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Remark

I wish to thank the external examiner Prof D Simms for making following sug-
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two

As given on page 9, embedd R%mn €° vis

Iy I
'I' |R3 — 0:3 T = To — .’I)T = Io then
T3 1T3

1 (= <$T1yf>

2 zt x y' = 1(z * y)!, where x 1s the usual crossproduct and # 1s defined as on

page 7

3 1 leads to the embedding of GL(3,R) — GL(3, C) by the commutative diagram

R® -2 R
(R AN

¢e

1e Liz' = (Lz)! So if all linear maps are represented relative to the basis

1 0 0
€1 = 0],e= 1 y €3 = 0
0 0 1

(both 1n R3and ¢3) then 1n matrix notation

T
a1 Q12 a3 11 Q12 —tdy13

a21 A2z 433 = d21 Gz —1G23

31 a3z dazz 12¢2:3 11 £:3) ass
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as given on page 9
4 SO(2,1) 1s then replaced by SO(2,1)' ¢ SO(3,C)

5 If we now 1dentify R, SO(2,1) etc with their embedded 1mages, 1e write z
to mean z!, A to mean AT etc then the adjoint of A 1s just AT So the Lie
algebra condition for SO(2,1) mn SO(3, ) 1s just

A+ AT =0

from which lemma 2 4 follows immediately
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Abstract

The purpose of this thesis 1s to give a characterization of all spacelike constant
mean curvature surfaces which have continuous internal symmetry in Minkowsk:
three space The properties that these surfaces must satisfy leads to a system of
partial differential equations and every solution of this system results in a desired
surface Further examination of this system leads to a differential relation that the
metric must satisfy The behaviour of the solution to this relation 1s investigated to

determine 1if the resulting surface 1s complete



Chapter 1

Introduction

In 1841 Delaunay [2] charterized constant mean curvature surfaces of revolution (1n

Euclidean three space) as those whose profile curve 1s the roulette of a conic

Theorem 1.1 Delaunay

A curve v n the z-y plane generates a surface of constant mean curvature when
rotated about the z—azis of and only 1f v 15 a prece of the roulette of a conic 1 e the

locus of the focus of a conic in this plane as it 1s rolled along the t—azis

These surfaces admit a one parameter group of internal 1sometries This was gener-

alized by Smyth in [6] and the result was

Theorem 1 2 Smyth

For each wnteger m > 0 there exists a one-parmeter family of conformal immersions
fm TR

with constant mean curvature 1, such that the induced metric 1s complete and in-
varant by the group of rotations about 0 Moreover 0 1s an umbilic of index —m/2,
only powers of the rotation through 2m/(m + 2) about 0 extend to motions of R® and

the associates of f,, are qwen by (fm)s = fmoe ™

Conversly any complete surface
of constant mean curvature 1 admitiing a one parameter group of i1sometries s, to

within associates, congruent either to such an f,, or to a Delaunay surface

In this classification 1t 1s assumed that M 1s simply connected and 1t 1s shown that
(M, g) 1s conformally equivalent to the region in € a < Re(z) < b where a and
b are constant ( either finite or mfinite ) and the metric g = e?|dz|? 1s invariant
by translations in the y-directions An alternative characterization to Smyth’s was

given by Burns and Clancy [1] whose result 1s as follows

1



Chapter 1 Introduction

Theorem,1.3 Burns and Clancy

/

IfM ={z€ € a< Rez < b} and +f g = \(dz® + dy?), then f (M,g) — R® 1s
an 1sometric immersion of constant mean curvature H if and only +f f satisfies the

follounng system of pd e ’s

fez = —afs—(BE—aHf) X f,+2Hf, X f,
AN ’ }:L'y = —afy + (E — OéHf) X f:z;
fow = afe +(E—aHf) X fy

with wnitial conditions

1 f=(20, zo) | = || fu(0, zo)l| = A(wo) and (fz(20,Y0), fy(%0,40)) = 0

where x denotes the usual cross product in R®, a 15 an arbitary (non-negate) real
constant and E 1s an arbitary constant vector in R®

e

In this thesis we follow the arguments set out by Burns and Clancy to find a classifi-
cation of spacelike constant mean curvature surfaces with continuous internal sym-
metry in Minkowsk three space We note that Minkowsk: three space 1s just R® with
the scalar product,(, )1, between two vectors z = (z1,%2,23)" and y = (y1,y2,y3)T

being defined as

<‘r)y>1 = T1Y1 + TaY2 — T3ys



Chapter 1 Introduction

The main theorems are as follows
Theorem 1.4 &
|

r
Let M = {C| z; < Rez < z3} where z1,z2 are constants (either finite or infinite)
!

and g = e*@)(dz? + dy?) Then every immersion f (M,g) — (R?,(,)1) which
satisfies either conditions 1 or 2 gqwen below represefnts a spacelike surface in R®
with constant mean curvature H # 0 and the maps lIlL (z,y) = (z,y + t) form a
one-parameter group of internal symmetries C’onvers}ely every spacelike surface in
R® with continuous internal symmetry and constant anean curvature H # 0 arises

|
i this way ]
I
|

! fry fy+Hf*ifz
Sy _fz+Hf*ify
d fzz‘|‘fyy = 2fo*fy

il

|
I
}
|
f
t
|
l
i

¢ i
&y
fz:z; +fyy = 2Hf-'b‘ * fy

Exf

Ex¢

where E € R3

t
|
Some work has been covered with regard to the completeness of these surfaces but

only partial results were found These can be seen 1n chapter 12
|
t
|
t
!
|
!
I
I

|
l



Chapter 1 Introduction

|
Theorem 1 5 |
|
i

FEvery Spacelike Minimal Surface (i e spacelike surfac:la of constant mean curvature
!
equal to zero) with continuous internal symmetry in Minkowsk: three space s, up to

a hyperbolic motion, one of the follounng

|
|
3/7% + (z +12)* — 3y
f(z,y) = =(z + 7o) —6/ry (11)

—3/ri+ (z + [7'2)2 — 3y?

t
where [,7,73 € R |[
2 |
|

|
sinh(—ey) cos(ex + r2)

flz,y)=m e(z +72) ; (12)
cosh(—ey) cos(ex -[l_ r2)

where ry,73 € R

3

|

5
sinh(ex + r2) cosy

my (13)

|

f(x)y) =—-" - smh(ex + 7'2)
—(ex 4+ 13)

|
s
|
|
where 71,73 € R [
l
|
|



Chapter 1 Introduction

i
4
\

a1
- cos ozyJ

flz,y) =117 | cos ay cosh ey sm(ex + ;) + sinjay sinh ey sin(ez — r;)

cos ay sinh ey sin(ex + r2) + sinay cosh ey sin(ex — ry)

where a;,r;,72 € R

5
1 1 9 .
[r_2+ pe] + (z +7r2)* —y*] cosay + 2y(z + r2) sin ay
1
2
f(xa y) = ‘_a;ﬁ e ;—(—y cos ay + (.’1: + 7‘2) sin ay)
1

-1 1
[+ 5t (e+ ra)” —y*Jcos ay + 2y(z + r2) s ay
1

where a;,r,m2 € R

6

|
(a + 6)ye(—a—c)ac

f($7 y) = —Try sm(—a + e)ye(“a+f)$ — 1y s1r;1(a + 6)ye(—a—e)az:

|
—&e % cos ay!
€ |

|

71 cos(—a + €)yel=a+)% £ ry cos

where a;,7r,m2 € R
7

roe”?*% cos(2ay) — Lz
fz,y) = | —re72%sm(20y) + Ly

— e~ cos(ay)

where a,, 71,75 € R



Chapter 2

The Lie Group SO(2,1)

We begin with some preliminary remarks on indefinite scalar product spaces (see,

for example Nomizu [5])

Theorem 2.1

Suppose that (,)1 1s a bilinear form on a real vector space V of dimension n Then

there exists a basis {ui,uz, ,un} of V such that
1 (uy,uy)1 =0 forv#
2 (upu)p=1for1<:1<p
3 (upuy=—-1forp+1<:<r
4 (upu)1=0forr+1<1<n

The numbers r and p are determined solely by the bilinear form, r 1s called the
rank, r — p 1s called the index, and the ordered pair (p,r — p) 1s called the signature
The theorem shows that any two spaces of the same dimension with bilinear forms
of the same signature are 1sometrically 1somorphic By a scalar product we mean
a nondegenerate bilinear form, 1 e, a form with rank equal to the dimension of V
We let U1 denote the orthogonal complement of a subspace U with respect to the

given scalar product

Theorem 2.2

Suppose that (, )1 1s a scalar product on a finite dimensional real vector space V and

suppose that U 1s a subspace of V, then

1 (UYL =U and dmU + dmU* = dimV

2 The form (,);, 1s nondegenerate on U 1off 1t 1s nondegenerate on UL and when

it 15 nondegenerate on U, then V = U @ Ut ( the direct sum of U and Ut)

6



Chapter 2 The Lie Group SO(2,1)

3 If V s the orthogonal direct sum of two subspaces U and W, then the form
is nondegenerate on U and W, and W = U+

Let (,); be the indefinite scalar product on R™ defined by

(z,y)1 = z1y1 + T2y2 +  + Ta1Yn—1 — TalYn,

where £ = (21,22, ,%,)7 € R"andy = (y1,¥2, ,¥n)T € R® We call this space
Minkowski: n-space and the scalar product (, ), shall be called the Minkowsk: metric
A vector z 1s said to be spacelike, timelike, or lightlike depending on whether (z, z),
1s positive, negitive or zero, respectively In Minkowsk: n-space the set of all Lightlike

vectors, given by the equation

2 2 2 _ 2
ittt T, =2,

forms a cone of revolution, called the light cone Timelike vectors are “inside the

cone” and spacelike vectors are “outside the cone”

If 2 1s a non-zero vector, let z1 denote the orthogonal complement of z with respect
to the Minkowsk: metric If z 1s timelike, then the metric restricts to a positive

definite form on z+

, and z' mtersects the light cone only at the origin If z 1s
spacelike, then the metric has signature (n —1,1) on zt, and z* intersects the cone
1n a cone of one dimension less If z 1s lightlike, then zt 1s tangent to the cone along
the line through the origin determined by £ The metric has signature (n — 1,0) on

this n — 1-dimensional plane

Now, for all z,y € R® we define

T3lYs — T2Y3
TrY =1 T1Ys — T3
I1Y2 — Za2l1



Chapter 2 The Lie Group SO(2,1)

Remark

z * y 15 Just the usual cross product z x y with the first two components negated

It can easily be verified that the following conditons hold
@ THY=—YXIT
e zx(y+z)=z*xytac+z
o (z4+y)xz=z*rxz+y*z
o Foreveryr e R, rzxy = (rz) xy =z * (ry)

s zx(y*xz)ty*x(zxz)+z*x(z*xy)=0

So that (R?,*) 1s a Lie Algebra with bracket product

[z,y] =z+*y

As usual for all z € R® we define adz € &nd(R®), the endomorphisms of R®, by

(adz)y = [z,y]

Then the matrix representation of ad z relative to the standard basis for R® 1s

adz = —z3 0 T

—X3 I 0

Orthogonal Groups

Definition :
0(2,1) = {lmear® R®>— R®|(0z,0y), = (z,y)y Vz,yeR®}
S50(2,1) = connected component to the identity of O(2,1)

{© € 0(2,1) | det® = 1 and sign{es, Oes)s = —1}

8



Chapter 2 The Lie Group SO(2,1)

These are Lie Groups in the usual way The Lie Algebra of SO(2,1) 1s given by
SO(2,1) = {3 x 3 matrices 4 | e* € 50(2,1)},

where e 1s the usual exponential of the matrix A To obtain a more explcit

description of SO(2,1) observe that A € SO(2,1)

= (ez, ey = (z,yh Vz,yeR® teR
d
—(e"z, ey =0
dt o
(Az,y)1 + (z, Ay, = 0 (21)

That 15, A 1s skew-symmetric relative to (,); Thus, it 1s clear that A being skew-

symmetric 18 a necessary and sufficient conditon for A € SO(2,1)

For any = = (21, 23,23)T € R®, define zt = (21, 23,123)" € €* where 2+ = v/—1 and

T denotes transpose, then

T
(Z,y)1 = 191 + Tayz — Tays = (xf) y!

For
a11 Qai2 a3
A= ayn az 23
a31 G322 Az
define
a11 Q12 —tax3
Al = a1 G2 —ia23 |
ta31 a32 433
then

Azt = (A o)t



Chapter 2 The Lie Group SO(2,1)

and
T ™'
()" = ((am)")
At this stage 1t 1s worth alerting the reader to the remark made on page u

Lemma 2 3
If A 1s a 3 x 3 matriz and =,y € R®,then

(Az,yh = (2, (A1) o)

Proof :

(dzyh = ((4aN) 4t = (afe)

= (N (A‘r) gt o= (@ (AT)TyT

— (DT ((ATT)T>TyT = (T ((ATT)Ty>T

Lemma 2.4

S§0(2,1) s the set of all 3 x 3 real matrices A of the form

—as a3 0

10



Chapter 2

The Lie Group SO(2,1)

Proof .

Using Lemma 2 3 and (2 1) we see that if A € SO(2,1) then

A = —(AMT
ai; a2 a3 —az; —az
a21 Q22 Q23 = —ayy; —azz
asz; as2 4ass a:3 a23
and hence we have that
a1 =axp =azz =10
and
az1 = —aGi12, 431 = G13, a32 = 423
Thus if A € SO(2,1)
0 as.—aq a
A= —as 0 a for some a = as
—ag a3 0 asz

as1

as2

—ass

€ R3

which 1s the matrix representation of ad a, for some a relative to the standard basis

for R® Thus ad R® = SO(2,1) z — adz 1s a Lie Algebra 1somorphism We note

that

((adn)z,y)1 = —(z, (adn)y)

and

(IL‘ *Y, Z>1

11

(—(ady)x, Z)l
(z,y*2z)



Chapter 2 The Lie Group SO(2,1)

Remark

Both = and y are orthogonal to z * y, because

<$*yay>1 = <xay*y>1 =0

and similarly (z+y,z)1 =0

Lemma 2.5

Forz,y,z € R® c*(y+z)=(z,yhz — (z,2)1y
Proof :

If y and z are linearly dependent then the result 1s trivial as both sides are zero We
now fix y and z and assume they are linearly independent The vector z * (y * z) 18

orthogonal to y * z and therefore lies in the plane spanned by y and z, accordingly,

2+ (y * 2) = . (2)y + By (2)2 (22)

for some ay,(z),B,.(z) € R Also the map R®> = R® z — zx (y* 2) 15 linear,

hence the maps

R® =R z— au(z)

RESR z— Byz(z)

are linear, so there exists an A,B € R®, which depend on y and z but not z, such

that
ay(z) = (A, z) and By.(z) = (B,z)

and so

z*(y*z)= (A zhy+(B,z)zVz € R (23)

12



Chapter 2 The Lie Group 80(2,1)

Setting £ =y * 2 1n (2 3) , we obtain
0= (y*z)*(y*x2)=(Ay*2)1y+ (B,y*2)z
Hence {A,y * z); = (B,y * z); = 0 and we can write

A=ay+ayz

’ B = b1y + byz

for some a,,b, € R, 1 <1 < 2 which may depend on y and z Substitution nto
(2 3) gives

z*(y*xz) = (a1y + azz,z2)1y + {1y + baz,2)1 2 (2 4)
and 1t follows that

0= (zx*(y*2),z) = (@1y + a22,z)1{y, )1 + (b1y + b2z, z)1(2, )

25)
now choose z Ly,  Jz in (2 5), where L means “orthogonal to”, then
(biy + bz, )1 =0 = be(z,2); =0=b, =0
choose z Jy , zLlz ,1n (2 5), then
(a1y + a22z,2)1 =0 = a1{y,z)1 =0=>a; =0
= 0= (az+b){z,z)h{y,z) Yz €R® (2 6)

if we now choose an z which 1s L to nerther y nor z in (2 6), we obtan

0:(a2+bl):>b1=—a2

13



Chapter 2 The Lie Group SO(2,1)

and substituting this result into (2 4) we obtian
z*(y*2) = arf(z,zhy — (y,2)12] Yz € R (27)
Now let z = z and substitute this into (2 7)

zx(y*xz) = aof|lzl’y — (y,2)12]

