch->SendDummyPacket (), // Signal

return erc,

}

long CNonReentrantDeviceDraver::Status(char *pStatRet,
unsigned long dStatusMax,
unsigned long *pdStatusRet)
long erc,

TPacket *pSemPkt = SemExch->WaitPacket () ;

/* Mutual exclusion has been achieved, retrieve status */
erc = DevStatus (pStatRet,dStatusMax,pdStatusRet),

SemExch->SendDummyPacket (); // Signal

return erc,

}

long CNonReentrantDeviceDraver.:Initialise(char *plInitData,
unsigned long sdInitData)
{

long erc;
TPacket *pSemPkt = SemExch->WaitPacket();

/* Mutual exclusion has been achieved, initialise */
erc = DevInit(pInitData,sdInitData),

SemExch->SendDummyPacket (),

return erc,
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Messaging Definitions - Structures

// TTSS Structure
R

struct TTSS {
CProcess *pProc,
TPacket *pLBRet,

struct TTSS *next,

b

// TReguest Structure

struct TRequest {
CExchange =*RespExch;
long RgOwnerProc;
int ServiceCode;
long dbata0;
long dbatal,
long dbataZ2;
char *pbatal;
long cbbhatal;
char *pbhataz2,
long cbbata?2,

struct TRequest *next;

b

// TMessage Structure

/] —emmmmmmeeene

struct TMessage({
long dDatal,
long dData2;

struct TMessage *next,

}s

// TPacket Structure

/] s

struct TPacket {

struct TRequest *Req,
struct TMessage *Msg;h

struct TPacket *next,

}i

// Exchange to respond to
// JobNum of Owner of the CRequestBlock

// System Service Command Number

// User fi1ll
// User fill
// User fill
// User faill
// Length of
// User fill
// Length of

Appendix

/ Srvc Defined (No Pointers)
/ Srvc Defined (No Pointers)
/ Srvc Defined (No Pointers)

/ Srvc Defined
data in pDatal
/ Srvc Defined
data in pData2

// Data field 1
// Data field 2
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Messaging Definitions - Classes

// CExchange Class
[/ ===mmmmmmmm e

class CExchange {
TPacket *pPktQueueHead, *pPktQueueTail,
TTSS *pTSSQueueHead, *pTSSQueueTall;
CProcess *pOwnerProc;

publaic
CExchange (),

CProcess *GetOwner () { return pOwnerProc, },

TTSS *deQueueTSS (),

void enQueueTSS (TTSS *pTSS) ;

TPacket *deQueuePacket (),

void enQueuePacket (TPacket *NewPacket) ;
TPacket *WaitPacket (),

vo1d SendPacket (TPacket *pPacket);
void SendDummyPacket (),

void ISendDummyPacket () ;

TPacket *CheckPacket () ;

// CServiceExchange Class

[/ ==mmmmmmm e
class CServiceExchange - public CExchange {
publac.

CServiceExchange () CExchange () {},

void MoveRequest (TRequest *pReq, CExchange *pExch);

void Respond (TRequest *pReq),

void Request (int code, CExchange *respexch, long datal, long datail,
long data2, char *pdatal, long cbdatal, char *pdata2,
long cbdata2),

}s

// CMessageExchange Class
J) =

class CMessageExchange public CExchange {
public.
CMessageExchange () : CExchange() {};

void SendMsg(long dMsgDatal, long dMsgData2);
void ISendMsg(long dMsgDatal, long dMsgData2),

}i
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CExchange Class

CExchange: .CExchange ()

{
pPktQueueHead = pPktQueueTail
pTSSQueueHead = pTSSQueueTail
pOwnerProc = GetpRunProc (),

NULL,
NULL,

}

TPacket *CExchange deQueuePacket ()

{

TPacket *pPacket,

pPacket = pPktQueueHead,
pPktQueueHead = pPktQueueHead->next;

return pPacket;

void CExchange enQueuePacket (TPacket *pPKT)

