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Rem ark

I wish to thank the external examiner Prof D Simms for making following sug­

gestions which lead to simplification and unification in the presentation of chapter 

two

As given on page 9, embedd IR3in £ 3 vis

f IR3 ->• C3 x =

{ \  
X \

X2

V * 3 /

/  \
X\

X2 

\ lX* )

then

1 (,)i =  ( ^ W )

2 a;* x =  i{x * y ) \  where x is the usual crossproduct and * is defined as on 

page 7

3 f leads to the embedding of GL(3, IR) ^  GL(3, £) by the commutative diagram

IR3 • IR3

C3 - ^ C3

l e L^x^ = (L x y  So if all linear maps are represented relative to the basis

1 0 0

e i  = 0 , e 2 1 ) e 3 = 0

0 0 1

(both m IR3and (L3) then m matrix notation



4 SO(2,1) is then replaced by 5(9(2,1)* C 50(3 , £)

5 If we now identify IR3, S 0 ( 2,1) etc with their embedded images, i e write x 

to mean A  to mean A T etc then the adjoint of A  is just A * So the Lie 

algebra condition for S O (2,1) m ¿>0(3, £) is just

A  +  A t = 0 

from which lemma 2 4 follows immediately

as given on page 9

m
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A bstract

The purpose of this thesis is to give a characterization of all spacelike constant 

mean curvature surfaces which have continuous internal symmetry m Minkowski 

three space The properties that these surfaces must satisfy leads to a system of 

partial differential equations and every solution of this system results m a desired 

surface Further examination of this system leads to a differential relation that the 

metric must satisfy The behaviour of the solution to this relation is investigated to 

determine if the resulting surface is complete



In troduction

Chapter 1

In 1841 Delaunay [2] charterized constant mean curvature surfaces of revolution (in 

Euclidean three space) as those whose profile curve is the roulette of a conic

T h eo rem  1.1 Delaunay

A curve 7 m the x-y plane generates a surface of constant mean curvature when 

rotated about the x — axis if and only if  7 is a piece of the roulette of a conic 1 e the 

locus of the focus of a conic m this plane as it is rolled along the x —axis

These surfaces admit a one parameter group of internal isometries This was gener­

alized by Smyth m [6] and the result was

T h eo rem  1 2 Smyth

For each integer m  >  0 there exists a one-parmeter family of conformal immersions

fm t  —> IR3

with constant mean curvature 1, such that the induced metric is complete and in­

variant by the group of rotations about 0 Moreover 0 is an umbilic of index —m/2, 

only powers of the rotation through 2n/(m-\-2) about 0 extend to motions of IR3 and 

the associates of f m are given by (f m)e = f m 0 e~l8 Conversly any complete surface 

of constant mean curvature 1 admitting a one parameter group of isometries is, to 

within associates, congruent either to such an f m or to a Delaunay surface

In this classification it is assumed that M  is simply connected and it is shown that 

(M,g) is conformally equivalent to the region m (L a < Re(z) < b where a and 

b are constant ( either finite or infinite ) and the metric g =  e^\dz\2 is invariant 

by translations m the ¡¡/-directions An alternative characterization to Smyth’s was 

given by Burns and Clancy [1] whose result is as follows



Theorerriil.3 Burns and Clancy
!

I f  M  = {z £ C a < Rez < b} and if g = X2(dx2 +  dy2), then f  (M, g) —> IR3 is 

an isometric immersion of constant mean curvature H if and only if f  satisfies the 

following system of p d e ’s

fxx =  - a f x -  (E -  a H f ) x f y + 2H f x x f y

v %y = - a f y + (E -  a H f )  x f x

f y y  =  Otfx + (E -  a H f )  X f y

with initial conditions

\\fx(xo,x0)\\ = \\fy(xo,x0)\\ = A(x0) and ( fx(x0,y o )J y(xo,yo)) = 0

where x denotes the usual cross product m  IR3,«  is an arbitary (non-negative) real 

constant and E is an arbitary constant vector in IR3

In this thesis we follow the arguments set out by Burns and Clancy to find a classifi­

cation of spacelike constant mean curvature surfaces with continuous internal sym­

metry m Minkowski three space We note that Minkowski three space is just IR3 with

the scalar product,(, }i, between two vectors x = (x1,x 2,x 3)T and y =  {yi1y2 -,y^)T

being defined as

(x, y)i =  Xlyi +  x 2y2 -  x3y3

Chapter 1_____________________________________________________________________________________ Introduction
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Chapter 1 Introduction

The mam theorems are as follows

T h eo rem  1.4

Let M  = {C| xi < Rez  < x2} where x i , x 2 are constants (either finite or infinite)

and g = e ^ x\ d x 2 +  dy2) Then every immersion f  (M ,g ) —> (IR3,( ,) i )  which
| 3 

satisfies either conditions 1 or 2 given below represents a spacelike surface m  IR
i

with constant mean curvature H  ^  0 and the maps (x iU) (x -,y +  t) form a

one-parameter group of internal symmetries Conversely every spacelike surface m 

IR3 with continuous internal symmetry and constant mean curvature H  ^ 0 arises 

m this way j
i

1 fxy =  fy + H f * ' f x

fyy = - f x  + H f * f y

fxx + fyy = 2 H f x * f y '

2

where E G IR2

fy =  E * /

fy =  E * £

fxx +  ftyy 2 Hf X * fy

Some work has been covered with regard to the completeness of these surfaces but 

only partial results were found These can be seen m chapter 12
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Chapter 1 Introduction

Theorem  1 5

Every Spacehke Minimal Surface (i e spacehke surface of constant mean curvature
\

equal to zero) with continuous internal symmetry in Minkowski three space is, up to 

a hyperbolic motion, one of the following

1

f ( x , y )  =  -g-(z + r2)
 ̂ 3/rl + (x + r2)2 -  3y2  ̂

- 6 / r y  

~ 3 /ri +  ix +  ^ ) 2 _  3y2

(1 1)

where l, r\, r 2 € 

2

where ri, r 2 £ IR

3

^ smh(—ey) cos(ex +  r2) ^

/(x ,y )  =  ri (■{x + r2) j 

cosh(—ey) cos(ex +  r 2)

 ̂ smh(ex +  r 2) cos y ^

/ ( z , y )  =  ~ ri — sinh(ex +  r 2) sin y 

- (e x  +  r 2) i

(12)

(1 3 )

where n , r 2 €

4



Chapter 1 Introduction

r  i e cos ay.

f ( x , y )  =  ne"

where a l5 r ly r2 G IR 

5

where a x, r i, r2 G IR 

6

cos ay cosh ey sm(ex +  r2) +  smiay smh ey sm(ex — r2) 

cos a y  smh ey sin(ex +  r2) +  smjay cosh t y  sm(ea; — r2)

 ̂ [“7 +  “ 7 +  (^ +  r2)2 -  y2] cos ay +  2y(x  +  r2) sin a y
r{ cr

- i  i 
\  rf a;

(—y cos a y  +  (x +  r 2) sin ay)

—f  +  (x +  r2)2 -  y2] cos a y  +  2y(x  +  r2) sin a y~'T

 ̂ ri cos(—a  -f c)ye( a+c)x -f r 2 cos^(a +  e)ye( “ ^

where a x, r l5 r2 G IR 

7

-ri sm (—a  +  e)ye^ a+e);i; — r2 s in (a  +  e)ye^ a

î_e ax cog

f ( x , y )  =

r2e cos(2ay) - 2a„ 

_ r 2e-2ax sin (2ay) -fj ^¿y

V — ̂ -e ax cos(ay'

where a i, r ly r 2 G IR

/
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Chapter 2

T he Lie G roup S O (2 ,l)

We begin with some preliminary remarks on indefinite scalar product spaces (see, 

for example Nomizu [5])

T h e o rem  2.1

Suppose that (, )i is a bilinear form on a real vector space V  of dimension n Then 

there exists a basis {u i,u 2, ,u n} o /V  such that

1 (ii„u3)i =  0 f o r i  ±  j

2 (ut, ut)i =  1 for  1 < i < p

3 (it,, ut)i — —1 for p +  1 < i <  r

4 (ut,u t)i = 0 for r +  1 < i < n

The numbers r and p are determined solely by the bilinear form, r is called the 

rank, r — p is called the index, and the ordered pair (p, r —p) is called the signature 

The theorem shows that any two spaces of the same dimension with bilinear forms 

of the same signature are isometrically isomorphic By a scalar product we mean 

a nondegenerate bilinear form, l e , a form with rank equal to the dimension of V 

We let U1 denote the orthogonal complement of a subspace U with respect to the 

given scalar product

T h eo rem  2.2

Suppose that (, )x is a scalar product on a finite dimensional real vector space V  and

suppose that U is a subspace of V , then

1 (UX)1 =  U and dimC/ + d im i/1 =  dimV

2 The form  (,)! is nondegenerate on U iff it is nondegenerate on UL and when

it is nondegenerate on U, then V  =  U © U1 ( the direct sum of U and Ux)

6



Chapter 2 The Lie Group SO(2,l)

3 I f  V  is the orthogonal direct sum of two subspaces U and W , then the form  

is nondegenerate on U and W , and W  =  UL

Let (, )i be the indefinite scalar product on 1R" defined by

(x, y)i = xiyi +  x 2y2 +  +  £n_iyn- i  -  xnyn,

where x = (xl , x 2, , xn)T £ IR" and y =  (yi, y2, ,yn)T € IRn We call this space

Minkowski n-space and the scalar product (, )i shall be called the Minkowski metric 

A vector x is said to be spacehke, timelike, or lightlike depending on whether (x,x) i  

is positive, negitive or zero, respectively In Minkowski n-space the set of all hghtlike 

vectors, given by the equation

2 , 2 ,  i 2 2x^ x 2 x n_i — xn,

forms a cone of revolution, called the light cone Timelike vectors are “inside the 

cone” and spacehke vectors are “outside the cone”

If x is a non-zero vector, let x1 denote the orthogonal complement of x with respect 

to the Minkowski metric If x is timelike, then the metric restricts to a positive 

definite form on x1 , and x x intersects the light cone only at the origin If x is 

spacehke, then the metric has signature (n — 1,1) on x1 , and x L intersects the cone 

m a cone of one dimension less If x is hghtlike, then x1 is tangent to the cone along 

the line through the origin determined by x The metric has signature (n, — 1,0) on 

this n — 1-dimensional plane

Now, for all x, y € IR3 we define

/  \
X3Ï/2 -  x 2y3

x m ~  x3yx

x m ~  x 2yx

7



Chapter 2 The Lie Group SO(2,l)

Rem ark

x * y is just the usual cross product x x y with the first two components negated 

It can easily be verified that the following conditons hold

• x * y — —y * x

• x * ( y  + z) = x * y  + x * z

• ( x - \ - y ) *z  = x * z - \ - y * z

• For every r G IR, rx * y =  (r x ) * y =  x * (ry)

• x * (y * z) + y * (z * x) + z * (x * y) = 0

So that (IR3, *) is a Lie Algebra with bracket product

x i y] = x * y

As usual for all x G IR3 we define adx  G £nd(IR3), the endomorphisms of IR3, by

(adx)y = [x,y]

Then the matrix representation of adx  relative to the standard basis for IR3 is

adx  =

0 x3 - x 2

—x3 0 xi

—x 2 Xi 0

Orthogonal Groups

D efinition :

0(2,1) =  {linear©  IR3 ->• IR3 | (Qx,Qy)i  =  ( x , y)1 Vx , yGl R3 }

SO(2,1) =  connected component to the identity of 0(2 ,1)

= { 0  G 0(2 ,1) | det© =  1 and sign(e3, ©e3)i =  —1 }



Chapter 2 The Lie Group SO(2,l)

These are Lie Groups in the usual way The Lie Algebra of S 0 ( 2,1) is given by

S O (2,1) =  {3 x 3 matrices A  | eA £ SO (2 ,1)},

where eA is the usual exponential of the matrix A  To obtain a more explicit 

description of S O (2,1) observe that A £ SO {2,1)

=4> (etAx ,e tAy)i = (x , y) i V :r,yelR 3 , i e R

i t i=0

(Ax, y) ,  +  (x,Ay)!  = 0 (21)

That is, A  is skew-symmetric relative to (, )i Thus, it is clear that A  being skew- 

symmetric is a necessary and sufficient conditon for A £ SO {2,1)

For any x  =  ( x i ,x 2:x3)t  £ IR3, define x* =  ( x i ,x 2, ix 3)T £ C3 where i =  \ f —i  and 

t  denotes transpose, then

{x, y )i =  x xyi +  x 2y2 -  x3y3 = (x f j  y f

For

define

then

A =

f
a n « 1 2

\
« 1 3

« 2 1 « 2 2 « 2 3

 ̂ « 3 1 « 3 2 © CO CO

/
« 1 1 « 1 2 - * « 1 3

a 21 « 2 2 * « 2 3

v * « 3 1 * « 3 2 « 3 3

A t X * ==  ( A

9



Chapter 2 The Lie Group SO(2,l)

and
,T\ t

M  = ( K )

At this stage it is worth alerting the reader to the remark made on page 11

Lem m a 2 3

I f  A is a 3 x 3  matrix and x ,y  G IR3 ,then

{Ax,y) i  = (a;,(Att) T y)!

P roof :

(xt)T ( ^ f) T yf =  (x+)T (Af) yf

, T\t
= f ( Att) ) yf = (x+)T ( ( Att) y

( x ,  (Aft)Ty)i

Lem m a 2.4

S O (2 ,1) is the set of all 3 x 3 real matrices A of the /<orm

A =

1 n \U a3 - a 2

—a3 0 a*

—a2 ai 0

10



Chapter 2 The Lie Group SO(2,l)

P roof .

Using Lemma 2 3 and (2 1) we see that if A 6 S O (2 ,1) then

A  =  - ( A ft)T 

\/
« 1 1 « 1 2 « 1 3

« 2 1 « 2 2 « 2 3

« 3 1 « 3 2 « 3 3

— «11 _ct21 

—  a  12 — «22

« 1 3  « 2 3

« 3 1

« 3 2

" « 3 3

and hence we have that

and

Thus if A € £ 0 (2 ,1 )

« 1 1  —  « 2 2  —  « 3 3  —  0

« 2 1  —  — « 1 2 ,  « 3 1  —  « 1 3 ;  « 3 2  —  « 2 3

 ̂ 0 a3 , — a2

A = —a3 0 ai

—«2 a i 0

for some a =

/

/  \
«i

«2

V «3 /

e r

which is the matrix representation of ad a, for some a relative to the standard basis 

for IR3 Thus ad [R3 -> SO {2,1) x ad x is a Lie Algebra isomorphism We note 

that

((adn)x,y)i =  - ( x , ( adn) y )  i

and
( x*y, z ) i  =  ( ~ y * x , z ) i  = ( - ( a d y ) x , z ) 1

= (x, (ady) z )1 = ( x , y * z ) 1

11



R em ark

Both x and y are orthogonal to x * y, because

( x * y , y ) i  = ( x , y * y ) 1 = 0  

and similarly (x *y , x ) i  = 0

L em m a 2.5

For x , y , z  G IR3 x * (y * z) = (x , y)^_z -  (x, z)iy

P ro o f  :

If y and z are linearly dependent then the result is trivial as both sides are zero We 

now fix y and z and assume they are linearly independent The vector x * (y * z) is

orthogonal to y * z and therefore lies m the plane spanned by y and z, accordingly,

x * (y * z) = a yz(x)y + ¡3yz(x)z  (2 2)

for some a yz(x),Pyz(x) € R  Also the map IR3 —y IR3 x —> x * (y * z) is linear, 

hence the maps

IR3 —y R  x —y c>!yX(x)

IR3 —> R  x —y Pyz(x)

are linear, so there exists an A,B E fR3, which depend on y and z but not x, such 

that

a yzix ) =  (A,x) i  and (3yz{x) -  ( B , x ) l

and so

x * (y * z) — (A, x )iy + (B,  x )iz Vx 6 IR3 (2 3)

Chapter 2 ________________________________________________________________________ The Lie Group SO(2,l)

12
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Chapter 2 The Lie Group SQ(2,1)

Setting x =  y * z m (2 3) , we obtain

0 = (y * z) * (y * z) = (A, y  * z )xy +  ( B , y *  z)xz

Hence (A, y * z )i =  ( B, y  * z)i = 0  and we can write

A = a\y +  a2z

B  = h y  + b2z

for some a,,6, € R , 1 <  i < 2 which may depend on y and £ Substitution into 

(2 3) gives

x * ( y * z )  = {axy +  a2z, x )iy +  {bxy +  b2z, x) i z  (2 4)

and it follows that

0 =  (x * (y * z ), x )i =  (aiy +  a 2z, x)i(y,  x)i  +  (&iy +  622, x)i(z,  x ) x

(2 5)

now choose xLy ,  x JLz m (2 5), where J_ means “orthogonal to”, then 

(bxy +  b2z, x)i =  0 62(^, a:)! = 0 =* b2 =  0

choose x y , , m (2 5), then

(aiy -f a2z, s )i =  0 =>• ai(y, x)x =  0 => ax = 0

0 = (a2 +  bi)(z ,x) i (y, x) i  V x <E IR3 (2 6)

if we now choose an x  which is _L to neither y nor z m (2 6), we obtain

0 =  (a2 +  6i) => 6i =  — a2 

13



Chapter 2 The Lie Group SO(2,l)

and substituting this result into (2 4) we obtian

x * (y * z) ~  a2[(z,x)ly -  (y,x)iz\  V x G IR3 (2 7)

Now let x — z and substitute this into (2 7)

z * { y * z )  = a2[\\z\\2y -  {y,z)!z\

( y , z * ( y * z ) )  i =  a2[||,z||2||y||2 - < y , , ) 2]

( ( y * z ) , ( y * z ) )  i =  - a 2[{y ,z ) \ - \ \z \ \2\\y\\2] 

finally, expanding componentwise we see

({y * z), (y * z))i  =  ||(y * z ) II2 =  (y, z)\ -  ||2||2||y ||2 (2 8)

hence a2 =  — 1 and (2 7) gives the required result 

L em m a 2.6

I f  the spacelike vectors x ,y  G IR3 satisfy

(x,y)i  = 0 and (x, x )x =  (y, y)j =  , for some cf) G (R

and if  we define £ G IR3 by

t  \
xzy2 -  x 2y3

x m ~  x3y\

xi y2 -  x 2yi

14



Chapter 2 The Lie Group SO(2,l)

then the following statements hold

1 {£ ,0 i =  - i

2 the matrix A  =  e~^!2x

3 £ * x — —y and £ * y = x 

P ro o f  •

f] € 0(2,1)

1

(£,Qi = e 24>{ x * y , x * y )i

=  e

-e~20e M

2 Since

A =  e " ^ 2
El yi e0/26

X2 y2 e^26

X3 ya e0/26

we have

( » * ) 5
a-^/2

Xl

yi

- e 0/26

X2

V2

- e */26

by (2 8)

\
~®3

- y z

15



Chapter 2 The Lie Group SO(2,l)

and hence

t Xi x2 — «3

(A tt)T A = — <be * y\ y2 —s/3

K - e 0/2£i - e * /%  t ^ 2i

/ X! Vl X

X2 V2 e ^ 2̂ 2 

x3 2/3 e*/2f3

For any u, v G IR3

(Au, Av) i =  (u, (Aft) Av) i =  (u, v)x 

and hence A  £ 0(2,1)

Note det(A) = - e~^(x  * y, £)i =  - (£ , £)x =  1

Furthermore

(Ae3,Ae 3)1 =  (e3,e 3)i =  —1 , 

so that the ^-com ponent of Ae3 cannot be zero Hence (e3, Ae3)i ^  0 Now

sign(e3,A e3)l = si£n((e3, f) i )  =  sz£n(-£3) =  -s ign(£3)

Thus A is m the connected component of the identity (or equivalently A G 

SO(2,1)) providing £3 > 0 Therefore either

-d>/2 -612e r / x e r / y £ * y G 50(2 ,1)

16



Chapter 2 The Lie Group SO(2,l)

or

e ^ 2y  e ^ 2x  y  * x € 5 0 ( 2 ,1 )

£ * x  =  e ^{x  * y)  * x

= —e ^ x  * (x  * y)

=  - e  *((x,x)!y -  { x , y ) i x )

=  — e '*(e*y)  ( a s ( x , y ) i  =  0)

Similarly,

- y

£ * y  = e ^{x  * y)  * y

= —e y  * (x  * y)

— —e ~0((y,z)iy -  { y , y ) i x )

= —e ■*(-e*x) (as(x ,y)i =  0)

=  x

L em m a 2 7

Lei 0 (t )  £ 5 0 (2 ,1 )  f o r  all t  £ IR Then

0 ( 0 tf)T =  ad 77(f)

where 77( f )  £  IR3 fo r  all t  £  IR

17



Chapter 2 The Lie Group SO(2,l)

P roof .