(y,2(y*2)h ag(ll 2l lyll* = (v, 2)i]

((yx2),(yx 2 = —aal(y,2)1 = llz[*llyll*]

finally, expanding componentwise we see

((y*2),(y*2))r =y *2)I* = (y, 21 = ll=l*llyII* (28)

hence a; = —1 and (2 7) gives the required result

Lemma 2.6

If the spacelike vectors z,y € R® satisfy
(z,y)1 =0 and (z,z); = (y,y)1 = €® ,for some ¢ € R

and +f we define £ € R® by

T3Y2a — T2Y3

1 —¢
§= e_¢x *y=e I1Ys — ZTayi
TiYy2a — T2U1

14



Chapter 2 The Lie Group SO(2,1)

then the following statements hold
1 (e =-1
2 the matnx A = [e‘¢/2x e~9/2y {] € 0(2,1)

3 Exr=—-yandlxy==2

Proof
1
(6,61 = e (zxy,zxy)
= e ((z,9} — l=I”lylI*>) by (28)
= -1
2 Since
Ty W €¢/2fl
T3 Y3 6¢/2§3
we have
T ) —Z3
AT = —9/2
( ) =e€ 1 Y2 —Ys3

—e?/2,  —e?/%€, b2,

15



Chapter 2 The Lie Group SO(2,1)

and hence
T Iy —Z3 1 Y €¢/2§1
T -

(AH) A= e€? n Y2 —Ys3 z2 Y2 e?2,
—e?2ty ety e T3 ys %

1 00

= 010

0 01

= I

For any u,v € R®
(Au, Av)y = (u, (AM)" Av); = (u,v),
and hence A € 0(2,1)
Note  det(A) = —e~(z+y, &) = —(£,6) = 1

Furthermore

<A€3,A63>1 = (63,63)1 = -1,

so that the zz-component of Aes cannot be zero Hence (e3, Aes); # 0 Now

sign{es, Aes)r = sign((es, £)1) = srgn(—&s) = —sugn(&s)

Thus A 15 1n the connected component of the identity (or equivalently A €
S0O(2,1)) providing & > 0 Therefore either

[e_¢/2:c ey z« y] € S0(2,1)

16



Chapter 2 The Lie Group SO(2,1)

or
[e—‘bﬂy ez y *m] € S0(2,1)
3
Exz = e P(zry)xzx
= —e%zx(zxy)
= —e*({z,zhy — (z,yhiz)
= —e¥(efy) (as(z,yh =0)
= Y
Similarly,

Exy = e zxy)*y

= —e %y« (z*y)

= —e*({y,zhy — (y,y)12)

= —e?(—e’z) (as(z,y) =0)

Lemma 2 7

Let ©(t) € SO(2,1) for allt € R Then
O(OM)" = adn(t)

¢

where n(t) € R® for all t € R

17



Chapter 2 The Lie Group SO(2,1)

Proof .

We need to show that

(o)) = oo

We first note that for all 3 x 3 matrices X,Y we have
(XY)' = xTy?

and

(X7 = (X7

so that

[{@(@TT)T}”]T _ [@TT((@TT)T)TT]T
_ [@TT((@TT)TT)T]T
- oo

= @(@TT)T

As © € SO(2,1) we have by lemma 2 3 that ©(0™)T = [ so that ©(0M)T +
OOMT =01e
@(@H)T = _@(@TT)T

Hence
({@(@TT)T}”) T _ _@(@H)T

and the lemma 1s proved

18



Chapter 3
The Gauss-Weingarten equations in

Minkowski space

As we are 1sometrically mapping a two dimensional manifold into Minkowski three
space as opposed to Euclidean three space we find that there are some subtle changes

in the preliminary stages

Let M denote a simply connected oriented 2 dimensional manifold and let f M —
R be a space-like immersion, that 1s for all p € M and X, € T,M, ker(f.), = {0}
and (f.),X 1s space-like (where subscript * means the derivative) Thus f induces a
Riemannian metric g on M, the pull back g = (f)*((, 1), of the scalar product (, );
i Minkowski three space, that 18 g(X,Y) = (f. X, f.Y) Hence M 1s a Riemannian
manifold and f (M, g) — (R?,(,)1) 1s an 1sometric immersion We note that g 1s

positive definite since f 1s spacelike

There exists local coordinates (z,y) on M called 1sothermal coordinates which satisfy

the conditions

0 0 0 0 0 0
—9(5;,5;)>0 and 9(6_1’5;)-0

With 1sothermal coordinates (z,y) defined in some neighbourhood of p € M we may
write g = e#@¥)(dz? + dy?) for some positive function e? For each p € M there 1s

a local mapping ¢ M — R>, defined by

&(p) = e %@ f.(p) * £,(p)

that satisfies the following equations

(for )1 = (fyr &)1 =0

19



Chapter 3 The Gauss-Weingarten equations i Minkowski space

det[fz, fy, €] > 0

and

<£7€>1 =-1

where f, f, represent the partial derivative of f with respect to x and y respectively

As defined ¢ 1s called the gauss map
For all smooth vector fields Y on M and X, € T,M we define

Vx,Y €T,M and II(X,Y)€R® by

Xpo(Yf) = (f)p(Vx,Y) + (X, Y€ (31)

Suppose X and Y are smooth vector fields on M then

I

Xp(YF) = (f)(Vx,Y) + IL( X, Y)E

Yo (Xf) = (£)po(VyX) + I(Yy, X)E
and subtracting we find
f*[X, Y] = (Xpy - YpX)f = (f*)P(VXpY - vaX) + (HP(XpaY) - Hp(Yan))‘s

thus
Vx,Y -Vy,X = [X,Y],

(X, Y) = (Y, X)

Accordingly we obtain a symmetric bilinear form II, T,M xT,M - R (X,,Y,) =
II(X,,Y,) where II,(X,,Y,) = II,(X,,Y) for all smooth vector fields Y with value
Y, at p II,(,) 1s called the second fundamental form on M at p

20



Chapter 3 The Gauss-Weingarten equations in Minkowsk: space

Locally we have ¢ satisfying the following

<§a 6)1 = -1

XP<€7§>1 = 0

2Xp6, 60 = 0

thus X,¢ 1s orthogonal to ¢ implying X, 1s tangent to f(M) at f(p),so

&(X) = Xp€ = (L)p(ApXy) for some A, X, € T,M (32)

Note €. and f. are linear maps and therefore A, T,M — T,M X — A, X 1s also
linear We note the absence of the minus sign as 1s usual 1 the case of immersions

mto Euclidean space

For all smooth vector fields Y on M we have

0 = (Yf,éh

0 = X({Y[,éh

= (Xp(Y)), 61 + (o f, Xplr

= ((f*)P(vXpY) + I ( Xy, Y;J)gaal + (Y;7fa (f*)p(Apo)>1

= IL(Xp, . )(6, 61 + ((f2)pYes (fo)p(ApXp)h1

= —IIP(XP, )/p) + gp(Y;Da APXP)

Thus we have

Hp(Xpa }/;7) = gp(Y;n A, Xp)
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Chapter 3 The Gauss-Weingarten equations in Minkowski space

but I7,(,) 1s symmetric and bilinear thus g,(AX,Y) = g,(X, AY) showing that A 1s

symmetric with respect to g Therefore from (3 1) we have
Xp(Yf) = (f)p(Vx,Y) + 9p(Yp, Ap X5 )¢ (33)
(3 3) and (3 2) are called the Gauss-Wemgarten equations
Remark:
In addition to
Vx,Y —Vy,X =[X,Y], (3 4)

1t 15 easy to check that V satisfies

1 Vax,4pv,Z =aVx,Z+6Vy,Z Va,€ER, X,,Y, € T,M, and Z asmooth
vector field

2 Vx,(Yf) = (X0)Y + f(p)Vx,Y VX, e T,M,f M — R} andYa

smooth vector field

3 Vx,Y+2Z)=Vx,Y+Vx,Z VX,e€T,M, andY,Z smooth vector fields

as well as

Z9(X,Y) =g(VzX,Y)+9(X,VzY) (35)

Therefore V 1s the unique Levi-Civita connection determined by the Riemannian

metric g
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Chapter 3 The Gauss-Weingarten equations in Minkowski space

Using the Gauss-Weingarten equations we establish the following results, the proof

which can be seen 1n Appendix A

1 g, (R(X,,Y,)Y,, X,) = —det(A,) where R(X,Y)Z 1s the curvature tensor,
defined as
R(X,Y)Z =VxVyZ —VyVxZ - VxvZ

Note the minus sign (1e —det A) which does not appear when mapping into

Euclidean space

2 (Vx,A)Y = (Vy,A)X called Codazz1’s equation where

(VxA)Y = Vx(AY) - AVxY

There exasts functions I' fj defined near p € M so that V( ) gx— € T,M can be
K

e
expressed as
Ve I - 1 ()2 =1,2
(g_ll)p—é—:;; - kz-::l zj(p)(a_mk-)m t,] =1,
That 1s the Ffj’s are just the components of Y 8 )gT, relative to the coordinates

(6 )p, (Q—)p for T,M These I'}’s are called the Christoffel symbols

Ern Oz
In the case when M has locally defined 1sothermal coordinates z;,z; 1€

95 5) = 9(55;. ) = e#)

zp?

3 8
9557 55;) =0

Then

-

1 1 1 _ 1 1 _1 1 _
I‘11 —2¢m Fzz ——2¢za l—‘12 —§¢ya F21 — 2%y

2 _ 1 2 _1 2 _1 2 _
I‘11 __2¢’y7 FZZ —2¢y7 I‘_‘12 —2¢IL‘7 FZI -

Proof : see Appendix B

B Jr=

Pz
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Chapter 4

Isometric deformations and the drehriss

Let M be defined as 1n the chapter 3 and let f* be a one parameter group of 1sometric
immersions mapping M mto R?* Then for each ¢, we may assume that f* induces
the same Riemannian metricgon M,1e g = (f*)*((,)1) 1s independent of ¢ Hence

for each t, f* (M,g*) = (R%,(,)1) 15 an 1sometric immersion

We now follow the approach of Burns and Clancy [1] with the appropriate changes

Fix a p € M and consider the moving frame

Q, =1[fip), £;(p), € (p)]
along the curve t+ fi(p) € R® where
¢(p) = e *fi(p) * fi(p)

For each t, f* 1s an wsometric immersion so there exists ©7 € SO(2,1), depending
smoothly on ¢ such that Q) = ©} Qg and, therefore, taking the t-derivative with
( =d/dt),(0})T denoting the transpose of © and (©!)' as defined in the prelimi-

naries we have using lemma 2 7 that

Q, = 0, = 0, [(6:)MTe:] 02
= [0, (@M =  (adr'(p)) O}

for some uniquely determined n*(p)€ R® So for each “tsme” ¢ we obtain a map
M —R* pwn'(p)

called the drehriss of the deformation f* at time ¢
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Chapter 4 Isometric deformations and the drehriss

Now 1if we express the formula Q;: (adn’(p)) 2, m component form we obtain the

fundamental equations

2(p) = n'(p) * filp)
‘) = n'(p)* fi(p) (41)
&p) = n'(p)*E(p)

Furthermore, since f,,=f,, 1t follows from equations (4 1) that

Mo * fy =My * [z
and consequently

(ny,Eh e = (g fox fuhr = (ny * for fiuhr
= <77x*fy7fy>1 = 0

Thus, with a similar argument appled to (n;, £)1, we obtamn
(M2, = (ny, €)1 =0 (42)

Proposition 4.1

If J 1s the complex structure on M which s compatible unth the metric g and the

orientation, then

'I’]*:—f*OJOA

Proof:

If we put (z',2%) = (z,v), fi = fz, f2 = f, and we use the summation convention,
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Chapter 4 Isometric deformations and the drehriss

then at p we have

Y
I ftoxs

0 0
= 5£f*(A8_xJ—)

9 @y
9t % gz

= (l; f'l+a"l7 f1,

1

0
= f*(aJ —8—33_1)_*_0’_17 fz

On the other hand, using equations (4 1) we have
¢ = %(n *£)
= m*Etnx
= —tan, tnralf,

= —6*77]'1-(1; fz

Comparing these two expressions for £, we obtain

0
Exmny = "f*(A %)

and, hence

v (Exn) = €% (A o)

Recall from the preliminaries that ¢  f, = —f, and ¢ * f, = f, and so

Ex(Exm) = fulJ A )

ox?

since f 1s an 1sometric immersion preserving the orientation It now follows from
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Chapter 4 Isometric deformations and the drehriss

lemma 2 5 that

(€.6m, — (En 0= £ 4 0)

so using equation (4 2) and the fact that (¢,£); = —1 we obtain

0 0
Mg = ~(fioJo A)%, 17=12

which proves the proposition
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Chapter 5
Deformations Preserving Mean

Curvature

In this section we list some of the results found by Burns and Clancy [1] and include
them for completeness only Suppose that f¢ M — R 1s an 1sometric deformation
which (as t varies) preserves mean curvature at p € M The eigenvalues X;(p) <

A2(p) of A* the second fundamental form, are just the roots of the equation
M —2H(p)A — K(p) =0

where H(p) = (1/2)TrA} 1s the mean curvature of f* at p and K(p) 1s the gauss
curvature at p These eigenvalues are independent of ¢ and therefore, when p 1s not

an umbilic (1e A (p) # A2(p)), there exists a unique O(p,t) € {0,2m) such that

A:, — e@(p,t)JAge—G)(p,t)J

where J 1s as described 1n proposition 4 1 Also, when p 1s an umbilic we can choose
O(p,t) arbitrarily Furthermore, since Ag 1s symmetric and J 1s skew-symmetric

with respect to g
(A* = HI), = P (A° — HI), (51)

Proposition 5 1

Let f© M — (R®,(,)1) be an wsometric tmmersion having constant mean curvature
H Ifft (M,g9) = R® s an isometric deformation of f° which preserves this
constant mean curvature, then there exists a smooth function tw— (t), depending

on t only, such that
(A' = HI), = e*®I(A° — HT),
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Chapter 5 Deformations Preserving Mean Curvature

for every p € M and the drehriss for this deformation s gen by

n'(p) =¢ (4)[€'(p) — Hf'(p)] + Ef
where Et € R® does not depend on p

Proof :

Given that each immersion f* 1s of constant mean curvature H, 1e TrA* = 2H
for all t and g = e?®¥(dz? 4+ dy?), we may write A’ in terms of local isothermal

coordinates (z,y) on M as follows

t ot

At = Gy Gy
t ot

Q1a Ca

It can now be shown that Codazzi’s equation for A’ 1s equivalent to the Cauchy-

Riemann equations for the complex function
Uiz +1y) = ((a1; — a3,) — 2mtm)eq5

This was first observed by H Hopf and a proof can be seen 1n Appendix C We note
that the umbilics of the immersion f* ( which are the zeros of ¥*) are 1solated Note,
we rule out the case ¥* = 0 since this corresponds to the immersed surface being a
portion of the standard hyperbolic sphere in R?® Therefore, the function ©(p,t) 1n
equation (5 1) 1s a smooth function defined for all p € M except for these 1solated
umbilics If we fix ¢ and recall that VJ = 0, then by applying Codazzi’s equation
to both sides of equation (5 1) we find that since

0 0
(V4 (A= HI)) 5 = (T (4 = HD)) -
we must have
(Vo et (A HJ) )59— = (Vo @ (A° — HI) )6—
oz * Oy By ® oz
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Chapter 5 Deformations Preserving Mean Curvature

and so
Vo |e000I(A° — HI) 23 _ eI (A — HI),V o 9 _
o5 Pay 14 e ay
0 0
V% (e2®(p,t)J(A0 _ Hl)pa_x) . eZ@(p,t)J(AO _ HI)pv%a
implying
270,009 40 — 1), 2 4 erow0ry, (40— pp), 0 =
P Oy oz POy
20(p,t)J( A0 0 20(p,1)J 0 d
2J®y€ P (A "H[)pa—x+€ P V%(A _H[)pa_x