{

1f (pPktQueueHead == NULL) {
pPktQueueHead = pPKTQueueTail = pPKT,
pPKTQueueHead->next = NULL,

}

else {
pPKTQueueTail->next = pPKT,
pPKTQueueTa1rl = pPKT,

}

TTSS *CExchange. .deQueueTSS ()
{

TTSS *pTSS,

pTSS = pTSSQueueHead,
pTSSQueueHead = pTSSQueueHead->next;

return pTSS,
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void CExchange :enQueueTSS(TTSS *pTSS)

{

1f (pTSSQueueHead == NULL) {
pTSSQueueHead = pTSSQueueTail = pTSS,
pTSSQueueHead->next = NULL;
)

else {
pTSSQueueTail->next = pTSS,
pTSSQueueTail = pTSS,

}

void CExchange SendPacket (TPacket *pPacket)

{

TTSS *pWaitTSS, *pPriorityTSS;

// Remove task from the exchange's queue
pWaitTSS = deQueueTSS() ;

// If no task 1s waiting, queue the packet
1f (pWai1tTSS==NULL) {

enQueuePacket (pPacket),

return,

}

// If a task was waiting notify it of the received packet
pWaitTSS->pLBRet = pPacket,

// Reevaluate the Ready Queue 1n case a higher
// priority task 1s available
ReadyQueue->enQueueRdy (pWa1tTSS) ,

pPriorityTSS = ReadyQueue->deQueueRdy (),

// If the highest praiority task 1s the current one,
// no task switch i1s required
1f (pPriorityTSS == pWaitTSS)

return,

/* Perform a 386 processor task switch */

#asm

MOV EAX,pPriorityTSS

MOV BX, [EAX Taid]

MOV TSS_Sel,BX

INC nSwaitches

JMP FWORD PTR [TSS]} !
#endasm

ft.
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TPacket *CExchange- WaitPacket ()

{

TPacket *pPacket,
TTSS *pRunTSS, *pPriorityTSS,

#asm
CLT
#endasm

pPacket = deQueuePacket (),

1f (pPacket==NULL) {
// Add the current task to the TSSQueue of this exchange
PRuUnTSS = GetpRunTSS(),
pRunTSS->next = NULL,
enQueueTSS (pRunTSs) ;

// Get the next TSS to run (if there i1s one)
pPriorityTSS = ReadyQueue->deQueueRdy () ;

// 1If none were ready, loop until one is
while (pPriorityTSS == NULL) {

#asm ;

STI

HLT

CLI

#endasm

pPriorityTSS = ReadyQueue->deQueueRdy (),

}

1f (pPriorityTSS != pRunTSS) {
// Tasks are now switched by performing a 386 task switch
#asm
MOV EAX, [pPriorityTSS]
MOV BX, [EAX.Taid]
MOV TSS_Sel,BX
JMP FWORD PTR [TSS]
#endasm
}
}

// A task has just finished "Waiting" ©Now in the new task

}

/* we have either switched tasks and we are delivering a packet to
the new task, or there was a packet waiting at the exch of the
first caller and we are delavering it */

#asm
STI

#endasm

return pPacket;



TPacket *CExchange CheckPacket ()

{

TPacket *pPacket,

// Disable interrupts
#asm

CLI

#endasm

pPacket = deQueuePacket (),
// Reenable interrupts
#asm

STI

#endasm

return pLB,
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void CServiceExchange

{

Appendix

CServiceExchange Class

TPacket *pPacket;

TTSS *pTSS, *pPriorityTSS,

MoveReqguest (TRequest *pReq, CExchange *pExch)

pPacket = (TPacket *)malloc({sizeof (TPacket)),

pPacket->Reqg pReq;
pPacket ->Msg NULL,
pPacket->next = NULL,

(]

[}

#asm
CLI
#endasm

pTSS = pExch->deQueueTSS() ;