We need to show that

'{ 0 ( 0 tt)T}tt) T =  - 0 ( 0 ft)5 

We first note that for all 3 X 3 matrices X , Y  we have

p e r ) 1 =  x W

and

so that

( X Tf  =  ( X " ) T

{0(0ft)T}tf|r = [0tt((0tt)T)tt 

= [ © ^ ( ( 0 ^ ) t ] t

=  [0++©^]^

=  0 (0 ^

As 0  € 50 (2 ,1 ) we have by lemma 2 3 that 0 ( 0 ^ ) T =  I  

0(©tt)T =  o i e

0 (0 tt)T  =  _ 0 (0 tt)T

Hence

{0(e")T},t)r = -0(ett)T

and the lemma is proved

so that 0 ( 0 t t ) T +

18



Chapter 3

T he G auss-W eingarten  equations in  

M inkowski space

As we are isometrically mapping a two dimensional manifold into Minkowski three 

space as opposed to Euclidean three space we find that there are some subtle changes 

m the preliminary stages

Let M  denote a simply connected oriented 2 dimensional manifold and let /  M —> 

IR3 be a space-like immersion, that is for all p E M  and X p £ TPM , fcer(/*)p =  {0} 

and (f*)pX  is space-like (where subscript * means the derivative) Thus /  induces a 

Riemannian metric g on M, the pull back g = (/)*((, )i), of the scalar product (, )i 

m Minkowski three space, that is g(X,  Y ) =  (f * X , f*Y)  Hence M  is a Riemannian 

manifold and /  (M, g ) (IR3, (,)i) is an isometric immersion We note that g is

positive definite since /  is spacelike

There exists local coordinates (x , y) on M  called isothermal coordinates which satisfy 

the conditions

, d d .  . d  d  .  ̂ . , d  d  .
9 i d i ' d - x ) = g i ^ ' T y ) > 0  a" d

W ith isothermal coordinates (x, y) defined in some neighbourhood of p € M  we may 

write g =  e ^ x'y\ d x 2 +  dy2) for some positive function e^ For each p £ M  there is 

a local mapping £ M  —y IR3, defined by

£(p) =  ^ m f x{p) * fy{p)

that satisfies the following equations

<A,i>i =  (A ,i) i  =  o
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C hapter 3______________________________________________________ T h e G auss-W eingarten eq u ation s m M inkow ski space

det[fxJ y,(] > 0

and

<e,e>i — i

where f x , f y represent the partial derivative of /  with respect to x and y respectively 

As defined £ is called the gauss map

For all smooth vector fields Y  on M  and X p £ TPM  we define 

V XpF  £ TPM  and IIP(XP, Y)  £ IR3 by

Xp(Yf)  =  ( / . ) p ( V * , n  +  n p( X „  Y ) £  (3 1)

Suppose X and Y are smooth vector fields on M  then

X , ( Y f )  =  ( f ' ) , ( V XrY) +  IIr(Xr, Y)t  

Yr( X f )  =  ( f . ) , (VY, X )  +  n , ( Y „ X ) i

and subtracting we find 

M X ,  Y] =  (X rY  -  Y„X)f  =  -  V YrX)  +  (IIp(Xr, Y) -  Ur(Yr , X))Z

thus
V x rY - V y rX  =  [X,Y]P 

II„<X,„ Y j =  IIr( Y „ X )

Accordingly we obtain a symmetric bilinear form IIP TPM  x TPM  —> R  ( Xp, Yp) —> 

IIP(XP, Yp) where IIP(X P,YP) =  IIP( XP, Y)  for all smooth vector fields Y  with value 

at p / / p( , ) is called the second fundamental form on M  at p
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Chapter 3 The Gauss-Weingarten equations in Minkowski space

Locally we have £ satisfying the following

( i.O i =  - i

M i . i h  = o 

2 P W ,f) i  =  0

thus X p(  is orthogonal to £ implying X p£ is tangent to f ( M)  at f (p) ,so

£*{X) = X p£ = (f*)p(ApX p) for some APX P e TPM  (3 2)

Note £* and /* are linear maps and therefore Ap TpM  —»■ TPM  X  —> APX  is also 

linear We note the absence of the minus sign as is usual m the case of immersions 

into Euclidean space

For all smooth vector fields Y  on M  we have

0 = (Yf,  Oi 

0 = Xp( Yf , 0 i

=  wmoi + ov.-’fpoi
=  ( ( / . ) , ( V x / )  +  II,(Xr,Yr)t,Z) l +  (Ypf , ( f , ) p(ArX r))l 

=  IIP(XP, ¥„)[(, Oi  +  ( ( / . ) „ Y ^ U . U A M ) ,

— IIp(Xp)Yp) gp(Yp, ApXp)

Thus we have

IIp(Xp, Yp) =  gp(Yp, ApXp)
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but / /p( , ) is symmetric and bilinear thus gp( A X , Y)  = gP(X,  AY)  showing that A  is 

symmetric with respect to g Therefore from (3 1) we have

X , ( Y f )  = i f . U V X ' Y )  + g r(Yr, A rX r)t. (3 3) 

(3 3) and (3 2) are called the Gauss-Wemgarten equations 

R em ark :

In addition to

V XrY - V y rX  =  [X,Y)r (3 4)

it is easy to check that V satisfies

1 ^aXp+pYpZ = aS/xpZ-\-j3WYpZ Va,(3e  R , X p,Yp e T pM,  and Z a smooth 

vector field

2 V Xp( Yf )  =  (Xpf ) Y  +  f ( p ) V XpY  VXP e TPM, f  M  R f, and Y a 

smooth vector field

3 V *p(y  + Z) — V x pY  +  V x pZ VXP £ TPM, and Y,Z smooth vector fields 

as well as

% ( x ,y )  =  ff( v z^ , y ) + i ( x , v z y )  (3 5 )

Therefore V is the unique Levi-Civita connection determined by the Riemanman 

metric g

Chapter 3_______________________________________________ The Gauss-Weingarten equations in Minkowski space
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C hapter 3______________________________________________________ T h e G auss-W eingarten  eq u ation s in M inkow ski space

Using the Gauss-Weingarten equations we establish the following results, the proof 

which can be seen m Appendix A

1 gp(R(Xp, Yp)Yp, X p) =  — det(Ap) where R ( X , Y ) Z  is the curvature tensor, 

defined as

R(X,  Y ) Z  =  V ^V yZ  — V yV ^Z  —

Note the minus sign ( le  -  det A)  which does not appear when mapping into 

Euclidean space

2 (V*pA )y  =  (VypA ) X  called Codazzi’s equation where

(V *A )F  =  V X ( A Y ) - A V XY

There exists functions T* defined near p 6 M  so that V,a £ TVM  can be*■* r (a^>Pdxj p

expressed as

That is the T^’s are just the components of relative to the coordinates

( f ir )  ’ (ibr) ôr TPM  These T^’s are called the Christoffel symbols

In the case when M  has locally defined isothermal coordinates x i , x 2 i e

9 ( fe r .f e )  =  9 ( f e . f e )  =  ^ (‘ ”)

Then

^ 1 1  —  2 ^ ’ ^ 2 2  — 2 —  2 ^y i  ^ 2 1  —  2 ^ 2/

r?! =  - & »  r i 2 = | 0 y, r f2 =  §&, r 221 =  i * x

P ro o f  : see Appendix B
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Chapter 4

Isom etric  deform ations and th e  drehriss

Let M  be defined as m the chapter 3 and let f  be a one parameter group of isometric 

immersions mapping M  into IR3 Then for each t , we may assume that f  induces

the same Riemanman metric g on M, 1 e g =  (/*)*((, )x) is independent of t Hence

for each t, /* (M,g*) —> (IR3, (, )i) is an isometric immersion

We now follow the approach of Burns and Clancy [1] with the appropriate changes 

Fix a p € M  and consider the moving frame

K  = [ f tx { p ) J ty(p),¥(p)\  

along the curve t i->- / ‘(p) € IR3 where

?(p) =  e_0/x(p) * fy(p)

For each t, /* is an isometric immersion so there exists 0* 6 ¿>0(2,1), depending 

smoothly on t such that =  0* and, therefore, taking the f-derivative with 

( =  d/d t) , (0*)T denoting the transpose of 0* and (0*)^ as defined m the prelimi­

naries we have using lemma 2 7 that

ill =  = ©* [((©'),t)r ©‘ ] n°

= le; ((e;)")T] n; = (ad,<(P)) svp

for some uniquely determined f7*(p)€ IR3 So for each “time” t we obtain a map

M  —> IR3 py-± rf(p) 

called the drehriss of the deformation f  at time t
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Ch ap ter  4______________________________________________________________  Isom etric  deform ations and th e  drehriss

Now if we express the formula Çlp— (adrf(p)) m component form we obtain the

fundamental equations

f l i p )  =  rfip) * f l ip )

f y { p ) =  r f i p )  * f l i p )  (4 1)

£*Cp) =  v*{p)*?(p)

Furthermore, since f xy= f yx it follows from equations (4 1) that

T]x * f y  TJy * f x

and consequently

i ' H y i C ) 1 =  ( V y i  f x  * f y ) l  =  { V y * f x i  f y ) l

=  ( V x * f y i  f y ) l  =  0

Thus, with a similar argument applied to {r)x ,£)\,  we obtain

( V x , 0 i  =  (»7»» O i  =  0 (4 2 )

Proposition 4.1

I f  J  is the complex structure on M  which is compatible with the metric g and the 

orientation, then

V* =  ~f* o J o  A

Proof:

If we put ( x ^ x 2) =  (x , y ) , f i  = f x, f 2 — f y and we use the summation convention,

25



Chapter 4 Isometric deformations and the drehnss

then at p we have
P  =  8£.7 dt dx3

=

dt 3 dx1

-  ^  + a> f i

On the other hand, using equations (4 1) we have

= h ( n H )

=  V i  *  f  +  V *  &

=  - f  * V3 +  V * a)f t

= - Z * r h + a )  / ,

Comparing these two expressions for £ we obtain

( * 1 ,  = - M A  £ j )

and, hence

£ *  (£*»7j) =  - i  * / * ( A  )

Recall from the preliminaries that £ * f x =  —f y and £ * f y — f x and so

f * (f *fy) = f*(J A |^ j )

since /  is an isometric immersion preserving the orientation It now follows from
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Chapter 4 Isometric deformations and the drehnss

lemma 2 5 that
r\

( £ , 0 =  f*(J  A q^ )  

so using equation (4 2) and the fact that {£,£)i =  —1 we obtain

’’• t o i J .  J =  1.2

which proves the proposition
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D eform ations P reserv in g  M ean  

C urvature

In this section we list some of the results found by Burns and Clancy [1] and include 

them for completeness only Suppose that f 1 M  —> IR3 is an isometric deformation 

which (as t varies) preserves mean curvature at p £ M  The eigenvalues Ax(p) < 

A2(p) of Al the second fundamental form, are just the roots of the equation

A2 -  2H(p)\  -  K(p) = 0

where H(p) =  (1/2)TrA* is the mean curvature of /* at p and K(p)  is the gauss 

curvature at p These eigenvalues are independent of t and therefore, when p is not 

an umbilic (i e Ai(p) ^  A2(p)), there exists a unique 0(p, t) £ [0,27r) such that

where J is as described m proposition 4 1 Also, when p is an umbilic we can choose 

Q(p,t)  arbitrarily Furthermore, since is symmetric and J  is skew-symmetric 

with respect to g

(A* -  HI ) P = e2@M J(A° -  HI ) P (5 1)

Proposition  5 1

Let f °  M  —¥ (IR3, (, ) i )  be an isometric immersion having constant mean curvature 

H I f  f x (M,g)  —> IR3 is an isometric deformation of f °  which preserves this 

constant mean curvature, then there exists a smooth function t i-> 0 ( i) ; depending 

on t only, such that

(At -  HI ) P =  e ^ J(A° -  H I ) P

Chapter 5
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C h a p te r  5 D e fo rm a tio n s  P re se rv in g  M e an  C u rv a tu re

for every p 6 M  and the drehriss for this deformation is given by

where E* € R3 does not depend on p

P r o o f  :

Given that each immersion f 1 is of constant mean curvature H,  1 e T r A t =  2H  

for all t and g =  e ^ x'y\ d x 2 +  dy2), we may write A1 in terms of local isothermal 

coordinates (x,y) on M  as follows

A 1 =
t \In al2

^ a12 a22 )

It can now be shown that Codazzi’s equation for A 1 is equivalent to the Cauchy- 

Riemann equations for the complex function

+  *y) =  ((ai i  -  a22Ì ~ 2zaÌ2)e0

This was first observed by H Hopf and a proof can be seen m Appendix C We note 

that the umbilics of the immersion /* ( which are the zeros of ^,i) are isolated Note, 

we rule out the case 'Pi =  0 since this corresponds to the immersed surface being a 

portion of the standard hyperbolic sphere m IR3 Therefore, the function Q(p, t) m 

equation (5 1) is a smooth function defined for all p £ M  except for these isolated 

umbilics If we fix t and recall that V J  =  0, then by applying Codazzi’s equation 

to both sides of equation (5 1) we find that since

(V a_e20(p,i)'7(A° -  H I)p) ^ -  = (V a e2&̂ J{A° -  H I )p) | -
Oy y dx

we must have
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Chapter 5 Deformations Preserving Mean Curvature

and so

d_
dy

V jl  (e2@̂ J{A° -  ~  e2QM J(A° -  H I ) PV

V a ( e2&(p,t)J(A0 -  H I ) P̂ - ]  -  e2@M J(A° -  H I) pV jl ~
dy \  ' Hd x )  Sy d x

implying

2JQ xe2&W J(A° -  +  e20(p’i)JV |_(A° -  H I) P̂  =

2JQ ye2@M J(A° -  H I )P +  e2@M JV£_(A° -  H I )P

Hence 0 X =  0^ =  0 1 e 0  is independent of p Accordingly, the first statement

follows if we put — 20(p, t ) For the second statement we take the ¿-derivative

(with p fixed) across the equation

(A* -  H I)P = e ^ J(A° -  H I )P

to obtain

Al=iP{t) J e ^ J{A° -  H I )p =^( t)  J(A* -  H I)P 

and from proposition 4 1 we have

7* =  —/* o J  A = - f *  o J(tj) J ( A -  HI))

= </>/*o ( A - H I )  =  </>(/*o A - H f m)

from which the second statement follows

30



T he m anifold

Chapter 6

Throughout this section we will assume that the simply-connected Riemann Surface 

M  with metric g admits a 1-parameter group of isometries

A one parameter group of isometries of M  is a family M —> M\i £ fR} of

mappings with the following three properties

a {<!>* M  —>■ M\t  £ fR} is a group under composition 1 e

o =  $ i+s for all s, t £ IR and 4>0 =

b For all p £ M  the mapping 1 1->- is difFerentiable

c For all t £ IR, M —> M is an isometry

The umformization theorem states that every simply connected Riemann surface is 

conformally equivalent to just one of

1 The Riemann Sphere S 2

n The Complex Plane C 

in The Open Unit Disk U

hence there exists a conformal diffeomorphism F  A —> M  where A =  S 2, C , or U, 

each equipped with its standard metric

Let g =  F*(g) be the metric induced on A by F  Then F  (A ,g) —> (M,g)  is 

isometric The one parameter group M  —>■ M\t  £ IR} of isometries of M

induces a one parameter group {ij)t A —> A\t  £ IR} of isometries of A Hence we 

let A equal S 2, C and U and investigate all one parameter groups of isometries
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Chapter 6 The manifold

If A = S 2 then /  immerses M  into a piece of the hyperbolic 2-sphere, a proof of this 

is found m Appendix E If A ^  S 2 then we may assume (see smyth [6] for example) 

that after a conformal change m the model, the group '¡/’t is one °f the following

(al) all rotations about a fixed point of U ( the origin 0, say )

(a2) all automorphisms of U fixing one boundary point (z = 1 , say)

(a3) all automorphisms of U fixing two boundary points (z = ±1 , say)

(bl) all translations m a fixed direction of C ( the y-axis, say)

(b2) all rotations about a fixed point of C ( the origin 0,say )

Now under the covering map 2; —>■ ez, the regions m (al) and (b2) correspond 

to the half-plane Re(z) < 0 and C , respectively, and the group of translations 

parallel to the y-axis If we transform the disk U into the half plane Re(z) < 0 so 

that 1 is transformed to 00 then the group in (a2) must transform into the group 

of translations parallel to the y-axis If we transform the disk U into the strip

a < Re(z ) < 6  so that ±1 are transformed to y = ±00 then the group m (a3) must

transform into the group of translations parallel to the y-axis

Let V  = {z  € C |cr < Re(z) < r}  Then for each of the regions 7Z occurmg m the 

cases above there is a conformal mapping ir V  —> 71 such that pulls back under 

7T to the group of vertical translations of V
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The relevant information for the five cases is as follows