Hence O, = O, = 0 1e O 1s independent of p Accordingly, the first statement
follows 1if we put 1(¢) = 20(p,t) For the second statement we take the ¢-derivative

(with p fixed) across the equation
(A~ HI), = e*WI(A° — HI),

to obtain

AL=p(t) JHOT(A° — HI), =(1) J(A' — HI),

and from proposition 4 1 we have

M = —fiod A = —fuolJ(® J(A— HI))
= Yfo(A-HI) =  (f.oA—HL)
= Y& -Hf) = (¥ (€= Hf))x

from which the second statement follows
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Chapter 6

The manifold

Throughout this section we will assume that the simply-connected Riemann Surface

M with metric g admits a 1-parameter group of 1sometries

A one parameter group of 1sometries of M 1s a family {®; M — M|t € R} of
mappings with the following three properties

a {®; M — M|t € R} 1s a group under composition 1 e

b, 00, = By, foralls,t € R and &y =1d
b For all p € M the mapping ¢ — ®,(p) 1s differentiable
c Forallte R,®; M — M is an 1sometry

The uniformization theorem states that every simply connected Riemann surface 1s

conformally equivalent to just one of

1 The Riemann Sphere 52
11 The Complex Plane C
i The Open Umit Disk U

hence there exists a conformal diffeomorphism ' A — M where A = S?,C , or U,

each equipped with its standard metric

Let § = F*(g) be the metric mduced on A by ' Then F (A,3) — (M,g) 1s
1sometric The one parameter group {®; M — M|t € R} of isometries of M
induces a one parameter group {¥;y A — Alt € R} of 1sometries of A Hence we

let A equal $?,C and U and investigate all one parameter groups of 1sometries
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Chapter 6 The manifold

If A = S? then f immerses M 1nto a piece of the hyperbolic 2-sphere, a proof of this
1s found 1n Appendix E If A # S? then we may assume (see smyth [6] for example)

that after a conformal change in the model, the group ; 1s one of the following

(al) all rotations about a fixed pont of ¢ ( the origin 0, say )

(a2) all automorphisms of ¢ fixing one boundary pomt (z =1, say)
(a3) all automorphisms of ¢ fixing two boundary points (z = %1, say)
(bl) all translations 1n a fixed direction of C ( the y-axis, say)

(b2) all rotations about a fixed pont of C ( the origin 0,say )

Now under the covering map z — ¢, the regions 1n (al) and (b2) correspond
to the half-plane Re(z) < 0 and C, respectively, and the group of translations
parallel to the y-axis If we transform the disk & into the half plane Re(z) < 0 so
that 1 1s transformed to co then the group in (a2) must transform into the group
of translations parallel to the y-axis If we transform the disk & into the strip
a < Re(z) < bso that £1 are transformed to y = £oo then the group in (a3) must

transform into the group of translations parallel to the y-axis

Let V = {2z € C|o < Re(z) < 7} Then for each of the regions R occurmg in the
cases above there 1s a conformal mapping 7 V — R such that 9, pulls back under

7 to the group of vertical translations of V
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Chapter 6 The manmifold

The relevant information for the five cases 1s as follows

(al) (0,7) = (—o0,1), = 1sa covermg map onto D — {0} and 7{z = —oco} =0

(a2) (0,7) = (—o0,1), 7 1sa diffeomorphism

(a3) (o,7) = (a,b), 7 1s a diffeomorphism and a, b are any fixed constants of
our choosing

(b1) (0,7) = (—00,00), m 15 a diffeomorphism

(b2) (0,7) = (—00,00), 7 15 a covering map onto C — {0} and 7{z = —c0} =0

The quantities arising on V' from the induced immersion f o 7 are denoted by the
same letters as before Thus g = e?|dz|?, the function ¢ depends only on z and we

assume M = {z € C |0 < Re(z) < 7} with 9, the group of vertical translations of
M
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Chapter 7

CMC-Surfaces with Internal Symmetry

Throughout this section we will assume that M 1s a simply-connected surface with

Riemannian metric ¢ which admits a 1-parameter group of 1sometries
Y' (M,g) = (M,g)

We wish to classify all 1sometric immersions

f (M,g) — (R3’<7>1)

which have constant mean curvature To this end observe that the l-parameter

family of immersions

f (M) =R p= f(4'(p))

1s an 1sometric deformation of f = f° which preserves the constant mean curvature

H Now, since we may assume that conformally
(M, g) = ({(z,y) € R? a<z<b} forsomea,beR,e?(dz? + dy?) )
and the 1sometry ¥*(z,y) = (z,y +t) for all t therefore for all z,y and ¢ we have

flzy) = fozy+1)
z,y) = Ez,y+1)
Alz,y) = A(z,y+1)

In particular, A*(z,0) = A%z,t) V(z,t) and combining this with proposition 5 1
we obtain

(A° = HI)(g = (A" = HI)(g0) = " (A° = H)(a)
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Chapter 7 CMC-Surfaces with Internal Symmetry

If we replace t by y, then
(A° = HI)zy) = "W(A° = HI)zp)
and applying Codazzi’s equation we find
¥(y) = —ay + 0 for some constants o, § € R

Thus, 9 (t) = —« and, from proposition 5 1, we see that the drehriss of this defor-

mation 1s

n'(z,y) = —of'(z,y) + (E' + aH f'(z,y))

For later use we also observe that § = ¢(0) = 27n for some integer n, which we
may choose to be zero Therefore, the constant « 1s uniquely determmed by the

condition
(A° = HI)zy) = e (A" — HI)(zg) (71)

Now, from the identity f*(z,y) = f°(z,y + t) 1t follows that

t

f(z,y) = f(z,y+1)
£y (@) = oz, y +1)
: fo (2,y) = o,y +1)

£ (z,y) = 82,y +1)

where the subscripts 1 and 2 denote partial derivatives with respect to the first and

second variables, respectively
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From now on we set ¢ = 0 and drop the superscript “0” from all functions so that

using the fundamental equations (4 1) we obtain

folz,y) = fo(z,9) = nlz,y)* fo(z,y)

fw(z,y) = fy (z,y) = nlz,y)* fy(z,y)

&(zy) = E(zy) = nlz,y)*E&(z,y)

where n(z,y) = —af(z,y) + (E + aHf(z,y)) for some constant vector E € R®

Therefore,

fzy = _O"f*fz‘}‘(E‘l'aHf)*fz
fow = —ab*fy+(E+aHf)x*f,
& = (E4+aHf)x¢ (72)

However, the coordinate system (z, y) 1s 1sothermal and ¢ was defined so that £x f, =

—f, and € * f, = f; Therefore, we obtain the equations

foo = afy+t(E+aHf)xf, (73)
fow = —afe +(E+aHf)*f, (74)

When o # 0 one obtains from the integrability conditions, fryy = fyue and foy = fuz,

the additional equation

fxx+fyy:2Hfr*fy (75)

furthermore when a # 0 and H # 0 equations (7 3), (7 4) and (7 5) can be reduced

36



Chapter 7 CMC-Surfaces with Internal Symmetry

to

foy = afyt+oHfx*f, (76)
fow = —afet+aHfxf, (7 7)
fx:c+fyy = 2Hf:c*fy (7 8)

by replacing f(z,y) with f(z,y) — -5E, 1e a simple translation and we note for

future reference that (7 2) simplifies to

§y=aHfx¢ (79)

Hence the above transformation allows us to assume that E = (0,0,0)7 in the
original equations The differential equations (7 6),(7 7) and (7 8) can be further
simplified by replacing f(z,y) by Hf(z,y) to give

foy = afytafxfs (7 10)
fow = —afetafxf, (711)
Joz + foy = 2fax fy (712)

1e we may further assume that H =1
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Chapter 7 CMC-Surfaces with Internal Symmetry

When a = 0 equations (7 3), (7 4) and (7 5)reduce to the form

f:cy = E*fz
fow = Exj,
& = Ex¢

We now determine a necessary and sufficient condition i terms of 1sothermal co-
ordinates (z,y) for a spacelike immersion f into Minkowsk: three space to be of

constant mean curvature H As

(fzafx>1 = <fy7fy>1 >0 (7 13)

(fzafy)l =0 (7 14)

we conclude from (7 13) that

<f:cxafr>1 = (fxyafy)l (7 15)

and by (7 14)

(fwafy)l + (fmfyy)l =0 (7 16)

Using (7 15) and (7 16) we see that

<fxa:+fyyafx>1 =0 (7 17)

and similarly one can show that

<f:w+fyy7fy)1 =0 (7 18)

implying that f.. + f,y, = ¥(z,y)¢ for some function ¥(z,y)
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Chapter 7 CMC-Surfaces with Internal Symmetry

Now

(fzz+fyy7§>1 = (frza€>1+<fyy’€>1

= ((fm‘f)l)z - <f$>£a:>1 + (<fya§>1)y - (fya‘fy)l

= —(feonfs +a2fyh — (fysaa1fe + azfh

= —2H¢*

and since (J(z,y)€, €)1 = —9(z,y) we have that

Sz + foy = 2H [z * £,

That 1s the integrability condition (7 5) (in 1sothermal coordinates) 1s a necessary
and sufficient condition for the immersion to be of constant mean curvature and so

1t holds whether a = 0 or not
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The Associates

With the notation of the previous sections, let f (M,g) — R® be an 1sometric
immersion of constant mean curvature H If A° denotes the second fundamental
form of f, then, by definition the associates of f are the 1sometric immersions in the
1-parameter family f* (M, g) — R® which have their second fundamental forms A’

determined by
(A'—HI),=€e’(A° - HI), Ype M (8 1)

These immersions have the same constant mean curvature as f If we begin with one
of the immersions f as determined by in chapter 7, that 1s, the constants H, e?(®) o
and E are specified, then the question arises how should these parameters be varied
to obtain the associates of f? At once we see that H remains constant and so also
does A(zo) since 1t determines the metric g at (zo,yo) which 1s the same for all
associates Now, let (t) and E* denote the remaining parameters which correspond
to the associate f* From the previous section, see equation (7 1), a(t) 1s uniquely

determined by the following

eI (At — HI)zoy = (A'= HI)@y)
= J(A° - HI) ¢,y
= e (A° — HI), 0
= eOwetl(A0 _ HI)(z,0)

= ea(O)yJ(At _ HI)(T,,O)

Therefore, €% = > and o(t) = o(0) + 2n7 where n 1s some nteger
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Chapter 8 The Associates

Remark.

If as 1n the previous section ¥°(z,y) = (z,y +s) s € R denotes the 1-parameter
group of mternal 1sometries, then f o ¢° has second fundamental form e*s7(A° —

HI)+ HI while the associate f* has second fundamental form e"/(A° — HI) + HI

Therefore up to a Hyperbolic motion we have
fl=fogt* Ya#0

That 1s when a # 0, the associates no longer generate “new surfaces” but rather

(up to a Hyperbolic motion) correspond to the flow of the internal symmetry along

f
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The second fundamental form

Lemma 91

When o = 0 we have
<E,f>1 :Cly+62$+C3+H/e¢d:c

for some ¢y, ¢z,¢3 € R and the second fundamental form, A, satisfies

A—HI=6-¢(C2 Cl) 91)
Ci —C

Proof

When a = 0 we have that every constant mean curvature surface which has contin-

uous internal symmetry satisfies the following differential equations

foo = Exfy (9 2)
fw = Exf, (9 3)
§, = Ex¢ (9 4)
feo+ foy = 2Hfo % fy (95)

and hence

<E)fz‘y)1 = <E,fyy>1 =0

which imphes

(E’fy)l =a
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Chapter 9 The second fundamental form

(B, fouht = (B, foz)1+ (E, fyy
= 2H(E, fo * foh1
= 2H(E * fu, fyh1
= 2H(foy, fuhr
= H((fy; fu)r)s

Hence
but

and so

a_yf = e *E« (fe* fy)
f* (Ag‘&) = e—¢(<E7fx>1fy - <E7 fy>1fl‘)
0 0 _
f« (az1a—m+azza—y) = e q'5((1t[f3¢’-f-cz)fg,, —c1fz)

anfz +anf, = (H + 628_¢)fy - 016_¢fz
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Chapter 9 The second fundamental form

and hence

azge = H+ce® (9 6)

agy = —61€_¢ (9 7)

we recall that ay3 = ag; and aq; + a99 = 2H and so

A_—.HI+e‘¢’(c2 cl) 98)

1 —¢C

this completes the proof Following the approach of Burns and Clancy [1] we also

have the following lemma

Lemma 9.2

When a # 0

H
(E + a—2f~,f)1 = acos(ay +t)e*® + H/ e?dzx

for some a € R and the second fundamental form, A, satisfies

A—HI = aaettor| @V TD Sln(ay+t))

sin(ay +t) —cos(ay + 1)

Proof.

We have

aHf

(E+alf, foh = (E+aHf, fh)e=((E+ T,fh)xy (99)
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(E+aH/f, fuh = (E+aH/, fy>1)y —aH(fy, fyh

= ((E+a2ﬂ,f)1)yy —aHe® (9 10)

(E + OtHf, fzz‘>l = ((E + aHf, fz)l)z - aH(fa:afz)l

= (E+ ﬂ;i’fh)m —aHe? (9 11)

Using (9 9) we have

(& + 2L ey = (B+allf, o)

= (E+4aHf,of, + E+aHf)* fu)1 by (73)

= OZ(E + aHfa fy>1

= a(B+ 2L 1),

(9 12)

so that
(& + 2L, 1)y = T)e (913
for some function I'(y) Diflerentiating both sides of this equation by y we have that

oaH
IM(y)e* = (E+ '2_f’ F)uwy

= ((E+aHf, fyu)1 + aHe?), by (910)
= ((E + OéHf, fyy>1)y

= ((E+aHf,—fo +2He*&)1), by (75)
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The second fundamental form

i

= _((E+ _2-’f

aHf

= —T(y)o?e*®

Hence we have

((

E+ 20 ),

H
<E+g—2_iaf>1

~((E + aHf, foh)y + 2He?(E + aH f,)1),

~((B+ aHf, fa))y + 2He? (aH(f,, €)1 + (E+ aH £, &,)1)

_(<E+aHf7 fxz>1)y by (7 2)

>1)rry

—(I'(y)e**)ze by (9 13)

—a’T(y)

—aasim(ay + t) for some a,t € R

—aasin(ay + t)e*”

acos(ay + t)e*® + x(z)
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The second fundamental form

Also

x'(z) + aa cos(ay + t)e*”

X'(z)

&+ 2L

2

proving the first part

aHf

(E+ "2—,f>1)z

<E + Cle, fx)l

(B -+ aH S, + ~(B+aHf) * ) by (74)
1

—E<E + OZHf, fyy)l
1 aHf

—;(((E + —2——,f)1)yy — aHe?®) by (9 10)

1
—=(—ac? cos(ay + t)e*® — aHe?)
o

He?