1f (pTSS==NULL) {

pExch->enQueuePacket (pPacket) ,

#asm
STI
#endasm

}

// Store link block in dequeued task

pTSS->plLBRet = pPacket,

ReadyQueue->enQueueRdy (pTSS) ;
pPriorityTSS = ReadyQueue->deQueueRdy (),

1f (pPriorityTSS == pTSS)
#asm
STI
#endasm
return,

}

#asm

MOV EAX,pPriorityTSS
MOV BX, [EAX Tad]

MOV TSS_Sel,BX

JMP FWORD PTR [TSS]
STI

#endasm

’

1

Make the TSS in EAX the Running TSS
Get the task Id (TR)

Put 1t in the JumpAddr

JMP TSS
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void CServiceExchange. Request (1nt code, CExchange *respexch,
long data0, long datal, long data2, char *pdatal,
long cbdatal, char *pdata2, long cbdata2)

TPacket *pPacket,
TRequest *pReq,

// Create request structure
pReg = new TReqguest,

pReg->ServiceCode = code,
PReqg->RespondExch = respexch,
pReqg->RgOwnerProc = GetCrntJobNum(),
pReg->dDatal = dataol,

pReg->dDatal = datal,

pPReg->dData2 = dataz,

pReg->pDatal = pdata2;

pPReqg->cbDatal = cbdatal;
pReg->pData2 = pdata2z,
PReg->cbData2 = cbdataz,

// Create the packet
pPacket = new TPacket;
pPacket->Req = pReq,
pPacket->Msg = NULL;

// Disable anterrupts
#asm

CLI

#endasm

SendPacket (pPacket) ;

// Reenable interrupts
#asm

STI

#endasm

void CServiceExchange- .Respond (TRequest *pReq)

{

long dCurrProc, dRegProc,
TTSS *pTSS, *pPraiorityTSSs,
TPacket *pPacket,

dCurrProc = GetCurrProcNum(),
dReqProc = pReq->RqgOwnerProc;
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// Perform memory aliasing 1f required
1f (dRegProc!=dCurrProc) {

1f (pReg->cbDatal > 0) && (pReg->pDatal

'= NULL)

DeAliasMem(pReq->pDatal, pReg->cbDatal, dCurrProc),

1f (pReg->cbData2 > 0) && (pReq->pData2

'= NULL)

DeAliasMem (pReq->pData2, pReq->cbData2,dCurrProc),

}

// Disable interrupts
#asm

CLI

#endasm

pPacket = new TPacket,
pPacket->Req pReq,
pPacket->Msg NULL,
pPacket-»next = NULL,

// Remove waiting task (1f any)
pTSS = deQueueTSS(),
1f (pTSS == NULL) {
enQueuePacket (pPacket) ,
#asm
STI
#endasm
return;

}

// Store request in the degqueued task
pTSS->plLBRet = pPacket,

// Reevaluate the ready Qqueue
ReadyQueue->enQueueRdy (pTSS) ;
pPriorityTSS = ReadyQueue->deQueueRdy (),

Appendix

// 1f the highest priority task 1s the same as the original, return

1f (pPriorityTSS == pTSS)
#asm
STI
#endasm
return,

}

// Switch task 1f the haghest priority task 1s not the original one

#asm
MOV EAX, [pPriorityTSS]
MOV BX, [EAX Tad]
MOV TSS_Sel,BX
INC _nSwitches
JMP FWORD PTR [TSS]
STI

#endasm
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CMessageExchange Class

void CMessageExchange SendMsg(long dMsgDatal, long dMsgData2)

{

TPacket *pPacket,
TMessage *pNewMsg;

/* Create & fi1ll the TMessage structure */
pNewMsg = new TMessage,

pNewMsg->dDatal = dMsgDatal,
pNewMsg->dData2 = dMsgData2,

/* Create & fill the TPacket structure */
pPacket = new TPacket,

pPacket->Req = NULL,

pPacket->Msg = pNewMsq,

pPacket->next = NULL,

/* Disable interrupts */
#asm

CLI

#endasm

SendPacket (pPacket) ,
/* Reenable interrupts */
#asm

STI
#endasm
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void CMessageExchange