(al) (a, t )  =  (—00,1), 1  is a covering map onto D — {0} and 7r{x =  —00} =  0 

(a2) (<7, r )  =  (—oo,l), n is a diffeomorphism

(a3) (<t, t ) = (a,b), ix is a diffeomorphism and a,b are any fixed constants of

our choosing 

(bl) (<r, r)  =  (—00, 00), 7T is a diffeomorphism

(b2) (cr, r)  =  (—00, 00), 7r is a covering map onto C — {0} and ir{x =  —00} =  0

The quantities arising on V  from the induced immersion /  o n  are denoted by the 

same letters as before Thus g — e^\dz\2, the function </> depends only on x and we 

assume M  = {z  G C \a < Re(z) < r} with the group of vertical translations of 

M
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C M C -Surfaces w ith  Internal S ym m etry

Chapter 7

Throughout this section we will assume that M  is a simply-connected surface with 

Riemanman metric g which admits a 1-parameter group of isometries

We wish to classify all isometric immersions

f  ( M . i O - K I t U ) ! )

which have constant mean curvature To this end observe that the 1-parameter 

family of immersions

f  ( M , g ) ^ \ R3 p t + f W i p ) )

is an isometric deformation of /  — /°  which preserves the constant mean curvature 

H  Now, since we may assume that conformally

(M, g) =  ( {(x, y) £ R 2 a < x < 6} for some a, b £ R , e ^ x\ d x 2 +  oiy2) ) 

and the isometry ^ ( x ,  y) — (x, y +  t) for all i therefore for all x, y and t we have

=  f ° ( x , y  +  t )

C ( x , y )  =  t ? ( x , y  +  t )

A*(x,y) = A°(x,y + t)

In particular, A t(x, 0) =  A°(x,t)  V(a:,f) and combining this with proposition 5 1 

we obtain

(A0 -  H I ) (Xti) =  (A* -  #/)(*,„) =  e^(t)J(A° -  F / ) (x,0)
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Chapter 7 CMC-Surfaces with Internal Symmetry

If we replace t by y, then

(A0 -  H I ) m  = -  H I ) {X,0)

and applying Codazzi’s equation we find

ip(y) =  —ay +  ¡3 for some constants a , ¡3 Ç R

Thus, ^  (t) = —a  and, from proposition 5 1, we see that the drehriss of this defor­

mation is

rfix,  y) =  -<*£*(3, y) + (E* +  a H f t (x, y))

For later use we also observe that /3 =  ■¡/»(O) =  27rn for some integer n, which we 

may choose to be zero Therefore, the constant a  is uniquely determined by the 

condition

(A0 -  H I \ X,V) = e~ayJ(A° -  H I ) {xfi) (7 1)

Now, from the identity /*(æ, y) =  /°(æ, y +  t) it follows that

f  ix , y)  =  f t i x i V  +  i)

t
f i  ( z , y )  =  f n ( x , y  +  t)

t
i / 2 (x ,y) =  f°2(x iy + t)

£ ( ^ y )  = $(®>y +  *)

where the subscripts 1 and 2 denote partial derivatives with respect to the first and 

second variables, respectively
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From now on we set t = 0 and drop the superscript “0” from all functions so that 

using the fundamental equations (4 1) we obtain

fxy(x,y) = f x (x,y) = v (x ,y )*  f x{x,y)

fyy{.x i y) =  f y (x,y)  =  n(*,y )*  f y(x,y)

$v(x,y) = £ (x ,y )  = r}(x ,y)*((x ,y)

where r](x,y) =  —a£(x,y)  +  (E +  a H f ( x ,y ) )  for some constant vector E £ IR3 

Therefore,

fxy =  * fx + {E +  a H f )  * f x

fyy =  ~ a (  * fy + (E +  a H f ) * f y

£y = (E + a H f ) * t  (72)

However, the coordinate system (x, y) is isothermal and £ was defined so that ( * f x =

—f y and £ * f y = fx Therefore, we obtain the equations

fxy =  otfy +  (E +  a H f )  * f x (7 3)

fyy = - a / z  +  (E + a H f ) *  f y (7 4)

When a  /  0 one obtains from the integrability conditions, f xyy =  f yyx and f xy =  f yx, 

the additional equation

fxx + fyy = 2 H fx * f y (7 5)

furthermore when a ^ O  and H ^  0 equations (7 3), (7 4) and (7 5) can be reduced
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Chapter 7 CMC-Surfaces with Internal Symmetry

to

\

f x y  = afy + a H f  *  f x  (7 6)

f y y  = ~ a f x  +  a H  f  *  f y  (7 7)

f x x  + f y y  = 2H f x  *  f y  (7 8)

by replacing /(x ,y )  with f ( x , y ) — ^ E ,  i e a simple translation and we note for 

future reference that (7 2) simplifies to

ev =  a f f / * f  (79)

Hence the above transformation allows us to assume that E =  (0 ,0 ,0)T m the 

original equations The differential equations (7 6),(7 7) and (7 8) can be further 

simplified by replacing f ( x ,  y) by H f ( x , y) to give

f x y  = a f y  + a f  * f x  (7 10)

f m  =  ~ a f x  +  a f * f y  (7 11)

f x x  + f y y  = 2f x  * f y  (7 12)

i e we may further assume that H  = 1
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When a  =  0 equations (7 3), (7 4) and (7 5)reduce to the form

f x y =  E  * f x

fyy =  E  *  f y

Cy =  e * £

We now determine a necessary and sufficient condition m terms of isothermal co­

ordinates (x,y) for a spacehke immersion /  into Minkowski three space to be of

constant mean curvature H  As

( /„ /„ )  1 =  < / „ / , ) .>  o (713)

(/„ /„ > i =  0 (714)

we conclude from (7 13) that

( f x x , f x ) l  =  ( f x y , f y ) l  (715)

and by (7 14)

( f x y ,  f y ) l  + ( f x ,  f y y ) l  = 0 (7 16)

Using (7 15) and (7 16) we see that

{ f x x  +  f y y i f x )  1 = 0  (7 17)

and similarly one can show that

( f x x  +  f y y i f y )  1 = 0  (7 18)

implying that f x x  +  f yy  — t?(x,y)£ for some function i?(x,y)
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Now

{ f x x  "i" f y y i £ )  1 { f y y i £ ) l

=  ((fx ,Qi)x —  i f x , ( x ) l  +  ( ( / y ,  O l ) y  —  (fyi£y) l 

=  —  ( / d  « l l / i  +  « 1 2 / y ) l  “  ( / y ,  « 2 1  f x  +  a 2 2 f y ) l

= - 2  He4,

and since ($(x, y)£, £)x =  —i?(a:,j/) we have that

f x x  +  f y y  =  2 H f x *  f y

That is the mtegrability condition (7 5) (in isothermal coordinates) is a necessary 

and sufficient condition for the immersion to be of constant mean curvature and so 

it holds whether a  =  0 or not
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T he A ssocia tes

W ith the notation of the previous sections, let /  (M,g)  —» IR3 be an isometric

immersion of constant mean curvature H  If A 0 denotes the second fundamental 

form of / ,  then, by definition the associates of /  are the isometric immersions m the 

1-parameter family f 1 (M ,g ) —» IR3 which have their second fundamental forms A f 

determined by

(A* -  H I )P = etJ(A° -  H I )P V p G M  (8 1)

These immersions have the same constant mean curvature as /  If we begin with one 

of the immersions /  as determined by m chapter 7, that is, the constants if, e ^ x° \ a  

and E are specified, then the question arises how should these parameters be varied 

to obtain the associates of / ? At once we see that H  remains constant and so also 

does A(x0) since it determines the metric g at (xo,yo) which is the same for all 

associates Now, let a(t) and E 4 denote the remaining parameters which correspond 

to the associate /* From the previous section, see equation (7 1), a(t)  is uniquely 

determined by the following

e°(tW(A t _ H I ) {xfl) = (,A * - H I ) (Xty)

= etJ(A° -  H I ) [x,y]

= etJea(°)yJ(A0 -  H I ) {xfi]

= ea^ y JetJ{AQ -  H I \ Xt0)

=  ea^ y J(At -  H I ) (xfi)

Therefore, ea^ yJ =  ea^ yJ and a(t) = a(0) +  2mr where n is some integer

Chapter 8
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Remark.

If as m the previous section ips(x,y) = (x ,y  +  5 ) s E IR denotes the 1-parameter 

group of internal isometries, then /  o ips has second fundamental form easJ(A° — 

H I)  +  H I  while the associate /* has second fundamental form etJ(A° — H I)  +  H I  

Therefore up to a Hyperbolic motion we have

/ '  =  /  O V>,/ “  V Q  0

That is when a ^ O ,  the associates no longer generate “new surfaces” but rather 

(up to a Hyperbolic motion) correspond to the flow of the internal symmetry along

/
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T he second fundam ental form

Chapter 9

L em m a 9 1

When a = 0 we have

(E, f ) i  = ciy + c2x + c3 + H  j  e^dx 

for some Ci,C2,C3 £ R and the second fundamental form, A, satisfies

A - H I  = e
( \  c2 c 1

ci - c 2

P ro o f

(9 1)

When a  =  0w e have that every constant mean curvature surface which has contin­

uous internal symmetry satisfies the following differential equations

(9 2) 

(9 3) 

(9 4) 

(9 5)

and hence

which implies

fxy =  E * f x

fyy = E *fy

ty =  E * £

f x x  f y y =  2 H f x  * f y

( E ,  f x y )  1 =  { E ,  f y y )  1 =  0

(E J y )  1 =  Cl
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Hence

but

and so

{ E , f x x ) l  —  ( E ,  f x x ) l  +  ( E ,  f y y )

=  2 H { E , f x * f y ) i  

= 2 H ( E * f x,fy)l

=  2 H ( f x y J y ) 1

= l) ,

=  H{e*)x 

= ( H e %

( E J x)i = He<t’ + c2{y)

( E ,  f x y )  1 =  0

( E ,  f x ) i  =  H e ^  +  C2 

E H

e ^ E  *  ( f x  *  f y )

e - + { ( E J x ) i f y -

e-*((He* +  c2)/j 

( H  +  c 2 e ~ * ) f y  -

d _

d y

/* [A
d_'
dy,

a 2 l f x  +  «22 f y  —

The second fundamental form

( E J y h f x )  

I Clfx) 

c i e ^ f x
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Chapter 9 The second fundamental form

and hence

a22 — H -\- C2 C

a21 =  — c\e

(9 6) 

(9 7)

we recall that = a2i and an  +  a22 =  2H  and so

A = H I  + e
{ \

C2 Cl

y  c i  — ° 2  )

(9 8)

this completes the proof Following the approach of Burns and Clancy [1] we also 

have the following lemma

L em m a 9.2

When a  ^  0

(E H   , / )  i — a cos (ay +  t)eax +  H  J ê <

for some a E [R and the second fundamental form, A, satisfies

Ix

A - H I  = aae~^+olx
^ cos(m/ +  t ) sin(m/ + t) ^

sin(cn/ +  t) — cos(m/ +  t )

P roof.

We have

(E + =  ((E +  Q/ f / , / „ ) 1)I = « E + ^ £ , / ) 1) „  (99)
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Chapter 9 The second fundamental form

(E +  a f f / , / „ ) ,  =  ((E +  a i / / ,  /„>!>„ - o f f (/„ ,/„ ) ,

= ( ( E + ^ | £ , / ) , ) „ - a H e *  (9 10)

(E -f a H f , f xx)i = ((E + c H f , f I )1) , - a H ( f I , f z )I

= ((E + ^ L , f )l)I I - a H e *  (9 11)

Using (9 9) we have

(<E + ^ Y ~ , f h ) , y  = (E + a H f , f Xy)l

=  (E + a H f , a f a + (E + c H / ) * /„ > ,  by (7 3)

= «(E  +  ot.Hf, f y)i 

= a « E  +  ^ , / } i ) „

(9 12)

so that

« E  +  ^ | i , / ) . ) 9 =  r(y )e“* (9 13)

for some function T(y) Differentiating both sides of this equation by y we have that

r"(»)e“  =  (<E +  ^ | i , / ) 1)m

= ((E + ocHf, f yy)i +  ocHe<t>)y by (9 10)

= ((E +  a H f ,  fyy)l)y

= {{E + a H f , - f xx + 2He*t)1)y by (7 5)
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Chapter 9 The second fundamental form

=  - ( ( E  +  a H f ,  / „ ¡ i l ,  + 2H e*({E  +  a H f , {)ij ,

=  - « E  +  » / / / ,  f xi}i>„ +  ( /„, ( ) ,  + (E + a H f , Q i )

= - ( ( E  +  o / f / , / « ) , ) ,  by (7 2)

=  _ ((E  +  2 | i ,

= - (r (ÿ )e “ ) „  by (9 13)

=  - r f o J a V 1

Hence we have

T"(y)  = - a 1 r(y)

r(y) =  - ö ö  sm(ay +  t ) for some a, t 6 IR

((E + - ~ - , f ) i ) y =  - o a  sm(cn/+  f)ea:E

(E =  a cos(ay +  i)eaa; + x (x)



Chapter 9 The second fundamental form

Also

x \ x )  + aacos(ay + t)eax =  ((E +  f )i )x

= (E + a H f , f x}1

= {E + a H f 1- - f yv + - ( E  + a H f ) * f y)1 by (7 4) 
a a

=  (E +  a H f ,  fyy)l
a

= by (9 10)a I

=  (—aa2 cos (ay -f t)eax — aHe^)
a

X'OO =  He*

(EH i = a cos(a y t)eCtX + H  J  e^dx

proving the first part
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Chapter 9 The second fundamental form

Now

f , ( A § ~ )  = +  a H f )  * ( f ,  » f , )

/ . ( « 2 + =  e -* ((E  + a H f ,  / , ) , / „  - ( E  +  a H f ,  f ^ f , )

d f  , d f  - b n IT? , a H f  x\ w  / / p  , a H f  n  \  -f \
021 ÔX 22 ô ÿ  _  6 ------ ^— 5 / ) l ) ^ / y  —  ( ( E  -( ^

0 .2 1 f x  +  «22 f y  =  e ^ ( a a  cos(m / +  ¿)eaæ +  H e * ) f y +  a a  sin (ay  +  t ) e ax f x)

Hence

a i 2 — 0-21 =  a a e  *+ax sm (a y  +  t)

a 2 2 =  H  +  a a e  *+ax cos ( a y  +  t  )

an  = 2 H — a 2 2 =  H — a a e  ^+ax cos ( a y  +  t )

A  -  H I  = a a e
 ̂ — c o s ( a y  +  t )  sin ( a y  +  t )   ̂

sm (o!y  +  t ) c o s ( a y  +  t )

Thus proving the lem m a
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Chapter 9 The second fundamental form

L em m a 9 3

For every a  £ IR we may assume without loss of generality that the second funda­

mental form A may be written as

A = H I -  ce~^+c
— cos ay  sin ay 

sin ay  cos ay
(9 14)

where c G IR, c > 0

P ro o f

We recall when a  /  0 that the associates, /#, of the immersion /  do not generate 

new surfaces and that the corresponding second fundamental form Ag is given by

A e = eej(A -  HI)  + H I

When a ^ O w e  then have

A d — H I  =  aae ~4>-{-cxx — cos (ay + t — 6) sm(at/ + t — 6) 

sm(ay + t — 6) cos (ay +  t — 6)

By choosing 6 = t o r 9  = t + iri i  necessary we have

/
Ae = H I -  ce~*+0

\— cos ay  sm ay  

^ sin ay cos ay J

where c =  \aa\ > 0

(9 15)

(9 16)

When a  =  0 we have

A e - H I  -  e"
/ c2 cos 9 — ci sin 6 c2 cos 0 +  ci sm 8 

c2 cos6 +  ci sm 9 — c2 cos6 -f ci sin#
(9 17)
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Chapter 9 The second fundamental form

Choosing 9 =  tan *(—̂ -) or 9 — tan 1(—̂ -) + 7r we may assume cx — 0 and c2 > 0

giving

A g = H I -  ce~* | 1 ° | (9 18)
0 1

where c =  c2 Hence we may assume

/
A = H I -  ce~*+a x (9 19)

— cos ay  sin ay 

 ̂ sin ay  cos ay

for every a  E IR where c > 0 This completes the proof of lemma 9 3

L e m m a  9 .4  v

When a  =  0 we may assume without loss of generality that the set of differential 

equations (9 2), (9 3), (9 4) and (9 5) reduce to three

which simplify to

fy =  E  * /  (9 20)

Çy = E * £  (921)

fzz + fyy = 2 H fx * f y (9 22)

P ro o f '

By (9 2) and (9 3) we have

fry = E * f x (9 23)

fyy =  E * fy (9 24)

fy = E * /  +  v

for some v £ IR3 Using lemma 9 1 and lemma 9 3 we may assume ( E , f y)i — 0
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Chapter 9 The second fundamental form

and hence we may assume (E,u)i =  0 l e  v 6  E1 Thus v =  E * b for some 

b € IR3 Replacing f ( x ,  y ) with f ( x , y )  +  i n e  a translation we find we may assume 

v =  (0,0, O f  This concludes the proof



C onform ai transform ations

Chapter 10

W ith the conformai structure determined by g and the given orientation, we have 

that M  is a Riemann surface and m terms of local conformai coordinate z =  x +  zy 

we write g = e*\dz\2, where ^  is a real function of z and A  =  (atJ) with respect to 

the coordinate field

Let h U ->• h(U) C M  and h (l ->■ h(Ù) C M  be two positively oriented 

conformai parameterisations of M  about a point p £ M  with h(U) =  h(U) So that 

■& =  h~l o h  U —y U is a bijective holomorphic mapping Also let z =  x +  ly be 

the local coordinates on h(U) and w =  x +  ty be the local coordinates on h(lJ)

Now

and hence

g =  e*\dz\2 = e*
dz
dw

dw — eT
dz
dw

\dw\2 = e*\dw\

dz
dw

(10 1)

From chapter 5 we have

® — {(an  — a22) — 2iai2}e^ (10 2)

is a holomorphic function It can easily be shown that m terms of local coordinates

t  a s &  \

*  =  < * ( % . & )

Since
d dw d dz
—  = -5—5— and dz =  ^ ~ d w
dz dz aw aw

we see $  dz2 is a holomorphic quadratic differential independent of the coordinate
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Chapter 10 Conformai transformations

system Now

. d d . dw d d w d
Ì T z ' d ^ ~  ^  I h f a ' l h ’ d J

dw
dz

\  f A d 9 ( dwY  
^  d z 'd z ^  [ d z ]

and hence

* - ( H * (10 3)