= acos(ay +t)e*” + H/ed’d:n
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Chapter 9 The second fundamental form
Now
&y (E+aHf)*¢
[AAS) = e (B +aHf) 5 (fo+ £,
* ay - z Yy
9 9 »
f*(a218_+a228_) = (E+alf, fo)ify —(E+aHf, fy)ifs)
z y
0 H aH
gt +ong = @+ G 00t - (B L L)

an fo + a2afy, = e *((accos(ay+t)e*® + He?)f, + aasin(ay + t)e** f,)
Hence
a19 = ag; = aae %te® sin(ay + t)
azy = H+ace " cos(ay +1)
a1 =2H —ayy = H— aae ¢t cos(ay +t)
A_HI - —cos(ay +t) sin(ay +1t)

aqe~ttos ( )

sin(ay +t) cos(ay + )

Thus proving the lemma
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Chapter 9 The second fundamental form

Lemma 9 3

For every a € R we may assume without loss of generality that the second funda-

mental form A may be written as

—Ccosay Sinay

A= HI—ce?t" (9 14)

sinay cosay

where c € R,e¢ >0

Proof

We recall when a # 0 that the associates, fy, of the immersion f do not generate

new surfaces and that the corresponding second fundamental form Ay 1s given by
Ag=e"(A-—HI)+ HI
When «a # 0 we then have

Ay — HI = qae=tro= | cos(ay +t —0) sm(ay+t—0)
g — =

sin(oy +t—0) cos(ay+t—0)

(9 15)
By choosing § =t or § =t + 7 1if necessary we have
—cosay sma
Ag = HI — cem#te= Y y (9 16)
sInay cosay

where ¢ = |aa| > 0

When a = 0 we have

cgcos —cysinf  cycosh+cysimb

Ag— HI =¢™* (9 17)
cacos @ + sl —cycos0 + cysinf
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Chapter 9 The second fundamental form

Choosing § = tan™!(—%) or 6 = tan™!(—2) + m we may assume ¢; = 0 and ¢; >0

giving

-1 0
Ag:HI—C€_¢( . 1) (9 18)

where ¢ = ¢; Hence we may assume

— COS (¥
A:Hl—ce‘¢+‘”( ey Smay) (9 19)

siInoy cos oy
for every @ € R where ¢ > 0 This completes the proof of lemma 9 3

Lemma 9.4 N

When o = 0 we may assume without loss of generality that the set of differential
equations (9 2),(9 3), (9 4) and (9 5) reduce to three

fu = Exf (9 20)
& = Ex{ (9 21)
Joo+f = 2Hf:xf, (9 22)
Proof:
By (9 2) and (9 3) we have
foy = Exfe (9 23)
fow = Exf, (9 24)
which simplify to
fy=Exf+4v

for some v € R> Using lemma 91 and lemma 9 3 we may assume (E,f,)1 =0
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Chapter 9 The second fundamental form

and hence we may assume (E,v); = 01e v € EY Thus v = E % b for some
b€ R® Replacing f(z,y) with f(z,y) +b1e a translation we find we may assume
v = (0,0,0)7 This concludes the proof
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Chapter 10

Conformal transformations

With the conformal structure determined by g and the given orientation, we have
that M 1s a Riemann surface and in terms of local conformal coordinate z = z + 1y
we write ¢ = e?|dz|?, where ¢ 1s a real function of z and A = (a,,) with respect to

the coordinate field {aa_z’ 5%}

Les h U — h(U) C Mand b U — k() C M be two positively oriented
conformal parameterisations of M about a pomnt p € M with h(U) = hU) So that
9 =htoh U — U s a byective holomorphic mapping Also let z = z + 1y be
the local coordmates on h(U) and w = & + 1jj be the local coordinates on i ()

Now ) \
0z 0z 7
— e?ldz|? = e? | =2 d — % |22 2 _ ¢ 2
g=¢€’ldz|"=e¢ 5 i |[dw|* = e®|dw|
and hence
. |z
6 _ |22 ¢
e 95| © (10 1)
From chapter 5 we have
Y = {(all — (122) — 22(112}6¢ (10 2)

18 a holomorphic function It can easily be shown that in terms of local coordinates

a 0

Since
0 ow 0 0z
3. = 325w and dz = 8—wdw

we see U d2? 1s a holomorphic quadratic differential independent of the coordinate
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Chapter 10 Conformal transformations

system Now

2 2
= g 5 = o e ) = ] g = (5) @
and hence
U= (3—2)2 \/ (10 3)
By lemma 9 3 we may assume
N ( Heetoroonay  —cettetanay )
—ce " sinay H — ce ?t*% cos ay

and so from (10 2) we have

J = {((111 - (122) - 21(112}6¢

= 2ce*® cos ay + 2ice”” sin oy
or more simply
U(z) = 2ce™ (10 4)
this along with (10 3) gives

T(w) = (az(“’))zzce'ﬂ(w) (10 5)

Jw
If o # 0 we let z = 2(w + log “—:) then by (10 1)

- 1 1/~ a2
¢ — |,/ 2,0(Re(2(w))) — —_ ¢(5(&+log <~
e? = |Z'(w)|“e =€ 85))

which 1s still just some function of Z and using (10 5) we have

~ 1 @
U(w) = (2'(w))*2ce*™ = —22ce“’+l°gTZ = 2¢e"
a
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Chapter 10 Conformal transformations

thus comparing this to (10 4) we may assume that « =1 and c =1
fa=0welet z= ﬁw then by (10 1)
eb = |2/ (w)|Ped(Rel=w)) — o Jz8)-logc)

which 1s again just some function of # and using (10 5) we have

thus comparing this to (10 4) when o = 0 we may assume ¢ = 1
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Chapter 11

The metric

As shown 1n the preliminaries the Gauss curvature K(p) 1s given by
K(p) = go(R(X,, Y3)Yy, Xp) = — det(A,)

computing the left hand side locally with X = % and Y = aa_y we find ’

1
K = -—§e-¢A¢

relative to the local coordinates (z,y) A proof of this 1s given in Appendix D Since

¢ depends on z only we have
_ %

"~ Oz

Ag

From the previous chapter

A= HI _¢+az(—cosay smay)
= —e€

sinay cosay

where o« =0 or 1 Hence

det A = H? — e72¢+%7
and so when H # 0

*¢

% — 26¢(H2 _ e—2¢+2am)

= Q2H%e? — ¢ %12
— 2|H|eax(|Hle¢—az _ _e—¢+az)

_ 2|H‘eaz(e¢—az+log|H| _ e—¢+aa:—log |H|)
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The metric

Letting n(z) = ¢ — az + log | H| we find that n(z) satisfies the differential equation

77”(33) —c

az+logHl g\ nh () (11 1)

and a = 0 or 1 We note that this differential equation appears in Smyth [6] but

with a minus sign Using (7 3) we have

fa:y =
<fzyafy>1 =

1
§(<fy’ fy)l)x =

1
3 =

1
29 =

and hence

afy + (E+aHf)* f.

o fys fyh + (B + aH f) * fo, fuh

aed’ + <(E + aHf)afa: * fy>1

ae® + e¢<(E + aHf),€_¢fx * fuh

ae’ +e((E + ol f), )

20+ 2{(E + aHf), &),

n'(z) =a+2((E+aHf), )
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Completeness

We recall from chapter 6 that we may assume M 1s a strip on the complex plane
given by z; < z < x5 where (z1,z2) = (—o0,1),(—7/2,7/2) or (=00, 00) and hence
#(z) must be defined on all of this interval For every y let v,(t) R — C be given
by 7,(t) = t + 1y We are mnterested 1n the length of this curve, L{vy|(zs,)), from

any point ¢ = = to any other ¢t = zy To this end we have

d 0
’Yy(t) = d’)’y(a) = 5;

and hence the length 1s given by

Liwleeo)) / (3:5 am)dt / e*ldi

1n order for the metric to be complete we should have that the length from any point
in M to the boundary of M should be infimte and so L(7y|(s,2)) and L(vyl(z.c,))

should be infinite for any finite z € (z1, z2)

To get any further we first must analyze the differential equation (12 1) given below

which we obtained in chapter 11
Problem

Classify the solutions to the differential equation (12 1)

n'(z) = e**t28 ginh n(z) (12 1)

where a equals 0 or 1 and 8 € R
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Chapter 12 Completeness

In all that follows we shall assume n(z) 1s a solution of (12 1)

Lemma 12.1

Ifn(z) 15 not the trunal solution then it can have at most one critical point  Moreover

a critical point must either be a positive minimum or a negative mazimum

Proof :

Consider the case when = c1s a critical pomnt of n(z) 1€ n'(c) =0 We must have

n(c) satisfying one of the following

(1) n(c) =0,

n(z) = 0 due to uniqueness of solutions

(i.) n(c) >0,
n"(c) = e***% sinh(n(c)) > 0, and therefore n(c) 1s a local mmimum of n(z)
It follows n cannot have another critical point and consequently n has a global

minimum at ¢

(m1.) n(c) <0,
n"(c) = e***? sinh(n(c)) < 0, and therefore n(c) 1s a local maximum of 7 and

as 1n (11 ) must be a global maximum

Lemma 12.2

If zo 15 a pownt at which 1 15 defined with n(zo) > 0 and n'(zo) > 0 then there exists

a finite number b > zo such that n(z) — oo asz — b

Proof :

Since n(zo) > 0 and n'(zo) > 0 1t follows from lemma 12 1 that n(z) > 0 for all
T > zo at which n(z) 1s defined
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For every & > zo at which n(z) 1s defined we shall examine n”(z)

n"(z) = e**T¥simhn(z)
= & () +n*(2)/3 +7°(2)/5' + )

> ePip(z) (as p(z) > 0)

where (8, = azo/2+ 8 + In(6)/2 Choose a positive real number r such that

0<r< mzn{\/n(:co), \‘ye’ﬁl V21'(z0)} Then

51
0<r®<n(ze) and 0< r4(67§) < n'(zo)

Now let g(z) be the solution to the differential equation
g"(z) = ¢’ (x) (122)
with mitial conditions

lr-4eﬁl

g(zo) =7° and g¢'(zo) = 7

From Appendix F we can see that the solution 1s

V2 V2

g($)=m, d=zo+

efrr?

We note that d 1s finite and that g(z) > 0 for all z < d Moreover g(z) — oo as

z — d Comparing the two problems we see that

n'(z) > g"(z) n'(z0) > g'(za) n(z0) > g(o)

and consequently n(z) > g(z) for all z > zo Since g(z) — oo as z — d 1t 1s obvious

that n(z) — co as z — b where zo < b < d This concludes the proof of the lemma
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From here on we consider the cases when a = 0 and a = 1 separately

Lemma 12.3 (o =0)

Let zo € R be a pownt at which n 1s defined with n(zo) > 0 Then there exists unique

real numbers v; < 0 < v, such that
o if 7'(z0) > 1
n(z) s a strictly increasing function defined on a finite interval (a,b)
o if ' (z0) = Yu
n(z) s a strictly increasing function defined on the semi-infinite interval

(—00,b),b€ R with n(z) - 0 as z = —o0

o if v <7'(%0) <
n(z) has one critical pownt - a positive minimum and s defined on a finite
interval (a,b)

o 1f n'(zo) =
n(z) s a strictly decreasing function defined on a semu-finite interval
(a,00),a € R with n(z) - 0 as z — o0

o of n'(z0) <

n(z) 1s strictly decreasing defined on a finite winterval (a,b)
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Chapter 12 Completeness

Proof:

We first divide the solutions of (12 1) into three different categories

(a ) n(z) has critical points
(b ) n(z) has no critical points but there exists a point z; € R such that n(z,) =0
(¢ ) n(z) has no critical points and there 1s no pont z; € R such that (z,) =0

(a) By lemma 121 we know n(z) has at most one critical pomnt and 1t 1s either a
positive mmimum or a negative maximum Since 7(zg) > 0 the critial pomnt must

be a positive mmimum, say 1t occurs at z = z; Let hy(z) = n(z + z,) then
Ki(z) = n"(z + z1) = e¥ simhn(z + 1) = €* sinh hy(z)
1e hi(z) satisfies the exact same differential equation with
ha(0) = n(er) and A4(0) = 1(a1) = 0

hence by replacing n(z) with n(z + z;) we may assume that the mimimum occurs
at £ =0 For any z > 0 at which n(z) 1s defined 1t 1s obvious that n(z) > 0 and
n'(z) > 0 and hence by lemma 12 3 there exists some finite number b with n(z) — oo

as ¢ = b Now let hy(z) = n(—z) then
R)(z) = " (—z) = ¥ sinhn(—z) = €% sinh hy(2)
and agamn hy(z) satisfies the exact same differential equation with
ha(0) =n(0) and h;(0) =7'(0) =0

since we are guaranteed uniqueness of solutions we know hy(z) = n(z) Hence n(z)
1s symmetric about the y-axis and hence n(z) — oo as ¢ — —b In the general

case 7(z) 1s symmetric about the line z = z;, 1ts minimum, and has singularities at

:CZCI’,‘l:*:b A
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(b)) n(z) has no critical points but there exists a pont z; € R such that n(z,) =0
As m part (a) 1if we replace n(z) with n(z 4+ z,) we may assume that z, = 01e
n(0) = 0 Since n(z) has no critical points 1t must be either strictly increasing or
strictly decreasing Replacing n(z) with n(—z) if necessary we may assume that the
function 1s strictly increasing Hence, at any z > 0 where 7 1s defined we must have
that n(z) > 0 and also that () > 0 and by lemma 12 2 there must exist a finite

number b such that n(z) — 0o as ¢ = b Letting hy4(z) = —n(—2) we see
Ki(z) = —n"(—z) = —e*® smhn(—z) = €*’ sinh hy(z)

with
ha(0) = —n(0) =0 and HL(0) = 7/(0)

By uniqueness we must have hy(z) = n(z) and hence we find that n(z) — —oco as
z — —b Hence, 1n the general case if 5 1s a strictly increasing function then n(z) 1s
symmetric about z; with n(z) > coas z >z +band n(z) > —ccasz — z; — b
If n 1s a strictly decreasing function then n(z) 1s symmetric about z; with n(z) — oo
asz — 2y —band n(z) > —casz— z;+b

A

(¢) n(z) has no critical pomnts and there 1s no pomnt z; € R such that n(z;) =0
Having no point z; at which n(z;) = 0 means that the function 1s strictly positive or
strictly negative and since n(zo) > 0 we must have that 7 1s strictly positive Having
no critical points means n(z) 1s either strictly increasing or strictly decreasing Let
Ty be a point at which 7 1s defined Replacing n{z) with n(z + z2) we may assmue
that o = 0 Then replacing n(z) with n(—z) if nessecary we may further assume
that n 1s strictly decreasing Since 7 1s both strictly positive and strictly decreasing

1t must exist over the entire interval [0, 0o)
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If imzen(z) = ¢ € R/{0} then hm, oo n”(z) = hm, e sinh(n(z)) = d # 0

Therefore, n'(z) = oo as z — oo and consequently n(z) — oo as £ — co which
1s a contadiction Hence 7(z) — 0 or £oo as = tends to infinity As we may assume

that 1 1s both strictly positive and strictly decreasing we must have him,_,o, n(z) = 0

If we now let u(z) = n(1/z) then,

(@) = 7(2)(~a?)