{

TPacket *pPacket,
TMessage *pNewMsg,
TTSS *pWaitTSS,

/* Disable interrupts */
#asm

CLI

#endasm

/* Create the message structure */
pMessage = new TMessage,
pMessage->dDatal dMsgDatal,
pMessage->dData2 dMsgDataz,

/* Create the packet */
pPacket = new TPacket,
pPacket->Msg = pMessage,
pPacket->Req = NULL,
pPacket->next = NULL,

pWai1tTSS = deQueueTSS(),

1f (pWai1tTSS==NULL) {
enQueuePacket (pPacket) ,

else {
pWaitTSS->pLBRet = pPacket,
ReadyQueue-s>enQueueRdy (pWa1tTSS) ,

}

ISendMsg(long dMsgDatal,

Appendix

long dMsgDataZ2)
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Memory Manager Definitions

class CMemoryManager {
CExchange *MemExch,
unsigned int nPagesFree,

public
CMemoryManager (),

unsigned char *AllocPage (long nPages),
unsigned char *AllocOSPage (long nPages),
void DeAllocPage (unsigned char *pOrigMem, int nPages),

unsigned char *AliasMem(unsigned char *pMem, unsigned long dcbMem,
unsigned long dProcNum) ;

unsigned int DeAliasMem(unsigned char *pAliasMem,
unsigned long dcbAliasMem),

unsigned int QueryMemPages () { return nPagesFree, },

¥
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CMemoryManager Implementation

unsigned char *CMemoryManager AllocOSPage (long nPages)

{

char *RunPages,

// Steps:

JVAREEEE

// 1) See 1f we have enough physical memory (check nPagesFree)
// 2) Find a contiguous run of linear pages to allocate (PTEs)
// 3) Allocate each physical page placing it in the run of PTEs

// Must request > 0 pages for allocation
1f (nPages<=0)
return NULL,

// Ensure mutual exclusion
TPacket *pPkt = MemExch->WaitPacket ()

// Veraify sufficient pages exist to satisfy request
1f (nPages> nPagesFree)
return NULL,

// Find contiguous run of 0SS PTEs in current PT
RunPages = FindRun(OS_BASE,nPages),

// Allocate further PTs until request is satisfied
While (RunPages==NULL) {
1f (AAdOSPT() '=0)
return NULL,
RunPages = FindRun (OS_BASE, nPages),

}

// Mark these pages as allocated
AddRun (RunPages, nbPages) ;

// Leave critical section
MemExch->SendDummyMsg () ,

return RunPages,
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unsigned char *CMemoryManager AllocPage(long nPages)

{

char *RunPages,

// 1) See 1f we have enough physical memory (check nPagesFree)
// 2) Find a contiguous run of linear pages to allocate (PTEs)
// 3) Allocate each physical page placing 1t in the run of PTEs

// Must request > 0 pages for allocation
1f (nPages<=0)
return NULL,

// Ensure mutual exclusion
TPacket *pPkt = MemExch->WaitPacket ()

// Verify sufficient pages exist to satasfy request
1f (nPages> nPagesFree)
return NULL,

// Find contiguous run of user PTEs in current PT
RunPages = FindRun(USER_BASE,nPages) ;

// Allocate further PTs until request 1s satasfaied
While (RunPages==NULL) {
1f (AddUserPT () '=0)
return NULL,
RunPages = FindRun(USER BASE,nPages);

}

// Mark these pages as allocated
AddRun (RunPages, nPages) ,

// Leave critical section
MemExch- >SendDummyMsg () ;

return RunPages,

void CMemoryManager: DeAllocPage (unsigned char pOrigMem,
int nPages)
{

int ProcNum,

// Discard unnecessary bits
pOrigMem = (pOrigMem % 4096);
ProcNum = GetCurrProcNum(),

// Enforce mutual exclustion
TPacket *pPkt = MemExch-s>WaitPacket ()
UnMarkPTEs (ProcNum, pOrigMem, nPages) ,