By lemma 9 3 we may assume

A =
^ H  +  ce (/>+ax cos ay —ce *+ax sin ay   ̂

y —ce~*+axsm ay  H — c e ~ ^ ax cos ay j

and so from (10 2) we have

$  — {(an  — a22) — 2iai2}e*

= 2ceax cos ay  +  2iceax sm ay

or more simply

$(*) =  2 ce° (10 4)

this along with (10 3) gives

' dz(w)' 
dw

2 ceaz{% (10 5)

If a ^  0 we let z =  +  log —) then by (10 1)

J> — \z '(w)\2 e ^ Re^ ŵ  =  - —e^a(x+lô sr)'>
a 2

which is still just some function of x and using (10 5) we have

îfr(iü) =  (z'(w))22ceaz^  =  -Î-2 cew+l°s ^  = 2ev
a 2
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C h a p te r  10_________________________________________________________________________________C o n fo rm a i t r a n s fo rm a tio n s

thus comparing this to (10 4) we may assume that a  =  1 and c =  1 

If a  =  0 we let z =  ^ w  then by (10 1)

e4> _  lz '(w)\2e^ Re(zM)) = e ^ * ) “10*0)

which is again just some function of x and using (10 5) we have

$  =  ( z , ( u » ) ) 2 2 c  =  2  

thus comparing this to (10 4) when a  =  0we may assume c — 1

54



T he m etric

As shown m the preliminaries the Gauss curvature K(jp) is given by

K(p) = gp(R(Xp,Yp)Yp, X p) = -det(A p) 

computing the left hand side locally with X  =  ^  and Y  =  we find '

I< =

relative to the local coordinates (x, y) A proof of this is given m Appendix D Since 

<j) depends on x only we have
A , =

^  dx2

From the previous chapter

,, I — cos ay sin ay
A = H I -  e-*+ax

I sin ay  cos ay

where a = 0 or 1 Hence

det A = H 2 -  e~2,t>+2ax

and so when H  ^  0

d2(j)

Chapter 11

d x2
=  2e*{H2 -  e' 2,t>+2ax)

= 2H2e* — 2e~*+2ax

2\H\eax(\H\e*~ax -
\ H \

— 2 |ii |e a:c(e^_Q,:E+loĝ l —

55



C h a p te r  11__________________________________________________________________________________________________T h e  m e tr ic

Lettmg r)(x) =  <j> — ax  +  log \ H\ we find that r](x) satisfies the differential equation

r/'(x) =  ea3:+los|4ii| smhTj(x) (11 1)

and a  =  0 or 1 We note that this differential equation appears m Smyth [6] but 

with a minus sign Using (7 3) we have

fxy =  a f y +  (E +  a H f ) * f x 

( fx y jy )  1 =  a ( f yJ y)i + ( (E  + a H f ) *  f x, f y)1

fy)i)x — ae* +  ((E +  a H f ) ,  f x * f y)1

l- ( e %  = a e * + e*((E +  o f f / ) ,  e "* /, * /» ),

i e V ,  =  ae* + e*((TS, + a H  }),(,),

4>x — 2a +  2((E -f a H f ) ,  £)i

and hence

r]l(x) =  a +  2{(E +  a H f ) , 0 i
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C om p leten ess

Chapter 12

W e recall from  chapter 6 th at we m ay assum e M  is a  strip on the com plex plane 

given b y  Xi <  x <  x 2 where ( x \ , x 2) =  (— 0 0 , 1 ), (—tt/2 , tt/ 2 )  or ( —0 0 , 0 0 ) and hence 

cj)(x) m ust be defined on all o f this interval For every y  let 7 y( t )  R —> C  be  given 

by 7 ,/(i) =  t  +  l y  W e are interested m the length  o f this curve, L ( j y f r om 

any point t  =  x  to any other t  =  x 0 To this end we have

t+iy

and hence the length  is given by

X0 e ^ d t
X

m  order for the m etric to be com plete we should have th at the length  from  any point 

in M  to the boundary o f M  should be infinite and so L ( 7 3/|(Xl)X)) and L ( 7 î/|(æ,X2)) 

should be infinite for any finite x  G ( x i , x 2)

To get any further we first m ust analyze the differential equation (12 1) given below  

w hich we obtained m  chapter 1 1

P r o b le m

C lassify  the solutions to  the differential equation (12 1 )

r]"(x) =  e“ æ+2^sm h?7(x) ( 1 2  1 )

w here a  equals 0 or 1 and ¡3 G R
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Chapter 12 Com pleteness

In all th at follows we shall assum e rj(x) is a solution o f (12 1)

Lemma 12.1

If r j (x )  is not  the t r iv ia l  so lut ion then it can have at  m o s t  one cr it ical p o in t  M o r eo v er  

a cri t ical  p o in t  m u s t  e i ther be a posi t ive  m i n i m u m  o r  a negat ive m a x i m u m

Proof  :

Consider the case when x  =  c is a critical point of rj(x)  l e rj'(c) =  0 W e m ust have 

77(c) satisfying one o f the following

(1 ) 77(c) =  0 ,

rj(x) =  0 due to uniqueness of solutions

( ii .)  77(c) >  0 ,

r]"(c) =  eax+213 smh(?7(c)) >  0 , and therefore 77(c) is a local m inim um  o f rj(x) 

It follows 77 cannot have another critical point and consequently 77 has a global 

m inim um  at c

(111.) 77(c) <  0 ,

rj"(c) =  eax+2/3 smh(?7(c)) <  0 , and therefore 77(c) is a local m axim um  of 77 and 

as m  (11 ) m ust be a  global m axim um

Lemma 12.2

I f  x 0 is a po in t  a t  which  77 is defined with rj(xo) >  0 and rj'(x0) >  0 then there exists  

a f ini te  number  b >  x 0 such that  rj(x) —>■ 00 as x  —>• b

Proof  :

Since r)(x0) >  0 and r]'(x0) >  0 it follows from  lem m a 1 2  1 that r}(x) >  0 for all 

x  >  x 0 at w hich r)[x) is defined
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C h a p te r  12_________  C o m p le te n e ss

For every x > xQ at which rj(x) is defined we shall examine r/'(x)

rj'\x) =  eax+2̂  smh r)(x)

_  g^+2/?^^^ + +  J75(x)/5l +  )

> e2i3lr)3(x) (as r](x) > 0)

where (3i = a x o/2 +  (3 +  ln(6)/2 Choose a positive real number r such that 

0 < r < m m  {^Jr](xo),^/e-^V2r]'(xo)} Then

e Pi
0 < r 2 < rj(x0) and 0 < r 4(—y=) < r]'(x0)

\ /2

Now let £f(x) be the solution to the differential equation

g"(x) =  e2f3lg3(x) (12 2)

with initial conditions

ff(xo) = r2 and g'(x0) =
r 4g/?i

y/2

From Appendix F we can see that the solution is

^  , , y f i
9\x ) = - i r n — d = x o +

s f t ( d - x ) ’ u e ^ r 2

We note that d is finite and that g(x) > 0 for all x < d Moreover g(x) —> oo as 

x —y d Comparing the two problems we see that

v"{x) > g"(x) rj'(xo) > g'(x0) rj(x0) > g(x0)

and consequently r](x) > g(x) for all x > xo Since g(x) —> oo as x —> d it is obvious

that rj(x) —»■ oo as x —>• b where xq < b  < d This concludes the proof of the lemma
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From  here on we consider the cases when a  =  0 and a  =  1 separately 

L e m m a  1 2 .3  ( a  =  0)

Let  xo E IR be a po in t  a t  which rj is defined wi th rj(xo) >  0 Then there exists unique  

real numbers  7 / <  0 <  7 „ such that

•  i f r f { x 0) >  7«

r](x) is a s tr ic t ly  increasing fu nct ion  defined on a f inite interval  (a, b)

•  i f i ( x  0) =  7 „

rj(x) is a s t r ic t ly  increasing fu n c t ion  defined on the sem i- inf ini te  interval  

(—0 0 , b), b 6  IR with T)(x) —> 0 as x  —> — 00

• if  H <  rf{x0) < 7„

r)(x) has  one cr it ical  po in t  - a pos i t ive  m i n i m u m  and  is defined on a f inite  

in te rva l  (a, b)

•  i f  r)'(x0) =  7 1

r/(x) is a s t r ic t ly  decreasing fu nct ion  defined on a semi-f ini te  interva l  

(a,  0 0 ), a E IR with rj(x) —> 0 as x —> 0 0

• < 71

r i (x) is s t r ic t ly  decreasing defined on a f ini te interval  (a, 6)
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P roof:

We first divide the solutions of (12 1) into three different categories 

(a ) 77(2) has critical points

(b ) 77(2) has no critical points but there exists a point 21 € IR such that 77(21) =  0 

(c ) 77(2) has no critical points and there is no point 21 € K such that 77(21) = 0

(a ) By lemma 12 1 we know 77(2) has at most one critical point and it is either a 

positive minimum or a negative maximum Since 77(20) > 0 the critial point must 

be a positive minimum, say it occurs at 2 =  21 Let h\(x) =  77(2 +  21) then

h"(x) =  r}"(x +  21) =  e2̂  smh?7(2 +  21) =  e2̂  sinh h\(x)

1 e h\(2) satisfies the exact same differential equation with

/ii(O) =  77(21) and ^ ( 0) =  r)'(xi) =  0

hence by replacing 77(2) with 77(2 +  21) we may assume that the minimum occurs 

at 2 =  0 For any 2 > 0 at which 77(2) is defined it is obvious that 77(2) > 0 and 

r]'(x) >  0 and hence by lemma 12 3 there exists some finite number b with 77(2) —> 00 

as 2 —> 6 Now let h2(x) =  v { ~ x ) then

/12 ( 2)  =  r ] ' \ —x )  =  e 2^ s m h r 7( — 2 )  =  e2^ s m h / i 2(2 )

and again h2(x) satisfies the exact same differential equation with

^2(0) =  77(0) and ^ (0 )  =  ^(O) =  0

since we are guaranteed uniqueness of solutions we know h2(x) =  rj(x) Hence 77(2) 

is symmetric about the y-axis and hence 77(2) —> 00 as 2 —> —b In the general 

case 77(2) is symmetric about the line 2 =  21, its minimum, and has singularities at 

x — x\  ±  b A
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(b ) rj(x) has no critical points but there exists a point x\ E  IR such that 77(21) =  0 

As m part (a ) if we replace 77(2) with 77(2 +  21) we may assume that 21 =  0 1 e 

77(0) =  0 Since 77(2) has no critical points it must be either strictly increasing or 

strictly decreasing Replacing 77(2) with r](—x) if necessary we may assume that the 

function is strictly increasing Hence, at any x >  0 where rj is defined we must have 

that 77(2) > 0 and also that r)'(x) > 0 and by lemma 12 2 there must exist a finite 

number b such that 77(2) —»• 00 as x —Y b Letting h4(x) =  —rj(—x) we see

h'l(x) =  —rj"(—x) =  — e2/3sinh7/(—x) =  e2/3smh h4(X)

with

/i4( 0 ) =  —?7(0 ) = 0 and h'4(0) =  77̂ 0 )

By uniqueness we must have h4(x) =  77(2) and hence we find that 77(2) —)■ —00 as 

x —> —b Hence, m the general case if 77 is a strictly increasing function then rj(x) is 

symmetric about X\ with rj(x) -4 00 as x —>■ X\ +  b and r](x) —> —00 as x —>■ Xi — b 

If 77 is a strictly decreasing function then rj[x) is symmetric about Xi with rj(x) —> 00 

as x —> x\ — b and 77(2) —> —00 as x —> x\ +  b

A

(c ) 77(2) has no critical points and there is no point x\ E IR such that 77(21) = 0 

Having no point x\ at which 77(21) =  0 means that the function is strictly positive or 

strictly negative and since 77(20) > 0 we must have that 77 is strictly positive Having 

no critical points means 77(2) is either strictly increasing or strictly decreasing Let 

22 be a point at which 77 is defined Replacing 77(2) with 77(2 +  22) we may assmue 

that 22 =  0 Then replacing 77(2) with rj(—x) if nessecary we may further assume 

that r j  is strictly decreasing Since 77 is both strictly positive and strictly decreasing 

it must exist over the entire interval [0, 00)
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If lirrix-̂ oo rj(x) =  c € R /{ 0} then lim^oo r]"(x) =  lim ^oo smh(f7(x)) =  d ^  0 

Therefore, ^ (x ) —>■ ±00 as x —> 00 and consequently iy(x) —»■ ±00 as x —>• 00 which 

is a contadiction Hence t](x) —> 0 or ±00 as x tends to infinity As we may assume 

that t] is both strictly positive and strictly decreasing we must have lim ^oo rj(x) =  0

If we now let u(x) =  rj( 1/x) then,

u'(x) =  ? /( - )  ( - x  2)

1

u " ( x )  =  2 x ' 3 n ' ( l )  -  i  , ” ( i )  ( - X - 2 )
X X “  X

a/ U/ uy a/ a/

: ----- u'(x) H— -  e2̂  smh?7( —)

u ( x )  H— -  e2̂ sm hu(x) 
x x4

thus

u"(x) +  — u ( x )  =  —  e2̂ sm hu(x)

c2uw(x) +  2x u'(x) =  — e2̂ sm hu(x)
x2

(x2t/(x )) ' =  — e2/3smh u(x)
x 2
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2x2u'(x)(x2u'(x))' =  2 u ( x )  e2f3 smhti(x)

((x2u '(x ))2)' =  (2 e2/3coshu(x))'

(x2u'(x))2 =  2 e2/3 cosh u(x) +  c1; Ci € R

Now u(x) —> 0 as x j. 0 because rj(x) —> 0 as x —> oo Furthermore x 2u'(x) =

—r)'(l/x) —)■ 0 as x I  0 because r]'(x) -» 0 as x —)■ oo Hence Ci =  — 2e2/3 and so we

have

[x2u ( x ))2 =  e2/J(2 cosh(u(x)) — 2)

=  e2p(eu(x) +  e~u{x) -  2)

_  g2/3j-g«(a:)/2 _  g-u(3;)/2j2

=  [2e^ sinh(u(x)/2)]2

giving

x 2u \ x ) = ±  2 sinh(u(x)/2)

Now ry(x) and ^'(x) have opposite signs as tj is a positive function decreasing

to 0 Thus u(x) and u '(x) have the same sign as u(x) =  r]( 1/x) and u'(x) =  

— l / x ~ 2r] ' ( l /x) Thus

x 2u'(x) =  2 smh(ii(x)/2)
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and

-  f  1 du =  ep f  \ d x
2 J smh(ti/2) J x 2

giving

As rj is positive

In
sin.
cosh(u(x)/4)

tanh(u(x)/4) = e

=  e?( h c2)
x

—  peP{-l/x+C2)

thus

and

u(x) = 4 ta n h -1(eê C2- 1̂ )

•q(x) — 4 tanh 1(eê Ĉ2 x )̂

which has a singularity at x =  c2 < 0 Replacing r](x) with rj(x — x2) we arrive back 

at the general case when rj is strictly decreasing and so

(12 3)

for some c E R We note that rj is defined only on the interval (c, oo) Also replacing 

r](x) with r)(—x) we have

r](x) =  4 tanh 1(eef>(x ĉ ) (12 4)

the general case for when 77 is strictly increasing We note that here rj is defined 

only on the interval (—00, c)

A
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To summarise, for any initial condition r](x0) =  v >  0 there is exactly one solution 

to (12 1) with a  =  0 of the form (12 4) call this rji(x) and one solution to (12 1) with 

a  — 0 of the form (12 3) call this r\2(x) We note that these are the only solutions 

to (12 1) with a  =  0 of type (c ) mentioned above Let j u =  rj[(x2) and 7; =  r}'2(x2) 

Obviously 7; < 0 < 7«

If r](x) is another solution to (12 1) with a — 0 and 77(2:0) =  u then the solution 

must be of the form (a ) or (b ) defined above and hence one of the following must 

hold

1 r]'(x0) > 7u in which case, by lemma 12 4 given below, r}(x) > rji(x) for all

x > xq and rj(x) < rji(x) for all x < xq Therefore rj(x) is of the form b

defined above

2 rj'(x0) < 71 m which case, by lemma 12 4 given below, r](x) < rj2(x) for all

x > xq and r](x) > r}2(x) for all x < x 0 Therefore rj(x) is also of the form b 

above

3 7« > v'(x o) > 7/ m which case r)(x) > rj2(x) for all x > x0 and rj(x) > rji(x) 

for all x < x0 by lemma 12 4 and hence is of the form (a ) above 1 e it has a 

positive minimum

This concludes the proof of the lemma
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Lemma 12.4

Let x 0,a,b,  c € IR with b >  c and let r)i(x) and r]2(x) be solutions to the differential 

equation

rj" — e2/? sinh 77

with

rji(x o) =  a r]\(xo) = b

and

t]2(x 0) =  a ri2( x  o) =  c

then T h ( x )  > 772 (x) for every x  > x 0  at which both 771 and 772 are defined and ?7i(x) <  

772(2:) for every x  < x q  at which both rji and 772 are defined

Proof:

Since rji(xo) =  772(2:0) and t][(xq) > rj^xo) there must exist some interval (xo, xi) m 

which m which both 7 7 1 ( 2 : )  > r/2(x) and rj[(x) > 7 7 2 ( x )  Hence 7 7 " ( x )  =  e2/?sm h 771 ( x )  

> e2/5smh 772(x) =  rj2(x) for every x £ (x0,Xi) and so ?7i(xi) > 772(^1), 77^2:1) > 

7 7 2(x  1 ) and ^ " ( 2 : 1 )  > r)2(x 1 )  (assuming 7 7 2 ( 2 : )  exists at x i ,  if not then we have already 

completed the proof) We then may extend beyond Xi to another interval (xi,X2) 

m which rji(x) > r)2(x), r}[(x) > 772(2:) and rj"(x) > ij2(x) and the process can 

continue so long as 771 (x) and r]2(x) are defined We use the same approach to prove 

rji(x) <  772(2:) for all x less than x 0 m which 77x(x) and 772(x) are defined

Lemma 12.5 (a = 0)

Let x 0 G IR be a point at which 77 is defined with r](xo) <  0 Then there exists unique 

real numbers 7; < 0 < 7„ such that

• ifrj'(xo) > 7„

r](x) is a strictly increasing function defined on a finite interval (a,b)
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• i f v l(xo) = 'Yu

rj(x) is strictly increasing function defined on the semi-infimte interval 

(—00,6), b £ R with r)(x) —* 0 as x —>■ —oo

• «/T/ < rfi^o) < 7«

7 7(3:) /ias only one critical point - a negative maximum and is defined on the 

finite interval (a,b)