:
= )

@) = 2 - () (2
= 2SO+ S )
- —% u'(z) + %; e’ Smhfl(‘i:)

1 9
= - u'(z) + ¢ sinh u(z)

thus

2 1
u'(z) + ~ u'(z) = o e* sinh u(z)
| 2, 1 ' 1 26
z“u’(z) + 2z u'(z) = i sinh u(z)
2,/ / 1 23
(z%u'(z))" = — e smhu(z)
T
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2z%u/(z) (2%’ (z)) = 2u'(z) €’ smhu(z)

(z%(2))*) = (2 % cosh u(z))’

(% (z))* = 2 €8 cosh u(z)+a, a€eR

Now u(z) — 0 as z | 0 because n(z) — 0 as ¢ = oo Furthermore z?u'(z) =
—n'(1/z) = 0 as z | 0 because n/(z) — 0 as  — oo Hence ¢; = —2€*’ and so we

have

[z%/(z)]* = €*(2cosh(u(z)) —2)

= (") 4 7@ —92)

— eZ,B[eu(z‘)/Z - e—u(z)/2]2

= [2¢? sinh(u(z)/2)]?

gving

' (z) = £ 2 €° smh(u(z)/2)

Now 7n(z) and n’(z) have opposite signs as 1 1s a positive function decreasing
to 0 Thus u(z) and u'(z) have the same sign as u(z) = n(l/z) and u'(z) =
—1/z7%n'(1/z) Thus

z?u'(z) = 2 €® simh(u(z)/2)
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and

giving

As n 1s positive

thus

and

1 1 1
e du= ﬁ/—d
2/s1nh(u/2) “me ) 2%

tanh(u(z)/4) = e (-1/z+<)

u(z) =4 tanh ™! (e’ (2~ 1/2)y

n(z) = 4tanh™" (eeﬁ(cz_x))

which has a singularity at z = ¢; < 0 Replacing n(z) with n(z — z2) we arrive back

at the general case when 7 1s strictly decreasing and so

n(z) = 4tanh_1(eeﬁ(c—z)) (12 3)

for some ¢ € R 'We note that 7 1s defined only on the interval (¢,00) Also replacing

n(z) with n(—z) we have

n(z) = 4tanh™ (e’ 9) (12 4)

the general case for when 7 1s strictly increasing We note that here n 1s defined

only on the interval (—oo, c)

A
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To summarise, for any mitial condition n(ze) = v > 0 there 1s exactly one solution
to (12 1) with & = 0 of the form (12 4) call this () and one solution to (12 1) with
a = 0 of the form (12 3) call this 7;(z) We note that these are the only solutions
to (12 1) with @ = 0 of type (c ) mentioned above Let v, = n;(z2) and v, = ny(z2)
Obviously 71 < 0 < 7,

If n(z) 15 another solution to (12 1) with a = 0 and n(zo) = v then the solution
must be of the form (a ) or (b ) defined above and hence one of the following must

hold

1 7'(zo) > 7. 1n which case, by lemma 12 4 given below, n(z) > ny(z) for all
z > zo and n(z) < m(z) for all z < zo Therefore n(z) 1s of the form b
defined above

2 n'(z0) < v 1 which case, by lemma 12 4 given below, n(z) < ny(z) for all
z > zo and n(z) > no(z) for all z < 2o Therefore n(z) 1s also of the form b

above

3 Yu > 7'(z0) > v 1n which case n(z) > ny(z) for all z > z¢ and n(z) > m(z)
for all z < 2o by lemma 12 4 and hence 1s of the form (a ) above 1 ¢ 1t has a

positive minimum

This concludes the proof of the lemma
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Lemma 12.4

Let zo,a,b,c € R with b > ¢ and let ni(z) and na(z) be solutions to the differential

equation
7" = e* simhyp
with
m(zo) =a  nyze) =0
and

m(zo) =a  my(zo) = ¢

then ny(z) > no(z) for every z > zo at which both m1 and n, are defined and n:(z) <
n2(z) for every x < zo at which both n; and 1, are defined

Proof:

Since m(zo) = n2(zo) and ny(zo) > nh(zo) there must exist some interval (zo,z1) 1n
which 1n which both 7,(z) > n2(z) and n}(z) > n4(z) Hence n{(z) = €? simhn ()
> e sinhny(z) = nl(z) for every z € (z0,;1) and so ny(z1) > n2(z1), ni(z1) >
nh(z1) and n¥(z1) > ny(z1) (assuming 7n9(z) exists at z;, if not then we have already
completed the proof) We then may extend beyond z; to another interval (zy,z;)
w which ny(z) > no(z), ni(z) > ny(z) and n{(z) > n5(z) and the process can
continue so long as n;(z) and n;(z) are defined We use the same approach to prove

m(z) < n2(z) for all z less than z¢ 1n which n,(z) and n,(z) are defined

Lemma 12.5 (o =0)

Let o € R be a pownt at whach n s defined with n(zo) < 0 Then there exists unique
real numbers v < 0 < v, such that

o f '(z0) > Yu

n(z) s a strictly increasing function defined on a finite interval (a,b)
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o f7'(z0) =1
n(z) s strictly increasing function defined on the semi-infinite interval
(—00,b),b € R with n(z) = 0 as z = —oo

o if v <7'(z0) < Y
n(z) has only one critical pownt - a negatwe mazimum and 1s defined on the
finate interval (a,b)

o 1f n'(z0) =7
n(z) 1s a strictly decreasing function defined on a semi-infinte strip (a,00),a €
R with n(z) > 0 asz — oo

o 1f '{zo) <y

n(z) 1s strictly decreasing and 1s defined on the finite strip (a,b)

Proof:
The proof follows by replacing y(z) with —y(z) and then using lemma 12 3

We now examine the completeness of the metric when o = 0 Here ¢(z) = n(z) —

In |H| and n satisfies the differential equation
'(z) = 4|H|sinh ()

Using lemmas 12 3 and 12 5 we can see that other than the solution ¢(z) = —In |H]|,
¢ never exists over the entire real line Again using lemmas 12 3 and 12 5 we see
there are exactly two solutions which exist over the interval (—oo, 1) which are given
by

H(z) = 4 tanh_l(ez\/ﬁ("”_l)) —In|H|

When
¢(z) = —4tanh~(2VIHIE=1y _1p | H|
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we see ¢ — —o0 as ¢ T 1 and so e?/? — 0 as z 1 1 hence the metric 1s not complete

On the other hand when
o(z) = 4tanh_1(ez\/ﬁ(x_l)) —In|H]|

#(z) = oo as x 1T 1 and furthermore

o(z)/2 __ 1 e2 tanh—! e2V1H|(z-1) > 1 e? tanh~! e—2VIHI 1
|H| |H| l-z

forall 0 < = < 1 sothat [e%/?dz — coasz 11 Asz — —oco we have that n(z) — 0

1

and hence e*/? — It follows that [e?/?dz — oo as £ — —oo and hence the

metric 1s complete

This leaves us with the case when ¢ 1s defined on the mnterval (a,b) As we are
looking for the metric to be complete we want ¢ — co as £ — a and ¢ — oo as
z — b From lemmas 12 3 and 12 5 we see that there 1s only one possibility that
n has a positive mmimum From the proof of lemma 12 3 we recall that if n has
a positive mimmimum then 7 1s symmetric about 1ts mimimum Hence 1n order that
n(z) — oo as ¢ — a and b we must have 7/(%2) = 0 The question now arises as
to whether these solutions give rise to ¢ being complete Hence let 7, be a solution

to the differential equation
1'(2) = 4|H| sinh n(2)

which has a positive minimum and singularities at some values £ = @ and z = b

Also let 7(z), be the solution to the differential equation
n"(z) = 4|H|smhn

with

n(z) -0 as 2 - —oo and n(z) + 00 as = —+ b
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1e let

m(z) = 4tanh™ e2VIHlI(=-b)

Now 7,(z) and mi(z) both tend to infinity as = tends to b and n;(“—;—b) =0< 77{(%9)
so that 7, (%) > n(2kt) Tt follows that nu(z) > mi(z) for all z > % and hence
[et?dz — oo as z — b Now ¢ 1s symmetric about %Il since 7, (z) 1s and so

[ e?dz — co as © — a Hence, the metric 1s complete

We now study the differential equation (12 1) with « =1 Letting g(z) = n(z — 2¢)
we observe that ¢’(z) = n'(z — 2¢) and

¢"(z) = 1"(z—2c) = e snhy(z — 2)
e+t B=) ginh g(z)

So that g(z) satisfies the same differential equation as 7 with only the value of

B changing Hence from here on we shall assume that n satisfies the differential

equation

n"(z) = 4e® sinhn

Lemma 12.6 (a=1)

Let zo,a,b,c € R with a > ¢ and let m1(z) and ny(z) be solutions to the differential

equation
n" = 4€*simhn
with
m(zo) =a (o) =b
and

Ma(z0) =c  my(z0) = b

then m:1(z) > na(z) for every z at which both my and n, are defined
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Proof.

Since 0} (zo) = 4€® sinhmi(z0) > 4€™ sinhna(zo) = 15 (xo) and n1(zo) > 72(zo) there
must exist some nterval (zo, ;) in which both ny(z) > no(z) and 7n{(z) > n5(x)
and since 0} (zo) = ny(zo) we must have that 7](z) > 7;(z) in this interval Hence
m(z1) > m2(z1), m(z1) > ny(z1) and nf(z1) > n5(z1) (assuming both n(z) and
n2(z) exist at z1, 1f not then we have already completed the proof) We then may
extend beyond z; to another interval (z1,z2) 1 which n1(z) > na(z), 71 (z) > n5(z)
and 7} (z) > nj(z) and the process can continue so long as both 7;(z) and n,(z) are

defined We use the same approach to prove n;(z) > n2(z) for all = less than zp 1n

which both 71(z) and 7,(z) are defined

Lemma 12 7

Let zg,a,b,c € R with b > ¢ and let n1(z) and n:(z) be solutions to the differential

equation
n" = 4e"sinhn
with
m(zo)=a 7o) =b
and

M2(20) = a Ma(z0) = ¢

then n1(x) > no(z) for every © > zo at which both n, and ny are defined and n,(z) <
n2(z) for every x < zo at which both n, and 0y are defined

Proof.

Since 1, (zo) = n2(z0) and nj(zo) > nj(zo) there must exist some interval (zo,z1) 1n
which 1n which both n;,(z) > ny(z) and nj(z) > nj(z) Hence n{(z) = 4 sinhn;(z)
> 4e” simhny(z) = n3(z) and so m(z1) > na(z1), my(z1) > n5(21) and 0y (z1) > 75(z1)

(assuming 73(z) exists at z, 1f not then we have already completed the proof) We
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then may extend beyond z; to another mterval (z1,z2) 1n which ni(z) > n(z),
ni(z) > nh(z) and n{(z) > nj(z) and the process can continue so long as n;(z) and
n;(z) are defined We use the same approach to prove n;(z) < n2(z) for all z less

than z¢ 1n which n;(z) and ny(z) are defined

Lemma 12 8

If m(z) 1s a solution of
n" = 4e” simhp

with

n(zo) =a  n'(z0) =b
and ni(z) satisfies all the following properities
e has one critical point - a positive minimum
e has a singularity at some finite value 3 < 0

then there 1s no solution to the differential equation with n(zo) > a which exists over

the whole real line

Note any solution to the differential equation which has the same properties as n;
shall be called a solution of type U Also by lemma 12 2 every solution of type U

has a singularity at some point z; > 0

Proof:

We first show that there is no solution, n,(z) to the differential equation (12 1) with

n2(zo) = a which exists over the whole real line

If ny(z0) = b then na(z) = n1(z) by umqueness and hence does not exist over the
whole real line If nj(zo) > b then by lemma 12 7 ny(z) > mi(z) for all z greater
than o and since 7 () has a singularity at some « greater than zero so must 7,(z)

Similarly when n}(zo) < b we have that n;(z) has a singularily at some z < 0
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To prove the statement when na(zo) > a First let n3(z) be another solution to
the differential equation with n3(zo) = n2(zo) > @ and 75(zo) = b then by lemma
12 7 n3(z) satisifies the same three conditions that 7,(z) satisfies Then using the
approach used i the previous paragraph we can show that 7;(z) cannot exist over

the entire real line This completes the proof
We now study more closely the properties of the solutions to the differential equation

We now note that n(z) = 0 1s a solution of the differential equation and from here
on we shall assume 7 1s non-trivial Letting 7 = —n(z) we note that 7'(z) = —n'(z)
and 71" = —n” = —4e”sinhn = 4e”sinh —n = 4e“sihfj1e 7 1s also a solution of the
differential equation Thus by replacing n(z) with —n(z) if necessary we may assume
m all that follows that n(zo) > 0 As we are dealing with non-trivial solutions we

may further assume 7n(zo) > 0

In view of lemma 12 1 we remark that each solution n(z) must satisfy one of the

following conditions

a n(z) has a positive mmimum

b n(z) has no critical points but there exists a point z; € R such that n(z;) =0

¢ 7n(z) has no cnitical points and there 1s no pomnt z; € R such that n(z;) =0

\

Solutions of typea and b exist for every mitial condition n(zo) > 0 and by lemma
12 2 these solutions will tend to co as z tends to some finite number b > z, Hence
if a solution exists on an interval [z, 00) then 1t must be of type ¢ above 1e 1t
must be either strictly increasing or strictly decreasing and given n(zo) > 0 1t must
also be strictly positive Again by lemma 12 2 a strictly increasing solution would
tend to infinity as z tended to some finite b > o hence we have that n 1s stricly
decreasing If lim,_,o, 7(z) = d > 0 then n"(z) = 4e“smmhn(z) tends to infinty as
z tends to infimty which in turn implys 7'(z) and n(z) would tend to infinity as
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z tends to infinity - a contradiction Hence lim,—eo7(z) = 0 In summary, every
solution of type ¢ which exists over the interval [zo, 00) must be a strictly positive

and strictly decreasing and tend to zero as = tends to infinity

Lemma 12 9

If 71 15 a pownt at which n 15 defined with n(z1) > 0 and 7'(xy) < 0 then n(z) — oo

as ¢ — b where b = —oo or 1s some finite number less than z,
Proof
Let 1 be defined on the region (b,z;) where b = —oo or 1s just some finite number

less than z; As nis of typea b or ¢ above - 1t 1s obvious that n(z) > 0 for all
z € (b,z;) Now let g(z) be the solution to the differential equation

g'(z) =0 g'(e) =n'(z1) g(z1)=n(z:)

so that g(z) = n'(z1)z + n(z,) Comparmng n(z) to g(z) we see n"(z) > ¢"(z) for
all z € (b,z;), n'(z) = ¢'(2:1) and n(z,) = g(z;) so we must have n(z) > g(z) for all
z € (b,z;) Since g(z) tends to co as z tends to oo we must have n(z) tending to

oo as ¢ tends to b
We now examine the completeness of these solutions

a 7(z) has a positive mmimum Thus 7 1s defined on the region (a,b) where b 1s
some finite number and a € R or a = —o0 Also 7(z) tends to infinity as z tends
to both @ and & Hence e"(®)+%+¢ tends to infinity as z tends to both a and & Thus

depending on the initial conditions - the surfaces could be complete

b n(z) has no critical points but there exists a pomnt z; € R such that n(z;) =0
Let n be defined on the region (a,b) wherea € R ora = —ccand b€ R or b = o0

If we assume 7 1s strictly decreasing then by lemma 12 2 b would be finite and

i
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n(z) = —oco as ¢ — b Hence e"**¢ — 0 as z — b and the solution would not be
complete If we assume that n(z) 1s strictly increasing then n(z) 1s negative for all
z € (a,z;) and hence €""**¢ tends to zero as r tends to a Hence if the solution to

the differential equation 1s of type b then the surface will not be complete

¢ n(z) has no critical points and there 1s no pont z; € R such that n(z;) = 0
Let n be defined on the region (a,b) wherea € Ror a = ~coand b€ R or b= 0
Since we may assume 7(zg) > 0 we have that n 1s stricly positive If 1t 1s strictly
increasing then hm,, n(z) = d € R and hence e"*+* - 0 as ¢ — a1 e the surface
1s not complete On the other hand if 1 1s strictly decreasing we know 1t must exist
on the mterval {zg,00) and n(z) — 0 as £ = co Also by lemma 12 9 we have that
n(z) — oo as ¢ — a and a may be finite or equal —oo We recall from chapter 6 that
we are only interested in solutions which exist over the intervals (—oo, ), (—00,1)
or (c,d) where ¢ and d are finite So 1f a solution exists on the interval [zo, 00) 1t
1s clear that the 1t would be finite at £ = 1 or z = d ( assuming 1t exists there)
and hence would lead to the surface not being complete So we are only interested
in solutions with @ = —oco Hence 1f a solution of type ¢ gives rise to a complete
surface we must have that the solution exists over the entire real line with n(z) — 0
as £ — oo and n(z) — oo as z — —oo If such a solution exists 1t 1s clear that

eMrre 5 0o as T — +0o

In summary, any solution to the differential equation (12 1) which gives rise to a

complete metric must either
1 have a positive mmimum and 1s defined on a finite interval (a,b)
1 have a positive mimmimum and 1s defined on a semi-mnfinite interval (~oo, b)

m  be a strictly positive, strictly decreasing function which tends to 0 as = tends

to oo and to oo as z tends to —oo

We note that the existence of solutions of type 1 and i1 have not been proved

75



Chapter 12 Completeness

We do however recall lemma 12 8 which states that if a solution of type 1 occurs
with 1mitial condition n(z¢) = v > 0 then a solution of type m1 cannot occur with
mitial condtion n(zo) = =, the converse of this 1s also true I would conjecture that
no solutions of type 1 occur Letting g(z) = n(1/z) this conjecture 1s equivalent

to stating that the following differential equation
2 00nz_ 4 1/s
(09 (@)* = e/ simh g()
with the mixed boundary conditons