// Leave critical section
MemExch->SendDummyPacket (),



Appendix

unsigned char *CMemoryManager AliasMem{unsigned char *pMem,

{

}

unsigned long dcébMem, unsigned long dProcNum)

char *RunPages,
unsigned int base,
unsigned long CurrProc = GetCurrProcNum(),

// Check Page Directories (1e Processes)
1f (CurrProc==dProcNum)
return ,

// Ensure mutual exclusion
TPacket *pPacket = MemExch->WaitPacket ()

// Calculate number of pages required

pMem = pMem % 4096,

dcbMem += pMem,

unsigned long nPages = GetAliasRegSize (pMem,dcbMem),

1f (CurrProc == OP_SYSTEM)
base = OS_BASE,

else
base = USER_BASE,

// Faind contiguous run of PTEs in current PT
RunPages = FindRun{base,nPages),

// Allocate further PTs until reguest 1s satisfied
while (RunPages==NULL) {
1f (CurrProc == OP_SYSTEM)
1f (AdAOSPT () ==NULL) return NULL;
else
1f (AddUserPT()==NULL) return NULL,

RunPages = FindRun(base,nPages),

}

// Perform aliasing
AddAliasRun (pMem, RunPages, nPages, dProcNum),

// Leave craitical section
MemExch->SendDummyMsg () ,

return RunPages,

unsigned int CMemoryManager DeAliasMem(unsigned char *pAliasMem,

{

unsigned long dcbAliasMem)

// Calculate number of pages to be dealiased
unsigned long nPages = GetAliasReqgSize(pAliasMem,dcbAliasMem),

// Retrieve 1d number of current process
unsigned long CurrProc = GetCurrProcNum() ;

// Perform call to kernel function to perform dealiasing
return RemoveAliasRun(pAliasMem,nPages,CurrProc),
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Ready Queue Definitions

#define PRIORITYCOUNT 32

// TTaskQueue Structure

/!

struct TTaskQueue

b

TTSS *Head,
CProcess *pProcess,
TTSS *Tail,

// CReadyQueue Abstract Class

//

class CReadyQueue {

TTaskQueue *ReadyQ[32],

public

}:

CReadyQueue () {},

virtual void enQueueRdy (TTSS *pTSS) =0,
virtual TTSS *deQueueRdy () =0,

virtual TTSS *ChkRdyQ() =0,

virtual void RemoveRdyProc (CProcess *pProcess)=0,

// CPrioritisedReadyQueue Concrete Class

//

class CPraioraitisedReadyQueue

TTaskQueue ReadyQ [PRIORITYCOUNT] ;

public

CPraoritaisedReadyQueue (),

virtual void enQueueRdy (TTSS *pTSS),

virtual TTSS *deQueueRdy (),

virtual TTSS *ChkRdAyQ(),

virtual void RemoveRdyProc (CProcess *pProcess),

: public CReadyQueue {
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CReadyQueue Class Implementation

CPrioritisedReadyQueue CPrioritisedReadyQueue ()
{
for (int 1=0, 1<PRIORITYCOUNT, 1++) {
ReadyQi1] Head NULL,
ReadyQ (1] Tail NULL,

}

}

void CPraoritisedReadyQueue enQueueRdy (TTSS *pTSS)
{
// Verify the task structure pointer 1s valad
1f (pTSS==NULL)
return,

// Retrieve the prioraty of the current process
unsigned long dPriority = GetCurrentPrioraty();

pTSS->next = NULL,

// If the queue 1s empty, this TSS becomes head and tail
1f (ReadyQ[dPrioraty] Head == NULL) {

ReadyQ{dPriority] Head = pTSS;

ReadyQ[dPrioraity] .Tail = pTSS,

else { // Otherwise adjust the tail of the queue
(ReadyQ[dPraiority] .Tail) ->next = pTSS,
ReadyQ{dPrioraty] Tail = pTSS,

}

TTSS *CPrioritisedReadyQueue -deQueueRdy ()