• i fv '{xo) = 7i

7j(x) is a strictly decreasing function defined on a semi-mfinte strip (a,oo),a € 

IR with rj(x) —» 0 as x —> oo

• i f i/(x 0) < 7/

r](x) is strictly decreasing and is defined on the finite strip (a,b)

Proof:

The proof follows by replacing y(x) with —y(x) and then using lemma 12 3

We now examine the completeness of the metric when a  =  0 Here 4>{x) =  rj(x) — 

In \H| and rj satisfies the differential equation

r]"(x) =  A\H\smh rj(x)

Using lemmas 12 3 and 12 5 we can see that other than the solution <f>(x) =  — In \ H\, 

4> never exists over the entire real line Again using lemmas 12 3 and 12 5 we see 

there are exactly two solutions which exist over the interval (—oo, 1) which are given 

by

4>(x) =  ± 4 tanh_1(e2V ^ ^ _1 )̂ — In \H\

When

4>(x) — —4 tanh-1(e2V/i^i(x-1)) — In \H\
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we see (j> -» — oo as x t  1 and so e0/2 —> 0 as x |  1 hence the metric is not complete 

On the other hand when
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<f>(x) = 4 ta n h -1(e2V/i« ! ( -1)) -  In \H\

4>(x) —Y oo as x f  1 and furthermore

o4>(x)/2   ^ „ 2 t a n h _1 e2'/ i ^ T ( I _ 1 ) ^  1 „2  t a n h -1  e-2 ^ ^  ^yr»r m
for all 0 < x < 1 so that /  e*!2dx — oo as x 1 1 As x —> —oo we have that ?y(x) —>■ 0 

and hence e0/2 —> 

metric is complete

and hence e0/2 —> 3— It follows that f  e*!2dx —> oo as x —»■ — oo and hence the

This leaves us with the case when <j) is defined on the interval (a, 6) As we are 

looking for the metric to be complete we want cj) —>■ oo as x —»■ a and </>—>■ oo as 

x —>■ 6 From lemmas 12 3 and 12 5 we see that there is only one possibility that 

rj has a positive minimum From the proof of lemma 12 3 we recall that if r) has 

a positive minimum then rj is symmetric about its minimum Hence m order that 

r](x) —y oo as i  -> a and b we must have =  0 The question now arises as

to whether these solutions give rise to cf) being complete Hence let rju be a solution 

to the differential equation

rj"(x) =  4 \H\ smh iy(x)

which has a positive minimum and singularities at some values x =  a and x =  b 

Also let r]i(x), be the solution to the differential equation

rj"(x) =  4|i i | smh r]

with

rj(x) —> 0 as x —> —oo and r)(x) —>■ oo as x —y b
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i e let

rji(x) =  4 tanh~1 e2V/i^ï(;r_6)

Now r]u(x) and rji(x) both tend to infinity as x tends to b and r/ ^ ( ^ )  =  0 < Vii9̂ )  

so that r]u( ^ )  > 7? ^ ^ )  It follows that r]u(x) > r}i(x) for all x >  ^  and hence 

f  e*!2dx —>■ oo as x —> b Now cj) is symmetric about ^  since r)u(x) is and so 

Je*/2dx —y oo as x —y a Hence, the metric is complete

We now study the differential equation (12 1) with a  =  1 Lettmg g (x) =  rj(x — 2c) 

we observe that g'(x) =  r)'(x — 2c) and

g"(x) =  f]"(x — 2c) =  e*-2c+2/3 _  2c)

= ex+2(P~c) gjxih g(x )

So that g(x) satisfies the same differential equation as 77 with only the value of 

f3 changing Hence from here on we shall assume that rj satisfies the differential 

equation

rj"(x) — 4 ex smh 77

Lem m a 12.6 (a = \)

Let x0,a,b,c  6 IR with a > c and let 771(3;) and 772(2) be solutions to the differential 

equation

rj" =  4ex smh 77

with

77i(x0) =  a 77Î(x0) =  b

and

772(0:0) = c 772 (3:0 ) =  b 

then 771(3:) > 772(x) for every x at which both 771 and r)2 are defined
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Proof.

Since r]"(xQ) =  4eXo smh 771 (x0) > 4ex° smh 772 (x0) =  ^ ( x o )  and 771 (x0) > rj2(x0) there 

must exist some interval (xo,xi) m which both T7i(x) > r?2(x) and r)"(x) > r]2(x) 

and since 77̂ (x0) =  72(^o) we must have that r)[(x) > rj'2(x) m this interval Hence 

77i(xi) > 772(^1), 771(^1) > ^ ( ^ i )  and rii(x i) > V2 (^l) (assuming both 77r(x) and 

772(x) exist at xi, if not then we have already completed the proof) We then may 

extend beyond X\ to another interval (x i,x 2) m which ?7i(x) > T72(x), rj[(x) > 77̂ (x) 

and 77"(x) > r]2(x) and the process can continue so long as both rji(x) and rj2(x) are 

defined We use the same approach to prove rji(x) > rj2(x) for all x less than x0 in 

which both 77i(x) and 772(3:) are defined

Lem m a 12 7

Let x 0, a ,b ,c  £ IR with b >  c and let rji(x) and T72(x) be solutions to the differential 

equation

77" =  4ex smh 77

with

77i(x0) =  a 77'(x0) =  b

and

r]2(x0) =  a ri'2(x0) =  c

then ?7i(x) > r)2(x) for every x > x0 at which both rji and r]2 are defined and 7?i(x) < 

772 (x) for every x < xq at which both rft and rj2 are defined

Proof.

Since ?7i(xo) =  r)2(x0) and 77j(x0) > rj^xo) there must exist some interval (x0,x i) m 

which m which both 77! (x) > rj2(x) and r}[(x) > i]'2(x) Hence rj"(x) — 4ex smh rji(x) 

> 4 ex smh rj2(x) — r\2{x) and so 7/1 (xi) > x i ), i][(xi) > t]'2(x i ) and rj"(xx ) > ^ l )  

(assuming rj2(x) exists at x l5 if not then we have already completed the proof) We
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then may extend beyond 21 to another interval (21, x2) m which 771(2) > r]2(x ), 

rj[(x) > rj2(x) and r]"(x) >  772(2) and the process can continue so long as 771(2) and 

r)2(x) are defined We use the same approach to prove 771(2) < 772(2) for all x less 

than 20 m which 771(2) and 772(2) are defined

Lem m a 12 8

I f  771(2) is a solution of

•q" =  4 ex smh 77

with

77(20) =  a rj'(x 0) =  b

and 771(2) satisfies all the following propenties

• has one critical point - a positive minimum

• has a singularity at some finite value 21 < 0

then there is no solution to the differential equation with 77(20) > a which exists over 

the whole real line

Note any solution to the differential equation which has the same properties as r/i 

shall be called a solution of type U Also by lemma 12 2 every solution of type U 

has a singularity at some point x 2 > 0

Proof:

We first show that there is no solution, 772(2) to the differential equation (12 1) with 

772(20) =  a which exists over the whole real lme

If 7/2(20) =  b then 772(2) =  71(2) by uniqueness and hence does not exist over the 

whole real line If rj'2(x0) > b then by lemma 12 7 772(2) > 771(2) for all 2 greater 

than x 0 and since 771(2) has a singularity at some x greater than zero so must rj2(x) 

Similarly when 772(20) < b we have that 772(2) has a smgulanly at some 2 <  0
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To prove the statement when 772(20) >  a  First let 773(2) be another solution to 

the differential equation with 773(20) =  772(20) > a, and 773(20) =  b then by lemma 

12 7 773(0:) satisifies the same three conditions that 771(2) satisfies Then using the 

approach used m the previous paragraph we can show that 772(2) cannot exist over 

the entire real line This completes the proof

W e now study m ore closely the properties o f th e  solutions to  the differential equation

We now note that 77(2) =  0 is a solution of the differential equation and from here 

on we shall assume 77 is non-tnvial Letting 77 =  — 77(2) we note that fj'{x) — 

and 77" =  —r\" — ~ 4ex sinh 77 =  4ex smh —77 =  4ex smh 771 e 77 is also a solution of the 

differential equation Thus by replacing 77(2) with —77(2) if necessary we may assume 

m all that follows that 77(0:0) > 0  As we are dealing with non-trivial solutions we 

may further assume 77(20) > 0

In view of lemma 12 1 we remark that each solution 77(2) must satisfy one of the 

following conditions

a 77(2 ) has a  p ositive m inim um

b 77(2) has no critical points but there exists a point X\ £ IR such that 77(0:1) =  0

c 77(2 ) has no critica l points and there is no point £ IR such th at 77(0:1 ) =  0

\

Solutions of type a and b exist for every initial condition 77(2:0) > 0 and by lemma 

12 2 these solutions will tend to 00 as x tends to some finite number b > x 0 Hence 

if a solution exists on an interval [x0, 00) then it must be of type c above 1 e it 

must be either strictly increasing or strictly decreasing and given 77(20) > 0 it must 

also be strictly positive Again by lemma 12 2 a strictly increasing solution would 

tend to infinity as x tended to some finite b > x0 hence we have that 77 is stricly 

decreasing If lim ^oo 77(2) — d > 0 then r)''(x) — 4ex smh 77(2) tends to mfinty as 

x  tends to infinity which in turn implys rj\x) and 77(2) would tend to infinity as
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x tends to infinity - a contradiction Hence limn-i-oo rj(x) = 0  In summary, every 

solution of type c which exists over the interval [x0, oo) must be a strictly positive 

and strictly decreasing and tend to zero as x tends to infinity

Lemma 12 9

I f  x i is a point at which rj is defined with rj(xi) > 0 and rj'(xi) < 0 then rj(x) —>■ oo 

as x —>■ b where b =  —oo or is some finite number less than x\

Proof

Let 77 be defined on the region (b,x i) where b = —oo or is just some finite number 

less than x x As 77 is of type a b or c above - it is obvious that r](x) > 0 for all 

x £ (6, £i) Now let g(x) be the solution to the differential equation

g”(x) =  0 g'(x j) =  r)'(xx) g(Xl) = 77(^1)

so that g(x) =  rj'(xx)x +  77(2:1) Comparing rj(x) to g(x) we see r}"(x) > g"(x) for

all x G (6, xi), rj'(x) =  g'(x 1) and r}(x\) =  g(xi ) so we must have rj(x) > g(x) for all

x 6 {b, xi) Since g(x) tends to 00 as x tends to 00 we must have rj(x) tending to 

00 as x tends to b

We now examine the completeness of these solutions

a rj(x) has a positive minimum Thus r] is defined on the region (a, b) where b is 

some finite number and a £ fR or a =  —00 Also r]{x) tends to infinity as x tends 

to both a and b Hence er>(x)+x+c tends to infinity as x  tends to both a and b Thus 

depending on the initial conditions - the surfaces could be complete

b r](x) has no critical points but there exists a point x x £ IR such that 77(2:1) =  0 

Let 77 be defined on the region (a, b) where a £ IR or a =  —00 and b £ IR or b =  00 

If we assume 77 is strictly decreasing then by lemma 12 2 b would be finite and
I
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r](x) —> —oo as x -y b Hence ev+x+c —y 0 as x —y b and the solution w ould not be 

com plete I f we assum e that rj(x) is str ictly  increasing then r/(x) is negative for all 

x  € ( a , x i) and hence ev+x+c tends to zero as x  tends to  a  H ence if  the solution to 

the differential equation is o f typ e  b then the surface w ill not be com plete

c r}(x) has no critical points and there is no point x x £ IR such that 77(21) — 0 

Let 77 be defined on the region (a, b) where a £ IR or a =  — 00 and b £ IR or b =  00 

Since we may assume rj(x0) > 0 we have that rj is stricly positive If it is strictly 

increasing then lim^-m ?7(x) =  ci£lR and hence en+x+c —y 0 as x —> a 1 e the surface 

is not complete On the other hand if 77 is strictly decreasing we know it must exist 

on the interval [x0, 00) and rj(x) —> 0 as x ->• 00 Also by lemma 12 9 we have that 

r](x) —y 00 as x —y a and a may be finite or equal —00 We recall from chapter 6 that 

we are only interested m solutions which exist over the intervals (—00, 00), (—00,1) 

or (c, d) where c and d are finite So if a solution exists on the interval [x0, 00) it 

is clear that the it would be finite at 3: =  1 or 3: =  ( assuming it exists there)

and hence would lead to the surface not being complete So we are only interested 

m solutions with a =  —00 Hence if a solution of type c gives rise to a complete 

surface we must have that the solution exists over the entire real line with rj(x) 0 

as x —y 00 and rj(x) —> 00 &s x —y — 00 If such a solution exists it is clear that

ev+x+c — oq aS x —y -j-oo

In sum m ary, any solution to the differential equation (12 1) w hich gives rise to a 

com plete m etric m ust either

I have a  p ositive m inim um  and is defined on a finite interval (a,  b)

II have a p ositive m inim um  and is defined on a sem i-infinite interval (—00, b)

III be a s trictly  positive, strictly  decreasing function w hich tends to 0 as s  tends 

to 00 and to 00 as x tends to —00

W e note th at the existence o f solutions o f typ e  11 and 111 have not been proved
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We do however recall lemma 12 8 which states that if a solution of type 1 occurs 

with initial condition rj(x0) =  7 > 0 then a solution of type 111 cannot occur with 

initial condtion rj(x0) =  7, the converse of this is also true I would conjecture that 

no solutions of type 111 occur Letting g(x) = rj(\/x) this conjecture is equivalent 

to stating that the following differential equation

(x2g'(x))2 =  ^ e 1/æsinh g(x)

with the mixed boundary conditons

£ f ( l )  >  0  =  0

has no solutions
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Chapter 13

From here on we shall drop the subscript 1 from the inner product symbol 1 e

(x,y) = { x ,y )  i

and subscript 1 will imply partial differentiation with respect to x, similarly subscript 

2 will imply differentiation with respect to y

We first study the minimal surfaces when a / 0  Replacing a  with —a  we have from 

equations (7 3) (7 4) and (7 5) that /  satisfies the following

f i 2 =  - a /2  +  E * / !  (13 1)

h i  — a f i  ~h E * /2 (13 2)

/ l l  =  -/22  (13 3)

If we assume that E  is the zero vector then these equations reduce to

/ l 2  — ~ a f 2

/ 22 a f i

/- 1 = - c t f i

(13 4) and (13 6) imply

f i  = ~ a f  + vi 

for some v\ £ IR3 This has solution

(13 4) 

(13 5) 

(13 6)
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(13 5) then implies

^2 (y) =  v3 cos(ay) +  u4sin (ay)

for some v3,v4 E (R3, and so /  is planar Hence from here on we shall assume E is 

not the zero vector We let =  (E, E) We recall from lemma 9 2 that

(E, f )  — a cos (ay +  t)e~ax 

By switching to an associate if necessary we may assume t =  0 and hence that

( E , / s (0 ,0 ) )= 0  (13 7)

and

<E,/*(0, 0)) =  —aa (13 8)

Lemma 13.1

After a translation orthogonal to E we may assume without loss of  generality that

E * / 2 =  a f i  +  (a2 +  ei) f  -  (E, / ) E +  c

where c G IR3 and (E,c) =  0 Futhermore we may assume c =  (0, 0, 0)T i f  ti ^  —a 2

78



(OT Si)

(6  g l )

6Z

= T(/‘a) = (T/ ‘a)

9M IO_a(i +  /to)soo » =  ( /  la )  sy

3 + (/ * a) * a + i>  + = H  * a

£ » 3 3 =  ( a #  =  W

(x)0 + (/*a)*a + / z° + T/» = z/*a

2( / * a )  * a  +  z/ e °  +  ZT/ °  =

(V * a) * a + (Vo + 8V> =
(c/ * a) * a + V * a» = K/ * a

zf  * a + T/° = K/  «= (z si)

W  + ( / * a ) * a  +  ; / >  +  1/ 0 =  V * a  

T(/*a)*a + T/ s® + IT/° =
(lf  * 3 ) * R  + {lf x > - zzf)*>- =

(T/*a) *a + e/*a*>- = ui  * a

T/ * a + s/° -  = zxi  <= (i sì)

pU'G

smLL

osIV

J O O J J



Chapter 13 Minimal Surfaces

and we have

0 = ( E ,E * / 2)

=  a ( E J 1) +  a 2{ E J )  +  ( E , E * { E * f ) )  +  {E,c)  by (13 9)

=  (E, c) by (13 10)

that is, c is orthogonal to E and

E * (E * c) =  (E, E)c -  (E, c)E =  t xc

Now if d  ±  - a 2 replace /  by /  =  /  +  then

(13 9) => E  * / 2 =  E *  f 2

=  a f i  +  a 2f  +  E * (E * / )  + c

2
=  or/i +  a 2/ -----5— b E * (E * / )  -  E * (E * ■■ ■or +  Cj a 2 +  Ci2 1
=  o ./1 +  a 7  + E * ( E * / ) - - ^ -------- r — £lc + c

er +  ei a 2 +  ei
=  a f 1 +  a 2f  +  E * ( E * f )

Thus we have now shown that if t\ /  —a 2 then we may assume c =  (0, 0, 0)T 

after a translation orthogonal to E we may assume

/  =  a / 1 +  a 2/  +  E * ( E * / )  +  c

= a f i  +  a 2/  +  (E, E ) f  — (E, / ) E  + c

proving the lemma

) +  c

Hence
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We shall now divide our analysis into four cases

1 ||E ||2 = e2

2 ||E ||2 =  - e 2 /  - a 2

3 ||E ||2 = —a 2

4 ||E ||2 =  0

for some e > 0 

Lem m a 13 2

I f  ||E ||2 =  e2 > 0 then we may assume

f ( x , y )  =  e~ax{\J(y) cos(ex) +  V(y) sin(ex) +  —  cos(ay +  i)E) 

where (U (y),E ) =  (V (y),E ) =  0

and if ||E ||2 =  —e2 < 0 where e2 ^  a 2 then after a translation m IR3u;e may 

f ( x , y )  =  U (y)e("“+e>* +  V (y)ei-“- £)* -  cos(ay +  t )E

where (U (y),E ) =  (V (y),E ) =  0 

P roof :

In both cases we have using lemma 13 1 that

(13 3) => f u  =  - Ì 22

=  — (a / i  +  E * f?)