9(1) >0 hmg(z) =0

has no solutions
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From here on we shall drop the subscript 1 from the inner product symbol 1 e

(z,y) = (z,9h

and subscript 1 will imply partial differentiation with respect to z, similarly subscript

2 will imply differentiation with respect to y

We first study the minimal surfaces when o # 0 Replacing a with —a we have from

equations (7 3) (7 4) and (7 5) that f satisfies the following

fiz = —afp+Exf (13 1)
fo = afi+Ex*f (13 2)
fu = —fa» (13 3)

If we assume that E 1s the zero vector then these equations reduce to

fiz = —afs (13 4)

fa =  afi (13 5)

fu = —afi (13 6)
(13 4) and (13 6) 1mply

fi=—af +u

for some v; € R?® This has solution

U

flz,y) = e u(y) + —

o

(i



Chapter 13 Minimal Surfaces

(13 5) then imphies

vo(y) = va cos(ay) + vasin(oy)

for some vs,vs € R, and so f 1s planar Hence from here on we shall assume E 1s

not the zero vector We let ¢; = (E,E) We recall from lemma 9 2 that

(E, f) = acos(ay + t)e™**

By switching to an associate if necessary we may assume ¢t = 0 and hence that

(E, £,(0,0)) =0 (137)
and
(E, fz(0,0)) = —aa (13 8)

Lemma 13.1

After a translation orthogonal to E we may assume without loss of generality that

Exfo=afi+(a+a)f - (B NE+c

where ¢ € R® and (E,c) =0 Futhermore we may assume ¢ = (0,0,0)7 +f ¢; # —a?
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(o1 €1) (f ‘@o— =S a) = (Y ‘a)

OARY OM 4, 3(7 + fiv)soop = ([ ‘5) sV

(6 €1) o+ (fxA) A+ o+ Yo=2xq
pU’B
A 22 = ()¢t = (A)q
sny[,
()p+ (@) xT+ o+ Yo = Yxqg
Yfxq)xq+ 0+ o =
(@) +q+ (Yo +Y)o =
(H*A)+d+Y*go = % xq
drg+ Yo = el <4 (zern)
OS[V
(A)p+(f+A)*A+f o+ Yo = EfxHq
(f*xd)*q+ Yo+ o =
(V*d) «d+ (Yo —wf)o— =
(Y*q)*+q+ Y xgo— = Ufxq
Y xq+ o = e < (1en)
* Jooag
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and we have

0 = (E,Exf,)

= o, fi) + 6*(E, f) + (E,E % (Ex f)) + (E,c) by (139)

= (E,¢) by (13 10)

that 1s, c 1s orthogonal to E and

E«(Exc)=(E,E)c— (E,c)E = ¢c

Now 1if €, # —a? replace f by f = f + —<— then

aZte;

(139)=>Ex+f, = Exf

= afi+?f+Ex(Exf)+c

2

oz 5z a’c - c

= af1+af—a2+61+E*(E;kf)—E*(E*a2+Cl)+c
« . « 1

= afi +*f+E*(Exf) - ac €ec+c¢

a2+61_a2+61
= afi+?f+Ex*(Exf)

Thus we have now shown that if ¢; # —a? then we may assume ¢ = (0,0,0)7 Hence

after a translation orthogonal to E we may assume

fo=cafita’f+Ex(Exf)+c

= afi+?f+(E,E)f —(E,f)E+c

proving the lemma
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We shall now divide our analysis into four cases

L Ep=e

2 B == # o
3 B = o’

¢ B =0

for some € > 0

Lemma 13 2

If|E||? = € > 0 then we may assume
F(@,y) = e=*(U(y) cos(cz) + V(y) sin(ez) + = cos(ay + 1)E)

where (U(y), E) = (V(y),E) = 0

and 1f |E||? = —€2 < 0 where €2 # o? then after a translation in R*we may assume
f(@,y) = U(y)el=+9" + V(y)e==9 — Ze™ cos(ay + t)E

where (U(y),E) = (V(y),E) = 0
Proof :

In both cases we have using lemma 13 1 that

(133)=> fu = —fa
= —(afi+Ex*f)
~(2afi + (@® + &) f — (E, f)E)

therefore

fir +2afi + (&® + €)f = acos(ay + t)e > E (13 11)
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for a particular solution of (13 11) we try

and substituting this in, we get

AW (y)e™ — 20*W(y)e ™ + (® + &) W(y)e™** = ae™** cos(ay + t)E

= W(y) = %cos(ay +t)E

The homogenous equation
fut2afi+(@+ea)f=0
has characteristic equation
M 4+2ar+ (o’ +6)=0

which has roots

—2a + \/4042 —4(1)(a? + &)

—2a + +/—4¢

2
= —ax./—€q

So 1n the case when (E, E) = ¢ > 0 we have

f(z,y) = U(y)e™** cos(ex) + V(y)e *" sin(ezx) + (a particular solution )

and so

f(z,y) = (U(y) cos ex + V(y) sm ez + :—2cos(ay +t)E)e™*"
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Now take the innerproduct with E across this equation to give
(E, f) = ((U(y), E) cos(ez) + {V (y), E) sm(ez) + a cos(ay + 1))e™**
Note from lemma 1 (E, f) = ae™** cos(ay + t)
0 = (U(y), E) cos(ez) + (V(y), E) sin(ex)

= (U(y),E) = (V(y),E) = 0

proving the lemma when (E,E) >0 When (F, E) = ~€* < 0,¢® # o? we have
flz,y) = Uy)el=o+9" £ V(y)el=*79° + (a particular solution )
and so
J(@,5) = Ulg)e=97 + V(y)el =9 = Ze™* cos(ay + 1)E
again taking the innerproduct with E across this equation to give
(E, ) = (U(y), E)e*" 4 (V(y), E)el=*~9% 4 ae™*" cos(ay + 1)
again from lemma 1 (E, f) = ae™** cos(ay + t)
0 = (U), E)e-+9 4 (V(y), B)el--"

= (U(y),E) = (V(y),E) =

proving lemma 13 2
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Lemma 13.3

If |E||? = € > 0 then we may assume

2L cos ay
ri€

ar

f(z,y) =re” cos ay cosh ey sin(ez + r2) + sin ay sinh ey sin(ex — rs)

cos ay sinh ey sin(ez + ) + sin oy cosh ey sm(ex — r3)
where r, 79 € R
Proof :

We shall first use the fact that
acos(ay + t) = aj cos ay + azsin oy

for some a;,a; € R and hence

T

(E, f) = (a1 cosey + azsmey)e™
recall from Leinma 13 2 that
f(z,y) = e **(U(y) cos(ez) + V(y) sin(ex) + Eli(al cos ay + azsinay)E)
so that

fi = {cosex[-aU(y)+ €V (y)]+ simez [—-aV(y) — eU(y)]

o
—6—2(a1 cosay + azsmay)E }e "

fo= {U’(y) cosez + V'(y)siez + %(ag cos ay — ap sin ay)E} e

and
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fi1 = { cosex [a2U(y) — 2aeV(y) — 62U(y)]
+ sin €z [an(y) + 20eU(y) — eZV(y)]

a2

+—(a1cosay + azsmay)E e "
€

2

faz = {U”(y) cosez + V'(y)sinex — 3-(al cos ay + ag sin ay)E} e

€2
Therefore the fact that

U"(y) + (az _ 62)U(y) = 2a6V(y)
f11 + f22 =0=
V(y) +(o? = V() = ~2aeU(y)

which 1n turn 1mply

U(y) = e¥Y(cicosay+ czsimmoay)+ e Y(c;cosay + cgsmay)
V(y) = e¥(czcosay —crsmay) — e Y(cqcos ay — ¢y sin ay)
for some constant vectors ¢;, ¢z, cs,c4 € R® The fact that (fi, f;) = 0 implies
(c2,cq) = (c1,c3) = 0
<C3a CB) = (Cl7 cl)

(ca,¢4) = (c2,¢2)
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a?
(€2, c3) + (c1,cq) 2 + 62)(—Ohaz)
a2 a% -— af

(€3, ¢) + {3, ca)

We now recall the fact that

which implies

(c,E) =0, Vi=1,2,34

once these are satisfied we find all other conditions are automatically satisfied 1n-

cluding the fact that (fi, fi) = (f2, fz) So we have that

(c1,¢1) = (es,c3)  (c1,c3) =0

As (E,E) = ¢ > 0 from the preliminaries we know that E' 1s a plane with metric

(=1,1) and hence ||c,||?,» = 1,2,3,4 may be positive negative or zero Let us

assume ||¢;||* 1s positive, since (c3, E) = 0 and (c3,¢;) = 0 we must have that ||cs||?

1s negative, but (c1,¢1) = (cs,c3) hence this 1s a contradiction A similar argument

shows that ||c;||* cannot be negative Hence

(c1,¢1) = (c3,¢3) =0

as ¢ and ¢4 have similar conditions 1mposed we also have
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(c2,c2) = (ca,¢4) = 0 (13 13)

Thus

(c,E) =0, Vi=1,2,3,4

<CI> cl) = <C37 63) = <Cla C3) =0

(C2ac2> = (04,C4> = (02,04) =0
o

(c2,¢3) + (c1,¢q) = 6z(a—g_}_é—)(—chch)
o? as — a?

(c1,¢2) + (cs, ca) ( 9 )

?(a? + €?)

After a hyperbolic motion we may assume E = (¢,0,0)T and f,(0,0) = (s1,0,s2)7,
where 51,52 € R By switching to an associate we may also assume that a; = 0 and
hence £,(0,0) = (0,0, s)

As (¢,,E) =0 and (¢,,¢,) = 0 for each + = 1,2, 3,4, we have

a = (0,d1,]1d1)T C2 = (0,dg,]2d2)T
€3 = (O,dS,]3d3)T Cq4 = (0,d4,]4d4)T

where 3, = 1,1 = 1,2,3,4 Guven (c1,c3) = 0 and (cz,c4) = 0 we have 33 = j3
and j2 = 74 If 53 = 72 then f would be planar hence letting 3 = 7; we have

J=Nn=J3=—J2="—"1 Now (C2,C3> + (Cl,C4> =0 so

dyds + dydy =0
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and as £,(0,0) = (0,0, )T we also have
edy = ed; — ads — ady

hence either dy = —ds and d; = d; or ads = —ed; and edy = ady The second of

these conditions leads to f being planar Hence we now have

€1 = (07d1)]d1)T Cy = (O)dI, —]dl)T
G = (0)d37]d3)T C4 = (03 —'d37.7d3)T

and so
L cos aye™*®
((d1 cos ay cosh ey — d3 sin ay sinh ey) cos ex
flz,y) = +(d3 cos ay cosh ey + d; sin oy sinh ey) sin ex)e™*

7((d1 cos ay sinh ey — ds sin ay cosh ey) cos ex

+(d3 cos ay sinh €y + d; sin oy cosh ey) sin ez)e™**

Checking that f now satisfies the original differential equation results in y =1 With

these conditions imposed we find all other condtions are automatically satisfied

Letting r; = y/d? 4+ d3 and ry = arctan(%) we find these simplify to
g 1 3 d3

&L cos aye™**
€

f(z,y) = | rie=%(cos ay cosh ey sin(ezx + r3) + sin oy simh ey sm(ex — 7))

rie”*%(cos ay sinh ey sm(ez + r3) + sin oy cosh ey sin(ex — 7))

and hence the lemma 1s proved
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Lemma 13.4
If |E||?2 = —€® < 0,€® # o® then we may assume
r1 cos(—a + €)yel=*+97 4 ry cos(a + €)yel=27)"
f(:E, y) = —r s1n(—a + C)ye(_o"’")m — 7y sm(a + 6)ye(_°‘—5)$

—2Le™?% cos ay
€
where 11,73 € R
Proof -

From lemma 13 2 we have

2
fi1 = U(y)(—a + €)%e70+97 L V(y)(—a — €)o7 4 a—o%e“’” cos(ay + t)E
—€

2
fag = Uu(y)e(—a+e)a: + Vll(y)e(—a—E):c _ a;‘;e—aa: cos(ay + t)E

—€

Therefore
U"(y) + (—a+€)*Uy) = 0
fird fa=0=>{
V'(y) +(—a—€)?V(y) = 0

Hence

U(y) = wvicos(—a+€)y+ vpsin(—a+ €y (13 14)

V(y) = wvscos(a+ €)y + vasin(a + €)y (13 15)

for some vy, vy, v3, vy € R® Also with the aid of the fact that
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(Eyo)=0 1=1, ,4
We now have

flz,y) = (vicos(—a+ €)y+vysm(—a+ C)y)e(—a-}-e)z
+(’U3 COS(a + 6)y + vy sm(a + e)y)e(—o“f)x

—%e'” cos(ay + t)E
€

filz,y) = (—a+e€)(vicos(—a+ €)y+ vysm(—a+ e)y)e(~+9
+(—a - 6)('1)3 COS(a + €)y + v4 sm(a + e)y)e(_a‘e)x

a —Qaxr
+a—6;e cos(ay + t)E

fa(z,y) = (—a+ e)(—vysm(—a+ €)y + vy cos(—a + €)y)el~2+9=
+(a + C)(_'US sm(a + C)y + vy COS(a + e)y)e(—a—~e)r
a —Qzr
+a6—26 sin(ay + t)E

Using the fact that (fi, f1) = (f2, f2) ‘we have

(—a+(UY), UW) = (U(y), V) (13 16)
(a4 V), V) = (VE), V() (13 17)
(UW), V) - &) = (U(y), Vi) = ——cos2(ay+1) (1318)
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Substituting (13 14) and (13 15) nto (13 16), (13 17) and (13 18) and evaluating at

y = 0 results 1n

(c1,e1) = (c2, c2) (cs, 63>2= (c4,ca)
(Cl,C;;) + (CQ,C4> = 56-%02[—_62—)(03 — af)

and on substituting these back we find

<01,62> =0 <C3,C4> =0

012

2¢2(a? — €2) (2a,a2)

(c1,c4) — {c2, Ca)

After a hyperbolic motion we may assume E = (0,0, ¢)” and f,(0,0) = (0,71,79)%
Then after switching to an associate we may assume a; = 0 and hence f,(0,0) =
(0,7,0)T

As (¢, c1) = (e, ¢2),{c1,¢2) = 0 and (E,v,) = 0,2 = 1,2 we have

¢ = (rycosty,rysmty,0)F

ca = (—prismty,rcosty,0)T
similarly

c3 = (rycosty,rysinty, O)T

cs = (—J2d2sinty, Jars costy, 0)T

where 71,72,%1,t, € R and 3, = +1,2 = 1,2 Now (a1, ¢ca) = {(co,¢c3) 1mplying — (71 +
J2)sin(tl — t2) = 0 so that either 33 = —j5 or 31 = 72 and ¢; = t; + nw for some
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integer n The first of these result in f being planar hence

ci = (ricosty,rysinty, O)T

c; = (—prisinty, g costy, O)T

cs = (Jsrpcosty,jaresinty,0)”

ca = (~Jajresimnty, 37172 COS tl,O)T

where j3 = £1 As £,(0,0) = (0,7,0)7 we may assume t; = nx/2 where n 1s an
mteger Checking f satisfies the original differential equations result in 3y = ~1 By
replacing 7372 with r, we may assume j3 = 1 Finally replacing 7; with —r; and ro

with —r, if necessary we assume ¢, = 0 and hence

T1 COS(—a —+ 6)ye(_°'+‘)$ + 7y COS(a + 6)ye(—a—e)x
flz,y) =1 —r, sin(—a + e)ye(“a+f)ﬂC —rosm(a + 6)y6(—a—e)x

—Le~*" cos ay
€

the lemma 1s proved
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Lemma 13.5