{

TTSS *cHighPri;

// Loop through all of the queues, starting with the
// queue with the highest priority, until a waiting
// task 1s found When one 1s found, adjust the queue
// and return a pointer to it
for (int 1=0, 1<PRIORITYCOUNT, 1++) {
1f (ReadyQ[1] Head '= NULL) {
pHighPri = ReadyQ[i] Head,
ReadyQ{1] Head = (ReadyQI[1] Head) ->next,
return pHighPri,
}
}

// If no waiting task is found, a NULL pointer 1s returned
return NULL;
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TTSS *CPrioritisedReadyQueue ChkRdAyQ ()

{

}

TTSS *cHighPra,

// Loop through all of the qgueues, starting with the
// queue with the highest priority, until a waiting
// task 1is found
for (int 1=0, 1<PRIORITYCOUNT, 1++) {
1f (ReadyQli] Head '= NULL) ({
pHighPri = ReadyQ{i1] Head,
return pHighPra,

}
}

// If no waiting task 1s found, a NULL pointer 1is returned
return NULL,

void CPrioritisedReadyQueue RemoveRdyProc (CProcess *pProcess)

{

TTSS *pTSS, *pQueue, *pQueuePrev;

// pQueuePrev i1s used to point to the node traversed
// 1mmediately prior to the current one. It 1is

// reguired when a task 1s deleted from the middle of
// a queue

pQueuePrev = NULL,

for (int 1=0, 1<PRIORITYCOUNT; 1++) ({
pQueue = ReadyQ[1i] Head,

// If the queue 1s not empty, check every task withan
// the queue
while (pQueue ' =NULL) {
// If the the current node represents a task which
// belongs to the process pProcess, i1t must be
// removed from the Ready Queue and its former links
// must be updated
1f (pQueue->pProc==pProcess) {
pTSS = pQueue;

1f (pPrevQueue==NULL)

ReadyQueue [1] Head = pQueue->next,
else

pPrevQueue->next = pQueue->next,

// The task structure 1s replaced on the heap of free
// task structures and the system statistics are
// updated
pTSS->next = pFreeTSS,
pFreeTSS = pTSS,
pTSS->pProc = NULL,
nTSSLeft++,
}
pPrevQueue = pQueue;
pQueue = pQueue->next;

}
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Interrupt Definitions

#define ENDOFIRQ PERFORMED 0
#define ENDOFIRQ NOTPERFORMED 1

// CInterrupt Abstract Class
[/ e e

class CInterrupt ({
unsigned long IRQNum,
public
CInterrupt (unsigned long Num),
void GetIRQVector (char *pVectorRet),
void MaskIRQ() ;
void UnMaskIRQ(),
void EndOfIRQ(),

virtual void interrupt ISR(),
virtual unsigned int Servace() = 0,
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ClInterrupt Class Implementation

CInterrupt Clnterrupt (unsaigned long Num)

{
IRQNum = Num,
SetIRQVector (IRQNum, &ISR),

void interrupt CInterrupt ISR()

{

1f (Service())
EndOf IRQ (IRQNum) ,

voi1id CInterrupt EndOfIRQ ()

{
}

EndOfIRQ (IRQNum) ,

voi1d CInterrupt GetIRQVector (char *pVectorRet)

{
}

Get IRQVector (IRQNum, pVictorRet),

void CInterrupt MaskIRQ()

{
}

MaskIRQ (IRQNum) ,

void CInterrupt: UnMaskIRQ()

{
}

UnMaskIRQ (IRQNum) ,
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Timer Definitions

#define nTMRBLKS 32
#define ENDOFIRQ NOTPERFORMED 1
#define ENDOFIRQ PERFORMED 0

// TTimerBlock Structure
[/ —mmmmm e

struct TTimerBlock ({
int fInUse,
CExchange *RespondExch,
unsigned long Tick,

b

// CTimer Concrete Class

[] —mmmmmmmmm e

class CTamer public CInterrupt {
struct TTamerBlock TmrRBRlks [nTMRRBRLKS],
unsagned int nTmrBlocksUsed, TimerTaick,
publaic
CTimer (unsigned long Num),

virtual unsigned int Service(),
unsigned int Sleep(unsigned long Delay) ;