=  —(2a / i  +  (a2 +  £ i)/ — (E, /)E )

therefore

f u  +  2 a /i +  (a2 + e i) /  =  a cos(o;y +  t)e axE

assume

(13 11)
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for a particular solution of (13 11) we try

P(x ,y) =  W (y )e~ ax

and substituting this m, we get

a 2W (y)e~ax -  2a2W (y)e~ax +  (a 2 +  e1)W{y)e~ax =  ae~ax cos(ay +  t )E

W (y) =  — cos(ay + t) E
Cl

The homogenous equation

f u  +  2 a f i  +  (a 2 +  c i) /  =  0

has characteristic equation

A2 -f- 2aA (a 2 -f- £i) =  0

which has roots
- 2 a  ±  ^J ia 2 -  4( l) (a 2 +  d )

A = 7 ^ 2
—2 a  ±  y j —4ei

2
-a ±  y/—6i

So in the case when (£?, E1) =  e2 > 0 we have

/(x ,y )  =  U (y)e_0,x cos(ex) +  Y (y )e ~ ax sm(ex) +  (a particular solution ) 

and so

a
/(x , y) =  (U(y) cos ex +  V(y) sm ex +  — cos(ay +  i)E)e
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Now take the mnerproduct with E across this equation to give

(E ,/ )  =  ((U (y),E) cos(ex) +  (V (y),E ) sm(ex) +  acos(ay  +  t))e~ax 

Note from lemma 1 (E, / )  =  ae~ax cos (ay +  t)

o =  ( U ( i/ ) , E ) cos(£i ) +  (V ( i /) ,E)sm(ex)

= » ( U ( y ) , E )  =  ( V ( y ) , E ) = 0

proving the lemma when (E, E) > 0 When (E, E)  =  — e2 < 0, e2 ^  a 2 we have

f ( x , y ) = U(y)e^-a;+^1 + Y ( y ) e <'~a~^x +  (a particular solution )

and so

f ( x ,  y) =  U(y)e(-“+^  + V (y)e(-“- £)* -  ^ e ~ a* cos (ay +  t)E  

again taking the mnerproduct with E across this equation to give

(E, / )  =  (U(y), E)e<-“+e>* +  <V(y), E ) e ^ a^ x +  ae““* cos(c*y +  t) 

again from lemma 1 (E, / )  =  ae~ax cos (ay +  t)

0 =  (U(y),  E)e*~"+£*1 +  <V(y), 

^  (U (y ) ,E )  =  (V (y ) ,E )  =  0

proving lemma 13 2
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Lem m a 13.3

I f  II E II2 =  e2 > 0 then we may assume

f ( x , y ) =  n<
rie cos ay

cos ay cosh ey sm(ex +  r 2) +  sin ay smh ey sin(ex — r 2) 

cos ay smh ey sin(ex + r 2) + sin ay cosh ey sm(ex — r 2)

where ri, r2 IR

Proof :

We shall first use the fact that

a cos (ay +  t) =  ax cos ay +  a2 sm ay

for some a i ,a 2 € IR and hence

(E, / )  =  (ai cos ey +  a2 sm ey)e"

recall from Lemma 13 2 that

f ( x , y) =  e ax(U(y) cos(ex) + V (y) sin(ex) +  —(ai cos ay +  a2 sm ay)E)

so that

f i  = { cos ex [—aU (y) + eV(y)] +  sm ex [—aV (y) — e\J(y)\

a
~(a\  cos ay +  a2 sm ay)E  } e"

f 2 =  ju '( y )  cos ex +  V '(y) sm ex +  —(a2 cos ay — ax sm a y ) E |

and
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/ n  =  { cosex [a2U(y) -  2aeV(y) -  e2U(y)] 

a 2V(y) +  2aeU(y) -  e2V(y)]+  sm ex

a
-\—-(a i  cos ay +  a2 sm a y )E } e

a
/ 22 =  U"(y) cos ex + V"(y) sm e x ----- - (a i  cos ay +  a2 sm ay)E  > e

Therefore the fact that

/ i l  +  Î 2 2  —  0

U /;(y) -f (a2 — e2)U(y) =  2aeV(y)

V"(y) +  (a 2 -  e2)V(y) =  - 2aeU(y)

which m turn imply

U(y) =  eey(ci cos ay +  c3 sm ay) +  e ey(c2 cos ay +  c4 sm ay)

V(y) =  e£y (c3 cos ay — Ci sm ay) — e (c4 cos ay — c2 sm ay)

for some constant vectors c i,c2,c3,c4 £ R3 The fact that ( / i , / 2) =  0 implies

(c2,c4) =  (ci,c3) = 0

(c3,c3) =  (ci,ci)

(c4,c4) =  (c2,c2)

85



Chapter 13 M inimal Surfaces

a 2

(C2 ,C3) +  (C1,C4) -  a 2 +  ^ ( - « 1^ 2)

/ \ I ( \ ^  ( a22 ~ aU( c t . c j  + i c . c j  -  £2(q2 +  £2)(— 2 ~ )

We now recall the fact that

(U (y ) ,E )  =  (V (y ) ,E )  =  0

which implies

( c , , E )  =  0, V * =  1 , 2 , 3 , 4

once these are satisfied we find all other conditions are automatically satisfied in­

cluding the fact that {/i, / i )  =  {/2, / 2) So we have that

(ci,E ) =  0, (c2,E ) =  0

(cjjCi) =  (c3,c3) (ci,c3) =  0

As (E, E) =  e2 > 0 from the preliminaries we know that E 1 is a plane with metric 

(—1,1) and hence |jcj||2,î =  1,2 ,3 ,4  may be positive negative or zero Let us 

assume ||ci||2 is positive, since (c3,E ) =  0 and (c3,ci) =  0 we must have that ||c3||2 

is negative, but (c1;ci) =  (c3,c3) hence this is a contradiction A similar argument 

shows that ||ci||2 cannot be negative Hence

(ci,ci) =  (c3,c3) =  0 (13 12)

as c2 and c4 have similar conditions imposed we also have
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(c2,c2) =  (c4,c4) =  0 (13 13)

Thus

<c,,E) =  0, Vi =  1 ,2 ,3,4

(ci,ci) =  (c3,c3) =  (ci,c3) = 0

(c2,c2) =  (c4,c4) =  (c2,c4) =  0

a 2
(c2,C3) +  (Cl,C4) =  £2(Q2 +  e2)(~ aia2)

(* ,* >  + <*,*> .  _ £ _ ( i ì ^ ì )

After a hyperbolic motion we may assume E =  (e,0, 0)T and / y(0, 0) =  (s1; 0, s2)r , 

where Si, s2 G [R By switching to an associate we may also assume that a2 =  0 and 

hence /j/0 ,0 ) =  (0,0,5)

As (c,,E) =  0 and (c,,c,) =  0 for each % =  1, 2, 3, 4, we have

ci =  (0 , d i , j 1d1)T c2 =  (0,d2, j 2cf2)T

c3 (0, ¿3, J3GÌ3) C4 — (0, d4, j 4d4)

where =  ±1,* =  1, 2, 3,4 Given (ci,C3) =  0 and (c2,c4) =  0 we have

and J2 =  j 4 If j i  — J2 then /  would be planar hence letting j  =  j  1 we have

3 =  Ji =  Js =  ~ J 2 =  - J 4 Now (c2,c 3) +  ( c i ,c 4) =  0 so

^ 2 3̂ d \ d 4 =  0
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and as / y(0,0) =  (0,0, s)T we also have

ed2 =  tdi — ad3 — ad±

hence either ¿ 4  =  —d3 and d 2 =  ¿ 1  or a d 3 =  — edi  and ed2 =  ad±  The second of 

these conditions leads to /  being planar Hence we now have

ci =  (0 ,d 1, j d 1)T c2 = (0 ,d 1, - j d 1)T

c3 =  (0 ,d3, j d 3)T c4 =  (0, - d 3, j d 3)T

and so

cos aye ax

\

((¿1 cos ay cosh ey — d3 sin ay sinh ey) cos ex 

+(d3 cos ay cosh ey +  di sin ay sinh ey) sin ex)e~

j((d i  cos ay sinh ey — d3 sm ay cosh ey) cos ex 

+  (d3 cos ay sinh ey +  ¿1 sin ay cosh ey) sm ex)e~

Checking that /  now satisfies the original differential equation results m j  =  1 With 

these conditions imposed we find all other condtions are automatically satisfied 

Letting rx — %Jd\ +  d\ and r2 =  arctan(^-) we find these simplify to

f { x , y )  =

cos aye

rxe ax(cos ay cosh ey sin(ea; +  r2) +  sm ay sinh ey sm(ex — r2)) 

r 1e_“x(cos ay smh ey sm(ex + r2) +  sm ay cosh ey sm(ea; — r 2))

and hence the lemma is proved
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Lemma 13.4

If  ||E ||2 =  —e2 < 0, e2 7̂  a 2 then we may assume

f ( x , y )  =

^ r\ cos(—a  +  e)ye^~a+e'>x +  r 2 cos(o: +  e)ye^~a~^x  ̂

—ri s in ( -a  + e)ye^~a+^ x — r 2 sin(a +  e)ye^~a~^x
_ a x e ~ax  cog a y

where r i , r 2 6 R

Proof

From lemma 13 2 we have

f u  =  U ( y ) ( - a  +  e)2e ^ a+^ x +  V (y ) ( -a  -  e)2e ^ a^ x +  e"“* cos (ay +  t )E
—t*

f 22 =  U "(y)e(-a+£)* + V ^ y ) ^ - “- ^  -  ^ e - QX cos(ay +  f )E

Therefore

Hence

f l l  +  $22 — 0 => {

U"(y) + ( - a  +  e)2U(y) =  0

V"(y) +  ( - a  -  e)2V(y) =  0

U(y) =  Vi cos(—a  +  t)y +  t>2 sin(—a  + e)y (13 14)

V ( y )  =  U3 cos(a +  e ) y  +  v4 sm(a + e ) y (13 15)

for some vi,v2,v3,v4 G (R3 Also with the aid of the fact that
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(U(y),E) =  (V(y),E) =  0 

<U'(9) ,E )5 (V ' (y ) ,E >  =  0 

(E , v t) =  0 ï =  1, ,4

We now have

f ( x , y )  =  (v! c o s ( - a  +  e)y +  v2 s m (-a  +  c)i/)e(-a+e)æ 

+(t>3 cos(a +  e)y +  v4 sm(a + e)y)e^~a~^x 

- ? - e - axcos(ay +  t)E

f i ( x , y )  =  ( - a  +  e)(t>i c o s (-a  +  e)y + ti2s in ( -a  -f- e)y)e('~a+e'>x

+ (—a  — c)(u3 cos(a +  e)y +  v4 sin(a +  e)y)e^~a~^x

+ a — e~ax cos (ay +  i)E  
e2

f 2(x,y)  =  ( - a  +  e ) ( - v l s m ( - a  +  e)y +  v2 c o s ( - a  +  e)y)e^~°l+^x 

+ (a  +  e)(-U3 sm(a +  e)y +  v4 cos(a +  e)y)e(-a~e)æ 

+ a — e~ax sin(o;y +  t )E

Using the fact that ( /i , / i )  =  ( f 2, / 2) (we have

( - a  + e)2(U(y),U(y)) =  (U'(y), U'(y))

(a +  e)2(V(y), V(y)) =  (V'(y), V'(y)) 

(U(y) ,V(y))(a2 - e 2) - (U ' (y ) ,V '(y ) )  =  cos2 (ay +  t)

(13 16) 

(13 17) 

(13 18)
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S ubstitu tin g  (13 14) and (13 15) into (13 16), (13 17) and (13 18) and evaluating at 

y  =  0 results m

( c i,c i)  =  (c2,c 2)

( c i ,c 3) +  (c2,c 4) =

and on sub stitutin g these back we find

( c i ,c 2) = 0  (c3,c 4) = 0

( C l , c 4) - ( c 2 , c 3 ) =  2 £2 ( a 2 l ' 7 ) ( 2 a i a 2 )

A fter  a hyperbolic m otion we m ay assum e E  =  (0,0, e)T and f y (0,0) =  ( 0 ,r j , r 2)T 

T h en  after sw itching to an associate we m ay assum e a 2 =  0 and hence f y ( 0 , 0 )  =  

(0 ,r ,0 )T

As ( c i ,c i)  =  (c2,c 2), ( c i ,c 2) =  0 and (E , ut) =  0 ,i =  1 ,2  we have

Ci =  (ri co s^ i,r i s m ii ,0 ) T 

C2 =  ( - J i n  s i n i i ^ i n  c o s i i , 0)T

sim ilarly

c3 =  (r2 cos t 2 , r 2 sin 1 2, 0)T 

C4 =  ( ~ j 2 d 2 s m t 2 , j 2 r 2 cos t 2 , 0 ) T

w here r l ì r 2 , t i , t 2 € IR and j t =  ± 1 ,*  =  1 ,2  Now ( c i ,c 4) =  (c2,c 3) im p lying — ( ji  +  

j 2)sin(< l — ¿2) =  0 so th at either =  —j 2 or j i  =  j 2 and t 2 =  ¿1 +  wtt for some

{̂ 35 3̂/ (^45 £4)
a

2e2( a 2 — e2) («2 -  a?)
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integer n  T h e  first o f these result in /  being planar hence

ci =  (ri cos t \ ,  7~i s m ii ,  0)T

C2 =  ( - J i^ i  s m i i , j i r i  c o s ii ,0 ) T

C3 =  ( j 3 r 2 c o s h ,  j 3 r 2 s m t i , 0 )T

c4 =  { ~ j 3 j i r 2 s m t 1 , j 3 j i r 2 c o s t 1, 0 )T

w here j 3  =  ± 1  A s (0,0) =  (0 ,r, 0)T we m ay assum e =  m r /2 w here n  is an 

integer C hecking /  satisfies the original differential equations result in j i  — ~ l  B y  

replacing j 3 r 2 w ith  r 2 we m ay assum e j 3 =  1 F in ally  replacing w ith  — r x and r 2

w ith  — r 2 i f  necessary we assum e t \  =  0 and hence

f ( x , y )  =

 ̂ r i  cos(—a  +  e)ye(_a+£^  +  r 2 co s(a  +  e)j/e(-a_e):E  ̂

—r \  sin ( —a  +  e)ye^~a+t '>x — r 2 sm (a  +  e)ye^~a ~^x

_ g ± e - a x  cog a y

the lem m a is proved
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L e m m a  1 3 .5

I f  (E , E ) =  —a 2 we m a y  assume

f(x,y) =

 ̂ r 2e 2ax cos ( 2 a y )  — ^

_ r 2 e - 2ax s m ( 2 a y )  +  ^ y

_  9±p-QX cos (ocy)

where r i , r 2 G IR

P r o o f  :

R ecall

therefore

(13 3) =>• f n  =  - / 22

— ~ ( a f i  +  E  * f 2)

=  —( 2 a / i - ( E , / ) E  +  c)

/ n  +  2 a  f i  =  a cos ( a y  +  t ) e  “ æE  — c

To find a hom ogenous solution we look at

w hich m ay be w ritten

w hich in turn  has solution

f n  =  - 2  a h

f l  =  - 2 a f  +  \

f  =  U e " 2“  +  —  
J 2 a

for a p articu lar solution o f (13 19) we try

P ( x , y )  =  W  i ( y ) a  cos ( a y  -f t ) e  aa:E  -f cx W 2

(13 19)
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and substitutin g this in, we find

W i  =  - 1 / a 2 and W 2 =  - l / ( 2 a )

and hence

f { x , y )  =  U ( y ) e ~ 2ax +  ^ - V ( y )  -  co s(a y  +  t ) e ~ axE  -  ^ - c x
z a  a z / a

Now take the innerproduct w ith  E  across this equation to give

<U(y),E> = <V(s,),E> = 0

R ecallin g f n  +  / 22 =  0 we have

f n  =  4 a 2U [ y ) e ~ 2ax -  ae ~ax co s(a y  +  <)E

Chapter 13______________________ _ _ _ _ ________________________________________________________Minimal Surfaces

and

hence

f-a  =  U "(y)e~2°* +  ~ V " ( y )  +  a e ' “ ’ m S(ay +  i) E  
¿ a

V " ( y )  =  0

U "(y )  +  4 a 2U (y )  =  0

and so

V ( y )  =  v i  y  +  v 2

U (y )  =  v 3  cos(2a y )  +  v 4 sm (2ay)

for som e v 1 , v 2 , v 3, v 4 € IR3 A lso  w ith  the aid of the fact that

( U ( y ) ,E )  =  ( V ( y ) , E ) = 0

< U '(y ),E ) =  ( V '( y ) ,E )  =  0

we get

(E , v t ) — 0 i =  1, ,4
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Now a cos ( a y  +  t )  =  a\  cos a y  +  b s m a y  for some a x, a 2 E IR and we let v 5 — —c

f ( x ,  y )  =  (u3 cos(2a y )  +  v 4 sin(2a y ) ) e ~ 2ax +  J ~ ( v 5x  +  v xy  +  v 2)
¿ a

 - e ~ ax(ai  cos a y  +  a 2 sm a y )E
a 1

f i ( x ,  y )  =  - 2 a ( v 3 cos(2a y )  +  v 4 sin(2a y ) ) e  2ax +  ^ - v 5
¿ a

+ — e~ax( —aj sm a y  — a 2 cos a y )E  
a

f 2 (x,  y )  =  - 2 a ( u 3 cos(2a y )  -  v 4 sm (2a y ) ) e  2ax +  -^-ui

+ —e~ax( —a\  s m a  +  a 2 cos a y )E  
a

after checking (/ i, f 2) =  0 we find

(V3 ,V3) =  ( v 4 , v 4)

(v 3 , v 4) -  0

(u5,u i)  =  0

{v 4 , v 5) -  ( vu v 3) =  —a \ a 2 

< 1 * , » 5 >  +  K « 4 >  =  ^ 1 = ^

we also check ( / i ,/ i )  =  { ¡ 2 , ¡ 2 ) and so

( v s , v 5) =  (u i,u i)

hence

f ( x , y )  =  ( v 3  cos ( 2 a y )  +  v 4 sm(2o;y))e 2ax +  -^—(v^x +  v xy  +  v 2)
l a

 - e ~ ax(ai  cos a y  +  a 2 sm a y ) E
a 1
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and

a \  -  al

(V3 ,V3) =  (v 4 , v 4) (v 3 , v 4) =  0

( ü 5 , U 5 )  =  ( u i , u i )  ( v 5 , U l ) = 0

(*>4, t>5) -  (t>l,U3) =  - Ö 1Ö2 (v3,V5) +  (ü i,ü 4)

( E , v , )  =  0 Vi =  1 ,2 ,3 ,4 ,5

A fter  a hyperbolic m otion we m ay assum e E  =  (0 ,0 ,s ) T and /y(0,0) =  ( 0 ,js ,0 ) T 

for som e s € =  ± 1 , B y  sw itching to an associate we m ay also assum e a 2 =  0