If (E,E) = —a® we may assume

roe 2 cos(20y) — Iz

f(z,y) = | —rye7?"sm(20y) + 2Ly

— e cos(ay)

where ry, 79 € R

Proof :
Recall
(133)= fu = —fa
= —(afi+E=x*f,)
= —(2afi —(E, f)E +¢)
therefore

fi1+2afi = acos(ay + t)e™E — ¢ (13 19)

To find a homogenous solution we look at

f 11 = “QCYf 1
which may be written
f1 = —2af + A\
which 1in turn has solution
VvV
f — Ue—2ozx + —
2c

for a particular solution of (13 19) we try

P(z,y) = Wi(y)acos(ay + t)e **E + czW,
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and substituting this 1n, we find
W, =-1/a® and W,;=-1/(2a)

and hence

1 1
f(z,y) = U(y)e *** + —V(y) — —a; cos(ay +t)e *°E — 5o

2ae o o

Now take the innerproduct with E across this equation to give

Recalling fi1 + fa2 = 0 we have

11 = 40 U(y)e™?** — ae™*" cos(ay + 1)E

and
1
faz = U"(y)e 2" + E—V"(y) + ae™*® cos(ay + t)E
a
hence
Vll(y) — 0
U"(y) +40’U(y) = 0
and so

V(y) = v+,
U(y) = wvscos(2ay) + vssm(20y)

for some vy, vq,vs,v5 € R® Also with the aid of the fact that
(U(y),E) = (V(y), E) = 0

(U'(y),E)=(V'(y),E) =0

we get

(E,0)=0 1=1, ,4

Y
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Now a cos(ay + t) = ay cos ay + bsin ay for some a;,a; € R and we let vs = —c

1
f(z,y) = (vscos(2ay) + vgsin(2ay))e™>** + %(Usm + vy + vy)

1
‘556_01(01 cosay + azsmay)E
-2ax 1
fi(z,y) = —20(vs cos(20y) + vasin(2ay))e ™" + v
1
+&‘e—a$(—a1 sinay — a; cos ay)E
—2az 1
Fle,9) = ~20(vs cos(2ay) — vasim(Zay))e™ + v
a
1
‘*‘ae—ax(-—al sina + a; cos ay)E

after checking (fi, f2) = 0 we find

= <U4’v4>

= —a1a

2 _ 2
a; — ay

we also check (fi, fi) = (f2, f2) and so

(Us,Us) = (01,01)

hence

1
f(z,y) = (vscos(2ay) + vasm(2ay))e 2 + %(Usw + 01y + )
1

—Ee_”(al cos oy + azsinay)E
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and

(v3, v3) = (v4, Va) (vs,va) =0

(’Us,vs) = <U17Ul> (Us,’l)l) =0
a; — af

2

(vg,v5) — (v1,v3) = —ara;  (vs3,Vs) + (v1,v4) =

(E,v.) =0 Vi=1,2,3,4,5

After a hyperbolic motion we may assume E = (0,0,s)7 and £,(0,0) = (0,7s,0)7
for some s € R,y = £1, By switching to an associate we may also assume a; = 0
Now if f 1s a solution to the original differential equations then so 1s f + v where

v € R® and hence we may assume v, = (0,0,0)7 The conditions

(v3,v3) = (va,vg)  (v3,v4) =0
(vs,v5) = (vy,v1) (vs,v1) =0

(E,v,)=0 Vie=1,2,3,4,5

imply

vy = (ricosty,rysin t1,0)T
= (- ¢ t1,0)7
vs = (—nrisinty,jiry costy,0)
_ T
vsg = (rzcosty,rysintsy,0)
_ T
vy = (—jarysinty, Jore cos iy, 0)

where r1,79,%1,t2 € R and 31,7, = %1
The conditions (vs,vs) = (v1,vs) and (vs, vs) 4 (v1,v4) = 0 together 1mply 73 = —

and t; = t; + nmw/2 where n 1s an odd integer Hence we may assume

96



Chapter 13 Minimal Surfaces

vy = (rycosty,rysin tl,O)T

vs = (—prismnty,nr costl,O)T

vsg = (Jaresinty,j3rs cos iy, O)T

vg = (J3y17r2costy, —J3172 SIN tz,O)T

where 73 = 1 As we may assume the first coordinate of f1(0,0) 1s 0 we have
t, = £ /2 By replacing jsr2 with r, we may assume j3 =1 Checking that f now
satisfies the original differential equations results in 33 = 1 Finally replacing r

with —r; and ro with —r, 1f necessary we may assume ¢t = /2 and hence

roe72%% cos(2ay) — L
f(z,y) = | —rye7%®sin(2ay) + Ly

—%e™*% cos(ay)

proving the lemma
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Lemma 13 6
If ||E||? = 0 then after a translation n R*we may assume
a
f(z,y) = (U(y) + 2V (y) + 52" cos(ay + 1)E)e™™

where (V(y),E) =0 and (U(y), E) = acos(oy + t)

Proof :
fii = —fa
= —(afi+Ex*f,)
= —(2afi +*f - (E, /)E)
therefore

fir +2afy + o*f = acos(ay + t)e”*“E (13 20)
The homogenous equation

fu+2afi +a*f=0

has characteristic equation

/\2+2a/\+a2:0

which has a single root

Thus we have

flz,y) = (U(y) + 2V (y))e *® + (a particular solution)
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for a particular solution of (13 20) we try

and substituting 1n we get

2 2
W(y)(1 - 2az + a2% + 20z — o?z® + a2%)e_‘” = acos(ay + t)e **E

and simplifying we get
W (y) = acos(ay + t)E

Thus
F(z,y) = (U(y) + zV(y) + ng cos(ay + t)E)e™**

Now take the innerproduct with E across this equation to give
(B, /) = ((U(4), B) + 2(V(y), E) + 5 cos(ay + 1)(E, E})e™**
from lemma 1 (E, ) = ae™** cos(ay + )
acos(ay +1)e™*" = ((U(y), E) + 2(V(y), E))e ™™

= (U(y),E) = acos(ay +t) and (V(y),E) =0

proving the lemma
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Lemma 13.7

If |E||* = 0 then we may assume

1 1
[t 5+ (o ) = cosoy + 2y(a + ra)smay
1
2
f(x, y) — a__;r_l_e—az‘ :—(—y cos oy + (.’E + 7'2) sin ay)
1
-1 1
(S + o (24 r2)? v cosay + 2y(z + r2)smay
1

for some ry,ry € R
Proof :

We shall first use the fact that

acos(ay +t) = a; cos ay + ap s ay

for some a;,a; € R and hence

T

(E, f) = (a1 cosey + azsin ey)e™

Now
22
flz,y) = (U(y) + 2V (y) + E(al cos ay + azsimay)E)e™*®
and hence
2
H = (—aU+(1-az)V+(z— a—;—)(al cosay + azsinay)E)e
, , oz?
fa = (Uy)+2V'(y) — —2——(—a2 cos ay + ay sin ay)E)e™**
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and

2.2

fu = (U +(a*z —22)V + (—

—Qr

— 2az + 1)(a; cos ay + azsm ay)E)e

2,.2
a r —ar

faz = (U'(y) +2V'(y) - (ay cos ay + azsmay)E)e

Since f11 + fao = 0 we have
(U"(y) + o*U — 2aV) + (zV"(y) + o’2V) = (2az — 1)(a; cos ay + agsm ay)E

therefore

V'(y)+*V(y) = 20a(a;cosay + aysmay)E

U"(y) + *U(y) = 2aV(y) — (a1 cos ay + azsinay)E
implying

1
V(iy) = (a+ 2—a(a1(cos 2ay — 1) + az sin2ay)E) cos ay

1
+(c2 + %(az(l — cos 2ay) + a3 sin 2ay)E) sin oy

+y[—azcosay + a; smay] E
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1
Uly) = (e3+ é—(cl(cos 20y — 1)+ (2 + %E) sin 2ay)) cos oy
a
1 ag a9
+(cs + —(co + —E — (¢ + —E) cos 2ay + ¢; sin 2ay) sin oy
2 ot o
1
+y |(—c2 + -2—(a1 sin 2ay — az(1 + cos2ay))E) cos oy
a

1
+(e1 + 2——(—a1(1 + cos2ay) — azsin 2ay)E) sm ay
a

2
—%— [a1 cos ay + ag sin oy E

for some ¢, ¢y, c3,¢4 € R As

(E,U(y)) = ajcosey+ azsiney
(E,V(y)) =0

we see that

(E,e) =0 (E,cp) =0

(E,Cg) = a1 (E,C4) = a2

The condition (fi, fo) = 0 results in the following equalities

(c1,62) = —aqa;
(027 Cz) = (01,61) + af — a%
<cla C4> = _<c2> CS>
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1

<C2,C4> = <01,03> - E(a% + (Clacl>)
o0 = Lo
(cayca) = &3(01,61> - %(01,03) + (s, ¢3)

these also satisfy the condition (fi, f1) = (f2, f2) and so we have

1
flz,y) = (ea+ %(cl(cos 2ay — 1) + (c2 + %E) sin 2ay)) cos ay

1
+(ca+ —(c2 + g _ (c2 + %E) cos 2ay + ¢; sin 20y) sin ay
20 o o

1
+z [(cl + 2—(a1(cos 2ay — 1) + ag sin 2ay)E) cos ay
a

1
+(c2 + 2—((12(1 — cos 2ay) + a; sin 2ay)E) sin ay]
a

1
+y [(—~cz + 2—(a1 sin 2ay — az(1 + cos 2ay))E) cos ay
o

1
+(e1 + 2—(—a1(1 + cos 2ay) — az sin 2ay)E) sin ay]
a
2% — o2
{ (a; cosay + azsmay) + zy(—azcosay + a; sinay) }E | e

—Qx

for some constants a;,as € R and some constant vectors ¢;, ¢q, c3,cs € R® with the
1, 1y 5 L3y, 04

following conditions
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(Ba)=0  (Bcp) =0

(c1,¢2) = —ar0a9 (co,c2) = (ar,c1) + aj — aj

<E,C3> = a, <E,C4> = a2

(c1,¢4) = —(c2,€3) (cs,ca) = _;<02,C3)
(ernes) = (enres) = ~(a + (e, 1)
(caycq) = %(01,01) - 5(01,03) + (cs, c3)

After a hyperbolic motion we may assume the third component of f,(0,0) 1s zero
Then after a further hyperbolic motion we may also assume E = (r;,0,7;)7 for some
r € R Using (13 7) we have that the first component of f,(0,0) must also be zero

and hence we may assume
E=(r;,0,r1)" and £,0,0) = (0,5,0)"

for some 1,0 € R Now (f:(0,0), £,(0,0)) = 0 and so the second component of
fz(0,0) 15 zero Also from (13 8) we have (E, f,(0,0)) = —aa and hence

£2(0,0) = (¢,0,c + 227

T

for some ¢ € R Fmally (f-(0,0), f2(0,0)) = (£,(0,0), f,(0,0)) and hence ¢ =

T (—p? — “i;z) and so
1

2ca

b
5

ib aa b rmdb «aa

b)’ 0, _5(_ - T'_lb—))T

+ -
aa T aa

f2(0,0) = (-
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From above we know the value of (E, ¢,) for: = 1, ,4 and given E = (r;,0,r,)7 we

have

a = (di,dy,dy)T
c2 = (ds,dy,ds)T
cs = (ds+ay/r1,de,ds)T
cs = (d7+ag/ri,ds,dr)T

Since {c¢;,¢;) = 0 then dody =01e etherdy =0o0rdy =0 Also (cz,¢) = (c1,¢1) +
a? — a% hence d% = d% + a} Now if dy = 0 we would have to have a; = 0 making
f planar thus d, = 0 and dy = ja; where 3 = £1 Checking (c1, cs) + (c2,¢3) =0
leads to d3 = —jrids, where 3 = #1 and the condition (ci,cq) + i(cz,c;;) =0
imphes d7 = —r1/a1dgds Given (c2,c4) = {c1,c3) — i(af + (c1,¢1)) we have dy =
ayr1/a+dgyry Finally checking (cq, cs) +2/a(c1,c3) = {c3,¢3) +1/a?(c1, 1) results
in ds = r1/(2a1)(2a}/a® — d% + d3 + 2a,ds)/c — a}/r?) Now as
£(0,0) = (—5(22 4 220,222 227

we must have d¢ = 0 and since £,(0,0) = (0,5,0)” we also have dg = b/a Checking
that f satisfies the original differential equations imphes 3 =1 Thus on simplifying

we have
[rlf + % + (z 4+ 19)* — y*] cos ay + 2y(z + r2) sin ay
fle,y) = e ~(~ycosay + (¢ +r)smay)
(75 + 25+ (o + 70" =) cosay + (e + ra)smay
where ry = 1;:_2 and so the lemma 1s proved
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We now study the Minimal Surfaces when a = 0
The differential equations (9 20) and (9 22) in this case reduce to the form

f2 = Exf (13 21)

fiutf =0 (13 22)

We note that f = f + sE, s € R satisfies the differential equation once f does Now
(13 21) and (13 22) umply
(E, f2) = (B, fu) =0

and so

(E, f) = —c(z + d)

for some ¢,d € R

fzz = FEx (E * f)
= <EaE>f_ (E’f>E
= (B,B)f +c(s+d)F
and so
foa = |E|*f = c(z + d)E (13 23)

At this point we shall split the analysis into three cases
e (E,E)=0
e (E,E)<0

o (E,E)>0
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o (E,E)=0
foo = clz+d)E
fr = czy+dy)E+g(z) where gi(x) € R®
f= S@y+d")E+a(@)y+ale)  where g(x) € R°
h = %y2E+gi($)y+gé(w)
fu = g(z)y+g;(z)

== —f22 = —-C(:II + d)E
Hence g{(z) = 0 and g}(z) = —c(z + d)E, 1€
q1(z) = voz + v3

and

1 1
g2(z) = —c(gzr:3 + §dx2)E + vaz + v

resulting 1
f= g(_:ﬁ + 3zy? + 3dy® — 3dz?)E + vozy + v3y + vaz + Us
and so

Exf = Exvggy+ Exvay+ Exvyz + £ *xvg

= fa
= czyF + cdyF + vy + va
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giving
Exvy = cE
E % V3 = cdE
E % Vg = Vg
E * Vs = U3z

Now after a hyperbolic rotation and a stretching we may assume that £ = (r,0,r)7

and hence we have

vy = (s2,¢ sz)T

vs = (83,cd, 33)T

ve = (o0, s+ )"

vs = (ss, 8—3,55 + ﬁ1)T
T T

where s3, 53, 84,85 € R We may also assume f,(0,0) = (0,—b/,0)T and f,(0,0) =
((8%r% + 1)1/(2r),0, (b*r? — 1)l/(2r))7 for some b, € R and hence

c = -1
d = b
s3 = 0
s, = 0

sa = 1b/2(rb+1/(rb))

resulting 1n

3/ + (z +b)* —~ 3y? se +cd/(2r) + cd®r/6
[r
f(z,y) = g(x +b) —6/ry + 0
—3/r* + (z + b)? — 3y? se + cd/(2r) + cd®r /6

for some sg € R
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It 15 worth noting that (f, f,) = (fz, fz) and (fz, fy) = 0 for all z,y € R and so f

satisfies all the conditions for minimality

Recall that if f 1s a solution of the differential equations then so 1s f= f+sE hence

we may assume s¢ = —cd/(2r) — cd®r/6 and hence

, 3/r* + (z + b)* — 3y*
flz,y) = gr(:c +b) —6/ry (13 24)
=3/r% + (z + b)® — 3y?