Appendix

unsigned int Alarm({CExchange *AlarmExch, unsigned long AlarmDelay),

void KillAlarm(CExchange *pExch),

void MicroDelay (unsigned long dDelay) { : MicroDelay(dDelay), },

void GetTick() { return TimerTick, } ,
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CTimer Class Implementation

CTimer CTimer (unsigned long Num) CInterrupt (Num)

{

}

TimerTack = 0,
nTmrBlocksUsed = 0,

unsigned int CTimer: Service()

{

// Increase the count of elapsed ticks since the
// timer was created
TimerTick++,

// Return 1f no timer blocks are in use, reporting
// that the EndOfIRQ() primitive was not called
1f (nTmrBlocksUsed==0)

return ENDOFIRQ NOTPERFORMED,

// Enable all interrupts except the Timer interrupt
MaskIRQ(),
EndOfIRQ () ;

#asm
STI
#endasm

// Check every timer block, notifying the appropriate
// processes through the use of an exchange 1f an
// alarm has elapsed, otherwise decrement the timer
// block tick
for (int 1=0; 1<nTMRBLKS; 1++)
1f (TmrBlks[i] fInUse) ({
1f (TmrBlks[a].Tick == 0) {
(TmrBlks [1] .RespondExch) - >ISendDummyPacket () ;
TmrBlks [1] fInUse = FALSE,
}
else
TmrBlks [1] .Tick--,
}

}

#asm
CLI
#endasm

// Reenable timer interrupt
UnMaskIRQ (),

// Signal that the EndofIRQ primitive has already been
// performed
return ENDOFIRQ PERFORMED;
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unsigned int CTimer Sleep(unsigned long Delay)

{

1f (Delay==0)
return FAIL,

// Find an empty timer block

int 1=0,

while ((1<nTMRBLKS) && (TmrBlks[1] fInUse))
14+,

// Return if there are no free timer blocks
1f (1>=nTMRBLKS)
return FAIL,

#asm
CLI
#endasm

// Setup the timer block structure, using the tasks
// default exchange as the timer block's exchange
TmrBlks[1] Tick = Delay,

TmrBlks[1] .fInUse = TRUE,

nTmrBlksUsed++;

TmrBlks[1) RespondExch = GetTSSExch() ;

#asm
STI
#endasm

// Wait here until the dummy message 1s received from
// Service, notifying that the delay has elapsed
TPacket *pPkt = (TmrBlks[i1].RespondExch)->WaitPacket (),

// Continue processing once the delay has elapsed
return SUCCESS,

unsigned int CTimer Alarm(CExchange *AlarmExch,

{

unsigned long AlarmDelay)

1f (AlarmDelay==0)
return FAIL,

// Find an empty timer block

int 1=0;

while ((1<nTMRBLKS)&& (TmrBlks([1] fInUse))
1++,

// Return 1f there are no free timer blocks
1f (1>=nTMRBLKS)
return FAIL;

#asm

CLI
#endasm
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// Setup the timer block structure, using the tasks
// default exchange as the taimer block's exchange
TmrBlks [1] Tack = AlarmDelay,

TmrBlks [1) fInUse = TRUE;

nTmrBlksUsed++,

TmrBlks [1] RespondExch = AlarmgExch,

#asm
STI
#endasm

return SUCCESS,

voad CTimer:.KillAlarm(CExchange *pExch)
{
1f (nTmrBlksUsed==0)
return;

#asm
CLI
#endasm

for(int 1=0; 1<nTMRBLKS; 1++4)
1f (TmrBlks[1] fInUse)
1f (TmrBlks[1) RespondExch==pExch) {
TmrBlks[1] fInUse = FALSE,

nTmrBlksUsed--;
}

#asm

STI

#endasm
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