N ow  if  /  is a  solution to the original differential equations then so is f  +  v  where 

v  E R3 and hence we m ay assum e v 2 =  (0 ,0 ,0)T T h e conditions

( v 3 , v 3) =  (v 4 , v 4) 

(v5, v 5) =  (vx , v i )  

( E , v t) =  0

(v3 , v 4) =  0  

( v 5 , v i )  =  0 

Vi =  1 ,2 ,3 ,4 ,5

im p ly

Vi =  ( r i C o s t 1 , r 1 s m t i , 0 )T

v 5  =  ( — J i r i  s i n i x ,  jjTx c o s i i ,  0 ) r

v 3  =  (r2 c o s i2, r 2 s in i2,0 )T

V4 =  (- j2 Ï '2 S in Î2,j2»’2COSÎ2,0)T

w here r i , r 2, i i , i 2 € (R and j i , j 2 =  ± 1

T h e  conditions («3 ,^ 5) =  ( u l ,u 3) and ( v 3 , v 5) +  ( v i , v 4) =  0 together im p ly  j 3  =  —j i  

and t 2 =  i i  +  n 7r/ 2  where n  is an odd integer H ence we m ay assum e
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v \  =  (ri c o s fx ,r i s in i i ,0 ) T

v 5 =  ( - ; i r i S i n i i , j i r i c o s i i , 0 ) T

«3 =  ( j 3^2 S in  Ì 2, 73^2 COS Ì 2 , 0 ) T

V4 -  (33j i r2COst 2 , - j 3 j i r 2 s m t 2 , 0 ) T

w here J3 =  ± 1  A s we m ay assum e the first coordinate o f / i(0 ,0 ) is 0 we have 

¿i =  ± 7t / 2  B y  replacing j 3 r 2 w ith  r 2 we m ay assum e J3  =  1 C hecking th at /  now 

satisfies the original differential equations results in j 3 =  1 F in ally  replacing r i 

w ith  — r i and r 2 w ith  — r 2 if  necessary we m ay assum e t  =  7 t / 2  and hence

(  r 2e 2ax cos(2ay) — ^ x   ̂

- r 2 e - 2ax sm (2a y )  +  f£y

_ “lg aæcos(o;y)

proving the lem m a
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L e m m a  1 3  6

I f  ||E||2 =  0 then af ter  a t ranslat ion m  IR3w;e m a y  as sume

f ( x ,  y )  =  (U (y ) +  x V { y )  +  ^ x 2 co s(a y  +  t ) E ) e '

where  ( V ( y ) ,E )  =  0 and  ( U ( y ) ,E )  =  a c o s ( a y  +  t )

P r o o f  :

/ l l  =  ~ f 22

— ~ ( a f i  +  E  * f 2)

=  —( 2 a f i  +  a 2/  — (E , / )E )

therefore

/ n  +  2 a / i +  a 2f  =  a  cos ( a y  +  t ) e  a:rE  

T h e  hom ogenous equation

/ n  +  2 a / i +  a 2/  =  0

has ch aracteristic equation

A2 2 a \  -f- a 2 =  0

w hich has a single root

A =  —a

T hus we have

f ( x , y )  =  (U (y ) +  x V ( y ) ) e ~ ax +  (a p articu lar solution)
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for a particular solution o f (13 20) we try

P ( x , y )  =  W ( y ) j e - ™

and sub stitutin g m we get

x 2 x 2
W ( y ) ( l  — 2 a x  +  a 2—  +  2 a x  — a 2x 2 +  a 2 — )e~ax =  a cos ( a y  -f t ) e ~ ax E

¿j Ci

and sim plifying we get

W ( y )  =  a  cos ( a y  +  t )E

Thus

f ( x , y )  =  ( U ( y)  +  x V ( y )  +  —x 2 c o s ( a y  +  i)E )e "

N ow  take the m nerproduct w ith  E  across this equation to give

(E , / )  =  ((U(y), E ) +  x ( V ( y ) , E )  + |  co * ( a y  +  <)(E, E ) ) e ‘

from  lem m a 1 (E, / ) =  ae ax cos ( a y  +  t )

a c o s ( a y  +  t ) e ~ ax =  « U fo ) ,  E) +  x ( V ( y ) ,  E))e- “:

^•<U(y),E) =  a  cos ( a y  +  t ) and (V (y ) , E) =  0 

proving the lem m a
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Lemma 13.7

I f  ||E||2 =  0 then we m a y  as sume

f ( x , y ) = w ± e - a*

/ I  1
[—  +  —  +  (x  +  r 2)2 -  y 2] cos a y  +  2y ( x  +  r 2) sin a y  
r  f a i

2
—  (—y  cos a y  +  (x 4- r 2) sin a y )

1 1 r *
[—  +  —  +  (x +  r 2)2 -  y 2] cos a y  +  2y (x  +  r 2) sin a y  

\  r {  a i

f o r  s o m e  n ,  r 2 € IR

Proof :

W e shall first use the fact that

a co s(a y  +  t )  =  a i  cos a y  +  a 2 sm a y

for some a i , a 2 £ (R and hence

(E , /} =  (ai  cos ey  +  a 2 sm ey)e"

Now

f ( x , y )  =  ( U (y )  +  x V ( y )  +  y ( o i  cos a y  +  a 2 s in a y )E )e "

and hence

a x
f i  — ( — a U  +  (1 — a x ) V  +  ( x  — ) (a i  cos a y  +  a 2 sm a y ) E ) e "

a x
h  -  (U '(y )  +  x V '( y )  — ( - a 2 c o s a y  +  a is m a y ) E ) e "
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2 2
f n  =  (q!2U  +  ( a 2x  — 2 a ) V  +   2 a x  +  l) ( a i  cos a y  +  a 2 sin a y ) E ) e ~ ax

ù

2 2

f i 2 =  (U "(y )  +  x Y " ( y )  -  cos a V +  a 2 sm a y ) E ) e ~ ax

Since / n  +  /22 — 0 we have 

(U "(y )  +  a 2 U  — 2« V )  +  ( x V " ( y )  +  a 2 x V )  =  ( 2 a x  — l ) ( a i  cos a y  +  a 2 sm a y )E  

therefore

V " ( y )  +  a 2 V ( y )  =  2 a (a i cos a y  +  a 2 s m a y ) E

U "(y )  +  a 2U (y )  =  2 a V (y )  — (a i cos a y  +  a 2 sm a y ) E

im p lying

V ( y )  =  (ci +  —  (a i (cos 2 a y  — 1) +  a 2 s m 2 a y )E )  cos a y  
2 a

+ (c 2 +  —— (a 2( l  — cos 2a y )  +  sm 2 a y )E ) sm a y  
2 a

+ y  [—a 2 cos a y  +  a i sm ay] E
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U (y )  =  (c3 +  ^ - ( c i( c o s 2 a y  -  1) +  (c2 +  —  E ) sm 2m/)) cos a y  
z a  a

+ (c 4 H (c2 H— - E  — (c2 -I— - E )  cos 2a y  +  ci sm 2 a y ) sin a y
2 a  a  a

+ y (—c2 +  —  (a i sm 2a y  — a 2( l  +  cos 2 a y ))E )  cos a y  
2 a

1
+ (c i H (—a i( l  +  cos 2a y )  — a 2 sm 2 a y )E )  sm a y

2 a

 [ai cos a y  +  a 2 sm ay] E
2

for som e Ci,C2 ,C3 ,C4 Ç IR3 As

(E , U (y ))  =  ax cos ey +  a 2 sin ey  

(E , V ( y ) )  =  0

we see that

( E ,c i)  =  0 (E , c2) =  0

( E ,c 3) =  a i ( E ,c 4) =  a 2 

T h e  condition ( / i ,/ 2) =  0 results m the follow ing equalities

( c i ,c 2) =  - a i a 2

(<̂ 2 ) C2) (cj 5 Cj) -f"

( c i ,c 4) =  - ( c 2,c 3)
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(c2, c4) =  (ci, c3) -  - ( a 2 +  ( d ,  Cl))
a

(c3,c 4) =  - - ( c 2,c 3) 
a

1 2 
(c4, c4) =  —  (c i, C l ) ------ (c i, c3) +  (c3, c3)

a* a

these also satisfy  the condition ( / i ,/ i )  =  ( h , f 2 ) and so we have

f ( x , y ) =  (c3 +  ^ - ( c i( c o s 2 a y  -  1) +  (c2 +  —  E ) sm 2 a y)) cos a y  
Za a

+ (c 4 +  —  (c2 H— - E  — (c2 H— - E )  cos 2 a y  +  Ci sin 2a y )  sin a y  
2 a  a  a

+ £ (ci +  — (ai(cos 2 a y  — 1) +  a 2 sin 2 a y )E )  cos a y  
2a

1
+  (c2 +  — (a 2( l  — cos 2 a y) +  cti sm 2 a y )E )  sm a y  

2a

+ y (—c2 +  — (ai sm 2a y  — a 2( l  +  cos 2 a y ))E )  cos a y  
2a

1
+  (ci +  —  (—a i ( l  +  cos 2 ay) — a 2 sm 2 a y )E ) sm a y  

2 a
x 2 — y 2

{ —   (ai cos a y  +  a 2 sm a y )  +  x y ( —a 2 cos a y  +  ai s m a y ) } E  ] e~

for some constants a i , a 2 € 1R and some constant vectors c i ,c 2,c 3,c 4 G IR3 w ith  the 

follow ing conditions
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( E j d )  — 0 (E , c2) — 0

(ci, c2) =  - a i a 2 (c2, c2) =  (c i, Ci) + a \ -  a \

( E ,c 3) =  a i, (E , c4) =  a 2

( c i ,c 4) =  - ( c 2,c 3) (c3,c 4) =  - i ( c 2,c 3)

(c2,c 4) =  ( c i ,c 3) -  - ( a 2 +  (c i,c i) )
a

1 2
( c 4 , c 4 ) =  — ( c x , c i )  ( c i , c 3) +  ( c 3 , c 3 )

c r  a

A fter a hyperbolic m otion we m ay assum e the third  com ponent o f f y (0,0) is zero 

T hen  after a further hyperbolic m otion we m ay also assum e E  =  (r i, 0, r i ) T for some 

r E IR U sing (13 7) we have that the first com ponent o f f y (0, 0) m ust also be  zero 

and hence we m ay assum e

E  =  ( n ,  0, r \ ) T and f y (0,0) =  (0, b, 0)T

for som e r x, b  £  IR Now (/^ (0,0), /^(0,0)) =  0 and so the second com ponent of 

f x (0,0) is zero A lso from  (13 8) we have ( E ,/ x (0,0)) =  —a a  and hence

/*(0,0) — (c, 0,cH )T
r  i

for som e c € IR F in ally  ( f x ( 0 ,  0), f x ( 0 , 0)) =  ( f y ( ® ,  0), f y ( 0 , 0)) and hence c =

2 aa ( - b 2 - ^ f )  and so
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From  above we know the value of (E , ct) for i =  1, ,4  and given E  =  (r x, 0, r x)T we 

have

Ci =  ((¿i, ¿ 2 , d \ ) T

c 2 =  (d3 , d 4 , d s ) T

c 3 =  (¿5 +  o i / r i j  de ,  d$)T

c4 =  (dr  +  «2/  ̂1 j ^85 d?)T

Since (c i, c2) =  0 then d 2 d4  =  0 1 e either d2 =  0 or c/4 =  0 A lso (c2, c2) =  (c i, Ci) +  

a 2 — (¿2 hence of4 =  d\  +  a f Now if  ci4 =  0 we would have to have a x — 0 m aking 

/  p lanar thus d 2 — 0 and c?4 =  j a x where j  =  ± 1  C hecking ( c i ,c 4) +  (c2,c 3) =  0 

leads to d 3 =  —j r i d 6, w here j  =  ± 1  and the condition ( c i ,c 4) +  ¿ ( c 2,c 3) =  0 

im plies o?7 =  —r i / a x d e d s  G iven  (c2,c 4) =  ( c i ,c 3) — ^ (a2 +  ( c i ,c i) )  we have ¿ 1  =  

a i T i / a  +  d g j r i  F in ally  checking (c4,c 4) +  2 / a ( c i ,c 3) =  (c3, c3) +  l / a 2(c i, Ci) results 

m d 5 =  r 1 / ( 2 a 1 ) ( 2 a l / a 2 — d \  +  +  2 a i d 8j / a  — a \ / r 2) Now as

„ , * , & ,ri&  a a .  „ b . r i b  a a . . T
f . (0,0) =  ( - -  —  +  - 7 ) , 0 , - t ( -  r  T

2 era ri6  2 a a  r i b

we m ust have ¿6 =  0 and since /^(0,0) =  (0 ,6 ,0)T we also have d8 =  b / a  C hecking 

th a t /  satisfies the original differential equations im plies j  — 1 T hus on sim plifying 

we have

(  r l

f ( x , y ) W ± e -*x

1
[ - 5- +  - 7  +  (x  +  r 2) -  y ] cos a y  +  2 y ( x  +  r 2) sin a yr"6

\
a

—  (—y cos a y  +  (x +  r 2) sin a y )

— 1 1 Tl
[—  +  —  +  (x  +  r 2)2 -  y 2] cos a y  +  2 y(x  +  r 2) sm a y

a *

w here r 2 =  and so the lem m a is proved

105



Chapter 13 Minimal Surfaces

W e now stu d y  the Mi ni ma l  Surfaces when a  =  0

T h e  differential equations (9 20) and (9 22) m  this case reduce to the form

f 2 =  E * f  (13 21)

/ n  +  f n  — 0 (13 22)

W e note th a t f  =  f  +  s E , s  £  IR satisfies the differential equation once /  does Now 

(13 21) and (13 22) im ply

{E,f2) =  ( E J n ) = 0

and so

( E , f )  =  ~ c { x  +  d)

for som e c, d  G IR

/ 22 =  E  * ( E  * f )

= (E , E ) f - { E J ) E  

= (E,  E ) f  +  c( x  +  d) E

and so

f 2 2 - \ \ E \ \ 2f  =  c(x  +  d ) E  (13 23)

A t this point we shall split the analysis into three cases

•  ( E ,  E )  — 0

•  ( E , E )  <  0

•  ( E , E )  >  0
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( E , E )  =  0

f 2 2 =  c(x  +  d ) E

f 2 =  c ( x y  +  d y ) E  +  g i { x )  where g x(x) G

/  =  - ( x y 2 +  d y 2) E  +  g i ( x ) y  +  g 2 (x)  w here g 2(x) G R'

A  =  +  g [ ( x ) y  +  g'2 (x)

f n  =  g"(x ) y  +  92 (x )

=  - f 22 =  - c ( x  +  d ) E  

H ence g"(x)  =  0 and g 2 (x)  =  —c(x  +  d ) E , 1 e

g x(x)  -  v 2x  +  v 3

and

resulting m

g 2 (x)  =  ~ c ( jU 3 +  7̂ dx2) E  +  u4x +  u5

/  =  ^ (- x 3  +  3 x y 2 +  3 d y 2 -  3d x 2) E  +  v 2x y  +  v 3y  +  v 4x  +  v 5

and so

E  * f  — E  * v 2x y  +  E  * i?3y  +  E  * u4x +  E  * u5

=  Î 2

=  c x y E  +  c d y E  +  Ujx +  U3
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givin g

E  * V 2 

E  * V 3 

Z*7 * v \  

E  * V 5

c £

c d E

V2

v3

Now after a h yperbolic rotation  and a stretching we m ay assum e th at E  =  (r, 0, r )T 

and hence we have

v 2 =  (S2 , c i ■s2)r

^3 =  (s 3 , c d , s 3)T

— ( S2 iu4 — (^4) , S4 H----)
r  r

_  ( 53 i CĈ \T— (-̂ 5 5 5 5̂ H----- )
r  r

w here s 2>5 3 , 54 , s 5 G IR W e m ay also assum e f y (0,0) =  (0 ,-6 / , 0)T and ^ (0 ,0 )  =  

( (b2 r 2 +  l)//(2 r), 0 ,(62r 2 — l)// (2 r))T for some 6, 1 G IR and hence

c =  —I

d =  b

53 =  0

S2 =  0

s 4 =  l b / 2 (rb  +  l / ( r b ) )

resulting m

f { x , y )  =  j ( x  +  b)

^ 3 /r2 +  (x  +  b) 2 -  3y2 

- 6 / r y  

—3 /r2 +  (x +  6)2 — 3y2

 ̂ s 6 +  c d / ( 2 r )  +  cd 3 r / 6  ^

+ 0

¿6 +  c d / ( 2 r )  +  cd3r / 6

for some s6 G IR
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It is w orth noting that ( f y , f y )  =  ( f x , f x )  a n d  { f x , f y )  =  0 f ° r aU 6 R and so /  

satisfies all the conditions for m inim ality

R ecall th at if  /  is a solution o f the differential equations then so is /  =  /  +  s E  hence 

we m ay assum e S6 =  —c d / ( 2 r)  — cd3 r /6 and hence

f { x , y )  =  j ( x  +  b)

 ̂ Z f r 2 +  (x  +  b) 2 — 3y 2 ^

\

- 6  f r y  

-3/r2 +  (x  +  b) 2 — 3 y 2

(13 24)

T h is is E nn ep er’s surface o f the second kind, w hich is a m inim al spacelike surface 

o f revolution
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•  ( E , E )  =  e 2 >  0 

H ence we need to solve

h i  -  e2/  =  c(x  +  d ) E  

Solution of Hom ogenous E quation

gi  {x , y )  — V2 (x)  smh ey +  v 3 (x)  cosh ey

for som e v 2 (x) ,  v 3 (x)  € IR3 A  particular solution is

9 2 { x , y )  =  ~ ^ ( x  +  d ) E  
eL

s'

T herefore the solution o f this equation is

/  =  v 2 (x)  smh ey  +  ^ ( x )  cosh ey  — ce~2(x  +  d ) E

E * f  =  smh e y E  * v 2 (x)  +  cosh e y E  * v 3 (x)

=  h

— e v 2 (x)  cosh ey  +  ev 3 (x)  smh ey

hence ev 3 ( x ) =  E  * v 2 (x)  and e v 2 (x)  =  E  * v 3 (x)

—f 22 — —e 2 v 2 (x)  smh ey  — e 2 v 3 (x)  cosh ey  

f n  =  v 2 (x) smh ey +  ^ ( x )  cosh ey

hence

^2(2 ) =  V4  cos ex  +  V5 sin ex  

v 3 (x)  =  ve cos ex  +  v? sm ex

w here u4, u5, ^7 € IR"
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H ence