This 1s Enneper’s surface of the second kind, which 1s a minimal spacelike surface

of revolution
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o (E,E)=¢*>10

Hence we need to solve

foo — E2f = c(z + d)E

Solution of Homogenous Equation
g1(z,y) = va(z) sinh ey + v3(z) cosh ey
for some vy(z),vs(z) € R® A particular solution 1s

C
9(2,9) = —5(z + d)E

e

Therefore the solution of this equation 1s

f = wva(z)smhey+ vs(z)coshey — ce™*(z + d)E
Exf = simheyE *vy(z) + cosh eyE * v3(z)

= fy
= evy(z)coshey + evs(z)sinh ey

hence evs(z) = E * vy(z) and evy(z) = E * vs(z)

~fas = —e’vy(z)smh ey — e*vs(z) cosh ey

fii = vy(z)smh ey + vy(z) cosh ey
hence

vo(z) = wv4cosez + vssinex

vs(z) = wvgcosez + vrsinex

where vy, vs, vg, v7 € R®
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Hence
f = (vgcosez + vssmez)smhey + (v cos ex + vrsmez) cosh ey — ce *(z + d)E

and

Exvy = evg
Exvs = evy
Exvg = evy
Exv, = evs

Now after a hyperbolic motion and a strecthing we may assume E = (0,¢,0)7 and

hence

vy = (s1,0, 32)T
vs = (s3,0, 34)T
ve = (—s2,0, —31)T
v = (—84,0, —33)T

and we may also assume f,(0,0) = (rcosb,0,0)T and f,(0,0) = (0,r,r smb)T re-

sulting in
s4=10 s =0
T T
8y =—-cosb s3=——smnb
e e
and ¢ = —Z¢, hence

sinh(—ey) cos(ex + tan b)
Foy) = atd)
cosh(—ey) cos(ez + tan b)
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and recalling that if f 1s a solution of the differential equation then so is f=f+sE

allows us assume d = tanb 1¢

sinh(—ey) cos(ezx + r2)
flz,y)=m e(x+ry) (13 25)
cosh(—ey) cos(ez + r3)

where ry = £ and r; = tanb This surface 1s the catenoid of the 2™ kind, which 1s

a minimal surface of revolution
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] (E,E) =—e2 <0

Hence we need to solve

faz+ef= c(z + d)

Solution of Homogenous Equation

q1(z,y) = vo(z) sin ey + vs(z) cos ey

Particular Solution

[
92(z,y) = (e +d)E

Therefore the solution of this equation 1s

f = wvy(z)smey+ vs(z)cosey + ce *(z +d)E
Exf = smeykE xvy(z) + coseyF * v3(z)
= fa

= evy(z) cos ey — evz(z)sin ey

hence evy(z) = E * v3(z) and —evs(z) = E * vy(z)

—fa2 = €*vy(z)smey + e’va(x) cos ey

fir = wvy(z)simey + vy(z)cosey

Hence

vo(z) = wvgsinhez + vscoshez

vs(z) = wvgsinhez + vrcoshex

for some vy, vs, vs, v7 € R®

113



Chapter 13 Minimal Surfaces

Recall evy(z) = E * v3(z) and —evs(z) = E * vy(z), hence

f = (vgsmh ez + vs cosh ex) sin ey + (ve sinh ez + v7 cosh ex) cos ey + ce™*(z + d)E

with
evs = FE xvg (13 26)
evs = FExvy; (13 27)
eve = —FExuy (13 28)
eV = —F * Vs (13 29)

Now after a hyperbolic motion we may assume E = (0,0, ¢) hence

Vg = S15 382, )

vs = (83,—84, )
v =

(
(

vs = (52,51,0)"
(

34, S3, )

we may also assume f(0,0) = (r coshb,0,—r)T and f,(0,0) = (0, —r sinh b,0)7 and

hence

sih(ez 4 b) cos ey
f(z,y) =r| —smh(ez +b)siney
—ex+d

finally recalling that if f 1s a solution of the differential equation thenso1s f = f+sE

lets us assume that d = —b and so
sinh(ez + b) cos y
f(z,y) = —r | —smh(ez +b)smy (13 30)
—(ex +b)

this surface 1s the catenoid of the 1% kind which 1s a mimimal surface of revolution
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Determination of Vx Y

Proof that given g(,) so that equations (A 1) and (A 2) (given below) hold for all
X, € Ty M and for all smooth vector fields Y, that Vx,Y 1s completely determined

Zg(X,Y) = g(VzX,Y) + g(X,VzY) (A1)
Vx,Y — Vv X = [X,Y], (A 2)
from (A 1)
Xg9(Y,2) = g(VxY,2)+g(Y,VxZ) (A3)
Y9(Z,X) = 9(VvZ,X)+9(Z,VvX) (A 4)
Z9(X,Y) = g(VzX,Y)+g(X,VzY) (A 5)
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If we examine (A 3) + (A 4) - (A 5) we see

Xg(sz)_I_Yg(ZaX)_Zg(XaY) = g(VXYaZ)+g(VXZ_VZX7Y)

+9(VyX,Z)+ g(VyZ — VY, X)

= 9(VxY,2) +4(X,2],Y)

+ g(VXY - [X, Y],Z) +g([Y, Z]7X)

= 29(VxY,2)+4([X, 2],Y)

- g([X,Y],Z) +g([Ya Z]’X)

Therefore

29(VxY,Z2) = Xg(Y,Z2)+Y9(Z,X)—Z9(X,Y)

+9(X,Y],2) - 9((X, 2],Y) - ([, 2], X) ~ (A6)

The right hand side of (A 6) 1n independent of V' Suppose Z;, Z; form orthonormal
basis for T, M then

VxY =g(VxY,21)Z + g(VxY, Z2) 2,
and the right hand side of this equation 1s determined from above

Using the Gauss-Weingarten equations we can arrive at the following results

1 g,(R(X,,Y,)Y,, X,) = —det(Ap) where R(X,Y)Z 1s the cuvature tensor, de-
fined by
R(X,Y)Z =VxVyZ —-VyVxZ —-VixvZ
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Appendix A Determination of Vx Y

2 (Vx,A)Y = (Vy,A)X called Codazz1’s equation
Proof*

For all smooth vector fields X,Y,Z we have,

Y(Z2f) = (f)(VrZ)—g(AY,Z)¢

X(Y(2f) = X((Vyv2)f] - [Xg(AY, 2)| - g(AY, 2)X¢

= (f)(VxVyZ)—g(AX,VyZ)¢
—[Xg(AY, Z)|¢ + g(AY, Z)(£.)(AX)

XY(Z2f) = (£)(VxVyZ+g(AY, Z)(AX))
—[9(AX, V¥ Z) + Xg(AY, Z2)¢ (A7)

YX(Z2f) = (f)(VyrVxZ +g(AX, Z)(AY))
—[9(AY,VxZ) + Yg(AX, Z)¢ (A 8)
(X, Y)(Z2f) = (£)(VenZ) — 9(AlX,Y], Z)¢ (A 9)
but XY —YX =[X, Y] thus (A7)-(A8)=(A9)or0=(AT7)-(A8)-(A9)1e

0 = (f)IVxVyZ—VyVxZ — VixnZ + g(AY, Z)(AX) — g(AX, Z)(AY)]
+[—g(AX,VyZ) — Xg(AY, Z)
+9(AY,VxZ) + Yg(AX, Z) + g(A[X, Y], Z))¢

Thus,

VxVyZ - VyVxZ — VixyZ = g(AX, Z)(AY) — g(AY, Z)(AX)
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Appendix A Determination of Vx YV

and
g(AX, VyZ)—g(AY,VxZ) + Xg(AY, Z)-Yg(AX,Z) — g(A[X,Y],Z2)=0

R(X,Y)Z =VxVyZ—-VyVxZ ~Vxy)Z, 1s called the curvature tensor So we
have

R(X,Y)Z = g(AX, Z)(AY) — g(AY, Z)(AX)

Suppose X,Y are smooth vector fields on M such that X,,, Y, form an orthonormal

basis for T, M with respect to g,(, ), then
g(B(X, Y)Y, X) = g([g(AX,Y)(AY) - g(AY,Y)(AX)], X)
= g(AX,Y)g(AY, X) — g(AY,Y)g(AX, X)
9(AX,X) g(AY,X)

= —det
g(AX,Y) g(AY)Y)

= —det(matrix representation of the linear map Ap)

= —detA,
From the normal component we have

0 = g(AX, VyZ) — g(VXY - VyX,Z) + g(VX(AY),Z)

+ g(AY,VxZ) — g(Vy AX, Z) — g(AX,Vy Z)

Therefore,

9(Vx(AY)—~A(VxY), Z) = g(Vy(AX)— A(Vy X), Z)for all smooth vector fields Z
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Appendix A

Determination of Vx ¥

and so,

Define,

then we have

Vx(AY) — A(VxY) = Vy(AX) — A(VyX)

(Vx,A)Y = Vy (AY)— A(Vy,Y)

(Vx,A)Y = (Vy, A)X
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Appendiz B

The Christoffel symbols

In the case when M has locally defined 1sothermal coordinates zy,z3 1 €

9(32, %) =0
Then
Fi1 = %fﬁm F%z = —%@a Piz = %¢’yv Fél = %d’y
F%1 = _%Qbya F%2 = %¢y7 F%z = %be, F%l = %¢z
Proof .
o ,0 0 é
5-y— (%) am) - ¢y€
o 0 4
QQ(V%E)E) = ¢ye
0 0 0
19 0 0. 94
29(I'3, oz + F2lay> (?:L’) Pye
21-‘;16(15 = q’)yeqS
F§1: ¢y
Similarly
0 0
22y = ?
g(ay,ay) e
0 .0 0
Y S R ]
Oz (ayaay) ¢$6
g 0
2 —, =) = ¢’
0 J0 0
1 0 20 Oy 4
2g(F126$ +F128y’8y) ¢:1:e
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Appendix B The Chrnistoffel symbols

or2,e? = bee?

1
Ffzzg‘ﬁx (BQ)
and
20
oz’ oy
9o .9 _,
vﬁay va%asc_
0 J 0 0
Fiza_x‘f’rfz@_réla_m“rag‘;:o
hence

Fiz = [%1 and Ffz = Fg1

and the others are proved by following a similar argument
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Appendiz C

Codazzi’s equation

To show that Codazzi’s equation

(Vx)Y = (Vy)X

1s equivalent to 1 being holomorphic where

Y ={(an — an) — ZZalz}e‘b

Proof :

Codazz1’s equation

(Vx)Y = (Vy)X

n local coordinates with X = % and Y = 53; 18

0 0 0 0
V%(Aa) A(Va—y) V%(Ag)—A(Va%%)
Recall [8%-,(%] =V816%—Vag% =0, thus
0 0
V%(Aa—y) = Va%(Aa_a:)
9, 0 0 0
V%(ama—m + a22(9_y) = Va%(an—é; + alza—y)
0 0 0 0
(a21)za_$ + alzv%a— (a22)x5§ + azzv%a—
0 0 3]
= (a11)y . +a11Vae 2 . B (alz)ya + alZV “a—
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Appendix C Codazz1’s equation

Hence as az; = a13 and V_a;ai =V é,i we have
8y T Y

g
dx

(o) = (e} 5+ {(am)e = (@)} 5

0 0 0
= am(V%gg ~Vaz)+(an- a22)(V§;'a_y)
0 0 0 0
= a{(I'3; — Fh)a—w + (I3, — F%)%} + (an - a22)(F125; + Ffz@)

equating %’s we have
(a11)e + (a12)y + a12(T3, — T3y) 4+ 2(any — H)T}, =0
and equating %’s we have
—(a12)s + (a11)y + a12(Ty; — Ty) + 2(a1y — H)T, =0

resulting in

(all)-'l? + (a‘ll - H)(bx + (a12)y + alZd)y = 0

and

(a11)y + (a1 — H)dy + (a12)z + a12¢, =0

multiplying by 2e® and rearranging we have
2(a11)-€? + (2a11 — 2H)pre? = —2(ay3)ye® — 2a15h,¢’

and

2(a11)ye"'S + (2a5; — 2H)¢ye"S = —2(a12)$e¢ — 2a12¢],e¢’

Now 2(a11)s = (2a1; — 2H),; = (a11 — a22), and similarly 2(ay1)y, = (ain — ag)y,
hence

(Gn - (122)16¢ + ((111 — a22)¢ze¢ = —2(012)y8¢ - 2012¢ye¢
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Appendix C Codazz1’s equation

and

(a1 — az2)y€® + (a13 — ag)dye? = 2(a12),€%2a129,€*

or sumlarily
[(a11 — a22)€?]; = [—2a12¢?),
and

[(a11 — az)e’]y = [2a12¢%],

letting

¢ ¢

u(z,y) = (a11 — ax)e® and v(z,y) = —2aie

1t 1s obvious that these are simply the Cauchy Riemann Equations for the function

Y ={(a11 —azn) — 21&12}6¢

It 1s clear that if we start with the assumption that ¥ 1s holomorphic then we can

get back to Codazzi’s eqation by reversing the order of these steps
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Appendix D
The Gauss Curvature

From the preliminaries we have

. _RXY)Y.X)
g(X,X)g(Y,Y) - g(X,Y)2

and lettng X = £ and Y = % we have

R( o = 9 _ 9 _ 9
dz’ 0y’ Oy V&V dy VEVE Jy Vig ] Jy
0 d 9,
= V2 {Fna 23 } Ve {F128 +Ff28—y}
_$:0 50 ¢xﬁ
= Vel teg VY {zax 2 By

8z ay
w0 @ ,5_ by 0 b= O
[28x+2 a_uaac_*_26y+2 6y8y]
0 ¢ 0 0
= —(¢oz + Pyy) T(V%a_ﬁv%a_y)

1 0
5 (et b) 5
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Appendix D The Gauss Curvature

thus

g(_%(¢zz + ¢yy)36_xa aa_z)

K = ete? — 0
R R 0 0
N 26 A¢g(ax’8m
= _%e—qu
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Appendiz E

Immersion into hyperbolic 2-sphere

A =52
In this case we find that f(M) 1s conformally a piece of the hyperbolic 2-sphere S?
Proof -

It 15 easy to see that when A 1s just a sphere, the shape operator A is simply a
multiple of of the identity I Hence

A=)

for some function A = A(z,y) Codazz1’s equation mmplies that the function A 1s just

a constant and infact

A=-1

r

where r 1s the radius of the sphere Recall

X¢ = f.(AX)
letting X = % we have
€$ = fz
similarly with X = a% we have
& =Jy

thus
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Appendix E Immersion into hyperbolic 2-sphere

for some ¢ € R® Hence

f=EC+c

1e f(M) 1s a piece of the hyperbolic 2-sphere S?
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Appendiz F

A differential equation

To examine solutions of the differential equations

f'(z) =2 f(z) (F1)

where ¢ € R and 1nitial conditions

1 fzg) =r? and f'(zo) =cr?

u f(zo) = —r? and f'(zo) = —cr?

Results :

(F 1) with imitial conditions 1 gives the solution

f(x):C(d—CL'), d:$0+—

cr?

which 1s defined on the semi-infinite line (—o0, d) or (d, 00) depending on whether ¢

1s positive of negative repectively

(F 1) with mmtial conditions 11 gives the solution

-1 1
d=z0+ —

:c(d—w)’ cr?

which 1s defined on the semi-infinite line (—oo,d) or (d,o0) again depending on

whether ¢ 1s positive of negative repectively
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Appendix F

A differential equation

Proof of (F 1) with mitial conditions 1

(F1) = 2f'(z)f"(2)

f/(xo)Z

fl(x)2

= 4 f(2)f'(=)

(f* ()Y

i (z) + e
Efi(zo)+ea = =0
[ef*())®

+cf*(z)

tef*(zo) = £ =+
cf*(z)

¢ [ da

c(z — d)

-1
c(z — d)

1
— 2 — el
c(:co—d)—r :>d_x0+cr2

and (F 1) with initial conditions n 1s proved mn a similar manner
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Appendix F A differential equation

Examples of Minimal Surfaces

Theorem 1 5, equation 1 withr; = 1,7, =0and [ =6

This 1s the surface of Enneper of the second kind, which 1s a munimal spacelike

surface of revolution

Theorem 1 5, equation 2 with ry = 1,7, =0 and e =1

This 1s the catenoid of the fust kind, which 1s a minimal surface of revolution
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Appendix F A differential equation

Theorem 1 5, equation 3 with r; = —1,79 =0 and € = ~1

This 1s the catenoid of the first kind, which 1s a minimal surface of revolution

Theorem 1 5, equation 6 with r; =2,ry =4, = —2 and e = —1

1
2
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