/  =  (u4 cos ex  +  V5 sm ex)  sinh ey +  (vq c o s  ex  +  V7  sin ex)  cosh ey —

and

E  * V4  =  e v 6  

E  * v 5 =  evr  

E  * v e =  ev 4  

E  * v j  =  ei>5

N ow after a hyperbolic m otion and a strecthm g we m ay assum e E  =  

hence

v 4 =  ( s i ,0 ,5 2)t  

V 5 =  ( S 3 , 0 , S 4 ) T

V& -  ( - 5 2 , 0 , - 5 i ) X

V7 =  ( - 5 4 , 0 , - 5 3 ) T

and we m ay also assum e f y (0 , 0 ) =  ( r c o s 6 , 0 , 0 )T and f x (0 , 0 ) =  (0 , 

suiting m

54 =  0 s 2 =  0

r  k r  u5 i =  -  cos b S3  =  — sin 6
e e

and c =  — -e, hencef '

 ̂ s inh(—ey) cos(ex +  tan  fe) ^

/ ( x ,y )  =  r t ( x  +  d)  

cosh(—ey) cos(ex +  tan  b)

ce \ x  +  d ) E

(0 , e, 0 )T and

r, r sm b)T re-
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and recalling th at if  /  is a solution o f the differential equation then so is /  =  /  -f- s E  

allows us assum e d — tan  b 1 e

 ̂ sm h(—ey)  cos(ex  +  r 2) ^

f ( x , y ) =  r x t ( x  +  r 2) 

c o s h (-e y )  cos (ex +  2̂)

(13 25)

w here r i =  Lt and r 2 =  tan b T his surface is the catenoid o f the 2nd kind, w hich is 

a m inim al surface o f revolution
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•  ( E , E )  =  - e 2 <  0 

H ence we need to solve

$ 2 2  +  e2/  =  c(x  +  d)

Solution of Hom ogenous E quation

g i ( x , y )  =  v 2 (x)  s m e y  +  u3(a:) cos ey

P articu lar Solution

£2(2 , y) =  x +  d ) E  

Therefore the solution of this equation is

/  =  v 2 (x)  s m  ey  +  v 3 (x)  cos ey  +  ce~2(x +  d ) E  

E * f  =  sm e y E  * v 2 (x)  +  cos e y E  * v 3 (x)

=  h

— e v 2 (x)  cos e y  — ev 3 (x)  sm ey

hence e v 2 (x)  =  E  * v 3 (x)  and — ev 3 (x)  =  E  * v 2 (x)

—f 22 =  e 2 v 2 (x)  sm ey +  e2 v 3 (x)  cos ey 

/ n  =  v 2 (x)  sm ey +  v'^(x) cos ey

H ence

v2(x) — v4 smh ex +  v5 cosh ex 

v3(x ) =  vq smh ex  +  v-j cosh ex

for som e u4, u5, u6, v 7  G IR3
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R ecall e v 2 ( x ) =  E  * v 3 (x)  and — ev 3 (x)  =  E  * v 2 (x) ,  hence

f  — (u4 smh ex  +  u5 cosh ex)  sin ey  +  (ve smb. ex +  v 7  cosh ex)  cos ey  +  ce~2(x +  d ) E  

w ith

ev 4 =  E  * vq (13 26)

ev 5 — E  * v  7 (13 27)

ev 6 =  —E  * v 4 (13 28)

e v 7 =  —E  * v 5 (13 29)

Now after a hyperbolic m otion we m ay assum e E  — (0,0, e)T hence

v 4

v 5

v&

v 7

(s i, —5 2 , 0 )T 

(•S3? ¿>4) 0)

(5 2, 5 1; 0)T 

(5 4 ,5 3 ,0 )r

we m ay also assum e /^(OjO) =  (r cosh 6 , 0 , — r ) T and f y (0 , 0 ) =  (0 , — r sm h 6 , 0 )T and

hence
I  1 / \sm h(ex +  b) cos ey

f { x , y )  =

\

sm h(ex +  b) sin ey 

—ex  +  d

fin ally  recalling th at if  /  is a solution of the differential equation then so is f  — f + s E  

lets us assum e th at d =  —b and so

/ n  \sm n(ex +  b) cos y

— sm h(ex +  b) sm y  

— {ex  +  b)

(13 30)

this surface is the catenoid of the l si kind w hich is a m inim al surface of revolution
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D eterm in ation  o f VxpY

P ro o f th at given g(,) so th at equations (A  1) and (A  2) (given below) hold for all 

X p E T PM  and for all sm ooth vector fields Y , th at V x pY  is com p letely  determ ined

Z g ( X ,  Y )  =  g ( V z X ,  Y )  +  g ( X ,  V ZY )  (A  1)

V x r Y  -  V y, X  =  IX,  Y ] r  (A  2)

from  (A  1)

X g ( Y , Z )  =  g ( V x Y , Z ) + g ( Y , V x Z )  ( A 3 )

Y g ( Z , X )  =  g ( V r Z , X ) + g ( Z , V Y X )  (A  4)

Z g ( X , Y )  =  g ( V z X , Y ) + g ( X , V z Y )  (A  5)
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If we exam ine (A  3) +  (A  4) - (A  5) we see

X g ( Y , Z )  +  Y g ( Z , X ) - Z g ( X , Y )  =  S ( V  X Y , Z )  +  g ( V  X Z  -  V ZX , Y )

+  g ( V r X ,  Z )  +  g ( V r Z  -  V Z Y,  X )

=  g ( V x Y , Z )  +  g ( [ X , Z \ , Y )

+  g ( V x Y  ~ [ X , Y ] , Z ) +  g ( [ Y , Z \ , X )

=  2 g ( V x Y , Z ) + g ( [ X , Z ] , Y )

- g ( [ X , Y ] , Z ) + g ( \ Y , Z ] , X )

Therefore

2 g ( V x Y , Z )  =  X g ( Y , Z )  +  Y g ( Z , X ) - Z g ( X , Y )

+  g ( [ X ,  Y ] , Z ) -  g ( [ X ,  Z \ Y )  -  g( [Y,  Z ], X )  (A  6)

T h e  right hand side of (A  6) in independent of V  Suppose Z i ,  Z 2 form  orthonorm al 

basis for TPM  then

V * y  =  g{Vx Y, Z 1 ) Z 1 +  g ( V x Y,  Z 2)Z 2 

and the right hand side of this equation is determ ined from  above

U sing the G auss-W eingarten equations we can arrive at the follow ing results

1 gp(R(Xp,Yp)Yp, Xp) = —det (Ap)  w here R(X,Y)Z is the cuvature tensor, de­

fined by

R(X, Y)Z = V XV YZ -  V y Vx Z -  V [X,Y]Z
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2 (S7xpA ) Y  =  (V y pA ) X  called C o d azzi’s equation 

P ro o f*

For all sm ooth vector fields X ,Y ,Z  we have,

Y ( Z f )  =  ( f . ) ( V Y Z ) - g { A Y , Z ) t

X ( Y ( Z f ) )  =  X [ ( V Y Z ) f } - [ X g ( A Y , Z ) \ ( ; - g ( A Y , Z ) X (

=  ( f , ) ( V x V Y Z ) - g ( A X , V Y Z)C

-[.X g ( A Y , Z)]£ +  y(A y, Z ) ( f . ) { A X )

X Y ( Z f )  =  ( f * ) ( V x V Y Z  +  g ( A Y , Z ) ( A X ) )

- [ g ( A X ^ YZ) +  X g ( A Y , Z M  (A  7)

Y X ( Z f )  =  ( / * ) ( V y V x Z  +  y ( A X ,Z ) ( A F ) )

- [ y ( A F , V * Z )  +  Z)]£ (A  8)

[ X , Y } ( Z f )  =  (/*)(V [x ,y]Z ) — g ( A [ X ,  Y ] ,  Z ) £  (A  9)

but X Y  -  Y X  =  [X , Y]  thus (A  7) - (A  8) =  (A  9) or 0 =  (A  7) - (A  8) - (A  9) i e

0 =  ( f * ) [ V x V Y Z  -  V Y V X Z  -  V [X,Y]Z  +  g ( A Y , Z ) ( A X )  -  g ( A X , Z ) { A Y ) \  

+ [ - g ( A X , ' V Y Z ) - X g ( A Y , Z )

+ g ( A Y ,  V X Z )  +  Y g ( A X , Z )  +  g ( A [ X , y ] ,  Z)]£

T hus,

V * V y Z  -  V y V x Z  -  V [X,Y]Z =  g { A X ,  Z ) ( A Y )  -  g ( A Y ,  Z ) { A X )
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and

g ( A X ,  V Y Z )  -  g ( A Y , W X Z )  +  X g ( A Y , Z )  -  Y g ( A X ,  Z )  -  g ( A [ X ,  Y] ,  Z )  =  0

R ( X ,  Y ) Z  — V ^ V y Z  — V y V x Z  — ^J[x,Y]Z i is called the curvature tensor So we 

have

R ( X ,  Y ) Z  =  g ( A X ,  Z ) ( A Y )  -  g ( A Y ,  Z ) ( A X )

Suppose X ,  Y  are sm ooth vector fields on M  such th at X P, Y P form  an orthonorm al 

basis for TPM  w ith  respect to gp( , ), then

g ( R ( X , Y ) Y , X )  =  g ( \ g ( A X , Y ) ( A Y ) - g ( A Y , Y ) ( A X % X )

=  g ( A X , Y ) g ( A Y ,  X )  -  g ( A Y ,  Y ) g ( A X ,  X )

Appendix A ____________________________________________________________________________ Determ ination of

g ( A X , X )  g ( A Y , X ) '

=  — det

$
\

g ( A X , Y )  g ( A Y , Y )  ^

— —d e t ( m atrix  representation o f the linear m ap A p)

%

=  —d e t A p 

From  the norm al com ponent we have

0 =  g ( A X y Y Z ) - g ( V x Y - V y X , Z ) + g ( V x ( A Y ) , Z )  

+  g ( A Y ,  V X Z )  -  g { V Y A X , Z )  -  g ( A X ,  V Y Z )

Therefore,

g ( V x ( A Y )  — A ( V x Y ) ,  Z )  — g ( V Y ( A X )  — A ( V YX ) ,  Z ) for all sm ooth vector fields Z
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Appendix A Determ ination of

and so,

Define,

then we have

V x { A Y )  -  A ( V * y )  =  V y ( A X )  -  A ( V y X )

( V XpA ) F  =  V Xp( A Y )  -  A ( V XpY )

( V XpA ) Y  =  ( V KpA ) X
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T he C hristoffel sym bols

Appendix B

In the case when M  has lo cally  defined isotherm al coordinates x 1; x 2 1 e

a ( —---- — ) =  a ( —---- — ) =  e 4y^dxj ’ dxi > ^ ' 9x2 ’ 9x2 '

' 9x i ’ 9x2

T h en

^11 — 2^ 5 H a — \ § X 1 Ti2 — 2 ^ 1  ^21

rft =  r |a = ^„ r j2 = | ^ ,  r?,

P r o o f  .

9  ( 9  d  \ A *
Ty9 iT z ’ d i ] =  ^

2 i ( r ” &  +  r ’ 1 3 y ’ a S ) =  <t,,e* 

2 r^ e *  =  <f>y e 4

Sim ilarly

I'm =  (B 1)

( 9  9  \ * 
s { r y ' T y ) =  e

J L  ( J L  J L \  -  a  0
d x ^ d y ' d y *

=

2s<r^ +r- | ’l ) = ^

B120
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Appendix B The Chnstoffel sym bols

2 r  22e* =  <f>s e+

and

hence

r ; 2 =  ^  (B  2)

& 5 ' -
d  d  n

V -2 -a  =  0ax ( jy 9y ( j x

A  4. r2 —  -  r 1 —  -  r2 A  
!9 x +  125 y  21 d x  21dy

r la  — ^21 and T 12 — r 21

and the others are proved by following a sim ilar argum ent
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Appendix C

C od azzi’s equation

( V x ) ^  =  ( V K) X

i s  equivalent to  ip being holom orphic where

=  { ( « 1 1  -  «22) -  2 i a 12} e 0

P r o o f  :

C o d a zzi’s equation

{ V x ) Y  =  ( V y ) X

To show that Codazzi’s equation

m  local coordinates w ith  X  =  and Y  =  isox oy

V ^ ( a | - )  -  A ( V ^ I - )  =  V a ( ^ | - )  -  ^ ( V  a . | - )e* Oy a* oy 8y ox av ox

R ecall |-] =  V  a | —  V  a | -  =  0, thusL9ar’ 3 j/J  g j  dy dx ’



Appendix C C odazzi’s equation

H ence as a 2i =  «12 and Vj9_^- =  V_a_J-we have
ay ox dx °y

d  d
{(«12)0: -  ( a u ) y } - 7 ^  +  {(«22)0; -  («21

d  _  d  . . w _  5

=  “ i2 < v * ^  ~  +  (011 ~  “ m ) ( v & & ; )

=  “ I2{(r22 -  r i l ) g J  +  (r 22 “  +  _  “ 22^ r ‘ 2a c  +  V ' 2 dy^

equatin g J^’s we have

(« n )x  +  («12)?/ +  «12( 1̂ 22 — T2U ) +  2 (o n  — H ) Y 2l 2  =  0

and equating J^’s we have

— (<̂ 12)07 +  (« 11  ) y  +  «1 2 ( ^ 2  — r j x) +  2(axi — H ) Y \ 2 — 0

resulting in

(« ll)x  +  («11 — H)(f)x +  (012)1/ +  «12</>3/ =  0

and

(«ll)?y +  ( « 1 1  —  H ) ( j ) y  +  ( 0 1 2 ) 3; +  ai2<f>x =  0

m u ltip lyin g b y  2e^ and rearranging we have

2 (a n )xe0 +  (2 an  — 2H)cj>x &> =  — 2 (a i2)ye  ̂ — 2a12</>: eT

and

2 (a n )j,e 0 +  (2an  -  2H)<j)y e* =  - 2 ( a 1 2 )x e<i> -  2 a 1 2 4>x e‘l>

Now 2 (0 1 1 )3; =  (2on  -  2 H ) X =  (a n  -  022)3; and sim ilarly 2 (o n )y =  (a u  -  a 22)y , 

hence

(o n  -  022) * ^  +  (o n  -  «22)^xe^ =  - 2 ( a 1 2 )ye 4  -  2 a i 2 (f}y e 4
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and

(a n  -  «22) ^  +  (a n  -  0-2 2 ) ^ ^  =  2 (a 12)xe(t>2 a 124>xe4>

or sim larily

[(«11 — o,22)g4]x = [~2ai2e*]y

and

[(«ii -  «22)e^]J/ =  [2 a 1 2 e %

le ttin g

u ( x , y ) =  (a n  — a 2 2)e^ and v ( x , y )  =  —2 a i2e  ̂

it is obvious that these are sim ply the C auch y Riem ann E quations for the function

*l> = {(«11 -  «22) -  2ial2}e4,

It is clear that if  we start w ith  the assum ption th at rp is holom orphic then we can 

get back to C o d a zzi’s eqation by reversing the order o f these steps

Appendix C __________________________________________________        Codazzi’s equation
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T he G auss C urvature

Appendix D

From  the prelim inaries we have

g ( R ( X , Y ) Y , X )
K  =

g ( X , X ) g ( Y , Y ) - g ( X , Y y

and lettin g  X  — and Y  =  ^  we have



Appendix D The Gauss Curvature

thus

_  d{  2 ^ xx (t)yy )d x ,> dx) 
e 4>e 4> — 0

=
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Im m ersion  into hyperbolic 2-sphere

Appendix E

A  =  S 2

In this case we find th at f ( M )  is conform ally a piece of the h yperbolic 2-sphere .S'2 

P r o o f  •

It is easy to see th at when A  is ju st a sphere, the shape operator A  is sim ply a 

m ultip le  of of the id en tity  I  Hence

A  =  XI

for som e function A =  A(x,  y ) C o d azzi’s equation im plies that the function A is ju st 

a constant and m fact

r

w here r  is the radius of the sphere R ecall

=  M A X )

le ttm g  X  =  ^  we have

&  =  /*

sim ilarly  w ith  X  =  we have

=  f y

thus
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Appendix E Immersion into hyperbolic 2-sphere

É =  f ~ c

for som e c 6 IR3 Hence

/  =  £ +  c

l e f ( M )  is a piece of the hyperbolic 2-sphere S f

E128



A  differential equation

Appendix F

To exam ine solutions of the differential equations

f " ( x )  =  2 c * f ( x )  (F  1)

w here c G R  and in itia l conditions

l f ( x 0) =  r 2 and f ' ( x 0) =  c r 4

“  f ( x o) =  - r 2 and f ' ( x 0) =  - c  r 4

R e s u lt s  :

(F  1) w ith  in itial conditions l gives the solution

f ( x ) =  ~7T~— V’ d =  x  o +z(d — x) c r 2

w hich is defined on the sem i-infinite line (—oo, d)  or (d,  oo) depending on w hether c 

is p ositive of negative repectively

(F  1) w ith  in itial conditions 11 gives the solution

/ w  =  ^ j ’ d =  x ° + 7 ?

w hich is defined on the sem i-infinite line (—oo , d )  or (d,  oo) again depending on 

w hether c is p ositive o f negative repectively
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Appendix F A differential equation

P roo f o f (F  1) w ith  in itial conditions 1

{ F I )  => 2 f ' { x ) f " { x )  =  4c2 f ( x ) f { x )

{ f { x f y  =  {c2 f \ x ) y

f { x ) 2 =  C2 f 4 (x)  +  C!

_  „2 rif ' { x o) -  C f  ( x 0) +  Cl => Cl =  0

/ '( x ) 2 =  [ c f 2 ( x ) ] 2

f ' { x )  =  ± c / 2(x)

/ '( x 0) =  ± c / 2(x 0) =► ±  =  +

f ' { x )  =  c / 2(x)

Ihdf =/ 2

-1
=  c(x — <i)

f i x )

- 1
/ (* )  = c(x  — ci)

and ( F I )  w ith  in itial conditions 11 is proved m a sim ilar m anner
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A p p e n d ix  F A d if fe re n tia l e q u a tio n

Exam ples of M inimal Surfaces

T heorem  1 5, equation 1 w ith  r i =  1, r 2 =  0 and I =  6

T his is the surface of Enneper of the second kind, which is a m inim al spacelike 

surface of revolution

Theorem  1 5, equation 2 w ith  r \  =  l , r 2 =  0 and e =  1

T his is the catenoid of the h ist kind, which is a m inim al surface of revolution
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Appendix F

T heorem  1 5, equation 3 w ith  rx =  — 1 , r 2 =  0 and t  =  — 1

A differential equation

T his is the catenoid of the first kind, which is a m inim al surface of revolution

T heorem  1 5, equation 6 w ith  r x =  2, r 2 =  4, a  =  - 2  and e =  - 1

T heorem  1 5, equation 7, w ith  rj =  2, r 2 =  — 1 and a  =  -

- 4 0
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